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SCOPE AND CONTENTS:

A recursive nonlinear equalizer has been developed. Bayes
estimation theory has been applied to obtain an optimum, unrealizable,
nonlinear receiver structure for the improved reception of pulse
amplitude-modulated (PAM) signals in the presence of intersymbol inter-
ference and noise. A realizable approximation to the Bayes structure
was then derived as the cascade combination of a matched filter and a
nonlinear recursive equalizer. The resulting receiver is known as the

estimate feedback receiver.

The equalizer has been made adaptive using a new adaptive algorithm.

The algorithm incorporates an extrapolation process to accelerate
convergence and to maintain the equalizers frame of reference, and is
constrained to cause the equalizer's parameters to always move toward

their optimum values.
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Computer simulations have been used to demonstrate the properties
of the estimate feedback equalizer and to compare its performance to

that of presently known equalizers.
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ABSTRACT

This thesis deals with the problem of digital communication over
nolsy dispersive channels. The dispersion causes the overlapping of
successive received pulses thus creating intersymbol interference which
severely limits the performance of conventional receivers designed to
combat only additive interference or noise.

In this thesis Bayes estimation theory has been applied to obtain
a new, optimum, unrealizable receiver structure for the improved reception
of noisy, dispersed, pulse amplitude-modulated (PAM) signals. By making
certain approximations, a realization of this structure, known as the
estimate feedback receiver or equalizer, is obtained. It consists of
the combination of a matched filter and a nonlinear, recursive equalizer
having, in the case of binary signals, a hyperbolic tangent nonlinearity
in the feedback path. The well known decision feedback equalizer is
shown to be a small noise limiting case of the estimate feedback equalizer.
A saturating limiter is also considered as an approximation to the
hyperbolic tangent nonlinearity.

A new adaptive algorithm for the iterative adjustment of the
estimate feedback equalizer is derived. It incorporates an extrapolation
process which has the purposes of accelerating convergence of the
equalizer's parameters to their optimum values and of maintaining the
equalizer's frame of reference. It is constrained so that the equalizers

parameters always move toward their optimum values.
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Computer simulations are used to demonstrate the properties of
the adaptive estimate feedback equalizer and to compare them to those
of presently known equalizers. When the estimate feedback equalizer is
used, without a matched filter preceding it, to equalize phase distorted
channels, its performance is seen to be superior to that of existing ’
equalizers. The performance of an equalizer using a saturating limiter
in place of the optimum hyperbolic tangent nonlinearity is seen to be

almost as good as that of the estimate feedback equalizer.
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CHAPTER 1

Introduction

In general communication theory deals with the development of
systems for reliably transmitting information or data from one point to
another. In modern communications systems the information is encoded
into an electrical waveform or signal, and either this signal or a
functional of it is then propagated through the medium from sender to
receiver. Examples of such communications systems are telephone links,
microwave links and short wave radio links through both the ionosphere
and the troposphere,

Generally the information to be transmitted is presented to the
transmitter in one of two forms. In the first it is continuous in time
(examples of this are speech or music) and the resulting encoded
electrical signal is continuous in time.  The transmitted signal is then
continuous and the overall system is known as an analogue communications
link. In the second case the information is discrete in time. That is,
it is presented td the transmission system as a sequence of numbers
(samples) at regularly spaced time instants. The encoding process then
produces a signal consisting of a sequence of bursts or pulses, one
corresponding to each number. The transmitted signal is a sequence of
bursts or pulses and the overall system is known as a pulse-communications
system. If also each number (éampie) in the information sequence can
have only a finite number of possible values, the resulting system is
known as a digital communications system. This is the type of system

(1)



2.

which is of concern in the present research.

Because the transmission medium is imperfect and because there
are always sources of additive interference of noise present, the signal
arriving at the receiving end of a communications link is always
distorted in some fashion. Therefore, it is impossible for the receiver
to reproduce exactly the transmitted information. Thus the main
objective of the present research is the design of a reception system
which produces at its output an approximation, optimum in some semnse,

to the transmitted information.

1.1 | Problem Outline

A commonly occurring problem in communications is that of trans-
mitting the values of a set of message parameters or information symbols
{si} from one point to another. The symbols {si} are to be transmitted
sequentially, one every Ts seconds where Ts is known as the symbol or
signalling period. The basic problem is to reproduce these symbols, as
closely as possible, at the receiver. The general form of a communications
system for doing this is shown in figure 1.1.

The first step in transmission of the symbols {si} is to encode
each member of the sequence, as it occurs, into a low-pass signal or
waveform. This function is performed by the message encoder in figure
1.1. There is a variety of methods of performing the encoding, but we
shall consider only the linear analogue method known as pulse-amplitude
modulation (PAM). Thus each 84 as it occurs is multiplied by the

pulse-shape q(t) resulting in the low-pass waveform or signal

m(t) = ] s, q(t-kT ) (1-1)
k
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(¢]
m(t) = }s q(t~iT ) s(t) = Re{L[m(t)e ]}
i
{sk} aseband {3k}
message R modulator Transmission Demodulator Receiver

message encoder " > medium - =t

N message
\ . )
A\

Overall Channel

Figure 1.1 General Form of a digital communications system.
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where q(t) is a finite energy pulse-shape chosen to have essentially all
of its energy concentrated in a time interval To seconds in length where
To < Ts. '1‘o is called the pulse width. |

We now wish to transmit the signal m(t) over the channel,
represented in figure 1.1 by the concatenation of the modulator, the
transmission medium and the demodulator. In most situations of interest,
it is necesséry to modulate the signal m(t) onto some carrier signal for
propagation through the medium. The carrier is usually a high-frequency
8ine wave and its frequency is dependent on the nature of the tramsmission
medium. In this thesis we shall restrict ourselves to linear modulation

processes*, and thus the transmitted signal may be written in the form

_ ju t
s(t) = Re{L[m(t)]e ©° } (1-2)

where w, = wao is a suitably chosen carrier frequency and L{m(t)] is a
linear functional of the baseband signal m(t). By making the assumption
that the modulation is linear, we may thus, in almost all cases, consider
that the overall channel is linear'.

After the signal s(t) has passed through the channel, it is the
task of the receiver or signal processor to recover as accurately as
possible the message sequence {sk}. In the ideal case, the signal s(t)
would arrive at the demodulator completely undistorted by its passage

through the medium. Demodulation and subsequent signal processing to

obtain the output sequence {;k} would then be a trivial operation, and

*We exclude, therefore, frequency and phase modulation, both
of which are nonlinear.

+That is, we shall ignore any saturation or other nounlinear
effects of the modulator and demodulator.



the output {§k} would be identical to the transmitted sequence {sk}.

;n any realistic situation, however, the transmission medium
will always distort the signal s(t), and this will cause the output
séquence {Ek} to differ from the transmitted data sequence (sk}. Any
real transmission medium is to some extent dispersive or distorting in
both time and frequency. Alsc in any real channel there will be additive
distortion of the signal s(t). Since we have constrained the channel
to be linear, it may in general be represented as the combinati;n of a
linear randomly time-varying filter and a source of additive random
noise as shown in figure 1.2.

We shall represent the additive disturbance n(t) as a source of

zero-mean random noise having an autocorrelation function defined as

Rn(t,s) = E{n*(t)n(s)} (1-3)

where the asterisk denotes the complex conjugate. In later chapters,
we will at times require n(t) to be wide sense stationary so that
Rn(t,s) =th(s-t).
The dispersive medium is represented by the linear time-varying
filter in figure 1.2, and this filter may be represented by a randomly
time-varying impulse response or weighting function

h(t,a) = response of the medium at time t to an impulse transmitted
at time t-a.

The medium output z(t) may then be written as the time variant convolution
z(t) = Ih(t,a) s(t-a)da .

In the time-domain the medium tends to spread or smear the signal

s(t) so that a pulse in the medium output z(t) occupies a longer time


http:oc.cupi.es

additive noise

transmitted n(t)
signal
s (t) linear time- 2(t) %
e varying filter| - x(t) = z(t) + n(t)
h(t,a) (to demodulator)

(Dispersive Medium)

Figure 1.2 General model of a linear
transmission medium or channel.



duration than the corresponding pulse in the transmitted signal s(t).
This is due to the nonzero width of the channel response h(t,a) in the
delay var;able a. The pulse width was earlier specified as To and the
‘symbol period as T,- The quantity (T,~T ) is thus the guard space
between pulses. In digital communication links when the transmissiomn
rate is high enough that the guard spaces between pulses are small
(Ts > To) compared to the duration or delay spread of the channel pulse
response, this time spreading or time dispersion will cause overlapping
of two or more successive pulses. This effect is termed intersymbol
interference (ISI), and it will tend to cause errors in the output
sgquence {Qk}. Indeed it may be a limiting factor in the performance of
the receiver since it will tend to cause errors even in the absence of
additive noise.
Conceptually we may split h(t,a) into the sum of two components*
as
h(t,a) = hd(t,’“) +h_(t,a) (1-4)
where we shall call hd(t,a) the coherent component and hr(t,a) the random
component of the channel impulse response. In all cases of physical
interest the term hd(t,a) in equation (1-4) includes the following
components of the channel impulse response:
(1) The deterministic mean-value ﬁ(t,a) of h(t,a) which is almost always
a slowly varying component, where by slowly varying we mean that it
is essentially constant over time-intervals much greater than the

Tg-second symbol period.

*We will deal with this in more detail in'chapter 2.



(1i) Those randomly time varying components of h(t,a) which are slowly
varying compared to the symbol period as explained above.
The effect of the slow time-variations in hd(t,u) is to produce an aging
effect in-the channel response. We shall call the output signal from
hd(t,a) the pseudo-specular* qomponent,of the channel response. When
the mean E(t,a) is zero, it is actually a quasi- or pseudo-specular
component, and when E(t,a) is non-zero, it includes the true specular
component. The effects of hd(t,a) on the transmitted signal are then
time dispersion causing intersymbol interference and slow aging or
frequency dispersion due to its time variation.

The second component hr(t,a) in equation (1-4) represents those
cﬁmponents of h(t,a) which vary randomly at rates comparable to or
greater than T;l. These fluctuations tend to appear as rapid, zero-mean,
random fluctuations superimposed on the pseudo-specular component hd(t,u);
When the signal s(t) is passed through the filter represented by hr(t,a)
it tends to be almost completely mutilated and appears at the receiver
input as signal dependent noise. Following Mark (1970) we shall call
this the random scattering branch of the channel, where we include within
it all severe frequency dispersive effects.

The reception problem with which we are concerned is, therefore,
the recovery of the symbol sequence {sk} from a signal which has been

transmitted through a randomly time-varying dispersive channel. From

tThe specular component of the channel output is that component
of the channel output signal which is due to the deterministic component
of the channel.
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the above discussion, we may summarize the limiting factors on the

performance of a receiver as: )

(1) intersymbol interference due to time-spread or dispersion in the
channel.

(11) slow aging or frequency dispersion due to the slowly changing
nature of hd(t,u).

(111) random scattering caused by rapid random fluctuations in the random
component of the channel response.

(iv) additive background noise.

The first three of these factors arﬁ signal dependent effects. ’They

cannot be overcome by the simple expedient of increasing the transmitted

signal power, since such an increase also increases the level of the

interference. This is illustrated in figure 1.3 which shows curves of

probability of error versus signal to additive noise ratio for both

dispersive and non-dispersive channels when the receiver is a filter

matched to the transmitted pulse shape.

In designing a receiver to effectively extract the message
parameters {sk} from the received signal, the presence of intersymbol
interference requires that the receiver incorporate memory or delay into
its structure. Similarly the presence of Doppler-spreading or frequency
dispersion requires that the receiver be time-varying in order to be
able to track and compensate for time-varying effects. This last

implies that in effect a good receiver should be adaptive.
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Figure 1.3 Probability of error curves for a matched filter receiver
showing the effect of a dispersive channel, obtained by
simulation.
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1.2 Previous Work in Communication Through Random Media

The signal distortions due to additive noise and the dispersive
effects of the transmission medium are inherently statistical in nature.
Recognition of this fact has given rise to a mathematical theory of
communication. Two approaches to the communications problem have been
developed. The first is Information theory which was introduced by
Shannon (1948) and the second is statistical communication theory which
was introduced by Wiener (1949).

Information theory is a mathematical theory which deals in the
main with mathematical models and not with physical systems or chamnels.
Its main emphasis‘is on probability theory and algebraic models which
are primarily concerned with coding and decoding. It has also been very
useful in establishing several bounds on communication system performance,
one of the most useful of which is the expression for channel capacity

P

s
C= BCh logz(l + T3 ) bits/sec.
o ch

of a bandlimited channel where

Bch is the bandwidth of the channel.

Ps is the available transmitter power.

N, 1is the power spectral density of the additive noise,
assumed here to be white and Gaussian. C represents the theoretical

upper limit on the rate at which data can be transmitted over the channel
at a vanishingly small error-rate, and.one of the concerns of information

theory is the construction of codes which allow a system to approach this

bound.
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Statistical communication theory, on the other hand deals with
physical signals and channels and is concerned with the problem of
extracting a signal or some function of it from a noisy, distorting
background in some optimum way. Wiener's (1949) work was mainly
concerned with the design of linear filters for extracting a statistically
stationary signal from a stationary noise background in such a way that
the mean-square error between the actual and the desired signal is
minimized. This work has lead to a wide class of statistical optimization ‘
techniques and optimum systems so obtained (Zadeh and Ragazzini, 1950;
Kalman, 1960; Kalman and Bucy, 1961).

In digitai communications, the members of the information
sequence {sk} can each have only one of a finite number of values, and
thus in any signalling interval only one of a finite number of possible
signals may be transmitted. The truly optimum receiver, in this
situation, is that receiver which minimizes the probability of error at
its output. 1In essence, such a receiver produces at its output a decision
in each signalling interval as to which possible value was transmitted and
the optimum receiver, therefore, minimizes the probability of decision
error. The problem of synthesizing such optimum receivers is one of the
main ones in communication theory, and its complexity is intimately bound
up with the complexity of the channel model which is assumed.

In the classical case, the transmission medium is assumed to be
non-distorting or non-dispersive. The only source of signal distortion
is then the additive noise. If the noise is Gaussian and signal
independent, then the minimum probability of error recéiver is a parallel

set of matched filcers, one matched to each possible transmitted signal,
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followed by a decision circuit which chooses the value of the received
symbol Qk to be that which corresponds to the matched filter having the
largest output. An excellent summary of the theory surrounding this
derivation is given by Hancock and Wintz (1966).

For the case of randomly time-varying multipath channels Turin
(1956) derived the minimum probability of error receiver under the
assumption that the rate of time variation is slow compared to the length
of a signal pulse. Also Turin considered only the case where the trans-
mission rate is slow enough that channel delay-spread or time-dispersion
does not cause intersymbol interference, and therefore the receiver needed
to be optimized over only a single signalling interval. Kailath (1960,
1961) has generalized and extended these results to the case of any
randomly time-variant channel, where the channel impulse response
consists, in general, of a time-invariant mean-value or specular component
and a zero-mean randomly time-variant component. Kailath also assumed
that there was no intersymbol interference between the pulses in successive
signalling intervals. When, in addition, both the channel and the additive
noise are assumed to have Gaussian statistics, Kailath found that the
minimum probability of error receiver is a parallel bank of estimator-
correlator structures, of the type shown in figure 1.4, followed by
suitable decision circuitry, where one estimator-correlator is required
for each possible transmitted signal.

In all of the above discussion, the channel was assumed to cause
no intersymbol interference, and in each caée the minimum probability of
error receiver cculd be found. However, when the transmission rzte is

high encugh or the delay spread of the mediuz is great encugh that
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significant intersymbol interference is present in the received signal,
then the derivation of the minimum probability of error receiver becomes
almost impossibly difficult. Under certain restrictive assumptions

Bowen (1969) has derived the Baye's minimum probability of error receiver
for a time-invariant dispersive channel. The resulting structure is
nonlinear and very difficult to implement. Thus in order to obtain
receiver structures which may readily be implemented, we are forced to
place constraints on the class of allowable receiver structures, and to
consider performance criteria other than the probability of error under
which to optimize the receiver.

In the case of an exactly known, time-invariant, linear channel
and PAM transmitted signals, Tufts (1963) and George (1965) have shown
that the linear receiver which minimizes the mean-square error
E{(sk - §k)2} hetween the desired symbol 8y and the actual received
value Qk at the times t = kTg (-» < k < =) consists of a filter matched
to the shape of an individual channel output pulse followed by an
infinite length transversal filter having its taps spaced Ts seconds
apart. Coll (1966) derived a finite form of this receiver and showed
that a very good approximation to it may be obtained with the use of
only a noderate number of taps on the transversal filter.

Now it can be shown that the main purpose of the matched filter
is to minimize the adverse effects of the additive noise and that of the
transversal filter to compensate for the intersymbol interference
introduced by channel time-dispersion. The transversal filter in this
situation is known as an equalizer, since, at least in the absence of

noise, its function is to make the overzall channel between thé encoder
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and the decoder look like an all-pass4filter, which of course does not
cause intersymbol interference. In the particular case when the desired
information symbols {sk} are quantized such that each may have only a
finite number of values, the equalizer is followed by a detection or
decision circuit.

Because in most cases of interest the channel, even when it is
time-invariant, is unknown and because the additive noise is small in
most point-to-point communications situations, considerable work has
been done on the use of an equalizer with no matched filter preceding
ic. The.main emphasis in this work has been on the synthesis of self-
adjusting or adaptive equalizers which can automatically adjust them-
selves to compensate for the unknown chanmnel characteristics.

Lucky (1965) developed an equalizer of the transversal filter
type which operated to force zeros in the overall channel impulse
response at all points which are a multiple of Ts seconds away from the
present time. Lucky derived an iterative steepest descent algorithm
which when a known reference signal is transmitted automatically adjusts
the equalizer to its optimum operating point. In a later paper, Lucky
(1966) used the same algorithm in a decision-directed* or tracking mode
to track a slowly time-varying channel. The equalizer developed by
Lucky has the advantage that in the absence of noise it will completely

eliminate intersymbol interference. However, its performance deteriorates

*In the decision-directed mode an adaptive system uses its owm
output to further adjust itself. This in effect provides us with a
performance-feedback system.
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rapidly with increased additive noise, since the performance criteriom
being used does not take nolse into account.

Various authors, among them Lucky and Rudin (1967), Gersho (1969),
D1 Toro (1968) and Proakis (1969), have developed equalizers of the
transversal filter type using a minimum mean-square error performance
criterion. That is the tap-gains of the transversal filter are set so
as to minimize the mean~square error E{(sk - §k)2} at the times t = kTs
(-2 <k < »), In each case an iterative steepest descent or gradient-
following algorithm was used to adjust the filter gains to the optimum
ope;ating point. The use of the mean-square error performance criterion
has the advantage that it takes the presence of noise into account, and
therefore this equalizer is not quite as sensitive to additive noise as
the zero-forcing one.

Another form of the minimum mean-square error adaptive equalizer
has been obtained by Proakis (1971), who used z-transform techniques to
obtain the equalizer structhre as a parallel bank of comb filters. This
equalizer is also used in conjunction with a steepest-descent algorithm.

Mark (1970) has made use of feedback to obtain a linear feedback
equalizer. This structure has the advantage of having infinite memory
into the past. Mark also developed an improved adaptive algorithm which
by use of a form of learning process obtains improved convergence to
the optimum, minimum mean-square error operating point.

In order to improve on the operating characteristics of the
conventional linear equalizer, such as those discussed above, Austin

(1967) developed the decision feedback equalizer which makes use of its
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own previous decidions® to aid in makiﬁg the present decision. It does
this by using these previous decisions (assuming them correct)}to
coherently subtract out the interference due to past symbols. George
et al (1971) and Monsen (1971) have since made this structure adaptive
using steepest descent techniques. It has been shown that when the
signal to additive noise ratid is greater than about 6 db, the decision-
feedback receiver yields better error-rate performance then the linear
receiver.

| In the above, we have discussed briefly the development of
optimum receivers for the randomly time-variant channel and for the time-
im&hm,ﬂmﬁmmmWe&mmL hdndmumhwwu,my.
transmission medium is both randomly time-varying and time-dispersive.
Because they are adaptive, the equalizers described above work very well
when the channel is such that its rate of time-variation is less than
the transmission rate T;I. In tems of the channel impulse response in
equation (1-5), this means the adaptive equalizer preceded by a matched
filter is essentially the optimum receiver, when the channel impulse 1is
essentially given by its (pseudo) specular component hd(t,c). However,
when the random scattering component hr(t,u) becomes large, it must be
taken into account and its presence will affect the optimum receiver
structure.

As above, because the channel is time-dispersive it is very

*The decision feedback equalizer is constrained to operate only
on digital signals; that is the members of the information sequence {Sk}
are each constrained to have only a finite number of possible values.
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difficult to derive the minimum probability of error receiver, and hence
most investigation has been confined to finding the optimum linear
receiver, usually with a minimum mean-square error performance criterion.
For the randomly time-varying, time-dispersive channel Kaye (1968) has
derived the optimum linear receiver under a minimum mean-square error
criterion. He has shown it to consist of a filter followed by a linear
equalizer. The form of the filter is of interest. It can be seen

(Kaye, 1968) to be matched to the shape of a pulse output from the
specular branch of the channel in a noise background consisting of the
additive background noise and the signal-dependent "noise" output from
the random branch of the channel. This filter appears in the receiver
following the demodulator but preceding any further signal processing.
ﬁKaye showéd that it does nothing to combat the effects of time~dispersion
or the slow aging of the specular component of the channel response. In
a later work Mark (1970) derived an adaptive form of this filter, and
thus by cascading the adaptive filter and an adaptive equalizer, a
completely adaptive receiver for reception of digital signals transmitted

over randomly time-invariant dispersive channels is obtained.

1.3 Scope of the Thesis

In this thesis, we shall concern ourselves with the investigation
of an improved technique for the receptiou of digital signals. 1In
particular, we shall derive and evaluate a new nonlinear receiver
structure (the conditional Bayes receiver) for the extraction of digital
information or data from signals which have been transmitted over slowiy

time-varying dispersive channels. We shall be mainly concerned with
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compensating for or equalizing the dispersive effects of the channel.
The systems required for this are known as equalizers, and the novel
nonlinear equalizer which we shall consider, known as the estimate
feedback equalizer is a realizable approximation to the abovementioned
conditional Bayes receiver.

In chapter 2, we shall discuss briefly the transmitted signal
and suitable pulse shapes for digital symbol transmission. We shall
then discuss a model for the channel and the determination of those of
its parameters which are pertinent to the present reception problem.

We ghall also discuss the demodulation of the received signal to obtain
a baseband signal at the equalizer input.

Chapters 3 and 4 contain the main theoretical r;sults of the
thesis. In chapter 3, we shall apply Baye's estimation theory to obtain
a novel optimum receiver structure known as the conditional Bayes
receiver or estimation structure. This optimum receiver is unrealizable,
and therefore we shall derive/a realizable, sub-optimum approximation to
it. This results in a novel, nonlinear feedback equalizer which we shall
call the estimate feedback equalizer. In chapter 4, we shall derive a
new adaptive algorithm for iteratively controlling the estimate feedback
equalizer, and will suggest means of mechanizing this algorithm. The
main contributions of the present work thus lie in the derivation of the
new conditional Bayes) receiver and its approximate realization and in

the development of a new adaptive, nonlinear estimate feedback equalizer

having performance superior to that of existing equalizers.
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In chapter 5, we shall evaluate, by means of computer simulation,
the performance characteristics of the adaptive estimate feedback equalizer

and will compare them to those of existing equalizers.



CHAPTER 2

Signal Transmission and the Channel

Before we can deal with the problem, outlined in chapter 1, of
teceiﬁing a digital signal which has been transmitted over a dispersive
channel, we must first consider the form of the transmitted signal and
the channel over which it is to be transmitted.

We are dealing with pulse or digital signals, and the trans-
mitted signal may thus be represented as a sequence or train of pulses.
We want to transmit these pulses at as high a rate as possible using
pulses which are not too sensitive to the distorting effects of the
channel, and with virtually no interference (overlap) between successive
pulses at the transmitter. Therefore some attention must be given to
choosing ﬁhe transmitted pulse shape.

For efficient digital communication, the receiver must maintain
time-svnchronism and phase-coherence with the transmitted signal. To
maintain phase-coherence the receiver must recover the received carrier
phase and use it in demodulating the bandpass received signal to obtain
—a low-pass or baseband pulse-train. This is known as coherent demodula-~
tion. The maintaining of time-synchronism is essentially the maintaining
of delay-lock with the low-pass envelope of the transmitted signal. To
recover the digital information from the received signal, the receiver
must make some form of estimate or decision once in each symbol period.

By maintaining time synchronism, the receiver knows when in each symbol

(22)
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period to make its estimate or decision. In the present research,
we shall assume perfect time-synchronism is being independently main-
tained.

The maintaining of time-synchronism and phase-~coherence by the
receiver and the compensation for other distorting effects of the
channel requires knowledge of the channel characteristics. Thus, in
order to design a reliable receiver consideration must be given to
developing a satisfactory model for the channel, and to determining

those of its parameters which affect receptionm.

2.1 The Transmitted Information and the Baseband Signal

We are dealing with the communication of digital information, and
thus the transmitted information may be represented as a sequence of
parameters or symbols {sk} each of which has a value £ which is a
member of the finite set (El, eee s Em) of m > 2 possible values. Each
symbol 8y (== < k < @) is to be transmitted during the corresponding

Ts-second symbol period
(k-l)T < t < (k‘l"l)'r (-m<k<on)
2’7 - ~ - 2’"s

as one of the m possible values Ei (1i=1,...,m).
At the receiver, the objective during each symbol period is the
recovery of the corresponding transmitted symbol. That is, during say

the nth symbol period
(n - ;)T <t< (n+ lDT (=» < n < )
2°"s 2°7s

the receiver attempts to recover the value of the symbol Sy transmitted
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in that interval. The value of each sn is, of course, unknown a priori
at the receiver, and thus for reception purposes, the symbols s, can
be specified only in a statistical sense.

We shall be concerned only with symbol by symbol reception. The
receiver then treats each symbol as if 1E'were independent of all others.
We shall, therefore, assume the transmitted information {sk} is a
sequence of statistically independent, equiprobable, m-ary symbols having

the properties

1 (=@ < k < =)
Pls, = £,] == (2-1)
R ¢ T T
E{sk} =0 (== < k < =) (2-2)
E{s,s, } = 026 (- < j,k < ®) (2-3)

Jk s j.,k

where P[.] is a probability, ¢ is the Kronecker delta and ci is the

j.k
symbol variance.

For transmission the symbols {sk} must be encoded into electrical
waveforms or signals. As stated in chapter 1, we are considering only
the linear analogue method of encoding known as pulse-amplitude modulation

(PAM). It consists of multiplying each symbol s, by a suitable time

k
translated pulse shape q(t-kTs). This produces the low-pass or baseband

signal

m(t) = ] s q(t-kT ) (2-4)
k | |

which is a train or sequence of amplitude modulated pulses, where the

pulse q(t-kTs) corresponding to the symbol s, in the kth symbol period

k
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(k- PT, <t < &+ PT, (~» <k < =)

has the following properties:
) Its center of mass is located at t = kTs. For all commonly used
pulse shapes this implies that the peak value is located at

t=KkT_ .
s

(11) It has a finite value lasting for T, < T seconds. This implies
a guard space of (Ts - To) seconds between successive pulses,

'1'o being known as the pulse width.

(111) It has finite energy Eq defined as

kT _+T,/2 T /2 |
Eq = I qz(t-kTs)dt = I A(t)dt < = (cwck<m)  (2-5)
kTg-T /2 ~T /2

The choice of the pulse shape q(t) is of some importance,
particularly since we wish to transmit at very high pulse-rates (very
small or zero guard spaces), and much effort has been devoted to finding
optimum* pulse shapes. The classical work in this area is due to
Nyquist (1928). He recognized that a decision as to the value of each
received symbol needs to be made only once in each symbol period. Thus
if a pulse shape q(t) can be found which has its peak value at the time

when the decision is made and is zero at all other decision times, then

*Optimum implies here that the pulses have been chosen so that
there is minimum inter-pulse interference or overlap at the transmitter,
and also the pulses are relatively iInsensitive to the distorting
effects of the channel.



26.

whether or not this pulse shape overlaps or interferes with other pulses
is immaterial since there is zero interference at the sampling times.
Nyquist showed that for the ideal bandlimited channel having the

frequency response

1
1 |f|<—2-T—-
s
H(f) =
0 elsewhere

intersymbol interference free transmission can be obtained at pulse
repetition frequencies up to l/Ts Hz using time translates of the

pulse shape

sin w(%—)

q(t) = 3

x
Ts

This work was later extended to more realistic channels and
pulses by Gibby and Smith (1965) who, by defining an equivalent Nyquist
channel, found a set of conditions defining the 'Nyquist" type of pulse
(zero intersymbol interference at the sampling points) for quite general
channels. Unfortunately, these pulses are usually quite difficult to
generate and also tend to be subject to rather severe distortion when
the channel response varies from the nominal one.

Another approach to the above problem is due to Tufts (1963) who
showed that when the channel is known, its dispersive effects may be
equalized or compensated for by proper choice of the pulse shape q(t).
Also under certain conditions when the channel is known, it is possible

to perform a joint optimization of the transmitted pulse shape and the
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receiver (Tufts, 1963; George et al., 1969). However, when the channel )
is unknown, as it usually is, these optimizations require a nearly
distortionless feedback path from receiver to transmitter. Such a

path is seldom available, and the usual practice is to choose some fixed
pulse-shape q(t) and to perform all equalization functions at the
receiver. The maig constraint on this choice of pulse shape q(t) is

that it should have essentially all its energy confined to a duration

or pulse width of To < Ts seconds. There will then be negligible
overlap or intersymbol interference between adjacent pulses in the
baseband signal m(t). Typical choices of the pulse-shape q(t) are the

rectangular, the Gaussian and the raised cosine shapes. These are

indicated below:

(1) rectangular . T T
1 - 2ce<2
2 - =2
q(t) -4 (T, < T)
o
0 t] > =
‘ le] > 5
(ii) raised cosine ¢ T T
1 2nt o _o
2(1 + cos T ) -3 Sty
q(t) =< (t, <T)
0 le] > 52
.
(1i1) gaussian
2
q(t) = e Bt B = constant.

As far as most of the work in this thesis is concerned, we do not need
to consider a specific pulse shape. We need only to describe q(t) as

a pulse of width To < Ts naving finite energy Eq, as defined in
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equation (2-5).

In any given symbol period say the kth,

1 1
(k - §9Ts <t < (k+ E)Ts, (- < k < »)

the transmitted signal is 8, q(t-kTs) where the value of s, is a member

k
of the finite set (51,...,£m) of possible values. There are thus m

signals

gl(t-k'rs) £ q(t-k'rs)

gy (t=kT)) = & q(t-kT )

which may be transmitted during the kth symbol period. These m signals
may be considered as vectors in a linear vector or signal space.

For information to be transmitted we must have m > 2, and to
obtain the most reliable reception we want the distance between these
signals considered as members of the signal space to be as great as
possible. One measure of this distance is the correlation between the
various members gi(ial,...,m) of the signal set, the distance between
signals being a maximum when the correlation is a minimum. In the
particular case when all the signals 84 (i=1,...,m) have the same

energy, Nuttall (1962) has derived a lower bound on this correlation as

(2-6)

al

where the correlation A is defined as

E

A= -L[ gi(t)gj(t)dt (1, = 1,...,m)
8
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Also it is known (Balakrishnan, 1960) that this bound can be achieved
only with an equal energy signal set. In the case of amplitude
modulated signals, an equal energy signal set can only be obtained in
tﬁe case of binary signals using antipodal symbol values. For example
if we use the symbol values tl, we then have an equal energy binary

~ signal set, and in this case the bound of equation (2-6) 1is met.

In this thesis, unless we state otherwise, we shall always

assume that the transmitted symbols are independent and binary with

the values t1. In this case equations (2-1) to (2-3) reduce to the

form
Pls, = &, = t1] -3 {=1,2 (2-7)
(= <k < =)
E{sk} =0 (= < k < ») (2-8)
E{sisj} = 61 j (_w < i)j < &) (2"9)

and these are the properties which will be used throughout most of the

present research.

2.2 The Transmitted Signal

;n some communication links, notably coaxial cable links and
short distance telephone links, the signal is transmitted through the
channel at baseband. The transmitted signal is then the low-pass or
baseband signal m(t) of equation (2-4). However in many situations of
interest the signal m(t) must be modulated onto some carrier signal

(usually a high frequency sinusoid) for propagation through the channel.
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This modulation process is essentially a transformation of m(t)
to a different portion of the frequency spectrum - for example the
sigral m(t) is transformed from the low-pass or baseband form of
equation (2-4) to a bandpass form., The modulation may be a linear
process as in amplitude modulation or a nonlinear process as in
frequency or phase modulation. In this thesis we will restrict ourselves
to linear modulation, in which case the transmitted signal may be
written in the general form

jmot
s(t) = 2 Re{L[m(t)]e } (2-10)

where w, = 27f, is the nominal carrier frequency, L[m(t)] is a linear

functional of the baseband modulating signal and the factor of 2 is

included for later convenience®. Examples of the forms which L{m(t)]

may take are:

(1) L{m(t)] = const + m(t) implying that s(t) is double sideband
amplitude modulation (DSB-AM).

(ii) L{m(t)] = m(t) implying that s(t) is double sideband suppressed
carrier amplitude modulation (DSBSC-AM).

(i11) L[m(t)] = m(t) + j@(t) where f(t) is the Hilbert transform of
m(t) and s(t) is then single sideband amplitude modulation
(SSB-AM).

A good summary of linear modulation schemes is given by Lucky (1968).

*The inclusion of this factor allows us to avoid multiplying the
channel output signal by a constant factor of % ia later equations.
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In the present work, we shall assume that we are dealing with
DSBSC-AM. The transmitted signal may then be written in the simple form

jw t
s(t) = 2 Re{m(t)e ©°} (2-11)

where m(t) is real. In the case of binary antipodal symbols having the
values *1 and rectangular pulses q(t) of width To = Ts’ this form of

modulated signal is equivalent to a bi-phase, phase-modulated signal.

2.3 Channel Considerations

In any real communications link the effects of the channel on
signals passing through it are usually unknown and uncontrellable.
Therefore most communications channels can be specified only in a
statistical sense. The task of the receiver is then to compensate,
in some optimum fashion, for the effects of the channel so that the
transmitted information can be successfully extracted from the received
signal.

Considerable effort has been devoted to the problem of channel
characterization and to the measurement of its parameters. Some of the
more noted investigators in the field have been Turin (1956), Kailath
(1960) and Bello (1963). The work of these investigators and others
has recently been collated and published by Kennedy (1969).

In the classical formulation of reception problems, the channel
was mcdelled as a linear all-pass system with constant delay and a
source of additive random noise n(t). The received signal then had
the fora

y(t) = s(t) + n(t)
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where s(t) is the transmitted signal, and from this we see that the
only source of interference is the additive noise. Unfortumnately, such
a model conforms to reality 4dn only a few special cases.

In this section we will consider a more realistic model for the
channel. The theory to be discussed ha# been developed with natural
media such as the ionosphere and the troposphere in mind, but it applies
equally well to any linear communications channel.

| Signal transmission through these natural media is unavoidably
characterized by simultaneous propagation along many different and
usually time-varying paths which are usually impossible to resolve. Such
a channel, provided it is assumed to be linear, may be represented as a
linear time-varying filter (Bello, 1963; Schwartz, Bennett and Stein,
1966). This filter may be characterized by its impulse response function
h(t,t) = output from the channel at time t due to an impulse

input applied at time t-t.

For a transmitted signal s(t) we may then write the channel output

signal as
z(t) = I h(t,8) s(t-£)dg (2-12)

where the limits of integration are assumed to be suitably defined.
Now we are interested only in transmission of signals s(t) of
the form given by equation (2-~11) where the bandwidth of the envelope
m(t) is assumed to be less than the nominal carrier frequency w,. The
transmitted signal s(t) is then.a narrowband bandpass signal, and the

complex signal



33.

jmct
- g(t) = m(t)e (2-13)

is analytic. We, therefore, need to define the channel impulse response
h{t,t) only over the bandwidth of s(t), and we may thus write it in the
same narrow-band form as

: Jjuw T
h(t,t7) = Re{g(t,t)e °} . (2-14)

where the low-pass envelope g(t,tr) is usually complex. Then using the
properties of analytic signals (Dugundji, 1958) we may write the channel

output signal z(t) in the form
ju t
z(t) = Refe ° I g(t,&)m(t-£)dg} (2-15)

Except for the carrier frequency w, contained in the exponential factor,

z(t) is completely determined by its complex low-pass envelope
n(t) = I g(t,8)m(t-£)dE . (2-16)

We may, therefore, describe the channel and analyze its properties in
terms of the complex, equivalent, low-pass impulse response g(t,%).

If a frequency~domain approach to the channel is adopted
(Railath, 1960a), an equivalent representation fbr n(t) may be obtained
as

n(e) = I M(£) G(t,f)eI2™EE 4 (2-17)

where M(f) is the Fourier transform of the signal envelope m(t) and
G(t,f) is known as the equivalent low-pass, time-varying transfer
function of the channel. Bello (1963) has shown that G(t,f) is related

to the impulse response g(t,f) by the Fourier transform relationship
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G(t,f) = I 8(t’€)e-j2'ﬂ’f5 ag . (2-18)

The manner in which g(t,£) and G(t,f) vary with time t determines
the Doppler shifting and spreading properties of the channel. Similarly,
the time-dispersive properties are determined by the non-zero width or
spread of g(t,£) in the delay variable §, or equivalently by the finite
bandwidth of G(t,f) in the frequency or f-domain. Bello (1963) and
Kaye (1968) have defined other system functions for describing the
properties of a linear, time-varying, dispersive channel, but we will
not go into them here.

So far, we have described the channel in terms of system
functions such as the impulse response g(t,f) and the corresponding
transfer function G(t,f). In general, however, communications channels
are randomly time-varying. The system functions g(t,f) and G(t,f) are
then sample functions from stochastic processes and the channel can be
described only in a statistical sense.

A complete statistical characterization of the channel requires
the specification of multidimensional probability distributions for
the channel system functions. This has been done for the case when the
various propagation paths are resolvable (the discrete multipath channel)
and the channel statistics can be assumed to be Gaussian (Turin, 1956).
In general,however, these functions are very difficult to either measure
or compute, and moreover, the channel is often non-statiomary so that

the distributions evolve with time.
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All the systems to be considered in this thesis use a minimum
mean—-squared error performance criterion. This implies that only a
second moment characterization of the channel is ;equited. Therefore,
in this section, we shall consider only the me;n value and correlation
functions of the channel system functions.

Since for any channel, we can observe only its output z(t),
we shall begin by finding the mean value and correlation functions of
z(t) assuming a deterministic transmitted signal s(t) of the form given
in equation (2-11). Using equation (2-15), we may write the mean value

function z(t) of z(t) in the form
- _ jwot
z(t) = E{z(t)} = E{Re[e Ig(t,&)m(t—éj)d&]}. (2-19)
In any real channel
2
Jlg(t.a)l df <@ (= <t < =)
and if we then define
g(t,8) = E{g(t,&)} (2-20)
we may write the mean channel output as
- Juyt
z(t) = Re{e f g(t,g)m(t-£)dE} {2-21)
and the corresponding complex low-pass signal as

n(t) = J g(t,E)m(t-E)dg (2-22)

The mean channel output n(t) (or z(t)) is known as the specular

component of the channel response. It is the chamnnel output signal which
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would be obtained if the signal m(t) (or s(t)) were transmitted through
a channel having the mean impulse response g(t,£) (or equivalently
ﬁ(t,E)). Another representation for n(t) is obtained from equation

(2-17) as
Ae) = f M(£) G(t,0)ed?™Et 4f (2-23)
where G(t,f) is known as the mean transfer function.

Now let us find the autocorrelation function of the complex (low-

pass) channel output n(t). This function is defined by
R (t,s) = E{n*(t)n(s)} (2-24)

where the asterisk denotes the complex conjugate. Substituting equation
(2-16) into equation (2-24) and interchanging the order of averaging

and integrating, we obtain
Rn(t,s) = IJ E{g*(t,u)g(s,v)} n* (t-u)m(s-v)du dv (2-25)

The expectation in equation (2-25) is the autocorrelation function of
the complex equivalent low-pass channel impulse response g(t,f). For

notational convenience, let us write it as
R (t,85 u,v) = E{g*(t,u)g(s,v)} (2-26)
and then equation (2-25) becomes
Rn(t,s) = II Rg(t,s; u,v) m*(t-u)m(s-v)du dv (2-27)
Using the properties of analytic signals we may readily relate Rh(t,s)

to Rz(t,s), the autocorrelation function of the physical channel output,

by the relationship
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ju _(s-t)

R_(t,s) = % Re(R (t,8)e ° } (2-28)

The autocorrelation function of the equivaient low-pass transfer function
G(t,f) may be found from Rn(t,s) using a Fourier transform relation due

to Bello (1963), and we thus obtain

j2n (uf-Lv)

RG(t,s;f,l) = II Rg(t,s;u,v)e du dv. (2-29)

In principle, the mean value and autocorrelation functiomns
derived above are sufficient to provide a second order statistical model
for the channel. Howe&er, because we are interested only in the
reception of digital signals, we can make certain simplifications in the
model.

Digital communication systems are characterized by the fact that
in each Ts-second signalling or symbol period one of a finite number of
possible signals, each of maximum duration Ts seconds is transmitted.

When we consider the effects of the channel on digital signal transmission,

most channels may be considered to be wide sense stationary over time and

frequency intervals much greater than the effective duration and bandwidth
of the digital signalling waveforms (Bello, 1963). This situation arises
in the following cases:

i) In telephone and other cable links, the channel impulse response
tends to be almost time-invariant with very slow and relatively
small fluctuarions about this constant value.

(i1) In radio links the channel usually contains slow (and possibly
non-stationary) fluctuations on which are superimposed much more

rapid fluctuations which are wide semse stationary in both time
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and frequency.
In this context, slowly fluctuating means essentially constant over
periods much greater than the symbol period of '1‘s seconds in the time
domain and over intervals greater than the effective bandwidth® in the
frequency domain. These channels are known as quasi wide sense
stationary uncorrelated scattering (QWSSUS) channels (Bello, 1963).
In the present work they provide the most useful model.

Now for a channel which is truly wide sense stationary the

following conditions hold (Bello, 1963; Kaye, 1968)

1) g(t,8) = g(&) (2-30)
implying that the mean value or specular component of the
channel impulse response is a fumction only of the delay variable
(11) Rg(t,s;u,v) = Ré(s-t;u,v) - Ré(r;u,v) (2-31)
where T = s-t, or
Rc(t,s;f,l) = Ré(s-t;f,l) = Ré(r;f,k) (2-32)

that is the autocorrelation functions of the system functions

g(t,u) and G(t,f) are functions of the time difference 1. This

*For pulses which are time limited to Ty < Tg seconds in duration
there is no true band limitation. One measure of bandwidth (Schwartz,
Bennet ard Stein, 1968) is the quantity

1

J{M(f)lzdf which is usually of the order of L1 .
2 T -T
fM(0)] o
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implies that components of the channel response at different
Doppler shifts are uncorrelated.
If also the channel is uncorrelated scattering, then components of its
response for different values of the delay variable { are uncorrelated.

Under this condition equation (2-31) reduces to the form

Ré(t;u,v) = Pg(t,u)ﬁ(u-v) , (2-33)
where 6(+) is the Dirac delta function, and equation (2-32) becomes
Rc(t,s;f,i) -'¢G(t,ﬂ) (2-34)

where Q@ = £-f. The function @G(t,ﬂ) is the autocorrelation function of
a process which is wide sense stationary in both time and frequency.
Another result which is of interest is obtained by taking the double

Fourier transform of QG(t,Q) to obtain

2n (EQ-vT)

S(E,v) = “ ¢G(‘r,9)ej dr de (2-35)

where £ is the channel delay variable and v is the chanmel Doppler
shift or spread variable. The function S(£,v) is the well known (Bello,
1963; Kennedy, 1969) channel scattering function, and it defines the
delay-Doppler energy cross-section of the channel.

Now using the mean channel output n(t) of equation (2-22), we
may decompose the channel output signal n(t) into the sum of two

components (Kaye, 1968). If we let
R(t) = n(e) - n(e) ‘ (2-36)

we may then write the complex, low-pass channel output n(t) as
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n(t) = n(t) + n(t) (2-37)

Equation (2-37) expresses the channel output n(t) as the sum of the
mean or specular component n(t) and a zero-mean random component. This

random component may be written as
n(e) = f g(t,E)m(t~E)dE (2-38)

where g(t,£) is the zero-mean random component of the channel impulse
response g(t,f). From this we see at once that we have a decomposition

for g(t,£) which in the QWSSUS case may be written as

g(t,&) = g(&) + g(t,&) (2-39)

In many applications, particularly in the case of radio links*,
the mean or specular component g(£) will either be zero or very small
compared to the random component g(t,£). In principle, if this is true,
it is impossible for the receiver to perform coherent demodulation
followed by filtering and equalization. The best receiver is then
(Kailath 1960, 1961) an envelope detector (e.g., square-law device)
followed by the usual decision circuit. However, since we are dealing
with signals which are sequences of pulses, each of maximum duration Ts
seconds, we can further decompose the channel response, and to some
extent avoid this problem.

Let us now write the random component é(t,&) of the channel

impulse response as the sum of two components

*In particular ionospheric and tropospheric links.
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g(t,8) = g (t,8) + g (t,E) (2-40)

We define the first term gs(t,z) of equation (2-40) to include those
randomly varying components of g(t,£) which vary slowly enough with

time t that gs(t,E) appears to be time-invariant over time intervals
much greater than the symbol period of Ts secondst We define the

second term gr(t,E) to include all those components of g(t,£) which

vary randomly at rates comparable to or greater than the symbol frequency
T;I.

Now combining equations (2-39) and (2-40), we may write the

overall channel impulse response in the form
g(t,8) = [2(8) + g (£,8)] + g (¢,E). (2-41)

Then let us combine the time-invariant mean-value E(E) and the slowly

time-varying component gs(t,E) into the term
84(t,8) = 8(E) + g (£,8) . (2-42)

Using equation (2-42) we may now write the overall channel impulse
response as

8(t,8) = g (t,6) + g _(t,E) (2-43)

where g,(t,£) includes all the time-invariant and slowly varying

*This type of decomposition is to some extent conceptual, since
the definition depends on the symbol period or data rate Tg. If the
data rate is high enough (that is Tg is small enough) then all components
of the channel are rapidly varying. Fortunately this is seldom the case.
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components and gr(t,E) includes all the rapidly varying components.
Thus gd(t,E) is a pseudo-specular component which includes the true
specular component when it is non-zero. The second term gr(t,E) is the
random scattering component mentioned in chapter 1.

The pseudo-specular component gd(t,g) causes two types of
éignal distortion. First because of its non-zero width in the delay
variable £, it causes time-dispersion of signals passing through it.

In the case of pulse or digitél signals, this leads to intersymbol
interference between two or more successive pulses. Second, the slow
time variations in gd(t,E) cause a random aging of its amplitude and
phase characteristics, and this causes a corresponding aging of the
amplitude and phase of any signal passing through it. The pseudo-
specular component gd(t,E) is also known as the quasi-coherent compomnent,
and in order that the receiver perform coherent demodulation followed

by equalization, this component must be present and non-zero.

The random scattering component gr(t,E) consists of rapidly
fluctuating, zero mean, wide sense stationary fluctuations superimposed
on the pseudo-specular component gd(t,i). Because of its non~zero width
in the delay variable &, gr(t,ﬁ) also causes time-dispersion, but the
dominant effect in this branch of the channel is the rapid fluctuation.
Signals passing through gr(t,E) are almost totally mutilated by these
fluctuations, so that the output of this branch of the channel appears
as wideband signal dependent noise, and provided the component gd(t,i)

is also present it may be treated as such by the receiver (Kaye, 1968).
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Thus far in our consideration of the chamnel and its effect on
the signal, we have been concerned only with multiplicative effects as
represented by the impulse respouse g(t,f). However, in any real
communications link, there is always additive interference or noise
present, and in order to obtain a complete model of the channel it must
be taken into account.

This additive noise 1s random and can be defined only in a
statistical sense. As in the case of the impulse response g(t,£), we
require only a second moment characterization. Therefore, let us define
it to be a source of zero mean, wide sense stationary random noise n(t).
Since we are dealing with narrowband signals and channels, we need to
consider n{t) only over the signal bandwidth, and we may therefore write
any sample function n(t) of the noise as

jmot
n(t) = 2 Re{pu(t)e } (2-44)

where u(t) is a complex low-pass envelope and u(t)exp(jw,t) is an
analytic signal. Again using the properties of analytic signals

(Dugundji, 1958) we may write the autocorrelation function of n(t) as

R (1) = E{n(t)n(t+1)} (2-45)

or
1 jwot
Rn(T) = E-Re{Ru(r)e } (2-46)

where Eu(T) is the complex autocorrelation function of the envelope u(t)

and 1is defined as

R(1) = EG*(nu(t+n)} | - (2-47)
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This completes our modelling of the channel. From equations
(2-15) and (2-45), we may now write the actual physical signal at the
receiver input as
y(t) = z(t) + n(t) (2-48)

Ju t

o Ju t

= Re{e [g(t,&)m(t-&)aa} + Re{u(t)e °}

In terms of complex low-pass equivalent signals we have
y(t) = I g(t,&)m(t-¢g)dg + u(t). (2-49)

From these equations and from equation (2-42), we can model the channel
as a parallel bank of linear filters followed by a source of additive
noise. This is shown for the complex low-pass equivalent signals in
the block diagram of figure 2.1 and the extension to the bandpass case
is obvious.

In this thesis our primary concern is with the development of
reception systems for the case when the signal dependent noise is small.
This essentially means that the random scattering component gr(t,g) of
the channel impulse response is small and the pseudo~-specular component

gd(t,E) is the main component of the channel impulse respomse, so that

g(t,8) = g,(t,8)

When the signal dependent noise is significant, it must be taken into

account in the design cof the receiver (Kaye, 1968; Mark, 1970).
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2.4 Measures of Dispersion

In the preceding section, we discussed a second order statistical
model for a time-varying dispersive channel. This model characterized
the channel in terms of its mean-value function and its autocorrelation
function. Since the reception sysfems to be discussed in succeeding
chapters use a minimum mean-squared error performance criterion, this
second order model is sufficient to allow the optimum receiver structure
to be defined. |

Because the channel has memory or delay-spread, the optimum
receiver includes memory within its structure. Also, because the chamnel
is tihe-varying the receiver must be time-varying in order that it may
follow or track the changing channel. The fact that the receiver must
be time-varying leads at once to the concept of an adaptive or self-
adjusting receiver. Such a receiver does not require explicit knowledge
of either the mean-value or autocorrelation function of the receiver
input signal, and therefore does not require explicit knowledge of the
channel statistics. However, in order that the receiver be effective
in adjusting itself to compensate for the channel, it must know or at
least have reasonable estimates of the following parameters a priori:
1) the channel memory size. This is synonymous with the width

or spread of the chamnel impulse respomse g(t,£) or the channel

scattering function S(£,v) in the delay variable £.
(ii) the rate of time-variation of the channel. This is equivalent

to the Doppler-spread or width of the scattering function S(&,v)

in the Doppler variable v.
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The first of these parameters is needed in order that an estimate of
the minimum receiver memory required can be made. The second one is
required so that the receiver designer knows how quickly the adaptive
receiver must be able to adjust itself in response to changes in the
channel. Therefore, in this section, we will discuss a possible method
of estimating the time and frequency spread of the channel.

In Appendix A, we have used a power series expansion of the
equivalent low-pass chamnel transfer function to obtain the complex low-
pass channel output n(t) in the form

n(t) = °Z° r (t) a {m(t-€ )} (2-50)
n=0 " at"” °
where £, is the mean channel or multipath delay*, and the time-varying

coefficients Pn(t) are defined by
I (t) =3 | (-0)® g (c,6)dE (2-51)
n n! 0" "2

with g,(t,£) being related to the channel impulse response by

8o(t,E) = g(t, &+ ) (2-52)

Since the channel is randomly time~varying the rn(t) are sample functions
from stochastic processes, and can be defined only in terms of their
statistics.

Now the autocorrelation function of n(t) may readily be written

in the form

*As yet £, has not been explicitly defined. We will do so in
this sectiom.
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® o
R (t,s) = mzo nzoE{F:(t)Pn(s)} i;; {m*(e-g) } ;%2'{m(s—£°)} (2-53)
The chanpel correlation properties are thus defined by the correlatiom
properties of the coefficients Pn(t). Using equation (2-51), we can
obtain the expectation in equation (2-53) in the form

min
E(rA(or ()} = SH— JJ PR (603848 DdEd

min.
and then making use of the relationship in equation (2-52) we obtain

(_l)m-!'n

BT (or_()} = 455 J[ (5-6) "(u=£ )R (t,838 u)dEdn (2-54)

As stated in the previous section, the channels which we are
considering are QWSSUS in nature. We may, therefore, substitute
equation (2-35) into equation (2-54) to obtain, after some manipulation
the simplified result

mn
E(r* ()r_(t+0)} = D I (&£ )™ P (r50)de . (2-55)

min!

To obtain now the desired estimates or measures of dispersiom,
let us make the approximation that the channel exhibits linearly
frequency-selective fading. This means that the complex channel output
n(t) may be approximated by the first two terms of the series in

equation (2-50), yielding

n(e) & T_(m(e-g ) + I () S m(e-¢ ) O (2-56)
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wvhere the first term is a flat or non-frequency-selective fading temm
and the second term exhibits linearly frequency selective fading.

Let us then choose as the mean channel or multipath delay Eo
that value which minimizes in the mean-square sense the frequency-
selective fading component of n(t). From equation (2-55), the mean-

square value of the flat fading coefficient Po(t) is given by

E{Il‘o(t)lz} = J P (036)dg (2-57)

The function Pg(O;E) is known in the literature (Bello, 1963; Kaye,
1968) as the delay power spectral density, and is often written as

Q(g). It is related to the channel scattering function by the equation
Q(g) = IS(E,v)dv ’ (2-58)

where, as in all the preceding integrals, the limits of integration are
assumed to be suitably defined. The mean-square value in equation {(2-57)

may then be written in the form

E{lro(t)lz} = fQ(&)d:: = HS(E,\»)dvdg (2-59)

Similarly, the mean-square value of the linearly frequency-selective

component may be found from equations (2-55) and (2-58) as

2 2 2 >
E(T,(8)|7} = [(g-g)7QE)dE = || (&-§ )"S(E,v)dvdE (2-60)
Taking the first derivative of this with respect to Eo’ we obtain

2 02 ( |
T E{|T,(e) "} = -2 j £acede + 26, f Q(&)dg (2-61)
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and setting this equal to zero, we may solve for the mean channel delay

facou

g = — (2-62)
[

which may be expressed in terms of the scattering function s({,v) as

IIES (g,v)dvdg
g, - (2-63)
IIS(EsV)dvdE

That this is the value of £ which causes E{Ifl(t)lz} to be a minimum is

readily verified since

2
2 E{r, )% - 2[Q(a)da = 2”s<e.v>dsdv
13

o
>0 .

If we now take the ratio of the mean-squared values of the frequency-

selective and flat fading components, we obtain

2
=4 (2-64)

2 =
E{|r (&) |%} [ 8

Q(g)dg

or in terms of the channel scattering function

H(s-go)zs (€,v)dedy
g = (2"65)
jIS(E,V)dEdV

A2
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The quantity Ag is known as the root mean square (rms) width of Q(E).
It is a measure or estimate of the channel‘memory or delay spread. That
is it is an estimate of the width of g(t,£) in the delay variable &,
and providés an estimate of the amount of receiver memory required.
Following arguments dual to thése given above, we may derive
the mean Doppler shift of the.channel as
ij(v)du

Vo ETTT——— | (2-66)
JP(v)dv

and the mean square Doppler spread of the channel as

J (v-v) 2p (v)dv
g% = . (2-67)
IP(v)dv

The function P(v) 1s known as the Doppler power spectral demsity. It is

defined in terms of the scattering function S(£,v) as
P(v) = S(0,v) (2-68)

The quantity 8 is a measure of the rate of time-variation of the channel,
and therefore it is indicative of how quickly the receiver must be able
to adapt to and track the chanmnel characteristics.

Typical values of the delay-spread Ag and the Doppler-spread B
are given below for various transmission media (Richters, 1967; Niessen

and Willim, 1970),
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Channel Doppler spread B(Hz) Delay spread Ag(secs)
Ionospheric scatter 10 10-4
tropospheric scatter 10 ‘ 10-6

schedule 4 data line (coaxial) <<1 . 10"2

19H88 coaxial cable <«<1 v 1.2 x 10-2

We point out that equations (2-64) and (2-67) represent only one possible
way of estimating the delay and Doppler spreads for a channel. There
are many other equally valid methods of defining and measuring these

quantities but we will not go into them here.

2.5 The Demodulation Problem

In this thesis we are concerned with the reception of double
sideband, suppressed carrier, amplitude modulated (DSBSC-AM) signals
which have been transmitted over linear time-varying dispersive channels,
The transmitted and received signals, s(t) and y(t) respectively are
given by equations (2-5), (2-11) and (2-48) as

juw t jw t

4% o
s(t) = 2Re{m(t)e ° } = 2Ref{e L s, a(t-kT )} (2-69)
. k
and
y(t) = z(t) + n(t)
Ju t fwot'
= Re{e Ig(t,i)m(t-ﬁ)dil + Re{u(t)e } . (2-70)

The reception problem is the recovery of the digital information

or symbol sequence {sk} from y(t). Because of the linearity of both the



53.

channel and the modulation, the reception process may be considered as
twd separate operations. The first of these is the demodulation of
the bandpaés signal y(t) to obtain a low-pass or baseband waveform
containing the desired information. Since s(t) and therefore z(t)
are both suppressed carrier signals, some form of carrier recovery
operation to recover the carrier signal and its phase must be carried
out. That is coherent demodulation must be used. The second operation
is the compensation for the time and frequency dispersive effects of the
channel so that reliable recovery of the symbols {sk} can be obtained.
This compensation, which is usually referred to as channel equalization,
is most often performed at baseband following demodulation*, and the
general form of the receiver is then given by the block diagram in
figure 2.2. This baseband signal processing is the main subject of
this thesis and will be investigated in detail in following chapters.

In this section we will discuss the problem of demodulation.
This subject has been discussed in some detail by a number of authors
(Costas, 1956; Van Trees, 1964, and others). Let us consider for the
moment the complex low-pass envelope of the signal component z(t). It

may be written as

n(t) = [g(t,am(t-i)da (2-71)

The complex equivalent low-pass channel impulse response may

in general be written in the form

*An exception to this is discussed by Lucky and Rudin (1967).
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jo(t,8)

g(t,&) = a(t,f)e (2-72)
where

a(t,£) = |g(t,8)|
and

8(t,E) = arg{g(t,£)}
We may then write equation (2-71) as

n(t) = [a(t,s)eje("g)m(t-s)ds , (2-73)

and the corresponding physical signal z(t) may be written in the form

jmot

z(t) = Rele [a(t,&)eje‘t’g)m(t-g)dg} (2-74)

Before considering the actual demodulation, let us consider
first the transmission of an unhodulated sine wave at the carrier
frequency W, The cofresponding output signal may be written in the
form

c(t) = Refe

dg} (2-75)

jwotja(t’g)eja(t,i)

and this may-readily be expanded to the form
c(t) = [Ja(t,&)cose(t,g)da]cos Qot
- [Ia(t,i)sine(t,i)dg]sin w t (2-76)

or

c(t) = r(t)cos[w;t + 9(t)] (2-77)

where
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r(t) = | Ja(t,z)éj°“’5’de |

is the envelope, and

Ia(t,E)Sine(t,E)dE
y(t) = tant (2-78)
' Ia(t.i)cose(t,ﬁ)dz

is known as the carrier phase. Note that y(t) does not depend on the
transmitted sine wave.

Returning row to the channel output signal z(t) of equation
(2-74), let.us now redefine the phase process 6(t,£) to explicitly

show the carrier phase y(t). That is we write

8(t,&) = ¥(t) + B(t,E) (2-79)

and then the signal z(t) may be written in the form

ju t

2(t) = Re{e ° fa(t,5>ej[*‘t’+3“'5’]m<c-5)ds} . (2-80)

Since a(t,£) and m(t) are both real functions we may combine the
exponential terms in equation (2-80) and then expand the result to

obtain the signal z(t) in the form
z(t) = [[a(t,g)m(t-i)coss(t,E)dg]cos{mot + y(t)]
(2-81)

- [Ja(t,E)m(t—&)sinﬁ(t,E)di]sin[wot + p(e)] .

Recall now that the transmitted signal s(t) in equation (2-69)

is DSBSC, and therefore has no quadrature component., Then from equation
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(2-81), we can see that the presence of a non-zero phase versus delay
characteristic® B(t,&) in the channel impulse response causes a portion
of the available signalling energy to appear in the channel output z(t)
as a quadrature or orthogonal component. Tﬁis means that z(t) contains
both amplitude and phase modulations which are dependent on the
transmitted signal s(t). It also has the following equivalent implica-
tions concerning the channel response

(1) ° the equivalent low-pass channel impulse response
8("-»5) = a(t.E)eXP[j(‘l)(t)"" B(t95))]

is a compléx function of the delay variable &.

(ii) the frequency response of the channel H(t,w), where H(t,w) is
the Fourier transform of the actual channel impulse response
h(t,£) with respect to the delay variable £, is unsymmetric
about the carrier freq;;ncy w, within the bandwidth of the
transmitted signal s(t). A limiting form of such a frequency
response is one which totally filters out one sideband of the
DSBSC signal s(t), so that the channel output z(t) is then
single sideband in nature.

From equétion (2-81), we see that coherent demodulation of z(t)

will produce the in-phase and quadrature components

I vc(t) = )fa(tyg)m(t-g) cosfi(t og)dg (2"82)

>

*By this we mean that B(%,E) is not zero or an integer multiple
of 7 radians at all values of the delay variable &.
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and

vs(t) = Ia(t ,&)m(t-£)sinB(t,£)dE (2-83)

of its envelope. This process requires a local oscillator at the

receiver producing the signals

cos[mot + ()] and sin[wot + ¢(t)]

which are phase-coherent with the carrier -phase y(t). The essential
problem in demodulation is then the production of these local carrier
signals.

It is well known (Bennett and Davey, 1965; Lucky, 1968) that
coherent demodulation of any received signal having a significant
quadrature component requires that an indeﬁendent source of phase-
coherent carrier signal be available. This local carrier may be
supplied by a phase~stable, free-running oscillator aé is done in many
single sideband voice links, or a separate (pilot) carrier signal may
be transmitted along with the signal s(t) and a phase-locked loop
system may be used to produce the local carrier for demodulation.

From the information theory point of view, any communications
channel has a certain capacity which imposes an upper bound on the
amount of information which may be passed through the channel in a
giveq time. In order to coherently demodulate a suppressed carrier
signal using only the information in its sidebands the channel capacity
must be great enough to accummodate both the transmitted information
and the phase information required for coherent demodulation. If the

channel capacity required for the signal information is C, and that
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required for the phase information alone is Cp, then the total channel
capacity required is Cs + Cp. The excess channel capacity c available,
over and above Cgs to establish phase lock from the sidebands alone has

been found by de Buda (1970) to be

2

C=W logz(l + 1255 )

(2-84)
where W is the signal bandwidth and p is the so-called carrier to
noise ratio defined as

In phase signal power recoverable by coherent demodulation
Additive noise power

p =

If the phase channel capacity Cp is greater than the excess channel
capacity & which is available, then coherent demodulation cannot be
performed without an independent carrier signal being transmitted.
When the channel response causes a quadrature component to be
generated in its output z(t) in response to the DSBSC signal s(t),
then the carrier to noise ratio p will be reduced and thus the excess
channel capacity C available for phase lock will be reduced {(de Buda,
1970). Provided that the power in this quadrature component is small
(implying in equation (2-83) that sinB(t,f) is small for all &), then
p will not be reduced by very much, and the excess capacity C may
still be great enough that coherent demodulation is possible using only
the sidebands of the received signal. This is the usual case when

DSBSC signals are transmitted, and we may then represent the channel

output z(t) of equation (2-81) to a good approximation by
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z(t) = u(t)cos[mot + y(t)] (2-85)
where

u(t) = Ja(t,ﬁ)m(t-ﬁ)di ' (2-86)

is the low-pass or baseband envelope function which we wish to recover
from the demodulation process;

Now let us write the instantaneous phase of z(t) in equation
(2-85) as |

¢(t) = w t + y(t) (2-87)
We may then write the received signal in the compact form
z{t) = u(t)cos¢(t). (2-88)

Suppose now that we have available a local oscillator producing
the outputs
uc(t) = 2 cos 6(t) (2-90)
and

ns(t) = 2 gin 6(t) (2-91)

Let us then multiply z(t) by each of these signals separately and then
pass the resulting products through low-pass filters to remove the
second harmonic components. This results in the pair of low-pass or
baseband signals

gc(t) = u(t) cos e(t) (2-92)
and

gs(t) = y(t) sin e(t) (2-93)
where

e(t) = 8(t) - ¢(t) (2-94)
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is the instantaneous phase error. Then multiplying these signals

together we obtain

2
w(e) = 28 qin 2c(e) (2-95)

which after averaging or low-pass filtering is proportional to the sine
of twice the phase error e€(t). When e(t) is small, w(t) is proportional
to 2e(t). The signal w(t) may be used as the control signal for a
voltage controlled oscillator which produces the local carriers uc(t)
and us(t). As the phase error e(t) approaches zero, the in-phase signal
gc(t) approaches the desired envelope function u(t). The resulting
demodulator structure is shown in figure 2.3 and is known as the Costas
Loop (Costas, 1956). This structure provides an efficient demodulator,
having the noise rejection properties of a conventional phase-lock loop
demodulator, provided of course that the quadrature component vs(t) of
equation (2-83) is small so that z(t) is well represented by equation
(2-85).

In practice the received pnase y(t) in equation (2-85) may be
varying rapidly enough that the time required for the Costas loop to
acquire phase-~lock may be prohibitively long. 1In such cases, improved
acquisition and tracking performance may be obtained by the use of a
more sophisticated loop such as the frequency controlled loop developed
by Lang and Brackett {(1970) in a demodulator structure similar to that
;hown in figure 2-3.

Thus by the use of synchronéus or phase~locked detection or

demodulation, we have obtained the baseband envelope signal
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x(t) = u(t) + nc(t)
- Ia(t.i)m(t-ﬁ)ds + nc(t) (2-96)

where nc(t) is the in-phase component of the additive noise defined in
equation (2-45). If we substitute equation (2-5) for m(t) in this, we

obtain

x(t) = Z S Ja(t,E)q(t-kTs-E)dg + nc(t) (2-97)
k

and if we then define

r(t) = Ia(t,E)q(t~€)d€ (2-98)

we may write the demodulator output as

x(t) = ] s, r(t-kI_) + n_(t) (2-99)
k

where r(t) is known as the received pulse-shape.

From equation (2-99), it can be seen that the problem now is
to extract the transmitted symbols {sk} from the demodulator output x(t).
This is known as thevbaseband signal processing problem (see figure 2-2),

and is the subject of the remainder of this thesis.



CHAPTER 3

The Baseband Receiver

In chapter 2 we first discussed the transmitted signal and how
it was distorted and interfered with by the channel. We then went on
to consider the problem of demodulating the received, distorted signal
to obtain the baseband signal x(t) of equation (2-99) using synchronous
detection techniques.

" In this chapter we shall cousider the problem of how to extract
the transmitted information from the baseband signal. We shall start
~our investigation by considering a time-domain formulation of the
optimum linear receiver (George, 1965) and progress from there to the

nonlinear structure which is the main subject of this thesis,

3.1 The Performance Criterion

The output from any receiver which is designed for the reception
of digital signals m;y be regarded as a sequence of decisions. In
digital signal transmission a signal is transmitted in each Ts-second
signailing interval, and there is a finite number (say m) of possible
signals which may be transmitted in each interval. For example in the
present case the signal in the kth interval, (k - %)Ts <t < (k+ %)Ts
is the amplitude modulated pulse skq(t-kTs), where the amplitude Sk is
the digital symbol with values in the finite set (El, seo o {m) as

described in chapter 2. The task of the receiver is to decide which of

(64)
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the m symbol values was transmitted in any given signalling interval,
and the best or optimum receiver is the one which makes the fewest
decision errors. It is the statistically optimum receiver, and is
known as the minimum probability of error receiver.

In the special case in which the channel is not dispersive the
received pulse shape r(t) of equation (2-98) is identical with the
transmitted pulse shape q(t). The received baseband signal may then
be written as

x(t) = E 8,a(t-kT ) + n_(t) (3-1)

where the pulses q(t-kT;) are orthogonal in the sense that

Iq(t-j’rs)q(t—kl‘s)dt = E$ (3-2)

3k

where Eq is the pulse energy and Gj X is the Kronecker delta. There
14

is thus no overlapping or interference between pulses in disjoint

signalling intervals, and therefore the only source of distortion or

interference is the additive noise nc(t). We may then write the

received signal in any Ts-second signalling interval, say the kth, as
x(t) = s,q(t-kT_) + n_(t) k-HT_ <t < +Dr
k4 -] c 2'"s - 2’"s

(= <k < =) (3-3)

Under the assumption that the noise nc(t) is Gaussian and white,
it has been shown (e.g., Turin, 1960) that the minimum probability of
error receiver for extracting the symbol S from the signal x(t) in

equation (3-3) is a filter matched te the pulse-shape q(t) followed by
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a sampling and decision circuit. This sampling and decision circuit
samples the filter output at time t=kTg; and makes a decision as to
which of the values (El, cee o Em) the symbol S has.

In the more general case when the channel is dispersive, the
signal in any given signalling interval cannot be writtem in the
simple form of equation (3-3). In the kth signalling interval, we may
use equation (2-99) to write the received signal x(t) as

x(t) = s, r{t-kT_) + 2 s
k s 9k 3

r(e=3T,) + n () (3-4)
where now the pulses in disjoint signalling intervals are not orthogonal
in the sense of equation (3-2)., 1In fact if we sample x(t) at time
t-kTs, we obtain

x(kTs) = skr(O) + jzk sj

r(kTs-st) + nckTs) {3-5)
where the second term is non-zero. The firsf term in equation (3-5)
represents the desired signal component. The second term is interference
due to the overlapping tails of pulses in other signalling intervals
and 1s usually known as intersymbol interference. The third and last
term represents, as befeore, the additive noise. Because of the inter-
symbol interference, the derivation of the minimum probability of error
receiver is a very difficult problem, and the resulting receiver is a
complex nonlinear structure (Bowen, 1969).

Rather than attempt the direct minimization of the probability

of error and then make the simplifying approximations required to

realize the resulting stiucture in a form comparable in complexity to
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existing receivers (e.g., Ungerboeck, 1972), we shall adopt a hybrid
approach which leads to a simpler optimization problem. This approach
consists essentially of considering the receiver to be made up of two
parts - an estimator followed by a threshold detector or decision

circuit. The estimator produces estimates s, at the times t=kT

k
(=» < k < ») of the corresponding transmitted symbols S, (= < k < ®),
These estimates are optimized according to some performance criterion
and the decision circuit then uses them to make its decisions.

Provided the values of the estimates s, are close to the values

k
of the corresponding symbols Sy the decision circuit will tend to

make correct decisions and the behaviour of the hybrid receiver will

be close to that of the minimum probability of error receiver. Based

on this argument, we must choose a performance criterion for the receiver
which in some sense will make the error in the estimates ;k (== < k < =)
as small as possible. If this criterion is chosen correctly, the
resulting estimation error (§k - sk) (== < k < =) should be small, at
least in an average sense, and the behaviour of the resulting receiver
should be quite close to that of the minimum probability of error
receiver.

The criterion which we shall employ is the so-called minimum
mean-squared error criterion, which seeks to make the mean-squared
estimation error

El(s, - 5%
at the times t=kTs (== < k < @) a minimum. The use of this criterion

has the following advantages:
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(1) It leads to a mathematically tractable optimization problem.
(i1) It allows relatively simple iterative procedures to be used
for adaptive adjustment of the receiver parameters.

It has the disadvantage that if the probability distribution of the

estimation error is not relatively close to being Gaussian, the’
resulting'receiver may be a rather poor approximation to the minimum
probability of e;;or receiver. Fortunately, this seldom happens in
practice.

To employ the criterion, we shall first use it to obtain the
optimum linear receiver. We shall then use it to obtain an optimum

nonlinear structure which has certain exploitable similarities with

the linear structure.

3.2 A Time-Domain Approach to the Optimum Linear Receiver

In this séction, we consider a time-domain derivation of the
optimum (minimum mean-squared error), unrealizable linear receiver for
the recepti&n of dispersed, baseband PAM signals. A frequency domain
derivation which leads to an expression for the transfer function of
this receiver was carried out by George (1965). The pfesent analysis
is largely based on an analysis by de Buda (1965) who carried out an analysis
using the ﬁaximization of signal to nolse ratio as the performance
criterion.

As previously, let us consider a received signal of the form

x(t) = ] s r(t-kT)) + n(t) (3-6)

k=—x
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r(t) is the received pulse shape defined as

r(t) = Iq(t)c(t-r)dt

q(t) is the transmitted pulse-shape defined to have width Tg

and normalized to unit energy so that
s
I qz(t)dt = ]
0

c(t) is the channel impulse response, assumed here to be time-

invariant and known a priori at the receiver.

The {sk: ~» < k < w} are the transmitted symbols, assumed

here to be independent random variables with mean

E{sk} =0 (~= < k < ®)
and vartance |

E{SIZ(} = ] (=2 < k < @)

n(t) is zero mean, wide sence stationary additive noise

assumed here to be white with autocorrelation function

Rn(t) = Noé(r)
where by white we mean that its power spectral deansity is
constant and equal to N, over the bandwidth of interest which
is nominally equal to (Ts)-l. The assumption of white noise
makes little difference to the resulting receiver structure.

Primariiy it simplifies the structure of the matched filter

which will be seen to be the first stage of the optimum linear
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receiver. When the noise is non-white with spectral density

Sn(w), this filter has the transfer function

R*(w)

5, (w)
rather than the simple white noise form

R* (w)

No ’

where R(w) is the Fourier transform of the received pulse shape

_r(t). We shall thus assume white noise, the extension to

colored noise being relatively simple.

In this section, we assume that the receiver is linear. Its

. output at any time t=nTg (=2 < n < ») may, therefore, be written as

where
(1)

(ii)

(111)

§n = wa(T)h(nTs - 1)dTt (-» < n < ») (3-7)

h(t) is the impulse response of the linear receiver

§n is the linear estimate of the transmitted symbol s, at

time t=nTg which is the midpoint of the signalling interval
1 1
(-T2 @+ HT.

realizability constraints will be ignored at present.

Since the processes involved are wide sense stationary, and the

receiver is time-invariant, the estimate at any time t=nTg will have

the same form as the estimate at any other time t=mT (m # n). In

particular the estimate §o at t=0 may be written as
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30 = j“;(t)h(-r)dr ' (3-8)

-0

For convenience of notation in what follows, let us define the inverse

time impulse response or weighting function
k(1) = h(-1) . (3-9)

We may then rewrite equations (3-7) and (3-8) as

§n = !ﬂg(r)k(r-nTs)dr (-» < n < ®) (3-10)
and
ao = wa(r)k(r)dr (3-11)

Let us now consider the estimation of the symbél s, at time t=0. The
optimum linear receiver may then be found by applying the well known
(Luenberger, 1969) necessary and sufficient condition for the mean

squared estimaticn error to be a minimum, namely
E{(s, - 5,)x(t)} = 0 (w= <t <) (3-12)

subject to the constraint that §o be a linear functional of x(t).

This may be rewritten as
E{s§_x(t)} = E{s_x(t)} (~= < ¢t < =) (3-13)

and now let us evaluate the terms in this equation. The left~hand side
of equation (3-13) may be written using equations (3-6) and (3-11) as

o« r

B3 gx(e)} = [ r(e-k1) | r(r-kIDk(x)dr + Njk(®)

kﬂ e d e

(== < t < =) (3-14)
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The right-hand side of equation (3-13) is then readily found to be
E{sx(t)} = r(t) (~» < t < =) (3-15)

Then substituting equations (3~14) and (3-15) into equation (2-13) we

obtain the equation

! r(t-kr) j r(r-kTs)k(T)dt + N k(t) = r(t)

k-—ﬂ .

(-» < t < w) (3-16)

the solution of which defines the optimum linear receiver weighting
function k(t).
It can be shown (George, 1965) that a solution of the form
© . I ‘
k(t) = ) g r(t-nT ) (3-17)
n==—o n 8
satisfies equation (3-16) where the {gn} are constants such that

T 2
Zgn<oo,

ns=-—-own

Substituting equation (3-17) into equation (3-16) and interchanging

the order of integration and summation we obtain

z r(t-kTs) 2 8, [ r(r-nTs)r(r-kTs)dr + Nok(t) = r(t)

k=m—w ns~w -
-0

(=<t < =) (3-18)
The integral in the first term of equation (3-18) is the time auto-

correlation function of the received pulse shape r(t);

¢r[(k-n)Ts] = er(r;nTs)r(r-kTsjar (3-19)
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Let us also define

¢r(0) = I“rz(t)dt =E <= {3-20)

as the received pulse or signal energy. We may then rewrite equation

(3-18) in the form

) B, F(t-kT )¢ [Gmm)T ] + N k(t) = r(t)

kmeo pa=on

(w= <t < =) (3-21)

Then letting m = k~n and interchanging the order of summation, we obtain

m-gm ¢r(m1‘s).n=§°° gnr[t-(n+m)Ts] + Nok(t) = r(t)
| (=<t <a) (3-22)

Now from equation (3-17), the inner summation in equation (3-22) is '
seen to be k(tfst) and we may therefore rewrite equation (3-22) as

I ¢ @I )k(t-mT ) + N k(t) = x(t) (-= <t <w) (3-23)

Equation (3-23) may be solved in two ways to yield the optimum
linear receiver. First it may be solved in the frequency domain. By
taking the Fourier transform of both sides of equation (3-23) with
respect to t, we obtain the transfer function of the optimum linear

receiver as

R(w) . 1
K(w) = N, = ¢ _(ml_) juml (3-24)
1+.z———;‘—-—-—-e s
mE—w O

From this result we see that the optimum linear receiver may be

impilemented as the cascade connection of a filter matched to the
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-feceived pulse shape r(t), or R(w) in the frequency domain, and a
sampled data system which compensates for channel time dispersion or
intersymbol interference. This is the result obtained by George (1965).
The second way to solve equation (3-23) is to do so in the time
domain. This, very simply, yields a solution for the weighting function

k(t) of the optimum linear receiver as

E(ié " E iN Z ¢r(st)k(t-st)
8 o § O m=-

k(t) =

(-» < t < =) (3-25)

] o
‘where 2 implies that the m=0 term has been excluded from the summation.
m
Equation (3-25) is a recursive relationship for k(t). Now combining
equations (3-10) and (3-11) with equation (3-25) we obtain the optimum

linear estimate §° of the symbol s, at time t=0 as

- 1 1 o ~
S0~ E;;E; [GX(T)r(T)dT TE AN z ¢r(st)sm (3-26)

s O mm=-w
-=00

The first term in equation (3~26) is the result of passing the received
signal x(t) through a filter matched to the shape r(t) of an individual
received pulse. In the special case of no intersymbol interference it
would represent the optimum receiver in a decisicn theoretic sense.
The second term is a correction term which compensates for intersymbol
interference using a weighted sum of the optimum linear estimates ém
of earlier and later symbols s, (m # 0).

It is of interest at this point to consider the receiver
structures which are suggested by equations (3-24) to (3-26). In

equation (3-24), if we carry out synthetic division of the numerator
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by the dgnominator, we obtain the optimum transfer function K(w) in
the form
L =jwnT
R(w) = ==L ae ° (3-27)
where the coefficients {an} are constants de?ending on the channel
correlation properties as defined in equation (3-19). Equation (3-27)
may be implemented by the structureAshown in figure 3.1 which consists
of a matched filter followed by an infinite length transversal filter.
This is the receiver structure derived by George (1965) and others
(Tufts, 1963; Tufts and Berger, 1967). It is unrealizable due to the
requirement of an infinite length tapped delay line.

A second receiver structure which is suggested by equations
(3-24) to (3-26) consists of a filter matched to the received pulse
. shape r(t) followed by a recursive sampled data filter. To derive
this structure, let us first define a signal to additive noise ratio

as
pn

Z'mtﬂ

o (3-28)

n
(o]

We may then, with a little manipulation rewrite equations (3-24) and

(3-25) in the form

-1
(1+op)
R{w) n
K(w) = =3 S CTRE T (3-29)
o 1+ L A s
1+p N
R m=-® o
and
1 r( ) bl ¢r(st) }
k(t) = ];;—'{ “ﬁ;‘ -mz*w'“'—e k(t-nT )

= < £t < w) (3-30)
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Figure 3.1 Basic unrealizable linear receiver structure. This is
the structure derived by George (1965) and others.
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From these, the resulting recursivé receiver structure can readily
be seen and it is shown in block diagram form in figure 3,2. It is an
unrealizable structure because of the infinite length transversal
filter

Oy ¢r(st) ju)st

e
Mmoo No

which appears in the feedback path. Later in this chapter we will be
concerned with obtaining realizable structures from equations (3-29)
and (3~30).

In both the realizations shown in figures 3.1 and 3,2, the
purpose of the systems following the matched filter is to compensate
for intersymbol interference. We have shown these systems in the form
of sampled data systems, but they could also be implemented in analogue
form using analogue transversal filters in which case the samplers
would appear at their outputs rather than at their inputs. In the
present research, our main interest is in sampled data or digital
implementation of the baseband receiver, and so we have represented
the compensators of figures 3.1 and 3.2vas discrete time or sampled

data systems.

3.3 The Nonlinear Estimate Feedback Equalizer
Using equation (3-28) we may rewrite the estimate of equation

(3-26) in the form

®, ¢ _(al )
- (" r(t) , _ _1 ' x s . -31)
So ™ Tp x(1) T dr 4o ) s (3-31)
n [¢] o ms=—o [¢]
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If we now substitute equation (3-6) for x(t) in this we obtain §o as

p

- ®, ¢_(uT )
s = —2 s, + . [ﬂn(r) Eéll dt + 1 'r_ s
[+

——(s_-8)
e No m m

o ]:+pn l+pn 1+pn o=

. (3-32)

From this we may then obtain the estimation error (s, - 8,) at time

t=0 as
- 8o 1 !" (1) 1 @, ¢r(st) .
s8-8 = - n(t) dr - ) (s_=-s)
o o0 1+pn 1+pn No 1+pn I No m m

e o o o (3-33)

The first two terms on the right-hand side of equation (3-33) are caused
by the additive noise n(t) and can be reduced only by increasing the
energy or power in the transmitted signal. The third term, however,

is caused by errors in compensating for intersymbol interference due

to errors in estimating earlier and later symbols 8y (k # 0). This

tem can be reduced if the linear estimates §k are replaced by some
other estimate, say s:, which has a smaller estimation error (in the

mean-square sense). That is, 1if

El(s, - s)%} < E{(s, - 50°%)
at all sampling times t=kT_ (k # 0) then the mean square error
E{(so - go)z} at t=0 will be reduced compared to that of the optimum
linear receiver, and as a result improved error performance will be
obtained.
The obvious answer to this is to replace the linear estimates
;k in equations (3-31) and (3-33) with the a posteriori mean values or

Bayes minimum mean-square error estimates
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st = Els,|X} (= <k <) (3-34)

where X is a realization of the received signal X: {x(t), —» < t < =},
This implies that rather than use the optimum linear receiver, we should
use the Bayes receiver. The Bayes estimate s; has the smallest mean-
square error of any estimator whether it is linear or nonlinear (Deutsch,

1965). Now for digital transmitted symbols Sy equation (3-34) may be

expanded to the form

sy = E{s [X} = ] s, p(5, [K) (= <k <o) (3-35)

where £ is the set (gl,...,gm) of m possible symbol values. Bowen (1969)
has shown that the Bayes minimum probability of error receiver is a very
complex nonlinear structure. This comﬁlexity arises in the computation
of the a posteriori probabilities p(skix) and thus the Bayes minimum
mean-square error receiver defined by equation (3-35) will involve the
same complex nonlinear structure. Since one of our objectives in the
present investigation is to design an equalizer or receiver which is
comparable in complexity to conventional equalizers, we must seek some
other structure than the Bayes receiver of equation (3-33).

Let us begin by recalling the received baseband signal x{t)

of equation (2-99) which may be written as
x(t) = g s, T(t-kT ) + n(t)

Let us assume, as previously, the following:
1) the symbols {sk} are statistically independent, equiprobable

and binary with the values z1.



81.

(ii) n(t) represents stationary Gaussian noise with known autocorrela-
tion function Rn(t).

(i11) The received pulse shape r(t) is known a priori at the receiver.

Let us concentrate our effort now on the estimation of a single symbol,
say s . Then given a realizaﬁion of the received signal X: {x(t), t ¢ 1}
where I denotes an interval of observation stretching to both sides of
sor(t), we want to estimate 8, from X.

In the following let us suppose an interval of observation I
stretching over MI, seconds or M signalling intervals to either side
of s r(t), and let us assume for the moment that sy = 0 |j] > M. We
will, as it turns out, be able to remove this assumption later. In
any event, we can by using this assumption write

M
x(t) = ) s, T(t=kT) + n(t) . (3-36)
k=-M .
Now let us make the idealizing assumption that we have available

at the receiver, the sequence of symbols
S' = (S-M,oo-,s-l, sl,oco,SM) (3"37)

consisting of all the transmitted symbols lying within the interval of
observation I except s, which is the one we wish to estimate. Then
let us define as our optimum estimate of sy, the a posteriori conditional

mean value

s, = E{s_|X, 8"} (3-38)

This estimate is the Bayes minimum mean=-square error estimate of s,

given the realization of the received signal X and the symbol sequence
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8' of equation (3-37). We shall call §° the conditional Bayes estimate
of 8,s since it is related to the Bayes estimate s: of equation (3-35)

by the relationship
* = t
sh g'so p(s')

.where the summation is over all possible sequences §'. In the binary
case there are ZZM such sequences. The conditional estimate 50 will
be a nonlinear function of X and S' unless Sos X and §' have jointly
Gaussian statistics.

Now the conditional Bayes estimate §° of equation (3-38) may

be expanded to the form
§, = E{s_|x,8'} = g s, P(s,]X,8") (3-39)

vhere p(s,|X,S') is the conditional probability function of s, and &
is, as before, tha set (gl,...,gm) of m > 2 possible values of the
symbol s,. Now by applying Bayes rule to the probability function in
equation (3-39), we obtain®

p, (X]S",s,)p(s,]S")

p(s |X,8") = (3-40)
p, (X|s")

Then since the transmitted symbols have been assumed to be statistically
independent
ey o
p(s 1S") = p(s)

and equation (3-40) becomes

*We note here that the functions px(X|..) are conditional
proebability density functicns, not discrete probability functioms,
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p,(X|8',s )p(s)
p(s,[X,8') = = 2 (3-41)
p, (X|S")

Now the probability density function px(xlgj) may be written as
] - ]
P (X[S") = [ p,(X,s |S")
3
- and applying Bayes rule to the right hand side, we obtain the result

P, X[S") = g p(s )b, (X[S',s ) (3-42)

Then substituting equations (3-42) and (3-41) into equation (3-40) we
obtain the estimate §° as
25 sop(s Jp (X[S',s )

s, = (3-43)
Lg P(sg)p, (X15'ss )

In the case of binary (m=2) symbols having the values %1, this last
result may be rewritten in the form
* = - ' -2
p, (X|S",s _=1) - p_(X|S',s =-1)

50 - (3-44)
px(XLS_',sosl) + px(xgg',soa-l)

which is the desired result. The problem of finding the optimum estimate
;o has now been reduced to that of evaluating the conditional probability
density function px(Xlgf,so} as a function of 8,°

Let us now define the sequence
S = gg',so) = (s_M,...;sl, 8, sl,...,sM)

as the sequence of all transmitted symbols lying within the observation

interval 1, so that
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p,(X|S's8)) = p_(X|S)

Then if we know X and S we may regard
N {n_(t) = x(t) - ): s, T(t=kT )} (3-45)
8
kw-M
as a realization of a Gaussian noise signal with autocorrelation function
Rn(t). Then using abstract vector space notation (Vulikh, 1963), where

the inner product of any two functions u(t) and n(t) is defined as

[u,n] = J u(t)n(t)de ,
1

we may write the probability density function px(Xlg) as

P, (X[S) = p_(N)) = Cexp{- %[ns.R;I xn_1} (3-46)
where
(i) C is a constant
(i) % denotes convolution
(iii) R;l is the inverse kernel (Van Trees, 1968) where

-1
Rn * (Rn * ns) n_

Now let us define the shorthand notations

y, = [x(6), K© % r(e-i1)] (3-47)

and

b = [e(e), B % (ekT )] = ¢ (3-48)

We may then rewrite equation (3-46) in the form

es o
p (X|5) = C'exp{i ZMsi(yi "7 Z S b _g) (3-49)

which is the desired conditional probability demsity function.
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In order to obtain the optimum estimate Eo, let us write the
exponent in equation (3-49) to explicitly show 8, the symbol which we

wish to estimate. We may then write after some manipulation

M,

= C' - 1.2
px(X|§) ¢ exp{soyo " %o 2 sk¢k 2 % ¢o
k=-M
EX{' 3 hii 124 } (3-50)
+ .y, - 8.8 ¢ _ 3-50
gay T2 galy gy PR

L
where zk implies that the k=0 term has been removed from the various
summations. Substituting equation (3-50) into equation (3-44), and
cancelling those terms common to both the numerator and the denominator,

we obtain the optimum estimate §o at time t=0 as

M' M'
exp{yo - Z sk¢k} - exp{—yo + Z sk¢k}
;- k=-M k=M (3-51)
(o] M| M'
exply - =§M s, 0, } + expl-y kaEH $.9 )

Equation (3-51) may then be rewritten to obtain the optimum estimate
§o in closed form as

M,
s, " tanh{yo -y sk¢k} (3-52)

14

k=-M
This expression specifies.the operations which must be performed on the
teceived signal x(t) to obtain the conditional Bayes estimate §° at
time t=0, given the availability of the symbol sequence S' at the
receiver, The problem now is to‘interpret this estimate so that we can

obtain a receiver structure f£rom it.
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The estimate §° in equation (3-52) is specifically the estimate
of the symbol s, at time t=0. The optimum estimate of the transmitted
symbol in any other Ts second symbol period, say the nth, may be found
by simply shifting the observation interval I by nTs seconds. Thus
the conditional Bayes estimate §n of the symbol s, may be written as

M,
§, = tanh(y - ] s, ¢) (=<n<= (3-53)
k=-M
where now the observation interval I extends MIg seconds to either side
of t=nTg.

Thus far in this analysis we have assumed a finite observation
interval I. In practice the fesponse of any physical channel will
extend to infinity, although it will be negligibly small after a finite
time, For any physical channel of interest the series

M
1lim { Z ¢k}
Mo k=-M
will thus converge; since the ¢k represent the sampled autocorrelation
properties of the received pulse shape r(t). There are thus no
difficulties in extending the observation interval I to infinity, and
we may, therefore, write

8, = tanh(y_ -kgzm 8,4, (3-54)

or in a more general fomm
]
8 = tanhi{y - —
s, tanh\jO z sk¢k) (3-55)
kel

where 1 is the observation interval of any desired length.
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ihe optimum conditional Bayes estimate §° of s, at time t=0
has been derived under the assumption that the sequence S' of transmitted
symbols in all other symbol periods is available to the receiver. 1In
practice of course this assumption will never be fulfilled, and therefore
in order to obtain a receivervwhich can be implemented, we must, to
some extent, sacrifice the optimality of equation (3-55). What we do
have available (in principle) are the estimates {§n} of the symbols S'.
We may, therefore replace the symbol sequence S' in equation (3-55) with
the estimates {§n} to obtain the sub-optimum estimate.
'
§, = tanh(y_ - ] &.¢,) (3-56)
kel
Provided that the estimates {s,} are good estimates of the corresponding
symbols S§', the behaviour of the sub-optimum estimate in equaticn (3-56)
will be very close to that of the optimum estimate in equation (3-55).
The sub-optimum estimate in equation (3-56) has the very attractive
property of being recursive, and as a result any resulting receiver may
be implemented as a feedback structure as we will now show.
Let us start with the quantity y_ in equation (3-56)., From

equation (3-47) it may be written as
= [x(t) R« r(t)] (3-57)
Yo » R

and this is seen to be the result of passing the received signal x(t)
through a filter matched to the pulse-shape r(t) in a background of
additive Gaussian noise with autoccrrelation function Rn(r). The

weighting function of this filter is definad as

g(t) = R;I () (3-58)
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and in the particular case when the noise is white with power spectral
density N,, as in the preceding section, we have

g(t) = %(‘—tl (3-59)
o

Equation (3-57) may then be written in the form

N
4]

y, = I x(r) £ g (3-60)
o
I
In a similar manner, the quantities ¢k in equation (3-56) are given by

equations (3-48) and (3-58) as
¢ = [x(0), g(t-kTs)] (ke I). (3-61)

When the noise is white so that equation (3-59) applies, we may write

¢ (T.)

N
o

¢ = —1—I r(t) r(t-kT )dt = (k £ I) (3-62)
I S

N
o

where ¢r(kTs) is the sampled autocorrelation function of the received
pulse shape r(t) defined in equation (3-19).
Let us now substitute equations (3-60) and (3-62) into equation

(3-56) to obtain the estimate §o as

- 1 1 ¢r(kTS) -
8, = tanh( §- [ x(t)r(r)dt - § N sk) (3-63)
o’y kel o
wnen the additive noise is white with power spectral density No.
Couaparing the quaantity
v ¢ (kT )
%n { x(0)r(t)dt - 7} -J%F—ii— §k (3-64)
0’1 kel o

in equation (3-63) with the optimum linear estimate of equation (3-31),
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we see that except for the multiplying factor (l+pn)-1 in equafion (3-31)
and the nonlinear estimates §k (k # 0) in equation (3-64), the two are
identical. We, therefore, see that the nonlinear estimate 50 of equation
(3-63) may be implemented as a feedback structure similar to that shown
for the linear estimate in figure 3.2. The only difference between
the two structures is that in the nonlinear case, there is a zero-memory
nonlinearity tanh(-) includediin the feedback péth as shown in figure
3.3. This structure which we shall call the (nonlinear) estimate
feedback receiver is very similar to that suggested by de Buda (1965).
de Buda suggested replacing the linear estimates §m (m # 0) in equation
(3-31) with the a posteriori mean values E{sm|§m} (m # 0) to obtain
improved performance compared to the linear receiver. In the case of
binary, anti-podal, transmitted symbols {sm} having the values *1,

de Buda then obtained the tanh(+) nonlinearity which we have derived

in this section, however, he did not show that the resulting receiver

is an approximation to the conditional Baye's estimator E{so!x,§f}.

He did, however, show that the resulting estimation error is always

less than that obtained f£rom the corresponding linear receiver and

hence the performance of the estimate feedback receiver is better than
that of the linear receiver. The structure of figure 3.3 is unrealizable
because of the requirement of delay into the future in the feedback‘

path. We will deal with this problem in a later section.
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matched
filter
sampler
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x(_t_:_)_.__ r(t) = tanh(-) S g

No 0

'T; - (to decision
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Y
unrealizable
vt~ transversal -
filter

v $p(KT)  JukT

N e
(o]

Figure 3.3 Basic (unrealizable) structure of nonlinear
estimate feedback receiver.
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3.4 The Decision Feedback Receiver

Let us first examine the function
= tanh(X) (c > 0)
yc c

where ¢ is a positive constant, If we now take the limit as ¢ approaches

zero, we obtain the result

lim Yo = lim tanh(%) = ggn(x) (3-65)
c*0 c0 ‘

where sgn(x) is the signum function defined by

x>0
sgn(x) = 0 x=0 (3-66)
-1 x <0

1f we then apply equation (3-65) to the nonlinear estimate in
equation (3-63) we obtain the result as the noise power spectral density

No approaches zero

-~

' -~
o x{t)r(r)dr - Z ¢r(kTs)sgn(sk)} (3-67)

-+ sgnf{ J
I kel

N =0
o

The righthand side of equation (3-67) is the decision feedback receiver
developed by Austin {1967). It may be implemented by the same structure
as that shown in figure 3-3 except that in this case the tanh(x) non-
linearity is replaced by the sgn{x) nonlinearity of equation (3-66).
In other words the decision~feedback equalizer is a small noise limiting
approximation to the sub-optimum nonlinear estimate feedback equalizer
described by eguation (3-63). |

The implication of equation (3-67) is that at low additive noise

levels the decision fesdback and the nonlinear estimate feedback receivers
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are essentially equivalent in performance. However, at high levels of
additive noise (N, large) the approximation of equation (3-67) tends to
fail and as a result the nonlinear estimate feedback structure exhibits
supefior performance. In later chapters where we carry out simulations

of the two structures, we shall see that this is essentially true.

3.5 Realization of the Receiver Structure

In the foregoing, we have developed a nonlinear feedback
receiver structure which has been shown to be an approximation to a
conditional Baye's estimation structure. Because of the requirement of
negative delay (delay into the future) within the feedback path, this
structure is not physically realizable.,. The problem now, therefore, is
to find a physically realizable approximation to this optimum structure
which, hopefully, is comparable in complexity to conventional (trans-
versai filter) equalization receivers.

Let us start with the recursive unrealizable nonlinear estimate

§° at time t=0 which is given by equation (3-63) as

- 1 oo T
s, = tanh ( E—-I~x(r)r(r)dr L TR sk) (3-63)
o’l kel c

*

Now let us call the input to the tanh(+) nonlinearity §°. It may be

vritten as

*We use the same notation here as for the cptimum linear estimate
of equation (3-31). We do this because if the parameters of the optimum
iinear receiver are found, the optimum input to the nonlinearity will be
identical to the linear estimate s except for the replacement of the
linear estimates ék ‘k # 0) by the nonlinear estimates §k (k # 0). Also
in chapter 4, we will find tns optimum parameters for the nonlinear
receiver using the same linear algorithm as would be used for the linear
receiver.
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v v ¢_(KT )
- r(t) rr s’ -
8, = le(r) X dr - kgl —_iﬁ:—_— 8, (3-68)

which except for the nonlinear estimates §k (k ¥ 0) in the second term
is i&entical in form to the linear estimate of equation (3-31). The
observation interval I is the_time interval extending to either side
of t=0 over which our observation of x(t) is considered to extend. In
theory it may be infinite in length. It may also be considered
equivalent to the set of integers over which the index k in equation

(3-68) extends. Now let us split I into the sum of two parts I+ and

I_ where

I+ : {k: k > 0} corresponding to those signalling intervals which
occur after t=0

I : {k: k < 0} corresponding to those signalling intervals in I
which occur prior to t=0.

We may then rewrite equation (3-68) in the form

5, .'I x(r) B gr - ¥ ffffzil'g b M)
I

-~

8

N K~ N (3-69)

o keI+ o keI_ o k

The second term in equation (3-69) compensates for intersymbol interference
caused by symbols (or pulses) in signalling intervals occurring after t=0
using a weighted sum of future nonlinear estimates §k (k > 0). The

third term performs 2 similar compensation for intersymbol interference

duve to symbols in previous signalling intervals using a weighted sum of

previous estimates gk (k < 0).
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Neither 50 of equation (3-63) nor §o of equation (3-69) represent
physically realizable systems since the future nonlinear estimates Ek
(k > 0) cannot be made available at t=0. However, the previous nonlinear
'estiﬁates Ek (k < 0) can be made available at t=0 by means of a nonlinear
feedﬁack system. We may, therefore, implement (unrealizably) the nonlinear
estimate §° of equation (3-63) or equivalently §° of equation (3-69) by
the system shown in figure 3.4, This configuration is equivalent to

the one derived earlier in figure 3-3.

In the structure of figure 3-4 the block

- *
Eé_ll or equivalently BESEL
o o

represents a filter matched to the received pulse-shape r(t). Such a
filter may always be realized, at least approximately, to any desired
degree of accuracy (e.g., Coll, 1966). Also the nonlinear feedback
system of figure 3.4 may be realized as shown provided of course the
range of k is kept finite.

In practice the index k may always be constrained to a finite
range, since for any real pulse shape r(t) the corresponding auto-
correlation function ¢r(r) will be negligible for T outside some finite

range. In fact for almost all channels of physical interest

A
¢.(1) = 0 x| > 5%

vhere Ag is the rms channel delay spread® defined by equation (2-64).

*We use Ag/Z here because by its definition A, is an estimate
of the total delay spread symmetrically located about the wean channel
delay.
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Figure 3.4 Unrealizable nonlinear receiver configuration
equivalent to figure 3.3.
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We may, therefore restrict the range of k in equation (3-69) such that
e
k <L=| 2T 1 (3-70)
8
where [x] implies the nearest larger integer to x. By so restricting
the range of k, we obtain a similar restriction on the observation

interval I and on the index sets I, and I_ which now become

e
.o
p—
F
a0

k’l,oao,L}

[
L)
o

k--l,---,_L} )

"Equation (3-69) may then be rewritten in the form

, L ¢_(kT ) -L ¢ _(kT )
§ = | x(r(v)dr - § =—2-35 - § L5 3 (3-71)
° I I W k=1 Yo K ey N, K

We point out here that because A, is only an estimate of the channel

g
delay spread, L is only an estimate of the range over which k must
extend. In practice, one would normally choose a range for k which is
somewhat greater than L.

The first and third terms of equation (3-71) represent essentially

realizable quantities. The prcblem now, therefore, is how to realize, at

least approximately, the term

L ¢r(kTs) -
k=1 No k

which represents the compensation for intersymbol interference due to
symhols in future signalling periods.
Let us begin by imposing a delay of LTs seconds (L signalling

intervals) on each term of §0. We may then write the delayed estimate



97.

corresponding to §° as

r(THLT) L ¢ (kT) -L ¢ (kT,)
- . S r S -~ r ) ~
$!' = J x(t) —————dt = —_—s . - —s (3-72)
° Jr 7 N kel Mo KL ey No KL

and from this we can see that if some way is found to apbroximate the
nonlinear estimates §k (k > 0) in equation (3-71), then the receiver may
be realized by the inclusion of a delay of LTs seconds within its
structure. In most of our analysis there is no neéd to explicitly show
this delay provided that it is understood to be present in any implemen-
tation.

At this point let us digress for a moment, If the signal x(t)
is passed through a filter matched to the received pulse shape r(t),
then at time t=0, the filter output, which we shall call Yoo may be

writtén as

y, = JI x(1) rér) dr .
o

If we then substitute for x(r) in this, we obtain

Yo =.£ 8, J r(r—st) N dr + JIG(T) Eéll dt (3~73)

or on substituting equation (3~19) for the integral in this first term

¢ (T )
yo = g sm .T + w(0) (3-74)

Where

(1)
”N

w(0) = { n(r) dt

I o
is the additive noise at t=0 appearing at the filter output. Using the

signal to noise ratio p, defined in equation (3-28), we may rewrite equation
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(3-74) as
¢r(st)

m¥0 No

Yo = PnSo s +w(0) (3-75)

where we note that

¢_@I) ¢ (0)
LB <L —wp . (m # 0)

N - N n
o o

Now let us pass the L signals x(t+kTs) k=1,...,L through the
same matched filter as above. If we call the L filter outputs {y;:

k-l,...,ﬂ, we may write

Y = JI x(r+kTs) Eéll dt (k=1,...,L) . (3-76)

o
Then let us substitute for x(r+kTs) in equation (3-76) and expand the

result in the same manner as equation (3-75) to obtain

¢r[(k-m)1‘s]

+7 5 ¢ 4 wkT)
a9k No m 8

Yk ¥ Pk
(k=1,...,L) (3-77)
The set of filter outputs (yo, yl,...,yL) may be realizably produced
by the cascade combination of thg above matched filter and a tapped
delay line having L+l taps as shown in figure 3.5, The use of the over-
.all delay of LTs seconds allows us to produce all L+l outputs
éimultaneously.
Now let us define a set of (L+1) tap-gains (g, gl,...,gL) for
this delay line. Then summing the weighted tap outputs, we obtain at
time t=0, the quantity
L

u, = L oegyy . : (3-78)
i={
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Tapped Delay Line
with (L+1) taps T, seconds apart

termination

s

Configuration of system to produce set of filter outputs
(yo, Ype oo yL). Note the use of a delay of LT

seconds used to produce them simultaneously.
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If we next define the values of these tap-gains as
8 =1

= :fESEEil (k=1 L) (3-79)
gk pNo seeey -

we may rewrite equation (3-78) in the form

L ¢ (kT
u = J x(r(dt - } TR Sk
I No k=1 °
L ¢ (kT) ¢, [(k-m)T ]
-} =51 s+ wkT)] (3-80)
k=1 Pn’o m#k o " s

The first two terms in u, are identical in form with the first two terms

of §o in equation (3-71). In fact the first two terms are identical with
the corresponding terms in the Bayes optimum unrealizable estimate of
equation (3-52). The third term of equation (3-80) represents an undesired

interference component or noise term where we note that
0. (T) i¢»r(k'rs)
pnNo $,.(0)

<1 (k=1,...,L)

We thus see that u, is a linear approximation to the forward (present and
future) components of the Bayes optimum unrealizable estimate of equation
(3-52). Equation (3-80) may, therefore, be used as a realizable linear
approximation to the first two terms of §o in equation (3-71) or equivalently
to the corresponding terms of ;o in equation (3-63).

Thus, if we use equation (3-78) or (3-80) in equation (3-63) we

ovbtain a realization of the nonlinear estimate feedback receiver as

. ( % -E o (KT )
s = tanh(i x{t)r{z)dr + - —_—5,) (3-81)
° Jv g =1 U og=lp N K

or equivalently
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3 If [ (ehir ) ZO g -} M) (3-82)
8 = g x(t T - ——0g -82
°© gm0 1g 8” N, k-1 Yo K

where in equation (3-82) we have made use of the definition of the
'{yi:_i-l,.;.,L} given by equation (3-76) and where the gains g,
(i=0,1,...,L) are defined by equations (3-79). The receiver structure
implied by equations (3-81) and (3-82) may be implemented by the
combination of a matched filter and two transversal filters shown in
figure 3-6. In the diagram we have shown a sampler directly following
the matched filter since in succeeding chapters we intend to employ
sampled data transversal filters.

In the above we have described a realization of the norlinear
estimate feedback receiver in which a linear approximation to the
optimum compensation for intersymbol interference due to future symbols
was used. We will now discuss a realization of the receiver which uses
a nonlinear approximation to this component of the compensaticn.

Suppose we take the hyperbolic tangent of the quantities Yie

(k=1,...,L) defined in equations (3~76) and (3-77) to produce

The §k (k=1,...,L) are a set of nonlinear estimates cf the future symbols
81 (k=1,...,L). In the absence of the interference term

.l (k-n)Ts]

s
m

m¥k No _
and under the assumption that the noise terms w(kTs) (k=1,...,L) are
uncorrelated, the estimsates §k {k=1,...,L) are the optimum Bayes

estimates (Appendix B) of the future symbols Sk (k=1,...,L). They may
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thus be used in equation (3-71) as an approximation to the nonlinear

estimates Ek (k=1,...,L) so that we now obtain

L ¢ _(kT) -L ¢ _(kT))
S = [0 ED - T A S
1

- —_— (3-84)
o k=1 o k==-1 No k

We may also rewrite the corresponding nonlinear estimate §° of equation
(3-63) as

L ¢ (kT ) =L ¢ _(kT )
r(t) r s’ ~ r s’ ~
dt - N sk) (3-85)

8 = tanh([ x(t) —_—y, -
° 1 8 k=1 No k ko1 N

The receiver structure implied by equations (3-84) and (3-85) may be
realized by the nonlinear feedback structure of figure 3,7 which thus
represents another possible implementation of the nonlinear estimate
feedback receiver.

In practicg, because of the unwanted interference term in the
Yie (k=1,...,L), the tap-gain values which minimize the mean-square
error in the fcrward {non-recursive) sections of both the above
receiver structures will vary from the nominal values used in the above
arguments. We will deal with this problem in chapter 4.

In this section we have derived two realizable approximations
to the nonlinear estimation structure defined by equation (3-63). 1In
the remainder of this thesis, we shall consider only the structure of
figure 3.6 which uses a linear compensation term for intersymbol
interference due to symbols in future signalling periods. We shall do

this for the following reasons:
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Figure 3.6 Basic structure of realizable nonlinear receiver
using linear approximation in forward section.
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Forward nonlinear transversal filter
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Figure 3.7 Basic structure of realizable nonlinear receiver using
a nonlinear approximation in the forward section.
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3.6

The structure of figure 3.6 is simpler to implement because the

forward section is linear rather than nonlinear, and one of
our objectives is the development of receiver structures which
hfe comparable in complexity to existing linear equalization

receivers.

Except for the form of the nonlinearity in the feedback path,

the structure of figure 3.6 is identical to the decision

’ fée&back receiver (Austin, 1967). We, therefore, can and will

* in later chapters obtain a direct measure of the change in

performance induced by the use of the tanh(°) nonlinearity

rather than the threshold detector used by Austin.

It is simpler, at least mathematically, to épply linear adaptive
algorithms to the structure of figure 3.6. In chapter 4, we
shall embed the receiver in an adaptive structure which uses

these linear techniques.

The Use of a Saturating Limiter

In some applications, particularly if an analogue implementation

of the receiver is used, the use of the tanh(+) nonlinearity may be

both difficult and costly. At the same time, however, we may wish to

preserve its properties, in particular its high noise properties. We

note that when the ncise power spectral density N, is large the input

to the tanh(-) nonlinearity is small in magnitude. As a result the

tant(+) nonlinzarity whea N, is large tends to behave as a linear device

and the feadback system in figure 3.6 zc a linear filter. This tends to
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avoid the small "signal suppression effect'" (Davenport and Root, 1958)
normally associated with zero-memory nonlinearities (for example the
threshold detector or hard limiter sgn(.)). In the interests of
simplicity, we would therefore like, in some cases, to replace the
tanh(-) nonlinearity, by some other form of limiter having most of its
favorable properties.,

Recalling now that the slope of the function tanh(x) in the
region of x small (x * 0) is close to unity, an obvious form of non-
‘ linearity with which to replace tanh(x) is a saturating limiter defined

by the relatiomship

-1 X £ =-a
x= 4 x -a<x<a (0 <a<1) (3-86)
1 x>a V

where a, the limiter saturation value, lies between zerc and one. We
note that for a = 0, we have the nonlinearity sgn(x) and the receiver
is the decision feedback equalizer, Tﬁe best value of a appears to
be to some extent arbitrary, and should be determined by experiment in

a particular application. We will discuss this in a later chapter.



CHAPTER 4

The Adaptive Equalizer

In chapter 3, we applied Bayes estimation theory to derive a
nonlinear estimate feedback receiver for the extraction of binary anti-
pedal transmitted symbols from a noisy, dispersed received signal or
pulse train. This structure was derived under the assumption that the
overall channel impulse response or equivalently the received pulse
‘shape was time-invariant and known a priori at the receiver. This
assumption and the additional assumption of wide sense stationary additive
noise with known autocorrelation function lead to a time-invariant
optimal receiver structure.

In practice, the received pulse shape is almost always unknown
at the receiver, and in addition is usually randomly time-varying.
Because of this, we shall, in this chapter, formulate an adaptive
receiver using as its basis the nonlinear estimate feedback structure
developed in chapter 3. The adaptive receiver has the ability to
iteratively adjust itself to an unknown channel response (or received
pulse shape), and in addition can track or follow the random time

varlations in the channel response.

4.1 The Fixed Optimum Equalizer
The basic receiver structure which we shall consider in this
chapter is the cne shown in figure 3-6 and defined by equations (3-81)

and (3-82). It consists of the cascade comnection of the following

(107)
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three stages:

(1) a linear filter matched to the received pulse shape r(t). This
filter maximizes the signal to additive noise ratio at its output
and also equalizes or compensates for phase distortion in the

frequency spectrum of the received signal.

(i1) a linear transversal filter which linearly compensates for inter-
symbol interference (time dispersion) due to symbols or pulses

occurring after the present symbol.

(iii) a nonlinear feedback system having a zero-memory nonlinearity
(ideally tanh(.)) followed by a transversal filter in the feed-
back path. It provides compensation for the intersymbol inter=-
ference due to symbols in signailing intervals occurring prior

to the present one.

The subsystem formed by (ii) and (iii) which compensates for intersymbol
interference or channel time dispersion is known as an equalizer. It
wili be our primary concern in this chapter.

In any real communications system, the received pulse shape r(t)
is usually both unknown and time-varying. Therefore the use of a fixed
matched filter as shcwn in figure 3-6 is not feasible*. The usual

practice, and one which we shall follow, is to replace the matched filter

*In some recent work Mark (1970) has developed an adaptive filter
whose performance approaches that of a matched filter as it iteratively
adjusts itself, In most point-to-point links, however, the signal tec
additive noise ratio is high enough that the proressing gain of a matched
filter is not required,
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with some suitable time-invariant, bandlimiting filter which limits the
additive noise power. This of course causes some loss in overall receiver
performance but in most cases this loss is small. One often-used choice"
for this filter (Proakis, 1969) is one which is matched to the transmitted
pulse shape.

Let us suppose that this filter is defined by its impulse response

a(t). Then for a receiver input signal of the form

y(t) = E s, r(t-kT.) + w(t) (4-1)
where
(1) the sp (-« < k < «) are the binary information symbols which
we wish to detect.
(ii) r(t) is the unknown, time-varying received pulse shape.

(iii) w(t) is wide sense stationary additive noise.

we may write the output of the filter a(t) or equivalently the equalizer

input as

{
x(t) = Z Sy J a(t)r(t—r-kTs)dr + {a(r)w(t-t)dr (4~2)
k

where the limits of integration are assumed to be suitably defined. If

we then define

h(t) = J a(t)r(t-1)dr

and

nc(t) = Ia(t)w(t-r)dr
we may rewrite equation (4-2) as

x(t) = ] s hi{t-kT) + n_(t) (4-3)
k
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where h(t) is the effective overall channel impulse response* or received
pulse shaﬁe at the equalizér input and nc(t) is the additive noise.

In the receiver structure of figure 3-6, we showed a sampler
operating on the matched filter output at the times t=nTs (= < n < =),
The equalizer is then a sampled data system. Equivalently, we could have
shown the overall receiver as an analogue system with a sampler at its
output producing the sequence of estimates {§n} or equivalently {§n}
at the times tanTs (-» < n < =), But, because we are mainly interested
in the implementation of the equalizer using digital circuitry, we have
placed the sampler preceding the equalizer. It then operates on the
signal x(t) to produce the sample sequence {x(nTS)}:g_w where the sample
at time t=nTs has the form

x(nT,) = E s h(nT ~kT ) + n_(aT)) (== < n < =) (4=~4)
If we normalize the sampling period Ts to unityf, this may be written
in the simple form

x(n) = 12( s, h(n=k) + n_(n) (= < n < =) (4-5)

Now let us consider the estimation of an arbitrary symbol, say
s, at time t=nT (-» < n < »), In chapter 3, we derived a fixed, optimum
equalizer structure having the nominally optimum tap gain values shown

in equations /3-§1) and (3-82). However, in practice the received pulse~

*By doing this we have lumped the filter response a(t) in with the
channel response.

tWe do this both for convenience of unotatiocn, and because it
provides a natural way to simulate {x{n)} on a computer.
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shape h(t) and its autocorrelation function are usually unknown, and also
the pulse shape h(t) changes with time. The optimum equalizer tap-gain
values will, therefore, be unknown and time-varying. In order now to

avoid having to know explicitly these optimum values, we shall make the
equalize; adaptive or self-adjusting. Then if we define {gi(n); i=0,1,...M}

and {f ,(n); j=1,...,L} as the current values (not in general optimum), at

3
the nth sampling time, of the non-recursive and recursive gains respectively,
we may rewrite the nonlinear estimate §n of equation (3-8l) in sampled
form as
M L .
8 = tanh( ] g ()x(n+i) - ] £,(m)s ). (4-6)
i=0 j=1
Equivalently, we may write the input to the tanh(.) nonlinearity as
M L i
8, = 1 gi()x(n+i) - ] Ij(n)sn_j 4-7)
i=Q j=1
which since it is a linear combination of the available data {x(n+i);

i=0,1,...,M} and {§n ; j=i,...,L}, we shall refer to as the linear

-]
estimate of 8. .

We have made the number of taps on the non-recursive and recursive
delay lines different {(note the values M and L in equations (4-6) and
(4-7)). We have done so because a matched filter is not being used
preceding the equalizer, and hence the overall channel impulse response
at the equalirzer iaput cannot be guaranteed to be symmetric about its
peak value as it can when such a filter is used.

The problem now is to find those values of both the noa-recursive

gains {gi(n)} and the recursive gains {fj(n)}, at each sampling time n,

4 . . . ~ 2
wnich are optimum in the sense that the mean-square errer E{(sn-sn) }
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is a minimum. These optimum tap gain values are defined by the

simultaneous solution of the M+L+1 equations*

= 12
3gk(n) E{(s - sy) }=0 (k=0,1,...,M)
9 - 12
S By "800 LD

at each sampling time n. For the estimate feedback equalizer these

equations may readily be written in the form

9

-2E{[1 - tanhz(én)j[(sn - tanh(3_)) o)

§n]} = 0 (k=0,1,...,M)

-2E{[1 - tanhz(én)][(s - tanh(5_)) 311 =0 (m=1,...,L)

9
of (n)
where

s = tanh(sn) .

But these equations do not have a unique solution for the (optimum)

tap gain values. That is the mean square error is not a unimodal function
of the tap gains {gi(n)} and {fj(n)}, and thus the equations have more
than one solution. One solution occurs when the tap gains become very

large in magnitude so that

8§ > &
n

*These equaticns provide only necessary and not sufficient
conditions for the mean-square error to be a minimum,
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§n = tanh(§n) > *1

In this case no compensation for intersymbol interference takes place
and the equalizer does not decrease the error-~rate.

Wé note that this effect was actually observed in some computer
slmulations, using these derivatives in a steepest descent algorithm to
adjust the tap gains. In these tests we found that the tap gains grew
without limit, and eventually forced the equalizer output very close to
the values %1, but that virtually no compensation for intersymbol
interference took placé.

In the present work, in order to avoid this problem, we shall
minimize the mean-square error E{(sn-én)z} in the linear estimate én
at the input to the tanh(.) nonlinearity*. The mean~-square error
E{(sn-én)z} is a unimodal, convex (in féct quadratic) function of the

tap gains {gi(n)} and {fj(n)} and the necessary conditions

3 .12 ) X
9g, (n) E{(s,=s)"} = -2E{(s,=5)) agk(n) Sat = (k=0,1,...,M)
5o El(s -8 )%} = ~2E((s ~3) s 5 } = 0 wmln L)
Af (n) n n n n’ 8f (n) seses

for it to be a minimum, have a unique solution for the coptimum tap gain
values. The use of this criterion also allows us tc use a linear
adaptive algorithm for iterative adjustment of the equalizer tap gains,

and as we shall see in chapter 5, very satisfactory performance is

*In the case of decision feedback, we recall that this nonlinearity
must be replaced by a hard limiter.



114.

obtained using this criterion.
Now let us consider E{(sn-én)z} in somewhat more detail.

Substituting equation (4-7) into it and expanding the result, we obtain

E{eﬁ} = E{(sn-én)z}

L L
2 "~
= E{s } - 2120 g; (ME{x(nt+i)s } - 2j§1 fj(n)E{sn_jsn}
M M M L

+1 1 g gy MEx@Dx@N} -2 ] ) g ME;MEXE@HS )

180 jBO i=0 j'l J

'L L 5 N
+11 jzlf fME EG 5 ) _ (4-8)

2
We now want to minimize E{e;} with respect to the two sets of tap-gains

(g, ()} and {£ (m)}.

3

A necessary condition for E{ei} to be a minimum is given (as

stated above) by the equations

aE{ei}

s_é_l:_&_)_a 0 (k=0,1,...,M) (4-9)
and

aE{ei}

-au—f:‘TG—)— = O (m=1, oo ’L) (4-10)

which are equivalent to saying that for E{ei} to be a minimum, its
gradient with respect to the tap-gains must be zero. Now let us

consider the matrix
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- ' -
2.2 | 2,2
3"E{e } I 3"E{e }
98, (n) agk(n) l gy (n) afm(n)
0= | ———— - ._: _______ (i,k=0,1,...,M)
aZE{ei} , 325{3121} £,m=1,...,L)
afz(n)agk(n) { 3f£(m)afm(n)

L -
This matrix is symmetric about its main diagonal with positive diagonal
terms. It is, therefore, at -least positive semidefinite, and this
ensures that E{ei} is a convex function of the tap gains {gi(n)} and
{fj(n)}. This implies that steepest descent and other related techniques
may be uéed to find the minimum mean-square error point (Gersho, 1969a),
where equations (4-9) and (4~10) are satisfied. In most cases, Q is
positive definite. Its inverse then exists, and we may, at least in
principle, solve equations (4-9) and (4-10) directly to obtain the optimum
tap gains which we shall call {gio(n)} and {fjo(n)}.

Now let us obtain the equations which define the optimum tap

gains in more explicit form. Taking the derivatives of E{ei} as indicated

in equations (4~9) and (4-10), we obtain

3E{e§} M
SEZTET = -ZE{snx(n+k)} + Zizo gi(n) E{x(n+i)x (ntk)}

L
-2jzl £4() E{sn_jx(n+k)}

= -ZE{(sn-§n)x(n+k)}

= —ZE{enx(n+k)} (k=0,1,...,M) (4-11)



116.

and
aE{eﬁ} . M i L o
) 2E{s §__} -zizo gy () E{x(ati)s__ } + 2j§1fj(n) B(S,_ 3, o)

- fZE{(sn-én)En_m}

= +2E{e s __ } (w=1,...,L) (4-12)

Then substituting these last equations into equations (4-9) and (4-10)

respectively, we obtain the M+L+l equations

M L

} g, (mE{x(a+i)x(ntk)} - ] £ (n)E{s__.x(n+k)} - E{s_x(n+k)} = 0

1=0 P n-j n
(k=0,1,...,M) (4-13)

and

L . . M . - ’

jzl fj(n)E{sn-jsn-m} -1§o gy (ME{x(a+i)s } + E{s s _ } =0
(m=1,...,L) (4-14)

which define the optimum tap-gains {ga§n)} and {fjo(n)}.
It is of interest at this point to compute the minimum mean-square
error E{ei}min. If equations (4-13) and (4-14) are substituted into

equation (4-8), we obtain

M L
21 "= ) 2 Y v ~ -
Ele } , = Efs} 1£o gio(n)u{x(n+i)sn} +j§1 fjo(n)E{sn_jsn} (4~15)

This may readily be put in the form
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E{ei}lnin = E{enosn} (4-16)

A
where e, 1is the estimation error (sn—én) when the tap gains have their

o
optimum values. Equation (4-16) is the standard form obtained for the
minimum mean-square error in all linear minimum mean-square error
estimation problems (Luenberger, 1969).

In this section, we have derived equations which define the
optimum tap gain values for the equalizer at any arbitrary sampling

time n (~» < n < »), In the next section we will develop iterative

procedures for adaptively finding these values.

4.2 The Adaptive Algorithm

In theory the optimum tap gain values {gio(n)} and {fjo(n)} at
any arbitrary sampling time - say the nth ~ may be found by the simultaneous
solution of equations (4-13) and (4~14). However, this calculation requires

a priori knowledge of the correlation properties of the available data

{x(n+i)}§;0 and {s_ .}

- §=1’ and in practice this information is seldom

avallable., It is therefore desirable to develop some form of iterative or
adaptive procedure which in effect learns these correlation properties as
it goes along and uses this learned information to adjust the tap gains
to their optimum valies.

One such iterative algorithm or procedure which has been widely

used in implementing adaptive equalizers* is the steepest descent or

*See for example Lucky (1964, 1965) Lucky and Pudin (1967),
Proakis (1969), George (i970), Niessem (1970) and others,
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gradient following algorithm (Widrow, 1966; Gersho, 1969a). This algorithm
uses estimates of the gradient components or first derivatives of the
mean-square error with respect to the tap gains to iteratively adjust each
tap gain to within a small neighborhood of its optimum value. At the
end of any iteration cycle, say the (m+l)st, the value of an arbitrary

tap gain, say c,(m+l) is given by the stéepest descent algorithm as

3

2
o OEle }
j(m+1) cj (m) + Ew (all gains j) (4-17)

c

where cj(m) is the value of the jth gain after the mth iteration and
(a/2) is a constant which must be chosen so that the algorithm (4-17)
is stable and converges.

In adaptive equalization, the basic idea is that the equalizer
should adjust itself so that its response is approximately the inverse
of the channel impulse response modified of course by the additive noise
which must be fairly small for effective equalization. Thus at any
sampling time, say the nth, the desired output is the symbol S.»
uncontaminated by interference from other symbols. This implies that one
tap gain, denoted the reference gain, and usually the gain corresponding
to the data sample x(n), should be the dominant gain. The only reason
that any oﬁher tap gains should be non-zero is to attempt to compensate
for intersymbol interference caused by channel time dispersion. This
is readily seen from equation (3-82),

In implementing the gradient following algorithm, a problem

arises as to which gain is the dominant or reference gain. Fach tap gain

performs a non-stationary random walk which, provided the algorithm is
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correctly specified, converges in the mean to the optimum value.
However, the random walks of the various tap gains are related only
through the estimation error e, at each time n, and if all tap gains
have the same initial value, then each is equally likely to become the
reference gain. In such a case the equalizer may not converge, since
there is no preferred reference gain.

In most adaptive equalizers employing the gradient following
algorithm, this problem is at least partially avoided by initially
defining one gain to be’the reference tap gain, setting its value to
unity and setting all other gains initially to zero. During adaptation
of the equalizer, however, thefe is still a finite non-zero probability
that one of the other gains will overtake the defined reference gain
and thus become the reference gain. This causes the equalizer time
reference frame to shift and large numbers of output decision errors
to occur.

In the formulation of the nonlinear estimate én of equation
(4-6) or equivalently the linear estimate §n of equation (4-7) we have
implicitly assumed that the reference gain is g,(n) (-~ < n < =), Using
an auxiliary function concept developed by Mark (1970), we shall now
develop an adaptive algorithm which rigorously defines go(n) as the
reference gain. The resulting algorithm will be seen to be similar to
that developed by Mark (1970), but there are some novel differences in
the manner in which convergence is assured.

The derivation of the algorithm will be carried out in two steps.

We shall first derive a procedure for adjusting the non-recursive gains
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{gi(n); i=0,1,...,M}, and then we shall derive one for adjusting the

recursive gains {f,(n); j=1,...,L}. This two part development is

3
possible even though (as equations (4-13) and (4-14) indicate) the two
-sets of gains are interdependent because the resulting adaptive procedure
requires, in both instances, a measurement of the error e = (sn—én) at
each iteration time n. The efror e, includes the effect of the inter-

dependence of the two sets of gains thus making possible the separate

derivation of procedures for iteratively adjusting them.

4.2a Adaptive Procedure for Adjusting the Non-recursive Gains

In this section, we shall derive an adaptive procedure for
iteratively adjusting the non-recursive gains {gi(n)} to their optimum
values. By iteratively adiusting we mean that as each new input sample
x(n) (== < n < =) is received and processed by the equalizer, a small
adjustment is made to each of the tap-gains in such a way that the
mean-square error E{(sn—gn)z} tends to be decreased. The procedure which
we shall consider will define the gain g,(n) (-~ < n < =) as the
reference gain by making the increments in the remaining gains {gi(n);
i=1,...,M} dependent on the increment in go(n) at each iteration.

Now let us write the linear estimate of equation (4~7) at the

nth iteration (or sampling) time as

M L
8= § g.(@x+i) - § f.(n)s__.
n i=0 i j=1 3 n-j

(~» < p < =) (4-18)



121.

where the {gi(n)} and the {fj(n)} are the current (not in general optimum)
values of the tap gains arrived at by some iterative procedure, and where
we havg included the prime on §; for reasons which will shortly become
‘clear. We shall refer to §; as the basic estimate.

The problem now is to find some means at each iteration (or
sampling) time n of adjusting or incrementing each of the gains {gi(n);
i=0,1,...,M} in such a way that as n increases, the mean-square error
E{ei} decreases and approaches its optimum, minimum value. To aid in
this process, let us augment §; with an auxiliary function (Mark, 1970)

h[x(n) ,x*(n)] at each time n where x*(n) is an extrapolated or learned

value of x(n). We then obtain

gn = §; + hi{x(n) ,x*(n)] (~» < n < ») (4-19)

which we shall refer to as the augmented estimate. Because of the linear
form of §;, we shall assume that h{x(n),x*(n)] is a linear function, and
because we are considering here only the non-recursive gains {gi(n)} we
shall assume that it is a function only of the data {x(n+i); i=0,1,...,M}
in the non-recursive sectiou cof the equalizer. Let us then write it in
the form

M

hix(n),x*(n)] = } 3g,(n) x(nt+i) (4-20)

i=0 ~
where the weights {3gi(n); i=0,1,...,M} are some set of increments in
the current (non-optimum) values of the non—gecursive tap-gains {gi(n);
i=0,1,...,M}.

Using equations (4-18) aad (4-20), we may write the augmented

estimate §n at the nth iteration time as
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2 (gi(n) + 3g; (0)) x(n+i) - { £.(n) §n_ (4=21)

“n 1=0 j=1 3 J

Then since‘the equalizer is being iteratively adjusted toward its
optimum point, let us require that the incremental gains {3gi(n)} at the
nth iteration time be such as ﬁo make the current (non-optimum) overall
gain values {(gi(n) + agi(n)); i=0,1,...,M} equal to the gain values

{gi(n+1)} at the (nt+l)st iteration. This implies the definition
gi(n+l) = gi(n) + agi(n) (i=0,1,...,M) (4-22)

and we may then write the augmented estimate of equation (4~21) in the
form

M

= ) g, (n+l)x(nt+i) - Z £

(n)s
i=0 j=1 3

s, (4-23)

n-j °
But this equation represents a non-causal system in that at the nth
iteration time it requires a knowledge of the non-recursive gains
{gi(n+1)} at the (n+l)st iteration time. We will attempt to overcome
this difficulty by introducing a learning or extrapolation process into
the equalizer structure.

, Let us begin by considering the conditions which define the
optimum, minimum mean-square error point., For the basic estimate s'

of equation (4-18) the optimum valuzs {g; (n)} and {f, (n)} of the tap
o

do

gains at the nth iteration {or sampling) time are defined by equations

(4-13) and (4-14) as

2 8,(n)E x(n+i)x(n+k) } -
i=0 1

¥ e~ b

3 fj(n)£{§n_jx(n+k)} - E{snx(n+k)} = 0

(k=0,1,...,M) (4-13)
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and

L M
jzl fj(n)E{sn_jsn_m} -igo gy (ME{x(nti)s _} +Elss '} =0

(m=1l,...,L) (4-14)

Similarly for the augmented estimate §n of equation (4-23) the optimum
values {g; (n+l)} of the non-causal gains {gi(n+1)} and the optimum
o

values {fj (n)} of the recursive gains are defined by the equations
o

M ‘ L

Z gi(n+l)E{x(n+i)x(n+k)} - z fj(n)Efén_jx(n+k)} - E{sqx(n+k)} =0

=0 j=1 :
(k=0,1,...,M) (4-24a)

and

L . . M . ' .

jglfj(n)E{sn_jsn_m} —iéogi(n+l)E{x(n+i)sn_m} +E{ss }=0
(m=1,...,L) (4-24b)

But equations (4~13), (4~14) and (4-24) clearly define the same optimum
point. We may thus equate the left hand sides of equations (4-13) and

(4-24a) to obtain, with the aid of equation (4-22), the result

M
} 3g,(n) Elx(nti)x(@H)} =0  (k=0,1,...,M) (4-25)
1=0

Equations (4-25) are a set of (M+l) homogenesus equations in the
(M+1) incremental tap gains {agi(n)}. Now it can be shown that the

matrix defined by

E{x(n+i)x(n+3i)} (1,3=0,1,...,M)
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is positive definite (Appendix C), and therefore the only solution to

equations (4-25) is the null solution '

3g, (n) = 0 (1=0,1,...,M) (4-26)

This is, of course, the condition to which we wish the adaptive equalizer
to converge, since it corresponds to the gains {gi(n)} having their

optimum values and implies that

gy (a*l) = g; (n) (1=0,1,...,M)
for all iterations n
so that no further iteration of an adaptive procedure need take place.
However, initially at least, and in practice virtually all of
the time the tap‘gains will not have their optimum values and at each
iteration time n some adjustment of their values will take place. We
want now to specify the incremental gains {agi(n)} such that at the nth
iteration time the overall non-recursive gains have the values belonging
to the (n+l)st iteration time. Since the gain values are never exactly
optimum, then at the nth iteration time at least one of the 3gi(n) will
be non-zero and we have the (M+l) inequalities
M
! g (n) E{x(n+i)x(ntk)} # 0 (k=0,1,...,M4)
1=0
Let us assume that ago(n), the increment in the gain go(n) is non-zero.
Then if we delete the k=0 inequality from the above and require that
M

Z agi(n) E{x(n+i)x(n+k)} = -ago(n) E{x(n)x(n+k)}
i=1

(k=1,...,M) (4-27)
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we have a set of M non-homogeneous equations in M unknowns from which we
can obtain a solution for the M gain increments {8gi(n); i=1,...,M} as
a function of the increment Bgo(n) in the gain go(n). This dependence
defines g,(n) to be the reference gain, since at each iteration the
gains {gi(n); i=1,...,M} are iterated by the amounts {Bgi(n); i=1,...,M}
‘'which depend on 3g  (n).
The solution of equ#tions (4~27) for the gain increments
{3gi(n); i=1,...,M} causes the M equations
y .
z Bgi(n) E{x(t+i)x(n+k)} = 0 (k=1,...,M)
i=0
to be satisfied at each iteration - that is M of the (M+l) equations
(4~25) are satisfied at each iteration time n. Later in this analysis,
we will find a value for BgO(n) such that as n increases the reference
gain go(n) approaches its optimum value and ago(n) approaches zero.
This will mean that in the limit as n becomes large the (M+l) equations
(4-25) will be satisfied and the optimum, minimum mean-square error
point will be reached.
The object of the adaptive procedure is to cause the gains
{gi(n)} to converge, as n increases, to their optimum values {gio(n)}
where the mean-square error is a minimum. Now in order that the gain
increments {agi(n); i=1,...,M} cause this process to be accelerated,
the mean-square error in the augmented estimate §n must, at each iteration,
be less than or equal to the mean square error in the corresponding basic
estimate §;, with equality occurring at the optimum point. In other

words, we must have at each iteration time n, the condition



126.

Efel} = E((3 ~s )%} < E((3]~s )%} = E{e])’ (4-28)
or equivalently
o =E(e?) - B’} > 0 (46-29)
e, n n -
fulfilled, where Aen is known as the error increment. This means that
the tap gain increments {agi(n); i=0,1,...,M} must be found such that
inequality (4-29) is satisfied. If we assume for the moment that
8go(n) is known and that it causes the constraint (4-29) to be satisfied,
then we are left with the problem of finding the {agi(n); i=1,...,M}
’such that the constraint is satisfied.

We shall do this by first finding an explicit form for the
{agi(n); i=1l,...,M} in terms of ago(n) without regard to the constraint
(4-29). We shall then calculate Aen as an explicit function of the
{3gi(n)} from which we will find that a very simple modification to
the unconstrained {agi(n)} causes the inequality (4-29) to be satisfied
at each iteration.

In equations (4-27), we note that the reference sample x(n)
appears only in the correlations on the right hand side. These correlations
may be learned by a linear extrapolation of x(n) using the data samples
x(n+l),...,x(n+M). This extrapolation or learned value of x(n) may be

written in the foxm

M
x*(n) = ) o
i=]1

; @ x(n+i) ' (4-30)

wvhere {ai(n); i=1,...,M} is a set of learning or extrapoclation weights

waich must be determined. We shall find them such that the mean square
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learning error

Ele2} = E((x(@) - x*(a))’} (4-31)

is minimized.
The weights {ai(n)} which minimize E{ei} at each time n may be
found by setting the first derivatives of E{ei} with respect to the

{ai(n)} equal to zero to obtain the M equations

2
aE{en}v

3;;?;7 =0 (k=1,...,M) (4-32)

Substituting equation (4-30) into equation (4-31), expanding and taking

the derivatives indicated in equation (4-32) we obtain

2E{c?} "
3;;?37 = «2E{x(n)x(at+k)} + zizlai(n)E{x(n+i)x(n+k)}

= =2E{(x(n) - x*(n))x(n+k)}

= -ZE{enx(n+k)} (k=1,...,M) (4-33)

Then substituting equations (4-33) into equations (4-32) we obtain the

M equations

M
Z ai(n)E{x(n+i)x(n+k)} = E{x(n)x(n+k)} (k=1,...,M)  {(4~34)
i=1

which define the optimum learning weights.

Now substituting equations (4-34) into equations (4-27) we obtain
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M : M
) 3g,(n) E{x(n+i)x(ntk)} = =3g (n) } a,(n) E{x(a+i)x(n+k)}
=1 1 °" yap 1

(k=1,...,M) (4-35)

and then equating the coefficients of like terms, we obtain the explicit

form

agi(n) = -ago(n)ai(n) (i=1,...,M) (4-36)

for the increments {Bgi(n)}g;l in the non-recursive gains {gi(n)};d___l .
Equation (4-36) shows explicitly the dependence of these increments on
the increment ago(n) in the reference gain go(n) when the constraint
(4-29) is ignored. Substituting now equations (4-36) into equations

(4-22) we obtain
8i(n+l) = gi(n) - 38°(n)ai(n) (i=1,...,M) (4-37)

which provides an explicit relationship for iteratively adjusting all
the non~recursive gains except the reference gain go(n).
Now substituting equation (4-37) into equation (4-23) we obtain

the augmented estimate §n as

M L
§n = go(n+l)x(n} +iZl(gi(n)-Sgo(n)ai(n))x(n+i) -jzl fj(n)g

aei (4-38)

which with the use of equations (4-22) and (4-30) may be rewritten in

the form
M L
En = izogi(n)x(n+i) - jzlfj(n)§n_j + 3g (n) (x(n)-x*(n)) (4-39)

Equations (4-39) together with equations {(4~30) and (4-37) form the basis

for the adaptive equalizer, as far as the non-recursive section is
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concerned, when the inequality constraint of equation (4-29) is ignored.
So far we have assumed that the increment ago(n) in the

reference gain go(n) is known and available at each iteration time n.

In practice, this quantity will not be available at time n, since in

a causal system, input must precede output. We are therefore constrained

to use

3g (n-1) = g _(n) - g (n-1)
in place of
9g (n) = g _(a+l) - g (n)
and to accept some loss of optimality. This loss will be small, provided

the adaptive algorithm is converging, since then
9g (n-1) » 3g (n) +~ 0

as n increases. We will now consider how to adaptively adjust the
reference gain go(n).

From equatica (4-11) we obtain at time n the derivative cf the
mean—-square estimation error with respect to the reference gain go(n-l)

in the form

aE{e2 }

n-1"- _ - -
W = ZE{en_lx(n 1} (4-40)

This derivative has the same form for both the basic estimate §; and
the augmented estimate §n. When the equalizer is at the optimum point
it must bz zero. Therefore, we may adjust go(n) using a recursive

steepest descent algorithm of the form
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o o)
g,(n) = g (n-1) + E'EE;?;:IY (4-41)
or ‘
g,(n) = g (n-1) - aE{e _,x(n-1)} (4=42)
which implies
38°(n‘1) = -aE{en_lx(n-l)} (4-43)

where a is a constant which must be chosen so that the algorithm is
stable. The range of values which a may have when the algorithm is

stable is investigated in Appendix D-II and is found to be

<a<0
max

1

where Amax is the largest eigenvalue of a positive definite matrix [Rij
defined in the appendix.
Summarizing now we have the adaptive algorithm for adjusting

the forward gains given by equations (4-37), (4-42) and (4-43) as

g;(n+1) = g, (n) - 3g (n)a,(n) (i=1,...,M)  (4-37)

g,(n) = g (n-1) - aEfe _,x(n-1)} (4-42)
and

ago(n-l) = —aE{en_lx(n—l)} (4-43)

where the last two represent a practicable realizable approximation to
the non~-causal ideal which is given by
= - { -
g, (mtl) = g _(n) - aEle x(n)} (4-44)

and
ago(n) = —aE{enx(n)} . (4-45)
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However,equation (4-37) has been obtained without applying the constraint
of equation (4~29), and we must now consider what effects it will have
on the algorithm.

Let us begin by defining the output of the recursive section of
the equalizer at time n as

L
Then using equation (4-8) we may write the mean square error E{ei}' for
the basic estimate §; as
M

E(el} = E(s?} - 2 ] () Elsx(u)} + 28(sy,)

M M
) g (Mg, (n) E{x(at+i)x(n+j)}
i=0 j=0 )

M
-2 ] g @ Elx(nty } + E{y’} (4-46)
i=0

Similarly the mean-square error E{ei} at time n for the augmented estimate

§n may be found in the same form as

M
E{ei} = E{si} - Zigogi(n+1) E{x(n+i)sn} + 2E{snyn}

M M
+ ] zgi(n*‘l)gj(rﬂl),E{x(n+i)x(n+j)}

i=0 j=0
. M 2

- 27} g, (u+i) E{x(o+i)y_} + E{y } (4~47)
1=0 1 n n

Now let us form the error difference A, defired in equation {4-29). It
n

may be written as
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M
Aen . -Zizo[gi(n) - gi(n+1)] E{x(n+i)sn}

M M
+ 7 7 [gi(n)gj(n) - gi(n+1)gj(n+l)] E{x(n+i)x(n+j)}
1=0 §=0

M
- 2] (g(m) - g (n+D)] E{x(ati)y } (4-48)
i=0

Using equation (4-22), we may reduce this last equation to the form

M
b, =2 ] 3g;(n) Elx(nti)(s +y )}

n i=0
M M
-2} og () ] g4(n) Elx(a+])x(at+1)}
1=0 3=0

M M
- 1 I oeg(n)og

o Lo j(n) E{x(n+i)x(nt+j)} (4-49)
i= ja

Because of the products agi(n)agj(n), the last term of equation (4-49)
will be (in practice at least) very small in comparison to the first two
terms, and therefore it may be neglected. We may then write the error
difference 4, as |
- | .
Be = Zigoagi(n) E{(s -8 )x(n+1)}
M

= ZIZoagi(n) E{e x(n+i)} (4~50)

Making use of equations (4-37), this last result may be written as

M
Aen = Zago(n) E{enx(n)} - Zago(n)izlai(n) E{enx(n+i)} (4-51)



133,

and substituting equation (4-30) into this we obtain the error
difference Ae in the form
z - | * -
Aen Zago(n) E{enx(n)} Zago(n) E{enx (n)} (4-52)
In order to guarantee that the constraint (4-29) is fulfilled, we

must have, as stated in equation (4-29), the condition

fulfilled at each iteration. Now using equation (4-45) the first term

in equation (4-52) may be written as
e —2aE% -
Zago(n) E{enx(n)} = -2aE {enx(n)} (4~53)

The term is always positive or zero provided a is negative which it must
be for the algorithm of equations (4~42) or (4~44) to be stable. The

second term of equation (4~52) may similarly be written as
-ZBgO(n) E{enx*(n)} = —ZaE{enx(n)} E*{enx*(n)} (4~-54)

and we see that there is no way to ensure that this term is either
positive or negative and smaller in magnitude than the first term, There
is thus no guarantee that the constraint of equation (4~29) is satisfied.
The first term in equation (4-52) is the incremental change in
the mean~square error due to adjusting the reference gain go(n), and the

second term is the incremental error change due to adjusting the remaining

M
1=1"

8, > 0 of equation (4-29) is fulfilled at each iteration, all that we

non-recursive gains {g;(a)} In order to guarantee that the constraint

must do is to test the sign of the second term
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B(n) = -23g_(n) E{enx*(n)}

in equation (4-52) at each iteration time. If B(n) > 0 we iterate the

gains {gi(n)}?;l as

g;(ntl) = g ,(n) - 3g (n)a;(n) (i=1,...,M)
as in the unconstrained case, and if B(n) < 0 we iterate them as

gi(n+1) = gi(n) + ago(n)ai(n) (i=1l,...,M)

M

This guarantees that A, > O and that the non-recursive gains {gi(n)}i=l

are always being iterated in a direction to decrease the mean-square
error. These last two equations may be summed up in the single relation-
ship

gi(n+l) = gi(n) - Bgo(n)ai(n)sgn(s(n)) (i=1,...,M) (4~55)

which is more convenient for visualizing the implementation of the
- equalizer,

From equation (4-23) the augmented estimate §n may be written as

M L
S = i) - ¥ £.(n)s_ .
8, iZO gi(n+1)x(n+1) jgl j(n) n-

Substituting equation (4~55) into this and rearranging we obtain

M L
§ = izogi(n)x(n-!-i) + 2g_(n){x(n)-x*(n)sgn(8(n))} -jzlfj(n)sn‘j (4-56)

which together with squations (4-42), (4-43) and (4~535) describes the
adaptive equalizer as far as the non-recursive portion is concerned. We

will now develop an adeptive algorithm for the recursive porticn.
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4.2b Adaptive Algorithm for the Recursive Section
In equations (4-12) we found that the derivatives of the mean-

square error with respect to the recursive gains {f (n)}g'=l were given

J
by
aE{eﬁ} i
3 (n) = ZE{ensn.m} (w=1,...,L)

We also found that the minimum mean-square error point with respect to
the recursive gains was defined by the L equations

aE{ez}
n

—__—afm(n) = 0 - (m=l,. ) ,L)

Using these results, we may then define a recursive steepest
descent algorithm for adaptively adjusting the recursive gains to their

optimum values as

8E{e2}

f.(n+l) = fj(n) +1 a

j 2 m (j=1,...,L) (4-57)

where Yy is a constant which must be chosen so that the algorithm
remains stable. Substituting for the derivatives in equation (4~57),

we may write

fj(n+1) = fj(n) + yE{en§n_j} (3=1,+.4,L) (4-58)

The stability properties of this algorithm are investigated in
Appeadix D-I, and it is found that a sufficient condition for stability

is to constrain y lie in the range

umax

<y <{

where Mo is the largest eigenvalue cof the matrix defined by

-~

n-jsn-i-: (i,k=1,...,L) .

E{s
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4,.2¢ Adaptive Algorithm for the Learning Weights

In the preceding analysis, we implicitly assumed that the optimum
values of the learning or interpolation weights {ai(n)}l:=1 had been
found and were available at each iteration time n. However, their
calculation requires much of the same a priori knowledge as the calculation
"of the optimum values of the non~-recursive gains {gi(n)}?=0' Therefore,
as in the case of the equalizer gains, we shall use an adaptive algorithm
to find the optimum learning weights,

The learning weights {ai(n)} may be adaptively adjusted to their
optimum values using a recursive steepest descent or gradient following
algorithm of the form

5 aE{eZ}

ai(n+l) = ai(n) + E'SEETHY

(i=1,...,M) (4~59)

where ai(n+l) is the ith learning weight at the (n+l)st iteration time
and § is a small constant which must be chosen so that the algorithm is
stable. From equations (4-33), the derivatives required in equations
(4-59) are obtained as

aE{e?}

aai(n) = 'ZE{enx(n+k)} (k=1,...,M) (4~60)

These may be substituted intc equations (4-59) to obtain the algorithm
for adaptively adiusting the learning weights as
ai(n+1) = ai(n) - 6E{enx(n+i)} (i=1,...,M) (4-61)

The stability properties of this algorithm are investigated in
Appendix D-III. There it is found that a sufficient condition for

stability is that ¢ 1lie in the range
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-2

max

<§d <0

where O ax is the largest eigenvalue of the positive definite correlation
matrix

E{x(n+i)x(n+j)} (i,3=1,...,M) .

This completes our derivation of the adaptive equalizer. 1In

the next section we will consider its implementaticen.

4.3 Implementation of the Adaptive Feedback Equalizer
The operation of the adaptive feedback equalizer is described
by equations (4-30), (4-42), (4-55), (4-56), (4-58) and (4~61). These

are repeated below as a convenient summary

M
x%(n) = | oy (n)x(n+i) (4-30)
i=1
go(n) = go(n—l) - aE{en_lx(n-l)} (4-42)
gi(n+1) = g;(n) - 3g_(n)a, (n)sgn(B(n)) (i=1l,...,M)  (4-55)
with
8(n) = -23g_(n) E{enx*(n)}
M L
5,, "izogi (@)x(ati)+3g_(n) {x(n)~-x*(n)sgn(B(n))} -jzlfj (n)sn__j (4-56)
fj(n+l) = fj(n) + YE{engn_j} (3=1,...,L) (4-58)
and

ai(n+l) = ai(n)-éE{cnx(n+i)} (i=1,...,M) (4-61)
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In implementing the equalizer, we must first decide which of
the three nonlinearities discussed in chapter 3 is to be used in the

recursive section to generate the {§n ; j=1,...,L}. The optimum non-

=]

linearity was seen in chapter 3 to have the form

En = tanh(én) (- < n < =) (4-62)

Two approximations to it, which were considered, are the threshold
detector or decision device

>0
n

=0 (~» < n < ® (4~63)

-1 Sn<0

1
'8 = sgn(sn) = 0

> W

and the saturating limiter

1 Sh 2 a (- <n <=
§n =d S, -a <§ <a (0<acxl) (4-64)
-1 §n < -a

Equations (4-62) and (4-64) lead to novel estimate feedback equalizers
whose performance we shall examine in chapter 5. Equation (4-63) leads
to the well known decision feedback equalizer (Austin, 1967; George et al.,
1971 and Monsen, 1971) to which we shall, in chapter 5, compare the
performances of the estimate feedback equalizers.

Examining now the equations describing the adaptive algorithm
(4-42, 4—55, 4-58 and 4-61) we see that the explicit computation of
several different cross-correlaticns is required at each iteration time.
In practice this is, of course, impossible. The best that can be done is
to form estimates of them, and to use these estimates as 1f they were

the true values.



139.

One method of doing this is to replace the expected values by
unbiased estimates in the form of sample means taken over the previous

K21 samples*. The equations describing the adaptive algorithm then

become
, o
g, (mtl) = g (m) - ¢ j_ngm ex()  @2K (4-65)
, n |
B(n) = -23g (n) - ¢ jsn-z-x(+1 ejx*(j) (4-66)
n
D) = () + z=§-2-x+1 eSp (n 2 K) (4-67)
and (3=1,...,L)
o (at1) = a () - o jantiKﬂ exGH) @2 K) (4-68)

(i=1,...,M)

where in all cases K is an integer specifying the number of samples
over which averaging is to be carried out. This type of implementation
has been described by Gersho (1968, 19693 and by Widrow (1966) whe used
K=1,

An alternative technique for implementing the various equations
requiring correlations has been suggested by Lender (1970). In using
this technique, the polarity of the instantaneous correlation is used as
an estimate of the true correlation. To explain this, let us consider
equation (4-42) which describes the adaptive behaviour of the reference

gain. The correlation required at the nth iteration is E{enx(n)}, but it

*In forming this type cf estimate, we ave implicitly assuming
that the random signal sequences are wide sense stationary over any
K > 1 samples.
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is impossible to obtain this. By the instantaneous correlation we mean
just the product enx(n) which is an unbiased estimate of E{enx(n)}. By

taking only its polarity, we obtain

sgn(e _x(n)) = sgn(e ) sgn(x(n)) ,

ahd if we now use this in equation (4-42) we obtain a recursive equation

for adjusting the reference gain as
go(n+1) = go(n) - asgn(en)sgn(x(n)) (4-69)

where as before a is a small constant which must be chosen so that the
algorithm is stable. If we use similar polarity estimates in place of

the correlations in the remaining equations of the adaptive algorithm,

we obtain
B(n) = -Zago(n) sgn(en) sgn(x*(n)) (4~70)
fj(n+1) = fj(n) + ysgn(en)sgn(én_j) (j=1,...,L) (4-71)
and
ai(n+l) - ai(n) - ngn(en)sgn(x(n+i)) (i=1l,...,M) . (4-72)

Gersho (1968a) has examined the convergence properties of such
quantized algorithms, and has shown that for a, vy and § sufficiently
amall, they will converge to a small neighborhood of the optimum point.

He has also pointed out that this convergence may tend to be slower than
that of the linear type ¢f algorithm described in equations (4-65) to
(4-68). However, Lender (1970) in applyving the quantized type of
algorithm to adaptive equalization, obtained very rapid convergence which,

as we will see later, we have also obtained using the quantized implementation
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of equations (4-69) to (4-72). It appeaté, in fact, that provided the
transmitted symbols are quantized to some finite number of values, very
rapid convergence may be obtained using a quantized algorithm.

In the use of the linear form of the algorithm described in
equations (4-65) to (4-68), there are several disadvantages when
compared with the quantized version of equations (4-69) to (4-72).
First, the linear version requires accumulators (or memory) to store
the sum of products over K samples, whereas in the discrete or quantized
version no storage is required, the gains being incremented by a fixed
amount (*ta, *8 or *y) as each new data sample is received. Second,
tﬁe linear version requires multipliers to form the correlation products
in equations (4-65) to (4-68) and to multiply the estimated correlations
by the constants a, 6 and y. In the discrete or quantized version the
first set of multiplications may be performed by a hardlimiting and
gating operation, and the second set of multiplications is avoided
altogether as the gains in equations (4-69) to (4~72) are incremented
by adding the small fixed quantities *a, *§ or *y to the present valugs
of the gains.

In implementing either version of the adaptive algorithm, we
see that measures of the learning error e = x(n)-x*(n) and the
estimation error e = sn-én are required at each iteration. The learning
error e is directly available at each iteration as the difference
x(n)-x*{(a) but the estimatién error e is not, and thus some method of
measuring it must be devised. One method of measuring the estimation
error e is provided by the technique known as decision-directed error

measurement. This inveives passing the estimate §n {or equivalently the
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nonlinear estimate §n) at each iteration or sampling time through a
decision circuit, and then treating the decision circuit output as if
it were the true value s, of the corresponding symbol. Provided that
most of the decisions are correct, which they are in most point-to-
point communications systems, this provides a quite satisfactory method
of measﬁring the estimation error €. The alternative to this is to
provide an independent known reference or training signal with which

to adjust the equalizer. This method is often used; in practice,
during initial adaptatibn of the equalizer.

In view of the above discussion and the resulting simplifications
in implementation, we shall use the discrete or quantized version of the
algorithm throughout the remainder of this thesis. We shall also
conduct much of our investigation using decision directed error measurement.

In chapter 5, we will investigate the performance characteristics
of the estimate feedback equalizer and will compare them to those of

the known decision feedback equalizer.



CHAPTER 5

Performance of the Nonlinear Estimate Feedback Equalizer

In this chapter, we shall investigate the performance character-
istics’of the adaptive, nonlinear, estimate feedback equalizer, when it
is controlled by the new adaptive algorithm of chapter 4. The fixed
optimum decision feedback equalizer which was shown in chapter 3 to be
a high signal to noise ratio approximation to the estimate feedback
structure has been investigated by Austin (1967) and was later made
adaptive by George et al. (1971) and Monsen (1971). We shall, con-
currently with our tests of the estimate feedback equalizer, carry out
the same tests on the decision feedback equalizer. The results for the
decision feedback structure, whose behaviour is essentially known will
provide a standard to which the performance of the estimate feedback
equalizer may be compared.

The analytical evaluation of the performance of any of these
non.inear, adaptive equalizers is aimost hopelessly difficult, although
in section (5.3), we will obtain some limited results for the decision
feedback case. In the main, however, we will resort to Monte Carlo
simulation techniques as a means of evaluating performance.

In section 5.1, we will discuss the input signal to the equalizer,
its simulation and the measurement of signal conditions at the equalizer
input. Then, in tihie remainder of the chapter we will discuss the
perinrmance of the estimate feedback egqualizer and how it compares with

that of the decision feedback equalizer.

(143)
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5.1 Signal Conditions at the Equalizer Input

In order to demonstrate the adaptive equalizer of the preceding
chapters and to investigate its performance characteristics, we decided
to simulate it, using Monte Carlo techniques, on a digital computer -
in this case a CDC-6400". Thevsimulation of the equalizer structure
itself presents few problems since essentially all that is required is
the mechanization, in the computer, of the various equations developed
in the analysis of the preceding chapter. However, some consideration
must be given to how thé equalizer input signal, namely the sample
sequence {x(n)} of equation (4-5), is to be generated, and this we now

discuss.

5.1a Simulation of the Equalizer Input Signal

From equation (4-3), we may write the equalizer input signal as

x(t) 12( s, h(t-kT ) + n_(¢) (5-1)
where as befcore
i) the {sk}:=_°° are the transmitted digital (binary) symbols.
(ii) h(t) is the received pulse shape at the equalizer imput. It

consists of the convolution of the transmitted pulse shape with

first the channel impulse response and then with whatever

*The CDC-6400 is a batch processing machine, and thus che
simulations could not be performed in real time. However, provided we
keep in mind that the symbol period of Tg seconds has been normalized
to unity, the results are quite general.
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filtering, a(t), that is used in the receiver preceding the

equalizer.
(1ii) nc(t) is the additive Gaussian background noise.

In the simulation, we shall assume that x(t) is essentifally bandlimited

to the frequency band

-1 1
ot < f <37
s S

where Ts seconds is theAlength of an individual symbol period, and that
time synchronism is being maintained between the equalizer and the
transmitted signal.

Using these assumptions we may sample x(t) once every TS seconds
at the times t=st to produce at the equalizer input the sequence of

samples

x(uT ) = g s h(ul ~kT ) + n_(uT ) (~» <m < =) (5-2)

If the symbol period Ts is then normalized to unity, we may write

equation (5-2) in the simple form

x(m) = Z skh(m—k) + n_(m) (2 <m < =) (5-3)
Kk c

At the mth sampling time the transmitted symbol is s Also the pulse
shape h(t) is in practice effectively time limited. That is each sample
x(m) (- < m < ») includes only some finite number, say 2L, of non-
negligible components due to preceding and following data symbols Sy

(k ¥ m). We may, thevefore write each x(m) in the form
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x(m) = mEL skh(m-k) + nc(m) (== < m < =) (5-4)
k=m~L
where a measure of L is provided by equation (3-70). This is the form
we shall use for simulation of tﬁe equalizer input samples.

In order to simulate the transmitted symbols {sk} where each s
equals *1, we shall use a pseudo-random binary sequence, Such a
sequence is a periodic sequence of binary digits where the digits within
a period behave in a random-like manner. Such sequences, having any
desired length or perio&, are readily generated using shift registers,
and the procedures for doing this have been widely discussed (Peterson,
1961). In the present work, we shall use a sequence having a period of
28-1 or 255 binary symbols, which is readily generated, at the desired
rate of one symbol every Ts seconds, by an eight stage shift register,
Its period of (28-1)Ts seconds is much longer than either the channel
memory of (2L+1)Ts seconds or the equalizer memory of (M+L+1)Ts seconds,
and thus the periodicity of the sequence will have almost no effect on
the equalizer's performance.

In the simulations, we shall slowly and randomly vary the received
pulse shape h{(t). To do this, after approximately every 100 symbols have
been passed through the channel, we shall add to each sample {h(k);
k==L,...,0,...,L a zero-mean random number generated by a Gaussian random
number generator which is resident within the computer. The additive
noise samples {nc(m); -= < m < «»} in equation (5-4) are also obtained from
this random number generator. The signal samples {x(m); -= < m < =} are

then generated by convolving the pseudo~random sequence {sn} with the
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sanpled pulse shape {h(k); k=~L,...,0,...,L} and then adding the Gaussian

noise samples {nc(m)} to the result.

5.1b Measurement of Conditions at the Equalizer Input

In this section, we shall discuss some measures of signal versus
interference conditions at the input to any equalization system.

From equation (5-4), we‘may write the noise-free input sample

at an arbitrary mth sampling time as

k=nrtL,
x(m) = s h(0) + } s, him-k) (- <m < ») (5-5)
m k
k=m-L
k#m
The symbol we want to detect is S and we thus see that the second term
in equation (5~5) is intersymbol interference or distortion caused by
time dispersion or spread in the channel. One convenieat way to
characterize this is the so-called peak distortion
1 L
LY (5-6)

|h(0)| k=-L
k#0

D

which is defined by Lucky (1965). The peak distortion D is closely
related to the so-called binary eye opening (Lucky, 1968). When D < 1,
the eye is open and binary symbols may be transmitted and received at
low error rates without an equalizer. But when D > 1, the binary eye is
closzd, and some form of compensation for intersymbol interference is
required to make possible the reception of binary symbols at acceptably
low error rates.

The peak distortion D does not include the effects of additive
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noise. In any real situation some noise is always present. It will
always be one limiting factor on system performance and thus should be
taken into consideration. Let us begin by rewriting x(m) of equation
(5-4) so as to isolate the desired symbol 8¢
wtL
x(m) = s h(0) + ) s h(w-k) +a (m) . (2 <m < =) (5-7)
m k c
k=m-L
k#m
The first term in x(m) is the desired signal component. The second term
is an interference or distortion component due to the intersymbol
interference caused by channel dispersion. The third term is due to
the additive background noise. The intersymbol interference component
depends on the transmitted symbols {sn} but the additive noise is
signal independent.
One possible measure of signal conditions at the equalizer input is

the signal to interference ratio which we shall define as

. Ieceived signal energy in each sample
Pin * total interference energy in each sample

(5-8)
From equation (5-7), we may write the signal energy in each x(m) as

h?(0) E{s’}

and the total interference energy as

m+L th 2 )
k=£-L £=£-Lh(m-k)h(m-ﬁ)E{sks£} + E{nc(m)} .
k¥m I#m

Then substituting these in equatioan {5-8), we obtain the signal to

interference ratic as
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n?(0) E{s’}

Pin = WL mHL (5-9)

zz h(a-k)h(n-D)E{s s ,} + E{n>(m)}
k=m~1, {=m-1 -
k#¥m  {#m

where we have implicitly assumed that the samples {h(k); k=-L,...,0,...,L}
of the received pulse shape are non-random in nature. If we than assume
that

E{s,s,} = §

1537 7 °1,3 (=<t <=

and that the noise is stationary and white over the bandwidth of interest
with variance

E{ni(m)} =N (= < m < =)
we may rewrite equation (5-9) in the simple form

h?(0)

Pin (5-10)

b2

I h°(k) + N
k=-L

k#0

When the channel is non-dispersive Pin reduces to the well known signal

to noise ratic

(5-11)

~

We also note ﬁhat as the additive noise becomes very small, Pin approaches

a limiting non-zero value given by

2
.E}L_igl_.. (5-12)
BN

==L

k#0

0, >
M N0
o



150.

While D and Pin aTe useful measures of input signal conditions,

the most meaningful measurement when considering the reception of digital

symbols, is the probability of error Pe(pin) which would be obtained if

each input sample x(m) were just threshold detected with no attempt being

made to compensate for intersymbol interference. Under the following

assumptions:

(1) the symbols {sk} are independent, equiprobable and binary with

the values t1,

(i1) the sampled received pulse shape {h(k): k=-L,...,0,...,L} is

time-invariant and known,

(1ii) the additive noise is white and Gaussian with zero mean and

variance No,

we may use some results due to Shimbo et al {1971) to obtain the desired

error probability as

-p, /2
P ( =101 - ers( pi”‘>]+e - °Z° b, (-1, (/o)
e(Pin) = 21 - exf( 5 = L, P 20-1¢"P1n

In equation (5-13), Hn(x) is the nth Hermite polynomial

-x2/2

n 2
N T )
dx

which may be generated By the recursion relation

H =1 , Hy(x) = x

Hn+1(x) = anQx) - nﬁn_l(x)

(5~13)
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The coefficients b2n of the series in equation (5-13) may be computed

from

b v 22-1
[ou - tan ] = d
u kzl“k HM &Z_ L 241 u

where the left hand side is a generating function for the coefficients

d2£-1’ and the recursion relation

1 n
b2n Ty zzlen-Zl d21.-1
where
h(k 2 1 2
A A LA LA
x k o] k
X
and
2 L 2
oy = E[(kz_Lh(k)sm_k +n_(m)°} (= < m < =)
k#0

is the variance of the input sample x(m).

Equation (5~13) is often approximated by
P_( = 2[1 - erf( o )] (5-14)
ePin’ 7 2 € 2

which 1is the probébility of error that is obtained when the total
interference in equation {(5-7) is assumed to be Gaussian. In most cases
this assumption is valid only when the interference due to additive noise
is comparable to or greater than that due to intersymbol ihterference.
Equations (5-13) and (5-14) are plotted in figure 5.1 for the typical
samplied received pulse shape of figure 5~2. Also shown is the prebability -

of error
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; Y
P(py) = 31 - erf( 32)] (5-15)

as a function of the signal to noise ratio Py which would be obtained
if the channel were non-dispersive. The important point here is that
as p_ increases or equivalently as the signal to interference ratio Pin
approaches the limiting value of equation (5-12), Pe(pin) approaches a
limiting non-zero value. It is then the function of the equalizer to
compensate for the intersymbol interference such that this limiting
value of Pe(pin) is forced to be very small.
5.2  Convergence Properties of the Estimate Feedback Equalizer

In fhis section, we shall evaluate by means of computer simulation,
the convergence and tracking characteristics of the estimate feedback
equalizer, and will compare them to those of the decision feedback
equalizer when both equalizers are operated under the control of the
adaptive algorithm developed in chapter 4.

For all our simulation work, we shall specify both these equalizers
to have M=11 non-recursive and L=6 recursive delay line taps. There is
no particular constraint on the number of non-recursive taps, but the
number of recursive taps must be at least as great as the number of
signalling intervals over which the channel impulse response extends into
the past.

The transmitted symbols {sk} were simulated by repeated transmission
of the 255 bit pseudorandom binary sequence discussed earlier. The

received samples {x(m)} were generated according to equation (5-7). For the
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moment at least the sampled received pulse shape {h(k); k=-L,.0.4,0,...,L}
was made almost time-invariant. The samples {h(k)} were varied randomly
évery 100 symbols by adding to each of them a zero mean Gaussian random
nimber from a distribution having a standard deviation of o, = 0.001,

where oc is known as the channel stdndard deviation.

5.2a Decision Directed Convergence Tests

This first set of tests was designed to investigate the convergence
properties of the adaptive estimate feedback equalizer. Since one of
our concerns is the capability of the equalizer to adapt itself to
compensate for the channel concurrently with the reception of data, these
tests wereiconducted with the adaptive algorithm operating in the decision
directed mode. That is the output estimate ém*(or equivalently the
nonlinear estimate ém) at each sampling time m was passed through a
threshold detector to obtain the decisions s; (sgn(ém) or sgn(ém) in the
binary case). The difference (s; - §m) was then used as if it were the
actual error (sm - §m). This is known as decision directed error
measurement.

The convergence tests were all conducted at a signal to additive
noise ratio of Py = 30db, so. that the predominant source of ingerference
was the intersymbol interference caused by channel time dispersion ox
spread. This was done because the main aim of equalization is the
compensation for intersymbol interference and not the suppression of
additive noise, and in these tests we wanted to investigate the capability

of the equalizer to perform this compensation.
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For test purposes, a group of nine different sampled channel
impulse responses {h(k); k=-L,...,0,...,L} was chosen. These are
shown in figures 5.3 to 5.11. In each case, for convenience in the
siﬁulations, we have set the initial value of h(0) to unity. We note
that Lucky et al. (1968) have shown that h(0) may have any arbitrary
value without affecting the equalizer's performance. The responses of
figures 5.3 and 5.7 to 5.9 were chosen because they represent in sampled
form typical impulse responses which might be encountered in practice.
Those of figures 5.7 to 5.9 are typical of schedule 4 data lines (Niessen
et al., 1970), and that of figure 5.3 is also typical of a coaxial cable
1ink. The responses of figures 5.4, 5.5 and 5.11 were used because they
are symmetric about h(0), and therefore, they represent the situation
in which a matched filter has been used preceding the equalizer. The
responses of figures 5.6 and 5.10 were cbtained by merely reversing the
sign of some of the samples in the responses of the above symmetric
channels, They are included in order to show the difference in the
equalizer's behaviour for symmetric and unsymmetric, but otherwise
equivalent channel responses.

Convergence of the equalizer to its optimum operating point was

measured by computing the root mean square (rms) estimation error

2 a2
e o~ E{en} = E{(sn-sn) }

as a function of time (number n of samples processed). By making a
’
number of simulation runs for each channel, we obtained average conver-

gence properties for the estimate faedback equalizer. Im figures 5.3 to
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5.11 we have shown these properties by plotting, for each channel, the
rms estimation error e ng Versus the number of samples processed. These
curves are the ones labelled "estimate feedback'. For comparison purposes,
we have also simulated the decision feedback equalizer under the control
of the same adaptive algorithm, and the corresponding convergence curves
are shown in figures 5.3 fo 5.11 as the ones labelled "decision feedback".
Each of the curves in figures 5.3 to 5.11 represents the average over 5
independent simulation runms.

From the curves of figures 5.3 to 5.11, we may make the following

observations concerning the estimate feedback equalizer:

(1) Convergence to some minimal value of the rms error e s always
occured. We note that for the channel of figure 5.9, the
decision feedback equalizer did not converge with the adaptive
algorithm operating in the decision directed mode. Rather, in
this case, the value of e ns appeared to drift aimlessly between

about 0.5 and 0.7.

(ii) There was a wide variation in the number of samples (symbols)
required for the equalizer to achieve error-free reception over

different channels.

(iii) Convergence was always fastest when the sampled channel impulse

response {h(k); k=-L,...,0,...,L} was symmetric about h(0).

(iv) We found that the fastest convergence times and the smallest

(average) wvalues of e after convergence, for any of the channels

rms
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under test, were obtained with the iteration constants a, § and

Y lying in the ranges

=278 < <.004 < & < -.002 < =277
27> < -.035 <6 < -.015 = 270
27 < -.005 <y <-.002 < =27
(v) For some éf the channels which we tested (see figures 5.4, 5.5

and 5.11) the convergence curves exhibit a bottoming effect.
That is the rms error decreases to some minimum wvalue and then
increases slightly after which it may or may not decrease again.
This effect has been noted by previous investigators (George

et al., 1969) and it appears to be a slow overshoot effect due

to the transient properties of the adaptive algorithm.

The convergence curves of figures 5.3 to 5.11 were all obtained using the
values a = -,C04, § = -,025 and y = -.005. From the above ranges of
values for these constants, we see that in an all digital implementation
of the equalizer, we should maintain between 8 and 9 bits of accuracy in
the recursive and non~recursive gains and about 6 bits of accuracy in

the learning or extrapolation weights.

As in all adaptive system studies, we are faced with the problem
of trying to relate the convergence and tracking properties of the
adaptive algorithm toc the signal conditions at the system input. This is
a very complex problam, and there does not appear to be any simple,

general solution to it, although we can draw some tentative conclusions
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from the simulations. In Table (5.1) we have tabulated, for the estimate
feedback equalizer, two measures of speed of convergence together with
the corresponding values of the input peak distortion D, the signal to
interference ratio Pin and the input probability of error Pe(pin)'

We have also shown the corresponding measures of convergence speed for
the adaptive decision feedback equalizer. From the table, we may make

the following observations:

(1) As the input error probability Pe(pin) increases beyond 0.15,
there is a significant increase in the average number of samples
required for the equalizer to adapt to a condition of essentially

Zero output error—-ratef.

(ii) For channel 5.9 the adaptive decision feedback equalizer never
converged with the adaptive algorithm operating in the decision
directed mode. For this same channel the estimate feedback
equalizer converged to essentially zero output error-rate in
about 6000 samples. In fact we never observed a channel for which
decision directed convergence of the estimate feedback equalizer

could not be achieved.

(iii) Convergence was always faster when the sampled channel response

{h(k); k=-L,...,0,...,L} is symmetric about h(0).

TWhenever we refer to the output error-rate, we shall mean the
measured or estimated output probability of error.



Input Conditions (pn-BOdb)

Measures of Convergence

Channel -

(numbersg Peak Signal to Input Decision feedback Estimate feedback
refer to Distortion Interference error rate no. of ~ mo. of no. of no. of
figures) D ratio bin Pe(Pin) s:mplig.gor sagplisofor s:mplig.gor sagplfsofor

ms r rms r

5.3 2.12 1.165 0.155 2250 3000 2150 3450
5.4(s) 2.12 1.487 0.129 300 300 350 500
5.5(s) 2,12 1.487 0.129 250 250 250 250
5.6 2.12 1.487 0.129 650 650 500 500
5.7 1.98 1.295 0.147 1050 1400 750 920
5.8 2.04 1.225 0.151 1150 3400 800 1220
5.9 2.18 1.052 0.173 >10% >10% 1800 6000
5.10 2.30 1.18 0.148 500 710 600 3000
5.11(s) 2.30 1.18 0.148 200 200 200 200

Er = measured output error rate or probability of error,

(s) implies channel impulse response is symmetric about h(0).

Table 5.1:

‘691

Input signal conditions and convergence rates.
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(iv) Generally speaking the convergence properties of the estimate
feedback equalizer are comparable to those of the decision
feedback equalizer. When the channel response is symmetric
about h(0), there is little difference between the two, although
there is a slight tendency for the decision feedback equalizer
to be faster, When the channel response is unsymmetric about
h(0), we found that with two exceptions, the estimate feedback
equalizer tended to be faster. These two exceptions are
channels 5.3 and 5.10. For channel 5.3, the rms error decreases
slightly faster but the error-rate more slowly for the estimate
feedback equalizer. For channel 5.10 the estimate feedback

equalizer was found to be slower in both senses.

In observation (iii) above, we noted that convergence was always
fastest when the sampled channel response {h(k)} was symmetric about
h(0). This was true for both equalizer structures. The symmetry in
{h(k)} implies that the channel causes only amplitude and no phase or
delay distortion™ of the transmitted signal. Thus the nonlinear feed-
back equalizers exhibit their best convergence properties when the channel
causes only amplitude distortion.

The phase distortion caused by the channel may be removed by
preceding the equalizer with a filter matched te the channel response.

If the channel traasfer function is H{jw), then the required matched

*We are considering here distortion as a function of frequency.
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filter has the transfer function H*(jw), where the asterisk implies the
complex conjugate. When this filter is used, then as far as the equalizer
is concerned, the channel transfer function is |H(jw)|2. This function

is purely real, and thus as far as the equalizer is concerned the channel
causes only amplitude distortion. Such a filter is called for in the
derivation of the optimum receiver in chapter 3. In practice, however,
thé used of a matched filter is not feasible since the channel response

is unknown. It is, therefore, important that the equalizer have the
capability to converge to a low error-rate when the channel causes both

amplitude and phase distortion.

5.2b Effect of the Learning Algorithm

When the signals being processed by a system are stochastic in
nature, the use of an adaptive algorithm to adjust the system implies
that its performance will always be sub-optimum. An adaptive algorithm
can adjust a system only to within a small, stochastically defined
neighborhood of its optimum operating point. The objectives of the
adaptive algorithm are to adjust the system to within as small a
neighborhood as possible and to do so as quickly as possible. Unfortunately,
these are usually conflicting objectives (Widrow, 1966), and thus some
compromise between the speed of convergence and the size of the neighborhood
about the optimum must be reached.

In conducting some further tests of the adaptive, nonlinear, feed-
back equalizer structures, we found that by using the algorithm developed
in chapter 4, the adaptive behaviour, in terms of both the convergence

speed and the size of the vesulting neighborhood, could be improved by
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increasing the speed of adaptation of the algorithm which adjusts the
learning weights {ai(n); i=1,...,M}. By increasing the speed of
adaptation, we mean increasing the magnitude [6[ of the adjustments to
the weights {ai(n)} at each iteration.

Tests were conducted for the channels of figures 5.3 and 5.8 using
the twoc values § = ~.025 and 6§ = -.03, and average convergence curves
wefe obtained. The resulting curves are shown in figures 5.12 and 5.13
for the estimate feedback equalizer. For both channels, we see that
the speed of convergence of the adaptive algorithm is increased by
increasing the magnitude of the extrapolation process constant ¢ from
0.025 to 0.030. We also found for both channels that when § = -,03, the
rms error e always remainead smaller than when § = -,025. This is

indicated below by the values of e s after 5000 samples have been

processed.

§ = -.025 § = -.03
Channel e (5000) e (5000)
fig. 5.12 0.32 0.23
fig. 5.13 0.288 0.255

The above two channels were chosen as examples. We found that
the same behaviour as a function of ¢ held for all the channels which we
tested. The use of a larger magnitude for the iteration constant 6,
therefore appears to result in improved adaptive behaviour cf the estimate
feedback equalizer. 1In fact, this improvement was observed with

* . .
increasing values of § up to the point” at which the leaarning process

*This peoint is of course deperdent on the particular channel
response which is being equalized.
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adaptive algorithm becomes unstable.
We conducted these same tests for the decision feedback equalizer
and obtained similar results to those given above. They are shown in

figures 5.14 and 5.15.

5.2¢ The Use of a Training Sequence
| We next examined the effect of training the equalizer. By

training we mean that a known symbol sequence is transmitted, and that the
receiver has available a copy of this sequence which it uses for
adaptation purposes. The measurements of the output error used to iterate
the adaptive algorithm are then made as (sn-§n), where s is the known
symbol rather than as the decision directed measurements (s:-én) where
s: is the output of the threshold detector or decision device. The
purpose of these tests was to determine whether or not a relatively short
training sequence has much of an effect on the convergence speed of the
adaptive estimate feedback equalizer.

The first training test was conducted using the sampled channel
impulse response shown in figure 5.3. A 255 symbol training sequence
was used and an average convergence curve (averaged over 5 runs) was
obrained. This curve 1s shown in figure 5.16, where we have also
plotted, for purposes of comparison, the decision directed convergence
curves of figures 5.3 and 5.12. From these curves, it is immediately
obvious rhat the use of the relatively short 255 symbol training sequence
has greatly increased the speed at which the equaiizer converges to its

optimum operating point. It is of interest teo note that convergence to
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the same value of rms error was eventually obtained in both the trained
and the untrained case. We also tried this test using the decision feed-
back equalizer and similar results were obtained as shown in figure 5.17.
We also investigated the effect of training on the convergence
properties of the equalizer when the channel response was that shown
in figure 5.9. For this channel, the decision feedback equalizer did not
converge when the adaptive algorithm was operating in the decision-
directed mode, whereas the estimate feedback equalizer did. We first
tried a 255 symbol training sequence. We found that for the estimate
feedback equalizer, we obtained results similar to those shown in
figure 5.16, but that the decision feedback equalizer did not always
converge to an error-rate of essentially zero (Er=0). For the decision
feedback equalizer, we then tried a 510 symbol training sequence (formed
by transmitting the 255 symbol sequence twice). In this case we found
‘thét the decision feedback equalizer always converged to zero error-rate
and to a low value of the rms error, typically e ms = 0.25, within a few

hundred samples after the cessation of the training sequence.

5.3 Performance in the Presence of Noise

In the preceding discussion we have investigated the convergence
properties of the estimate feedback equalizer, and have to some extent
compared them to the corresponding properties of the known decision
ieedback equalizer. 1In all cases the equalizers were operated under the
control of the adaptive algorithm derived in chapter 4. This investigation

was conduarcted by means of computer simulations and a variety of channel
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impulse responses were used to test the equalizer. We found that the
estimate feedback equalizer can be adapted, albeit quite slowly in a
few cases, to each of these channel impulse responses using a decision
directed adaptive algorithm, but that the decision feedback equalizer
would not adapt in the decision directed mode to the channel of figure
5.9. We then showed how a relatively short training sequence could be
used to obtain quite rapid convergence of the estimate feedback structure
on all channels. All of this investigation was conducted at a high
signal to additive noise ratio (pn = 30db). We must now consider the
éroperties of the estimate feedback equalizer as a function of the
additive noise level (or signal to noise raﬁio pn).

As the additive noise level is increased (the signal to noise
ratio Pn is decreased) decision errors at the equalizer output, even
when the equalizer has converged to its optimum operating point, will
become more frequent. This occurs because the mipimum attaingble mean
square error is increased by the presence of noise. We must, therefore,
evaluate the performance of the equalizer as a function of the additive
noise lavel.

Because of the tanh(:) nonlinearity within the feedback path,
and because of the adaptive nature of the equalizer, the analytical
evaluation of the output probability of error P, is an extremely difficult
task. It is much simpler to estimate it by means of Monte Carlo
simulation. However, before discussing this we shall consider the optimum
non-adaptive decision feedback equalizer. Under certain restrictive

assumptions, it is possible to obtain some feel, at least in a qualizative


http:quali::ati.ve
http:restr:f.cti.ve
http:non-adapti.ve

182,

sense, for how the additive noise affects its performance, and this will
provide some indication of the effect of additive noise on the estimate

feedback equalizer.

5.3a Theoretical Considerations
From equation (4-7), we may write the output of the fixed

decision feedback equalizer at the nth sampling time as

M L
5 = 1Zo gy (M)x(ntl) - jgl £,()s (4-7)

where the {§n ; 3=1,...,L} are the outputs of the threshold detector

-]
or hard limiter defined by equation (4-63). From equations (4-13) and
(4-14) the optimum values of the tap gains {gi(n); i=1,...,M} and

{f£,(n); 3=1,...,L} are defined by

3
M L
X 2. (n)E{x(n+i)x(ntk) } - 2 f. (n)E{s _:x(n+k) } = E{s_x(n+k)}
g=0 1 =1 3 n-j n
(k=0,1,...,M) (4-13)
and
L M
jzlfj(n)E{§n_j§u_m} - igogi(n)E{x(rﬁi)én_m} = E{snén_m}
(e=1,...,L) (4-14)

In order now to simplify our analysis in this section, let us

make the following assumptions:

(a) The L pravious decisions {§ﬁ s 3=1,...,L} used in the formation

-3

of sn are correct - that is
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(§=1,...,L)

sn-j = sn—j
(b) The data symbols {sk} are binary and uncorrelated with zero mean
and unit variance, i.e.,
1 (i=3)
E{sisj} = §(i-j) =
0 (1#31)
{¢) The number of taps on the recursive and non-~recursive delay lines

are equal, i.e., M=L.

The second of the above optimization equations may then be written as
M

£ (n) - iZogi(n)E{x(xﬁi)sn_m} =0 (m=1,...,L) (5-18)

Now from equation (4-5) we may write at the nth sampling time

ngL %
x(n) = s, h{n~k) + n_(n) = s . h(k) +n (n)
ken-L © € k=-L 7% ¢

for each input sample, where nc(n) is a sample of the additive background
noise which we shall assume to be independent of the symbols {sk} and

to be sample to sample uncorrelated, i.e.,

E{nc(m)nc(n)} = Noé(m-n)

where No is the noise variance. Now let us find, explicitly, the various

correlations in equations (4-13) and (5-18). First we may write

L L
E{x(n+i)x(n+k) } ﬁp EL jgth(p)h(j)E{sﬁ+i“psn+k-j} + E{n_(o+i)n_(o+k) }

(k,i = O,l,ooa,L)
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which by the use of assumption (b) may be reduced to

L L
E{x(@+i)x(n+k)} = § ] h(p)h(§)8(1-k+j~p) + N_8(k-1)
p=-L j=-L

(k,i = 0,1,0.. ,L)

This last equation may be written in the simpler form

L
E{x(o+i)x(n+k)} = ] h(p)h(p+k-1) + N_&(k-1) (1,k=0,1,...,L)
p=-L
lotk-1] < L

= 0 otherwise (5-19)

If we then define

L
¥(1,k) = § h(p)h(p+k-1) lptk-1] < L
p=-L
(i,k=0,1,...,L)

= 0 otherwise

we may write equation (5-19) in the compact form

E{lx(n+i)x(n+k)} = w(k,i) + N 8(k=i)
(1,k=0,1,...,L)
= ¥(i,k) + N _&(i-k) (5-20)

Next let us consider the correlation E{x(n+i)sn_m} which may be written

as

} i=0,1,...,L

m=1,o-o’L

L
Elx(nti)s _ } = ] h()E(s

s
koL n+i-k n-n

and this may readily be reduced to the form
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i"o,l,... ,L
E{x(n+i)sn_m} = h(i+m) m=1,...,L (5-21)
li+m| < L

Then setting m=0 in equation (5-21) we at once obtain the correlation

E{snx(n+k)} = h(k) (k=0,1,...,L) (5-22)

Using equations (5-20) to (5-22), we may now rewrite the

optimization equations (4-13) and (5-18) as

L
£,.() = ] g (h(i+m) (m=1,...,L) (5-23)
1=0

and

¥ L
! g, [v(,k) + N s(i-k)] - ] £

(n)h(k+j) = h(k)
1=0 j=1 3

(k=0,1,...,L) (5-24)

Then substituting equation (5-23) into equation (5-24) we obtain

L L L L
! g, @ { ] h@hlptk=1) = ] h(i+DhG+} + | g, (IN 8(i-k) = h(k)
i=0 p=-L j=1 i=0

(k=0,1,...,L) (5-25)

and with a little manipulation, this may be rewritten as

L i
! g,m{ ] h(p)a(p+k-1) + N 8(i-k)} = h(k)
i=0 p=-L
(k=0,1,...,L)
or
L
I 8, @{8(1,%) + N 8(k=i)} = h(k) (k=0,1,...,L) (5-26)
i=0 :

where we have defined
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i
6(i,k) = )} h(p)h(p+k-1i) - (i,k=0,1,...,L) (5-27)
p=-L

Now we may readily show that

0(i,k) = o0(k,1i) and e(1,1) >0 ,
and thus the matrix
[6(i,k)] ' (i,k=0,1,...,L)
is positive semidefinite. The matrix
R= [r(i,k)] = [6(i,k) + Noé(i-k)] (i,k=0,1,...,L)

is therefore positive definite, and there is a unique solution of equation
(5~26) for the optimum values of the gains {gi(n); i=0,1,...,L}. If we

define the vectors

- = “1
go(nﬂ h(0)
G(n) = ) and H= .
(n) h(L)
;FL n_ L -

we may write this solution in the form

G (n) = R 1y (5-28)

where the subscript “o" denotes the optimum values of the gains.

If we now substitute equations (5-23) and (4-5) into the estimate

Qn, then after a little algebraic manipulation we may write

L i-1 L
= [ Z g, (Wh()]s + Jg () [nGs .+ [ g (n (a+i)
i=C 1o i=0 To  k=-L i=0 "o

e o o @ (5"'29)
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where the gains {gio(n); i=0,1,...,L} are the optimum gains defined by
equations (5-26). The first term of equation (5-29) represents the
desired signal component of the estimate én' The second term is the
recidual intersymbol interference at the equalizer output and the third
term is the contribution to §n due to the additive background noise.

We note that each of the three terms in equation (5-29) is uncorrelated

with the other two.

Let us now find the mean-square value of each of the components

of s_:
n
(i) the signal component
L L L 2
B( | g; mhs, [ g mh(@s ) =[] g @h)] (5-30)
i=0 o j=0 Yo i=0 "o
{ii) the residual intersymbol interference
L E 1§1 jgl
L g, (n)g, (n)E{ h(k)s__ ._ h(p)s_,. }
1=0 §=0 o  Jdo = ke-r otk o mti-p

With a little manipulation of this expression and the use of

assumption (b), we obtain the result
L i-1

L
Pole (g, () } h(k)h(k+i-1)
1=0 j=0 Yo o  ke-L

and if we then make the definition
i=1 «

0(i,3) = ) h(k)h(k+j-i) (j,i=0,1,...,L)
k=~L

we obtain the residual intersywbol interference as
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L L
) ) 8y (n)g

3 (n)p (1,3) (5-31)
i=0 j=0 "o o _

(1ii) the additive noise componént

L L L
2
E{ ) g, (n)n_(n+i) Z g. (n)n (n+j)} = N Z g, (n) (5-32)
120, L, ¢ Tym0de ° 120 Yo

Next let us define a signal to interference ratio at the equalizer

output as
- (Output signal energy) (5-33)
o (Residual ISI) + (Output noise)
energy energy

Substituting equations (5-30) to (5-32) into this we obtain

L 2
[} & (@)
i=0 (o]

Po® T 1 L (5-34)
2
g, (n)g, (n)p(i,j) + N g, (n)
izo jZO io Jo ° iZO io

where the optimum gains {gi (n)} are defined by equations (5-26). We may
[

make the following observations concerning Pol

(1) It is similar in form to the input signal to interference ratio
h’(0)
P T L,
I R°(k) + N
k=-L
k#0

defined in equation (5-10).
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(i1) Because of equalization, the intersymbol interference has been

reduced. That is, it may be shown (George et al., 1971) that

L L L 2
I 1g; (Mg (e(i,3) < ] n°®
i=0 j=0 "o o k=-L
k#0
(11i1) The input additive noise energy N, has been multiplied by the
factor 22-0 gi (n). Depending on the sampled impulse response
= o
{h(k)} of the particular channel being equalized, this may cause
the additive noise to be enhanced relative to the desired signal
components at the equalizer output and this may lead to increased

output error-rates. This is particularly true at low values of

the input signal to noise ratio Phe

In principle we could use the results in equations (5-29) and
- (5~34) along with the error probability expression in equation (5-13),
which was developed by Shimbo et al. (1971) to compute the output |
probability of error for the optimum, non-adaptive, decision feedback
equalizer. However, in practice decision errors will occur especially
at low values of the signal to noise ratio Pt The errors are used in
the recursive portion of the equalizer with the result that the inter-
symbol interference due to previous symbols may be enhanced instead of
being cancelled as indicated in the above analysis. This means that the
a#tual output signal to interference ratio may be quite different fronm
the calculated value in equation (5-34). Any analytical evaluation of
the output probability of error will tend, therefore, to be a réther

optimistic estimate of the actual probability of error. This will be
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especially true at low values of the signal to noise ratio Phe ‘The
output signal to interference ratio does, however, indicate how the
additive noisé is affected by the equalizer, and this is the main result
of this section. |

Let us consider now the estimate feedback equalizer which is the
main concern of this thesis. In a rather rough way, equation (5~34) ﬁay
be applied to this structure in that the multiplication of the additive
noise energy N, by the factor z;=0g%°(n) will still occur; and as noted
above for the decision feedback equalizer, this may lead to increased
output error-rates. That is, for any channel response which causes the
additive noise to be enhanced relative to the desired signal, we would
expect the error-rate performance of the estimate feedback structure to
become worse in the same manner as that of the decision feedback
structure. However, in chapter 3, we showed that the decision feedback
equalizer is a high signal to noise ratio approximation to the estiméte’
feedback equalizer. We would, therefore, expect, at least at low signal
to noise ratios, the outpdt error-rate of the estimate feedback equalizer
to be lower than that of the decision féedback equalizer. In practice,
we shall find that this is true for many channels at all éignal to noise

ratios.

5.3b Results of Simulation

In this section, we shall describe the measurement, by means of
Monte Carlo simﬁlation, of the output error-rate or probability of error
of the estimate feecback equalizer as a function of the input cignal te

noise ratio‘pn. We shall compare these results to the corresponding
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results for the decision feedback equalizer. The cutput error-rate is
also a function of the particular channel being equalized, and therefore
we have conducted our measurements using four of the nine- channels®

used in section 5.2. These four channels were selected on the following

basis:

1) The channels of figures 5.3 and 5.9 were selected because they are
typical of a coaxial cable link and a schedule 4 data line
respectively. Also the channel of figure 5.9 was chosen because
error-rate measurements using a linear equalizer (Proakis, 1969)
have been made on it, and these provide a standard to which we
may compare the estimate feedback equalizer's performance.

(i1) The channel of 5.11 was chosen because it illustrates the

situation where a matched filter precedes the equalizer. The
channel of figure 5.10 was used because it is unsymmetric about

h(0) but is otherwise equivalent to the response of figure 5.11.

Our main interest here is the steady state error-rate, namely
the output probability of error after the adaptive algorithm has adjusted
the equaiizer to withir z small neighborhood of its optimum operating
point. We, therefore, used in each of the tests, a training sequence of
510 symbols so as to obtain rapid initial convergence of the equalizer.
We then waited for about 2000 samples after the cessation of the training

sequence in order to allow ample time for the equalizer to reach its

*namely those of figures 5.3, 5.9, 5.10 and 5.11.
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steady state. We then measured the output error-rate by counting the
number of errors. This count was continued until approximately 100
errors had been counted, and the procedure was repeated for each channel
over a range of signal to noise ratios of from 6db to 30db.

The results of the error-rate simulations are shown in figures
5.18 to 5.21, where we have plotted the estimated output probability of

error or error-rate

E = number of errors counted
r total number of symbols processed

for the estimate feedback equalizer as a function of the input signal to

noise ratio P We have also plotted in each of these figures the

following curves:

(i) the probability of error as a function of the signal to noise
ratio for a non-dispersive channel (see equation (5-15)) which

is a lower bound on the attainable probability of error.

(ii) the error probability at the equalizer input for the particular
channel being measured. This is calculated from equation (5-13)
and is the probability of error which would be obtained if no

equalization were performed.

(1ii) the corresponding output probability of error obtained by

simulating the decision feedback equalizer.

Based on figures 5.18 to 5.21, we may make the following

observations concerning the estimate feedback equalizer:
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Depending on the sampled channel impulse response {h(k);
k=-L,...,0,...,L}, there is a variation of up to about 6db in
the signal to noise ratio P at which a given output error-rate

is obtained.

Because the curves in figures 5.18 to 5.21 are empirical in that
they are obtained by counting errors, they depend to some extent
on when this counting begins. We have made the effect of this
quite small by waiting until the equalizer is operating in
steady state and by then counting errors over a large number of

received symbols.

The curve in figure 5.20 for the decision feedback equalizer is
consistent with one obtained by George et al. (1971) using a

similar channel.

For the channels of figures 5.18, 5.19 and 5.21 the estimate
feedback equalizer yielded better performance at all values of
the signal to noise ratio P than did the decision feedback

equalizer.

For the sampled channel impulse response of figure 5.20 the
performance of both the estimate and the decision feedback
equalizers is much worse than for any of the other three channels
which we used for our tests. At signal to noise ratios greater
than about 6db the performance of the estimate feedback equalizer

was slightly worse than that of the decision feedback equalizer,
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but at lower values of the signal to noise ratio it was slightly

better.

For all the channels which we tested, there was some tendency for
errors to occur in bursts. We found that most of these bursts were only
2 or 3 symbols long but that the occasional burst 5 or 6 symbols long
occurred. This tendency was more pronounced for the decision feedback
equalizer than for the estimate feedback equalizer, and was always more
severe at low signal to noise ratios (pn < 6db). For both equalizer
sttuctureé, it was most pronounced for the channel impulse response of
figure 5.20.

Previous investigators (Austin, 1967 and George et al. 1969 and
1971) have noted this effect and discussed it in connection with the
decision feedback equalizer. They have termed it the error propagation
-effect because in a decision feedback structure the occurrence of one
decision error tends to cause another to occur thus leading to the
creation or propagation of a burst of errors. In some recent tests,
Keeler (1971) has shown that for error-rates less than 10—1, error
propagation does not seriously degrade the performance of the decision
feedback equalizer, but at higher values of the error~rate it tends to
become the dominant cause of performance degradation with the number of
bursts increasing both in frequency of occurrence and length.

The main reason for the much worse performance of both the
decision and the estimate feedback equalizers when they are equalizing
the cnannel of figure 5.20 appears to be the enhancement of the additive

noise by the equalizer. To see this, let us begin by defining the signal
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to additive noise ratio at the input (§n) to the nonlinearity (sgn(.) or
tanh(.) respectively) in the feedback path as

(desired signal energy in §n)

P, = - (5-35)
o (noise energy in sn)

When the equalizer is both nonlinear and adaptive, as in the present
case, p, 1s very difficult to evaluate. However, by considering the
o
non-adaptive decision feedback equalizer under the restrictive assumptions

of section 5.3a, we may calculate an ideal output signal to noise ratio

p: . It will be only an approximation but it will provide some insight

o
into the effect of the estimate and decision feedback equalizers on the

additive noise.
Now substituting equations (5-30) and (5-32) into equation (5-35),

we obtain the ideal output signal to noise ratio as

L ’ 2
[ ] g h@)]
* i=0 "0

n

(o]

(5-36)

Iz‘ 2
N g, (n)
° 1=0 io

where the {gio(n)}§=o are the ideal, optimum, non-recursive gain values
for the decision feedback equalizer cbtained by solving equation (5-28)
and the {h(i)}§=b are samples of the channel impulse response. As in the
case of p, in equation (5-34), the input noise variance (emergy or power

L
measure) has been nmultiplied by the factor zi (n). Also, in the

2
~08
=081,

*

decision feedback equalizer, P dépends only on the non-recursive gains

{gi (n)} and not on the recursive gains {fj (n)}. Now the signal to noise
° o

ratio at the equalizer input is given by equation (5-11) as
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and comparing this to p: , we see that when
o

L 2
[} g (h(1)]
i=Q ©

= < hz(o) (5-37)
I gl
1=0 "o
the decision feedback equalizer will enhance the additive noise. The
reverse is of course also true.

Using a computer program, we next solved equation (5-28) to
obtain the ideal optimum gain values {gio(n)} for each of the channels
in figures 5.18 to 5.21 over a range of values of the input signal to
nolse ratio Pn’ In all cases we found that these calculated values were
close to the averase values® of the non-recursive gains after convergence
in both the adaptive estimate and dacision feedback equalizers. Therefore,
the ideal signal to noise ratioc p;o will be, for the decision feedback
equalizer, a reasonably good approximation to the actual value, neglecting
of course the effect of decision errors appearing in the recursive section

*

of the equalizer. For the estimate feedback equalizer, P will only be

o]
indicative in a qualitative way of the effect of the equalizer on the
additive noise because the previous estimates used in the recursive section

will contain a noise component which contributes to the noise enhancement

caused by the equalizer.

*_ . . i ;

Because we are considering adaptive systems, the actual gain
values will, after convergence, always exhibit small fluctuations about
their optimum values.
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The ideal output signal to noise ratio p:O and the difference

(p: - pn) between it and the input signal to noise ratio p, were then
o

calculated. They are tabulated in Table 5.2 for each of the channels
of figures 5.18 to 5.21.

For the decision feedback equalizer, the difference (p;o - pn)
provides a direct measure of the amount of noise enhancement or
suppression. For the channels df figures 5.18, 5.19 and 5.21, it
indicates that the additive noise is suppressed by a small amount, but
for the channel of figure 5.20 it indicates that the decision feedback
équalizer enhances the noise by between 2 and 4 db. From the measured
error-rate curves of figures 5.18 to 5.21, we see that for the output
error-rate of the decision feedback equalizer to have a given vaiue, the
signal to noise ratio Py must be between 2 and 4 db greater for the
channel of figure 5.20 than for any of the other three channels which we
tested. It, therefore, appears to be mainly the enhancement of the
additive noise which causes the much worse performance of the decision
feedback equalizer when it is equalizing the channel of figure 5.20.

This same effect is also largely responsible for the error-rate
performance of thevestimate feedback equalizer being worse when it is
equalizing the channel of figure 5.20, However, at values of o, 8reater
than about 6db, its performance is slightly worse than that of the decision
feedback equalizer. This is caused by the fact that in the estimate
feedback case estimates which are inherently noisy rather than noiseless
decisions are used in the recursive section to compensate for intersymbol

interference due to previous symbols. The noise component of these
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Table 5.2:

Channel (Numbers
refer to figures)

Fig. 5.18

(causes amplitude
and phase
distortion)

Fig. 5.19

(causes amplitude
and phase.
distortion)

Fig. 5.20
{(causes only
amplitude
distortion)

Fig. 5.21

" (causes amplitude
and phase
distortion)
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Illustration of noise enhancement and suppression.

Input SNR
o, (db)

6.53
10.05
15.33
18.85

6.53
10.05
15.33
18.85

6.53
10.05
15.33
18.85

6.53
10.05
15.33
18.85

Output SKNR

Pn

(db)
o

7.29
10.56
15.79
19.30

7.79
10.75
16.04
19.47

4.59
7.41
12.41
15.45

7.34
10.74
15.95
19.46

Noise enhancement
(pno - p,)db

~1.94
-2.64
-3.19
-3.40
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estimates contributes to the equalizer output noise and this increases
the noise enhancement caused by the estimate feedback equalizer. The
result is that, for the channel of 5.20 for which the non-recursive
section of the equalizer causes noise enhancement, the resulting error-
rate performance is slightly worse (approximately 1db) than in the
decision feedback case.

At error-rates greater ﬁhan about 10-1, the error propagation
effect in the decision feedback equalizer becomes much more severe. In
fact for the channel of figure 5.20, its effect becomes worse than the
abovementioned extra noise enhancement occurring in the estimate feed-
back equalizer. This causes the estimate feedback equalizer to have
somewhat better performance for this channel when the errar-rara ie
greater than about 10-1, and accounts for the cross-over of the
measured error-rate curves in figure 5.20. 1In chapter 3, we showed
that both the estimate and the decision feedback equalizers are sub-
optimum in that they are bbth approximations to the Conditional Bayes
estimator. We also showed that the decision feedback equalizer 1is a
‘high signal to noise ratio approximation to the estimate feedback equalizer.
We, therefore expect that, at least at low values of p#, the estimate
feedback equalizer will always yileld better performance, and this has
indeed been observed.

This same Eross—over of the error-rate curves has been observed
by George et al. (1969, 1971) in comparing the decision feedback equalizer
to a linear (transversal filter) equalizer, and a similar explanation to

that given above holds in this case.
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From Table 5.2, it can be seen that noise enhancement* occurs
only for the channel of figure 5.20, but for the other three channels
which we tested the additive noise appears to have been suppressed by
a small amount, and as the measured error-rate curves indicate the
decision feedback equalizer yields better performance on these three
channels., More importantly, we have {ound that for any channel for
which the additive noise appears to be suppressed, the estimate feedback
equalizer yields better performance than the decision feedback equalizer
at all values of the signal to noise ratio L

To see why this is so, let us begin by considering the sampled
channel impulse response th(k); k=-L,...,0,...,L} where, as in all of
our simulation work, the sampling or symbol period has been normalized
to unity. We may readily write it as a sampled function of delay 1 in
the form

L
h(t) = ] h(k)§(1-k) (5-38)
k=-L
where 8(t) is the Dirac delta function. Then taking the Fourier transform
of h(t) with respect to T, we obtain, at least in a formal sense, the
sampled channel transfer function
L
H() = ] h(ke 3o* (5-39)
k=-L
This function i3 periodic in w with period 2r, but we shall be interested

only in the primary interval

. *As calculated by comparing the ideal output signal to noise ratio

oy of equation (5-~36) to the input signal to noise ratio I
o
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--T < W<T7

which is the normalized Nyquist bandwidth.

Now we may readily rewrite H{w) in the form

L L
H(w) = h(0) + ] (h(k)+h(-k))coswk - § } (h(k)-h(-k))sinuk
k=1 k=1

= h(0) + K(w) ' (5-40)

In this equation h(0) represents the distortion-free component of the

channel response and

L L
K(w) = [ (h(k)+h(-k))coswk - j J (h(k)-h(-k))sinwk (5-41)
k=1 k=1

represents the dispersive component which distorts the signal and causes
intersymbol interference. From equaticn (5-40), we may distinguish the

following limiting cases:

(1) h(k) = 0 (k # 0) (5-42)
The transfer function then becomes
H(w) = h(0) ' (5-43)
implying that the channel is non--dispersive. There is no

intersymbol interference and no equalizaticn required.

(ii) h(k) = -h(-k) (k # 0) (5-44)
and the channel transfer function becomes
1

H(w) = h(0) + K(w) = h(0) - 2§ § h(k)sinuk
k=1
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In this case the distortion term K(w) is purely imaginery. It
can theﬁ be shown using paired echo theory (Lucky, 1968) that
this corresponds to a channel which causes only phase or delay
distortion of the transmitted signal. This distortion causes

intersymbol interference and equalization is required.

(111) h(k) = h(-k) (k # 0) (5-45)

and the channel transfer function becomes

L
H(w) = h(0) + K(w) = h(0) + 2 )} h(k)coswk

k=1
Here the distortion term K(w) is purely real and (again using
paired echo theory) we can show that such a channel causes only
amplitude distortion. This of course causes intersymbol inter-

ference and equalization is again required.

Ogviously, the ideal channel transfer function is that given by
equation (5-43) where there is no distortion. However, in almost all
realistic situations, a communications channel causes both amplitude and
phase distortion of the transmitted signal, and some form of equalization
is required.

Now let us consider the action of the decision feedback equalizer
as a function of the channel response. A number of previous investigators
(Austin, 1967; George et al., 1969, 1971 and Monsen, 1971) have indicated
that a decision feedback equalizer always yields superior performance to
a linear {(transversal filter) equalizer for all values of the output error-
rate less than about 10—1, where error propagation does not seriously

degrade the performance of the decision feedback equalizer. However,
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all of their investigations have been confined to the case in which a

filter matched to the channel impulse response precedes the equalizer.

This matched filter completely equalizes or compensates for any phase

distortion caused by the channel, and the equalizer thus sees an

effective channel which causes only amplitude distortion (see equation
(5-45)).

Now the decision feedback equalizer uses noiseless decisions in
the recursive section to coherently cancel or subtract out intersymbol
interference due to previous symbols. Thus if the sampled channel
impulse response at its input is given by equation (5~38) with correspond-
ing transfer function given by equation (5-40), this cancellation process

leaves an effective, sampled channel impulse response

0 .
h'(t) = } h(k)s(z-k) (5-46)
k=-L

with corresponding transfer function

L L
H'(w) = h(0) + ) h(-k)coswk = j ] h(-k)sinuk (5-47)
k=1 k=1

which must be equalized by the linear, non-recursive section of the
equalizer. The 1linear section does this by adapting to become essentially
the inverse of h'{t). On the other hand, the linear (transversal filter)
equalizer must adapt to become the inverse of the origimal input impulse
response h{(t) of equation (5-38).

By adapting to become the inverse, we mean that both the linear
portion of the decision feedback equalizer and the linear equalizer

attempt to adjust themselves so that the overall transfer function of the



208.

equalizer and channel in cascade has the ideal all-pass form of equation
(5-38) over the Nyquist bandwidth. This means that those frequencies

in the received signal which are weak must be amplified and those which
are strong must be attenuated. Now for any linear filter, we have the

well known result that
2
S,(w) = 8, () [6(w)| (5-48)

where Sy(w) is the filter output power spectral density, Sx(m) is the
input power spectral density and G(w) is the filter transfer function.

It is clear from this that only the filter's amplitude characteristic
|6(w)| and not its phase characteristic arg(G(w)) will affect the (noise)
power appearing at its output. This implies that an equalizer will cause
noise enhancement only when it must compensate for amplitude distortion
caused by the channel, that is only when it must adjust the overall

‘ amplitude characteristic of channel and equalizer in order to approach
the ideal form of equation (5-43).

Now when the channel impulse response h(t) of equation (5-38) is
symmetric about h(0), so that it causes only amplitude distortion, the
coherent cancellation process in the decision feedback equalizer removes
one half the amplitude distortion in h(z) to produce the effective
impulse response h'(t) of equation (5-46). This is done at the expense
of causing h'{tr) to contain phase distorticn which will, of course, have
no effect on the noise power appearing at the equalizer output. Thus
when h(t) is symmetric, a linear equalizer must equalize twice as much
arplitude distortion as the linear non-recursive portion of the decision

feedback equalizer. That is the linear equalizer must provide more
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amplification (and usually over a wider band of frequencies) of the
frequency components in its input signal in order to make the overall
characteristic approach the ideal form of equation (5-43). An example
of this is given by the channel of figure 5.20 whose transfer function
is plotted over the normalized Nyquist band in figure 5.22. The linear
7 equalizer will, therefore, cause more noise enhancement with the result
that on this type of channel, its performance will be inferior to that
of the decision feedback equalizer.

In some recent work, Keeler (1971) has found that when the
éhannel response h(t) contains significant phase as well as amplitude
distortion*, a linear (transversal filter) equalizer yields better
performance by between-% and 1 db than the decision feedback equalizer,
In the present work, we have found that for such channels the decision
feedback equalizer tends to suppress the noise and to yield better
performance than when the channel response h(t) is symmetric about h{D).
This is readily seen from Table 5.2 and figures 5.18 to 5.21. We have
partiéﬂy' éorroborated Keeler's finding. In figure 5.21, we have shown
an error-rate curve obtained for this channel by Proakis (1969) using
a 31 tap linear equalizer. Comparing this curve to our measured curve
for the decision feedback equalizer, we see thﬁt the linear equalizer is
between % and 1 db better. We would expect a similar result for the

channels of figures 5.18 and 5.19.

*This is the usual type of channel which must be equalized, because
in most cases of interest, it is impractical and uneconomic to match a
filter to the channel response in order to obtain phase equalization. This
occurs because the channel response is usually unknown and time-varying.
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‘ channel
3.0 characteristic
|[H(w) | at
equalizer input |
2.5
[H' ()]
2.0 b— (after
cancelling)
i
1.5 —
h(0) = 1.0
(ideal characteristic) :
1.0
0.5
G 0.1 0.2 0.3 0.4 0.5
.normalized
frequency

Figure 5.22

Amplitude characteristic for channel of figure

5.20 before (fH(m)f} and after (;H;(w)i) decision
feedback action has taken place. Curves are plotted
over the normalized Nyquist bandwidth.
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This difference in performance arises because the coherent
concellation process by which the decision feedback equalizer reduces
the received channel impulse response h(t) of equation (5-38) to the
effective impulse response of equation (5-46) cancels the intersymbol
interference due to previous symbols, but at the same time it induces
- additional amplitude and phase distortion into h'(t). This additional
distortion must be correlated by the linear non-recursive section of
the decision feedback equalizer.

The additional amplitude distortion in h'(t) causes the noise
enhancement to be greater (or equivalently the noise suppression to be
less) for the decision feedback equalizer than for the linear equalizer.
Thus on this type of channel the linear equalizer yields better
performance than the decision feedback equalizer. Examples of this
effect are provided by the cﬁannels of figures 5.18, 5.19 and 5.21. 1In
figures 5.23 to 5.25, we have plotted the amplitude and phase character-
istics |H(w)| and arg(H(w)) over the normalized Nyquist bandwidth for
each of these channels. We have also shown in each case the effective
amplitude characteristic |H'(w)| which results after the coherent
cancellation process of decision feedback takes place. In each case,

the fraction of the Nyquist bandwidth
“-T <w <7 or - %-< f < -%

over which an equalizer must amplify rather than attenuate the frequency
components of the input signal in order to approach the ideal characteristic
is greater after the coherent cancellation process of the decision feedback

equalizer has taken place. Alsc the gain required in each case isg
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|
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Figure 5.23

Transfer characteristics of channel of figure 5.18 showing
effect of coherent calcellation on the amplitude character-
istic. The curves are plotted over the normalized Nyquist
bandwidth,
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Figure 5.24

" amplitude characteristic.

Transfer characteristics of channel of figure 5.19
showing effect of ccherent canceilation on the

The curves are plotted
over the normalized Nyquist bandwidth,
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re 5.25 Transfer characteristics for channel of figure 5.21
showing effect of ccherent cancellation on the
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over the ncrmalized Nyguist bandwidth.



215.

greater for the decision feedback equalizer. This means that the
decision feedback equalizer will not on these channels suppress the noise
as much (or equivalently, will enhance it more) than the linear (trans-
versal filter) equalizer. We can, therefore, expect the performance of
the linear equalizer to be better than that of the decision feedback

- equalizer on channels containing significant phase as well as amplitude
distortion (as indicated by Keeler, 1971).

Turning now to the estimate feedback equalizer which is the main
concern of this thesis, we showed in chapter 3 that its mean-square
estimation error is always smaller than that of the linear equalizer. We,
therefoye, expect that its error-~rate performance will always be better
than that of the linear equalizer. On channels containing significant
phase as well as amplitude distortion this also implies that the estimate
feedback equalizer should yield better performance than the decision
feedback equalizer. This is indeed the performance which we have
obtained. For the channel of figure 5.21, where we have available the
curve (Proakis, 1969) for the 31 tap linear equalizer, we find that the
‘ estimate feedback equalizer yields performance about %-db better than
the linear equalizer and between 1 and 2 db better than the decision
feedback equalizer. For the two channels of figures 5.18 and 5.19 we
found the error-rate performance of the estimate feedback equalizer to

be between 1 and 2 db better than that of the decision feedback equalizer.



216.

5.4 The Saturating Limiter Equalizer

In chapter 3, we indicated that in some situations, it might
be useful to be able to replace the tanh(.) nonlinearity of the estimate
feedback equalizer with a simpler and more easily impiementable non-
linearity. We thén suggested, for the case of binary symbols, a

saturating limiter defined by the relationship

4
- A(-
1 sn s -og
~=§ -g <8 <a < 1
52 ﬁ n %s 5h s (0 = %s s 1)
+1 S 2a
L n s

where §n is the limiter input, §n is its output and ag is a threshold or
saturation value which must be suitably defined. It is of interest to

note that for ag = 0
s, = sgn(sn)

and the decision feedback equalizer results.
In this section, we shall describe the results of simulating
the saturating limiter equalizer and will compare our results to those

of the preceding section.

5.4a Convergence Properties

Our first tésts of the saturating limiter equalizer were made
in order to determine an cptirmum or near optimum value for the limiter
saturation value a. To do tiis, we 7Tan convergence and probability of
error tests for several different values of a_ between 0 and 1 and for

several different channels. In all the cases which we tried, we found
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that the best results were obtained for as-l which is the transmitted
symbol magnitude. We, therefore, tried some further tests using the
anti-podal symbol values *8 (B # 1), and in this case found that the
best value for oy appeared to be a, = B. Therefore, in all further
tests of the satufating limiter equalizer, we used the transmitted
symbol values *1 and the limiter saturation value a = 1 (Taylor, 1971).
‘Using the same group of 9 channels as in section 5.3a, we next
carried out decision directed convergence tests of the adaptive
saturating limiter equalizer using the adaptive algorithm discussed in
éhapter 4. The results of these tests are shown in figures 5.26 to
5.34, where we have plotted the rms output error € ms 35 2 function of
the number of samples or symbols processed. Each of these curves
represents, as previously, the average over five separate runs. In
order to facilitate comparisons, we have also plotted in these figures
the corresponding curves for the estimate and decision feedback equalizers.
From the curves of figures 5.26 to 5.34, we may make the

following observations:

(1) For all the channels which we tested, the saturating limiter
equalizer exhibited convergence toward some minimal value of the

rms estimation error e .
s

(i) For any given channel, the convergence speeds and the values of
the rms estimation error after 5000 samples had been processed

are comparable for all three equalizer structures.



rms

Rms output error e

0.8

0.7

0.6

0.5

0.4

0.3

0.2

218,

estimate
feedback

h(0)=1.0
.50
.32 l .30
.06 .10 [ l .10
i . | 0.0 .O? i
-007 iy
—E;t‘— sampled

channel

-.62 response

decision
feedback

saturating
limiter

decision feedback: rms error after 5000 samples = 0.33
estimate feedback: rms error after 5000 samples = 0.32
saturating limiter: rms error after 5000 samples = 0.35

0 500 1000 1560 200¢C 2500 3000

Number of samples
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(111) All of the curves in figures 5.26. to 5.34 were obtained using
the values a = -.004, § = -,025 and y = -.005 for the iteration
constants. In general, we found that for the saturating limiter
equalizer, the best convergence results were obtained with these
constants lying in the same ranges as discussed in the preceding

section for the estimate feedback equalizer.

(iv) From the curves, the convergence properties of the three adaptive
equalizers can be seen to be comparable. For each channel, the
three convergence curves lie quite close together, and the values
of the rms output error after 5000 samples or symbols have been

processed are quite close together.

We next conducted some tests to determine the effect of the
interpolation constant 6. Typical results of these tests are shown in
’ figures 5.35 and 5.36 for two values of §. In each case we see that
convergence is faster for a larger value of 6 and that the rms error
after 5000 symbols is smaller. This same behaviour was observed for
both the estimate and the decision feedback equalizers, and it, there-
fore appears that the improved adaptive behaviour with larger values of
the interpolation constant § is characteristic of the adaptive algorithm
developed in chapter 4.

We also conducted some tests to determine the effect of a
training sequence on the convergence properties of the saturating
limiter equalizer. For each channel which we tested, we found that we
obtained results which were very close to those which we cbtained using

the estimate feedback equalizer.



Rms output error epn,.

228.

h(0)=1.0
.50
0.81— .32 .30
.06 .10 I .10
i Y { I 0.0 | 'O§ 1
0.7 pram—
sampled
channel
-.62 response
0.6 p—
0.5 pr—
0.4 p—
-0.3 b
0.2 $—
0.1p § = rms error after 5000 samples = 0.351
§ = rms error after 3000 samples = 0.234
0 500 1000 1500 2000 2500 3000

number of samples

Figure 5.35 Decision directed convergence curves for channel response

shown, illustrating the effezt of the learning constant &,


http:converger-.ce

rms

Rms output error e

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

229.

h(0)=1.0
.50
.22
10
.06 . .10
S B O
e -.32 sampled
channel
-.62 response
L 6 = -.025: rms error after 5000 samples = .311
§ = -.030: rms error after 5000 samples = .264
G 500 1000 1500 2000 2500 3000

Figure 5.36

number of samples

Decision directed convergence curves for channel respcnse
shown, illustrating effect of the learning constant §.




230.

In conclusion, it appears that the convergence properties of
the adaptive saturating limiter equalizer are comparable to those
obtained in the preceding section for the estimate and decision feedback

equalizers.

5.4b Performance in the Presence of Noise

We next conducted a series of tests (by means of Monte Carlo
simulation) to investigate the steady-state error-rate performance, as
a function of the additive noise level. These tests were carried out
using the same sampled channel impulse responses that we used for similar
tests of the estimate and decision feedback equalizers. The resulting
measured error-rate curves are plotted in figures 5.37 to 5.40 as a
function of the signal to noise ratio P We have also plotted in
these figures, for purposes of comparison, the curves obtained in
section 5.3b for the estimate and decision feedback equalizers.

From the curves of figures 5.37 to 5.40, we see that for every
channel which we tested, the error-rate performance of the saturating
limiter equalizer is only marginally worse than that of the estimate
feedback equalizer. Therefore, it appears that in many situations the
saturating limiter equalizer will serve as a very satisfactory and

relatively simple approximation to the estimate feedback equalizer.

5.5 Summary
In this chapter, we have investigated, by means of Monte Carlo
simulation, the performance characteristics of an adaptive, nonlinear

estimate feedback equalizer which is controlled by the adaptive algorithm
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developed in chapter 4. We have compared its performance characteristics
with those of the well known decision feedback equalizer, and have found
that, when the channel causes both amplitude and phase distortion, the
estimate feedback equalizer yields considerably better error-rate
performance than either the decision feedback equalizer or a linear
equalizer. We also found that the convergence characteristics of the
two équalizers are comparable.

We then briefly described an approximation to the estimate feed-
back equalizer which uses a saturating limiter in the feedback path.
Its convergence characteristics were seen to be comparable to those of
the estimate feedback egqualizer and its error-rate performance was seen

to be only marginally worse than that of the estimate feedback equalizer.



CHAPTER 6

Conclusions and Suggestions for Further Work

6.1 Conclusions

In this thesis, we have applied Bayes estimation theory to
derive a novel, unrealizable, nonlinear receiver structure for the
reception of baseband digital signals. We have termed this unrealizable
structure the conditional Bayes estimator or receiver and have derived

the following two realizable approximations to it:

(1) = A receiver consisting of a non~recursive linear filter followed
by a nonlinear feedback system incorporating a soft limiter
(hyperbolic tangent characteristic) in the feedback path. This

is known as the estimate feedback receiver.

(ii) A receiver consisting of a nonlinear, non-recursive filter

followed by the same nonlinear feedback system as in (i).

We then showed that the well known decision feedback system is a high
signal to noise ratic approximaticn to the conditional Bayes receiver.
The second contribution of the present work was the development
of a new adaptive algorithm for the iterative control of the nonlinear
receiver. This algorithm was applied specifically to the structure in
(i) above, and an evaluation of the performance characteristics of the
resulting receiver was carried out. We found that the estimate feed-

back receiver yielded hetter performance than either the decision

(236)
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feedback receiver or a linear (transversal filter) receiver,when the
channel caused both.ahplitude and phase distortion of the signal (the
typical situation on most telephone or coaxial cable channels and many
radio channels). It therefore appears that the estimate feedback
equalizer would be a suitable ;eplacement for a linear or a decision
feedback equalizer in any situation where it is not feasible to
precede the equalizer with a filter matched to the channel response to
obtain phase equalization.

We also derived a simple saturating limiter equalizer as an
approximation to the estimate feedback equalizer. 1Its performance was
evaluated and found to be comparable to, although marginally worse than

that of the estimate feedback equalizer.

6.2 Suggestions for Further Work

In the present work we have derived and evaluated the estimate
feedback receiver mentioned in (i) above. We have shown that its
performance on channels containing both phase and amplitude distortion
is superior to that of existing equalizers. However, all of this work
has been confined to analysis and computer simulation, and the results
which we have obtained should be verified experimentally in a carefully
controlled implementation of the adaptive estimate feedback equalizer.

Also beyond deriving the Easic sfructure, we have not pursued
further any investigation into the nonlinear equalizer structure
mentioned in (ii) above. More work should be conducted on this receiver

with a view to making it adaptive and to evaluating its performance.
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It is felt that its performance may approach quite closely to that of
the optimum Bayes receiver derived by Bowen (1969).

The implementation of a complete receiver structure utilizing
these noﬁlinear equalizers also warrants further careful study both of

a theoretical and an experimental nature.



APPENDIX A
Circuit Model for a Time-Varying Channel

Using a Power Series Expansion

In this appendix we briefly describe a circuit model for a time-
varying channel. This model is obtained by forming a power series
expansion of the equivalent low-pass channel transfer function G(t,f).
This model was originally obtained by Bello (1963), and we shall make
use of it in chapter 2 of the thesis where it provides a way to obtain
measures of the dispersion characteristics of the channel.

Let us begin by recalling equation (2-17), namely,
n(t) = J M(f) G(t,f)ejznftdf (A-1)

- where M(f) is the amplitude spectrum of the transmitted signal m(t) and
n(t) is the channel output. We now propose to expand G(t,f) in a
power series in the frequency variable f, where from euqation (2-18)

we have

-j2nfE

G(t,f) = I g(t,b)e dg , (a-2)

g(t,£) being the channel impulse response.

In all physical channels, there is some value £, of the delay
variable £ about which the impulse response g(t,£) may be assumed to
be centered. In equation (A-2), let us make the transformation

u = E-EO to obtain

(239)
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6(e,0) = eI [ gt g e 32Ty a-3)
Then making the definition
g (t,1) = g(t,utg ) (A-4)

which is the channel impulse response centered on the mean delay Eo,

we may write the channel transfer function G(t,f) in the form

(e, f) = e 3270 J go(t,u)e-jzwfudu

= 3270 G (t,f) (A-5)

From equation (A-5) we see that the presence of the mean delay Eo
causes an exponential factor exp(-j2vf,£) to appear in G(t,f). This
factor may fluctuate very rapidly with f and would therefore cause a
power series expansion of G(t,f) to converge very slowly. To avoid
this problem we shall expand the function Go(t,f) in a power series
in f.

Now let us assume that the signal spectrum M(f) is centered on
f=0, and then let us expand the function Go(t,f) in a Taylor series in

f about £=0 to obtain

= 3% (t,0) N
G (t,f) = ) = [——— |, If (A-6)
o n=0 % T £=0

where the derivatives are assumed tc axist at least in the mean~square
sense., Then usingiequation (A-5) we may, at least in a formal sense,

evaluate these derivatives. The nth derivative in equation (A-6) may
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be written, using equation (A-5), in the form

% (t,f) n
2 = 3 n [ go(tsg)e

it of

-j2nfE

dg

and this may readily be rewritten in the form

anco(t,f)

— = (320" I - g (t,0e 32 (a-7)
of

Then evaluating equation (A~7) at f=0, we obtain

a"_(t,f) . .
|f=0 = (32m) J (-8)" g (t,8)d¢ (A-8)

af®

We may then write the series of equation (A-6) in the form
o
G (t,6) = ] T (£)(32mH)? (A-9)
=0

where we have defined the coefficients Fn(t) as

r (o) = 3;-J - g (t,0)de (4-10)

n!

Substituting equation (A-9) into equation (A-5), we obtain the time-

varying transfer function G(t,f) as
G(t,8) = e %0 | ¢ (o) (32m)™. (A-11)
: n=0

Now it can readily be shown that the factoer (jan)n is the

transfer functicn of an nth order differentiator. Thus if we substitute
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equation (A-11) into equation (A-1), we can readily show that the

complex low-pass channel output signal n(t) may be written in the form

(-] dn
n(t) = r (¢) — {m(t-g )} . (A-12)
nzo n dtn o

Equations (A—il) and (A-~12) are the defining equations for the circuit
model of the channel. From equation (A-11) we see that the channel may
be represented as the parallel combination of an infinite number of
elementary channels. Each elementary channel consists of a differentiator
of some drder, followed by a time varying gain, and the overall circuit
is preceded by the mean delay Eb' A block diagram of this circuit is
shown in figure A.l.

The convergence properties of the series in equation (A-10) and
the value of the remainder term when only a finite number of terms of

the series is used have been examined by Bello (1963).
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APPENDIX B

A Simple Bayes Estimation Problem

In this appendix we consider a simple Bayes estimation problem.
To wit, let us suppose that we sample the baseband input to a signal
processing system at the times® t=st (=» < n < »), and that these

samples may be written in the form
x(m) = as_ + n_(m) L (4w < m < w) (B~1)
where the follecwing conditions hold:

1) The {sm; - < m < =} are independent identically distributed
binary random variables having the values %1 and the probability

density function
1 1
ps(sm) =3 6(sm-l) + E-é(sm+l) (8-2)

(11) a is some constant attenuation value. It may be regarded as

the attenuation due to a channel.

(iii) The {nc(m); -® < m < «»} are independent samples from a zero-

mean Gaussian population with variance oi and probability density

function
2
1 , nc
p(n) = —=— exp(- —) (3-3)
27 G 20
n
*

Tg is an arbitrary sampling period which in a real situation
correspends to the transmission rate.



245.

The problem now is to find the Baye's minimum mean square error estimate
s; of s, at each time t=mT (- < m < =) given the observation sequence
{x(m); == < m < =},

At the time t=mT; (m arbitrary), the Bayes estimate may be

written in the general form

s; = E{s_|[X} (= < n < ) (B-4)
where

X = {x(m): - <m < =}

is a given realization (equivalent to a sample function) of the
observation sequence. Because of assumptions (i) and (iii) above, the
samples {x(m)} are statistically independent, and equation {B-4) may

be reduced to the simple form

s; = E{smlx(m)} . ~ (B-5)

Under the further assumption that the conditional probability
density function ps(sm[x(m)) exists, we may now write the required
estimate s; in the form

s; = JE Sy ps(smlx(m))dsm (B-6)

where the range of integration is the set § of éll possible values of
s, (in this case 2). Applying Bayes rule, we may rewrite equation (B-6)

in the form

8

¢ s p_(x(m){s )p (s_)ds
*gJ aPx G @ [s 0P, (s)ds, o<m<m B
g

P, (x(m))

m
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and the problem of finding the estimate s; has now been reduced to the
finding of the probability density functionms px(x(m)lsm) and px(x(m)).
Let us first find the conditional probability function
p#(x(m)lsm). From equation (B~1), the conditional random variable
x(m)[sm is readily seen to be Gaussian with mean as and variance oi.
Its probability density function may then be written, using equation
(B-3), in the form
(x(m)~as ) 2

exp(- ——5——) (3-8)
2T G 20
n n

p (x(@ s ) =

Now the joint probability density function p(x(m),sm) may be written

in the form
Py,s(X®)ss,) = P, (x(m) [s ) p _(s))
and using equations (B-2) and (B-8), this may be rewritten in the form

x@-os ) .
exp (- -*——ir—————o . {E-é(sm-l) + E'd(sm+l)}

V2w o 20
n n

px’s(x(m),sm) =
e« o« o o« « (B=9)

The probability density function px(x(m)) of the received sample x(m)

may be written as

px(x(m)) = f px,s(x(m),sm)dsm
£

If we than substitute equation (B-9) into this and carry out the

required integration, we obtain the result



247.

(x(m) L [ <x<m)-a§]2 L [ (X(m)m); (B-10)
p. (x(m)) = ——— exp|~- + exp [~ —— B-10
* 227 o 202 277 o_ 267

We are now ready to find the required Bayes estimate. If we
substitute equations (B-2), B-8) and (B-10) into equation (B-7), and

carry out the indicated integration we obtain the result

exp( SX(B) ) - exp(- 2B

o o
* n n ‘
s = _ (B-11)
exp( B ) 4 exp(- X
on Un

This may readily be written in closed form as

s; = tanh ( 25%21 ) (B-12)

g
n

which is the desired Bayes estimate. In the usual communications
situation, a is normalized to unity by some form of gain control and

the estimator takes on the simple form

s; = tanh(i(—;l)-) (= < m < «) (B-13)
(o)
n



APPENDIX C

The Input Correlation Matrix

In the thesis the correlation matrix
(-» <m < )
[BE{x(wt+i)x(m+]) }] (c-1)
(1,5 = 0,1,...,M)
of the set of input samples {x(m+i); i=0,1,...,M}, stored in the non-
recursive portion of the equalizer at any iteration time m, arises in
several places. In this appendix, we will show that, under a quite
general condition on the additive noise, this matrix is positive definite.
From equation (4-5), the input sample x(m) at any arbitrary
iteration (or sampling) time m may be written as

L :
x(m) = ) s, 1K) o (@) (-» <m <) (c-2)
k=-L

where we assume

(i) The symbols {sm} are independent, identically distributed, binary

random variables having the values 1.

(ii) The {h(k)} are samples of the received pulse shape or channel
impulse response h{t) which is assumed to be non-random and of

essentially finite duration.

(1ii) The {nc(m}} are samples of stationary additive background noise.
They are assumed to have zero mean, variance N, and correlation

function

(248)
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E{nc(i)nc(j)} = Nop(j-i) = Nop(i-j) (c-3)

N

where p(i-j) is a normalized correlation function with p(0) = 1.
Now let us compute the general term of the matrix defined in

expression (C-1). Using equation (C-2), it may be written as

L L
E{x(mti)x(m+i) }=E{ § ]

h(k)h(£) + n_(mt+i)n (m+j)}
k=-L £=-L -t ¢ ¢

Smt1-k
i,j = 0,1,...,M
—m<m<oo)
which may at once be reduced to the form
L L

E{x(mi)x(m+j)} = ) ] Eis

_hCORD) + N p(3-1)  (c-4)
k=-L z: -L o

whi-k® ok
1, = 0,1,...,M

-m(m(m)

Let us consider the term E{s -Z} in equation (C~4). With the

mH -k mHj

use of assumption (i) above, we may write it as

E{ _p} = S(L-k=j+)

Smti-k “mtj

Then substituting this into equation (C~4) we obtain

L
E{x(mi)x(mti)} = } h(k)h(k+j-i) + N p(3~1)
k=-L

= $(§~1) + N p(§-1) . (c-5)

From equation (C-5), we see that the corralation matrix defined

in expression (C-1) is composed of the sum of two component matrices
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so that

[Elx@mOx@] = [PE-D] + NpU-D] 1, = 0,1,....

..o(m(eo)

Now let us consider the component matrix [&(j-i)]. First its diagonal

terms are non-negative so that

L .
yE-1) = 90 = § h*) > 0 (1= 0,1,...,4)
k=~L

and second it is symmetric since

L L
v(3-1) = § h(h(k+j-i) = ) h(p+i-jd)h(p) = ¥(i-j)
k=~L p=-L

Therefore the component matrix [y(j-i)] is at least positive semidefinite.

This means that, provided the additive‘noise correlation matrix

[N (3j-1i)] is positive definite*, which it is in almost all physical
o

situations of interest, the input correlation matrix defined in expression

(C-1) is positive definite and its inverse exists. This is the desired

result.

*

The only requirement needed for this to be true is that the
noise power spectral density be non-zero over the bandwidth of interest.
This condition holds in virtually all real communications situations.



APPENDIX D

Stability Properties of the Recursive Algorithms

DI The Algorithm for the Feedback Section

In equation (77) of the text the recursive algorithm for

adaptive adjustment of the feedback gains {fj(n)}§=l is stated as
. i L ) )
fj(n+1) = fj(n) + yE{(sn-yn)sn_m} +v 121 fi(n)E{sn—isn-m}

and we now want to determine those values of the constant y for which
it is stable.

The quantity (sn-yn) in (77) is just the error at the output
of the non-recursive or forward sectioﬁ of the equalizer and we now
define it as

11“3")' .

The algorithm may then be written as

L
fj(n+l) = fj(n) + yE{ungn_m} + Yizl fi(n)E{gn-ign-m}
' G=1,...,L) (D-1)

For ocur present purposes, it is more convenient to work in
matrix or vector notation, and we therefore make the following

definitions:

(251)
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-fl (n)-

F(m) = |[: (0-2)

L]

£ (n)

the tap-gain vector at the nth iteration

By 8,0 [ro.s )

E(unss) = E = s s (D-3)
LE(un stﬁl—Lz _K(un’sn-Lz

and

E{sn_lsn_l} eee E{sn_lsn_L}

K(s,s) = . . (D-4)
E{(_ 5 .}-- E{3% }
1§ n~-L n-L n-L B

the positive definite correlation matrix. Using the definitions (D-2)

to (D~4), the algorithm may now be written in vector form as

E(a+D) = E(m) + YK(u_;,8) + YK(s,8)E(n) (D-5)

or as

F(nt+l) = [I + yK(s,s)]F(n) + YK(un,S) (D-6)

where I is the identity matrix. The last term on the right-hand side

of (D-6) has no bearing on the stability of the algorithm, and therefore

we neglect it and write
F(ntl) = [I + YK(s,s)]F(n) (-7

he system of (D-7) will be stable provided
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|T + yR(s,s)| <1 (p-8)

Let Q be the normalized modal matrix of K(s,s). Then the following

observations hold since K(s,s) is positive definite symmetric

ot =gt (D-9)

Q=1 (D-10)
and

K(s,s) = QT AQ (D-11)

where A is a diagonal matrix, the non-zero elements of which are the
eigenvalues of K(s,s). The canonical linear transformation of (D~11)
holds whether or not the eigenvalues are distinct. If there are
multiple equal eigenvalues A is a Jordan Cancnical form.

Using the transformation of (D-11) in (D-7), we obtain

E(a+l) = [I + yQ AQ]E(n) (p-12)
or

F(nt+l) = Q' [I + YA]QF(n)
or | |

QF(n+l) = [I + YA]QF(n) (D-13)
Making the linear transformation

F'(ntl) = QF(n) , (D-14)
we obtain the algorithm in uncoupled form as

F'(n+l) = [I + yA]JF'(n)

and the stability conditiocn (D-8) becomes
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[[I+yAl] <1
or

1+ yxj[ <1 (3=1,+..,L) (D-15)

But K(s,s) is positive definite and thus X, > 0, (j=1,...,L) so that a

J
sufficient condition for the algorithm to be stable is

|1+ Y‘maxl <1 (D-16)
where Amax is the maximum eigenvalue of K(s,s). From (D~16), we can

at once deduce that the algorithm will be stable if y lies in the

range

<y <0. (D"17)
max

. DII The Algorithm for the Refereaca Gain
The algorithm for zdantive adjustment of the reference gain go(n)

is given by equation (4-37) as

o aE{ei}
= & o 4-37)
g, (n+l) go(n) + 3 8. () ¢ )
where from equation® (4~24a)
aE{ei} M
EE;?ET = -ZE{nnxn} + Zago(n)E{ nxn} + Zizo gi(n)E{xn+ixn}

This algorithm may be extended to cover the entire non-recursive section

of the equalizer. If we define the tap-gain vector

* = s . . . Er
n, is the outnut of the recursive section at time n. Also in this

appendix X b iz equivalent to x(n+i), (i=0,1,...,M).
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G(n) = :

gM(n)

we may write
G(n+1) = G(n) + 5 P(n)
where P(n) is the gradient vector
P(n) = -2K + 29g (n)K_ + 2K(x,x)G(n)

with gn = a column vector with entries E{nn xn+j}

(j = 0,1,..0 ’M)
§€ = a column vector with entries Egenxn+j}
( = 0,1,...,M)

K(x,x) = the correlation matrix E{xn+ixn+j

The algorithm (D-19) may then be written as-

G(n+l) = G(n) - qgn + aago(n)}g€ + oK(x,x)G(n)

or as
G(nt+l) = G(n) + 3G(n)
where
3go(n)
3G(n) = .

BgM(n)

255.

(D-18)

(D-19)

(D-20)

}; i,j = 0,1,... .M.

(D-21)

(D~-22)

(0-23)
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so that

Gn) = -qgn + aago(n)_lge + aK(x,x)G(n)

or

[36(n) -~ aago(n)ge] = ak(x,x)G(n) - agn (D-24)
Now the identity

ago(n)ge = K(e,x)3G(n) ‘ (D-25)

holds if we define

E{e x1}0 v O
n'n
E{enxn+1} 0 ... 0
K(e,x) = . e
E{enxn_m} 0o ... 0.

Substititing (D-25) into (D-24) we obtain the result
[T - oK(e,x)]3G(n) = aK(x,x)G(n) - a§n (D-26)
Now consider the matrix

[I - (!K(E ,X)]
on the ieft-hand side of (D-26), about which we may make the following

observations:

a) The identity matrix I is positive definite.

b) The second moment matrix K{e,x) is positive semi-definite.
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(c) Properties (a) and (b) assure the existance of an inverse for

the matrix [I - oK(e,x)], provided a < 0 which it must be.

() The last term on the right-hand side of (D-26) has no bearing
on the stability of the algorithm and may be neglected from

here on in order to simplify the algebra.
Thus, from (D-26), we now obtain the result

6G(n) = alI - ak(e,x)] ™ K(x,x)6(n)
or letting

[Rij] = [I - ak(e,x)]T K(x,x)
we have

8G(n) = a[Rij]G(n) (D-27)
Then substituting this result into equation (D-22) we obtain the result

G(n+l) = [I + a[Rij]]G(n) (D-28)

"which will be stable provided
II + a[Rij]l <1 (D~29)

Now let M be the normalized modal matrix of [Rij]' Then the

following properties hold

T -1

M =M (D-30)

MM = I (D-31)
and _

[R,,] = VY| / (D-32)

13"
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where I' is a diagonal matrix whose non-zero values are the eigenvalues
of [Ri j]’ provided the eigenvalues are distinct. Otherwise I is a
Jordan canonical form. Substituting (D-32) into (D-28) we obtain the

result

G(nt+l) = ML[I + al]MG(n) (D-33)
or

MG(n+l) = [I + al']MG(n) (D-34)
and then letting !
G'(n) = MG(n)
we obtain equation (D-34) in uncoupled form as
G'(n+l) = [I + al]G'(n)-
The stability condition of equation (D-29) then becomes
lI+aI‘l<l>
or equivalently

1+ ale <1 ( = 0,1,...,M) (D~-35)

where the {Aj}?=0 are the eigenvalues of [Rij]' But these eigenvalues
are all positive and therefore it is readily seen that a sufficient

condition for stability is
[1+ almax[ <1 (D-36)

where Amax is the largest eigenvalue of [Rij]' The sufficient condition

(D-36) then constrains o to lie in the range

<a <9 {D-37)
max
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in order to guarantee stability of the algorithm.

DIII The Algorithm for the Learning Weights
The recursive algorithm for adjusting the learning weights is
given by equation (4-61) in the main text as

} - GE{xnx } (d=1,...,M)

~ M
a (ntl) = o, () + 8 } o (n) Elx -

= ek “n+d
e o oo (4-61)
and we now want to find those values of the constant § for which it is
stable.
As in our previous investigations of stability, it is easier

to work in terms of matrices and vectors. Therefore defining
A(n) = vector of learning weights at the nth iteration

gx = g column vector with entries E{xnxn+i}’ i=1,...,M.
and

C(x,x) = the MxM correlation matrix defined by

E{x } d,j =1,...,M)

n+ixn+j
we may write the algorithm of equation (4-61) in vector form as
A(nt+l) = A(n) + 6C(x,x)A(n) - 6_1_(_x (D-38)

The last term in (D-38) has no bearing on the stability of the algorithm

and thus may be dropped; so that the algorithm may be written as

A(atl) = [I + §C(x,x)] A(n) (D-39)
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This algorithm will thus be stable if
T + 6C(x,x)| <1 (D-40)

Now let N be the normalized modal matrix of the positive-definite

correlation matrix C(x,x). We then have the following properties for N

N- =N . (b-41)
NN = I ' | (D-42)

and
Cx,x) =N | N ~ (D-43)

where Z is a diagonal matrix whose non-zero elements are the eigenvalues

oj; j=l,...,M of C(x,x). Since C(x,x) is positive-definite

oj>0 (g=1,...,M) .

Using (D-42) and (D-43), we may now write (D-39) as

A(n+l) = [I + oN° J N] A(n)
which may bé rewritten as

A(n+l) = NI + §JINA(n)
or

NA(nt+l) = [I + 8]INA(n) , (D-44)
If we no;z let

A'(@) = NA(n)
we obtain the algorithm in uncoupled form as

A'(n+l) = (I + 6}]A(n)
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»

and the stability condition (D-36) becomes
1 +6]] <1
or equivalently

[1+ daj[ <1 G =1,...,M)

If we now choose the largest of the eigenvalues o, and denote it ¢

h|
then a sufficient condition for the algorithm to be stable is

|1 +60 | <1

which constrains the constant 8§ to lie in the range

<§ <0.

b ]
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