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SCOPE AND CONTENTS: 

A recursive nonlinear equalizer has been developed. Bayes 

estimation theory has been applied to obtain an optimum, unrealizable, 

nonlinear receiver structure for the improved reception of pulse 

amplitude-modulated (PA~) signals in the presence of intersymbol inter­

ference and noise. A realizable approximation to the Bayes structure 

was then derived as the cascade combination of a matched filter and a 

nonlinear recursive equalizer. The resulting receiver is known as the 

estimate feedback receiver. 

The equalizer has been made adaptive using a new adaptive algorithm. 

The algorithm incorporates an extrapolation process to accelerate 

convergence and to maintain the equalizers frame of reference, and is 

constrained to cause the equalizer's parameters to always move toward 

their optimum values. 

(ii) 



Computer simulations have been used to demonstrate the properties 

of the estimate feedback equalizer and to compare its performance to 

that of presently known equalizers. 

(iii) 



ABSTRACT 

This thesis deals with the problem of digital communication ov~r 

noisy dispersive channels. The dispersion causes the overlapping of 

successive received pulses thus creating intersymbol interference which 

severely limits the performance of conventional receivers designed to 

combat only additive interference or noise. 

In this thesis Bayes estimation theory has been applied to obtain 

a new, optimum, unrealizable receiver structure for the improved reception 

of noisy, dispersed, pulse amplitude-modulated (PAM) signals. By making 

certain approximations, a realization of this structure, known as the 

estimate feedback receiver or equalizer, is obtained. It consists of 

the combination of a matched filter and a nonlinear, recursive equalizer 

having, in the case of binary signals, a hyperbolic tangent nonlinearity 

in the feedback path. The well known decision feedback equalizer is 

shown to be a small noise limiting case of the estimate feedback equalizer. 

A saturating limiter is also considered as an approximation to the 

hyperbolic tangent nonlinearity. 

A new adaptive algorithm for the iterative adjustment of the 

estimate feedback equalizer is derived. It incorporates an extrapolation 

process which has the purposes of accelerating convergence of the 

equalizer's parameters to their optimum values and of maintaining the 

equalizer's frame of reference. It is constrained so that the equalizers 

parameters always move toward their optimum values. 

(iv) 



Computer simulations are used to demonstrate the properties of 

the adaptive estimate feedback equalizer and to compare them to those 

of presently known equalizers. When the estimate feedback equalizer is 

used, without a matched filter preceding it, to equalize phase distorted 

channels, its performance is seen to be superior to that of existing 

equalizers. The performance of an equalizer using a saturating limiter 

in place of the optimum hyperbolic tangent nonlinearity is seen to be 

almost as good as that of the estimate feedback equalizer. 

(v) 



ACKNOWLEDGEMENTS 

The author wishes to thank his supervisor Dr. A.S. Gladwin for 

his many helpful criticisms and suggestions during the preparation of 

this thesis. Thanks are also due to Dr. s.s. Haykim and Dr. J. Mark 

for their contribution through many helpful and stimulating discussions. 

The author is grateful for the generous support of the National 

Research Council through the award of an NRC scholarship and through the 

financial support of the research through NRC grant no. A-902. 

Finally, the author's special thanks go to his wife Mary without 

whose patience this work could not have been undertaken. 

(vi) 



TABLE OF CONTENTS 

ABSTRACT 	 (iv) 

ACKNOWLEDGEMENTS 	 (vi) 

CHAPTER 1 - INTRODUCTION 	 1 

1.1 	 Problem Outline 2 
1.2 	 Previous Work in Communication Through 

Random Media 11 
1.3 	 Scope of the Thesis 19 

CHAPTER 2 - SIGNAL TRANSMISSION AJID THE C~~EL 	 22 

2.1 	 The Transmitted Information and the Baseband 
Signal 23 

2.2 	 The Transmitted Signal 29 
2.3 	 Channel Considerations 31 
2.4 	 Measures of Dispersion 46 
2.5 	 The Demodulation Problem 52 

CHAPTER 3 - THE BASEB&~ RECEIVER 	 64 

3.1 	 The Performance Criterion 64 
3.2 	 A Time-Domain Approach to the Optimum 

Linear Receiver 68 
3.3 	 The Nonlinear Estimate Feedback Equalizer 17 
3.4 	 The Decision Feedback Receiver 91 
3.5 	 Realization of the Receiver Structure 92 
3.6 	 The Use of a Saturating Limiter 105 

CHAPTER 4 - THE ADAPTIVE EQUALIZER 	 107 

4.1 	 The Fixed Optimum Equalizer 107 
4.2 	 The Adaptive Equalizer 117 

4.2a Adaptive Procedure for Adjusting the 
Non-Recursive Gains 120 

4.2b Adaptive Algorithm for the Recursive 
Section 135 

4.2c Adaptive Algorithm for the Learning 
Weights 136 

4. 3 Implementation o.f the Adaptive Feedback 
Equalizer 137 

(vii) 



CHAPTER 5 - PERFOR~~CE OF THE NONLINEAR ESTIMATE FEEDBACK 

EQUALIZER 143 


5.1 	 Signal Conditions at the Equalizer Input 144 

5.la Simulation of the Equalizer Input Signal 144 

5.lb Measurement of Conditions at the 


Equalizer Input 147 

5.2 	 Convergence Properties of the Estimate Feedback 


Equalizer 154 

5.2a Decision Directed Convergence Tests 155 

5.2b Effect of the Learning Algorithm 171 

5.2c The Effect of a Training Sequence 175 


5.3 	 Performance in the Presence of Noise 179 

5.3a Theoretical Considerations 182 

5.3b Results of Simulation 190 


5.4 	 The Saturating Limiter Equalizer 216 

5.4a Convergence Properties 216 

5.4b Performance in the Presence of Noise 230 


5.5 	 Summary 230 


CHAPTER 6 - CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 236 


6.1 	 Conclusions 236 

6.2 	 Suggestions for Further Work 237 


APPENDIX A - Circuit Model for a Time-Varying Channel Using 

a Power Series Expansion 239 


APPENDIX B - A Simple Bayes Estimation Problem 	 244 


APPENDIX C - The Input Correlation Matrix 	 248 


APPENDIX D Stability Properties of the Recursive Algorithms 251 


DI 	 - The Algorithm for the Feedback Section 251 

DII 	 - The Algorithm for the Reference Gain 254 

DIII 	- The Algorithm for the Learning Weights 259 


BIBLIOGRAPHY 	 262 


(viii) 



LIST OF ILLUSTRATIONS 
Figure· 

1.1 	 General form of a digital communications system. 3 


1.2 	 General model of a linear transmission medium or channel. 6 


1.3 	 Probability of error curves for a matched filter receiver 

showing the effect of a dispersive channel. 10 


1.4 	 Estimator correlator structure for kth branch of receiver 

for randomly time-varying channels (Kailath, 1960). 14 


2.1 	 Block diagram of complex equivalent low-pass channel. 45 


2.2 	 General form of the reception system. 54 


2.3 	 Basic structure of Costas synchronous demodulator. 62 


3.1 	 Basic unrealizable linear receiver structure. This is 

the structure derived by George (1965) and others. 76 


3.2 	 An alternate structure for the optimum unrealizable 

linear receiver. 78 


3.3 	 Basic (unrealizable) structure of nonlinear estimate 

feedback receiver. 90 


3.4 	 Unrealizable nonlinear receiver configuration equivalent 

to figure 3.3 95 


3.5 	 Configuration of system to produce set of filter outputs 

(yo, Yl, ••• ,YL). Note the use of a delay of LTs seconds 

used to produce them simultaneously. 99 


3.6 	 Basic structure of realizable nonlinear receiver using 

linear approximation in forward section. 103 


3. 7 Basic structure of realizable nonlinear receiver using 

a nonlinear approximation in the forward section 104 


5.1 	 Probability of error curves showing effects of dispersive 

channel of Fig. 5.2. 152 


5.2 	 Sampled channel impulse response used to illustrate 

Pe(Pin) in figure 5.1. 153 


(ix) 



Figure 

5.3 	 Decision directed convergence curves for channel 
response shown. Initial peak distortion D = 2.12 and 
signal to interference ratio pin • 1.17. 157 

5.4 	 Decision directed convergence curve for channel 
response shown. Initial peak distortion D = 2.12 and 
signal to interference ratio pi = 1.487. 158 

. n 

5.5 	 Decision directed convergence curve for channel 
shown. Initial peak distortion D = 2.12 and signal 
to interference ratio pin • 1.487. 159 

5.6 	 Decision directed convergence curve for channel response 
shown. Initial peak distortion D • 2.12 and signal 
to interference ratio pin a 1.487. 160 

5.7 	 Decision directed convergence curves for channel 
response shown. Initial peak distortion D = 1.98 and 
signal to interference ratio pin = 1.295. 161 

5.8 	 Decision directed convergence curves for channel 
response shown. Initial peak distortion D = 2.04 and 
signal to interference ratio pin • 1.225. 162 

5.9 	 Decision directed convergence curves for channel 
response shown. Initial distortion D = 2.18 and 
signal to interference ratio pin • 1.05. 163 

5.10 	 Decision directed convergence curves for channel 
response shown. Initial peak distortion D = 2.30 and 
signal to interference ratio pin = 1.18. 164 

5.11 	 Decision directed convergence curve for channel shown. 
Initial peak distortion D = 2.30 and signal to 
interference ratio pin = 1.18. 165 

5.12 	 Estimate feedback, decision directed convergence 
curves for channel response shown and 2 values of 
learning constant 6. 173 

5.13 	 Estimate feedback, decision directed convergence 
curves for channel response shown and 2 values of 6. 174 

5.14 Decision directed convergence curves 
response shown for 2 values of o. 

5~15 Decision directed convergence curves 
response shown for 2 values of 6. 

(x) 

for channel 
176 

for channel 
177 



Figure 

5.16 Estimate feedback convergence curves showing the 
effect of a 255 symbol training sequence. 178 

5.17 Convergence curves for channel response shown showing 
the effect of a 255 symbol training sequence. 180 

5.18 Error-rate curves, for channel response shown, 
illustrating the effects of equalization on the 
output error-rate. 193 

5.19 Error-rate curves, for channel response shown, 
illustrating the effects of equalization on the 
output error-rate. 194 

5.20 Error-rate curves, for channel response shown, 
illustrating the effects of equalization on the 
output error-rate. 195 

5.21 Error-rate curves, for the channel response shown, 
illustrating the effects of equalization on the 
output error-rate. 196 

5.22 Amplitude characteristic for channel of figure 5.20 
before ( IH(w) I) and after ( IH' (w) I) decision feed­
back action has taken place. Curves are plotted over 
the normalized Nyquist bandwidth. 210 

5.23 Transfer characteristics of channel of figure 5.18 
showing effect of coherent cancellation on the amplitude 
characteristic. The curves are plotted over the 
normalized Nyquist bandwidth. 212 

5.24 Transfer characteristics of channel of figure 5.19 
showing effect of coherent cancellation on the 
amplitude characteristic. The curves are plotted over 
the normalized Nyquist bandwidth. 213 

5.25 Transfer characteristics for channel of figure 5.21 
showing effect of coherent cancellation on the 
amplitude characteristic. The curves are plotted over 
the normalized Nyquist bandwidth. 214 

5.26 Decision directed convergence curves for channel 
response shown. Initial peak distortion D = 2.12 and 
signal to interference ratio p. = 1.17. 

l.n 
218 

5.27 Decision directed convergence curves for channel 
cesponse sho~~. D = 2.12 and p. = 1.487. 

~n 
219 

(xi) 



Figure 

5.28 Decision directed convergence curves for channel shown. 220 

5.29 Decision directed convergence curves for channel shown. 221 

5.30 Decision directed convergence 
response shown. 

curves for channel 
222 

5.31 Decision directed convergence curves 
response shown. 

for channel 
223 

5.32 Decision directed convergence curves 
response shown. 

for channel 
224 

5. 33 Decision directed converge,nce curves 
response shown. 

for channel 
225 

5.34 Decision directed convergence curves for channel shown. 226 

5.35 Decision directed convergence curves for channel 
response shown, illustrating the effect of the 
learning constant o. 228 

5.36 Decision directed convergence curves for channel response 
shown, illustrating effect of the learning constant o. 229 

5.37 Error-rate curves for given channel response showing 
effects of different equalizers. 231 

5.38 Error-rate curves for given channel response showing 
effects of different equalizers. 232 

5.39 Error-rate curves for given channel response showing 
effects of different equalizers. 233 

5.40 Error-rate curves for given channel response showing 
effects of different equalizers. 234 

A.l Baseband circuit representation of time-varying 
dispersive channel obtained by power-series expansion 
of the channel transfer function. 243 

(xii) 



CHAPTER 1 


Introduction 


In general communication theory deals with the development of 

systems for reliably transmitting information or data from one point to 

another. In modern communications systems the information is encoded 

into an electrical waveform or signal, and either this signal or a 

functional of it is then propagated through the medium from sender to 

receiver. Examples of such communications systems are telephone links, 

microwave links and short wave radio links through both the ionosphere 

and the troposphere. 

Generally the information to be transmitted is presented to the 

transmitter in one of two forms. In the first it is continuous in time 

(examples of this are speech or music) and the resulting encoded 

electrical signal is continuous in time. The transmitted signal is then 

continuous and the overall system is known as an analogue communications 

link. In the second case the information is discrete in time. That is, 

it is presented td the transmission system as a sequence of numbers 

(samples) at regularly spaced time instants. The encoding process then 

produces a signal consisting of a sequence of bursts or pulses, one 

corresponding to each number. The transmitted signal is a sequence of 

bursts or pulses and the overall system is known as a pulse-communications 

system. If also each number (sample) in the information sequence C&l 

have only a finite number of possible values, the resulting system is 

known as a digital communications systa~. This is the type of system 

(1) 
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which is of concern in the present research. 

Because the transmission medium is imperfect and because there 

are always sources of additive interference or noise present, the signal 

arriving at the receiving end of a communications link is always 

distorted in some fashion. Therefore, it is impossible for the receiver 

to reproduce exactly the transmitted information. Thus the main 

objective of the present research is the design of a reception system 

which produces at its output an approximation, optimum in some sense, 

to the transmitted information. 

1.1 Problem Outline 

A commonly occurring problem in communications is that of trans­

mitting the values of a set of message parameters or information symbols 

{si} from one point to another. The symbols {si} are to be transmitted 

sequentially, one every T seconds where T is known as the symbol or s s 

signalling period. The basic problem is to reproduce these symbols, as 

closely as possible, at the receiver. The general form of a communications 

system for doing this is shown in figure 1.1. 

The first step in transmission of the symbols {si} is to encode 

each mecber of the sequence, as it occurs, into a low-pass signal or 

waveform. This function is performed by the message encoder in figure 

1.1. There is a variety of methods of performing the encoding, but we 

shall consider only the linear analogue method known as pulse-amplitude 

modulation (PAM). Thus each si' as it occurs is multiplied by ~~e 

pulse-shape q(t) resulting in the low-pass waveform or signal 

m(t) • l skq(t-kT ) (1-1)
k s 



--

jw
0

t 

m(t) • LSiq(t-iT ) s(t) • Re{L[m(t)e )} 

i ~ 
{sk} 

..... message 
encoder 

\\ Transmission _..,Demodulatormodulator..... ~ medium f---o 
Imess a ' 

Overall Channel 

Figure 1.1 General Form of a digital communications system. 
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where q(t) is a finite energy pulse-shape chosen to have essentially all 

of its energy concentrated in a time interval T seconds in length where 
0 

T < T • T is called the pulse width. 
0 - 8 0 

We now wish to transmit the signal m(t) over the channel, 

represented in figure 1.1 by the concatenation of the modulator, the 

transmission medium and the demodulator. In most situations of interest, 

it is necessary to modulate the signal m(t) onto some carrier signal for 

propagation through the medium. The carrier is usually a high-frequency 

sine wave and its frequency is dependent on the nature of the transmission 

medium. In this thesis we shall restrict ourselves to linear modulation 

processes* , and thus the transmitted signal may be written in the form 

jw t 
s(t) • Re{L[m(t)]e 0 

} (1-2) 

where 1.11 • 2wf is a suitably chosen carrier frequency and L[m(t)] is a 
0 0 

linear functional of the baseband signal m(t). By making the assumption 

that the modulation is linear, we may thus, in almost all cases, consider 

that the overall channel is lineart. 

After the signal s(t) has passed through the channel, it is the 

task of the receiver or signal processor to recover as accurately as 

possible the message sequence {sk}. In the ideal case, the signal s(t) 

would arrive at the demodulator completely undistorted by its passage 

through the medium. Demodulation and subsequent signal processing to 

obtain the output sequence {;k} would then be a trivial operation, and 

*We exclude, therefore, frequency and phase modulation, both 
of which are nonlinear. 

tThat is, we shall ignore any saturation or other nonlinear 
effects of the modulator and demodulator. 
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the output {sk} would be identical to the transmitted sequence {sk}. 

In any reali.stic situation, however, the transmission medium 

will always distort the signal s(t), and this will cause the output 

sequence {;k} to differ from the transmitted data sequence {sk}. Any 

real transmission me:dium is to some extent dispersive or distorting in 

both time and frequency. Also in any real channel there will be additive 

distortion of the si.gnal s (t). Since we have constrained the channel 

to be linear, it may in general be represented as the combination of a 

linear randomly time:-varying filter and a source of additive random 

noise as shown in fi.gure 1.2. 

We shall represent the additive disturbance n(t) as a source of 

zero-mean random noise having an autoco·rrelation function defined as 

R (t,s) • E{n*(t)n(s)} (1-3)
n 

where the asterisk denotes the complex conjugate. In later chapters, 

we will at times require n(t) to be wide sense stationary so that 

R (t,s) • R (s-t).n n 

The dispersive medium is represented by the linear time-varying 

filter in figure 1.2, and this filter may be represented by a randomly 

time-varying impulse response or weighting function 

h(t,a) - response of the medium at time t to an impulse transmitted 
at time t-a. 

The medium output z(t) may then be written as the time variant convolution 

z(t) • fh(t,a) s(t-a)da • 

In the time-domain the medium tends to spread or smear the signal 

s(t) so that a pulse in the medium output z(t) oc.cupi.es a longer time 

http:oc.cupi.es
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additive noise 

n(t)transmitted 
signal 

linear time­
s(t) ___.,.varying filterl--~~ x(t) = z(t) + n(t) 

(to demodulator)h(t ,a) 

(Dispersive Medium) 

Figure 1.2 	 General model of a linear 
transmission medium or channel. 
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duration than the corresponding pulse in the transmitted signal s(t). 

This is due to the nonzero width of the channel response h(t,a) in the 

delay variable a. The pulse width was earlier specified as T and the 
0 

symbol period as T • The quantity (T -T ) is thus the guard spaces s 0 

between pulses. In digital communication links when the transmission 

rate is high enough that the guard spaces between pulses are small 

(T + T ) compared to the duration or delay spread of the channel pulses 0 

response, this time spreading or time dispersion will cause overlapping 

of two or more successive pulses. This effect is termed intersymbol 

interference (lSI), and it will tend to cause errors in the output 

sequence {;k}. Indeed it may be a limiting factor in the performance of 

the receiver since it will tend to cause errors even in the absence of 

additive noise. 

Conceptually we may split h(t,a) into the sum of two components * 
as 

(1-4) 


where 	we shall call hd(t,a) the coherent component and hr(t,a) the random 

component of the channel impulse response. In all cases of physical 

interest the term hd(t,a) in equation (1-4) includes the following 

components of the channel impulse response: 

(i) 	 The deterministic mean-value h(t,a) of h(t,a) which is almost always 

a slowly varying component, where by slowly varying we mean that it 

is essentially constant over time-intervals much greater than the 

Ts-second symbol period. 

* 	 .We will deal with this in more detail in chapter 2. 
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(ii) Those randomly time varying components of h(t,a) which are slowly 

varying compared to the symbol period as explained above. 

The effect of the slow time-variations in hd(t,a) is to produce an aging 

effect in the channel response. We shall call the output signal from 

hd(t,a) the pseudo-speculart component.of the channel response. When 

the mean -h(t,a) is zero, it is actually a quasi- or pseudo-specular 

component, and when h(t,a) is non-zero, it includes the true specular 

component. The effects of hd(t,a) on the transmitted signal are then 

time dispersion causing intersymbol interference and slow aging or 

frequency dispersion due to its time variation. 

The second component h (t,a) in equation (1-4) represents those 
r 

components of h(t,a) which vary randomly at rates comparable to or 

-1greater than T • These fluctuations tend to appear as rapid, zero-mean,s 

random fluctuations superimposed on the pseudo-specular component hd(t,a). 

When the signal s(t) is passed through the filter represented by hr(t,a) 

it tends to be almost completely mutilated and appears at the receiver 

input as signal dependent noise. Following Mark (1970) we shall call 

this the random scattering branch of the channel, where we include within 

it all severe frequency dispersive effects. 

The reception problem with which we are concerned is, therefore, 

the recovery of the symbol sequence {sk} from a signal which has been 

transmitted through a randomly time-vary.ing dispersive channel. From 

tThe specular component of the channel output is that component 
of the channel output signal which is due to the deterministic component 
of the channel. 

http:component.of
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the above discussion, we may summarize the limiting factors on the 

performance of a receiver as: 

(i) 	 intersymbol interference due to time-spread or dispersion in the 

channel. 

(ii) 	 slow aging or frequency dispersion due to the slowly changing 

nature of hd(t,a). 

(iii) 	random scattering caused by rapid random fluctuations in the random 

component of the channel response. 

(iv) additive background noise. 

The first three of these factors are signal dependent effects. They 

cannot be overcome by the simple expedient of increasing the transmitted 

signal power, since such an increase also increases the level of the 

interference. This is illustrated in figure 1.3 which shows curves of 

probability of error versus signal to additive noise ratio for both 

dispersive and non-dispersive channels when the receiver is a filter 

matched to the transmitted pulse shape. 

In designing a receiver to effectively extract the message 

parameters {sk} from the received signal, the presence of intersymbol 

interference requires that the receiver incorporate memory or delay into 

its structure. Similarly the presence of Doppler-spreading or frequency 

dispersion requires that the receiver be time-varying in order to be 

able to track and compensate for time-varJing effects. This last 

implies that in effect a good receiver should be adaptive. 
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1.2 Previous Work in Communication Through Random Media 

The signal distortions due to additive noise and the dispersive 

effects of the transmission medium are inherently statistical in nature. 

Recognition of this fact has given rise to a mathematical theory of 

communication. Two approaches to the communications problem have been 

developed. The first is Information theory which was introduced by 

Shannon (1948) and the second is statistical communication theory which 

was introduced by Wiener (1949). 

Information theory is a mathematical theory which deals in the 

main with mathematical models and noe with physical systems or channels. 

Its main emphasis is on probability theory and algebraic models which 

are primarily concerned with coding and decoding. It has also been very 

useful in establishing several bounds on communication system performance, 

one of the most useful of which is the expression for channel capacity 

bits/sec. 

of a bandlimited channel where 

Bch is the bandwidth of the channel. 

Ps is the available transmitter power. 

N
0 

is the power spectral density of the additive noise, 

assumed here to be white and Gaussian. C represents the theoretical 

upper limit on the rate at which data can be transmitted over the channel 

at a vanishingly small error-rate, and one of the concerns of information 

theory is the construction of codes which allow a system to approach this 

bound. 
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Statistical communication theory, on the other hand deals with 

physical signals and channels and is concerned with the problem of 

extracting a signal or some function of it from a noisy, distorting 

background in some optimum way. Wiener's (1949) work was mainly 

concerned with the design of linear filters for extracting a statistically 

stationary signal from a stationary noise background in such a way that 

the mean-square error between the actual and the desired signal is 

minimized. This work has lead to a wide class of statistical optimization 

techniques and optimum systems so obtained (Zadeh and Ragazzini, 1950; 

Kalman, 1960; Kalman and Bucy, 1961). 

In digital communications, the members of the information 

sequence {sk} can each have only one of a finite number of values, and 

thus in any signalling interval only one of a finite number of possible 

signals may be transmitted. The truly optimum receiver, in this 

situation, is that receiver which minimizes the probability of error at 

its output. In essence, such a receiver produces at its output a decision 

in each signalling interval as to which possible value was transmitted and 

the optimum receiver, therefore, minimizes the probability of decision 

error. The problem of synthesizing such optimum receivers is one of the 

main ones in communication theory, and its complexity is intimately bound 

up with the complexity of the channel model which is assumed. 

In the classi~~l case, the transmission medium is assumed to be 

non-distorting or non-dispersive. The only source of signal distortion 

is then the additive noise. If the noise is Gaussian and signal 

independent, then the minimum probability of error receiver is a parallel 

set of match~d filters, one matched to each possible transmitted signal, 
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followed by a decision circuit which chooses the value of the received 

symbol sk to be that which corresponds to the matched filter having the 

largest output. An excellent summary of the theory surrounding this 

derivation is given by Hancock and Wintz (1966). 

For the case of randomly time-varying multipath channels Turin 

(1956) derived the minimum probability of error receiver under the 

assumption that the rate of time -variation is slow compared to the length 

of a signal pulse. Also Turin considered only the case where the trans­

mission rate is slow enough that channel delay-spread or time-dispersion 

does not cause intersymbol interference, and therefore the receiver needed 

to be optimized over only a single signalling interval. Kailath (1960, 

1961) has generalized and extended these results to the case of any 

randomly time-variant channel, where the channel impulse response 

consists, in general, of a time-invariant mean-value or specular component 

and a zero-mean randomly time-variant component. Kailath also assumed 

that there was no intersymbol interference between the pulses in successive 

signalling intervals. When, in addition, both the channel and the additive 

noise are assumed to have Gaussian statistics, Kailath found that the 

minimum probability of error receiver is a parallel bank of estimator­

correlator structures, of the type shown in figure 1.4, followed by 

suitable decision circuitry, where one estimator-correlator is required 

for each possible transmitted signal. 

In all of the above discussion, the channel was assumed to cause 

no intersymbol interference, and in each case the minimum probability of 

error receiver could be found. However, when the transmission rate is 

high enough or the delay spread of the medium is great enough that 
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Figure 1.4 	 Estimator correlator structure for kth branch 
of receiver for randomly time-varying 
channels (Kailath, 1960). 
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significant intersymbol interference is present in the received signal, 

then the derivation of the minimum probability of error receiver becomes 

almost impossibly difficult. Under certain restrictive assumptions 

Bowen (1969) has derived the Baye's minimum probability of error receiver 

for a time-invariant dispersive channel. The resulting structure is 

nonlinear and very difficult to implement. Thus in order to obtain 

receiver structures which may readily be implemented, we are forced to 

place constraints on the class of allowable receiver structures, and to 

consider performance criteria other than the probability of error under 

which to optimize the receiver. 

In the case of an exactly known, time-invariant, linear channel 

and PAM transmitted signals, Tufts (1963) and George (1965) have shown 

that the linear receiver which minimizes the mean-square error 

... 2
E{(sk- sk) } between the desired symbol sk and the actual received 

value sk at the times t • kTs (~ < k < e) consists of a filter matched 

to the shape of an individual channel output pulse followed by an 

infinite length transversal filter having its taps spaced T seconds s 

apart. Coll (1966) derived a finite form of this receiver and showed 

that a very good approximation to it may be obtained with the use of 

only a noderate number of taps on the transversal filter. 

Now it can be shown that the main purpose of the matched filter 

is to minimi~e the adverse effects of the additive noise and that of the 

transversal filter to compensate for the intersymbol interference 

introduced by channel time-dispersion. The transversal filter in this 

situation is known as an equalizer, since, at least in the absence of 

noise, its function is to make the overall channel between the encoder 
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and the decoder look like an all-pass filter, which of course does not 

cause intersymbol interference. In the particular case when the desired 

information symbols {sk} are quantized such that each may have only a 

finite number of values, the equalizer is followed by a detection or 

decision circuit. 

Because in most cases of interest the channel, even when it is 

time-invariant, is unknown and because the additive noise is small in 

most point-to-point communications situations, considerable work has 

been done on the use of an equalizer with no matched filter preceding 

it. The main emphasis in this work has been on the synthesis of self-

adjusting or adaptive equalizers which can automatically adjust the~ 

selves to compensate for the unknown channel characteristics. 

Lucky (1965) developed an equalizer of the transversal filter 

type which operated to force zeros in the overall channel impulse 

response at all points which are a multiple of Ts seconds away from the 

present time. Lucky derived an iterative steepest descent algorithm 

which when a known reference signal is transmitted automatically adjusts 

the equalizer to its optimum operating point. In a later paper, Lucky 

(1966) used the same algorithm in a decision-directed* or tracking mode 

to track a slowly time-varying channel. The equalizer developed by 

Lucky has the advantage that in the absence of noise it will completely 

eliminate intersymbol interference. However, its performance deterioratP.s 

*In the decision-directed mode an adaptive system uses its own 
output to further adjust itself. This in effect provides us with a 
performance-feedback system. 
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rapidly with increased additive noise, since the performance criterion 

being used does not take noise into account. 

Various authors, among them Lucky and Rudin (1967), Gersho (1969), 

Di Toro (1968) and Proakis (1969), have developed equalizers of the 

transversal filter type using a minimum mean-square error performance 

criterion. That is the tap-gains of the transversal filter are set so 

... 2 
as to minimize the mean-square error E{(sk- sk) } at the times t • kTs 

(-- < k < •). In each case an iterative steepest descent or gradient-

following algorithm was used to adjust the filter gains to the optimum 

operating point. The use of the mean-square error performance criterion 

has the advantage that it takes the presence of noise into account, and 

therefore this equalizer is not quite as sensitive to additive noise as 

the zero-forcing one. 

Another form of the minimum mean-square error adaptive equalizer 

has been obtained by Proakis (1971), who used z-transform techniques to 

obtain the equalizer structure as a parallel bank of comb filters. This 

equalizer is also used in conjunction with a steepest-descent algorithm. 

Mark (1970) has made use of feedback to obtain a linear feedback 

equalizer. This structure has the advantage of having infinite memory 

into the past. Mark also developed an improved adaptive algorithm which 

by use of a form of learning process obtains improved convergence to 

the optimum, minimum mean-square error operating point. 

In order to improve on the operating characteristics of the 

conventional linear equalizer, such as those discussed above, Austin 

(1967) developed the decision feedback equalizer which makes use of its 
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own previous decidions* to aid in making the present decision. It does 
I 

this by using these previous decisions (assuming them correct) to 

coherently subtract out the interference due to past symbols. George 

et al (1971) and Monsen (1971) have since made this structure adaptive 

using steepest descent techniques. It has been shown that when the 

signal to additive noise ratio is greater than about 6 db, the decision-

feedback receiver yields better error-rate performance then the linear 

receiver. 

In the above, we have discussed briefly the development of 

optimum receivers for the randomly time-variant channel and for the time-

invariant, time-dispersive channel. Realistically, however, any 

transmission medium is both randomly time-varying and time-dispersive. 

Because they are adaptive, the equalizers described above work very well 

when the channel is such that its rate of time-variation is less than 

the transmission rate T-1• In terms of the channel impulsP. response in 
8 

equation (1-5), this means the adaptive equalizer preceded by a matched 

filter is essentially the optimum receiver, ~hen the channel impulse is 

essentially given by its (pseudo) specular component hd(t,a). However, 

when the random scattering component hr(t,a) becomes large, it must be 

taken into account and its presence will affect the optimum receiver 

structure. 

As above, because the channel is time-dispersive it is very 

*The decision feedback equalizer is constrained to operate only 
on digital signals; that is the members of the information sequence {sk} 
are each constrained to have only a finite number of possible values. 
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difficult to derive the minimum probability of error receiver, and hence 

most investigation has been confined to finding the optimum linear 

receiver, usually with a minimum mean-square error performance criterion. 

For the randomly time-varying, time-dispersive channel Kaye (1968) has 

derived the optimum linear receiver under a minimum mean-square error 

criterion. He has shown it to consist of a filter followed by a linear 

equalizer. The form of the filter is of interest. It can be seen 

(Kaye, 1968) to be matched to the shape of a pulse output from the 

specular branch of the channel in a noise background consisting of the 

add~tive background noise and the signal-dependent "noise11 output from 

the random branch of the channel. This filter appears in the receiver 

following the demodulator but preceding any further signal processing. 

Kaye showed that it does nothing to combat the effects of time-dispersion 

or the slow aging of the specular component of the channel response. In 

a later work Mark (1970) derived an adaptive form of this filter, and 

thus by cascading the adaptive filter and an adaptive equalizer, a 

completely adaptive receiver for reception of digital signals transmitted 

over randomly time-invariant dispersive channels is obtained. 

1.3 Scope of th2 Thesis 

In this thesis, we shall concern ourselves with the investigation 

of an improved technique for the reception of digital signals. In 

particular, we shall derive and evaluate a new nonlinear receiver 

structure (the conditional Bayes receiver) for the extraction of digital 

information or data from signals which have been transmitted over slowly 

time-varying dispersive channels. We shall be mainly concerned with 
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compensating for or equalizing the dispersive effects of the channel. 

The systems required for this are knovn as equalizers, and the novel 

nonlinear equalizer which we shall consider, known as the estimate 

feedback equalizer is a realizable approximation to the abovementioned 

conditional Bayes receiver. 

In chapter 2, we shall discuss briefly the transmitted signal 

and suitable pulse shapes for digital symbol transmission. We shall 

then discuss a model for the channel and the determination of those of 

its parameters which are pertinent to the present reception problem. 

We shall also discuss the demodulation of the received signal to obtain 

a baseband signal at the equalizer input. 
, 

Chapters 3 and 4 contain the main theoretical results of the 

thesis. In chapter 3, we shall apply Bayefs estimation theory to obtain 

a novel optimum receiver structure known as the conditional Bayes 

receiver or estimation structure. This optimum receiver is unrealizable, 
I 

and therefore we shall derive a realizable, sub-optimum approximation to 

it. This results in a novel, nonlinear feedback equalizer which we shall 

call the estimate feedback equalizer. In chapter 4, we shall derive a 

new adaptive algorithm for iteratively controlling the estimate feedback 

equalizer, and will suggest means of mechanizing this algorithm. The 

main contributions of the present work thus lie in the derivation of the 

new conditional Baye~ receiver and its approximate realization and in 

the development of a new adaptive, nonlinear estimate feedback equalizer 

having performance superior to that of existing equalizers. 
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In chapter 5, we shall evaluate, by means of computer simulation, 

the performance characteristics of the adaptive estimate feedback equallzer 

and will compare them to those of existing equalizers. 



CHAPTER 2 

Signal Transmission and the Channel 

Before we can deal with the prOblem, outlined in chapter 1, of 

receiving a digital signal which has been transmitted over a dispersive 

channel, we must first consider the form of the transmitted signal and 

the channel over which it is to be transmitted. 

We are dealing with pulse or digital signals, and the trans­

mitted signal may thus be represented as a sequence or train of pulses. 

We want to transmit these pulses at as high a rate as possible using 

pulses which are not too sensitive to the distorting effects of the 

Channel, and with virtually no interference (overlap) between successive 

pulses at the transmitter. Therefore some attention must be given to 

choosing the transmitted pulse shape. 

For efficient digital communication, the receiver must maintain 

time-synchronism and phase-coherence with the transmitted signal. To 

maintain phase-coherence the receiver must recover the received carrier 

phase and use it in demodulating the bandpass received signal to obtain 

a low-pass or baseband pulse-train. This is knwn as coherent demodula­

tion. The maintaining of time-synchronism is essentially the maintaining 

of delay-lock with the low-pass envelope of the transmitted signal. To 

recover the digital information from the received signal, the receiver 

must make some form of estimate or decision once in each symbol period. 

By maintaining time synchronism, the receiver knows when in each symbol 

(22) 
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period to make its estimate or decision. In the present research, 

we shall assume perfect time-synchronism is being independently main­

tained. 

The maintaining of time-synchronism and phase-coherence by the 

receiver and the compensation for other distorting effects of the 

channel requires knowledge of the channel characteristics. Thus, in 

order to design a reliable receiver consideration must be given to 

developing a satisfactory model for the channel, and to determining 

those of its parameters which affect reception. 

2.1 The Transmitted Information and the Baseband Signal 

We are dealing with the communication of digital information, and 

thus the transmitted information may be represented as a sequence of 

parameters or symbols {sk} each of which has a value ~i which is a 

member of the finite set (~1 , ••• , ~ ) of m > 2 possible values. Each 
m ­

symbol sk (~ < k < ~> is to be transmitted during the corresponding 

T -second symbol periods 

as one of them possible values ~i (i • l, ••• ,m). 

At the receiver, the objective during each symbol period is the 

recovery of the corresponding transmitted symbol. That is, during say 

the nth symbol period 

the receiver attempts to recover the value of the symbol s transmitted 
n 
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in that interval. The value of each s is, of course, unknown a priori
n 

at the receiver, and thus for reception purposes, the symbols s can 
n 

be specified only in a statistical sense. 

We shall be concerned only with symbol by symbol reception. The 

receiver then treats each symbol as if it were independent of all others. , 
We shall, therefore, assume the transmitted information {sk} is a 

sequence of statistically independent, equiprobable, m-ary symbols having 

the properties 

(-CD < k < e)--m 
1 (2-1) 

(i • 1, ••• ,m) 

(2-2) 

<- < j ,k < CD) (2-3) 

2where P(•] is a probability, oj,k is the Kronecker delta and OS is the 

symbol variance. 

For transmission the symbols {sk} must be encoded into electrical 

waveforms or signals. As stated in chapter 1, we are considering only 

the linear analogue method of encoding known as pulse-amplitude modulation 

(PAM). It consists of multiplying each symbol sk by a suitable time 

translated pulse shape q (t-kT ) • 
s 

This produces the low-pass or baseband 

signal 

m(t) • L skq(t-kT )
k s 

(2-4) 

whi.ch is a train or sequence of amplitude modulated pulses, where the 

pulse q(t-kT ) corresponding to the symbol sk in the kth symbol period
8 
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<- < k < •) 

has the following properties: 

(i) Its center of mass is located at t • kT • For all commonly used s 

pulse shapes this implies that the peak value is located at 

(ii) It has a finite value lasting forT.< T seconds. This implies
0 - s 

a guard space of (T - T ) seconds between successive pulses,s 0 


T being known as the pulse width. 

0 

(iii) It has finite energy Eq defined as 

kTs+T0 /2 Ti2 

2 2


J s 
< CDEq - q (t-kT )dt • J q (t)dt (-<k<oo) (2-5) 

kTs-T /2 -T /2
0 0 

The choice of the pulse shape q(t) is of some importance, 

particularly since we wish to transmit at very high pulse-rates (very 

small or zero guard spaces), and much effort has been devoted to finding 

optimum* pulse shapes. The classical work in this area is due to 

Nyquist (1928). He recognized that a decision as to the value of each 

received symbol needs to be made only once in each symbol period. Thus 

if a pulse shape q(t) can be found which has its peak value at the time 

when the decision is made and is zero at all other decision times, then 

*Optimum implies here that the pulses have been chosen so that 
there is minimum inter-pulse interference or overlap at the transmitter, 
and also the pulses are relatively insensitive to the distorting 
effects of the channel. 
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whether or not this pulse shape overlaps or interferes with other pulses 

is immaterial since there is zero interference at the sampling times. 

Nyquist showed that for the ideal bandlimited channel having the 

frequency response 

1 


H(t) • 


0 elsewhere 

intersymbol interference free transmission can be obtained at pulse 

repetition frequencies up to 1/T Hz using time translates of the s 

pulse shape 

sin w<i ) 
q(t) • __t_.;;;.s_ 

11'­
T s 

This work was later extended to more realistic channels and 

pulses by Gibby and Smith (1965) who, by defining an equivalent Nyquist 

channel, folUld a set of conditions defining the "Nyquist" type of pulse 

(zero intersymbol interference at the sampling points) for quite general 

channels. Unfortunately, these pulses are usually quite difficult to 

generate and also tend to be subject to rather severe distortion when 

the channel response varies from the nominal one. 

Another approach to the above problem is due to Tufts (1963) who 

showed that when the channel is known, its dispersive effects may be 

equalized or compensated for by proper choice of the pulse shape q(t). 

Also under certain conditions when the channel is known, it is possible 

to perform a joint optimization of the transmitted pulse shape and the 
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receiver (Tufts, 1963; George et al., 1969). However, when the channel 

is unknown, as it usually is, these optimizations require a nearly 

distortionless feedback path from receiver to transmitter. Such a 

path is seldom available, and the usual practice is to choose some fixed 

pulse-shape q(t) and to perform all equalization functions at the 

receiver. The main constraint on this choice of pulse shape q(t) is 

that it should have essentially all its energy confined to a duration 

or pulse width of T < T seconds. There will then be negligible
0 - s 

overlap or intersymbol interference between adjacent pulses in the 

baseband signal m(t). Typical choices of the pulse-shape q(t) are the 

rectangular, the Gaussian and the raised cosine shapes. These are 

indicated below: 

(i) 	 rectangular T T 
1 - .....£.< t <-0 

2 - - 2 

q(t) ­ (T < T ) 
0 sT 

0 It I >.....£. 
2 

T T(ii) raised cosine 2'11't 0.!(1 + cosT> 	 t <_!2.-2 <2 	 - - 2 
0 

(T < T ) q(t) = 
0 - sT 

0 It I >~ 2 

(iii) gaussian 

2 
q(t) - e -Bt B • constant. 

As far as most of the work in this thesis is concerned, we do not need 

to consider a specific pulse shape. We need only to describe q(t) as 

s pulse of width T < T having finite energy Eq, as defined in 
0 - s 
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equation (2-5). 

In any given symol period say the kth, 

(-• < k < oo) 

the transmitted signal is sk q(t-kTs) where the value of sk is a member 

of the finite set (~1 , ••• ,~m) of possible values. There are thus m 

signals 

. 
• 

which may be transmitted during the kth symbol period. These m signals 

may be considered as vectors in a linear vector or signal space. 

For information to be transmitted we must have m ! 2, and to 

obtain the most reliable reception we want the distance between these 

signals considered as members of the signal space to be as great as 

possible. One measure of this distance is the correlation between the 

various members gi(i=l, ••• ,m) of the signal set, the distance between 

signals being a maximum when the correlation is a minimum. In the 

particular case when all the signals g (i•l, ••• ,m) have the same1 

energy, Nuttall (1962) has derived a lower bound on this correlation as 

A > -1 (2-6)
- m-1 

where the correlation A is defined as 

(i,j • 1 , ••• ,m) 
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Also it is known (Balakrishnan, 1960) that this bound can be achieved 

only with an equal energy signal set. In the case of amplitude 

modulated signals, an equal energy signal set can only be obtained in 

the case of binary signals using antipodal syubol values. For example 

if we use the symbol values :!:1, we then have an equal energy binary 

signal set, and in this case the bound of equation (2-6) is met. 

In this thesis, unless we state otherwise, we shall always 

assume that the transmitted symbols are independent and binary with 

the values :!:1. In this case equations (2-1) to (2-3) reduce to the 

form 

1-­ 2 i - 1,2 (2-7) 

(- < k < oo) 

(- < k < oo) (2-8) 

(-CD < i,j < oo) (2-9) 

and these are the properties which will be used throughout most of the 

present research. 

2.2 The Transmitted Signal 

In some communication links, notably coaxial cable links and 

short distance telephone links, the signal is transmitted through the 

channel at baseband. The transmitted signal is then the low-pass or 

baseband signal m(t) of equation (2-4). However in many situations of 

interest the signal m(t) must be modulated onto some carrier signal 

(usually a high frequency sinusoid) for propagation through the channel. 
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This modulation process is essentially a transformation of m{t) 

to a different portion of the frequency spectrum - for example the 

signal m(t) is transformed from the low-pass or baseband form of 

equation (2-4) to a bandpass form. The modulation may be a linear 

process as in amplitude modulation or a nonlinear process as in 

frequency or phase modulation. In this thesis we will restrict ourselves 

to linear modulation, in which case the transmitted signal may be 

written in the general form 

jw t 
s(t) • 2 Re{L[m(t)]e 0 

} (2-10) 

where w
0 

= 2wf0 is the nominal carrier frequency, L[m(t)] is a linear 

functional of the baseband modulating signal and the factor of 2 is 

included for later convenience*• Examples of the forms which L[m(t)] 

may take are: 

(i) 	 L[m(t)] • const + m(t) implying that s(t) is double sideband 

amplitude modulation (DSB-AM). 

(ii) 	 L[m(t)] • m(t) implying that s(t) is double sideband suppressed 

carrier amplitude modulation {DSBSC-AM). 

(iii) 	 L[m(t)] = m(t) + jm(t) where m(t) is the Hilbert transform of 

m(t) and s(t) is then single sideband amplitude modulation 

(SSB-AM). 

A good summary of linear modulation schemes is given by Lucky (1968). 

*The inclusion of this factor allows us te> avoid multiplying the 
channel output signal by a constant factor of ~ ia later equations. 
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In the present work, we shall assume that we are dealing with 

DSBSC-AM. The transmitted signal may then be written in the simple form 

jw t 
s(t) • 2 Re{m(t)e 0 

} (2-11) 

where m(t) is real. In the case of binary antipodal symbols having the 

values tl and rectangular pulses q(t) of width T • T , this form of 
0 s 

modulated signal is equivalent to a bi-phase, phase-modulated signal. 

2.3 Channel Considerations 

In any real communications link the effects of the channel on 

signals passing through it are usually unknown and uncontrQllable. 

Therefore most communications channels can be specified only in a 

statistical sense. The task of the receiver is then to compensate, 

in some optimum fashion, for the effects of the channel so that the 

transmitted information can be successfully extracted from the received 

signal. 

Considerable effort has been devoted to the problem of channel 

characterization and to the measurement of its parameters. Some of the 

more noted investigators in the field have been Turin (1956), Kailath 

(1960) and Bello (1963). The work of these investigators and others 

has recently been collated and published by Kennedy (1969). 

In the classical formulation of reception problems, the channel 

was mcdelled as a linear all-pass system with constant delay and a 

source of additive random noise n(t). The received signal then had 

the for.:n 

y{t) = s(t) + n(t) 
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where s(t) is the transmitted signal, and from this we see that the 

only source of interference is the additive noise. Unfortunately, such 

a model conforms to reality in only a few special cases. 

In this section we will consider a more realistic model for the 

channel. The theory to be discussed has been developed with natural 

media such as the ionosphere and the troposphere in mind, but i~ applies 

equally well to any linear communications channel. 

Signal transmission through these natural media is unavoidably 

characterized by simultaneous propagation along many different and 

usually time-varying paths which are usually impossible to resolve. Such 

a channel, provided it is assumed to be linear, may be represented as a 

linear time-varying filter (Bello, 1963; Schwartz, Bennett and Stein, 

1966). This filter may be characterized by its impulse response function 

h(t,T) • 	 output from the channel at time t due to an impulse 
input applied at time t-T. 

For a transmitted signal s(t) we may then write the channel output 

signal as 

z(t) • J h(t,~) s(t-~)d~ (2-12) 

where the limits of integration are assumed to be suitably defined. 

Now we are interested only in transmission of signals s(t) of 

the form given by equation (2-11) where the bandwidth of the envelope 

m(t) is assumed to be less than the nominal carrier frequency w
0

• The 

transmitted signal s ( t) is then a narrowband bandpass signal, and the 

complex signal 
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(2-13) 

is analytic. We, therefore, need to define the channel impulse response 

h(t,T) only over the bandwidth of s(t), and we may thus write it in the 

same narrow-band form as 

jw T 
h(t,T) • Re{g(t,T)e 0 

} (2-14) 

where the low-pass envelope g(t,T) is usually complex. Then using the 

properties of analytic signals (Dugundji, 1958) we may write the channel 

output signal z(t) in the form 

jw0 t fz(t) • Re{e g(t,~)m(t-~)d~} (2-15) 

Except for the carrier frequency w0 contained in the exponential factor, 

z(t) is completely determined by its complex low-pass envelope 

n(t) • J g(t,~)m(t-~)d~ • (2-16) 

We may, therefore, describe the channel and analyze its properties in 

terms of the complex, equivalent, low-pass impulse response g(t,~). 

If a frequency-domain approach to the channel is adopted 

(Kailath, 1960~, an equivalent representation for n(t) may be obtained 

as 

n(t) • JM(f) G(t,f)ej2wft df (2-17) 

where M(f) is the Fourier transform of the signal envelope m(t) and 

G(t,f) is known as the equivalent low-pass, time-varying transfer 

function of the channel. Bello (1963) has shown that G(t,f) is related 

to the impulse response g{t.~) by the Fourier transform relationship 
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-j2wftG(t,f) • g(t,t)e dt • (2-18)J 
The manner in which g(t,t) and G(t,f) vary with time t determines 

the Doppler shifting and spreading properties of the channel. Similarly, 

the time-dispersive properties are determined by the non-zero width or 

spread of g{t,t) in the delay variable ~' or equivalently by the finite 

bandwidth of G(t,f) in the frequency or £-domain. Bello (1963) and 

Kaye (1968) have defined other system functions for describing the 

properties of a linear, time-varying, dispersive channel, but we will 

not go into them here. 

So far, we have described the channel in terms of system 

functions such as the impulse response g(t,t) and the corresponding 

transfer function G(t,f). In general, however, communications channels 

are randomly time-varying. The system functions g(t,t) and G(t,f) are 

then sample functions from stochastic processes and the channel caxt be 

described only in a statistical sense. 

A complete statistical characterization of the channel requires 

the specification of multidimensional probability distributions for 

the chan~el system functions. This has been done for the case when the 

various propagation paths are resolvable (the discrete multipath channel) 

and the channel statistics can be assumed to be Gaussian (Turin, 1956). 

In general,hcwever, these functions are very difficult to either measure 

or compute, and moreover, the channel is often non-stationary so that 

the distributions evolve with time. 
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All the systems to be considered in this thesis use a minimum 

mean-squared error performance criterion. This implies that only a 

second moment characterization of the channel is required. Therefore, 

in this section, we shall consider only the mean value and correlation 

functions of the channel system functions. 

Since for any channel, we can observe only its output z(t), 

we shall begin by finding the mean value and correlation functions of 

z(t) assuming a deterministic transmitted signal s (t) of the form given 

in equation (2-11). Using equation (2-15), we may write the mean value 

function z(t) of z(t) in the form 

_ . jw0 tJ 
z(t) • E{z(t)} • E{Re(e g(t,~)m(t-~)d~]}. (2-19) 

In any real channel 

{-• < t < eo) 

and if we then define 

(2-20) 

we may write the mean channel output as 

jw0 t fi(t) • Re{e g(t,~)m(t-~)d~} (2-21) 

and the corresponding complex low-pass signal as 

(2-22) 

The mean channel output n(t) (or z{t)) is known as the specular 

component of the channel response. It is the channel output signal which 
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would be obtained if the signal m(t) (or s(t)) were transmitted through 

a channel having the mean impulse response g(t,~) (or equivalently 

h(t,t)). Another representation for n(t) is obtained from equation 

(2-17) as 

n(t) - f M(f) G(t,f)ej2wft df (2-23) 

where G(t,f) is known as the mean transfer function. 

Now let us find the autocorrelation function of the complex (low­

pass) channel output n(t). This function is defined by 

R (t,s) • E{n*(t)n(s)} (2-24)
n 

where the asterisk denotes the complex conjugate. Substituting equation 

(2-16) into equation (2-24) and interchanging the order of averaging 

and integrating, we obtain 

Rn(t,s) • If E{g*(t,u)g(s,v)} m*(t-u)m(s-v)du dv (2-25) 

The expectation in equation (2-25) is the autocorrelation function of 

the complex equivalent low-pass channel impulse response g(t,~). For 

notational convenience, let us write it as 

Rg(t,s; u,v) • E{g*(t,u)g(s,v)} (2-26) 

and then equation (2-25) becomes 

Rn(t,a) = Jf Rg(t,s; u,v) m*(t-u)m(s-v)du dv (2-27) 

Using the properties of analytic signals we may readily relate R (t,s)
n 

toR (t,s), the autocorrelation function of the physical channel output,z 

by the relationship 
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(2-28) 

The autocorrelation function of the equivalent low-pass transfer function 

G(t,f) may be found from R (t,s) using a Fourier transform relation due 
n 

to Bello (1963), and we thus obtain 

o JJ 	 j2w(uf-tv)~(t,s;f,~) • Rg(t,s;u,v)e du dv. 	 (2-29) 

In principle, the mean value and autocorrelation functions 

derived above are sufficient to provide a second order statistical model 

' 
for the 	channel. However, because we are interested only in the 

reception of digital signals, we can make certain simplifications in the 

model. 

Digital communication systems are characterized by the fact that 

in each T -second signalling or symbol period one of a finite number of s 

possible signals, each of maximum duration T seconds is transmitted. s 

When we consider the effects of the channel on digital signal transmission, 

most channels may be considered to be wide sense stationary over time and 

frequency intervals much greater than the effective duration and bandwidth 

of the digital signalling waveforms (Bello, 1963). This situation arises 

in the following cases: 

(i) 	 In telephone and other cable links, the channel impulse response 

tends to be almost time-invariant with very slow and relatively 

small fluctua~ions about this constant value. 

(ii) 	 In radio linl~ the channel usually contains slow (and possibly 

non-stationary) fluctuations on which are superimposed much more 

rapid fluctuations which are wide sense stationary in both time 
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and frequency. 

In this context, slowly fluctuating means essentially constant over 

periods much greater than the symbol period of T seconds in the time s 

domain and over intervals greater than the effective bandwidth* in the 

frequency domain. These channels are known as quasi wide sense 

stationary uncorrelated scattering (QWSSUS) channels (Bello, 1963). 

In the present work they provide the most useful model. 

~ow for a channel which is truly wide sense stationary the 

following conditions hold (Bello, 1963; Kaye, 1968) 

(i) (2-30) 

implying that the mean value or specular component of the 

channel impulse response is a function only of the delay variable 

t (i.e., is time-invariant). 

(ii) (2-31) 


where T • s-t, or 

~{t,s;f,!) • R~(s-t;f,!) • RG(T;f,!) {2-32) 

that is the autocorrelation functions of the system functions 

g(t,u) and G{t,f) are functions of the time difference T. This 

*For pulses which are time limited to T0 ~ Ts seconds in duration 
there is no true band limitation. One measure of bandwidth (Schwartz, 
Bennet ~d Stein, 1966) is the quantity 

1 1JjM(f)j 2df which is usually of the order of - >- Hz. 
[M(O) J2 X

0 
- T s 

l 
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implies that components of the channel response at different 

Doppler shifts are uncorrelated. 

If also the channel is uncorrelated scattering, then components of its 

response for different values of the delay variable ~ are uncorrelated. 

Under this condition equation (2-31) reduces to the form 

R'(T;u,v) • P (T,u)o(u-v) , (2-33)
g g 

where o(•) is the Dirac delta function, and equation (2-32) becomes 

(2-34) 

where 0 • l-f. The function tG(T,O) is the autocorrelation function of 

a process which is wide sense stationary in both time and frequency. 

Another result which is of interest is obtained by taking the double 

Fourier transform of tG(T,O) to obtain 

(2-35) 

where ~ is the channel delay variable and v _is the channel Doppler 

shift or spread variable. The function S(~,v) is the well known (Bello, 

1963; Kennedy, 1969) channel scattering function, and it defines the 

delay-Doppler energy cross-section of the channel. 

Now using the mean channel output n(t) of equation (2-22), we 

may decompose the channel output signal n(t) into the sum of two 

components (Kaye, 1968). If we let 

n(t) - n(t) - n(t) (2-36) 

we may then write the complex, low-pass channel output n(t) as 
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~<t> - n<t> + n<t> (2-37) 

Equation (2-31)·expresses the Channel output n(t) as the sum of the 

mean or specular component T\(t) and a zero-mean random component. This 

random component may be written as 

~(t) • f g(t,t)m(t-t)dt (2-38) 

where g(t,t) is the zero-mean random component of the channel impulse 

response g(t,;). From this we see at once that we have a decomposition 

for g(t,t) which in the QWSSUS case may be written as 

(2-39) 

In many applications, particularly in the case of radio links*, 

the mean or specular component g(t) will either be zero or very small 

compared to the random component g(t,;). In principle, if this is true, 

it is impossible for the receiver to perform coherent demodulation 

followed by filtering and equalization. The best receiver is then 

(Kailath 1960, 1961) an envelope detector (e.g., square-law device) 

followed by the usual decision circuit. However, since we are dealing 

with signals which are sequences of pulses, each of maximum duration T 
s 

seconds, we can further decompose the channel response, and to some 

extent avoid this problem. 

Let us now write the random component g(t ,t) of the channel 

impulse response as the sum of two components 

*In particular ionospheric and tropospheric links. 
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g(t,t) - g (t,t) + g (t,t) (2-40)s r 

We define the first term g (t,~) of equation (2-40) to include those 
8 

randomly varying components of g(t,~) which vary slowly enough with 

time t that g (t,t) appears to be time-invariant over time intervals 
8 

much greater than the symbol period of T seconds.* We define the 
8 

second term gr(t,t) to include all those components of g(t,t) which 

vary randomly at rates comparable to or greater than the symbol frequency 

-1
T •

8 

Now combining equations (2-39) and (2-40), we may write the 

overall channel impulse response in the form 

(2-41) 


Then let us combine the time-invariant mean-value g(t) and the slowly 

time-varying component gs(t,t) into the term 

(2-42) 


Using equation (2-42) we may now write the overall channel impulse 

response as 

(2-43) 


where gd(t,t) includes all the time-invariant and slowly varying 

*This type of decomposition is to some extent conceptual, since 
the definition depends on the symbol period or data rate T8 • If the 
data rate is high enough (that is Ts is small enough) then all components 
of the channel are rapidly varying. Fortunately this is seldom the case. 
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components and gr(t,~) includes all the rapidly varying components. 

Thus gd(t,t) is a pseudo-specular component which includes the true 

specular component when it is non-zero. The second term gr(t,~) is the 

random scattering component mentioned in chapter 1. 

The pseudo-specular component gd(t,~) causes ~o types of 

signal distortion. First because of its non-zero width in the delay 

variable ~' it causes time-dispersion of signals passing through it. 

In the case of pulse or digital signals, this leads to intersymbol 

interference between two or more successive pulses. Second, the slow 

time variations in gd(t,~) cause a random aging of its amplitude and 

phase characteristics, and this causes a corresponding aging of the 

amplitude and phase of any signal passing through it. The pseudo-

specular component gd(t,~) is also known as the quasi-coherent component, 

and in order that the receiver perform coherent demodulation followed 

by equalization, this component must be present and non-zero. 

The random scattering component g (t,~) consists of rapidly
r 

fluctuating, zero mean, wide sense stationary fluctuations superimposed 

on the pseudo-specular component gd(t,~). Because of its non-zero width 

in the delay variable ~' g (t,t) also causes time-dispersion, but the r 

dominant effect in this branch of the channel is the rapid fluctuation. 

Signals passing through gr(t,;) are almost totally mutilated by these 

fluctuations, so that the output of this branch of the channel appears 

as wideband signal dependent noise, and provided the component gd(t,t) 

is also present it may be treated as such by the receiver (Kaye, 1968). 
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Thus far in our consideration of the channel and its effect on 

the signal, we have been concerned only with multiplicative effects as 

represented by the impulse response g(t,t). However, in any real 

communications link, there is always additive interference or noise 

present, and in order to obtain a complete model of the channel it must 

be taken into account. 

This additive noise is random and can be defined only in a 

statistical sense. As in the case of the impulse response g(t,t), we 

require only a second moment characterization. Therefore, let us define 

it to be a source of zero mean, wide sense stationary random noise n(t). 

Since we are dealing with narrowband signals and channels, we need to 

consider n{t) only over the signal bandwidth, and we may therefore write 

any sample function n(t) of the noise as 

jw t 
0n(t) • 2 Re{p(t)e } (2-44) 

where p(t) is a complex low-pass envelope and p(t)exp(jw
0 
t) is an 

analytic signal. Again using the properties of analytic signals 

(Dugundji, 1958) we may write the autocorrelation function of n(t) as 

R (T) • E{n(t)n(t+T)} (2-45)
n 

or 

(2-46) 

where R~(T) is the complex autocorrelation function of the envelope ~(t) 

and is defined as 

(2-47) 
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This completes our modelling of the channel. From equations 

(2-15) and (2-45), we may now write the actual physical signal at the 

receiver input as 

y(t) • z(t) + n(t) (2-48) 

j~ tJ ~ j~ t0 0• Re{e g(t,~)m(t-t)d~} + Re{~{t)e } 

In terms of complex low-pass equivalent signals we have 

y(t) • J g{t,~)m{t-~)d~ + ~(t). {2-49) 

From these equations and from equation (2-42), we can model the channel 

as a parallel bank of linear filters followed by a source of additive 

noise. This is shown for the complex low-pass equivalent signals in 

the block diagram of figure 2.1 and the extension to the bandpass case 

is obvious. 

In this thesis our primary concern is with the development of 

reception systems for the case when the signal dependent noise is small. 

This essentially means that the random scattering component gr(t,~) of 

the channel impulse response is small and the pseudo-specular component 

gd{t,t) is the main component of the channel impulse response, so that 

When the signal dependent noise is significant, it must be taken into 

account in the design of the receiver (Kaye, 1968; Mark, 1970). 
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Figure 2.1 Block diagram of complex equivalent low-pass channel. 
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2.4 	 Measures of Dispersion 

In the preceding section, we discussed a second order statistical 

model for a time-varying dispersive channel. This model characterized 

the channel in terms of its mean-value function and its autocorrelation 

function. Since the reception systems to be discussed in succeeding 

chapters use a minimum mean-squared error performance criterion, this 

second order model is sufficient to allow the optimum receiver structure 

to be defined. 

Because the channel has memory or delay-spread, the optimum 

receiver includes memory within its structure. Also, because the channel 

is time-varying the receiver must be time-varying in order that it may 

follow or track the changing channel. The fact that the receiver must 

be time-varying leads at once to the concept of an adaptive or self ­

adjusting receiver. Such a receiver does not require explicit knowledge 

of either the mean-value or autocorrelation function of the receiver 

input signal, and therefore does not require explicit knowledge of the 

channel statistics. However, in order that the receiver be effective 

in adjusting itself to compensate for the channel, it must know or at 

least have reasonable estimates of the following parameters a priori: 

(i) 	 the channel memory size. This is synonymous with the width 

or spread of the channel impulse response g(t,,) or the channel 

scattering function S(~,v) in the delay variable ~-

(ii) 	 the rate of time-variation of the channel. This is equivalent 

to the Doppler-spread or width of the scattering function S(~,v) 

in the Doppler variable v. 



47. 

The first of these parameters is needed in order that an estimate of 

the minimum receiver memory required can be made. The second one is 

required so that the receiver designer knows how quickly the adaptive 

receiver must be able to adjust itself in response to changes in the 

channel. Therefore, in this section, we will discuss a possible method 

of estimating the time and frequency spread of the channel. 

In Appendix A, we have used a power series expansion of the 

equivalent low-pass channel transfer function to obtain the complex low-

pass channel output n(t) in the form 

n(t) - 2 
n•O 

r (t) 
n 

dn 
-
dtn 

{m(t-~ )} 
o 

(2-50) 

where ~0 is the mean *channel or multipath delay , and the time-varying 

coefficients rn(t) are defined by 

1 J nr (t) - --, <-~> 8 (t,~)d~ (2-51)n n. o 

with g0(t,~) being related to the channel impulse response by 

(2-52) 


Since the channel is randomly time-varying the r (t) are sample functions 
n 

from stochastic processes, and can be defined only in terms of their 

statistics. 

Now the autocorrelation function of n(t) may readily be written 

in the form 

*As yet ~0 has not been explicitly defined. We will do so in 
this section. 
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(2-53) 

The channel correlation properties are tnus defined by the correlation 

properties of the coefficients r (t). Using equation (2-51), we can 
n 

obtain the expectation in equation (2-53) in the form 

and then making use of the relationship in equation (2-52) we obtain 

(2-54) 

As stated in the previous section, the channels which we are 

considering are QWSSUS in nature. We may, therefore, substitute 

equation (2-35) into equation (2-54) to obtain, after some manipulation 

the simplified result 

E{f*(t)f (t+T)} • (-l~~ ( (~-~ )m+nP (T;~)d~ • (2-55)
m n m.n. J o g 

To obtain now the desired estimates or measures of dispersion, 

let us make the approximation that the channel exhibits linearly 

frequency-selective fading. This means that the complex channel output 

n(t) may be approximated by the first two terms of the series in 

equation (2-50), yielding 

(2-56) 
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where the first term is a flat or non-frequency-selective fading tenn 

and the second term exhibits linearly frequency selective fading. 

Let us then choose as the mean channel or multipath delay ~0 
that value which minimizes in the mean-square sense the frequency-

selective fading component of n(t). From equation (2-55), the mean-

square value of the flat fading coefficient r (t) is given by
0 

(2-57) 

The function Pg(O;~) is known in the literature (Bello, 1963; Kaye, 

1968) as the delay power spectral density, and is often written as 

Q(t). It is related to the channel scattering function by the equation 

Q(t) • Jsc~,v)dv , (2-58) 

where, as in all the preceding integrals, the limits of integration are 

assumed to be suitably defined. The mean-square value in equation (2-57) 

may then be written in the form 

(2-59) 

Similarly, the mean-square value of the linearly frequency-selective 

component may be found from equations (2-55) and (2-58) as 

(2-60) 

Taking the first derivative of this with respect to t , we obtain 
0 

a~ E!lr1 <t>! 2J • -2 JtQ(~)d~ + 2(
0 

J Q(t)d~ (2-61) 
0 
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and setting this equal to zero, we may solve for the mean channel delay 

JtQ(t)dt 
t 0 - . , (2-62) 

JQ(t)df; 

which may be expressed in terms of the scattering function s(E;,v) as 

JJts(F;,v)dvdt 

t ------- (2-63) 

0 JJs(t,v)dvdt 

That this is the value of F; which causes E{jr (t)I 2J to be a minimum is
0 1

readily verified since 

2
:: E!lr1Ctll l • 2JQ(t)dt = 2JJsct,v)dtdv

3 
0 

> 0 • 

If we now take the ratio of the mean-squared values of the frequency-

selective and flat fading components, we obtain 

22 Jct-t
0 

) Q(t)dtE{jr1<t>I J 
.. -------62 (2-64)

2 g
E{lr <t>I J

0 

or in terms of the channel scattering function 

Jf<~-~0) 2s(~,v)d~dv 
62 .. -------- (2-65) 

g JJs<t,v)d~dv 
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The quantity 6 is known as the root mean square (rms) width of Q(~).
g 

It is a measure or estimate of the channel memory or delay spread. That 

is it is an estimate of the width of g(t,~) in the delay variable ~' 

and provides an estimate of the amount of receiver memory required. 

Following arguments dual to those given above, we may derive 

the mean Doppler shift of the channel as 

JvP(v)dv 

(2-66) 

JP(v)dv 

and the mean square Doppler spread of the channel as 

J(v-v ) 
2
P(v)dv

0 

82 - -------------- (2-67) 

The function P(v) is known as the Doppler power spectral density. It is 

defined in terms of the scattering function S(~,v) as 

P(v) • S (0 ,v) (2-68) 

The quantity 8 is a measure of the rate of time-variation of the channel, 

and therefore it is indicative of how quickly the receiver must be able 

to adapt to and track the channel characteristics. 

Typical values of the delay-spread 6 and the Doppler-spread 8 g 

are given below for various transmission media (Richters, 1967; Niessen 

and Willim, 1970). 
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Channel Doppler spread B(Hz) Delay spread ~ (sees)g 

Ionospheric scatter 10 10-4 

tropospheric scatter 10 10-6 

schedule 4 data line (coaxial) <<1 "' 10-2 

19H88 coaxial cable <<1 "- 1.2 X 10-2 

We ?oint out that equations (2-64) and (2-67) represent only one possible 

way of estimating the delay and Doppler spreads for a channel. There 

are many other equally valid methods of defining and measuring these 

quantities but we will not go into them here. 

2.5 The Demodulation Problem 

In this thesis we are concerned with the reception of double 

sideband, suppressed carrier, amplitude modulated (DSBSC-AM) signals 

which have been transmitted over linear time-varying dispersive channels. 

The transmitted and received signals, s(t) and y(t) respectively are 

given by equations (2-5), (2-11) and (2-48) as 

~w t jw t 
J 0 0 

s(t) • 2Re{m(t)e } • 2Re{e l skq(t-kT )} (2-69)
k s 

and 

y(t) • z(t) + n(t) 

jw t J jw t0 0• Re{e g(t,~)m(t-~)d~} + Re{~(t)e } (2-70) 

The reception problem is the recovery of the digital information 

or symbol sequence {sk} from y(t). Because of 'the linearity of both the 



53. 


channel and the modulation, the reception process may be considered as 

two separate operations. The first of these is the demodulation of 

the bandpass signal y(t) to obtain a low-pass or baseband waveform 

containing the desired information. Since s(t) and therefore z(t) 

are both suppressed carrier signals, some form of carrier recovery 

operation to recover the carrier signal and its phase must be carried 

out. That is coherent demodulation must be used. The second operation 

is the compensation for the time and frequency dispersive effects of the 

channel so that reliable recovery of the symbols {sk} can be obtained. 

This compensation, which is usually referred to as channel equalization, 

is most often performed at baseband following demodulation*, and the 

general form of the receiver is then given by the block diagram in 

figure 2.2. This baseband signal processing is the main subject of 

this thesis and will be investigated in detail in following chapters. 

In this section we will discuss the problem of demodulation. 

This subject has been discussed in some detail by a number of authors 

(Costas, 1956; Van Trees, 1964, and others). Let us consider for the 

moment the complex low-pass envelope of the signal component z(t). It 

may be written as 

(2-71) 


The complex equivalent low-pass channel impulse.response may 

in general be written in the form 

* .An exception to this is discussed by Lucky and Rudin (1967). 



54. 


x(t) Baseband 
__., Signal 

Processor 
y(t) demodulator -"" {skJ 

received 
symbols 

Figure 2.2 General form of the reception system. 
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(2-72) 

where 

a(t,t) • lg(t,t>l 

and 

8(t,t) • arg{g(t,~)} 

We may then write equation (2-71) as 

(2-73) 

and the corresponding physical signal z(t) may be written in the form 

(2-74} 

Before considering the actual demodulation, let us consider 

first the transmission of an unmodulated sine wave at the carrier 

frequency (/.) . The corresponding output signal may be written in the 
0 

form 

jw0 tJ ~e(t ~)
c(t) • Re{e a(t,~)e_, ' d~} (2-75) 

and this may readily be expanded to the form 

(2-76) 

or 

c(t) • r(t)cos[~ t + •(t}] (2-77)
0 

where 
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is the envelope, and 

Ja(t,t)sine(t,t)dt 

(2-78) 

Ja(t,~)cose(t,~)dt 

is known as the carrier phase. Note that ~(t) does not depend on the 

transmitted sine wave. 

Returning now to the channel output signal z(t) of equation 

(2-74), let.us now redefine the phase process a(t,~) to explicitly 

show the carrier phase ~(t). That is we write 

e(t,t> - ~(t) + B(t,;) (2-79) 

and then the signal z(t) may be written in the form 

(2-80) 

Since a(t,t) and m(t) are both real functions we may combine the 

exponential terms in equation (2-80) and then expand the result to 

obtain the signal z(t) in the form 

z(t) = [fa(t,t)m(t-t)cos6(t,t)d~]cos[w0t + ~(t)] 
(2-81) 

Recall now that the transmitted signal s(t) in equation (2-69) 

is DSBSC, and therefo~e has no quadrature component. Then from equation 
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(2-81), we can see that the presence of a non-zero phase versus delay 

Characteristic* B(t,~) in the channel impulse response causes a portion 

of the available signalling energy to appear in the channel output z(t) 
. 

as a quadrature or orthogonal component. This means that z(t) contains 

both amplitude and phase modulations which are dependent on the 

transmitted signal s(t). It also has the following equivalent implica­

tions concerning the channel response 

(i) . 	 the equivalent low-pass channel impulse response 

g(t,~) • a(t,~)exp[j(~(t)'+ B(t,~))] 

is a complex function of the delay variable ~. 

(ii) 	 the frequency response of the channel H(t,w), where H(t,w) is 

the Fourier transform of the actual channel impulse response 

h(t ,~) .with respect to the delay variable ~' is unsymmetric 

about the carrier frequency w within the bandwidth of the 
0 

transmitted signal s(t). A limiting form of such a frequency 

response 	is one which totally filters out one sideband of the 

DSBSC signal s(t), so that the channel output z(t) is then 

J.single 	sideband in nature. 

From equation (2-81), we see that coherent demodulation of z(t) 

will produce the in-phase and quadrature components 

. 
I v 

c
(t) = 

)
(a(t,~)m(t-t)cosS(t,~)d~ 	 (2-82) 

*By this we mean that B(t,~) is not zero cr an integer multiple 
of ~ radians at all values of the delay variable ~. 
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md 

(2-83) 

of its envelope. This process requires a local oscillator at the 

receiver producing the signals 

cos[w t + ~(t)] md sin[w t + ~(t)]
0 0 

which are phase-coherent with the carrier-phase ~(t). The essential 

problem in demodulation is then the production of these local carrier 

signals. 

It is well known (Bennett and Davey, 1965; Lucky, 1968) that 

coherent demodulation of any received signal having a significant 

quadrature component requires that an independent source of phase-

coherent carrier signal be available. This local carrier may be 

supplied by a phase-stable, free-running oscillator as is done in many 

single sideband voice links, or a separate (pilot) carrier signal may 

be transmitted along with the signal s(t) and a phase-locked loop 

system may be used to produce the local carrier for demodulation. 

From the information theory point of view, m1y communications 

channel has a certain capacity which imposes an upper bound on the 

amount of information which may be passed through the chmtnel in a 

given time. In order to coherently demodulate a suppressed carrier 

signal using only the information in its sidebands the channel capacity 

must be great enough to accommodate both the transmitted information 

and the phase information required for coherent demodulation. If the 

channel capacity required ~or the signal information is Cs and that 
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required for the phase information alone is C , then the total channel 
p 

A 

capacity required is Cs + CP. The excess channel capacity C available, 

over and above Cs' to establish phase lock from the sidebands alone has 

been found by de Buda {1970) to be 

(2-84) 


where W is the signal bandwidth and p is the so-called carrier to 

noise ratio defined as 

P • In phase signal power recoverable by coherent demodulation 
Additive noise power 

If the phase channel capacity Cp is greater than the excess channel 
A 

capacity C which is available, then coherent demodulation cannot be 

performed without an independent carrier signal being transmitted. 

When the channel response causes a quadrature component to be 

generated in its output z(t) in response to the DSBSC signal s(t), 

then the carrier to noise ratio p will be reduced and thus the excess 
A 

channel capacity C available for phase lock will be reduced (de Buda, 

1970). Provided that the power in this quadrature component is small 

(implying in equation (2-83) that sinB(t,~) is small for all~), then 
A 

p will not be reduced by very much, and the excess capacity C may 

still be great enough that coherent demodulation is possible using only 

the sidebands of the received signal. This is the usual case when 

DSBSC signals are transmitted, and we may then represent the channel 

output z(t) of equation {2-81) to a good approximation by 
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z(t) • u(t)cos(w t + ~(t)] U-M)
0 

where 

u(t) • Ja(t,t)m(t-t)dt (2-86) 

is the low-pass or baseband envelope function which we wish to recover 

from the demodulation process. 

Now let us write the instantaneous phase of z(t) in equation 

(2-85) as 

+(t) - w t + ~(t) (2-87)
0 

We may then write the received signal in the compact form 

z(t) • u(t)cos~(t). (2-88) 

Suppose now that we have available a local oscillator producing 

the outputs 

u (t) - 2 cos e(t) (2-90)c 

and 

u (t) - 2 sin e(t) (2-91)s 

Let us then multiply z(t) by each of these signals separately and then 

pass the resulting products through low-pass filters to remove the 

second harmonic components. This results in the pair of low-pass or 

baseband signals 

g (t) • u(t} cos e(t} (2-92}
c 

g (t} • u(t) sin e(t} (2-93}s 

where 

e(t) e(t} - '(t) (2-94)a 
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: 

is the instantaneous phase error. Then multiplying these signals 

together we obtain 

2 
w(t) • u ~t) sin 2&(t) (2-95) 

which after averaging or low-pass filtering is proportional to the sine 

of twice the phase error E(t). When £(t) is small, w(t) is proportional 

to.2£(t). The signal w(t) may be used as the control signal for a 

voltage controlled oscillator which produces the local carriers u (t)
c 

and u (t). As the phase error £(t) approaches zero, the in-phase signals 

g (t) approaches the desired envelope function u(t). The resultingc 

demodulator structure is shown in fi~ure 2.3 and is known as the Costas 

Loop (Costas, 1956). This structure provides an efficient demodulator, 

having the noise rejection properties of a conventional phase-lock loop 

demodulator, provided of course that the quadrature component v (t) of 
8 

equation (2-83) is small so that z(t) is well represented by equation 

(2-85). 

In practice the received phase ~(t) in equation (2-85) may be 

varying rapidly enough that the time required for the Costas loop to 

acquire phase-lock may be prohibitively long. In such cases, improved 

acquisition and tracking performance may be obtained by the use of a 

more sophisticated loop such as the frequency controlled loop developed 

by Lang and Brackett (1970) in a demodulator structure similar to that 

shown in figure 2-3. 

Thus by the use of synchronous or phase-locked detection or 

demodulation, we have obtained the baseband envelope signal 
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multiplier 

x(t) • z(t) + n(t) 

received signal 
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phaseiT 
shifter
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2sin6{t) 
..., u(t)sine(t)L.P. 11 

Figure 2.3 	 Basic structure of Costas 

synchronous demodulator. 
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x(t) • u(t) + nc(t) 

• Ja(t,~)m(t-~)d~ + nc(t) (2-96) 

where n (t) is the in-phase component of the additive noise defined in c 

equation (2-45). If we substitute equation (2-5) for m(t) in this, we 

obtain 

x(t) • l sk Ja(t,~)q(t-kT -~)d~ + n (t) (2-97)
k s c 

and if we then define 

(2-98) 

we may write the demodulator output as 

x(t) • l skr(t-kT ) + n (t) (2-99)
k s c 

where r(t) is known as the received pulse-shape. 

From equation (2-99), it can be seen that the problem now is 

to extract the transmitted symbols {sk} from the demodulator output x(t). 

This is known as the baseband signal processing problem (see figure 2-2), 

and is the subject of the remainder of this thesis. 



CHAPTER 3 


The Baseband Receiver 


In chapter 2 we first discussed the transmitted signal and how 

it was distorted and interfered with by the channel. We then went on 

to consider the problem of demodulating the received, distorted signal 

to obtain the baseband signal x(t) of equation (2-99) using synchronous 

detection techniques. 

In this chapter we shall consider the problem of how to extract 

the transmitted information from the baseband signal. We shall start 

our investigation by considering a time-domain formulation of the 

optimum linear receiver (George, 1965) and progress from there to the 

nonlinear structure which is the main subject of this thesis. 

3.1 The Performance Criterion 

The output from any receiver which is designed for the reception 

of digital signals may be regarded as a sequence of decisions. In 

digital signal transmission a signal is transmitted in eaCh T -second s 

signalling interval, and there is a finite number (say m) of possible 

signals which may be transmitted in each interval. For example in the 

present case the signal in the kth interval, (k - t>Ts < t ~ (k + i>Ts 

is the amplitude modulated pulse skq(t-kTs), where the amplitude skis 

the digital symbol with values in the finite set (~ 1 , ••• , tm) as 

described in chapter 2. The task of the receiver is to decide which of 

(64) 
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the m symbol values was transmitted in any given signalling interval, 

and the best or optimum receiver is the one which makes the fewest 

decision errors. It is the statistically optimum receiver, and is 

known as the minimum probability of error receiver. 

In the special case in which the channel is not dispersive the 

received pulse shape r(t) of equation (2-98) is identical with the 

transmitted pulse shape q(t). The received baseband signal may then 

be writ ten as 

x(t) • Lskq(t-kT ) + n (t) (3-1)
k s c 

where the pulses q't-kTs) are orthogonal in the sense that 

where Eq is the pulse energy and oj,k is the Kronecker delta. There 

is thus no overlapping or interference between pulses in disjoint 

signalling intervals, and therefore the only source of distortion or 

interference is the additive noise n {t). We may then write the 
c 

received signal in any T -second signalling interval, say the kth, as s 

x(t) • skq(t-kT ) + n (t)
8 c 

(- < k < co) (3-3) 

Under the assumption that the noise n (t) is Gaussian and white,c 

it has been shown (e.g., Turin, 1960) that the minimum probability of 

error receiver for extracting the symbol sk from the signal x(t) in 

equation (3-3) is a filter matched to the pulse-shape q(t) followed by 



66. 


a sampling and decision circuit. This sampling and decision circuit 

samples the filter output at time t•kTs and makes a decision as to 

whiCh of the values (~ 1 , ••• , ~m) the symbol sk has. 

In the more general case when the channel is dispersive, the 

signal in any given signalling interval cannot be written in the 

simple form of equation {3-3). In the kth signalling interval, we may 

use equation (2-99) to write the received signal x(t) as 

x(t) • skr(t-kTs) + r sjr(t-jT ) + n (t) (3-4)
j;k s c 

where now the pulses in disjoint signalling intervals are not orthogonal 

in the sense of equation (3-2). In fact if we sample x{t) at time 

t•kTs' we obtain 

x{kTs) • skr{O) + r sjr{kT -jT ) + n kT ) (3-5)
j;k s s c s 

where the second term is non-zero. The first term in equation {3-5) 

represents the desired signal component. The second term is interference 

due to the overlapping tails of pulses in other signalling intervals 

and is usually known as intersymbol interference. The third and last 

term represents, as before, the ad1iitive noise. Because of the inter-

symbol interference, the derivation of the minimum probability of error 

receiver is a very difficult problem) and the resulting receiver is a 

complex nonlinear structure (Bowen 9 1969). 

Rather than atte~pt the direct minimization of the probability 

of error and then m&~e the simplifying approximations required to 

realize the resulting st1~~ture in a form comparable in complexity to 
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existing receivers (e.g., Ungerboeck, 1972), we shall adopt a hybrid 

approach which leads to a simpler optimization problem. This approach 

consists essentially of considering the receiver to be made up of two 

parts - an estimator followed by a threshold detector or decision 

circuit. The estimator produces estimates sk at the times t•kT
8 

(-• < k < •) of the corresponding transmitted symbols sk (-• < k < •). 

These estimates are optimized according to some performance criterion 

and the decision circuit then uses them to make its decisions. 

Provided the values of the estimates sk are close to the values 

of the corresponding symbols sk' the decision circuit will tend to 

make correct decisions and the behaviour of the hybrid receiver will 

be close to that of the minimum probability of error receiver. Based 

on this argument, we must choose a performance criterion for the receiver 

which in some sense will make the error in the estimates ; (-• < k < •)
k 

as small as possible. If this criterion is chosen correctly, the 

resulting estimation error (sk - sk) (-• < k < •) should be small, at 

least in an average sense, and the behaviour of the resulting receiver 

should be quite close to that of the minimum probability of error 

receiver. 

The criterion which we shall employ is the so-called minimum 

mean-squared error criterion, which seeks to make the mean-squared 

estimation error 

{( -s"')2}E sk k 

at the times t•kT (-• < k < •) a minimum. The use of this criterion s 

has the following advantages: 
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(1) It leads to a mathematically tractable optimization problem. 

(11) It allows relatively simple iterative procedures to be used 

for adaptive adjustment of the receiver parameters. 

It has the disadvantage that if the probability distribution of the 

estimation error is not relatively close to being Gaussian, the· 

resulting receiver may be a rather poor approximation to the minimum 
-. 

probability of error receiver. Fortunately, this seldom happens in 

practice. 

To employ the criterion, we shall first use it to obtain the 

optimum linear receiver. We shall then use it to obtain an optimum 

nonlinear structure which has certain exploitable similarities with 

the linear structure. 

3.2 A Time-Domain Approach to the Optimum Linear Receiver 

In this section, we consider a time-domain derivation of the 

optimum (minimum mean-squared error), unrealizable linear receiver for 

the reception of dispersed, baseband PAM signals. A frequency domain 

derivation which leads to an expression for the transfer function of 

this receiver was carried out· 'by George (1965). The present analysis 

is largely based on an analysis by de Buda (1965) who carried o~an analysis 

using the maximization of signal to noise ratio as the performance 

criterion. 

As previously, let us consider a received signal of the form 

GO 

x(t) • I skr(t-kTs) + n(t) (3-6) 
k=-co 
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where 

(i) 	 r(t) is the received pulse shape defined as 

r(t) • 	 Jq(T)c(t-T)dT 

(ii) 	 q(t) is the transmitted pulse-shape defined to have width Ts 

and nonnalized to unit energy so that 

(iii) 	 c(T) is the channel impulse response, assumed here to be time-

invariant and known a priori at the receiver. 

(iv) 	 The {sk: -~ < k < ~} are the transmitted symbols, assumed 

here to be independent random variables with mean 

<-~ < k < ~> 

and variance 

<-~ < k < ~> 

(v) 	 n(t) is zero mean, wide sense stationary additive noise 

assumed~ere to be white with autocorrelation function 

R (T) • 	 N o(T)n o 

where by white we mean that its power spectral density is 

constant and equal to N
0 

over the bandwidth of interest which 

-1is nominally equal to (Ts) • The assumption of white noise 

makes little difference to the resulting receiver structure. 

Primarily it simplifies the structure of the matched filter 

which will be seen to be the first stage of the optimum linear 
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receiver. When the noise is non-white with spectral density 

sn<~>, this filter has the transfer function 

R*(~) 


s <~>

D 

rather than the simple white noise form 

' 

where R(w) is the Fourier transform of the received pulse shape 

r(t). We shall thus assume white noise, the extension to 

colored noise being relatively simple. 

In this section, we assume that the receiver is linear. Its 

,. output at any time t•nTs (-oo < n < oo) may, therefore, be written as 

(-oo < n < oo) (3-7) 

where 

(i) h(t) is the impulse response of the linear receiver 

(ii) . Sn is the. linear estimate of the transmitted symbol Sn at 

time 	t=nTs which is the midpoint of the signalling interval 

1 1
(n - )T < t < (n + )T •

2 s 	 - - 2 s 

(iii) realizability constraints will be ignored at present. 

Since the processes involved are wide sense stationary, and the 

receiver is time-invariant, the estimate at any time t•nTs will have 

the same form as the estl.mate at any other time t=mTs (m.; n). In 

particular the estimate s0 at t=O may be written as 
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• r-x(t)h(-t)dt (3-8)s0 -

For convenience of notation in what follows, let us define the inverse 

time impulse response or weighting function 

k(t) - h(-t) .• (3-9) 

We may then rewrite equations (3-7) and (3-8) as 

Sn • fx(t)k(t.-nTs)dt (3-10) 

-and 

s • fx(t)k(t)dt (3-11)
0 -

Let us now consider the estimation of the symbol s at time t•O. The
0 

optimum linear receiver may then be found by applying the well known 

(Luenberger, 1969) necessary and sufficient condition for the mean 

squared estimation error to be a minimum, namely 

(3-12) 

...
subject to the constraint that s be a linear functional of x(t).

0 

This may be rewritten as 

(3-13) 

and now let us evaluate the terms in this equation. The left-hand side 

of equation (3-13) may be written using equations (3-6) and (3-11) as 

CD ,u> 

E{s x(t)} • l r(t-kT ) J r(t-kTs)k(t)dt + N k(t)
0 k·-· 8 - 0

<- < t < •) (3-14) 
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The right-hand side of equation (3-13) is then readily found to be 

E{s
0 
x(t)} • r(t) (- < t < oo) (3-15) 

Then substituting equations (3-14) and (3-15) into equation (2-13) we 

obtain the equation 

00 

. r r(t-kTs) J r(t-kTs)k(t.)dt + N k(t) • r(t)
0

k•-oo -oo (-oo < t < oo) (3-16) 

the solution of which defines the optimum linear receiver weighting 

function k(t). 

It can be shown (George, 1965) that a solution of the form 

00 

k(t) - l gnr(t-nTs ) 
(3-17) 

n•­

satisfies equation (3-16) where the {g } are constants such that 
n 

00 

l g! < oo 

n•-oo 


Substituting equation (3-17) into equation (3-16) and interchanging 

the order of integration and summation we obtain 

r(t-nT )r(t-kT )dt + N k(t) = r(t)
s s 0 

(-oo < t < oo) (3-18) 

The integral in the first term of equation (3-18) is the time auto­

correlation function of the received pulse shape r(t); 

+ [(k-n)T ] '"' fr(t-nT )r(t-kT )dt (3-19)
r s s s 

-oo 
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Let us also define 

+ (0) • fr
2
(t)dt • E < • (3-20)r s 

-CD 

as the received pulse or signal energy. We may then rewrite equation 

(3-18) in the form 

CD CD 

g r(t-kT >+ [(k-n)T ] + N k(t) • r(t)n s r s o 

<- < t < •) (3-21) 

Then letting m • k-n and interchanging the order of summation, we obtain 

g r[t-(n+m)T ] + N k(t) • r(t)
n s o . 

(- < t < oo) (3-22) 

Now from equation (3-17), the inner summation in equation (3-22) is 

seen to be k(t-mT ) and we may therefore rewrite equation (3-22) as . s 

+ (mT )k(t-mT ) + N k(t) • r(t) (-.., < t < co) (3-23)
r s s o

m•-co 

Equation (3-23) may be solved in two ways to yield the optimum 

linear .receiver. First it may be solved in the frequency domain. By 

taking the Fourier transform of both sides of equation (3-23) with 

respect to t, we obtain the transfer function of the optimum linear 

receiver as 

R(w) 1
K(w) (3-24)--- co + (mT ) jwmTr s sNo 

1 + l: e 
~0m==-• 

From this result we s~e that the optimum linear receiver may be 

implemented as the cascade connection of a filter matched to the 
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·received pulse shape r(t), or R(w) in the frequency domain, and a 

sampled data system which compensates for channel time dispersion or 

intersymbol interference. This is the result obtained by George (1965). 

The second way to solve equation (3-23) is to do so in the time 

domain. This, very simply, yields a solution for the weighting function 

k(t) of the optimum linear receiver as 

1 ••
k(t) • r(t) E +N I ' (mT )k(t-mT )E +N r s s s 0 s o m•-• 

c- < t < ·> (3-25) 

where I' implies that the m-0 term has been excluded from the summation. 
m 

Equation (3-25) is a recursive relationship for k(t). Now combining 

equations (3-10) and (3-11) with equation (3-25) we obtain the optimum 

linear estimate s of the symbol s at time t•O as00 

1 1 -. 
s - --=--- fx(T)r(T)dT t 41 (mT )~ (3-26)

0 E +N E+N l. r s m 
s 0 s 0 m=-oo 

The first term in equation (3-26) is the result of passing the received 

signal x(t) through a filter matched to the shape r(t) of an individual 

received pulse. In the special case of no intersymbol interference it 

would represent the optimum receiver in a decision theoretic sense. 

The second term is a correction term which compensates for intersymbol 

interference using a weighted sum of the optimum linear estimates s 
m 


of earlier and later symbols s (m; 0).

m 

It is of interest at this point to consider the receiver 

structures which are suggested by equations (3-24) to (3-26). In 

equation (3-24), if we car~J out synthetic division of the numerator 
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by the denominator, we obtain the optimum transfer function K(w) in 

the form 

-jwnTR(w) 
GO 

sK(w) a e (3-27)--- nNo n•-ao 

where the coefficients {a } are constants depending on the channel 
n 

correlation properties as defined in equation (3-19). Equation (3-27) 

may be implemented by the structure shown in figure 3.1 which consists 

of a matched filter followed by an infinite length transversal filter. 

This is the receiver structure derived by George (1965) and others 

(Tufts, 1963; Tufts and Berger, 1967). It is unrealizable due to the 

requirement of an infinite length tapped delay line. 

A second receiver structure which is suggested by equations 

(3-24) to (3-26) consists of a filter matched to the received pulse 

shape r(t) followed by a recursive sampled data filter. To derive 

this structure, let us first define a signal to additive noise ratio 

p as 
n 

E 
- sp -- (l-28)

n N 
0 

We may then, with a little manipulation rewrite equations (3-24) and 

(l-25) in the form 

(1 + p )-1
R(w) n

K(w) ·--. (l-29)
N ..., jwmT' (mT )1 r s s 

e9 1+~ I N pn m=-co 0 


and 


co, ¢' (mT ) 
__ ­,. 1 _ r(~)
'. k(t) { N L _!..__s_ k ( t-mT ) } 

l+p N
0 

s 
n 0 

(-co < t < "") (l-30) 



matched 

filter 

I ­ Ts second delayr(tl_ 

No 

~ t;: 

_._________....________..&________......._ 

' ' 
Q I ._.._.,- ._..._,. 


x(t) ,.lor a;1----~--1._ __ _ -r; I 
R(w) .,-:s 

No sampler 

-- - _. ____ 

infinite length ~ L. 

transversal filter 


----	 18 (to decision ---- ­

0 circuit) 

Figure 3.1 	 Basic unrealizable linear receiver structure. This is 
the structure derived by George (1965) and others. 

...... 
Q\
• 
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From these, the resulting recursive receiver structure can readily 

be seen and it is shown in block diagram form in figure 3.2. It is an 

unrealizable structure because of the infinite length transversal 

filter 

jwmT. s 
e 

which appears in the feedback path. Later in this chapter we will be 

concerned with obtaining realizable structures from equations (3-29) 

and (3-30). 

In both the realizations shown in figures 3.1 and 3.2, the 

purpose of the systems following the matched filter is to compensate 

f~r intersymbol interference. We have shown these systems in the form 

of sampled data systems, but they could also be implemented in analogue 

form using analogue transversal filters in which case the samplers 

would appear at their outputs rather than at their inputs. In the 

present research, our main interest is in sampled data or digital 

implementation of the baseband receiver, and so we have represented 

the compensators of figures 3.1 and 3.2 as discrete time or sampled 

data systems. 

3.3 The Nonlinear Estimate Feedback Equalizer 

Using equation (3-28) we may rewrite the estimate of equation 

(3-26) in tha form 

~ (mT ) 
A1 r(T) d 1 w, r s--- rx(T) -t-1 - T - l+p L s (3-31)l+p N m 

m=~n o n 0 
-w 
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r(t) 
No 

x(t) or 

R(w) 
.... 1 

1 + pn 

... 
so 

No 
sampler 

(to decision 
circuit) 

unrealizable 


sampled 


data filter 


co, 4» (mT ) jwmT
sI rN s e 

Ill""- 0 

Figure 3.2 An alternate structure for the optimum 
unrealizable linear receiver. 

.. 
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If we 	now substitute equation (3-6) for x(t) in this we obtain s
A 

0 as 

P 1 •, + (mT )n 8 + 1 fn(-r) r(-r) d-r + r r s (s _ 8 ) 
so • 	 l+p o l+p N 

0 
l+p L N 

0 
m m 

n n 	 n m-­- . . . 	. (3-32) 

From 	this we may then obtain the estimation error (s - s0 ) at time
0 

t•O as 

. . . . (3-33) 

The first two terms on the right-hand side of equation (3-33) are caused 

by the additive noise n(t) and can be reduced only by increasing the 

energy or power in the transmitted signal. The third term, however, 

is caused by errors in compensating for intersymbol interference due 

to errors in estimating earlier and later symbols sk (k ~ 0). This 

term can be reduced if the linear estimates sk are replaced by some 

other estimate, say s:, which has a smaller estimation error (in the 

mean-square sense). That is, if 

at all 	sampling times t 3 kT (k ~ 0) then the mean square error s 

E{(s - s ) 2} at t=O will be reduced compared to that of the optimum
0	 0 

linear receiver, and as a result improved error performance will be 

obtained. 

The obvious answer to this is to replace the linear estimates 

sk in equations (3-31) and {3-33) with the a posteriori mean values or 

Bayes minimum mean-square e~ror estimates 
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(- < k 	 < co) (3-34) 

where X is a realization of the received signal X: {x(t), -co< t <co}. 

This implies that rather than use the optimum linear receiver, we should 

use the Bayes receiver. The Bayes estimate sk* has the smallest mean-

square error of any estimator whether it is linear or nonlinear (Deutsch, 

1965). Now for digital transmitted symbols sk' equation (3-34) may be 

expanded to the form 

(-co < k 	 < co) (3-35) 

where i is the set (~ 1 , ••• ,~m) of m possible symbol values. Bowen (1969) 

has shown that the Bayes minimum probability of error receiver is a very 

complex nonlinear structure. This complexity arises in the computation 

of the a posteriori probabilities p(skjX) and thus the Bayes minimum 

mean-square error receiver defined by equation (3-35) will involve the 

same complex nonlinear structure. Since one of our objectives in the 

present investigation is to design an equalizer or receiver which is 

comparable in complexity to conventional equalizers, we must seek some 

other structure than the Bayes receiver of equation (3-35). 

Let us begin by recalling the received baseband signal x(t) 

of equation (2-99) which may be written as 

x(t} = l sk r(t-kT ) + n(t)
k s 

Let us 	assume, as previously, the following: 

(i) 	 the symbols {sk} are statistically independent, equiprobable 

and binary with the values ~1. 
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(ii) 	 n(t) represents stationary Gaussian noise with known autocorrela­

tion function R (T).n 

(iii) 	 The received pulse shape r(t) is known a priori at the receiver. 

Let us concentrate our effort now on the estimation of a single symbol, 

say s • Then given a realization of the received signal X: {x(t), t E I}
0 

where I denotes an interval of observation stretching to both sides of 

s
0 
r(t), we want to estimate s

0 
from X. 

In the following let us suppose an interval of observation I 

stretching over MTs seconds or M signalling intervals to either side 

of s 0 r(t), and let us assume for the moment that sj = 0 ljl > M. We 

will, as it turns out, be able to remove this assumption later. In 

any event, we can by .using this assumption write 

M 
x(t) • ~ skr(t-kTs) + n(t) • (3-36) 

k•-M 

Now let us make the idealizing assumption that we have available 

at the receiver, the sequence of symbols 

(3-37) 

consisting of all the transmitted symbols lying within the interval of 

observation I except s 
0 

which is the one we wish to estimate. Then 

let us define as our optimum estimate of s 0 , the a posteriori conditional 

cean value 

(3-38) 

This estimate is the Bayes minimum mean-square error estimate of s 
0 

given the realization of the received signal X and the symbol sequence 
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S' of equation (3-37). We shall call s the conditional Bayes estimate 
0 

of s
0 

, since it is related to the Bayes estimate s~ of equation (3-35) 

by the relationship 

s* • \" 8 p(S')o L o ­
S' 

where the summation is over all possible sequences~·. In the binary 

case there are 22M such sequences. The conditional estimate s will
0 

be a nonlinear function of X and S' unless s 0 , X and S' have jointly 

Gaussian statistics. 

Now the conditional Bayes estimate -s 
0 

of equation (3-38) may 

be expanded to the form 

(3-39) 


where p(s 0 IX,~') is the conditional probability function of s and~0 

is, as before, the set (~1 , ••• ,~ ) of m > 2 possible values of the 
m ­

symbol s 0 • Now by applying Bayes rule to the probability function in 

equation (3-39), we obtain* 

p(s lx,s•)
0 -

= 
px (X I~' ,s0 )p(s

0 
I~') 

Px<xl~') 
(3-40) 

Then since the transmitted symbols have been assumed to he statistically 

independent 

and equation (3-40) becomes 

*we note here that the functions Px(X l , . ) are conditional 
probability density functicns, not discrete probability functions. 
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p (XjS',s )p(s) 
p(s jx,s') • x - o o (3-41) 

o - Px<xl~') 

Now the probability density function p (XIS') may be written as
X ­

and applying Bayes rule to the right hand side, we obtain the result 

p <xis') •' p(s )p <xls',s) (3-42)
X- [.OX- 0 

i 

Then substituting equations (3-42) and (3-41) into equation (3-40) we 

obtain the estimate s as 
0 

\ s p ( s ) p (X IS ' , s )Li 0 0 X - 0 

(3-43)s - -------------------­0 '~ p(s )p cxls',s)
[.i 0 X ·- 0 

In the case of binary (m=2) symbols having the values ±1, this last 

result may be rewritten in the form 

p cxls',s •1)- p <xis' ,s •-1)
X - 0 X - 0 (3-44) 

p (Xjs',s •1) + p (Xlis',s •-l)
X - 0 X - 0

which is the desired result. The problem of finding the optimum estimate 

s 
~ 

has now been reduced to that of evaluating the conditional probability
0 

density function Px<xl~',s0) as a function of s •
0 

Let us now define the sequence 

as the sequence of all transmitted symbols lying within the observation 

interval I, so that 



84. 

P <xls',s >- p <xis> . 
X - 0 X ­

Then if we know X and ~ we may regard 

M 
N : 	 {n (t) • x(t) - L skr(t-kT )} (3-45)

8 8 k•-M 8 

as a realization of· a Gaussian noise signal with autocorrelation function 

R (T). Then using abstract vector space notation (Vulikh, 1963), where 
n 

the inner product of any two functions ~(t) and n(t) is defined as 

[~,nJ • J ~(t)n(t)dt , 
I 

we may write the probability density function px(~ §) as 

1 ~ p (X S) • p (N ) • Cexp{- -2[n ,R * n ]} (3-46)
x I- n s 	 s n 8 

where 

(i) C is a constant 

(ii) * denotes convolution 

(iii) R-l is the inverse kernel (Van Trees, 1968) where 
n 

R * (R-l * n ) ~ n n n s s 

Now let us define the shorthand notations 

(3-4 7) 

and 

~k • [r(t), R
-1 * r(t-kT )] = ~ k (3-48)
n s ­

We may then rewrite equation (3-46) in the form 

(3-49) 

wh1Cl :is the desired conditional probability denr.i ty function. 
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In order to obtain the optimum estimate 8 , let us write the 
0 

exponent in equation (3-49) to explicitly show s , the symbol which we 
0 

wish to estimate. We may then write after some manipulation 

M, 1 2 

px(XI!> • C'exp{s y - s l sk'k - - s ' 
2o o o k•-M o o 

(3-50) 

I 

where Ik implies that the k=O term has been removed from the various 

summations. Substituting equation (3-50) into equation (3-44), and 

cancelling those terms common to both the numerator and the denominator, 

we obtain the optimum estimate s at time t=O as 
0 

M, M, 
exp{y - L Skfk} - exp{-y + l sk'k}0 k=-M 0 k•-M s (3-51)

0 - M, M, 

exp{y

0 
- l Skfk} + exp{-yO + l Sk'k}

k•-M k•-M 


Equation (3-51) may then be rewritten to obtain the optimum estimate 

-s in closed for.n as 
0 

s • tanh{y -
M,
l sk'k} (3-52) 

o o k•-M 

This expr~ssion specifies the operations which must be performed on the 

~eceived signal x(t) to obtain the conditional Bayes estimate s at 
0 

time t=O, given the availability of the symbol sequence !' at the 

receiver. The problem now is to interpret this estimate so that we can 

obt.lin a receiver structure fi:om it. 
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The estimate -s in equation (3-52) is specifically the estimate 
0 

of the symbol s at time t•O. The optimum estimate of the transmitted 
0 

symbol in any other T second symbol period, say the nth, may be found s 

by simply shifting the observation interval I by nT seconds. Thus s 

the conditional Bayes estimate sn of the symbol sn may be written as 

M, 
sn - tanh(yn - l sk+n•k> (- < n < co) (3-53) 

k•-M 

where now the observation interval I extends MTs seconds to either side 

Thus far in this analysis we have assumed a finite observation 

interval I. In practice the response of any physical channel will 

extend to infinity, although it will be negligibly small after a finite 

time. For any physical channel of interest the series 

will thus converge, since the +k represent the sampled autocorrelation 

properties of the received pulse shape r(t). There are thus no 

difficulties in extending the observation interval I to infinity, and 

we may, therefore, write 

co, 

8 tanh(y - l sk+k) (3-54)a
0 0 k=­

or in a more general form 

(3-55) 

where l is the observatio.n :!..\terva~ of any desired length. 
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The optimum conditional Bayes estimate s of s at time t•O 
0 0 

has been derived under the assumption that the sequence !' of transmitted 

symbols in all other symbol periods is available to the receiver. In 

practice of course this assumption will never be fulfilled, and therefore 

in order to obtain a receiver which can be implemented, we must, to 

some extent, sacrifice the optimality of equation (3-55). What we do 

have available (in principle) are the estimates {s } of the symbols !'. 
n 

We may, therefore replace the symbol sequence~' in equation (3-55) with 

the estimates {s } to obtain the sub-optimum estimate. 
n 

8 • tanh(y - (3-56)
0 0 

Provided that the estimates {sn} are good estimates of the corresponding 

symbols !', the behaviour of the sub-optimum estimate in equation (3-56) 

will be very close to that of the optimum estimate in equation (3-55). 

The sub-optimum estimate in equation (3-56) has the very attractive 

property of being recursive, and as a result any resulting receiver may 

be implemented as a feedback structure as we will now show. 

Let us start with the quaqtity y
0 

in equation (3-56). From 

equation (3-47) it may be written as 

-1 
y • [x(t), R * r(t)]o n (3-57) 

and this is seen to be the result of passing the received signal x(t) 

through a filter matched to the pulse-shape r(t) in a background of 

additive Gaussia."l noise with autocorrelation function R ('r). The 
n 

weighting function of this filter is defin~d as 

g(t) = R-l * r(t) (3-58)
n 
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and in the particular case when the noise is white with power spectral 

density N0 , as in the preceding section, we have 

g(t) • r(t) (3-59)
N 

0 

Equation (3-57) may then be written in the form 

y • J x(t) r(t) dt (3-60) 
o I No 

In a similar manner, the quantities +k in equation (3-56) are given by 

equations (3-48) and (3-58) as 

(k e: I) • (3-61) 

When the noise is white so that equation (3-59) applies, we may write 

(k £ I) (3-62) 

where + (kT ) is the sampled autocorrelation function of the received r s 

pulse shape r(t) defined in equation (3-19). 

Let us now substitute equations (3-60) and (3-62) into equation 

(3-56) to obtain the estimate s as 
0 

so m tanh( ! J x(t)r(t)dt (3-63) 
o I 

when the additive noise is white with power spectral density N • 
0 

Compariag th~ quantity 

i J x(t)r(t)dt (3-64) 
o I 

in equation (3-63) with the optimt:m linear estimate of equation (3-31), 
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we see that except for the multiplying factor (l+p )-l in equation (3-31)
n 

and the nonlinear estimates sk (k ~ 0) in equation (3-64), the two are 

identical. We, therefore, see that the nonlinear estimate s of equation
0 

(3-63) may be implemented as a feedback structure similar to that shown 

for the linear estimate in figure 3.2. The only difference between 

the two structures is that in the nonlinear case, there is a zero-memory 

nonlinearity tanh(•) included in the feedback path as shown in figure 

3.3. This structure which we shall call the (nonlinear) estimate 

feedback receiver is very similar to that suggested by de Buda (1965). 

de Buda suggested replacing the linear estimates s (m ~ 0) in equationm 

(3-31) with the a posteriori mean values E{s Is } (m ~ 0) to obtain m m 

improved performance compared to the linear receiver. In the case of 

binary, anti-podal, transmitted symbols {s } having the values ±1,m 

de Buda then obtained the tanh(•) nonlinearity which we have derived 

in this section, however, he did not show that the resulting receiver 

is an approximation to the conditional Baye's estimator E{s IX,S'}.
0 ­

He did, however, show that the resulting estimation error is always 

less than that obtained from the corresponding linear receiver and 

hence the performance of the estimate feedback receiver is better than 

that of the linear receiver. The structure of figure 3.3 is unrealizable 

because of the requirement of delay into the future in the feedback 

path. We will deal with this problem in a later section. 
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matched 
filter 

x(t) r(t) 
N 

0 

sampler 

tanh( •) 

unrealizable 

transversal 

filter 

jwkT
s e 

50 

(to decision 
circuit) 

Figure 3.3 Basic (unrealizable) structure of nonlinear 
est~ate feedback receiver. 
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3.4 The Decision Feedback Receiver 

Let us first examine the function 

X 
y • tanh(-) (c > 0)

c c 

where c is a positive constant. If we now take the limit as c approaches 

zero, we obtain the result 

lim y • lim tanh(x) • sgn(x) (3-65)
c+O c c+O c 

where sgn(x) is the signum function defined by 

X > 0 

X • 0 (3-66) 

-1 X < 0 

If we then apply equation (3-65) to the nonlinear estimate in 

equation (3-63) we obtain the result as the noise power spectral density 

N approaches zero 

sgn(x) = { ~ 

0 

s I + sgn{ JX(T)r(T)dT- r', (kT )sgn(sk)} (3-67)
0 N' +0 I ke: I r s 

0 

The righthand side of equation (3-67) is the decision feedback receiver 

developed by Austin {1967). It may be implemented by the same structure 

as that shown in figure 3-3 except that in this case the tanh(x) non~ 

linearity is replaced by the sgn(x) nonlinearity of equation (3-66). 

In other words the decision-feedback equalizer is a small noise limiting 

approximation to the sub-optimum nonlinear estimate feedback equalizer 

descdbed by equation (3-63). 

The implication of equation (3-67) is that at low additive noise 

levels the decision fef:!dback and the nonlinear estimate feedback receivers 
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are essentially equivalent in performance. However, at high levels of 

additive noise (N0 large) the approximation of equation (3-67) tends to 

fail and as a result the nonlinear estimate feedback structure exhibits 

superior performance. In later chapters where we carry out simulations 

of the two structures, we shall see that this is essentially true. 

3 .S Realization of the Receiver Structure 

In the foregoing, we have developed a nonlinear feedback 

receiver structure which has been shown to be an approximation to a 

conditional Baye's estimation structure. Because of the requirement of 

negative delay (delay into the future) within the feedback path, this 

structure is not physically realizable. The problem now, therefore, is 

to find a physically realizable approximation to this optimum structure 

which, hopefully, is comparable in complexity to conventional (trans­

versa! filter) equalization receivers. 

Let us start with the recursive unrealizable nonlinear estimate 

s at time t=O which is given by equation (3-63) as 
0 

1 J · ' 'r(kTs)
so - tanh( N ·x('r)r(t)dt - L ~N~..;;..... sk) (3-63) 

o I kti o 

A

Now let us call the input to the tanh( •) nonlinearity* s • It may be 
0 

written as 

*we use the same notation here as for the optimum linear estimate 
of equation (3-31). We do this because if the parameters of the optimum 
linear receiver are found, the optimum input to the nonlinearity will be 
identical to the linear es timc.te s except for the replacement of the 
linear estimates sk (k ~ 0) by the nonlinear estimates sk (k ~ 0). Also 
in chapter 4, we will find tne optimum parametern foz.· the nonlinear 
receiver using the same linear algorithm as w·ould be used for the linear 
receiver. 
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(3-68) 


~ 

whiCh except for the nonlinear estimates sk (k ~ 0) in the second term 

is identical in form to the linear estimate of equation (3-31). The 

observation interval I is the time interval extending to either side 

of t•O over which our observation of x(t) is considered to extend. In 

theory it may be.infinite in length. It may also be considered 

equivalent to the set of integers over which the index k in equation 

(3-68) extends. Now let us split I into the sum of two parts I+ and 

I_ where 

{k: k > O} corresponding to those signalling intervals which 
occur after t=O 

and 

I_ 	 {k: k < 0} corresponding to those signalling intervals in I 
which occur prior to t=O. 

We may then rewrite equation (3-68) in the form 

+ (kT ) • (kT ) r s .~ r s (3-69)N sk - r N 
0 k£I 0 

The second term in equation (3-69) compensates for intersymbol interference 

caused by symbols (or pulses) in signalling intervals occurring after t=O 

using a weighted sum of future nonlinear e~timates sk (k > 0). The 

third term performs a similar compensation for intersymbol interference 

due to symbols in previous signalling intervals using a weighted surn of 

previous estimates s, (k < 0).
K 
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Neither 8 of equation (3-63) nor s of equation (3-69) represent
0 0 

physically realizable systems since the future nonlinear estimates sk 
(k > 0) cannot be made available at t•O. However, the previous nonlinear 

estimates sk (k < 0) can be made available at t•O by means of a nonlinear 

feedback system. We may, therefore, implement (unrealizably) the nonlinear 

estimate s of equation (3-63) or equivalently s of equation (3-69) by
0 0 

the system shown in figure 3.4. This configuration is equivalent to 

the one derived earlier in figure 3-3. 

In the structure of figure 3-4 the block 

r(-T) R*(w)
or equivalentlyN N 

0 0 

represents a filter matched to the received pulse-shape r(t). Such a 

filter may always be realized, at least approximately, to any desired 

degree of accuracy (e.g., Coll, 1966). Also the nonlinear feedback 

system of figure 3.4 may be realized as shown provided of course the 

range of k is kept finite. 

In practice the index k may always be constrained to a finite 

r&tge, since for any real pulse shape r(t) the corresponding auto­

correlation function ~ (T) will be negligible for T outside some finite 
r 

range. In fact for almost all channels of physical interest 

where ng is the rms channel delay spread* defined by equation (2-64). 

*We use tg/2 here because by its definition 6g is an estimate 
of the total delay spread symmetrically located about the mean ct.annel 
delay. 
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We may, therefore restrict the range of k in equation (3-69) such that 

A 
k < L • [ 2f- ] (3-70) 

8 

where [x] implies the nearest larger integer to x. By so restricting 

the range of k, we obtain a similar restriction on the observation 

interval I and on the index sets I+ and I which now become 

I+ {k: k•l, ••• ,L} 

I : {k : k•-1, ••• ,-L} • 

'Equation (3-69) may then be rewritten in the form 

L -L r s - - r (3-71)
kk=l k•-1 

We point out here that because Ag is only an estimate of the channel 

delay spread, L is only an estimate of the range over which k must 

extc1nd. In practice, one would normally choose a range for k which is 

somewhat greater than L. 

The first and third terms of equation (3-71) represent essentially 

realizable quantities. The problem now, therefore, is how to realize, at 

lec~t approximately, the term 

L 

r 
k=l 

which represents the compensation for intersymbol interference due to 

symbols in future signalling periods. 

Let us begin by imposing a delay of LT
8 

seconds (1 signalling 

intervals) on esch term of s0 • We may then write the delayed estimate 
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corresponding to s as 
0 

(3-72) 

and from this we can see that if some way is found to approximate the 

nonlinear estimates sk (k > 0) in equation (3-71),-then the receiver may 

be realized by the inclusion of a delay of LTs seconds within its 

structure. In most of our analysis there is no need to explicitly show 

this delay provided that it is understood to be present in any implemen­

tation. 

At this point let us digress for a moment. If the signal x(t) 

is passed through a filter matched to the received pulse shape r(t), 

then at time t•O, the filter output, which we shall call y , may be 
0 

written as 

y • f X(T) r(T) dT 
o I No 

If we then substitute for x(T) in this, we obtain 

y = l S J r(T-mT ) rN(T) dT + J n(T) rN(T) dT (3-73) 
o m I s Im o o 

or on substituting equation (3-19) for the integral in this first term 

+ (mT }
\' r s (

Yo • l sm N + w 0) (3-74) 
on o 

where 

w(O} = f n(T) r~:) dT 
1 

is the additive noise at t=O appearing at the filter output. Using the 

signal to noise ratio Pn defined in equacic.n (3-28), we may rewrite E:quation 
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(3-74) as 

y - p s + l s + w(O) (3-75)mo n o mpO 

where we note that 

+ (mT )
I rN s I < - pn . ­ (m :1 0) 

0 

Now let us pass the L signals x(t+kT) k=l, ••• ,L through the s 


same matched filter as above. If we call the L filter outputs {yk: 


k•l, ••• ,I}, we may write 


Y • J X(T+kT ) r(T) dT (k•l, ••• ,L) • (3-76)
k I s N

0 

Then let us substitute for x(T+kT ) in equation (3-76) and expand the s 


result in the same manner as equation (3-75) to obtain 


+r [ (k-m) T ]
8

yk • pnsk + l N s + w(kT ) 
mrlk o m s 

(k•l, ••• ,L) (3-77) 

The set of filter outputs (y
0 

, y1 , ••• ,yL) may be realizably produced 

by the cascade combination of the above matched filter and a tapped 

delay line having L+l taps as shown in figure 3.5. The use of the over­

_all delay of LTs seconds allows us to produce all L+l outputs 

simultaneously. 

Now let us define a set of (L+l) tap-gains (g
0

, g1 , ••• ,gL) for 

this delay line. Then summing the weighted tap outputs, we obtain at 

time t=O, the quantity 

u ""' (3-78)
0 
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Tapped Delay Line 
with (L+l) taps Ts seconds apart 

termination 

x(t)_....,-tor 

R*(w) 
N 

0 
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filter 

Figure 3.5 	 Configuration of system to produce set of filter outputs 
(y0 , y1 •••• yL). Note the use of a delay of LTs 

seconds used to produce them simultaneously. 
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If we next define the values of these tap-gains as 

8o • 	 1 

_, (kT ) 


r s (k•l, ••• ,L) 	 (3-79)
pnNO 

we may rewrite equation (3-78) in the form 

L ~ (kT ) 
u • x('r) r('r)dT - I . r N s sk 

0 f N0I 	 k=l o 

s + 	w(kT )] (3-80)m s 

The first two terms in u are identical in form with the first two terms
0 

of s in equation (3-71). In fact the first two terms are identical with 
0 

the corresponding terms in the Bayes optimum unrealizable estimate of 

equation (3-52). The third term of equation (3-80) represents an undesired 

interference component or noise term where we note that 

¢l (kT ) '4>r (kTs) II r N s I = < 1 (k=l, ••• ,L)
Pn o 1 ¢r(O) 

We thus see that u is a linear approximation to the forward (present and 
0 

future) components of the Bayes optimum unrealizable estimate of equation 

(3-52). Equation (3-80) may, therefore, be used as a realizable linear 

app=oximation to the first two terms of s in equation (3-71) or equivalently0 

to tbe corresponding terms of s0 in equation (3-63). 

Thus, if we use equation (3-78) or (3-80) in equation (3-63) we 

obtain a realization of the nonlinear estimate feedback receiver as 

( L -L ~ (kT )r ss = tanh(J· x{r)r(r)dT + l · g1Y.1 - l 	 (3-81)
0 	 NI 	 ---- i=l • k=-1 0No 

or equivalently 
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-L + (kT ) r sr (3-82)
Nok•-1 

where in equation (3-82) we have made use of the definition of the 

{yi: _i•l, ••• ,L} given by equation (3-76) and where the gains gi 

(i•O,l, ••• ,L) are defined by equations (3-79). The receiver structure 

implied by equations (3-81) and (3-82) may be implemented by the 

combination of a matched filter and two transversal filters shown in 

figure 3-6. In the diagram we have shown a sampler directly following 

the matched filter since in succeeding chapters we intend to employ 

sampled data transversal filters. 

In the above we have described a realization of the nonlinear 

estimate feedback receiver in which a linear approximation to the 

optimum compensation for intersymbol interference due to future symbols 

was used. We will now discuss a realization of the receiver which uses 

a nonlinear approximation to this component of the compensation. 

Suppose we take the hyperbolic tangent of the quantities yk 

(k=l, ••• ,L) defined in equations (3-76) and (3-77) to produce 

(k•l, ••• ,L) (3-83) 

The yk (k=l, ••• ,L) are a set of nonlinear estimates of the future symbols 

sk (k=l, ••• ,L). In the absence of the interference term 

4J [(k-n)T ]r s 
s

N m 
0 

and under the assumption that the noise terms w(kT) (k=l, ••• ,L) are s 

uncorrelated, the estimates yk (k=l, ••• ,L) are the optimum Bayes 

estimates (Appendix B) of the future symbols sk (1.:""1, ••• ,L). The.y may 
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thus be used in equation (3-71} as an approximation to the nonlinear 

estimates sk (k•l, ••• ,L} so that we now obtain 

(3-84} 

We may also rewrite the corresponding nonlinear estimate s of equation
0 

(3-63} as 

L + (kT } -L 
s • tanh( x(T) r~T} dT - l rN s yk - l (3-85}

0 fI o k•l o k•-1 

The receiver structure implied by equations (3-84) and (3-85) may be 

realized by the nonlinear feedback structure of figure 3.7 which thus 

represents another possible implementation of the nonlinear estimate 

feedback receiver. 

In practice, because of the unwanted interference term in the 

yk (k=l, ••• ,L), the tap-gain values which minimize the mean-square 

error in the forward {non-recursive) sections of both the above 

receiver structures will vary from ~he nominal values used in the above 

arguments. We will deal with this problem in chapter 4. 

In this section we have derived two realizable approximations 

to the nonlinear estimation structure defined by equation (3-63). In 

the remainder of this thesis, we shall consider only the structure of 

figure 3.6 which ~ses a linear compensation term for intersymbol 

interference due to symbols in futute signalling periods. We shall do 

this for the following reasons: 
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Figure 3.7 	 Basic structure of realizable nonlinear receiver using 
a nonlinear approximation in the forward section. 
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(i) 	 The structure of figure 3.6 is simpler to implement because the 

forward section is linear rather than nonlinear, and one of 

our objectives is the development of receiver structures which 

are comparable in complexity to existing linear equalization 

receivers. 

(ii) 	 Except for the form of the nonlinearity in the feedback path, 

the structure of figure ~6 is identical to the decision 

feedback receiver (Austin, 1967). We, therefore, can and will 

in later chapters obtain a direct measure of the change in 

performance induced by the use of the tanh(•) nonlinearity 

rather than the threshold detector used by Austin. 

(iii) 	 It is simpler, at least mathematically, to apply linear adaptive 

algorithms to the structure of figure 3.6. In chapter 4, we 

shall embed the receiver in an adaptive structure which uses 

these li.near techniques. 

3.6 	 The Use of a Saturating Limiter 

In some applications, particularly if an analogue implementati.on 

of the receiver is used, the use of the tanh(•) nonlinearity may be 

both difficult and costly. At the same time, ho~·everf we may wish to 

preserve its properties, in particular its high noise properties. We 

n<'te that when the noise power spectral density N0 i.s large the input 

to the tanh ( ·) nonlinea·d ty is small in magnitude. As a result the 

t&nh( •) nonlinearity when N0 is large tends to behave a.r; a linear device 

and the feecback system in figure 3*6 &e a linear filter. This tends to 

http:implementati.on


106. 

avoid the small "signal suppression effect" (Davenport and Root, 1958) 

normally associated with zero-memory nonlinearities (for example the 

threshold detector or hard limiter sgn(•)). In the interests of 

simplicity, we would therefore like, in some cases, to replace the 

tanh(•) nonlinearity, by some other form of limiter having most of its 

favorable properties. 

Recalling now that the slope of the function tanh(x) in the 

region of x small (x = 0) is close to unity, an obvious form of non­

linearity with which to replace tanh(x) is a saturating limiter defined 

by the relationship 

x ~ -a 

x• -a < x < a (0 < a < 1) (3-86) 

x > a 

where a, the limiter saturation value, lies between zero and one. We 

note that for a = 0, we have the nonlinearity sgn(x) and the receiver 

is the decision feedback equalizer. The best value of a appears to 

be to some extent arbitrary, and should be determined by experiment in 

a particular application. We will discuss this in a later chapter. 



CHAPTER 4 


The Adaptive Equalizer 


In chapter 3, we applied Bayes estimation theory to derive a 

nonlinear estimate feedback receiver for the extraction of binary anti ­

podal transmitted symbols from a noisy, dispersed received signal or 

pulse train. This structure was derived under the assumption that the 

overall channel impulse response or equivalently the received pulse 

shape was time-invariant and known a priori at the receiver. This 

assumption and the additional assumption of wide sense stationary additive 

noise with known autocorrelation function lead to a time-invariant 

optimal receiver structure. 

In practice, the received pulse shape is almost always unknown 

at the receiver, and in addition is usually randomly time-varying. 

Becaw;e of this, ·we shall, in this chapter, formulate an adaptive 

receiver using as its basis the nonlinear estimate feedback structure 

developed in chapter 3. The adaptive receiver has the ability to 

iteratively adjust itself to an unknown channel response (or received 

pulse shape) , and in addition can track or follow the random time 

variations in the channel response. 

4.1 The Fixed Optimum Equalizer 

The basic receiver structure which we shall consider in this 

chapter is the one shown in figure 3-6 and defined. by equations (3-81) 

and (3-82). It consists of the cascade connection of the following 

(107) 
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three stages: 

(i) 	 a linear filter matched to the received pUlse shape r(t). This 

filter maximizes the signal to additive noise ratio at its output 

and also equalizes or compensates for phase distortion in the 

frequency spectrum of the received signal. 

(ii) 	 a linear transversal filter which linearly compensates for inter-

symbol interference (time dispersion) due to symbols or pulses 

occurring after the present symbol. 

(iii) 	 a nonlinear feedback system having a zero-memory nonlinearity 

(ideally tanh(·)) followed by a transversal filter in the feed­

back path. It provides compensation for the intersymbol inter­

ference due to symbols in signalling intervals occurring prior 

to the present one. 

The subsystem formed by (ii) and (iii) which compensates for intersymbol 

interference or channel time dispersion is known as an equalizer. It 

wil.l be our primary concern in this chapter. 

In any real communications system, the received pulse shape r(t) 

is usually both unknown and time-varying. Therefore the use of a fixed 

matched filter as shown in figure 3-6 is not feasible*. The usual 

practice, and one which we shall follow, is to replace the matched filter 

*In some recent work Mark (1970) has developed an adaptive filter 
whuse performance approaches that of a matched filter as it iteratively 
adjusts itself. In most point-to-point links, however, the signal to 
additive noise ratio is high enough that the processing gain of a matched 
filter is not required. 
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with some suitable time-invariant, bandlimiting filter which limits the 

additive noise power. This of course causes some loss in overall receiver 

performance but in most cases this loss is small. One often-used choice 

for this filter (Proakis, 1969) is one which is matched to the transmitted 

pulse shape. 

Let us suppose that this filter is defined by its impulse response 

a(t). Then for a receiver input signal of the form 

y(t) • 	 r sk r(t-kT ) + w(t) (4-1)
k s 

where 

(i) 	 the sk (-co < k .< co) are the binary information symbols which 

we wish to detect. 

(ii) 	 r(t) is the unknown, time-varying received pulse shape. 

(iii) 	 w(t) is wide sense stationary additive noise. 

we may write the output of the filter a(t) or equivalently the equalizer 

input as 

x(t) • ~ sk Ja(t)r(t-t-kTs)dt + Ja(t)w(t-t)dt 	 (4-2) 

where the limits of integration are assumed to be suitably defined. If 

we then define 

h(t) • Ja(t)r(t-t)dt 

and 

n (t) • 	 fa(t)w(t-t)dtc 

we may rewrite equation (4-2) as 

x(t) = I skh(t-kT ) + n (t) (4-3)
k s c 
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where h(t) is the effective overall channel impulse response* or received
/ 

pulse shape at the equalizer input and n (t) is the additive noise. 
c 

In the receiver structure of figure 3-6, we showed a sampler 

operating on the matched filter output at the times t=nT (-~ < n < ~).
s 

The equalizer is then a sampled data system. Equivalently, we could have 

shown the overall receiver.as an analogue system with a sampler at its 

output producing the sequence of estimates {sn} or equivalently {sn} 

at the times t-nT (~ < n < ~). But, because we are mainly interested s 

in the implementation of the equalizer using digital circuitry, we have 

placed the sampler preceding the equalizer. It then operates on the 

signal x(t) to produce the sample sequence {x(nT )} 
~ 

where the sample
s n=-co 

at time t=nT has the form s 

x(nT ) = 2skh(nT -kT ) + n (nT ) (-co < n < ~) (4-4)
s k s s c s 

If we normalize the sampling period T to unityt, this may be written 
8 

in the simple form 

x(n) = I skh(n-k) + n (n) (-~ < n < co) (4-5)
k c 

Now let us consider the estimation of an arbitrary S}~bol, say 

sn at tim~ t•nT (-co< n <co). In chapter 3, we derived a fixed, optimum
8 

equalizer structure having the nominally optimum tap gain values shown 

in equations (3-81) and (3-82}. However, in practice the received puL9e­

*By doing this we have lumped the filter res-ponse a(T) in with the 
channel response. 

twe do this both for convenience of notation, and because it 
provides a natural way to simulate {x{n)} on a computer. 

http:receiver.as
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/ 

shape h(t) and its autocorrelation function are usually unknown, and also 

the pulse shape h(t) changes with time. The optimum equalizer tap-gain 

values will, therefore, be unknown and time-varying. In order now to 

avoid having to know explicitly these optimum values, we shall make the 

equalizer adaptive or self-adjusting. Then if we define {gi(n); i=O,l, •••M} 

and {fj(n); j•l, ••• ,L} as the current values (not in general optimum), at 

the nth sampling time, of the non-recursive and recursive gains respectively, 

we may rewrite the nonlinear estimate s - of equation (3-81) in sampled
n 

form as 

M L 
s -tanh( r gi(n)x(n+i)- r fj(n)s -j). (4-6) 

n i•O j•l n 

Equivalently, we may write the input to the tanh(·) nonlinearity as 

M L 

s - r gi(n)x(n+i) - r fj(n)sn-j (4-7)n 
i=O j=l 

which since it is a linear combination of the available data {x{n+i); 

i•O,l, ••• ,M} and {s j; j=l, ••• ,L}, we shall refer to as the linear 
n-

estimate of s • n 

We have made the number of taps on the non-recursive and recursive 

delay lines different (note the values M and L in equations (4-6) and 

(4-7)). We have done so because a matched filter is not being used 

preceding the equalizer, and hence the overall channel impulse response 

at the equali~er input cannot be guaranteed to be symmetric about its 

peak value as it can when such a filter is used. 

The problem n.ow is to find those values of both the non-recursive 

gains {gi(n)} and the recursive gains {fj(n)}, at each sampling time n, 

which are optimum in the sense that the mean-square error E{(s -s )2
}n n 
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is a minimum. These optimum tap gain values are defined by the 

simultaneous solution of the M+L+l equations* 

a - 2 
a ( ) E{(s - s ) } • o (k•O ,1, ••• ,M)
gk n n n 

-=-=--a:--:- E{(s - s )2} • o (m=l, ••• ,L)a£ (n) n n 
m 

at each sampling time n. For the estimate feedback equalizer these 

equations may readily be written in the form 

· 2 a
-2E{[l- tanh (s )J[(s - tanh(s )) s ]} = o (kcO,l, ••• ,M)

n n n agk(n) n 

-2E{[l- tanh2 (s )][(s - tanh(s >> ____a__ 8 ]} = o (m==l, ••• ,L)n n n a£ (n) n m 

where 

s .. tanh(s ) • n n 

But these equations do not have a unique solution for the (optimum) 

tap gain values. That is the mean square error is not a unimodal function 

of the tap gains {gi(n)} and {fj(n)}, and thus the equations have more 

than one solution. One solution occurs when the tap gains become very 

large in magnitude so that 

.. 
s .... co 

n 

*These equatic~s provide only necessary and not sufficient 
conditions for the mean-square error to be a minimum. 
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8 • tanh(s > ~ ±1n n 

In this case no compensation for intersymbol interference takes place 

and the equalizer does not decrease the error-rate. 

We note that this effect was actually observed in some computer 

simulations, using these derivatives in a steepest descent algorithm to 

adjust the tap gains. In these tests we found that the tap gains grew 

without limit, and eventually forced the equalizer output very close to 

the values ±1, but that virtually no compensation for intersymbol 

interference took place. 

In the present work, in order to avoid this problem, we shall 

2
minimize the mean-square error E{(s -s 

A 

) } in the linear estimate s n n n 

at the input to the tanh(·) nonlinearity*. The mean-square error 

E{(s -s )2
} is a unimodal, convex (in fact quadratic) function of the n n 

tap gains {gi(n)} and {fj(n)} and the necessary conditions 

a aE{ (s -8 )2} = -2E{(s -8 ) s } ""' 0 (k=O ,1, ••• ,M)
agk(n) n n n n agk(n) n 

a aE{(s -s )2} = -2E{(s -8 ) s } = 0 (mal, ••• ,L)a£ (n) n n n n of (n) n m m 

for it to be a minimum, have a unique solution for the optimum tap gain 

values. The use of this criterion also allows us to use a linear 

adaptive algorithm for iterative adjustment of the equalizer tap gains, 

and as we shall see in chapter 5, very satisfactory perform.ance is 

*rn the case of decision feedback, we recall that this nonlinearity 
must be replaced by a hard limiter. 
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obtained using this criterion. 

Now let us consider E{(s -8 )2} in somewhat more detail. 
n n 

Substituting equation (4-7) into it and expanding the result, we obtain 

M L 

- E{s

2
}- 2 I gi(n)E{x(n+i)s } - 2 r fj(n)E{s -js } 


n i=O 	 n j•l n n 

M M 	 M L 
+ 	l I gi(n)gj(n)E{x(n+i)x(n+j)}- 2 r l gi(n)fj(n)E{x(n+i)s _.} 

i•O j=O i=O j•l n J 

+ 
L
I 

L
I fi(n)fj(n)E{s .8 j} 	 (4-8)

i•l j•l 	 n··1 n­

? 
We now want to minimize E{e-} with respect to the two sets of tap-gains

n 

2A necessary condition for E{e } to be a minimum is given (as
n 

stated above) by the equations 

aE{e2 }
n = 0 (k=O , 1 , ••• ,M) (4-9)

agk(n) 

and 
23E{e }n ,., 0 (m=l, ••• ,L) (4-10)

()f (n)
m 

2whicl1 are equivalent to saying that for E{e } to be a minimum, its 
n 

gradi.ent with respect to the tap-gains must be zero. Now let us 

consider the matrix 



115. 


a 2E{e2}
n 

a 2E{e2}
n 

Q-

agi(n)agk(n) 

-- ­
a 2E{e2}

n 
af,e(n)agk(n) 

agi(n)afm(n) 
I------- ­I 
I a 2E{e2} 
I n 

a£l (m) afm(n)I 

(i,k=O,l, ••• ,M) 

(l,m=l, ••• ,L) 

This matrix is symmetric about its main diagonal with positive diagonal 

terms. It is, therefore, at-least positive semidefinite, and this 

2 ensures that E{e } is a convex function of the tap gains {g.(n)} and 
n · 1 

{fj(n)}. This implies that steepest descent and other related techniques 

may be used to find the minimum mean-square error point (Gersho, 1969a), 

where equations (4-9) and (4-10) are satisfied. In most cases, Q is 

positive definite. Its inverse then exists, and we may, at least in 

principle, solve equations (4-9) and (4-10) directly to obtain the optimum 

tap gains which we shall call {gi (n)} and {fj (n)}. 
0 0 

Now let us obtain the equations which define the optimum tap 

2gains in more explicit form. Taking the derivatives of E{e } as indicated 
n 

in equations (4-9) and (4-10), we obtain 

oE{e2} M 

-=--~n-:- = -2E{s x(n+k)} + 2 I gi (n) E{x(n+i)x(n+k)}

agk(n) n i~O 

L 
-2 \L f.(n) E{s jx(n+k)}

J n-
j=l 

= -2E{(s -s )x(n+k)}n n 

• -2E{enx(n+k)} (k•O , 1 , ••• ,M) (4-11) 
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and 

3E{e2} M L 
a£ (:) • 2E{s s } -2 L gi(n) E{x(n+i)s . } + 2 L fj(n) E{s js l 

111 n n-m i•O n-m j•l n- n-m 

- +2E{(s -8 )s }n n n-m 

• +2E{e 8 } (m=l, ••• ,L) (4-12)n n-m 

Then substituting these last equations into equations (4-9) and (4-10) 

respectively, we obtain the M+L+l equations 

M L 
L gi(n)E{x(n+i)x(n+k)}- L fj(n)E{s jx(n+k)} - E{s x(n+k)} = 0 

i•O j=l n- n 
(k=O,l, ••• ,M) (4-13) 

and 

L M
r fj(n)E{s js } - L gi(n)E{x(n+i)s } + E{s s } = 0

j=l n- n-m i=O n-m n n-m 

(m=l, ••• ,L) (4-14) 

which define the optimum tap-gains {g~n)} and {fj (n)}. 
0 

It is of interest at this point to compute the minimum mean-square 

{ 21error E e , .• If equations (4-13) and (4-14) are substituted into n m~n 

equation (4-8), we obtain 

? M L 
E{e2} i = E{s-}- I gi (n)E{x(n+i)s } + L £. (n)E{s .s} (4-15) 

n m n n i=O 0 n j=l Jo n-J n 

This may readily be put in the form 
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(4-16) 


-'\ 
where en is the estimation error (s -8 ) when the tap gains have their 

o n n 

optimum values. Equation (4-16) is the standard form obtained for the 

minimum mean-square error in all linear minimum mean-square error 

estimation problems (Luenberger, 1969). 

In this section, we have derived equations which define the 

optimum tap gain values for the equalizer at any arbitrary sampling 

time n (-~ < n < ~). In the next section we will develop iterative 

procedures for adaptively finding these values. 

4.2 	 The Adaptive Algorithm 

In theory the optimum tap gain values {gi (n)} and {fj (n)} at 
0 	 0 

any arbitrary sampling time - say the nth - may be found by the simultaneous 

solution of equations (4-13) and (4-14). However, this calculation requires 

a priori knowledge of the correlation properties of the available data 

{x(n+i)}~=O and {sn-j}~=l' and in practice this information is seldom 

available. It is therefore desirable to develop some form of iterative or 

adaptive procedure which i.n effect lE!arns these correlation properties as 

it goes along and uses this learned information to adjust the tap gains 

to their optimum values. 

One such iterative algorithm or procedure which has been widely 

used in implementing adaptive equalizers* is the steepest descent or 

*see for example Luc!-:y (196·~, 1965) Lucky and Rudin (196 7), 
Proakis (1969), George (1970), Nies~en (1970) and others. 
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gradient following algorithm (Widrow, 1966; Gersho, 1969a). This algorithm 

uses estimates of the gradient components or first derivatives of the 

mean-square error with respect to the tap gains to iteratively adjust each 

tap gain to within a small neighborhood of its optimum value. At the 

end of any iteration cycle, say the (m+l)st, the value of an arbitrary 

tap gain, say cj(m+l) is given by the steepest descent algorithm as 

(all gains j) (4-17) 

where cj(m) is the value of the jth gain after the mth iteration and 

(a/2) is a constant which must be chosen so that the algorithm (4-17) 

is stable and converges. 

In adaptive equalization, the basic idea is that the equalizer 

should adjust itself so that its response is approximately the inverse 

of the channel impulse response modified of course by the additive noise 

which must be fairly small for effective equalization. Thus at any 

sampling time, say the nth, the desired output is the symbol s , 
n 

uncontaminated by interference from other symbols. This implies that one 

tap gain, denoted the reference gain, and usually the gain corresponding 

to the data sample x(n), should be the dominant gain. The only reason 

that any other tap gains should be non-zero is to attempt to compensate 

for intersymbol interference caused by channel time dispersion. This 

is readily seen from equation (3-82). 

In implementing the gradient following algorithm, a problem 

arises as to which gain is the dominant or reference gain. Each tap gain 

performs a non-stationary random walk which, provided the algorithm is 
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correctly specified, converges in the mean to the optimum value. 

However, the random walks of the various tap gains are related only 

through the estimation error en at each time n, and if all tap gains 

have the same initial value, then each is equally likely to become the 

reference gain. In such a case the equalizer may not converge, since 

there is no preferred reference gain. 

In most adaptive equalizers employing the gradient following 

algorithm, this problem is at least partially avoided by initially 

defining .one gain to be the reference tap gain, setting its value to 

unity and setting all other gains initially to zero. During adaptation 

of the equalizer, however, there is still a finite non-zero probability 

that one of the other gains will overtake the defined reference gain 

and thus become the reference gain. This causes the equalizer time 

reference frame to shift and la.rge numbers of output decision errors 

to occur. 

In the formulation of the nonlinear estimate s - of equationn 

(4-6) or equivalently the linear estimate sn of equation (4-7) we have 

implicitly assumed that the reference gain is g0 {n) (-~ < n < ~). Using 

an auxiliary function concept developed by Mark (1970), we shall now 

develop an adaptive algorithm which rigorously defines g (n) as the 
0 

reference gain. The resulting algorithm will be seen to be similar to 

that developed by Mark (1970), but there are some novel differences :f.n 

the manner in which convergence is Cl.ssured. 

The deriv~tion of the algorithm will be carried out in two steps. 

We shall first derive a. procedure for adjusting the non-recursive gains 
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{gi(n); i•O,l, ••• ,M}, and then w~ shall derive one for adjusting the 

recursive gains {fj(n}; j•l, ••• ,L}. This two part development is 

possible even though (as equations (4-13) and (4-14) indicate) the two 

sets of gains are interdependent because the resulting adaptive procedure 

requires, in both instances, a measurement of the error e a (s -5 ) at 
n n n 

each iteration time n. The error en includes the effect of the inter­

dependence of the two sets of gains thus making possible the separate 

derivation of procedures for iteratively adjusting them. 

4.2a Adaptive Procedure for Adjusting the Non-recursive Gains 

In this section, we shall derive an adaptive procedure for 

iteratively adjusting the non-recursive gains {gi(n)} to their optimum 

values. By iteratively adjusting we mean that as each new input sample 

x(n) (-m < n < m) is received and processed by the equalizer, a small 

adjustment is made to each of the tap-gains in such a way that the 

mean-square error E{(s -s )2} tends to be decreased. The procedure which n n 

we shall consider will define the gain g0 (n) (-m < n < m) as the 

reference gain by making the increments in the remaining gains {g (n);
1 

i=l, ••• ,M} dependent on the increment in g
0 

(n) at each iteration. 

Now let us write the linear estimate of equation (4-7) at the 

nth iteration (or sampling) time as 

M L 
i' : I g.(~)x(n+i)- I fj(n)s -jn i=O 1 j•l n 

(-m < n < m) (4-18) 
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where the {gi(n)} and the {fj(n)} are the current (not in general optimum) 

values of the tap gains arrived at by some iterative procedure, and where 

... 
we have included the prime on s~ for reasons which will shortly become 

clear. We shall refer to s' as the basic estimate. 
n 

The problem now is to find some means at each iteration (or 

sampling) time n of adjusting or incrementing each of the gains {g (n);
1 

i•O,l, ••• ,M} in such a way that as n increases, the mean-square error 

2E{e } decreases and approaches its optimum, minimum value. To aid in 
n 

this process, let us augments' with an auxiliary function (Mark, 1970)
n 

h(x(n),x*(n)] at each time n where x*(n) is an extrapolated or learned 

value of x(n). We then obtain 

s - s' + h[x(n),x*(n)J (4-19)
n n 

which we shall refer to as the augmented estimate. Because of the linear 

form of s'n' we shall assume that h[x(n) ,x*(n)] is a linear function, and 

because we are considering here only the non-recursive gains {gi(n)} we 

shall assume that it is a function only of the data {x(n+i); i=O,l, ••• ,M} 

in the non-recursive sectio~1 cf the equalizer. Let us then write it in 

the form 

M 
h[x(n),x*(n)] = ~ ag~(n) x(n+i) (4-20) 

i=O 

where the weights {ag (n); i=O,l, ••• ,M} are some set of increments in1

the current (non-optimum) va:'..ues of the non-recurslve tap-gains {g. (n); 
~ 

i=O, 1, •.. , M}. 

Using equations (4-18) z~d (4-20), we may write the augmented 

estimate sn at the nth iteration time as 
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M L ­s -. l (gi(n) + agi(n)) x(n+i)- r fj(n) s n-j (4-21) 
n 1•0 . j•l 

Then since the equalizer is being iteratively adjusted toward its 

optimum point, let us require that the incremental gains {agi(n)} at the 

nth iteration time be such as to make the current (non-optimum) overall 

gain values {(gi(n) + agi(n)); i=O,l, ••• ,M} equal to the gain values 

{gi(n+l)} at the (n+l)st iteration. This implies the definition 

(i=O ,1, ••• ,M) {4-22) 

and we may then write the augmented estimate of equation (4-21) in the 

form 

M L 
A s s: r gi(n+l)x(n+i)- 2 fj(n)sn-j • (4-23)n i=O j=l 

But this equation represents a non-causal system in that at the nth 

iteration time it requires a knowledge of the non-recursive gains 

{g (n+l)} at the (n+l)st iteration time. We will attempt to overcome
1 

this difficulty by introducing a learning or extrapolation process into 

the equalizer structure • 

. Let us begin by considering the conditions which define the 

optimum, minimum mean-square error point. For the basic estimate s' n 

oi equation (4-18) the opti~um valu~s {gi (n)} and {fj (n)} of the tap
0 0 

gains at the nth iteration (or sampling) time are defined by equations 

(4-13) and (4-14) as 

M L
\' ,., ­
!.. g (n)E{x(n+i)x(n+l:.)} ,_ l. fJ. (n)E{s _jx(n+k)} - E{snx(n+k)} = 0

1 0i=O j~l 

(4-13) 
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and 

L
i fj(n)E{s js l -

K
L gi(n)E{x(n+i)s } + E{s s } • o

j•l n- n-m i•O n-m n n-m 

(m-1, ••• ,L) (4-14) 

Similarly for the augmented estimate s of equation (4-23) the optimum
n 

values {gi (n+l)} of the non-causal gains {gi(n+l)} and the optimum 
0 

values {fj (n)} of the recursive gains are defined by the equations 
0 

K
Lgi(n+l)E{x(n+i)x(n+k)}-

L
l fj(n)E{s -jx(n+k)}- E{s x(n+k)} = 0 

i•O j=l n n 

(k•O,l, ••• ,M) (4-24a) 

and 

L Mr fj(n)E{s js } - Lgi(n+l)E{x(n+i)s } + E{s s } = 0 
j~l n- n-m i=O n-m n n-m 

(m=l, ••• ,L) (4-24b) 

But equations (4-13), (4-14) and (4-24) clearly define the same optimum 

po:f.nt. We may thus equate the left hand sides of equations (4-13) and 

(4-24a) to obtain, ·with the aid of equation (4-22), the result 

M
Lagi(n) E{x(n+i)x(n+k)} = 0 (k=O ,1, ••• ,M) (4-25) 

i=O 

Equations (4-25) are a set of (M+l) homogeneous equations in the 

(M+l) incremental tap gains {agi(n) }. Now it can be shown that the 

matri.x defined by 

E{x(n+i)x(n+j)} {i.,j=O,l, ••• ,M.) 
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is positive definite (Appendix C), and therefore the only solution to 

equations (4-25) is the null solution · 

agi(n)- 0 (i•O ,1, ••• ,M) (4-26) 

This is, of course, the condition to which we wish the adaptive equalizer 

to converge, since it corresponds to the gains {gi(n)} having their 

optimum values and implies that 

gi (n+l) = gi (n) (i•O ,1, ••• ,M) 
0 0 

for all iterations n 

so that no further iteration of an adaptive procedure need take place. 

However, initially at least, and in practice virtually all of 

the time the tap gains will not have their optimum values and at each 

iteration time n some adjustment of their values will take place. We 

want now to specify the incremental gains {Clgi(n)} such that at the nth 

iteration time the overall non-recursive gains have the values belonging 

to the (n+l)st iteration time. Since the gain values are never exactly 

optimum, then at the nth iteration time at least one of the 3gi(n) will 

be non-zero and we have the (M+l) inequalities 

M r agi(n) E{x(n+i)x(n+k)} ¥ 0 (k=O,l, ••• ,M) 
i•O 

Let us assume that Clg (n), the i.ncrement in the gain g (n) is non-zero. 
0 0 

Then if we delete the k=O inequality from the above and require that 

M
l Clgi(n) E{x(n+i)x{n+k)} = -ag (n) E{x(n)x(n+k)} 

i=l 
0 

(k=l, ••• ,M) (4-27) 
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we have a set of M non-homogeneous equations in M unknowns from which we 

can obtain a solution for theM gain increments {agi(n); i=l, ••• ,M} as 

a function of the increment ag
0 

(n) in the gain g
0 

(n). This dependence 

defines g0 (n) to be the reference gain, since at each iteration the 

gains {gi(n); i•l, ••• ,M} are iterated by the amounts {agi(n); i=l, ••• ,M} 

which depend on ag (n).
0 

The solution of equations (4-27) for the gain increments 

{agi(n); i•l, ••• ,M} causes theM equations 

M
l agi(n) E{x(n+i)x(n+k)} = 0 (k•l, ••• ,M) 

i•O 

to be satisfied at each iteration - that is M of the (M+l) equations 

(4-25) are satisfied at each iteration time n. Later in this analysis, 

we will find a value for ag (n) such that as n increases _the reference 
0 

gain g (n) approaches its optimum value and ag (n) approaches zero. 
0 0 

This will mean that in the limit as n becomes large the (M+l) equations 

(4-25) will be satisfied and the optimum, minimum mean-square error 

point will be reached. 

The object of the adaptive procedure is to cause the gains 

{g1 (n)} to convecge, as n increases, to their optimum values {gi (n)} 
0 

where the mean-square error is a minimum. Now in order that the gain 

increments {agi(n); i=l, ••• ,M} cause this process to be accelerated, 

the mean-square error in the augmented estimate s must, at each iteration,n 

be less than or equal to the mean square error in the corresponding basic 

estimate s', with equality occurring at the optimum point. In other 
n 

words, we must have at each iteration time n, the condition 
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(4-28) 

or equivalently 

(4-29) 

fulfilled, where 6e is known as the error increment. This means that 
n 

the tap gain increments {agi(n); i=O,l, ••• ,M} must be found such that 

inequality (4-29) is satisfied. If we assume for the moment that 

ag {n) is known and that it causes the constraint (4-29) to be satisfied,
0 

then we are left with the problem of finding the {agi(n); i=l, ••• ,M} 

such that the constraint is satisfied. 

We shall do this by first finding an explicit form for the 

{agi(n); ial, ••• ,M} in terms of ag (n) without regard to the constraint 
0 

(4-29). We shall then calculate 6e as an explicit function of the 
n 

{agi(n)} from which we will find that a very simple modification to 

the unconstrained {agi(n)} causes the inequality (4-29) to be satisfied 

at each iteration. 

In equations (4-27), we note that the reference sample x(n) 

appears only in the correlations on the right hand side. These correlations 

may be learned by a linear extrapolation of x(n) using the data samples 

x(n+l), ••• ,x(n+M). This extrapolation or learned value of x(n) may be 

written in the form 

M 
x*(n) = L ai(n)x(n+i) (4-30) 

i=l 

where {ai (n); i=l~ ••• ,M} is a set of learning or extrapolation weights 

which must be determined. We shall find them such that the mean square 
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learning error 

(4-31).· 
is minimized. 

2The weights {ai(n)} which minimize ~{£n} at each time n may be 

found by setting the first derivatives of E{£ 2} with respect to the 
n 

{ai(n)} equal to zero to obtain theM equations 

(k•l, ••• ,M} (4-32) 

Substituting equation (4-30} into equation (4-31), expanding and taking 

the derivatives indicated in equation (4-32) we obtain 

2
aE{£ } M 
a (n) = -2E{x(n)x(n+k)} + 2 l ai(n)E{x(n+i}x(n+k)}
nk n i•l 

• -2E{(x(n) - x*(n}}x(n+k)} 

• -2E{£ x(n+k)} (k•l, ••• ,M} (4-33)
n 

Then substituting equations (4-33) into equations (4-32} we obtain the 

M equations 

M 
r a

1
(n)E{x(n+i)x(n+k)} = E{x(n)x(n+k)} (k=l, ••• ,~) {4-34) 

i=l 

which define the optimum learning weights. 

Now substituting equations (4-34) into equations (4-.27) we obtain 
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M M
l 3g1 (n) E{x(n+i)x(n+k)} = -3g (n) l a1 (n) E{x(n+i)x(n+k)}

0i•l i•l 

(k•l, ••• ,M) (4-35) 

and then equating the coefficients of like terms, we obtain the explicit 

form 

(i=l, ••• ,M) (4-36) 

for the increments {3gi(n)}~=l in the non-recursive gains {gi(n)}~=l. 

Equation (4-36) shows explicitly the dependence of these increments on 

the increment 3g (n) in the reference gain g (n) when the constraint 
0 0 

(4-29) is ignored. Substituting now equations (4-36) into equations 

(4-22) we obtain 

(i=l, ••• ,M) (4-37) 

which provides an explicit relationship for iteratively adjusting all 

the non-recursive gains except the reference gain g (n).
0 

Now substituting equation (4-37) into equation (4-23) we obtain 

the augmented estimate s 
A 

as 
n 

M L 
sn ... g (n+l>x<n> + L <s1 <n>-as <n>a1 <n>>x<n+i> - r tj<n>;n-j (4-38)

0 i=l 0 j=l 

which with the use of equations (4-22) and (4-30) may be rewritten in 

the form 

M L 
A 

s = I si<n)x(n+i) - I tj<n>s . +as <n><xcn>-x*<n>> (4-39)
n i=O j=l n-J 0 

Equations (4-39) together with equations (4-30) and (4-37) form the basis 

for the adaptive equalizer~ as far as tha non-recursive section is 
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concerned, when the inequality constraint of equation (4-29) is ignored. 

So far we have assumed that the increment 3g (n) in the 
0 

reference gain g (n) is known and available at each iteration time n. 
0 

In practice, this quantity will not be available at time n, since in 

a causal system, input must precede output. We are therefore constrained 

to use 

3g (n-1) • g (n) - g (n-1)
0 0 0 

in place of 

3g (n) • g (n+l) - g (n)
0 0 0 

and to accept some loss of optimality. This loss will be small, provided 

the adaptive algorithm is converging, since then 

3g (n-1) ~ ag (n) ~ 0 
0 0 

as n increases. We will now consider how to adaptively adjust the 

reference gain g (n).
0 

From equation (4-11) we obtain at time n the derivative of the 

mean-square estimation error with respect to the reference gain g (n-l)
0 

in the form 

2 
3E{en-l} 

ag (n-l) = -2E{en_1x(n-l)} (4-40) 


0 

This derivative has the same form for both the basic estimate s' and 
n 

the augmented estimate s . When the equalizer is at the optimum point
n 

it must b~ zero. Therefore, we may adjust g (n) using a recursive 
0 

steepest descent algorithm of the form 
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3E{e2 }a n-1
go(n) - go(n-l) + 2 ag (n-1) (4-41) 

0 

or 

(4-42) 

which implies 

ag (n-1) - -aE{e x(n-1)} (4-43)o n-1 

where a is a constant which must be chosen so that the algorithm is 

stable. The range of values which a may have when the algorithm is 

stable is investigated in Appendix D-II and is found to be 

-=L.<a<O
>. 
max 

where >.max is the largest eigenvalue of a positive definite matrix [Rij] 

defined in the appendix. 

Summarizing now we have the adaptive algorithm for adjusting 

the forward gains given by equations (4-37), (4-42) and (4-43) as 

(i=l, ••• ,M) (4-37) 

g (n) = g {n-1) - aE{e x(n-l)} (4-42)o o n-1
and 

ag (n-1) = -aE{e 1x(n-l)} (4-43)o n-

where the last two represent a practicable realizable approximation to 

the non-causal ideal which is given by 

g (n+l) = g (n) - aE{e x(n)} (4-44)
o o n 

and 

ag (n) = -aE{e x(n)} (4-45)
o n 
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However,equation (4-37) has been obtained without applying the constraint 

of equation (4-29), and we must now consider what effects it will have 

on the algorithm. 

Let us begin by defining the output of the recursive section of 

the equalizer at time n as 

L 

y • l fj(n); -j • 
n j•l n 

2Then using equation (4-8) we may write the mean square error E{en}' for 

the basic estimates' as 
n 


M 

' 	 ' 2E{e }' • E{s2}- 2 l g.{n) E{s x(n+i)} + 2E{s y } 

n n i•O ~ n 	 n n 

M M 
+ l l g.(n)g.(n) E{x(n+i)x(n+j)} 

i•O j=O ~ J 

M 2 
- 2 l g1 (n) E{x(n+i)y } + E{y }

i•O n n 

2Similarly the mean-square error E{e } at 
n 

s 
A 

mav be found in the same form asn ~ 

(4-46) 

time n for the augmented estimate 

2 2 M 
E{e} = E{s}- 2 l g.(n+l) E{x(n+i)s } + 2E{s y} 

n n i=O 1 	 n n n 

M M 
+ 	 l l gi(n+l)gj(n+l) E{x(n+i)x(n+j)} 


i•O j=O 


M 2
-	 2 \' g. (n+l) E{x(n+i)y } + E{yn } (4-47)

L 1 	 n
i=O 

Now let us form the e=ror difference Ae defined in equation (4-29). It 
n 

may be written as 
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M 
~ • -2 l [gi(n) - g1 (n+l)] E{x(n+i)s } 
en i•O 	 n 

M M 
+ 	 l l [g1 (n)gj(n) - gi(n+l)gj(n+l)] E{x(n+i)x(n+j)} 


i•O j•O 


M 
- 2 l [gi(n) - gi(n+l)] E{x{n+i)yn} (4-48) 

i•O 

Using equation (4-22), we may reduce this last equation to the form 

M 
~e • 2 l 3gi(n) E{x(n+i)(s +y )} 

n i•O 	 n n 

M M 
- 2 l 3g1 (n) l gj(n) E{x(n+j)x(n+i)} 


i•O j=O 


-
M
l 

M
l 3g (n)3gj(n) E{x(n+i)x(n+j)} (4-49) 

i•O j•O 1 

Because of the products 3gi(n)agj(n), the last term of equation (4-49) 

will be (in practice at least) very small in comparison to the first two 

terms, and therefore it may be neglected. We may then write the error 

difference 6e as 

M 
~e ; 2 l 3gi(n) E{(sn-sn)x(n+i)} 


n i•O 


M 
• 	 2 ~ ag.(n) E{e x(n+i)} (4-50)

i=O l. n 

Making use of equations (4-37), this last result may be written as 

M 
A ; 2og (n) E{e x(n)}- 23g (n) 2 a.(n) E{e x(n+i)} 	 (4-51}e 

n o n o i=l 1 n 
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and substituting equation (4-30) into this we obtain the error 

difference 6e in the form 

6 ~ 2og (n) E{e x(n)}- 2ag (n) E{e x*(n)} (4-52)e o n o n 
n 

In order to guarantee that the constraint (4-29) is fulfilled, we 

must have, as stated in equation (4-29), the condition 

6 > 0 
e 

n 

fulfilled at each iteration. Now using equation (4-45) the first term 

in equation (4-52) may be written as 

2og (n) E{e x(n)} = -2aE2{e x(n)} (4-53)o n n 

The term is always positive or zero provided a is negative which it must 

be for the algorithm of equations (4-42) or (4-44) to be stable. The 

second term of equation (4-52) may similarly be written as 

-2ag (n) E{e x*(n)} • -2aE{e x(n)} E*{e x*(n)} (4-54)o n n n 

and we see that there is no way to ensure that this term is either 

positive or negative and smaller in magnitude than the first term. There 

is thus no guarante~ that the constraint of equation (4-29) is satisfied. 

The first term in equation. (4-52) is the incremental change in 

the mean-square error. due to adjusting the reference gain g (n), and the 
0 

second term is the incremental error change due to adjusting the remaining 

Mnon-recursive gains {gi(n)\. • In order to guarantee that the constraint
1

6 > 0 of equation (4-29) is fulfilled at each iteration. all that we 
e ­

must do is to test the sign of the second term 
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B(n) • -23g (n) E{e x*(n)}o n 

in equation (4-52) at each iteration time. If 6(n) > 0 we iterate the 

M
gains {gi(n)}i•l as 

(i=l, ••• ,M) 

as in the unconstrained case, and if B(n) < 0 we iterate them as 

(i•l, ••• ,M) 

This guarantees that 6e! 0 and that the non-recursive gains {gi(n)}~=l 

are always being iterated in a direction to decrease the mean-square 

error. These last two equations may be summed up in the si~gle relation­

ship 

(i=l, ••• ,M) (4-55) 

which is more convenient for visualizing the implementation of the 

equalizer. 

"'From equation (4-23} the augmented estimate s may be written as n 

M L
s • I gi(n+l)x(n+i) - l: fj(n)s . 

n i=O j=l n-J 

Substituting equation (4-55) into this and rearranging we obtain 

... Mrg.(n)x(n+i} + ag (n){x(n)-x*(n)sgn(B(n))}-
L
I fj(n)s -j (4-56)

ns - i•O 1 o j=l n 

whit:.h together with equations (4-42), (4-43) and (4-55) describes the 

adaptive equalizer as far as the non-recursive portion is concerned. We 

will now develop an adcptive algorithm for the recursive portion. 
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4.2b Adaptive Algorithm for the Recursive Section 

In equations (4-12) we found that the derivatives of the mean­

L square error with respect to the recursive gains {fj(n)}j•l were given 

by 

(m•l, ••• ,L) 

We also found that the minimum mean-square error point with respect to 

the recursive gains was defined by the L equations 

aE{e2 }
n 

-::-:~'-'-:- = 0 • (m-1, ••• ,L)
afm(n) 

Using these results, we may then define a recursive steepest 

descent algorithm for adaptively adjusting the recursive gains to their 

optimum values as 

aE{e2 } 
fj (n+l) = fj (n) +1. n (j=l, ••• ,L) (4-57)2 aL (n)

J 

where y is a constant which must be chosen so that the algorithm 

remains stable. Substituting for the derivatives in equation (4-57), 

we may write 

fj (n+l) = f. (n) + yE{e s j} (j=l,. •·• ,L) (4-58)
J n n-

The stability properties of this algorithm are investigated in 

Appendix D-I, and it is found that a sufficient condition for stability 

is to constrain y lie in the range 

-2 
< y < 0 

J.lmax 

whet:e ~~ is the largest eigenvalue of the matrix defined by
max 

E{s .s . } (j,k=l, ••• ,i.) •
n-J n-;~ 
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4.2c 	 Adaptive Algorithm for the Learning Weights 

In the preceding analysis, we implicitly assumed that the optimum 

Mvalues of the learning or interpolation weights {ai(n)}i•l had been 

found and were available at each iteration time n. However, their 

calculation requires much of the same a priori knowledge as the calculation 

of the optimum values of the non-recursive gains {gi(n)}~=o· Therefore, 

as in the case of the equalizer gains, we shall use an adaptive algorithm 

to find the optimum learning weights. 

The learning weights {ai(n)} may be adaptively adjusted to their 

optimum values using a recursive steepest descent or gradient following 

algorithm of the form 

aE{e:2 J 
c5

ai(n+l) 	= ai(n) +- n (i=l, ••• ,M) (4-59)
2 aai{n) 

where a.(n+l) is the ith learning weight at the (n+l)st iteration time 
1 

and c5 is a small constant which must be chosen so that the algorithm is 

stable. From equations (4-33), the derivatives required in equations 

(4-59) are obtained as 

aE{e:2J 

..,--~n~ = -2E{e: x(n+k)} (k=l, ••• ,M) (4-60)

aai(n) n 

These may be substituted into equations (4-59) to obtain the algorithm 

for adaptively adjusting the learning weights as 

(i=l, ••• ,M) (4-61) 

The stability properties of this algori~hm are investigated in 

Appendix D-III. There it is found that a sufficient condition for 

stability is that o lie in the range 
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~< 0 < 0 
a max 

where a is the largest eigenvalue of the positive definite correlation 
max 

matrix 

E{x(n+i)x(n+j)} (i,j=l, ••• ,M) • 

This completes our derivation of the adaptive equalizer. In 

the next section we will consider its implementation. 

4.3 Implementation of the Adaptive Feedback Equalizer 

The operation of the adaptive feedback equalizer is described 

by equations (4-30), (4-42), (4-55), (4-56), (4-58) and (4-61). These 

are repeated below as a convenient summary 

M 
x*(n) • 2 ai(n)x(n+i) (4-30) 

i•l 

g (n) • g (n-1) - aE{e x{n-l)} (4-42)o o n-1

(i=l, ••• ,M) (4-55) 

with 

S(n) = -2ag (n) E{e x*(n)}
o n 

M L
s • 2 g (n)x(n+i)+ag (n){x(n)-xk(n)sgn(S(n))}- 2 f.(n)s j (4-56)

0 1 0i=O j=l J r.­

fj(n+l) = f (n) + yE{e s .} (j=l, ••• ,L) (4-58)
j n n-J 

and 

ai(n+l) = ;:x
1 

(n)-oE{cnx(n+i)} (i•l, ••• ,M) (4-61) 
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In implementing the equalizer, we must first decide which of 

the three nonlinearities discussed in chapter 3 is to be used in the 

recursive section to generate the {s j; j=l, ••• ,L}. The optimwn non-
n-

linearity was seen in chapter 3 to have the form 

(4-62) 

Two approximations to it, which were considered, are the threshold 

detector or decision device 

1 s 
A 

> 0 n 
A

0 sn -0 c- < n < e») (4-63)·s - - sgn(s ) .. n n 
A

-1 sn < 0 

and the saturating limiter 

{H A 

Sn ~ a (-• < n < •) 
A 

sn ... sn -a < sn < a (0 ~ a s 1) (4-64) 
A . -1 sn s -a 

Equations (4-62) and (4-64) lead to novel estimate feedback equalizers 

whose performance we shall examine in chapter 5. Equation (L~-63) leads 

to the well known decision feedback equalizer (Austin, 1967; George et al., 

1971 and Monsen, 1971) to which we shall, in chapter 5, compare the 

performances of the estimate feedback equalizers. 

Examining now the equations describing the adaptive algorithm 

(4-42, 4-55, 4-58 and 4-61) we see that the explicit computation of 

savE!ral different cross-correlations is required at each iteration ti.me. 

In practice this is, of course, impossible. The best that can be done is 

co form estimates of them, and to use these estimates as if they were 

the t!"'J.P- values. 
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One method of doing this is to replace the expected values by 

unbiased estimates in the form of sample means taken over the previous 

K ~ 1 samples*• The equations describing the adaptive algorithm then 

become 

n 
g (n+l) • g (n) - ~ L e x(j) (n > K) (4-65) 

o o K j-n-K+l j 

(4-66) 


n 

tjcn+l> .. fj<n> + f L e s~ (n ~ K) (4-67)
b•n-K+l j -j 

(j•l, ••• ,L)and 
o n 
K 	 L Ejx(j+l) (n ~ K) (4-68) 

j=n-K+l 
(i•l, ••• ,M) 

where in all cases K is an integer specifying the number of samples 

over which averaging is to be carried out. This type of implementation 

has been described by Gersho (1968~ 1969~ and by Widrow (1966) who used 

K = 1. 

An alternative technique for i.mplementing the various equations 

requiring correlations has been suggested by Lender (1970). In lL~ing 

thjs technique, the polarity of the instantaneous correlation is used as 

an estimate of the true correlation. To explain this, let us consider 

equation (4-42). which describes the adaptive behaviour of the reference 

gain. The correlation required at the nth iteration is E{e x(n)}, but it 
n 

*rn form:i.ng this type cf estimate, we are implicitly assuming 
that the random signal sequences are wide sense stationary ov.::r any 
K ~ 1 samples. 

http:form:i.ng
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is impossible to obtain this. By the instantaneous correlation we mean 

just the product e x(n) which is an unbiased estimate of E{e x(n)}. Byn n 

taking only its polarity, we obtain 

sgn(e x(n)) = sgn{e ) sgn{x(n)) ,n n 

and if we now use this in equation (4-42) we obtain a recursive equation 

for adjusting the reference gain as 

g (n+l) = g (n) - asgn(e )sgn(x(n)) (4-69)
o o n 

where as before a is a small constant which must be chosen so that the 

algorithm is stable. If we use similar polarity estimates in place of 

the correlations in the remaining equations of the adaptive algorithm, 

we obtain 

S(n) • -2ag (n) sgn(e ) sgn(x*(n)) (4-70)
o n 

{j=l, ••• ,L) (4-71) 

and 

ai(n+l)- ai(n)- osgn(£n)sgn(x(n+i)) (i=l, ••• ,M) • (4-72) 

Gersho (1968a)has examined the convergence properties of such 

quantized algorithms, and has shown that for a, y and o sufficiently 

small, they will converge to a small neighborhood of the optimum point. 

He has also pointed out that this convergence may tend to be slower than 

that of the linear type of algorithm described in equations (4-65) to 

(4-68}. However, Lender (1970) in applying the quantized type of 

algorithm to adaptive equalization, obtained very rapid convergence which 9 

as we will see later, we have also obtained using the quantized implementation 
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of equations (4-69) to (4-72). It appears, in fact, that provided the 

transmitted symbols are quantized to some finite number of values, very 

rapid convergence may be obtained using a quantized algorithm. 

In the use of the linear form of the algorithm described in 

equations (4-65) to (4-68), there are several disadvantages when 

compared with the quantized version of equations (4-69) to (4-72). 

First, the linear version requires accumulators (or memory) to store 

the sum of products over K samples, whereas in the discrete or quantized 

version no storage is required, the gains being incremented by a fixed 

amount (±a, ±o or ±y) as each new data sample is received. Second, 

the linear version requires multipliers to form the correlation products 

in equations (4-65) to (4-68) and to multiply the estimated correlations 

by the constants a, o and y. In the discrete or quantized version the 

first set of multiplications may be performed by a hardlimiting and 

gating operation, and the second set of multiplications is avoided 

altogether as the gains in equations (4-69) to (4-72) are incremented 

by adding the small fixed quantities ±a, ±o or ±y to the present values 

of the gains. 

In implementing either version of the adaptive algorithm, we 

see that measures of the learning error e = x(n)-x*(n) and the n 

estimation error e = s -s are required at each iteration. The learningn n n 

error £ is directly available at each iteration as the difference 
n 

x(n)-x*(n) but the estimation error e is not, and thus some method of 
n 

measuring it must be devised. One method of measuring the estimation 

error e is provided by the technique known as decision-directed error 
n 

measurement. This involves passing the estimate s (or equivalently the 
n 
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nonlinear estimate s ) at each iteration or sampling time through a 
n 

decision circuit, and then treating the decision circuit output as if 

it were the true value s of the corresponding symbol. Provided that 
n 

most of the decisions are correct, which they are in most point-to­

point communications systems, this provides a quite satisfactory method 

of measuring the estimation error e • The alternative to this is to 
n 

provide an independent known reference or training signal with which 

to adjust the equalizer. This method is often used, in practice, 

during initial adaptation of the equalizer. 

In view of the above discussion and the resulting simplifications 

in implementation, we shall use the discrete or quantized version of the 

algorithm throughout the remainder of this thesis. We shall also 

conduct much of our investigation using decision directed error measurement. 

In chapter 5, we will investigate the performance characteristics 

of the estimate feedback equal:izer and will compare them to those of 

the known decision feedback equalizer. 



CHAPTER 5 

Performance of the Nonlinear Estimate Feedback Equalizer 

In this chapter, we shall investigate the performance character­

istics of the adaptive, nonlinear, estimate feedback equalizer, when it 

is controlled by the new adaptive algorithm of chapter 4. The fixed 

optimum decision feedback equalizer which was shown in chapter 3 to be 

a high signal to noise ratio approximation to the estimate feedback 

structure has been investigated by Austin (1967) and was later made 

adaptive by George et al. (1971) and Monsen (1971). We shall, con­

currently with our tests of the estimate feedback equalizer, carry out 

the same tests on the decision feedback equalizer. The results for the 

decision feedback structure, whose behaviour is essentially known will 

provide a standard to which the performance of the estimate feedback 

equ2lizer may be compared. 

The analytical evaluation of the performance of e~y of these 

non:inear, adaptive equalizers is almost hopelessly difficult, although 

in section (5.3), we will obtain some limited results for the decision 

feedback case. In the main, however, we will resort to Monte Carlo 

simulation techniques as a means of evaluating perfonnance. 

In section 5.1, we will discuss the input signal to the equalizer, 

its simulation and the measurement of signal conditions at the equalizer 

input. Then, in the remai.nder of the chapter we will dlscuss the 

performance of the estimate feedback equalizer and hO"~ it compares with 

that of the decision feedback equalizer. 

(143) 
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.5.1 	 Signal Conditions at the Equalizer Input 

In order to demonstrate the adaptive equalizer of the preceding 

chapters and to investigate its performance characteristics, we decided 

to simulate it, using Monte Carlo techniques, on a digital computer­

in this case a CDC-64oo*. The simulation of the equalizer structure 

itself presents few problems since essentially all that is required is 

the mechanization, in the computer, of the various equations developed 

in the analysis of the preceding chapter. However, some consideration 

must be given to how the equalizer input signal, namely the sample 

sequence {x(n)} of equation (4-5), is to be generated, and this we now 

discuss. 

5.la 	 Simulation of the Equalizer Input Signal 

From equation (4-3), we may write the equalizer input signal as 

x(t) = Lskh(t-kT ) + n (t)
k s c 

(5-1) 

where as before 

~ 

(i) the {sk}k=-~ are the transmitted digital (binary) symbols. 

(ii) 	 h(t) is the received pulse shape at the equalizer input. It 

consists of the convolution of the transmitted pulse shape with 

first the channel impulse response and then with whatever 

*The CDC-6400 is a batch processing machine, and thus ~he 
simulations could not be performed in real time, However, provided we 
keep in mind that the symbol period of T8 seconds has been normalized 
to unity, the results are quite general. 
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filtering, a(t), that is used in the receiver preceding the 

equalizer. 

(iii) n (t) is the additive Gaussian background noise. c 

In the simulation, we shall assume that x(t) is essentially bandlimited 

to the frequency band 

-1 
-- < f < _!_ 

2Ts 2T s 


where Ts seconds is the length of an individual symbol period, and that 

time synchronism is being maintained between the equalizer and the 

transmitted signal. 

Using these assumptions we may sample x(t) once every T seconds s 

at the times t=mT to produce at the equalizer input the sequence of s 

samples 

x(mT ) 	 = L skh(mT -kT ) + n (mT ) (-oo < m < oo) (5-2)
s k s s c s 

If the 	symbol period T is then normalized to unity, we may write s 

equation (5-2) in the simple form 

x(m) • 	 l skh(m-k) + n ... (m) (-oo < m < oo) (5-3) 
k ­

At the 	mth sampling time the transmitted symbol is s • Also the pulsem 

shape h(t) is in practice effectively time limited. That is eacl1 sample 

x(m) (-oo < m < oo) includes only some finite number, say 2L, of non-

negligible components due to preceding and following data symbols sk 

(k? m). We may, therefore write each x(m) in the form 
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m+L 
x{m) • t skh(m-k) + n (m) <- < m < «») {5-4)

k-m-L c 

where a measure of Lis provided by equation (3-70). This is the form 

we shall use for simulation of the equalizer input samples. 

In order to simulate the transmitted symbols {sk} where each sk 

equals ±1, we shall use a pseudo-random binary sequence. Such a 

sequence is a periodic sequence of binary digits where the digits within 

a period behave in a random-like manner. Such sequences, having any 

desired length or period, are readily generated using shift registers, 

and the procedures for doing this have been widely discussed (Peterson, 

1961). In the present work, we shall use a sequence having a period of 

28-1 or 255 binary symbols, which is readily generated, at the desired 

rate of one symbol every T seconds, by an eight stage shift register.s 

Its period of (2 8-l)T seconds is much longer than either the channel s 

memory of (2L+l)T seconds or the equalizer memory of (M+L+l)T seconds,s s 

and thus the periodicity of the sequence will have almost no effect on 

the equalizer's performance. 

In the simulations, we shall slowly and randomly vary the received 

pulse shape h (t). To do this, after approximately every 100 symbols have 

been passed through the channel, we shall add to each sample {h(k); 

k=-L, ••• ,O, ••• ,Va zero-mean random number generated by a Gaussian random 

number generator which is resident within the computer. The additive 

noise samples {n (m); -= < m <=}in equation (5-4) are also obtained from 
c 

this random number generator. The signal samples {x(m); _.., < m < .,.} are 

then generated by convolving the pseudo-random sequence {s } with the 
n 
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s~pled pulse shape {h(k); k=-L, ••• ,O, ••• ,L} and then adding the Gaussian 

noise samples {n (m)} to the result. c 

S.lb Measurement of Conditions at the Equalizer Input 

In this section, we shall discuss some measures of signal versus 

interference conditions at the input to any equalization system. 

From equation (5-4), we may write the noise-free input sample 

at an arbitrary mth sampling time as 

k=m+L 
x(m) = s h(O) + ~ skh(m-k) (-•<m<oo) (5-5)

m 
k=m-L 

k"'m 

The symbol we want to detect is s , and we thus see that the second term m 

in equation (5-5) is intersymbol interference or distortion caused by 

time dispersion or spread in the channel. One convenient way to 

characterize this is the so-called peak distortion 

L
1D=-_..;;;;;- ~ lh(k)l (5-6) 

!h(O)I k=-L 
ko/0 

which is defined by Lucky (1965). The peak distortion Dis closely 

related to the so-called binary eye opening (Lucky, 1968). When D < 1, 

the eye is open and binary symbols may be transmitted and received at 

low error rates without an equalizer. But when D ~ 1, the binary eye is 

clos~d, and some form of compensation for intersymbol interference is 

required to make posslble the reception of binary symbols at acceptably 

low error rates. 

The peak distortion D does not include the effects of additive 
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noise. In any real situation some noise is always present. It will 

always be one limiting factor on system performance and thus should be 

taken into consideration. Let us begin by rewriting x(m) of equation 

(5-4) so as to isolate the desired symbol s : 
m 

m+L 
x(m) • s h(O) + L skh(m-k) + n (m) • <- < m < ..,) (5-7)

m k=m-L c 

k=hu 

The first term in x(m) is the desired signal component. The second term 

is an interference or distortion component due to the intersymbol 

interference caused by channel dispersion. The third term is due to 

the additive background noise. The intersymbol interference component 

depends on the transmitted symbols {s } but the additive noise is n 

signal independent. 

One possible measure of signal conditions at the equalizer inputis 

the signal to interference ratio which we shall define as 

received siena! energy in each samole (S-8)pin • total interference energy in each sample 

From equation (5-7), we may write the signal energy in each x(m) as 

and the total interference energy as 

m+L ~L 2 
t L h(m-k)h(m-l)E{sksl} + E{nc(m)} 

k=m-L l=m-L 
kim l:f.m 

Then substituting these in equation (5-8), we obtain the signal to 

interference ratio as 
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(S-9)pin • m+L m+L 2
l l h(m-k)h(m-l)E{sksl} + E{nc(m)} 


k-m-L l•m-1 

kt'm lt'm 


where we have implicitly assumed that the samples {h(k); k=-L, ••• ,O, ••• ,L} 

of the received pulse shape are non-random in nature. If we than assume 

that 

(- < i,j < oo) 

and that the noise is stationary and white over the bandwidth of interest 

with variance 

<- < m < oo) 

we may rewrite equation (5-9) in the simple form 

(5-10)Pin = 
+N 

0 

When the channel is non-dispersive pin reduces to the well known signal 

to noise ratio 

(5-11) 


We also note that as the additive noise becomes very small, pin approaches 

a limiting non-zero value given by 

2
h (0) 

(5-12)
LN-+-0 

0 2 h2(k) 
k=-L 
k:/0 
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While D and pin are useful measures of input signal conditions, 

the most meaningful measurement when considering the reception of digital 

symbols, is the probability of error P (pi ) which would be obtained if e n 

each input sample x{m) were just threshold detected with no attempt being 

made to compensate for intersymbol interference. Under the following 

assumptions: 

(i) 	 the symbols {sk} are independent. equiprobable and binary with 

the values ±1, 

(ii) 	 the sampled received pulse shape {h{k): k=-L, ••• ,o, ••• ,L} is 

time-invariant and known, 

(iii) 	 the additive noise is white and Gaussian with zero mean and 

variance N , 
0 

we may use some results due to Shimbo et al {1971) to obtain the desired 

error probability as 

-p /2in1 pin e 
00 

p (p ) 	 .. -[1 - erf( -y->l + I b2n(-1)~2n-l(/pin) (5-13)e in 2 lfi n=2 

In equation (5-13), H (x) is the nth Hermite polynomialn 

which may be generated by the recursion relation 

H .. 1 
0 
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The coefficients b2n of the series in equation (5-13) may be computed 

from 

CD CD 

2l-l 
u 

where the left hand side is a generating function for the coefficients 

d2l-l' and the recursion relation 

n 
b .L Lb d

2n 2n l•l 2n-2l 2l-l 

where 

h(k) 1 
a- r a;'it • -a- =­

2 x k a 
X 

and 

L 

a 2 • E(( l h(k)s k + n (m)) 

2} (...., < m < oo)

X k=-L m- c 


k#O 


is the variance of the input sample x(m). 

Equation (5-13) is often approximated by 

(5-14} 

which is the probability of error that is obtained when the total 

interference in equation (5-7) is assumed to be Gaussian. In most cases 

this assumption is valid only when the interference due to additive noise 

is comparable to or greater than that due to intersymbol interference. 

Equa::ions (5-13) and (5-14) are plotted in figure 5.-1 for the typical 

samnled received pulse shape of figure 5-2. Also shown is the probability • 

of et:r"r 
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(5-15) 

as a function of the signal to noise ratio p , which would be obtained n 

if the channel were non-dispersive. The important point here is that 

as pn increases or equivalently as the signal to interference ratio pin 

approaches the limiting value of equation (5-12), P (pi) approaches a e n 

limiting non-zero value. It is then the function of the equalizer to 

compensate for the intersymbol interference such that this limiting 

value of Pe(pin) is forced to be very small. 

5.2 Convergence Properties of the Estimate Feedback Equalizer 

In this section, we shall evaluate by means of computer simulation, 

the convergence and tracking characteristics of the estimate feedback 

equalizer, and will compare them to those of the decision feedback 

equalizer when both equalizers are operated under the control of the 

adaptive algorithm developed in chapter 4. 

For all our simulation work, we shall specify both these equalizers 

to have M=ll non-recursive and L=6 recursive delay line taps. There is 

no particular constraint on the number of non-recursive taps, but the 

number of recursive taps must be at least as great as the number of 

signalling intervals over which the channel impulse response extends into 

the past. 

The transmitted symbols {sk} were simulated by repeated transmission 

of the 255 bit pseudorandom binary sequence discussed earlier. The 

received samples {x(m)} were generateci &ccording to equation (5-7). For the 
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moment at least the sampled received pulse shape {h(k); k•-L, •• ,,O, ••• ,L} 

was made almost time-invariant. The samples {h(k)} were varied randomly 

every 100 symbols by adding to each of them a zero mean Gaussian random 

number from a distribution having a standard deviation of a = 0.001,c 

where ac is known as the channel standard deviation. 

5.2a Decision Directed Convergence Tests 

This first set of tests was designed to investigate the convergence 

properties of the adaptive estimate feedback equalizer. Since one of 

our concerns is the capability of the equalizer to adapt itself to 

comp~nsate for the channel concurrently with the reception of data, these 

tests were conducted with the adaptive algorithm operating in the decision 

directed mode. That is the output estimate s (or equivalently the m 

nonlinear estimate s ) at each sampli.ng time m was passed through a m 

threshold detector to obtain the decisions s* (sgn(s ) or sgn(s ) in the m m m 

binary case). The difference (s* - s )m m was then used as if it were the 

actual error (s - s ).m m This is known as decision directed error 

measurement. 

The convergence t~sts were all conducted at a signal to additive 

noise ratio of p = 30db, so. that the predominant source of interference 
n 

was the intersymbol interference caused by channel time dispersion or 

spread. This ~as done because the main aim of equalization is the 

compensation for intersymbol interference and not the suppression of 

additive noise, and i.n these tests we wanted to investigate the capability 

of the equalizer to perform this compensation. 

http:sampli.ng
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For test purposes, a group of nine different sampled channel 

impulse responses {h(k); k=-L, ••• ,O, ••• ,L} was chosen. These are 

shown in figures 5.3 to 5.11. In each case, for convenience in the 

simulations, we have set the initial value of h(O) to unity. We note 

that Lucky et al. (1968) have shown that h(O) may have any arbitrary 

value without affecting the equalizer's performance. The responses of 

figures 5.3 and 5.7 to 5.9 were chosen because they represent in sampled 

form typical impulse responses which might be encountered in practice. 

Those of figures 5.7 to 5.9 are typical of schedule 4 data lines (Niessen 

et al., 1970), and that of figure 5.3 is also typical of a coaxial cable 

link. The responses of figures 5.4, 5.5 and 5.11 were used because they 

are symmetric about h(O), and therefore, they represent the situation 

in which a matched filter has been used preceding the equalizer. The 

responses of figures 5.6 and 5.10 were obtained by merely reversing the 

sign of some of the samples in the responses of the above symmetric 

channels. They are included in order to show the difference i.n the 

equalizer's behaviour for symmetric and unsymmetric, but otherwise 

equivalent channel responses. 

Convergence of the equalizer to its optimum operating point was 

measured by computing the root mean square (rms) estimation error 

2 .. 2}e ... E{e } "" E{(s -s )
rms n n n 

as a function of ti~e (number n of samples processed). By making a 

number of simulation runs for each channel, we obtained a•1erage convar­

gence properties for the estimate fzeclhack equalizer. In figures 5.3 to 



157. 


0.8 

0.7 

0.6 

. 0.5 
~ 
j:; 

Q,l 

1-1 
c 
~ 

~ 

(I) 

4-J 0.4=' p. 

4-J 

:I 
0 

! :1) 

~~ 

0.3 

0.2 

0.1 

h(O)=l.O 

.05 
.32 .03 

sampled 
channel response 

-.62 

decision feedback: rms error after 5000 samples = 0.33 

estimate feedback: rms error after 5000 samples = 0.32 

~--~..~1._.-~-·----~L~-----~---L·------~'----~-·
0 500 1000 1500 2GOJ 2500 3000 

::.lumber of samples processed. 

Flgure 5.3 Decision directed 
Initial peak disto
ratio pin = 1. U. 

convergence ':::urves 
rtion r; "" 

for chc::"1nel response 
2.12 and signal to interference 

sho"m. 



h(O)=l.O 

0.8 

-.10 

0.7 -.so 

0.6 

Ille o.s 
Q) 

~ 
0 
~ 
~ 
Q) 

'"' =' Cl. 0.4..., 
=' 0 	 decision feedback 

0.3 

estimate feedback 

0.2 

1S8. 

sampled-.so 
channel 
response 

decision feedback: rms error after 5000 samples = 0.23 
0.1 estimate feedback: rms error after 5000 samples = 0.20 

0 500 1000 1500 2000 2500 3000 
Number cf samples processed 

fFigure .5.4 	 Dec,ision directed convergence curve for channel response shown. 
Initial peak distortion D=2.12. and signal to interference ratio 
pin=1.487. 



0.8 


h(O) • 1.0 

.50 

0.7 

0.6 

a 
Cl 0.5 
~ 
0 
1-4 
1-4 
~ 

""'=' p. 

'""'=' 0.4 
0 

.! 

0.3 

0.2 

0.1 

159. 

sampled 
channel 
response 

decision feedback 

feedback 

decision feedback: rms error after 5000 samples = 0.19 

estimate feedback: rrns error after 5000 samples = 0.19 

.. 

0 500 1000 1500 2000 2500 3000 
Number of samples 

Figure 5.5 Decision directed convergence. curve for channel shown. Initial 
peak distortion D=2.12 and signal to interference ratio p. =1.487. 

1.n 



160. 


h(O)•l.O 

0.8 

estimate 
feedback 

decision feedback 

.50 

-.25 

.25 

-.50 

-.10 

sampled 
channel 
response 

0.7 

0.6 

e o.s 
cu ,.. 
0,..,.. 
cu 
+I 

=' fr 0.4 
=' 0 

til 

~ 

0.3 

0.2 

decision feedback: rms error after 5000 samples = 0.228 

estimate feedback: rms error after 5000 samples = 0.225 
0.1 

3000 

Number of samples 

Fi~ure 5.6 Decision directed convergence curve for channel response shown. 
Initial peak distortion D=2.12 and signal to interference ratio 
pin=L487. 

0 500 1000 1500 2000 2500 



-------

161. 


h(O)=l. 0 

0.8 
.20 

sampled 
channel 
response 

0.7 

0.6 

0.5 

0.4 

.50 

estimate 
feedback 

-.30 

-.60 

feedback 

o.o 

0.3 

0.1 

decision feedback: 

estimate feedback: 

rms 

rms 

error 

error 

after 5000 samples 

after 5000 samples 

= 0.291 

= 0.283 

0 500 10!)0 1500 
_I 

2000 2500 
Number of sam-ples 

3000 

Figure 5.7 	 Decision directed convergence curves for channel response sho~m. 
Initial peak distortion D=-1,98 and signal to interference ratio 
p. =1.295.

l.n 



.1.0.<::. 

0.8 

0.7 

0.6 

ao.s 
i(l) 
I~,e 
~ 
Q) 

"' [ 0.4 

"' :::1 
0 

0 ..3 

0.2 

0.1 

estimate 
feedback 

.06 .10 

-.32 

-.62 

decision feedback 

h(O) = 1.0 

.50 

-J"J;r sampled 
channel 
response 

decision feedback: rms error after 5000 samples = 0.308 

estimate feedback: rms error after 5000 samples = 0.288 

0 500 1000 1500 2000 2500 3000 

Number of samples processed 


Figure 5. 8 Decision dirt:::cted convergence curves for channel response shown. 

Initial p~ak distortion D=2.04 and signal to interference ratio 

P. =1.225. 

1n 



163. 


0.8 


0.7 

! 
0.6 

GJ 

""0 

"" 
GJ "" o.s ~ 
::3 
p.. 

4-1 
::s 
0 

~ ex: 

0.4 

0.3 

0.2 

0.1 

h(O)=l.O 

0.5 
0.3 

.06 .10 0.0 

sampled 
-.30 channel response 

-.70 

decision feedback 

estimate feedback 

decision feedback: rms error after 5000 samples = 0.576 

estimate feedback: rms error after 5000 samples 0.348 

.~----~1-------~---------~L_,____~----~----._.----~
0 500 1000 1500 2000 2500 3000 

~·lumber of sa"r.ples 

F'igure 5.9 	 Decision direct~d convergencz curves for cha..."lnel response shown. 
Initial distortion D=-2.18 and signal to interferenc.: ratio 
p-t_.n = LOS. 



164. 


0.8 


h(O)•l.O 

0.5 
.35 

0.20 

sampled-0.5 
channel 
response 

a 
IQ) 
I 
~ 
0 
~ 

~ 

Q) 

u 
:3 
(l.. 
u 
:3 
0 

Ul 

r~ 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

estimate feedback 

decision feedback 

decision feedback: rms error after 5000 samples = 0.221 

estimate feedback: rms error after 5000 samples = 0.251 

500 1000 1500 2000 2500 3000 

Number of srunples processed. 

Figure 5.10 	 Decision directed convergence cur-.res for channel response shown. 
Initial peak distortion D=2.30 and signal to interference ratio 
Pin = 1.18. 



165. 


h(O)•l.O 

0.8 

-.20 -.20 
0.7 

.35 .35 

-.so -.50 	 sampled 
channel 
response 

0.6 

e !I) 

Ill 

~ 
0 
~ 0.5 
~ 
Ill 

l.h 
:s 
Cl. 
4J 
=' 0 

Ill 0.4,§ 

0 .. 3 

0.2 estimate feedback 
decision feedback 

0.1 

decision feedback: rms error after 5000 samples = 0.159 


estimate feedback: rms error after 5000 samples = 0.141. 

0 500 1000 1500 2000 2500 3000 
Number of samples processed 

Figure 5.11 	 Decision directed convergence curve for channel shown. Initial 
peak distortion D-=2. 30 and signal to interference ratio pin=1.18. 



166. 


5.11 we have shown these properties by plotting, for each channel, the 

rms estimation error e versus the number of samples processed. These rms 

curves are the ones labelled "estimate feedback". For comparison purposes, 

we have also simulated the decision feedback equalizer under the control 

of the same adaptive algorithm, and the corresponding convergence curves 

are shown in figures 5. 3 to 5.11 as the ones labelled "decision feedback". 

Each of the curves in figures 5.3 to 5.11 represents the average over 5 

independent simulation runs. 

From the curves of figures 5.3 to 5.11, we may make the following 

observations concerning the estimate feedback equalizer: 

(i) 	 Convergence to some minimal value of the rms error e alwaysrms 

occured. We note that for the channel of figure 5.9, the 

decision feedback equalizer did not converge with the adaptive 

algorithm operating in the decision directed mode. Rather, in 

this case, the value of e appeared to drift aimlessly between rms 


about 0.5 and 0.7. 


(ii) 	 There was a wide variation in the number of samples (symbols) 

required for the equalizer to achieve error-free reception over 

different channels. 

(iii) 	 C~nvergence was always fastest when the sampled channel impulse 

rP.sponse {h(k); k=-L, ••• ,O, ••• ,L} was synwetric about h(O). 

(iv} 	 We found that the fastest convergence times and the smallest 

(average) values of e after convergence, for any of the channels rms 
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under test, were obtained with the iteration constants a, 6 and 

y lying in the ranges 

-8 	 -9-2 < 	 -.004 < a < -.002 < -2 

6-2-s < 	-.oJs < o < -.015 =-2­

-7 	 -9-2 < 	-.005 < y < -.002 < -2 

(v) 	 For some of the channels which we tested (see figures 5.4, 5.5 

and 5.11) the convergence curves exhibit a bottoming effect. 

That is the rms error decreases to some minimum value and then 

increases slightly after which it may or may not decrease again. 

This effect has been noted by previous investigators (George 

et al., 1969) and it appears to be a slow overshoot effect due 

to the transient properties of the adaptive algorithm. 

The convergence curves of figures 5.3 to 5.11 were all obtained using the 

values a = -.004, o = -.025 and y = -.005. From the above ranges of 

values for these constants, we see that in an all digital implementation 

of the equalizer, we should maintain between 8 and 9 bits of accuracy in 

the recursive and non-recursive gains and about 6 bits of accuracy in 

the learning or extrapolation weights. 

As in all adaptive system studies, we are faced with the problem. 

of trying to relate the convergence and tracking properties of the 

adaptive algorithm to the signal conditions at the system input. This is 

a very complex problem, and there does not appear to be a1y simple, 

general solution to it, although we can draw some tentative conclusions 
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from the simulations. In Table {5.1) we have tabulated, for the estimate 

feedback equalizer, two measures of speed of convergence together with 

the corresponding values of the input peak distortion D, the signal to 

interference ratio pin and the input probability of error Pe(pin). 

We have also shown the corresponding measures of convergence speed for 

the adaptive decision feedback equalizer. From the table, we may make 

the following observations: 

{i) 	 As the input error probability P (pi ) increases beyond 0.15,e n 

there is a significant increase in the average number of samples 

required for the equalizer to adapt to a condition of essentially 

zero output error-ratet. 

(ii) 	 For channel 5.9 the adaptive decision feedback equalizer never 

converged with the adaptive algorithm operating in the decision 

directed mode. For this same channel the estimate feedback 

equalizer converged to essentially zero output error-rate in 

about 6000 samples. In fact we never observed a channel for which 

decision directed convergence of the estimate feedback equalizer 

could not be achieved. 

(iii) 	 Convergence was always faster when the sampled channel response 

{h(k); k=-L, ••• ,o, ••• ,L} is symmetric about h(O). 

tWhenever we refer to the output error-rate, we shall mean the 
measured or estimated output probability of error. 



Input Conditions (p •30db) Measures of Convergencen ... _......___ --·- ­Chan.nel --· 
(numbers Peak Signal to Input Decision feedback Estimate feedback 

refer to Distortion Interference error rate no. of no. of no. of no. of 

figures) D ratio pin Pe(Pin> 
samples for 
e <0.5 

nus 

samples for 
E .. 0r 

samples for 
e <0.5 rms 

samples for 
E • 0r 

.5.3 2.12 1.165 0.155 2250 3000 2150 3450 

5.4(s) 2.12 1.487 0.129 300 300 350 500 

5.5(s) 2.12 1.487 0.129 250 250 250 250 

5.6 2.12 1.487 0.129 650 650 500 500 


5.7 1.98 1.295 0.147 1050 1400 750 920 


5.8 2.04 1.225 0.151 1150 3400 800 1220 


5.9 2.18 1.052 0.173 >104 >104 1800 6000 


5.10 2.30 1.18 0.148 500 710 600 3000 


S.ll(s) 2.30 1.18 0.148 200 200 200 200 

Er "" measured output error rate or probability of error. 
.... 

(s) implies channel impulse response is synnnetric about h(O). 0'1 
\0. 

Table 5.1: Input signal conditions and convergence rates. 
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(iv) 	 Generally speaking the convergence properties of the estimate 

feedback equalizer are comparable to those of the decision 

feedback equalizer. When the channel response is symmetric 

about h(O), there is little difference between the two, although 

there is a slight tendency for the decision feedback equalizer 

to be faster. When the channel response is unsymmetric about 

h(O), we found that with two exceptions, the estimate feedback 

equalizer tended to be faster. These two exceptions are 

channels 5.3 and 5.10. For channel 5.3, the rms error decreases 

slightly faster but the error-rate more slowly for the estimate 

feedback equalizer. For channel 5.10 the estimate feedback 

equalizer was found to be slower in both senses. 

In observation (iii) above, we noted that convergence was always 

fastest when the sampled channel response {h(k)} was symmetric about 

h(O). This was true for both equalizer structures. The symmetry in 

{h(k)} implies that the channel catmes only amplitude and no phase or 

delay distortion* of the transmitted signal. Thus the nonlinear feed­

back equalizers exhibit their best convergence properties when the channel 

causes only amplitude distortion. 

The phase distortion caused by the channel may be removed by 

preceding the equalizer with a filter matched to the channel response. 

If the channel transfer function is H(j£~J), then the. required matched 

*we. are considering here distortion as a function of frequency. 
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filter has the transfer function H*(jw), where the asterisk implies the 

complex conjugate. When this filter is used, then as far as the equalizer 

is concerned, the channel transfer function is jH(jw)j 2 • This function 

is purely real, and thus as far as the equalizer is concerned the channel 

causes only amplitude distortion. Such a filter is called for in the 

derivation of the optimum receiver in chapter 3. In practice, however, 

the used of a matched filter is not feasible since the channel response 

is unknown. It is, therefore, important that the equalizer have the 

capability to converge to a low error-rate when the channel causes both 

amplitude and phase distortion. 

5.2b Effect of the Learning Algorithm 

When the signals being processed by a system are stochastic in 

nature, the use of an adaptive algorithm to adjust the system implies 

that its performance will always be sub-optimum. An adaptive algorithm 

can adjust a system only to within a small, stochastically defined 

neighborhood of its optimum operating point. The objectives of the 

adaptive algorithm are to adjust the system to within as small a 

neighborhood as possible and to do so as quickly as possible. Unfortunately, 

these are usually conflicting objectives (Widrow, 1966), and thus some 

compromise between the speed of convergence and the size of the neighborhood 

about the optimum must be reached. 

In conducting some further tests of the adaptive, nonlinear, feed­

back equaliz~r structures, we found that by using the algorithm developed 

in chapter 4, the ad.:rr,tive behaviour, in terms of both the convergence 

speed and the size of the resulting neighborhood, could be improved b)· 
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increasing the speed of adaptation of the algorithm which adjusts the 

learning weights {a.(n); i•l, ••• ,M}. By increasing the speed of 
1 

adaptation, we mean increasing the magnitude lol of the adjustments to 

the weights {ai(n)} at each iteration. 

Tests were conducted for the channels of figures 5.3 and 5.8 using 

the two values o = -.025 and o = -.03, and average convergence curves 

were obtained. The resulting curves are shown in figures 5.12 and 5.13 

for the estimate feedback equalizer. For both channels, we see that 

the speed of convergence of the adaptive algorithm is increased by 

increasing the magnitude of the extrapolation process constant 6 from 

0.025 to 0.030. We also found for both channels that when o g -.03, the 

rms error e always remained smaller than when 6 • -.025. Thl.s is 
rms 

indicated below by the values of e after 5000 samples have been 
rms 

processed. 

0 .. -.025 0 = -.03 
Churmel e (5000) e (5000)

rms rms 

fig. 5.12 0.32 0.23 

fig. 5.13 0.288 0.255 

The above two channels were chosen as examples. We found that 

the same behaviour as a function of o held for all the channels which we 

tested. The use of a larger magnitude for the iteration constant 6, 

therefore appears to result in improved adaptive behaviour cf the estimate 

feedback equalizer. In fact, this improvement was observed with 

increasing values of o up to the. point* at which the learning process 

*Thi.s point is o£ course dependent on the particular channel 
response ~·rhich is heing eq•.wl.ized. 
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adaptive algorithm becomes unstable. 

We conducted these same tests for the decision feedback equalizer 

and obtained similar results to those given above. They are shown in 

figures 5.14 and 5.15. 

5.2c The Use of a Training Sequence 

We next examined the effect of training the equalizer. By 

training we mean that a known symbol sequence is transmitted, and that the 

receiver has available a copy of this sequence which it uses for 

adaptation purposes. The measurements of the output error used to iterate 

the adaptive algorithm are then made as (s -s ) , where s- is the known 
n n n 

symbol rather than as the decision directed measurements (s*-s ) where 
n n 

s* is the output of the threshold detector or decision device. The 
n 

purpose of these tests was to determine whether or not a relatively short 

training sequence has much of an effect on the convergence speed of the 

adaptive estimate feedback equalizer. 

The first training test was conducted using the sampled charu1el 

impulse response shown in figure 5.3. A 255 symbol training sequence 

~"'as used and an average convergence cur'!e (averaged over 5 runs) was 

obtained. This curve is shown in figure 5.16, where we have also 

plotted, for purposes of comparison, the decision directed convergence 

curves of figures 5.3 and 5.12. From these curves, it is immediately 

obvious ~hat the use of the relatively short 255 symbol training sequence 

has greatly increased the speed at which the equalizer converges to its 

optimum operating point. It is of interest to note tbat convergence to 
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the same value of rms error was eventually obtained in both the trained 

and the untrained case. We also tried this test using the decision feed­

back equalizer and similar results were obtained as shown in figure 5.17. 

We also investigated the effect of training on the convergence 

properties of the equalizer when the channel response was that shown 

in figure 5.9. For this channel, the decision feedback equalizer did not 

converge when the adaptive algorithm was operating in the decision-

directed mode, whereas the estimate feedback equalizer did. We first 

tried a 255 symbol training sequence. We found that for the estimate 

feedback equalizer, we obtained results similar to those shown in 

figure 5.16, but that the decision feedback equalizer did not always 

converge to an error-rate of essentially zero (E =0). For the decision 
r 

feedback equalizer, we then tried a 510 symbol training sequence (formed 

by transmitting the 255 symbol sequence twice). In this case we found 

that the decision feedback equalizer always converged to zero error-rate 

and to a low value of the rms error, typically e = 0.25, within a few rms 

hundred samples after the cessation of the training sequence. 

5.3 Performance in the Presence of Noise 

In the preceding discussion we have investigated the convergence 

properties of the estimate feedback equalizer, and have to some extent 

compared them to the corresponding properties of the known decision 

feedback equalizer. In all cases the equalizers were operated under the 

control of the adaptive algorithm derived in chapter 4. This investigation 

was cond...tcted by means of computer simulations and a variety of channel 
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impulse responses were used to test the equalizer. We found that the 

estimate feedback equalizer can be adapted, albeit quite slowly in a 

few cases, to each of these channel impulse responses using a decision 

directed adaptive algorithm, but that the decision feedback equalizer 

would not adapt in the decision directed mode to the channel of figure 

5.9. We then showed how a relatively short training sequence could be 

used to obtain quite rapid convergence of the estimate feedback structure 

on all channels. All of this investigation was conducted at a high 

signal to additive noise ratio (p == 30db). We must now consider the 
n 

properties of the estimate feedback equalizer as a function of the 

additive noise level (or signal to noise ratio pn). 

As the additive noise level is increased (the signal to noise 

ratio p is decreased) decision errors at the equalizer output, even n 

when the equalizer has converged to its optimum operating point, will 

become more frequent. This occurs because the minimum attainable mean 

square error is increased by the presence of noise. We must. therefore, 

evaluate the performance of the equalizer as a function of the additive 

noise level. 

Because of the tanh(·) nonlinearity within the feedback path, 

and because of the adaptive nature of the equalizer, the analytical 

evaluation of the output probability of error Pe is an extremely difficult 

task. It is much simpler to estimate it by means of Monte Catlo 

simulation. However, before discussing this we shall consider the optimum 

non-adapti.ve decision feedback equalizer. Under certain restr:f.cti.ve 

assumptions, it is possible to obtain some feel, at least in a quali::ati.ve 

http:quali::ati.ve
http:restr:f.cti.ve
http:non-adapti.ve
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sense, for how the additive noise affects its perfonnance, and this will 

provide some indication of the effect of additive noise on the estimate 

feedback equalizer. 

5.3a Theoretical Considerations 

From equation (4-7), we may write the output of the fixed 

decision feedback equalizer at the nth sampling time as 

s 
.. 

- (4-7) 
n 

where the {s j; j=l, ••• ,L} are the outputs of the threshold detector 
n­

or hard limiter defined by equation (4-63). From equations (4-13) and 

(4-14) the optimum values of the tap gains {gi(n); i=l, ••• ,M} and 

{fj(n); jal, ••• ,L} are defined by 

M L 
Lg.(n)E{x(n+i)x(n+k)} L fj(n)E{s -jx(n+k)} = E{s x(n+k)}

i=O ~ j•l n n 

(k•O,l, ••• ,M) (4-13) 

and 

L M 
\ fj(n)E{s js } 2 g.(n)E{x(n+i)s } = E{s s }L n- n-m n n-mi~O ~ n-cj ...l 

(m=l, ••• ,L) (4-14) 

In order now to simplify our analysis in this section, let us 

make the following assumptions: 

(a) l'he L previous decisions {sn-j; j==l, ••• ,L} used in the formation 
.... 


of s are correct - that is 

n 
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- (j•l, ••• ,L)sn-j - sn-j 

(b) 	 The data symbols {sk} are binary and uncorrelated with zero mean 

and unit variance, i.e., 

1 

E{s s } = o(i-j) = { 


i j 	 0 

(c) 	 The number of taps on the recursive and non-recursive delay lines 

are equal, i.e., M=L. 

The second of the above optimization equations may then be written as 

M 
fm(n) - L g1 (n)E{x(n+i)s } • 0 (m=l, ••• ,L) (5-18)

i=O 	 n-m 

Now from equation (4-5) we may write at the nth sampling time 

n+L L 
x(n) • ~ skh(n-k) + n (n) = Ls kh(k) + n (n)

k=n-L 	 c k=-L n- c 

for each input sample, where n (n) is a sample of the additive backgroundc 

noise which we shall assume to be independent of the symbols {sk} and 

to be sample to sample uncorrelated, i.e., 

E{n (m)n {n)} = N o(m-n)c c 0 

where N is the noise variance. Now let us find, explicitly, the. various 
0 

correlations in equations (4-13) and {5-18). First we may write 

L L 
t{x(n+i)x(n+k)} ~ ~ \ h(D)h(j)E{s ~i s +k .} + E{n (n+i)n (n+k)}l. . !. · rn· -p n - J c c

p•-L J"•-L 

(k,i = O,l, ••• ,L) 
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whiCh by the use of assumption (b) may be reduced to 

E{x(n+i)x(n+k)} • 
L
l 

L
l h(p)h{j)o(i-k+j-p) + N o(k-i) 

p•-L j•-L 
0 

(k,i • O,l, ••• ,L) 

This last equation may be written in the simpler form 

L 
E{x{n+i)x(n+k)} = l h(p)h(p+k-i} + N cS(k-i} (i,k==O,l, ••• ,L}

0
p•-L 

jp+k-il ~ L 

• 0 otherwise (5-19) 

If we then define 

L 
~(i,k) - l h(p}h(p+k-i} (p+k-ij ~ L 

p•-L 
(i,k=O,l, ••• ,L) 

• 0 otherwise 

we may write equation (5-19} in the compact form 

E{x{n+i}x(n+k)} = w<k,i} + N o(k-i)
0 

(i,k=O,l, ••• ,L) 

• ~(i,k} + N cS(i-k) (5-20}
0 

Next let us consider the correlation E{x(n+i}s } which may be written n-m 

as 
L 

E{x(n+i}s } = l h(k)E{s +i ks } i=O,l, ••• ,L
n-m n - n-·mk=-L m=l, ••• ,L 

and this may readily be reduced to the form 
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i•O,l, ••• ,L 

E{x(n+i)s } • h(i+m) m•l, ••• ,L (5-21)n-m 
li+mj ~ L 

Then setting m=O in equation (5-21) we at once obtain the correlation 

E{s x(n+k)} = h(k) (k•O ,1, ••• ,L) (5-22)
n 

Using equations (5-20) to (5-22), we may now rewrite the 

optimization equations (4-13) and (5-18) as 

L 
f (n) = L gi(n)h(i+m) {m=l, ••• ,L) (5-23) 
m i=O 

and 

M
2 gi(n)[ljl{i,k) + N o(i-k)] -

L
L fj(n)h(k+j) = h(k) 

i=O 0 j=l 
(k•O,l, ••• ,L) (5-24) 

Then substituting equation (5-23) into equation (5-24) we obtain 

L L L L 
L gi(n){ 2h(p)h(p+k-i)- 2h(i+j)h(k+j)} + Eg.(n)N o(i-k) = h(k) 

i=O p=-L j=l i=O ~ 0 

(k=O,J., ••• ,L) (5-25) 

and with a little manipulation, this may be rewritten .:lS 

L i 
~ gi(n){ 2h(p)h(p+k-i) + N o{i-k)} ~ h(k) 

i=O p=-L 0 

(k=O,l, ••• ,L) 

ot 

L
Lg (n){6(i,k) + N 6(k-i)} = h(k) (k=O,l, ••• ,L) (5-26)1 0i=O 

where we have defined 
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i 
e(i,k) - l h(p)h(p+k-i) (i,k•O,l, ••• ,L) (5-Z7) 

p•-L 

Now we may readily show that 

e(i,k) = e(k,i) and 6(i,i) > 0 

and thus the matrix 

[6(i,k)] (i,k=O,l, ••• ,L) 

is positive semidefinite. The matrix 

R • [r(i,k)] = [a(i,k) + N o(i-k)] (i,k=O,l, ••• ,L)
0 

is therefore positive definite, and there is a unique solution of equation 

(5-26) for the optimum values of the gains {gi(n); i=O,l, ••• ,L}. If we 

define the vectors 

g (n) h(O)
0. 

h(l)gl{n) 
G(n) = and H == 

h(L)~(n) 

we may write this solution in the form 

-1G (n) = R H (5-28)
0 

11 11where the subscript o denotes the optimum values of the gains. 

If we now substitute equations (5-23) and (4-5) into the estimate 
...
sn' then after a little algebraic manipulation we may write 

L L i-1 L 
sn = [_l gi (n)h(i)]sn + 2gi (n) 2h(k)sn+i-k + l gi (n)n (n+i)

1~0 o i=O o k=-L i=O o c 

. . . . (5-29) 
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where the gains {gi (n); i•O,l, ••• ,L} are the optimum gains defined by 
0 

equations (5-26). The first term of equation (5-29) represents the 

desired signal component of the estimate s 
A 

• The second term is the 
n 

residual intersymbol interference at the equalizer output and the third 

term is the contribution to s 
A 

due to the additive background noise. 
n 

We note that each of the three terms in equation (5-29) is uncorrelated 

with the other two. 

Let us now find the mean-square value of each of the components 

of s 
A 

n 

(i) the signal component 

L 2 
E{ 

L
l gi (n)h(i)sn 

L
l gj (n)h(j)sn} = [ l g. (n)h(i)] (5-30) 

i•O o j=O o i=O ~o 

{ii) the residual intersymbol interference 

L L i-1 j=l
l l gi (n)gj (n)E{ Lh(k)sn+i-k I h(p)sn+j- }

i=O j•O o o k=-L p=-L P 

With a little manipulation of this expression and the use of 

assumption (b), we obtain the result 

L L i-1

l r gi (n)gj (n) ~ h(k)h(k+j-i) 


i=O j=O o o k=-L 


and if we then make the definition 

p(i,j) = 
i=l
I h(k)h(k+j-i) (j,i=O,l, ••• ,L) 

k=-L 

we obtain the residual intersymbol interference as 
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L
l 

L
l gi (n)gj (n)p(i,j) (5-31) 

i•O j=O o o 

(iii) 	 the additive noise component 

(5-32) 

Next let us define a signal to interference ratio at the equalizer 

output as 

p • -~~(Ou~t~p~u~t~si~g~n~a~l~e~n~e~rg~y~)~--­ (5-33)
o 	 (Residual ISI) + (Output noise) 


energy energy 


Substituting equations (5-30) to (5-32) into this we obtain 

L . 
2

[ ~ gi (n)h(i)] 
i=O o 

p - ----------~~~~-------------------	 (5-34)
0 L L L


L r gi (n)g. (n)p(i,j) + N L gi
2 

(n) 

i=O j=O o Jo 0 i=O o 


where the optimum gains {g1 (n)} are defined by equations (5-26). We may 
0 

make the following observations concerning p : 
0 

(i) 	 It is similar in form to the input signal to interference ratio 

+N 
0 

defined 	in equation (5-10). 



189. 

(ii) 	 Because of equalization, the intersymbol interference has been 

reduced. That is, it may be shown (George et al., 1971) that 

L L 

r l gi (n)gj (n)p(i,j) < 


i•O j•O o o 


(iii) 	 The input additive noise energy N has been multiplied by the 
0 

~L 2
factor Li=O gi (n). Depending on the sampled impulse response 

0 

{h(k)} of the particular channel being equalized, this may cause 

the additive noise to be enhanced relative to the desired signal 

components at the equalizer output and this may lead to increased 

output error-rates. This is particularly true at low values of 

the input signal to noise ratio p • 
n 

In principle we could use the results in equations (5-29) and 

(5-34) along with the error probability expression in equation (5-13), 

which was developed by Shimbo et al. (1971) to compute the output 

probability of error for the optimum, non-adaptive, decision feedback 

equalizer. Hm,ever, in practice decision errors will occur especially 

at low values of the signal to noise ratio p • The errors are used in 
n 

the recursive portion of the equalizer with the result that the inter-

symbol interference due to previous symbols may be enhanced instead of 

being cancelled as indicated in the above analysis. This means that the 

actual output signal to interference ratio may be quite different fron 

the calculated vaJue in equation (5-34). Any analytical evaluation of 

the O'Jtput probabil:!.ty of error will tend, therefore, to be a rather 

optimistic estimate of the actual probability of error. This will be 

http:probabil:!.ty
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especially true at low values of the signal to noise ratio p • The 
n 

output signal to interference ratio does, however, indicate how the 

additive noise is affected by the equalizer, and this is the main result 

of this section. 

Let us consider now the estimate feedback equalizer which is the 

main concern of this thesis. In a rather rough way, equation (5-34) may 

be applied to this structure in that the multiplication of the additive 

L 
noise energy N

0 
by the factor 2. o8I (n) will still occur, and as noted 

~= 0 

above for the decision feedback equalizer, this may lead to increased 

output error-rates. That is, for any channel response which causes the 

additive noise to be enhanced relative to the desired signal, we would 

expect the error-rate performance of the estimate feedback structure to 

become worse in the same manner as that of the decision feedback 

structure. However, in chapter 3, we showed that the decision feedback 

equalizer is a high signal to noise ratio approximation to the e.stimate 

feedback equalizer. We would, therefore, expect, at least at low signal 

to noise ratios, the output error-rate of the estimate feedback equalizer 

to be lower than that of the decision feedback equalizer. In practice, 

we shall find that this is true for many channels at all signal to noise 

ratios. 

5.3b Results of Simulation 

In this section, we shall describe the measurement, by means of 

Monte Cerlo simulation, of the output error-rate or probability of error 

of the csti:nate feecback equalizer as a funct:icm of the input £igual to 

noise ratio Pn· We shall compare these results to the corresponding 
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results 	for the decision feedback equalizer. The output error-rate is 

also a function of the particular channel being equalized, and therefore 

we have conducted our measurements using four of the nine·· channels* 
used in section 5.2. These four channels were selected on the following 

basis: 

(i) 	 The channels of figures 5.3 and 5.9 were selected because they are 

typical of a coaxial cable link and a schedule 4 data line 

respectively. Also the channel of figure 5.9 was chosen because 

error-rate measurements using a linear equalizer (Proakis, 1969) 

have been made on it, and these provide a standard to which we 

may compare the estimate feedback equalizer's performance. 

(ii) 	 The channel of 5.11 was chosen because it i.llustrates the 

situation where a matched filter precedes the equalizer. The 

channel of figure 5.10 was used because it is unsymmetric about 

h(O) but is otherwise equivalent to the response of figure 5.11. 

Our main interest here is the steady state error-rate, namely 

the output probability of error after the adaptive algorithm has adjusted 

the equalizer to within a small neighborhood of its optimum operating 

point. vre, therefore, used in each of the tests, a training sequence of 

510 symbols so as to obtain rapid initial convergence of the equalizer. 

We then waited for about 2000 semples after the cessation of the training 

sequence in order to allow ample time for the equalizer to reach its 

*namely those of figures 5.3, 5.9, 5.10 and 5.11. 
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steady state. We then measured the output error-rate by counting the 

number of errors. This count was continued until approximately 100 

errors had been counted, and the procedure was repeated for each channel 

over a range of signal to noise ratios of from 6db to 30db. 

The results of the error-rate simulations are shown in figures 

5.18 to 	5.21, where we have plotted the estimated output probability of 

error or error-rate 

number 	of errors countedEr • --~~~~~--~~~~~~~----~ total number of sy~ols processed 

for the estimate feedback equalizer as a function of the input signal to 

noise ratio p • We have also plotted in each of these figures the 
n 

following curves: 


(i} the probability of error as a function of the signal to noise 


ratio for a non-dispersive channel (see equation (5-15)) which 

is a lower bound on the attainable probability of error. 

(ii) 	 the error probability at the equalizer i.nput for the particular 

channel being measured. This is calculated from equation (5-13) 

and is the probability of error which would be obtained if no 

equaH.zation were performed. 

(iii) 	 the corresponding output probability of error obtained by 

simulating the decision feedback equalizer. 

Based on figures 5.18 to 5.21, we may make the following 

observations concerning the estimate feedback .;~qualizer: 
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(i) 	 Depending on the sampled channel impulse response {h(k); 

k•-L, ••• ,o, ••• ,L}, there is a variation of up to about 6db in 

the signal to noise ratio p at which a given output error-rate n 

is obtained. 

(ii) 	 Because the curves in figures 5.18 to 5.21 are empirical in that 

they are obtained by counting errors, they depend to some extent 

on when this counting begins. We have made the effect of this 

quite small by waiting until the equalizer is operating in 

steady state and by then counting errors over a large number of 

received symbols. 

(iii) 	 The curve in figure 5. 20 for the decision feedback equalize.r is 

consistent with one obtained by George et al. (1971) using a 

similar channel. 

(iv) 	 For the channels of figures 5.18, 5.19 and 5.21 the estimate 

feedback equalizer yielded better performance at all values of 

the signal to noise ratio p than did the decision feedback n 

equalizer. 

(v) 	 For the sampled channel impulse response of figure 5.20 the 

performance of both the estimate and the decision feedback 

equalizers is much worse than for any of the other three channels 

which we used for our tests. At signal to noise ratios greater 

than about 6db the performance of the estimate feedback equalizer 

was slightly worse than that of the decision feedback equalizer, 
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but at lower values of the signal to noise ratio it was slightly 

better. 

For all the channels which we tested, there was some tendency for 

errors to occur in bursts. We found that most of these bursts were only 

2 or 3 symbols long but that the occasional burst 5 or 6 symbols long 

occurred. This tendency was more pronounced for the decision feedback 

equalizer than for the estimate feedback equalizer, and was always more 

severe at low signal to noise ratios (p < 6db). For both equalizer
n 

structures, it was most pronounced for the channel impulse response of 

figure 5.20. 

Previous investigators (Austin, 1967 and George et al. 1969 and 

1971) have noted this effect and discussed it in connection with the 

decision feedback equalizer. They have termed it the error propagation 

· effect because in a decision feedback structure the occurrence of one 

decision error tends to cause another to occur thus leading to the 

creation or propagation of a burst of errors. In some recent tests, 

1Keeler (1971) has shown that for error-rates less than 10- , error 

propagation does not seriously degrade the performance of the decision 

feedback equalizer, but at higher values of the error-rate it tends to 

become the dominant cause of performance degradation with the number of 

bursts increasing both in frequency of occurrence and length. 

The main reason for the much worse performance of both the 

decision and the estimate feedback equalizers when they are equalizing 

the channel of figure 5.20 appears to be the enh~~cement of the additive 

noise by the equalizer. To see this, let us begin by defining the signal 
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to additive noise ratio at the input (s ) to the nonlinearity (sgn(.) or 
n 

tanh(·) respectively) in the feedback path as 

(desired signal energy in s ) 
n 

Pn • 	 (5-35) 
o (noise energy in s ) 

n 

When the equali~er is both nonlinear and adaptive, as in the present 

case, Pn is very difficult to evaluate. However, by considering the 
0 

non-adaptive decision feedback equalizer under the restrictive assumptions 

of section 5.3a, we may calculate an ideal output signal to noise ratio 

p* • It will be only an approximation but it will provide some insight 
no 

into the effect of the estimate and decision feedback equalizers on the 

additive noise. 

Now substituting equations (5-30) and (5-32) into equation (5-35), 

we obtain the ideal output signal to noise ratio as 

L 2[ r gi (n)h(i)]
* i=O op = ~~~----------	 (5-36)
n L 

2 
o 	 No l gi (n) 

i=O o 

Lwhere the {gi (n)}i=O are the ideal, optimum, non-recursive gain values 
0 

for the 	decision feedback equalizer obtained by solving equation (5-28) 

Land the {h(i)}i=O are samples of the channel impulse response. As in the 

case of p
0 

in equation (5-34), the input noise variance (energy or power 
I. ? 

measure) has been multiplied by the factor Li=Ogt (n). Also, in the 
0 

decision feedback equalizer, p* depends only on the non-recursive gains 
no 

{g (n)} and not on the recursi.ve gains {fj (n)}. Now the signal to noise 
10 0 

ratio at the equalizer input is given by equation (5-11) as 

http:recursi.ve
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and comparing this to p: , we see that when 
0 

L 2 

[ ~ gi (n)h(i)] 

i•O o < h2(0) (5-37)
L 

~ gi (n) 


1=0 0 

the decision feedback equalizer will enhance the additive noise. The 

reverse is of course also true. 

Using a computer program, we next solved equation (5-28) to 

obtain the ideal optimum gain values {gi (n)} for each of the channels 
0 

in figures 5.18 to 5.21 over a range of values of the input signal to 

noise ratio p • In all case~ we found that these calculated values were 
n 

close to the average values* of the non-recursive gains after convergence 

in both the adaptive esti~~te and decision feedback equalizers. Therefore, 

the ideal signal to noise ratio p* will be, for the decision feedback 
no 

equalizer, a reasonably good approximation to the actual value, neglectin& 

of course the effect of decision errors appearing in the recursive section 

of the equalizer. For the estimate feedback equalizer, p* will only be 
no 

indicative in a qualitative way of the effect of the equalizer on the 

additive noise because the previous estimates used in the recursive section 

wi!.l contain a noise component which contributes to the noise enhancement 

caused by the equalizer. 

*Because we are considering adaptive sy&tems, the actual gain 
values will, after convergence, always exhibit small fluct:t::ations about 
their optimum values. 
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The ideal output signal to noise ratio p~ and the difference 

(p* - p ) between it and the input signal to noise ratio pn were then n n 

calculated. They are tabulated in Table 5.2 for each of the channels 

of figures 5.18 to 5.21. 

For the decision feedback equalizer, the difference (p~ - p )n0 

provides a direct measure of the amount of noise enhancement or 

suppression. For the channels of figures 5.18, 5.19 and 5.21, it 

indicates that the additive noise is suppressed by a small amount, but 

for the channel of figure 5.20 it indicates that the decision feedback 

equalizer enhances the noise by between 2 and 4 db. From the measured 

error-rate curves of figures 5.18 to 5.21, we see that for the output 

error-rate of the decision feedback equalizer to have a given value, the 

signal to noise ratio p must be between 2 and 4 db greater for the n 

chann.el of figure 5.20 than for any of the other three channels which we 

tested. It, therefore, appears to be mainly the enhancement of the 

additive noise which causes the much worse performance of the decision 

feedback equalizer when it is equalizing the channel of figure 5.20. 

This same effect is also largely responsible for the error-rate 

performance of the estimate feedback equalizer being worse when it is 

equalizing the channel of figure 5.20. However, at values of p greatern 

than a~out 6db, its performance is slightly worse than that of the decision 

feedback equalizer. This is caused by the fact that in the estimate 

feedback case estimates which are inherently noisy rather than noiseless 

decisions are used in the recursive section to compensate for intersymbol 

interference due to previous S}~bols. The noise component of these 

http:chann.el
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Table 5.2: Illustration of noise enhancement and suppression. 

Cha..."lnel (Numbers Input SNR Output SNR Noise enhancement 
refer to figures) p (db) Pn (db) (pn - pn)dbn 0 0 

Fig. 5.18 6.53 7.29 0.76 
(causes amplitude 10.05 10.56 0.50 
and phase 15.33 15.79 0.46 
distortion) 18.85 19.30 0.45 

'· 

Fig. 5.19 6.53 7.79 1.26 
(causes amplitude 10.05 10.75 0.70 
and phase 15.33 16.04 o. 71 
distortion) 18.85 19.47 0.62 

Fig. 5.20 6.53 4.59 -1.94 
{causes only 10.05 7.41 -2.64 
amplitude 15.33 12.41 -3.19 
distortion) 18.85 15.45 -3.40 

Fig. 5.21 6.53 7.34 0.81 
(causes amplitude 10.05 10.74 0.69 
and phase 15.33 15.95 0.62 
distortion) 18.85 19.46 0.61 
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estimates contributes to the equalizer output noise and this increases 

the noise enhancement caused by the estimate feedback equalizer. The 

result is that, for the channel of 5.20 for which the non-recursive 

section of the equalizer causes noise enhancement, the resulting error-

rate performance is slightly worse (approximately ldb) than in the 

decision feedback case. 

At error-rates greater than about 10-l, the error propagation 

effect in the decision feedback equalizer becomes much more severe. In 

fact for the channel of figure 5.20, its effect becomes worse than the 

abovementioned extra noise enhancement occurring in the estimate feed­

back equalizer. This causes the estimate feedback equalizer to have 

somewhat better performance for this channel when thP Prrnr-r~~~ iQ 

-1greater than about 10 , and accounts for the cross-over of the 

measured error-rate curves in figure 5.20. In chapter 3, we showed 

that both the estimate and the decision feedback equalizers are sub-

optimum in that they are both approximations to the Conditional Bayes 

estimator. We also showed that the decision feedback equalizer is a 

high signal to noise ratio approximation to the estimate feedback equalizer. 

We, therefore expect that, at least at low values of p , the estimate 
n 

feedback equalizer will always yield better performance. and this has 

indeed been observed. 

This same cross-over of the error-rate curves has been observed 

by George et al. (1969, 1971) in comparing the decision feedback equalizer 

to a linear (transversal filter) equalizer, and a similar explanation to 

that given above holds in thts case. 
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From Table 5.2, it can be seen that noise enhancement* occurs 

only for the channel of figure 5.20, but for the other three channels 

which we tested the additive noise appears to have been suppressed by 

a small amount, and as the measured error-rate curves indicate the 

decision feedback equalizer yields better performance on these three 

channels. More importantly, we have found that for any channel for 

which the additive noise appears to be suppressed, the estimate feedback 

equalizer yields better performance than the decision feedback equalizer 

at all values of the signal to noise ratio p • 
n 

To see why this is so, let us begin by considering the sampled 

channel impulse response \h(k); k=-L, ••• ,O, ••• ,L} where, as in all of 

our simulation work, the sampling or symbol period has been normalized 

to unity. We may readily write it as a sampled function of delay t in 

the form 

L 
h(t) = L h(k)o(t-k) (5-38) 

k•-L 

where o{t) is the Dirac delta function. Then taking the Fourier transform 

of h(t) with respect tot, we obtain, at least in a formal sense, the 

sampled channel transfer function 

L 
H(w) = L h(k)e-j~k (5-39) 

ka-L 

This function is periodic in w with period 2v, but we shall be interested 

only in the primary interval 

---------------------------------------------------------------------·----­
*As calculated by comparing the ideal output si.gnal to noise ratio 

p* of equation (5-36) to the input signal to noise ratio p • 
~ n 
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-11' < (A) 	 < 11' 

which is the normalized Nyquist bandwidth. 

Now we may readily rewrite H(w) in the form 

L L 
H(w) • h{O) + r {h{k)+h{-k))coswk - j L {h{k)-h{-k))sinwk 

k=l k•l 

{5-40) 

In this equation h(O) represents the distortion-free component of the 

channel response and 

L L 
K{w) = r (h(k)+h(-k))coswk - j t {h(k)-h(-k))sinwk (5-41) 

k=l k•l 

represents the dispersive component which distorts the signal and causes 

intersymbol interference. From equation (5-40), we may distinguish the 

following limiting cases: 

(i} 	 h(k) = 0 (k f 0) {5-42) 

The transfer function then becomes 

H{w) = h(O) (5-43) 

implying that the channel is non-·di.spersive. There is no 

intersymbol interference and no equalization required. 

(ii) 	 h(k) .. -h(-k) (k rf: 0) (5-44) 

and the channel transfer function becomes 

I~ 

H(w) = h(O).+ K(w) = h(O)- 2j L h(k)sinwk 

k=l 
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In this case the distortion term K(w) is purely imaginery. It 

can then be shown using paired echo theory (Lucky, 1968) that 

this corresponds to a channel which causes only phase or delay 

distortion of the transmitted signal. This distortion causes 

intersymbol interference and equalization is required. 

(iii) 	 h(k) - h(-k) (k ~ 0) (5-45) 

and the channel transfer function becomes 

L 
H(w) • 	 h(O) + K(w) • h(O) + 2 l h(k)coswk 

k=1 

Here the distortion term K(w) is purely real and (again using 

paired echo theory) we can show that such a channel causes only 

amplitude distortion. This of course causes intersymbol inter­

ference and equalization is again required. 

Obviously, the ideal channel transfer function is that given by 

equation (5-43) where there is no distortion. However, in almost all 

realistic situations, a communications channel causes both amplitude and 

phase distortion of the transmitted signal, and some form of equalization 

is required. 

Now let us consider the action of the decision feedback equalizer 

as a function of the channel response. A number of previous investigators 

(Austin, 1967; George et al., 1969, 1971 and Monsen, 1971) have indicated 

that a decision feedback equalizer always yields superior performance to 

a linear (transversal filter) eqt~lizer for all values of the output error­

-1rate less than about 10 , where error propagation does not seriously 

degrade the performance of the decision feedback equalizer. However, 
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all of their investigations have been confined to the case in which a 

filter matched to the channel impulse response precedes the equalizer. 

This matched filter completely equalizes or compensates for any phase 

distortion caused by the channel, and the equalizer thus sees an 

effective channel which causes only amplitude distortion (see equation 

(5-45)). 

Now the decision feedback equalizer uses noiseless decisions in 

the recursive section to coherently cancel or sUbtract out intersymbol 

interference due to previous symbols. Thus if the sampled channel 

impulse response at its input is given by equation (5-38) with correspond­

ing transfer function given by equation (5-40), this cancellation process 

leaves an effective, sampled channel impulse response 

0 
h'(T) • I h(k)o(T-k) (5-46) 

k•-L 

with corresponding transfer function 

L L 
H' (w) = h(O) + I h(-k)coswk - j Lh(-k)sinwk (5-47) 

kcl k=l 

which must be equalized by the linear, non-recursive section of the 

equalizer. The linear section does this by adapting to become essentially 

the inverse of h'(T). On the other hand, the linear (transversal filter) 

equalizer must adapt to become the i.nverse of the original input impulse 

response h(•) of equation (5-38). 

By adapting to become the inverse, we mean that both the linear 

portion of the decision feedbnck equali~er and the linear equalizer 

attempt to adjust themselves so t~at th1~ overall transfer function of the 
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equalizer and channel in cascade has the ideal ~11-pass form of equation 

(5-38) over the Nyquist bandwidth. This means that those frequencies 

in the received signal which are weak must be amplified and those which 

are strong must be attenuated. Now for any linear filter, we have the 

well known result that 

2S (w) • S (w)IG(w)l (5-48)
y X 

where S (w) is the filter output power spectral density, S (w) is the 
y X 

input power spectral density and G(w) is the filter transfer function. 

It is clear from this that only the filter's amplitude characteristic 

jG(w)l and not its phase characteristic arg(G(w)) will affect the (noise) 

power appearing at its output. This implies that an equalizer will cause 

noise enhancement only when it must compensate for amplitude d.istortion 

caused by the channel, that is only when it must adjust the overall 

amplitude characteristic of channel and equalizer in order to approach 

the ideal form of equation (5-43). 

Now when the channel impulse response h(T) of equation (5-38) is 

syQmetric about h(O), so that it causes only amplitude distortion, the 

coherent cancellation process in the decision feedback equalizer removes 

one half the amplitude distortion in h(~) to produce the effective 

impulse response h'(T) of equation (5-46). This is done at the expense 

of causing h'(-r) to contain phase distortion which will, of course, have 

no effect on the noise power appearing at the equalizer output. Thus 

when h(t) is symmetric, a linear equalizer must equalize twice as much 

atuplitude distortion as the linear non-recursive portion of the decision 

feedback equalizer. That is the linear equalizer· must provide more 
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amplification (and usually over a wider band of frequencies) of the 

frequency components in its input signal in order to make the overall 

characteristic approach the ideal form of equation (5-43). An example 

of this is given by the channel of figure 5.20 whose transfer function 

is plotted over the normalized Nyquist band in figure 5.22. The linear 

equalizer will, therefore, cause more noise enhancement with the result 

that on this type of channel, its performance will be inferior to that 

of the decision feedback equalizer. 

In some recent work, Keeler (1971) has found that when the 

channel response h(T) contains significant phase as well as amplitude 

distortion*, a linear (transversal filter) equalizer yields better 

performance by between 21 and 1 db than the decision feedback equalizer. 

In the present work, we have found that for such channels the decision 

feedback equalizer tends to suppress the noise and to yield better 

performance than when the channel response h(T) is symmetric about h(O). 

This is readily seen from Table 5.2 and figures 5.18 to 5.21. We have 

parti~y corroborated Keeler's finding. In figure 5.21, we have shm.m 

an error-rate curve obtained for this channel by Proakis (1969) using 

a 31 tap linear equalizer. Comparing this curve to our measured curve 

for the decision feedback equalizer, we see t~at the linear equalizer is 
, 

between ~ and 1 db better. We would expect a similar result for the 

channels of figures 5.18 and 5.19. 

*This is the usual type of channel which must be equalized, because 
in most cases of interest, it is impractical and uneconomic to match a 
filter to the channel response in order to obtain phase equalization. This 
occurs because the channel response is usually unknown and time-varying. 
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5.20 before <IH(w)!) and after ClH'(w) i) decision 
feedback action has taken place. Curves are plotted 
over the normalized ~~yq-aist bnnd'ividth. 
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This difference in performance arises because the coherent 

cancellation process by which the decision feedback equalizer reduces 

the received channel impulse response h(T) of equation (5-38) to the 

effective impulse response of equation (5-46) cancels the intersymbol 

interference due to previous symbols, but at the same time it induces 

additional amplitude and phase distortion into h'(T). This additional 

distortion must be correlated by the linear non-recursive section of 

the decision feedback equalizer. 

The additional amplitude distortion in h'(T) causes the noise 

enhancement to be greater (or equivalently the noise suppression to be 

less) for the decision feedback equalizer than for the linear equalizer. 

Thus on this type of channel the linear equalizer yields better 

performance than the decision feedback equalizer. Examples of this 

effect are provided by the channels of figures 5.18, 5.19 and 5.21. In 

figures 5.23 to 5.25, we have plotted the amplitude and phase character~ 
/ 

istics IH(w)l and arg(H(w)) over the normalized Nyquist bandwidth for 

each of these channels. We have also shown in each case the effective 

amplitude characteristic IH'(w)j which results after the coherent 

cancellation process of decision feedback takes place. In each case, 

the fraction of the Nyquist bandwidth 

_!.<f< 1-11' < w < 'II' or 2 2 

over which an equalizer must amplify rather than attenuate the frequency 

components of the input signal in order to approach the ideal characteristic 

is greater after the coherent cancellation process of the decision feedback 

equalizt:!r has taken place. Also the gain required in each case is 
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Figure 5.23 	 Transfer characteristics of channel of figure 5.18 showing 
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Figure 5.24 	 Transfer characteristics of channel of figure 5.19 
showing effect of coherent cancellation on the 
ar::plitude characteristic. The curves are plotted 
over the normalized Nyquist bandwidth. 
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Figure 5.25 	 Transfer characteristics for channel of figure 5.21 
showing eff~ct of coherent ca.ncellation on the 
amplitude characteristic. The curves are plotted 
over the ncrmalized Nyquist bandwidth. 
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greater for the decision feedback equalizer. This means that the 

decision feedback equalizer will not on these channels suppress the noise 

as much (or equivalently, will enhance it more) than the linear (trans­

versal filter) equalizer. We can, therefore, expect the performance of 

the linear equalizer to be better than that of the decision feedback 

equalizer on channels containing significant phase as well as amplitude 

distortion (as indicated by Keeler, 1971). 

Turning now to the estimate feedback equalizer which is the main 

concern of this thesis, we showed in chapter 3 that its mean-square 

estimation error is always smaller than that of the linear equalizer. We, 

therefore, expect that its error-rate performance will always be better 

than that of the linear equalizer. On channels containing significant 

phase as well as amplitude distortion this also implies that the estimate 

feedback equalizer should yield better performance than the decision 

feedback equalizer. This is indeed the performance which we have 

obtained. For the channel of figure 5.21, where we have available the 

curve (Proakis, 1969) for the 31 tap linear equalizer, we find that the 

estimate feedback equalizer yields performance about 21 db better than 

the linear equalizer and between 1 and 2 db better than the decision 

feedback equalizer. For the two channels of figures 5.18 and 5.19 we 

found the error-rate performance of the estimate feedback equalizer to 

be between 1 and 2 db better than that of the decision feedback equalizer. 
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5.4 The Saturating Limiter Equalizer 

In chapter 3, we indicated that in some situations, it might 

be useful to be able to replace the tanh(·) nonlinearity of the estimate 

feedback equalizer with a simpler and more easily implementable non­

linearity. We then suggested, for the case of binary symbols, a 

saturating limiter defined by the relationship 

....
-1 s < -asn 

~ .... 
s s -a < s < a (0 < a .s 1)
n - n s n s s 

+1 s 
.... 

~ a 
n s 

where sn is the limiter input, sn is its output and as is a threshold or 

saturation value which must be suitably defined. It is of interest to 

note that for as = 0 

s - sgn(s )n n 

and the decision feedback equalizer results. 

In this section, we shall describe the results of simulating 

the saturating limiter equalizer and will compare our results to those 

of the preceding section. 

5.4a Convergence Properties 

Our first tests of the saturating limiter equalizer were made 

in order to determine an ~ptimum or near optimum value for the limiter 

saturation value a • To do this, we rc:.n convergence and probability of s 

error tests for several different valnAt·; of a.., bet·.·:een 0 and l znd for 
"' 

several different channels. In all the cases which we tried, we found 
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that the best results were obtained for as•l which is the transmitted 

symbol magnitude. We, therefore, tried some further tests using the 

anti-podal symbol values ±6 (6 +1), and in this case found that the 

best value for a appeared to be a • 6. Therefore, in all further s s 

tests of the saturating limiter equalizer, we used the transmitted 

symbol values ±1 and the limiter saturation value a • 1 (Taylor, 1971).s 

Using the same group of 9 channels as in section 5.3a, we next 

carried out decision directed convergence tests of the adaptive 

saturating limiter equalize~ using the adaptive algorithm discussed in 

chapter 4. The results of these tests are shown in figures 5.26 to 

5.34, where we have plotted the rms output error e as a function of 
~s 

the number of samples or symbols processed. Each of these curves 

represents, as previously, the average over five separate runs. In 

order to facilitate comparisons, we have also plotted in these figures 

the corresponding curves for the estimate and decision feedback equalizers. 

From the curves of figures 5.26 to 5.34, we may make the 

following observations: 

(i) 	 For all the channels which we tested, the saturating limiter 

equalizer exhibited convergence toward some minimal value of the 

~s estimation error e ms 

(ii) 	 For any given channel, the convergence speeds and the values of 

the rms estimation error after 5000 samples had been processed 

are comparable for all three equalizer structures. 
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(iii) 	 All of the curves in figures 5.26. to 5.34 were obtained using 

the values a • -.004, 6 • -.025 and y • -.005 for the iteration 

constants. In general, we found that for the saturating limiter 

equalizer, the best convergence results were obtained with these 

constants lying in the same ranges as discussed in the preceding 

section for the estimate feedback equalizer. 

(iv) 	 From the curves, the convergence properties of the three adaptive 

equalizers can be seen to be comparable. For each channel, the 

three convergence curves lie quite close together, and the values 
·' 

of the rms output error after 5000 samples or symbols have been 

processed are quite close together. 

We next conducted some tests to determine the effect of the 

interpolation constant o. Typical results of these tests are shown in 

figures 5.35 and 5.36 for two values of 6. In each case we see that 

convergence is faster for a larger value of o and that the rms error 

after 5000 symbols is smaller. This same behaviour was observed for 

both the estimate and the decision feedback equalizers, and it, there­

fore appears that the improved adaptive behaviour with larger values of 

the interpolation constant o is characteristic of the adaptive algorithm 

developed in chapter 4. 

We also conducted some tests to determine the effect of a 

training sequence on the convergence properties of the saturating 

limiter equalizer. For each channel which we tested, we found that we 

obtained results which were very close to those which we obtained using 

the estimate feedback equalizer. 
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In conclusion, it appears that the convergence properties of 

the adaptive saturating limiter equalizer are comparable to those 

obtained in the preceding section for the estimate and decision feedback 

equalizers. 

5.4b 	 Performance in the Presence of Noise 

We next conducted a series of tests (by means of Monte Carlo 

simulation) to investigate the steady-state error-rate performance, as 

a function of the additive noise level. These tests were carried out 

using the same sampled channel impulse responses that we used for similar·' 

tests of the estimate and decision feedback equalizers. The resulting 

measured error-rate curves are plotted in figures 5.37 to 5.40 as a 

function of the signal to noise ratio p • We have also plotted in 
n 

these figures, for purposes of comparison, the curves obtained in 


section 5.3b for the estimate and decision feedback equalizers. 


From the curves of figures 5.37 to 5.40, we see that for every 

channel which we tested, the error-rate performance of the saturating 

limiter equalizer is only marginally worse than that of the estimate 

feedback equalizer. Therefore, it appears that in many situations the 

saturating limiter equalizer will serve as a very satisfactory and 

relatively simple approximation to the estimate feedback equalizer. 

5.5 	 Summary 

In this chapter, we have investigated, by means of Monte Carlo 

simulation, the performance characteristics of an adaptive, nonli:1ear 

estimate 	feedback equalizer l..rhich is controlled by the adaptive algorithm 
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developed in chapter 4. We have compared its performance characteristics 

with those of the well known decision feedback equalizer, and have found 

that, when the channel causes both amplitude and phase distortion, the 

estimate feedback equalizer yields considerably better error-rate 

performance than either the decision feedback equalizer or a linear 

equalizer. We also found that the convergence characteristics of the 

two equalizers are comparable. 

We then briefly described an approximation to the estimate feed­

back equalizer which uses a saturating limiter in the feedback path. 

-· 	 Its convergence characteristics were seen to be comparable to those of 

the estimate feedback equalizer and its error-rate performance was seen 

to be only marginally worse than that of the estimate feedback equalizer. 



CHAPTER 6 


Conclusions and Suggestions for Further Work 


6.1 Conclusions 

In this thesis, we have applied Bayes estimation theory to 

derive a novel, unrealizable, nonlinear receiver structure for the 

reception of baseband digital signals. We have termed this unrealizable 

structure the conditional Bayes estimator or receiver and have derived 

the following two realizable approximations to it: 

(i) 	 A receiver consisting of a non-recursive linear filter followed 

by a nonlinear feedback system incorporating a soft limiter 

(hyperbolic tangent characteristic) in the feedback path. This 

is known as the estimate feedback receiver. 

(ii) 	 A receiver consisting of a nonlinea~ non-recursive filter 

followed by the same nonlinear feedback system as in (i). 

We then showed that the well known decision feedback system is a high 

signal to noise ratio approximation to the conditional Bayes receiver. 

The second contribution of the present work was the development 

of a new adaptive algorithm for the iterative control of the nonlinear 

receiver. This algorithm was applied specifically to the structure in 

(i) above,and an evaluation of the performance characteristics of the 

resulting receiver was carried out. We found that the estimate feed­

back receiver yi.elded better performance than either the decision 

(236) 
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feedback receiver or a linear (transversal filter) receive~when the 

channel caused both amplitude and phase distortion of the signal (the 

typical situation on most telephone or coaxial cable channels and many 

radio channels). It therefore appears that the estimate feedback 

equalizer would be a suitable replacement for a linear or a decision 

feedback equalizer in any situation where it is not feasible to 

precede the equalizer with a filter matched to the channel response to 

obtain phase equalization. 

We also derived a simple saturating limiter equalizer as an 

approximation to the estimate feedback equalizer. Its performance was 

evaluated and found to be comparable to, although marginally worse than 

that of the estimate feedback equalizer. 

6.2 Suggestions for Further Work 

In the present work we have derived and evaluated the estimate 

feedback receiver mentioned in (i) above. We have shown that its 

performance on channels containing both phase and amplitude distortion 

is superior to that of existing equalizers. Howeve~ all of this work 

has been confined to analysis and computer simulation, and the results 

which we have obtained should be verified experimentally in a carefully 

controlled implementation of the adaptive estimate feedback equalizer. 

Also beyond deriving the basic stru~ture, we have not pursued 

further any investigation into the nonlinear equalizer structure 

mentioned in (ii) above. More work should be conducted on this receiver 

with a view to making it adaptive and to evaluating its performance. 
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It is felt that its performance may approach quite closely to that of 

the optimum Bayes receiver derived by Bowen (1969). 

The implementation of a complete receiver structure utilizing 

these nonlinear equalizers also warrants further careful study both of 

a theoretical and an experimental nature. 



APPENDIX A 

Circuit Model for a Time-Varying Channel 

Using a Power Series Expansion 

In this appendix we briefly describe a circuit model for a time-

varying channel. This model is obtained by forming a power series 

expansion of the equivalent low-pass channel transfer function G(t,f). 

This model was originally obtained by Bello (1963), and we shall make 

use of it in chapter 2 of the thesis where it provides a way to obtain 

measures of the dispersion characteristics of the channel. 

Let us begin by recalling equation (2-17), namely, 

n(t) = J M(f) G(t,f)ej 2~ftdf (A-1) 

where M(f) is the amplitude spectrum of the transmitted signal m(t) and 

n(t) is the channel output. We now propose to expand G(t,f) in a 

power series in the frequency variable f, where from euqation (2-18) 

we have 

(A-2) 

g(t,~) being the channel impulse response. 

In all physical channels, there is some value ~ 0 of the delay 

variable ~ about which the impulse response g(t,~) may be assumed to 

be centered. In equation (A-2), let us make the transformation 

~ = ~-~ to obtain 
0 

(239) 
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. -j2'11'f~ J -j2'11'flJ0G(t,f) • e g(t,lJ+~0)e dlJ (A-3) 

Then making the definition 

(A-4) 

which is the channel impulse response centered on the mean delay ~0 , 

we may write the channel transfer function G(t,f) in the form 

• e-j 2'11'f~o G (t f) (A-5)
0 ' 

From equation (A-5) we see that the presence of the mean delay ~0 
causes an exponential factor exp(-j2'11'f0~) to appear in G(t,f). This 

factor may fluctuate very rapidly with f and would therefore cause a 

power series expansion of G(t, f) to converge very slowly. To avoid 

this problem we shall expand the function G (t,f) in a power series 
0 

in f. 

Now let us a-;sume that the signal spectrum M(f) is centered on 

f=O, and then let us expan.d the function G (t,f) in a Taylor series in 
0 

f about £:0 to obtain 

(A-6) 

where the derivatives are assumed tc ?zist at least in the mean-square 

sense. Then using::equation (A-5) we may, at least in a formal sense, 

evaluate these derivatives. The nth derivative in equation (A-6) may 
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be written, using equation (A-5), in the form 

and this may readily be rewritten in the form 

(A-7) 

Then evaluating equation (A-7) at f•O, we obtain 

.' 
(A-8) 

We may then write the series of equation (A-6) in the form 

00 

G (t ,f) = r r (t) (j21Tf)n (A-9)
0 n=O n 


where we have defined the coefficients r (t) as 
n 

(A-10) 

Substituting equation (A-9) into equation (A-5), we obtain the time-

varying transfer function G(t,f) as 

G(t,f) = e-jZ1rf~o 
co

l r (t)(j21Tf)n. (A-ll) 
n=O n 

. n 
Now it can readily be shown that the factor (j21Tf) is the 

transfer function of an nth order differentiator. Thus if we substitute 
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equation (A-ll) into equation (A-1), we can readily show that the 

complex low-pass channel output signal n(t) may be written in the form 

n 
n(t) • l r (t) ~ {m(t-~ )} • (A-12) 

n dtn on•O 

Equations (A-ll) and (A-12) are the defining equations for the circuit 

model of the channel. From equation (A-ll) we see that the channel may 

be represented as the parallel combination of an infinite number of 

elementary channels. Each elementary channel consists of a differentiator 

of some order, followed by a time varying gain, and the overall circuit 

is preceded by the mean delay ~· • A block diagram of this circuit is 
0 

shown in figure A.l. 

The convergence p~operties of the series in equation (A-10) and 

the value of the remainder term when only a finite number of terms of 

the series is used have been examined by Bello (1963). 
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Figure A.l 	 Baseband circuit representation of time-varying 
dispersive channel obtained by power-series 
expansion of the channel transfer function. 



244. 


APPENDIX B 


A Simple Bayes Estimation Problem 


In this 	appendix we consider a simple Bayes estimation problem. 

To wit, 	let us suppose that we sample the baseband input to a signal 

processing system at the times* t-mT (-m < n < m), and that these . s 


samples may be written in the form 


x(m) • 	 as + n (~) (.._ < m < co) (B-1)
m c 

.' 

where the following conditions hold: 

(i) 	 The {sm; -co < m < co} are independent identically distributed 

binary random variables having the values ±1 and the probability 

density 	function 

(B-2) 

(ii) 	 a is some constant attenuation value. It may be regarded as 

the attenuation due to a channel. 

(ii•i) 	 The {n (m); -co< m <co} are independent samples from a zero­
c 

2 mean Gaussian population with variance cr and probability density
n 

function 

2 
n 

' c )exp1.- -	 (B-3)
22cr
n 

*r5 is an arbitrary sampling period which in a real situation 
corresponds to the transmission rate. 
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The problem now is to find the Baye's minimum mean square error estimate 

s* of s at each time t=mTs (~ < m < ~) given the observation sequencem m 

{x(m); -~ < m < ~}. 

At the time t=mTs (m arbitrary), the Bayes estimate may be 

written in the general form 

a* • E{s IX} <~ < n < ~) (B-4)m m 

where 

X • {x(m): ~ < m < ~} 

is a given realization (equivalent to a sample function) of the 

observation sequence. Because of assumptions (i) and (iii) above, the 

samples {x(m)} are statistically independent, and equation (B-4) may 

be reduced to the simple form 

s* = E{s lx(m)} (B-5)m m 

Under the further assumption that the conditional probability 

density function p8 (smjx(m)) exists, ~e may now write the required 

estimate s* in the form 
m 

s* = J s p (s lx(m))ds (B-6)
m i n s m m 

where the range of integration is the set l of all possible values of 

s (in this case 2). Applying Bayes rule, we may rewrite equation {B-6)m 

in the form 

s p (x(m)!s )p (s )ds mx m s m ms* = J. (-ao < m < ~> (B-7)p (x(m))m l X 
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and the problem of finding the estimate s* has now been reduced to the 
m 

finding of the probability density functions p (x{m)js) and p (x(m)).
X m X 

Let us first find the conditional probability function 

p (x(m)js ). From equation (B-1), the conditional random variable x m 
2x(m)js is readily seen to be Gaussian with mean as and variance a. m m n 

Its probability dens~ty function may then be written, using equation 

(B-3), in the form 

2(x{m)-as )
1 m 

p (x(m) Is ) • --- exp(- ----.,.-....;;;;;...- ) (B-8) 
x m lfia 2a2 


n n 


Now the joint probability density function p(x{m),s) may be written 
m 

in the form 

p (x{m),s) = px{x(m) js) p (s)x,s m m s m 

and using equations (B-2) and (B-8), this may be rewritten in the form 

2(x(m)-as )
1 m 

p (x(m) ,s ) = --- exp(-- ) • 
x,s m ..'21T a 2

2a 
n n 

• (B-9) 

The probability density function p (x(m)) of the received sample x(m) 
X 

may ~e written as 

p (x(m)) = J p (x(m),s )dsx x,s m m 
i 

If we than substitute equation (B-9) into this and carry out the 

required integration, we obtain the result 
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"'2 2(x{m)-a)" (x{m)+a)1 1 p (x(m}) • -~- exp[- ] + -=--- exp(- ] (B-10) 
:x 2/fi a 2a2 2& a 2a2 

n n n 

We are now ready to find the required Bayes estimate. If we 

substitute equations (B-2), B-8) and (B-10) into equation (B-7), and 

carry out the indicated integration we obtain the result 

ax(m) ax(m)exp( ) - exp(- )2 2 
a a n n s• (B-11)m - ax{m) ax{m)exp( ) + exp(- )2 2 -· a a n n 

This may readily be written in closed form as 

s* • tanh{ ax(m) ) (B-12)
m 2 

a 
n 

which is the desired Bayes estimate. In the usual communications 

situation, a is normalized to unity by some form of gain control and 

the estimator takes on the simple form 

( -oo < m < oo) (B-13) 



APPENDIX C 

The Input Correlation Matrix 

In the 	thesis the correlation matrix 

(- < m < ao) 
[E{x(m+i)x(m+j)}] (C-1) 

(i,j • O,l, ••• ,M) 

of the set of input samples {x(m+i); i=O,l, ••• ,M}, stored in the non-

recursive portion of the equalizer at any iteration time m, arises in 

several places. In this appendix, we will show that, under a quite 

general condition on the additive noise, this matrix is positive definite. 

From equation (4-5), the input sample x(m) at any arbitrary 

iteration (or sampling) time m may be written as 

L 
x(m) • l sm-kh(k) + n (m) (-ao < m < ao) (C-2) 

k=-L c 

where we assume 

(i) 	 The symbols {s } are independent, identically distributed, binary
m 

random variables having the values ±1. 

(ii) 	 The {h(k)} are samples of the received pulse shape or channel 

impulse response h(t) which is assumed to be non-random and of 

essentially finite duration. 

(iii) 	 The {n (m)} are samples of stationary additive background noise. c 

They are asstwed to have zero mean, variance N
0 

and correlation 

function 

(248) 
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E{n (i)n (j)} • N p(j-i) • N p(i-j) (C-3)
c c 0 0 

where p(i-j) is a normalized correlation function with p(O) • 1. 

Now let us compute the general term of the matrix defined in 

expression (C-1). Using equation (C-2), it may be written as 

L L 
E{x(m+i)x(m+j)}=E{ L L sm+i-ksm+j-lh(k)h(l) + nc(m+i)nc(m+j)} 

k•-L l•-L 

i,j • O,l, ••• ,M 

- < m < oo) 
·' 

which may at once be reduced to the form 

L L 
E{x(m+i)x(m+j)} = L l E{sm+i-ksm+.-l}h(k)h(l) + N p(j-i) (C-4)

0k=-L l=-L J 

i ,j • 0 ,1, ••• ,M 

-oo < m < oo) 

Let us consider the term E{sm+i-ksm+j-l} in equation (C-4). With the 

use of assumption (i) above, we may write it as 

E{sm+i-k sm+j-l} • o(l-k-j+i) 

Then substituting this into equation {C-4) we obtain 

L 
E{x(m+i)x(m+j)} = l h(k)h(k+j-i) + N p(j-i) 

k=-L 
0 

= ~(j-i) + N p(j-i) • (C-5)
0 

From equation (C-5), we see that the corre.lation matrix defined 

in expression (C-1) is composed of the swn of two component matrices 
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so that 

[E{x(m+i)x(m+j)}] = [~(j-i)] + [N p(j-i)] i,j • 0,1.- •• ,M
0 

- < m < co) 

Now let us consider the component matrix [~(j-i)]. First its diagonal 

terms are non-negative so that 

L 2~(i-i) = ~(0) • l h (k) ~ 0 (i • O,l, ••• ,M) 
k--L 

and second it is symmetric since 

L L 

l h(k)h(k+j-i) - L h(p+i-j)h(p) = ~(i-j) 
k=-L p•-L 

Therefore the component matrix [~{j-i)] is at least positive semidefinite. 

This means that, provided the additive noise correlation matrix 

[N (j-i)] is positive definite*, which it is in almost all physical
0 

situations of interest, the input correlation matrix defined in expression 

(C-1) is positive definite and its inverse exists. This is the desired 

result. 

*The only requiren:ent needed for this to be true is that the 
noise power spectral density be non-zero over the bandwidth of interest. 
This condition holds in virtually all real communications situations. 



APPENDIX D 

Stability Properties of the Recursive Algorithms 

DI 	 The Algorithm for the Feedback Section 

In equation (77) of the text the recursive algorithm for 

Ladaptive 	adjustment of the feedback gains {fj(n)}j=l is stated as 

L 
fj(n+l) 	m fj(n) + yE{(s -y )s }+ y L fi(n)E{s is }

n n n-m i•l n- n-m 

(j • 1, ••• ,L) (77) 

and we now want to determine those values of the constant y for which 

it is stable. 

The quant_ity (s -y ) in (77) is just the error at the outputn n 

of the non-recursive or forward section of the equalizer and we now 

define 	it as 

l.l .. s 	 - Yn •n n 

The algorithm may then be written as 

L 
fj(n+l) = fj(n) + yE{l.l 8 } + y I f.(n)E{s is }

n n-m i=l 1 n- n-m 

(j = l, ••• ,L) (D-1) 

For our present purposes, it is more convenient to work in 

matrix or vector notation, and we therefore make the following 

definitions~ 

(251) 
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F(n) • (D-2) 

the tap-gain vector at the nth iteration 

E(p s )
n n-1

K(JJ ,s) == -- n 

E(JJ s' 1)n n-

K(JJ ,s )
n n-1

(D-3)' 

K(JJ ,s )n n-1

and 

E{s s l E{s s }
n-1 n-1 n-1 n-1

.K(s,s) = (D-4)• 

E{s 8 } E{s2 }
n-1 n-1 n-1 

the positive definite correlation matrix. Using the definitions {D-2) 

to (D-4), the algorithm may now be written in vector form as 

F(n+l) = F(n) + y~(JJn,s) + yK(s,s)f(n) (D-5) 

or as 

F(n+l) = [I+ yK(s,s)]F(n) + yK(JJn,s) (D-6) 

where I is the identity matrix. The last term on the right-hand side 

of (D-6) has no bearing on the stability of the algorithm, and therefore 

we neglect it and write 

F(n+l) = [I+ yK(s,s)]I(n) (D-7) 

The system of (D-7) "dll be :::table provided 
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II+ yK(s,s)j < 1 (D-8) 

Let Q be the normalized modal matrix of K(s,s). Then the following 

observations hold since K(s,s) is positive definite symmetric 

T -1
Q - (D-9)Q 

(D-10) 

and 

K(s,s) • QT A Q (D-11) 

where A is a diagonal matrix, the non-zero elements of which are the 

eigenvalues of K(s,s). The canonical linear transformation of (D-11) 

holds whether or not the eigenvalues are distinct. If there are 

multiple equal eigenvalues A is a Jordan Canonical form. 

Using the transformation of (D-11) in (D-7), we obtain 

!(n+l) = [I + yQTAQ]F(n) (D-12) 

or 

T!(n+l) = Q [I + yA]QF(n) 

or 

QK(n+l) = [I + yA]QF(n) (D-13) 

Making the linear transformation 

F' (n+l) = Q!.(n) , (D-14) 

we obtain the algorithm in uncoupled form as 

F'(n+l) = [I+ yA]F'(n) 

and the stability condition (D-8) becomes 
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I[I+ yAJI < 1 

or 

ll + y).jl < 1 (j•l, ••• ,L) (D-15) 

But K(s,s) is positive definite and thus Aj > 0, (j•l, ••• ,L) so that a 

sufficient condition for the algorithm to be stable is 

ll + y>. I < 1 	 (D-16)max 

where A is the maximum eigenvalue of K(s,s). From (D-16), we can max 

at once deduce that the algorithm will be stable if y lies in the 

range 

-2-< 	y < 0 (D-17)>. 	 • 
max 

DII 	 The Algorithm for the Reference Gain 

The algorithm for da!)tive adjustment of the reference gain g (n}
0 

is given 	by equation (4-37) as 

(4-37) 


where from equation* (4-24a) 

2
3E{e } 	 M 

n = -2E{nnxn} + 2ag (n)E{ nxn} + 2i~O gi(n}E{xn+ixn}ag (n} 	 0 

This algorithm may be extended to cover the entire non-recursive section 

of the equalizer. If we define the tap-gain vector 

*n0 is the out;mt of the recursive section at time n. Also in this 
appendix xn+i is equivalent to x(n+i), (i=O,l, •.• ,M). 

0 
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g (n)
0 

•G(n) • 

~(n) 

we may write 


a
G(n+l) • G(n) + 2 P(n) 


where P(n) is the gradient vector 


P(n) • -2K + 2ag (n)K + 2K(x,x)G(n) 

-' -n 0 -E 

with K • a column vector with entries E{n x j}
-n n n+ 

(j • 0,1, ••• ,M) 

~ • a column vector with entries Etenxn+j} 

(j • 0 , 1 , ••• ,M) 

K(x,x) • the correlation matrix E{xn+ixn+j}; i,j • 

The algorithm (D-19) may then be written as· 

G(n+l) = G(n) - aK + aag (n)K + aK(x,x)G(n) -n 0 -E 


or as 


G(n+l) = G(n) + oG(n) 


where 


ag (n)
0 

aG(n) = 

a~(n) 

(D-18) 

(D-19) 

(D-20) 

O,l, ••• ,M. 

(D-21) 

(D-22) 

(D-23) 



256. 

so that 

~(n) • -aK + aag (n)K + aK(x,x)G(n)--n 	 0 ~ 

or 

[aG(n) -	 aag (n)K ] • aK(x,x)G(n) - aK (D-24)
0 -£ 	 --n 

Now the 	identity 

ag {n)K • K(t,x)3G{n) (D-25)
0 -e: 

holds if 	we define 

E{e X } 0 ••• 0 
n n 

K(E ,x) • 

E{e X ~} 0 0 
n n-rn 

Substititing (D-25) into (D-24) we obtain the result 

[I - .aK(E ,x) ]dG(n) = aK(x ,x)G(n) - aK (D-26)--n 

Now consi.der the matrix 

[I - aK(t,x)] 

on the 	left-hand side of (D-26), about which we may make the following 

observations: 

a) 	 The identity matrix I is positive definite. 

b) 	 The second moment ~st~ix K(t.~) is positive semi-definite. 
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(c) 	 Properties (a) and (b) assure the existance of an inverse for 

the matrix [I - aK(&,x)] , provided a ~ 0 which it must be. 

(d) 	 The last term on the right-hand side of (D-26) has no bearing 

on the stability of the algorithm and may be neglected from 

here on in order to simplify the algebra. 

Thus, from (D-26), we now obtain the result 

-16G(n) • a(I - .aK(&,x)] K(x,x)G(n) 


or letting 

.' 

-1
[Rij] • [I - aK(&,x)] K(x,x) 

we have 

6G(n) • a[Rij]G(n) (D-27) 

Then substituting this result into equation (D-22) we obtain the result 

G(n+l) • [I + a[Rij]]G(n) (D-28) 

which will be stable provided 

Now let M be the normalized modal matrix of [Rij]. Then the 

following properties hold 

MT • H-1 (D-30) 

MTM = I (D-31) 

and 
[ l 	 T r M (D-32)Rij • • 	 M 
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where r is a diagonal matrix whose non-zero values are the eigenvalues 

of [Rij], provided the eigenvalues are distinct. Otherwise r is a 

Jordan canonical form. Substituting (D-32) into (D-28) we obtain the 

result 
IT ,. 

G(n+l) • M [I + ar]MG(n) (D-33) 

or 

MG(n+l) • [I + ar]MG(n) (D-34) 

and then letting 

G' (n) • MG(n) 
.' 

we obtain equation (D-34) in uncoupled form as 


G'(n+l) = [I+ ar]G'(n) · 


The stability condition of equation (D-29) then becomes 


II + arl < 1 

or equivalently 

11 + al.jj < 1 (j • 0,1, ••• ,M) (D-35) 

M
where the {;\j}j=O are the eigenvalues of [Rij]. But these eigenvalues 

are all positive and therefore it is readily seen that a sufficient 

condition for stability is 

11 + aA I < 1 (D-36)max 

where A is the largest eigenvalue of [Ri.]. The sufficient condition 
m~ . J 


(D-36) then constrains a to lie in the range 


~<a.<O (D-37)
A max 
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in order to guarantee stability of the algorithm. 

DIII The Algorithm for the Learning Weights 

The recursive algorithm for adjusting the learning weights is 

given by equation (4-61) in the main text as 

. . . . ( 4-61) 

and we now want to find those values of the constant o for which it is.• 

stable. 

As in our previous investigations of stability, it is easier 

to work in terms of matrices and vectors. Therefore defining 

A(n) = vector of learning weights at the nth iteration 

~ • a column vector with entries E{xnxn+i}, i=l, ••• ,M. 

and 

C(x,x) = the MXM correlation matrix defined by 

(i,j .. 1, ••• ,M) 

we may write the algorithm of equation (4-61) in vector form as 

A(n+l) = A(n) + oC(x,x)A(n) - oK (D-38)
- - --x 

The last term in (D-38) has no bearing on the stability of the algorithm 

and thus may be dropped; so that the algorithm may be written as 

A(n+l) = [I+ oC(x,x)] A(n) {D-39) 
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This algorithm will thus be stable if 

II+ 6C(x,x)j < 1 (D-40) 

Now let N be the normalized modal matrix of the positive-definite 

correlation matrix C(x,x). We then have the following properties for N 

NT • N-1 (D-41) 

NTN • I (D-42) 
and 

C(x,x) • NT t N 	 (D-43) 

.• 	

where r is a diagonal matrix whose non-zero elements are the eigenvalues 

aj; j•l, ••• ,M of C(x,x). Since C(x,x) is positive-definite 

aj > 0 	 (j • 1 , ••• ,M) 

Using (D-42) and (D-43), we may now write (D-39) as 

A(n+l) = [I + oNT l N] A(n) 

which may be rewritten as 

A(n+l) = NT(I + ol]NA(n) 

or 

NA(n+l) = [I + ot]NA(n) (D-44) 

If we now let 

A' (n) = NA(n) 

we obtain the algorithm in uncoupled form as 

A'(n+l) = (I+ 6t]!(n) 
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and the stability condition (D-36) becomes 

It + oil < 1 

or equivalently 

11 + oajl < 1 (j • 1, ••• ,M) 

If we now choose the largest of the eigenvalues aj and denote it amax' 

then a sufficient condition for the algorithm to be stable is 

11 + oa I < 1 max 

which constrains the constant o to lie in the range 

-2--<o<O. 
a 

max 
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