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Abstract 

The transmit-power control (TPC) problem is a fundamental problem in cogni­

tive radio design, which aims at determining transmit-power levels for secondary 

users across available subcarriers. This thesis studies both the theory and the 

algorithms for the TPC problem for cognitive radio networks, and specifically 

examines the problem under two different limitations: an interference-power 

limitation and a low-power limitation. First, the TPC problems are cast into 

game-theoretic models and the sufficient and necessary optimality conditions ·for 

solutions are derived. Sufficient conditions for the existence, uniqueness and sta­

bility of a solution are presented as well. Second, the fast iterative water-filling 

controller (FIWFC) for the TPC problem is developed, which is linearly conver­

gent under certain conditions. The computational complexity is lower than for 

the iterative water-filling controller (IWFC) for digital subscriber lines. In order 

to evaluate the FIWFC, simulations are carried out for both stationary and non­

stationary radio environments. In addition, the performance of the FIWFC is 

evaluated, given the presence of measurement errors. The results of these various 

simulations show that the FIWFC outperforms IWFC in terms of convergence 

speed in all cases. 
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Chapter 1 

Introduction 

1.1 Cognitive Radio 

The radio spectrum is a natural resource which is used as a medium for data 

transmission across remotely located transmitters and receivers. However, with 

increased usage and consequent crowding, underutilization of the radio spectrum 

has become a serious issue. In [28, 38], it is reported that 

• some of the frequency bands of the radio spectrum remain unused most of 

the time; 

• some of the frequency bands are only partially used; 

• the rest of the frequency bands are heavily used. 

An unused frequency band is called a spectrum hole. It is formally defined in 

[18, 28]: 

1 
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Definition 1.1.1 A spectrum hole is a band of frequencies assigned to a primary 

use?, but, at a particular time and specific geographic location, the band is not 

being utilized by that user. 

Spectrum utilization can be improved by making it possible for secondary users2 

to access these spectrum holes. However, as reported in [16], conventional com-

munication systems are prevented from accessing such frequency bands. 

To improve spectrum utilization, cognitive radio has been proposed as a new 

generation of software-based communication system with the ability to exploit 

the existence of available spectrum holes [24, 25]. Following [18], cognitive radio 

is defined as follows: 

"Cognitive radio is an intelligent wireless communication system that is aware 

of its surrounding environment (i.e. outside world), and uses the methodology 

of understanding-by-building to learn from the environment and adapt its inter-

nal states to statistical variations in the incoming RF stimuli by making corre-

sponding changes in certain operating parameters (e.g., transmit-power, carrier-

frequency, and modulation strategy) in real-time, with two primary objectives in 

mind: 

• highly reliable communication whenever and wherever needed; 

• efficient utilization of the radio spectrum." 

This definition implies that a cognitive radio needs to perform the following 

fundamental tasks: radio-scene analysis, channel identification, transmit-power 

1 Primary users are referred to as those who are licensed to use the frequency spectrum. 
2Secondary users are referred to as those who attempt to access the frequency spectrum 

but are not licensed to use it. 

2 
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control and dynamic spectrum management. A cognitive radio's receiver senses 

its surrounding environment (i.e. the outside world) to get the necessary infor­

mation, such as the locations of spectrum holes and the levels of interference. 

It estimates the channel-state information and predicts the channel capacity for 

use by the transmitter. This information is passed to the transmitter via a feed­

back channel. The cognitive radio's transmitter learns from this information, 

and then appropriately sets certain operating parameters and decision variables 

(e.g. transmit-power levels) so as to adapt the system's operation to the sensed 

environment. For the purpose of this thesis, the focus is on transmit-power 

control. 

The most basic form of the cognitive cycle, including the three fundamental 

tasks outlined previously, is shown below in Figure 1.1 [18]. 

From the figure, it can be seen that a closed feedback loop is formed by the 

environment, the receiver, the feedback channel, and the transmitter [18, 19, 36]. 

The built-in feedback loop provides up-to-date information on the surrounding 

environment to the transmitter such that it can perform corresponding actions 

in order to adapt to the current state of the surrounding environment. 

Keeping the environmental information up-to-date is critical in cognitive ra­

dio design due to the fact that the surrounding environment is nonstationary in 

time, which is contributed by users and spectrum holes' mobility: 

• secondary users in a network may be moving towards different directions 

with certain speeds; 

• secondary users may join or leave a network at any time; 

3 
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Transmitter 

Radio 
environment 

(Outside world) 

Spectrum holes 
Noise-floor statistics 
Traffic statistics 

Receiver 

Figure 1.1: Basic cognitive cycle [18] 

• spectrum holes may come and go at any time, depending on the commu-

nication patterns of primary users. 

Therefore, the interference-gain matrix is expected to change. This calls for the 

consideration of the effect of nonstationary environment in cognitive radio design. 

In this thesis, we assume that all the users can share the same frequency 

bands. Therefore, code division multiple access (CDMA) is applied to cognitive 

radio networks. CDMA is a channel access method, where multiple users .are 

allowed to send information simultaneously over a single channel. Each trans-

mitter is assigned to a particular code so as to distinguish its information from 

the other information sent by the other transmitters. 

4 
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1.2 Transmit Power Control 

The transmit-power control (TPC) problem is an important functional block in 

the feedback loop of a cognitive radio. Using the orthogonal frequency-division 

multiplexing (OFDM) 3 modulation scheme, each spectrum hole is divided into 

a number of subcarriers on which parallel data transmissions take place. The 

TPC problem involves the optimization of a design objective, which aims at 

allocating those subcarriers to secondary users and determining the transmit 

powers for all users in the network, based on their current resource capacities and 

limitations. This problem is well understood for single-user systems comprised of 

a single transmitter-receiver pair. For such systems, optimality can be achieved 

by the well-known water-filling algorithm. However, the TPC problem becomes 

nontrivial when multiple users are involved. 

The TPC problem has been formulated as a nonconvex optimization problem 

which aims at jointly maximizing the total data rates of all the users in a multi­

carrier system. Examples of such systems include digital subscriber lines (DSL) 

[10, 26, 29, 39, 40, 46, 48]. It is difficult to find a global optimal solution to this 

TPC problem. Theoretically, solving a nonconvex optimization problem is time 

consuming, since it is not easy to check for global optimality and we lack an 

efficient algorithm. Some numerical methods have been proposed for solving this 

problem, such as the convex relaxations [22, 42, 45] and several heuristic methods 

3In a multi-carrier system using the OFDM modulation scheme, the fast Fourier transform 
(FFT) algorithm is implemented in the receiver and the inverse FFT algorithm is implemented 
in the transmitter so as to partition the frequency bands into orthogonal channels. Compared 
to single-carrier modulation schemes, the OFDM scheme provides higher data rates and greater 
ability to deal with channel conditions. 

5 
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[9, 10, 26, 29, 39, 46]. A theoretical treatment of the nonconvex optimization 

problem for multiuser systems has also been presented in [48]. 

However, global optimality of a solution is not guaranteed by these algo­

rithms. Practically speaking, finding a globally optimal solution requires some 

kind of centralized control. To accomplish this, a large amount of information 

must be exchanged among the different users. This high-level cooperation will 

consume precious resources, such as spectrum holes and battery power. For mo­

bile wireless devices with a limited battery power budget, battery lifetime is of 

critical importance. Necessarily, battery lifetime can be preserved by reducing 

the algorithm's complexity and therefore the computational burden on each user. 

In fact, due to the highly nonstationary nature of the environment, it is more 

critical to find an acceptable solution rapidly before the information becomes 

outdated than to find an optimal solution. Therefore, a suboptimal solution is 

desirable instead of a globally optimal solution so as to reduce the amount of 

computational time and resources consumed by the system. 

To achieve this goal, the TPC problem for cognitive radios has been formu­

lated using a game-theoretic framework [18, 19, 36]. This thesis takes a similar 

approach considering the TPC problem for cognitive radios under two differ­

ent limitations separately, first under an interference-power limitation and then 

under a low-power limitation. Accordingly, the problems are formulated as a 

generalized Nash equilibrium problem (GNEP) and a Nash equilibrium problem 

(NEP) due to the different power limitations considered. 

A solution of the NEP is called a Nash equilibrium (NE), while a solution 

of the GNEP is called a generalized Nash equilibrium (GNE). The concept of 

6 
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a mixed-strategy NE for a zero-sum game was first introduced by John von 

Neumann and Oskar Morgenstern in 1944 [41]. John Forbes Nash first described 

the concept of NE for any game in his seminal paper [31] in 1950, and shortly 

later, he gave the formal definition of NE in [32]. The concept of a GNE was 

formally introduced by Debreu in 1952 [11], which extends the concept of the 

NE. These solutions are considered as the best responses to the actions of all 

other "players" (in this case, the users of a cognitive radio network) [11]. For the 

GNEP and NEP, without knowing any information about the other users' profits 

and strategy sets, each user acts greedily to optimize its own performance based 

on local information, without establishing coordination with the other users. 

This proposition implies that the GNEP and NEP can be solved in a distributed 

manner. 

Both the NEP and GNEP are non-cooperative games. By definition, each 

player of a non-cooperative game operates greedily. It does not guarantee any 

fair strategy. Therefore, if we want to include the fairness into cognitive radio 

net.works, we have to implement the coalition among cognitive radio users [35]. 

In this thesis, we focus on the non-cooperative game for the cognitive radio 

networks. Coalitional game is a different topic. Hence, it is outside of the scope 

of this thesis. 

The above discussion reveals that a practical method of solving the TPC 

problem needs to have several key attributes including distributed implementa­

tion, low complexity, and fast convergence to a reasonably good solution. The 

iterative water-filling controller (IWFC) 4 has been proposed as a candidate for 

4 In the literature, the acronym IWFA for iterative water-filling algorithm has been used. In 

7 
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finding a solution to the TPC problem. The algorithm was proposed for solving 

the TPC problem for DSL in [44, 47], for a Gaussian multiaccess channel in [49], 

and later proposed for cognitive radio in [18, 19, 36]. In the IWFC, each user 

maximizes its own objective individually without specific information about the 

other users' transmit-power vectors. The essence of the water-filling controller 

is to decide transmit-power levels by treating the current interference as noise. 

It can be thought of as pouring an amount of water into a pool the bottom of 

which has been occupied by a certain amount of water, but the total amount 

of water cannot exceed a water-filling level threshold. The water-filling level 

threshold is critical in determining the amount of "water" (i.e. power) for each 

user. The IWFC iteratively repeats this procedure until a certain prescribed cri­

terion is met. This idea can be found in [44, 47], where a sufficient condition .for 

convergence of the IWFC is given for the two-user case. However, the idea has 

not been implemented for the TPC problem for cognitive radios, which involves 

more limiting constraints. As in [36], in order to apply the idea of water-filling 

to solve the TPC problems for cognitive radios considered herein, a set of non-

linear separable convex optimization subproblems needs to be dealt with at each 

iteration. 

1.3 Contributions to the Literature 

This thesis considers the TPC problem for cognitive radios under two different 

limitations: interference-power limitation and low-power limitation. Progress is 

this thesis, the algorithm is used for controlling the transmit power of secondary users. Hence, 
we call it the iterative water-filling controller (IWFC) hereafter. 

8 
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made toward theoretical analysis and algorithms regarding the TPC problems for 

cognitive radios in a multiuser environment. In particular, the characterization 

of the Karush-Kuhn-Tucker (KKT) conditions for the game-theoretical models 

are derived by studying their fundamental properties. This provides the explicit 

presentations of the water-filling threshold and then the water-filling solution of 

the separable convex optimization problem for each user. This result inspires 

our new algorithms for solving the TPC problem for cognitive radios, which 

are named "fast iterative water-filling controller (FIWFC)" for the two different 

limitations. The new algorithms inherit the advantages of the IWFC. Moreover, 

they can handle the separable convex optimization subproblems efficiently. The 

computational complexity of the new algorithms are lower than the IWFC for 

DSL. Under certain conditions, this new algorithm linearly converges to a GNE 

of the TPC problem independent of initialization. In addition, the sufficient 

conditions for the uniqueness and stability of solution are given. 

1.4 Organization of the Thesis 

The rest of the thesis is organized as follows: In Chapter 2, several concepts 

and theorems relating to Nash game theory and generalized Nash game theory 

are reviewed. In Chapter 3, the results of the generalized Nash game model of 

the TPC problem for cognitive radios under interference-power limitation are 

presented. The theoretical basis of the new algorithm is developed, the new al­

gorithm is introduced, and the solution stability conditions are studied in this 
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chapter. Moreover, a convergence theorem of the new algorithm, sufficient con­

ditions of the uniqueness and stability of solutions are given, and the compu­

tational complexity of the new algorithm is analyzed. Chapter 5 describes the 

same but for the case of low-power limitation. Simulation results comparing the 

new algorithms for the two different limitations with the IWFC are described 

in Chapters 4 and 6, respectively. Conclusion and discussion of possible future 

research are given in Chapter 7. The TPC problem for DSL is studied and the 

new approach is developed for it in Appendix A. Rigorous proofs of the various 

theorems described in this thesis are given in the appendices. 

10 



Chapter 2 

The Nash-Equilibrium and 

Generalized Nash-Equilibrium 

Problems 

2.1 Definition 

The GNEP is defined as below: Suppose that there are K players, with the kth 

player's strategy depending on the decision variable sk E RN 0 Let 

be the vector formed by all the players' strategies. For each player k, the utility 

function !k(Sk, S_k) depends on both its own strategy Sk as well as its opponents' 

strategies, denoted by S-k· When the opponents' strategy S_k is known, player 

11 
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k decides its own strategy by solving the following optimization problem: 

s.t. (2.1) 

where Ok(S-k) is the strategy set of player k depending on its opponents' strategy 

s-k· The GNEP aims at finding a vector S* = (s;' s~' ... 'S'K) T such that for 

each k, SZ solves problem (2.1). Such a vectorS* is a GNE of the GNEP. If the 

strategy set Ok(S-k) does not depend on its opponents' strategy, i.e. Ok(S-k) = 

Ok for all the players, then the GNEP is reduced to the standard NEP. 

In a NEP, each player's strategy set is independent of its opponents' strate-

gies. while in a GNEP, the strategy set of each player may depend on the other 

players' strategies. However, GNE still shares an important intrinsic property 

with NE. It is clear from the definition that when GNE is reached, any individual 

deviating its own strategy away from the GNE will not increase its own utility. 

Hence, at GNE, no player has the incentive to change its strategy. Therefore, 

the GNE is stable in a coordinate-wise sense. Because the GNEP extends the 

concept of the NEP, the properties of the GNEP described in Sections 2.2 and 2.3 

apply to the NEP as well. 

2. 2 Existence 

The existence of GNE has been well-studied in the literature. When Debreu 

introduced the GNEP in 1952, he also proposed the first existence theorem in 

12 
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the same paper. The main result was subsequently established by Arrow and 

Debreu in 1954 [6]. A simplified version of the result was given by Ichiishi in 

1983 [23]. When the strategy sets nk(S-k) can be represented explicitly by 

convex inequalities, there is a more direct existence theorem of GNEP [34]. This 

theorem is based on constraint qualifications, the differentiability of the players' 

objective functions, and the KKT systems of the players' optimization problems. 

In 2008, Aussel and Dutta presented a direct existence theorem for GNEP with 

semistrictly quasi-convex functions1 [7]. 

As the maximization of the players' objective functions is considered in this 

thesis instead of minimization as shown by Aussel and Dutta in [7], their result 

is modified for a GNEP with semistrictly quasi-concave functions in the following 

theorem: 

Theorem 2.2.1 Let n be the feasible set of a GNEP with nk(S-k) {Sk 

(Sk, S-k) E fl}. Suppose that 

• n is nonempty, convex and compact, and 

• for every player k, the objective function fk is continuous and semistrictly 

quasi-concave with respect to sk. 

Then, the GNEP has at least one GNE. 

1 A function f : Rn ----> R is said to be semistrictly quasi-convex if for any x, y E Rn with 
j(x) -=J- f(y) and,\ E (0, 1), one has [7] 

f(,\x + (1- -\)y) < max{f(x), j(y)}. 

A function f is called semistrictly quasi-concave if - f is semistrictly quasi-convex. 

13 



Ph.D. Thesis- Jiaping Zhu School of Computational Engineering & Science 

2.3 KKT Conditions 

Suppose that each strategy set nk(S-k) is formed as 

where 9k is a vector function. Assume that all the functions, 9k and fk are con­

tinuously differentiable. Let S be a GNE. If for each player a suitable constraint 

qualification holds, for example, Slater's constraint qualification2 [8], then there 

is a Lagrange multiplier vector >.k such that the KKT conditions for each player's 

optimization problem are satisfied, which are: 

V skLk(Sk, S_k, >.k) 0, 

0 ::; >.k j_ 9k(Sk. S_k) < 0 

where 

and al_b means that the two vectors a and b are orthogonal. Concatenating all 

players' KKT conditions as one, we obtain the KKT conditions of the GNEP. 

The KKT conditions of the GNEP are satisfied by (S, >.) if, and only if, they 

2The Slater's constraint qualification is satisfied if gk(·, S-k) is pseudoconvex and continu­
ous, and there is an Sk E Ok(S-k), such that gk(Sk, S-k) < 0. 
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satisfy the following system: 

where 

).. := 

and 

School of Computational Engineering & Science 

\7 sL(S, )..) - o, 

o :==::; ;.. ..l g(S) < o, 

g(S) := 

9I(S) 

g2(S) 

9K(S) 

(2.2) 

\7 sL(S, )..) := 

Vs1 LI(S,)..I) 

\7 s2 L2(S, )..2) 

On the one hand, this system can be considered as first-order necessary conditions 

of the GNEP under a suitable constraint qualification. However, its structure 

is different from that of classical KKT conditions: In actual fact, the system 

consists of partial differentiation of each function Lk in the Lagrange function 

vector L with respect to the corresponding part Sk of the variable vector S. On 

the other hand, system (2.2) is also a sufficient condition for solving the GNEP 

under the following convexity assumption [12]: 

Convexity Assumption For each player, when its opponents' strategy S_k is 

given, the objective function fk(-, S_k) is concave and the set Dk(S-k) is closed 
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and convex. 

Let us recall the necessary and sufficient KKT conditions of a G NEP de­

scribed in [12]: 

Theorem 2.3.1 Suppose that the objective and constraint functions of the GNEP 

are continuously differentiable: 

• If there is a GNE S of the GNEP at which each player's optimization 

problem satisfies a suitable constraint qualification, then there is a .\ such 

that (S, .\) solves system {2.2). 

• If the Convexity Assumption holds and (S, .\) solves system {2.2), then S 

is a GNE of the GNEP. 

2.4 Summary 

In this chapter, we recalled the concepts of Nash equilibrium and generalized 

Nash equilibrium problems, which will be used as mathematical models to for­

mulate the TPC problem for cognitive radio networks in Chapters 3 and 5. We 

also recalled an existence theorem and the KKT conditions of a GNEP. The 

results for the GNE are also applied to the NE since the concept of a NE is a 

special case of that of a GNE. 
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Chapter 3 

Transmit-Power Control 

Problem under 

Interference-Power Limitation 

3.1 Problem Statement 

Depending on requirements of a designer, a cognitive radio network can be built 

in one of two ways: 

(i) By using the established communication infrastructure, a cognitive radio 

network cooperating with existing base stations. 

(ii) By working independently from the current communication infrastructure, 

with secondary users performing transmit-power control in a distributed 

fashion across the cognitive radio network. 
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Consequently, a TPC problem can be cast in one of two ways: 

(i) a cooperative game, in which all users jointly maximize the total data rate 

of all the users, subject to some power level constraints; or 

(ii) a non-cooperative game, in which each user greedily maximizes its own 

data rate, subject to its own power level constraints. 

In this thesis, the TPC problem is formulated as a non-cooperative game with 

each user setting its own transmit-power level in a decentralized manner. Ob­

viously, the advantage of choosing a non-cooperative strategy is that a base 

station is not required and thus cognitive radio networks can be built without 

being geographically tied to a set of base stations. In this case, instead of jointly 

maximizing the total data rate, each secondary user in a cognitive radio network 

maximizes its own data rate in a distributed manner. 

3.2 Generalized Nash Game Formulation 

Suppose that there are K secondary users and H spectrum holes in a cognitive 

radio network, and each spectrum hole is divided into 2L subcarriers. Then, there 

are H2L subcarriers available in the network. Let N = H2L. Mathematically, the 

TPC problem of this network is formulated as a set of optimization subproblems: 

18 
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For user k, 

N ( sn) ~log 1 + 1f 
N 

s.t. LSk S CAPk, (3.1) 
n=l 

sn+r < pn 
k k - ' 

sk ~ o, (3.2) 

n= 1,··· ,N, 

where 

• Sk := (Sl, Sl, · · · , Sf:), and Sk is the decision variable denoting user k's 

transmit power over subcarrier n, 

• Ik := af: + Lj# o?JkSj > 0 denotes the interference-plus-noise term expe­

rienced by user k over subcarrier n, aJ: > 0 is the normalized noise power of 

user k over subcarrier n, and o:jk is the normalized interference coefficient 

from user j's transmitter to user k's receiver over subcarrier n, 

• pn > 0 denotes the interference-power limitation over subcarrier n, and 

• C APk > 0 is the total battery power budget available to user k. 

Here, aJ:1 is defined as the noise power normalized by r /I hf:k 12 , o:jk is defined 

as flhjkl 2 /lhJ:kl 2 , where r is the signal-to-noise ratio (SNR) gap and hjk is the 

channel gain from transmitter j to receiver k over subcarrier n. The term hjk 

1 A word of caution: This a'k should not be confused with the symbol a 2 for noise variance. 
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can be further calculated from the empirical formula for the path loss in [20], 

\
hn \2 {3n 

jk = dr.' 
tJ 

(3.3) 

where dij is the distance from transmitter j to receiver i, r is the path-loss 

exponent varing from 2 to 5, and (3n is the frequency-dependent attenuation 

parameter. Therefore, it can be shown that 

(3.4) 

To preserve the battery power budget constraints, we require that 

K N 

LCAPk < L(Pn- ak), k = 1, · · · ,K. (3.5) 
k=l n=l 

This requirement ensures that the power-budget constraints :z::.::=l SJ: :::;: C APk 

are not redundant. Hereafter, the collectivity of these inequalities is referred to as 

the non-triviality requirement. The TPC problem is a GNEP, which extends 

the classic Nash equilibrium problem since each user's strategy set depends on 

the other users' strategies. A pointS := (S1 , S2 , · · · , Sk) is a solution of the TPC 

problem if, and only if, Sk solves the nonlinear convex optimization subproblem 

(3.1) for each user k. 

For each user, the total interference caused by other users is measured at the 

receiver and therefore, the objective function in each optimization subproblem 

(3.1) is strictly concave. In addition, the objective functions are continuous and 

the constraints are linear. Therefore, a GNE of the TPC exists according to 
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Theorem 2.2.1. As mentioned in section 2.2, if a GNE is adopted by all the 

users, then no user has the incentive to deviate from it. 

3.3 New Approach for Computing an Equilib-

. 
r1um 

We may find a solution of the TPC problem for a cognitive radio network by solv­

ing the nonlinear optimization subproblems (3.1) simultaneously by applying the 

iterative water-filling controller. Some nonlinear optimization solvers have been 

developed to solve the convex optimization subproblem, which are based on any 

of the widely used and effective methods that include the Generalized Reduced 

Gqtdient method, sequential Quadratic Programming methods, augmented La­

grangian method, and interior-point methods [8]. Interior-point methods solve 

the primal-dual KKT system. The nonlinear optimization solvers presently in 

use include, but are not limited to: 

• MATLAB Optimization Toolbox using three methods for constrained non­

linear problems: trust region, active set, and interior-point [3], 

• MOSEK using an interior-point method [1], 

• KNITRO using an interior-point method and active set method [2]. 

Obviously, performance of the IWFC depends on the optimization solver used. 

The new approach described in this thesis is designed specifically for the TPC 

problem for cognitive radios. It inherits the promising properties of the IWFC. 
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The key of the new procedure is to find an explicit representation of water-filling 

level thresholds. Then, the water-filling solution can be updated directly for each 

user at each iteration using the idea of water-filling. To this end, the following 

procedure is offered: 

(i) write down the KKT conditions of the TPC problem; since the feasible 

set is a polyhedron, this problem satisfies Slater's constraint qualification. 

Hence, the KKT conditions are necessary and sufficient. 

(ii) transform the KKT conditions into an equivalent mixed linear comple­

mentarity problem (MLCP) without any loss of information; and 

(iii) find the necessary and sufficient optimality conditions for the MLCP. In 

fact, the necessary and sufficient optimality conditions provide a closed­

form solution for each nonlinear optimization problem (3.1). 

In so doing, the new procedure forms a solid theoretical basis for solving the 

TPC problem, as depicted in Figure 3.1. The new approach is named the fast 

iterative water-filling controller (FIWFC), which is also straightforward to 

implement. 

3.4 Theoretical Basis of the New Approach 

3.4.1 KKT Conditions 

Let XZ be the Lagrange multiplier for the interference-power limitation for user 

k over subcarrier n, and let /-Lk be the Lagrange multiplier for the power budget 
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Input Data 
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Generalized Nash Constraint KKT Conditions 
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Mixed Linear 
Complementarity 
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Optimality Conditions 

~ 
New FIWF Solution 

Figure 3.1: Flow graph depicting the theoretical bases for the IWFC and the 
FIWFC for cognitive radio networks 

constraint of user k. Then, the KKT conditions for user k's problem are as shown 

below: 

0 < Si: _l (>.~ + !Jk- sn ~In) 2:: 0 
k k 

0 < ,\~ _l (Pn- (Si: +I;:)) 2:: 0 (3.6) 
N 

0 < Pk _l (CAPk- L s;:) 2:: o 
n=l 

n = 1,··· ,N. 

By Theorem 2.3.1, the KKT conditions are necessary and sufficient, i.e. there 

exists a GNE, sayS, if and only if, there are Lagrange multipliers a,>., and p such 

that the KKT conditions hold at (S, a,,\, p). Therefore, by computing a solution 

of the system (3.6), a solution of the TPC problem can be found. However, the 
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KKT conditions (3.6) are nonlinear. The following subsection presents a mixed 

linear complementarity problem, which is an equivalent formulation of the KKT 

conditions. 

3.4.2 Mixed Linear Complementarity Problem 

Although the KKT conditions of the TPC problem are nonlinear, the following 

proposition shows that under the non-triviality requirement, the KKT conditions 

can be reformulated as a mixed linear complementarity problem [36]: 

Proposition 3.4.1 Under the non-triviality requirement, the KKT conditions 

of the TPC problem are equivalent to the following MLCP: 

0 < s~ 1_ ( s~ + I~ + fJ~ - vk) ~ o 

0 < (J~ l_ (Pn- (S~ +I~)) ~ 0 (3.7) 
N 

0 CAPk- LS~ 
n=l 

vk is free 

n 1,··· ,N, 

fork= 1, · · · , K. 

In turn, the necessary and sufficient conditions of the MLCP are derived, 

where the representations of the Lagrange multipliers as well as the solutions to 

each user's optimization subproblem are presented. This idea lends itself readily 

to computing a GNE of the TPC problem. 

24 



Ph.D. Thesis- Jiaping Zhu School of Computational Engineering & Science 

3.4.3 Optimality Conditions 

After exploring the linear complementarity problem, the necessary and sufficient 

optimality conditions for the MLCP are presented in the following proposition: 

Proposition 3.4.2 Let 

n = {n: s;: > 0} 

be the index set of subcarriers activated by user k, and 

Bk = { n : S/: + I/: = pn, S/: > 0} 

be the index set of subcarriers activated by user k, at which the interference-

power limitations are reached. Then, (S, v, !3) solves problem (3.7) if, and only 

if, '( S, v, {3) satisfies the following conditions, referred to as arithmetic simplified 

optimality conditions: 

1/k = (CAPk + L I/:- L pn)/(jTkj-jBkj) 
nETk nEBk 

0 In< 1/ < pn k k -

0 v <r<Pn k- k 
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and 

s~ = 

{2) Otherwise, 

School of Computational Engineering & Science 

pn - r rn < pn < v 
k k - k 

vk - Ikn In < v < pn k k -

0 V <In< pn k- k-

- s~ = pn - I~' c APk = LnETk pn - LnETk I~ and Vk - (3~ = pn' for 

all n En; 

Proof: See APPENDIX B. 

According to Theorem 2.3.1, and Propositions 3.4.1 and 3.4.2, we are ready 

to state the necessary and sufficient optimality theorem in the following corollary. 

Corollary 3.4.3 Suppose that the convexity assumption holds. Then, S is a 

GNE of the TPC problem under the interference-power limitation (3.1) if, and 

only if, there exist T/ and (3 such that (S, T/, (3) satisfies the arithmetic simplified 

optimality conditions in Proposition 3.4.2. 
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3.5 Fast Iterative Water-Filling Controller 

3.5.1 Algorithm 

This subsection introduces the new algorithm, FIWFC, for finding a GNE of the 

TPC problem under the interference-power limitation. Enlightened by Proposi-

tion 3.4.2, the idea of this new algorithm is to update the transmit-power vector 

iteratively by using the explicit representation of the water-filling level thresh-

olds. In practice, each cognitive radio can measure the level of interference in its 

own local environment. Therefore, the measured interference-power level from 

the previous iteration results can be used to update the current transmit powers. 

Utilizing the information content of the Lagrange multipliers, the power vector 

of the TPC problem is updated directly. 

To describe the FIWFC in detail, some notation needs to be introduced. Let 

superscript l indicate the lth iteration of the algorithm, and nk(S~~) be the 

strategy set of user k at the lth iteration. For n = 1, · · · , N, let 

I n(l) ·- n + ~ n sn(l) 
k ·- O" k L...J a jk j 

j# 

be the interference-plus-noise at the current iteration, 

T~l) := {n: s;(l) > 0}, 

be the index set of the subcarriers utilized by user k, and 
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be the index set of subcarriers where user k reaches the interference-power limi­

tation. At each iteration, ~~~l) is calculated and the transmit-power vector s~L+l) 

is updated based on information extracted from the current iteration l. In fact, 

v~1 ) plays an important role in the updating scheme of the transmit-power vector 

by serving as a water-filling level threshold in the updating scheme. The value 

of S~l+l) is set to the difference of the threshold l/~l) and the interference-plus­

noise power level 1;(l), when v~1 ) does not exceed the capacity pn; otherwise, it 

is set to the difference of pn and 1;(1). In addition, the updated transmit-power 

vector S~l+l) as well as the Lagrange multipliers v~1 ) and fJ;(I) satisfy the KKT 

conditions (3. 7) with 1;<1) formed by S~l). 

The FIWFC for cognitive radios under interference-power limitation is de­

scribed in Algorithm 3.5.1. 
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Algorithm 3.5.1 FIWFC for Cognitive Radios under Interference-Power Limi­
tation 

Let l = 0 and Sko) be any feasible power vector 
repeat 

for k = 1 to K do 
if T~l) =I= Bk1

) then 
A " n(l) " (I) C Pk+L..nET(t)lk -L..nEB(l)pn 

lJ -
k - IT~l)I-1Bk1 )1 

for n = 1 to N do 

end for 
else 

s;IJ+I) = { 

Set Vkl) > maXn pn 
for n = 1 to N do 

pn- r(l) 
k 

(1) Jn(l) 
l/k - k 

0 

ifv(l) > pn > r(l) 
k - k 

if pn 2:: Vkl) > J:(l) 
otherwise 

s;(l+l) = { pn - 1;(l) n E T~l) 
0 otherwise 

end for 
end if 

end for 
l<--l+l 

until A stopping criterion is satisfied 

The basic idea of this new updating scheme is illustrated in Figure 3.2. In 

this figure, three cases are considered for the sake of simplicity: 

Cl. the interference power P 1 is lower than the threshold vk; therefore, the 

transmit-power for user k over this subcarrier is set to P 1 
- Il; 

C2. the interference power P 2 is higher than the threshold vk; therefore, the 

transmit power for user k over this subcarrier is set to vk - I~; and 
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C3. when interference If is higher than the threshold, the transmit-power S2 
is set to zero. 

p2 

Case 1 Case 2 Case :l 

Figure 3.2: Illustrating the basic updating scheme of FIWFC for cognitive radios 
under interference-power limitation 

To compare the FIWFC with the IWFC, the framework of the IWFC Is 

recalled in Algorithm 3.5.2. 
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Algorithm 3.5.2 Iterative Water-Filling Controller Framework 

Let l = 0 and Sk0
) be any feasible power vector 

repeat 
for k = 1 to K do 

end for 
[f--[+1 

-(1+1) sk = argmax 

s.t. 

until A stopping criterion is satisfied 

!k(sk, s~~) 
sn + 1n(l) < pn 

k k - ' 
N 

I: sk :s; CAPk, 
n=l 

sk;::: o, 
n = 1,· .. ,N, 

3.5.2 Convergence and Uniqueness 

The sufficient conditions for convergence of the FIWFC for cognitive radios un-

der interference-power limitation are presented in this subsection. To show the 

conditions, some notation needs to be defined, including the interference-gain 

matrices 

A= E NK X NK 
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and c = (Cl, C2, ... 'eN) EN KxN K, where matrix Ak = (Aik, A2k, ... 'AKk) E 

N x K N with Akk = 0 E N x N and 

1 aik 0 

0 2 

Aik = 
aik 

0 

for i = 1, · · · , k - 1, k + 1, · · · , K, and 

with Cni = 0 for i =/= n, and 

0 a21 

a1'2 0 
Cnn = 

afK a2K 

0 

0 

0 
ENxN, 

EKNxK 

a}h 

af<2 
EKxK, 

0 

for n = 1, · · · , N. Let p(X) denote the spectral radius of matrix X. Let Tr(X) 

denote the trace of matrix X. The global convergence of the FIWFC is then 

guaranteed by virtue of the following sufficient conditions. 
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Theorem 3.5.1 Suppose that the TPC problem satisfies the non-triviality re-

quirement and the convexity assumption. If one of the following conditions is 

satisfied, 

• p(AT A) < 1, or 

• Tr(AT A) < 1, or 

• Tr(CTC) < 1, 

then the FIWFC globally and linearly converges to a solution of the TPC problem. 

Proof: See APPENDIX C. 

·Based on Proposition 3.4.2, the conditions that guarantee the uniqueness of 

the solution of the TPC problem is derived. 

Theorem 3.5.2 With the same conditions in Theorem 3.5.1, the TPC problem 

has a unique solution. 

Proof: See APPENDIX D. 

The conditions in Theorem 3.5.1 are equivalent to the condition: 

K K N 

I:I:I:a7k2 
< 1. 

j=l k=l n=1 
#k. 
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In particular, if cijk < K~' then condition (3.8) is satisfied. This condition is 

restrictive in practice. As mentioned in [36], 

n ( dii )r 
ajk ex d·. ' 

t) 

(3.9) 

where dij is the distance from transmitter j to receiver i and the path-loss expo­

nent r varies from 2 to 5. Therefore, when the distance ratio ~·i is very small, 
•J 

condition (3.8) is satisfied. However, we will see from the simulation results in 

Chapter 4, the algorithm converges in all the cases considered even when the 

condition is not satisfied, which implies that the convergence condition may be 

extended. 

3.5.3 Computational Complexity 

Although the TPC for cognitive radio networks has a more complicated con­

straint set than the TPC for DSL contains, the computational complexity of the 

new algorithm is lower than that of the iterative water-filling controller for DSL 

as proposed in [4 7]. It is justified here. 

The new algorithm is formulated iteratively. After the initialization, the 

power allocation is adjusted iteratively for K users in an inner loop. For each 

user k, Tk and Bk need to be checked once. Theoretically, checking Tk and Bk 

takes at most N and N(K + 2) operations, respectively. More practically, since 

the interference-plus-noise I'J: is measured at the receiver based on the previous 

iteration results, this term does not affect the computational burden on checking 

Bk. In this sense, checking Bk needs at most 2N. To evaluate vk, the number 
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of additions of the relevant interference-plus-noise terms is at most N, as is 

that of the interference power limits pn. Hence, the number of operations of 

evaluating vk is at most 4N + 4. To evaluate SJ: needs at most 3 operations, 

and then the number of operations needed in evaluating user k's power vector 

Sk = (S~, S~, · · · , Sf:) is at most 3N. Thus, the operations needed for each user 

is at most lON + 4. For K users, the operations needed is at most K(lON + 4). 

Hence, the total complexity of each iteration is O(K N), which is linear in both 

the number of users K and the number of subcarriers N, respectively. Indeed, 

this is the reason why this new algorithm is called the fast iterative water­

filling controller. Let £ 1 be the number of iterations needed in the FIWFC. The 

total computational complexity of the FIWFC is O(L1K N). Based on simulation 

results, £ 1 almost stays constant as the size of the data sets changes. 

In direct contrast, the total computational complexity of the IWFC for DSL 

1s O(L2K N log N) [48, 49], which is higher than the FIWFC by a factor of 

log N, although the TPC problem for DSL has simpler constraints than the one 

considered in this thesis. Here, £ 2 is the number of iterations needed in the 

IWFC for DSL. 

3.6 Solution Stability 

This section studies the stability of a GNE for the TPC problem under per­

turbation of parameters. In practice, accurate information about the noise and 

interference may not be obtainable because they are measured by receivers of 

cognitive radios. The question is, for a given set of measurements close to the 
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accurate values, will the solution of the perturbed TPC problem be close to the 

correct solution or not? Addressing this question leads to the concept of "solution 

stability", which has to do with the "continuity" of the perturbed solutions. 

3.6.1 MLCP and Affine Variational Inequality (AVI) 

In order to take advantage of the well-developed stability theory of AVI, the 

relationship between MLCP and AVI needs to be studied. First, the definition 

of AVI is given as follows: 

Definition 3.6.1 Given a subset 0 E Rn and an affine function 

F = q + M X, 'Vx E Rn, 

for some vector q E Rn and matrix M E Rnxn, the affine variational ineq'uality, 

denoted as AV I(O, q, M), defines a vector x E 0 such that 

(y- x)T F(x) 2: 0, 'Vy E 0. (3.10) 

The set of solutions to this problem is denoted as SOL(O, q, M). 

According to Proposition 1.2.1 in [13], the equivalent AVI formulation for the 

MLCP (3. 7) can be formulated as follows: 

(Z- SfF(S) 2: O,VZ E 0, (3.11) 
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where 

SI +II 

F:= 
s~ +I~ 

and 
sn+r < pn 

k k - ' 

s;: 2: o, 

n = 1, · · · , N, k = 1, · · ·, K 

In order to put the function F as well as the functions in the set D into matrix 

form, let us define a matrix M as M = A + I, where A is defined in Subsection 

3.5.2 and I is the identity matrix (M can also be set as M = C +I depending 

on ·how the power vector S is defined, where C is defined in Subsection 3.5.2 

as well). Then, the function F and the solution set D can be represented as 

F = Jvf S + CJ and 

MS + CJ::; P, 

n = s E RKN : H s = CAP, 

respectively, where H = (H1 , H2 , · · · , HK), and Hk is a K x NK matrix where 

the kth row is the all-ones vector and the other rows are all zero vectors. 
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3.6.2 Solution Stability of Affine Variational Inequality 

Let F be an affine function given by: 

F(x) = q+Mx, Vx ERn, (3.12) 

for some vectors q E Rn and matrix M E Rnxn. Let n be represented as: 

0 = {x E Rn: g(x) ::; 0, h(x) = 0}, (3.13) 

where g(x) =Ax-band h(x) = Cx- d. Following [13], the family of parametric 

AVIs is defined as follows: 

{AVJ(O(p),F(·,p)): pEP}. (3.14) 

Before presenting the stability theorem, two definitions in [13] need to be 

recalled. 

Definition 3.6.2 The constraints that define the set n satis.fr:e"' the Mangasarian­

Fromowitz Constraint Qualification (MFCQ) at X E n if 

(a) the gradients 

{\i'hi(x) : j = 1, · · · , l}, 

are linearly independent, and 
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(b) there exists a vector v E Rn such that 

where I( x) is the active index set at x, i.e. 

I(x) = {i: gi(x) = 0}. 

Definition 3.6.3 Let W be a cone in Rn. A matrix B E Rnxn is said to be 

(i) copositive on W if 

(ii) strictly copositive on W if 

xT Ex> 0, Vx E R~ \ {0}. 

The next result shows the sufficient conditions for parametric stability of a 

solution x* in SOL(D(p*), F(·,p*)) of a parametric AVI(D(p*), F(·,p*)), which 

is reduced from Theorem 5.4.4 in [13]. The result pertains to the concept of 

solution stability of the parametric AVI(D(p*), F(·,p*)) under the perturbation 

of the parameter p, which provides useful information including the solvability 

of the perturbed problems AVI(D(p), F(·, p)) and the quantitative change of the 
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perturbed solution with respect to the solution x*. 

Corollary 3.6.4 Suppose that the functions g( ·, p) and h( ·, p) are continuous 

and convex for each p E P. Let x* be a solution of the AVI(Sl(p*),F(·,p*)). 

Assume that there exist an open neighborhood <I> of x*, an open neighborhood W 

of p* and positive constants L and L' such that 

sup 
xEO(P)n<I> 

IIF(x,p)- F(x,p*)ll::; LIIP- p*ll, Vp E w n P, (3.15) 

IIF(x,p*)- F(x',p*)ll::; L'llx- x'll, Vx, x' E <I>. (3.16) 

Further assume that the MFCQ holds at x* E S1(p*). If M is strictly copositive 

on Rn, then there exist a neighborhood N of x* and a neighborhood W of p* such 

that, for all pEW, 

SN(P) = SOL(O(p), F(·,p)) n N =f 0; 

and there exists a constant c > 0 such that, for all p sufficiently close to p*, 

sup{llx(p)- x*ll : x(p) E SN(P)}::; cliP- p*ll. (3.17) 

The formulation (3.17) indicates that solutions of parametric AVI(S1(p), F(·,p)) 

will continuously approach the solution of the original AVI(S1(p*), F(·,p*)) when 

the parameter p approaches the original p*. 
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3.6.3 Solution Stability of the TPC Problem under Interference-

Power Limitation 

For the TPC in cognitive radio, the measurement errors are encountered in the 

interference-plus-noise levels. This implies that the interference-gain matrix and 

normalized noise are the key parameters for stability analysis. This subsection 

considers the parametric AVI for the TPC problem as follows: 

( ) RNKxNK 
P = P1, P2 , P1 , P2 E 

(M + P1M)S +a+ ap2::; P, 

O(p) = s E RKN: HS =CAP, 

s ~ 0, 

Here, M is not necessarily symmetric. 

(3.18) 

For the parametric AVI (3.18), the Lipschitz conditions (3.15) and (3.16) in 

Corollary 3.6.4 are naturally satisfied. In the following, the stability theorem for 

AVI is applied to our TPC problem: 

Corollary 3.6.5 When the matrix M is strictly copositive and the MFCQ holds 

at a GNE of the TPC problem (3.1), the GNE will be stable. 

Strict copositiveness of M on Rn is equivalent to the condition that - M is 

a Hurwitz matrix, which is defined as a matrix where every eigenvalue has a 
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strictly negative real part. If the symmetric part of M, that is ~(M + Mr), 

is positive definite, then - M is Hurwitz; if the matrix M is strictly diagonally 

dominant, then its symmetric part HM + MT) is positive definite. Therefore, 

one of the following conditions guarantees that - M will be Hurwitz: 

(1) 

L o:jk < 1, Vn = 1, · · · , N, Vk = 1, · · · , K, or 
j# 

(2) in particular, 

ajk < K 
1 

, Vn = 1, · · · , N, Vk = 1, · · · , K. 
-1 

(3.19) 

(3.20) 

Note that the convergence condition developed in Subsection 3.5.2 implies con-

clition (3.20), as does the strict copositiveness. Hence, the solution stabi~ity 

condition is weaker than the convergence condition given in this thesis. We will 

further discuss the stability conditions in detail in the next subsection. 

3.6.4 Discussions on Solution Stability Conditions of the 

TPC Problem 

As mentioned in Section 3.5.2, the matrix M contains the topology information 

of the cognitive radio networks. The term o:"}k is proportional to the distance ratio 

("t t where the path-loss exponent r varies from 2 to 5. When the term o:jk is 

smaller than K~l for all k and n, the matrix M will be strictly copositive. Then 
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the stability of the solutions will be assured. These conditions require a topology 

condition to be imposed on a cognitive radio network that each receiver has a 

relatively shorter distance from its own transmitter, compared to the distances 

from other activated transmitters in the network. 

There may be many good approaches to building a cognitive radio network 

satisfying this topology requirement. One promising approach is to use an ad hoc 

network [4, 5]. In cognitive radio ad hoc networks, two or more secondary users 

are used as wireless hops so as to relay the packets from a source to a destination. 

Cognitive radio ad hoc networks do not rely on any infrastructure or centralized 

authority. The relay routes are established and updated among the secondary 

users according to the topology of the network. Thus, the stability conditions 

could be satisfied in this ad hoc manner. Figure 3.3 shows an example of a 

cognitive radio ad hoc network, where the secondary users are placed randomly 

and the relay routes are chosen according to the shortest Euclidean distances 

between the secondary users. 

--·-·-·~ 

' 

I 
't 

Figure 3.3: An example of a cognitive radio ad hoc network 
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3.7 Summary 

In this chapter, the TPC problem under interference-power limitation was cast 

as a generalized Nash game model. The solution to this problem is guaranteed by 

the existence theorem presented in the previous chapter. After establishing the 

rigorous theoretical basis, we developed the new algorithm, FIWFC for finding a 

GNE for the this problem. The computational complexity of the FIWFC is lower 

than that of the IWFC for DSL by a factor of log N, although the TPC problem of 

DSL has a simpler constraint set. The convergence conditions of the FIWFC and 

the uniqueness of a solution were given. Although the conditions are restrictive 

in practice, we will see from the simulation results in the next chapter that the 

algorithm converges even when the conditions are violated. This implies that 

the conditions could be extended. We also presented the sufficient conditions of 

solution stability. For the TPC problem considered in this chapter, a solution is 

stable when the sum of the interference-gain matrix and the identity matrix is a 

strictly copositive matrix. However, the stability of a solution cannot be assured 

when the stability conditions are violated. Using an ad hoc network could help 

satisfy the stability conditions in practice. 
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Chapter 4 

Simulation Results of the 

FIWFC for the TPC under 

Interference-Power Limitation 

This chapter presents simulation results that have been performed in order to 

evaluate the performance of the FIWFC under an interference-power limitation. 

Different sizes of cognitive radio networks are used as examples and both station­

ary and non-stationary environments are considered. The convergence behavior 

of the FIWFC is compared with the IWFC. For the IWFC, the fmincon func­

tion in MATLAB and the mskscopt function in MOSEK were used, to solve the 

nonlinear separable convex optimization problems (the fmincon-based IWFC is 

denoted as IWFC I and the mskscopt-based IWFC as IWFC II, and these des­

ignations will be used throughout the rest of thesis.). The latter is designed 

specifically for separable convex problems using an interior-point method. In the 
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final section of this chapter, the stability of the solutions generated by the FI-

WFC are evaluated by simulating scenarios under the presence of measurement 

errors. 

The simulation database was generated as follows: the secondary users are 

randomly located on a 1000 x 1000m2 square area. Similar to the initial set, up 

in [43], the ambient noise power is set as 0"
2 = 5 x 10-13 and the signal-to-noise 

ratio gap is r = 1/128. Using the path-loss model (3.3), the path-loss expo­

nent is set to r = 4 following the approach of [21, 27, 43] and the attenuation 

parameter is chosen as {3 = 0.097. The battery power budgets C APk are gen-

erated uniformly from (lOON /2, lOON). The interference-power limitations pn 
K 

are set to the value 12::.: C APk + N m~x O"~l / N, where I x l denotes the smallest 
k=l 

integer that is not smaller than x. This way of choosing pn ensures that the 

non-triviality requirement is satisfied. The low-power limitation values UP pn 

are randomly generated from (CAPk/2N, 2CAPk/N). The terms K, Hand N 

denote the numbers of users, spectrum holes and subcarriers, respectively. 

Two stopping criteria for both the FIWFC and the IWFC are specified: 

• The maximum number of iterations to run each data set is set to 100. The 

algorithms stop when the number of iterations exceeds this value. 

• The tolerance is set for the relative change1 between the power vector in 

the current iteration and the one in the previous iteration. When it meets a 

prescribed relatively small tolerance, it indicates that the current solution 

1The relative change is defined as the Euclidean norm of the difference between the solution 
of the current iteration and the solution of the previous iteration, divided by the norm o(the 
current solution [14]. 
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is unlikely to improve significantly. For these experiments, the tolerance is 

set equal to 10-8 . 

The algorithms stop when either one of these two criteria is satisfied. 

4.1 Stationary Environment 

This section focuses on a realization of the FIWFC itself and a test of its conver­

gence behavior. To do so, we implement the algorithm in an ideal environment. 

These kind of environments are called stationary environments, where the initial 

data including the numbers of secondary users and available subcarriers remain 

unchanged time-wise, and the secondary users do not move from their starting 

positions. 

In Tables 4.1, 4.2, 4.3, and 4.4, the performance of the IWFC I, IWFC II 

and FIWFC are compared in stationary environment. Table 4.1 shows the total 

running time of all users for different data sets. From this table, we see that the 

FIWFC converges significantly faster than either IWFC I or IWFC II for the data 

sets considered. In Table 4.2, the average running time is generated by taking 

th~ average of the running times over all the secondary users. Hence, it shows 

the running time needed by each of the secondary users on average. This table 

shows that the average running time of the FIWFC is affected by the number of 

subcarriers greater than both IWFC I and IWFC II for the data sets considered. 

Table 4.3 shows the number of iterations needed by the IWFC I, IWFC II and 

FIWFC. According to the table, the algorithms converged within 100 iterations 

in all cases. Actually, all the data sets do not satisfy the convergence conditions. 
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This implies that the convergence conditions can be extended. Furthermore, the 

number of iterations needed by the FIWFC is a constant for all the data sets 

considered. This implies that the number of iterations needed by the FIWFC 

may not affect the computational complexity in the case of interference-power 

limitation. The number of iterations needed by the three algorithms are compa-

rable. Table 4.4 shows the sum of the data rates generated by the algorithms. 

According to this table, the sum rates achieved by the IWFC I, IWFC II and 

FIWFC are comparable as well. 

Table 4.1: Running Time (in Seconds) of the IWFC I, IWFC II and FIWFC 
under interference-power limitations in stationary environments 

I (K, H, N) I IWFC I I IWFC II I FIWFC I 
(4, 1, 8) 3.5371 1.1936 0.0102 
(10, 1, 8) 13.628 10.0988 0.0158 
(10, 1, 16) 16.247 3.8137 0.02 
(20, 2, 16) 44. 28.357 0.0569 
(20, 3, 24) 58.7124 21.7084 0.1447 
(20, 4, 32) 63.395 27.338 0.2104 
(20, 5, 40) 71.1525 21.4440 0.2959 
( 40, 5, 40) 132.1225 87.7320 1.3658 
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Table 4.2: Average Running Time (in Seconds) of the IWFC I, IWFC II and 
FIWFC under interference-power limitations in stationary environments 

I (K , H, N) I IWFC I I IWFC II I FIWFC I 
(4,1 , 8) 0.8843 0.2984 0.0025 
(10, 1, 8) 1.3628 1.01 0.0016 
(10, 2, 16) 1.6247 0.3814 0.002 
(20, 2, 16) 2.2 1.4179 0.0028 
(20, 2, 24) 2.9356 1.0854 0.0072 
(20, 4, 32) 3.1697 1.3669 0.0105 
(20, 5, 40) 3.5576 1.0722 0.0148 
( 40 , 5, 40) 3.3031 2.1933 0.0341 

Table 4.3 : # of Iterations of the IWFC I, IWFC II and FIWFC under 
interference-power limitations in stationary environments 

I (K , H, N) I IWFC I I IWFC II I FIWFC I 
(4 , 1, 8) 5 7 7 
(10 , 1, 8) 6 8 7 
(10, 1, 16) 5 7 7 
(20 , 1, 16) 6 9 7 
(20, 2, 24) 5 7 7 
(20, 4, 32) 5 7 7 
(20, 5, 40) 6 7 7 
( 40, 5, 40) 6 7 7 
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Table 4.4: Sum Rate of the IWFC I, IWFC II and FIWFC under interference­
power limitations in stationary environments 

I (K, H, N) I IWFC I I IWFC II I FIWFC 

(4, 1, 8) 72.2331 72.234 72.234 
(10, 1, 8) 96.9711 97.6054 96.9723 
(10, 1, 16) 155.3489 154.9514 154.9516 
(20, 1, 16) 575.6113 559.1446 575.614 
(20, 2, 24) 81.2864 81.1537 81.1537 
(20, 4, 32) 252.9279 249.531 249.5284 
(20, 5, 40) 417.464 413.1145 413.1776 
( 40, 5, 40) 580.5752 545.6939 545.6109 

Figures 4.1 and 4.2 show the convergence behaviors of the IWFC I, IWFC 

II and FIWFC for a data set with 4 users and 8 subcarriers. Figure 4.1 plots 

the data rates achieved by the three algorithms. Starting with low data rates, 

all users achieved the higher data rates after the first iteration, and all the data 

rates dropped at the second iteration. After that, the data rates were adjusted 

slightly so as to reach an equilibrium. Figure 4.2 shows the sum of the data rates 

of all users, where the sum rates achieved by the three algorithms are the same 

as they all reach the same equilibrium. 
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Figure 4.1: The data rates achieved by the IWFC I, IWFC II and FIWFC given 
4 users and 8 subcarriers. 
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Figure 4.2: The sum of the data rates achieved by the IWFC I, IWFC II and 
FIWFC given 4 users and 8 subcarriers. 

4.2 Nonstat ionary Environment 

In the absence of having access to real-life data (for obvious reasons) , a set of 

realistic scenarios and events is simulated in this section. In this case, all of the 

secondary users are moving on the grid with different speeds and making turns. 

Meanwhile, some secondary users come and go, and spectrum holes emerge and 

disappear with corresponding changes made to the number of subcarriers. This 

kind of nonstationary environments is more realistic compared to the stationary 

environments. 

As an example, some users are driving along a highway with the speed 

108km/ h, some are driving on a street with the speed 54km/ h , and the rest 

are walking with the speed lm/s ; On the street , the driving users make a left or 

right turn every minute, while the walking users may make a random turn every 
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10 seconds; two new users join at the third iteration, and one spectrum hole 

having eight subcarriers disappears at the fifth iteration. The changes happen 

before the algorithms stop. The algorithms start with the same parameter val­

ues given in the stationary environments for each data set. Due to these changes 

with time, the parameters need to be recalculated at each iteration. 

Tables 4.5, 4.6, 4.7, and 4.8 show the simulation results generated by the 

IWFC I, IWFC II and FIWFC in nonstationary environments. Since in nonsta­

tioary environments, secondary users are mobile , the values of the parameters 

tend to change along t he iterations, and they are likely different for the three 

algorithms at each iteration due to different convergence speeds. Therefore, it is 

not reasonable to compare the simulation results for the three algorithms in non­

stationary environments. Let K, H , and N denote the ultimate number of users , 

spectrum holes, and subcarriers after the users join and subcarriers disappear , 

respectively. Tables 4.5 and 4.6 show the total running time and the average 

running time for different data sets, respectively. Comparing the running times 

in stationary environments with those in nonstationary environments, we see 

that the running time of the FIWFC does not change significantly as a result 

of the environmental changes, although it is affected by the number of subcarri­

ers, while the running time of both the IWFC I and IWFC II is affected by the 

environmental change. This is because FIWFC converged so fast that the users 

did not move too far away from their starting points , and thus the problems are 

very close to the ones in stationary environments. Table 4.7 shows the number 

of iterations needed by the IWFC I, IWFC II and the FIWFC in nonstationary 

environments . From the table, we can see that for the FIWFC, the number of 
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iterations is a constant, while for both the IWFC I and IWFC II, it changes with 

the size of the data sets. Table 4.8 shows the sum of the data rates. From this 

table, we see that there are significant differences among the algorithms. 

Table 4.5: Running Time (in Seconds) of the IWFC I, IWFC II and FIWFC 
under interference-power limitations in nonstationary environments 

(K, H, il) I IWFC I I IWFC II I FIWFC 

(6, 1, 8) 8.4228 18.2035 0.0305 
(12, 1, 8) 24.2668 177.0915 0.0424 
(22, 4, 32) 17.3468 30.3175 0.4721 
(42, 4, 32) 137.2051 18.0211 1.3488 

Table 4.6: Average Running Time (in Seconds) of the IWFC I, IWFC II and 
FIWFC under interference-power limitations in nonstationary environments 

(K, H, N) I IWFC I I IWFC II I FIWFC 

(6, 1, 8) 1.4038 3.0339 0.0051 
(12, 1, 8) 2.0222 14.7576 0.0035 
(22, 4, 32) 0.7885 1.3781 0.0215 
( 42, 4, 32) 3.2668 0.4291 0.0321 

Table 4.7: # of Iterations of the IWFC I, IWFC II and FIWFC under 
interference-power limitations in nonstationary environments 

(K, H, N) I IWFC I I IWFC II I FIWFC 

(6, 1, 8) 63 23 10 
(12, 1, 8) 11 41 10 
(22, 4, 32) 25 35 10 
(42,4,32) 17 32 10 
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Table 4.8: Sum Rate of the IWFC I, IWFC II and FIWFC under interference­
power limitations in nonstationary environments 

(K, H , N) I IWFC I I IWFC II I FIWFC 

(6, 1, 8) 108.1487 99.1283 137.7259 
(12, 1, 8) 156.7566 308.3914 168.3723 
(22, 4, 32) 207 557.5011 389.8124 
( 42 , 4, 32) 859.7974 775.4856 681.4196 

Figures 4.3 and 4.4 show the convergence behaviors of the IWFC I, IWFC 

II and FIWFC in a nonstationary environment given four users and sixteen 

subcarriers with two new users joining at the third iteration, and eight subcarriers 

disappearing at the fifth iteration. Figure 4.3 shows the data rates versus the 

number of iterations. We see that the change in the number of users and available 

subcarriers affects the distribution of the transmit power among the users. At 

the third iteration , two new users joined and were allocated resources, which 

reduced the other users' transmit-power levels. After the fifth iteration , all users ' 

transmit-power levels were brought down significantly as the available resources 

are reduced. Figure 4.4 shows the sum of the data rates of all users achieved by 

the IWFC I, IWFC II and FIWFC. 
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Figure 4.3: The data rates achieved by the IWFC I, IWFC II and FIWFC given 
an environment of 4 users with 16 subcarriers. Two new users join at the third 
iteration and eight subcarriers disappear at the fifth iteration. 
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Figure 4.4: The sum rates achieved by the IWFC I, IWFC II FIWFC given an 
environment of 4 users with 16 subcarriers. Two new users join at the third 
iteration and eight subcarriers disappear at the fifth iteration. 

4.3 Sensitivity and Stability Simulation 

This section numerically studies the stability of solutions generated by the FI-

WFC in the presence of measurement errors. To do so, two key parameters, 

normalized noise CJ and the interference-gain matrix A are perturbed. As an ex-

ample , a network with 4 users and 8 subcarriers is considered. The movements 

of the users are simulated in the same way as described in Section 4.2. 

The parameters are perturbed within different ranges to examine the behavior 

of the FIWFC under measurement errors. The average data rates are generated 

by taking averages of the data rates over all users. The different perturbation 

ranges are indicated in the legends of the figures. For instance, 20% indicates that 

the corresponding curves are generated by perturbing the parameters randomly 
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by 20%, i.e., between ( -20%, 20%). In practice, the interference-plus-noise terms 

are measured at the receivers at each iteration, and so the measurement errors 

occur at each iteration as well. Considering this, perturbations to parameters 

are imposed at each iteration instead of only once at the beginning. 

On the one hand, we generate a data set where the sum M of the interference­

gain matrix A and the identity matrix I is strictly copositive. In this case, the 

stability conditions are satisfied. Figures (4.5), (4.6), and (4.7) show the stable 

behaviors of the FIWFC when the interference-gain matrix, the normalized noise, 

and both of them are perturbed at each iteration, respectively, for this case. The 

subfigures are plotted as follows: 

• Subfigures (a) show the convergence behaviors when the perturbations are 

imposed within different ranges; 

• Subfigures (b) quantify the absolute differences between the different aver­

age data rates generated with the perturbation and the average data rate 

generated with the original parameters. 

From subfigures (b), we see that when the perturbation ranges shrink, the average 

data rates with perturbed parameters approach the average data rate with the 

original parameters. This indicates that our algorithm achieves a stable GNE for 

the TPC problem and the stability still holds even when the measurement errors 

occur at each time instant as the interference-plus-noise term is measured. 
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Figure 4.5: (a) The average data rates given perturbed interference gain ma­
trices within different ranges. The perturbations are imposed at each itera­
tion. (b) The absolute differences between the average data rates for the per­
turbed and non-perturbed cases versus the number of iterations. 
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Figure 4.6: (a) The average data rates with the perturbed normalized noise 
terms within different ranges. The perturbations are imposed at each iteration. 
(b) The absolute differences between the average data rates for the perturbed 
and non-perturbed cases versus the number of iterations. 
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Figure 4. 7: (a) The average data rates given the perturbed interference-plus­
noise terms within different error ranges. The perturbations are imposed at 
each iteration. (b) The absolute differences between the average data rates for 
the perturbed and non-perturbed cases versus the number of iterations. 

On the other hand, we generate a data set where the matrix M is not strictly 

copositive. Then the solution stability is not guaranteed. Figure ( 4.8) shows the 

error of data rates generated by the FIWFC when the interference-gain matrix 
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is perturbed within different ranges for this case. We see that when the per­

turbations are imposed, the error curves oscillate along the iterations and could 

not approach zero, and the algorithms could not converge within 100 iterations, 

which implies that the solution could be unstable. 
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Figure 4.8: The absolute differences between the average data rates for the per­
turbed and non-perturbed cases versus the number of iterations in the case that 
the stability conditions are violated. 

4.4 Summary 

In this chapter, we evaluated the performance of the FIWFC under interference-

power limitation from different perspectives: 

1. Convergence: The FIWFC converged in both the stationary and nonsta-

tionary environments with different sizes of data sets. It also converged 

when the critical parameters, the interference-gain matrix and normalized 

noise were perturbed within different ranges. However, when the pertur-

bation range is too large, the algorithm may not converge. 
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2. Convergence speed: From the simulation results in both the stationary 

environments, the FIWFC converged significantly faster than the IWFC 

using the fmincon and mskscopt functions. The environmental changes 

did not affect the running time of the FIWFC significantly but they did 

for the IWFC. The average running time of all the algorithms increased 

as the number of subcarriers grew. However, the average running time 

of the FIWFC increased with a faster rate than the IWFC based on the 

simulation results. 

3. Number of iterations: The number of iterations needed by the FIWFC is a 

constant in both of the stationary and nonstationary environments. How­

ever, the number of iterations needed by the IWFC changed significantly 

with the size of the data sets in the nonstationary environment. 

4. Sum rate: The sum rates achieved by the three algorithms are comparable 

in stationary environments. 

5. Sensitivity and stability: In the cases we considered in this chapter, the FI­

WFC achieved a stable solution when the stability condition was satisfied. 

However, the solution could be unstable when the condition is violated. 

In addition, the algorithm may not be able to converge when the stability 

conditions are violated. As mentioned in Section 3.6.3, this is because the 

stability condition is weaker than the convergence condition we showed in 

this thesis. Hence, when the stability condition is not satisfied, the conver­

gence condition is violated. 
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Chapter 5 

Transmit-Power Control 

Problem for Cognitive Radios 

under Low-Power Limitation 

Chapter 3 focuses on the TPC problem for cognitive radios under the interference­

power limitation, in which the interference power at each subcarrier is limited so 

as to protect the primary users from a prescribed high interference level. This 

chapter is concerned with protecting the primary users by directly imposing a 

limitation on the transmit power of each secondary user. The mathematical 

results developed in the previous chapter are used as the principal tool for de­

veloping the fundamental properties and algorithm of this chapter. 
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5.1 Problem Statement 

The TPC problem for cognitive radios operating under a low-power limitation 

can be formulated as a Nash game, where, instead of jointly maximizing the total 

data rate , each secondary user maximizes its own data rate individually subject 

to a given low-power limitation and battery constraint. 

5.2 Nash Game Formulation 

Suppose that there are K secondary users and N subcarriers. Mathematically, 

the TPC problem of this network is a Nash game model which consists of K sepa-

rable nonlinear convex optimization problems. For each user k, the optimization 

problem is as follows: 

N ( sn) ~log 1 + Ir 
N 

s.t. L S~ ~ CAPk, (5.1) 
n=l 

0 ~ S~ ~ UP pn, n = 1, · · · , N, 

where UP pn denotes the low-power limitation over subcarrier n. 

For this Nash game model, two situations are considered: 

• The first situation is that the battery-power limit for a user is not lower 

than the total of low-power limitations along the subcarriers, i.e. , CAPk ::::: 
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N 

L UP pn. In this case, the battery-power limit constraint 
n=l 

is redundant. Therefore, for each user k, the model (5.1) reduces to: 

N ( sn) ~log 1 + Ir 
s.t. 0 :::; S~ :::; UP pn, n = 1, · · · , N. (5.2) 

• The second situation is that the prescribed battery-power limit for a user 
N 

is lower than the total of the low-power limits, i.e., CAPk < LUPPn. 
n=l 

Here, it is necessary to preserve the battery-power limit constraint and the 

problem is formulated as model (5.1). 

In both cases, the problem satisfies Slater's constraint qualification, as the fea-

sible sets are polyhedra. By Theorem 2.3.1, the KKT conditions are necessary 

and sufficient. 
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5 .. 3 Theoretical Basis of the Problem 

5. 3. 1 KKT Conditions 

For the first situation, the KKT conditions for each user are as follows: 

1 
(5.3) 0 < snl_- +>.n>o k sn +In k -k k 

0 < ;..n l_UPPn- sn > 0 k k - (5.4) 

n = 1, ··· , N . 

In fact, it is possible to immediately derive a solution to this model. As O'k > 0, 

then the term sn~1n must be positive as well. From the inequality on the right-
k k 

hand side of (5.3) , )..k > 0, for all n. By the complementarity condition in (5.4), 

we have s;: = UP pn , for all n and k. This means that if there is no battery 

limitation, each user can reach the low-power limitation on each subcarrier. 

For the second situation, the KKT conditions for each user in this case are 

as follows: 

0 < S'k l_ - sn ~ In + )..k + f.lk 2 0 
k k 

0 < ;..nl_UPPn- sn > 0 
k k -

N 

0 < /-1kl_CAPk- 2::: S'k 2 0 
n=l 

n= 1, ··· , N. 
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5.3.2 Mixed Linear Complementarity Problem 

For the second case, we can also establish an equivalent relation between the 

KKT conditions and the MLCP. This reduces the nonlinearity of the original 

problem, which is critical to developing a new, low-complexity algorithm. 

N 

Proposition 5.3.1 Under the condition CAPk < 2..= UP pn, the set of the KKT 
n=l 

conditions of this model is equivalent to the following MLCP: 

0 < s~ j_S~ + I~ + ;3~ - vk ;::: o 

0 < f3n l_U p pn - sn > 0 k k- (5.8) 
N 

0 CAPk- LS~ 
n=l 

vk is free 

k 1, ... 'K, n = 1, ... 'N. 

Proof: See APPENDIX E. 

5.3.3 Optimality Conditions 

Analogous to the result in Subsection 3.4.3, the necessary and sufficient optimal-

ity conditions for the MLCP (5.8) are developed in the following proposition: 

N 

Proposition 5.3.2 For each user, ifCAPk;::: LUPPn, then 
n=l 
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for all n. Suppose that CAPk < 2:::::~= 1 uppn for each k. Let 

Tk = { n : S~ > 0} 

be the index set of subcarriers activated by user k, and 

be the index set of subcarriers activated by user k, at which the low-power limi-

tations are reached. Then (S, v, j]) solves problem (5.8) if, and only if, (S, v, !3 ) 

sat ·L~fies the following conditions, called the arithmetic sirnpl·ified optimality con-

ditions: 

l/k = (CAPk + L I~- L UPPn)/(ITki-IBkl) 

and 

Moreover, 

Sn ­
k -

/3~ = 

nETk/ Bk nEBk 

uppn 

0 

0 
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{2) Otherwise, 

s~ = { 

Proof: See APPENDIX F. 

According to Theorem 2.3.1, and Propositions 5.3.1 and 5.3.2, the necessary 

and sufficient optimality theorem is ready to be stated in the following corollary. 

Corollary 5.3.3 Suppose that the convexity assumption holds. Then, S is a NE 

of the TPC problem (5.1) if, and only if, there exist v and {3 such that (S, v, {3) 

satisfies the arithmetic simplified optimality conditions in Proposition 5. 3. 2. 

5.4 Fast Iterative Water-Filling Algorithm 

5.4.1 Algorithm 

This subsection introduces the FIWFC for finding a NE of the TPC problem 

under the low-power limitation. Enlightened by Proposition 5.3.2, the idea of 

this new algorithm is to update the transmit-power vector iteratively according 

to the interference formed by the power vector of the previous iteration. Taking 

advantage of the information content of the Lagrange multipliers, the power 

vector of the TPC problem is updated iteratively. 

To describe the FIWFC in detail, some notation is needed. Let the superscript 

l indicate the lth iteration, and Ok be the strategy set of user k at the lth iteratipn. 
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For n = 1, · · · , N, let 

I n(l) ·- n + """' n sn(l) 
k .- (J"k ~ O''jk j 

j# 

be the interference-plus-noise at the current iteration; 

T~l) := {n: s;(l) > 0}, 

be the index set of the subcarriers utilized by user k; and 

be the index set of subcarriers where user k reaches the low-power limit. The 

FIWFC considers two situations: 

N 

1. For those users with c APk 2: L up pn' set s;(l) = up pn for all n; 
n=l 

N 

2. For those users with C APk < L UP pn, the iterative procedure is per-
n=l 

formed. For such users, form Vk1
) and update the transmit-power vector 

Skl+l) based on the information extracted from the current iteration l. In 

fact, Vkl) plays an important role in the updating scheme of the transmit-

power vector, which serves as the water-filling level threshold in the updat­

ing scheme. When the interference I~(l) is higher than the threshold Vkl), 

set 
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When the positive difference v~l) - I;(l) is higher than the low-power -ca-

pacity UP pn, set 

otherwise, set it to the positive difference, 

S(l+l) _ (!) _ In(l) 
k - l/k k . 

In this way, the updated transmit-power vector S~!+l), as well as the La­

grange multipliers v~l) and {3~(!), satisfy the conditions (5.8) with I;(!) 

formed by s~l). 

For the sake of illustration, the basic idea of this new updating scheme is 
N 

shown in Figure 5.1 for the case when C APk < L UP pn. This picture considers 
n=l 

the case with three subcarriers for user k: 

• In subcarrier 1, the low-power limitation UP P 1 is lower than the difference 

vk - II_; therefore, the transmit-power for user k over this sub carrier is set 

to U ppl. 
' 

• In subcarrier 2, the low-power limitation UP P 2 is higher than the difference 

vk - I~; therefore, the transmit power for user k over this subcarrier is set 

to vk - I~; 

• In subcarrier 3, with interference IZ being higher than the threshold, the 

transmit-power s~ is set to zero. 
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The FIWFC for cognitive radios under low-power limitation is described in Al-

gorithm 5.4.1. 

+-------
Upp 

1 

Figure 5.1: Illustrating the basic updating scheme of FIWFC for cognitive radios 
under low-power Limitation 
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Algorithm 5.4.1 FIWFC for Cognitive Radios under Low-Power Limitation 

Let l = 0, i = 0, and Sk0
) be any feasible power vector 

for k = 1 to K do 
N 

if CAPk 2:: L uppn then 
i=l 

for n = 1 to N do 
Set Si: = uppn 

end for 
else 

Set i = i + 1 
Set m(i) = k 

end if 
end for 
if i = 0 then 

Stop 
end if 
repeat 

for k = m(1) to m(i) do 
if T~l) i= Bk1

) then 

CAPk+ L 1:(/) - L UP pn 

( /) nET(l) /B(l) nEB(l) v - k k k 
k - IT~ 1li-IB~1 ll 

for n = 1 to N do 

n(l+l) { ~(/) - r(l) 
sk = k k 

uppn 

end for 
else 

for n = 1 to N do 

ifvk1
) - 1:(/) ::=; 0 

if 0 < Vkl) - I:(l) 
:::; uppn 
otherwise 

s:(l+l) = k 
{ 

Uppn n E T(l) 

0 otherwise 

end for 
end if 

end for 
l+-l+1 

until A stopping criterion is satisfied 
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5.4.2 Convergence and Uniqueness 

Similar to the results developed for the FIWFC under the interference-power lim­

itation as described in Subsection 3.5.2, the convergence and uniqueness results 

for low-power limitation are derived in the following theorems. 

Theorem 5.4.1 Suppose the TPC problem for cognitive radios under low-power 

limitation satisfies the convexity assumption. If one of the following conditions 

is satisfied, 

·• p(AT A)< 1, or 

• p(CTC) < 1, or 

• Tr(AT A) < 1, or 

• Tr(CT C) < 1, 

then the FIWFC under a low-power limitation converges both globally and linearly 

to a solution of the TPC problem (5.1). 

Proof: See APPENDIX G. 

Theorem 5.4.2 With the same conditions in Theorem 5.4.1, TPCproblem (5.1) 

has a unique solution. 

Proof: See APPENDIX H. 
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5.5 Computational Complexity 

The computational complexity of this new algorithm is the same as the FIWFC 

introduced in Chapter 3. It is justified as follows. 

As with the first FIWFC, this new algorithm is formulated iteratively as well. 

After initialization, the power allocation for the K users is iteratively adjusted 

within the inner loop. For each user, two situations may be applied: 

N 

• When C APk ~ 2:::.::: UP pn, the transmit power is set to the low-power 
n=l 

limitation. Hence, the complexity of power allocation for this user is O(N). 

N 

• When C APk < 2:::.::: UP pn, n and Bk is checked once. Checking Tk takes 
n=l 

O(N) operations. Since, in practice, the interference-plus-noise IJ: is mea-

sured at the receiver, this term does not affect the computational burden. 

Consequently, checking Bk is an O(N) procedure as well. To evaluate vk, 

the additions of the interference-plus-noise terms need O(N) time, and so 

do those of the low-power limitations. Hence, the total time devoted to 

evaluate vk is O(N). Furthermore, evaluation of SJ: is only 0(1), and so 

the total time spent in evaluating Sk = (S~, Sf,··· , Sf:) is also O(N). 

Thus, in either situation, the operating time for power allocation for each user is 

O(N). Since K users are involved, the total time for the inner loop is O(Kiv), 

which is linear in both the number of users K and the number of sub carriers N, 

respectively. Let M1 be the number of iterations needed in the FIWFA. The total 

computational complexity of the FIWFA is O(M1K N). Based on the simulation 

results, M1 does not change significantly with a change in the size of the data 

76 



Ph.D. Thesis- Jiaping Zhu School of Computational Engineering & Science 

sets. It seems that there is no direct relationship between M 1 and the sizes of 

data sets. 

5.·6 Solution Stability of the Nash Game Model 

under Low-Power Limitation 

This section studies stability of a NE for the TPC problem (5.1) under the 

perturbation of network parameters. 

According to Proposition 1.2.1 in [13], the equivalent AVI formulation for the 

MLCP (5.8) is established as follows: 

(Z- SfF(S) 2 0, VZ ED, (5.9) 

where 

s~ +I~ 

F:= 
s~ +I~ 

Sf +If 

and 
sn < uppn 
k- ' 

D= 
Sf: 2 0, 

n = 1, · · ·, N, k = 1, · · · , K 

In order to put the function F and the functions in the set D into matrix form, 
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define a matrix Mas M = A+ l , where A is defined in Subsection 3.5.2 and lis 

the identity matrix (or M = C + l depending on the way that the power vector 

S is defined, where Cis also defined in Subsection 3.5.2). Then, the function F 

and the solution set can be represented as F = M S + CJ and 

S ~ UPP, 

n = s E RK N : If s = cAP, 
I s 2 0, 

respectively, where H = (H1, H2 ,··· , HK), and Hk is a K x NK matrix where 

the kth row is the all-ones vector and the other rows are all zero vectors. 

For the TPC in cognitive radio, the measurement errors occur in the sensed 

interference-plus-noise terms, which implies that the interference-gain matrix 

and normalized noise are the key parameters for stability analysis. For those 

users with a battery-power limit higher than the total low-power limits along 
N 

the subcarriers, i.e. CAPk 2 LUPPn, the transmit-power levels are fixed as 
n=l 

the low-power limitations, s;: = up pn, and the solutions are obviously stable. 

Hence, the parametric AVI for the TPC ~roblem are considered for those users 
N 

with low battery-power limits , i.e. CAPk < L UP pn as follows: 
n=l 

(5. 10) 

where F(S,pl ,P2) = (M+p1M)S+CJ+CJp2. Here, M is not necessarily symmetric. 

For the parametric AVI (5.10), the Lipschitz conditions (3.15) and (3. 16) in 
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Corollary 3.6.4 are naturally satisfied. As a result, the stability theorem for AVI 

to the TPC problem (5.1) can be applied as follows: 

Corollary 5.6.1 When the matrix M is strictly copositive and the MFCQ holds 

at a NE of the TPC problem (5.1), the NEwill be stable. 

The stability conditions are the same for the TPC problem under interference­

power limitation in subsection 3.6.3. As discussed in subsection 3.6.4, the matrix 

M may be strictly copositive when each receiver has a relatively shorter distance 

from its own transmitter, compared to the distances from other activated trans­

mitters in the network. This practical requirement could be satisfied using an 

ad hoc network. 

5.7 Summary 

In this chapter, the TPC problem under low-power limitation was cast as a Nash 

game model. The solution to this problem is also guaranteed by the existence 

th~orem presented in Chapter 2. The FIWFC was also introduced for solving the 

TPC problem under low-power limitation. The computational complexity is the 

same as that of the FIWFC under the interference-power limitation introduced 

in Chapter 3. The conditions for the convergence of the FIWFC, the uniqueness 

of a solution and the solution stability were given as well, and are the same as 

in the case of interference-power limitation. 
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Chapter 6 

Simulation Results of the 

FIWFC for the TPC under 

Low-Power Limitation 

In this chapter, simulation results are presented to evaluate the performance of 

the FIWFC operating under low-power limitation. The convergence behaviors 

of the FIWFC, the IWFC I and IWFC II are compared for both stationary and 

nonstationary environments. In the last section, the solution stability is numeri­

cally studied by imposing perturbations to the critical parameters including the 

interference-gain matrix and the normalized noise. In this chapter, the same 

database and stopping criteria were used as in Chapter 4. 
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6.1 Stationary Environment 

In this section, stationary environments are considered for the purpose of realiz­

ing the FIWFC as in Section 4.1. 

In Tables 6.1, 6.2, 6.3, and 6.3, the simulation results generated by the IWFC 

I, IWFC II and FIWFC are compared. Tables 6.1 and 6.2 show the total running 

times and the average running times in stationary environments, respectively. 

From these tables, we see that the FIWFC converges significantly faster than 

either the IWFC I or IWFC II. However, the average running time ofthe FIWFC 

is affected greatly by the number of subcarriers for the data sets considered. Table 

6.3 shows the numbers of iterations needed for convergence by the IWFC I, IWFC 

II and the FIWFC. According to the table, the algorithms converged within 100 

iterations in all cases. Actually, none of the data sets satisfied the convergence 

conditions. This also implied that the convergence conditions can be extended. 

Furthermore, the number of iterations needed by FIWFC is a constant for all 

the data sets considered. This implies that the number of iterations needed by 

the FIWFC may not affect the computational complexity in the case of low­

power limitation. The numbers of iterations needed by the three algorithms are 

comparable. Table 6.4 shows the sum data rates achieved by the algorithms. 

According to the table, the sum rates achieved by the IWFC I, IWFC II and 

FIWFC are comparable, except for the data set with 10 users and 16 subcarriers, 

where the IWFC II achieved a data rate about 20% more than that achieved by 

the IWFC I and FIWFC. 
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Table 6.1: Running Time (in Seconds) of the IWFC I, IWFC II and FIWFC 
under low-power limitations in stationary environments 

I (K, H, N) I IWFC I I ~WFC II I FIWFC I 
(4 , 1, 8) 6.0207 6.5434 0.011 
(10 , 1, 8) 17.0673 9.8206 0.0137 
(10 , 2, 16) 19.9753 4.6417 0.0241 
(20, 2, 16) 42.7408 17.5715 0.0572 
(20, 5, 40) 65.2201 18.337 0.3017 
( 40, 5, 40) 133.3974 38.943 1.3343 

Table 6.2: Average Running Time (in Seconds) of the IWFC I, IvVFC II and 
FIWFC under low-power limitations in s~ationary environments 

I (K, H, N) I IWFC I I IWFC II I FIWFC I 
(4, 1, 8) 1.5052 1.6360 0.0027 
(10, 1, 8) 1.7067 0.981 0.0014 
(10, 2, 16) 1.998 0.4642 0.0024 
(20 , 2, 16) 2.1370 0.8786 0.0029 
(20 , 5, 40) 3.2610 0.9168 0.0151 
( 40, 5, 40) 3.3349 0.9736 0.0334 

Table 6.3: #of Iterations of the IWFC I, IWFC II and FIWFC under low-power 
limitations in stationary environments 

I (K, H, N) I IWFC I I IWFC II I FIWFC I 
(4 , 1, 8) 5 7 7 
(10, 1, 8) 5 7 7 
(10, 2, 16) 5 8 7 
(20, 2, 16) 5 7 7 
(20, 5, 40) 6 7 7 
( 40, 5, 40) 6 7 7 
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Table 6.4: Sum Rate of the IWFC I, IWFC II and FIWFC under low-power 
limitations in stationary environments 

I (K, H, N) I IWFC I I IWFC II I FIWFC I 
(4, 1, 8) 37.0586 37.0587 37.0587 
(10, 1, 8) 135.0205 135.0205 135.0205 
(10, 2, 16) 202.4697 239.3432 202.4704 
(20, 2, 16) 257.9637 257.9642 257.9642 
(20, 5, 40) 417.464 413.1145 413.1776 
( 40, 5, 40) 580.5752 545.6109 545.6939 

Figures 6.1 and 6.2 show the convergence behaviors of the IWFC I, IWFC II 

and FIWFC for a data set with 4 users and 8 subcarriers. Figure 6.1 plots the 

data rates achieved by the IWFC I, IWFC II and FIWFC. From the figure, we 

see that the data rates only changed slightly after the second iteration. Figure 

6.2 shows the sum of the data rates of all users achieved by the IWFC I, IWFC 

II and FIWFC. In this case, the sum rates achieved by three algorithms are the 

same as they reached the same equilibrium. 
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Figure 6.1: The data rates achieved by the IWFC I, IWFC II and FIWFC given 
4 users and 8 subcarriers. 
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Figure 6.2: The sum of the data rates achieved by the IWFC I, IWFC II and 
FIWFC given 4 users and 8 subcarriers. 

6.2 Nonstationary Environment 

This section reports the simulation results obtained for the case of nonstationary 

environments. The same database of nonstationary environments is considered 

as in Section 4.2. 

Tables 6.5, 6.6, 6. 7, and 6.8 show the simulation results generated by the 

IWFC I, IWFC II and FIWFC in nonstationary environments. Since in nonsta-

tioary environments, secondary users are mobile, the values of the parameters 

tend to change along the iterations, and they are likely different for the three 

algorithms at each iteration due to different convergence speeds. Therefore, it 

is not reasonable to compare the simulation results for the three algorithms in 

nonstationary environments. Tables 6.5 and 6.6 show the total running times 

and the average running times for different data sets, respectively. As stated in 

85 



Ph.D. Thesis- Jiaping Zhu School of Computational Engineering & Science 

Section 4.2, we also see that by comparing the running times of these algorithms 

in both stationary environments and nonstationary environments , the running 

time of the FIWFC is not significantly affected by the environmental changes, 

although it does now change with the size of cognitive radio networks, while the 

running time of both the IWFC I and IWFC II is affected by the environmental 

change. Table 6.7 shows the number of iterations needed by the IWFC and the 

FIWFC in various nonstationary environilllents. From this table , it is clear that 

the number of iterations needed by the FIWFC is not affected by the environ­

mental changes, and the IWFC I could not converge within 100 iterations. Table 

6.8 shows that the sum of data rates gen~rated by the IWFC I, IWFC II and 

FIWFC. There are also significant differe~ces among the algorithms. 

Table 6.5: Running Time (in Seconds) of the IWFC I, IWFC II and FIWFC 
under low-power limitations in nonstationary environments 

(K, H, N) I IWFC I I IWFC II I FIWFC 

(6 , 1, 8) 10.191 34.3336 0.0258 
(12, 1, 8) 9.724 1.427837 0.0339 
(22, 4, 32) 26.7573 23.7074 0.425392 
( 42, 4, 32) 52.7802 41.269522 1.2975 
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Table 6.6: Average Running Time (in Seconds) of the IWFC I, IWFC II and 
FIWFC under low-power limitations in nonstationary environments 

(i{' ii' N) I IWFC I I IWFC II I FIWFC 

(6, 1, 8) 1.6985 5.7223 0.0043 
(12, 1, 8) 0.8103 0.1190 0.0028 
(22, 4, 32) 1.2162 1.0776 0.0193 
( 42, 4, 32) 1.2567 0.9826 0.0309 

Table 6.7: # oflterations of the IWFC I, IWFC II and FIWFC under low-power 
limitations in nonstationary environments 

(K, H, N) I IWFC I I IWFC II I FIWFC 

(6, 1, 8) 100 17 10 
(12, 1, 8) 100 9 10 
(22, 4, 32) 100 65 10 
( 42, 4, 32) 100 51 10 

Table 6.8: Sum Rate of the IWFC I, IWFC II and FIWFC under low-power 
limitations in nonstationary environments 

(K, ii, N) I IWFC I 

(6, 1, 8) 91.0691 
(12, 1, 8) 32.3824 
(22, 4, 32) 520.6649 
( 42, 4, 32) 526.7673 

I IWFC II I FIWFC 

92.4289 
94.5366 
432.0761 
757.1632 

110.2813 
102.9132 
311.6943 
742.6092 

'Figures 6.3 and 6.4 show the convergence behaviors of the IWFC I, IWFC II 

and FIWFC in a nonstationary environment given four users and sixteen sub-

carriers, with two new users joining at the third iteration, and eight subcarriers 
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disappearing at the fifth iteration. Figure 6.3 shows the data rates versus the 

number of iterations. We see that the change in the number of users and avail­

able subcarriers affects the distribution of the transmit power among the users. 

At the third iteration, two new users joined the network and they were allocated 

resources, which reduced some other users' transmit-power levels. Aft.er the fifth 

iteration, all users' transmit-power levels were brought down significantly as some 

subcarriers disappeared. Figure 6.4 shows the sum of the data rates of all users 

achieved by the IWFC I, IWFC II and FIWFC in the case. From Figures 6.3 

and 6.4, we see that the algorithms can still converge to an equilibrium at the 

end, although the environment changes happen before the algorithms stop. 
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Figure 6.3: The data rates achieved by the IWFC I, IWFC II and FIWFC given 
an environment of 4 users with 16 subcarriers. Two new users join at the third 
iteration and eight subcarriers disappear at the fifth iteration. 
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Figure 6.4: The sum rates achieved by the IWFC I, IWFC II and FIWFC given 
an environment of 4 users with 16 subcarriers. Two new users join at the third 
iteration and eight subcarriers disappear at the fifth iteration. 

6.3 Sensitivity and Stability Simulation 

This section demonstrates the convergence behavior of the FIWFC in the pres-

ence of measurement errors. For this investigation, two key parameters, the 

normalized noise a, and the interference-gain matrix A, are perturbed randomly. 

As in Section 4.3, a cognitive radio network with 4 users and 8 subcarriers is 

considered. Instead of only once at the beginning, perturbations to parameters 

are imposed at each iteration. 

On the one hand, we generate a data set where the sum M of the interference­

gain matrix A and the identity matrix l is strictly copositive. In this case, 

the stability conditions are satisfied. Figures 6.5, 6.6, and 6. 7 show the stable 

behaviors of the FIWFC for the TPC, when the interference-gain matrix, the 

90 



Ph.D. Thesis - Jiaping Zhu School of Computational Engineering & Science 

normalized noise, or both are perturbed at each iteration, respectively. The 

subfigures of each plot are presented as follows: 

• Subfigures (a) show the average data rates generated by the FIWFC when 

the perturbations are imposed within different ranges; 

• Subfigures (b) quantify the absolute differences between the different av­

erage data rates generated under the perturbations and the average data 

rate generated with the original parameters. 

In the latter set of subfigures, we see that as the range of perturbation decreases, 

the average data rates under the perturbations approach the average data rates 

for. the case of perturbation-free. This indicates that although the algorithm 

may not converge when the perturbation ranges are relatively large, it achieves 

a stable NE for the TPC problem under the low-power limitation and that the 

stability still holds even when measurement errors occur at each time instant as 

the interference-plus-noise terms are measured. 
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Figure 6.5: (a) The average data rates given perturbed interference gain ma­
trices within different ranges. As before, the perturbations are imposed at each 
iterat ion. (b) The absolute differences between the average data rates for the 
perturbed and non-perturbed cases versus the number of iterations . 
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Figure 6.7: (a) The average data rates with the perturbed interference-plus­
noise terms within different ranges. The perturbations are imposed at each 
iteration. (b) The absolute differences between the average data rates for the 
perturbed and non-perturbed cases versus the number of iterations. 

On the other hand, we generate a data set where the matrix M is not strictly 

copositive. Then the solution stability is not guaranteed. Figure (6.8) shows 

the error of data rates generated by the FIWFC when the interference-gain ma­

trix are perturbed within different ranges for this case. We see that when the 
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perturbations are imposed, the algorithms could not converge within 100 itera­

tions. Moreover, the error curves are oscillating along the iterations and could 

not approach zero, which implies that the solution is unstable. 
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Figure 6.8: The absolute differences between the average data rates for the per­
turbed and non-perturbed cases versus the number of iterations in the case that 
the stability conditions are violated. 

6.4 Summary 

In this chapter, we evaluated the performance of the FIWFC under low-power 

limitation from different perspectives. We carne to the same conclusions as we 

made for the simulation results for the case of interference-power limitation in 

Chapter 4: 

1. Convergence: The FIWFC converged in both the stationary and nonsta-

tionary environments with different sizes of data sets. It also converged 

when the critical parameters, the interference-gain matrix and normalized 
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noise were perturbed within different ranges. However , when the pertur-

bation range is too large, the algorithm may not converge. 

2. Convergence speed: From the simulq.tion results in the stationary environ­

ments , the FIWFC converged signifi~antly faster than the IWFC using the 

fmincon and mskscopt functions. The environmental changes did not affect 

the running time of the FIWFC significantly but they did for the IWFC. 

The average running times of all the algorithms increased as the number 

of subcarriers grew. However, the average running time of the FIWFC 

increased with a faster rate than th~ IWFC. 

3. Number of iterations : The number of iterations needed by the FIWFC is a 

constant in both of the stationary and nonstationary environments . How-

ever, the number of iterations needed by the IWFC changed significantly 

with the size of the data sets. 

4. Sum rate: The sum rates achieved ~y the three algorithms are comparable 

in stationary environments except for one data set with 10 users and 16 

subcarriers. 

5. Sensitivity and Stability: In the cases we considered in this chapter , the FI-

WFC achieved a stable solution when the stability conditions were satisfied. 

However, the solution could be unstable when the condition is violated. In 

addition, the algorithm may not be able to converge when the stability 

conditions are violated. 
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Chapter 7 

Contribution to the Literature 

on Cognitive Radio 

7.1 Concluding Remarks 

In order to improve utilization of the radio spectrum, this thesis has studied both 

the theory and algorithms for the transmit-power control (TPC) problem on cog­

nitive radio networks. Following other work in this field, and owing to the dis­

tributed nature of the problem, the approach taken was based on game-theoretic 

principles. The TPC problem was considered under two different limitations. 

First, the TPC problem for cognitive radios under interference-power limita­

tions was formulated as a generalized Nash game model, which aims at maximiz­

ing the data rate of each user, subject to the constraints of the battery power 

budgets of each user and interference-power limitation at each subcarrier. 

Second, the TPC problem for cognitive radios under low-power limitations 
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was formulated as a Nash game model, which aims at maximizing the data rate 

of each user, subject to the constraints of the battery power budgets of each user 

and low-power limitations at each subcarrier. 

T he solid mathematical results presented herein in order to characterize the 

right threshold are critical in the development of the fast iterative water-filling 

scheme. Sufficient conditions for the uniqueness and stability of a solution of the 

TPC problem were derived for both cases. Novel , simple and fast algorithms , 

called the FIWFCs, for finding a solution of the TPC problem were derived for 

the two cases. With the FIWFCs in place, we may now summarize its attributes: 

(1) The sufficient condition of linear and global convergence is derived for the 

FIWFC. Based on the simulation results , the algorithm converges in all 

the cases considered even when the condition is not satisfied , which implies 

that the convergence condition may be extended. 

(2) The FIWFC accommodates operations in a nonstationary radio environ­

ment. Although the convergence theorem only gives the conditions for the 

convergence of the FIWFC in stationary environments, through simulation, 

we found that the algorithm converges globally to an equilibrium in non­

stationary environments as well. Moreover , based on the experiments , the 

number of iterations needed by the FIWFC is affected neither by the size 

of the data set, nor by environmental changes, which is remarkable. The 

running time is also not affected by the environmental changes, although 

it does change with the size of the data set. 
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(3) Both the classical IWFC and the FIWFC provide mechanisms for improv­

ing the utilization of the radio spectrum. However, the FIWFC attains this 

practical goal much faster than the IWFC. Theoretical analysis shows that 

the computational complexity of the algorithm under both the interference­

power and low-power limitations are lower than the IWFC for DSL, al­

though the TPC problem for DSL contains a simpler constraint set. This 

improvement is attributed to the fact that the water-filling threshold for 

the new FIWFC can be found directly by taking the advantage of the 

necessary and sufficient conditions of the solutions to the TPC problem. 

( 4) Inherited from the IWFC, the FIWFC can be implemented in a distributed 

and decentralized manner, which is a property that is desirable from a 

practical perspective. 

7.2 Future Work 

In the future, the following issues will be considered: 

• Robustness:In practice, the perturbations are uncertain to the users since 

each of them is operating distributively with a lack of full information 

of the network. Robust optimization is a useful approach to modeling 

uncertainty-affected problems, and to operating under a lack of full infor­

mation on uncertainty. Therefore, we plan to apply this approach to model 

our problem in a form that can be solved efficiently and to guarantee the 

robust performance of a solution. Currently, there are lack of theoretical 

results and algorithms for robust generalized Nash games in the literature. 
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Robust optimization has been applied only to Nash games [1 7, 33]. Our new 

algorithm is designed specifically for the game-theoretical model but not 

the robust game-theoretical model. Extending the theoretical results ~nd 

algorithms on game-theoretical models to robust game-theoretical models 

requires further research. 

• Frequency division multiple access (FDMA) : FDMA is a channel 

access method, where users are given an individual allocation of one or 

more frequency bands. If FDMA is applied to cognitive radio networks, 

secondary users can not share a frequency band, in contrast to CDMA. 

To mathematically model this , we ~eed to impose an orthogonal condition 

on every user pair over each freque:hcy band. As a result , the feasible set 

of this problem is not convex, whicjl make the problem difficult to solve. 

We plan to extend the theoretical results established in this thesis , so as 

to develop a low-complexity algorithm for solving the TPC problem for 

cognitive radios applying FDMA. ' 

• Relaxation: As simulation results showed, the FIWFC converged even 

when the convergence conditions were violated. Hence, we plan to relax the 

sufficient conditions of convergence. It is expected that some relaxed suffi-

cient conditions can be derived from the theory of non-negative matrices. A 

non-negative matrix is a matrix in which all the elements are not less than 
I 

zero. It has many nice properties. IF linear algebra, the Perron- Frobenius 

theorem, proved by Oskar Perron (1907) for positive matrices and Georg 
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Frobenius (1912) for certain classes of non-negative matrices, has been ex­

tended to non-negative matrices [15, 30]. It is asserted that the largest 

eigenvalue of a non-negative matrix will be non-negative and it is bounded 

by the largest value of the sum of each row of the matrix. It may well be 

that the use of non-negative matrices provides a new approach for relaxing 

the conditions of convergence. 

• Evaluation: The TPC for DSL was studied in Appendix A following the 

same steps for the TPC for cognitive radios in this thesis. However, the im­

plementation has not been done yet. We plan to evaluate the performance 

of the FIWFC for DSL only in stationary environments, as the users and 

available frequency bands are static in a DSL environment. 
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Appendix A 

I 

The TPC Problem for DSL 

A. l Introduction 

Digital Subscriber Lines (DSL) system is referred to as the technology with which 

high-speed data t ransmission can happen via a wired network. Specifically, DSL 

is a multicarrier communication system \\~here the frequency spectrum is divided 

into a number of frequency carriers to make parallel data transmission possible. 

In a DSL environment, with twisted copper wires from different homes bun­

dled together, mutual interference exists among different wires, which is called 

crosstalk. Therefore, a multiuser model is more suitable than a single-user one 

to describe DSL systems. Figure A.l illustrates a typical DSL environment. 

T he crosstalk dominates the total nqise and interference and it is the main 

factor affecting the performance of a DSL system. To control the crosstalk from 

one line to its neighboring lines, the current approach enforces a fixed power 

for each line. This "static" approach restricts the speed and coverage of DSL 
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Figure A.l: Multiuser DSL 

service [37]. With increasing demands for higher speed service, the improvement 

of DSL systems is evidently necessary. The TPC for DSL addresses this need, 

which allows an adaptive allocation of power over multiple lines regarding power 

capacities and mutual interference across the lines, such that the total achievable 

data rate is optimized. 

A.2 Problem Statement 

The TPC problem for DSL is formulated as a Nash game, where, instead of 

jointly maximizing the total data rate, each user maximizes its own data rate 

individually subject to a battery constraint. Then, the TPC problem can be 

implemented distributively with minimal central control. In this way, the service 

providers in the competitive market can share the same bundles. 
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A.3 Nash Game Formulation of the DSL Prob-

lem 

Suppose that there are K users and N subcarriers. Mathematically, the TPC 

problem for DSL is a Nash game model which consists of K separable nonlinear 

convex optimization problems. For each user k, the optimization problem is as 

follows: 

where 

N ( sn) ~log 1 +I~ 
N 

s.t. LS~::; CAPk, 
n=l 

s~ ;:::: o, 

n= 1,··· ,N, 

I~= O"k + La}kSj > 0. 
#k 

(A.1) 

This problem satisfies Slater's constraint qualification, as the feasible set is a 

polyhedron. Therefore, by Theorem 2.3.1, the KKT conditions are necessary 

and sufficient. 
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A-.4 Theoretical Basis of the Problem 

The KKT conditions for problem A.1 are: 

0 < s;: j_ (- sn ~In +Ilk) ~ 0 
k k 

N 

0 < !Jk __L (CAPk- L)SJ: +If:)) ~ 0 (A.2) 
n=I 

n = 1, · · · , N, k = 1, · · ·, K. 

As the KKT conditions are necessary and sufficient, the TPC problem for DSL 

can be solved by computing a KKT solution of system (A.2). However, the KKT 

conditions (A.2) are nonlinear. We further transform them equivalently to a 

mixed linear complementarity problem (MLCP). 

Proposition A.4.1 The KKT conditions of the TPC problem for DSL are equiv­

alent to the following MLCP: 

0 < Sf: __LSJ: + If: - vk ~ 0 
N 

0 CAPk- LSJ: (A.3) 
n=I 

vk is free 

n 1, · · · , N, k = 1, · · · , K. 

The proof is similar to that for Proposition 5.3.1 in Appendix E. 

Analogous to the results in Subsections 3.4.3 and 5.3.3, the sufficient and nee-

essary optimality conditions for the MLCP (A.3) are developed in the following 

proposition: 
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Proposition A.4.2 Sis a solution to the MLCP (A.3) if, and only if, ther~ is 

a vector 11 such that ( S, 11) satisfies the following optimality conditions: 

where 

Ilk= (CAPk + L I~)/iTki 
nETk 

and 

Tk = { n : S~ > 0}. 

Proof: First, we show that if Sis a solution to the MLCP (A.3), then there is a 

vector 11 such that (S, v) satisfies the arithmetic simplified optimality conditions. 

If SJ: > 0, by (A.3), we have that 

(A.4) 

Then, 

(A.5) 

Summing (A.4) for all n E Tk, we have 

(A.6) 
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Substituting L:::=1 SJ: = CAPk in (A.6), we have that 

(A.7) 

It is straightforward to check that if ( S, v) satisfies the arithmetic simplified 

optimality conditions, then Sis a solution to MLCP (A.3). This completes the 

proof. 

From the above discussion, we see that the TPC problem for DSL can be 

solved by finding a solution satisfying the conditions described in Proposition 

A.4.2. 

Corollary A.4.3 Suppose that the convexity assumption holds. Then, S is a 

NE of the TPC problem for DSL (A.l) if, and only if, there exist v and f3 such 

that the triplet ( S, v, (3) satisfies the arithmetic simplified optimality conditions 

in Proposition A.4.2. 

A.5 Algorithm 

This section introduces the FIWFC for finding a NE of the TPC problem for DSL. 

Enlightened by Proposition A.4.2, the idea of this new algorithm is to iteratively 

update the transmit-power vector according to the water-filling threshold vk. 

For the sake of illustration, the basic idea of this new updating scheme is 

shown in Figure A.2. This picture considers the two possible cases for user k: 

• In subcarrier 1, the interference level I~ is lower than the water-filling 

threshold vk; hence the transmit-power for user k over this subcarrier is set 
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to the difference llk - Ik; 

• In subcarrier 2, the interference level Il is not lower than the water-filling 

threshold vk; hence the transmit-power for user k over this subcarrier is set 

to zero. 

The FIWFC for DSL is described in Algorithm A.5.1. 

vk ----------

Figure A.2: Illustrating the basic updating scheme of FIWFC for DSL 
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Algorithm A.5.1 FIWFC for DSL 

Let l = 0 and siO) be any feasible power vector 
repeat 

for k = 1 to K do 
Vkl) = (CAPk + LnET(l) I:(l))/IT~l)l 

k 

for n = 1 to N do 

end for 
end for 
l<-l+1 

until A stopping criterion is satisfied 

A.6 Convergence and Uniqueness 

Similar to the results developed for the FIWFC for cognitive radios under both 

the interference-power and low-power limitations as described in Subsection 3.5.2 

and 5.4.2, the convergence and uniqueness results for the FIWFC for DSL are 

derived in the following theorem. 

Theorem A.6.1 Suppose the TPC problem for DSL satisfies the convexity as-

surnption. If one of the following conditions is satisfied, 

• p(AT A) < 1, or 

• Tr(AT A) < 1, or 
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then the FIWFC for DSL converges both globally and linearly to a unique solution 

of the TPC problem (A .l). 

A. 7 Computational Complexity 

The computational complexity of this new algorithm is the same as the FIWFC 

for cognitive radio networks introduced in Chapters 3 and 5. It is justified in the 

following . 

After initialization , the power allocation is adjusted iteratively for the K 

users . For each user k, Tk needs to b~ checked once. Theoretically, check­

ing n takes O(N) operations . To evaluc,tte vk , the number of additions of the 

interference-plus-noise terms is less than N. Hence, the total complexity of eval­

uating vk is O(N). To evaluates;: takes only 0(1) time, and therefore the total 

time spent in evaluating user k's power vector Sk = (Sk, S~, · · · , Sf: ) is O(N) . 

Thus, the total operating time for each user is linear in N. For K users , the 

total complexity of each iteration is O(K N) , which is linear in both the number 

of users K and the number of sub carrier~ N , respectively. Let L be the number 

of iterations needed in the FIWFC for DSL. The total computational complexity 

is O(LKN). 

A.8 Summary 

The TPC problem for DSL was cast as a Nash game model and the solution also 

exists according to the existence theorem presented in Chapter 2. The FIWFC 
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was introduced to solve the TPC problem for DSL, with the same computational 

complexity as under the interference-power limitation introduced in Chapter 3. 

The conditions for algorithm convergence and solution uniqueness were also pre­

sented. 
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Appendix B 

Proof of Proposition 3.4.2 

The proof proceeds as follows: 

• Case 1: Tk =/= Bk. 

First, we show that if (S, v, {3) solves the mixed LCP (3.7), then (S, v, {3) 

satisfies the arithmetic simplified optimality conditions. If TJ: < pn < vk, 

then we show that fJ;:; > 0. If fJ;:; = 0, then 

This contradicts the first complementarity condition. Hence, {3J: > 0. By 

the second complementarity condition, we have SJ: = pn - IJ:. Since 

TJ: < pn, then SJ: > 0. By the first complementarity condition, we have 

o s;: + IJ: + f3k' - vk 

- pn + fJ/: - llk. 
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Immediately, we find that (3J: = vk - pn. 

If IJ: = pn < vk, by the second complementarity condition, we have SJ: = 0. 

By the first complementarity condition, we have (3J: ::=: vk - IJ: = vk - pn. 

If IJ: < vk ::; pn, we show that (3J: = 0. If (3J: > 0, then SJ: + IJ: = pn by the 

second complementarity condition. Since IJ: < pn, then SJ: > 0. Hence, 

by the first complementarity condition, we have pn + (3J: - vk = 0. Hence, 

pn < vk, which contradicts the inequality vk ::; pn. Therefore, we have 

f3"k = 0. By the first complementarity condition, we have sr:; + IJ: :::: Vk. 

Since IJ: < vk, we have sr:; > 0. Then, sr:; + IJ: = Vk. Moreover, it implies 

that (3J: = 0 for n E Tk but n t{. Bk. 

If Vk ::; IJ: ::; pn' we show that sr:; = 0. Assuming sr:; > 0, we have 

> f3"k 

> 0, 

which contradicts the first complementarity condition. Therefore, we have 

SJ: = 0. Moreover, if pn > IJ:, then (3J: = 0. 

After summing up all the SJ: and performing some linear algebra, we find 

that 

Vk = (CAPk + L IJ:- L pn)/(ITkl- IBkl). 
nETk nEBk 
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Second, we show that if (S, v, {3) satisfies the arithmetic simplified optimal­

ity conditions, then (S, v, {3) solves the mixed LCP (3.7). Suppose next 

that (S, v, {3) satisfies the conditions: 

Vk = (CAPk + L IJ:- L pn)/(ITki-IBkl) 
nETk nEBk 

= Vk- pn IJ: < pn < Vk 

2: Vk- pn IJ: = pn < Vk 

!31: =0 In< V < pn k k-

=0 v <r<Pn k- k 

2:0 Vk ~ IJ: = pn 

and 
pn _ In In < pn < V 

k k - k 

s;: = Vk - Ikn In < V < pn k k -

If IJ: < pn < Vk, then f3'k = vk - pn > 0 and s;: = pn - IJ:' which implies 

that the second complementarity condition is satisfied, and SJ: + IJ: + {3J: -

vk = 0 implies that the first complementarity condition is satisfied. If 

IJ: = pn < Vk' then s;: = pn - IJ: = 0 and s;: + IJ: + {JJ: - Vk > 0. If 

IJ: < Vk ~ pn' s;: + IJ: + f3J: - Vk = 0 and f3J: = 0. If vk ~ IJ: < pn' 

s;: = 0, s;: + IJ: + {3J: - Vk > 0 and f3'k = 0. If Vk ~ IJ: = pn' s;: = 0, 
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Si: + IJ: + f3i:- vk 2: 0 and Ii: = pn. Since 

we have 

(ITki-IBkl)vk = CAPk + L IJ:- L pn, 
nETk nEBk 

LSI:+ 

IBki(Pn- IJ:) + (lnl- IBki)(vk- II:) 

(lni-IBkl)vk + L pn- L II: 

Suppose next that (S, v, {3) solves the mixed LCP (3.7). If n E Tk, then 

Si: = pn - IJ: since Tk = Bk. Summing up for all n E Tk, we have 

CAPk = LnETk pn - LnETk Ii: by the equation in (3.7). We also have 

vk - f3i: = pn since s;: + IJ: + f3i: - vk has to be zero from the first com­

plementarity condition in (3.7). If n t/:. n, then n t/:. Bk. Consequently, 

f3i: = 0 from the second complementarity condition, and vk ~ IJ: from the 

first complementarity condition. 

Suppose that ( S, v, (3) satisfies the conditions: 

• s;: = pn- IJ:, CAPk = LnET pn- LnET I;: and l/k- f3i: = pn, for 
k k 

• f3i: = 0, pn 2: Ii: and vk ~ Ii: for all n t/:. n. 
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If n E Tk, then Si: + Ik: + /31: - vk = p n - pn = 0. Therefore , the 

first complementarity condition is satisfied . The second complementarity 

condition and the equation are satisfied naturally since s;: = p n - I;:. 
If n tf: Tk , then the second complementarity condition is satisfied since 

/31: = 0 and p n ~ Ik:, and the first complementarity condition is satisfied 

since vk .:::; I;: . Therefore , (S, v, (3) solves the mixed LCP (3 .7). 

116 



Appendix C 

Proof of Theorem 3.5.1 

The proof I)roceeds as follows· Let S(l) = {S(l)}K with s(l) = {Sn(l)}N 
· k k=l ' k k n=l ' 

(J;(l) and vk1
) be the lth iteration solution of the FIWFC. Define 1;(l) = CJ'k + 

"' . cxn sn(l) Therefore the triplet (S(l+l) (J(l+l) v(1+1l) satisfy the following 
L.......Jik Jk J · ' ' ' 

mixed linear complementarity system 

o < s;(l+l) j_s;(l+l) + I;(l) + (J;(l+l) - vkl+l) ;:::: o 

0 < (J;(l+l) j_pn- (s;(l+I) + I;(l)) 2:: 0 
N 

0 CAPk- L s;(l+I) 

n=l 

(C.8) 

for k = 1, · · · , K, and n 1, · · · , N. Let x be the Cartesian product of the 

feasible sets defined as 
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Since S(l+l) is a solution of the KKT conditions described in (C.8), it is a solution 

of the following variational inequality (VI): 

N 

I.)sk- s;(l+l))(s;(l+l) + 1;(!)) 2: o (C.9) 
n=l 

for all s = {Sk}f=l Ex, with sk = {Sk};;'=l' Suppose that sis a solution of the 

TPC problem. By Theorem 2.3.1 and Proposition 3.4.2, there are D and !J, such 

that the triplet (S, D, !J) solves the mixed LCP (3.7). Therefore, it is a solution 

of the VI: 

N 

I)sk- sk)(Sk + Ik) 2: o, (C.lO) 
n=l 

for all S E X· Hence, from VIs (C.9) and (C.lO), we have 

N 

I.)sk- s;(l+l))(s;(l+l) + I;(l)) 2: o, (C.ll) 
n=l 

and 

N 

2.)s;(l+l)- Sk)(Sk + lk) 2: o. (C.l2) 
n=l 

After adding (C.ll) to (C.l2), and rearranging the terms, we have 

N N 

2.)sk- s;(l+1))2 ~ "Lu;(l)- I;:)(sk- s;(l+l)). (C.l3) 
n=l n=l 
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By the Cauchy-Schwarz inequality, we have 

N N N 

~(I;<t l - Ir)(sr - s;<t+1)) ::::; ~(I;<tl -lk)2 ~(Sk- s;<t+1l)2. (C.14) 
n=l n=l n=l 

By inequalities (C. 13) and (C.14), we find 

N N 

~(sk- s;<l+1))2 ::::; ~(I;(l) -lk)2. 
n=l n=l 

This is true for k = 1, · · · , I<. Therefore, 

That is , 

K N K N 

~ ~(sr- s;(/+1))2::::; ~ ~(I;<tl -Ir)2 . 
k=l n=1 k=l n=1 

liS- s(l+l) II < IIA(S - s(ll) II 

< IIAIIIIS- s<l)ll· 

(C.15) 

·Since IIAII = Jp(AT A) , then p(AT A)< 1 implies that the sequence {S(l)} 

linearly converges. Since for the 2-norm, IIAII = JTr(AT A) , then Tr(AT A) < 1 

implies the sequence { S(l)} linearly converges as well. 

Similarly, if we arrange s<l) in this way: S(l) = { s n(t) };;'=1, with sn(t) 

{ s n(l)}J( we have 
k k=l ' 
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Then, if p( CT C) < 1, the sequence { S(l)} converges linearly. 

Therefore, if p(AT A) < 1, or p(CT C) < 1, or Tr(AT A) < 1, or Tr(CT C) < 1, 

the FIWFC linearly converges. 
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Appendix D 

Proof of Theorem 3.5.2 

The proof proceeds as follows: Suppose that S and S are two solutions of the 

GNEP. Similar to the derivation of (C.9), we have 

N 

I )s;:- s;:)(s;: + i;:) 2 o, (D.l6) 
n=l 

and 

N 

2:)5;:- SJ:)(SJ: +I;:) ~ o. (D.17) 
n=l 

Therefore, in a manner similar to the derivation of inequality (C.15) , from in-

equalities (C.ll) and (C.12), we have 

K N K N 

L L (SJ:- SJ:)2::; L L (i;: -1;:)2, 
k=l n=l k=l n=l 
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which, in turn, implies that, 

or, equivalently, 

\S- S\\ < 1\A(S- S)\1 

< \\A\\1\S- S\\, 

\IS-S\\ < \\C(S- S)\1 

< \\C\\1\S- S\\ 

depending on how the vector S is arranged. Hence, if p( AT A) < 1, or p( CT C) < 

1, or Tr(AT A) < 1, or Tr(CT C) < 1, we have \IS-S\\ = 0, which implies that 

the solution of the TPC problem is unique. 
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Appendix E 

Proof of Theorem 5.3.1 

The proof proceeds as follows: First, we show that if (S'k, >.k, J-lk), for all n , 

solves the KKT conditions for all users k, then there are (S'k, {J''k, vk) for all n 

and k, solving the MLCP. Now we prove that J-lk > 0 for all k. If J-lk = 0, 

then ).k 2': sn~I"' > 0 by the inequality on the right-hand side of (5.5). Hence, 
k k 

according to the complementarity condition in (5.6), we have S'k = UP pn > 0. 

It implies that 

N N 

CAPk- LS~ = CAPk- LUPPn. 
n=l n=l 

N 

By (5.7) , we have CAPk- Luppn 2': 0, which contradicts the condition 
n=l 

N 

C APk < L UP pn. Therefore, J-lk > 0 for all k. 
n=l 

Dividing the inequality on the right hand side of (5.5) by /-lk and SJ: + IJ:. we 

123 



Ph.D. Thesis- Jiaping Zhu School of Computational Engineering & Science 

have: 

S/: +I/:+ ,\k(S/: +I/:)/ P,k - 2_ 2: 0. 
!J,k 

(E.18) 

Let vk = _L and !31: = ,\k(S;: + IJ:)/ !J,k· Then, vk > 0 and the sign of !31: is 
I-Lk . 

the same as that of ,\k. Hence, by substituting vk and (3J:, we can rewrite the 

KKT conditions (5.5), (5.6), and (5.7) equivalently as the linear complementarity 

problem (5.8). 

Second, we show that if the triplet (S, (3, v) solves the MLCP, then there is 

the triplet (S, A, p,) that solves the KKT conditions. Now we must have that 

vk > 0. Otherwise, 

SJ: + IJ: + (3J: - Vk > 0, 

and from the first complementarity condition in MLCP (5.8), we have that 

S/: = 0, Vn = 1, · · · , N, 

which contradicts the equality conditions in (5.8). Therefore, the KKT conditions 

(5.5), (5.6), and (5.7) hold by letting P,k = }k and ,\k = (SJ: + IJ:)/(f3J:vk)· This 

completes the proof. 
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Appendix F 

Proof of Proposition 5.3.2 

The proof proceeds as follows : First , we show that if ( S, v , {3) solves the mixed 

LCP (5 .8), then (S, v, {3) satisfies the arithmetic simplified optimality conditions. 

• C ase 1 : Tk #- Bk . 

If vk- I'J:: ::; 0, then the complementarity condition in the first condition in 

(5 .8) does not hold for any SJ:: > 0. Hence, 

s;:: = o. 

. From the second condition in (5.8) , we have 

f3'k = 0. 

If vk - I'J:: > 0, we have SJ:: > 0. Otherwise, if SJ:: = 0, then IJ:: + (:JJ:: -

vk ;:::: 0 by the first condition in (5.8). Hence, f3'k 2': vk - IJ:: > 0. By 
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the complementarity condition in the second condition in (5.8), we have 

that s;: = up pn > 0, which contradicts the assumption that s;: = 0. 

Therefore, SJ: > 0 when vk - IJ: > 0. By the complementarity condition in 

the first condition in (5.8), we have 

which is 

If up pn ~ Vk- IJ:' then up pn- s;: ~ !31:. By the complementarity co~di­

tion in the second condition of (5.8), the smaller value between UP pn- SJ: 

and f3'k has to be zero, which yields f3'k = 0. Therefore, 

SJ: = vk- IJ:. (F.l9) 

If UP pn :S: vk - IJ:, then 

By the complementarity condition in the second condition of (5.8), the 

smaller of UP pn- SJ: and f3'k has to be zero, which yields 

uppn- s;: = 0, 
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and 

Therefore, 

(F.20) 

By the third condition in (5 .8), (F.19) and (F.20) , we have 

o CAPk- L s;:- L s;: 
nETkf Bk nEBk 

Finally, we have that 

• Case 2: n = Bk. 

If n E Tk , then SJ: UP pn since Tk 

Consequently, Si: = 0. 

It is straightforward to check if ( S, v, {3) satisfies the arithmetic simplified opti­

mality conditions , then (S, v , {3) solves the mixed LCP (5.8). 

This completes the proof. 
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Appendix G 

Proof of Theorem 5.4.1 

The proof proceeds as follows: Let S(!) = {Sk1)}f=1 , with Sk1
) = {S~(!)};;'= 1 , 

,B~(l) and vk1
) be the lth iteration solution of the FIWFC. Define I;(l) = O"/: + 

n 

~j# o:jks;(l). If CAPk 2: L up pn' then s~(l+ 1 ) = up pn' for all n. Otherwise, 
n=1 

the triplet (S(!+l), (3(1+1), v(!+1l) satisfies the following mixed linear complemen-

tarity system 

0 < /3~(1+ 1 ) l_U P pn - S~(1+ 1 ) 2: 0, n = 1, · · · , N 
N 

o cAPk- L s~(!+ 1 ) 
n=1 
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for n = 1, · · · , N, k = 1, · · · , K. Next, let Dk be user k's feasible set, defined as 

sn < uppn 
k- ' 

SJ: 2 0, 

n = 1,··· ,N. 

Let n be the Cartesian product of all users' feasible sets, defined as 

Since S(l+l) is a solution of the KKT conditions (G.21), it is a solution of the 

following VI: 

N 

"""(sn- Sn(l+l))(Sn(l+l) + r(l)) > 0 VS E r2 
~ k k k k _, . 
n=l 

(G.22) 

Suppose that S is a solution of the TPC problem. By Theorem 2.3.1 and Propo­

siti.on 5.3.2, there arc ilk and j]k such that the triple (Sk , ilk, /Jk) solves MLCP 

(5.8). Therefore, it is a solution of the VI: 

N 

L (SJ:- SJ:)(SJ: +I;:) 2 o, vs En. (G.23) 
n=l 

Hence, from the VIs (G.22) and (G.23), we have 

N 

L (SJ:- s;(l+l))(s;(l+l) + I;(l)) 2 o, (G.24) 
n=l 
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and 

N 

I)s;(!+l)- s~)(s~ + l~) 2: o. 
n=l 

After summing (G.24) and (G.25) and rearranging terms, we have 

N N 

L:)s~- s;(l+1))2 :::; ~u:(l) -l~)(s~- s:(l+l)). (G.26) 
n=l n=l 

By the Cauchy-Schwarz inequality, we have 

N N N 

~u:(l) -I~)(s~- s;(l+l)) :::; ~u:(l) -Ir:)2 ~(Sk:- s;(l+l))2.(G.27) 
n=l n=l n=l 

By the inequalities (G.26) and (G.27), we have that 

N N 

~(sr:- s;(l+1))2 :::; ~u;(l) -Ir:)2. 
n=l n=l 

n 

This is true fork= 1, · · · , K, as when CAPk 2: ~ U ppn, we have 
n=l 

Therefore, 

K N K N 

~ ~(s~ _ s;(l+1))2:::; ~ ~u;(l) -!~)2. (G.28) 
k=l n=l k=l n=l 
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That is 

liS- S(l+l)ll < IIA(S- S(l))ll 

< IIAIIIIS- s(l>11. 

Since IIAII = Jp(AT A), then the inequality p(AT A) < 1 implies that the 

sequence {S(1)} linearly converges. Since for the 2-norm, IIAII = y/Tr(AT A), 

then Tr( AT A) < 1 implies that the sequence { S(l)} linearly converges as well. 

Similarly, if we arrange S(t) in this way: S(1) = { sn(t) };;'=1 with sn(t) = 

{sn (l) }K 1 
k k=l, we 1ave 

Then, if p( CT C) < 1, then the sequence { S(l)} linearly converges. 

Therefore, if p(AT A) < 1, or p(CT C) < 1, or Tr(AT A) < 1, or Tr( cT C) < 1, 

the FIWFC linearly converges. 
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Appendix H 

Proof of Theorem 5.4.2 

The proof proceeds as follows: Suppose that S and S are two solutions of the 

GNEP. Similar to deriving (G.22), we have 

N 

I)s~- s~)(s~ + i;:) 2 o, (H.29) 
n=l 

and 

N 

2)8~- S~)(S~ + lJ:) 2 o. (H.30) 
n=l 

Therefore, similar to deriving the inequality (G.28) from the inequalities (G.24) 

and (G.25), we have 

K N K N 

2:::: I:(s;:- 8~)2 ~ 2:::: l::Ur:: -lk:)2, 
k=l n=l k=l n=l 
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which implies that, 

or, equivalently, 

[S- Sf[ < [[A(S- S)[[ 

< [[All liS- S[[, 

liS- Sf[ < IIC(S- S)ll 

< IICIIIIS- Sfl 

depending on how the vectorS is arranged. Hence, if p(AT A) < 1, or p(CT C) < 

1, or Tr(AT A) < 1, or Tr(CT C) < 1, we have [[S- S[[ = 0, which implies that 

the solution of the TPC problem is unique. 
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