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Abstract 

The nonlinear propagation of a visible, continuous wave laser beam in a pho­
topolymerizable organosiloxane was studied at intensities ranging across 10 orders 
of magnitude (3.2x10-5 to 12732 W /cm2). The process was characterised in detail 
through spatial intensity profiles of the beam, temporal monitoring of its width and 
peak intensity combined with optical microscopy of the resulting self-induced struc­
tures. 

These observations revealed a rich diversity of dynamic phenomena during nonlin­
ear light propagation in different intensity regimes including (i) optical self-trapping 
(ii) in situ sequential excitation of high-order modes (corresponding to optical fiber 
modes) in self-written cylindrical waveguides, (iii) variations in modal composition 
during the transition of self-written waveguides from single to multimode guidance, 
(iv) generation of spatial diffraction rings that propagated over long distances (> 
Rayleigh length), (v) transformation of the Gaussian beam into an unstable single 
ring, which collapsed into azimuthally symmetric filaments and (vi) complete beam 
filamentation. 

Extensive and quantitative analyses of spatial beam profiles provided insight into 
the mechanisms underlying each of these phenomena, particularly the significance of 
the spatial profile (gradient) of refractive index changes induced in the medium. The 
experimental findings were consistent with results of numerical simulations of non­
linear light propagation in the corresponding intensity range that were implemented 
through the beam propagation method with the software BeamPROP™. The results 
of these comprehensive series of experimental and theoretical studies provide a deep 
understanding of the dynamics of nonlinear light propagation in a photopolymerizable 
medium and are consistent with some predictions of earlier theoretical models. 
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Chapter 1 

Introduction 

Optical beams that alter their own path as they travel through a medium lead to a 
variety of self-action phenomena. Conditions under which these phenomena occur are 
classified as nonlinear because light propagation is described by nonlinear differential 
equations. The best known example is the self-trapped beam or optical soliton, which 
suppresses its own diffraction (or divergence) by modifying the refractive index of the 
medium through which it propagates. 

Originally, optical self-action effects have been related with high laser input in­
tensities in glasses and atomic vapours or more generally Kerr media. Progressively, 
other media have been employed including photorefractives, liquid crystals and pho­
topolymers that do not require high intensities to observe similar effects. The photore­
sponses of different media, however originate from different mechanisms and therefore 
new dynamics and effects of nonlinear propagation have been discovered. 

Self-action effects are categorized as nonlinear because they can be described by 
nonlinear differential equations. In the case of most nonlinear optical materials (NLO) 
such as Kerr media and photorefractive crystals, they are called nonlinear because 
their photoinduced refractive index changes originate from high order (nonlinear) 
susceptibility terms. In the case of photopolymers, a nonlinear propagation of light 
originates due to refractive index changes induced by photochemical reactions, and 
such propagation can also be described by a nonlinear differential equation ( vide 
infra). 

In this Chapter we will introduce optical self-action phenomena with emphasis 
on those effects that modify the natural diffraction of beams. In the following Sec­
tions we will review optical nonlinearity in a variety of media and self-action effects 
that will be relevant to the studies in this thesis including: optical self-trapping and 
spatial solitons, spatial self-phase modulation and filamentation due to modulation 
instability. Finally, the research objectives and presentation of this thesis will be 
provided. 

1.1 Optical nonlinearity in various media 
The field of nonlinear optics has been studied for almost 50 years [1] and is 

concerned with the nonlinear response of materials interacting with electromagnetic 
fields. The beginnings of nonlinear optics go back to the invention of the laser in the 
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late fifties by Townes and Schwlow [2], since traditionally high intensities have been 
required to excite nonlinear responses in optical materials such as glasses [3], absorb­
ing liquids (presenting thermal nonlinearity) [4], atomic vapours [5], liquid crystals 
[6] and semiconductors [7]. 

Nonlinear optical (NLO) materials have been divided in different classes based on 
the effects that they present, the two most widely known are Kerr and photorefrac­
tive effects. The photoresponse of these and most other NLO materials rely on the 
nonlinear dielectric susceptibility response upon light exposure. Photopolymers, have 
recently been investigated, which rely on photochemical reactions for changes in the 
refractive index to take place. 

In the following Sections, we will review some of the mechanisms of materials 
that rely on high order susceptibilities for their nonlinear photoresponse. The pho­
toresponse in photopolymers will be reviewed with emphasis on an organosiloxane 
medium, which is the medium being investigated in this work. Comparison between 
the photoresponses of various NLO media and photopolymers will be made. 

1.1.1 Various nonlinear optical mechanisms 

Most optical nonlinear materials rely on the motion of electrons as a response to 
an electric field (stationary or varying) for their nonlinearity. This motion leads to a 
bulk material polarization of the following form [1] 

P = Eo (x(i) E + x(2) EE+ x(3) IE 12 E + .... ) (1.1) 

where Eo is the permittivity in vacuum, Eis the electric field amplitude and x(n) is the 
susceptibility with n=l, 2, 3 ... order. The first term in Equation (1.1) corresponds 
to the linear response of the medium to the electric field associated with an optical 
beam, the second and third term correspond to a nonlinear response related to a weak 
asymmetric and symmetric anharmonicity with respect to the electron displacement, 
respectively. 

Equation (1.1) sets the basis for the photoresponse of the principal media em­
ployed in studies of spatial self-action phenomena including Kerr, photorefractive 
nonlinearity and quadratic nonlinearity. 

Kerr nonlinearity 

The nonlinear polarization giving rise to the Kerr effect is PNL = EoX(3) I E 1
2 E, 

the third term in Equation (1.1). The resulting refractive index associated with the 
nonlinear response can be written as n =no+ n 2 I E 1

2 [8], where n0 is the linear or 
background refractive index and n 2 is the Kerr nonlinear refractive index coefficient. 
The second term is the refractive index change which is dependent on intensity l:l.n = 
n 2 I E 1

2 and which is responsible for the observed self-action phenomena. This 
particular form of the index change has played an important role in nonlinear optics 
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as it allows for analytical solutions of various problems, one example is in 1-D spatial 
solitons as will be discussed in Section 1.2. Since the larger the nonlinearity is, the 
slower the response (turn-off) time becomes [9], Kerr nonlinearity being the weakest 
one possesses a virtually instantaneous (10-15s) and local nonlinearity. 

Although all materials exhibit a non zero x<3l, only few of them are used in nonlin­
ear optics for having a measurable Kerr response. This corresponds to a linear depen­
dence of the index change on intensity, at intensities useful for nonlinear effects. Two 
examples are the semiconductor AlGaAs and glass fused silica with n 2 = 1.5 x 10-13 

cm2 /Wand n 2 ~ 2.3 x 10-16 cm2 /W, respectively [9]. As the nonlinear coefficients are 
small, high powers (intensities) on the order of kilowatts (GW /cm2

) [10] are required 
for refractive index changes to occur (usually on the order of ~n = 10-5 [3]). This is 
achievable with ultra-short laser pulses on the order of femtoseconds. As refractive 
index changes can grow indefinitely with intensity, Kerr materials are nonsaturable 
which often results in material damage during self-action effects at extremely large 
intensities. 

Photorefractive nonlinearity 

The nonlinear polarization induced in photorefractive media is given by PNL = 

EoX(2
) E1E2 corresponding to the second term in Equation (1.1). This can result in the 

electro-optic effect (Pockels), if an externally applied DC electric field (for example, 
E2 = E0 ) produces a polarization at the optical frequency (that of E1) and modifies 
the refractive index in the medium as [8] 

(1.2) 

where f ex: x<2 ) is the third rank electro-optic tensor that reflects crystalline symmetry 
and n0 is the unperturbed refractive index of the medium in the relevant direction. 
This effect is only possible in non-centrosymmetric media. 

Photorefraction resulting from charge transport occurs in specifically-doped electro­
optic materials, which are typically dielectric or semiconductor crystals (e.g. SBN 
(Strontium Barium Niobate), LiNb03 , KNb03 (Potassium niobate), KLTN (Potas­
sium lithium tantalate niobate), InP, CdZnTe) [9]. These crystals contain a consid­
erable level (""' 1018 cm-13 ) of donor impurities with energies deep in the forbidden 
gap, and a smaller level ("-'1016 cm-13 ) of deep acceptors. Therefore, illuminated re­
gions generate an out-of-equilibrium concentration of free electrons that diffuse from 
regions of high concentration to those with lower ones. After some time (dielectric re­
laxation time), charges are re-trapped by localized ions leading to a space-dependent 
charge distribution, and hence to a space-charge field, which modifies locally the re­
fractive index through the Pockels effect. As the space charge field is not uniform 
in space, the refractive index also varies in space [11]. The most commonly used 
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nonlinearity in photorefractive media is the screening nonlinearity, which yields an 
intensity-dependent index change of the form [9] 

.6.no 
.6.n(I(r)) = 1 + (I(r)/h) (1.3) 

where I(r) is the intensity of the optical beam and h is the background intensity 
which could be either dark irradiance or a material parameter proportional to the 
conductivity of the crystal in the dark. .6.n0 is the refractive index change due to 
Pockels effect shown in Equation (1.2). It can be more specifically expressed as 
.6.no = -~ngref f V/ L , where Tef f is the relevant component of the electro-optic tensor, 
V the voltage and L the distance between the electrodes . .6.n0 is intrinsically saturable 
because when the space-charge field reaches equilibrium, no further index changes 
occur. The response time of the medium corresponds to the dielectric relaxation time 
(or necessary time for charge separation) , which is inversely proportional to intensity 
[12]. By varying the intensity, the response time can be changed from nanoseconds to 
minutes for high and low intensities, respectively [13]. Powers (intensities) required 
for self-action effects are of the order of microwatts (mW/ cm 2 ) for low response times 
and kilowatts (MW /cm2 ) for faster response times. Refractive index changes are 
of the order of 10-3 [12]. The applied voltage over distance V/ L is of the order of 
few kV /cm for both low and high intensities [13]. Being the first saturable media 
employed in the study of spatial solitons, photorefractive crystals have been relevant 
in this area as new type of solitons have been discovered along with other novel effects 
(Section 1.2). 

Liquid crystal nonlinearity 

Liquid crystals possess an intermediate phase between a crystal and a fluid. Vari­
ous phases exist but the most used one in nonlinear optics is the nematic phase where 
the liquid crystal molecules are composed of elongated rod-like molecules. They ex­
hibit an average orientational order and present an overall alignment towards a di­
rection, called the director field (n). Under these conditions , nematic liquid crystals 
are characterized by two indices of refraction: parallel (n 11 ) and perpendicular(n..L) to 
their molecular axis, making them an optical uniaxial medium [14]. 

The nonlinearity originates from a reorientation of the molecules in the presence 
of an electric field (oscillatory or stationary) , which can induce dipoles and there­
fore a torque between the nematic liquid crystals and the field itself. With a strong 
enough field , the director distribution can be changed, reorienting the molecules to­
ward the electric field vector. The associated electric interaction energy density can 
be expressed as [15] 

(1.4) 

where .6.E = n~ - nJ_ is the birefringence and E, the electric field vector. The mini­
mization of f el through reorientation corresponds to an index increase as the torque 

4 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

tends to reduce the angle between the molecular axis and the field vector and a 
positive uniaxial is obtained (n~ > nl) [15]. In the case when the field vector and 
the director (n) are perpendicular to each other, the reorientation is subject to an 
intensity threshold, known as the Freedericks transition intensity. 

The photoinduced b..n in nematic liquid crystals as seen in Equation (1.4) is in­
tensity dependent, is saturable and has a strong polarization dependence. b..n is 
substantially independent of wavelength in the whole transparency range, from visi­
ble to mid-infrared regions [15]. The response time of nematic liquid crystals is slow, 
on the order of 10 to 100 milliseconds [16] as re-orientation of molecules in a fluid oc­
curs through elastic restoring forces. The refractive index change can be in the order 
of 10-1 [16] and the typical power (intensity) scale required for self-action effects is 
in miliwatts (W /cm2

) [15]. 

Quadratic nonlinearity 

All the previous nonlinearities present intensity dependent refractive index changes. 
However, self-action phenomena and more specifically self-trapping has also been ob­
served in quadratic materials where no refractive index change or modification of the 
material is involved. Instead, self-action effects are enabled through strong interaction 
and energy exchange between two or more beams relying only on second order nonlin­
earities xC2l [8]. Therefore, this nonlinearity can only occur in non-centrosymmetric 
media in which phase matching is possible. From Equation (1.1) the induced non­
linear polarization in this type of materials is PNL = coxC2) E1E2 , where E1 and E2 

can posses similar or different frequency generating a third one, through parametric 
mixing processes. Self-action effects have been commonly observed during second 
harmonic generation [17] where one or two input fundamental fields (at the frequency 
w) mix generating a second harmonic ( 2w). 

The quadratic nonlinearity is saturable, which can be understood by the conser­
vation of the total electromagnetic energy, where if one beam increases in power, it 
can only do it at the expense of the other beam. Some quadratic media include KTP 
(potassium titanyl phosphate), Li103 [18], LiNb03 and LiTa03 [9]. 

1.1.2 Photo-induced refractive index changes in photopolymers 

Photopolymers in contrast to previous materials rely on photochemical reac­
tions, specifically on free-radical polymerization for their refractive index change. A 
monomer is sensitized with a photoinitiator, which absorbs light, to produce reactive 
free radicals. A polymerization chain reaction is then started by reaction of the pho­
toinitiated free radicals with the monomer functional groups [19]. The bonds formed 
during this process lead to a cumulative increase in local density and a corresponding 
increase in refractive index. Changes in refractive index are intensity dependent and 
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are determined by the rate equations that describe free-radical photopolymerization: 
rate of initiation and rate of propagation. The rate of initiation (ri ) is given by [19] 

r i = <I>Jo [1 - exp(-El [P I])] (1.5) 

where 10 is the incident light intensity, l the sample thickness, t: and PI the absorp­
tivity and concentration of the photoinitiator, respectively and <I>i the quantum yield 
of initiation, which corresponds to the number of initiating species produced per pho­
ton absorbed. The rate of propagation (Rp) is also intensity dependent and can be 
expressed as [19] 

RP= k~5 {<I>J0 [1- exp(-El[PI])]}0
·
5 

M 
t 

(1.6) 

where kp and kt are the rate of constants of propagation and termination, respectively 
and [M] is the monomer concentration. 

The refractive index change associated with free radical polymerization at a par­
ticular location and time D.n(x, y , z, t) in photopolymers has been found to be empir­
ically related to the intensity of the optical field by Kewitsch and coworkers [20] by 
the following expression 

D.n(x, y , z, t) = D-ns { 1 - exp [- ~o 1t-T IE(t) 12 
dt]} (1.7) 

where D.n 8 is the maximum refractive index change, U0 is the critical exposure re­
quired to initiate polymerization, T is the monomer radical lifetime and E(t) is the 
amplitude of the electric field. A plot of D.n(x, y , z, t) with respect to radiant expo­
sure as seen in Figure 1.1 , shows the saturable nature of refractive index changes as 
monomers are depleted and the reaction reaches completion. Response time of these 
reactions range from milliseconds to seconds as polymerization proceeds and changes 
in refractive index changes can be as high as 0.15 [20]. Sensitization at a range of 
UV and visible wavelengths is achieved by choosing the appropriate photoinitiator. 
Intensities required for self-action effects in photopolymers can be as low as tens of 
µ W / cm2 [21]. Some of the monomers that have been employed for self-action phe­
nomena include liquid diacrylate monomer [20], pentaerythritol triacrylate [22] and 
fluorinated epoxy monomer and acrylic acid and urethane-acrylate oligomer [23]. 

1.1.3 Organosiloxane structure 

The material employed in our studies consists of an organic-inorganic composite 
which minimises diffusion of free-radicals commonly observed in pure monomer sys­
tems [24] that prevent localization of the induced refractive index change. Figure 
1.2 shows the preparation and photopolymerization of the organosiloxane composites 
where polymerisable methacrylate groups are covalently bound to siloxane oligomers. 
As photopolymerization is initiated, methacrylate radicals remain attached to the 
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Figure 1.1: Plot of refractive index change tln as a function of radiant exposure in 
photopolymers using Equation (1.7). 
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Figure 1.2: Scheme illustrating the preparation and photopolymerization of 
methacrylate-siloxane composites: the siloxane network is formed through hydrol­
ysis and polycondensation, addition of a photoinitiator and light exposure starts the 
free-radical photopolymerization reaction. Illustration taken from [26] 
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siloxane network, this minimises diffusion of free-radicals causing the resulting refrac­
tive index strongly localized in space with a spatial resolution of ,...., 150 nm [25]. 

1.1.4 Comparison of optical nonlinear mechanisms 

The various mechanisms underlying the nonlinear photoresponse, specifically the 
refractive index change of materials determine the dynamics of self-action phenomena. 
It is important to point out similarities and distinguish differences between the various 
nonlinear materials and photopolymers to be able to compare self-action effects and 
understand the new phenomena that can arise. 

A common feature of Kerr, photorefractive, liquid crystal photoresponse and pho­
topolymers is their intensity-dependent refractive index change, even though the spe­
cific dependences are different as discussed in the previous Sections. One can divide 
the nonlinear photoresponse in saturable as in the case of photorefractive, liquid crys­
tal nonlinearities and photopolymers and non-saturable like the Kerr nonlinearity. In 
saturable nonlinearities a maximum value of fln is reached and in non-saturable me­
dia refractive index changes indefinitely with intensity, only hampered by damage of 
the material. This particular classification will become important when discussing 
self-trapped beams in Section 1.2.2 as self-trapping of circular beams (self-trapping 
in two directions) is only supported in saturable media. 

One fundamental difference between most nonlinear optical media and photopoly­
mers lies in the origin of the nonlinearity. In most media, refractive index changes 
arise from high order (nonlinear) susceptibilities that originate from the electron mo­
tion under the influence of an electrical field associated with an optical beam. In 
photopolymers, the nonlinear photoresponse originates in photochemical reactions 
that polymerize the material, densifying and changing its refractive index. 

Another important difference derived from the origin of the nonlinear photore­
sponse, is that refractive index changes in photopolymers are permanent. Once 
the medium is polymerized, its structure permanently changes, and therefore op­
tical structures can be formed. In other nonlinear media, index changes decay after 
the optical source is removed. This decay is dependent on response time, which is very 
fast for Kerr media (10-15s) , varies in photorefractives from nanoseconds to minutes 
depending on the dielectric relaxation t ime, and in liquid crystals is slow in the order 
of milliseconds due to the reorientation of the molecules. In photopolymers, the time 
for refractive index changes to occur depends on the monomer radical lifetime and 
the rate of the photopolymer reactions and it increases from milliseconds to minutes 
as the reaction proceeds. This slow reaction allows for the observation of incoherent 
self-trapping [27] . 

An advantage of photopolymers compared to other nonlinear media presenting 
intensity-dependent index changes, is that intensit ies required for self-action effects 
are much lower, of the order of µ W / cm2

. In contrast, photorefractives require in-
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tensities of at least three orders of magnitude higher and liquid crystals and Kerr 
media, six and fifteen orders of magnitude higher, respectively. Induced refractive 
index changes in photopolymers are at least two orders of magnitude larger than in 
Kerr and photorefractive media and comparable to those in liquid crystals. 

1.2 Optical self-trapping and spatial solitons 
The phenomenon of self-trapping of waves has been observed in many systems in 

nature including charge density waves in plasmas [28], sound waves [29] and electro­
magnetic waves [30]. The first reported observation of self-trapping of waves was in 
1834 when John S. Russell observed that a smooth and well defined heap of water 
propagated through a canal without changing its form or decreasing its speed [31 J, he 
called it a solitary elevation. Theoretical studies on solitary waves in hydrodynamics 
were proposed later [32], followed by experimental and theoretical studies in plasmas 
and solid-sate physics [33]. 

In optics, light beams composed of electromagnetic waves have a natural tendency 
to broaden as they propagate in a dispersive linear medium. Broadening of light can 
occur in space, in time or both. Pulses of light broaden in time due to the different 
frequency components of the temporal pulse travelling at different velocities ( chro­
matic dispersion) [8]. In continuous wave light beams, spatial broadening is caused by 
diffraction, which can be understood by representing a beam as a linear superposition 
of plane-waves, where each one propagates at a slightly different angle and therefore 
at a different phase velocity with respect to the propagation axis [8]. In materials 
that posses significant optical nonlinearities, properties can be modified by the pres­
ence of light as reviewed in the previous Sections. In particular, when the medium 
modifies its refractive index with the presence of light, under certain conditions it 
is possible to counteract the spatial or temporal broadening obtaining a self-trapped 
beam or pulse. We will be mainly concerned with spatial self-trapping in optical 
beams. If we consider a Gaussian beam propagating along the z axis in a nonlinear 
medium, diffraction can be suppressed along z by a self-lens effect as seen in Figure 
1.3. Here, diffraction creates a curve wavefront similar to a concave lens spreading 
the beam (Figure 1.3a). In a medium where the refractive index change is dependent 
on intensity, the change is largest at the beam center and gradually reduces to zero 
near the beam edges. This creates a self-focusing effect that acts similar to a convex 
lens focusing the beam towards the center (Figure 1.3b). In this way, light guides 
itself along the high-index region forming its own waveguide as it travels through the 
nonlinear medium. A balance between diffraction and self-focusing enables the beam 
to self-trap as shown in Figure 1.3c. 

In the next Sections, we will first provide a brief review of self-trapping theory 
followed by self-trapping phenomena in various media. Then a review of previous ex­
perimental and theoretical studies of self-trapping in photopolymers will be presented 
along with some of its applications. 
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Figure 1.3: Scheme of optical self-trapping. Diffraction acts as a concave lens while 
the nonlinear medium acts as a convex lens. Self-trapping occurs when the two 
lenses balance each other and the phase front remains plane. Schematic illustration 
reprinted from [11] with permission from Elsevier . 

1.2.1 Optical self-trapping theory 

We will provide a brief overview of the main equations governing spatial self­
trapping of light including the nonlinear parabolic equation and the nonlinear Schrodin­
ger (NLS) equation, which is a special case describing self-trapping in Kerr nonlinear­
ity. This last case is important as it marked the foundations of optical self-trapping 
where analytical solutions to the particular problem were possible. 

Through Maxwell equations we can derive the following wave equation for the 
electric field E which generally describes the propagation of light in a medium [34] 

yr2 E 1 32 E - 1 32 p ( ) 
- c2 8t2 - Eoc2 8t2 1.8 

where c is the speed of light in vacuum and Eo is the vacuum permittivity. The 
induced polarization P consists of two parts 

P(r, t) = PL(r, t) + PNL(r, t) (1.9) 

where PL and PN L are the linear and nonlinear part of the polarization, respectively. 
For spatial self-trapping we will focus on the case of a CW beam. A general solution 
of Equation (1.8) can be written in the form [11] 

E(r, t) = ~i [E(r, t)exp(- iw0t) + c.c.J (1.10) 
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where w0 is the carrier frequency, x is the polarization unit vector, and E(r,t) is a 
slowly varying function of time. The polarization components PL and PNL can also 
be expressed in a similar manner. E(r,t) can be expressed as 

E(r, t) = A(r)expi/3oz (1.11) 

where /30 = k0n0 = 27rn0 / A is the propagation constant in terms of the optical wave­
length A= 27rc/w0 . The beam propagates along the z axis and diffracts or self-focuses 
along the two transverse directions x and y, where x, y and z are the spatial coordi­
nates associated with r. The function A(x, y, z) describes the evolution of the beam 
envelope. When nonlinear and diffractive effects are included, and the slowly varying 
approximation (paraxial approximation) is applied to the envelope A so that 8 2 A/ 8z2 

can be neglected, A is found to satisfy the nonlinear parabolic equation [11] 

(1.12) 

where the first term represents the propagation of the beam envelope along z, the sec­
ond and third term in parenthesis correspond to the diffraction of A in the transverse 
direction and the last term accounts for the nonlinearity in the medium, where nn1(I) 
is the nonlinear refractive index dependent on intensity. This is a general equation 
that can be used to model spatial self-trapping for various types of nonlinearities. In 
photopolymers, by substitution of nn1(I) with the appropriate refractive index change 
(.D.n) dependent on intensity (Equation (1.7)), Equation (1.12) has been employed to 
model self-trapping [35]. 

For the case of Kerr nonlinearity where nn1(I) = n2I, n 2 being the Kerr coeffi­
cient of the nonlinear medium, the following scaled dimensionless variables can be 
introduced [11] 

X = x/wo, Y = y/wo, Z = z/ Ld, u = (ko I n2 I Ld) 1l2 A (1.13) 

where w0 is a transverse scaling parameter related to the input beam width and 
Ld = ,80 w5 is the Rayleigh range (or diffraction length). In terms of these dimension­
less variables, Equation (1.12) can be expressed as the (2+1)-dimensional nonlinear 
Schrodinger equation [11] 

au 1 ( 82
u 82

u ) 
i az + 2 ax2 + ay2 ± I u 12 u = o (1.14) 

where the sign depends on the sign of the nonlinear parameter n 2 . This equation 
was found to describe self-trapped beams in Kerr media by Chiao and coworkers in 
1964 [10]. The (1+1)-dimensional version of Equation (1.14), which corresponds to 
the diffraction of the beam in only one transverse direction was solved analytically 
by Zakharov and Shabat [36] using the inverse-scattering method. Soliton solutions 
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were found corresponding to self-trapped beams where exact balance between diffrac­
tion and nonlinearity effects preserve the beam shape along the propagation direction. 
Unique properties of solitons were found solving the NLS equation including: integra­
bility, conservation of power, velocity and number of solitons upon soliton collisions 
and fully elastic interactions amongst solitons. [11]. The distinction between solitons 
and self-trapped beams lies in that solitons are exact solutions of the NLS equation 
and therefore present the above properties that make their interactions similar to the 
ones of particles. While the term soliton was originally employed to describe self­
trapped beams with the above properties, now they are sometimes used to refer to 
self-trapped beams in general. 

1.2.2 Optical self-trapping and spatial solitons in various media 

Optical spatial self-trapped beams have been observed in a variety of nonlinear 
media including Kerr media [3], photorefractives [37] , photosensitive glasses [38], liq­
uid crystals [14] and photopolymers [39]. The requirements for self-traped beams, 
their dynamics and properties depend on the type of nonlinearity of the medium. 
As detailed in Section 1.1 the nonlinear photoresponse giving rise to refractive in­
dex changes can originate from high order susceptibilities as in the case of Kerr and 
photorefractive media, from modifications in the structural composition in photosen­
sitive glasses, through the Frederickson transition in liquid crystals and by chemical 
reactions in photopolymers. 

Kerr media 

The first observation of self-lensing or self-focusing effect was made in glass through 
the Kerr effect [40]. This was soon followed by the theoretical framework of Chiao 
and coworkers [10] in which the nonlinear Schrodinger equation was found to describe 
self-trapped beams or solitons in Kerr media. A relevant property of Kerr solitons 
obtained by solving the NLS equation is that they are only stable in (l+l)D, i.e. 
one longitudinal dimension along which the beam propagates and one transverse di­
mension along which the beam diffracts or self-traps. When an additional transverse 
dimension is added into which the beam can diffract (2+1)D, the beam undergoes 
catastrophic self-focusing and eventually breaks up [41] . Early experiments in Kerr 
media showed this behaviour often resulting in damage of the material [40]. The 
first (1+1) soliton in Kerr media was observed in 1985 in liquid CS2 by employing 
an interference grating to obtain only one transverse dimension of diffraction [42]. 
But until 1990, a true (l+l)D soliton was observed in Kerr media by Aitchison and 
coworkers in a single-mode glass slab waveguide [3]. This was followed by observations 
of interactions between spatial solitons where their elastic collision properties were 
confirmed [43; 44]. Additional requirements for self-trapping in Kerr media include 
input powers in the order of kilowatts which are achievable using ultra-short laser 
pulses on the order of femtoseconds [3; 7]. 

12 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

Saturable media 

The first demonstration of (2+1)D self-trapping was performed in 1974 by Bjork­
holm and Ashkin [45] in atomic sodium vapour, close to a resonant transition. They 
explained the achievement by the effects of having a saturable nonlinearity. The sta­
bility of (2+1)D self-trapped beams in saturable media was explained later by Snyder 
and coworkers [46] by first giving the general definition that a soliton or self-trapped 
beam forms when the 'pulse' changes the potential in a way such that the pulse itself 
is a bound solution of that potential. Following this definition, we can understand 
that circular beams are stable in saturable nonlinear media as this implies that there 
is a maximum value of the optically induced refractive index change !::in sat· Similar to 
Kerr media, a saturable medium focuses light increasing its intensity. However as in­
dex changes cannot exceed !::insat, the induced lens eventually becomes wider instead 
of stronger and decreases its focusing power. In Kerr media, catastrophic collapse 
occurs as a result of not being able to stop the self-focusing process. Another conse­
quence in saturable media is that since the induced waveguide becomes wider, it is 
able to guide more than one guided mode [11]. The discovery of (2+1)D self-trapping 
in saturable media opened up the opportunity to find new kinds of spatial solitons in 
saturable media including photorefractive solitons and quadratic solitons. They gave 
rise to new family of soliton interactions in 3D that were not possible before as well 
as a variety of other phenomena. 

Photorefractive solitons were first predicted by Segev and coworkers in 1992 [47] 
and later demonstrated by Duree and coworkers [48]. The nonlinearity giving rise to 
photorefractive solitons is the second order susceptibility (x2

) (See Section 1.1). One 
of the first and most studied photorefractive solitons is the photorefractive screening 
soliton. Its generation starts with a narrow light beam propagating in a photore­
fractive crystal across which a voltage has been applied (Figure 1.4). As a result, 
free charges are photo-excited generating an internal space charge field, E~c' which 
is stronger in the darker regions compared to the more illuminated ones. As the re­
fractive index change !::in is proportional to E~c' when !::in is negative, a graded index 
waveguide is generated guiding its own beam. The dependence of !::in on intensity is 
given by [8] !::in= (V/ L)(n3reJJ/2)[l/(I E 1

2 +!dark)] for a (l+l)D screening soliton, 
where ref! is the relevant term of the electro-optic tensor, V is the applied voltage 
between electrodes separated by a distance L and !dark is dark irradiance which is a 
material parameter proportional to the conductivity of the crystal in the dark. 

Other types of photorefractive solitons have been found including quasi-steady­
state solitons [48], photovoltaic solitons [49], photorefractive semiconductor solitons 
[50] and solitons in centrosymmetric photorefractive media [51]. There are two im­
portant common properties to all photorefractive solitons. First is the ability to 
generate solitons at powers on the order of µW [12] because !::in depends on the ratio 
of I E 1

2 +!dark and !dark is low in photorefractive materials. The second property 
is that the response of the material is wavelength dependent which allows for soliton 
and waveguide generation at low powers that can be used to guide powerful beams at 
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Figure 1.4: Formation of photorefractive screening soliton. After a) a non-uniform 
beam intensity distribution is input in a biased non-centrosymmetric crystal, b) a 
space charge field is internally formed resulting in c) a refractive index profile induced 
through Pockels effect which self-traps the beam. Scheme reprinted from [13] with 
permission from OSA. 

wavelengths at which the material is less photosensitive [52]. Another type of soliton 
is the quadratic soliton which is generated in non-centrosymmetric materials in which 
phase matching is possible. They rely on second order nonlinearities x(2

) and they 
result from the strong interaction and energy exchange between two or more beams 
at different frequencies possessing an effective saturable nonlinearity [17]. Solitons 
have been recently observed in nematic liquid crystals by Assanto and coworkers and 
have been called nematicons [15]. Their nonlinearity, as discussed in Section 1.1, 
originates from molecular reorientational processes. As seen in Figure 1.5, the beam 
behaves linearly at low intensities and at intensities above the Freedericks transition 
(or threshold intensity), the molecules orient themselves towards the electric field in­
creasing the refractive index [15], resulting from a minimization in electric interaction 
energy density. Solitons can be generated in liquid crystals at mW power levels and 
over millimetre distances, they are saturable, non-local and substantially wavelength 
independent from visible to mid-infrared regions [14]. 

Interactions of solitons 

Interactions of solitons have been studied and divided into coherent and inco­
herent interactions. The former occurs when the nonlinear medium can respond 
to interference effects between overlapping beams because the response time of the 
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Figure 1.5: Scheme of optical self-trapping in liquid crystals [14]. The electric field is 
polarized ( e'_) perpendicularly to the molecular alignment ( k). a) Linear propagation 
where the beam diffracts and b) Self-focusing: the molecules are locally re-oriented, 
giving rise to a lensing effect along the beam axis. 

medium is much smaller than changes in the relative phase of the beam. Therefore 
coherent interactions occur in nonlinearities with instantaneous time response such 
as Kerr materials and quadratic nonlinearity. [8]. Incoherent interactions refer to 
interactions where the relative phase between self-trapped beams varies much faster 
than the response time of the medium. In this case the medium only responds to 
the time-averaged intensity. Coherent interactions present attraction and repulsion 
of beams when these are in phase and out of phase (by 7r), respectively. Incoherent 
interactions only show attraction as the refractive index in between the beams always 
adds up due to the time-averaged intensity reponse. 

In Kerr media, collisions are limited to only one plane as only (l+l)D solitons are 
stable. Since collisions are fully elastic, the number of solitons is always conserved. 
In contrast, in saturable media collisions are much richer. (2+1) D solitons are sup­
ported, therefore allowing for collisions in three dimensions. Self-induced waveguides 
in saturable media can guide more than one mode, which enables new phenomena 
including soliton fusion, fission and annihilation [53]. Spiraling-orbiting interaction 
has been demonstrated in photorefractive screening solitons [54] and nematic liquid 
crystals [14]. There, two solitons orbit and spiral about each other when the soliton 
attraction exactly balances the centrifugal force due to rotation as seen in Figure 
1.6. These interactions between solitons have been proposed for the development of 
optical devices for all-optical signal routing, switching, steering and readdressing [15]. 

Other types of solitons 

Other types of solitons that can exist in a variety of media are dark and vortex 
solitons [8]. The former consists of a narrow dark circular notch or stripe that prop­
agates without broadening. Under linear conditions the notch broadens similar to a 
bright beam. Under nonlinear conditions, the refractive index decreases in the illumi­
nated regions, creating a graded-index waveguide with high index in the dark region. 
This 'pulls' the background beam towards the notch reducing its diffraction. The 
resulting waveguide can then guide a bright beam. The amplitude of a dark soliton 
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Figure 1.6: Illustration of soliton spiralling in photorefractive screening solitons 
launched at non-coplanar directions. a) Beams A and B at the input face of the 
crystal , b) the spiralling soliton pair after 6.5 mm of propagation, and c) after 13 mm 
of propagation. The centers of diffracting A and B are marked by white triangles. 
Illustration reprinted with permission from [54]. Copyright (1997) by the American 
Physical Society. 

undergoes a 7f phase jump in the center of the notch. The two dimensional equivalent 
of dark solitons , i.e., (2+1)D, corresponds to vortex solitons. These are self-trapped 
beams with a phase front in the form of exp(ime) , where e is the azimuthal angle 
and m an integer referred as the topological charge. 

Incoherent solitons are a relatively recent concept, until 1995 all soliton experi­
ments required a coherent beam. That is, given a phase at a given location on the 
pulse in space or time it is possible to predict t he phase in other locations. Demon­
stration of self-trapping of spatially and temporally incoherent white light beams has 
been performed in a slowly responding photorefractive crystal by Mitchell and Segev 
[55] and in a photopolymer by Zhang and coworkers [27]. Incoherent light is composed 
of speckles which result from random phase distribution which varies randomly with 
time. The main conditions for self-trapping of white light include a non-instantaneous 
nonlinearity with a response time much longer than the phase fluctuation time across 
the incoherent beam, the multimode beam should be able to induce a multimode 
waveguide and also be able to guide itself in its own induced waveguide. 

1.2.3 Self-trapping studies in photopolymers and applications 

The study of self-trapping in photopolymers is relatively recent, about 15 years, 
compare to its study in other nonlinear media such as Kerr and photorefractive ma-
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terials. One distinguishing feature in photopolymers is that changes to the refractive 
index are permanent, therefore self-trapping of a beam inscribes a permanent waveg­
uide structure. This feature has been the predominant subject of a large number of 
studies for potential applications of the self-written waveguides in integrated optics. 
Photopolymers also possess a saturable refractive index change that supports (2+1)D 
self-trapping, therefore rich dynamics and interactions between beams are expected 
to be observed. 

In this section, a review of the previous experimental and theoretical work on self­
trapping in photopolymers will be presented along with the studies on its potential 
applications. 

1. 2. 3.1 Experimental studies 

Experimental work on laser self-trapping due to free-radical polymerization was 
preceded by the demonstration of self-written tapered waveguides in UV-cured epoxy 
in 1993 by Frisken [56] using cw 532 nm light irradiated from an optical fiber, which 
allowed to modify the spot size of the fundamental mode of the fiber. Following, laser 
2D self-trapping of photopolymers was demonstrated experimentally and through 
numerical simulations by Yariv and Kewitsch in 1996 [39; 20]; solid 10 micron-wide 
polymer fibers could be self-written with short exposures to a UV laser beam (325 
nm) in a liquid diacrylate monomer. 

Other studies on self-trapped beams have examined the filamentation, interaction 
between a pair of beams and in situ monitoring of polymerization. In experiments by 
Shoji and Kawata [57], photographs acquired along the propagation axis showed self­
written fibres at 441.6 nm due to polymerisation in a urethane acrylate-based liquid 
resin; these experiments showed the formation of multiple self-trapped filaments with 
increasing optical power. Filamentation at increasing powers was also shown by 
Dorkenoo and coworkers, who carried out self-trapping experiments in 250 micron­
thick layers of triacrylate-based resin [58; 59]. Shoji and coworkers investigated the 
interactions of a pair of self-trapped beams and their dependence on the collision 
angle and the relative power between the beams [60]. The temporal evolution of 
self-trapping with in situ Raman waveguide spectroscopy in planar waveguides was 
examined by Saravanamuttu and Andrews [61]. 

Self-trapping of incoherent (white) light and interactions of incoherent light self­
trapped beams in photopolymers has recently been demonstrated in our group by 
Zhang and coworkers [27] and Kasala and Saravanamuttu [62]. 
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Figure 1. 7: Numerical simulations of self-trapping using the beam propagation 
method by Kewitsch and Yariv. Illustration reprinted from [20] with permission 
from OSA. 

1. 2. 3. 2 Numerical studies 

Self-trapping in photopolymers requires solving the nonlinear parabolic equation 
(Equation (1. 12)) having a refractive index response corresponding to Equation (1.7). 
However, this is a complex mathematical problem and no analytical solution has been 
found yet , therefore numerical solutions are often proposed. The usual approach to 
solve the self-trapping problem in photopolymers is to solve Equation (1.12) numeri­
cally with updates in the refractive index changes following Equation (1.7). 

Kewitsch and Yariv [20] were the first to investigate this problem in photopolymers 
and solved it numerically using the beam propagation method. The results in Figure 
1. 7 show the time evolution of a self-trapping beam, where the narrowing of the beam 
was evident over time as well as a high intensity area close to the entrance of the beam. 
Self-trapping was accompanied with width oscillations in the beam diameter. 

Almost simultaneously Monro and coworkers [38] analysed numerically the self­
trapping problem in (l+l)D in photosensitive media and in photopolymers, through 
the beam propagation method with updates in the refractive index changes. They 
also employed the Wentzel-Kramers-Brillouin [63] analysis to explain the modal prop­
erties of t he induced waveguide. They found that as the refractive index increased 
with time, the number of modes also increased at every point in the propagation 
distance. The analysis included a self-written waveguide able to support two even 
modes. They found that as time progressed, the position at which the waveguide be­
came mult imoded changed, leading to a change in intensity distribution (secondary 
eyes) along the waveguide. Oscillations in intensity were found to be the result of 
mode beating. For that particular case, the beat length between the two even modes 
was found to be constant. 
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Other numerical studies have modelled self-trapping in photopolymers for an un­
polymerized monomer [59] and by introducing an intensity threshold (Ith) [60]. In this 
last case, the waveguide width stabilized and did not present secondary eyes. Also a 
condition for single symmetric mode waveguide formation was proposed by having a 
maximum intensity (I max) of the beam that followed Ith < I max < 7 Ith· In the same 
study, interactions of self-trapped beams in (l+l)D were numerically investigated. 

1.2.3.3 Applications of self-induced waveguides 

Emphasis has been placed on the circular fibers induced by self-trapped beams 
and their potential applications in integrated optics and fiber interconnect technol­
ogy. Waveguides could be self-written in a photopolymerisable resin with 488 nm light 
emitted by multimode optical fibers [23; 64]. A coupling loss of 0.7db at 1.55µm in a 
0.5mm gap between multimode fibers was achieved through the self-written waveguide 
[65]. Single-mode optical fibers have been shown to induce self-written waveguides 
with single mode propagation at 1310 nm creating fiber optical interconnects (Fig­
ure 1.8a) [66]. Yonemura and coworkers showed that a waveguide component of a 
wavelength division multiplexer could be self-written with light from an optical fiber 
( 457 nm) (Figure 1.8b) [67]. Reconstruction of diced waveguides due to 45 ° mirror 
fabrication has been demonstrated through self-written waveguides [68]. Bachelot 
and coworkers showed the ability to fabricate micro-sized moulds of different inten­
sity profiles at the tip of an optical fiber; by selectively propagating discrete higher 
order modes [69]. Arrays of micro-optical structures have been realized through self­
trapping using masks [70; 71]. Another application of self-trapped beams is the 
fabrication of artificial ommatidia by Jeong and coworkers which mimics the imaging 
units of insect 's compound eyes (Figure 1.8c) [72]. 

©2004 IEEE Reprinted with permission from OSA Reprinted with permission from AAAS 

Figure 1.8: Applications of self-written waveguides in photopolymers in a) optical 
interconnects [66], b) a module for wavelength division multiplexing [67] and in c) 
fabrication of an artificial compound eye (ommatidium) [72]. 
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1.3 Spatial self-phase modulation: diffraction rings 

1.3.1 Introduction 

Another spatial phenomenon observed in nonlinear optical media that undergo 
intensity-dependent refractive index changes is the generation of concentric rings of 
intensity with a Gaussian beam. Such diffraction rings emerge when the input beam 
suffers strong transversal modification of phase, which results in the interference of 
radiation with the same wavevector emanating from different points of the wavefront. 
Spatial self-phase modulation was first observed in media with thermally-dependent 
refractive index changes [73; 74; 75 ; 76; 4] and subsequently in atomic vapours ,[5; 77] 
nematic liquid crystals [78; 6], Kerr media [75] , chromophore-substituted silica [79] 
and photorefractive crystals [80]. 

Sections 1.3.2 and 1.3.3 provide an overview of the origin and requirements for 
the observation of diffraction rings in nonlinear media. Including the mechanism of 
spatial self-phase modulation and the role of input beam curvature in self-focusing and 
self-defocusing media in generating various ring patterns. A summary of diffraction 
rings studies in various nonlinear media and some of the potential applications of ring 
shape beams are also provided. 

1.3.2 Origin of diffraction rings 

In 1970, Dabby and coworkers [74] were the first to identify that diffraction rings 
originate from spatial self-phase modulation, which is the spatial analog of frequency 
broadening of short light pulses. In both cases, an intensity-dependent refractive index 
change modifies the phase of the pulse or beam of light resulting in the generation of 
new frequencies and in interference, respectively. 

1. 3. 2.1 Spatial self-phase modulation 

The spatial self-phase modulation mechanism is well established for thin media 
(thickness < Raleigh range) [6]. A laser beam that induces refractive index changes 
.:\n(r) as it propagates through a nonlinear material gives rise to a corresponding 
phase shift of the beam as given by 

27r 1 zo+d 
L\·t/J (r) = - L\n(r, z)dz 

A zo 
(1.15) 

where r is the direction that is transverse to the axis of beam propagation (z), z0 

is the position at the entrance face of the medium along z, d is the thickness of the 
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medium and A, the wavelength of light in free space. In a medium where refractive 
index changes are intensity dependent, a beam with a T EM00 Gaussian intensity 
profile will induce a refractive index change with a similar profile. This in turn will 
induce a phase shift at the output of the medium expressed as 

( 
2r

2
) 1:1'1/J(r) = 1:1'!/Joexp - w2 (1.16) 

where w is the beam radius at the entrance plane of the medium and /:1'1j;0 is the 
maximum value of phase shift. In the phase shift profile, shown in Figure 1.9, specific 
points along r can have the same slope. 
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Figure 1.9: Schematic of the phase shift profile induced by a T EM00 Gaussian inten­
sity profile in an nonlinear medium. Light emanating from points r 1 and r 2 have the 
same wavevector and can therefore interfere. Figure reprinted from [6] with permis­
sion of OSA. 

The slope at each point in this curve corresponds to the perpendicular propa­
gation wavevector d/:1'1/J / dr = kl.. Radiation from points with the same wavevector 
can therefore undergo interference. The condition for maximum constructive and 
destructive interference is given by /:1'1j;(r1 ) - !:1'1j;(r2 ) = m7r, when m is an even and 
odd integer, respectively. Due to the cylindrical symmetry of the phase shift profile, 
interference results in concentric diffraction rings observed when projected onto a 
plane in the far-field. Multiple diffraction rings appear when /:1'1j;0 > 27r; the number 
of rings N is estimated by 

(1.17) 

Radiation from the inflection point of the 1:1'1/J(r) curve corresponds to the outermost 
ring. Its half-cone angle (3 can be estimated by [6] 

fJ = ( d!,P t=/(2ir/A) (1.18) 
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In order to prevent simultaneous self-focusing of the beam in the nonlinear medium, 
the majority of studies of diffraction rings had to be carried out in thin samples 
(pathlengths < Rayleigh length) . For the case of thick media (pathlengths > Raleigh 
range), the description of the mechanism is more complex and not well understood 
yet for most materials. A more rigorous mathematical treatment is needed for each 
specific nonlinear mechanism to understand the effective thickness contributing to 
the spatial self-phase modulation. A study performed in strongly absorptive media, 
specifically sodium vapour [81], showed that two cases were possible in a thick sample. 
In the first, significant refractive index changes and therefore self-phase modulation 
only occurred near the entrance face of the medium. the resulting diffraction rings 
therefore underwent linear divergence through the remaining regions of the medium. 
In the second case, refractive index changes were dominant all along the propagation 
path, which led resulting to self-focusing and self-trapping of the beam. 

1.3.3 Diffraction ring patterns 

Different forms of diffraction rings can be elicited in nonlinear media, the most 
common being rings with dark or a bright central spot [82; 83] . The underlying 
mechanism for these pattern variations in patterns was developed by Santamanto 
[82], Yu [84] and Deng and coworkers [85]. The type of ring pattern depends on two 
factors, ( i) the curvature of the beam (convergent or divergent) at the input face of 
the medium and (ii) the type of nonlinearity (focusing or defocusing). Self-focusing 
media exhibit positive refractive index changes whereas self-defocusing media exhibit 
negative refractive index changes with intensity [85; 76]. The theory developed by 
Deng and coworkers [85] successfully predicts ring patterns for four different scenarios 
and is briefly summarized here. The complex amplitude of a T EM00 Gaussian beam 
launched at the entrance of the nonlinear medium with thickness L is given by [85] 

( 
r2 ) ( ik n r

2
) E(r, z0 ) = E(O, z0 ) exp - w2 exp - ~~ (1.19) 

where k0 and n0 are the wavenumber and refractive index in free-space , respectively, 
w is the beam radius at the entrance plane of the medium and R is the radius of 
wavefront curvature. Assuming that the medium is optically thin and the nonlinear 
absorption is negligible , the complex amplitude of the electric field on the exit plane 
of the medium can be written as [85] 

E = (r, z0 + L) = E(O, z0 )exp (- a
2
L) exp (-:: ) exp( - i·t/;(r)) (1.20) 

where a is the linear absorption coefficient of the nonlinear medium and 't/; ( r), the 
total transversal phase shift induced by the beam at the exit plane of the medium 
can be written as 

't/; (r) = k0nor
2 

+ !:l't/;(r) 
2R 
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Using Equation (1.16), 

konor
2 

( 2r
2

) 
'l/J(r) = 2R + ~'l/Joexp - w2 (1.22) 

where the first term corresponds to the contribution of the curvature R to the total 
transversal phase shift and the second term is the additional contribution from re­
fractive index changes. The far-field intensity distribution of the beam at a distance 
D from the output face is obtained by applying the Fraunhofer approximation of 
the Fresnel-Kirchhoff diffraction formula on the optical field at the exit plane of the 
medium. The resulting far-field intensity is expressed as [85] 

1 = I i:D I' If t E(O, ZQ)exp (- a2L) 
x exp( -ikorOcos<p )exp [-:: - i,P ( r)] rdrd<p I' (1.23) 

where 8 is the far-field diffraction angle, <p is the angular coordinate on the exit plane 
of the medium in the polar coordinate system. The radial coordinate pin the far-field 
plane is related to the far-field diffraction angle e by 

p= DB (1.24) 

With the property of the first-kind zero-order Bessel function as an even function, 

1 1271" 1 1271" J0 (x) = - exp(ixcos<p)d<p = -
2 

exp(-ixcos<p)d<p 
27r 0 7r 0 

(1.25) 

Equation (1.23) can be expressed as 

I= / 0 1100 

J0 {k00r)exp [-:: - i,P{r)] rdrl
2 

(1.26) 

where 10 = 47r2 IE(O, z0 ) exp(-aL/2)/i,\Dl 2
• Four cases are possible by combining 

convergent (R < 0) or divergent (R < 0) Gaussian beams propagating in self-focusing 
(~'lj; > 0) or self-defocusing media (~'lj; > 0). These are (i) ~'lj;(r) < 0, R > 0, (ii) 
~'l/J(r) > 0, R > 0, (iii) ~'lj;(r) < 0, R < 0 and (iv) ~'lj;(r) > 0, R < 0. Since the sign 
of the total phase shift 'tj;(r) does not change the result in Equation((l.26)), cases 
(i) and (iv) and cases (ii) and (iii) are equivalent. The resulting far-field intensity 
patterns for cases (i) and (iv) are concentric rings with a central dark spot and for 
cases (ii) and (iii) concentric rings with a bright central spot as shown in Figure 1.10. 

1.3.4 Diffraction rings in various media and potential applications 

The fundamental requirement for the generation of diffraction rings through self­
phase modulation is a transversal phase shift (~'lj; ~ 27r) imposed on a Gaussian 
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Figure 1.10: Simulation results from ring patterns for a) convergent (R < 0) and 
b) divergent(R > 0) input Gaussian beams in nonlinear media with self-focusing 
nonlinearity (6. 'lj; > 0). Images reprinted from [85] with permission from IOP. 
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beam. This requirement is satisfied by a variety of nonlinear media that undergo 
photoinduced changes in refractive index. Variations in the dynamics of diffraction 
rings originate from the photophysical and photochemical mechanisms that are unique 
to each nonlinear medium. For example, in the case of atomic vapours such as sodium 
[86], potassium [5] or barium [77] vapour, diffraction rings with frequency shifts with 
respect to the input frequency were observed using pulsed and cw lasers with sufficient 
intensity. This phenomenon was due to four wave mixing processes involving the third 
order susceptibility tensor x<3l [87]. The diffraction ring patterns were determined 
by the intensity of the beam, the detuning between the incident pulse and atomic 
resonance, and atomic density [88]. 

In nematic liquid crystals, diffraction rings were observed with cw lasers at input 
intensities above the Freedericksz transition, where birefringence is induced [6]. The 
number of diffraction rings increased with laser intensity due to the corresponding in­
crease in phase shift imposed on the beam. Ring patterns with dark and bright central 
spots were observed in nematic liquid crystals for convergent and divergent beams re­
spectively [82]. Diffraction rings in absorbing media originate from thermally-induced 
refractive index changes. Here absorption of light causes an intensity-dependent in­
crease in the local temperature. The consequent intensity-dependent decrease in 
refractive index in regions of high intensity gives rise to a self-defocusing nonlinearity 
[73]. The number of rings was found to increase with beam power [4]. 

In most previous studies, diffraction rings were elicited in thin samples (path­
lengths <Raleigh range) and observed in the far-field [6; 74; 4]. However, a re­
cent study in a photorefractive crystal demonstrated that under certain conditions, 
diffraction rings could propagate over long distances (>> Rayleigh length) and were 
observed at the output of the nonlinear medium [80]. This provided an accessible non­
linear optical analogue to study the fundamental physics of dispersive shock waves 
that exist in superfluids such as Bose-Einstein condensates, which are considerably 
more challenging to generate experimentally. 

Although diffraction rings generated in nonlinear media have not yet being directly 
used in any application, studies have explored their potential use as optical limiters 
[89; 90] and in super-resolving fluorescence microscopy [91] to improve the spatial 
resolution. Other potential applications that depend on ring-shaped beams have also 
been suggested including the measurement of thermal diffusivity in metal sheets by 
using a pulsed annular laser beam [92], as optical dark traps for atoms [93] and as 
optical tweezers for the manipulation of microscopic particles [94]. 

1.4 Filamentation due to modulation instability 
The phenomenon of filamentation has been studied since the early 1960s. The first 

observations were made on liquid nonlinear media by Pilipetskii and Rustamov [95], 
where a laser beam at high intensities would break in filaments ordered in a random 
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manner. The first theory to explain filamentation of light beams was the modulation 
instability theory proposed by Bespalov and Talanov [96]. Filamentation has been 
observed in various media with coherent and incoherent light and also in beams with 
different shapes [97; 98; 99]. Particularly beams with ring shapes that develop during 
nonlinear propagation have recently shown its break up into multiple filaments [100; 
99]. 

1.4.1 Modulation instability 

Modulation instability in optical media has theoretically been studied mostly for 
Kerr media [101]. Bespalov and Talanov's modulational instability theory proposed 
that amplitude and phase perturbations in plane waves would develop and grow expo­
nentially over the propagation path, until their strength was comparable to the initial 
plane-wave field, ultimately breaking up into multiple beams or filaments. The insta­
bility originated not only from small field variations or noise but also from random 
perturbations in the medium. To mathematically describe modulation instability in 
Kerr media, they introduced a perturbation e in the input electric field amplitude E 
[96]: 

E = (E0 + e)exp(-i1z) (1.27) 

where E0 is the constant amplitude of the unperturbed wave, r is the growth rate 
and lei < < E0 . By introducing Equation (1.27) in the nonlinear Schrodinger equa­
tion (Equation ( 1.14)), the theory predicted for plane waves characteristic scales of 
instability development that have dependence on input power and nonlinearity. Also 
relations for the power of an individual filament dependent on the input power were 
developed, an increasing number of filaments with increasing power of the initial 
beam and the reduction of power at which filamentation can occur when introducing 
ellipticity in the system. 

Other instabilities that apply to self-trapped beams other than modulation insta­
bility in plane waves have been proposed as reviewed by Berge and coworkers [102]. 
These include orbital stability, transverse instability and modulation instability on a 
ring. Orbital stability refers to the stability of an initial solution close to an equilib­
rium state to converge to a robust soliton shape. Transverse instability refers to a 
soliton mode perturbed by oscillatory fluctuations developing along one axis. Modu­
lation instability on a ring refers to filamentation that occurs not uniformly over the 
entire beam but rather on rings developed after light propagation. 

1.4.2 Observed filamentation in nonlinear media and its applications 

Filamentation has been observed in self-focusing materials including Kerr media 
[95; 103], liquid crystals [104] and photopolymers [105; 106]. In Kerr media, the 
coalescence of filaments has been investigated with and without saturation [102]. 

26 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

Once filaments are created, they undergo self-focusing dynamics and their evolution 
is determined by the competition between the nonlinearity which confines the light in 
the filaments, its diffraction and the saturation of the nonlinearity. Fusion of filaments 
is dependent on their critical separation which in turn depends on their individual 
powers and whether or not saturation is present. 

High-power femtosecond laser pulses in air have shown to filament and emit in 
a continuum from ultraviolet to infrared light due to the Kerr effect [107]. This 
white light emission filamentation shows an enhanced backward scattering detectable 
for over 20 km which can have applications in atmospheric trace-gas remote sensing 
[108]. Air ionization within the filaments holds promise for applications in laser­
induced condensation and lightning control. 

In photopolymers, filamentation has been theoretically and experimentally stud­
ied. Lonin and coworkers [109] found theoretically that the criterion for stable self­
channeling regime (or no filamentation) is that the beam half-width be smaller than 
the sizes of the self-formed inhomogeneities (p/a > 1), where p corresponds to the 
radius of the inhomogeneities and a to the half-width of the input beam. This stable 
regime also works for broad beams at either lower radiation intensities or higher dif­
fusion coefficients. However, self-channeling of a narrow beam can become unstable 
by increasing the light intensity or composite viscosity. They confirmed this experi­
mentally at two different intensities corresponding to stable and non-stable regimes 
with laser (He-Ne) radiation experiments in a OKM-2 (oligocarbonate methacrylate) 
based photocomposite. Streppel and coworkers [105] have studied the effects of par­
tially coherent light on modulation instability in photopolymers. They found that the 
threshold of minimum coherence length for modulation instability to exist depends 
only on systems parameters but not on light intensity. Spontaneous pattern forma­
tion has been observed due to modulation instability using incoherent white light in 
photopolymers with individual broad uniform beams [106] and during interactions of 
self-trapped white light beams [62]. 3D optical lattices with near cubic symmetry 
have been shown to form using interaction of orthogonal incoherent beams of light 
that simultaneously undergo modulation instability in a photopolymer [110]. 

1.4.3 Filamentation of ring-shaped beams 

Filamentation of ring-shape profiles has been studied in nonlinear optics, mainly 
in Kerr media. These include optical vortices and rings formed during self-trapping 
having uniform phase. Optical vortices are beams with ring-shape profiles with a heli­
cal phase that have zero amplitude at the singularity where the phase is undefined and 
a topological charge m that is a measure of the phase winding [100]. Filamentation 
of optical vortices has been shown theoretically and experimentally under azimuthal 
modulation instabilities both in pure Kerr [100] and saturable Kerr-like media such 
as sodium vapor [111 J. In a pure Kerr medium, filamentation was found to be a 
function of input power (P) and m. The analytical relation for number of azimuthal 
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filaments, T/max corresponds to T/max = J 4Pamm / Perem - 2m - m 2 , where Per is the 
critical power for vortex ring collapse and a is a constant dependent upon the initial 
beam shape [100]. In a saturable Kerr medium, the modulation instability of vor­
tex rings depended only on the topological charge m and tended to break into 2m 
filaments [111]. Beams with uniform phase and ring shape also suffer filamentation 
during self-trapping due to modulation instability. For example, in carbon disulfide 
(a Kerr medium) , ring diffraction patterns were formed by employing circular aper­
tures before the entrance of the medium, these rings were observed to periodically 
breakup in the azimuthal direction due to instabilities [112]. In general in Kerr me­
dia, ring-shaped beams undergo azimuthal filamentation for sufficiently high powers, 
above the critical power for self-trapping [113; 114]. 

A related phenomenon is the self-trapping of necklace beams in Kerr media, these 
are beams shaped as rings whose radius is large compared to their radial thickness and 
their intensity is azimuthally periodically modulated, appearing as pearls or circular 
beams around a necklace [115]. These beams are different from filamentation of ring 
shape beams in that they do not filament but they are launched with a necklace 
shape. Necklace beams are the first type of beams described by the (2+1)D cubic 
self-focusing NLSE stable to transverse modulation instability. In order to arrest such 
instability in the azimuthal direction, the intensity is periodically modulated in the 
same direction. The main characteristic of necklace beams is that the radial dynamics 
rate of necklaces is many orders of magnitude slower than the rate at which each of 
the pearls of the necklace would suffer catastrophic collapse by itself. This results in 
necklace beams propagating stationary for large distances, during which neither the 
ring diameter nor the width of each pearl on the ring significantly change [115]. 

Recently super Gaussian (SG) input beams with uniform phase in Kerr media 
have been theoretically predicted [116] and experimentally observed [99] to self-trap 
into single ring-beams, which undergo filamentation due to non-azimuthal instabili­
ties. By numerical integration of the (2+1)D NLSE (Equation (1.14)) for an initial 
beam with a uniform phase SG field distribution two regimes were found by Grow 
and coworkers [99]. At low powers of few times the critical powers (Per), the beam 
collapsed to a circular profile (or Townes profile) characteristic of Gaussian beams. 
However, at powers >>Per for self-trapping, the input SG beam collapsed into a 
ring-shape beam called the G-profile [116] . In this case, the initial formation of the 
ring could be understood by nonlinearity dominating over diffraction and the NLSE 
was approximated by [99] 

.au 2 
i 0z+lul u=O (1.28) 

where u(X,Y,Z)=(r5k5n2c3 /7r) 112A(x,y,z), A is the amplitude of the envelope of 
the electric field, X = x/r0 , Y = y/r0 , Z = z/2Ldf and Ldf = k0r5 is the diffraction 
length, r0 the characteristic radius of the input beam, k0 = 27l'n0/ A is the wave 
number, A is the vacuum wavelength, n0 is the linear index of refraction, and n 2 is 
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the nonlinear index coefficient. The solution of Equation (1.28) for an input SG beam 
is given by [99] 

where 

u = 'Uo(X, Y)eikoS 

S(Z) = n2 JuoJ 2 Z 
no 

(1.29) 

(1.30) 

For high powers the formation of an initial ring can be understood as the result of non­
linear propagation over distances in which diffraction is negligible. The resulting ring 
radius increases with input power and the beam suffers filamentation in the presence 
of noise due to non-radially symmetric noise (noise non-symmetric around the central 
axis) at much lower powers (PrvlOPcr) than with a Gaussian beam (P>~lOOPcr). 
Through an azimuthal modulation instability analysis, an expression for the number 
of filaments, TJ, in super-Gaussian beams was found to be [99] 

(1.31) 

where w determines the radius of the ring. The number of filaments according to 
Equation (1.31) is proportional to the square-root of the input power P. 

1.5 Research objectives: laser induced self-action 
effects in photopolymers 

As we reviewed in previous Sections, a variety of self-action effects have been 
predicted and observed in various nonlinear media. The specific dynamics for each 
phenomena and the interactions observed are strongly dependent on the type of non­
linearity. In photopolymers, only self-trapping and filamentation of the beam have 
been demonstrated with the majority of studies having an emphasis on self-trapping 
and the applications of the resulting self-induced waveguides. However, theoretical 
studies in self-trapping have predicted complex dynamics of the beam evolution in 
photopolymers including excitation of high-order optical modes, complex evolution 
of the modal composition of the self-induced waveguide and oscillations of the self­
trapped beam. 

In this thesis, we aim to perform a systematic study in photopolymers to address 
the theoretical predictions described above and the lack of experimental investiga­
tions on the dynamics of self-trapped beams. These include the evolution from single 
mode to multimoded guiding during self-trapping, the sequential excitation of high­
order optical modes and the correlation between oscillations in intensity and beam 
width and the modal composition of the self-induced waveguides. In order to do 
that, we performed an intensity dependent study as the optical photoresponse in 
photopolymers depends on intensity, that is photopolymerization rates and hence 
refractive index changes increase with intensity. This opened the opportunity to 
analyze the variation of self-trapping dynamics under increasing amounts of nonlin­
earity. The intensity dependence study performed covered 10 orders of magnitude, 
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which is the first study to our knowledge covering such a wide intensity range in a 
photopolymer. Moreover , a broader motivation to perform this wide range intensity 
dependence study was to acquire a better depth of knowledge of self-action effects in 
photopolymers. Unlike other optical materials such as photorefractive crystals , non­
linear propagation of light in photopolymers is in its infancy. Therefore, our aim was 
also to probe new forms of nonlinear light propagation. The experimental methods 
employed in this thesis differ from previous investigations in photopolymers, in that 
we employed beam profiling methods to directly visualize and quantitatively measure 
temporal and spatial changes in the cross sectional intensity profiles of the beam. As 
the response time of photopolymers is in the order of milliseconds to seconds [39], this 
was a feasible approach. Previous studies have only characterized self-trapping and 
filamentation through the light scattered along the beam path and properties of self­
induced structures. Numerical simulations were also performed in this study in order 
to complement experimental findings and have a better insight into the observed phe­
nomena. The study of self-action effects and dynamics of the nonlinear phenomena 
in the organosiloxane present potential not only for new discoveries and advances in 
photopolymers but also for a better understanding of self-action phenomena in other 
optical media. Moreover , new self-action effects in photopolymers are promising for 
optical applications as induced optical structures are permanent. 

In this thesis first we present in Chapter 2, the materials and experimental meth­
ods employed for the experimental and numerical studies of self-action phenomena 
in the organosiloxane. Regarding experimental studies, preparation of the photosen­
sitive organosiloxane and the optical assembly employed for beam profiling methods 
are described in detail. Conditions for monitoring the intensity profiles at different in­
put intensities and the method to characterise resulting self-induced structures in our 
system are detailed. As for simulations studies, a description of the simulation proce­
dure is provided. This include the beam propagation method used by BeamPROP™ 
software along with the use of the empirical formula (Equation (1. 7)) to calculate 
refractive index changes suffered by the photopolymer. Physical and numerical pa­
rameters relevant to simulations are described and a simulation example is given at 
the end of that Chapter. This is followed by the intensity dependent study across 10 
orders of magnitude in Chapter 3, where three intensity regimes are found. At low 
powers new self-trapping dynamics are experimentally confirmed including the exci­
tation of high-order modes and its correlation with oscillation in beam intensity and 
width. At the mid-intensity and high intensity regimes novel self-action effects occur: 
diffraction rings due to self-phase modulation and single ring formation followed by 
filamentation , respectively. The origin of the different photoinduced refractive index 
profiles is examined and their importance to elicit the different optical phenomena 
is shown. Quantitative trends of self-trapping in the organosiloxane are presented 
through three important parameters: self-focusing time, self-trapped diameter and 
transmittance. Spatial profiles at all intensities are presented and analysed to illus­
trate the different phenomena at different intensity regimes. Chapter 4 is dedicated 
to study in depth the novel effect observed at the mid-intensity regime: diffraction 
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rings. Its origin is explained by linking the requirements for self-phase modulation 
and refractive index changes in the organosiloxane due to laser initiated free-radical 
polymerization. Dynamics of diffraction rings occurring in the organosiloxane at long 
pathlengths (>> Rayleigh range) are contrasted with previous studies mostly per­
formed in short pathlengths. The temporal evolution of diffraction rings is presented 
and important parameters are extracted to relate the dynamics of diffraction ring 
formation with rates of polymerisation and refractive index profiles induced. The 
effect of beam curvature and pathlength dependence is examined showing the emer­
gence of different types of diffraction rings and the complex dynamics occurring in 
a long pathlength medium. In Chapter 5, the next novel phenomenon is presented: 
formation of a single-ring from an input Gaussian beam and its subsequent sponta­
neous filamentation. We show that this effect is possible because of the flattening of 
the Gaussian refractive index profile induced, which originates from the saturation of 
the refractive index in the organosiloxane. The temporal evolution of the single-ring 
formation is shown overtime and its size and filamentation dependence on intensity 
is investigated. Permanent self-inscribed structures resulting from different nonlinear 
effects in the organosiloxane are shown through the thesis. Chapter 6 is dedicated 
to the study of 2D numerical simulations of the self-action effects in the organosilox­
ane found at a similar range of intensities studied in previous Chapters. This was 
achieved by employing the beam propagation method through BeamPROP™ soft­
ware and an external subroutine which calculated the refractive index changes with 
Kewitsch's empirical formula (Equation (1.7)). Temporal evolution of intensity and 
refractive index profiles along the pathlength was simulated to be able to compare it 
with experimental results. Additionally, intensity profiles at the output of the medium 
were obtained, these profiles can be more directly compared to profiles obtained in 
experimental studies. Finally we summarize our main contributions of this thesis in 
Chapter 7 and propose potential studies for future work. 

1.6 Published contributions to the field of nonlinear 
propagation of light in photopolymers 

Contributions to the field of nonlinear propagation of light in photopolymers by 
the work performed in this thesis include: (i) systematic experimental study across 10 
orders of magnitude in intensity in a photopolymerisable medium, (ii) observation of 
dynamics of nonlinear propagation in the organosiloxane through spatial and temporal 
monitoring of the beam profile, (iii) experimental confirmation of theoretical predic­
tions in photopolymers including the transition from single moded to multimoded 
guidance of the self-trapped beam, the excitation of high order modes and its correla­
tion with oscillations in beam intensity and width, (iv) identification of three intensity 
regimes in the organosiloxane eliciting novel phenomena: at low intensity self-trapping 
of the beam and excitation of high order modes, at mid-intensities the emergence of 
diffraction rings due to self-phase modulation and at high intensity regimes single ring 
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formation and its filamentation and filamentation of the whole beam, ( v) importance 
of the refractive index profile induced to elicit the different observed phenomena, (vi) 
temporal dynamics of diffraction rings for long pathlength (» Rayleigh range) , (vii) 
effect of beam curvature and pathlength dependence on diffraction ring types and 
dynamics of diffraction ring propagation, respectively, (viii) intensity dependence of 
single-ring formation and its subsequent filamentation, (ix) permanent self-induced 
structures at the different intensity regimes and (x) 2D simulations of nonlinear light 
propagation in the organosiloxane at a wide range of intensities. 

The published work include two peer reviewed articles, one conference proceedings 
and seven conference presentations: 

Peer reviewed articles 

A. B Villafranca and K. Saravanamuttu. An experimental study of the dynamics 
and temporal evolution of Self-Trapped laser beams in a photopolymerisable 
organosiloxane. Journal of Physical Chemistry C, 112(44):17388-17396, 2008. 

A. B. Villafranca and K. Saravanamuttu. Diffraction rings due to spatial self-phase 
modulation in a photopolymerisable medium. Journal of Optics A: Pure and 
Applied Optics 11:125202 (2009). 

Conference proceedings 

A. B. Villafranca and K. Saravanamuttu. Nonlinear forms of laser propagation in 
a photopolymerisable medium. SPIE Proceedings, San Jose, CA, 7213:72130T 
(2009). 

Conference presentations 

A. B. Villafranca and K. Saravanamuttu. Self-action effects of laser propagation 
in a photopolymer. IV Confederation of Mexican Graduate Students and Re­
searchers in Canada Congress. Ottawa, ON, Canada (2009) [Oral presentation] 

A. B. Villafranca and K. Saravanamuttu. Laser-induced self-action phenomena 
in a photopolymerisable medium. 92nd Canadian Chemistry Conference and 
Exhibition-Canadian Society for Chemistry. Hamilton, ON, Canada (2009) 
[Poster presentation] 

A. B. Villafranca and K. Saravanamuttu. Laser-induced self-action phenomena in 
a photopolymerisable medium. Photonics North 2009. Quebec, City, Canada 
(2009) [Poster presentation] 
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A. B. Villafranca and K. Saravanamuttu. Laser-induced nonlinear phenomena in 
a photopolymer. Women in Science and Engineering Initiative 2009 Inter­
national Women's Day Research Conference. Hamilton, Canada (2009) [Oral 
presentation J 

A. B. Villafranca and K. Saravanamuttu. Nonlinear forms of laser propagation in a 
photopolymerisable medium. Photonics West 2009, Symposium on Integrated 
Optoelectronic Devices. Conference on Organic Photonic Materials and Devices 
XI. San Jose CA, USA (2009) [Oral presentation] 

A. B. Villafranca and K. Saravanamuttu. Dynamics of self-trapped beams in a pho­
topolymerisable medium: new opportunities for the design of self-written waveg­
uide components. TEXPO research competition, CMG Microsystems 2007 An­
nual Symposium. Ottawa, Canada (2007) [Poster presentation] 

A. B. Villafranca and K. Saravanamuttu. Spatial self-trapping of coherent light in 
a photochemical system. Photonics North, International Conference on Ap­
plication of Photonic Technology, 2006. Qubec City, Canada (2006) [Poster 
presentation] 
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Chapter 2 

Materials and experimental methods 

2.1 Introduction 
In this Section, we describe the experimental and simulation procedures employed 

for studies of nonlinear light propagation in the organosiloxane photopolymer (Section 
1.1.3). A detailed description of the preparation of the organosiloxane system is 
provided. The optical assembly and techniques used to characterise nonlinear light 
propagation and resulting microstructures in the organosiloxane are presented. We 
also provide numerical simulation procedures of nonlinear propagation of coherent 
light in the organosiloxane using BeamPROP™ and an external subroutine. 

2.2 Preparation of photosensitive organosiloxane 
Organosiloxanes were prepared through acid-catalyzed hydrolysis and condensa­

tion of 3-(trimethoxysilyl) propyl methacrylate (MAPTMS, Gelest , Inc. , PA, USA) . 
1.1 g (5.5 x 10-5 mol) of 0.05 N hydrochloric acid (diluted from a standardized 0.1 
N HCl aqueous solution, Sigma-Aldrich, Canada) was added to 17.6 g (0.0708 mol) 
of MAPTMS. The initially phase-separated mixture homogenized after 5 minutes of 
vigorous stirring to become a transparent colorless fluid. The sol was sensitized to 
visible light by addition of 0.05 wt.% of the free-radical photoinitiator (bis(775 cy­
clopentandienyl) bis(2,6-difiuoro-3-(1H-pyrrol-yl)-phenyl) titanium(IV) (Amax = 393 
nm, 460 nm, Ciba Specialty Chemicals Inc., Canada) [21]. The sol was shielded from 
ambient light, stirred continuously for 6 days and filtered through a polytetrafiuo­
roethylene (PTFE) membrane (0.2 µm pore size, Pall Corporation, USA) prior to 
use. For self-trapping experiments, 1.8 ml of photosensitized sol was injected through 
a small perforation into a 6 mm-long home-made cylindrical cell with optically fiat 
and transparent windows. The home-made cell consisted of microscope cover slips 
(25 x 25 mm) glued onto either side of a 6 mm-long plastic (Delrin) ring with an 
external diameter of 16 mm. The organosiloxane sol was then uniformly irradiated 
through one of the cell windows with white light from a quartz-tungsten-halogen 
lamp (440 sat 0.6 W, Cole-Parmer 09790-series, IL, USA) for approximately 10 min­
utes. In some experiments, a magnetic stir bar was incorporated into the home-made 
cell and illumination with white light was performed while the sol was stirred for 
4 minutes. Gelation of the sol was indicated when the magnetic stir bar stopped 
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rotating. Irradiation caused partial polymerization of methacrylate groups, which in 
turn transformed the sol into a transparent orange gel that did not flow freely. To 
study the effect of pathlength on nonlinear light propagation, cells with pathlengths 
of 0.56, 2, 4, 8 and 10 mm were employed. The duration of irradiation varied for 
samples with different pathlengths and ranged from 2 to 15 minutes. 

2.3 Optical assembly 

Figure 2.1 is a scheme of the optical assembly constructed for self-trapping studies. 
The excitation source was the TE M 00 mode (Gaussian beam M 2 < 1.1) of continuous 
wave, visible (532 nm) light emitted by a diode-pumped solid state laser (Verdi V5 
Coherent, Inc., CA, USA). The output beam had a diameter and power of 2.25 mm 
and 100 mW, respectively. The beam was passed through a A./2 wave plate (Wl) 
and A./4 wave plate (W2) and polarizing beam splitter cubes (Cl and C2), which 
were separated by a absorption filter (F). The wave plate orientations were adjusted 
to obtain the desired intensity for self-trapping studies. The attenuated beam was 
steered by two 45° elliptical mirrors (M) onto a planoconvex lens (Ll, f = 75.6 mm), 
which focused the beam to a diameter of 20 µm onto the entrance window of the cell 
containing the organosiloxane (S). The beam was linearly polarised in they direction. 
The cell was mounted on a custom-made sample-holder, which could be translated 
along the optical axis (z) with a resolution of 0.5 µm. The cross-sectional (x, y) 
intensity profile of the beam at the exit face of the cell was imaged by a pair of 
planoconvex lenses (L2, f = 100 mm and L3, f = 300 mm) onto a high-resolution 
charge-coupled device (CCD) camera (736(H)x 484(V) pixels, pixel size 4.80 µm (H) 
x 5.58 µm (V); LaserCam IIID 1/4", Coherent Inc, CA, USA). The camera was driven 
by the Beam View Analyzer software (Version 3.2), which calculates beam diameter 
(FWHM, 1/e2), relative peak intensity, generates 2 and 3-D intensity profiles and 
compensates for image magnification by lenses L2, L3 (x 2.96). Other pairs of Ll and 
L2 lenses were used to change the magnification at the CCD camera. These include: 
Ll, f= 100 mm and L2, /=75.6 mm with a magnification of 0.74 and Ll, f= 62.9 
mm and L2, f= 75.6 mm with a magnification of 1.20. Combinations of absorption 
filters (F) mounted on three separate rotatable wheels (VARM, Coherent Inc.) were 
placed between imaging lenses L2 and L3 to prevent saturation of the CCD camera. 
All imaging optical components were mounted on carriers that could be translated 
along z with a resolution of 0.25 mm. 

2.3.1 Divergence of laser beam under linear conditions 

Measurements of the divergence of the beam under linear conditions were per­
formed in order to calibrate the optical assembly. The divergence of the beam was 
monitored in air by measuring the beam diameter (1/ e2) at various distances away 
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Figure 2.1: Optical assembly for nonlinear propagation studies in the organosiloxane. 
A 532 nm laser is attenuated with wave plates (Wl and W2) , polarizing cubes (Cl 
and C2) and absorption filters (F) . After reflecting from a mirror (M) , the laser beam 
is focused with a lens (Ll) onto the organosiloxane sample (S) and then imaged at 
the exit face with a couple of planoconvex lenses (Ll and L2) into a CCD camera 
(CCD). 
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Figure 2.2: Laser beam divergence is shown for experimental and calculated values. 
The error lines for the experimental values reflect the standard deviation and for the 
calculated values the result of error propagation analysis. 

from the focal point of the laser beam. The 1/ e2 beam diameter was obtained through 
the effective diameter calculation included in the Beam View Analyzer software. This 
function calculates the diameter of a circle with an area equal to the area of all pixels 
with intensity above 13.53 of the measured beam peak intensity. The experimental 
beam divergence is plotted in Figure 2.2 together with its theoretical counterpart. 

The theoretical calculations of laser beam divergence were performed by using the 
formula for the radius w(z) of a Gaussian beam after certain propagation distance z 
[34]: 

[ 
2] 1/2 

w(z) = w0 1 + ( 7r,\;
5
) (2.1) 

where w0 is the radius of the laser beam at the beam waist and ,\ is the wavelength 
of laser light. We calculated w0 with the approximated formula to obtain the radius 
of a Gaussian beam at the focal point after passing through a positive lens with focal 
length f [34]: 

"-' f ,\ 
Wo=-

1rWz 
(2.2) 

where wz is the radius at the beamwaist of the laser beam before passing through 
the positive lens. We obtained a theoretical radius after the lens of w0=9.9 µm by 
substitution of the experimental values f =7.56 cm, ,\=532 nm and w1=1.29 mm in 
Equation 2.2. The corresponding experimental value w0=10 µm agreed well with the 
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theoretical calculation. However, the experimental and calculated divergence in air 
differs by an average of 22 % (Figure 2.2) , which seems to be a systematic error. 
This error most likely originates from the inaccuracies in measuring the beam radius, 
which is then used to obtain the theoretical beam divergence of the beam. As the 
beam diameter is measured to be 20 µm, but the pixel sizes in the horizontal and 
vertical direction are 4.80 and 5.58 µm, respectively, magnification of the system is 
needed. To do that we magnified the image 2.96 times with the optical imaging lenses 
(L2, f= 100 mm and L3 , f= 300 mm) , obtaining a beam diameter of 59.2 µm. This 
improved our resolution, however further increase in magnification was not possible 
due to constraints with the optical set-up. Another possible source of error could be 
the positioning of the CCD in the z direction, which had a resolution of 0.25 mm. 

2.3.2 Measurements at different intensities 

In order to perform intensity dependent studies, the laser was tuned to the desired 
power and measured between the mirror and lense L 1 in Figure 2 .1. The measurement 
was taken with a power meter from Coherent Inc. consisting of a FieldMaster meter 
and the silicon detector LM-2-VIS , which is able to measure power from 10 n W to 50 
mW in the wavelength range from 0.4 to 1.06 µm. The intensity of the focused beam 
after Ll in Figure 2.1 was calculated by using P/nr2 [34], where r was taken as the 
measured radius at the beam waist of the focused beam by the CCD camera. 

The intensities calculated in our experiments are shown in Table 2.1 with the 
corresponding filters used to attenuate the light before it entered the CCD camera. 
The absorption filters labelled as wl, w2 and w3 correspond to the three filters labelled 
as F in the optical assembly shown in Figure 2.1. 

All experiments were performed with the focused beam at the entrance face of the 
organosiloxane sample except in curvature dependence studies for diffraction rings for 
which the configuration is detailed in Section 4.6. The measurements performed at 
each intensity regime are summarised as follows: 

Low intensity regime: The intensities covered for the low intensity regime include 
3.2x10- 5 W/cm2

, 1.6x10- 4 W/cm2
, 0.003 W/cm2

, 0.008 W/cm2 and 0.016 W/cm2
. 

The focused beam after Ll in the optical assembly of Figure 2.1 was placed at the 
entrance face of the sample for all intensities. The measurements made for all inten­
sities include the temporal monitoring of the output beam at the exit face. For the 
intensity of 0.016 W /cm2

, the propagation of light in the induced waveguide after 
self-trapping experiments was probed under linear conditions using an intensity of 
3.2x10-5 W / cm2 . Preliminary multi beam experiments were performed also at 0.016 
W /cm2 by inserting a mask with a set of 7 circular apertures , before Ll in the optical 
assembly of Figure 2.1. 

Mid-intensity regime: The intensities covered for the mid-intensity regime include 
0.19 W/cm2

, 1.6 W/cm2 and 16 W/cm2
• The focused beam after Ll in the optical 
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Table 2.1: Intensities employed with their corresponding filters 
Intensity Average power Absorption filters 
(W /cm2

) w transmittance wl transmittance w2 transmittance w3 CCD filter (O.D.) 

3.2x10-5 lx10-10 LOO LOO 1.00 0.5 

L6x10-4 5x10-10 LOO 1.00 1.00 0.5 

0.003 lOxl0-9 LOO LOO 0.071 0.5 

0.008 25x10-9 0.001 LOO 0.084 0.5 

0.016 50x10-9 LOO LOO 1.00 3.47(CCD filter) 

0.19 600xl0-9 LOO 1.00 1.00 3.47(CCD filter) 

1.6 5xl0-6 1 0.021 0.06 3.47(CCD filter) 

16 50x10-6 0.001 0.035 0.06 3.47(CCD filter) 

27 85xl0-6 0.01 0.021 0.06 1.3 

40 125xl0-6 0.001 0.035 0.084 L3 

64 200xl0-6 0.010 1.00 0.084 L3 

80 250xl0-6 0.001 0.021 0.084 L3 

95 300x10-6 0.1 0.021 0.06 1.3 

111 350x10-6 0.1 0.035 0.071 L3 

159 500x10-6 0.001 0.035 0.06 3.47(CCD filter) 

1592 5x10-3 0.1 0.021 0.071 3.47(CCD filter) 

12732 40x10-3 0.1 0.06 0.06 3.47(CCD filter) 

assembly of Figure 2.1 was placed at the entrance face of the sample for all intensities. 
The measurements made for all intensities include the temporal monitoring of the 
output beam at the exit face. At an intensity of 1.6 W / cm2

, studies of the input beam 
curvature dependence were performed by placing the entrance face of the sample 2 
mm to the right and to the left of the focal point. A path length dependent study was 
performed also at 1.6 W /cm2 , using samples with thicknesses of 0.56 mm, 2 mm, 4 
mm, 6 mm, 8 mm and 10 mm. In these cases, imaging distances included the imaging 
at the output face and further away. The output intensity patterns of the 0.56 mm 
sample were taken with a Canon PowerShot SDlOOO camera at a distance of~ 30 cm 
from the exit face. The output intensity patterns of the 2 mm sample were imaged 
at 0 mm, 2.5 mm, 10 mm, 13 mm, 18 mm, 19 mm and 20 mm from the exit face. 
For the 4 mm sample, the imaging distance was 0 mm, 2.5 mm and 10 mm from the 
exit face and for the 6mm sample, they were 0 mm, 2.5 mm, 9 mm and 12 mm from 
the exit face. The output intensity patterns of 8 mm and 10 mm samples were only 
imaged at the output face. 

High intensity regime: The intensities covered for the high-intensity regime include 
27 W/cm2

, 40 W/cm2
, 64 W/cm2

, 80 W/cm2
, 95 W/cm2

, 111W/cm2 ,159 W/cm2
, 

1592 W/cm2 and 12732 W/cm2
. The focused beam after 11 in the optical assembly 

of Figure 2.1 was placed at the entrance face of the sample for all intensities. The 
measurements made for all intensities included the temporal monitoring of the output 
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beam at the exit face. Additional measurements for the individual size of filaments 
were performed with the CCD software (Beam View Analyzer) by using the function 
"inclusion". This function can calculate the beam diameter of a selected area of an 
image taken by the CCD camera. 

2.4 Characterisation of self-induced structures in 
organosiloxane 

Characterisation of self-inscribed structures due to nonlinear propagation was car­
ried out through reflection and transmission optical microscopy (Olympus BX51 and 
SteREO Discovery.Vl2, maximum magnification 400x, Carl Zeiss Ltd.). Micrographs 
were acquired by inserting a red filter in the white light path to protect the sam­
ple from further polymerization. Micrographs were acquired with two configurations: 
under transmission, the entrance and exit face of the waveguide were aligned with the 
line of vision and under reflection, the waveguide length was almost perpendicular 
to the line of vision. In this case, micrographs were acquired by placing the sample 
into a rotatable holder with a reflective surface (aluminum foil) underneath and were 
taken at different angles to capture the full length of the structures. 

Self-written waveguides were passively probed by coupling low intensity (3.2 x 10-5 

W /cm2
) 532 nm laser light. After the waveguide was induced, the laser intensity 

was tuned to the lower intensity without displacing the waveguide and images of the 
intensity profiles at the output face were recorded with the CCD camera using the 
same optical assembly in Figure 2.1. Polymerization at these intensities is extremely 
slow, enabling characterization of waveguides under passive conditions. 

2. 5 Numerical simulations 
As detailed in Chapter 1, nonlinear light propagation, specifically self-trapping, 

has been theoretically described in various media using a variety of techniques [117; 
11]. Solutions to the nonlinear Schrodinger (NLS) equation describe the self-trapping 
process in nonlinear media [117]. In photopolymers, the equivalent expression, the 
nonlinear paraxial wave equation has been numerically [35] and semi analytically [63] 
solved. The refractive index change is given by the empirical expression developed 
by Kewitsch and Yariv and given by [20] 

lln(x, y, z, t) = llns { 1 - exp [- ~o 1t-T IE(t) 1
2 
dt]} (2.3) 

where llns is the maximum refractive index change, U0 is the critical exposure re­
quired to initiate polymerization, T is the monomer radical lifetime and E(t) is the 
amplitude of the electric field. 
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In the case of other nonlinear phenomena such as the emergence of diffraction 
rings, modelling has generally included the diffraction patterns for the far field in 
thin optical media using the phase shift of the optical field after passing through it 
and the Fraunhofer approximation of the Fresnel-Kirchhoff diffraction formula [85]. 

We modeled 2D nonlinear propagation of a Gaussian beam in the organosiloxane 
through an iterative process using the beam propagation method (BPM) combined 
with calculation of updated refractive index changes in the medium. The BPM was 
used with the aid of the software package BeamPROP™ (RSoft Design Group, Inc) 
and the refractive index calculations through an external subroutine (Appendix B). 
Specifically, a Gaussian beam was launched in a uniform refractive index medium, its 
propagation under linear conditions was calculated and a map of the resulting elec­
tric field amplitude along the propagation length was obtained. Then using Equation 
(2.3) in the external subroutine, refractive index changes were calculated based on 
the electric field amplitude map and those changes were input in the BeamPROP™ 
software, where the propagation of the Gaussian beam through this modified medium 
was modelled again. This process was iteratively performed over many steps. This ap­
proach is equivalent to nonlinear propagation in the photopolymer because refractive 
index changes are permanent therefore by updating the new changes in refractive in­
dex in the medium, we take into account the nonlinearity of the system. Comparisons 
with results obtained by solving the nonlinear paraxial wave equation showed excel­
lent agreement [63]. The BPM is an approximation of the exact wave equation for 
monochromatic waves. By using a scalar field assumption, the wave equation reduces 
to the Helmholtz equation and by using the slowly varying envelope approximation 
(paraxial approximation) the Helmholtz equation reduces to [118] 

(2.4) 

having 
¢(x, y, z) = u(x, y, z)eikz (2.5) 

where u(x, y, z) is the slowly varying field, k is a constant number that represents 
the average phase variation of the field ¢(x, y, z), k is the wave number and x and 
y are the transverse coordinates and z is the propagation coordinate. We performed 
2-D simulations in BeamPROP™, which is a simplification of Equation (2.4), where 
the y dependence is omitted. This can be justified by the radial symmetry of the 
refractive index changes in the isotropic organosiloxane. 

2.5.1 Simulation procedure 

The steps for nonlinear simulations in the organosiloxane are as follows: 

Step 1: A file with *.ind extension was generated in BeamPROP where a 20 µm 
diameter Gaussian beam with a wavelength of 532 nm was launched in the central 
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Figure 2.3: Step 1 of simulation where a Gaussian beam is launched into a) a block 
of uniform refractive index resulting in b) the 2D propagation of the electric field. 

part of a 2D block (800 µm X 6.00 mm) with uniform refractive index (Figure 2.3a). 
These parameters corresponded to the experimental ones, except in the case of the 
width of the 2D block which was reduced to 800 µm in order to reduce computation 
time. The resulting electric field amplitude map shown in Figure 2.3b corresponded 
to the first step in the simulation. 

Step 2: The electric field amplitude map was exported to the external subroutine 
(Appendix B) as slices of values across the propagation direction z in text format . The 
external subroutine combined all the slices into a map of electric field amplitudes and 
converted it into a map of intensity values. By employing Equation (2.3) for refractive 
index changes in photopolymers in the subroutine, t he intensity map was converted 
into a refractive index map and exported in text format . 

Step 3: A second file with *.ind extension was generated in BeamPROP where 
the refractive index map was imported, having now a 2D block (800 µm X 6.00 
mm) with a refractive index profile as shown in Figure 2.4a. A Gaussian beam, 
with same characteristics as in Step 1, was launched into this new index profile and 
the simulation resulted in a new electric field amplitude map as shown in Figure 
2.4b. After this step, we repeated step 2 cont inuously where each computational step 
represented time, therefore we were able to simulate changes over time in refractive 
index and the resulting propagating optical field. 

The background refractive index in step 1 was set at 1.46 and the maximum refrac­
tive index f::ln 5 in Equation (2.3) used in step 2 was set at 0.006, this approximated 
value is based on previous measurements performed on t hin films of the organosilox­
ane [24]. 
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Figure 2.4: Step 3 of simulation where a Gaussian beam is launched into a) a block 
with a refractive index profile resulting in b) the 2D propagation of the electric field. 

2.5.2 Simulation parameters 

The main variables for numerical simulations can be separated in two groups: 
physical parameters and numerical parameters. Physical parameters correspond to 
those variables related to the physical process of refractive index changes due to 
photopolymerisation in the organosiloxane. These include the maximum refractive 
index change t:ms and critical exposure U0 (Equation (2.3)). Numerical parameters 
are variables that were used to optimize the simulations, these include: grid size and 
slice grid in x and z coordinates and intensity threshold. 

Physical parameters 

Lln8 is the maximum refractive index change possible in the organosiloxane sys­
tems and it is one of the variables in Equation (2.3) which we use in Step 2 to calculate 
refractive index changes at every spatial point. 

Critical exposure (U0 ) value is the exposure needed to induce polymerization as 
indicated in Equation (2.3). In simulations, we employed U0 as a parameter to tune 
the response of the refractive index to intensity through the use of Equation (2.3) 
in the external subroutine. We used this approach because BeamPROP™ software 
does not allow for different input beam intensities. As we detail in Section 6.2, by 
having the physical critical exposure of the system U0 , the refractive index satu­
rates at different times depending on input intensity. However , in simulations with 
BeamPROP™ software, we cannot fix U0 and vary the input intensity, instead we fix 
the input intensity and vary U0 to achieve a similar response in the refractive index 
change which is our primary concern. As the input power is always one and has no 
units in BeamPROP™ software, we did not employ units for the parameter U0 in 
simulations. Another reason for not including units in the parameter U0 is to avoid 
confusion with the physical value of the system. In simulations changing this param­
eter does not mean that we have a new physical system with its particular critical 
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Figure 2.5: Scheme of simulation area in red showing the grid size in BeamPROP™ 
software 

exposure U0 but rather that we have the same system which saturates its refractive 
index at different times depending on the input intensity. 

Numerical parameters 

Grid size is the size of the mesh used to calculate the propagating field in Beam­
PROP. As shown in Figure 2.5 the parameter can be set for both x and z coordinates. 
In order to optimize the grid size, a convergence study was performed by monitoring 
the beam parameters: 1/e width and launch power of the beam along z. The launch 
power is the overlap integral between the calculated field at the current z position 
and the input field for the simulation. The convergence study consists on monitoring 
these parameters under identical launching and sample conditions but with varying 
grid size value. The convergence occurs at a particular grid size value at which the 
parameters do not change for the next lower value for grid size. At this point , even if 
the grid size is decreased, accuracy of the results will not improve but computational 
time will increase. The range of grid size values employed varied from 0.2 to 0.003 
µm for values corresponding to 0.2 µm/ (2N) for N=O, 1, 2, 3, 4, 5, 6. The 1/e width 
and launch power values were monitored for all the calculated N's. A grid size of 
0.05 µm was found to be a compromise between computational time and accuracy in 
results. The variation of 1/ e width and launch power compared to the most stable 
N value was 0.0005 µm (3.6 x 10-4 %) and 0.3 x 10-5 relative units of power (1.07 x 
10-4 3), respectively. 

Slice grid is the size of the mesh used to display results in BeamPROP™ as 
shown in Figure 2.6. This parameter is important because depending on its value, 
the visual resolution of the results can be adjusted. In our case, the slice grid was 
also important because this value determined the resolut ion of the exported electric 
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field amplitude values which determined the resolution of the refractive index map 
calculated and imported in every simulation step. This value was set to 0.4 µm. In 
principle the smaller the value, the better the spatial resolution for the refractive 
index map, however, the external program (see Appendix B) had a limitation on the 
array size corresponding to these values (Nx and Nz in the program). 

Intensity threshold is another parameter that was introduced in the external sub­
routine (Appendix B) as the variable "thresh". This parameter sets an intensity 
filter, resulting in no refractive index changes for those regions where intensity values 
are below "thresh". This parameter helped to simulate cases where refractive index 
changes in outer parts of the optical field (below a certain intensity) were thought to 
be insignificant in real experiments. 
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2.5.3 Simulation example 

Figure 2.7 shows a sequence of simulation steps showing self-trapping. At the 
top, the 2D refractive index profile corresponding to the initial block with uniform 
refractive index (1.46) is shown. In this case a Gaussian beam with 10 µm radius 
was launched into the uniform sample. Step 1 in column (a), shows the resulting 2D 
intensity profile after propagation of the Gaussian beam into the uniform block. We 
observe that the beam diverges as it propagates. Step 1 in column (b) shows the 
resulting 2D refractive index profile calculated by the external subroutine. This was 
done by using the field amplitude values from the intensity profile in Step 1 (column b) 
in Equation (2.3). The index profile is then imported BeamProp™ as the new index 
profile. The Gaussian beam is launched in the new index profile and its propagation 
is calculated. This process continues iteratively obtaining the propagation of the 
Gaussian beam over time. We see over 29 computational steps the narrowing of the 
beam (column a) and the resulting waveguide formation (column b). 

In this particular example U0=500 was employed. By varying this parameter 
in Equation (2.3) in the external subroutine we carried out simulations at different 
intensities. As detailed in Section 6.2 , decreasing U0 was equivalent to increase the 
intensity in our simulations. 
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Figure 2. 7: Sequence of simulation steps showing self-trapping in BeamPROP™. At 
the top , the 2D refractive index profile of the initial block with uniform refractive 
index (1.46) is shown. In a) 2D intensity profiles are shown for U0=500 for selected 
steps and in b) the corresponding 2D refractive index profile are presented. 
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Chapter 3 

Intensity dependence of nonlinear light 
propagation in organosiloxane 

3 .1 Introduction 
The natural diffraction of light can be suppressed in a medium that exhibits photo­

induced changes in refractive index. Under these conditions, a typically Gaussian 
beam becomes entrapped within a self-induced waveguide and propagates without 
broadening over distances » Rayleigh range. Self-trapped beams are expressed as 
solutions of the nonlinear Schrodinger equation, which describes competition between 
the natural diffraction and self-induced refraction of the beam. Optical self-trapping 
has been studied across forty years [117] in materials as varied as Kerr media [10], 
photorefractive crystals [8], photosensitive glasses [35] and photopolymerizable resins 
[39; 20]. The dynamics and temporal evolution of self-trapped beams however are de­
termined by the molecular-origins of refractive index changes in the medium [117; 53]. 
Striking differences exist for example between self-trapping dynamics in the two most 
frequently employed materials, Kerr media and photorefractive crystals. Because 
refractive index changes in the former originate from the third-order susceptibility 
tensor, self-trapping can only be elicited with intense (GW /cm2 to TW /cm2

), short 
(10-15 s) pulses of light. The non-saturable nature of the Kerr response moreover 
renders 2-D self-trapped beams unstable, restricting experiments to planar waveg­
uide (1-D) configurations. While early studies of 1-D self-trapping in Kerr media 
were seminal and provided elegant mathematical solutions [10], more recent research 
examined self-trapping in photorefractive crystals. Here, refractive index changes, 
which typically originate from the electro-optic effect, are saturable [8; 53] . This fa­
cilitates 1-D and 2-D self-trapping at relatively small intensities; entirely new forms 
of self-trapped light [8; 53] including dark [119; 120], spatially incoherent [121], and 
even white light solitons have also been discovered in photorefractive crystals [55]. 

The research presented in this Chapter examines the process of self-trapping in 
an organosiloxane medium, in which refractive index changes originate from a photo­
initiated free-radical polymerisation reaction [24]. This photochemical approach pro­
vides opportunities to examine the dynamics and temporal evolution of self-trapped 
beams, which are entirely different from self-trapping dynamics in nonlinear optical 
(Kerr, photorefractive) materials. This is because of the following fundamental dif­
ferences in the photoresponse between them (see Section 1.1.4): (i) index changes 
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in Kerr media decay immediately upon removal of the light field and in photore­
fracti ve crystals, at timescales determined by the dielectric relaxation time of the 
medium; polymerisation-induced refractive index changes are permanent and more­
over, greater by at least an order of magnitude [24] (ii) polymerization can be initiated 
with a small amount of light-absorbing photoinitiator molecules; beam attenuation is 
therefore negligible. Depending on the wavelength and quantum yield of photoinitia­
tion [19], self-trapping in photopolymers can in principle be achieved at a large range 
of wavelengths and at extremely low optical intensities (W /cm2). Refractive index 
changes in Kerr media by contrast must be induced at intensities of GW /cm2 . (iii) 
the photoresponse time in a polymerizable medium relies on photochemical reactions 
(ranging from ms to minutes) while in Kerr media, it is determined by a virtually 
instantaneous electronic response (10-15 s) and in photorefractive media, depend on 
the dielectric relaxation times, which can vary from ns to minutes. 

Theoretical models based on the nonlinear Schrodinger equation have predicted 
several properties and trends in the behavior of self-trapped beams in polymerizable 
media [39; 20; 35]. These include the formation of multimode waveguides during 
self-trapping, the sequential excitation of high-order optical modes and the com­
plex evolution of the modal composition of the self-induced waveguide as it evolves 
from single-moded to multimoded guidance. However, previous experimental studies 
of self-trapping in polymerizable media have been mainly concerned with channel 
waveguides induced by self-trapped beams, including tapered waveguides in epoxy 
resins [56] and cylindrical fibers in diacrylate and urethane-acrylate resins [57]. Re­
lated studies have also examined beam filamentation at increasing intensities [58; 
57; 59], interactions of self-trapped beams [60; 57] and spectroscopic monitoring of 
waveguide-formation [61]. Potential applications of waveguides as single-mode [66], 
multimode [65] interconnects, fiber interconnects [23; 64] and components of wave­
length division multiplexers [67; 68] have been examined. Complex self-written struc­
tures including replicas of high-order modes on fiber-tips [69], waveguide arrays [70] 
and even artificial compound eyes [72] have also been demonstrated. Collectively, 
the investigations listed above demonstrated that both 1-D [61] and 2-D [20; 60; 58] 
self-trapping could be achieved in polymerisation systems and highlighted potential 
applications of self-written structures. By contrast, the study presented here intends 
to systematically determine the temporal evolution of self-trapped beams and quanti­
tatively characterise their dynamics over a broad range of intensities across 10 orders 
of magnitude (3.2 x 10-5 to 12732 W /cm2

), and compare these observations with ex­
isting theoretical predictions. Two significant features set this study apart: (i) while 
previous experiments characterised self-trapping through the structure and proper­
ties of self-induced waveguides or light scattered along the beam path, we employed 
beam profiling methods to directly visualise and quantitatively measure changes in 
the cross-sectional intensity profiles of the beam; (ii) the excellent spatial resolution in 
the photoresponse of the organosiloxane ( rv 150 nm) [24] enabled quantitative exper­
iments over a broad range of intensities without blurring, a diffusion-caused problem 
that has hampered previous studies based on liquid monomers [20; 58]. 
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The Chapter is organized as follows. Detailed analysis of the observation of high 
order modes during self-trapping at a single intensity 1.6 x 10-2 Wcm-2 is first 
presented in Section 3.2. Trends elucidated from the intensity-dependence of self­
trapping observed and spatial profiles at t he entire range of intensities examined are 
then presented in Section 3.3. A summary of the diverse observed phenomena is 
presented in Section 3.4. 

3.2 Self-trapping dynamics 

3.2.1 Experimental verification 

In a typical experiment, a linearly polarized, Gaussian laser beam at 532 nm 
with an average intensity of 1.6 x 10- 2 W/cm2 was focused onto the entrance face 
of a transparent cuvette containing the photopolymerizable organosiloxane medium. 
Under linear conditions, the beam diffracted in both transverse directions from a focal 
width (1/e2 ) of 20 µm to 118 µm (Figure 3.la) as it propagated 6.00 mm from the 
entrance to the exit face of the medium. By contrast, in an organosiloxane sensitized 
to visible wavelengths with a titanocene photoinitiator (Amax = 393 nm, 460 nm), 
the beam self-trapped and propagated without diffracting by initiating free-radical 
polymerisation of methacrylate groups and corresponding refractive index changes 
(D.n). The organosiloxane, which has a refractive index of 1.47, undergoes a maximum 
change in refractive index of D.ns ,....., 0.006 [24] (See also Chapter 2 for Experimental 
Methods). 

Typical results are presented in Figures 3.l(b-r) and 3.2 , which respectively are the 
2-D spatial intensity profiles of the beam acquired at the exit face and the correspond­
ing temporal plots of peak intensity and effective diameter. The beam self-trapped 
within 3 s, causing a 4.5-fold decrease in beam diameter from 118 µm to 31 µm and 
complementary increase in peak intensity from 0.133 mW/cm2 to 0.46 mW/cm2

. At 
27 s, the beam narrowed further to 18 µm with an intensity of 1.30 mW/cm2

; the 
sharp contrast between t he initially broad and diffracted beam and its subsequently 
self-trapped form is evident in Figure 3. l a and c. The self-trapped beam evolved over 
the next 388 seconds, exhibiting complementary oscillations in peak intensity and 
width (Figure 3.2). Corresponding spatial profiles showed that oscillations were due 
to the onset of high-order optical modes with characteristic spatial intensity profiles 
(Figure 3.lb-r). The modes observed during the evolution of the self-trapped beam 
were identified by comparison with the linearly polarized, high-order optical modes 
of passive cylindrical waveguides (Figure 3.3) which were computed using established 
models [122; 123] . Oscillations and individual modes were difficult to resolve (spa­
tially and temporally) after 160 s. However, the beam remained self-trapped and 
did not revert to its diffracted form; at 415 s, its width was 23 µm (5-fold smaller 

50 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

than the diffracted width). At this stage, there was an abrupt and irreversible de­
crease over the next 6 sin intensity to 0.4 mW/cm2

, which was probably caused by 
polymerisation induced phase separation in the organosiloxane. 

3.2.2 Comparison with theoretical models 

These experimental results do confirm predictions of theoretical models of self­
trapping in polymerizable and equivalent one-photon based systems [20], [35], [124], 
[125], [63]. The theoretical framework summarized here is based on the nonlinear 
Schrodinger equation, which is generally applied to simulate nonlinear light propaga­
tion processes [117], [53]. The propagation of a Gaussian beam (with diameter a» 
>../2, electric field amplitude E) according to the paraxial approximation, 

E(x, y, 0, t) = E0(-(x2 + y2)/a2
) (3.1) 

is given by 

(3.2) 

where a is the attenuation coefficient of the medium at wavelength >.. correspond­
ing to the free space wavenumber, k0 = w/c. The temporal variation of n due to 
polymerisation is given by a phenomenological expression [35], 

BD.n = A(EE*) (1 - D.n) at D.ns 
(3.3) 

where A is a material-dependent parameter and b.n8 , the maximum change of re­
fractive index (at saturation) of the medium. Equation (3.3) reflects the kinetics of 
free-radical polymerisation, where the propagation rate is proportional to intensity 
(EE*) and decays exponentially as the concentration of polymerizable monomers de­
creases (as D.n/ b.n8 --+ 1). This equation is equivalent to Equation (3.5) proposed by 
Kewitsch and coworkers. Equation (3.2) contains terms that describe the counterbal­
ance between natural diffraction (x, y) and self-induced refractive index changes (D.n 
(x, y, z, t)) of the beam. 

Numerical simulations of Equations (3.2) to (3.3) yielded temporal changes in 
the spatial distribution of refractive index and intensity along the propagation path 
( z) of the beam. Calculations of refractive index and intensity based on this same 
theoretical approach are presented in Figures 3.4 and 3.5 (See Chapter 6 for details 
on simulations). 

From these results, the sequence and temporal evolution of the self-trapping pro­
cess was proposed and trends in the modal evolution of the self-induced waveguide, 
identified. Simulations showed that self-trapping begins when the beam induces a 
gradient-index lens at the entrance face of the medium and self-focuses further along 
z as shown in steps 1 to 6 in Figure 3.4. From its new focal point, the beam induces 
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Figure 3.1: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 1.6 x 10-2 

W/cm2
. Profiles were acquired at (b) 3 s (c) 27 s (d) 30 s (e) 32 s (f) 35 s (g) 41 s 

(h) 47 s (i) 55 s (j) 57 s (k) 61 s (1) 116 s (m) 123 s (n) 129 s (o) 134 s (p) 141 s (q) 
156 s and (r) 163 s. 2-D profile of the beam acquired under linear conditions (a) is 
included for comparison. Mode labels follow standard optical fiber nomenclature. 
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Figure 3.2: Temporal plots of peak intensity (solid-blue) and effective diameter 
(dotted-red) during self-trapping of a Gaussian visible (532 nm) laser beam at 1.6 
x 10- 2 W /cm2 in the organosiloxane medium. Termination of self-trapping is indi­
cated by a vertical dotted line at 415 s. The inset contains the time-period (0 s -
170 s) corresponding to the onset of higher order modes. Times corresponding to 2-D 
spatial intensity profiles of the beam (Figure 3.1) are marked by dotted lines. 

53 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

10 

-10 

- 10 10 - 10 0 10 

Horizontal Direction (µIn) Ho<tzomal D~K11on (µm) 

1 .0 

-10 10 -10 10 a.a 
Hortzonl8' Direction (µm) Hortzont• Olr«tkxl (µIn) 

Figure 3.3: Beam propagation simulations of linearly polarized modes in an optical 
fiber performed with BeamPROP™ software. Modes were calculated for an optical 
fiber with diameter = 20 µm and a Gaussian refractive index profile maximising at 
1.479 at the axis and a cladding refractive index of 1.470. These values are com­
parable to the minimum and maximum values of refractive index changes in the 
photopolymerizable organosiloxane medium employed in studies of self-trapping. 
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Figure 3.4: 2D Simulat ion results in Beamprop showing the refractive index profiles of 
a propagating Gaussian beam with U0 = 50. The propagation coordinate is indicated 
with z and the transverse coordinate is x 
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Figure 3.5: 2D Simulation results in Beamprop showing the intensity profiles of a 
propagating Gaussian beam with U0 = 50. The propagation coordinate is indicated 
with z and the transverse coordinate is x 
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a gradient-index channel waveguide along its propagation path. The waveguide traps 
and guides the beam without diffracting to the exit face as observed in step 20 in 
Figure 3.5. Once self-trapped, the beam continues to increase the refractive index of 
its waveguide (steps 30 to 50 in Figure 3.4), which concomitantly develops multiple 
intensity maxima along z as observed in the intensity profiles of Figure 3.6. These 
maxima were attributed to the interference - beating - between high-order modes that 
become excited as the refractive index of the waveguide increases. Because refractive 
index changes are not uniform along z, the position and number of intensity maxima 
(and thus the modal composition) vary along the waveguide in a non-trivial way as 
can be seen in Figure 3.6, which shows the simulated transversal profiles at various 
points along z. 

There is good agreement between the simulated sequence of self-trapping and 
the experimental observations presented in Figures 3.1 and 3.2. The decrease in 
width and increase in intensity observed within the first 30 seconds signifies self­
focusing and subsequent self-trapping of the beam in its channel waveguide [20]. 
An optical micrograph acquired at this point confirmed that a cylindrical waveguide 
with a diameter of rv 40 JLm had been inscribed along z (Figure 3.7a). Under linear 
conditions, the waveguide exhibited single-mode guidance (532 nm) with an output 
width (1/e2

) of 14.2 µm (Figure 3.7b). 

Based on this, the average refractive index change (D.n) of the waveguide was 
approximated by using the condition for monomode operation of a waveguide with a 
gradient refractive index profile for the normalized frequency (V) [122; 126; 123] 

- 21Ta V 2 2 V - Tn 1 - n 2 < 3.58 (3.4) 

where a is the radius of the waveguide, which in our case was taken as 20 µm, 
based on Figure 3. 7a. n 1 is the maximum refractive index at the core and n 2 the 
minimum refractive index at the cladding. The average refractive index change of the 
waveguide was calculated to be < 7.8 x 10-5, which is 2 orders of magnitude smaller 
than the refractive index change at saturation in the organosiloxane (D.n 8 ~ 0.006) 
[24]. The self-trapped beam could therefore continue to raise the refractive index 
of its own waveguide over time, which in turn led to the sequential excitation of 
high-order optical modes. That the self-trapped beam evolves in this way is in itself 
different from the behavior of 2-D self-trapped beams in photorefractive media. D.n 8 

in photorefractive crystals is small ( ~ 10-4 ) [117] and the system generally saturates 
upon self-trapping; because no further change in refractive index is possible, the self­
trapped beam remains stable in intensity and width. 

During self-trapping in the organosiloxane, three different high-order modes ap­
peared in sequence and were individually observed at the exit face (Figure 3.1). 
Briefly, at 27 s, the fundamental LP01 mode (Figure 3.lc) was succeeded at 35 s 
by the next-order mode LPn (Figure 3. lf) followed by the LP02 and LP21 modes, 
which appeared at 4 7 s and 134 s, respectively (Figures 3. lh, and 3. lo). Superpo-
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Figure 3.6: Simulated intensity profiles at different z values along the propagation 
axis corresponding to initial beam and two oscillations for step 50 of a propagating 
Gaussian beam with U0 = 50. The relative intensity is shown on a logarithmic scale 
for clarity. Intensity peaks are shown in bold. 
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Figure 3.7: (a) Transmission optical micrograph of the self-written waveguide in the 
organosiloxane during self-trapping at 1.6 x 10-2 W /cm2 (average power 50 n W); the 
inset is a micrograph of its transverse (x , y) cross-section. (b) 2-D intensity profile 
at the output (z = 6.0 mm) of the waveguide guiding light at 532 nm under passive 
conditions; the output is Gaussian with diameter (1/e2

) = 14.2 µm. Micrographs 
were acquired through a red filter to prevent polymerization during measurement. 

sitions of high-order modes , including a fourth high-order mode LP03 with the LP01 

mode were also observed (Figures 3.le, 3.li, 3.lj, 3.lm, 3.ln). Comparisons with 
computed profiles shown in Figure 3.3 demonstrated that they corresponded to the 
linearly-polarised modes characteristic of cylindrical waveguides such as optical fibers 
[122; 126; 123]. This is consistent with the cylindrical waveguides induced by self­
trapped beams (Figures 3.7 and 3.9). In numerical simulations, the excitation of 
high-order modes was also confirmed through intensity profiles along z as seen in 
Figure 3.6 and by plotting the intensity profiles at the output of the medium over 
time as shown in Figure 3.8. In these simulations, the profile along z does not remain 
Gaussian, instead the beam presents multiple lobes which can be attributed to su­
perposition of optical modes. Unlike previous simulations where multiple modes were 
inferred only from the emergence of intensity maxima along the propagation axis (z) 
of the waveguide and corresponding calculations of modal propagation constants [63], 
our simulations also revealed the transversal intensity profile. Results from current 
experiments not only confirm the onset of high-order modes but also enable direct 
visualization of their spatial intensity profiles in the near-field and in situ monitoring 
of their evolution within the waveguide. 

Numerical simulations (Figures 3.4, 3.5 , 3.6 and 3.8) based on Equations (3.1) to 
(3.3) , show that multiple high-order modes propagate within the same self-written 
channel waveguide. The simulations also show that the spatial variations in refractive 
index occur at smaller rates and are consequently less pronounced than corresponding 
variations in optical intensity (Figures 3.4 and 3.5). The self-induced waveguide 
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can therefore host high-order modes with non-Gaussian intensity profiles, even while 
retaining its cylindrical geometry. In fact, the same property has enabled self-trapping 
of incoherent white light , which is composed of a randomly and rapidly fluctuating 
distribution of optical modes, to collectively propagate within a single self-induced 
waveguide in the organosiloxane [27; 127]. 

To further confirm experimentally that the multiple modes were all excited within 
the same cylindrical waveguide, optical micrographs were acquired after excitation of 
LPn and separately, at longer times after excitation of LP21 (Figures 3.9b and 3.9e). 
Both revealed a single cylindrical waveguide: the waveguide formed after excitation 
of LPn had an overall diameter of 72 µm while that formed after the onset of LP21 

was 10-fold wider with an overall diameter of 240 µm. Both guided light (532 nm) 
under passive conditions; guidance was strongly confined to the core with effective 
output-diameters of 32 µm and 30 µm, respectively (Figures 3.9c and 3.9f). This is 
consistent with theoretical simulations, which showed that self-induced waveguides 
possess a gradient refractive index profile and are thus able to efficiently confine light 
within their core-regions (Figure 3.4). 

3.2.3 Oscillations of the self-trapped beam 

Numerical simulations of Equations (3.1) to (3.3) have predicted that a self­
trapped beam in a polymerizable medium would always exhibit oscillatory behavior, 
due to the evolving modal structure of the self-induced waveguide and the consequent 
changes in its intensity distribution. (The same changes can be followed in simulations 
presented in Figures 3.5 and 3.8). Such theoretical predictions are understandable 
because interference between two even modes in a channel waveguide generates in­
tensity maxima positioned at intervals along z with a periodicity of 2n / l.81 - ,82 I, 
where /31 and /32 are the respective propagation constants of the modes [63]. Such 
maxima would be periodically positioned in a waveguide with a uniform refractive 
index profile. The refractive index of a self-induced waveguide however varies signifi­
cantly along z; as a result, both the number of modes and the propagation constant 
of each individual mode vary along z, which is further confirmed through Wentzel­
Kramers-Brillouin analysis [63]. Intensity maxima due to mode-beating are therefore 
positioned aperiodically along z. In a passive waveguide, such maxima would remain 
stationary. However, due to the continually changing refractive index profile of the 
self-induced waveguide, these maxima change position, appearing to translate along 
z over time. At a constant observation point along z, the apparent translation of 
maxima would lead to aperiodic oscillations of the overall intensity and width of the 
self-trapped beam. 

Such oscillations of intensity and width were indeed observed in the current study, 
experimentally and numerically, where the self-trapped beam was monitored over time 
at a constant point along z at its exit face (Figure 3.10 and 3.8). These results gave 
further insight into the modal evolution of the self-induced waveguide that were not 
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Figure 3.9: Characterisation of self-written waveguides after the onset of higher order 
modes during self-trapping at 1.0 x 10-2 W / cm2

. (b) Transmission optical micrograph 
of self-written cylindrical channel waveguide after the onset of (a) LP11 . (c) Intensity 
profile of waveguide output (z = 6.0 mm) under passive conditions; output diameter 
(1/e2

) = 37.8 µm. (e) Cross-sectional micrograph of self-written waveguide after onset 
of (d) LP21 . (f) Intensity profile of waveguide output (z = 6.0 mm) under passive 
conditions; output diameter (1/e2

) = 36.0 µm. Micrographs were acquired through a 
red filter to prevent polymerization during measurement. The scale bar in (b) applies 
to all images. 
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evident in previous theoretical simulations. For example, previous theoretical models 
considered the excitation of only one high-order mode [63]. 

Furthermore, the excitation of the second mode was inferred by its interference 
with the first and consequent intensity variations along z; the spatial intensity profiles 
corresponding to individual modes were not obtained. By contrast, the experimental 
results obtained in this study enabled the direct visualisation of each of the high­
order modes, identifying up to five discrete modes and moreover confirming that 
they corresponded to optical fibre modes (Figure 3.1). It was therefore possible, as 
described below, to identify the exact sequence of optical modes that corresponded 
to each oscillation of the beam and in this way, observe the evolution of the modal 
composition at the waveguide at its output. To our knowledge, there are no previous 
examples of direct monitoring of the evolution of a cylindrical waveguide from single­
mode to multimode guidance. 

The oscillatory dynamics of the self-trapped beam varied with input intensity. 
Because the rate of refractive index change decreased with average intensity, there 

63 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

was a corresponding decrease in both the number of modes and the rate at which 
the modal composition of the self-written waveguide changed (see Figures 3.15 and 
Figures 3.16 to 3.19). While oscillations of the self-trapped beam at 1.6x10- 2 W /cm2 

were rapid and irregular (Figure 3.2) , they could be better resolved by carrying out 
self-trapping at a lower intensity, 3.2 x 10-3 W /cm2

, where the rate ofrefractive index 
changes (and t hus rate of self-trapping) is significantly lower. 

As observed in Figure 3. lOa, the crest of an oscillation corresponded to the bright­
est and narrowest mode, LP01 , and the valley, to the highest mode in the sequence. 
Superposed modes fell between the valleys and crests. Briefly, the first 5 oscillations 
showed alternation between modes LP01 and LP11 ; once LP21 was excited at 67 s; 
the next 4 oscillations each consisted of the sequence: LP01 , LP21 , LP11 , LP01 . Tran­
sitions between the pure modes were superpositions of the two: for e.g., superposition 
LP11 + LP01 appeared at 83 s during the transition from LP01 to LP01 while LP21 

+ LP11 appeared at 115 s between LP21 and LP11 . Numerical simulations shown in 
Figure 3.8 corresponding to intensity profiles at the output of the medium also show 
an oscillatory behavior. High-order modes are present most of the time as seen in the 
individual profiles from steps 36 to 44. However, when the overall intensity is small, 
only a single high-order mode is present as seen in steps 38 and 39. When the overall 
intensity is large either a superposition of modes or LP02 is observed as seen in steps 
36 and 42, here side lobes are much smaller in intensity. This could be the reason 
why in experimental observations only the fundamental mode is observed (Figures 
3. lc, g, 1 and q). A plot of the experimental duration of each oscillation against time 
showed the theoretically predicted aperiodicity of oscillations and its general increase 
over time (Figure 3. lOb). The latter can be attributed to the decrease in the rate of 
refractive index changes, which decreases the rate of change of modal composition and 
thus the oscillations of the self-trapped beam. Although the sequence of excitation of 
high-order modes over time corresponds to the sequence supported by optical fibers 
with increasing indices of refraction, their specific order of appearance, recurrence and 
superpositions cannot be fully explained by the existing theoretical models. Further 
theoretical modeling, which takes into account changes to the intensity distribution in 
3-D is necessary to fully rationalize the specific sequence of appearance of high-order 
modes. 

3.3 Intensity dependence 

3.3.1 Importance of photoinduced refractive index profile 

The previous Sections described self-trapping of the beam with an incident in­
tensity of 1.6 x 10- 2 W /cm2

. We then examined nonlinear laser propagation in the 
organosiloxane at three intensity regimes that spanned 10 orders of magnitude (Fig-
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Figure 3.11: Range of intensities (left column) and corresponding average powers 
(right column) for self-trapping experiments covering 10 orders of magnitude in in­
tensity. 

ure 3.11): low (3.2 x 10-5 , 1.6 x 10-4
, 3.2 x 10-3 , 8.0 x 10-3 , 1.6 x 10-2 W /cm2), mid 

(0.19, 1.6, 16 W /cm2) and high (159, 1592, 12732 W /cm2
); the beam was Gaussian 

and linearly polarized with a width (1/e2 ) of 20 µmat all intensities. 

Results showed that the dynamics of self-trapping were strongly dependent on 
intensity. Significantly, they also revealed the existence of other nonlinear phenomena 
including diffraction rings, single ring formation and filamentation at the mid and high 
intensity regimes. 

The importance of the refractive index profile originates from the expression for 
polymerization-induced refractive index change [20], 

b.n(x, y, z, t) = b.ns { 1 - exp [- ~o lt-r IE(t)l
2 
dt]} (3.5) 

where b.n8 is the maximum refractive index change, U0 is the critical exposure re­
quired to initiate polymerization, T is the monomer radical lifetime and IE ( t) I 2 is the 
square of the electric field amplitude or intensity (I) of the incident optical field and 
t is time. 

By plotting Equation (3.5) (Figure 3.12a), we observe that the refractive index 
change increases with light exposure, until saturation, where it maximises (b.n8 ). 

According to Equation (3.5), b.n8 can be achieved with high and low intensity beams 
at relatively short and long times, respectively. 
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Figure 3.12: Plots of Equation (3.5) (a) Refractive index change as a function of 
radiant exposure, where U0 = critical exposure required for photoinitiation and Esat 
= radiant exposure required to achieve f::ln 5 = refractive index change at saturation. 
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intensity beams. Relative positions of Esat and U0 are indicated. Induced refractive 
index profiles are filled in dark grey. 
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Schemes of refractive index profiles induced by Gaussian beams of low, mid and 
high intensities are presented in Figure 3.12b. After irradiation for the same period of 
time, the index induced by the low intensity beam (h) remains Gaussian maximising 
at a value < !:l.ns below saturation point. At mid-intensity (IM) the index profile 
remains Gaussian although its maximum is closer to !:l.n 8 • At high intensity (IH), 
the index profile is no longer Gaussian. Here the intensity of the beam is sufficient 
to induce !:l.n 8 over a large area of the beam (and not only at its axis). This leads to 
a top-hat or flattened Gaussian profile of the refractive index. 

3.3.2 Quantitative trends 

Results at each intensity are presented as temporal plots of beam diameter and 
peak intensity monitored at the exit face of the medium; most significant changes 
in the corresponding 2-D spatial intensity profiles are presented in Section 3.3.3. To 
quantitatively compare self-trapping dynamics in the different intensity regimes, tem­
poral plots were analysed in terms of 3 selected parameters (a) self-focusing time, (b) 
self-trapped beam width and (c) transmittance (Iz=6.0mm/Iz=O.Omm * 100%). Each 
value was averaged over at least three repeat experiments at each intensity; corre­
sponding values of standard deviation are provided (Figures 3.13 and 3.14). 

3.3.2.1 Self-focusing time 

The self-focusing time was defined as the time taken by the diffracted beam (at t 
= 0 s) to first exhibit significant narrowing. In each temporal plot of self-trapping, 
this corresponded to the initial steep decrease in width and complementary increase 
in peak intensity as can be seen in Figure 3.2. 

The plot of self-focusing time against initial intensity is approximately parabolic 
(Figure 3.13a). In the low intensity regime, self-focusing time varied inversely with 
intensity, decreasing from 200 ± 90 s to 11 ± 3 s as the initial intensity of the beam 
was increased from 3.2 x 10-5 W / cm2 to 8.0 x 10-3 W / cm2. From this minimum, it 
increased to 21 ± 9 s to 140 ± 30 sin the mid-intensity regime and more significantly 
to 1300 ± 500 s at 1592 W /cm2 before decreasing to 300 ± 200 s at the greatest 
intensity of 12732 W /cm2

• 

To self-focus, the beam must induce refractive index changes in the form of its 
own Gaussian profile at the entrance face of the medium. Figure 3.12b depicts how 
such lenses are induced at intensities in the low, mid and high-intensity regimes. The 
strongest lens would possess the steepest gradient, with the maximum possible re­
fractive index (!:l.n 8 ) localized to the axial region with a radially symmetric decay 
from this point. In the low-intensity regime, long times (t » T ) are necessary to 
achieve !:l.ns even at the (most intense) axial region of the beam. Because I and t 
vary inversely (until !:l.ns is reached), the time required to induce a lens with the 
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strongest gradient also varies inversely with intensity within the low-intensity regime, 
leading in turn to the inverse relationship between self-focusing time and intensity 
(Figure 3.13a). The trend is reversed in the mid and high-intensity regimes, where 
increasingly larger cross-sections of the beam simultaneously achieve saturation; D..n 8 

is therefore delocalized over a larger area. Lenses are wider and weaker with smaller 
numerical apertures that collect and focus light less efficiently ; self-focusing conse­
quently requires increasingly longer times. 

3.3.2.2 Self-trapped diameter 

The plot of self-trapped beam width (Figure 3.13b) follows the same trend as the 
intensity-dependence of self-focusing time (Figure 3.13a) and is consistent with the 
mechanism proposed in Figure 3.12. The self-trapped beam width decreased from 
31 ± 4 µm to a minimum of 12 ± 3 µm as the intensity was increased from 3.2 
x 10-5 W /cm2 to 8.0 x 10-3 W /cm2

; this corresponded to a 4.0±0.5 to 11±3-fold 
decrease in diameter relative to the diffracted beam. In the low intensity regime, 
lenses with steeper index gradients and thus larger numerical apertures are induced 
at increasing average intensity leading to more efficient suppression of diffraction and 
better confinement of light. As observed in Figure 3.13b, this trend was reversed in 
the mid and high-intensity regimes. Here, the index gradient weakens with increasing 
intensity; light diffraction is less efficiently suppressed leading in turn to an increase in 
the self-trapped beam width. Accordingly, in the mid-intensity regime (0.19 W /cm2 

to 16.00 W /cm2
), there was a general increase in the self-trapped beam width, which 

ranged from 18.0±0.6 µm to 25±3 µm. In the high intensity regime, the self-trapped 
beam width was 70±40 µm at 1592 W / cm2 and effectively no decrease in width was 
observed at the greatest intensity of 12732 W / cm2 (The anomalous increase in self­
trapped beam width to 200±50 µm at 159.0 W /cm2 is associated with the beam 
filamentation as detailed in Section 3.3.3.4). 

3. 3. 2. 3 Transmittance 

The efficiency of light confinement and guidance of a passive channel waveguide 
depends on the magnitude and spatial profile of its core refractive index; transmit­
tance is greater in a waveguide with a gradient index relative to a uniform (step) 
index profiles [123]. The greater rate of self-focusing and smaller self-trapped widths 
observed in the low intensity regime (Figure 3.13) were attributed to steeper index 
gradients. It follows that the absolute amount of light that is transmitted through, 
the waveguide (Iz=6.0mm/Iz=O.Omm * 100%, the percentage of intensity transmitted at 
Iz=6.omm) should also be enhanced during self-trapping in the low intensity regime. 
This was confirmed in Figure 3.14, which is a plot of transmittance versus initial 
intensity of the beam. There was an initial increase in transmittance in the low in-
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Figure 3.14: Plot of the maximum transmitted intensity at self-trapping versus initial 
average intensity of the beam. The low, mid and high-intensity regimes are marked 
with dotted lines. Error bar = 1 x O". 

tensity regime followed by an overall decrease. The maximum transmittance of 56 ± 
18 3 occurred during self-trapping at 0.008 W /cm2

; which was the intensity at which 
the most rapid self-focusing and smallest self-trapped diameter were observed. 

3.3.2.4 Reproducibility 

In the discussion above, each point constituting plots in Figures 3.13 and 3.14 
was an average taken from at least thrice-repeated experiments. It is important to 
note that the self-trapping process in each repeat experiment was identical (that 
is, spatial and temporal variations of the beam followed identical trends). When 
quantitatively analysed, these trends were remarkably reproducible at the low and 
mid-intensity regimes, particularly in terms of self-trapped beam width. However, the 
standard deviation was in general large for measurements made in the high intensity 
regime. Free-radical polymerization is an exothermic process, which due to increased 
rates at high intensities may lead to convection currents and inhomogeneities in the 
medium that contribute to variations between experiments, which were conducted 
under ambient conditions. However, it is equally important to note that detailed 
quantitative analyses of self-trapping have not previously been carried out. The 
results presented here both provide insight into the mechanism of self-trapping and 
also a quantitative evaluation of its reproducibility 
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3.3.3 Spatial beam profiles: high order modes, spatial diffraction rings, 
single ring formation and filamentation 

As shown in Section 3.3.1, the refractive index profile induced in the organosilox­
ane varies with input intensity as a result of the D.n saturation. This ultimately leads 
to the observation of different phenomena. 

2-D spatial intensity profiles acquired during self-trapping at different intensities 
showed striking differences in the behavior of beams within each intensity regime. 
2-D profiles are shown in the following Sections; representative profiles are presented 
in Figure 3.28. 

3.3.3.1 Low intensity regime: high order modes 

In the low-intensity regime, self-trapping at all intensities followed the theoreti­
cally predicted sequence of self-focusing, waveguide formation and excitation of high­
order modes (Figures 3.13.16, 3.17, 3.18, 3.19), this last one accompanied with oscil­
lations of the beam (Figure 3.15) . The principal difference was the absolute number 
of high-order modes excited in the waveguide. Because the rate of refractive index 
change decreases with decreasing intensity (Equation (3.5)), waveguides induced at 
smaller intensities have smaller values of refractive index change and can therefore 
support fewer modes [123]. For example, only three modes (LP01 , LPn and LP21 ) 

were identified at the three lowest intensities (3.2 x 10-5 , 1.6 x 10-4 and 3.2 x 10-3 

W/cm2
) whereas five modes (LP01 , LPn, LP21 , LP02 and LP03 ) were evident during 

self-trapping at 8.0 x 10-3 and 1.6 x 10-2 W /cm2 • 

3. 3. 3. 2 Mid-intensity regime: diffraction rings 

The resolution of high-order modes was not possible during self-trapping in the 
mid-intensity regime. Here, refractive index changes occurred at greater rates and 
the entire self-trapping process was completed within a significantly reduced period 
of time. (For example, the average duration of self-trapping * was 703 s at the low 
intensity of 1.6 x 10-2 W / cm2 whereas it was only 184 s at the mid intensity of 16 
W /cm2

). As a result, the self-induced waveguide rapidly achieves saturation and is 
rendered multimoded at early times, as observed at the output during self-trapping 
at 0.19 Wcm2 (Figure 3.20e). 

At very long times ( ~ 500 s), there was a re-emergence of a single peak (Figure 
3.20i) that sustained its profile until 605 s; in the corresponding temporal plot (Figure 
3.2la), this was indicated by an increase in peak intensity and corresponding decrease 
beam width at 486 s. The new peak was positioned at a distance of 163 µm, 45° to 

*The duration of self-trapping was defined as the time over which the beam remained significantly 
narrower (at least >;::::j 1.5 fold) and more intense than its diffracted form. 
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Figure 3.15: Graphs of temporal evolution of peak intensity (solid blue line) and effec­
tive beam diameter , 1 / e2 (dotted red line) collected at the exit face of the organosilox­
ane corresponding to the low intensity regime: a) 3.2 x 10- 5 W/cm2 (power 0.1 nW) , 
b)l.6 x 10-4 W /cm2 (power 0.5 nW) , c) 3.2 x 10-3 W /cm2 (power 10 nW) and d) 
8.0 x 10- 3 W/cm2 (power 25 nW). 
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3.2 x 1 o-s W cm-2 I (0.1 nW) 

Figure 3.16: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 3.2 x 10- 5 

W/cm2 (average power 0.1 nW). Profiles were acquired at (a) 642 s (b) 671 s (c) 676 
s (d) 680 s (e) 720 s (f) 1343 s (g) 1358 s (h) 1381 s (i) 1443 s (j) 1498 s (k) 1531 
s and (1) 1552 s. For clarity, each 2D profile has been normalized to the maximum 
intensity value. 
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1.6 x 1 o-4 W cm-2 I (0.5nW) 

Figure 3.17: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 1.6 x 10-4 

W/cm2 (average power 0.5 nW). Profiles were acquired at (a) 202 s (b) 214 s (c) 217 
s (d) 219 s (e) 242 s (f) 587 s (g) 596 s (h) 600 s (i) 607 s (j) 613 s (k) 618 s and 
(1) 632 s. For clarity, each 2D profile has been normalized to the maximum intensity 
value. 
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3.2 x 1 o-3 w cm-2 I (1 OnW) 

Figure 3.18: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 3.2 x 10-3 

W/cm2 (average power 10 nW). Profiles were acquired at (a) 105 s (b) 110 s (c) 113 
s (d) 114 s (e) 115 s (f) 116 s (g) 119 s (h) 128 s (i) 1297 s (j) 132 s (k) 133 s (1) 134 
s (m) 135 s (n) 136 sand (o) 138 s. For clarity, each 2D profile has been normalized 
to the maximum intensity value. 75 
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Figure 3.19: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 8.0 x 10-3 

W/cm2 (average power 25 nW). Profiles were acquired at (a) 19 s (b) 21 s (c) 22 s 
(d) 23 s (e) 24 s (f) 28 s (g) 74 s (h) 86 s (i) 88 s (j) 93 s (k) 95 s (1) 119 s (m) 121 
s (n) 126 s and (o) 134 s. For clarity, each 2D profile has been normalized to the 
maximum intensity value. 

76 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

the left of the original beam (at t = 0 s). This secondary self-trapping process is 
probably due to light that had leaked from the (step-index) self-written waveguide 
and commenced a new self-trapping process in a different (and unpolymerized) region 
of the medium. 

An entirely different phenomenon was observed at 1.6 W /cm2 the next intensity 
of the mid-intensity regime; spatial profiles in Figure 3.22 showed the emergence of 
an increasing number of concentric rings around the beam in the first 14 s. The beam 
developed a single ring at 4 s (Figure 3.22b) and up to 6 rings were observed in the 
next 10 s (Figure 3.22h). At 53 s, the beam self-focused and at 160 s (Figure 3.22k) 
appeared tightly self-trapped with a Gaussian profile and diameter (1/e2) of 20 µm. 
The beam remained self-trapped until 219 s, after which it gradually decreased in 
intensity and increased in width. 

These concentric rings have been observed during the propagation of Gaussian 
beams in other nonlinear optical systems including photorefractive crystals and Kerr 
media as reviewed in Section 1.3.4 and have been considered both as self-diffracting 
effects due to spatial self-phase modulation and as dispersive (rather than dissipative) 
spatial shock waves that bear analogy to shock waves in superfluids [80]. Both cases 
consider the propagation of a Gaussian beam in a photoresponsive medium (as defined 
by Equations (3.1) to (3.3)) and relate to the mechanisms that give rise to self­
trapping. The formation of diffraction rings constitute a fundamentally different 
class of nonlinear phenomena, originating from spatial-self-phase modulation which 
merit separate study and will be further discussed in Chapter 4. 

The last intensity investigated in this range, 16 W/cm2 , showed no evidence of 
diffraction rings (Figure 3.23, only an initial expansion of the beam at 2 s (Figure 
3.23b). Instead, the beam self-trapped within the next 126 s (Figure 3.23h), retained 
a tightly focused Gaussian profile until 199s (Figure 3.23j), after which it gradually 
broadened and weakened in intensity. 

3. 3. 3. 3 High intensity regime: single ring formation and filamentation 

Plots of temporal evolution of beam intensity and width (Figure 3.24) in this 
regime showed very different behavior compared to the low and mid-intensity regimes. 
Neither sharp increases in peak intensity nor sudden decreases in whole beam width 
were observed in the high intensity regime. 

3.3.3.4 Single-ring filamentation 

At transition intensities between mid and high intensity regimes the beam did 
not develop multiple diffraction rings or further narrowing of its width, instead we 
observed the emergence of a single-ring followed by its filamentation. Figure 3.25 
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0.19 W cm-2 I (600nW) 

Figure 3.20: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 0.19 W /cm2 

(average power 600 nW). Profiles were acquired at (a) 2 s (b) 3 s (c) 6 s (d) 18 s (e) 
31 s (f) 57 s (g) 124 s (h) 143 s and (i) 492 s. For clarity, each 2D profile has been 
normalized to the maximum intensity value. 
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Figure 3.21: Graphs of temporal evolution of peak intensity (solid blue line) and effec­
t ive beam diameter , 1/ e2 (dotted red line) collected at the exit face of t he organosilox­
ane corresponding to the mid-intensity regime a) 0.19 W/cm2 (power 600 nW), b)l.6 
W /cm2 (power 5 µW) and c) 16 W /cm2 (power 50 µW). 
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Figure 3.22: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 1.6 W /cm2 

(average power 5 µW) in the mid-intensity regime. Profiles were acquired at (a) 1 
(b) 4 s (c) 6 s (d) 8 s (e) 9 s (f) 10 s (g) 11 s (h) 14 s (i) 53 s (j) 101 s (k) 160 s (1) 304 
s. For clarity, each 2D profile has been normalized to the maximum intensity value. 

80 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics - -- 2010 

16 W cm-2 I (SOµW) 

Figure 3.23: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 16 W /cm2 

(average power 50 µW) . Profiles were acquired at (a) 1 s (b) 2 s (c) 19 s (d) 31 s (e) 
55 s (f) 85 s (g) 99 s (h) 126 s (i) 128 s (j) 199 s (k) 255 s (1) 347 s (m) 420 s (n) 767 
s and ( o) 2045 s. For clarity, each 2D profile has been normalized to the maximum 
intensity value. 
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Figure 3.24: Graphs of temporal evolution of peak intensity (solid blue line) and effec­
tive beam diameter ,1/e2 (dotted red line) collected at the exit face of the organosilox­
ane corresponding to the high intensity regime: a) 159 W /cm2 (average power 500 
µW), b) 1592 W/cm2 (average power 5 mW) and c) 12732 W/cm2 (average power 
40 mW). 
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shows the sequence of 2-D spatial intensity profiles at 159 W /cm2
, where the beam 

developed a single-ring with local intensity maxima (Figure 3.25c) that at 325 s 
(Figure 3.25f) fl.lamented into seven nodes. By 1016 s (Figure 3.25h), the beam had 
self-divided further into multiple intensity maxima. The corresponding temporal plots 
of peak intensity and beam width in Figure 3.24a, show a broad peak in intensity 
at around 800s, that occurred later compared to the fast rising and narrow peak 
intensity in the mid-intensity regime. The broad peak corresponds to the increase 
in intensity during filament formation but no self-trapping of the whole beam was 
observed. 

The phenomenon of single-ring formation accompanied with fl.lamentation has 
been observed in Kerr media for input Super-Gaussian (SG) beams as reviewed in 
Section 1.4.3. In the case of the organosiloxane, the saturation of the refractive index 
induces a flattened Gaussian index profile (similar to SG beams), which gives rise to 
the single-ring observed in our experiments. In Section 3.3.1 we will discuss in more 
detail the role of the saturation of the refractive index profile and in Chapter 5 we will 
further investigate the origin of single-ring formation and its fl.lamentation dynamics 
over a range of intensities. 

3. 3. 3. 5 Whole beam filamentation 

At the greatest intensities, including 1592 W / cm2 and 12732 W / cm2 we observed 
splitting and filamentation of the whole beam 

At 1592 W /cm2 , the beam divided into two segments which later self-trapped 
at different times (Figure 3.26). In the corresponding temporal plot (Figure 3.24b ), 
the self-trapping of each segment was observed as two distinct regions of increasing 
intensity and decreasing width. No individual self-trapped beams were observed at 
4607 s (Figure 3.26h), by which point the beam had developed multiple intensity 
maxima. 

At the greatest intensity of 12732 W /cm2 , the beam was observed to filament due 
to rapid variations (Figure 3.27), possibly originating from thermal convection in the 
organosiloxane. At 218 s, the beam split in two parts (Figure 3.27e) and subsequently 
into four parts at 413 s (Figure 3.27h) until it developed multiple filaments at 1476 
s (Figure 3.27k). Temporal plots of intensity and beam diameter in Figure 3.24c 
showed only an initial increase in intensity in the first 200 s, followed by a steady 
value in intensity and beam width (only small fluctuations) over the next 1400 s. The 
initial increase in intensity is probably due to an increase in refractive index over the 
whole area of the beam. 

Filamentation of the beam occurs through a mechanism similar to modulation 
instability and spontaneous division of uniform beams in polymerizable media (see 
Section 1.4). In the high-intensity regime, the induced refractive index gradient is 
not sufficient to collectively self-trap the entire Gaussian beam (see Sections 3.3.1 
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159 W cm-2 I (500µW) 

Figure 3.25: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6. 00 mm) during self-trapping in the organosiloxane at 159 W /cm2 

(average power 500 µW) in the high intensity regime. Profiles were acquired at (a) 
1 s (b) 3 s (c) 19 s (d) 43 s (e) 108 s (f) 325 s (g) 798 sand (h) 1016 s . For clarity, 
each 2D profile has been normalized to the maximum intensity value. 
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Figure 3.26: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 1592 W /cm2 

(average power 5 mW) in the high intensity regime. Profiles were acquired at (a) 1 
s (b) 233 s (c) 444 s (d) 2285 s (e) 2558 s (f) 2814 s (g) 3614 s and (h) 4607 s . For 
clarity, each 2D profile has been normalized to the maximum intensity value. 
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and 3.3.2). However , noise imposed on the optical beam - such as minor variations in 
refractive index of the medium or beam intensity - become amplified under nonlin­
ear conditions and ultimately disintegrate into individual self-trapped filaments. At 
159 W /cm2 , intensity variations within the single-ring at 43 s, seeded fragmentation 
(Figure 3.25d). At the greater intensities of 1592 W /cm2 and 12732 W /cm2

, the 
sequence of fragmentation was random and probably relies on random fluctuations in 
intensity and/or refractive index. These findings are consistent with previous obser­
vations of the spontaneous disintegration of a beam into multiple filaments and the 
self-inscription of multiple self-written waveguides [58; 59]. 

3.4 Conclusions 
In this Chapter, we provided a comprehensive overview of the nonlinear propaga­

tion of a continuous-wave Gaussian laser beam in a medium undergoing photopoly­
merization over 10 order of magnitude in intensity. Figure 3.28 presents a summary of 
the different observed phenomena at different intensities. These results confirmed and 
provided new insight into key predictions of theoretical models developed in the past 
decade, such as the excitation of high-order optical modes of the self-trapped beam 
and concomitant self-inducement of a multimode waveguide. Most significantly, these 
experiments provided an extremely rare opportunity to directly observe the excitation 
of individual higher order modes during the evolution of a cylindrical waveguide from 
single-mode to multimode guidance. Trends in the oscillatory behavior of the modes 
during this process were consistent with simulations performed and those predicted by 
theory. Quantitative analyses of self-trapping at a broad range of intensities revealed 
the significance of the gradient of photo-induced refractive index changes, showing 
that self-trapping was most efficient in the low-intensity regime where the steepest 
gradients are induced. While beam filamentation dominated at extremely high in­
tensities , new forms of nonlinear propagation in photopolymerizable media including 
spatial diffraction rings and single ring formation were observed in the mid-intensity 
regime and close to the high intensity regime, respectively. Chapter 4 will present the 
study of the dynamics of diffraction rings in the organosiloxane and Chapter 5 will 
provide a detailed study of single ring formation. 
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Figure 3.27: Temporal variations of 2-D spatial intensity profiles of the beam at the 
exit face (z = 6.00 mm) during self-trapping in the organosiloxane at 12732 W /cm2 

(average power 40 mW). Profiles were acquired at (a) 20 s (b) 65 s (c) 147 s (d) 160 
s (e) 218 s (f) 254 s (g) 255 s (h) 413 s (i) 767 s (j) 1022 s (k) 1476 s (1) 2046 s. For 
clarity, each 2D profile has been normalized to the maximum intensity value. 
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Figure 3.28: Representation of the four different forms of nonlinear light propagation 
in the photopolymerizable organosiloxane in the three intensity regimes. The low 
intensity regime is characterised by the modal evolution of the self-trapped beam 
while self-diffraction rings and beam filamentation occur in the mid and high-intensity 
regimes, respectively. Between these two intensity regimes single ring formation with 
further filamentation occurs. 
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Chapter 4 

Diffraction rings by spatial self-phase 
modulation 

4.1 Introduction 
Nonlinear propagation of a continuous wave visible laser in the organosiloxane was 

studied at a range of intensities spanning 10 orders of magnitude. In this Chapter, 
the mid-intensity regime with intensities ranging from 1.6 to 16 W /cm2 is further 
explored. This intensity regime revealed the emergence of diffraction rings due to 
spatial self-phase modulation in the organosiloxane. To our knowledge this is the first 
example of spatial self-phase modulation (Section 1.3) originating from laser initiated 
free-radical polymerisation and corresponding changes in the refractive index of the 
medium. However, this study focuses on the differences in the photoresponse of the 
organosiloxane relative to other nonlinear optical materials and the opportunities 
that they provide to probe previously inaccessible properties and dynamics of the 
self-induced diffraction rings. 

Specifically, the noninstantaneous response of the organosiloxane enabled diffrac­
tion rings to propagate through long distances (» Rayleigh length (zR)) in the 
medium without disruption from optical self-focusing. It was moreover possible to 
monitor the temporal evolution of the rings for different organosiloxane pathlenghts 
and thereby, gain direct insight into the dynamics of self-phase modulation. Vari­
ation in the input beam gave insight into new types of propagations and resulting 
intensity profiles for photopolymers. Furthermore, refractive index changes due to 
polymerisation were permanent and provided a direct view of the conical trajectory 
of the diffraction rings through the medium. 

As we have shown in previous studies, photoinduced changes in the refractive 
index of organosiloxane originate from a chemical reaction, namely photoinitiated 
free-radical polymerization of methacrylate substituents [27; 106; 21; 24; 25]. This 
contrasts with nonlinear media previously employed to study self-phase modulation, 
in which index changes arise from high-order dielectric susceptibilities as in the cases 
of atomic vapours [5; 87; 86; 77], Kerr media [75; 83] and photorefractive crystals 
[80], the Freedericksz transition as in the case of nematic liquid crystals [6; 78; 82] or 
are thermally induced [73; 74; 4; 76] (Section 1.3). Fundamental differences therefore 
exist between these photophysical mechanisms and the photochemical response of 
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organosiloxane (Section 1.3.4). For example, in contrast to the virtually instantaneous 
photoresponse of Kerr media and atomic vapours , the rate of refractive index changes 
caused by photopolymerization is slow, spanning milliseconds to seconds [27; 106; 21]. 

Under these conditions, we find that self-phase modulation is not disrupted by 
simultaneous self-focusing of the beam, which enables diffraction rings to propagate 
over long distances(» Rayleigh range (zR)) within the medium. This contrasts with 
the majority of studies of self-phase modulation, which had to be carried out in thin 
samples (with pathlengths < zR) in order to prevent simultaneous self-focusing of the 
beam. Another exception is the recent observation of diffraction rings that propagate 
over long distances due to a self-defocusing nonlinearity in a photorefractive crystal 
[80]. The slow photoresponse of the organosiloxane also enables the temporal evolu­
tion of diffraction rings to be monitored in situ and in this way, provides insight into 
the dynamics of the self-phase modulation process. Furthermore, because photopoly­
merisation is an irreversible chemical reaction, index changes induced by the beam 
are permanently imprinted in the organosiloxane [21]. The resulting microstructures 
induced by the diffraction rings therefore do not decay in the absence of the optical 
field and provide an unambiguous view of their trajectory through the medium. 

Moreover, through a study of the effect of beam curvature (R) we found the 
propagation of two types of rings , rings with a dark central spot could be induced 
by a convergent beam (R < 0) while rings with a bright central spot were induced 
by a divergent beam (R > 0). Detailed analyses of the statistics of diffraction rings 
induced at 1.6 W /cm2 at different beam curvatures and propagation pathlengths 
were also carried out. Different types of diffraction rings elicited at R = oo including 
rings with high-order modes and fingerprint rings were also identified. Through a 
pathlenght dependence study we found the different diffraction ring dynamics through 
the organosiloxane. 

4.2 Self-phase modulation due to laser initiated free­
radical polymerization 

In Chapter 3 we demonstrated that the kinetics of photopolymerisation and con­
sequently, the spatial and temporal evolution of refractive index changes strongly 
influence the type of nonlinear phenomenon that can be elicited in the organosilox­
ane. When the rate of polymerisation was controlled by varying the incident optical 
intensity across 10 orders of magnitude (3.2 x 10-5 W /cm2 to 12732 W /cm2), a c.w. 
532 nm beam propagating in a photopolymerisable organosiloxane exhibited three 
distinct forms of behaviour. Optical self-trapping including the sequential excitation 
of high order modes in the self-trapped beam dominated the low intensity-regime 
(3.2 x 10- 5 W /cm2 to 0.16 W /cm2

) whereas single ring formation and filamenta­
tion of the beam due to modulation instability occurred in the high intensity-regime 
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(159 W /cm2 to 12732 W /cm2
). The diffraction rings described in this Chapter were 

elicited selectively in the mid-intensity regime (1.6 W/cm2 to 16 W/cm2 ) [21]. 

Preparation of the organosiloxane and the optical assembly employed in the cur­
rent study have been described in detail in Sections 2.2 and 2.3 respectively. Briefly, 
the medium consisted of a sol of organosiloxane oligomers with photopolymerizable 
methacrylate substituents, which was sensitized to visible wavelengths (>.max = 393, 
460 nm) through addition of 0.05 wt% of a titanocene free-radical photoinitiator. 
The sol was contained in a cylindrical cell ( d = 12 mm, pathlength = 6 mm) with 
optically fl.at, transparent windows. Samples were partially polymerized and trans­
formed into gels through uniform illumination with white light from an incandescent 
quartz-tungsten-halogen lamp. Diffraction rings were induced by a linearly polarized, 
continuous wave 532 nm beam that was focused to a diameter (1/ e2 ) of 20 µm onto 
the entrance face of the organosiloxane gel. The spatial intensity profile of the beam 
at the exit face was imaged onto a charge-coupled device camera and monitored over 
time. Using an approximate value of 1.47 for the refractive index of the medium [24], 
ZR and optical path length (OPL) of the beam were calculated to 0.87 mm and 8.82 
mm, respectively. 

Figure 4.1 contains the spatial intensity profile of diffraction rings observed at the 
exit face of the organosiloxane medium. The rings were induced at an input laser 
intensity of 1.6 W /cm2 ; under these conditions a maximum of 13 rings were observed 
after 37 s. Diffraction rings in the organosiloxane originate from spatial self-phase 
modulation, the theory of which was initially described by Dabby and coworkers [7 4] 
and developed by Durbin [6], Le Berre [81], Santamato [82], Deng [85] and coworkers 
(For details see Section 1.3). 

Self-phase modulation in the organosiloxane originates as follows: initially, the 
optical field intensity and therefore, the photoinduced refractive index change are 
greatest at the entrance face. Due to the excellent spatial resolution in the pho­
toresponse of the organosiloxane ("-'150 nm) [25], the spatial profile of this index 
change closely corresponds to that of the 20 µm-wide Gaussian beam (as previously 
confirmed through beam propagation simulations) [21]. The modified index profile 
imposes a transverse phase shift over the entire beam expressed as 

27r lzo+d 
b.'lf;(r) = T b.n(r, z)dz 

zo 
(4.1) 

where b.n(r, z) is the induced change in refractive index at a specific point in space, 
>. is the wavelength of the optical field in free-space, z0 represents the entrance face 
along the propagation axis (z) and d is the propagation distance along which the 
beam acquires a transverse phase shift [6]. b.n(r, z) in the organosiloxane is given by 
the empirical formula derived by Kewitsch and Yariv [20] 
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Figure 4.1: Intensity profile of diffraction rings at the exit face of the organosiloxane 
induced with an input laser intensity of 1.6 W / cm2

. 
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~n(x, y, z, t) = ~ns { 1 - exp [- ~o 1t-T IE(t)i
2 
dt]} (4.2) 

where ~ns is the maximum refractive index change, U0 is the critical exposure re­
quired to initiate polymerization, T is the monomer radical lifetime and E(t) is the 
amplitude of the electric field. In Equation ( 4.2), an input Gaussian beam can induce 
a refractive index change with the same profile due to the intensity dependence of 
~n(r, z). The resulting transversal phase shift profile in the organosiloxane is given 
by substitution of Equation (4.2) in Equation (4.1) 

27f rzo+d { [ 1 r-T l } ~'lf;(r) = ~ }zo ~ns 1- exp - Uo Jo IE(r, z, t)l
2 

dt dz (4.3) 

here the integrand with respect to z corresponds to the refractive index change in the 
photopolymer. According to Equation (4.3), for an input Gaussian beam, the profile 
of the phase shift ~'lf;(r) must correspond to the Gaussian profile of the refractive in­
dex change ~n for intensities below saturation of the refractive index. Radiation from 
any two points (r1 , r 2) along ~'t/;(r) that have the same slope, and thereby the same 
wavevector, kj_ = (d~'lf;(r)/dr), suffer interference when ~'lf;(r1 ) - ~'lf;(r2 ) = m7r. 
Constructive or destructive interference occurs when m is, respectively, an even or 
odd integer with multiple rings forming when the maximum phase shift ~'I/Jo > 27r. As 
the refractive index increases in the organosiloxane, the maximum value of ~'lf;(r) in­
creases and more points having the same wavevector are available to interfere, creating 
an increasing number of rings. Interference coupled with the cylindrically symmetric 
profile of ~'lf;(r) produces an array of interference cones, which when projected onto 
a plane at z » ZR are observed as bright and dark concentric diffraction rings (Fig­
ure 4.1). The outermost ring originates from radiation with the greatest kj_ about 
the inflection point, ( d~ 'If; ( r) / dr )max, and is therefore initially the most intense [ 6] 
(Figures 4.2 (a)-(e)). 

4.3 Propagation of diffraction rings over long dis­
tances (>> zR) 

The diffraction rings presented in Figure 4.1 were observed at the exit face of the 
organosiloxane after an optical pathlength (OPL) of 8.82 mm. This contrasts sharply 
with most previous studies where self-phase modulation could be induced only in thin 
samples and diffraction rings, observed in the far field after propagation through air 
[7 4; 4; 76; 6]. In these cases, samples of thickness < ZR were employed in order to 
suppress simultaneous self-focusing of the beam that would otherwise disrupt self­
phase modulation. This problem is entirely avoided in the organosiloxane due to its 
noninstantaneous response [21], which delays the onset of self-focusing and enables the 

93 



PhD Thesis --- Ana 8 . Villafranca --- McMaster University - Engineering Physics --- 2010 

a 

::i 
~ 300 
~ 200 
~ 100 

-~ o~~~~-~~~ -200 -100 0 100 200 300 

c 

e 

:'.) 

<i 150 
;: 100 
-~ 50 

[µm] 

~ o~~_,..,..~~~~--=-='-

g 

:'.) 

<i 200 

~100 
c: 
2 
.= -~00-200 -100 0 100 200 300 

[µm] 

b 

::i 
~200 
~100 
c: 

~ 0
-300-200-100 0 100 200 300 

[µm] 

d 

.....,. 
:'.) 

<( 
-200 
-~ 100 
c: 

~ ~300-200-100 0 100 200 300 
[µm] 

f 

::i 
~200 

~ 100 
c: 
2 0 L-~..l:ll.!::.__.--!!!l.IL:......_-.....1 
.= -200-100 0 100 200 300 

[µml 

h 

::i 
<( 1000 

~ 500 
c: 

~ -~00-200-100 0 100 200 300 
[µm] 

Figure 4.2: Temporal evolution of diffraction ring formation at an intensity of 1.6 
W / cm2 in the organosiloxane with OP L = 8.82 mm. 2-D and 1-D spatial int ensity 
profiles of t he beam are shown. For clarity, each 2-D profile has been normalized to 
the maximum intensity value. 
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Figure 4.3: Photograph of diffraction rings elicited in a thin sample (0.56 mm thick) 
with OPL = 0.82 mm at 1.6 W /cm2 projected onto a screen in the far field. 

period of self-phase modulation ( ~40 s) to be clearly distinguished from subsequent 
self-focusing of the beam (Figures 4.2 (a)-(g)). The appearance of diffraction rings at 
OPL » ZR within the organosiloxane medium itself can be explained as follows: at 
early times , the refractive index change and consequent phase shift acquired by the 
beam is greatest near the entrance face (OPL < ZR)· We assume that the beam is 
affected only by refractive index changes at OPL < ZR and that index changes beyond 
this region are negligible during the period in which diffraction rings are observed ( rv 

40 s). The interference cones originating from this region therefore diverge linearly 
through the rest of the medium and are projected as rings on the exit plane (OPL = 

8.82) , which under linear conditions falls in the far field. 

To further test t he assumption that most of the contribution towards self-phase 
modulation occurs at OPL < ZR in the organosiloxane, the experiment was repeated 
after replacing the sample with OPL = 8.82 mm with one of OPL = 0.82 mm ('"'"' zR). 
The spatial intensity profile at the exit face of this sample was projected through air 
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and onto a plane that was positioned at a distance of 46 mm in the far field. An 
increasing number of diffraction rings emerged over time with > 13 rings observed at 
200 s (Figure 4.3). That a similar maximum in the number of rings was observed in 
both samples indicates that index changes occurring in the thin sample with OPL = 

0.82 mm are sufficient to induce a phase shift that is comparable to the one induced 
in the sample with OPL = 8.82 mm. This is consistent with the assumption that 
self-phase modulation of the beam occurs within < ZR even in the sample with the 
much longer pathlength. That self-phase modulation is elicited by refractive index 
changes confined to a narrow region near the entrance face was also postulated in 
the treatment of nonlinear light propagation in Na vapour [81]. The observation 
of the conical microstructure in the organosiloxane as well as the emergence of a 
comparable number of diffraction rings in samples with OPL < ZR and » ZR now 
provide conclusive evidence for this mechanism. 

4.4 Temporal evolution of diffraction rings 
In most materials employed in previous studies, diffraction rings due to self-phase 

modulation formed virtually instantaneously and could only be observed in steady 
state. The emergence of rings in the organosiloxane however could be traced over time 
(Figure 4.2). This is a direct consequence of the noninstantaneous photoresponse of 
the medium [27; 106]. The index change due to polymerization at a particular point 
in time ( t) and space as expressed by Equation ( 4. 2) is determined by polymerisation 
kinetics and it occurs on the order of ms ands. Self-phase modulation therefore takes 
place on this same timescale and leads to the relatively slow evolution of diffraction 
rings observed in Figure 4.2: the beam initially diverges from its width of 20 µmat the 
entrance face to 185 µm at the exit face (Fig 4.2a). Within the next 4 s, the beam 
develops a single bright ring (Fig. 4.2b) indicating that .6.n0 (and therefore .6.1f;0 ) 

induced during this time is sufficient to induce a maximum phase shift of at least 27r, 
leading to constructive interference of radiation propagating from the regions about 
the inflection point, (d.6. 'lj; /dr)max· As .6.n0 becomes even larger, an increasing number 
of bright concentric rings due to constructive interference appear in rapid succession 
(Fig. 4.2 d-g). The number of diffraction rings (N) observed is proportional to the 
maximum phase shift at a given point in time, as approximated through [6] 

N ~ .6.1/Jo 
27r 

( 4.4) 

The temporal plot in Figure 4.4a shows the change in the number of diffraction rings 
over time, which in turn reflects the temporal variation in the maximum phase shift 
and maximum refractive index change in the organosiloxane (Figure 4.4b). Only 1 ring 
was experimentally observed in the first 5 s after which there was a rapid increase to 
6 rings in the next 10 s. The number of rings observed then increased more gradually 
over the next 20 s to a maximum of 13 rings. The trend observed in Figure 4.4a is 
consistent with the rate of refractive index change .6.n(r) in the medium as shown 
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in Figure 4.4b, which being directly proportional to !l'ljJ(r), determines the kinetics 
of self-phase modulation (Equation (4.1)). The gradual saturation of N reflects the 
exponential decay of !ln(r) due to saturation of polymerisation over time (Figure 
4.4b). 

Figure 4.5a is a temporal plot of the diameter (D) of the outermost ring, which 
is related to its half-angle /3 in the following way 

/3 = arctan(D/2z) (4.5) 

where z is the distance from the origin of the interference cones to the plane onto 
which they are projected. Equation ( 4.5) assumes that rings propagate linearly after 
the most significant changes in refractive index had occurred giving rise to self-phase 
modulation. For the values of diameter of the outermost ring in Figure 4.5a and any 
value between ZR and 6mm for z, the arctan function remains linear. Therefore the 
linear increase observed in D corresponds to a linear increase in half-angle (/3). Then 
/3 can be related to the maximum wavevector k1- = (d!l'ljJ/dr)max through [6] 

(4.6) 

Based on Equations (4.6) and (4.5) for the half angle (/3), the linear increase of 
the diameter of the outermost ring in Figure 4.5a indicates a linear increase over time 
in the slope about the inflection point of the phase-shift curve, (d!l'ljJ(r)/dr)max' and 
thereby the slope of the induced refractive index profile, (d!l n(r)/dr)max· This is 
illustrated in the scheme of Figure 4.5b, where the transverse phase change has been 
plotted for induced Gaussian phase shift profiles with increasing central maximum, 
assuming that Ll'lj;(r) = /l'lj;0exp(-2r2 /a2), where /l'lj;0 is the maximum phase shift, 
and a is a constant [6] .Here the phase shift profiles with greater Ll't/Jo present the 
steeper slopes in the inflexion point or ( d!l n ( r) I dr) max. Therefore, the linear increase 
over time of (dtl'ljJ(r )/dr )max gives an indication that the shape of the refractive index 
profile induced increases in its maximum value and steepens overtime. 

The latter is characteristic of media that undergo intensity-dependent changes of 
refractive index (e.g. Equation (4.3)). Here, the index profile induced by a Gaussian 
beam undergoes the greatest rate of change in the most intense, axial region. The 
resulting steepening of the gradient about the inflection point of the !ln(r) curve 
causes a corresponding strengthening of the Ll'lj;(r) curve and in turn, an increase in 
/3 over time. 

At later stages, the central regions of the diffraction rings acquire more intensity 
due to the onset of self-focusing and self-trapping of the beam (Figure 4.2 (f) and 
(g)). After approximately 100 s, self-focusing is the only dominant process and is 
evidenced by a significant increase in intensity and complementary narrowing of the 
beam (Figure 4.2 h) [Chapter 3]. Based on the maximum number of diffraction rings 
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Figure 4.4: (a) Variation of the number (N) of diffraction rings observed at the exit 
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. The number of open circles grouped together indicates the 
number of seconds over which there was no change in number of rings. In (b) a plot of 
the refractive index change versus exposure time is shown corresponding to Equation 
( 4.2) 
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observed prior to self-focusing (N = 13) and assuming that significant refractive index 
changes occur only in regions within ZR, the maximum .6.n0 achieved immediately 
prior to the onset of self-focusing was calculated to be 0.008, which is close to the 
maximum change in refr active index (.6.n 8 = 0.006) induced in organosiloxane films 
[24]. This indicates that once saturation of the refractive index is achieved in regions 
within ZR , index changes beyond this region become significant enough to counter the 
natural diffraction of the beam, enabling it to self-focus. 

4.5 Intensity dependence of self-phase modulation 
As mentioned earlier, self-phase modulation in the organosiloxane could be in­

duced only within a relatively narrow range of intensities (1.6 W /cm2 to 16 W /cm2
) . 

We previously found that the profile of .6.n( r) varies significantly with intensity and 
in turn, determines the type of nonlinear event that is elicited in the medium. In the 
high intensity regime (2'.: 159 W /cm2

), the refractive index rapidly saturates over a 
large transverse area of the beam; the Gaussian profile in the .6.n( r) curve required for 
self-phase modulation cannot be achieved and the beam suffers filamentation (Chap­
ter 3 and [21]) . By contrast, index changes induced in the low intensity regime (~ 
0.16 W /cm2

) are insufficient to impose phase shifts > 27r and diffraction rings cannot 
be elicited under these conditions. Instead the beam self-focuses and self-traps over a 
time-scale of ::::::; 30 s due to refractive index changes along its propagation axis. The 
average .6.n required for self-trapping can be estimated by calculating the refractive 
index of a single-mode, 48 µm-wide , gradient-index cylindrical waveguide at 532 nm. 
The resulting value of 1.3 x 10-5 is at least an order of magnitude smaller than the 
index change of::::::; 6 x 10-4 required to generate 1 diffraction ring through self-phase 
modulation. Collectively, the observations at the high and low intensity regimes sug­
gest that a balance is struck in the mid intensity regime (1.6 W /cm2-16 W /cm2

) 

within which both the magnitude and profile of the induced refractive index satisfy 
the conditions required for self-phase modulation. Moreover, this .6.n(r) profile is 
induced within a timescale (::::::; 4 s) at which index changes in regions > ZR - and 
therefore self-trapping - can be considered negligible. 

4.6 Curvature dependence 
In the experiments described in the previous Sections, diffraction rings were in­

duced by a Gaussian beam with its waist incident at the entrance face of the sample. 
The radius of curvature of the beam in this plane is therefore oo. In this Section, we 
show that entirely different types of rings can be induced by varying the curvature of 
the beam that is incident on the sample. 

Previous studies have shown that the wavefront curvature (R) of the incident laser 
beam influence resulting patterns of diffraction rings (Section 1.3.3) . For example, 
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experimental studies on liquid crystal films showed that diffraction rings with a bright 
central spot were induced in the far-field by a divergent beam (R > 0) whereas rings 
with a dark central spot were induced by a convergent beam (R < 0) [82]. The latter 
has also been observed in defocusing media due to thermally induced refractive index 
changes, such as chromophore-doped liquids when R > 0 (84]. 

Experiments of the dependence of wavefront curvature have until now only been 
performed in thin samples (pathlengths < zR) where diffraction rings were observed 
in the far-field. As detailed in the following Sections, we have carried out detailed 
studies including statistics of the effect of beam curvature in the induced diffraction 
rings and the temporal evolution and dynamics of diffraction rings propagating over 
long distances (z ~ zR) in the organosiloxane. 

4.6.1 Experimental configuration 

Figure 4.6 is a scheme of the experimental configuration for experiments of curva­
ture dependence. The intensity at the beam waist was 1.6 W /cm2 (5 µW of average 
power) and its diameter (2w0 ), 20 µm. The beam was launched in a sample with a 
pathlength of 6 mm (OPL=8.82 mm). The entrance face of the sample was placed 
to the left (2 mm) of the beamwaist for a negative input wavefront curvature, R < 0, 
(Figure 4.6b) and to the right (2 mm) of the beamwaist for a positive curvature, 
R > 0 (Figure 4.6c). The error in positioning the sample was approximately± 0.25 
mm. Further details of the experimental configuration are provided in Section 2.3. 

4.6.2 Effect of R < 0 and R > 0 in organosiloxane 

The mechanism of self-phase modulation as expressed by Equation ( 4.1) does not 
take into account the transverse phase shift originating from wavefront curvature. In 
order to do so, the complex amplitude of a TEM00 Gaussian beam launched at the 
entrance of the sample must be considered (85] 

( 
r

2
) ( ik0n 0r

2
) E(r, zo) = E(O, z0 ) exp - w2 exp -

2
R (4.7) 

where k0 and n0 are the wavenumber and refractive index in free-space, respectively, 
r is the radial coordinate, z0 is the position of the entrance face of the medium and 
R is the radius of wavefront curvature. Then the total transverse phase shift induced 
by the beam at a distance d from the input plane of the medium becomes [85] 

'!f;(r) = konor
2 

+ b.'!f;(r) 
2R 

Substituting Equation (4.1) for D.'!f;(r) [85], 
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Figure 4.6: Scheme of a) the beamwaist and regions of positive and negative curva­
tures (R) and examples of configurations for b) convergent (R < 0) and c) divergent 
(R > 0) beams incident on the input face of a sample. The beam propagates in the 
positive z direction. 

kn r2 l zo+d 
'lj; (r) = 

0 ~ + lln(r, z)dz 
2 zo 

( 4.9) 

where the first and second terms correspond to the contribut ions of the curvature (R) 
and the change in refractive index, respectively, to the total transverse phase shift. 
The resulting diffraction ring patterns will depend on the sign of the product of the 
first and second terms of Equation (4.8) [85]. 

As shown below, diffraction rings with a dark centre are induced when R<O 
whereas rings with a bright centre are obtained when R>O. 

The first term in Equation ( 4.8) is the contribution of wavefront curvature to 
the phase shift. For the contribution from changes in refractive index we assume a 
Gaussian shape using[6] 

(4.10) 

where a is the beam radius. Because the organosiloxane is a self-focusing medium 
that undergoes positive changes in refractive index, ll'lj; (r) > 0. The sum of both 
contributions, gives the total phase shift which is different for positive and negative 
curvatures (Figure 4. 7). 

The variation of the total phase shift at different positive and negat ive curvatures 
can be seen in Figure 4.8a and 4.8b, respectively. The greater the value of IRI , 
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the smaller the difference in total phase shift profile relative to that when R = oo. 
The slope of the total phase shift curves at a particular point r corresponds to the 
perpendicular wave vector "'..L = d/j,,'i/J / dr. The curves corresponding to the derivative 
of the total phase shift for a positive (R=+2200 µm) and a negative curvature (R=-
2200 µm) are shown in Figure 4.9. Whenever the same value of wave vector (or 
slope) exists for two points in r, based on /j,, 'i/J (r1 ) - /j,, 'i/J (r2 ) = mJr, constructive (m 
even) or destructive (m odd) interference can take place. For example, the dotted 
line in Figure 4.9, shows that two r points and three r points share the slope value 
of 0.4, for positive and negative curvatures, respectively. Clearly interference occurs 
in both cases and interference occurs mainly between the two r points where most 
of the energy concentrates. Analyzing only half of the profile, since it is symmetric 
along r = 0, for the negative curvature, the values of slope that are not shared by 
two points in r are around zero, this is indicated by a red circle in Figure 4.9. This 
means that around those values no interference occurs. These values correspond to 
the slopes of the central part of the beam and points nearby, therefore this explains 
the dark zones formed at the center surrounded by rings for negative curvatures. For 
a positive curvature, values of slope of zero and around this value are hold by two 
points in r, which is marked with the blue crosses in Figure 4.9. This could explain 
the observation of a bright spot in the center of the rings for positive curvatures. This 
is consistent with the patterns predicted by Deng and coworkers [85] where rings with 
a dark central spot are observed for R < 0 and rings with a bright central spot are 
observed for R > 0 in a self-focusing medium. 

Figure 4.10 shows the total phase shift for positive and negative curvatures for 
IRl=2200 µm with varying /j,,n. 

To do that , we varied /j,, 'i/J0 in Equation (4.10) from 27r to lOJr. The shape of the 
total induced phase shift remains the same but an increase in the maximum phase 
shift is observed for both positive and negative curvatures as the /j,,n contribution 
is increased. When plotting the derivatives of the total phase shifts in Figure 4.11 , 
we see that an increase in the absolute value of the slope occurs when increasing the 
/j,,n contribution for both positive and negative curvatures. As expected from theory, 
the greater the refractive index change, the greater the maximum phase shift and the 
more slope values exist that are shared by two r points. Therefore more wavefronts 
can interfere and a greater number of diffraction rings can be induced. 

4.6.3 Statistics of results for R < 0 and R > 0 

Figure 4.12 shows the 2D and lD intensity profiles of diffraction rings with a dark 
and bright centre induced after propagation of beams with negative (R < 0) and 
positive curvature (R > 0), respectively. 

Table 4.1 shows statistics of experimental results obtained at positive and negative 
input beam curvatures in the organosiloxane. There was excellent agreement with 
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Figure 4.11: Derivatives of total phase shift for a) positive and b) negative curvatures 
with different contributions of ~n by increasing ~'l/;0 . 
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Table 4.1: Statistics of beam curvature dependence on ring patterns 
Beam Radius of Distance from Observed ring patterns # 

curvature curvature (mm) beam waist Bright spot Big Dark spot Fingerprint experiments 

R<O R= -2.2 2mm 100~ 12 
R>O R=±2.2 2mm 62% 31% 12% 26 

theory for experiments carried out at R < 0. For R = -2.2 mm t , 1003 of experi­
ments yielded diffraction rings with a dark centre. Qualitatively, this ring pattern is 
similar to the one induced at R = oo (Section 4.4) . However, the dark central spot 
for rings induced at R = -2.2 mm was much bigger. As detailed in Section 4.6.4 the 
dynamics and temporal evolution of the rings were also significantly different. 

The majority of experiments (623 ) carried out at R > 0 yielded diffraction rings 
with a bright central spot , which is consistent with theory. In 313 of cases, however, 
rings with a dark centre were obtained. These showed similar behaviour to those 
induced at R = -2.2 mm. This observation could be explained by the complex 
dynamics along the pathlength. Theory assumes that the contribution of the radius 
of curvature R to the total phase shift occurs in a thin medium, however in our case 
a thick medium is employed. During the propagation of the beam, under certain 
conditions of pre-polymerization of the sample, the beam could begin to self-focus 
acquiring a wavefront with R < 0 and therefore obtaining rings with a dark centre 
at the output face. In the case of experiments with an initial beam with R < 0, even 

tThe radius of curvature was calculated using the formula R(z) = z[l + (nw~ /.Xz ) 2 ] for a Gaussian 
beam [34]. 
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if the beam experiences self-focusing, the curvature remains negative and we always 
observe rings with a dark centre. Another type of rings that we named fingerprint 
rings, were observed in 123 of experiments. Details of this type of rings will be 
discussed in Section 4. 7. 

4.6.4 Dynamics of rings with dark central spot for R < 0 

The temporal evolution for a beam with initial curvature of R = -2.2 mm (2 
mm to the left of the beam waist) is shown in Figure 4.13. Initially, the convergent 
Gaussian beam propagates from an approximate radius of 35 µm t at the entrance 
face of the organosiloxane to 36 µmat the output face (Figure 4.13a) . The apparent 
lack of diffraction is due to the convergence of the beam at the entrance face of the 
sample (Figure 4.6) . 

Over time refractive index changes induce spatial self-phase modulation, which 
leads to the emergence of a single ring at 7 s (Figure 4.13b) with a dark centre with 
20 a. u .. This corresponds to 9 3 of the maximum intensity along the ring. This value 
agrees with intensities of central dark spots in previous theoretical and experimental 
studies of self-phase modulation in thin films [85; 84]. The central dark spot increases 
in diameter over time (Figures 4.13b-f) and darkens until reaching 0 a.u. of intensity. 
At the same time, the ring surrounding the dark spot increases in diameter from 
approximately 70 µm to 210 µm and multiple rings (up to 4) emerge around the 
dark central spot (Figure 4.13g). At 71 s, each of the diffraction rings started to 
spontaneously break up into a discrete series of filaments , that were positioned with 
azimuthal symmetry. Filamentation continued up to 131 s (Figure 4.13j) , at which 
point , approximately 13 individual filaments had formed. Filaments observed in the 
innermost ring contained the greatest intensity and radial traces towards the outward 
rings were observed. Filamentation was accompanied by the onset of self-focusing, 
which was observed as an increase in intensity in the centre of the rings. Self-focusing 
was accompanied by a decrease in intensity from the surrounding filaments and rings. 
At 198 s, the self-trapped beam was the dominant feature with a relative intensity of 
700 a.u. 

In the organosiloxane, we observed an increase in dark spot diameter over time 
as seen in Figure 4.14. The change of dark central spot diameter as a function of 
exposure time shows that it roughly follows the kinetics of photopolymerization, with 
a sharp increase initially and a saturation of the diameter overtime. To explain this 
behaviour, we can examine the phase shift induced over time and its derivatives. 
When the refractive index increases, its contribution to the total phase shift increases 
as seen in Figure 4.lOb for R < 0. In order to observe an increase in the central dark 
spot diameter , we would expect that in the derivatives of the total phase shifts, an 

tThe beam radius at a particular z was calculated using the formula w(z) = w0 [1 + (>.z/7rw5J 112 

for a Gaussian beam [34]. 
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Figure 4.13: Temporal evolution of rings with dark central spot for an input beam 
with curvature of R = -2.2 mm at 1.6 W/cm2

. 2-D and 1-D spatial intensity profiles 
of the beam are shown. For clarity, each 2-D profile has been normalized to the 
maximum intensity value. 
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Figure 4.14: Diameter of the dark central spot observed at the exit face of the 
organosiloxane with OPL = 8.82 mm as a function of exposure time for an input 
beam with curvature of R = - 2.2 mm at 1.6 W/cm2 . 

increasing number of r values around r=O would not share the slope value with any 
other r point as the refractive index increases. And that way no interference would 
occur over a larger area around r=O. However, when examining the derivatives in 
Figure 4. 11 b, there is no indication of such behaviour. 

We realize that over time, as exposure increases, areas that did not initially con­
tribute significantly to refractive index changes now do so. This implies an increase 
in effective beam diameter for contributing to refractive index changes and thereby, 
the total phase shift . When plotting the derivatives of the total phase shift for an in­
creasing beam radius (Figure 4. 15a) and fixed 6n contribution, we see the expected 
behaviour of increasing number of r values around r=O that do not share a slope 
value. This indicates an increase in the dark central spot diameter. However, we ob­
serve that fewer r points share the same slope value also away from r = 0, implying 
that fewer diffraction rings are induced, which does not agree with the experimental 
observations. If the ~n is increased along with the beam radius as shown in Figure 
4.15b, then the derivatives of the total phase shift show both the increase of the 
central dark spot diameter and the existence of multiple diffraction rings over longer 
exposure. 

The increase in diameter of the dark central spot has also been observed in ab­
sorbing liquid media that undergo thermally induced refractive index changes, such 
as Rhodamine 6G diluted with methanol [84]. In these experiments, a divergent in­
put beam was introduced into a self-defocusing medium. This yielded similar ring 
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patterns as the ones we obtained with a convergent beam and self-focusing medium 
(see Section 1.3.3). However, the dark spot diameter in this study increased linearly 
with pump power whereas in our experiments, it increased over time at a single input 
power. 

Filamentation of diffraction rings occurring at later stages in our experiment, 
has not been observed in other studies of the effect of beam curvature on self-phase 
modulation and was not observed in the organosiloxane with input beams at the beam 
waist (R = oo). 

Filamentation can be explained by modulation instability theory, which states 
that amplitude and phase perturbations (noise) in plane waves can develop and grow 
exponentially over the propagation path, until their strength is comparable to the ini­
tial plane-wave field, ultimately breaking up into multiple beams or filaments [96] . In 
our group, modulation instability in the organosiloxane leading to multiple filaments 
has been previously shown [106]. 

Filamentation of diffraction rings forming at R = -2.2 mm occurs due to the 
timescale of events. As seen in Figure 4.13, self-trapping at R = -2.2 mm occurred 
until 198s, much later compared to experiments at R = oo, which occurred at ap­
proximately half of the time (Figure 4.2h). This coupled with the fact that diffraction 
rings around the dark spot do not significantly change in number or size from 56s to 
131s (Figures 4.13f-j), gives sufficient time for the beam to be susceptible to transverse 
noise resulting in instability of the diffraction rings and their rupture into individ­
ual filaments. The filaments at 93 s (Figure 4.16), were positioned with azimuthal 
symmetry. This originates from the non-radially symmetric noise being imposed on 
the diffraction rings, however the noise could possess either linear symmetry or non­
azimuthal symmetry as filaments along the rings are aligned with respect to each 
other. For diffraction rings induced with positive curvatures R > 0 (see next Sec­
tion) dynamics of the rings induces continuous changes to the rings profiles, therefore 
filamentation does not occur. 

4.6.5 Dynamics of rings with a bright central spot for R > 0 

The temporal evolution of rings emerging with a bright central spot for an input 
beam curvature of R = +2.2 mm (2 mm to the right of the beamwaist) is shown in 
Figure 4.17. The Gaussian beam initially diffracts from a radius of approximately 35 
µm to 206 µm (Figure 4.17a). At 15 s, the first ring develops around a bright central 
spot (Figure 4. 17b) . This is consistent with the predicted pattern of diffraction rings 
induced at positive curvatures in self-focusing media [85]. In the next 12 s, increasing 
number of bright concentric rings appeared with a maximum of 5 rings at 27s (Figures 
4.17 c-e). It is likely that more rings emerged but they might not be visible due to 
the high intensity of the central spot . 

114 



PhD Thesis --- Ana 8. Villafranca --- McMaster University - Engineering Physics --- 2010 

Figure 4.16: Magnified 2D profile of Figure 4.13i showing filamentation of diffraction 
rings at 93 s for an input beam with curvature of R = -2.2 mm at 1.6 W/cm2

. 

With time, exchange of intensity between the bright central spot and the two 
innermost rings was observed. For example, at 19 s (Figure 4.17c) the bright central 
spot was greater in intensity with 350 a. u. , with the first and second ring at approx­
imately 125 a.u. and 50 a .u., respectively. In the next few seconds, the second ring 
gained energy and at 27 s, (Figure 4.l 7e) its intensity was greater than the first ring 
with 100 a.u. and the bright central spot had decreased in intensity to around 170 
a. u. Between 27 s and 36 s the exchange in intensity seemed to occur only between 
the two innermost rings. At 33 s, the intensity transferred from the second ring to 
the first and the converse occurred at 36 s. At this point, both rings had a thick­
ness of approximately 25 µm. This changed at 40 s, when the intensity concentrated 
mainly on the bright central spot, reaching 200 a. u. (Figure 4. l 7h) with the first 
two rings apparently fused into a thicker ring of ,....., 60 µm of radius and with 70 a. u. 
This exchange of intensity continued over time and the rings remained for as long the 
experiment was recorded (926 s) (Figure 4.17). 

In theoretical and experimental studies, there is an association of the type of rings 
with beam curvature and number of rings with maximum phase shift f),,, 'lj;0 [85; 83]. 
We confirmed this for positive (and negative) curvatures since we always observed 
the bright (dark) central spot, and overtime the number of rings increased which was 
an indication of increase in /),,,n and therefore /),,, 'lj;0 . This is explained for R > 0 with 
the plots of the derivatives of the total phase shift in Figure 4. lla. The increasing 
contribution of /),,,n occurring over time generates more slope values shared by two 
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Figure 4.17: Temporal evolution of rings with bright central spot for an input beam 
with curvature of R = +2.2 mm at 1.6 W /cm2

. 2-D and 1-D spatial intensity profiles 
of the beam are shown. Arrows indicate the direction of flow in intensity. For clarity, 
each 2-D profile has been normalized to the maximum intensity value. 
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points of r which can produce interference and increases the number of diffraction 
rings induced. 

The observed phenomenon of exchange in intensity between the bright spot and 
the inner rings over time, has not been reported before for other media. This could 
be explained as all curvature studies have been performed in thin media. The bright 
rings in our experiments propagate over long distances and therefore as diffraction 
rings with a bright centre are being induced, complex dynamics involving changes 
in refractive index and saturation effects occur along the propagation path. Further 
studies should be performed to understand this process in detail. 

A similar phenomenon was observed in a thin self-defocusing Kerr media with 
negative beam curvatures R < 0 [83]. This configuration is equivalent to the self­
focusing organosiloxane with R > 0 (see Section 1.3.3). In their experiments, as they 
varied the input power, the distribution of energy and ring configuration changed. 
For low powers, they observe a set of thin rings uniformly spaced surrounding the 
central spot and at high powers they saw thicker and brighter rings modulating the 
thin ones. However, no further details on the mechanism of this phenomenon was 
given. 

4. 7 Different types of ring patterns at R = oo 
The effect on wavefront curvature on the type of diffraction rings and the dynamics 

of self-phase modulation was described in the previous Section (4.6). Here we return 
to self-phase modulation induced at R = oo and present the emergence of different 
ring patterns. 

Self-phase modulation strongly depends on the refractive index change experienced 
by the organosiloxane, which determines the induced phase shift and ultimately the 
emergence of diffraction rings. Even under apparently identical conditions, dynamics 
within the medium can be affected by minor variations in refractive index giving 
rise to strikingly different results. Our samples undergo pre-polymerisation prior to 
experiments of nonlinear light propagation. This process can lead to minor variations 
in the maximum refractive index change tln8 for different samples. 

At R = oo the beam waist was incident on the entrance face of the sample and 
the intensity of the beam was 1.6 W / cm2 . Sample thicknesses of 0.56 mm, 2 mm, 4 
mm, 6 mm, 8 mm and 10 mm corresponding to optical path lengths of 0.82 mm, 2.94 
mm, 5.88 mm, 8.82 mm, 11.76 mm and 10.47 mm, respectively were examined. Four 
types of diffraction patterns were observed under these conditions: rings with a dark 
centre (dark rings), rings with a bright centre (bright rings), rings with high-order 
modes and rings that appear all at once (fingerprint rings). 

The results presented in this Section were obtained after a careful analysis of the 
statistics of experimental results at R = oo, which has not been done before in any 
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media. In our results, in the majority of cases the theoretically expected dark rings 
were observed, more than 603 for all pathlengths > 2 mm imaged at the exit face 
or further away (see Figure 4.18). However, we also observed rings with high-order 
modes (up to 153) and fingerprint rings (up to 14 3) in a significant number of 
experiments. These type of rings are likely due to variations in prepolymerisation; 
high-order modes occurring when 6.n 8 is relatively large and fingerprint rings forming 
when 6.n 8 is relatively small. Error in positioning leads to the observation of bright 
rings (up to 253) in some of the experiments. For the shortest pathlength of 0.56 
mm bright rings were observed most of the time (943). For the 2 mm pathlength, 
imaged at the exit face, an expansion of the beam was mostly (73 3 ) observed. This 
could correspond to the near-field diffraction (see Section 4.8). At the far-field, most 
of the times ( 713) diffraction rings of various types are observed. 

Dark rings: This type of rings was previously presented in Sections 4.2 to 4.4. It 
is the type expected theoretically for R = oo and also the most similar to the one 
observed in previous studies at the beam waist for other nonlinear media [6; 4]. Dark 
rings as seen in Figure 4.2, evolve from one to multiple rings over time and ultimately 
self-focusing of the beam occurs. After the appearance of the first few rings, this 
pattern appears very similar to rings with a big dark central spot for R < 0, however 
when multiple rings emerge (Figure 4.2 e-g) , they appear close to the central zone 
which is not observe for R < 0. 

According to Equation ( 4.8), contributions to self-phase modulation originate only 
from changes in refractive index u~o+d 6.n(r, z )dz) due to free-radical polymerization. 
If the phase shift profile follows the initial Gaussian beam shape, then for values of 
6.'lj;0 » 2n, we would expect continuous concentric rings. From Section 4.6.2, the 
derivative of the total phase shift for R = oo is more similar to the derivative with 
negative curvature contributions, in that for slope values around zero, no interference 
occurs since no two points in r share the same slope value as shown in Figure 4.9. 
Therefore we can expect to have in the central part of the diffraction ring pattern 
more concentric rings for R = oo compare to lower negative R values and perhaps a 
small dark zone for R = oo corresponding to the slope value of zero that does not 
undergo interference. Based on this, the dark ring pattern is the one we would expect 
to occur at R = oo. Moreover , statistics shown in Figure 4.18a, confirm that these 
are the most observed rings for OPL 5.88 mm [77 3], 8.82 mm [76 3], 11.76 mm [71 
3] and 14. 7 mm [64 3] , which is consistent with theory. 

In previous studies, carried out in nematic liquid crystals [6] and absorbing solu­
tions with thermal dependent index changes [4], the beam waist was also placed at the 
entrance of the nonlinear medium (R = oo). The observed pattern for high powers 
or induced values of 6.'lj;0 » 2n was dark ring with multiple concentric diffraction 
rings going from the center outwards, without the presence of a big dark spot, which 
is consistent with our observations. 

Rings with high-order modes: Rings superposed with high-order modes were also 
observed. After the beam diffracts in the first second to a diameter of 414 µm (Figure 
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4.19a), the maximum peak intensity of the profiles presents oscillations over time 
(Figure 4.21). 

At early times, these oscillations are accompanied with drastic changes in intensity 
profiles, for example the first oscillation occurs between 13 s and 20 s. At the peaks 
of this oscillation we see a bright centre surrounded by a ring (Figures 4.19b and 
d) , during the valley of the oscillation a high order mode (Figure 4.19c) is observed 
corresponding to LP11 . For the second oscillation, between 20 s and 25 s, the last 
peak presents a bright centre now surrounded with at least three rings (Figure 4.19g) 
and during the valley, the high-order modes corresponding to LP11 and LP02 (24 
s) superpose with three rings (Figure 4.19f). From 29 s to 70 s, fast oscillations 
in intensity are observed (Figure 4.21) accompanied with observation of high-order 
modes superposed with rings (Figures 4.19 i, j , k , m, n, o). For comparison, intensity 
profiles of high-order modes resulting from simulations of propagation of light at 532 
nm in an optical fiber with !:rn = 0.08 and 10 µm beam diameter in Beamprop are 
shown in Figure 4.20. 

From 75 s onwards, oscillations in intensity are slower (Figure 4.21)and the in­
tensity profile does not change substantially. A bright centre surrounded by multiple 
rings is observed. At peaks most of the intensity concentrates on the central spot 
and during valleys the intensity along rings increases. From the beginning of the 
experiment, the central bright beam self-focuses at the same time as rings emerge, 
which is indicated by an increase in intensity at every oscillation as shown in the 
temporal plot of relative intensity in Figure 4.21a and a decrease in beam diameter 
of the central bright spot. The total increase in intensity was approximately 4.5-fold 
and the bright spot diameter decreased from 387 µm to 145 µm from 13 s to 162 s. 
Rings with high-order modes were observed for all OPLs except 0.82 mm between 5 
to 153 of the times (Figure 4.18). 

The dynamics of this type of rings resembles the self-focusing dynamics at low 
powers. In that case, oscillations occurred and a low order mode and high-order modes 
were observed at the peak and valley of the oscillations, respectively (refer to Chapter 
3). Both self-phase modulation and self-trapping of the beam occur simultaneously 
in this type of rings. 

The evolution of intensity profiles (Figure 4.19) is consistent with that in beam 
propagation simulations performed through BeamProp™ (Chapter 6). Here, we 
observed oscillations of the beam with the formation of a bright centre surrounded 
by rings during the peak of the oscillation and high-order modes superposed with 
rings during the valleys (Figures 6.16 and 6.18 ). Self-focusing was indicated by 
the increase in intensity and narrowing of the beam at some of the peaks during 
oscillations. The refractive index induced in these simulations presents changes along 
all the propagating direction z since early times (Figure 6.19). This contrasts with 
simulations for dark rings where refractive index changes at early times only occurred 
at the entrance face (Figure 6.25). 
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Figure 4.19: Temporal evolution of diffraction rings with high-order modes for an 
intensity of 1.6 W / cm2 and an optical path length of 2.94 mm imaged at 10 mm 
from the exit face. 2-D and 1-D spatial intensity profiles of the beam are shown. For 
clarity, each 2-D profile has been normalized to the maximum intensity value 
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Figure 4.20: Beam propagation simulations of linearly polarized modes in an optical 
fiber performed with BeamPROP software. Modes were calculated for an optical fiber 
with diameter=lO µm and a refractive index contrast of 0.08. 

A possible explanation for the observation of rings with high-order modes is that 
the degree of pre-polymerization of the sample is small compared to samples where 
dark rings were observed. For the latter, the maximum possible change (~ns) in 
refractive index is therefore smaller, saturation is achieved at earlier times and leads to 
a top-hat refractive index profile. Self-focusing is not as efficient and only diffraction 
rings are observed initially with the beam self-focusing at later times. In contrast, a 
system with a smaller degree of pre-polymerization has a greater ~ns and therefore 
saturates slowly . Based on the kinetics of free-radical polymerisation, the less the 
extent of polymerisation the greater the rate of polymerisation. The beam under 
these conditions, is able to induce a Gaussian index profile which focuses light more 
efficiently and therefore faster, resulting in the observation of self-focusing at earlier 
times superposed with diffraction rings . Self-trapping at the low intensity regime was 
accompanied by oscillations and high-order modes, therefore we also observed both 
as seen in Figures 4.19 and 4.21. 

Fingerprint rings: They had the characteristic of rings emerging all at the same 
time, resembling a fingerprint. This contrasts with the dark rings where rings emerged 
sequentially over time. The temporal evolution of fingerprint rings, which shown in 
Figure 4.22, it occurred as follows : in the first second t he Gaussian beam diffracted 
to a beam diameter of 120 µm at the exit face of the sample (Figure 4.22 a). This 
was followed by a flattening of the profile occurring at 6s (Figure 4.22 b) and the 
emergence of multiple rings all at the same time in the next 2 s (Figure 4.22 c). 
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Figure 4.21: a) Relative maximum intensity (of the maximum CCD camera response) 
of the spatial profile as a function of time for diffraction rings with high-order modes 
at an intensity of 1.6 W /cm2 and an optical path length of 2.94 mm imaged at 10 
mm from the exit face and the corresponding b) duration of oscillations. 
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The rings increased in intensity with time (Figures 4.22 d-g) until the entire beam 
self-trapped into a narrow (25 µm) beam (Figure 4.22 i). 

Having all the rings emerging at once and not changing in number over time, 
means that the maximum refractive index induced l:inmax and therefore the maximum 
phase shift ti 'lj;0 affecting ring formation are reached immediately after exposure to the 
beam. This implies that the initial refractive index of the prepolymerized sample was 
greater compared to that where dark rings were observed. Therefore, the refractive 
index was closer to saturation, at which point polymerization reactions slowed down 
and the intensity profile did not exhibit significant changes. The maximum number 
of rings observed for fingerprint rings was 3 and 10 while for dark rings was 5 and 
19 rings , for OPL= 5.88 mm and 8.82 mm, respectively. This supports our proposed 
mechanism since less rings would be induced for a smaller l:inmax· 

Fingerprint rings were only observed for optical path lengths of 5.88 mm and 8.82 
mm, from 2 3 to 7 3 in the former case to 14 3 to 29 3 of the times in the latter 
case. 

Bright rings: Rings with a bright central spot have been predicted and observed 
only when the beam has a positive curvature at the entrance face of a self-focusing 
medium [85; 83]. Their observation in the organosiloxane with the entrance face of the 
sample at the beam waist could be the result of the sample being positioned outside 
of the Rayleigh range, with the beam having a small positive radius of curvature. 
The dynamics of bright rings observed in this case are the same as those observed 
for posit ive curvatures in t he previous Section. That is, diffraction rings developed 
surrounding a bright centre and exchange of intensity occurred between the rings and 
the bright centre. In Figure 4.18, statistics of ring patterns for various pathlengths 
show that bright rings were only observed between 103 and 293 of the times for OPL 
> 2.94 mm. However, for the shortest OPL of 0.82 mm, bright rings were observed 
943 of the times when imaged further away from the output of the sample (Figure 
4.18b). Possibly due to the small thickness of the sample, there was a significant error 
(±0.25 mm) in positioning. 

4.8 Pathlength dependence 
In Section 4.3, we monitored the evolution of dark rings at the output of the sample 

which had an optical path length (OPL) of 8.82 mm, the OPL being approximately ten 
times the Rayleigh range (zR) of the focused beam. We assumed that initially most of 
the refractive index changes contributing towards self-phase modulation occurred at 
0 PL < z R in the organosiloxane and propagation thereafter was linear. We partially 
confirmed this by repeating the experiment under similar conditions with a thin 
sample of OPL=0.82 mm (,......, zR) obtaining a similar number of rings at the far-field. 
In this Section, we examine further the propagation of dark diffraction rings along 
the organosiloxane by performing experiments at an intensity of 1.6 W /cm2 under 

124 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

a 

:::i 
::S 3 

;::;.. 2 
·u.; 1 
c: 
2 
c: Transversal coordinate 

e 

h 

Figure 4.22: Temporal evolution of fingerprint diffraction rings for an intensity of 
1.6 W /cm2 at an optical pathlength of 5.88 mm imaged at the exit face . 2-D and 
1-D intensity profiles of the beam are shown. For clarity, each 2-D profile has been 
normalized to the maximum intensity value 
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Figure 4.23: Scheme of pathlength dependence study. The propagation of diffrac­
tion rings is monitored at the output face of samples with different OPLs in order 
to investigate dynamics. The dark grey square at the entrance face of the sample 
represents the area of refractive index changes that mostly contribute to diffraction 
ring formation. 

similar conditions as in Section 4.3 for various OPLs including 2.94 mm, 5.88 mm, 
8.82mm, 11.76 mm and 14.7 mm (Figure 4.23). We monitored the intensity profiles 
at the output of the medium and further away in some cases to confirmed that the 
propagation of rings after ZR is linear and consistent with our proposed mechanism 
in Section 4.3. 

Diffraction can be divided into near-field and far-field (Fraunhofer) diffraction 
[34]. The former occurs close enough to the entrance face that the curvature of the 
wavefront must be taken into account , as a result, the shape and size of the diffraction 
pattern changes with observation distance in the near-field. Far-field diffraction occurs 
far enough from the entrance face that wavefronts at the observation plane may be 
considered to be planar. In this case, the diffraction pattern changes monotonically in 
size with observation distance. Therefore, if changes that elicit self-phase modulation 
occur only at the entrance of the sample, the number of rings observed in the far-field 
should be the same for all OPLs. 

By analysing the resulting spatial intensity profiles monitored at the output of the 
medium, we observe differences at the various OPLs. For short distances , including 
OPL=2.94 mm and 5.88 mm, we see a central bright beam present most of the time 
with a maximum ring formation of 1 and 5 rings, respectively (Figure 4.24 and Table 
4.2). At longer OPLs we do not observe a central bright beam, for OPLs =8.82 mm 
and 11.76 mm (Figures 4.2 and 4.25a), multiple dark rings emerge as described in 
Section 4.3 with a maximum of 19 rings (Table 4.2). At an even longer OPL=14.7 
mm, a maximum number of 5 rings appear. As the first ring forms at 4s (Figure 4.25b) 
it starts filamenting and in the next ten seconds multiple rings continue to emerge as 
filamentation occurs from the outermost ring to the inner ones at 15s (Figure 4.25b ). 

At all OPLs self-focusing occurs but at different timescales as shown in Table 
4.2. At short OPLs=2.94 mm and 5.88 mm it occurs at around 45 s, for the longer 
OPLs=8.82 mm and 11.76 mm it takes place in the hundreds of seconds and then it 
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Figure 4.24: Temporal evolution of diffraction ring formation at an intensity of 1.6 
W /cm2 for a) OPL=2.94 mm and b) OPL=5.88 mm monitored at the output of the 
medium. 2-D and 1-D spatial intensity profiles of the beam are shown. For clarity, 
each 2-D profile has been normalized to the maximum intensity value. 
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Figure 4.25: Temporal evolution of diffraction ring formation at an intensity of 1.6 
W /cm2 for a) OPL=ll.76 mm and b) OPL=l4.7 mm monitored at the output of the 
medium. 2-D and 1-D spatial intensity profiles of the beam are shown. For clarity, 
each 2-D profile has been normalized to the maximum intensity value. 
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Table 4.2: Statistics of pathlength dependence parameters for dark rings 

OPL Max.# Avg. diameter of first ring Avg. time of first ring Avg. self-focusing time 
(mm) rings (µm) Stdv. (s) Stdv. (s) Stdv. 

2.94 1 112 6 9 3 48 6 

5.88 5 114 34 11 10 46 15 

8.82 19 132 26 4 2 111 42 

11.76 19 165 40 5 2 87 39 

14.7 5 143 35 3 0 26 10 

Table 4.3: Statistics of pathlength dependence parameters for dark rings far-field 

OPL Max.# Avg. time of first ring Avg. Self-focusing time 
(mm) rings Initial (s) Stdv. (s) Stdv. 

2. 94 6 6 2 68 24 

5.88 8 6 5 79 42 

decreases to around 26 s for the longest OPL=14.7 mm. At this pathlength, even if 
filamentation occurs, at 20 s the beam self-focuses indicated by the 3-fold increase 
in intensity, the beam narrows from ~ 440 µm to 263 µm although filamentation is 
still present (Figure 4.25b). The resulting statistics for the average diameter of the 
first ring that emerges show that the diameter increases with increasing pathlength 
except for the longest OPL=14. 7 mm. The average time of appearance of this ring is 
below 10 s for all OPLs and it seems to decrease with pathlength. 

Assuming that the propagation is linear after ZR, we calculated the expected 
diameter of the first ring at different pathlengths by calculating the half-angle formed 
by the diffraction rings for an OPL=8.82. The half-angle resulted in 0.007 degrees and 
the diameter was 44 µm, 88 µm, 132 µm, 176 µm and 220 µm corresponding to the 
pathlengths 2.94 mm, 5.88 mm, 8.82 mm, 11.76 mm and 14.7 mm, respectively. By 
comparing these values with the diameters measured in experiments for the various 
pathlenghts shown in Tables 4.2 and 4.3, the diameter trend only agrees for OPL=8.82 
mm and 11.76 mm. For the two shorter pathlengths the diameter values are much 
larger than the expected ones and for the longest pathlength the diameter value is 
smaller. 

From the difference in diameter value and differences in spatial profiles at various 
OPLs, we deduce that at short pathlengths we were imaging at the near-field therefore 
number of rings and spatial profiles were different compared to longer pathlengths. 
Previous theoretical studies of ring formation in other nonlinear media predict varying 
patterns at the near field [88; 84]. To confirm this and obtain the maximum number 
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of rings at the far-field we performed experiments for short OPLs where we imaged 
further away from the exit face at z > 10 mm for OPL=2.94 mm and OPL=5.88 mm. 

At the far-field, we obtained spatial profiles more similar to longer pathlengths 
with multiple ring formation and without the observation of the initial central bright 
beam (Figure 4.26). However, the maximum number of rings was 6 and 8 for an 
OPL=2.94 mm and OPL=5.88 mm respectively, which is below the 19 rings observed 
for the next two OPLs (Table 4.3). The apparent contradiction of these results with 
the fact that we observed in thin samples (OPL=0.82 mm) a similar number of rings as 
in samples with OPL=8.82 mm (Section 4.3) can be explained by the interplay of self­
focusing and self-phase modulation. In thin samples, self-focusing does not take place 
since OPL< ZR and only the effects of spatial self-phase modulation are observed, 
however in samples with OPL~ zR both self-focusing and self-phase modulation occur. 
From the different self-focusing times for different OPLs (Tables 4.2 and 4.3), self­
focusing dynamics vary, for short OPLs (2.94 mm and 5.88 mm) this process occurs 
earlier which probably is related with the observation of less number of rings compared 
to longer OPLs (8.82 mm and 11.76 mm) where self-focusing occurs later and more 
rings are observed. For the longest OPL=l4.7 mm, the dynamics are more complex 
as multiple phenomena occur simultaneously, (i) self-phase modulation giving rise to 
ring formation, (ii) modulation instability probably triggered by the long OPL, which 
seeds noise in the system resulting in filamentation and finally (iii) self-focusing of 
the beam. Previous theoretical studies have shown the filamentation of rings as a 
function of propagation distance [113], rendering them unstable at large pathlengths 
to noise in the system ultimately breaking into individual filaments. 

From the above results, changes in refractive index contributing to self-phase 
modulation very likely occur at least up to 5.88 mm. The propagation of diffraction 
rings then seems to follow linear propagation up to OPL=ll.76 mm. At the near field, 
the shape and size of the diffraction pattern changed with observation distance and at 
the far-field the diffraction rings increased monotonically in size (according to linear 
diffraction). However, at very long pathlengths filamentation of the rings disrupts 
the linear propagation. The disagreement in the total number of rings obtained at 
the far-field for different OPLs is related with the different self-focusing dynamics. 
At the shorter OPL=2.94 mm and 5.88 mm and the longest OPL=14.7 mm, self­
focusing occurs earlier compared to OPL=8.82 mm and 11.76 mm. Therefore, less 
number of rings are observed as self-focusing disrupts the observation of diffraction 
rings. That the average time of appearance of the first ring is below 10 s for all OPLs, 
means that refractive index changes occur in the same timescale for all OPLs. This 
further supports the notion that refractive index changes contributing to self-phase 
modulation originates mainly from the entrance face. Simulations for dark rings from 
Section 6.4.2 agree with our conclusions that refractive index changes for early times 
occur mainly at the entrance face. 
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Figure 4.26: Temporal evolution of diffraction ring formation at an intensity of 1.6 
W /cm2 for a) OPL=2.94 mm and b) OPL=5.88 mm monitored at the far-field . 2-D 
and 1-D spatial intensity profiles of the beam are shown. For clarity, each 2-D profile 
has been normalized to the maximum intensity value. 
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Table 4.4: Statistics of dependence on pre-polymerization 

Pre-polymerization time Max.# Avg. Self-focusing time 
(min) nngs (s) Stdv. 

5 3 didn't occur 

10 10 115 39 

15 5 48 1 

20 2 46 6 

4.9 Dependence on pre-polymerisation of organosilox­
ane 

Prior to experiments on diffraction rings induced by a laser beam, samples were 
uniformly polymerized with white light as detailed in Section 2.2. The duration of 
uniform irradiation determines the degree of polymerisation in the organosiloxane 
and hence the initial background refractive index and thus !::ln8 [39]. Because the 
emergence of diffraction rings and their number relies on the maximum phase shift 
6 W- 0 induced by the refractive index profile , the maximum possible refractive index 
change in the sample (!::ln8 ) is of critical importance to be able to induce more or less 
rmgs. 

In order to investigate the impact of degree of polymerization in the emergence of 
diffraction rings , we pre-polymerized samples with OPL=8.82 mm for 5, 10, 15 and 
20 minutes prior to laser exposure at 1.6 W/cm2 . The maximum number of rings 
induced and the self-focusing time varied for the different exposure t imes as shown in 
Table 4.4. An optimum polymerization time of 10 minutes was found to maximize the 
number of rings and delay self-focusing time to 115 s. For the low pre-polymerization 
time of 5 minutes, self-focusing did not occur and for longer exposure times of 15 
and 20 minutes, self-focusing took place at approximately half of the time of the 10 
minute exposure samples. 

These results indicate that at low pre-polymerization times, the organosiloxane 
matrix does not have sufficient density to support self-trapping of the beam. That 
means that an induced waveguide cannot form as the matrix is not sufficiently pre­
polymerized. However rings are observed and this could be the result of refractive 
index changes occurring only at the entrance face. The small number of rings pos­
sibly results from the slow changes in refractive index. At high exposure times , few 
methacrylate units are available to polymerize in the organosiloxane and therefore 
the remaining refractive index change is not enough to induce a greater number of 
rings. 
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4.10 Permanent structures after diffraction rings 
The refractive index changes responsible for self-phase modulation and diffraction 

ring formation in the organosiloxane were permanent and provided information on 
the propagation path of the diffraction rings through the sample. 

Figure 4.27 A, corresponds to the optical micrograph of a permanent conical struc­
ture resulting after the observation of dark ring in sample with OPL=8.82 mm, which 
was acquired after the emergence of six diffraction rings (at 14 s) in the organosilox­
ane (shown in the left of Figure 4.27 A). The micrograph reveals index changes due 
to polymerization that were permanently inscribed in the medium during self-phase 
modulation. The resulting conical microstructure corresponds to the trajectory of 
the interference cones from the entrance face to the exit face of the medium. Accord­
ingly, the apex of the cone is located near the entrance face while its lateral surface 
corresponds to the most intense outermost ring. 

By contrast, the micrograph acquired after only self-focusing and self-trapping of 
the beam (at the lower intensity of 0.016 W /cm2 where self-phase modulation is not 
possible) contains a narrow cylindrical waveguide with uniform diameter maintained 
along the propagation axis (Figure 4.27 C). 

The emergence of dark rings was followed by self-focusing of the beam and in 
some cases we were able to observe an inner waveguide formed surrounded by the 
conical microstructure as shown in Figure 4.28. In this case, the surrounding conical 
microstructure corresponds to the emergence of 14 diffraction rings at 30 s and the 
inner waveguide to the self-focusing of the beam at 150 s. 

Figure 4.27B, shows the micrograph of a permanent structure inscribed by bright 
diffraction rings in a sample with OPL=8.82 mm. The microstructure has a conical 
shape similar to the one observed after the emergence of dark rings, however the 
width of the cone at the entrance and at the exit face is at least 3 times smaller. This 
is explained by the fact that most of the intensity was localised in the bright central 
beam and the first two diffraction rings during the emergence of rings (see Section 
4.7). 

4.11 Conclusions 
In this Chapter, the dynamics of diffraction rings induced through laser initi­

ated free-radical polymerization were demonstrated for the first time. Propagation of 
diffraction rings over long distances>> Rayleigh range (zR) was shown, which differs 
from most previous studies where thin samples ( < ZR) were employed to prevent si­
multaneous self-focusing of the beam. Monitoring of the temporal evolution of diffrac­
tion rings in situ was possible as the organosiloxane presents a slow photoresponse. 
Through this study, parameters such as number of rings and ring diameter were ex­
tracted over time, which allowed to link polymerisation kinetics to the evolution of 
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A. Dark rings 

B. Bright rings 

C. Only self-trapping 

400 µm 

Figure 4.27: Optical micrograph of permanent conical structures formed after A) 
dark diffraction rings and B) bright diffraction rings in the right hand side and their 
corresponding intensity profiles in the left hand side for a sample (OPL = 8.82 mm) 
with 1.6 W /cm2 of input beam intensity. For comparison, the permanent waveguide 
structure induced by a self-trapped beam is shown (C). The propagation direction 
of the beam ( z) is indicated. (In order to best visualize the structures, micrographs 
in (A) and (B) were acquired with the sample placed at an angle. The scale bar is 
therefore approximate). 
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Figure 4.28: Optical micrograph of a conical permanent structure with an inner 
waveguide formed after the observation of diffraction rings followed by self-trapping. 
The corresponding intensity profiles are shown in the top for a sample with OPL = 

8.82 mm at 1.6 W / cm2 . The propagation direction of the beam ( z) is indicated. 
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diffraction rings . A mechanism where significant refractive index changes occur at the 
entrance face of the sample and linear propagation of diffraction rings occurs through 
the sample was proposed. Studies of the pathlength dependence of self-phase modu­
lation revealed that at short pathlengths the propagation corresponded to near-field 
diffraction, at longer pathlengths to far-field diffraction and at the longest pathlength, 
propagation was disrupted with filamentation of the diffraction rings. 

Studies of the dependence of self-phase modulation on beam curvature were per­
formed in long pathlengths. Our results showed that rings with a dark centre are 
induced at R < 0 and rings with a bright centre are most of the times induced at 
R > 0. This overall result agrees with rings induced in thin samples. However in 
our studies we were able to observe dynamics of diffraction rings in a long pathlength 
medium. Dark rings induced at R < 0 showed filamentation with time and an increase 
of the dark centre diameter. The former showed that the medium became susceptible 
to noise when self-trapping occurred at longer times and no significant changes took 
place in the induced diffraction rings after some time. The latter was found to be 
the result of an effective increase in beam diameter for the contribution of refractive 
index changes to the total phase shift. Bright rings showed an exchange of intensity 
between the central bright beam and the first two rings. Unlike other media, the 
organosiloxane underwent permanent refractive index changes. Structures induced 
by dark and bright rings were characterised after their formation, which allowed for 
the visualization of nonlinear light propagation in the medium. 

Through careful analysis of statistics of experiments, different diffraction rings 
were observed at R = oo including dark rings, rings with high-order modes, fingerprint 
rings and bright rings. This variety of ring patterns has not been observed before. 
The observation of rings with high-order modes and fingerprint rings were attributed 
to slightly lower and slightly higher pre-polymerization of the samples, respectively. 

Pathlength dependence studies were performed and the observed dynamics in­
dicated that light propagation is more complex than expected. Self-trapping times 
varied with propagation length and this affected the observed number of diffraction 
rings. A linear propagation with a contribution at the entrace of the sample was 
found for the OPL=8.82 mm and 11.76 mm. At longer pathlengths, diffraction ring 
emergence was accompanied with filamentation of the rings. 
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Chapter 5 

Formation and spontaneous fl.lamentation 
of a single optical ring originating from an 
input Gaussian beam 

5 .1 Introduction 
Optical beams in nonlinear systems spontaneously break up in multiple filaments 

at high powers [96; 95; 102]. This effect originating from transverse modulation in­
stability in the beam has been observed in whole beams and in ring-shaped beams 
[128; 102]. Input super-Gaussian (SG) beams propagating in Kerr media, have been 
observed to collapse into a ring profile (rather than the Townes profile) at high powers 
and further filament due to azimuthal perturbations ultimately forming a ring of fila­
ments [99]. In this study, we show that an input Gaussian beam in an organosiloxane 
can evolve into a ring-shape beam when propagating under nonlinear conditions and 
later suffer filamentation. This is fundamentally different from what occurs in Kerr 
media where the instantaneous and localized nonlinearity requires an input SG beam, 
generated with spatial modulation optics of ultra-short laser pulses (on the order of 
femtoseconds) with intensities on the order of 1010 W /cm2 to collapse into a ring 
profile at the exit of the cell. In contrast, the organosiloxane possesses a saturable 
nonlinearity that allows for an input Gaussian beam to induce a flattened Gaussian 
refractive index profile in the medium that evolves into a single ring at intensities as 
small as 27 W /cm2 using a continuous wave laser. 

Filamentation of the single ring in the organosiloxane is similar to filamentation of 
rings resulting from super-Gaussian beams in Kerr media and of rings with uniform 
phase in that noise seeds the breakage of the ring [99; 112]. Other ring-shape beams 
such as optical vortices which are ring-shaped profiles with helical phase in Kerr 
media, filament at high power due to asymmetric phase [100]. The unique feature of 
filamentation in the organosiloxane is that we are able to monitor the filamentation 
process over time due to the slow changes in refractive index. This is not possible in 
Kerr media as changes occur instantaneously and the only way to monitor changes is 
to perform experiments at different sample pathlengths [99]. 

In the following Chapter, first we show experimental results of the dynamics of 
the Gaussian beam at an input intensity large enough to be able to induce such 
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a refractive index profile where single-ring formation and further filamentation are 
observed. Then we prove that a flattened refractive index profile can be induced in 
our saturable system based on free-radical photopolymerization. We then provide 
a comparison between our experimental results and nonlinear simulations performed 
with BeamPROP™ for single ring formation. We show the filamentation dependence 
with input intensity experimentally and finally we show the structures formed in the 
photopolymer as a result of the permanent refractive index changes suffered during 
nonlinear light propagation. 

5.2 Transition of a Gaussian beam from diffraction 
rings to a single-ring profile and its fl.lamentation 

The intensity dependence study performed in Chapter 3 showed that in the 
organosiloxane, self-trapping along with the observation of oscillations and high-order 
modes occurred at low intensities (3.2 x 10- 5 W /cm2 to 0.016 W /cm2

). As the input 
intensity was increased in the system, the initial refractive index induced was greater 
and the corresponding index profile allowed for diffraction rings to be observed. At 
even greater intensities, the lack of sufficient index contrast in the induced profile 
only permitted filamentation of the whole beam to occur. In this section we show 
that at input intensities from 27 W/cm2 to 111 W/cm2

, midway between the oc­
currence of diffraction rings and filamentation , a different phenomenon emerges. We 
first observe the effects of self-phase modulation with the emergence of diffraction 
rings followed by the formation of a single ring. Subsequently, due to modulation 
instability, filamentation of the single ring occurs. These phenomena are possible due 
to the saturability of our medium, the slow changes in refractive index and the fact 
of being at an intensity range where the index profile transforms from Gaussian to 
flattened Gaussian within seconds. 

Preparation of the organosiloxane photopolymer employed in this study has been 
detailed elsewhere (Sections 2.2 and 2.3). Briefly, the organosiloxane consisted of a sol 
of oligomeric siloxanes with photopolymerizable methacrylate substituents. The sol 
was sensitized to visible wavelengths through addition of 0.05 wt% of the titanocene 
free-radical photoinitiator (Amax = 393 nm, 460 nm). The sol was contained in a 
cylindrical cell (d = 12 mm, pathlength z = 6.0 mm) with optically fiat and trans­
parent windows. The sample was first partially photopolymerised and transformed 
into a gel through uniform illumination with white light emitted by a quartz-tungsten 
halogen lamp. For experiments, we focused a linearly polarized, continuous wave, 532 
nm laser beam to a diameter (1 /e2

) of 20 µm and intensity of 80 W/cm2 onto the 
entrance face (z = 0.0 mm) of the gel. The spatial intensity profile of the beam at 
the exit face (z = 6.0 mm) of the sample was imaged through a pair of planoconvex 
lenses onto a CCD camera and monitored over time. 
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Typical experimental results are presented in Figure 5.1. The beam initially di­
verged from a width of 20 µmat z = 0.0 mm to 319 µmat z = 6.0 mm (Figure 5.1 
a-b). 

As the beam initiated polymerization within the next few seconds, concentric rings 
emerged around the central beam and rapidly increased in number (Figure 5.1 c-e). 
Up to 5 such diffraction rings, the outermost of which was the most intense, could be 
resolved. With time, the diffraction rings decreased in intensity as the central beam 
increased slightly in intensity. The beam then developed a dark central spot that 
gradually widened, transforming the beam at 37 s into a single ring with a thickness 
of 190 µm and diameter of 420 µm. At 61 s, the dark spot had widened sufficiently 
to decrease the thickness of the single ring to 27 µm; the narrowing of the ring was 
accompanied by a 2-fold increase in relative intensity. Although the diffraction rings 
were faintly visible during this time, they underwent no further significant changes 
and eventually disappeared. The single ring, which maintained its diameter of 420 
µm from this point, was unstable under the nonlinear conditions elicited by polymer­
ization. Random variations in its intensity distribution became amplified; regions of 
even slightly greater intensity grew rapidly by depleting intensity from less intense 
regions. This modulation instability of the ring led to its spontaneous rupture into 
multiple filaments of light. Up to 17 filaments were observed at 100 s but these suf­
fered rapid and random fluctuations in number and intensity (Figure 5.li) until they 
stabilized at 253 s into a set of 7 azimuthally positioned filaments. Each filament 
exhibited strong self-trapping as indicated by a 20-fold increase in intensity (relative 
to the single ring at 61 s). The circular array of self-trapped filaments remained stable 
for as long as it was monitored (509 s) (Figure 5.1 k-1). The sequential transition of 
the Gaussian beam from diffraction rings into a single-ring structure, which stabi­
lized upon filamentation was highly reproducible and observed in 5 of 5 experiments 
performed under identical conditions. 

5.3 Evolution of induced refractive index profile: 
from Gaussian to flattened Gaussian 

The behaviour of the beam in Figure 5.1 correlates directly to the spatial and tem­
poral evolution of refractive index changes (D.n) that it induces in the organosiloxane. 
Index changes in the organosiloxane are large (D.n = 0.006), saturable and because 
they originate from a polymerisation reaction, they are slow, occurring over seconds to 
minutes [39]. Consequently, the spatial refractive index profile induced by the beam 
changes significantly over this timescale and in turn governs the nonlinear dynamics 
of the beam in the medium. The plot in Figure 5.2b traces the temporal evolution 
of the refractive index profile induced by the Gaussian beam at the entrance face (z 
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Figure 5.1: Temporal evolution of 2D and 3D intensity profiles of a laser beam with 
an input intensity of SOW /cm2 in a photopolymer. In (a) the input Gaussian beam 
is shown. Three main types of nonlinear propagation are observed: diffraction rings , 
single-ring formation and filamentation of the single-ring. 2D intensity profiles were 
scaled to peak for clarity. 140 
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= 0 mm) of the organosiloxane (Figure 5.2a). Profiles were calculated through the 
expression for index changes originating from free-radical polymerization [39]: 

~n(x, y, z, t) = ~ns { 1 - exp [- ~o it-T JE(t)J 2 dt]} (5.1) 

where ~ns is the maximum index change (at saturation), U0 , the critical intensity 
required to initiate polymerisation, T, the monomer radical lifetime (assumed to be 
negligible) and JE(t)J 2

, the square of the electric field amplitude of the incident optical 
field. JE(t)J 2 was replaced with the spatial intensity profile of a Gaussian beam, 

( 
2r

2
) 

Ir = Imax exp - w2 (5.2) 

where Imax is the intensity maximum, r, the radial coordinate and w, the beam radius. 
Figure 5.2b shows that at a given intensity, the beam initially induces an index profile 
that corresponds to its own Gaussian shape (step 1). 

Because the rate of polymerization is intensity-dependent, the maximum change 
in refractive index occurs at the most intense axial region with a cylindrically symmet­
ric decay from this point. Polymerization and corresponding index changes also first 
reach saturation in the axial region (step 10). With time, as the less intense regions 
surrounding the axis also saturate, the refractive index assumes a flattened Gaussian 
profile (step 20). The evolution of the index profile from Gaussian to flattened Gaus­
sian strongly modulates the nonlinear propagation of the beam. At early times, the 
Gaussian refractive index profile leads to self-phase modulation of the beam [6], which 
gives rise to the diffraction rings observed in Figure 5.1 c-e. Self-phase modulation 
occurs when the Gaussian index profile imposes a transverse phase shift on the beam 
according to [6]: 

2n 1zo+d 
~'t/;(r) = ~ ~n(r,z)dz 

zo 
(5.3) 

where ~n(r, z) is the refractive index change induced at a specific point in space, >., 
is the free-space wavelength, z0 , the entrance face along the propagation axis, and 
L, the propagation distance along which the beam acquires a transverse phase shift. 
According to Equation (5.3), the profile of the phase shift ~'l/J(r) will correspond to 
the Gaussian profile of the refractive index change (~n(r, z)). Radiation from any 
two points along ~'l/J(r) with the same wavevector k.i = (d~'l/J(r)/dr) will undergo 
constructive (destructive) interfere when ~'l/J(r1 )- ~'l/J(r2 ) = mn, where mis an even 
(odd) integer. Multiple rings form when the maximum phase shift ~'I/Jo > 2n. The 
cylindrically symmetric profile of ~'t/;(r) produces a nested set of interference cones 
that propagate through the medium and are observed as concentric diffraction rings 
at z = 6.00 mm (Figure 5.lc). Consistent with the theory of self-phase modulation, 
the outermost ring, which originates from radiation with the greatest k.i about the 
inflection point, d~'l/J(r)/dr was the most intense (Figure 5.lc). 
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The transition of the beam from diffraction rings into a distinct single ring ob­
served in Figure 5.1 d-g originates from the flattening of the Gaussian refractive index 
profile (Figure 5.2b). The beam encountering the flattened Gaussian index profile was 
focused into a ring that continued to propagate along z. We confirmed this through 
beam propagation simulations in which a Gaussian beam was launched into the pho­
topolymer with a flattened Gaussian refractive index profile at the entrance face (z 
= 0.0 mm) [Section 5.4]. The beam propagated under nonlinear conditions and con­
tinued to induce refractive index changes along its propagation path according to 
Equation (5.1). Results presented in Figure 5.4 showed that under these conditions, 
the beam developed a dark central hole midway along its propagation path and was 
transformed into a ring. 1-D cross sections of the beam profile acquired at z = 6.0 
mm showed excellent agreement with experiment (Figure 5.5). 

Parallels exist between our findings and studies of a flat-top beam with a super­
Gaussian profile that transformed into a single ring in a Kerr medium [99]. Phase 
and ray plots revealed that under nonlinear conditions, the super-Gaussian beam was 
focused into a ring that evolved into a self-consistent G-profile. The ring was unstable 
to random noise and ultimately collapsed into multiple filaments. The flattened 
Gaussian profiles induced in the organosiloxane are close approximations of the super­
Gaussian profile, which is given by [129]: 

I ( r) = A exp [ - c:J l (5.4) 

where A is the maximum value of the function, w80 , a scale factor and n, the super­
Gaussian power, which indicates how rapidly the function decays from its peak to 
zero. Equation (5.4), which reduces to the Gaussian form when n = 2, increases in 
flatness with n. Plots in Figure 5.3 show the excellent overlap between the super­
Gaussian and flattened Gaussian profiles. 

The strong correspondence between the two spatial profiles indicates that the ori­
gin of ring formation is in fact the same in both Kerr and organosiloxane systems. 
However, the critical difference is that while single rings can only be obtained with 
a super-Gaussian beam in Kerr media, they were elicited with an unmodified Gaus­
sian beam in the organosiloxane. In the latter, the flattened refractive index profile 
does not correspond to the profile of the beam but instead, evolves over time as the 
refractive index profile induced by the beam reaches saturation. 

5.4 Simulations of single ring formation 
Two approaches were employed in simulating the formation of a single ring in the 

organosiloxane. The first one consisted of launching a Gaussian beam in a flattened 
Gaussian refractive index profile. Then the intensity map resulting from the propa­
gation of the Gaussian beam was exported and converted into a refractive index map. 
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Figure 5.3: a) Comparison between the profiles of a flattened Gaussian beam and a 
super-Gaussian beam fitted with A=0.006, n=3 and Wsc=l2.5 and b) the difference 
between both graphs ( 5 % in the tails) only for one half of the range in x. 
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This last map served as the new refractive index background for the next simulation 
step. The second approach is part of the study on simulations of the nonlinear prop­
agation of light at various intensities in the organosiloxane performed in Chapter 6. 
In there, a Gaussian beam was launched in a uniform refractive index matrix and the 
resulting intensity map was converted into a map of refractive index which served as 
the new background refractive index for the next simulation step. 

5.4.1 First approach: initial flattened refractive index profile 

In the first step of the simulation, a flattened beam was launched into a uniform 
matrix (400 X 6000 µm) with refractive index 1.47 as seen in Figure 5.4. In the 
following simulation step, the fiat refractive index profile was employed as the back­
ground refractive index profile but a Gaussian beam was used as the input beam. The 
following steps consisted of propagating the input Gaussian beam, exporting values of 
the 2D intensity profile and converting it into a refractive index profile which served 
as the background profile for the next simulation. By using the refractive index pro­
file created by the initial input flattened beam, we wanted to recreate the saturation 
occurring at sufficiently high intensities. 

We found that for certain values of the threshold exposure U0 , the evolution of the 
input Gaussian beam into a single ring was possible. The U0 parameter, as explained 
in Section 6.2 was used to tune the input intensity in the simulations. For instance we 
can observe in Figure 5.4, the formation of a single-ring for U0=0.09. Here 2D inten­
sity profiles are shown, for step 1, the profile corresponds to the linear propagation of 
a flattened beam. In step 2, the intensity profile changes drastically, showing at the 
output face no side bands but a focused beam and mid-way in the propagation dis­
tance, at around 4000 µmin the propagation direction, two distinctive stripes where 
most of the intensity is concentrated. As the simulation steps proceed, the fringes 
reach the exit face of the simulated region (step 26). These fringes represent a single 
ring intensity profile for a 3D system taking into account an azimuthal symmetry. 
This is more clearly shown in lD intensity profiles in Figure 5.5 (For example step 
50). 

The overall sequence of profiles in the simulations, qualitatively matches the ex­
perimental observations as seen in Figure 5.1 up to the formation of the single ring. 
The formation of the single-ring in Figure 5.1 f of the experiments, can be observed 
in step 30 of Figures 5.4 and 5.5. Intensity around the ring is greater compared to 
the initial beam intensity in experiments while in simulations the opposite occurs. 

The refractive index profiles corresponding to the simulation steps of Figure 5.4 
are presented in Figure 5.6. The initial refractive index profile (step 1) resembles step 
1 of the intensity profiles in Figure 5.6, having a conical shape and with traces of 
the side bands or diffraction rings. We observe that most of the central part reaches 
the saturation value of ~n8=0.006. This indicates that the intensity equivalent to 
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Figure 5.4: 2D intensity profiles resulting from nonlinear simulations of an input 
Gaussian beam propagated in an initial refractive index profile formed by the linear 
propagation of a flattened beam and U0=0.09. Over time (steps) the formation of 
a single-ring is observed . The profiles were normalized to the maximum values of 
intensity and the display area was zoomed in for better visualization. 
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Figure 5.5: Profiles of intensity in the transversal direction x at the output of the 
medium (z =6.00 mm) for an input Gaussian beam propagated in an initial refractive 
index profile formed by the linear propagation of a flattened beam and U0=0.09. 
Corresponding to 50 computational steps (top) obtained in Beamprop™ simulations 
and for individual transversal profiles selected at various steps (bottom). Each step 
represents a relative unit time. 
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Figure 5.6: 2D refractive index profiles corresponding to the simulations in Figure 
5.4 at various computational steps. 

U0=0.09 in the simulation is high enough to saturate right from the first step the 
refractive index in the medium. The refractive index profile for the following compu­
tational steps, does not suffer drastic changes. We observe however, further saturation 
of the refractive index (in step 50) of the central part at the exit face and radially. 

The simulation results show that by having a Gaussian beam launched into a 
refractive index profile with a flattened-Gaussian shape, a single ring develops at 
sufficiently high intensities. In the following approach we will examine only the effect 
of having a Gaussian beam at high intensities. 

5.4.2 Second approach: low values of U0 

We also simulated the behaviour of a Gaussian beam in the organosiloxane in an 
alternate way. A Gaussian beam was directly launched into a uniform matrix ( 400 
X 6000 µm) of refractive index of 1.47 as seen in step 1 in Figure 5.7. The resulting 
electric field amplitude map was exported and converted into a refractive index map 
with the external subroutine and then imported in the Beamprop™ software for the 
following steps. 

We found that for values of U0=0.005, the Gaussian beam induced a fiattened­
Gaussian refractive index profile as seen in Figure 5. 7b. The evolution of the 2D 
intensity maps show that initially the Gaussian beam suffers diffraction in step 2 and 
7 (Figure 5.7a), followed by a central depression formed at step 40 and 50. More 
details are observed by plotting the lD profiles at the output of the medium (Figure 
5.8) where few peaks resembling diffraction rings emerge at steps 20 and 30 and at 
steps 40 and 50, the central dark depression is clearly distinguished having a lobe 
in each side (Figure 5.8) which indicates the formation of a single ring by using 
radial symmetry with respect to zero. The contrast in intensity between the central 
depression and the side lobes however, is to small when compared to experimental 
results. There, a difference of at least 4-fold exists, whereas in the simulations the 
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Figure 5.7: a) 2D Intensity maps and b)refractive index maps for U0 = 0.005 for 50 
computational steps (top) obtained in Beamprop simulations. Each step represents 
a relative unit of time. 
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contrast is only 1.5 times. The refractive index profile does not change significantly 
over time, we only observe a slight growth in the saturation area covered by the beam. 

Although there is not an exact match between the intensity contrast of the central 
depression and the side lobes in simulations and the experimental findings, we were 
able to demonstrate that a Gaussian beam is able to induce a flattened refractive 
index profile resulting in the formation of a single ring at high enough intensities. 
Further improvement of simulation parameters and accurate knowledge of physical 
parameters influencing this process including the maximum refractive index change 
and critical exposure needed to induce polymerization could help improve the accu­
racy of simulation results. 

5.5 Filamentation of the single-ring 
The single ring was unstable to random noise in the organosiloxane and collapsed 

into multiple filaments (Figure 5.1). We have previously shown that broad, uniform 
beams propagating in the organosiloxane under similar conditions suffer modulation 
instability [21]. Weak amplitude perturbations (noise) in the medium that are neg­
ligible under linear conditions became amplified, triggering the spontaneous division 
of the beam into filaments that were randomly positioned in space. In the current 
study, modulation instability of the single ring led to an azimuthal arrangement of 
filaments that initially fluctuated in number but rapidly stabilised into 7 filaments. 
Each filament underwent strong self-trapping as indicated by a 20-fold increase in 
intensity relative to the initial intensity of the beam and decrease in average filament 
width (1/e2

) from 50 µmat 173 s to 21 µmat 211 s. 

Although their spatial positions and number did not change further, careful scrutiny 
revealed that the intensity distribution within each filament did continue to change. 
Figure 5.9 traces the behaviour of a single self-trapped filament in the ring. 

Until 207 s, the filament retained the tightly focused profile characteristic of a 
self-trapped beam; this corresponds to the fundamental mode (LP01 ) supported by a 
circular waveguide. At 313 s, the intensity distribution within the filament changed 
into the two lobed profile characteristic of the first order waveguide mode, LPn. The 
filament reverted back to LP01 at 318 s. Such oscillations between LP01 and LP11 

continued until 393 s. Only two oscillations of the beam between LP01 and LP11 are 
presented in Figure 5.9. 

We showed in Chapter 3 that under certain conditions, a self-trapped beam evolved 
from single mode to multimode propagation in the organosiloxane. We detected the 
sequential appearance of up to 5 modes, which underwent oscillations similar to those 
between the LP01 and LP11 modes in the filament (Figure 5.9). Self-trapped beams in 
most other media including Kerr materials and photorefractive crystals induce only 
a single mode waveguide and propagate as its fundamental mode [117]. Relative to 
these materials, the maximum refractive index change in the organosiloxane is greater 

151 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

254s 

312s 385s 

313s 389s 

314s 391s 

318s 393s 

Figure 5.9: 2D intensity profiles showing two sequences of oscillations (columns) 
where modes appear in a filament for the input intensity of 80 W / cm2 . At the top , 
the filament being monitored over time is highlighted with a white square. 
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by at least 2 orders of magnitude (Section 1.1.4). Here, the beam initially self-traps 
as the fundamental mode but continues to increase the refractive index of its own 
waveguide and in this way, sequentially excite high order modes. Theoretical simula­
tions showed that the oscillations of the modes originate from the slowly increasing 
refractive index of the self-induced waveguide. This causes a continual variation in 
both the number and propagation constants of modes, which is observed as the com­
plex oscillations between modes at the exit face of the medium. The behaviour of 
the filaments is similar to a single self-trapped beam. This confirms, as has been 
proposed by Chiao, Campillo and coworkers [103; 101], that the filaments resulting 
from modulation instability are a microscale example of self-trapping. In contrast to 
the self-trapped beam, only one high order mode was observed in the self-trapped 
filament. As intensity of the beam must be distributed into multiple filaments, the 
intensity and therefore the refractive index change within a single filament is probably 
not large enough to support multiple modes. Due to the relatively small dimensions 
of each self-trapped filament, it was difficult to detect high order modes in all of 
the repeat experiments. However, we observed them at least twice for each of the 
intensities studied ( vide infra). 

5.5.1 Single-ring and filamentation dependence on intensity 

Single ring formation in the organosiloxane was possible at 6 different intensities 
including: 27, 40, 64, 80, 95 and 111 W /cm2

. We experimentally investigated the 
filamentation and dynamics of the induced single ring at all these intensities. 

The overall dynamics of emergence of multiple rings followed by a single ring and 
then filamentation of the ring were very similar for all intensities as can be seen in 
Appendix A. However, differences in the diameter of the single-ring induced and 
number of filaments were observed to be dependent on input intensity. 

The first column in Figure 5.10 shows the bright single ring induced at different 
intensities. The overall trend also shown numerically in Table 5.1, indicates an in­
crease of single ring diameter with increasing intensity for the intensities 40, 64 and 
80 W /cm2 and then a slight decrease for intensities 95 and 111 W /cm2

. For the 
lowest intensity in this range, 27 W/cm2

, we observed the formation of a single-ring 
only in one third of the experiments. In those cases, the single-ring diameter was 
bigger than the next intensity 40 W /cm2

. When no single ring was formed, the beam 
directly broke and filamented. This is consistent with previous theoretical and exper­
imental studies in Kerr media, where a single ring results from super-Gaussian beam 
propagation, an increase in the ring radius with input power has been observed [116; 
99]. 

The number of filaments had an overall increase with input intensity. The maxi­
mum number of filaments in which single-rings split for diffent intensities is observed 
in Table 5.1. This number starts with two filaments for the intensities 27 and 40 
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Single-ring formation Ring filamentation 

1111 W/cmzl 

Figure 5.10: 2D intensity profiles of resulting single ring at different input intensities 
(first column) and the corresponding 2D (second column) and 3D (third column) 
intensity profiles of filamentation due to instabilities. 
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W/cm2 and it increases to 16 filaments for 64 W/cm2
, 17 filaments for 80 W/cm2 

and then it stays at approximately that number for the next two intensities, 95 and 
111 W / cm2. Although the trend for the maximum and average number of filaments 
right after starting breakage (see Table 5.2) correlates with the single-ring diameter, 
i.e. the bigger the ring diameter the greater the number of filaments in which it 
breaks into, this does not agree for the first intensity of 27 W /cm2 in the cases where 
a single-ring is formed. 

Table 5.1: Single-ring diameter and maximum number of filaments 
Intensity Ring diameter Max. # filaments 
(W /cm2

) Avg. width(µm) Stdv. (µm) Avg. height(µm) Stdv. (µm) 

27 252 62 317 53 2 

40 184 57 248 79 2 

64 322 206 409 171 16 

80 400 119 442 129 17 

95 250 53 290 45 14 

111 292 76 327 65 16 

Prediction of number of filaments in ring-shaped beams in Kerr media has mostly 
been performed through azimuthal modulation instability analysis [100]. For optical 
vortices the number of filaments resulted dependent on power and topological charge 
(m), which is a measurement of the phase winding [100] and in a saturable Kerr 
medium, vortex beams resulted in 2m filaments [111]. In rings induced by super­
Gaussian beams the number of filaments was proportional to the square-root of the 
input power [99]. The resulting trend in the organosiloxane is similar to the one found 
in rings induced by super-Gaussian beams in that the number of filaments increases 
with input power. 

Examining the dynamics of filamentation of the ring, we observed in Table 5.2 
that for the first two intensities 27 and 40 W /cm2 the number of filaments increased 
towards the end of the experiment. In contrast for the next four intensities, the 
filaments mostly fused and their number decreased after the first filamentation. The 
average filament size was around 30 µm for the two lowest intensities and around 40 
µm for the remaining intensities. Perhaps at lower intensities, self-trapping of the 
filaments is more efficient, similar to the self-trapping of the whole beam [21], where 
at low intensities, narrower waveguides with higher efficiency are formed due to a 
greater refractive index contrast achieved during self-focusing. 

We observed that at the two lowest intensities of 27 and 40 W / cm2
, the filaments 

always divided in two in the vertical direction. This correlates with the input beam 
which is linearly polarized in the same direction, however further investigations should 
be performed to confirm any polarization dependence on the direction of filamenta­
tion. For higher intensities, filaments were more equally spaced at higher intensities 
compared to lower ones. 
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Table 5.2: Filamentation parameters 
Intensity (power) Average Average Average filament size 

(W/ cm2)/ (µW) # filaments start # filaments end (µm) 

27 (85) 2 2.4 31±14 

40 (125) 2.4 3.4 31±6 

64 (200) 8.7 7 44±12 

80 (250) 11.8 8 40± 12 

95 (300) 9.4 6.6 43±8 

111 (350) 11.4 7 40±11 

5.6 Permanent structures after fl.lamentation 
Refractive index changes resulting from photopolymerization in the organosiloxane 

are permanent and therefore leave inscribed structures which provide an opportunity 
to visualize the propagation path of the light after performing the experiments. Fig­
ure 5.11 shows the resulting structures for the filamentation experiments for all the 
intensities studied. We found that the filaments observed in the experiments, induced 
very thin waveguides that were arranged around a single-ring and their trajectory ap­
pears to follow the surface of a cone. In all the cases, the number of thin waveguides 
matched the number of filaments at the end of the experiments. For example, for the 
intensity of 27 W /cm2 two thin waveguides are observed (Figure 5.lla), in the case of 
40 W/cm2 four waveguides are observed (Figure 5.llb), since in that experiment the 
number of filaments changed from two to four towards the end. For higher intensities 
the number increased according to the final number of filaments observed at the end 
of the experiment. 

5. 7 Conclusions 
We have shown experimentally the evolution of a Gaussian beam from diffraction 

rings to a single ring that ultimately suffers filamentation in the organosiloxane for 
intensities covering from 27 to 111 W / cm2 . This resulted from having initial intensi­
ties large enough to induce a flattening in the refractive index profile. Simulations of 
the nonlinear propagation of the Gaussian beam confirmed that a flattened refractive 
index profile leads to the formation of a single ring. Filamentation of the ring was 
observed as a result of modulation instability . An overall increase in the number of 
filaments dependent on intensity was found and also the size of the ring was dependent 
on intensity. And finally, circular arrays of permanently inscribed thin waveguides 
were observed as a result of the filamentation process along the single ring. 
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Figure 5.11: 2D intensity profiles ofresulting single-ring filamentation at various input 
powers and their corresponding micrographs of the permanent inscribed structures 
showing multiple waveguides due to refractive index changes in the organosiloxane 
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Chapter 6 

Simulations of nonlinear propagation at 
various intensities 
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The BPM is an approximation of the exact wave equation for monochromatic 
waves. By using a scalar field assumption, the wave equation reduces to the Helmholtz 
equation and by using the slowly varying envelope approximation (paraxial approxi­
mation) the Helmholtz equation reduces to [118] 

(6.1) 

having 

¢(x, y, z) = u(x, y, z)eikz (6.2) 

where u(x, y, z) is the slowly varying field, k is a constant number that represents the 
average phase variation of the field ¢( x, y , z), k is the wave number and x and y are 
the transverse coordinates and z is the propagation coordinate. We performed 2-D 
simulations in BeamPROP™, which is a simplification of Equation (6.1) where the 
field is considered to be extended infinitely and the y dependence is omitted. This 
can be justified by the radial symmetry of refractive index changes in the isotropic 
organosiloxane. 

Numerical simulations of refractive index profiles induced at different intensity 
regimes are critical since we found in our experimental work that they determine 
the type of nonlinear phenomenon observed. We deduced that in the low intensity 
regime (see Chapter 3) , a Gaussian refractive index profile was induced in order to 
observe self-trapping. In the mid-intensity regime, a Gaussian index profile with 
greater refractive index change values compared to the low intensity index profile was 
needed for the emergence of diffraction rings. At the high intensity regime, a flat top 
refractive index profile is induced, which prevented self-trapping and allowed for the 
formation of a single ring and filamentation in the organosiloxane. 

6.2 Equivalence of intensity and U0 in simulations 
Simulations over a wide range of intensities were performed using the software 
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Figure 5.11: 2D intensity profiles ofresulting single-ring filamentation at various input 
powers and their corresponding micrographs of the permanent inscribed structures 
showing multiple waveguides due to refractive index changes in the organosiloxane 
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Chapter 6 

Simulations of nonlinear propagation at 
various intensities 

In previous chapters, we presented experimental studies of laser propagation in a 
photopolymer covering a wide range of intensities. A variety of phenomena was ob­
served at different intensities including self-trapping, excitation of high order modes, 
diffraction rings, single ring formation and filamentation. 

Previous theoretical studies have examined self-trapping in photopolymers through 
two-dimensional numerical simulations using the beam propagation method and the 
measured index evolution [20], and also by using the paraxial wave equation with 
one transverse dimension and updates in the refractive index change [130; 131; 35]. 
Wentzel-Kramers-Brillouin analysis has been employed to understand the modal prop­
erties of the waveguides formed in photosensitive materials during self-trapping [63]. 
Theoretical studies on diffraction ring phenomena have been mainly realized for thin 
media (thickness :::; Raleigh range) by addition of the phase shift induced by refrac­
tive index changes to the output amplitude of the electric field. The far-field intensity 
distribution has then been obtained by applying the Fraunhofer approximation of the 
Fresnel-Kirchhoff diffraction formula to the electric field amplitude [85]. For long 
pathlengths (thickness > Rayleigh range), diffraction ring theory has been developed 
for sodium vapour by employing a paraxial approximation of Maxwell equation for a 
homogeneously broadened two-level system [81]. Photorefractive crystal shock waves 
(closely related to diffraction rings) have been modelled in the context of fluid dynam­
ics using the Euler-like fluid equations [80]. Single-ring formation during nonlinear 
light propagation has been modelled in Kerr media through the nonlinear Schrodinger 
equation and its filamentation through an azimuthal modulational instability analysis 
[99]. Filamentation of photopolymers has been modelled by adding small transverse 
and spatial perturbations to plane waves [105] based on the modulation instability 
theory from Bespalov and Talanov [96]. 

We performed numerical simulations of a c.w. laser nonlinear propagation in the 
organosiloxane in two dimensions (2D) since previous theoretical work on nonlinear 
phenomena has not modelled all the features and trends observed in our experimental 
work. For instance, no theoretical studies have been performed on intensity depen­
dent self-focusing and self-trapping dynamics. Diffraction ring emergence has not yet 
been modelled in photopolymers and theory for long pathlengths has been limited 
to very different systems [81]. Single ring formation has only been modelled for the 
non-saturable Kerr medium where the nonlinear mechanism is fundamentally differ-
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ent. Overall, there is a lack of systematic numerical studies of the intensity dependent 
nonlinear light propagation and corresponding refractive index changes in photopoly­
mers. In this study, we address this problem by performing numerical simulations 
over a wide range of intensities in a photopolymer. We simulated most of the features 
observed in our experimental work including temporal dynamics of self-trapping in 
the low intensity regime, modal correlation with oscillations during self-trapping, the 
emergence of diffraction ring and single ring formation. 

In the following Sections, we present first an overview of the methodology em­
ployed to perform simulations using BeamPROP™ software and an external subrou­
tine (Appendix B). This is followed by the equivalence between tuning the value of 
critical exposure U0 and varying the intensity. Results of the simulated dynamics of 
self-trapping at the low intensity regime are then presented including self-trapping 
trends, dynamics of modal evolution and dependence of self-trapping with inten­
sity. Simulations in the mid-intensity regime are presented with the emergence of 
diffraction rings. At higher intensities, we simulated the formation of a single ring. 
Finally simulations at very high intensities are presented. We will show that this ap­
proach models the different phenomena observed in our experimental studies including 
self-trapping, oscillations accompanied with high-order modes, diffraction rings and 
single-ring formation. Filamentation of the beam was not simulated because this 
requires introduction of random noise in the system which increases the modeling 
complexity. 

6.1 Nonlinear propagation in organosiloxane using 
BeamPRQpTM 

We modelled nonlinear propagation of a Gaussian beam in the organosiloxane 
through an iterative process using the beam propagation method (BPM) combined 
with the calculation of refractive index changes in the medium. The BPM was used 
with the aid of the software package BeamPROP™ (RSoft Design Group, Inc) and 
the refractive index calculations were performed by using an external subroutine (Ap­
pendix B). Specifically, a Gaussian beam was launched in a uniform refractive index 
medium, its propagation under linear conditions was calculated and a map of the 
resulting electric field amplitude along the propagation length was obtained. Then, 
using Equation (6.3) in the external subroutine, refractive index changes were calcu­
lated based on the electric field amplitude map and those changes were input in the 
BeamPROP™ software where the propagation of the Gaussian beam through this 
modified medium was modelled again. This process was iteratively performed over 
many steps. This approach is equivalent to nonlinear propagation in the photopoly­
mer; by updating the new changes in refractive index in the medium we take into 
account the nonlinearity of the system. The results obtained by using this approach 
are consistent with numerical results on self-trapping by Monro and coworkers [35; 
124]. For details of the simulation procedure see Section 2.5.1. 
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The BPM is an approximation of the exact wave equation for monochromatic 
waves. By using a scalar field assumption, the wave equation reduces to the Helmholtz 
equation and by using the slowly varying envelope approximation (paraxial approxi­
mation) the Helmholtz equation reduces to [118] 

au - _!___ ( 8
2
'u 8

2
·u 2 - - 2 ) 

a - - a2 2 + a2 2 + ( k k )u 
z 2k x y 

(6.1) 

having 

<f>(x, y, z) = u(x, y, z)eikz (6.2) 

where u( x, y, z) is the slowly varying field, k is a constant number that represents the 
average phase variation of the field </>( x, y, z), k is the wave number and x and y are 
the transverse coordinates and z is the propagation coordinate. We performed 2-D 
simulations in BeamPROP™, which is a simplification of Equation (6.1) where the 
field is considered to be extended infinitely and the y dependence is omitted. This 
can be justified by the radial symmetry of refractive index changes in the isotropic 
organosiloxane. 

Numerical simulations of refractive index profiles induced at different intensity 
regimes are critical since we found in our experimental work that they determine 
the type of nonlinear phenomenon observed. We deduced that in the low intensity 
regime (see Chapter 3) , a Gaussian refractive index profile was induced in order to 
observe self-trapping. In the mid-intensity regime, a Gaussian index profile with 
greater refractive index change values compared to the low intensity index profile was 
needed for the emergence of diffraction rings. At the high intensity regime, a fiat top 
refractive index profile is induced, which prevented self-trapping and allowed for the 
formation of a single ring and filamentation in the organosiloxane. 

6.2 Equivalence of intensity and U0 in simulations 
Simulations over a wide range of intensities were performed using the software 

BeamPROP™ and an external subroutine (Appendix B). However, BeamPROP™ 
does not allow for changes to the input beam intensity, it only allows for an input 
beam with a unitary electric field amplitude. To overcome this limitation, we tuned 
the parameter critical exposure U0 in the formula for the refractive index change of 
the external subroutine, which was equivalent to changing intensity. 

To understand the equivalence between U0 and incident intensity , we can first 
examine the formula employed to convert electric field amplitude maps to refractive 
index maps. It corresponds to the formula develop by Kewitsch and coworkers [39]: 

.6.n(x, y, z, t) = Lln8 { 1 - exp [- ~o 1t-T IE(t)l 2 dt]} (6.3) 
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where !::ln 8 is the maximum refractive index change, U0 is the critical exposure re­
quired to initiate polymerization, T is the monomer radical lifetime and E(t) is the 
amplitude of the electric field. 

If we were to tune the intensity (IE(t)l 2
) and fix the other parameters (!::ln 8 and 

Uo), we would obtain a set ofrefractive index change curves which saturate at different 
times as observed in Figure 6.1 A. 

In this case we fixed the values of U0 and !::lns to 1 J / cm2 and 0.006 [24] respec­
tively. In Figure 6.1 B, we fixed the value of intensity at 1 W /cm2 and of !::ln 8 at 
0.006 and vary U0 , obtaining equivalent refractive index curves over exposure time. 
To obtain the equivalent U0 for a particular intensity, we calculated the ratio of 
J~-r IE(t)l 2 dt2 /Uo for each of the values in Figure 6.1 A. In that case, we took the 
numerator as the intensity over one second, which corresponds to radiant exposure. 
For example, for the intensity 12732 W / cm2 , the numerator would correspond to 
12732 Ws/cm2 or J/cm2 and the denominator to U0=l J/cm2

, therefore the ratio 
J~-r IE(t)l 2 dt2 /U0 is 12732. To find the equivalent U0 , we just solve for the equation 

and having J~-r IE(t)l 2 dt2 = 1 W/cm2
• 1 s = 1 J/cm2

, we obtain U0= 1 J/cm2 
/ 

12732 = 0.00008 J / cm2
• In order to obtain a direct relation between the experimen­

tal intensities employed and the simulated values U0 , the physical value of critical 
exposure in the system is required. 

We can understand the equivalence between intensity and the parameter U0 since 
the value of U0 is the critical exposure to initiate polymerization, therefore the smaller 
this value is, the faster changes in refractive index will occur and viceversa. Therefore, 
small values of U0 represent high intensities and larger values of U0 represent lower 
intensities. 

To further test the equivalence between varying the parameter U0 and tuning in­
tensity, we plotted the refractive index profiles induced by Gaussian beams of varying 
intensity (fix U0 ) and of varying U0 (and fix intensity) as observed in Figure 6.2. In 
Figure 6.2Al, input Gaussian beams with varying intensities are shown and in Figure 
6.2A2, the corresponding refractive index induced. Figure 6.2Bl in contrast shows 
only a single Gaussian beam intensity and Figure 6.2B2 the induced refractive index 
profiles at values of U0 that are equivalent to intensities in Figure 6.2Al. We observed 
that the exact same refractive index profiles are induced in both cases. This proves 
that changing U0 values achieves a similar effect on refractive index changes as tuning 
intensity. 

To summarize our approach, we will simulate the intensity dependent nonlinear 
propagation of light in the organosiloxane by iteratively propagating a Gaussian beam 
using Beamprop™ combined with calculations of refractive index changes. To vary 
the intensity, the parameter U0 will be tuned in Equation (6.3) of the external sub­
routine. A medium pathlength of 6.00 mm will be employed and a 20 µm diameter 
Gaussian beam will be launched at a wavelength of 532 nm in the central part of a 2D 
block (800 µm X 6.00 mm) with uniform refractive index. These values correspond to 
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Figure 6.1: Graphs of refractive index change with respect to exposure time based on 
Equation (6.3) for A) varying intensity and for B) varying U0 . 
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Figure 6.2: Equivalence of refractive index profiles induced by A) varying intensity 
and B) varying crit ical exposure U0 . Figure Al indicates the different input intensities 
and Figure A2 the corresponding refractive index profiles. Figure Bl has a single input 
intensity and Figure B2 indicat es the resulting refractive index profiles for various 
values of U0 . 

163 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

experimental values except for the width of the medium (800 µm) which was reduced 
to optimize computation time. In numerical simulations we will be probing the three 
intensity regimes that were found in our experimental studies. 

6.3. Dynamics of self-trapping in the low intensity 
regime 

In the low intensity regime, we performed simulations for values of U0=500, 100, 
50 and 10. Dynamics of self-trapping were modelled including changes in the inten­
sity and refractive index profiles over time. One-dimensional transverse profiles of 
intensity along z and at the output of the medium (z= 6.00mm) were obtained over 
time giving information in the modal composition. Oscillations of the beam intensity 
at the output of the medium accompanied with the observation of high-order modes 
were also confirmed using simulations. Obtained simulated trends for the intensity 
dependent parameters for self-trapping agreed with the experimental ones, showing 
that an optimum intensity exists at which the beam self-traps more efficiently. 

6.3.1 Self-trapping 

For the lowest intensity in simulations, U0=500, Figures 6.3 and 6.4 show the 
resulting intensity and refractive index maps, respectively, for computation steps 
covering from step 1 to step 70. Each step represents a unit of time in simulations. 
The initial intensity profile (step 1) in Figure 6.3 shows the diffraction of the input 
Gaussian beam through the medium. The corresponding refractive index profile shows 
that in the first step (Figure 6.4) the beam is only able to polymerize areas of high 
intensity forming a bullet-like structure. 

Over time, we observe the beam overcoming diffraction indicated by the narrowing 
of its width (steps 4 to 29 in Figure 6.3). The intensity maximum observed at the 
input face z= 0.00 mm in step 1, moves away along the propagation axis in the 
following steps, reaching close to z= 50 µmin step 29. The translation of the maximum 
(called also primary eye) was explained to occur when the refractive index change in 
the material is large enough to overcome t he initial beam diffraction and therefore 
it was considered as a precursor to waveguide formation [35]. At step 25 (Figure 
6.3), the intensity maximum has moved away from the input face and the beam has 
narrowed significantly counteracting diffraction. At the same time, we observed that 
the refractive index profile at step 25 (Figure 6.4) started to form a channel waveguide 
and at step 70 a thin and uniform waveguide had formed. 

Formation of multiple intensity maxima is observed along the propagation axis in 
Figure 6.3. Three, four and nine intensity maxima are formed in steps 34, 50 and 70, 
respectively for U0 = 500. The appearance of intensity maxima has been explained 
as a result of mode beating [63]. Our results are generally consistent with previous 
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Figure 6.3: 2D Simulation results in Beamprop showing the intensity profiles of a 
propagating Gaussian beam with U0 = 500. The propagation coordinate is indicated 
with z and the transverse coordinate with x 
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Figure 6.4: 2D Simulation results in Beamprop showing the refractive index profiles 
of a propagating Gaussian beam with U0 - 500. The propagation coordinate is 
indicated with z and the transverse coordinate with x 
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simulations developed by Monro and coworkers [35] however details of the dynamics 
of mode evolution has not been previously modelled. This will be addressed in the 
following Sections taking into account a larger magnitude of !:1n compared to previous 
simulations. 

6.3.2 Dynamics of modal evolution 

The intensity profile along the propagation axis z did not remain constant dur­
ing simulations, which resulted from the formation of intensity maxima during self­
trapping. These maxima were more intense closer to the entrance face and decreased 
as the beam propagated through z as seen in Figure 6.5. Intensity profiles were 
narrower at locations of maximum intensity and wider at locations of minimum in­
tensity. More detail can be found in Figure 6.6a, where the intensity profiles for 
the first oscillation along z of step 50 are plotted from z=llOO µm and z=2100 µm. 
These correspond to locations of intensity maxima. The intensity profile at the first 
maximum presents two side lobes next to the peak, a similar profile is repeated in the 
next maximum but broadened. At the location of minimum intensity, z=l600 µm, 
the intensity profile became wider and intensity seemed to be transferred to the sides 
of the peak. A similar behaviour was observed at the last oscillation of step 50 from 
z=3400 µm to z=4800 µm shown in Figure 6.6b. Here the difference was that all the 
intensity profiles had broadened significantly compared to the ones shown in the first 
oscillation. Intensity maxima in step 50 were found to be positioned aperiodically at 
increasing distances along z, starting from around 1000 µm in the first oscillation and 
ending with a separation of 1500 µm in the last oscillation. 

Overtime, we observed the appearance of more intensity maxima as shown in 
Figure 6.7. Here, intensity maxima for a later step (step 70) are shown. A behaviour 
similar to the one in step 50 occurred with few differences. The side lobes of the 
intensity maxima (z=700 µm and z=1300 µm) for the first oscillation (Figure 6.8a) 
were higher in intensity compared to the first oscillation of step 50. Intensity profiles 
for the last oscillation in step 70 (Figure 6.8b), had a width that was narrow compared 
to the last oscillation for step 50 (Figure 6.6b). Also there was more similarity in 
intensity profiles between first and last oscillations in step 70 compared to the ones in 
step 50. The position of the intensity maxima at step 70 became more periodic along 
z and as more intensity maxima emerged, the distance between them was smaller. 
The distance between the first maxima was around 400 µm, for the second and third 
600 µm and the distance between the last maxima was around 700 µm. 

These simulations, confirmed that not only the fundamental mode propagated 
along z during self-trapping but also high order modes. The modal composition was 
observed to vary along z for step 50 (Figures 6.5). This was indicated by the different 
intensity profiles observed during oscillations and in the propagation distance. In 
the first oscillation (Figures 6.6a), high intensity side lobes occurred at locations 
of intensity maxima (at z=llOO µm). This can be explained as a superposition 
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Profiles along z for step 50, U0=500 
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Figure 6.5: Simulated intensity profiles along the propagation axis z for step 50 of a 
propagating Gaussian beam with U0 = 500. 
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Profiles of step 50 at various "z" for U0=500 
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Figure 6.6: Simulated intensity profiles for the a) first and b) last oscillations along 
the propagation axis z for step 50 of a propagating Gaussian beam with U0 = 500. 
In bold are indicated the profiles for the intensity maxima in the oscillation. The 
relative intensity is on a logarithmic scale for clarity. 
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Profiles along z for step 70, U0=500 
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Figure 6. 7: Simulated intensity profiles along the propagation axis z for step 50 of a 
propagating Gaussian beam with U0 = 500. 

between modes, which could represent the superpositions of the fundamental mode 
with either LP02 , LP11 or LP21 . At intensity minima, the fundamental mode was 
either very weakly guided or not guided at all and a superposition of high order mode 
took place, as the peak intensity decreased and side lobes intensity also increased 
and broadened. At the minimum, z=l600 µm , (Figure 6.6a) the superposition of 
LP02 with either LP11 or LP21 occurred. We observed that in the last oscillation 
for step 50 (Figures 6.6b) there was a change in intensity profiles compared to the 
first oscillation and therefore a likely change in modal composition. This could be 
the result of the variation in the refractive index value and profile along z during 
self-trapping (Figure 6.4). As the index profile also varied over time, changes were 
observed in intensity profiles and therefore changes in modal composition in step 70 
(Figure 6.8) compared to step 50. The greater similarity between the first and last 
oscillations of step 70 compared to the ones in step 50 can also be explained with 
the evolution of the index index profile along z . As the induced waveguide became 
more uniform in z (Figure 6.4) , the propagation constants of the excited modes also 
became approximately constant along z and the modal composition did not vary as 
much for step 70. This also explains the increasing spatial periodicity of the intensity 
maxima at step 70, as the beat length of the modes would become more constant. 

The overall behaviour of the narrowing of the beam, the formation of a thin 
waveguide and oscillations in the simulations is in agreement with our experimental 
observations. We observed that intensity maxima along z correlated with the exis­
tence of multiple modes in the induced waveguide during self-trapping. However, in 
order to compare directly the experimental intensity profiles of the beam with the 
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Profiles of step 70 at various "z" for U0=500 
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Figure 6.8: Simulated intensity profiles for the a) first and b) last oscillations along 
the propagation axis z for step 70 of a propagating Gaussian beam with U0 = 500. 
In bold are indicated the profiles for the intensity maxima in the oscillation. The 
relative intensity is in logarithmic scale for clarity. 
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simulations, information at the output face of the organosiloxane is required. Figure 
6.9 shows the simulated intensity profiles over time (steps) for U0=50 at z=6.00mm. 

A greater simulated intensity was chosen to make the comparison as it presented 
greater modal composition (see following Section). The simulated intensity variations 
over time (top plot in Figure 6.9) correlated well with our experimental findings at low 
intensities where oscillations in intensity occurred with an increase in the intensity 
maxima as time progressed. This was shown in the temporal plot of the evolution 
of peak intensity resulting from experiments at an intensity of 3.2 x 10-3 W /cm2 in 
Figure 6.lOa. 

In our experiments, we observed oscillations in intensity and beam width over 
time when monitoring at the output of the medium. These oscillations were correlated 
with the observation of the fundamental and higher order modes in the following way: 
during the intensity peaks of the oscillations the fundamental mode was dominant 
and during the valleys high-order modes where observed individually or superposed 
with other modes. This can be seen in the 2D and ID intensity profiles in Figure 
6. lOb, having the intensity peaks in bl and b6 and high-order modes in b2, b3 and 
b4 corresponding to LP02 , LP21 and LP11 . Intensity profiles in simulations showed 
a similar trend, where at peaks of the oscillation a dominant central intensity was 
observed whereas at valleys of the oscillations, higher order modes were present. This 
became clear at U0=50 as shown in the individual intensity profiles in Figure 6.9. 
The intensity peaks were observed at step 36 and step 41, in between, there was one 
oscillation in intensity and in the valleys of the oscillations two different higher order 
modes were detected. Assuming radial symmetry, these modes corresponded to LP02 

and either LP11 or LP11 in steps 38 and 39, respectively. The sequence of modes 
therefore agreed well with the experimental one for this particular intensity. During 
peaks, although the beam did not correspond to the fundamental mode in simulations 
but rather to a superposition of modes, the central peak was dominant in intensity 
compared to the side lobes. In experiments we saw most of the time only a circular 
beam but occasionally side lobes appeared as in b6 in Figure 6.10. 

6.3.3 Dependence of self-trapping dynamics in intensity 

When the input intensity of the beam was increased in simulations, and this 
required using lower values of U0 , self-trapping occurred at faster rates compared to 
U0=500, which is the lowest simulated intensity. For example, the translation of the 
first maxima and narrowing of the beam for U0 =100, 50 and 10 (see Figures C.1 
and C.4 in Appendix C, 3.5 in Chapter 3) occurred at steps 5, 3 and 2 respectively, 
earlier than at U0=500. This followed from the fact that higher intensities induce 
greater refractive index changes. The beam at U0=100, 50 and 10 were able to induce 
in step 1 refractive index changes across all the propagation of the Gaussian beam 
(Figures C.2 and C.4 in Appendix C and 3.4 in Chapter 3) and not only in high 
intensity areas as it occurred at U0=500. A thin waveguide was induced at faster 
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Figure 6.9: P rofiles of intensity for U0 = 50 in the transversal direction x at the 
output of t he medium (z = 6.00 mm) for 50 computation steps (top) obtained in 
Beamprop simulations and for individual transversal profiles selected at various steps 
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Figure 6.10: Experimental results at the lowest intensity 3.2 x 10- 3 W /cm2 . a) 
Temporal evolution of peak intensity (solid blue line) and effective beam diameter, 
1 / e2 (dotted red line) collected at the exit face of the organosiloxane and b) 2D and 
lD intensity profiles of one oscillation at (b1) 120 s (b2) 130 s (b3) 133 s (b4) 135 s 
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rates at U0=100 and 50 compared to U0=500. We also observed that after steps 20 
and 6 for the higher intensities U0=50 and 10 respectively, the waveguide experienced 
broadening after self-trapping. This broadening in simulations, correlates well with 
the broadening of the beam width observed during our experiments. 

When comparing self-trapping parameters such as intensity increase, self-trapped 
width and self-focusing time at different U0 in our simulations, we obtained very good 
agreement with trends observed in our experimental study for the low intensity regime 
(see Section 3.3.2). As intensity is increased in the low regime, self-trapping occurred 
at a faster rate and the beam experienced a faster self-focusing time. This can be 
observed by the maximum relative intensity occurring in our simulations at steps 
68, 48, 47 and 13 for U0=500, 100, 50 and 10, respectively, where the decreasing U0 

translated into increasing intensities. Moreover, an optimum intensity was found at 
which the self-trapping is more efficient. This was indicated by a maximum intensity 
transmittance and enhancement at the output face of the medium along with a min­
imum self-trapping beam width. This occurred in our simulations for U0=50, where 
there was a 33-fold increase in intensity at step 47 compared to step 1 (diffracted 
beam) and a self-trapped beam width at step 47 of 3.18 µm as shown in Table 6.1. 
When comparing with the other lower and higher intensities (or U0 ), the increase in 
intensity is smaller and the beam width is bigger. This trend was consistent with an 
optimum self-trapping intensity found during our experimental studies. 

Table 6.1: Simulation results for low intensity regime 

Uo Intensity increase Self-trapped beam width Step 
(µm) 

500 14-fold 9.07 68 

100 28.3-fold 3.77 48 

50 33-fold 3.18 47 

10 25.3-fold 4.85 13 

The intensity along z was not uniform during self-trapping for all the simulated 
values of U0 . Multiple intensity maxima were present and as the intensity was in­
creased (or lower U0 ) the appearance of maxima occurred at a faster rate. Over time, 
more intensity maxima were observed for U0=l00, 50 and 10 (see Figures C.l and 
C.3 in Appendix C and Figure 3.5 in Chapter 3). This resulted from the increasing 
polymerization rates with intensity. With increasing intensity, the modal evolution 
of one cycle changed drastically along z for a given step. For example at U0=50 in 
Figure C.5c, the intensity profiles in the oscillation from z=lOO µm to z=400 µm were 
less broad and possessed less side bands compared to the ones shown at an oscillation 
between z=1400 µm to z=1800 µm. Over time, oscillations in intensity progressed 
in a similar fashion for U0= 500, 100 and 50, appearing more periodic along z. Os­
cillations in the beam for the two highest intensities became more pronounced. In 
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the case of U0=50, this happened after step 20 (Figure 3.5 in Chapter 3) and for 
U0=10 this was visible from step 6 (Figure C.3 in Appendix C). The strength of the 
oscillations was correlated with the modal profile observed along z . As the intensity 
was increased (lower U0 ) a richer modal composition appeared during oscillations as 
observed for U0 =100, 50 and 10 in Figures C.5b, c and d in Appendix C, respectively. 

When comparing the temporal evolution of intensity at the output of the medium 
z=6.00 mm between simulations and experiments, we found a good agreement in the 
overall behaviour of intensity oscillations. At low intensities, the oscillations increased 
progressively and with certain periodicity for both experiments and simulations (Fig­
ure 6.11 al and bl). At higher intensities, oscillations were more irregular and had 
the greatest intensity peak at early times compared to lower intensities for both 
experiments and simulations (Figure 6.lla2 and b2). By examining the individual 
intensity profiles at the output of the medium over time, we saw a trend where more 
variation in intensity existed at higher intensities, which translated into the existence 
of more high-order modes compared to low intensities. This was clearly observed 
when comparing the profiles in Figures 6.12, 6.13, 6.9 and 6.14, corresponding to the 
output intensity profiles at U0=500, 100, 50 and 10, respectively. A similar trend 
was observed during experiments in the low intensity regime, where more high-order 
modes occurred at higher intensities. Figure 6.15 shows selected experimental 2D 
intensity profiles at the highest intensity 1.6 x 10-2 W /cm2 within the low intensity 
regime. High-order modes are shown corresponding to LP11 , LP21 , LP02 and super­
positions of modes such as LP03 , LP02 and LP11 . When comparing these profiles with 
the simulated profiles of U0=10 in Figure 6.14, assuming circular symmetry, we were 
able to identify LP11 or LP21 at steps 6 and 10, LP02 at steps 7 and 8 and a similar 
superposition of modes LP03 , LP02 and LP11 , at step 17. 

The existence of high-order modes at higher intensities can be explained through 
the intensity dependence of the rate of polymerization and hence the rate of refractive 
index changes. At low intensities, a slow polymerization rate occurs compared to 
high intensities and therefore a smaller refractive index change is induced. At high 
intensities saturation is reached faster, therefore the induced waveguide broadens and 
more modes can be supported. The broadening is clearly observed in the refractive 
index profiles for U0=10 in Figure C.4 in Appendix C. 

Simulations in the low intensity regime were consistent with the trends obtained 
in our experiments. An optimum input intensity was found during simulations where 
self-trapping is more efficient. Oscillations of the beam were observed along the 
propagation direction and at the output of the medium overtime during self-trapping. 
The correlation between the oscillations and the observation of high-order modes gave 
further insight into the evolution of modes with intensity. 
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output of the medium (z = 6.00 mm) for 50 computation steps (top) obtained in 
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Figure 6.14: Profiles of intensity for U0 = 10 in the transversal direction x at the 
output of the medium (z = 6.00 mm) for 50 computation steps (top) obtained in 
Beamprop simulations and for individual transversal profiles selected at various steps 
(bottom). Each step represents a relative unit of time. 
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Experimental profiles 
1.6 x 10-2 W/cm2 

Figure 6.15: 2D experimental profiles of intensity at 1.6 x 10 -2 W /cm2 for selected 
modes at (a) 39 s (b) 51 s (c) 61 s (d) 120 sand (e) 138 s with their corresponding 
lD profile. 
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6.4 Mid-intensity regime: diffraction rings 

In the mid-intensity regime, simulations showed the emergence of diffraction rings. 
We found that from U0=5 to 0.5, diffraction rings appeared with oscillations similar 
to diffraction rings with high-order modes observed experimentally. At U0=0.1 to 
0.05 the rings dynamics are similar to dark rings. Introduction of an intensity thresh­
old resulted in simulated dynamics of diffraction rings that are consistent with the 
experimentally observed dark rings. 

6.4.1 Diffraction rings 

At the simulated intensity of U0= 5, we observed the emergence of multiple lobes 
which can be interpreted (with radial symmetry) as rings. These were accompanied 
with oscillations as seen in Figure 6.16. In Chapter 4 we detailed the different ring 
types observed at the mid-intensity regime, we found intensity profiles which present 
diffraction rings superposed with high-order modes occurring with oscillations of the 
beam. Simulations at U0= 5 show a similar behaviour to this type of rings. 

Figure 6.16 shows the intensity profiles at the output face of the medium for var­
ious steps (or time) for U0=5. We observed between step 3 and step 9, an oscillation 
in intensity composed of intensity profiles that with radial symmetry, are very similar 
to the experimental results for rings with high-order modes shown between 13 to 20 
seconds in Figure 6.17. There, we observed a sequence of a bright beam surrounded 
by one ring at 13 s and a single ring with a small central peak at 17 s. At later steps 
in the simulations, (Figure 6.18) such as step 10 and 13, more rings appeared and 
oscillations continued varying. A similar behaviour was observed in the experimental 
results in Figure 6.17 between 24 to 40 s where more rings appeared as oscillations 
occurred. The intensity peaks of the oscillations in the simulations, appeared with 
different number of surrounding rings as seen in step 11 and 17 in Figure 6.18. Dur­
ing experiments, we observed a similar behaviour mainly at later stages as seen at 
around 49, 84 and 162 sin Figure 6.17 where the intensity peaks have multiple rings 
surrounding it. 

Figure 6.19 shows the intensity and refractive index maps for simulations at U0= 

5 for various steps. The intensity map shows an intricate evolution along the prop­
agating direction z over time. At step 5 we can observe that the beam already 
presents very different profiles at various z cross sections, as time evolves (steps) , 
the beam narrows slightly but still preserving the intricate intensity profiles across 
z. The refractive index maps show that at early stages (step 2 and 3), the refractive 
index profile at the entrance of the medium remains Gaussian, however as simula­
tions evolve over time, the profile saturates at the entrance of the medium creating 
a top-hat index profile. The overall structure takes a conical form which correlates 
well with structure induced during experiments. 
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Figure 6. 16: Profiles of intensity in the transversal direction x at the output of the 
medium (z 6.00 mm) for 50 computation steps obtained in Beamprop simulations 
for U0 = 5. 183 
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Figure 6.18: Profiles of intensity in the transversal direction x at the output of the 
medium (z=6.00 mm) for 50 computation steps obtained in Beamprop simulations 
for Uo = 5. 
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Figure 6.19: 2D Simulation results in Beam prop showing the intensity profiles (top) 
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profiles (bottom). The propagation coordinate is indicated with z and the transverse 
coordinate is x. 

186 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

The emergence of rings and oscillations have been observed in theoretical studies 
of saturable self-focusing media [132]. The appearance of rings with oscillations were 
described to correspond to a different family of light patterns compared to the one 
with linear polarization in x or y to high-order modes [114]. The fact of having a 
different family of light patterns could originate from increasing intensity in the mid­
intensity regime compared to the low intensity regime creating different propagating 
dynamics. This could explain the observation of rings with high-order modes in 
experiments and simulations. 

When intensity is increased in simulations, we observed at U0=0.1 the emergence 
of multiple rings in the first steps followed by a narrowing of the beam at later steps 
as seen at the output profiles at z = 6 mm in Figure 6.20. 

This can be seen with radial symmetry in the two, four and eight lobes developed 
at steps 4, 8 and 12, respectively, followed by a central peak increase at step 50. Figure 
6.21 shows the intensity maps for the same U0 where we see some diffraction effects 
along the pathlength in steps 20 to 50. The refractive index profile at the entrance of 
the medium shows from step 1 the saturation of the refractive profile with a top-hat 
profile. The resulting structure has a conical shape similar to the one observed in 
experiments. The behaviour of simulations at U0=0. l follows a similar trend com­
pare to the dark central rings observed in experimental studies (Figure 6.22), where 
increasing number of rings emerge. However, in the simulations a sharp peak occurs 
at the beginning of the experiment in step 6 of Figure 6.20, which does not correlate 
with experimental observations. Also the increase in intensity towards the end of ex­
periments is sharper that the one observed in simulations. These disagreements could 
be due to the approximated values of critical parameters used in simulations such as 
maximum refractive index change /;:,,.ns and the physical critical exposure value U0 for 
polymerization. This last parameter is used to convert intensities used in experiments 
to U0 values in simulations. 

6.4.2 Introducing an intensity threshold 

We obtained a better agreement with experimental observations of dark diffraction 
rings by introducing an intensity threshold. In this case we simulated for U0=0.05 the 
diffraction rings in 2D by adding a threshold intensity which discarded the intensities 
below a relative value, that was chosen to be 0.5 (note that the maximum peak 
intensity of input beam is 1). A sequence of intensity maps resulting from simulations 
are shown for various computational steps in Figure 6.23. The emergence of multiple 
bands of intensity is shown at step 2 followed by self-trapping of the beam at around 
step 18. Resulting intensity profiles in Figure 6.24 at the output face (z=6 mm) 
confirm the increasing number of bands as seen from step 2 to step 10, these graphs 
are similar to the cross sections observed for central dark rings in Figure 6.22, therefore 
radial symmetry would indicate the emergence of diffraction rings. At step 13, the 
beam starts self-focusing, increasing the intensity peak at steps 14 and 16 until the 
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Figure 6.20: Profiles of intensity in the transversal direction x at the output of the 
medium (z=6.00 mm) for 50 computation steps obtained in Beamprop simulations 
for Uo = 0.1. 
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Figure 6.21: 2D Simulation results in Beam prop showing the intensity profiles (top) 
at U0 = 0.1 of a propagating Gaussian beam with the corresponding refractive index 
profiles(bottom). The propagation coordinate is indicated with z and the transverse 
coordinate is x. 
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Figure 6.22: Experimental results of 2D and lD spatial intensity profiles at 1.6 W /cm2 

showing the emergence of diffraction rings followed by self-trapping of t he beam. 
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beam narrows at step 50. This behaviour is identical to the one observed in dark 
diffraction rings. However, the artificial introduction of an intensity threshold can 
only be justified if in experiments, the most significant refractive index changes occur 
at the entrance face of the medium as seen in the refractive index maps resulting 
from simulations in Figure 6.25. In step 1, we observe only a bullet like structure 
that continues growing over the following steps until reaching the other side of the 
material in step 16. However, experimentally the typical resulting structure has a 
conical shape. 

The transverse refractive index profile at the entrance face saturates from the first 
step but it only occurs at the beginning of the sample. In the proposed mechanism in 
our experimental studies, a Gaussian profile is required for diffraction rings to occur. 
In this mechanism, calculations performed for thin media (thickness < Raleigh range) 
only took into account that relevant refractive index changes occurred at the entrance 
face of the medium with linear propagation in the remaining length of the propagation 
medium. Simulations for U0=0.05 with threshold 0.5 show that relevant refractive 
index changes only occurred at the entrance of the medium for early stages (step 1 
to 6 of Figure 6.25). As the beam increases in intensity, the refractive index becomes 
more important in the remaining length of the medium as seen from the growth of 
the bullet-like structure from step 2 onwards (Figure 6.25). Although the refractive 
index profile saturates at the entrance face, the profile in the last part of the index 
structure seems to have a transverse gradient which could explained the emergence 
of diffraction rings from the tip of the structure as seen in Figure 6.23. 

Previous simulations of diffraction rings for long pathlengths have been performed 
in a photorefractive crystal for a self-defocusing nonlinearity [80]. Diffraction rings 
are described as optical shock waves and simulations are performed for collisions of 
two of such waves. However, simulated results showed output intensity profiles only 
and internal dynamics are not shown due to the complexity of the simulation. 

Although we observe the emergence of dark diffraction rings in simulations and 
rings with high-order modes at different intensities, experimentally we observe both 
of them at the same input intensity. A possible reason for this discrepancy is that 
since experimentally is difficult to precisely control the degree of polymerization, rings 
with high-order modes could be taking place at a different degree of polymerization 
compared to dark diffraction rings. Therefore, in simulations, having the same degree 
of polymerization and hence the same maximum refractive index change (~n8 ), the 
difference would be translated in the input intensity needed. 

6.5 High intensity regime: single ring formation 
In the high intensity regime, simulations showed the formation of a single ring for 

U0=0.005 to 0.001, which is in agreement with our observations in experiments. At 
the highest intensity of U0=0.00001, no significant changes occurred in the beam. 

191 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

step 1 

-400 -300 -200 -100 0 100 200 300 ... 
X(pm) 

step 6 
6000 

5000 

.... 
! 3000 
N 

2000 

1000 

-400 .300 -200 -too 0 100 200 300 ... 
X(pm) 

step 13 
6000 

5000 

.... 
]; 3000 

2000 

1000 

...WO -300 -200 -100 0 100 200 300 400 
X(Jim) 

step 16 .... 
5000 

.... 
! 3000 
N 

2000 

1000 

..WO -300 -200 -100 0 100 200 300 400 
X(pm) 

U0=0.05 Intensity maps 
with intensity threshold 0.5 

step 2 step 4 
6000 

1.0 1.0 

5000 5000 

4000 .... 
~ 3000 ~ 3000 
N N 

2000 2000 

1000 1000 

0.0 -400 -300 -200 -100 0 100 200 300 ... 0.0 
-400 -300 -200 -1 00 0 100 200 

X(pm) X(Jim) 

step 9 step 11 
6000 .... 

1.0 1.0 

5000 5000 

4000 .... 
~ 3000 ~ 3000 
N N 

2000 2000 

1000 1000 

0.0 -400 -JOO -200 -100 0 100 200 300 ... 0.0 
-400 -300 -200 -100 0 100 200 

X(pm) X(pm) 

step 14 step 15 
6000 .... 

1.0 1.0 

5000 

.... 4000 

~ 3000 ~ 3000 
N N 

2000 2000 

1000 1000 

0.0 .-oo -300 -200 -100 0 100 200 300 400 0.0 
-400 .300 -200 -100 0 100 200 

X(~) X(pm) 

step 18 step 50 
0000 . 

0000 
1.0 1.0 

5000 - 5000 

4000 

~ 3000 . ~ 3000 
N N 

2000 2000 

1000 1000 

0.0 -400 -300 -200 - 100 • 100 200 300 ... 0.0 
-400 -300 -200 -100 0 100 200 

X(pm) X(pm) 

1.0 

300 ... 0.0 

1.0 

300 ... 0.0 

1.0 

300 400 0.0 

1.0 

0.0 

Figure 6.23: Simulations showing the emergence of diffraction rings followed by self­
trapping of the beam for 50 computational steps. 
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Figure 6.25: Simulations showing the refractive index maps for U0 = 0.05 with thresh-
old 0.5 for 50 computational steps. 
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6.5.1 Single-ring formation 

We observed the single-ring formation over time at U0 = 0.005 and U0 = 0.001 in 
simulations. The results for simulations at U0 = 0.005 were presented in Section 5.4. 
For U0 = 0.001 Figure 6.28 shows at the top, the intensity profiles at z = 6.00 mm 
for 50 steps. 

In the first steps, two and then multiple lobes are observed (step 5 to 30), taking 
into account radial symmetry this could translate into diffraction rings similar to 
the ones observed at the beginning of our experiments where single-ring formation is 
observed as shown in Figure 6.28b. Towards step 40 in the simulations, only two lobes 
are formed which again can be interpreted as the single ring formation with radial 
symmetry observed in our experiments in Figure 6.28f. The intensity maps along the 
propagation direction (z) in Figure 6.26, strengthens our interpretation, since at early 
steps (step 2 and 7) the beam shows diffraction of the beam along the propagation 
distance and at steps 40 and 50, the beam splits into two directions, which follows the 
propagation of flattened-Gaussian beams and Super-Gaussian beams. The refractive 
index maps shown in Figure 6.26 indicate that the profile at the entrance of the 
medium saturates in the first step, creating a flattened refractive index profile. This 
type of profile as shown in Section 5.3 results in single ring formation during nonlinear 
propagation. 

6.5.2 Highest intensity 

At very high intensities, simulations showed similar behaviour as the one observed 
in experiments. Intensity of the input beam was so high that it induced the maxi­
mum refractive index change throughout most of the width of the beam resulting in 
no refractive index gradient along the cross section of the beam. This prevented the 
formation of an initial lens at the beam waist of the Gaussian beam and it subse­
quently inhibited the self-focusing and self-trapping of the beam. Figure 6.29 shows 
the resulting intensity and refractive index profiles of 2D simulations for 50 steps. 
The intensity maps did not show significant changes over time for the propagating 
beam, except a spread in the beam. The induced refractive index profiles saturate 
over almost all the width of the Gaussian beam and over time the saturation extends 
creating a wider structure. 

When monitoring the intensity beam profile at the output of the medium over 
many steps or time in the simulations for U0=0.0000l (Figure 6.30) we observed that 
the beam broadened over time from step 1 to step 2. The broadened beam remained 
relatively unchanged over the following steps therefore no self-trapping occurred at 
high intensities in the simulations. This correlates well with our experimental results, 
since the beam was not able to overcome diffraction due to a lack of refractive index 
contrast in the cross section of the beam. This can clearly be observed in the bottom 
graphs of Figure 6.29 where the refractive index is uniform almost across all the beam. 
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U0 = 0.001 of a propagating Gaussian beam with the corresponding refractive index 
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Figure 6.27: Profiles of intensity for U0 = 0.001 in the transversal direction x at 
the output of the medium (z=6.00 mm) for 50 computation steps (top) obtained in 
Beamprop simulations and for individual transversal profiles selected at various steps 
(bottom). Each step represents a relative unit of time. 
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In these simulations, filamentation of the beam is not observed because we did not 
introduce noise in the system or the beam which is required. Further development of 
simulations with noise are necessary to simulate filamentation of the beam. 

6.6 Conclusions 
Numerical simulations of the nonlinear propagation of light in the organosiloxane 

were performed by combining the beam propagation method through BeampropT M 

software and calculations of refractive index changes in the medium with an external 
subroutine (Appendix B). Simulations over a wide range of intensities were performed 
covering from U0=500 to 0.00001. 

Most of the main features observed during experimental studies in the three inten­
sity regimes were observed in simulations. Simulations of dynamics of self-trapping 
in the low intensity regime, showed oscillations in beam width and intensity along 
the propagation direction z for a single step and over time at a fix z position. These 
oscillations were correlated with the existence of multiple modes in the self-written 
waveguide. More higher-order modes are observed at higher intensities compare to 
lower ones similar to experiments. An optimum self-trapping intensity was found in 
simulations, which is in excellent agreement with experimental results. Emergence of 
diffraction rings was observed during simulations at higher intensities U0=5 to 0.5. 
These rings presented a similar behaviour to the rings with high-order modes observed 
in experiments. By addition of an intensity threshold, dark rings were simulated hav­
ing identical behaviour to the experimental counterpart. At even higher intensities 
U0=0.005 to 0.001, the formation of a single ring was observed in simulations, with 
an induced flattened Gaussian profile at the entrance face. At the greatest intensity 
of U0=0.0000l the beam intensity decreases and the refractive index saturates over 
the transverse direction of the whole beam. 
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Figure 6.29: Profiles of intensity (top) and refractive index change (bottom) for Uo = 
0.00001 for 50 computation steps (top) obtained in Beamprop simulations. Each step 
represents a relative unit of time. 

200 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

Profiles at z=6.00mm for U0=0.00001 
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Figure 6.30: Profiles of intensity for U0 = 0.00001 in the transversal direction x at 
the output of the medium (z=6.00 mm) for 50 computation steps (top) obtained in 
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Chapter 7 

Conclusions and future work 

The primary motivation of this thesis was to experimentally investigate laser self­
action effects in a photopolymer medium covering 10 orders of magnitude in intensity, 
specifically the dynamics of self-trapping and nonlinear propagation effects. Experi­
mental studies were complemented with 2D numerical simulations in order to further 
understand the observed phenomena. These studies represent a significant advance 
in the area of self-action effects in photopolymers as new self-trapping dynamics were 
found and novel phenomena was uncovered. The findings in this thesis contribute to 
the broader understanding of various spatial nonlinear phenomena in optical materi­
als . The main contributions of these studies are described below. 

We demonstrated that the use of beam profiling methods in-situ provides critical 
information of the dynamics of self-action effects in photopolymers. The slow non­
linear response (ms to s) in photopolymers allows for the use of this characterisation 
technique. In previous studies, the phenomena of self-trapping and filamentation had 
only been characterized through light scattering along the beam propagation path 
and the properties of the resulting self-induced structures. 

Temporal evolution of laser beams in the organosiloxane was studied over a broad 
range of intensities covering 10 orders of magnitude (3.2x10-5 W /cm2 to 12732 
W /cm2

). Four distinct forms of nonlinear light propagation were identified: self­
trapping at the low intensity regime (3.2x10- 5 W /cm2 to 0.016 W /cm2 ), new forms 
of nonlinear propagation including the emergence of diffraction rings and single-ring 
formation at the mid (0.19 W /cm2 to 16 W /cm2

) and high intensity regimes (27 
W / cm2 to 111 W / cm2

), respectively. Filamentation of the whole beam was observed 
at even higher intensities (159 W /cm2 to 12732 W /cm2 ). 

These findings indicated that the refractive index profile induced at different inten­
sities in the organosiloxane, plays a fundamental role in the resulting type of nonlinear 
phenomenon. At low intensities the induced refractive index profile remains Gaussian 
maximising at a value below the saturation point. In the mid-intensity regime the 
induced index profile has its maximum closer to the saturation point but it remains 
Gaussian. At the high intensity regime, saturation of the refractive index in the axial 
region results in a flattened-Gaussian index profile. 

In the low intensity regime, the oscillatory dynamics of the self-trapped beam was 
attributed to the emergence of high order modes. The formation of a multimode 
waveguide during self-trapping was confirmed through direct observation of the ex­
citation of high order optical modes of the self-induced waveguide as it evolved from 
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single-moded to multimoded guidance. Correlation between oscillations in beam in­
tensity and width and the modal composition during self-trapping was found. High­
order modes and the fundamental mode were observed at valleys and peaks of an 
intensity oscillation, respectively. We found that oscillatory dynamics of self-trapped 
beams varied with input intensity. While oscillations in intensity and beam width 
were rapid and irregular at high intensities, slow and more regular oscillations oc­
curred at low intensities. As the rate of refractive index change increased with input 
beam intensity, there was a corresponding increase in both the number of modes 
and the rate at which the modal composition of the self-written waveguide changed. 
These findings not only confirm previous theoretical studies in photopolymers but 
also provide new insights into the dynamics of self-trapping. 

Monitoring the temporal evolution of the intensity profile at the output of the 
medium allowed to extract quantitative parameters of self-trapping including: self­
focusing time, self-trapped diameter and transmittance. An optimum self-trapping 
intensity was found at which self-focusing time was faster, self-trapped width was 
smallest and transmittance (percentage of incident light that passes through the sam­
ple) was maximum. This intensity was 0.008 W / cm2 in the organosiloxane. 

In the mid-intensity regime, the dynamics of diffraction rings over distances longer 
than the Rayleigh range was demonstrated in the organosiloxane. Parameters such 
as number of rings and ring diameter were extracted over time, allowing to link 
polymerisation kinetics to the evolution of diffraction rings. A mechanism where 
significant refractive index changes occur at the entrance face of the sample and 
linear propagation of diffraction rings occurs through the sample was proposed. This 
mechanism was further explored by studying the dynamics of diffraction rings at 
various optical pathlengths. At short pathlengths we deduced that the propagation 
corresponded to near-field diffraction and at longer pathlengths to far-field diffraction. 
At this last pathlengths the number of diffraction rings remained the same which 
indicated that significant changes occur in the first 5.88 mm of the sample. At the 
longest pathlength, the propagation was disrupted by filamentation of diffraction 
rings. 

Studies of the effect of beam curvature on diffraction rings dynamics were per­
formed at long pathlengths. Rings with a dark centre were induced at R < 0 and rings 
with a bright centre were most of the times induced at R > 0. Dark rings induced at 
R < 0 showed filamentation over time and an increase of the dark centre diameter. 
Filamentation of the dark centre diffraction rings showed that the timescale at which 
self-trapping and diffraction rings occur, affects the susceptibility of the medium to 
be stable to noise. An increase in the dark centre diameter over time was found to 
be the result of an effective increase in beam diameter for the contribution of refrac­
tive index changes to the total phase shift. Unlike other media, the organosiloxane 
presents permanent refractive index changes. Structures induced by dark and bright 
rings were characterised after their formation which allowed for the visualization of 
the light propagation path. 
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Through careful statistical analysis of experiments, a variety of diffraction rings 
types were observed at R = oo including dark rings , rings with high-order modes, 
fingerprint rings and bright rings. The observation of rings with high-order modes and 
fingerprint rings was attributed to slightly lower and slightly higher pre-polymerisation 
of the samples, respectively. While most previous studies of diffraction rings were per­
formed in thin samples, in our studies we investigated the propagation of diffraction 
rings over long distances ( > > Rayleigh range), including its dependence on beam 
curvature and pathlength. The monitoring of the temporal evolution of diffraction 
rings permitted the observation of dynamics under various conditions. New types of 
rings were uncovered as well as propagation dynamics at various pathlengths. 

Single-ring formation and its subsequent filamentation was demonstrated at the 
high intensity regime corresponding to intensities from 27 W /cm2 to 111 W/cm2

. 

Filamentation of the ring occurred as a result of modulation instability of the beam 
due to noise imposed in the system. An overall increase in the size of the single-ring 
and on the number of filaments was found by increasing the input intensity. Circular 
arrays of permanently inscribed thin waveguides were obtained as a result of the 
filamentation process along the single ring. 

Simulations over a wide intensity range confirmed the observation of the various 
nonlinear phenomena including oscillations during self- trapping, diffraction rings and 
single ring formation. Simulations confirmed the evolution of the refractive index 
profile from Gaussian to flattened-Gaussian for increasing input intensity. Numeri­
cal simulations performed at low intensities confirmed the existence of an optimum 
intensity for self-trapping. 

To summarize, the new contributions made by the studies in this thesis to the spa­
tial self-action effects field include: the systematic intensity dependent study across 10 
orders of magnitude in intensity uncovering three main intensity regimes, the direct 
observation of high order modes during self-trapping confirming previous theoretical 
studies, novel phenomena found in photopolymers including the emergence of diffrac­
tion rings and the formation of a single ring and its further filamentation and finally 
the key role of the induced refractive index profile at different intensities resulting in 
a variety of phenomena. 

The work presented in this thesis is a strong base on which further work can 
be developed. We propose below other studies that could be carried out to better 
understand the self-action effects in photopolymers and to probe new phenomena. 

I. Polarization dependent studies can be performed at all intensities to observe whether 
the direction of the electric field of the input beam has an impact on the non­
linear light propagation in photopolymers. Previous studies have found for 
instance that circularly-polarized beams offer the most stable beam configura­
tion against filamentation for Kerr nonlinearities [102] . We could investigate 
the polarization effects at the three intensity regimes we found. In the low and 
mid intensity regimes the effect of polarization on the modal properties of the 
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self-trapped beams and on the formation of diffraction rings can be investigated. 
At the high intensity regime, the effect of polarization on changes in the mod­
ulation instability dynamics of the single ring and whole beam can be explored 
through characterisation of the resulting filamentation. 

II. Interactions of self-trapped beams can be investigated. Previously the interaction 
of two self-trapped beams in urethane acrylate based monomers was examined 
by Shoji and coworkers [57] by looking at the angle dependence between the two 
incident beams. However, no information about the modal evolution through 
the interaction process was provided. This could be investigated by monitoring 
the output of two self-trapped beams and their interactions in situ. These 
interactions can be extended to the different intensity regimes found in our 
study and hence to different laser self-action phenomena including diffraction 
rings, single ring formation and filamentation. 

III. Multibeam self-trapping could have potential applications for photonic crystal 
fabrication as micromoulds or could be used to create nonlinear photonic crys­
tals to study their properties to localize modes as it is currently the study in 
other optical media [9]. We have shown in preliminary studies that self-trapping 
of multiple beams can occur in the organosiloxane (see Figure 7.1). A central 
beam surrounded with 6 beams, was input in the medium (Figure 7.la). During 
the self-trapping experiment, we observed at 1 s the diffracted form of the beam 
at the output face (Figure 7.lc), similar to its diffraction in air (Figure 7.lb). 
With time, the beam self-trapped at 131 s, showing the input flower shape. Ex­
periments to investigate interactions between beams can be designed from this 
example by changing the spacing between the central beam and surrounding 
beams. In addition, increasing the number of input beams can be investigated 
to explore the self-trapping dynamics of an array of beams. This could easily 
be performed as a printed transparency serves as the mask for multiple beam 
generation (Section 2.3.2). Intensity dependent studies can be carried out with 
multibeams in order to observe the interactions of the different observed phe­
nomena including diffraction rings, single ring formation and filamentation. 

IV. Permanent structures induced through self-action effects in photopolymers can 
be employed for different optical applications. Beams with an intensity pro­
file similar to a doughnut have been employed in super-resolving microscopy 
[91]. The structure induced by the single ring intensity beam in our studies 
could served as an optical component to generate such a doughnut beam. To 
investigate the feasibility of this application, new materials that are stable after 
photopolymerisation could be studied, for example photopolymers using ther­
mal initiators. Although the prepolymerization of this type of materials might 
leave a smaller refractive index change, it might be enough to elicit some of the 
self-action effects observed in this study. 
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Figure 7.1: Multibeam self-trapping experiment at 0.016 W/cm2
. 2-D intensity pro­

files of preliminary results are shown. The a) input beam has a central beam sur­
rounded by 6 beams and the intensity profile after diffraction in air is shown in b). 
The temporal evolution of self-trapping of the multibeam is shown from c) to j) at 
the output face of the organosiloxane. 
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V. The investigation of self-action effects in other type of materials can be explored, 
for example in polymer-dispersed liquid crystals. In previous studies, by using 
holographic techniques, gratings have been formed through the rapid photopoly­
merisation of the monomers in regions of high intensity leading to segregation 
of liquid crystals to the low intensity regions [133]. Polymer-dispersed liquid 
crystals combine the properties of optical anisotropy and being switchable in 
external electric fields from liquid crystals with the property of changing the re­
fractive index upon illumination from photopolymers. By using the self-action 
effects observed in photopolymers, 3D active structures could be built. 

VI. In previous theoretical studies [35; 124; 109] and in this thesis, 2D simulations 
have been performed for self-trapping and other nonlinear propagation phenom­
ena occurring in photopolymers. Numerical simulations in 3D could be carried 
out to have a direct comparison with experimental results. This will determine 
up to what degree radial symmetry can be applied in 2D simulations. In order 
to simulate filamentation, noise can be introduced either in the input beam or 
in the medium. Different types of noise including amplitude or phase, radially 
symmetric and linear can be probed to observe the stability of the system. 

VII. In previous studies, the refractive index change and thickness have been mea­
sured as a function of time [134] using a double-interferometer technique. The 
investigation of physical parameters in our system such as the refractive index 
change with exposure and critical exposure required to initiate polymerization 
(U0 ) would be useful in order to correlate experimental and simulated studies 
more accurately. This values could be obtained by performing interferometric 
measurements similar to previous studies where a sample is placed in one arm 
of an interferometer and is uniformly irradiated in situ recording changes in the 
interference pattern over time. 
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Appendix A 

Filamentation at different input intensities 

Experimental results showing the temporal evolution of 2D intensity profiles for 
input intensities (powers) corresponding to: 27W/cm2 (85µW), 40W/cm2 (125µW) , 
64W/cm2 (200µW) , 95W/cm2 (300µW) and 111W/cm2 (350µW) are shown below. 

7s 

c 

[] [JJ 

Figure A.1: 2D intensity profiles imaged at the exit face (6mm) of the organosiloxane 
showing the temporal evolution of an input Gaussian beam with intensity of 27W /cm2 

(power 85µm) 
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Figure A.2: 2D intensity profiles imaged at the exit face (6mm) of the organosiloxane 
showing the temporal evolution of an input Gaussian beam with intensity of 40W/cm2 

(power 125µm) 
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Figure A.3: 2D intensity profiles imaged at the exit face (6mm) of the organosiloxane 
showing the temporal evolution of an input Gaussian beam with intensity of 64W /cm2 

(power 200µm) 
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Figure A.4: 2D intensity profiles imaged at the exit face (6mm) of the organosiloxane 
showing the temporal evolution of an input Gaussian beam with intensity of 95W / cm2 

(power 300µm) 
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Figure A.5: 2D intensity profiles imaged at the exit face (6mm) of the organosilox­
ane showing the temporal evolution of an input Gaussian beam with intensity of 
lllW /cm2 (power 350µm) 

212 



PhD Thesis --- Ana B. Villafranca --- McMaster University - Engineering Physics --- 2010 

Appendix B 

External subroutine for nonlinear 
propagation simulations 

The external subroutine employed for nonlinear propagation simulations was used 
to convert maps of electric field amplitude values into maps of refractive index which 
were feeded into the BeamPROP™ software from RSoft Design Group, Inc. This 
program was initially developed by Jonathan Lannan. The program was compiled 
with Borland c++ compiler version 5.5. The code is shown below, all text after // 
corresponds to comments in the program. 

//SIMULATION SETTINGS: Slice Step 0.4 in x, 100 in z. 

//Include Header files 
#include< stdio.h > 
#include< math.h > 
#include < stdlib.h > 
#include < string.h > 

//Define Variables for Simulation 
#define Nx 2001 //Number of x data points per slice 
#define N z 60 //Number of slices 
#define max..n 0.006 //Maximum index change of material 
#define Uo 0.05 //Critical Exposure 
#define thresh 0.5 //Threshold exposure 

void main(int argc, char *argv[ ]) 
{ //Define Variables 
int i,j ,k, count, length, length2; 
double sample, data[Nx][Nz+l]; 
char y[20], filename[80], step_intensity[80], index[80]; 

FILE *input, *out; 

//take given file name and create intensity and index file names 

strcpy(filename, argv[l]); 
//strcpy(intensity, argv[2]); 

strcpy( step_intensity, filename); 
strcpy(index, filename); 
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length = strlen(filename) -1 ; 

step_intensity[length-3] = ' \O '; 
strcat( step_intensity, "_intensity. txt" ); 

index[length-3] = '\O '; 
strcat (index, "_index. txt" ); 

//Part 1: Read in Slice Values 
printf(" \nReading in values ... "); 
for (j = O;j < N z;j++) 
{if (j < 10) 

{ itoa(j , &filename[length], 10) ;} 
if(j >= 10 && j < 100) 

{ itoa(j, &filename[length-1], 10);} 
if(j > = 100) 

{ itoa(j , &filename[length-2], 10);} 
input= fopen(filename ," r" ); 

//Clear Header of file 
i = O; 
fscanf(input , "%s", &y); 
fscanf(input , "%s", &y); 
fscanf(input , "%s", &y); 
fscanf(input, "%s", &y) ; 
fscanf(input , "%s" , &y); 
fscanf(input , "%s", &y) ; 

while (i < Nx) 
{ fscanf(input , "%lf', &sample); 

data[i] [j ] = sample*sample; 
i++;} 

fclose(input);} printf("Complete\n" ); 

//Part 2: Output Slice Values to file 
printf(" Outputting intensity profile ... " ); 
out = fopen( step_ intensity, "w"); 
//print header 
fprintf(out, "/rn,a,b/nxO/lsl \n/r,qa,qb\n %i -1 1 0 
OUTPUT_ REAL _ 3D \n %i 0 1 \n", Nx, Nz) ; 
for (i = O; i < Nx; i++) 
{ for(j=O;j<N z;j++) 

{ data[i] [j] = data[i] [j] - thresh; 
if (data[i][j] < O){ 
data[i] [j] = O; } 
fprintf(out, "%e\t" , data[i][j]); } 
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fprintf( out, "\n" ); } 
fclose( out); 
printf(" Complete \n"); 

//Part 3: Add to existing intensity profile 
printf(" Summing intensity profiles ... "); 
if (argc==2) 
{ / /printf(" not skipped"); 

input= fopen("c:/Ana/summed_intensity.txt", "r"); //clear header 
for (k = O; k < 10; k + +) 
{ fscanf(input, "\% s", &y);} for (i = O; i < N x; i++) 
{ 

for(j = O; j < Nz; j++) 
{ sample=O; 

fscanf(input, "% lf'', & sample); 
data[i] [j] = data[i] [j] + sample; } } 

fclose(input); } 
printf (" Complete\ n" ) ; 
printf(" Writing new summed profile ... "); 
//Location of the summed index file used to calculate index 
out = fopen(" c:/ Ana/summed_ intensity.txt", "w" ); 

//print header 
fprintf(out, "/rn,a,b/nxO/lsl \n/r,qa,qb\n3i -11 0 OUTPUT_ REAL_ 3D \n3i 0 1 
\n", Nx, Nz); for (i = O; i < Nx; i++) 
{ for(j=O; j < N z; j++) 

{ fprintf(out, "% e\t", data[i][j]); } 
fprintf(out, "\n");} fclose(out); 

printf(" Complete \n"); 

//Part 4: Calculate next intensity profile 
printf("Generating new index profile ... "); out= fopen(index, "w"); 
//print header 
fprintf(out, "/rn,a,b/nxO/lsl \n/r,qa,qb\n 3 i -11 0 OUTPUT_ REAL_ 3D \n 3 i 0 
1 \n" Nx Nz)· 

' ' ' 
for (i = O; i < Nx; i++) 
{ for(j = O; j < Nz; j++) 

{ data[i][j] = 1.46 + max_n*(l-exp( (-l)*data[i][j]/Uo)); 
fprintf(out, "3e\t", data[i][j]);} 

fprintf(out, "\n");} fclose(out); 
printf(" Complete \n"); printf(" Generating index file ... "); //Location of index profile 
used by BeamProp 
out= fopen("c:/Ana/index.txt", "w"); 
//print header 
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fprintf(out , "/rn,a,b/nxO/ lsl \n/r,qa,qb\n 3 i -1 1 0 OUTPUT_ REAL_ 3D\n 3 i 0 
1 \n", Nx, Nz); for (i = O; i < Nx; i++) 
{ for(j=O ; j < N z; j++) 

{ fprintf(out , "3e\t", data[i][j]); } 
fprintf(out , "\n"); } fclose(out) ; 

printf(" Complete \n"); } 
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Appendix C 

Nonlinear simulations in organosiloxane 

Intensity and refractive index profiles for U0 - 100 and U0 - 100 are shown 
in Figures C. l to C.4. Profiles of st ep 50 at various points along the propagation 
coordinat e z are shown in Figure C.5 for various values of U0 
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Figure C. l : 2D Simulation results in Beam prop showing the intensity profiles of a 
propagating Gaussian beam with U0 = 100. The propagation coordinate is indicated 
with z and the transverse coordinate is x 
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Profiles of step 50 at various "z" for various U0 
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Figure C.5: Simulated intensity profiles along z for various U0 values for step 50. 
Indicat ed in bold are profiles with intensity maxima. The relative intensity is in 
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