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‘Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to,” said the Cat.

‘I don’t much care where—’ said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat.

‘“—so long as I get SOMEWHERE,’ Alice added as an explanation.

‘Oh, you're sure to do that,’ said the Cat, ‘if you only walk long enough.’

— Lewis Carroll, Alice’s Adventures in Wonderland.
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Abstract

A cognitive radio network is a multi-user system, in which different users compete for
limited resources in an opportunistic manner, interacting with each other for access
to the available resources. The fact that both users and spectrum holes (i.e., under-
utilized spectrum subbands) can come and go in a stochastic manner, makes a cogni-
tive radio network a highly dynamic and challenging wireless environment. Finding
robust decentralized resource-allocation algorithms, which are capable of achieving
reasonably good solutions fast enough in order to guarantee an acceptable level of
performance even under worst-case interference conditions, is crucial in such an en-
vironment.

Considering a non-cooperative framework, the iterative waterfilling algorithm
(IWFA) is a potentially good candidate for transmit-power control in cognitive radio
networks for achieving a Nash-equilibrium point. IWFA is appealing because of its
low complexity, fast convergence, distributed nature, and convexity. It can be refor-
mulated as an affine variational inequality (AVI) problem. Employing the theory of
projected dynamic (PD) systems, an affine dynamic model is obtained for the evolu-
tion of the network’s state. This dynamic model allows us to study both equilibrium
and disequilibrium behaviour of the network. The proposed dynamic framework also

facilitates sensitivity and stability analysis of the system.



The fact that changes happen in a cognitive radio network because of continuous
dynamics as well as discrete events, makes it a hybrid dynamic (HD) system. Decision
making is then a multiple-time-scale process. Modeling the system using the theory
of PD lends itself to describing the cognitive radio network as a constrained piecewise
affine (PWA) system and therefore, benefiting from various mathematical tools, which
have been well demonstrated in control theory.

Usually users use asynchronous update schemes and they update their transmit
powers at different rates. The feedback channel introduces a time-varying delay in the
control loop of a cognitive radio, which means sometimes users update their transmit
powers using out-dated information. Therefore, the network is practically speaking
a multiple-time-varying-delay system with uncertainty. Robust exponential stability
of the network is studied in this framework.

Theories of evolutionary variational inequalities and projected dynamic systems
on Hilbert spaces were used to extend the developed framework further in order to

address the multiple-time-scale nature of the cognitive radio network.
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Chapter 1

Introduction

“Spectrum is like air; we need to keep it clean, open, and green for our

environment” [2].

1.1 Motivation

Mobile communications and broadband internet access have been playing key roles
in the development of our society in recent years. The increasing number of users
of internet-enabled wireless devices, illustrates the shift from traditional application-
specific radio technology to service-oriented information delivery systems. Regarding
the ever-increasing demand for more advanced applications that require the exchange
of higher volumes of data, communication technologies are progressing toward pro-
viding secure and seamless connectivity of mobile devices to any network, anytime,
and anywhere [3].

Although the future of telecommunication industries looks very promising, there
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are concerning issues regarding spectrum management that should be addressed im-
mediately. The electromagnetic spectrum is a natural resource, the use of which for
radio and television broadcasting, mobile wireless communications, and radar appli-
cations is regulated by government agencies. Unfortunately, several measurement
studies conducted in North America [4-8] and elsewhere [9-11] have revealed that
this precious resource is very much underutilized by the primary users. According
to predictions made by the International Telecommunications Union and the Organi-
zation for Economic Cooperation and Development, unless serious actions are taken
towards smart, efficient, and dynamic management of the electromagnetic spectrum,
the worldwide mobile communication network will collapse by the year 2050. In order
to allocate the spectrum dynamically and openly, future wireless devices should be
service-oriented terminals, which are more compatible with computer systems and
support unlocked and multiple wireless standards [2].

Cognitive science provides the tool for building a new generation of devices with
dynamic applications. These cognitive machines will be able to build up their rules
of behaviour over time through learning from experiential interactions with the envi-
ronment. They should be able to deal with environmental uncertainties and properly
perform tasks of different kinds in a wide range of environmental conditions. In other
words, robustness must be a major design criterion. Although intelligence is consid-
ered as a computational problem, accurate study of the biological systems in general
and especially the structure of the brain will provide a reliable guide for building cog-
nitive machines. Therefore, computer science, biology and other related disciplines
will play key roles in the newly emerged field of cognitive dynamic systems (CDS) [12].

Regarding the fact that cognitive science has its roots in cybernetics [13], it is critical
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for the success of this field of study to pay attention to the history and learn from
it. This way, mistakes that led to the failure of cybernetics to some extent can be
avoided [14].

Cognitive radio is a special class of cognitive machines. It offers a novel way of
solving the spectrum utilization problem [15,16]. It solves the problem by, first, sens-
ing the radio environment to identify those subbands of the electromagnetic spectrum
that are underutilized and, second, providing the means for making those subbands
available for employment by secondary users. Typically, the subbands allocated for
wireless communications are the property of legally licensed owners, which, in turn,
make them available to their own customers: the primary users. From the perspec-
tive of cognitive radio, underutilized subbands are referred to as spectrum holes. A
spectrum hole is a band or subband of frequencies assigned to a primary user, but
at a particular time and specific geographic location, it is not being utilized by that
user, partially or fully.

Naturally, the entire operation of cognitive radio hinges on the availability of
spectrum holes. The identification and exploitation of spectrum holes poses technical
challenges rooted in computer software and hardware, signal processing, communica-
tion theory, control, optimization, and game theory, just to name a few disciplines.
Moreover, the operation of cognitive radio is compounded further by the fact that
the spectrum holes come and go in a rather stochastic manner.

The large number of heterogeneous elements in a cognitive radio network that
interact with each other indirectly through the limited resources makes the cognitive
radio network a complez dynamic system [1,16] or a system of systems [17]. In such an

environment, each element is a decision-maker. Different degrees of coupling between



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

different decision-makers of one tier or between decision-makers from different tiers
influence their chosen policies. Change of policies affects the interaction between the
decision makers and alters the degrees of coupling between them. In other words, both
upward and downward causations [18] play key roles in a cognitive radio network and
lead to positive or negative emergent behaviour, which is not explicitly programmed in
different elements. Since the global behaviour of the network cannot be reduced to the
local behaviour of different elements, taking an approach to build a dynamic model,
which provides a global description of the network behaviour, is of critical importance.
The fact that it is impractical to perform experiments with large decentralized wireless
networks with hundreds or thousands of nodes in order to understand their global
behaviour, highlights the importance of analytical approaches even more [19]. Such
models enable us to predict the future and based on the obtained knowledge engineer
it to improve network robustness against potential disruptions.

This research focuses on resource allocation in cognitive radio networks in which
users access the available spectrum in an opportunistic manner. The goal of this
research is to identify dominant sources of uncertainty in practical cognitive radio
networks as thoroughly as possible and build analytical models that describe the be-
haviour of the network from a global perspective. Having identified the sources of
uncertainty and established the underlying theory to predict the behaviour of the
network, proper control policies will be proposed for risk management and improve-
ment of network robustness. A theoretical framework is developed to address the
multiple-time-scale decision making in cognitive radio networks based on the theory

of double-layer dynamic systems.
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1.2 Mathematical Toolbox

A principled basis for the dynamic allocation and management of resources in a
cognitive radio network is developed based on the fusion of ideas from game theory,

control theory, and optimization.

1.2.1 Game Theory

Game theory provides an analytical toolbox for modeling and analyzing situations in
which multiple decision-makers (players) with possibly conflicting interests interact.
Rationality and strategically reasoning are two basic assumptions in game theory.
These assumptions reflect that each decision-maker has a well-defined objective and
acts based on its knowledge or expectation of other decision-makers’ behaviors [20].
In engineering, in many cases that deal with decentralized control systems, con-
trollers are designed in a centralized manner and then implemented in a decentralized
way [21,22]. This method is not truly decentralized and may cause some problems in
practice. Game theory provides a natural framework for analysis and design of truly
decentralized control systems. John Nash’s paper on “Parallel Control” is perhaps
the pioneering work in this area [23]. Influenced by his earlier work on equilibria
in non-cooperative games [24, 25|, Nash proposed to build computers in which com-
ponents work in a more autonomous way. Basar and Olsder’'s book on dynamic
non-cooperative games [26] focuses more on control theoretic aspects and interprets
optimal control problems as one-player games. Also, in [27] the robust control prob-
lem was interpreted as a zero-sum game in which the controller tries to maximize the
system’s utility while the environment is trying to minimize the system’s utility.

In wireless networks the radio communication channel is usually shared between
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different transmitter-receiver (transceiver) pairs. In such environment, multiple users
compete for limited resources and the behaviour of each user affects the performance
of neighboring users. It is therefore not surprising that game theory has attracted
the attention of many researchers in the field of communication networks especially

those who are working on cognitive radio.

1.2.2 Control Theory

Control engineering is an exciting and challenging field with a multi-disciplinary na-
ture and strong mathematical foundation. A control engineer’s systematic insight can
be easily extended to be utilized in other fields. The present challenge to control en-
gineers is the modeling and control of modern, complex, and interrelated systems. To
face this challenge, we need something dramatically different from traditional control
techniques possibly new control structures coming out of the neuroscience world.

Control systems are found throughout nature at the levels of genes, proteins, cells,
and entire systems [28]. Some of the natural control systems have unequaled degrees
of sophistication [29]. Increased understanding of the scientific and engineering prin-
ciples behind the living organisms as well as the way they interact with the world
and learn from it will lead to fantastic breakthroughs in the design and application
of intelligent machines that are truly cognitive.

A living organism interacts with nature through observation and action. Inspired
by the perception-action cycle in the brain, a cognitive radio transceiver is built as a
closed loop feedback system, which embodies the radio environment, radio-scene ana-
lyzer, feedback channel, and radio-environment actuator. Moreover, a cognitive radio

network is a hybrid dynamic system with both continuous and discrete dynamics.
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Therefore, cognitive radio networks have the potential for presenting a rich spectrum

of dynamic behaviours.

1.2.3 Optimization

In a complex system such as a cognitive radio network, every decision-making process
will be a multi-criteria optimization problem with possibly conflicting objectives [30].
In order to make certain rational decisions, a user needs to gather information and
process it. Data acquisition and computation capabilities of users are limited and
they can only make the best decisions regarding their knowledge and resources. Also,
real life cognitive radios are subject to uncertainties that cannot necessarily be dealt
by statistical analysis. In this environment, robust optimization provides an essential

tool for making decisions based on worst-case conditions.

1.3 Vision for the Thesis

The thesis is organized as follows:

e Chapter 2 discusses the primary communication resources and the spectrum
underutilization problem in the current communication networks. After men-
tioning the advantages of the OFDM scheme, a review of cognitive radio with
emphasis on the cognitive-information-processing cycle, is followed by a discus-

sion on the constraints imposed by the cognitive-radio environment.

e Chapter 3 studies different sources of uncertainty in cognitive radio networks
and the two approaches that can be taken to deal with uncertainty in the con-

text of transmit-power control; stochastic optimization and robust optimization.

7
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The concept of robustness is reviewed and its importance for designs concerning

complex and large-scale systems such as cognitive radio networks is emphasized.

¢ Chapter 4 studies the cognitive radio network dynamics with emphasis on the
equilibrium behaviour of the network. Tools from information theory and op-
timization are employed to formulate the transmit-power-control problem in a
cognitive radio network as a robust game. The equilibrium solution is found
using the robust version of the iterative waterfilling algorithm (IWFA). IWFA is
formulated as a variational inequality (VI) problem, which facilitates studying
the existence and uniqueness of the equilibrium solution. Also, it paves the way

for investigating the network behaviour in a dynamic framework.

e Chapter 6 studies the cognitive radio network dynamics with emphasis on the
disequilibrium (transient) behaviour of the network. Tools from control the-
ory are employed to find a differential equation, which governs the evolution
of the network’s state trajectory before reaching the equilibrium. The station-
ary points of this dynamic model coincide with the equilibrium points of the
corresponding VI model, developed in Chapter 4. Stability of the network in
the presence of perturbation and time delay is addressed. Also, the network is

modeled as a hybrid dynamic system.

e Chapter 8 extends the theoretical framework developed in Chapter 4 and Chap-

ter 6 to capture the multiple-time-scale nature of the cognitive radio network.

e Simulation results are presented in Chapters 5, 7, and 9. The testbed used
for simulations is explained in Chapter 5. Chapters 5 and 7 present computer

experiments for small-scale networks, which are carefully designed to highlight
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and clarify the key points of the theoretical frameworks developed in Chapters
4 and 6, respectively. Chapter 9 presents the computer experiment for a large-
scale network with emphasis on the double-layer dynamics of cognitive radio

networks.

e The thesis concludes in Chapter 10 by reviewing the contributions of the thesis

to the literature.

e The Appendix provides the proofs of theorems and propositions.



Chapter 2

Cognitive Radio

2.1 Spectrum Utilization

The poor utilization of the spectrum is a result of current inefficient spectrum manage-
ment policies. In November 2002, the Federal Communications Commission (FCC)
published a report, aimed at improving the way in which this limited and precious
resource is managed in the United States [4]. Since then spectrum occupancy mea-
surement campaigns have been conducted in different countries (Table 2.1). However,
the results highly depend on the sensing locations, the spectrum sensing method, and
the chosen threshold to distinguish idle bands from occupied bands.

In the United States, measurements have shown that from January 2004 to August
2005, on average, only 5.2% of the radio spectrum was actually in use [5]. Measure-
ments over a period of 2 days in November 2005 showed that the average spectrum
occupancy in the band 30-3000 MHz was 13.1% and 17.4% for New York and Chicago,
respectively [6]. In [7], the spectrum occupancy in the band 400-7200 MHz was com-

pared for an urban area (Atlanta, Georgia) and a rural area (North Carolina). The
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Table 2.1: Spectrum utilization in different countries

Country Region Frequency Range (MHz) Usage (%)
- - 5.2
New York 30-3000 13.1
Chicago 30-3000 174
USA Limestone 30-3000 1.7
Atlanta 400-7200 6.5

North Carolina

(A Rural Aca) 400-7200 0.8

New Zealand Auckland 806-2750 6.2
Singapore - 80-5850 4.54
Qatar Doha 700-3000 15.3

respective measurements were 6.5% and 0.8%. At the Loring Commerce Centre,
Limestone, Maine, USA, measurements over a period of 3 days in the band 30-3000
MHz, showed that the average spectrum usage was 1.7%. Occupancy varied from less
than 1% to 24.65% in different subbands. The maximum occupancy of 24.65% was
reported for the band 470-512 MHz [8].

In Auckland, New Zealand, the spectrum occupancy was reported to be 6.2% over
the frequency range 806-2750 MHz [9].

In Singapore, the average spectrum occupancy in the band 80-5850 MHz, based
on measurements over a period of 12 days, was reported to be 4.54% [10].

In Doha, Qatar, measurements performed over a period of 3 days in the 700-3000
MHz frequency band showed that the spectrum utilization was 1% for the indoor

environment and 15.3% for the outdoor environment [11].
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In Aachen, Germany, measurements over a period of 7 days next to the main rail-
way station in the band 20-3000 MHz, showed that the spectrum utilization was 32%
for the indoor environment and about 100% for the outdoor environment. However,
in such a place, the sensors were exposed to high-level ambient noise and the inability
of the energy detectors to distinguish man-made noise from primary users’ signals
led to this unexpectedly high occupancy measurement [31]. We should be cautious
about the spectrum sensing method that we adopt in order to avoid such misleading
results.

The employed spectrum sensors should be able to detect spectrum holes, provide
high spectral-resolution capability, estimate the average power in each subband of
the spectrum, and identify the unknown directions of interfering signals. Cyclosta-
tionarity is another desirable property that could be used for signal detection and
classification. Therefore, the multitaper method (MTM) for nonparametric spectral
estimation was proposed in [32] as the method of choice for spectrum sensing in cog-
nitive radio because it accomplishes these tasks accurately, effectively, robustly, and

in a computationally feasible manner.

2.2 Primary Communication Resources

There are two primary resources in a cognitive radio network; channel bandwidth and
transmit power. The operation of the transmit-power controller is complicated by a
phenomenon that is peculiar to cognitive radio communication, namely, the fact that
spectrum holes come and go, depending on the availability of subbands as permitted
by licensed users. To deal with this phenomenon and thereby provide the means for

improved utilization of the radio spectrum, a cognitive radio system must have the
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Figure 2.1: Block diagram of an OFDM transceiver.

ability to fill the spectrum holes rapidly and efficiently. In other words, cognitive
radios have to be frequency-agile radios with flexible spectrum shaping abilities. The
orthogonal frequency-division multiplexing (OFDM) scheme can provide the required
flexibility, and is therefore a good candidate for cognitive radio [1,16,33-35]. OFDM
can be employed in a cognitive radio network by dividing the primary user’s unused
bandwidth into a number of subbands available for use by the cognitive radio systems.
In order to achieve low mutual interference between primary and secondary users, an
adaptive transmit filter can be used to prevent usage of a set of subcarriers, which are
being used by the primary users. Moreover, the fast Fourier transform (FFT) block
in the OFDM demodulator (Figure 2.1) can be used for spectral analysis [33].
OFDM is a multi-carrier scheme in which a wideband signal is converted to a
number of narrowband signals. Then closely-spaced orthogonal subcarriers are used
to transmit these narrowband data segments simultaneously. In effect, a frequency se-
lective fading channel is divided into a number of narrowband flat fading subchannels.

OFDM has many advantages over single-carrier transmission [36-40]:
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It improves the efficiency of spectrum utilization by the simultaneous use of

multiple orthogonal subcarriers, which are densely packed.

The OFDM waveform is first built in the frequency domain and then it is trans-

formed into the time domain, thereby providing flexible bandwidth allocation.

Interleaving the information over different OFDM symbols provides robustness

against loss of information caused by flat-fading and noise effects.

Although the spectrum tails of subcarriers overlap with each other, at the center
frequency of each subcarrier all other subcarriers are zero. Theoretically this
prevents inter-carrier interference (ICI). However, time and frequency synchro-
nization is critical for ICI prevention as well as correct demodulation, and is a

major challenge in the physical layer design [41].

Since a narrowband signal has a longer symbol duration than a wideband signal,
OFDM takes care of inter-symbol interference (ISI) caused by multipath delay
of wireless channels. However, guard time intervals, which are longer than the
channel impulse response, are introduced between OFDM symbols to eliminate
the ISI by giving enough time for each transmitted OFDM symbol to dissipate

considerably [38].

Due to the low ISI, less complex equalization is required at the receiver, which

leads to a simpler receiver structure.

In summary, frequency diversity enables OFDM to provide higher data rates, more

flexibility in controlling the waveform characteristics, and greater robustness against

channel noise and fading compared to single-carrier transmission schemes.

14



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

Using the OFDM-based modulation scheme, the bandwidth allocation can be con-
sidered as a subcarrier assignment problem [38]. The resource management problem
may then consist of subcarrier assignment and power control. While the availability
of channel bandwidth depends on the communication patterns of primary users, a
cognitive radio has complete control over its own transmit power. In other words,
among the two primary resources, power is the only variable that can be manipulated
by cognitive radio users. As mentioned previously, a subcarrier will not be assigned
to a cognitive radio if its transmit power on that subcarrier is zero. Therefore, the
resource-allocation problem can be reduced to the transmit-power control and can be
considered as a distributed control problem. Scalable decentralized algorithms with

reasonable computational complexity are naturally preferred.

2.3 Cognitive-Information-Processing Cycle

In signal-processing terms, a feature that distinguishes cognitive radio from conven-
tional wireless communication, is the cognitive-information-processing cycle [1, 16].
This cycle applies to a secondary (unserviced) user, where a transmitter at one loca-
tion communicates with a receiver at some other location via a spectrum hole, that
is, a licensed subband of the radio spectrum that is underutilized at a particular point
in time and at a particular location. The cognitive cycle encompasses two basic oper-
ations; radio-scene analysis of the surrounding wireless environment at the receiver,
and dynamic spectrum management/transmit-power control at the transmitter. In-
formation on spectrum holes and the forward channel’s condition, extracted by the
scene-analyzer at the receiver, is sent to the transmitter via a feedback channel. The

feedback channel is a physical channel available to all cognitive radio users. It can be
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established in three ways [42]:

e A specific spectrum band is licensed and reserved as a dedicated universal chan-

nel for cognitive radios.

e Available spectrum holes are used by cognitive radios both for data transmission

and feedback channel.
e Cognitive radio units establish their feedback channels using unlicensed bands.

The feedback channel can always be established using the unlicensed bands indepen-
dent of the availability of spectrum holes. Also, unlike the universal feedback channel,
it does not have the problem of spectrum licensing. Therefore, using the unlicensed
bands for establishing the feedback channel is the best choice [42].

Dynamic spectrum manager solves a limited-resource distribution problem and is
designed to dynamically assign available spectrum holes to cognitive radio units in a
fair and efficient manner [42]. The information that transmitter receives through the
feedback channel enables it to adaptively adjust the transmitted signal and update
its transmit power over desired channels. Using a predictive model, the cognitive
radio is enabled to predict the availability duration of spectrum holes, which, in turn,
determines the horizon of the transmit-power control. The combination of the radio-
scene analyzer, the feedback channel, the dynamic spectrum manager /transmit-power
controller, and the wireless link constitutes a closed-loop feedback system as depicted
in Figure 2.2 [1,16].

The detailed-information-processing cycle of Figure 2.2 can be summarized as Fig-

ure 2.3. The cognitive-information-processing loop resembles the perception-action
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Figure 2.2: Basic information-processing cycle for user i in a cognitive radio net-

work [1].

cycle in the brain. The radio-environment actuator performs dynamic spectrum man-

agement and transmit-power control.

2.4 Network of Cognitive Radios

In a cognitive radio network, the radio communication channel is shared between

different transceivers and each user’s action affects the performance of neighboring

users while they compete for limited resources. At any instant of time, new users may

join the network or old users may leave the network. Also, primary users may start

or stop communication and therefore, they may occupy or release some frequency

bands in a stochastic manner. All of these occurrences can be considered as discrete
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events compared to the real-time evolution of each user’s power vector, which can be
considered as evolving in continuous time. It follows therefore that the cognitive-radio
problem is a mixture of continuous dynamics and discrete events. In other words, a
cognitive radio network is a hybrid dynamic system of the sort described in [43,44].

The feedback channel will naturally introduce some delay in the control loop,
and some of the users may use inaccurate or out-dated interference measurements to
update their transmit powers. Also, they may update their transmit powers with dif-
ferent frequencies. Therefore, in a real-life situation, the resource-allocation algorithm
would have to be implemented in a distributed asynchronous manner [45-48].

In a competitive multi-agent environment with limited resources such as a cogni-
tive radio network, where the actions of all agents (users) are coupled via available
resources, finding a global optimum for the resource-allocation problem can be com-
putationally intractable and time consuming. Moreover, such optimization would
require huge amounts of information exchange between different users that will con-
sume precious resources. In a highly dynamic environment, where both users and

resources can freely come and go, finding a reasonably good or “just right” solution
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(i.e. a suboptimal solution) that can be obtained fast enough is the only practical
goal. Otherwise, spectrum holes may disappear before they can be utilized for com-
munication. In such a situation, the concept of equilibrium is very important [49].
It is therefore not surprising that game theory has attracted the attention of many
researchers in the field of communication networks.

Recently, several tutorials on game theory have been published for communica-
tion engineers. A nice survey on applications of game theory in wired communication
systems is presented in [50]. The monograph [19] covers the non-cooperative game
theory and in the final chapter mentions some research areas in wireless communica-
tions and networking that can benefit from game theoretic approaches. The technical
report [51] explains the terminology of non-cooperative game theory using four simple
examples from wireless communications. The concept of equilibria and the related
theorems are presented in [52]. The tutorial paper [53] explains the cooperative game
theory. In September 2008, IEEE Journal on Selected Areas in Communications
published a special issue on game theory in communication systems and John Nash
wrote a foreword for that issue. Also, in September 2009, IEEE Signal Processing
Magazine published another special issue on game theory in signal processing and
communications. The latter includes the mentioned tutorial papers on equilibria and
cooperative games. Also, the references [54-58] are worth mentioning among the oth-
ers for application of game theory in wireless communication systems and cognitive
radio networks.

In game theory, the Nash equilibrium is considered to be a concept of fundamental
importance. This equilibrium point is a solution such that none of the agents has an

incentive to deviate from it unilaterally. In other words, in a Nash-equilibrium point,
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each user’s chosen strategy is the “best response” to the other users’ strategies 20,24,
25]. Regarding the highly time-varying nature of communication networks in general
and especially cognitive radio networks, a Nash-equilibrium solution is a reasonable
candidate, eventhough it may not always be the best solution in terms of spectral
efficiency [59)].

The above discussion reveals that several key attributes such as distributed imple-
mentation, low complexity, and fast convergence to a reasonably good solution, pro-
vide an intuitively satisfying framework for choosing and designing resource-allocation
algorithms for cognitive radio. It is with this kind of framework in mind that
in [1,16,60], the IWFA has been proposed as a good candidate for finding a Nash

equilibrium solution for resource allocation in cognitive radio networks.

2.5 Problem Constraints

Regarding the coexistence of both primary and secondary users in certain subbands,

there are two spectrum sharing schemes [61]:

e Protective spectrum sharing in which primary users do not allow coexistence of
secondary users in their non-idle subbands. In OFDM scheme, secondary users
should not transmit over non-idle subbands and perhaps some other contiguous

subcarriers, which are used as guard bands.

e Aggressive spectrum sharing in which coexistence of primary and secondary
users in the same subbands is allowed on the condition that interference power

experienced by the primary user’s receiver remain below a specified threshold.
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A set of constraints must be imposed on each user’s transmit power in each sub-
carrier to maintain a limit on the interference produced. In [62], a fixed limit on
each user’s transmit power in each subcarrier is considered in order to guarantee that
all users transmit at low powers and do not cause high interference. However, this
approach may be too conservative from spectral efficiency point of view especially
when a subband is not crowded. In [63, 64|, global and flexible constraints were
proposed instead of individual and rigid constraints. The peak average interference
tolerable by the primary user’s receiver is used to put a limit on cognitive radios’
transmit powers. The measurements are performed at the primary user’s receiver
and the results are sent to secondary users’ transmitters. This approach requires
information exchange between primary users and secondary users and can be used in
a market-model spectrum-sharing regime that involves pricing. In [60], the interfer-
ence temperature limit, which was proposed by FCC, was used as a local and flexible
constraint. In the proposed approach, each user’s receiver measures the interference
power level on each subcarrier and sends the results to its corresponding transmitter
through the feedback channel. The transmitter adjusts its transmit power vector in a
way that it does not violate the permissible interference power level limit (interference

temperature limit).

2.6 Summary

Reported experiments that show the poor utilization of the spectrum in different parts
of the world were reviewed. OFDM scheme was mentioned as the method of choice for
cognitive radio because of its flexible spectrum shaping abilities. The building blocks

of the cognitive-information-processing cycle, which distinguishes cognitive radio from
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conventional wireless communications, were explained. Characteristics of a cognitive
radio network, and the constraints that are imposed on different cognitive radios were

presented.
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Chapter 3

Robustness

“To be uncertain is to be uncomfortable, but to be certain is to be ridiculous.”
Chinese proverb
According to the Institute of Electrical and Electronics Engineers (IEEE), “the robust-
ness of a system is the degree to which a system or component can function correctly

in the presence of invalid inputs or stressful conditions” [65].

3.1 The Concept of Robustness

Much too often in the literature, optimality is considered as the driving force for ob-
taining the best performance possible. Such an objective may well work satisfactorily
when considering small-scale applications or toy problems. However, when the appli-
cation of interest is of a complex or large-scale kind, exemplified by a cognitive radio
network, we find ourselves confronted with a much more pressing system requirement:
robustness.

Most, if not all, control design strategies exemplified by transmit-power control,
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are based on the selection of a model for the plant. Selection of the model is influenced
by mathematical tractability and prior knowledge that we may have about the plant,
a generic term used to describe part of a dynamic system that is supposed to be
controlled. Unfortunately, no matter how hard we try and irrespective of all the prior
knowledge we may have about the system, there will always be some discrepancy
between the actual physical behaviour of the plant and the corresponding behaviour
of the hypothetical model. The response produced at the output of the plant due
to a prescribed input signal is determined by the underlying physics of the plant.
On the other hand, when the corresponding behaviour of the plant is considered,
the response of the model due to the same input signal deviates invariably from the
actual response of the plant due to unavoidable model uncertainty. The challenge in
designing the controller is to make sure that the errors are kept small enough to be
acceptable from an operational viewpoint, regardless of all operating conditions that

are likely to arise in practice.

3.2 Transmit-Power Control

In spectrum sensing that constitutes a basic cognitive function in the receiver, the
issue of prime interest is that of variance versus bias of estimation [32]. When we
go on to consider the associated cognitive function of transmit-power control in the
transmitter, the issue of prime interest is robustness versus optimality [60].

In the context of cognitive radio, the physical plant represents the communication
channel between the transmitter and receiver, the radio-scene analyzer plays the role
of the sensor, and the radio-environment actuator is the controller. Since the sensor

and the actuator are not collocated, they have to be connected by a physical feedback
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channel and the controller receives the sensor measurements via the feedback channel.
Due to the different uncertainty sources in a cognitive radio network, adjusting the
transmit power of a cognitive radio requires solving an optimization problem under

uncertainty.

3.3 Dominant Sources of Uncertainty
The dominant sources of uncertainty in a cognitive radio network are:

o Primary Users: In a cognitive radio network, spectrum holes come and go,
depending on the availability of idle subbands. Therefore, primary users’ ac-
tivities are the cause of supply-side risk. Communication patterns of primary
users determine the availability and the duration of availability of resources.
The availability of the spectrum holes determines the joint feasible set of the
resource-allocation optimization problems that are solved by individual sec-
ondary users. In other words, it determines the joint set of the action spaces
of all secondary users in the corresponding game. As mentioned before, the
availability duration of spectrum holes determines the control horizon for the
radio-environment actuators of secondary users. Depending on the subbands of
interest and the dynamics of activities of primary users in those subbands, two

different cases are observed:

a) The activities of the primary users and therefore, their occupancy of the
corresponding subbands are well-defined. A good example for this case

would be the use of TV bands for cognitive radios.

25



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

b) The activities of the primary users and therefore, the appearance and dis-
appearance of spectrum holes are more dynamic and far less predictable
than the former case. A good example for this case would be the use of

cellular bands for cognitive radios.

e Secondary Users: Anytime users can leave the network and new users can join
the network in a stochastic manner. This is the cause of demand-side risk in

the network.

e Mobility: Users move all the time. Because of the mobility, the interference
that a user causes on other users and mutually the interference that other users

cause on that particular user in the network are time-varying.

o Multiple Time-Varying Delays: The feedback channel plays a fundamental role
in the design and operation of cognitive radio. Feedback may naturally intro-
duce delay in the control loop and different transmitters may receive statistics
of noise and interference with different time delays. Moreover, the sporadic
feedback causes users to use out-dated statistics to update their power vectors.
The time-varying delay in the control loop of each cognitive radio is another
source of uncertainty that degrades the performance and may cause stability

problems.

e Noise: The ambient noise depends on different activities in the environment

and is caused by both natural and man-made phenomena.
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3.4 Dealing with Uncertainty

During the time intervals that the activity of primary users does not change and the
available spectrum holes are fixed, two approaches can be taken to deal with the
uncertainty caused by joining and leaving of other cognitive radios as well as their
mobility; stochastic optimization and robust optimization [66]. The pros and cons of
these two approaches are discussed here.

If there is good knowledge about the probability distribution of the uncertainty
sources, then the uncertainty can be dealt with by means of probability and related
concepts. In this case, calculation of the expected value will not be an obstacle
and therefore, transmit-power control can be formulated as a stochastic optimization
problem.

However, since in practice, little may be known about the probability distribution,
the stochastic optimization approach that utilizes the expected value is not a suitable
approach. In this case, robust optimization techniques that are based on worst-case
analysis, without involving probability theory, are more appropriate, although such
techniques may well be overly conservative in practice. Suboptimality in performance
is, in effect, traded in favor of robustness.

Stochastic optimization guarantees some level of performance on average, and
sometimes the desired quality of service may not be achieved, which means a lack
of reliable communication. On the other hand, robust optimization guarantees an
acceptable level of performance under worst-case conditions. It is a conservative
approach because real-life systems are not always in their worst behaviour, but it

can provide seamless communication even in the worst situations. Regarding the
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dynamic nature of the cognitive radio network and the delay introduced by the feed-
back channel, the statistics of interference that is used by the transmitter to adjust
its power may not represent the current situation of the network. In these cases,
robust optimization Vis equipped to prevent permissible interference power level viola-
tion by taking into account the worst-case uncertainty in the interference and noise.
Therefore, sacrificing optimality for robustness seems to be a reasonable proposition.
However, the use of a predictive model may make it possible for the user to choose
the uncertainty set adaptively according to environmental conditions and therefore,

may lead to less conservative designs.

3.5 Summary

The concept of robustness and its formal definition were reviewed. The dominant
sources of uncertainty in a cognitive radio network were identified. Since the resource-
allocation problem in a cognitive radio network is an optimization problem under
uncertainty, stochastic and robust optimization can be used to address the uncertainty
issue. It was mentioned that robust optimization would be a better choice for the

problem at hand.
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Chapter 4

Network Dynamics Viewed from
Information-Theoretic and

Optimization Perspectives

There are two ways to build a cognitive radio network, one being evolutionary and
the other revolutionary. In the evolutionary viewpoint, the currently established
communication infrastructures can be utilized and cognitive radio networks are built
around existing base stations. In this framework, the base stations or spectrum
brokers [67] are responsible for assigning channels to cognitive radios; well-known
algorithms proposed in the multi-cellular network literature for distributed optimal
data rate and power control can be employed [46,68-73]. On the other hand, in the
revolutionary viewpoint, which is the focus of this research, there are no base stations
or communication infrastructures; hence, channel assignment and power control would
have to be performed jointly. As mentioned in Chapter 2, the IWFA is a potentially

good candidate for resource-allocation in cognitive radio networks because of its low
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complexity, fast convergence, distributed nature, and convexity.

4.1 Waterfilling Interpretation of Information Ca-
pacity Theorem

Capacity is interpreted as the ability of a channel to convey information and is related
to the noise characteristic of the channel. Shannon’s capacity theorem [74] defines
the fundamental limit on the rate of error-free transmission over a noisy communi-
cation channel. The information capacity of a channel is defined as the maximum of
the mutual information between the channel input and the channel output over all
distributions on the input that satisfy the power constraint [75, 76].

However, capacity is a theoretical ultimate transmission rate for reliable commu-
nication over a noisy channel. In practice, depending on the acceptable probability
of error, there is a gap between the channel capacity and what is achievable by a
practical coding and modulation scheme, called signal-to-noise ratio (SNR) gap, T,
which is zero at theoretical capacity [77].

The information capacity of a continuous channel of bandwidth B Hz, perturbed
by additive white Gaussian noise of power spectral density Ny/2 and limited in band-

width to B, is given by

P
= 4.1
C = B log, (1 + NOB> (4.1)

where P is the average transmitted power. The above formula reveals the interplay

among three key parameters; channel bandwidth, average transmitted power, and
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noise power spectral density. While the dependence of the information capacity, C,
on channel bandwidth, B, is linear, its dependence on SNR, P/NyB, is logarithmic.
Therefore, it will be easier to increase the information capacity of a communication
channel by expanding its bandwidth rather than increasing the transmit power for a
prescribed noise variance [76].

In a cognitive radio network the communication channel is often shared between
several transmitter-receiver pairs and information exchange between each pair in-
terferes with the communication between the others. Such a channel is called an
interference channel [78]. The capacity of interference channels is poorly understood
even for simple cases. The set of all possible data rates achievable by all users, is
called the rate region. The sum-rate expression is a non-convex function and finding
the optimal power allocations for different users that guarantees the global maximum
sum-rate is in general an NP-hard problem [79,80].

Instead of solving the optimization problem globally, we settle for a suboptimal
solution by viewing the problem as a non-cooperative game [77]. The competing
users try to maximize their data rates greedily by distributing their powers in a
channel above the noise level but below a constant level determined by the permissible
interference level (Figure 4.1). It is called the waterfilling (pouring) interpretation in
the sense that the process by which power is distributed is identical to the way in

which water distributes itself in a vessel [76].

4.2 Iterative Waterfilling Algorithm (IWFA)

The IWFA was originally developed for digital subscriber lines (DSL) [81-83]. In this

algorithm, users sequentially update their transmit power vectors over the available
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Figure 4.1: Waterfilling interpretation of the information-capacity theorem.

frequency tones in a fixed updating order, considering the transmit power of other
users as interference. The sequential nature of the algorithm requires some form
of central scheduling to determine the order in which users update their transmit
powers [47,48]. In a cognitive radio network, which is an infrastructure-less network,
such a central scheduling does not exist and also synchronization between the nodes
is difficult. Therefore, users update their transmit powers in a totally asynchronous
manner. The IWFA is well-suited for cognitive radio networks. In particular, the

practical virtues of the algorithm are:

e The transmit power control problem is formulated as a game or a distributed

convex optimization problem;
e [t is implemented in a decentralized manner;
e The algorithm converges fast; it has a linear convergence property under certain

conditions [84];
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e Each user acts greedily to optimize its own performance based on local infor-
mation, and the users do not need to communicate with each other to establish
coordination between themselves. This tends to reduce the complexity of the

cognitive radio network.

Finding a Nash equilibrium for the DSL game was reformulated as a nonlinear
complementarity problem (NCP) in [85]. In an NCP, the vector x € R", should be

found such that

x>0, F(x)>0, x'F(x)>0 (4.2)

where F is a nonlinear mapping from R"™ to R™. The problem will be a linear com-
plementarity problem (LCP) if F = Mx + q for a matrix M and a vector q with
appropriate dimensions [86]. In [84], the DSL game problem was reformulated as
an LCP. Reformulation of the IWFA as an NCP and an LCP provides very inter-
esting insights into this problem such as establishing the linear convergence under
certain conditions on interference gains. Also, conditions on interference gains are
obtained to guarantee convergence of the algorithm to a unique Nash-equilibrium

point [47,48,82,84]. However, the algorithm has some drawbacks:
e It is suboptimal,

e It is defenseless against clever selfish users that try to exploit dynamic changes

or limited resources.

Moreover, regarding the dynamic nature of the cognitive radio environment and the

speed of changes, the current transmit power values may not provide a good initial
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point for the next iteration. In this case, it may be better to start the iterative
procedure from a randomly picked initial point in the new feasible set.

In what follows, the resource-allocation problem in cognitive radio networks is
presented in the IWFA framework. While the predictive model can help for dealing
with the appearance and disappearance of spectrum holes, robustification of the algo-
rithm is proposed to address the issues related to unavoidable changes in the number
of users and their mobility.

Assume that there are m active cognitive radio transmitter-receiver pairs in the
region of interest, and n subcarriers in an OFDM framework could potentially be
available for communication. Let PS denote the subset of subcarriers that are being
used by primary users and cannot be assigned to cognitive radios. Since spectral
efficiency is the main goal of cognitive radio, the utility function chosen by each user
to be maximized is the data rate. Thus, the IWFA lets user ¢ solve the following
optimization problem:

max fp...,p™) = z:log2 (1 + 1;—;:) (4.3)

pl
n
subject to : z:p}c < Phax
k=1
pl+ 1. <CAP, Vk ¢ PS

pi =0, Vk€ PS

Sometimes, this formulation is called rate-adaptive waterfilling. p denotes user #’s

transmit power on subcarrier k. The noise plus interference experienced by user 7 on
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subcarrier k£ because of the transmission of other users is:

=0+ ofp] (4.4)
J#
Since cognitive radio is receiver centric, I} is measured at receiver i.
The positive parameter o} is the normalized background noise power at user 7’s
receiver input on the kth subcarrier. The non-negative parameter azj is the normal-
ized interference gain from transmitter j to receiver ¢ on subcarrier k and we have

aff = 1. The term o} is the combined effect of two factors:
e Propagation path-loss from transmitter j to receiver ¢ on subcarrier k.
e Subcarrier amplitude reduction due to the frequency offset Af.

Mathematically o} is defined as

g F|hij]2
al =L kL (4.5)
* TR
where T is the SNR gap and hzj is the channel gain from transmitter j to receiver

over the flat-fading subchannel associated with subcarrier k. Regarding the empirical

formula for the path loss [87], we have

g = di’?)r (4.6)

where d;; is the distance from transmitter j to receiver ¢. The path-loss exponent, r,

varies from 2 to 5, depending on the environment, and the attenuation parameter, B,
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is frequency dependent. Therefore,

g di\"
oy x (—’) (4.7)
dw
and in general aff # af. If user i’s receiver is closer to its transmitter compared to
other active transmitters in the network, we will have off < 1.

Also, pf .. 18 user i’s maximum power and CAP; is the maximum allowable in-
terference on subcarrier k. CAP; is determined in a way to make sure that the
permissible interference power level limit will not be violated at the primary users’
receivers [1,16]. The previously mentioned properties of IWFA are more elaborated
in what follows based on the mathematical formulation of (4.3).

In IWFA, user ¢ assumes that p}c is fixed for j # 4. Therefore, the optimization
problem in (4.3) is a concave maximization problem in p¢ = [p},...,p}]%, which can
be converted to a convex minimization problem by considering — f* as the objective.
The first constraint states that the total transmit power of user ¢ on all subcarriers
should not exceed its maximum power (power budget). The second constraint set
guarantees that the interference caused by all users on each subcarrier will be less than
the maximum allowed interference on that subcarrier. If primary users do not let the
secondary users use the non-idle subcarriers in their frequency bands, then cognitive
radios should not use those subcarriers for transmission. The third constraint set
guarantees this by forcing the related components of the secondary user ¢’s power
vector to be zero. If primary users let the coexistence of secondary users on non-
idle subcarriers in condition that they do not violate the permissible interference
power level, then the third constraint set can be relaxed and the second constraint

set suffices.

36



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

As mentioned previously, IWFA is implemented in a decentralized manner. In
order to solve the optimization problem (4.3), it is not necessary for user i to know
the value of p} for Vj # 4. The I} defined in (4.4) is measured by user i’s receiver
rather than calculated, and therefore users do not need to exchange information. It
is not even necessary for user ¢ to know the number of other users in the network.
Therefore, changing the number of users in the network does not affect the complexity
of the optimization problem that should be solved by each user. Hence, there is not
any scaling problem.

While the action of user 4 is denoted by its power vector p’, following the notation
in the game theory literature, the joint actions of the other m — 1 users are denoted
by p~¢. Three major types of adjustment schemes, S, can be used by the users to
update their actions [26]:

(7) Iterative waterfilling [81-83]: users update their actions in a predetermined or-

der [26]:

p_i(St) = [pl(t + 1)) e 7pi_1(t + 1)7 pi+1(t)v T apm(t)} (48)

(73) Simultaneous iterative-waterfilling [47]: users update their actions simultaneously

regarding the most recent actions of the others [26]:

p'(S) =p'(t) (4.9)
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(71) Asynchronous iterative-waterfilling [48] is an instance of an adjustment scheme

that user ¢ receives update information from user j at random times with delay [26]:
p(S) =[P (7, TR T, AT, - P (™) (4.10)

where 77/ is an integer valued random variable satisfying
max (0,t —d) <77 <t+1 j#i i,jeN (4.11)

which means that the delay does not exceed d time units.
Due to lack of central scheduling and difficulty of synchronization between different
users in a cognitive radio network, the asynchronous adjustment scheme is more

realistic than the other two.

4.3 TIWFA as a Multi-Stage Optimization Problem
in light of System Uncertainties

Since a cognitive radio network is a hybrid dynamic system, policies are defined on
the event space as well as on the state space and therefore, each user needs to solve

the corresponding optimization problem in two stages based on events and states.

4.3.1 Event-Based Optimization

A set of state transitions is called an event. Events determine the dimension of the

state space. When primary users stop communication, they release subbands, which
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can be used by cognitive radios. This event increases the dimension of the optimiza-
tion problems that are solved by secondary users. On the other hand, when primary
users start communication, they occupy subbands. This event decreases the dimen-
sion of the optimization problems that are solved by secondary users. Each user’s
dynamic spectrum manager chooses a set of appropriate channels for communication.
Finding the optimal set of channels for each user is equivalent to the well-known graph
colouring problem in graph theory [42]. In [88] a novel self-organizing spectrum man-
agement scheme is proposed, which uses Hebbian learning [89,90] and solves the
problem in a decentralized manner. This way, cognitive radios will be able to learn
communication patterns of the primary users and build a predictive model, which
determines the control horizon for the transmit-power controller. In the time inter-
vals between such events, the state dimension of each user remains unchanged and

state-based optimization is performed to find the optimal transmit power vector.

4.3.2 State-Based Optimization

In the time intervals in which the available spectrum holes are fixed, the cognitive
radio environment still has a dynamic nature, seéondary users move all the time, they
can leave the network and new users can join the network in a stochastic manner.
Because of these activities, the interference plus noise term (4.4) in the objective
function and the second constraint set of the optimization problem (4.3) are both
time-varying; the IWFA therefore assumes the form of an optimization problem under
uncertainty. As mentioned in Chapter 3, stochastic and robust optimization can
be employed to deal with the uncertainty caused by joining and leaving of other

cognitive radios as well as their mobility. After discussing the pros and cons of these
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two approaches, it was concluded that the robust optimization is a more reasonable

approach, hence the material that follows.

4.4 Robust IWFA

Because of different sources of uncertainty, the noise plus interference term is the

summation of two components: a nominal term, I, and a perturbation term, Al, as

I =1+ Al (4.12)

In the following, the objective functions for both stochastic and robust versions of
the optimization problem (4.3) are presented.

If there is good knowledge about the probability distribution of the uncertainty
term, AI, the IWFA problem (4.3) can be formulated as a stochastic optimization

problem with the following objective function.

n i
Dg
Eap 1 T 4.1
IT;%X AT Z 082 <1+ L +AI}C) (4.13)
k=1
where E denotes the statistical expectation operator and
AT = [AL,...,AL]" (4.14)

The formulation of IWFA as a robust game in the sense described in [91] is basi-
cally a maz-min problem in which each user tries to maximize its own utility while
the environment and the other users are trying to minimize that user’s utility [27,92].

Worst-case interference scenarios have been studied for DSL in [93]. Considering an
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ellipsoidal uncertainty set, the IWFA problem (4.3) can be formulated as the following

robust optimization problem.

1 4.15
max [lgrll}ﬁLE Z 0g2< IH—AI’)] (4.15)

k=1
subject to : Zp}c < Pl
max (p}, + I, + AI}) < CAP,, Vk ¢ PS
lAr|<e

p.=0, VkePS

A larger € accounts for larger perturbations, and the second set of constraints guar-
antee that the permissible interference power level will not be violated for any per-

turbation from the considered uncertainty set.

4.4.1 The Cost of Robustness

In addition to conservativism, there is yet another price to be paid for achieving
robustness. Although the IWFA problem (4.3) is a convex optimization problem,
appearance of the perturbation term, A/, in the denominator of signal-to-interference
plus noise ratio (SINR) in the objective function of the robust IWFA problem (4.15),
makes it a non-convex optimization problem. A robust optimization technique is
proposed in [94] for solving non-convex and simulation-based problems. The proposed
method is based on the assumption that the cost and constraints as well as their
gradient values are available. The required values can even be provided by numerical

simulation subroutines. It operates directly on the surface of the objective function,

41



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

and therefore does not assume any specific structure for the problem. In this method,
the robust optimization problem is solved in two steps, which are applied repeatedly

in order to achieve better robust designs.

e Neighborhood search: The algorithm evaluates the worst outcomes of a decision
by obtaining knowledge of the cost surface in a neighborhood of that specific

design.

e Robust local move: The algorithm excludes neighbors with high costs and picks
an updated design with lower estimated worst-case cost. Therefore, the decision

is adjusted in order to counterbalance the undesirable outcomes.

Linearity of constraints of the robust optimization problem (4.15), especially the
second set of constraints that involves the perturbation terms, improves the efficiency

of the algorithm.

4.5 Reformulation of IWFA as a Variational In-

equality (VI) Problem

A Nash equilibrium game can be reformulated as a VI problem [95-97]. To be specific,
Denoting the feasible set of (4.3) by K*, we may rewrite the optimization problem

(4.3) as

min - (pY,....,p™) (4.16)
pl

subject to : p'e K

We recall the following theorem from [96,97].
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Theorem 4.1: Let K' be a closed convex subset of R® and — f* be a convex and

, T
continuously differentiable function in p* fori =1,--- ,m. p* = [p*lT’ e p*mT]

is a Nash equilibrium of the game if, and only if, it is a solution of the following VI

problem VI(K, F):
(p-pP) F(p) >0 (4.17)

where

F(p) = — [Vpif'] o, (4.18)

and

K={peR™" pi =0, Vke PS,Vi=1,...,m;

0<p.+Ii <CAP,, Vk¢ PSNi=1,...,m;

n
D Pk < Phae Vi=1,...,m} (4.19)
k=1

Calculating the gradients in (4.18) leads to fractional terms with the sum of the power

and interference plus noise in the denominators:

1 1 1F

—_— e 4.20
pi+ It pn+ 1, (4.20)

St =]

1 1 g
UHZZLN?P{’ 7‘731"’2?:10‘%%}

Alternatively, following the approach of [84], a nice formulation of the IWFA as a

VI problem is obtained that facilitates study of the network in a dynamic framework.
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The discussion presented in this section is built on [84], and extends the

proposed

reformulation of IWFA to the cognitive-radio problem. In particular, we are allowed

to utilize some existing mathematical tools and also benefit from ongoing research in

other fields. The Lagrangian of the optimization problem in (4.3) for the user ¢ is

now written as

n
L'(p'...,p") =—f'+u <ZP2 —pinax> +

k=1

> i (02 +Y afpl - CAPk> + ) Aph
=1

k¢PS j= kePS

Therefore, we have

v =0,M>0 kePS

A =0,7>0 k¢ PS

The Karush-Kuhn-Tucker (KKT) conditions [98-100] for user ¢ and Vk = 1,

as follows:

L — '+ + AL >0

T +Z§-”=1 o P, B
n

0<w L ple— > Pp >0
k=1

0<p, L —

0<7 L CAP.—o}— ) ojlp, >0, Vk¢PS
j=1

P =0, Vke PS
where “L1” signifies orthogonality of the corresponding variables.
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Regarding the availability of spectrum for secondary usage, two cases may happen.
If the network faces spectrum scarcity, some of the users may not be able to transmit
with their maximum powers. Then, the first constraint in (4.3) will be redundant for
those particular users. On the other hand, if the available spectrum is enough for all
of the users to transmit with their maximum powers, the following inequality will be

satisfied.

> Phax < Y (CAP, — o) (4.24)
Jj=1

k¢PS

where o7 is the maximum normalized background noise power on subcarrier k.
In this case, similar to Proposition 1 of [84], which was proved for DSL, it can be
shown that the system described in (4.23) is equivalent to a mized linear complemen-
tarity system (mixture of a linear complementarity problem with a system of linear
equations) [101].

Proposition 4.1: Suppose that (4.24) holds, then the system (4.23) is equivalent

to the following mixed linear complementarity system:

m .. . . .

0<p, L og+> ofpl+v +¢i+6 >0 (4.25)
j=1

. . m .. .
0<¢ L CAP, -0, — Y afp.>0, Yk ¢ PS
j=1
n
Phax = 9 Pk =0
k=1

pi =0, Vke€ PS
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where
; 1
. (o + X adnl)
$r = ut
o Aok + S o))
Sk = I
and
; 1
Te=— L
vt (of + S o)
X = 5

vi (of + Xy alpl)

While each user solves the above mized linear complementarity problem (MLCP)
with time-varying constraints, they should finally reach an equilibrium. The linear
equation in (4.25) dictates that each user transmits with its maximum power, which
leads to the worst-case interference condition. Intuitively it makes sense that each
user transmits with its maximum power in order to achieve maximum data rate.

In the most general case, where (4.24) is not valid, some of the users in the network
will be able to transmit with their maximum powers and the others will not. We define
two sets, My and M,, which include these two groups of users, respectively. Intuitively
speaking, when users adjust their power vectors based on rate-adaptive waterfilling
(4.3) in which they try to maximize their data rates subject to power constraints,

they either transmit with their maximum power or with the highest power permitted
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by the interference limits. In the case of spectrum scarcity, where (4.24) is not valid,
for user i € M;, which is able to transmit with its maximum power, u* > 0 and we
have:

Proposition 4.2: Suppose that (4.24) is not valid and user i is able to transmit
with its maximum power, then the system (4.23) is equivalent to the mixed linear
complementarity system (4.25).

On the other hand, when user ¢ cannot transmit with its maximum power, the
first constraint in (4.3) will be redundant and u* = 0. The KKT conditions in (4.23)
are reduced to:

0<pp L — -+ AL >0 (4.28)

1
i mif
OF + D o1 O Py
m

0<9 L CAP. -0}, =) ofpl >0, Vk ¢ PS

j=1

p. =0, Vk € PS

In this case, we have:
Proposition 4.3: Suppose that (4.24) is not valid and the first constraint in (4.3)
can be relaxed for user ¢, then the system (4.28) is equivalent to the following mixed

linear complementarity system:

m
0<ph L op+) ofpl+ei+6>0 (4.29)
j=1

o+ ojlpl = CAP,, Vk ¢ PS
j=1

pi =0, Vk e PS
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where

and

: 1
Ok = 7 (4.30)
k
o (ol + T el
S = .
- 1
e = ~a (4.31)
A= — Sk
o (o + Sy ol

The linear equation in (4.29) suggests that, when user ¢ cannot transmit with its

maximum power, it transmits with the highest permissible power, dictated by the

interference temperature limit. Again, intuitively it makes sense.

Users that belong to M; solve the MLCP (4.25) and users that belong to M, solve

the MLCP (4.29). Let us concatenate the corresponding variables for all users as

follows:

p=[p] =] : (4.32)
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- -
ol
on
o=[d]_ =] : (4.33)
oy
Lon
Mll . Mlm
M = ' PR . (4'34)
Mml . Mmm
where M*s are diagonal matrices
o o0
MY =1|: ... (4.35)
0 ... i

n

The MLCPs (4.25) and (4.29) are the KKT conditions for an affine variational in-

equality (AVI) problem [96], defined by the affine mapping

F(p) =0 +Mp (4.36)
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and the polyhedron [84]:

K={peR™" pi =0, Vke PS,Vi=1,...,m;

Ph+ I <CAPe, Y ph = P Yk & PS, Vi€ My;
k=1

pi 4+ Ii = CAP,, Vk ¢ PS, Vi€ My} (4.37)

Hence, the IWFA can be formulated as an AVI problem VI(K, o+Mp) or AVI(K, o, M).
The vector p* is a Nash equilibrium point of the IWFA if, and only if, p* € K and
Vp € K [84,96]:

(p-p) (c+Mp*) >0 (4.38)

The above AVI problem can be interpreted as a robust optimization problem in which
p is subject to uncertainty and known only to belong to K {102]. In the following, it is
shown that the AVI reformulation of IWFA facilitates the study of the disequilibrium

behaviour and stability analysis of the cognitive radio network.

4.6 Solution Characteristics

Monotonicity establishes the essential conditions for existence and uniqueness of
the solution of the VI problem. The following definition and theorem are recalled
from [96].

Definition 4.1: A mapping F: K C R" — R" is said to be
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(a) monotone on K if
(F(x) - F(y))" (x—y) >0, Vx,y € K; (4.39)
(b) strictly monotone on K if
(Fx)-F@) (x-y)>0, ¥x,y € K,x#y; (4.40)
(c) &~-monotone on K for some £ > 1 if there exists a constant ¢ > 0 such that
(F(x) —F(y)" (x—y) 2 ¢|x - 5%, vx,y € K; (4.41)
(d) strongly monotone on K if there exists a constant ¢ > 0 such that
(F(x)—F(y) (x-y) > clx—yl? Vxy€eK, (4.42)

i.e. if F'is 2-monotone on K.
Strong monotonicity implies £&-monotonicity, £-monotonicity implies strict mono-
tonicity, and strict monotonicity implies monotonicity but the reverse is not true.
Theorem 4.2: Let K C R" be closed convex and F : K C R™ — R" be continuous.
(a) If F is strictly monotone on K, then VI(K, F') has at most one solution.
(b) If F' is &-monotone on K for some £ > 1, then VI(K, F') has a unique solution.
Therefore, the VI(K,o + Mp) has at most one solution if o + Mp is strictly
monotone and it has a unique solution, p*, if & + Mp is £&-monotone for some & > 1.
Monotonicity of the affine map Mp + o, where M is not necessarily symmetric,

is equivalent to the condition that all of the eigenvalues of M have non-negative real
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parts. Also, strict monotonicity, {-monotonicity, and strong monotonicity of Mp+ o,
as well as the condition that all of the eigenvalues of M have positive real parts are
all equivalent [96]. The latter condition is equivalent to the statement that —M is
a Hurwitz matrix. This statement follows from the definition: A Hurwitz matrix is
a matrix, which all of its eigenvalues have negative real parts [103]. Since M is a
non-negative real matrix, in this case the symmetric part of M, % (M + MT), will
be positive definite. Therefore, if matrix —M is Hurwitz, the existence of a unique
equilibrium solution for the IWFA game will be guaranteed.

In order to get an idea about the conditions under which matrix —M is Hurwitz
in a practical cognitive radio network, let us regroup the elements of the power vector

in (4.32) based on subcarriers instead of users.

a= [Pl = | (4.43)

m
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Accordingly, by rearranging rows and columns of matrix M, the following block di-

agonal matrix is obtained.

M; 0
0 M,
where Mys are tone matrices [34]
1 o™
M = (4.45)
a}c’“ . 1

Matrices M and N have the same set of eigenvalues. Regarding the block diagonal
structure of matrix N, if all of the eigenvalues of every tone matrix, My, have positive
real values or if the symmetric part of every tone matrix, % (Mk + Mf), is positive
definite, then —M will be Hurwitz. If tone matrices are strictly diagonally dominant,
then their symmetric parts will be positive definite. Therefore, the following condition

guarantees that —M will be Hurwitz.

Y al<l, Vi=1,...m Vk=1,...,n (4.46)
J=1,74

For instance, if
o < 1 Vi,j=1,...,m,Vk=1,...,n (4.47)
k m——l’ ) ’ ] I 3 )

the Hurwitz condition will be guaranteed [81-84].
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As shown in (4.7), the interference gains, a}f, depend on the distance between a
receiver and its own transmitter relative to its distance from other active transmitters
in the network. Therefore, the Hurwitz condition of matrix —M depends on the
topology of the network. Roughly speaking, if each user’s receiver has the proper
distance from its own transmitter, which is short compared to its distance from other
active transmitters in the network, then it can be guaranteed that the network will
reach a stable unique equilibrium.

The existence and uniqueness results for IWFA are extended in [48,84] and broader
conditions are obtained compared to those presented in [81-83]. However, as it will
be clear in Chapter 6, the condition (4.46) provides insight on the stability of real-life
cognitive radio networks.

In general, cognitive radio networks are infrastructure-less networks and connec-
tion between source and destination nodes are established through self-organization
and ad hoc networking [104-106]. In a self-organized ad hoc cognitive radio network,
when a source node wants to communicate with a destination node, a multi-hop path
is established between them, which is called a communication tube. In general, the
communication tube is dynamic and nodes can enter the tube or leave it due to
their mobility. It can also bend and change its shape in order to preserve connec-
tivity [107]. The multi-hop (relay) communication for cognitive radio has been the
focus of extensive research. In the context of spectrum-aware routing or opportunistic-
spectrum routing, a transceiver explores and utilizes the cooperative diversity in the
network to build a multi-hop communication path in which the intermediate nodes
that are willing to cooperate relay the message [108-110]. Moreover, the dynamic

spectrum manager guarantees that the neighboring transmitting nodes will not use
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the same set of channels in order to reduce the interference [42,88]. Therefore, the
above mentioned condition for existence of a unique equilibrium solution is practically
achievable through dynamic spectrum management, opportunistic-spectrum routing,

and flexibility of the communication tube between source and destination nodes.

4.7 Summary

The resource-allocation problem in cognitive radio networks was formulated as a
non-cooperative game. Users solve a two-stage optimization problem to select a set
of proper channels for communication and adjust their transmit powers in those chan-
nels. The robust version of IWFA was suggested as a proper candidate for finding
the equilibrium solution using local and flexible constraints based on the permissi-
ble interference level in the network. IWFA was formulated as an affine variational
inequality problem and sufficient conditions for existing of a unique equilibrium solu-
tion were presented. The AVI formulation paves the way for investigating the network
behaviour in a dynamic framework. Regarding the relationship between variational
inequalities and temporal difference (TD) methods [111], extending the developed
framework to equip the cognitive radios with learning capability is suggested as a

direction for future research.
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Chapter 5

Computer Experiments I

“Something is always discarded when the results of experiment are trimmed
down to fit formulas and equations. That something, much or little, which
is thrown away has frequently been of scientific importance equal to what

is retained in the mathematics.” E. T. Bell (1883-1960)

IEEE 802.22 standard for wireless regional area networks provides fixed wireless
broadband services for cognitive radios in TV broadcast bands on a non-interfering
basis. Spectrum sensing is performed on the operating channel as well as the adja-
cent channels to make sure that cognitive radios will not cause harmful interference to
TV signals and wireless microphones. The sensing receiver sensitivity for digital TV,
analog TV, and wireless microphone is -116 dBm, -94 dBm, and -107 dBm, respec-
tively. Channel detection time is 2 s. Probability of detection is 0.9 and probability
of false alarm is 0.1. The standard supports superframes of groups of 16 frames with
a frame size of 10 ms. Also, excess delay of up to 37 us can be absorbed by the cyclic

prefix [112,113].
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Simulation results are now presented to support theoretical underpinnings of the
previous chapter. It is assumed that the cognitive-radio transceivers are distributed
randomly in the region of interest with uniform distribution (Figure 5.1); this as-
sumption is intuitively satisfying. Similar to [84,85] the normalized interference gains
aij are chosen randomly from the interval (0,1/(m — 1)) with uniform distribution,
which are less than 1/(m — 1), in order to guarantee that the tone matrices will
be strictly diagonally dominant. Thus, the corresponding matrix —M will be Hur-
witz. The ambient noise is assumed to be zero-mean Gaussian and the variance of
the noise experienced by each user in each subcarrier is chosen from the interval
(0,0.1/(m — 1)) with uniform distribution. The power budgets p! ., are chosen ran-
domly from the interval (n/2,n) with uniform distribution too. For scenarios that
consider the time-varying delay in the control loops, delays are chosen randomly. As
shown in Figure 5.2, user mobility changes the communication path partially or com-
pletely, which, in turn, changes the interference gains and matrix M. The same thing

happens when new users join the network or old users leave the network.

5.1 Robust IWFA vs Classic IWFA

5.1.1 Stochastic Variability in the Network Configuration

The transmit power control problem in a cognitive radio network using the classic
IWFA and its robust version were presented in Section 4.2 and Section 4.4, respec-
tively. In a cognitive radio network, when a spectrum hole disappears, users may
have to seek or else increase their transmit powers in other spectrum holes and this

increases the interference. Also, when new users join the network, current users in
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Figure 5.1: Multi-hop communication path between a source node and a destination
node.

the network, experience more interference. Therefore, the joining of new users or
the disappearance of spectrum holes makes the interference condition worse. Also,
the cross-interference between users is time-varying because of mobility of the users.
Results related to two typical but extreme scenarios are presented here to show su-
periority of the robust IWFA (4.15) over the classic IWFA (4.3) in dealing with the
above issues.

The first scenario addresses a network with m = 5 nodes and n = 2 available sub-
carriers, and all of the users simultaneously update their transmit powers using the
interference measurements from the previous time-step. As mentioned previously, the
asynchronous adjustment scheme is the most realistic one when network simplicity is
at a premium. However, here simultaneous adjustment was employed to implement

extreme cases, which emphasize the practical effectiveness of robust IWFA and its
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Figure 5.2: Effect of user mobility on the communication path: (a) partially changed,
(b) completely changed.
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superiority over the classic IWFA. At the fourth time-step, two new users join the
network, which increases the power level of interference. The interference gains are
also changed randomly at different time instants to consider mobility of the users.
Figure 5.3 and Figure 5.4 show the transmit power of three users (users one, four, and
seven) on two different subcarriers for the classic IWFA and robust IWFA, respec-
tively. At the second subcarrier, the classic IWFA is not able to reach an equilibrium.
Data rates achieved by the chosen users are shown too. Also, the total data rate in
the network is plotted against time, which is a measure of spectral efficiency. Al-
though the average sum rate achieved by the classic IWFA is close to the average
sum rate of the robust IWFA, it fluctuates and in some time instants the data rate
is very low, which indicates lack of spectrally efficient communication. Although,
the oscillation occurs mainly because of using simultaneous update scheme, it also
highlights practical effectiveness of the robust IWFA.

In the second scenario, a network with m = 5 nodes and n = 4 available subcar-
riers is considered. Again at the fourth time-step two new users join the network but
at the eighth time-step the third subcarrier is not available anymore (i.e. a spectrum
hole disappears). Results are shown in Figure 5.5 and Figure 5.6, which, again show
superiority of the robust IWFA. For classic IWFA, immediately after the disappear-
ance of the third subcarrier, power in the fourth subcarrier starts to oscillate and
after changing the interference gains randomly, we observe the same behaviour in
other subcarriers. In contrast to the robust IWFA, the classic IWFA fails again to

achieve an equilibrium.
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Figure 5.3: Resource allocation results of simultaneous IWFA, when 2 new users join
a network of 5 users and interference gains are changed randomly to address the
mobility of the users: (a) transmit powers of 3 users on 2 subcarriers, (b) data rates
of 3 users and the total data rate in the network.
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Figure 5.4: Resource allocation results of simultaneous robust IWFA, when 2 new
users join a network of 5 users and interference gains are changed randomly to address
the mobility of the users: (a) transmit powers of 3 users on 2 subcarriers, (b) data
rates of 3 users and the total data rate in the network.
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Figure 5.5: Resource allocation results of simultaneous IWFA,| when 2 new users join
a network of 5 users, a subcarrier disappears, and interference gains are changed
randomly to address the mobility of the users: (a) transmit powers of 3 users on 4
subcarriers, (b) data rates of 3 users and the total data rate in the network.
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5.1.2 Delay

As mentioned previously, sporadic feedback introduces a time-varying delay in the
transmit power control loop, which causes different users to update their transmit
powers based on out-dated statistics. For instance, when the network configuration
and therefore interference pattern changes, some users receive the related information
after a delay. If the interference on a subcarrier increases and the transmitter is not
informed immediately, it will not reduce its transmit power and it may violate the
permissible interference power level for a while until it receives updated statistics of
the interference in the forward channel. Similarly, this may happen to some users that
update their transmit powers at lower rates compared to others. In the third scenario,
a new user joins a network of three users, who are competing for utilizing two sub-
carriers. Each user’s transmitter receives statistics of the interference plus noise with
a time-varying delay. Figure 5.7(a) shows the randomly chosen time-varying delays
introduced by each user’s feedback channel. Sum of transmit power and interference
plus noise at the second subcarrier at the receiver of each user is plotted in Fig-
ure 5.7(b) and Figure 5.7(c) for classic IWFA and robust IWFA, respectively. Dashed
lines show the limit imposed by the permissible interference power level. Although
the classic IWFA is less conservative, it is not as successful as the robust IWFA at
preventing violations of the permissible interference power level. Similar results are
obtained when users update their transmit powers with different frequencies.

These small-scale problems were designed and typical results were presented to
compare the performance of classic IWFA and robust IWFA. In some extreme cases
because of occurrence of discrete events such as the appearance and disappearance

of spectrum holes and users, the IWFA cannot achieve an equilibrium solution and
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calculated results oscillate in subsequent time-steps especially if we use the simulta-
neous update scheme. This confirms the point that in a hybrid dynamic system such
as a cognitive radio network in which switching happens between different subsys-
tems even if all of them are stable, the whole system may become unstable because
of switching between the subsystems. In the presented cases, the robust IWFA was
able to achieve an equilibrium solution. Also, when some users update their transmit
powers with lower frequencies or use out-dated information, the robust IWFA can
prevent violating the permissible interference power level. Classic IWFA lacks this

ability although it achieves superior data rates.
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Figure 5.7: Resource allocation results of IWFA, when interference gains change
randomly with time and users use out-dated information to update their transmit
powers: (a) time-varying delays introduced by each user’s feedback channel. Sum of
transmit power and interference plus noise for 4 users achieved by (b) classic IWFA.
(c) robust IWFA. Dashed lines show the limit imposed by the permissible interference
power level.

69



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

5.2 Summary

Simulation results were presented to compare the performance of classic IWFA vs
robust IWFA. Toy scenarios were considered in order to develop insight. Results
show superiority of the robust IWFA over the classic IWFA in dealing with different
practical issues in a cognitive radio environment, which is achieved by putting up
with a reduction in achievable data rate for reliable performance. As mentioned
previously, IWFA is defenseless against malicious users that do not follow the rules
and do not decrease their transmit power, when the interference level is high. Such
users can exploit the limited resources and achieve higher data rates compared to well-
behaved users. In effect, therefore, a malicious user may act like a jammer and have
the same effect on the network that disappearance of a spectrum hole has. Hence,
other users’ power vectors may fluctuate and the network may not be able to reach
an equilibrium. Similar results on oscillation of transmit powers and therefore, data
rates in the presence of a jammer were reported in [114]. In this situation, robust
IWFA enables the well-behaved users to reach an equilibrium with possibly lower

data rates.
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Chapter 6

Network Dynamics Viewed from

Control-Theoretic Perspectives

Although the components of the network may remain unchanged in complex and
large-scale networks, the general behaviour of the network can change drastically
over time. If the SINR of a communication link drops below a specified threshold
for a relatively long time, the connection between the transmitter and receiver will
be lost. For this reason, in addition to the equilibrium resource allocation that was
discussed in Chapter 4, the transient behaviour of the network deserves attention
too [115]. Therefore, studying the equilibrium states in a dynamic framework by
methods that provide information about the disequilibrium behaviour of the system

is critical, which is the focus of this chapter.
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6.1 Projected Dynamic (PD) System

In the previous chapters, IWFA was proposed as an approach to find an equilibrium
solution for the resource-allocation problem in cognitive radio networks. Also, the
IWFA was reformulated as a VI problem. The projected dynamic (PD) systems
theory [95] can be utilized to associate an ordinary differential equation (ODE) to
the obtained VI. A projection operator, which is discontinuous, appears in the right-
hand side of the ODE to incorporate the feasibility constraints of the VI problem
into the dynamics. This ODE provides a dynamic model for the competitive system
whose equilibrium behaviour is described by the VI. Also, the stationary points of the
ODE coincide with the set of solutions of the VI, which are the equilibrium points.
Thus, the equilibrium problem can be studied in a dynamic framework. This dynamic
model enables us not only to study the transient behaviour of the network, but also
to predict it.

Before we proceed, we need to recall some mathematical definitions from [95]. The

set of inward normals at p € K is defined as
Sp)={v: Irll=1, {v,p-y) <0, Vy € K} (6.1)
Then, the projection of b € R™ onto K at p € K can be written as
[Ik(p,b) = b + max (0, (b, —s*)). s* (6.2)
where s* is a vector in S(p) that satisfies the condition

(b, —s*) = max (b, —s) (6.3)

seS(p)

72



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

By this projection operator, a point in the interior of K is projected onto itself, and
a point outside of K is projected onto the closest point on the boundary of K. The
following ODE

p = Ik (p, b(p)) (6-4)

with the initial condition

p(to) =Py € K (6.5)

is called a projected dynamic system.

Theorem 6.1: Assume that K is a convex polyhedron. Then, the equilibrium
points of the PDS(K,F’) coincide with the solutions of VI(K,F) [95].

Let us replace b(p) with —F(p) = —(o + Mp) in (6.4). Then, the stationary
points of the following PDS

p = Il (p, —F(p)) (6.6)

coincide with the solutions of the VI problem of (4.38).

The associated dynamic model to the equilibrium problem will be realistic only
if there is a unique solution path from a given initial point. The following theorem
addresses the existence and uniqueness of the solution path for the above ODE [95].

Definition 6.1: A mapping F': K C R"™ — R" is said to be Lipschitz continuous

if there is an L > 0, such that

IF(x) -F(y)ll < Lix -y, ¥xy € K; (6.7)
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Theorem 6.2: If F in the initial value problem (6.4) and (6.5) is Lipschitz con-
tinuous, then for any p, € K, there exists a unique solution p(t) to the initial value
problem (6.4) and (6.5).

For the affine mapping F(p) = (o + Mp), we have

IF(x) = Fy)ll = IM(x - y)| (6.8)

According to the multiplicative property of the matrix norm [116]:

IM(x —y)lI < IM]].[[x - v (6.9)

For the Euclidean norm, we have [116]:

(M) < [[M]| < v/mn 5(M) (6.10)

where (M) is the maximum singular value of M. From (6.8) to (6.10) we have:

IF(x) - F@)ll < vmn 6(M)|x -y (6.11)

The interference channel is a multiple-input-multiple-output (MIMO) dynamic sys-
tem with the state-transition matrix M in which the transmitted signal by each
transmitter in each subcarrier is an input and the received signal by each receiver in
each subcarrier is an output. In a MIMO system, the largest gain (amplification) for
any input direction is equal to the maximum singular value of the state-transition
matrix [116]. The communication channel attenuates the transmitted signals in all

directions and therefore, the Lipschitz continuity is a valid assumption.
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When p(t) is in the interior of the feasible set, p(t) € int K, the projection operator
in (6.6) is

Ik (p, —-F(p)) = —F(p) (6.12)

If p(¢) reaches the boundary of the feasible set, p(t) € 0K, we have

Ik (p, ~F(p)) = —F(p) + z(p)s*(p) (6.13)
where
s*(p) = a§§§$X<—F(p)’ —s) (6.14)
and
z(p) = max (0, (~F(p), —s"(p))) (6.15)

From (6.12) and (6.13), it follows that [95]:

Ik (p, —F(@)) | < | - F(p)| (6.16)

Therefore, because of the projection operator, the right-hand side of the differen-
tial equation (6.6) is discontinuous on the boundary of K. If at some ¢, p(t) reaches
the boundary of K and —F (p(t)) points out of the boundary, then the right-hand side
becomes the projection of —F onto the boundary. The state trajectory then evolves

on the boundary. In summary, the projection operator keeps the state trajectory in
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the feasible set. At some later time, the state trajectory may enter a lower dimen-
sional part of the boundary or even go to the interior of K [95], where the evolution

of the state trajectory is governed by the differential equation
p=-F(p) = —(c+Mp), Vp(t) € K (6.17)

Since —F(p) is an affine mapping, the differential equation (6.17) represents an affine
system. Moreover, the state trajectory of this affine system must remain in the feasible
set K. Therefore, the system described by (6.17) is a constrained affine system [117].

Iterative algorithms based on time discretization of the PD system (6.6) are pro-
posed in [95] for computation of the system state trajectory. At each time-step ¢, the

proposed algorithms solve the minimum-norm problem:

min  [|p(t + 1) — [p(t) — a(t)F(p(t))] | (6.18)

p(t+1)eK

or equivalently, solve the following quadratic programming problem:
i L Tt+Dpt+1)
min =
p(t+1)eK 2p P

—[p(t) —a(®)F(p(®))] - p(t + 1) (6.19)

«&”

where “” signifies the dot product. A good approximation of the state trajectory may
be achieved by choosing a small value for the step-size a(t). It should be noted that
although quadratic programming is indeed computationally demanding, it does not

feature in operation of the robust IWFA; rather, it is a burden incurred in carrying

out simulation experiments to study the behaviour of the whole network.
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6.2 Stability of the Perturbed PD System

The stability of a system is an important issue in the study of feedback control systems
and therefore, deserves special attention. It can be interpreted as the ability of the
system to maintain or restore its equilibrium state against external perturbations. In
other words, system stability is linked to system sensitivity to perturbations.

The formulation of the IWFA as AVI(K, o, M), is helpful to study the sensitivity
of a solution p* as the pair (K, o +Mp) is perturbed. It would be interesting to know
if the perturbed system has a solution close to p*; and in case that such a solution
exists, if it will converge to p* as the perturbed AVI approaches the original one.
This way of thinking leads to the concept of solution stability [96]. The monotonicity
conditions play a key role in the analysis of both local and global stability [95,96].

The local uniqueness of p*, which was studied in Chapter 4, is not sufficient to
guarantee the solvability of the perturbed AVI, but it is important for sensitivity
analysis because every unique solution of a VI rproblem is an attractor of all solutions
of nearby VIs [96]. Alternatively, the following theorems are recalled from [95] about

stability of the corresponding PD system in order to answer the following questions:

e If the initial state of the network is close to an equilibrium, will the state

trajectory remain in a neighborhood of the equilibrium?

e Starting from an arbitrary initial state, will the state trajectory asymptotically

approach an equilibrium and at what rate?

Theorem 6.3: Suppose that p* solves VI{K, & + Mp). If the mapping o + Mp is

strictly monotone at p*, then p* is a strict monotone attractor for the PDS(K, — (o +

Mp)).
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Theorem 6.4: Suppose that p* solves VI(K, o + Mp). If the mapping o + Mp is
&-monotone at p* with € < 2, then p* is a finite-time attractor.

Theorem 6.5: Suppose that p* solves VI(K, o + Mp). If the mapping o + Mp is
strongly monotone at p*, then p* is exponentially stable.

Following the discussion in Section 4.6, if matrix —M is Hurwitz, the existence of a
unique equilibrium solution for the IWFA game, which is exponentially stable, will be
guaranteed. As will be clear later, the Hurwitz property of matrix —M is also needed
to guarantee the robust exponential stability of the system in the presence of multiple-
time-varying delays. As mentioned before, this condition is practically achievable

through dynamic spectrum management [42,88] and spectrum-aware routing [108—

110].

6.3 The PD System Viewed as a Constrained Piece-

wise Affine (PWA) System

As mentioned before, a cognitive radio network is a hybrid dynamic system with both
continuous and discrete dynamics. Changes occur in the network due to discrete
events such as the appearance and disappearance of users and spectrum holes, as well
as continuous dynamics described by differential equations that govern the evolution
of transmit power vectors of users over time. When conditions change due to these
kinds of discrete events, each user will have to solve a new optimization problem
similar to the one described in (4.3) and the network deviates from the achieved
equilibrium point and it is desirable to converge to a new one reasonably fast. Also,

the occurrence of an event such as a change in the number of users or available
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subcarriers will change the parameters o and M in (6.17). Accordingly, the problem

is formulated in terms of an ensemble of subsystems and the global state space is:

e partitioned into polyhedral regions described in (4.37) that follow the varying

realizations of the network at different time intervals, and

e an affine state equation, similar to that described in (6.17), is associated with
each polyhedral region that governs the evolution of state trajectory in that

region.

It follows therefore, that the whole network can be modeled as a constrained piecewise

affine (PWA) system [117]:

p=-M(v)p —o(v), Vp(t) € K(v) (6.20)

where v is a key vector, which is a function of time and discrete events, and describes
which affine subsystem is currently a valid representation of the network [118].

The stationary points of each one of these dynamic subsystems coincide with
the equilibrium points of the corresponding game resulting from solving the related
optimization problems. In summary, the occurrence of discrete events changes the
equilibrium point and causes the state trajectory to deviate from an equilibrium point
and therefore, converge to another equilibrium point. Each one of these equilibrium
points may have a region of attraction around it such that if the system is perturbed,
the solution remains in that region close to the solution of the unperturbed system.
This issue was addressed to some extent in the previous section and it will be studied

more in the next section.
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6.4 Stability of the Perturbed PD System in the
Presence of Time Delay

The feedback channel plays a fundamental role in the design and operation of cognitive
radio. Indeed, feedback is the facilitator of computational intelligence, without which
the radio loses its cognitive capability. The discovery of spectrum holes may prompt
the need to establish the feedback channel from the receiver to the transmitter of a
cognitive radio. In this case, a fraction of the available spectrum holes will be used
for the feedback channel to send relevant information from a user’s receiver to its
transmitter to take the appropriate action. In effect, therefore, feedback channels
are not fixed and instead of having permanent feedback, we have sporadic feedback.
However, this problem can be avoided by using the unlicensed bands for establishing
a common feedback channel [42]. Also, in order to be conservative in consuming
the precious bandwidth that can be used for data transmission, the feedback should
be low-rate and quantized. Therefore, rather than sending the actual values of the
required parameters identified by the radio scene-analyzer, the practical approach is
to feed their respective quantized values back to the transmitter [1].

Feedback may naturally introduce delay in the control loop and different trans-
mitters may receive statistics of noise and interference with different time delays.
Moreover, the sporadic feedback causes the users to adopt out-dated statistics to up-
date their power vectors. The time-varying delay in the control loop degrades the
performance and may cause stability problems. Analysis of stability and control of
time-delay systems is a topic of practical interest and has attracted the attention of

many researchers [119-122]. Robust stability of the system under time-varying delays
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is the focus of this section. The dynamic model of the previous sections can be used
to find out if the network is able to achieve a retarded equilibrium, which is stable. If
an equilibrium point is not stable, the system may not be able to maintain that state
long enough because of perturbations, and there is the potential possibility that an
equilibrium can not even be established.

The dynamic model of (6.6) will be a PD system with delay (PDSD) [123] in the
form of the following functional differential equation (FDE) [119,124,125]:

p(t) = Ok (p(t), —=F4 (p)) (6.21)

F4 can be written as

F! (p'(t),p " (51))

Fa(p) = | F'(p'(t),p7'(S)) (6.22)

F™ (p™(t), p~™(St))

where p~(S;) denotes a continuous-time asynchronous adjustment scheme similar to
(4.10).

Let the given initial time be #y. In order to determine the continuous solution,
p(t) of (6.21) for t > to, we need to know a continuous initial function, ¢(t), where
p(t) = ¢(t) for to — 99 < t < ty, Vi,j = 1,...,m. The initial function may be
obtained from measurements. Since the system described in (6.21) and (6.22) is a
multiple-delay system, each deviation defines an initial set \Pij, consisting of the point

to and those values ¢ — 7%7(¢) for which ¢t — 7%7(t) < to when ¢ > o [126].

81



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

Therefore, the initial condition for the system described in equation (6.21) is
p(0) = ¢(6), Vb€ Ty, (6.23)

where ¢ : ¥, — R™*" is a continuous norm-bounded initial function [126,127] and

m

¥, = |J @ (6.24)

t,j=1,i#j

m
= U {teR:t=k—-7"(k) <0, k > to}
i j=L,ij

The F;(p) in (6.22) can be written as the following summation:

Fg(p)= pt)+> > Mipt—r"(t)) (6.25)
i=1 j=1,51
+> > AMYp(t - () + o(t)
i=1 j=1i

where Mfij is obtained by replacing all the blocks in M except M¥ by n x n zero
matrices, and AMfij is a perturbation in Mfi’ The term g is the combined effect of
the background noise in both forward and feedback channels.

Therefore, the associated constrained affine system that governs the network’s

dynamics is described by the differential equation

p(t)= -pt)—>_ > Mip(t—r"(t)) (6.26)
i=1 j=1,#i
=33 AMYp(t— (1)) — o(?)
i=1 j=1,#i
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Vp(t) € K, which is a multiple-time-varying-delay system with uncertainty. It can

be written as

m(m—1)
p(t)= -p(t) - Z Mip(t — T(t)) (6.27)
m(m—1)

Z AMp(t — 7(t)) — e(t)

This reformulation is an instance of the general systems that were studied in [127].
Following the approach of [127], we assume that V¢ > t,, the time-varying delays 7°(¢)

satisfy

) <T(t) <7 (6.28)

F<b<1 (6.29)

where 7 > 0, § > 0, and 7(¢) is a strictly positive continuous differentiable function.
Also, the uncertainties are assumed to be bounded for all p and at all times, such

that the following pair of conditions holds:

le® < ballp@)ll (6.30)

and

IAMG(OpO)] < ballp(®)] (6.31)
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where by > 0 and b4 > 0. If there exist ¢ > 1 and A > 0 such that

Ip(®)l] < ¢ sup {Ilp(8) | }eX¢—) (6.32)

eto

then the uncertain time-delay system of (6.27), is said to be robustly exponentially

stable with a decay rate of A. In other words, the trivial solution, p = 0, of the system,

is exponentially stable with a decay rate of X for all admissible uncertainties [127].
Recognizing that

m(m—1

)
I+ ) Mj=M (6.33)
i=1

we conclude the robust exponential stability of the network from Theorem 4 of [127],
which is repeated here with some modification to conform to our problem.
Theorem 6.6: Consider the system (6.27) with initial condition (6.23), and assume

that —M is a Hurwitz stable matrix satisfying
eM]] < ce™™ (6.34)

for some real numbers ¢ > 1 and > 0. In the left hand side of the above equation,

e denotes a “matrix” exponential operator. If the inequality

m(m—1) m(m—1)
17 > (W) +bat D By <1 (6.35)
=1 =1
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holds, then the transient response of p(t) satisfies

. e w
Ip(®)l < € sup {[|$(0)I}e Phov@, Wt >to, (> 1

where

p1 = IMgll + [[VIG by

m(m—1) m(m-1)
wo= Y IMEMGI+ MG D b
j=1 j=1

and p > 0 is the unique positive solution of the transcendental equation

c P c _»_
1—=by— ———= =g —ei=?s
n n7(0) n

where

m(m—1) m(m—1) m(m-—1)
ps=T Y pi+Te™s Y s+ Y b
=1 =1 =1

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

Furthermore, the system described by (6.27) and (6.23) is robustly exponentially

stable with a decay rate p/7.

The left-hand side of the transcendental equation (6.39), is a continuous decreasing

function of p and its right-hand side is a continuous increasing function, and by virtue

of (6.35) at p = 0, the right-hand side is less than the left-hand side. Therefore (6.39)

has a unique positive solution, as desired.

85



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

6.5 Summary

The cognitive radio network dynamics were studied with emphasis on the disequi-
librium (transient) behaviour of the network. Theory of projected dynamic systems
was used to develop a dynamic model, which governs the evolution of the network’s
state trajectory before reaching the equilibrium state. The stationary points of this
dynamic model coincide with the equilibrium points of the corresponding VI model,
developed in Chapter 4. The network was modeled as a constrained piecewise affine
system and its stability in the presence of perturbation and multiple-time-varying

delays was studied.
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Chapter 7

Computer Experiments 11

Using the testbed described in Chapter 5, simulation results are now presented to
support theoretical underpinnings of the previous chapter. Network dynamics are
simulated for both delay-free and multiple-time-varying-delay cases. Also, the solu-
tion stability is studied under system perturbation. Numerical values for parameters

are chosen in the same way that was described in Chapter 5.

7.1 Projected Dynamic System

To study the transient behaviour of a cognitive radio network, a scenario is considered
for three users and three subcarriers, so that we may arrive at insightful conclusions.
Moreover, three is chosen merely for the sake of visualization. It is assumed that all
the users update their power vectors simultaneously under the assumption that the
network experiences worst-case interference conditions.

Figure 7.1 depicts state trajectories for three users obtained from a discrete-time

approximation of the PD system by solving the quadratic programming described in
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(6.19), when the following sequence of events happens. First, all three subcarriers are
idle and can be used by the secondary users. Therefore, the state trajectories evolve
in the three-dimensional space (i.e. pipypi space). Then, the second subcarrier is
no longer available and state trajectories enter the two-dimensional space and evolve
in p'pt plane. After that the same thing happens to the third subcarrier and state
trajectories evolve in one-dimensional space (i.e. p! line). After a while, subcarrier
three becomes idle and therefore available again. Thus, the state trajectories enter
from p¢ line to pip} plane. When subcarrier two becomes available again, state
trajectories enter from pip} plane to p'php4 space.

It is obvious that the power trajectories enter from higher-dimensional spaces to
lower-dimensional spaces according to the number of available subcarriers, and again
they go back to higher-dimensional spaces when users have access to more subcarriers,
which is what should happen during a successful operation. The achieved equilibrium
points for different users as they exist between occurrences of the mentioned events,
are shown by stars on their state trajectories. Also, arrows in Figure 7.1 show the

direction of evolution of states for different users.
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- = ~User 1
User 2

Figure 7.1: Power trajectories for a network of 3 users with 3 available subcarri-
ers obtained from the associated PD system, when both the interference gains and
the number of subcarriers change by time. Direction of evolution of states and the
achieved equilibrium points are shown by arrows and stars, respectively. Trajecto-
ries enter lower dimensional spaces when spectrum holes disappear and then again
go back to higher dimensional spaces when new spectrum holes are available. When
the second subcarrier is not idle, trajectories enter pip} plane and when the third
subcarrier is not also idle anymore, trajectories enter p! line. After a while when
third and then second subcarriers become available again, state trajectories go back
to pipt plane and then pipipi space.
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7.2 Sensitivity Analysis

To study the solution stability via simulation, the system is perturbed and the equi-
librium point of the perturbed system is calculated. The interference-gain matrix and
the noise vector are respectively perturbed as M + wpAM and o + weAo, where
wpm are w, are weights. The perturbation terms AM and Ao are chosen in the same
way that M and o were chosen, respectively as described in Chapter 5. Results at
three different subcarriers are shown separately in Figure 7.2. As the perturbation
terms decay (i.e. the weights wyy are w, move toward zero) and the perturbed system
approaches the original one, behaviour of the perturbed system converges to the so-
lution of the original system, which is shown by stars in Figure 7.2. The arrows show
the direction in which the solution of the perturbed system converges to the solution
of the original system. This experiment validates the notion of solution stability that
was discussed previously.

When delays introduced by the feedback channels are considered, it may take
longer for both the original system and the perturbed systems to achieve an equilib-
rium. Under the conditions mentioned in Chapter 6, the robust exponential stability
of the system is guaranteed and similar results are obtained in simulations for the

time-delay cases with constraints on delays.
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7.3 Multiple-Time-Varying Delays

Simulation results for the above network of three users and three potentially available
subcarriers, with a similar sequence of events, mentioned in Section 7.1, are repeated
with asynchronous adjustment scheme. In the beginning, all three subcarriers are
idle and can be used by secondary users. Then, the second subcarrier is no longer
available, and after that the same thing happens to the third subcarrier. After a while, »
subcarriers two and then three become idle and therefore available again. Power
trajectories and achieved equilibrium points are shown in Figure 7.3. Figure 7.4
depicts the random delays in adjustment schemes, 7¢(t), used by different users, which
shows that most of the time users have used out-dated information to update their
power vectors. Results confirm the ability of the system to achieve retarded equilibria
under the conditions given in Theorem 6.6. By increasing the delay the performance

of the system will degrade and eventually the system becomes unstable.

7.4 Summary

Simulations were conducted to demonstrate the concept of solution stability. The
system was perturbed and its equilibrium solution was calculated. By decaying the
perturbation terms, the equilibrium solution of the perturbed system converged to
the equilibrium solution of the original system. The ability of the dynamic model,
obtained using PD system theory, was validated by simulations for both delay-free
and multiple-time-varying-delay cases. The results presented here show that by ap-
pearance and disappearance of spectrum holes, the state trajectory of the network

enters higher and lower dimensional subspaces in the global state space, respectively.
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- — —User1
User 2

Figure 7.3: Power trajectories for a network of 3 users with 3 available subcarriers ob-
tained from the associated multiple-time-varying-delay PD system with uncertainty,
when both the interference gains and the number of subcarriers change by time. Di-
rection of evolution of states and the achieved equilibrium points are shown by arrows
and stars, respectively. Trajectories enter lower dimensional spaces when spectrum
holes disappear and then again go back to higher dimensional spaces when new spec-
trum holes are available. When the second subcarrier is not idle, trajectories enter
p'p4 plane and when the third subcarrier is not also idle anymore, trajectories enter
p’ line. After a while when second and then third subcarriers become available again,
state trajectories go back to pip} plane and then pipipt space.
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Figure 7.4: Time-varying delays introduced by feedback channels in transmit power
control loops for a network of 3 users.
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Chapter 8

Double-Layer Network Dynamics

There are two worlds of wireless communications: the legacy (old) wireless world and
the cognitive (new) wireless world. The previous chapters were focused on the new
world with spectrum holes being the medium through which the two worlds interact.
Releasing subbands by primary users allows the cognitive radio users to perform their
normal tasks and therefore, survive. In other words, the old world affects the new
world through appearance and disappearance of the spectrum holes and there is a
master-slave relationship between them. This chapter addresses the fact that the two
worlds of wireless communications are going on side by side. This makes a cognitive
radio network a multiple-time-scale dynamic system; a large-scale time in which the
activities of primary users change, and a small-scale time in which the activities of
secondary users change accordingly. Such systems are called double-layer dynamic
(DLD) systems [128]. This chapter extends the developed theoretical framework of
the previous chapters to capture the multiple-time-scale nature of cognitive radio
networks and lays the groundwork for further research. This topic is similar to an

uncharted territory and has a great deal of potential both in theoretical and practical
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Spectrum Legacy Owners

Subcarriers

Secondary Users
Figure 8.1: The spectrum supply chain network.

terms.

8.1 Two-Time-Scale Behaviour

A cognitive radio network, which is a system of systems, is a goal-seeking system
in the sense described in [129]. The following classes of problems are involved in

developing a cognitive radio network:

e Specifying the goal that the system is pursuing (i.e. efficient spectrum utiliza-

tion and ubiquitous network connectivity).

e Discriminating between the available alternatives based on the meaning of a

desirable decision.
e Choosing a desirable action based on a decision-making process.

By the same token, every subsystem in the network (i.e. every cognitive radio) is a
goal-seeking system too.
Due to the master-slave relationship between the legacy and the cognitive wire-

less worlds, the spectrum supply chain network has a hierarchical structure [130].
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High-Level Network Controller
(Spectrum Legacy Owners & Their Primary Customers)

Controller#1 | soeeeenvnen Controller # S

Cognitive Radio #1 | weeeeeeneee Cognitive Radio # S

Figure 8.2: Decentralized hierarchical control structure in a cognitive radio network.

As mentioned in Chapter 4, the resource-allocation problem should be solved in
two stages regarding discrete events and continuous states. Therefore, the local con-
trollers in Figure 8.2 are two-level controllers [132,133]. The corresponding two-level
control scheme is shown in Figure 8.3. The supervisory-level (i.e. the higher-level)
controller is, in effect, an event-based controller that deals with appearance and dis-
appearance of spectrum holes. The radio-scene analyzer will inform the supervisory-
level controller, if it detects a change in the status of the available spectrum holes. In
that case, the supervisory-level controller calls for reconfiguration of the transmitter
in order to adapt the transmitting parameters to the new set of available channels.
The field-level (i.e. the lower-level) controller is a state-based controller that adjusts
the transmit power over the set of available channels chosen by the supervisory-level
controller according to the interference level in the radio environment. A cognitive

radio may build an internal model for the external world. This model is used to
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Change in
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Figure 8.3: Two-level control scheme for cognitive radio.

predict the availability of certain subbands, the duration of their availability, and the
approximate interference level in those subbands. These information will be critical
for providing seamless communication in the dynamic wireless environment. Both the
supervisory-level and the field-level controllers will benefit from a predictive model,
which determines the control horizon, to plan ahead. The subsequent sections are fo-
cused on developing models that describe both equilibrium and transient behaviours

of cognitive radio networks, emphasizing on the two-time-scale nature of the network.

8.2 Evolutionary Variational Inequalities (EVI)

It has been emphasized throughout the thesis that dynamics play a central role in

cognitive radio networks. Therefore, the joint feasible set of the active users in the
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network is time-varying in nature and the finite-dimensional feasible set (4.37) cap-
tures a snapshot of the dynamic network with a time-varying feasible set. Regarding
the continuous nature of time, we need to deal with infinite-dimensional feasible sets,
if we consider time explicitly in the structure of the feasible set. Hence, the results
should bé extended to Hilbert spaces.

Definition 8.1: A Hilbert space is a generalization of Euclidean space, which is
complete, separable, and possibly infinite-dimensional [134].
Hilbert space extends the results of vector algebra and calculus to spaces with any
finite or infinite number of dimensions. The real space L? is a Hilbert space. This
section extends the results of Section 4.5 by explicitly considering time in the ob-
tained AVI-based model. Since the time-varying nature of the network’s feasible set
is explicitly considered in the formulation, theory of time-dependent VI or evolution-
ary VI (EVI) should be employed to obtain an equilibrium model for the network.
The EVI-based model gives a curve of equilibria over a time interval of interest [0, T7.
The predictive model will provide a reasonable estimate for T'.

By considering time as an additional scalar parameter, the joint feasible set will

be the following subset of the Hilbert space L*([0, T, R™*™).

K = U K, (8.1)

t€(0,T]

where K; was described in (4.37). The network, whose feasible set is described by
K, at a specific time instant ¢t € [0,T}], is a snapshot of the dynamic network with
the time-varying feasible set (8.1) at that particular time instant. The EVI-based

equilibrium model of the network may therefore, be stated as follows: find the p* € K
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such that the condition
T
| o-p) @+ Mpdtz0, vpe K 8.2)
0

holds [135]. In the next section, the results of Chapter 6 are extended to Hilbert
spaces in order to study the equilibrium states of the network obtained from the

above EVI in a dynamic framework.

8.3 Projected Dynamic Systems on Hilbert Spaces

A generalization of the theory of PD systems on Hilbert spaces is used to model the
transient behaviour of the network, whose equilibrium behaviour is described by the
EVI. Two distinct time-frames are considered: large-scale time-frame ¢ and small-scale
time-frame 7. There is a PD system corresponding to each ¢ € [0, T], which is denoted
by PDS;. However, the evolution time variable for PDS; is denoted by 7, which is
different from time t. PDS; describes the time evolution of the state trajectory of the
system towards an equilibrium point on the curve of equilibria corresponding to the
moment ¢. The following PD system

P67 _ 11y (o, 7). ~F(p(7) 83)

with the initial condition

p(.,0) =po() € K (8.4)
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is established as a dynamic model for the network that governs the transient be-
haviour of the network preceding the attainment of an equilibrium. The above PD
system’s stationary points coincide with the equilibrium points of the corresponding
EVI problem. The associated dynamic model to the equilibrium problem will be re-
alistic only if there is a unique solution path from a given initial point. The following
theorem addresses the existence and uniqueness of the solution path for the above
PD system [136,137].

Theorem 8.1: Let H be a Hilbert space and K be a nonempty, closed, convex
subset. Let F': K — H be a Lipschitz-continuous vector field and p, € K. Then the

initial value problem

%) — 11y (p(r), ~F(p(r), B(0) = py € K 53

has a unique absolutely continuous solution on the interval [0, c0).
The next section answers the question that if the competitive behaviour of the
users will lead to an equilibrium state in the network and if that equilibrium state is

unique.

8.4 Solution Characteristics

Monotonicity properties of the underlying vector field of EVI/PDS play a key role.
The following theorem states the conditions under which there exists a unique equi-
librium solution.

Theorem 8.2: If F(p) = o + Mp is strictly monotone and Lipschitz continuous

on K, then there exists p* € K such that
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e p* uniquely solves the EVI problem
e p* uniquely solves Ik (p(.,7), —F(p(.,7))) =0

It was discussed in Chapters 4 and 6 that in a real-life network, if the distance between
receivers and their corresponding transmitters are short enough compared to their
distances from other active transmitters in the network, then the strict monotonicity
condition is satisfied and therefore, the network will have a unique equilibrium. The
unique equilibrium state is the solution of the EVI problem, which coincides with
the stationary point of the corresponding PD system. The next section answers the

following two questions:

o If the initial state of the network is close to an equilibrium (i.e. if the com-
petitive game starts near an equilibrium), will the state trajectory remain in a

neighborhood of the equilibrium?

e Starting from an initial state, will the state trajectory asymptotically approach

an equilibrium and at what rate?

8.5 Semnsitivity and Stability Analyses

In EVI, monotonicity establishes the essential conditions for the existence and unique-
ness of the solutions. In PD system, monotonicity is used to study stability of the
perturbed system. The following definitions are recalled from [128].

Definition 8.2: A mapping F is called

(a) pseudo-monotone on K if

(F(x),y —x) 2 0==(F(y),y —x) 20, ¥x,y € K; (8.6)
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(b) strictly pseudo-monotone on X if

(F(x),y —x) 2 0= (F(y),y —x) >0, Vx,y € K,x#y; (8.7)

(c) strongly pseudo-monotone on X if there exists a constant ¢ > 0 such that

(F(x),y-x) 2 0= (F(y),y —x) > cllx—y|? Vx,yeK,x#y  (88)

Definition 8.3: Let K be a closed, convex subset of a Hilbert space.

(a) A point x* € K is a monotone attractor for the PD system, if there exists a
neighborhood V' of x* such that the distance d(t) = ||x(¢) —x*(¢)|| is a non-increasing
function of ¢, for any solution x(¢) starting in the neighborhood V.

(b) A point x* € K is a strict monotone attractor, if the distance d(t) is decreasing.
The following theorem addresses the stability of the network [136].

Theorem 8.8: Assume F : K — L%([0,T], R™*") is Lipschitz continuous on K

o If F is strictly pseudo-monotone on K, then the unique curve of equilibria is a

strict monotone attractor.

o If F is strongly pseudo-monotone on K, then the unique curve of equilibria is

exponentially stable and an attractor.

Due to the properties of L2-norm, the system is expected to evolve uniformly
towards its equilibrium on the curve of equilibria for almost all ¢ € [0,T]. The above
theorem provides the stability properties of the curve of equilibria as a whole in the
sense that the curve attracts the trajectories of almost all PDS; and therefore, it is

possible for the curve to be reached for some instants ¢ € [0, T] [136].
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The implications between the different monotonicity notions are as follows [138]:

strong pseudo-monotonicity = strict pseudo-monotonicity = pseudo-monotonicity

strong monotonicity = strong pseudo-monotonicity

strict monotonicity = strict pseudo-monotonicity

monotonicity = pseudo-monotonicity
It was discussed in Chapter 4 that Hurwitz condition of matrix —M guarantees
strong monotonicity and therefore, guarantees the exponential stability of the unique
curve of equilibria. In practice, the Hurwitz condition of matrix —M is achieved by
establishing a low-interference regime through dynamic spectrum management and
ad hoc routing. While dynamic spectrum manager makes sure that the neighboring
transmitters will not use the same set of channels [42,88], opportunistic-spectrum ad
hoc routing [108-110], which was previously described in Section 4.6, can guarantee
that the distance between receivers and their corresponding transmitters are short

enough compared to their distances from other active transmitters in the network.

8.6 Summary

This chapter addressed the two-time-scale behaviour of the cognitive radio network
due to the coexistence of legacy and cognitive wireless worlds. Such a system is called
a double-layer dynamic system. By extending the developed theoretical framework
of Chapters 4 and 6 to explicitly include time as a parameter, both equilibrium and
transient behaviors of the network were studied using the theories of evolutionary
variational inequalities and projected dynamic systems on Hilbert spaces, respectively.
Sufficient conditions for existence of a stable unique curve of equilibria and hints on
how these conditions can be established in a real-life network were presented. This

chapter proposed a new way of thinking, which requires further investigation in future.
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Chapter 9

Computer Experiment III

“Science is made of mistakes, which are useful to make, because they lead,

little by little, to the truth.” Jules Verne (1828-1905)

A large-scale computer experiment is presented in this chapter to support theoreti-
cal underpinnings of the previous chapter. According to IEEE 802.11a standard for
wireless local area networks, 48 out of 64 subcarriers are dedicated to data transmis-
sion. A network of 120 users is considered and it is assumed that 48 subcarriers can
be potentially available for data transmission. Numerical values for parameters are

chosen in the same way that was described in Chapter 5.

9.1 Curve of Equilibria

Initially, the network faces spectrum scarcity and users are not able to transmit with

their maximum powers. The following sequence of events happens in the network:

e New users join the network.
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e Some of the subcarriers are not available anymore for secondary usage.

e Network is perturbed close to its equilibrium state by randomly changing the

interference gains, which occurs due to the mobility of users.
e More subcarriers are available for secondary usage.

e Some of the subcarriers are not available anymore for secondary usage.

The interference gains were changed randomly due to user mobility as well as appear-
ance and disappearance of users.

The average transmit power and the average data rate achieved by users after
occurrence of each event are depicted in Figure 9.1. Power and data rate are plotted
vs the number of iterations. Occurrences of events are shown by dashed lines. As
shown in the figure, the network deviates from the equilibrium point, when an event
occurs. Starting from an initial state dictated by the event, network moves toward a
new equilibrium. In the diagram, 10 iterations were shown between two consequent
events but the convergence is fast and in practice less iterations are required to reach
a new point on the curve of equilibria from an arbitrary initial state, provided that the
conditions for existence of a stable unique curve of equilibria are satisfied. Also, when
the initial state dictated by a discrete event is not far from the achieved equilibrium
(i.e. the network is perturbed around its equilibrium state), the state trajectory

remains close to the equilibrium, which is the case for event 3.

9.2 Summary

Simulations were conducted to demonstrate the double-layer dynamics of a cognitive

radio network. Network deviates from its equilibrium state due to discrete events.
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After the occurrence of each event, the network state trajectory starts from a new
initial state and moves toward a new equilibrium. Provided that a stable unique curve
of equilibria exists, if the initial state is close to the established equilibrium, the state
trajectory will remain in a neighborhood of the equilibrium and if the initial state is
relatively far from the established equilibrium, the state trajectory will approach a

new equilibrium fast.
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Figure 9.1: Dynamic behaviour of a network of 120 users and 48 potentially available

subcarriers.

Dashed lines show the occurrence of events. When an event occurs,

network deviates from the established equilibrium. Starting from the initial state
dictated by the event, network moves toward a new equilibrium: (a) average power
and (b) average data rate are plotted vs the number of iterations.
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Chapter 10

Contribution to the Literature

This research was focused on choosing an appropriate algorithm for resource allocation
in cognitive radio networks and finding dynamic models that describe the global
behaviour of the network, when different users employ the proposed algorithm. Ideas
from information theory, optimization, game theory, and control theory were fused to
develop such models.

Different formulations of IWFA have been proposed in the literature for resource
allocation in wireless networks based on fixed local constraints [62] and flexible global
constraints [63,64] on transmit power per subcarrier. While the former may be way
too conservative, the latter requires information exchange between primary and sec-
ondary users, which is more suitable for a market-model spectrum-sharing regime.
This thesis provided a receiver-centric design based on flexible local constraints on
transmit power per subcarrier dictated by interference-temperature limit [60]. There
is no need for information exchange between different users in the proposed approach
and it is well suited for an open spectrum-sharing regime. Also, the thesis highlighted

the uncertainty issue in cognitive radio networks and proposed a robust version of
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the transmit-power controller, which improves the network robustness against mali-
cious users as well as changes in the number of users, network topology, and available
spectrum holes [60].

Along with [84] and [64], the thesis studied a new line of analysis of resource-
allocation games in communication networks based on theory of VIs in order to pro-
vide conditions that guarantee existence of a unique equilibrium solution. Also, the
VI-based reformulation of the resource-allocation game facilitates study of the net-
work in a dynamic framework [60].

Transient behavior of communication networks, when iterative resource-allocation
algorithms are employed, is generally under-explored. Analysis of transient behavior
of a cellular network in which multiple users use Foschini-Miljanic distributed power
control algorithm and share a single channel was studied in [115]. This thesis intro-
duced a new line of analysis of transient behaviors in communication networks based
on theory of PD systems. It facilitates sensitivity analysis and provides conditions
that guarantee stability of networks in which multiple users use IWFA and share
multiple channels [60].

In cognitive radio networks, the asynchronous adjustment scheme for resource
allocation is the most realistic one among different options. In [139], convergence
of asynchronous IWFA was proved by providing a set of conditions, which guaran-
tee that the conditions of asynchronous convergence theorem in [45] are satisfied.
Using the network dynamic model developed based on theory of PD systems, this
thesis provided a new approach based on theory of dynamic systems to extend the
available convergence results by proving convergence of asynchronous IWFA under

uncertainty [60].
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The thesis also introduced a new line of analysis of the multiple-time-scale dynamic
behavior of cognitive radio networks in which large-scale time of operation applies to
activities of the primary users and small-scale time of operation applies to secondary
users.

The thesis contributions to the literature are summarized as follows.

Network Dynamics Viewed from Information-Theoretic and Optimization

Perspectives

e The resource-allocation problem in a cognitive radio network was formulated as

a non-cooperative game.

o [terative waterfilling algorithm was used to find the Nash equilibrium solution

of the game.

e Local and flexible power constraints based on the maximum allowable interfer-
ence level in each channel were used in the formulation of the corresponding

optimization problems that are solved by different users.
e Dominant sources of uncertainty in cognitive radio networks were identified.

e A robust version of the iterative waterfilling algorithm was presented to deal

with uncertainty.

e The corresponding game was reformulated as an affine variational inequality

problem and existence of a unique equilibrium state was addressed.

e Based on the theoretical results, conditions under which the stability of real-life

cognitive radio networks are guaranteed were discussed.
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Network Dynamics Viewed from Control-Theoretic Perspectives

e Theory of projected dynamic systems was employed to find a dynamic model

that describes both equilibrium and transient behaviours of the network.
e Sensitivity analysis for the equilibrium states was presented.

e Hybrid systems theory was used to build a tracking method for the disequilib-

rium behaviour of the network.

e In this framework, the network was viewed as an ensemble of constrained piece-

wise affine systems.

e A novel approach based on the theory of dynamic systems was presented to

address the convergence of the asynchronous IWFA under uncertainty.
Double-Layer Network Dynamics
e A model was built that

— can be used as a testing tool for policy forecast, and

— incorporates time evolution as the life span (control horizon) of a given

policy.
e Two types of time dependency were studied

— Time-dependent equilibria

— Time-dependent behaviour away from the predicted curve of equilibria

Theories of evolutionary variational inequalities and projected dynamic systems on

Hilbert spaces were used to study these two types of time dependency, respectively.
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Proof of Theorem 4.1:
Proof of this theorem can be found in [96], Chapter 1, Proposition 1.4.2 and the
discussion that follows it. Essential outline of the proof is as follows.

The VI formulation of the game is obtained by writing down the KKT conditions
for each player’s optimization problem and concatenating the KKT systems of all
players in the form of a mixed complementarity problem.

Due to convexity and minimum principle, p* is a Nash equilibrium if, and only if,

foreachi=1,---,m
~ (0" - p")" Vpfi(p*) 20, Vp' € K (A.1)

Thus, if p* is a Nash equilibrium, then by concatenating these individual Vs, it
follows easily that p* must solve the prescribed VI.

Conversely, if p* solves the VI problem, then
(p-p) F(p") 20, Vpe K (A.2)

In particular, for each i = 1,--- ,m, let p be the vector whose jth subvector is equal
to p* for j # i and ith subvector is equal to p?, where p’ is an arbitrary element of

the set K*. The above inequality then becomes (A.1).
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Proof of Proposition 4.1:
Let (pi, u’, v, A\t ) satisfy (4.23) and assume that the complement set of PS is nonempty.

Since power is non-negative and o} > 0, 0 < azj <1, it is known that
m .. .
oL+ alpl>0 Vk=1,...,n (A.3)
j=1

It can be proved by contradiction that u* > 0. To show this, we first note that if

u® = 0, then

Tt N 2

1
50 Vk=1,...,n (A4)

If k¢ PS, then A, = 0 and from (A.4) we must have 7% > 0. Regarding the third

complementarity condition in (4.23), 7% > 0 leads to

CAP -0 —> oflpl =0 (A.5)
j=1
Therefore, we have
CAP, — o™ < CAP, — o}, =Y _ailp], (A.6)
j=1

Taking the summation over k ¢ PS from both sides of this equation leads to

Y (CAP - o)< Y > alp] (A7)

k¢PS kgPS j=1
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pt.=0,Vk € PS and Vi =1,...,m, so we have
TS afpl =0 (A8
kEPS j=1

Therefore, we can rewrite (A.7) as

Y (CAP—o™) <> > alpl+ D oinl (A.9)
kgPS j=1

k¢PS j keP3§ j=1
m
ij
E :O‘kpl]c
1 j7=1

k=

Since 0 < azj < 1, we have
> aidpl < Zp;c (A.10)
j=1

and therefore

n

. (A.11)

Ms

> (CAP - of™) <

kg¢PS k=1 j=1

il

Changing the order of the two summations in the right-hand side of (A.11), we get

> (CAP, - op™) < Z vl (A.12)

kgPS j=1 k=1

From the first inequality constraint of (4.3), we know that

> P < Pl (A.13)
k=1
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Thus,

D (CAP, = 0f™) <> Pl (A.14)

k¢PS

which contradicts (4.24). Thus Vk ¢ PS and Vi = 1,...,m, in addition to A}, ~%
must be zero too and we must therefore have u’ > 0 in order to satisfy the first

complementary condition in (4.23). Defining the following variables:

: 1

t= — A15
v (A.15)

ok Ty adpl)
P = ut

o (o + el
Sk = P

U

we do get a solution to (4.25).
Conversely, assume that (pi, 1%, oL, k) satisfies (4.25). This time, we must have

vt < 0. Otherwise,

m
U};+Za2jp,’;+ui+<p§;+§,i>0 (A.16)
j=1

and then the first complementarity condition in (4.25) yields

pb=0, VE=1,...,n (A.17)
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which contradicts the equality constraint in (4.25). Therefore, (4.23) holds by having

; 1
u' = — (A.18)
%= i
vi (o + Sy sl
: Gt
Ai’ - i m iy J
vt (Uk: + Zj:l ak pi:)
This completes the proof. (|
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Proof of Proposition 4.2:
The proof is straightforward. The same steps in the proof of Proposition 4.1 after

showing that u® > 0 should be followed. The relation between the corresponding

variables defined in (A.15) and (A.18). O
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Proof of Proposition 4.3:
Let (pk, v, AL) satisfy (4.28) and assume that the complement set of P.S is nonempty.

Since power is non-negative and o > 0, 0 < afj < 1, it is known that
m .. .
oL+ alpl>0 Vk=1,...,n (A.19)
j=1

If k ¢ PS, then A\i = 0 and from the first complementary condition in (4.28) we have

4 1
Yo = — — >0 Vk=1,...,n (A.20)
0i+2?=1a/3177c

Regarding the second complementarity condition in (4.28), 7% > 0 leads to
m . .
oL+ Y afp, = CAP; (A.21)
j=1
Defining the following variables:

¢k =—= (A.22)

X (of + Ty ool
o

we do get a solution to (4.29).

Conversely, assume that (pi,¢%,s!) satisfies (4.29). This time, we must have

¢k < 0. Otherwise,

m
a};+2agp{;+¢};+§,’; >0 (A.23)
j=1
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and then the first complementarity condition in (4.29) yields

p.=0, Vk=1,...,n (A.24)

which contradicts the equality constraint in (4.29). Therefore, (4.28) holds by having

- 1
A= ~ (A.25)
k
- g,i
A}“ T i i m i
Pk (Uk + D i o p?a)
This completes the proof. U
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Proof of Theorem 4.2:
Proof of this theorem can be found in [96], Chapter 2, Theorem 2.3.3. Essential
outline of the proof is as follows.

(a) Assume that F' is strictly monotone on K. If x # z’ are two distinct solutions

of the VI(K, F'), Vy € K, we have

(y—x)'F(2) >0 and (y—2a)TF()>0 (A.26)

Substitute y = &’ into the first inequality and y = x into the second inequality:

(¢ —2)TF(z) >0 and (z—2)TF(z')>0 (A.27)

Add these two inequalities:

(' —2)T (F(2') — F(z)) <0 (A.28)

This inequality contradicts the strict monotonicity property of F, thus establishing
statement (a).

(b) Let F' : R® — R™ denote a continuous extension of F, then SOL(K, F) =
SOL(K, F). If F is £&-monotone on K for some £ > 1, then 32"/ € K such that the

set

L.={z € K| F(z)T(z — 2" < 0} (A.29)

is bounded (possibly empty). This implies that there exists a bounded open set Q2
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and a vector z'¢f € K N Q such that

F(z)T(z — 2™f) >0, Vz € K NaQ © (A.30)

where 0(2 denotes the topological boundary of 2. This implies that the VI(K, F) has

a solution. Moreover, if the set

Le={z € K| F(z)'(z —2™) <0} (A.31)

which is nonempty and larger than L, is bounded, then SOL(K, F) is nonempty and

compact. The uniqueness of the solution follows from part (a). O
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Proof of Theorem 6.1:
Proof of this theorem can be found in [95], Chapter 2, Theorem 2.4. Essential outline

of the proof is as follows.

either F(p*) =0, or
Ik (p*, —F(p*)) =0 & (A.32)

p* € 0K; F(p*) =as, a>0, se S(p*)

which is equivalent to VI(K, F'). O
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Proof of Theorem 6.2:

Proof of this theorem for solutions in Euclidean space can be found in [95], Chapter 2,
Theorem 2.5. The proof is based on the assumption that F' is Lipschitz continuous
with linear growth. In [140], Chapter 6, Theorem 6.1 and [141], Theorem 3.1, results
were generalized from Euclidean space to Hilbert spaces of arbitrary dimensions.
Also, the linear growth condition was relaxed. Essential outline of the proof for
Hilbert spaces is presented in the Proof of Theorem 8.1. Essential outline of the
proof for Euclidean space is as follows.

The associated ODE with discontinuous right-hand side is written as a pair of two
equations. The first one is the ODE without the projection operator and the second
one is a mapping that restricts the solution of the first equation to K. This approach
benefits from the results of the Skorokhod problem [142] for finding such a mapping.
The Skorokhod problem defines a mapping from the space of paths to itself [95].

Definition A.1: Let ¥ € D([0,00), R™") with ¢(0) € K be given. Then (¢,7)
solves the Skorokhod problem with respect to K if Vt € [0, 00)

(4) ¢(t) = ¥(t) + n(t), ¢(0) =4(0)

(i) ¢(t) € K

(4z) [n(t)| < o0

(w) |n(t)] = f(O,tl Isk (¢(7))d|n(7)|, where I is an indicator function.

(v) There exists measurable 7 : [0,00) — R™™ such that y(7) € s(¢(7)) and

n(t) = f(O,t] v(7)d|n(7)|, where s is the inward normal. a
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Proof of Theorem 6.3:

Proof of this theorem can be found in [95], Chapter 3, Theorem 3.6. Essential outline

of the proof is as follows.

Consider the Lyapunov function

V(1) = 5lp(t) — |
Then
V(t) = ((p(t) - p*), Tk (p(t), & + Mp(1)))
Regarding (6.16), it can be shown that
V(t) < {(P(t) = P*), — (o + Mp(1)))
Due to strict monotonicity, we have
V(t) <0
when p(¢) # p*, and
V(=0

Therefore, p* is a is a strict monotone attractor.
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Proof of Theorem 6.4:
Proof of this theorem can be found in [95], Chapter 3, Theorem 3.8. Essential outline
of the proof is as follows.

Consider the Lyapunov function V(¢) as (A.33). Since {-monotonicity implies
strict monotonicity, V(t) is strictly decreasing. It can be shown that due to &-

monotonicity, V(¢) reaches zero and then it remains zero. Hence, there exists a

T such that
V(t)>0,t<T
(A.38)
V(it)=0,t>T
Therefore, p* is a is a finite-time attractor. O
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Proof of Theorem 6.5:

Proof of this theorem can be found in [95], Chapter 3, Theorem 3.7. Essential outline

of the proof is as follows.

Consider the Lyapunov function V(t) as (A.33). Regarding (6.16), it can be shown

that

V(t) < —M]l.|p() - p*|?

If there exists a to > 0 for which ||p(¢y) — p*|| = 0, we have

Ip(t) —p*|| =0, Vt >t

Since strong monotonicity implies monotonicity, we have

Ip(®) = "l < Ipo =PIl < cllpo — P*[le™

where ¢ = €. Assume that

Ip(t) —p*|| #0, Vt>0

Dividing both sides of (A.39) by V(¢) and taking the integral, we obtain

Ip(t) — p*|| < [lpo — P*lle™

Therefore, p* is exponentially stable.
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Proof of Theorem 6.6:

The proof uses ideas given in [127,143]. Let us consider the following differential

equation:
y(t) = = (n— cba) y(t) + q(t)y (t — 7(t)) (A.44)
where
o) = (n by — ;% > P ey 2 (A.45)

It can be verified that
y(t) = Coe_pftto o (A.46)

is a solution of (A.44), where Cy is a constant. The mean-value theorem is applied

to ftt_T(t) % twice . It follows that 3 6,6, € R satisfying 0 < 6; < 8 < 1 such that

Loodg (t)
/t—‘r(t) 7(9) B T(t) - elT(t)’f'(t - 927'(t)) (A47)

B 1 o1
T 1—017(t—6(t)) T 1-6

For p > 0 satisfying (6.39), we have

q(t) = <17 — cbg — ?Z;) e T = cu (A.48)

Now we show that for a proper choice of Cp, the solution of (A.46) is an upper bound

for the solution of (6.27) and (6.23).
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Let us choose Cy such that the following inequalities are satisfied simultaneously:

y(t) = o(0)]l, VO € ¢y, (A.49)
Co > csup ||p(9)|| (A.50)
0¥y,

Solution of (6.27) can be written as

m(m—1

t )
p(t) = plto)e™ = [ T 3" Mip(o - 14(0))as (A51)

to

- / 1D p(6) + AM(E)p(8 — 7(6))]d8

to
Regarding (6.30), (6.31), and (6.34), Vt > t; we have

m(m-1)

t
P&l < ce‘"tosetélp I (0)] +/t ce™0 % (IMG] + bg) [Ip(6 — 7(9)) 16

=1
t
+/ ce™ " =p,p(0)||d6  (A.52)

to

Considering the term cbgy(t) + ¢(t)y (t — 7(t)) in (A.44) as an inhomogeneous term,

The solution of this equation can be written as

y(t) = Coe™™ + / t cbae™" 0y (0)d6 + / t e "t0g(0)y(0 — 7(6))dd  (A.53)

to to

In order to compare ||p(t)| with y(¢), we define z(¢) = ||p(¢)|| — y(¢). From (A.52)
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and (A.53), Vt > to we have

2(t) < (C sup [|(0)]| — Co) e

t m(m—1)
+c/ e""(t9)< Z ([IME] + 85) z(6 - (0))+bdz(9)> de
to =1
t m(m—1)
+ /t e~ t=0) (c Z (IME]| + 85) —q(e)) y(8 —7(0))d8 (A.54)

Inequalities (A.48) and (A.49) lead to:

t m(m—1)
2(t) < c / 0[S (I + 88) 260 — ~(0)) + baz(6) | d8 (A.55)
to =1
Also, (A.49) implies that
z(t) <0, Vte U, (A.56)

Since z(t) is continuous, the above inequality holds in some neighborhood of ;. As-
sume that t* is the smallest ¢ for which z(¢*) > 0. Due to (A.56) and the fact that
z(0) <0 for any 0 < 8 < t*, it follows from (A.55) that z(t*) < 0, which contradicts

the assumption. Hence, z(t) < 0 for all ¢ > ¢,, which leads to

Ip(t)]| < Coe o @ = ¢ sup {[|p(0)[|}e o 7, Wt >t (A.57)

eto
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where

Co
¢= > A58
Sup 60 - (459
OE\I/tO
Finally, from the boundedness of 7(t), we have
()| < ¢sup {llp(O)}e%, V>t (A.59)
OE\IltO

Therefore, the system (6.27) and (6.23) is robustly exponentially stable with a decay

rate 2. d
T
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Proof of Theorem 8.1:
Proof of this theorem can be found in [140], Chapter 6, Theorem 6.1 and [141],
Theorem 3.1. Essential outline of the proof is as follows.

Let L be the Lipschitz constant and ||p|| < b for b > 0. Consider the interval [0, ]

_ b
where U= e, s

(1) Construct the sequence {p,(.)} of absolutely continuous functions defined on
[0,1] with values in K such that Vk > 0 p,(0) = p, and for almost all ¢ € [0,]] and
every neighborhood M € K x K of 0, {p,(.)} and the sequence of its derivatives

{p}(.)} have the following property:

(Pi(t), PL(t)) € graph(F — Ni) + M, Vk > ko(t, M) (A.60)

where

Ne(p) = {n € Ni(p)! IInll < [IF(P)[1} S Ne(p) (A.61)
and Ni(p) is the normal cone to the set K at the point p:
Nie(p)={ne K| (n,p—x) >0, Vx€ K} (A.62)

The uniform convergence of the sequence {p;(.)} can be proved.

(#) After proving the uniform convergence of the sequence of approximate solu-
tions {p;(.)} to a limit p(.), select a subsequence for which the sequence of derivatives
{pL()} in L>=([0,]], K) converges weakly to the derivative of p(.).

(1) Tt is shown that p(.) is a solution to the initial value problem (6.4) and (6.5).
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(iv) From(z)-(iii), we know that the problem has solutions on the interval [0,].
Assume that p,(.) and p,(.) are two solutions starting at the point p,. It is shown

that

Ip1(t) = P2()[I* < O (A-63)

Therefore, p,(t) = py(t), Vt € [0,!], which proves the uniqueness of the solutions.
(v) Having the unique solution for the interval [0,1], we consider t, = I and apply
the theorem again. Hence, we obtain a solution for an extended time interval. By

continuing this process, a solution can be obtained for ¢ € [0, 00). O
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Proof of Theorem 8.2:
The proof uses ideas given in [96,128, 144].

(a) Uniqueness of the solution is concluded from Theorem 4.2) and the fact that
F'is an affine mapping.

(b) In [128], Proposition 3.1, it is proved that the PD system has at most one
equilibrium point. Essential outline of the proof is as follows.

Assume that the PD system has at least two solutions p; # p, € K. Then,

Ik (P, —~F(p1)) =0 and Tk (p,, —F(p;)) =0 (A.64)

Equivalently, this means that —F(p;) € Ng(p;) and —F(p,) € Nk(p,), where N is
the normal cone. Since the set-valued mapping p — Ng(p) is a monotone mapping,

we have

(=F(py) + F(P2))T(P1 —Ppy) 20 (A.65)

or equivalently

(F(py) —F(p,)) (P, —p;) <0 (A.66)

On the other hand, from strict monotonicity property of F', we have

(F(py) — F(p1) (P2 — p1) >0 (A.67)

The last two equations lead to a contradiction. Therefore, the PD system has at most

one equilibrium point. Solutions of the EVI problem are the same as the stationary
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points of the PD system and vice versa [128]. From (a) we know that the EVI has a

unique solution. Therefore, the PD system has a unique equilibrium as well. O

137



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science

Proof of Theorem 8.3:
Proof of this theorem can be found in [140], Chapter 7, Theorem 7.2 and Theorem 7.6.
Essential outline of the proof is as follows.

(a) Consider the Lyapunov function

V(t) = 5lp(t) — | (A.69)
Then
V(t) = ((p(t) - p), Ik (p(t), — (o + Mp(t)))) (A.69)
Regarding (6.16), we have
V(1) < ((B(t) ~ ), ~ (& + Mp(t)) (A.70)

Strict pseudo-monotonicity leads to

((p(t) = p*), — (e + Mp(}))) <0 (A.71)

and
V(t) <0 (A.72)

Therefore, p* is a is a strict monotone attractor.
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(b) Since F is strongly pseudo-monotone, there exists ¢ > 0 such that
(F(p"),p—p") 20= (F(p),p—p*) 2 clp~p*[*, VP K  (A.T3)
which implies that
(p(t) - p*,~ (o + Mp(t))) < —c|p - P"|* (A.74)
From (A.69), we have
V(t) < —clp - p*|I? (A.75)
Integration of the above inequality leads to
%llp(t) = pIPP < llpo — P7II%e™ = |Ip(t) — Pl < V2|lpo — plle™F  (A.76)

which shows that p* is exponentially stable. As t — oo, we obtain p(t) — p* and

therefore, p* is an attractor. g
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