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'Would you tell me, please, which way I ought to go from here?' 

'That depends a good deal on where you want to get to,' said the Cat. 

'I don't much care where--' said Alice. 

'Then it doesn't matter which way you go,' said the Cat. 

'-so long as I get SOMEWHERE,' Alice added as an explanation. 

'Oh, you 're sure to do that,' said the Cat, 'if you only walk long enough.' 

- Lewis Carroll, Alice's Adventures in Wonderland. 
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Abstract 

A cognitive radio network is a multi-user system, in which different users compete for 

limited resources in an opportunistic manner, interacting with each other for access 

to the available resources. The fact that both users and spectrum holes (i.e., under

utilized spectrum subbands) can come and go in a stochastic manner, makes a cogni

tive radio network a highly dynamic and challenging wireless environment. Finding 

robust decentralized resource-allocation algorithms, which are capable of achieving 

reasonably good solutions fast enough in order to guarantee an acceptable level of 

performance even under worst-case interference conditions, is crucial in such an en

vironment. 

Considering a non-cooperative framework, the iterative waterfilling algorithm 

(IWFA) is a potentially good candidate for transmit-power control in cognitive radio 

networks for achieving a Nash-equilibrium point. IWFA is appealing because of its 

low complexity, fast convergence, distributed nature, and convexity. It can be refor

mulated as an affine variational inequality (AVI) problem. Employing the theory of 

projected dynamic (PD) systems, an affine dynamic model is obtained for the evolu

tion of the network's state. This dynamic model allows us to study both equilibrium 

and disequilibrium behaviour of the network. The proposed dynamic framework also 

facilitates sensitivity and stability analysis of the system. 
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The fact that changes happen in a cognitive radio network because of continuous 

dynamics as well as discrete events, makes it a hybrid dynamic (HD) system. Decision 

making is then a multiple-time-scale process. Modeling the system using the theory 

of PD lends itself to describing the cognitive radio network as a constrained piecewise 

affine (PWA) system and therefore, benefiting from various mathematical tools, which 

have been well demonstrated in control theory. 

Usually users use asynchronous update schemes and they update their transmit 

powers at different rates. The feedback channel introduces a time-varying delay in the 

control loop of a cognitive radio, which means sometimes users update their transmit 

powers using out-dated information. Therefore, the network is practically speaking 

a multiple-time-varying-delay system with uncertainty. Robust exponential stability 

of the network is studied in this framework. 

Theories of evolutionary variational inequalities and projected dynamic systems 

on Hilbert spaces were used to extend the developed framework further in order to 

address the multiple-time-scale nature of the cognitive radio network. 
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Glossary of Symbols 

a~ Normalized interference gain from transmitter j to receiver i on subcarrier k 

f3k Frequency-dependent attenuation parameter associated with subcarrier k 

rk Lagrange multiplier associated with the constraint imposed by the permis

sible interference power level 

,\~ Lagrange multiplier associated with the constraint that prevents cognitive 

radios to transmit on non-idle subcarriers 

,\ Decay rate 

r Signal-to-noise ratio gap 

IIK Projection operator onto the feasible set K 

(} The combined effect of the background noise in both forward and feedback 

channels in the network 

O"~ Normalized background noise power at the receiver input of user i on sub-

carrier k 

O"kax Maximum normalized background noise power on subcarrier k 

ui Normalized background noise power vector at the receiver input of user i 

CT Normalized background noise power vector of the network 

T Time 

Ti(t) Time-varying delay introduced by user i's feedback channel 
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Tij(t) Time-varying delay with which user i receives update information from user 
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<P Initial function 

'l!~0 Initial set associated with user i 

'llw Initial set for the network 

a( t) Step-size 

CAPk The permissible interference power level on subcarrier k 

dij Distance from transmitter j to receiver i 

Ji Objective function of user i 

bi.f Frequency offset 

h~ Channel gain from transmitter j to receiver i over the flat-fading subchannel 

associated with subcarrier k 

lk Noise plus interference experienced by user i on subcarrier k 
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intK Interior of the feasible set K 

BK Boundary of the feasible set K 

£i Lagrangian of the optimization problem for user i 

M Matrix of normalized interference gains 
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Mk Tone matrix associated with subcarrier k 

MiJ Diagonal matrix, whose diagonal elements are normalized interference gains 

from transmitter j to receiver i at different subcarriers 

m Number of active cognitive radio transceivers in the region of interest 

M 1 Set of users that are able to transmit with their maximum powers 

M 2 Set of users that are not able to transmit with their maximum powers 

n Total number of subcarriers in an OFDM framework that can be potentially 

available for communications 

p~ User i's transmit power on subcarrier k 

pi User i's power vector 

p-i Joint power vectors of users other than user i 

p Network power vector 

p* Nash-equilibrium point 

P~ax User i's maximum power 

PS Subset of subcarriers that cannot be assigned to cognitive radios 

r Path-loss exponent 

S(p) Set of inward normals at p E X 

St Adjustment scheme at time t 

t Time 

ui Lagrange multiplier associated with maximum power constraint 
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Chapter 1 

Introduction 

"Spectrum is like air; we need to keep it clean, open, and green for our 

environment" [2]. 

1.1 Motivation 

Mobile communications and broadband internet access have been playing key roles 

in the development of our society in recent years. The increasing number of users 

of internet-enabled wireless devices, illustrates the shift from traditional application

specific radio technology to service-oriented information delivery systems. Regarding 

the ever-increasing demand for more advanced applications that require the exchange 

of higher volumes of data, communication technologies are progressing toward pro

viding secure and seamless connectivity of mobile devices to any network, anytime, 

and anywhere [3]. 

Although the future of telecommunication industries looks very promising, there 
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are concerning issues regarding spectrum management that should be addressed im

mediately. The electromagnetic spectrum is a natural resource, the use of which for 

radio and television broadcasting, mobile wireless communications, and radar appli

cations is regulated by government agencies. Unfortunately, several measurement 

studies conducted in North America [4-8] and elsewhere [9-11] have revealed that 

this precious resource is very much underutilized by the primary users. According 

to predictions made by the International Telecommunications Union and the Organi

zation for Economic Cooperation and Development, unless serious actions are taken 

towards smart, efficient, and dynamic management of the electromagnetic spectrum, 

the worldwide mobile communication network will collapse by the year 2050. In order 

to allocate the spectrum dynamically and openly, future wireless devices should be 

service-oriented terminals, which are more compatible with computer systems and 

support unlocked and multiple wireless standards [2]. 

Cognitive science provides the tool for building a new generation of devices with 

dynamic applications. These cognitive machines will be able to build up their rules 

of behaviour over time through learning from experiential interactions with the envi

ronment. They should be able to deal with environmental uncertainties and properly 

perform tasks of different kinds in a wide range of environmental conditions. In other 

words, robustness must be a major design criterion. Although intelligence is consid

ered as a computational problem, accurate study of the biological systems in general 

and especially the structure of the brain will provide a reliable guide for building cog

nitive machines. Therefore, computer science, biology and other related disciplines 

will play key roles in the newly emerged field of cognitive dynamic systems (CDS) [12]. 

Regarding the fact that cognitive science has its roots in cybernetics [13], it is critical 
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for the success of this field of study to pay attention to the history and learn from 

it. This way, mistakes that led to the failure of cybernetics to some extent can be 

avoided [14]. 

Cognitive radio is a special class of cognitive machines. It offers a novel way of 

solving the spectrum utilization problem [15, 16]. It solves the problem by, first, sens

ing the radio environment to identify those sub bands of the electromagnetic spectrum 

that are underutilized and, second, providing the means for making those subbands 

available for employment by secondary users. Typically, the subbands allocated for 

wireless communications are the property of legally licensed owners, which, in turn, 

make them available to their own customers: the primary users. From the perspec

tive of cognitive radio, underutilized subbands are referred to as spectrum holes. A 

spectrum hole is a band or subband of frequencies assigned to a primary user, but 

at a particular time and specific geographic location, it is not being utilized by that 

user, partially or fully. 

Naturally, the entire operation of cognitive radio hinges on the availability of 

spectrum holes. The identification and exploitation of spectrum holes poses technical 

challenges rooted in computer software and hardware, signal processing, communica

tion theory, control, optimization, and game theory, just to name a few disciplines. 

Moreover, the operation of cognitive radio is compounded further by the fact that 

the spectrum holes come and go in a rather stochastic manner. 

The large number of heterogeneous elements in a cognitive radio network that 

interact with each other indirectly through the limited resources makes the cognitive 

radio network a complex dynamic system [1, 16] or a system of systems [17]. In such an 

environment, each element is a decision-maker. Different degrees of coupling between 

3 
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different decision-makers of one tier or between decision-makers from different tiers 

influence their chosen policies. Change of policies affects the interaction between the 

decision makers and alters the degrees of coupling between them. In other words, both 

upward and downward causations [18] play key roles in a cognitive radio network and 

lead to positive or negative emergent behaviour, which is not explicitly programmed in 

different elements. Since the global behaviour of the network cannot be reduced to the 

local behaviour of different elements, taking an approach to build a dynamic model, 

which provides a global description of the network behaviour, is of critical importance. 

The fact that it is impractical to perform experiments with large decentralized wireless 

networks with hundreds or thousands of nodes in order to understand their global 

behaviour, highlights the importance of analytical approaches even more [19]. Such 

models enable us to predict the future and based on the obtained knowledge engineer 

it to improve network robustness against potential disruptions. 

This research focuses on resource allocation in cognitive radio networks in which 

users access the available spectrum in an opportunistic manner. The goal of this 

research is to identify dominant sources of uncertainty in practical cognitive radio 

networks as thoroughly as possible and build analytical models that describe the be

haviour of the network from a global perspective. Having identified the sources of 

uncertainty and established the underlying theory to predict the behavi.our of the 

network, proper control policies will be proposed for risk management and improve

ment of network robustness. A theoretical framework is developed to address the 

multiple-time-scale decision making in cognitive radio networks based on the theory 

of double-layer dynamic systems. 

4 
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1.2 Mathematical Toolbox 

A principled basis for the dynamic allocation and management of resources in a 

cognitive radio network is developed based on the fusion of ideas from game theory, 

control theory, and optimization. 

1.2.1 Game Theory 

Game theory provides an analytical toolbox for modeling and analyzing situations in 

which multiple decision-makers (players) with possibly conflicting interests interact. 

Rationality and strategically reasoning are two basic assumptions in game theory. 

These assumptions reflect that each decision-maker has a well-defined objective and 

acts based on its knowledge or expectation of other decision-makers' behaviors [20]. 

In engineering, in many cases that deal with decentralized control systems, con

trollers are designed in a centralized manner and then implemented in a decentralized 

way [21,22]. This method is not truly decentralized and may cause some problems in 

practice. Game theory provides a natural framework for analysis and design of truly 

decentralized control systems. John Nash's paper on "Parallel Control" is perhaps 

the pioneering work in this area [23]. Influenced by his earlier work on equilibria 

in non-cooperative games [24, 25], Nash proposed to build computers in which com

ponents work in a more autonomous way. Basar and Olsder's book on dynamic 

non-cooperative games [26] focuses more on control theoretic aspects and interprets 

optimal control problems as one-player games. Also, in [27] the robust control prob

lem was interpreted as a zero-sum game in which the controller tries to maximize the 

system's utility while the environment is trying to minimize the system's utility. 

In wireless networks the radio communication channel is usually shared between 

5 
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different transmitter-receiver (transceiver) pairs. In such environment, multiple users 

compete for limited resources and the behaviour of each user affects the performance 

of neighboring users. It is therefore not surprising that game theory has attracted 

the attention of many researchers in the field of communication networks especially 

those who are working on cognitive radio. 

1.2.2 Control Theory 

Control engineering is an exciting and challenging field with a multi-disciplinary na

ture and strong mathematical foundation. A control engineer's systematic insight can 

be easily extended to be utilized in other fields. The present challenge to control en

gineers is the modeling and control of modern, complex, and interrelated systems. To 

face this challenge, we need something dramatically different from traditional control 

techniques possibly new control structures coming out of the neuroscience world. 

Control systems are found throughout nature at the levels of genes, proteins, cells, 

and entire systems [28]. Some of the natural control systems have unequaled degrees 

of sophistication [29]. Increased understanding of the scientific and engineering prin

ciples behind the living organisms as well as the way they interact with the world 

and learn from it will lead to fantastic breakthroughs in the design and application 

of intelligent machines that are truly cognitive. 

A living organism interacts with nature through observation and action. Inspired 

by the perception-action cycle in the brain, a cognitive radio transceiver is built as a 

closed loop feedback system, which embodies the radio environment, radio-scene ana

lyzer, feedback channel, and radio-environment actuator. Moreover, a cognitive radio 

network is a hybrid dynamic system with both continuous and discrete dynamics. 
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Therefore, cognitive radio networks have the potential for presenting a rich spectrum 

of dynamic behaviours. 

1.2.3 Optimization 

In a complex system such as a cognitive radio network, every decision-making process 

will be a multi-criteria optimization problem with possibly conflicting objectives [30]. 

In order to make certain rational decisions, a user needs to gather information and 

process it. Data acquisition and computation capabilities of users are limited and 

they can only make the best decisions regarding their knowledge and resources. Also, 

real life cognitive radios are subject to uncertainties that cannot necessarily be dealt 

by statistical analysis. In this environment, robust optimization provides an essential 

tool for making decisions based on worst-case conditions. 

1. 3 Vision for the Thesis 

The thesis is organized as follows: 

• Chapter 2 discusses the primary communication resources and the spectrum 

underutilization problem in the current communication networks. After men

tioning the advantages of the OFDM scheme, a review of cognitive radio with 

emphasis on the cognitive-information-processing cycle, is followed by a discus

sion on the constraints imposed by the cognitive-radio environment. 

• Chapter 3 studies different sources of uncertainty in cognitive radio networks 

and the two approaches that can be taken to deal with uncertainty in the con

text of transmit-power control; stochastic optimization and robust optimization. 
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The concept of robustness is reviewed and its importance for designs concerning 

complex and large-scale systems such as cognitive radio networks is emphasized. 

• Chapter 4 studies the cognitive radio network dynamics with emphasis on the 

equilibrium behaviour of the network. Tools from information theory and op

timization are employed to formulate the transmit-power-control problem in a 

cognitive radio network as a robust game. The equilibrium solution is found 

using the robust version of the iterative waterfilling algorithm (IWFA). IWFA is 

formulated as a variational inequality (VI) problem, which facilitates studying 

the existence and uniqueness of the equilibrium solution. Also, it paves the way 

for investigating the network behaviour in a dynamic framework. 

• Chapter 6 studies the cognitive radio network dynamics with emphasis on the 

disequilibrium (transient) behaviour of the network. Tools from control the

ory are employed to find a differential equation, which governs the evolution 

of the network's state trajectory before reaching the equilibrium. The station

ary points of this dynamic model coincide with the equilibrium points of the 

corresponding VI model, developed in Chapter 4. Stability of the network in 

the presence of perturbation and time delay is addressed. Also, the network is 

modeled as a hybrid dynamic system. 

• Chapter 8 extends the theoretical framework developed in Chapter 4 and Chap

ter 6 to capture the multiple-time-scale nature of the cognitive radio network. 

• Simulation results are presented in Chapters 5, 7, and 9. The testbed used 

for simulations is explained in Chapter 5. Chapters 5 and 7 present computer 

experiments for small-scale networks, which are carefully designed to highlight 
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and clarify the key points of the theoretical frameworks developed in Chapters 

4 and 6, respectively. Chapter 9 presents the computer experiment for a large

scale network with emphasis on the double-layer dynamics of cognitive radio 

networks. 

• The thesis concludes in Chapter 10 by reviewing the contributions of the thesis 

to the literature. 

• The Appendix provides the proofs of theorems and propositions. 
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Chapter 2 

Cognitive Radio 

2.1 Spectrum Utilization 

The poor utilization of the spectrum is a result of current inefficient spectrum manage

ment policies. In November 2002, the Federal Communications Commission (FCC) 

published a report, aimed at improving the way in which this limited and precious 

resource is managed in the United States [4]. Since then spectrum occupancy mea

surement campaigns have been conducted in different countries (Table 2.1). However, 

the results highly depend on the sensing locations, the spectrum sensing method, and 

the chosen threshold to distinguish idle bands from occupied bands. 

In the United States, measurements have shown that from January 2004 to August 

2005, on average, only 5.2% of the radio spectrum was actually in use [5]. Measure

ments over a period of 2 days in November 2005 showed that the average spectrum 

occupancy in the band 30-3000 MHz was 13.1%and17.4% for New York and Chicago, 

respectively [6]. In [7], the spectrum occupancy in the band 400-7200 MHz was com

pared for an urban area (Atlanta, Georgia) and a rural area (North Carolina). The 
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Table 2.1: Spectrum utilization in different countries 

Country Region Frequency Range (MHz) Usage (3) 

5.2 
New York 30-3000 13.1 
Chicago 30-3000 17.4 

USA Limestone 30-3000 1.7 
Atlanta 400-7200 6.5 

North Carolina 
400-7200 0.8 

(A Rural Aea) 

New Zealand Auckland 806-2750 6.2 

Singapore 80-5850 4.54 

Qatar Doha 700-3000 15.3 

respective measurements were 6.53 and 0.83. At the Loring Commerce Centre, 

Limestone, Maine, USA, measurements over a period of 3 days in the band 30-3000 

MHz, showed that the average spectrum usage was 1.73. Occupancy varied from less 

than 13 to 24.653 in different subbands. The maximum occupancy of 24.653 was 

reported for the band 470-512 MHz [8]. 

In Auckland, New Zealand, the spectrum occupancy was reported to be 6.23 over 

the frequency range 806-2750 MHz [9]. 

In Singapore, the average spectrum occupancy in the band 80-5850 MHz, based 

on measurements over a period of 12 days, was reported to be 4.543 [10]. 

In Doha, Qatar, measurements performed over a period of 3 days in the 700-3000 

MHz frequency band showed that the spectrum utilization was 13 for the indoor 

environment and 15.33 for the outdoor environment [11]. 
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In Aachen, Germany, measurements over a period of 7 days next to the main rail

way station in the band 20-3000 MHz, showed that the spectrum utilization was 32% 

for the indoor environment and about 100% for the outdoor environment. However, 

in such a place, the sensors were exposed to high-level ambient noise and the inability 

of the energy detectors to distinguish man-made noise from primary users' signals 

led to this unexpectedly high occupancy measurement [31]. We should be cautious 

about the spectrum sensing method that we adopt in order to avoid such misleading 

results. 

The employed spectrum sensors should be able to detect spectrum holes, provide 

high spectral-resolution capability, estimate the average power in each subband of 

the spectrum, and identify the unknown directions of interfering signals. Cyclosta

tionarity is another desirable property that could be used for signal detection and 

classification. Therefore, the multitaper method (MTM) for nonparametric spectral 

estimation was proposed in [32] as the method of choice for spectrum sensing in cog

nitive radio because it accomplishes these tasks accurately, effectively, robustly, and 

in a computationally feasible manner. 

2.2 Primary Communication Resources 

There are two primary resources in a cognitive radio network; channel bandwidth and 

transmit power. The operation of the transmit-power controller is complicated by a 

phenomenon that is peculiar to cognitive radio communication, namely, the fact that 

spectrum holes come and go, depending on the availability of subbands as permitted 

by licensed users. To deal with this phenomenon and thereby provide the means for 

improved utilization of the radio spectrum, a cognitive radio system must have the 
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ability to fill the spectrum holes rapidly and efficiently. In other words, cognitive 

radios have to be frequency-agile radios with flexible spectrum shaping abilities. The 

orthogonal frequency-division multiplexing ( OFDM) scheme can provide the required 

flexibility, and is therefore a good candidate for cognitive radio [1, 16,33-35]. OFDM 

can be employed in a cognitive radio network by dividing the primary user's unused 

bandwidth into a number of sub bands available for use by the cognitive radio systems. 

In order to achieve low mutual interference between primary and secondary users, an 

adaptive transmit filter can be used to prevent usage of a set of subcarriers, which are 

being used by the primary users. Moreover, the fast Fourier transform (FFT) block 

in the OFDM demodulator (Figure 2.1) can be used for spectral analysis [33]. 

OFDM is a multi-carrier scheme in which a wideband signal is converted to a 

number of narrowband signals. Then closely-spaced orthogonal subcarriers are used 

to transmit these narrowband data segments simultaneously. In effect, a frequency se-

lective fading channel is divided into a number of narrowband flat fading subchannels. 

OFDM has many advantages over single-carrier transmission [36-40]: 
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• It improves the efficiency of spectrum utilization by the simultaneous use of 

multiple orthogonal subcarriers, which are densely packed. 

• The OFDM waveform is first built in the frequency domain and then it is trans

formed into the time domain, thereby providing flexible bandwidth allocation. 

• Interleaving the information over different OFDM symbols provides robustness 

against loss of information caused by flat-fading and noise effects. 

• Although the spectrum tails of subcarriers overlap with each other, at the center 

frequency of each subcarrier all other subcarriers are zero. Theoretically this 

prevents inter-carrier interference (ICI). However, time and frequency synchro

nization is critical for ICI prevention as well as correct demodulation, and is a 

major challenge in the physical layer design [41]. 

• Since a narrowband signal has a longer symbol duration than a wideband signal, 

OFDM takes care of inter-symbol interference (ISI) caused by multipath delay 

of wireless channels. However, guard time intervals, which are longer than the 

channel impulse response, are introduced between OFDM symbols to eliminate 

the ISI by giving enough time for each transmitted OFDM symbol to dissipate 

considerably [38]. 

• Due to the low ISI, less complex equalization is required at the receiver, which 

leads to a simpler receiver structure. 

In summary, frequency diversity enables OFDM to provide higher data rates, more 

flexibility in controlling the waveform characteristics, and greater robustness against 

channel noise and fading compared to single-carrier transmission schemes. 
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Using the OFDM-based modulation scheme, the bandwidth allocation can be con

sidered as a subcarrier assignment problem [38]. The resource management problem 

may then consist of subcarrier assignment and power control. While the availability 

of channel bandwidth depends on the communication patterns of primary users, a 

cognitive radio has complete control over its own transmit power. In other words, 

among the two primary resources, power is the only variable that can be manipulated 

by cognitive radio users. As mentioned previously, a subcarrier will not be assigned 

to a cognitive radio if its transmit power on that subcarrier is zero. Therefore, the 

resource-allocation problem can be reduced to the transmit-power control and can be 

considered as a distributed control problem. Scalable decentralized algorithms with 

reasonable computational complexity are naturally preferred. 

2.3 Cognitive-Information-Processing Cycle 

In signal-processing terms, a feature that distinguishes cognitive radio from conven

tional wireless communication, is the cognitive-information-processing cycle [1, 16]. 

This cycle applies to a secondary (unserviced) user, where a transmitter at one loca

tion communicates with a receiver at some other location via a spectrum hole, that 

is, a licensed sub band of the radio spectrum that is underutilized at a particular point 

in time and at a particular location. The cognitive cycle encompasses two basic oper

ations; radio-scene analysis of the surrounding wireless environment at the receiver, 

and dynamic spectrum management/transmit-power control at the transmitter. In

formation on spectrum holes and the forward channel's condition, extracted by the 

scene-analyzer at the receiver, is sent to the transmitter via a feedback channel. The 

feedback channel is a physical channel available to all cognitive radio users. It can be 
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established in three ways [42]: 

• A specific spectrum band is licensed and reserved as a dedicated universal chan

nel for cognitive radios. 

• Available spectrum holes are used by cognitive radios both for data transmission 

and feedback channel. 

• Cognitive radio units establish their feedback channels using unlicensed bands. 

The feedback channel can always be established using the unlicensed bands indepen

dent of the availability of spectrum holes. Also, unlike the universal feedback channel, 

it does not have the problem of spectrum licensing. Therefore, using the unlicensed 

bands for establishing the feedback channel is the best choice [42]. 

Dynamic spectrum manager solves a limited-resource distribution problem and is 

designed to dynamically assign available spectrum holes to cognitive radio units in a 

fair and efficient manner [42]. The information that transmitter receives through the 

feedback channel enables it to adaptively adjust the transmitted signal and update 

its transmit power over desired channels. Using a predictive model, the cognitive 

radio is enabled to predict the availability duration of spectrum holes, which, in turn, 

determines the horizon of the transmit-power control. The combination of the radio

scene analyzer, the feedback channel, the dynamic spectrum manager/transmit-power 

controller, and the wireless link constitutes a closed-loop feedback system as depicted 

in Figure 2.2 [1, 16]. 

The detailed-information-processing cycle of Figure 2.2 can be summarized as Fig

ure 2.3. The cognitive-information-processing loop resembles the perception-action 
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Figure 2.2: Basic information-processing cycle for user i in a cognitive radio net
work [1]. 

cycle in the brain. The radio-environment actuator performs dynamic spectrum man-

agement and transmit-power control. 

2.4 Network of Cognitive Radios 

In a cognitive radio network, the radio communication channel is shared between 

different transceivers and each user's action affects the performance of neighboring 

users while they compete for limited resources. At any instant of time, new users may 

join the network or old users may leave the network. Also, primary users may start 

or stop communication and therefore, they may occupy or release some frequency 

bands in a stochastic manner. All of these occurrences can be considered as discrete 
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Figure 2.3: The cognitive-information-processing cycle in cognitive radio. 

events compared to the real-time evolution of each user's power vector, which can be 

considered as evolving in continuous time. It follows therefore that the cognitive-radio 

problem is a mixture of continuous dynamics and discrete events. In other words, a 

cognitive radio network is a hybrid dynamic system of the sort described in [43, 44]. 

The feedback channel will naturally introduce some delay in the control loop, 

and some of the users may use inaccurate or out-dated interference measurements to 

update their transmit powers. Also, they may update their transmit powers with dif

ferent frequencies. Therefore, in a real-life situation, the resource-allocation algorithm 

would have to be implemented in a distributed asynchronous manner [45-48]. 

In a competitive multi-agent environment with limited resources such as a cogni

tive radio network, where the actions of all agents (users) are coupled via available 

resources, finding a global optimum for the resource-allocation problem can be com

putationally intractable and time consuming. Moreover, such optimization would 

require huge amounts of information exchange between different users that will con

sume precious resources. In a highly dynamic environment, where both users and 

resources can freely come and go, finding a reasonably good or "just right" solution 
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(i.e. a suboptimal solution) that can be obtained fast enough is the only practical 

goal. Otherwise, spectrum holes may disappear before they can be utilized for com

munication. In such a situation, the concept of equilibrium is very important [49]. 

It is therefore not surprising that game theory has attracted the attention of many 

researchers in the field of communication networks. 

Recently, several tutorials on game theory have been published for communica

tion engineers. A nice survey on applications of game theory in wired communication 

systems is presented in [50]. The monograph [19] covers the non-cooperative game 

theory and in the final chapter mentions some research areas in wireless communica

tions and networking that can benefit from game theoretic approaches. The technical 

report [51] explains the terminology of non-cooperative game theory using four simple 

examples from wireless communications. The concept of equilibria and the related 

theorems are presented in [52]. The tutorial paper [53] explains the cooperative game 

theory. In September 2008, IEEE Journal on Selected Areas in Communications 

published a special issue on game theory in communication systems and John Nash 

wrote a foreword for that issue. Also, in September 2009, IEEE Signal Processing 

Magazine published another special issue on game theory in signal processing and 

communications. The latter includes the mentioned tutorial papers on equilibria and 

cooperative games. Also, the references [54-58] are worth mentioning among the oth

ers for application of game theory in wireless communication systems and cognitive 

radio networks. 

In game theory, the Nash equilibrium is considered to be a concept of fundamental 

importance. This equilibrium point is a solution such that none of the agents has an 

incentive to deviate from it unilaterally. In other words, in a Nash-equilibrium point, 
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each user's chosen strategy is the "best response" to the other users' strategies [20, 24, 

25]. Regarding the highly time-varying nature of communication networks in general 

and especially cognitive radio networks, a Nash-equilibrium solution is a reasonable 

candidate, eventhough it may not always be the best solution in terms of spectral 

efficiency [59]. 

The above discussion reveals that several key attributes such as distributed imple

mentation, low complexity, and fast convergence to a reasonably good solution, pro

vide an intuitively satisfying framework for choosing and designing resource-allocation 

algorithms for cognitive radio. It is with this kind of framework in mind that 

in [1, 16, 60], the IWFA has been proposed as a good candidate for finding a Nash 

equilibrium solution for resource allocation in cognitive radio networks. 

2.5 Problem Constraints 

Regarding the coexistence of both primary and secondary users in certain subbands, 

there are two spectrum sharing schemes [61]: 

• Protective spectrum sharing in which primary users do not allow coexistence of 

secondary users in their non-idle subbands. In OFDM scheme, secondary users 

should not transmit over non-idle subbands and perhaps some other contiguous 

subcarriers, which are used as guard bands. 

• Aggressive spectrum sharing in which coexistence of primary and secondary 

users in the same subbands is allowed on the condition that interference power 

experienced by the primary user's receiver remain below a specified threshold. 
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A set of constraints must be imposed on each user's transmit power in each sub

carrier to maintain a limit on the interference produced. In [62], a fixed limit on 

each user's transmit power in each subcarrier is considered in order to guarantee that 

all users transmit at low powers and do not cause high interference. However, this 

approach may be too conservative from spectral efficiency point of view especially 

when a subband is not crowded. In [63, 64], global and flexible constraints were 

proposed instead of individual and rigid constraints. The peak average interference 

tolerable by the primary user's receiver is used to put a limit on cognitive radios' 

transmit powers. The measurements are performed at the primary user's receiver 

and the results are sent to secondary users' transmitters. This approach requires 

information exchange between primary users and secondary users and can be used in 

a market-model spectrum-sharing regime that involves pricing. In [60], the interfer

ence temperature limit, which was proposed by FCC, was used as a local and flexible 

constraint. In the proposed approach, each user's receiver measures the interference 

power level on each subcarrier and sends the results to its corresponding transmitter 

through the feedback channel. The transmitter adjusts its transmit power vector in a 

way that it does not violate the permissible interference power level limit (interference 

temperature limit). 

2.6 Summary 

Reported experiments that show the poor utilization of the spectrum in different parts 

of the world were reviewed. 0 FD M scheme was mentioned as the method of choice for 

cognitive radio because of its flexible spectrum shaping abilities. The building blocks 

of the cognitive-information-processing cycle, which distinguishes cognitive radio from 
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conventional wireless communications, were explained. Characteristics of a cognitive 

radio network, and the constraints that are imposed on different cognitive radios were 

presented. 
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Chapter 3 

Robustness 

"To be uncertain is to be uncomfortable, but to be certain is to be ridiculous." 

Chinese proverb 

According to the Institute of Electrical and Electronics Engineers (IEEE), "the robust

ness of a system is the degree to which a system or component can function correctly 

in the presence of invalid inputs or stressful conditions" [65]. 

3.1 The Concept of Robustness 

Much too often in the literature, optimality is considered as the driving force for ob

taining the best performance possible. Such an objective may well work satisfactorily 

when considering small-scale applications or toy problems. However, when the appli

cation of interest is of a complex or large-scale kind, exemplified by a cognitive radio 

network, we find ourselves confronted with a much more pressing system requirement: 

robustness. 

Most, if not all, control design strategies exemplified by transmit-power control, 
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are based on the selection of a model for the plant. Selection of the model is influenced 

by mathematical tractability and prior knowledge that we may have about the plant, 

a generic term used to describe part of a dynamic system that is supposed to be 

controlled. Unfortunately, no matter how hard we try and irrespective of all the prior 

knowledge we may have about the system, there will always be some discrepancy 

between the actual physical behaviour of the plant and the corresponding behaviour 

of the hypothetical model. The response produced at the output of the plant due 

to a prescribed input signal is determined by the underlying physics of the plant. 

On the other hand, when the corresponding behaviour of the plant is considered, 

the response of the model due to the same input signal deviates invariably from the 

actual response of the plant due to unavoidable model uncertainty. The challenge in 

designing the controller is to make sure that the errors are kept small enough to be 

acceptable from an operational viewpoint, regardless of all operating conditions that 

are likely to arise in practice. 

3.2 Transmit-Power Control 

In spectrum sensing that constitutes a basic cognitive function in the receiver, the 

issue of prime interest is that of variance versus bias of estimation [32]. When we 

go on to consider the associated cognitive function of transmit-power control in the 

transmitter, the issue of prime interest is robustness versus optimality [60]. 

In the context of cognitive radio, the physical plant represents the communication 

channel between the transmitter and receiver, the radio-scene analyzer plays the role 

of the sensor, and the radio-environment actuator is the controller. Since the sensor 

and the actuator are not collocated, they have to be connected by a physical feedback 
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channel and the controller receives the sensor measurements via the feedback channel. 

Due to the different uncertainty sources in a cognitive radio network, adjusting the 

transmit power of a cognitive radio requires solving an optimization problem under 

uncertainty. 

3.3 Dominant Sources of Uncertainty 

The dominant sources of uncertainty in a cognitive radio network are: 

• Primary Users: In a cognitive radio network, spectrum holes come and go, 

depending on the availability of idle subbands. Therefore, primary users' ac

tivities are the cause of supply-side risk. Communication patterns of primary 

users determine the availability and the duration of availability of resources. 

The availability of the spectrum holes determines the joint feasible set of the 

resource-allocation optimization problems that are solved by individual sec

ondary users. In other words, it determines the joint set of the action spaces 

of all secondary users in the corresponding game. As mentioned before, the 

availability duration of spectrum holes determines the control horizon for the 

radio-environment actuators of secondary users. Depending on the sub bands of 

interest and the dynamics of activities of primary users in those subbands, two 

different cases are observed: 

a) The activities of the primary users and therefore, their occupancy of the 

corresponding subbands are well-defined. A good example for this case 

would be the use of TV bands for cognitive radios. 
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b) The activities of the primary users and therefore, the appearance and dis

appearance of spectrum holes are more dynamic and far less predictable 

than the former case. A good example for this case would be the use of 

cellular bands for cognitive radios. 

• Secondary Users: Anytime users can leave the network and new users can join 

the network in a stochastic manner. This is the cause of demand-side risk in 

the network. 

• Mobility: Users move all the time. Because of the mobility, the interference 

that a user causes on other users and mutually the interference that other users 

cause on that particular user in the network are time-varying. 

• Multiple Time- Varying Delays: The feedback channel plays a fundamental role 

in the design and operation of cognitive radio. Feedback may naturally intro

duce delay in the control loop and different transmitters may receive statistics 

of noise and interference with different time delays. Moreover, the sporadic 

feedback causes users to use out-dated statistics to update their power vectors. 

The time-varying delay in the control loop of each cognitive radio is another 

source of uncertainty that degrades the performance and may cause stability 

problems. 

• Noise: The ambient noise depends on different activities in the environment 

and is caused by both natural and man-made phenomena. 
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3.4 Dealing with Uncertainty 

During the time intervals that the activity of primary users does not change and the 

available spectrum holes are fixed, two approaches can be taken to deal with the 

uncertainty caused by joining and leaving of other cognitive radios as well as their 

mobility; stochastic optimization and robust optimization [66]. The pros and cons of 

these two approaches are discussed here. 

If there is good knowledge about the probability distribution of the uncertainty 

sources, then the uncertainty can be dealt with by means of probability and related 

concepts. In this case, calculation of the expected value will not be an obstacle 

and therefore, transmit-power control can be formulated as a stochastic optimization 

problem. 

However, since in practice, little may be known about the probability distribution, 

the stochastic optimization approach that utilizes the expected value is not a suitable 

approach. In this case, robust optimization techniques that are based on worst-case 

analysis, without involving probability theory, are more appropriate, although such 

techniques may well be overly conservative in practice. Suboptimality in performance 

is, in effect, traded in favor of robustness. 

Stochastic optimization guarantees some level of performance on average, and 

sometimes the desired quality of service may not be achieved, which means a lack 

of reliable communication. On the other hand, robust optimization guarantees an 

acceptable level of performance under worst-case conditions. It is a conservative 

approach because real-life systems are not always in their worst behaviour, but it 

can provide seamless communication even in the worst situations. Regarding the 

27 



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science 

dynamic nature of the cognitive radio network and the delay introduced by the feed

back channel, the statistics of interference that is used by the transmitter to adjust 

its power may not represent the current situation of the network. In these cases, 

robust optimization is equipped to prevent permissible interference power level viola

tion by taking into account the worst-case uncertainty in the interference and noise. 

Therefore, sacrificing optimality for robustness seems to be a reasonable proposition. 

However, the use of a predictive model may make it possible for the user to choose 

the uncertainty set adaptively according to environmental conditions and therefore, 

may lead to less conservative designs. 

3.5 Summary 

The concept of robustness and its formal definition were reviewed. The dominant 

sources of uncertainty in a cognitive radio network were identified. Since the resource

allocation problem in a cognitive radio network is an optimization problem under 

uncertainty, stochastic and robust optimization can be used to address the uncertainty 

issue. It was mentioned that robust optimization would be a better choice for the 

problem at hand. 
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Chapter 4 

Network Dynamics Viewed from 

Information-Theoretic and 

Optimization Perspectives 

There are two ways to build a cognitive radio network, one being evolutionary and 

the other revolutionary. In the evolutionary viewpoint, the currently established 

communication infrastructures can be utilized and cognitive radio networks are built 

around existing base stations. In this framework, the base stations or spectrum 

brokers [67] are responsible for assigning channels to cognitive radios; well-known 

algorithms proposed in the multi-cellular network literature for distributed optimal 

data rate and power control can be employed [46, 68-73]. On the other hand, in the 

revolutionary viewpoint, which is the focus of this research, there are no base stations 

or communication infrastructures; hence, channel assignment and power control would 

have to be performed jointly. As mentioned in Chapter 2, the IWFA is a potentially 

good candidate for resource-allocation in cognitive radio networks because of its low 
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complexity, fast convergence, distributed nature, and convexity. 

4.1 Waterfilling Interpretation of Information Ca

pacity Theorem 

Capacity is interpreted as the ability of a channel to convey information and is related 

to the noise characteristic of the channel. Shannon's capacity theorem [7 4] defines 

the fundamental limit on the rate of error-free transmission over a noisy communi

cation channel. The information capacity of a channel is defined as the maximum of 

the mutual information between the channel input and the channel output over all 

distributions on the input that satisfy the power constraint [75, 76]. 

However, capacity is a theoretical ultimate transmission rate for reliable commu

nication over a noisy channel. In practice, depending on the acceptable probability 

of error, there is a gap between the channel capacity and what is achievable by a 

practical coding and modulation scheme, called signal-to-noise ratio (SNR) gap, r, 

which is zero at theoretical capacity [77]. 

The information capacity of a continuous channel of bandwidth B Hz, perturbed 

by additive white Gaussian noise of power spectral density N 0/2 and limited in band

width to B, is given by 

C = B log2 ( 1 + ::B) (4.1) 

where P is the average transmitted power. The above formula reveals the interplay 

among three key parameters; channel bandwidth, average transmitted power, and 
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noise power spectral density. While the dependence of the information capacity, C, 

on channel bandwidth, B, is linear, its dependence on SNR, P/N0 B, is logarithmic. 

Therefore, it will be easier to increase the information capacity of a communication 

channel by expanding its bandwidth rather than increasing the transmit power for a 

prescribed noise variance [76]. 

In a cognitive radio network the communication channel is often shared between 

several transmitter-receiver pairs and information exchange between each pair in

terferes with the communication between the others. Such a channel is called an 

interference channel [78]. The capacity of interference channels is poorly understood 

even for simple cases. The set of all possible data rates achievable by all users, is 

called the rate region. The sum-rate expression is a non-convex function and finding 

the optimal power allocations for different users that guarantees the global maximum 

sum-rate is in general an NP-hard problem [79, 80]. 

Instead of solving the optimization problem globally, we settle for a suboptimal 

solution by viewing the problem as a non-cooperative game [77]. The competing 

users try to maximize their data rates greedily by distributing their powers in a 

channel above the noise level but below a constant level determined by the permissible 

interference level (Figure 4.1 ). It is called the waterfi,lling (pouring) interpretation in 

the sense that the process by which power is distributed is identical to the way in 

which water distributes itself in a vessel [76]. 

4.2 Iterative Waterfilling Algorithm (IWFA) 

The IWFA was originally developed for digital subscriber lines (DSL) [81-83]. In this 

algorithm, users sequentially update their transmit power vectors over the available 
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• Each user acts greedily to optimize its own performance based on local infor

mation, and the users do not need to communicate with each other to establish 

coordination between themselves. This tends to reduce the complexity of the 

cognitive radio network. 

Finding a Nash equilibrium for the DSL game was reformulated as a nonlinear 

complementarity problem (NCP) in [85]. In an NCP, the vector x E lRn, should be 

found such that 

x :2: 0, F(x) :2: 0, xTF(x) :2: 0 (4.2) 

where F is a nonlinear mapping from ]Rn to ]Rn. The problem will be a linear com

plementarity problem (LCP) if F = Mx + q for a matrix M and a vector q with 

appropriate dimensions [86]. In [84], the DSL game problem was reformulated as 

an LCP. Reformulation of the IWFA as an NCP and an LCP provides very inter

esting insights into this problem such as establishing the linear convergence under 

certain conditions on interference gains. Also, conditions on interference gains are 

obtained to guarantee convergence of the algorithm to a unique Nash-equilibrium 

point [47,48,82,84]. However, the algorithm has some drawbacks: 

• It is suboptimal; 

• It is defenseless against clever selfish users that try to exploit dynamic changes 

or limited resources. 

Moreover, regarding the dynamic nature of the cognitive radio environment and the 

speed of changes, the current transmit power values may not provide a good initial 
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point for the next iteration. In this case, it may be better to start the iterative 

procedure from a randomly picked initial point in the new feasible set. 

In what follows, the resource-allocation problem in cognitive radio networks is 

presented in the IWFA framework. While the predictive model can help for dealing 

with the appearance and disappearance of spectrum holes, robustification of the algo

rithm is proposed to address the issues related to unavoidable changes in the number 

of users and their mobility. 

Assume that there are m active cognitive radio transmitter-receiver pairs in the 

region of interest, and n subcarriers in an OFDM framework could potentially be 

available for communication. Let PS denote the subset of subcarriers that are being 

used by primary users and cannot be assigned to cognitive radios. Since spectral 

efficiency is the main goal of cognitive radio, the utility function chosen by each user 

to be maximized is the data rate. Thus, the IWFA lets user i solve the following 

optimization problem: 

subject to 
n 

LPi ~ P~ax 
k=l 

Pi+ lk ~ CAPk, 't/k tf: PS 

Pi= 0, 't/k E PS 

Pi > 0 k-

(4.3) 

Sometimes, this formulation is called rate-adaptive waterfilling. Pi denotes user i's 

transmit power on subcarrier k. The noise plus interference experienced by user i on 
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subcarrier k because of the transmission of other users is: 

Ik = (71 +~a~~ (4.4) 
#i 

Since cognitive radio is receiver centric, Ik is measured at receiver i. 

The positive parameter (7~ is the normalized background noise power at user i's 

receiver input on the kth subcarrier. The non-negative parameter a~ is the normal-

ized interference gain from transmitter j to receiver i on subcarrier k and we have 

ar = 1. The term a~ is the combined effect of two factors: 

• Propagation path-loss from transmitter j to receiver i on subcarrier k. 

• Subcarrier amplitude reduction due to the frequency offset tl.f. 

Mathematically a~ is defined as 

(4.5) 

where r is the SNR gap and h~ is the channel gain from transmitter j to receiver i 

over the flat-fading subchannel associated with subcarrier k. Regarding the empirical 

formula for the path loss [87], we have 

(4.6) 

where dij is the distance from transmitter j to receiver i. The path-loss exponent, r, 

varies from 2 to 5, depending on the environment, and the attenuation parameter, f3k, 
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is frequency dependent. Therefore, 

i] ii .. (d")r 
ak oc -d·· 

iJ 

(4.7) 

and in general a~ i= a{i. If user i's receiver is closer to its transmitter compared to 

other active transmitters in the network, we will have a~ ~ 1. 

Also, P~ax is user i's maximum power and CAPk is the maximum allowable in-

terference on subcarrier k. CAPk is determined in a way to make sure that the 

permissible interference power level limit will not be violated at the primary users' 

receivers [1, 16]. The previously mentioned properties of IWFA are more elaborated 

in what follows based on the mathematical formulation of ( 4. 3). 

In IWFA, user i assumes that p{ is fixed for j i= i. Therefore, the optimization 

problem in (4.3) is a concave maximization problem in pi= [pi, ... ,p~JT, which can 

be converted to a convex minimization problem by considering -t as the objective. 

The first constraint states that the total transmit power of user i on all subcarriers 

should not exceed its maximum power (power budget). The second constraint set 

guarantees that the interference caused by all users on each subcarrier will be less than 

the maximum allowed interference on that subcarrier. If primary users do not let the 

secondary users use the non-idle subcarriers in their frequency bands, then cognitive 

radios should not use those subcarriers for transmission. The third constraint set 

guarantees this by forcing the related components of the secondary user i's power 

vector to be zero. If primary users let the coexistence of secondary users on non-

idle subcarriers in condition that they do not violate the permissible interference 

power level, then the third constraint set can be relaxed and the second constraint 

set suffices. 
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As mentioned previously, IWFA is implemented in a decentralized manner. In 

order to solve the optimization problem (4.3), it is not necessary for user i to know 

the value of~ for \:/j -=J. i. The Ik defined in (4.4) is measured by user i's receiver 

rather than calculated, and therefore users do not need to exchange information. It 

is not even necessary for user i to know the number of other users in the network. 

Therefore, changing the number of users in the network does not affect the complexity 

of the optimization problem that should be solved by each user. Hence, there is not 

any scaling problem. 

While the action of user i is denoted by its power vector pi, following the notation 

in the game theory literature, the joint actions of the other m - 1 users are denoted 

by p-i. Three major types of adjustment schemes, S, can be used by the users to 

update their actions [26]: 

( i) Iterative waterfilling [81-83]: users update their actions in a predetermined or

der [26]: 

(4.8) 

(ii) Simultaneous iterative-waterfilling [47]: users update their actions simultaneously 

regarding the most recent actions of the others [26]: 

(4.9) 
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(iii) Asynchronous iterative-waterfilling [48] is an instance of an adjustment scheme 

that user i receives update information from user j at random times with delay [26]: 

(4.10) 

where rf'i is an integer valued random variable satisfying 

max (0, t - d) ::; rf'i ::; t + 1 j -1- i i, j E N (4.11) 

which means that the delay does not exceed d time units. 

Due to lack of central scheduling and difficulty of synchronization between different 

users in a cognitive radio network, the asynchronous adjustment scheme is more 

realistic than the other two. 

4.3 IWFA as a Multi-Stage Optimization Problem 

in light of System Uncertainties 

Since a cognitive radio network is a hybrid dynamic system, policies are defined on 

the event space as well as on the state space and therefore, each user needs to solve 

the corresponding optimization problem in two stages based on events and states. 

4.3.1 Event-Based Optimization 

A set of state transitions is called an event. Events determine the dimension of the 

state space. When primary users stop communication, they release subbands, which 
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can be used by cognitive radios. This event increases the dimension of the optimiza

tion problems that are solved by secondary users. On the other hand, when primary 

users start communication, they occupy subbands. This event decreases the dimen

sion of the optimization problems that are solved by secondary users. Each user's 

dynamic spectrum manager chooses a set of appropriate channels for communication. 

Finding the optimal set of channels for each user is equivalent to the well-known graph 

colouring problem in graph theory [42]. In [88] a novel self-organizing spectrum man

agement scheme is proposed, which uses Hebbian learning [89, 90] and solves the 

problem in a decentralized manner. This way, cognitive radios will be able to learn 

communication patterns of the primary users and build a predictive model, which 

determines the control horizon for the transmit-power controller. In the time inter

vals between such events, the state dimension of each user remains unchanged and 

state-based optimization is performed to find the optimal transmit power vector. 

4.3.2 State-Based Optimization 

In the time intervals in which the available spectrum holes are fixed, the cognitive 

radio environment still has a dynamic nature, secondary users move all the time, they 

can leave the network and new users can join the network in a stochastic manner. 

Because of these activities, the interference plus noise term ( 4.4) in the objective 

function and the second constraint set of the optimization problem ( 4.3) are both 

time-varying; the IWFA therefore assumes the form of an optimization problem under 

uncertainty. As mentioned in Chapter 3, stochastic and robust optimization can 

be employed to deal with the uncertainty caused by joining and leaving of other 

cognitive radios as well as their mobility. After discussing the pros and cons of these 
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two approaches, it was concluded that the robust optimization is a more reasonable 

approach, hence the material that follows. 

4.4 Robust IWFA 

Because of different sources of uncertainty, the noise plus interference term is the 

summation of two components: a nominal term, I, and a perturbation term, Di.I, as 

(4.12) 

In the following, the objective functions for both stochastic and robust versions of 

the optimization problem ( 4.3) are presented. 

If there is good knowledge about the probability distribution of the uncertainty 

term, Di.I, the IWFA problem ( 4.3) can be formulated as a stochastic optimization 

problem with the following objective function. 

( 4.13) 

where IE denotes the statistical expectation operator and 

(4.14) 

The formulation of IWFA as a robust game in the sense described in [91] is basi

cally a max-min problem in which each user tries to maximize its own utility while 

the environment and the other users are trying to minimize that user's utility [27, 92]. 

Worst-case interference scenarios have been studied for DSL in [93]. Considering an 
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ellipsoidal uncertainty set, the IWFA problem (4.3) can be formulated as the following 

robust optimization problem. 

max 
pi 

subject to 
n 

LP1 ~ P~ax 
k=l 

max (P1 + lk + t::.Ik) ~ CAPk, Vk ~PS 
ll.6.I'll~c: 

P1=0, Vk E PS 

Pi> 0 k-

(4.15) 

A larger c accounts for larger perturbations, and the second set of constraints guar

antee that the permissible interference power level will not be violated for any per-

turbation from the considered uncertainty set. 

4.4.1 The Cost of Robustness 

In addition to conservativism, there is yet another price to be paid for achieving 

robustness. Although the IWFA problem ( 4.3) is a convex optimization problem, 

appearance of the perturbation term, t::.I, in the denominator of signal-to-interference 

plus noise ratio (SINR) in the objective function of the robust IWFA problem (4.15), 

makes it a non-convex optimization problem. A robust optimization technique is 

proposed in [94] for solving non-convex and simulation-based problems. The proposed 

method is based on the assumption that the cost and constraints as well as their 

gradient values are available. The required values can even be provided by numerical 

simulation subroutines. It operates directly on the surface of the objective function, 
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and therefore does not assume any specific structure for the problem. In this method, 

the robust optimization problem is solved in two steps, which are applied repeatedly 

in order to achieve better robust designs. 

• Neighborhood search: The algorithm evaluates the worst outcomes of a decision 

by obtaining knowledge of the cost surface in a neighborhood of that specific 

design. 

• Robust local move: The algorithm excludes neighbors with high costs and picks 

an updated design with lower estimated worst-case cost. Therefore, the decision 

is adjusted in order to counterbalance the undesirable outcomes. 

Linearity of constraints of the robust optimization problem ( 4.15), especially the 

second set of constraints that involves the perturbation terms, improves the efficiency 

of the algorithm. 

4.5 Reformulation of IWFA as a Variational In-

equality (VI) Problem 

A Nash equilibrium game can be reformulated as a VI problem [95-97]. To be specific, 

Denoting the feasible set of ( 4.3) by Ki, we may rewrite the optimization problem 

(4.3) as 

mm 
pi 

subject to 

Ji ( 1 m) - p , ... ,p 

We recall the following theorem from [96, 97]. 
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Theorem 4.1: Let Ki be a closed convex subset of JR.n and -Ji be a convex and 

continuously differentiable function in pi for i = 1, ... , m. p* = [ p*1 T, ... , p*mT J T 

is a Nash equilibrium of the game if, and only if, it is a solution of the following VI 

problem VI(K, F): 

(p-p*fF(p*)~O ( 4.17) 

where 

( 4.18) 

and 

K = {p E JR.mxnl Pi= 0, Vk E PS, Vi= 1, ... , m; 

0 ~Pi+ Ik ~ CAPk, Vk tj:_ PS, Vi= 1, ... , m; 

n 

LPi ~ P~ax' Vi= 1, · .. , m} (4.19) 
k=l 

Calculating the gradients in ( 4.18) leads to fractional terms with the sum of the power 

and interference plus noise in the denominators: 

[ 
l l ] T 

= Pi + If ... ' p~ + I~ ( 4.20) 

[ ]

T 
1 1 

= i m ij · ' · · · ' i m ij · 
0\ + Lj=l al Pi (]" n + Lj=l On zYn 

Alternatively, following the approach of [84], a nice formulation of the IWFA as a 

VI problem is obtained that facilitates study of the network in a dynamic framework. 
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The discussion presented in this section is built on [84], and extends the proposed 

reformulation of IWFA to the cognitive-radio problem. In particular, we are allowed 

to utilize some existing mathematical tools and also benefit from ongoing research in 

other fields. The Lagrangian of the optimization problem in ( 4.3) for the user i is 

now written as 

Li ( 1 m) Ji i (~ i i ) P ' · · · 'P = - + U ~Pk - Pmax + 
k=l 

L 'Yk (O"k + t a~ JJL - C APk) + L AkPk 
kif.PS j=l kEPS 

Therefore, we have 

{

'Yk = 0, ,\k > 0 k E PS 

,\k = O,/k > 0 k fj. PS 

(4.21) 

(4.22) 

The Karush-Kuhn-Tucker (KKT) conditions [98-100] for user i and Vk = 1, ... , n are 

as follows: 

. 1 . . . 
0 ~ Pk J_ - i '°'m ij ~ + U 2 + 'Yk + ,\k ~ 0 

O" k + uj=l ak Pk 
n 

0 ~ U i J_ P~ax - L Pk ~ 0 
k=l 

m 

0 ~ 'Yk J_ CAPk - O"k - La~z{ ~ 0, Vk fj. PS 
j=l 

Pk= 0, Vk E PS 

where "J_" signifies orthogonality of the corresponding variables. 
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Regarding the availability of spectrum for secondary usage, two cases may happen. 

If the network faces spectrum scarcity, some of the users may not be able to transmit 

with their maximum powers. Then, the first constraint in ( 4.3) will be redundant for 

those particular users. On the other hand, if the available spectrum is enough for all 

of the users to transmit with their maximum powers, the following inequality will be 

satisfied. 

m 

L pimax < L ( C APk - O"kax) (4.24) 
j=l ktf_PS 

where akax is the maximum normalized background noise power on subcarrier k. 

In this case, similar to Proposition 1 of [84], which was proved for DSL, it can be 

shown that the system described in ( 4.23) is equivalent to a mixed linear complemen

tarity system (mixture of a linear complementarity problem with a system of linear 

equations) [101]. 

Proposition 4.1: Suppose that (4.24) holds, then the system (4.23) is equivalent 

to the following mixed linear complementarity system: 

m 

0 ::; Pt ..l ak + L a~ z{ + z} + <pt + <;k ~ 0 
j=l 

m 

0::; <pt ..l CAPk - ak - L a~z{ ~ 0, Vk tt PS 
j=l 

n 

P~ax - LPk = 0 
k=l 

Pk= 0, Vk E PS 
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z} =-~ 
ui 

i _ rk ((Jt + L;:1 a~zJ,_) 
'Pk - . ui 

i Ak ( <Jk + L;:1 a~ zJ,_) 
c;k = 

i 1 u =------: 
vi 

i 
i 'Pk 

fk = - i ( i '\;""'ffi ij,.j) 
V <Jk+Dj=lakPk 

i 
,\i = - c;k 

k i ( i '\;""'ffi ij,.j) 
V <Jk + Dj=l ak Pk 

( 4.26) 

( 4.27) 

While each user solves the above mixed linear complementarity problem (MLCP) 

with time-varying constraints, they should finally reach an equilibrium. The linear 

equation in ( 4.25) dictates that each user transmits with its maximum power, which 

leads to the worst-case interference condition. Intuitively it makes sense that each 

user transmits with its maximum power in order to achieve maximum data rate. 

In the most general case, where ( 4.24) is not valid, some of the users in the network 

will be able to transmit with their maximum powers and the others will not. We define 

two sets, M1 and M2 , which include these two groups of users, respectively. Intuitively 

speaking, when users adjust their power vectors based on rate-adaptive waterfilling 

( 4.3) in which they try to maximize their data rates subject to power constraints, 

they either transmit with their maximum power or with the highest power permitted 
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by the interference limits. In the case of spectrum scarcity, where ( 4.24) is not valid, 

for user i E M 1 , which is able to transmit with its maximum power, ui > 0 and we 

have: 

Proposition 4.2: Suppose that (4.24) is not valid and user i is able to transmit 

with its maximum power, then the system (4.23) is equivalent to the mixed linear 

complementarity system ( 4.25). 

On the other hand, when user i cannot transmit with its maximum power, the 

first constraint in ( 4.3) will be redundant and ui = 0. The KKT conditions in ( 4.23) 

are reduced to: 

. 1 . . 
0 :::; Pk 1- - i "'m ij ,.,.J + rk + .Ak ;;::: 0 

a k + 6j=l ak l'k 
m 

0:::; rk 1- CAPk - ak - La~P1:;;::: 0, Vk rf. PS 
j=l 

Pt= 0, 'ik E PS 

In this case, we have: 

( 4.28) 

Proposition 4.3: Suppose that ( 4.24) is not valid and the first constraint in ( 4.3) 

can be relaxed for user i, then the system ( 4.28) is equivalent to the following mixed 

linear complementarity system: 

m 

0 :::; Pt 1- at + L a~ P1: + 'Pt + ~k ;;::: 0 ( 4.29) 
j=l 

m 

ak + L a~P1: = CAPk, Vk rf. PS 
j=l 

Pt = 0, 'ik E PS 
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i 1 
'Yk = --. 

<pk 

( 4.30) 

( 4.31) 

The linear equation in ( 4.29) suggests that, when user i cannot transmit with its 

maximum power, it transmits with the highest permissible power, dictated by the 

interference temperature limit. Again, intuitively it makes sense. 

Users that belong to M 1 solve the MLCP (4.25) and users that belong to M 2 solve 

the MLCP ( 4. 29). Let us concatenate the corresponding variables for all users as 

follows: 

Pi 

p~ 

[ i] m p = p i=l = (4.32) 

pf 

P1: 
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u = [ui]m = 
z=l 

M= 

where Mij s are diagonal matrices 

0 

0"1 
1 

Mim 

Mmm 

0 

(4.33) 

(4.34) 

(4.35) 

The MLCPs ( 4.25) and ( 4.29) are the KKT conditions for an affine variational in

equality (AVI) problem [96], defined by the affine mapping 

F(p) = u+Mp ( 4.36) 
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and the polyhedron [84]: 

K = {p E IR.mxnl Pt= 0, Vk E PS, Vi= 1, ... , m; 
n 

Pt+ Ik :S CAPk, LPt = P~ax? Vk ~PS, Vi E M1; 
k=l 

Hence, the IWFA can be formulated as an AVI problem VI(K, u+Mp) or AVI(K, u, M). 

The vector p* is a Nash equilibrium point of the IWFA if, and only if, p* E K and 

Vp EK [84, 96]: 

(p - p*? (u +Mp*) 2: 0 ( 4.38) 

The above AVI problem can be interpreted as a robust optimization problem in which 

pis subject to uncertainty and known only to belong to K [102]. In the following, it is 

shown that the AVI reformulation of IWFA facilitates the study of the disequilibrium 

behaviour and stability analysis of the cognitive radio network. 

4.6 Solution Characteristics 

Monotonicity establishes the essential conditions for existence and uniqueness of 

the solution of the VI problem. The following definition and theorem are recalled 

from [96]. 

Definition 4.1: A mapping F : K ~ IR.n --t IR.n is said to be 
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(a) monotone on K if 

(F(x) - F(y)f (x - y) ~ 0, Vx,y EK; (4.39) 

(b) strictly monotone on K if 

(F(x) - F(y)f (x -y) > 0, Vx,y E K,x =/= y; ( 4.40) 

( c) ~-monotone on K for some ~ > 1 if there exists a constant c > 0 such that 

(F(x) - F(y)f (x -y) ~ cllx - Ylle, Vx, y EK; (4.41) 

( d) strongly monotone on K if there exists a constant c > 0 such that 

(F(x) - F(y)f (x -y) ~ cllx -yll 2
, Vx,y EK, ( 4.42) 

i.e. if F is 2-monotone on K. 

Strong monotonicity implies ~-monotonicity, ~-monotonicity implies strict mono

tonicity, and strict monotonicity implies monotonicity but the reverse is not true. 

Theorem 4.2: Let K ~ ~n be closed convex and F: K ~ ~n --t ~n be continuous. 

(a) If Fis strictly monotone on K, then VI(K, F) has at most one solution. 

(b) If Fis ~-monotone on K for some~> 1, then VI(K, F) has a unique solution. 

Therefore, the VI(K, u +Mp) has at most one solution if u +Mp is strictly 

monotone and it has a unique solution, p*, if u +Mp is ~-monotone for some ~ > 1. 

Monotonicity of the affine map Mp + u, where M is not necessarily symmetric, 

is equivalent to the condition that all of the eigenvalues of M have non-negative real 
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parts. Also, strict monotonicity, ~-monotonicity, and strong monotonicity of Mp+u, 

as well as the condition that all of the eigenvalues of M have positive real parts are 

all equivalent [96]. The latter condition is equivalent to the statement that -M is 

a Hurwitz matrix. This statement follows from the definition: A Hurwitz matrix is 

a matrix, which all of its eigenvalues have negative real parts [103]. Since M is a 

non-negative real matrix, in this case the symmetric part of M, ~ (M +MT), will 

be positive definite. Therefore, if matrix -M is Hurwitz, the existence of a unique 

equilibrium solution for the IWFA game will be guaranteed. 

In order to get an idea about the conditions under which matrix -M is Hurwitz 

in a practical cognitive radio network, let us regroup the elements of the power vector 

in ( 4.32) based on subcarriers instead of users. 

Pi 

( 4.43) 
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Accordingly, by rearranging rows and columns of matrix M, the following block di-

agonal matrix is obtained. 

N= 

0 

where Mks are tone matrices [84] 

1 

0 

alm 
k 

1 

(4.44) 

( 4.45) 

Matrices M and N have the same set of eigenvalues. Regarding the block diagonal 

structure of matrix N, if all of the eigenvalues of every tone matrix, Mk, have positive 

real values or if the symmetric part of every tone matrix, ~ (Mk + MI), is positive 

definite, then -M will be Hurwitz. Iftone matrices are strictly diagonally dominant, 

then their symmetric parts will be positive definite. Therefore, the following condition 

guarantees that -M will be Hurwitz. 

For instance, if 

m 

2:: a~ < 1, Vi= 1, ... , m, Vk = 1, ... , n 
j=l,i'i 

ij 1 
ak < --

1
, Vi,j = 1, ... ,m, Vk = 1, ... ,n 

m-

the Hurwitz condition will be guaranteed [81-84]. 
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As shown in ( 4. 7), the interference gains, a~, depend on the distance between a 

receiver and its own transmitter relative to its distance from other active transmitters 

in the network. Therefore, the Hurwitz condition of matrix -M depends on the 

topology of the network. Roughly speaking, if each user's receiver has the proper 

distance from its own transmitter, which is short compared to its distance from other 

active transmitters in the network, then it can be guaranteed that the network will 

reach a stable unique equilibrium. 

The existence and uniqueness results for IWFA are extended in [48,84] and broader 

conditions are obtained compared to those presented in [81-83]. However, as it will 

be clear in Chapter 6, the condition ( 4.46) provides insight on the stability of real-life 

cognitive radio networks. 

In general, cognitive radio networks are infrastructure-less networks and connec

tion between source and destination nodes are established through self-organization 

and ad hoc networking [104-106]. In a self-organized ad hoc cognitive radio network, 

when a source node wants to communicate with a destination node, a multi-hop path 

is established between them, which is called a communication tube. In general, the 

communication tube is dynamic and nodes can enter the tube or leave it due to 

their mobility. It can also bend and change its shape in order to preserve connec

tivity [107]. The multi-hop (relay) communication for cognitive radio has been the 

focus of extensive research. In the context of spectrum-aware routing or opportunistic

spectrum routing, a transceiver explores and utilizes the cooperative diversity in the 

network to build a multi-hop communication path in which the intermediate nodes 

that are willing to cooperate relay the message [108-110]. Moreover, the dynamic 

spectrum manager guarantees that the neighboring transmitting nodes will not use 
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the same set of channels in order to reduce the interference [42, 88]. Therefore, the 

above mentioned condition for existence of a unique equilibrium solution is practically 

achievable through dynamic spectrum management, opportunistic-spectrum routing, 

and flexibility of the communication tube between source and destination nodes. 

4.7 Summary 

The resource-allocation problem in cognitive radio networks was formulated as a 

non-cooperative game. Users solve a two-stage optimization problem to select a set 

of proper channels for communication and adjust their transmit powers in those chan

nels. The robust version of IWFA was suggested as a proper candidate for finding 

the equilibrium solution using local and flexible constraints based on the permissi

ble interference level in the network. IWFA was formulated as an affine variational 

inequality problem and sufficient conditions for existing of a unique equilibrium solu

tion were presented. The AVI formulation paves the way for investigating the network 

behaviour in a dynamic framework. Regarding the relationship between variational 

inequalities and temporal difference (TD) methods [111], extending the developed 

framework to equip the cognitive radios with learning capability is suggested as a 

direction for future research. 
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Chapter 5 

Computer Experiments I 

"Something is always discarded when the results of experiment are trimmed 

down to fit formulas and equations. That something, much or little, which 

is thrown away has frequently been of scientific importance equal to what 

is retained in the mathematics." E. T. Bell (1883-1960) 

IEEE 802.22 standard for wireless regional area networks provides fixed wireless 

broadband services for cognitive radios in TV broadcast bands on a non-interfering 

basis. Spectrum sensing is performed on the operating channel as well as the adja

cent channels to make sure that cognitive radios will not cause harmful interference to 

TV signals and wireless microphones. The sensing receiver sensitivity for digital TV, 

analog TV, and wireless microphone is -116 dBm, -94 dBm, and -107 dBm, respec

tively. Channel detection time is 2 s. Probability of detection is 0.9 and probability 

of false alarm is 0.1. The standard supports superframes of groups of 16 frames with 

a frame size of 10 ms. Also, excess delay of up to 37 µscan be absorbed by the cyclic 

prefix [112, 113]. 
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Simulation results are now presented to support theoretical underpinnings of the 

previous chapter. It is assumed that the cognitive-radio transceivers are distributed 

randomly in the region of interest with uniform distribution (Figure 5.1); this as

sumption is intuitively satisfying. Similar to [84,85] the normalized interference gains 

a~ are chosen randomly from the interval ( 0, 1 / ( m - 1)) with uniform distribution, 

which are less than 1 / ( m - 1), in order to guarantee that the tone matrices will 

be strictly diagonally dominant. Thus, the corresponding matrix -M will be Hur

witz. The ambient noise is assumed to be zero-mean Gaussian and the variance of 

the noise experienced by each user in each subcarrier is chosen from the interval 

(0, 0.1/(m - 1)) with uniform distribution. The power budgets P:Uax are chosen ran

domly from the interval (n/2, n) with uniform distribution too. For scenarios that 

consider the time-varying delay in the control loops, delays are chosen randomly. As 

shown in Figure 5.2, user mobility changes the communication path partially or com

pletely, which, in turn, changes the interference gains and matrix M. The same thing 

happens when new users join the network or old users leave the network. 

5.1 Robust IWFA vs Classic IWFA 

5.1.1 Stochastic Variability in the Network Configuration 

The transmit power control problem in a cognitive radio network using the classic 

IWFA and its robust version were presented in Section 4.2 and Section 4.4, respec

tively. In a cognitive radio network, when a spectrum hole disappears, users may 

have to seek or else increase their transmit powers in other spectrum holes and this 

increases the interference. Also, when new users join the network, current users in 
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Figure 5.1: Multi-hop communication path between a source node and a destination 
node. 

the network, experience more interference. Therefore, the joining of new users or 

the disappearance of spectrum holes makes the interference condition worse. Also, 

the cross-interference between users is time-varying because of mobility of the users. 

Results related to two typical but extreme scenarios are presented here to show su-

periority of the robust IWFA (4.15) over the classic IWFA (4.3) in dealing with the 

above issues. 

The first scenario addresses a network with m = 5 nodes and n = 2 available sub-

carriers, and all of the users simultaneously update their transmit powers using the 

interference measurements from the previous time-step. As mentioned previously, the 

asynchronous adjustment scheme is the most realistic one when network simplicity is 

at a premium. However, here simultaneous adjustment was employed to implement 

extreme cases, which emphasize the practical effectiveness of robust IWFA and its 
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Figure 5.2: Effect of user mobility on the communication path: (a) partially changed, 
(b) completely changed. 
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superiority over the classic IWFA. At the fourth time-step, two new users join the 

network, which increases the power level of interference. The interference gains are 

also changed randomly at different time instants to consider mobility of the users. 

Figure 5.3 and Figure 5.4 show the transmit power of three users (users one, four, and 

seven) on two different subcarriers for the classic IWFA and robust IWFA, respec

tively. At the second subcarrier, the classic IWFA is not able to reach an equilibrium. 

Data rates achieved by the chosen users are shown too. Also, the total data rate in 

the network is plotted against time, which is a measure of spectral efficiency. Al

though the average sum rate achieved by the classic IWFA is close to the average 

sum rate of the robust IWFA, it fluctuates and in some time instants the data rate 

is very low, which indicates lack of spectrally efficient communication. Although, 

the oscillation occurs mainly because of using simultaneous update scheme, it also 

highlights practical effectiveness of the robust IWFA. 

In the second scenario, a network with m = 5 nodes and n = 4 available subcar

riers is considered. Again at the fourth time-step two new users join the network but 

at the eighth time-step the third subcarrier is not available anymore (i.e. a spectrum 

hole disappears). Results are shown in Figure 5.5 and Figure 5.6, which, again show 

superiority of the robust IWFA. For classic IWFA, immediately after the disappear

ance of the third sub carrier, power in the fourth subcarrier starts to oscillate and 

after changing the interference gains randomly, we observe the same behaviour in 

other subcarriers. In contrast to the robust IWFA, the classic IWFA fails again to 

achieve an equilibrium. 
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Figure 5.3: Resource allocation results of simultaneous IWFA, when 2 new users join 
a network of 5 users and interference gains are changed randomly to address the 
mobility of the users: (a) transmit powers of 3 users on 2 subcarriers, (b) data rates 
of 3 users and the total data rate in the network. 
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Figure 5.4: Resource allocation results of simultaneous robust IWFA, when 2 new 
users join a network of 5 users and interference gains are changed randomly to address 
the mobility of the users: (a) transmit powers of 3 users on 2 subcarriers, (b) data 
rates of 3 users and the total data rate in the network. 
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Figure 5.5: Resource allocation results of simultaneous IWFA, when 2 new users join 
a network of 5 users, a subcarrier disappears, and interference gains are changed 
randomly to address the mobility of the users: (a) transmit powers of 3 users on 4 
subcarriers, (b) data rates of 3 users and the total data rate in the network. 
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5.1.2 Delay 

As mentioned previously, sporadic feedback introduces a time-varying delay in the 

transmit power control loop, which causes different users to update their transmit 

powers based on out-dated statistics. For instance, when the network configuration 

and therefore interference pattern changes, some users receive the related information 

after a delay. If the interference on a subcarrier increases and the transmitter is not 

informed immediately, it will not reduce its transmit power and it may violate the 

permissible interference power level for a while until it receives updated statistics of 

the interference in the forward channel. Similarly, this may happen to some users that 

update their transmit powers at lower rates compared to others. In the third scenario, 

a new user joins a network of three users, who are competing for utilizing two sub

carriers. Each user's transmitter receives statistics of the interference plus noise with 

a time-varying delay. Figure 5.7(a) shows the randomly chosen time-varying delays 

introduced by each user's feedback channel. Sum of transmit power and interference 

plus noise at the second subcarrier at the receiver of each user is plotted in Fig

ure 5.7(b) and Figure 5.7(c) for classic IWFA and robust IWFA, respectively. Dashed 

lines show the limit imposed by the permissible interference power level. Although 

the classic IWFA is less conservative, it is not as successful as the robust IWFA at 

preventing violations of the permissible interference power level. Similar results are 

obtained when users update their transmit powers with different frequencies. 

These small-scale problems were designed and typical results were presented to 

compare the performance of classic IWFA and robust IWFA. In some extreme cases 

because of occurrence of discrete events such as the appearance and disappearance 

of spectrum holes and users, the IWFA cannot achieve an equilibrium solution and 
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calculated results oscillate in subsequent time-steps especially if we use the simulta

neous update scheme. This confirms the point that in a hybrid dynamic system such 

as a cognitive radio network in which switching happens between different subsys

tems even if all of them are stable, the whole system may become unstable because 

of switching between the subsystems. In the presented cases, the robust IWFA was 

able to achieve an equilibrium solution. Also, when some users update their transmit 

powers with lower frequencies or use out-dated information, the robust IWFA can 

prevent violating the permissible interference power level. Classic IWFA lacks this 

ability although it achieves superior data rates. 
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Figure 5. 7: Resource allocation results of IWFA, when interference gains change 
randomly with time and users use out-dated information to update their transmit 
powers: (a) time-varying delays introduced by each user's feedback channel. Sum of 
transmit power and interference plus noise for 4 users achieved by (b) classic IWFA. 
(c) robust IWFA. Dashed lines show the limit imposed by the permissible interference 
power level. 
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5.2 Summary 

Simulation results were presented to compare the performance of classic IWF A vs 

robust IWFA. Toy scenarios were considered in order to develop insight. Results 

show superiority of the robust IWFA over the classic IWFA in dealing with different 

practical issues in a cognitive radio environment, which is achieved by putting up 

with a reduction in achievable data rate for reliable performance. As mentioned 

previously, IWFA is defenseless against malicious users that do not follow the rules 

and do not decrease their transmit power, when the interference level is high. Such 

users can exploit the limited resources and achieve higher data rates compared to well

behaved users. In effect, therefore, a malicious user may act like a jammer and have 

the same effect on the network that disappearance of a spectrum hole has. Hence, 

other users' power vectors may fluctuate and the network may not be able to reach 

an equilibrium. Similar results on oscillation of transmit powers and therefore, data 

rates in the presence of a jammer were reported in [114]. In this situation, robust 

IWFA enables the well-behaved users to reach an equilibrium with possibly lower 

data rates. 
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Chapter 6 

Network Dynamics Viewed from 

Control-Theoretic Perspectives 

Although the components of the network may remain unchanged in complex and 

large-scale networks, the general behaviour of the network can change drastically 

over time. If the SINR of a communication link drops below a specified threshold 

for a relatively long time, the connection between the transmitter and receiver will 

be lost. For this reason, in addition to the equilibrium resource allocation that was 

discussed in Chapter 4, the transient behaviour of the network deserves attention 

too [115]. Therefore, studying the equilibrium states in a dynamic framework by 

methods that provide information about the disequilibrium behaviour of the system 

is critical, which is the focus of this chapter. 
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6.1 Projected Dynamic (PD) System 

In the previous chapters, IWFA was proposed as an approach to find an equilibrium 

solution for the resource-allocation problem in cognitive radio networks. Also, the 

IWFA was reformulated as a VI problem. The projected dynamic (PD) systems 

theory [95] can be utilized to associate an ordinary differential equation (ODE) to 

the obtained VI. A projection operator, which is discontinuous, appears in the right

hand side of the ODE to incorporate the feasibility constraints of the VI problem 

into the dynamics. This ODE provides a dynamic model for the competitive system 

whose equilibrium behaviour is described by the VI. Also, the stationary points of the 

ODE coincide with the set of solutions of the VI, which are the equilibrium points. 

Thus, the equilibrium problem can be studied in a dynamic framework. This dynamic 

model enables us not only to study the transient behaviour of the network, but also 

to predict it. 

Before we proceed, we need to recall some mathematical definitions from [95]. The 

set of inward normals at p E K is defined as 

S(p) = {"Y: ih'll = 1, (T,p -y)::; 0, \:/y EK} 

Then, the projection of b E IR.n onto Kat p EK can be written as 

IIK(P, b) = b +max (0, (b, -s*)). s* 

wheres* is a vector in S(p) that satisfies the condition 

(b, -s*) = max (b, -s) 
sES(p) 
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By this projection operator, a point in the interior of K is projected onto itself, and 

a point outside of K is projected onto the closest point on the boundary of K. The 

following ODE 

P = IIK (p, b(p)) (6.4) 

with the initial condition 

p(to) =Po EK (6.5) 

is called a projected dynamic system. 

Theorem 6.1: Assume that K is a convex polyhedron. Then, the equilibrium 

points of the PDS( K,F) coincide with the solutions of VI( K,F) [95]. 

Let us replace b(p) with -F(p) = -(u +Mp) in (6.4). Then, the stationary 

points of the following PDS 

i> = IIK (p, -F(p)) (6.6) 

coincide with the solutions of the VI problem of ( 4.38). 

The associated dynamic model to the equilibrium problem will be realistic only 

if there is a unique solution path from a given initial point. The following theorem 

addresses the existence and uniqueness of the solution path for the above ODE [95]. 

Definition 6.1: A mapping F : K ~ Rn ---+ Rn is said to be Lipschitz continuous 

if there is an L > 0, such that 

llF(x) - F(y)il ~ Lllx - Yll, Vx,y EK; 
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Theorem 6.2: If F in the initial value problem (6.4) and (6.5) is Lipschitz con

tinuous, then for any p 0 E K, there exists a unique solution p(t) to the initial value 

problem (6.4) and (6.5). 

For the affine mapping F(p) = (u +Mp), we have 

llF(x) - F(y)ll = llM(x -y)ll (6.8) 

According to the multiplicative property of the matrix norm [116]: 

llM(x-y)ll:::; llMll-llx-yll (6.9) 

For the Euclidean norm, we have [116]: 

a(M) :::; llMll :::; y'ffiii, a(M) (6.10) 

where a(M) is the maximum singular value of M. From (6.8) to (6.10) we have: 

llF(x) - F(y) II :::; Vffiii, a(M) llx - Yll (6.11) 

The interference channel is a multiple-input-multiple-output (MIMO) dynamic sys

tem with the state-transition matrix M in which the transmitted signal by each 

transmitter in each subcarrier is an input and the received signal by each receiver in 

each subcarrier is an output. In a MIMO system, the largest gain (amplification) for 

any input direction is equal to the maximum singular value of the state-transition 

matrix [116]. The communication channel attenuates the transmitted signals in all 

directions and therefore, the Lipschitz continuity is a valid assumption. 
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When p(t) is in the interior of the feasible set, p(t) E intK, the projection operator 

in (6.6) is 

ITK (p, -F(p)) = -F(p) 

If p(t) reaches the boundary of the feasible set, p(t) E EJK, we have 

where 

and 

ITK (p, -F(p)) = -F(p) + z(p)s*(p) 

s*(p) = argmax(-F(p), -s) 
sES(p) 

z(p) = max(O, (-F(p), -s*(p))) 

From (6.12) and (6.13), it follows that [95]: 

llITK (p, -F(p)) II :::; II - F(p)ll 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

Therefore, because of the projection operator, the right-hand side of the differen

tial equation (6.6) is discontinuous on the boundary of K. If at some t, p(t) reaches 

the boundary of Kand -F (p(t)) points out of the boundary, then the right-hand side 

becomes the projection of -F onto the boundary. The state trajectory then evolves 

on the boundary. In summary, the projection operator keeps the state trajectory in 
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the feasible set. At some later time, the state trajectory may enter a lower dimen-

sional part of the boundary or even go to the interior of K [95], where the evolution 

of the state trajectory is governed by the differential equation 

p = -F(p) = -(u +Mp), Vp(t) EK (6.17) 

Since -F(p) is an affine mapping, the differential equation ( 6.17) represents an affine 

system. Moreover, the state trajectory of this affine system must remain in the feasible 

set K. Therefore, the system described by (6.17) is a constrained affine system [117]. 

Iterative algorithms based on time discretization of the PD system (6.6) are pro

posed in [95] for computation of the system state trajectory. At each time-step t, the 

proposed algorithms solve the minimum-norm problem: 

mm llp(t + 1) - [p(t) - a(t)F(p(t))J 11 
p(t+l)EK 

or equivalently, solve the following quadratic programming problem: 

mm 
p(t+l)EK 

1 
2pT(t + l)p(t + 1) 

- [p(t) - a(t)F(p(t))] · p(t + 1) 

(6.18) 

(6.19) 

where "·" signifies the dot product. A good approximation of the state trajectory may 

be achieved by choosing a small value for the step-size a(t). It should be noted that 

although quadratic programming is indeed computationally demanding, it does not 

feature in operation of the robust IWFA; rather, it is a burden incurred in carrying 

out simulation experiments to study the behaviour of the whole network. 
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6.2 Stability of the Perturbed PD System 

The stability of a system is an important issue in the study of feedback control systems 

and therefore, deserves special attention. It can be interpreted as the ability of the 

system to maintain or restore its equilibrium state against external perturbations. In 

other words, system stability is linked to system sensitivity to perturbations. 

The formulation of the IWFA as AVI(K, u, M), is helpful to study the sensitivity 

of a solution p* as the pair ( K, O" +Mp) is perturbed. It would be interesting to know 

if the perturbed system has a solution close to p*; and in case that such a solution 

exists, if it will converge to p* as the perturbed AVI approaches the original one. 

This way of thinking leads to the concept of solution stability [96]. The monotonicity 

conditions play a key role in the analysis of both local and global stability [95, 96]. 

The local uniqueness of p*, which was studied in Chapter 4, is not sufficient to 

guarantee the solvability of the perturbed AVI, but it is important for sensitivity 

analysis because every unique solution of a VI problem is an attractor of all solutions 

of nearby VIs [96]. Alternatively, the following theorems are recalled from [95] about 

stability of the corresponding PD system in order to answer the following questions: 

• If the initial state of the network is close to an equilibrium, will the state 

trajectory remain in a neighborhood of the equilibrium? 

• Starting from an arbitrary initial state, will the state trajectory asymptotically 

approach an equilibrium and at what rate? 

Theorem 6.3: Suppose that p* solves VI(K,u+Mp). If the mapping u+Mp is 

strictly monotone at p*, then p* is a strict monotone attractor for the PDS( K, -( u + 

Mp)). 
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Theorem 6.4: Suppose that p* solves VI(K, u +Mp). If the mapping u +Mp is 

~-monotone at p* with ~ < 2, then p* is a finite-time attractor. 

Theorem 6.5: Suppose that p* solves VI(K, u +Mp). If the mapping u +Mp is 

strongly monotone at p*, then p* is exponentially stable. 

Following the discussion in Section 4.6, if matrix -Mis Hurwitz, the existence of a 

unique equilibrium solution for the IWFA game, which is exponentially stable, will be 

guaranteed. As will be clear later, the Hurwitz property of matrix-Mis also needed 

to guarantee the robust exponential stability of the system in the presence of multiple

time-varying delays. As mentioned before, this condition is practically achievable 

through dynamic spectrum management [42, 88] and spectrum-aware routing [108-

110]. 

6.3 The PD System Viewed as a Constrained Piece

wise Affine (PWA) System 

As mentioned before, a cognitive radio network is a hybrid dynamic system with both 

continuous and discrete dynamics. Changes occur in the network due to discrete 

events such as the appearance and disappearance of users and spectrum holes, as well 

as continuous dynamics described by differential equations that govern the evolution 

of transmit power vectors of users over time. When conditions change due to these 

kinds of discrete events, each user will have to solve a new optimization problem 

similar to the one described in ( 4.3) and the network deviates from the achieved 

equilibrium point and it is desirable to converge to a new one reasonably fast. Also, 

the occurrence of an event such as a change in the number of users or available 
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subcarriers will change the parameters u and M in ( 6.17). Accordingly, the problem 

is formulated in terms of an ensemble of subsystems and the global state space is: 

• partitioned into polyhedral regions described in ( 4.37) that follow the varying 

realizations of the network at different time intervals, and 

• an affine state equation, similar to that described in (6.17), is associated with 

each polyhedral region that governs the evolution of state trajectory in that 

region. 

It follows therefore, that the whole network can be modeled as a constrained piecewise 

affine (PWA) system [117]: 

p = -M(v)p - u(v), \lp(t) E K(v) (6.20) 

where vis a key vector, which is a function of time and discrete events, and describes 

which affine subsystem is currently a valid representation of the network [118]. 

The stationary points of each one of these dynamic subsystems coincide with 

the equilibrium points of the corresponding game resulting from solving the related 

optimization problems. In summary, the occurrence of discrete events changes the 

equilibrium point and causes the state trajectory to deviate from an equilibrium point 

and therefore, converge to another equilibrium point. Each one of these equilibrium 

points may have a region of attraction around it such that if the system is perturbed, 

the solution remains in that region close to the solution of the unperturbed system. 

This issue was addressed to some extent in the previous section and it will be studied 

more in the next section. 
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6.4 Stability of the Perturbed PD System in the 

Presence of Time Delay 

The feedback channel plays a fundamental role in the design and operation of cognitive 

radio. Indeed, feedback is the facilitator of computational intelligence, without which 

the radio loses its cognitive capability. The discovery of spectrum holes may prompt 

the need to establish the feedback channel from the receiver to the transmitter of a 

cognitive radio. In this case, a fraction of the available spectrum holes will be used 

for the feedback channel to send relevant information from a user's receiver to its 

transmitter to take the appropriate action. In effect, therefore, feedback channels 

are not fixed and instead of having permanent feedback, we have sporadic feedback. 

However, this problem can be avoided by using the unlicensed bands for establishing 

a common feedback channel [42]. Also, in order to be conservative in consuming 

the precious bandwidth that can be used for data transmission, the feedback should 

be low-rate and quantized. Therefore, rather than sending the actual values of the 

required parameters identified by the radio scene-analyzer, the practical approach is 

to feed their respective quantized values back to the transmitter [1]. 

Feedback may naturally introduce delay in the control loop and different trans

mitters may receive statistics of noise and interference with different time delays. 

Moreover, the sporadic feedback causes the users to adopt out-dated statistics to up

date their power vectors. The time-varying delay in the control loop degrades the 

performance and may cause stability problems. Analysis of stability and control of 

time-delay systems is a topic of practical interest and has attracted the attention of 

many researchers [119-122]. Robust stability of the system under time-varying delays 

80 



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science 

is the focus of this section. The dynamic model of the previous sections can be used 

to find out if the network is able to achieve a retarded equilibrium, which is stable. If 

an equilibrium point is not stable, the system may not be able to maintain that state 

long enough because of perturbations, and there is the potential possibility that an 

equilibrium can not even be established. 

The dynamic model of (6.6) will be a PD system with delay (PDSD) [123] in the 

form of the following functional differential equation (FDE) [119, 124, 125]: 

p(t) = IIK (p(t), -Fd (p)) (6.21) 

F d can be written as 

(6.22) 

where p-i(St) denotes a continuous-time asynchronous adjustment scheme similar to 

(4.10). 

Let the given initial time be t0 . In order to determine the continuous solution, 

p(t) of (6.21) for t > t0 , we need to know a continuous initial function, <j>(t), where 

p(t) = <j>(t) for t0 - Ti,J :'.S t :'.S t0 , Vi, j = 1, ... , m. The initial function may be 

obtained from measurements. Since the system described in (6.21) and (6.22) is a 

multiple-delay system, each deviation defines an initial set \II~~, consisting of the point 

t0 and those values t - Ti,j(t) for which t - Ti,J(t) < t0 when t;:::: t0 [126]. 
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Therefore, the initial condition for the system described in equation (6.21) is 

p(O) = ¢(0), VOE Wt0 (6.23) 

where ¢ : Wt0 i-+ JRmxn is a continuous norm-bounded initial function [126, 127] and 

m 

u (6.24) 
i,j=l,ifj 

m 

i,j=l,#j 

The F d (p) in (6.22) can be written as the following summation: 

m m 

(6.25) 
i=l j=l,ofi 

m m 

+ L L ~MYp(t - Ti,j(t)) + g(t) 
i=l j=l,ofi 

where MY is obtained by replacing all the blocks in M except Mij by n x n zero 

matrices, and ~MY is a perturbation in MY. The term g is the combined effect of 

the background noise in both forward and feedback channels. 

Therefore, the associated constrained affine system that governs the network's 

dynamics is described by the differential equation 

m m 

p(t) = (6.26) 
i=l j=l,ofi 

m m 

- L L ~MYp(t - Ti,j(t)) - g(t) 
i=l j=l,ofi 
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\lp(t) E K, which is a multiple-time-varying-delay system with uncertainty. It can 

be written as 

m(m-1) 

p(t) = -p(t) - L M~p(t - r 11 (t)) (6.27) 

m(m-1) 

L tlM~p(t - r 11 (t)) - {}(t) 
l'=l 

This reformulation is an instance of the general systems that were studied in [127]. 

Following the approach of [127], we assume that \It~ t0 , the time-varying delays rc(t) 

satisfy 

(6.28) 

(6.29) 

where f > 0, <5 ~ 0, and r(t) is a strictly positive continuous differentiable function. 

Also, the uncertainties are assumed to be bounded for all p and at all times, such 

that the following pair of conditions holds: 

(6.30) 

and 

llllM~(t)p(t))ll ~ b~llp(t)ll (6.31) 
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where bd 2: 0 and b~ 2: 0. If there exist ( 2: 1 and ,\ > 0 such that 

llp(t)ll:::; (sup {llp(B)li}e->-(t-to) (6.32) 
liE\[lt0 

then the uncertain time-delay system of (6.27), is said to be robustly exponentially 

stable with a decay rate of,\. In other words, the trivial solution, p = 0, of the system, 

is exponentially stable with a decay rate of ,\ for all admissible uncertainties [127]. 

Recognizing that 

m(m-1) 

I+ L M~=M (6.33) 
i=l 

we conclude the robust exponential stability of the network from Theorem 4 of [127], 

which is repeated here with some modification to conform to our problem. 

Theorem 6.6: Consider the system (6.27) with initial condition (6.23), and assume 

that -M is a Hurwitz stable matrix satisfying 

(6.34) 

for some real numbers c 2: 1 and T/ > 0. In the left hand side of the above equation, 

e denotes a "matrix" exponential operator. If the inequality 

[ 

m(m-1) m(m-1) ] 

~ f ~ (µf + µ~) + bd + ~ b~ < 1 (6.35) 
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holds, then the transient response of p(t) satisfies 

(6.36) 

where 

(6.37) 

m(m-1) m(m-1) 

µ~ = L llM~M~ll + llM~ll L ~ (6.38) 
j=l j=l 

and p > 0 is the unique positive solution of the transcendental equation 

c p c _p_ 
1 - -bd - -- = µ3 - ei-8 

ry ryT(O) ry 
(6.39) 

where 

m(m-1) m(m-1) m(m-1) 

µ3 = f I: µf +re 6 I: µ~ + I: b~ (6.40) 
t'=l C=l t'=l 

Furthermore, the system described by (6.27) and (6.23) is robustly exponentially 

stable with a decay rate p/f. 

The left-hand side of the transcendental equation (6.39), is a continuous decreasing 

function of p and its right-hand side is a continuous increasing function, and by virtue 

of (6.35) at p = 0, the right-hand side is less than the left-hand side. Therefore (6.39) 

has a unique positive solution, as desired. 
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6.5 Summary 

The cognitive radio network dynamics were studied with emphasis on the disequi

librium (transient) behaviour of the network. Theory of projected dynamic systems 

was used to develop a dynamic model, which governs the evolution of the network's 

state trajectory before reaching the equilibrium state. The stationary points of this 

dynamic model coincide with the equilibrium points of the corresponding VI model, 

developed in Chapter 4. The network was modeled as a constrained piecewise affine 

system and its stability in the presence of perturbation and multiple-time-varying 

delays was studied. 
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Chapter 7 

Computer Experiments II 

Using the testbed described in Chapter 5, simulation results are now presented to 

support theoretical underpinnings of the previous chapter. Network dynamics are 

simulated for both delay-free and multiple-time-varying-delay cases. Also, the solu

tion stability is studied under system perturbation. Numerical values for parameters 

are chosen in the same way that was described in Chapter 5. 

7.1 Projected Dynamic System 

To study the transient behaviour of a cognitive radio network, a scenario is considered 

for three users and three subcarriers, so that we may arrive at insightful conclusions. 

Moreover, three is chosen merely for the sake of visualization. It is assumed that all 

the users update their power vectors simultaneously under the assumption that the 

network experiences worst-case interference conditions. 

Figure 7.1 depicts state trajectories for three users obtained from a discrete-time 

approximation of the PD system by solving the quadratic programming described in 
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(6.19), when the following sequence of events happens. First, all three subcarriers are 

idle and can be used by the secondary users. Therefore, the state trajectories evolve 

in the three-dimensional space (i.e. PiP~P~ space). Then, the second subcarrier is 

no longer available and state trajectories enter the two-dimensional space and evolve 

in PiP~ plane. After that the same thing happens to the third subcarrier and state 

trajectories evolve in one-dimensional space (i.e. Pi line). After a while, subcarrier 

three becomes idle and therefore available again. Thus, the state trajectories enter 

from Pi line to PiP~ plane. When subcarrier two becomes available again, state 

trajectories enter from PiP~ plane to PiP~P~ space. 

It is obvious that the power trajectories enter from higher-dimensional spaces to 

lower-dimensional spaces according to the number of available subcarriers, and again 

they go back to higher-dimensional spaces when users have access to more subcarriers, 

which is what should happen during a successful operation. The achieved equilibrium 

points for different users as they exist between occurrences of the mentioned events, 

are shown by stars on their state trajectories. Also, arrows in Figure 7.1 show the 

direction of evolution of states for different users. 
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Figure 7.1: Power trajectories for a network of 3 users with 3 available subcarri
ers obtained from the associated PD system, when both the interference gains and 
the number of subcarriers change by time. Direction of evolution of states and the 
achieved equilibrium points are shown by arrows and stars, respectively. Trajecto
ries enter lower dimensional spaces when spectrum holes disappear and then again 
go back to higher dimensional spaces when new spectrum holes are available. When 
the second subcarrier is not idle, trajectories enter PiP~ plane and when the third 
subcarrier is not also idle anymore, trajectories enter Pi line. After a while when 
third and then second subcarriers become available again, state trajectories go back 
to PiP~ plane and then PiP~P~ space. 
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7.2 Sensitivity Analysis 

To study the solution stability via simulation, the system is perturbed and the equi

librium point of the perturbed system is calculated. The interference-gain matrix and 

the noise vector are respectively perturbed as M + wMD.M and u + wuD.u, where 

WM are Wu are weights. The perturbation terms D.M and D.u are chosen in the same 

way that M and u were chosen, respectively as described in Chapter 5. Results at 

three different subcarriers are shown separately in Figure 7.2. As the perturbation 

terms decay (i.e. the weights WM are Wu move toward zero) and the perturbed system 

approaches the original one, behaviour of the perturbed system converges to the so

lution of the original system, which is shown by stars in Figure 7.2. The arrows show 

the direction in which the solution of the perturbed system converges to the solution 

of the original system. This experiment validates the notion of solution stability that 

was discussed previously. 

When delays introduced by the feedback channels are considered, it may take 

longer for both the original system and the perturbed systems to achieve an equilib

rium. Under the conditions mentioned in Chapter 6, the robust exponential stability 

of the system is guaranteed and similar results are obtained in simulations for the 

time-delay cases with constraints on delays. 
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7.3 Multiple-Time-Varying Delays 

Simulation results for the above network of three users and three potentially available 

subcarriers, with a similar sequence of events, mentioned in Section 7.1, are repeated 

with asynchronous adjustment scheme. In the beginning, all three subcarriers are 

idle and can be used by secondary users. Then, the second subcarrier is no longer 

available, and after that the same thing happens to the third subcarrier. After a while, 

subcarriers two and then three become idle and therefore available again. Power 

trajectories and achieved equilibrium points are shown in Figure 7.3. Figure 7.4 

depicts the random delays in adjustment schemes, ri(t), used by different users, which 

shows that most of the time users have used out-dated information to update their 

power vectors. Results confirm the ability of the system to achieve retarded equilibria 

under the conditions given in Theorem 6. 6. By increasing the delay the performance 

of the system will degrade and eventually the system becomes unstable. 

7.4 Summary 

Simulations were conducted to demonstrate the concept of solution stability. The 

system was perturbed and its equilibrium solution was calculated. By decaying the 

perturbation terms, the equilibrium solution of the perturbed system converged to 

the equilibrium solution of the original system. The ability of the dynamic model, 

obtained using PD system theory, was validated by simulations for both delay-free 

and multiple-time-varying-delay cases. The results presented here show that by ap

pearance and disappearance of spectrum holes, the state trajectory of the network 

enters higher and lower dimensional subspaces in the global state space, respectively. 

92 



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science 

- - - User 1 
--User2 

· - · - · User3 

0.8 *: --~·. 
,1 

0.6 

·-"' c.. 0.4 

0.2 

0 
2 

2 

0 0 

Figure 7.3: Power trajectories for a network of 3 users with 3 available subcarriers ob
tained from the associated multiple-time-varying-delay PD system with uncertainty, 
when both the interference gains and the number of subcarriers change by time. Di
rection of evolution of states and the achieved equilibrium points are shown by arrows 
and stars, respectively. Trajectories enter lower dimensional spaces when spectrum 
holes disappear and then again go back to higher dimensional spaces when new spec
trum holes are available. When the second subcarrier is not idle, trajectories enter 
PiP~ plane and when the third subcarrier is not also idle anymore, trajectories enter 
Pi line. After a while when second and then third subcarriers become available again, 
state trajectories go back to PiP~ plane and then PiP~P~ space. 
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Figure 7.4: Time-varying delays introduced by feedback channels in transmit power 
control loops for a network of 3 users. 
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Chapter 8 

Double-Layer Network Dynamics 

There are two worlds of wireless communications: the legacy (old) wireless world and 

the cognitive (new) wireless world. The previous chapters were focused on the new 

world with spectrum holes being the medium through which the two worlds interact. 

Releasing subbands by primary users allows the cognitive radio users to perform their 

normal tasks and therefore, survive. In other words, the old world affects the new 

world through appearance and disappearance of the spectrum holes and there is a 

master-slave relationship between them. This chapter addresses the fact that the two 

worlds of wireless communications are going on side by side. This makes a cognitive 

radio network a multiple-time-scale dynamic system; a large-scale time in which the 

activities of primary users change, and a small-scale time in which the activities of 

secondary users change accordingly. Such systems are called double-layer dynamic 

(DLD) systems [128]. This chapter extends the developed theoretical framework of 

the previous chapters to capture the multiple-time-scale nature of cognitive radio 

networks and lays the groundwork for further research. This topic is similar to an 

uncharted territory and has a great deal of potential both in theoretical and practical 
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Spectrum Legacy Owners 

Subcarriers 

Secondary Users 

Figure 8.1: The spectrum supply chain network. 

terms. 

8.1 Two-Time-Scale Behaviour 

A cognitive radio network, which is a system of systems, is a goal-seeking system 

in the sense described in [129]. The following classes of problems are involved in 

developing a cognitive radio network: 

• Specifying the goal that the system is pursuing (i.e. efficient spectrum utiliza

tion and ubiquitous network connectivity). 

• Discriminating between the available alternatives based on the meaning of a 

desirable decision. 

• Choosing a desirable action based on a decision-making process. 

By the same token, every subsystem in the network (i.e. every cognitive radio) is a 

goal-seeking system too. 

Due to the master-slave relationship between the legacy and the cognitive wire

less worlds, the spectrum supply chain network has a hierarchical structure [130]. 
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High-Level Network Controller 

(Spectrum Legacy Owners & Their Primary Customers) 

Controller # 1 Controller # S 

Cognitive Radio # 1 Cognitive Radio # S 

Figure 8.2: Decentralized hierarchical control structure in a cognitive radio network. 

As mentioned in Chapter 4, the resource-allocation problem should be solved in 

two stages regarding discrete events and continuous states. Therefore, the local con-

trollers in Figure 8.2 are two-level controllers [132, 133]. The corresponding two-level 

control scheme is shown in Figure 8.3. The supervisory-level (i.e. the higher-level) 

controller is, in effect, an event-based controller that deals with appearance and dis

appearance of spectrum holes. The radio-scene analyzer will inform the supervisory

level controller, if it detects a change in the status of the available spectrum holes. In 

that case, the supervisory-level controller calls for reconfiguration of the transmitter 

in order to adapt the transmitting parameters to the new set of available channels. 

The field-level (i.e. the lower-level) controller is a state-based controller that adjusts 

the transmit power over the set of available channels chosen by the supervisory-level 

controller according to the interference level in the radio environment. A cognitive 

radio may build an internal model for the external world. This model is used to 
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Figure 8.3: Two-level control scheme for cognitive radio. 

predict the availability of certain subbands, the duration of their availability, and the 

approximate interference level in those subbands. These information will be critical 

for providing seamless communication in the dynamic wireless environment. Both the 

supervisory-level and the field-level controllers will benefit from a predictive model, 

which determines the control horizon, to plan ahead. The subsequent sections are fo-

cused on developing models that describe both equilibrium and transient behaviours 

of cognitive radio networks, emphasizing on the two-time-scale nature of the network. 

8.2 Evolutionary Variational Inequalities (EVI) 

It has been emphasized throughout the thesis that dynamics play a central role in 

cognitive radio networks. Therefore, the joint feasible set of the active users in the 
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network is time-varying in nature and the finite-dimensional feasible set ( 4.37) cap-

tures a snapshot of the dynamic network with a time-varying feasible set. Regarding 

the continuous nature of time, we need to deal with infinite-dimensional feasible sets, 

if we consider time explicitly in the structure of the feasible set. Hence, the results 

should be extended to Hilbert spaces. 

Definition 8.1: A Hilbert space is a generalization of Euclidean space, which is 

complete, separable, and possibly infinite-dimensional [134]. 

Hilbert space extends the results of vector algebra and calculus to spaces with any 

finite or infinite number of dimensions. The real space £ 2 is a Hilbert space. This 

section extends the results of Section 4.5 by explicitly considering time in the ob-

tained AVI-based model. Since the time-varying nature of the network's feasible set 

is explicitly considered in the formulation, theory of time-dependent VI or evolution-

ary VI (EVI) should be employed to obtain an equilibrium model for the network. 

The EVI-based model gives a curve of equilibria over a time interval of interest [O, T]. 

The predictive model will provide a reasonable estimate for T. 

By considering time as an additional scalar parameter, the joint feasible set will 

be the following subset of the Hilbert space L2([0, T], JR.mxn). 

K= LJ Kt (8.1) 
tE[O,T] 

where Kt was described in ( 4.37). The network, whose feasible set is described by 

Kt at a specific time instant t E [O, T], is a snapshot of the dynamic network with 

the time-varying feasible set (8.1) at that particular time instant. The EVI-based 

equilibrium model of the network may therefore, be stated as follows: find the p* E K 

100 



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science 

such that the condition 

1T (p - p*f (u +Mp*) dt :'.'.'. 0, Vp EK (8.2) 

holds [135]. In the next section, the results of Chapter 6 are extended to Hilbert 

spaces in order to study the equilibrium states of the network obtained from the 

above EVI in a dynamic framework. 

8.3 Projected Dynamic Systems on Hilbert Spaces 

A generalization of the theory of PD systems on Hilbert spaces is used to model the 

transient behaviour of the network, whose equilibrium behaviour is described by the 

EVI. Two distinct time-frames are considered: large-scale time-frame t and small-scale 

time-frame T. There is a PD system corresponding to each t E [O, T], which is denoted 

by PDSt. However, the evolution time variable for PDSt is denoted by T, which is 

different from time t. PDSt describes the time evolution of the state trajectory of the 

system towards an equilibrium point on the curve of equilibria corresponding to the 

moment t. The following PD system 

dp~; T) = ITK (p(., T), -F(p(., 7))) (8.3) 

with the initial condition 

p(., 0) =Po(.) EK (8.4) 
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is established as a dynamic model for the network that governs the transient be

haviour of the network preceding the attainment of an equilibrium. The above PD 

system's stationary points coincide with the equilibrium points of the corresponding 

EVI problem. The associated dynamic model to the equilibrium problem will be re-

alistic only if there is a unique solution path from a given initial point. The following 

theorem addresses the existence and uniqueness of the solution path for the above 

PD system [136, 137]. 

Theorem 8.1: Let H be a Hilbert space and K be a nonempty, closed, convex 

subset. Let F: K --t H be a Lipschitz-continuous vector field and p 0 E K. Then the 

initial value problem 

dp(r) 
~ = ITK (p(r), -F(p(r))), p(O) =Po EK (8.5) 

has a unique absolutely continuous solution on the interval [O, oo). 

The next section answers the question that if the competitive behaviour of the 

users will lead to an equilibrium state in the network and if that equilibrium state is 

unique. 

8.4 Solution Characteristics 

Monotonicity properties of the underlying vector field of EVI/PDS play a key role. 

The following theorem states the conditions under which there exists a unique equi-

librium solution. 

Theorem 8.2: If F(p) = o- +Mp is strictly monotone and Lipschitz continuous 

on K, then there exists p* E K such that 
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• p* uniquely solves the EVI problem 

• p* uniquely solves ITK (p(., r), -F(p(., r))) = 0 

It was discussed in Chapters 4 and 6 that in a real-life network, if the distance between 

receivers and their corresponding transmitters are short enough compared to their 

distances from other active transmitters in the network, then the strict monotonicity 

condition is satisfied and therefore, the network will have a unique equilibrium. The 

unique equilibrium state is the solution of the EVI problem, which coincides with 

the stationary point of the corresponding PD system. The next section answers the 

following two questions: 

• If the initial state of the network is close to an equilibrium (i.e. if the com

petitive game starts near an equilibrium), will the state trajectory remain in a 

neighborhood of the equilibrium? 

• Starting from an initial state, will the state trajectory asymptotically approach 

an equilibrium and at what rate? 

8.5 Sensitivity and Stability Analyses 

In EVI, monotonicity establishes the essential conditions for the existence and unique

ness of the solutions. In PD system, monotonicity is used to study stability of the 

perturbed system. The following definitions are recalled from [128]. 

Definition 8.2: A mapping Fis called 

(a) pseudo-monotone on Kif 

(F(x), y - x) 2:: 0 ==? (F(y), y - x) 2:: 0, Vx, y EK; 
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(b) strictly pseudo-monotone on X if 

(F(x),y- x) ~ 0 ===? (F(y),y- x) > 0, Vx,y E K,x =/:- y; (8.7) 

( c) strongly pseudo-monotone on X if there exists a constant c > 0 such that 

(F(x),y- x) ~ 0 ===? (F(y),y- x) ~ cilx -yll 2
, Vx,y E K,x =J y (8.8) 

Definition 8.3: Let K be a closed, convex subset of a Hilbert space. 

(a) A point x* E K is a monotone attractor for the PD system, if there exists a 

neighborhood V of x* such that the distance d(t) = llx(t)-x*(t)il is a non-increasing 

function oft, for any solution x(t) starting in the neighborhood V. 

(b) A point x* E K is a strict monotone attractor, if the distance d( t) is decreasing. 

The following theorem addresses the stability of the network [136]. 

Theorem 8.3: Assume F: K ___,. £ 2 ([0, T], IR.mxn) is Lipschitz continuous on K 

• If F is strictly pseudo-monotone on K, then the unique curve of equilibria is a 

strict monotone attractor. 

• If F is strongly pseudo-monotone on K, then the unique curve of equilibria is 

exponentially stable and an attractor. 

Due to the properties of £ 2-norm, the system is expected to evolve uniformly 

towards its equilibrium on the curve of equilibria for almost all t E [O, T]. The above 

theorem provides the stability properties of the curve of equilibria as a whole in the 

sense that the curve attracts the trajectories of almost all P DSt and therefore, it is 

possible for the curve to be reached for some instants t E [O, T] [136]. 
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The implications between the different monotonicity notions are as follows [138]: 

strong pseudo-monotonicity=? strict pseudo-monotonicity=? pseudo-monotonicity 

strong monotonicity =? strong pseudo-monotonicity 

strict monotonicity =? strict pseudo-monotonicity 

monotonicity =? pseudo-monotonicity 

It was discussed in Chapter 4 that Hurwitz condition of matrix -M guarantees 

strong monotonicity and therefore, guarantees the exponential stability of the unique 

curve of equilibria. In practice, the Hurwitz condition of matrix -Mis achieved by 

establishing a low-interference regime through dynamic spectrum management and 

ad hoc routing. While dynamic spectrum manager makes sure that the neighboring 

transmitters will not use the same set of channels [42, 88], opportunistic-spectrum ad 

hoc routing [108-110], which was previously described in Section 4.6, can guarantee 

that the distance between receivers and their corresponding transmitters are short 

enough compared to their distances from other active transmitters in the network. 

8.6 Summary 

This chapter addressed the two-time-scale behaviour of the cognitive radio network 

due to the coexistence of legacy and cognitive wireless worlds. Such a system is called 

a double-layer dynamic system. By extending the developed theoretical framework 

of Chapters 4 and 6 to explicitly include time as a parameter, both equilibrium and 

transient behaviors of the network were studied using the theories of evolutionary 

variational inequalities and projected dynamic systems on Hilbert spaces, respectively. 

Sufficient conditions for existence of a stable unique curve of equilibria and hints on 

how these conditions can be established in a real-life network were presented. This 

chapter proposed a new way of thinking, which requires further investigation in future. 
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Chapter 9 

Computer Experiment III 

"Science is made of mistakes, which are useful to make, because they lead, 

little by little, to the truth." Jules Verne (1828-1905) 

A large-scale computer experiment is presented in this chapter to support theoreti

cal underpinnings of the previous chapter. According to IEEE 802.1 la standard for 

wireless local area networks, 48 out of 64 subcarriers are dedicated to data transmis

sion. A network of 120 users is considered and it is assumed that 48 subcarriers can 

be potentially available for data transmission. Numerical values for parameters are 

chosen in the same way that was described in Chapter 5. 

9.1 Curve of Equilibria 

Initially, the network faces spectrum scarcity and users are not able to transmit with 

their maximum powers. The following sequence of events happens in the network: 

• New users join the network. 
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• Some of the subcarriers are not available anymore for secondary usage. 

• Network is perturbed close to its equilibrium state by randomly changing the 

interference gains, which occurs due to the mobility of users. 

• More subcarriers are available for secondary usage. 

• Some of the subcarriers are not available anymore for secondary usage. 

The interference gains were changed randomly due to user mobility as well as appear

ance and disappearance of users. 

The average transmit power and the average data rate achieved by users after 

occurrence of each event are depicted in Figure 9.1. Power and data rate are plotted 

vs the number of iterations. Occurrences of events are shown by dashed lines. As 

shown in the figure, the network deviates from the equilibrium point, when an event 

occurs. Starting from an initial state dictated by the event, network moves toward a 

new equilibrium. In the diagram, 10 iterations were shown between two consequent 

events but the convergence is fast and in practice less iterations are required to reach 

a new point on the curve of equilibria from an arbitrary initial state, provided that the 

conditions for existence of a stable unique curve of equilibria are satisfied. Also, when 

the initial state dictated by a discrete event is not far from the achieved equilibrium 

(i.e. the network is perturbed around its equilibrium state), the state trajectory 

remains close to the equilibrium, which is the case for event 3. 

9.2 Summary 

Simulations were conducted to demonstrate the double-layer dynamics of a cognitive 

radio network. Network deviates from its equilibrium state due to discrete events. 
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After the occurrence of each event, the network state trajectory starts from a new 

initial state and moves toward a new equilibrium. Provided that a stable unique curve 

of equilibria exists, if the initial state is close to the established equilibrium, the state 

trajectory will remain in a neighborhood of the equilibrium and if the initial state is 

relatively far from the established equilibrium, the state trajectory will approach a 

new equilibrium fast. 
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Figure 9.1: Dynamic behaviour of a network of 120 users and 48 potentially available 
subcarriers. Dashed lines show the occurrence of events. When an event occurs, 
network deviates from the established equilibrium. Starting from the initial state 
dictated by the event, network moves toward a new equilibrium: (a) average power 
and (b) average data rate are plotted vs the number of iterations. 
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Chapter 10 

Contribution to the Literature 

This research was focused on choosing an appropriate algorithm for resource allocation 

in cognitive radio networks and finding dynamic models that describe the global 

behaviour of the network, when different users employ the proposed algorithm. Ideas 

from information theory, optimization, game theory, and control theory were fused to 

develop such models. 

Different formulations of IWFA have been proposed in the literature for resource 

allocation in wireless networks based on fixed local constraints [62] and flexible global 

constraints [63, 64] on transmit power per subcarrier. While the former may be way 

too conservative, the latter requires information exchange between primary and sec

ondary users, which is more suitable for a market-model spectrum-sharing regime. 

This thesi~ provided a receiver-centric design based on flexible local constraints on 

transmit power per subcarrier dictated by interference-temperature limit [60]. There 

is no need for information exchange between different users in the proposed approach 

and it is well suited for an open spectrum-sharing regime. Also, the thesis highlighted 

the uncertainty issue in cognitive radio networks and proposed a robust version of 
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the transmit-power controller, which improves the network robustness against mali

cious users as well as changes in the number of users, network topology, and available 

spectrum holes [60]. 

Along with [84] and [64], the thesis studied a new line of analysis of resource

allocation games in communication networks based on theory of VIs in order to pro

vide conditions that guarantee existence of a unique equilibrium solution. Also, the 

VI-based reformulation of the resource-allocation game facilitates study of the net

work in a dynamic framework [60]. 

Transient behavior of communication networks, when iterative resource-allocation 

algorithms are employed, is generally under-explored. Analysis of transient behavior 

of a cellular network in which multiple users use Foschini-Miljanic distributed power 

control algorithm and share a single channel was studied in [115]. This thesis intro

duced a new line of analysis of transient behaviors in communication networks based 

on theory of PD systems. It facilitates sensitivity analysis and provides conditions 

that guarantee stability of networks in which multiple users use IWFA and share 

multiple channels [60]. 

In cognitive radio networks, the asynchronous adjustment scheme for resource 

allocation is the most realistic one among different options. In [139], convergence 

of asynchronous IWFA was proved by providing a set of conditions, which guaran

tee that the conditions of asynchronous convergence theorem in [45] are satisfied. 

Using the network dynamic model developed based on theory of PD systems, this 

thesis provided a new approach based on theory of dynamic systems to extend the 

available convergence results by proving convergence of asynchronous IWFA under 

uncertainty [60]. 
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The thesis also introduced a new line of analysis of the multiple-time-scale dynamic 

behavior of cognitive radio networks in which large-scale time of operation applies to 

activities of the primary users and small-scale time of operation applies to secondary 

users. 

The thesis contributions to the literature are summarized as follows. 

Network Dynamics Viewed from Information-Theoretic and Optimization 

Perspectives 

• The resource-allocation problem in a cognitive radio network was formulated as 

a non-cooperative game. 

• Iterative waterfilling algorithm was used to find the Nash equilibrium solution 

of the game. 

• Local and flexible power constraints based on the maximum allowable interfer

ence level in each channel were used in the formulation of the corresponding 

optimization problems that are solved by different users. 

• Dominant sources of uncertainty in cognitive radio networks were identified. 

• A robust version of the iterative waterfilling algorithm was presented to deal 

with uncertainty. 

• The corresponding game was reformulated as an affine variational inequality 

problem and existence of a unique equilibrium state was addressed. 

• Based on the theoretical results, conditions under which the stability of real-life 

cognitive radio networks are guaranteed were discussed. 
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Network Dynamics Viewed from Control-Theoretic Perspectives 

• Theory of projected dynamic systems was employed to find a dynamic model 

that describes both equilibrium and transient behaviours of the network. 

• Sensitivity analysis for the equilibrium states was presented. 

• Hybrid systems theory was used to build a tracking method for the disequilib

rium behaviour of the network. 

• In this framework, the network was viewed as an ensemble of constrained piece

wise affine systems. 

• A novel approach based on the theory of dynamic systems was presented to 

address the convergence of the asynchronous IWFA under uncertainty. 

Double-Layer Network Dynamics 

• A model was built that 

- can be used as a testing tool for policy forecast, and 

- incorporates time evolution as the life span (control horizon) of a given 

policy. 

• Two types of time dependency were studied 

- Time-dependent equilibria 

- Time-dependent behaviour away from the predicted curve of equilibria 

Theories of evolutionary variational inequalities and projected dynamic systems on 

Hilbert spaces were used to study these two types of time dependency, respectively. 
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Proof of Theorem 4.1: 

Proof of this theorem can be found in [96], Chapter 1, Proposition 1.4.2 and the 

discussion that follows it. Essential outline of the proof is as follows. 

The VI formulation of the game is obtained by writing down the KKT conditions 

for each player's optimization problem and concatenating the KKT systems of all 

players in the form of a mixed complementarity problem. 

Due to convexity and minimum principle, p* is a Nash equilibrium if, and only if, 

for each i = 1, · · · , m 

(A.1) 

Thus, if p* is a Nash equilibrium, then by concatenating these individual VIs, it 

follows easily that p* must solve the prescribed VI. 

Conversely, if p* solves the VI problem, then 

(p - p*f F (p*) ~ 0, \Ip E K (A.2) 

In particular, for each i = 1, · · · , m, let p be the vector whose jth subvector is equal 

to p*J for j =I- i and ith subvector is equal to pi, where pi is an arbitrary element of 

the set Ki. The above inequality then becomes (A.1). 

D 
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Proof of Proposition 4 .1: 

Let (pt, ui, /k, .-\t) satisfy (4.23) and assume that the complement set of PS is nonempty. 

Since power is non-negative and at > 0, 0 ::; a~ ::; 1, it is known that 

m 

ak + L a~p{ > 0 't!k=l, ... ,n (A.3) 
j=l 

It can be proved by contradiction that ui > 0. To show this, we first note that if 

ui = 0, then 

. . 1 
lk+.-\h:~ i °'"'m ij,.J >0 't!k=l, ... ,n 

a k + L.,,j=l ak l'k 
(A.4) 

If k ~ PS, then Ak = 0 and from (A.4) we must have /k > 0. Regarding the third 

complementarity condition in (4.23), /k > 0 leads to 

m 

CAPk - at - L a~p{ = 0 (A.5) 
j=l 

Therefore, we have 

m 

C APk - ak1ax ::; C APk - ak = L a~ Pk (A.6) 
j=l 

Taking the summation over k ~ PS from both sides of this equation leads to 

m 

L (CAPk - ak1ax)::; LL a~p{ (A.7) 
krtPS k~PS j=l 
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P1=0, 'ik E PS and Vi= 1, ... , m, so we have 

m 

LLa~J{=O 
kEPS j=l 

Therefore, we can rewrite (A.7) as 

m m 

L (CAPk - afax) 
krf_PS 

< L La~!{+ L La~!{ 
krf_PS j=l kEPS j=l 

n m 

= LLa~J{ 
k=l j=l 

Since 0:::; a~ :::; 1, we have 

m m 

I:a~J{:::; Lfi 
j=l j=l 

and therefore 

n m 

L (CAPk-O"kax):::; LLfi 
k=l j=l 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

Changing the order of the two summations in the right-hand side of (A.11), we get 

m n 

(A.12) 
j=l k=l 

From the first inequality constraint of (4.3), we know that 

n 

(A.13) 
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Thus, 

m 

L ( C APk - O"kax) ~ L Jlmax (A.14) 
j=l 

which contradicts (4.24). Thus Vk tf:. PS and Vi = 1, ... , m, in addition to ,\i, 'Yk 

must be zero too and we must therefore have ui > 0 in order to satisfy the first 

complementary condition in ( 4.23). Defining the following variables: 

/Ji=-~ 
ui 

(A.15) 

i _ 'Yk (O"k + L;:1 a~PL) 
<pk - . ui 

i _ Ak (O"k + L;:1 a~PL) 
<:;k -

we do get a solution to (4.25). 

Conversely, assume that (pi, vi, 'Pk, <:;k) satisfies ( 4.25). This time, we must have 

vi < 0. Otherwise, 

m 

O"l + I: a~ PL + ,) + 'Pt + <:;k > o (A.16) 
j=l 

and then the first complementarity condition in ( 4.25) yields 

Pi = 0, Vk = 1, ... , n (A.17) 
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which contradicts the equality constraint in (4.25). Therefore, (4.23) holds by having 

(A.18) 

i 
i - 'Pk 

fk - - . ( . m ij ") 
vi O"k + Lj=l ak Pk 

i 
>..i = - <;k 

k i ( i '\'m ij ,.J) 
v O" k + LJj=l ak l'k 

This completes the proof. D 
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Proof of Proposition 4. 2: 

The proof is straightforward. The same steps in the proof of Proposition 4.1 after 

showing that ui > 0 should be followed. The relation between the corresponding 

variables defined in (A.15) and (A.18). D 
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Proof of Proposition 4.3: 

Let (pi, l'L .Ai) satisfy (4.28) and assume that the complement set of PS is nonempty. 

Since power is non-negative and (Jk > 0, 0 ::; a~ ::; 1, it is known that 

m 

(}1+ l:a~~>O \:/k=l, ... ,n (A.19) 
j=l 

If k ~PS, then -Ai= 0 and from the first complementary condition in (4.28) we have 

. 1 
l'k;::::: i ""'m ij~ > 0 Vk= l, ... ,n 

(} k + L..J=l ak l'k 

(A.20) 

Regarding the second complementarity condition in ( 4.28), T'k > 0 leads to 

m 

()1 + La~p{ = CAPk (A.21) 
j=l 

Defining the following variables: 

(A.22) 

we do get a solution to (4.29). 

Conversely, assume that (PL, 'Pi, ~k) satisfies ( 4. 29). This time, we must have 

'Pk < 0. Otherwise, 

m 

()1 + 2:: a~ JJ{ + 'P1 + ~k > o (A.23) 
j=l 
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and then the first complementarity condition in ( 4.29) yields 

P1=0, Vk = 1, ... , n (A.24) 

which contradicts the equality constraint in (4.29). Therefore, (4.28) holds by having 

(A.25) 

This completes the proof. D 
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Proof of Theorem 4. 2: 

Proof of this theorem can be found in [96], Chapter 2, Theorem 2.3.3. Essential 

outline of the proof is as follows. 

(a) Assume that Fis strictly monotone on K. If x-=/= x' are two distinct solutions 

of the VI(K, F), Vy EK, we have 

(y - x)T F(x) ~ 0 and (y - x'f F(x') ~ 0 (A.26) 

Substitute y = x' into the first inequality and y = x into the second inequality: 

(x' - xf F(x) ~ 0 and (x - x')T F(x') ~ 0 (A.27) 

Add these two inequalities: 

(x' - xf (F(x') - F(x)) ~ 0 (A.28) 

This inequality contradicts the strict monotonicity property of F, thus establishing 

statement (a). 

(b) Let P : ]Rn --+ IRn denote a continuous extension of F, then SOL(K, F) = 

SOL(K, F). If F is ~-monotone on K for some~ > 1, then 3xref E K such that the 

set 

(A.29) 

is bounded (possibly empty). This implies that there exists a bounded open set 0 

123 



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science 

and a vector xref E K n 0 such that 

F(xf (x - xref) 2:: 0, Vx EK n 80 · (A.30) 

where 80 denotes the topological boundary of 0. This implies that the VI(K, F) has 

a solution. Moreover, if the set 

L< = {x EK\ F(xf (x - xref):::; O} (A.31) 

which is nonempty and larger than L<, is bounded, then SOL(K, F) is nonempty and 

compact. The uniqueness of the solution follows from part (a). D 
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Proof of Theorem 6.1: 

Proof of this theorem can be found in [95], Chapter 2, Theorem 2.4. Essential outline 

of the proof is as follows. 

{

either F(p*) = 0, or 
ITK (p*, -F(p*)) = 0 {::} 

p* E 8K; F(p*) =as, a> 0, s E S(p*) 

which is equivalent to VI(K, F). 

125 

(A.32) 
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Proof of Theorem 6.2: 

Proof of this theorem for solutions in Euclidean space can be found in [95], Chapter 2, 

Theorem 2.5. The proof is based on the assumption that F is Lipschitz continuous 

with linear growth. In [140], Chapter 6, Theorem 6.1 and [141], Theorem 3.1, results 

were generalized from Euclidean space to Hilbert spaces of arbitrary dimensions. 

Also, the linear growth condition was relaxed. Essential outline of the proof for 

Hilbert spaces is presented in the Proof of Theorem 8.1. Essential outline of the 

proof for Euclidean space is as follows. 

The associated ODE with discontinuous right-hand side is written as a pair of two 

equations. The first one is the ODE without the projection operator and the second 

one is a mapping that restricts the solution of the first equation to K. This approach 

benefits from the results of the Skorokhod problem [142] for finding such a mapping. 

The Skorokhod problem defines a mapping from the space of paths to itself [95]. 

Definition A.1: Let 'ljJ E D([O,oo),IRmxn) with 1/J(O) EK be given. Then (¢,rJ) 

solves the Skorokhod problem with respect to K if Vt E [O, oo) 

(i) ¢(t) = ?jJ(t) + rJ(t), ¢(0) = ?jJ(O) 

(ii) <f;(t) EK 

(iii) lrJ(t)I < oo 

(iv) lrJ(t)I = f(o,t] IaK(¢(r))dlrJ(r)I, where I is an indicator function. 

( v) There exists measurable / : [O, oo) ---+ IRmxn such that 1( T) E s( ¢( T)) and 

rJ(t) = f(o,t] 1(r)dlrJ(r)I, wheres is the inward normal. D 

126 



Ph.D. Thesis - P. Setoodeh McMaster - Computational Engineering & Science 

Proof of Theorem 6.3: 

Proof of this theorem can be found in [95], Chapter 3, Theorem 3.6. Essential outline 

of the proof is as follows. 

Consider the Lyapunov function 

V(t) = ~llp(t) - p*ll 2 (A.33) 

Then 

V(t) = ((p(t) - p*), IIK (p(t), CT+ Mp(t))) (A.34) 

Regarding (6.16), it can be shown that 

V(t) ~ ((p(t) - p*), - (u + Mp(t))) (A.35) 

Due to strict monotonicity, we have 

v(t) < o (A.36) 

when p(t) I- p*, and 

lim V(t) = 0 
t-+oo 

(A.37) 

Therefore, p* is a is a strict monotone attractor. D 
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Proof of Theorem 6.4: 

Proof of this theorem can be found in [95], Chapter 3, Theorem 3.8. Essential outline 

of the proof is as follows. 

Consider the Lyapunov function V(t) as (A.33). Since ~-monotonicity implies 

strict monotonicity, V(t) is strictly decreasing. It can be shown that due to ~-

monotonicity, V(t) reaches zero and then it remains zero. Hence, there exists a 

T such that 

{

V(t) > 0, t:::; T 

V(t) = 0, t > T 

Therefore, p* is a is a finite-time attractor. 
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Proof of Theorem 6.5: 

Proof of this theorem can be found in [95], Chapter 3, Theorem 3. 7. Essential outline 

of the proof is as follows. 

Consider the Lyapunov function V(t) as (A.33). Regarding (6.16), it can be shown 

that 

V(t) ~ -llMll-llP(t) - p*ll 2 (A.39) 

If there exists a t0 ~ 0 for which llp(t0) - p*ll = 0, we have 

llp(t) - p*ll = 0, Vt~ to (A.40) 

Since strong monotonicity implies monotonicity, we have 

llp(t) - p*ll ~ llPo - p*ll ~ cilPo - p*lle-11t (A.41) 

where c = e11to. Assume that 

llp(t) - p* II # 0, Vt ~ 0 (A.42) 

Dividing both sides of (A.39) by V(t) and taking the integral, we obtain 

llp(t) - p* II ~ c'llPo - p* ile-1)t (A.43) 

Therefore, p* is exponentially stable. D 
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Proof of Theorem 6.6: 

The proof uses ideas given in [127, 143]. Let us consider the following differential 

equation: 

y(t) = - (rJ - cbd) y(t) + q(t)y (t - T(t)) (A.44) 

where 

q(t) = rJ - cbd - - e-PJt-r(t) r(8) 
( 

p ) rt de 

T(t) 
(A.45) 

It can be verified that 

rt de 
y(t) = Coe-PJto TC8T (A.46) 

is a solution of (A.44), where C0 is a constant. The mean-value theorem is applied 

to fLr(t) 7~~) twice . It follows that :3 (Ji, B2 E IR satisfying 0 < B1 < ()2 < 1 such that 

l t d() T(t) 
t-r(t) T(B) = T(t) - B1r(t)i(t - B2T(t)) 

1 1 
= <--

1 - Bd(t - B2T(t)) - 1 - <5 

For p > 0 satisfying (6.39), we have 

q(t) ~ ('r/ - cbd - _P_) e-6 = cµ3 
r(to) 

(A.47) 

(A.48) 

Now we show that for a proper choice of C0 , the solution of (A.46) is an upper bound 

for the solution of (6.27) and (6.23). 
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Let us choose C0 such that the following inequalities are satisfied simultaneously: 

y(t) ~ 11¢(0) 11, VOE ~to (A.49) 

Co ~ c sup II¢( 0) II (A.50) 
0E1¥t0 

Solution of (6.27) can be written as 

t m(m-1) 

p(t) = p(t0)e-It - 1
0 

e-I(t-O) ~ M~p(O - Tl(O))dO (A.51) 

-1t e-I(t-0l[o(O) + ~M~(O)p(O - Tt(O))]dO 
to 

Regarding (6.30), (6.31), and (6.34), Vt~ t0 we have 

t m(m-1) 

llp(t)il ~ ce-ryt 9~~0 ii<P(O)ll + 1
0 

ce-ry(t-O) ~ (llM~ll + b~) llp(O - Tl(O))ildO 

+ 1t ce-ry(t-o)bdllp(O) ildO (A.52) 
to 

Considering the term cbdy(t) + q(t)y (t - T(t)) in (A.44) as an inhomogeneous term, 

The solution of this equation can be written as 

y(t) = c0e-ryt + J.t cbde-ry(t-0ly(O)d0 + J.t e-ry(t-o)q(O)y(O - T(O))dO (A.53) 
to to 

In order to compare llp(t)ll with y(t), we define z(t) = llp(t)il - y(t). From (A.52) 
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and (A.53), Vt?: t0 we have 

z(t) :::; (c sup ll<P(e) II - c0) e-rit 
9Ei¥t0 

t (m(m-1) ) 
+ c 1

0 

e-ri(t-
9

) tt (llM~ll + b~) z(e - T(e)) + bdz(e) de 

t ( m(m-1) ) 
+ 10 e-ri(t-

9
) c ~ (llM~ll + b~) - q(e) y(e - T(e))de (A.54) 

Inequalities (A.48) and (A.49) lead to: 

t (m(m-1) ) 
z(t) :::; c 1

0 

e-ri(t-
9
) tt (llM~ll + b~) z(B - T(e)) + bdz(e) de (A.55) 

Also, (A.49) implies that 

z(t) :::; 0, Vt E '11t0 (A.56) 

Since z(t) is continuous, the above inequality holds in some neighborhood of t0 . As

sume that t* is the smallest t for which z(t*) > 0. Due to (A.56) and the fact that 

z(e) :::; 0 for any 0:::; (} :::; t*, it follows from (A.55) that z(t*) :::; 0, which contradicts 

the assumption. Hence, z(t) :::; 0 for all t?: t0 , which leads to 

(A.57) 
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where 

_ Co > 
( - sup ll<P(B)ll - 1 (A.58) 

BE'lrt0 

Finally, from the boundedness of T(t), we have 

llp(t)ll :::; (sup {ll<P(B)ll}e-*, Vt 2::: to (A.59) 
BE'lrt0 

Therefore, the system (6.27) and (6.23) is robustly exponentially stable with a decay 

rate *· D 
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Proof of Theorem 8.1: 

Proof of this theorem can be found in [140], Chapter 6, Theorem 6.1 and [141], 

Theorem 3.1. Essential outline of the proof is as follows. 

Let L be the Lipschitz constant and llPll ~ b for b > 0. Consider the interval [O, l] 

where l = llF(Po~ll+bL · 
(i) Construct the sequence {Pk(.)} of absolutely continuous functions defined on 

[O, l] with values in K such that Vk ;::=: 0 Pk(O) = p 0 and for almost all t E [O, l] and 

every neighborhood M E K x K of 0, {pk(.)} and the sequence of its derivatives 

{p~ (.)} have the following property: 

(Pk(t), p~(t)) E graph(F - ih) + M, Vk ::2: ko(t, M) (A.60) 

where 

(A.61) 

and Nk(P) is the normal cone to the set K at the point p: 

Nk(P) = { n E Kl (n, p - x) ::2: 0, Vx E K} (A.62) 

The uniform convergence of the sequence {Pk (.)} can be proved. 

(ii) After proving the uniform convergence of the sequence of approximate solu

tions {Pk(.)} to a limit p(.), select a subsequence for which the sequence of derivatives 

{p~(.)} in L00 ([0, l], K) converges weakly to the derivative of p(.). 

(iii) It is shown that p(.) is a solution to the initial value problem (6.4) and (6.5). 
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(iv) From( i)-( iii), we know that the problem has solutions on the interval [O, l]. 

Assume that p 1 (.) and p2 (.) are two solutions starting at the point p0 . It is shown 

that 

(A.63) 

Therefore, p 1 (t) = p2 (t), Vt E [O, l], which proves the uniqueness of the solutions. 

( v) Having the unique solution for the interval [O, l], we consider t0 = l and apply 

the theorem again. Hence, we obtain a solution for an extended time interval. By 

continuing this process, a solution can be obtained fort E [O, oo). D 
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Proof of Theorem 8.2: 

The proof uses ideas given in [96, 128, 144]. 

(a) Uniqueness of the solution is concluded from Theorem 4.2, and the fact that 

F is an affine mapping. 

(b) In [128], Proposition 3.1, it is proved that the PD system has at most one 

equilibrium point. Essential outline of the proof is as follows. 

Assume that the PD system has at least two solutions p 1 =/:- p2 EK. Then, 

(A.64) 

Equivalently, this means that -F(p1) E NK(P1 ) and -F(p2 ) E NK(P2), where NK is 

the normal cone. Since the set-valued mapping p ~ N K(P) is a monotone mapping, 

we have 

(A.65) 

or equivalently 

(A.66) 

On the other hand, from strict monotonicity property of F, we have 

(A.67) 

The last two equations lead to a contradiction. Therefore, the PD system has at most 

one equilibrium point. Solutions of the EVI problem are the same as the stationary 
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points of the PD system and vice versa [128]. From (a) we know that the EVI has a 

unique solution. Therefore, the PD system has a unique equilibrium as well. 0 
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Proof of Theorem 8.3: 

Proof of this theorem can be found in [140], Chapter 7, Theorem 7.2 and Theorem 7.6. 

Essential outline of the proof is as follows. 

(a) Consider the Lyapunov function 

V(t) = ~llp(t) - p*ll 2 (A.68) 

Then 

V(t) = ((p(t) - p*), IIK (p(t), -(u + Mp(t)))) (A.69) 

Regarding (6.16), we have 

V(t) ~ ((p(t) - p*), - (u + Mp(t))) (A.70) 

Strict pseudo-monotonicity leads to 

((p(t) - p*), - (u + Mp(t))) < 0 (A. 71) 

and 

V(t) < o (A.72) 

Therefore, p* is a is a strict monotone attractor. 
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(b) Since F is strongly pseudo-monotone, there exists c > 0 such that 

(F(p*),p - p*) ~ 0 ===? (F(p),p- p*) ~clip- p*ll 2
, Vp EK (A.73) 

which implies that 

(p(t) - p*, - (u + Mp(t))) ~ -ciiP - p*ll 2 (A.74) 

From (A.69), we have 

V(t) ~ -cllP - p*ll 2 (A.75) 

Integration of the above inequality leads to 

~llp(t) - p*ll 2 ~ llPo - p*ll 2
e-ct ~ llp(t) - p*ll ~ V211Po - p*lle-~t (A.76) 

which shows that p* is exponentially stable. As t --+ oo, we obtain p(t) --+ p* and 

therefore, p* is an attractor. 0 
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