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Abstract 

In this thesis parametric analysis for conic quadratic optimization problems 

is studied. In parametric analysis, which is often referred to as parametric op­

timization or parametric programming, a perturbation parameter is introduced 

into the optimization problem, which means that the coefficients in the objec­

tive function of the problem and in the right-hand-side of the constraints are 

perturbed. First, we describe linear, convex quadratic and second order cone op­

timization problems and their parametric versions. Second, the theory for finding 

solutions of the parametric problems is developed. We also present algorithms 

for solving such problems. Third, we demonstrate how to use parametric opti­

mization techniques to solve multiobjective optimization problems and compute 

Pareto efficient surfaces. 

We implement our novel algorithm for hi-parametric quadratic optimization. 

It utilizes existing solvers to solve auxiliary problems. We present numerical 

results produced by our parametric optimization package on a number of practical 

financial and non-financial computational problems. In the latter we consider 

problems of drug design and beam intensity optimization for radiation therapy. 

In the financial applications part, two risk management optimization mod­

els are developed or extended. These two models are a portfolio replication 

framework and a credit risk optimization framework. We describe applications 

of multiobjective optimization to existing financial models and novel models that 

we have developed. We solve a number of examples of financial multiobjective 

optimization problems using our parametric optimization algorithms. 
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Chapter 1 

Introduction 

Optimization is a discipline used for searching extremum of a function and gener­

ally refers to mathematical problems where the goal is to minimize or maximize 

an objective function subject to some constraints. Depending on the nature and 

the form of the objective function and the constraints, continuous optimization 

problems are classified to be linear, quadratic, conic and general nonlinear. Cor­

respondingly, we distinguish the research areas of linear optimization, quadratic 

optimization, second order conic optimization, etc. 

1.1 Conic Quadratic Optimization Problems 

Linear optimization (LO) is a highly successful operations research model. There­

fore, it was natural to generalize the LO model to handle more general nonlinear 

relationships. However, this gives rise to many difficulties such as lack of strong 

duality, possible non-convexity and consequently problems with global versus 

local optimums, lack of efficient algorithms and software, etc. 

In the recent decade, a new class of convex optimization models that deals 

with the problem of minimizing a linear function subject to an affine set in­

tersect ed with a convex cone has appeared. It is known as conic optimization. 

Although the conic optimization model seems to be restrictive , any convex op­

timization problem can be cast as a conic optimization model and there are effi-
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cient solution algorithms for many classes of conic models such as conic quadratic 

optimization ( CQO) and conic linear optimization ( CLO). While it sounds coun­

terintuitive, CQO is a sub-class of CLO. Conic optimization has many interesting 

applications in engineering, image processing, finance, economics, combinatorial 

optimization, etc. 

1.1.1 Formulation of Conic Quadratic Optimization 
Problems 

Conic linear optimization (CLO) problems can be mathematically formulated as: 

min{cTx: Ax= b, x E K:}, (1.1.1) 
X 

where K E JRn is a closed, convex, pointed and solid cone, A E JRmxn, rank(A) = 

m, c E JRn, b E JRm are fixed data and x E JRn is an unknown vector. Often x E K 

is also denoted as x '?.JC 0. Moreover, x '?.JC y means x - y '?.JC 0. 

Definition 1.1.1 (Cone) A set C is a (linear) cone if Vx E C and a > 0, 

axE C. 

Definition 1.1.2 (Convex cone) A subset K of JRn is a convex cone if and 

only if a 1x 1 + a2x2 E K for any a 1 , a 2 '?. 0 and x 1
, x 2 E K:. 

Observe that every cone includes the null vector. A pointed convex cone 

contains no line. Solid cone has non-empty interior. The set of all interior points 

of K is denoted by int(K:). 

Examples of pointed convex closed cones include: 

• the nonnegative orthant: 

JR~ = K:p_ = {x E lRn: X'?_ 0}, 

• the quadratic cone (also know as Lorentz cone, second order cone or ice-

cream cone: 

2 
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• the semidefinite cone: 

S~ = Ks ={X E IR.nxn: X= Xr, X~ 0}, 

• any linear transformation and finite direct product of such cones. 

Definition 1.1.3 (Cartesian product) If A~ JRi and B ~IRk, then 

Ax B = {(x, y): x E A, y E B} 

is their Cartesian product (direct product). 

The definition of the dual cone arises from the question: for which s E IRn 

the implication x1 "2.tC x2 ==::> sT x1 "2_ sT s2 always holds. Obviously, this holds if 

and only if x "2.!C 0 implies sTx "2. 0, or if s E K* = {s E IRn: sTx "2. 0, Vx E K}. 

Definition 1.1.4 (Dual cone) The dual cone K* of a convex cone KEIRn is 

Theorem 1.1.1 If K is a closed, convex, pointed cone with nonempty interior, 

then so is the dual cone K*, and then the duality is symmetric: ( K*) * = K. 

Each of the three "standard" cones Kt, Kq and Ks are closed, convex and 

pointed cones with nonempty interior. Moreover, each of these cones are self­

dual, which means that the dual cone K* is equal to the original cone K. The 

same holds for any (finite) direct product of such cones. 

Now we present the dual conic linear optimization problem: 

(1.1.2) 

If x is feasible for ( 1.1.1) and ( y, s) is feasible for ( 1.1. 2), then the weak 

duality property holds 

(1.1.3) 

3 
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The strong duality property cT x = br y does not always hold for CLO problems. 

A sufficient condition for strong duality is the primal-dual Slater condition, which 

requires the existence of a feasible solution pair x and (y, s) for (1.1.1) and (1.1.2) 

such that x E int /( and s E int /(*. In this case, the primal-dual optimal set of 

solutions (x, y, s) is 
Ax b, x E IC, 

ATy+s c, sEIC*, (1.1.4) 
XTS - 0. 

System (1.1.4) is known as the optimality conditions. 

Conic quadratic optimization ( CQO) is the problem of minimizing a linear 

objective function subject to the intersection of an affine set and the direct 

product of quadratic cones. CQO is the sub-class of CLO and, consequently, 

CQO problems are expressed in the form of (1.1.1). 

More information on CLO and CQO problems, their properties and du­

ality results can be found in [8]. The CQO problem subclasses described in 

the following sections include linear optimization (10), convex quadratic opti­

mization (QO), quadratically constrained quadratic optimization (QCQO) and 

second-order conic optimization (SOCO). CLO, among others, includes CQO 

and semidefinite optimization (SDO). As we see in Section 1.1.5, in all these 

cases CLO problems can be solved efficiently by Interior Point Methods (IPMs). 

1.1.2 Linear Optimization 

The best known and most widely used form of optimization models is Linear 

Optimization (10), where the objective function and all the constraints are lin­

ear functions of the variables. Although this form seems to be restrictive, it is 

widely used in practice, especially in business applications, because many practi­

cal problems can be formulated with linear objectives (such as profits) and linear 

constraints (budgets, capacities, etc.). Many practical problems - especially for 

large companies - involve hundreds of thousands to millions of variables and 

constraints, and 10 problems of this size can be solved quickly and reliably with 

modern software. 

4 
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LO is the most extensively studied branch in the optimization field. History 

of linear optimization started in the 40's of the 20th century and has gained 

wide attention by the scientific community in the 50's after the development 

of the Simplex method by George Dantzig [34]. The Simplex algorithm and 

its extensions were thoroughly studied since then, and did not have practical 

competitors until the discovery of Interior Point Methods (IPMs) in the middle 

of the 80's. The milestone work of Karmarkar [82] in 1984 started the era of IPMs, 

that usually outperform simplex algorithms when solving large-scale problems. 

The main conceptual feature that differentiates IPMs from the Simplex 

method is how they search for an optimal solution. In simplex methods the 

optimal solution is searched by moving from one vertex of the feasible region 

to another until an optimal (minimum or maximum) solution is found, while 

in IPMs the problem is solved by following a path inside the feasible region 

of the problem that leads to optimality. IPMs allow solving large sparse op­

timization problems efficiently in polynomial time. Reference [106] provides a 

comprehensive description of simplex methods and [126] gives the theoretical 

and algorithmic background of IPMs for linear optimization. 

As we already know, we can get the LO problem by restricting the CQO 

problem to have the positive orthant as its cone. The primal LO problem is: 

(LP) 
mm CTX 

s.t. Ax= b 
X~ 0, 

(1.1.5) 

where A E IRmxn, rank(A) = m, c E IRn, bE IRm are fixed data and x E IRn is an 

unknown vector. 

Its dual form is: 

(LD) 
max bTy 

s.t. ATy + s = c 
s ~ 0. 

5 
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1.1. 3 Quadratic Optimization 

Convex Quadratic Optimization (QO) problems, where the objective function 

is convex quadratic while the constraints remain linear, gained its importance 

among business community after Markowitz [95, 96] used it for conducting mean­

variance analysis of investment portfolios. QO problems appear naturally when 

we want to minimize a variation (or variance) of some quantity. In general, QO 

is a natural extension of LO and most of the solution methods developed for LO 

were extended to QO as well. 

A primal convex QO problem is defined as: 

(QP) 
mm cTx + ~xTQx 
s.t. Ax= b 

X~ 0, 
(1.1.7) 

where Q E IR.nxn is a symmetric positive semidefinite matrix, A E IRmxn, rank( A) = 

m, c E IRn, b E IRm are fixed data and x E IRn is an unknown vector. 

The Wolfe Dual of ( Q P) is given by 

(QD) 
max bTy- ~uTQu 

s.t. AT y + s- Qu = c 
s ~ 0, 

where s, u E IRn andy E IRm are unknown vectors. 

(1.1.8) 

We provide more details about QO problems to facilitate the discussion of 

their parametric counterparts in Chapter 2. All the concepts described below 

are valid too for LO problems where Q = 0. 

The feasible regions of (QP) and (QD) are denoted by 

QP { x : Ax= b, x ~ 0}, 

QV {(u,y,s):ATy+s-Qu=c, s,u~O}, 

and their associated optimal solution sets are denoted by QP* and QV*, respec­

tively. It is known that for any optimal solution of (QP) and (QD) we have 

Qx = Qu and xT s = 0, e.g., see Dorn [40]. It is also known from [40] that there 

6 
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are optimal solutions with x = u. Since we are only interested in the solutions 

where x = u, therefore, u will be replaced by x in the dual problem. The du­

ality gap cT x + xT Qx - bT y = xT s being zero is equivalent to xisi = 0 for all 

i E {1, 2, ... , n }. This property of the nonnegative variables x and sis called the 

complementarity property. 

Solving primal problem (QP) or dual problem (QD) is equivalent to solving 

the following system, which represents the Karush-Kuhn-Tucker (KKT) optimal­

ity conditions [151]: 

Ax - b 0, x 2: 0, 
ATy + s- Qx- c - 0, s 2:0, 

XiSi - 0, 't:/i, 
(1.1.9) 

where the first line is the primal feasibility, the second line is the dual feasibility, 

and the last line is the complementarity condition. The complementarity condi­

tion can be rewritten as xs = 0, where xs denotes the componentwise product 

of the vectors x and s. System (1.1.9) is referred to as the optimality conditions. 

For LO the Goldman-Tucker Theorem states that there exists a strictly 

complementary optimal solution (x, y, s) if both the primal and dual problems 

are feasible. The feasible primal-dual pair (x, y, s) is strictly complementary if 

Xisi = 0 and xi+ si > 0 for all i = 1, ... , n. Equivalently, strict complementarity 

can be characterized by xs = 0 and x + s > 0. A strictly complementary solution 

partitions the index set in two subsets, the sets where xi > 0, or si > 0, respec­

tively. Having strict complementarity is important for IPM-based parametric 

analysis. 

Unlike in LO, where strictly complementary optimal solution always exists, 

for QO the existence of such solution is not ensured. Instead, a maximally 

complementary solution can be found. A pair of optimal solutions (x, y, s) for 

the QO problem is maximally complementary if it maximizes the number of non­

zeros in the vector x + s over all optimal solution pairs. As we see in Section 2.1, 

this leads to tri-partition of the optimal solution set in parametric QO. 
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1.1.4 Second-Order Conic Optimization 

We have seen that a linear constraint qualifies as a cone constraint; the next step 

is the so-called second-order cone, also referred to as the Lorenz cone, quadratic 

cone or ice-cream cone. QO is also a subclass of Second-Order Conic Optimiza­

tion (SOCO) problems. 

In SOCO problems the variables are restricted to lie in the Lorentz cone 

leading to the following formulation: 

min CTX 

(SOCP) s.t. Ax= b, (1.1.10) 
xi 2:: llx~:ni lb, i = 1, ··.,I, 

where A E lRmxn, rank(A) = m, c E lRn, b E lRm are fixed data and x = 
(xi, ... , X~1 , xi, ... , X~2 , xf, ... , x~JT E lRn (with n = ~{=1 ni) is an unknown 

vector. 

The dual SOCO problem is: 

max bTy 
(SOCD) s. t. AT y + s = c, (1.1.11) 

si 2:: lls~:nillz, i = 1, ... ,I, 

h E TTDm d _ ( 1 1 2 2 3 I )T E TTDn k w ere y m. an s - s1 , ... , sn
1

, s1 , ... , sn
2

, s1 , ... , sn
1 

m. are un nown 

vectors. 

As (xi, ... , x~JT E K~, (x~, ... , x~JT E K~, ... , (x{, ... , X~1? E K~ and 

K = K~ x K~ x ... x K~ we can also rewrite problem (1.1.10) in its shorter form 

(SOCP) 
mm CTX 

s.t. Ax= b, 
X E K. 

(1.1.12) 

In the remainder of the thesis, cone K denotes the quadratic cone (direct product 

of linear cones Ke and quadratic cones Kq), unless otherwise specified. 

In addition to LO and QO problems, SOCO also includes quadratically 

constrained quadratic optimization (QCQO). Details about the QCQO problem 

formulation and its transformation to SOCO formulation can be found in [91]. 
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1.1.5 Interior Point Methods for Quadratic Optimization 

As it was mentioned before, the seminal work of Karmarkar [82) resulted in the 

discovery of IPMs for solving LO problems. IPMs enjoy worst-case polynomial 

complexity and excellent practical performance on large-scale LO problems. 

The field of IPMs received more attention after Nesterov and Nemirovskii 

[107) unified the theory of IPMs into the general framework and extended it to 

general convex optimization. Their work made it possible to develop IPMs for 

solving much larger classes of optimization problems including QO, SOCO and 

SDO. 

Primal-dual IPMs are iterative algorithms that aim to find a solution sat­

isfying the optimality conditions. For instance, optimality conditions for the QO 

case are expressed by the system (1.1.9). Here, we briefly describe feasible IPMs 

for QO (IPMs for the CQO are the generalizations of those). IPMs generate a 

sequence of iterates (xk, yk, sk), k = 0, 1, 2, ... that satisfy the strict positivity 

(interior point) condition xk > 0 and sk > 0, but feasibility (for infeasible IPMs) 

and optimality are reached as k goes to infinity. Feasible IPMs produce a se­

quence of iterates where the following interior point condition (IPC) holds for 

every iterate (x, y, s) 

Ax = b, x > 0, 
Ary + s- Qx = c, s > 0. 

We perturb the complementarity condition (1.1.9) as 

Ax- b, x > 0, 
Ary + s- Qx = c, s > 0, 

Xs = Jle, 

(1.1.13) 

(1.1.14) 

where f.l > 0, e = (1, ... , 1f and X = diag(x1, ... , Xn) is the diagonal matrix 

with vector x forming the diagonal. It is obvious that the last nonlinear equation 

in (1.1.14) becomes the complementarity condition for f.l = 0. 

A desired property of system (1.1.14) is the uniqueness of its solution for 

each f.l > 0. The following theorem [66) provides the conditions when uniqueness 

holds. 
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Theorem 1.1.2 System {1.1.14} has a unique solution for each p, > 0 if and 

only ifrank(A) = m and the IPC holds for some point. 

When p, is running through all positive numbers, the set of unique solutions 

(x(p,), y(p,), s(p,)) of (1.1.14) define the so-called primal-dual central path. The 

sets {x(p,) I p, > 0} and {(y(p,), s(p,)) I p, > 0} are called the primal central path 

and the dual central path respectively. 

One iteration of primal-dual IPMs consists of taking a Newton step applied 

to the central path equations ( 1.1.14) for a given p,. The central path stays in 

the interior of the feasible region and the algorithm approximately follows it 

towards optimality. For p, ---+ 0 the set of points (x(J-L), y(p,), s(p,)) gives us a 

maximally complementary (strictly complementary in 10 case and maximally 

complementary in SOCO case) optimal solution of (QP) and (QD). 

Newton's method is used to solve the system (1.1.14) iteratively. At each 

step we need to compute the direction ( L:.x, L:.y, L:.s). A new point in the com­

puted direction (x + L:.x, y + L:.y, s + L:.s) should satisfy 

AL:.x = 0, 
AT L:.y + L:.s- QL:.x = 0, 

xL:.s + sL:.x + L:.xL:.s = p,e - xs. 
(1.1.15) 

System (1.1.15) is non-linear. Consequently, the Newton step is obtained by 

dropping the non-linear term that gives the linearized Newton system 

AL:.x = 0, 
AT L:.y + L:.s- QL:.x 0, (1.1.16) 

xL:.s + sL:.x = p,e- xs. 

The linear system (1.1.16) is referred to as the primal-dual Newton system. It 

has 2n + m equations and 2n + m unknowns. The system has a unique solution 

if rank(A) = m. 

After solving the Newton system (1.1.16), we have the search direction 

( .6.x, .6.y, .6.s). This Newton search direction is computed assuming that the step 

length a is equal to one. But taking such a step can lead to infeasibility of the 

10 



Ph.D. Thesis- Oleksandr Romanko McMaster- Computing and Software 

solution as ( x + ~x, y + ~y, s + ~s) might be infeasible. Our goal is to keep strict 

feasibility, therefore we want to find such an a that the next iteration point is 

strictly feasible, i.e., 

with xk+1 > 0 and sk+1 > 0. This can be done via line search. 

Based on the 10 case derivations above, here we present a prototype 

Primal-Dual Path-Following IPM algorithm (see Algorithm 1.1) for LO and CQO 

problems. We suppose that the IPC is satisfied. Alternatively, by using the ho­

mogeneous embedding technique (see [126] for details) we can always construct a 

10 or QO problem in a way that the IPC holds. After that, we apply Newton's 

method to the central path equations (1.1.14) to get the search direction. The 

determined step length ensures that the iterate remains in the interior of the 

feasible set. IPMs stop when the complementarity gap is reduced below some 

predetermined tolerance level or when infeasibility is detected. 

One issue that we have not discussed so far is a strategy for reducing the 

parameter J.L. We want to follow the central path approximately (as Newton 

system is solved disregarding the nonlinear terms) and so we define a proximity 

function W(xs, ~t) to measure the distance of the current point from the central 

path. A proximity parameter 6 > 0 defines the bound for the proximity function 

which takes the value of zero if the point is on the central path and approaches 

infinity if the point approaches the boundary of the nonnegative orthant. There 

are many proximity measures defined in the literature (see, e.g., [126] for more 

details), for instance, self-regular proximity functions. 

1.2 Parametric Optimization 

Uncertainty is a very important factor in many optimization models. For in­

stance, when uncertainty arises in some of the parameters, the optimal solution 

of a deterministic model can become infeasible. Therefore, consideration of un-
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Algorithm 1.1: A Prototype Algorithm for Interior Point Method. 

input: 
a proximity parameter 5 > 0; 
an accuracy parameter E > 0; 
an update parameter 0 < e < 1; 
J.-Lo = 1, k = 0; 
(x0,y0,s0) satisfying x0 > 0, s0 > 0 and 'lf(x0s0,J-l0) s; 5; 

begin 

end 

while (xk)T sk :2: E do 
begin 

end 

f.-lk = (1- e)((xk~Tsk); 

while w(xk sk' J.-Lk) :2: 5 do 
begin 

end 

solve the Newton system to find ( D.xk, D.yk, D.sk); 
determine the step size a to get strictly interior point; 
xk = xk + a6.xk, ·l = yk + aD.yk, sk = sk + aD.sk; 

xk+l = xk yk+l = yk 8k+l = 8k k = k + 1· 
... ' ' ' ' 

certainty becomes of great importance in order to preserve feasibility and relia­

bility of the results. One way to incorporate uncertainty into optimization mod­

els is using sensitivity analysis and parametric optimization techniques. Other 

approaches to deal with uncertainty include robust optimization and stochastic 

optimization. 

In addition to the uncertainty factor, in most of the practical applications 

we are interested not only in the value of an optimal solution of an optimiza­

tion problem, but also in its sensitivity. In other words, it is necessary to know 

how sensitive the solution is to data perturbations. Knowing sensitivity of the 

solution allows adjusting the constraints (such as resource constraints or budget 

constraints) or the coefficients of the objective function (such as individual pref­

erences or parameters of a production process) to meet the modeling objectives 
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in a better way and to get a "better" solution to the problem. 

Similarly to the classical sensitivity analysis, where only one model param­

eter is perturbed, in parametric optimization a number of model parameters, 

which are held constant in the original deterministic problem, are assumed to be 

uncertain or variable. Thus, mathematical models in general and optimization 

problems in particular often involve unknown or uncertain parameters and the 

goal of parametric optimization is to calculate the optimal solution for all relevant 

values of these unknown parameters. Discretization approaches are non-rigorous 

since there is no guarantee for optimality between the mesh points. Therefore, 

algorithms for parametric optimization typically divide the parameter space into 

regions of optimality; for each region infeasibility is established or an optimal 

solution is given as a smooth function of the parameters for this region. For one 

parameter, the transition between the solutions is called a breakpoint or a tran­

sition point and parametric optimization algorithms identify these breakpoints. 

As we see both sensitivity analysis and parametric optimization (we will use 

the terms sensitivity analysis, parametric analysis and parametric optimization 

interchangeably thereafter) are the techniques to determine how the optimal 

objective function value varies with the change in one or more coefficients of 

the objective function or the problem constraints. Mathematically speaking, in 

parametric analysis a parameter A is introduced into the original optimization 

problem transforming it to the parametric one: 

mm 
s.t. 

f(x) 
9·i(x) :::; 0, Vi 

¢(A)= mm 
s.t. 

f(x,A) 
9i(x, A) :::; 0, Vi. 

The parameter A can be a scalar or multidimensional vector. Parametric 

optimization allows determining how the optimal objective function value ¢(A) 

(also called optimal value function) and an optimal solution x* (A) varies with the 

change in one or more coefficients (parameters) of the objective function or right­

hand side values of the constraints. Consequently, it allows us obtaining optimal 

solutions as a function of the parameters A appearing in the optimization prob­

lem. Single-parameter problems (when A is scalar) yield paths of solution points, 
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two parameter problems yield surfaces, etc. The main limitation of most existing 

parametric optimization methods is that they can only be applied to problems 

with a single uncertain parameter or several uncertain parameters varying in a 

single direction. 

Parametric optimization is a relatively mature field with many contribu­

tions, e.g., see [106, 12, 123, 144] for reviews. With an exception of a few algo­

rithms for linear or purely integer programs the available literature assumes that 

parameters only influence the objective function and/or the right-hand side of 

the constraints. Extension to the general case where a parameter can simulta­

neously affect the non-constant part of constraints, the right-hand side and the 

objective function is non-trivial because the resulting problems do not have the 

nice structure enjoyed by the special cases. Algorithms dealing with the general 

case are desired as well, but not well studied. 

One of the goals of this thesis is to outline the possible use of the interior 

point methods framework to conducting parametric analysis of CQO problems. 

Developing and extending methodologies that allow finding an optimal solution 

vector x*(.A) and the optimal value function ¢(.A) without discretization of the 

parameter space A and without solving the optimization problem at every dis­

cretization point is one of our primary targets. 

1.3 Multiobjective Optimization 

Multicriteria decision mak·ing or multicriteria analysis is a complex process of 

finding the best compromise among alternatives. A decision maker first describes 

the problem based on relevant assumptions about the real world problem. After 

that, alternative decisions are generated and evaluated. Optimization serves 

as a tool for solving multicriteria analysis problems when those problems are 

formulated as multiobjective optimization problems. 

Let :r be an n-dimensional vector of decision variables. The multiobjec­

tive optimization problem, where the goal is to optimize a number of possibly 
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conflicting objectives simultaneously, is formulated as: 

min {!I ( x), h ( x), ... , f k ( x)} 
s.t. XED, 

(1.3.1) 

where fi : JR.n -+ JR., i = 1, ... , k are (possibly) conflicting objectives and n ~ JR.n 

is a feasible region. Each of the functions fi represent an attribute or a decision 

criterion that serves the base for the decision making process. Similarly to single­

objective optimization problems, depending on the nature and the form of the 

objective functions and the constraints, continuous multiobjective optimization 

problems are classified to linear, quadratic, conic and general nonlinear. 

Multiobjective optimization is a subclass of vector optimization, where the 

vector-valued objective function fo = {h(x), h(x), ... , fk(x)} is optimized with 

respect to a proper convex cone C which defines preferences. When a vector 

optimization problem involves the cone C = JR.+, it is known as a multicriteria 

or multiobjective optimization problem. Theoretical background and solution 

techniques for multiobjective optimization are discussed in Section 3.1. 

\Ve only look at some classes of convex multiobjective optimization prob­

lems, namely 10, QO and briefly at SOCO. In this case, all the functions ap­

pearing in the objective and the constraints of the optimization problems are 

conic quadratic. Most of real-life optimization problems are multiobjective in 

their nature and in many cases those can be formulated as multiobjective 10, 

QO or SOCO problems. Classical meaning of the word "optimization" refers 

to single-objective optimization, for instance, 10, QO and SOCO problems we 

described in Section 1.1 are single-objective convex optimization problems. 

There are many relationships between multiobjective optimization and 

parametric optimization that is used to solve such problems, and in Section 3.2 we 

highlight those. The "solution" of a multiobjective problem is the set of Pareto 

efficient points, known in the literature as Pareto efficient frontier or Pareto 

front. Pareto points can be obtained by scalarization techniques that transform 

multiobjective optimization problem into series of single-objective problems. We 

can formulate that series of problems as parametric optimization problems and 
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compute its efficient solution set numerically. In Chapter 3, we present a method­

ology that allows not only tracing the Pareto efficient frontier without discretiza­

tion of the objective space and without solving the corresponding optimization 

problem at each discretization point, but also identifying a structure of the fron­

tier using parametric optimization. The main idea of Chapter 3 and one of the 

highlights of this thesis is that we can solve multiobjective optimization prob­

lems using parametric optimization techniques by systematically generating the 

Pareto front. 

The main motivation for exploring multiobjective optimization is that it 

has numerous applications. Multiobjective optimization problems arise in many 

areas including engineering, where a typical goal may be to maximize vehicle 

speed and maximize its safety. For formulations of multiobjective optimization 

problems appearing in engineering we refer the reader to consult vast literature 

on multi-disciplinary design [3]. In finance commonly used conflicting objectives 

are maximizing profit and minimizing risk, while problems from environmental 

economics may involve maximizing profit and minimizing environmental impact. 

Examples described in this thesis, see Chapter 7, are mostly financial optimiza­

tion problems from the area of risk management and portfolio selection. One 

of the multiobjective optimization problems in health care is to kill tumor and 

spare healthy tissues. Health care applications, discussed in Chapter 5, include 

intensity modulated radiation therapy (IMRT) planning for cancer treatment 

and optimal drug design. In Chapters 5 and 7 we not only present applications 

of multiobjective optimization, but also numerically solve a number of examples 

using our parametric optimization techniques. 

1.4 Optimization in Finance 

Optimization is one of the pnmary techniques for financial decision making. 

\Nide use of optimization techniques in finance includes such classes of problems 

as portfolio selection, r-isk management, regression problems, pricing and hedging 
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of derivatives, and asset liability management. General overview of financial 

optimization or optimization in finance can be found in [30] and [157]. 

Linear optimization models are widely used in finance [94] due to avail­

ability of intuitive and relatively simple formulations and computational attrac­

tiveness. The class of quadratic optimization problems gained its importance 

among business community after Markowitz [95, 96] used it for conducting mean­

variance analysis of investment portfolios. Even though second-order cone and 

semidefinite optimization problems are relatively new to the financial community, 

many financial problems can be solved using these techniques [30]. Robust port­

folio optimization [4 7] is one of the most important among those. Convex and 

non-convex nonlinear optimization are the most complex continuous optimiza­

tion techniques used in finance. Section 6.3 includes a number of novel nonlinear 

formulations for portfolio credit risk optimization that we have developed. In­

teger optimization is required to solve financial problems involving value-at-risk 

(VaR) minimization, cardinality constraints or fixed-plus-linear transaction cost. 

As most of financial optimization models need to deal with data uncertainty, ro­

bust optimization [7] and stochastic optimization [155] are also among the tools 

used by quantitative analysts. Another challenge that we would like to empha­

size is that financial problems are usually large-scale and require solutions in 

near real-time. 

Risk management is a systematic approach for minimizing exposure to 

risk. Usually, risks should be measured and managed across diverse instruments, 

geographies and risk types. Financial risks are classified to 

• market risk - movement of an entire market; 

• volatility risk - market volatility, influencing prices; 

• currency risk - risk from international exposure; 

• credit risk - risk that an obligor may default; 

• operational risk - impact of operational events; 

• liquidity risk - difficulty of selling an asset; 

• company-specific risks, etc. 
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Risks are all related, so, risk management should be integrated, or at least inter­

connected. Investors and companies need to identify which risks to accept and 

which risks to protect against. Organizations and individuals need to analyze 

exposure to risk in order to determine how to optimize it. Optimization helps 

to compose diversified portfolios where different financial instruments offset or 

cancel each others' risks. 

Many financial models involve maximizing a performance measure or mini­

mizing risk associated with a financial decision. As performance usually conflicts 

with risk, trade-offs between performance measures and risks need to be iden­

tified and explored. In order to optimize risk, quantitative risk measures are 

required. Obviously, quantitative performance measures are needed as well. 

Let us consider a typical risk management optimization problem. vVe de­

note by xi a proportion of total funds invested in asset i, and by r expected return 

vector for different assets or some other asset performance indicator. Typical fi­

nancial risk management optimization problem can be formulated as: 

max rTx 
X 

s.t. g(x)::; 1 (1.4.1) 
lrx = 1 
X~ 0. 

In formulation (1.4.1), a performance measure rT x (i.e., expected invest­

ment return) is maximized subject to constraint g(x) ::; 1 that particular risk 

measure g does not exceed a prescribed amount 1 and other operating constraints 

lTx = 1,x ~ 0 (1 is the vector of 1's). 

A closely related concept to risk management is portfol-io selection or port­

folio optimization, which deals with the problem of selecting an efficient portfolio 

of financial instruments. In portfolio optimization, the goal of investors is to ob­

tain optimal returns in all market environments when risk is involved in every 

investment, borrowing, lending and project planning activity. From the multi­

criteria analysis point of view, investors need to determine what fraction of their 

wealth to invest in which asset in order to maximize the total return and mini-
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mize the total risk of their portfolio. There are a number of risk measures used 

for quantitative evaluation of portfolio risk including variance, portfolio beta, 

value-at-risk (VaR) and expected shortfall (ES) among others, see Sections 6.1 

and 6.3. In addition to risk measures, there are portfolio performance indicators 

- expected market return , expected credit loss , price earnings ratio, etc. 

One of the most famous portfolio management models that involve a risk­

return trade-off is the mean-variance portfolio optimization problem introduced 

by Markowitz [95], see Section 6.1 for more detail. The conflicting objectives 

in the Markowitz model are minimizing portfolio variance (risk) and maximiz­

ing expected return. Using variance to measure portfolio's risk, as proposed by 

Markowitz, is central to finance in both a theoretical and a practical sense. How­

ever, variance, which is expressed as a quadratic function of asset weights in a 

portfolio , is not the only risk measure that is used in practice. Multiobjective 

optimization is a natural tool for portfolio selection models as those involve mini­

mizing one or several risk measures , and maximizing (for the return) or minimiz­

ing (for the losses) a number of portfolio performance indicators. Mean-variance 

optimization problem is one example of multiobjective problems in finance. We 

describe a number of variants of multiobjective portfolio optimization and risk 

management problems, both inside and outside mean-variance framework, and 

their corresponding parametric formulations in Chapter 7. 

Mean-variance framework assumes normality of distribution of asset re­

turns . Another , more attractive, possibility is to construct an approximate dis­

tribution from a set of scenarios representing possible prices for financial in­

struments . Effectively, the scenario-based approach uses statistical sampling 

to model uncertainty. In contrast to mean-variance optimization, the scenario­

based approach allows for general non-normal and discrete distributions as well 

as for modeling of nonlinear instruments including financial derivatives. Using 

scenario-based approach, we develop two novel financial optimization frameworks 

in Chapter 6. Portfolio replication models are investigated in Section 6.2 and 

portfolio credit risk opt·imization framework is developed in Section 6.3. 
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1.5 Outline of the Thesis 

The thesis describes the theoretical background, solution techniques and algo­

rithms of both multiobjective optimization and parametric conic quadratic opti­

mization as well as financial and non-financial applications of those models and 

algorithms. In addition, novel financial models are developed and tested. This 

predetermines the following organization of the thesis. 

In the current Chapter 1, we make historical remarks and briefly describe 

continuous optimization problems and techniques. In addition, we introduce 

concepts of parametric and multiobjective optimization. The use of optimization 

in finance is briefly discussed as well. Finally, the outline of the thesis is provided. 

Part I of the thesis describes theoretical, algorithmic and computational 

results for parametric and multiobjective optimization. Chapter 2 deals with 

parametric optimization algorithms for linear and convex quadratic optimiza­

tion problems. Chapter 3 contains the background discussions on multiobjective 

optimization, and we make a link from multiobjective optimization to its para­

metric counterpart. Chapter 3 also describes how multiobjective problems can 

be solved via parametric optimization. Chapter 4 includes details on imple­

menting parametric optimization algorithms, moreover, a number of illustrative 

examples of parametric optimization problems are solved there. Selected non­

financial applications of multiobjective and parametric optimization are covered 

in Chapter 5. 

Part II of the thesis contains financial and risk management models de­

veloped or extended by us as well as examples of multiobjective optimization 

problems in finance and their solutions by parametric optimization algorithms. 

Chapter 6 describes general model classes in finance that are either developed 

by us or closely related to our work. Examples of financial multiobjective opti­

mization problems and their solutions are shown in Chapter 7. Chapter 7 and 

Appendix A also present our computational results. 

vVe briefly discuss our preliminary results on parametric second-order cone 

optimization in Chapter 8. Finally, Chapter 9 contains concluding remarks and 

suggestions for future work. 
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Parametric and Multiobjective 
Optimization 



Chapter 2 

Parametric Convex Quadratic 
Optimization 

In this chapter we present an IPM and optimal partition based technique and 

provide a polynomial time algorithm for conducting parametric analysis of con­

vex quadratic optimization problems. We allow simultaneous variation in the 

coefficient vector of the linear term of the objective function and in the right­

hand side vector of the constraints. Let A and E be the perturbation parameters. 

The resulting problem we intend to solve is: 

¢(.:\ ,E) = mm f(x , .A) 
s.t. Ax= b + d::-:.b 

X~ 0, 

where f(x , .A) is linear or quadratic function of x. 

T he method described in this chapter partitions the parameter space into 

so-called invariancy regions (intervals), and at the same time provides complete 

description of the behavior of¢(\ E) and x*(.A, E) on each interval. The resulting 

algorithm solves parametric quadratic as well as parametric linear optimization 

problems efficiently in polynomial time. 

Parametric analysis for QO generalizes the one for 10. We describe the 

QO results here; specializing most of the results to 10 by making Q = 0 is 

straightforward. All the results are provided for the perturbed QO problem 

when perturbation occurs in the right-hand-side data and the linear term of 
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the objective function of the (QP) problem (1.1.7), simultaneously. This model 

includes the single-side perturbations as its subcases. 

Research on the topic was triggered when a variant of parametric QO prob­

lems was proposed by Markowitz [96]. He applied it to mean-variance portfolio 

analysis. The basic result for parametric quadratic optimization obtained by 

Markowitz is that the optimal value function ¢( >-.) (efficient frontier in financial 

terminology) is piecewise quadratic, and can be computed. Non-degeneracy was 

assumed and a variant of the simplex method was used for computations. 

There are two ways to perform sensitivity analysis in the case of 10: the 

optimal basis approach and the optimal partition approach. Those two are based 

on the concepts of optimal basis produced by simplex-type methods, and the 

optimal partition produced by IPMs. Simplex methods were used to perform the 

computations in earlier studies, see, e.g., Murty [106] for a comprehensive survey. 

Recently research on parametric analysis was revisited from the point of view of 

IPMs. In the optimal basis approach the goal is to find the range of perturbations 

for which the given optimal basic solution remains basic optimal. In contrast, 

the optimal partition approach aims to determine the range of perturbations for 

which the optimal partition remains invariant. In the non-degenerate case, when 

there is a unique primal-dual optimal basic solution, the two approaches coincide. 

Difficulties arising in parametric analysis when the problem is degenerate are 

studied extensively in the 10 literature, see, e.g., [79]. In case of degeneracy 

the optimal basis is not unique and multiple optimal solutions may exist. For 

degenerate 10 problems, the availability of strictly complementary solutions 

produced by IPMs allows overcoming many difficulties associated with the use of 

optimal bases. Adler and Monteiro [1] pioneered the use of IPMs in parametric 

analysis for 10 (see also Jansen et al. [79]). 

Computational costs of the optimal partition approach overweight the ones 

of optimal basis, however, the optimal basis approach may produce misleading 

and inconsistent information on parametric analysis if there are multiple optimal 

basic solutions. Berkelaar, Roos and Terlaky [12] emphasized shortcomings of 
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using optimal bases in parametric LO. By an example they showed that differ­

ent optimal bases computed by different LO packages give different optimality 

intervals. 

Even though the optimal partition approach has higher computational 

costs, it produces correct results. Another advantage of the optimal partition 

approach is that it allows the development of a complete algorithm for solving 

parametric optimization problems. 

Naturally, results obtained for parametric LO were extended to parametric 

QO. Berkelaar et al. [10] showed that the optimal partition approach can be 

generalized to the QO case by introducing tri-partition of variables instead of bi­

partition. They performed sensitivity analysis for the cases when perturbation 

occurs either in the coefficient vector of the linear term of the objective value 

function or in the right-hand-side of the constraints. In Section 2.2 we show how 

the results obtained in Berkelaar, Roos and Terlaky [12] and Berkelaar et al. [10] 

are generalized further to accommodate simultaneous perturbation of the data, 

even in the presence of degeneracy. 

Considering simultaneous perturbation provides a unified approach to para­

metric LO and QO problems that includes perturbation of the coefficients of the 

linear term in the objective function or the right-hand-side vector of the con­

straints as its subcases. We discuss the optimal partition approach for LO and 

QO in Section 2.1. The results in Sections 2.1 and 2.2 are solely based on 

Ghaffari-Hadigheh, Romanko and Terlaky [55]. 

2.1 Optimal Partition in LO and QO 

Next two paragraphs, borrowed from [29], page 17-18, contain a discussion about 

the differences between the optimal partition and an optimal basis. 

"In the common case of multiple solutions, an interior point method al­

gorithm terminates at the analytic center of the optimal face rather than at a 

vertex; in some respects, through the concept of optimal partition, we can in-
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terpret this situation as having determined the whole set of optimal solutions. 

In contrast, the choice of the solution vertex provided by the simplex method is 

arbitrary, and depends on factors like the pivoting rule. 

Often having a basic solution that identifies a vertex is considered to be an 

exact solution. However, we should discuss what we mean by "exact" solution. In 

most cases we do not need the additional precision of being on a vertex solution 

rather than at the analytic center of the optimal face. In this sense, integer 

programming represents a notable exception, as the integer solutions are at the 

vertices of the convex hull of feasible integer points. The difference between 

having an optimal basis or an optimal partition has important consequences on 

the use of the solution for sensitivity analysis." 

We first consider the optimal partition for the QO problem (1.1.7). The 

optimal partit·ion of the index set {1, 2, ... , n} is defined as 

B { i : Xi > 0 for an optimal solution x E QP*}, 

N { i: si > 0 for an optimal solution (x, y, s) E Q'D*}, (2.1.1) 

T { 1, 2, ... , n} \ ( B u N), 

and denoted by 1r = ( B, N, T). In the definition ( 2 .1.1) of the optimal parti­

tion QP* and Q'D* are the optimal solution sets defined on page 6. Berkelaar 

et al. [10] and Berkelaar, Roos and Terlaky [12] showed that this partition is 

unique. The support set of a vector v is defined as O"( v) = { i : vi > 0} and is 

used extensively in this chapter. An optimal solution ( x, y, s) is called maximally 

complementary if it possesses the following properties: 

xi > 0 if and only if i E B, 
si > 0 if and only if i E N. 

For any maximally complementary solution (x, y, s) the relations O"(x) =Band 

O"(s) = N hold. The existence of a maximally complementary solution is a direct 

consequence of the convexity of the optimal sets QP* and Q'D*. It is known that 

IPMs find a maximally complementary solution in the limit [100, 66]. Interior 

point methods are widely used to solve QO problems in polynomial time [107] 

26 



Ph.D. Thesis - Oleksandr Romanko McMaster- Comp'Uting and Software 

and sufficiently accurate solutions obtained by an IPM can be used to produce 

maximally complementary solutions [73]. By knowing a maximality complemen­

tary optimal solution, one can easily identify the optimal partition. If for a given 

optimal partition T = 0 holds, then any maximally complementary solution is 

strictly complementary. The optimal partition in the LO case consists of two 

sets only 1r = (B,N) because a strictly complementary solution for LO problems 

always exists. It is worth mentioning that for any primal-dual optimal solution 

(x*, y*, s*), the relations O"(x*) ~ B and O"(s*) ~ N hold. Both inclusions hold 

with equality if and only if the given primal-dual optimal solution is maximally 

(strictly) complementary. 

The importance of the optimal partition for sensitivity and parametric 

analysis is that it is constant on the invariancy regions (invariancy intervals for 

the single-parameter case). 

2.2 Single-Parametric Quadratic Optimization 

The primal and dual perturbed problems corresponding to (QP) and (QD) 

(equations (1.1.7) and (1.1.8)), respectively, are: 

¢(>..)=min (c+>..6c)Yx+~xTQx 
s.t. Ax= b + )..6b 

X;::: 0, 

max (b + )..6b)Yy- ~xTQx 
s.t. ATy + s- Qx = c + >..6c 

s 2:: 0. 

(2.2.1) 

(2.2.2) 

The perturbation takes the form )..h, where h = (6bT, 6cT)T E JRm+n is a 

nonzero perturbing direction and ).. E lR is a parameter. 

Consider the problem (QP>...) defined by (2.2.1). Its solution methodology 

is our primary interest in this section. Let QP>.. and QTJ>.. denote the feasible sets 

of problems (QP>..) and (QD>..) defined by (2.2.1) and (2.2.2), respectively. Their 

optimal solution sets are analogously denoted by QP~ and QTJ~. The optimal 
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value function of (QP>.) and (QD>.) is 

cp(A) = (c+ A6c)T x*(A) + ~x*(A)T Qx*(A) = (b + A6bf y*(A)- ~x*(A)T Qx*(A), 

where x*(A) E QP~ and (x*(A), y*(A), s*(A)) E QD~. Further, we define 

cp(A) = +oo if QP>. = 0, 
¢(A) = -cxi if QP>. =/= 0 and ( QP>.) is unbounded. 

Let us denote the domain of ¢(A) by 

A= {A: QP>. =/= 0 and QD>. =/= 0}. 

Since it is assumed that (QP) and (QD) (problems (1.1.7) and (1.1.8)) have 

optimal solutions, it follows that A =/= 0. We can prove the following property of 

A: A ~ lR is a closed interval. 

Denote by 0 ( 1r) = {A E A : 1r( A) = 1r} the set of parameter values for which 

the optimal partition 1r is constant. A(1r) denotes the set of parameter values 

where the perturbed primal and dual problems are feasible when restricting the 

optimal solutions to the same partition. Finally, A( 1r) refers to the closure of 

A( 7r). 

Let's say that for some A we are given a maximally complementary optimal 

solution (x*,y*,s*) of (QP>.) and (QD>.) with the optimal partition 1r = 7r(A) = 
(B,N, T). 

Theorem 2.2.1 Let Az > A1 be such that 1r(A1) = 1r(A2). Then, 1r(A) is constant 

for all A E [A1, Az]. 

Theorem 2.2.2 Let (x(1), y( 1), s(ll) and (x(z), y(z), sC2l) be maximally comple­

mentary solutions of (QP>.J, (QD>.J and (QP>.J, (QD>.
2
), respectively. Then, 

for any A E [A1, Az] 

x(A) 

y(A) 

s(A) 

28 



Ph.D. Thesis- Oleksandr Romanko McMaster- Computing and Software 

is a maximally complementary solution of (QP>..) and (QD>..) if and only if 

A1, A2 E A(1r). 

Theorem 2.2.2 shows how to identify a maximally complementary optimal 

solutions on A( 1r). The following theorem allows us to compute the endpoints of 

the interval A ( 1r) efficiently. 

Theorem 2.2.3 Let >..* E A and let (x*, y*, s*) be a maximally complementary 

solution of (QP>..·) and (QD>..·) with optimal partition 1r = (B,N, T). Then the 

left and right extreme points of the closed interval A( 1r) = [At, Au] that contains 

A* can be obtained by solving 

Ae = min { A : Ax - A6b = b, X13 ~ 0, XNuT = 0, 
>..,x,y,s 

(2.2.3) 

AT y + s- Qx- A6c = c, SN ~ 0, Sf3uT = 0 }, 

and 

Au = max {A : Ax - A6b = b, X13 ~ 0, X NuT = 0, 
>..,x,y,s 

(2.2.4) 

AT y + s- Qx- A6c = c, SN ~ 0, Sf3uT = 0 }. 

The open interval A ( 1r) is referred to as invariancy interval because the optimal 

partition is invariant on it. The points At and Au, that separate neighboring 

invariancy intervals, are called transition points. 

Theorem 2.2.4 Let Ae < Au be obtained by solving (2.2.3) and (2.2.4), re­

spectively. The optimal value function ¢(A) is quadratic on 0(1r) = (At, Au)· 

Moreover, the optimal value function ¢(A) is continuous and piecewise quadratic 

on A. 

The concepts defined above are illustrated in Figure 2.1. We know how the 

optimal value function can be computed for the current invariancy interval. The 

question is how to proceed from the current invariancy interval with the optimal 

partition 1r = (B, N, T) to the neighboring one with the optimal partition 1f = 

(B,N, T). In order to do so, it is necessary to compute left and right derivatives 

in the transition point and solve the auxiliary self-dual CQO problem. 
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1r = (B,N, T) 1f = (B,N, T) 

Figure 2.1: The Optimal Value Function and Invariancy Intervals of Single­
Parametric QO. 

Theorem 2.2.5 For a given.\ E A, the left and right derivatives of the optimal 

value function ¢( .\) at .\ satisfy 

¢~(.\) = max{6bT y: (x, y, s) E QD~} + min{6cT x: x E QP~}. 
x,y,s x 

(2.2.5) 

(2.2.6) 

Next, we use basic properties of the optimal value function and its deriva­

tives to investigate the relationship between the invariancy intervals and neigh­

boring transition points where these derivatives may not exist. We also show 

how we can proceed from one invariancy interval to another one, to cover the 

whole interval A. These results allow us to develop our algorithm for solving 

parametric QO problems. 

It is worthwhile to make first some remarks about Theorem 2.2.5. It seems 

that we need to solve two optimization problems to find the right or left first­

order derivatives of the optimal value function at a transition point. Actually 

we can combine these two problems into one. We consider problem (2.2.6) only. 

Similar results hold for problem (2.2.5). Let (x*, y*, s*) be a pair of primal-dual 

optimal solutions of (QP>..) and (QD>..) and 

QPD~ = {(x,y,s): Ax= b+ .\6b, x;;::: 0, xTs* = 0, Qx = Qx*, 

AT y + s- Qx = c + .\6c, s;;::: 0, sT x* = 0}. 
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First, in the definition of the set QPV~ the constraints x ~ 0, xT s* = 0, Qx = 

Qx* and s ~ 0, sr x* = 0 are equivalent to XB ~ 0, X NuT = 0 and SN ~ 

0, s 8 uT = 0, where (B, N, T) is the optimal partition at the transition point 

A. The fact that x8 ~ 0 directly follows from x ~ 0. On the other hand, since 

(x, y, s) is a primal-dual optimal solution and (x*, y*, s*) is a maximally comple­

mentary optimal solution, then o-(x) ~ o-(x*), thus XNuT = 0 is its immediate 

result. Analogous reasoning is valid for SBuT = 0. Second, let us consider the 

first and the second subproblems of (2.2.6). Observe that the optimal solutions 

produced by each subproblem are both optimal for (QP>-.) and (QD>-.) and so the 

vector Qx, appearing in the constraints, is always identical for both subprob­

lems (see, e.g., [40]). This means that we can maximize the first subproblem 

over QPV~ and minimize the second subproblem over QPV~ simultaneously. 

In other words, instead of solving two subproblems in (2.2.6) separately, we can 

solve the problem 

min{ 6cT x- 6bT y: (x, y, s) E QPV~}, (2.2.7) 
x,y 1s 

that produces the same optimal solution (x, y, s) as a solution of problem (2.2.6). 

Then the right derivative ¢~(A) can be computed by using the values (x, y, s) 

as ¢~ (A) = L.br y + L.cT x. Consequently, we refer to the optimal solutions of 

problems (2.2.6) and (2.2. 7) interchangeably. 

The next lemma shows an important property of strictly complementary 

solutions of (2.2.5) and (2.2.6) that is used in the proof of Theorem 2.2.7. 

Lemma 2.2.6 Let A* be a transition point of the optimal value function. Fur­

ther, assume that the (open) invariancy interval to the right of A* contains A 

with the optimal partition 1F = ( B, JJ, T). Let ( x, y, s) be an optimal solution of 

(2.2.6} with A= A*. Then, o-(x) ~Band o-(s) ~ JJ. 

By solving an auxiliary self-dual quadratic optimization problem defined in 

Theorem 2.2.7 we can obtain the optimal partition in the neighboring invariancy 

interval. 
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Theorem 2.2. 7 Let A* be a transition point of the optimal value function. Let 

(x*, y*, s*) be an optimal solution of {2.2.6) for A*. Let us assume that the (open) 

invariancy interval to the right of A* contains A with optimal partition 7f = 

(B,N, T). Define T = a(x*,s*) = {1,2, ... ,n} \ (<7(x*) u <7(s*)). Consider the 

following self-dual quadratic problem 

~o-(s*) = 0, Po-(x*) = 0, ~O'(x*,s*) 2: 0, PO'(x*,s*) 2: 0}, 
(2.2.8) 

and let (C, 7]*, p*) be a maximally complementary solution of {2.2.8). Then, 

B = O"(x*) u <7(C), N = O"(s*) u <7(p*) and T = {1, ... , n} \(BuN). 

Results described in this section allow outlining Algorithm 2.1 for iden­

tifying all invariancy intervals, and computing the optimal value function and 

maximally complementary solutions on all those intervals. Note that the algo­

rithm computes all these quantities to the right from the given initial value A*. 

One can easily outline an analogous algorithm for the transition points to the 

left from A*, e.g., by taking the negative of the perturbation vectors. All the 

subproblems used in Algorithm 2.1 can be solved in polynomial time by IPMs. 

Numerical results and implementation details for Algorithm 2.1 can be found 

in [123]. 

2.3 Hi-Parametric Quadratic Optimization 

Hi-parametric optimization problems are the natural extension of their um­

parametric counterparts. In addition, allowing the independent variation of the 

objective function coefficients and the right-hand-side of the constraints cover a 

much wider class of models. The recent developments on the hi-parametric QO 

are described in [56, 57]. 

The bi-parametric QO problem is 

cj;(A,E) = mm (c+A/:::,c?x+~xTQx 
s.t. Ax= b + ED,b 

X 2:0, 
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Algorithm 2.1: Algorithm for Enumerating All Invariancy Intervals 
for Single-Parametric QO Problems. 

Input: 
A nonzero direction of perturbation: r = ( 6.b, 6.c); 
a maximally complementary solution (x*, y*, s*) of 
(QP>.) and (QD>.) for A= A.*; 
1r

0 = (B0 ,N°, 'f'J), where 8° = cr(x*), N° = cr(s*); 
k := 0; x0 := x*; y0 := y*; s0 := s*; 
ready:= false; 

while not ready do 
begin 

solve Ak = max>.,x,y,s{ A : Ax-A.6.b = b, XBk :2: 0, XNkuTk = 0, 
ATy + s- Qx- .A.6.c = c, BNk :2: 0, SBkuTk = 0}; 
if this problem is unbounded: ready:= true; else 
let (A.k, xk, yk, sk) be an optimal solution; 
begin 

Let x* := xk and s* := s\ 
solve minx,y,s{6.cTx- 6.bTy: (x,y,s) E QPD:} 
if this problem is unbounded: ready:= true; else 
let (xk, yk, sk) be an optimal solution; 
begin 

Let x* := xk and s* := sk; 
solve min~,p,77 { -6.bT 7] + 6.cT~ + ~TQ~ : A~ = 6.b, 
AT17 + p- Q~ = 6.c, ~<T(s*) = 0, 
P<T(x*) = 0, ~O'(x*,s*) :2: 0, Pu(x*,s*) :2: 0}; 
Bk+1 = cr(x*) U cr(C), Nk+l = cr(s*) U cr(p*), 
Tk+1 = {1, ... ,n} \ (Bk+ 1 uNk+l); 
k := k + 1; 

end 
end 

end 
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where A E IR;_mxn, Q E IR;_nxn is a symmetric semi-definite matrix, b E IR;_m and 

c E IR;_n are fixed data, E and ), are two real parameters, 6.b E IR.111
, 6.c E IR;_n 

are the perturbation directions and x E IR;_n is an unknown vector. The dual of 

problem (QP>.,E) is 

max (b + E6.bfy- ~xTQx 
s.t. ATy+s-Qx=c+>.6.c 

x,s 2::0, 
(2.3.2) 

where y E IR;_m, x E IR;_n and s E IR;_n are unknowns. As explained in Section 1.1.3, 

we may assume without loss of generality that dual variable x is equal to the 

primal variable x. In general, both 6.b and 6.c are non-zero vectors. Following 

the convention in Section 2.2, QP>.,E and QP~,E denote the sets of primal feasible 

and primal optimal solutions of ( Q P>.,E), respectively. Similar notation is used for 

the sets of feasible and optimal solutions of ( Q D>.,E). Optimal solutions depend 

on both E and A, consequently we denote the primal-dual optimal solutions of 

the perturbed QO problems by (x*(E, >.), y*(E, >-), s*(E, >.)). 

In the context of bi-parametric QO, we denote the optimal partition (see 

definition (2.1.1)) by n(E, >-) = (B(E, >.), N(E, >.), T(E, >.)): 

B(E, >-) 

N(E, >.) 

T(E, >-) 

{i: x7(E, >-) > 0 for an optimal solution x*(E, >-)}, 

{i: s7, > 0 for an optimal solution (x*(E,>.),y*(E,A),s*(E,A))}, 

{1,2,··· ,n}\(B(E,.A)UN(E,A)) 

{i: x7(E, >-) = s7(E, >.) = 0 for all primal-dual optimal solutions 

(x*(E, A), y*(E, A), s*(E, A))}. 

The optimal value function ¢(E, >.) of the bi-parametric QO problem is 

defined as: 

(c + >-6.cfx*(E, >.) + ~x*(E, >-fQx*(E, >-) 

(b + E6.b)Ty*(E, A)- ~x*(E, A)TQx*(E, A), 
(2.3.3) 

where 6.b and 6.c are fixed perturbing directions. The optimal value function 

¢(E, >-) denotes the optimal value of (QP>.,E) as the function of the parameters), 

and E. 
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In optimal partition invariancy sensitivity analysis we aim to identify the 

range of parameters where the optimal partition remains invariant . The cases 

when either 6 b or 6c is zero has been studied in [12]. The situation when E = A 

has been investigated in [55] and is described in Section 2.2. In these cases the 

region of the parameter is an interval of the real line called invariancy interval. 

The just mentioned special cases are referred to as single- or uni-parametric 

optimal partition invariancy sensitivity analysis. 

Bi-parametric optimal partition based sensitivity analysis has been studied 

in case of LOin [54] . Bi-parametric active set based sensitivity analysis was devel­

oped in [6 , 65] for the LO and QO cases. Earlier studies (see [111, 149 , 72, 110, 64] 

for more details) produced the ideas that are summarized in [54, 6, 65] and we 

refer the interested reader to consult those publications. Fundamental proper­

ties derived in this section overlap with the ones that appeared in [6] with the 

difference that those are based on the active-set notion and, consequently, re­

quire non-degeneracy assumption. While [6] contains theoretical derivations and 

numerical examples, it does not provide a complete algorithm to do systematic 

analysis of hi-parametric QO problems. In the remainder of this paragraph, we 

summarize the most recent results from [54] in a nutshell. The crucial difference 

of the hi-parametric LO case from the QO case is that in the LO case the in­

variancy regions are relatively open rectangles while in the QO case those are 

open convex polyhedrons. In hi-parametric LO the invariancy regions gener­

ate a mesh-like area in IR2 that simplifies enumeration of the regions. This is 

not the case for hi-parametric QO problems that results in a more complicated 

computational algorithm. 

In this thesis, we consider the hi-parametric optimal partition invariancy 

sensitivity analysis for QO in the general case, when both 6b and 6c are nonzero 

vectors and parameters E and A change independently. Let 1r = (B, N , T ) denote 

the opt imal partition for E = 0 and A = 0. vVe are interested in finding all 

the regions on the "E - X' plane where the optimal partition is invariant , i.e. , 

1r(E , A)= (B,N, T ). We call each of these regions invariancy region and denote 
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it by IR(D.b, 6c). It is obvious that one of these regions includes the origin 

(0, 0), and thus, their union is a nonempty set. 

Fundamental Properties 

In this section, we prove some fundamental properties of the invariancy region 

and describe the behavior of the optimal value function in this region. First 

we prove that this region is a convex set. Analogous result can be found in 

Theorems 5.4.3 and 5.4.4 in [6] and Theorem 17 in [64]. 

Lemma 2.3.1 The set IR(D.b, 6c) is a convex set and its closure is a polyhe­

dron. 

Proof. To provide the illustration and insight we give the proof in one direc­

tion and refer to [12] for another direction. Let (c1 , >.1) and (c2, >.2) are two arbi­

trary pairs in TR(D.b, 6c). Let (x(l), y(l), s(ll) and (x(2), y(2), s(2)) are maximally 

(strictly) complementary optimal solutions of problems (QP>.,E) and (QD>.,E) at 

these points. Let (c, >.) be an arbitrary point on the line segment between the 

two points (EI, >.I) and (E2, >.2). There is a e E (0, 1) such that: 

E 

where DE = E2 - E1 and 6>. = >.2 - >.1 . \;Ve define 

x(c,A) 

y(E, A) 

s(c,A) 

Bx(l) + (1 - B)x(2l, 

ey(l) + (1- e)y(2), 

Bs(ll + (1 - B)s(2). 

(2.3.4) 

(2.3.5) 

(2.3.6) 

(2.3.7) 

(2.3.8) 

It is easy to verify that x(E, >.) is a primal feasible solution and (x(E, >.), y(c, >.), 

s(E, >.)) is a dual feasible solution. On the other hand, (}(x(E, >.)) = (}(x(ll) U 

(}(x(2)) =Band (}(s(E, >.)) = (}(s(ll) U (}(s(2l) = N, that proves the optimality of 

these solutions for problems ( QP>.,E) and ( QD>.,E). This implies that 
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To show that equality holds, we assume to the contrary that T :::::l T;,>. and use 

a contradiction argument from the proof of Theorem 6.40 in [12]. It establishes 

that the optimal partition is 1f = (B,N, T) at (E, .\). That completes the proof of 

the first statement. Having the optimal partition given, the optimality conditions 

reduce to a linear inequality system when one fixes all Xi variables zero in the 

NUT part and the si variables zero at the BUT part, giving a polyhedron [120]. 0 

The boundaries between the invariancy regions are line (half-line) segments. 

The line segment between two adjacent invariancy regions is referred to as transi­

tion line segment and the intersection of two transition lines are called transition 

points. Transition points (singleton invariancy regions) and transition lines are 

called trivial invariancy regions. An invariancy region that is neither a singleton 

nor a transition line segment is referred to as non-tr·ivial invariancy region. 

The optimal value function ¢( E, .\) is continuous and piecewise-quadratic. 

While these results are proven in Theorems 5.5.1 and 5.5.2 in [6], the expression 

for quadratic function given in the proof below is not derived in [6]. 

Theorem 2.3.2 The optimal value function is a bivariate quadratic function on 

any invariancy region IR(6b, 6c). 

Proof. If the invariancy region is a non-singleton trivial region, then the opti­

mal value function is a univariate quadratic function by Theorem 4.5 in [55]. Let 

the invariancy region be a non-trivial region. Further, let (c1 , .\ 1), (c2 , .\2 ) and 

(c3 , .\3 ) are three points in general position (not on a line) on the "E-)." plane. 

We are allowed to make assumption about the general position of points since 

the invariancy region is not a trivial region. Let (x*(E1, .\1), y*(E1, .\I), s*(c1, .\!)), 

(x*(E2,.\2),y*(E2,.\2),s*(E2,A2)) and (x*(E3,.\3),y*(E3,.\3),s*(E3,A3)) be primal­

dual optimal solutions at these three points, respectively. Moreover, let ( E, .\) 

be an arbitrary point in the interior of the triangle formed by these three points. 

Therefore, there are 81,82 E (0, 1) with 0 < 81 + 82 < 1 such that 

E E3- 816E1 - 826E2, 

.\3- 816.\1 - 826.\2, 
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where .6E1 = E3- E1, .6E2 = E3- E2, .6>.1 = A3- >-1 and .6,\2 = A3- >-2. Let us 

define 

x*(E, >.) 

y*(E, ,\) 

8*(E, >.) 

x(3) - el.6x(l) - e2.6x(2)) 

y(3) - e1.6y(l) - e2.6y(2), 

s(3) - 81.68(1) - 82.68(2)) 

(2.3.11) 

where .6x(l) = x(3) - x(l), .6x(2) = x(3) - x(2), .6y(l) = y(3) - y(l ), .6y(2) 

y(3) - y(2), .68(1) = 8(3) - 8(1) and .68(2) = 8(3) - 8(2). It is easy to verify that 

(x*(E, >.) , y*(E, >.), 8*(E, >.)) is a primal-dual optimal solution of problems (QP>..,€) 

and (QD>..,€). Substituting (2.3.10) and (2.3.11) in (2.3.3) gives 

where 

1 
cp(E, A) (b + E.6bf y*(E, A)- 2x*(E, ,\fQx*(E, A) (2.3.12) 

ao + al el + a2e2 + a3el e2 + a4ei + a5e~ ) 

bTy(3) + E3.6bTy(3)- Hx(3))TQx(3), 

-bT_6y(l)- E3.6bTy(l )- .6E1.6bTy(3) + (x(3))YQ_6x(l), 

-bT _6y(2)- E3.6bTy(2)- .6E2.6bTy(3) + (x(3)fQ_6x(2), 

.6E 1_6bT _6y(2) + .6E2 _6bT _6y(l) - ( _6x(2) f Q _6x(2)' 

.6E1.6br .6y(1)- ~(.6x(llfQ.6x(ll, 

.6E2.6br .6y(2) - ~ ( .6x(2) f Q 6x(2). 

(2.3.13) 

On the other hand, solving equations (2 .3.10) and (2.3.9) for 81 and 82 gives 

where 

a1 + /31E + /1A, 

a2 + /32E + /2A, 

a _ >..3(6q +6€2)-€3 (6 >..1 +6--\2) 
2 - 6q6--\2-6€26At ' 

- -(6€2+6€ t) 
/2 - 6q6>..2 -6€26>..1. 

38 

(2.3.14) 

(2.3.15) 

(2.3.16) 



Ph.D. Thesis - Oleksandr Romanko McMaster- Computing and Software 

Substituting (2.3.13)-(2.3.16) in (2.3.12) leads to the following representation of 

the optimal value function: 

where 

ad3l + a2j32 + a3(a1j32 + a2j31) + 2a4a1j31 + 2asa2f32, 

an1 + a2'Y2 + a3(a112 + a2'Y1) + 2a4a111 + 2asa2'Y2, 

a3('Y1j32 + 'Y2f3I) + 2a4'Ylf3I + 2as'Y2,82, 

a3 f3I !32 + a4 /31
2 

+as /32
2

, 

(2.3.17) 

Clearly (2.3.17) is a quadratic function of E and>.. Because (E1, >. 1), (E2, >.2) and 

( E3 , >.3) are three arbitrary points in the non-trivial invariancy region, the claim 

of the theorem follows directly from (2.3.17). The proof is complete. 0 

Corollary 2.3.3 The boundary of a non-trivial invariancy region consists of a 

finite n'umber of line segments, and on each such line segment the optimal value 

function is a univariate quadratic function. 

Proof. We know that the optimal value function on the open set representing 

the non-trivial invariancy region is quadratic and represented by (2.3.17). By 

Lemma 2.3.1 the closure of the non-trivial invariancy region is a convex polyhe­

dron. Thus, the non-trivial invariancy region boundary consists of a finite number 

of half-lines and/or line segments. On each line segment an optimal partition is 

defined by construction. The hi-parametric QO problem can be considered as a 

uni-parametric problem on each line segment by computing appropriate linear 

relations between two parameters. Using continuity of the optimal value func­

tion we get that in the limit for the border line segment, we also obtain a single 

quadratic function. So, the optimal value function on each border line segment 

of the non-trivial invariancy region boundary is a single univariate quadratic 

function. 0 
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An important tool in identifying invariancy regions 'IR( 6.b, 6.c) will be 

detecting invariancy line segments on a line. When, e.g., E = A in the simplest 

case, the range of parameter variation is an interval of the real line. In this case 

one can identify the range of parameters via solving the following two auxiliary 

LO problems [55]: 

Ae = min {A: 
>..,x,y,s 

Ax - A6.b = b, xa ;:.::: 0, XNuT = 0, (2.3.18) 

AT y + s- Qx- A6.c = c, SN;:.::: 0, sauT = 0 }, 

and 

Au =max{ A: 
A,x,y,s 

Ax - A6.b = b, xa ;:.::: 0, XNuT = 0, (2.3.19) 

AT y + s- Qx- A6.c = c, SN;:.::: 0, sauT = 0 }. 

where 1r = (B, N, T) is the optimal partition for E = A = 0. 

Remark 2.3.4 These attxiliary problems are simpler when either 6.b or 6.c is 

a zero vector. One may find the details in [12]. 

Remark 2.3.5 By analyzing the solutions of (2.3.18) and (2.3.19) we can make 

some conclusions about the invariancy regions in the "E - A" plane. If solving 

problems (2.3.18) and (2.8.19} lead to the singleton {0}, then the invariancy 

reg·ion 'IR(6.b, 6c) is a one dimensional set or the singleton {0}. In both of the 

cases, the 'IR(6.b, 6c) is a trivial region. ff Ae < Au. in (2.8.18}-(2.3.19}, then 

the region 'IR( 6.b, 6.c) is a one dimensional set or it is two dimensional, i.e. a 

non-tr·ivial region. 

The invariancy region that contains the origin (E, A) = (0, 0) is referred to 

as the actual invariancy region. 

Detecting the Boundary of an Invariancy Region 

In this section, we describe the tools to identify a non-trivial invariancy region. 

Recall that for E = A, the hi-parametric QO problem reduces to uni-parametric 
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QO problem. This trivial observation suggests choosing a method to convert 

the hi-parametric QO problem into uni-parametric QO problems. We start with 

finding some points on the boundary of the invariancy region. To accomplish 

this, we select the lines passing through the origin as 

A= tE. (2.3.20) 

For now, we assume that the slope t is positive. Substituting (2.3.20) into the 

problem (QP>..,e) converts it to the following uni-parametric QO problem: 

min { (c + Ef:,c)T x + ~xTQx I Ax= b + E6b, x ~ 0}, (2.3.21) 

where 6c = t6c. This way we can solve two associated auxiliary LO problems 

(2.3.18) and (2.3.19) to identify the range of variation for parameter E when 

equation (2.3.20) holds. These two auxiliary LO problems are: 

Ae = min {A : Ax - A6b = b, XB ~ 0, XNuT = 0, 
>..,x,y,s 

(2.3.22) 

AT y + s- Qx- A6c = c, SN ~ 0, sBuT = 0 }, 

and 

Au = max {A : Ax- A6b = b, XB ~ 0, XNuT = 0, 
>..,x,y,s 

(2.3.23) 

T -A y + s- Qx- A6c = c, SN ~ 0, SBuT = 0 }, 

where 1r = (B,N, T) is the optimal partition forE= A= 0. 

Let us eonsider the case when the problem (2.3.22) is bounded for two given 

distinct nonzero values t1 and t2 (if the problem is unbounded, we know that the 

invariancy region is unbounded) and their objective values are A(t1 ) and A(t2 ), 

respectively. Thus, two points (E(t1), A(ti)) and (c(t2 ), A(t1 )) of the invariancy 

region boundary are known. 

Let 1r
1 = (B(A(ti)), N(A(t 1)), T(A(ti))) and 1r

2 = (B(A(t2 )), N(A(t2)), 

T(A(t2 ))) be optimal partitions at (E(ti), A(ti)) and (c(t2 ), A(t2 )), respectively. 

There are two possibilities for these optimal partitions. 
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1
i(.>.(t,), <(tt)) 

.A=tt<i~ 
: 11'"1 = 7r2 

................. 1r = (B,N,T) f I 
.............................. ~.. /r.>.(t2),<(t2)) (0,0/ ·;·-;;; .. ;·;·;; .... 

(a) 

- -':'':~:~ x~,::,~:::, 
'" ·;'-~ ~-·-

(b) (c) 
Figure 2.2: Illustration of Case 1 of the Bi-Parametric QO Algorithm. 

D Case 1: n 1 = n2 . The following lemma states that in this case we are able 

to identify a part of the boundary of the invariancy region that is a line on the 

"E - .\" plane. 

Lemma 2.3.6 Let (E1, .\I) and (E2, .\2) be two distinct points on the "E-.\" plane, 

where the optimal partitions at these points are identical. Then, the optimal par­

tition for any point on the l'ine segment connecting these two points is invariant, 

and equal to the optimal partition at the two given points. 

Proof. Let aE + f3 .\ = 1 be the line passing through the two points ( E 1 , .\1) 

and ( E2 , .\2). We take both a and f3 to be non-zero, otherwise we are back to the 

uni-parametric case described in [55]. So, we have: 

1 a 
A= 73- 73E. (2.3.24) 

Substitution of (2.3.24) into the QO problem ( Q P>..,E) reduces it to a uni­

parametric QO problem as follows: 

min= { (c + E!:::.cf x + ~xTQx \Ax= b + E!:::.b, x ~ 0}, (2.3.25) 

where c = c + ~!:::.c and L::.c = ~!:::.c. It is proven that the range of parameter 

variation in this case is an interval of the real line and for any E in this range the 

optimal partition is invariant [55]. The proof is complete. D 

Using Lemma 2.3.6 we can conclude that the boundary of the invariancy 

region contains a segment of the line (2.3.24). To identify the end points of this 

line segment, we need to find the invariancy interval for problem (2.3.25). The 
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following theorem provides two auxiliary QO problems to achieve it. The proof 

is straightforward and is omitted. 

Theorem 2.3. 7 Let ( E1 , Ar) and ( E2 , A2 ) be two distinct points on the "E - A" 

plane. Let 1f = (B,N, T) denote the optimal partition at these two points. More­

over, let aE + /3A = 1 denote the line passing through these two points. By solving 

the following two auxiliary LO problems: 

Ee(a, !3) = min { E: Ax- E6b = b, xa 2: 0, x711u'T = 0, 
c,x,y,s 

(2.3.26) 

T - -
A y + s- Qx- d:).c = c, s711 2: 0, sau'T = 0 }, 

and 

Eu(a, ,B) =max{ E: Ax- E6b = b, xa 2: 0, x711u'T = 0, 
E,x,y,s 

(2.3.27) 

T - -
A y + s- Qx- E6c = c, s711 2: 0, sau'T = 0 }. 

where c = c + ~l::,c and 6c = ~6c, one can identify the two vertices of the 

invariancy region as ( Ee( a, /3), Ae( a, /3)) and ( Eu( a, !3), Au( a, /3)), where Ae( a, /3) = 

~- ~Ee(a, /3) and Au(a, /3) = ~- ~Eu(a, /3). 

Remark 2.3.8 Observe that one of these auxiliary LO problems can be un­

bounded. In this case, the actual invariancy reg·ion is unbo·unded. If both problems 

(2.3.26) and (2.3.27) are unbounded than there is only one invariancy region on 

the "E - A" plane. 

Case 1 is illustrated at Figure 2.2. Figure 2.2(a) shows two points with identical 

optimal partition and Figure 2.2(b) depicts the corresponding identified transi­

tion line segment. Figure 2.2(c) illustrates the non-trivial invariancy region with 

its boundary. 

0 Case 2: n 1 =!= n2
. Let (E', ">:) be an arbitrary point on the line segment 

between the two points (E1 , A1) and (E2 , A2). Moreover, let 1f = (B,N, T) denote 

the associated optimal partition at (E', ">:). We distinguish three cases for these 

optimal partitions. 
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X
; (A(t,), E(t,)) ~· (A(It), E(tt)) 

A= t1E i _ _ _ A= t 1E i ·-
f (A,€) if=(B,N,'T) f (A,€) 

...... 1r=(B,N,T)i .. ...- ...... 1r=(B,N,T)j .... ··· 
.................................. ~:::::: .. (A(t2), E(t2)) .................................. J;:·.-:: .. (A(t2), E(t2)) 

(0, 0) I ·; .. :: .. i~e..... (0, 0) I ; .. :: .. i;·;; .... · 
(a) (b) (c) 

Figure 2.3: Illustration of Case 2.1 of the Bi-Parametric QO Algorithm. 

Subcase 2.1: 1f-=/- 1r, 1f-=/- 1r
1 and 1f-=/- 1r

2
. In this case, all three points (E 1 , >..!), 

( E2 , .\.2) and ('E, >:) are on the boundary of the invariancy region. Moreover, 

the points (E1 , .\.1 ) and (E2 , .\.2) are the transition points on the boundary 

of the invariancy region. Figure 2.3 illustrates this case. The statement 

follows directly from Corollary 2.3.3. 

Subcase 2.2: 1f -=/- 1r and either 1f = 1r
1 or 1f = 1r

2 holds. Without loss of gen­

erality, let 1f -=/- 1r
1

, but 1f = 1r
2

. In this case, both points ( E2 , .\.2 ) and ('E, >:) 

are on a single boundary line of the invariancy region and consequently, 

Theorem 2.3. 7 can be used to identify two vertices of the invariancy region. 

We claim that in this case, ( E1 , .\.1) is one of the endpoints on this part of 

the invariancy region. Because, if (E1 , .\.1) is not one of the endpoints of 

this line segment, then the endpoint should be somewhere between (E1 , .\.1) 

and ('E, >:). It means that (E 1 , .\.1) is not on the line segment between (E2 , .\.2 ) 

and ('E, >:). It is obvious that ( E1, >..I) and ('E, >:) are not in the neighboring 

line segment, because two adjacent line segments could not have the same 

slope. Thus, these two points lay on different line segments. This situ­

ation contradicts the convexity of the invariancy region. This subcase is 

illustrated on Figure 2.4. 

Subcase 2.3: 1f = 1r. It this case, it is immediately understood that the point 

('E, >:) belongs to the invariancy region TR(D.b, D.c). It this case, we solve 

problems (2.3.22) and (2.3.23) for D.c = t36c, where t3 = ~-

First we prove that problem (2.3.22) for D.c = t36c is not unbounded. To 
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(a) (b) (c) 

Figure 2.4: Illustration of Case 2.2 of the Bi-Parametric QO Algorithm. 

(a) (b) (c) 
F igure 2.5: Illustration of Case 2.3 of the Bi-Parametric QO Algorithm. 

the contrary, let (2.3.22) is unbounded. One can consider that t 1 = 1d3 , 

where"' > 0. In this case, it leads to the conclusion that problem (2.3 .26) is 

unbounded which contradicts the assumption. Thus, let E3 be the optimal 

objective function value of problem (2.3.22). Consequently >.3 is known. 

Let 1r3 = (B(>.(t3 )), N(>. (t3 )), T(>. (t 3 ))) be the optimal partition at (E3 , ?-3 ). 

Henceforth , the situation between optimal partitions 1r
1 and 1r3 and optimal 

partitions 1r2 and 1r3 would fall in one of the two cases: Case 1 or 2. Now, 

we consider pairs of points (E 1 , ?. 1) - (E3 , ?.3 ) and (E3 , ?.3) - (E2 , ?.2 ) again to 

determine if Case 1 or 2 applies to each pair. vVe repeat this procedure until 

the invariancy region boundary between the points (E1 , ?. 1) and (E2 , ?.2 ) is 

completely traced. Figure 2.5 illustrates the procedure. In this way, we can 

continue to identify all the transition points (and transition lines) of the 

invariancy region. Since the number of optimal partitions is finite , and all 

auxiliary LO problems can be solved in polynomial time, thus identifying 

the borders of the actual invariancy region is done in polynomial time in 

the number of optimal partitions. 
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Now, we can summarize the procedure of identifying all transition points 

(vertices) and transition lines (edges) in an invariancy region. Lets assume that 

we know an initial inner point of the invariancy region and one of the edges 

(Figure 2.6(a) and (b) shows how to find an inner point of the region). We are 

going to "shoot" by solving problem (2.3.26) or (2.3.27) counter-clockwise from 

the initial point to identify each edge (see Figure 2.6(c-f)). As we already know 

one of the edges, we exclude all the angles Cl!exp between the initial point and the 

two vertices v1 and v2 of the known edge from the candidate angles to shoot. 

So, we shoot in the angle v0 - v2 plus in the small angles (3 and 2,8 and identify 

the optimal partition in the two points we get. Here we use Case 1 or Case 2 

described above to find the invariancy region boundary between the vertex v2 

and the point we get when shooting in the angle 2(3. If the optimal partition 

is the same for the points in the directions (3 and 2(3, we compute the vertices 

of this new edge e2 and verify if one of those correspond to a vertex of the 

previously known edge e1 . If it is not the case, then bisection is used to identify 

the missing edges between e1 and e2 . We continue in this manner until all edges 

of the invariancy region are identified. 

Transition from an Invariancy Region to the Adjacent 
Invariancy Regions 

The initialization step of the algorithm is to get an initial inner point of an 

invariancy region. This step can be combined with identifying the parameters' 

feasibility bounds in the "E - X' space. Alternatively, parameters' infeasibility 

regions can be identified during enumeration of invariancy regions. We describe 

only the first approach in more detail as the second one is its straightforward 

modification. 

The first step of the algorithm is to determine the bounding box for the 

values of E. Due to the fact that E is the parameter appearing in the constraints, 

the problem ( Q P>.,E) may become infeasible for large or small E values. De­

termining the bounding box is done as in many computational geometry algo-
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Figure 2.6: Invariancy Region Exploration Algorithm for Bi-Parametric QO. 

rithms [36, 114]. To find the range of E where the parametric problem (QP>..,€) 

is feasible, we solve the following uni-parametric problem with the parameter E 

starting from the initial point (>.0 , c0 ): 

min { (c+ 6c>.0? x + ~xTQx I Ax= b + t6b, x ~ 0}. (2.3.28) 

Solving problem (2.3.28) with Algorithm 2.1 gives all transition points and in­

variancy intervals on the line (>.0 , E), and, consequently, the values of Emin and 

Emax that are the lower and the upper feasibility bounds for the hi-parametric 

problem (QP>..,E), see Figure 2.7(a). Observe that we may have either Emin = -oo 

or Emax = +oo, or both. 

After identifying the feasibility bounds in the "E - X' plane, we choose 

Emin =/= -oo or Emax =/= 00. Let E = Emin and the optimal partition at the point 

(>.o, Ernin) is 7Tmin = (Brnin,Nmin, Trnin)· Then we can solve problems (2.3.18) and 

(2.3.19) with the optimal partition 7T = 7Tmin and >.6c replaced by Emin6c to 

identify the edge on the line E = Emin, see Figure 2. 7 (b). If the point ( ,\0 , Emin) is 
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E Emax = +oo E I Emax = +oo Emax = +oo 

(a) (b) (c) 

Figure 2.7: The Initialization of the Bi-Parametric QO Algorithm. 

a singleton, we find the invariancy interval to the right from it. Now, we have 

an edge of one of the invariancy regions and we can get an initial inner point of 

that invariancy region selecting a point on the edge and utilizing Algorithm 2.1. 

Using that initial inner point, we can identify the first non-trivial invariancy 

region including all of its edges and vertices as described on pages 40-46, see 

Figure 2.7(c). 

To enumerate all invariancy regions in the bounding box, we use concepts 

and tools [36, 114] from computational geometry. The algorithm that we are 

going to present possess some similarities with polygon subdivision of the space 

and planar graphs. Our algorithm is essentially the subdivision of the bound­

ing box into convex polyhedrons that can be unbounded. First, we introduce 

the notation and geometric objects used in computational geometry to describe 

these type of problems. Second, we show how to use those objects to create the 

complete algorithm for invariancy region enumeration. 

The geometric objects involved in the given problem are vertices, edges 

and cells (faces), see Figure 2.8. Cells correspond to the non-trivial invariancy 

regions. Edges and vertices are trivial invariancy regions, each edge connects 

two vertices. It is important to notice that cells can be unbounded if the cor­

responding invariancy region is unbounded. That is why we need to extend the 

representation of the vertex to allow incorporating the information that the ver-
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tex can represent the virtual endpoint of the unbounded edge if the corresponding 

cell is unbounded. For instance, edge ei on Figure 2.8 is unbounded, so in addi­

tion to its first endpoint VI, we add another virtual endpoint being any point on 

the edge except VI· Consequently, each vertex need to be represented not only by 

its coordinates (x, y), but also by the third coordinate z that indicates if it is a 

virtual vertex and the corresponding edge is unbounded. Another note to make 

is that the optimal partition may not be unique for each vertex or edge. First, at 

every virtual vertex, the optimal partition is the same as on the corresponding 

edge. Second, we may have situations when the optimal partition is the same on 

the incident edges and vertices if those are on the same line (edges e2 and e7 and 

vertex v3 haves the same optimal partition on Figure 2.8). 

The data structures that we use for storing the information about vertices, 

faces and cells are similar to the ones used in many computational geometry 

algorithms [36] and are described in Chapter 4. Traversing the cell is usually 

done counter-clockwise and we are going to follow that convention as well. The 

extension of the standard storage and representation model is that we allow 

convex polyhedrons (cells) to be unbounded and that we do not require the 

vertexes to be in general positions (three vertices can be on one line). 

To enumerate all invariancy regions we use two queues that store indices 

of the cells that are already investigated and to be processed. At the start of 

the algorithm, the first cell enters the to-be-processed queue and the queue of 

completed cells is empty (ci is entering the to-be-processed queue on Figure 2.8). 

After that, we identify the cell ci including all faces and vertices starting from 

the known edge e1 and moving counter-clockwise (note that the virtual vertices 

corresponding to the unbounded edges are not shown on Figure 2.8). Due to 

the fact that the optimal partition at the edge between the vertices vi and v2 

is the same, we are able to identify only the edge e2 at the moment. Now, 

when we have identified all the edges incident to the cell c1 we can add the 

potential cells corresponding to each of the edges to the to-be-processed queue, 

so e1 -t 0 (infeasible), e2 -t c2 , e 3 -t c3 . So, we add c2 and c3 to the to-be-
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\ 

Figure 2.8: Bi-Parametric QO --Computational Geometry Problem Representa­
tion. 

processed queue and move c1 to the completed queue. Next, we start processing 

the cell c2 as the first element of the to-be-processed queue. At this stage, we 

identify that the edge e2 is shorter than the original one and we split it into 

two edges - e2 and e7 (note that the edges e2 , e7 and vertex v3 have the same 

optimal partition). As the result of splitting edge e2 into two edges, we need 

to add the cell c4 that corresponds to the edge e7 to the to-be-processed queue. 

We get e7 ----+ c4 , e2 ----+ c1 (already processed), e4 ----+ 0 (infeasible), e5 ----+ c5 , 

e5 ----+ c5 and add c4, cs, c6 into the to-be-processed queue. Now, c2 is moved 

to the completed queue. Next in the to-be processed queue is c3 that gives us 

e3 ----+ c1 (already processed), e8 ----+ c7 and e9 ----+ c8 . So, c7 and c8 are added to 
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the to-be-processed queue and c3 is moved to the completed queue. Next, we 

process c4 and identify that c4 = c6 = c7 based on checking the identified optimal 

partitions list and identified edges list. Here, e10 ---+ c9 . So, c4 is moved to the 

completed queue and c6 , c7 are removed from the to-be-processed queue. Next 

in the to-be-processed queue is c5 and we identify that c5 = c8 = c9 and there 

are no more new edges. As the result, we move c5 to the completed queue and 

remove c8 and c9 from the to-be-processed queue. The to-be-processed queue is 

empty now, so we have identified all the invariancy regions. 

Algorithm 2.2: Bi-Parametric QO Algorithm for Enumerating All 
Invariancy Regions. 

Data: The QO optimization problem and 6b, 6c 

Result: Optimal partitions on all invariancy intervals, optimal value 
function 

Initialization: compute bounding box in the "E - X' plane and 
compute inner point in one of the invariancy regions; 

while not all invariancy regions are enumerated do 

run sub-algorithm to compute all edges and vertices of the current 
invariancy region; 

add all unexplored regions corresponding to each edge to the 
to-be-processed queue and move the current region to the queue of 
completed region indices; 

if to-be-processed queue of the unexplored regions is not empty then 

pull out the first region from the to-be-processed queue; 

compute an inner point of the new region; 

else 

return the data structure with all the invariancy regions, 
corresponding optimal partitions and optimal value function; 

end 

end 
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Note that in the description of our algorithm we did not explicitly consider 

the cases when the optimal partition changes on the open line segments at the 

boundary of invariancy regions. This situations can potentially happen and our 

algorithm is able to handle it correctly. We did not encounter these cases on the 

examples that we have solved. To clarify if the optimal partition is invariant on 

the open boundary line segments of non-trivial invariancy regions remains for 

future research. 

The proposed Algorithm 2.2 on page 51 runs in linear time in the output 

size (the constant C · n is 3). But, by the nature of the parametric problem, the 

number of vertices, edges and faces can be exponential in the input size. In our 

experiences, the worst case does not happen in practise very often though. 

In summary, in this section we have extended the uni-parametric simul­

taneous perturbation results for QO to the hi-parametric case. Algorithm 2.2 

outlined in this section allows identifying all invariancy regions where the op­

timal partition is invariant by solving a series of uni-parametric QO problems. 

We can also compute the optimal value function and maximally complementary 

solutions on each invariancy region. 

Even though all presented auxiliary optimization problems can be solved 

in polynomial time by IPMs and the number of different optimal partitions is 

finite, enumeration of all invariancy regions may not be achieved in polynomial 

time due to the fact that the number of different optimal partitions may increase 

exponentially with the cardinality of the index set. That is why the algorithm 

presented is linear in the output size, but not in the input size. 

2.4 Multi-Parametric Quadratic Optimization 

Generalizing the results of hi-parametric QO to the multi-parametric case, when 

the perturbation parameters appear in the objective function and the constraints 

are independent, is the natural extension of the previous findings in Section 2.3. 

Multi-parametric analysis poses many challenges because even extension from 
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one dimensional parameter space to the two-dimensional parameter space is non­

trivial. The complexity of the algorithm grows substantially and the necessity to 

use a recursive algorithm may appear. The difficulty is that the invariancy regions 

of the multi-dimensional parameter space are high-dimensional polyhedrons that 

should be identified and enumerated by an algorithm. 

Having efficient techniques and algorithms for hi-parametric QO opens the 

way of designing algorithms for multi-parametric problems where the parameters 

.A and/or E are multidimensional vectors. Those technics are mostly application­

driven and would probably have a small number of distinct parameters. 

The following fundamental properties of the invariancy regions and optimal 

value function for the hi-parametric QO problem extend to the multi-parametric 

case (with k parameters): 

• the optimal partition 1r = (B,N, T) is constant on invariancy regions; 

• the invariancy regions IR are convex sets; 

• the invariancy region IR can be the singleton {0}, one dimensional set, 

two dimensional polyhedron, ... , k-dimensional polyhedron that all might 

be unbounded; 

• the optimal value function is a multivariate quadratic function on invari­

ancy region IR; 

• the optimal value function is continuous and piecewise multivariate quad­

ratic. 

Keeping in mind that fundamental properties of invariancy regions and 

the optimal value function can be easily extended from the hi-parametric to the 

multi-parametric case, we can also extend the hi-parametric Algorithm 2.2. The 

computational challenge of the algorithm would significantly increase, as instead 

of working in the 2-dimensional space of parameters, we need to explore the 

k-dimensional space. 

To the best of our knowledge, there are no results on optimal partition­

based multi-parametric QO in the literature. Properties of the optimal partition­

based multi-parametric LO were investigated in [69], but no algorithm was pro-
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vided. 

An active set-based algorithm for multi-parametric QO was described in 

[142, 116]. It is designed for solving the following parametric problem with 

perturbation on the right-hand-side of the constraints only: 

mm ~xTQx 
s.t. Ax::; b +SA, 

(2.4.1) 

where S E JRmxn and A E JRm is the parameter. This kind of problems often ap­

pear in model predictive control (see, e.g., [142] for more details and references). 

We would like to mention some differences of our algorithmic approach to 

parametric QO optimization and the algorithm described in [116] which is imple­

mented in [86]. First, in our study we consider simultaneous perturbation in the 

right-hand-side of the constraints and the linear term of the objective function 

with different parameters, while in [116] and related publications only perturba­

tion in either the right-hand-side or the linear term of the objective is considered. 

Second, in [116] the authors define a critical region as the region of parameters 

where active constraints remain active. As the result, an important precondi­

tion for analysis in [116] is the requirement for either making non-degeneracy 

assumption or exploiting special tools for handling degeneracy, while, our algo­

rithm does not require any non-degeneracy assumptions. Finally, the algorithm 

for parametric quadratic optimization described in [116] uses a different param­

eter space exploration strategy than ours. Their recursive algorithm identifies a 

first critical (invariancy) region, and after that reverses the defining hyperplanes 

one by one in a systematic process to get a subdivision of the complement set. 

The regions in the subdivision are explored recursively. As the result, each crit­

ical (invariancy) region can be split among many regions and, consequently, all 

the parts has to be detected. Thus, each of the potentially exponential number 

of invariancy regions may be split among exponential number of regions, which 

makes their algorithm computationally expensive. 
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Chapter 3 

Multiobjective and Parametric 
Optimization 

In this chapter we highlight the relationships between multiobjective optimiza­

tion and parametric optimization t hat is used to solve such problems. Solution 

of a multiobjective problem is the set of Pareto efficient points, known in the 

literature as P areto efficient frontier or Pareto front . Pareto points can be ob­

tained by using either weighting the objectives or byE-constrained (hierarchical) 

method for solving multiobj ective optimization models. Using those methods we 

can formulate them as parametric optimization problems and compute their effi­

cient solut ion set numerically. vVe present a methodology that allows tracing the 

Pareto efficient frontier without discretization of the obj ective space and without 

solving t he corresponding optimization problem at each discretization point [58]. 

3.1 Multiobjective Optimization Problems 

Let x be an n-dimensional vector of decision variables. The multiobjective opti­

mization problem, where the goal is to optimize a number of possibly conflicting 

objectives simultaneously, is formulat ed as: 

mm {h (x), h(x), ... , fk(x)} 
s.t. xE D, 
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where fi : lR.71 ~JR., i = 1, ... ' k are (possibly) conflicting objectives and n <;;:; lR.71 

is a feasible region. Each of the functionsfi represent an attribute or a decision 

criterion that serves the base for the decision making process. 

Multiobjective optimization is a subclass of vector optimization, where the 

vector-valued objective function fo = {!l(x), h(x), ... , fk(.T)} is optimized with 

respect to a proper convex cone C which defines preferences. When a vector 

optimization problem involves the cone C = JR.+, it is known as a multicriteria 

or multiobjective optim'ization problem. 

In this chapter we consider convex multiobjective conic optimization prob­

lems and most of the results hereafter are restricted to that problem class. More­

over, we also mention some of the results available for general multiobjective 

problems. Problem (3.1.1) is a convex multiobjective optimization problem if 

all the objective functions !1, ... , fk are convex, and the feasible set n is convex 

as well. For example, it can be defined as n = {x : 9J(x) :::; 0, h1(x) = 0}, 

where the inequality constraint functions 9J : JR.n ~ JR., j = 1, ... , l are con­

vex and the equality constraint functions h1 : JR.n ~ JR., j 1, ... , m are 

affine. For 10, QO and SOCO problems the set of constraints can be writ­

ten as n = {x : Ax = b, x ?x 0}, where K is an appropriate convex cone and 

Ax = b are the equality constraints with A E JR.mxn and b E JR.m. The set n, is 

called the feasible region in the decision space or just the decision space. 

Definition 3.1.1 A vector x* E n is Pareto optimal (or efficient solution) if 

there does not exist another x E n such that fi(x) :::; fi(x*) for all i = 1, ... , k 

and fi ( x) < fJ ( x*) fo'r at least one index j. 

The set of all Pareto optimal (or efficient) solutions x* E n is called the 

Pareto optimal (efficient solution) set nE. 
As values of the objective functions are used for making decisions by the 

decision maker, it is conventional for multiobjective optimization to work in the 

space of the objective functions, which is called the objective space. By mapping 

56 



Ph.D. Thesis - Oleksandr Romanko McMaster- Computing and Software 

the feasible region into the objective space, we get: 

Z={zElRk: z=((fi(x),h(x), ... ,fk(x)fVxEO)}. 

The set Z is the set of objective values of feasible points, it is referred to as the 

set of achievable objective values. Points in the achievable set Z can be ranked 

into efficient and non-efficient points (see Figure 3.1) that leads to the definition 

of Pareto optimality. 

Analogous definition of Pareto optimality can be stated for an objective 

vector z* E Z. Equivalently, z* is Pareto optimal if the decision vector x* 

corresponding to it is Pareto optimal [102]. 

Definition 3.1.2 For a given multiobjective problem (3.1.1) and Pareto optimal 

set OE, the Pareto front is defined as: 

ZN = {z* = (fi(x*), ... , fk(x*)f I x* E OE}. 

A set ZN of Pareto optimal (also called nondominated or efficient) solutions 

z* forms the Pareto efficient frontier or Pareto front. The Pareto front, if k = 2, 

is also known as the optimal trade-off curve and fork > 2 it is called the optimal 

trade-off surface or the Pareto efficient surface. 

Solution methods are designed to help the decision maker to identify and 

choose a point on the Pareto front. Identifying the whole frontier is compu­

tationally challenging, and often it cannot be performed in reasonable time. 

Solution methods for multiobjective optimization are divided into the following 

categories [102]: 

• a priori methods are applied when the decision maker's preferences are 

known a priory; those include the value function method, lexicographic 

ordering and goal programming. 

• iterative methods guide the decision maker to identify a new Pareto point 

from an existing one (or existing multiple points), the process is stopped 

when the decision maker is satisfied with the actual efficient point. 
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• a posteri(Wi methods are used to compute the Pareto front or some of its 

parts; those methods are based on the idea of scalarization, namely trans­

forming the multiobjective optimization problem into a series of single­

objective problems; a posteriori methods include weighting methods, the 

s-constrained method and related scalarization techniques. 

Computing the Pareto front can be challenging as it does not posses known 

structure in most of the cases, and, consequently, discretization in the objective 

space is frequently used to compute it. The problem is that discretization is 

computationally costly in higher dimensions, and discretization is not guaranteed 

to produce all the (or desired) points on the Pareto front. 

It turns out that for some classes of multiobjective optimization problems 

the structure of the efficient frontier can be identified. Those include multiobjec­

tive 10, QO and SOCO optimization problems. For those classes of problems, 

the Pareto efficient frontier can be sub-divided into pieces (subsets) that have 

specific properties. These properties allow the identification of each subsets of 

the frontier. The piece-wise structure of the Pareto front also provides additional 

information for the decision maker. 

Before looking at the scalarization solution techniques for multiobjective 

optimization, that allow us to identify all nondominated (Pareto efficient) solu­

tions, we need to introduce a number of concepts and some theoretical results. 

DECISION SPACE OBJECTIVE SPACE 

feasible z 
/Pareto front 

min ft 

Figure 3.1: Mapping the Decision Space into the Objective Space. 
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Definition 3.1.3 An objective vector z* E Z is weakly Pareto optimal if there 

does not exist another decision vector z E Z such that Zi < z; for all i = 1, ... , k. 

The set of weakly Pareto efficient (nondominated) vectors is denoted by 

ZwN· It follows that ZN ~ ZwN. When unbounded trade-offs between objectives 

are not allowed, Pareto optimal solutions are called proper [102]. The set of 

properly efficient vectors is denoted as ZpN. 

Both sets ZwN (weak Pareto front) and Z N (Pareto front) are connected if 

the functions fi are convex and the set S1 satisfies one of the following proper­

ties [44]: 

• S1 is a compact, convex set; 

• S1 is a closed, convex set and Vz E Z, D(z) 

compact. 

{xED f(x)<z}ls 

Let us denote by IRi = { z E JR.k : z ~ 0} the nonnegative orthant of JR.k. 

Consider the set: 

A= Z +JR.~= {z E IRk: fi(x):::; zi, i = 1, ... , k, xED}, 

that consists of all values that are worse than or equal to some achievable objec­

tive value. While the set Z of achievable objective values need not be convex, 

the set A is convex, when the multiobjective problem is convex [15]. 

Definition 3.1.4 A set Z E JR.k is called IR.i -convex if Z + IRi is convex. 

A point x E C is a minimal element with respect to componentwise inequality 

induced by IRi if and only if (x -JR.~) n C = x. The minimal elements of A are 

exactly the same as the minimal elements of the set Z. This also means that any 

hyperplane tangent to the Pareto efficient surface is a supporting hyperplane -

the Pareto front is on one side of the hyperplane [41]. It follows that the Pareto 

front must belong to the boundary of Z [41]. 

Proposition 3.1.1 ZN = (z +lR~)N c bd(Z). 
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When talking about convex multiobjective optimization problems, it is use­

ful to think of the Pareto front as a function, and not as a set. Under assumptions 

about convexity of the functions fi and the set f2 for hi-objective optimization 

problems (k = 2), the (weakly) Pareto front is a convex function [134]. Unfortu­

nately, when k > 2 it is not the case even for linear multiobjective optimization 

problems. 

Most a posteriori methods for solving multiobjective optimization problems 

are based on scalarization techniques. Let us consider the two most popular 

scalarization methods: 

• weighting method; 

• c:-constraint method. 

3.1.1 Weighting Method 

The idea of the weighting method is to assign weights to each objective function 

and optimize the weighted sum of the objectives. A multiobjective optimization 

problem can be solved with the use of the weighting method by optimizing single­

objective problems of the type 

k 

min .2: wdi(x) 
i=l 

(3.1.2) 

s.t X E fl, 

where fi is linear, convex quadratic or second order conic function in our case, 

f2 ~ IRn (convex), wi E lR is the weight of the i-th objective, wi 2:: 0, Vi= 1, ... , k 

and :2::7=1 'Wi = 1. Weights wi define the importance of each objectives. Due to 

the fact that each objectives can be measured in different units, the objectives 

may have different magnitudes. Consequently, for the weight to define the rela­

tive importance of objectives, all objectives should be normalized first. Some of 

the normalization methods are discussed in [63]. As we intend to compute the 

whole Pareto front, normalization is not required. 

It is known that the weighting method produces weakly efficient solutions 

when wi 2:: 0 and efficient solutions if wi > 0 for all i = 1, ... , k [102]. For 
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convex multiobjective optimization problems any Pareto optimal solution x* can 

be found by the weighting method. 

Let us denote by S( w, Z) = { z E Z : z = argminzEZwT z} the set of optimal 

points of Z with respect tow. In addition, we define 

S(Z) = u S(w, Z), S0 (Z) = u S(w, Z). 

As Z is IR.i -convex set in our case, we get [41]: 

S(Z) = ZpN C ZN C So(Z) = ZwN· (3.1.3) 

In addition, if z is the unique element of S(w, Z) for some w ?: 0, then z E ZN 

[41]. The last observation combined with (3.1.3), allows us identifying the whole 

(weak) Pareto front with the use of the weighting method. 

3.1.2 c-Constrained Method 

For illustration purposes, we first consider a problem with two objective func­

tions. Multiobjective optimization can be based on ranking the objective func­

tions in descending order of importance. Each objective function is then min­

imized individually subject to a set of additional constraints that do not allow 

the values of each of the higher ranked functions to exceed a prescribed fraction 

of their optimal values obtained in the previous step. Suppose that h has higher 

rank than f 1 . We then solve 

, min {f2(x) :X E 0}, 

to find the optimal objective value f2. Next, we solve the problem 

min JI(x) 
s.t. j 2 (x) S (1 + E)J;, 

X E fl. 

Intuitively, the hierarchical ranking method can be thought as saying "his more 

important than !I and we do not want to sacrifice more than E percentage of the 

optimal value of h to improve fi." 
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Considering the general case of k objective functions and denoting the 

right-hand-side term of the constraints on the objective functions' values by 

E:j = (1+E1)Jj, we get the following single-objective optimization problem, which 

is known as the E:-constra'ined method: 

min fe(x) 
s.t J1(x) :::; c1, j = 1, ... , k, j # R 

XED. 

(3.1.4) 

Every solution x* of the E:-constrained problem (3.1.4) is weakly Pareto op­

timal [102], so formulation (3.1.4) can be used to compute weak Pareto front ZwN· 

Let x* solve (3.1.4) with cj = .fj(x*), j # £. Then x* is Pareto optimal 

[23, 42] if: 

1) x* solves (3.1.4) for every R = 1, ... , k; 

2) x* is the unique solution of (3.1.4); 

3) Lin's conditions [89, 90]. 

The third set of necessary and sufficient conditions for (strong) Pareto 

optimality of optimal solutions is described in [23] based on the results of Lin 

[89, 90]. Let us define 

c/Je(c) = min{jg(:r) :XED, jj(x) :S E:j for each j # £}. 

The following theorem [23] establishes that ~r* is Pareto optimal if the optimal 

value of (MOC~:;o) is strictly greater than .fe(x*) for any c0 :::; E:*. 

Theorem 3.1.1 Let x* solve (3.1.4) with cj = fj(x*), j # £. Then x* is Pareto 

optimal solution if and only if ¢e(c) > ¢e(c*) for all c such that c :::; E:* and for 

each E: (3.1.4) has an optimal solution with finite optimal value. 

In many cases, conditions 2) and 3) can be verified to identify the Pareto 

front ZN. For instance, the second condition holds when all the objective func­

tions .fj ( x) are strictly convex. Condition 3) can be verified if function ¢e( c) is 

computed by parametric optimization techniques, see Section 3.2. 
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3.2 Multiobjective Optimization 
via Parametric Optimization 

By now, the reader may have understood that multiobjective optimization prob­

lems are closely related to, and can be represented as parametric optimization 

problems. Consequently, we may use algorithms of parametric optimization to 

solve multiobjective optimization problems and to compute the Pareto fronts. 

Before defining the relations between multiobjective optimization and paramet­

ric optimization more formally, we mention that multiobjective 10, QO and, 

to some extent, SOCO problems can be efficiently solved by parametric opti­

mization algorithms. Parametric optimization techniques exist for wider classes 

of problems, but computational complexity may prevent using those directly to 

identify efficient frontiers. 

The main idea of this chapter is that we can solve multiobjective opti­

mization problems using parametric optimization techniques. A posteriori mul­

tiobjective optimization techniques are based on parameterizing ( scalarizing) the 

objective space and solving the resulting parametric problem. Consequently, 

parametric optimization algorithms can be utilized to solve multiobjective opti­

mization problems. 

Based on the weighting method ( 3 .1. 2) and choosing the vector of weights 

as w = (>11, ... , >-k-1, 1)T ~ 0, as w can be scaled by a positive constant, for 

the weighted objective function Li wdi(x), we can formulate the parametric 

optimization problem with the Ai parameters in the objective function as 

¢(>.1, ... , Ak-1) = min >-1!I(x) + ... + Ak-dk-1(x) + !k(x) 
s.t. XED, 

(3.2.1) 

for computing weakly Pareto optimal solutions, or (>.1, ... , Ak-lf > 0 for com­

puting Pareto optimal solutions. Formulation (3.2.1) is known as the Lagrangian 

problem [23] and possesses almost identical properties as the weighting prob­

lem (3.1.2). 

Based on the E-constrained method (3.1.4) we can present the following 
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parametric problem: 

mm fk(x) 
s.t fi(x) :::; Ei, i = 1, ... , k- 1 

X E 0, 
(3.2.2) 

where E1, ... , Ek-l are parameters in the right-hand-side of the constraints. In 

this case, the optimal value function c/J(E1, ... , Ek-l) includes the Pareto front as 

a subset. 

It is not hard to observe that the parametric problems (3.2.1) and (3.2.2) 

are equivalent to (3.1.2) and (3.1.4), respectively, but they are just written in the 

forms used in the parametric optimization literature. The relationships between 

those formulations and their properties are extensively studied in [23]. 

Algorithms and techniques developed for solving parametric optimization 

problems are described in Chapters 2 and 8. Note that the optimal value function 

¢(c:) of problem (3.2.2) is the boundary of the set A and the Pareto front is a 

subset of that boundary. These results are illustrated by examples in Chapter 7. 

As we learned in this section, multiobjective optimization problems can be 

formulated as parametric optimization problems. Some classes of multiobjec­

tive optimization problems that include linear and convex quadratic optimiza­

tion problems can be efficiently solved using parametric optimization algorithms. 

Parametric optimization allows not only computing Pareto efficient frontiers (sur­

faces), but also identifying piece-wise structures of those frontiers. Structural 

description of Pareto fronts gives functional form of each of its pieces and thus 

helps decision makers to make better decisions. 

3.3 Multiobjective and Parametric Quadratic 
Optimization 

Results described in Sections 3.1 and 3.2 apply to general convex multiobjec­

tive optimization problems. In contrast, parametric optimization techniques 

discussed in this thesis apply to LO, QO and SOCO problems only. In this 
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section we specialize the formulations presented in Section 3.2 to the parametric 

optimization problem classes described in Chapter 2 and 8. 

We define the multiobjective quadratic optimization problem as a convex 

multiobjective problem with one convex quadratic objective function fk and k-1 

linear objectives fi, ... , fk- 1 subject to linear constraints. For the multiobjective 

QO problem the weighted sum formulation (3.2.1) specializes to 

T T 1 T ¢(>,1, ... , >.k-1) = mm >.1c1 x + ... + Ak-1ck_1x + 2x Qx 

s.t. Ax= b 
X 2 0, 

and the E-constrained formulation (3.2.2) becomes 

¢(c1, ... , Ek-1) = nun 

s.t. 

1 
-xTQx 2 . 

cf X -::; E i, i = 1 , ... , k - 1 
Ax=b 

X 2 0. 

(3.3.1) 

(3.3.2) 

Parametric QO formulations (3.3.1) and (3.3.2) can be solved with algorithms 

developed in Chapter 2. The uni-parametric case corresponds to an optimization 

problem with two objectives. A bi-parametric QO algorithm allows solving mul­

tiobjective QO problems with three objectives. Multiobjective problems with 

more than three objectives require multi-parametric optimization techniques. 

Note that in formulations (3.3.1) and (3.3.2), parameters appear in the objective 

function and in the right-hand side of the constraints, respectively. 

Multiobjective QO problems are historically solved by techniques that ap­

proximate the Pareto front [52, 51]. An alternative approach is the parametric 

optimization discussed in this thesis. Examples of multiobjective QO problems 

appearing in finance are solved with parametric QO techniques in Chapter 7. 

If we allow for more than one convex quadratic objective in the multi­

objective optimization problem, formulations (3.3.1) and (3.3.2) become para­

metric QOCO. It happens due to the fact that now quadratic functions appear 

in the constraints as well. Parametric SOCO, that includes parametric QCQO 
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problems, is a more general class of problems. Preliminary results for solving 

parametric SOCO problems are described in Chapter 8. Properties of multiob­

jective optimization problems with more than one convex quadratic objectives 

and linear constraints are discussed in [59]. 
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Chapter 4 

Implementation of Parametric 
Optimization 

Implementation details of the parametric LO and QO package are described in 

this chapter. In Section 4.1 we provide a number of simple numerical examples 

to illustrate parametric optimization concepts and show the desired output of 

the parametric solver. Implementation ideas and results discussed in Section 4.2 

are extended from [123]. 

4.1 Illustrative Examples 

Here we present a number of illustrative numerical examples that show the output 

of the parametric solver that is based on the results described in Chapters 2. 

Computations related to finding optimal solutions of auxiliary subproblems can 

be performed by using any IPM solver for 10 and QO problems due to the fact 

that IPMs find a maximally complementary solution in the limit. We have used 

the MOSEK [105] solver for our computations when solving the sub-problems. 

More complex examples appearing in practical problems are solved in Chapters 5 

and 7. 
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4.1.1 Uni-Parametric QO 

Let us consider the following convex QO problem with x, c E JR5 , b E JR3 , Q E 

IR5 x 5 being a positive semidefinite symmetric matrix, A E JR3 x 5 with rank( A) = 3. 

The problem data is 

4 2 0 0 0 -16 7 
2 5 0 0 0 -20 6 

Q= 0 0 0 0 0 
' 

C= 0 , 6c= 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

[ 2 2 1 0 0 l [ :i l ' Ul A= 2 1 0 1 0 b= 6b= 
' 

2 5 0 0 1 

With this data the perturbed convex QO problem ( Q P>.J is 

mm ( -16 + 7A)x1 + ( -20 + 6A)x2 + 2xi + 2x1x2 + ~x~ 
s.t. 2xl + 2x2 + x 3 11 +A 

2xl + x2 + X4 8 +A ( 4.1.1) 
2xl + 5x2 + x 5 20 + A 

x1, x2, x 3 , x4 , .T5 ~ 0. 

Table 4.1: Transition Points, Invariancy Intervals, and Optimal Partitions for 
the Illustrative Uni-Parametric QO Problem. 

Inv. Intervals and Tr. Points B N T ¢()..) 
).. = -8.0 {3,5} {1,4} {2} 

-8.0 < ).. < -5.0 {2,3,5} {1,4} 0 68.0).. + 8.5)..~ 
).. = -5.0 {2} {1,3,4,5} 0 

-5.0 <).. < 0.0 {1,2} {3,4,5} 0 -50.0 + 35.5).. + 4X~ 
).. = 0.0 {1,2} 0 {3,4,5} 

0.0 <).. < 1.739 {1,2,3,4,5} 0 0 -50.0 + 35.5).. - 6.9X2 

).. = 1.739 {2,3,4,5} 0 {1} 
1.739 <).. < 3.333 {2,3,4,5} {1} 0 -40.0 + 24.0)..- 3.6)..:l 

.A= 3.333 {3,4,5} {1} {2} 
3.333 < ).. < +oo {3,4,5} {1,2} 0 0 

The computational results we are interested in are presented in Table 4.1. 

The set A for the optimal value function ¢;(A) is [ -8, +oo). Figure 4.1 depicts the 
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graph of¢(>..). Transition points and the optimal partitions at each transition 

point and on the invariancy intervals are identified by applying Algorithm 2.1. 

The optimal value function on the invariancy intervals is computed by using 

Theorem 2.2.4. Convexity, concavity or linearity of the optimal value function 

can be determined by the sign of the quadratic term of the optimal value function 

(see Table 4.1). As shown in Figure 4.1, the optimal value function is convex on 

the first two invariancy intervals, concave on the third and fourth and linear on 

the last one. The first order derivative does not exists at the transition point 

>..= -5. 

20.-----.------.-----.------.------.-----.-----. 

0 

Figure 4.1: The Optimal Value Function for the Illustrative Uni-Parametric QO 
Problem. 
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4.1.2 Bi-Parametric QO 

Here we present illustrative numerical results for a simple hi-parametric QO 

example by using Algorithm 2.2 as outlined in Section 2.3. Let us consider 

the following QO problem with x, c E JR5 , b E JR3 , Q E JR5 x 5 being a positive 

semidefinite symmetric matrix, A E JR3 x 5 with rank(A) = 3. The problem data 

is as follows 
4 2 0 0 0 -16 7 
2 5 0 0 0 -20 6 

Q= 0 0 0 0 0 , C= 0 , D.c= 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

A = [ ~ ~ ~ ~ ~ ] , b = [ 
1 ~ ] , D.b = [ ~ ] . 

2 5 0 0 1 20 1 

With this data the perturbed QO instance is 

mm (-16 + 7-A)xl + ( -20 + 6.A)x2 + 2xi + 2x1x2 + ~x~ 
s.t. 2x1 + 2x2 + x3 11 + E 

2x1 + X2 + X4 8 + E ( 4.1.2) 
2x1 + 5x2 + x 5 20 + E 

x 1 , :r2 , x3 , x4 , x 5 ~ 0. 

The result of our computations is presented in Figure 4.2 and Figure 4.3. 

Figure 4.2 shows the invariancy regions, the corresponding optimal partitions 

and the equations for the optimal value function. The optimal partitions for 

the invariancy intervals are shown in ovals, where each letter corresponds to 

the corresponding index being in one of the tri-partition sets B, N or T. The 

partitions for the transition points are shown next to them. The solid dots 

correspond to the cases where the optimal partition in those transition points 

are different from the partitions on the neighboring invariancy intervals and 

invariancy regions. The circle at the point A = 10/3, E = -8 corresponds to 

the case when the optimal partition for the whole line E = -8 is the same, but 

it differs for the other segments ending at the point. The graph of cf;(E, >.) and 

the corresponding invariancy regions are presented in Figure 4.3. The piecewise 
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Figure 4.2: The Optimal Partitions and the Invariancy Regions for Bi-Parametric 
QO Illustrative Example. 
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quadratic optimal value function is drawn in different colors that correspond to 

the invariancy regions. 

4.2 Implementing the Parametric Algorithm 
for LO and QO 

Implementing parametric optimization into optimization software packages re­

mains one of the challenges. Unfortunately, available software for parametric 

optimization is very limited. Commercial optimization packages such as CPLEX 

[74] and MOSEK [105] include basic sensitivity analysis for LO that is based on 

an optimal basis. In addition, MOSEK provides optimal partition based sensitiv­

ity analysis for LO. As parametric optimization is the generalization of sensitivity 

analysis, techniques for identifying invariancy and stability regions have to be 

implemented on the top of sensitivity analysis available in those packages. Ex­

perimentation with active-set based multi-parametric optimization for LO and 

QO can be performed with MPT (Multi-Parametric Toolbox for MATLAB) [85]. 

The MPT toolbox can be called from the YALMIP modeling environment [92]. 

The goal of the parametric optimization from the algorithmic point of view 

1s to calculate the optimal solution for all relevant values of the parameters 

without using discretization approaches that are non-rigorous (since there is no 

guarantee for optimality between the mesh points). Therefore, algorithms for 

parametric optimization divide the parameter space into regions of optimality; 

for each region infeasibility is established or an optimal solution is given as a 

smooth function of the parameters for that region. 

Theoretical developments presented in Chapter 2 allow us to develop a 

computational algorithm for solving hi-parametric QO problems. All the sub­

problems can be efficiently solved with an IPM. In this section we discuss data 

structures, implementation details and numerical difficulties that arise when im­

plementing the hi-parametric QO algorithm. The prototype for our implemen­

tation is Algorithm 2.2 and we used MATLAB as our software environment. 
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Figure 4.3: The Optimal Value Function for Bi-Parametric QO Illustrative 
Example. Note that the image is rotated for better visibility. 

73 



Ph.D. Thesis- Oleksandr Romanko McMaster- Computing and Software 

Data Structures 

The data structures that we use for storing the information about vertices, faces 

and cells are similar to the ones used in many computational geometry algo­

rithms [36]. Traversing the cell is usually done counter-clockwise and we are 

going to follow that convention as well. The extension of the standard storage 

and representation model is that we allow convex polyhedrons (cells) to be un­

bounded and that we do not require the vertexes to be in general positions (three 

vertexes can be on one line). Moreover, we add some extra fields to the records 

representing each geometric object. The structures of the records corresponding 

to vertices, edges, cells and optimal partitions are: 

vertex { 
vertex id 
coordinates (x,y,z) 
optimal partition code 
} 

edge { 

} 

edge id 
vertex_l id 
vertex_2 id 
incident cell 1 
incident cell_2 
optimal partition code 

cell { 
cell id 
list of edges 
optimal partition code 

} 

optimal partition { 
optimal partition code 
list of objects with this optimal partition 

} 

Optimal partitions are numerically encoded as an integer number for min­

imizing the storage as follows: partition BB ... BB = 0, BB ... BN = 1, BB ... 
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BT = 2, BB ... NB = 3, etc. To do the conversion we apply the summation 

formula 2.::~:0
1 

di3i, where di = 0 if i E B, di = 1 if i E N and di = 2 if i E /. 

This encoding (optimal partition code) allows not only saving storage, but also 

to establish the lexicographic order of the identified optimal partitions and to 

use binary search tree for verifying if the identified optimal partition was already 

encountered. We are using binary search trees for searching quickly among iden­

tified vertices, edges, cells and optimal partitions. 

Determining Optimal Partitions and Support Sets 

Determination of the optimal partition for a given maximally complementary op­

timal solution or determination of the support set for a given optimal solution is 

a challenging task primarily due to numerical reasons. Basic ideas about numer­

ical determination of the optimal partition are discussed in [123] and we recall 

those here. From Chapter 2 we know that for a given maximally complementary 

solution (x*, y*, s*): 

i E B if s* = 0 and x~ > 0 t t ) 

i EN if x: = 0 and s; > 0, 

i E T if x; = 0 and s; = 0. 

Unfortunately, numerical solution produced by a 10/QO solver may not 

allow to determine the optimal partition or support set in 100% of the cases. 

So, we introduce a zero tolerance parameter toLzero (the default value is 10-5 , 

which performs quite well in practice), and compare the entries of the vectors 

x* and s* to it. As a result, we adopt the following strategy for determining the 

optimal partition (support set): 

if Xi ~ toLzero and si ~ toLzero then i E T 

elseif xi > toLzero and si < toLzero then i E B 

else if Xi < toLzero and si > toLzero then i EN 

else if Xi 2:: S.i then i E B 

else i EN 
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The methodology described above does not give the desired results in all 

cases. Even in the linear case when the partition consists of two sets B and 

N only, the task is not easy. As El-Bakry et al. [45] pointed out, reliable 

identification of the optimal partition may require computation with 16 or more 

digits of precision. In the quadratic case the tri-partition introduces even more 

complications as there are 3 sets and the differences between the entries may be 

even smaller. 

Theoretically, optimal partition identification can be performed by solving 

a number of 10/QO sub-problems as described in [150]. Additional ideas about 

identifying the optimal partition can be also found in [11, 73]. We left numerical 

testing of those techniques as future work. 

Implementation Details 

The implementation of the computational algorithm contains some complications 

that are worth to mention. The interested reader can find more details about 

it in Romanko [123]. First, due to numerical errors the determination of the 

optimal partition and a maximally complementary optimal solution, or the de­

termination of the support set for a given optimal solution is a troublesome task. 

In contrast with the theoretical results, the numerical solution produced by a 

QO solver may not allow to determine the optimal partition or support set with 

100% reliability. Introducing a zero tolerance parameter and using heuristics 

described on page 75 may improve the situation. For problems with hundreds 

or thousands of variables, the probability of getting one or more "problematic" 

coordinates is very high. Wrongly determined tri-partition may lead to an incor­

rect invariancy interval, if any. The situation can be improved by resolving the 

problem for another parameter value close to the current one. Another possibil­

ity to overcome this difficulty in implementation is to resolve the problem with 

fixed "non-problematic" coordinates in order to obtain a more precise solution 

for the problematic ones. 

Second, incorrectly determined optimal partition or support sets, as well as 
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numerical difficulties, may prevent one of the auxiliary subproblems to be solved, 

that can be used as an indicator of incorrectly identified partitions. In this case, 

we restart the algorithm from a parameter value sufficiently close to the current 

one in order to get the solutions for the whole interval or region. 

Third, when identifying boundaries of invariancy regions, numerical sensi­

tivities may prevent getting those correctly. Consider the case when the prob­

lem (2.3.22) is solved for two distinct nonzero values t 1 and t 2 and two points 

(E(ti), .A.(t1)) and (E(t2), .A.(t1)) of the invariancy region boundary having the same 

computed optimal partition. In that case, Theorem 2.3.7 allows identifying 

the two vertices of the invariancy region. If the two points (E(ti), .A.(ti)) and 

(E(t2),.A.(t1)) are computed with (small) numerical errors, identifying the bound­

ary becomes challenging as the optimal partition stays constant between these 

two points only theoretically. 

The prototype parametric package for solving bi-parametric QO problems 

is implemented in MATLAB. Its structure is similar to the uni-parametric QO 

package developed in [123], and thus we refer the interested reader to consult 

flowcharts and interface details there. The output produced by the parametric 

package is summarized by the data structures described on page 7 4. 

Computational Tests and Analysis of Results 

In this section we discuss the performance of our parametric optimization package 

on a set of parametric QO problems solved in Chapters 5 and 7. As there are no 

other solvers that can perform completely analogous analysis, and the parametric 

problem solution time is predetermined by the solution time of the auxiliary 

problems and the number of invariancy regions, we do not aim to showcase 

and compare the performance of our software with respect to solution time. 

That is why we only present the output of our computational results on selected 

QO /LO problems for illustration purposes. All computations are performed on 

a Linux server with 8 x Opteron 885 CPUs (16 cores, but jobs run on 1 core) 

and 64GB RAM. 

77 



Ph.D. Thesis - Oleksandr Romanko McMaster- Computing and Software 

Small and medium-size problems are handled pretty well by our prototype 

implementation. For the large-size parametric problems (number of variables 

n ~ 1000), numerical difficulties occur often, especially due to problems with 

determination of optimal partitions and support sets. 

Summarizing shortly the computational experience of the parametric pack­

age the following conclusions can be drawn. 

• The performance of the parametric quadratic solver depends on the num­

ber of variables. For small- and medium-size problems it performs well, 

but large-size problems represent a significant challenge. It mostly hap­

pens because of numerical troubles occurring when solving the auxiliary 

subproblems, or due to difficulties with determination of the optimal par­

tition or support sets. 

• Robustness of the parametric package is an important issue. It was de­

signed to handle unexpected situations. The package tries to find the 

invariancy regions, optimal value function, etc. on the whole parameter 

space. The software makes attempts to recover when some of the auxiliary 

subproblems are not solved by the QO /10 solver. 

• Difficulties in determining the optimal partition can be mitigated by the 

strategy described on page 75. In addition, we can use other strategies for 

determining the optimal partition, such as doing heuristic analysis of the 

problematic indices, or solving a reduced parametric problem that is ob­

tained by eliminating those primal and dual variables that are determined 

to be in either B or N. 
• The QO /10 solver MOSEK which is currently used for solving the auxil­

iary subproblems performs quite well. 

• Warm-start strategies can be potentially used to reduce the solution time. 

As for now, IPMs wa.rm-sta.rt strategies for 10 and QO provide only small 

reduction in computation time [81, 61, 115]. Due to that reason, warm­

start strategies for parametric optimization were not investigated during 

this research. 
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Chapter 5 

Selected Applications 

In this chapter we present non-financial examples of multiobjective optimization 

problems that can be formulated and solved via parametric optimization. Those 

examples and their corresponding parametric formulations are described in the 

following sections. 

5.1 Intensity Modulated Radiation Therapy 
Treatment Planning 

Cancer is one of the leading causes of death and is claiming about 75,000 lives in 

Canada every year. More than 50% of cancer patients in Canada receive radiation 

therapy treatment. Radiation therapy is used for cancer treatment due to the fact 

that tumor cells are more susceptible to ionizing radiation than healthy cells. As 

a result, cancerous cells are more likely to die during the treatment, while healthy 

tissues have higher chances of survival. To spare healthy tissues surrounding a 

tumor, that include skin and other organs at risk, shaped radiation beams are 

administered from several angles and intersecting at the tumor. Consequently, 

the tumor gets significantly larger absorbed dose than the surrounding healthy 

tissues. 

Intensity modulated radiation therapy (IMRT) allows modulating radiation 

intensity across the beam and conforming the treatment volume to a tumor 
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shape. Linear X-ray accelerators with multileaf collimators are used in IMRT to 

deliver precise radiation doses to tumors. Treatment planning and optimization 

allow delivering the radiation dose which is consistent with the 3D shape of the 

tumor by controlling (modulating) the radiation beams intensity. Optimization 

techniques are used for customizing the radiation dose in order to maximize the 

dose to the tumor while simultaneously minimizing the dose for the surrounding 

healthy tissues. As these goals are conflicting by their nature, IMRT treatment 

planning belongs to the class of multiobjective optimization problems. 

5.1.1 Multiobjective Model for IMRT Beam Intensity 
Optimization 

Various optimization problems, arising in IMRT design and treatment planning, 

are reviewed in [88, 43, 124] and can be classified [43] to: 

• geometry problem - selection of beam angles; 

• intensity problem- computation of an intensity map for each selected beam 

angle; 

• realization problem- optimizing a sequence of configurations of the multi­

leaf collimator. 

vVe discuss only the intensity problem in this section assuming that the beam 

angles are already fixed. This problem is also called beam intensity optimization 

or optimization of intensity maps. 

In addition to the tumor, surrounding healthy organs are also affected by 

the treatment. Patient anatomy is represented via a collection of voxels v;, those 

are small 3D cubes. A voxel is a 3D analog of a 2D pixel and medical resolution 

for voxels is usually around 3 mm. Treatment beam is decomposed into a grid 

of "beamlets" that have different intensities. 

For calculating the dose, we divide the patient's body into n voxels and the 

beams are discretized into rn beamlets. Then 

d= Dx, 
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where d E IRn is a dose vector with components di corresponding to the dose 

deposited in voxel i; x E IRm is a vector of beamlet intensities with each compo­

nent Xj representing the intensity of beamlet j; D E IR~xm is the dose deposition 

matrix with the elements Dij representing the dose deposited in voxel i due to 

unit intensity in beamlet j. It is assumed that D is given. Matrix D can be par­

titioned and reordered into sub-matrices Dk E JR:kxm (L~=l nk = n) according 

to the rows corresponding to organs (or structures) that are indexed by k. It is 

usually convenient to have k = 1 for the tumor and k = 2, ... , N for each organ 

at risk. 

Constraints m the IMRT beam intensity optimization problem are de­

fined [31] as: 

d Dx, 
di < uk, ViE Vk, k = 1, ... , N, 
di > lk, Vi E Vk, k = 1, ... , N, 

(5.1.1) 

X > 0, 

where d is a vector of doses di in each voxel i, D is the dose deposition matrix, 

and x is the vector of beamlet intensities to be determined. Bounds 1Lk and lk 

are the maximum and minimum voxel dose values for organ k and those are hard 

constraints. Physicians specify prescribed doses for the tumor, each organ at risk 

and the normal tissue that are used to construct lower and upper bounds on the 

dose to tumor voxels as well as upper bounds (as l2 , ... , lN = 0) on the dose to 

organs at risk and normal tissue voxels. 

Defining an appropriate objective function for IMRT treatment planning 

optimization is a challenging task as it depends on many dosimetric and biological 

factors [109]. Dose criteria are based on dose distributions and involve objectives 

or constrains on the dose delivered to voxels of the tumor and normal tissues, 

see, e.g., equations (5.1.2) and (5.1.3). In many cases pure dose-based criteria 

are not sufficient. The observation that an organ response to radiation is a 

function of dose and the volume receiving the dose, led to the dose-volume cr-iteria 

that are based on dose-volume histograms (DVH). Intuitively, the dose-volume 

criteria include limits on the fractions of organs that are allowed to receive certain 
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dose. Dose and volume criteria are often referred to as physical criteria as those 

are based on measurable physical quantities [124]. It was noted that physical 

criteria may be too restrictive and not properly describe the biological response 

of organs to irradiation patterns. Consequently, the dose-volume criteria were 

supplemented with biological (or dose-response based) criteria [109]. One of the 

biological indices is the concept of equivalent un·iform dose (EUD), see, e.g., 

[109] for an overview on the subject. Other biological criteria are tumor control 

probability (TCP) and normal tissue complication probability (NTCP) [125]. 

The quality of dose distribution in an organ is measured by an evaluation 

function f. This function depends on the dose distribution and the assumptions 

we make about the organs at risk and about the tumor. The evaluation function 

f can be expressed as the deviation from the specified threshold. As the result, 

the most common choices for physical criteria (convex voxel-based criteria [125]) 

are 

(5.1.2) 

for tumors, and 

(5.1.3) 

for critical structures (organs at risk). Here, di is the dose to voxel i, IVkl is 

the number of voxels in the structure k, 6k is a dose threshold, qk is a shape 

parameter (usually qk = 1, 2, but it can also have higher values) corresponding 

to each voxel in the structure k. 

Equations (5.1.2)-(5.1.3) are the examples of physical criteria based on 

convex penalty functions as those penalize the dose deviations delivered to a 

structure [124]. Essentially, function f in (5.1.2)-(5.1.3) penalizes close devia­

tions from the prescribed threshold value by the means of different norms (de­

pending on the value of qk)· For instance, the 1-norm and the 2-norm lead 

to linear and quadratic objective functions, respectively. Formulations (5.1.2)­

( 5.1.3) allow measuring and optimizing homogeneity of the target dose distribu-
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tion represented by mean-absolute deviation when qk = 1, or standard deviation 

when qk = 2. 

Another approach for quantifying the quality of the dose distribution in 

an organ is the biological impact. Among the measures of biological impact is 

the EUD, thus we are going to use it as our measure. The EUD is defined as 

the uniform dose that would lead to the same biological effect as the given non­

uniform dose in a particular organ. A number of objective functions f based on 

EUD-type measures are described in [135] and we are going to briefly discuss 

those below. 

Generalized EUD (gEUD) was introduced by Niemierko [108] and we refer 

to it as just EUD hereafter. The objective function f for the structure (organ) k is 

denoted by EUDk. The heterogenous dose distribution for an organ is translated 

into a single value by computing EUDk as 

(5.1.4) 

where IVk l is the number of voxels in an organ k, di is the dose delivered to voxel i 

in that structure, and Pk is an organ-specific number. In fact, Pk = 1 refers to 

the parallel organ characteristic, while larger values of Pk (Pk --7 oo) point to 

the serial structure of that organ [108]. In mathematical terminology, Pk = 1 is 

translated to 1-norm in the former case, as opposed to oo-norm in the later case. 

In [25] convexity properties of the EUD function were studied . It was shown 

that generalized EUD function EUDP is convex or concave depending on its only 

parameter p. When p;::: 1, minimizing EUDP on a convex feasibility space leads 

to convex optimization problem. Similarly, when p < 1, maximizing EUDp on 

a convex feasibility space leads to convex optimization problem. Moreover, for 

p = 1 linear function is obtained. 

We are going to discuss the EUD approach in more detail below. However, 

we first turn our attention to the multiobjective nature of IMRT beam inten­

sity opt imization problem. The general goal of multiobjective optimization in 

IMRT t reatment planning is determining the closes of beams for the voxels of 
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each organ, such that the delivered dose has maximum effect on the cancerous 

organ, while minimizing the damage to healthy tissues. References [84, 124] 

and [70] describe the multiobjective nature of treatment plan optimization prob­

lems, and [84] contains the most detailed overview of multicriteria optimization 

problems appearing in IMRT. Multiple objectives appear in problem statement 

due to existence of a number of treatment objectives, as well as due to multiple 

body organs affected by the treatment. 

Many authors formulated the beam intensity optimization problem as a 

multiobjective LO problem. To solve this type of problems, they try to approxi­

mate the whole Pareto front or it parts [32, 131]. For instance, in [32] the authors 

formulate a multiobjective linear IMRT problem with three objectives and com­

pute an approximation of the Pareto efficient surface. We take another approach 

in this section and compute the subset of Pareto front exactly using parametric 

optimization techniques described in Chapter 2 and employing the links between 

multiobjective and parametric optimization established in Chapter 3 with im­

plementation ideas from Chapter 4. 

The case study in this section demonstrates the use of parametric opti­

mization techniques for multiobjective linear IMRT treatment planning prob­

lems. The goal is to show that parametric optimization can be used instead 

of approximation techniques to compute exact Pareto fronts. Due to the high 

dimensionality of the optimization problem, practically it may be worthwhile to 

implement approximation techniques similar to [32, 71, 131] to obtain an approx­

imate Pareto front and employ parametric optimization to compute the structure 

of the exact Pareto front only for the areas of interest that are clinically relevant. 

A general example of EUD-type multiobjective optimization problem for 

IMRT treatment planning is formulated in [125] as: 

min{ -EUDP\ (x), ... , -EUDPT (x), EUDPT;l (x), ... , EUDPN (x)}, 
x;:::O T 1 +1 N 

where k = 1, ... , T indexes target (tumor) structures and k = T + 1, ... , N 

indexes critical structures. As we see from the problem constrains (5.1.1), the 

close vector d can be eliminated from the formulation and the problem can be 

expressed solely by using the variables x. 
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Based on (5.1.4), in [139] an alternative formulation of the EUD-type objec­

tive or constraints is introduced, and later on used in a number of publications, 

including [31]. This alternative expression for EUD is called "linear EUD" and 

is denoted as aEUD. In that model, the objective function for a healthy organ 

k is denoted by aEU Dk and is defined as 

(5.1.5) 

where IVkl is a number of voxels in structure k, di is the dose delivered to voxel 

i in that organ, and ak E [0, 1] is a region-specific parameter that depends on 

the critical structure. Even though the max term in this definition appears to 

be nonlinear on the first glance, it can be linearized with the help of auxiliary 

variables and additional constraints, so, model (5.1.5) is linear. Note that for 

the tumor, the max term in (5.1.5) is replaced by the min term [135]. 

The aEUD approach is called "max and mean model" as the formulation 

(5.1.5) can be rewritten as aEUDk = ak · EUD~ + (1- ak) · EUD~ = ak · dmax + 
(1- ak) · dmean, where dmax is the maximum and dmean is the mean radiation dose 

delivered to a healthy organ. Parameter ak is organ specific and is determined 

from Emami tables [46]. In solving practical problems, value of ak is predefined 

by the radiotherapist and may defer from one case to another. 

Let us consider a prototype multiobjective LO problem with two objec­

tive functions of the aEUD-type and the associated constraints (5.1.1). Two 

objective functions correspond to maximizing aEUD 1 for the tumor (k = 1) and 

minimizing aEUD2 for one organ at risk (k = 2). The problem formulation is as 

follows: 

nun 
x,d 

s.t. 
di ::; 'Uk, 

di 2: lk, 
X 2: 0. 

ViE Vk, k = 1,2 
ViE Vk, k = 1,2 

85 

(5.1.6) 



Ph.D. Thesis - Oleksandr Romanko McMaster- Computing and Software 

The objective function aEUDk may have an upper bound Uk adding another 

restriction on the Pareto front. 

We are going to use problem (5.1.6) as the prototype multiobjective opti­

mization problem for the case study in Section 5.1.2. 

5.1.2 Parametric IMRT Case Study 

For illustrative purposes we consider three body organs, namely a bladder, prostate 

and rectum. Prostate is affected by cancer, while two other structures are healthy. 

We are interested in finding the beams radiation dose to be delivered to the three 

organs with the goal that it has maximum effect on the tumor in a prostate (as­

sociated aEUD needs to be maximized) and sparing the two other structures 

(associated aEUDs are minimized). We use the test data produced in CERR 

computational environment for radiotherapy research [38]. CERR was used for 

pre-selecting the beam angles and calculating the dose deposition matrix D. 

In this case study, six sources of equispaced beams are considered. Organs 

are indexed by k with the convention that k = 1 corresponds to the prostate 

(tumor), k = 2 - to the rectum and k = 3 - to the bladder. The matrices Dk are 

of high dimension (D1 is 3882 x 165, D2 is 10033 x 165 and D3 is 15001 x 165) 

and all of those are sparse matrices. Correspondingly, the number of voxels for 

the organs is IV11 = 3882 (prostate), IV21 = 10033 (rectum) and IV31 = 15001 

(bladder). 

The multiobjective 10 problem formulation for the case study is as follows: 

~,lJl - (a1 miniEV1 di + (1- a1) 1 ~11 L::::iEV1 di) 

s.t. a2 maxiEV2 di + (1- a2) 1 ~21 L::::.iEV2 di :::; ER 

a3 maxiEV3 di + (1- a3) ~~3 [ L::::iEVJ di :::; fB 

d= Dx 
di:::; uk, ViE vk, k = 1,2,3 
di 2: zk, vi E vk, k = 1, 2, 3 
X 2: 0. 

(5.1.7) 

Multiobjective optimization problem (5.1.7) is written in the form of c­

constrained formulation with the parameter c R corresponding to the upper bound 
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Figure 5.1: 2D Pareto Frontier for Prostate Cancer IMRT Treatment Planning 
Considering the Trade-Off between Tumor Mean Dose and Rectum Mean Dose. 

on the aEUD of the rectum and EB - of the bladder. For our computational 

results, we assigned the following values l1 = 75 Gy, l2 = l3 = 0, u 1 = 90 Gy, 

u 2 = 76 Gy and 'l.L3 = 78 Gy. We also have taken a 2 = a 3 = 0 in the formulation 

(5.1.7). For our experiments shown in Figures 5.1-5.3 we have assigned a 1 = 0, 

while for the experiment in Figure 5.4 a 1 = 1. Parametric LO problem (5.1.7) 

was reformulated in the standard form and solved using parametric optimization 

techniques described in Chapter 2. 

Figure 5.1 shows Pareto frontiers for aEUDs considering the trade-off be­

tween t umor mean dose and rectum mean close, when the bladder mean dose is 

fixed at the levels of 19 Gy, 19 .5 Gy and 20 Gy. Figure 5.1 depicts a family of 2D 

Pareto fronts, where the solid dots correspond to transition points. The tumor 

mean dose depends on the rectum mean dose linearly on the invariancy intervals 

between transition points. 

Figure 5.2 shows the approximation of the 3D Pareto front for aEUDs, con­

sidering the trade-off between tumor mean dose , rectum mean dose , and bladder 
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Figure 5.2: The 3D Pareto Surface for Prostate Cancer IMRT Treatment Plan­
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Figure 5.3: Invariancy Regions Corresponding to the 3D Pareto Front for 
Prostate Cancer IMRT Treatment Planning. 
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mean dose. The solid dark curves in Figure 5.2 are the exact 2D Pareto fronts 

depicted in Figure 5.1. Using parametric optimization we have also computed 

the exact 3D Pareto front for the region of interest. That Pareto front is drawn in 

Figure 5. 2 on the top of the approximated one. Invariancy regions corresponding 

to the Pareto front in Figure 5.2 are shown in Figure 5.3. 
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~ 

j 
r 75.1 

75.05 Bladder Mean Dose = 20 Gy 

23 24 25 26 27 28 29 30 31 32 33 34 
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Figure 5.4: 2D Pareto Frontier for Prostate Cancer IMRT Treatment Planning 
Considering the Trade-Off between Tumor Min Dose and Rectum Mean Dose. 

Finally, Figure 5.4 shows the Pareto frontier for aEUDs, considering the 

trade-off between tumor min dose and rectum mean dose, when the bladder mean 

dose is fixed at the level of 20 Gy. 

5.1.3 Parametric Model Extensions for IMRT 
Beam Intensity Optimization 

While we have considered a number of multiobjective linear optimization prob­

lems for IMRT treatment planning in this section, the class of optimization prob-
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lems used in IMRT design is much wider. Moreover, many of the formulations 

are multiobjective non-linear optimization problems. We describe below a couple 

of extensions that can be the potential applications of parametric optimization. 

As we have seen in Section 5.1.1, many models are based on minimizing 

the deviation from the prescribed dose for the tumor. For instance, an objec­

tive function for the tumor dose in these formulations can be expressed by equa­

tion (5.1.2). If the squared deviation from the prescribed tumor dose is minimized 

and all other problem objectives and constraints are linear, e.g., linear EUD-type 

objectives and constraints, linear bounds, etc. are used, this formulation results 

in a multiobjective QO problem. Solution techniques for such parametric QO 

problems are developed in Chapter 2. 

As all treatment planning problems involve uncertainty in tumor position 

due to organ motion and patient displacement, robust optimization techniques 

can be applied to offset the adverse effects of those uncertainties. Robust opti­

mization formulations for IMRT treatment planning are described in [27], where 

the authors formulate robust counterparts of linear optimization problems for 

treatment planning. Those robust formulations are SOCO problems as ellip­

soidal uncertainty in tumor position was assumed. Multiobjective optimization 

can be clone on the top of the robust formulations of [27]. In that case we 

obtain parametric SOCO problem. A variant of SOCO framework for IMRT 

treatment planning is also presented in [159], where the optimization problem 

includes generalized moment constraints as generalized EUD-type constraints. 

Parametric SOCO techniques can be applied to those formulations as well. Ideas 

and preliminary results about solving parametric SOCO problems are discussed 

in Chapter 8. 

5.2 Optimization of Multi-Drug Composition 
for the Most Efficacious Action 

Chinese herbal medicine has been used in East Asia for twenty centuries and 

during the past decades it is becoming more and more accepted by health care 
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professionals and patients in North America and Europe [146, 147]. Compared to 

western drug therapy, often administered in the form of a single active chemical 

ingredient, Chinese herbal medicine typically combines several herbs containing 

up to hundreds of chemical compounds each, and having complex relationships 

between their bioactivities. This property of Chinese herbal medicine makes 

it difficult to quantify the dose-response relation in herbal therapy, or even to 

isolate the active ingredients responsible for the therapeutic mechanism. 

5 .2 .1 Composition-Activity Modeling and Subset 
Selection 

Modeling quantitative composition-activity relationships ( QCAR) is a central 

goal in t he mathematical analysis of existing drugs and for the design of new 

biologically active compounds. In the area of herbal therapy, references such as 

[26, 146, 147, 148, 154] use QCAR to predict Chinese herbal medicine's bioac­

tivity from its composition based on computational analysis. Multiple linear 

regression is the most widely used method to deduce a linear QCAR, i.e., a lin­

ear mapping from the composition vector of the drug or herbal mixture to the 

biological activity or response. However, it has been suggested that potentially 

important synergies between active components in herbal remedies are missed 

by this approach, and this may render the models unreliable, or at least limited 

m scope. 

Moving away from the limitations of linear models, there seems to be a 

general agreement that the response variable y should be a function of dose d, 

and z = ( z1 , z2, ... , zm), the component fractions ZJ of all assumed active com­

ponents in the medication. The dose 0 < d < oo can be measured in units of 

milligrams per milliliter - the strength or potency of the medication. So, for 

example, ZJ ;::: 0, j = 1, ... , m, and L:J ZJ = 1 may be assumed, and the ZJ are 

unit-free parameters. Further, the effect of dose d should satisfy the Michaelis­

Menten chemical kinetics equation relating concentration to rate of the chemical 

activity [14]. It is reasonable to assume that the concentration is a combination 

91 



Ph.D. Thesis - Oleksandr Romanko McMaster- Computing and Software 

of dose d and component fractions q(z), where q(z) is a general quadratic ex­

pression in z to allow for individual component activity and pairwise synergistic 

or inhibitory effects in the mixture. For the ease of explanation and to reduce 

computational complexity, we assume that the observed response y is modeled 

as y = d · q(z). For convenience, we ran our numerical experiments by fitting 

response y at dose d = 1.0 rather than the full Michaelis-Menten model. 

Our task is to determine an expression for q(z), the unknown quadratic 

express10n 
m rn m 

q(z) = a 0 + L ajZj + L L f3jkZjZk· (5.2.1) 
j=1 j=1 k=1 

The general model described by equation (5.2.1) can be used for answering 

a number of questions: 

• Identify the variables Zj and their combinations Zj zk that are the most 

active, or most relevant for the observed response in a given herbal mixture. 

It is generally assumed that the number of active components may be as 

few as 4 or 5 for most of the herbal mixtures of interest. 

• Fit the response surface using multiple linear regression with respect to the 

most active components, and analyze the resulting model for sensitivity to 

measurement error on these critical components. Such issues are natu­

rally of interest for the production, sale and regulation of Chinese herbal 

medicines, especially in the West. 

• Determine the mixture of the components that leads to the maximal re­

sponse given the model for a specified dose d. 

To fit the model (5.2.1) to the data on the components z = (z1 , z2 , ... , Zm) 

we denote the unknown model coefficients by x = ( ao, a 1, a2, ... , am, {31,2, /31,3 1 ••• , 

f31,m, /32,3, ... , f32,m, ... , !3rn-1,m)T and known data on the component fractions as 

Now, a goodness of fit criterion \\Yi - q(zi) 1\, i = 1, ... , N can be minimized as 

mmx 1\Yi- aT x\1 to compute the vector of unknown coefficients x. 

92 



Ph.D. Thesis - Oleksandr Romanko McMaster- Computing and Soft·ware 

The sample data set is provided by the Sino Veda company and is described 

in [14]. It contains N = 25 response samples and m = 15 components in the 

mixture. Response y was calculated from y = d · q(z) for a known dose d = 1. 

For the data set, the number of regressors is equal to n = 1 + m + ( m2 
- m) /2 = 

1 + 15 + (152
- 15)/2 = 121. 

It was shown in [14] that principal component analysis may not always 

work to reduce dimensions in underdetermined systems. So, our approach is to 

build the regression model for the problem with subset selection. The goal here 

is to find the best models which are built on subsets of a full multiple regression 

model. This is known as "attribute selection" , "feature selection" or "variable 

selection" in the literature. 

In our case, we have too many predictors or variables (with many possible 

interactions) making it difficult to find a good model. In general, this is an 

unsolved problem in statistics: there are no magic procedures to get the best 

model. To implement the subset selection we need a criterion or benchmark to 

compare two models and a search strategy. With a limited number of predictors, 

it is possible to search all possible models by using exhaustive search. 

The problem to be solved is as follows. For a given subset S <;;;; 1, 2, ... 15 

representing a choice of reduced predictors that are the variables in our model, 

let z~ denote the data vector zi with only the S variables present. Recall that 

we have i = 1, 2, ... , N = 25 data vectors. Having chosen S, we proceed with 

the regression 

iis := argmin IIYi- q(z~)ll~ := argminR2
, (5.2.3) 

where R2 is the coefficient of determination that measures the goodness of fit of 

the model, and it serves as one of possible criteria for subset selection. 

The review of different criteria for the subset selection problem can be 

found in [53]. Possible criteria to compare different subsets S are: 

• R2
: may not be the best criterion as it always increases with the model 

size and, as a result, the "optimum" is getting to take the biggest model; 

• Adjusted R2
: it is a modification of R2 that adjusts for the number of 
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predictor variables in the model. Adjusted R2 is better than R 2 as it 

"penalizes" bigger models. Adjusted R2 increases only if a new variable 

improves the model more than it would be expected by chance; 

• Mallows' Cp: Mallows [93] developed a method to select adequate models by 

plotting a special statistic against the number of variables+ 1. Mallows' Cp 

statistic is used in multiple regression analysis to select models that contain 

smaller numbers of predictors from a larger number that is available for 

inclusion. Small values of GP indicate better models; 

• Akaike's Information Criterion (AIC) and Schwarz Bayesian Information 

Criterion (BIC). AIC and BIC are measures of the goodness of fit of an 

estimated statistical model. AIG = -2 · ln L + 2k and BIG= -2 · ln L + 
k · ln N, where L is the maximized value of the likelihood function for the 

estimated model, N is the sample size and k is the number of regressors 

including the constant. 

Possible search strategies include: 

• 'Best subset': search all possible models and take the one with highest 

adjusted R2 or lowest Gp; 

• 'Stepwise' (forward, backward or both): choose an initial model and take 

the biggest jump up or clown in the selected criterion. 

For instance, a function in the R software package for statistical comput­

ing [48] is available, that performs an exhaustive search for the best subsets of 

the variables in z for predicting q in linear regression (5.2.3) using an efficient 

branch-and-bound algorithm based on [104]. The 'best subset' selection as im­

plemented in R can use either adjusted R 2
, Gp or BIG and does exhaustive 

search under the branch-and-bound algorithm. Exhaustive search is equivalent 

to integer programming, which is expensive and only works for small model sizes. 

We ran the best subset selection with adjusted R2 as our criterion. Fig­

ure 5.5 shows the plots of the optimal subsets for dose=l.O. The regressors 

(variables) are on the horizontal axis and adjusted R2 values are shown on the 

vertical axis. The plot includes four best subsets that were produced by exhaus-
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tive search of each size. The subset sizes of up to 5 regressors are shown (up to 

6 counting the intercept). The bars on Figure 5.5 correspond to the variables 

included in the subset and those variables are ranked based on the adjusted R2 

criterion. 

The crucial decision to make here is how many variables to select. This 

decision is usually based on the knowledge of the problem in hand, drug-design 

experience and additional information available. For instance, if we use the 

Sino Veda data set and believe that only five variables (plus the intercept) should 

be selected, we get the following selected variables that represent components in 

the mixture: 

Inclusion of these variables into the regression produces the maximal adjusted 

R2 as shown at the very top of Figure 5.5. Please note that if z9z13 is selected as 

one of the regressors for the model, than the interaction between components 9 

and 13 in the mixture is important for explaining the activity of the drug. The 

resulting model in our case is: 

In the remainder of Section 5.2.1 we show the results obtained by running 

the exhaustive search for subset selection. A fitted model with subset of size five 

for our data set is: 

y = 0.33 + 0.19z2 + 0.12z10 + 0.24z12 + 0.09z9z13 - 0.23z10z12· 

Note that interaction between components 10 and 12 in the mixture exhibits 

inhibition effect while interaction between components 9 and 13 exhibits syner­

gism. The intercept and the coefficients for components 2, 10 and 12 appear with 

positive sign indicating that the corresponding components increase the activity 

of the drug. In general case, some components may suppress the activity. 

Figure 5.6 shows the response surfaces for different pairs of components. 

Concentrations of other components in the mixture are kept constant. In that 
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Figure 5.5: Plots of Optimal Subsets for Dose=l. 

case, we can analyze the pair-wise interactions between components to find their 

influences on the drug activity. 

We would like to stress that the exhaustive search is not the best algorithm 

to solve subset selection problems and we included it here for illustration and 

comparison purposes. For the illustrative data set used in this thesis we have 

N = 25 samples and n = 121 regressors, but for the practical data sets the 

number of samples can be around N = 500 and the number of components in the 

samples can be as high as 500 resulting inn= 1+500+(5002 -500)/2 = 125,251. 

In Section 5.2.2 we illustrate how optimization techniques and, in particular, 

parametric optimization can be used to solve subset selection problems for drug­

design. 

5.2.2 Regularized Regression via Parametric 
Optimization 

It turns out that we can combine subset selection for model parameters, as 

described in Section 5.2.1, with linear regression curve fitting. The technique for 

that is called least absolute shrinkage and selection operator (LASSO) regression 
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model [140]. 
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Figure 5.6: Response Surfaces for Pairs of Components. 

As we have an underdetermined regression model where the number of 

variables n = m(n~+l) + m + 1 exceeds the number of samples N, we need to find 

a model having small regression error with a number of variables much less than 

n. The more sparse model we get, the more likely is that the predictors z have 

causal relationship to the dependant variable y [118]. The LASSO uses f 1 norm 

as the shrinkage function as it turns out that the el regularization term in the 
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objective function produces sparse solutions. We discuss regularized optimization 

in more detail in Section 6.2, here we keep the explanations to minimum. So, 

the convex optimization problem that minimizes the Euclidian norm of residuals 

combined with £1-norm regularization produces sparse solutions for the linear 

regression model: 

min IIY- Axil~+ Allxll1· (5.2.4) 
X 

Here, x E .!Rn, y E .IRN, A is anN x n matrix with the rows a as defined in (5.2.2), 

and A is a non-negative tuning parameter. In addition, llvlb is the Euclidian norm 

of v and llvlh = I:.::i lvil is the £1-norm of v. 

The choice of £1-norm is a heuristic. A more natural choice would be £p for 

some p < 1 since minimizing llxiiP, subject to holding llxll 2 strictly away from 

zero will favor sparsely supported vectors. However, as £P norms are not convex 

for p < 1, we would be left with a non-convex objective and obvious difficulties 

with the above optimization. Consequently, £1 norms are a compromise choice 

for regularization. Further discussion on this point can be found in Section 6.2 

and in [15] pp. 308-310. 

By varying the parameter A we can control the trade-off between IIY- Axlb 
and the number of non-zero elements (sparsity) of the vector x controlled by the 

term llxlk The optimization problem (5.2.4) is the parametric optimization 

problem with parameter A. Selection of the value for the parameter A can be 

based on cross-validation [118] or the historical experiences of drug design. How­

ever, instead of fixing A to a particular value, we would like to compute a trade-off 

surface between the goodness of fit and sparsity. 

Problem (5.2.4) can be solved by the following multiobjective optimization 

problems [50]: 

and 

mmx llxlh 
s.t. IIY- Axil~~ E, 

minx IIY- Arll~ 
s.t. llxll1 ~ c, 

(5.2.5) 

(5.2.6) 

where E and care non-negative parameters. Problem (5.2.5) is parametric SOCO 
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problem, while problem (5.2.6) is parametric QO problem. Paper [50] reviews al­

gorithms for solving different reformulations of problem (5.2.4) with fixed param­

eter values and proposes a new gradient projection algorithm for that purpose. 

Formulation (5.2.6) is called LASSO, while formulation (5.2.4) is also known as 

basis pursuit denoising problem [15]. 

Similarly to [50], we reformulate the problem as parametric QO problem 

by splitting the variable x into positive and negative parts: 

X = U- V, U ;?: 0, V ;?: 0. 

Now, llxllr = lTu +lTv and 

or 

where 

minu,v IIY- A(1l- v)ll~ 
s.t. lTu+lTv:s;c, 

u :?: 0, 
v :?: 0, 

[ 
u ] T [ -b ] [ AT A x= v ,b=Ay,c= b ,B= -ATA 

(5.2.7) 

(5.2.8) 

Table 5.1 shows the output of the parametric solver for the problem (5.2.8). 

As we have split the variables and introduced slack variable t, the total number 

of variables for the problem (5.2.8) is equal to 2 · 121 + 1 = 243. We print only 

subsets BandT of the optimal partition in Table 5.1 as the cardinality of set B is 

equal to the cardinality of the optimal solution for that invariancy interval. Note 

that for the invariancy interval (1.42771, +oo) we obtain weak Pareto optimality 

as slack variable t belongs to the set B of the optimal partition (t > 0). Optimal 

value function ¢(c) is quadratic on each invariancy interval and is computed in 

Table 5.1 and graphed in Figure 5.7. Optimal value function in Figure 5.7 is 

the Pareto front and it shows the trade-off between the measure of fit and the 

regularization term controlling solution sparsity. 
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Table 5.1: Parametric Solver Output for the Chinese Medicine Problem. 

type E:f E:u B T r/J(s) 
------------------------------------------------------------------------------------------------

tr. point +0.00000 +0.00000 1 7.9684 
inv. interv +0.00000 +0.52829 1 25.000s2 -28.000s+7.9684 

tr. point +0.52829 +0.52829 1 3 0.1535 
inv. interv +0.52829 +0.57493 1 3 7.3178s2-9.3176s+3.0336 

tr. point +0.57493 +0.57493 1 3 13 0.0955 
inv. interv +0.57493 +0.63837 1 3 13 2.8404s2 -4.1692s+1.5536 

tr. point +0.63837 +0.63837 1 3 13 10 0.0496 
inv. interv +0.63837 +0.69623 1 3 10 13 2.1337s2-3.2669s+1.2656 

tr. point +0.69623 +0.69623 1 3 10 13 14 0.0254 
inv. interv +0.69623 +0.73149 1 3 10 13 14 1.2683s2-2.0619s+0.8461 

tr. point +0.73149 +0.73149 1 3 10 13 14 11 0.0165 
inv. interv +0.73149 +0.75312 1 3 10 11 13 14 1.2012s2-1.9636s+0.8102 

tr. point +0.75312 +0.75312 1 3 10 11 13 14 5 0.0126 
inv. interv +0.75312 +0.77404 1 3 5 10 11 13 14 1.0702s2-1.7664s+0.7359 

tr. point +0.77404 +0.77404 1 3 5 10 11 13 14 61 0.0099 
inv. interv +0.77404 +0. 78178 1 3 5 10 11 13 14 61 0.7642s2-1.2926s+0.5526 

tr. point +0.78178 +0.78178 1 3 5 10 11 13 14 61 205 0.0091 
inv. interv +0.78178 +0.78607 1 3 5 10 11 13 14 61 205 0.6188s 2-1.0653s+0.4637 

tr. point +0.78607 +0.78607 1 3 10 11 13 14 61 205 5 0.0087 
inv. interv +0.78607 +0.79528 1 3 10 11 13 14 61 205 0.6877s2-1.1736s+0.5063 

tr. point +0.79528 +0.79528 1 3 10 11 13 14 61 205 31 0.0079 
inv. interv +0.79528 +0.80624 1 3 10 11 13 14 31 61 205 0.6609s2-1.1310s+0.4893 

tr. point +0.80624 +0.80624 1 3 10 11 13 14 31 61 205 150 0.0071 
inv. interv +0.80624 +0.80864 1 3 10 11 13 14 31 61 150 205 0.3483s2-0.6270s+0.2861 

tr. point +0.80864 +0.80864 1 3 10 11 13 14 31 61 150 205 142 0.0069 
inv. interv +0.80864 +0.83068 1 3 10 11 13 14 31 61 142 150 205 0.2846s2-0.5240s+0.2445 

tr. point +0.83068 +0.83068 1 3 10 13 14 31 61 142 150 205 11 0.0056 
inv. interv +0.83068 +0.83819 1 3 10 13 14 31 61 142 150 205 0.2863s2 -0.5267s+0.2456 

tr. point +0.83819 +0.83819 1 3 10 13 14 31 61 142 150 205 0.0053 
inv. interv +0.83819 +0.84215 1 3 10 13 14 31 61 142 150 0.3273s2-0.5956s+0.2745 

inv. interv +1.39370 +1. 42771 3 10 11 13 49 ... 238 0.0077s2-0.0219s+0.0156 
tr. point +1. 42771 +1. 42771 1 3 10 11 13 49 . .. 238 34 45 149 0.0000 

inv. interv +1.42771 +Inf 1 2 3 4 ... 241 242 243 o.oooos2-o.oooos+o.oooo 

Figures 5.8 and 5.9 demonstrate the optimal solution cardinality vs. two 

objective function values, namely the measure of fit IIY - Axll 2 and the regular­

ization term llxlh- It can be observed from the figures that the cardinality is not 

monotonic in the values of the regularization term. 

Now, we can compare the results obtained by running exhaustive search 

for the subset selection to the results obtained by the parametric optimization 

algorithm applied to formulation (5.2.6). Figure 5.10 shows comparison of the 

regularized heuristic approach via parametric optimization with enumeration. 

Horizontal axes show the cardinality of the optimal solutions obtained by each 
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Figure 5.7: Optimal Value Function for the Chinese Medicine Problem. 

of the two approaches, while the vertical axes depict the goodness of fit measure. 

We have computed globally optimal values by exhaustive search only for up to 

8 regressors due to prohibitively long running time of the enumeration. Results 

in Figure 5.10 demonstrate that comparable quality solutions can be computed 

with parametric optimization in a fraction of time used for enumeration. 

For an appropriate value of c that corresponds to selecting 5 variables for 

the regression, we obtained the following model: 

y = 0.31 + 0.19z2 + 0.07z9 + 0.02zw + O.l6z12 + 0.07z13· 
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Figure 5.9: Optimal Solution Cardinality vs. Norm Minimization for the Chinese 
Medicine Problem. 
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Figure 5.10: Globally Optimal and 1\-Norm Heuristic Solution for the Chinese 
Medicine Problem. 

The value of adjusted R2 drops from 0.97 to 0.92 for this model as compared to 

the exhaustive search one and the coefficient for variable z10 is not significant. In 

spite of that, optimization proves to be very useful for solving large-scale subset 

selection problems. 
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Chapter 6 

Model Classes and Novel 
Formulations in Finance 

In this chapter, we describe existing and develop new optimization problem for­

mulations that are used in financial modeling, in particular in risk management 

and portfolio selection. 

Risk measures, used for quantifying financial risks, and mean-variance port­

folio selection are described in Section 6.1. Mean-variance framework assumes 

normality of distribution of asset returns. Unlike mean-variance optimization, 

scenario-based approaches, see Sections 6.2 and 6.3, allow for general non-normal, 

discrete and subjective return/loss distributions. Further, scenario-based ap­

proaches allow the modeling of nonlinear financial instruments, such as deriva­

tives and options. Scenario-based approaches are one of the methods in stochastic 

optimization. 

Using scenario-based approach, we develop and extend two novel financial 

optimization frameworks in this chapter. Portfolio replication models are in­

vestigated in Section 6.2 and a portfolio credit risk optimization framework is 

developed in Section 6.3. The results are mostly based on [77] and [19]. The 

novelty of our results described in Section 6.2 is in applying regularized optimiza­

tion and parametric optimization to portfolio replication for insurance liabilities. 

New optimization formulations for minimizing portfolio credit risk are developed 

in Section 6.3 and are computationally tested on large data sets in Appendix A. 
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6.1 Risk Measures and Mean-Variance 
Portfolio Selection 

Financial institutions operating in all markets require competitive risk and port­

folio management tools. The goal of the investors is to obtain optimal returns 

in all market environments when risk is involved in every investment, borrow­

ing, lending and project planning activity. Many different types of risk should 

be taken into account and there are relationships between them. For instance, 

credit-risk is connected to other risks faced by financial institutions, including 

market risk. Moreover, there are many risk measures used for quantitative evalu­

ation of risk including variance, value-at-risk (VaR) and expected shortfall (ES). 

Expected shortfall is also known as conditional value-at-risk (CVaR), and thus 

we will use those two terms interchangeably. The most famous portfolio man­

agement model that involves a risk-return tradeoff is the mean-variance portfolio 

optimization problem introduced by Markowitz [95]. The conflicting objectives 

in the Markowitz model are minimizing portfolio variance (risk) and maximiz­

ing expected return. Using variance to measure a portfolio's risk, as proposed 

by Markowitz, is still important for finance both in theory and as a practical 

benchmark. The Markowitz model and many other risk management models 

can be formulated and solved as optimization problems. In this chapter, we fo­

cus on formulating and solving portfolio management, portfolio replication and 

portfolio credit risk problems represented as optimization problems. The goal is 

to develop practical optimization tools for replicating portfolios and managing 

credit risk, as well as to compare them with Markowitz's mean-variance portfolio 

optimization model. For instance, the Markowitz framework is poorly suited for 

credit risk, and practical problems require going beyond it. 

6.1.1 Portfolio Selection 

A general goal of portfolio optimization and risk management is selecting a port­

folio of assets, i.e., stocks, bonds, derivatives, etc., such that a large return (or 
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some other performance indicator) with a low risk is obtained. Overview of 

portfolio selection, asset allocation and risk management techniques including 

quantitative analysis can be found in [128, 119, 30, 117) and many other publica­

tions. In this chapter we consider a number of portfolio models for mean-variance 

optimization, credit risk optimization, and portfolio replication in more detail. 

The general framework is the following. Consider assets with random re­

turns that are available for investment. Let a portfolio contain N assets repre-

sented by positions ui, i = 1, 2, ... , N, where positions are measured in units, or 

by portfolio weights wi, i = 1, 2, ... , N, where weights define a portion of total 

wealth (or total budget) invested in the corresponding stock. The total portfolio 

value Vp is computed as 
N 

Vp = L ViUi, 

i=l 

(6.1.1) 

where vi is the value of asset i. The portfolio weights are defined as the relative 

asset value 
V· 

'Wi = U.i-t' i = 1, 2, ... 'N. (6.1.2) 
Vp 

Denoting by ri the expected market return of a security ~, the portfolio 

return, rp, satisfies the relation 
N 

Tp = LWi'T'i = 'T'TW. 

i=l 

From (6.1.1) and (6.1.2) it follows that 

N 

LWi = 1, 
i=l 

which is usually called the portfolio budget constraint. 

(6.1.3) 

(6.1.4) 

We call x = (x1 , x2 , ... , XN )T the decision vector. Note that either portfolio 

weights w or positions u can be used as the decision vector. Mean-variance 

portfolio optimization traditionally uses weights w as decision variables, while 

portfolio replication and credit risk optimization models use positions u. In order 

to simplify the notation, we denote by x either portfolio weights or positions and 

specify the units of x for each formulation that we consider later on. 
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6.1.1.1 The Markowitz Mean-Variance Portfolio Optimization Model 

In Section 6.1 the decision variables xi, i = 1, ... , N denote portfolio weights 

or portion of total funds invested in security i. Vector r = (r1 , ... ,rNf is the 

vector of expected returns, while O"i denotes standard deviation of return of asset 

i. As the Markowitz model takes correlations between assets into account, we 

introduce Pij as the correlation coefficient of assets i and j returns. Correspond­

ingly, Q = [O"ij] is theN x N variance-covariance (or just covariance) matrix of 

asset returns with the entries O"ij = Pi]O"iO"j. Matrix Q is symmetric and positive 

semidefinite, i.e., xTQx ~ 0 for all x E JR.N. In practice r and Q are usually 

computed from historical data. 

Additional assumptions that are commonly made in portfolio selection 

models include if one has a single time period or multi-periods, the availability of 

an initial portfolio, and presence of risk-free asset, i.e., cash. All portfolio models 

that we consider in this thesis are single period models. Portfolio re-balancing 

refers to the availability of an initial portfolio, while portfolio selection usually 

implies constructing a portfolio from scratch. The availability of an initial port­

folio will be considered in credit risk optimization for comparison purposes. We 

consider risk-free assets later on when describing a Capital Asset Pricing Model. 

Expected return and variance of the portfolio x are computed as: 

with Pii = 1. 

IE [ x] = r p = T 1 x 1 + ... + TN x N = rT x, 

Var[x] = O"~ = L PijO"iO"jXiXj = xTQx, 
i,j 

Mean-variance portfolio models, see Markowitz [95, 96], which are based 

on investor's utility maximization, can be formulated as optimization problems 

and, more precisely, as parametric QO problems. Let us consider the weighted 

sum formulation due to Farrar [49] in more detail: 

mm ->...rT x + lxTQx 
X 2 

s.t. Ax= b (6.1.5) 

X 2: 0, 
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with the constraints denoted by x E F for simplicity. The set of admissible or 

feasible portfolios can be defined as F = {x : Ax = b, x 2:: 0}, where linear 

constraints on asset holdings of the type Ax = b can include, e.g., a budget 

constraint 1 T x = 'L:.:i xi = 1 and bounds on asset holdings; x 2:: 0 is the no-short­

sale constraint. 

Markowitz [96] defined a portfolio to be efficient if for some fixed level of 

expected return no other portfolio gives smaller variance (risk). Equivalently, 

an efficient portfolio can be defined as the one for which at some fixed level of 

variance (risk) no other portfolio gives larger expected return. The determina­

tion of the efficient portfolio frontier in the Markowitz mean-variance model is 

equivalent to solving the parametric QO problem (6.1.5). 

Parameter A > 0 in (6.1.5) is referred to as an investor's risk aversion 

parameter. Solutions of the optimization problem ( 6.1.5) for different values 

of A trace the so-called efficient frontier in the mean-variance space. In Fig­

ure 6.1 we plot the mean-variance efficient frontier for a particular instance of 

problem (6.1.5) in the expected return - standard deviation coordinates. The 

mean-variance efficient frontier is known to be the graphical depiction of the 

Markowitz efficient set of portfolios and represents the boundary of the set of 

feasible portfolios that have the maximum return for a given level of risk. Portfo­

lios above the frontier cannot be achieved. Figure 6.1 shows the efficient frontier 

in the mean-standard deviation space in order to be consistent with the existing 

literature. 

The mean-variance optimization problem has a number of alternative for­

mulations. Similarly to tracing Markowitz's efficient frontier with the weighted 

sum method, we can utilize theE-constrained formulation for that purpose: 

min 
X 

S.t. rTX 2:: c 
Ax= b 

X 2:: 0, 

where the parameter E E [rmin' rmaxl· 
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Figure 6.1: Efficient Portfolio Frontier and Capital Market Line. 

The third formulation of the mean-variance problem is maximizing the ex­

pected return with the c constraint on the variance. This problem with the 

variance in the constraint is a parametric QCQO problem. Equivalence between 

the three mean-variance formulations, namely equations (6.1.5), (6.1.6), and the 

parametric QOCO problem, is shown in [83]. All the three formulations are 

multiobjective optimization problems, where the conflicting objectives are max­

imizing expected return and minimizing variance. 

The Markowitz mean-variance model works relatively well in the presence of 

market risk, when returns are distributed normally, however it is not conforming 

with reality when other risks, such as credit risk, are present. In Chapter 7 

we solve a number of variants of the mean-variance optimization problem and 

their extensions, including the standard mean-variance optimization problem 

with market risk in Section 7.2, the mean-variance problem with transaction 

costs in Section 7.3, and the mean-variance optimization problem with trading 

penalties in Section 7.5. 
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6.1.1.2 The Capital Asset Pricing Model 

The Capital Asset Pricing Model ( CAPM) [132] states that asset return can be 

characterized completely by a combination of market return and the asset co­

variation with the market [119]. It assumes a linear relationship between the 

return of an asset and the return of the market, so, it is a single factor model. In 

addition, CAPM introduces the concepts of specific (or idiosyncratic) risk and 

systemic (or systematic) risk. Specific risk is unique to an individual asset, while 

systemic risk is associated with the market. Specific risk can be diversified by 

holding many different assets in a portfolio. 

Suppose that a risk-free asset exists with return r1. The CAPM relates the 

random return on the i-th investment, Ri, to the random return on the market 

RM by 

( 6.1. 7) 

where Ei is a random variable with zero mean and CJE; standard deviation, it is 

uncorrelated with the market return RM and Cov( Ei, Ej) = 0; fJi is the beta term 

correlated with the market. 

Now, the expected return of asset i is ri = IE[Ri] and the expected market 

return is T:M = IE[RM]· Taking the expectation of (6.1.7), we get the CAMP 

equation: 

(6.1.8) 

with IE[ci] = 0 and Cov(Ei, RM) = Cov(Ri, RAJ)- /3iVar(RM) = CJiM- fJ.iCJ~.f = 0, 

where o-M is the standard deviation of market return. Equation (6.1.8) states 

that the expected excess rate of return on asset i equals to its beta times the 

expected excess rate of return on the market portfolio. 

Now we can compute the standard deviation of the return of asset i as 

(6.1.9) 

The first term in equation (6.1.9) reflects systemic risk, while the second term is 

the idiosyncratic risk. The sum of the two terms is called total risk or variance 

risk. 
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It follows that the i-th asset beta coefficient can be computed as 

(J _ Cov(Ri,RM) _ O'iJvi 
~ - Var(RM) - O'I

1
. 

(6.1.10) 

Beta is a measure of the degree to which the returns of an asset tend to move 

with the return of the market, relative to the magnitude of the markets return 

variation. As a result, beta indicates the risk of an asset relative to the risk of 

the market, and is referred to as an asset risk measure. 

For a large portfolio, its expected return is equal to r p = r 1 + (3 p ( r M - r 1) 

and the standard deviation of its return is O'p = lf3piO'Jvi with (3p = Li (3ixi· Co­

efficient (3p is known as the portfolio beta. Variance is the relevant risk measure 

for a portfolio and assets covariances contribute to portfolio variance. Observe 

that the contribution from the uncorrelated t:'s to the portfolio variance vanishes 

as we increase the number of assets in the portfolio. This is the so-called di­

versifiable risk. The remaining risk, which is correlated to the market, is the 

undiversifiable systemic risk. 

Within the CAPM framework, minimizing portfolio risk is equivalent to 

minimizing portfolio beta as with beta being small we would expect portfolio 

performance to be unrelated to the market as a whole. The simplicity of the 

CAPM makes it attractive, but it may be inadequate as many more factors 

than just the return on the overall market have an impact on the return of an 

asset [119]. 

The Capital Market Line (CML) in the (rp, O'p) coordinates is defined as 

rfo.,f- TJ 
rp = r1 + O'p. 

O'J..-f 

In the presence of a risk-free asset, all efficient frontier portfolios lie on the CML 

and it gives the trade-off between portfolio risk and return. 

One can think of the optimal CML as the CML with the largest slope [30]. 

Mathematically, this can be expressed as the portfolio x that maximizes the 

quantity 
Tp-rf rTX-Tj 

CJp JxTQx' 
(6.1.11) 
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subject to relevant constraints x E F on asset holdings. Quantity (6.1.11) shows 

the expected return per unit of risk, and it is known as Sharpe's ratio. Sharpe's 

ratio is the slope of the CML. 

The optimization problem that corresponds to maximizing Sharpe's ratio is: 

1'TX-TJ 
max 

X ylxTQx 
s.t. x E F. 

In Figure 6.1, CML is a ray starting at (O,r1). The portfolio that maximizes 

Sharpe's ratio corresponds to the point where CML is tangential to the Markowitz 

efficient frontier. 

In Section 7.1 we formulate and solve a parametric optimization problem 

within the CAPM framework. 

6.1.1.3 Robust Portfolio Selection 

Robust portfolio selection allows reducing sensitivity of the optimal portfolio 

to data perturbations. First, robust optimization naturally arises in portfolio 

selection because limited number of scenarios are used to compute cash flows, 

and those cannot be estimated precisely and thus bare high degree of uncertainty. 

Robust optimization allows taking that uncertainty into account. Second, param­

eter estimates and historical data also bare high degree of uncertainty. The fol­

lowing techniques can improve robustness of portfolio selection models [47]: 

• Resampling for mean-variance portfolio selection; 

• Regularized optimization and trading penalties, see Section 6.2; 

• Robust optimization [7]. 

Regularized optimization allows improving sparsity and stability of optimal port­

folios by introducing trading penalty to the objective function. Robust optimiza­

tion puts uncertain data into a bounded uncertainty set and incorporates that 

uncertainty set into the optimization formulations. 

Let us recall the Markowitz mean-variance model (6.1.5), where the set F 

of constraints is known without any uncertainty, but the problem data, namely 
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expected asset returns and covariances are uncertain. This model faces esti­

mation risk as we use estimates of unknown expected returns and covariances 

and, consequently, uncertainties in those parameters can produce meaningless 

portfolios. It creates the need for robust portfolio selection techniques. 

For robust portfolio optimization we may consider a model where return 

and covariance matrix information are given in the form of intervals [30]: 

which, e.g., are generated from historical lows and highs. The robust optimiza­

tion problem is defined as to minimize the objective function in the worst-case 

realization of the input parameters r and Q, i.e., 

min { max ->..rT x + ~xTQx}. 
xEF (r,Q)EU 2 

Now, we consider a variant of robust portfolio selection problems proposed 

by Ceria and Stubbs [22]. In their model, instead of the uncertainty set being 

given in terms of bounds, they use ellipsoidal uncertainty sets. In [22] the authors 

assume that only r, the vector of estimated expected returns, is uncertain in the 

Markowitz model (6.1.5). In order to consider the worst case of problem (6.1.5), 

it was assumed that the vector of true expected returns r is normally distributed 

and lies in the ellipsoidal set: 

where f is an estimate of the expected return, 8 is covariance matrix of the 

estimates of expected returns with probability 17, and K-
2 = x~ (1 - TJ) with x~ 

being the inverse cumulative distribution function of the chi-squared distribution 

with N degrees of freedom. 

Let x be the optimal portfolio on the estimated frontier for a given target 

risk level. Then, the worst case (maximal difference between the estimated ex­

pected return and the actual expected return) of the estimated expected returns 
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with the given portfolio x can be formulated as: 

max (f - r)Yx 
f-r 

s.t. (r- f)re- 1(r- f) ::::; "'2 . 
(6. 1.12) 

As derived in [22], by solving problem (6 .1.12) we get that the optimal objective 

value (f- r)Tx is "'ll8 112xl\2. So, the true expected return of the portfolio can 

be expressed as rr x = fT x - "'ll8112xll 2 . 

Now, problem (6.1.5) becomes a robust portfolio selection problem 

->..fTx + ~xTQx + "'ll8112xlb mm 
X (6.1.13) 

s.t . x E F. 

Problem (6.1.13) is SOCO problem, moreover, it is a parametric optimization 

problem with two parameters A and "'· We will solve an instance of prob­

lem (6. 1. 13) in Section 7.4 . 

6.1.2 Risk Measures and Quantile-Based Risk Models 

The Markowitz model is commonly used in practice in the setting of market 

risk. From an optimization perspective, minimizing variance requires solving a 

quadratic optimization problem, which is readily accomplished by commercial or 

open-source solvers. However, it is well known that variance is a poor measure 

of risk when the distribution of a portfolio's return is asymmetric. This fact is 

particularly relevant for hedge funds, for example, which often make extensive 

use of derivatives. It also applies to portfolios that incur credit risk, namely the 

potential reduction in the value of a financial instrument (e.g ., a bond) due to 

the default , or the increased likelihood of default of a counterparty to a contract. 

Instead of measuring risk in terms of variance, managers of credit-risky portfolios 

typically focus on extreme quantiles of the portfolio's loss distribution. Thus, a 

credit-risk optimization problem may require minimizing the 99.9 percentile loss , 

i.e., the loss that is likely to be exceeded with a probability of 0.001, for example. 

Such problems are typically harder to solve than those that involve variance, as 

the objective functions (risk measures) are less tractable. 
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When estimating risks of individual assets and portfolios, risk measures play 

crucial role. Risk measures are used by practitioners for a number of purposes, 

including quantifying risk and determining the amount of capital a financial 

institution needs to hold. A risk measure should be chosen appropriately to 

serve these purposes. In addition, a risk measure needs to be represented as 

a tractable objective function if it is meant to be optimized. In this section 

we discuss a number of risk measures and provide general formulations for the 

corresponding optimization problems. 

The CAPM uses variance (standard deviation) as the risk measure. But 

as the CAPM does not take correlations between individual assets into account, 

portfolio variance is just the sum of variances of individual assets. As portfolio 

variance is proportional to portfolio beta in the CAPM framework, portfolio beta 

is used as the risk measure. Minimizing risk in CAPM models is equivalent to 

minimizing portfolio beta (3 p ( x) or just 

The Markowitz model uses covariance as the risk measure. In many cases 

the mean-variance risk measure is referred to as portfolio variance. The risk 

minimization problem in mean-variance framework is minimizing portfolio vari­

ance Var(x]: 

where Q is the covariance matrix. If the underlying variables are not normally 

distributed, variance is not a comprehensive risk measure as it does not capture 

all relevant risk aspects. Another common criticism of measuring portfolio risk 

with variance is that the mean-variance model penalizes up-side and down-side 

risk equally, whereas most investors do not mind taking up-side risk. So, one 

possible solution is to use quantile-based risk measures. 

Our primary interest is in quantile-based risk measures such as value-at-risk 

(VaR) and expected shortfall (ES or CVaR). VaR is incorporated in the Basel II 
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Capital Accord, which makes it an integral part of the regulatory requirements. 

For a detailed review of these risk measures we refer the reader to [138]. 

Let us consider a return distribution for portfolio x, where the random 

variable R describes random returns. Then, value-at-risk VaRa is the largest 

possible return, at a given confidence level a and over a given period of time, 

that one will experience [112]: 

VaRa(R) =max{£: JP>(R::; £)::; 1- a}= FR"1(1- a). 

Expected shortfall ESa is the average return beyond the VaR level: 

ESa(R) = E[R: R::; VaR(R)]. 

In the definitions above, a is the confidence level or quantile, e.g, a = 0.99 refers 

to a 99% confidence level; FR" 1 is the inverse of the cumulative return distribution 

of R. If R describes random payoffs, then VaR is a threshold in terms of monetary 

units. 

Figure 6.2 illustrates risk measures discussed above on the basis of a prob­

ability density function of portfolio returns. 

If VaR is defined for the distribution of losses L, we get 

VaRa(L) = fa(L) =min{£: JP>(L::; £) 2: a}. 

Here, VaR is predicted maximum loss with a specified confidence level over a 

given period of time. 

It is known that VaR has some undesirable properties, namely it does 

not take into account risks exceeding VaR (for losses), it is not a coherent risk 

measure [117] as VaR is not sub-additive leading to the fact that portfolio diver­

sification can increase risk, and is non-convex. Expected shortfall is a coherent 

risk measure and is attractive for optimization due to its convexity. 

Let us denote the loss function by f. The loss function f depends on the 

vector of portfolio weights x that are the control variables, and ~ is the random 

vector of underlying risk factors with the probability measure JP>. Risk factors ~ 
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Figure 6.2: Risk Measures (source [112]). 

may include random returns R, random losses L, random macroeconomic vari­

ables, etc. Now, the loss function is f(x, 0 and the reward function is - f(x, 0. 
Examples of optimization problems involving expected shortfall risk mea­

sure are presented below. They resemble the formulations for mean-variance 

optimization. Unlike minimizing VaR, expected shortfall minimization is a con­

vex problem if the function of losses f(x, ~) is convex in x. 

max E[- f(x, OJ 
X 

s.t. ESa[f(x, ~)] ::; v 
X :2 0, 

min ESa[f(x, OJ 
X 

s.t. E[- f(x, ~)] :2 p 
:r; :2 0, 

max E[- f(x, OJ 
X 

s.t. E8a 1 [f(x, ~)] ::; 1/1 

E8a2 [f(x, ~)J ::; 1/2 

X :2 0. 

When mean-variance analysis is extended by utilizing quantile-based mea­

sures instead of variance, this generalization is called mean-risk analysis [137]. 

More information about formulating and solving VaR and ES optimization prob­

lems in the credit risk context can be found in Section 6.3. 
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6.2 Portfolio Replication 

Financial institutions and insurance companies require competitive risk and port­

folio management tools for measuring and managing risks in order to use those 

results in business decision making. In particular, insurance companies target 

meeting their liabilities in the presence of different types of risk. In order to 

quantify risk types across the entire organization, in particular for an insurance 

company, the replicating portfolios risk management technology can be utilized. 

The methodology of portfolio replication enables insurers to generate a portfolio 

of standardized assets as a representation for their liabilities in order to calculate 

market risk measures on a market consistent basis, faster and more transparently 

than existing methods. This methodology for measuring risk allows calculating 

risk capital across the entire organization in order to meet regulatory require­

ments. 

A replicating portfolio comprises a set of standard financial assets whose 

value closely matches that of a liability portfolio under current and future mar­

ket conditions [17]. If the replication is sufficiently precise and the assets can 

be priced faster than the liability, which is the case in insurance industry, then 

the replicating portfolio is a computationally efficient proxy for conducting risk 

analysis of the liability. Replicating portfolios can be obtained using optimiza­

tion techniques. The optimization problem behind the portfolio replication is 

minimizing the mismatches between cash flows representing the liabilities and 

returns of the replicating portfolio for a number of future time periods in the 

presence of uncertainty. 

Given a set of candidate assets, an optimization problem is formulated 

to find the asset positions that best match certain characteristics of the liabil­

ity in some limited set of projected economic scenarios. Intuitively, replicating 

portfolios rely on the fact that complex liability cash flows can be decomposed 

into simpler cash flows that correspond to financial instruments. For example, 

fixed cash flows can be represented as zero coupon bonds, minimum guarantees 

for variable annuities as puts on market indices, and fixed annuity options as 
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swaptions with physical settlement [17]. 

The focus of this section is on formulating and solving portfolio replica­

tion models represented as optimization problems, in particular with regularized 

and parametric optimization techniques. The first key challenge to its practical 

implementation is defining an appropriate penalty function for measuring mis­

matches between cash flows to be replicated and a replicating portfolio. The 

second challenge is the fact that the distribution of cash flows is not known 

exactly, and its approximation is constructed from a set of scenarios represent­

ing possible cash flows of company's liabilities [39, 99]. The last challenge is 

that in order to avoid overfitting, that deteriorates out-of-sample performance, 

a constructed replicating portfolio has to be sparse. 

A sparse replicating portfolio, that is desirable for practical reasons, need to 

contain a relatively small number of assets. The smaller the replicating portfolio, 

the more quickly it can be priced, and the easier it is to interpret in relation to 

the liability. Moreover, sparse portfolios are often better able to replicate the 

liability across a broad range of market conditions. The merits of this approach 

for replication of insurance liabilities are noted in [35] and a genetic algorithm 

has been proposed for this purpose in [113]. It was shown in [17] that imposing 

trading restrictions during construction of a replicating portfolio is an effective 

way to achieve an appropriate level of sparsity. Trading restrictions serve as an 

approximation for restricting portfolio cardinality. Moreover, imposing trading 

restrictions is equivalent to imposing penalty on portfolio size, which is know as 

regularized problem in optimization. Regularized optimization problem can be 

considered as a variant of multiobjective optimization problem, which solution 

is the trade-off between minimizing the replication mismatch and maximizing 

sparsity of the replicating portfolio. Similarly to the risk-reward trade-off in 

portfolio selection, solutions of the portfolio replication problem with trading 

penalty produces an efficient frontier between the replication error and solution 

sparsity. 

Replication errors between replicated and replicating portfolios can be de-

122 



Ph.D. Thesis - Oleksandr Romanko McMaster- Computing and Software 

fined in terms of different norms. If the 1\-norm or the infinity norm is used to 

model mismatch errors and all the problem constraints are linear, the optimiza­

tion problem for minimizing the mismatch is a linear optimization problem. The 

Euclidian norm leads to a quadratic optimization problem. In some cases, only 

expected underperformance or a weighted combination of the positive and neg­

at ive performance deviations of a replicating portfolio from the replicated cash 

flows is penalized leading to a wider class of models [39]. 

Computational methods to solve portfolio replication problems include con­

tinuous linear and quadratic optimization as well as mixed-integer linear and 

quadrat ic optimization. Mixed-integer formulation is employed if cardinality 

constraints are present. Due to large problem sizes, mixed-integer optimization 

is not always applicable as practical formulations need to be solved in near real­

time, but serves as a tool for comparing solution quality of the regularization 

approach. 

In the remainder of this section we first discuss previous studies on portfo­

lio replication in Section 6.2.1. Notation and concepts that are needed for con­

structing replicating portfolios are introduced in Section 6.2.2 . In Section 6.2.3 

we describe the use of parametric optimization for solving portfolio replication 

problems formulated as regularized optimization problems and weighted regular­

ized optimization problems. The novelty of our results is in applying parametric 

optimization techniques to compute replication portfolios. 

6.2.1 Previous Studies 

The portfolio replication problem appearing in insurance industry is closely re­

lated to portfolio replication problem in asset and portfolio management and 

benchmark (index) tracking problem in portfolio selection. In addition , applica­

tions of portfolio replication include hedging and pricing in complete and incom­

plete markets, and portfolio compression [39]. 

The portfolio replication problem in asset management is known as dimension­

reduction problem and consists of replicating a large portfolio containing N assets 
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with a small portfolio containing J( assets [101]. The objective in that problem 

is minimizing the tracking error of the portfolio that is constrained to contain 

J( assets and a market of N assets. It is a combinatorial problem to select K 

assets from the universe of N. It requires solving the optimization prQblem, if 

constraints are present, or at least evaluating the objective function (Z) times. 

One way to handle it, is by solving a mixed-integer optimization problem, how­

ever it can be computationally too expensive for large problems. In addition, 

J( is often a decision variable and in many cases the ideal number of securi­

ties J( in the replicating portfolio is evaluated by considering trade-offs between 

the quality of replication, e.g., a tracking error, and the transaction costs [101]. 

Solving the problem for every possible value of K requires :LZ=l K(Z) = 2N 

operations, which is prohibitively slow. To reduce computational complexity, 

in [101] a simple heuristic is described that evaluates the objective function only 

:LZ=l K = ~N(N + 1) times. For each value of K starting from K = N the 

heuristic finds and drops the "worst" security from the portfolio by evaluating 

the portfolio J( times. Dropping each security one by one is performed for each 

J( = N, N - 1, ... , 2. Even though the implementation of the heuristic is quite 

simple, it may not produce acceptable results and may still be time consuming 

if the replication problem has constraints and requires solving an optimization 

problem for each potentially dropped security. 

Benchmark (index) tracking problem in portfolio selection consists of track­

ing a benchmark or index portfolio with another portfolio. There are a number of 

reasons to create a replicating portfolio that tracks the benchmark. For instance, 

the benchmark portfolio may not be tradable or may contain a large number of 

instruments. Tracking error is usually defined as the standard deviation of a 

replicating portfolio return relative to a benchmark: TE(x) = (x- x)TQ(x- x), 

where xi, i = 1, ... , N is the percentage of the portfolio invested in stock i, x is 
the vector of percentage weights of the stocks in the index and Q is a covariance 

matrix of the stock returns. So, tracking error measures relative volatility of the 

replicating portfolio in relation to the benchmark. Relations of the tracking error 
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to other replicating portfolio features can be studied in a number of ways. For 

instance, in [18] tracking error is expressed as a function of the trading strategy, 

allowing to construct trade risk profiles, that express the relationships among 

tracking error, risk contributions, expected returns and trading costs. 

The idea that an index tracking portfolio may consist of relatively few as­

sets has the following background - it prevents portfolio from holding very small 

positions and limits transaction costs and service fees. Consequently an index 

tracking algorithm that performs tracking error minimization may limit or re­

strict the total number of assets in the portfolio. An obvious way to introduce 

the restriction for the total number of assets in a portfolio is a cardinality con­

straint. Cardinality of a vector x E JRN is the number of nonzero components 

in it. If we define 0° = 0, the cardinality of a vector x is the counting function 

card(x) = '2..:~ 1 x~ = llxllo, where llxllo is often called zero norm1
. In general, 

for a real number p ~ 1, p-norm is defined2 as llxllp = ( L~l lxilp f 1
p. In index 

tracking problems, the cardinality constraint has the form card(x) = llxllo ~ K. 

Instead of inequality constraint, it can be the equality constraint. Those problems 

are called cardinality-constra·ined optimization problems. The disadvantage of 

cardinality-constrained optimization problems is that those are no longer contin­

uous and involve integer variables. Exact solution to the cardinality constrained 

optimization problem can be achieved by using mixed-integer optimization, see, 

e.g., [24]. 

In [80] a heuristic technique is described for cardinality-constrained index 

tracking problems. The investment universe is the S&P 100 index. In the heuris­

tic algorithm from [80], first the tracking error for the portfolio with 100 stocks 

is minimized and the 80 largest stocks are selected. Next, the portfolio with 

those 80 stocks is optimized and 60 stocks are selected. The algorithm stops 

when the portfolio with the required number of stocks is selected, e.g., 20 stocks. 

The algorithm easily generalizes to removing any number of stocks (even 1) at 

1 Zero norm is not a true norm as it is not positive homogeneous. 
2While this formula is also valid for 0 < p < 1, the resulting function does not define a true 

norm as it violates the triangle inequality. 
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each stage. When one stock is removed at each stage, the algorithm becomes a 

simplified version of the heuristic from [101], where each stock is verified one by 

one before the decision of its removal from the portfolio is made. 

In [80] the discontinuous counting function 'L:~1 x? is approximated by 

continuous but not continuously differentiable function 'L:~ 1 I xi IP, where the 

value of pis selected to be 0.5. Essentially 'L:~ 1 lxiiP taken to the power 1/p is the 

p-norm approximation of the cardinality constraint. Another approach, called 

graduated non-convexity, is taken in [28]. The authors propose approximating 

the discontinuous function x? by a sequence of continuously differentiable non­

convex piecewise quadratic functions that approach x? in the limit. 

Approximating the zero norm cardinality constraint "L:f:1 x? ::; I< with a 

p-norm constraint 'L:~ 1 lxiiP ::; E seems very attractive. Parameter cis varied for 

tuning the cardinality approximation to match I< non-zeros in the solution. In 

addition, the constraints obtained by the €1-norm for p = 1, and the Euclidian 

norm for p = 2 in the form llxll1 ::; E and II.TII 2 ::; E are convex constraints. The 

convex optimization problems that approximate the cardinality constraint can 

be solved efficiently both in theory and practice. These techniques are known 

as regularized optimization, in particular €1-regularization refers to the €1-norm 

approximation, and Tikhonov regularization refers to the Euclidian norm ap­

proximation of the cardinality constraint. 

It is important to recognize that the problem of asset selection in portfolio 

replication is identical to the subset selection problem in linear regression, see 

Section 5.2, except for the absence of the intercept term. The subset selection 

problem deals with selecting an appropriate set of predictor variables from a 

large number of candidates. Like replicating portfolios, statistical models ben­

efit from sparsity. When a model includes only the most important predictors 

interpretation is easier and overfitting is less likely to occur, and it produces a 

more stable model with improved out-of-sample prediction accuracy [17]. 

The methods that have been proposed for variable selection in statistics 

include those that also employ regularization, see the survey [68]. In this case, 
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the usual objective of minimizing the regression residuals is augmented with 

a constraint or a penalty term that discourages the inclusion of unnecessary 

predictors. Examples of methods that use this technique are the LASSO [140] 

for ordinary least squares regression and the LAD-LASSO [145] for least absolute 

deviation regression. 

Regularization techniques have been also explored in the context of financial 

optimization. It is well known that in mean-variance optimization imprecise 

estimation of the sample's means and covariances can produce unstable portfolios 

that perform poorly out-of-sample. In order to mitigate these effects, in [16, 103] 

regularization is incorporated in the form of penalties and constraints on the 

portfolio weights. A similar approach is used in [62] when minimizing the value­

at-risk and the conditional value-at-risk of a portfolio. 

In most of the previous studies replication error of the replicating portfolio 

is considered in relation with other portfolio performance indicators, e.g., port­

folio return or transaction cost of constructing that portfolio. Presence of those 

performance indicators allow selecting the size (sparsity) of the replicating port­

folio. In insurance portfolio replication, the difficulty is that there are no other 

obvious performance indicators except for the mismatch between the liabilities 

cash flows and cash flows generated by the replicating portfolio. In addition, 

there are no transaction costs associated with constructing replicating portfolio 

as it is essentially a virtual portfolio. One way is to test out-of-sample perfor­

mance of the replicating portfolio, but this tactic requires a systematic way to 

obtain out-of-sample scenarios for cash flows of liabilities, that may be difficult 

to generate due to actuarial systems used by insurance companies. Without out­

of-sample testing, cross validation can be used on the set of existing scenarios. 

6.2.2 Construction of Replicating Portfolios 

We target replicating the cash flows of liabilities with a set of N candidate 

replicating instruments. According to actuarial practice, we assume that cash 

flows occur at times t = 1, 2, ... , T with the convention that t = 0 is the present 
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time and t = T is the time horizon. Uncertainty about future cash flows is 

described by a set of S scenarios. Each scenario describes the liability and 

instrument cash flows under different economic conditions and usually includes 

risk-neutral and real-world scenarios. The per-unit cash flow of instrument 2 

(i = 0 for the liability) in scenario l at timet is denoted by cfi· 
Variables xi, i = 1, ... , N denote the position size in units of instrument 

i in the replicating portfolio. The goal of the portfolio replication optimization 

problem is to determine the decision vector x = (x1 , ... , XN? such that the 

replicating portfolio matches, as closely as possible, some characteristics of the 

liability cash flows [17]. Examples of objectives that should be matched in each 

scenario, among others, include: 

• The present values of the cash flows; 

• The terminal (accrued) values of the cash flows; 

• The cash flows at every time step; 

• A set of time-bucketed cash flows. 

Typically, a replicating portfolio is obtained by minimizing some measure of the 

discrepancy in the chosen characteristics. Let f ( x) denote such a measure. 

A popular measure, motivated by least squares regression, is the weighted 

sum of squared differences. For example, matching the values of cash flows with 

the average square error measure implies 

(6.2.1) 

where Qf is the timet discount factor in scenario l, and w is a set of non-negative 

weights that prioritizes the liability cash flows, i.e., the larger wf, the more im­

portant is to match cf0 . Usually, weight wf = pz, where pz is the probability of 

scenario l. 

When matching the cash flows at every time step, we usually choose Qf = 1 
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and then formula (6.2.1) simplifies to: 

(6.2.2) 

When matching the present values of cash flows, formulation (6.2.1) can 

be rewritten as 

(6.2.3) 

where Ql is computed according to some predefined discounting schema. 

We can write formulations (6.2.1)-(6.2.3) in a general form: 

f(x) = iiW(Cx- co) II~= liAx- bjj~, (6.2.4) 

where W is the diagonal matrix with its diagonal elements being equal to ffi; the 

elements of matrix C are equal to Cji = cfi, j = l x t = 1, ... , S · T for matching 

cash flows at every time step or C1i = ~i'=I Qfcfi, l = 1, ... , S for present value 

matching; vector c0 consists of the liability cash flows; matrix A = vV · C contains 

weighted cash flows of the instruments; and b = vV · c0 is the vector of weighted 

liability cash flows. 

Another measure, consistent with least absolute deviation regression, is the 

weighted sum of the absolute differences. In this case, matching the values of 

cash flows with the average absolute error measure results in 

S T N 

f(x) = LLPtd :Lc~ixi- c~0 , (6.2.5) 
l=I t=l i=l 

that can be rewritten similarly to (6.2.4) with the norm notation as: 

f(x) = jjW(Cx- co)llr = IIAx- bill· (6.2.6) 

The dimension of matrix A and vector bin formulations (6.2.4) and (6.2.6) 

depends on the objectives that should be matched in each scenario. For matching 
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present values or future (terminal) values of cash flows the dimension of matrix A 

isS x N, which is essentially equivalent to one time step matching. Using time­

bucketed cash flows also results in reducing problem dimensionality by reducing 

the number of time periods from T to n, where Tb < T. The most general 

setting is matching the cash flows at every time step. In that case, matrix 

A in optimization problems (6.2.4) and (6.2.6) has the largest dimensionality 

ofT· S x N. Choice between those matching strategies depends on the out-of­

sample performance of the replicating portfolio and is out of the scope of this 

thesis. 

Now, the general formulation of portfolio replication problem minx f(x) 

without trading penalty is 
mm jjAx- bjj 

X 

s.t. X E 0, 
(6.2.7) 

where the norm II· II is either f\-norm or £2-norm and we allow for linear equality 

and inequality constrains X E f2 in the formulation. 

Note that formulation (6.2.7) is known in multicriteria optimization liter­

ature as goal programming. Let us write £1-norm minimization problem (6.2.7) 

as: 

mm 
x,y 

s.t. 

l=l 
N 

l:Azixi -y( +y1- = bz, l = 1, ... ,S 
i=l 

Yt ~ 0, y( ~ 0, l = 1, ... , S 
xE 0, 

(6.2.8) 

where variables y( and Y! represent positive and negative mismatches in scenario 

l and weights w(, w! penalize positive and negative deviations differently. For 

portfolio replication problems, usually 'Uiz = w( = w1- = pz. 

Formulation (6.2.8) is a goal progmmming problem [102, 136]. Goal pro-

gramming is a technique for solving multicriteria optimization problems, where 

ideal values of the objectives are known. The goal programming formulation 

(6.2.8) is a 10 problem. In the portfolio replication problem the goal is to match 
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cash flows in each scenario and this represents multiple conflicting criteria. 

If the goal is to penalize squared mismatches \\Ax-b\\~, we get the following 

formulation: 

min 
x,y 

s.t. 

1 s 
2 2)w((yt)2 + w((yl)2] 

l=l 
N 

2:::: Azixi- y( + Yt = bz, l = 1, ... , S 
i=l 

Yt ~ 0, y( ~ 0, l = 1, ... , S 
X E r2, 

(6.2.9) 

which is a QO problem. Problem (6.2.9) is the least squares minimization prob­

lem (with additional constraints X E n) where we minimize the squared Euclidian 

norm of mismatches. 

6.2.3 Portfolio Replication via Parametric Optimization 

As we already know, solving the unconstrained problem minx f(x), where f(x) is 

of the type (6.2.4) or (6.2.6), often produces a replicating portfolio with non-zero 

xi for most i, essentially overfitting the liability cash flows in the set of S scenar­

ios. However, we can regularize problem ( 6. 2. 7) as described in Section 6. 2.1 to 

reduce the number of non-zero xi components. Replicating portfolio with "small" 

x: is known to be less sensitive to errors in matrix A containing the scenario cash 

flows, than a portfolio with large x [15]. So, it is expected that replicating portfo­

lio with relatively small number of instruments may perform well out-of-sample. 

As a result, limiting the number of instruments in the portfolio allows avoiding 

overfitting. 

In order to minimize the mismatches and limit the number of non-zeros in 

x, we may introduce the cardinality constraint in the form card(x) ::; K, where 

K is the desired number of instruments. As we know from Section 6.2.1, the 

cardinality constraint can be approximated via regularization techniques, where 

the regularization term that allows limiting the size of x, and, thus, limiting 

its cardinality, is introduced into the objective. Regularization terms that are 
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commonly used in practice are llxll1 and less frequently llxll2· 

If £1-norm regularization is used, then the optimization problem is 

min IIAx- bll~ + .AIIxlh, (6.2.10) 
X 

or 

miniiAx- blh + .AIIxll1, (6.2.11) 
X 

where .A > 0 and the resulting problem is called t'rnorm regularized optimization. 

If the number of scenarios S is smaller then the number of instruments N 

in the portfolio, we can solve the problem: 

mm llxlh 
X 

s.t. Ax= b, 

which is known as basis pursuit criterion [15] and is the special case of the 

formulation with the constraint IIAx- bll :::; c, c = 0. 

Least squares problem with £1-norm regularization (6.2.10) can be trans­

formed to: 
mm IIAx- bll~ 

X (6.2.12) 
s.t. llxllr:::; E, 

which is known as the least absolute shrinkage and selection operator (LASSO), 

see, e.g., [140, 9]. In (6.2.12) the parameter c ~ 0 is used to parameterize 

the importance of sparse solutions. For c = 0, the optimal solution of (6.2.12) 

is x* = 0. When c ~ II xts ll1, where xts is the (unconstrained) least-squares 

solution, we get x* = x£5 . More detailed overview of £1 penalized regressions 

(6.2.10) and (6.2.12) can be found in [68] and [145]. 

Let us define a generic "cost" of trading as in [17] by 

N 

h(d,x) = Lddxd = IIDxll1, (6.2.13) 
i=l 

where di > 0, d = (d1, ... , dN f, and Dis the diagonal matrix containing weights 

d1 , ... , dN on its diagonal, i.e., D = diag(d). 
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Problems (6.2.10)-(6.2.12) can be generalized further by replacing the reg­

ularization term !lxll 1 with the generic cost of trading term I!Dx!h- In that 

case, generalized problems (6.2.10) and (6.2.12) are said to include a trading 

budget and a trading penalty, respectively. This generalization is known as 

weighted €1 regularized optimization. There are a number of techniques for com­

puting matrix D. The one described in [20] is based on first solving the problem 

minx !!Ax- bll~ without the regularization term I!Dx!h and obtaining the opti­

mal solution x*. After that, the weights are computed as di = 1;il, i = 1, ... , N 

and the weighted €1 regularization problem is solved. 

As we allow for linear constraints on the variables x, we are interested 

in solving problems (6.2.10) and (6.2.12) with additional constraints X E S1. 

Allowing for linear constraints x E S1 in weighted regularized optimization, we 

can write our formulation of interest based on (6.2.12) as: 

mm !!Ax- bll~ 
X 

s.t. I!Dx!h ~ E 

X E S1. 

(6.2.14) 

Optimization problem (6.2.14), that we are targeting to solve, is a multi­

objective optimization problem, where the conflicting objectives are minimizing 

replication error and maximizing solution sparsity. As Chapters 2 and 3 explain, 

we can solve multiobjective optimization problems of the form (6.2.14), including 

problems with !!Ax- blh objective, as well as (6.2.10)-(6.2.11) using parametric 

QO techniques. 

6.3 Portfolio Credit Risk Optimization 

For financial institutions, the benefits of managing (portfolio) credit risk include 

not only reduced monetary losses due to defaulted or downgraded obligations but 

also lower capital charges. While individual credit-risky positions can be hedged 

with credit derivatives such as credit default swaps, imperfectly correlated credit 

movements among counterparties also provide opportunities for mitigating credit 
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risk at the portfolio level through diversification. In particular, using optimiza­

tion techniques to restructure portfolios of credit-risky positions is an attractive 

possibility. However, such procedures face numerous challenges, foremost being 

the difficulty of representing the portfolio credit loss distribution with sufficient 

accuracy. We formulate several alternative optimization problems that are de­

rived from a structural Merton model of portfolio credit risk, and evaluate their 

effectiveness from the perspectives of risk mitigation and computational practi­

cality. 

Credit risk refers to the potential monetary loss arising from the default, 

or a change in the perceived likelihood of default, of a counterparty to a financial 

contract. Note that a reduction in the default probability, i.e., a transition to a 

more favourable credit state, results in a monetary gain. However, such gains are 

generally small relative to the losses that occur due to severe credit downgrades 

or default. Thus, the credit loss distribution (F) for a typical investment-grade 

portfolio is positively skewed, the long right tail being consistent with a small 

likelihood of substantial losses. 

The complex relationships among asset prices, exposures and credit tran­

sitions preclude obtaining a closed-form representation of the actual credit loss 

distribution. Thus, for risk management purposes, it is necessary to replace F by 
~ ~ 

some approximating distribution F. The form ofF varies depending on the un-

derlying credit loss model. For example, reduced-form models, e.g., CreditRisk+ 

[33], provide P in closed form. However, their underlying assumptions may be 

viewed as overly simplistic in that they fail to capture the effects of credit state 

migrations and correlated movements of risk factors [37]. In contrast, structural 

models [67, 78] can provide a more realistic representation but typically require 

P to be an empirical distribution derived from Monte Carlo (MC) simulation. 

For example, the empirical distribution F of portfolio losses due to credit events, 

which is obtained by simulating the portfolio under a set of possible future out­

comes (scenarios), is shown in Figure 6.3. 

Computing P from Monte Carlo simulation presents challenges for assess-
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Figure 6.3: Credit Portfolio Loss Distributions. 

ing credit risk because common risk measures, such as value-at-risk (VaR) and 

expected shortfall (ES), involve extreme quantiles in the right tail. Thus, ob­

taining accurate risk estimates requires a huge number of samples, or scenarios. 

Initial attempts at minimizing credit risk relied exclusively on MC simulation 

and included the full set of loss scenarios in the formulation [97, 98, 5, 158, 156]. 

Clearly, a limitation of this approach is that the large size of the resulting op­

timization problem adversely affects computational performance. Subsequently, 

in [130] a large-portfolio approximation was used to obtain a more compact for­

mulation. 

More recently, variance-reduction techniques such as importance sampling 

have been shown [141] to provide stable optimal solutions, with a relatively small 

number of scenarios. However, a potential problem with importance sampling, 

is that the required shift in distribution depends on the portfolio's risk, which 

of course changes with the portfolio's composition during the course of the op­

timization. Thus, it is not clear that the shift induced by the initial portfolio is 

also effective for the optimal portfolio. 
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Structural models infer a counterparty's credit state from its associated 

creditworthiness index, which depends on systemic risk factors in the form of 

credit drivers as well as a specific risk factor unique to each counterparty [78, 75]. 

Given a set of values for the credit drivers, credit transitions for all counterparties 

become independent. This conditional independence property can be exploited 

to obtain P in semi-analytical form, specifically, as a mixture of closed-form 

conditional loss distributions. Such representations are far more data-efficient 

than pure Monte Carlo sampling and the associated optimization problems are 

smaller as a result. We evaluate the practicality of optimizing credit risk for 

three different representations ofF: 

• Monte Carlo sampling; 

• A mixture of normal (Gaussian) conditional loss distributions; 

• A mixture of conditional mean (expected) losses. 

For comparison purposes, we also consider the performance of variance­

based formulations as a way of reducing a portfolio's VaR and ES. Variance 

minimization, which dates back to the seminal work of Markowitz [95], remains 

in widespread use for risk management purposes. It is well known that mini­

mizing variance has the effect of also minimizing VaR and ES only for normal 

distributions. Thus, in our context, minimizing variance effectively assumes that 

F is normal. This is likely to be a poor approximation to the actual portfolio 

credit loss distribution as Figure 6.3 shows. Nevertheless, its popularity makes 

variance minimization a useful benchmark when evaluating the performance of 

the structurally based formulations. Since variance only measures dispersion 

around the mean, as a second, related benchmark we also minimize the second 

moment of the credit loss distribution which takes the mean into account. 

Our formulations and computational experiments are intended to be con­

sistent with managing the risk of a banking book. Since a typical banking book 

may contain thousands of counterparties, we allow for optimizing over groups of 

counterparties. Thus, a portfolio manager might elect to assign all counterparties 

from a given industry to the same group, for example, and then use the results 
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of the optimization to restructure the portfolio at the industry level. Such an 

approach is much more practical than enacting changes to a large number of indi­

vidual contracts, as might be suggested by optimizing at the counterparty level. 

We also limit the amount of trading to what can be implemented reasonably 

when rebalancing the banking book; namely short positions are not permitted 

and new groups may not be added to the existing portfolio. These limitations 

are enforced only to provide a realistic assessment of the optimization results; 

nothing precludes relaxing or eliminating such restrictions from a formulational 

standpoint. Finally, although we account for credit migration, it is assumed that 

exposures are deterministic, i.e., positions are not marked to market. 

The rest of this chapter is organized as follows. In Section 6.3.1 we in­

troduce some notation and basic concepts, and describe relevant input data for 

modelling credit-risky instruments. Section 6.3.2 introduces the structural model 

for portfolio credit risk, for which future credit events may be simulated. In 

Section 6.3.3, several approximations are described for the loss distribution, F. 

Section 6.3.4 reviews the risk measures that will be optimized. The formulations 

of our credit-risk optimization problems follow in Section 6.3.5. We evaluate and 

analyze our computational results in Appendix A. 

6.3.1 Portfolio Credit Losses 

vVe are concerned with credit-risk modelling and optimization at the portfolio 

level only. Counterparty-level data is used as input to the portfolio-level models. 

Such data may be estimated from an internal model or provided by an external 

agency. We start by analyzing the input data for our portfolio level credit­

risk optimization problems. Table 6.1 summarizes available information about 

counterparty-level credit risk. 

We consider a single time period. At the end of the time period, each 

counterparty can migrate to a different credit state resulting in our losses £~, 

where j = 1, ... , Ncp indexes counterparties and c indexes credit states. There 

are C credit states available for counterparties, enumerated from c = 0 (de-
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Table 6.1: Credit Instruments Data. 

Counterparty Credit Driver cs Recovery after Default Exposure Market Return 

Group# CPID 
Credit 

CDIDX 
Sensitivity Credit Recovery Recovery 

Value E[Return) Driver Vector State Mean Standard Dev 

1 USBUSIN 1234 DJUSBM 1 0.5568 A 0.62 0.3567 10,255,741 7.0315% 

1 USPAPER 1234 DJUSBM I 0.5568 A 0.6 0.3600 9,997,200 7.0435% 

129 FRANSTEEL!234 E2BSC 21 0.5399 BB 0.7 0.3368 49,911,974 10.4248% 

203 JAPAHOTEL!234 P1CYC 32 0.5154 CCC 0.62 0.3567 5,466,820 36.1575% 

271 AUSTREAL!234 P2F1N 44 0.5380 BBB 0.66 0.3481 4,993,662 8.2542% 

Counterparty Credit State Migration Probabilities 

Group# CP 1D Pr(Dcfau1t) J Pr(CCC) I Pr(B) l Pr(BB) I Pr(BBB) I Pr(A) I Pr(AA) I Pr(AAA) 

1 USB US IN 1234 0.0002 0.0001 0.0013 0.005 0.0507 0.9183 0.0239 0.0005 

I USPAPERI234 0.0002 0.0001 0.0013 0.005 0.0507 0.9183 0.0239 0.0005 

129 FRANSTEEL!234 0.0127 0.0055 0.0705 0.8512 0.0545 0.005 0.0005 0.0001 

203 JAPAHOTEL!234 0.255 0.68 0.0418 0.0174 0.0058 0 0 0 

271 AUSTREAL1234 0.0018 0.0016 0.008 0.0488 0.8849 0.052 0.0024 0.0005 

Countcrparty Losses in Credit States 

Group# CPID L(Dcfau1t) I L(CCC) I L(B) I L(BB) I L(BBB) I L(A) I L(AA) I L(AAA) 

1 USBUSIN1234 10.255,741 503,640 201,280 59,625 11,484 0 -500 -1,500 

I USPAPER 1234 9,997,200 939,798 398,956 124,925 23,465 0 -3,250 -5,000 

129 FRANSTEEL!234 49,911,974 3,571,706 1,283,666 0 -533,837 -677,873 -698,786 -710,178 

203 JAPAHOTEL!234 5,466,820 0 -230,494 -375,416 -440,986 -458,134 -461,91! -463,096 

271 AUSTREAL!234 4,993,662 328.776 169.824 54,867 0 -15,392 -18,599 -19,623 

fault) through increasing credit ratings, to the highest credit rating c = C- 1. 

Note that negative losses (gains) are incurred if a counterparty migrates to a 

more favourable state. The probability of being in the state c at the end of 

the time period is P/; with rlo being the probability of default. Unadjusted ex­

posure of counterparties at default corresponds to their values v_?P (v_?P > 0). 

In general, eounterparty exposure is the economic loss that will be incurred on 

all outstanding transactions if a counterparty defaults, unadjusted by possible 

future recoveries. Exposures are computed subject to netting, mitigation and 

collateral. The recovery at default is assumed to be deterministic and recovery­

adjusted exposures are equal to vfP(l- "'fj), where "Yj is the recovery rate. 

A portfolio consists of Ncp counterparties grouped into Nc groups, see 

portfolio snapshot in Table 6.1. For instance, counterparties from the same 

country, the same industry and having the same credit rating can be grouped 

together. Changing positions in groups is more practical as it only allows altering 
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the between-groups positions, leaving the problem of within-group rebalancing 

as a lower level problem. From the point of view of modelling and optimization, 

grouping decreases the number of decision variables. Our modelling assumptions 

do not place any restrictions on the number of groups, group sizes or group 

compositions. 

The value of the i-th group Gi, is vi = LjEG; vJP, and its loss is 

C-1 

.Ci = L L f~ · l{CP j is in credit state c}, (6.3.1) 
jEGi c=O 

where 1 {} is the indicator function of the event in braces. 

Let the decision variable, xi ;::: 0, i = 1, 2, ... , NG, denote the position in 

the i-th group, and x = ( x1 , x2 , ... , x Nc) T. Let x0 be the vector of positions in 

the initial portfolio. We set x? = 1 for all i, so that the positions are expressed 

as multiples of the initial holdings. The portfolio value is 

Nc 

v(x) = L vixi. (6.3.2) 
i=l 

The initial portfolio value is then Vp = 2::.::~~ vi. The portfolio loss .C - .C(x) is 

defined as 
Nc 

.C(x) = L .Cixi· (6.3.3) 
i=l 

6.3.2 Structural Model for Portfolio Credit Risk 

The empirical distribution F of portfolio losses clue to credit events, is obtained 

by simulation of an underlying structural model described below. Our simulation 

approach is based on the CreditMetrics framework [67, 129] and the credit-risk 

portfolio framework from [78, 75]. The degree to which F approximates the true 

distribution F, and thus the quality of the associated risk estimates, depends 

on the number of samples. The effect of sample size is especially pronounced 

when estimating quantiles close to 1, as those lie in the extreme right tail of the 
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distribution. It is well known that the variability of a (risk) estimate decreases 

as the number of samples increases. 

A particular value of portfolio loss £, is computed as a function of the 

sampled values of a set of risk factors, see (6.3.6), that can be separated into two 

groups: 

• Y denotes a set of systemic risk factors: credit drivers which are macroe­

conomic factors and sector indices; 

• Z denotes a random vector of counterparty-specific, or idiosyncratic, credit­

risk factors. 

The joint distribution of default and migration events is described through 

the counterparties' creditworthiness ind·ices. The creditworthiness index Wj de­

termines the financial health of counterparty j, and is defined as 

(6.3.4) 

where Zj is the idiosyncratic risk which is independent across counterparties 

and is normally distributed, N(O, 1); Yn(j) is the counterparty's credit-driver, 

a standard normal random variable; credit drivers are correlated and normally 

distributed, N(O, C) with a given correlation matrix, C; (3J is the factor loading 

parameter or the sensitivity of the counterparty j to its credit driver Yn(j)· As 

a result, the creditworthiness index Wj is normally distributed, N(O, 1). Thus 

we are assuming that the creditworthiness index for each counterparty depends 

on one credit driver; i.e., the counterparty participates in only one sector (e.g., 

country-indus try pair). 

Pj = 'L,~cp{ is the cumulative probability of counterparty j being in credit 

state c or lower, so that ~ = Pj - PJ_ 1 , with the convention, P~ 1 - 0. The 

credit-state boundaries {B1}~==o2 are defined as Bg = ~- 1 (P1), 0 :::; c:::; C- 2 

(B~ 1 - -oo, Bb_ 1 = oo) due to IP(Wj < Bg) = Pj. A counterparty j 1s m 

credit state c at the time horizon if B~_ 1 :::; Wj < Bg, or equivalently: 

IP(CP j is in credit state c) = IP(B~_ 1 :::; Wj < Bt). (6.3.5) 
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For this model, the group loss in (6.3.1) takes the specific form, 

C'-1 

£ i = L L e~ · l {B~_ 1 :::; f3j Ynul + .)1- (f3J) 2Zj < Bn. (6.3.6) 
jEG; c=O 

The key property of this model is conditional independence: given a value y of 

the credit drivers , Y, the creditworthiness indices are independent. Conditional 

independence allows us, in principle, to obtain the conditional loss dist ribution 

by convolution using Fast Fourier Transform. The downside of the convolution 

technique is that it is difficult to use it for optimization because of the large 

number of possible losses at the portfolio level. In the next section, we look at 

some practical alternatives. 

6.3.3 Loss Distribution Approximations 

Conditional independence gives rise to several variants of the credit-loss distribu­

tion model. Scenarios on Yare generated and then the conditional loss distribu­

tion is approximated by one of the methods . The unconditional loss distribution 

ft is obtained as the mixture of the conditional loss distributions. Methods 

for approximating conditional loss distributions [76] include MC-sampling ap­

proximation, see Section 6.3.3 .1; Cental Limit Theorem (CLT) approximation, 

see Section 6.3.3.2; and Law of Large Numbers (LLN) approximation, see Sec­

t ion 6.3.3 .3. 

The number of scenarios can be greatly reduced if one makes simplifying 

assumptions about the loss distribution and/or the portfolio's composition. For 

example, in [130] an LLN approximation is also used in which the number of 

issuers is so large that their individual risks effectively "cancel out" statistically, 

i.e., the idiosyncratic risk is eliminated. 

6 .3.3.1 MC-Sampling Approximation 

If we generate a sample y from the distribut ion of Y, the creditworthiness indices 

are conditionally independent given Y = y . Since the idiosyncrat ic credit-risk 
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factors are independent of the credit drivers, any number of samples z can be 

combined with the sample y while still preserving the required codependence 

structure. 

Under the MC-sampling approximation, 111 K scenarios are generated as 

follows: 

1. Generate a random sample y1, l = 1, ... , A1 of systemic factors from the 

distribution of Y 

2. For each l E {1, 2, ... , 111}, generate a random sample z1kl k = 1, ... , K of 

idiosyncratic factors from the distribution of Z (independently, across l). 

We denote the j-th counterparty's loss in the (l, k)-th scenario, (yl, Zlk), by 

C-1 

£1k := :z.=e~ ·l{BL1 s f3J (yz)n(J) + \h- (f3J)2 (zlk)J < Bn, (6.3.7) 
c=O 

so that the sampled value of the i-th group's loss is (cf. (6.3.6)) 

ei,lk = :Z.::::: efk. 
jEGi 

The sampled portfolio loss is 

No 

Lzk(x) = L £i,lkxi. 
i=l 

The MC-sampling approximation to F, the cumulative distribution func­

tion ( cdf), of the portfolio losses, is computed as 

ftMc(e; x) = 1\I}K L l{Llk(x) s £}. (6.3.8) 
l,k 

6.3.3.2 CLT Sampling Approximation 

Another approximation that we can use instead of full MC sampling is the con­

ditional application of the Central Limit Theorem (CLT) which is valid if the 
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number of counterparties is large and the contribution of each counterparty is rel­

atively small (granularity or "smallness" condition). Fewer scenarios are required 

for this approximation. 

Under the CLT approximation, conditional losses (for each systemic sam­

ple l) are approximately normally distributed N(p1(x), o}(x)), where p1(x) 

E[.C(x) I Y = yz] is the conditional mean of total portfolio loss and 171(x)2 = 

Var[.C(x) I Y = yz] is its conditional variance. 

To compute p1(x) and Jt(x), first note that the conditional probability of 

a counterparty j being in credit state c, given that Y = y1, is 

JID(CP j is in credit state c / Y = Yz) 

JID(B~_ 1 ~ f3j Y,1(j) + )1 - (f3J)2Zj < B~ I Y = Yz) 

JID c-1 < z. < c 
( 

Bj - (3iyz BJ - f3Jyz ) 
J 1 - (f3j )2 - J -J-;=1 =_=;=(f3::;:;=j~) 2 

<I> ( B~- f3Jyz ) _<I> (B~_ 1 - f3Jyz) 
J1 - (f3j)2 J1 - (f3i)2 ~.l' 

where <I> is the standard normal cdf. 

Under a given systemic scenario l, the conditional mean and variance of 

the loss due to the initial position with counterparty j are given by 

p{ I: c{~,z, 
c:::::o 

( 17{)2 I: ( £{)2~,! - (p{)2, 
c:;::._o 

The conditional mean and variance of loss from the i-th group are 

~li,l = I: pf, 
jEG; 

The portfolio's conditional mean and variance of loss are 

Nc 

~lz(x) = L J-li,lXi, (6.3.9) 
·i=1 
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Figure 6.4: CLT Approximation of an Unconditional Loss Distribution 

and 
Na 

a1(x)2 
= z:=(ai,t)2x;. (6.3.10) 

i=l 

The CLT approximation of the conditional portfolio loss distribution, is 

(6.3.11) 

where JID1 denotes the conditional probability measure with JID1(£(x) ::.:; £) = 

JID(.C(x) ::.:; e I y = Yt)· 

The approximation to the unconditional distribution is then a mixture of 

normal distributions and its cdf is equal to 

M 

FA CLT(o· ) = _2-__"""" ih (£- J-Lt(x)) 
r,, x NI ~ '±' a1(x) · 

1=1 

(6.3.12) 

The resulting approximation for the unconditional loss distribution is illus­

trated in Figure 6.4. The dashed curves are the conditional normal distributions 

of portfolio losses for !'vf = 9 scenarios and the solid line is the unconditional loss 

distribution. 
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6.3.3.3 LLN Sampling Approximation 

For a portfolio with a very large number of small counterparties we can use the 

Law of Large Numbers (LLN) to estimate conditional portfolio losses. In this 

case we assume that all specific risk is diversified away so that the portfolio loss 

is the sum of expected losses. As a result, as Ncp --+ oo the conditional loss 

distribution is dominated by the mean loss over that scenario. As with the CLT 

conditional approximation, fewer scenarios are required for this approximation 

than for the MC approximation. 

The LLN-approximation3 of the conditional distribution of losses, is com­

pletely described by its mean, given by equation (6.3.9). The unconditional loss 

distribution is approximated by 

M 

ft'LLN(£; x) = ~I L l{p,l(x)::; £}. (6.3.13) 
l=l 

6.3.4 Risk Measures 

Our primary interest is in quantile-based risk measures such as value-at-risk and 

expected shortfall. For a detailed review of these risk measures we refer the reader 

to Section 6.1. In addition to minimizing VaR andES directly, we also consider 

minimizing variance and the second moment of losses, as alternative, indirect 

ways to reduce quantile-based risk. Our goal is to compare the performance 

of credit-risk optimization when we optimize over different risk measures and 

evaluate VaR and ES for the resulting optimal portfolios. 

The estimated vector of unconditional mean losses is JE[.C(x)] and the un­

conditional variance of losses is Var[.C(x)]. Mean-variance (moment-based) op­

timization problems minimize variance or a combination of mean and variance. 

3The usual interpretation of the LLN, would be that, under lP't, limNcp-+oo C(x)/Ncp = 
limNcp-+oo J-Lt(x)/Ncp (assuming the latter limit exists), with J-Lt(x) given by (6.3.9). We are 
using the term, LLN-approximation, to simply mean that under lP'1, C(x) ~ J-Lt(x). 
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Another risk measure that can be used instead of variance is the second moment, 

which is JE[£(x) 2
] = Var[£(x)] + lE[£(.T)j2. 

Value-at-risk is the maximum loss of a portfolio over a given time period 

and at a given level of probability. The value-at-risk function t'a(x) is the a­

quantile of the loss distribution and is given by 

t'a(x) =min{£ E lR : JPl(£(x)::; £) :2: a}. 

Then for our structural model we have 

J 
1 M 

a= JPl(£(x)::; t'a(x)) = Py(.C(x)::; t'a(x)) d<p(y) ~ f'vf LJPlt(L(x)::; t'a(x)), 
t=l 

(6.3.14) 

where <p is the distribution of the vector of credit drivers. 

The expected shortfall ESa ( x) is defined as the expected loss exceeding 

VaR and it can be written as 

1 
ESa(x) = 

1 
_alE [£(x) · 1{£(x) :2: t'a(x)}]. (6.3.15) 

For our structural model we have 

1 M 
lE [£(x) · 1{£(x) :2: t'a(.T)}] ~ JIII L lEt [£(x) · 1{£(x) :2: t'a(x)}], 

t=l 

where lEt denotes the conditional expectation operator lE[ · I Y = yt]. 

The goal of minimizing the risk measures discussed above, leads us to the 

general formulation of the optimization problem. All the optimization formu­

lations we are going to discuss in Section 6.3.5 will have the following general 

form: 
mm g [£(x)] 

X (6.3.16) 
s.t. XED, 

where g [£(x)] is the risk measure (Var[£(x)], JE[£(x) 2
], Ra(x) or ESa(x)) and D 

denotes the feasible region, defined by a set of linear constraints. 
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6.3.5 Credit Risk Optimization Formulations 

In this section we formulate the optimization problems for minimizing risk mea­

sures described in Section 6.3.4 within the framework introduced in Sections 6.3.2 

and 6.3.3. These two dimensions, the risk measure and the approximation of the 

loss distribution, define the taxonomy of the optimization problems that we con­

sider. 

For ease of presentation, from here onwards we suppress the subscript G 

on Nc, the number of groups, and write simply N. 

6.a.5.1 Moment-Based Formulations 

Minimizing variance or the second moment of the loss distribution does not 

minimize the quantile-based risk measures (VaR andES), unless the distribution 

of losses is normal. So, it is expected that the moment-based formulations may 

not perform well for all quantiles. 

For the moment-based formulations, we require the vector, J.L, of uncon­

ditional expected credit losses of the groups, and the unconditional variance­

covariance matrix, Q, of the groups' credit losses. The i-th component of J.L, 

indexed by the groups, is the sum over the counterparties in the i-th group, of 

the counterparties' mean losses: 

C-1 

f.Li = I: I: e~~-
jEG; c=O 

The (i1 , i 2 ) component of Q is the sum of the covariances of the counterparty 

losses, with the counterparties ranging over the i 1-th and i 2-th groups. MC 

approximation or semi-analytically, using the conditional independence of coun­

terparty losses combined with a systemic MC simulation for unconditioning. 

The variance Var[.C(x)] minimization problem is: 

min xTQx 
xEJRN 

s.t. XED. 
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The second moment IE[..C(x) 2] minimization problem is: 

mm xT[Q + pp7]x 
xE][~N 

s.t. XED. 

6.3.5.2 ES and VaR Minimization with MC-Sampling Approximation 

Optimization Formulation for ES Minimization 

It was shown in [121] and [122] that minimization of expected shortfall ESa(x) 

can be reduced to minimizing the function 

1 
£ + 

1 
_ o: IE([L:(x)- £]+), (6.3.17) 

where a+= max(O, a). 

The function ( 6.3.17) is convex in £; it is also convex in x if the function of 

losses, L: ( x), is convex in x. 

Having !11 J( scenarios with corresponding probabilities 1/ M J( of occurring, 

we can approximate the expectation in ( 6.3.17): 

(6.3.18) 

The ES optimization problem becomes: 

min 
x,e 

1 1 
AfK 

£ + (1 _ o:) 111 J( l)Llk(x)- £]+ 
l,k 

s.t. XED. 

The problem is convex as the loss functions L1k ( x) are linear and the set n is 
defined by linear equalities and inequalities. The ES minimization problem can 

be reduced to the linear problem: 

mm 
xEJF!.N,·uEJF!.MK,fEJF!. 

s.t. 

1 1 
e + (1- o:) NIK L ulk, 

l,k 

Uzk :2: Llk(x) - £, Uzk :2: 0, l = 1, ... , NI, k = 1, ... , K 
XED, 

(6.3.19) 
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where { u1k} are auxiliary variables. 

Note that to optimize the expectation in (6.3.17), we can use a number 

of approaches. Instead of formulating the problem as a large-scale linear opti­

mization problem described in this section, it can be solved as a non-smooth, 

nonlinear optimization problem. In general, using nonsmooth optimization tech­

niques is prohibitively slow. Instead, we can use the smoothing technique in [2] 

to solve the problem with a smoothed ES function. 

Sequential Algorithm for VaR Minimization 

For the MC-sampling formulation, directly minimizing VaR requires integer 

programming. We use a heuristic technique, developed in [87], that is less com­

putationally intensive. The algorithm minimizes VaR by solving a sequence of 

ES minimization problems while progressively fixing scenarios in the tail of the 

loss distribution. 

In our setting, the algorithm is described by Algorithm 6.1. 

6.3.5.3 VaR and ES Minimization Based on CLT Approximation 

Applying the CLT approximation to the conditional loss distribution, from (6.3.11) 

we obtain 

IPl(.C(x) :::; (.,(x)) ~<I> ( Ea(x~l(x~Ll(x)) . 

From (6.3.14), we derive: 

M 

~ L <I> (£a(x)- J.Ll(x)) =a. 
M l=l a-l(x) 

(6.3.20) 

Equation (6.3.20) determines the value of the objective function, Ea(x), 

implicitly as function of the decision vector x. For fixed x, the VaR value Ea(x) 

is the solution of equation (6.3.20) which must be solved numerically, for instance 

using bisection or Newton-type methods. 

This leads to the following formulation of the VaR optimization problem 
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Algorithm 6.1: Sequential Algorithm for VaR Minimization. 

Step 0. Initialization 

1. Set cx0 =ex, m = 0, H0 = {(l, k): l = 1, ... , NI, k = 1, ... , K}. 

2. Assign a value to the parameter, c, for discarding scenarios; 
O<c<l. 

Step 1. Optimization subproblem 

1. Minimize Ctm-ES 

mm 
x,u,f,"'( 

s.t. 

e + Vrnl\}K L Uzk 
(l,k)EHm 

Lzk(x):::::; e + Uzk, Uzk ~ 0 
Lzk(x) :::::; '"'( 
Lzk(x) ~ '"'( 
X E 0, 

(l, k) E Hm, 
(l, k) E Hm, 
(l,k) tf. Hm, 

where Vm = 1/((1- etm)). Denote the optimal solution of this 
problem by x;n. 

2. Denote the order statistics of the losses L1k(x:n), 
l = 1, ... , NI, k = 1, ... , K by Ln, n = 1, ... , NIK. 
Also, denote the sorting order by writing n(l, k) = n if (l, k) 
is the n-th index in the sorting order. 

Step 2. Estimating VaR 
Calculate VaR estimate Em = Ln", where na =min{ n : n/ l'vf K ~ ex}. 

Step 3. Stopping and re-initialization 

l.m=m+l. 

2. bm = Q + (1- cx)(1- c)m and Ctm = cx/bm. 

3. Hrn = {(l,k) E Hm-1: n(l,k)/MK:::::; bm}· 

4. If Hm = Hm- 1 then stop the algorithm and return the estimate 
of the VaR-optimal portfolio x~1 and VaR estimate fm, 

otherwise go to Step 1. 
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with the conditional normal approximation: 

s.t. ...!_ "\"'M cp (la(x)-J.tt(x)) = a 
M Dl=l crt (x) ' 

(6.3.21) 

X E Sl. 

Turning to ES, under scenario l, .C(x) rv N(p,1(x), a}(x)). Now, the ES for a 

general N(p,, 0'
2)-distributed random variable, X, is well known to be 

1 
~ a [p,ci> ( Xa: ~t) + 0'¢ ( Xa: p,) l ' 

where Xa is the a-quantile of X, ¢ denotes the standard normal pdf, and ci> = 

1- 1>. 

Therefore, the expected shortfall ESa(x) at the quantile level a is 

M 

ESo(x) = 1 ~" ~ ~ [!•l(x)~ ( fo(x~,(x';'(x)) + <>,(x)¢ ( Co(x~,(x~,(x)) l· 
(6.3.22) 

The resulting ES optimization problem with CLT approximation is: 

min ESa(x) 
xEJRN 

s.t. 
M 

~ L ci> (fa(x)- p,z(x)) =a 
M l=l O'z(x) ' 
X E Sl, 

where ESa(x) is defined by equation (6.3.22). 

(6.3.23) 

Numerical solutions for problems (6.3.21) and (6.3.23) can be obtained 

using standard nonlinear optimization techniques. 

6.3.5.4 ES and VaR Minimization with LLN Approximation 

The LO problem for ES minimization was defined by (6.3.19). The only difference 

between the MC and LLN approximation formulations is the loss function L:(x). 

Using the loss function £ 1 ( x) for the LLN approximation, we get the following 
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ES optimization problem: 

s.t. 

1 1 M 

£ + (1- ex) M 2:::: Ut 
l=l 

Uz 2: {tz ( x) - £, Ut 2: 0, l = 1, ... , M 
(6.3.24) 

min 
xEJRN, uEJRM, eE!R 

XED, 

where {tt ( x) is the mean loss vector from LLN scenarios ( l = 1, ... , A1), computed 

from (6.3.9). 

The algorithm described in Section 6.3.5.2 is suitable for VaR minimization 

with the conditional LLN approximation. The modification of it for the LLN 

approximation is straightforward. 

6.3.6 Taxonomy of Optimization Problems 
and Data Requirements 

The taxonomy of optimization problems, that we have described in the pre­

vious subsections, is presented in Table 6.2. The empty cells that appear in 

Table 6.2 are due to two reasons. First, variance optimization under conditional 

independence framework is equivalent to the unconditional variance optimization 

formulation. Second, for unconditional formulation VaR andES minimization is 

equivalent to variance minimization. 

According to our knowledge, formulations for VaR and ES optimization 

problems within a conditional independence framework appear in [77] and in this 

thesis for the first time. Nonlinear optimization formulations for CLT approxima­

tion are novel, that is especially important for VaR optimization as finding exact 

solutions to that class of problems requires utilizing mixed-integer optimization 

techniques. 

Data requirements for optimization by each formulation can be summarized 

as follows: 

• MC Sampling - M systemic scenarios, K specific scenarios for each sys­

temic, N groups: K 1111 N data points; 
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Table 6.2: The Taxonomy of Credit Risk Optimization Problems. 

Risk Measure 

VaR Expected Shortfall Variance 
Second Moment 

Non-convex nonlinear problem Convex nonlinear problem 

CLT Direct VaR minimization with CLT Direct expected shortfall min-
Approximation sampling (Section 6.3.5.3) imization wit.h CLT sampling 

(Section 6.3.5.3) 

Linear problem (heuristic) Linear problem 

LLN Successive expected shortfall mini- Direct expected shortfall min-
Approximation mization heuristics with LLN sam- imization with LLN sampling 

piing (Section 6.3.5.4) (Section 6.3.5.4) 

Linear problem (heuristic) Linear problem 

Monte Carlo Succe'"ive expected shortfall min- Direct expected shortfall min-
Sampling irnization heuristics with Monte- irnization with Monte-Carlo 

Carlo sampling (Section 6.3.5.2) sampling (Section 6.:3.5.2) 

Convex quadratic problem 

Vector of rnean losses and 

Unconditional 
variance-covariance n1atrL'< of 

losses are computed from 

Monte-Carlo sampling (Sec-

tion 6.3.5.1) 

• CLT Approximation - !vi systemic scenarios, 1 mean and 1 variance for 

each systemic, N groups: 21vf N data points; 

• LLN Approximation - Jvf systemic scenarios, 1 mean for each systemic, N 

groups: M N data points. 

It is not surprising that the LLN formulation uses the least amount of data 

points for the optimization, as it is the most restrictive formulation, relying on 

the portfolio being very large and highly granular. If K > 2, the MC-sampling 

formulation requires the largest number of data points for optimization. 

Computational results for all formulations in Table 6.2 are presented m 

Appendix A. 
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Chapter 7 

Case Studies in Finance 

In this chapter we present examples of multiobjective optimization problems from 

finance that can be formulated and solved via parametric optimization. Those 

examples and their corresponding parametric formulations are discussed in the 

following sections. We describe our computational results on both small size 

illustrative case studies and large scale real problems. 

7.1 Portfolio Selection with Multiple Linear 
Objectives 

Here, we discuss the multiobjective portfolio selection problem, where the objec­

tive functions are linear. Those models are rooted in the Capital Asset Pricing 

Model described in Section 6.1.1.2, where the risk measure of an asset or portfolio 

is given by its beta coefficient. CAPM is the equilibrium version of mean-variance 

theory. Due to measuring risk in terms of the beta coefficients, the objective func­

tion in the risk minimization problem is linear in portfolio weights. In [160] a 

decision tool for the selection of stock portfolios based on multiobjective LO is 

described. Linear objective functions of the problem are the return, price earn­

ings ratio, volume of transactions, dividend yield, increase in profits and risk, 

which is expressed as the linear function of betas. The authors apply portfolio 

selection to a set of fifty-two stocks from the Athens Stock Exchange. We are go-
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ing to briefly describe their model including objective functions and constraints 

and compute the Pareto front for three out of six objectives considered in [160]. 

Readers interested in full details of the formulation and data for the model may 

consult [160]. 

The decision variables in portfolio selection problems are the portfolio 

weights xi, i = 1, ... , N, where N is the total number of assets available for 

investment. Portfolio weights define a proportion of total wealth (or total bud­

get) invested in the corresponding stock. As a matter of convenience, sum of 

portfolio weights is normalized to one I::1 xi = 1. Denoting by ri the expected 

market return of an asset i, allows us to compute the portfolio market return as 

rp = I::1 rixi = rrx. 

The beta coefficient f3 is a relative measure of systematic ( non-diversifiable) 

risk, it reflects the tendency of an asset to move with the market. As beta 

measures correlation with the market portfolio, it is calculated as f3i. = CVv(ri,rM), ar(rM) 
where ri is the asset i return and rM is the return of the market portfolio. If f3i < 1 

then asset i has less systematic risk than the overall market and the opposite 

holds for f3i > 1. As a result, portfolio risk minimization can be expressed as the 

linear function of asset weights, namely {min,~ f3T x}. 

Among the other six objectives that are considered in [160] is maximizing 

return { maxx rT x} and minimizing Price Earnings Ratio (P /E) {minx dT x}. The 

Price Earnings Ratio di for each stock is computed as share price in the stock 

market at time period t divided by earnings per share at period t - 1. We could 

have computed the Pareto efficient surface for more than three objectives here, 

but we restrict our attention to only those three due to well known difficulties 

with visualizing surfaces in more than 3 dimensions. Denoting the three objec­

tives as fi = -rT x, h = f3T x and h = dT x, we obtain the following parametric 

optimization problem: 

min -rT x + >... 1f3T x + >... 2dT x 
s.t. ;r; E D, 

(7.1.1) 

where D in [160] is the set of linear constraints that includes no-short-sales re-

156 



Ph.D. Thesis - Oleksandr Romanko McMaster - Computing and Software 

.. 

0.2 

0.15 

....-----
N 
w 

0.1 -rl 
w .____.... 

-e.. 
0.05 

0 
100 

0 0.4 

F igure 7.1 : T he Opt imal Value Function for the Parametric Linear Port folio 
Optimization P roblem. 

striction x ~ 0; upper limits for t he capital allocations Xi ::; u i, i = 1, ... , 52 ; 

specific preferences for some stocks of the form x1 ~ li ; and the constraints on 

bet as of the form t hat port ion y of the capital will be allocated to stocks with 

/3 E {/31 , /32 } that are expressed as ~ir;;; I Xi = y . Note that maximizing rT x is 

equivalent to minimizing - rT x . 

The parametric optimization problem that follows from the c-constrained 

multiobjective formulation is the following: 

x, t 

s.t /3Tx + t1 = c1 
dT X+ t2 = c2 

~iXi = 1 
~iEI Xi= 0.2 
X ~ 0, t ~ 0, 

(7. 1.2) 

where t 1 , t 2 are the slack variables used to convert the linear inequality constrains 
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Figure 7.2 : The Pareto Front for the Multiobjective Linear Portfolio Optimiza­
tion Problem (a) and the Invariancy Regions Corresponding to It (b). 

into equality constraints and E = (c1 , c2f is the vector of parameters. We have 

used a subset of the constraints x E D from [160] for the ease of exposition and 

included the no short-sales constraint x 2: 0 and the constraint L iE f Xi = 0.2 

stating that 20% of capital is allocated to stocks with a beta coefficient less 

than 0.5 . Formulation (7.1.2) is parametric 10 problem with two parameters in 

the right-hand-side of the constraints. 

The optimal value function for problem (7.1.2) is shown in Figure 7.1. We 

can use the optimal partition for the variables t 1 and t 2 to determine the Pareto­

efficient surface. For the invariancy regions corresponding to Pareto-efficient 

solutions, t 1 EN and t 2 EN, meaning that those variables belong to the subset 

N of the optimal partition. The invariancy regions corresponding to the Pareto 

efficient solutions are shown in Figure 7.2(b) and the Pareto front is depicted in 

Figure 7.2(a) . The Pareto front is a piecewise linear function. The knowledge 

of invariancy intervals and optimal value function on those intervals gives us the 

structure of the Pareto front . 
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7.2 Mean-Variance Optimization 
with Market Risk 

The Markowitz mean-variance model is commonly used in practice in the pres­

ence of market risk. From an optimization perspective, minimizing variance 

requires solving a QO problem. Denoting a vector of expected market returns 

by r as before and a variance-covariance matrix of returns by Q, the mean­

variance portfolio optimization problem is formulated as a QO problem where 

the objectives are to maximize the expected portfolio return { maxx rT x} and to 

minimize variance {minx xTQx }. The multiobjective optimization problem can 

be formulated as the weighted sum problem 

minx >..rT x + ~xTQx 
s.t X E 0, 

or as the .::-constrained problem 

minx ~xTQx 
s.t. -rT x :S c, 

X E 0, 

where n is the set of linear constraints on portfolio weights. 

(7.2.1) 

(7.2.2) 

We use a small portfolio optimization problem to illustrate the multiob­

jective optimization methodology. Problem data is presented in Table 7.1 that 

shows the vector of expected market returns r and the variance-covariance ma­

trix Q for the portfolio of 5 securities. We put non-negativity bounds x :2: 0 on 

the weights disallowing short-sales and add a constraint that makes the sum of 

the weights equal to 1. Two conflicting objectives are considered: 

1) minimize the variance of returns; 

2) maximize expected market return. 

Thus, the multiobjective portfolio optimization problem becomes: 

minx !1(x) = -rTx, h(x) = ~xTQx 
s.t I:i xi = 1, 

Xi :2: 0 Vi. 
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Table 7.1: The Expected Return Vector r and the Return Covariance Matrix Q 
for the Mean-Variance Optimization Problem with Market Risk. 

Security Expected Return Security Variance-Covariance Matrix 

1 0.096268 1 0.008989 0.002727 0.003838 0.007222 0.003944 
2 0.069400 2 0.002727 0.004982 0.002150 0.002191 0.003018 
3 0.088758 3 0.003838 0.002150 0.009153 0.005645 0.004704 
4 0.111474 4 0.007222 0.002191 0.005645 0.016891 0.004047 
5 0.043281 5 0.003944 0.003018 0.004704 0.004047 0.005156 

We solve two formulations of problem (7.2.3). The first one is the paramet­

ric problem corresponding to the E-constraint multiobjective formulation: 

mm 
x,t 

S.t -rT X+ t = E 

LiXi = 1, 
X 2 0, t 2 0, 

(7.2.4) 

where t is the slack variable used to convert the linear inequality constraint 

into equality constraint and E is the parameter. The second formulation is the 

parametric QO problem corresponding to the weighting method: 

where A is the parameter. 

mm 
X 

s.t Lixi = 1, 
X 2 0, 

(7.2.5) 

The output of our parametric solver for the E-constrained formulation 

(7.2.4) is shown in Table 7.2, while Table 7.3 displays the output for the for­

mulation (7.2.5). While both formulations produce the same efficient frontier, 

see Figure 7.4, we may notice that formulation (7.2.5) produces two optimal par­

titions B1 = 4, N1 = {2, 3, 5}, Tr = 1 and B2 = 4, N1 = {1, 2, 3, 5}, Tr = 0 for 

the right-most point on the frontier, while formulation (7.2.4) produces only one 

optimal partition B1 = 4, N1 = {2, 3, 5}, Tr = 1 at the same point. Note that 

index 6 in the optimal partitions in Table 7.2 is for the slack variable t. 

The optimal value function ¢(c) for formulation (7.2.4) is shown in Fig­

ure 7.3. The Markowitz efficient frontier in financial terminology or the Pareto 
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Table 7.2: The Output of the Parametric Solver for the Mean-Variance Problem 
with Market Risk , £-Constrained QO Formulation. 

type c:e Eu B N T ¢(c:) 
-----------------------------------------------------------------------------------------------

i nv . int erv +0.00000 +0.06865 1 2 3 4 5 6 o.oooooc:2 -o . oooooc: +0.00194 
tr. point +0 .06865 +0.06865 1 2 3 4 5 6 0.00194 

i nv . int erv +0 . 06865 +0.07974 1 2 3 4 5 6 0.51346c:2 - 0.07049c:+0.00435 
tr . point +0.07974 +0.07974 1 2 3 4 6 5 0.00200 

inv. int erv +0.07974 +0.09891 1 2 3 4 5 6 4.24940c:2 -0.66632c:+0 . 02811 
tr. point +0 .09891 +0.09891 1 3 4 5 6 2 0 . 00378 

inv. interv +0 . 09891 +0.10620 1 3 4 2 5 6 13 . 77287c:2 -2 .55033c:+0 . 12129 
tr. point +0. 10620 +0 . 10620 1 4 2 5 6 3 0 .00578 

inv. int erv +0 . 10620 +0 . 11147 1 4 2 3 5 6 24.7291 1c:2 -4 . 87744c:+0.24486 
tr. point +0 . 11147 +0 . 11147 4 2 3 5 6 0.00845 

Table 7.3: The Output of the Parametric Solver for the Mean-Variance Problem 
with Market Risk, Weighted Sum QO Formulation. 

type B N T ¢ (>.) 
-----------------------------------------------------------------------------------------------

inv. i n terv +0.00000 +0. 01140 1 2 3 4 5 -0.48690A2 -0 . 06865A+0.00194 
tr. point +0 . 01140 +0. 01140 1 2 3 4 5 0.00109 

inv . interv +0 . 01140 +0.17433 1 2 3 4 5 -0.05883A2 -0.07840A+0.00199 
tr. point +0 . 17433 +0. 17433 1 3 4 5 2 -0 . 01346 

inv. i nterv +0 . 17433 +0 . 37504 1 3 4 2 5 -0 .01815>.2-0 . 09259>.+0.00323 
tr. point +0.37504 +0.37504 1 4 2 5 3 -0 .03405 

inv. interv +0 . 37504 +0.63585 1 4 2 3 5 -0 .01011A2 -0.09862A+0.00436 
tr . point +0.63585 +0.63585 4 2 3 5 -0.06244 

inv. interv +0.63585 +Inf 4 1 2 3 5 O.OOOOOA2 -0 . 11147>.+0 .00845 

front in multiobjective optimization terminology is depicted in Figure 7.4. The 

optimal value function is plotted in the variance - expected return coordinate 

system, while the efficient frontier is shown in the expected return - standard 

deviation coordinate system. Adjacent corner portfolios define a segment of 

the efficient frontier within which portfolios hold identical assets and the rate of 

change of asset weights in moving from one portfolio to another is constant [133]. 

Corner portfolios are identified by the Markowitz critical line algorithm [96] . Due 

to the uniqueness of the optimal solution for each parameter value in our example, 

corner portfolios on the efficient frontier in Figure 7.4 are the transition points of 

the parametric problem solution. In between this corner portfolios the frontier is 

piecewise quadratic. Figure 7.4 shows the efficient frontier in the mean-standard 
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deviation space in order to be consistent with the existing literature. Note that 

the efficient frontier is a piecewise quadratic function in the mean-variance space. 

Portfolio composition is shown in Figure 7.5. As the covariance matrix Q 

for our problem is positive definite, we get strictly convex objective functions in 

our formulations, and consequently we get unique optimal solutions x* (E), and 

x* (A). It allows us to plot unique portfolio composition, namely dependance 

of asset weights x* on the expected portfolio return E, see formulation (7.2.4). 

Figure 7.5 displays corner portfolios and invariancy intervals. On each invariancy 

interval function x* (E) is linear which is depicted on the lower part of Figure 7. 5. 

On each invariancy interval the portfolio composition is constant, meaning that 

assets with zero weights stay zero for the portfolio on the whole interval, while 

weights for non-zero holdings may change on the interval. 

7.3 Mean-Variance Optimization 
with Market Risk and Transaction Cost 

A portfolio may incur transaction cost associated with each trading. In this 

section we extend the case study presented in Section 7.2 to allow for linear 

transaction cost. Denoting the linear transaction cost by fi, we add the third 

objective of minimizing the trading cost fi' x of a portfolio to the mean-variance 

portfolio optimization problems (7.2.1)-(7.2.2). 

The problem data is presented in Tables 7.4 and 7.5. Table 7.4 shows 

expected market returns per unit transaction cost for 8 securities, as well as 

their weights in the initial portfolio x 0 . 

We put non-negativity bounds x ~ 0 on the weights disallowing short-sales 

and optimize three objectives: 

1) minimize the variance of returns; 

2) maximize expected market return; 

3) minimize transaction cost. 

Moreover, we also need to add a constraint that makes the sum of the weights 

equal to one. 
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Figure 7.3: The Optimal Value Function for the Mean-Variance Problem with 
Market Risk. 
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Table 7.4: Portfolio Data for Mean-Variance Optimization with Market Risk and 
Transaction Cost. 

Security xo r = JE(Market Return) f! = (Transaction Cost) 

1 0 0.095069 0.009830 
2 0.44 0.091222 0.005527 
3 0.18 0.140161 0.004001 
4 0 0.050558 0.001988 
5 0 0.079741 0.006252 
6 0.18 0.054916 0.000099 
7 0.13 0.119318 0.003759 
8 0.07 0.115011 0.007334 

Table 7.5: The Return Covariance Matrix Q for Mean-Variance Optimization 
with Market Risk and Transaction Cost. 

Security 1 2 3 4 5 6 7 8 

1 0.002812 0.002705 -0.001199 0.000745 -0.000064 0.001035 -0.000336 0.000178 
2 0.002705 0.015664 -0.003000 0.001761 -0.002282 0.007129 0.000596 -0.003398 
3 -0.001199 -0.003000 0.008842 -0.000155 0.003912 0.001424 0.001183 -0.001710 
4 0.000745 0.001761 -0.000155 0.002824 0.001043 0.003874 0.000225 -0.001521 
5 -0.000064 -0.002282 0.003912 0.001043 0.007213 -0.001946 0.001722 0.001199 
6 0.001035 0.007129 0.001424 0.003874 -0.001946 0.013193 0.001925 -0.004506 
7 -0.000336 0.000596 0.001183 0.000225 0.001722 0.001925 0.002303 -0.000213 
8 0.000178 -0.003398 -0.001710 -0.001521 0.001199 -0.004506 -0.000213 0.006288 

Thus, the multiobjective portfolio optimization problem looks like: 

mm JI(x) = -rrx, fz(x) = Fx, h(x) = ~xTQx 
s.t Li xi= 1, 

Xi ;:::: 0 Vi. 
(7.3.1) 

We solve problem (7.3.1) as a parametric problem corresponding to the 

c:-constraint multiobjective formulation: 

mm 
x,t 

s.t -rTx+t1 =c:1 

Fx + t2 = c2 
Li Xi= 1, 
X;:::: 0, t;:::: 0, 
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where t1 , t 2 are the slack variables used to convert the linear inequality constrains 

into equality constraints and c = (c1 , c2? is the vector of parameters . 
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Figure 7.6: The Optimal Value Function for the Mean-Variance Portfolio Prob­
lem in the Presence of Transaction Cost. 

The optimal value function for problem (7.3.2) is shown in Figure 7.6 and 

the corresponding invariancy regions - in Figure 7.7(a) . We can utilize the opti­

mal partition for the variables t 1 and t 2 to determine the Pareto efficient surface. 

For the invariancy regions corresponding to Pareto efficient solut ions, t 1 =/=- B and 

t 2 =/=- B, meaning that those variables do not belong to the subset B of the optimal 

part it ion. The invariancy regions corresponding to Pareto efficient solutions are 

shown in Figure 7. 7(b) and the Pareto front is depicted in Figure 7.8. 

Invariancy regions have a very intuitive interpretation for portfolio man­

agers and financial analysts as inside each invariancy region the portfolio com­

posit ion is fixed. By fixed composit ion we mean that the pool of assets in­

cluded in the port folio remains unchanged while asset weights can vary. For 

instance, on the invariancy region n 1 in Figure 7.7(b) the optimal partition is 
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the Pareto Efficient Solutions (b) for the Mean-Variance Portfolio Optimization 
Problem with Transaction Cost. 
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N NBBNBBN which means that the portfolio is composed of securities 3, 4, 6 

and 7. The functional form of the Pareto front on the invariancy region 1r1 is 

h = 0.1- 0.4fl- 23.7!2 + 13.4jf + 11999.4fi- 621.9fif2. 

7.4 Robust Mean-Variance Optimization 

One of the common criticisms of mean-variance optimization is its sensitivity to 

return estimates. As the consequence of that fact, small changes in the return 

estimates can result in big shifts of the portfolio weights x. One of the solu­

tions to this problem is robust optimization, which incorporates uncertainties 

into the optimization problem. For a review of the robust optimization applied 

to portfolio management we refer the reader to [47]. 

Mathematical formulation of the robust mean-variance optimization prob­

lem presented in [22] and described in Section 6.1.1.3 is the following: 

min -f-Tx + K;ll8112xll + AxTQx 

s.t. 2:.:~= 1 xi= 1 (7.4.1) 
X _2: 0, 

where r is the vector of expected returns, 8 is the covariance matrix of estimated 

expected returns, Q is the covariance matrix of returns, K; is the estimation error 

aversion, and A is the risk aversion. 

Formulation (7.4.1) is a parametric SOCO problem with two parameters K; 

and A. Preliminary results on parametric SOCO are discussed in Chapter 8. If we 

look at it in the multiobjective sense, it is the problem of maximizing expected 

return, minimizing risk (variance of returns) and minimizing estimation error 

for the expected return. The problem formulation emphasizes the differences 

between the true, the estimated, and the actual Markowitz efficient frontiers [22]. 

To demonstrate the influence that sensitivities in the return estimates can 

potentially have on the portfolio selection, Ceria [21] presented a simple portfolio 

consisting of three assets. Table 7.6 shows expected returns for the two estimates 

and standard deviations for the assets. As Table 7.6 also shows, completely 

different portfolio weights can be obtained while optimizing the portfolio with 

168 



Ph.D. Thesis- Oleksandr Romanko McMaster- Computing and Software 

Table 7.6: Expected Returns and Standard Deviations with Correlations= 20% 
for Robust Mean-Variance Optimization, Optimal Weights for Two Portfolios. 

Security r1 

Asset 1 7.15% 
Asset 2 7.16% 
Asset 3 7.00% 

r2 

7.16% 
7.15% 
7.00% 

a Security Portfolio A Portfolio B 

20% 
24% 
28% 

Asset 1 
Asset 2 
Asset 3 

38.1% 
69.1% 

0.0% 

84.3% 
15.7% 
0.0% 

expected return estimates r 1 and r 2. Taking r 1 as the estimate of the expected 

returns, we solve the multiobjective problem (7.4.1) to find all possible trade-offs 

between the three objectives- maximizing expected return, minimizing variance 

and minimizing estimation error. 

As xTQx ::; ai (Q = RRT) and ll8112xll = ..Jxrex ::; a-2, we can rewrite 

problem (7.4.1) in the form: 

mm -fTx + .A 1u0 + A2Vo 

s.t. 2.:~= 1 xi= 1 
x~O 

8 112x- u = 0 
RTx- v = 0 

(u0 , u) E Kq, (v0 , v) E Kq, 

(7.4.2) 

where parameters .A1 ~ 0 and .A2 ~ 0 and Kq is the second-order cone. Parametric 

problem (7.4.2) represents the weighting method for multiobjective optimization. 

Formulating the parametric problem corresponding to the c--constrained 

method for multiobjective optimization we get: 

mm -fTx 

s.t. 2.:~= 1 xi= 1 
x~O 

8 112x- u = 0 
RTx- v = 0 

Uo = c1 

Vo = c2 

(u0 , u) E Kq, (v0 , v) E Kq, 

where parameters c1 ~ 0 and c2 ~ 0, and 8 is the identity matrix. 
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Figure 7.9: The Invariancy Regions for the Robust Mean-Variance Portfolio 
Optimization Problem. 
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Figure 7.11: The Pareto Efficient Surface for the Robust Mean-Variance Portfolio 
Optimization Problem. 

The optimal value function of the parametric SOCO formulation (7.4.3) 

with parameters (.s1 , .s2 ) in the constraints is shown in Figure 7.10. The corre­

sponding invariancy regions are presented by Figure 7.9. To identify the invari­

ancy regions that correspond to Pareto efficient solutions we need to restrict our 

attention to the regions where the second order conic blocks u and v belong to 

the subsets R or T of the optimal partition. Those invariancy regions and the 

corresponding Pareto efficient surface is shown in Figure 7 .11. 

7.5 Sparse and Stable Markowitz Portfolio 
Frontiers 

In [1 6] a sparse mean-variance portfolio construction problem is considered. The 

authors consider N securities and denote their returns at time t by rit with 

i = 1, ... , N indexing securities and t = 1, ... , T indexing historical time pe­

riods. Vector rt = (r1t. ... , rNtf is the vector of returns at time t. Assuming 
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stationarity of returns, the vector of expected returns is IElrtJ = r and the co­

variance matrix Q is computed as Q = IE[(rt- r)(rt- rf] = IE[rtr[l- rrr. A 

portfolio is defined as a vector of weights x = ( x1 , ... , x N f in assets. For the 

target value of portfolio return being equal to rp, the mean-variance optimization 

problem is defined in [16] as: 

mm 
X 

s.t. rTx = rp (7.5.1) 

2.:::~ 1 Xi= 1, 

where r = (r1, ... , rN )Tis computed as the sample average ri = ~ I:'J'=1 rit· 

The regularized variant of problem (7.5.1) with frnorm penalty is defined 

as follows: 
mm 

X 

s.t. rTx = rp (7.5.2) 

2.:::~ 1 Xi= 1, 

and solved in [16] by a generalized homotopy /LARS (Least Angle Regression) 

algorithm for a fixed value of rp. For detailed description of regularized opti­

mization we refer the reader to Section 6.2. 

Optimization problem (7.5.2) is a hi-parametric QO problem. Let us add 

constraints Ax = b, x 2: 0 to the formulation and write it in the following form: 

mm 
X 

s.t. rTx = E 

2.:::~ 1 Xi= 1 
Ax= b 
X 2: 0, 

(7.5.3) 

where (>.,E) are the problem parameters. We allow for general linear equality 

and inequality constraints in the form Ax = b, x 2: 0 as compared to the single 

linear equality constraint 2.:::~ 1 xi = 1 considered in [16]. Problem (7.5.3) is a 

multiobjective optimization problem with three objectives corresponding to max­

imizing portfolio sparsity, maximizing expected return and minimizing portfolio 

vanance. 
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We make the following alterations: 

1) Formulation (7.5.3) allows more general constraints than (7.5.2); 

2) Formulation (7.5.3) treats expected return as the third problem objective 

in addition to minimizing portfolio variance and maximizing its sparsity, 

thus allows the variation of parameter c as opposed to the constant value 

of rp in formulation (7.5.2); 

3) Parametric optimization problem (7.5.3) can be solved with Algorithm 2.2 

that is described in Section 2.3. 

We use data for the vector of expected returns r and the covariance ma­

trix Q from Table 7.1. For the ease of exposition we solve the c-constrained 

formulation of the multiobjective problem (7.5.3): 

mm 
X 

s.t. rTx = c1 

'2:{:1 I xi I = c2 

'2:{:1 Xi= 1 
X 2:: -0.2, 

(7.5.4) 

where the constraint x 2:: -0.2 allows for 20% short sales. The constraint 

'2:{:1 lxil = c2 can be written in the norm notation as llxlh = c2 . In the actual 

computation problem (7.5.4) was re-written in the standard form by splitting 

the variables x = x - ;f., with x, ;f. 2:: 0 in order to replace the absolute value 

function I · I by linear terms. 

The invariancy regions for the parametric QO problem (7.5.4) are shown in 

Figure 7.12. We display the portfolio compositions next to the invariancy regions 

in Figure 7.12. The plus sign denotes long positions of the corresponding assets, 

while the minus sign denotes short positions. For instance, portfolio composition 

+4 -5 denotes that the portfolio is composed of assets 4 and 5 with long posi­

tion in asset 4 and short position in asset 5. When the portfolio composition is 

changing on the transition lines or transition points between invariancy regions, 

we displayed the corresponding composition next to the line. All possible portfo­

lio compositions identified by regularized optimization are shown in Figure 7.12. 

173 



Ph.D. Thesis- Oleksandr Romanko McMaster- Computing and Software 

The Pareto front which is a subset of the optimal value function for the 

bi-parametric QO problem (7.5.4) is plotted in Figure 7.13. As we are interested 

in the cardinality of the portfolio instead of the objective function value llxlh, 
the Pareto front was also plotted in the cardinality-return-standard deviation 

space in Figure 7.14. Finally, we plot the same objective value function from 

Figure 7.14 in the mean-standard deviation space in Figure 7.15. The family 

of efficient frontiers in Figure 7.15 are the frontiers corresponding to different 

cardinalities of the vector of optimal weights x*. The cardinality of x* in its turn 

is equal to the cardinality of set B of the optimal partition on that invariancy 

region. 
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Figure 7.12: The Invariancy Regions for the Mean-Variance Problem with Market 
Risk and Sparsity Constraint. 
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Figure 7.13: The Pareto Front and Optimal Value Function for the Mean­
Variance Problem with Market Risk and Sparsity Constraint. 
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7.6 Parametric Portfolio Replication 

We use the portfolio replication framework, developed in Section 6.2, and con­

sider a block of 15,000 variable annuity policies with a mixture of minimum 

guaranteed death benefits sold over a ten year period. The total annual cash 

flows comprising of both benefits paid and fees collected are projected over a 

20-year time horizon. The economic scenario set used for the projection consists 

of 500 stochastic scenarios which are a mixture of risk neutral and real world 

scenanos. 

Based on the characteristics of the liability, a tradable universe of 369 in­

struments is identified consisting of zero coupon bonds, index forwards and Eu­

ropean index options on the indices, and swaptions. The maturities and strikes 

for the instruments are chosen to span the 20-year time period. Annual settle­

ment cash flows for the instruments in the tradable universe are projected over a 

20-year time horizon for each of the 500 economic scenarios used in the liability 

cash flow projection. 

Utilizing the notation from Section 6.2, we obtain S = 500, T = 20, N = 

369, wf = pz = 1/ S and matrix C with vector c0 are given. We have used 

MATLAB for implementing portfolio replication formulations. The CPLEX [74] 

and the MOSEK [105] optimization solvers were called from MATLAB to find 

numerical solutions of the optimization problems. 

Let us find the replicating portfolio that best matches the values of the 

liability cash flows at every time step. In this case, the 10,000 (20 years x 

500 scenarios per year) liability cash flows cannot be replicated exactly by a 

portfolio of 369 instruments. We use the quadratic discrepancy measure f(x) = 

II Ax- bll 2 . In addition, a linear constraint vT x = Vp on the total portfolio value 

is present. Now, based on formulation (6.2.14), we can present the optimization 

problem that we need to solve: 

mm IIAx- bll~ 
X 

s.t. IIDxlh ~ E (7.6.1) 
VTX = Vp. 
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Similarly to [50], we reformulate problem (7.6.1) as a parametric quadratic 

optimization problem by splitting variable x into positive and negative parts: 

x = x- ;I, x ~ 0, ;I ~ 0. 

min IIA(x- ;r) - bll~ 

s.t. d!x + d! ;r ~ E, 

VTX- VTX = V - p, 

x~ 0, 
;I~ 0. 

(7.6.2) 

Rewriting problem (7.6.2) as a quadratic optimization problem in the standard 

form, we get: 

where 

min 
x,t 
S.t. {jTi;+t=E, 

T-
U X= Vp, 

x ~ 0, t ~ 0, 

(7.6.3) 

X= [ x] [ -ATb] [ v ] - [ d] [ AT A -AT A] 
;r ' c = ATb ' u = -v ' d = d ' B = -AT A AT A · 

In the parametric quadratic optimization problem (7.6.3), tis a slack vari­

able used to convert the inequality constraint into equality. The constant term 

bTb is ignored during optimization, but is added to the optimal value function. 

For our computational experiments, we solve two parametric problems. The 

first one is problem (7.6.3) with d = (IN, IN )T. The second one is problem (7.6.3) 

with d = ( 1}..1, 1}..1 )T, where x* is the optimal solution of problem (7.6.1) without 

the regularization constraint II Dxlh ~ E. 

First, we restrict the total number of units traded, i.e., di = 1 for all i in 

equation (7.6.1) and its standard form (7.6.3), and minimize the expected squared 

deviation of the cash flows, i.e., minimize f(x) as defined in equation (6.2.2). 

Solving parametric problem (7.6.3) withE as the parameter produces an efficient 

frontier that shows the optimal trade-off between trade volume and in-sample 
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replication error, see Figures 7.16 and 7.17. Locations of optimal solutions on the 

efficient frontier are determined by parameter E, which equals to the total units 

traded llxlh at the corresponding location. Figure 7.16 shows the Pareto efficient 

frontier, which is also the optimal value function ¢(E), for the area of interest. 

In Figure 7.16 the transition points are the dots and the invariancy intervals are 

the curves between transition points. Figure 7.17 shows the whole frontier. The 

horizontal dashed lines in Figures 7.16 and 7.17 correspond to solutions without 

trading penalty. 

X 105 

4.4 

4.2 

4 

"' 
~ 3.8 

" 'H 
~ 3.6 
II 

~ 3.4 

3.2 

3 

I 

2.8 L----------------------------------------
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

E = !lx(E)Ih 

Figure 7.16: The Optimal Value Function and the Invariancy Intervals for the 
Portfolio Replication Problem. 

Figures 7.18, and 7.19 show the optimal solution cardinality vs. trading 

budget, and the optimal solution cardinality vs. in-sample replication error, re­

spectively. As the trading budget increases, the in-sample replication error de­

creases. Observe that increasing the budget causes more instruments to be in­

cluded in the replicating portfolio, see Figure 7.18. Moreover, this increase is 

accompanied by improved in-sample performance, see Figure 7.19. 
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Figure 7.17: The Efficient Frontier Between Replication Error and Trading 
Penalty. 

The optimal portfolio composition is shown in Figure 7.20, where the hori­

zontal axis depicts instrument number and the vertical axis shows the replication 

mismatch IIAx- bllz. 
The second formulation, that we solved, restricts the total number of units 

traded to di = 1;:1 for all 'i, where x* is the optimal solution of problem (7.6.1) 

without the regularization constraint II Dxll 1 ::; E. For the obtained value of vec­

tor d = (d,d)T = (1;.1, 1}.1)T, we optimized the parametric formulation (7.6.3). 

Solving parametric problem (7.6.3) with the weighted €1 regularization constraint 

parameterized by E produces another Pareto efficient frontier. Table 7.7 shows 

an extract from solver output for the parametric problem, where only the first 

five invariancy intervals are shown. The output includes invariancy intervals and 

transition points corresponding to parameter t:; portfolio composition, namely 

subset B of the optimal partition with indexes of the selected instruments; and 

the scaled optimal value function ¢(E) that describes dependence of the replica-
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Table 7. 7: Parametric Solver Output for the Portfolio Replication Problem with 
Weighted £1 Regularization. 

type B T ¢(<:) 

tr. point +0.05650 +0.05650 15 289 23208.70490 
inv. interv +0.05650 +0.40684 15 289 18897.49<:2 -31075.68<:+24904.05 

tr. point +0.40684 +0.40684 8 15 289 8 15389.08765 
inv. interv +0.40684 +0.82583 8 15 289 8563.38<:2 -22679.70<:+23198.71 

tr. point +0.82583 +0.82583 8 15 289 3 10309.30802 
inv. interv +0.82583 +0.83121 3 8 15 289 6796.10<:2 -19760.74<:+21993.43 

tr. point +0.83121 +0.83121 3 8 15 289 287 10263.549615 
inv. interv +0.83121 +0.99040 3 8 15 287 289 6451.42<:2 -19187.75<:+21755.28 

tr. point +0.99040 +0.99040 3 8 15 287 289 284 9079.89343 
inv. interv +0.99040 +1.13110 3 8 15 284 287 289 4457.99<:2 -15240.04<:+19800.83 

tr. point +1. 13110 +1.13110 

tion error on the trading penalty E in functional form. 

Now, we can compare results produced by parametric optimization prob­

lems with di = 1 and di = I:;; I to the exact solution of the cardinality-constrained 

problem, when the regularization constraint IIDxlh ::::; E in (7.6.1) is replaced by 

the cardinality constraint card(x) = K. The cardinality-constrained problem 

was formulated as 
mm IIAx- bll§ 
x,y 

s.t. T -V X- Vp 

L~IYi = K 
ee · y :S: x :S: eu · y 
y={0,1}, 

(7.6.4) 

where y is the binary variable, ee and eu are appropriately chosen lower and 

upper bounds on instrument positions. 

The mixed-integer QO problem (7.6.4) was solved for K = 15, 25, ... , 145 

with CPLEX and the running time for each value of K was restricted to 24 hours. 

The parametric solution with an appropriate cardinality J( obtained by solving 

problem (7.6.3) was used as the initial seed. 

Comparison of the solutions produced by parametric optimization with in­

teger solutions is demonstrated by Figure 7.21. Figure 7.21 shows dependance 

of the replication error measured by squared deviations on the number of in-
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struments in the replicating portfolio , i.e. portfolio cardinality. Three cases are 

shown: when the parametric problem is solved for d.i = 1; for di = 1;il, where x: 
is the number of units of instrument i held in the optimal replicating portfolio for 

the problem without trading penalty; and for the solution of the mixed-integer 

problem (7.6.4) with cardinality constraint. In Figure 7.21 those cases are re­

ferred to as f\-norm regularized heuristic, €1-norm regularized weighted heuristic 

and mixed-integer optimization, respectively. 
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Figure 7.21: Replication Error vs . Solution Cardinality for Solutions Produced 
by Parametric Optimization and Mixed-Integer Optimization. 

Now, we can compare the results obtained by mixed-integer optimization 

for the instrument selection, with the results obtained by the parametric opti­

mization algorithm. It turns out that the quality of the parametric optimizat ion 

solutions with di = 1;il is comparable to the results of mixed-integer optimiza­

tion, if the quality measure is defined by the replication error. For t he data set 

that we used for testing, parametric optimization can produce replication er-
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ror vs. solution cardinality efficient frontier that approximates the true frontier 

computed by integer optimization quite well. However, the parametric optimiza­

tion frontier is computed in minutes, while the integer optimization frontier is 

computed in days. 

7. 7 Expected Shortfall Optimization 
for Different Quantiles 

The portfolio credit risk optimization formulations described in Section 6.3 treat 

quantile level o: for quantile-based risk measures as fixed. Computational results 

are reported in Appendix A, where different formulations were optimized for a 

number of quantile levels, see Figure A.7. In many cases, risk measures should be 

optimized for a range of quantiles, and the question of interest is how expected 

shortfall ESa(.C(x)) in the optimum depends on quantile level o:. 

Let us consider 10 problem (6.3.24) of minimizing expected shortfall with 

LLN approximation. We define parameter >. as >. = 12a and rewrite problem 

(6.3.24) as parametric optimization problem: 

min 
xEJRN, t!EIR111 , fEIR 

s.t. 

1 M 

£+ >. M l:ul 
l=l 

ul 2": /ll ( x) - £, ul 2": 0, l = 1, ... , A1 
X E S1, 

where parameter >. appears in the objective. 

(7.7.1) 

Formulation (7.7.1) is a uni-parametric 10 problem and it can be solved 

using the techniques described in Section 2.2. In practice, quantile levels that are 

considered by credit risk practitioners range from 99% to 99.97%, that defines the 

interval of the parameter >. = [100, 3333.34], where parametric problem (7.7.1) 

need to be solved. A similar parametric problem can be formulated for the 

expected shortfall optimization problem (6.3.19) with MC-sampling. 

The piecewise linear optimal value function ¢(>.) for the parametric 10 

problem (7.7.1) is plotted in Figure 7.22. As the real interest is in getting the 
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Figure 7.22: The Optimal Value Function for Expected Shortfall Optimization 
with Different Quantiles. 
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dependence of the expected shortfall ES on the quantile level a, we have used 

the optimal value function ¢(>.) to compute the piecewise function ES(a). The 

expected shortfall as a function of quantile level is shown in Figure 7.23. For 

instance, on the interval a= (0.9952, 0.9960), the expected shortfall depends on 

a as 

ES = 3873898968 + 302551
. 

1-a 
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Chapter 8 

Discussions on Parametric 
Second-Order Conic 
Optimization 

Parametric SOCO is a natural extension of parametric analysis for LO and QO. 

As we point out in Section 3.3, parametric SOCO allows solving multiobjective 

quadratic optimization problems with more than one quadratic objective. The 

optimal basis approach to parametric optimization in LO cannot be directly gen­

eralized to parametric optimization in SOCO [152]. In contrast, it is promising 

to generalize the optimal partition approach of parametric LO and QO to SOCO. 

We describe ideas and preliminary results related to parametric SOCO in this 

chapter. 

The standard form SOCO problem is defined in Section 1.1.4. Primal prob­

lem (SOCP) and dual problem (SOCD) are specified by equations (1.1.10) and 

(1.1.11), respectively. Before defining parametric SOCO formally, we describe 

the geometry of second-order (quadratic) cones. An extensive review of SOCO 

problems can be found in [4]. 

Unlike LO and QO, in SOCO we work with blocks of primal and dual 

variables, see the definition of (SOCP) and (SOCD) problems in Section 1.1.4. 

Those primal-dual blocks (xi, si), i = 1, ... , I of variables compose the decision 

vectors of SOCO problems x = (x1 , ... , x1f and s = (s1 , ... , s1 )r, where xi, si E 
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IR.n;. We also refer to cone JC as a second-order cone when it is a product cone 

JC = JC~ x ... x JC~, where xi E JC~, i = 1, ... , I. As a linear cone JC} is a 

one-dimensional quadratic cone JC~ (xi :2: 0), we treat linear variables as one­

dimensional blocks. As before, /(* is the dual cone of /C. 

The bi-parametric SOCO problem in primal and dual form is expressed as: 

and 

¢(>.,E)= mm (c+>.6cfx 
s.t. Ax= b + E6b 

X E JC, 

max (b + E6bfy 
s.t. ATy+s=c+>.6c 

s E /(*, 

(8.0.1) 

(8.0.2) 

where A E IR.mxn, rank(A) = m, c E IR.n, b E IR.m are fixed data; x, s E IR.n 

and y E IR.m are unknown vectors; A, E E JR. are the perturbation parameters. 

Note that constraints x E JC and s E JC* are replaced by xi :2: llx~:n; ll2 and 

si :2: lls~:nJI2, i = 1, ... , I for computational purposes. 

8.1 The Optimal Partition in SOCO 

Algebraic representation of the optimal partition for SOCO problems is required 

for computational purposes. It will allow identification of invariancy intervals for 

parametric SOCO problems. 

Yildirim [153] has introduced an optimal partition concept for conic opti­

mization. He took a geometric approach in defining the optimal partition while 

using an algebraic approach is necessary for algorithm design. Although, the 

geometric approach has the advantage of being independent from the represen­

tation of the underlying optimization problem, it has some deficiencies. The 

major difficulty is extracting the optimal partition from a high-dimensional geo­

metric object and, consequently, it is inconvenient for numerical calculations. In 

contrast, the algebraic approach is directly applicable for numerical implemen­

tation. 
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More recent study [13] provided the definition of the optimal partition that 

can be adapted to algebraic approach. We describe the details and compare the 

definitions of the optimal partition for SOCO in [153] (its algebraic form) and 

[13] in this section. Before defining the optimal partition for SOCO formally, we 

introduce the necessary concepts and notation. The interior and boundary of 

second-order cones are defined as follows. 

Definition 8.1.1 (Interior of second-order cones) The interior of second­

order cone Kq E JRn is 

Definition 8.1.2 (Second-order cone boundary) The boundary of second­

order cone Kq E JRn without the or·igin 0 is 

Assuming strong duality, the optimality conditions for SOCO problems are: 

Ax- b 
ATy+s-c 

xos 

0, X E K, 
0, s E K, 
0, 

where the multiplication operation "o" is defined as x o s = (x1 o s 1 , ... , x 1 o s1)T 

l i i _ (( i)T i i i + i i i i + i i )T anc x o s- x s, x 1s2 s1x2 , ... , x 1sn; s1xn; . 

Strict complementarity for SOCO problems [4] is defined as xi o si = 0 

and xi + si E int K~, i = 1, ... , I. Interior point methods for SOCO produce 

maximally complementary solutions that maximize the number of strictly com­

plementary blocks i. 

With respect to its cone K~ each block xi can be in one of three states: 

• block xi is in the interior of K~: 
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• block xi is on the boundary of K~: 

• block xi equals 0: 

The same results are valid for the dual blocks of variables si E (K~)*. As second­

order cones are self-dual K = K*, we are going to denote both primal and dual 

cones by K in the remainder of this chapter. 

The optimal partition for SOCO has four sets, so it is a 4-partition 1r = 

(B,N, R, T) of the index set {1, 2, ... ,I}. The four subsets are defined in [13] 

as: 

B { i : xi > llx~:nJI 2 (xi E int K~) for a primal optimal solution x }, 

N { i : s\ > II s~:n; ll2 ( si E int K~) for a dual optimal solution (y, s) } , 

R { i: xi =1- 0 =1- si (xi E bdK~ and si E bdK~) 

for a primal-dual optimal solution (x, y, s) }, 

T { i : :ci = si = 0, or si = 0 and si E bd K~, or si = 0 and xi E bd K{ 

for a primal-dual optimal solution (x, y, s) }. 

Now we can state all possible configurations for primal-dual blocks of vari­

ables at optimality, those are summarized in Table 8.1 and serve as a basis for 

defining the optimal partition. Cases that are not geometrically possible, as 

those do not satisfy the optimality conditions, are shown as "x" in Table 8.1. 

For the set R of the optimal partition it holds that xi =1- 0 =1- si, and those 

blocks xi and si lie on the boundary of K (i.e., x1 = llx~:nJI 2 =1- 0 and analogous 

relation holds for the dual). Let (x, y, s) be a maximally complementary solution 

of problems (SOCP) and (SOCD) defined by (1.1.10)-(1.1.11), then as xiosi = 0 

we have 
·i { -i > 0} x E ax : a _ , 
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Table 8.1: Optimal Partition for SOCO. 

INI 0 I bel K~ I int K~ I 
0 i E T i E T i E B 

bel Ki q i E T i ER X 

int K~ i EN X X 

is equivalent to the primal and dual blocks belonging to orthogonal boundary 

rays of the cone K~. 

vVe can replace the definition of the set R of the optimal partition by: 

R(x) = { (i,xi): xi =J 0 =J si, xi E {axi: a;::: 0}, si E {,B(xi,-x~:nJ: ,B;::: 0} 

for a primal-dual optimal solution (x, y, s) }. 

Based on the results of Yildirim (153], we can alternatively define the opti­

mal partition in algebraic form as 7r7• = (B,N, R(x), T). The difference from 

the definition of 1r is that for primal-dual boundary blocks, it holds that xi E 

a specific boundary ray of K~ and si E the orthogonal boundary ray of K~, in­

stead of xi E bel K~ and si E bel K~. 

Comparing the two definitions of the optimal partition, 1r and 7rn it is worth 

to mention a couple of differences. When the optimal partition is defined as 1r, it 

partitions the index set {1, 2, ... , I} of the blocks of variables. Consequently, it 

directly extends the definition of the optimal partition for QO (see Section 2.1) 

by adding the additional set R that corresponds to primal-dual optimal solutions 

being on the boundary of the cone, i.e., the case that does not exist for QO. In 

contrast, when the optimal partition is defined as Kr, it partitions not only the 

index set {1, 2, ... , I}, but also the space, as the set R(x) includes both indices 

of the blocks i and vectors xi that define specific boundary rays. Definition of 

the optimal partition 7rr is similar to the definition of the optimal partition for 

semidefinite optimization (SDO) in (60], which partitions the space and not the 

index set. Note that the real meaning of the partition set R(x) is that primal 
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and dual vectors should be on the boundary of the cone and belong to a specific 

ray on that boundary. If the optimal solution stays on the boundary, but moves 

to another boundary ray when the problem (SOCP) is perturbed, the optimal 

partition 7rr changes, while 1r remains invariant. 

8.2 Hi-Parametric SOCO 

Lets us consider the bi-parametric SOCO problem (8.0.1)-(8.0.2). We assume 

that the unperturbed problem (SOCP0 ,0 ), where ). = E = 0, has non-empty 

primal and dual optimal solution sets and strong duality holds for it, i.e., the 

duality gap is zero. For now, we use the definition 7rr of the optimal partition. 

Similar to parametric QO in Chapter 2, we can transform the hi-parametric 

SOCO problem into a series of uni-parametric problems. For simplicity, let us 

assign E = >.. Moreover, let ( x*, y*, s*) be a maximally complementary opti­

mal solution for ). = 0 with the optimal partition 7rr = (B,N, R(x*), T), the 

endpoints of the invariancy interval containing ). can be computed as: 

mm 
>..,x,y,s,a,/3 

{). : Ax- ).6b = b, XsuT E KsuT, XN = 0, XR =ax;_, a ~ 0, 

AT y + s- >.6c = c, SNuT E KNuT, sa = 0, SR = f3s;_, f3 ~ 0 }, 

max {). :Ax- ).6b = b, XsuT E KsuT, XN = 0, XR =ax;_, a~ 0, 
>.,x,y,s,a.,fJ 

AT y + s- >.6c = c, SNuT E KNuT, sa= 0, SR = j3s;_, f3 ~ 0 }, 

where KsuT is the Cartesian product of the cones K~ such that i E BUT, KNuT 

is defined analogously. Proof of this result for computing Ae and Au can be found 

in Theorem 4.1 in [153]. Alternatively, the constraints of the problems above 

can be completely rewritten in terms of the solution set instead of the index 

set, i.e., constraints { XBuT E K, XN = 0, XR = axR_, a ~ 0} can be written as 

{x E K, xos* = 0}. 

The optimization problems for computing the endpoints Ae and Au of the 

current invariancy interval are SOCO optimization problems due to the fact that 
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constraints of the form xn = axR_, a 2:: 0 are linear (the invariancy interval 

can be a singleton, unlike in the QO case). In contrast, if we use the definition 

of the optimal partition 1r, constraints xn E bel K are non-linear and are not 

second-order cone representable. 

T he results obtained by Yildirim [153] for the simultaneous perturbation 

case in conic optimization and by using the geometric definition of the optimal 

partition are directly linked to our findings. In his paper, Yildirim proved that 

the optimal value function is quadratic on the current invariancy interval. Al­

though Yildirim's and our results are very interesting in the light of extending the 

parametric optimization techniques to SOCO problems, the obstacles, discussed 

in the remaining of this section, prevent direct mapping of them to algorithm 

design and implementation. 

Unlike for parametric LO and QO problems, the optimal partition Kr for 

SOCO may change continuously, that poses difficulties for identifying all invari­

ancy intervals for parametric SOCO. For the intervals of the parameter >., where 

the optimal partition 7r7• is not changing continuously, the optimal value function 

is quadratic (see Proposition 5.1 in [153]) . Another way to say it, for parametric 

SOCO we can have a continuum of changing transition points until we find an 

invariancy interval. In general, the optimal value function is piecewise-quadratic 

and it is quadratic on every invariancy interval. For the intervals, where the 

optimal partition changes continuously, we obtain the regions of non-linearity of 

¢(>.) and there is no known way of describing¢(>.) completely on those intervals. 

The intervals where the optimal partition Kr changes continuously, repre­

sent a curve on the boundary of the quadratic cone. Similarly, if the optimal 

partition is defined as 1r, the intervals with R =J- 0 represent a curve on the 

quadrat ic cone surface. Characterization of those curves and finding a com­

putable description of them will allow identifying all invariancy intervals and 

computing the optimal value function. While those curves are conjectured to 

have hyperbolic shape, there no results characterizing those curves that we are 

aware of. To get a computational algorithm for parametric SOCO, this charac-
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terization is a missing ingredient. Another remaining open problem is to find a 

rounding procedure for SOCO problems to identify exact optimal solutions. 

Algorithms for computing the optimal value function ¢(A, E) for parametric 

SOCO problems are subject of future research as there are no algorithms for 

parametric SOCO optimization. Invariancy regions corresponding to the defini­

tion of the optimal partition n are illustrated by an example in Section 7.4. That 

example also highlights the difficulties that arise during hi-parametric SOCO. 
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Chapter 9 

Conclusions and Future 
Directions 

In this thesis we considered techniques for solving multiobjective optimization 

problems and their parametric counterparts. By formulating and solving multi­

objective optimization problems as parametric optimization problems we bridged 

the gap between the two fields and unified the theory and practice of multiob­

jective and parametric optimization. Some classes of multiobjective optimiza­

tion problems that include linear, convex quadratic and potentially second-order 

conic optimization problems can be efficiently solved using parametric optimiza­

tion algorithms. In particular, parametric optimization techniques developed in 

this thesis give us a practical tool for solving multiobjective quadratic optimiza­

tion problems. Parametric optimization allows not only computing Pareto fronts 

(efficient surfaces), but also identifying piece-wise structure of those surfaces. 

Structural description of Pareto fronts gives functional form of each of its pieces 

and thus helps decision makers to make better decisions. 

We extended the existing theory of parametric quadratic optimization to 

simultaneous perturbation sensitivity analysis when the variation occurs in both 

the right-hand side vector of the constraints and the coefficient vector of the 

linear term of the objective function. First, in our analysis the rate of variation, 

represented by the parameter .A, was identical for both perturbation vectors 6b 

and 6c, which allows solving simultaneous perturbation uni-parametric quadratic 
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optimization problems. One of the main results is that the invariancy intervals 

and transition points can be determined by solving auxiliary linear or quadratic 

problems. As we already mentioned, all auxiliary problems can be solved in 

polynomial time. 

We have extended the uni-parametric simultaneous perturbation results 

for quadratic optimization to the hi-parametric case. By solving a series of uni­

parametric QO problems, the algorithm outlined in the thesis allows identifying 

all invariancy regions where the optimal partition is invariant. On each invariancy 

region we can also compute the optimal value function and maximally comple­

mentary solutions. To the best of our knowledge, this thesis and paper [57] are 

the first attempts to study systematically hi-parametric convex quadratic opti­

mization problems with different parameters in the coefficients of the objective 

function and the right-hand-side of the constraints. 

Finally, we developed and implemented the algorithm that represents a 

sequence of linear and quadratic auxiliary problems to identify all invariancy re­

gions and graph the optimal value function. Even though all presented auxiliary 

optimization problems can be solved in polynomial time by IPMs and the number 

of different optimal partitions is finite, enumeration of all invariancy regions may 

not be achieved in polynomial time due to the fact that the number of different 

optimal partitions may increase exponentially with the cardinality of the index 

set. That is why the algorithm presented is linear in the output size, but not in 

the input size. 

The implementation of the algorithm for parametric optimization and test­

ing results suggest that our implementation is well suitable for solving small­

and medium-size parametric quadratic problems and can be used for large-scale 

problems as well with some caution connected to the precision of solutions pro­

duced by a quadratic solver. We illustrated our implementation on a set of simple 

parametric quadratic problems as well as on a number of selected applications. 

As it was mentioned in the introduction, the most famous application of the 

convex QO multiobjective analysis is the mean-variance portfolio optimization 
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problem introduced by Markowitz [95}. Our method allows us to analyze not 

only the original Markowitz model, but also some of its extensions. Extensions 

include minimizing linear transaction cost in addition to optimizing the mean 

and the variance, computing sparse and stable Markowitz frontiers and analyzing 

multiobjective robust mean-variance optimization formulations. Other practical 

problems, where our methodology can be used, are cancer treatment planning and 

multi-drug composition-activity analysis among others. We illustrated solving all 

these multiobjective optimization case studies with our parametric algorithms. 

In addition to developing and applying parametric optimization techniques, 

we studied two novel financial optimization frameworks, namely portfolio credit 

risk optimization and portfolio replication. 

We analyzed different approaches to the portfolio credit risk optimiza­

tion problem within a conditional independence framework and compared op­

timization of quantile-based risk measures with the traditional Markowitz mean­

variance optimization formulation. Optimization of quantile-based risk measures 

using the MC approximation, requires a large number of scenarios. If the number 

of instruments in the portfolio is relatively large, an efficient LLN or especially 

CLT approximation of the conditional distribution of portfolio losses can be uti­

lized in the conditional independence framework. These two approximations can 

be used to obtain a significant reduction in the number of scenarios required for 

portfolio optimization. After comparing different credit-risk optimization formu­

lations, the one that we recommend for practical implementation, is the nonlinear 

CLT approximation. The CLT approximation is attractive for optimization due 

to: 

• Producing consistently better results than MC sampling with only 10% of 

the data; 

• Acceptable performance when solving the nonlinear formulation; 

• Being relatively robust to violations of the portfolio granularity condition. 

The MC linear formulation is competitive with the CLT formulation only if the 

number of groups is very small (less than 10) and if groups consist of a very small 
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number of counterparties. Mean-variance may not always produce good results 

and is quantile-independent. 

In this thesis we also analyzed existing, and developed new algorithmic 

tools for the portfolio replication problem, as well as tested these methodologies 

on real large-scale data. As the goal was to develop practical multiobjective 

optimization models for portfolio replication, we have looked at different for­

mulations based on regularized optimization. We worked on identifying which 

assets should be included in the tradable universe for the replicating portfolios, 

and developed a procedure for removing duplicate and highly correlated assets. 

Special attention was paid to research issues related to replication overfitting 

and minimizing different objective functions, as well as other characteristics to 

improve replication. Reduction in replication overfitting was achieved by jointly 

minimizing portfolio replication error and trading costs with different weights 

that represent the relative importance of each objectives. This problem is solved 

as a multiobjective optimization problem. We demonstrated the benefits of the 

multiobjective optimization formulation, and computed efficient frontiers that 

are used to justify and explain the usage of trading penalties in problem formu­

lation. 

There are many possible extensions and future work in both theoretical 

and implementation directions. Some of them are discussed in the sequel. 

(i) Preliminary results on parametric second-order cone optimization are de­

scribed in Chapter 8. The first priority here would be to extend the method­

ology and develop a practical algorithm for solving uni- and hi-parametric 

second-order cone optimization problems. It is also worthwhile exploring 

parametric SOCO applications to financial models. 

(ii) Integration of parametric optimization techniques that use optimal bases, 

optimal set invariancy and optimal partition invariancy into a unified frame­

work remains to be done. There are many publications that address dif­

ferent aspects of parametric optimization, but there is no study that puts 

those techniques together and describes how well those perform for dif-
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ferent classes of optimization problems. Additional work has to be done 

on classifying multiobjective optimization problems for which the Pareto 

efficient frontier has identifiable structure. 

(iii) Future work on portfolio credit risk optimization includes going from single­

period to multi-period setting, incorporating stochastic exposures and sto­

chastic recoveries into formulations and efficiently integrating credit deriva­

tives into an optimization framework. From the methodological side, we 

would look at importance sampling and worst-case (robust) optimization 

in the credit risk setting. Finally, data and formulation features that affect 

optimization performance need to be studied. 

(iv) Most portfolio replication studies tend to consider only a simple type of 

trading constraint, which assigns an identical trading cost to all instru­

ments. More sophisticated costing schemes can potentially yield better 

results. It is worthwhile investigating which trading costs are likely to 

produce the best replicating portfolio. Addressing this question includes 

evaluating a number of alternative costing schemes based on their out-of­

sample performance, comparing performance of trading cost restrictions to 

that of cardinality constraints, and assessing the impact of optimization 

formulations, e.g., minimizing absolute vs. squared cash flow deviations, 

level of cash flow bucketing, etc., on the effectiveness of costing schemes. 

From the computational/implementation side we suggest the following fu­

ture directions: 

(i) Make the implementation of parametric optimization algorithms more ro­

bust and improve its stability with respect to numerical issues. For in­

stance, developing and implementing algorithms for optimal partition iden­

tification requires dealing with a number of theoretical and computational 

problems. Recovery from numerical issues in computing boundaries of in­

variancy regions involve careful implementation of safeguards against im­

precise solutions of auxiliary problems. 
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(ii) Extend the implementation to multi-parametric QO case. One of the chal­

lenges for multi-parametric QO optimization is computing and storing data 

structures describing complex and multidimensional geometric objects. 

(iii) Extend the implementation to parametric SOCO case. Parametric SOCO 

case still requires some experimentation to get closer to practical imple­

mentation. 

(iv) Implementing parametric optimization into optimization software packages 

remains one of the challenges. Unfortunately, available software for para­

metric optimization is very limited. Commercial optimization packages 

such as CPLEX and MOSEK include optimal basis based sensitivity anal­

ysis for LO. MOSEK is the only package that provides optimal partition 

based sensitivity analysis for 10 as an experimental feature. 

(v) Experiment with warm-start strategies in the context of parametric opti­

mization. Parametric optimization algorithms need to utilize existing and 

new warm-start strategies to speed-up solutions of auxiliary problems, that 

are near-identical in terms of problem data. 
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Appendix A 

Credit Risk Optimization: 
Computational Tests 

This appendix contains the description of the computational tests performed for 

portfolio credit risk optimization formulations described in Section 6.3. 

203 



Ph.D. Thesis - Oleksandr Romanko McMaster- Computing and Software 

Computational Framework and 
Performance Metrics 

In our computational tests, the set of feasible solutions n is given by the con­

straints 

• the value of the portfolio remains at its initial value ( v p); 

• the expected return of the portfolio is at least that of the initial portfo­

lio (rp ); 

• the group positions have fixed lower and upper bounds (.;fi :::; Xi, for the 

i-th group). 

This leads to the following optimization problem: 

min g [ .C ( x)] 
X 

Nc 

s.t. L vixi = vp, 

i=l 
Nc 

L rivixi 2::: rp · Vp, 

i=l 

;12i :::; xi :::; xi, i = 1, ... , Nc, 

Other types of constraints are possible, such as a total budget constraint 

(e.g., trading budget of 5% of portfolio value, including transaction costs); or 

limits on the total positions in certain categories, e.g., a particular credit rating 

or geographic region. 

For the LLN, CLT and MC formulations, there are two sources of error 

affecting the quality of an optimal solution: (i) systemic sampling error due to 

the choice of lvf; and (ii) modeling (or formulation) error due to approximating 

the conditional loss distributions. (For the MC formulation, the choice of K is 

the influential parameter.) 

To isolate and quantify these errors, we measure: 

• Out-of-sample actual risk: the risk measure for the optimal portfolio under 

a given formulation, evaluated by MC with a large number of out-of-sample 
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scenanos. The out-of-sample actual risk is assumed therefore to be based 

on the true loss distribution. 

• In-sample actual risk: the risk measure for the optimal portfolio under a 

given formulation, evaluated by MC with the same systemic scenarios that 

are used for optimization and a large number of idiosyncratic samples for 

each systemic sample. In-sample actual risk is assumed therefore to be 

based on the true conditional loss distributions. The approximation error 

due to systemic sampling, is thus isolated and gauged by the difference 

between out-of-sample actual risk and in-sample actual risk. 

• In-sample reported risk: the objective function value reported for the risk 

measure for the optimal portfolio under a given formulation. The approx­

imation error clue to the choice of optimization formulation (equivalently, 

the choice of approximation in the conditional loss distributions) or model 

error, is thus isolated and gauged by the difference between in-sample ac­

tual risk and in-sample reported risk. The difference between out-of-sample 

actual risk and in-sample reported risk, contains the combined effect of sys­

temic sampling error and formulation approximation error. 

Note that for the variance and second-moment formulations, only out-of­

sample actual risk is applicable. 

Unless specific mention is made otherwise, the optimization problems were 

run with the following default settings: 

• positions are between zero and twice the initial position: 0 ~ xi ~ 2x?; 

• M = 10,000 optimization scenarios (systemic); 

• VaR and ES are calculated for the 99th percentile; i.e., a= 0.999; 

• the results are the averages over 5 trial runs (different sets of systemic 

scenarios are used for each trial). 

In our computational experiments, we test different group sizes and group 

compositions. This allows us to make conclusions about the effect of the group 

sizes, etc. 
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We have used the following optimization packages for implementing our 

formulations: 

• IPOPT- nonlinear solver [143]; 

• CP1EX- 10, QO, SOCO solver (version 11.2) [74]; 

• MOSEK- 10, QO, SOCO, convex nonlinear solver (version 5) [105]. 

All of these optimization packages can be called directly both from C/C++ and 

from the MAT1AB environment. This feature and the efficiency of optimization 

algorithms implemented in those solvers make them efficient for both prototyping 

and high-performance practical implementation. 

The formulations described in the previous sections were tested and com­

pared using two portfolios. The first portfolio is adapted from [127]. It consists 

of 3000 counterparties depending on 50 credit drivers and graded with 8 credit 

states (credit-state migrations). The second one, that is a proprietary portfolio, 

consists of 7470 counterparties with 34 credit drivers and only 2 credit states 

that may be default or nondefault. All the formulations are implemented with 

the assumption that the recovery rates are deterministic. 

Results: 3000 Counterparties and 
Credit-State Migrations 

Credit drivers in the portfolio are industry/ country indices and each counterparty 

depends on one credit driver with 0.42 :::; f3 :::; 0.65. 

Grouping is clone at random with four grouping schemas: 10 groups of 

300 CPs, 50 groups of 60 CPs, 300 groups of 10 CPs, and 3000 groups of 1 CP. 

For out-of-sample act·ual risk, J'vf = 6, 000,000 and K = 1. For ·in-sample 

actual risk, lvf = 10,000 and K = 150. For in-sample reported risk, M = 10,000 

and, for MC formulation MC(1), K = 1, while for MC formulation MC(20), 

K = 20. 

The out-of-sample evaluation of the optimization results are presented in 

Figure A.1 for VaR and in Figure A.2 for ES. These figures show reductions in 
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Figure A.l: Out-of-Sample VaR. 

VaR and ES relative to the initial portfolio (100%). The horizontal axes dis­

play the group sizes in a logarithmic scale. The solid lines are the averages over 

5 trials and the dotted lines are the best and the worst results for the same 

5 trials. As out-of-sample testing incorporates both systemic sampling error and 

formulation error, we can make conclusions about the overall performance of the 

optimizations. The CLT formulation always has the best performance followed 

by MC sampling with I< = 20 idiosyncratic samples per systemic scenario, which 

in turn is much better than MC sampling with I< = 1. Extrapolating, we expect 

that MC sampling with very large I< would match and possibly exceed the per­

formance of CLT. However, increasing K leads to a larger, more computationally 

demanding problem. 

There is little difference between the formulations' results when the number 

of groups is small, because there is less opportunity to restructure the portfolio. 

The differences become more pronounced as more trading flexibility, i.e., smaller 
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Figure A.2: Out-of-Sample Expected Shortfall. 

groups, is introduced. Formulations that show relatively good performance for 

all grouping schemas are the CLT, MC(20) and LLN. The LLN formulation per­

formance is acceptable due to fine granularity of the optimal portfolios (narrow 

budget preserves the fine granularity of the initial portfolio). We investigate the 

issue of granularity in more detail later in this appendix. CLT, MC(20) and LLN 

formulations are quite separated from each other with minimal overlaps when we 

look at the best and the worst performance over 5 trials. It is more pronounced 

for the VaR models, partially due to the heuristic algorithm that we utilize for 

the MC and LLN approximations. This also explains why the performance of the 

MC and LLN formulations is not as good when minimizing VaR, as compared 

to the ES minimization. 

The next step in evaluating the computational performance, is to look at 

the approximation quality of optimization formulations, which is summarized in 

Figure A.3 for VaR, and Figure A.4 for ES. These figures display the out-of-
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sample actual risk, and the in-sample actual and reported risks for the various 

formulations. 

The systemic sampling error is about the same for all formulations, as 

they all use the same number of systemic scenarios, M. The CLT approxima­

tion has the smallest formulation error, while the formulation error of MC(l) is 

the largest. For MC, the formulation error decreases when group-size increases. 

This observation can be explained by the way in which the tail of the conditional 

group-loss distribution is represented in each of the formulations. For MC sam­

pling with only a few specific scenarios, the tail may be severely underestimated 

if the conditional CP default probabilities are very small. The optimizer will 

take advantage of this possibility by overinvesting in groups which, by chance, 

experience a small number of defaults, even though they may be more riskier 

theoretically. Thus, for a large number of groups, that in our experiment imply 

a small number of CPs per group, the number of these chance opportunities 
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will tend to be large, which leads to high formulation error. In contrast, the 

LLN and CLT formulations do not provide the optimizer such opportunities, 

as the conditional group-loss distributions are derived analytically rather than 

empirically. 

It is known that the quality of the LLN and CLT approximations deteri­

orates as the portfolio becomes more granular, i.e., exposures are increasingly 

concentrated in a small number of dominant groups. To test granularity effects, 

for this test we modified the initial portfolio to be as finely grained as possible. 

Further, the original portfolio value Vp is distributed equally among all CPs in 

the portfolio. The CPs were left in the original grouping scheme for 50 equally 

sized groups and the optimization problems were solved with five sets of progres­

sively wider trading limits: [1, 1], [0, 2], [0, 15], [0, 30] and [0, 50]. As the trading 

limits become larger, there is a greater chance for obtaining granular portfolios 
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and thus, more potential for poor results from the LLN and CLT approximations. 

As a granularity measure, we use the Herfindahl-Hirschman Index or HHI which 

is the sum of squared group-weights1
. In our case, the initial HHI equals 0.02, 

which is the lowest possible value for a portfolio comprising 50 groups. 

Figure A .. 5 plots the formulation error, i.e., the relative difference between 

in-sample actual risk and in-sample reported risk, against granularity for the 

optimal portfolios obtained by the LLN, CLT, MC(1) and MC(20) formulations. 

The results suggest that the LLN approximation is far more susceptible to the 

adverse effects of granularity than the CLT formulation. While wider trading 

limits tend to produce more granular portfolios in general, the optimal MC and 

CLT portfolios maintain some degree of diversification for which the HHI does not 

exceed 0.25. In contrast, LLN portfolios become progressively more concentrated 

and exhibit increasingly large formulation errors.2 This is explained by the fact 

that, to minimize VaR or ES, the LLN formulation tries to reduce only the 

portfolio's conditional expected losses while the CLT formulation considers both 

the conditional expectation and the conditional variance. Reducing the variance 

of the portfolio losses entails smaller positions, i.e., greater diversification. It was 

also observed that the relative rankings of the sampled group losses across the 

systemic scenarios were much more variable than those of the expected group 

losses. 3 The greater degree of diversification present in the optimal MC portfolios 

relative to those of LLN is a reflection of this fact. 

To see the effect of increasing the number of systemic samples for use 

in optimization, we ran our formulations with A;J = 10,000 and M = 50,000 

systemic scenarios. For the MC approximation MC(20), in the case with M = 

10,000 we use I< = 20 and I< = 4 for MC(4) in the case with M = 50,000, 

1The group-weight for Gi, is Xivi/V. By definition, the HHI converges to zero for infinitely 
finely grained portfolios when the number of groups grows indefinitely. 

2The large formulation errors associated with MC(l) are due more to the relatively small 
sample size than to granularity effects. 

3While the loss of a particular group might be among the smallest losses sampled in one 
scenario and among the largest losses sampled in another, its expected loss tends to rank at 
approximately the same level in all scenarios. 
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Figure A.5: Granularity Effect. 

resulting in a total of 200, 000 MC scenarios. Table A.l describes the systemic 

sampling effect and shows how out-of-sample performance is affected by the 

number of systemic samples. Increasing the number of systemic samples by a 

factor of 5 produces slight improvement for the MC(l) formulation, and has a 

negligible effect for the others. It also turns out that CLT with J..f = 10,000 

systemic samples, performs better than the other formulations with M = 50, 000 

systemic samples. 

Analyzing the optimal group-weights for different random samples, makes 

it possible to compare the stability of formulations. Figure A.6 shows the ranges 

of optimal group-weights for 5 trials when minimizing ES, where for each trial 

different sets of (systemic) scenarios were used for optimization. Similarly to 

the sensitivity of the out-of-sample objective function value in Figure A.2, stable 

group-weights are produced by the CLT formulation, while the MC formulations 

require a larger number of scenarios to reach stability of the weights. For the 

mean-variance formulations, the variance-covariance matrix of losses and the vee-
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Table A.l: Systemic Sampling Effect. 

VaRg9.9% 
10,000 Systemic Samples 

VaR99.9% 
50,000 Systemic Samples 

10 Groups 50 Groups 300 Groups 10 Groups 50 Groups 300 Groups 
CLT 96.5% 88.4% 80.0% CLT 96.3% 88.3% 79.6% 
MC(20) 96.7% 89.2% 81.4% MC(4) 96.6% 89.2% 81.3% 
LLN 98.2% 90.0% 83.4% LLN 97.4% 89.5% 82.1% 
MC(1) 97.9% 93.2% 85.8% MC(1) 97.1% 90.4% 82.9% 

ES99.9% 
10,000 Systemic Samples 

ES99.9% 
50,000 Systemic Samples 

10 Groups 50 Groups 300 Groups 10 Groups 50 Groups 300 Groups 
CLT 96.5% 88.1% 78.8% CLT 96.4% 87.9% 78.4% 
MC(20) 96.7% 88.4% 79.7% MC(4) 96.6% 88.5% 79.3% 
LLN 97.8% 89.1% 80.4% LLN 97.6% 89.4% 79.7% 
MC(1) 98.6% 92.8% 85.6% MC(1) 96.9% 89.5% 80.8% 

tor of mean losses are estimated from the M = 10,000 with K = 150 samples 

(1.5 million in-sample scenarios) and, consequently, are quite stable. This ex­

plains why mean-variance formulations produce the most stable weights among 

all the formulations that were considered. 

We also evaluated the sensitivity of ES to the quantile level, see Figure A. 7. 

We used 300 groups and M = 50,000 for optimization. For lower quantiles 

(95% or less), the performance of all formulations is very similar. For high 

quantiles (99.97%), the performance of CLT becomes more distinguishable from 

the other formulations. As Figure A.7 demonstrates, the CLT formulation has 

a 41% improvement over variance minimization, when the optimization results 

are evaluated for ES out-of-sample for the 99.97% quantile, but the variance 

minimization result is within 2% of the CLT formulation for the 95% quantile. It 

is known that mean-variance formulations perform well when the quantile moves 

towards the center of a distribution, as the Normal approximation becomes more 

appropriate. MC sampling formulations require more scenarios to capture losses 

in the extreme tail of the distribution and, as a result, they perform less effectively 

than for lower quantiles. The same reasoning applies for the LLN formulation 

which better approximates the tail for high quantiles than MC formulations for 

the sample sizes used in our tests; but as we already know, the LLN formulation 
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is very sensitive to the granularity effect. Note that as the tests in Figure A.7 

are performed for a narrow budget, the granularity effect is limited. 

Finally, we tested the performance of the formulations when the portfolio 

comprises a very small number of counterparties. This case is expected to be 

the worst for the CLT and LLN approximations, as the portfolio is no longer 

large and some counterparties can dominate within it. Sensitivity of the out-of­

sample optimal solution to different sets of optimization scenarios is shown in 

Figure A.8. The results are presented for 10 and 20 groups with 1 CP per group. 

We can conclude that LLN fails for this setup. The MC(1) formulation has the 

highest sensitivity and produces unacceptable results on average. CLT becomes 

unreliable for portfolios with a small number of counterparties. MC sampling 

MC(20) always works, but requires a large number of idiosyncratic scenarios per 

systemic scenario. It is necessary to point out that this setting is unrealistic from 

the practical point of view, as real credit portfolios cannot be that small. 

One observation from our computational experiments is that variance min­

imization in the mean-variance context tends to improve the quantile-based mea­

sures, see Figures A.1, A.2 and A.7. One possible reason is the fact that coun­

terparties with high probability of default have high variance of monetary losses. 

This is due to the fact that we use a Bernoulli mixture model [130] for defaults 

and migrations, and consequently, variance minimization leads to reduction of 

the quantile risk measures, as the counterparties with high default probabilities 

are removed from the optimal portfolio. 

Table A.2 summarizes running times for different optimization formula­

tions. Evidently, solving the nonlinear problems for CLT is competitive with 

solving the linear problems in the MC-sampling formulations, at a comparable 

level of (out-of-sample) accuracy. The computational tests were run on a server 

with 8 x Opteron 885 CPU, 16 cores, 64GB RAM, each jobs run on 1 core. The 

VaR optimization for MC(20) was run in parallel mode on 4 threads. 

We also ran computational tests with more realistic counterparty group­

ings. Counterparties depending on the same credit driver and which are in the 
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Table A.2: Optimization Problem Performance: Elapsed Time in Seconds. 

Model Solver ES99.9% 
10 Groups 50 Groups 300 Groups 3000 Groups 

CLT IPOPT 4-8 6-8 14-83 81-1090 
LLN CPLEX 1 1-2 6-8 73-86 
MC(1) CPLEX 1 1-2 6-10 14-115 
MC(20) CPLEX 137-155 233-279 461-578 1050-1280 

Model Solver VaR99.9% 
10 Groups 50 Groups 300 Groups 3000 Groups 

CLT IPOPT 4-25 5-7 14-55 400-1643 
LLN CPLEX 2-3 6-8 46-50 791-1025 
MC(1) CPLEX 2-3 8-10 46-69 2436-3312 
MC(20) CPLEX 3620-4080 2382-2777 6522-8563 39273-86383 

Model Solver 
Variance 

10 Groups I 50 Groups j 300 Groups I 3000 Groups 
Uncond. MOSEK <1 <1 1 682-719 

same credit state at the beginning of the time period belong to the same group, 

resulting in 301 groups with a variable number of counterparties in each of them. 

Table A.3 summarizes out-of-sample performance relative to the performance 

of the initial portfolio of the optimization formulations for 0 :=:; Xi :=:; 2x?, and 

0.8x? :=:; xi :=:; 1.2x? trading limits. The narrow trading limits are more realistic 

when practical portfolio rebalancing is performed. The CLT formulation exhibits 

the best performance for both trading limits. 

Results: 7470 Counterparties and 
Default/Nondefault Credit States 

To confirm our findings while working with the portfolio of 3000 counterparties 

and 8 credit states, we ran some of the computational tests for the portfolio 

with 7 470 counterparties and only 2 credit states, default and nondefault. In 

both portfolios the credit drivers are the industry j country indices, and each 

counterparty depends on one credit driver, but 0.30 :=:; f3 :=:; 0.95 for the second 
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Table A.3: Out-of-sample Performance for the Portfolio with 3000 CPs. 

Model Risk Measure 
10000 Systemic Scenarios, 301 Groups 

Trading Limits [0.8, 1.2] Trading Limits [0, 2] 

CLT ES99.9% 93.62% 73.19% 
VaRgg_g% 93.92% 74.53% 

MC(20) ES99.9% 93.63% 73.47% 
VaRgg_g% 94.78% 75.31% 

LLN ES99.9% 93.69% 74.98% 
VaR99.9% 95.00% 77.29% 

MC(1) ES99.9% 94.94% 78.77% 
VaR99.9% 96.50% 79.86% 

Variance ES99.9% 95.92% 83.38% 
VaR99.9% 95.64% 82.05% 

Second ES99.9% 97.89% 91.61% 
Moment VaR99.9% 97.53% 89.55% 

Table A.4: Out-of-sample Performance for the Portfolio with 7470 CPs. 

Model Risk Measure 
10000 Systemic. Scenarios, 277 Groups 

Trading Limits [0.8, 1.2] Trading Limits [0, 2] 

CLT ES99.9% 89.84% 52.67% 

VaR99.9% 90.27% 54.40% 

MC(20) ES99.9% 89.84% 52.89% 
VaR99.9% 90.86% 55.15% 

LLN ES99.9% 89.87% 52.87% 

VaR99.9% 91.37% 55.64% 

MC(1) ES99.9% 90.39% 55.31% 

VaR99.9% 93.12% 58.61% 

Variance ES99.9% 90.01% 54.16% 

VaR99.9% 90.30% 55.20% 
Second ES99.9% 91.26% 59.61% 
Moment VaR99.9% 91.50% 60.19% 

portfolio. Similar to the results in Table A.3, we used realistic counterparty 

groupings, based on common credit driver and initial credit state, resulting in 

277 groups with a variable number of counterparties in each of them. Table A.4 

summarizes the out-of-sample performance of the optimization formulations for 

this portfolio. 
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Table A.5: Out-of-sample Performance for the Portfolio with 3000 CPs by 
Including Default/Nondefault Credit States Only. 

Model Risk Measure 
10000 Systemic Scenarios, 301 Groups, 11-ading Limits [0, 2] 

Migrations Default/N ondefault 

CLT ES99.9% 73.19% 72.45% 

VaR99.9% 74 .53% 74.88% 

MC(20) 
ES99.9% 73.47% 72.67% 

VaR999% 75 .31% 75.23% 

LLN ES99.9% 74.98% 75 .54% 

VaRggg% 77.29% 79.00% 

MC(1) 
ESgg 9% 78.77% 79.57% 

VaR99.9% 79.86% 79 .88% 

Variance 
ES99 9% 84.08% 84.08% 

VaR99.9% 82.05% 82.14% 
Second ESgg 9% 91.61% 96 .12% 
Moment VaR9g9% 89.55% 93 .37% 

T he out-of-sample performance of optimization formulations for [0.8 , 1.2] 

and [0, 2] trading limits confirms the same findings as before: the CLT formu­

lation outperforms all the other optimization formulations when the number of 

counterparties in a portfolio is relatively large. Our numerical experiments show 

that allowing credit-state migrations, or just default/nondefault credit states, 

does not have any observable effect on performance of the optimization formu­

lations other than that the discrepancy between the formulations gets smaller. 

Note that optimization results from the mean-variance formulation are much 

closer to those of other formulations. This raises the question of whether the 

"convergence" of the different formulations is clue to a feature of the model -

clefault/nonclefault vs. migration - or clue to some feature of the initial portfo­

lio. We ran the 3000 CP portfolio in default / nonclefault mode and found that 

the differences between formulations were sustained as it can be seen in Ta­

ble A.5. Therefore, we conclude that the convergence is clue to some features of 

the portfolios themselves , rather than using a migration model vs . a default only 

model. Investigat ing which portfolio features , e.g., sensitivities of counterparties 

to credit drivers or portfolio size, may deteriorate or improve the moment-based 

formulation performance is a subject of future research. 
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beam intensity optimization, 80 

benchmark tracking problem, 124 

beta coefficient, 113, 114 

asset beta, 114 

portfolio beta, 114 

Capital Asset Pricing Model, 110, 

113-115, 118, 155 

Capital Market Line, 114 

CAPM, see Capital Asset Pricing 

Model 

cardinality, 125 

cardinality-constrained optimization, 
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central path, 10 

CLO, see conic linear optimization 

CLT sampling approximation, 142, 

149, 153 

CML, see Capital Market Line 

complementarity, 7, 10 

maximal, 7, 26 

strict, 7, 27 

conditional independence, 141 

conditional value-at-risk, see expected 

shortfall 

cone, 2 

convex, 2 

dual, 3 

quadratic, 2, 8 

conic linear optimization, 2, 4 

conic quadratic optimization, 2, 4 

CQO, see come quadratic optimiza-

tion 

credit risk, 17, 134 

structural model, 139-141 
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credit risk optimization, 17, 19, 107, 

133-153, 186 

creditworthiness index, 140 

decision space, 56 

duality 

strong duality, 4 

weak duality, 3 

efficient frontier, see Pareto front 
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equivalent uniform dose, 82-86 

ES, see expected shortfall 

EUD, see equivalent uniform dose 

expected shortfall, 19, 108, 127, 135, 

145, 146, 148, 151, 152 

financial optimization, 17 

goal programming, 57, 130 

importance sampling, 135 

IMRT, see intensity modulated radia­

tion therapy 

in-sample risk, 205 

intensity modulated radiation therapy, 
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interior point condition, 9 
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invariancy interval, 29 

invariancy region, 35, 36 

IPM, see interior point method 

LASSO, see least absolute shrinkage 

and selection operator 
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LLN sampling approximation, 145, 
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LO, see linear optimization 

loss distribution, 136 

approximation, 141-145 
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mean-variance portfolio opti­
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MC, see Monte Carlo 
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multicriteria optimization, see multi­

objective optimization 
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multiple linear regression, 91, 92 
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Monte Carlo, 142 
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sensitivity analysis, see parametric op­

timization 

Simplex method, 5 

SOCO, see second order cone opti-
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stochastic optimization, 12, 107 

subset selection, 93 

support set, 26 



Ph.D. Thesis- Oleksandr Romanko 

transaction cost, 162 

transition line segment, 37 

transition point, 29, 37 
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VaR, see value-at-risk 

variable selection, see subset selection 

vector optimization, 15 

weighted regularized optimization, 133 
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