STRUCTURES OF THE KALSILITE-LIKE SILICATES

 $MTSiO_4$ (M = Ba, Na/K, Ca/Sr; T = Co, Mg, Zn, Ga, Be)

STRUCTURES OF THE KALSILITE-LIKE SILICATES

 $MTSiO_4$ (M = Ba, Na/K, Ca/Sr; T = Co, Mg, Zn, Ga, Be)

by

BO LIU

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

May 1992

MASTER OF SCIENCE 1992

McMaster University

Hamilton, Ontario

TITLE: Structures of the Kalsilite-like Silicates $MTSiO_4$ (M = Ba, Na/K, Ca/Sr; T = Co, Mg, Zn, Ga, Be)

AUTHOR: Bo Liu, B. Eng. and M. Eng.

SUPERVISOR: Dr. Jacques Barbier

NUMBER OF PAGES: xii, 114

 $(\mathbf{x}_{i}) \in \mathcal{X}$

ABSTRACT

A number of silicate compounds BaTSiO₄ (T = Co, Mg, Zn), Na_{0.5}K_{0.5}GaSiO₄ and Sr_{1-x}Ca_xBeSiO₄ (x = 0.0 ~ 0.4) have been characterized by a combination of diffraction techniques. These compounds crystallize with the same ($\sqrt{3} \times A$, C) superstructure of the hexagonal kalsilite (KAISiO₄) structure and belong to the large structural family of stuffed tridymite-derivatives. Their crystal structures have been refined by using powder neutron data (BaTSiO₄, T = Mg, Zn), powder X-ray data (Na_{0.5}K_{0.5}GaSiO₄) and single crystal X-ray data (BaCOSiO₄ and Sr_{1-x}Ca_xBeSiO₄, x = 0.0 and 0.27). This study shows that these kalsilite-like structures can accommodate cavity and tetrahedral atoms of variable sizes by relatively minor framework distortions and atomic displacements. The formation of the ($\sqrt{3} \times A$, C) superstructure can be correlated with the relative sizes of the tetrahedral and cavity atoms.

ACKNOWLEDGEMENT

Foremost I would like to sincerely thank my supervisor, Dr. J. Barbier, for his great guidance, patience and support throughout this work. I am grateful to have had the opportunity to work in his group.

A very special thank is due to Dr. J. Britten for the single crystal data collections and his assistance with the structure refinements.

I would also like to thank Mr. J. Garrett and Mr. F. Gibbs for their technical assistance, Mr W. Gong for the powder X-ray data collection and Drs. G. Liu and S.J. Xue for their help and discussions as well as all colleagues in Room ABB-443.

Finally, I would like to thank my parents for their encouragement and support from the other side of the earth, China.

iv

TABLE OF CONTENTS

CHAPTER 1	
NTRODUCTION	1
CHAPTER 2	
DESCRIPTION OF EXPERIMENTS	9
2.1 Sample Preparation	9
2.1.1 Syntheses of the BaTSiO ₄ Powders (T = Co, Mg, Zn)	10
2.1.2 Synthesis of the $(Na_{0.5}K_{0.5})GaSiO_4$ Powder	11
2.1.3 Syntheses of the $(Sr_{1-x}Ca_x)BeSiO_4$ Powders (x = 0.0 ~	
1.0)	13
2.1.4 Syntheses of the $(Ba_{1-x}Ca_x)BeSiO_4$ Powders $(x = 0.0 \sim$	
1.0)	13
2.1.5 Growth of the BaCoSiO ₄ Single Crystals	14
2.1.6 Growth of SrBeSiO ₄ and $Sr_{1-x}Ca_xBeSiO_4$ Single Crystals	17
2.2. Instrumentation	17
2.2.1. Powder X-ray Diffraction	18
2.2.2 Powder Neutron Diffraction	20
2.2.3 Electron Diffraction	22
2.2.4 Single Crystal X-ray Precession Photographs	25
2.2.5 Single Crystal X-ray diffractometer	25
2.3 Powder Data Analysis	26
2.4 Single Crystal Data Analysis	30

CHAPTER 3

THE B	$BaTSiO_4$ (T = Co, Mg, Zn) COMPOUNDS	32
	3.1 Powder X-ray and Electron Diffraction	32
	3.2 Powder Neutron Refinement of the $BaMgSiO_4$ and $BaZnSiO_4$	
	Structures	33
	3.3 Single Crystal X-ray Refinement of the BaCoSiO ₄ Structure	38
	3.4 Description of the Structures and Discussion	39

CHAPTER 4

THE Na _{0.5} K _{0.5} GaSiO ₄ COMPOUND	56
4.1 Powder X-ray and Electron Diffraction	56
4.2 Structure Refinement	57
4.3 Description of the $Na_{0.5}K_{0.5}GaSiO_4$ Structure	60

CHAPTER 5

THE (Sr, Ca)BeSiO ₄ COMPOUNDS	70
5.1 Powder X-ray and Electron Diffraction	70
5.2 Single Crystal X-ray Refinement of the $SrBeSiO_4$ Structure	75
5.3 Single Crystal X-ray Refinement of the $Sr_{1-x}Ca_xBeSiO_4$ Structure	76
5.4 Description of the Structures	77

CHAPTER 6

CONCLUSION		97
------------	--	----

.

REFERENCES	•	•		•			•	•		•	•			 •	•	•		•			•		,	•		•		1()1	L

APPENDIX

	OBSERVED AND	CALCULATED	STRUCTURE FACTORS		103
--	---------------------	------------	--------------------------	--	-----

LIST OF FIGURES

Figure		Page
1.1	The structure of the high-temperature form of tridymite projected along	
	the c-axis	. 2
1.2	The structure of kalsilite viewed along the c-axis	3
1.3	The structure of nepheline viewed along the c-axis	5
1.4	The structure of $BaZnGeO_4$ viewed along the c-axis	7
2.1(a)	The geometry of the Guinier camera	. 19
2.1(b)	Schematic Guinier X-ray powder diffraction pattern	19
2.2	Schematic diagram of a simple X-ray powder diffractometer	21
2.3	Ray diagrams for the generation of diffraction patterns in a transmission	
	electron microscope	. 23
2.4	The electron microscope considered as a simple electron diffraction	
	camera	. 24
2.5	A schematic graph of a four-circle diffractometer	. 27
3.1	[001] (a) and [010] (b) zone-axis electron diffraction patterns of $BaTSiO_4$	
	$(T = Co, Mg, Zn) \dots \dots$. 34
3.2	Observed, calculated, and difference powder neutron diffraction profiles	
	for $BaMgSiO_4$. 36
3.3	Observed, calculated, and difference powder neutron diffraction profiles	
	for $BaZnSiO_4$. 37
3.4	The structure of $BaCoSiO_4$ viewed along the c-axis	. 40
4.1	Electron diffraction pattern of $Na_{0.5}K_{0.5}GaSiO_4$ along the [010] zone	
	axis	. 58

4.2	Observed, calculated and difference (bottom) powder X-ray diffraction	
	profiles for $Na_{0.5}K_{0.5}GaSiO_4$	61
4.3	Observed, calculated and difference (bottom) powder neutron diffraction	
	profiles for $Na_{0.5}K_{0.5}GaSiO_4$	62
4.4	The structure of $Na_{0.5}K_{0.5}GaSiO_4$ viewed along the c-axis	64
5.1	Plot of the c-parameters vs compositions in the (Sr, Ca)BeSiO ₄ system \ldots	72
5.2	[010] zone-axis electron diffraction patterns of (a) $SrBeSiO_4$ (indexed on	
	the ($\sqrt{3} \times A$, C) sub-cell), (b) Sr _{0.9} Ca _{0.1} BeSiO ₄ , (c) Sr _{0.8} Ca _{0.2} BeSiO ₄ and (d)	
	Sr _{0.7} Ca _{0.3} BeSiO ₄	73
5.3	High resolution image of SrBeSiO ₄ viewed along the [010] zone-axis \ldots	74
5.4	The structure of $SrBeSiO_4$ viewed along the c-axis	78
5.5	The structure of $Sr_{0.73}Ca_{0.27}BeSiO_4$ viewed along the c-axis	79

LIST OF TABLES

Table		Page
2.1	Comparison between the powder X-ray patterns of $Ba_2CoSi_2O_7/CoO$ and	
	the decomposition product of $BaCoSiO_4$ annealed at $1100^{\circ}C$. 12
2.2	X-ray powder diffraction pattern for Ba _{0.4} Ca _{0.6} BeSiO4	. 15
3.1	X-ray powder diffraction patterns for $BaTSiO_4$ (T = Zn, Mg, Co)	. 43
3.2	X-ray powder diffraction pattern for $BaMg_{0.5}Zn_{0.5}SiO_4$. 45
3.3	Unit-cell parameters (Å) and volumes (Å ³) for the BaTSiO ₄ (T = Co, Mg,	
	Zn) and $BaMg_{0.5}Zn_{0.5}SiO_4$ compounds	. 46
3.4	The final atomic positions and isotropic temperature factors for the	
	neutron powder refinement of $BaMgSiO_4$. 47
3.5	The final atomic positions and isotropic temperature factors for the	
	neutron powder refinement of $BaZnSiO_4$. 48
3.6	Selected bond lengths (Å), bond valences (s) and bond angles (°) in the	
	BaMgSiO ₄ structure	. 49
3.7	Selected bond lengths (Å), bond valences (s) and bond angles (°) in the	
	BaZnSiO ₄ structure	. 50
3.8	Summary of single crystal data, intensity measurements and structure	
	refinement parameters for BaCoSiO ₄	. 51
3.9	Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement	
	coefficients ($\dot{A}^2 \times 10^3$) for the single crystal X-ray refinement of	
	BaCoSiO ₄	. 53
3.10	Anisotropic thermal parameters (Å ² ×10 ³) of BaCoSiO ₄	. 54
3.11	Selected bond lengths (Å), bond valences (s) and bond angles (°) in the	

	BaCoSiO ₄ structure	55
4.1	X-ray powder diffraction pattern (guinier camera) for $K_{0.5}Na_{0.5}GaSiO_4$.	66
4.2	Comparison of the distributions and temperature factors of the (Na, K)	
	sites in $K_{0.5}Na_{0.5}GaSiO_4$ for different ordering schemes	67
4.3	The final atomic positions, isotropic temperature factors and occupancies	
	for the X-ray powder refinement of $K_{0.5}Na_{0.5}GaSiO_4$	68
4.4	Selected bond lengths (Å), bond strengths (s) and bond angles (°) in the	
	$K_{0.5}Na_{0.5}GaSiO_4$ structure	69
5.1	Powder X-ray diffraction pattern for SrBeSiO ₄	83
5.2	Powder X-ray diffraction pattern for $Sr_{0.7}Ca_{0.3}BeSiO_4$	84
5.3	Unit-cell parameters (Å) and volumes (Å ³) for the $Sr_{1-x}Ca_xBeSiO_4$	
	compounds refined from X-ray powder diffraction data	86
5.4	Summary of single crystal data, intensity measurements and structure	
	refinement parameters for $SrBeSiO_4$	87
5.5	Atomic coordinates and equivalent isotropic displacement coefficients	
	$(Å^2 \times 10^3)$ for the single crystal X-ray refinement of SrBeSiO ₄	89
5.6	Anisotropic displacement coefficients ($\dot{A}^2 \times 10^3$) of SrBeSiO ₄	90
5.7	Selected bond lengths (Å), angles (°) and valences (s) in the SrBeSiO ₄	
	structure	91
5.8	Summary of single crystal data, intensity measurements and structure	
	refinement parameters for $Sr_{1-x}Ca_xBeSiO_4$	92
5.9	Atomic coordinates equivalent isotropic displacement coefficients	
	$(\dot{A}^2 \times 10^3)$ and occupancy factors for the single crystal X-ray refinement	
	of Sr _{0.73(2)} Ca _{0.27(2)} BeSiO ₄	94

5.10	Anisotropic displacement coefficients ($Å^2 \times 10^3$) of $Sr_{1-x}Ca_xBeSiO_4$	95
5.11	Selected bond lengths (Å), bond valences (s) and bond angles (°) in the	
	$Sr_{1-x}Ca_xBeSiO_4$ structure	96
6.1	Correlation between the framework distortion and the relative sizes of the	
	tetrahedral (T) and cavity (M) atoms in kalsilite-type structures	100

CHAPTER 1

INTRODUCTION

The stuffed tridymite derivatives form a very large and important structural family whose members are closely related to the high-temperature structure of tridymite (SiO₂) [e.g. Liebau, 1985]. The structure of high tridymite [Dollase, 1967] projected along the c-axis is shown in Fig. 1.1: the silicate tetrahedra form (001) layers of six-membered rings by sharing their corners and pointing up and down alternatively. The successive layers are stacked in the c direction by sharing the apical oxygens to form a threedimensional framework enclosing cavities or tunnels parallel to the c-axis which are a main feature of this structure-type.

Part of the silicon Si⁴⁺ ions can be replaced by other cations with lower charge valence (T^{3+} or T^{2+}) and large M⁺ or M²⁺ cations can be stuffed into the framework cavities to maintain the charge balance. The basic natural stuffed-tridymite derivatives are the (Na, K)AlSiO₄ compounds which have been extensively studied [e.g. Smith and Tuttle, 1957; Tuttle and Smith, 1958; Henderson and Roux, 1977; Henderson and Thompson, 1980; Abbott, 1984; Merlino, 1985]. The (Na, K)AlSiO₄ system is known for its complex polymorphism with numerous structures forming at different temperatures and compositions, the most important of which are kalsilite (KAlSiO₄), nepheline (K_{0.25}Na_{0.75}AlSiO₄) and beryllonite-type NaAlSiO₄.

Fig. 1.2 shows the structure of kalsilite: the unit-cell is hexagonal (P6₃ space group) with the dimensions A = 5.16 Å and C = 8.69 Å [Perrotta and Smith, 1965].

Fig. 1.1 The structure of the high-temperature form of tridymite projected along the c-axis. Successive tetrahedral layers are stacked along the c-direction. The orthorhombic cell dimensions are: a = 8.74, b = 5.04 and c = 8.24 Å.

Fig. 1.2 The structure of kalsilite viewed along the c-axis. The Al and Si atoms are fully ordered with AlO_4 tetrahedra pointing up and SiO_4 tetrahedra pointing down. The cavities are filled with large K atoms. The hexagonal cell dimensions are A = 5.16 and C = 8.69 Å.

The corner-shared tetrahedra form a three-dimensional framework of six-membered rings with the UDUDUD topology (where U and D represent tetrahedra pointing up and down, respectively). Unlike the high tridymite structure, all six-membered rings in the kalsilite structure have a ditrigonal shape and the successive (001) tetrahedral layers are stacked along the c-axis according to a "staggered" conformation.

In the nepheline structure (Fig. 1.3), the unit cell is hexagonal (P6₃ space group) with the cell dimensions, a \approx 2A and c \approx C [e.g. Simmons and Peacor, 1972]. The corner-shared tetrahedra form a three-dimensional framework of six-membered rings with the same UDUDUD topology as in the kalsilite structure but the successive layers are stacked along the c-axis in an "eclipsed" conformation. Three quarters of the rings are strongly distorted leading to two different kinds of cavities: the larger cavities are filled by nine-coordinated K atoms while the smaller cavities are filled by six-coordinated Na atoms.

Starting from the (Na, K)AlSiO₄ compositions, the tetrahedral (Al, Si) and stuffing (Na, K) atoms can be substituted by many other atoms giving rise to a large variety of compounds which form a large structural family. The study of these tridymite derivatives is of interest in view of their complex polymorphism and also in view of the effect of atomic substitution on the topology and distortion of the tetrahedral framework. For instance, investigations of Ga/Al and Ge/Si substitution in the analogous systems (Na, K)AlGeO₄, (Na, K)GaSiO₄ and (Na, K)GaGeO₄ have been recently reported [Barbier and Fleet, 1987, 1988; Lampert and Böhme, 1986; Weber and Barbier, 1990]. These studies showed that all K end-members are isostructural with tetrahedral frameworks containing UDUDUD and UUUDDD rings whereas all Na end-members are isostructural with beryllonite (NaBePO₄) with UDUDUD and UUDDUD rings. The

Fig. 1.3 The structure of nepheline viewed along the c-axis. The Na atoms occupy the small oval cavities and the K atoms occupy the large hexagonal cavities. The hexagonal cell dimensions are $a \approx 2 \times A$ and $c \approx C$.

framework topologies of the end-members are therefore distinct from the simple UDUDUD tridymite topology occurring in the nepheline and kalsilite structures of the (Na, K)AlSiO₄ system. Some compounds with intermediate compositions, such as, Na₁. $_{x}K_{x}AlGeO_{4}$ (x = 0.5 ~ 0.9) [Barbier and Fleet, 1988] and Na_{1-x}K_xGaSiO₄ (x = 0.5 ~ 0.6) [Weber and Barbier, 1990], crystallize with a ($\sqrt{3} \times A$, C) hexagonal cell, suggesting that they are a simple superstructure of the basic (A, C) kalsilite cell.

The aluminate tridymite-derivatives MAl_2O_4 (M = Ca, Sr, Ba) have also been extensively studied. Their structures consist of a three-dimensional framework of cornerconnected AlO₄ tetrahedra, the cavities of which are filled with alkaline earth metal atoms (Ca, Sr, Ba). CaAl₂O₄ crystallizes with a beryllonite-type structure [Hörkner and Müller-Buschbaum, 1976] while both SrAl₂O₄ [Schulze and Müller-Buschbaum, 1981] and BaAl₂O₄ [Hörkner and Müller-Buschbaum, 1979] crystallize with kalsilite (KAlSiO₄)type structures. The mixed compounds (Sr,Ba)Al₂O₄ [Henderson and Taylor, 1982; Taylor et al., 1985] and (Ca,Sr)Al₂O₄ [Barbier and Neuhausen, 1990] have been investigated with respect to their structural behaviour at different temperatures and compositions. The original studies of the compounds SrBeSiO₄ [JCPDS¹ #26-978] and BaAl₂O₄, BaMgSiO₄, BaZnSiO₄ and BaZnGeO₄ [Dinh and Durif, 1964] had reported them to crystallize with small, hexagonal unit-cells (with A = 4.85, C = 8.19 Å for SrBeSiO₄ and A \approx 5.25, C \approx 8.75 Å for the Ba-stuffed compounds), suggesting that they were simply isostructural with kalsilite. However, later studies established the existence of a $(2 \times A, C)$ superstructure for BaAl₂O₄ [Hörkner and Müller-Buschbaum, 1979] and a temperature dependent ($\sqrt{3} \times A$, $4 \times C$) superstructure for BaZnGeO₄ [Takei et al., 1980; Takei, 1980]. For the latter, only an approximate structure of the room-

¹JCPDS - International Centre for Diffraction Data

Fig. 1.4 The structure of BaZnGeO₄ viewed along the c-axis. The Zn and Ge atoms are fully ordered with ZnO₄ tetrahedra pointing up and GeO₄ tetrahedra pointing down. The cavities are filled by the Ba atoms. The structure is a $\sqrt{3} \times A$ superstructure of kalsilite, with hexagonal cell dimensions a = 9.291 and c = 8.728 Å.

temperature phase could be determined using single crystal X-ray diffraction by neglecting the very weak and incommensurate $4 \times C$ superstructure [Iijima et al., 1982]. The structure of BaZnGeO₄ is shown in Fig. 1.4: although the framework topology is the same as in kalsilite, the framework is collapsed around the Ba atoms and the apical oxygens atoms are displaced off the three-fold axes resulting in the formation of the $\sqrt{3} \times A$ superstructure. Furthermore, the (001) oxygen atom layers are not planar but puckered.

The purpose of the present study is to investigate the structures of a number of tridymite-derivatives including BaTSiO₄ (T = Co, Mg, Zn), (Na, K)GaSiO₄ and (Ca, Sr)BeSiO₄, all crystallizing with the same ($\sqrt{3} \times A$, C) kalsilite-type superstructure. Their detailed structural refinements using powder neutron and X-ray data or single crystal X-ray data should provide new insight into their crystal chemistry.

CHAPTER 2

DESCRIPTION OF EXPERIMENTS

2.1 Sample Preparation

The sample preparations included the syntheses of both powders and single crystals. The powders were synthesized by solid state reactions involving the sintering of stoichiometric mixtures of starting materials at high temperature. The single crystals were grown by using the melt growth technique and the flux technique. All samples were prepared from mixtures of powders finely ground and thoroughly mixed with a mortar and pestle under ethanol.

Chemicals used in the syntheses:

Barium Acetate ($Ba(CH_3COO)_2$)	J.T. Baker Chemical Co. (99.6%)
Cobalt Carbonate (CoCO ₃)	Johnson Matthey (Alfa Products)
Magnesium Oxide (MgO)	Aldrich Chemical Company (99.99%)
Zinc Oxide (ZnO)	BDH Chemicals (Analytical reagent)
Silica Gel (SiO ₂ .xH ₂ O, 80.04 wt%	SiO ₂ determined by TGA)
Silica Gel (SiO ₂ .nH ₂ O (89.00 wt%)	SiO ₂ determined by TGA)

Matheson, Coleman and Bell (Reagent Grade)

Strontium Carbonate (SrCO ₃)	Cerac Incorporated (99.5%)
Calcium Carbonate (CaCO ₃)	BDH Chemicals (Analytical reagent)
Beryllium Oxide (BeO)	Johnson Matthey (99% BeO)
Potassium Carbonate (K ₂ CO ₃)	BDH Chemicals (Analytical reagent)
Sodium Carbonate (Na ₂ CO ₃)	BDH Chemicals (Analytical reagent)
Gallium (III) Oxide (Ga ₂ O ₃)	Aldrich Chemical Company (99.99%)
Nickel Oxide (NiO)	Johnson Matthey (99%)
Nickel Carbonate (NiCO ₃)	Johnson Matthey (99%)

2.1.1 Syntheses of the BaTSiO₄ Powders (T = Co, Mg, Zn)

The syntheses of the four compounds, BaCoSiO₄, BaMgSiO₄, BaMg_{0.5}Zn_{0.5}SiO₄ and BaZnSiO₄, were started by using Ba(CH₃COO)₂, ZnO (first dried at 900°C), MgO, CoCO₃ and silica gel (80.04 wt% SiO₂). The stoichiometric powder mixtures of 1 gram for BaCoSiO₄ and BaMg_{0.5}Zn_{0.5}SiO₄ or 10 grams for BaMgSiO₄ and BaZnSiO₄ were pressed into pellets and heated up to 700°C and 900°C to dehydrate the silica gel and decompose the acetate and carbonate. Then the powder mixtures were remixed and fired at 1250°C for BaCoSiO₄, 1560°C for BaMgSiO₄, 1450°C for BaMg_{0.5}Zn_{0.5}SiO₄ and 1300°C for BaZnSiO₄ for about 48 ~ 72 hours with intermediate remixings. Finally the samples were quenched in air and ground into fine powders for powder X-ray and neutron diffraction experiments.

The BaMgSiO₄, BaMg_{0.5}Zn_{0.5}SiO₄ and BaZnSiO₄ powders were white whereas the BaCoSiO₄ was deep blue in colour as expected for a compound containing tetrahedral Co^{+2} ions. The blue colour of the Co compound was observed to turn slightly darker

after annealing at temperatures below 1100°C. By analyzing the powder X-ray diffraction pattern of the annealed sample (see Table 2.1), this colour change was found to be associated with the decomposition of $BaCoSiO_4$ into a mixture of CoO and $Ba_2CoSi_2O_7$.

2.1.2 Synthesis of the (Na_{0.5}K_{0.5})GaSiO₄ Powder

Following a previous investigation of the (Na, K)GaSiO₄ system [Weber & Barbier, 1990], a 1 gram sample of the (Na_{0.5}K_{0.5})GaSiO₄ compound was synthesized by using K₂CO₃, Na₂CO₃, Ga₃O₂ and SiO₂.nH₂O (80.04 wt% SiO₂) as starting materials. The stoichiometric powder mixture was pressed into a small pellet and preheated slowly from 600°C up to 900°C at a rate of 3°C/min to dehydrate the silica gel and decompose the carbonates. Because of the low melting points of K₂CO₃ and Na₂CO₃ (891°C and 851°C respectively), the preheating temperature was slowly increased to avoid the loss of K and Na oxides. After remixing and repressing into a pellet, the mixture was fired at 925°C for 60 hours with two intermediate remixings and quenched from this temperature.

After several trials, it was found that the temperature of 925° C was the lowest possible temperature to synthesize this compound. The sample was observed to melt above 1100°C and decompose at about 875°C. From its powder X-ray diffraction pattern, the decomposed product was found to be a mixture of a Na-rich phase (beryllonite-type) and a K-rich phase (KAlGeO₄-type [Lampert, 1986]). The compound Na_{0.5}K_{0.5}GaSiO₄ was studied by electron diffraction and powder X-ray diffraction using a Guinier camera and diffractometer.

TABLE 2.1

Sample		CoO*		Ba ₂ CoSi ₂ O ₇ **	
d(Å)	I/I _o	d(Å)	I/I _o	d(Å)	I/I _o
3.9362	18			3.95	10
3.4885	11			3.51	10
3.1761	100			3.19	100
2.9806	3			2.99	5
2.9255	20			2.92	20
2.8604	7			2.87	10
2.7267	20			2.73	16
2.5496	6			2.55	8
2.4618	5	2.46	75		
2.3874	9			2.39	16
2.1280	12	2.13	100	2.13	6
2.0922	7			2.09	8
2.0502	6			2.05	8
1.9511	32			1.953	30
1.9100	8			1.912	16
1.7833	5			1.783	10
1.7463	9			1.747	10
1.7069	16			1.710	16
1.5068	3	1.5062	50		
1.4584	1			1.458	6
1.4079	3			1.410	8
1.3003	15			1.302	10
1.2290	1	1.2298	16		

COMPARISON BETWEEN THE POWDER X-RAY PATTERNS OF Ba₂CoSi₂O₇/CoO AND THE DECOMPOSITION PRODUCT OF BaCoSiO₄ ANNEALED AT 1100°C

* [International Centre for Diffraction Data, #9-402]

** [International Centre for Diffraction Data, #6-859] isostructural with Ba₂CuSi₂O₇ [Malinovskii, 1984].

2.1.3 Syntheses of the $(Sr_{1-x}Ca_x)BeSiO_4$ Powders (x = 0.0 ~ 1.0)

A series of powder samples, about 0.4 to 1 gram each, were prepared at 10 mol% intervals along the SrBeSiO₄-CaBeSiO₄ join. The starting materials were stoichiometric mixtures of SrCO₃, CaCO₃, BeO and silica gel (80.04 wt\% SiO_2). The samples were first fired at 900°C to dehydrate the silica gel and decompose the carbonates, sintered at 1200°C (1400°C for CaBeSiO₄) for about 48 hours with one intermediate remixing and finally quenched in air.

All the reaction products were characterized by powder X-ray diffraction using a Guinier camera and a few ($x = 0 \sim 0.3$) were further examined by electron diffraction and high resolution electron microscopy.

2.1.4 Syntheses of the $(Ba_{1-x}Ca_x)BeSiO_4$ Powders (x = 0.0 ~ 1.0)

The syntheses were performed using stoichiometric mixtures of Ba(CH₃COO)₂, CaCO₃, BeO and SiO₂.nH₂O (80.04 wt% SiO₂). A series of powder samples were made at 10 mol% intervals along the BaBeSiO₄-CaBeSiO₄ join. All samples were preheated at 700°C and 900°C to dehydrate the silica gel and decompose the acetate and carbonate, sintered at 1200°C for 48 hours with intermediate mixing and quenched in air. Most samples were nearly melted at 1400°C. The products were characterized by powder Xray diffraction using a Guinier-Hägg camera (CuK_{el} radiation, $\lambda = 1.540598$ Å). Apart from a very narrow solid solution range at the Ba-end (x \leq 0.1), a new single phase with the composition Ba_{0.4}Ca_{0.6}BeSiO₄ was found with the orthorhombic unit-cell: a = 4.7550(2) Å, b = 7.9332(4) Å, c = 8.5718(3) Å and V = 323.35(2) Å³, determined from the indexing of powder X-ray diffraction data by an automatic indexing program [Visser, 1969] (Table 2.2). The cell dimensions suggest that this compound may also be a stuffed tridymite derivative with $c/a \approx \sqrt{3}$ and $c = C_{kalsilite}$ but no further work was carried out.

2.1.5 Growth of the BaCoSiO₄ Single Crystals

Single crystals of BaCoSiO₄ were obtained by a melt growth technique. A 10g stoichiometric mixture of Ba(CH₃COO)₂, CoCO₃ and silica gel (80.04 wt% SiO₂) was finely ground and pressed into a pellet. The pellet was first fired at 700 ~ 900°C to dehydrate the silica gel and decompose the acetate and carbonate, then remixed and heated in a platinum crucible up to 1350°C (the melting point being around 1300°C). The sample was soaked at this temperature for two hours, cooled down to 1150°C at a rate of 2°/hr and finally quenched from this temperature to prevent the decomposition reaction of BaCoSiO₄ (c.f. 2.1.1). The sample was carefully crushed and examined with an optical microscope. A few single crystals were chosen according to their size, shape and appearance and further examined with an X-ray precession camera in order to check for twinning and/or superstructure and obtain unit-cell information. After a suitable single crystal was selected, intensity data were collected on a computer-controlled diffractometer.

TABLE 2.2

h	k	1	$d_{cal}(Å)$	d _{obs} (Å)	I/I _o
0	1	1	5.8223	5.8181	15
0	0	2	4.2859	4.2834	17
1	0	1	4.1581	4.1570	22
1	1	0	4.0785	4.0786	32
1	1	1	3.6829	3.6818	6
1	1	2	2.9545	2.9542	10
0	2	2	2.9111	2.9119	47
1	2	1	2.8701	2.8708	100
0	0	3	2.8573	2.8568	12
0	1	3	2.6882	2.6883	28
0	3	1	2.5269	2.5276	9
1	0	3	2.4491	2.4490	34
2	0	0	2.3775	2.3779	32
1	3	0	2.3110	2.3113	15
2	1	1	2.2011	2.2011	14
0	0	4	2.1429	2.1434	6
1	2	3	2.0839	2.0839	61
2	2	0	2.0392	2.0393	10
1	3	2	2.0342	2.0346	6
2	2	1	1.9839)	1.9837	19
0	4	0	1.9833J		
0	2	4	1.8854	1.8852	10
2	2	2	1.8414	1.8416	19
0	4	2	1.7999	1.8000	6
1	4	1	1.7901	1.7903	12
2	1	3	1.7809	1.7811	18
2	3	1	1.7315	1.7316	8
2	3	2	1.6344	1.6339	4
1	0	5	1.6127	1.6127	5
2	0	4	1.5918	1.5919	5
1	3	4	1.5714	1.5714	7
3	1	0	1.5543	1.5542	5
1	4	3	1.5413	1.5413	15
2	4	0	1.5230	1.5231	12
1	5	0	1.5051	1.5048	6

X-RAY POWDER DIFFRACTION PATTERN FOR $Ba_{0.4}Ca_{0.6}BeSiO_4$ INDEXED ON THE ORTHORHOMBIC CELL a = 4.7550(2) $b = 7.9332(4), c = 8.5718(3) \text{ Å}, V = 323.35(2) \text{ Å}^3$

1	2	5	1.4940	1.4938	13
2	2	4	1.4773	1.4773	10
0	4	4	1.4556	1.4555	4
3	2	1	1.4506	1.4506	12
2	4	2	1.4351	1.4352	8
0	0	6	1.4286	1.4285	10
0	5	3	1.3871)	1.3867	22
3	0	3	1.3860		
3	3	0	1.3595	1.3593	5
1	1	6	1.3483	1.3484	6
3	2	3	1.3084	1.3085	6
3	3	2	1.2959	1.2958	6
1	6	1	1.2600	1.2600	5
1	4	5	1.2513	1.2513	5
2	4	4	1.2414	1.2412	5
2	0	6	1.2246)		
0	0	7	1.2245	1.2244	13
2	5	3	1.1981	1.1980	11
3	0	5	1.1638)		
1	6	3	1.1635	1.1636	16
0	4	6	1.1592	1.1592	9
4	2	0	1.1387)		
2	4	5	1.1386	1.1384	4
1	2	7	1.1362)	1.1363	19
3	4	3	1.1361)		
3	2	5	1.1167)	1.1169	10
2	6	2	1.1157		
3	5	1	1.1119	1.1124	6
0	3	7	1.1112	1.1109	5

2.1.6 Growth of SrBeSiO₄ and Sr_{1-x}Ca_xBeSiO₄ Single Crystals

Single crystals of SrBeSiO₄ and Sr_{1-x}Ca_xBeSiO₄ were grown by a flux method, using mixtures of SrCO₃, CaCO₃, BeO and silica gel and excess silica as a flux. A stoichiometric mixture (10 g) of SrBeSiO₄ with an excess of 40 wt% SiO₂ and a stoichiometric mixture (10 g) of Sr_{0.65}Ca_{0.35}BeSiO₄ with an excess of 25 wt% SiO₂ were preheated at 900°C for about 10 hours to dehydrate the silica gel and decompose the carbonates. The powders were then melted at 1450°C for SrBeSiO₄ and 1625°C for Sr₁. _xCa_xBeSiO₄, soaked at these temperatures for 4 hours and then slowly cooled at a rate of 3°C/hr down to 1150°C for SrBeSiO₄ and 1300°C for Sr_{1-x}Ca_xBeSiO₄. After quenching from these temperatures, the samples were then carefully crushed and examined under an optical microscope. The final products were inhomogeneous, consisting of a mixture of thin transparent and translucent lamellae. Powder X-ray diffraction showed that the thin transparent lamellae were well-crystallized SrBeSiO₄ or Sr_{1-x}Ca_xBeSiO₄ single crystals and the translucent lamellae were a mixture of the same poorly-crystallized compounds and silica glass.

A few single crystals with a colourless plate habit were chosen and further examined with an X-ray precession camera in order to check for twinning and/or superstructure phenomena. The best crystals were selected for data collection on a computer-controlled diffractometer.

2.2 Instrumentation

A combination of diffraction techniques, including powder X-ray and neutron

diffraction, electron diffraction and single crystal X-ray diffraction, was used for the characterization of reaction products and the determination of crystal structures. The principles of these techniques are briefly described below.

2.2.1 Powder X-ray Diffraction

In all syntheses, the nature of the final products was first analyzed by powder Xray diffraction using a focusing Guinier-Hägg camera (CuK α_1 radiation, $\lambda = 1.540598$ Å) and silicon powder as an internal standard. The Guinier camera geometry makes use of an incident-beam monochromator which is simply a large single crystal cut and oriented so as to diffract the α_1 component of the Cu K_a incident radiation according to the Bragg's equation, $\lambda = 2d\sin\theta$. In addition to giving a very narrow wavelength band, the monochromator curvature is designed so that the divergent incident beam is diffracted into a convergent beam focused onto the diffraction circle which holds a strip of photographic film. The scheme graph of the camera is shown in Fig. 2.1a. The monochromatic radiation passes through the sample at X. Radiation which is not diffracted by the sample is focused on a beam stop at A, while diffracted beams are focused on the circle at B, C, etc., where their positions are recorded by the film. A schematic diffraction pattern is as shown in Fig. 2.1b where the line at $2\theta = 0^{\circ}$ corresponds to the undiffracted beam at A in Fig 2.1(a). In the present work, the positions and intensities of the diffraction lines on the film were read with a computercontrolled LS-20 digital scanner (laser beam, scan step = 40 pm) and the diffraction data were then used to determine and refine the unit-cell parameters by means of a local leastsquares refinement program.

(a)

Fig. 2.1 (a)The geometry of the Guinier camera. Crystal monochromator M, Source S and sample X. (b) Schematic Guinier X-ray powder diffraction pattern.

Because of the similarity between the neutron nuclear scattering lengths of Na and K (0.363 and 0.367 ×10⁻¹² cm) and the high resolution of the X-ray diffractometer, the powder diffraction data for Na_{0.5}K_{0.5}GaSiO₄ were collected on a Nicolet I2 automated X-ray diffractometer (Cu radiation, Cu $K_{\alpha l} = 1.5406$ Å and Cu $K_{\alpha 2} = 1.5448$ Å). A detector, instead of film, is used to measure the scattered intensity of X-rays as a function of 2θ (Fig. 2.2). Diffraction data were collected over the diffraction angle range of $10^{\circ} \le 2\theta \le 85^{\circ}$ with a scanning speed of $0.06^{\circ} 2\theta/\text{min}$ (2θ step 0.03° , step time 30 seconds). The data were used to determine the structure of the Na_{0.5}K_{0.5}GaSiO₄ compound by a profile refinement carried out with a Rietveld analysis computer program [Young & Wiles, 1982; Howard & Hill, 1985].

2.2.2 Powder Neutron Diffraction

The compounds $BaMgSiO_4$ and $BaZnSiO_4$ contain both heavy Ba and light O atoms. Since X-rays are scattered by electrons, the intensity scattered by the oxygen atoms is very low relative to that scattered by the Ba atoms, therefore making it difficult to locate the oxygen atoms accurately. On the other hand, neutrons are scattered by nuclei and the intensities scattered by heavy atoms and light atoms are similar. For this reason, neutron powder diffraction data for $BaMgSiO_4$ and $BaZnSiO_4$ were collected at the McMaster Nuclear Reactor. The data were collected using a position sensitive detector (PSD) and a monochromatic neutron beam with a wavelength of 1.3913 Å obtained from the (200) reflection of a Cu single crystal monochromator. Four detector settings were used to cover a scattering range from 10° to 100° (2 θ). The samples were loaded in a thin walled vanadium can (vanadium having a very small coherent scattering

Fig. 2.2 Schematic diagram of a simple X-ray powder diffractometer.

length -0.038×10^{-12} cm). The raw data were corrected for detector geometry according to procedures established previously [Tompson et al., 1984] and the profile refinements were carried out with a local version of the Rietveld Profile Refinement program.

2.2.3 Electron Diffraction

Electrons that are diffracted by a crystal in a transmission electron microscope will form a diffraction pattern which can be projected on to a viewing screen (Fig. 2.3). Single crystal diffraction patterns, similar in appearance to zero-level X-ray precession photographs, can be obtained by selecting appropriately oriented individual crystallites from a powder sample. For this purpose, a finely ground powder is deposited onto a holey carbon film supported by a copper grid and the grid is fitted onto a double-tilt goniometer stage. In this study, a Philips CM-12 transmission electron microscope (TEM) operating at 120 keV was used to examine microscopic single crystals from the powder samples.

The interpretation of electron diffraction patterns is schematically shown in Fig. 2.4 in which the incident electron beam strikes a specimen and is diffracted by a set of lattice planes to form a diffraction spot on the photographic plate at a distance R from the centre of the diffraction pattern. By simple geometry, R is related to the camera length (L) by the equation

$R/L = tan 2\theta$

The diffraction angles, θ , are very small (1 ~ 2° for $\lambda = 0.0317$ Å corresponding to an accelerating potential of 120 kV) and the approximation $\tan 2\theta = 2\sin\theta$ can be made with very little error. Then R/L = λ /d or d = λ L/R. Therefore, by measuring the

Diffraction pattern recorded on screen/photographic plate

Fig. 2.3 Ray diagrams for the generation of diffraction patterns in a transmission electron microscope.

Fig. 2.4 The electron microscope considered as a simple electron diffraction camera.

distance R for individual reflections, the d-spacing of the set of lattice planes giving rise to these reflections can be determined. These d-spacings can then be used to obtain information relative to the size and symmetry of the unit-cell.

2.2.4 Single Crystal X-ray Precession Photographs

Single crystal X-ray precession photographs (λ Mo K_a = 0.7107 Å, with Zr filter; λ Cu K_a = 1.5418 Å, with Ni filter) were taken to examine twinning and superstructure phenomena of single crystals of BaCoSiO₄, SrBeSiO₄ and Sr_{1-x}Ca_xBeSiO₄. Each crystal was glued to the tip of a glass fibre and the fibre was mounted on a goniometer head and aligned on the camera so that one cell-axis was parallel to the X-ray beam. By keeping a piece of film tangential to the sphere of reflection of the moving crystal, the precession camera allows undistorted images of the reciprocal lattice to be obtained. In the present work, all compounds crystallized with hexagonal cells (cf. sections 3.1, 4.1 and 5.1) and, according to the interpretation of the diffraction patterns, photographs of two zero-layers containing the a₁^{*} and a₂^{*}-axes and the a^{*} and c^{*}-axis were taken for each candidate crystal. Based on these photographs , the best crystals were selected for data collection on a single crystal diffractometer.

2.2.5 Single Crystal X-ray diffractometer

The single crystal X-ray diffractometer data were collected on a Siemens R3m/V diffractometer (Ag $K_{\alpha} \lambda = 0.56086$ Å) using the Siemens P3/V Data Collection System for the BaCoSiO₄ and Sr_{1-x}Ca_xBeSiO₄ compounds and on a P4 diffractometer (Mo $K_{\alpha} \lambda$

= 0.71073 Å) using XSCANS Data Collection software for SrBeSiO₄. In both instruments, the monochromatic X-ray beam is obtained from a highly oriented graphite crystal monochromator. Both diffractometers are four-circle type and a schematic diagram of this type of diffractometer is shown in Fig. 2.5. Each set of planes hkl can be brought into the reflection position using the four ϕ , χ , ω and 2θ rotation. A counter mounted on the 2θ circle can then scan across the reflection to measure the diffracted intensity. Data sets containing 5080 collected reflections for BaCoSiO₄, 4128 (1065 used, cf. section 5.2) for SrBeSiO₄ and 4528 for Sr_{1-x}Ca_xBeSiO₄ were measured. Corrections were made for Lorentz, polarization and absorption effects (cf. 2.4). The resulting lists of observed $|F_{hkl}|$ values provided the basis for the determination of the crystal structures.

2.3 Powder Data Analysis

The Rietveld refinement method can be used for the analysis of both powder Xray and neutron diffraction patterns. This is a method for crystal structure refinement which does not use integrated diffraction peak intensities, but directly employs the profile intensities obtained from step-scanning measurements of the powder pattern [Rietveld 1976; Rieltveld 1969].

During a Rietveld refinement, the structure parameters (unit-cell parameters, atom positions, temperature and occupancy factors), the scale factor, the background coefficients and the profile parameters describing peak widths and shapes, are varied in a least-squares procedure until the calculated powder pattern, based on the structure model, best matches the observed pattern. The quantity that is minimized by the least-

Fig. 2.5 A schematic graph of a four-circle diffractometer.

squares procedure is :

$$R = \sum w_i (Y_{iobs} - \frac{1}{c} Y_{ical})^2$$
(2.1)

The observed intensity, Y_{iobs} , at each step i in the diffraction pattern consists of a contribution from the Bragg reflections at the step plus the background. The Bragg peaks in a powder diffraction pattern are the integrated intensities and determined by atom positions and other structural parameters, such as scattering factors or lengths and temperature and occupancy factors. The background intensity can arise from several factors, including fluorescence from the sample, detector noise, thermal-diffuse scattering from the sample, disordered or amorphous phases in the samples, incoherent scattering, and scatter of the beam by the air, diffractometer slits and sample holder.

The calculated intensity, Y_{ical} , at point i in the diffraction pattern is determined according to the following equation:

$$Y_{ic} = Y_{ib} + \sum_{k} G_{ik} I_{k}$$
(2.2)

where Y_{ib} is the background intensity, G_{ik} is a normalized peak profile function, I_k is the Bragg intensity, and k1...k2 are the reflections contributing intensity to point i.

The weighting factor, w_i , is equal to the inverse of the statistical counting error (generally equal to the square root of the observed intensity at step i).

The basic requirements for a Rietveld refinement are: (1) accurate powder diffraction intensity data measured in small intervals of 2θ , (2) a starting model that is reasonably close to the actual crystal structure and (3) a model that accurately describe shapes, widths and any systematic errors in the position of the Bragg peaks in the powder pattern.

The quality of the fit of the calculated model to the observed intensities is indicated by the following agreement indices:

Profile R-factor

$$R = \frac{\sum |Y_{io} - \frac{1}{c}Y_{ic}|}{\sum Y_{io}}$$
(2.3)

Weighted profile R-factor

$$R_{wp} = \left[\frac{\sum w_{i} \left[Y_{io} - \frac{1}{c}Y_{ic}\right]^{2}}{\sum w_{i}Y_{io}^{2}}\right]^{\frac{1}{2}}$$
(2.4)

Nuclear (Bragg's) R-factor

$$R_{B} = \frac{\sum |I_{ko} - \frac{1}{c}I_{kc}|}{I_{ko}}$$
(2.5)

Expected R-factor

$$R_{\exp} = \left(\frac{N-P}{\sum w_i Y_{io}^2}\right)^{\frac{1}{2}}$$
(2.6)

Goodness-of-fit

$$GOF = \frac{\sum w_i (Y_{io} - Yic)^2}{N - P} = \left(\frac{R_{wp}}{R_{exp}}\right)^2$$
(2.7)

where Y_{io} and Y_{ic} are the observed and calculated intensities at point i, w_i is the weight assigned to each step intensity, I_{ko} and I_{kc} are the observed and calculated intensities for the Bragg peak k. N is the number of data points in the pattern and P is the number of parameters refined.

2.4 Single Crystal Data Analysis

After the collection of single crystal X-ray intensity data, a crystal structure can be solved by different methods among which the Patterson method and the direct methods are the most commonly used nowadays. A basic structure model with approximate coordinates for the heavy atoms or all the atoms in the unit-cell is set up by these methods first and then the positions can be optimized by a least-squares refinement. The coordinates are adjusted to minimize the function:

$$D = \sum_{hkl} w_{hkl} (|F_{hkl}^{obs}| - |F_{hkl}^{cal}|)^2$$
(2.8)

 $|F_{hkl}^{obs}|$ in equation (2.8) is the observed structure factor and is related to the intensity of the reflection according to

$$I_{hkl} = sLPF^2 \tag{2.9}$$

where s is a scale factor; L is the Lorentz (geometrical) correction $(L = (\sin 2\theta)^{-1}$ for single crystal data), P is the polarization correction $(P = (1 + \cos^2 2\theta)/2)$. Psi-scan absorption correction is also made according to the shape of the single crystal. $|F_{hkl}^{cal}|$ in equation (2.8) is the corresponding calculated structure factor and is described by the following equation:

$$F_{hkl}^{cal} = \sum_{j} f_{j} \{ \exp[2\pi i (hx_{j} + ky_{j} + lz_{j})] \} \exp[-B_{j}(\sin^{2}\theta)/\lambda^{2}]$$
(2.10)

where f_j is the scattering factor of atom j with the fractional coordinates x_j , y_j and z_j ; B_j is the isotropic temperature factor equal to $8\pi^2 u_j^2$ (u: the mean square amplitude of

vibration of atom j). In most refinements, The thermal motion is described anisotropically by an ellipsoid, with six parameters. w_{hkl} in equation (2.8) is the weight given to the observation $|F_{hkl}^{obs}|$, $w_{hkl} = 1/(\sigma^2 |F_{hkl}^{obs}|)$.

The quality of the fit for a structure refinement is measured in terms of a "reliability factor" or R-factor:

$$R = \frac{\sum_{hkl} |F_{hkl}^{obs} - F_{hkl}^{cal}|}{\sum_{hkl} |F_{hkl}^{obs}|}$$
(2.11)

or , a weighted R-factor

$$wR = \left[\frac{\sum_{hkl} w_{hkl}^{2} |F_{hkl}^{obs} - F_{hkl}^{cal}|^{2}}{\sum_{hkl} w_{hkl} |F_{hkl}^{obs}|^{2}}\right]^{1/2}$$
(2.12)

and the goodness-of-fit

$$GOF = \left[\frac{\sum w_{hkl} \left(\left|F_{hkl}^{obs}\right| - \left|F_{hkl}^{cal}\right|\right)^{2}}{n-m}\right]^{\frac{1}{2}}$$
(2.13)

where n is the number of observed reflections and m is number of the parameters refined.

.....

CHAPTER 3

THE BaTSiO₄ (T = Co, Mg, Zn) COMPOUNDS

The compounds BaTSiO₄ (T = Zn, Mg) and BaZnGeO₄ had been previously reported to crystallize with small hexagonal unit cells (A \approx 5.25 Å and C \approx 8.75 Å) [Dinh, 1964], suggesting them to be isostructural with kalsilite (KAlSiO₄) [Perrotta, 1965]. However, later studies established the existence of a ($\sqrt{3} \times A$, 4×C) superstructure in the case of BaZnGeO₄ [Takei, 1980] and the average structure was determined by neglecting the weak and incommensurate 4×C superstructure at room temperature [Iijima, 1982]. This chapter deals with the re-investigation of the compounds BaTSiO₄ (T = Mg, Zn) and the study of a new compound BaCoSiO₄ by means of single-crystal X-ray diffraction (T = Co) and powder neutron diffraction (T = Mg, Zn).

3.1 Powder X-ray and Electron Diffraction

The nature of all four compounds BaCoSiO₄, BaMgSiO₄, BaMg_{0.5}Zn_{0.5}SiO₄ and BaZnSiO₄ was characterized by powder X-ray diffraction using a Guinier-Hägg camera (CuK_{$\alpha 1$} radiation, $\lambda = 1.540598$ Å). Their diffraction patterns were indexed by means of the computer program LSUDF on a similar ($\sqrt{3} \times A$, C) hexagonal unit cell, corresponding to a superstructure of the basic (A, C) kalsilite cell required by the presence of a few weak {hkl, h-k \neq 3n} reflections (cf. Tables 3.1 and 3.2). The unit cell parameters of the four compounds are shown in Table 3.3. Interestingly, the variation in cell parameters and cell volume do not correlate with the practically identical Mg-O, Zn-O and Co-O bond lengths predicted from ionic radii (1.95, 1.96 and 1.98 Å for tetrahedrally-coordinated atoms) [Shannon, 1976] (but cf. Section 3.4).

All four compounds were also examined by electron diffraction /microscopy using a Philips CM-12 transmission electron microscope operating at 120 kV and equipped with a double-tilt goniometer stage. The electron diffraction patterns confirmed the presence of a $\sqrt{3} \times A$ superstructure in the basal plane of the hexagonal cell (Fig.3.1a) and also showed the absence of a superstructure along the c axis (Fig.3.1b).

These results therefore indicate that the compounds $BaCoSiO_4$ $BaMgSiO_4$, $BaMg_{0.5}Zn_{0.5}SiO_4$ and $BaZnSiO_4$ adopt a structure more complex than the simple kalsilite structure and that they are structurally closely related to the room-temperature form of $BaZnGeO_4$ [Iijima, 1982]. No extra reflections were found for the $BaMg_{0.5}Zn_{0.5}SiO_4$ compound, which indicates that the tetrahedral Mg and Zn atoms are randomly distributed in the tetrahedral framework. As expected, the cell parameters of $BaMg_{0.5}Zn_{0.5}SiO_4$ are intermediate between those of $BaMgSiO_4$ and $BaZnSiO_4$ (cf. Table 3.3) with values indicating that the system obeys Vegard's law well [West, 1988].

3.2 Powder Neutron Refinement of the BaMgSiO₄ and BaZnSiO₄ Structures

The powder neutron diffraction data were recorded at room temperature over the angular range $10^{\circ} < 2\theta < 92^{\circ}$ at four different settings of the position-sensitive detector. After correction of the raw data for detector geometry [Tompson, 1984], the

Fig. 3.1 [001] (a) and [010] (b) zone-axis electron diffraction patterns of BaTSiO₄ (T = Co, Mg, Zn). Note the $\sqrt{3} \times A$ superstructure in the basal plane of the hexagonal unit-cell and the absence of superstructure along the c axis. The {00*l*, l = 2n+1} reflections (forbidden in the P6₃ space group) appear by double diffraction.

profile refinement was carried out with a local version of the Rietveld program. The following scattering lengths (10^{-12} cm) were used: Ba (0.525), Mg (0.5357), Zn (0.568), Si (0.4149) and O (0.5805) [Sears, 1984].

The refinements of the BaMgSiO₄ and BaZnSiO₄ structures were performed in a similar way, starting with the cell parameters determined by powder X-ray diffraction (cf. Table 3.3) and the atomic positions determined in the P6₃ space group for the isostructural sub-cell of the BaZnGeO₄ compound [Takei, 1980]. The Ba atoms were positioned on the 2a and 2b sites, and the Si, O and Mg (or Zn) atoms occupied three sets of general 6c sites.

The structural parameters allowed to vary during the refinements included the cell parameters, the atomic coordinates and the isotropic temperature factors. A complete ordering of the Si/Mg and Si/Zn atoms was assumed initially and later confirmed by the final refinements and bond length data. Due to strong correlations between variables, it was found necessary to apply constraints on the temperature factors of similar atoms: the temperature factors of the three Ba atoms were constrained to be equal as well as those of the tetrahedral atoms Si and Mg (or Zn); the temperature factors of the first three oxygen atoms were also set to be equal but that of O(4) was left unconstrained. The refinements then converged smoothly to the following agreement indices: weighted profile index $R_{wp} = 0.042/0.054$, nuclear index $R_n = 0.026/0.046$, and expected index Re = 0.026/0.027 for BaMgSiO₄/BaZnSiO₄ respectively. The final positional and thermal parameters are listed in Tables 3.4 and 3.5. The calculated, observed and difference profiles are shown in Fig. 3.2 and Fig. 3.3 for BaMgSiO₄ and BaZnSiO₄. The intensities of the $\sqrt{3} \times A$ superstructure reflections are similar for both compounds and much stronger than those observed by X-ray diffraction (cf. Table 3.1). Selected bond lengths,

Fig. 3.2 Observed, calculated, and difference powder neutron diffraction profiles for BaMgSiO₄. The (\downarrow) signs indicate the Bragg peak positions. The (\downarrow) signs indicate the ($\sqrt{3} \times A$) superstructure reflections.

Fig. 3.3 Observed, calculated, and difference powder neutron diffraction profiles for BaZnSiO₄. The (\downarrow) signs indicate the Bragg peak positions. The (\downarrow) signs indicate the ($\sqrt{3} \times A$) superstructure reflections.

bond angles and bond valences (s calculated from the empirical parameters of Altermatt and Brown [1985]) are listed in Tables 3.6 and 3.7. It should be noted that the larger esd's for the z-coordinates in Tables 3.4 and 3.5 are a result of the strong correlations noted earlier and that the larger unconstrained temperature factors of the O(4) atoms suggest positional disorder similar to that observed in , for instance, KAlSiO₄ [Perrotta, 1965] and BaZnGeO₄ [Iijima, 1982].

3.3 Single Crystal X-ray Refinement of the BaCoSiO₄ Structure

The X-ray intensity data for BaCoSiO₄ were collected from a single crystal with dimensions of $0.30 \times 0.80 \times 0.10 \text{ mm}^3$ on a Siemens R3m/v diffractometer using graphite-monochromatized AgK α radiation. All crystal data, data collection parameters, and results of analysis are listed in Table 3.8. The unit cell constants a (= 9.126(2) Å) and c (= 8.683(4) Å) determined from 25 single reflections are in very close agreement with those refined from powder diffraction data (cf. Table 3.3). The structure was solved in the P6₃ space group by direct methods and successive Fourier syntheses. In order to be consistent with the BaMgSiO₄ and BaZnSiO₄ structures, the Ba(1) atom was chosen to fix the origin at (0 0 1/4). An ordered arrangement of the tetrahedral Co and Si atoms was also assumed initially and later confirmed during the refinement. Using 1062 observed reflections (F > 6 σ (F)), a full-matrix least-squares refinement was carried out with anisotropic temperature factors for all atoms, converging to final agreement indices R = 0.035 and R_w = 0.042. The final atomic positions and equivalent isotropic displacement parameters are listed in Table 3.9 and the anisotropic thermal parameters are shown in Table 3.10. Selected bond lengths, bond angles and associated bond valences [Altermatt and Brown, 1985] are given in Table 3.11.

The single crystal X-ray refinement of the BaCoSiO₄ structure yields a better precision (by about a factor of 10) for the atomic coordinates and bond distances than the neutron powder refinements of the BaMgSiO₄ and BaZnSiO₄ structures. The three compounds are, nevertheless, clearly isostructural with very similar atomic positions and environments. It should be noted in particular that the temperature factor of the O(4) atom in the Co compound is again larger than those of the other oxygen atoms (especially U_{11} and U_{22} , cf. Table 3.10), suggesting positional disorder of O(4) around the pseudo 3-fold axis.

3.4 Description of the Structures and Discussion

Except for minor shifts in atomic positions (cf. Tables 3.4, 3.5 and 3.9), the structures of the three compounds $BaTSiO_4$ (T = Co, Mg, Zn) are identical and only the more accurately determined structure of $BaCoSiO_4$ is shown in Fig.3.4, viewed along the c-axis of the hexagonal unit-cell. Like in the structure of kalsilite, KAlSiO₄ [Perrotta, 1965], the tetrahedral framework of the BaCoSiO₄ structure consists of six-membered rings of corner-shared tetrahedra pointing alternatively up and down. All rings are identical with an almost triangular shape and are stacked along the c-direction, joined via the O(4) oxygen atoms in a staggered configuration, again similar to that found in kalsilite.

As indicated by the structural refinements and the bond length data (cf. Tables 3.6, 3.7 and 3.11), the tetrahedral T (= Co, Mg, Zn) and Si atoms are completely ordered and, in the BaCoSiO₄ structure shown in Fig.3.3, all the large CoO₄ tetrahedra

Fig. 3.4 The structure of $BaCoSiO_4$ viewed along the c-axis. It consists of a Ba-stuffed tetrahedral framework derived from that of SiO_2 tridymite and similar to that of KAISiO₄ kalsilite. The Co and Si atoms are fully ordered with large CoO₄ tetrahedra pointing up and small SiO₄ tetrahedra pointing down. Atom heights are given in units of c/100. The structures of BaMgSiO₄ and BaZnSiO₄ are essentially identical. point up while all the small SiO₄ tetrahedra point down. Such a fully ordered arrangement could be expected in spite of the high temperatures used for the powder syntheses and the single crystal growth (1150 ~ 1560°C) because of the large differences in formal ionic valences (T^{2+} vs Si⁴⁺) and in bond lengths (1.92 ~ 1.96 Å for T-O vs 1.63 Å for Si-O). A similar tetrahedral ordering has also been reported for the isostructural room-temperature phase of BaZnGeO₄ [Iijima, 1982].

All three crystallographically independent Ba atoms of the BaTSiO₄ structure are located on the three-fold axes of the unit-cell with, however, different coordination environments: in BaCoSiO₄ for example, Ba(1) is nine-coordinated (six O(1)'s plus three O(4)'s at an average distance of 2.89 Å), Ba(2) is also nine-coordinated (three O(2)'s, three O(3)'s and three O(4)'s at an average distance of 2.91 Å) but Ba(3) is only six-coordinated (three O(2)'s plus three O(3)'s at a shorter average distance of 2.73 Å) (cf. Table 3.11). It can be seen in Fig. 3.4 that the lower coordination of the Ba(3) atom arises from the displacement of the O(4) atom (at height 25) away from Ba(3) and towards Ba(1) and Ba(2) so that the distance between Ba(3) and O(4) is raised to 3.62 Å. [Note that the Ba(2) and Ba(3) positions alternate at heights 25 and 75 on the three-fold axes so that the O(4) atom at height 75 is also displaced away from Ba(3). It is clear also from Fig.3.4 that this shift of the O(4) atom from its ideal position at (1/3, 1/3, 1/4) or (2/3, 2/3, 3/4) is the main factor behind the formation of the $\sqrt{3 \times A}$ superstructure in the basal plane of the BaTSiO₄ unit-cells. This atom shift is similar to that commonly observed in the structures of the kalsilite-nepheline series, (K,Na)AlSiO₄, [e.g. Merlino, 1984] and appears necessary in order to i) release the strain in the Co-O(4)-Si bond angle which is reduced to $148.6(5)^{\circ}$ and ii) accommodate the bonding requirements of all three Ba atoms which, in spite of different environments,

end up with similar bond valence sums (cf. Table 3.11). [The small variations in bond valence sums observed in the cases of BaMgSiO₄ and BaZnSiO₄ in Tables 3.6 and 3.7 are probably the result of less accurate refinements using powder data]. It is worth noting, however, that the bond valence sums around the Ba atoms in all three compounds are lower than expected and indicate that the Ba-O bonds are stretched in the room-temperature structures (i.e. the Ba atoms are somewhat too small relative to the size of the framework cavities). This result is consistent with the observation that, at least for BaCoSiO₄, the structure is stable at high temperature only.

The displacement of the O(4) atom off the pseudo 3-fold axis also corresponds to the collapse of the tetrahedral framework around the barium atoms, involving the tilting of the CoO₄ and SiO₄ tetrahedra around horizontal axes approximately parallel to the [110] or equivalent directions (cf. Fig.3.4). The degree of framework collapse in the BaTSiO₄ structures can be qualitatively estimated from the difference (Δz) between the z-coordinates of the O(1) and O(3) atoms: Δz is equal to 0.060(6), 0.064(6) and 0.075(1) for BaMgSiO₄, BaZnSiO₄ and BaCoSiO₄ respectively (cf. Tables 3.4, 3.5 and 3.9), indicating an increasing degree of tetrahedral tilting. The same effect is also apparent from a comparison of the T-O(4)-Si bond angles which are equal to 157.9(13), 156.1(16) and 148.6(5) for T = Mg, Zn and Co respectively. Interestingly, these Δz values and bond angles correlate very well with the trend observed for the c-parameters of the hexagonal unit-cells (cf. Table 3.3) showing that the shorter c-axis of the BaCoSiO₄ structure results from a more pronounced collapse of its tetrahedral framework, the origin of which probably resides in the slightly larger size of the CoO₄ tetrahedron.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				BaZnSiO 4	5		BaMgSiO	4		BaCoSiO	жж 4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	h	k	1	d _{cal} (Å)	d _{obs} (Å)	I/I _o	d _{cal} (Å)	d _{obs} (Å)	I/I _o	d _{cal} (Å)	d _{obs} (Å)	I/I _o
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	0	4.5478	4.5440	28	4.5613	4.5632	40	4.5616	4.5663	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	2	4.3626	4.3567	5	4.3748	4.3753	5	4.3404	4.3392	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	4.0328	4.0316	17	4.0447	4.0483	8	4.0381	4.0415	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	2	3.1482	3.1498	100	3.1573	3.1592	100	3.1446	3.1473	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	0	2.6257	2.6246	70	2.6335	2.6363	44	2.6336	2.6344	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	1	2.5143	2.5143	6	2.5217	2.5225	4	2.5202	2.5201	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	2#	2.4591	2.4571	3	2.4663	2.4671	_*	2.4603	2.4595	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	3	2.4502	2.4486	9	2.4572	2.4559	_*	2.4436	2.4429	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	0	2.2739	2.2740	8	2.2806	2.2820	10	2.2808	2.2815	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	2	2.2496	2.2499	16	2.2562	2.2565	28	2.2516	2.2515	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	1	2.2004	2.1999	7	2.2069	2.2070	_*	2.2059	2.2051	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	4	2.1813	2.1812	14	2.1874	2.1879	11	2.1704	2.1709	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	1#	2.1193	2.1212	_*						-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -	Ō	4#	2.1022	2.1023	_*	2,1081	2.1103	_*	2.0929	2.0928	_*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	2	2.0164	2.0161	38	2.0223	2.0233	28	2.0191	2.0196	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	4	1.9668	1.9667	19	1.9723	1.9725	15	1.9599	1.9601	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Ō	3	1.9546	1.9555	_*						÷
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	3	1.7914	1.7912	6	1.7966	1.7969	_*	1.7913	1.7919	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	4#	1.7596	1.7604	_*	100000			1000 10		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	0	1.7189	1.7187	7	1.7240	1.7244	8	1.7241	1.7238	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	1	1.6865	1.6867	4	1.6911	1.6898	_*			•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	4	1.6778	1.6776	22	1.6827	1.6830	13	1.6749	1.6743	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	5	1.6292	1.6289	9	1.6228	1.6225	2			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	2	1.5992	1.5988	40	1.6040	1.6042	29	1.6023	1.6025	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	4	1.5741	1.5741	10	1.5787	1.5787	8	1.5723	1.5716	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	4	1.5481	1.5474	_*	1.5421	1.5417	2			·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	0	1.5159	1.5156	22	1.5204	1.5204	14	1.5205	1.5204	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	3	1.4798	1.4801	7	1.4841	1.4844	1	1.4812	1.4816	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	6	1.4542	1.4543	2	1.4583)	1.4580	1			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	5		111010	-	1.4575	111000	•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	2	1.4319	1.4324	_*	1.4362	1.4361	2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	_ 4#	1.3916	1.3914	_*	111002	111201	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	6	1.3851)	1.3849	10	1.3890)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	5	1.3844		10	1.3883	1.3884	5	1.3816)	1 3808	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	6	1100117			1.0000,	1.5001	0	1.3792	1.5000	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	4	1.3501	1.3503	12	1.3540	1.3536	10	1.3500	1 3503	_*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0	0	1.3128	1.3127	9	1.3167	1.3161	5	1.3168	1 3167	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	6#	1.3067)	1.3069	2	1 3104)	1.0101	5	1 3022	1.5107	
6 0 1 1 3019 1 3015 1	<u>-</u> 4	0	5	1.3061	1.5007	2	1 3008	1 3006	_*	1.5022		
	6	ñ	1	1.50017			1.50/0/	1.5070		1 3010	1 3015	1

X-RAY POWDER DIFFRACTION PATTERNS FOR $BaTSiO_4$ (T = Zn, Mg, Co)

5	1	3	1.2722)			1.2760					
3	0	6	1.2721	1.2721	12	أ1.2757	1.2755	8	1.2682	1.2682	4
5	2	0	1.2613	1.2614	3	1.2651	1.2649	3			
6	0	2	1.2571	1.2571	3	1.2609	1.2600	3	1.2601	1.2602	2
3	2	5				را1.2589					
3	3	4	1.2448	1.2448	_*	1.2485	1.2486	9			
2	2	6	1.2251	1.2251	8	1.2286)					
4	1	5	1.2246			1.2281	1.2277	6			
5	2	2	1.2117	1.2116	20	1.2153	1.2147	15	1.2146	1.2143	9
5	2	3	1.1572	1.1575	3						
5	3	0	1.1253								
6	0	4	1.1248	1.1249	6	1.1281	1.1280	5	1.1258	1.1261	2
6	1	3				1.1135)					
4	1	6	1.1102	1.1105	21	1.1134	1.1133	5			
4	4	2							1.1030	1.1029	_*

* The positions of these very weak lines could only be measured by eye.

** Fewer lines could be measured because of the higher background resulting from cobalt fluorescence with Cu K α_1 radiation.

Superstructure reflections of the type { hkl, h-k \neq 3n } requiring a $\sqrt{3} \times A$ axis.

h	k	1	d _{cal} (Å)	d _{obs} (Å)	I/I _o
1	1	0	4.5537	4.5505	26
Ō	Ō	2	4.3667	4.3624	$\frac{1}{25}$
1	1	1	4.0378	4.0355	10
1	1	2	3.1518	3.1517	100
3	Ō	Õ	2.6291	2.6288	58
3	Ŏ	1	2.5175	2.5172	6
1	1	3	2.4528	2.4524	4
2	2	Ō	2.2768	2.2767	12
3	0	2	2.2523	2.2525	24
2	2	1	2.2032	2.2032	4
0	0	4	2.1834	2.1832	12
2	2	2	2.0189	2.0190	38
1	1	4	1.9688	1.9687	20
2	2	3	1.7935	1.7935	3
4	1	0	1.7211	1.7212	10
3	0	4	1.6797	1.6797	20
1	1	5	1.6308	1.6309	6
4	1	2	1.6012	1.6013	43
2	2	4	1.5759	1.5760	12
3	3	0	1.5179	1.5180	23
4	1	3	1.4816	1.4819	4
0	0	6	1.4556	1.4558	3
3	0	5	1.4549)		
5	0	3#	1.3869		
1	1	6	1.3865	1.3864	9
4	1	4	1.3517	1.3518	16
6	0	0	1.3145	1.3146	8
2	1	6#	1.3080լ	1.3078	3
4	0	5#	1.3075		
5	1	3#	1.2738լ		
3	0	6	1.2734	1.2734	12
5	2	0	1.2630	1.2628	3
6	0	2	1.2587	1.2587	3
2	2	6	1.2264	1.2262	9
4	1	5	1.2260/		
5	2	2	1.2132	1.2133	23
2	3	0#	1.1267		
6	0	4	1.1262	1.1264	6
6	1	3#	1.1116)	1.1116	9
4	1	6	1.1114		

X-RAY POWDER DIFFRACTION PATTERN FOR $BaMg_{0.5}Zn_{0.5}SiO_4$

Superstructure reflections of the type { hkl, h-k \neq 3n } requiring a $\sqrt{3} \times A$ axis.

UNIT-CELL PARAMETERS (Å) AND VOLUMES (Å³) FOR THE BaTSiO₄ (T=Co,Mg,Zn) AND BaMg_{0.5}Zn_{0.5}SiO₄ COMPOUNDS REFINED FROM POWDER X-RAY DIFFRACTION DATA

	a	c	V
BaCoSiO₄	9.1231(6)	8.6818(10)	625.79(9)
BaZnSiO ₄	9.0955(5)	8.7251(9)	625.11(7)
$BaMg_{0.5}Zn_{0.5}SiO_4$	9.1073(3)	8.7335(6)	627.34(5)
BaMgSiO ₄	9.1226(7)	8.7496(15)	630.6(1)

			0 0			
Atom	Site	x	у	Z	B(Å ²)*	
Ba(1)	2a	0	0	1/4#	0.91(8)	
Ba(2)	2b	0.333	0.667	0.236(3)	0.91(8)	
Ba(3)	2b	0.667	0.333	0.231(3)	0.91(8)	
Si	6c	0.653(2)	-0.017(2)	0.435(3)	0.50(7)	
Mg	6c	0.674(1)	0.668(2)	0.539(3)	0.50(7)	
O(1)	6c	0.762(1)	0.903(1)	0.516(3)	1.17(6)	
O(2)	6с	0.468(1)	0.898(1)	0.498(3)	1.17(6)	
O(3)	6c	0.767(1)	0.192(1)	0.456(3)	1.17(6)	
O(4)	6с	0.7090(9)	0.658(1)	0.751(3)	2.2(2)	
Weighte	d profile in	dex:	$R_{wn} = 4.2$	3%		
Nuclear	index:		$R_n = 2.61\%$			
Expected	d index:		$R_{e} = 2.57\%$			
Goodnes	ss-of-fit:		2.71			
Number	of data poi	nts:	785			
Number	of reflectio	ns:	133			

THE FINAL ATOMIC POSITIONS AND ISOTROPIC TEMPERATURE FACTORS
FOR THE NEUTRON POWDER REFINEMENT OF BaMgSiO ₄ . The estimated
standard deviations on the last digits are given in brackets.

* The temperature factors of the Ba atoms, tetrahedral atoms and O(1-3) atoms were constrained to be equal during the refinement. # Used to fix the origin in the P6₃ space group.

39

Number of variables:

TABLE	3.5
	5.5

Atom	Site	x	У	Z	B(Å ²)*	
Ba(1)	2a	0	0	0.250*	1.1(1)	
Ba(2)	2b	0.333	0.6667	0.232(4)	1.1(1)	
Ba(3)	2b	0.667	0.333	0.233(3)	1.1(1)	
Si	6c	0.649(2)	-0.021(2)	0.434(4)	0.31(8)	
Zn	6с	0.670(2)	0.664(2)	0.538(3)	0.31(8)	
O(1)	6c	0.762(2)	0.902(2)	0.519(4)	1.32(8)	
O(2)	6c	0.468(2)	0.897(2)	0.499(4)	1.32(8)	
O(3)	6c	0.764(2)	0.193(2)	0.455(3)	1.32(8)	
O(4)	6с	0.710(2)	0.660(2)	0.751(4)	4.1(3)	
Weighte	d profile ind	lex:	$R_{wp} = 5.3$	5%		
Nuclear	index:		$R_n = 4.61$			
Expected	d index:		$R_{e} = 2.67$			
Goodnes	ss-of-fit:		4.01			
Number	of data point	nts:	795			
Number	of reflectio	ns:	135			
Number	of variables	S:	39			

THE FINAL ATOMIC POSITIONS AND ISOTROPIC TEMPERATURE FACTORS
FOR THE NEUTRON POWDER REFINEMENT OF BaZnSiO ₄ . The estimated
standard deviations on the last digits are given in brackets.

* The temperature factors of the Ba atoms, tetrahedral atoms and O(1-3) atoms were constrained to be equal during the refinement. # Used to fix the origin in the P6₃ space group.

TABLE 3.6[#]

	Ũ	•		
		1	S	
$Ba(1)-O(1) \times 3$		2.78(2)	0.262(×3)	
$Ba(1)-O(1)\times 3$		2.99(2)	$0.175(\times 3)$	
$Ba(1)-O(4) \times 3$		2.91(1)	$0.185(\times 3)$	
	mean	2.89	Σ 1.87	
Ba(2)-O(2)×3		2.93(2)	0.175(×3)	
$Ba(2)-O(3) \times 3$		3.11(2)	0.108(×3)	
$Ba(2)-O(4)\times 3$		2.789(9)	0.256(×3)	
	mean	2.94	Σ 1.62	
$Ba(3)-O(2)\times 3$		2.74(2)	0.292(×3)	
$Ba(3)-O(3)\times 3$		2.74(2)	$0.292(\times 3)$	
$\{Ba(3)-O(4)\times 3$		3.47(1)		
	mean	2.74	Σ 1.75	
Si-O(1)		1.62(2)	1.011	
Si-O(2)		1.60(2)	1.067	
Si-O(3)		1.66(1)	0.907	
Si-O(4)		1.64(1)	0.958	
	mean	1.63	Σ 3.94	
O-Si-O	1	05.4 ~ 113.5°		
Mg-O(1)		1.88(2)	0.603	
Mg-O(2)		1.96(1)	0.486	
Mg-O(3)		1.95(1)	0.499	
Mg-O(4)		1.87(1)	0.620	
	mean	1.92	Σ 2.21	
O-Mg-O	1	00.0 ~ 117.2°		

SELECTED BOND LENGTHS (Å), BOND VALENCES (s) AND BOND ANGLES (°) IN THE BaMgSiO₄ STRUCTURE. The estimated standard deviations on the last digits are given in brackets.

* The mean bond lengths and bond valence sums of Ba(3) were calculated by excluding the long bonds.

The bond lengths/angles were calculated based on the cell parameters (a = 9.1118(6), c = 8.7371(8) Å) obtained from powder neutron data.

TABLE 3.7[#]

	1	S
Ba(1)-O(1)×3	2.98(3)	0.175×3
$Ba(1)-O(1)\times 3$	2.78(3)	0.262×3
$Ba(1) - O(4) \times 3$	2.88(2)	0.290×3
	mean 2.88	Σ 1.91
a(2)-O(2)×3	2.96(4)	0.161×3
$a(2)-O(3)\times 3$	3.06(4)	0.123×3
$a(2)-O(4) \times 3$	2.79(1)	0.255×3
	mean 2.94	Σ 1.62
a(3)-O(2)×3	2.73(3)	0.300×3
$a(3)-O(3)\times 3$	2.71(3)	0.317×3
$Ba(3)-O(4)\times 3$	3.46(3)}*	
	mean 2.72	Σ 1.85
-O(1)	1.67(2)	0.883
i-O(2)	1.53(2)	1.289
i-O(3)	1.70(2)	0.814
-O(4)	1.63(2)	0.984
	mean 1.63	Σ 3.97
-Si-O	103.9 ~ 114.8°	
Ľn-O(1)	1.90(2)	0.589
(n-O(2)	1.93(2)	0.543
n-O(3)	1.95(1)	0.514
n-O(4)	1.89(2)	0.605
	mean 1.92	Σ 2.25
-Zn-O	98.2 ~ 116.2°	

SELECTED BOND LENGTHS (Å), BOND VALENCES (s) AND BOND ANGLES (°) IN THE BaZnSiO₄ STRUCTURE. The estimated standard deviations on the last digits are given in brackets.

* The mean bond lengths and bond valence sums of Ba(3) were calculated by excluding the long bonds.

The bond lengths/angles were calculated based on the cell parameters (a = 9.0850(9), c = 8.7147(11) Å) obtained from powder neutron data.

SUMMARY OF SINGLE CRYSTAL DATA, INTENSITY MEASUREMENTS AND STRUCTURE REFINEMENT PARAMETERS FOR $BaCoSiO_4$

Crystal Data

Crystal system Space group Unit cell Dimensions Volume Z Crystal size Formula weight Density(calc.) Absorption coefficient F(000) Hexagonal P6₃ a = 9.126(2), c = 8.683(4) Å $626.3(5) Å^3$ 6 $0.30 \times 0.08 \times 0.10 mm^3$ 288.4 $4.587 Mg/m^3$ $13.508 mm^{-1}$ 774

Data collection

Diffractometer Radiation Temperature (K) Monochromator 2θ range Scan type Scan type Scan speed Scan range (ω) Standard reflections

Index range Reflections collected Independent reflections Observed reflections Absorption correction Min./Max. Transmission

Siemens R3m/V AgK α ($\lambda = 0.56086$ Å) 300 Highly oriented graphite crystal 5.0 to 65.0° $2\theta - \theta$ Variable; 1.50 to 14.65°/min. in ω 1.20° plus K α -separation 2 2 2, 2 2 -2, -3 6 0, measured every 100 reflections $-17 \le h \le 15, 0 \le k \le 17, 0 \le l \le 16$ 5080 $1631 (R_{int} = 4.75\%)$ $1062 (F > 6.0\sigma(F))$ Semi-empirical 0.2777 / 0.5233

Solution and Refinement

System	Siemens SHELXTL PLUS (VMS)
Solution	Direct Methods and Fourier Difference
Refinement method	Full-Matrix Least-Squares
Quantity minimized	$\Sigma w (F_o - F_c)^2$

Absolute Structure	N/A
Extinction correction	$\chi = 0.00074(8)$, where
	$F^* = F [1 + 0.002\chi F^2/\sin(2\theta)]^{-1/4}$
Weighting scheme	$w^{-1} = \sigma^2(F) + 0.0008F^2$
Number of parameters refined	64
Final R indices (obs. data)	R = 3.48%, wR = 4.15%
R indices (all data)	R = 6.05%, wR = 5.83%
Goodness-of-fit	0.93
Largest and mean Δ/σ	0.012, 0.004
Data-to-parameter ratio	16.6:1
Largest difference peak	2.89 eÅ ⁻³
Largest difference hole	-4.04 eÅ ⁻³

ATOMIC COORDINATES ($\times 10^4$) AND EQUIVALENT ISOTROPIC DISPLACEMENT COEFFICIENTS ($\dot{A}^2 \times 10^3$) FOR THE SINGLE CRYSTAL X-RAY REFINEMENT OF $BaCoSiO_4$. The estimated standard deviations on the last digits are given in brackets.

Atom	Site	x	у	Z	U _{eq} *
Ba(1)	2a	0	0	2500*	12(1)
Ba(2)	2b	3333	6667	2197(1)	14(1)
Ba(3)	2b	6667	3333	2185(1)	16(1)
Si	6c	6588(2)	-118(2)	4303(3)	10(1)
Со	6c	6823(1)	6711(1)	5322(2)	12(1)
O(1)	6c	7635(6)	-861(6)	5211(9)	21(2)
O(2)	6c	4645(7)	-950(8)	4889(8)	21(2)
O(3)	6c	7612(6)	1950(6)	4459(3)	17(2)
O(4)	6c	7223(8)	6534(9)	7527(8)	30(2)

* $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$ # Used to fix the origin in the P6₃ space group.

	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
 Ba(1)	14(1)	14(1)	9(1)	7(1)	0	0
Ba(2)	15(1)	15(1)	12(1)	7(1)	0	0
Ba(3)	20(1)	20(1)	8(1)	10(1)	0	0
Si	10(1)	10(1)	9(1)	4(10)	2(1)	3(1)
Со	13(1)	12(1)	11(1)	7(1)	-1(1)	-2(1)
O(1)	20(2)	14(2)	31(2)	0(2)	-14(3)	0(3)
O(2)	15(2)	18(2)	31(4)	9(2)	13(2)	9(2)
0(3)	13(2)	14(2)	24(3)	5(2)	-7(2)	-1(2)
O(4)	37(3)	36(3)	10(2)	11(3)	3(2)	-5(2)

ANISOTROPIC THERMAL PARAMETERS* (Å²×10³) OF BaCoSiO₄

* The anisotropic displacement factor exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12})$

TABLE 3.11[#]

		1		S	
$Ba(1)-O(1)\times 3$		2.744(7)		0.289(×3)	
$Ba(1)-O(1)\times 3$		3.020(8)		0.137(×3)	
$Ba(1)-O(4) \times 3$		2.900(9)		0.190(×3)	
	mean	2.888	Σ	1.85	
$Ba(2)-O(2)\times 3$		3.004(6)		0.143(×3)	
$Ba(2)-O(3)\times 3$		3.013(7)		0.140(×3)	
$Ba(2)-O(4)\times 3$		2.718(9)		0.310(×3)	
	mean	2.912	Σ	1.78	
$Ba(3)-O(2)\times 3$		2.745(5)		0.288(×3)	
$Ba(3)-O(3) \times 3$		2.706(6)		$0.321(\times 3)$	
$\{Ba(3)-O(4)\times 3$		3.629(9)}*			
	mean	2.726	Σ	1.83	
Si-O(1)		1.626(8)		0.995	
Si-O(2)		1.623(6)		1.003	
Si-O(3)		1.639(5)		0.960	
Si-O(4)		1.620(7)		1.011	
	mean	1.627	Σ	3.97	
O-Si-O	1	04.9 ~ 112.6			
Co-O(1)		1.956(5)		0.490	
Co-O(2)		1.952(6)		0.495	
Co-O(3)		1.951(7)		0.497	
Co-O(4)		1.971(7)		0.470	
	mean	1.957	Σ	1.95	
О-Со-О		99.1 ~ 123.5			

SELECTED BOND LENGTHS (Å), BOND VALENCES (s) AND BOND ANGLES (°) IN THE BaCoSiO₄ STRUCTURE. The estimated standard deviations on the last digits are given in brackets

* The mean bond lengths and bond valence sums of Ba(3) were calculated by excluding the long bonds.

The bond lengths/angles were calculated based on the cell parameters obtained from single X-ray data.

CHAPTER 4

THE Na_{0.5}K_{0.5}GaSiO₄ COMPOUND

The compound $Na_{0.5}K_{0.5}GaSiO_4$ was found to crystallize with a ($\sqrt{3} \times A$, C) hexagonal unit-cell during the study of the (Na, K)GaSiO_4 system [Weber & Barbier, 1990] and it was then suggested that its structure could be a superstructure of kalsilite (KA1SiO_4). In this chapter, the compound $Na_{0.5}K_{0.5}GaSiO_4$ was re-investigated by powder X-ray diffraction and electron diffraction. Its crystal structure was refined by the Rietveld method using powder X-ray diffractometer data.

4.1 Powder X-ray and Electron Diffraction

The nature of the compound Na_{0.5}K_{0.5}GaSiO₄ was first characterized by powder X-ray diffraction using a Guinier-Hägg camera (CuK_{$\alpha 1$} radiation, $\lambda = 1.540598$ Å). Its diffraction pattern was indexed on an hexagonal unit cell with a = 8.8894(6) and c = 8.4894(11) Å by means of the computer program LSUDF. The cell is a ($\sqrt{3} \times A$, C) superstructure of the basic (A, C) kalsilite cell, which is required by the presence of a few reflections of the type {hkl, h-k \neq 3n}. It should be noted that the superstructure reflections are much stronger than those of the BaTSiO₄ (T = Co, Mg, Zn) compounds (cf. Tables 4.1 and 3.1)

The compound was also examined by electron diffraction using a Philips CM-12

transmission electron microscope operating at 120 kV and equipped with a double-tilt goniometer stage. The electron diffraction patterns confirmed the presence of a $\sqrt{3} \times A$ superstructure along the a-axis of the hexagonal cell and also showed the absence of a superstructure along the c axis (Fig. 4.1).

The results confirmed the previous work of Weber and Barbier [1990] and indicated that the compound $Na_{0.5}K_{0.5}GaSiO_4$ crystallized with the same kind of kalsilite superstructure as the compounds $BaTSiO_4$ (T = Co, Mg Zn) (cf. Chapter 3).

4.2 Structure Refinement

In order to refine the crystal structure of Na_{0.5}K_{0.5}GaSiO₄, powder X-ray data were collected on a Nicolet I2 automated diffractometer (Cu K_{$\alpha 1$} = 1.5406 Å and Cu K_{$\alpha 2$} = 1.5448 Å). The data were recorded at room temperature over the angular range 10° < 2 θ < 85°. The profile refinement was carried out by means of a modified Rietveld program [Young & Wiles, 1982; Howard & Hill, 1985].

The refinement was started with the cell parameters determined from the Guinier-Hägg camera data (cf. Table 4.1) and the atomic positions determined in the P6₃ space group for the isostructural BaCoSiO₄ compound (cf. Chapter 3). The stuffed Na and K atoms were positioned on the 2a and 2b sites, and the Ga, Si, O atoms occupied three sets of general 6c sites. During the refinement, the structural parameters (unit-cell parameters, atom positions, temperature factors), scale factor and profile parameters were varied in a least-squares procedure until the calculated powder pattern, based on the structure model, best matched the observed pattern. The refinement was carried out by varying, in order, the scale factor, the background coefficients, the cell parameters, the

Fig. 4.1 Electron diffraction pattern of $Na_{0.5}K_{0.5}GaSiO_4$ along the [010] zone axis. Note the $\sqrt{3} \times A$ superstructure along the a-axis and the absence of superstructure along the c axis. The {00*l*, l = 2n+1} reflections (forbidden in the P6₃ space group) appear by double diffraction.

atom positions, profile parameters and, at last, the temperature factors. The oxygen temperature factors were constrained to be equal except for that of O(4).

For the tetrahedral Ga and Si atoms, a complete ordering was assumed initially with Ga and Si occupying the Co and Si sites of the BaCoSiO₄ structure respectively (cf. Chapter 3). In the refinement, however, this model yielded a high temperature factor for the Ga site, suggesting that there might be a small amount of disorder between the Ga and Si atoms. By adjusting the occupancies of the two sites and refining the temperature factors, a result of 7.5 at% disordering (with a probable error of a few at%) was obtained.

For the stuffed Na and K atoms, refinements were tried for the following three models: (1) a totally disordered distribution with each site occupied by 50% Na and 50% K atoms; (2) an ordered distribution with K atoms in site 1, Na atoms in site 2 and an equal number of Na and K atoms in site 3; (3) a reversed distribution on site 2 and 3 as compared to model (2). Model(1) yielded a negative temperature factor for site 1, indicating that this site should be K-rich; model (3) yielded a negative temperature factor for site 3 and a very high temperature factor for site 2, showing that site 3 must be richer in K than site 2. Model(2) yielded the best results with reasonable temperature factors for the three sites and after adjusting the occupancies of the three (K, Na) sites and refining the temperature factors, an ordered distribution with 90% K and 10% Na in site 1, 100% Na in site 2 and 60% K plus 40% Na in site 3 was obtained (cf. Table 4.2).

The refinement converged smoothly to the following agreement indices: profile R = 8.47, weighted profile $R_{wp} = 10.97$, Bragg R-factor $R_B = 3.73$ and expected $R_c = 2.75$. The quality of the refinement is good in terms of these R factors for a powder X-ray profile refinement. The final atomic positions, isotropic temperature factors and
occupancy factors are listed in Table 4.3 and the calculated, observed and difference profiles are shown in Fig. 4.2. Selected bond lengths, angles and valences are listed in Table 4.4.

Powder neutron diffraction data for Na_{0.5}K_{0.5}GaSiO₄ were also collected and refined by a local version of the Rietveld program. The structure obtained was very similar to the one obtained from powder X-ray diffraction data but it was impossible to determine the ordering of Na and K atoms because of their similar nuclear scattering lengths (0.367 and 0.363 × 10⁻¹² cm respectively [Sears, 1984]). The calculated, observed and difference profiles are shown in Fig. 4.3. The superstructure reflections are also stronger compared to the neutron diffraction patterns of BaTSiO₄ (T = Mg, Zn).

4.3 Description of the Na_{0.5}K_{0.5}GaSiO₄ Structure

The structure of $Na_{0.5}K_{0.5}GaSiO_4$ projected along the c axis of the hexagonal cell is shown in Fig 4.4. Similar to the BaTSiO₄ (T = Co, Mg, Zn) structures, the tetrahedral framework of the $Na_{0.5}K_{0.5}GaSiO_4$ structure is constructed of six-membered rings of corner-shared tetrahedra which are pointing alternately up and down. All rings are identical with a ditrigonal shape when viewed along the c axis. The successive tetrahedral layers are stacked in a "staggered" way by sharing the O(4) oxygen atoms to form a three-dimensional framework. The interstices which are enclosed within the framework are "stuffed" by the Na and K atoms.

From the structural refinement results and bond lengths (cf. Table 4.3), it can be seen that the larger tetrahedra (T_1 , pointing up) are mainly occupied by Ga atoms (92.5% Ga and 7.5% Si), while the smaller tetrahedra (T_2 , pointing down) are mainly occupied

Fig. 4.2 Observed, calculated and difference (bottom) powder X-ray diffraction profiles for $Na_{0.5}K_{0.5}GaSiO_4$. The (\downarrow) signs indicate the ($\sqrt{3} \times A$) superstructure reflections.

Fig. 4.3 Observed, calculated and difference (bottom) powder neutron diffraction profiles for $Na_{0.5}K_{0.5}GaSiO_4$. The (\downarrow) signs indicate the ($\sqrt{3} \times A$) superstructure reflections. The lower resolution of the neutron diffractometer leads to a larger amount of perk overlap than in the X-ray pattern.

by Si atoms (92.5% Si and 7.5% Ga). The mean T_1 -O (= 1.81 Å) and T_2 -O (= 1.64 Å) bond lengths are consistent with the atomic distribution: the mean T_1 -O bond is a little shorter than the expected Ga-O bond (= 1.85 Å) whereas the mean T_2 -O bond is a little longer than the expected Si-O bond (= 1.62 Å).

The structural refinement also reveals a strong K/Na ordering on the three cavity sites, with M(1) mainly occupied by K atoms (90% K and 10% Na), M(2) filled by smaller Na atoms and M(3) occupied by a mixture of 60% K and 40% Na atoms. These three sites in the $Na_{0.5}K_{0.5}GaSiO_4$ structure are located on the three-fold axes of the framework with different coordinations: M(1) is surrounded by three O(1)s and three O(4)s at an average distance of 2.91 Å, M(2) is bounded to three O(2)s and three O(4)s at an average distance of 2.50 Å and M(3) is bounded to three O(2)s plus three O(3)s at an average distance of 2.73 Å (cf. Table 4.3). The coordinations of the cavity atoms are therefore somewhat different from those in the $BaTSiO_4$ structures where only Ba(3) is six-coordinated (cf. Chapter 3). From Fig. 4.4, it can be seen that the six-fold coordinations of the M(2) and M(3) sites in the $Na_{0.5}K_{0.5}GaSiO_4$ structure result from the tilting of the tetrahedra and the displacement of the M(2) (= 100% Na) atoms along the c-axis. The O(4) atoms are displaced towards the M(2) sites and away from the M(3) sites (M(3)-O(4) = 3.86 Å) while the small Na atoms in the M(2) sites move towards the O(2) atoms and away from the O(3) atoms (M(2)-O(3) = 3.73 Å). The mean bond lengths of the three sites (M(1)-O = 2.91 Å; M(3)-O = 2.73 Å; M(2)-O = 2.50 Å) are consistent with the proposed ordering (10% Na in site 1, 40% Na in site 3 and 100% Na in site 2) and the bond valence sums around M(2) and M(3) (0.99 and 0.96) are very close to the expected values. The slightly high bond valence sum around M(1) (1.27) is mainly due to the rather short M(1)-O(1) bonds (2.59 Å, cf. Table 4.4).

Fig. 4.4 The structure of $Na_{0.5}K_{0.5}GaSiO_4$ viewed along the c-axis. The larger TO_4 tetrahedra (pointing up) are mainly occupied by Ga atoms and the small TO_4 tetrahedra (pointing down) are mainly occupied by Si atoms. The distribution of Na and K atoms is in a strong ordering patten with 10% Na in M(1), 100% Na in M(2) and 40% Na in M(3). Atom heights are given in units of c/100.

The displacement of the O(4) atoms corresponds to the collapse of the tetrahedral framework, involving the tilting of the T_1 and T_2 tetrahedra around horizontal axes approximately parallel to the [110] direction (cf. Fig. 4.4). Like in the BaTSiO₄ structures, the degree of framework collapse can be qualitatively estimated from the difference (Δz) between $z_{O(1)}$ and $z_{O(2)}$ and the T_1 -O(4)- T_2 angle: in the Na_{0.5}K_{0.5}GaSiO₄ structure, Δz is equal to 0.103 and the T_1 -O(4)- T_2 angle is equal to 141.0(17), both indicating a greater collapse than in the BaCOSiO₄ structure.

As mentioned in Chapter 2, the lowest possible synthesis temperature was 925°C for the Na_{0.5}K_{0.5}GaSiO₄ compound which decomposed at about 875°C. The previous study of this compound [Barbier & Weber, 1990] showed that it crystallized with an hexagonal ($\sqrt{3} \times A$, C) cell even when recrystallized from a melt at 1100°C. These observations indicate that the kalsilite-like Na_{0.5}K_{0.5}GaSiO₄ structure is stable at high temperature only, probably up to the melting point. On the other hand, the synthesis temperature was high enough to cause a small degree of disordering of the tetrahedral Ga and Si atoms. A similar situation has been found in kalsilite (KAlSiO₄) for which the Al and Si tetrahedral atoms are perfectly ordered in the low temperature form with the space group P6₃ [Perrotta, 1965], but totally disordered in the high-temperature form at 925°C with the space group P6₃/m [Kawahara, 1987].

h	k	1	d _{cal} (Å)	d _{obs} (Å)	I/I _o
1	1	0	4.4447	4.4373	25
0	0	2	4.2447	4.2394	18
1	1	1	3.9377	3.9333	77
1	1	2	3.0697	3.0688	100
2	1	0#	2.9097	2.9089	20
3	0	0	2.5662	2.5660	84
3	0	1	2.4564	2.4564	17
1	1	3	2.3871	2.3873	49
3	0	2	2.1960	2.1969	12
2	2	1	2.1499	2.1503	18
3	1	0#	2.1352	2.1357	8
0	0	4	2.1223	2.1233	13
2	2	2	1.9688	1.9691	17
2	2	3	1.7478	1.7480	25
4	1	1	1.6480	1.6483	20
3	2	2#	1.6306	1.6324	15
1	1	5	1.5861	1.5862	40
4	1	2	1.5621	1.5621	32
3	3	0	1.4816	1.4815	31
4	1	3	1.4446	1.4444	43
3	3	2	1.3988	1.3990	13
2	2	5	1.3492)	1.3488	17
1	1	6	1.3482		
6	0	0	1.2831	1.2832	7
3	0	6	1.2390	1.2388	10
3	2	5#	1.2240	1.2242	9
4	1	5	1.1942)		
2	2	6	1.1935	1.1938	21
5	2	2	1.1838	1.1836	17
5	2	3	1.1302	1.1301	13

X-RAY POWDER DIFFRACTION PATTERN (GUINIER CAMERA) FOR $Na_{0.5}K_{0.5}GaSiO_4$ INDEXED ON A HEXAGONAL CELL WITH a = 8.8894(6) c = 8.4894(11) Å

Strong superstructure reflections of the type {hkl, $h-k \neq 3n$ } requiring a $\sqrt{3} \times A$ a-axis.

COMPARISON OF THE DISTRIBUTIONS AND TEMPERATURE FACTORS OF THE (Na, K) SITES IN Na_{0.5}K_{0.5}GaSiO₄ FOR DIFFERENT ORDERING SCHEMES

	Model(2)	Model(3)
N(%) B(Å ²)	N(%) B(Å ²)	N(%) B(Å ²)
50 -0.6(4)	90 1.1(5)	100 1.3(4)
50 -0.6(4)	10 1.1(5)	0 -
50 5.5(7)	100 2.2(6)	50 6.1(7)
50 5.5(7)	0 -	50 6.1(7)
50 0.4(3)	60 1.0(3)	0 -
50 0.4(3)	40 1.0(3)	100 -2.2(3)
	N(%) B(Å ²) 50 -0.6(4) 50 5.5(7) 50 5.5(7) 50 0.4(3) 50 0.4(3)	N(%)B(Å2)N(%)B(Å2)50 $-0.6(4)$ 90 $1.1(5)$ 50 $-0.6(4)$ 10 $1.1(5)$ 50 $5.5(7)$ 100 $2.2(6)$ 50 $5.5(7)$ 0-50 $0.4(3)$ 60 $1.0(3)$ 50 $0.4(3)$ 40 $1.0(3)$

THE FINAL ATOMIC POSITIONS, ISOTROPIC TEMPERATURE FACTORS AND OCCUPANCIES FOR THE X-RAY POWDER REFINEMENT OF $Na_{0.5}K_{0.5}GaSiO_4$. The estimated standard deviations on the last digits are given in brackets.

Atom	x	у	Z	B(Å ²)	Occupancy
M (1)	0.0000	0.0000	0.250#	1.1(5)	10%Na+90%K
M(2)	0.3333	0.6667	0.306(2)	2.2(8)	100%Na
M(3)	0.6667	0.3333	0.247(2)	1.0(3)	40%Na+60%K
T(1)	0.6771(8)	0.6528(7)	0.556(2)	0.8(1)	92.5%Ga+7.5%Si
T(2)	0.660(2)	-0.032(2)	0.436(2)	1.0(2)	7.5%Ga+92.5%Si
O(1)	0.755(2)	0.890(2)	0.5413(8)	0.9(2)	
O(2)	0.4685(7)	0.926(2)	0.507(2)	0.9(2)	
O(3)	0.788(2)	0.190(2)	0.438(2)	0.9(2)	
O(4)	0.721(2)	0.619(2)	0.761(4)	1.5(5)	
Cell Para	ameters:		a = 8.8	846(8) Å	
			c = 8.4	900(5) Å	
Profile R	-factor:		8.43%		
Weighted	l profile R-facto	or:	10.96%		
Bragg R-	factor:		3.66%		
Expected			2.75%		
Goodness	s-of-fit:		15.84		
Number	of data points (I	N):	2502		
Number	of parameters re	efined (P):	35		

Used to fix the origin in the $P6_3$ space group.

		1		s(K)	s(Na)
M(1)-O(1)×3		3.11(2)		0.07×3	0.03×3
M(1)-O(1)×3		2.59(1)		0.29×3	0.12×3
M(1)-O(4)×3		3.04(2)		0.09×3	0.04×3
	mean	2.82	Σs	$1.35 \times 0.9 +$	$0.55 \times 0.1 = 1.27$
{M(2)-O(3)×3		3.73(2)}*			
M(2)-O(2)×3		2.63(2)			0.11×3
$M(2)-O(4) \times 3$		2.36(1)			0.22×3
	mean	2.50		Σs	0.99
{M(3)-O(4)×3		3.68(2)}*			
M(3)-O(2)×3		2.86(2)		0.14×3	0.059×3
M(3)-O(3)×3		2.60(2)		0.28×3	0.116×3
	mean	2.73	Σs	$1.26 \times 0.6 +$	$0.52 \times 0.4 = 0.96$
				s(Ga)	s(Si)
T1-O(1)		1.87(2)		0.69	0.52
T1-O(2)		1.74(2)		0.97	0.73
T1-O(3)		1.79(2)		0.85	0.64
T1-O(4)		1.84(3)		0.74	0.56
	mean	1.81	Σs	3.25×0.925 +	$+2.44 \times 0.075 = 3.19$
O-T1-O	10	05.1(7) ~ 112.7((7)		
T2-O(1)		1.60(2)		1.41	1.06
T2-O(2)		1.66(2)		1.22	0.91
T2-O(3)		1.71(2)		1.05	0.79
T2-O(4)		1.59(3)		1.46	1.10
	mean	1.64	Σs	5.14×0.075 -	$+3.86 \times 0.925 = 3.96$
О-Т2-О	1	04.1(11) - 114.0(8)		
T ₁ -O(4)-T ₂	1	41.0(17)			

SELECTED BOND LENGTHS (Å), BOND STRENGTHS (s) AND BOND ANGLES (°) IN THE Na_{0.5}K_{0.5}GaSiO₄ STRUCTURE. The estimated standard deviations on the last digits are given in brackets.

* The mean bond lengths and bond valence sums of the M(2) and M(3) sites were calculated by excluding the long bonds.

CHAPTER 5

THE (Sr, Ca)BeSiO₄ COMPOUNDS

The compound SrBeSiO₄ has previously been reported to crystallize with an hexagonal unit-cell with parameters a = 4.853 Å, c = 8.189 Å and space group P6₃22 [JCPDS #26-978], suggesting that its structure corresponds to the basic (A, C) kalsilite-type with a completely disordered distribution of the tetrahedral Be and Si atoms. The compound CaBeSiO₄ is known to crystallize with a monoclinic unit-cell with parameters a = 8.27, b = 14.24, c = 7.85 Å and $\gamma = 90^{\circ}$ [JCPDS, #26-298], indicating that its structure is of the ($\sqrt{3} \times A$, $3 \times A$, C) beryllonite (NaBePO₄)-type. This chapter deals with the study of the mixed compounds in the (Sr, Ca)BeSiO₄ system. All compounds were characterized by powder X-ray diffraction and a few of them, Sr_{1-x}Ca_xBeSiO₄ (x = 0.0 ~ 0.3), were also examined by electron diffraction. The crystal structures of SrBeSiO₄ and Sr_{1-x}Ca_xBeSiO₄ (x = 0.27) were refined by single crystal X-ray diffraction.

5.1 Powder X-ray and Electron Diffraction

The nature of the eleven compounds $Sr_{1-x} Ca_x BeSiO_4$ (x = 0.0, 0.1, ..., 0.9, 1.0) was characterized by powder X-ray diffraction using a Guinier-Hägg camera (CuK_{$\alpha 1$} radiation, $\lambda = 1.540598$ Å). The powder patterns of the Sr-rich compounds (x = 0.0 ~ 0.4) were indexed on a ($\sqrt{3} \times A$, C) hexagonal unit-cell, indicating that their structure is a superstructure of the basic (A, C) kalsilite cell. On the other hand, the powder patterns of the Ca-rich compounds (x = 0.6 ~ 1.0) were indexed on a ($\sqrt{3} \times A$, $3 \times A$, C, $\gamma \approx 90^{\circ}$) monoclinic cell, indicating the formation of a wide solid solution with a beryllonite-type structure. The cell parameters of the whole series of Sr_{1-x}Ca_xBeSiO₄ compounds are given in Table 5.3 but only the powder patterns of the hexagonal SrBeSiO₄ and Sr_{0.7}Ca_{0.3}BeSiO₄ compounds are given in Tables 5.1 and 5.2 showing a few weak reflections of the type {hkl, h-k \neq 3n} requiring the $\sqrt{3} \times A$ superstructure. The relationship between the c parameter and the composition is illustrated in Fig. 5.1, showing i) a linear decrease with increasing Ca-content within the solid solution regions and ii) a discontinuity at x = 0.5 corresponding to a change in the structure-type and framework topology. A similar effect has previously been observed in related systems such as (Ca, Sr)Al₂O₄ [Barbier and Neuhausen, 1990] and (Na, K)AlGeO₄ [Barbier and Fleet, 1988].

The Sr-rich compounds $Sr_{1-x}Ca_xBeSiO_4$ (x = 0.0 ~ 0.3) were also examined by electron diffraction /microscopy using a Philips CM-12 transmission electron microscope. Interestingly, not only the presence of the $\sqrt{3} \times A$ superstructure in the basal plane of the hexagonal cell was confirmed but, also, a 4×C superstructure along the c-axis was found for the composition x = 0.0 (Fig. 5.2a). With increasing Ca-content, the 4×C superstructure was observed to become weaker (x = 0.1 and 0.2 - Figs. 5.2b and 5.2c) and eventually vanish completely for x = 0.3 (Fig. 5.2d). Lattice images of the SrBeSiO₄ compound clearly showed the superstructure along the c-axis (Fig. 5.3). However it was found by a careful inspection of the diffraction patterns that the 4×C superstructure reflections were not all exactly aligned along the c^{*}-axis, indicating that the superstructure may be incommensurate with the ($\sqrt{3} \times A$, C) hexagonal sub-cell.

Fig. 5.1 Plot of the c-parameters vs compositions in the $(Sr, Ca)BeSiO_4$ system. The regions corresponding to the kalsilite-type and beryllonite-type structures are indicated.

(a) SrBeSiO₄

⁽c) Sr_{0.8}Ca_{0.2}BeSiO₄

Fig. 5.2 [010] zone-axis electron diffraction patterns of (a) SrBeSiO₄ (indexed on the ($\sqrt{3} \times A$, C) sub-cell), (b) Sr_{0.9}Ca_{0.1}BeSiO₄, (c) Sr_{0.8}Ca_{0.2}BeSiO₄ and (d) Sr_{0.7}Ca_{0.3}BeSiO₄. Note that the 4C superstructure weakens and vanishes with increasing Ca-content. The {00*l*, *l* = 2n+1} reflections (forbidden in the P6₃ space group) appear by double diffraction.

Fig. 5.3 High resolution image of $SrBeSiO_4$ viewed along the [010] zone-axis showing the 4×C superstructure.

In order to analyze their crystal structure and in an attempt to understand the origin of the $4 \times C$ superstructure, single crystals of SrBeSiO₄ and Sr_{1-x}Ca_xBeSiO₄ were grown and studied by X-ray diffraction.

5.2 Single Crystal X-ray Refinement of the SrBeSiO₄ Structure

Single crystal intensity data for SrBeSiO₄ were collected on a P₄ diffractometer using graphite-monochromatized MoK α radiation. The unit-cell constants determined from 42 single reflections within 9.70° $\leq 2\theta \leq 24.65^{\circ}$, a = 8.405(8) and c = 32.68(3) Å were consistent with the electron diffraction and X-ray precession data. The corresponding sub-cell obtained by rejecting the 4×C superstructure reflections had parameters a = 8.405(8) and c = 8.171(8) Å, in very close agreement with those refined from powder X-ray diffraction data (cf. Table 5.3).

Attempts were made to refine the SrBeSiO₄ structure by using the superstructure reflections both in the basal plane and along the c-axis. However, this was unsuccessful because the 4×C superstructure reflections were weak and incommensurate and only an average structure was refined using the ($\sqrt{3}$ ×A, C) sub-cell reflections. All crystal data, data collection parameters, and results of analysis are listed in Table 5.4. The structure was solved in the P6₃ space group by direct methods and successive Fourier syntheses. For consistency with the BaTSiO₄ (T = Co, Mg, Zn) structures (cf. chapter 3), the Sr(1) atom was chosen to fix the origin at (0, 0, 1/4). An ordered arrangement of the tetrahedral Be and Si atoms was also assumed initially and later confirmed during the refinement. Using 365 observed reflections (F > 4.0 σ (F)), a full-matrix least-squares refinement was carried out with anisotropic temperature factors for all atoms, converging

to final agreement indices R = 0.043 and $R_w = 0.061$. The final atomic positions and equivalent isotropic displacement parameters are listed in Table 5.5 and the anisotropic thermal parameters are shown in Table 5.6. The relatively large errors on the atomic positions and temperature factors reflect the fact that they correspond to an average structure only. Selected bond lengths, bond angles and associated bond valences are given in Table 5.7.

5.3 Single Crystal X-ray Refinement of the Sr_{1-x}Ca_xBeSiO₄ Structure

The intensity data for a single crystal of $Sr_{1,x}Ca_xBeSiO_4$ were collected on a Siemens R3m/v diffractometer using graphite-monochromatized AgK α radiation. All crystal data, data collection parameters, and results of analysis are listed in Table 5.8. The unit cell constants (a = 8.3694(8) and c = 8.100(1) Å) determined from 27 reflections in the 2θ range 20.42 ~ 43.15° indicated a composition close to 30 at% Ca for this crystal as deduced from the Vegard's law behaviour of the (Sr, Ca)BeSiO₄ system (cf. Fig. 5.1). The structure was solved in the P6₃ space group by direct methods and successive Fourier syntheses. In order to be consistent with the other structures, the M(1) atom was chosen to fix the origin at (0, 0, 1/4). An ordered arrangement of the tetrahedral Be and Si atoms was also assumed initially and later confirmed during the refinement. Using 787 observed reflections (F > $6.0\sigma(F)$), a full-matrix least-squares refinement indices R = 0.056 and R_w = 0.071. During the refinement, the Ca content was determined to be equal to 27(2)%, a value entirely consistent with the prediction from the cell parameters. The final atomic positions, equivalent isotropic

displacement and occupancy parameters are listed in Table 5.9 and the anisotropic thermal parameters are shown in Table 5.10. Selected bond lengths, bond angles and associated bond strengths are given in Table 5.11.

5.4 Description of the Structures

The structures of the SrBeSiO₄ and Sr_{0.73}Ca_{0.27}BeSiO₄ compounds projected along the c axis of the hexagonal cells are shown in Figs. 5.4 and 5.5. The two structures are basically identical except for slight shifts of atom positions (cf. Tables 5.5 and 5.9). Like in the BaTSiO₄ (T = Co, Mg, Zn) and Na_{0.5}K_{0.5}GaSiO₄ structures, the tetrahedral framework of the SrBeSiO₄ and Sr_{0.73}Ca_{0.27}BeSiO₄ structures are constructed of sixmembered rings of corner-shared BeO₄ and SiO₄ tetrahedra which are pointing alternately up and down. All rings are identical with a ditrigonal shape when viewed along the c axis. The tetrahedral layers are stacked in a "staggered" arrangement by sharing the O(4) oxygen atoms to form a three-dimensional framework. The interstices enclosed within the framework are "stuffed" by the Sr atoms in the SrBeSiO₄ structure or Sr/Ca atoms in the Sr_{0.73}Ca_{0.27}BeSiO₄ structure.

The mean tetrahedral Be-O and Si-O bond lengths are similar (Be-O ≈ 1.63 Å, Si-O ≈ 1.60 Å, cf. Tables 5.7 and 5.11) but nevertheless, the final results showed completely ordered arrangements of Be and Si atoms in both the SrBeSiO₄ and Sr_{0.73}Ca_{0.27}BeSiO₄ structures (cf. Tables 5.5 and 5.9). A similar ordered distribution of Be/Si atoms can also be found in the tetrahedral framework of other compounds, such as Na₂Be₂Si₃O₉ [Ginderow, 1982].

Because of the different compositions of the two compounds, the geometries of

Fig. 5.4 The structure of $SrBeSiO_4$ viewed along the c-axis. The Si and Be atoms are fully ordered in the framework with SiO_4 tetrahedra pointing up and BeO_4 tetrahedra pointing down. The cavities are filled by Sr atoms. Atom heights are given in units of c/100.

Fig. 5.5 The structure of $Sr_{0.73}Ca_{0.27}BeSiO_4$ viewed along the c-axis. The Si and Be atoms are fully ordered in the framework with SiO₄ tetrahedra pointing up and BeO₄ tetrahedra pointing down. The cavities are filled by Sr/Ca atoms with a tendency towards ordering (M(1) = 19 at% Ca, M(2) = 36 at% Ca, M(3) = 25 at% Ca). Atom heights are given in units of c/100. Note the shifts of the O(4) atoms towards the M(2) sites.

the cavity sites within the frameworks are different. In the SrBeSiO₄ structure, the three cavity sites are all occupied by Sr atoms only with, however, different coordinations: Sr(1) is nine-coordinated with a rather regular arrangement of six O(1) s plus three O(4) s at an average distance of 2.74 Å; Sr(2) is six-coordinated by three O(2)s and three O(4)s at a shorter average distance of 2.60 Å and in addition three O(2)s at a longer distance of 3.02 Å; and Sr(3) is also six-coordinated by three O(2)s and three O(3)s at a similar average distance of 2.59 Å. In the Sr_{0.73}Ca_{0.27}BeSiO₄ structure, the three sites are occupied by both Sr and Ca atoms with a rather uniform distribution. The refinement nevertheless revealed a certain tendency for Sr/Ca ordering with the Ca-content increasing from 19% in M(1) to 25% in M(3) and 36% in M(2). This ordering trend is similar to that observed in the $Na_{0.5}K_{0.5}GaSiO_4$ structure but much less pronounced (cf. Chapter 4) with the M(1) site accommodating the larger Sr (K) atoms and the M(2) site accommodating the smaller Ca (Na) atoms. Similar to the SrBeSiO₄ structure, the cavity sites have different coordination geometries: the Sr-rich M(1) site is nine-coordinated (six O(1)s plus three O(4)s with an average distance of 2.71 Å), while the M(2) and M(3)sites, richer in Ca, are only six-coordinated (three O(2)s plus three O(4)s at an average distance of 2.51 Å for M(2) and three O(2)s and three O(3)s at an average distance of 2.55 Å for M(3)). Although the coordination environments are irregular and the coordination numbers chosen somewhat arbitrarily, the corresponding average M-O distances are consistent with the Sr/Ca ordering, that is, they decrease as the Sr content decreases.

Comparing the structures of $SrBeSiO_4$ and $Sr_{1-x}Ca_xBeSiO_4$ (Figs. 5.4 and 5.5), it is clear that the latter is more collapsed than the former as shown by the displacement of the O(4) atom further away from its ideal position on the pseudo 3-fold axes. The degree of framework collapse can be qualitatively estimated from the differences (Δz) between $z_{O(1)}$ and $z_{O(3)}$ and the Be-O(4)-Si angles: in the SrBeSiO₄ structure, Δz is equal to 0.055 and the Be-O(4)-Si angle is equal to 161.0(11), while in the Sr_{0.73}Ca_{0.27}BeSiO₄ structure, Δz is equal to 0.067 and the Be-O(4)-Si angle is equal to 149.1(10), showing that the framework of the latter structure is significantly more collapsed. The smaller average size of the (Sr, Ca) atoms forces the structure to reduce the cavity size by collapsing the framework to meet their bonding requirement. To accommodate large amounts of the smaller Ca atoms (x > 0.5 in Sr_{1-x}Ca_xBeSiO₄), a change of framework topology to the beryllonite (NaBePO₄)-type is required, accompanied by an abrupt decrease in the c-parameter (Fig. 5.1). The beryllonite-type structure is commonly adopted by compounds with small cavity atoms, such as NaXYO₄ (X=A1,Ga; Y=Si,Ge) [Barbier and Fleet, 1987, 1988] and CaAl₂O₄ [Hörkner and Müller-Buschbaum, 1976; Barbier and Neuhausen, 1990].

It should be noted that the valence sums for all the Sr atoms in the SrBeSiO₄ compound tend to be low (Σ s(Sr) \approx 1.7), especially for Sr(2) (cf. Table 5.7). This suggests that the coordinations of the Sr atoms are unsuitable, and that these atoms may undergo slight displacements along the c-axis to achieve a better bonding as observed for the Na atoms in the (Na, K)GaSiO₄ compounds (cf. Chapter 4). The approximate 4×C superstructure of the SrBeSiO₄ compound could possibly originate from such modulated shifts of the Sr atoms along the c-axis. In contrast, in the Sr_{0.73}Ca_{0.27}BeSiO₄ structure, the valence sum for the Ca-rich M(2) site is definitely higher (1.87), this being chiefly due to the contribution of shorter M(2)-O(4) bonds resulting from the displacement of O(4) towards M(2). It therefore appears that, with increasing Ca-content, the framework of the Sr_{1-x}Ca_xBeSiO₄ structure becomes locked into a particular configuration which

satisfies the bonding requirement of, at least, the most Ca-rich site M(2). As a result, the incommensurate $4 \times C$ superstructure vanishes rapidly with increasing x. It is also noteworthy that, like in other tridymite-derivative compounds, the temperature factors of the O(4) atoms in SrBeSiO₄ and Sr_{0.73}Ca_{0.27}BeSiO₄ are higher than those of other atoms, suggesting positional disorder of these O(4) atoms. However, the O(4) temperature factor is unusually high in the SrBeSiO₄ structure, probably as a result of O(4) displacements being associated with the formation of the ($\approx 4 \times C$) superstructure.

<u> </u>	k	1	d _{cal} (Å)	d _{obs} (Å)	I/I _o
1	1	0	4.2040	4.1979	32
1	1	1	3.7386	3.7350	22
1	1	2	2.9306	2.9310	100
3	0	0	2,4272	2.4274	48
3	Ō	1	2.3268	2.3270	9
1	1	3	2.2866	2.2861	3
2	Ō	3#	2.1816	2.1815	2
2	2	0	2.1020	2.1024	16
3	Ō	2	2.0870	2.0875	41
0	0	4	2.0437	2.0444	14
2	2	1	2.0358	2.0365	3
2	2	2	1.8693	1.8700	28
1	1	4	1.8380	1.8389	15
3	0	3	1.8124	1.8133	2
4	1	0	1.5890	1.5894	8
3	0	4	1.5633	1.5636	23
1	1	5	1.5238	1.5240	2
4	1	2	1.4810	1.4813	39
2	2	4	1.4653	1.4656	10
3	3	0	1.4013	1.4015	21
4	1	3	1.3726	1.3727	2
0	0	6	1.3625	1.3626	1
3	3	2	1.3256	1.3257	1
1	1	6	1.2961	1.2961	8
3	2	4#	1.2934	1.2936	1
2	2	5	1.2905	1.2907	2
4	1	4	1.2544	1.2544	15
2	1	6#	1.2210	1.2209	1
6	0	0	1.2135	1.2136	8
6	0	1	1.2004	1.2003	1
3	0	6	1.1881	1.1879	13
5	2	0	1.1660	1.1658	4
6	0	2	1.1634	1.1633	5
3	3	4	1.1557	1.1556	22
2	2	6	1.1433	1.1430	7
4	1	5	1.1395	1.1392	3
5	2	2	1.1213	1.1212	37
2	0	7#	1.1120	1.1121	2

POWDER X-RAY DIFFRACTION PATTERN FOR SrBeSiO₄

Superstructure reflections of the type {hkl, h-k \neq 3n} requiring a $\sqrt{3} \times A$ axis.

h	k	1	d _{cal} (Å)	d _{obs} (Å)	I/I _o
1	1	0	4.1843	4.1820	19
1	1	1	3.7174	3.7167	24
1	1	2	2.9098	2.9106	100
3	0	0	2.4158	2.4162	41
3	0	1	2.3150	2.3154	14
2	1	2#	2.2689		
1	1	3	2.2683	2.2684	3
2	2	0	2.0922	2.0924	16
3	0	2	2.0746	2.0751	35
2	2	1	2.0257	2.0254	17
0	0	4	2.0246		
2	2	2	1.8587	1.8590	28
1	1	4	1.8224	1.8227	12
3	1	2#	1.8004	1.8008	3
3	0	3	1.8002		
4	0	2#	1.6538)	1.6538	1
2	2	3	1.6536		
3	2	1#	1.6287	1.6300	4
2	1	4#	1.6281		
4	1	0	1.5815)	1.5816	12
1	0	5#	1.5807		
4	1	1	1.5522)		
3	0	4	1.5517	1.5518	24
1	1	5	1.5104	1.5104	4
4	1	2	1.4731	1.4731	41
2	2	4	1.4549	1.4549	3
3	3	0	1.3948)	1.3947	22
2	1	5#	1.3942		
5	0	2#	1.3647)		
4	1	3	1.3646	1.3645	3
4	2	1#	1.3505	1.3506	1
4	0	4#	1.3501		
5	1	1#	1.2852	1.2851	8
3	2	4#	ر 1.2849		
2	2	5	1.2807	1.2807	2
6	0	0	1.2079)		
4	0	5#	1.2075	1.2077	7

POWDER X-RAY DIFFRACTION PATTERN FOR Sr_{0.7}Ca_{0.3}BeSiO₄

5	0	4#	1.1786)		
3	0	6	1.1783	1.1781	9
5	2	0	1.1605		
3	2	5#	1.1602	1.1604	4
6	0	2	1.1575	1.1573	4
5	2	1	1.1488)		
3	3	4	1.1486	1.1485	15
4	2	4#	1.1344	1.1344	5
2	2	6	1.1342		
4	1	5	1.1315	1.1312	2
3	1	6#	1.1205	1.1207	3

Superstructure reflections of the type {hkl, h-k \neq 3n} requiring a $\sqrt{3} \times A$ axis.

UNIT-CELL PARAMETERS (Å) AND VOLUMES PER FORMULA UNIT (Å³) FOR THE Sr_{1-x}Ca_xBeSiO₄ COMPOUNDS REFINED FROM X-RAY POWDER DIFFRACTION DATA

x	struc type	a	b	С	γ(°)	v	Quench temp(°C).
0.0	kal*	8.4080(4)	_	8.1749(5)	······	83.41	1200
0.1	kal	8.3936(5)	-	8.1467(6)		82.84	1200
0.2	kal	8.3818(3)	-	8.1267(5)		82.41	1200
0.3	kal	8.3687(6)	-	8.0982(8)		81.86	1200
0.4	kal	8.3535(6)	-	8.0692(8)		81.27	1200
0.5	mix	-	-	-	-	-	1200
0.6	ber**	8.286(3)	14.402(5)	7.986(9)	90	79.42	1200
0.7	ber	8.283(2)	14.31(1)	7.95(2)	90	78.52	1200
0.9	ber	8.22(1)	14.32(1)	7.910(3)	90	77.57	1200
1.0	ber	8.245(3)	14.218(3)	7.891(2)	90.25	77.09	1400

* kal = solid solution with a ($\sqrt{3} \times A$, C) kalsilite superstructure. ** ber = solid solution with beryllonite structure.

SUMMARY OF SINGLE CRYSTAL DATA, INTENSITY MEASUREMENTS AND STRUCTURE REFINEMENT PARAMETERS FOR SrBeSiO₄

Crystal Data

Empirical Formula	
Color; Habit	
Crystal System	
Space Group	
Unit Cell Dimensions (sub-cell)	
Volume	
Z	

Z Formula weight Density(calc.) Absorption Coefficient F(000)

SrBeSiO₄ Colorless (001) plate hexagonal P6₃ a = 8.405(8) Åc = 8.171(8) Å499.9(4) Å³ 6 188.7 3.761 Mg/m³ 16.38 mm⁻¹ 528

Data Collection

Diffractometer Used	P ₄
Radiation	$MoK\alpha \ (\lambda = 0.71073 \text{ Å})$
Temperature (K)	298
Monochromator	Highly oriented graphite crystal
2θ Range	7.0 to 45.0°
Scan Type	ω
Scan Speed	Variable; 10.00 to 15.00°/min. in ω
Scan Range (ω)	0.31°
Background Measurement	Stationary crystal and stationary
-	counter at beginning and end of
	scan, each for 0.5% of total
	scan time
Standard Reflections	3 measured every 97 reflections
Index Ranges	$-10 \le h \le 2, -1 \le k \le 10, 0 \le 1 \le 10$
Reflections Collected	4128
Reflections Collected (sub-cell)	1065
Independent Reflections (sub-cell)	$410 (R_{int} = 4.08\%)$
Observed Reflections (sub-cell)	$365 (F \ge 4.0\sigma(F))$
Absorption Correction	Psi-scan

Solution and Refinement

System Used	Siemens SHELXTL PLUS (PC Version)
Solution	Direct Methods
Refinement Method	Full-Matrix Least-Squares
Quantity Minimized	$\Sigma w (F_o - F_c)^2$
Absolute Structure	N/A
Extinction Correction	$\chi = 0.014(2)$, where
	$F^* = F [1 + 0.002\chi F^2/\sin(2\theta)]^{-1/4}$
Weighting Scheme	$w^{-1} = \sigma^2(F) + 0.0012F^2$
Number of Parameters Refined	64
Final R Indices (obs. data)	R = 4.34 %, $wR = 6.12$ %
R Indices (all data)	R = 4.91 %, w $R = 6.38 %$
Goodness-of-Fit	1.28
Largest and Mean Δ/σ	0.035,0.009
Data-to-Parameter Ratio	5.7:1
Largest Difference Peak	1.37 eÅ ⁻³
Largest Difference Hole	-2.50 eÅ ⁻³

ATOMIC COORDINATES* AND EQUIVALENT ISOTROPIC DISPLACEMENT COEFFICIENTS (Å²×10³) FOR THE SINGLE CRYSTAL X-RAY REFINEMENT OF SrBeSiO₄. The estimated standard deviations on the last digits are given in brackets.

Atom	Site	x	У	Z	U _{eq} **
Sr(1)	2a	0	0	0.2500#	12(1)
Sr(2)	2b	0.3333	0.6667	0.2394(3)	12(1)
Sr(3)	2b	0.6667	0.3333	0.2236(4)	13(1)
Si	6c	0.6739(4)	0.6636(3)	0.524(1)	8(1)
Be	6c	0.664(2)	0.993(2)	0.412(4)	20(7)
O (1)	6c	0.757(1)	0.879(1)	0.496(2)	30(4)
O(2)	6с	0.452(1)	0.909(1)	0.482(2)	17(3)
O(3)	6с	0.739(1)	0.213(2)	0.441(2)	37(5)
O(4)	6с	0.648(3)	0.955(2)	0.216(2)	83(11)

* Transformed by the matrix (010, 100, 00-1) to be consistent with the other compounds. ** $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33})$ # Used to fix the origin in the P6₃ space group.

	TT	TT	TT		TT	
	0_{11}	0_{22}	U ₃₃	0_{12}	0_{13}	0_{23}
Sr(1)	18(1)	18(1)	9(2)	9(1)	0	0
Sr(2)	10(1)	10(1)	17(2)	5(1)	0	0
Sr(3)	18(1)	18(1)	4(1)	9(1)	0	0
Si	10(1)	3(1)	8(3)	0(1)	2(1)	1(1)
Be	30(9)	19(8)	11(11)	13(7)	-4(6)	-7(6)
O(1)	17(4)	20(4)	18(5)	11(3)	1(3)	0(3)
O(2)	15(4)	26(4)	58(6)	17(3)	-1(4)	-6(4)
O(3)	31(5)	28(5)	66(10)	26(4)	40(5)	38(5)
O(4)	197(19)	62(9)	14(7)	84(11)	11(7)	16(6)

ANISOTROPIC DISPLACEMENT COEFFICIENTS (Å²×10³) OF SrBeSiO₄

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11}++2hka^{*b*}U_{11})$	J ₁₂)
--	-------------------

the last digits are given in brackets.						
		1		S		
Sr(1)-O(1)×3		2.67(1)		0.23×3		
$Sr(1)-O(1) \times 3$		2.74(1)		0.19×3		
$Sr(1)-O(4) \times 3$		2.81(3)		0.16×3		
	mean	2.74	Σ	1.74		
Sr(2)-O(2)×3		2.65(1)		0.24×3		
$Sr(2)-O(3)\times 3$		3.02(1)		0.09×3		
$Sr(2)-O(4)\times 3$		2.55(2)		0.31×3		
	mean	2.60	Σ	1.65		
Sr(3)-O(2)×3		2.65(1)		0.24×3		
$Sr(3)-O(3)\times 3$		2.527(9)		0.33×3		
$Sr(3)-O(4)\times 3$		3.10(1)}*		0.07×3}		
	mean	2.59	Σ	1.71		
Si-O(1)		1.60(1)		1.07		
Si-O(2)		1.617(9)		1.02		
Si-O(3)		1.59(1)		1.10		
Si-O(4)		1.59(2)		1.10		
	mean	1.60	Σ	4.29		
O-Si-O	1	03.8(11) ~ 114.8(5)				
Be-O(1)		1.65(2)		0.48		
Be-O(2)		1.65(2)		0.48		
Be-O(3)		1.63(2)		0.51		
Be-O(4)		1.62(4)		0.52		
	mean	1.64	Σ	1.99		
O-Be-O	1	06.9(18)-113.4(13)				
Si-O(4)-Be	1	61.0(11)				

SELECTED BOND LENGTHS (Å), ANGLES (°) AND VALENCES (s) IN THE SrBeSiO₄ STRUCTURE. The estimated standard deviations on the last digits are given in brackets.

* The mean bond lengths and valence sums are calculated by excluding the long bonds.

SUMMARY OF SINGLE CRYSTAL DATA, INTENSITY MEASUREMENTS AND STRUCTURE REFINEMENT PARAMETERS FOR Sr_{1-x}Ca_xBeSiO₄

Crystal Data

Empirical Formula Color; Habit Crystal size (mm) Crystal System Space Group Unit Cell Dimensions

Volume Z Formula weight Density(calc.) Absorption Coefficient F(000) Sr_{1-x}Ca_xBeSiO₄ (x = 0.27(2)) Colorless (001) plate $0.05 \times 0.35 \times 0.31$ Hexagonal P6₃ a = 8.3694(8) Å c = 8.1000(10) Å 491.4(3) Å³ 6 176.0 3.569 Mg/m³ 12.775 mm⁻¹ 499.15

Data Collection

Diffractometer Used	Siemens R3m/V
Radiation	$AgK\alpha \ (\lambda = 0.56087 \text{ \AA})$
Temperature (K)	300
Monochromator	Highly oriented graphite crystal
2θ Range	7.0 to 45.0°
Scan Type	ω
Scan Speed	Variable; 2.00 to 29.30°/min. in ω
Scan Range (ω)	0.06°
Background Measurement	Stationary crystal and stationary counter at beginning and end of
	scan, each for 0.5% of total scan time
Standard Reflections	3 measured every 100 reflections
Index Ranges	$-17 \le h \le 14, 0 \le k \le 17, 0 \le 1 \le 16$
Reflections Collected	4528
Independent Reflections	$1554 (R_{int} = 5.11\%)$
Observed Reflections	787 (F > $6.0\sigma(F)$)
Absorption Correction	Psi-scan

Solution and Refinement

System Used	Siemens SHELXTL PLUS (PC Version)
Solution	Direct Methods
Refinement Method	Full-Matrix Least-Squares
Quantity Minimized	$\Sigma w (F_o - F_c)^2$
Absolute Structure	N/A
Extinction Correction	$\chi = 0.0003(3)$, where
	$F^* = F [1 + 0.002\chi F^2/\sin(2\theta)]^{-1/4}$
Weighting Scheme	$w^{-1} = \sigma^2(F) + 0.0015F^2$
Number of Parameters Refined	67
Final R Indices (obs. data)	R = 5.60 %, $wR = 7.06 %$
R Indices (all data)	R = 8.84 %, w $R = 8.44 %$
Goodness-of-Fit	1.18
Largest and Mean Δ/σ	0.000, 0.000
Data-to-Parameter Ratio	11.7:1
Largest Difference Peak	4.18 eÅ ⁻³
Largest Difference Hole	-3.13 eÅ ⁻³

ATOMIC COORDINATES EQUIVALENT ISOTROPIC DISPLACEMENT COEFFICIENTS (Å²×10³) AND OCCUPANCY FACTORS FOR THE SINGLE CRYSTAL X-RAY REFINEMENT OF $Sr_{0.73(2)}Ca_{0.27(2)}BeSiO_4$. The estimated standard deviations on the last digits are given in brackets.

Atom	site	x	У	Z	${\rm U_{eq}}^{*}$	Occupancy $(\pm 2\%)$
M(1)	2a	0	0	0.2500#	13(1)	81%Sr+19%Ca
M(2)	2b	0.3333	0.6667	0.2511(4)	23(1)	64%Sr+36%Ca
M(3)	2b	0.6667	0.3333	0.2289(3)	14(1)	75%Sr+25%Ca
Si	6c	0.6768(3)	0.6639(2)	0.5340(4)	10(1)	
Be	6c	0.663(2)	0.991(2)	0.420(1)	11(3)	
O(1)	6c	0.7578(6)	0.8811(6)	0.504(2)	19(2)	
O(2)	6c	0.4541(7)	0.9111(6)	0.491(1)	18(2)	
O(3)	6c	0.7950(9)	0.2098(9)	0.437(2)	37(3)	
O(4)	6c	0.639(2)	0.930(1)	0.228(1)	49(4)	

* $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}).$ # Used to fix the origin in the P6₃ space group.

	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
M(1)	12(1)	12(1)	14(1)	6(1)	0	0
M(2)	13(1)	13(1)	42(2)	7(1)	0	0
M(3)	12(1)	12(1)	17(1)	6(1)	0	0
Si	9(1)	9(1)	10(1)	4(1)	0(1)	0(1)
Be	15(4)	16(4)	6(3)	10(3)	-3(3)	-2(3)
O(1)	10(2)	10(2)	37(3)	5(2)	0(3)	-4(3)
O(2)	11(2)	7(2)	36(3)	5(1)	-4(2)	1(2)
0(3)	21(3)	13(2)	83(7)	12(2)	28(3)	21(3)
O(4)	87(7)	38(4)	21(3)	31(5)	23(4)	1(3)

ANISOTROPIC DISPLACEMENT COEFFICIENTS (Å²×10³) OF $Sr_{1-x}Ca_xBeSiO_4$

The anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12})$.
TABLE 5.11

SELECTED BOND LENGTHS (Å), BOND VALENCES (s) AND BOND ANGLES (°) IN THE $Sr_{1-x}Ca_xBeSiO_4$ STRUCTURE. The estimated standard deviations on the last digits are given in brackets.

		1		s(Sr)	s(Ca)
M(1)-O(1)×3		2.655(9)		0.234	0.156
M(1)-O(1)×3		2.705(10)		0.205	0.136
M(1)-O(4)×3		2.780(7)		0.167	0.111
	mean	2.714	Σ	$1.818 \times 0.810 +$	$1.209 \times 0.190 = 1.70$
M(2)-O(2)×3		2.631(9)		0.250	0.166
{M(2)-O(3)×3		3.135(10)}*		0.064	0.043}
M(2)-O(4)×3		2.408(5)		0.457	0.304
	mean	2.511	Σ	2.121 × 0.636 +	$1.410 \times 0.363 = 1.87$
M(3)-O(2)×3		2.617(9)		0.260	0.173
M(3)-O(3)×3		2.486(9)		0.37	0.246
${M(3)-O(4)\times 3}$		3.269(14)}*		0.045	0.030}
	mean	2.553	Σ	$1.890 \times 0.753 +$	$1.257 \times 0.246 = 1.73$
Si-O(1)		1.609(5)		1.041	
Si-O(2)		1.614(3)		1.027	
Si-O(3)		1.603(8)		1.058	
Si-O(4)		1.622(10)		1.005	
	mean	1.612	Σ	4.13	
O-Si-O	1	04.5(5)-112.7(4)			
Be-O(1)		1.635(11)		0.503	
Be-O(2)		1.653(15)		0.479	
Be-O(3)		1.602(16)		0.550	
Be-O(4)		1.623(13)		0.520	
	mean	1.628	Σ	2.05	
O-Be-O	1	03.8(7)-115.0(6)			
Si-O(4)-Be	1	49.1(10)			

* The mean bond lengths and valence sums are calculated by excluding the long bonds.

CHAPTER 6

CONCLUSION

The silicate compounds BaTSiO₄ (T = Co, Mg, Zn), Na_{0.5}K_{0.5}GaSiO₄ and Sr₁. _xCa_xBeSiO₄ (x = 0.0 ~ 0.4) have been determined to crystallize with the same ($\sqrt{3} \times A$, C) superstructure of the hexagonal (A, C) kalsilite (KAlSiO₄) structure. In these compounds of general formula MTSiO₄, the Si and T (= Co, Mg, Zn, Ga, Be) atoms form the three-dimensional frameworks and the large M (= Ba, Na/K, Sr/Ca) atoms fill the cavities enclosed by the frameworks (cf. Chapters 3, 4, 5). The structural refinements of these framework silicates provide new insight into how the kalsilite-type framework accommodates cavity atoms of variable size.

The main features of the $\sqrt{3} \times A$ kalsilite superstructure are, firstly, the concerted displacements of the apical O(4) oxygen atoms from their ideal positions on the three-fold axes toward neighbouring M atoms and, secondly, the shifts of the cavity atoms along the c-axis of the hexagonal unit-cell. The O(4) displacements correspond to the tilting of the tetrahedra and the collapse of the framework around the M atoms. This collapse is necessary in order to meet the bonding requirement of these atoms and to relieve the strain in the Si-O(4)-T angles which are reduced to values of 140 ~ 160°. Similar O(4) shifts are probably also the cause of the weak and diffuse $\sqrt{3} \times A$ superstructure occasionally observed in the natural compounds kalsilite [Smith and Sahama, 1957] and nepheline [Sahama, 1958, 1962]. However, no structure refinement has yet been carried out on these ordered alumino-silicate minerals.

Shifts along the c-axis of the cavity M atoms occur in all the MTSiO₄ structures studied in this work. These shifts remain minor for the Ba compounds (Chapter 3) but become more pronounced in the mixed compounds $Ca_{0.27}Sr_{0.73}BeSiO_4$ (Chapter 5) and, especially, $Na_{0.5}K_{0.5}GaSiO_4$ (Chapter 4). In both cases, the M(2) sites shift upwards (to larger z values) away from the O(3) atoms, thereby reducing their coordination from nine-fold to six-fold. This decrease in coordination number is entirely consistent with the observed concentration of the smaller Ca and Na atoms on the M(2) sites of the structures. The greater degree of ordering and the greater atomic shifts occurring in $Na_{0.5}K_{0.5}GaSiO_4$ are also consistent with the size difference being larger between the Na and K atoms than between the Ca and Sr atoms [Shannon, 1976].

Overall, the atomic displacements and framework distortions observed in the MTSiO₄ structures can be correlated with the relative sizes of the tetrahedral (T, Si) atoms and the cavity (M) atoms. In Table 6.1 are listed the average tetrahedral and cavity bond lengths, their ratios and the Si-O(4)-T angles for a number of refined structures of kalsilite-type compounds (i.e. with hexagonal symmetry and with the same UDUDUD framework topology). It appears from these data that the simple kalsilite structure (with a small (A, C) unit-cell and without concerted displacement of the O(4) atoms) only occurs for compounds, such as KAlSiO₄, KLiSO₄ and KLiBeF₄, with small <T-O>/<M-O> ratios. As this bond ratio increases, i.e., as the cavity atoms decrease in size relative to the tetrahedral atoms, atomic shifts are required in order to maintain proper bonding within the structure, resulting in the formation of the $\sqrt{3} \times A$ superstructure. It can be seen also that, as the <T-O>/<M-O> bond ratio increases, the degree of framework collapse also increases as shown by the reduction in the Si-O(4)-T angles. Therefore, the compounds containing relatively small atoms in their framework

cavities can be expected to be destabilized. This is indeed the case for the two compounds with the larger bond ratios in Table 6.1, i.e., $Na_{0.5}K_{0.5}GaSiO_4$ and $BaCoSiO_4$, which have been found to be stable at high temperature only, above approximately 900 and 1100°C respectively.

In conclusion, the variety of compounds synthesized and characterized in the present work significantly expands the structural family of kalsilite-like tridymite derivatives. It has been shown that the kalsilite-type framework, with a single UDUDUD ring topology, can accommodate a wide range of tetrahedral and cavity atoms through relatively minor atomic shifts and framework distortions.

TABLE 6.1

Compound	Unit-cell	T-O(Å) (mean)	M-O(Å) (mean)	Т-О/М-О	Si-O(4)-T (°)	Ref.
Na _{0 5} K _{0 5} GaSiO4	√3A,C	1.72(3)	2.71(2)	0.637	141.0	[1]
BaCoSiO₄	√3A,C	1.792(8)	2.842(9)	0.631	148.6	[2]
$Sr_{0.73}Ca_{0.27}BeSiO_4$	√3A,C	1.62(2)	2.59(1)	0.625	149.1	[3]
BaZnSiO₄	√3A,C	1.775(15)	2.85(2)	0.622	156.1	[2]
BaMgSiO ₄	√3A,C	1.775(15)	2.86(2)	0.621	157.9	[2]
SrBeSiO ₄ *	$\sqrt{3}A,4C$	1.62(4)	2.64(3)	0.614	161.0	[3]
BaZnGeO₄**	$\sqrt{3A,4C}$	1.83(7)	3.01(6)	0.608	-	[4]
BaAl ₂ O ₄ [#]	2A,C	1.757	2.932	0.599	<161.9>	[5]
KLiSO₄	A,Ċ	1.716(6)	2.960(3)	0.593	-	[6]
KLiBeF₄	A,C	1.69	2.87	0.589	-	[7]
KAlSiO ₄	A,C	1.677	2.896	0.579	163	[8]

CORRELATION BETWEEN THE FRAMEWORK DISTORTION AND THE RELATIVE SIZES OF THE TETRAHEDRAL (T) AND CAVITY (M) ATOMS IN KALSILITE-TYPE STRUCTURES.

* Average structure (cf. Chapter 5).

** Average structure with large errors on atomic coordinates and bond distances.

Very weak $(2 \times A, C)$ kalsilite superstructure, no esd's given in the original structure refinement.

References: [1] Chapter 4; [2] Chapter 3; [3] Chapter 5; [4] Iijima et al., 1982; [5] Hörkner et al., 1979; [6] Schulz et al., 1985; [7] Roy et al.; 1972; [8] Perrotta et al., 1965.

REFERENCES

- R.N. Abbott, Jr., Am. Miner. 69, 449-457 (1984).
- D. Altermatt and I.D. Brown, Acta Crystallogr. B41, 244-247 (1985).
- J. Barbier and M.E. Fleet, J. Solid State Chem. 71, 361-370 (1987).
- J. Barbier and M.E. Fleet, Phys. Chem. Minerals 16, 176-285 (1988).
- J. Barbier and J. Neuhausen, Eur. J. Mineral. 2, 273-282 (1990).
- C. Do Dinh and A. Durif, Bull. Soc. Fr. Minéral. Cristallogr. 87, 108-110 (1964). W.A. Dollase, Acta Crystallogr. 23, 617-623 (1967).
- P.D. Ginderow, F. Cesbron and M-C Sichère, Acta Crystallogr. B38, 62-66 (1982).
- G. Guiseppetti and C. Tadini, Tschermaks Min. Petr. Mitt. 20, 2-12 (1973).
- C.M.B. Henderson and J. Roux, Contrib. Mineral. Petrol. 61, 279-298 (1977).
- C.M.B. Henderson and D. Taylor, Mineral. Mag. 45, 111-127 (1982).
- C.M.B. Henderson and A.B. Thompson, Am. Min. 65, 970-980 (1980).
- W. Hörkner and HK. Müller-Buschbaum, J. Inorg. Nucl. Chem. 38, 983-984 (1976).
- W. Hörkner and HK. Müller-Buschbaum, Z. Anorg. Allg. Chem. 451, 40-44 (1979).
- C.J. Howard and R.J. Hill, AAEC report No. 000# (1985).
- K. Iijima, F. Marumo and H. Takei, Acta Crystallogr. B38, 1112-1116 (1982).
- A. Kawahara, Y. Andou, F. Marumo and M. Okuno, Miner. J. 13(5), 260-270 (1987).
- G. Lampert and R. Böhme, Z. Kristallogr. 176, 29-33 (1986).
- F. Liebau, "Structural Chemistry of Silicates", Springer-Verlag, Berlin/Heidelberg/New York / Tokyo (1985).
- Y.A. Malinovskii, Sov. Phys. Dokl. 29(9), 706-708 (1984).

S. Merlino: Feldspathoids, Their Average and Real Structure. In W.L. Brown ed, Feldspars and Feldspathoids, NATO ASI Series, C137. Reidel, Dordrecht, Holland (1985).

A.J. Perrotta and J.V. Smith, Mineral. Mag. 35, 588-595 (1965).

H.M. Rietveld, Acta Crystallogr. 22, 151-152 (1967).

H.M. Rietveld, J. Appl. Cryst. 2, 65-71 (1969).

J.L. Roy and S. Aléonard, Acta Crystallogr. B28, 1383-1385 (1972).

H.Schulz, U. Zucher and R. Frech, Acta Crystallogr. B41, 21-26 (1985).

A.R. Schulze and HK. Müller-Buschbaum, Z. Anorg. Allg. Chem. 475, 205-210 (1981).

V.F. Sears: Thermal Neutron Scattering Lengths and Cross-sections for Condensed Matter Research", Atomic Energy of Canada Limited, Report AECL-8490 (1984).

R.D. Shannon, Acta Crystallogr. A32, 751-767 (1976).

W.B. Simmons, Jr. and D.R. Peacor, Am. Miner. 57, 1711-1719 (1972).

J.V. Smith and O. F. Tuttle, Am. J. Sci 255, 282-305 (1957).

H. Takei, S.Tsunekawa and M. Maeda, J. Mat. Sci. 15, 2612-2618 (1980).

H. Takei, J. Appl. Crystallogr. 13, 400-401 (1980).

D. Taylor, M.J. Dempsey and C.M.B. Henderson, Bull. Minéral. 108, 643-652 (1985).

C.W. Tompson, D.F.R. Mildner, M. Mehregang, J. Sudol, R. Berliner, and W. B. Yelton, J. Appl. Crystallogr. 17, 385-394 (1984).

O. F. Tuttle and J.V. Smith, Am. J. Sci 256, 571-589 (1958).

J.W. Visser, J. Appl. Crystallogr. 2, 89-95 (1969).

J. Weber and J. Barbier: Synthesis, Structures and Crystal Chemistry in (Na, K)GaSiO₄ and (Ca, Ba)Al₂O₄, Senior thesis, McMaster University (1990).

A.R. West: Solid State Chemistry, Chichester . New York . Brisbane . Toronto . Singapore: John Wiley & Sons (1988).

R.A. Young & D.B. Wiles, J. Appl. Crystallogr.15, 430-438 (1982).

APPENDIX

OBSERVED AND CALCULATED STRUCTURE FACTORS

The following tables contain the observed (F_o) and calculated $(|F_c|)$ structure factors for the three single crystal structure determinations (BaCoSiO₄ and Sr₁. _xCa_xBeSiO₄, x = 0.0 and 0.27). A negative standard deviation (s) indicates that the reflection was treated as unobserved during the refinement.

ħ	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc 10s
0	1	0	151	69	-4	-9	11	0	94	79	-26	-7	15	0	141	148	19	0	7	1	109	87	16	-7	13	1	83	66 - 36
-1	2	0	1569	1618	12	-8	11	Ō	127	119	17	-6	15	Ō	756	762	35	-7	8	1	299	311	8	-6	13	1	161	138 24
0	2	0	157	161	7	-7	11	0	567	582	9	-5	15	0	71	90	-31	-6	8	1	153	136	15	-5	13	1	150	125 24
-2	3	0	289	288	4	-6	11	0	63	50	-24	-4	15	0	163	146	18	-5	8	1	62	70	-25	-4	13	1	104	89 -30
-1	3	0	303	304	6	-5	11	0	163	179	11	3	15	0	657	656	18	-4	8	1	203	208	15	-3	13	1	127	89 -30
0	3	0	3783	4044	40	-4	11	0	803	844	15	-2	15	0	114	90	-31	-3	8	1	220	227	8	-2	13	1	119	104 - 20
-3	4	0	1616	1610	10	-3	11	n	42	112	-23	-1	15	0	40 512	ده ۸8۸	-20	-2	0 8		69 676	440	-21	-1	13	1	60	24 - 22
-1	4	ŏ	518	519	4	-1	11	ō	512	527	7	-14	16	ŏ	298	281	22	0	8	1	155	155	11	-13	14	i	136	107 20
Ó	4	0	189	193	11	Ó	11	Ō	42	29	-21	-13	16	ō	135	112	-27	-8	9	1	158	170	12	-12	14	1	136	105 -23
-4	5	0	1117	1150	22	-11	12	0	57	83	-32	-12	16	0	73	54	-32	-7	9	1	80	71	-23	-11	14	1	48	82 - 29
-3	5	0	92	64	13	-10	12	0	241	250	23	-11	16	0	365	361	18	-6	9	1	144	137	20	-10	14	1	89	95 - 27
-2	5	0	289	288	5	-9	12	0	1120	1153	21	-10	16	0	235	198	19	-5	9	1	210	214	9	-9	14	1	133	101 -25
-1	5	0	1578	1599	26	-8	12	0	111	124	-27	-9	16	0	66	5	-27	-4	9	1	110	92	15	-8	14	1	77	27 - 29
0	2	0	203	198	13	-7	12	0	263	266	9	-8	16	0	345	349	34	-3	9	1	119	138	14	-7	14	1	102	96 - 30
-5	6	0	426	424	7	-0	12	0	155	1340	12	-4	10	0	64	197	-26		о 0	1	149	476	13	-0	14	1	100	104 23
-3	6	ō	3350	3636	43	-4	12	ŏ	209	212	19	-5	16	ň	315	327	21	0	ó	-	92	52	-72	-4	14	i	171	160 10
-2	6	ō	221	229	7	-3	12	ō	1107	1152	13	-4	16	ō	208	218	14	-9	10	1	183	201	13	-3	14	i	153	121 18
-1	6	0	298	297	6	-2	12	0	131	129	18	-3	16	0	78	30	-31	-8	10	1	218	208	10	-2	14	1	138	82 -23
0	6	0	2466	2610	54	-1	12	0	71	102	-29	-2	16	0	249	238	26	-7	10	1	44	66	-24	-1	14	1	106	89 -31
-6	7	0	124	124	16	0	12	0	973	980	12	-12	17	0	51	27	-31	-6	10	1	146	167	13	0	14	1	119	50 -22
-5	7	0	968	997	7	-12	13	0	92	72	-31	-11	17	0	46	53	-27	-5	10	1	292	289	9	-14	15	1	51	83 - 30
-4	÷	ů N	221	200	-21	-11	12	0	419	439	У 21	-10	17	0	255	237	-76	-4	10	1	4/5	436	-25	-15	15	1	۲۵ ۲۵	52 - 33
-7	7	ñ	1125	1187	-21	- 10	13	0	62	22	-28	-7 -8	17	ő	76	71	-30	- 2	10	1	248	260	-25	- 14	12	4	47	1/8 17
-1	7	ō	401	410	8	-8	13	ŏ	506	519	15	-7	17	ŏ	379	351	14	-1	10	1	73	97	-25	-10	15	1	97	25 - 29
0	7	0	41	126	-21	-7	13	Ó	225	220	10	-6	17	0	46	11	-26	Ó	10	1	119	93	15	-9	15	1	94	15 -30
-7	8	0	1090	1134	19	-6	13	0	43	20	-26	-5	17	0	54	24	-31	-10	11	1	140	138	17	-8	15	1	191	180 15
-6	8	0	79	59	-25	-5	13	0	522	541	17	0	1	1	30	44	-15	-9	11	1	172	163	13	-7	15	1	54	61 -27
-5	8	0	187	185	11	-4	13	0	263	268	14	-1	2	1	1030	961	21	-8	11	1	38	34	-22	-6	15	1	43	10 -25
-4	8	0	808	851	- 10	-3	13	0	64 50/	61	-29	0	2	1	132	126	10	-7	11	1	266	287	9	-5	15	1	146	167 18
-3	0 8	0 A	33 187	32 184	- 19	-2	13	0	2/8	214	10	-2	2	-	40 80	/0 97	- 19	-0	11	1	1/5	102	-26	-4	15	1	97	75 - 51
-1	8	ŏ	816	833	18	0	13	õ	130	142	-23	0	3	i	826	753	20	-4	11	i	166	170	-24	-2	15	1	123	132 -43
Ó	8	Ō	183	179	12	-13	14	Ō	327	315	11	-3	4	1	364	359	6	-3	11	1	104	104	-19	-1	15	1	59	55 -35
-8	9	0	116	156	19	-12	14	0	50	43	-29	-2	4	1	943	900	9	-2	11	1	119	87	18	0	15	1	47	2 -24
-7	9	0	399	409	6	-11	14	0	129	9 9	-29	-1	4	1	107	103	11	-1	11	1	137	121	22	-14	16	1	67	57 -36
-6	9	0	1821	1960	14	-10	14	0	509	511	15	0	4	1	176	170	6	0	11	1	116	130	18	-13	16	1	90	62 -31
-5	9	0	161	169	10	-9	14	0	90	30	-30	-4	5	1	771	749	21	-11	12	1	163	154	17	-12	16	1	168	106 17
-4	у 0	U A	243	1050	8 19	-8	14	0	75	794	-30	- 5	2	1	260	255	у 0	-10	12	1	55	- 75	-31	-11	16	1	106	90 -27
-2	ő.	õ	193	1930	0	-6	14	ñ	45	- 300	-27	-1	5	1	554	544	12	-9	12	1	171	182	13	-10	16	1	0/ 117	00 - 32
-1	9	0	110	132	-26	-5	14	Ō	47	85	-28	ò	5	1	225	230	8	-7	12	1	115	104	-20	-8	16	i	135	73 22
0	9	0	1705	1780	11	-4	14	0	378	379	11	-5	6	1	201	201	9	-6	12	1	51	26	-24	-7	16	1	103	57 - 29
-9 1	10	0	109	127	-25	-3	14	0	116	72	-22	-4	6	1	186	191	8	-5	12	1	193	201	13	-6	16	1	107	80 -28
-8 1	10	0	852	869	6	-2	14	0	106	106	-30	-3	6	1	77	57	-23	-4	12	1	74	72	-28	-5	16	1	81	75 -30
-7	10	0	243	262	15	-1	14	0	462	441	20	-2	6	1	262	273	10	-3	12	1	45	42	-27	-4	16	1	54	53 - 29
-01	10	U U	57	50	-25	- 1/	14	0	74	42	-51	-1	6 ∡	1	192	186	14	-2	12	1	194	197	15	-3	16	1	142	79 -33
-4 1	10	0	322	330	10	-13	15	0	40 242	20 228	-20	U -A	7	1	2/1	202	2 10	-1	12	1	125	92	-21	-12	10 17	1	80 82	49 -51
-3	10	õ	104	106	-20	-12	15	ŏ	673	663	17	-5	7	1	349	353	6	-12	13	1	146	153	20	-11	17	1	80	5 - 20
-2 1	10	0	668	704	9	-11	15	Ō	120	108	-25	-4	7	1	90	51	-25	-11	13	1	155	161	-32	-10	17	1	99	88 - 36
-1 1	10	0	312	324	10	-10	15	0	235	212	18	-3	7	1	233	235	9	-10	13	1	46	77	-27	-9	17	1	115	103 -32
0 1	10	0	45	87	-22	-9	15	0	782	778	27	-2	7	1	335	334	5	-9	13	1	146	148	17	-8	17	1	87	12 -30
-10 1	11	0	520	536	7	-8	15	0	90	91	-30	-1	7	1.	104	86	-27	-8	13	1	114	126	-21	-7	17	1	46	53 -26

h	k	ι	10Fo	10Fc	10s	h	k	t	10Fo	10Fc	10s	h	k	ι	10Fo	10fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s
-6	17	1	67	80	-34	-1	10	2	177	193	20	-10	15	2	80	112	-31	-7	8	3	554	572	7	-6	13	3	155	139	18
-5	17	1	67	30	-30	0	10	2	41	43	-21	-9	15	2	288	296	14	-6	8	3	275	269	9	-5	13	3	278	274	15
0	0	2	693	623	7	-10	11	2	997	1032	14	-8	15	2	172	183	-35	-5	8	3	46	70	-28	-4	13	3	42	38	-24
0	1	2	268	237	5	-9	11	2	196	196	12	-7	15	2	105	80	-27	-4	8	3	641	638	6	-3	13	3	47	67	-28
-1	2	2	3608	3394	41	-8	11	2	258	1215	10	-0	15	2	308	302	15	-3	ð	3 7	203	12/	1/	-2	13	2	1/0	197	-20
-2	۲ ۲	2	571	525	4	-7	11	2	272	230	12	-4	15	2	116	100	-25	-1	8	ב ד	634	658	7	-1	13	7	- 64	36	-26
-1	3	2	470	436	11	-5	11	2	221	237	12	-3	15	2	266	278	14	, o	8	3	258	266	8	-13	14	3	161	147	26
Ö	3	2	1717	1586	28	-4	11	2	931	963	16	-2	15	2	161	142	25	-8	9	3	92	96	-24	-12	14	3	172	135	20
-3	4	2	249	239	6	-3	11	2	212	226	15	-1	15	2	119	99	-33	-7	9	3	77	86	-25	-11	14	3	190	209	15
-2	4	2	2824	2761	11	-2	11	2	240	217	15	0	15	2	258	247	11	-6	9	3	138	101	21	-10	14	3	198	182	14
-1	4	2	185	181	7	-1	11	2	976	1003	14	-13	16	2	65	35	-29	-5	9	3	158	132	15	-9	14	3	225	215	12
Ű	4	2	2/1	2/3	- 0	U 44	11	2	207	191	11	-12	10	2	150	112	-21	-4	Š	2		1/5	-30	-8	14	2	139	140	~~~~
-4 _7	2	2	2030	2033	11	-11	12	2	108	137	-20	-10	16	2	440	435	-33	-3	у 0	ב ד	210	237	12	- 6	14	2	273	217	10
-2	Ś	2	261	249	6	-9	12	2	468	476	8	-9	16	2	114	97	-34	-1	ģ	3	213	210	10	-5	14	3	136	123	21
-1	5	2	2201	2202	43	-8	12	2	243	236	10	-8	16	2	510	498	22	Ó	9	3	45	48	-23	-4	14	3	243	226	25
0	5	2	400	406	7	-7	12	2	168	175	17	-7	16	2	67	108	-30	-9	10	3	182	160	16	-3	14	3	202	206	16
-5	6	2	345	365	6	-6	12	2	392	400	7	-6	16	2	56	35	-34	-8	10	3	420	434	7	-2	14	3	51	79	-30
-4	6	2	242	244	7	-5	12	2	232	222	11	-5	16	2	500	474	17	-7	10	3	99	119	-22	-1	14	3	157	163	19
-3	6	2	524	508	19	-4	12	2	172	150	16	-4	16	2	109	119	-30	-6	10	3	174	159	23	0	14	3	169	170	17
-2	6	2	207	204	8	-3	12	2	462	461	1	-5	16	2	46	35	-27	->	10	3	452	470	15	- 14	15	5	70	35	-51
-1	6	2	221	221	17	-2	12	2	140	115	14	-10	17	2	147	120	24	-4	10	2 7	126	40	-24	-12	12	ב ד	58	40 50	-29
-6	7	2	237	233	8	0	12	2	368	350	7	-9	17	2	136	128	-24	-2	10	3	404	425	11	-11	15	3	101	69	-32
-5	7	2	2069	2123	15	-12	13	2	153	140	-26	-8	17	2	122	127	-27	-1	10	3	44	61	-26	-10	15	3	45	58	-26
-4	7	2	165	173	11	-11	13	2	721	720	23	-7	17	2	371	366	14	0	10	3	127	139	16	-9	15	3	4 4	30	-26
-3	7	2	130	112	13	-10	13	2	95	81	-31	-6	17	2	121	112	-31	-10	11	3	293	296	9	-8	15	3	104	110	-32
-2	7	2	1945	2018	27	-9	13	2	148	131	24	0	1	3	168	153	7	-9	11	3	260	250	9	-7	15	3	47	60	-28
-1	7	2	169	185	10	-8	13	2	836	844	18	-1	2	3	1169	1059	15	-8	11	3	204	209	14	-6	15	3	103	10	-26
U -7		2	147	1677	11	-/	13	2	135	123	18		2	2	137	134	10	-/	11	2	414	420	10	->	15	2	174	130	-71
-6	8	2	231	240	10	-0	13	2	832	836	20	-1	3	3	101	46	-22	-5	11	7	176	106	12	-4	15	7	64	28	-28
-5	8	2	267	274	16	-4	13	2	178	171	13	ò	3	3	563	515	13	-4	11	3	389	397	7	-2	15	3	118	93	-31
-4	8	2	1808	1863	20	-3	13	2	53	53	-27	-3	4	3	240	220	7	-3	11	3	257	262	9	-1	15	3	137	107	-29
-3	8	2	281	288	8	-2	13	2	670	680	17	-2	4	3	1126	1080	10	-2	11	3	156	47	-40	-13	16	3	79	40	-30
-2	8	2	367	391	8	-1	13	2	140	154	20	-1	4	3	52	58	-20	-1	11	3	307	315	12	-12	16	3	61	91	-36
-1	8	2	1599	1655	23	0	13	2	88	67	-24	0	4	3	113	118	12	0	11	3	212	231	10	-11	16	3	145	150	-31
0	8	2	274	283	8	-13	14	2	587	580	23	-4	5	3	1015	991	10	-11	12	3	98	91	-27	-10	16	3	84	23	-31
-ð	9	2	280	293	8 10	-12	14	2	148	120	18	- 2	2	2	201	110	15	-10	12	2	72	34	-29	-9	10	2	124	137	-20
-6	, 0	2	657	677	11	-10	14	2	594	591	18	-1	ś	3	030	927	20	-8	12	3	136	125	18	-7	16	3	71	35	-34
-5	9	2	486	359	-107	-9	14	2	120	125	-23	ò	5	3	175	166	12	-7	12	3	138	107	18	-6	16	3	104	44	-33
-4	9	2	158	175	11	-8	14	2	94	131	-29	-5	6	3	241	224	15	-6	12	3	40	17	-23	-5	16	3	157	136	18
-3	9	2	658	680	19	-7	14	2	775	778	20	-4	6	3	180	174	9	-5	12	3	131	117	17	-4	16	3	105	18	-33
-2	9	2	239	243	8	-6	14	2	194	183	12	-3	6	3	40	48	-23	-4	12	3	142	129	23	-3	16	3	51	62	-30
-1	9	2	215	203	16	-5	14	Z	180	176	19	-z	6	3	169	158	10	-3	12	3	42	27	-24	-11	17	3	142	121	23
U _0	10	2	443	473	0 17	-4	14	2	102	100	20	-1	~	2	193	205	12	-2	12	2	120	120	19	- 10	17	2	137	109	-27
-9	10	2	102	1123	12	-3	14	2	174	166	15	-6	7	2	147	157	17	- 1	12	2	142	100	-25	-9	17	ב ד	103	141	18
-7	10	2	180	193	12	-1	14	2	471	460	19	-5	7	3	695	706	7	-12	13	3	160	142	19	-7	17	3	121	108	-32
-6	10	2	158	159	12	O	14	Z	167	148	20	-4	7	3	116	70	-24	-11	13	3	206	229	20	-6	17	3	185	177	24
-5	10	2	1303	1350	21	-14	15	2	152	120	-29	-3	7	3	182	164	12	-10	13	3	48	63	-29	Ō	0	4	3870	3602	18
-4	10	2	188	209	11	- 13	15	2	90	123	-31	-2	7	3	678	686	16	-9	13	3	108	118	-27	0	1	4	937	775	135
-3	10	2	73	71	-24	-12	15	2	305	285	22	-1	7	3	100	88	-21	-8	13	3	250	263	15	-1	2	4	2011	1841	21
-2	10	2	1284	1335	14	-11	15	2	191	177	15	0	7	3	128	136	12	-7	13	3	45	41	-27	0	2	4	560	507	8

h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s
-2	3	4	273	259	8	-6	11	4	123	116	18	-4	15	4	124	98	-29	-5	9	5	162	127	14	-9	14	5	165	146	16
-1	3	4	543	506	6	-5	11	4	191	193	14	-3	15	4	459	448	19	-4	9	5	62	9	-25	-8	14	5	75	60	-31
0	3	4	2418	2293	26	-4	11	4	833	844	14	-2	15	4	51	67	-30	-3	9	5	70	47	-28	-7	14	5	220	227	12
-3	4	4	530	508	7	-3	11	4	132	113	17	-1	15	4	52	38	-30	-2	9	5	310	321	13	-6	14.	5	176	169	18
-2	4	4	1812	1724	21	-2	11	4	191	167	12	-13	16	4	215	202	15	-1	9	5	100	104	-25	-5	14	5	50	41	-30
-1	4	4	845	820	13	-1	11	4	590	598	11	-12	16	4	125	96	-33	0	9	5	49	13	-21	-4	14	5	210	215	19
0	4	4	577	555	12	0	11	4	109	91	-27	-11	16	4	395	363	20	-9	10	5	214	225	12	-3	14	5	163	129	21
-4	5	4	1463	1429	25	-11	12	4	90	79	-37	-10	16	4	286	272	22	-8	10	5	441	445	7	-2	14	5	74	18	-29
-3	5	4	426	415	5	-10	12	4	278	288	10	-9	16	4	146	107	24	-7	10	5	168	146	14	-1	14	5	193	181	17
-2	5	4	501	505	5	-9	12	4	742	747	16	-8	16	4	362	364	13	-6	10	5	275	275	11	0	14	5	140	123	-27
-1	5	4	1665	1607	20	-8	12	4	134	161	18	-7	16	4	245	260	13	-5	10	5	468	479	13	-13	15	5	52	28	-31
0	5	4	208	203	12	-7	12	4	219	212	11	-6	16	4	179	180	19	-4	10	5	83	53	-25	-12	15	5	73	34	-31
-5	6	4	330	339	7	-6	12	4	858	867	28	-5	16	4	340	332	12	-3	10	5	187	184	20	-11	15	5	131	83	-26
-4	6	4	531	522	5	-5	12	4	177	181	13	-4	16	4	207	203	15	-2	10	5	426	447	7	-10	15	5	52	17	-30
-3	6	4	2107	2114	24	-4	12	4	205	202	22	-3	16	4	188	160	16	-1	10	5	94	- 34	-28	-9	15	5	71	38	-31
-2	6	4	495	497	13	-3	12	4	725	749	17	-9	17	4	78	18	-29	0	10	5	190	190	12	-8	15	5	134	145	-27
-1	6	4	447	446	13	-2	12	4	92	103	-26	-8	17	4	112	61	-35	- 10	11	5	337	330	9	7	15	5	122	16	-34
0	6	4	1542	1567	11	-1	12	4	131	131	-31	0	1	5	97	105	-17	-9	11	5	149	143	23	-6	15	5	45	11	-26
-6	7	4	286	290	8	0	12	4	642	635	12	-1	2	5	1438	1347	12	-8	11	5	171	157	17	-5	15	5	207	183	19
-5	7	4	1182	1184	8	-12	13	4	122	121	-29	0	2	5	40	20	-19	-7	11	5	383	400	17	-4	15	5	46	21	-26
-4	7	4	534	539	6	-11	13	4	483	476	11	-2	3	5	36	27	-21	-6	11	5	120	142	-21	-3	15	5	83	14	-30
-3	7	4	485	496	11	-10	13	4	283	292	11	-1	3	5	120	95	14	-5	11	5	155	145	15	-2	15	5	130	142	-30
-2	7	4	1298	1306	29	-9	13	4	191	183	14	0	3	5	249	238	7	-4	11	5	378	375	9	-12	16	5	168	157	18
-1	7	4	564	560	7	-8	13	4	549	543	13	-3	4	5	442	440	10	-3	11	5	218	214	11	-11	16	5	189	170	16
0	7	4	467	475	7	-7	13	4	302	308	18	-2	4	5	1211	1156	7	-2	11	5	57	63	-26	-10	16	5	64	81	-38
-7	8	4	1122	1150	7	-6	13	4	238	239	12	-1	4	5	96	89	-21	-1	11	5	318	322	12	-9	16	5	166	147	22
-6	8	4	233	229	9	-5	13	4	573	586	10	0	4	5	203	196	10	0	11	5	166	162	14	-8	16	5	142	146	22
-5	8	4	207	220	12	-4	13	4	330	347	10	-4	5	5	998	989	10	-11	12	5	73	60	-29	-7	16	5	46	47	-27
-4	8	4	1048	1060	12	-3	13	4	202	211	13	-3	5	5	299	295	7	-10	12	5	99	95	-29	-6	16	5	100	109	-34
-3	8	4	183	181	10	-2	13	4	530	536	9	-2	5	5	271	267	8	-9	12	5	65	29	-31	-5	16	5	155	145	21
-2	8	4	134	129	14	-1	13	4	303	308	10	-1	5	5	954	941	17	-8	12	5	192	187	16	-4	16	5	60	59	-36
-1	8	4	983	990	17	0	13	4	275	275	13	0	5	5	335	335	9	-7	12	5	63	39	-30	0	0	6	2215	2117	19
0	8	4	197	206	10	-13	14	4	383	360	18	-5	6	5	227	243	9	-6	12	5	53	26	-32	0	1	6	606	585	4
-8	9	4	287	286	8	-12	14	4	85	51	-35	-4	6	2	118	113	-20	->	12	2	114	134	-27	-1	2	6	1392	1325	11
-7	y o	4	487	488	11	-11	14	4	58	65	-35	-5	0	2	41	41	-24	-4	12	2	22	76	-27	0	2	6	727	699	9
-0	y	*	1182	1202	15	-10	14	4	528	222	10	-2	°,	2	149	101	14		12	2	60	59	-30	-2	5	0	889	605	10
- ,	~	7	143	144	14		14	7	07	04	-42	-1	ç	2	120	120	10	-2	12	2	191	190	25	-1	2	0	191	788	0
-4	ÿ	7	332	337	45	-8	14	4	117	110	-21	U V	2	2	141	144	18	-1	12	2	94	14	-30	Ŭ	5	6	21/2	2092	20
	ž	7	1102	1190	5	- /	14	4	442	434	10	-0	4	2	249	200		0	12	2	41	21	-24		4	ò	5/8	202	10
-2	y 0	7	244	100	42	-0	14	4	107	20	-30	-5	4	2	130	(25	27	-12	13	2	21/	207	20	-2	4	ŝ	1262	1217	19
- 1	~	7	1104	1170	12	-5	14	7	107	(20	- 32	-4	4	2	100	270	-25	-11	13	2	243	239	20	-1	4	2	499	499	ÿ
_0	10	7	244	25/	40	-4	14	7	432	429	- 20	-3	4	2	209	2/0	47	- 10	13	2	23	10/	-20		4	2	320	229	<u> </u>
- 7	10	7	201	807	44	-3	14	1	47	402	-29	-2	<i>'</i>	2	177	170	17	-9	13	2	1/0	104	10	-4	2	ž	1102	1144	Ŷ
-7	10	7	450	444		-2	14	7	427	102	-30	-1	÷	2	140	145	44	-0	12	5	303	100	20	-3	2	4	570	001	
-4	10	7	287	283	12	- 1	14	7	423	430	-25	-7	(2	2	543	578	11		13	2	325	224	20	-2	2	4	332	323	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-5	10	7	020	035	17	-14	15	2	116	40	-72	- 4	8	ź	199	176	12	-5	13	5	20/	205	23	-1	2	4	1077	710	20
-4	10	2	475	408	16	-13	15	2	172	168	18	-5	Ř	ś	86	83	-25	-4	13	5	120	126	.71	-5	~	~	604	507	
-3	10	2	375	385	13	-12	15	2	463	453	20	-4	8	ś	506	507	7	-7	13	ś	121	172	-20	-4	6	6	571	570	10
-2	10	4	777	795		-11	15	4	118	86	-27	-3	8	5	223	216	ò	-2	13	ś	232	210	14		~	~	1470	1473	25
-1	10	4	315	328	ó	-10	15	4	209	211	16	-2	8	5	112	109	-10	-1	13	ś	45	23	-26	-2	6	~	432	436	6
Ó	10	4	338	335	7	-9	15	4	536	521	18	-1	8	5	586	597	8	0	13	ŝ	115	99	-25	-1	6	6	500	508	11
-10	11	4	622	627	7	-8	15	4	45	54	-26	, 0	8	5	265	253	ş	-13	14	5	162	164	21	'n	~	6	1486	1481	20
-9	11	4	87	84	-28	-7	15	4	155	148	24	-8	9	5	48	29	-25	-12	14	5	86	46	-32	-^	7	6	507	505	7
-8	11	4	126	85	20	-6	15	4	500	502	15	-7	9	5	65	35	-28	-11	14	5	120	138	-27	-5	7	6	900	907	10
-7	11	4	695	702	12	-5	15	4	121	97	-23	-6	9	5	99	103	-27	-10	14	5	190	205	15	-4	7	6	371	365	
																			-						•	-			_

107

Page 4

Observed and calculated structure factors for BaCoSiO

h k	L 10F	o 10	Fc	10s	h	k	ι	10Fo	10Fc 10	s I	h k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ŧ	10Fo	10Fc	10s
-37	6 32	63	45	9	-10	13	6	127	101 -2	2 (05	7	146	128	13	-7	12	7	121	74	-30	-3	5	8	597	592	6
-27	6 95	4 9	61	12	-9	13	6	209	224 1	7 -	56	7	187	194	12	-6	12	7	44	8	-26	-2	5	8	600	606	7
-1 7 (6 35	33	55	8	-8	13	6	498	489 2	0 -	46	7	114	115	-25	-5	12	7	152	130	19	-1	5	8	1267	1258	23
07	6 27	'6 2	89	11	-7	13	6	130	128 -2	4 -	36	7	122	29	-41	-4	12	7	101	111	-30	0	5	8	436	426	7
-7 8	6 78	5 7	82	6	-6	13	6	171	183 1	6 -	2 6	7	57	70	-30	-3	12	7	61	22	-28	-5	6	8	527	545	10
-6 8	6 47	νο <u>λ</u>	80	ō	-5	13	6	473	454 1	2 -	1 6	7	150	154	14	-2	12	7	156	137	20	-4	6	8	651	650	13
-5.8	6 51	5 5	22	Ŕ	-4	13	~	102	64 -2	io i		7	40	43	-20	-1	12	7	103	110	-34	-3	~	8	316	316	12
	6 94		72	14	-7	17	~	144	175 1	<u>د</u>	67	÷	46	57	-27	'n	12	÷	71	43	-31	-2	~	8	508	507	7
-4 0	0 00 4 E/	7 5	22	17		17	4	707	797 4	ວ _1	57	÷	40	1.94	7	-12	12	÷	471	121	10	-1	4		401	504	÷
- 5 0 0	4 44 4 4 4	2 2	7/	~	-6	17	4	471	92 - 7	e -		÷	417	-00	- 20	- 16	17	÷	464	444	20		4		242	350	
-20		0 0	04	~	-1	13	2	131	70 -1		* *	4	44/	47	-27	-10	13	-	104	100	-73		7		144	234	7
-1 0 1		20		14	47	13	2	775	37 -6	· ·		4	/66	((0)	-22	- 10	13	4	100		- 32	-0	-	0	410	410	7
0 8 9	0 444	4	51	11	- 15	14	2	323	317 1	U - (433	407			13	4	01	00	-32	-3	4	0	1002	1000	10
-89	6 37	2 3	72	8	-12	14	0	252	229 1	4 -	1 (94	78	-28	-8	15	1	221	207	20	-4	-	ð	023	617	14
-790	6 24	0 2	41	10	-11	14	0	240	245 1	5 1			70	79	-20	-7	15	2	124	44	-31	-3	4	8	570	5/5	
-6 9 (6 111	2 11	24	15	-10	14	6	545	558 1	4 -	6		590	392	13	-6	15	1	147	105	19	-2	1	8	1099	1097	11
-590	6 56	25	67	11	-9	14	6	240	238 1	2 -0	58	7	207	211	13	-5	13	7	221	209	16	-1	7	8	612	627	14
-49	6 39	33	85	16	-8	14	6	225	236 1	8 -	58	7	63	12	-30	-4	13	7	45	44	-26	0	7	8	505	515	11
-39	6 111	5 11	29	16	-7	14	6	420	410 2	2 -4	48	7	428	439	11	-3	13	7	50	36	-30	-7	8	8	904	906	- 7
-2 9	6 40	4 4	-00	8	-6	14	6	320	329 1	0 -	58	7	160	164	15	-2	13	7	161	145	20	-6	8	8	406	417	14
-1 9 (6 39	94	-09	8	-5	14	6	276	275 1	2 -2	28	7	93	- 51	-33	-1	13	7	57	55	-34	-5	8	8	414	416	8
09	6 86	48	65	11	-4	14	6	402	384 1	7 -	18	7	423	436	10	0	13	7	64	12	-25	-4	8	8	996	9 %	13
-9 10	6 27	72	81	20	-3	14	6	277	273 1	8 (8 0	7	195	167	11	-13	14	7	117	112	-33	-3	8	8	385	394	13
-8 10	6 59	1 6	05	9	-2	14	6	185	192 1	8 -1	B 9	7	155	123	16	-12	14	7	129	90	-38	-2	8	8	332	326	11
-7 10	6 13	9 1	30	18	-1	14	6	283	276 2	9 -	79	7	69	78	-29	-11	14	7	158	137	22	-1	8	8	910	910	21
-6 10	6 31	83	37	9	0	14	6	223	207 1	2 -0	69	7	69	38	-27	-10	14	7	167	138	24	0	8	8	371	370	7
-5 10	6 70	47	03	13	-13	15	6	160	125 Z	5 -!	59	7	54	72	-33	-9	14	7	191	181	24	-8	9	8	421	428	14
-4 10	6 16	5 1	49	17	-12	15	6	403	389 1	2 -4	49	7	121	65	-24	-8	14	7	122	83	-29	-7	9	8	557	552	17
-3 10	6 22	5 2	20	16	-11	15	6	190	193 1	6 -3	39	7	131	- 77	-24	-7	14	7	171	164	21	-6	9	8	230	202	13
-2 10	6 67	76	92	9	-10	15	6	134	105 -2	5 -2	29	7	203	200	- 14	-6	14	7	180	191	24	-5	9	8	322	322	9
-1 10	6 24	1 2	48	19	-9	15	6	456	454 1	7	19	7	139	146	18	-5	14	7	62	62	-36	-4	9	8	478	478	13
0 10	6 18	2 1	60	14	-8	15	6	249	251 1	5 (0 9	7	50	42	-25	-4	14	7	180	159	17	-3	9	8	219	197	11
-10 11	6 54	0 5	32	11	-7	15	6	170	162 2	3 -9	9 10	7	140	122	18	-3	14	7	133	131	-24	-2	9	8	370	389	14
-9 11 4	6 38	53	69	18	-6	15	6	491	463 1	9 -1	B 10	7	327	319	12	-2	14	7	71	93	-30	-1	9	8	367	359	8
-8 11	6 39	4 4	12	11	-5	15	6	201	192 1	8 -	7 10	7	73	69	-31	-1	14	7	142	135	23	0	9	8	231	236	11
-7 11	6 62	36	07	20	-4	15	6	193	194 1	8 -0	6 10	7	105	126	-34	-12	15	7	66	35	-31	-9	10	8	360	367	11
-6 11	6 40	7 4	00	8	-3	15	6	394	384 1	5 -9	5 10	7	329	326	14	-11	15	7	66	97	-39	-8	10	8	728	716	21
-5 11	6 33	3 3	34	12	-2	15	6	186	176 1	7 -	4 10	7	53	20	-27	-10	15	7	63	58	-37	-7	10	8	487	482	10
-4 11	6 52	2 5	39	9	-10	16	6	62	17 -3	io -:	5 10	7	60	59	-27	-9	15	7	47	40	-27	-6	10	8	396	378	9
-3 11	6 38	9 3	92	8	-9	16	6	195	162 3	2 -2	2 10	7	294	307	12	-8	15	7	84	101	-31	-5	10	8	768	785	11
-2 11	6 33	2 3	36	14	-8	16	6	310	290 1	7 -	1 10	7	106	64	-29	-7	15	7	74	22	-32	-4	10	8	501	513	8
-1 11	6 54	1 5	35	16	-7	16	6	51	58 -3	1 (0 10	7	119	100	-22	-6	15	7	53	16	-30	-3	10	8	408	418	Ģ
0 11	6 34	4 3	42	15	-6	16	6	130	85 -2	· - 10	0 11	7	222	210	14	-5	15	7	112	127	-33	-2	10	8	723	710	ó
-11 12	6 32		28	12	ň	1	7	63	70 - 2		0 11	7	104	100	22	-4	15	÷	55	63	-31	-1	10	8	409	410	10
-10 12	6 1/	51	50	22	.1	2	÷	607	676 1	5 -1	R 11	7	172	145	17	-7	15	7	54	26	-32	ż	10	8	378	375	11
-0 12	6 72	5 4	.07	20		2	÷	1/1	110 1	5 .	7 11	;	277	202	15	0		é	134	428	11	-10	11	8	601	507	10
-8 12	6 74	7 7	14	12	_2	7	÷.	07	70 -7		6 44		477	150	27	Ň	4		010	900	12	- 10			221	371	47
-7 12	6 29	5 5	73	17	-1	7	÷	117	107 1	.+ R	5 11	÷	150	141	27	-1	2	9	15/.6	15/5	0	-9	44	8	278	243	10
-4 12	4 47	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00		-1	2	-		77 - 2	0 . 7 .		÷	345	207	23	-,	2	0	1340	470	7	-0	44	•	230	231	19
-6 12 0	0 0/ 4 7/	10	190	44	-7	3	4	101	476 4	5 - 7 -	4 II 2 44	<i>'</i>	203	293	20	- 7	÷	0	00Z	0/9 E0/	- 7	-1	44	0	7013	0//	17
-3 12 0	0 20 4 9/	74 Z	02	47	-3	7	4	191	(/)	7 -		4	207	210	14	-2	2	0	714	200		-0		•	201	267	17
-4 12 (0 24	32	47	17	-2	4	7	04/	048	r -	c 11	<i>(</i>	47	21	-20	-1	5	ö	700	090	10	-2	11	ð	218	218	10
-5 12	0 68	** 0	00	10	-1	4	(66	49 -2	- 0	1 11	<u></u>	251	241	10	0	5	ŏ	527	524		-4	11	ð	000	655	17
-2 12	o 30	v 3	10	17	U .	4	<u>′</u>	(Y)	65 -1	y (0 11	7	167	158	15	-3	4	8	031	027	8	-3	11	8	278	282	15
-1 12	0 25	4 2	49	19	-4	5	7	626	611	6 -1	1 12	7	46	48	-26	-2	4	8	1411	1397	11	-2	11	8	323	318	13
0 12	0 58	5 5	71	22	-3	5	7	138	158 1	6 -1	0 12	7	45	31	-26	-1	4	8	799	809	10	-1	11	8	565	554	17
-12 13	0 21	> 2	:05	16	-2	5	7	137	148 1	7 -	9 12	7	99	19	-31	0	4	8	652	651	10	0	11	8	234	229	12
-11 13	0 41	1 4	01	24	-1	5	7	601	596 1	1 -	8 12	7	122	137	-26	-4	5	8	1317	1291	13	-11	12	8	195	190	21

h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ł	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s
-10	12	8	351	353	11	-5	6	9	172	156	23	-6	12	9	98	18	-32	0	7	10	433	445	9	-6	13	10	271	257	18
-9	12	8	193	171	16	-4	6	9	90	57	-30	-5	12	9	165	139	-30	-7	8	10	303	298	11	-5	13	10	199	160	23
-8	12	8	305	304	23	-3	6	9	43	26	-25	-4	12	9	83	70	-31	-6	8	10	432	432	15	-4	13	10	237	238	15
-7	12	8	337	317	9	-2	6	9	207	209	14	-3	12	9	47	37	-27	-5	8	10	473	481	8	-3	13	10	257	259	21
-6	12	8	228	205	15	-1	6	9	48	64	-29	-2	12	9	143	107	-29	-4	8	10	267	271	12	-2	13	10	124	148	-32
-5	12	8	294	313	15	0	6	9	43	25	-22	-1	12	9	119	66	-33	-3	8	10	467	463	8	-7	14	10	136	130	-28
-4	12	8	325	325	14	-6	7	9	122	128	-24	0	12	9	52	22	-27	-2	8	10	500	523	20	0	1	11	93	37	-28
-3	12	8	172	172	19	-5	7	9	177	169	15	-12	13	9	- 91	84	-35	-1	8	10	272	257	12	-1	2	11	225	239	- 14
-2	12	8	207	210	17	-4	7	9	85	14	-30	-11	13	9	111	69	-43	0	8	10	413	403	10	0	2	11	85	59	-27
-1	12	8	280	251	13	-3	7	9	158	128	19	-10	13	9	48	19	-28	-8	9	10	410	405	11	-2	3	11	74	63	-30
0	12	8	153	128	19	-2	7	9	155	167	16	-9	13	9	57	- 74	-31	-7	9	10	405	405	16	-1	3	11	72	103	-30
-12	13	8	222	208	20	-1	7	9	43	38	-25	-8	13	9	52	85	-31	-6	9	10	860	850	16	0	3	11	75	26	-26
-11	13	8	425	427	27	0	7	9	47	27	-24	-7	13	9	78	56	-33	-5	9	10	490	503	21	-3	4	11	45	36	-26
-10	13	8	313	299	27	-7	8	9	151	131	-42	-6	13	9	51	66	-30	-4	9	10	414	421	10	-2	4	11	235	235	15
-9	13	8	251	250	14	-6	8	9	88	85	-40	-5	13	9	127	87	-28	-3	9	10	850	850	22	-1	4	11	110	56	-28
-8	13	8	475	465	12	-5	8	9	88	42	-31	-4	13	9	71	48	-35	-2	9	10	414	430	11	0	4	11	90	80	-27
-7	13	8	334	344	11	-4	8	9	134	109	-40	-3	13	9	58	23	-36	-1	9	10	359	374	10	-4	:5	11	247	230	18
-6	13	8	306	307	12	-3	8	9	150	107	22	-2	13	9	66	50	-40	0	9	10	716	703	14	-3	5	11	53	47	-29
-5	13	8	518	515	20	-2	8	9	61	2	-33	-1	13	9	49	8	-28	-9	10	10	348	330	24	-2	5	11	70	72	-34
-4	13	8	353	364	15	-1	8	9	143	145	22	-11	14	9	55	30	-33	-8	10	10	249	242	13	-1	5	11	226	225	13
-3	13	8	271	247	14	0	8	9	59	43	-24	-10	14	9	54	54	-31	-7	10	10	327	330	10	0	5	11	82	85	-29
-2	13	8	468	452	28	-8	9	9	156	146	18	-9	14	9	69	94	-38	-6	10	10	394	393	16	-5	6	11	75	63	-29
-1	13	8	338	337	25	-7	9	9	46	45	-26	-8	14	9	48	35	-28	-5	10	10	267	238	18	-4	6	11	76	79	-30
0	13	8	310	279	19	-6	9	9	84	38	-30	-7	14	9	58	46	-32	-4	10	10	381	380	16	-3	6	11	47	18	-27
-12	14	8	168	159	22	-5	9	9	113	101	-28	-6	14	9	92	116	-33	-3	10	10	378	359	9	-2	6	11	75	86	-31
-11	14	8	176	176	19	-4	9	9	64	60	-33	-5	14	9	62	32	-31	-2	10	10	223	223	18	-1	6	11	104	107	-31
-10	14	8	456	423	13	-3	9	9	59	16	-33	-4	14	9	69	64	-37	-1	10	10	376	380	10	0	6	11	87	22	-28
-9	14	8	229	202	18	-2	9	9	173	170	17	-3	14	9	87	68	-36	0	10	10	306	294	11	-6	7	11	52	73	-30
-8	14	8	230	214	23	-1	9	9	53	51 ·	-29	0	0	10	1581	1578	15	- 10	11	10	143	164	-25	-5	7	11	164	174	20
-7	14	8	447	442	18	0	9	9	142	16	-42	0	1	10	651	659	7	-9	11	10	305	296	11	-4	7	11	95	40	-30
-6	14	8	161	152	24	-9	10	9	156	123	22	-1	2	10	419	413	10	-8	11	10	327	339	13	-3	7	11	147	79	20
-5	14	8	189	158	19	-8	10	9	156	120	18	0	2	10	650	646	6	-7	11	10	205	189	23	-2	7	11	192	182	15
-4	14	8	433	406	15	-7	10	9	87	36	-32	-2	3	10	692	693	7	-6	11	10	325	326	14	-1	7	11	115	57	-28
-3	14	8	166	170	22	-6	10	9	64	101	-36	-1	3	10	698	699	7	-5	11	10	333	339	15	0	7	11	54	52	-26
-2	14	8	199	191	19	-5	10	9	122	119	-28	0	3	10	1379	1392	12	-4	11	10	246	240	13	-7	8	11	186	155	27
-10	15	8	273	274	14	-4	10	9	58	22	-29	-3	4	10	589	596	13	-3	11	10	335	322	13	-6	8	11	144	129	22
-9	15	8	151	127	22	-3	10	9	49	29 -	-29	-2	4	10	389	387	11	-2	11	10	360	352	16	-5	8	11	69	76	-30
-8	15	8	161	157	19	-2	10	9	125	128	-34	-1	4	10	636	640	7	-1	11	10	200	190	19	-4	8	11	178	163	16
-7	15	8	249	230	21	-1	10	9	116	54	-27	0	4	10	610	606	7	0	11	10	332	312	15	-3	8	11	60	115	-35
-6	15	8	99	116	-34	0	10	9	102	- 46 ·	-32	-4	5	10	326	338	17	-11	12	10	308	308	14	-2	8	11	67	38	-35
-5	15	8	169	187	20	-10	11	9	64	76	-31	-3	5	10	574	560	7	-10	12	10	277	263	19	-1	8	11	170	181	20
0	1	9	87	118	-35	-9	11	9	93	98	-37	-2	5	10	546	551	10	-9	12	10	556	533	24	0	8	11	57	55	-30
-1	2	9	333	337	9	-8	11	9	86	54	-31	-1	5	10	361	388	9	-8	12	10	354	344	20	-8	9	11	125	112	-29
0	2	9	41	32	-20	-7	11	9	79	112	-32	0	5	10	567	565	10	-7	12	10	314	328	15	-7	9	11	58	48	-31
-2	3	9	66	35	-31	-6	11	9	46	49	-26	-5	6	10	580	577	7	-6	12	10	564	560	17	-6	9	11	48	7	-28
-1	3	9	93	61	-26	-5	11	9	46	62	-27	-4	6	10	619	600	11	-5	12	10	290	306	12	-5	9	11	70	54	-31
.0	3	9	71	10	-24	-4	11	9	64	88	-29	-3	6	10	1188	1179	19	-4	12	10	265	269	18	-4	9	11	106	71	-38
-3	4	9	190	195	14	-3	11	9	120	110	-36	-2	6	10	506	506	9	-3	12	10	555	532	29	-3	9	11	66	27	-30
-2	4	9	300	295	9	-2	11	9	157	92	18	-1	6	10	514	515	9	-2	12	10	300	306	17	-2	9	11	70	70	-36
-1	4	9	42	20	-24	-1	11	9	52	73 ·	-31	0	6	10	1068	1066	14	-1	12	10	235	237	16	-1	9	11	138	90	-33
0	4	9	42	44	-21	0	11	9	77	84	-28	-6	·7	10	509	515	12	0	12	10	478	465	14	0	9	11	60	35	-26
-4	5	9	249	252	12	-11	12	9	125	73 -	-33	-5	7	10	305	294	13	-11	13	10	179	148	19	-9	10	11	101	119	-33
-3	5	9	98	79	-31	-10	12	9	54	62	-32	-4	7	10	505	508	8	-10	13	10	249	258	18	-8	10	11	144	134	24
-2	5	9	110	105	-32	-9	12	9	87	12 ·	-31	-3	7	10	466	454	22	-9	13	10	286	278	12	-7	10	11	80	55	-33
-1	5	9	2 24	218	20	-8	12	9	151	138	20	-2	7	10	302	297	11	-8	13	10	216	191	15	-6	10	11	65	47	-30
0	5	9	141	136	18	-7	12	9	73	74	-35	-1	7	10	496	495	10	۰7	13	10	294	286	26	-5	10	11	159	128	21

h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	ι	10Fo	10Fc	10s	h	k	t	10Fo	10Fc	10s
-4	10	11	86	52	-33	-3	6	12	207	213	16	-2	11	12	307	317	12	-3	9	13	54	24	-32	-1	8	14	200	188	19
-3	10	11	78	87	-34	-2	6	12	475	484	9	-1	11	12	297	275	18	-2	9	13	55	80	-32	0	8	14	279	273	16
-2	10	11	73	117	-36	-1	6	12	495	509	9	-7	12	12	260	265	14	-1	9	13	108	49	-32	-7	9	14	374	379	16
-1	10	11	80	62	-32	0	6	12	186	214	15	-6	12	12	94	116	-38	0	9	13	73	11	-28	-6	9	14	194	194	20
0	10	11	49	47	-25	-6	7	12	382	384	17	-5	12	12	293	306	17	-8	10	13	221	191	22	-5	9	14	325	312	14
-10	11	11	51	91	-30	-5	7	12	485	481	9	Ó	1	13	50	94	-25	-7	10	13	85	54	-32	-4	9	14	341	349	12
-9	11	11	122	113	-35	-4	7	12	445	443	13	-1	2	13	375	372	10	-6	10	13	116	74	-34	-3	9	14	180	192	24
-8	11	11	93	70	-40	-3	7	12	430	433	11	0	2	13	53	35	-27	-5	10	13	188	190	20	-2	9	14	295	298	14
-7	11	11	168	125	-32	-2	7	12	458	469	18	-2	3	13	55	40	-32	-4	10	13	56	39	-33	0	1	15	53	45	-27
-6	11	11	140	81	-30	-1	7	12	427	452	9	-1	3	13	60	26	-36	-3	10	13	77	82	-34	-1	2	15	266	295	17
-5	11	11	48	47	-28	0	7	12	350	362	12	0	3	13	53	30	-27	-2	10	13	177	172	24	0	2	15	67	34	-30
-4	11	11	167	121	21	-7	8	12	389	390	13	-3	4	13	156	117	-38	0	0	14	313	323	21	-2	3	15	94	67	-35
-3	11	11	84	96	-34	-6	8	12	409	420	11	-2	4	13	358	342	11	0	1	14	502	509	9	-1	3	15	121	59	-34
-2	11	11	78	55	-33	-5	8	12	413	430	12	-1	4	13	80	47	-32	-1	2	14	305	318	14	0	3	15	52	17	-26
-1	11	11	89	87	-36	-4	8	12	460	466	19	0	4	13	63	76	-32	0	2	14	459	454	9	-3	- 4	15	155	82	-27
Ó	11	11	109	83	-33	-3	8	12	435	438	10	-4	5	13	305	304	15	-2	3	14	435	440	10	-2	4	15	248	278	21
-10	12	11	95	24	-33	-2	8	12	408	410	15	-3	5	13	73	59	-32	-1	3	14	486	500	12	-1	:4	15	63	44	-33
-9	12	11	82	8	-33	-1	8	12	422	428	10	-2	5	13	69	54	-32	Ó	3	14	266	269	14	0	4	15	125	77	-28
-8	12	: 11	69	79	-37	Ó	8	12	392	400	10	-1	5	13	312	304	27	-3	4	14	457	441	11	-4	5	15	271	264	16
-7	12	11	101	50	-49	-8	9	12	399	392	17	0	5	13	98	99	-32	-2	4	14	254	281	15	-3	5	15	74	53	-33
-6	12	11	56	8	-33	-7	9	12	387	375	20	-5	6	13	50	55	-29	-1	4	14	527	531	10	-2	5	15	94	11	-36
-5	12	11	155	140	23	-6	9	12	187	177	19	-4	6	13	75	22	-32	0	4	14	476	474	10	-1	5	15	275	270	17
-4	12	11	101	48	-31	-5	9	12	381	377	10	-3	6	13	79	18	-32	-4	5	14	271	251	17	0	5	15	69	60	-37
-3	12	11	63	7	-39	-4	9	12	388	398	16	-2	6	13	125	146	-31	-3	5	14	383	410	11	-5	6	15	68	47	-41
-2	12	11	102	117	-36	-3	9	12	165	178	22	-1	6	13	54	45	-32	-2	5	14	386	398	11	-4	6	15	80	41	-46
-8	13	11	58	77	-35	-2	9	12	359	364	14	0	6	13	67	9	-26	-1	5	14	246	274	16	-3	6	15	52	11	-30
-7	13	11	72	25	-31	-1	9	12	348	362	12	-6	7	13	74	111	-37	0	5	14	353	356	10	-2	6	15	103	60	-38
-6	13	11	105	78	-34	0	9	12	91	139	-30	-5	7	13	265	253	22	-5	6	14	389	378	19	-1	6	15	80	59	-33
-5	13	11	126	100	-29	-9	10	12	305	325	13	-4	7	13	50	36	-29	-4	6	14	476	468	15	0	6	15	109	18	-28
0	C	12	243	212	21	-8	10	12	303	307	15	-3	7	13	186	121	-33	-3	6	14	273	274	14	-6	7	15	87	92	-39
0	1	12	604	603	7	-7	10	12	300	312	13	-2	7	13	267	265	13	-2	6	14	369	383	22	-5	7	15	249	226	19
-1	2	12	648	664	8	-6	10	12	319	326	14	-1	7	13	65	25	-31	-1	6	14	404	409	17	-4	7	15	94	34	-36
0	2	12	578	590	11	-5	10	12	354	353	11	0	7	13	51	50	-26	0	6	14	230	230	14	-3	7	15	73	79	-33
-2	3	12	544	531	8	-4	10	12	318	311	21	-7	8	13	221	217	17	-6	7	14	353	363	15	-2	7	15	210	234	21
-1	3	12	596	600	10	-3	10	12	309	303	11	-6	8	13	63	80	-32	-5	7	14	198	195	19	-1	7	15	68	41	-34
0	3	12	228	235	13	-2	10	12	352	340	23	-5	8	13	98	70	-35	-4	7	14	441	437	10	0	0	16	287	281	24
-3	- 4	12	495	508	9	-1	10	12	298	296	14	-4	8	13	222	228	17	-3	7	14	396	384	16	0	1	16	370	383	10
-2	4	12	584	593	22	0	10	12	294	266	12	-3	8	13	124	103	-37	-2	7	14	212	198	18	-1	2	16	183	142	26
-1	4	12	556	565	9	-10	11	12	328	297	14	-2	8	13	50	42	-29	-1	7	14	436	434	11	0	2	: 16	403	393	10
Ó	4	12	499	501	11	-9	11	12	326	308	12	-1	8	13	227	222	17	0	7	14	403	399	12	-2	3	16	384	391	12
-4	5	i 12	583	575	10	-8	11	12	326	319	21	0	8	13	110	97	-29	-7	8	14	215	197	17	-1	3	16	393	396	11
-3	5	i 12	544	534	8	-7	11	12	327	334	12	-8	9	13	118	81	-34	-6	8	14	310	315	14	0	3	16	270	300	13
-2	5	i 12	531	518	8	-6	11	12	360	346	11	-7	9	13	62	6	-36	-5	8	14	318	308	22	-3	4	16	334	345	18
-1	5	i 12	529	530	9	-5	11	12	326	326	16	-6	9	13	51	15	-29	-4	8	14	198	205	25	-2	4	16	145	118	-36
0	5	i 12	477	489	10	-4	11	12	287	278	26	-5	9	13	64	55	-38	-3	8	14	312	308	19	-1	- 4	16	323	345	14
-5	é	5 12	490	501	14	-3	11	12	340	343	13	-4	9	13	50	38	-29	-2	8	14	335	311	21	0	4	16	314	329	16
-4	é	5 12	512	523	10																								

Observed an	d calculated	structure	factors for SrE	BeSiO₄											Page 1
h k l 108	o 10Fc 10s	hkl	10Fo 10Fc 10s	h i	kι	10Fo 10Fc	10s	hk	l 10Fo	10Fc	10s	h	k	10Fo	10Fc 10s
	0 0 3 7 7 8 6 6 2 2 7 0 5 0 0 8 6 5 4 28 7 9 4 5 1 6 9 5 4 9 7 8 0 3 6 6 4 1 1 8 8 9 4 9 0 9 7 6 9 5 1 1 9 0 2 2 1 7 1 9 6 4 1 0 2 9 0 4 3 3 0 2 9 4 5 2 7 6 7 2 0 7 6 7 2 0 7	L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 81049101494010494010494040404040404040404	L 333333333333333333333333333333333333	10Fo 3502 1286 4377 82 F9 55 25 11 171 161 27 55 26 11 27 130 78 11 55 70 14 96 82 08 71 39 12 27 15 27 55 99 11 12 12 12 28 98 10 27 11 72 12 12 09 12 12 12 09 12 12 12 09 12 12 12 12 09 12 12 12 12 12 12 12 12 12 12 12 12 12	10s 8554614977758750589588694652503742277483972842632576562624525558758192759664729536793	£ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	L 4444444444555555555555555555555555555	10Fc 701516478981227642214228455224242224242224242424242424242424	1º 21382102127538857558785776613738991041214398694851167214522315355513113635848112118671361127814987211	ב אלאאריטבסאלסאאריסלאאליסאלאליסאלאליסאלאסלסלסאיסלאלאליסלאליסאלאסלסלאסלטלאסליסאליסאליסלאסליסאליסאליסאליס	k 8888812233344444555555666666777777888801223333444455555566666666771223333444455555501223333	10F0 15056 1966 1912 1912 1912 1912 1912 1912 191	10rc 121 97 14 91 12 5 610 911 18 9 16 915 9 8 12 10 8 11 11 25 13 914 11 7 13 12 13 10 22 9 912 6 3 12 5 6 6 6 5 8 6 8 1 4 10 9 17 15 19 12 7 12 13 19 10 10 5 7 6 11 5 19 12 17 14 28 18 19 15 15 15 15 15 15 15 15 15 15 15 15 15

	and calculated	structure	Tactors for a	0.73C80.27BeSIU4			i uge i	
h k l 1	10Fo 10Fc 10s	hkl	10Fo 10Fc 10s	h k l 10Fo	10Fc 10s h	k l 10Fo 10Fc 10s	hkl	10Fo 10Fc 10s
 ► 01081000000000000000000000000000000000	and calculated 10Fo 10Fc 10s 2 6-63 2 51 112 20 20 21 53 8 2 95 5-87 8 4 6 11 9 2 16 7 2 5 13 4 4 11 6 17 9 3 14 6 6 22 15 38 2 9 25 5 -8 7 8 4 6 11 9 2 16 7 2 5 5 3 2 15 3 8 2 9 5 5 5 2 3 0 17 12 2 5 7 5 3 2 15 3 8 2 9 5 5 12 8 5 9 7 4 0 5 1 2 2 12 2 2 5 3 8 1 2 9 2 5 5 2 3 0 1 1 2 2 5 7 5 1 2 4 4 6 7 5 5 3 2 15 3 8 8 7 7 5 1 2 4 4 6 7 5 5 3 2 15 3 8 8 7 7 5 1 2 4 4 6 7 5 5 3 2 15 3 8 8 7 7 5 1 2 4 4 6 7 5 5 3 2 15 3 8 8 7 7 5 1 2 4 4 6 7 5 5 3 2 1 2 8 7 7 5 1 3 4 4 6 1 7 9 3 3 4 6 6 6 2 1 1 3 2 7 5 5 3 2 8 7 7 7 5 1 3 4 4 6 7 7 5 5 3 2 8 7 7 1 9 2 4 5 7 7 5 3 3 8 7 7 9 3 7 1 9 2 4 5 7 7 5 3 3 8 7 7 5 1 2 4 4 6 7 5 7 7 5 3 2 8 7 7 1 9 2 4 5 7 7 5 3 3 8 7 7 9 3 7 1 9 2 4 5 7 7 5 3 3 8 7 7 9 3 7 1 9 2 4 5 7 7 5 3 3 8 7 7 9 3 7 1 9 2 4 5 7 7 5 3 3 8 7 7 9 3 7 1 9 2 4 5 7 7 5 3 3 8 7 7 9 3 7 1 9 2 4 5 7 7 5 3 3 8 7 7 9 3 7 1 9 2 4 5 7 7 5 1 1 5 4 4 4 7 3 - 1 7 9 3 3 4 4 6 7 2 5 2 3 9 8 7 2 1 7 9 3 5 5 1 0 5 7 7 5 1 3 14 4 4 4 3 1 2 2 0 2 4 2 0 2 7 2 1 1 5 3 4 3 3 3 5 1 1 - 2 0 4 4 4 7 3 1 2 0 2 4 2 0 2 7 1 1 5 4 4 4 4 3 1 1 - 2 0 4 4 4 4 1 1 - 2 0 4 4 4 4 1 1 - 2 0 4 4 4 4 1 1 - 2 0 4 4 4 4 1 1 - 2 0 4 4 4 4 1 1 - 2 0 4 4 4 4 1 1 - 2 0 4 4 4 4 4 1 1 - 2 0 4 4 4 4 4 1 1 - 2 0 4 4 4 4 4 1 - 2 0 4 4 4 4 4 1 - 2 0 4 4 4 4 4 1 - 2 0 4 4 4 4 4 4 4 1 - 2 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	L 000000000000000000000000000000000000	The construction of the c	10Fo 8240, pb8510, 10Fo 824, 10Fo 824, 10Fo 824, 10Fo 824, 10Fo 824, 10Fo 844, 10Fo 84		k l 10Fo 10Fc 10s 2 2028 1736 -79 3 2 210 2204 1737 1289 -35 5 2 21209 1233 -13 100 887 1289 -35 5 2 2 200 201 37 1289 -35 5 2 2 201 37 13 38 -15 5 5 2 2 201 37 13 -13 2 8 8 2 2 2 2 2 3 6 5 10 9 12 33 -13 2 8 8 2 2 2 2 10 201 1 20 -12 5 9 10 201 1 20 -12 5 9 10 9 12 33 -13 5 5 5 2 2 1209 11 23 -13 5 5 5 2 2 1209 11 23 -13 5 5 6 6 6 6 2 2 7 19 10 24 -17 45 9 10 24 -17 -21 24 27 75 5 5 11 25 -15 77 77 77 77 77 77 77 77 77 77 77 77 77	2 2 2222222222222222222222222222222222	10F0 10Fc 10s 307 1-23 307 2-29 -20 307 2-20 307 2-20 308 2-20 307 2-20 308 2-20 207 3-21 308 2-20 207 3-20 207 -20 207 3-20 207 20 207 3-20 207 20 207 20 207 20 207 20 207 20

Observ	/ed a	and calcula	ated s	tructur	e fac	tors f	for Sro	73Ca0.27	BeSiO	4										Pag	je 2
hk	L 10)Fo 10Fc 1	0s	h k	t 10F	o 10Fc	: 10s	h k	ι	10Fo	10Fc	10s	h k	L 10	Fo 10	Fc 10s	h	k	l 10Fc	10Fc	: 10s
ĸ੶ਲ਼ਖ਼ਲ਼ਲ਼੶ਗ਼ਗ਼ਗ਼ਗ਼ਸ਼ਗ਼		10 10 10 10 10 10 10 10 10 10		h 432105432106543210877777778888888889999999999999000000000	1 444444444444444444444444444444444444		10 871599515819812864461129872301398178844856991216825679194772774655861183880522048839773471918420552072175130102522133268818624	£ 434144455555555555555555555555555555555	ป	0 276358347263365422822492878443378647429224201151249388358856501029253037155258312586202968931428662772689459278871284470523346	10F 2451272282725475127924366777645092843246072525588726243024427548789861298728243978512329654462279831451185122545758389788449137583278449	0 921117212128257247622312796231025272266666775125918268512468487677419914040768111567815917138058687811	ĸ 111222222222222222222222233355555555555	■ 555555555555555555555555555555555555		c 1265988847237897688541827427334497844878787877817924723774192552882768732477821473487221987328788518277232772327125612265973311168	ŢŶŎŢŎŔŴŶŔŎĹŔĹŶĹŶŴŶŶŔŎŶŔŶŔŶŔŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶ	k 8888899999999999999999999999999999999	1 666666666666666666666666666666666666	10Fc 5402 542 53754 542 537575 542 537575 542 537575 544 545555 542 54755 544 545555 542 547555 544 545555 544 545555 544 545555 544 545555 544 5455555 544 5455555 544 5455555 544 54555555 544 545555555 544 545555555555	18 1498241428-57113213185220041192171421163101088200000000000000000000000000000000

Observed and calculated structure factors for Sr0.73Ca0.27BeSiO4