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ABSTRACT

This thesis contributes significantly to the advancement of the response sensitivity
analysis with time-domain electromagnetic (EM) solvers. The proposed self-adjoint
sensitivity approaches achieve unprecedented computational efficiency. The
response Jacobians are computed as a simple post-process of the field solution and
the approaches can be applied with any commercial time-domain solver. The
proposed sensitivity solvers are a breakthrough in the sensitivity analysis of high-
frequency structures since they can be implemented as standalone software or plug-
in for EM simulators. The goal is to aid the solution of microwave design and
inverse problems.

The sensitivity information is crucial in engineering problems such as
gradient-based optimization, yield and tolerance analyses. However, due to the lack
of robust algorithms, commercial EM simulators provide only specific engineering
responses not their sensitivities (or derivatives with respect to certain system
parameters). The sensitivities are typically obtained by response-level finite

difference (FD) approximations or parameter sweeps. For each design parameter of

iii



interest, at least one additional full-wave analysis is performed. Such approaches can
easily become prohibitively slow when the number of design parameters is large.

However, no extra system analysis is needed with the self-adjoint sensitivity
analysis methods. Both the responses and their Jacobian are obtained through a
single system analysis. In this thesis, two self-adjoint sensitivity solvers are
introduced. They are based on a self-adjoint formulation which eliminates the need
to perform adjoint system analysis. The first sensitivity solver is based on a self-
adjoint formula which operates on the time waveforms of the field solution. Three
different approaches associated with this sensitivity solver have been presented. The
first approach adopts the staggered grid of the finite-difference time-domain (FDTD)
simulation. We refer it as the original self-adjoint approach. The second approach is
the efficient coarse-grid approach. It uses a coarse independent FD grid whose step
size can be many times larger than that of the FDTD simulation. The third approach
is the accurate central-node approach. It uses a central-node grid whose field
components are collocated in the center of the traditional Yee cell.

The second self-adjoint sensitivity solver is based on a spectral sensitivity
formula which operates on the spectral components of the E-field instead of its time
waveforms. This is a memory efficient wideband sensitivity solver. It overcomes the
drawback associated with our first sensitivity solver whose memory requirements
may become excessive when the number of the perturbation grid points is very large.

The spectral approach reduces the memory requirements roughly from Gigabytes to
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Megabytes. The focus of this approach is on microwave imaging applications where
our first sensitivity solver is inapplicable due to the excessive memory requirements.
The proposed sensitivity solver is also well suited for microwave design problems.
The proposed self-adjoint sensitivity solvers in this thesis are verified by
numerous examples. They are milestones in sensitivity analysis because they have

finally made EM simulation-based optimization feasible.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

For the last five decades, RF/microwave engineers have been mainly relying on
equivalent-circuit models for the design of optimal structures. However, as operating
frequencies increase into the microwave band, the conventional equivalent-circuit
models are no longer adequate to account for the actual electromagnetic (EM) effects
of the physical layout. Nowadays, we need to consider full-wave EM effects into the
design flow from the very beginning. EM simulations are necessary throughout the
design process rather than being used only for final verification before prototyping.
The merging of full-wave EM simulations and optimization techniques, which is
usually referred to as simulation-based optimization, opens a new way for
RF/microwave engineers to design high-frequency structures. Simulation-based
optimization is also widely employed in solving microwave inverse problems. In
comparison with microwave design problems, they are often more challenging due to
the large number of the optimizable parameters. In this thesis, we address one key

challenge of simulation-based optimization, namely, sensitivity analysis.



Sensitivity analysis yields the response gradients or the Jacobians with
respect to the optimizable shape and material parameters. Sensitivity information is
widely used in engineering problems such as optimization, modeling, tolerance and
yield analysis, etc. For example, Jacobians are crucial in gradient-based
optimization, which is one of the most powerful optimization approaches due to its
fast convergence. However, Jacobians are not provided by current commercial EM
solvers due to the lack of robust and feasible algorithms. Response Jacobians are
usually estimated using response-level finite differences (FDs) or parameter sweeps.
For a problem with N optimizable parameters, these approaches require at least N+1
system full-wave analyses, thus, can easily become prohibitively slow due to the
excessive computational demand of the full-wave simulations. Beside their
computational inefficiency, it is also known that the FD approaches are unreliable
and prone to numerical errors [1].

Approaches based on the adjoint-variable method, on the other hand, are
efficient and reliable. Response Jacobians are computed with at most two system
analyses regardless of the number of the optimizable parameters [2]-[7]. Moreover,
with the self-adjoint approaches, only one system analysis is needed to compute both
the response and the response Jacobian [8]-[13]. The adjoint-problem solution is
computed directly from the original field solution via simple mathematical
transformations. Thus, the self-adjoint approach reduces in half the computational

cost in comparison with the existing adjoint methods. The adjoint computation itself



has very small overhead, which in general varies from several seconds to a few
minutes, and is always negligible compared with the time required by the simulation.

The need for adjoint-variable sensitivity analysis with full-wave EM solvers
is becoming more and more imperative. However, to our knowledge, commercial
full-wave EM solvers have not yet adopted adjoint-based techniques for response
gradient computation due to the lack of generic and feasible adjoint-variable
algorithms. Only recently, at the 2009 IEEE International Microwave Symposium,
Ansoft Corporation (now part of Ansys) has announced that its High-Frequency
Structure Simulator (HFSS) ver. 12, to be released by the end of 2009, will be
equipped with S-parameter sensitivities.

This thesis addresses the above need in the case of time-domain simulations.
A family of generic self-adjoint methods for sensitivity analysis with time-domain
EM solvers is developed. These approaches feature both computational efficiency
and high accuracy. The only requirement is to access the field solution at the so-
called perturbation grid points. The Jacobian computation is done as an independent
post-process of EM field solution. This makes our approaches very versatile and easy
to implement. In other words, our approaches are applicable with commercial EM
solvers, and can be implemented as standalone sensitivity solvers being plugged into
commercial simulators for aiding the solution of microwave design and solving

inverse problems.



1.2 CONTRIBUTIONS

The author has contributed substantially to a number of original developments

presented in this thesis. These are briefly described next.

1.2.1 Theoretical contributions

(1) A self-adjoint algorithm for the computation of response derivatives in lossy
inhomogeneous structures with time domain EM solvers.

(2) A spectral self-adjoint sensitivity method operating on the spectral
components of the E-field.

(3) A central-node approach employing a novel independent central-node finite-
difference grid for accurate self-adjoint sensitivity computation.

(4)  An efficient coarse-grid approach to the adjoint sensitivity analysis with full-
wave EM time-domain simulations.

(5) Implementation of self-adjoint sensitivity analysis for shape parameters of 3-

D metallic structures for both time and frequency domain simulators.

1.2.2 Publications

The work presented in this thesis has been published in four refereed journal papers

and nine refereed conference papers. These are cited throughout the thesis.



1.3 OUTLINE OF THE THESIS

This thesis presents novel approaches to self-adjoint sensitivity analysis (SASA)
with full-wave time-domain EM solvers and their applications in microwave inverse
and design problems.

In Chapter 2 we start with a brief review of the time-domain discrete adjoint
sensitivity expression. We then introduce the field-mapping technique. Through field
mapping, N perturbed adjoint solutions can be approximated with only one adjoint
system analysis. The adjoint excitation and how to solve adjoint problem are briefly
addressed in the end of Chapter. The limitations of adjoint sensitivity analyses are
also discussed.

Chapter 3 addresses the SASA with EM time-domain solvers. We start with
an introduction to the time-domain SASA for dielectric structures. The details of the
implementation and the de-embedding technique are also described. Later, we
introduce the time-domain SASA for metallic structures. The formulations and
implementations are described in details. Our approaches are verified through
various examples using time-domain field solutions with commercial EM solvers,
which are based on the finite-difference time-domain (FDTD) and the transmission
line modeling (TLM) method [14]-[15].

We address an efficient coarse-grid approach to the sensitivity analysis with

full-wave EM time-domain simulations in Chapter 4. The use of coarse grids can



reduce the memory requirements and can improve the computational efficiency of
the sensitivity analysis while maintaining good accuracy. We start with introducing
the implementation of the coarse grid in inhomogeneous structures containing lossy
dielectric objects. Then, the accuracy of the proposed coarse-grid approach is
investigated through examples. We show that the sensitivity solver grid can be many
times coarser than that used in the FDTD simulation. Recommendations are also
given for a proper choice of the step size of the sensitivity-solver grid.

In chapter 5, we present the central-node approach for accurate self-adjoint
sensitivity analysis of dielectric structures. The technique aims at lossy dielectric
structures arising in biomedical applications of microwave imaging, where the
dielectric losses are usually significant. By utilizing the central-node grid, the least
accurate field values at the dielectric interfaces are avoided and replaced in the
Jacobian computation by more accurate values at the neighboring grid points.
Consequently, the achieved accuracy of the central-node approach is much better
than that of the original approach in the case of dielectric structures. The Chapter
describes the central-node approach for inhomogeneous structures containing lossy
dielectric objects. Then, we verify our approach through various examples
implemented with FDTD-based simulators [14], [16].

In Chapter 6, we present a spectral self-adjoint method for wideband
sensitivity analysis. The technique reduces the memory requirements drastically by

implementing a novel spectral formula, which operates on the spectral components



of the E-field rather than on its time waveforms. The proposed method is particularly
well suited for wideband response Jacobian computation both in microwave imaging
and in microwave design. In this chapter, the spectral sensitivity formula is first
derived. Then, we verify the spectral approach through 1-D and 3-D examples. As an
application, we show Jacobian maps utilizing the spectral approach in a realistic 3-D
imaging problem. The Chapter concludes with discussions of the memory and time
requirements of the spectral approach compared with those of our original time-
domain approach.

The thesis concludes with Chapter 7 where suggestions for future research

are outlined.
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Chapter 2

ADJOINT SENSITIVITY ANALYSIS WITH
TIME-DOMAIN EM SOLVERS

2.1 INTRODUCTION

The goal of sensitivity analysis is to compute the sensitivity of a given response of a
structure to variations of its design parameters. Mathematically, it is represented by
the gradient of the response with respect to changes in a set of design parameters as

follow:

oF OF
V F=|—. .2 2.1
d |:ap] apn} ( )

where the vector p =[p, - p, T denotes the design parameters. The EM response F is
a scalar function. In time-domain sensitivity analysis, F is defined in general as [1]

Tmax

F(E, p)= j m f(E, p)dQu: . (2.2)
0 Q

Here, T, denotes the simulation time and Q is the computational volume. We

referto f(E, p) as the local response. It has an implicit dependence on p through the

electric field E, and may also have an explicit dependence on p.
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There are two major sensitivity-analysis techmiques for computing (2.1): the
response-level finite-difference (FD) method and the adjoint-variable method
(AVM). Approaches based on the FD method are computationally inefficient. They
require at least one additional analysis for each design parameter. For example, if we
have n design parameters, then, n+1 full-wave simulations are required for a first-
order sensitivity estimate, and 2n+1 simulations are required for a more accurate
second-order estimate. These approaches can easily become impractical if n is large
due to the heavy computational cost of full-wave EM simulations.

In contrast, approaches based on the AVM offer superior efficiency since
they yield response gradients with only one additional system analysis — the adjoint
system analysis — regardless of the number of the design parameters. In addition, the
adjoint-sensitivity technique offers high accuracy and reliability.

The adjoint sensitivity analysis with full-wave EM solvers gains growing
interest in recent time, and significant progress has been made. First, exact adjoint-
variable expressions with analytical system matrix derivatives are proposed for high-
frequency problems with various numerical techniques on unstructured grids [2]-[5].
Analytical system matrix derivatives are only available when the coefficients of the
system matrix are differentiable with respect to the grid node coordinates. Therefore,
the exact approach is only applicable with EM methods on unstructured grids, such
as the finite-element method. Later, second-order discrete sensitivity expressions are

derived with the TLM and the FDTD method on structured grids [6]-[7]. The
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discrete sensitivity approach does not require analytical system-matrix derivatives. It
is more versatile compared to the exact approach. However, there is one common
limitation for both the exact and the discrete adjoint-sensitivity approaches — they are
only applicable with in-house codes. This is because the excitation distribution in the
adjoint simulation is difficult to set up in a commercial EM solver due to its response
dependent nature.

In this Chapter, we review the basics of the discrete adjoint-variable approach
to sensitivity analysis with full-wave time-domain solvers. The discrete adjoint-
variable approach is a milestone of our research in sensitivity analysis with EM time-
domain solvers. A family of self-adjoint approaches, which are applicable to
commercial EM solvers, has been successfully developed based on it. The self-

adjoint approaches will be addressed in the following chapters.

2.2 GENERALIZED TIME-DOMAIN DISCRETE ADJOINT-
SENSITIVITY EXPRESSION

In this section, we summarize the second-order discrete sensitivity analysis with
time-domain EM solvers utilizing the principles of the adjoint-variable method [7] -
[8]. The discrete sensitivity formula does not require analytical System-matrix
derivatives and allows for sensitivity computations in a discrete parameter space, i.e.

on structured grids. It is derived by utilizing the principle of adjoint-variable
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analysis. We consider the dispersion-free, linear, isotropic, heterogeneous medium.
The method, however, is also applicable to an anisotropic medium.
An EM problem in a linear medium can be described by the second-order E-

field vector wave equation as

d’E  oE 4d)
O —=——
at” ot ot

VX 'VxE+e (2.3)

wheree, u, and o are the tensors of the medium permittivity, permeability, and
conductivity, respectively. J is the source current density. Wave equation (2.3) can
be rewritten in a linear matrix equation after discretization as
ME + NE +KE =G (2.4)

Herealfter, italicized vector E as well as 12“,, in all formulas, to emphasize that it is a
column-vector of numerical values and not a field vector in 3-D space. In (2.4),
Eand E denote the first- and second-order derivatives of E with respect to time,
respectively. Zero initial conditions are assumed, i.e., E(0)=0 and E(0)=0 att=
0.

If the nth design parameter p, is perturbed to p,+Ap, , equation (2.4) is
written as follows:

(M+AM)(E+AE)+(N+AN)(E+AE)

2.5)
+(K+A,K)(E+A,E)=G+A,G

Taking into account (2.4) in (2.5), we get

14



MAE+NAE+KAE+AR=0 (2.6)

where
M, =M+AM
N,=N+A,N
K,=K+A,K

A, R=AM-E+AN-E+AK-E-AG

Now, we multiply (2.6) with an arbitrary auxiliary vector-row K’ , which has the

n*
same size as E; then integrate in time as follows:

Tnax Tinax

| E]-(M,AE+N,AE+KAE)d=- [ (E]-8,R)dt. 27
0

n=n
0

Integration by parts transforms (2.7) as [7]

A ~ Tene
T max
- En ' MnAnE|0

ET-(M,AE+N,A,E) :a*

Tmax( o Tmax (2'8)

+ EZM,,+1§,{N"+E,{I2")-A,,E dr=- [ (EI-A,R)dr
0 0
where E, and E, denote the first- and the second-order derivatives of E, with

respect to time, respectively. If we assume zero terminal conditions, i.e.,

E (T,,)=0 and é,l (Tax)=0,at2=T_, , (2.8) becomes
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Tmax 2 - A - - - TI“ZIX A
| (ETM +ETN +ETK")-A Edi=- [ (EI-AR)dt .9)
0 0

Since the auxiliary vector E‘,, is an arbitrary vector, we have the freedom to define it
by setting

ET™M, -E'N +ETR, =V,f. (2.10)

Now En is uniquely defined by (2.10) when the boundary conditions are set to be

the same as those for E. Substituting (2.10) into (2.9) results in

fo (Vef-AE)dt= Tj (ET-A,R)dr. @.11)
0 0

From (2.2), we can compute the variation of the response function F due to a
perturbation of the nth design parameter p,. It can be expressed in terms of E as

follows

Tinax
AF=8F+ [ (Vyf-AE)d:. (2.12)
0
Here, the superscript e in A denotes the variation related to the explicit dependence

on p,. The integration over the volume  in (2.2) is implicitly represented by the

dot product in (2.12). We rewrite (2.12) as follows
Tmax

| (Vof -AE)t=AF-AF. 2.13)

0

16



Equating (2.11) and (2.13), an expression for the variation of the EM response F due
to the perturbed nth design parameter p, is derived as follows:
Tmax
AF=AF- [ (E]-AR)dt. (2.14)
0
In order to compute A, F , we need both A R and E,. A R can be calculated from
(2.6) using the field solution E of the original problem (2.4) at the current design
iterate. E‘n is a solution of (2.10) with zero terminal conditions. Equation (2.10) can
be transformed into
MTE,-NTE, +KTE, =[V,f] @.15)
which defines the adjoint problem. Its solution En is the adjoint-variable vector.

Finally, the derivative of F with respect to p, can be approximated by

dividing both sides of (2.14) with Ap, as follows [7]:

a_Fz aeF_TmaxEAT‘AnR
apn apn 0 " Apn

dt. (2.16)

The expression in (2.16) is the discrete adjoint-sensitivity expression. The gradient of
F,ie., V,F, can be easily computed using (2.16) and (2.1).
We summarize the features of the sensitivity expression (2.16) below.

1) The sensitivity expression (2.16) does not assume that the elements of the

difference matrices are small compared to the coefficients of the respective
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2)

system matrices. Thus, the difference matrix coefficients, which are
AM/Ap,, AN/Ap,, A K/Ap, and AG/Ap,, do not need to
represent the system-matrix derivatives accurately. This is because the
second-order terms AnMAnE', ANAE, and A KAE are taken into
account in the sensitivity formula (2.16).

N perturbed adjoint system solutions E, (n=1,--,N) are needed. Thus, N
additional adjoint-system analyses are required. This drawback is overcome
with a simple mapping technique, which is discussed in Section 2.4.1. By
using one-to-one field mapping, the N adjoint-field solutions E, (n=1,---,N)

are obtained from a single adjoint-field solution E, the adjoint solution of

the nominal structure.

2.3 TIME-DOMAIN DISCRETE SENSITIVITY FORMULA IN
TERM OF E-FIELD

Note that the sensitivity expression (2.16) requires the difference matrices of the
system. Here, we first briefly summarize how they are computed [7]-[8]. Then, the
sensitivity expression is presented in terms of the original and adjoint E-field

solutions rather than their respective vectors.

Applying central FDs [9] to the E-field vector wave equation (2.3), we obtain
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CE-a-D,E-s5-D,E=G 2.17)
where G = - D,J , and J is the excitation current density. The system coefficients &,

B and s are as follows:

2 2
a=c¢, (Ahj B= g M 5= T (2.18)
cAt At 2At

Here, &€, is the relative permittivity, 4, is the permeability of vacuum, c is the speed
of light in vacuum, Ar is the discretization step in time, and Ah = min(Ax, Ay, Az) is

the smallest cell size. In (2.17), @* is the FD double-curl operator, Dy is a second-

order FD operator in time, D, and D, are first-order FD operators in time. They are

as follows:
DJ(ty) =3ty + At/ 2)— J(ty — At/ 2) (2.19)
D,,E(t)) = E(t, + At)—E(t, - Af) (2.20)
D,E(1)) = E(z, + Ar) +E(t, — At) - 2-E(t,) . 2.21)

The FD double-curl operator ¢ produces three vector components. In rectangular

coordinates, its x~-component is

(CE), =hDYE, +hDXE, —hh DLE, —hh D4E, (2.22)
where
po= O g AR, AR 2.23)
AT A Ag

The second-order operators in space use central differences as follows
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D" = E’r(—ro,mﬂyfzo) + EX(xo,.vo—Ay-zo)

vy EX(xo,)‘o,zo)

/ur(xo.y()+Ay/2,Z()) lur(xo.m-Ay/lzo)

2.24)
1 1
- . + ’ E-\'(A'o,)'o,zo)

/‘ r(x0.y0+A»/2,20) ﬂr(xo,yo—Ay/le)
and
D E _ E,V(x0+Ax/2,y0+Ay/2.zo) - E_\’(x()—Ax/Z, yo+Ay/2,20)

Wy (xg,50.20) T
Hr (g, v0+8v12.20) 2.25)

E_V(x()+A\'/2,y0—A_v/2,zo) - Ey(xo—Ax/2,y0-—Ay/2,zo)

Hr(x.v0-8y/2.20)
Here, p, is the relative permeability. The y and z components of €*E can be

obtained from (C°E), using the cyclic substitutionx — y — z — x.
In the case when the design parameter is a local permittivity or conductivity,
the analytical derivatives of the system coefficients can be computed directly from

(2.18) as follows:

2 .2
_d_oiz(ﬂJ | ds _ Mo (2.26)
de, \ cAt do  2At

The derivatives of the system coefficients with respect to the shape
parameters cannot be computed analytically. Instead, FD estimates are adopted. The
shape parameters belong to a discrete parameter space and thus their change is
always a multiple of the cell size. We assume the smallest change of one-cell size,

e.g., Ap, =*Ah on a uniform grid. In the nth perturbed state, p, is changed and all
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other parameters are kept at their nominal values. With the change of p,, the

coefficients of (2.17) experience a stepwise change at the grid points surrounding the
changing object. We refer to these points as perturbation grid points. The system
coefficient ¢ is affected only by a change in the shape of a dielectric object, which
affects the permittivity at a perturbation grid point. The system coefficient s is

affected by a change in the shape of a dielectric object, which affects the

conductivity at a perturbation grid point. The system coefficient ¢* can be affected

by a change in the shape of a magnetic object, which changes the permeability at the

perturbation grid point. €°can also be affected by a change in the shape of a metallic
object.

The mathematical derivation of the discrete adjoint-sensitivity expression
(2.16) makes no assumption about how small the change in the system coefficient is.
It takes all second-order terms in the perturbation equation into account. The
resulting sensitivity formula (2.16) can be written directly in terms of the original
and adjoint field solutions as [7]-[8]

e Timax r
%ngF_ | m(ﬁ)n-%@ dQ dt, n=1,..,N 2.27)
n n 0 Q

n
where

ARE) _AC & Aa D,E- AS D,F- A,G _
Ap, Ap, Ap, Ap, Ap,

(2.28)
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In (2.28), 9°F /dp, denotes the explicit derivative, E is the solution of (2.17) in the
nominal state, and (ﬁ)n is the solution of the adjoint problem in the nth perturbed
state. In the nth perturbed state, p, is changed and all other parameters are kept at
their nominal values. Note that (2.27) requires the field solution (E)n of N adjoint

problems. In the next section, we will show a mapping technique, which can be used
to obtain the field solutions of N adjoint problems using only one adjoint system
analysis [10].

For the cases where the system coefficients have analytical derivatives, the

adjoint-sensitivity formula in (2.27) becomes

OF 3°F '™ . OR(E)
=L B2 g0 dt, n=1,...,N, (2.29)
dp, 9p, { {ff ap,
where
OR(E) 9 = da , = Os = oG
A AN ) ) P 5 Y Py 2.30
d, O W, " o T op, @0

Note that with analytical derivatives of the system coefficients, the adjoint solution
must correspond to the unperturbed structure, i.e., (E),, is replaced simply by E,

which is the solution of the unperturbed adjoint problem. In this case, field mapping

is not needed.
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24 ADJOINT PROBLEM SOLUTION

2.4.1 Adjoint Field Mapping
The discrete sensitivity expression (2.27) requires the solutions of N adjoint
problems, which means in general that we need to perform N adjoint simulations for
the N perturbed states. This would eliminate the computational advantages of the
adjoint-variable approach. In order to preserve the computational efficiency of the
adjoint approach, a one-to-one mapping technique is adopted to approximate the
solutions of the N adjoint problems [10]. This approximation is based on the
perturbation theory, which states that the EM field of the structure with a small shape
perturbation is not much different from that of the unperturbed structure. With this
technique, we perform only one adjoint simulation for the unperturbed structure. All
N perturbed-structure solutions are obtained from it. The nth perturbed adjoint field
solution (E)n is approximated by a simple shift in space of the unperturbed adjoint
solution E in the direction of the assumed perturbation. The mapping technique is
only necessary for shape design parameters. In the case of material parameters, the
sensitivity expression (2.29) only requires £, which is the solution of the adjoint
problem in the nominal state.

Figure 2.1 illustrates a 2-D FD grid for a lossy dielectric rectangular object.
The FD grid is shown with dot lines, and the object is denoted with a dark-grey

rectangle. Let the shape parameter p, represent the length L of the object. If we
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assume an increase of L of Ap, =Ax, the perturbation grid points where the system

coefficients & and s experience changes are marked with red dots. We emphasize
that the perturbation grid points are the only points that have contributions to the nth
sensitivity of (2.27). They belong to the immediate vicinity of the perturbation
boundary, where we need both the original and adjoint field solutions. Note that
weighted averaging of the medium constitutive parameters is usually applied at the

interface points of the FDTD grid.

Fig. 2.1 Illustration of assumed shape change involving a length increase to the
right of the dielectric object. The perturbed area is shown with light-blue
cells. Red dots denote the so-called perturbation grid points where the

system coefficients change.
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The mapping procedure is illustrated in Figure 2.2. It shows that the adjoint

solution (I:A“; ), of the nth perturbed state is approximated from the nominal state
solution E: through a simple one-cell shift in the direction of the perturbation. In
this case, we only record the adjoint field solution l:?z of the nominal structure at the
grid points marked with blue dots. The adjoint solutions (E:)” at perturbation grid

points, which are marked with squares, are approximated by Ez_ at points marked

with blue dots through the simple one-to-one shift, which is illustrated using arrows.

p, =L Ap, = Ax~
............. b

comnmagemcndqdhasds

Fig.2.2 The locations in a 2-D FDTD grid where the adjoint solution (E‘__ ), 18

needed are marked with squares. The locations where the solution E: of
the nominal adjoint problem is actually recorded are marked with dots.

Arrows illustrate the one-to-one field mapping from l:?z to (E:)”.
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2.4.2 Solving the Adjoint Problem

The adjoint problem, whose solution E we seek, is a quasi-EM problem

governed by the vector wave equation [7]

T o 70K ;0E _3J

Vx| | VxE+el = +0l = =22, 2.31
[ﬂ ] o7’ or 97 @31

Equation (2.31) is complemented by the same boundary conditions as in the original

problem (2.17), and by zero terminal conditions. Here, 7 is the inverse-time

variable, 7=7_  —t. The adjoint current density Jis response dependent. It exists

only in the region where the local response fin (2.2) depends on the field solution. J

is defined as follows [7]

s O Lo .4
’BD’széEL+ya%+z£ (2.32)
x y .

where g is defined in (2.18). In order to solve (2.31) in 7 time, the time sequence
of J obtained from (2.32) has to be applied backwards.

If we write (2.31) in term of (- E) instead of E, the adjoint equation becomes
identical to the original EM equations. Thus, in principle, the same EM solver can be
used to obtain the original and the adjoint solutions. Note that the adjoint problem is
solved in inverse 7 time. We emphasize that the adjoint problem excitation (adjoint

current density J) is determined by the local response f, therefore, it is very difficult

to set up in commercial EM solvers. This is why the adjoint based sensitivity
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approaches have been applied only with in-house codes. This is also one of the major
reasons why commercial solvers have not yet adopted adjoint-based approaches for
sensitivity computation. In the rest of the thesis, we will present a class of self-

adjoint approaches to overcome this limitation.

2.5 SUMMARY

In this Chapter, we reviewed the time-domain discrete adjoint technique for the
sensitivity analysis using structured discretization grids. First, we summarized the
derivation of the discrete adjoint-sensitivity expression using the principles of
adjoint-variable analysis. The discrete expression takes into account the second-order
terms, and, thus, allows for coarse difference approximations of the derivatives of the
system coefficients.

Second, we discussed the field mapping technique, which is considered a
breakthrough in the discrete sensitivity analysis. Through field mapping, N perturbed
adjoint solutions can be obtained with only one adjoint system analysis.

We also briefly addressed how to solve the adjoint problem. Adjoint problem
is a quasi-EM problem and can be solved in a very similar fashion as the original
problem. The adjoint excitation is local-response dependent, which makes the adjoint

sensitivity only applicable to in-house codes.
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Chapter 3

SELF-ADJOINT SENSITIVITY ANALYSIS
WITH TIME-DOMAIN EM SOLVERS

3.1 INTRODUCTION

In Chapter 2, an efficient AVM-based discrete sensitivity approach with time-
domain solvers was introduced. The discrete adjoint approach produces the
responses and their gradients with only two system analyses regardless of the
number of design parameters. However, due to the difficulty of setting up adjoint
excitation in commercial solvers, the adjoint approach is only applicable to in-house
codes.

To overcome the above limitation, we propose the self-adjoint sensitivity
analysis algorithm for time-domain EM solvers [1]-[2]. The self-adjoint approach
computes the response Jacobians without any additional system analyses. The adjoint
field solution is derived directly from the field solution of the original system, and
thus the adjoint system analysis is eliminated. The overhead of the sensitivity
computation is negligible in comparison with the EM simulation time. Beside its

computational efficiency, our approach also features high accuracy. It has second-
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order accuracy for shape-parameter sensitivities, and is exact when derivatives with
respect to constitutive parameters are calculated.

More importantly, the sensitivity solver uses its own grid, and operates
independently of the EM solver. The Jacobian computation is done as a post-process
outside the EM solver. The only requirement is to access the field solution at user-
defined points. This makes our sensitivity solver applicable with any time-domain
EM solvers on both structured grids and unstructured grids.

In this Chapter, we start with an introduction to the theory of time-domain
self-adjoint sensitivity analysis. Both S-parameter and point-wise response sensitivity
formulas are presented. Subsequently, the details of the implementation and the de-
embedding in the case of S-parameters are described. We verify our approach
through a number of 1-D, 2-D and 3-D examples with a commercial time-domain
EM solver [3]. The examples are divided into two classes: self-adjoint sensitivities

for dielectric structures and self-adjoint sensitivities for metallic structures.

3.2 THEORY OF TIME-DOMAIN SELF-ADJOINT
SENSITIVITY ANALYSIS

In this section, we first briefly summarize the time-domain discrete adjoint-
sensitivity analysis, which was discussed in Chapter 2. Then, we derive self-adjoint
S-parameter sensitivity formula and self-adjoint point-wise sensitivity formula in the

time domain.
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3.2.1 Summary of Time-Domain Discrete Sensitivity Analysis

The adjoint-sensitivity approach offers an efficient way to produce response
Jacobian with two system analyses: original- and adjoint-system analysis. In the case
of shape parameters, the derivatives of the system coefficients cannot be computed
analytically when structured grids are used to discretize the problem [4]-[5]. Instead,
FD estimates with one-cell perturbation are used. The sensitivity of a generic

response F with respect to the nth design parameter p, uses the original and the

adjoint field solutions as follows [6]:

e Tmax N
OF OF_ | jﬁ(ﬁ)n--A"R—(E) dQdt, n=1,...,N 3.1)
o, O, 3% Ap,
where
w 02 _ _
ARE) AL & Aa DE- As D,E- A,G 32)
Ap, Ap, Ap, Ap, Ap,

Here, 0°F /dp, denotes the explicit derivative. T, is the simulation time and Q is

the computational volume. The original field E is the time-dependent solution of the

nominal structure. The system coefficients &, 8 and s are [2]

AnY AR o AR
a=¢g|— |, f= , §= . 3.3
r(CAIJ F=to ar T o (33

32



Here, c is the speed of light in vacuum, f, is the permeability of vacuum, g, is the
relative permittivity, At is the discretization step in time, and Ah = min(Ax,Ay,Az)
is the smallest cell size. In (3.2), @ is the FD double curl operator, D, is a second-
order FD operator in time, D, and D, are first-order FD operators in time, and

G = - D,J where J is the excitation current density.

The adjoint field (E)n in (3.1) is the solution of the perturbed adjoint

problem govemned by (2.31). It has the same boundary conditions as the original

problem. The excitation of the adjoint system is dependent on the derivative of the

local response with respect to the field solution df / aEg , £=X, ¥, z [6]. N adjoint-

field solutions of the N perturbed states are obtained from only one adjoint solution
of the unperturbed structure using a field-mapping technique [5]-[6].

In the case of constitutive parameters, the derivatives of the system
coefficients can be computed analytically. With analytical derivatives of the system
coefficients, the adjoint solution must correspond to the unperturbed structure. Thus,

field mapping is not needed. The sensitivity expression is exact [2]:

IF ¥F " . IR(E) _
PPN { IyET dQ dt, n=1,....N (3.4)

where E is the adjoint field solution in the unperturbed state. Since perturbation in
the constitutive parameters affects only the system coefficients o and s, the

analytical derivative OR(E)/dp, becomes



8R(E)= da . = Os

. 3 D,,E—g- D,E (3.5)
where
o (A—hjz =g
s—=lear) Pu=5% 3.6)
n O, pn - o_
and
3% 0, Pa=¢
ap - —”"Ahz =0 G-D
§ 240 0 T

The sensitivity computation with respect to the constitutive parameters is
more accurate compared to the shape parameters. This is because two
approximations are avoided: the FD estimation of the derivatives of the system
coefficients and the approximated adjoint solutions of the N perturbed states via field

mapping.

3.2.2 Self-Adjoint S-Parameter Sensitivity Formula

Linear EM problems usually allow for a self-adjoint formulation of the sensitivity
expression [7]. The self-adjoint algorithm takes advantage of the harmonic nature of
the adjoint excitation and obtains the associated adjoint-field solutions from the
original field solutions without performing adjoint simulations. The computation of

adjoint solution from the original field solution is explained below.



The S-parameters of a multi-port structure can be expressed as [7]

@y Loy :
SN Z’i . E’q 3 8)
Pq r )
\zp FP

where Zg"’ (& = p,q) is the wave impedance of the £th port. F‘If;" is the @), spectral
component of the scattered field at port p when port ¢ is excited, and Fq”” is the @,

spectral component of the incident field at port q. I:“If;’ and 17’;‘*) are defined as

Timgx )
Eo= [ [ B, ¥,.0-M,(x,,y,)dx,dy, -e " dr (3.9)
0 Sp-port
- Timax . :
EP = [ [ EM&, y.0-M, (), ¥,)dxdy, - dr . (3.10)
0 S,

q-port

Here, E; is the outgoing (scattered) field at port p when port ¢ is excited, and EZ‘
is the incoming (incident) field when port ¢ is excited. M, is the field modal
(orthonormal) vector at port £ (&= p,q) [8]. x;; and yga are the local coordinates at
the £th port plane. The superscript @y, denotes the frequency at which the S-

parameters are computed. For brevity, the superscript @, will be omitted but implied

in all formulas hereafter.

The port waveguides are usually assumed not to be subjected to design

changes. This makes Z,, Z, and F‘q independent of p,. The derivative of the S-
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parameter with respect to the nth parameter p, is then determined by the derivative

of the response F =F,, as follows

Bpy_ |20 Ly N (3.11)
ap, Z, F, op,

Here, the derivative of the complex response qu can be computed using (3.1) or

(3.4). F g Alows for a self-adjoint formulation of the sensitivity problem, i.e., the
associated adjoint-field solution Ep is obtained from the original-field solution E,
as explained next.

As discussed in Chapter 2, the adjoint current density J pq 18 the derivative of
the local response f with respect to the field E . The local response f associated with

the response F = F,, in (3.9) can be identified by comparing with (2.2) as follows

out 4 » ’ K4
Eq“ (xp’yml)‘M(xp’)p)‘e‘j(qy’ at pth port
F(X, Y, = Az, ' (3.12)

0, elsewhere.

Here, Az, is the longitudinal cell size at the pth port. It takes care of the

dimensionality of the integrand in the surface integration of (3.9) as compared to that

of the volume integral in (2.2). In the case of the S-parameters, f has no explicit

dependence on py, ie., 0°F,, /dp, =0, n=1,..,N.
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As follows from (2.32) and (3.12), the adjoint current density J g At the pth
port can be computed from
= ’ , M('x/ + y, )' e"‘j“{)‘
B-DJ, (x,,y,,)=—""2L : (3.13)
Azp

Here, the difference time operator can be replaced with its analytical counterpart

J . C
as D, <——>Ar~-é—. When the integration in time is performed, the real and the
t

imaginary parts of J pq Can be written as [7]

(—jm)R(x;’y;vt)zM(x;’J’;,)‘gk(f) 3.14)
(3,1 (5 ¥ ) =M(x,,, ¥,)- 8, ) (3.15)
where
5 sin(apt) cos(apt)
)= = 3.16
&r(®) woBainz, 8@ Py (3.16)

The adjoint excitation is taken with a minus in order to obtain the adjoint field with

the correct sign. The real part of the adjoint solution (EM)R, which is due to
(-J g )R> 1S used in the computation of the derivative of the real part of S, , The
imaginary part (E g )1 » Which is due to -3 g1 » 18 used for the computation of the

derivative of the imaginary part of S, . (qu )z and (E,,q) ; are needed only at the

perturbation grid points.
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The original excitation current density J, at the pth port is expressed as
J,(x,,y,.0=J,-M(x,,5,) 8. 3.17)
Here, J, is the magnitude of the original current density excitation and g(z) is the

excitation waveform.

The field solutions of the two problems are identical in their respective times
if their excitations —J pq(X5:5,7) and J (x5, ¥,,1) have identical distributions
across the port and in time. Here, it is clear that —J 2 (X0, ¥,,T) in (3.14)-(3.15) and
J ,,(x;,, y;,,t) in (3.17) have the same distributions across the port p.

When the adjoint problem is excited by —J pg and runs backwards in time,

ie.r=T, —t, it is equivalent to the original problem as far as the adjoint electric

field E pq is concerned [7]. To make the adjoint simulation in 7 -time identical to the

original simulation in r-time, we excite the adjoint problem by the reversed pulse
g@) = g, —1), which is equivalent to g(7) = g(r). The @, spectral component
of the forward pulse g(f)is
Tingx .
G= [ gt)e'™dt=G, e, (3.18)

0

which is related to that of the reversed pulse g(T,,, —t) = 2(¢) as

Timax . . .
G= | 8T —1)- € I dt =G, - Pt - GF i (3,19)
0


http:3.14)-(3.15

Here, G, and ¢, are the magnitude and phase of the a, spectral component of
8().
From (3.18) and (3.19), it is clear that the @, spectral component of £(t) is
related to that of g(r) as
g0 () =G, cos(ayt — @, — BT, ) - (3.20)

Due to the equivalence between the original and the backward-running adjoint

problem, the adjoint field is related to the original field at a point Q by
E, (Q.T.—1=E,Q.,1), (3.21)

and its @y, spectral component is

Ep,(Q.1) = Ep oy | COS(@! = Pocpio) ~ DT s § =%, 1,2 (3.22)
Here, { denotes the vector component, i.e. x-, y-, or z-component. | E, | and
P.rpoy are the magnitude and the phase of the @, spectral component of the

original E,, waveform at point Q.

By comparing the desired adjoint excitation waveform in (3.16) with that in
(3.20), the adjoint field of (3.22) should be adjusted both in magnitude and phase as
(7]

|E.(Q)

ToyGanBing S\ @ O =12 3.3
Jop G BAIAZ (@t~ Pcpior + 2, ) (3.23)

(E)p(Q.1) =
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|E.(Q)

S ———— ¥ O 1 I—Q, » + . =X9,2 3.24
Jop Gt BALAZ (("b Pesp@ ¢g) s=x,yz (324)

(E)), Q.0 =

Here, J,, is the magnitude of the original current density excitation; G,, and ¢, are
obtained through the Fourier transform of the original excitation waveform g(t);
|E.(Q)] and @, are obtained through the Fourier transform of the original field
at the grid point Q. Also, Az is the longitudinal cell size at port p.

Finally, the real and imaginary parts of oF va! dp, are computed using (3.1)
or (3.4) together with (3.23) and (3.24). The derivative of § g With respect to the nth

parameter p, is computed using (3.11).

3.2.3 Self-Adjoint Sensitivity Formula of Point-Wise Function

In open problems with a point excitation at point Q and a field observation at point
P, there are no waveguide ports and the S-parameters may not be suitable response
functions. Instead, we use a point-wise response function, which is analogous to an
S-parameter. In comparison with the definition of an S-parameter in (3.8), the
following simplifications are made: (i) the modal wave impedances are replaced by

the intrinsic impedances Z, and Z, of the media at point P and point Q ,
respectively; (ii) the incoming phasor Fq is replaced by the «, spectral component

E, of the incident field E,(r) at point Q; (iii) the outgoing phasor F,, is replaced by
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the @, spectral component E,,Q of the observed scattered field component Ep,(f) at

P. The point-wise response function then becomes [2]

Z, E
e Rl (3.25)

Fpp =
Here, E,(t) is obtained through a reference simulation where point Q is excited in
an infinite uniform medium of the same electrical properties as the medium at point

o.

The derivative of Fp, with respect to the nth parameter is computed as

Fpg _ |Zg 1 3Ep (3.26)
b, \Zp E, op, N

The derivative of Ep, is computed as that of F,, in the case of the S-parameters.

Pq

The adjoint fields are derived in the same manner,

3.3 IMPLEMENTATION OF SELF-ADJOINT SENSITIVITY
TECHNIQUE

We discuss in this section some implementation details of the proposed self-adjoint
sensitivity algorithm. These include the acquisition of excitation waveform and the

incident field waveform as well as the de-embedding technique.
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3.3.1 Excitation Waveform
In order to compute G, and ?, in (3.23) and (3.24), we need the excitation
waveform g(f), which can be provided directly by most of the commercial
simulators. Otherwise, the excitation waveform can be easily obtained by recording
the current density waveform at any point of the excitation plane in an S-parameter

analysis problem or at the excitation point Q in an open problem.

3.3.2 Reference Simulation

In the computation of the S-parameter sensitivities, the incoming field waveform
EZ’ (x,,¥;,1) in (3.10) is obtained through a reference simulation. The reference

simulation is performed in an infinitely long waveguide with uniform cross section,
which is the same as the cross section of port g.

For sensitivity computations in an open problem, the incident field waveform
E,(#) at point Q is obtained through a reference simulation where point Q is excited
in an infinite uniform medium. The electrical properties of the uniform medium are
the same as the medium at point Q. E‘Q in (3.25) is obtained from E,(r) via Fourier
transform.

In the case of P#Q, Ep,(¢) is the field waveform recorded at point P in the

nominal structure when point Q is excited. EPQ in (3.25) and (3.26) is obtained from
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Ep,(t) via Fourier transform. In the case of P=Q, E,(t) is also used to compute

Epo (1) as Epo(t)=Ep(t)— Ey(r) where Ej(z) is the total field waveform recorded

at excitation point Q in the nominal structure simulation.

N

Py " " ——

Port g Port p

Excitation Observation De-embedding De-embedding Observation Excitation
plane g planeg plane ¢ planep planep plane p

P I I
A

-—=F-——f-x—-

B ] T TS T " SN—

S A

Fig.3.1 Schematic illustration of the excitation, observation and de-embedding

planes in a 2-port structure.

3.3.3 De-Embedding Technique

The de-embedding planes as shown in Figure 3.1 are the reference planes at which
the S-parameters are extracted. They usually do not coincide with the excitation and
observation planes as shown in Figure 3.1. This is because an observation plane has
to be located away from discontinuities, e.g., interfaces and excitation, to avoid
interference from evanescent modes. We need the de-embedding technique to
account for the phase delay and, possibly, for the additional attenuation in a lossy
line between the observation plane and the de-embedding plane.

The S-parameter definition (3.8) assumes that the de-embedding plane
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coincides with the observation plane. When these two planes do not coincide, de-

embedding is applied to the S-parameters as
_ oo Yplptrgly
Spg =Syt 3.27)
where the superscript o denotes the observation plane and 7, is the complex
propagation constant of the Sth port (¥; =@+ jBs, §=p.q).Ls ({=p,q) is the

distance between the observation and de-embedding planes of the respective port.

Now, the sensitivity expression (3.11) becomes

apn Zp qu apn

The de-embedding is also needed for phase and magnitude adjustment of the
adjoint field solutions. In the self-adjoint theory described previously, the adjoint
excitation plane coincides with the observation plane. However, as discussed above,
the observation plane is usually displaced with respect to the excitation plane. Thus,

the adjoint excitation for the S, parameter associated with the observation plane at

port p is displaced by D, as shown in Figure 3.1 from the excitation plane. For the
case depicted in Figure 3.1, the field solution at every point of space is delayed and
attenuated (if the p-port waveguide is lossy) as compared to the field solution, which
would have been obtained if the excitation was placed at the observation plane.
Therefore, de-embedding is applied to the spectra of the recorded field waveforms at

the perturbation grid points as
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Ef(Q) =E (@7, ¢ =xy, 2. (3.29)

Note that this de-embedding can also be realized by keeping the recorded field

E,(Q) unchanged and modifying the @, spectrum G of the excitation waveform
g(t) as

G,=G e, (3.30)

Then the adjoint solution in (3.23)-(3.24) with de-embedding becomes [2]

. | E_(Q)]€"""P |
(Eg)R(Q,t)=J—0%Q—Z)O—’B—@cos(%t—¢eg[,(g)+(og-—,BI,D,,—-ﬂ/Z) (3.31)
pm
. |E(Q)1¢"
pm

3.4 NUMERICAL EXAMPLES

We validate our self-adjoint sensitivity approach through a variety of examples. The
examples include 2-D metallic structures, and 1-D, 2-D and 3-D dieleciric structures.
The sensitivities of the S-parameters and the point-wise response function (3.25)
with respect to both shape and constitutive parameters are computed using the
proposed self-adjoint approach and are compared with those obtained through FD

estimates.
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In all plots, we use TD-SASA as a notation for the results obtained by the
time-domain self-adjoint sensitivity analysis method, while FFD, CFD and BFD
denote the forward, central and backward FD estimates. The FD estimates use

parameter perturbation of 1 Ak for shape-parameter derivatives.

3.4.1 Self-Adjoint Sensitivity for Metallic Structures

A. Single-Resonator Filter

We first illustrate the self-adjoint sensitivity analysis with a single-resonator filter as
shown in Figure 3.2 [9]. The field analysis is carried out in the time domain with the
FDTD-based commercial simulator XFDTD. The FDTD grid is uniform with mesh
size Ah=1 mm. The size of the computational domain is 200x60x1 cells. A vertical
domain size of one cell sets the XFDTD simulator into a 2-D TM mode of analysis

by default.

a=60 mm
=28 mm
W =13 mm
O=1mm

Fig. 3.2 Single-resonator filter and its nominal design parameters [9].
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The structure is excited with a modulated Gaussian pulse covering the
frequency band from 3 GHz to 5 GHz. We use 5 current-density excitation points
placed uniformly along the excitation plane to form a half-sine modal distribution.
The location of the excitation plane is 20 cells away from the Liao absorbing
boundary {3], [10] of the port.

The design parameters are pT =[d W]. We compute the derivatives of the S-
parameters at the nominal design [d W] = [28 13] mm. The derivatives of the real
parts, the imaginary parts and the magnitudes of S;; and S, with respect to W are
shown in Figures 3.3 and 3.4. The sensitivities are computed with an assumed
forward perturbation of W by one Ah, which corresponds to the metallization of one
cell as shown in Figure 3.5b. It is observed that the results obtained with the self-
adjoint method are in good agreement with the FD estimates. The sensitivities match
best with those obtained with the central FD method, which has second-order

accuracy.
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Fig. 3.4 Derivatives of S with respect to W for “metallization” case at the nominal
design [d W] = [28 13] mm in the single-resonator filter example: (a)
derivative of Re(S,;) with respect to W; (b) derivative of Im($,,) with

respect to W; (¢) derivative of 1S>;| with respect to W.

The de-metallization case is studied as well, where the derivatives are
computed with an assumed backward perturbation of shape parameter by one Ah.
Figure 3.5c shows the de-metallization of one cell for W. It is noted that the results
obtained from these two approaches (forward and backward perturbation) are
practically the same as expected. This is due to the second-order accuracy of the
discrete sensitivity formula (3.1). The absolute differences between the sensitivities

obtained with these two approaches are shown in Figure 3.6. They are on the order of
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1072 smaller compared to the values of the sensitivities themselves.

In fact, the perturbation points where system coefficients change are the same
for both approaches. For example, when we compute the sensitivities with respect to
W, the perturbation grids points are marked with crosses as shown in Figure 3.5a.
The locations where the original field solution is needed are marked with circles, The
locations marked with a square are the places where the adjoint fields of the
perturbed adjoint problem are needed. Dots denote the locations where the field
solution of the nominal original problem is recorded and used to compute the adjoint
field solution of the nominal problem using (3.23) and (3.24). The adjoint field
solution of the perturbed adjoint problem is obtained through a one-to-one field
mapping from the adjoint field of the nominal problem [12]-[13]. The field mapping

is illustrated by the arrows in Figures 3.5b-c.
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Fig. 3.5

. f;} gE
£ @@Ly
L il AW =Ah
(b) ©

Illustration of assumed perturbation of W in the single-resonator filter
example: (a) perturbation grid points where system coefficients change;
(b) assumed forward perturbation (metallization case); (c) assumed
backward perturbation (de-metallization case). Crosses denote the
perturbation grid points. Locations where the original and the adjoint field
are needed are marked with circles and squares, respectively. Arrows

illustrate the one-to-one field mapping.
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Fig. 3.6 The differences between the S-parameter derivatives with respect to W in
the cases of assumed “metallization” and “de-metallization” in the single-

resonator filter example.

B. H-Plane Filter
The six-resonator H-plane filter [11] is shown in Figure 3.7. All field
analyses are carried out in the time domain with the FDTD-based solver XFDTD.
The FDTD grid is uniform with A#=0.6223 mm. The excitation is a modulated
Gaussian pulse with spectrum from 5 GHz to 10 GHz. We use 5 probes placed

uniformly along the excitation plane to form a half-sine modal distribution.
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Fig. 3.7 The six-resonator H-plane filter and its nominal design parameters [11].

The design parameters arep” =[a b & W, W, W, W, L, L, L,

L; L, L,]. The nominal values of the design parameters are

la b 6 W, W, W, W, L, L, Ly L|] L, L,] = [17.4244 157988
0.6223 4.3561 5.6007 6.223 6.223 16.1798 16.1798 16.8021 16.1798 16.1798
16.8021] mm. We compute the S-parameter sensitivities with respect to L, while the
other design parameters remain at their nominal values. The derivatives of the
magnitudes of Sy and $»; with respect to L, for a sweep of L; at 7 GHz are plotted in
Figure 3.8 and Figure 3.9, respectively. It is noted that the sensitivities computed
using our self-adjoint approach match well with those obtained with the central FD

approximation.
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Fig. 3.8 Derivatives of IS;;! with respect to L, at 7 GHz for a parameter sweep of L,

in the H-plane filter example. All other parameters are at their nominal

values.

(,w) el %sle

24 25 26 27 28
L, (ntenrsof A)

23

Fig. 3.9 Derivatives of 15,1 with respect to L, at 7 GHz for a parameter sweep of L,

in the H-plane filter example. All other parameters are at their nominal

values.
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When we compute the sensitivities with respect to L;, an assumed shift of the
first septum to the left by 1AA is illustrated in Figure 3.10. The assumed shift
increases the length of L, by 1 A4 over its nominal value. Consequently, the grid
points on the left side of the septum are metalized while those on the septum right
are de-metalized. Locations where the original and the adjoint field solutions are
needed are marked with circles and squares, respectively. Dots denote the locations
where the field solution of the nominal original problem is actually recorded and
used to compute the adjoint field solution of the nominal adjoint problem using
(3.23) and (3.24). The adjoint field of the perturbed adjoint problem is obtained

through a one-to-one field mapping, which is illustrated by the arrows.

Gé—¢ O
e waxxé._@ 4 l\:\%} —_— -
WW,{;M 14 éwy
,,,,,,,,,,,,,,,,,, ] e
i H
@ e é "
beo | peo
L

Fig. 3.10 Hlustration of assumed shift of the first septum by 1 Ah in the H-plane
filter example. Locations where the original and the adjoint field solutions
are needed are marked with circles and squares, respectively. Arrows

illustrate the one-to-one field mapping.
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3.4.2 Self-Adjoint Sensitivity for Dielectric Structures
A. 1-D Lossless Dielectric Structure

We first verify the self-adjoint approach for dielectric structures with a 1-D lossless
structure. The structure and its nominal parameters are shown in Figure 3.11. Both

the host medium and the central layer shown in shade are lossless.

I ‘

£, =1 Magnetic
walls

W =20 mm

Fig. 3.11 The geometry of the 1-D structure and its nominal parameters.

All field analyses are performed over a frequency range from 3.0 GHz to 5.0
GHz with the FDTD-based solver XFDTD. Uniform mesh (A2 = 0.5 mm) is used.
The excitation is a modulated Gaussian pulse, which has a uniform distribution

across the port conforming to a TEM plane wave.

The design parameters are p’ =[g, W], which are the relative permittivity
and the thickness of the central layer. Figures 3.12 and Figure 3.13 show the

derivatives of 1Sl and ISzl with respect to €, , respectively. Here, the CFD estimates

use 4 % perturbation of &£ over its nominal value &, =15. Figure 3.14 and Figure
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3.15 show the derivatives of 1Syl and 1521 with respect to its width W, respectively. It
is noted that the results obtained using our self-adjoint approach show good
agreement with the CFD results.

We illustrate in Figures 3.16a-b the locations where the adjoint field and the

original field are needed for the computation of the sensitivities with respect to &,

and W, respectively. Note that the actual size of the FD grid of the central layer is
(20%x20) Ah while in Figure 16 we use a FD grid of (3x3) Ah to represent the
central layer for the sake of simplicity. Locations where both the original and adjoint
field solutions are needed are marked with squares. In the case of computing W
sensitivities, the dots denote the locations where the original field of the nominal
problem is actually recorded and used for the computation of the adjoint field
solution of the nominal adjoint problem. Arrows illustrate the one-to-one field
mapping from the adjoint field solution of the nominal problem to that of the
perturbed problem. No field mapping is needed for the sensitivity computation of

constitutive parameters.
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4
Fig. 3.16 Locations (marked with squares) where both the original and adjoint field
solutions are needed for the computation of the sensitivity with respect to

g, in the 1-D example. No field-mapping is needed.

grt)

Fig. 3.17 Illustration of the assumed perturbation to the left for a derivative
calculation with respect to W. Locations (marked with squares) where both
the adjoint and the original field solution are needed for the computation
of sensitivity with respect to W in the 1-D example. The locations (marked
with dots) where the original filed solution of the nominal problem is
actually recorded and used to compute the adjoint field of the nominal

adjoint problem. Arrows illustrate the one-to-one field mapping.
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B. 2-D Object in Lossy Layered Medium
Figure 3.18 shows the top view of the 2-D structure together with its nominal
parameters [2]. The structure includes three layers with a lossy object immersed in
the middle layer.
We analyze the structure with XFDTD in a 2-D H-plane. Uniform mesh with
Ah = 0.5 mm is used. The excitation is a Gaussian modulated pulse covering the

frequency range from 3.0 to 5.0 GHz.

a4y
Absorbing houndary
, ¢1)=1(10,0.1
(81 a1)=( ) . » é
B(35Ak 120AK)  B(554h, 120AK)
- 30 4k g
Do F é ¥
oo S oo
g =} g
E (&2, o) = ]
= =
. s
(51 a)=(10,0.1) R334k, 204h) 5
x

Absorbing boundary

Fig. 3.18 Top view of the structure in the 2-D example and its nominal parameters.



The design parameters are p’ =[¢, ¢ W L], which are the constitutive and

shape parameters of the immersed object. We compute the sensitivities of the

normalized response function defined in (3.25). In Figure 3.18, P, is the excitation
point while P, and P; are the observation points. The derivatives of IFa ﬂ| and ‘F PA ‘
with respect to W are plotted in Figure 3.19 and Figure 3.20, respectively. It is

observed that all sensitivity curves agree with each other. The derivatives of |F11 H|
and lF”; ﬂ‘ with respect to £, are shown in Figure 3.21 and Figure 3.22, respectively.

The derivative curves of (Fp,| and |F, with respect to ¢ are shown in Figure
AR PA gl

3.23 and Figure 3.24, respectively. It is noted that the results computed using our
self-adjoint method are in excellent agreement with the FD results. Here, the central

FD estimates use 2 % and 6.6 % perturbations of the constitutive parameters &, and

o, respectively.
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C. 3-D Object in Lossy Medium

A 2-D cross section in the x-y plane of the 3-D structure is shown in Figure 3.25
together with its nominal parameters {2]. The host medium and the immersed object
are lossy. The host medium is a rectangular box with a corner at (0, 0, 0) mm. It
extends 44.5 mm along the x-axis, 51.5 mm along the y-axis and 44.5 mm along the
z-axis. The immersed object is a small cube of side a = 1.5 mm with a corner at
(21.5, 20, 21.5) mm. The field analysis is carried out with XFDTD. Uniform mesh
(Ah=0.5 mm) is used. All boundaries are set as perfectly matched layers. The
excitation is the same as in the 2-D example.

The optimizable parameters are p’ =[a €,, 0,], which are the size and the

constitutive parameters of the immersed object. The point-wise response function
defined in (3.25) is used. In Figure 3.25, Q is the excitation point located at (15, 36.5,

22.5) mm while P is the observation point located at (26.5, 36.5, 22.5) mm. The
derivatives of IFQQ| and|FPQ| with respect to the side a of the immersed object is
shown in Figure 3.26 and Figure 3.27, respectively. The derivatives of IFPQ| with

respect to &,, and with respect to o, are plotted in Figure 3.28 and Figure 3.29,

respectively. It is observed that the results obtained using our self-adjoint approach
are in very good agreement with the CFD results. In order to obtain reliable CFD

estimates, rrial and error is used to determine the proper parameter perturbations.
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Here, the CFD estimates use 50 % perturbation of the nominal value of &,;and 100

% perturbation of the nominal value of o;.

IR PML

(&, 01)\=‘ (6,0.2)

PML
PML

(52.02) =/ (30,3)

PML X

Fig.3.25 2-D cross section in the x-y plane of the 3-D example and its nominal

parameters.
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3.5 SUMMARY

In this Chapter, we presented the time-domain self-adjoint sensitivity analysis
method for the computation of the response derivatives with respect to constitutive
and shape parameters. The S-parameter sensitivity formula and self-adjoint point-
wise sensitivity formula in the time domain are introduced. The implementation
details are also discussed.

Our self-adjoint method is based on its own FD grid, which is independent of
the EM solvers. It can provide Jacobians of second-order accuracy with negligible
computational overhead regardless of the number of design or optimizable
parameters. The approach is developed for easy standalone software
implementations aiding microwave design and modeling in conjunction with any
commercial time-domain computer-aided design package.

We have verified the self-adjoint approach through a number of examples,
which include 1-D and 2-D metallic structures, 1-D lossless dielectric structure, 2-D
and 3-D lossy dielectric structures. The sensitivities obtained using our self-adjoint
method have good agreement with those obtained using central FD estimates. All

field solutions are obtained with a FDTD-based commercial EM simulator.
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Chapter 4

SELF-ADJOINT SENSITIVITIES WITH
COARSE-GRID APPROACH

4.1 INTRODUCTION

In Chapter 3 we presented an efficient discrete self-adjoint approach for the
computation of the response sensitivities with time-domain solvers [5]-[2]. The
proposed technique needs only one EM system analysis to compute both the
responses and their Jacobian matrices regardless of the number of the optimizable
parameters. More importantly, it is applicable with commercial EM simulators. The
only requirement is that the EM solver can export the field solution at user-defined
points.

In the original self-adjoint approach, the sensitivity solver adopts the grid of
the FDTD simulation for the computation of the response gradient. In order to
compute the response sensitivity using an adjoint approach, the waveforms of all
three E-field components at all perturbation grid points need to be saved and post-
processed. Therefore, the memory requirements of the response sensitivity analysis

may become excessive for electrically large objects or problems with a large number
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of optimizable parameters. For some time-domain solvers, the speed of the overall
simulation may be affected as well. This happens if the simulator stores on the hard
disk the requested E-field solution at each iteration [3]. Slow-down due to recording
the field solution is insignificant if the latter is exported after the simulation is over
[4]. Even in this case, when the time-domain simulation is very long and the number
of required field points is large, the memory requirements may easily become
unmanageable for most computers.

In order to alleviate the problems described above, we propose the use of an
independent coarse FD grid of the sensitivity solver [5]. The use of coarse grids can
reduce the memory requirements drastically and improve the computational
efficiency of the sensitivity analysis while maintaining good accuracy. Applications
focus on lossy dielectric media as those used to model high-frequency problems
arising in biomedical applications of microwave imaging.

In this Chapter, we show that the sensitivity solver grid can be many times
larger than the one used in the FDTD simulation. We first describe the
implementation of the coarse-grid in inhomogeneous structures containing lossy
dielectric objects. We then investigate the accuracy of the proposed coarse grid
approach through 1-D, 2-D and 3-D examples. Recommendations are given for a

proper choice of the step size for the sensitivity solver grid.
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4.2 SENSITIVITY SOLVER GRID

In our discrete self-adjoint sensitivity analysis method, the computational domain is
discretized into rectangular cells as in a FD grid. Figure 4.1 illustrates the FD 2-D
grid for a dielectric rectangular object, which is modeled with constitutive

parameters £,, and o, . The host medium is modeled with €,, and o,. The vertical

E-field component of a 2-D TM mode is computed at the nodes of the grid. In our
original self-adjoint approach [1]-[2] introduced in Chapter 3, the sensitivity solver
adopts the grid of the FDTD simulation. In order to compute the response Jacobians,
the field at all perturbation grid points is stored and post-processed. For example, if

the response derivatives with respect to €,, and o, are computed, the waveforms of

all nodes marked with dots in Figure 4.1a must be stored. The dash lines in Figure
4.1 denote the grid of the FDTD simulation.

geometrica] detail

I 1 I ] ] | 1 ]

L N ) IR I __l__i__L_J__‘L___(€’2,0'2),_I‘__ Lo
| s |

s surroundin n’odé:s' Ay
(@) (&,1,0 40

Fig. 4.1 Sensitivity solver grid in the case of constitutive parameters: (a) the fine

simulation grid; (b) the coarse sensitivity-analysis grids.

77



Since the grid of the sensitivity solver is used only to compute the sensitivity
integral in the expression (3.1) or (3.4), it can be independent of the simulation grid.
Here, we use Ay to denote the step size of the sensitivity solver grid, which can be
many times larger than the step size Ak used by the FDTD simulation. While Ak
relates to At through the Courant stability condition [6], Ay is limited only by the
smoothness of the integrated field quantity in the perturbation region. We emphasize
that a coarse grid for the sensitivity calculation does not imply in any way a
possibility to use a coarse grid in the FDTD simulation. The accuracy of the
sensitivity calculation depends crucially on the accuracy of the field solution and,
therefore, the grid of the EM simulation must remain fine enough to ensure
convergent numerical analysis.

To illustrate the coarse grid of the sensitivity solver, three different are shown
in Figure 4.1b. The crosses, squares and circles denote the locations where the field
solution is needed for the three different grids. They correspond to sensitivity mesh
sizes, which are two times, four times, and eight times coarser than the simulation

grid, respectively. We note that the number of stored field waveforms decreases as

3k in a 3-D simulation and as k2 in a 2-D simulation when the grid is made coarser

by a factor k =Ay/Ah. Thus, the memory requirements are reduced drastically by

using coarse grids. This memory saving is crucial in sensitivity computation for

electrically large objects or problems with large number of optimizable parameters,
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where the memory requirements may be excessive.

The coarse sensitivity-solver grid can be applied to shape parameters in the
same manner as constitutive parameters. The savings in memory are not as dramatic
as in the case of constitutive parameters since perturbation grid points exist only at
the object’s interfaces instead of its whole volume. For instance, when the response
gradient with respect to w is computed, the nodes where the field is saved are shown
in Figures 4.2a-b. The dots in Figure 4.2a are the perturbation nodes for our original
approach. Figure 4.2b shows the coarse grids that our sensitivity solver can use.
Crosses denote the case when Ay =2Ah (12 nodes), squares for Ay =4Ah (6

nodes), and circles for Ay =8Ah (3 nodes). Again, the FDTD simulation grid is

shown with dash lines.
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Fig. 42  Sensitivity solver grid in the case of shape parameters: (a) the fine

simulation grid; (b) the coarse sensitivity-analysis grids.
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Coarse grids are needed for computationally large objects, i.e., objects which
are more than several Ah in size, due to the excessive memory requirements. For
computationally small objects, we suggest that the sensitivity solver adopts the
simulation grid, i.e. Ay =1Ah. In the case of computationally large objects, we
investigate the limits of the factor k=Ay/Ah, below which the Jacobian
computation is of acceptable accuracy. We consider 1-D, 2-D and 3-D examples in
the next section. Recommendations are given for a proper choice of the step size of

the sensitivity solver grid in different situations.

4.3 NUMERICAL EXAMPLES

Ouwr approach is verified through 1-D, 2-D and 3-D dielectric lossy inhomogeneous
examples. We compute the S-parameter derivatives and the derivatives of a point-
wise response function (3.25) with respect to both constitutive and shape parameters
for electrically large and small objects. Field analyses are carried out in the time
domain with the commercial FDTD-based solvers XFDTD [3] and QW-3D [4].
Mesh convergence is checked for all examples at the highest frequency of interest.
The convergence error formula is defined as

~(k+l)  ~ (k)

~(k+1)
ez‘b} ~E; /’E: . C=xoz @D
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. . . ~ (k+1) ~ (k)
Here, the superscripts denote two consecutive mesh sizes. E, ~ and E, are the

phasors of the field solutions for two consecutive mesh sizes at the highest frequency
of interest. This error is usually monitored at the ports for S-parameter analysis or at
the observation points P and Q.

In all plots, the results obtained using the original approach of our self-adjoint
sensitivity analysis are marked as FDTD-SASA. The results obtained using coarse-
grid schemes of the self-adjoint sensitivity analysis are marked as ‘Ay=kAh’,
which means that the sensitivity-solver grid is k times coarser than the FDTD grid.
The results estimated using the forward, central and backward finite differences at
the response level are marked as FFD, CFD and BFD, respectively. For shape
parameter derivatives, the FD estimates use parameter perturbation of 1Ak unless
specified otherwise in brackets in the plot’s legend. For material-parameter
derivatives, the amount of parameter perturbation is shown in brackets as a
percentage of the nominal value. Wherever available, analytical results are marked as
‘Analytical’. All analyses are performed over a frequency range from 3.0 GHz to 5.0
GHz.

A. Parallel-Plate Waveguide with an Electrically Large Middle Layer

We first illustrate the coarse-grid approach with a parallel-plate waveguide with an
electrically large central layer. The geometry of the parallel-plate waveguide and its

parameters are shown in Figure 4.3. Uniform mesh (A4 =0.25mm) is used in the
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FDTD simulation with a mesh convergence error less than 5 %. The excitation is a
modulated Gaussian pulse. It has a uniform distribution across the port conforming

to a TEM plane wave.

& =6

2.5 mm g, =02

w=10 mm

Fig. 4.3 Geometry of the parallel-plate waveguide with an electrically large central

layer and its parameters.

The optimizable parameters pT =[g,,,0,,w] are the constitutive parameters
of the central layer and its width. Figures 4.4 and 4.5 show the derivatives of |S,|
with respect to o, and &,,, respectively. It is observed that the results obtained

using all coarse schemes except the one using Ay =20Ah, which is close to the

Nyquist limit at 5 GHz, show good agreement with the analytical, the FDTD-SASA

and the CFD results.
For electrically large objects in a 1-D problem, it the optimizable parameters
are material parameters, we recommend to choose the step size of the sensitivity

solver as Ay <A,,/4 in order to maintain good accuracy. Here, A, is the

minimum wavelength of interest in the medium of the optimized object.
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Figures 4.6a-b show the derivatives of the real and imaginary parts of S|,

with respect to the shape parameter w, respectively. It is noted that results obtained
using coarse grids except the one with Ay =2Ah show substantial discrepancies in
comparison with the FDTD-SASA (Ay = Ah) as well as the FD curves. For 1-D
problems, if the shape parameter is optimized, we recommend to choose the step size
of the sensitivity solver equal to that of the simulation grid in order to maintain good
accuracy. Also, the memory requirements in this case are small and there is no need

to employ a coarse grid as means of reducing memory requirements.

S, Vo0, (@m

Fig. 44  Derivative of [§,,| with respect to ¢, in the 1-D example with an
electrically large central layer.



Derivative of 1S;,| with respect to &, in the 1-D example with an

Fig. 4.5
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Fig. 4.6 Derivative of §;; with respect to w in the 1-D example with an electrically

large layer: (a) derivative of Re(S;,); (b) derivative of Im(S,,).

B. Parallel-Plate Waveguide with an Electrically Small Middle Layer

A parallel-plate waveguide with an electrically small central layer and its parameters
are shown in Figure 4.7. Uniform mesh (A2 =0.125 mm) with a mesh convergence
error less than 4 % is used in the FDTD simulation. The excitation and the
optimizable parameters are the same as in the first example.

Figures 4.8a-b show the derivatives of the real and the imaginary parts of §,,

with respect to o, , respectively. It is noted that all curves obtained using different

coarse-grid schemes are in good agreement. There is very small discrepancy between
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the curves obtained using coarse grids and all the other curves. We conclude that for
an electrically small object in a 1-D problem, the step size Ay of the sensitivity
solver can be chosen as large as the size of the object when derivatives with respect

to material parameters are computed.

& =

0, =02

r

2.5 mm
g, =02

w=]mm
Fig. 4.7 Geometry of the parallel-plate waveguide with an electrically small central

layer and its parameters.
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PML

Derivative of S,, with respect to ¢, in the 1-D example with an
electrically small layer: (a) derivative of Re(S,,): (b) derivative of Im(S,,).
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Fig. 4.9 Geometry of the 2-D examples of objects in lossy medium and their

parameters: (a) electrically large, and (b) electrically small.
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C. 2-D Electrically Large Object in Lossy Medium

Figure 4.9a shows a 2-D structure with an electrically large object immersed in a
host medium. Both the host medium and the object are lossy. Uniform mesh
(AR =0.25mm) with a mesh convergence error below 4 % is used. The excitation is

a modulated Gaussian pulse.

The design parameters are p’ = [e,,0,w,l]. We compute the sensitivities of
the normalized point-wise response function Fpy in (3.25). In Figure 4.9a, @ is the
excitation point while P is the observation point. The derivatives of IFQQ| and IF PQ!
with respect to &, are shown in Figure 4.10 and Figure 4.11, respectively. The
derivatives of IFQQl and |FPQ| with respect to w are plotted in Figures 4.12 and

Figure 4.13, respectively. We notice that the step size of the sensitivity solver can be
8 times coarser than that of the FDTD simulation. A sensitivity-grid cell size of
Ay =16Ah corresponds roughly to the Nyquist limit at 5 GHz for the medium of the
immersed object, and the respective curves show significant departure from all other
results. For electrically large objects in a 2-D problem, we recommend to choose the

step size of the sensitivity solver as Ay <A, /4 in order to maintain good

accuracy.
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Fig. 4.10 Derivative of | F, | with respect to £, in the 2-D example with a large

object.

Fig.4.11 Derivative of | Fp,, | with respect to £, in the 2-D example with a large

object.
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D. 2-D Electrically Small Object in Lossy Medium

Figure 4.9b shows a 2-D structure with an electrically small inhomogeneity in a host
medium. Both the host medium and the inhomogeneity are lossy. A uniform mesh
(Ah=0.125 mm) with a mesh convergence error below 3 % is used. The excitation

and the response functions are the same as those in the example in subsection C.

The design parameters are p’ = [€,,0,w]. In Figure 4.9b, Q is the excitation

oint while P is the observation point. The sensitivities of |F,,| with respect to o
p p PO P 2

and w are plotted in Figure 4.14 and Figure 4.15, respectively. The sensitivity of the

imaginary part of Fj, is plotted in Figure 4.16. We observe that the step size of the

sensitivity solver needs to be the same as that of the FDTD simulation in order to
achieve good accuracy. For electrically small objects in 2-D problems, we
recommend to choose the step size of the sensitivity solver as that of the FDTD
simulation for both shape and material parameters in order to maintain good

accuracy.
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Fig. 4.15 Derivative of | Fp, | with respect to w in the 2-D example with a small
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Fig. 4.16 Derivative of Im(F,,) with respect to w in the 2-D example with a

small object.

E. 3-D Object in Lossy Medium

Figure 4.17 shows a 2-D cross-section of the 3-D structure and its parameters. The
host medium and the immersed object are lossy. The host medium is a rectangular
box with a corner at (0, 0, 0) mm. It extends 40 mm along the x-axis and the z-axis,
and 44 mm along the y-axis. The immersed object is a small rectangular object with
a corner at (18, 15, 18) mm, and an extent of w = 4 mm along the x-axis, » = 4 mm
along the y-axis and / = 4 mm along the z-axis. Uniform mesh (Ah =0.25 mm) with
a mesh convergence error below 5 % is used. Please note that the “Super Mur” is an

absorbing boundary condition used in QW-3D [4].
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Fig. 4.17 A 2-D cross-section of the 3-D example and its parameters.

The design parameters are p’ =[¢,,,0,,w,h,1]. The excitation and the
response functions are the same as those of the example in subsection C. In Figure
4.17, Q is the excitation point located at (15, 29, 17) mm while P is the observation
point located at (25, 29, 17) mm. Figure 4.18 shows the derivative of ‘FQQ|2 with
respect to w. It is noted that all curves obtained using coarse grids except the one
with Ay =16Ah, which approaches the Nyquist limit of the object medium at 5

GHz, have good agreement with the curves computed using our original self-adjoint
approach. These curves are in close agreement, i.e., they are convergent. In contrast,

the curves computed using response-level FDs are not convergent. Different shape
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parameter perturbations have been tried. The best FD estimates are shown here

obtained with Aw=2Ah.

Figures 4.19 and 4.20 show the derivatives of ’FQQF and ‘Fpglz with respect
to €,,, respectively. Similar results are obtained. All curves except the one with
Ay =16Ah are in good agreement. We recommend that in a 3-D problem, the step
size of the sensitivity solver is chosen as Ay < A4, /4 for both material and shape

parameters in order to maintain good accuracy.
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Fig. 4.18 Derivative of |FQQ| with respect to w in the 3-D example.
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44 SUMMARY

We proposed a coarse-grid approach for the efficient computation of response
Jacobians using the self-adjoint sensitivity analysis method. The grid of sensitivity
solver can be many times coarser than that used by the EM simulation. The proposed
technique reduces the memory requirements significantly. It is especially useful in
the case of electrically large regions whose permittivity or conductivity distribution
is being optimized, since the memory requirement of our original self-adjoint
approach, which uses the FDTD simulation grid directly, may become excessive.

The coarse-grid approach is verified through a number of examples. We
found that the sensitivity solver mesh size can be chosen as large as A,;,/4 and still
maintain good accuracy. Here, A, is the shortest wavelength of interest.
Recommendations about the step size of the sensitivity solver grid are given for both
electrically large and small objects. We emphasize that the accuracy of the sensitivity
result is dependent on the accuracy of the field solution and, therefore, the grid of the
EM simulation must remain fine enough to ensure convergent solution. Yet, the
sensitivity grid can be as coarse as a quarter wavelength for the highest frequency of
interest. This is because it is nothing more than a discrete means of calculating the
sensitivity integral. It is limited only by the requirement that the local field solution
is a sufficiently smooth function of space at the given frequency.

Our new grid scheme is independent of the simulation grid and is simple to
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implement. The approach can be realized as standalone software to compute
response Jacobians, which can be used in gradient-based computer-aided design and
inverse-problem solutions. Applications focus on lossy dielectric media as those used
to model high-frequency problems arising in biomedical applications of microwave

imaging.
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Chapter 5

SELF-ADJOINT SENSITIVITIES WITH
CENTRAL-NODE APPROACH

5.1 INTRODUCTION

Chapter 4 introduced an efficient coarse-grid approach for self-adjoint sensitivity
analysis [1]. The use of coarse grids can reduce the memory requirements drastically
and improve the computational efficiency of the sensitivity analysis while
maintaining good accuracy. The target of the coarse-grid approach is the sensitivity
analysis of electrically large objects or problems with a large number of optimizable
parameters whose memory requirements may be excessive for the original self-
adjoint approach.

In this Chapter, we introduce an important central-node approach for self-
adjoint sensitivity analysis, which can be used to simplify the implementation of the
sensitivity computation. It can also improve the accuracy of the sensitivity
computation for dielectric structures.

In order to perform sensitivity analysis with respect to shape parameters

using adjoint approaches, the field solutions at the perturbation grid points, which are
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adjacent to the perturbation boundaries, are needed. On the other hand, the field
solutions provided by time-domain solvers are the least accurate at dielectric
interfaces. These interfaces are the places where some or all perturbation grid points
reside. Therefore, the accuracy of sensitivity computation deteriorates when lossy
inhomogeneous structures are considered. Moreover, the ambiguity in the way
permittivity and conductivity are assigned at planar and edge interfaces complicates
the sensitivity computation.

The central-node approach overcomes the above problems [2]. It uses an
independent central-node FD grid, which departs from the conventional FDTD Yee-
cell [3]. In the central-node FD grid, all three E-field components are co-located and
at least half a grid step away from interface planes and edges. It is expected that the
field solution accuracy is going to be better away from material interfaces regardless
of what the discretization scheme is used in the FDTD simulations. In the examples
studied here, the accuracy is visibly improved compared to our original adjoint
approach for dielectric discontinuities. More importantly, the implementation is
simplified, especially for 3-D problems, since the derivatives of the system
coefficients are independent of any averaging scheme that the solver may use at
material interfaces. The focus of the central-node approach is on 3-D lossy-dielectric
structures

We start with a brief discussion on local accuracy of the field solutions at

dielectric interfaces. Then, we describe the central-node approach for
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inhomogeneous structures containing dielectric objects. We verify our approach
through 1-D and 3-D examples implemented with commercial FDTD solvers,

XFDTD [4] and QuickWave-3D [5].

5.2 LOCAL ACCURACY OF THE FIELD SOLUTIONS AT
DIELECTRIC INTERFACES

As we discussed in Chapter 3, the local field solution at dielectric interfaces is
needed for the adjoint sensitivity analysis of the shape parameters of dielectric
objects. However, in simulation, these local field values are the least accurate due to
the rapid change of the field in space, especially in the case of high permittivity and
loss contrast. In this section, we illustrate the field errors at dielectric interfaces.

We define a mesh-convergence error at the ith sample point (i =1,...,N ) and
the kth mesh-refinement iteration as

e=max{el,...el} ;.1

where

ei(k) - E,-(k”) _Ei(k)'/’E"ei(kH) (5.2)

Here, a sample point is defined not only by its position in the grid but also by the
polarization of the monitored field component. The field phasors (denoted with a
tilde) are obtained via Fourier transform. The error is monitored at multiple
locations, frequencies and polarizations. It defines the margins of uncertainty of the

numerical analysis. A mesh refinement factor of 2 is used at all frequencies of
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interest in the following example. It is well known that the solution-convergence
error is related not just to the grid cell size but also to other numerical factors such as
the absorbing boundaries, the local mesh refinement, etc. Note that here we refer to
the numerical error defined in (5.1) and (5.2), which is dependent on the grid cell
size only, as the mesh-convergence error.

Figure 5.1 shows a 2-D structure with a square inhomogeneity in a host
medium and their parameters. P; is the excitation point located at (11, 48) mm. The
mesh convergence analysis is performed at three points P, P, and P3. Here, P; and
P> are located at (27, 30) mm and (30, 30) mm, respectively. All field values are

obtained directly from a FDTD-based commercial solver XFDTD [4]. The respective
error curves versus frequency are plotted in Figure 5.2. Here, Ah*) =0.25 mm and

AR*™ = 0,125 mm. We note that P;, which is located at the interface, has the
largest convergence errors at 3.3 GHz. The convergence errors versus step sizes are
listed in Table 1. The convergence errors at P, P; and P are denoted using ey, ez and
es, respectively. We observe that the mesh convergence error at the interface in

general is the largest for all step sizes.

TABLE 5.1
MESH CONVERGENCE ERRORS AT P;, P AND P3 AT 3.3 GHZ

AR (mm) € (%) e, (%) e; (%)

0.5 360.3 135 6.7
0.25 178.5 6.6 3.7
0.125 58.1 10.5 2.1
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Fig. 5.1 Geometry of a 2-D structure used to illustrate the local accuracy of the field
solution at a dielectric interface.

Frequency (Hz)

Fig. 5.2 Mesh convergence error vs. frequency at Ah**" = 0.125 mm.

104



5.3 CENTRAL-NODE GRID

In our self-adjoint sensitivity analysis method, the computational domain is
discretized into rectangular cells as in a FD grid. The 2-D FD grid cross-section of a
rectangular object is sketched in Figure 5.3. The object is modeled with constitutive

parameters £,, and ©,. The host medium is modeled with ¢,; and o,. In order to

compute the response Jacobians, the E-field components at all perturbation grid
points are stored and post-processed. For example, if the response derivative with
respect to w is computed and if the object is dielectric, the field solutions are needed
at all nodes marked with dots in Figure 5.3. It is noted that some of the perturbation
grid points are located at the interface. As we discussed in Section 5.2 through mesh
convergence analysis, the field solutions at dielectric interfaces are the least accurate.
They degrade the accuracy of the sensitivity computation in dielectric structures.

To minimize this degradation effect, we propose the use of an independent
central-node FD grid. It departs from the conventional FDTD Yee-cell [3]. In the
central-node grid, all three E-field components are co-located and at least half a grid
step away from interface surfaces and edges. By avoiding the use of the field
solutions at dielectric interfaces in the sensitivity computation, the Jacobian accuracy
is significantly improved especially in the case of shape parameters. In this approach,
the waveforms at the central nodes marked with crosses as shown in Figure 5.3 are

sampled and used in the sensitivity computation.
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Fig. 5.4 2-D cross-section of a rectangular object and its sensitivity-solver grids for

material parameters: points — original approach; crosses — central-node approach.
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Fig. 5.5 One Yee cell and the corresponding central node ¢ (marked with a cross).

The central-node approach can be applied to constitutive parameters in the
same manner. The dots in Figure 5.4 are the perturbation grid points in our original
approach, while the nodes marked with crosses are the perturbation grid points in our
central-node approach in the case of sensitivities with respect to the object’s
permittivity and conductivity.

With FDTD solvers, the E-field is computed at the edges of the Yee cell [3].
To obtain the field at the central nodes, we use simple averaging of the values at the
surrounding nodes, which coincide with the nodes of the Yee grid. Figure 5.5
illustrates one Yee cell and the corresponding central node c. Notice that the central
nodes are always half a step away from interface planes and edges. At such points

the nodal permittivity and conductivity are well defined and so are their changes
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resulting from a discrete perturbation of the shape. The three E-field components at a
central node are computed using simple averaging. For example, the three E-field

components at c are

E. (i, j.k) =:11--[Ex(i, JK)+E G, jok+ D)+ E G, j+ 1k +D)+E, (i, j+1,k)] (5.3)
E G, j.k) =%-[Ey(i,j,k) +E,(+1, j,k)+ E (i +1, j,k+D)+ E, (i, j,k+1) | (5.4)

Ez(i,j,k)=%-[Ez(i,j,k')+Ez(i+l,j,k')+Ez(i+1,j+1,,k)+Ez(i,j+1,k)]. (5.5)

We emphasize that our sensitivity algorithm operates on its own independent
structured grid, which may be several times coarser than that of the simulator as
discussed in Chapter 4. We denote the ratio of the cell size of the sensitivity-solver
grid to the simulator’s cell size as k. Figures 5.3 to 5.5 and formulas (5.3)-(5.5)
describe the method of transferring the solution of a FDTD-based solver onto the
central-node grid in the case when k = 1. This method is based on a simple linear
interpolation of the available field solution at points, which are equidistant from the
central node. When k > 1, the points at which the field is available are not necessarily

equidistant from the central node. In this case, general linear interpolation is used.
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54 NUMERICAL EXAMPLES

We illustrate the proposed approach through 1-D and 3-D lossy dielectric
inhomogeneous examples with FDTD-based commercial solvers [4]-[5]. We
compute the derivatives of S-parameters and the point-wise response function
defined in (3.25) with respect to both constitutive and shape parameters.

In all plots, the results obtained using the central-node self-adjoint sensitivity
analysis are marked as CN-SASA. The results obtained using the original self-
adjoint sensitivity analysis are marked as SASA. The results obtained using the
forward, central and backward finite differences at the response level are marked as
FFD, CFD and BED, respectively. The FD estimates use parameter perturbation of
1Ak for shape-parameter derivatives. Wherever available, analytical results are
marked as ‘Analytical’. All analyses are performed over a frequency range from 3.0

GHz to 5.0 GHz.

A. Parallel-Plate Waveguide

We first illustrate the approach through a 1-D inhomogeneous parallel-plate
waveguide which has analytical solution. The structure and its parameters are shown
in Figure 5.6. Unitorm mesh (A% = 0.25 mm) is used. The structure is excited with a
modulated Gaussian pulse, which has a uniform distribution across the port

conforming to a TEM plane wave.
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Fig. 5.6 Geometry of the parallel-plate waveguide and its parameters.

The optimizable parameters are p’ =[€,.,0, w], which are the constitutive
and shape parameters of the central layer. The derivatives of the real and the
imaginary parts of §;, with respect to &, are shown in Figure 5.7 and Figure 5.8,
respectively. The derivatives of the real and the imaginary parts of §;, with respect

to ¢ are shown in Figure 5.9 and Figure 5.10, respectively. We observe that the
results obtained using our central-node self-adjoint approach agree best with the
analytical results as compared to all other results. Here, central FD estimates use 2 %

parameter perturbation of the nominal values of the constitutive parameters.
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In 1-D problems, the accuracy improvement due to the central-node
approach, although noticeable, is not usually significant. In general, the improvement
is more significant in 2-D and 3-D problems. This is illustrated in our next 3-D

example.

B. Object in Lossy Medium

Figure 5.11 shows a 2-D cross-section of the 3-D structure and its parameters. Both
the host medium and the immersed object are lossy. The host medium is a
rectangular box with a corner at (0, 0, 0) mm. It extends 30 mm along the x-axis, 34
mm along the y-axis and 30 mm along the z-axis. The immersed object is a small
rectangular box with a corner at (13, 10, 13) mm, and an extent of w = 4 mm (x-
axis), h = 4 mm (y-axis) and / = 4 mm (z-axis). Uniform mesh (Ah = 0.25 mm) is
used. The excitation is a modulated Gaussian pulse.

The optimizable parameters are p’ = [w, hle,, ,0'2]. They describe the shape
and the constitutive parameters of the immersed object. The normalized point-wise
response function Fp, in (3.25) is used. In Figure 5.11, Q is the excitation point
located at (10, 24, 15) mm while P is the observation point located at (20, 24, 15)
mm. The derivatives of the real part, the imaginary part and the magnitude of F,,
with respect to w are plotted in Figures 5.12a-c, respectively. The derivatives of the

real part, the imaginary part and the magnitude of Fp, with respect to w are shown



in Figures 5.13a-c, respectively. It is observed that the results obtained using the

central-node approach are in better agreement with the CFD results than those

obtained with the original staggered-grid approach.

PML

PML
10mm (> | 10mm

PML
Fig. 5.11 A 2-D cross-sectional view of the geometry of the 3-D example and its

parameters.
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5.5 SUMMARY

In this Chapter, we proposed a central-node approach for accurate computation of
response sensitivities with self-adjoint sensitivity analysis technique using time-
domain field solutions. The proposed technique is an important improvement to the
self-adjoint sensitivity analysis method introduced in Chapter 3. The accuracy of the
central-node approach is better than that of our original approach in the case of
dielectric structures, while the efficiency remains the same.

The central-node approach uses an independent central-node FD grid where
all three E-field components are co-located and at least half a grid step away from
interfaces. The accuracy improvement is due to a shift in the position of the
perturbation grid points, which places them at least one-half step away from the
faces and the edges of dielectric interfaces where the field solutions are least
accurate. The local accuracy of the field solutions at dielectric interfaces was
discussed in Section 5.2.

The proposed technique was verified through 1-D and 3-D examples. It is
observed that the accuracy of the central-node approach is superior to the original
approach in the case of lossy dielectric structures. Besides its excellent accuracy, the
implementation in 3-D structures is much simplified by using the central-node

approach in comparison with the original approach. Applications focus on 3-D lossy
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dielectric structures arising in biomedical applications of microwave imaging. The

central-node approach can also be applied to metallic structures.
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Chapter 6

SPECTRAL METHOD FOR WIDEBAND
SELF-ADJOINT SENSITIVITIES

6.1 INTRODUCTION

So far, we have introduced our time-domain self-adjoint sensitivity analysis method
for the computation of response Jacobians. Our method features several advantages:
(i) it is applicable with commercial time-domain EM solvers since its only
requirement is to access the E-field at user defined locations; (ii) it has superior
accuracy over any response-level derivative approximations; (iii) its computational
overhead is negligible in comparison with the time required by the EM simulation
even if the number of the optimizable parameters A is in the order of thousands.

The time-domain self-adjoint sensitivity analysis method is intrinsically
wideband since it operates on time-domain field waveforms. However, the memory
requirements of the method may become a serious problem when N is very large and
the simulation time is long. This is typical in microwave imaging where the imaged
volume represents a considerable portion of the computational volume, i.e., the

number of the grid points where the field waveforms are recorded is very large. In
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this case, the memory requirements may easily reach hundreds of gigabytes, which is
unmanageable for most computers.

To overcome the above problem, we propose a new sensitivity solver
developed for time-domain analysis engines [5]. The proposed sensitivity solver is
based on a spectral formula for the self-adjoint computation of the Jacobians. The
new sensitivity formula operates on the spectral components of the E-field at the
desired frequencies rather than on its time waveforms. The wideband nature of the
time-domain analysis is preserved but the response sensitivities can be computed at
select frequency points. The number of these frequency points Ny can be much
smaller than the number of time-domain samples N; in a recorded waveform. We

now record only 3x N, complex numbers instead of recording 3x N, real numbers
at each perturbation grid point. Note that the discrete Fourier transform needed to
compute the field phasors is carried out “on-the-fly” and has negligible memory
requirements. Thus, the memory requirements of the spectral approach are
independent of the simulation time and are reduced by a factor of N, /(2N,) as
compared to the original time-domain approach. As a typical example, N, =20000
and N, =10, which results in a memory saving factor of 1000, thus reducing the
memory from gigabytes to megabytes and making applications feasible. Beside its
memory efficiency, the new approach retains all advantages of time-domain self-

adjoint sensitivity analysis method discussed above.

121



Further, the proposed approach improves significantly the accuracy of the
Jacobians by using a central-node grid as discussed in Chapter 5, where all three E-
field components are co-located {4].

The proposed technique is well suited for wideband response Jacobian
computation both in microwave imaging and in design. With a single time-domain
analysis performed with any available simulation tool, high fidelity responses and
Jacobians are obtained. The field phasors are recorded instead of the respective time
waveforms and the length of the time-domain simulation is no longer a factor in the
memory requirements.

We start with the derivation of the spectral sensitivity formula. We then
verify the proposed spectral approach through 1-D and 3-D examples. We also show
Jacobian distribution maps in a 3-D imaging problem. The memory and time
requirements are discussed in Section 6.4. In all examples, field analyses are carried

out with the commercial time-domain FDTD based solver QW-3D [6].

6.2 SPECTRAL SELF-ADJOINT SENSITIVITY FORMULA

The self-adjoint sensitivity formulas (3.1), (3.4), (3.23) and (3.24) introduced in

Chapter 3 operate on the time waveforms of the E-field [1]-[2]. The sensitivities of

any frequency-domain response, which is defined as a complex phasor F, can be
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computed similarly to the S-parameter sensitivity (3.11). Here, we derive a new self-
adjoint sensitivity formula for Jacobian computation of F . The proposed technique
operates on the spectral components of the field solution at the frequencies of interest
instead of its time waveforms. The development of the new spectral formula is
carried out in detail based on the exact self-adjoint formula (3.4) in the case of
constitutive parameters [5]. The derivation of the spectral counterpart for shape

parameters is analogous.
We rewrite the self-adjoint sensitivity formula (3.4) for constitutive

parameters as follows

L_J z_":fax m (B)p, - @dgdr n=1,..,N (6.1)
apn Rl 0

Here, F is the complex phasor at the frequency @,; p, denotes the nth optimizable
parameter; the subscripts R and I denote the real and the imaginary parts of a
complex quantity, respectively; T, is the simulation time; Q is the computational
volume; E is the time-dependent original field solution of the nominal structure;
(B) z are the time-dependant adjoint field solutions in the unperturbed state. Since
perturbations in the constitutive parameters affect only the system coefficients o
and s, dR(E)/dp, is computed as

IRE) __92 p§-.pE 6.2)

ap, P, P,




where

— = cAr 6.3)
ap,
N p,=0
and
0, , = E,
ﬁ = 2 8 (6.4)
apn ‘U()Ah ) P, = ag. ’
2At

Here, the operators D,, D,, and D, are second- and first-order finite difference

operators with respect to time; Ah is a spatial step and Az is a temporal step; c is the
speed of light in vacuum, &, is the relative permittivity, z, is the vacuum
permeability and o is the specific conductivity.

In the case of the §,, -parameter derivative, the derivative of the complex

response F =f‘pq (3.9), oF /dp,, is needed. Discretizing (6.1) in space, the

P4

derivative of the real part of qu with respect to p, (n=1,...,N ) is calculated as

oF,, Tom IR(E,(Q.1))
Tra | o E (Q.0)g ————2-AQ,dt . 6.5
( 5 ]R | Q;( p@Dp Q 6.5)

0 n
Here, (fE » (Q,1))g denotes the associated adjoint-field solution at point Q and time ¢

when port p is excited; E, (Q,7) is the original field solution when port ¢ is excited.

AQ,, is the cell volume related to the perturbation grid point Q. The expression for
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the imaginary part of qu is analogous with the only difference in the phase of the

adjoint field (K, (Q.1)), , which is 90° larger than that of (E,(Q,1))z.

We rewrite (6.5) in a compact form as

oY)

Fp) -3 (st -
( . ]R——Z(ﬁR )p 2% n=L..N (6.6)

where

Tmax IR(E,)

(ij)0= [ &, Q.0 dt. (6.7)
0

Pr g
Here, the adjoint field (E p(Q, 1)) is derived from the «, spectral component of the
original field E[)(Q) = Z{:x_v Z{A | E, (@)1-explj@.,(@)] as[1] (see also 3.23)

| E{p (Q)l
a

(Er,(Q.1)g = -sin( @yt + @, —@.0,(O)) (6.8)

where

a=J,G,a PAtAZ » (6.9)
and ¢ =x,y,z denotes the respective vector component. |E;,(Q)] and @,,,(Q) are
the magnitude and phase of E;p (Q), which is obtained from E,,(Q,t) via Fourier
transform; G,, and ¢, are the magnitude and phase of the original excitation pulse

at frequency a; Az, is the longitudinal cell size at port p, and J, (usually set to 1)

is the scaling factor used to account for the actual strength of the source.
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Substituting (6.8) into (6.7), we obtain

|E;, (@) ; " 9R(E,) _
(942 )Q - gg‘z__e;._‘f. { —_a_an(Q,‘) sinlgy,(Q,1)ldt

(6.10)

where we have used the short-hand notation ¢ ,(Q.0)=ay+@, -, ,(Q).

Analogously, the derivative of the imaginary part of ﬁpq is computed as

[aFJJ =_Z(.y,"‘1)Q AQ,, n=1,..,N
1

ap n PeQ)

where

|E | , Tmax 9R(E
(‘_(flpq)gzgz Lg)f J' —( o)

=y @ o P len

From (6.6) and (6.11) , we obtain the derivative of F,, as

Pq

oF  dRe qu ~9ImF
= +J = ¢
a[)" apn apn Qe

where

(57 )Q = (g )Q + (7 )Q .

Substituting (6.10) and (6.12) into (6.14), we obtain

(7). - jexp(=j-¢,) {E _aR(F:,,)}
0

a P op,

cos[¢§ » (Q,H}dr.

(6.11)

(6.12)

(6.13)

6.14)

6.15)
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where

ORE) da z 35 :
=22k XK. 6.16
ap, op, ! dp, ° (6.16)

Here, E , and E , are the phasors representing the respective time-derivatives of the

@, spectral components of E, (7):

" 9’E . -
g =FD {D"qu} = FP {A;Q __a?sjg} =—ap - A E, (6.17)
E,,=5“{D,E, }=2jmAt-Ey,. (6.18)

In (6.17)-(6.18), U denotes the Fourier transform. In (6.16), the derivatives of the
system coefficients are the same as in (6.3) and (6.4). Finally, from (6.13) and (6.15),

we obtain

ai&pq J ' exp(—j ) gog) - aR(E~ )
- &, RED | (6.19)
apn a %A% ¢ apn o

In the same manner, we obtain the spectral sensitivity formula for parameters

belonging to a discrete space (the case of shape parameters):

aﬁpq ~ j‘exp(—j'(og)

(6.20)

3

. AR(E,)
> AQ, | (E ), ——
ap, a deer Ap, |,

where
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http:6.17)-(6.18

- 2 . . B
ARE) ACE Aa i As & A,(B)) 621
Ap n Ap n Ap n Apn Apn
and
j{q =g {Dt-[;q}'—"ja’om‘j;q- (6.22)

The system-coefficient differences A,¢*, A, &, A,s and A, (,Bj ;) are determined

in the same manner as in (3.2) [1]-[2].

In contrast to (6.1) and (3.1), the sensitivity formulas (6.19) and (6.20) use the
field phasors at the perturbation grid points instead of their time waveforms. Thus, at
each perturbation grid point only one commplex number per frequency point is
recorded instead of the entire waveform. This is important since discrete Fourier

transform can be performed “on-the-fly” with negligible memory requirements.

6.3 NUMERICAL EXAMPLES

In all examples, mesh refinement is carried out ensuring mesh convergence error
below 5 %. All analyses are performed over a frequency range from 3.0 GHz to 5.0
GHz. The S-parameter derivatives and the derivatives of a point-wise response
function are computed. The point-wise function defined in (3.25) can be considered
as a special case of an S-parameter. The results obtained using our new spectral

approach are marked with S-SASA. The results obtained using a central-node grid
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with our time-domain self-adjoint sensitivity analysis method are marked as TD-

SASA.

6.3.1 Validation of the Spectral Approach

A. Parallel-Plate Waveguide

We first verify the spectral approach through a 1-D inhomogeneous parallel-plate
waveguide. The structure and its parameters are shown in Figure 6.1. Uniform mesh
of Ah=0.5 mm is vsed. The current-density excitation is a modulated Gaussian
pulse, which covers the frequency band from 3.0 GHz to 5.0 GHz. The magnitude
spectrum at 3.0 GHz and 5.0 GHz is at about 35 % of the maximum spectral
component. The source current density is uniformly distributed across the port

conforming to a TEM plane wave.
The optimizable parameters are p =[w, 8,2,0’,2]7 , which are the shape and
constitutive parameters of the central layer. The derivatives of |S,,| and |5, | with

respect to w are shown in Figure 6.2 and Figure 6.3, respectively. As expected, the
results obtained using the spectral approach are identical with those obtained using

the central-node time-domain self-adjoint sensitivity analysis method.
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the spectral approach.
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Fig. 6.2 The derivative of |S ,,| with respect to the shape parameter w in the parallel-

plate waveguide example.
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Fig. 6.3 The derivative of |S21| with respect to the shape parameter w in the parallel-

plate waveguide example.

B. 3-D Lossy Dielectric Structure

Figure 6.4 shows a 2-D cross section of the 3-D structure and its parameters.
Both the host medium and the immersed object are lossy. The host medium is a box
with a corner at (0, 0, 0) mm. It extends 32 mm along the x-axis, 36 mm along the y-
axis and 32 mm along the z-axis. The immersed object is a cube with a corner at (12,
10, 12) mm and a side of a = 8 mm. Uniform mesh is used with Ah=0.5 mm. The

excitation is the same as the excitation in the parallel-plate waveguide example.
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Fig. 64 The geometry of the 3-D example used for the verification of the spectral

approach: 2-D cut in the plane of the observation and excitation points P and Q.

The optimizable parameters are p =[a,€,,,0,,1 , which are the size and the

constitutive parameters of the immersed object. We compute the Jacobians of the
point-wise response functions defined in (3.25). In Figure 6.4, Q is the excitation

point located at (11, 25, 16) mm while P is the observation point located at (21, 25,
16) mm. The derivatives of ‘FQQ’ and ’FPQI with respect to £,, are shown in Figure
6.5 and Figure 6.6, respectively. The derivative of ‘FQQ| with respect to o, is plotted

in Figure 6.7. As expected, the results obtained using the spectral approach are
exactly the same as those obtained using our original self-adjoint sensitivity analysis

on central-node grid, which uses time waveforms of the field solution.
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In this example, the recorded memory requirement of the spectral approach is

roughly 6.75 MB for 32 frequency points, while our time-domain self-adjoint

approach based on the field time waveforms requires 2230 MB. This is a memory

reduction of three orders of magnitude.
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Fig. 6.5 Derivative of ‘FQQ; with respect to €,, in the 3-D example.
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6.3.2 Jacobian Distributions in a 3-D Imaging Example

The objective of microwave tomography is to reconstruct the complex permittivity
profile in an imaged region. This inverse problem is cast in the form of an
optimization problem, which is solved by minimizing a cost function. The cost
function is a measure of the difference between the measured (or target) responses
and the résponses produced by the forward model for the current estimate of the
permittivity distribution. It can be defined as [7]

F(e)=lldE)-Dli+5-lle—¢g, |l (6.23)
where @e C"! is the vector of target responses, e C"™ is the vector of
responses obtained from the forward model, and II- 1l represents a suitable, e.g., I,
norm. The second term in (6.23) is the regularization term where the coefficient & is
usually chosen between 0 and 0.5. The vector £e C*™ represents the unknown
complex permittivity profile of the reconstructed scatterer in the assumed discrete
space, while g, € CM is the “background” permittivity profile which is assumed
known. The forward model is typically a high-frequency EM simulation. The
optimization problem,

&' =argmin F(€) (6.24)
£

is solved iteratively by properly updating the permittivity distribution £. Often, at

the initial iteration, € is setequal to g, , i.e., £V =¢,.
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When EM simulations are used as forward models, gradient-based
optimization techniques are preferred in solving (6.24) due to their fast convergence
[71-[13]. On the other hand, gradient-based techniques require the Jacobian of the
cost function F(g). The memory-efficient self-adjoint technique proposed here
makes this computation possible. Moreover, since our technique reduces the
Jacobian computation to a simple post-process, it can be applied with commercial
simulators.

In the examples below, we consider the particular cost function [5]

N, _ N
F(e):O.S(ZIQ -B P +8) 1g, -5, FJ (6.25)

r=i n=l
and its permittivity Jacobian. The complex permittivity of each voxel &,, can be

expressed in terms of its real part £, and its effective specific conductivity o, as

sn=e;(1—j "J n=1,..N. (6.26)
wﬂ

The respective derivatives of the cost function in (6.25) are

oF L ~ (2 = (9@
oe =Z|:(€Dr _¢r)R (Ej-j +(¢r —dsr)l [agrj :|+5'(gn -gbn)R (627)
n r=1 n /R n /i

do 20 00

n r=| n n

N
a—F=§f{<¢r—5,>R-(a¢*j +<¢,—5,),-(MJ }—(a/w)-(e,,—eb,.». (6.28)
R I
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In (6.27)-(6.28), each complex response derivative 9%, /dg,, 9P./d0,
(n=1,...,N, r=1,..,N,) is computed using the sensitivity formula (6.19).

In the following example, we compute the derivatives of the cost function at
all voxels inside the imaged region. These derivatives, which constitute the Jacobian
matrix, can be plotted as functions of the position of the voxel whose permittivity is
an optimizable parameter. We refer to such plots as Jacobian maps.

Figure 6.8a shows a 2-D cut of a simplified semi-spherical breast 3-D model.
This is the target structure, which serves to obtain the “measured” field data. It
consists of a homogenized “breast” medium, a spherical “tumor” and a “chest wall”.
The breast semi-sphere has its center at (40, 35, 40) mm. Its diameter is 50 mm, The
homogenized breast constitutive parameters are £, =4.5 and o, =0.18 S/m. The
tumor sphere has its center at (28, 18, 40) mm and its diameter is 5 mm. Its
constitutive parameters are €,, =40 and &, =1.6 S/m. The chest wall is modeled as
a thin rectangular box with a corner at (10, 35, 10) mm. It extends 60 mm, 5 mm and
60 mm along the x, y and z axes, respectively. Its constitutive parameters are
£,,=50 and o0;=3.0 S/m. The surrounding (coupling) medium is terminated with
absorbing boundaries. Its constitutive parameters are €,, =4.0 and ¢, =0.1 S/m.

The overall computational domain is a box with a corner at (0, 0, 0) mm, which
extends 80 mm, 50 mm and 80 mm along the x, y and z axes, respectively. The

FDTD mesh is uniform with Ak =0.5 mm. The point-wise excitations (see points P;
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and P, in Figure 6.8) use a modulated Gaussian pulse, which covers the frequency
band from 3.0 GHz to 5.0 GHz. P, and P, are located at (14, 28, 40) mm and (66, 28,

40) mm, respectively.

ABC

chest wall

ABC

coupling medium TL
X
ABC
(a)

ABC

chest wall

ABC

coupling medium TL
%
ABC
(b)

Fig. 6.8 The 2-D cuts of the 3-D models: (a) target model; (b) model at the starting

point of the imaging reconstruction.

Figure 6.8b shows the 2-D cut of an estimated breast model. This particular

estimate represents a typical starting point for imaging reconstruction, which
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assumes a “tumor-free” simplified model of the breast. In this example, our estimate
is identical with the target except for the absence of the tumor. Its permittivity

distribution coincides with the assumed background permittivity, i.e., £=¢,.
The response @ is a vector of the point-wise responses Fpp and Fpp,

which are defined in (3.25). We compute the permittivity Jacobian for the estimated
structure as shown in Figure 6.8b at different frequencies. Note that here the

regularization term is zero since €=g,. The permittivities of all voxels inside the

breast region are optimizable parameters.

Our goal in considering this example is twofold: i) to illustrate the computer
resources required by the gradient-based image reconstruction and the great memory
savings offered by our method; ii) to illustrate the importance of the Jacobian maps
in solving imaging problems.

The example illustrates just one iteration of an optimization process, typically
used in image reconstructions. Here, the medium properties are greatly simplified to
speed up the computations—frequency dispersion is not taken into account and the
“breast” medium hosting the tumor is homogeneous. Neither of these simplifying
assumptions, however, reflects on limitations of our sensitivity analysis technique.
Regardless how complex the media may be, as long as the field solution is accurate,
so will be the computed sensitivities. Also, we emphasize that our method utilizes a

spectral formulation, thereby allowing for the use of different permittivity and
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conductivity values at ditferent frequencies where dispersive media are involved.

Here, we plot the Jacobian maps in the plane y = 18 mm, which contains the
tumor’s center in the target model in Figure 6.8a. The map spans a square with one
corner at (22, 18, 22) mm and the opposite corner at (58, 18, 58) mm. Figures 6.9a-¢
show the Jacobian maps at 3 GHz, 3.5 GHz, 4 GHz, 4.5 GHz and 5 GHz,
respectively. We observe that a minimum appears at the point (28, 18, 40) mm,
which coincides with the center of the tumor in the target model. We find that on
average, a wide-band set of Jacobian maps indicates fairly accurately the location of
the scatterer.

One may note that the amplitudes of the Jacobians are very small. This is
because they reflect changes in the cost function due to changes of the permittivity of
a single voxel of the computational domain. Since a voxel constitutes barely 1-
millionth part of the computational domain, its influence on the overall response is
indeed miniscule. Despite the fact that the Jacobian map reflects the effect of such
miniscule perturbations, it is accurate due to the exact nature of our self-adjoint
formula for material parameter derivatives. Note that this computation is practically
impossible with response-level finite differences because of: i) huge errors due to
catastrophic cancellation; and ii) prohibitive computation time.

This example illustrates well the benefits high-quality Jacobian maps can
bring to image reconstruction. First, they are required by all gradient-based

reconstruction algorithms; see, for example, the Fréchet derivative operator in the
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Newton-type minimization procedure in [7] or the Jacobian matrix in the Gauss-
Newton procedure in [13]. Second, in addition to the cost function, the Jacobian
doubles our knowledge of the system behavior. In particular, the minima and
maxima of a Jacobian distribution are indicative of the location at which the model
constitutive parameters differ the most from those of the object under test. As
illustrated here, when the simulated host medium is an exact model of the host
medium of the measured object, the wideband Jacobian maps can accurately locate
embedded scatterers through a single simulation. In the reality of microwave
imaging, however, exact knowledge of the entire host medium is usually not
available, hence the need for iterative procedures. The convergence rate of such

procedures crucially depends on the accuracy of the Jacobian/Fréchet matrices.
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Fig. 6.9 Jacobian maps in the plane y = 18 mm at: (a) 3 GHz; (b) 3.5 GHz; (¢) 4
GHz; (d) 4.5 GHz; (e) 5 GHz.

6.4 DISCUSSION OF NUMERICAL EFFICIENCY

The memory requirement of the proposed spectral approach is 24XNxN, bytes.

Here, N is number of perturbation grid points, i.e., the number of points where the

complex permittivity is reconstructed, and N, denotes the number of frequencies of

interest. At each frequency, the spectral components of all three E-field components
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are recorded at each perturbation grid point. Note that each spectral scalar
component consists of two real values, e.g., magnitude and phase. Thus, if single
precision data format is used, the memory requirement per permittivity voxel per
frequency is 3x2x4 =24 bytes.

On the other hand, the memory requirement of our original time-domain

approach is 12xN XN, bytes, where N, denotes the number of time steps in the

simulation. Thus, our spectral approach realizes a memory saving factor of

N, /(2N;). In the 3-D imaging example of section 6.3.2, the total number of voxels

in the imaging region is about 380 000. The memory required to store the data for the
Jacobian computation in the whole 3-D imaged region is roughly 310 MB for 9
frequencies (from 3 GHz to 5 GHz with a step of 0.25 GHz). In contrast, the
estimated memory requirement for our original time-domain approach is about 148.9
GB for N; = 10000. Such memory demands make the time-domain approach
inapplicable. The estimated memory saving factor for this example when using the
spectral self-adjoint approach is about 490, which makes the memory requirement
manageable.

It is worth noting that if the required field solutions are recorded onto the
hard disk at each iteration, the simulation slows down gravely. This is due to the
excessive time required to read/write from/to the hard drive [3]. In contrast, due to
the relatively small memory requirements of the spectral approach, all required field

solutions can be kept in the computer RAM and exported to the hard disk after the
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simulation is over. Thus, the slowdown of the simulation is insignificant. This is an
important advantage of the spectral approach over our original time-domain
approach.

Beside its memory efficiency, the spectral approach proves to be more
computationally efficient as well. For example, the computational time of the
Jacobian post-process which uses the field phasors is less than 9 minutes, while it is
estimated that the computational time is more than 300 minutes for our original time-
domain approach. This is because the original time-domain sensitivity formula
performs a Fourier-type time integration. It may easily take hours to read the 148.9
GB of the recorded time waveforms from the hard disk.

We note that when working with the field phasors rather than their
waveforms, there is some slow-down in the FDTD simulation due to the discrete
Fourier transform performed ‘on the fly’. However, this discrete Fourier transform
overhead is negligible in comparison with the time required by the FDTD algorithm.
This is because the discrete Fourier transtorm update needs only three floating-point
operations per time step per voxel in the imaged region, while the FDTD update
needs a minimum of thirty floating-point operations per time step per cell in the
entire computational domain. Note that the imaging region usually covers only 1/10
to 1/5 of the whole computational domain. A rough estimate shows that the slow-
down due to the discrete Fourier transform is roughly in the range of 1 % to 2 % of

the total FDTD simulation time.
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6.5 SUMMARY

We proposed a spectral formula for the self-adjoint computation of response
Jacobians. It operates on the spectral components of the E-field instead of its time
waveforms. Thus, the length of the time-domain simulation is no longer a factor in
the memory requirements. In comparison with our original time-domain approach,
the memory saving factor is approximately N,/(2N,), where N, is the number of
time steps and N, is the number of frequencies of interest.

To improve the accuracy of the Jacobian computation, the proposed approach
adopts a central-node grid, where all three E-filed components of the central-node
are collocated at the center of the traditional Yee cell.

The spectral approach was verified through 1-D and 3-D examples. The
Jacobians obtained using the proposed approach are the same as those obtained with
our original time-domain approach on central-node grid. In addition to the
verifications, we computed the wideband Jacobian maps for a microwave imaging
problem. The importance of Jacobian maps in the application of tumor localization
was also addressed.

The numerical efficiency of the spectral approach was discussed in Section

6.4. We found that the spectral approach is not only memory efficient, but also
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computationally efficient. These advantages are more profound in microwave
inverse problems, where our original time-domain approach becomes inapplicable
due to the excessive memory requirement.

The proposed sensitivity solver is well suited for the computation of
wideband response Jacobians in microwave imaging and design problems. It can be
easily implemented as standalone software, which can work with commercial EM

simulators for the Jacobian computation.
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Chapter 7

CONCLUSIONS

This thesis has presented recent advances in the self-adjoint sensitivity analysis with
time-domain EM field solutions. The proposed sensitivity solvers are independent
from the simulator’s grid, discretization method and system equations. They are
based on a self-adjoint formulation which eliminates the need to perform adjoint
system analysis. The sensitivity computation is done as a simple post-process of the
field solution which can be applied with any commercial time-domain solvers. Our
sensitivity solvers can be easily implemented as standalone software to plug into
simulators aiding microwave design and image reconstruction.

Two different sensitivity solvers were developed in this work. The first
sensitivity solver is based on a self-adjoint formula which operates on the time
waveforms of the field solution. Three different approaches associated with this
sensitivity solver have been introduced. They are the original self-adjoint approach,
the coarse-grid approach and the central-node approach. Our original self-adjoint
approach adopts the staggered grid of the FDTD simulation. The efficient coarse-

grid approach uses a coarse independent FD grid whose step size can be many times
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larger than that of the FDTD simulation. The accurate central-node approach uses a
central-node grid whose field solutions are collocated in the center of the traditional
Yee cell.

Our second sensitivity solver is based on a spectral sensitivity formula which
operates on the spectral components of the field solution. This is a memory efficient
wideband sensitivity solver. It overcomes the drawback associated with our first
sensitivity solver whose memory requirements may become excessive when the
number of the perturbation grid points is very large.

In Chapter 2, we reviewed the time-domain discrete adjoint techniques for
the sensitivity analysis. These techniques are limited to in-house simulation codes.
They are not applicable with commercial solvers due to the difficulty of setting up an
adjoint excitation.

Our time-domain self-adjoint approach overcomes the above limitation. It
was introduced in Chapter 3. The S-parameter sensitivity formula and the sensitivity
formula of a point-wise function were presented. In this approach, the adjoint system
analysis is not needed. The adjoint field is computed from the original field through
simple mathematical manipulations. The accuracy of our approach is better or
comparable to that of the central FD estimates at the response level.

We presented the coarse-grid approach in Chapter 4. We showed that the cell
size of the sensitivity solver grid can be many times larger than that of the simulation

grid while maintaining good accuracy. The proposed technique reduces the memory
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requirements significantly. Recommendations for the proper choice of the cell size
were also given.

In Chapter 5, we proposed a central-node approach for accurate computation
of response sensitivities. It is an important improvement over the original approach
introduced in Chapter 3. The sensitivity solver uses an independent central-node grid
whose E-field components are collocated in the center of the Yee cell. The accuracy
of the central-node approach is approved significantly in compare with that of our
original approach in the case of dielectric structures while the computational
efficiency remains the same. At the same time, the implementation is simplified,
especially for 3-D problems, since the derivatives of the system coefficients are
independent of any averaging scheme that the solver may use at material interfaces.
The focus of the central-node approach is on 3-D lossy-dielectric structures. It is also
applicable to metallic structures.

The spectral self-adjoint sensitivity solver was introduced in Chapter 6. We
derived the spectral formula in details. The spectral sensitivity solver operates on the
spectral components of the E-field instead of its time waveforms. Thus, the length of
the time-domain simulation is no longer a factor in the memory requirements. By
using the spectral approach, the memory requirements are reduced roughly from
Gigabytes to Megabytes. The focus of this approach is on microwave imaging

applications, where our first sensitivity solver is inapplicable due to the excessive
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memory requirements. The proposed sensitivity solver is also well suited for
microwave design problems.

The theoretical work in this thesis has been verified thoroughly and supported
by various examples. The proposed self-adjoint approaches are the most
computationally efficient methods for the computation of response Jacobians. They
are milestones in the computation of response sensitivities since they can be easily
applied with commercial simulators and double our knowledge of the system
behavior in the design (modeling) parameter space. Our self-adjoint sensitivity
solvers make EM simulation-based optimizations feasible.

We expect that more work will be carried out in self-adjoint sensitivity
analysis. We foresee the following developments.

First, more work should be done regarding the application of our time-
domain self-adjoint sensitivity analysis methods to microwave design problems. In
principle, a general frequency-domain self-adjoint method can be developed, which
will be applicable with both frequency-domain and time-domain simulators.

Second, microwave imaging reconstruction utilizing our time-domain self-
adjoint sensitivity methods should be investigated.

Finally, the development of a full-fledged computer-aided-design and
modelling framework incorporating our proposed sensitivity solvers will be a very
exciting experience. Such a framework will bring about a breakthrough in

microwave design and imaging. Currently, most of the commercial solvers are not
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capable of providing response sensitivity information. The response Jacobians are
usually computed through FD estimates, which can easily become impractical when

the number of the optimizable parameters is large.
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