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ABSTRACT 

 

Diffuse Lung Diseases (DLD), impute to 15% of respiratory practice and are accountable 

for a large class of disorders, primarily affecting lung parenchyma. As a part of the 

diagnostic workup by the physician, a chest CT image is often required in addition to a 

thorough medical history and physical examination.  The reliable identification of the 

features among interstitial lung diseases and the patterns they may take is challenging, 

particularly given the volume of data on a CT scan that must be processed by the 

radiologist. It has been shown that even among expert chest radiologists there is significant 

inter-observer and intra-observer variability.  

To make an objective quantitative and qualitative assessment of lung disease patterns, an 

accurate and reliable computer aided diagnostic system is likely to be extremely useful to 

assist with dealing with data volume for an expert radiologist. There will also be the 

opportunity to improve sensitivity and specificity in a non-expert radiologist group. 

Literature suggests that computer based pattern classifiers can discern image abnormalities 

due to lung diseases such as consolidation, cyst, emphysema, fibrosis, ground glass opacity, 

honey combing, nodularity, reticulation, scar and tree-in-bud. 

Researchers have focused on developing algorithms to quantify and analyse the surface 

changes of the lung, since DLD patterns often manifest as texture differences within the 

lung parenchyma. Research reported in this thesis has incorporated texture quantification, 

fractal analysis and scale invariant feature transform methods as complementary feature 

extraction techniques to improve the classification accuracy, especially in the presence of 



 

 

iv 
 

large number of classes associated with interstitial diseases. Classification of ten lung 

pathologies and healthy lung regions are validated based on different combination of 

diseases using leave-one-out and 5-fold cross validation techniques and an Artificial Neural 

Network (ANN).  

Classification accuracy based on features selected using scale invariant feature transform 

method alone generates 99% accuracy for up to four classes and more than 71% for up to 

eleven classes using an ANN. Classification accuracy is 85% for eleven classes using a 

combination of scale invariant feature transform, texture and fractal based features. 

Classification accuracies improve for higher number of classes (> 5) when the combination 

of above mentioned features are incorporated. Detailed classification accuracies for several 

DLD features compared to a healthy lung, and combinations of DLD features, such as 

fibrosis, reticulation, honey combing in comparison with healthy lung are evaluated 

throughout this thesis.  
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I. PREFACE 

Diffuse Lung Disease (DLD), imputes to 15% of respiratory practice, accountable for a 

large class of disorders primarily affecting lung parenchyma6. As a part of the diagnostic 

procedure by the physician, a chest CT image is often essential, in addition to the physical 

examination and recording medical history. Usually, a radiologist with special interest in 

chest diseases is called upon to provide expert opinion about the CT image. The Appendix 

I provides a quick guide to a list of pathologies which are generally referred to as DLD. To 

diagnose these diseases, a radiologist goes through hundreds of images for each patient, in 

great detail. To assess progress of disease and therapeutic interventions, CT images 

recorded during successive visits are frequently compared. Such a task is often time 

consuming and vulnerable to significant inter-observer and intra-observer variability, even 

among expert radiologists. 

Identifying diseases at an early stage is crucial, however, to visualize changes in CT images 

over successive visits is fraught with difficulties. The challenge lies in identification, 

localization and finding abnormal image patterns that are present. Different pathological 

causes can result in distinct diseases with specific treatments that follow. CT images cost 

less to produce compared to an MR generated images, and have long been the standard 

modality of lung parenchyma screening. However, the amount of X-ray dosage is required 

to be at its minimum in order not to exceed the limitations of X-ray exposure. Also during 

imaging, breathing adds motion artefacts and makes some images un-readable. 

Such an important problem necessitates a computer aided system to reduce the inter-

observer and intra-observer variability of diagnosis and bring the diagnostic accuracy of 
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general radiologists up to the level of expert radiologists. It is thus possible to provide high 

level knowledge with the help of a computer software during diagnosis, through enriched 

information provided to the expert radiologist. 

To make an objective assessment of the image, the program needs to discern various 

radiological patterns due to pathologies as honey combing, ground glass opacity, various 

types of nodules, reticulations, emphysema and fibrosis. These abnormal patterns that 

manifest within the region of interest occur in various combinations with each other and 

sometimes with other diseases. 

In order to develop a computer aided diagnostic (CAD) system, the software designer has 

to learn lung anatomy and the process of identifying DLD patterns under the tutelage of a 

trained radiologist. Next, appropriate image processing methods such as texture analysis, 

fractal dimension quantification have to be selected for their suitability and incorporated in 

the software design and development. The use of these methods in classification of lung 

diseases sets the path for incorporating relevant algorithms. The training and classification 

using artificial neural network (ANN) is performed in consultation with the expert 

radiologist who provides labelled sample patterns of various DLD pathologies. The 

radiologist's reading of these standard patterns is considered to be the gold standard, 

because of considerable years of experience and specialized knowledge. 

In order to develop algorithm which yield highest possible classification accuracy 

performance, one has to try many algorithms and compare results for those features that 

would provide increased accuracy. While the literature reports many viable classification 

strategies, to our knowledge, no combination of texture and fractal analysis exists for 
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automatically classifying more than 6 pathologies identifiable from CT images of the lung. 

In order to overcome such a limitation, algorithms from face recognition field, namely scale 

invariant feature transform (SIFT) were identified to assist in developing powerful 

classification paradigms. Scale invariant feature transform (SIFT) is an interesting method 

with many applications in face recognition. Research reported in this thesis demonstrates 

that SIFT based features on their own and when combined with features from texture and 

fractal analysis, significantly enhance the performance of lung CT image classification.  

II. MOTIVATION 

Imaging of the body through various modalities such as CT, MDCT, PET and MRI have 

significantly contributed to the diagnostic capabilities of the physician by providing 2-D 

and 3-D rendering of body organs. The need for a specialist radiologist physician who can 

read images and quantify them with a high degree of accuracy is inevitable. Because of the 

large number of images produced from each patient through CT scans and MRI, abnormal 

image patterns that are only a few millimetres in span can be inadvertently missed by a 

radiologist due to the large volume of the work in a day and the ensuing fatigue. Thus, the 

necessity of finding pathological image patterns in a timely manner has defined the problem 

of identification and classification of DLD patterns in CT images of the lung through 

computer based algorithms and is the subject of present thesis. 

III. PROBLEM STATEMENT AND CHALLENGES 

The objective of this thesis is to develop and evaluate computational tools to assist the 

process of identification and classification of pathological image patterns from selected 

regions of interest in CT images in patients with DLD and compare them to normal healthy 
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lung tissue, with a high level of accuracy. Specifically,  identification of image patterns 

from patients with lung diseases which include, consolidation, cyst, emphysema, fibrosis, 

ground glass opacity, honey combing, nodularity, reticulation, scar and tree-in-bud is the 

subject of this thesis. An artificial neural network is trained with quantitative feature vectors 

from labelled image data in order to assign each ROI under consideration to a specific 

disease class. Figure 1.1 demonstrates the ten sample images from patients with DLD and 

which are analysed in this thesis. Appendix I provides detailed description of each disease 

and a larger view of each ROI in a CT image of the lung. 

 

Figure 1.1 Images of ten pathological DLD patterns and   of a healthy lung 
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 There are several hurdles one has to overcome to achieve above objectives. One has to 

have continuous and unstinted support from a radiologist who agrees to lend his/her time 

and expertise. Acquiring image data sets for each disease class and identifying thousands 

of ROI’s to train the ANN based classifier, requires considerable amount of time. One 

cannot record high resolution images without motion artifacts or noise in a real world image 

setting. Although MRI has advanced in recent years in visualizing lung parenchyma, only 

images recorded in a CT scanner were available for this research. Analytical methods that 

can characterize images generated by patients with DLD lung pathologies, with a high level 

of confidence and high specificity is challenging. To train an ANN based on limited number 

of images requires features which quantitate images with high level of specificity. With 

texture and fractal methodologies which are the most commonly used approaches in the 

literature, classification accuracy in our study did not exceed those achieved by other 

laboratories. Detecting image quantification in fields other than medical imaging that could 

relate with the problem was cumbersome. Another aspect of this work was the expectation 

that software had to interactively analyze DICOM images, extract features from each DLD 

pattern, train an ANN and classify a ROI with a high level accuracy.  

IV. CONTRIBUTIONS 

The research in this thesis has attempted to identify and employ innovative computational 

algorithms for classifying regions of interest derived from CT images with diffuse lung 

disease patterns. A large number of texture analytic algorithms and quantitative indices 

from fractal analysis have been invoked to obtain a broad range of comprehensive features. 

In addition, a scale invariant feature transform (SIFT) has been employed to obtain unique 
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features from the regions of interest in lung CT images in order to enhance the machine 

learning and pattern classification. The combination of texture, fractal and SIFT features 

were introduced for the first time in this research. Such a broad combination features, 

integrates information from several characteristic aspects of features, including: texture, 

morphology, localization, and quantitative descriptors which some are invariant to 

illumination, noise and scale. 

Classification accuracies for different combination of pathologies and different number of 

classes are assessed based on leave-one-out and 5-fold cross validation methods. 

Classification results based on 5-fold increases from 68% for eleven classes using SIFT to 

85% when using all SIFT, texture and fractal features. The classification accuracies are 

higher with leave-one-out method. Classification accuracy based on SIFT generates over 

99% accuracy up to four classes and more than 71% for up to eleven classes on ANN. 

Classification accuracies are higher when these features are combined with features 

generated by texture and fractal analysis.  

Many textural, fractal and SIFT based features that can characterise DLD patterns with the 

least information overlap as possible, have been assembled in this thesis work. 

Classification results based on 11 patterns has not been reported in the literature. Therefore 

a CAD system which can classify and separate regions of interest selected from CT images 

recorded from as many as 10 diseases and healthy ROI’s, is an attractive research 

proposition and has served as the primary motivation for the work reported in this thesis. 
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In the present research, blinded data was not available and therefore, two validation 

techniques were incorporated; namely, the leave-one-out and 5-fold cross validation 

procedure for testing various classification results. 

Trained artificial neural network based on different combination of texture, fractal and 

SIFT features on 10 types of DLD’s and healthy ROI’s are described in the thesis. 

V. LIMITATIONS 

There are a number of challenges associated with such an undertaking. On one hand, a 

computer scientist faces the challenge of acquiring relevant data which is often confidential, 

it also requires a radiology specialist to devote considerable amount of time in narrowing 

down many images which are highly indicative of pathologies of the lung. Some regions 

of interest may have several abnormalities which will not result in a clean feature extraction 

and classification. On the other hand in order to write good software, the computer scientist 

must familiarize himself/herself with a new field of study and understand the 

pathophysiology of several diseases so as to be able to identify and characterize patterns 

associated with specific diseases. The major limitations of this research are: 

1. Lack of blinded image data set for a thorough validation of extracted features and 

the assessment of classification results. 

2. High resolution CT images requires more X-ray dosage. However, for patient’s 

safety, only a certain dosage, which is assessed by the specialist is incorporated. 

Additionally, motion artifacts based on patient’s movement and breathing defects 

images. Therefore, the classifier in this research could not be trained based on a 

perfect set of images. 
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3. Extracting regions of interest is time consuming, especially if one is interested in 

ROI’s which represents a specific disease/pattern. Many extracted ROI’s in this 

research have multiple diseases which will make it more difficult for any pattern 

recognition method and classifier to perform at its best. 

VI. THESIS STRUCTURE 

Research described in the present dissertation employs texture, fractal dimension and scale 

invariant feature transform methods for extracting quantitative features from CT images of 

the lung. An artificial neural network is used for training and classification purposes. In 

addition, features derived from SIFT algorithm by itself have been used in the present work. 

The chapter 2, which was a part of the research proposal submitted to Computer Science 

department at McMaster University, reviews texture analysis methods applied for 

classifying most commonly occurring DLD patterns. A version of the chapter 2 was 

submitted and accepted by Critical Reviews in Biomedical Engineering146 on October 1st, 

2015. Chapter 3 describes the application of Tamura, Haralick, Minkowski Functionals and 

GLCM methods to classify DLD patterns in CT images. An artificial neural network 

(ANN) based on backpropagation was used for the research described in this thesis. Fractal 

dimension analysis and their application in classification of diffuse lung diseases is detailed 

on chapter 4. The issue, whether features derived from fractal analysis on its own or in 

combination of texture analysis enhances the accuracy, is also examined in chapter 4. 

Chapter 5 introduces the application of SIFT analysis to CT images of the lung and 

describes the results of classifying ROIs from pathologies commonly termed as DLD, step 

by step. Different combinations of features developed in chapters 2, 3 and 4 are combined 
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with features generated by SIFT, to provide classifiers with high specificity that can assist 

a diagnostic radiologist in clinical decision making. Partial results and the application of 

SIFT descriptors on DLD patterns were published by Mehrdad Alemzadeh, Dr. Colm 

Boylan and  Markad V. Kamath at Biomedical Engineering Society’s conference held in 

Tampa, Florida, in October 2015. Classification results are based on leave-one-out method, 

which is useful for testing the accuracy of classifier. Chapter 6 provides classification 

accuracies based on 5-fold cross validation and compares the results for every feature 

extraction method and their combinations. Finally, chapter 7 provides conclusions and 

suggests for potential future research.   
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CHAPTER 2 

A REVIEW OF TEXTURE QUANTIFICATION OF CT IMAGES 

FOR CLASSIFICATION OF LUNG DISEASES  
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I. INTRODUCTION 

Radiologists evaluate thousands of medical images every day and are expected to deliver 

diagnosis in many patients with a high level of accuracy and reliability. However, due to 

continuous reading of diagnostic images, they are vulnerable to errors, especially due to 

fatigue. Overlooking even a minor abnormality can sometimes result in wrong diagnosis. 

Computer aided diagnostic systems are promising tools that assist a radiologist in 

identifying abnormal radiological patterns and therefore, can be of assistance in increasing 

the accuracy of diagnosis and reduce the time required for preparing an expert report on 

each image. Towards this end, a number of laboratories have developed methodologies and 

mathematical algorithms which can assist the physician during diagnosis of images in a 

hospital environment. 

Images acquired through Computer Tomography (CT) of the lung have been generally 

accepted as the gold standard for diagnosing diseases of the lung. Lungs are filled with air 

and therefore, ribs can be easily eliminated in a CT image. The rest of the image are the 

parenchyma and  the lung tree, which provide clear contrast from the background and will 

be the aim of CAD systems analysis. Following image acquisition, the CT scanner 

generates images which can be translated to different image formats such as DICOM, TIF 

and JPG. A review of literature on texture analysis of certain salient parts of CT images of 

the lung combined with segmentation and classification of abnormalities is the primary 

focus of this chapter. Relevant work on scale invariant feature transform (SIFT) is also 

included. Certain parts of this chapter have been published in Critical Reviews in 
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Biomedical Engineering Journal under the title “A Review of Texture Quantification of CT 

images for classification of Lung Diseases146”.   

II. TEXTURE ANALYSIS 

Texture analysis of an image is concerned with the study of the variations in the intensity 

of pixel values1 extracted from a ROI. Cambridge advanced learner's dictionary describes 

texture as a surface that is not smooth but has a raised pattern on it. And a computing 

dictionary refers to it as a measure of the variation of the intensity of a surface, quantifying 

properties such as smoothness, coarseness and regularity2. In biomedical images, which are 

viewed in a two dimensional format, an altered quantified texture can adequately identify 

certain kinds of pathologies. Although many lung diseases alter the tissue density, resulting 

in intensity changes in the CT image data, segmentation based only on intensity alone, will 

not provide acceptable levels of accuracy.   

 

Figure 2.1 Normal lung 

Specifically, research has demonstrated the significant potential of texture analysis in 

identifying diseases of the lung by extracting texture based features and use them as an 

input to a pattern classifier. Applications of texture analysis to certain regions of interest in 
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medical imaging can be followed by segmentation, classification3 and synthesis of other 

relevant information by an experienced physician. In image segmentation, boundaries and 

regions that have significantly differing properties are identified. The goal of pattern 

classification is to categorize images based on their quantitative descriptors called features, 

into different pathologies. Synthesizing images is useful in 3-D applications when the 

surface needs to be visualized more realistically. Texture analysis methods use statistical, 

geometrical, model based and signal processing approaches towards quantifying specific 

characteristics of an image5-4.  

A. FEATURE EXTRACTION 

In general, the process of segmentation consists of identifying a particular region of interest, 

usually by the physician. Feature extraction based on texture analysis of images followed 

by pattern recognition are applied subsequently to classify the regions of interest4. 

However, a common limitation is that the information contained in different features may 

overlap and is correlated. Reducing the number of features based on their relevance and 

correlation can reduce the dimensionality of the feature vector and could lead to an increase 

in the accuracy of classification. There are several linear and non-linear feature reduction 

techniques which make classification and machine learning efficient. Image classification 

methods based on Artificial Neural Networks (ANN), k-nearest neighbor (K-NN) and 

Support Vector Machine (SVM) have also been developed to distinguish between different 

types of complex pathologies6.  
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These classifiers are trained based on extracted features from labeled data and the class 

(identified by the radiologist) they belong to. Subsequently, the feature set developed using 

the labeled classifier can be used to categorize an image with unknown diagnosis.   

Texture extraction methods will be discussed in the next section. These include structural 

methods, statistical methods (First-Order, second-order and higher-order statistical Texture 

features), and model based methods, transform domain methods (Fourier Transform, Gabor 

Filters, Multi-resolution).  

1. Structural Methods 

A structural model, presumes that texture primitives have different textures. The texture is 

created based on the placement of these primitives. Structural methods are suitable for 

regular textures. In this kind of analysis, the texture elements are extracted first and then 

one deduces placement rules. Usually elements are defined to be regions with different grey 

levels and there are algorithms for extracting them from an image5. If we are developing a 

symbolic description of the image or texture analysis, structural methods are very useful. 

There is a large variability within the micro texture and the macro texture in natural images. 

It has been shown that structural methods would not be helpful in quantification of medical 

images because the distinction between micro and macro textures will not be adequate to 

carry out segmenation7. 

2. Statistical Methods 

In this section, we present a succinct description of statistical methods. While performing 

texture analysis, we assume that the surface of the image is a two dimensional 

representation of a three dimensional object, in this case, the lung. Texture defines a 3-
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dimensional surface and textural boundary detection is a distinct capability of human’s eye 

which is why 2-D texture segmentation is an outgrowth of surface discrimination in 3-D. 

There are three main classes of statistical methods for texture analysis. First-order statistics 

such as the mean, calculate the probability of measuring a certain grey level value at a 

location within the image. First order statistic(s) of an image or a region within an image 

do not take into account either correlation and/or co-occurrence between pixels. Usual 

statistics that are used include mean, variance, coarseness, skewness, kurtosis, energy and 

entropy. Second-order statistics play an important role in separating two images based on 

their textural features4. Second-order statistics measures the probability of the presence of 

a pair of grey level values of random length and orientation. Higher order statistics increase 

the number of parameters to be measured and also contribute information for discriminating 

disorders of the parenchyma8.  

Certain textural features can be computed from a grey level dependency matrix, also called 

a co-occurrence matrix. Such a matrix has a dimension N × N where N is number of grey 

levels.  In an image where co-occurrence matrix is used as an element for measuring 

texture, the probability distribution is far from the diagonal9. A 3-D co-occurrence matrix 

has similar characteristics, but it assumes the comparison of intensities in 13 different 

directions of a VOI10. Textures within an image can differ by order/disorder, 

regularity/irregularity, and roughness/smoothness and so on. Textural patterns are 

presented as feature vectors of properties which characterize a point in multi-dimensional 

feature space. One of the goals of a classifier is to find a decision rule that categorizes each 

textural pattern to a particular class9.    
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a. First-Order Statistical Texture Analysis 

This analysis uses image histograms (or occurrence probability) and simply uses standard 

descriptions such as mean and variance to characterize pixel data. Since this method does 

not take spatial relation and correlation of pixels into consideration, its usability is limited. 

Gray level has a range of 0 ≤ 𝑖 ≤ 𝑁𝑔 − 1 (𝑁𝑔: number of gray levels).The histogram or 

pixel occurrence probability is calculated as: 

𝑃(𝑖) =
𝑁(𝑖)

𝑀
 

Where N(i) is the number of pixels with intensity I and M is the number of image pixels. 

Properties of the histogram that analyzes texture are: mean, variance, coarseness, skewness, 

kurtosis, energy, and entropy4.  

b. Second-Order Statistical Texture Analysis 

In the second order statistical texture analysis, a co-occurrence matrix or GTSDM (Grey-

Tone Spatial Dependence Matrix) is computed. The entries to this matrix are based on the 

probability of finding a pixel that has grey level i with a distance and angle of d and α 

respectively from a grey level j (formally 𝑃(𝑖, 𝑗: 𝑑, 𝛼)). There will be a need to describe the 

texture content of GTSDM in four directions (Figure 2.2; horizontal, vertical, left-diagonal 

and right-diagonal) because each pixel has eight neighbors connected to it4.  

 

Figure 2.2: Four directions and its eight neighboring pixels 
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If the co-occurrence matrix is calculated in all four directions, we can construct a complete 

textural representation of the image. Haralick4 suggested that we can extract information 

from these matrixes using texture features which are sensitive to particular elements of 

texture. He then proposed fourteen textural features based on particular characteristics 

describing the texture. Certain features may be correlated and would not provide 

discriminatory information for subsequent classification. So feature selection algorithms 

are very useful for reducing the redundancy between features4.  

The grey level difference method (GLDM) is another technique based on the co-occurrence 

of grey level vales and their absolute difference in a particular distance and direction. This 

will be a histogram and its size is equal to the number of grey levels in the region of interest. 

Normalized histogram H(k|d,θ), calculates the probability of occurrence of grey level with 

value k between two pixels at a specific distance d at direction θ. These formulas are 

explained in greater detail by Vasconcelos et al.9  

c. Higher-Order Statistical Texture Analysis 

Grey level run length method (GLRLM) is an approach that carries information on the grey 

level run/range (run length is number of pixels on the run) in a specific direction used in 

higher order statistics of textural analysis. For instance coarse textures will have long run 

while a fine texture will have a short one. The inputs for this matrix is calculated by 

𝑅(𝛼) = [𝑟′(𝑖, 𝑗|𝛼)] 

Where 𝑟′ is the number of runs is, 𝑖 is the grey level (range), 𝑗 is the run length and 𝛼 is the 

direction. The directions are defined like GTSDM4. 
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Galloway has identified five run-length features, where a run is a sequence of pixels which 

have the same gray level intensity along a planar orientation11. These features focus on 

following aspects of pixel intensities9: 

1. Short Run Emphasis that measures the most important short primitives in a 

textural design, 

2. Long Run Emphasis measures look for long runs. Gray-level non-uniformity 

measures the gray level characterization of the primitives, 

3, Run-length non-uniformity measures the similarity of the length of runs through 

the CT image. 

4. Run Percentage measures the homogeneity and,  

5. Distribution of runs, the largest value is obtained when all the primitives have a 

length of one.  

 Run length serves as a statistical measure for defining coarseness of texture in a particular 

direction.  

3. Model Based Methods 

Model based methods use mathematical models as the basis for describing an image with 

regards to its texture and synthesis. The quality of texture is analyzed based on the 

parameters of its model5. Markov and Fractal models can be used for describing texture 

and synthesizing it. They describe an image as a probability model or as a liner combination 

of a set of functions7. 

A model based method can analyze the texture and even synthesize it based on fractal or 

Markov modeling. With these methods we obtain the probability model of an image as a 
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set of linear functions. Fractal12 analysis is used for modeling natural images to analyze 

textures that contain statistical behaviors such as roughness at different scales. Finding the 

orientation based on fractal analysis is not an easy task and is the main weakness of such 

model based methods7. 

Pixel based modeling examines an image based on its pixels, while region based models 

analyze images based on different patterns and arrangements of pixels. There are many 

modeling techniques based on neighboring pixels and noise orientation. For example, 

random field models can delineate spatial changes based on global random and local 

random models. Global random models characterize the entire image based as a realization 

of random field and local random models take into account relationships between different 

intensities in a field of view7. Markov models are local random field models wherein 

conditional probability of the intensity of a pixel is dependent of the intensity of pixels in 

the neighbourhood.   

4. Transform Domain Methods 

Transform domain methods such as Fourier, Gabor and wavelet transform the image to 

highlight textural properties in a different domain. In practice, most image transforms use 

filters and similar algorithms to compute the energy within an image. Transfer functions 

can be combined with texture analysis to differentiate structures and features that have the 

same intensity. Caban et al. have suggested a direct volume rendering with this strategy13. 

For instance, if the intensity values of blood vessels and lung boundaries are the same, they 

will be colored differently due to their differing textures. Identifying objects in volumetric 

data is difficult but using direct volume rendering has potential benefits. However, transfer 
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functions that map densities to specific colors provide an acceptable visual representation 

of 3-D data13. 

a. Fourier Transformation  

Currently, most of the transforms that are being used in biomedical imaging applications 

are in 2-D. They are useful in image description and enhancement. Fourier transform is a 

well-known computational procedure that can be used to study coarseness or fineness and 

directionality of textured surfaces. Ring and wedge filters can extract textural properties 

from a Fourier transform of the image. Rings can have different sizes based on their 

application but the coarseness or fineness can be measured between rings of inner radius 𝑟1 

and𝑟2. We can measure the average power of wedge shaped regions which are centered at 

the power spectrum to find directionality of textures. The size of wedge also varies between 

different applications (𝜙𝑤 = 𝜙1 − 𝜙2). 

Power spectrum 𝑃(𝑢, 𝑣) is calculated from a discrete Fourier transform 𝐹(𝑢, 𝑣) in image 

processing 

𝑃(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)2|. 

b. Gabor Filter and Gabor Transform 

Gabor Filter is a linear filter that has been found useful in classification, texture 

segmentation image recognition and edge detection. The Gabor Filter is a well-established 

technique for feature extraction from 2D images in texture analysis too. The formula for 

this filter is7        

𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜙, 𝛿, 𝛾) = exp(−
𝑥′2 + 𝛾2𝑦′2

2𝜎2
) cos⁡(

2𝜋𝑥′

𝜆
+ 𝜙) 

 



Mehrdad Alemzadeh, Ph.D. Thesis - McMaster University – Computing and Software 

 

22 
 

where   𝑥′ = 𝑥⁡𝑐𝑜𝑠𝜃 + 𝑦⁡𝑠𝑖𝑛θ, and   𝑦′ = −𝑥⁡𝑠𝑖𝑛𝜃 + 𝑦⁡𝑐𝑜𝑠𝜃. 
 

where 𝜆 represents the wavelength of the cosine, 𝜃 is the orientation, 𝜙  is the phase offset, 

𝛿 is the sigma of the Gaussian envelope, and 𝛾 is the spatial aspect ratio. The Gabor features 

are calculated as shown in the equation below and (x, y) is the spatial coordinate, f is 

frequency, and 𝜃 represents the orientation7:  

𝑟𝜉(𝑥, 𝑦; 𝑓, 𝜃) = Ψ(𝑥, 𝑦; 𝑓, 𝜃) ∗ 𝜉(𝑥, 𝑦) = ∫ ∫ 𝜉(𝑥 − 𝑥𝑇 , 𝑦 − 𝑦𝑇; 𝑓, Θ)𝜉(𝑥𝑇 , 𝑦𝑡)𝑑𝑥𝑇𝑑𝑦𝑇. 

Determining the window size and the number of channels at the same frequency in Gabor 

filtering is the primary draw back in its application for extracting texture features. 

Windowed Fourier transform also known as short-time Fourier Transform of a one-

dimensional signal 𝑓(𝑥)is defined as: 

𝐹𝑤(𝑢, ξ) = ∫ f(x)w(x − ξ)e−j2πuxdx
∞

−∞

⁡ 

When the window function 𝑤(𝑥) is Gaussian, the transform becomes a Gabor transform5. 

The Gabor transform has some difficulties with texture analysis such as discriminating 

between edges and texture. It has been observed that Wavelet transform has more 

advantages in textural studies7. Wavelet transform allows a better texture representation 

based on a proper scale with a varying spatial resolution. Since there are many different 

wavelet functions, the choice of the wavelet function is determined by the nature of   texture 

analysis and its application7. 

5. Multi-resolution Method 

Multi-resolution technique is a multiple channel analysis method that has been tuned with 

different frequencies. The methods of feature selection from rings and wedges are 
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analogous to this method, with the difference of information phase retained in 

multiresolution method5. The multi-resolution method retains the information of the image, 

based on different levels of resolution and blurring. The texture structure is therefore 

preserved with this method.  This method is carried out in the following two steps: 

extracting the most discriminating texture feature of the region and then classification of 

various tissues7. 

a. Wavelet Based Method 

When a function⁡𝑓(𝑎𝑡) is scaled over time (t), the function is concentrated if 𝑎 > 1 or 

expanded when𝑎 < 1; we can formulate the wavelet transform as follows: 

𝑊𝑓,𝑎(𝑢, 𝜉) =
1

√𝑎
∫ 𝑓(𝑡)ℎ ∗

𝑡 − 𝜉

𝑎
𝑑𝑡

+∞

−∞

 

The scale of 𝑎 is based on frequency of the filter and we can create a wavelet model for 

texture analysis. 

b. Ridgelet Based Method 

This transformation acquires information in multiple directions which includes: vertical, 

horizontal and diagonal radial directions of frequency domain. Studies show that first order 

statistics can be applied for classification of texture by applying 1-D wavelet transform. 

Ridge based method has been used in images acquired during computed tomography7.  

c. Discrete Wavelet Transforms 

Discrete wavelet framework is a variation of DWT which is explicitly refined for texture 

characterization of an image. This method provides rich information about the boundaries 

of a region using parameters of texture analysis. The mean of texture features are applied 
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to NXN regions and features are extracted from region. The limitation of DWT method is 

that, when the region is relatively small it cannot adequately describe texture features of 

that region. To improve segmentation, higher dimensional feature space can be used by 

extending spatial feature space using mean shift algorithm7. Calculating median values of 

energy in the region of interest at the corresponding filter bank can be used for texture 

characterization. It is important to retain the total energy that characterizes texture in 

between regions, and that can be achieved by using median filters7. 

III. SEGMENTATION 

The segmentation process partitions an image into classes or subsets that are homogeneous 

with respect to one or more characteristics or features14. Following segmentation,   

measurements, and image display may be undertaken15.  

A. Texture Based Segmentation 

 Textural properties provide discriminatory information for segmentation of images based 

on certain properties16. One of the problems in segmenting lung lobes in CT is to identify 

fissure regions. The lobar fissure which is a long narrow opening in the form of a crack, is 

difficult to identify due to its variable shape. Using gray level co-occurrence matrix 

(GLCM) and grey level run length matrix (GLRLM)17  as features, identification of the 

lobar fissure has been achieved  in CT images of lung, with accuracies as high as 86% and 

87% respectively. For example, accurate segmentation of the lung field in CT images on 

volumetric data is challenging due to lung border differences and the presence of pathology. 

Studies have shown that 3-D lung field (LF) segmentation which is adapted to interstitial 

lung diseases can be successful18.  In their research, Korfiatis et al. use K-means clustering 
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technique to obtain an initial order estimate on the LF.  Final analysis of the borders is 

based on iterative SVM19 (support vector machine) labeling of 3-D texture features can 

classify abnormalities in the lung18. The Table I lists research publications from laboratories 

which have used textural properties to perform segmentation of lung images recorded 

during CT scans. 

A classification system developed by Singh et al. annotates and indexes specific regions of 

an image as soon as it is registered into the system20. At first the lung image is partitioned 

into homogeneous regions. Then the segmented regions are annotated using a knowledge 

base system (KBS). The KBS contains pattern signatures created by machine learning and 

heuristic rules acquired from domain experts. The system consists of three main 

components. The first component deals with the extraction of visual features for 

segmentation and classification. The second component consists of an unsupervised 

segmentation technique to extract features for partitioning the image into homogeneous 

regions. Finally, a segmented region is classified using a knowledge base system (KBS). 

The KBS captures signatures and heuristic knowledge incrementally from machine 

learning and the domain expert.  

The Table 1.1 summarizes some recent reports on segmentation in lungs. 
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Area Disease  Algorithm Results 

Extract 

pulmonary 

parenchyma 

from 

multi sliced 

CT21 

Pulmonary 

diseases such 

as lung 

cancer, 

tumor, and 

mass cells 

Improved 2D Otsu 

based on swarm 

optimization Employs 

line-encoded 

methodology and uses 

contour tracing method 

Decreased the processing 

time from 90 seconds to less 

than 1 second per slice 

Lung tissue15 

 

Tested on 

fifteen 3-D 

CT data with 

lung diseases 

Graph search driven by 

a cost function 

combining the 

intensity, gradient, 

boundary smoothness, 

and the rib information 

The results are compared 

with manual assessments   

Parenchyma22  Pulmonary 

diseases 

Optimal threshold 

value and the boundary 

tracking method for 

background 

elimination.  

Mathematical 

morphology method 

for boundary repairing  

Automatic and accurate 

segmentation of lung 

regions 

 

 

Morphological 

changes of the 

lung23 

Airway 

diseases 

Principal curvatures 

and directions.  Puzzle 

game algorithm for 

false positive 

detection.   

Segmented the 3-D human 

airway tree. Partial volume 

effects are alleviated; no 

leakages. 

Pulmonary 

parenchyma24 

Cancer Extract pulmonary 

parenchyma and use 

FCM to segment 

patients with lung 

cancer 

Improved diagnostic 

accuracy of lung cancer 

Structure and 

shape of 

airways in 

lungs25 

Airways Edge-detecting slice-

by-slice method & 

projections method 

Accurately segmented to the 

6th  bifurcation 
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Lung tissues26 Cancer Employs a 

combination of EM 

algorithm and 

morphological 

operations vs. level 

sets and energy 

optimization by Graph 

Cuts technique 

Maintaining the details of 

the nodules & boundary 

regions in the chest cavity 

does it segment? 

Lung lobe27 analysis of 

pulmonary 

functions 

A linear structure filter 

based on the Hessian 

enhancing lung 

fissures. By Canny 

operator, ridge of the 

image is extracted. 

Uniform Cost Method 

to the detection of 

ridge of the fissures. 

 

Detects and locates lung 

fissures.  

Estimation of 

the volume of   

lungs & viable 

lung tissue28 

Severe 

pulmonary 

disease 

Pre-computed compact 

regions with 

homogeneous texture 

combined with a    

classifier 

Can be used to segment 

lungs in scans in which 

automatic segmentation 

methods fail 

Pulmonary 

lobes29 

parenchymal 

disease 

Based on a multi-atlas 

approach. A cost 

function is used to 

obtain information 

when most reliable 

information is not 

available.   

It is robust against 

incomplete fissures 

Airway tree30 Diagnosing 

disorders of 

the lung 

Region growing, 3D 

wave propagation and 

morphological 

refinement to segment 

bronchi. 

Successfully segmented up 

to the 6th generation in 

2Sec/airway tree 

Lung tissue31 Cancer active contouring  for 

lung tumor 

segmentation in 3D-

CT on a cluster 

function 

Defining the gross tumor 

volume for irradiation in 

cancer therapy 
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Pulmonary 

parenchyma32 

Pulmonary 

nodule 

detection 

Adaptive threshold, 

connected regional 

Labeling and 

morphological 

operations 

Average segmentation 

accuracy  = 91.55% 

Vessel tree 

structures33 

ILD A 3-D multi-scale 

vessel enhancement 

filter based on Eigen 

value. texture-based 

voxel classification for 

possible over-

segmentation 

Evaluation by means 

of area overlap 

demonstrated a statistically 

significantly (p < 0.05) high  

performance  

Lung tissue 

adhesion34 

  Lung 

volume 

segmentation,   

Is based on the 

classical watershed 

algorithm. Employs 

line-encoded 

methodology and uses 

contour tracing method 

More continuous boundary 

after segmentation and 

minimal  

Cross-segmentation. 

Prevents over segmentation. 

Lung35  Combined complex-

valued artificial neural 

network 

The accuracy of this 

algorithm is better than 

ANN 

  

Table 1.1 Segmentation algorithms in identifying diseases in the lung  

IV. CLASSIFICATION 

Classification of images and image segmentation can be based on a number of algorithms, 

once features which have significant discriminatory properties have been extracted. 

Researchers have examined quantitative texture measures to determine potential features 

and then evaluate them   through different metrics based on similarity or dissimilarity 

analysis36. CT images are very rich in terms of their texture which explains why its analysis 

has found its place in image classification for diagnosis9. 

We can categorize image(s) based on its different texture patterns and use learning 

algorithms to help classify those images37. During classification, each image is assigned to 
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a class that is most similar in some sense, in this case based on features derived such as 

texture  analysis, SIFT and fractals.  

V. FRACTAL TEXTURE ANALYSIS  

 The idea of describing the real world by well-defined mathematical constructs such as 

cubes, spheres etc. is conceptually difficult, especially when one encounters objects of 

complex shapes.    The main idea behind fractals is based on self-similarity over a range of 

scales, meaning that an object can be decomposed into smaller pieces which are self-similar 

(i.e. similar to itself) and have fractional dimensions. The concept of self-similarity and 

associated mathematical descriptors introduced by Dr. Benoit Mandelbrot have also been 

used to describe the degree of irregularity of a surface (texture) in biomedical imaging4. 

Irregular or rougher structures would likely to have a fractal dimension. There are two 

categories of fractal analysis: deterministic (self-similar) and random (or non-

deterministic). Objects that do not change their appearance in different magnitudes and stay 

consistent (exactly self-similar) are called deterministic fractals but if they show subtle 

changes, they are called non-deterministic.  

Fractals can be defined formally as a geometrical set whose Hausdorff–Besicovitch 

dimension strictly exceeds the topological dimension. There are many biological and 

natural structures that have discontinuities and fragmentation so they can also have a fractal 

dimension. These types of features rarely have an exact Euclidean shape, meaning that they 

are not usually smooth. Therefore, by using FD we can have a precise measurement of the 

dimension of the image segment1. Fractal dimension is a numerical description of 

disordered objects which is close to the description of Euclidean geometry but it has the 
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capability to quantify objects in non-integer dimensions. When the object is sophisticated 

it will have a higher fractal dimension4. There are different methods to study fractal 

dimensions such as box-counting for random structures or Korcak method which treats the 

input as a textured surface4. 

The FD of an image segment can provide a measure of its texture complexity1. For instance, 

the pixel intensities within an image can be thought of an elevated plane and the intensity 

at any point on the surface is thought to be a rugged surface. The relationship between 

fractal dimension and Euclidean has been compared to that between digital and fuzzy logic, 

where FD is a value which lies between two integer dimensions. Thus, the FD can provide 

us with a numeric information about the surface. Computation of the FD is based on 

following concepts. 

In a Euclidean space 𝑛 we can account for a bounded set 𝑆 to be similar to itself in the 

condition for this set to be the union of 𝑁𝑟 (number of self-similar or invariant shapes) non-

overlapping subsets, with 𝑟 being the scaling factor, which has the relation 𝑟(𝑆𝑛) for 𝑁𝑟 

and 𝑆𝑛 to be congruent sets in distribution to 𝑆. Therefore, fractal dimension is a real 

number which is a bounded in the set 𝑅𝑛 and it describes the geometric complexity of 𝑆 as 

if Euclidean space uses length for measurement1.   

We can compute FD as follows1: 

𝐹𝐷 =
log(𝑁𝑟)

log (
1
𝑟)

 

We can deal with fractals in a statistical manner because most of natural fractals are 

random. For instance blood vessels branching in lungs are random fractals but are not 
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completely self-similar. In its formal description FD of a structure has to have self-similar 

non-changeable fragments and irregular shapes in every scale up to infinity. Based on the 

depth of images in biological structures FD can only be scaled finitely which means,  scales 

above or below will be either Euclidean or random (rough and non-similar). 

The relationship between fractals and texture of an image has come under scrutiny. For 

example, even if FD value of both images are the same, their texture characteristics can be 

different13. Lacunarity of the FD texture is a measure of how a fractal filling space; in other 

words, the higher lacunarity is, the more inhomogeneous the image can be. Dense fractals 

have low lacunarity and the coarser a fractal is, the higher its lacunarity. This is defined in 

terms of the ratio of the variance over the mean value of the function,  

𝐿 =

1
𝑀𝑁 Σ𝑚=⁡0

𝑀−1 Σ𝑛=0
𝑁−1𝐼(𝑚, 𝑛)2

(
1
𝑀𝑁 Σ𝑘=⁡0

𝑀−1Σ𝑙=0
𝑁−1𝐼(𝑘, 𝑙))

2 − 1. 

Where M and N are the sizes of the FD processed image. 

Al-Kadi and Watson have successfully combined fractal dimension and lacunarity to 

differentiate between aggressive and nonaggressive malignant lung tumors1.  

VI. APPLICATIONS OF TEXTURE ANALYSIS TOWARD DIAGNOSIS USING CT 

IMAGES OF THE LUNG IN DIAGNOSIS OF DLD 

Quantitative texture analysis of lung has permitted classification and identification of 

diseases such as pulmonary fibrosis, normal/abnormal lungs, SARS, DLD, reticulation, 

emphysema, honey combing and parenchyma disorders.  
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Examples of various techniques described for identifying some of the above abnormal 

image segments are presented below. These are followed by usefulness of texture analysis 

in diagnosis of lung diseases based on CT image analysis. 

A. Identification of Abnormal Image segments 

Sutton and Hall were the first to recognize the significance of computer analysis for 

interpreting chest radiographs as early as 1973. They used texture analysis to generate 

features and pattern classification methods to automatically distinguish between normal 

and abnormal lung tissues in patients with pulmonary fibrosis6. 

Park et al. extracted the lung field with power spectrum and Quasi Gabor filter and used a 

2D-DFFT (Discrete Fast Furrier Transform) to overcome the problem of ribs and vessel 

shadows of lung. They report a novel method called score-block operation that is combined 

with K-nearest neighbor method classifier to identify normal and abnormal lung areas. 

Their method can make padding of the border and quantification easier38.     

Detecting abnormalities in chest radiographs by diffuse texture was devised by Van 

Ginneken et al39. They found the overlapping areas of different sizes by segmentation. 

Texture features are extracted and the difference between the left and right lung is used for 

additional information. A weighted multiplier is used on K-nearest classifier which gave a 

higher score to regions and with an increased classification reliability. Tang et al.40 studied 

severe Acute Respiratory Syndrome (SARS) to distinguish SARS infected regions of CT 

images from normal lung using co-occurrence matrix as texture features. Since regions 

infected by SARS are irregular, texture analysis is very helpful in identifying those regions. 

Tang et al. developed a multi-level dominant eigenvector estimate (MDEE) to approximate 
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Principal Component Analysis (PCA), to overcome the problem of large dimensionality of 

the co-occurrence matrix40. 

Tolouee et al41 proposed a novel approach using two sets of wavelet filters: discrete wavelet 

frames (DWF) and rotated wavelet frames (RWF). They used these frames to extract 

features and lung tissue patterns. Four different lung patterns (ground glass, honey 

combing, reticulation, and normal) were selected from a database of 340 images are 

classified using support vector machine (SVM). They reported that the best results are 

obtained by a combination of the two filter banks, suggesting to use them together to 

provide information which shows a complementary benefit. 

Diffuse lung disease (DLD) accounts for fifteen percent of respiratory diseases. The DLD 

can lead to respiratory failure and affects the surface of parenchyma which can be identified 

with texture analysis methods.  

In a research paper by Korfiatis et al10, MDCT identified interstitial pneumonia (IP) for a 

gray level thresholding combined with an edge-highlighting wavelet preprocessing step, 

followed by a texture-based border refinement. Identification and characterization of IP 

patterns is formulated as a three-class pattern classification of LP into normal, ground glass, 

and reticular patterns, by means of k-nearest neighbor classification. Figure 2.3 

demonstrates ground glass opacity and traction bronchiectasis on a CT image. 
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Figure 2.3. Ground Glass density with traction bronchiectasis as indicated by arrows 

Extraction of segmented texture features can be computed by fractal dimensions of images 

that were transformed to binary by a two-threshold binary decomposition (TTBD) method 

by Costa et al.42. Their method was faster (1.6-3.7 times) in feature extraction and more 

accurate in classification than methods developed based on previous algorithms. TTBD 

uses two-level Otsu algorithm recursively to minimize intra-class variance and obtain a 

number of thresholds. To decompose images into binary, two-threshold segmentation is 

applied, and the lower and upper thresholds are extracted. Fractal dimension is computed 

from box-counting on extracted borders. 

Applying fractal dimension and Lempel-Ziv complexity features to a linear classifier, Xu43 

reached a 90.7% accuracy in classifying GGO and normal lung out of 86 reticular ROIs.  

Huang et al. developed a classification system based on features based on fractional 

Brownian motion44 for analyzing pulmonary nodules. A total of 107 images from 107 

different patients with pulmonary nodules were analyzed. Classifying malignant and 

benign nodules using   fractal features and SVM resulted in 83.11% accuracy. 
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Additional information about aggressive and nonaggressive lung tumor differentiation was 

provided through fractal texture analysis of time-sequence enhanced CT images1. Since 

differential box counting (DBC) algorithm is faster than fractional Brownian motion 

technique in calculating fractal dimensions, DBC is used for transforming images to FD 

images.  

Kido et al.45, 46 characterized ROI from lung CT images using fractal dimensions FDs.  The 

texture of bronchioalevolar cell carcinomas (BACs) that reveal ground glass opacities are 

more complicated compared to non-BACs. Thus texture analysis could be useful in 

differentiating between normal and abnormal lung tissues for patients with lung tumors. 

Zavaletta et al. employ features derived from image texture and the histogram of the ROI 

to analyze diffuse lung diseases such as interstitial pneumonitis and idiopathic pulmonary 

fibrosis6. They used multiple discrimination paradigms to cross validate their methods to 

report their results, which give accuracies, ranging from 75%-93%   consistent with clinical 

diagnosis. 

Park et al. present a new method called “score-block operation”, which is based on general 

image retrieval concept, with the K-NN classifier being employed for automated 

categorization of interstitial patterns in chest radiographs38. They first extract the lung field 

with power spectrum and Quasi Gabor filter and subsequently use a 2-D Discrete Fast 

Fourier Transform to reduce the algorithm’s sensitivity to ribs and vessel shadows of lung.  

Van Ginneken et al39 developed a method to detect abnormalities in frontal chest 

radiographs through identification of abnormal diffuse textural nature, which are seen in 

mass chest screening for tuberculosis (TB). They employ automatic segmentation of the 
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lung fields, using active shape models and subdivide the lung fields into overlapping 

regions of various sizes. Texture features using the moments of responses to a multiscale 

filter bank are the first set of features in their study. They also use "difference features" 

obtained by subtracting feature vectors from corresponding regions in the left and right 

lung fields which are classified by majority voting using k-NN method. A separate training 

set is constructed for each region of interest. All regions are classified by voting among the 

k nearest neighbors, with leave-one-out method. Next, the classification results of each 

region are combined, using a weighted multiplier in which regions with higher 

classification reliability weigh more heavily. This produces an abnormality score for each 

image. They tested their methods on two databases. The first database contained 147 

images from suspected Tuberculosis and had with textural abnormalities which were 

compared with 241 images from healthy subjects. The second database contained 100 

normal images and 100 images with interstitial diseases. Authors report that their 

classification has sensitivity of 86% and 97% and specificity of 50% and 90%   respectively 

in two databases39. 

Chest images of patients with Severe Acute Respiratory Syndrome (SARS) was studied by 

Tang et al40. They examined the hypothesis that they could distinguish regions infected by 

SARS from normal lung using co-occurrence matrix as texture features. Since SARS 

regions are irregular, one cannot use shape to distinguish them from normal areas. They 

developed a multi-level dominant eigenvector estimate (MDEE) to alleviate the problem 

of large dimensionality of feature vectors and the high degree of correlation of 

neighbourhood features. Their accuracy of classification exceeded 96%. 
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A novel approach using two sets of wavelet filters, discrete wavelet frames (DWF) and 

rotated wavelet frames (RWF) were used to extract features from the lung tissue patterns41. 

Four different lung patterns (ground glass, honey combing, reticulation, and normal) are 

selected from a database of 340 images and are classified using support vector machine 

(SVM). Best results were obtained when above two filter banks were combined; which 

shows a complementary benefit in using them together. 

Korfiatis et al. developed an automated scheme for volumetric quantification of interstitial 

pneumonia (IP) patterns, in a subset of diffuse interstitial parenchyma lung disease 

(DPLD),    from a multidetector CT (MDCT) dataset. A lung-field segmentation is achieved 

by 3-D automated gray-level thresholding combined with an edge-highlighting wavelet 

preprocessing step, followed by a texture-based border refinement step. The vessel tree 

volume is identified and removed from lung field, resulting in lung parenchyma (LP) 

volume. Thereafter, identification and characterization of IP patterns are formulated 

through a three-class classification system into normal, ground glass, and reticular patterns, 

using 3-D co-occurrence features. Performance of the proposed scheme in identifying and 

characterizing ground glass and reticular patterns was evaluated by means of volume 

overlap10.  

Approximately 15% of all respiratory diseases are known as diffuse lung disease (DLD), 

which can lead to respiratory failure. The DLD   radiologically manifests as texture 

alteration of lung parenchyma. The clinical diagnosis of DLD in CT is primarily based on 

an assessment of lung parenchyma, its textural pattern and the extent and distribution of 

abnormal pattern within the lung. Certain protocols using high Resolution CT (HRCT), 
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only sample 10% of lung volume, however, volumetric Multi-Detector CT (MDCT) 

protocols are capable of capturing the entire lung volume. Such methods permit computer 

aided characterization and quantification of the entire extent of DLD.  Using 3D feature 

sets, Mariolis et al. have obtained classification accuracies higher than 96.5%11. 

Quantitative textural analysis of lung has enabled the physician to perform classification 

and identification of diseases such as pulmonary fibrosis, normal/abnormal lungs, SARS, 

DLD, reticulation, emphysema, honey combing and parenchyma disorders. In this section, 

we examine classification of CT images from patients with specific disease conditions of 

the lung. 

 Identification of certain pulmonary diseases through CT images of the lung is through 

region growing procedures. In region growing, image characteristics in a particular part of 

the image are used to group individual pixels into regions.  Coupled with boundary 

detection, region growing procedure is commonly used in segmentation of images. Region 

growing method involves selection of seed points to determine whether the pixel neighbors 

should be added to the region.  Often several iterations are run on a particular image to 

identify areas which have similar characteristics. 

Malone et al. employed texture based features from 102 image slices recorded from 34 

patients47. Of these 11 had normal lungs, 13 had fibrosis and 14 had emphysema. They 

trained an SVM based classifier to recognize typical disease patterns in the lung 

parenchyma using cross validation methods. They achieved accuracies ranging from 74% 

- 94%. 
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A pre-processing step in identifying pulmonary disease is to segment the lung tree. 

Segmenting pulmonary emboli and nodules will also give us useful information in terms of 

a computer aided diagnostic system. But this is challenging because of partial volume effect 

and high density air way walls48. 

Common interstitial pneumonia also known as UIP and UPF, involves inflammation of 

lung parenchyma. These diseases will affect the anatomy and decrease lung volume. The 

source of these diseases are found in characterization of changes caused by the disease 

process and extent of pulmonary involvement, which are best seen on HRCT6. 

Honey combing is an extensive lung fibrosis with alveolar destruction which can be 

diagnosed with HRCT by thick-walled air-filled cysts. Wong et al. detected honeycombing 

by finding potential cysts by extracting dark, roughly circular structures of the lung from 

HRCT49. Then they are clustered for potential honeycombing. Subsequently, regional 

information of clustering is calculated and machine learning algorithms are used for 

classifying these regions. The lung is segmented using morphological and active contour 

snake algorithm, since this disease is primarily located only in the lung boundary49.  

To enable content based retrieval of patterns of pathological conditions, Shyu et. al 

implemented a human-in-the-loop (a physician-in-the-loop, more specifically) approach in 

which an expert delineates the pathology bearing regions (PBR) and a set of anatomical 

land-marks in the image when the image is entered into the database50.  The ASSERT 

system developed By Shyu et al. requires physicians to manually mark the regions. Then 

they record honeycombing, texture attributes among other information. An optimal set of 

features is chosen among those with higher divergence and subsequently a Bayesian 
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classifier is used50. To reduce the dimensionality of the attribute space, they use sequential 

forward selection method and then a decision tree to determine whether that region is 

similar to other honeycombing images in the database. Another related paper uses an 

adaptive multiple feature method (AMFM) to detect abnormal tissues which use 17 texture 

based features51. 

Measuring pulmonary abnormalities in chest CT images when an infection such as H1N1 

is present, is reported by Yao et al.14. They first segment both left and right lung using 

region growing and dynamic programming methods. Then using blocks of 16 × 16 pixels 

they apply a multidimensional feature vector which contains 25 different texture features 

of histogram, co-occurrence and run length matrix.  They also detected statistically 

significant differences in the receiver operator characteristics (ROC) curves for detecting 

abnormal regions in H1N1 infection between normal lung and regions of fibrosis52, with 

significant differences in texture features of different infections. It is reported that the 

researchers were able to quantify abnormal lung volumes in CT imaging.  

1. EMPHYSEMA 

 

Cigarette smoking is the primary risk factor for chronic obstruction pulmonary disease 

(COPD) and mostly affects people in the sixties and seventies. As a major component of 

COPD, emphysema is defined histologically as the condition of the lung characterized by 

permanent, abnormal enlargement of airspaces distal to the terminal bronchiole, 

accompanied by tissue destruction of alveolar walls, leading to breathlessness8. 

Emphysema often results in shortness of breath and leads to COPD which is characterized 

by airflow limitations53. There are three types of emphysema, commonly called centeri-
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lobular, paraseptal, and panlabular53. Figure 2.4 shows Para-septal emphysema and centri-

lobular emphysema on CT image of the lung. 

 

Figure 2.4. Para-septal emphysema and centri-lobular emphysema, identified by arrows 

 

CT is very helpful in identifying Emphysema which is chronic and progressive. The CT 

has remained the gold standard for identifying emphysema especially with multi-detector 

CT scanners that are capable of acquiring more than 300 sections per rotation9. 

Radiologist’s accuracy in identifying the abnormal pattern generated by emphysema in a 

lung CT is between 65 to 80 percent. Classification based on texture analysis is a very 

useful method in quantification of the disease9.  

Identifying emphysema, fibrosis or normal parenchymal tissue based on thresholding can 

be performed with relative ease, but the challenge is to differentiate between normal and 

abnormal lung, due to the volume effect. If emphysema and fibrosis are both present, 

density based methods  do not work well and because, fibrosis54 will lead to a small number 

of voxels with low attenuation, while emphysema has many more voxels and the mean 

values of intensities of both diseases can be classified as belonging to normal lung. 
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Therefore, texture analysis can be useful, since it is not only based on density features55 but 

it takes local values into account too53. 

Xu et al. have enhanced the ability to differentiate normal lung with 3D texture features 

arising out of MDCT images. They had 34 human patients  with chest MDCT and they 

categorized them as following: EC, emphysema in severe chronic obstructive pulmonary 

disease (COPD); MC, mild emphysema in mild COPD; NC, normal appearing lung in mild 

COPD; NN, normal appearing lung in normal non-smokers; and NS, normal appearing lung 

in normal smokers. COPD was based on pulmonary function tests (PFT). Airways and 

vessels were excluded from texture features. Bayesian classifier and leave one out method 

were employed for discrimination and validation respectively8. Accuracy with two way 

classification reached up to 99%. 

Sørensen et al employed local binary patterns (LBP) obtained from CT images as texture 

features, and joint LBP and intensity histograms are used for characterizing regions of 

interest 53. Classification is performed through a k-NN classifier wherein a histogram 

dissimilarity measure is used as distance metric.  They report a 95.2% classification 

accuracy on 168 manually annotated ROIs, comprising 3 pathologies, namely normal 

tissue, centri-lobular emphysema, and paraseptal emphysema53. 

2. CANCER 

Lung cancer is the major cause of cancer deaths in North America17, 56. Tobacco 

consumption is the main reason for lung cancer and about 87% of lung cancers are likely 

due to smoking or passive exposure to tobacco smoke56.  If lung cancer is detected at an 

early stage, there is a 40% chance for 5 year survival56. Studies have calculated an average 
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of 30% miss rate in early detection of lung cancer. Imaging of the lung through CT has 

found a prominent place in diagnosis of lung cancer.  In earlier stages cancer is seen as non-

calcified nodules in CT images which has a low attenuation with spherical appearance57. 

Fractal analysis of sequenced contrast enhanced images of CT have been studied as a 

potential tool for identifying aggressive and malignant tumors39. Using box counting 

algorithm, DICOM images were transformed to fractal dimension (FD) are measured. 

Based on their research vascularized tumor regions had fractal characteristics and their 

quantitative classification had accuracy of 83%57. 

Tumor vasculature is related to tumor aggression and CT is routinely used in identifying 

soft tissue behind the bone which makes detecting them with other anatomical imaging 

modalities difficult. Assessment of lesion heterogeneity and surface irregularity on CT 

using fractal analysis can identify normal tissue and tumors. Identification of 

aggressiveness of the tumor can be researched by examining the image texture. The extent 

of spread of cancer is described by the tumor stage, so it is very important to be able to 

improve tumor stage prediction1. 

Interpreting chest radiographs is not always straight forward because of its complex 

background. CT images can eliminate the superposition of an atomic structure but the trade-

off is much more data for the radiologist. By use of the Eigen values of Hessian matrix of 

the image, Sato et al. constructed blob, line, and sheet enhancement filters58. Those filters 

may also consume much time for computing Eigen values of Hessian matrix for each image 

pixel at different scales, even just from a number of equations. A filter is used to detect 



Mehrdad Alemzadeh, Ph.D. Thesis - McMaster University – Computing and Software 

 

44 
 

early cancer that enhances the local contrast of the ROI, including nodules and normal 

structures (vessels and airway walls) with similar attenuation or textures to nodules59. 

It has been shown that fractal analysis of lung tumor’s texture in CT images can assist in 

distinguishing between aggressive and non-aggressive tumors60.  Fractal contrast 

enhancement (CE) using CT for differentiating between aggressive and non-aggressive 

malignant tumors was studied on branches of blood vessels1. Al-Kadi and Watson 

performed fractal analysis on contrast enhanced CT images from each of 15 patients. A 

sequence of 11 images recorded in time were used from each patient to determine the fractal 

dimension and lacunarity. Fractal texture features and quantitative classification over tumor 

regions resulted in 83.3% accuracy to distinguish between advanced (aggressive) and early-

stage (nonaggressive) malignant tumors.  

Lung with CT using fractal extraction based on DBC to compare bronchiole alveolar cell 

carcinomas with non-bronchiole alveolar cell carcinomas was examined by Kedi et al45. 

Characterization of lung CT images using FD can help distinguish brochiogeic carcinomas 

from benign pulmonary nodules46. 

An effective surgical treatment for cancer is the removal of the diseased lung lobes which 

is called lobectomy. In order to maintain the maximal lung functionality, the surgical team 

and the radiologist needs accurate information regarding how the cancer has spread across 

lung lobes. A 3-D visualization can make these kind of assessments easier since it would 

eliminate the reconstruction of objects17. To create such 3-D visualization we need to be 

able to segment lung lobes. Wei and Hu17 have combined two textural features to achieve 
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such an objective and claim that textural analysis can be more easily investigated for 

visualization. 

Small and non-small size cancers in lung were studied through nodule detection using 

geometrical and texture features. Namely the GLCM was used to compare texture 

features56. Pulmonary nodules are a common sign of lung cancer. Anand computed GLCM 

based textural features from CT images which served as input to a backpropagation neural 

network, to classify each image as cancerous or non-cancerous and report promising 

results. He suggest that the procedure can provide supplementary information to the 

radiologist to arrive at the diagnosis of lung cancer58. Textural (GLCM) and geometrical 

features were inputs to a NN to classify benign and malignant tumors. 

VII. APPLICATION OF SCALE INVARIANT FEATURE TRANSFORM IN CT IMAGES OF THE 

LUNG 

The SIFT method of detecting features from images was introduced by David Lowe62, and 

it is mainly used in object detection and face recognition applications. SIFT has recently 

been used in medical image quantification. Chapter 5 describes the method in detail and 

discuss results in classification of CT images of the lung. Below is a review of SIFT 

applications in medical imaging 

Kamencay et. al63 proposed a hybrid approach of using SIFT descriptors with PCA and 

KNN for classification.  SIFT features are extracted and  PCA method is applied for 

labeling proper matches based on the closest neighbor to the training set, if not successful, 

the output of PCA is applied to a KNN. An application of this method can be a 3D model 

of internal organs from an endoscopic video. This method was tested on Caltech 101 
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database and colonoscopy test image database with resulting recognition rates of 92% and 

84% respectively.  

Four categories of lung nodules, namely: well-circumscribed, vascularised, juxta-pleural 

and pleural-tail are classified using SVM by extracting  SIFT descriptors in two steps: first, 

an image patch division approach is used for foreground and background pixel indexing, 

second, transforming the result of the first step into feature vector using context curve 

feature descriptors (Zhang et. al64, 65). This method was tested on Early Lung Cancer Action 

Program database with near 90% average classification rate which was higher than similar 

methods such as SVM-SIFT, PCA-SIFT and linear discriminant analysis upon SIFT 

descriptors.  

Effectiveness of SIFT, LBP and SURF descriptors are assessed on false positive and 

classification of lung nodules (Farag et. al66). An active appearance model creates templates 

for common nodules. Candidates are detected by a normalized cross-correlation from this 

template. And geometric descriptors are extracted from nodule candidates. These methods 

are tested on early lung cancer action project (ELCAP) database and demonstrated a 2% 

increase in specificity of the above assessment. 

While raw SIFT and LBP were not successful in classification, transforming SIFT 

descriptors to smaller vectors using PCA and linear discriminate analysis (LDA) increased 

nodule accuracy of classification when coupled with LBP. 

Classification of four lung nodule categories: well-circumscribed, vascularized, juxta-

pleural and pleural-tail, is performed with SVM. SIFT descriptors are reduced to 4-length 

probability vector for every category using weighted similarity network on SVM. 
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Overlapping types are assessed using clique Percolation method. This algorithm is 

evaluated on ELCAP database65.  

In another laboratory, SIFT descriptors were used for segmenting lung fields that were 

obtained from serial radiographs, along with deformable contour that was constrained 

based on population and patient-specific shape statistics. This method had higher accuracy 

and specificity was higher in comparison with active shape models69. 

The SIFT keypoint identification was evaluated by applying changes such as rotation, 

scaling, stretching, brightness, contrast and adding noise to an image and re-calculating the 

keys. 78% of the keys matched in location, scale and orientation in its altered image. 

Since texture analysis can only take the averaged feature into account, identifying 

honeycombing and reticular patterns can become cumbersome due to inhomogeneous 

texture.  

Kato et. al67 used texture images as histogram and use intensity and SIFT descriptors for 

feature extraction. This Method was applied to 1109 ROIS from 211 patients for classifying 

five classes: ground glass, reticulation, honeycombing, emphysema and normal lungs that 

resulted in 92.8% accuracy for each class. However, their analysis is focused on 

inhomogeneous texture patterns and texture classification accuracy. This method lacks the 

capability of homogeneous patterns quantification, analysis based on ROI’s of different 

sizes, and classification accuracy for more than 5 patterns. However, higher accuracy was 

reported based on only texture features with more classes is discussed by Rui Xu et al68. 

They demonstrated the highest classification accuracy on six pulmonary patterns: 

consolidation, ground-glass opacity, honeycombing, emphysema, nodules and normal 
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tissue. Since shape detection is a useful information, they extracted features from 3D data 

sets and calculated Eigen-values of Hessian matrices. 16 statistical measures based on 

mean, variance, skewness and kurtosis statistical features are extracted from three Eigen-

value cubes. A Gaussian SVM classifier reaches 95.85% recognition rate based on 20-cross 

validation test based on their report. 

VIII. ASSESSMENT 

To estimate general capability of a statistical classifier we can use a cross validation 

procedure. The standard deviation of two or more parameters is calculated to measure 

accuracy and robustness of the system. 

Leave one out is a simple validation technique that omits the⁡𝑖𝑡ℎ element where the original 

data 𝑋1, … , 𝑋𝑖, … , 𝑋𝑛 is in separate sets 𝑆1, … , 𝑆𝑖, … , 𝑆𝑛with 𝑛 − 1 elements. The static 

mean of each set is calculated as n-fold estimate. So each element is used as a training set 

and also for testing. The evaluation is as follows55 

Volume overlaps (VO) 
𝑉𝑂 =

𝑂 ∩ 𝐶

𝑂⁡ ∪ 𝐶
 

True positive fraction (TPF) TPF=
𝑂∩𝐶

𝑂
 

False-positive fractions (FPFs) 
𝐹𝑃𝐹 =

𝑂 ∪ 𝐶 − 𝑂

𝑂
 

O is the ground truth that is provided by a radiologist and C is the computer driven result10. 

To measure performance of classification we can also use61 

𝑆𝐸𝑁𝑆𝐼𝑇𝐼𝑉𝐼𝑇𝑌 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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𝑆𝑃𝐸𝐶𝐼𝐹𝐼𝐶𝐼𝑇𝑌 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑃
 

Where, TP is the true positive, TN is the true negative, FP is the false positive and FN is 

false negative. 

IX. DISCUSSION 

It is becoming increasingly evident that texture analysis applied to lung images obtained 

from CT has significant potential in identifying regions of pathology and thereby assist the 

diagnosing physician. This is due to the nature of these patterns, as radiologists also 

compare texture of the lung parenchyma to understand the root causes of a disease. 

Computerizing the identification process and classification of diffuse lung disease would 

help radiologists save time during radiological examination of CT images of the lung and 

narrow down abnormal disease patterns, which is the primary motivation for this thesis.  

For instance it is easy to miss a nodule or identify the type of nodularity incorrectly. Such 

small misses may result in increased false positives which can potentially jeopardise 

someone’s life. Therefore, a computer assisted classification method can result in a higher 

accuracy and will benefit both the patient and the radiologist.  

There are a number of challenges associated with such an undertaking. On one hand, a 

computer scientist faces the challenge of acquiring relevant data which is often confidential, 

it also requires a radiology specialist to devote considerable amount of time in narrowing 

down many images which are highly indicative of pathologies of the lung. Some regions 

of interest may have several abnormalities which will not result in a clean feature extraction 
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and classification. On the other hand in order to write good software, the computer scientist 

must familiarize himself/herself with a new field of study and understand the 

pathophysiology of several diseases so as to be able to identify and characterize patterns 

associated with specific diseases. When these challenges are successfully overcome, it may 

trigger creative thinking of the programmer to come up with an algorithm that captures the 

process which a radiologist goes through to identify and classify the image segment under 

question. Such novel algorithms will consist of multiple image processing tools and 

techniques to capture as many angles of the manual process as possible.  

Although many texture analyzing algorithms are produced by research groups all over the 

world, results and challenges documented in this review demonstrate that there is 

considerate amount of work that needs to be done to usher such algorithms into clinical 

practice. 

X. CHAPTER SUMMARY 

A set of features that can correctly identify the pathological patterns in a biomedical image 

are needed to perform identification and classification of lung images. To obtain features 

with high specificity, all images need to have suitable resolution and well defined 

radiological pathology. Extraction of optimal features from an image often requires a 

combination of domain knowledge and formulation of mathematical descriptors of 

features. In this context the use of texture analysis accompanied by fractal analysis can 

provide a well-defined set of features to enable classifiers such as ANN and SVM to 

classify CT images of the lung, as being from a healthy subject or from a patient, with high 
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accuracy and assist the physician during diagnosis. These issues are the subject of 

subsequent chapters.  
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CHAPTER 3 

EVALUATION OF TEXTURE FEATURES OF PATHOLOGICAL 

PATTERNS IN THE CT IMAGES OF THE LUNG 
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I. Introduction 

Empirical observations by practicing radiologists and a review of literature published from 

a large number of laboratories suggest that diffuse lung diseases (DLD) are well described 

by variations of texture in CT images of the lung70, 71, 72, 73, 74. These diseases impact the 

texture of parenchyma to a level that it has resulted in significant amount of research which 

focuses on algorithms that can detect the texture and surface changes on images of the lung. 

Using these methods, researchers have achieved reasonable accuracies in classifying 

typically up to five or six pathological patterns75, 76, 77, 78. A major limitation of current 

research is that classification accuracy has been reported for only 6 set of pathologies. 

Therefore, it is worth examining if various combination of texture features, identified from 

literature, can perform better than what is reported in literature. 

In this chapter, several texture analysis methods and features derived from CT lung images 

are theoretically analysed and their quantification results are expressed and evaluated for 

different pathological patterns. Furthermore, this chapter will describe the most effective 

algorithms used for feature extraction of the lung texture from CT images, to enable 

classification of up to 10 classes of DLD pathologies. Accuracy of classification while 

using ANN for different number of abnormalities is also provided. 

II. Feature Extraction using Texture Based Methods 

Several texture based methods were systematically described in chapter 2.  Details of some 

of the most effective and descriptive texture algorithms which have demonstrated high 

classification accuracies in literature are presented in this chapter. Algorithms based on 

Tamura79, 80, CLBP90,91, GLCM99,100, Haralick103,104, Gabor filter110,111, geometric 
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quantification and Minkowski Functionals117,118,119,120 generate a wide variety of features, 

and are highlighted with corresponding DLD CT images, in this chapter. 

A. Tamura Features 

Tamura features81, 82, 83 provide an accurate approach towards texture analysis since they 

focus on human psychological perception of texture. It consists of six visual features which 

quantify coarseness, contrast, directionality, line likeness, regularity and 

roughness84,85,86,87. However, only initial three features are used. The latter three features 

are highly correlated with the initial three features and therefore, are not used. 

Coarseness is the most fundamental texture element among Tamura features88,89. It defines 

the roughness of a surface by averaging gray level value (GLV) of each pixel in the image 

on six different window sizes, 2𝑛 × 2𝑛; where 𝑛 = 1,2, … ,6. When 𝑛 = 1, GLV is 

calculated in four directions, taking the pixel in question as one of the four pixels. And for 

every increasing window size, the pixel will be at the middle of the window where average 

GLV is evaluated. The average GLV at the window size with the highest absolute 

difference of the pixel GLV is divided by the whole image’s average GLV. Since the feature 

computed as above, is so effective in identifying roughness, we have used its histogram 

distribution as another feature too. 

The average at every pixel over a neighbourhood is calculated as below: 

𝐴𝑛(𝑥, 𝑦) =∑ ∑
𝑓(𝑖,𝑗)

22𝑛

𝑦+2(𝑛−2)−1

𝑗=𝑦−2𝑛−1

𝑥+2(𝑛−2)−1

𝑖=𝑥−2𝑛−1

. 

The difference between each average at every neighbourhood in horizontal orientation is 

given by: 
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𝐸𝑛,ℎ = |𝐴𝑛(𝑥 + 2𝑘−1, 𝑦) − 𝐴𝑛(𝑥 − 2𝑘−1, 𝑦)| 

and the vertical difference is also calculated. 

Contrast is computed from the image’s gray level (GL) range and the extent of black or 

white distribution. It is not simply the mean GLV of an image in Tamura analysis.  The 

first element is measured based on GL standard deviation (𝜎) and the second element is 

based on kurtosis. Kurtosis is the   fourth central moment (µ4) of the GLV, relative to the 

square of the variance.  Kurtosis is defined as ( 
𝜇4

𝜎4
 ) where μ4   is the fourth central moment 

of variable88,89. 

Thus, Contrast is defined as: 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
(𝜎)

(
µ4
𝜎4
)
1/4

 

Directionality is determined by Sobel edge detector to calculate edge strength 𝑒(𝑥, 𝑦) =

0.5(|𝛥𝑥(𝑥, 𝑦)| + |𝛥𝑦(𝑥, 𝑦)|) and direction angle 𝑎(𝑥, 𝑦) = tan−1 ⁡(𝛥𝑦(𝑥, 𝑦)/𝛥𝑥(𝑥, 𝑦)) on 

horizontal and vertical GL pixel difference of   3 × 3 windows88,89 

 

𝛥𝑦, 𝛥𝑥 are the gray level differences of neighbouring pixels in vertical and horizontal 

directions. A histogram 𝐻(𝛼) with bins as directional angle and edge strength characterized 

as counts   is computed. If the image is highly directional, peaks will be more vivid in the 

histogram.   The formula for calculating the Tamura’s directionality is given by: 
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𝐷 = 1 − 𝑟𝑛𝑝 ⁡∑ ∑ (𝑎 − 𝑎𝑝)
2
𝐻(𝛼)

𝑎𝜖𝑤𝑝

𝑛𝑝

𝑝=1

. 

Where r is normalizing factor, 𝛼 is a quantised directional angle, 𝑛𝑝 is the number of peaks, 

𝑎𝑝 is the 𝑝𝑡ℎ peak position and 𝑤𝑝 is the 𝑝𝑡ℎ peak angle range. 

 

Figure 3.1.   Tamura features of a CT image from a patient with GGO. Top left: original image; 

All others are image representations of their features with the values calculated for each 

These three features are shown by gray level range on CT image segments of ground glass 

opacity (GGO) and Emphysema on figures 3.1 and 3.2. The GGO is best characterized by 

contrast in terms of computational description, as it is with human eye. Emphysema on the 

other hand is best described by coarseness and directionality. The learning algorithm of the 

classifier, will be trained based on such information computed from a set of training images 
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and can potentially result in high classification accuracies when combined with other 

features. 

Computed values for each Tamura feature from the images with the GGO and emphysema 

(depicted in Figures 3.1 and 3.2) are extracted from the relevant ROI. However, in order to 

provide a better visualization, the whole lung is shown. 

 

Figure 3.2 Effects of Tamura features on an image identified with emphysema; Top left: original 

image; all other images are values derived from Tamura features 

The ROI value for coarseness is 26 for the image depicting GGO and 44 for the image of 

patient with emphysema. This implies that when a classifier is trained based on coarseness 

feature alone, it will associate a ROI which has a Tamura coarseness value of 26 for GGO 

class and a value of 44 to the Emphysema are demonstrated on Figures 3.1 and 3.2. The 

same principle is applied to other Tamura features demonstrated in both figures. The range 
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of each feature will be determined primarily based on the formula and to a lesser extent on 

the number of ROI’s provided to the classifier for training with semi-supervised learning.  

The usefulness of multiple features to identify a pattern generated by a particular disease is 

obvious. Furthermore, feature ranges vary and are not always perfectly set for every 

pathological pattern. For instance, feature F could have value X for a GGO ROI and value 

Y for another GGO ROI. If X and Y are in the similar range (eg: X=1.1, Y=1.12) then they    

have a high probability of being generated by the same disease. However, if ranges are 

different (eg: X=1.1, Y=22), it is likely that images belong to different classes properly. 

The same feature F can be well descriptive for a number of patterns, and not so for the rest.  

In addition, a single texture feature does not describe a class completely, since the image is 

generated by stochastic variations in the image intensity. Therefore, it is intuitive that 

multiple features are needed to characterise each disease pattern distinctly, and a 

combination of such features will separate images into different classes. Automation of 

such a task is performed by an artificial neural network (ANN) trained for the above 

paradigm. 

B. Compound Local Binary Pattern Algorithm 

Compound local binary pattern (CLBP) is a frequently used texture feature in the 

literature92,93,94. Although, it is called a pattern, essentially the CLBP is a single number to 

characterize the variation of intensities and consequently the CLBP denotes the texture 

within a ROI. To compute CLBP, each pixel is compared with its eight neighbouring pixels. 

When the pixel in question is greater than its neighbour, a number 1 is assigned to that 

neighbour or a zero otherwise. An eight digit binary number is formed in a clockwise 
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manner, starting from the pixel on the upper hand left corner. A normalized histogram is 

then computed based on the decimal values assigned to each pixel to demonstrate CLBP 

texture feature of the ROI, since regions of interest could be of different size and 

normalizing them can result in a comparable feature95,97,98.   

As an example, consider an image (Figure 3.3) with pixel value 152. By comparing it with 

its eight neighbours, the binary output from all 8 pixels is (01110000)2 which is equal to 

(112)10. Figure 3.3 demonstrates CLBP on an image identified with honey combing. The 

histogram is depicted based on the honeycombing ROI96. 

a 

167 123 14 

179 152 28 

198 220 240 

b 

0 1 1 

0 152 1 

0 0 0 

 

 

 

Figure 3.3 Upper left corner (a) shows pixel values around a centered pixel. Upper middle (b) is 

the CLPB evaluation. Upper right corner (c) is CT image of lung identified with honey combing 

and GGO. The above graph demonstrates the histogram of the CT image base on CLBP 
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C. Gray Level Co-occurrence Matrix 

The gray level co-occurrence matrix (GLCM) extracts second order statistical texture 

features and generates a matrix where the number of rows and columns are equal to the 

number of gray levels in the image101,102. The GLCM is defined as a tabulation of how often 

different combinations of pixel brightness values (grey levels) occur in an image. The 

GLCM has characteristics that can be summarized through some feature functions over the 

ROI matrix (GLCM calculates occurrence frequency of a relative pixel at a specific 

distance and neighbourhood. If an image has a random texture pattern vertically, and a 

dominant horizontal structure, GLCM will have a description which is in between these 

two extremes. This is because, the analysis is averaged over every direction. To calculate a 

GLCM one can use the formula: 

𝐶∆𝑥,∆𝑦(𝑖, 𝑗) =∑∑{
1, 𝑖𝑓⁡𝐼(𝑝, 𝑞) = 𝑖⁡𝑎𝑛𝑑⁡𝐼(𝑝 + ∆𝑥, 𝑞 + ∆𝑦) = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑚

𝑞=1

𝑛

𝑝=1

 

Image I is of size 𝑛 × 𝑚, and ∆𝑥, ∆𝑦 are the horizontal and vertical pixel neighbourhood 

differences. The GLV is denoted by i and j; p and q are spatial positions in the image. 

Computation of the GLCM is as follows: One divides GLV’s of each pixel to 6 different 

thresholds. Then assigns each pixel to its respective class. Then a one counts of the number 

of vertical occurrences of a threshold with its right neighbour generates a new matrix. We 

add up the values in this matrix with its transpose (T) and calculate the sum of resulting 

values (S). Then a similarity matrix is created based on  
𝑇

𝑆
. The normalized value is the sum 
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of 
𝑇

𝑆
 for each matrix cell. The mean over vertical and horizontal normalized matrix is 

calculated. The offset or the distance of the gray level value repeated in its neighbourhood 

affects GLCM. 

 

To generate a GLCM, first one divide GLV’s of each pixel to 6 different thresholds. Then 

assign each pixel to its respective class and create a new matrix based on that. Then a count 

of the number of vertical occurrences of a threshold with its right neighbour generates a 

new matrix. We add up the values in this matrix with its transpose (T) and calculate the 

sum of resulting values (S). Then a similarity matrix is created based on  
𝑇

𝑆
. The normalized 

value is the sum of 
𝑇

𝑆
 for each matrix cell. The mean over vertical and horizontal normalized 

matrix is calculated. The offset or the distance of the gray level value repeated in its 

neighbourhood affects GLCM. 

This method is demonstrated on a ROI which is classified as honeycombing with four 

different offsets; figure 3.4.  

 

1.Devide GLV's by 6 
ranges

2.create a new matrix 
based on the ranges

3.count the number of 
vertical occurances of 
each range and create 

a matrix

4.add up with its 
transpose

5.divide transposed 
matrix with matrix 
resulted in step 4

6. Calculate the mean 
over vertical direction

7. do the same for 
every other direction 

as well
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Figure 3.4 GLCM evaluation of an image with different offsets 

If the offset is too close or too far, the matrix would have less data for statistical analysis. 

The offset is calculated as 

max{𝑝𝑖𝑥𝑒𝑙𝑠𝑥,𝑝𝑖𝑥𝑒𝑙𝑠𝑦}

2
. 

The honey combing ROI has 240⁡ × ⁡220 pixels in vertical and horizontal directions, so 

the offset for this GLCM would be 120. 𝑝𝑖𝑥𝑒𝑙𝑠𝑥⁡and⁡𝑝𝑖𝑥𝑒𝑙𝑠𝑦 demonstrates pixel values in 

x and y directions. 

D. Haralick Features 

Haralick introduced 14 features which have been used as the source of texture descriptors 

in various forms: angular second moment, contrast, correlation, variance, inverse difference 

moment, sum average, sum variance, sum entropy, entropy, difference variance, difference 

entropy, information measure of correlation. We have chosen not to use maximal 
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correlation coefficient function from this list, as it is the least descriptive feature and gets 

omitted by principal component analysis in every extraction105,106.  

 In order to illustrate the computation of Haralick features, the following figures are 

generated. For each Haralick formula two sets of images, each containing four ROI’s 

(honey combing, consolidation, GGO and emphysema) are evaluated below. To compare 

the range of each feature, driven from each formula, one can compare the ROI from the 

upper set with the one from the lower set of images to assess how that feature describes a 

particular pathological pattern. Features which provide excellent quantitative measure of 

the texture within the ROI are pointed out for these figures107,108. When the features are in 

the same range for the same pattern on all ROI’s, the classifier will be trained more 

accurately and therefore classification results will be higher. 

In formulas109 that follow,⁡∅𝑖𝑗 is the (𝑖, 𝑗)th normalized matrix pixel value, 𝜇 and 𝜎 are the 

mean and standard deviation (variance) over horizontal and vertical columns of GLCM. L 

is the number of gray levels in GLCM. Haralick features are demonstrated for various 

images and the formula used for calculating each feature is also presented109. 
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Haralick feature 1: Angular Second Moment (Energy) is the sum of squared GLV of 

every pixel within the ROI: ∑ ∑ (∅𝑖𝑗)
2𝐿−1

𝑗=0
𝐿−1
𝑖=0  

 

Figure 3.5 Sample image ROIs from different pathologies. Comparing Energy value on two sets 

of honey combing, consolidation, emphysema & GGO shows similar range of values. This feature 

is well descriptive for GGO (upper image:0.22; lower image:0.24) 
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Haralick feature 2: Contrast is evaluated as below according to Haralick when 

|𝑖 − 𝑗| = 𝑛 

∑𝑛2∑∑∅𝑖𝑗

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝐿−1

𝑛=0

 

 

Figure 3.6 A comparison of Contrast values on two sets of honey combing, consolidation, 

emphysema & GGO shows similar values. Contrast feature is well descriptive for honey 

combing (upper image:0.92) and emphysema (upper image:1.1; Lower image:0.95) 
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Haralick Feature 3: Correlation = ∑ ∑
𝑖𝑗∅𝑖𝑗−𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

𝐿−1
𝑗=0

𝐿−1
𝑖=0  

 

Figure 3.7 A comparison of Correlation values on two sets of honey combing, consolidation, 

emphysema & GGO shows similar values  
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Haralick Feature 4: Sum of Squares (variance) = ∑ ∑ (𝑖 − 𝜇)2∅𝑖𝑗
𝐿−1
𝑗=0

𝐿−1
𝑖=0  

 

Figure 3.8 A comparison of Sum of squares variance values on two sets of honey combing, 

consolidation, emphysema & GGO. This feature works better for honey combing and emphysema 

as the results are in the same range 
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Haralick Feature 5: Inverse Difference Moment =  ∑ ∑ (
1

1+(𝑖−𝑗)2
)∅𝑖𝑗

𝐿−1
𝑗=0

𝐿−1
𝑖=0  

 

Figure 3.9 A comparison of Inverse Different Moment value on two sets of ROIs of honey 

combing, consolidation, emphysema & GGO shows similar range of values  
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Haralick Feature 6: Sum Average = ∑ (𝑖)∑ ∑ ∅𝑖𝑗
𝐿−1
𝑗=0

𝐿−1
𝑖=0 ⁡2𝐿

𝑖=2   

When on last two sums: |𝑖 − 𝑗| = 𝑖, 𝑖 = 0,1, . . , 𝐿 − 1 

 

 

Figure 3.10 A comparison of Sum Average value on two sets of ROIs of honey combing, 

consolidation, emphysema & GGO shows similar range of values 
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Haralick Feature 7: Entropy =  −∑ ∑ ∅𝑖𝑗 ⁡𝑙𝑜𝑔(∅𝑖𝑗))
𝑳−𝟏
𝒋=𝟎

𝑳−𝟏
𝒊=𝟎  

 

Figure 3.11 A comparison of Entropy values on two sets of ROIs of honey combing, 

consolidation, emphysema & GGO shows similar range of values 
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Haralick Feature 8: Sum Entropy =  

−∑ ∑ ∑ ∅𝑖𝑗
𝐿−1
𝑗=0,|𝑖−𝑗|=𝑖

𝐿−1
𝑖=0,|𝑖−𝑗|=𝑖 𝑙𝑜𝑔(∑ ∑ ∅𝑖𝑗

𝐿−1
𝑗=0

𝐿−1
𝑖=0 )𝟐𝑳

𝒊=𝟐  

 

Figure 3.12 A comparison of Sum Entropy value on two sets of ROIs of honey combing, 

consolidation, emphysema & GGO shows similar range of values 
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Haralick Feature 9: Difference variance =  ∑ (|𝒊 − 𝒋|)𝟐∑ ∑ ∅𝑖𝑗
𝐿−1
𝑗=0

𝐿−1
𝑖=0

𝑳−𝟏
|𝒊−𝒋|=𝟎  

 

Figure 3.13 A comparison of Difference Variance on two sets of honey combing, consolidation, 

emphysema & GGO shows better results for consolidation as the range is much similar 
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Haralick Feature 10: Difference Entropy =  

−∑ ∑ ∑ ∅𝑖𝑗
𝐿−1
𝑗=0

𝐿−1
𝑖=0 𝑙𝑜𝑔(∑ ∑ ∅𝑖𝑗

𝐿−1
𝑗=0

𝐿−1
𝑖=0 )𝑳−𝟏

|𝒊−𝒋|=𝟎  

 

Figure 3.14 A comparison of Difference Entropy on two sets of ROIs of honey combing, 

consolidation, emphysema & GGO shows similar range of values 
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Haralick Feature 11:  Sum Variance =  ∑ ((𝒊 + 𝒋) − ∑ (𝑖 +
2(𝐿−1)
𝑖+𝑗=0

𝟐(𝑳−𝟏)
𝒊+𝒋=𝟎

𝑗)⁡∑ ∑ ∅𝑖𝑗
𝐿−1
𝑗=0

𝐿−1
𝑖=0 )

𝟐
∑ ∑ ∅𝑖𝑗

𝐿−1
𝑗=0

𝐿−1
𝑖=0  

 

Figure 3.15 A comparison of Sum Variance on two sets of ROIs of honey combing, consolidation, 

emphysema & GGO   
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Haralick Feature 12: Information Measure of Correlation 1: 

−∑ ∑ ∅𝑖𝑗 ⁡𝑙𝑜𝑔(∅𝑖𝑗))
𝑳−𝟏
𝒋=𝟎

𝑳−𝟏
𝒊=𝟎 −∑ ∑ ∅𝑖𝑗

𝐿−1
𝑗=0

𝐿−1
𝑖=0 ⁡log⁡(∑ ∅𝑖𝑗

𝐿−1
𝑗=0 ∑ ∅𝑖𝑗

𝐿−1
𝑖=0 )

𝒎𝒂𝒙{⁡∑ ∑ ∑ ∅𝑖𝑗
𝐿−1
𝑗=0 log⁡(∑ ∅𝑖𝑗

𝐿−1
𝑗=0 )𝐿−1

𝑗=0
𝐿−1
𝑖=0 , ∑ ∑ ∑ ∅𝑖𝑗

𝐿−1
𝑖=0 log⁡(∑ ∅𝑖𝑗

𝐿−1
𝑖=0 )𝐿−1

𝑗=0
𝐿−1
𝑖=0 }

 

 

 

Figure 3.16 A comparison of Info. Measure of Correlation 1 on two sets of ROIs of honey 

combing, consolidation, emphysema & GGO  
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Haralick Feature 13: Information Measure of Correlation 2: 

(𝟏 − 𝒆𝒙𝒑 [−𝟐(∑∑∑∅𝑖𝑗

𝐿−1

𝑗=0

∑∅𝑖𝑗

𝐿−1

𝑖=0

⁡log⁡(∑∅𝑖𝑗

𝐿−1

𝑗=0

∑∅𝑖𝑗

𝐿−1

𝑖=0

)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

+∑∑∅𝑖𝑗⁡𝑙𝑜𝑔(∅𝑖𝑗))

𝑳−𝟏

𝒋=𝟎

𝑳−𝟏

𝒊=𝟎

)])

𝟏/𝟐

 

 

Figure 3.17 A comparison of Info. Measure of Correlation 2 on two sets of ROIs of honey 

combing, consolidation, emphysema & GGO shows similar range of values 
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E. Gabor Filter Analysis 

Gabor filter is a sinusoidal function of frequency and orientation that is widely used for 

extracting texture features in frequency and spatial domain112,113. In the spatial domain, a 

2D Gabor filter is a Gaussian kernel function modulated by a sinewave function.  It has 

been suggested that processing of images using Gabor filters is similar to the perception in 

the human visual system114,115. 

 The Gabor filter is computed as follows116: 

1. Fourier transform of the image ROI is calculated   

2. The result is multiplied with the Gaussian function centered at different frequencies.  

3 Inverse fast Fourier transform (IFFT) of each output of step 2 is computed 

Using different frequencies and orientation, 2D Gabor filter is used to extract texture 

features from CT images of the lung. 

𝐺(𝑥, 𝑦) = 𝑒
−
(𝑥−𝑥0)

2

2𝜎𝑥
2

(𝑦−𝑦0)
2

2𝜎𝑦
2
𝑒𝑗(𝜔𝑥0𝑥+𝜔𝑦0𝑦) 

Where 𝜔𝑥0𝑥, 𝜔𝑦0𝑦 are the maximum center frequencies responses in x and y directions; 

𝜎𝑥, 𝜎𝑦 are standard deviations in both directions and 𝑥, 𝑦 are pixel positions in the image. 

In our analysis we have chosen 18 orientations (∆𝜃 =
360

20
= 18). The centre of frequency 

𝑓 can be computed as 

𝑝𝑓 =
𝜔𝑓 + 𝜔𝑓−1

2
=
1

2
(2𝑖𝜔0 − 2𝑖−1𝜔0) = 2𝑖−1. 3𝜔0 

For each ROI, a total of 72 Gabor filters (18 orientations and 4 frequencies) are computed 

as shown in figures 3.18 and 3.19. Applying these filters on a ROI results in filtered image 
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with enhanced edges of the same Gabor orientation. For instance, when orientation is 90o 

and 180o the edges on the horizantal and vertical directions will be enhanced based on four 

frequencies, consecutively. 

 

Figure 3.18 Eighteen orientations of Gabor filter, used for feature extraction; each differing from 

each other by 20 degrees 

 

Figure 3.19 Four frequencies applied to each orientation for Gabor feature extraction 

Inverse Fast Fourier Transform (IFFT), texture energy and transformed IFFT are the texture 

features extracted from Gabor filters applied to an image ROI. To extract these features 

first one computes the Fourier transform conversion, then convolves it based on Gabor filter 

and finally inverse the convolved image. This feature is assessed differently, compared to 

Haralick energy feature. 

Fourier transform (FT) maps signals to their component frequencies; the discrete FT is 

computed as 𝐹, with variables 𝑝, 𝑞 for an image of size 𝑀 ×𝑁 
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𝐹(𝑝, 𝑞) = ∑ ∑ 𝑓(𝑥, 𝑦)𝑒−2𝜋𝑗[
𝑝𝑥
𝑀
+
𝑞𝑦
𝑁
]

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

where 𝑝 = 0,1,2, … ,𝑀 − 1 and 𝑞 = 0,1,2, … , 𝑛 − 1 and f(x,y) are  pixel values 

The result of convolution between FT of a lung CT image and Gabor filter can be computed 

by fast Fourier transform multiplication of two convolved images.  

To inverse back the convolved image from a FT (with complex numbers), IFFT is required; 

which is used as a texture feature too. IFFT is calculated as 

𝑓(𝑥, 𝑦) =
1

𝑀𝑁
∑ ∑ 𝐹(𝑝, 𝑞)𝑁−1

𝑞=0
𝑀−1
𝑝=0 𝑒2𝜋𝑗[

𝑝𝑥

𝑀
+
𝑞𝑦

𝑁
]
. 

Extraction of texture energy is done by taking the positive signs of square of IFFT value. 

Transformation of IFFT as the third texture feature, refers to the absolute value of IFFT 

which can be obtained by 

𝜑(𝑔) = |
1 − 𝑒−2𝛼𝑔

1 + 𝑒−2𝛼𝑔
| , 𝛼 = 2.5 

where 𝑔 is the gray value of IFFT image.  

To obtain inverse FT images, following steps were followed: 

1. Calculate FFT of the original ROI 

2. Gabor filter is applied to the original image incorporating 18 filters 

3. FFT of each Gabor filter in step 2 are calculated 

4. Convolution of step 1 and step 3 is evaluated 

5. IFFT of step 4 is performed 

6. All IFFT’s in step  5 are summed up 
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The classification results of each Gabor feature is demonstrated in section IV. This section 

will show, combination of these features yields in a better classification accuracy than using 

them separately. 

F. Geometric Quantification based on Minkowski Functionals 

Minkowski Functionals (MF) play a crucial role in integral geometry and analyzes spatial 

structure of a surface. Minkowski functions compute geometrically oriented features from 

2-D images and provide a morphological assessment and descriptor of a ROI. There are 

three primary functions for a 2-D image that can be computed using MF: area, contour 

length and Euler characteristics. On a graph of connected dots where the lines does not 

intersect Euler characteristics is V-E+F=2. In this theory, V is the number of vertices (dots), 

E is the number of Edges (connections) and F is the number of regions (faces). For instance, 

with Euler characteristics one can distinguish a circle from a donut shape disk, where the 

first image has a hole and the other does not. In this section, computational analysis of MF 

is demonstrated. Appendix II provides more theoretical information121,122,123. 

MF can be used as texture features in medical image analysis for the segmentation and 

detection of pathology. These features are motion (translation and rotation) invariant, 

continuous and additive, however, spatial heterogeneity of structures cannot be assessed 

because two different images can have the same Functional values. Although such 

geometric quantification has the above drawback, it is a useful analytical tool for selected 

ROI’s where shape detection is crucial. The differences between reticulation versus 

honeycombing and emphysema versus cyst are well detected using these features123.  
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Figure 3.20 Measuring perimeter of a polygon with Minkowski Functionals 

Calculating these features based on MF is not trivial. For instance, measuring the perimeter 

according to Figure 3.20 is not simply counting the number of pixels. It is based on the 

configuration of the pattern as well. Connected components in binary image also add up to 

the complexity of this type of measurement. A polygonal reconstruction is analysed by 

measuring perimeter through joining adjacent pixels and calculating the total length of 

edges. The perimeter of this disk is the perimeter of the square with the same diameter 

which may have up to 25% error. 

To compute MF features121,122, image is binarized and partitioned into overlapping patches 

of size 2 × 2 and then histograms are measured. Matrices below are patch possibilities, i.e. 

4 adjacent pixels are all zeros, or ones, or one of them is 1 and so on; using local binary 

patterns. Different neighbourhood possibilities are shown with 𝑄𝑥, 𝑥 = 1,2,3,4⁡𝑎𝑛𝑑⁡𝐷. 

𝑄0 = [
0 0
0 0

] , 𝑄1 = [
1 0
0 0

] , 𝑄2 = [
1 1
0 0

] , 𝑄3 = [
1 1
1 0

] , 𝑄4 = [
1 1
1 1

] , 𝑄𝐷 = [
1 0
0 1

]. 

To find the area of a particular object which has texture differences, using above patches, 

one can identify active pixels in a 2x2 neighbourhood based on below assessment 
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𝐴𝑟𝑒𝑎 =
𝑄1+2𝑄2+2𝑄𝐷+3𝑄3+4𝑄4

4
. 

In above formulas, 𝑄1 could have 3 more similar patches with 1 in each corner; 1 

representing an active pixel in the binarized image. The reason for the coefficients beside 

the number of tiles is the number of active pixels. For instance to measure the area, 𝑄2 has 

a coefficient 2, meaning that if such patch is found, there were 2 pixels involved which 

should be added in the assessment. And the reason for division by zero for area is to take 

overlapping tiles into account.  

MF count the number of active contours using above patches based on below formula 

𝐶𝑜𝑛𝑡𝑜𝑢𝑟⁡𝐿𝑒𝑛𝑔𝑡ℎ = 𝑄1 + 𝑄2 + 2𝑄𝐷 +𝑄3 

The number of active contour length for all patches is 1, however, 𝑄𝐷 has two, therefore a 

coefficient is used in above formula.  

 

As mentioned earlier, MF are biased. The reason is because of the process of transforming 

images to binary. The biased estimate of area and contour length is more obvious when a 

shape is discretized on a continuance shape like a circle on a grid. 

 To make these calculations less bias we use below formulas121,122:  

𝐴𝑟𝑒𝑎 =
1

8
𝑄1 +

1

4
𝑄2 +

1

4
𝑄𝐷 +

7

8
𝑄3 +𝑄4 

𝐶𝑜𝑛𝑡𝑜𝑢𝑟⁡𝐿𝑒𝑛𝑔𝑡ℎ = 𝑄2 +
1

√2
(𝑄1 + 2𝑄𝐷 + 𝑄3). 

Euler characteristics is a connectivity measurement based on the difference of connected 

components and the number of holes (faces). Non-overlapping vertices, edges and 
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polygonal faces will be reconstructed and approximated based on different types of 

connectivity; 4-neighbours and 8-neighbours. Euler characteristic is 

𝐸 =
1

2𝜋
∫ 𝑘(𝑥)𝑑𝑥 

where 𝑘(𝑥) is the curvature. Convex polygonal reconstruction is based on 4 adjacency in 

2D images which only takes horizontal and vertical neighbours. These cells are either a 

vertex, edge or a face, parallel to the direction of the grid. In Figure 3.21, a 3x3 

neighbourhood of pixels is presented which is decomposed into tiles that are also presented 

in this figure. The numbers on the edges and vertices, demonstrate the number of tiles they 

belong to. For instance, the central pixel belongs to four tiles. 

 

Figure 3.21 i) pixel neighbourhood of 3x3, ii) 4 tiles of 2x2 

And Euler characteristics can be derived based on 4 or 8 neighbourhoods. The formulas are 

both biased, but in different directions, so it makes sense to take the average of the two 

𝑥(4) =
𝑄1 + 2𝑄𝐷 − 𝑄3

4
 

𝑥(8) =
𝑄1−2𝑄𝐷−𝑄3

4
. 

Less biased version of Euler characteristics would be 

𝑥 =
𝑄1−𝑄3

4
. 
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𝑄1 is the number of single pixels in 4 or 8 neighbourhoods, which contributes to the 

calculation of the number of pixels for an edge. 𝑄2 is also similar, but in the diagonal 

direction. However, we are not looking for X shape edge in either of our DLD patterns. It 

will make sense to add the pixels on diagonal when the neighbourhood is tight, but with 8 

pixel neighbourhood it distracts the shape detection process towards a meaningless pattern. 

Omitting this patch from the final, less biased, version of Euler characteristics is for that 

reason. 𝑄3 Counts the number of vertices, or connective points in the binarized image, 

which is decremented from the number of faces and edges in Euler formula E-V+F. 

As an example, MF is calculated on CT image of the lung detected with honeycombing 

pattern in figure 3.22.  

 

Figure 3.22 the selected areas on the lower lobe of both lungs show honeycombing 

Figure 3.23 is a ROI taken from left lower lobe of the lung in figure 3.22. Area, contour 

length and Euler characteristic are calculated for this ROI.  
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Figure 3.23 Honey combing ROI from a lower lobe left lung 

First, the ROI is binarized to be able to assess MF. The binarization process is based on 

pixel value thresholding. To decide on the threshold, the mean gray level value is computed, 

which is 104 for this ROI. Second, one calculates the threshold based on 27% of the mean 

GLV which is evaluated experimentally. The binarized image is shown in figure 3.24. 

 

Figure 3.24 Binarized version of a honeycombing ROI 

Now, based on the patches described earlier (𝑄0, 𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄𝐷) area, contour length 

and Euler characteristics are evaluated. 

III. Processing of Labelled CT Image Data and Training of the ANN   

Pattern classification being the central theme of this thesis, algorithms for characterizing 

texture in ROIs from CT images of the lung were set up using features described in chapter 
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2. The ROIs were selected from each image. The number of classes affects the classification 

accuracy of any classifier. Ideally, features should be uncorrelated and information overlap 

between features is minimal. Large number of ROI’s (in several hundreds) are needed for 

any classification project. For the backpropagation algorithm, presence of a large number 

of data points will sharpen and enhance class boundaries.  

Classifiers based on support vector machine (SVM) and K-nearest neighbour algorithm are 

often used in CT image classification problems, especially those of DLD patterns. 

However, because they use distance functions to make a linear/non-linear relationships 

between data, classification accuracy is affected in a negative way; especially when the 

data set is as large as the one described in this thesis, especially with eleven classes 

involved. On the other hand, ANN is not limited to heterogeneity (it can have different 

scales), it can handle large amount of data with its underlying non-linear assessment of the 

relationships and it has shown higher performance with larger number of outputs (number 

of classes). For more information on ANN, SVM and k-Nearest, refer to Appendix III.   

Training an ANN based on back-propagation technique requires several thousands of 

iterations so that class boundaries are adequately formed. There were 229 patients in the 

data sets whose CT images were available for analysis. From these images a total number 

of 1165 ROIs were extracted, which means, multiple ROI were extracted from each 

patient’s data. The ANN was trained based on 1165 ROI’s which approximately ran 

through 12550 iterations for training each combination of classes, with 1 hidden layer and 

10 neurons.  
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Class No. of Patients No. of ROI’s 

Consolidation 19 112 

Emphysema 27 150 

GGO 42 230 

Honey Combing 32 141 

Cyst 18 82 

Fibrosis 16 38 

Nodularity 21 173 

Reticulation 16 45 

Scar 11 25 

Tree-in-bud 7 19 

Healthy 20 150 

Total 229 1165 

Table 3.1 Number of patients and ROI’s per class  

The ANN inputs are vectors of the size equal to the number of features extracted based on 

the methods described in each chapter and the output neurons are defined based on 10 DLD 

patterns and an output neuron specifically for healthy ROI’s. Individual number of patients 

and ROI’s for each pathology is listed in the Table 3.1. 

Number of extracted features for each texture method are as follows: Tamura = 3; CLBP = 

13; GLCM = 13; Haralick = 13; Gabor = 3; MF = 3. 
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Classification accuracy, specificity and sensitivities of texture methods and their 

combinations are provided for all features in chapter 3. Classification results in Chapter 3, 

4 and 5 are based on leave-one-out method, and chapter 6 provides an additional validation 

method namely using 5-fold, to conclude the classification results obtained in the research 

presented in this thesis. 

At the end of chapters 3, 4, 5 and 6 classification accuracy is presented through several 

tables with a format shown in Table 3.2. 

Abnormality 

GGO 

A1 

A2 

A3 

A7 
 

A12 

Consolidation A13 

Scar 

A8 

A14 

Cyst 
A4 

A11 

A15 

Emphysema A16 

Reticulation 

A22 

A5 

A9 
 A17 

HoneyCombing 
A10 

A18 

Fibrosis  A19 

Nodularity 
A6   

A20 

Tree in bud A21 

Table 3.2 An example of ANN average classification accuracy for any general feature 

The right most column (A12-A21) demonstrates average percentage classification accuracy 

for each DLD compared to a healthy lung. For instance A12 is percentage classification 

accuracy when comparing GGO (row 1) with healthy lung.  The A13 is the percentage 

classification when healthy lung is compared to consolidation pathology. The A14 is the 

percentage classification accuracy when healthy lung is compared to scars. In the next 

column of the table, A11 is classification accuracy of cyst, emphysema, reticulation, honey 

combing, fibrosis and healthy lung. A2 is classification accuracy of the first five patterns 
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and healthy lung. A3 is the classification accuracy of GGO, consolidation, scar and healthy 

lung. A1 is classification accuracy when all 10 patterns and healthy lung that were trained 

on ANN and classified based on leave-one-out  (chapters 3, 4 and 5) or 5-fold cross methods 

(chapter 6). Classification accuracy could not be presented for every combination of lung 

diseases studied in this thesis and therefore, classification accuracies are provided for 

interesting combination of pathologies. A similar table is presented in each of the 

subsequent chapters. 

IV. Classification Accuracy of Feature Sets Derived From Various Texture 

Analysis Methods 

Tables 3.3 to 3.15 present results of comparing classification accuracy based on all texture 

features described thus far for each disease and their combinations. Although not 

mentioned, but it is implicit that, every column, either with one or more rows, considers 

classification accuracy for at least one DLD pattern and normal healthy lung ROI.  

CT images of patients with DLD diseases have rich-characteristic patterns which differ 

from each other. However, a single feature extraction method is unlikely to yield the best 

set of features. In order to have an array of features which are rich with information, 

multiple feature generation methods have been incorporated in this thesis. It is also 

anticipated that a combination of these features will increase the accuracy of classification. 

 Table 3.3 demonstrates the classification accuracy based on leave-one-out method using 

only coarseness feature of Tamura. Coarseness is a well-defined feature for analysing most 

of the DLD patterns, but these pathologies are very complex for only one feature to produce 

high classification accuracy. Some of the patterns such as fibrosis, reticulation and 
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honeycombing are classified with a higher accuracy because inherent disease process have 

higher effect on the coarseness of the image. The reason classification accuracy of 

reticulation is higher than fibrosis and honeycombing is because, coarseness cannot identify 

the circular patterns of honeycombing pathology. Table 3.3 shows that scar is not well 

recognized by Tamura coarseness feature and yields the least classification accuracy at 37% 

while reticulation has the highest result at 67.4%.  

 

Abnormality 

GGO 

26.3% 

35% 

44% 
48% 

 

58% 

Consolidation 49.2% 

Scar 

51% 

37% 

Cyst 
60% 

46% 

65.1% 

Emphysema 59% 

Reticulation 

34% 

57% 
56% 

 67.4% 

HoneyCombing 
57% 

66.3% 

Fibrosis  66.9% 

Nodularity 
53%   

64.2% 

Tree in bud 53.7% 

Table 3.3 ANN average classification accuracy based on coarseness, Tamura texture method 

 

Table 3.4 demonstrates classification accuracy of another Tamura feature Contrast. 

Contrast has lower classification accuracy compared to coarseness. However, the highest 

and lowest accuracies belong to the same classes (reticulation and scar) with this feature as 

well. 
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Abnormality 

GGO 

22.2% 

31% 

41.3% 
46.5% 

 

55.2% 

Consolidation 47.1% 

Scar 

48.8% 

36.3% 

Cyst 
55.1% 

44.2% 

59.9% 

Emphysema 56.1% 

Reticulation 

30% 

56.2% 
55.9% 

 64.8% 

HoneyCombing 
56.1% 

63% 

Fibrosis  63.6% 

Nodularity 
52%   

60% 

Tree in bud 50.4% 

Table 3.4 ANN average classification accuracy based on Tamura’s contrast feature 

Table 3.5 shows classification accuracy of Tamura-directionality feature. The accuracy of 

this feature is lower than coarseness and contrast. The classification accuracy of eleven 

classes with directionality is 19.1% which is 7.2% and 3.1% less compared to coarseness 

and contrast features of Tamura, respectively. 

 

Abnormality 

GGO 

19.1% 

23% 

37.6% 
43% 

 

46.7% 

Consolidation 47.3% 

Scar 

39.25% 

27.2% 

Cyst 
51% 

39.3% 

 

49% 

Emphysema 50.2% 

Reticulation 

25% 

46.8% 
49% 

 56.2% 

HoneyCombing 
49.6% 

55% 

Fibrosis  56.6% 

Nodularity 
41.5%   

41% 

Tree in bud 44% 

Table 3.5 ANN average classification accuracy based on directionality, Tamura texture method 
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Abnormality 

GGO 

27.8% 

42% 

55% 
70.98% 

 

80.45% 

Consolidation 81% 

Scar 

59.6% 

72.3% 

Cyst 
61% 

41% 

78% 

Emphysema 79% 

Reticulation 

37% 

46.7% 
62.2% 

 80% 

HoneyCombing 
63% 

80.2% 

Fibrosis  80.25% 

Nodularity 
49.75%   

72.9% 

Tree in bud 71.1% 

Table 3.6 ANN average classification accuracy based on all three Tamura texture features shows 

better results compared to when only one of the features were used 

 

The combination of Tamura features demonstrated in table 3.6 shows an increase in 

classification accuracy of any number of pathological patterns. The highest accuracy 

classification accuracy pertains to images from patients with consolidation pathology 

(81%) and the lowest classification accuracy belongs to images from patients with scar at 

72%. 

 

Table 3.7 demonstrates classification accuracy of CLBP using ANN. The classification 

accuracies of each combination of classes is comparable to individual Tamura features. But 

the combination of Tamura features provides a higher classification accuracy. The lowest 

accuracy when classifying two classes with all Tamura features is 71.1%. However, for the 

same class (Tree in Bud), CLBP’s accuracy is 59%, and the lowest accuracy belongs to 

scar with 38.9%. 
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Abnormality 

GGO 

22% 

29% 

39% 
44% 

 

56.3% 

Consolidation 46.8% 

Scar 

43.5% 

38.9% 

Cyst 
49% 

39.4% 

59% 

Emphysema 61.3% 

Reticulation 

31% 

40.8% 
58% 

 62.8% 

HoneyCombing 
54.9% 

63% 

Fibrosis  63.8% 

Nodularity 
44%   

68.8% 

Tree in bud 59% 

Table 3.7 ANN average classification accuracy based on Compound Local Binary Pattern (CLBP) 

algorithm 

Table 3.8 shows classification accuracy of GLCM features. The accuracy of this method is 

higher than GLCM, but slightly lower than combined Tamura features. When classifying 

eleven classes, GLCM’s accuracy is 1.6% higher than CLBP, and 4.2% less than Tamura. 

The lowest classification accuracies with this method belong to tree in bud and scar with 

about 67%. 

Abnormality 

GGO 

23.6% 

38% 

53% 
68% 

 

72.3% 

Consolidation 73.1% 

Scar 

57% 

67.7% 

Cyst 
58% 

37% 

74.2% 

Emphysema 75.9% 

Reticulation 

35% 

44% 
58% 

 72.8% 

HoneyCombing 
60% 

76% 

Fibrosis  74% 

Nodularity 
47%   

71% 

Tree in bud 67% 

Table 3.8 ANN average classification accuracy based on Gray Level Co-Occurrence Matrix 

(GLCM) shows better results compared to single Tamura features 
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Table 3.9 demonstrates classification accuracies of different combination of classes using 

all Haralick features. The results shows the highest accuracy among all other features, with 

any number of classes involved. The classification of eleven classes is 2% higher than 

Tamura features. 

Abnormality 

GGO 

29.8% 

44% 

57% 
72.98% 

 

82.45% 

Consolidation 83% 

Scar 

60.6% 

74.3% 

Cyst 
63% 

44% 

80% 

Emphysema 81% 

Reticulation 

39% 

48.7% 
64.2% 

 81.3% 

HoneyCombing 
65% 

81% 

Fibrosis  80% 

Nodularity 
51.75%   

74.9% 

Tree in bud 73.1% 

Table 3.9 ANN average classification accuracy based on all thirteen Haralick texture features 

shows highest classification compared to all other methods 

Tables 3.10 to 3.11, demonstrate individual classification accuracies of each Gabor filter 

features (IFFT, energy and transformed IFFT). Table 3.12 shows the classification results 

when all these features are combined. As experienced with Haralick and Tamura, it is 

expected that their combination will increase the accuracy. 

Abnormality 

GGO 

17.5% 

24% 

34.6% 
40% 

 

48% 

Consolidation 40.4% 

Scar 

35% 

30.9% 

Cyst 
36% 

26% 

56% 

Emphysema 53.2% 

Reticulation 
22% 35% 48.7% 

 58.7% 

HoneyCombing 40.9% 58.8% 
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Fibrosis  58.1% 

Nodularity 
40%   

53.3% 

Tree in bud 44% 

Table 3.10 ANN average classification accuracy based on IFFT, Gabor filter method 

 

Abnormality 

GGO 

15.7% 

22% 

31% 
37% 

 

45% 

Consolidation 37.6% 

Scar 

32% 

28% 

Cyst 
33% 

23% 

51.6% 

Emphysema 48.9% 

Reticulation 

21% 

34% 
43% 

 52.4% 

HoneyCombing 
37% 

51.2% 

Fibrosis  51.9% 

Nodularity 
35%   

50.2% 

Tree in bud 42.4% 

Table 3.11 ANN classification accuracy based on texture energy feature using Gabor filter 

 

Abnormality 

GGO 

18.9% 

27% 

37% 
41% 

 

50.2% 

Consolidation 43% 

Scar 

38% 

34.4% 

Cyst 
40% 

28.2% 

57% 

Emphysema 53.9% 

Reticulation 

26% 

39% 
50% 

 59.8% 

HoneyCombing 
47% 

60.3% 

Fibrosis  60.1% 

Nodularity 
45%   

56% 

Tree in bud 49.4% 

Table 3.12 ANN average classification accuracy based on transformed IFFT, Gabor filter method 

Table 3.13 shows the classification accuracy of IFFT, energy and transformed IFFT 

features based on Gabor filter and validated based on leave-one-out method. The 
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combination of these features has higher classification accuracy than any individual Gabor 

features. 

Abnormality 

GGO 

26.3% 

37% 

48% 
50% 

 

59.9% 

Consolidation 57.6% 

Scar 

44% 

49.8% 

Cyst 
50% 

39% 

65.2% 

Emphysema 64.6% 

Reticulation 

39% 

47% 
56% 

 70.4% 

HoneyCombing 
57% 

72% 

Fibrosis  69.9% 

Nodularity 
52%   

60.7% 

Tree in bud 55% 

Table 3.13 ANN average classification accuracy based on all three Gabor filter texture features 

shows higher classification results than when only one of the feature was used 

Table 3.14 demonstrates classification results based on the MF described in this chapter. 

The highest classification accuracy for two classes using MF is 51.1%. the lowest rests are 

associated with scar and consolidation. 

Abnormality 

GGO 

14.2% 

20.7% 

29% 
35% 

 

44.2% 

Consolidation 36.9% 

Scar 

31.8% 

26.4% 

Cyst 
32% 

29% 

44.2% 

Emphysema 50.9% 

Reticulation 

19.8% 

33% 
41% 

 51.1% 

HoneyCombing 
35% 

49.9% 

Fibrosis  48% 

Nodularity 
34%   

49.3% 

Tree in bud 41% 

Table 3.14 ANN average classification accuracy based on Minkowski’s geometric Functionals 
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Abnormality 

GGO 

61.9% 

77.6% 

90.5% 
93.3% 

 

98.2% 

Consolidation 99.1% 

Scar 

90.2% 

96.1% 

Cyst 
93.1% 

83.7% 

97.8% 

Emphysema 98.2% 

Reticulation 

74% 

94% 
95% 

 99.9% 

HoneyCombing 
91% 

99.9% 

Fibrosis  99.9% 

Nodularity 
92.9%   

94% 

Tree in bud 96.5% 

Table 3.15 ANN average classification accuracy based on all texture features 

All texture features demonstrated in this chapter are combined in table 3.15 to show average 

classification accuracy based on different combination of irregularities. Training with a set 

of uncorrelated well descriptive features results in higher accuracy. Especially when 

number of classes is higher. The effect of feature combination is more vivid. Classification 

accuracies approach a 100% for most classes when compared to healthy lung; except tree 

in bud, nodularity, scar and cyst; which are still over 94%. The reason these classes showed 

lower accuracy is because of the lower number of ROI’s available for classification. And 

in the case of nodularity, the complexity of differentiating between nodules and blood 

vessels with texture methods may have resulted a lower accuracy. To be able to compare 

blood vessels with nodules, the algorithm must be able to trace the location of the ROI 

among the higher and lower cross sectional images of the long. If there is a continuity, the 

bright spot is due to a vessel. The methods presented in this thesis has focused on feature 

extraction rather than segmentation. 
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V. Results 

Figure 3.25 shows classification accuracies for multiple texture features. The classification 

accuracy drops when the number of classes increases irrespective of features used. Features 

with the least accuracy at the time of classifying only two classes, had the lowest accuracy 

among other features when more classes were involved. 
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57

72.4

78.9

62

43.8

98

62

51
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52.5

35

92.7

51

36

51
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45.5

31.5

91

34

27

31

35
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67.5

27.8
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23.6

29.8

26.3

14.2

61.9
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Figure 3.25 Comparison of classification accuracy 
for different sets of features and combination of 

Diffuse Lung Disease patterns
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According to this bar graph, Haralick features are the most useful statistical descriptors of 

all features, resulting in an accuracy of 78.9% for two classes and 63% for three classes. 

Results based on Tamura features are closely behind at 77% and 62 percent for two and 

three classes respectively. The accuracy drops below 50% especially when more than four 

classes are present in each method. The least descriptive of all features is due to Minkowski 

functionals.  

The order of the highest to lowest accuracies for texture features are as follows: Haralick, 

Tamura, GLCM, Gabor, CLBP and MF. The accuracies for any number of classes is higher 

with the strongest features, however, with 7 classes. Both Tamura and Gabor had the same 

accuracy of 34% with 4 classes. Also Tamura and GLCM had the same average accuracy 

of 51%. 

When all features are combined the highest accuracy of classification is achieved (98% for 

two classes, 92% for three and 61.9% for eleven classes).  

The specificity and sensitivity of all texture features in the presence of two, three and eleven 

classes were evaluated and results are demonstrated in Table 3.16. 

Validation Two classes Three Classes Eleven classes 

Specificity 97.95% 90% 78.9% 

Sensitivity 98% 94% 71.6% 

Table 3.16 Specificity and sensitivity of all Texture features based on 2, 3 and 11 classes 

Although classes were known so far in analysis provided above and leave-one-out method 

was used to evaluate the accuracy, chapter 6 will demonstrates analysis based 5-fold 

validation. 
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VI. Chapter Summary 

This chapter provide a detailed description and formulae developed by Tamura, CBLP, 

GLCM, Haralick, Gabor and Minkowski Functionals to investigate and extract features 

from DLD patterns of CT images of the lung. The process of extracting these features has 

been illustrated using several sample CT images. Values extracted based on each method 

are listed and compared with a number of different patterns. Training and classification 

accuracies using a combination of features classified through ANN are presented. 

Classification accuracies are presented for ten different pathologies/classes using ANN 

based on texture features and several combinations. Accuracies, specificity and sensitivity 

are also provided based on the combination of these features. Our results show that the 

accuracy increases when all texture features are combined for any number of classes. 

To conclude, combined texture features yield the highest accuracy of classification and 

Minkowski Functionals yields the lowest classification accuracy. Features based on 

Haralick, Tamura and GLCM descriptors have proven to be most effective features. The 

classification accuracy is reduced when the number of classes increases. These results are 

similar to the state-of-the art when comparing up to 6 classes. In addition, texture features 

of various kinds permit classification of 10 disease categories, with normal image data from 

healthy adults being a separate class. 
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CHAPTER 4  

CLASSIFICATION OF CT IMAGES OF THE LUNG USING 

FRACTIONAL DIMENSIONAL ANALYSIS 
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I. Introduction 

In chapter 2, a descriptive approach to fractal analysis has been provided. In practice, many 

types of biomedical images are generated due to self-similar structures, and fractal analysis 

can characterise such images. In order to obtain relevant features from fractal analysis, a 

mathematical and theoretical framework is presented in this chapter. 

Statistical texture analysis of CT images of the lung characterizes the gray level distribution 

within the images, quite well. However, fractal based image processing has proved to be 

useful in advancing the field of automated image analysis. In this chapter fractal 

dimensional analysis is performed based on three methods and their extracted features will 

be added to texture features discussed in the previous chapter. Since fractal information 

about an image is not necessarily correlated with statistical nature of the image, it could 

improve the classification results. 

II. Mathematical preliminaries 

To have a better description of dimension, consider a line with a unit length, according to 

figure 4.1. If it gets tripled, its size becomes 31 = 3. For a square with the same length size, 

tripling it, will result in a bigger square; 32 = 9. Tripling a cube generates a cube with 

square size 33 = 27. This pattern satisfies 𝑋 = 𝐴𝑑, where X is the number of objects, A is 

the scaling factor and d is the dimension125. 

The resulting shapes are similar in these cases but when changing the scale of a circle or 

cone, the shape would have been different because one cannot make a bigger circle that is 

made up of circles. 
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A = 3 

 

A = 3 

 

 

A = 2.5 

 

 

Figure 4.1 The line and the first square are made up of scales equal to 3 and the last square’s 

scaling factor is 2.5 

Dimension remained an integer, but what if 𝑑 =
log𝑥

log𝐴
  in the above equation was not an 

integer? Koch’s snowflakes125 are examples of a figure with a non-integer dimension. 

Beginning with an equilateral triangle, and adding an equilateral triangle to each side of it 

to make a length of 4/3, we will end up with a shape depicted below that has an infinite 

boundary length, and an area of 
√3

4
+

√3

4
(
1

3
+

4

33
+

42

35
+⋯) = 2√3/5. 

 

Figure 4.2 Koch’s snowflakes 

Since the length of each side is increasing by 4/3 that means we get four components (X=4) 

and the scaling factor is A=3, which results125 in 𝑑 =
𝑙𝑜𝑔4

𝑙𝑜𝑔3
= 1.26. Objects with fractional 

dimensions were first named as fractals by Mandelbrot126,127,128. Mandelbrot introduced the 

concept of a fractional dimension that increased the complexity of the process which 
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produced the image. Such complexity, he argued, is due to endless repetition or self-

similarity127. Subsequently, the term 'fractals' was assigned to objects, including images 

that are produced by endless self-similarity. When the surface or the image has a rough 

surface resulting in rich texture, the FD is higher too.  

With fractals one can measure natural shapes and make calculations that can be applied to 

any form such as a waveform or an image. We can get microscopic information out of 

medical images using fractal dimensions, without having a detailed human visual 

representation. Fractal dimensions have proven to be helpful in order to extract useful 

information from medical images129,130,131,132. 

Adding a third dimension to a 2D image by elevating the surface based on pixel intensity, 

one can analyse a rugged surface that is well described by Mandelbrot’s fractal dimension 

of natural images. Fractional Brownian motion (fBm) model has been often use to generate 

a fractal description of the intensive variations. In this section properties of fractional 

Brownian motion and how they lead to computation of the dimension are described. Much 

of the information provided below is given in greater detail by Mandelbrot127. 

Consider fBm as a Gaussian process, 𝐵𝐻 = {𝐵𝑡
𝐻, 𝑡 ≥ 0} that is self-similar and has 

stationary increments based on Hurst index,  𝐻𝜖(0,1); with mean zero and covariance 

function given by: 

 

𝔼(𝐵𝑡
𝐻𝐵𝑠

𝐻) = 𝑅𝐻(𝑡, 𝑠) =
1

2
(𝑆2𝐻 + 𝑡2𝐻 − |𝑡 − 𝑠|2𝐻). 
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Self-similarity is described by the same probability distribution of any constant 𝛼 > 0 in 

{𝛼−𝐻𝐵𝛼𝑡
𝐻 , 𝑡 ≥ 0} and {𝐵𝑡

𝐻, 𝑡 ≥ 0}.  The covariance function with the increment of the 

process between [𝑠, 𝑡] has normal distribution with zero mean and variance 

𝔼((𝐵𝑡
𝐻−𝐵𝑠

𝐻)2) = |𝑡 − 𝑠|2𝐻. 

So stationary increments for any 𝑘 ≥ 1, 𝑘𝜖ℕ is given by127: 

𝔼((𝐵𝑡
𝐻 − 𝐵𝑠

𝐻)2𝑘) =
(2𝑘)!

𝑘!2𝑘
|𝑡 − 𝑠|2𝐻𝑘. 

The fractal dimension, scaling, power spectrum, area and intensity differences are closely 

related. 

When an object can at least be captured in n dimensions, where 𝑛⁡𝜖ℕ, 𝑁(ɛ) is the number 

of n-dimensional spheres that capture the object with diameter of ɛ, one would have a 

Hausdorff dimension  given by D; if 𝑁(ɛ) = (
1

ɛ
)
𝐷

, ɛ → 0. If D is fractional, then it is a 

fractal dimension. 

A normalized Brownian feature vector was used for classification, demonstrating intensity 

differences at different scales and to detect edges, images were transformed by calculating 

fractal dimension127,133. 

Although the fractional dimension of two images could be the same but obviously their 

textures could be different. Lacunarity of the FD, calculates the amount of space fractals 

fill. Inhomogeneous images and coarse fractals have higher lacunarity while dense fractals 

have a lower one. 

Among many fractal dimension methods, segmented based fractal texture analysis (SFTA), 

box counting and semi-variance FD features are often used in the literature along with 
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texture quantification for higher accuracy results134. The section below demonstrates these 

methods in detail on several DLD patterns and the classification results are discussed. The 

combination of these fractal features and texture features presented in chapter 3 are 

demonstrated in detail to show classification accuracy enhancement. 

A. Segmentation-based Fractal Texture Analysis 

In this section, feature extraction based on segmentation and fractal texture analysis is 

demonstrated134. First one computes a set of thresholds from Otsu’s algorithm which take 

a thresholding range into account as demonstrated in figure below. Otsu’s algorithm 

chooses the threshold to minimize the intraclass variance of the thresholded pixels134. 

 

Figure 4.3 A ROI identified with honey combing and Otsu’s thresholding ranges 

Then we decompose the image into a set of binary images by choosing a pair of thresholds 

and incorporate 2-threshold segmentation 

𝐼𝑏𝑖𝑛(𝑥, 𝑦) = {
1⁡𝑖𝑓⁡𝑀𝑖𝑛{𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} < 𝐼(𝑥, 𝑦) < 𝑀𝑎𝑥{𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}

0⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Figure 4.4 Image binarization based on Otsu’s thresholds 

The number of these binary images would be twice the maximum gray level value of the 

image. Based on the binary images, a feature vector of image size, mean GLV and fractal 

dimension is computed.  

 

Figure 4.5 Segmented borders are used for FD calculation based on box counting 
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The fractal dimension for region boundaries is calculated as 

∆(𝑥, 𝑦) = {
1⁡𝑖𝑓⁡∃(𝑥′, 𝑦′) ∈ 𝑁8[(𝑥, 𝑦)]: 𝐼𝑏(𝑥

′, 𝑦′) = 0⁡𝑎𝑛𝑑⁡𝐼𝑏(𝑥, 𝑦) = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑁8 is the set of neighbouring pixels in vertical, horizontal and diagonal directions 

of pixel (𝑥, 𝑦). ∆(𝑥, 𝑦) will be 1, if the pixel in corresponding binary image is 1 and has at 

least one neighbour with value 0. FD is calculated based on box counting technique with 

border length of one pixel.  

B. Box Counting Algorithm 

The box counting algorithm, often known as brute force method is useful in analyzing FD 

of natural shapes where repetitive pattern is not clearly seen. It has a good analytical record 

for calculating fractal dimension when the resolution is low, by capturing the object in 

squares129,130,132.  

To calculate FD of an image, one sets up grids of two different sizes and the comparison 

of the different number of boxes containing each grid would result in dimension 

assessment. 

𝐹𝐷𝑏𝑐

=
log(𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑏𝑜𝑥𝑒𝑠⁡𝑤ℎ𝑒𝑟𝑒⁡𝑝𝑖𝑥𝑒𝑙𝑠⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑝𝑎𝑡𝑡𝑒𝑟𝑛⁡𝑖𝑠⁡𝑝𝑟𝑒𝑠𝑒𝑛𝑡⁡𝑖𝑛𝑠𝑖𝑑𝑒⁡𝑡ℎ𝑒𝑚)

log (
1

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑏𝑜𝑥𝑒𝑠⁡𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑⁡𝑤𝑖𝑡ℎ𝑖𝑛⁡𝑡ℎ𝑒⁡𝑔𝑟𝑖𝑑𝑒
)
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Figure 4.6 Dividing the number of contained Grids results in FD 

Grid size is 1000 multiplied by, the size of ROI in the vertical and horizontal directions. 

The smaller the boxes, the shape associated with the pattern is better detected.  

C. Fractal Dimension Semi Variance Feature extraction Technique 

Fractal dimensions can be a directionality descriptor when it is assessed in both vertical 

and horizontal directions with semi variance method. A semi variance algorithm is 

incorporated in horizontal and vertical directions to define the summation of pixel values 

in a specific displacement in each direction. The fractal dimension is evaluated as linear 

slope of the plots of the 𝑙𝑜𝑔 of semi variance as a function of displacement. 

𝑓𝑥 = log (
1

2𝑛(ℎ)
)∑(𝑝(𝑥𝑖 + ℎ) − 𝑝(𝑥𝑖))

2

𝑛(ℎ)

𝑖=1

 

Where 𝑛(ℎ) is the number of paired data at distance ℎ which are 5 pixels in our case; 

𝑝(𝑥𝑖 + ℎ) − 𝑝(𝑥𝑖) is pixel value displacement.  
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Figure 4.7 demonstrate FD semi variance feature values in horizontal and vertical directions 

for two sets of honey combing, consolidation, emphysema and GGO for comparison. The 

range for these values are very close to each other, therefore when these features are used 

alone, classification accuracy would be very low. However, it will be shown at the end of 

this chapter that the combination of these features with texture quantification will 

demonstrate an increase in classification accuracy. 

 

Figure 4.7 Horizontal (H:) and vertical (V:) FDSV results on two pairs of honeycombing, 

consolidation, emphysema and GGO 
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III. Accuracy of Classification of CT Image of The Lung Based on Fractal 

Features 

Fractal dimension plays a noticeable role in lung quantification and classification. Since 

fractal parameters are obtained from a computation which is vastly different from that of 

statistics of the region of interest and are independent set of features. Theoretically, fractals 

are calculated for a pattern that has unlimited number of repetitions. But in medical images, 

such is not the case since every measure from pixel count to gray level values are finite, 

including the repeated structure within the image. However, these features are helpful in 

increasing classification accuracy when the number of classes grow, as documented below. 

From tables 4.1 to 4.5, one can find out the effectiveness of these features when comparing 

a diffuse lung disease pattern with a healthy lung and also when we compare them with a 

bigger number of classes.  

The number of patients, ROI, diseases and ANN setup are the same, as in Chapter 3. The 

feature vector size of fractal dimension analysis is 29; box counting produces 3 features, 

SFTA (segmented based fractal texture analysis) generates 24 features and FD Semi-

variance results in 2 features. 

Tables 4.1 to 4.5 demonstrate classification accuracy based on the features derived from 

fractal methods described in this chapter and the validation is based on leave-one-out 

method. The results are compared with the combination of texture features at the end of 

this chapter. 
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Abnormality 

GGO 

12.7% 

21% 

28% 
32% 

 

43.2% 

Consolidation 45.4% 

Scar 

31% 

42.5% 

Cyst 
34% 

36% 

47.7% 

Emphysema 47.4% 

Reticulation 

24% 

37% 
46% 

 52.9% 

HoneyCombing 
47% 

51.3% 

Fibrosis  51.6% 

Nodularity 
35%   

48.2% 

Tree in bud 47.1% 

Table 4.1 ANN average classification accuracy based on SFTA feature analysis 

Abnormality 

GGO 

11.25% 

20.1% 

27% 
30.6% 

 

41% 

Consolidation 44.1% 

Scar 

29% 

41.5% 

Cyst 
32% 

35% 

46.6% 

Emphysema 47.4% 

Reticulation 

23.8% 

35.6% 
45% 

 50.7% 

HoneyCombing 
46% 

51.3% 

Fibrosis  50.5% 

Nodularity 
34.7%   

48.9% 

Tree in bud 47.4% 

Table 4.2 ANN average classification accuracy based on box counting feature analysis 

Abnormality 

GGO 

10.3% 
19% 

27% 
30% 

 

42.9% 

Consolidation 44.3% 

Scar 

28% 

40.5% 

Cyst 
31.5% 

34% 

46.6% 

Emphysema 46.9% 

Reticulation 21% 34% 45%  51.3% 
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HoneyCombing 
45.5% 

50.9% 

Fibrosis  50.7% 

Nodularity 
34%   

47.1% 

Tree in bud 46% 

Table 4.3 ANN classification accuracy based on FD semi-variance analysis 

Abnormality 

GGO 

19.7% 

31% 

39% 
51% 

 

58% 

Consolidation 57% 

Scar 

39% 

51% 

Cyst 
51% 

39% 

58% 

Emphysema 57% 

Reticulation 

33% 

40% 
48% 

 59% 

HoneyCombing 
45% 

51% 

Fibrosis  52% 

Nodularity 
52%   

59% 

Tree in bud 56% 

Table 4.4 ANN classification accuracy based on all Fractal Dimension features in the present 

chapter 

Fractal features are not good descriptors in medical image quantification of the lung 

parenchyma. However a combination of these features provides better classification from 

2-11 classes. The highest classification accuracy when all fractal features were combined 

is 19.7 for eleven classes (table 4.4). These results can be used in conjunction with other 

features, as seen below. 

Although fractal dimensions are not sufficiently descriptive and cannot be used as stand-

alone features for classification of DLD patterns, the next section will present results of 

combining fractal features with texture features, on the classification accuracy. 
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IV. Classification Accuracies of The Combination of Texture and Fractal 

Features  

Table 4.5 demonstrates classification accuracy of all DLD patterns based on the 

combination of texture features described in chapter 3 with fractal dimension feature 

demonstrated in this chapter. Comparing the results with table 3.15 and figure 3.25 one can 

conclude that adding fractal dimension features slightly increases classification accuracy 

of irregular radiological patterns of the lung, especially when the number of classes 

increases. 

Abnormality 

GGO 

62.5% 

77.8% 

91% 
93.9% 

 

99.2% 

Consolidation 99.4% 

Scar 

91% 

97.8% 

Cyst 
94% 

83.9% 

98.3% 

Emphysema 99% 

Reticulation 

74.3% 

94.4% 
95.5% 

 99.9% 

HoneyCombing 
91.7% 

99.9% 

Fibrosis  99.9% 

Nodularity 
93%   

96.3% 

Tree in bud 97% 

Table 4.5 ANN classification accuracy based on all FD and all texture features 

 

Although there is a slight accuracy increase in training the ANN, by combining fractal 

features with texture methods, but this higher accuracy is of interest, especially because the 

increase in accuracy is consistent with higher number of classes, except when considers 11 

classes. 
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V. Results 

Classification results are provided in figure 4.8 based on the combination of features in this 

chapter and all the features in chapter 4, on different number of classes. Since learning 

accuracy has increased based on this merge, classification performance has also taken 

advantage of it. Features generated by fractal analysis alone, are not sufficient to classify 

ROIs from various diseases of the lung. It can be observed that the classification accuracy 

is less than 60% even with two classes. A combination of features from fractal and 

statistical texture analysis increases the accuracy. 
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Figure 4.8 classification accuracy of different 
number of classes based on fractals, all textures 

and the combination of texture and fractal 
features
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Figure 4.8 shows classification accuracy drops when the number of classes increases for 

any combination of methods. According to this bar graph, less than a percent of accuracy 

was added to the classification performance when fractal features were included in the 

quantification. Although such increase in classification accuracy is negligible when 

classification is measured for two or three classes, may be useful in the presence of images 

from 11 classes and when a larger database of patients is available.  

Although FD provides scaled features, it is naturally a shape detector underneath, as per its 

theoretical basis. Fractal analysis is not merely a dimension finding exercise. It has the 

capability of narrowing down the basic structure of the whole picture. For instance, when 

analysing a mountain with fractal methods, one can see the basic shape is similar to a 

triangle, because if one populates the objects with triangles of different sizes and angles 

one arrives at a mountain shaped figure. If one takes the same behaviour on honey combing 

patterns for instance, by segmentation-based fractal analysis using box counting method, 

one can see that all gray level pixels fade away and only the boundaries remain. When a 

grid is applied to the ROI, each square containing a part of that pathological pattern would 

be counted toward box counting analysis. Therefore, boxes that remain for counting, have 

the same formation as the disease pattern. Such characteristics do not look descriptive when 

examined alone, but becomes meaningful when other statistical measures are added for 

training an ANN. It is postulated that such quantification is consistent with image structure, 

resulting in better classification accuracy in the presence of increasing number of classes. 
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One can therefore conclude that, classification of CT images is not feasible using only 

fractal analysis, but when combined with texture features, they may help identify irregular 

patterns of DLD with high accuracy. 

VI. Chapter Summary 

In this chapter, algorithms for segmentation based fractal analysis, box counting and FD 

semi variance method were analysed. These methods were applied to DLD images and 

classification results were analyzed. 

Training and classification accuracy based on features derived from FD analysis 

demonstrated poor results. However, combining them with previously described texture 

features slightly increases classification accuracy from 98% to 98.8% when classifying 2 

classes. The classification accuracy slightly but consistently increased for increasing 

number of classes when features derived from FD analysis were combined with Haralick 

based texture features. 

 

 

 

 

 

 

 

 

 

 

 

 



Mehrdad Alemzadeh, Ph.D. Thesis - McMaster University – Computing and Software 

 

118 
 

CHAPTER 5  

SCALE INVARIANT FEATURE TRANSFORM FOR CLASSIFICATION OF CT IMAGES 

OF THE LUNG 
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I. Introduction 

An important phase of medical image processing is to characterize the image with well-

defined features. In the previous chapters of the thesis, various feature selection and 

classification methodologies were discussed, based on well descriptive texture statistics 

and fractal analysis methods. To be able to identify objects in real world applications, one 

naturally looks for features that are not blocked by the surrounding objects. Not only do 

selected features have to detect unique objects, they preferably have to be invariant to 

illumination and 3D projective transformations. While several thousands of features can be 

extracted from an image, the computational overhead is prohibitive, especially if such 

features do not have distinctive characteristics and do not contribute to the classification 

task in a meaningful way.  

This chapter introduces a unique approach toward extracting features with characteristics 

different in nature from texture and fractal quantification of lung images; this novel 

technique is called scale invariant feature transform (SIFT), which is gaining acceptance as 

a method of feature selection in medical imaging. In the following sections, the specific 

application of SIFT to CT image of the lung containing DLD patterns for classification 

problem is presented. 

II. SIFT Methodology and Algorithm description 

 The scale invariant feature transform, called SIFT in short, was developed by Dr. David 

Lowe62,135. SIFT is a feature selection method that can find interesting points regardless of 

different depth or scale. Since the depth of penetration and resolution varies between 

different optical and/or imaging techniques, SIFT is useful for comparing different images 
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created by different sources of images. SIFT is also rotation invariant. The SIFT method is 

affine to rotation, 3D viewpoint and it is not sensitive to noise or illumination135. SIFT is 

very often used for facial recognition and for identifying objects in different representations 

of a scene (rotated, with noise, different depth and so on)136,137,138,139,140. Furthermore, SIFT 

is a local feature extraction technique implying that one analyzes pixels that are close to 

each other. It is also relevant to mention that with SIFT one does not make a judgment 

based on global features such as a histogram, which incorporates information from all 

pixels within the image. SIFT generates a large number of interesting points and descriptors 

which enables one to detect objects better. SIFT preserves points, straight lines and planes 

since it involves Gaussian operation which is known to preserve transformations, often 

termed as an affine transform. 

In brief, SIFT operations involve following steps135: 

1. Scale space peak selection: potential features are detected 

2. Localizing Key-points: identify Key-point locations, having excluded least 

descriptive points 

3. Assign orientation to each Key-points 

4. Key-point descriptor:  Generate a high dimensional vector describing Key-points 

The SIFT takes advantage of Gaussian transformation to mask a ROI, based on several 

scales (sigma values) on different octaves (image size). Laplacian of Gaussian (LoG) or 

Difference of Gaussian (DoG) is then computed. Based on the zero crossing technique, 

edges are identified. Using an interval tree, stable edges are picked as interesting points. 

Each interesting point is compared with its neighbours, within its scale and the higher and 
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the lower scale. If the interesting point is an extrema, compared to its neighbours, then it is 

chosen as a potential key-point. SIFT does not use edges as key-points, and if the potential 

key-points are on edges, they will be eliminated using Taylor series and the Hessian matrix. 

At this point, key-points are identified which are the features of ROI. SIFT’s strength is in 

having a descriptor for each feature, which is assessed using central derivatives, gradient 

magnitude and directions. The orientation and magnitude are computed for each key-point, 

and the dominant orientation is chosen. Then an eight bin histogram for each 4x4 region 

within 16x16 neighbourhood of the key-point is calculated to generate a 128 vector size 

descriptor or a feature vector. Below diagram demonstrates the steps sequentially.  

 

A. Edge and Corner versus SIFT Interest Point 

Harris detector is one of the well known edge detectors in image processing but lacks the 

specificity of the SIFT, which generates key-points. SIFT generated key-points are based 

on extrema identified through LoG and scale space, while edge detectors only identify a 

key-point which has an outstanding gray level difference with its neighbours, for instance 

in a ROI selected from a CT images of the long.  

Because, SIFT key-points are evaluated in a different way compared to edge and corner 

identification, we first clarify what is meant by edges generated by Harris detector141. 

 Consider the image shown in Figure 5.1. Suppose, one wants to detect the red corner shown 

in Figure 5.1 with Harris detector for instance: 

1.Apply 
Gaussian 
filter with 
different 

Sigma 
values to 

ROI's

2.Compute 
Difference 

of 
Gaussians

3.Identify 
edges based 

on zero 
crossings

4.Find 
potential 

key-points 
with 

Inteerval 
Tree

5.Eliminate 
outliers 

with Taylor 
series and 

Hessian 
Matrix

6.Assign a 
128 vector 

sized 
descriptor 
based on 

orientation
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Figure 5.1. Corner and edge detection based on Harris detector 

Calculating gradient of this image (directional changes in intensity) over the red window 

size in horizontal and vertical directions will result in a corner, if both values are large. If 

one of the horizontal or vertical values is large and the other is small then it is identified as 

an edge. 

∑(𝑔𝑥)
2, ∑(𝑔𝑦)

2
 

𝑔 Represents the image and the sum is over the red area. But if the horizontal or vertical 

gradients are not significant, it can be rotated back to a well pronounced image by using 

Eigen value decomposition 

𝐻 =⁡ [
∑𝑔𝑥

2 ∑𝑔𝑥𝑔𝑦

∑𝑔𝑥𝑔𝑦 ∑𝑔𝑦
2 ]. 

 

This will generate two Eigen values and if both values are large, then a corner is detected 

and if one of the values is large and the other value is small, then an edge is identified. This 

method is applied to every pixel in the image and the local maximum of the result is 

assessed for both Eigen values, which gives us Harris corner/edge detector. 

 In the above definition, Eigen values are defined as follows: Consider a matrix A which 

has a   dimension 𝑁 × 𝑁. Scalar 𝜆 is an Eigen value of A if there is a non-zero vector 𝑥 

such that 𝐴𝑥 = 𝜆𝑥. This vector is called and Eigen vector of A corresponding to λ. If λ is an 
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Eigen value of A, and 𝑥 is an Eigen vector belonging to λ, then any non-zero multiplication 

of 𝑥 is still an Eigen vector.  

Figure 5.2 demonstrates CT image of the chest with honeycombing DLD pattern, where 

corners are detected with Harris algorithm (and identified by green +). 

 

Figure 5.2. Corners detected with Harris algorithm (green +) 

There are several other edge and corner detection methods in the literature. It is illustrative 

to examine some of them. Figure 5.3 represents a sample of edge detection methods applied 

to a CT image of a lung identified with cystic ROI, using Prewitt144, Canny143 and Zero 

Crossing edge detection methods. Zero crossing can identify edges on scale space which is 

why it was chosen for SIFT analysis in this thesis135. 
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Figure 5.3. Evaluation of edge detection using Canny, Prewitt and zero-crossing algorithms 

B. SIFT Transformation Using Gaussian Filter 

In this section details of the SIFT algorithm are presented. The computation of SIFT is 

based on the Gaussian filter which is applied to the ROI. When applying the Gaussian filter, 

Laplacian and smoothing, the size of sigma (standard deviation), often referred to as the 

width of the mask is determined by the scale of the image. Identifying a proper sigma value 

for any analysis is crucial, and there are no specific guidelines in the literature. Therefore, 

sigma values are often arrived at empirically, depending on the richness of the grey levels 

present in the image. With scale space a whole spectrum (continuum) of scales are used. 

Then using zero crossing detector, described earlier, edges are identified. 

For an image 𝑓(𝑥, 𝑦) the Gaussian scale space representation is  

𝑔(𝑥, 𝑦; 𝜎) =
1

2𝜋𝜎
𝑒−⁡

𝑥2+𝑦2

2𝜎  
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When 𝜎 = 0 image representation is⁡𝑔(𝑥, 𝑦; 0), the image is unchanged. As the sigma 

grows the image becomes blurry. Not all low pass filters can generate images that produces 

images which span different scale space. Therefore the Gaussian filter is used, because it 

generates images which are consistent with scale space axioms. In other words, when going 

from fine to finer scale, a completely new structure is not created which is the definition of 

affine transform, and an important characteristic of SIFT. Figure 5.4 shows an application 

of Gaussian filter with different sigma values on an image of lung identified with regions 

containing cysts. 

 

Figure 5.4. A Chest CT image with Gaussian filter applied at different sigma values 

Figure 5.5 shows the effect of different filters on a CT image with cystic regions. Laplacian 

filter can demonstrates the edges better than Gaussian and Laplacian of Gaussian (LoG), 
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but SIFT method is interested in the analysis of images based on different scales. Later in 

this chapter it is shown that LoG is the same as difference of Gaussian. 

 

Figure 5.5. Effect of different filters on a CT image of the lung Identified with Cysts 

C. Edge Detection Based on Scale-Space 

The motivation for scale space is that objects may have different structures at different 

scales. For instance, lung images can be analysed in scale of centimeters for honeycombing, 

while nodularity is analysed at finer scales. Often one does not have knowledge of the scale 

of objects in a ROI. The SIFT provides a very useful capability to study images at different 

scales, since the scale space is preserved.  

Finding edges is a critical technique in image processing of CT images described in this 

thesis, and is performed using a gradient filter during SIFT analysis. The gradient filters 

locate pixels with rapid changes of intensities or pixels with discontinuities, which results 

in edges or boundaries. Laplacian for example, seeks out points in frequency domain where 

digital signal of the point passes through a pre-set zero value (places where Laplace changes 

sign from negative to positive for instance) and marks it as a potential candidate for an 
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edge. Edges are locations in an image around which intensity changes rapidly. When the 

signal has passes through the zero intensity it is called zero crossing.  

1. Detecting Interest Points Using Zero Crossing Method 

Zero crossing is generated from Laplacian of Gaussian (LoG) filters and is affected by the 

size of sigma to a large extent. The more an image is smoothed, fewer zero crossings are 

found145. Primary objective of the zero crossing detector is to identify edges and eliminate 

them. Zero crossing can also be found at locations where intensity gradient starts increasing 

or decreasing, which may not always represent an edge135.  

 

While increasing the value of sigma, edges begin to disappear. Figure 5.6 shows CT of a 

patient image with honeycombing pathology processed with different sigma values to 

demonstrate how edges fade away while the scale increases. Zero crossing filter 

demonstrates a smoother image (fewer number of edges) when sigma value is higher. For 

instance, one can find more zero crossings (edges) with 𝜎 = 0.003 than with 𝜎 = 0.005. 

At 𝜎 = 0 all zero crossing are detected. 
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Figure 5.6. Edges tend to fade away while sigma value of the Gaussian filter increases  

In order to illustrate zero crossings, its application on a randomly generated 1-D (one 

dimensional) signal, which is randomly generated, is shown in Figure 5.7. It is sequentially 

smoothed using a Gaussian function with different sigma values as depicted (on the y-axes 

on the left side). As one can see, by increasing sigma value, the signal becomes smoother 

and represents progressively less information. On the right of the figure 5.7, one can see 

zero crossing at different scales. At lower scales one can observe increasing number of zero 

crossings. These points represent changes in a 1-D signal and edges in 2-D (two 

dimensional) images. When the scale increases, zero crossings diminish. There are arches 

representing zero crossing that are closed in higher scales and open at the bottom. This 

means, at lower scales there are more edges and as the scale increases, a combination of 

those edges (arches) will present an edge. When the arch is closed and disappears at higher 
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scales, that edge cannot be represented at that scale level any more due to smoothing. That 

is how smoothing using various Gaussian filter with increasing sigma will disregard edges. 

 

          Figure 5.7 (a)                       Figure 5. 7 (b) 

Figure 5.7. (a) Signal representation at different scales (b) Zero-crossings of the same signal135 

Figure 5.8 shows an original CT image of a patient with emphysema. The threshold is set 

to 0.15 for zero crossing (a large jump over zero crossing is an edge). Zero-crossing with 

different standard deviations is demonstrated in figure 5.8. 

 

Figure 5.8. Zero crossing representation of an image with different sigma values 
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2. Identifying Interesting Points Using Interval tree 

Zero-crossings are evaluated in scale space at different scales and are prepared for 

subsequent analysis. To clean up the scale-space resulting from zero-crossings, an interval 

tree, where interval being considered increases successively, is created. Such a process is 

shown in the figure 5.9 and 5.10. Each rectangle represents changes (node) in a specific 

interval. 

 

Figure 5.9. Rectangular representation of scale-space135 

 

 

Figure 5.10. The shaded rectangles represent the smoothed signal135 

Figures 5.9 and 5.10 show, while going from top to lower down in these images, each parent 

node is divided to child nodes. Stability of a node is based on scale range over which the 

node is alive in that interval. To end up with a stable result or well smoothed signal, nodes 

which are less stable than those of their parents are removed. 
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The process of choosing stable edges in a 1-D signal explained above, can be extended to 

2-D images and serves as the basis for SIFT detector is local maxima in scale space of LoG.  

D. Potential key-Point Identification Using Laplacian of Gaussian or Difference 

of Gaussian 

To decide if a point on an image is an interesting point, zero-crossing and interval tree were 

used so far based on a Gaussian filter applied to an image with different sigma values. To 

generate these blurred images, Lowe used three sigma values per octave, because based on 

his analysis, that number of scales would give the highest repeatability characteristic135. 

Meaning that, if a point of interest is found in an image within any scale of Gaussian filter, 

it can also be found in other scales and octaves as well. Based on his analysis, more scales 

would not contribute to this characteristic.  

The initial sigma value is 1.6, based on Lowe’s stability assessment and it will be multiplied 

by √2 for the next scale. These values were based on the experience of analyzing a variety 

of images and for covering as much scale as possible, by Lowe135.  

Each octave is a different size of the image. So, the first octave has the original ROI size, 

and the second octave one is half the size in x and y directions. So the first image in second 

octave will be twice as blurred, compared with the same sigma value applied to the first 

image in the first octave. When the Gaussian transformation of these images were 

evaluated, LoG is assessed to localize potential key-points. LoG is the same as DoG which 

will be demonstrated later in this section. Figure 5.11 represents Gaussian scale space in 

different octaves and also demonstrates a visual assessment of difference of Gaussian of 

images at different scales. 
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Figure 5.11. Scale space representation of Gaussian filter on different octaves and DoG135 

To assess interesting points generated from zero-crossing, a neighboring region of 3x3 

pixels surrounding that point of interest in the LoG representation of the image will be 

compared to the same region with a higher scale and a lower scale. So there will be 27 

points and the center point is the one, about which a decision will be made. If the point of 

interest is an extrema (minima or maxima) of all 26 points, then that is a potential SIFT 

Key-point135. Figure 5.12 is a representation of extrema assessment among 26 neighbours. 

The function for Laplacian of Gaussian is  

 

𝐿𝑜𝐺(𝑥, 𝑦) = −
1

𝜋𝜎4
[1 −

𝑥2 + 𝑦2

2𝜎2
] 𝑒

−⁡
𝑥2+𝑦2

2𝜎2  
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Figure 5.12. Finding potential Key-point on the basis of lower and upper scale comparison135 

 

 

Figure 5.13. LoG of the same image at different scales shows how an image gets blurred by 

preserving the sub-structure 

An efficient way of comparing these images at different scales is to find the difference of 

Gaussian of an image at two different scales, which is the approximation of LoG135. 

Differences at every scale are calculated and as the scale goes higher, the image gets more 

blurred. This approximation is based on the heat transfer135,142 equation where derivative 
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of Gaussian with respect to sigma is equal to Laplacian of Gaussian (with respect to x and 

y) multiplied by sigma 

𝜕𝐺

𝜕𝜎
= 𝜎∆2𝐺. 

From this equation it can be shown that LoG is an approximation of difference of 

Gaussians.  The heat equation can show the difference of Gaussian with respect to three 

variables 𝑥, 𝑦⁡𝑎𝑛𝑑⁡𝜎 

𝜎∆2𝐺 =
𝜕𝐺

𝜕𝜎
=
𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)

𝑘𝜎 − 𝜎
 

𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎) ≈ (k-1) 𝜎2∆2𝐺 

So, difference of Gaussian with different sigma is an approximation of LoG.  

Figure 5.14 is a representation of an image with a Gaussian filtered image with two different 

sigma values and the difference is shown. The sigma value of the original image is Zero. 

After applying different scales to the image (𝑘𝜎, 𝑘2𝜎, 𝑘3𝜎, ..) the image is sub-sampled by 

taking every other row and column (one fourth of the original resolution). And then 

different scales for generating LoG (𝑘2𝜎, 𝑘3𝜎, ..) is applied. The impact of filtering with 

𝑘2𝜎 at the next octave will be twice as much, since the resolution is lower135. 

So far, SIFT potential key-points are found based on the extrema found in DoG of scale 

space, but the outliers should be eliminated so that there are only well-defined key-points, 

a step discussed in the next section. 
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Figure 5.14. Top left corner: represents original image with sigma=0; Top right corner: represents 

Gaussian of the original image with sigma 10; The last image: represents the LoG or DoG 
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E. Eliminating Outliers Using Taylor Series and Hessian Matrix 

At this point one can, localize best points by location and scale (𝑥, 𝑦⁡𝑎𝑛𝑑⁡𝜎). Due to low 

contrast or because candidates are along edges, Taylor series is used to eliminate those 

points135.  In general, Taylor series of a function, f(x), is expressed as: 

𝑓(𝑥) = ∑ 𝑓(𝑛)∞
𝑛=0 (𝑎) (

(𝑥−𝑎)𝑛

𝑛!
). 

In this equation the same function is applied to 𝐷(𝑋) 

𝐷(𝑋) = 𝐷 +
𝜕𝐷𝑇

𝜕𝑋
+
1

2
𝑋𝑇

𝜕2𝐷

𝜕𝑋2⁡
⁡. 

Approximation of a function is assessed with Taylor series and therefore, noise can be 

eliminated and outliers will be avoided (key-points are identified from potential 

candidates). 

In this equation, if  𝐷 is a function of three variables⁡𝑋 = (𝑥, 𝑦, 𝜎)𝑇, the approximation 

(extrema) of Taylor series for this scale space is found at 

𝑋̂ = −
𝜕2𝐷−1

𝜕𝑋2
𝜕𝐷

𝜕𝑋
 . 

If X is the extrema and the value is above the threshold of 0.03, the point will be kept, 

otherwise removed. 

Another step towards outlier rejection is to remove interesting points on edges135, because 

they are not considered sufficiently interesting Key-points for the SIF based analysis. To 

perform such an operation, DoG is assumed to be a surface and principal curvature (PC) is 

computed. PC will be very low along the edge and very high across it. Then a Hessian 

matrix is computed over 𝐷 which is based on its second derivative over 𝑥, 𝑦⁡𝑎𝑛𝑑⁡𝑥𝑦 
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𝐻 = [⁡
𝐷𝑥𝑥 𝐷𝑥𝑦
𝐷𝑥𝑦 𝐷𝑦𝑦

]. 

To remove these outliers the trace and determinant of this matrix is calculated: 

𝑇𝑟(𝐻) = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 =⁡𝜆1 + 𝜆2 

𝐷𝑒𝑡(𝐻) = 𝐷𝑥𝑥𝐷𝑦𝑦 − (𝐷𝑥𝑥)
2 = 𝜆1𝜆2 

where λ is an Eigen value and therefore, the sum of Eigen values are equal to the trace and 

their product is equal to the determinant of this matrix. The ratio of this result is evaluated. 

𝑇𝑟(𝐻)2

𝐷𝑒𝑡(𝐻)
=

(𝑟+1)2

𝑟
     𝑤ℎ𝑒𝑟𝑒, 𝑟 =

𝜆1

𝜆2
 

If 𝑟 which is the ratio of two Eigen values is greater than 10 then, those points will be 

removed.  

In figure 5.15, you can see a CT image of lung identified with honeycombing. On the left 

of figure 5.15 below, one can find all the potential key-points with local maxima, and on 

the right of figure 5.15 one can find the final set of key-points, having edges and outliers 

eliminated. 

 

Figure 5.15. Potential key points based on local maxima (left) and Key-points (right) with red + 
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F. Evaluation of Key-Point Orientation and Descriptor Vector 

At this point, finding the orientation of key points is of interest, which allows rotation 

invariance characteristic, because all orientations can be rotated around a dominating 

orientation and get aligned with it. For this purpose, central derivatives, gradient magnitude 

and direction L (smoothed image) are calculated135, which is the smoothed image at 

location⁡𝑦. The magnitude is calculate based on the squared summation of 𝑥 and 𝑦 

derivetives. 

𝑚(𝑥, 𝑦) = √((𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))
2
+ (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))

2
) 

And the direction is based on the tangent of 𝑥 and 𝑦 derivetives. 

𝜃(𝑥, 𝑦) = tan−1(
𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
). 

Then a weighted direction histogram in a 16x16 neighborhood of a key-point is created. In 

a histogram which is usually shown in terms of a bar graph, the data goes on 𝑥 axes and the 

frequency or the number of repetition of them goes along the 𝑦 axes. This histogram has 8 

bins. The weights are based on the gradient magnitude in every 4x4 region of the 16x16 

neighbourhood; the larger the magnitude of a particular bin the more it affects the 

direction135. Consider Figure 5.16 which shows direction of a 4X4 region.  The composite 

direction is shown in Figure 5.17 
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Figure 5.16. Weighted direction histogram in a Key-point neighborhood 

 

 

 

 

Figure 5.17. Weighted direction histogram in a Key-point neighborhood 

If there are multiple directions, the highest peak and any other peak which is 80% of the 

peak is taken into consideration. Usually there is only one peak to choose in a weighted 

direction histogram. 

 

Figure 5.18. Maxima (red) & minima (blue) interesting Key-points and their direction (green) 

At this stage, interesting points (blue and red circles) are extracted and SIFT based 

descriptors are going to be assessed for each interesting point. The weighted direction is 
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demonstrated by the size of the circles and the green arrow, in figure 5.18. Since the 

intensity value is sensitive to illumination and noise, gradient orientations were used as 

descriptors. Because gradient orientations analyze changes, they will not vary a lot and are 

more stable, comparing to absolute intensity values.  

To extract descriptors, a 16x16 neighborhood is assessed (weighted direction histogram) 

which creates 16 histograms (4x4 regions in the neighbourhood). Since each histogram has 

8 bins (eight directions) and there are 16 of them, 128 features are created, which together 

are called SIFT descriptors. Assigning these values to a vector and normalizing them, a 

feature vector is created for each ROI. 

III. Processing of Labelled CT Image Data and Training of the ANN 

Algorithm 

Having set up algorithms for characterizing features in CT images of the lung, an ANN 

based classifier for assigning ROI of an image to a particular class, based on back-

propagation algorithm was developed (Appendix III). The number of classes affects the 

classification accuracy of any classifier. Ideally, features would be uncorrelated and 

information overlap between features is minimal. Large number of ROI’s preferably, in 

hundreds if not thousands of labelled samples should be available. For the backpropagation 

ANN algorithm, large number of data, labelled with specific classes, will help sharpen class 

boundaries. A leave-one-out method was employed for measuring the classification 

accuracy. In the literature, SVM and K-nearest are often used in classification assessments 

of DLD patterns. However, both of these classifiers use distance functions and features 

discussed in this thesis go beyond distance metrics, and because they are not limited by 
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heterogeneity and can have different scales, ANN was preferred. For more information on 

ANN, K-Nearest and SVM, refer to Appendix III. Training an ANN based on back-

propagation technique requires several thousands of iterations so that class boundaries are 

adequately formed. There were 229 patients in the data sets whose CT images were 

available for analysis. From these images a total number of 1165 ROIs were extracted. The 

ANN was trained based on 1165 patterns which approximately ran through 12550 iterations 

for training each combination of classes, with 10 neurons of one hidden layer. ANN inputs 

are vectors of the size equal to the number of features extracted based on the methods 

described in each chapter and the output neurons are defined based on 10 DLD of patterns 

and an output neuron specifically for healthy ROI’s. Individual number of patients and 

ROI’s for each pathology is listed in the Table 3.1. 

IV. Results  of Classification of CT images of the lung Based on SIFT 

Features 

SIFT descriptors, which is a 128 feature vector, are extracted from each ROI and used for 

training an ANN. Figure 5.1 shows classification accuracy based of scale invariant feature 

transform method. The classification accuracy based on SIFT features is higher than those 

obtained from classifier using texture features. Since SIFT analysis has never been used 

before on DLD patterns with eleven pathologies involved, the training and classification 

results in this chapter shows that SIFT based analysis can assist with quantitative 

assessment during diagnosis of specific ROI’s in radiology.  

Training results using SIFT are comparable to those obtained by classifier that uses a 

combination of texture and fractal features together. ANN provided an accuracy of 99.99% 
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for two classes of pathological conditions, except for nodularity and healthy lung which is 

94%. The reason classification of CT images containing nodular regions did not reach the 

accuracy of other DLD patterns is because it identifies blood vessels in a healthy lung as 

nodules; if the resolution is very poor and the size matches a nodularity ROI. Although 

ANN was trained over several thousand iterations, classification based on SIFT features 

frequently reached average classification accuracy of 98% or higher, with three classes, 

included the ROI of a healthy lung.     

Abnormality 

GGO 

71% 

87% 

96% 
98% 

 

99.1% 

Consolidation 100% 

Scar 

97% 

99% 

Cyst 
92% 

88% 

99.3% 

Emphysema 100% 

Reticulation 

88% 

97% 
98% 

 100% 

HoneyCombing 
98% 

100% 

Fibrosis  100% 

Nodularity 
98%   

94% 

Tree in bud 100% 

Table 5.1 ANN classification accuracy based on SIFT features 

 

 

Having an ANN that yields a high level of accuracy is shown in the table 5.1, is an 

affirmation of the concept that SIFT analysis generates features with non-overlapping and 

complementary characteristics with Haralick texture features and those based on Fractal 

analysis. 
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V. Results of Classification of CT images of the lung using SIFT and Texture 

Features 

As described in the previous section, SIFT features have shown promising results for 

training an ANN to classify ROIs of a variety of DLD patterns. Since texture features are 

the most widely used features in the literature for classifying CT images and yield high 

accuracy of classification, one could   combine them with features obtained from SIFT. 

Therefore, it is conceivable that an ANN trained on a combination of SIFT and Haralick 

texture features can provide a more accurate learning paradigm when multiple classes are 

involved. Such a study, evaluating classification accuracy was conducted on the dataset of 

1150 ROIs from CT images collected in our laboratory. 

Abnormality 

GGO 

86.2% 

93.8% 

99.9% 
99.9% 

 

99.9% 

Consolidation 99.9% 

Scar 

99.9% 

99.9% 

Cyst 
99.9% 

95.1% 

99.9% 

Emphysema 99.9% 

Reticulation 

94.3% 

99.9% 
99.9% 

 99.9% 

HoneyCombing 
99.9% 

99.9% 

Fibrosis  99.9% 

Nodularity 
99.9%   

99.9% 

Tree in bud 99.9% 

Table 5.2 ANN classification accuracy based on SIFT and all texture features 

 

Table 5.2 shows classification accuracies of an ANN trained with a combination of SIFT 

and Haralick texture features. Although results are slightly reduced with the increase in the 

number of classes, the accuracy of classification has increased significantly for a 
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combination of classes compared to texture features. The uniqueness in these results lies in 

the accuracy and also in the number of classes being studied. 

The combination of features has especially affected the classification accuracy when 

reticulation, honey combing and fibrosis are involved. Differentiating these patterns with 

texture Haralick based features alone has 10% to 15% less accuracy. And for the first time, 

comparing two DLD classes and a normal lung together had a higher accuracy in 

comparison with classification accuracy of each class with a normal lung in the case of 

nodularity.   

VI. Accuracy of Classification Based on A Combination of SIFT and Texture 

and Fractal Features 

Fractal analysis proved to be useful in increasing the training and classification accuracy 

of NN when added to all texture features. Table 5.3, demonstrates the performance 

improvement when texture and fractal features are coupled with SIFT features. 

Abnormality 

GGO 

86.3% 

93.9% 

99.9% 
99.9% 

 

99.9% 

Consolidation 99.9% 

Scar 

99.9% 

99.9% 

Cyst 
99.9% 

95.3% 

99.9% 

Emphysema 99.9% 

Reticulation 

94.6% 

99.9% 
99.9% 

 99.9% 

HoneyCombing 
99.9% 

99.9% 

Fibrosis  99.9% 

Nodularity 
99.9%   

99.9% 

Tree in bud 99.9% 

Table 5.3 Accuracy of ANN classification of CT lung images using SIFT, for texture and features 

from fractal description of the image  
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VII. Results 

Classification accuracies are relatively high when SIFT based features are incorporated in 

the feature set, along with Haralick texture based features (according to tables 5.2 and 3.9). 

Pattern recognition strategies for classifying DLD patterns obtained from CT images of the 

lung have been studied using texture quantification methods, for more than a decade and 

the attention toward a method that is scale and rotation invariant is of significant usefulness 

and is the primary topic of this chapter. With findings reported in this chapter, it is worth 

noting that a professional radiologist could employ features generated by both SIFT and 

texture into consideration. To better identify an irregular pattern, not only the appearance 

and surface changes matters to professional eyes, but zooming in and out and analyzing 

changes could be useful. Besides, these images and features thereof may be identified as 

being pathological when examined from various angles. SIFT also minimizes illumination 

and noise effects during feature extraction. SIFT features are not identified through texture 

analysis, therefore their combination with other features described in chapter 2-4, perhaps 

provides additional knowledge and may enhance the classification accuracy. Thus, in 

summary, SIFT along with texture analysis provides a set of features with high specificity. 

Texture features may not be needed to classify a ROI when up to 4 classes are involved, 

but in many CT images of the lung, several irregular patterns are present and an ANN that 

can classify as many 10 pathologies compared to healthy lung which is likely to be more 

favourably viewed by radiologists. 
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98.8

99.9

99.9

99.9

93.5

98

99.9

99.9

91.7

97

99.9

99.9

67.95

75

91.9

92.25

62.5

71

86.2

86.3

0 10 20 30 40 50 60 70 80 90 100

Texture-Fractal

SIFT

SIFT-Texture

SIFT-Texture-Fractals

Texture-Fractal SIFT SIFT-Texture
SIFT-Texture-

Fractals

11 Classes 62.5 71 86.2 86.3

7 Classes 67.95 75 91.9 92.25

4 Classes 91.7 97 99.9 99.9

3 Classes 93.5 98 99.9 99.9

2 Classes 98.8 99.9 99.9 99.9

Figure 5.19 Comparison of the classification 
accuracy of the combination of features in 
chapters 3, 4 and 5 for different number of 

classes

11 Classes 7 Classes 4 Classes 3 Classes 2 Classes
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From Figure 5.19 one can conclude that classification accuracy increases when both 

statistical texture and scale invariant features are combined, for classification. SIFT features 

and statistical texture features provide the highest accuracy for increasing number of 

classes, with 99.9% accuracy for up to 4 classes, which includes the healthy lung as a 

distinct class. 

When SIFT features are combined with the features from Haralick texture and fractal 

analysis, classification accuracy of all 11 classes becomes about 10% more accurate than 

classification accuracy of 7 classes when SIFT is not included. 

VIII. Chapter Summary 

This chapter presented the SIFT feature extraction method, step by step through a flow 

chart, a detailed description of the algorithm and by demonstrating the results of performing 

SIFT on several images with DLD patterns. Our results show that the 128 feature vector, 

resulting from the SIFT method yields features that are more descriptive in terms of their 

ability to separate images of different pathologies than all texture and fractal methods 

combined. Training and classification accuracies become significantly higher when 

features from SIFT are used. Furthermore, when features derived from SIFT are combined 

with features derived from texture and fractal analysis, classification accuracies become 

significantly higher than those reported in any previous research in this field. Classification 

accuracy of combined features is nearly 100% for a combination of images from four 

pathological conditions. When CT images from 11 classes, which includes images from 

healthy subjects as a class, the accuracy of classification is 86.3%.To conclude, SIFT 

features contain sufficient discriminatory power for classifying up to 3 pathological classes 
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and the healthy lung, but the combination of features derived from SIFT and from Haralick 

based texture descriptors, results in a high level of performance. 
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CHAPTER 6  

CLASSIFICATION ACCURACY OF TEXTURE, FRACTAL AND SIFT 

METHODOLOGIES USING 5-FOLD CROSS VALIDATION ON ANN 
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I. Introduction 

The classification of ROIs obtained from CT lung images thus far in this thesis, have been 

based on features derived primarily from texture, fractal and SIFT methods. Leave-one-out 

(L1) method was used for evaluating how various classes of features performed and how 

effective they were in classification. In the present chapter, a 5-fold cross (5F) validation 

technique is used to develop a practical evaluation of the features using multiple strategies 

described in chapters 2-5, for classification of CT images with DLD patterns. Such a 

procedure helps to highlight features which are statistically with high specificity and 

provides greater confidence in various features. 

II. 5-Fold Cross Validation Technique 

In n-fold cross validation described in this chapter, one divides all image patterns (ROI’s 

in the present research) into n number of groups. For each iteration of classification, only 

1

𝑛
 of the data is used for testing and the rest is used for training the classifier149. Through 

such procedure, classifiers developed for the research reported in the thesis take advantage 

of using features extracted from all ROI’s and test results will not depend only on a 

particular set of data. In theory, L1 cross validation provides the highest classification 

accuracy if the extracted features are sufficiently specific, but such a method is not always 

practical. The time used for testing and classifying with 5-fold is more than leave-one-out, 

and the difference depends on the number of inputs (ROI’s). For instance if 50 ROI’s are 

available for classification, in each ANN learning iteration, 40 ROI’s are used for 5-fold, 

but there will be 5 testing iterations. However, for L1 method 49 ROIs are used for 

evaluation. For testing purpose, leave-one-out and 5-fold use 1 and 10 ROI’s, respectively. 
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Since the number of patients and ROI’s (1165 regions of interest for 11 pattern classes 

including the healthy lung) were limited in this study, the right number of cross validation 

had to be determined to match all patterns. For some DLD patterns such as Tree in Bud, 

Scar and Fibrosis there were only 19, 25 and 38 ROI’s respectively, while there were 250 

ROI’s for GGO and 150 ROI’s for Emphysema. Many researchers use 10-fold 

validation149, but since the research reported in this thesis did not have access to blinded 

data, a 5-fold cross validation technique was used at each iteration. 

Figure 6.1, demonstrates the process of setting up iterations for training ANN based 

classifiers. The blue area is the proportion of the data used for training and the orange area 

is the proportion (80%) of the test data.  For the leave-one-out, only one ROI is randomly 

chosen for testing, but in case of 5-fold cross validation, 20% of ROI’s of each class is 

assigned   for the testing purpose and is not used for designing the classifier. For the 5-fold 

evaluation, the data is randomly partitioned into 5 subsamples. The cross-validation 

process is then repeated 5 times, with each of the subsamples used exactly once as the 

validation data. The classification accuracy from all five iterations from each round of 

testing is then averaged.  

The advantage of 5F method over repeated random sub-sampling leave-one-out method is 

that all observations are used for both training and validation, and each observation is used 

for validation exactly once. However, leave-one-out method chooses a sample test case 

randomly, therefore, validation may not use all observations. 

As with other validation methods, cross validation also has limitations. The limitation is 

quite serious when the validation and training sets are from different populations. For 
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instance, suppose we are interested in validating a model that predicts the risk of a patient 

being diagnosed with a certain disease. If the training data sets are confined to studies based 

on male candidates and our individual in question is a female, then cross validation may 

not provide a correct estimate. Other factors such as age, ethnicity work environment and 

other factors can also affect the model validation. However, for the present dissertation, the 

training and testing sets are from the same sample/population and results will not be 

affected by the above limitations.  

The learning process, which includes the training of an ANN does not use testing data to 

compute probabilities, therefore, the system does not have a apriori knowledge of the data 

generation. At each iteration, only training sets are used, and then based on the testing set, 

classification accuracy is assessed and averaged over the results of each iteration. 

 

Figure 6.1 The 5-fold Cross validation for classification assessment; each row represents an 

iteration. Blue areas are the training sets and orange area is the testing set 

 

Another validation technique is to randomly leave 30% of data out, for instance. But using 

only 70% of the data to design the classifier can lead to a classifier with diminished 

accuracy. 
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III. Classification Accuracy Based on Texture Features 

Classification results presented in Table 6.1 are based on 5-fold cross validation method. 

These tables were generated in a manner similar to that described in chapter 3. However 

5F validation technique was used in the present context. With 5-fold cross validation 

method the performance and accuracy is very similar to leave-one-out method with fewer 

classes involved for classification and when the features are combined.  These results 

suggest that extracted features   can characterize each ROI of each class to a high degree of 

accuracy that increasing the size of the test data set does not affect results reported in this 

thesis significantly. 

 

Tables 6.1 to 6.2 provides descriptions, comparing the results obtained in chapters 3, 4 or 

5 with leave-one-out method. The entries of accuracy along the X-axis of the table 

represents the percentage accuracy of classification. 

Table 6.1 demonstrates classification accuracy based on 5-fold cross validation for 

Tamura’s coarseness feature. Using the  leave-one-out, classification accuracy has 

dropped by 4.5% when classifying two classes. The result has affected classification of all 

eleven patterns by a 50% decrease (compared to with table 3.3, figures 3.25 and 6.1). 
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Abnormality 

GGO 

13.3% 

22% 

34% 
41% 

 

53% 

Consolidation 44.43% 

Scar 

37% 

28.5% 

Cyst 
39% 

29% 

58.15% 

Emphysema 54.2% 

Reticulation 

18% 

22% 
51% 

 62% 

HoneyCombing 
42% 

61.1% 

Fibrosis  59.6% 

Nodularity 
38%   

59% 

Tree in bud 40.3% 

Table 6.1 ANN average classification accuracy based on Tamura’s coarseness feature 

Table 6.2 demonstrates classification accuracy based on 5-fold cross validation for 

Tamura’s contrast feature. Classification results have decreased from an average of 53% 

for three classes to 44%. And, classification accuracy of eleven classes has fallen from 

22.2% to 12.7% with leave-one-out and 5-fold cross validation, respectively (compared to 

table 3.4, figures 3.25 and 6.1). 

Abnormality 

GGO 

12.7% 

20% 

32% 
39% 

 

51.5% 

Consolidation 43.3% 

Scar 

35% 

33.6% 

Cyst 
38% 

27% 

55.1% 

Emphysema 52.7% 

Reticulation 

17% 

19% 
48% 

 60.5% 

HoneyCombing 
41% 

59.7% 

Fibrosis  53% 

Nodularity 
37%   

57.7% 

Tree in bud 42.1% 

Table 6.2 ANN average classification accuracy based on contrast; a Tamura texture feature  
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Table 6.3 demonstrates classification accuracy based on 5-fold cross validation for 

Tamura’s directionality feature. Classification accuracy of five and eleven classes has 

dropped by 10% comparing to leave-one-out method (comparing with table 3.5, figures 

3.25 and 6.1). 

Abnormality 

GGO 

10.1% 

16% 

26% 
33% 

 

43.7% 

Consolidation 44.3% 

Scar 

26% 

24.2% 

Cyst 
29% 

20% 

 

46% 

Emphysema 47.2% 

Reticulation 

15% 

16% 
41% 

 53.2% 

HoneyCombing 
35% 

52% 

Fibrosis  49.6% 

Nodularity 
32%   

38% 

Tree in bud 39% 

Table 6.3 ANN average classification accuracy based on directionality; a Tamura texture Feature 

 

Table 6.4 demonstrates classification accuracy based on 5-fold cross validation when all 

Tamura features were combined. It is expected that the accuracy should decrease with 5-

fold validation, but it is interesting that for combined features the difference with leave-

one-out is at its minimum. Accuracy of classification for eleven classes has dropped 

(comparing with table 3.6, figures 3.25 and 6.1) by about 6% and for two classes, the 

difference is at 5%. One can conclude that in general, there is no perfect feature from any 

kind of feature extraction method. Only a combination of multiple features provides higher 

accuracy of classification. 
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Abnormality 

GGO 

22% 

38% 

50% 
67% 

 

78% 

Consolidation 79% 

Scar 

54% 

58% 

Cyst 
59% 

38% 

76% 

Emphysema 77% 

Reticulation 

34% 

41% 
60% 

 78% 

HoneyCombing 
61% 

78% 

Fibrosis  65% 

Nodularity 
47%   

70% 

Tree in bud 61% 
 

Table 6.4 ANN average classification accuracy based on all three Tamura texture features shows 

better results compared to when only one of the features were used 

 

Table 6.5 demonstrates classification accuracy based on 5-fold cross validation of CLBP. 

Although classification accuracy using CLBP is less than combined Tamura features, but 

the effect of 5-fold cross validation was less. With eleven classes, there is a difference of 

only 3% in the accuracy of classification when compared to leave-one-out method 

(comparable to table 3.7, figures 3.25 and 6.1). 

Abnormality 

GGO 

19% 

26% 

37% 
43% 

 

54.3% 

Consolidation 44.8% 

Scar 

41% 

36.9% 

Cyst 
46% 

37% 

57% 

Emphysema 59.3% 

Reticulation 

28% 

39% 
57% 

 60.8% 

HoneyCombing 
52% 

61% 

Fibrosis  58.8% 

Nodularity 
42%   

66.8% 

Tree in bud 54% 
 

Table 6.5 ANN average classification accuracy based on CLBP 
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Table 6.6 demonstrates classification accuracy based on 5-fold cross validation of GLCM. 

Classification accuracy of GLCM is higher than CLBP with any validation method, but 

GLCM had 3.6% decrease when classifying eleven classes with 5-fold validation 

(comparable to table 3.8). 

Abnormality 

GGO 

20% 

37% 

52% 
67% 

 

70% 

Consolidation 71% 

Scar 

56% 

55% 

Cyst 
57% 

36% 

72% 

Emphysema 73% 

Reticulation 

34% 

43% 
57% 

 70% 

HoneyCombing 
59% 

74% 

Fibrosis  62% 

Nodularity 
46%   

69% 

Tree in bud 58% 
 

Table 6.6 ANN average classification accuracy based on GLCM shows better results compared to 

single Tamura features 

 

 

Table 6.7 demonstrates classification accuracy based on 5-fold cross validation of all 

Haralick features. These features have provided the highest accuracy among any number 

of classes both with leave-one-out and 5-fold validation (comparable to table 3.9, figures 

3.25 and 6.1). There is a decrease in accuracy by 3.8%, when comparing leave-one-out and 

5-fold methods on eleven classes and there is only 1% difference when comparing other 7 

classes. 
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Abnormality 

GGO 

26% 

41% 

55% 
69% 

 

79% 

Consolidation 81% 

Scar 

58% 

61% 

Cyst 
60% 

41% 

78% 

Emphysema 79% 

Reticulation 

40% 

46% 
62% 

 79% 

HoneyCombing 
63% 

80% 

Fibrosis  68% 

Nodularity 
49%   

72% 

Tree in bud 59% 

Table 6.7 ANN average classification accuracy based on all thirteen Haralick texture features 

shows best classification results among all other methods 

Table 6.8 demonstrates classification accuracy based on 5-fold cross validation of all Gabor 

features (IFFT, energy and transformed IFFT). Classification accuracy is lower with 5-fold 

validation in this method too. Average decrease is less than 4% for two classes. And 

accuracy of classification is about 3% less for eleven classes with 5-fold method. 

(Comparable to table 3.13, figures 3.25 and 6.1) 

Abnormality 

GGO 

22.5% 

34% 

45% 
48% 

 

57% 

Consolidation 55% 

Scar 

42% 

44% 

Cyst 
46% 

37% 

62% 

Emphysema 63% 

Reticulation 

35% 

44% 
52% 

 66% 

HoneyCombing 
51% 

70% 

Fibrosis  56% 

Nodularity 
44%   

58% 

Tree in bud 50% 
 

Table 6.8 ANN average classification accuracy based on all three Gabor filter texture features 

shows better results than when only one of the features were used 
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Table 6.9 demonstrates classification accuracy based on 5-fold cross validation of 

Minkowski Functionals (MF). The classification accuracy is at its lowest when it comes to 

MF features. But one can observe that, the decrease in validation from leave-one-out to 5-

fold method is at its lowest too (comparable to table 3.14, figures 3.25 and 6.1). This means 

that, although MF are not very descriptive, especially when it comes to classifying patterns 

where shapes are not of importance, but they do play  an effective role in classification. 

This effect is clearly visible when all features are combined. For instance, honey combing 

and emphysema has the highest accuracy, because their morphological characteristics can 

be identified by MF. 

Abnormality 

GGO 

13.2% 

19.7% 

28% 
34% 

 

43% 

Consolidation 35% 

Scar 

30.8% 

25% 

Cyst 
31% 

21% 

43% 

Emphysema 49% 

Reticulation 

18.8% 

32% 
40% 

 50% 

HoneyCombing 
34% 

48% 

Fibrosis  40% 

Nodularity 
33%   

48% 

Tree in bud 35% 

Table 6.9 Average accuracy of classification for Minkowski geometric Functionals 

Average classification accuracies for all texture features are combined in table 6.10 for 

different combinations of DLD patterns. Similar to the leave-one-out, 5-fold cross 

validation also demonstrates considerable increase in the accuracy when all texture features 

are combined for classification of ROIs. These results lead to the conclusion that, each 

feature captures a unique characteristic of the image and   combination of features obtained 



Mehrdad Alemzadeh, Ph.D. Thesis - McMaster University – Computing and Software 

 

160 
 

through multiple methods provides improved accuracy. An example from face recognition 

is that, we can identify a face by eyes, nose, fore-head, chin or chick and combining these 

features will give a more complete definition of the face. The same is applied for lung DLD 

patterns. To know about the directionality, coarseness, contrast or MF of a ROI are useful 

pieces information, and their combination results in a more complete quantification. 

Abnormality 

GGO 

57% 

70% 

87% 
91% 

 

95% 

Consolidation 96% 

Scar 

89% 

80% 

Cyst 
90% 

80% 

94% 

Emphysema 96% 

Reticulation 

63% 

72% 
82% 

 97% 

HoneyCombing 
77% 

98% 

Fibrosis  85% 

Nodularity 
83%   

89% 

Tree in bud 77% 

Table 6.10 ANN average classification accuracy based on all texture features shows a well-trained 

ANN ready for classification 

The number of ROI for scar, fibrosis and tree in bud are much less compared to other 

patterns. Therefore, during 5-fold validation which uses only 80% data for design of 

classifiers and allows 20% of that data for testing, it affects the training process of ANN 

and provides lower classification accuracy. Most classes had 2% to 6% decrease when 

classifying two classes. In addition, the accuracy for scar, fibrosis and tree-in-bud patterns 

has dropped considerably more, due to a smaller number of ROIs in these classes, as shown 

in table 3.1. Tables 6.1 to 6.10 are summarized in Figure 6.1. Classification accuracies with 

5-fold cross validation are generally lower than that for leave-one-out method but the 

accuracies of each feature and their combination are similar to that due to leave-one-out 
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method. This becomes clearer when one is interested in analysing the most descriptive 

features, effects of combining the features or the usefulness of the features in quantifying 

DLD patterns of the lung. Figure 6.1 demonstrates classification results based on Haralick, 

Tamura, GLCM, Gabor, CLBP, MF and the combination of these features which are 

assessed based on 5F validation technique. The results are comparable to Figure 3.25. 
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74

72

67

58

54

41

90

61

61

52

50

49

35

85

50

46

45

43

34

31

83

34

34

30

30

23

20

66

26

22

20

22.5

19

13.2

57

0 10 20 30 40 50 60 70 80 90 100

Haralick

Tamura

GLCM

Gabor

CLBP

Minkowski

All  Texture Features

Haralick Tamura GLCM Gabor CLBP Minkowski
All  Texture

Features

11 Classes 26 22 20 22.5 19 13.2 57

7 Classes 34 34 30 30 23 20 66

4 Classes 50 46 45 43 34 31 83

3 Classes 61 61 52 50 49 35 85

2 Classes 74 72 67 58 54 41 90

Figure 6.1. Classification Accuracy of Texture Features 
based on 5-fold Cross validation on ANN

11 Classes 7 Classes 4 Classes 3 Classes 2 Classes
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IV. CLASSIFICATION ACCURACY BASED ON FRACTAL AND TEXTURE 

FEATURES 

 

Table 6.11 demonstrates classification accuracy of fractal features based on 5-fold cross 

validation on ANN for different number of classes, compared with healthy ROI’s of the 

lung.  

Abnormality 

GGO 

14.5% 

23% 

34% 
38% 

 

43% 

Consolidation 46% 

Scar 

29% 

41% 

Cyst 
31% 

37% 

48% 

Emphysema 47% 

Reticulation 

19% 

19% 
31% 

 52% 

HoneyCombing 
29% 

48% 

Fibrosis  43% 

Nodularity 
27%   

49% 

Tree in bud 41% 

Table 6.11. ANN classification accuracy based on all Fractal Dimension features 

Table 6.12 shows the classification accuracy of fractal and texture features combined. The 

accuracy of classifying two classes when comparing 5-fold with leave-one-out methods are 

91.2 and 98.8 percent, respectively. The accuracy has dropped from 93.5% for three classes 

to 86%, and from 62.5 to 57.2 for eleven classes (Comparable to table 4.5, figures 4.8 and 

6.2). 
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Abnormality 

GGO 

57.2% 

71% 

87.4% 
91.5% 

 

96.2% 

Consolidation 97.1% 

Scar 

89.4% 

80.9% 

Cyst 
90.5% 

80.2% 

95.3% 

Emphysema 96.6% 

Reticulation 

63.3% 

72.3% 
82.5% 

 98% 

HoneyCombing 
77.6% 

98.7% 

Fibrosis  86% 

Nodularity 
83.7%   

90.2% 

Tree in bud 79% 

Table 6.12. ANN classification accuracy based on all FD and all Texture features 

Classification results are provided in figure 6.2 based on the combination of features in 

chapter 3 and 4 on different number of classes and 5-fold cross validation on ANN. Figure 

6.2 is comparable to Figure 4.8. 

 

91.2
86 83.5

66.3

57.2

0

10

20

30

40

50

60

70

80

90

100

All  Texture & Fractal Features

Figure 6.2. Classification Accuracy of All Texture & 
Fractal Features based on ANN and 5-Fold Cross 

Validation

2 Classes 3 Classes 4 Classes 7 Classes 11 Classes
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V. Classification Accuracy Based on SIFT, Texture and Fractal Features 

Table 6.13 demonstrates classification accuracy of SIFT based on 5F on ANN. The 

accuracy for eleven classes has decreased by 3%, and the results for two classes were 99.9% 

and 98% with leave-one-out and 5-fold cross validation, respectively (comparable with 

table 5.1, figures 5.19 and 6.3). 

Abnormality 

GGO 

68% 

82% 

94% 
97% 

 

98% 

Consolidation 97% 

Scar 

96.3% 

95% 

Cyst 
91.2% 

86% 

99% 

Emphysema 98% 

Reticulation 

81% 

95% 
97.1% 

 98% 

HoneyCombing 
97% 

97% 

Fibrosis  95% 

Nodularity 
96%   

96% 

Tree in bud 93% 

Table 6.13. ANN classification accuracy based on SIFT features using 5-fold cross validation 

 

  

Table 6.14 shows 16% increase in classification accuracy when combining SIFT with 

texture features, even with 5-fold cross validation (compared to table 5.2, figures 5.19 and 

6.3). There is a decrease of 1.2% from leave-one-out to 5-fold cross validation when 

classifying two classes with texture and SIFT on ANN. 
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Abnormality 

GGO 

84% 

92% 

97.4% 
97.6% 

 

99% 

Consolidation 98% 

Scar 

97.9% 

96.3% 

Cyst 
96.8% 

90.5% 

99.9% 

Emphysema 99% 

Reticulation 

93% 

95.2% 
97.9% 

 99.9% 

HoneyCombing 
97.4% 

99.9% 

Fibrosis  99.9% 

Nodularity 
97.7%   

98% 

Tree in bud 95% 

Table 6.14. ANN classification accuracy based on SIFT and all texture features 

Table 6.15 shows classification accuracy has increased further with the addition of fractal 

features along with SIFT and all texture features. There an increase of at least 1% on any 

combination of classes with 5-fold cross validation (comparable to table 5.3, figures 5.19 

and 6.3).  

Abnormality 

GGO 

85% 

93% 

98% 
98.3% 

 

99.3% 

Consolidation 98.3% 

Scar 

98% 

96.7% 

Cyst 
97.5% 

91% 

99.9% 

Emphysema 99.5% 

Reticulation 

94% 

96% 
99% 

 99.9% 

HoneyCombing 
99% 

99.9% 

Fibrosis  99.9% 

Nodularity 
98.1%   

98.6% 

Tree in bud 95.5% 

Table 6.15. ANN classification accuracy based on SIFT, all texture and FD features 
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VI. Comparison of Classification Accuracy of Leave-one-out and 5-Fold 

Cross validation 

Throughout chapter 6, we have demonstrated the classification accuracy of each texture, 

fractal, SIFT features and their combinations based on 5-fold cross validation on ANN for 

different number of classes. These results are compared for each feature set with those 

obtained for leave-one-out method, demonstrated throughout chapters 3, 4 and 5.  

Figure 6.4 summarizes results of comparing classification for various classes of features 

described in chapters 3 to 6 so that they can be assessed and visualized in one place.  

This figure shows a uniform decrease in classification accuracies, when 5-fold cross 

validation is   compared with leave-one-out method. Such a result is to be expected because 

when the  ANN is trained, it will create the relationships and learning patterns based on 

fewer number of ROI’s and therefore fewer number of data points.  

 

Also, testing such a model generated based on this learning process is more rigid when 

compared to leave-one-out, and consequently ANN using 5F results in a lower accuracy. 

However, the descriptiveness of each feature and their combination is still useful, because 

the accuracy is relatively high (99% for 2 classes). Classification accuracy for any 

combination of classes up to seven classes is higher than 91%, and for eleven classes it is 

85%. The accuracy for up to three classes is 99% which demonstrates a reasonably accurate 

quantification of texture within the ROI. 
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In figure 6.4 L1 refers to classification accuracies to leave-one-out and 5F refers to 

classification accuracies to 5-fold cross validation methods. Classification results of 2, 3, 

4, 7 and 11 classes are demonstrated for both types of validations. These results suggest 

that the accuracy decreases with increased number of classes, due to the fact that the class 

boundaries become more complex with more number of classes. 



Mehrdad Alemzadeh, Ph.D. Thesis - McMaster University – Computing and Software 

 

170 
 

 

99

99.9

98.7

99.9

98

99.9

91.2

98.8

90

98

74

78.9

72

77

67

72.4

58

62

54

57

41

43.8

99

99.9

98

99.9

97

99.9

86

93.5

85

92.7

61

63

61

62

52

53

50

52.5

49

51

35

35

98.8

99.9

97.5

99.9

96.5

99.9

83.5

91.7

83

91

50

53

46

51

45

51

43

45.5

34

36

31

31.5

91

92.25

90

91.9

72

75

66.3

67.95

66

67.5

34

35

34

34

30

31

30

34

23

27

20

21

85

86.3

84

86.2

68

71

57.2

62.5

57

61.9

26

29

22

27.8

20

23.6

22.5

26.3

19

22

13.2

14.2

SIFT+Texture+…

SIFT+Texture…

SIFT+Texture 5F

SIFT+Texture L1

SIFT 5F

SIFT L1

Texture+…

Texture+…

All Texture…

All Texture…

Haralick 5F

Haralick L1

Tamura 5F

Tamura L1

GLCM 5F

GLCM L1

Gabor 5F

Gabor L1

CLBP 5F

CLBP L1

Minkowski 5F

Minkowski L1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 6.4. Comparison of Classification Accuracy of  
All Texture, Fractal and SIFT features Based on 5-Fold 
Cross validation and leave-One-Out Methods on ANN

2 Classes 3 Classes 4 Classes 7 Classes 11 Classes



Mehrdad Alemzadeh, Ph.D. Thesis - McMaster University – Computing and Software 

 

171 
 

VII. Support Vector Machine Classification Results on SIFT 

Several laboratories have provided DLD classification assessment based on different 

number of classes using SVM. In order to provide a classification accuracies between ANN 

and SVM for SIFT features from all the ROI’s, we ran our data through SVM. 

Abnormality 

GGO 

91% 
95.7% 

97.3% 

Consolidation 96.8% 

Scar 

 

93% 

Cyst 
91% 

98.7% 

Emphysema 98% 

Reticulation 

93.9% 
96.4% 

 97% 

HoneyCombing 
96.5% 

96.6% 

Fibrosis  95.5% 

Nodularity 
95%  

95% 

Tree in bud 91.2% 

Table 6.16. AVM classification accuracy based on SIFT features using 5-fold cross validation 

Table 6.16 demonstrates classification accuracy of all DLD patterns based on SIFT features 

using an SVM classifier. The results are similar to those of the ANN classifier when 

comparing similar number of classes.  

VIII. Chapter Summary 

In the present chapter classification accuracy of ten DLD patterns were evaluated based on 

5-fold cross (5F) validation of ANN using features from texture, fractal dimension, SIFT 

and a combination of all features. These results were compared with leave-one-out (L1) 

method. Classification accuracy is relatively high for both methods when smaller number 

of classes are present for classification and progressively decreases when more classes are 

added.  
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Classification accuracy of texture features are assessed based on the combination of 

multiple  feature extraction methods, whereby features derived from Haralick, Tamura and 

GLCM algorithms have the highest classification results, and Gabor, CLBP and MF 

features  are less useful for both types of validations. Classification accuracy of texture 

features drops from 98% to 90% for two classes when assessed with L1 and 5F respectively, 

however there was only a 3% decrease when comparing eleven classes, for all texture 

features combined. 

Classification accuracy of SIFT features are also lower with 5F compared with L1 but the 

results are consistently increasing when comparing individual features and their 

combinations. With 5F, accuracy of eleven classes increased from 68% with SIFT features 

to 84% with SIFT and texture features combined and to 85% percent when fractal features 

were added to the SIFT and texture features combination.  
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CHAPTER 7  

SUMMARY AND CONCLUSIONS 
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I. Introduction 

The research on classification accuracy of feature extraction, from regions of CT images 

identified with patterns of diffuse lung diseases, led this thesis towards the use of scale 

invariant feature transform and several texture and fractal features. 

Chapter 1, described the problem statement, motivations and limitations of this work. 

Chapter 2, provided a background of the state of the art, methods and features that other 

researchers have studied and also the applications, and accuracies in the field of lung 

quantification was demonstrated. Chapter 3, described and incorporated the most useful 

texture features based on the state of the art. Chapter 4, described the underlying advantage 

of using fractal analysis and morphological features. Chapter 5, demonstrated scale 

invariant feature transform as a unique feature invariant to scale in identifying DLD 

patterns. And finally chapter 6, used 5-fold cross validation for the assessment of every 

feature and their combinations that were demonstrated in chapters 3, 4 and 5 to overcome 

the lack of blind data testing. 

This chapter summarises the results that are provided in detail in previous chapters and 

conclude with the contributions and possible future works. 

II. Research Summary and Conclusion 

This section summarises ANN classification accuracies achieved with leave-one-out and 

5-fold cross validation techniques based on texture, fractal, SIFT and combinations of these 

features. 

DLD patterns are irregular regions of the lung parenchyma which can be identified on CT 

images. The ten pathological patterns in consultation with an experienced chest radiologists 
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and which are used in this research are: consolidation, cyst, emphysema, fibrosis, GGO, 

honey combing, nodularity, reticulation, scar and tree-in-bud. Classification accuracies of 

combination of these classes, including healthy lung are provided with radiologist’s 

diagnosis as the gold standard. 

The number of patients used for this study are 229, whose CT scans were made available 

by the radiological screening room following confirmed diagnosis. From these, 1165 ROI’s 

of ten DLD patterns and healthy lung were extracted by an expert radiologist at St. Joseph’s 

Hospital, Hamilton, Canada. 

ANN is the classifier of choice because the relationships created based on the feed forward 

algorithm provide fair classification accuracy on large data sets with eleven disease states 

to be classified. The classifiers uses ten neurons in the hidden layer, eleven neuron on the 

output and 50 input neurons for all texture and fractal features, plus, the number of SIFT 

key-points extracted from each ROI which depends on the image; but each key-point has a 

128 vector size descriptor. 

The most powerful texture features demonstrated in chapter 3 are ordered from the 

strongest to the weakest as: Haralick, Tamura, gray level co-occurrence matrix, Gabor, 

compound local binary pattern and Minkowski Functionals. A combination of these 

features results in higher accuracy than using them individually because several aspects of 

the patterns characteristics are quantified. Haralick features are the most descriptive of all 

(78.9% for two classes and 63 for three classes), while results based on Tamura features 

follows closely by 77 and 62 percent for two and three classes respectively. The accuracy 

drops below 50% especially when more than four classes are present in each method. The 
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least descriptive of all features is generated by Minkowski Functionals, perhaps due to the 

fact that texture has a higher influence than morphological based features, on the final 

classification results. The order of the highest to lowest accuracies for texture features are 

as follows: Haralick, Tamura, GLCM, Gabor, CLBP and MF. The accuracies for any 

number of classes is higher with the strongest features, however, with 7 classes, Tamura 

and Gabor had the same accuracy of 34% (figure 3.25); with 4 classes, Tamura and GLCM 

had the same average accuracy of 51%. When all features are combined the highest 

accuracy of classification is achieved (98% for two classes, 92% for three and 61.9% for 

eleven classes).  

Chapter 4, describe and demonstrates fractal dimension (FD) analysis on several DLD 

patterns. These features are extracted based on: FD semi variance, box counting and 

segmentation based fractal analysis. Although FD provides scaled features, it is a natural 

shape detector underneath, as it is theoretically expected. Fractal analysis is not just a 

dimension value but it also narrows down the basic structure of the whole picture to a 

descriptor.  However, quantification of CT images is not feasible only with fractal analysis, 

but when combined with texture features, they can contribute relevant information towards 

identification of irregular patterns with a higher accuracy. Combining features from FD 

analysis with all texture features slightly increases classification accuracy from 98% to 

98.8% when classifying 2 classes, and from 61.9 to 62.5 percent for eleven classes. 

Chapter 5 described and demonstrated the SIFT feature extraction algorithm and its 

application to several DLD patterns. The SIFT uses Gaussian transformation to filter ROI’s 

on several scales and octaves. Based on zero crossing and interval tree, potential key-points 
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are localized and difference of Gaussians is computed to identify extrema. SIFT does not 

use edges as features and  potential key-points that are on edges will be eliminated from 

the outcome, using Taylor series and the Hessian matrix. At this point, key-points are 

identified which are the features of ROI. SIFT’s strength is in having a descriptor for each 

feature, which is assessed using derivatives, gradient magnitude and directions. 

Classification accuracies are relatively high when SIFT features are incorporated in ANN 

(>96.5% for up to 4 classes) comparing to those of texture and fractal dimensions (>83% 

for up to four classes). A variety DLD patterns have been studied under texture 

quantification for over a decade and the attention toward a method that is scale and rotation 

invariant has not been examined in detail. With this thesis, there is evidence to support the 

use of SIFT based features through ANNs, by a professional radiologist while making 

diagnosis. To better identify pathological pattern, not only the appearance and surface 

changes matters, SIFT implicitly quantifies zooming in/out and analyses changes by 

computing the image at different scales and octaves which is the property of affine 

transformation. Also, these features would be identified on a ROI from any angle because 

SIFT features are insensitive to rotation. SIFT also prevents illumination and noise 

variability effects in feature extraction which texture analysis is sensitive to. Furthermore, 

SIFT generated features cannot be generated with texture analysis, thus, contributing to 

increased classification performance. Having SIFT features along with texture analysis 

provides a strong quantification because the new set of features provide non-overlapping 

characterization of the information contained within the imaged data.  In many instances 
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CT images disease patterns of more than 7 classes are present and an ANN can be employed 

to classify as many 10 types of disease patterns.   

Since blinded image data was not available, the assessment of the classification accuracy 

was performed through leave-one-out and 5-fold cross validation techniques. However, 5-

fold cross validation techniques shows results based on a fair comparison. These techniques 

together contribute to the minimization of methodological bias. Leve-one-out method has 

marginally higher classification accuracy, but 5-fold method is a better verification 

technique. This result is expected because every time ANN is trained, it will create the 

relationships and learning patterns based on fewer number of ROI’s and therefore less 

number of features. Also, testing based on 5F model generated based on this learning 

process is more rigid compared to leave-one-out, which results in a lower accuracy. 

However, the descriptiveness of each feature and their combination is still useful, because 

the accuracy increases when new features are added. Classification accuracy for any 

combination of classes up to seven classes is higher than 91%, and for eleven classes it is 

85% (figure 6.4). The accuracy for up to three classes is 99% which demonstrates a very 

accurate quantification. These methods and quantifications contributes to computerised 

analysis of DLD and can be used towards generating a second opinion to a radiologist’s 

assessment. 

In Figure 7.1, L1 refers to leave-one-out and 5F refers to 5-fold cross validation methods. 

Classification results of 2, 3, 4, 7 and 11 classes are listed for both types of validations 

based on ANN for ten DLD patterns and healthy lung regions extracted from CT images 

by an expert chest radiologist. 
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Table 7.1 demonstrates the total number of features for each texture and fractal method 

described in chapter 3 and 4 along with SIFT features from chapter 5. A total of 48 and 29 

features are extracted based on all texture and fractal methods, respectively.  

 

All these 77 features along with the number of features extracted based on SIFT are the 

inputs of an ANN. These features are extracted from ROI’s that were chosen based on DLD 

patterns from CT images of the lung as described in earlier chapters. 

 

Nature of 

features 
Feature Method 

Number of 

Features 

Texture Analysis 

Tamura 3 

48 

CLBP 13 

GLCM 13 

Haralick 13 

Gabor 3 

MF 3 

Fractal Analysis 

Box-counting 3 

29 SFTA 24 

Semi-variance 2 

Local Extrema 

Number of 

features depends 

on the ROI 

 

Descriptor for each 

feature is a vector 

of size 128 

 

Table 7.1 Number of features for each texture, fractal and SIFT method are represented 
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Classification accuracy of ten DLD patterns were provided based on 5-fold cross (5F) 

validation on ANN and the results were compared with leave-one-out (L1) method. 

Classification accuracy increases in both methods when smaller number of classes are 

present for classification.  

Classification accuracy of texture features are assessed based on the combination of six 

methods, where Haralick, Tamura and GLCM have the highest classification results, and 

Gabor, CLBP and MF features follow for both types of validations. Classification accuracy 

of texture features drops from 98% to 90% for two classes (figure 7.1) when assessed with 

L1 and 5F respectively, however there was only a 3% decrease when comparing eleven 

classes, for all texture features combined. 

Classification accuracy of SIFT features are also lower with 5F compared with L1 but the 

results are consistently increasing when comparing individual features and their 

combinations. With 5F, accuracy of eleven classes increased from 68% with SIFT features 

to 84% with SIFT and texture features combined; and 85% percent when fractal features 

were added up to the SIFT and texture feature combination (figure 7.1).  

III. Contributions  

This thesis has attempted to identify and employ innovative computational algorithms for 

identification and classification of several DLD patterns. A large number of texture 

algorithms and quantitative indices from fractal analysis have been invoked to obtain a 

broad range of features. In addition, a novel scale invariant feature transform (SIFT) has 

been incorporated to obtain unique features from the regions with irregular parenchymal 

pathologies in lung CT images, to enhance the machine learning and pattern classification. 



Mehrdad Alemzadeh, Ph.D. Thesis - McMaster University – Computing and Software 

 

182 
 

The SIFT analysis on its own generated more than 96% accuracy when classifying up to 

four classes and 68% for up to eleven classes with 5-fold cross validation technique (figure 

7.1). A combination of texture and fractal methods combined with SIFT provided increased 

classification accuracies when analysing CT images of the lung. More than 98.8% accuracy 

for up to four classes and 85% accuracy in classifying eleven classes, including healthy 

ROI’s, was achieved. 

Many textural, fractal and scale invariant based features that can characterise DLD patterns 

with   non-overlapping information, have been assembled in this thesis work. This 

combination takes several characteristics such as texture, morphology, scale, position and 

frequency domain features into account.  

Although in real life applications, to use a computer aided diagnostic system as a potential 

second opinion, one must be able to classify several patterns. None of the research in the 

state-of-the-art have provided detailed classification for up to eleven classes. The analysis 

provided in earlier chapters combined with two validation methods used to assess the 

strength and stability of the extracted features justify claims presented in this thesis. 

IV. Future Work 

Image processing and especially medical image quantification has been the focus of many 

researchers, therefore, more algorithms are on its way to target these problems. Based on 

the methods described in this thesis and results that were achieved, below is a list of ideas 

for    future research. 

1. Features described in this thesis can be researched and applied to identify diseases 

of other organs such as kidney, liver and brain from various image modalities 
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2. The classification can be analysed using SVM and K-nearest neighbour methods  

3. Identifying the location and the nature of the disease is very important in 

classification. This can be used as extra features for quantifying the ROI’s. 

4. Adding the capability to trace a potential disease through cross sectional images to 

differentiate it with other organs. Sometimes if one looks at a single cross sectional 

image of the lung, it is difficult to separate nodularity with a blood vessel; but a 

blood vessel can be traced through images before and after the particular image. 

5. Ideally blinded image data can be examined with the classifiers and features 

designed in this thesis 

6. Analysing and identifying the shape and position of  a disease in frequency domain 

by quantifying the and researching the changes on signals is very interesting 

7. New scanners incorporates CT and MR imaging in one machine. Quantifying 

images based on the outcome of these scanners or even researching the raw data 

acquired from them to see if features can be extracted from that level of information 

is something no researcher has done before. 

8. Radiologists zoom in and zoom out, and also track organs through different slices 

of cross sectional images, to find a disease. Possibly, segmentation of the whole 

long and identification of every organ will provide information about pathology and 

their location. Based on that and a gold standard model of the body, finding 

irregularities can be made easier. 

9. Identifying cancer in an early stage is crucial. Radiologists take several scans over 

a period of time (3 times in 6 months) and compare the cancerous region to see if it 
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is getting bigger or metathesizing. Therefore, localizing the cancerous region and 

analysing the area by comparing it with subsequent scans can be an interesting 

application 

10. One could write software on a web-based or mobile/tablet platform that takes all 

the images of a patient and identify locations with possible abnormalities. The 

results should be a decision making approach with appropriate probabilities of a 

disease. Bayesian approach may contribute to better decision making.  

11. The computer aided diagnostic system can be installed on the machine which is 

scanning the patient, and run the analysis in real time. 

12. Parallel processing can be used to speed up the classification and quantification 
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APPENDIX I: DIFFUSE LUNG DISEASES 

Diffuse lung diseases (DLD) constitute a variety of acute and chronic interstitial 

pneumonias. These are diseases of the intralobular and interlobular interstitium. As a 

consequence there is airspace involvement and often secondary involvement of the 

peripheral airways. Many DLDs are rare entities if considered separately, although they 

account for one third of overall morbidity.  

Below is a representation and brief description of: consolidation, cyst, emphysema, fibrosis, 

ground glass opacity, honey combing, nodularity, reticulation, scar and tree-in-bud. 

Consolidation (Figure 1) is recognised by the radiological pattern of air-space 

opacification. The alveolar spaces may be opacified by fluid (heart failure), infective 

inflammatory exudate (pneumonia), blood (pulmonary haemorrhage) and cells (lung 

cancer). Presentation is dependent on the underlying cause. Depending on aetiology, 

symptoms may include shortness of breath, productive cough, haemoptosis, 

fevers/chills/rigors and weight loss, particularly in malignancy. This high attenuation 

pattern obscures underlying interstitial structure and compromises visual assessment of the 

interstitium. 
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Figure 1. CT Image of the lung identified with consolidation 

Pulmonary cysts (Figure 2) are cystic spaces within the lung parenchyma that have a wall 

thickness that measures between 1 and 4 mm. The visual assessment of this pattern is 

analyzed by low attenuation with a well-defined with a measurable wall thickness. 

 

 

Figure 2. CT image of the lung identified with pulmonary cyst 
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Pulmonary emphysema (Figure 3) is defined as the "abnormal permanent enlargement of 

the airspaces distal to the terminal bronchioles accompanied by destruction of the alveolar 

wall and without obvious fibrosis". Chronic obstructive pulmonary disease (COPD)  is a 

combination of emphysema and chronic bronchitis. This low attenuation pattern in 

emphysema does not have a vivid boundary or wall thickness like cyst. 

 

Figure 3. CT image of the lung identified with pulmonary emphysema 

Pulmonary fibrosis (Figure 4) is a "descriptive" term given when there is excess of scar 

tissue in the lung. It can be precipitated by protean causes. Pulmonary fibrosis can be 

localised, affect a segment, lobe or the entire lungs. Fibrosis in the lung is a process that 

occurs in the interstitium. It is therefore also termed interstitial fibrosis. 

http://radiopaedia.org/articles/chronic-obstructive-pulmonary-disease-1
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Figure 4. CT image of the lung identified with pulmonary fibrosis 

Ground-glass opacification/opacity (GGO), Figure 5, refers to a hazy area of increased 

attenuation in the lung with preserved bronchial, and vascular visualization. It is a non-

specific sign with a wide aetiology including infection, chronic interstitial disease and acute 

alveolar disease. 

 

Figure 5. CT image of the lung identified with GGO 

http://radiopaedia.org/articles/lung
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Honeycombing (Figure 6) is a feature of advanced pulmonary fibrosis, also referred as 

usual interstitial pneumonia. CT images demonstrates clustered or layered cystic air spaces 

between 0.3-1.0 cm in diameter, which are usually sub-pleural and basal in distribution. 

Criteria for diagnosis vary but a common standard of triple layering is well recognised. 

 

Figure 6. CT image of the lung identified with honeycombing 

A Pulmonary nodule (Figure 7) is a lung parenchymal abnormality measuring between 1-

30mm in size surrounded by normal or abnormal lung parenchyma. Single or multiple, 

these can signify disease processes affecting either the interstitium or the airspace. They 

http://radiopaedia.org/articles/pulmonary-fibrosis
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can arise from a vast number of pathological entities. Nodules can be centrilobular, random 

or perilymphatic depending on their position in the pulmonary lobule. 

 

 

 

 

 

Figure 7. CT image of the lung identified with pulmonary nodule 

Reticulation (Figure 8) is the thickening of any of the interstitial compartments by blood, 

water, tumour, cells, fibrous disease or any combination thereof. The thickening of the 

interstitium can be reticular, reticulonodular, or linear where the predominant pattern is a 

result of the underlying pathological process. 
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Figure 8. CT image of the lung identified with reticulation 

 

 

Figure 9. CT image of the lung identified with scar 
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Tree-in-bud (Figure 10) is a pattern that demonstrates multiple areas of centrilobular 

nodules with a linear branching pattern. It usually indicates spread of air way infection. 

 

Figure 10. CT image of the lung identified with tree-in-bud 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://radiopaedia.org/articles/centrilobular-lung-nodules-1
http://radiopaedia.org/articles/centrilobular-lung-nodules-1
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APPENDIX II: MINKOWSKI FUNCTIONALS 

Consider region 𝑹𝒊 in an excursion set 𝑷{𝒔𝒖𝒑𝒇(𝒕)𝒕𝝐𝑻 ≥ 𝒖} with 𝒗(𝜽,𝝋) ≡
∆𝑻(𝜽,𝝋)

𝑻

𝝈𝟎
> 𝒗𝒕, 

where 𝝈𝟎 = ((
∆𝑻

𝑻
)
𝟐

)

𝟏

𝟐

, 𝒗(𝜽,𝝋) is the number of maxima and 𝒗𝒕 is the threshold124. 

Complex regions require more parameters to be characterized. Three partial Minkowski 

Functionals (MF) are: the area of the region (𝒂𝒊), counter length (𝒍𝒊) and the number of 

holes (𝒏𝒉𝒊). Number of holes are the Euler characteristic or the number of disjoint 

boundaries. The sum of these three quantities on all disjoint regions of excursion set 

results in MF analysis.  

MF are special geometric quantities because they are translation and rotation invariant 

with intuitive measurements. Also, global morphological properties such as motion 

invariance and additivity of any 𝒅 dimensional patterns can be charectrized with 𝒅 + 𝟏 

MF.  

Global MF of Gaussian field in 2D are124: 

𝑨(𝒗) =
𝟏

𝟐
−
𝟏

𝟐
𝜱(

𝒗

√𝟐
) 

𝑳(𝒗) =
𝟏

𝟖𝜽𝒄
𝒗𝒆

𝒗𝟐

𝟐  

𝑮(𝒗) =
𝟏

(𝟐𝝅)
𝟑
𝟐⁡
(
𝟏

𝟐𝝅𝒄
𝟐
) 𝒗𝒆−

𝒗𝟐

𝟐  

where 𝜱(𝒙) =
𝟐

√𝝅
∫ 𝒆−𝒙

′𝟐
𝒅𝒙′

𝒙

𝟎
 is the error function. Sprectrum dependency is evaluated 

based on the length scale of the field 𝜽𝒄 =
𝝈𝟎

𝝈𝟏
 where  
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𝝈𝟎 =
𝟏

𝟒𝝅
∑(𝟐𝒍 + 𝟏)𝑪𝒍
𝒍

, 

𝝈𝟏 =
𝟏

𝟒𝝅
∑ (𝟐𝒍 + 𝟏)(𝒍 + 𝟏)𝒍𝑪𝒍𝒍 . 

All disjoint regions are identified by a threshold. For positive peaks threshold is 𝒗 > 𝒗𝒕 

and for negative peaks the threshold is 𝒗 < −𝒗𝒕. For every region 𝑹𝒊 MF are: 

𝒂𝒊 = 𝒗𝟏
𝒊 , 𝒍𝒊 = 𝒗𝟐

𝒊 , 𝒏𝒉𝒊 = 𝒗𝟑
𝒊 . 

To compute partial MF following convergence properties should be satisfied124: 

𝒗𝒌𝒑
𝒊 − 𝒗𝒌

𝒊 → 𝟎⁡𝒂𝒔⁡𝒉 → 𝟎 

𝒗𝒌𝒑
𝒊 − 𝒗𝒌

𝒊

𝒗𝒌
𝒊

≈ 𝑶(𝒉𝟐), 𝒌 = 𝟏, 𝟐 

Where 𝒗𝒌𝒑
𝒊 is the kth MF of ith cluster, calculated on pixel values, and 𝒗𝒌

𝒊  is the exact 

value of the function on a continuous field. 

Pixel (𝒌𝟏, 𝒌𝟐) where the maxima satisfies 𝒗𝒌𝟏,𝒌𝟐 > 𝒗𝒕 is considered to be inside the 

region if the pixel value is below 𝒗𝒕 threshold at least in one of the four neighbourhoods 

((𝒌𝟏 + 𝟏, 𝒌𝟐), (𝒌𝟏 − 𝟏, 𝒌𝟐), (𝒌𝟏, 𝒌𝟐 + 𝟏), (𝒌𝟏, 𝒌𝟐 − 𝟏)). To assess the boundary curve 

with the grid lines, an approximation of smoothed boundary curve using a polygon with 

linear interpolation of inner and outer boundary pixels is used124: 

𝜽𝒃 = 𝒌𝟏𝒉 + 𝒉
𝒗𝒕 − 𝒗𝒌𝟏,𝒌𝟐

𝒗𝒌𝟏+𝟏,𝒌𝟐 − 𝒗𝒌𝟏,𝒌𝟐
, 𝝋𝒃 = 𝒌𝟐𝒉 

For 𝝋⁡grid line and 𝜽𝒃 = 𝒌𝟏𝒌,𝝋𝒃 = 𝒌𝟐𝒌 + 𝒉⁡
𝒗𝒕−𝒗𝒌𝟏,𝒌𝟐

𝒗𝒌𝟏,𝒌𝟐+𝟏−𝒗𝒌𝟏,𝒌𝟐
 for 𝜽 grid lines. 𝜽𝒃 and 

𝝋𝒃denote coordinates of the boundary points 𝑿𝒎 = (𝜽𝒃, 𝝋𝒃) on polygon which 

converges to smooth boundary lines as 𝒉 → 𝟎. 
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APPENDIX III: MOST POPULAR CLASSIFIERS IN MEDICAL IMAGING 

There are several classification techniques such as ANN, SVM and K-nearest that were 

used in the state of the art to report classification accuracies based on features that were 

extracted from pathological patterns on the lung. This dissertation has chosen ANN for the 

learning purpose because features are not scaled or heterogeneous. For the same purpose 

SVM and K-nearest could not be useful for classification accuracy assessment because they 

are depend on distance functions (homogeneity of data). The structure and fundamentals of 

these three classifiers are provided below. 

A. Artificial Neural Networks 

Historically artificial neural networks (ANN) are responsible for the revival in machine 

learning. Research into machine learning got a boost because of ANN. Furthermore, ANN 

algorithms were based on concepts found in nature and algorithms were easy to implement. 

They have achieved success in engineering, finance, robotics, medical science and several 

other fields. Nowadays newer machine learning models might be in favor, but still in many 

cases they can do the job just as good as recent procedures.  

Each neuron in an ANN is characterized by an input, a computational component and an 

output. A typical ANN is built with these basic building blocks.  The computational element 

of each neuron is defined by a transfer function which can be tailored to meet a specific 

computational task. For classification problems, a sigmoid transfer function is often used. 

The sigmoid transfer function between the input and output neurons is continuous and 

differentiable. Therefore, finding derivatives of such a function is computationally 

straightforward. The sigmoid transfer function is defined as147 
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𝜎(𝑥) =
1

(1 + 𝑒−𝑥)
 

 

Figure 11 Sigmoid transform function 

To find the derivative of this function37 

𝑑

𝑑𝑥
𝜎(𝑥) =

𝑑

𝑑𝑥
(

1

(1 + 𝑒−𝑥)
) 

=
𝑒−𝑥

(1 + 𝑒−𝑥)2
=
(1 + 𝑒−𝑥) − 1

(1 + 𝑒−𝑥)2
=

1 + 𝑒−𝑥

(1 + 𝑒−𝑥)2
− (

1

1 + 𝑒−𝑥
)
2

 

= 𝜎(𝑥) − 𝜎(𝑥)2 ⇒ 𝜎′ = 𝜎(1 − 𝜎) 

A neuron would be represented as follows37 

 

 

 

 

Figure 12 An example of a neuron 

Where ξ is the input data, 𝑤 is the weight, 𝜎 is the transfer function that we will use for 

this neuron and 𝑂 is the output for this NN. A threshold is always associated with neurons 

which is denoted by 𝜃. The threshold will allow a neuron to fire, if the result of the input 

𝜎 
𝜉 𝛰 

𝑤 

𝜃 
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and its weight exceeds the threshold. To define the output of this function one can we use 

this 

𝑂 = 𝜎(𝜉𝑤 + 𝜃) 

and if the number of inputs are more (𝑛) the equation would be37 

𝑂 = 𝜎(𝜉1𝑤1 + 𝜉2𝑤2 + 𝜉3𝑤3 +⋯+𝜉𝑛𝑤𝑛 + 𝜃) 

 

 

 

 

 

 

Figure 13 An example of 2x3x1 NN 

The representation of a neural network is shown above. The first two neurons are the input 

layer (𝐿), there neurons in the middle are the hidden layer (𝐽) and the final neuron is the 

output layer (𝐾). 

The most commonly used algorithm of ANN is back-propagation technique. Having a set 

of training data sets 𝑡𝑗 and outputs 𝑂𝑗, the error equation would be37 

𝐸 =
1

2
∑(𝑂𝑘 − 𝑡𝑘)

2

𝑘Є𝐾

 

We calculate the rate of change of error with respect to weight 𝑤𝑘 to minimize 
𝛿𝐸

𝛿𝑤𝑗𝑘
𝑙 , and 

we use that to do the gradient decent on the gradient of 𝐸 with respect to the weights. Then 

L J K 
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we propagate that backwards to the network and adjust the weights. The notations below 

are defined for further use: 

𝑥𝑗
𝑙: Input to node 𝑗 of layer 𝑙 

𝑤𝑖𝑗
𝑙 : Weight from layer 𝑙 − 1 node 𝑖 to layer 𝑙 node 𝑗 

𝜃𝑗
𝑙: Bias of node 𝑗 of layer 𝑙 

𝑂𝑗
𝑙: Output of node 𝑗 in layer 𝑙 

𝑡𝑗: Target value of node 𝑗 of the output layer 

To calculate the back-propagated value we encounter two types of weights, the connecting 

the output layer to the hidden layer and the one that goes from the hidden layer to the input. 

So we have calculated the errors based on the target values for each one37: 

1. If the node is an output layer node we calculate the derivative of 𝐸 with respect to 

the weight from 𝑗 to 𝑘 

𝜕𝐸

𝜕𝑤𝑗𝑘
=

𝜕

𝜕𝑤𝑗𝑘
2

1

2
⁡∑(𝑂𝑘 − 𝑡𝑘)

2

𝑘Є𝐾

= (𝑂𝑘 − 𝑡𝑘)
𝜕

𝜕𝑤𝑗𝑘
𝑂𝑘⁡ 

Since the weight between 𝑗 and 𝑘 are related to 𝑘Є𝐾 we will lose the sum after taking the 

derivatives. Output of 𝑘 is just the sigmoid function of the input of 𝑘 

= (𝑂𝑘 − 𝑡𝑘)
𝜕

𝜕𝑤𝑗𝑘
⁡𝜎(𝑥𝑘) = (𝑂𝑘 − 𝑡𝑘)⁡𝜎(𝑥𝑘)(1 − 𝜎(𝑥𝑘))

𝜕

𝜕𝑤𝑗𝑘
⁡𝑥𝑘 

⇒
𝜕𝐸

𝜕𝑤𝑗𝑘
= (𝑂𝑘 − 𝑡𝑘)𝑂𝑘(1 − 𝑂𝑘)𝑂𝑗 

If (𝑂𝑘 − 𝑡𝑘)𝑂𝑘(1 − 𝑂𝑘) = 𝛿𝑘 
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⇒
𝜕𝐸

𝜕𝑤𝑗𝑘
= 𝛿𝑘𝑂𝑗 

If the node is a hidden layer node, we calculate the derivative of 𝐸 with respect to the weight 

from 𝑖 to 𝑗 

𝜕𝐸

𝜕𝑊𝑖𝑗
=

𝜕

𝜕𝑤𝑖𝑗
2

1

2
⁡∑(𝑂𝑘 − 𝑡𝑘)

2

𝑘Є𝐾

=∑(𝑂𝑘 − 𝑡𝑘)
𝜕

𝜕𝑊𝑖𝑗
⁡𝑂𝑘⁡

𝑘Є𝐾

 

=∑(𝑂𝑘 − 𝑡𝑘)
𝜕

𝜕𝑊𝑖𝑗
⁡𝜎(𝑥𝑘)⁡

𝑘Є𝐾

 

=∑(𝑂𝑘 − 𝑡𝑘)𝜎(𝑥𝑘)(1 − 𝜎(𝑥𝑘))
𝜕𝑥𝑘
𝜕𝑊𝑖𝑗

𝑘Є𝐾

 

=∑(𝑂𝑘 − 𝑡𝑘
𝑘Є𝐾

)𝑂𝑘(1 − 𝑂𝑘)
𝜕𝑥𝑘
𝜕𝑂𝑗

⁡ .
𝜕𝑂𝑗

𝜕𝑊𝑖𝑗
=⁡∑(𝑂𝑘 − 𝑡𝑘

𝑘Є𝐾

)𝑂𝑘(1 − 𝑂𝑘)𝑊𝑗𝑘⁡.
𝜕𝑂𝑗

𝜕𝑊𝑖𝑗
 

=
𝜕𝑂𝑗

𝜕𝑊𝑖𝑗
∑(𝑂𝑘 − 𝑡𝑘
𝑘Є𝐾

)𝑂𝑘(1 − 𝑂𝑘)𝑊𝑗𝑘 =
𝜕𝑂𝑗

𝜕𝑊𝑖𝑗
∑𝛿𝑘
𝑘Є𝐾

𝑊𝑗𝑘 

= 𝑂𝑗(1 − 𝑂𝑗)
𝜕𝑥𝑗

𝜕𝑊𝑖𝑗
⁡∑𝛿𝑘
𝑘Є𝐾

𝑊𝑗𝑘 

⇒
𝜕𝐸

𝜕𝑊𝑖𝑗
= 𝑂𝑖𝑂𝑗(1 − 𝑂𝑗)∑𝛿𝑘

𝑘Є𝐾

𝑊𝑗𝑘 

If 𝛿𝑗 = 𝑂𝑗(1 − 𝑂𝑗)∑ 𝛿𝑘𝑘Є𝐾 𝑊𝑗𝑘 then 

⇒
𝜕𝐸

𝜕𝑊𝑖𝑗
= 𝛿𝑗𝑂𝑖 

From the bias term we know 
𝜕𝑂

𝜕𝜃
= 1 and 

𝜕𝐸

𝜕𝜃
= 𝛿𝑙. 

The back-propagation algorithm works as follows: 
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1. Run the network and generate the outputs 

2. for every output node calculate 𝛿𝑘 

3. for every hidden layer node calculate 𝛿𝑗 

4. Then update the weights and biases based on the changes as follows: 

∆𝑊 = −ɳ𝛿𝑙𝑂𝑙−1 

∆𝜃 = −ɳ𝛿𝑙 

Now apply the changes 

𝑊 + ∆𝑊 → 𝑊 

𝜃 + ∆𝜃 → 𝜃 

By continuing this procedure for the rest of our data set, the NN will be trained and proper 

weights would be assigned to connection from the input to output. Based on the final set of 

weights, classification can begin. 

B. Support Vector Machine 

Support vector machines (SVM)148 are used for classifying a set of data in feature space. 

Suppose we have two features 𝑥1 and 𝑥2 and two classes of blue squares and red circles. 

SVM separates’ these two classes by drawing a line between them. There are infinite lines 

that could be drawn. Therefore, SVM is an optimization problem where it finds the optimal 

line to maximize the straight between classes. 

To find the proper hyper plane we first find three support vectors 𝑠1, 𝑠2 and 𝑠3. These are 

vectors that should be a combination of classes where the distances from each other are 

least possible choice. Each vector has a position based on the features. A bias input would 
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be added as the last element of a support vector, i.e. 𝑠1 [
𝑥1
𝑥2
] ⇒ 𝑠1

′ = [
𝑥1
𝑥2
𝑏𝑖𝑎𝑠

] . To find the 

proper hyper plane we solve the following equation based on three parameters𝛽1, 𝛽2 and 

𝛽3
19: 

𝛽1𝑠1
′𝑠1 + 𝛽2𝑠2

′𝑆1 + 𝛽3𝑠3
′𝑠1 = −1 

𝛽1𝑠1
′𝑠2 + 𝛽2𝑠2

′𝑆2 + 𝛽3𝑠3
′𝑠2 = −1 

𝛽1𝑠1
′𝑠3 + 𝛽2𝑠2

′𝑆3 + 𝛽3𝑠3
′𝑠3 = 1 

Each equation is equal to ±1 depending on the supporting vector class. That is because the 

result of the dot product of a vector which is perpendicular to the medium (separator line) 

and a sample data would result in a positive value if the data is over that line. The larger 

the value of this product, the further the point is from the line. And if the result is negative, 

that means the point is behind the line19. In this example we considered red circles as -1 

and blue squares as +1. The equation for finding the hype plane is: 

𝑤′ =∑𝛽𝑖𝑠𝑖
′

𝑖

 

Therefore, the hyper plane is 𝑦 = 𝑤𝑥 + 𝑏, where 𝑤 = [
𝛼1
𝛼2
] and 𝑏 is the offset created from 

the bias 𝑤′ = [
𝛼1
𝛼2
𝑏
]. 

So we need to come up with a value for the bias and a kernel or similarity function. If we 

decide not to use any kernel then we have linear kernel, such as the method explained 

above. When we have large number of features, and the number of training examples is 
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small, we can choose a linear kernel and a bias value of one. In this way we avoid the 

complexity of a kernel function by over fitting the prediction19.  

But if we decide to have kernel function (non-linear), then a Gaussian function can be 

useful: 

 

𝑓 = exp⁡(−
||𝑥1−𝑥2||

2

2𝜎2
). 

 

 This choice is made when the number of features is small and we have a large data set. 

Feature scaling is an important pre-analysis method when using Gaussian kernels. This is 

because, when finding the norm ||𝑥1 − 𝑥2||
2
(magnitude of x), since features are different, 

one feature might result in a big value and therefore, its norm value could dominate other 

results. So by scaling, we make sure other features play their role as they should. 

 

 

 

 

 

 

 

Figure 14 Support vector linear classification 

 

𝑋1 

𝑋2 

𝑠1 

𝑠2 

𝑠3 
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C. K-Nearest Neighbor 

Suppose we have a data set 𝑥𝑖  as vector 𝑑 and 𝑥Є𝑅𝑑 and two classes 𝑦𝑖Є{0,1}. We want 

to use KNN to find the corresponding class of a new data 𝑥. The main idea of this algorithm 

is to take 𝑥 and classify it based on the majority vote of 𝐾 nearest points in the training 

data. 

Suppose we have two classes of data, green circles and red triangles. A new data point is 

among them which is shown as Blue Square. We do not know the class it belongs.  

 

 

 

 

 

 

 

Figure 15 K-Nearest neighbour classifier 

Starting with 𝑘 = 1, the Euclidean distance between 𝑥𝑖 and 𝑥𝑗 which are two different data 

points is  

(𝑥𝑖 , 𝑥𝑗)
2
= ||𝑥𝑖 − 𝑥𝑗||

2

= ∑(𝑥𝑖𝑘

𝑑

𝑘=1

− 𝑥𝑗𝑘)^2⁡ 

and we look for only one data which closer to our new data point as if we include other 

data points in a circle where the square is the center. In this case the square belongs to the 

𝑥1 

𝑥2 
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circle class since it is closer to it. But if we increase the number of 𝐾 neighbors, our decision 

might change. For 𝐾 = 3, there is one circle and two triangles close to the square data point, 

so the proper class should be a red triangle. So deciding on the number of neighbors is an 

important factor in this type of classification that could be overcome by cross-validation. 

To find the proper class based on the number of neighbors close to it, a simple probabilistic 

problem could be solved by calculating the fraction of points 𝑥𝑖 in 𝐾 nearest points of 𝑥 

such that 𝑦𝑖 = 𝑦 and 

𝑦̂ = 𝑃(𝑦|𝑥, 𝐷) 

where 𝑦̂ is the probabilistic of a class and 𝐷 is the data set (𝑥𝑖, 𝑦𝑗). 
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