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ABSTRACT 

The statistical properties ofT-shaped Ar3 energy eigenvalues and eigenfunc­

tions are investigated and are used to characterize the system as quantum chaotic. 

The statistical properties of quantum chaos suggest a statistical theory of quantum 

dynamics. This statistical quantum dynamics is proposed as an alternative to full 

scale numerical simulation of quantum dynamics which requires the manipulation 

of very large matrices. Sparse matrix technology has made the latter computations 

more tractable; however, a simple alternative based on statistical approximations is 

still very desirable. The newly proposed statistical theory is tested against sparse­

matrix based numerical simulation of the T-shaped Ar3 inversion dynamics. The 

unsuccessful results are rationalized in terms of correlations between eigenfunctions 

not represented in the statistical theory. 
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PART I 

Introduction 

Fully quantum mechanical studies of chemical reactions are usually an ide­

alistic enterprise. The description of the simultaneous and frequently inseparable 

motions of atoms and molecules by standard quantum mechanical procedures is a 

formidable challenge which is often simply out of reach. New methodologies like 

the discrete variable representation have seen the beginnings of an ab initio quantum 

chemistry for simple chemical reactions. However, it is the purpose of this work to 

develop an alternative approach to quantum molecular dynamics which avoids ma­

nipulations of a Hamiltonian matrix. Investigations of quantum systems have found 

certain characteristic statistical properties of the eigenvalues and eigenfunctions which 

are indicative of the dynamics for the classical analogue. In principle, these properties 

permit evaluation of dynamical observables which is more computationally efficient 

than the standard methods. 

The difficulty with quantum dynamics arises from the very large computa­

tional scale involved when dealing with large matrices. Even with the accelerating 

trend of high speed and mass storage computers, the demands of quantum molecular 

dynamics are still formidable for systems containing more than a few atoms. The 

last decade has seen substantial progress in the ability to carry out accurate quantum 

mechanical calculations. Light and co-workers [LHL-85) have lead the way with dis­

crete variable representation methods which offer many advantages over traditional 

methods. The discrete variable representation finds easy to construct Hamiltonian 
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matrices which are very sparse. This latter property considerably simplifies the result­

ing linear algebra calculations for the eigenvalues and eigenfunctions. Nevertheless, a 

full dimensional quantum mechanical treatment of molecular dynamics is still a time 

and memory expensive venture. A new "quantum statistical mechanics" is proposed 

as a means of extracting dynamical observables. This approach has its origins in the 

behaviour of the dynamics for the classical counterpart to a quantum system. 

The terms "regular" and "chaotic" are used to describe two qualitatively 

distinct types of dynamics. In classical mechanics, the criteria for classifying the 

dynamics are well understood, but the same cannot be said for quantum mechanics. 

The characterization of quantum dynamics has mainly been statistical in nature; fo­

cusing on the properties of the energy eigenvalues and eigenfunctions. The results 

of various studies suggest universal characteristics in the statistical properties of the 

energy eigenvalues and eigenfunctions which can be related to the associated classi­

cal dynamics. Specifically, the energy level fluctuations in a quantum spectrum are 

described by a Poisson or Wigner distribution for regular or chaotic motion, respec­

tively, of the classical analogue. The eigenfunctions corresponding to a classically 

chaotic system were conjectured by Berry [Be-77] to be independent Gaussian ran­

dom functions of position with a spatial pair-correlation function expressable as a 

Bessel function. The quantum study of a classically chaotic system is commonly re­

ferred to as quantum chaos. Research in this area has been primarily devoted to the 

understanding of the quantum manifestations of classical chaos. The next logical step 

would be to ask the question: if a quantum system exhibits the characteristic statis­

tical properties corresponding to classically chaotic dynamics, can this knowledge be 

used to advantage? 

A study ofthe inversion process exhibited by the T-shaped trimer, Ar3 , is pre-
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sen ted here as its corresponding classical dynamics is strongly chaotic [BLB-88]. Part 

II begins with a description of the T -shaped Ar3 quantum system. The Hamiltonian 

is constructed in the discrete variable representation with the symmetry properties of 

the molecule exploited so as to reduce the computational scale of the matrix diago­

nalization for the eigenvalues and eigenfunctions. The predicted statistical properties 

are assessed in Part III by computing the successive level spacing distribution of the 

energy spectrum along with the spatial distribution and the spatial pair-correlation 

function of the energy eigenfunctions. In Part IV, the inversion process is charac­

terized by its survival probability. The inherent chaos of the quantum dynamics is 

used as a tool to develop a statistical model to the survival probability. Although the 

statistical model falls short of reproducing the observed quantum survival probability, 

the insight gained into the statistical theory should guide future work towards a more 

viable method. 
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PART II 

T-Shaped Ara 

The trimer of argon, a closed shell atom, is held together only by Van der 

Waals' interactions. As a result, Ar3 is not amenable to treatment by separable or 

adiabatic approximations. The trimer is restricted to a T -shaped geometry which 

determines a two degree of freedom Hamiltonian system. 

11.1 The Hamiltonian 

In terms of mass-scaled coordinates (x, y), the two degree of freedom Hamil-

tonian is given by 
"2 "2 " p p " 

H(x,y) = ; + ; + V(x,y) (1) 

This Hamiltonian permits a simple intramolecular inversion process wherein the equa-

torial argon atom passes between the other two atoms, as depicted in Figure 1. From 

the diatomic Ar2 potential of Aziz and Slaman [AS-86], a three body potential is con-

structed using only two body interactions. The inversion threshold, Ethru, is given 

by the Ar3 saddle point energy of 140.38K [1], and the dissociation energy, Ed; •• , is 

286.448K [1]. 

11.1.1 The Discrete Variable Representation 

A discrete variable representation (DVR) is used to construct the Hamilto­

nian matrix. The DVR [LHL-85] is a grid-point representation with the following 

advantages; the Hamiltonian matrix elements are trivially evaluated with none of the 

usual integral evaluations, and more importantly, a DVR produces sparse matrices. 



FIGURE 1. The inversion process ofT-shaped Ar3 wherein one 
of the argon atoms is constrained to move along the perpendicular 
bisector of the bond associated with the other two atoms. This 
constrained system has two degrees of freedom, q1 and q2. Mass­
scaled coordinates are constructed via z = q2..;mq;, y = q1~, with 
the reduced masses m9, = 2mAr/3 and m9, = mAr/2. 

5 
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The latter characteristic greatly simplifies Hamiltonian matrix diagonalization. The 

elements of the kinetic and potential matrices result from a comparison of two points, 

i = (x;,y;) and j = (xj,Yj), taken from a specified grid in configuration space. 

In all DVR methods the potential energy matrix is taken to be diagonal, 

V.,j = V(x;,y;),(x;,y;) 8;,j (2) 

rr .. - (V(x~,y1) 
Vi,)- . 

0 0 

where {(xi, Yi) }j=1 is the set of configuration space grid-points. For a uniformly spaced 

grid the associated basis functions are the Fourier functions [CM-92] 

. (,.[x-x;]) sin(~) 
I. I I sm .O.x .O.y <X, y t >=<X X;>< Y Yi > = ( ) ( ) 

7r X - X; 7r y - Yi 
(3) 

where t:..x, t:..y are the grid spacings in the respective directions. Note that these 

functions are L 1-normalized. The potential energy matrix element in terms of the 

L2-normalized basis < xlx; >2 = v"lU < xlx; > is given by 

(4) 

and is truly diagonal only in the limit of an infinite grid as 

lim (xlx;) = 8(x- x;) 
.O.x-o 

(5) 

If the potential varies slowly over the range of integration, then the simple multipli­

cation operator V(x,y) = V(x,y) can be taken outside the integral in equation (4) to 

give a diagonal matrix in the orthogonal basis, as integration of (xlx;) (xlxi) = 0 for 

i # j. 

The primary novel feature of a DVR is that it gives an extremely simple 

kinetic energy matrix. The kinetic energy operator contains second order differen-

tials which are approximated by an infinite order finite difference equation. In one 
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i=j 
i:f:-j 
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(6) 

where the only parameter involved is the grid spacing, ~x. The key to the simplicity 

of the kinetic energy operator in the discrete variable representation is that it is 

diagonal in all but one direction; specifically, 

t, = T., ., . 8y y. ,, J ., 3 (7) 

T(:: 1 ,xt) 1(x,,xn) 0 0 0 0 

1(xn,XI) 1(xn,Xn) 0 0 0 0 

0 0 0 0 
T.,= 

0 0 0 0 
0 0 0 0 T(:: 1 ,xt) T(::, ,xn) 

0 0 0 0 T(::n,XI) T(::n ,::n) 

Ty = Ty. y . 8.,. :; . 
I J J' I I J 

(8) 

T(y, ,y,) 0 0 T(yi,Yn) 0 0 

0 0 

0 0 
0 0 T(y,,yt) 0 0 T(YioYn) 

Ty = 

T(Yn,YI) 0 0 T(YnoYn) 0 0 

0 0 

0 0 
0 0 T(yn,yt) 0 0 T(Yn ,yn) 

The total kinetic energy is clearly a simple and sparse matrix. 
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One potential concern about the use of an infinite order expression for the 

kinetic energy operator is that it corresponds to an infinite grid. The decay of the 

off-diagonal matrix elements is relatively slow, it goes like ( i- j)- 2 , as seen in equation 

(6). Since real calculations must be done on a finite grid, the convention of deleting 

grid-points where the wavefunction is negligibly small (in energetically inaccessible 

regions) is adopted. This corresponds to placing the wavefunction in a box whose 

size and shape is dictated by the grid-points retained and forcing the wavefunction 

to vanish at all other points. The restriction of the grid size is accomplished by 

introducing an energy cutoff Emax where only grid-points for which V(x;, y;) :::; Emax 

are retained. This procedure generates a grid which is automatically adapted to 

the shape of the potential energy surface. Wavefunctions for states with energies 

sufficiently below Emax will be negligibly small at the discarded grid-points; however, 

the higher energy states will have the tail of the wavefunction prematurely curtailed. 

This error in the wavefunction is minimized by enlarging the grid beyond the Emax 

potential energy contour. For a grid-point found with V(x;, y;) > Emax, the minimum 

imaginary action W; is calculated along the steepest descent path to the contour 

defined by Emax· The grid-points for which W; > Wmax are retained where Wmax is 

chosen such that exp ( -Wiim .. ), which resembles a wavefunction value, is a sufficiently 

small number. In this manner, additional grid-points are included beyond the Emax 

potential energy contour with the majority occurring in regions where the potential 

does not change rapidly, as seen in Figure (2) . 

II.1.2 Symmet ry 

The potential energy is symmetric about x = 0; V(x,y) = V(-x,y). This 

symmetry can be exploited to reduce the computational scale of the Hamiltonian 

matrix diagonalization. Since the Hamiltonian operator ii has the same symmetry as 
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FIGURE 2. Potential energy contour for V(x;,yi) = Ema:r = 286K. 
The grid-points beyond this contour are retained if the value of the 
imaginary action W; along the steepest descent path to the Ema:r 

contour is less than Wma:r. The majority of the additional grid-points 
occur in the regions where the potential does not vary rapidly, i.e., 
regions where x and y are large. 

9 
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the potential energy operator (the kinetic energy operator is symmetric with respect 

to any translation or reflection) then the wavefunctions, '1/;, must be eigenfunctions of 

the reflection through x = 0 operator, R 

R,P = r,P eigenvalues r = ± 1 (9) 

Thus, the unique values of the wavefunction ,P(x,y) are contained on x ~ 0 (or x ~ o) as 

its reflection '1/;( -x, y) is either the same or opposite in sign. All information about the 

wavefunction can be obtained by constructing the Hamiltonian in a DVR having only 

grid-points with x; ~ 0. The computational scale has now been effectively reduced to 

almost half the number of grid-points. 

The symmetry in the Hamiltonian determines two types of real wavefunc­

tions; a symmetric ,'I/;', and an anti-symmetric ,,pa. The symmetric wavefunction 

determines an eigenvalue r = 1 for the reflection operator, while the anti-symmetric 

wavefunction determines the eigenvalue of r = -1. At energies E < Ethre. the height of 

the isomerization potential barrier almost separates the system into two potential well 

problems, each determining its own set of eigenvalues and eigenfunctions. Since these 

two potential wells are symmetric, the two sets of eigenvalues occur at almost the 

same energies resulting in nearly degenerate pairs of eigenvalues at below threshold 

energies for the total system. To explain the degeneracy in the below threshold paired 

energy levels and its disappearance at higher energies, consider the energy difference 

between the symmetric and anti-symmetric eigenvalues, 

(10) 

Both the symmetric and anti-symmetric energies can be expressed in the form 

(11) 
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Because of the symmetry in the potential energy, the lh symmetric and anti-symmetric 

eigenfunctions are almost identical except in the small interval n about x = 0. Thus, 

the only contributions to tlE will occur in this interval. Potential energy contributions 

to Ej. and Ei. cancel because 

(12) 

therefore, only the kinetic energy gives rise to the energy differences. In particular, 

only the ;.,
2

2 type contribution need be considered since tf)· and tf)• have similar 

relative curvatures in the y direction. Because tf)· changes sign upon going through 

x = 0, it is approximated as linear in the n interval, thus 

. , . . , . . fP . 
1jl• H 1jl• -+ 1jl• T 1jl• -+ -1/l• - 2 1jl• = 0 ox 

As tf)· has relative postive curvature in the n interval, then 

and the energy difference tlE is 

(13) 

(14) 

(15) 

The splitting between the ph symmetric and anti-symmetric levels increases as the 

energy increases because of the increasing relative positive curvature in tjJi· in the n 

interval about x = 0. 

Constructing the Hamiltonian in a DVR using grid-points with x; 2: 0 to 

determine both the symmetric and anti-symmetric levels could lead to mixing in 

these states when they are close in energy. This mixing problem is avoided by using 

a new "symmetrized" DVR basis < x, yii' > defined in terms of the usual DVR basis 

functions < x, yli > as 

< x, yii' > = K { < x, yii > ± < x, YIRi >} (16) 
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where Ri is the point i = (x;, y;) reflected through x = 0, K is a normalization con-

stant, and < x, yli > is defined as in equation (3). This symmetrized basis requires 

that the Hamiltonian is constructed only on grid-points having x; ~ 0 such that the 

dimensionality of the Hamiltonian is equal in the two basis sets. The advantage of 

the symmetrized basis is that it block diagonalizes the Hamiltonian into a symmetric 

Hamiltonian H8 , which gives the symmetric eigenvalues and eigenfunction co-efficients 

at each of the grid-points and an anti-symmetric Hamiltonian Ha, which gives the 

anti-symmetric eigenvalues and eigenfunction co-efficients. These two blocks can be 

diagonalized separately, effectively eliminating the mixing problem. Since the Hamil-

tonians are very sparse, Lanczos-type or iterative linear algebra methods are ideally 

suited to the eigenvalue analysis. 

11.1.3 Normalization 

Let q be the co-ordinates of a quantum system. The state of the system is 

described by the wavefunction, q>i(q). The probability that a measurement performed 

on the system will find the values of the co-ordinates in the element dq of configuration 

space is I<I>i(q)l2 dq. The sum of these probabilities must be equal to unity 

(17) 

this is called the normalization condition. In the case of a discrete spectrum an 

arbitrary state q>i can be represented by the series 

(18) 
n 

where an are constants and the t/Jn(q) are basis functions. The normalization condition 

is now given by 

L)a~)* a~ = b;,j (19) 
n 
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if the ¢n(q) are orthonormal, i.e., 

1: dq </;~(q) </Jm(q) = Dn,m (20) 

Now, the symmetrized DVR basis function < x, yli' >, while orthogonal but 

not orthonormal, is defined such that the value of the wavefunction at a grid-point 

is given in terms of the co-efficient at that grid-point. Namely, the expansion over 

the DVR grid-points i = (x;, y;) having x; 2: 0 in terms of the symmetrized DVR basis 

functions is 

1/?(x,y) = L d; < x,yli' > (21) 
i,{:t:;~O) 

where 

1
., _ { -h2 {< x,yli > ± < x,yiRi >} x; =/= 0 <x,yz >- v~ 

<x,yli> x;=O 
(22) 

with < x, yli > defined in equation (3); at a grid-point (x1, y,), 

1/)(xi,YI) = L d; ~ { < x1,ydi > ± < x1,ydRi >} + L d; < x1,ydi > 
i,{x;>O) 

2 
i,{:t:;:O) 

(23) 

Since "'' -x; E N then 
~., ' 

sin["(.,,-.,,)] c5 
--~-~-"'~~ - .,,,.,, 

1r(x1-x;) .6..x 
(24) 

and the expansion of the DVR basis functions < x1, Y1li > in equation (23) becomes 

.tJ( ) L d; { c5.,,,.,, c5y,,y; ± c5.,,,ft.,, 0y,,Ry;} + """" _i c5.,,,.,, c5y,,y; 
o/ XI Yl - -- ---- ---- ~ c; ----' - . . J2 .6..x .6..y .6..x .6..y . ' .6..x .6..y 

•,(x,>O) •,{:t:;=O) 

(25) 

the condition x1 = Rx; is never satisfied, therefore the second term of the x; > 0 sum 

in equation (25) is zero. The value of the wavefunction at a grid-point is now given 

by 

1/?(xl,y,) = { T2~:~y XI> 0 

~:t:~y XI= 0 
(26) 

where c{ is the co-efficient to the /h eigenfunction at the grid-point l = (x1, Yl)· The 

normalization condition for tf) (x, y) expanded in the symmetrized DVR basis becomes 

1
00 _j k 

·• k c;c. 
dx dy t/? (x, y) 1/! (x, y) = I: .6..~~ = Dj,k 

-oo i,{:t:;~O) Y 
(27) 
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the details of the integration are presented in Appendix A. The co-efficients { c{ }i=1 

resulting from the matrix diagonalization must then be scaled such that 

L (c{)2 = D.xD.y ' (28) 
i,(x;~O) 

so that the wavefunction tP (x, y) expanded in terms of the symmetrized DVR basis 

satisfies the normalization condition. 

11.2 Energy Eigenvalues and Eigenfunctions 

The energies and wavefunctions for the bound states of T -shaped Ar3 are 

computed for energies up to 286K, where dissociation of the trimer occurs at 286.448K. 

The Hamiltonian is evaluated in the discrete variable representation with the sym-

metry of the potential energy utilized in order to reduce the computational burden 

of the two degree of freedom problem. 

As a function of the grid spacing D.x, the convergence study of the energy 

levels is shown in Table 1. 

D.x (ms-Bohr) 

j, (Ej. (K)) 0.25(0.034) 0.20(0.027) 0.15(0.016) 0.10(0.013) 

1 (44.96K) 7.6 X 10-2 -2.9 X 10-2 -2.2 X 10-4 -3.0 X 10-7 

8 (142.64K) 1.2 X 10-2 1.1 X 10-2 -7.5 X 10-4 2.1 X 10-6 

15 (165.02K) 3.3 X 10-2 -5.9 X 10-3 -2.9 X 10-3 2.9 x 10-6 

25 (191.53K) 1.3 X 10-2 4.4 X 10-3 -2.8 X 10-3 7.3 X 10-7 

50 (237.46K) 6.6 X 10-2 3.8 X 10-3 -1.4 x 10-3 -2.9 X 10-5 

65 (259.63K) 9.7 X 10-2 1.7 X 10-2 2.0 x 10-3 -4.2 X 10-4 

TABLE 1. Relative error E;E~E;, of the symmetric energy levels as ,. 
a function of the grid spacing in the x-direction. The "exact" eigen­
value Ej. is taken from the D.x = 0.05 DVR grid. The corresponding 
anti-symmetric eigenvalues show the same convergence properties. 
The grid spacings are in mass-scaled units [1], but the corresponding 
value in standard units (nm) is shown in parentheses. For compar­
ison, the equilibrium configuration in the potential well occurs at 
x = 2.8 ms-Bohr or 0.38 nm. 
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Table 1 shows that a smaller grid spacmg is required to achieve a given level of 

accuracy for the higher quantum states. This result is not unexpected because the 

higher states have a shorter minimum de Broglie wavelength. De Broglie's hypothesis 

states that an object traveling with velocity v ( v =pin mass-scaled units) is associated 

with the wavelength 

h 
Amin =­

p 

The minimum de Broglie wavelength corresponds to a maximum kinetic energy, 

(29) 

(30) 

If the kinetic energy is concentrated mainly in one direction, say the x-direction, then 

the wavelength of the wavefunction in the region of the bottom of the potential well 

where V::::: 0 is 

h 
Amin =­

Px 
E -- p; ' h 

-+ 2 -+ -"min = V2lf (31) 

The accuracy in the quantum state can be expressed in terms of the number of grid-

points per minimum de Broglie wavelength, 

A min 
1J= -­

~X 

Substituting the expression for Amin from equation (31), then 

h 

(32) 

(33) 

Table 2 shows the relative error of the energy levels as a function of the 

number of grid-points per minimum de Broglie wavelength. To achieve a relative 

accuracy of 10-3 to 10-4, then the rapidly oscillating part of the quantum state should 

be represented by 2 to 3 grid-points. The estimate of the number of grid-points in 

the x-direction is actually too low because there is energy partitioned into the y-

direction, resulting in a lower energy term in equation (33). This method of choosing 
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an appropriate grid spacing for the energy range of interest turns out not to be the 

most efficient. While it represents the rapidly oscillating part of the wavefunction 

with sufficient grid-points to determine a desired level of accuracy in the high energy 

states, there is oversampling (too many grid-points) of the wavefunction in regions 

where it does not vary as rapidly. 

.6.x (ms-Bohr) 

j. 0.25(0.034) 0.20(0.027) 0.15(0.016) 0.10(0.013) 

1 10- 2 : 2.6 10-2 : 3.3 10-4 : 4.4 10-7 : 6.6 
8 10-2 : 1.5 10-2 : 1.9 10-4 : 2.5 10-6 : 3.7 
15 10-2 : 1.4 10-3 : 1.7 10-3 : 2.3 10-6 : 3.5 
25 10-2 : 1.3 10-3 : 1.6 10-3 : 2.1 10-7 : 3.2 
50 10-2 : 1.2 10-3 : 1.4 10-3 : 1.9 10-5 : 2.9 
65 10-2 : 1.1 10-2 : 1.4 10-3 : 1.8 10-4 : 2.8 

TABLE 2. Relative error of the symmetric energy levels as a func­
tion of the number of grid-points per minimum de Broglie wavelength 
in the x-direction (relative error : 17). The grid spacings are in mass­
scaled units [1], but the corresponding value in standard units (nm) 
is shown in parentheses. 

In effect, a uniform grid with a grid spacing chosen by the above method produces 

a more computationally intensive problem than by using a non-uniform grid where 

the grid spacing is determined by the rate of oscillation in the high energy states. A 

non-uniform grid growing procedure is now under consideration, and its benefits will 

be realized in similar calculations on heavier atoms and especially in semi-classical 

limit calculations (n.--+ 0). In the latter case, the grid spacing must be reduced by the 

same factor as n in order to achieve the same level of accuracy. 

Figures ( 3) and ( 4) show contour plots of selected wavefunctions for the T­

shaped Ar3 system. Figure (3) clearly illustrates the near degeneracy of the below 

threshold eigenstates. 
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FIGURE 3. Wavefunction contours for the symmetric eigenstate 
t/)• with the corresponding closest in energy paired anti-symmetric 
eigenstate t/)· : a) j, = 2 (Ej, = 77.74K), b) j, = 6 (Ei. = 129.08K). 
The solid contours correspond to a positive phase in the wavefunc­
tion, and the dotted contours correspond to a negative phase in the 
wavefunction. 
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FIGURE 4. Wavefunction contours for the symmetric eigenstate 
,pi· with the corresponding closest in energy anti-symmetric eigen­
state .,pka : a) j. = 15 (Ej. = 165.02K), b) j. = 50 (Ej. = 237.46K). 
The solid contours correspond to a positive phase in the wavefunc­
tion, and the dotted contours correspond to a negative phase in the 
wavefunction. 
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PART III 

Quantum Chaos ofT-Shaped Ar3 

The search for quantum manifestations of classical chaos has attracted much 

interest in recent years. While the criteria for classical chaos are well established, 

much less is known about quantum chaos. Investigations into quantum chaos typically 

focus on statistical properties of energy eigenvalues and eigenfunctions [Be-77, BG-

84]. Numerical evidence indicates certain universal characteristics of these statistics 

in the case of quantum analogues to classically chaotic systems [LSW-92, DG-86, 

BGS-84]. 

111.1 Energy Eigenvalue Statistical Properties 

Is classical chaos manifest in the energy eigenvalue spectrum? It has long 

been observed that the energy eigenvalue spectra of quantum analogues to classically 

chaotic systems are qualitatively different from the "regular spectra" which corre-

spond to regular classical dynamics. Specifically, the "chaotic spectra" exhibit level 

repulsion - small successive level spacings are very rare, in contrast to the frequent 

near degeneracies seen in the regular spectra. Berry and Tabor [BT-77] showed that 

the successive level spacing distribution for a regular spectrum is described by a 

universal Poisson distribution 

( ) 
exp ("D") 

Pp s = ---'-'~ , D 
(34) 

in the semi-classical limit. Here, s is a spacing in an appropriately scaled form of 

the spectrum and D is the associated mean level spacing. The scaled spectrum is 
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constructed so as to remove the bias introduced by systematic variations in the level 

density. The resulting mean level density is uniformly unity. In this case, the Poisson 

distribution is simply exp ( -s). 

Quantum chaos has been identified with another quite different scaled level 

spacing distribution. In particular, systems which have strongly chaotic classical 

analogues typically have a Wigner successive level spacing distribution [Wi-56], 

'IrS (-1rs2
) Pw(s) = 2 exp -

4
- (35) 

This is the distribution expected for eigenvalues of a Gaussian orthogonal ensemble 

of random matrices. 

The details of the energy level scaling needed to reveal the universal spacing 

distributions are examined in the following section. Specifically, the scaled spectrum 

is given by N(E;) where N(E) is the "average" cumulative density of states. 

111.1.1 Cumulative Density of States 

The average cumulative density, or number of energy levels below the energy 

E is expressed as 

(36) 

where 

1 100 100 
p(E) = h2 -oo dpx dpy -oo dx dy o(E- H) (37) 

is Weyl's semi-classical formula for the average density of eigenstates per unit interval 

of energy; H is the classical Hamiltonian. The notation ,.. denotes an ensemble 

average value. Substitution of the classical analogue to the T -shaped Ar3 system 

Hamiltonian from equation (1) permits direct integration over Px and Py, resulting in 

- 27r100 p(E) = h 2 -oo dx dy 6(E- V(x, y)) (38) 
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where e(E- V(x, y)) is a Heaviside function defined by 

0(E-V(x ))={1 E>V(x,y) 
,y 0 E<V(x,y) (39) 

Substitution of equation (38) into equation (36) and discretizing the integral to the 

DVR grid determines the average number of energy levels below the energy E for the 

T -shaped Ar3 system; 

N(E) = !: tl.xtl.y {. L 2[E- V(x;,y;)]+ +. L ~ [E- V(x;,y;)]+} (40) 
•,(x;>O) •,(x;=O) 

where the notation [ " ]+ means that only grid-points for which E- V(x;, yi) > 0 

contribute to the sums. 

The actual quantum density of eigenstates consists of a series of 8-functions 

p(E)=Tr[8(E-H)]= L8(E-Ej) 
j 

leading to the cumulative density of eigenstates given by 

N(E) = 1E dE' p(E') = ~ 0(E- Ej) 
1 

( 41) 

(42) 

Figure (5) shows the stair-case like function N(E) and the continuous function N(E) 

for the T-shaped Ar3 system. The exact function N(E) is fitted very closely by the 

smoothing approximation N(E). The disagreement at high energies can be attributed 

to the incomplete convergence of the high energy states. 

The symmetry in the T-shaped Ar3 Hamiltonian divides the spectrum into 

two parts; the symmetric and the anti-symmetric energy levels. As already seen, these 

different symmetries arise from different boundary conditions associated with energy 

eigenfunctions defined on the desymmetrized space, x 2: 0. The average cumulative 

densities N,(Ej.) and Na(EjJ are evaluated for each spectrum separately in terms of 

appropriate semi-classical approximations to the quantum density of states, p(E). 
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FIGURE 5. The cumulative density of states N(E) (solid) and 
its semi-classical approximation N(E) (dashed) for the T-shaped Ar3 

energy spectrum. 
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The quantum mechanical trace of equation ( 41) is performed on the unique 

values of 1/;(x;,y;) which occur on grid-points having x; 2: 0 (or x;:::; o). Inserting the 

Fourier representation of the 8-function, the quantum density of states becomes 

[
1 loo (i(E-ii)t)] 

p(E) = Tr h -oo dt exp h (43) 

The trace is evaluated over the complete set of position states 1 i > defined at each 

DVR grid-point (x;, y;) 

In the semi-classical limit, the matrix element between 1 i1 > and 1 i; > can be written 

as 

. I (iii t) 
1

. -i "" < LJ exp T t; > = h LJ 
. path8 I a2s I (· [s J-t1r]) det 8i J 8i; exp z h - 2 (45) 

where J1. is the Maslov index, S is the action along the path connecting I i1 > at 

(xJ,YJ) and li; >at (x;,y;), and the sum is over all possible paths. Only two paths 

are considered; the direct and the one bounce paths. The direct path determines the 

action Sd along a straight line between I i1 > and I i; >; this term gives the majority 

contribution to the sum. The one bounce path determines the action Sob along the 

straight line between I i1 > and I i; >, where I i1 > is the reflection of the position state 

I i1 > through x = 0. These two paths are illustrated in Figure (6). 

Because the trace is evaluated only on half of the configuration space , the 

imposed hard wall at x = 0 determines the corrections to the density of states for the 

separate spectra. Specifically, the one bounce path effects a positive contribution to 

the symmetric density of states as Jl.ob = 4, while Jl.ob = 2 gives a negative contribution 

in the anti-symmetric case. The direct path has a Maslov index of zero. The semi-
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FIGURE 6. The action along the direct and one bounce paths 
between position states I i1 > and li• >. 
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classical approximation to the density of states is now given by 

Psc(E) = Pd(E) + Pob(E) 

= - dt exp _z - dx dy -z 1 1oo ( 'Et) 1oo 1oo { · 
h -oo 1i o+ -oo h ( . [sd f-ld7r]) exp z h- -

2
-

-z 
+­

h 

(46) 

The action along the direct and the one bounce paths is determined using 

Sd = [ (xt ~/;)2 

+ (Yt ~/i)2 

_ (V(xt,Yt); V(x;,Yi)) t] 

I(%J·Ytl=(.r;,Y;)=(.r,y) (
47

) 

= - V(x, y) t 

and 

S - [ (Xj- x;)2 (Yj- yi)2 -
ob- 2t · + 2t 

( V(Xj, Yj); V(x;, y;)) t] 
I (.rj ·Ytl= (.r, ,y;)= (.r,y) (48) 

(2x)2 

= 2t'""" - V(x, y) t 

if it is assumed that V(x1 ,y1 ) ~ V(x1,y1). The determinant terms in equation (46) are 

evaluated for both paths to find 

[)2S 
det~= 

ULJ Uti 

and the density of states is 

P•c(E) = Pd(E) + Pob(E) 

as 
OXJ ox; 

as 
VXJ oy; 

as 
8yt ox; 

as 
8yt 8y; 

- { 1/t
2 

- -1/t2 

= h; 1: dt ~ 1~ dx 1: dy exp ( i[E- ~(x, y)]t) { 1 ± exp ( 2:~
2

)} 

(49) 

(50) 

From the "Tables of Fourier Transforms and Fourier Transforms of Distributions" 

[Ob-90], the integral over time is 

1
00 d ! (i[E- V(x, y)]t) _ 27ri[E- V(x, y)n -oo t t exp 1i - f(l) (51) 

where [E- V(x, y)n = e (E- V(x, y)) and the gamma function f(l) = 1. The direct 

term is now given by 

27r 100 100 Pd(E) = h2 dx dy 0(E- V(x, y)) 
o+ -oo (52) 
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which is equal to equation (38), except that the dx integration limits differ because 

the trace was evaluated only on half of the configuration space. The one bounce term 

can be expressed as 

-i 100 

1 1oo 100 

(i[E- V(x, y)]t) Pob = (±1) -h2 dt - dy dx exp 1i -oo t -oo o+ 
(53) 

Rapid oscillations of the factor exp e:~2 ) cancel all but small X contributions, thus 

V(x, y) is approximated by V(O, y) and the resulting Gaussian integral over xis evalu-

ated to find 

_ ( 1) -i 1oo d 1 1oo d (i[E- V(O, y)]t) 1 fi{E·1rt1i Pb-±- t- yexp --
o h2 -oo t -oo 1i 2 2 

The integration over time is performed as for the direct term, which results in 

1 100 1 Pob = (±1) -- dy --;::==== 
2..J2h -oo j[E- V(O, y)]+ 

Pulling both terms together, the density of states is now given by 

Pu = Pd(E) + Pob(E) 

27r 100 100 

1 100 

1 = h2 dx dy 8(E- V(x, y)) ± rn dy V 
o+ -oo 2v2h -oo [E- V(O, y)]+ 

(54) 

(55) 

(56) 

and the cumulative densities for the separate spectra can be determined. The number 

of symmetric levels with energy below the energy E is found to be 

N,(E) = lE dE' Pu(E') 

= {EdE' !: {00

dx 100 

dy8(E- V(x,y)) + ~ 100 

dy J l 
Jo lo+ -oo 2v2h -oo [E- V(O, y)]+ 

Integration over energy yields 

27r 100 100 

1 100 

N,(E)= 2 dx dy[E-V(x,y)]++ rn dyJ[E-V(O,y)]+ 
h o+ -oo v2h -oo 

and discretization of the integrals to the DVR grid gives 

(57) 

(58) 

N.(E) = !: ~x ~y { 2:: [E- V(x;, y;)]+ + Jz 2:: J[E- V(O, y;)]+} . (59) 
. ( ) 27r 2~x . ( O) a, x;>O t, x;= 
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Similar manipulations for the anti-symmetric density of states leads to 

Na(E) = ~: ~X ~y { L [E- V(x;, y;)]+ - ~ L V[E- V(O, y;)]+} . (60) 
. ( ) 21r 2~x . ( ) s, X"i>O t, x;=O 

Figures (7) and (8) show the exact cumulative densities for the symmetric and anti­

symmetic spectra, along with the semi-classical approximations N.(E) and Na(E). The 

cumulative densities, N.(E) and Na(E), were determined as per equation (42), except 

that the sum is over either the symmetric or anti-symmetric states, respectively. The 

fit of the semi-classical approximation to the exact cumulative density of states is 

very good in both cases. The statistical properties of the flucuations N(E)- N(E) can 

now be investigated for the T -shaped Ar3 energy spectrum. 
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FIGURE 7. The cumulative density of states N.(E) (solid) and its 
semi-classical approximation N.(E) (dashed) for the T-shaped Ara 
symmetric energy spectrum. 
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FIGURE 8. Cumulative density of states Na(E) (solid) and its 
semi-classical approximation Na(E) (dashed) for the T-shaped Ara 
anti-symmetric energy spectrum. 
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111.1.2 Spectral Fluctuations 

The current paradigm of quantum chaos is energy spectrum statistics in 

accord with the Gaussian orthogonal ensemble (GOE) of random matrices. Ran-

dom matrix theories, which originated in the 1950s, were constructed to describe the 

behaviour of slow neutron resonances in nuclear physics. The idea of a statistical 

description arose because of the rapid increase of level density with energy E - a de­

tailed description of individual levels quickly becomes less meaningful. However, just 

when the number of levels becomes unmanageable, the distribution of levels takes on 

understandable statistical properties. Wigner was the first to identify the statistical 

properties of the energy spectrum with that of a matrix of independent Gaussian 

random variables. The eigenvalues of this Gaussian orthogonal ensemble of matri-

ces have well defined statistical properties. For example, the successive level spacing 

distribution is given as Wigner's surmise [Wi-56], 

1C'S (-1rs2
) Pw(s) = 2 exp -

4
- (61) 

The small probability of small spacings Pw(s -+ 0) -+ 0 is usually referred to in the 

literature as the phenomenon of level repulsion or avoided crossings. This level repul-

sion is in marked contrast to the frequent near degeneracies in the regular spectrum 

which is characterized by the Poisson distribution. 

The distribution of successive scaled level spacings, P(!:l.N), where 

(62) 

is investigated for T-shaped Ar3 • The average cumulative density N(E) is given by 

the semi-classical formula as described in the previous section. It is computed at a 

sequence of energies and interpolated at each eigenvalue Ej to determine the required 

N(Ei) scaled spectrum. The reduction from the energy levels Ei to the scaled energies 
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N(Ei) removes the bias of the changing density of states. Figure (9) shows the nor­

malized histogram of the successive level spacing distribution, along with the Wigner 

and Poisson functions. 

P(ll.N) 

1.0 r. 
!'-. 

0.8 

0.6 

0.4 

FIGURE 9. Successive level spacing distribution P(ll.N) for the T­
shaped Ar3 energy spectrum. Superimposed are the Poisson (dotted) 
and the Wigner (dashed) distributions. 

Although the distribution does not fit either case accurately, it clearly does not re­

semble the Wigner function because of the non-zero density at ll.N = 0. The occu-

ranee of the near-zero values of ll.N are a direct result of the paired eigenvalues at 

energies below threshold, and the approximate independence of the symmetric and 

anti-symmetric levels above threshold. 

In addition to separating the data into symmetric and anti-symmetric sub-

sets, the number of energy levels was increased in order to determine better converged 
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distributions. Even though the number of energy levels below dissociation is fixed, 

this number was artificially increased by decreasing h from the real, physical value of 

one [1]. That decreasing h results in an increase in the number of energy levels can be 

found by considering Weyl's formula, equation (37). For a Hamiltonian system with 

f degrees of freedom, the number of eigenstates with energy less than E scales as h-f. 

The interpretation of Weyl's formula is that the volume of phase space with energy 

less than E supports a number of states equal to the number of volume= hi "cells" 

contained within the total volume. The statistics of the P(.D..N) distribution can also 

be improved by replacing argon with xenon. Xenon is a closed shell atom located one 

row below argon in the periodic table. The T-shaped trimer, Xes, also experiences Van 

der Waals' type interactions similar to those of Ars. However, the dissociation energy 

is higher than for argon, Ed; .. (Xes) = 517.28K as compared to Ed; .. (Ars) = 286.448K; 

thus, the Xes system has more levels below dissociation (increased mass and distance 

scale also contribute to the increased density of states). 

Figures (10) and (11) present the results of the successive level spacing dis­

tribution for the case of T-shaped Ars with h = 1/2, and T-shaped Xes with h = 1. 

Again, the distributions are not of the Wigner type because of the density at .D..N = 0. 

In fact, the distribution in Figure (10) appears to converge towards the Poisson func­

tion. This result was unexpected because a Poisson distribution is associated with 

classically regular systems. However, the existence of the two distinct symmetries in 

the T-shaped Ars Hamiltonian mimics the behaviour of a regular system. The two 

sets of symmetric and anti-symmetric energy levels have their own statistics, but the 

superposition of the independent spectra makes the resulting spectrum appear totally 

uncorrelated with a Poisson distribution. Any inherent symmetry in the Hamiltonian 
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FIGURE 10. Successive level spacing distribution P(D.N) for the 
T-shaped Ar3 energy spectrum with h = 1/2. Superimposed are the 
Poisson (dotted) and the Wigner (dashed) distributions. 
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FIGURE 11. Successive level spacing distribution P(ll.N) for the 
T -shaped Xea energy spectrum with h = 1. Superimposed are the 
Poisson (dotted) and the Wigner (dashed) distributions. 
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must be separated before the spectral statistics are interpreted. The successive level 

spacing distribution for the separate spectra is shown in Figures (12) through (17). 

In each case, there is a much closer resemblance to the Wigner function than the 

Poisson. The distributions are peaked at A.N = 1 because level crossings are avoided, 

i.e., the levels try to stay as far apart as possible. 
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FIGURE 12. Successive level spacing distribution P(A.N.) for the 
T -shaped Ar3 symmetric energy spectrum with n = 1. Superimposed 
are the Poisson (dotted) and the Wigner (dashed) distributions. 
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FIGURE 13. Successive level spacing distribution P(fl.N.) for the 
T-shaped Ar3 symmetric ener~ spectrum with 1i = 1/2. Superim­
posed are the Poisson (dotted) and the Wigner (dashed) distribu-
tions. 
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FIGURE 14. Successive level spacing distribution P(~N.) for the 
T -shaped Xe3 symmetric energy spectrum with h = 1. Superimposed 
are the Poisson (dotted) and the Wigner (dashed) distributions. 
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FIGURE 15. Successive level spacing distribution P(D.Na) for the 
T-shaped Ar3 anti-symmetric energy spectrum with h = 1. Super­
imposed are the Poisson (dotted) and the Wigner (dashed) distribu­
tions. 
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FIGURE 16. Successive level spacing distribution P(D.Na) for the 
T-shaped Ar3 anti-symmetric energy spectrum with n = 1/2. Super­
imposed are the Poisson (dotted) and the Wigner (dashed) distribu­
tions. 
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FIGURE 17. Successive level spacing distribution P(b..Na ) for the 
T-shaped Xe3 anti-symmetric energy spectrum with h = 1. Super­
imposed are the Poisson (dotted) and the Wigner (dashed) distribu­
tions . 

39 

Large scale calculations of energy levels were carried out for the stadium and 

the billiard by Bohigas, Giannoni and Schmit [BGS-84], and for the hydrogen atom 

in a magnetic field by Delande and Gay [DG-86]. The agreement with predictions of 

the GOE of random matrices is excellent . This led to the speculation that the GOE 

statistics identify a universal property of the energy levels in a classically chaotic 

system. While numerical studies support this conjecture, a theoretical justification 

has yet to appear. An explanation has been offered by Berry [Be-85] where an explicit 

statement about the classical behaviour is used and then transformed into a statistical 

proposition. Nevertheless , the successive level spacing distribution is used as an 

indication that T-shaped Ar3 is chaotic for all accessible energies. 
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111.2 Energy Eigenfunction Statistical Properties 

Characteristic statistical properties have also been observed in the station-

ary and time-dependent wavefunctions of quantum analogues to classically chaotic 

systems. The features of the wavefunction appear qualitatively different in the semi-

classical limit for states corresponding to regular or chaotic classical dynamics. Berry 

[Be-77] conjectured that the eigenstates associated with a chaotic energy spectrum 

are Gaussian random functions of position. All statistical properties of a Gaussian 

random function are determined by the spatial distribution function and the spatial 

pair-correlation function. 

111.2.1 Spatial Distribution of Energy Eigenfunctions 

The main property of a Gaussian random function r,o(x) is that the distribution 

function of its amplitude is Gaussian, 

Pn(r,o(x)) = {;f. exp (- rp;;t ) (63) 

where a-2 is the variance of rp(x). This result was verified by numerical studies [SG-84, 

AS-91] of chaotic eigenfunctions which show that the spatial distribution function is 

Gaussian, while regular eigenfunctions find non-Gaussian distributions. For a bound 

system the variance is given by, 

(64) 

where Ai is the area of the classically allowed region in configuration space with x > 0 

associated with the ph energy eigenstate. The spatial distribution function is now 

expessed as 

(65) 

The spatial distribution of the energy eigenfunctions was determined for the 

classically chaotic T-shaped Ar3 system. The classically allowed region of configura-
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tion space for an eigenfunction ,pi(x,y) with associated energy Ej is given by 

Ai = foe dx joe dy G(Ei - V(x, y)) (66) 
Jo+ -oo 

discretizing to the DVR grid finds 

Ai = ~x~y {. 2: [Ei-V(x;,y;)]: +. 2: ~ [Ej-V(x;,y;)]:} (67) 
•,(x;>O) •,(x;=O) 

Figures (18) and (19) show spatial distribition functions Pv(,Pi) for symmetric and 

anti-symmetric T-shaped Ar3 energy eigenfunctions. The spatial distribution func-

tions are well-approximated by Gaussians in each case. 

111.2.2 Spatial Correlation of Energy Eigenfunctions 

The Gaussian distribution of amplitudes is a trivial integral property of a 

Gaussian random or "stochastic" function. More convincing evidence of characteristic 

statistical properties is found in the spatial pair-correlation function. In general, the 

pair-correlation function is defined as 

(68) 

Here, K is a normalization constant and l is the length of the spatial correlation. 

The size of the integration area should be much larger than /. This correlation is a 

reflection of the pattern of oscillations of ,P(r). If ,P is a Gaussian random function 

of position then an average (integral) over the area is equivalent to an average over 

the ensemble of ,P values. Berry [Be-77] predicted that the spatial pair-correlation 

function of an ensemble average of random wavefunctions is given by 

C[,P, ,P] (I) = ,P(r- ~) ,P(r + ~) = u2 lo [ .j2(E- V(r) k] (69) 

This prediction can be verified by extracting the argument of the Bessel function for 

different lengths land the averages ,P(r- ~) ,P(r+ ~)and comparing to a zeroth-order 

Bessel function. 
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FIGURE 18. Spatial distribution functions Pv(t/J·) for the T-
shaped Ar3 symmetric energy eigenfuntions; a) j. = 12 (E;. = 158.02K), b) j. = 
50 (E;. = 237.46K). 
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In terms of the DVR grid, the spatial pair-correlation function is expressed 

as 

C[?j>i, 1j>i](r~k) = 2~i Jo [ V2(Ei - V(rfk) r~k] 

where rik is the mid-point and 

(70) 

(71) 

is the distance between the grid-points i = (x;,y;) and k = (xk>Yk)· Figures (20) to 

(22) show the numerical results of the spatial pair-correlation function for a range of 

T-shaped Ar3 symmetric and anti-symmetric energy eigenfunctions. The agreement 

of the simple J0 (z) formula with the chaotic eigenfunctions is quite good for small z. 

Similar calculations were done by Lan, Shushin and Wardlaw [LSW-92] on 

time-dependent wavefunctions for classically chaotic bound and scattering systems 

with two degrees of freedom. The spatial flucuations of the wavefunctions were shown 

to be reproduced quite accurately by the random plane-wave superposition approxi­

mation. While this approximation lends a theoretical justification for the statistical 

properties, it is believed to break down at large correlation lengths. However, the 

spatial pair-correlation function is used as a qualitative indicator that quantum man­

ifestations of classical chaos are evident in the T-shaped Ar3 energy eigenfunctions. 
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FIGURE 20. Spatial pair-correlation functions C[~ , ~ )(r:k) for 
the near threshold T-shaped Ar3 symmetric energy eigenfunction; 
a) j. = 12 (Ej. = 158.02K) , and anti-symmetric eigenfunction, b) 
ia = 14 (Ej. = 163.01K). 

45 



1.0 

0 .8 

0.6 

C[t/)•, t/) •](r:k) 
0.4 

0.2 

0 

-0.2 

-0.4 

0 5 10 15 20 25 30 35 
I 

!:..iJ.. 
li 

a) 

40 45 

I ' 

50 55 

\ 
\ 

\ 

60 

1 .0~--------------------------------------------------~ 

0.8 

0.6 

C[tf)• , V)•](rh) 0.4 

0.2 

0 

-0.2 

-0.4 

0 5 10 15 20 25 30 35 

J2(Ej- V(rfk) 4-
40 

b) 

45 50 

FIGURE 21. Spatial pair-correlation functions C(t/) , t/) ](r:k) for 
the above threshold T-shaped Ar3 symmetric energy eigenfunction; 
a) j, = 32 (Ej. = 207.50K) , and anti-symmetric eigenfunction, b) 
ia = 30 (Ej. = 204.13K) . 

55 

46 



1.0 

0.8 

0.6 

C[,P•, ,P•](r~k) 
0.4 

02 

0 

-0.2 

-0.4 

0 5 10 15 20 

a) 

,, 
I I 

I I 
I I 

" 

~ ~ ~ ~ ~ ~ ~ oo ~ ro ~ 

J2(Ei- V(rik) it 

1.0,.-------------------------, 

0.8 b) 

0.6 

0.2 

0 
I I 

-0.2 I 
I I 

-D.4 

0 5 10 15 20 25 ~ ~ ~ 45 50 55 60 65 70 75 

J2(Ei- V(rik) it 

FIGURE 22. Spatial pair-correlation functions C[,P,tJ,i](r:k) for 
the above threshold T-shaped Ar3 symmetric energy eigenfunction; 
a) j. = 50 (E;. = 237.46K), and anti-symmetric eigenfunction, b) 
ia =55 (E;« = 248.08K). 

47 



PART IV 

T-Shaped Ar3 Inversion Dynamics 



48 

PART IV 

T-Shaped Ar3 Inversion Dynamics 

Molecular dynamics is concerned with the internal motion of electrons and 

nuclei within reacting molecules. The most widely used method for describing the 

dynamics of the nuclei is the classical trajectory approach. In this treatment, the 

motion of the nuclei on the Born-Oppenheimer potential energy surface is solved by 

using Newton's equations of motion. Quantum effects can be important in even very 

simple chemical processes - ideally, dynamics should be given a quantum mechanical 

description. Full scale quantum mechanical molecular dynamics requires the manip-

ulation of large Hamiltonian matrices. New methodologies, like the discrete variable 

representation, make quantum molecular dynamics computations much more feasi-

ble. However, it is the aim of this work to introduce a statistical means of obtaining 

dynamical observables, circumventing the usually time and memory intensive ma­

trix diagonalization. This statistical treatment utilizes the characteristic statistical 

properties of the energy eigenvalues and eigenfunctions, which can presumably be 

predicted once the corresponding classical dynamics is known. 

IV.l Survival Probability 

The dynamical process of interest is the isomerization reaction exhibited by 

the T-shaped Ar3 molecule (Figure 1). This process can be characterized through the 

survival probability, C(t), which is expressed as 

Tr [ exp (-PH) h(x) e.,(t)] 
C( t) = -"----;---'-....,...--~--.-....:... 

Tr [ exp (-PH) h(x)] 
(72) 
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Here, f3 = k~T incorporates the specification of an initial temperature T, and h(x) is a 

Heaviside (step) function. The time-evolved projection operator §., (t) is defined as 

(-ifit), (iilt•) §.,(t) = exp -n- h(x) exp -n- (73) 

it projects onto all states at timet that have a positive x-coordinate in configuration 

space. The quantity in the denominator of equation (72) is the partition function, Q 

Q = Tr [ exp ( -f3H) h(x)] (74) 

It is customary [MST-83] to recast equation (72) in a more symmetrical form which 

permits identification of temperature as an imaginary time. Specifically, from the 

commutation properties of the two operators, §.,(t) and exp ( -f3H), then the survival 

probability can be written as 

Tr [ h(x) exp ( -~) e.,(t) exp ( -~)] 
C(t) = Q 

which leads to, 
Tr [ h(x) exp ( -i:t·) h(x) exp c~t:) ] 

C~)= Q 

where tc is the complex time given by 

ilif3 
tc = t--

2 

(75) 

(76) 

(77) 

When the trace is evaluated in the energy representation, matrix elements 

arise between two eigenstates ,f) and ,pk of the projection operator h(x) as 

which is a result of the definition of the projection operator 

h(x)t/)(x,y) = { t/)(~,y) : ~ ~ (79) 
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The matrix element is the projection of the states onto x > 0 configuration space. The 

properties of the projection matrix are key to the development of a statistical model 

for the T-shaped Ar3 survival probability. 

IV.1.2 Properties of the T-Shaped Ar3 Projection Matrix 

The symmetry of the T-shaped Ar3 energy eigenfunctions {tP}, where j = j. 

or j = }a, is used to recast their orthogonality in terms of the matrix elements of the 

projection operator. Specifically, the normalization condition 

(80) 

can be expanded as 

1
o- 100 roo 100 

bj,k = _00 dx -oodytfl(x,y)t/i(x,y) + lo+ dx _00 dytfl(x,y)tj}(x,y) (81) 

From the definition of the projection operator in equation (79), and the properties of 

the T -shaped Ara energy eigenfunctions 

t/l(x,y) = t/l(-x,y) 

t/l(x,y) = -t/l(-x,y) 

j = j. 

j =}a 

then equation (81) can be expressed as 

6i,k = (1+~~:) l:dx l:dytfl(x,y)h(x)vi(x,y) 

= (1 + ~~:) < tfl (x, y) I h(x) I 1/!k(x, y) > 

The constant ~~: has the values 

/1; = { ~1 1f) and 1/!k have the same symmetry; e.g., j = j., k = k. 
1f) and 1/!k have the opposite symmetry; e.g., j = j., k = ka 

(82) 

(83) 

(84) 

(85) 

Setting~~:= 1 in equation (84) shows that 2h(x) is the identity operator in the space of 

same symmetry matrix elements. The isomerization dynamics is therefore manifest 

only in the opposite symmetry matrix elements which are denoted by 

(86) 
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The symmetry of the full matrix determines the other opposite matrix elements, i.e., 

(87) 

Equation (84) determines a "scaled" normalization property for each of the 

four blocks of the projection matrix denoted by hi,k where j = j., or ia and k = 

k,, or ka. In the space of the same symmetry elements, {J2~(x,y)} is a complete 

orthonormal basis set on x > 0; this is seen by expressing equation (84) as 

8j,k =100

dxj
00 

dy../2~(x,y)../2tj}(x,y) 
o+ -oo 

(88) 

Therefore, an arbitrary anti-symmetric state tf}u (x, y) can be expanded in terms of the 

set { J2 ~ · ( x, y)} as 

(89) 

where the expansion co-effecients a~c. are determined by multiplying the above equa-

tion by J2~·(x,y) and intregrating the result over x > 0 to find 

(90) 

The scaled normalization property arises from the square of equation (89); explicity, 

(91) 

integrating over x > 0 and using the identity in equation (88), the sum of the squares 

of the expansion coeffecients is 

""' 2 1 Li (ai.) = 2 
j. 

(92) 

Since equation (90) relates ai. to the projection matrix element, then the normal­

ization property of the block hj.,k
4 

is given by the sum over the rows j, (or columns 

(93) 
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in general, this property of the sum of the squares of the projection matrix elements 

along any row or column can be shown to the true for each of the four blocks of the 

projection matrix. 

Another expression for the projection matrix element hi.J•a can be determined 

from the energy splitting, Eka - Ej,. Consider the time independent Schrodinger 

equation 

{94) 

the energy splitting between the symmetric state 1/)· and the anti-symmetric state 

,pka can be derived as follows: the equations 

(95) 

{96) 

are multiplied on the left by the opposite symmetry wavefunction and then subtracted 

to give 
,pi• H'lj;ka - 1/Jk• H,pi• = ,pi• Eka'lj;k• - 1/Jk• Ej, ,pi• 

= (Ek. - Ei.) ,pi·,pk• 
{97) 

Integrating over the positive x-coordinate region of configuration space determines 

the expression 

1
00 

dx roo dy {1fJi· ii,pk• - ,pk• ii,pi·} = (Ek. - Ej,) 100 

dx roo dy ,pi•,pk• 
o+ J -oo o+ } -oo {98) 

= (Ek. - Ej,) < 1/)• I h(x) 11/Jk• > 

The projection matrix element can be evaluated explicity by substituting the form of 

the Hamiltonian given in equation ( 1), this determines the expression 

{99) 
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The potential energy terms cancel, leaving matrix elements of the kinetic energy 

operators 

(100) 

which can be written as 

where \72 is the Laplacian. The final form of the equation is given by 

this result is a consequence of applying the divergence theorem - the full details 

are presented in Appendix B. Because of the properties of the T -shaped Ar3 energy 

eigenfunctions in equations (82) and (83), then .,pk4 (x,y)!l:=O = 0 and(;!!; 1/)•(x,y))!l:=O = 0. 

The latter result arises because the symmetric eigenfunction has an extremum at x = 0. 

Consequently, the second term in equation (102) vanishes leaving the expression 

• A k h
2 1 ( 0 

8 k ) (Ek
4

- Ei.) < ,P•Ih(x)lt/J 4 > =- dy ,P•-tf; 4 

2 lR ox !1:=0 

(103) 

which relates the projection matrix element hi.,k
4 

to the associated energy splitting 

and boundary surface overlap integral. 

IV.2. T-Shaped Ar3 Survival Probability 

An expression for the T-shaped Ar3 survival probability can be determined 

by evaluating the trace in equation (76) over the set of T-shaped Ara energy eigen-

functions, { 1j) }. A quantum mechanical trace is evaluated by inserting a complete set 

of orthonormal functions for each operator; for example, 

Tr [A .B ) = L < .,pi I A 11/) > < tf) I .B I .,pi > (104) 
i,j 
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where 

(105) 

is a complete set. The resulting matrix elements are easily evaluated using the fact 

that 

· (-ifltc) k (-iEktc) · k (-iEktc) < '1/ll exp -n- 1'1/J > = exp n < '1/li'I/J > = exp li 6j,k 

and 

such that the survival probability is given by 

L:·kexp(-iE~;t,) exp('E;t;) I<'I/Jjlh(x)I'I/Jk>l2 
C(t) = ], 1i. 1i. A 

L:j exp (- {3Ej) < 'lj;i I h(x) I 'lj;i > 

The sum in the numerator is expanded, and from the cosine identity 

( ) 
exp ( ix) + exp (- ix) 

COS X = 
2 

then the final form of the expression is 

C(t) = ~ { ~ exp ( ~ fJE;) I<~ I h(x) I~ > 12 

J 

+ {; 2 exp (- {3( E;: Ek)) cos [ ( E; ~ Ek) t] I < ~ I h( x) I '1/Jk > 12} 

where the partition function 

Q = L:exp(-{JE;) < ~ lh(x)l~ > 
j 

(106) 

(107) 

(108) 

{109) 

{110) 

(111) 

Along with the T -shaped Ar3 energy eigenvalues { E;}, an explicit expression for the 

projection matrix is needed in order to calculate the survival probability. 
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IV.2.1 The T-Shaped Ar3 Projection Matrix 

An explicit expression for the projection matrix 

<,PI h(x) I t/Jk > = (X) dx1
00 

dy ,P(x, y) t/Jk(x, y) 
lo+ -oo 

(112) 

can be determined by expanding the T-shaped Ar3 energy eigenfunctions {tf;i(x, y)} in 

terms of the symmetrized DVR basis as 

,pi (X' y) = I: c{ < X' y I i' > (113) 
i,(:c;2:0) 

where the basis functions < x, y I i' > are defined in equation (22). Substituting this 

expression for an eigenfunction ,pi (x, y) into equation (112) and simplifying using 

1
00 6 

dy < y I y; > < y I Yl > = ~,YI 
-oo Y 

which is computed in Appendix A, plus defining the integrals 

{

00 

dx <xI x; > < xI Xt > = l'(x;, xt) lo+ 
foe dx <xI :c; > < x IRx1 > = l'(:c;, Rxt) lo+ 

and so on; the projection matrix is now given by 

<,pi I h(x) I t/Jk > = L L d~c~ {integral terms} 
i,(:c;2:D) l,(:c,2:0) y 

The notation {integral terms} means combinations of 

(114) 

(115) 

(116) 

(117) 

(118) 

and the sum is over all combinations of the symmetric and anti-symmetric coefficients, 

c{• and c:{a, on x; > 0 and x; = 0 (nine terms in total). The constants k; have values of 

±1, which are different for each of the sums. These integrals are evaluated numerically 

by a Gauss-Legendre numerical integrator routine. The convergence of the integrals 

is on the order of Io-4 • 
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IV.3 A Statistical Model of the T-Shaped Ar3 Survival Probability 

Equations (110) and (118) clearly show the computational magnitude asso­

ciated with quantum mechanical molecular dynamics. For each time t, the survival 

probability C(t) involves a sum over the set of T-shaped Ar3 energy eigenstates, and 

each term in this sum involves a double sum over the DVR grid-points. In addition 

to these computations there is a significantly intensive numerical integration, plus 

the matrix diagonalization which generated the eigenvalues and eigenfunctions in the 

first place. It is no wonder that fully quantum mechanical investigations into chemi­

cal processes involve few atoms (generally less than four are considered). It would be 

highly advantageous to develop a new scheme for extracting dynamical observables 

from a quantum system. A quantum statistical model of the T -shaped Ar3 survival 

probability is evolved from the characteristic statistical properties of the energy eigen­

values and eigenfunctions. These statistical properties can be predicted for quantum 

analogues to classically chaotic systems. The model survival probability is based 

on generating a set of "random T-shaped Ar3 energy eigenvalues" and a "random 

projection matrix" which together determine a "random survival probability". 

IV.3.1 Random T-Shaped Ar3 Energy Eigenvalues 

A set of random T -shaped Ar3 energy eigenvalues can be generated by simply 

inverting the semi-classical density of states curves. These random eigenvalues must 

contain all the same statistical properties found in the quantum spectrum. Specifi­

cally, the scaled energies of the random symmetric and anti-symmetric spectra must 

have a Wigner successive level spacing distribution. This same distribution is pre­

dicted for the eigenvalues of a Gaussian orthogonal ensemble of random matrices. 

Random matrix theories [Me-91, BG-84] were developed to alleviate the prob­

lems encountered with a detailed description of energy levels when their number be-
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comes impossibly large. In ordinary statistical mechanics only the overall behaviour 

of a set of levels is determined as it is assumed that all of the states in the large en­

semble are equally probable. In order to describe the fine detail of a level structure, a 

new type of statistical mechanics is needed where exact knowledge not of the state of 

the system, but of the nature of the system is renounced. Wigner first introduced the 

idea of choosing a Hamiltonian matrix at random from a large sample of systems in 

which all possible laws of interaction are probable. The ensemble of Hamiltonians is 

specified by a probability density P(H) dH and certain symmetry requirements, such 

as being Hermitian, which must be satisfied. 

A Gaussian orthogonal ensemble requires that the ensemble is invariant under 

every orthogonal transformation 

H' = WTHW (119) 

where W is any real orthogonal matrix; therefore, the probability that a matrix H 

will be in the volume element dH is also invariant 

P(H') dH' = P(H) dH (120) 

The matrix elements of the random Hamiltonian are also independent random vari-

ables. This requirement has no special physical origin, it is used to simplify the 

ensuing mathematical problem. These restrictions determine the probability density 

as 

P(H) dH = Kn exp (- Tr !~2]) 

where Kn is a normalization constant, n is the dimensionality of the matrix and 

Tr [H 2
] = L (H;j)2 

i,j 

(121) 

(122) 

The GOE depends only on a scale factor r 2 and the dimensionality n; the matrix 

elements have a Gaussian distribution with zero mean. From the invariance properties 
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of the Hamiltonian matrix, the probability density of the random eigenvalues Pi} is 

given by 

p(Al, A2, ... , An) = Kn exp (- ~ ~~) Ili<j lA;- Aj I lin dAn (123) 

Notice that when A; = Aj the probability density vanishes; i.e., there is level repulsion. 

By integrating this equation over all but one variable, the average eigenvalue density 

is determined to be 

I A I ~ ..;:;;:?2 
I A I 2 ..;:;;:?2 

(124) 

this is known as the Wigner semi-circle law [Wi-57] for the level density of a random 

matrix. 

A set of n = 1000 random eigenvalues was computed according to the proba­

bility density in equation (121). This involved initial construction of a spectrum in 

the interval ( -fo, fo) followed by a random walk of each eigenvalue with the new 

value being accepted if the ratio of the densities 

p(Anew) > X 
p( A old) 

(125) 

where x is a randomly generated number between zero and one. After many iterations 

the set of random eigenvalues Pi} converged to the semi-circle distribution given by 

equation (124); this is shown in Figure (23). The successive level spacing distribution 

for the scaled energies has the expected Wigner form, as seen in Figure (24). The 

set of randomly generated cumulative densities N(Aj) are used to interpolate random 

T-shaped Ar3 energy eigenvalues from the semiclassical cumulative density of states 

curves, N8 (E) and Na(E). 

The model survival probability is based on symmetric and anti-symmetric 

energy levels which come in pairs (correlated) at below threshold energies, and are 

statistically independent or uncorrelated at above threshold energies. The random T­

shaped Ar3 energy eigenvalues {Ei} are therefore comprised of paired levels {Ej,(A); E < 
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Ethm} and {E1.(A);E < Ethru} generated by a set of random eigenvalues {Aj}, and in­

dependent levels {Ej.(A); E > Ethru} and {Ei. (A'); E > Ethru} where the anti-symmetric 

levels are generated by a different set of random eigenvalues {).j }. 
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FIGURE 23. Probability distribution P(A) for the random eigen­
values {).1}. 



FIGURE 24. Successive level spacing distribution P(ilN>.) for the 
random eigenvalue spectrum {A;}. Superimposed is the Wigner (dashed) 
distribution. 
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IV.3.2 Random Projection Matrix 

A statistical model for the projection matrix is based on the statistical prop-

erties of the symmetric and anti-symmetric T -shaped Ar3 energy eigenfunctions which 

determine the properties of the T-shaped Ar3 projection matrix. Since the projection 

matrix is symmetric, only the upper triangle need be determined. The matrix ele-

ments consist of connections between same symmetry and opposite symmetry states. 

In the case of connections between same symmetry states, the formula derived in 

Section IV.l.2 gives a simple expression for the matrix element as 

8j,k = {1+~~:) < tP(x,y)Jh(x)Jvi(x,y) > {126) 

where ~~: = 1 for same symmetry states. Thus, the same symmetry matrix elements 

are given by 

0 

A k 0 

A k 8j k { 1/2 j - k 
<?fr1•(x,y)Jh(x)J.,P•(x,y)>=<?fr1•(x,y)Jh(x)J.,P•(x,y)>= 1 ~,. = 0 j#k. {127) 

The block of matrix elements between opposite symmetry states is separated 

into below threshold and above threshold contributions. At below threshold ener-

gies, the symmetric and anti-symmetric T -shaped Ar3 eigenvalues come in nearly 

degenerate pairs. The corresponding eigenfunctions are nearly identical except for an 

exponentially small correction from the small interval about x = 0. This correlation 

in the paired states is clearly demonstrated in Figure (25) which shows the spatial 

dependence between 1/Ji•(x;,y;) and 1/Ji•(x;,y;) at each grid-point (x;,y;) for Ej < Ethreo· 

The model matrix element between the nearly degenerate opposite symmetry states 

can therefore be approximated by that of the same symmetry matrix elements, 

o A 0 1 
< ?jrl•(x,y)Jh(x)J?jrl•(x,y) >= "2 {128) 
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FIGURE 25. Spatial correlation between the paired symmetric 
and anti-symmetric T-shaped Ar3 energy eigenfunctions at below 
threshold energies; Ej = 136.44K. 
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The off-diagonal matrix elements can be determined from an expression de-

rived from the properties of the T-shaped Ar3 projection matrix, which is given by 

0 

A k n
2 l ( 0 

{) k ) (Ek
4 

- Ej.) < VJ• I h(x) It/; 4 > = 2 dy VJ•(x, y) -
0 

t/; 4 (x, y) 
!R X :z;=O 

(129) 

The support of an energy eigenfunction tf;i (x, y) is within the classically allowed region 

of configuration space where Ei > V(x, y). Outside this region, the amplitude of 

the eigenfunction decays rapidly to zero. This is demonstrated in the wavefunction 

contour plots in Figure (26) for a below threshold energy eigenfunction. 
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FIGURE 26. Wavefunction contour for a below threshold sym­
metric T-shaped Ar3 energy eigenfunction (Ei. = 106.64K) within the 
potential energy contour defined by V(x;, y;) = Ema"' = 286K. The 
wavefunction is almost entirely contained within the potential en­
ergy contour defined by V(x;,y;) = E;. (the classically allowed region 
for tf;i·) in the lower figure. 
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The three lowest contours at the amplitude of 10- 5 to 10-7 were added in Figure 

(26) to show that 1/)· (x, Y)x=O is exponentially small at below threshold energies as 

x = 0 is outside the classically allowed region in configuration space. Thus, the right 

hand side of equation (129) is exponentially small, and since the energy splitting 

is not exponentially small the projection matrix element must be. The off-diagonal 

matrix elements between the opposite symmetry states at below threshold energies is 

therefore given by 

(130) 

This same argument also leads to a zero matrix element between states when one 

state is above and the other is below threshold as one of the eigenfunctions 1/)(x,y):r:=o 

will be exponentially small. The only remaining case is projection matrix elements 

between two opposite symmetry states both at above threshold energies. 

At above threshold energies, the definition of the projection matrix element 

in equation (112) is used to construct the model matrix elements. Since the above 

threshold T-shaped Ar3 energy eigenfunct ions could be described as Gaussian random 

variables, the projection matrix elements are also Gaussian random variables which 

are characterized by the variance, 

var(<rP•(x,y)lh(x)lt/i•(x,y)>) = (hj.,k.) 2 - (hj.,k.) 2 

= (hj.,k.) 2 

(131) 

as 'lj;i (x, y) = 0 from Figures (18) and (19), i.e., the projection matrix element itself has 

a zero mean. Substitut ing equation (112) into equation (131) gives 

var(hj.,k.) = r dx dy r dx' dy' 'lj;i·(x,y)'lj;k·(x,y)'lj;i·(x',y')'l/Jk·(x' , y') (132) 
J:r:>O J:r:>O 

where the averaging is taken inside the integration. This expression is simplified be-

cause the above threshold eigenfunctions are assumed to be statistically independent, 
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thus 

(133) 

and the variance is now given by 

var(hj,,kJ = r dx dy r dx' dy' 'lj;i·(x,y)'lj;i·(x',y') 'lj;k•(x,y)'lj;k•(x',y') (134) 
Jx>O Jx>O 

These averaged quantities are none other than the spatial pair-correlation 

functions of Section 111.2.2; therefore, the correlations of 'lj;i· and 'lj;k• can be replaced 

by Berry's formula in equation (70) to determine the variance of the projection matrix 

element as 

' (135) 

In terms of the DVR grid, the variance of the projection matrix element between 

above threshold opposite symmetry states is 

. (136) 

The sums over the DVR grid-points can be reduced to only those grid-points contained 

within the contour defined by V(x1, y,) = min(Ej,, Ek.) as outside this region one of the 

'lj;i•(x, y) or 'lj;k• (x, y) is exponentially small and therefore makes a vanishing contribution 

to the integral in equation (134). 

Because the projection matrix elements are Gaussian random variables, the 

central limit theorem can be applied to determine the asymptotic form of the integral 

of equation (112) as 

(137) 

where vi.,k. is a Gaussian random variable with zero mean and unit variance. The 

random projection matrix element is therefore given by 

(138) 
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as hj,k. = 0. The upper triangle of the projection matrix is shown below where the 

matrix elements arise from equations (127) , (128) , (130) and (138) ; 

E < Ethr-. E > Ethr es 

1 0 0 1 0 0 0 2 2 

1 0 1 0 0 2 2 
1 0 0 2 

hj .,k, 0 hj .,k. (138) 
1 0 0 2 

hj ,k = + (139) 

I 1 0 0 2 

1 
2 

1 
2 

hj. ,k. 0 
1 
2 

The normalization properties of the same symmetry block are consistent with that of 

the T-shaped Ar3 projection matrix, i.e., 

"'"' 2 1 L..t (hj,k) = 4 
j or k 

(140) 

The below threshold elements of the opposite symmetry block hj , ,k. are also normal­

ized as above. However, the above threshold elements given by equation (138) do not 

produce a normalized matrix. 

The above threshold opposite symmetry matrix elements are row/ column 

normalized by a random orthogonal matrix routine. An initial random matrix was 

constructed with elements given by 

(141) 
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note that this is equation (138) but without the Gaussian random variable vj .,k •. 

Each of these elements are randomly walked based on a Gaussian density and are 

constrained at each step to the normalization requirement. This routine produces a 

normalized above threshold opposite symmetry projection matrix with elements which 

are Gaussian distributed to the extent allowed by the normalization constraint. Al-

though the matrix elements do not arise from a strict application of the central limit 

theorem from equation (137), the normalization property of the projection matrix is 

required such that a random survival probability calculated with a normalized random 

projection matrix can be compared to the quantum survival probability calculated 

with a normalized projection matrix. The T-shaped Ar3 survival probability given in 

equation (110) was calculated for both the quantum mechanical eigenvalues and pro-

jection matrix and the statistical model to these quantities; the results are presented 

in the following section. 

IV.4 Quantum and Random T-Shaped Ar3 Survival Probability 

In the energy representation , the survival probability C(t) is expressed as 

C(t) = ~ { L exp (- ,BEj) I< tP I h(x) ltP > 12 

J (142) 

+ L2 exp (- ,B(Ej; Ek)) cos [(Ej -h Ek)t ] I< 1/Jj lh(x) 11/Jk > 12 } 

;<k 

Survival probabilities were calculated for an ensemble of T-shaped Ar3 states at a 

temperature T initially located on x > 0 configuration space. The survival probability 

is interpreted as the probability at a time t the enemble remains at x > O, i.e ., no 

. . 
mverswn. 

The statistical model of the survival probability assumed perfect correlation 

between the paired symmetric and anti-symmetric states at below threshold energies. 

This reflected the fact that the T-shaped Ar3 symmetric and anti-symmetric energy 

levels were nearly degenerate (hence the corresponding eigenfunctions were nearly 
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identical ____, highly correlated) at Ej < Ethw· The perfect correlation contained in 

the below threshold statistical model manifests degenerate (zero splittings) random 

T-shaped Ar3 energy levels and a diagonal (hj ,k = Dj ,k/2) random projection matrix. 

Because of convergence error in the DVR method, the very small splittings 

in the below threshold paired T -shaped Ar3 energy levels were not accurately deter­

mined. The size of the splitting can be estimated from equation (103) which relates 

the energy splitting Ek.- E;, to the projection matrix element h;,.k. and the boundary 

surface overlap integral of (V;i•(x,y) ;x,;}•(x , y))x=o· The splittings predicted from this 

formula were found to be orders of magnitude smaller than actually obtained ( espe­

cially for the lowest lying eigenvalue pairs). The T-shaped Ar3 eigenvalues were there­

fore approximated as degenerate by setting E;. = E;, at below threshold. However, 

this perfect correlation was not encompassed into the corresponding eigenfunctions 

and hence not reflected in the T-shaped Ar3 projection matrix. The below thresh­

old projection matrix elements are calculated as per equation (117) and is therefore 

not taken as strictly diagonal. But, since it is assumed that the T-shaped Ar3 energy 

eigenfunction is more accurately converged than the corresponding eigenvalue, the be­

low threshold T-shaped Ar3 projection matrix between the opposite symmetry states 

is diagonal to within the exponentially small difference between the paired states. Any 

error arising with not associating perfectly correlated energy eigenfunctions with the 

degenerate energy eigenvalues would be negligible. The statistical model also further 

assumed no correlation between the above threshold symmetric and anti-symmetric 

states. 

The quantum and "renormalized" random T-shaped Ar3 survival probability 

at a temperature ofT= 20K is shown in Figure (27). The temperature T determines 

what fraction of the ensemble is composed of below threshold energy states, and the 
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corresponding equilibrium value for the survival probability. These below threshold 

states can be thought of as the classically trapped states at x > 0 which correspond to 

a classical equilibrium value. The fraction of below threshold states can be determined 

from 

Qb 2:/ exp ( -(3Ej) hj,j 

Q = Lj exp ( -(3Ei) hj.j 

:L/ exp ( -(3Ej) 

Lj exp ( -(3Ej) 
(143) 

where hi,i = 1/2 and :L' is over states which have an energy Ei < Ethre.. The equilib-

rium value of the survival probability is given by 

1-~ 
Ceq= 1- T (144) 

it is about this value that C(t) fluctuates at long times t. Since the below thresh-

old spectrum for the T -shaped Ar3 and random T -shaped Ar3 energy eigenvalues 

are different, the fraction of below threshold states, /b(Quantum) and /b(Random) 

respectively, will also be different, and hence so will the corresponding equilibrium 

values. A comparison of the two methods requires a normalized survival probability 

C(t) which is expressed as 

C(t) = /b + (1- !b) c(t) 
random C(t) : !b = /b(R) 

quantum C(t) : /b = !b(Q) 
(145) 

with the normalized equilibrium value Ceq = 1/2 in both cases. Alternatively, the 

random survival probability is renormalized such that it fluctuates about the same 

equilibrium value as the quantum survival probabilty by constructing a new random 

survival probability C'(t) from the normalized random survival probability C(t) and 

the fraction of below threshold quantum states !b(Q) 

C'(t) = /b(Q) + (1- /b(Q)) C(t) (146) 

Substituting equation (145) for the random survival probability C(t) then the renor-

malized random survival probability is given by 

(147) 
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FIGURE 27. Quantum (solid) and random (dotted) survival prob­
ablity curves at temperature T = 20K for a) long times t and b) short 
times t. 
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The discrepency between the two curves can be explained through a closer 

examination of the formula for C(t) in equation (142). The dynamical (time) depen­

dence of the survival probability originates in the cosine term, cos [ (Ej-;.E,)t]. This 

term produces the oscillations in C{t) which are called "frequency beats" or "time 

scales" that are associated with the energy splittings Ej- Ek. The quantum survival 

probability in Figure (27a) appears to have two such time scales. The associated en­

ergy splittings with these time scales can be evaluated as the period of one oscillation 

is 271" for the cosine function. Therefore, the time scale of BOOps -+ 1200ps is associated 

with the energy splittings in the range of 2.3K -+ 3.4K, and the time scale of 50ps and 

less corresponds to the energy range of splittings greater than 50K. The random sur­

vival probability only shows the one short time scale for the larger energy splittings. 

This absence of the longer time scale plus the faster decay of the random survival 

probability as seen in Figure (27b) at small times are a consequence of the assumption 

of statistically independent above threshold symmetric and anti-symmetric states. 

The statistical model was based on symmetric and anti-symmetric states 

which are perfectly correlated at below threshold energies and uncorrelated at above 

threshold energies. This terminus at threshold of the highly correlated paired states 

is not observed in the T -shaped Ar3 spectrum. There is "residual" pairing and asso­

ciated correlation between symmetric and anti-symmetric eigenfunctions just above 

threshold. This is clearly demonstrated in Figure (28) which shows the spatial cor­

relation between a "paired" symmetric and anti-symmetric energy eigenfunction at 

above threshold. 

The residual pairing of the states above threshold is reflected in the T-shaped 

Ar3 projection matrix as elements between these states are near 1/2. Figure (29) shows 

the square of the projection matrix elements between a near threshold symmetric state 
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FIGURE 28. Spatial correlation between the residually paired 
symmetric and anti-symmetric T -shaped Ar3 energy eigenfunctions 
at above threshold energies; E1 = 163.01K. 
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in the i!h row to each k~h anti-symmetric state. The random projection matrix does 

not encompass the correlations in the above threshold paired states as its elements at 

small energy splittings is much less than the correlated value at 1/2. The effect of no 

correlation in the random projection matrix elements at near threshold energies is the 

absence of the long time scale associated with the small energy splittings (LlE < lOK). 

Although the mean energy splitting is one, it is the small splittings occurring from 

near threshold states that are favoured by the Boltzmann factor in equation (142); 

consequently the "correlated" T-shaped Ar3 projection matrix element between these 

states is a dominant contribution to the survival probability, and hence the observed 

long time scale. Meanwhile, the near threshold small splittings are not re-inforced in 

the random projection matrix because the corresponding elements are an order of 
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magnitude less, resulting in no long time scale in the random survival probability. 

Further note that there is no dynamical contribution to the quantum and random 

survival probability from the paired below threshold states as they were approximated 

as exactly degenerate. Therefore, this time scale from the below threshold small 

splittings is not observed in Figure (27) as it occurs for t--+ oo. 

At small times t, only the larger energy splittings will appreciabely change 

(relative to the scale of the overall decay) the cosine term in C(t) from its time 

zero value of one; therefore, it is only the larger energy splittings which contribute 

to the small time survival probability. The square of the projection matrix elements 

along the i!h row associated with larger energy splittings between the above threshold 

opposite symmetry states is shown in Figure (30). The random projection matrix 
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elements are larger than the quantum elements at the larger energy splittings. It is 

these contributions which result in the faster decay of the random survival probability 

compared to the quantum survival probability in Figure (27b) at small times. The 

rate of decay can be linked to the width of a Gaussian envelope over the peaks in 

Figure (30); a smaller width corresponds to a slower decay to the equilibrium value. 

(h;.,kJ
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·80 ·60 -40 ·20 0 20 40 60 

FIGURE 30. The quantum (solid) and random (dotted) projection 
matrix elements squared along the E;. = 209K row to each k!h anti­
symmetric state. 

Survival probabilities were also determined at a temperature ofT= 50K; these 

curves were not qualitatively different from Figure (27) at the lower temperature. 

The statistical theory deary needs to encorporate the residual pairing and associated 

correlations in the above threshold opposite symmetry eigenstates. 



PARTV 

Summary 



75 

PARTV 

Summary 

A statistical model of the T -shaped Ar3 survival probability did not pro­

duce the long-time oscillatory behaviour of the survival probability determined by 

a full scale quantum mechanical description. The assumption of independent above 

threshold T -shaped Ar3 eigenstates was the weak link in the statistical theory. 

The intent of this research project was to develop a quick and easy method 

of calculating dynamical observables in a quantum system. A completely quantum 

mechanical treatment of molecular dynamics is never quick and easy, and can get 

downright hopeless for a many degree of freedom system. However, the use of a 

discrete variable representation for the T -shaped Ar3 Hamiltonian allowed reasonably 

accurate calculations of the survival probability for the inversion process. The time 

and memory bottleneck in this procedure was in the evaluation of the projection 

matrix which involved a double sum over the DVR grid for each matrix element 

between two states. 

A new route to quantum molecular dynamics was proposed on the basis of the 

observed statistical properties in the energy spectrum and wavefunctions of systems 

having a classically chaotic analogue. The classically chaotic dynamics of T -shaped 

Ar3 was shown to exhibit these characteristic statistical properties. Specifically, the 

successive level spacing distribution of the T-shaped Ar3 scaled symmetric and anti­

symmetric energy spectra were shown to find good agreement with the Wigner distri­

bution. This distribution is a property of the eigenvalues for a Gaussian orthogonal 
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ensemble of random matrices and has been observed for the energy spectra of clas­

sically chaotic systems. The T-shaped Ar3 energy eigenfunctions were also seen to 

be Gaussian distributed with a spatial pair-correlation function approximated by a 

zeroth-order Bessel function. These results were predicted by Berry on the assump­

tion that the chaotic eigenfunctions are Gaussian random variables in configuration 

space. 

These statistical properties were used to construct a statistical model to the 

survival probability through the generation of random T -shaped Ar3 energy eigen­

values and a random T-shaped Ar3 projection matrix. The random T-shaped Ar3 

energy eigenvalues were constructed from a set of random eigenvalues for a Gaussian 

orthogonal ensemble of random matrices. Simple interpolation of the "scaled" random 

eigenvalues on the semi-classical density of states curves for the symmetric and anti­

symmetric T -shaped Ar3 spectra determined a set of random T -shaped Ar3 energy 

eigenvalues. These random eigenvalues displayed all the same characteristic statisti­

cal properties of the quantum spectra. A random projection matrix was constructed 

based on the properties of the T -shaped Ar3 energy eigenfunctions and the proper­

ties of the T-shaped Ar3 projection matrix. The statistical model assumed perfectly 

correlated below threshold eigenstates and uncorrelated above threshold eigenstates. 

The former assumption which determined a diagonal same symmetry random pro­

jection matrix block of elements and a diagonal below threshold opposite symmetry 

block of elements accurately modeled the corresponding elements in the quantum 

system. However, the above threshold opposite symmetry random projection matrix 

elements were constructed on the assumption of statistically independent Gaussian 

random eigenstates at these energies. This simply is not observed in the T -shaped 

Ar3 energy eigenfunctions as they are clearly correlated at above threshold energies 



77 

(Figure 28). Not accounting for these correlations in the statistical theory resulted in 

the random survival probabilty missing the long-time scale oscillation associated with 

the small energy splittings occuring from the residually paired near threshold states. 

This error also lead to the faster decay of the random survival probability at small 

times. Clearly, a useful statistical theory would need to encompass these correlations 

as a correction to the current model. Success is rarely a totality in any approximation 

to quantum mechanics - a statistical quantum dynamics based on the properties of 

the energy eigenvalues and eigenfunctions of a classically chaotic system may yet be 

realizable. 

Future work should be taken to a system having a larger number of states 

so as to avoid any problems resulting from dealing with a limited set and to possibly 

identify energy ranges over which correlation effects are dominant. Of course, moving 

to a larger system would incur a longer computation time, but the rate of increase 

would still be orders of magnitude less than the corresponding quantum mechanical 

calculation. In fact, this statistical theory is hoped to find its greatest use on systems 

having a larger number of degrees of freedom, and perhaps on semi-classical limit 

calculations. 
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APPENDIX A 

T-Shaped Ar3 Energy Eigenfunction Normalization 

The energy eigenfunctions of T -shaped Ar3 can be expressed as an expansion 

in the symmetrized DVR basis functions at the grid-point i = (x;, y;), namely 

where 

and 

1/J (X, y) = L c! < X, y I i' > 
i,(x,~O) 

I ·I - { ~2 { < X, y I i > ± < X, y I Ri >} X; # 0 < x,y z >- y;t. 

< x, y I i > X;= 0 

. sin ( ~) sin ( ""['17;]) 
< X, y I z > = < X I X; > < y I Yi > = [ l l 

7r X - X; 7r[y - Yi 

The normalization condition is given by 

Substituting the expansion from equation (Al) determines 

< 1/J(x,y) 11/lk(x,y) > = l:dxdy[. L c{ { < x,yli > ± < x,yiRi >} 
s,(x;>O) 

(AI) 

(A2) 

(A3) 

(A4) 

+. L d; < x, y I i >] x [ L c~ { < x, Y II>±< x, Y I fu >} (A5) 
s,(x;=O) l,(x1 >0) 

+ L c~ < x, y II >] 
l,(x,:O) 

inserting the DVR basis functions from equation (A3) and factoring determines inte­

grals of the form 

1: dx < x I x; > < xI x1 > j_: dy < Y I y; > < y I Yl > (A6) 



81 

Only the integration over dx will be explicity shown -the details for the dy integration 

are the same. A change of variables via 

1r(x- x;) 
u = --'----'-

~X 

1r(x; - x1) 
v = 

~X 
(A7) 

gives the equation 

1
00 I I 100 sin ( ,-[xA-x;]) sin ( ,.[xA-xr)) = 1oodu sin (u) sin (u + v) . (AS) 

dx < X X; >< X XI > = dx ... x ... x 
-oo -oo 1r[x-x;] 1r[x-xl] _00 11"~xu(u+v) 

From the relation 

sin(A+B) = sin(A) cos(B) + sin(B) cos(A) (A9) 

and since 

. ( ) . (1r(x;- x1)) 0 SID V = SID = 
~X 

(A10) 

as (x;-xr) E N thus 
ax ' 

1
00 

du _l_ sin(u) sin(u+v) = 100 
du _1_ sin(u) sin(u) cos(v) (All) 

_
00 

11"~X U U + V _
00 

11"~X U U + V 

The cosine can be replaced by 

(A12) 

this leaves the integral 

1
00 

1 "'i-"'' 100 
sin2 (u) 

-oo
dx < xlx; > < xlx1 > = -- ( -1) A., du 

11"~X _
00 

u 2 + uv 
(A13) 

While no closed form analytical expression was found, numerical integration revealed 

du "' 0 1
00 sin2 (u) 

_
00 

u 2 + u(n1r) -
V n=1,2, ... (A14) 

but for n = 0, i.e., x; = xr, an analytical expression is given as 

1
00 sin2 (u) 

du = 1r 
u2 -oo 

(A15) 



Therefore, the integration over dx is 

1
00 1 "'i-"'1 

-oo
dx <xjx;><xlxl>= --(-1) Ax 1r8. 

7r~X x.,x, 

1 
~X 

The normalization condition is reduced to the expression 

8. . 8. . } Rx;,Rx, Ry;,Ry, 

~X ~y 
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(A16) 

(A17) 

Evaluation of the delta functions determines the normalization condition for an eigen-

function as 

· k L d c~ + L d; cf _ L d; cf < tjl(x,y)jtf! (x,y) > =. Ax' ~y 
L.J. L.J. . ~X ~y - . ~X ~y 

o,(x;>O) o,(x;=O) o,(x;?:O) 

(A18) 
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APPENDIX B 

Properties of the T-Shaped Ar3 Projection Matrix 

An expression for the projection matrix element hi.,k. can be determined from 

the energy splitting, Ek. - Ei •. Consider the time independent Schrodinger equation 

(Bl) 

the energy splitting between the symmetric state tf)· and the anti-symmetric state 

1/Jk• can be derived as follows: the equations 

(B2) 

(B3) 

are multiplied on the left by the opposite symmetry wavefunction and then subtracted 

to give 

(B4) 
= (Ek. - Ej.) t/)•1/Jk• 

Integrating over the positive x-coordinate region of configuration space determines 

the expression 

("' dx 1oo dy { tf)· H'I/Jk• - 1/Jk• htf)·} = (Ek. - Ej.) roo dx 1oo dy t/)·1/Jk• 
Jo+ -oo Jo+ -oo (B5) 

= (Ek. - Ej.) < tf)• I h(x) 11/Jk• > 

The projection matrix element can be evaluated explicity by substituting the form of 

the Hamiltonian given in equation (1), this determines the expression 

roo 100 { [ '2 p2 l (Ek. - Ej.) < tf)• I h(x) 11/Jk• > = lo+ dx -oo dy tf)• p; + ; + V(x, y) 1/Jk• 

- 1/Jk• [ p; + p; + V(x,y) l tf)•} (B6) 
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The potential energy terms cancel, leaving matrix elements of the kinetic energy 

operators 

(B7) 

which can be written as 

(BS) 

where \72 is the Laplacian. From the simple relation 

(B9) 

then 

{BlO) 

where it is recognized that 

{Ell) 

thus, 

{B12) 

The integration over the positive x-coordinate region of configuration space 

of a divergence of a vector F can be thought of as a flow in or out of this region. This 

flow occurs along a boundary surface, which in this case is defined by the surface at 

x = 0. The divergence theorem equates the flow out of a region A to the flow across 

a boundary surface, S as 

j L dx dy div(F) = is du ii,. F , {B13) 



85 

where S is a positively oriented surface with outer unit normal n 17 • Equation (B12) 

therefore becomes, 

(Ek 4 - Ej.) <,f•lh(x)I1Pka > = -~
2 

{fsdrriiu·(,P•"V1Pka) 

-fsdrriiu·(1Pkav,f•)} 

The equation of the boundary surface can be written as 

g(y) = x = 0 - G(x, y) = x - g(y) = x , 

and the normal unit vector ii to the surface is 

n= 
"VG(x,y) :xG(x,y)i, + ;Ya(x,y)fj_ 

II "V G( X' y) II = -[ ___;:,.::.._ __ ____:..:<....,_ _ ___..:::._2_]-:-t = ~ 
(;xG(x,y))

2 + (;YG(x,y)) 

(B14) 

(B15) 

(B16) 

where i, and fl._ are the unit vectors directed along the positive x and y directions, 

respectively. Thus, the unit normal vector ii to the surface S points into the positive 

x-coordinate region of the region A in configuration space. The outer unit normal iiu 

points away from A, therefore 

iiu = - ii = - i_ , (B17) 

and equation (B14) becomes 

Upon evaluating the gradiant, 

(B19) 

then 

(B20) 
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as .t · Q = 0. For the boundary surface defined by g(y) = x where g(y) is a continuous 

function and has continuous first order partial derivative gy(Y) = ;Yg(y), then for a 

continuous function 4>(x, y) on the region S there exists the relation 

(B21) 

thus, 

(B22) 

The boundary surface is given by g(y) = x = 0, therefore ;yg(y) = 0 and equation (B22) 

becomes 

Because of the properties of the T -shaped Ar3 energy eigenfunctions in equa-

tions (82) and (83), then 'lj}• (x, Y):c=o = 0 and (;"' '1/)•(x, y)):c=o = 0. Consequently, the 

second term in equation (B23) vanishes leaving the expression 

. ' k h
2 1 ( . {} k ) (E~c. - Ei.) < 1/)•i h(x) 11/1 • > = 2 dy 1/)• {}x 1/1 • 

~ :c=O 
(B24) 

which relates the projection matrix element hj.,k. to the associated energy splitting 

and boundary surface overlap integral. 

.l•. ""' ... 

"'~.; -··· 




