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ABSTRACT 


Two-dimensional C-H chemical shift correlation spectroscopy provides a large amount 

of information in a two dimensional matrix. Many variations of these experiments have been 

in an effort to enhance the information content of these experiments. Decoupling of multiplet 

signals is one method used to increase the sensitivity of an NMR experiment. Simple 

broadband decoupling in ro2 is done by irradiating the correlated channel during acquisition. 

Decoupling ~n ro1 must be done using less direct methods, one of which is to use bilinear 

rotation decoupling. The traditional description of the effect that a BIRD pulse has on the spin 

systems is based on a simple AX system which is at equilibrium at the beginning of the pulse, 

which does not apply in many real systems. 

This study uses the Superspin formalism to show in more detail the behaviour of more 

complex spin systems during the BIRD sequence, and the effect of varying parameters within 

the BIRD sequence. This treatment involved the derivation of complete spherical tensor 

descriptions of AX, AX2, and AX3 spin systems. This allowed the derivation of a mathematical 

description of an INEPT style pulse sequence, where the refocussing pulse in INEPT was 

replaced with the BIRD sequence. The derivation of the general evolution transformations of 

the spherical tensors in Liouville space also allowed the theoretical treatment to be done in a 

single basis, where earlier implementations of the Superspin formalism converted between a 

spherical tensor basis for the treatment of pulses and a Hamiltonian basis for the treatment of 

delays. This theoretical treatment allows the derivation of a functional form for the dependence 

of the carbon signal intensity on the variation of the interpulse delay in the BIRD sequence. 

This formalism was also used to analyze the occurrence of artifacts in two dimensional 

heteronuclear shift correlation spectra, due to strong coupling between methylene protons. 

These artifacts were studied in experiments that attempt broadband homonuclear decoupling in 

ro1 through the use of constant evolution time between the initial excitation pulse and 

polarization transfer. Two experiments were analyzed, the COLOC experiment and the 

HETRES experiment. The superspin formalism was used to deduce a functional form for the 

intensity of the artifact as a function of the strength of the coupling between the methylene 

protons.· 
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Chapter 1 


Introduction 


The area of high resolution NMR spectroscopy has undergone tremendous growth 

since the introduction of pulse Fourier transform spectrometers in the 1960's. The advent 

of pulse techniques to NMR has led to the development of hundreds of different 

experiments designed to enhance signal to noise or to modify the information content of 

the NMR spectrum. Today NMR spectroscopy has become a routine research tool and 

has permeated almost every branch of chemistry including biochemistry, organic, 

inorganic and solid state chemistry, geochemistry, polymer engineering, and medicine. t-6 

In 1945, NMR effects were first observed in bulk media independently by Purcell, 

Torrey and Pound 7 and Bloch, Hansen and Packard.8 This was an observation of a 

hypothesis put forth by Pauli in the early 1920's that stated that some atomic nuclei 

should possess magnetic moments.9 In an external magnetic field, these magnetic 

moments will experience a torque and will precess about the applied magnetic field. The 

application of an oscillating magnetic field, applied at right angles to the static magnetic 

field and oscillating at the radio frequency corresponding to the precession frequency of 

the nucleus, will cause an absorption of energy by the nucleus. 

1 




The nucleus can be a very sensitive probe of the local magnetic field experienced 

by -the nucleus in a molecular system. Thus the NMR spectrum, if acquired with 

sufficient resolution, can yield information about nuclear magnetic effects from other 

nuclei in the same molecule (spin-spin coupling; nuclear Overhauser effect), in other 

molecules (spin-lattice relaxation; spin diffusion), and the shielding effects of bonding 

electrons at the nucleus and 1t-bonding electrons (chemical shift). All of these 

observations can be correlated to molecular connectivity and structure. The high 

sensitivity of the nucleus to all these effects makes NMR an invaluable tool for 

researchers studying molecular structure and environmental effects such as molecular 

12 15dynamics 1o. and solvent-solute interactions. 13
"

In high resolution NMR, the most common information gained from the spectrum 

is chemical connectivity through the chemical shift and splitting patterns of the NMR 

signals. Scalar spin-spin coupling will split the signals into multiplets, and the 

multiplicity, line spacing and intensities within the multiplets gives information about 

molecular connectivity and conformation.1
6-

18 A great deal of attention has been devoted 

to the extraction of NMR parameters from the appearance of complex spin systems and 

the correlation of these parameters to structural constraints. In this respect NMR can give 

complementary information to x-ray crystallography, particularly in complex biological 

systems where the structure in solution may be quite different than in the crystalline 

phase, or in systems where it is difficult to obtain crystals. 

In addition to correlating the NMR spectrum to a framework through the analysis 

of multiplet patterns, NMR can give information about the conformation of a molecule 

2 
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thrQugh the nuclear Overhauser effect. Relaxation pathways via dipolar coupling can 

effect NMR signal intensities. These changes in intensity can be investigated by 

perturbing one of the coupled signals, and distance information can be obtained from 

these intensities. This can then be used to determine conformational constraints in large 

molecules when an nOe is observed between nuclei in the same molecule. This has been 

used effectively in the study of the conformation of biological systems. 19
•
20 

In complex molecules, there may be many signals which have complex splitting 

patterns, and that overlap in a narrow region in the spectrum. This problem has been 

overcome in many cases by the development of more powerful magnets. With increasing 

magnetic field the chemical shift difference (in Hz) of overlapping signals will increase, 

while the spacing within a multiplet will remain constant. This will make the spectrum 

easier to interpret because of less overlap, the multiplet patterns will become slightly 

simpler, and the sensitivity will increase, as the population difference between energy 

levels will increase with increasing field strength. There are always cases however, where 

increasing the field strength does not adequately resolve overlapped multiplets. Because 

of cases like this, NMR spectroscopy has been expanded into a second dimension and 

beyond through correlation spectroscopy. 21
•
22 

Sensitivity of the NMR experiment has also been enhanced through the use of 

signal averaging, particularly with pulse techniques. Signal averaging increases the signal 

to noise ratio of the spectrum by a factor of n112
, n being the number of transients making 

up the average. This averaging can be done using scanned (continuous wave) spectra, 

however it is more efficiently applied to pulse NMR, where the signal averaging is done 
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in t!J.e time domain and the resulting time domain spectrum (or free induction decay or 

FID) is Fourier transformed to yield the frequency domain spectrum. This has not only 

made it possible to acquire spectra of dilute solutions or of small amounts of compound, 

but to acquire spectra of nuclei that have lower sensitivity than protons, as well as using 

pulse techniques to manipulate the spin systems to gain additional information, or to 

modify the information content of the spectrum. 

Pulse Fourier transform NMR has led to the development of a library of hundreds 

of NMR experiments.23 Pulse experiments such as INEPT or DEPT increase the 

sensitivity of spectra involving insensitive nuclei such as 13C through polarization transfer 

from a more sensitive nucleus via spin-spin coupling. These same experiments allow 

spectral editing, where methyl, methylene, methine and quaternary carbons can be 

distinguished. In a similar experiment, ]-spectroscopy, signals can be identified through 

multiplicity sorting. This has ultimately led to multidimensional NMR and correlation 

spectroscopy where signals in one dimension are correlated to signals in another 

dimension through cross peaks. Two dimensional NMR was first suggested by Jeener in 

1971 24
, and the first experiment published was by Aue, Bartholdi and Ernst in the mid 

1970's.Z5
•
26 Examples of two dimensional experiments include two dimensional ]

spectroscopy where one dimension represents chemical shift in Hz and the second 

dimension represents coupling constants in Hz. This is commonly represented by 

multiplet patterns in one dimension separated by the chemical shift of the nucleus. 

Another more popular type of two dimensional spectroscopy is chemical shift correlation 

spectroscopy where the chemical shift of one nucleus is correlated to the chemical shift 

http:experiments.23
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Figure 1.1: Pulse sequences for standard INEPT [1] and refocussed INEPT [2]. 

of another related to it through scalar coupling. This can be done between nuclei of the 

same type as in the homonuclear COSY experiment 27 or between different nuclei, as in 

the heteronuclear shift correlation experiment or FUCOUP 28
•
29

• There is also a two 

dimensional experiment which shows correlations between nucl~i which are in chemical 

exchange 30 or show nuclear Overhauser enhancement.31 

All two dimensional NMR experiments are acquired as a series of free induction 

decays, with some experimental parameter, usually a delay, incremented in a regular 

fashion between each acquisition. In the homonuclear COSY experiment, the initial 90° 

pulse creates xy magnetization, and then these are allowed to evolve for a time t1• A 

second 90° pulse is applied to the system which causes frequencies from other transitions 

http:enhancement.31


6 

90 

I [1] 
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Figure 1.2: Pulse sequences for normal COSY [1] and COSY-45 [2]. 

in the spin system to modulate transitions which have evolved over t1• The resulting data 

matrix is Fourier transformed first with respect to t:z to give a seP,es of spectra with lines 

modulated by the frequencies of coupled transitions. A second Fourier transform with 

respect to t1 then yields the cross peaks correlating signals in f1 with signals in f2• This 

transformed data matrix contains peaks which correlate signals in one dimension with 

signals in the second dimension. The cross peaks in the COSY experiment will show all 

correlations through all of the couplings resulting in complex cross peaks, and lines within 

a multiplet will show correlations to each other very close to the diagonal, giving a very 
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clu!tered looking spectrum around the diagonal. A variation of this experiment, known 

as COSY-45, simplifies these cross peaks and reduces the correlations within multiplets 

around the diagonal portion of the spectrum. This makes it simpler to identify 

correlations between signal in a region of overlapped multiplets. 

In the same way that homonuclear two dimensional NMR can be used to help 

determine connectivity and multiplicity in spectra of complex molecules where many 

signals overlap, heteronuclear two dimensional NMR makes it possible to correlate signals 

between dissimilar nuclei. The most common example of this is the correlation of 13C 

signals with 1H signals in organic compounds. This experiment was described by 

Maudsley and Ernst in 197732
, and was performed by detecting the carbon spectrum 

indirectly through the interferogram produced by coupled protons, analogous to the 

acquisition of correlation signals in the homonuclear experiment. This is known today 

as inverse detection and the more common approach today is to detect the carbon 

spectrum directly using a modification of the INEPT experiment. 33 

The INEPT style experiment modulates the transfer of polarization from protons 

to carbons with respect to t1, and the Fourier transform in this di~ension will yield cross 

peaks that correspond to the frequencies of proton signals that are coupled to those 

carbons. This is similar to the INEPT experiment without refocussing and decoupling in 

that it shows all couplings in the spin systems. Decoupling in COz can be achieved in the 

same manner as in the refocussed INEPT experiment; a refocussing delay is needed to 

bring the multiplet components of the detected nucleus approximately back in phase so 

that broadband decoupling can be applied during acquisition. Thus a delay, A2 is 
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intr?duced into the experiment after polarization transfer. Heteronuclear decoupling in 

ro1 is achieved by placing a 180° pulse at the midpoint of the evolution time t1• This will 

refocus the heteronuclear coupled vectors at the end of the t1 delay. In order to transfer 

polarization to the carbons however, the multiplets must be allowed to dephase, thus a 

delay il1 is inserted between the end of t1 and polarization transfer. 

Resolution can be further enhanced in ro1 if the homonuclear multiplet patterns in 

ro1 can be collapsed 34
• This is done by applying a pulse which selectively inverts proton 

coherences arising from protons attached to 13C but leaves those attached to 12C 

unchanged. If this pulse is placed at the centre of the evolution time t1 the effect will be 

to refocus multiplets due to vicinal protons. Since the natural abundance of 13C is very 

small ( -1.1%) the vicinal protons will be mostly bonded to 12C. A pulse sequence which 

satisfies this requirement is known as a Bilinear Rotation Operator, or BIRD pulse 35 
• 

This pulse sandwich is made up of 90°(H)-'t-180°(H,C)-'t-90°(H) pulses, where the delay 

't is equal to 1/(2*1JCH). This strategy works well providing the homonuclear coupling 

is much smaller than 1JcH• and there is not a large variation in 1JcH· In addition, geminal 

protons will not be decoupled as they are both attached to a 13G. 

In the INEPT based HSC experiment, the delays il1 and Az are generally chosen 

so that polarization was transferred from directly bonded protons. In order to optimize 

the correlations between 13C and long range coupled protons, these delays must be 

optimized for the long range coupling constants, where long range implies nJcH with n> 1. 

Problems can arise with this optimization of the delays, in that to afford optimum 

polarization transfer from the long range protons, the defocussing delay, il1, is long 
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eno!Jgh so that direct bonded magnetizations may orient in a fashion that will transfer 

magnetization from the directly bonded protons, or to destructively interfere with the long 

range magnetizations resulting in no net polarization transfer. This can cause problems 

in that the delays may be optimized for different long range couplings and these different 

settings may cause the direct bond couplings to be either in or out of phase. This will 

result in some long range correlations being attenuated or some direct correlations having 

a large intensity. Also, the long range coupling constants have a broader range relative 

to the short range coupling constants making it harder to optimize the refocussing delays. 

This may cause correlations to drop out in some systems. There have been many 

attempts to enhance the long range HSC experiment either through the elimination of 

direct bond correlations or through the elimination of homonuclear coupling. A series of 

these experiments come under the classification of constant evolution time experiments, 

as the second dimension is acquired by incrementing a mixing pulse through a constant 

time period between initial excitation and polarization transfer. 

One early example of the constant time experiments is COLOC. 36 In this sequence 

simultaneous 180° pulses are incremented through a constant evolution period, T, between 

the initial proton 90° pulse and polarization transfer. The constant evolution time 

provides broadband homonuclear decoupling in f1, since the magnetizations due to 

homonuclear coupling are not modulated with respect to t1• Polarization transfer is 

maximized by setting the constant time to 11(2*JCH). Since the experiment evolves over 

a constant time, the interferogram in t1 will not be attenuated by relaxation and thus will 

show no exponential decay. This can be a drawback in that in order to perform any zero 
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f:tllip.g in t1 it is necessary to apply heavy apodization in order to minimize truncation 

artifacts. Another drawback is that the resolution in f1 will be limited because of the 

constant evolution time. Any effort to increase the resolution by increasing the number 

of points acquired will simply increase the spectral width in f1, and resolution will remain 

constant. This can be alleviated to a certain degree by increasing the value of T to larger 

odd multiples of 11(2*JcH). However, since there is a longer time between initial 

excitation and acquisition, the intensity of the signal will be attenuated with respect to that 

done with shorter values of T. 



CHAPTER2 

Theory 

Many nuclei have a property known as spin which is the quantum mechanical 

analogue of a classical spinning top. This gives the nucleus spin angular momentum, and 

since the nucleus has charge, it will also have a quantized magnetic moment. The spin 

is given the quantum number I and the magnetic quantum number is m. The number of 

m levels is related to the spin quantum number through the relationship: 

m = 21 + 1 [2.1] 

and the magnetic quantum numbers have values in the range m = { -I, -I+1, ... I-1, I}. 

The magnetic moment, J.L, is always parallel to the angular momentum. The magnetic 

properties of a nucleus are usually expressed in terms of the ratio of the magnetic moment 

and the total angular momentum. This ratio is known as the magnetogyric ratio, y. 

27tiJ. y= [3.2] 
Ih 

Thus for protons and 13C nuclei which have I = 1/2, there exists two degenerate magnetic 

quantum numbers, m =± 1/2. This degeneracy can be lifted by placing the nucleus in 

a uniform magnetic field, B0, causing the levels to split proportionately to the strength of 

the magnetic field. The energy difference between the m = +112 and m = -112 is 

proportional to the strength of the magnetic field: 

11 
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[2.3] 

When the magnetic field is applied, the nucleus does not merely align its magnetic 

moment with the applied magnetic field, but since the nucleus is spinning (i.e. it has 

quantized spin) it also has spin angular momentum and the nucleus will experience a 

torque and the spin axis will precess about the direction of the applied magnetic field. 

The precession frequency is known as the Larmor frequency, and is equivalent to the 

frequency associated with the difference in energy of the magnetic spin levels in the 

magnetic field: 

[2.4] 

Thus increasing the strength of the magnetic field does not increase the amount that the 

spin will align with B0, but will merely increase the Larmor frequency and the energy 

difference between the spin levels. The nucleus can be made to flip the direction of its 

spin axis to the opposite direction by the application of a second magnetic field, B1 at 

right angles to B0 and oscillating at the Larmor frequency. 

The separation of the energy levels, Llli, can be seen to be 27t~0 for a spin 1/2. 

If the B1 field is rotated at a frequency approaching the Larmor frequency, a resonance 

effect will be observed as the Larmor frequency is passed. This is the case in CW NMR, 

with the spectrum detected as the absorption of energy from the rf field or through an 

induced voltage created by the flipping of the magnetic dipoles at resonance. 

The description of pulse NMR is aided by the use of a frame of reference which 
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rotc!tes at the Larmor frequency. In this frame of reference the magnetizations which 

precess about the z axis are static with respect to the z' axis in the rotating frame. The 

individual magnetizations from each nucleus contribute to a net equilibrium in a canonical 

ensemble of nuclei. This net magnetization is aligned along the z' axis when the system 

is at equilibrium, and it is the motion of this vector which is followed in the rotating 

frame during the course of a pulse sequence. Another simplification that results from the 

adoption of a rotating frame of reference is that if a second magnetic field, B1, oscillating 

at the Larmor frequency, is applied to the system at right angles to B0, this new magnetic 

field can be represented as a stationary vector in the rotating frame. (Figure 2.1) The 

phase of the B1 field with respect to the Larmor frequency is represented by the direction 

of the vector in the x'y' plane. 

z z' 

-~ 
--------~~-----0 y 

X x' 

Figure 2.1: Comparison of the laboratory frame (left) and the rotating frame (right). 

In the rotating frame then, the pulse is the application of a second static magnetic 

field, B1, at right angles to the external field B0• An important assumption with regards 

to a pulse is that the B1 field dominates all other interactions during a pulse. A result of 
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this_ assumption is that during a pulse, the net magnetization will precess about the 

magnetic field B1• This also means that all other effects, such as relaxation and spin

spin coupling are ignored for the duration of a pulse. 

The most common method of observing NMR signals in modem spectrometers is 

by the use of pulse methods to create a time domain signal and subsequent Fourier 

transformation to create the frequency domain spectrum. The pulse of rf energy has an 

effective bandwidth which is inversely proportional to the width of the pulse, and is broad 

enough to cover the spectral range of proton and carbon spectra in solution. Since the 

field strength is much larger in the pulse experiment than in the CW experiment, the B1 

net magnetization, Mo, will precess about B1 for the duration of the pulse. The angle a. 

which the magnetization precesses from its equilibrium position defines the duration of 

the pulse, and is related to the strength of the perturbing field B1 through the relationship: 

a.= yBltp [2.5] 

In order to observe maximum signal intensity, a pulse angle of 90° is used. 

After the application of a 90° pulse the net magnetization is aligned in the x'y' 

plane, where it begins to precess about the B0 (z') axis. The spins then begin to relax in 

the x'y' plane due to spin-spin relaxation, and increase in the z' plane due to spin lattice 

relaxation. This oscillation and loss of phase coherence in the x'y' plane is detected as 

a free induction decay (FID) and is Fourier transformed to give the frequency domain 

spectrum. 

The superspin formalism for pulse NMR 3742 is a density matrix formalism which 

has as its elements, operators on eigenstates which represent transitions between those 
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eigenstates. The density matrix represents the set of all physically observable quantities 

associated with a spin system. This set of observables is presented as a vector in operator 

space (or Liouville space). The effects of pulses and delays on a spin system is easily 

represented as transformations on the density matrix (this is the more reasonable basis to 

work in since the pulse acts on transitions between eigenstates rather than the eigenstates 

themselves). Thus the effect of a pulse is represented by the multiplication of the density 

'vector' by a transformation matrix to give another vector. The angular momentum 

character of the superspin tensors in Liouville space represent the coupled angular 

momentum of the eigenstates that contribute to the transition represented by the superspin 

tensors. Thus the density matrix elements can be represented by quantum numbers 

representing the total angular momentum of a transition and the z component of the 

angular momentum, or magnetic quantum number. It is then possible to describe the 

effect of a pulse on a transition between eigenstates as a transformation of the angular 

momentum properties associated with the transition in analogy to the transformation under 

rotation of angular momentum eigenstates. The rotation is represented by the set of 

rotation matrices known as the Wigner rotation matrices, and the effect of a pulse on the 

density matrix is simply a multiplication by the appropriate Wigner matrices.43 

The development of the description of NMR transitions using superspin was first 

introduced by Banwell and Primas 44 as the 'direct method' for calculating NMR spectra. 

In this description a superoperator was derived which has as its eigenvalues, the 

frequencies representing the transitions between spin eigenstates. The set of 

superoperators for a given spin system is a vector in Liouville space, which is a Euclidean 

http:matrices.43
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space representing all of the operators in spin space. In spin space the concept of 

transverse magnetization is associated with transitions between eigenstates Ir) --+ Is) 

where~- Ms =±1. In the more general case, where~~ ±1, in spin space this is 

represented by non-vanishing off diagonal elements of the density matrix, crrs, representing 

a coherent superposition between eigenstates Ir) and Is). This coherent superposition 

occurs only between pairs of eigenstates, and the difference in magnetic quantum number, 

~. is referred to as the order of coherence or the coherence level. Thus ~ = 0 

represents zero quantum coherence, ~ = 1 single quantum coherence, up to ~ = p for 

p-quantum coherence. The number of coherence levels will be limited by the number of 

spins in the system. In Liouville space the density matrix is made up of operators 

representing these coherent superpositions and the elements of the density matrix are 

written in a form which describes the angular momentum character of the transitions: 

IMK) 

where M is the quantum number representing the superspin or the total angular 

momentum of the transition, and K is the z component of the angular momentum, or the 

coherence level. 

In complex spin systems, there is a unitary transformation between the differences 

between the energy levels in Hilbert space and the linear operators in Liouville space.45 

Thus the density matrix representation of the spin system in terms of spherical tensors can 

be derived from the eigenstates of the system. Once this has been done, however, these 

eigenstates need not be used again. In earlier applications and descriptions of the 

superspin formalism, 38
-
42 the effect of a pulse on the density matrix was determined in 

http:space.45
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the _spherical tensor basis and then a unitary transformation was derived to transform the 

density matrix back to the Hamiltonian basis. The effects of the delay was determined 

in this basis. In this study, however, equations for the general evolution as spherical 

tensors in Liouville space were derived so that the effect of a delay on the density matrix 

can be determined in without transforming to the Hamiltonian basis. In complex spin 

systems, the density matrix. may be represented by spherical tensors which represent 

coupled spin systems rather than products of individual spin tensors. There exists a 

unitary transformation between the coupled and uncoupled representations, which follows 

the same rules as coupling of angular momenta. 

The preliminary work in this study involved determining the representations of the 

fully coupled spherical tensors in terms of the uncoupled representation, for the AX, AX2, 

and AX3 spin systems. The general evolution formulae were then derived for the 

spherical tensor basis for these spin systems. In this application of the superspin 

formalism, an entire NMR experiment can be followed through mathematically while 

remaining in the same basis. 

The transitions that make up the density matrix can b_e found by solving the 

eigenvalues for the Liouville equation directly, in this case:45 

ap = -iLp-R(p-p ) [2.6]
CJt eq 

with eigenvectors I <1> 1)(<!> 21 , and eigenvalues £ 1 - ~- In this case the state functions for 

the Hamiltonian basis are known, and vectors of the form I <!> 1X<!> 21 can be constructed 

from this basis. The spherical tensors in Liouville space can be related to the more 

familiar spin space operators in the single spin case. 37 
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IO) = 	(-
1 )i = -

1 {laXa I + IPXP P [2.7]
/2 /2 

[2.8] 

llo> = 	C-1 >iz = -
1 {laXa I - IpXp IJ [2.9]

/2 /2 

[2.10] 

Since the single spin density matrix elements are spherical tensors, they can be 

combined in the same way as angular momentum operators, to form spherical tensors 

representing the transitions associated with coupled spin systems. These spherical tensors 

have a notation similar to the single spin case: 

where M is the rank of the spherical tensor, 

s is the subscript or z component of the angular momentum, 

S is the symmetry with respect to the coupled spins, 

k represents the number of rank 1 single spin spherical tensors. 

The creation of a coupled basis set proceeds through the following steps: 

1. 	 Identification of the energy levels of the coupled spin system through the 

eigenvalues of the Hamiltonian basis, and identification of the spin space 

transitions between pairs of these eigenstates. All multiple quantum transitions 

are identified. 

2. 	 The transitions are expressed in terms of the spin space eigenvectors and the 
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differences between the spin space eigenvalues. 

3. 	 The above expressions relating the spin space operators to the single spin spherical 

tensors are used to express the transitions in terms of combinations of single spin 

spherical tensors. 

4. 	 The rules for coupling angular momenta are used to combine single spin spherical 

tensors to create coupled spherical tensors of the form described above. These 

coupled basis elements are symmetrized with respect to the symmetry group of the 

spin system. For the analysis of the AX, AX2, and AX3 spin systems, only the 

symmetric spherical tensors are used to make up the basis set. 

5. 	 Once the fully coupled spherical tensor basis has been derived in terms of the 

single spin spherical tensor basis, a transformation matrix can be constructed 

between the Hamiltonian basis and the coupled spherical tensor basis. 

6. 	 In previous descriptions of the superspin formalism, this last matrix was used to 

convert between the two bases in order to determine the effects of pulses and 

delays. During a pulse, the density matrix was expressed in the spherical tensor 

basis and during a delay the density matrix was expressed in the Hamiltonian 

basis. The above transformation matrix illustrates the linear relationship between 

the two bases. 

In the present analysis, the density matrix will be left in the spherical tensor basis, 

thus the last stage involves the derivation of general evolution formulae for the spherical 

tensors; This can be done using the results from the previous step, using the 

transformation between the spin space eigenvalues and the spherical tensors to express 
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each spherical tensor as a transformation between other spherical tensors with the same 

z component. 

Thus using the spherical tensor basis a pulse is simply a rotation of the frame of 

reference, and a delay is a transformation amongst basis elements with a common 

coherence. The phase of a pulse describes the orientation of the magnetic field B1 in the 

rotating frame, with respect to the x' and y' axes. The phase of the pulse is described by 

an angle <j>, measured from the x axis, and is related to the y and <1> rotations about the 

Z and z' axes during an Euler rotation. The effect of the phase of the pulse on a spin 

system is a multiplication of the density matrix elements by a factor: 

where .&n is the change in coherence level brought about by the pulse. Thus the phase 

factor is related to the Wigner matrix elements by the difference in the subscripts, e.g. for 

the Wigner matrix element d1.u(9) the phase factor would be e2
icjl. 

Appendix 2 shows the fully coupled basis for the AX, AX2, and AX3 systems in 

terms of the single spin spherical tensors. The form of these basis elements is that of two 

spherical tensors, the first one representing the A spins and the other representing the X 

spins: 

The fully coupled representation of the X spins is created by the symmetric combination 

of single spin spherical tensors the same way as one would combine angular momenta 

using Clebsch-Gordan coefficients. For example, in the two spin case: 

[2.11] 
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Th~ Clebsch-Gordan coefficients are described through the equation. 43 

[2.12] 

Here, j 1 and j 2 represent the angular momentum of the uncoupled spherical tensors and 

J is the total angular momentum of the coupled representation. Similarly, m1, and M m2 

are the z components of the uncoupled and coupled representations. The term 

[2.13] 

is the Wigner 3j symbol, and these have been tabulated for many combinations of angular 

momentum.46 The symmetrized spherical tensor 11+1,1) is: 

[2.14] 

The coupled spherical tensors are related to transition frequencies through another 

linear transformation. Through this transformation, formulae for the general evolution of 

the spherical tensors in Liouville spaced can be derived. l'hese general evolution 

equations are equivalent to linear transformations which exchange coherence between 

spherical tensors with a common coherence level. It is these general evolution equations 

which make this study unique in the application of the superspin formalism, in that 

previous applications have performed the evolution of the magnetizations in the 

Hamiltonian basis, transforming back to the superspin basis to apply the pulses.40 

A pulse sequence is made up of a series of pulses and delays which are applied 

http:pulses.40
http:momentum.46
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to a_spin system. The effect of these pulses and delays can be determined mathematically 

using the formalism described above. The effect of a pulse is described by the Wigner 

matrix for that basis set, and is calculated by multiplying the appropriate Wigner matrix 

element by the corresponding density matrix element. When pulses are applied 

simultaneously to different nuclei in a spin system, the pulses are treated separately, with 

the net effect of the pulse being the multiplication of the density matrix by the product 

of the Wigner matrix elements for those pulses. During a delay, the density :ql.atrix is 

multiplied by the general evolution matrix. These steps are applied sequentially until the 

acquisition stage of the pulse sequence, where the evolution of the FID is described by 

the projection of the xy magnetization along the 11+1) spherical tensor of the observed 

nucleus. In this study, the intensity of a line with respect to the delays was of interest, 

which is equivalent to the value of the 11+1) tensor of the observed nucleus at the 

beginning of the acquisition period. 



CHAPTER3 

BIRD Pulse Sequences 

The short comings of the vector model show themselves in the description of 

BIRD pulse sequences (Figure 3.1). The BIRD sequence (or simply BIRD pulse) acts as 

a 180° pulse for protons bonded to 13C and a 0° pulse for protons bonded to 12C for one 

phase cycle, and the opposite case for another phase cycle. 35 This mechanism can be 

illustrated adequately using the vector picture for a single proton attached to either a 12C 

or a 13C, starting with the system at equilibrium (refer to figure 3.1). The x, x, x phase 

cycle will be illustrated. The initial 90°(H) pulse creates proton xy magnetization. The 

vectors associated with the 1
JCH coupling' in the 1H13C system will then begin to precess 

and dephase at v" ± JcH· The delay t is chosen so that these vectors will reach an 

antiphase orientation at the beginning of the 180°(C,H) pulses. The 180° proton pulse is 

applied along the x axis and will have no effect on these vectors because they are also 

aligned along the x axis. The carbon 180° pulse will cause the vectors to refocus at the 

end of the next delay t. At the beginning of the final proton 90° pulse the vectors will 

be refocussed along the y axis, and the application of the pulse along the x axis will bring 

these vectors down along the -z axis, thus the net effect of the sequence is a proton 180° 

pulse. The protons bonded to the 12C will not dephase during the first delay t, so the 

23 
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++++ 
90~H)-- -- 18d{H,C) -- T -- 90~H) 

++++ 
Figure 3.1. Vector diagram showing evolution of coherence in 13C-1H system (top) and 
12C-1H system (bottom) during a BIRD sequence. 

proton 180° pulse will transfer the magnetization to the -y axis. The final proton 90° 

pulse along the x axis will bring the magnetization back up along the z axis, having the 

net effect of a 0° pulse. 

This picture of a BIRD pulse falls short however, when describing more complex 

spin systems, particularly when the system is not at equilibrium at the beginning of the 

pulse. The vector model fails to illustrate the evolution of multiple quantum levels during 

the delays of the BIRD pulse, and gives little insight to the effect that the choice of this 

delay has on the net effect of the BIRD pulse. Most applications involving BIRD pulses 

use the sequence when the system is not at equilibrium, either after the initial proton 

magnetization has been created, or after polarization transfer. In complex systems the 

initial 90° pulse will create multiple quantum coherence depending on the number of 

nuclei in the spin system (e.g. an AX3 system can have quad quantum levels.). These 

multiple quantum levels will then evolve at their characteristic frequency during the 

delays in the BIRD sequence. Certain of these transitions will be refocussed after the 
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180~ pulses but there will be some magnetization transferred back to an observable level 

by the fmal 90° pulse that evolved during a multiple quantum level and has passed on 

some of this dependence to the observable level. This can have dramatic effects on the 

intensity of the magnetization that is detected after the BIRD sequence, with respect to 

the interpulse delay, 't. 

In order to study the effects of the parameters of the BIRD sequence on a system 

that is not at equilibrium, a pulse sequence was created from the refocussed INEPT 

experiment. The BIRD pulse was used in place of the refocussing 180° pulse to study 

the BIRD pulse on systems after polarization had been transferred to the carbons. This 

situation occurs in pulse sequences such as the FLOCK sequence47 where the BIRD pulse 

is used freely to help increase the sensitivity of long range correlation experiments. 

A B C D E F G H 
I ......__I I I 1/ I 

90'"x 180" 90" 90" 180" 90" 
1H .X I)' IX .,. IXI 

X
13c 


1/2J c5 I Tl T c5 


Figure 3.2. INEPT-BIRD pulse sequence. BIRD pulse has replaced refocussing 180° 
pulse from the INEPT experiment. Labels show the landmark points referred by the 
text. 

In the INEPT-BIRD pulse sequence there will be all carbon coherence at the 

beginning of the BIRD pulse, resulting from the polarization transfer from INEPT. The 

analysis will start at the point immediately following polarization transfer, and follow the 

coherence through the BIRD pulse up to the point of acquisition. In figure 3.2, letters 

label the points where pulses and delays begin and end, and the values of the density 
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Figure 3.3. Coherence transfer pathway for the AX3 system. 


matrix elements at these points are denoted by this letter in superscript after the notation 

for that spherical tensor. Even though the protons are in a zero quantum level, the 

subsequent delay after polarization transfer will create levels with angular momentum 

greater than zero. The application of a 90° pulse to this will result in the creation of 

multiple quantum coherence. The creation of the multiple quantum levels and their 

evolution can be followed through the aid of the coherence transfer pathway in figure 

3.3.48
·
49 The following analysis will make reference to the pulse sequence in figure 3.2, 
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using the letter labels as landmarks for the analysis. 

In terms of the superspin formalism, the following density matrix elements will 

have non-zero intensity at the beginning of the BIRD sequence in an AX2 system: 

11+1)1 0,0)8 [3.1] 

11+1)1 0,2l [3.2] 

11+1)110,1)8 [3.3] 

11+1)120,2)8 [3.4] 

The initial 90°(H) pulse in the BIRD sequence will act as a rotation of the frame 

of reference in the superspin formalism. This rotation is described by the Wigner rotation 

matrices cf(S), where n represents the angular momentum of the transition (or superspin), 

and e is the angle of the rotation (or pulse angle). Thus for the AX2 system the rotation 

43 50-52matrix is made up of the Wigner matrices t:f, dl, and ~. • The action of a pulse on 

a system is described by multiplying the density matrix of superspin elements by the 

corresponding rotation matrix: 

p+ = D·p· [3.5] 

where p· and p+ are the density matrices before and after the pulse, 

D is the total rotation matrix = t:f EB d1 EB ~ 

These individual rotation matrices are made up of elements denoted by: 

dJM',M(S) [3.6] 

where J is the total angular momentum of the transition, M' is the z-component of the 

final state and M is the z-component of the initial state.43 e is the Euler angle 

representing the rotation from the Z axis. When a rotation acts on an eigenstate IJM), 

http:state.43
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it cannot change the value of the total angular momentum J, but can only transform IJM) 

into a linear combination of other M values. The consequences of this in superspin are 

that a pulse can only change the coherence level of a transition, leaving the superspin, or 

the total angular momentum of the transition, alone. The amount of coherence that gets 

transferred into other coherence levels is governed by the Wigner matrix elements. The 

Wigner matrices are arranged so that elements increase in M' from left to right along the 

rows of the matrix, and increase in M down the columns of the matrix. For a 90° pulse 

acting on the AX2 system, the rotation matrices will have the following values: 

do(;) = (1) [3.7] 

1 1 1 

2 J2 2 

- 1 0 1 [3.8]dl(;) = 
J2 J2 
1 1 1 

2 2J2 

1-
4 

1-
2 {f 1 

2 

1-
4 

1- 1 0 1- 1 

2 2 2 2 

d2(;) = {f 0 1 

2 
0 {f [3.9] 

1- 1- 0 1 1 

2 2 2 2 

1-
4 

1 

2 {f 1-
2 

1-
4 

Since all of the proton magnetizations are in zero quantum levels the only rotation 

matrix elements that are used are those with M =0. The amount of coherence that gets 

transferred to any level is determined by the Wigner matrix elements. Thus the changes 
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in coherence will be as follows: 

11+1)1 O,O)c =d0
00l1+1)1 0,0)8 (single quantum coherence) 

11+1)1 0,2f =d0 
0011+1)1 0,2)8 (single quantum coherence) 

l1+1)11+1,1)c =d1
10l1+1)l10,1)8 (double quantum coherence) 

l1+1)l1_1,1)c =d1
•10l1+1)l10,1)8 (zero quantum coherence) 

l1+1)l20,2)c =d2
00l1+1)l20,2)8 (single quantum coherence) 

l1+1)12+2,2)c =d2
20l1+1)l20,2l (triple quantum coherence) 

l1+1)12.2,2)c =d2
•20l1+1)l20,2)8 (single quantum coherence) 

Note that there is no coherence transferred to the 11+1)110,1), 11+1)12+1,2) and 

11+1)12.1,2) levels because the Wigner matrix elements d1
00('rr/2), d2

10(1t'/2) and d2
•10(1t'/2) 

are all zero. Thus the 90°eH) pulse has created zero, single, double and triple quantum 

coherence. 

These multiple quantum levels will evolve over the ftrst interpulse delay, 't, in the 

BIRD pulse, according to the general evolution formulae derived earlier. During the 

delay, the coherence level, or the z component of the angular momentum, remains 

constant, however the total angular momentum may change. Tl).us transitions that share 

a common coherence level may transfer angular momentum during the course of the 

delay, and transitions that had zero intensity at the beginning of the delay may have 

considerable intensity at the end of the delay. In this manner, the duration of the delay 

allows one to choose which transitions will survive to the end of the pulse sequence and 

be detected. 

The evolution of the transitions is shown in terms of the intensity of the transitions 
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at the end of the first interpulse delay. In practice, a discrete value of 't would be chosen 

in order to optimise the intensity, or some other property of the spectrum, however in this 

study the dependence of the detected signal on the interpulse delay is of interest, so the 

value of the time interval is kept general. The density matrix elements evolve according 

to the formulae outlined in the appendix, and in the results below the effects of the delay 

() have been evaluated, where the effects of the interpulse delay have intentionally been 

left in the form from the general evolution formulae to illustrate the source of the 

evolution. The intensity of the transitions in terms of 't are: 

[3.10] 

[3.11] 

[3.12] 

[3.12] 

_ 1 ivA& i(v[vx)-r s./Jt 1J1 ) 11 1) D 
- -e e CO uCOS- 't' [3.13]

1 +1 - 1' ,fi 2 

[3.14] 

1 ivA& i(v A+v x)'t" os.1·Jt 1 
11 ) 11+1'1) D = --e e C uCOS-'t' [3.15]

1+ ,fi J 

[3.16] 
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[3.17] 


[3.18] 


In the superspin formalism, the simultaneous 180°(H,C) pulses will reverse the 

sign of the coherence level of all of the transitions, in both the carbon and proton 

domains. For a 180° pulse, the Wigner rotation matrices simplify to: 

[3.19] 

[3.20] 


0 0 0 0 1 


0 0 0 -1 0 

[3.21]d2(1t) = 0 0 1 0 0 


0 -1 0 0 0 


1 0 0 0 0 


The pulses can be applied to the carbon and proton channels independently, with 

the net amount of coherence transfer for each transition represented by the product of the 

corresponding Wigner matrix elements. For example, the net effect of the 180°(H,C) 

pulse on the 11+1)12+1,1) transition would be: 

[3.22] 


The effect in terms of the physics of the density matrix is that all transitions from 
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bef~re the 180°(H,C) pulse will be transferred to their counterparts which are rotating at 

the opposite frequency. Thus at the end of the last 't delay, any frequency dependent 

term in the description of the density matrix will cancel out by the end of the pulse 

sequence. However in the expressions for the general evolution of the transitions, there 

are terms which will have different evolutions before and after the 180°(H,C) pulses. For 

example, before the pulses, the evolution of 11+1)1 0,0) over 't was: 

11+1)10,0) = eivA-r[±(l+cos.h)ll+1)IO,O) - ~(1-cosJ~)Il+ )120'2)1 [3.23]
1+ - -(1-cos.h:) 11+1) 10,2)]

2/3 

However, during the ftrst interpulse delay, the transition 11+1)110,1) was created, but did 

not contribute to the evolution of the 11+1)1 0,0) transition because it had zero intensity 

at the beginning of the delay. This transition will be transferred to 11.1)110,1) by the 

180°(H,C) pulse, and this will then contribute to the evolution of the 11.1)1 0,0) level and 

to the other transitions with zero coherence in the proton domain. Thus after the 

180°(H,C) pulses the evolution of 11.1)1 0,0) will be made up of 4 transitions from before 

the pulse: 

11_1)10,0) = e-ivA-r[±(l+cosJ~)Il+ )IO,O)- ~sin.h)ll+ )ll0,1)1 1
1 

1 1- - (l-cos.T~)I1 )I20,2) + - 1-(l-cosJ-c)ll )I0,2)]
/6 + 2/3 + 

[3.24] 
In order to simplify the analysis, the number of transitions that need to be 

followed from this point can be reduced by analyzing only the transitions that will 

contribute to the observable level. At the receiver, the only level that can be detected is 

the 11.1)1 0,0) level, since this experiment is designed to acquire in the carbon channel 
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and the 11+1) and 11.1) transitions represent transverse magnetization in the x'y' plane. 

Thus during the last refocussing delay during the INEPT-BIRD experiment, the only 

transition that needs to be followed is the 11.1)1 0,0) level. Additionally, this means that 

transitions evolving during the last interpulse delay and through the last 90° pulse that 

will contribute to the evolution of the 11+1)1 0,0) level during the refocussing delay need 

to be followed after the 180°(H,C) pulse. It can be seen from the equation above, that 

the only levels that will contribute to the observable level are the 11.1)1 0,0), 11.1)110,1), 

11.1)1 0,2) and 11.1)120,2) levels. These levels are created by the final 90°(H) pulse, 

which transfers coherence from several levels, including multiple quantum levels, to make 

up the intensity of the received transition. The intensity of the single quantum transition 

after the 90°(H) pulse can be expressed in terms of the transitions before the pulse and 

their corresponding Wigner matrix elements: 

11.1)1 O,O)G =d0 
00(7tl2)11.1)1 O,Ol [3.25] 

11.1)1 0,2)G =d0 
00(7tl2)11.1)1 0,2l [3.26] 

l1.1)ll0,l)G = d1
01(7ti2)11.1)11+1,1)F + d1o.1(7tl2)l1.1)l1_1,1l [3.27] 

I1.1)I20,2)G =d2
00(7tl2)l1.1)l20,2l + d2

02(7tl2)11.1)12+2,2l + d2o.i1f/2)11.1)12.2,2l 

[3.28] 

As can be seen from the above equations, the 11.1)110,1), 11.1)12.~'2) and 11.1)12+~'2) 

levels do not contribute directly to the intensity of the observed signal, however the 

intensity of these transitions at the beginning of the final interpulse delay contribute to 

the evolution of other levels that appear in the final coherence. 

The evolution during 't in the second half of the BIRD sequence succeeds in 
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re~oving any chemical shift dependence from the evolution of the transitions. This arises 

because of the effect of the 180°(H,C) pulse in transferring the coherences to their 

counterrotating elements. The chemical shift dependence is described by an exponential 

term in the general evolution equation for that coherence, and counterrotating terms will 

differ by the sign of the exponent. The exponential terms from before the pulse will 

cancel out with the exponential terms after the pulse. This simplifies the time dependence 

of the transitions to a case which has no chemical shift dependence, or is essentially at 

resonance. 

The evolution of the transitions after the 180°(H,C) pulse follow the equations in 

appendix 3. Only the transitions that contribute to the detected signal will be shown here. 

At the beginning of the final 90°(H) pulse the intensity of the signals of interest will be: 

[3.29] 

[3.30] 

[3.31] 

[3.32] 

[3.33] 

[3.34] 

[3.35] 
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All of the above levels will be transferred to zero quantum proton coherence levels 

by the final 90°(H) pulse. The evolution of the observed level will depend upon the value 

of all of the zero quantum proton coherences after this pulse: 

l1_1)12o,2) 0 = -~l1_1)12o,2)F + {fi1_1)12+2,2)F + {fi1_1)I2_2,2)F = ~ieivAr>sin.J 

[3.39] 

The observed level will then evolve according to the formula in appendix 1, giving the 

functional form for the intensity of the carbon signal in an AX2 system as a function of 

oand 't. This fmal evolution will then remove the chemical shift dependence of o, and 

the final functional form will have no chemical shift dependence: 

11_1)10,0) 8 = isin15[~(1+2cos.T5)(1+cosUt) 

+ - 1 cos.Tl>cos.Tt [3.40] 
V2

1- - -(1-cos./5)]
3../2 

Figures 3.4, 3.5 and 3.6 illustrate the dependence of the carbon intensity on the 

BIRD interpulse delay. This data is derived from simulations53 of the INEPT -BIRD 

sequence performed on AX, AX2, and AX3 systems, with JAx equal to 125 Hz. From 

http:cos.Tl>cos.Tt
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Figure 3.4 Intensity variation of carbon signal in AX system with respect to BIRD 
delay in INEPT-BIRD experiment (solid line) and refocussed INEPT intensity (broken 
line). 

these simulations it can be seen that the intensity of the carbon signal is maximized when 

the BIRD pulse acts as a 180° pulse, i.e. when the interpulse delay is zero, and when the 

BIRD delay is optimized for J AX· In all these cases the intensity through the INEPT

BIRD experiment is identical to that obtained from the refocussed INEPT experiment. 

When the BIRD delay is not optimized, in all cases there is a null at 't = 1/2JAX· In the 

AX system the dependence is a simple sinusoid, varying between maxima at (2n)/2J AX 

and minima at (2n+ 1 )/2J AX· In the AX2 and AX3 systems the dependence becomes more 

complex, with increasingly narrower maxima as the number of X nuclei increase. At 't 

= 1/2JAX• the intensity variation becomes even more complex with higher spin systems 
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Figure 3.5 Intensity variation of carbon signal in AX2 system with respect to BIRD 
delay in INEPT-BIRD experiment (solid line) and refocussed INEPT intensity (broken 
line) 

showing a broader range of near zero values. The AX3 system shows three null points 

in each cycle with the narrowest region of maximum intensity. This would indicate that 

the AX3 system is most sensitive to the selection of the BIRD delay. The complex 

intensity variation around the null region implies that with the correct selection of BIRD 

delay that this could be taken advantage of for spectral editing, however the signal 

intensities around this point would be very low, possibly indistinguishable from noise. 

There is also a phase cycle dependence upon this effect, which in the AX picture, 

differentiates between the BIRD pulse acting as a 180° pulse for a proton coupled to a 

13C for the x, x, x phase cycle, and acting as a 0° pulse for this same proton in the x, x, 
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Figure 3.6 Intensity variation in carbon signal in AX3 system with respect to BIRD 
delay in INEPT-BIRD experiment (solid line) and refocussed INEPT intensity (broken 
line). 

x phase cycle. In the analysis of the BIRD sequence on the AX, AX2 and AX3 systems, 

this phase cycle difference manifests itself as a phase shift in the variation of the carbon 

signal intensity. In the x, x, x phase cycle, the signal intensity is a maximum at an 

interpulse delay of 0 and null at an interpulse delay of 1121AX· With the opposite phase 

cycle, the null and maxima occur at opposite points. Figure 3.7 shows the difference 

between the two phase cycles for the AX2 system. 

In addition, in the AX2 and AX3 systems, the region about the null broadens, and 

the maxima narrows. This makes the choice of interpulse delay (t) more critical in 

higher spin systems, as there is a narrower range of values of t which show a measurable 
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Figure 3.7: Comparison of intensity variation of carbon signal in AX2 system with 
phase cycle of BIRD sequence. Solid line: x, x, -x; dotted line x, x, x. 

signal. The broad null regions could be used to separate signals of higher order spin 

systems (AX3) from lower order spin systems (AX) by nulling the AX3 signal at a point 

where an AX signal has higher intensity. This idea could be taken further by combining 

pulse sequences with different phase cycles used to create AX signals with opposite 

intensity of AX2 signals. Thus spin sorting could be done in two dimensional spectra 

using the interpulse delay and phase of BIRD pulses. Figure 3.8 shows the result of 

adding together signals from both the x, x, x phase cycle and the x, x, -x phase cycle for 

the AX and AX2 spin systems. The AX signal shows no modulation with changes in the 

BIRD interpulse delay, the signal is always positive. The AX2 signal has a sinusoidal 
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Figure 3.8: Comparison of AX signal intensity (solid line), and AX2 signal intensity 
(dotted line) by taking the difference between the x, x, x and x, x, -x phase cycles. 

modulation with respect to the interpulse delay, which means that a delay could be chosen 

that would give a two dimensional spectrum with positive AX lines and negative AX2 

lines. 



Chapter 4 


Artifacts in 2-dimensional Heteronuclear 


Shift Correlated Spectra 


Artifacts in NMR spectra have been described almost since the beginning of 

pulsed NMR. Many of these artifacts have been associated with experimental conditions 

such as sweep width or pulse width error.5
4-

56 In the early days of two dimensional NMR 

many of these artifacts could be eliminated through creative phase cycling procedures, or 

through the use of composite pulses.49
•
57

•
58 Other artifacts however can be attributed to 

systematic factors, which cannot be eliminated in this manner. Some are a result of the 

nature of the spin system, such as virtual coupling,59
-
62 and can lead to false correlations 

in two dimensional spectra, and others are a result of the effect of the pulse sequence on 

certain spin systems, such as in methylene systems in decoupled heteronuclear shift 

correlation spectra. 63 These artifacts are persistent and can be predicted through a 

rigorous mathematical treatment of the pulse experiment on the spin system. 

This section of this work outlines the use of the superspin formalism to determine 

a functional form describing the appearance of an artifact associated with strongly coupled 

methylene systems during heteronuclear shift correlation experiments which use a constant 

time period during the t1 evolution in order to effect homonuclear decoupling in the 

41 
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proJon domain. Two pulse sequences will be studied here, one in detail, the COLOC 

experiment,36 which will be analyzed using the superspin formalism,37 and one which 

employs a BIRD sequence to help refocus long range couplings and improve sensitivity. 

The second experiment, known as HETRES,64
•
65 will be analyzed using computer 

simulations which make use of the superspin formalism. 53 

90 180 90 

I I I DECOUPLE 

180 90 [1] 
..lt T - ..!t 
2 2 
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I 
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I 
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I 
90 

I 
90 
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180 180 90 
13 c [2] 


..!t T - _!t T T T - T ll
2 2 

Figure 4.1: Pulse sequences used in this study: [1] COLOC and [2] HETRES pulse 
sequences. 

Heteronuclear chemical shift correlation experiments were reviewed in the 

introduction to this thesis. The common attribute amongst the pulse sequences studied 

in this section are that they achieve broadband decoupling in f1 through the use of a 

constant time between initial excitation and acquisition. The COLOC experimene6 is a 

popular variant of this, used in both long range and direct bonded heteronuclear 

correlation spectroscopy. In the direct bonded COLOC experiment,66 the resolution is 

limited by the length of the constant time period, T, which is restricted by the value of 
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the _1JcH· To increase resolution, this can be increased by odd multiples of l/(21JCH). 

However, as the time period increases, the sensitivity can be adversely effected by the 

67 
D>

1JcH reaching an antiphase orientation at the time of polarization transfer.66· A 

modification of the COLOC experiment is to place a BIRD pulse sequence35 at time T, 

and extend the pulse sequence for a further time T -'t, where 't is the interpulse delay in 

the BIRD sequence.64
•
65 The BIRD pulse acts as a 1H 180° pulse for protons bonded to 

13C, therefore vicinal proton-proton couplings will be refocussed at the time of 

polarization transfer, effectively decoupling the vicinal protons from the directly bonded 

protons in f1• 

In this study, the effect of the HETRES and COLOC pulse sequences will be 

studied as applied to methylene systems with inequivalent protons. The HETRES 

experiment should effect proton-proton decoupling between the methylene protons in f1 

providing the constant time period, 2T-'t, is chosen as an odd multiple of l/(21JcH). The 

methylene correlation spectrum should consist of two peaks representing the chemical 

shift of each of the methylene protons. The spectrum actually consists of three peaks, the 

third occurring at the average frequency of the methylene chemical shift, and with an 

intensity modulated by the chemical shift difference between the two protons. Artifacts 

associated with inequivalent methylene systems have been observed before associated 

with other experiments, and in many cases are associated with experiments which attempt 

68 73proton-proton decoupling. 65
• 

The intensity of the artifact peak was analyzed in the COLOC experiment through 

the use of the superspin formalism.37
·
4042 The methylene system is approximated using 
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an .t\BX spin system. The methods used in the calculations are similar to those outlined 

in the previous chapter,40
•
74 with the exception that the evolutions for the ABX system are 

done by transforming the density matrix to the Hamiltonian basis and applying the 

evolution, then transforming back to the superspin basis for the pulses. It is assumed that 

the effects 'of the BIRD sequence is negligible, since the BIRD delays are very small 

compared to the evolution of the homonuclear coupling vectors, thus the COLOC 

experiment should be a close analog to the HETRES experiment. Since the experiment 

is heteronuclear, with the X spin representing the 13C, and we are only interested in the 

proton portion of the spectrum, only the AB lines from the ABX spectrum need be 

considered. A second simplification in this treatment is through the assumption that the 

1JcH are equal for both methylene protons. This reduces the number of parameters in the 

calculations through degenerating the ABX spectral parameters: 

D+ =D_ =D [4.1] 

e+ =e_ =e [4.2] 

where 

2D =[(roA - ffis) + J2AB]112 [4.3] 

and e is defmed by the relationships: 

2Dcos20 =roA - ffis [4.4] 


2Dsin20 =JAB [4.5] 


The two AB multiplets are now identical to each other, which simplifies the calculations. 


The BIRD sequence acts as a 1H 180° pulse for protons directly bonded to 13C 


while it has no effect on protons bonded to 12C. In the ABX system, both protons are 
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bonded to 13C so the BIRD sequence should be transparent. Therefore the HETRES pulse 

sequence should be identical to the COLOC experiment, with the delay after the 180° 

pulse equal to 2T~1+t. The calculations start with the density matrix in the 

Hamiltonian basis, which are the energy differences between the Hamiltonian eigenstates. 

These energy differences correspond to the AB lines in an ABX spectrum. These are 

given in table 1: 

Table 4.1: Energy differences corresponding to lines in an 
ABX spin system. 

IXt") =VAB +(·JAB. JAX)/2. D 

Ixt) =vAB +(·JAB+ Ju)/2- n 

IXi)= VAB +(JAB· JAx)/2 • D 

IXz+) =VAB +(JAB+ JAx)/2 • D 

IX3") =vAB +(·JAB. JAx)/2 + D 

IX3+) =VAB +(·JAB+ JAx)/2 + D 

Ix..-) =vAB +(JAB- JAX)/2 + n 

IX/)= VAB +(JAB+ JAx)/2 + D 

The + and - superscripts in the density matrix elements indicate counterrotating 

magnetizations, and vAB represents the average frequency of the AB portion of the 

spectrum i.e. (v A + V8 )/2. 

The initial 90° pulse creates magnetizations in the xy plane which then evolve at 

their characteristic frequency. The pulse creates both counterrotating frequency elements, 

however only the evolution of the +ve elements will be followed. The density matrix 

elements are the Ixt). and the initial 90° pulse gives magnetizations which are 
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proportional to the Liouville space projections of the IXi) along the total xy 

magnetization, i.e. the dot product of the density matrix element on the Liouville operator. 

The magnetizations right after the pulse are: 

(p(Otl X1+) =cosE> - sinE> [4.6] 

(p(Otl X2+) = cosE> + sinE> [4.7] 

(p(Otl X3+) =cosE> + sinE> [4.8] 

(p(Otl X4+) =cosE> - sinE> [4.9] 

The superscript over the density matrix elements indicate that this value of the density 

matrix occurs immediately after the pulse, and the value in parentheses is the time index 

of the pulse sequence. 

The magnetizations are allowed to evolve for a time t/2. This evolution is 

equivalent to multiplying each element in the Hamiltonian basis by eivt where: 

v =I xn =VAB +(±JAB+ JAX) ± D 

and t =ttf2. 

At this time the density matrix elements are given by the equations: 

[4.10] 

[4.11] 

[4.12] 

[4.13] 
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Th~ effect of the 180° pulse after t/2 is to transfer each of the xy magnetizations into its 

counterrotating component. The effect of the pulse can be determined by converting the 

density matrix to the spherical tensor basis, then multiplying the density matrix by the 

corresponding Wigner matrix, and then transforming back to the Hamiltonian basis. In 

order to convert the density matrix from Hamiltonian to Liouville basis, a unitary 

transformation is defined which takes the superspin elements with +1 coherence into 

normalized transitions. 

lx;> 11~1,1) 
lx;> 11~1,1) [4.14]= u
lx;> 11+1,2) 

lx;) 12+1'2) 

These normalized transitions can be converted back to superspin formation using 

the inverse of U ie U 1
• The effect of a pulse on the system can be described by a matrix, 

P, which transforms the magnetizations onto the various superspin basis components. The 

full effect of the pulse is given by the appropriate components _of the Wigner matrices, 

dM(8). Since this pulse transforms all of the +1 components into -1 components, the 

matrix is as follows: 

d1x-x(n) 0 0 0 

d1x-x(n)0 0 0 
P= 

0 0 dll-1(1t) 0 

0 0 0 d 
2
'-'(n) 

1 0 0 0 


0 1 0 0 
 [4.15]= 
0 0 1 0 


0 0 0 1 
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To follow the evolution after the pulse, the density matrix is transformed back to 

the Hamiltonian basis. Since the pulse has transferred the xy magnetizations to their 

counterrotating elements, the transformation back to the Hamiltonian will be different, i.e. 

lx;> 11~1,1) 

lx;> 11~1,1) [4.16]= v 
11-1'2) 

12_1'2) 

lx3> 
lx~) 

Solving these equations yields the transformation matrices: 

c-s -c-s C+S -C+S 

c+s -c+s -c+s C+S [4.17]U=-1 

2 C+S c-s -C+S -c-s 

c-s C+S C+S c-s 

c-s -c-s -c-s -C+S 

C+S -C+S c-s c+s [4.18]V=-1 

Where c = cos8; s =sine. 

simply their transpose, i.e. 

2 C+S c-s c-s -c-s 


c-s C+S -c-s c-s 


Since these matrices are unitary and real, their inverses are 

c-s C+S C+S c-s 


-C+S
-c-s c-s c+s 
= -1 [4.19]u-1 

2 c+s -c+s -c+s c+s 


-c+s C+S -c-s c-s 
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In order to find the value of the density matrix after the 180° pulse, the density 

matrix from before the pulse is left multiplied by the transformation matrix u-1
' then this 

result is left multiplied by the pulse matrix, P, and the result of this is left multiplied by 

V_ This conversion between the +1 density matrix elements and the -1 elements through 

the 180°pulse becomes: 

<P<2rlx;>
2 

<P<2r lx;>2 

<P<2r lx;>2 

<P<2r lx~>2 

[4.20] 


The matrices VPU-1 can be reduced to a single matrix, P': 

0 cos29 0 -sin28 


cos29 0 sin28 0 
 [4.21]P' = 
0 sin29 0 cos29 


-sin29 0 cos29 0 


Thus the value of the density matrix is: 

[4.22] 
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[4.24] 

[4.25] 
1 11

21ti(vAB+-(-JAB+JAX)+D)(-) 
+ cos29(cosEhsin9)e 2 2 

The magnetizations will then precess in the -1 direction for a time 2T - t/2 + 't, 

which is represented by a multiplication of each of the density matrix elements by a 

factor of e-Zmvt where t = 2T-t/2+'t and the v are the Ixn. 
The final goo pulse transfers 1H polarization to the 13C domain, and the final delay, 

.£1, is chosen so that the FID can be acquired with broadband 1H - 13C decoupling_ Before 

the goo pulse the proton lines are in the same form as they would be at the time of 

acquisition, the final goo pulse and Ll delay merely prepare the proton lines for indirect 

acquisition in the carbon domain. Thus it is not necessary to follow through the 

calculations further. The intensities of the 1H lines are the projection of the density 

matrix elements on the total xy magnetization.40 Since the spherical tensor !1 s +1,1) 

represents the total xy magnetization, the intensity is the dot product of the density matrix 

with this spherical tensor. The coefficients for this product are the elements in the first 

column of the transformation matrix, U. The resultant in this experiment will be all terms 

which have an exponential that has a t1 component. This represents a modulation in t1, 

which will present itself as an intensity in f1 upon Fourier transformation in the second 

dimension. Simplifying the equations for the Hamiltonian terms reveals that each term 

http:magnetization.40
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has_ a component with an exponential in t1• Collecting all terms with respect to the 

different frequencies in t1 shows that there are three lines, one each at v AB ± D which are 

expected in the decoupled spectrum, and another at v AB· This extra line is the artifact 

line, appearing at the average frequency of the two methylene proton frequencies. The 

intensity of 'this line varies with the difference in chemical shift of the methylene protons 

and the functional form of this line is described by the non-exponential coefficients: 

I(v ' = 2 sin28 (sin28 cos JT cosDT + sin JT sinD1) [4.26]
AJV 2 2 

where T is the total time of the experiment up to polarization transfer, 2T + 't. From this 

equation it can be seen that the intensity of the artifact has an oscillatory dependence on 

the chemical shift difference, through the D term, and an oscillatory dependence on the 

total timeT. The equation also shows that in the limit of weak coupling, E> =0, and the 

artifact intensity will also vanish. 

The origin of the artifact can be rationalized through a qualitative analysis of the 

ABX system. In the heteronuclear ABX system, with X representing the 13C, the proton 

spectrum is made up of two AB sub-spectra, each one a 13C satellite of the uncoupled 

proton spectrum. In the weak coupling limit, the proton spectra would consist of two 

doublets, one corresponding to the A protons and the other corresponding to the B. As 

the strength of the coupling increases, the distinction between pure A and pure B lines 

can no longer be made, each line having some character of each of the nuclei. During 

the COLOC experiment, the coherence evolves during the first half of the experiment, and 

then the 180° pulse transfers coherence to those with the opposite sense of precession. 
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Figure 4.2: Plot of functional form for COLOC artifact intensity (solid line) compared 
with simulated data (boxes). 

In the weak coupled case, this is simply a transfer of coherence from an A line to the 

corresponding B line. In the strong coupled case, each line has characteristics of both A 

and B spins, and this mixing will create new terms, which manifest themselves at the 

average of the A and B frequencies. Since this new term is made up of contributions 

from both A and B resonances, the intensity of the new line will be dependent on the 

nature of the interference between the terms, which is dependent on the chemical shift 

difference between the protons, and the total evolution time before polarization transfer. 

This new line will become coded onto the carbon coherence at polarization transfer and 

will be detected as a proton signal in t1• 
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Figure 4.3: Comparison of functional form of COLOC artifact intensity (solid line) and 
simulated HETRES artifact intensity (X). 

The analogy between the COLOC and HETRES experiments is illustrated through 

simulations of the two experiments. The effect of the BIRD pulse should be negligible 

in this case, which is supported by the comparison of the results. from the simulations in 

figure 4.3. 

In the calculations on the COLOC experiment, the system was simplified by 

assuming that JAX =JBx· When this assumption is relaxed, the simulations showed a 

splitting of the artifact. This can be rationalized by considering the effects of the 

assumption. When JAX =JBX• D+ =D_. The appearance of the artifact was rationalized 

through an argument which used D to determine the position of the artifact. When the 
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assl!mption is relaxed, there will be difference terms that will now depend on D + and D_, 

resulting in an artifact that is split by ID+ - D.i, centred at the average value of the 

proton resonances. 



Chapter 5 


Conclusions 


During the course of this thesis, the superspin formalism was used to follow the 

course of magnetizations through various pulse sequences for several spin systems. The 

advantage of using a formalism such as this is that a pulse can be visualized as a rotation 

of the basis in a spherical tensor basis. In addition, the general time evolution of the 

spherical tensors was determined for the AX, AX2, and AX3 systems, which meant that 

it was not necessary to change to the Hamiltonian basis during a time evolution. These 

general evolution equations can be used in the analysis of other pulse sequences, although 

for the AX2 and AX3 systems this would be better done by computer than by hand. 

Another advantage of studying a pulse sequence in this manner is that the evolution of 

the coherences can be studied in detail at each step of the pulse sequence. 

The general evolution equations were initially tested using simpler pulse sequences 

than were demonstrated in this thesis. Each set of general evolution equations was tested 

using the 1H and 13C single pulse experiments and the DEPT experiment. In each system 

55 
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the _one pulse experiments yielded the correct number of lines, and the DEPT experiment 

showed the correct e pulse dependence for each of the spin systems. These results 

increased the confidence that the general evolution equations were correct, however the 

BIRD study provided a more robust verification of this. Despite all of the verifications 

using simpler pulse sequences, a functional form for the intensity of the carbon signal in 

the AX3 system could not be derived by hand, due to the large number of equations 

involved. To further this study, this functional form for the AX3 system under the 

INEPT -BIRD sequence could be derived with the aid of computer aided symbolic math 

programs (such as Maple). The graphical form of the AX3 system was derived using the 

simulation program SIMPL TN53 which gave enough data to illustrate and discuss the 

trends through the AX, AX2 and AX3 systems. It is also possible that SIMPLTN could 

be used in the future to help elucidate the functional form of the AX3 system. 

The BIRD pulse sequence has been shown to exhibit anomalous behaviour which 

is dependent upon the interpulse delay. In the preceding analysis, the BIRD pulse was 

applied to a system where polarization had been transferred from protons to carbons, 

leaving the protons with zero coherence. The initial90° pulse in_the BIRD sequence will 

then create carbon-proton multiple quantum coherence. In general, a 90° pulse applied 

to any non-equilibrium spin system will create multiple quantum coherence, the levels 

being determined by the element of the Wigner rotation matrix for that system. The 

BIRD pulse should refocus all coherence back to the carbon domain to be detected. This 

is successful due to the symmetry of the BIRD sequence about the 180° pulse and the 

selection of the interpulse delay. Thus any coherence that evolves during the first delay 
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will be refocussed during the second delay after the 180° pulses. In a simple AX system, 

the amount of carbon coherence will be maximized when the value of the interpulse delay 

is 1/J AX• with the intensity varying sinusoidally as the delay is varied. In the AX system 

the multiple quantum levels do not play any part in the intensity of the final signal. In 

higher order systems, such as AX2 and AX3 systems, there are multiple quantum levels 

which are accessed through the initial 90° pulse, which do not evolve at the same rate as 

the single quantum coherence. Thus as the delays are varied, the intensity of the detected 

carbon signal will also depend on the evolution of multiple quantum levels. In the AX2 

system, there is an additional dependence which varies at twice the frequency of the 

single quantum level, and in the AX3 system there is an additional dependence which has 

three times the frequency. The variations of intensity for the AX, AX2, and AX3 systems 

was illustrated in chapter 3. 

This study of BIRD pulses has helped to show in greater detail, the effects of 

multiple pulses on complex spin systems. In the BIRD study it was shown that the 

description of the effect of the BIRD :pulse based on the most simple spin system is only 

correct in a general sense. When more complex systems are _studied in detail it was 

shown that multiple quantum levels are created and that they contribute to the intensity 

of the detected signal. It was also shown how the phase cycle of the final 90° pulse is 

manifested as a shift in phase with respect to the BIRD delay. At delays corresponding 

to the maxima and null of the carbon line the signal intensity is predicted by the vector 

model, however this model fails to predict the behaviour at delay times which are not 

integral multiples of the coupling constant, or when the pulse phases differ from multiples 
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of ~0°. This is where the Superspin formalism has its advantages. With the functional 

form which is derived from using this formalism, the effect of combining phase cycles 

can be visualized. This led to the hypothesis that with the correct combination of phase 

cycles, that BIRD pulses could be used for spectral editing in AX, AX2 and AX3 systems. 

This remains a topic for further study, both as a theoretical analysis and in the 

development of practical applications. 

The analysis of artifacts in two dimensional NMR spectra can be used to learn 

about the effects of a pulse sequence on a spin system. In chapter 4 of this thesis, an 

artifact that arose in a methylene group was used to study constant evolution time pulse 

sequences. Through the course of the analysis of the pulse sequence, it can be seen how 

the coupling constant dependence of the magnetizations is cancelled out after the 180° 

pulses transfer coherences to their counter-rotating elements. In this type of experiment 

the artifact line is obvious as the only term which does not correspond to one of the two 

frequencies of the A or B protons. The analysis of the COLOC and HETRES 

experiments showed the similarity between these two experiments, and that the effect of 

the BIRD sequence, provided that the parameters have been set properly, has little effect 

on the appearance of the artifact. Deriving a functional form for the intensities of the 

lines in the spectra also helps rationalize the behaviour of the artifact, in the present case 

it illustrated the dependence of the artifacts intensity on the difference in the chemical 

shift. The overall dependence of the artifact intensity on the strength of the coupling was 

also shown. The intensity of the artifact was attenuated proportional to the strength of 

the coupling. In the limit of weak coupling there is no artifact because the lines 
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co~esponding to the A and B spins are distinct, and there will be a clean transfer of 

coherence between the A lines and the B lines by the 180° pulse in the COLOC 

experiment. The analysis of artifacts in this manner shows the origin of the artifact, and 

whether the artifact is persistent or can be minimized through creative use of phase 

cycling. In this case the artifact was found to be persistent. Using the formalisms 

introduced in this study, different phase cycles can be investigated with respect to the 

artifact. This has implications from an experimental viewpoint in that suspect peaks in 

a spectrum can be assigned as artifacts through studies such as these, or using computer 

simulations based on this formalism. 



Appendix 1 


Energy Level Diagrams for the AX, AX2 and AX3 Systems 
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Energy Level Diagram 
for AX System 
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- - - Double Quantum Transition 
- - - - - Zero Quantum Transition 
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Energy Level Diagram 

For AX 2 System 
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Energy Level Diagram 

for AX 3 System 
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Appendix 2 


Spherical Tensor Basis for Two and Three Coupled Spins 1/2 


in Terms of Single Spin Basis Vectors 
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Spherical Tensor Basis for Two Coupled Spins 112 

IO,O) = IO) IO) 

10,2) = ~{11+1)11_1) + 11_1)11+1) - l1o)l1o)} 


11:1,1) = -1 {I 1+1) IO) + IO) 11+1)}
.fi 

11:,1) = -
1 { l1o) IO) + IO) l1o)}

.fi 
11~1,1) = ~{Il-l) IO) + IO) ll_l)} 


12+2'2) = 11+1)11+1) 


12+1'2) = ~{l1+1)11o) + l1o)l1+1)} 


120'2) = ~{11+1)11_1) + 11_1)11+1) + 2llo)llo)} 

12_1,2) = ~{l1_1)llo> + l1o)ll-1)} 

12_2,2) = 11_1)11_1) 
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Spherical Tensor Basis for Three Coupled Spins 1/2 

10,0) = IO) IO) IO) 

10,2) = t{l1+t)11-t)IO) + l1_t)l1+t)IO) + 11-t)IO)I1+t) 

+ 11+1)10)11_1) + IO)I1+t)l_t) + I0)11-t)l1+1) 
- IO) l1o) I1J - l1o) IO) l1o) - l1o) llo) IO)} 

110,1) = -1 { llo) IO) IO) + IO) llo) IO) + IO) IO) llo)}
..fi 

110'3) = V:vs{l1+t)11-t)l1o) + l1+t)l1o)l1_1) + l1o)ll+t)l1_1) 

+ 	 l1_t)ll+l)l1o) + ll_t)l1o)ll+l) + llo)ll_l)ll+l)} 

-	 ..fi l1o) l1o) l1o) 

J5 


130,3) = ;v's{il+t)ll_t)llJ + ll+t)lo)l_t) + lo)l+t)l_t) 

+ 11-t)ll+t)llo) + ll_t)llo)ll+l) + llo)ll_l)ll+l)} 

- J2 llo) l1o) l1o) 
J5 
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13 _1,3) = ;vsq1_1) l1o) l1o) + l1o) l1_1llo) + llo) llo) 11_1)} 

+ V:vs{l1_l)ll_1)11+1) + 11-1)11+1)11_1) + 11+1)11_1)11_1)} 

l2_p2) = ~{11-1) llo) IO) + Il-l) IO) llo) + IO) Il-l) llo) 

+ llo) L) IO) + llo) IO) Il-l) + IO) llo) l_l)} 

11-1'3) = - ;y's{11-l)llo)l1o) + llo)l1-l)llo) + llo)llo)ll_l)} 

+ ;y's{l1_1)11_1)11+1) + 11-1)11+1)11_1) + 11+1)11_1)11_1)} 
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13_2,3) = ~{11_ )l1_ )11o) + l1_1)11o)l_1) + l1o)l1_1)l1_1)}1 1


13+3'3) = 11.1) 11.1) 11.1) 

13-3,3) = 11_1)11_1)11_1) 



Appendix 3 

Tables of General Evolution of the 


Spherical Tensors for the AX, AX2, and AX3 Systems 
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General Evolution of the 

Spherical Tensors for the AX System 

Single Quantum Transitions 

llo)J1+1) = ieiv;sin~JO)Jl+ ) + eiv;cos~llo)l1+ )1 1
JO)Jl_1) = e-iv;cos~JO)Jl_ )- ie-iv;sin~Jlo)Jl_ )1 1
I1JJ1_1) = -ie-iv;sin~JO)Jl_ ) + eiv;cos:llo)Jl_1)1

Jl+1)JO) = eivAtcos~J1. )JO) + ieivAtsin~Jl. )Jlo)1 1
Jl+1)Jlo) = ie;vAtsin~Jl+ )JO) + eivAtcos~Jl+ )JlJ1 1
Jl_ ) JO) = eiv Atcos~ Jl_1) JO) - ieivAtsin~ 11_1) Jlo)1

Jl_1)Jlo) = -ieivAtsin~Jl_1)JO) + eivAtcos:Jl_1)JlJ 

Zero-Quantum Transitions 

Jl+l)Jl_l) = ei(VA-Vx)tll+l)Jl_l) 

Jl_l) Jl.l) = e -i(v[v x>tJ1_1) Jl.l) 

Double Quantum Transitions 

1
1+1)Jl +1) = i(vA+vx)tJl +1)Jl

•1
)e 
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General Evolution of the 

Spherical Tensors for the AX2 System 

Single Quantum Transitions 

jO)j1_p1) = e-ivr[cos(1Jt)j0)j1_1,1) - isin(1Jt)j1o)j1_p1) 


jO)j2_1,2) = e-ivr[cos(1Jt)j0)j2_1,2) - isin(1Jt)j1o)j2_p2) 


l1o)l1_1,1) = e-ivxt[-isin(1Jt)IO)j1_1,1) + cos(1Jt)j1o)l1_1,1) 


l1o> 12-1'2) = e -iv r[-isin(1Jt) jO) 12_1,2) + cos( 1Jt) l1o) 12_1,2) 


jO)I1..p1) = eivxf[cos(1Jt)IO)I1..p1) + isin(1Jt)l1o)l1.-p1) 


IO) 12.-1'2) = eiv r[cos(1Jt) IO) 12..1,2) + isin(1Jt) l1o) 12..1,2)] 


l1o)l1 .. p1) = eivxt[isin(1Jt)j0)11.-p1) + icos(1Jt)l1o)l1.-p1) 


l1o)l2..1,2) = eivxt[isin(1Jt)jO)I2..1,2) + cos(1Jt)l1o)l2 ..1,2) 


11 ..1)10,0) = eivAt[1(1+cosJt)l1 ..1)10,0) + ~isinltj1 ..1)ll0,1) 

1 1--(1-cos.Tt) 11+1 120,2) + - -(1-cos.Tt) 11+1) 10,2)]
,j6 2.,/3 

11+1)110'1) = eivAt[ ~isinTtll+1)10,0) + cos.Ttll+1)jl0'1) 

+__!_isinltll+ll2o.2) - -
1 

isinltll+l)I0,2)]
.,13 ,j6 

111+1)10,2) = eivAt[-1-(l-cosJt)ll+1)l0,0) - - isinltl1+1)110'1)
2.,/3 ,j6 

1+--(1-cos.Tt)jl 1j20,2) + !(5+cos.Tt)I1 1)I0,2)]
3,/2 + 6 + 

l1_1)j0,0) = e-ivAt[1(1+cosJt)jl_1)10,0) - ~isin.Ttl1_ )l10,1)1
- ~(1-coslt)l1_ 1 l20,2) + ~(1-cos.Tt)ll_1)j0,2)] 

11_1)110'1) = e-ivAt[- ~isinltl1_ )10,0) + cos.Ttll_ )l1 ,1)1 1 0

- ~isinltll_ll2o.2) + ~isin.Tt)l1_1)10,2)] 

http:1-cos.Tt
http:1-cos.Tt
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11_1)120,2) = e-ivA'[- ~(l-cosJt)ll_1)10,0)- ~isinltll_1)ll00 1) 
+1(2+cosJt)ll_1 l20,2) + ~(1-cosJt)ll_ )I0,2)]13

11_1) 10,2) = e -ivA'[~ (1-cosJt) 11_1) 10,0) + ~isinltl1_1) 11001) 

+ ~(1-cosJt)ll_ l2002) + ~(5+cos.Tt)ll_ )10,2)]1 13
11+1)12-2,2) = ei(vA-2vx)'ll+1)12_2,2) 

11-1)12+2,2) = e-i(vA-2vx)tll_l)l2+2,2) 

Zero Quantum Transitions 

11+1)11_1,1) = ei(vA-vx)'[cos(1Jt)ll+1)ll_pl) + isin(1Jt)ll+1)l2_p2)] 

11+1)12-1,2) = ei(vA-vx)t[isin(1Jt)l1+1)ll_l,l) + C0S(1Jt)ll+l)l2_p2)] 

11_1)11+1'1) = e-i(vA-vx)t[cos(1Jt)ll_1)11+1'1) - isin(1Jt)ll_1) 12+1,2)] 

11_1) 12.1,2) = e -i(v "-v x>'[-isin(1Jt) 11_1) 11+1'1) + cos(1Jt) 11_1) 12.1,2)] 

Double Quantum Transitions 

11. ) 11+1'1) = ei(v"+v x>'[cos(1Jt) 11+1) 11.1,1) + isin(1Jt) 11.1) 12.1,2)1

11.1)12.1,2) = ei(v"+vx>'[isin(1Jt)ll.1)11.p1) + cos(1Jt)ll.1)12.1,2) 


l1_1)ll_p1) = e-i(vA+v;r)t[COS(1Jt)ll_t)l1_p1) - isin(1Jt)ll-t)l2_1,2) 


11_1)12_1,2) = e-i(v"+vx:)'[-isin(1Jt)l1_1)l1_pl) + cos(1Jt)ll_1)l2_1'2) 


IO) 12+2,2) = e i(2v x>t[cos(Jt) IO) 12+2,2) + isin(Jt) llo) 12+2,2) 


llo) 12+2,2) = ei(2vx>t[isin(Jt) IO) 12+2,2) + cos(Jt) llo) 12+2,2) 


IO) 12_2,2) = e -i(2v x>t[cos(Jt) IO) 12_2,2) - isin(Jt) llo) 12_2,2) 


llo) 12_2,2) = e -i(2v x)t[ -isin(Jt) IO) 12_2,2) + cos(Jt) llo) 12_2,2) 


Triple Quantum Transitions 

11+1)12+2,2) = ei(VA+2vx)tll+l)l2+2,2) 

11-1)12_2,2) = e-i(vA+2vx)tll_l)l2_2,2) 

http:ei(v"+vx>'[isin(1Jt)ll.1)11.p1
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General Evolution for Spherical Tensors 

for the AX3 Spin System 

Single Quantum Transitions 


11+1)10,0) = e-ivA'r±<cos%Jt + 3cos~Jt)I1+1)IO,O) - '7<isin%Jt + isin~Jt)l1+ 1)110'1) 


-1-(cos~Jt - cosiJt) 11+1) 10,2) + -1-(cos~Jt - cosiJt) 11 1) 120,2)

4 2 2 2vf2 2 2 + 

+ v'3 (isin.!Jt - 3isin1-Jt) 11 +1) 11003) - -1 -(isin~Jt - 3isiniJt) 11 1) 13 ,3)]
4,(5 2 2 2JZ..JS 2 2 + 0

11 1) l1n.1) = e -iv"'[- v'3 (isin~Jt + isiniJt) 11+1) 10,0) + I(3cos~Jt + cosiJt) 11+1) 110,1)
+.,.. 4 2 2 4 2 2 

+-1-(3isin.!Jt - isiniJt) 11 1) 10,2) - -1-(3isin~Jt - isiniJt) 11 1) 12 ")
4.;3 2 2 + 2~ 2 2 + o

--3-(cos~Jt - cosiJt) 11+1) 11003) + ___iJ_(cos!Jt - cosiJt) 11 1) 13003)]
4,(5 2 2 2vf2.../S 2 2 + 

11+1)10,2) = e-ivA'[-±(cos%Jt- cos~Jt)I1+1)IO,O) + ~(3isin%Jt- isin~Jt)l1+ 1)l10,1) 
1+I(cos.!Jt + 3cosiJt) 11+1) 10,2) - - -(cos.!Jt - cosiJt) 11 1) 120,2)

4 2 2 2J2 2 2 + 

--1-(3isin.!Jt + uisiniJt)l1+1)11oo3) + -1 -(isin~Jt- 3isin1-Jt)l11)13o,3)]
4.;3,;5 2 2 2.;z,;s 2 2 + 

11+1)130,3) = e-ivA'[--1 -(isin.!Jt- 3isiniJt)I1+1)IO,O)
2.ft.../S 2 2 

+-1 -(isin~Jt - 3isiniJt) 11+1) 10,2)
2.ft.../S 2 2 

- v'3 (cos~Jt- cosiJt)l1+1)l10,3) + 
1oy'Z 2 2 

10)11+1'1) = e-ivr[cos~JtiO)I1+1'1) 

10)12+1'2) = e-ivxt[cos~JtiO)I2+ 1,2) 

10)11+1'3) = e-ivxt[cos~JtiO)I1+ ,3) 1 

+ ___iJ_(cos.!Jt- cosiJt)l1 1)110'1)
2J2..JS 2 2 + 

- -1-(isin~Jt + 3isiniJt) 11 1) 120'2)
2.../S 2 2 + 

~(cos~Jt + 9cosiJt)l1 1)13003)]
10 2 2 + 

isin~Jtl1o)l1+ ,1)]1

isin~Jtl1o)l2+ ,2)]1

isin~Jtl1o)l1+ ,3)]1
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Jlo)JI.l'l) = e-iv.r[-isin1JtJO)JI.l'l) + cosiJtJlo)Jl.pl)] 

Jlo)J2.1,2) = e-ivxt[-isin1JtJO)J2.1,2) + cos1Jtllo)J2.1,2)] 

Jlo)JI.1,3) = e-ivr[-isin1JtJO)JI.1,3) + cosiJtJlo)J1..1'3)] 

Jlo)J3.1,3) = e-ivr[-isin1JtJO)J3.1,3) + cos1JtJlo)J3..p3)] 

2
Jl+1) J2_2,2) = ei(-vA+ v z)t[cos1JtJ1+1) J2_2,2) - isin1JtJ1+1) J3 _ ,3)]2

11+ )13_ ,3) = ei(-vA+2vz)t[-isin1Jtll+ )l2_ ,2) + cos1Jtll+ )l3_ ,3)]1 2 1 2 1 2

Jl_1)l0,0) = eivAt£i<cosfJt + 3cos1Jt)II_1)l0,0) + ~(isinfJt + isin1Jt)ll_1)Jl(Vl) 

-i<cosfJt- cos1Jt)ll_1)10,2) + ~(cosfJt- cos1Jt)ll_1)l20,2) 

- .f3 (isin.!Jt - 3isin.!.Jt) Jl_1) Jl0,3) + - 1 -(isinlJt - 3isin..!.Jt) 11_1) 130,3)]
4../S 2 2 2.,/3,[5 2 2 

11_1)110'1) = eivAt[~(isin%Jt + isin1Jt)Jl_1)JO,O) + i<3cos%Jt + cos1Jt)Jl_1)Jl0'1) 

1 1


---(3isin1Jt - isin.!.Jt) Jl_1) 10,2) + - -(3isin.!Jt - isin..!.Jt) J1_1)120,2)
4.,/3 2 2 2../6 2 2 

3
---(cos.!Jt- cos.!.Jt)J1_1)Jl0'3) + .f3 (cos.!Jt- cos.!.Jt)Jl_1)l30'3)]

4../S 2 2 2vrz,;s 2 2 

I1_1)J0,2) = eivAt[-i<cosfJt- cos1Jt)Jl_1)JO,O) - ~(3isinfJt- isin1Jt)Jl_1)l10'1) 

+..!.(cos.!Jt + 3cos.!.Jt) II 1) 10,2) - - 1-(cos.!Jt - cos.!.Jt) Jl 1) J2n.2)
4 2 2 - zvrz 2 2 - .,. 

+-1 -(3isinlJt + llisin.!.Jt) 11_1) 110'3) - - 1 -(isin.!Jt - 3isin..!.Jt) 11_1) J30,3)]
4.,/3,[5 2 2 zyrz,;s 2 2 

1Jl_1)J20'2) = eivAt[-1-(cos.!Jt- cos..!.Jt)ll_1)JO,O) + - -(3isin1Jt- isin..!.Jt)J1_ )Jl ,1)1 02../2 2 2 2../6 2 2 

- ~(cosfJt- cos1Jt)ll_1)J0,2) + 1<cosfJt + cos1Jt)l1_1)l20,2)2
1

--
1-(3isin1Jt- isin.!.Jt)J1_ 1)J10'3) + - -(isin.!Jt- 3isin..!.Jt)Jl_1)J30,3)]

2.jS,j6 2 2 2,[5 2 2 

JI_1)Jl0,3) = eivAr[- ~(isinfJt- 3isin1Jt)J1_1)JO,O)- ~(cosfJt- cos1Jt)Jl_1)Jl0,1) 

+-1 -(3isinlJt + llisin..!.Jt)Jl_1)J0,2) - - 1-(3isinlJt- isin.!.Jt)Jl_1)J20,2)
4../S.fi 2 2 2,[5../6 2 2 

+ ~(3cos%Jt + 17cos1Jt)Jl_1)Jl0'3) - ~(cosfJt- cos1Jt)Jl_1)J30,3)]1
Jl_1)J3 ,3) = eivAt[-1 -(isin.!Jt- 3isin..!.Jt)J1_ )J0,0) + ~(coslJt- cos.!.Jt)Jl_ )Jl ,1)0 2,/2,[5 2 2 1 2,fi.jS 2 2 1 0

1
--

1-(isinlJt- 3isin..!.Jt)Jl_1)J0,2) + - -(isin.!Jt + 3isin.!.Jt)Jl_ )J2 ,2)
2,/2,[5 2 2 2,[5 2 2 1 0

- ~(cosfJt- cos1Jt)Jl_1)Jl0'3) + ~(cosfJt + 9cos1Jt)J1_ 1)J3003)]1 1

http:12,fi.jS
http:llisin.!.Jt
http:cos.!.Jt
http:3cos.!.Jt
http:isin.!.Jt
http:3isin.!.Jt
http:cosiJtJlo)Jl.pl
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10)11_1,1) = eiv_r[cos1JtiO)Il_1,1) + isin1Jtllo)ll_l'l)] 


IO) 12_1,2) = eiv r[cosiJtiO) 12_1,2) + isiniJtllo) 12_1,2)] 


10)11_1,3) = eiv_r[cos1JtiO)I1_1,3) + isin1Jtllo)l1_1'3)] 


IO)I3_p3) = eiv_r[cosiJtiO)I3_1,3) + isiniJtllo)l3-1'3)] 


llo)ll_1,1) = eiv_r[isiniJtiO)Il_pl) + cosiJtllo)ll-1'1)] 


IIJI2_1,2) = eiv_r[isin1JtiO)I2_1'2) + cosiJtllo)l2_p2)] 


IIJI1_1,3) = eiv_r[isiniJtiO)Il_p3) + cos1Jtllo)l1_p3)] 


IIJI3_1,3) = eivxt[isin1JtiO)I3_p3) + cos1Jtl1o)l3-1'3)] 


11_1)12+2,2) = ei(vA-2vx)t[cos1Jtl1_1)12+2,2) + isin1Jtll_1)13+2,3)] 


11-1)13+2'3) = ei(vA-2vx)t(isin1Jtll_l)l2+2,2) + cosiJtll_t)l3+2'3)) 


Zero Quantum Transitions 

11+1)11-1'1) = ei(-vA+vx)t[1(cosJt + 1)11+1)11_1,1) - ~(isinJt)ll+t)l2_p2) 

- .:S(cosJt- 1)11+1)11-1'3) + .Js<cosJt- 1)11+1)13_1,3)] 

11+1)12_1,2) = ei(-vA+Vx)t[- ~(isinft)l1+l)l1_1,1) + (cosJt)l1+l)l2_1,2) 

1
+--(isinJt)l1+1)l1_p3)- v'2(isinJt)l1 1)l3_p3)]
v'2~ ~ + 

11+1)13-1,3) = ei(-VA+Vx)t[ .Js<cosJt- 1)11+1)11_,,1) - is{isinlt)ll+l)l2_1,2) 

-~(cosJt- 1)11.,)11-1'3) + ~(2cosJt + 3)11+1)13_1'3)] 

11_1)11+1'1) = ei(vA-vx)t£1(cosJt + 1)11-1)11+1'1) + ~(jsinJt)ll_l)l2+1'2) 
1---(cosJt - t) 11_1) 11+1'3) + -.;s 

1 (cosJt - t) 11_1) 13 1,3)1
2~ + 
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Jl_l)J2..1,2) = ei(v,cvx)t[~(isinlt)Jl_l)Jl .. l,l) + (cos.Tt)Jl_l)J2.. 1,2) 

- )zv'S(isin.lt)I1_1)Jl ..p3) + ~(isin.lt)Jl_1)J3 ..1,3)] 

Jl_1)J3+l'3) = ei(vA-vX)t[:s(cosJt- l)J1_1)Jl+l'l) + ~(isin.Jt)Jl_l)J2+1'2) 

-~(cos.Tt- l)Jl_l)Jl_l)Jl ..1,3) + ~(2cos.Tt + 3)11-l)J3.p3)] 

Double Quantum Transitions 

ll .. l)ll.pl) = ei(-v,.-vx)t[.!(cos.Tt + l)ll .. t)ll .. l,l) - ...!...(isin.Jt)ll .. t)l2.p2)
2 .,fi 

--
1-(cos.Tt- l)Jl ..t)ll.p3) + ...!...(cos.Jt- l)Jlt)l3.. 1,3)]

2y'S y'S + 

JO) 12.2,2) = e-i2v x'[cosJtiO) 12..2,2) - isinltJlo) 12.2,2)] 

10)13.2,3) = e-i2vxt[cos.TtJO)I3..2,3) - isin.Ttllo)J3.2,3)] 

llo) 12.,2,2) = e -i2v x'[-isin.TtiO) 12..2,2) + cos.Ttllo) 12..2,2)] 

llo) J3 ..2,3) = e -i2v x'[-isinJtiO) 13..2,3) + cos.!tllo) 13.. 2,3)] 

Jl_1)J1_1,1) = ei(v...•vx)t[1(cos.Tt + l)I1_1)Jl_pl) + ~(isin.lt)Jl_ )l2_p2)1
- ~(cos.Tt- l)ll-l)Jl_p3) + :S<cos.Jt- 1)11-1)13_1,3)] 

http:�vx)t[1(cos.Tt
http:ei(-v,.-vx)t[.!(cos.Tt
http:3)11-l)J3.p3
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Jl_.)j2_p2) = ei(v... •v,,)t[~(isinTt)Jl_.)Jl_.,l) + (cos.Tt)Jl_.)J2_.,2) 

- ;v'S(isin.Tt)Jl_.)Jl_.,3) + ~(isinlt)Jl_.)J3_p3)] 

1 1Jl ) Jl 3) = ei(v ...... .,>t[--(cos.Tt - 1) Jl ) Jl 1) - - -(isinTt) Jl ) J2 2)
-1 -1' 2v'S -1 -1' ..fiv'S -1 -1' 

+ l~(coslt + 9)Jl_.)J1_.,3) - t<cos.Tt- l)Jl_.)J3_..3)] 

Jl_.)J3_ .. 3) = ei(v ... •vx)t[~(coslt- l)Jl_.)l_.,l) + ~(isin.lt)Jl_.)J2_.,2) 

-t(cos.Tt- l)Jl_.)Jl_1,3) + t<2coslt + 3)Jl_1J3_1,3)] 

JO)J2_2,2) = ei2"r[cos.TtJO)J2_2,2) + isin.TtJlo)J2_2,2)] 

JO) J3 _2,3) = ei2" .r[cos.TtJO) J3_2,3) + isin.TtJlJ J3 _ ,3)]2

Jlo) J2_2,2) = ei2" .r[isin.TtJO) J2_2,2) + cos.TtJlJ J2_2,2)] 

Jlo) J3 _2,3) = ei2" .r[isin.TtJO) J3_2,3) + cos.TtJlo) J3_2,3)] 

11 )J3 3) = i(-vA+3vx)tJl )J3 3)
•t -3' e •1 -3• 

1 )J3 3) = ei(vA-3"x)'ll )J3 3)
1 -1 +3' -1 +3' 

Triple Quantum Transitions 

JO) J3.,.3,3) = e-i3v r[coslJtjO) J3.,.3,3) - isinlJtJlJ J3.,.3,3)]
2 2 

JlJJ3.3,3) = e-i3v,r[-isin%JtjO)J3.3,3) + cos%1tJlJJ3.3,3)] 


Jl.,.1) J2.2,2) = ei(-vA-2v x>rrcostltJ1.1) 12.,.2,2) - isintltJ1.,.1) J3 •2,3)] 


Jl.,.1)J3.,.2,3) = ei(-vA-2"x>r[-isintltJ1.1)J2.,.2,2) + costltJ1.1)J3.,. ,3)]
2

JO)J3_3,3) = eu".r£cos%ItJO)J3_3,3) + isin%Jtjlo)J3_3,3)] 


Jlo)J3_3,3) = ea"r[isin%JtjO)J3_3,3) + cos%Jtllo)J3_3,3)] 


Jl_1)J2_2,2) = ei(vA+2vx>t[costltJ1_1)J2_2,2) + isintJtjl_ )J3_ ,3)]
1 2

Jl_1)J3_2,3) = ei(vA+Zvx>r[isin1ItJ1_ )J2_2,2) + cos1ItJ1_
1
)J3_

2
,3)]1
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Quad Quantum Transitions 

11 )13 3) = i(-•.o~-3•x>tl1 )13 3)
+1 +3' e +1 +3' 

11 )13 3) = e«.• ...+ 
3V;r)ll1 )13 3)

-1 -3' -1 -3' 



Appendix 4 


Wigner Rotation Matrices for J = 0, 1, 2 and 3 
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l!'(6) = (0) 

cos2(~) -
1-sin6 sin2(~)

J2 
1 • 6 1--sm cos6 - -sin6d 1(6) = J2 J2 

1 • e--smsin2(~) 
J2 

cos2(~) 

cos4(~) -.!.sin8(cos8+ 1) /fsm2e .!.sin8(cos8-1) sin4(~)2 2 

-.!.sin6(cos8-1) .!.(2cos8-1Xcos0+1) -{fsinOcosO .!.(2cosO + 1 )(1-cosO) .!.sinO(cos0-1)2 2 2 2 

tfl(O) = /fsm2o {fsin&osO .!.(3cos20-1) -{fsin&osO /fsm2o
2 

-.!.sme(cos0-1) .!.(2cos0+ 1X1-cos8) jfsmocose .!.(2cos0 -1)(cosO+ 1) - .!.sme(1 +cosO)2 2 2 2 

sin4(~) -.!.sinO(cos0-1) /fsm2e .!.sme(1 +cosO) cos4(~)2 2 
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6a;3(a) = a:3_3(a). = cos (~) 


tJtz(a) = -tJi3(6) = d=z-3(6) = -d:3_2(a) = -J6cos5(~)sin(~) 


tJt1(6) = a:3(a) = d=l-3(a) = d=3-l(a) = JI5 sin26(1 +cosa)

8 

tJto(a) = -~3(a) = ag_3(6) = -d=3o(6) = -~sin3a 


tJi_l(a) = a:13(6) = a;_3(a) = a:31(a) = ~sin2a(t-cos6) 


tJi_z(a) = -d=23(a) = tJi_3(a) = -d:32(6) = -J6co~~)sin5(~) 


tJi_3(6) = a:33(6) = sin6(~) 


tJiz(a) = d:2_2(a) = .!.(t +cos6)2(3cosa-2)

4 

ail(a) = -di2(6) = a:l_z{a) = -d=2-I(a) = ~sin6(1-3cosa)(l +cosa) 

3 3 3 3 !II·2d2o(6) = d0z(6) = dQ_2(a) = d_zo(6) = vssm acosa 

3 d 3 d3 3
" = - a = 1 2( ) = -d_ = -v'W ·~-1(6) -12( ) _ a 21(a) -sma(1+3cosa)(cosa-I)

8 

tJi_2(a) = d=22(a) = ±(1-cos6)2(3cosa+2) 


a:l(a) = d=l-l(a) = -i-<t +cosa){15cos2a-10cosa-1) 


di0(a) = -ag1(6) = ag_1(6) = -d:10(a) = .fJsin6{5cos26-1)

4 

a:l1(6) = a:ll(e) = i<t-cosa){15cos26+10cosa-1) 

~(6) = .!.cos6(5cos26-3)
2 
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