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Abstract 

The topic of study within includes the development and application of 

nonlinear control technologies on sampled systems. Discrete control structures are 

introduced that expand on existing differential geometric and predictive control methods. 

The differential geometric techniques are described from the error trajectory context, 

which are typically only derived for continuous application. The discrete error trajectory 

controllers introduced have one of two configurations. The first configuration requires 

satisfaction of the error trajectory objective at the next sampling interval through 

prediction of system behaviour over the controller sampling interval. This objective 

found limited success and it is observed that satisfaction of the error trajectory objective 

at discrete intervals does not generally result in the intended response. The second 

configuration minimizes the integrated distance from the error manifold defined by the 

error trajectory objective over the entire controller sampling interval. It is observed that 

this integrated error trajectory controller best emulates the intent of the continuous 

controller in the discrete domain. Techniques borrowed from predictive control are 

incorporated into the integrated error trajectory controller such as input move suppression 

and constraints to produce an optimal error trajectory controller, further improving 

performance. 

The predictive control method introduced utilizes a transformation of the 

input space. The differentiating property of input transformation predictive control 
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(ITPC) from other methods is the prediction technique that is capable of estimating the 

future behaviour of nonlinear systems through elementary matrix operations similar to 

the dynamic matrix control (DMC) prediction technique. This is achieved by separation 

of the steady state and dynamic system properties and the introduction of an intermediate 

state prediction layer. This allows for the nonlinear prediction of system behaviour 

without the need to numerically integrate the system model. 

Two example systems are used to demonstrate application of the discrete 

error trajectory and ITPC on nonlinear controllers. Performance for these control 

structures is compared to technologies accepted within the control community for a broad 

range for characteristics including, computation efficiency, design effort and other 

nonlinear performance criteria, with favourable results. 
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1.0 Introduction 

Model based control (MBC) technologies are used to determine control 

policies for complex systems. Of the commercially available MBC packages, predictive 

methods are the most common. Model predictive control (MPC) encompasses a broad 

range of control algorithms that use an explicit system model to determine a control 

policy that minimizes an objective over a finite or infinite prediction horizon. Qin and 

Badgwell (2000) comment that model predictive control (MPC) has not yet penetrated 

into industries where process nonlinearities are strong and market demands require 

frequent changes in operating conditions. Recent advances in nonlinear (NL) MPC 

technologies are changing this perspective but many difficulties remain. The elegance 

and simplicity of linear control technologies make them the preferred choice for control 

applications. In a survey of commercially available model predictive control technology, 

Qin and Badgwell ( 1997) report over 2200 industrial MPC applications. They state that 

of these applications almost all use linear process models and are clustered in refmery 

and petrochemical processes. The reasons for the preference towards MPC based on 

linear system representations represents a good topic for debate but one distinction 

between linear and nonlinear MPC is clear. It is very difficult, if not impossible, to 

construct a model form that appropriately describes the behaviour of all feasible 

nonlinear systems yet many simple model forms exist for the linear case in both the 

continuous and discrete domains. Development of model identification procedures can 
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not be completed without a generic model structure. Efficient nonlinear system 

identification remains a combination of art and science. Likewise, design of algorithms 

to determine a control policy for predictive controllers utilizing nonlinear system 

descriptions is highly dependent on the nonlinear characteristics. In general the jump 

from linear to nonlinear MPC requires a more in-depth understanding of the selected 

control technology, more knowledge of the plant behaviour, and more model 

identification effort. Why then is there interest in investigating and applying nonlinear 

control structures? The simple answer is necessity. Systems that contain severe 

nonlinearity or are operated over a wide range of conditions may require a control 

technology with capabilities greater than that provided by linear MPC to achieve the 

desired performance. 

MPC however is just one of many MBC technologies. A sampling of those 

available for nonlinear control include, NL internal model control (NL-IMC) (Economou 

et al., 1986), NL dynamic matrix control (NL-DMC) (Garcia, 1984), NL inferential 

control (Parrish and Brosilow, 1988), global linearizing control (GLC) (Kravaris and 

Kantor, 1990a and 1990b ), feedback linearization (Isidori, 1991 ), generic model control 

(GMC) (Lee and Sullivan, 1988), NL programming (NLP) techniques (Jang eta/., 1987) 

and many ad hoc configurations. Some NL control techniques are computationally 

efficient, some handle constrained systems and some have restrictions on the system 

descriptions and/or dynamic properties. Algorithms well suited for the general non

square NL control problem with input constraints and non-minimum phase dynamics are 

typically computationally expensive and implementation on real systems often requires 
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simplifications. Selection of the appropriate NL control technology therefore depends on 

the system to be controlled and to a certain extent the control hardware it is to be run on. 

The area of interest in this study is the development and application of 

discrete nonlinear control technologies given a broad range of characteristics including, 

design effort, computational efficiency, constraint handling, objective function structure, 

servo capability and robustness at singular regions of operation. Two distinctly different 

control technologies are designed from existing differential geometric and predictive 

structures. The geometric control methods are presented using the error trajectory 

formulation. With respect to error trajectory descriptions in literature the methods 

described within have the unique characteristic of design for discrete implementation. A 

technique that is introduced here is the selection of input moves that are relevant over the 

controller execution interval rather than at the beginning of the interval as is the case with 

sampled implementation of the continuous error trajectory method. Two variants of this 

technique are described, the first selects inputs that satisfy the error trajectory objective at 

the next controller execution and the second minimizes the integrated distance from the 

error manifold defmed by the error trajectory objective over the interval. Of these two 

methods the second was observed to best emulate the intent of the continuous controller. 

A drawback of the second method is its computational demand, requiring minimization 

of a nonlinear optimization function. It is shown that restructuring the error trajectory 

objective as an optimization problem allows for the inclusion of constraints, output 

weighting and input move suppression expanding the capability of the error trajectory 

controller. 
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The predictive control technique presented is built on the familiar quadratic 

dynamic matrix control (QDMC) structure (Garcia and Morshedi, 1986). An input 

transformation technique is introduced that separates the steady state and dynamic 

properties of the system. The result is the ability to estimate future behaviour of 

nonlinear systems through elementary linear matrix algebra and ultimately a 

computationally efficient nonlinear predictive controller. 

The motivation behind development of the error trajectory and predictive 

methods stems from the author's need for a computationally efficient nonlinear control 

technology that is applicable in the discrete domain. Geometric methods in literature are 

primarily derived for continuous application yet implementation is typically performed 

on discrete computers with sampled state measurements. If the controller sampling time 

is fast compared to the system dynamics the discretization effects may be insignificant. 

In this study the problem of designing geometric control methods for application on 

systems where the controller execution frequency is significant is investigated. Nonlinear 

predictive control technologies are very powerful but in general are not computationally 

efficient. Real-time application often necessitates simplification techniques so that the 

set of future inputs can be found in time for implantation. The input transformation 

prediction method presented within eliminates the need for numerical integration of the 

system model, reducing the computational demands of the controller. 

Organization of the following sections begins with a brief review of existing 

nonlinear MBC technologies in section 2.0. Section 3.0 describes discrete error 

trajectory control including an overview of literature references for discrete differential 
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geometric control approaches. The error trajectory method is described from a predictive 

control perspective resulting in two discrete formulations of the objective. These 

methods are tested on an example system to assess their performance and comments are 

made on the suitability of the error trajectory objective in the discrete domain. Section 

4.0 begins with a review of dynamic matrix control (DMC) followed by an explanation of 

the input transformation prediction control (ITPC) method. It is also shown that for the 

unconstrained case an explicit solution may exist for the ITPC controller. The 

performance of the ITPC controller is compared to the error trajectory controllers from 

section 3.0. Finally the ITPC method is used to optimize the operation of a continuously 

stirred tank reactor (CSTR) given a set of known disturbances. Section 5.0 contains a 

comparative discussion of discrete error trajectory, ITPC and other control methods 

accepted by the control community for a broad range of characteristics such as design 

effort, computational efficiency and performance. Sections 6.0 and 7.0 round out the 

main sections containing conclusions and suggested future research activities. 



2.0 Nonlinear Control Methods 

A comprehensive review of nonlinear control technology is beyond the scope 

of this report. Instead, a sampling of techniques that are representative of the range of 

common NL control methods are examined, focusing on those that are model based. 

Adaptive strategies and other control approaches such as sliding mode are not considered. 

The methods described include nonlinear model predictive control (NL-MPC), local 

linearization techniques and error trajectory methods. Their presentation is primarily 

directed at how the system model is utilized in the control law and their objectives. 

The purpose of this section is to present a foundation of existing nonlinear 

control technologies that form the context in which the control structures developed later 

are derived. As well, a common nomenclature is established for use throughout. 

2.1 Model Based Control Objectives 

The control objective is a mathematical description of what the controller 

intends to do. The nonlinear control techniques described in this report have one of two 

basic objectives. The first objective involves designing an error trajectory function, Ef 

The error trajectory is a suitably well behaved function of the output error(£), and higher 

derivatives of this error. 

where: E: =yd -y (2-1) 
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E is the error, defined as the distance between the desired output or setpoint, 

Yct, and the actual or measured output y. 

The error trajectory function defines a desired error manifold. The objective 

of the error trajectory controller is to select u such that the system is maintained on the 

error manifold. In general E1 is said to be suitably well behaved ifthe control law can be 

recovered implicitly or explicitly (McLellan et al., 1990). In the SISO case E, Yct andy 

are real valued parameters and~ E 9\"+
1 

• ~i are pole placement tuning constants. a must 

be greater than or equal to the relative order, r, ofthe system. The concept ofrelative 

order is further explained in section 2.4, Continuous Error Trajectory Methods. 

The second objective is an optimization problem, minimizing a quadratic 

function over a prediction horizon. 

t 0+tP e=yTr -y 
min J = JeTWye·dt where: (2-2)u, 

to 

to is the present time and tp is the length of the prediction horizon. YTr 

E 9\NY and is a trajectory towards Yct, where Ny is the number of outputs. Wy is a 9\NYxNY 

weighting matrix that is usually diagonal and constant. The function /Tr is the desired 

trajectory of the errors towards Yct. /Tr and E1 are therefore similar in the sense that they 

both describe how the outputs dynamically track towards Yct· Of note, the error in (2-2) is 

defined slightly different than in (2-1 ). In (2-2) e is not really the error but rather the 

portion of error that is penalized in J. Penalizing the true error, E, can be very aggressive 
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and may lead to very large input moves unless the controller is detuned in some fashion 

(Qin and Badgwell, 2000). 

In practice (2-2) is implemented in the discrete domain with some additional 

features such as input move suppression and constraints as in (2-3). Other common 

additions include state and output constraints, penalties for distances from input setpoints 

and economic costs. These are neglected in this analysis for simplicity. 

(2-3) 

subject to: Umin ~ Uf ~ Uma.x 

where Nu is the number of inputs. Vuf are future input changes, umin and Umax are 

minimum and maximum input constraints, uroc are input rate of change limits and Ut are 

the absolute future input values. P is the number of discrete sampling intervals in the 

prediction horizon and c is the number of sampling intervals in the control horizon. In 

the discrete domain the weighting matrices Wy 9\NY PXNY P and Wu 9\Nu-cxNU c. TheE E 

weighting matrices most commonly contain positive values on the diagonal. 

Even though the objectives in (2-1) and (2-3) are both rooted around a 

desired trajectory, Yct, they are fundamentally very different. The differences are most 

evident when considering controller tuning. A controller using the objective in (2-1) is 

tuned by defming an error manifold through pole placement that directs y towards Yct· 

The objective in (2-3) has much more flexible tuning capabilities containing not only a 
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definition of the desired trajectory towards Yd but also weighting matrices Wy and Wu. 

The output weighting Wy, allows a relative priority to be given to specific outputs that 

require tighter control. Inclusion of move suppression Wu, imparts stabilizing qualities to 

the control performance especially in the presence of model mismatch and measurement 

noise or uncertainty (Gattu and Zaririou, 1991). Mathematically input weighting 

decreases ill conditioning, lowering the condition number of the model inversion (Qin 

and Badgwell, 1997). The weights eliminate large input moves that do not significantly 

reduce output errors. Excessively large input weights however will decrease controller 

performance; hence a balance must be achieved between robustness and aggressiveness. 

Zafrriou (1991) comments further on these tuning issues with respect to robustness. 

The use of an optimization problem in objective (2-3) provides another 

beneficial property. The minimization of a set of penalties relaxes the requirement that 

input-output degrees of freedom are satisfied. The control law resulting from the 

objective in (2-1) is a set ofNy equations with Nu unknowns. Therefore a unique solution 

only exists for square systems where Ny = Nu. The control law resulting from (2-3) is a 

search over the feasible range of Vut that minimizes J. The number of inputs and 

outputs may have an impact on the controller performance and controllability but they do 

not affect the existence of a solution. Furthermore, in the constrained case a non-square 

system utilizing the objective in (2-3) may be tuned in such a way that the controller is 

multi-structured depending on active constraints. As a simple example, a system with 1 

output and 2 inputs can be tuned so that the output is primarily controlled with input 1. 

When input 1 becomes saturated the controller then uses input 2 to control the output. 
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2.2 Nonlinear Model Predictive Control 

MPC refers to control technologies that use an explicit process model to 

estimate the future system behaviour over a prediction horizon. At a fundamental level 

nonlinearity can be introduced into MPC through the inclusion of input constraints, from 

actuator saturation and process limitations, or the use of nonlinear process models. In the 

context of this report NL-MPC denotes the use of nonlinear process models and MPC 

structures that use linear models will be called linear MPC even if they consider input 

constraints. 

The control law for MPC controllers is defined as the solution to the 

objective in (2-3). At each control execution an optimal control policy is determined and 

the control moves for the present interval are implemented. This process is repeated at 

each subsequent control execution, t[k+l] = t[k] +T5 , where t [kl is the time of the k111 

control interval, t [k+ll is the time of the next control interval and Ts is the controller 

sample time. This recursive process results in moving horizon or receding horizon 

control as the prediction horizon shifts forward in time at each control execution. 

YTr is typically defined as simply yct, (2-4), or a first order error decay, (2-5). 

In general any appropriate function can be used. Qin and Badgwell (2000) describe other 

YTr design approaches used in commercial applications such as funnel or zone regions. 

YTr =yd (2-4) 

de:
where: 't ·- = c: (2-5) 

c dt 
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In (2-5) 'tc is the desired closed loop time constant of the error decay. Use of 

(2-4) simplifies the definition of e so that e =E. 

Prediction of future output values requrres the integration of the process 

model, (2-6), over the prediction horizon. 

dx = f(x, Ut)

dt 


(2-6) 

y =h(x) 

In (2-6) x is the system state vector on 9\Nx • Uf E 9\Nu and is typically 

assumed to be piecewise constant functions over the control horizon (Li and Biegler, 

1989), sampled at future control executions. Normally all the states in (2-6) are not 

measured directly and the measurements of the system that are available contain noise. 

Filtering techniques such as the extended Kalman filter (EKF) are used to estimate the 

system states using the available process observations (Doucet, 1998). Gagnon and 

MacGregor (1991) and Gattu and Zafiriou (1995) provide design and tuning guidelines 

for Kalman filters for use in control applications. In particular these articles explain the 

value of adding meaningful nonstationary stochastic states to account for unknown 

disturbances and modeling errors. With the addition of these stochastic states and 

measurement noise the process model (2-6) becomes, 

dx
5 

s where: w' and v are white noise signals (2-7)
-=(J) 

dt 
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The only requirement in augmenting the deterministic process model with 

these stochastic states is that they must be observable. This limits the number of these 

states to less than or equal to the number of independent process measurements (Gagnon 

and MacGregor, 1991) (Gattu and Za:firiou, 1995). 

The process description (2-7) is a continuous relation however the objective 

function is discrete. This contradiction is rectified by outputting the results of the process 

model integration as a vector synchronized with the controller execution times. 

For nonlinear systems the optimization problem in (2-3) is solved usmg 

nonlinear programming (NLP) techniques. The NLP uses iterative algorithms consisting 

of a sequence of linear programming (LP) or quadratic programming (QP) 

approximations, Newton's method or differential dynamic programming (Liao and 

Shoemaker, 1992). In some cases the solution to the optimization problem requires 

significant computer time. The controller however must fmd the solution in real-time, 

thus various commercial vendors have developed short-cut procedures to improve 

computational efficiency for complex or large systems (Qin and Badgwell, 1997) (Qin 

and Badgwell, 2000). The most common of these simplifying procedures is an 

assumption of linearity about the present operating point. The benefit of the linearity 

assumption is the nonlinear program is converted into a quadratic program (QP) that can 

be solved very efficiently (Li and Biegler, 1989) (Garcia, 1984). This topic is 

investigated further in sections 2.3, Local Linearization Techniques and 4.1, Dynamic 

Matrix Control. 
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Other simplification techniques are used to convert the system description 

into a more convenient form. An example of one of these techniques is orthogonal 

collocation on finite elements (OCFE). OCFE can be used to reduce the ordinary 

differential equations from (2-6) to algebraic equations (Sistu et al., 1993). 

The necessity for these simplifications is understood through a breakdown of 

a NLP algorithm. In general the NLP consists of an outer minimization procedure with 

an inner integration loop. The minimization procedure may consist of a gradient line 

search, sequential quadratic program (SQP) or other appropriate technique. The iterative 

nature of the search procedure may require hundreds or thousands of function evaluations 

(J from (2-3)) for even a seemingly simple problem. Each function evaluation requires 

the integration of (2-6), hence efficient numerical techniques are essential real-time 

implementation. 

2.3 Local Linearization Techniques 

Local linearization is a sub optimal extension of the NL-MPC structure. The 

nonlinear process model in (2-7) is only used to predict the system behaviour with no 

control action, (2-8). 

dx = fs(x.x~. U 0 ) 
dt 

dX 5 (2-8)
-=0 
dt 
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uo and x~ are the present input and stochastic state values and Yo is the 

predicted outputs if no future input changes are implemented. A linear process model is 

derived from (2-8), normally centered around uo. Garcia (1984) describes a linearizing 

procedure using (2-9). 

where: Go = ~LJ (2-9)
~Xo,~·uo 

xo is the present value of the states. XL and YL are the linearized change in 

where Nx is the number of states. The 0 subscript on the linearized model parameters 

indicates that this model is time varying and is derived for the present operating point. 

The model is time varying in the sense that the model parameters are recalculated at 

every control execution. The continuous linear model is discretized to produce (2-10). 

(2-1 0) 

Estimation of system behaviour beyond the k+ 1 time interval requires 

recursive iteration of (2-1 0). 

Prediction of future outputs IS accomplished by superposition of the 

integration of (2-8) and the linear model. 
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(2-11) 

This method is not rigorously valid for nonlinear systems but affords 

significant benefits. The advantage of this configuration is the integration of the 

nonlinear model is only performed once and the resulting optimization problem from 

(2-3) is reduced to a QP from a NLP. Furthermore the local linear method is guaranteed 

to converge to the optimal operating point so long as the method exhibits decent 

directions (Li and Biegler, 1989). This suggests convexity constraints on the full NL 

process model. Obviously the performance of this control method may deteriorate with 

severe nonlinearities. Quantification of nonlinearity and its effect on control performance 

is difficult and is a relatively new area of research. With respect to control, rules that 

defined the closed loop stability and performance oflinear control, nonlinear control and 

local linear control technologies in the presence of various types of process nonlinearities 

would be immensely valuable. Development of nonlinear controllers typically requires 

greater effort than for the linear case. Guay et al. (1995) develop some useful measures 

of nonlinearity that attempt to assess when a process is sufficiently nonlinear to justify 

the development and use a nonlinear control law. This type of analysis may also be 

useful to assess if local linearization techniques are appropriate for a given nonlinear 

system. 

An area that local linear techniques are limited in their ability is the 

prediction of system behaviour as the process is moved from one operating point to 

another. The predictive capability of the linear process model obviously will diminish 

the further the system moves from its linearization point in the prediction horizon. 
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Therefore prediction of future errors and constraint violations may be marginal during 

process transitions. Use of local linear techniques on transition applications such as 

optimal grade change trajectories or batch processes may not be appropriate depending 

on the type of process nonlinearity. This is not to say that local linear techniques will not 

perform adequately even in the presence of severe nonlinearity. Stack and Doyle (1997) 

suggest that linear controllers optimally control some classes of highly nonlinear systems, 

while other systems with much smaller measured nonlinearities require the use of a 

nonlinear control law. Therefore the linearization portion of this technique may not 

hinder the closed loop performance even if its predictive capability is compromised. 

2.4 Continuous Error Trajectory Methods 

In this report error trajectory methods refer to control technologies that utilize 

the E1 from (2-1) to design a control law. In nonlinear control literature there are a 

number of these, notably, reference systems synthesis (RSS) (Bartusiak et al., 1989), 

global linearizing control (GLC) (Kravaris and Chung, 1987), generic model control 

(GMC) (Lee and Sullivan, 1988) and feeback linearization (Isidori, 1991) (Kravaris and 

Kantor, 1990alb ). McLellan et a!. (1990) show that these techniques can be cast in the 

error trajectory form and that RSS, GLC, GMC and feedback linearization are special 

cases ofthe more general description in (2-1). 

Error trajectory methods are most relevant for contro 1 affine systems, (2-12). 

:~=fa (xo )+ ga (xo). U (2-12) 
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dxs s 
-.-=(J) 

dt 

The control law is designed using differential geometry and nonlinear 

inversion techniques along with a pole placement tuning procedure. This type of control 

design is often referred to as an output tracking problem which involves determining the 

control action required to force a system to follow a desired path or trajectory. 

To develop the control law for a SISO system the objective function in (2-1) 

is rewritten as in (2-13) using Lie derivatives from differential geometry. 

(2-13) 

where: diy =Lih f o)+L L1- 1h f o).dt" I s\X g I s\X U (2-13a) 

(2-13b) 

(2-13c) 

ari-lh ari-lh ari-lh 
L 2h f o)=~-g +-f__s ·g + +-f__s ·g 

g I s \X axo a,l axo a,2 ". axo a, Ncr (2-13d) 
1 2 N0 

The relative order of the system is interpreted as the number of times y must 

be integrated to result in an expression containing the input u. Therefore, LgLj1 hJx0 )= o 

for i < r, where r is the relative order ofthe system. For a more complete description 
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of Lie derivatives and relative order refer to (Kravaris and Chung, 1987) (Kravaris and 

Kantor, 1990a). 

Integral action can be included in error trajectory controller by setting 

a=r+l (McLellan et al., 1990). With the system description in (2-12) however integral 

action will be provided by a state observer, such as a Kalman filter, as a result of 

including stochastic states in the process model. Stochastic states remove the steady state 

offset between the model predictions and measurements (McAuley and MacGregor, 

1993). Using a= r and solving for u results in the continuous error trajectory control 

law (2-14). 

(2-14) 

Kravaris and Soroush (1990) provide an extension of a nonlinear input/output 

linearization method, which bears similarity to the error trajectory method shown here, 

for multivariable systems. Notably the multivariable controller design procedure 

described will only yield an explicit control law for square systems. Essentially the error 

trajectory method results in Ny equations with Nu unknowns. A unique solution to the 

control law therefore requires Nu = Ny. The error trajectory equation for the jth output is 

shown in (2-15). The multivariable extension to (2-13) simply accounts for the influence 

of all inputs on the derivatives of each output. 

(2-15) 
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The model inversion used to design the error trajectory control law 

potentially presents problems. Since (2-12) is assumed to be nonlinear there may exist 

singular regions such that the denominator in (2-14) is zero. In these singular regions the 

system is no longer controllable as input changes have no affect on the system. A 

secondary problem is the inability to control systems possessing nonminimum phase 

dynamics. Nonminimum phase systems are noninvertible but an approximate inverse can 

be developed where the undesirable dynamics are removed to provide an approximate 

solution (McLellan et al., 1990). 



3.0 Discrete Error Trajectory Control 

Differential geometric control approaches such as the error trajectory method 

described are naturally derived in the continuous domain. Application of this technology 

is typically implemented on digital computers at discrete sampling intervals. Digital 

control problems designed on the basis of linear continuous time models are solved with 

sampled dynamics interpreted as a discrete time model where the linear structure is 

preserved under sampling (Monaco and Normand-Cyrot, 1997). Nonlinear continuous 

systems however are not easily described in the discrete domain and structural properties 

are generally not preserved under sampling. Many authors (Grizzle and Kokotovic, 

1988) (Bequette, 1990) (Ferreira and Agrawal, 2000) have noted that sampling can 

destroy the performance of geometric control technologies, yet few have prescribed 

solutions. 

An area of research that has received attention is discrete control of feedback 

linearizable systems. The convenient property of these systems is the existence of an 

exact transformation into a linear form. Details on continuous feedback linearization are 

found in Isidori (1991) and Kravaris and Kantor (1990a and 1990b). McLellan et al. 

(1990) describe feedback linearization in the context of the error trajectory approach. 

The specifics of feedback linearization are unimportant in the context of this study but the 

end result is significant with respect to sampled systems. The system is linearized 
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through state feedback and coordinate transformation to produce a system description of 

the form in (3-1) where z and u are the transformed system states and inputs. 

dz 
-=A ·z+B ·U (3-1)
dt t t 

Linear system theory can then be used to control the transformed system, 

reducing a potentially difficult nonlinear control problem to a simple linear one. 

Arapostathis et al. (1989) describe the effect of sampling on the transformed system and 

summarize conditions for the existence of systems that are sampled feedback linearizable. 

Ferreira and Agrawal (2000) investigate discrete control of feedback linearizable systems 

through the design of an optimal planning strategy. The difficulty experienced with these 

techniques is the requirement that u remain constant between sampling intervals. The 

transformed input can contain a combination of system inputs and continuous state 

variables invalidating the zero order hold condition. Ferreira and Agrawal quantify this 

error and point out that the effects of sampling are minor if the system transformation is 

weakly dependent on the states or if the states don't significantly change over the 

sampling interval. This indicates that if the sampling frequency is fast compared to the 

system dynamics the error for the sampled feedback linearized system representation is 

small. Grizzle and Kokotovic (1988) show that feedback linearizability is not generally 

preserved under sampling but describe a method of recovering a feedback linearizable 

discrete time model from a continuous one through an example. Jakubczyk and Sontag 

(1990) survey known results for controllability of nonlinear systems and present new 

characterizations using differential geometric ideas. 
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In this report the area of interest is the applicability of the continuous error 

trajectory objective on sampled systems and alternative error trajectory structures that are 

better suited for discrete implementation. Examples of discrete geometric control 

approaches similar to error trajectory appear in Spong et al. (1986) and Ferreira and 

Agrawal (2000). These applications include a reformulation of the error trajectory 

objective as an optimization problem over a limited prediction horizon. This suggests 

that at a minimum there is an intuitive awareness that the objective of error trajectory and 

other related nonlinear geometric continuous control approaches are not well suited for 

sampled systems. Direct application of the continuous error trajectory control law (2-14) 

on a sampled system can result in poor performance. The effects of discretization can be 

shown through Taylor series expansion of the sampled control law. Given the control 

law for the determination of u at the present time (3-2), the difference between the 

continuous and sampled implementation are the sum of the first and higher order terms in 

the Taylor series expansion, (3-3). 

(3-2) 

(3-3) 

Ou[k] is the difference between the continuous input u from (2-14) and the 

input resulting from the sampled control law u [kJ, for the set of continuous states xa. 

(3-3) indicates that as the states move from their value at the sampling time k du[k] 
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grows. Therefore the effects of discretization are magnified if the controller execution 

frequency is significant with respect to the system dynamics. It is also important to note 

that this effect is not a result of the system nonlinearity but rather system dynamics. 

Nonlinearity can magnify the problem however especially if the process gain, represented 

by LgL~1hs (x~ ), changes dramatically in magnitude or sign. Direct application of the1 

continuous error trajectory objective in the discrete domain clearly may not perform as 

expected. There is value in the method and with some reformulation an error trajectory 

controller can be designed for the discrete domain. 

In the discrete domain a controller must select a set of inputs to be 

implemented for the interval t = t[k] to t[k] +Ts. Sampled implementation of the 

continuous error trajectory control law however selects the set of inputs that satisfy the 

objective at the time of the controller execution, given the present state values. Taylor 

series expansion of the sampled error trajectory control law indicates that the input values 

implemented at each sampling interval become less valid as the continuous states change. 

The idea that is introduced in this report is that discrete implementation of error trajectory 

control should be approached by attempting to select a set of inputs that are relevant over 

the sampled interval rather than at the beginning. Specifically two discrete error 

trajectory controllers are described, the first selects the set of inputs that satisfY the error 

trajectory objective at the end of the present execution interval and the second selects 

inputs to minimize the distance from the error manifold over the entire sampling interval. 

This involves prediction of system changes to the next execution time. Given that the 

control law is built on a system model, utilization of this model for predictive purposes is 
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a natural extension. In this respect a discrete error trajectory controller can be designed 

as a predictive controller. In the next section a discrete error trajectory controller is 

designed in the context of MPC. This is useful as the derivation helps to bridge the gap 

between error trajectory and predictive control structures and sets up a strong basis for 

comparison of the techniques. 

3.1 Error Trajectory Predictive Control 

A SISO NL predictive controller is designed with prediction and control 

horizons of one sampling interval, P =c =1, based on the error trajectory objective (2-1 ). 

The outputs for this predictive controller are the error and the first r derivatives of the 

error, where r is the relative order of the system. The predictive objective is to minimize 

the quadratic value of the error trajectory error function, E1 from (2-1) at the next 

controller execution as in (3-4). Noticeably input constraints, rate of change limits and 

input move suppression are not included in the objective. 

(3-4) 

The goal in (3-4) is simply to drive the absolute value of the error function to 

a minimum. For controllable systems the unconstrained solution exists at J = 0. Setting 

J to 0 and expanding E/[k+J.] produces; 

where: YTr = Yd (3-5) 

Rewriting (3-5) using Lie algebra results in (3-6). 
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(3-6) 

(3-6) is identical to (2-13) with the exception that the desired output 

trajectory and the Lie terms are the projected values at the next sampling interval. This 

outcome is intuitive and really not the significant product of the derivation. More 

importantly the short derivation displays the error trajectory objective in the predictive 

context and can be used to highlight the significant differences between discrete error 

trajectory control and traditional predictive control approaches. 

It has long been understood that in predictive control long predictive horizons 

are favoured over short ones. Infinite prediction horizons have been studied for decades 

and are found to have convenient properties, such as guaranteed closed loop stability for 

linear quadratic Gaussian (LQG) optimal control under general assumptions (Morari, 

1993). Finite horizons are used in industrial predictive control technologies to simplify 

the control law computation and allow for the inclusion of constraints. A general rule of 

thumb however is to select the predictive horizon long enough that it approaches the 

settling time of the system. This approach captures the system's dominant dynamic 

properties and provides a means of controlling nonminimum phase transients. The 

proposed discrete error trajectory controller only has a predictive horizon of 1 therefore it 

has limited stability guarantees and is not appropriate for nonminimum phase systems. 

This is true of the continuous controller as well. 

A second area the predictive error trajectory controller differs from 

traditional predictive control is tuning. The tuning constants ~i can be used to adjust the 
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aggressiveness and dynamic properties of the closed loop response but they are not very 

useful in handling ill conditioned regions of operation. This is particularly important for 

NL systems as the system conditioning varies over points of operation. Predictive control 

effectively handles ill conditioning through the use of input move suppression via 

penalties on input changes. 

Comparison of the predictive controller (3-6) to the sampled version of the 

equivalent continuous error trajectory controller provides further insight into problems 

associated with discretization. For instance one could make the unsophisticated and 

erroneous assumption that the future value of the Lie terms are best estimated as the 

present value. 

(3-7) 

Substituting these assumptions into (3-6), and solving for U[kJ results in the 

control law, (3-8). 

(3-8) 

Note that (3-8) is identical to (3-2). This is because (3-8) is the actual control 

law executed by error trajectory controllers when implemented in the discrete domain. 

Practitioners of predictive control would no doubt have reservations of using (3-8), 



37 

especially if sample times are significant compared to the system dynamics. The ZOH 

assumption nullifies the predictive ability of the controller. 

The predictive error trajectory objective has a subtle difference from the 

predictive objective in (2-3). In (2-3) each ofthe terms in the error vector contributes to 

the objective function, regardless of sign, because each term is squared ( e T wY e). In (3 -4) 

only the weighted sum of the error is penalized. Therefore terms with positive error can 

be compensated by other terms with offsetting negative errors. These two error 

weightings enforce different closed loop properties. For instance using (3-4) a SISO 

system with relative order 1 accepts errors in the output with the condition that the error 

derivative is ofthe opposite sign, (3-9). 

~1 de:
£=--·- (3-9)

~0 dt 

For the same system error weighting of the form (2-3) penalizes both the 

error and its first derivative no matter what the sign of each. 

Of note the discrete error trajectory as presented only requires that the 

objective be satisfied at the sampling intervals. This is a common property of discrete 

control theory. For instance dynamic matrix control (DMC) only minimizes the error at 

discrete points along the predictive horizon. This qualification does however signifY that 

the performance of the discrete error trajectory controller will not match the continuous 

equivalent. In fact it will be shown that the satisfaction of the error trajectory objective at 

discrete sampling intervals may lead to unacceptable performance. 
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One of the benefits of the continuous error trajectory control method is that 

often the control law consists of a set of algebraic equations. Therefore the controller can 

be implemented without sophisticated numerical integration or optimization routines. 

Unfortunately the solution to the predictive discrete error trajectory objective (3-6) 

requires integration of the system model. If computational efficiency is a concern 

intelligent assumptions can be used to simplify the problem. The next section includes 

some simplification techniques but any reasonable method of estimating the Lie algebraic 

terms for the next sampling interval can be utilized. 

3.2 Sampled Error Trajectory Objectives 

The results from the previous section are used to design a sampled error 

trajectory controller. Specifically there are three configurations presented. The first of 

these is referred to as the exact discrete error trajectory controller. The term exact is used 

to indicate that no simplification techniques are used to satisfY the sampled objective. In 

order to preserve the computational benefits of error trajectory control simplification 

techniques are employed for the remaining sampled controllers. The simplification 

techniques involve explicit methods of estimating the future system response to again 

produce an algebraic control law. 

3.2.1 Exact Discrete Error Trajectory Objective 

The basic structure of the sampled controller has already been derived in the 

Error Trajectory Predictive Control section. The error function, (3-6), selects the input at 

the present sampling interval that satisfies the objective at the next sampling interval. 
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The problem that arises is finding the solution to (3-6) since integration of the system 

model is required over the sampling interval. Assuming there is not an algebraic solution 

to the integration, the inputs that satisfy (3-6) can be found through a minimization 

algorithm using the predictive objective (3-4). 

3.2.2 Euler Discrete Error Trajectory Objective 

The frrst simplification technique applies the Euler method to estimate future 

differentials (3-1 0). Substituting (3-1 0) into the discrete objective function results in 

(3-11). 

(3-10) 

r Yd [di___yI .y ]~ =0,R..[~i _ +T·.L.... )J~ ~ s di+l1.+1 (3-11)
l. 

i=O dt [k+l) dt [k) dt [k) 

This method produces a more cumbersome objective and requires 

determination of r +1 differentials but still results in algebraic equations. 

In (3-1 0) the Euler method is used to estimate the future differential terms. In 

some cases it may be more beneficial to estimate future state values and use the estimated 

states to predict the future differentials. This procedure preserves portions of the 

nonlinear system structure that may be lost by simply predicting the differentials. 
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3.2.3 Discrete Model Error Trajectory Control 

The second simplification technique is really an extension of the exact error 

trajectory controller but a discrete model is used to provide an explicit control law. This 

technique therefore requires the development of a suitable discrete system model, (3-12). 

(3-12) 

Using the discrete model the Lie algebra terms can be estimated for the next 

sampling interval. Letting Qf and Q 
9 

represent the functions that define the Lie 

algebraic terms (3-13), the discrete control law is shown in (3-14). 

(3-13) 

(3-14) 

A complication that may present itself using the discrete model is the 

possible presence of squared or nonlinear input terms. This can happen if Q9 ~~J,U[k]) 

contains U[kJ in any form or Qt (x~l, U[k]) contains terms nonlinear in U[k]· These 

problematic terms make determination of an explicit algebraic equation for U[kJ difficult. 

The effectiveness of these sampled error trajectory techniques are displayed 

through an example. The system for the sample problem is shown in (3-15). 
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dx = F ·x+G(x).u
dt 

where: F= 

y=H·X 

0 1 0 0 

-2 
1- 0 0 
2 

0 0 
1 - 0 
3 

1 
0 0 0 

5 

G(x)= 

0 0 

2 

0 

2 

5 

0 

xl 
6 

0 

(3-15) 

0 1 

H=[: :]0 0 

For simplicity no stochastic states or noise terms are included in the system 

and all states are perfectly observed. Proper examination of noise and disturbance 

rejection necessitates the use and analysis of filtering techniques such as the extended 

Kalman filter. 

The example system includes two nonlinear and two linear dynamic input 

state relationships. Nonlinearity enters into the system through the term x 1 /6 in G (x). 

Input step responses are shown in Figure 1. Figure 1 a) shows the linear second order 

under damped relationship between u1 and x1. Figure 1 b) displays the effect of u1 on 

X3. Included are three step changes, showing the different responses for varying values 

of u2 (0, 1 and -1 ). Figure 1 c) displays the linear first order relationship between u1 and 

X4. Similar to Figure 1 b), Figure 1 d) includes three step responses displaying the 

relationship between u2 and X3 for varying values of x1 (0, 1 and -1). The system 

nonlinearity is severe containing not only dramatic changes in process gain magnitudes 

but also sign changes, including singular points. The nonlinear steady state input-output 

and input-state maps are summarized in (3-16). 
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1 
x =-·x ·u (3-16)

3 2 1 2 

The system responses in Figure 1 and (3-16) effectively convey the steady 

state nonlinearities but do not clearly present the nonlinear dynamic properties of the 

system. A test in superposition is used to display dynamic nonlinearities. Figure 2 

includes step responses in X3 for the input changes, u~ =1 to ui = -1 and u~ =1 to 

u; =2, where u~ is the initial input value and ui is the final input value. Both input 

changes are implemented at t = 0. Figure 2 a) shows the system response for 

simultaneous execution of these input changes. Figure 2 b) displays the response of x 3 

for the same input changes in Figure 2 a) carried out independently. A characteristic of 

systems that exhibit linear dynamics is the validity of superposition. In this case the 

superposition of the independent step responses does not match the system response of 

the simultaneous input changes, as shown in Figure 2 c). In particular the actual system 

response includes nonminimum phase dynamics while the superposition response does 

not. 

Servo control of the system with linear proportional integral (PI) controllers 

is shown in Figure 3. The discrete PI control algorithm is based on a velocity form of the 

continuous PI equivalent (3-17). 
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Figure 1, Open loop unit step responses for the sample system (3-15). For each step response the 
input is changed from 1 to 2 at t = 0. 
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Figure 2, Dynamic response of x3 in the sample system (3-15) to step changes of u1 = 1 to -1 and u2 = 
1 to 2. a) simultaneous input step change (actual system response), b) independent step changes c) 
comparison of actual system response and superposition of independent input step changes. 
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Figure 3, Setpoint tracking of the PI controller (3-17) on the example system with a sample time of 
Ts =0.5. 
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(3-17) 

The PI controllers are configured so that in the first loop Y1 is maintained by 

u 2 and in the second loop y 2 is maintained by u1. The tuning of the first loop consists of 

Kc =1 o and 'tr =o. 2 and for the second Kc =1 and 'tr =o. 2. The performance of the 

simple PI control scheme is not desirable. This example does however provide a nice 

baseline from which to compare the performance of nonlinear MBC control technologies 

such as error trajectory. 

The Lie derivative terms for (3-15) are; 

(3-18) 

Referring back to the definition of relative order, the system is relative order 

1 since Lgh1 (x) and Lgh2 (x) are both nonzero. Substituting the terms in (3-18) into the 

MIMO error trajectory objective, (2-15) and solving for the inputs, produces the 

continuous error trajectory control law (3-19). 

(3-19) 

{ ) f3 dydo1 X3f30 , \Yct 1 - Y1 + 11 ° --- x, +
0 0 0 


" 
 dt • 3 
u2 = 

0 
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The exact discrete error trajectory controller is designed using (3-6). For the 

example system the error trajectory functions are shown in (3-20). 

(3-20) 

The solution to (3-20) requires integration of the system model over the 

interval t(k] ~ t(k] +Ts to estimate the state values at the next control execution. In 

general an algebraic solution to the integration will not exist but the solution can be found 

by formulating (3-20) as an optimization problem. A suitable formulation is shown in 

(3-21). 

(3-21) 

The unconstrained solution is found at J =o through the use of a 

minimization algorithm. The set of inputs that minimize (3-21) are referred to as the 

exact discrete error trajectory control policy. 

The discrete error trajectory controller using the Euler simplification method 

tS designed similar to the continuous controller but includes additional terms for 

predictive ability as shown in (3-22). Replacing the differentials with Lie algebraic terms 

and grouping like terms results in the Euler objective, (3-23). 

(3-22) 
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(3-23) 

The Euler control law for the error trajectory controller is found by 

substituting the terms in (3-18) along with the second order Lie derivatives, (3-24), into 

(3-23) and solving for the inputs to produce (3-25). 

2 ( ) x4Lfh X=
2 25 


(3-24) 

L L1 h (x)·u = 2·u -~·u L L1h (x).u =-~·u 
g 1 1 18 2 g 2 25 1 


dyd 2 ( ~ ) x 4 X 4 · (y - )+ ·--·+ T · + ·--T · · ~0.2 d,2 y 2 ~1.2 d s ~0.2 1.2 s ~1.2 2 

u = t 5 5 


1 2 2 

(Ts ·~o.2+~1.J·--Ts ·~1.2 · 

5 25 


(3-25) 


A discrete representation of (3-15) is required to design the second simplified 

discrete error trajectory controller. It is difficult to design a discrete system model that is 

general for any sample time, Ts, therefore for simplicity a sample time of 0.5 is assumed. 

The discrete model is shown in (3-26). 
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o. 7789 0.4065 0 0 

X[k+l] =<I>. X[k] +r(x). U[k] 
-0.8130 0.5756 0 0 

where: <I>= (3-26) 
0 0 0.8465 0 

Y[k] =H·X[k] 

0 0 0 0.9048 

0.2211 0 

0.8130 0 
r(x)= xl

0 
13.028 

0.1903 0 

The objective of this simplified error trajectory controller is the same as for 

the exact discrete controller. The solution is easier to determine using a discrete model 

however since integration of the system model is not required for future predictions. 

Substituting the discrete model representation into the exact error trajectory objective 

produces (3-27). 

(3-27) 

H1 =[1 o 1 o] 
where: 

H2 = [o o o 1] 

Substitution of :X[k+l] =<I>· X[k] + r(x). U[k] into (3-27) and solving for the inputs 

results in the control law, (3-28). 
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(3-28) 

The continuous error trajectory control algorithm is simulated for the 

example system in both the continuous and discrete domains. The sample time used in 

the discrete implementation is 0.5. Results are shown in Figure 4 and Figure 5. 
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Figure 4, Setpoint tracking of the continuous error trajectory control law (3-19) on the example 
system in the continuous time domain. 
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Figure 5, Setpoint tracking of the continuous error trajectory control law (3-19) on the example 
system in the discrete time domain ( Ts =0. 5 ). 

The controller is tuned with ~ 0 •1 =~ 0 .2 =1 and ~1•1 =~ 1.2 =o. 7. The error 

trajectory control algorithm performs as expected in the continuous domain but its 

performance degrades significantly under sampled implementation. Intuitively, the 

response can be improved by using a faster sampling frequency. With a sampling 

interval of 0.1 the discrete effects are reduced as shown in Figure 6. In the limit as 

T5 ~ o the discrete implementation approaches the continuous equivalent. This example 

agrees with earlier analysis that found the effects of discretization arise as the system 

states deviate from their value from the last sampling interval. 
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Figure 6, Setpoint tracking of the continuous error trajectory control law (3-19) on the example 
system in the discrete time domain ( T5 =0.1 ). 

One may expect the performance of the exact discrete error trajectory to 

match or come close to the continuous controller, as is commonly expected for discrete 

implementations of linear control technologies. This is not the case however as shown in 

Figure 7. The nature of the discrete error trajectory objective permits excursions from Yct 

over the sampling interval so long as the output is heading dynamically towards Yct at the 

next sampling interval. Figure 8 provides a close-up view of Y1 in Figure 7 and shows 

that at each control execution a positive error is accompanied by a negative derivative 

and visa versa. The exact discrete error trajectory controller does outperform the discrete 

implementation of the continuous algorithm. This increase in performance comes at the 

cost of increased computational load and complexity including an online optimization 

routine requiring repetitive numerical integration of the system model. 
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Figure 7, Setpoint tracking of the discrete exact error trajectory control law (3-20) on the example 
system ( Ts = 0. 5 ). 

2.5 .----.----,----,----,---,---,-----.-----, 

2 

1.5 

' ' ' ' ' 

0.5L-----~----~----~---~----~-----L-----L-----J 

5 5.5 6 6.5 7 7.5 8 8.5 9 

Figure 8, Close-up view of the setpoint tracking of Y1 for the discrete exact error trajectory control 
law (3-20) on the example system ( T5 =0. 5) from Figure 7. 
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The Euler technique improves the predictive quality of the discrete error 

trajectory controller by using a first order approximation for estimation of future system 

behaviour. Simulation of the Euler error trajectory control law (3-25) on the example 

system is shown in Figure 9. The performance of the Euler error trajectory method is 

better than the discrete implementation of the continuous control law but worse than the 

exact discrete controller. This is also consistent with the amount of effort involved in the 

controller development and computational complexity. 
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Figure 9, Setpoint tracking of the discrete Euler error trajectory method (3-25) on the example 
system using ( Ts =0. 5 ). 

Utilization of a discrete model can reduce the exact discrete error trajectory 

control algorithm into algebraic equations. Simulation of the discrete model 

simplification technique, (3-28), for the example system is shown in Figure 10. The 

system response does not match the exact discrete error trajectory response though due to 
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a modelling error. r(x) in the discrete NL model contains a term with x1. In the 

controller development it was assumed that x1 = x1[k]· x1 however does not remain 

constant over the control interval thus this ZOH assumption is a source of error. A 

convenient property of the example system is that Y1 is controllable only by u1 therefore 

u 1 is determined from E.12 only. This allows estimation of x1~+1] regardless of the 

condition of Efl. Taking advantage of this property the value of x1 used in r(x) can be 

any combination of x 1 [k] and x 1[k+l]· Using a weighted average of x 1[k] and x 1 [k+1] 

(x 1 =0.63·x1~J+0.37·x1[k+l]) provided a closed loop system response very similar to the 

exact discrete error trajectory controller, Figure 11. 
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Figure 10, Setpoint tracking of the discrete model error trajectory control law (3-28) on the example 
system ( T5 =0. 5 ). 
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Figure 11, Setpoint tracking of the discrete model error trajectory control law (3-28) on the example 
system using ( Ts =0. 5) and a weighed average state prediction for x1 

(x1 =0.63·x1~]+0.37·X1[k+l]>· 

The appropriateness of each of these error trajectory methods depends on the 

situation. Factors such as availability of a discrete model, computing power, system 

transient behaviour and controller execution frequency influence the ability and 

suitability of each of these methods. For instance if the controller execution frequency is 

0.01 for the sample system there is no discemable difference in performance between the 

discrete implementation of the continuous error trajectory control algorithm and the 

discrete error trajectory control laws. Finding the solution to the exact discrete error 

trajectory may be difficult or infeasible at that sampling frequency given a set of 

computing hardware. 

The applicability of the error trajectory objective in the discrete domain 

deserves some question. It was shown that satisfaction of the error trajectory objective at 
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discrete sampling intervals is not necessarily desirable and can lead to unexpected or 

inappropriate control response. Unlike the predictive control objective (2-3), that is 

equally valid in its discrete or continuous form, the error trajectory objective does not 

translate well between the two time domains. In particular the performance of the error 

trajectory methods presented diminish as the controller sampling interval increases in 

duration. 

3.3 	 Integrated Error Trajectory Objectives 

Given the problems associated with the discrete application of the error 

trajectory objective a final objective is offered that perhaps best combines the premises of 

predictive and error trajectory control technologies, to further improve performance. 

Instead of satisfaction of the objective at the next sampling interval the objective IS 

restructured to minimize the integrated error trajectory over this interval, (3-29). 

(3-29) 

For the example system the error trajectory terms, E1 , are shown in (3-30). 

r ) (dydl X3 X1 JEfl =f3o,l'\Ydl-Yl +[311· --·-x2 +---·U2 
. . dt 3 6 

(3-30) 

Simulation of the example system for (3-29) demonstrates the advantages of 

the discrete integrated error trajectory objective as shown in Figure 12. (3-29) emulates 

the continuous error trajectory objective in the discrete domain much better than the 
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previous discrete methods. The complexity and computational load are comparable with 

the exact discrete error trajectory technique yet the performance is superior. 
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Figure 12, Setpoint tracking of the discrete integrated error trajectory objective (3-29) on the 
example system using ( T6 = 0. 5 ). 

3.3.1 Optimal Error Trajectory Control 

Some deficiencies of the error trajectory method in its continuous or discrete 

forms are its inability to deal with ill conditioning, enforce system constraints and apply 

to nonsquare systems. A convenient way of handling ill conditioning in predictive 

controllers is to include a penalty in the objective function for input move sizes. Also 

since the objective function for predictive controllers is solved in an NLP or sequence of 

QPs, constraints are easily incorporated into the control law. Additionally the squareness 

of a system is not an issue in finding a solution to the control law if set up as optimization 
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problem. Expanding the integrated objective (3-29) with the inclusion of input move 

suppression, constraints and error weightings is used as a method of removing these 

aforementioned deficiencies. This expanded integrated error trajectory objective is 

referred to as optimal error trajectory control. The MIMO optimal error trajectory control 

law takes the form of(3-31). 

min ]=ET ·Wy ·E+VuT ·Wu ·Y'u (3-31) 
u 

subject to: U min ~ U ~ U max 

tk+Ts
where: 

JE/,2 ·dt 
t, 

In (3-31) Wu E 9\NuxNU and is a matrix of input move suppression weightings 

and Wy E 9\NYxNy and is the output trajectory error penalty rnatrix. Uroc is a vector of 

input rate of change constraints. The continuous version of (3-31) simplifies E to 

In the unconstrained continuous case setting wu = .Q reduces (3-31) to the 

original trajectory objective, (2-1 ). The tuning procedures used for predictive controllers 

can also be applied to Wu and Wy in (3-31 ). Keep in mind however that Wy does not 

penalize the error between y and y ct but the sum of the error derivatives. Wy therefore 

penalizes the distance from the error trajectory state manifold described by Erj· 



59 

To demonstrate the power of the optimal error trajectory method the 

simulation from the previous example is repeated with the input constraint u 2 2 o. 

Results for the integrated (3-29) and optimal (3-31) error trajectory objectives are shown 

in Figure 13 and Figure 14 respectively. The optimal controller is simulated with the 

three different tunings shown in (3-32). The first tuning represents a balanced tuning in 

which both output error trajectories are controlled equally. The second and third tunings 

preferentially control the first and second outputs respectively. A small input move 

suppression weighting is used for each input to impart stabilizing qualities to ill 

conditioned regions of operation. 
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Figure 13, Setpoint tracking of the discrete integrated error trajectory objective (3-29) on the 
example system using ( Ts =0. 5) with input constraint u 2 2 0. 
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Figure 14, Setpoint tracking of the discrete optimal error trajectory objective (3-31) on the example 
system using ( T

5 
=0. 5) with input constraint u 2 ~ 0 and three different output weightings. 

wu =[0.01 0wy,3 =[1 ol l (3-32) 
0 10 0 0.01 

The interesting quality of the optimal error trajectory controller is its multi-

structured functionality during constrained operation. Depending on the controller tuning 

output 1 or 2 can be controlled while input 1 is constrained. Constraint handling 

capability is not present in MIMO error trajectory methods in literature. 

3.4 Summary 

There are SIX error trajectory controllers described in this section; one 

continuous, and five discrete. The discrete controllers are divided into two categories. 

The first selects a set of inputs that satisfy the error trajectory objective at the next 



61 

controller execution usmg various predictive techniques. The second minimizes the 

integrated distance from the error manifold defined by the error trajectory objective over 

the controller execution interval. Using this segregative approach there are three types of 

error trajectory objectives descnbed, continuous, sampled and integrated. These 

controllers are summarized in Table 3-1. 

t . tT bl a e 3 1 S ummarv o f error raJec ory con roIIers.-
Error Trajectory 
Controller 

Design 
Equation 

Sample System 
Error Function 

Objective Comment 

Continuous (2-13) (3-19) c Derived for continuous domain 

Exact Discrete (3-6) (3-20) s No simplification techniques are 
used to satisfy the objective 

Euler Discrete (3-11) (3-25) s Uses the Euler method to estimate 
future system behaviour 

Discrete Model (3-14) (3-27) s Uses a discrete system model to 
estimate future system behaviour 

Integrated (3-29) (3-30) I 
Best emulates the continuous 
error trajectory in discrete domain 

Optimal (3-31) (3-30) I 
Incorporates tools from predictive 
control for increased robustness 
and constraint handling 

The objective function column in Table 3-1 refers to the structure of the 

objective where the C, S and I represent continuous, sampled and integrated respectively. 

Investigation of the error trajectory methods described within provides several insights 

into its appropriateness in the discrete domain. It was found that the sampled objective, 

that satisfies of the error trajectory objective at discrete intervals, does not provide the 

expected or desired response. Since the error trajectory objective describes a manifold of 

the error and its derivatives, errors between y and y ct are acceptable provided the error 

derivatives are directed towards yct. The exact, Euler and discrete model error trajectory 

controllers presented are able to maintain the system on the specified error manifold 

defined by E1 satisfying their objective, yet performance is undesirable. 
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The integrated error trajectory objective (3-29) was introduced to better 

emulate the continuous objective over the sampling interval. Simulation for the example 

system displayed the effectiveness of the technique especially relative to the other 

discrete algorithms. The problem with (3-29) is its computational complexity. An 

advantage of the continuous error trajectory method is the simplicity of the resulting 

control law, which in general consists of a set of algebraic equations. (3-29) requires 

minimization of an optimization problem necessitating repetitive integration of the 

system model. This makes the computational load comparable to predictive control 

methods that have constraint handling and comparably better stability qualities. The 

increase in complexity therefore decreases the incentive to use the integrated error 

trajectory. 

An optimal error trajectory control structure is introduced to expand the 

applicability of error trajectory control for both the discrete and continuous time domains. 

The benefit of the optimal error trajectory controller is its ability to handle ill conditioned 

regions of operation. input constraints and nonsquare systems. 

A general observation of all error trajectory methods is that performance 

decreases as the controller execution frequency increases in duration. This is an 

interesting deduction because this is not necessarily true of other control methods such as 

predictive control. The fundamental difficulty of discrete implementation of the error 

trajectory method is the inappropriateness of its objective in the discrete domain. If the 

controller can be implemented such that the sampling time is insignificant with respect to 

the system dynamics error trajectory control in its continuous form is a very attractive 
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control approach. If the sampling time is relatively large the discrete configurations 

introduced within provide a means of handling the discretization effects but other control 

technologies better suited for the discrete domain may be a superior alternative. 



4.0 Input Transformation Predictive Control 

A variable transformation technique is described that allows for the future 

prediction of a nonlinear systems through elementary matrix algebraic operations. This 

technique provides another tool for the control of NL plants and provides potential 

advantages over other NL predictive methods. This technique referred to as input 

transformation predictive control (ITPC), is tailored for implementation in the discrete 

domain and is built on the familiar dynamic matrix control (DMC) architecture. 

The impetus behind the author's original development of the ITPC structure 

was to provide predictive control of a system that known to be nonlinear from empirical 

experience but may not be well understood on a mechanistic level. Secondly, the 

computational load and complexity had to be comparable to or less than existing NL 

predictive control techniques. The design procedure of the ITPC method is started with a 

review ofthe DMC algorithm. 

4.1 Dynamic Matrix Control 

Dynamic matrix control (DMC) (Cutler and Ramaker, 1980) is a popular 

model predictive control method for linear systems. It is based on the minimization of a 

quadratic objective as in (2-3). Estimation of future errors, e, is performed using 

straightforward matrix algebra. The prediction of future outputs for the SISO case is 

shown in (4-1 ). 

64 
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where: 	 (4-1) 

YP is the predicted future behaviour of the output for y [k+ll to y [k+Pl. Yf and 

Yh are the changes in y for future and past input changes respectively. Ye contains future 

stochastic disturbances and Y[kl is the present value ofy. Vuh is a vector ofpast input 

changes and Vuf is a vector of future control moves. yp, yf, yh, Ye and Vuh E 9\P where 

P is the number of control executions in the prediction horizon. The length of Vuf is c, 

where Cis the number of control executions in the control horizon. Af and Ah contain the 

model parameters derived from discrete impulse response coefficients, ffij, ( 4-2). 

al 0 0 0 

a2 al 0 0 

a3 a2 al 0 

Af = 

ac 	 ac-1 ac-2 al 

aP-C+l 

where: 

b2,2 b3,3 b4,4 bP+l,P+l 

b2,3 b3,4 b4,5 bP+l,P+l 

(4-2)Ah = b2,4 b3,5 b4,6 bP+l,P+l 

b2,P+l b3,P+l b4.P+l bP+l,P+l 

i 

ai =	L,.mj 

j=l 

i 

bk· =L,m.,> J 
j=k 

For simplicity no stochastic model is included thus ye =o. This is a common 

assumption and represents a random walk distribution of the future disturbances. 

Estimation of system behaviour for MIMO systems is accommodated by 

expanding Af and Ah as in ( 4-3). 
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Ah:l,l Ah:l,2 Ah:l,NuAt:l.l At:l,2 Af:l,N
0 

Ah:2,l Ah:2,2 Ah;2,NuAt:2,l At:2,2 Af:2,N
0 

(4-3)Ah =At = 

Ah:Ny,l Ah:Ny,2 Ah;Ny.NuAf:Ny,l Af:Ny,2 Af;Ny,Nu 

At:i,j and Ah:i,j refers to the dynamic matrix for the jth input's affect on the i111 

output. Using the MIMO dynamic matrices At and Ah, the length of yp, Yt, yh, Ye and 

Future control moves are determined by minimizing the objective, (2-3). The 

unconstrained optimal DMC control law, found by substituting (4-1) into (2-3) and 

solving for Vuf, is shown in ( 4-4) (Seborg et. al, 1989). 

where: (4-4) 

Kc is a static control matrix that contains known, static parameters, hence it 

can be determined once offline. e is a vector ofthe predicted future deviations from YTr 

if no control action is taken and must be calculated at each control execution. The 

unconstrained control law for DMC controllers is nice in that it results in an explicit 

solution. This is important for ease of implementation and performance analysis. 

Garcia and Morshedi (1986) expanded the DMC algorithm for the 

constrained case with quadratic programming (QP) techniques. The expanded algorithm 

termed quadratic dynamic matrix control (QDMC) does not result in an explicit solution 

but efficient constrained QP optimization algorithms exist to minimize the objective. Qin 

and Badgwell (1997), report over 2200 industrial applications of controllers similar in 

http:Ah;Ny.Nu
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structure to the QDMC algorithm, displaying its acceptance in industry and proven ability 

to control industrial systems. 

4.2 Nonlinear Prediction of Future Outputs 

An advantage of the DMC algorithm over the general predictive controller 

described in (2-3) is that the prediction of future system behaviour is estimated through 

matrix algebra rather than numerical integration of the system model. A variable 

transformation technique is presented that provides the ability to estimate nonlinear 

· system behaviour through matrix operations. 

Prediction of future outputs begins with the derivation of a steady state 

model, '!'(x, u). Starting with the nonlinear model in (2-7) a steady state system 

representation results from setting the differentials to zero. For the example system in 

(3-15) development of the steady state model follows. 

Given y 1 = x 1 + x 3 and y 2 = x 4 , the states of interest are x1, X3 and x 4 . 

The steady state value of these states is given by; 

dx2 1 dx1-+-·--+2·x1 =2·u1 (4-Sa)
dt 2 dt 

dx3 x 3 1 
for: --+-=-·x1 ·u2 (4-Sb)

dt 3 6 

dx4 2x 4-+-=-·u 1 (4-Sc)
dt 5 5 

dx1 dx 2 dx3 dx4where: --=--=--=-=0 
dt dt dt dt 
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The steady state model, 'II , is therefore given by; 

(4-6) 

With 'lf(x, u) the change in the outputs can be estimated by differencing the 

steady state model at the present operating condition, 'lf(x[kJ.U[k]), from a new operating 

point, 'lf(x[k] + Vx, U[k] + Vu). For the example system this results in ( 4-7). 

(4-7) 

= [Vu 1 +;· (x 1 [k]· Y'u 2 +u 2[k]· Y'x 1 + Y'u 2 · Y'x 1 )l 

2 · Vu 1 J 


Dynamics are incorporated into the nonlinear model much in same way as 

they are for the DMC controller. The equivalent steady state system representation for 

linear models used in DMC is; 

where: ki,j =steady state gain (4-8) 

Given a vector of discrete impulse response coefficients for each of the 

input/output relationships in (4-8) the dynamic system behaviour for an input change is 

given in ( 4-9). 

where: Af:i.j =ki.j.A.f.i,j (4-9) 
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Note that Ati,j is the linear dynamic matrix normalized by the steady state 

gain ki,j. Also V'ut-j in ( 4-8) is a single input change while in ( 4-9) V'uf"j is a vector of 

input changes oflength c. 

Utilizing the same procedure to integrate dynamic information into the 

nonlinear steady state model ( 4-7) results in (4-1 0). 

y f = [1· A.f:l,l . V'uf:l +%· (A.f:l.2 ·xf:l o V'u~ .. 2+Af:l,J ·uf:2 o V'xf:l +Af:l,4 ·V'uf:2 o V'xf .. Jl (4-lO) 
2·Af:2,l. V'uf:l J 

The o operator represents element by element multiplication of the 

associated vectors. 

Estimation of the nonlinear system dynamics requires an increased level of 

complexity resulting from the inclusion of dependent states in (4-1 0). These states are 

important for retention of the nonlinear dynamic properties of the system. Referring back 

to Figure 2, it was shown that superposition of the independent input step changes for the 

example system (3-15) did not replicate the actual system response for the same input 

changes implemented simulateously. It is this dynamic nonlinearity that is retained with 

the addition ofthe states in (4-10). 

Taking advantage of the sequential nature of the optimization algorithms 

used to solve the controller objective provides an affective method of dealing with these 

dependent states. Optimization algorithms iteratively select and test a set of control 

inputs until a minimum is reached. The role of the process model therefore is to provide 
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an estimated output behaviour given a set of control moves. Introducing an intermediate 

state prediction layer enables implementation of (4-10). The predicted trajectory of XI 

over the prediction horizon is found using ( 4-11 ). 

xf.-1 =1· 3 f:1,1 · Vuf.-1 

where: (4-11) 

.::.t.1.1 and 3h.1,1 are the state dynamic matrices describing the dynamic 

response of xi to future and past changes in ui. To be consistent with the output 

dynamic matrices .::.f.-1,1 is normalized by the steady state gain. Given x 0 , Vx0 IS 

found by subtracting xu[k] from xfl[k-1] for k=l to P. 

The discrete impulse coefficients for the dynamic matrices m ( 4-1 0) are 

found usmg the differential equations m (4-5). (4-5a) is used to determine the 

coefficients for .::. 0 .1 . The dynamics of YI are governed by the addition of XI and X3 

dynamics. 3 0 .1 describes XI dynamics hence A.f.1,1 == 3f.1,1 . The differential equation in 

( 4-5b) describes the response of X3 to changes in x 1 · u 2 . The change in x 1 · u 2 is 

represented by the sum of the terms x 0 o Vuf.-2 , u 0 o Vx0 and Vu0 o Vx0 therefore the 

impulse coefficients for these terms are derived from ( 4-5b) and A.0 .2 =A.0 .3 =A.0 .4 • The 

final dynamic matrix, A.f 21 is designed using ( 4-5c). 

Setting A.f .12 == A0 == A.0 .4 and collecting like terms in (4-1 0) results in the,3 

prediction equation ( 4-12). 
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(4-12) 

The bracketed terms m (4-12), and 

represented by uu and u£,.2 as shown in (4-13). 

A£·u -·A£.12 £.1A lAY£ = . . 2 . · ][u·]· (4-13) 
[ u • A2 · A£,.2,1 0 £.2 

Prediction of system behaviour from past system changes is simpler to 

compute than future control moves because there is no need for an intermediate state 

estimation layer. The past changes in state variables are either measured or estimated 

through filtering techniques. Therefore the transformed inputs contain all known 

quantities. Prediction of output response from past system changes is shown in (4-14). 

l·Ah·11 -·Ah.12 h. 1 
A A= 12 l·[u •]Yh . ' . ' (4-14) 
A u[ 

2 · Ah,.2.1 0 h:2 

There is a subtle detail that must be addressed when using continuous states 

in the transformed inputs. Assuming the present time is t lkl and the time at the next 

control execution is t lk+ll, the state values measured or estimated at time t lkl is x lkl· 

This terminology matches that for inputs in predictive control. Consider DMC control 

where a set of input changes are used to predict future output values. The change in u at 

t lkl is the difference between the input over the present control interval, t(k]-+ t(k+1], and 
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the last interval, t(k-1]--t t[k], as shown in Figure 15. Applying this same convention the 

state changes at t [kl produces Vx6<J =x[kJ-X[k-1]· 

ulk-11 

ull<l 

T 
I 
I 
I 

vu1,1 

I 
I 

_,k 

t(k-1] 

Figure 15, Change in input at time tiki· 

For a given state the predicted state vector xf, and state change vector Vxf 

are defmed in (4-15). This convention therefore projects a ZOH structure on the state 

dynamics. This isn't rigorously valid because the states are continuous and represents a 

source of error in system dynamic predictions. 

X[k) Vx[k] X[k) X[k-1) 

X(k+1) Vx[k+1] X(k+1) X(k) 
Xf = Vxf= (4-15) 

X[k+P-1) Vx[k+P-1] X[k+P-1) X[k+P-2) 

Notice that xf and Vxf are vectors of length P. This implies that uf must 

also be of length P to incorporate future changes in x irrespective of the control horizon 
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length. ITPC controllers therefore require Af to be designed for input vectors oflength P 

independent of C. This does not mean that c = P for but simply that the prediction of 

future system behaviour requires the inclusion of future state dynamics that contribute to 

dynamics in the transformed inputs. 

The complete prediction of the output behaviour is found by summing up the 

changes due to past and future system changes (4-16). The output vectors in ( 4-16) are 

the same as those described in ( 4-1). 

( 4-16) 

The prediction ability of ITPC method is tested using the example system. 

Previously it was shown that the example system contained both steady state and 

dynamic nonlinearities. Prediction of the nonlinear state, X3, using the ITPC prediction 

method for the same input step changes shown in Figure 2 is shown in Figure 16. 

Comparison of the ITPC prediction to the superposition of the independent input step 

changes from Figure 2 displays the ability of the ITPC method to retain both steady state 

and dynamic nonlinear system properties. The ITPC prediction however does not match 

exactly the actual system response. The source of error is the ZOH condition applied to 

the intermediate state x3. The error can be reduced using a weighted average of the 

predicted state values over the sampling intervals. For instance at time t [kJ, the 

predicted state value can be estimated using ( 4-17). 
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Figure 16, Prediction of the nonlinear state x3, from the example system (3-15), for the input step 
changes, u1 = 1 to -1 and u2 = 1 to 2. 

X[k] =(1- 8)· X[k] + 8. X[k+l] (4-17) 

Using ( 4-1 7) with 8 =o. 3 5 the prediction of x 3 for the same input step 

changes is shown in Figure 17. The error is reduced producing a very good prediction. 

Note that this predictive ability that retains both steady state and more importantly 

dynamic nonlinear system characteristics is achieved through linear matrix algebra. 

Computationally the ITPC prediction method is very efficient and does not require any 

iterative algorithmic procedures. 
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Figure 17, Prediction of the nonlinear state x3, from the example system (3-15), for the input step 
changes, u1 = 1 to -1 and u2 = 1 to 2 using a weighted average intermediate state prediction ( 4-17), 
with 8=0.35. 

The nonlinear prediction technique outlined for the example system describes 

a specific application of the input transformation method but does not fully reflect its 

general nature. The general ITPC model design procedure consists of the following 

steps. 

i) Define a steady state system model yss = 'l'(x,u). 

The steady state model can be derived from a mechanistic white box model, 

an empirical black box model identified through plant experimentation, or a 

combination of the two. 

ii) Find the steady state change in the outputs for a change in operating conditions 
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The inputs are independent variables and the states are dependent. In the 

previous example the states were simply responses of the system inputs. 

The states however can be any known or measurable quantity such as a 

disturbance variable. 

iii) Group the terms in the resulting steady state change function by those that have 

common dynamics. 

The grouped terms are referred to as the transformed inputs. An important 

property of the transformed inputs is they are linear in y. This enables the 

prediction of output dynamics through simple matrix algebra. A difficulty 

that may arise is the prediction of future state values. This was not a 

problem for the example system but in special circumstances an analytical 

state prediction may be difficult or impossible to formulate. In the event 

that an exact solution can not be found sub-optimal or empirical 

simplifications can be employed. This problem will be explored through an 

additional example in section 4.5, ITPC Reactor Design Methodology. 

iv) Determine impulse response coefficients for the design ofdynamic matrices. 

As in DMC a dynamic description of each input-output relationship IS 

required to complete the controller model development. The inputs to ITPC 

control however are not the system inputs, u, but rather the transformed 

inputs, u. 
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Similar to the last step, an analytical representation of system dynamics may 

be difficult or impossible to develop. Again simplification techniques, such 

as empirical descriptions identified through experimentation, can be utilized 

to provide a solution. 

4.3 Solving the ITPC Objective Function 

Prediction of system behaviour is only half of the ITPC controller's task. 

Finding the set of inputs to implement that satisfy the objective completes the controller 

function. Linear predictive controllers with quadratic objectives determine the new set of 

inputs using quadratic programming techniques. The ITPC objective is quadratic but the 

process model is not linear thus more sophisticated minimization approaches are 

required. Solution to the example problem objective is found using the fmincon 

function in MATLAB Version 5.3.0 (Rll). The fmincon function uses a sequential 

quadratic programming (SQP) algorithm. SQP is an iterative algorithm consisting ofthe 

sequential solution to QP subproblems. Included in the SQP algorithm are major and 

minor iterations. During major iterations gradient information is collected to form a 

quadratic model of the optimization problem. The minor iterations include fmding the 

solution to the QP subproblem derived from the quadratic optimization model. Details of 

SQP are not covered within and the reader is referred to Fletcher and Powell (1963), 

Shanno (1970), Boggs and Tolle (1989), Dennis et al. (1998) and the MATLAB 

optimization toolbox documentation (Coleman et al.) for additional information. Many 

other powerful optimization algorithms exist and may outperform SQP for specific 
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applications. SQP is used here because it is an accepted general purpose nonlinear 

constrained optimization tool. The goal of this section is not to describe optimization 

tools. The algorithm used is transparent to the controller so long as the proper solution is 

found for the objective. Any appropriate minimization algorithm can be used in place of 

SQP. In some applications factors such as problem size, convexity of the objective, 

controller execution frequency and implementation hardware drive the selection of 

optimization software. Proper matching of the software and application can dictate the 

success of a controller. For instance a large problem may require the use of 

simplification techniques to solve the objective in real time. 

The set of inputs for implementation are found using a multi-step process. 

Steps that are not required in the iterative SQP are completed outside the algorithm to 

improve computational efficiency. These steps include those that determine the predicted 

error given past system changes including, eh in ( 4-18) and the prediction of the 

intermediate state x1 given changes in u1. The simplest of these is the change in x1, 

which is estimated by, xh.·l =1 2h 1 .1 ·V'uh 1 , as described in (4-11). 

(4-18) 

YTr is the trajectory toward Yct· The error trajectory controller used an error 

function ofthe form in (4-19). 

(4-19) 

The ITPC YTr for the example system is designed using this same relation to 

enforce the equivalent servo trajectories from one operation point to another. The error 
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function ( 4-19) is projected over the prediction horizon and sampled at the controller 

sample time (Ts = 0.5), to produce YTr· Given the present measured error the resulting 

YTr is shown in (4-20). 

1 
ETr = ·E[k] +Y[k] 

0. 7·S+l 


YTr = E~r 
 where: (4-20) 
E~r is the sampled version ofETr over the 

prediction horizon. 

The predicted output trajectory from past changes in the transformed inputs 

Yh, is determined using (4-14). Assuming a random walk disturbance structure simplifies 

the projected stochastic error term Ye to a vector of zeros. 

The resulting error vector eh is passed to the optimization algorithm. The 

portion of error that is penalized in the objective is ( 4-21 ). This relation is produced 

through some algebraic manipulation of (4-16) and the penalized error defmition 

(4-21) 

The complete ITPC objective function passed to the SQP solver is shown in 

(4-22). 

min (4-22)u, 

subject to: Umin s; Ut s; Umax 
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A -·A' 1 ' lY f = ~:1.1 £:1.2 .uf2 
[ 

2· Af:2,1 0 

x~1 = (1- e). x[k] +e · x[k+1] 

The SQP solver iterates through values of Vuf until the minimum of the 

objective function is found. 

Simulation of the example system for the described ITPC controller is shown 

in Figure 18. The controller sample time is 0.5, the prediction horizon is 20 (P = 40) and 

the control horizon is 2.5 ( c = 5). The tuning parameters used in the simulation are 

shown in (4-23). 

(4-23) 

I, is an identity matrix of size i Xi 
where: 

oi is a zero matrix of size i Xi 

In this example the performance of the ITPC controller is superior to all the 

error trajectory controllers with the exception of the integrated discrete error trajectory 

controller. One distinction between these controllers is evident. The ITPC controller is 

able to match the performance with much smaller input changes. This is generally 

considered a desirable property of a control technology for intangible reasons such as 
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longer actuator life. The optimal error trajectory controller can be utilized with input 

weighting to suppress the input changes to match that of the ITPC controller. This 

detuning however results in significant degradation of performance as shown in Figure 

19. 
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Figure 18, Setpoint tracking of the ITPC controller from section 4.2 on the example system using 
(T5 =0.5). 
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Figure 19, Setpoint tracking of the discrete optimal error trajectory controller (3-31) detuned to 
match the magnitude of the ITPC input changes on the example system using ( T5 = 0. 5 ). 

Application of the nonlinear predictive controller described in section 2.2 is 

shown in Figure 20. The performance is very similar to ITPC including the selection of 

control inputs. The only algorithmic difference between the ITPC method and the 

general nonlinear predictive controller is the prediction method. The similarity in the 

control response suggests that the predictive ability of the ITPC method is comparable to 

the general nonlinear controller that includes numerical integration of the full system 

model. 
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Figure 20, Setpoint tracking of the nonlinear predictive controller from section 2.2 on the example 
system using ( T5 =0. 5 ). 

4.4 Explicit ITPC Solution (Unconstrained) 

In general explicit solutions for nonlinear predictive controllers do not exist. 

A special case of the NL ITPC controller can however be expressed in an explicit form. 

The conditions that must be satisfied to produce an explicit ITPC controller are: 

i) The inputs must be unbounded (unconstrained). 

ii) An input inverse function, Vu = <P(Vu), must exist that translates the ITPC 

transformed inputs into a unique set ofphysical system inputs on 9\uu. 

The objective of an ITPC controller that satisfies these criteria is shown in 

(4-24). 
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min (4-24) 
u, 

subject to: Vu = <P(Vu) 

A property that differentiates ( 4-24) from the general nonlinear predictive 

control objective is the replacement of the physical system inputs with the ITPC 

transformed inputs. With this structure physical input changes are not penalized but 

rather the transformed input changes. This requires that the input inverse function be 

well conditioned for all regions of operation. An ill-conditioned input inverse function 

may lead to erratic input moves for very small perturbations in Ur. 

Borrowing a technique from DMC, the solution to this objective is; 

where: (4-25) 

Even though Ur must translate into a unique set of future inputs, only the set 

that is implemented at the present control execution need to be calculated. This is a 

convenient and powerful result because using the ZOH representation for the continuous 

state dynamics, the present state values and changes are known. This eliminates the need 

for an intermediate state prediction layer required for the more general constrained ITPC 

controller. 

Inspection of the explicit form ofthe ITPC control law reveals that it is really 

the implementation of a linear control law on a transformed linear system. This 

procedure draws many parallels to geometric techniques such as feedback linearization. 
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Furthermore results for stability of linear predictive controllers may be extended to the 

explicit ITPC and general ITPC. 

Implementation of ( 4-24) is the same as for DMC controllers with an 

additional input transformation inversion step. The explicit ITPC controller is executed 

in the following sequences. 

i) Present outputs and states are measured or estimated through filtering 

techniques. 

ii) The error vector e is calculated using ( 4-25). 

iii) 'Uf is calculated using the controller gain, Kc, in ( 4-25). The controller gain 

contains static known quantities therefore it can be determined once off-line. 

iv) The set of inputs to be implemented at the present control interval are 

calculated from uf using the input inverse function, Vu = <J>(Vu). 

Design of the explicit ITPC controller for the example system is identical to 

the general ITPC design up to solving the objective function. Given the nonlinear system 

model (4-13) and (4-14), the controller gain is calculated using (4-25). The error vector 

e is determined by substituting current measured outputs and past measured transformed 

inputs into ( 4-25). The product of Kc and e results in a set of future transformed input 

control moves, Vu~. Only the control moves implemented at the current controller 

execution are of interest. These are the first and C+1 elements of Vut. Notice that the 

length Vuf of need not be equal to P. Substituting these results into the transformed 

input variable definition from (4-12) results in (4-26). Solving for the physical system 

inputs produces (4-27), the input inverse function. 
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(4-26) 

(4-27) 

Simulation of the explicit ITPC controller on the example system is shown in 

Figure 21. The controller tuning for the simulation are shown in (4-28). The controller 

sample time is 0.5, the projection horizon is 20 (P =40) and the control horizon is 2.5 

( c =5) to match the previous simulations. 
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Figure 21, Setpoint tracking of the explicit form of the ITPC controller from section 4.2 on the 
example system using ( Ts =0. 5 ). 
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(4-28) 

Performance of the explicit ITPC controller is comparable to the general 

ITPC but not identical. The performance difference primarily arises from two sources. 

The first is the alteration in move suppression weighting. In the general IPTC controller 

the actual system input are penalized and the explicit controller penalizes the transformed 

inputs. The second difference results from setting the transformed input changes to zero 

past the control horizon. In the general ITPC formulation the system input changes are 

zero past the control horizon, where the dynamics of the continuous states are modelled 

in urfor the duration of the prediction horizon. 

There is an interesting extension to the explicit ITPC structure for constrained 

systems in which there exists an input inverse function. If the input constraints can be 

expressed in terms of u, the ITPC objective can be designed as a QP with nonlinear input 

constraints. This is significant because the general ITPC objective function requires the 

solution of a NLP. In optimization theory QP problems are much easier to solve than 

NLP and much of the existing predictive control technologies used in industry are based 

on QP objectives. This topic is not explored within but is pointed out as a possible source 

for future study. 

4.5 ITPC Reactor Design Methodology 

A second example system is introduced to display additional properties of the 

ITPC controller. The second example models a physical system consisting of a 

continuous stirred tank reactor (CSTR) with a first order exothermic reversible reaction 
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(AHB) and a cooling jacket for thermal management. A diagram ofthe system is shown 

in Figure 22. The kinetic model including coefficients is derived in Fogler (1992) and the 

complete system model is shown in ( 4-29). 

dCa =!... (c . -c )-r
dt V a> a a 

(4-29) 

k(T)=k 0 ·exp[-~]
R·T 

Over the range of CSTR operating conditions the heat of reaction, heat 

capacity and density are considered constant and have values of llliR = -2 o o o o, cP = 1 

and p =1 o o o . Other system constants are the reactor volume (v =s), rate constant 

(k 0 =1000), activation energy (E=40ooo), gas constant (R=8.314), heat transfer 

coefficient (u = 1 o o o), cooling jacket area (A= s) and cooling jacket volume (vc = 1). 
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Figure 22, Diagram of the CSTR system in ( 4-29). 

The system states are the reactant concentration ca , product concentration 

cb, reactor temperature T and cooling jacket temperature TJ. The goal of the controller 

is to adjust the coolant flow Fe, to maximize the product concentration subject to 

operational constraints, leading to the objective function ( 4-30). The emphasis of the 

controller is on rejection oflow frequency disturbances. 

( 4-30) 

subject to: Fc,min :S: F c :S: Fc,max 

T:S: Tmax 
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The system constraints are Fc,min = 0, Fe, max= 10 and Tmax = 550. As it will 

tum out these constraints are not an issue for control. They are included in the system 

objective for the purpose of displaying the flexibility ITPC objective structure. In ( 4-30) 

we see the use of two different types of parameters from the previous predictive control 

objective function description (2-3). The new parameters are the optimization term 

-wY cb.f and the state constraint. -wY cb,f is referred to as an optimization term because 

the controller is minimizing the parameter rather than regulating around a desired value 

or trajectory. Previously the objective function only included input constraints but state 

constraints can also be included in the ITPC objective provided they are determined in an 

intermediate state layer or as an output. 

The reactant flow F, inlet reactant concentration cai, inlet reactant 

temperature Ti and coolant inlet temperature Tc are stochastic variables that can not be 

controlled. These are treated as disturbance variables used to predict the future system 

behaviour not included in ut . 

For a given set of process inputs F and cai there is an optimal reactor 

temperature that maximizes the product concentration. This optimal temperature results 

from the reversibility of the exothermic reaction. At low temperatures the equilibrium 

drives the reaction forward but the kinetics are slow. At high temperatures the kinetics 

are sped up but the equilibrium shifts, favouring the reverse reaction. Figure 23, Figure 

24 and Figure 25 display the nonlinear steady state map for the expected operating range 

ofT, F and Cai. These opposing driving forces create a singular point where the coolant 
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flow has a zero gain with respect to the output Cb. In addition the gain between F c and 

Cb changes sign across the singular operating point. 
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Figure 23, Nonlinear steady state map of the CSTR product concentration Cb in (4-29) for reactant 
flow F and reactor temperature T variations. 
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Figure 24, Nonlinear steady state map of the CSTR product concentration Cb in (4-29) for reactant 
inlet concentration C.; and reactor temperature T variations. 
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Figure 25, Nonlinear steady state map of the CSTR product concentration Cb in ( 4-29) for reactant 
inlet concentration C.; and inlet flow F, variations. 

The controller can be thought of a system optimizer outer loop with an inner 

regulatory loop. The outer loop determines the optimal CSTR temperature and the inner 

loop manipulates the coolant flow to achieve this desired temperature. 

The controller design begins with the derivation of a steady state model for 

the product concentration, Cb. This is found by setting the derivative of the ODE for Cb 

in ( 4-29) to zero. This results in the steady state relationship ( 4-31) where the ss 

superscript indicates steady state value of a state. 

F ss
0=--·C +r (4-31)V b a 

Substitution of the equation for ra from ( 4-29) and solving for c~s produces 

(4-32). 
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( 4-32) 

( 4-3 2) contains parameters that are influenced by temperature changes and 

disturbances including k (T), Ke and Ca. The change ink (T) and Ke will be dealt with 

later. The steady state change inCa is found by setting its derivative to zero and solving 

for c:s as shown in (4-33) and (4-34). 

F { ss)o=-·\C . -c -r (4-33)
V a~ a a 

(4-34) 

At this point two approaches can be taken to deal with the presence of Ca in 

(4-32). Ca could be treated as an intermediate state to be calculated prior to Cb or the 

relation for c:s from (4-34) could be substituted into (4-32). The first option provides 

more flexibility in describing the system dynamics since the dynamics of Ca and Cb can 

be identified separately. In this example there is a flaw in this approach however because 

Cb appears in ( 4-34). This creates a circular reference between Ca and Cb. For this 

reason the second approach is used. Substituting ( 4-34) into ( 4-32) produces the function 

(4-35). Solving for c~s results in the steady state function \!'cb, (4-36). 
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!'_+k(T) (4-35) 
v 

C~s = _ ___::;____F_k...,(T~):---_..::. 

-+
v Ke 

( 4-36) 

If it can be assumed that the dynamic response of Cb for changes in Cai, F, 

k (T) and Ke can be lumped through the 'I'cb transformation then the steady state 

function in ( 4-36) can also be assumed to be the transformed input, uc . As in the first 
b 

example analytical methods could be used to determine dynamic properties and verify 

this assumption but in this case empirical testing is used. The objective of the empirical 

test is to sufficiently excite Uc from changes in Cai, F and T to verify the lumped 
b 

dynamics assumption and identify a linear model between Cb and uc . For simplicity the 
b 

dynamics of interest are of relatively low frequency. The experiment therefore focuses 

on low frequency input changes. This approach is not ideal in real situations but is 

sufficient for this perfectly known system without unknown disturbances or noise. The 

factorial experiment shown in Table 4-1, designed in Cai, F and Fe, is chosen as the 

experimental test procedure. 
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Table 4-1, Factorial experiment for the CSTR example. 

Time F 
-100 1000 1.0 1.5 

0 1050 1.5 2.0 
60 1050 1.5 1.0 
120 1050 0.5 2.0 
180 1050 0.5 1.0 
240 950 1.5 2.0 
300 950 1.5 1.0 
360 950 0.5 2.0 
420 950 0.5 1.0 
480 1000 1.0 1.5 

Results for the system states Ca, Cb, T and TJ for this experiment are shown 

m Figure 26. Figure 27 contains a plot of actual and predicted ( (\) product 

concentration for the experiment as well as ucb. The model for estimation of Cb from 

" 0.9833·Z-1 

where:Cb = -1 ·Ucb 
1-0.0156·z 

(4-37) is a linear discrete time model with a sampling time of 2. 

Theoretically the steady state gain between uc and Cb is 1. This is verified as the 
b 

empirical model ( 4-3 7) has a gain of 1.00. The lumped dynamic assumption used in 

setting ucb =\feb appears reasonable from the result in Figure 27. Note that (4-37) is the 

dynamics Of Cb from Ucb and not the physical inputs. 

(4-37) 
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Figure 26, Results for the factorial experiment on the CSTR example. 
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Figure 27, Cb and the transformed input Uc,, including the estimated product concentration (Cb,E) 

using ( 4-3 7), for the CSTR factorial experiment. 
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Thus far the steady state function 'I'<;, has been designed that incorporates the 

reactant concentration. Empirical testing of the system verified that prediction of Cb with 

suitable accuracy is possible with the transformed input uc = '~'c . Prediction of future 
b b 

Cb values entails estimation of future Uc values. This requires knowledge ofF, Cai,
b 

k (T) and Ke over the prediction horizon. F and Cai are stochastic input variables that 

can not be manipulated and are treated as disturbances. If knowledge of future changes 

in these variables is available it can be incorporated into the prediction of Ucb. Typically 

future disturbances are not known however. It is assumed here that the disturbances 

follow a random walk structure, therefore the best estimation of future disturbance values 

is the present value. 

Estimation ofk (T) and Ke requires knowledge of the reactor temperature. T 

will be treated as an intermediate state that is determined prior to estimation of Uc . The 
b 

steady state function for T can be derived from the system model ( 4-29) using the same 

method for determination of c~s ; by setting the temperature derivative to zero and 

solving for T88 as in ( 4-38) and ( 4-39). 

(4-38) 

(4-39) 

There are a couple of obvious problems with this formulation. First there is a 

nonlinear T88 term on the right hand side of ( 4-39). This prevents an algebraic solution 

for T88 The second problem is future knowledge of Ca and Cb is required. Since Tis an• 
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intermediate state used to predict the future behaviour of Cb it is assumed that no 

knowledge of future Cb values is available. A simple predictive 1/0 relationship could be 

formulated for Ca and Cb given changes in the system independent variables but this will 

just add another layer to the prediction sequence. This would resemble a circular 

iterative structure in which Ca and Cb values are used to estimate T and T values are used 

to estimate Ca and cb. Iteration loops could be continued with a stopping criterion. This 

solution is a reasonable path but the extra layer(s) of trajectory estimation are not 

computationally efficient. Observing the test data a reasonably good estimation ofT can 

be found by using the inverse ofthe coolant and CSTR flows, (4-40). 

(4-40) 

In ( 4-40) 9Fc and 9F are empirical gain coefficients. 

A plot of the actual and predicted CSTR temperature values along with the 

inverse flows is shown in Figure 28. The discrete linear predictive model with a 

sampling period of 2 is ( 4-41) and the resulting gains are 9Fc = 2 7. o and 9F = -17.5. 

12.4-20.89-z-1 +8.488·z-2 

T= ·UT,1
1 2 3 41-2. 058· z- + 1.144 · z- + 0. 02 843· z- -0.1153 ·z

(4-41) 

-5.533+7.599·z-1 -1.132·z-2 -0.9321·z-3 

+ 2 ·UT,2+eT''
1-2. 058· z-1 +1.144· z- +0. 02843 · z-3 -0.1153 · z-4 
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Figure 28, Actual and predicted CSTR temperatures (T and TE), and the inverse coolant and CSTR 
flows, liFe ('l}n) and 1/F ('Un), for the CSTR factorial experiment. 

The intermediate prediction ofT is important for a number of reasons. First 

it increases the predictive ability of the controller. It also provides a path towards 

including the manipulated variable F c in the predictive algorithm. 

With these models an ITPC controller can be designed. The sequence used to 

predict the future cb trajectory is implemented as follows. 

i) Determine the predicted T trajectory from past changes in the transformed input 

variables. 

(4-42) 
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and A.T 
'
2h are both of size PXP and are designed using (4-41). VuTh 

' 
is a 

vector of length 2. P. The ITPC controller m this example has a prediction 

horizon of40 and a sample time of2 (P == 20). 

ii) Determine the predicted Cb trajectory from past changes in the transformed input 

(4-43) 

Acbh IS a PXP matrix designed from (4-37) and Vucbh is of length P. Historical 

values for Vue contain all known quantities. This is significant because it means 
b 

that an accurate estimation of cb,h is available regardless of the ability to estimate 

the intermediate state T trajectory. 

iii) Determine the future input transformation vectors VuT,lf and VuT.lf . For a 

control horizon of 10 ( c == 

VuT.lf = 

llT.l(k]-UT,J.(k-1] 

uT.l[k+l]- uT,l[k] 

uT.l[k+2]- uT.l[k+l] 

5) these vectors are; 

(4-44) 

VuT.:cf is only of length 1 as a result of the random walk assumption of the 

stochastic variable F. 

iv) 	 Calculate the trajectory ofT for past and future transformed input changes using 

(4-45). 
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(4-45) 

'II.kl is the present measured temperature. Ar,1 f and Ar,2f are matrices of size Pxc 

and Pxl respectively and are designed using (4-41). 

v) Estimate future uc values given the temperature trajectory from iv) and the 
b 

future changes in F c· 

Ucb[k]- Ucb[k-1] 

Ucb[k+1]- Ucb[k] 

Vucbf = (4-46)Ucb[k+2]-Ucb[k+1] 

vi) Calculate the predicted Cb trajectory using Vue f from v), cb h from ii) and the 
b ' 

present measured value of Cb. 

(4-47) 

Acbt is a pxp matrix designed from (4-37). 

vii) Reset the Vue h , Vu1 lh and Vu1 2h vectors. 
b ' ' 

Ucb~-1]-Ucb[k-2] 

(4-48)Vuchh = Ucb~-2]- Ucb[k-3] 
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uT,1[k]- uT,1[k-1] 

uT,1[k-1]- uT,1[k-2] 

V~.1h = UT,1(k-2]-UT,l(k-3] 

uT,2[k]- uT,2[k-1] 

UT.2(k-1]- UT,2(k-2] 

VuT,2h = uT,2[k-2]-uT,2[k-3] 

Steps i), ii) and vii) are completed only once at each control exectution. 

Steps iii) through vi) are included in an iterative optimization algorithm that minimizes 

the objective function ( 4-30). 

Simulation results of the ITPC control for a set of known disturbances is 

shown in Figure 29. Included in the figure is the maximum possible product 

concentration ( Cb, max) given the disturbance values. Comparison of Cb, max and the actual 

Cb resulting from the ITPC manipulation of Fe displays the controller's ability to achieve 

the objective for this nonlinear system. This a particularly difficult task to ask of the 

controller since the objective requires that the system be maintained around the operating 

point where the input output relationship is singular. The disturbances for this simulation 

are included in Figure 30. The tuning of the controller is shown in ( 4-49). 

1\ = [1 1 ... 1] where: l is an identity matrix of size C XC (4-49) 
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Figure 29, Simulation results for the ITPC controller from section 4.3 on the CSTR example for a set 
of known disturbances. 

·:itf--------'I : i l 
0 50 100 150 200 250 300 

320 

f---310 1 

300f-----------' 

0 50 100 150 200 250 300 

~m I 
300~----------------------------------------------------~ 
~5~--------~----------~--------~----------L---------~--------~

0 50 100 150 200 250 300 

Figure 30, Known disturbances for the ITPC simulation. 

310 



104 

Implementation of the ITPC control law on the system necessitated one 

modification from the design as shown. This modification was required due to the 

sensitivity of the system to overcooling. The plot of cb verses F c and T verses F c in 

Figure 31 displays this sensitivity. 
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Figure 31, Sensitivity of the CSTR system to overcooling. 

Figure 31 shows that small changes in coolant flow create large changes in 

the product concentration and CSTR temperature. This abrupt change in operation 

results from an extinguishing of the reaction. The sensitivity exists inconveniently close 

to the optimal operation point. If fact, there is only a 0.17 difference in coolant flow 

between the optimal operating point and the reaction extinguishing point. Operation too 

close to the extinguishing temperature is not robust as disturbances can extinguish the 
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reaction before the controller can reject their action through manipulation of Fe. A 

temperature bias term is introduced that forces the ITPC controller to operate the CSTR 

slightly warmer than the optimal temperature to increase robustness. The bias term is 

incorporated by setting the temperature that is visible to the controller to the measured 

temperature minus the bias, ( 4-50). 

(4-50) 

Tm is the measured reactor temperature and T 0 is the temperature bias. The 

simulation from Figure 29 uses a bias of2. 

It is important to observe and understand that the controller is capable of 

predicting the system behaviour outside of the testing region of operation. The factorial 

experiment used to identify the empirical models in (4-37) and (4-41) included coolant 

flow changes from 1.0 to 2.0. Over this range the CSTR temperature varied from 523 to 

480. These levels were consciously chosen to assure operation on the hot side of the 

optimal temperature to avoid extinguishing the reaction. The intent of the controller 

however is to operate the system at the optimal temperature to maximize Cb. The ITPC 

controller is therefore expected to maintain the plant outside the operating region the 

system models are identified. In general empirical models do not extrapolate well for 

nonlinear systems. ·The models in ITPC really consist of two distinct submodels. The 

first submodel contains the system steady state 1/0 map and the second contains dynamic 

information. The steady state map describes the operating point a system will move to 

given a change in inputs and the dynamic model describes how it will get there. Even 

though the dynamic model is linear the introduction of intermediate states allows for the 
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retention of nonlinear dynamics as eluded to in the first example system. It is this 

separation of steady state and dynamic information that allows a nonlinear system to be 

represented through elementary linear matrix algebra. It also provides the user with 

increased flexibility for the development of the controller models. 

In the case of this CSTR example the steady state map is designed from a 

perfect mechanistic model. Therefore the ITPC controller is capable of determining the 

exact CSTR temperature that maximizes Cb as demonstrated in Figure 29. Empirical 

models are used to estimate the coolant flow required to adjust the CSTR temperature and 

the system dynamics. As a result the controller does not know the exact coolant flow 

required to achieve the desired CSTR temperature or the path the system will take to 

move from one operating point to another. With respect to the controller objective and 

implicit performance requirements feedback can be used to correct for model mismatch 

between ( 4-41) and the real plant for all regions of operation. This appropriate coupling 

of mechanistic and empirical information enables suitable control to be achieved outside 

the range of empirical model identification. 

Understanding the information used to design the models of the ITPC 

controller are essential to assess its capabilities and limitation. The dual of this statement 

is; the control objective defmes the required capabilities of a controller and hence the 

type of information needed for the controller design. For instance if the objective of the 

CSTR controller was to maintain the reactor temperature around a desired setpoint or the 

rejection of high frequency disturbances the structure, required information and 

capabilities would no doubt be very different from the design presented. These 
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statements are valid for any control technology but the ITPC framework provides more 

opportunity for their application via the separation of the steady state and dynamic 

descriptions. 

Implementation of control technologies such as error trajectory and QDMC 

are infeasible for this application. The objective for error trajectory controllers does not 

provide the flexibility to include optimization variables, meaning that system conditions 

can neither be minimized nor maximized. The error trajectory objective is only capable 

of regulating process variables around a desired point. Linear control structures like 

QDMC are very powerful for linear systems and can be successfully applied to mildly 

nonlinear systems but are not effective for controlling systems in which the process gains 

change sign such as in the CSTR. A NL-MPC structure could be applied with similar 

results to the ITPC controller but with increased computational demands. The local 

linearization techniques described in section 2.3 are also useful for control of this system. 

Simulation of a local linear predictive controller with the same execution frequency, 

disturbances, P, c and temperature bias as the ITPC controller is shown in Figure 32. 

The local linear controller however was found to be more difficult to tune and became 

unstable without large input move suppression weights, (wu = Ic. 2 oo). This results from 

the inability of the local linear controller to recognize future crossings of the singular 

point. This is also evident in the chattering of the coolant flow for times 150 through 

200. 
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Figure 32, Simulation results for the local linear predictive controller from section 2.3 on the CSTR 
example system for a set of known disturbances. 

This CSTR example system displays some additional properties of the ITPC 

control structure over and above those investigated in the first example system. The 

formulation of the objective for the CSTR is very different. The CSTR control problem 

is really an optimization problem whereas the objective of the first example was servo 

control around a desired operating point. The suitability of ITPC for both control 

problems stems from the open structure of its objective function. Inclusion of economic 

or optimization variables and various constraints in the objective is seamless. The CSTR 

example also provided some insight regarding the marriage of mechanistic and empirical 

system information. Most importantly the example demonstrated the separation of the 

steady state and dynamic system descriptions and how appropriate attention should be 
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directed towards the design and identification of system models depending on the intent 

ofthe controller. 



5.0 Discussion of Controller Performance 

This section contains a direct comparison of the different control approaches 

described within, highlighting the strengths and weaknesses of each. The properties that 

are investigated include, the ability to execute setpoint changes, the ability to maintain a 

system at of over a singular point, computational burden, system constraint handling, the 

objective function structure and development effort. In previous sections specific issues 

of controller performance are discussed. This section begins by summarizing the 

previous results with a broader scope of analysis. New results are introduced in the 

following subsections in an expanded discussion of servo ability and singular point 

operation. 

The first example system (3-15) was used to display the design procedure for 

a number of discrete error trajectory control structures and an ITPC controller. Each of 

the discrete error trajectory controllers presented have either a sampled or integrated error 

trajectory objective. The sampled version satisfies the error trajectory objective at the 

next controller execution and the integrated objective minimizes the distance from the 

error manifold over the controller execution interval. It was found that satisfaction ofthe 

error trajectory objective at discrete sampling intervals did not generally result in 

acceptable performance. This was true for both the sampled error trajectory designs and 

discrete implementation of the continuous error trajectory control law. The unexpectedly 

poor performance was explained to result from the inappropriateness of the error 

110 
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trajectory objective in the discrete domain. Taylor series expansion was used to quantify 

the effects of discretization of the continuous error trajectory objective when applied to 

sampled systems. The analysis showed that discretization effects arise when the 

controller sample time is significant with respect to system dynamics. 

An input transformation predictive control structure was described. The 

ITPC structure contains nonlinear predictive abilities while retaining many of the 

computational properties of linear predictive control technologies. The ITPC structure 

was explained for both constrained and unconstrained applications including an explicit 

solution. It was shown that the ITPC prediction method, which consists of only simple 

linear matrix algebra procedures, is capable of retaining both steady state and dynamic 

system characteristics. Implementation of the controller on the example system (3-15), 

displayed the ITPC performance on a nonlinear system. Comparatively the ITPC 

controller performed as well or better than all forms of the discrete error trajectory 

controller. 

A second example was introduced that displayed some additional properties 

of ITPC. The second example consisted of an adiabatic CSTR with a reversible 

exothermic reaction. The controller objective was to maximize the product concentration 

through temperature management. The temperature was maintained by adjustment of a 

coolant flow. Of particular concern, the system contained an inversion of the gain 

between the coolant .flow and the product concentration. It was shown that the ITPC 

controller was able to bring the CSTR to its theoretical optimal operating point for a 

number of measurable disturbances. An interesting property of this control problem is, 
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the goal of the controller is to maintain the system at a singular point where the gain 

between the coolant flow and the product concentration is zero. In addition to the ITPC 

controller a local linearized controller was simulated. It was found that very large move 

suppression weights were required for stable operation and chattering was observed 

around the optimal operating point. The difficulties experienced with the local linearized 

controller were attributed to its inability to predict future crossings of the singular point. 

The application of a linear control technology or error trajectory controller on 

the exothermic reversible CSTR example is not feasible. The models used in linear 

controllers render them incapable of determining the optimal reactor temperature that 

maximizes the product concentration. The error trajectory objective is not condusive for 

the inclusion of optimization variables since there is no real error to speak of Error 

trajectory control could be used to maintain the reactor temperature or product 

concentration around a desired value or trajectory but is not the appropriate technique for 

optimization applications . 

. Qualitatively performance of each of the aforementioned controllers was 

correlated to the design effort and computational demands. In general, the greater the 

design effort and computational burden the greater the performance. The error trajectory 

control method was found to be very good at controlling nonlinear systems when the 

controller execution frequency is fast compared to the system dynamics. The sampled 

error trajectory controllers presented within reduced the effects of discretization in the 

sense that the discrete objective was satisfied but the resulting performance was not as 

intended. The discrete integrated error trajectory control formulation showed the most 
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promise with respect to performance but are as computationally expensive as nonlinear 

predictive control strategies, requiring the solution of a NLP. Predictive strategies 

however possess advantages over error trajectory methods, such as, effective handling of 

ill conditioned regions of operation, constraint handling and a flexible objective function 

that seamlessly allows for the incorporation of additional objectives such as economic 

parameters. An optimal error trajectory controller was presented that provides a solution 

to many of these problem areas. The performance of the optimal controller was 

acceptable but the method still suffers from yet other limitations of the error trajectory 

objective including, the inability for application on nonminimum phase systems and the 

difficulty of application on systems that can not be represented in the control affine 

representation, (2-12). 

The servo changes used in the first example system effectively identified 

control approaches that were good or poor candidates for controlling the system. The 

next two subsections present results for a new set of setpoint changes to gain further 

insight into the capability of the control methods for a broader set of nonlinear control 

ISsues. In addition results are shown for control technologies not investigated in the 

previous analysis such as local linear and liner predictive techniques. The first setpoint 

change displays the ability ofthe controllers to bring the system from one operating point 

to another. This is similar to the previous analysis except that the magnitude of the 

change is increased. The second setpoint change forces the controllers to cross a singular 

point in the system, including an inverse in process gains. 
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5.1 Process Operating Point Changes 

The frrst experiment used as a basis for expanded comparison of control 

technologies is a setpoint change in Y2 from 2 to 10. This is similar to one ofthe setpoint 

changes used in the first set of setpoint changes that included a change from 2 to 4. The 

difference between these two setpoint changes being the severity ofplant nonlinearity the 

controller must drive the system through. This refers to the degree of change in the 

system's Jacobian from one operating point to another. The values of the Jacobians for 

the three associated operation points are shown in (5-1). 

0~5] for: Y1 5' Y2 = 2 (5-la)[: 

[2~5 :] for: Y1 5' Y2 = 4 (5-lb) 

2~5] for: Y1 5, Y2 10 (5-lc)[: 

From (5-1) a setpoint change in Y2 from 2 to 4 requires that the controller 

move the process over a region in which the steady state gain between u 1 and Y1 

decreases by half and the gain between uz and Y1 doubles. For a setpoint change of 2 to 

10 these same gains are changed by a factor of 5 rather than 2. Expressing the open loop 

nonlinearity as the relative change in the Jacobian, the degree of open loop nonlinearity 

for a setpoint change in Y2 of 2 to 10 is 2.5 times greater than that for a setpoint change 

of 2 to 4. Use of a linear controller clearly displays the increase in difficulty of the large 

verses small setpoint changes. Figure 33 displays the closed loop response of the 
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example system to a large and small step increase in y2. In both cases the linear 

controller is able to move Y2 from 2 to its final setpoint. The controller's ability to 

maintain y 1 at its setpoint during these changes in Y2 is inadequate in both cases but 

especially poor for the change from 2 to 1 0. 
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Figure 33, Closed loop response for a small and large setpoint change in y2 from the example system 
(3-15), using the linear QDMC controller from section 4.1 calibrated around u1 = 1 and u2 = 1 with a 
sample time, T, = 0.5. 

Results for the optimal error trajectory and the ITPC controllers are shown in 

Figure 34 and Figure 35. These nonlinear control technologies are able to execute the 

setpoint changes without large deviations in Yl· The performance of these controllers is 

similar and neither is distinctly better than the other. The maximum deviation of Y1 from 

its setpoint is smaller for the optimal error trajectory controller however the ITPC 

controller has a smaller mean squared Y1 error and does not overshoot the Y2 setpoint. 
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Qualitatively the ITPC controller appears to settle the system faster than the optimal error 

trajectory and requires smaller input changes. 
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Figure 34, Closed loop response for a small and large setpoint change in y2 from the example system 
(3-15), using the discrete optimal error trajectory controller (3-31) with a sample time, T, = 0.5. 
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Figure 35, Closed loop response for a small and large setpoint change in y2 from the example system 
(3-15), using the ITPC controller from section 4.2 with a sample time, T, = 0.5. 
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During the development of the local linearization predictive controller in 

section 2.3 it is mentioned that one of its shortcomings is predictive ability as the process 

moves from one operating point to another. Implementation of the locallinerized control 

method on the example system is shown in Figure 36. The technique is able to 

successfully execute the setpoint change of Y2 from 2 to 4 without large deviations in y1, 

but is not as effective in performing the large setpoint change. Large deviations in Y1 are 

experienced and there is a significant overshoot in the Y2 setpoint. Comparison of the 

local linearized controller to ITPC performance demonstrates effect of the diminished 

predictive ability on closed loop response during operating point transitions. 
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Figure 36, Closed loop response for a small and large setpoint change in y1 from the example system 
(3-15), using the local linear predictive controller from section 2.3 with a sample time, T, = 0.5) 
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5.2 Singular Point Crossings 

Forcing a system to cross a singular point is a difficult task to demand of a 

controller. A singular point represents a position where the system is no longer 

controll~ble as the gain between an input and output becomes zero therefore its inverse 

does not exist. With respect to the continuous error trajectory controller (2-14), the 

control law blows up at the singular point, as its denominator equals zero 

(LgL'f-1 hs(xa )= o ). In the discrete domain the system crosses the singular point at some 

instant but often does not remain identically singular over the complete sampling interval 

therefore the issue is not so much how to deal with an uncontrollable system but rather 

how to handle sign changes in process gains and suppression of large input moves. 

Penalizing input changes through weighting of input moves in the controller objective as 

in DMC is an accepted means for reducing ill conditioning. In general, model based 

controllers tend to handle sign changes in process gains provided the system model is 

capable of detecting the sign change. Both the optimal error trajectory and ITPC 

controllers include accurate nonlinear system descriptions and input weighting in their 

objectives therefore they have all the necessary tools for acceptable handling of singular 

point crossings. 

Singular point crossings for the ITPC and local linear controllers were 

demonstrated in the CSTR example problem. It was found that both controllers were 

able to satisfy the control objective that demanded operation around a singular point. 

Difficulties were encountered for the local linear controller as it required very large move 

suppression weights to achieve stability and chattering was observed. This was attributed 
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to the use of a linear model for the predicting the effect of future control changes. The 

linear prediction model rendered the controller unable of detecting future crossings of the 

singular point from future control changes. 

The structure of the error trajectory controller objective is not applicable for 

the CSTR control problem, which is closer to an economic optimizer than a regulatory 

controller. Singular point crossing for the error trajectory controller is demonstrated 

using the first example system with a setpoint change in Y2 from 2 to -2. Performance of 

three error trajectory formulations is shown in Figure 37, Figure 38 and Figure 39. The 

three formulations include sampled implementation of the continuous controller, the 

exact discrete error trajectory controller and the optimal error trajectory controller. These 

forms are representative of all the error trajectory controllers described. Adhering to the 

general rule that performance is correlated to the controller design effort and 

computational complexity, the exact discrete error trajectory controller performed better 

than the discrete implementation of the continuous error trajectory controller and the 

optimal error trajectory controller performance was better than the exact discrete error 

trajectory controller. Evident from the simulations the discrete implementation of the 

continuous error trajectory objective and the exact discrete error trajectory controller do 

not perform as intended, further indicating the inappropriateness of satisfaction of the 

error trajectory objective at discrete intervals. The performance of the optimal error 

trajectory is as intended. Of note the optimal error trajectory controller with no input 

move suppression, which essentially simplifies to the integrated error trajectory controller 
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does not perform well. In this case input weighting is needed to move the system through 

the ill conditioned singular region. 
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Figure 37, Closed loop response for a setpoint change in y2 from the example system (3-15) that 
forces the system to cross a singular point using the discrete implementation of the continuous error 
trajectory controller (3-19) with a sample time, T, = 0.5. 
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Figure 38, Closed loop response for a setpoint change in y2 from the example system (3-15) that 
forces the system to cross a singular point using the discrete exact error trajectory controller (3-20) 
with a sample time, T, = 0.5. 
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Figure 39, Closed loop response for a setpoint change in y2 from the example system (3-15) that 
forces the system to cross a singular point using the optimal error trajectory controller (3-31) with a 
sample time, T, = 0.5. 

Application of the ITPC controller for the same setpoint change implemented 

on the error trajectory controllers is shown in Figure 40. The maximum deviation of y 1 

from its setpoint is smaller for the optimal error trajectory controller yet the ITPC 

controller tends to settle the system faster and does not overshoot the y 2 setpoint. As in 

the operating point setpoint changes there is not a clear cut winner between the optimal 

error trajectory controller and ITPC. Simulation of the general nonlinear predictive 

control structure from section 2.2 is shown in Figure 41. The performance is similar to 

ITPC. The slight difference in performance, observed as the system crosses a singular 

point, is attributed to the zero order hold structure of the continuous intermediate state, 

x1. The singular point of the system is at x1 = 0. As x1 approaches zero the gain 

between u2 and Y1 also approaches zero. Consequently prediction of the system response 
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around the singular point is highly dependent on knowledge of x1. The zero order hold 

structure of the intermediate state prediction simplifies the continuous dynamics of X1. 

At all other regions of operation the simplification results in relatively small prediction 

errors but around the singular point the error is magnified. This decrease in the predictive 

ability of the ITPC method around the singular point is a characteristic of the example 

system and is not necessarily true in a general sense. 
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Figure 40, Closed loop response for a setpoint change in y2 from the example system (3-15) that 
forces the system to cross a singular point using the ITPC controller from section 4.2 with a sample 
time, T, = 0.5. 
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Figure 41, Closed loop response for a setpoint change in y2 from the example system (3-15) that 
forces the system to cross a singular point using the nonlinear predictive controller from section 2.2 
with a sample time, T, = 0.5. 

The local linear predictive controller uses a linear model for prediction of the 

effect of future control input changes. The technique demonstrated its ability to maintain 

the example CSTR at the optimal operating point, which is also a singular point. 

Application of the local linearization controller on the first example system for a crossing 

of the singular point is not as successful, as indicated in Figure 42. The controller is not 

only incapable of maintaining Y1 at its constant setpoint, it is also unable to execute the 

servo change in y2. This results from the local linear controller's inability to 

appropriately describe the system over the singular point. Rather than the linearization 

technique described in section 2.3, more sophisticated model development techniques 
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could be used to derive the linear system model but that is not of interest here. It is 

sufficient to note that local linearization control techniques contain a simplified 

prediction model that may not be suitable for control of systems over singular points of 

operation. 
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Figure 42, Closed loop response for a setpoint change in y2 from the example system (3-15) that 
forces the system to cross a singular point using the local linearizing predictive controller from 
section 2.3 with a sample time, T, = 0.5. 

Finally a linear predictive QDMC controller is used to attempt the setpoint 

change. It is included just to make the obvious point that linear control technologies are 

not appropriate for control of system in which the process gain(s) change sign. Figure 43 

displays the closed loop response of the system for the linear controller calibrated around 

the point u1 = 1 and u2 = 1. With the linear controller the system becomes unstable after 

crossing the singular point. 
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Figure 43, Closed loop response for a setpoint change in y2 from the example system (3-15) that 
forces the system to cross a singular point using the linear QDMC controller from section 4.1 with a 
sample time, T, = 0.5. 

5.3 Performance Summary 

An input transformation predictive controller and many discrete error 

trajectory control formulations are presented within. Two example systems are used to 

describe the design procedures and test the performance of each controller_ Performance 

of the controllers is compared to linear and nonlinear model based control technologies 

accepted within the control community. The areas of investigation with respect to 

performance included, the ability to move a process from one operating point to another 

(servo control), the ability to operate around and detect singular operating points, 

objective function flexibility, computational burden and design effort. Throughout the 
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design and testing of the control structures some results consistently held true. It was 

found that the error trajectory objective is not well suited or easily interpreted in the 

discrete domain. Satisfaction of the error trajectory objective at discrete intervals does 

not generally result in desired performance. This was found to be true for both, discrete 

application of the continuous error trajectory controller and the sampled error trajectory 

objectives from section 3.2. 

Many sampled error trajectory controllers were developed that attempted to 

retain the benefits of the continuous equivalent yet are designed for discrete application. 

The initial intent of these discrete control designs are the retention of the light 

computational complexity of the control law, which typically consists of algebraic 

equations. These sampled error trajectory formulations found limited success, offering 

improved performance from the discrete application of the continuous controller, overall 

however their performance was not acceptable. Abandoning the attempt at deriving a 

computationally efficient discrete error trajectory controller, an integrated structure was 

introduced that best emulated the continuous objective in the discrete domain. The 

integrating error trajectory objective is cast as an optimization problem, requiring the 

iterative integration of the system model over the controller sampling interval. The 

performance of the integrating controller was adequate but did not fully exploit the 

opportunities afforded by the optimization objective structure. Borrowing some 

techniques from predictive control, constraints and input move suppression are included 

in the objective to produce an optimal error trajectory controller. Input move suppression 

is used to remove or reduce ill conditioning in the plant model and imparts stabilizing 
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qualities in predictive controllers. The applicability of these predictive control techniques 

are appropriate for the optimal error trajectory controller as it can be viewed as predictive 

controller with a limited prediction horizon of one sampling interval. An additional 

benefit provided by the use of an optimization objective is the relevance for nonsquare 

systems. The continuous error trajectory controller is only applicable to square systems 

as the control law produces Ny equations and Nu unknowns. 

Continuing with the attempt at designing a computationally efficient 

nonlinear control technology the ITPC nonlinear predictive controller is developed. 

Using a unique variable transformation technique the nonlinear system is broken into 

separate steady state and dynamic descriptions. The technique allows nonlinear 

prediction of system response through elementary matrix algebra. It was shown that the 

ITPC prediction method is capable of retaining not only the steady state nonlinear map 

but also the system's nonlinear dynamic properties. This is accomplished through the 

introduction of an intermediate state prediction layer . 

. Comparatively, the performance of the ITPC controller was as good or better 

than all the control technologies tested on the two example problems. The flexibility of 

its objective provides for implementation on a wide range of applications, including 

regulation and optimization. In comparison the error trajectory objective is primarily 

relevant for the regulation problem. In addition the error trajectory method is not easily 

applied to systems that can not be described in a control affine structure. In the 

unconstrained case, where the transformed inputs uniquely defme a set of physical 

system inputs, an explicit ITPC controller may be derived. The explicit controller 
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resembles the unconstrained DMC algorithm with an additional transformed input 

inversion step, to retrieve the physical system inputs. The explicit ITPC controller does 

not sacrifice predictive ability but does modify the input move suppression weighting. 

The transformed input changes are penalized, not the physical inputs. This requires a 

well conditioned input inverse function. 

The general nonlinear predictive controller described in section 2.2 and the 

ITPC method are very similar, only differing in their predictive algorithm. The general 

controller estimates future system response by numerically integrating the full system 

model over the prediction horizon. This procedure is computationally expensive relative 

to the ITPC prediction method. A limitation of the ITPC prediction method is the zero 

order hold description of continuous states included in the ITPC transformed inputs. This 

modeling constraint introduces a source of error. This error however did not 

considerably change controller performance for the example systems tested within, as the 

response of the general nonlinear predictive controller and ITPC were very similar. A 

popular extension of the general nonlinear predictive controller is the local linearization 

technique described in section 2.3. Application of the local linear controller on the first 

and CSTR example systems was performed with limited success. In both of the 

examples the controller is required to maintain the system around a singular point 

including an inversion of the process gains. The linear models used for prediction of 

future control changes can not detect the future gain changes, limiting the controller's 

predictive ability, thus hindering performance. 
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The applicability of the error trajectory and ITPC control methods are related 

to many factors including, system model, computing and control hardware and the 

control objective. If the controller sample time is insignificant with respect to system 

dynamics the error trajectory method is excellent. If however this same system exhibits 

nonminimum phase dynamics or the objective includes economic or optimization 

variables the error trajectory method may not be appropriate. Application of the error 

trajectory method on sampled systems with dynamics that are fast with respect to the 

controller execution frequency was generally found to be ineffective. The discrete 

formulations that were effective including the integrated and optimal error trajectory 

control are as computationally expensive at predictive techniques and if anything did not 

perform as well as the predictive controllers. The ITPC controller is structured identical 

to the general nonlinear predictive controller. The prediction algorithm however consists 

of elementary linear algebraic operations as opposed to the integration of the full system 

model. ITPC therefore is an alternative that may be used to decrease computational 

complexity and in special cases an explicit solution may exist. 



6.0 Conclusions 

i) 	 The error trajectory control method is not easily interpreted in the discrete domain. 

Satisfaction of the continuous error trajectory objective at discrete intervals does not 

in general result in appropriate or intended performance. This poor performance is 

attributed to the inappropriateness of error trajectory objective in the discrete 

domain. 

ii) 	 Many discrete forms of the error trajectory method are introduced. The first set of 

discrete controllers are those that satisfy the error trajectory objective at the next 

sampling interval given the predicted system trajectory to the next controller 

sampling interval. The second set includes those that minimize the integrated 

distance from the error manifold over the sampling interval. Performance of the 

first set of discrete error trajectory controllers was found to be poor if the controller 

sampling interval was significant with respect to the system dynamics. 

Performance of the integrating error trajectory controllers was acceptable and best 

emulated the error trajectory objective in the discrete domain. Additionally the 

integrating error trajectory controllers are applicable to nonsquare systems unlike 

the traditional error trajectory method. 

iii) 	 An extended form of the integrated error trajectory controller referred to as optimal 

error trajectory control includes enhancements from predictive control structures 

such as input move suppression, output weighting and system constraints. This 
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optimal method was found to have improved stability especially around singular 

operating points and less erratic input moves than the basic integrated method. 

iv) The predictive algorithm for the input transformation predictive control (ITPC) 

technique described within allows for the nonlinear prediction of system behaviour 

through elementary matrix algebraic operations. The ITPC prediction method 

retains both steady state and dynamic nonlinear properties of the system. Steady 

state nonlinearity is represented through input transformation and dynamic 

nonlinearity is captured through the introduction of an intermediate state prediction 

layer. 

v) Performance of the ITPC controller was observed to be as good or better than all the 

control technologies tested within when considering a broad range of characteristics 

including, the ability to move a process from one operating point to another (servo 

control), the ability to operate around and detect singular operating points, objective 

function flexibility, computational burden and design effort. The control 

technologies included are the various error trajectory controllers described and 

linear, local linear and nonlinear predictive control structures. 



7.0 Future Research 

Throughout the development of the topics covered within many issues were 

not explained in detail due to the limited scope of this report. Furthermore the 

development of the control structures presented give rise to interesting topics worthy of 

further investigation. This section summarizes the areas of study that were not covered in 

full and suggests topics for future research. 

The most significant omission in the included studies is the treatment of noise 

and measurement or estimation of system states. Early on it was stated that proper 

examination of noise and unknown disturbance rejection requires the use and analysis of 

filtering techniques such as the extended Kalman filter (EKF) therefore all states were 

perfectly observed and no noise or stochastic states were included in the example 

systems. The exclusion of filtering effects on control performance allowed a more direct 

comparison of the control techniques presented. The perfect observation of the system 

however is unrealistic for application on real physical systems. Analysis of the effect of 

state estimation through filtering on controller performance with respect to measurement 

noise may produce some additional important conclusions. For example if the estimation 

of state values is poor or slow the difference in performance between selected control 

technologies may become insignificant as the main limitation to controller performance 

becomes the filter itself. An extension to the analysis of filtering effects is the 

propagation of noise through the ITPC prediction method by the inclusion of the 
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intermediate state prediction layer. In a related topic, the random walk assumption of 

future disturbances used within could be expanded to incorporate stochastic noise 

models. 

The analysis of the controllers investigated within primarily focused on 

ISsues relating to performance. The control community is interested not only in 

performance but also in many cases stability. It is mentioned within that stability results 

for linear predictive controllers can be applied to the explicit ITPC controller. In fact it 

may be possible to extend results from linear constrained predictive controllers to the 

general ITPC controller assuming the feasible region of the physical system inputs can be 

expressed in terms ofthe ITPC transformed inputs. 

If appropriate representations can be found for the transformed input feasible 

regions given a constrained input space, another potentially significant extension to the 

presented ITPC method exists. This extension involves transforming the objective to a 

constrained version of the explicit form of the ITPC objective. The advantage of this 

transformation is it reduces the nonlinear programming problem into a much more 

convenient quadratic program. A secondary requirement of this technique is a suitable 

input inverse function. 

Many authors have expressed the benefits of infinite horizon control over 

predictive controllers that utilize finite prediction horizons. The separation of steady 

state and dynamic properties of a system used in the ITPC prediction method may 

provide a convenient structure that enables representation for infinite horizons. This is 

especially relevant for the explicit ITPC structure. Extension of the ITPC method for 
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infinite horizons may impart additional stability properties and is offered as an area of 

future study. 

The stability of error trajectory controllers was lightly discussed through 

explanation of its limitations, such as inability to control systems containing 

nonminimum phase dynamics. In literature stability results for discrete error trajectory 

controllers is weak. An area that may be of interest for future study is the stability of the 

sampled and integrating discrete error trajectory control structures presented within, 

especially given the portability of these methods to predictive control analysis, as 

illustrated. 

Identification of a system model is required for the development of the 

controllers described within yet details on system identification were not given. The 

approach taken to identify a model is a complex task and varies between different fields 

of study. Factors such as measurement noise and the required resolution influence the 

identification procedure. Many resources are available in literature and the topic is an 

active area of research. While system identification is a relatively mature area of study 

the required amount of resolution in the model used for control to satisfy performance 

specifications is not necessarily clear. In particular the inclusion of nonlinearity or 

certain types of nonlinearity in the system model can add unnecessary complexity. For 

instance Stack and Doyle (1997) suggest that some classes of highly nonlinear systems 

are optimally controlled by linear controllers, while different systems with much smaller 

measured nonlinearities demand the used of nonlinear control. Foss and Johansen (1997) 

discuss the interplay between identification of a predictor and the convexity of the 
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associated optimization-based control problem. These two articles illustrate the potential 

benefit of selective inclusion and/or exclusion of certain nonlinear properties. Continued 

research in understanding the relationship between the actual system, the model used for 

control and the resulting closed loop controller performance will provide useful 

information for the identification problem and is important for simplifying the resulting 

control problem. 

Qualitatively it IS suggested that the ITPC prediction method is 

computationally more efficient than the general nonlinear predictive control structure, 

which requires iterative integration of the system model. Quantitatively the difference in 

efficiency is not explained and was not investigated. Anecdotal evidence was observed 

from the relative computer time used for different simulation. For example, a given 

simulation with the ITPC control structure may take approximately one minute while the 

general nonlinear controller would take an hour. This result depends highly on the 

integration algorithm and other programming subtleties and it should be said that neither 

prediction method was optimized for performance. Analysis on quantitative differences 

in computational efficiency would aid in understanding the actual advantages of using 

one prediction method over another. 
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