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CHAPTER 1 


INTRODUCTION 


The increase in demand for the analysis of trace organic compounds, for both 

commercial and research purposes, has prompted chemists to produce new 

methodologies which increase both the sensitivity and cost effectiveness of analytical 

techniques. This demand may be attributed to the increasing awareness of 

environmental concerns and of drug abuse. These concerns led to the development 

of an automated sample preparation system (ASPS) at McMaster University 

Pathology Laboratory. 

1.1 THE HISTORY OF THE DEVELOPMENT OF THE ASPS 

The ASPS was developed to automate the sample preparation of a wide 

variety of samples using the solid supported technique [Povilonis 1988]. This sample 

preparation technique was developed to improve the separation of analytes (chemical 

constituents being analyzed) from a wide variety of sample matrixes (the substance 

in which the analyte is contained). 

The simplicity of this analytical technique, the technique's ability to use small 

sample and reagent volumes, and the high costs associated with this labour intensive 

task prompted the exploration of sample preparation automation. Dr. Jack 
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Rosenfeld who is involved in ongoing research in solid supported sample preparation 

at McMaster University Medical Centre, spearheaded the development of an 

automated system [Povilonis 1988]. 

The main reasons for the design and development of the ASPS are the 

reduction of human error in repetitive tasks, the improvement of quality control, the 

reduction of production and research costs, and maximum flexibility and modifiability. 

The flexibility and modifiability of the system is extremely important since new 

sample preparation procedures and techniques are currently being developed. It 

must therefore be adaptable to the highly repetitive commercial use as well as the 

dynamic environment experienced in the research laboratory [Povilonis 1988]. 

The design which best fit these criteria is a robotic operated containment 

system. Sample preparation is automated by utilizing a robotic manipulator arm 

which is synchronized with a number of devices. Simplicity of operation is effected 

through a sophisticated software system which allows a laboratory technician to easily 

program the ASPS. 

Upon the completion and testing of the ASPS, it was quickly recognized that 

the software system required extensive work in order for the ASPS to fulfil the design 

criteria. It was decided by Rosenfeld and Povilonis that a computer programmer was 

necessary to design and implement a software system satisfying the aforementioned 

design criteria. 
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1.2 	 CONSIDERATIONS LEADING TO THE DESIGN AND 

IMPLEMENTATION OF THE ASPS SYSTEM SOFTWARE 

A review of the ASPS, the robotic language, and the ASPS software revealed 

the need for a strategy to determine the best approach for implementing the software 

system. It was decided that firstly, the ASPS robotic language, RAPL (CRS PLUS 

robotic language supplied with the robot arm), would be reviewed to determine 

whether it was adequate for the development of complex robot programs. This 

review involved a literature search and review of existing robot languages for current 

developments followed by a comparison of RAPL to these languages. 

The next stage is to review the ASPS requirements and explore the 

possibilities for the enhancement of the system through software. Armed with this 

information, a decision could be made on the direction of the software development. 

Figure 1.1 shows the path used to determine the direction in which the software 

development would ensue. If development of a new robot arm language is required, 

this project's scope would be limited to that stage; otherwise, this project would go 

on to the next phase - use of the chosen language to develop user-level ASPS 

software. 

After pursuing the above strategy, it was decided that a new robotics language 

be designed and implemented for use as the base language for the implementation 

of the ASPS software. This language is based on the Forth environment and 

implemented on an IBM-PC. The ensuing text provides an overview of robotics 
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hardware and software, a literature review of existing robotics languages, a review of 

the current ASPS hardware and software, and a detailed description of the design 

and implementation of the Forth based robotics language. 

_!Wt 
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Figure 1.1 Flow diagram of decision strategy for software design 



CHAPTER2 

OVERVIEW OF ROBOTICS HARDWARE AND SOFfWARE CONCEPTS 

This chapter is designed to give the reader a brief overview of terminology, 

robotics hardware, common robotics language features and a review of the existing 

robotic languages. 

2.1 ROBOTICS HARDWARE 

The term "robot" was introduced by Karel Capek in a play about a society with 

automated workers [Capek 1923]. Robot is the Czechlozlovachian word for worker. 

The term was adopted by scientists and engineers who participated in the 

development of early industrial robots [Engel 1980]. 

R. Goertz developed manipulators for use in handling radioactive materials 

in the early 1950's [Goertz 1952] and the first computer controlled robot was 

developed by Ernst at M.I.T. in 1961 [Ernst 1961]. 

There is no clear cut definition for the term robot but "typically definitions 

encompass notions of mobility, programmability, and the use of sensory feedback in 

determining subsequent behaviour" [Korein 1987]. Robots are used to increase 

productivity and reduce costs in labour intensive tasks. Programmable robots are 

extremely useful for tasks which may vary as found in the instance of manufactured 
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products which may vary over time. The programmable robot arm is extremely 

adaptable to changes in the automated procedures. Robots are also useful for 

applications which are not suited to human abilities such as the manipulation of small 

objects for example, electronic parts, as well as large objects such as turbine blades. 

Another application is work in environments which are not suited, or dangerous to 

humans. Clean rooms, furnaces, high radiation areas, and space are among a few 

examples of these environments [Nevins 1980]. 

ROBOT ARM 

CONTROLLER
-WRIST 

SHOULDER 

.....___,--END EFFECTOR I 

Figure 2.1 Typical robot arm and controller 
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A typical robot consists of an arm and a controller (see figure 2.1). The controller 

is the computer system used to control the robot servo control system. The controller 

is typically a microcomputer which runs the robot language, performs the trajectory 

calculations and drives the actuators. There are a number of robot arm 

configurations five of which are illustrated in Figure 2.2 [Korein 1987]. 

The grasping component or the component which houses the robot tool is 

called its end effector or tool tip. An actuator is the vehicle by which a robot arm 

axis is moved. It may be a pulse driven motor, a pneumatic device, a hydraulic 

device or a solenoid amongst many others. 

Many commercially available robots include a teach pendant which allows 

manual movement of each actuator via an electronic hand held controller. The 

operator may use the pendant to guide the arm to specific locations. 

Figure 2.2 Robot arm configurations 
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2.2 REVIEW OF ROBOTICS LANGUAGES 

When useful industrial robots were developed, programming languages were 

developed to teach them a ftxed sequence of moves, i.e., the programmer would 

guide the arm through movements, teaching positions to the robot which would 

subsequently blindly follow these instructions [Shahinpoor 1987]. Since this technique 

was sufficient to develop useful repetitious industrial tasks, there was no need to 

include provisions for developing complex algorithms or for languages which could 

express such algorithms. The industrial robot language was simple to use but lacked 

the flexibility and power required to develop more complex applications. 

The original programs suffered from lack of concurrency. A motion could be 

planned and then executed but during execution no other processing could be 

performed. Further, the manipulator had to be brought to rest between manouevers 

in order .to perform the calculations for the next move. This problem was resolved 

by running two concurrent tasks. One task would control the robot and the other 

would plan the next move which now enabled the robot to go from one manoeuvre 

to the next without stopping at intermediate positions [Cox 1989]. 

Unfortunately, there were no operating systems which were available to handle 

such a task so that special standalone robot-control systems had to be developed to 

provide for concurrency. Consequently, high level language features such as data 

structures, input/output control statements, subroutines, structured flow, etc., were not 
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included. As more complex tasks were attempted, it became apparent that more 

powerful programming features were required. This need has sparked researchers 

to develop languages which are suitably powerful and easy to use in the real-world 

application involving industrial robots [Paul 1985]. 

Robot language development has proceeded along two main paths. The most 

obvious one is to build a robot-specific programming system from routines in a 

general purpose language. The second direction involves the implementation of 

robot languages ab initio. 

Both approaches have their advantages and shortcomings. The advantage of 

the first is a reduction in robot language development time and a reduction in robot 

programmer training time. The second solution is appealing because the robot 

programmers need not be computer programming experts since they may develop 

useful programs by learning only a subset of the language. 

The shortcoming of the first approach has been the limitation imposed by the 

base language used to develop the robot language. Often, the programming 

environment is not suitable for robot programming due to the lack of an interactive 

interface which is extremely useful in the development of robot applications. The 

main drawback of the second solution is that effort is wasted in duplicating features 

which already exist in standard languages such as Pascal, C, and Forth. [Gini 1985] 
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2.3 COMMON ROBOT PROGRAMMING LANGUAGE FEATURES 

Although many robot languages have been developed, they all have standard 

features in common. These features include a number of variations on the MOVE 

command, location templates, cartesian real world coordinate systems, tool 

manipulation commands, speed control, intermediate points, approach and departure 

points, complex trajectories, sensor information, and multi-robot operations. 

MOVE COMMANDS- There are many variations on the MOVE command. 

These range from the simplest which allow the user to issue movement commands 

based on low level, single joint movement to joint interpolated movements which 

involve the manipulation of the arm in reference to the tool tip. The programmer 

need only specify where to move in the real world coordinate system and the system 

subsequently moves all axes in such a manner as to bring the arm with the tool tip 

to the new location. 

The MOVE command in robotics languages is the fundamental method of 

changing the position of the robot arm and consequently the tool tip. It usually 

accepts a real world location as a destination point and the language determines the 

combination of actuator movements to effect the movement of the robot arm tool tip 

to this location. Two variations of this command involve the method by which the 

tool tip is manipulated. The standard move operates in a joint interpolated method 

where all joints start and stop at the same time. 
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The straight line mode is another variation. This involves effecting the 

movement with the tool tip moving in a straight line, along a prespecified trajectory, 

from the source location to the destination. This is normally used to precisely place. 

an object or tool in a confined or restricted location which may be a hole. The 

APPROACH command is another variation on the MOVE command. This 

command accepts a real world destination and a distance to which the location is 

approached. The approach destination is determined by the tool tip configuration. 

This is useful in moving the tool tip to an approach line for the grasping or placing 

of an object. Normally, this command places the tool tip in such a manner as to 

allow the movement to the location in a straight line fashion for high precision 

grasping. The APPROACH command may also have the straight line feature. 

The DEPART command may be considered the opposite to the APPROACH 

command. This command accepts a distance as a parameter. The arm moves from 

the current location, along the tool tip configuration, to the specified distance. This 

is normally used when departing from a location where the object must be moved out 

of a hole or from between a series of objects. Normally, the straight line version of 

this command is used so that the object is moved in a straight line along the tool tip 

configuration and objects are removed in such a fashion as not to interfere with 

other objects or bind in the hole. 

An example of the use of these commands is depicted in the following pseudo­

code illustration: 
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DEPART-STRAIGHT-LINE 2 


APPROACH locationl 2 


MOVE-STRAIGHT-LINE locationl 


The above procedure would pull the peg from a hole in a straight line, 2" from the 

hole along the Z axis, move the object to within 2" of the destination location 

(location2) and place the object at the destination location in a straight line. This is 

referred to as a PICK and PLACE procedure (see Figure 2.3) [Paul1985]. 

STARTING CONFIGURATION DEPART-STRAIGHT-LINE 2 

APPROACH LOCATION! 2 MOVE-STRAIGHT-LINE LOCATION! 

Figure 2.3 Illustration of pseudo-code 

CARTESIAN REAL WORLD COORDINATE SYSTEM - The cartesian 

real world coordinate system is a representation of the robot work space as a three 

dimensional coordinate system with some physical reference point at the arm. This 

reference point is normally the base of the arm. This type of system is used to 
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simplify the programming of robot plans in a system which is universally known. 

Most languages allow the programmer to use a 3 dimensional cartesian real 

world model to specify moves. This relieves the programmer of low level 

responsibilities, that is, the manipulation of the arm at the actuator level in pulses. 

The operating system performs all the translations from low level to the real world 

model [Paul 1985]. 

LOCATION TEMPlATES OR FRAMES- Location templates (also known 

as frames) are the representation of the real world coordinate system in the 

programming language. These templates usually contain, at a minimum, the X, Y, 

and Z coordinates of the real world system. Other components included in the 

template are the roll, pitch and yaw of the gripper. This location template is dealt 

with as a single entity and is used to represent a real world location as well as the 

tool tip configuration at that location. The X, Y and Z components are normally real 

numbers representing coordinates in the units of choice and the other components 

are normally angles in either degrees or radians. 

TOOL MANlPUIATION COMMANDS - There are generally two types of 

tools which are frequently used with robot manipulators. Tools which may be 

operated in a binary mode and others which are operated in the continuous path 

mode. Binary mode operated tools include such tools as drills, buffwheels, sanders, 

etc. Continuous path operated tools include robot proportional opening grippers. 

The user may specify the grip distance and the force which the gripper is to exert. 
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It is also advantageous to be able to detect whether the grip distance has been 

effected to detect whether the object has been grasped correctly. 

SPEED CONTROL - Most languages offer speed control which is relative 

to the nominal speed of the manipulator. A more advanced variation of the speed 

control involves timing. The operator need only specify the amount of time a 

trajectory should take and the operating system effects the move in such a manner 

as to satisfy this requirement. 

INTERMEDIATE POINTS - The ability to program complex trajectories 

is often necessary to avoid obstacles. These trajectories may be effected by a linked 

movement structure which would allow the programmer to specify a number of 

trajectories which are to be executed in series as one movement. The intermediate 

coordinates are not reached with great precision. The end location is the only 

location in the trajectory which is reached in high precision. 

It is often necessary to approach an intermediate location before actually 

moving to the desired location with precision along an unrelated trajectory. This type 

of command is usually referred to as approach. The programmer need only specify 

a distance to which the tool tip is to approach the location. The intermediate point 

is automatically generated by the system. The distance is in reference to the tool 

configuration/orientation. 

TRAJECfORIES - There are different styles of trajectory execution 

including the free mode, the coordinated actuator mode and the linear interpolation 
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mode. The free mode involves a low level of precision where locations and paths are 

calculated in low precision values. This mode is used for trajectories and locations 

which do not require precise placement. The mode is included to speed up 

calculations and hence arm movements where high-precision placements are not 

required for intermediate moves. 

The coordinated actuator mode manipulates the arm in a speed controlled 

manner where all axes are started and stopped at the same time. This is the normal 

mode used to effect the move command. The Linear interpolation mode is provided 

for high precision manouevers where the tool set of coordinate axes follows a straight 

line or circular path. This mode is used to precisely run the tool tip along a straight 

path to effect the placement of an object in a confined space or along a restricted 

path. This is usually used for the placement or removal of an object to and from a 

hole [Coiffet 1983]. 

A feature which some languages have included involves the linking together 

of intermediate points to form complex trajectories. This is a useful function which 

may be used to guide the arm around obstacles to avoid collisions. These trajectories 

may then be invoked by using one command. This command may be considered a 

macro. 

SENSOR INFORMATION - The ability to cope with sensors has been a 

feature of robotics since the beginning. Sensors provide a robot with the ability to 

sense its environment during run time. Sensory data may be used to modify the run 
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time movement of the manipulator. For instance, a switch may be used to 

determine if an object has been placed correctly so that the program can use this 

information to effect an alternate plan when this becomes necessary [Korein 1987]. 

lEACH PENDANT - As mentioned above, the teach pendant is used to 

manually guide the arm to specified locations. Many languages use this mechanism 

to teach the robot arm locations. Once the arm is guided to a location, the operator 

may specify a location template name which will contain the current arm location. 

MULTI-ROBOT OPERATIONS - Research has gone beyond the control 

of only one robot, as it has become recognized that multiple robotic systems are 

sometimes needed. These systems allow the programmer to synchronize a number 

of robots by using either a sequential or parallel approach. [Parent 1985] 

2.4 LANGUAGE LEVElS AND PROGRAMMING ENVIRONMENT 

There have been several different approaches to the programming 

environment associated with robots. The compiler method of programming has 

exhibited shortcomings when applied to robot programming. It has proven more 

advantageous to provide an interactive interface which allows the programmer to 

interact with the arm during program development [Gini 1985]. 

There are four distinct programming language levels. The lowest level of 

which is referred to as the Actuator Level. This involves programming the 

displacement of each actuator. The next level is the End Effector Level. The 
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programmer is only concerned with the coordinates of the tool itself. The Object 

Level is the next level. The programmer is only concerned with the movement of 

objects. The highest level is the Objective Level. This level is a generalization of the 

Object Level. Only the final objective is specified. The details of intermediate stages 

are generated by the system [Parent 1985]. 

The majority of current robotic languages operate at the End Effector level. 

Attempts at implementing Object Level programming languages have proven to be 

fruitless. It involves the complex modelling of the real world [Halme 1987]. The 

whole work space must be geometrically represented in three dimensions. The time 

involved in setting up such a system is much greater than the time required to 

develop robot plans using the End Effector Level[Korein 1987]. 

2.5 SURVEY OF EXISTING lANGUAGES 

Robot language research has been active since the 1960s and several languages 

are currently being used commercially. Each of these languages use previously 

discussed methods and approaches. 

PASCAL-STYLE lANGUAGES - There have been many languages 

developed around the Pascal-style of programming. This includes structured 

languages such as ALGOL and C. These robot languages include the following 

research and commercial languages incorporating this style of programming language 

at the End Effector Level of programming. These languages include AL [Paul1977], 
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WAVE [Finkel1974], AML [Taylor], HELP [GE 1982], LM [Latcombe 1981], MCL 

[McDonnel1980], P ASRO [Biomatic 1983], RAIL [Franklin 1982], VAL II [Shimano 

1984], RCCL [Paul 1985] and SRL [Blume 1984]. Some of these languages have 

been developed from scratch and others are merely library routines extending an 

already existing Pascal (or similar language) or compiler [Gini 1985]. 

One of the most notable languages is AL which has been constantly improved 

since its inception in 1974. It is one of the first languages to contain most standard, 

robot language features that have become standard. In order to illustrate the 

common robotics language features, two languages, SRL and RCCL will be described 

as they are implemented using different methods. Since SRL implements a large 

number of robotics language features, it will be described in detail. 

SRL - SRL (Structured Robotics Language) was developed by Christian 

Blume and Wilfried Jakob in West Germany [Blume 1984]. The language is a hybrid 

of the traditional programming language style like Pascal and high level robot 

languages such as AL. The major features of SRL are presented in a published 

proceedings entitled Advanced Software in Robotics [Blume 1984]. Blume and Jacob 

present such features as data concept, control of program flow, move and effector 

statements, parallel, cyclic and delayed program execution, input-output and world 

model. 

SRL was designed to be hardware independent, unlike its predecessor AL, 

which is hardware specific. Data types in SRL include; the pascal types INTEGER, 
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REAL, BOOLEAN, CHAR and VECTOR; AL types VECTOR, ROTATION, 

FRAME; and two synchronization data types SEMAPHOR and SYSFLAG. SRL is 

based on the frame concept as found in many robotic languages including AL. 

Position and orientation of the robot are described in a frame which consists of a 

position vector and a rotation. 

In order to effect hardware independence, a system specification construct is 

included. The programmer is able to define specifications for tailoring to different 

hardware configurations. Programs taking advantage of this construct, are easily 

adapted to different sensors, robots, and hardware facilities. This facility allows the 

programmer to refer to specific hardware using meaningful names rather than low 

level device numbers so that programs are easy to read. 

SRL has provisions for concurrency which consists of the SECTION construct. 

It uses PROCEDURES which are the same as the Pascal PROCEDURE. 

Compound statements are supported, as well as the traditional control structures of 

Pascal. An EXIT statement was included for the premature termination of control 

structures such as loops much like the 'C' EXIT statement. 

Assignments and expressions are treated in much the same fashion as in 

Pascal, data type conflicts being checked at compile time. This concept is expanded 

to handle the new types VECTOR, ROTATION, and FRAME. SRL also has 

powerful arithmetic facilities for geometric calculations which facilitate flexible robot 

moves. 
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SRL provides several move statements to distinguish between different types 

of interpolation. Position and orientation of the tool centre point is based on the AL 

concept of a frame. Sensor conditions are reacted upon by the WHEN or ALWAYS 

WHEN statement. Table 2.11ists the moves supplied by SRL. 

General specifications (parameters) for these constructs are velocity, duration, 

acceleration, constant/variable orientation during move, approach/depart points, 

frames between start and end frame, force and wobble. Complex manouevers may 

be constructed using the MOVESPEC construct which allows the programmer to 

define a move as a number of move statements, give it a name and then execute the 

specified move using MOVEDO given the move name. This is a powerful construct 

which allows the programmer to build up complex manouevers which may be easily 

executed any number of times during program execution. 

Gripper operations include open and close with specified distance and force. 

Checking is performed to ensure that the gripper is at the specified distance 

according to the world model. Error corrective actions may be taken to reduce the 

discrepancies between theoretical values and actual values. 

There is provision for restricted parallel, cyclic and delayed execution of 

program parts. A WHEN statement is included for handling interrupts and sensor 

input. This statement may be used for optimal time scheduling which provides for 

constant checking of the real time clock and the execution of a block of statements 

when the timing condition has been met. 



21 
Table 2.1 Variation on the move commands supplied by SRL. 

PTPMOVE 

SYNMOVE 

SMOVE 

LANEMOVE 

CIRCLEMOVE 

VIAMOV 

MOVE 

DRIVE 

Move without any synchronization between the robot axis. 
Each axis is moved with maximum acceleration and speed. 
No general specifications are allowed. 

Linear interpolation in robot joint coordinates, i.e. all axis 
will be synchronized. General specifications possible. 

Movement on a straight line by linear cartesian 
interpolation. General specifications allowed. 

Trajectory calculation by polynoms, similar to the MOVE­
statement of AL. General specifications allowed. 

Movement along circular segment. Specifications: centre 
point, angular displacement, velocity or duration, fine/rough 
interpolation positioning. 

Move to a via frame without stopping at the via frame. 
The interpreter expects a next move statement for 
continuing the move. Only special specifications of velocity 
and duration are allowed. 

\ 
Move statements with interpreter or controller dependent 
parameter specifications. This statement can be used for 
future types of interpolation, if the controller includes 
control modules. 

Movement of one or more robot axis. Specifications: 
velocity or duration, force, fine/rough positioning. 
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The SRL programming environment consists of the SRL-compiler, SRL-

interpreter, Frame-editor, Simulator (optional) and Symbolic debugger (optional). 

The SRL-interpreter contains a crash analyzer (history trace) which gives procedure 

trace back, line numbers where errors occur along with the run time error message. 

It also handles hardware configurations, memory management, arithmetic and 

program flow [Blume 1984]. 

SRL has been implemented on the CRS plus robot manipulator by Cybofluor 

based in Toronto, Ontario. This software is proprietary and only a brief 

demonstration was presented. There were some drawbacks witnessed in this type of 

system. The compiler converts SRL code into RAPL which is then downloaded to 

the robot controller and subsequently run. There are major drawbacks to a system 

of this nature since the software is limited to the amount of memory in the controller, 

and control is given completely to the controller. 

It would be much more desirable to allow the host microcomputer to have 

control over the robot. This allows the system to take advantage of the PC's 

powerful features. Even if the controller could be expanded to accommodate larger 

programs, there is a certain amount of hardware duplication which is unnecessary. 

Also, run time debugging would be limited to the RAPL interface since the SRL 

interface is completely removed from the run time system. This does not allow the 

system to take advantage of a thorough run time debugger which may be 

incorporated into the SRL system. 
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There are certain advantages to using the RAPL language as the low level 

language. As previously discussed, RAPL contains some powerful constructs such as 

joint interpolated moves, teaching interface, etc. There is no need to reprogram such 

complex features. A more versatile system would establish a communications link 

between the host microcomputer and the robot controller. This link would be a two 

way communication which would allow the microcomputer to completely control the 

robot hence establishing a microcomputer run time interface. The low level 

communications would involve the real time issuing of RAPL commands effecting the 

virtual SRL language. We may now effect a run time debugger as well as maintain 

complete control of the robot via the microcomputer. 

RCCL- RCCL (Robot 'C' Control Library) uses the host language 'C' as the 

base for developing a robotics language [Paul 1985]. The robot is identified as an 

input/output device which is manipulated by library routines written in 'C'. This 

design structure allows the programmer to take advantage of the full power of the 

'C' language as well as given high level control of the robot manipulator. 

The system was designed to run under the UNIX operating system to take 

advantage of the concurrency built into this operating system. Four processes run 

concurrently when RCCL is executed. The lower level controls the torque of each 

manipulator joint, the setpoint process running at interrupt level which computes 

cartesian trajectories, a real time communication process, and the user process which 

makes the RCCL system calls. 
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RCCL supports a structured location description which is a mathematical 

construct describing the location of coordinate frames. Relative locations of objects 

are also supported along with provisions for tool compensation. 

Two types of motions are supported by RCCL. Joint mode which is 

equivalent to the joint interpolated modes previously discussed and Cartesian mode 

which moves the tool along a straight line. 

Sensor integration is also provided which allows programs to adjust robot plans 

according to sensor information. Locations may be modified during run time. This 

is done using hold transforms which essentially involve making a copy of the location 

and allowing the program to update the copy according to user interaction or sensory 

input. Trajectories may also be modified during run time. This is useful for updating 

trajectories according to sensory input. 

RCCL provides internal sensing for location and force information. If a 

motion is terminated on a condition, the world model may have to be updated. Joint 

torques are also obtained from the manipulator state. A mechanism is provided in 

RCCL which compares the actual forces and torques against expected values. This 

information may be used to terminate a path segment when a specified limit is 

reached [Paul 1985]. 

This is an example of a robot language embedded in an existing high level 

language. This method of development provides a powerful, proven language base 

with all the features of a robot language. Development time should be considerably 
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lower smce the programmer is only concerned with the robot routines. 

Unfortunately, RCCL requires a powerful operating system (UNIX) which supports 

concurrency, and a powerful machine. 

BASIC-STYLE lANGUAGES - There have been a number of languages 

based on a BASIC style of syntax and structure. Many of these languages are used 

commercially. The appeal of this style of language-style is the simplicity and ease of 

training. These languages usually operate at the End Effector Level but tend to be 

deficient in programming structures and complex data structures. Unfortunately this 

style of programming lacks the power and flexibility for the development of complex 

robot plans. Some of the languages developed along this style of programming are 

ROL, VAL, and as will be discussed in Chapter 3, RAPL [Gini 1985]. 

OTIIER lANGUAGES- Other robot languages are developed around such 

programming styles as LISP and PROLOG. These languages will not be discussed 

since the literature search did not yield sufficient data to warrant a discussion. 



CHAPTER3 


TIIE CURRENT SYSTEM HARDWARE AND SOFIWARE 


In this chapter, the current hardware and software system which implements 

the ASPS will be discussed in detail. 

3.1 TIIE CHEMICAL ANAL YfiCAL SYSTEM 

The chemical analytical method which the ASPS automates is referred to as 

Solid Supported Reaction. The method is a relatively new approach to the 

preparation of samples for analysis in trace quantities. Analytes dissolved in some 

matrix (the medium in which the analyte exists, such as blood, water, urine) are 

removed from the matrix and transferred to a suitable medium in which the analyte 

may now be detected in trace quantity. This medium is usually a solvent of some 

type. The analytes are typically quantified using a GC (Gas Chromatagraph) or LC 

(Liquid Chromatagraph) [Leznoff 1978]. 

The solid supported reaction involves co-absorption of analyte and reagents 

on an insoluble resin. The methodology lends itself to automation since it is simpler 

and more sensitive, in terms of analyte concentrations, than the more classic 

liquid/liquid extraction methods currently in use in most research and commercial 

laboratories. 

26 
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The methodology tends to eliminate errors introduced by sample matrix effects 

which are errors in the analytical method caused by the medium in which the analyte 

exists [Leznoff 1978]. This methodology has been tested on the preparation of 

samples for the analysis of steroids, herbicides, and cannabinoids in body fluids and 

pharmaceuticals [Rosenfeld 1984a,Rosenfeld 1984b, Rosenfeld 1986, Rosenfeld 1989]. 

There is potential for the solid supported methodology in applications to 

environmental, food, pharmaceutical and industrial testing. 

The sample preparation stage is labour intensive and, therefore, automation 

is very desirable in this stage of the analysis. The largest driving force behind 

automation is the need to increase productivity and reduce costs of analysis [Isenhour 

1989]. In addition, automation of analytical procedures offers an increase in 

reproducibility which would boost the accuracy of the procedure. 

Health effects are a concern in the sample preparation stage. The analyst may 

be exposed to hazardous conditions due to the toxic and/or infectious nature of the 

sample matrix and reagents. Automation of the methodology should reduce the 

health risk associated with exposure to samples and reagents since, for the most part, 

the sample volume is small and the whole preparation process may be carried out 

under a fume hood [Povolinis 1988]. 
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3.2 THE ASPS HARDWARE CONFIGURATION AND DESIGN 

The automated sample preparation system was designed by Povolinis as part of a M. 

Eng. (Engineering Physics) project at McMaster University [Povolinis 1988]. The 

system was designed to automate the sample preparation of samples using a solid 

supported technique. 

The ASPS is comprised of a 5 axis robot arm which manipulates reaction 

tubes, syringes, dispensers, wash probes and vacuum apparatus. Furthermore, there 

are peripherals which must be operated in conjunction with the robot arm 

manouevers. These peripherals include vacuum pump valves, dispense valves and 

syringe plungers. 

This automated procedure differs greatly from others in that the system is 

designed to manipulate a variety of sample types for a number of different analytes. 

Each sample preparation procedure requires its own robot plan. Compounding the 

problem is the fact that it is desirable to enable the automated system to manage a 

number of different sample preparation procedures concurrently. 

The ASPS software system utilizes the robotic language (RAPL) supplied by 

the robot arm vendor CRS PLUS. The original system depended on a FORTRAN 

program which performs a robot planning role. The FORTRAN program prompts 

the user for detailed analytical information which is transformed into a number of 

RAPL subroutine calls. These programs must be loaded into the robot controller 

before they can be run [Povilonis 1988]. 



29 

RAPL subroutines called by the planning software are kept in the controller 

at all times. These subroutines perform several different analytical manouevers based 

on the order in which they are called and the values of a number of different 

variables [Povilonis 1988]. 

This software system was found to contain inherent flaws. It generally did not 

generate robot plans that worked. During experimentation, it was found that every 

generated plan required modification of the generated RAPL code which is not an 

acceptable situation. 

The RAPL code generated by the system was extremely cryptic and 

modification of the code is inordinately difficult. The system generally works on side 

effects, where control of subroutines are totally effected using RAPL variables. 

Generally, this system was difficult to use, contains functional flaws and generates 

code which is difficult to modify. 

AUTOMATED SAMPLE PREPARATION TECHNIQUES - Several 

analytical techniques are required for this particular analytical procedure. Among 

these techniques is the dispensation of liquids in volume ranges of 1 to 10 ml, syringes 

for adding minute quantities of reagent in the range of 100 ,ul, mixing of liquid and 

resin, temperature control, separation of liquid and resin, liquid rinse of resin and 

evaporation of organic solvent (see Figures 3.1 and 3.2). 

Organic Solvents, water, weak acid, base, buffer and reagents in organic 

solvent solutions must be dispensed to any test tube on the reaction block. The 
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ASPS SIDE VIEW 


Figure 3.1 Side view of the ASPS. 

various liquids are dispensed using liquid dispensers and syringes. 

Syringes are solenoid operated syringes which are used to dispense liquid 

volumes in the range of 100 J.d. These are used for the precise injection of solutions. 

They are operated by moving the syringe, using the robot arm, to a vial containing 

the solution to be dispensed. The solenoid is fired, sucking up the liquid into the 

syringe. The arm then moves the syringe to the required testtube and the solenoid 

is then fired which dispenses the liquid into the solution. There are currently 4 
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Figure 3.2 Top view of the ASPS. 

syringes available (see Figure 3.3). 

Liquid dispensers are used to dispense various liquids from reservoirs 

(containers) using solenoid pumps. These dispensers are operated by using the robot 

arm to pick up the dispenser from its resting place, move the dispenser to the 

required vial, sending the required number of pulses (one pulse I ml) to the pump, 

and moving to the next tube. Each dispenser may dispense one liquid at a time. The 

current system has provisions for seven of these dispensers (see Figure 3.4). 
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The mixing of liquid and resin is 

accomplished by placing a multipoint 

stir plate under the sample preparation 

grid. Magnetic stir bars are placed in 

each vial to provide stirring during the 

preparation. Temperature control is 

effected by using two cartridge heaters 

which are manually controlled since the 

temperature remains the same 

throughout the sample preparation 

process. 

Separation of resin from liquid is 

accomplished using a classic vacuum 

separation apparatus which is illustrated 

in Figure 3.5. The vial is moved from 

Figure 3.3 ASPS syringe. its reaction location to the top of a 

vacuum separation unit. A valve is triggered which causes a vacuum in the unit 

pulling the liquid down into an evaporation vial. 

The resin must be rinsed by several reagents. This is accomplished using a 

vacuum nozzle integrated with a liquid dispense unit (see Figure 3.6). This unit is 

operated by moving it from its resting place to the desired reaction tube using the 

robot arm. A valve is opened which causes a vacuum in the nozzle removing 
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unwanted liquid. A fine screen prevents the resin from being sucked up into the 

nozzle. Each of these wash units is connected to a liquid dispenser pump and 

reservoir. A valve is activated routing the liquid to the wash unit. The corresponding 

solenoid pump is sent the required number of pulses for the amount of wash solution 

used. The nozzle remains submersed until the wash is finished. The robot arm then 

removes the nozzle from the reaction tube and either performs the operation on 

another tube or returns the unit to its resting position. 

An evaporation unit is used to 

evaporate solvent from an evaporation vial. 

The unit is connected to the vacuum system 

which is vented. Heating of the tube along 

with application of vacuum reduce the vapour 

pressure in the vial enhancing the evaporation 

stage. An evaporation unit is picked up by the 

robot arm and placed on top of the 

evaporation vial. A valve is opened which 

connects the vial to the vacuum system thus 

venting the organic vapours and effecting 

evaporation. Once evaporation is completed 

the evaporation units are returned to their 

resting place [Povilonis 1988]. 

WASH PROBE 


NOZ7J.E 

~JIRIIC!SH 

Figure 3.6 Liquid rinse unit. 
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3.3 THE ROBOTICS HARDWARE (CRS PLUS) 

The robot used to manipulate the various objects in the automated sample 

preparation system is the CRS plus-5 axis manipulator arm. It is manufactured by 

a Burlington, Ontario based company named CRS Plus. The CRS Plus robot is 

targeted for the laboratory and manufacturing, table top applications [CRS 1985a, 

CRS 1985b]. 

HARDWARE DESIGN- The robotic system used is the SRS-Ml Small 

Industrial Robot System. This system is a self-contained, five axis, D.C. servo driven 

robot. Included with the system is an articulated robot arm, a robot system controller 

(RSC-Ml) and a teach pendant. This system requires a video terminal or micro­

computer equipped with the CRS-Plus robot communication terminal emulation 

software as well as a gripper. The ASPS uses a micro computer for terminal 

emulation and a servo driven gripper. See Figure 3.7 for a' general view and 

configuration of the CRS plus robot system. 

The robot arm consists of a shoulder, upper arm, lower arm and wrist. There 

are five degrees of freedom which include the waist, shoulder, elbow, wrist roll and 

wrist pitch. The RSC-Ml robot system controller is a 16-bit microprocessor based 

master controller. It comes with a resident robotics language called RAPL, a teach 

pendant, 6 D.C. servo amplifiers, arm power supply and voltage regulator, and five 

servo axis cards. There are 32 input and outputs supplied with the controller which 

allow control of peripherals [CRS 1985a]. 
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Table 3.2 CRS Plus robot arm specifications 

Description 

Structure 

Payload (Maximum Speed) 
Payload (Reduced Speed) 

Reach (Without Gripper) 

Workspace Dimensions: 
Base Rotation 
Shoulder Rotation 
Elbow Rotation 
Wrist Bend 
Tool Roll 

Maximum Loaded Speed 

Joint Speeds: 
Base 
Shoulder 
Elbow 
Wrist 
Tool 

Repeatability 
Joint Worst Case Resolution: 

Base 
Shoulder 
Elbow 
Wrist 
Tool 

Drive System 

Specification 

Articulated - Five DOF 

1.00 Kilogram 
2.00 Kilograms 

0.56 Metres 

+/- 175 degrees 
+110, -0 degrees 
+0, -130 degrees 
+/- 110 degrees 
+/- 180 degrees 

0.50 Metres per second 

60 degrees per second 
60 degrees per second 
60 degrees per second 
180 degrees per second 
180 degrees per second 

+/- 0.13 Millimetres 

0.0023 inches 
0.0023 inches 
0.0014 inches 
0.0013 inches 
0.0013 inches 

DCX Servo Motors with 
Optical encoders 
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CONTROLLER TECHNICAL INFORMATION - The robot controller is 

an Intel 8086 based micro-computer designed solely for the purpose of controlling 

and driving the robot arm. There are three types of memory utilized by the 

controller which include 

4K of low power CMOS memory used for scratchpad use, 8086 stack space, 


and the interrupt vector space. 


12K of Battery-backed CMOS memory used for system parameter setup and 


user memory space expandable to 64K. System parameter setup includes such 


information as communications parameters, calibration information, arm 


configuration, etc. User memory space contains variables, location templates, 


and RAPL programs. 


64K of EPROM memory used for firmware requirements. This EPROM 


memory may be expanded up to 256K. The firmware contains the RAPL 


language, a program editor, communications routines and all low level routines 


required to drive the robot arm at the actuator level. 


The Intel 8087 math co-processor is used for all mathematical calculations. 


Real numbers are stored as 32 bit numbers giving 9 digit precision. 
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Table 3.3 CRS Plus robot system controller specifications 

Description 

Control System: 
MicroProcessor Type 
Number of axis 

Teaching System: 
Manual 
Off-Line 

Motion: 
Point-to-Point 
Straight Line 

Position Detection 

Speed Setting 

Interfaces: 
Communication 
Expansion 
User Digital Inputs 
User Digital Outputs 

Programming: 
Language 
Preparation 
User Memory Size 

Power Requirements 

Operating Ambient Temperature 

Dimensions 

Specifications 

8086 
Five DC Servo Axis 

Teach Pendent 
RAPL 

Yes, with joint Interpolation 
Yes, at reduced speed 

Digital Optical Encoders 

0 to 100% 

Dual RS232C 
Peripheral Expansion Slot 
Sixteen Standard TTL levels 
Sixteen Standard TTL levels 

RAPL 
RAPL Editor 
8K 

100-130 VAC, 50-60Hz, 3A 

0 to 50 degrees Celsius 

19" X 19" X 17" 
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TEACH PENDANT 

ROBOT ARM 
~ 

Figure 3.7 Block diagram of the CRS plus control system 

The CRS-Plus controller implements the joint interpolated and straight line 

modes of path control for the robot arm. The joint interpolated mode moves all 

joints simultaneously starting and stopping all joints at the same time. Straight line 

interpolation is a 3 axis motion since the wrist axes are not moved. This mode 

ensures that the tool tip will move in a straight line from the current tool position to 

the specified location. Digital input/output scanning is executed at 30 milli-second 

intervals [CRS 1985a]. 
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MEMORY AlLOCATION- Memory visible to the user is the EPROM and 

CMOS memory. The firmware includes a monitor for hardware definition and the 

operating system which resides on top of the monitor. The operating system handles 

the execution of RAPL and the generation of robot path coordinates for motion 

control. CMOS RAM is used to store user programs, variables and locations. 

RAPL programs are stored in a program table which may hold up to 255 

eight-byte program names, two-byte indexes to the program buffer and two-byte 

checksums. Programs are stored as a sequence of ASCII characters. The amount 

of memory allocated for program storage may be specified by the user using the 

ALLOCATE command. 

A symbol table is maintained for the implementation of variables. The size 

of this table is also specified by the ALLOCATE command. The symbol table stores 

an eight-byte name, a four-byte location and a two-byte checksum for each variable. 

Locations (precision and cartesian types) are stored in a location table. Each 

location requires ten fields in the table. The first field contains an eight-byte location 

name. The next eight fields are four-byte locations used to store each of the eight 

components for each location. Each component of a cartesian location is stored as 

a four-byte real number representation of real world coordinates. Each component 

of a precision location is stored as a four-byte integer which represents the value of 

an axis motor coordinate (in encoder pulse units). The tenth field is a two-byte 

checksum [CRS 1985a]. 
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Table 3.4 CRS Plus robot controller memory map 

The following is a system memory map of memory allocation 

Address 
(hex) 
FFFF:O 

FOOO:FFEF 
FOOO:OOOO 
EOOO:OOOO 

OOOO:FFFF 
0000:3FFF 
0000:2000 

OOOO:lFFF 

0000:1000 

OOOO:OFFF 
0000:0400 

0000:03FF 
0000:0000 

Description 

Bootstrap Address 

Upper limit of firmware address space 
Standard 64K firmware address boundary 
Extended 128K firmware address boundary 

Optional expansion memory upper limit 
Standard 16K RAM memory upper limit 
Approximate start of user memory (may vary according to 
firmware release version, and other options) 
Approximate top of CPU scratchpad space and system 
parameter space. 

Start of CPU scratchpad and system parameter space 

Top of 8086 stack space 
Start of 8086 stack space 

8086 vector interrupt space 
Bottom of memory 

User memory is allocated according to the following table 

Location of: Variable Table 
Location Table 
Program Table 

Start of User Memory is: Program buffer 

40:37EO 
40:2B80 
40:2ACO 

40:1A40 
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COMMUNICATIONS INTERFACE- The controller has a communications 

interface which allows external computers to communicate with the system. It may 

be used to transfer data either to or from a computer. The CRS Plus 

communications protocol will allow the computer to communicate with any segment 

of memory in the controll~r. Error checking and automatic transmission retries are 

performed by the protocol to establish an error free communication link. The 

controller is configured to be the slave and the external computer the master device 

[CRS 1985a]. 

3.4 RAPL AS A ROBOTICS LANGUAGE 

RAPL (robotics applications programming language) is the robot arm 

language supplied with the CRS Plus robot system. RAPL is a BASIC-style robot 

language which resides in the controller's EPROM. Like most other BASIC-style 

robot languages it operates at the End Effector level [CRS 1985b]. 

VARIABLES - The RAPL language provides only the real variable type. 

It does support an integer input and output but these values are stored as reals. The 

normal operators are available for the real type. These being addition, subtraction, 

multiplication and division. Variables are stored in battery-backed RAM and are 

therefore stored in memory even when the power is removed. 

Mathematical functions supported by RAPL are: 


ACOS Arc Cosine 
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ASIN Arc Sine 

ATAN Arc Tangent 

cos Cosine 

SIN Sine 

TAN Tangent 

Variables may be printed to the screen or to a printer in either a real or 

integer format. An input statement is also supplied to allow data input from the 

console [CRS 1985b ]. 

LOCATION TEMPLATES - Location templates contain six real values. 

These values are the three-dimensional cartesian coordinates X, Y and Z, and the 

yaw, pitch and roll components. Each of these component's values may be copied 

to a variable and variable values may be copied to a specific component. 

The current position of the arm may be stored in a location template at any 

time by either using the supplied teach pendant in manual mode or by using the 

RAPL command ACTUAL. Information contained in location templates may be 

displayed and edited from the console at any time. Location templates may be 

assigned to other location templates. 

There is a provision for a naming convention for location templates. The last 

three characters of the location name must be a number. Locations with the same 

name but different numbers are considered related. The WITH command is used 

to state which group of related templates are to be used. From this point on, only 
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the number portion is necessary for addressing locations. This is a crude method of 

providing a structure which is close to an array of locations. This structure proves 

to be awkward to use and difficult to read in a program. 

Location templates may be listed and deleted from memory. As with 

variables, location templates are stored in battery-backed RAM and therefore remain 

in memory even when the controller is shut off [CRS 1985b ]. 

MOVE COMMANDS- RAPL supports a rich set of robot move commands. 

All high level move commands support both joint interpolated and straight line 

methods of path control. RAPL includes the following move commands 

APPRO Approaches the given point by the specified amount 

DEPART The arm departs from the present location by a specified 

amount 

MOVE Moves the arm from the current location to a specified location 

JOG Moves the arm along the X, Y and Z axes by the specified 

incremental amounts 

RAPL also includes commands for the movement of the arm at a lower level 

of control. The arm may be moved at the actuator level by specifying the 

incremental distance of movement [CRS 1985b]. 

INPUT I OUTPUT- Commands have been provided to enable the 

programmer to operate and monitor input/output devices. This is useful for the 

implementation of sensory equipment monitoring. Also, other devices may be 
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controlled by the program to interact with the robot arm. 

The ONSIG command is used to monitor an input stream. If the state of this 

input goes high, the specified RAPL program will take over. When the command is 

completed, control is returned to the program executing at the time of the input 

status change. 

Unfortunately, the OUTPUT command is very awkward to use. The user is 

required to operate numbered bits corresponding to output devices. The command 

is functional, but may require the programmer to produce unnecessarily complicated 

and convoluted code to operate output devices [CRS 1985b ]. 

THE PROGRAMMING ENVIRONMENT- The programming environment 

provided by CRS Plus consists of a rudimentary line editor and a RAPL interpreter. 

The editor is useful only for simple edits to existing programs. CRS Plus obviously 

recognized this fact and provided a mechanism for downloading programs from a 

micro-computer. This allows the user to develop programs using any text editor. 

Text files may be downloaded to the controller via ROBCOM and then run in the 

controller. 

Although this is a better alternative, it is still deficient as a programming 

environment. The user must create RAPL programs, save them as text files, exit the 

editor, execute the ROBCOM communications program and download the text file 

to the controller. The user may now run the program in the controller. The 

development process requires this sequence to be performed a large number of times 
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which greatly reduces the efficiency of program development. 

The interpreter offers some operating system commands which include the 

ability to list directories of all programs, and display listings of variables and locations 

which are currently stored in memory. The user is permitted to delete any of these 

items as desired [CRS 1985b]. 

PROGRAMMING STRUCTURES - RAPL is extremely deficient in 

programming structures. It contains an IF structure which, based on a condition, 

performs a GOTO to the specified line number. The GOTO and GOSUB 

commands have also been included. This is the extent of programming structures and 

flow control. This lack of programming structures makes the programming of 

complex systems very difficult and promotes the development of spaghetti code which 

is difficult to read, modify and maintain [Fairley 1985]. 

RAPL REVIEWED - Many of the deficiencies found in the current robotic 

system may be attributed to RAPL. The language is similar to unstructured BASIC. 

Although the language has many powerful robot arm specific constructs, it lacks 

structure and is deficient in data structures. This style of programming is inadequate 

for designing a robot program which has a high degree of flexibility. It may be 

adequate for the programming of a simple, repetitious task but lacks the software 

engineering characteristics which would allow the programmer to develop complex 

programs [Fairley 1985]. 
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3.5 OVERVIEW OF THE ASPS 

Several test runs Qf the ASPS have shown both promising analytical results and 

shortcomings in the current design. In order to get the ASPS to perform the sample 

preparation sequence, the supplied FORTRAN program was used to create a robot 

program. The program was loaded into the robot controller and run. Many 

problems were discovered rapidly during this exercise. Robot program changes were 

required in order to get the arm to complete the required tasks and object locations 

required reteaching. 

The method of creating the robot program produced RAPL code which didn't 

work properly and was extremely difficult to modify. Although eventually a program 

was hard-wired to perform the sample preparation routine, program development 

time was extremely high and required a programmer to get it to work properly. This 

makes it impractical for real-world usage. In order for the ASPS to be useful, it must 

be possible for an analytical technician to program and run the system without the 

aid of a programmer particularly since the ASPS was designed to perform a number 

of sample preparation procedures. 

The teaching of object locations is a major problem with the ASPS. Removal 

of the heating block work space for cleaning or repairs is a necessity. It is virtually 

impossible to place the work station in precisely the same location to the required 

tolerances each time it is removed. Therefore, the robot must be retaught positions 

each time the work area is removed. This is a very tedious procedure and requires 
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knowledge of the ASPS programming system and the RAPL programming language. 

Other mechanical problems have been experienced aside from the software 

problems. The robotic gripper must manipulate round tubes and objects. It is 

impossible for the current design to meet tolerance requirements. For instance, 

sample tubes are not held rigidly and many times slip out of position. When the 

robot arm attempts to insert it into a position, it misses the target. This problem has 

been experienced with virtually every ASPS object. 



CHAPTER4 

FORTH BASED ROBOT lANGUAGE DESIGN CRITERIA AND 

SPECIFICATIONS 

The literature review of existing robot languages together with the ASPS 

hardware design and desired programming capabilities suggested that a new robot 

arm language was needed as a base language for implementing the ASPS software 

system. This new language was designed to incorporate programming features which 

would allow a flexible ASPS program to be developed. 

4.1 ASPS ROBOTICS SOFfWARE REQUIREMENTS 

The ASPS process is essentially a pick and place type of operation. That is, 

objects are basically picked up and moved to other places. Objects must be picked 

up with enough force to prevent dropping, yet gently enough to prevent damage. 

Also, care must be taken to avoid disturbing the object during movement and 

collisions must be avoided [Korein 1987]. 

The ASPS requires a robotics language which will support the development 

of a system which allows the integration of robot planning with peripheral control. 

The robot planning mechanism must be developed in such a manner as to allow a 

non-programmer user to easily develop ASPS programs. As previously discussed, 

maximum flexibility must be achieved to allow for the preparation of a varying 

49 




50 

number of different sample preparation procedures. 

The ability to create a friendly user interface is also very important. This may 

include support for windowing, menus, and other high level interfacing mechanisms. 

Several arm movements must be supported including straight line and joint 

interpolation movement to a location. Tool orientation commands should also be 

included for easy manipulation of the robot gripper. 

Location templates should be supported for easy location of objects. The 

language should also provide a teach pendant interface for the teaching of object 

locations. Considering the problems experienced with object locations, a useful 

feature would be the ability to calibrate surfaces or blocks of objects. This would 

provide the mechanism for the movement of the surface without reteaching the 

position of each and every object contained on that base, thus creating a flexible 

working environment for later developments in the ASPS. This is very useful since 

the ASPS is still in the research phase and is constantly being modified. 

Peripheral control is very important in the development of the ASPS planning 

system. Constructs must be provided for control of peripherals. These must include 

timed controls, and synchronized management of a varying number of peripherals. 

It should be relatively easy to remove or add a peripheral to the system. Peripheral 

feedback constructs would be helpful to allow for error checking. 

Mathematical functions such as trigonometric functions would be an asset 

since robot planning involves the manipulation of geometric locations. Real time 
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clock checks are important since sections of the analytical procedures involve timed 

actions such as reaction times. This becomes critical in the case of coordinating 

several different preparation procedures at the same time. Although this may not be 

dealt with directly by the robotics language, it should be considered when selecting 

the language. 

The robotics language should be structured for the development of easily 

maintainable, readable, and modifiable code [Fairley 1985]. At a bare minimum, 

looping and logic structures should be provided. The language should utilize the full 

power of the host computer. This includes the use of all the memory, fixed disk, 

printer, graphics, mouse, communication ports and other features and peripherals 

associated with a micro-computer. 

Error checking routines are important for the detection of collisions and other 

potential problems. Corrective actions should be provided for problems which arise 

more frequently and it should be easy for the programmer to develop corrective 

actions for any other foreseeable problems. Debugging facilities would also be very 

helpful for the development of robotics planning programs. 

In summary, the specifications for the robotics language are: 

The system must run on the host micro-computer in real time through the 

communications interface 

A powerful program development environment - with an integrated system 

which includes an editor, interpreter, compiler and debugger. 
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Structured flow constructs 

Standard programming language data structures 

Maximum power and flexibility 

Data storage commands which will accommodate the storage of all data easily 

User friendly environment 

Interactive environment 

Ability to build on the language easily 

The ability to calibrate the system in 3 dimensions allowing the movement of 

work areas without the reteaching of all positions 

Ability to work with peripheral devices at a high level 

Mathematical functions should be built in directly 

Real time clock accessability 

Standard robot language features including 

Joint interpolated and straight line movements 

Location teach feature 

Location template data structures which are easy to use 

Data structures for location templates which will enable the user to 

more easily define and program complex tasks 
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4.2 	 CHOICE OF A SUITABLE DEVELOPMENT lANGUAGE AND 

ENVIRONMENT 

Mter reviewing several styles of development languages, FORTH was chosen 

as the language for development of the robotics language. The choice of FORTH 

is based on a number of criterion which were developed during experimentation with 

the current system and the review of existing robot languages. It was decided that 

the robot language be developed around an existing high level language to decrease 

development time and avoid the redundancy of developing a new language with 

features already found in existing languages. 

The development of robot programs is prone to a high degree of trial and 

error much more so than that of conventional programming. Interpreters have 

become a necessity for the development of useful programs because of the need for 

a fast program revision cycle [Korein 1987]. 

The ideal language would provide an interactive interfacing system, with high 

level language features and the ability to design the robot language in such a way as 

to allow the user to use the robot language without having to learn the host language 

in detail. This provides a sufficiently high level language to program powerful robot 

plans yet sufficiently easy to allow a non-programmer to write robot programs. 

The most obvious choice for a development language would be a Pascal-style 

language which seems to be the most widely used style in the robot language realm. 

Unfortunately, the use of such a language would require the robot programmer to 
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have a knowledge of the host language in order to use the robot language features. 

Also, the environments of such languages are not conducive to an interactive 

interface with the manipulator. 

FORTH is the language which best fits the aforementioned criteria. The 

literature search did not reveal any languages utilizing the Forth environment as a 

base language for a robotics language. The following is a discussion of FORTH 

features and their applicability to the development of a robot language. 

FORTII- Forth has been considered a high-level language, an assembly 

language, an operating system, a set of development tools and a software design 

philosophy. Forth has a powerful set of built-in commands and provides a 

mechanism by which the programmer may develop his own commands. This feature 

is very powerful and directly applicable to the problem of developing a robot 

language which is easy to use [F-PC 1988a]. Robot commands may be developed, 

thus allowing the robot programmer to use these commands without learning to 

program in Forth. 

Forth may be run in an interpretive mode or it may be compiled. This 

provides the flexibility of an interactive programming environment with the ability to 

create stand-alone robot programs which may be run without the Forth programming 

environment. Forth also provides a mechanism for defining words (commands) in 

assembler [Brodie 1987]. This feature is very useful for the development of low-level 

routines such as the robot/computer communications interface and the handling of 
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peripherals. 

The program cycle time for Forth is greatly decreased since it is totally 

integrated with an editor and an interactive environment. This reduces the 

programming and debugging time required for the development of complex systems 

[F-PC 1988b]. 

Since the final programs resemble English-like descriptions of the final 

application, Forth has been referred to as a meta-application language. It is a 

language that allows the programmer to develop application-oriented languages. 

Since user defined commands can be used to define other commands, the 

environment is ideal for expansion and further development. After the robot 

programming language has been developed, changes may be required as changes to 

the ASPS hardware are made. Forth provides structured control operators which 

force the programmer to develop a nested program design. Forth is designed to 

handle small subroutines (words) with virtually no cost in efficiency. This encourages 

information hiding which simplifies program enhancement. Forth is a very efficient 

and fast language which is useful for real time applications. Timing may be 

important if the robot language is to handle sensory information in real-time. Forth 

is also transportable and has been implemented on a large number of different mini 

and microcomputer systems. 

Forth has been used in the arts, for business and personal computer software, 

data acquisition and analysis, expert systems, graphics, medical, portable intelligent 
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devices, process control and robotics [Brodie 1987]. 

Forth provides an interpreted and compiled language environment. It 

provides a mechanism to develop a robotics language which is easy to use for the 

non-computer programmer and also very powerful for the experienced programmer. 

It provides high level language features as well as low level capabilities. Forth 

satisfies all the requirements for the development of a powerful, flexible and easy to 

use robot language. 

F-PC DIALECT OF FORTH - The F-PC implementation of Forth was 

chosen as the implementation language for the development of the robotics language. 

This version of Forth was implemented by Tom Zimmer and Robert L. Smith [F-PC 

1988a]. It is a greatly enhanced version derived from the F83 model for the IBM-PC, 

XT, or AT by Henry Laxen and Michael Perry. F-PC is a sequential file system as 

opposed to the standard Forths which use a block file format. The F-PC system 

advantages are: 

Smaller source files 

Portability and standardization of files. Most programs and editors may read 

sequential files 

No limitation is placed on the size of a word definition 

No limitation on the number of comment lines in a definition 

Code is more easily modified with sequential files 
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The F-PC system is designed to address the following objectives: 

A system that is familiar to the large installed base of F83 users 

A system that brings Forth fully into the realm of files 

A Forth system that provides concepts familiar to C and Pascal programmers 

A system which maintains Forth's interactive nature 

A system which is fast to compile 

A DOS FAT (File Allocation Table) system with many tools, which still has 

room for a large application program 

F-PC's major features include: 

Direct threaded dictionary for speed 

Separated lists and heads to increase space 

Prefix assembler to enhance readability 

Assembler supports both prefiX as well as postfix assembly syntax for 

familiarity 

Full DOS access from system and Command level control 

Full Handle/Path based file system 

Full user configurable sequential text editor provided in source 

Full DOS memory management interface 

System based time and date functions 
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Full screen editor SED for sequential text files is integrated into F-PC for ease 

of creating and modifying source code 

Very fast screen I/0 is provided for editor and normal text display. 

Paths are fully supported, as entered from the command line, or applied to a 

file automatically if not specified 

Built in DOS commands such as DIR, COPY, FORMAT, DEL, RENAME, 

MD, RD, CHDIR, PATH, etc. 

Cursor shape control 

Extended memory access routines are provided 

Function and control keys are supported for program use 

The amount of directly available user space has been greatly increased. 

Somewhere in the order of 400K for programs and data. 

User interface words are provided including a windowing package. 

The F-PC environment provides an ideal interactive system for both the 

development of the robot language and for the interface which will be made available 

to the language user. This eliminates the need for developing one specifically for the 

robot language. 

4.3 DESIGN OF THE ROBOTICS lANGUAGE 

A balance between power and ease of use must be struck for the 

implementation of a robotics language which is suitable for useful, commercial 
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robotics planning. Since RAPL contains the fundamental functions required for a 

rudimentary robotics language, it was decided that RAPL would be used as a low 

level language and the Forth environment would generate RAPL commands to 

implement the higher level language. Forth is used to establish the two way 

communications link which is used to send RAPL commands to the CRS Plus 

controller and receive feedback from the controller. This is highly important since 

this type of link is required for the implementation of an interactive language and the 

ability to control the robot completely from the host computer. 



CHAPTERS 

FBRL DEVELOPMENT 

The implementation of FBRL was accomplished in the following sequence: 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

implementation of data structures which would be used to implement the 

language. 

development of a communications interface which facilitates the micro­

computer control of the robot arm in real time. 

implementation of a number of words which would form the basis of using 

RAPL as the low level language. 

implementation of the robot movement commands. 

implementation of complex data structures for the manipulation of robot real 

world coordinates. 

implementation of higher level constructs such as the calibration system. 

testing and debugging of the system. 

Figure 5.1 is an illustration of the total FBRL system. 
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5.1 DATA STRUCfURES 

Several data structures were required for the implementation of a number of the 

features. These structures include queues, arrays and strings. 

QUEUES - A Queue data structure was developed for the implementation 

of the communications interface. This abstract data structure was designed to 

provide the user with the ability to create any number of named Queues. This 

structure was originally implemented in high level Forth. Subsequently, it was 

decided that several routines should be implemented in low-level code since they 

were to be used for the communications buffer. Both sets of routines are 100% 

compatible. 

The abstract data structure was implemented to store one-byte characters. It 

would not be very difficult to implement a generic structure which would store any 

data type, but since there was no anticipated need for such a structure, the type 

specific data structure was implemented in order to speed up the routines and cut 

down on the development time. 

The queue structure is implemented by creating an array of one-byte 

characters which is six bytes longer than the size of the queue. Figure 5.2 shows the 

implementation structure for the queue. 
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I 
end of 

1 
queue 

I 
head or queue 

I 
tail of queue 

cell 1 cell 2 

L---> data 1 data 2 

. 

I data n-11 data n I< 
. 


I cell p-11 cell p I< 
Figure 5.2 Implementation structure for a queue. 

ARRAYS - The abstract data type for arrays was included for use in the 

implementation of the language as well as use as a data structure in the language 

itself. One and two dimensional arrays were implemented as generic abstractions 

which may store any data type. 

ONE DIMENSIONAL ARRAY- The implementation structure for the one 

dimensional array is illustrated in Figure 5.3. The run-time code for ARRAY returns 

the absolute address of a cell given the cell index. 

For example, 5 X returns the absolute address of the cell from the array X 

at index 5. 
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Icell size (1 

t length 

I cell 1 

I cell 2 

- 255) I byte 0 

I bytes 1 & 2 

I byte 3 to cellsize + 3 

I 
cell n n = length * bytes I cellsize + 3 

Figure 5.3 Implementation structure for a one dimensional array. 

TWO DIMENSIONAL ARRAY- The two dimensional array was added as 

a vehicle for storing matrices. This is useful in robotics for the representation of a 

matrix of objects such as the reaction block of the ASPS. The implementation 

structure is shown in Figure 5.4. 

Icell size (1 - 255) I byte 0 

I cols (1 - 65535) I bytes 1 & 2 

I rows (1 - 65535) I bytes 3 & 4 

I 	 cell o,o I byte 5 to cellsize + 5 

cell 1,0I 	 I 
cell r,c 

Figure 5.4 Implementation structure for a two dimensional array. 
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Storage space for a two dimensional array is defined by rows * cols * (bytes 

per ce11)+5. The run-time code for 2ARRA Y returns the absolute address of a cell 

given the row and column of the cell. 

5 6 X returns the absolute address of the cell from the two-dimensional array 

"X" at row 5 and column 6. 

S1RINGS - String manipulation was necessary for the implementation of the 

RAPL interface for the language. It also gives the language more flexibility and ease 

of use. The string structure is shown in Figure 5.5. 

II size (1 - 65535) bytes 0 & 1 

Ilength (0 
I 

- 65535) bytes 2 & 3 

!char 1 I char 2 bytes 4 & 5 

Iebar n-1 char n string length + 3 

lcell p-1 cell p I string size + 3 

Figure 5.5 Implementation structure for strings. 
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5.2 COMMUNICATIONS INTERFACE 

In order to communicate in real time with the robot controller, a serial 

communications interface was written for the RS232 interface which could 

simultaneously transmit and receive data in the background transparent to the 

routines which require the data. All data is transmitted and received through buffers. 

These buffers are created using the queue structure defined in section 5.1. In order 

for a routine to transmit characters it need only store the character in the transmit 

buffer. To receive, the routine need only get the character from the receive buffer. 

The XON/XOFF protocol has been adopted as the handshaking mechanism. 

The use of a background communications interface serves two purposes. It 

provides a basis by which the robotics language may simultaneously process data 

while communicating with the robot controller and hides the details from the user 

providing a high level interface used to communicate data to the controller. 

In order to provide a communications link the following steps must be taken: 

1) A read and write buffer must be created 

2) The base address for the UART (Universal Asynchronous 

Receiver!fransmitter) corresponding to the required communications port 

must be retrieved 

3) The UART chip must be programmed to provide the required 

communications protocols 
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4) The interrupt vectors must be revectored to jump to our communications 

routines 

5) Communications interrupts must be enabled for serial port read and write 

6) A routine must be provided which handles read and write interrupts 

READ AND WRITE BUFFERS - Two buffers are provided for writing and 

reading data to and from the port. The Queue routines are used to implement these 

buffers. Low-level routines have been provided to be used by the low-level 

communications routine which are all written in assembler. These queues act as an 

ideal medium for passing data between high and low level routines. 

SETUP ROUTINES- Before any communications may occur, the hardware 

must be set up to begin background receive and transmit as well as the setup of 

communications protocols. User defined parameters are word length, number of stop 

bits, parity and baud rate. Each protocol is implemented by a single Forth word. 

These words are then used in the implementation of the COMM-SETUP word which 

provides an easy to use vehicle for the communications protocols configuration. 

COMM-SETUP hides all the technical details from the user and provides a high level 

interface by which to configure the communications port. 

A high level interface is provided which only requires the communications 

protocol information passed either on the stack or as parameters to COMM-SETUP. 

This information is then used to program the UART. 
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PROGRAMMING THE UART- The UART chip physically transmits and 

receives characters through the RS232 pin connector. The DOS routine INT 14h is 

used to accomplish the programming of communications protocols. A two byte 

variable is set up by these routines to comply with the INT 14h parameter format 

[Prosise 1989]. Each routine manipulates the lsb of this variable to reflect the 

corresponding communications protocols with the entry conditions of the BIOS 

routine. The variable is then passed to the SETUPUART routine which stores it in 

the DX register and calls the 14h BIOS routine [Tandy 1984]. 

INTERRUPT REVECI'ORING AND ENABLING - Background 

communication is accomplished through the use of hardware interrupts. Interrupt 

vectors for the communications interrupt must correspond to the location of our 

read/write routines. This is accomplished by the INSTALL-INTERRUPT routine. 

This routine uses the DOS service 25h [Tandy 1984] to store the original interrupts 

before the revectoring. The variables COMMINT -SEG and COMMINT -OFF are 

used to store the interrupt segment and offset respectively. 

At this point the interrupts for communications port read and write must be 

enabled. This is accomplished in the COMM-INT-ENABLE routine. The routine 

unmasks the IRQ4 interrupts in the 8259's IRQ mask register and initializes the 

interrupt enable register [Krantz 1983]. The DART's (8250) registers are then set 

to enable data receive and transmit. 
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COMMUNICATIONS INTERRUPT SERVICE - The heart of the 

communications interface is the receive and transmit interrupt service routine. This 

routine's address is the target of the interrupt revectoring. When a communications 

hardware interrupt is detected, the interrupt controller performs the jump to our 

communications routine (COM). 

COM saves the registers on the system stack to preserve the machine state 

prior to the interrupt. The line control register bit 7 - Divisor Latch Access Bit - is 

cleared in order to ensure that the Receive{fransmit Hold register is accessed. The 

interrupt identification register is checked for whether a character was received or 

whether the transmit register is empty. 

If a receive status is detected, the READ-COM routine is called. If the 

transmit register is empty the WRITE-COM routine is called. The interrupt 

identification register is checked again to ensure that there is no interrupt pending. 

That is, no communications interrupt has occurred during the previous interrupt 

service routine. If an interrupt is pending, a software interrupt is initiated in order 

to satisfy the pending interrupt. This prevents the loss of data during high speed 

transmissions. The 8259 is then signalled with an EOI (end of interrupt) code to 

reestablish the interrupt handling. All registers are restored and an interrupt return 

(IRET) is issued. 
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The READ-COM routine is called via the COM communications interrupt 

service. The character is read from the receive register and stored in the receive 

buffer by using the low level queue routine ENQ-L. The received character is 

checked for the XON/XOFF code. If detected and the XON/XOFF protocol is 

enabled, transmission is halted by setting the XOFF code. 

If the receive buffer is full, the XOFF code is immediately transmitted to halt 

any further transmission. Control is passed to the WRITE-COM routine from the 

communications interrupt service. The next character in the buffer is extracted and 

written to the transmit register once the transmit register is deemed empty. 

RESETTING INTERRUPTS - Upon exiting the FBRL system, the 

communications interrupts must be restored to the previous vectors. Since the 

interrupt service routine no longer exists, an interrupt request would result in a 

crash. 

5.3 ROBOT INSTRUCTION SET 

The robot instruction set consists of commands which directly affect the arm 

status. That is, the arm position or the arm status. The basis of this instruction set 

is RAPL. As previously mentioned, the RAPL language is rich in robot language 

constructs so the first stage of the robot instruction set was to implement the RAPL 

language in FBRL. The required steps for implementing a RAPL command are: 
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1) interpret command line 

2) send RAPL command number to controller 

3) send parameters, commas (if required) to controller 

4) send location template (if required) to controller 

5) send straight line command (if required) to controller 

6) send carriage return to controller 

In essence, the sequence generates a tokenized RAPL command which is 

transmitted to the CRS-PLUS controller which in turn runs the RAPL command. A 

tokenized RAPL command consists of a command number rather than the text 

version of the command. This process eliminates a majority of the parsing and 

interpretation in the robot controller. Also, use of the tokenized command slightly 

reduces the amount of communicated data. 

The routines for interpreting the command line may be found in 

INPUTS.SEQ. This option was included to enable the user to issue RAPL 

commands in a format which lists the parameters after the issuance of the command. 

The user may still pass the parameters via the stack in the traditional Forth fashion. 

The parameter interpreter interprets reals, integers and strings, and places them on 

the stack. The routine may now work with this data as though it had been passed on 

the stack by the calling routine. 

The RAPL command number must be transmitted to the controller. This 

command number is an integer which is transmitted in RAPL ("/"##)format by the 
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command SEND-COM. RAPL parameters are sent via the SEND-INT, SEND­

REAL and SEND-COM commands. These commands send integer, real and byte 

or character values to the robot controller. Commas are used as delimiters in RAPL 

and may be transmitted to the controller by issuing the SEND-COMMA command. 

RAPL commands which require one or more locations as parameters utilize 

the SEND-LOC command. This command sends a location template in RAPL 

format as part of the parameter line of a RAPL command. The straight line 

parameter for RAPL is the same for all RAPL commands. Therefore, a separate 

routine was included for the transmission of the straight line character sequence to 

RAPL. This sequence is simply the transmission of ",S". 

The SEND-CR routine simply transmits a carriage return (ASCII 13) to the 

robot controller. It is used at the end of every RAPL command to denote the end 

of the command and hence instruct the controller to interpret and effect the 

command. 

5.4 ROBOT lANGUAGE DATA ABSTRACTIONS 

RECTANGULAR LOCATION MATRIX- The rectangular location matrix 

is designed for robot applications in which objects are located in a high precision 

three-dimensional rectangular matrix. The objects are located on a matrix such that 

they are all placed at equal distances from each other. The data abstraction 

automatically produces locations by calculating offsets along each of the three axes 
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and shifting the location from a base address. 

In RAPL, the only way to simulate this function is to teach the robot arm each 

and every location in the matrix. This method requires an initial calibration of the 

structure by teaching the arm a base location and specifying the offset between 

objects for each axis. 

The matrix is labelled using an ordered triple (x,y,z) for each location. By 

calling the routine with the specified ordered triple, the location is calculated and 

returned. The data structure for the rectangular matrix is shown in Figure 5.6. 

I 
base location two byte pointer to base location template 

I 
X offset 

I 
I . . 
i 

y 
I~ 

offset 
I 
I . . 
i 

z 
I_ 

offset 

real number offset for X axis 

real number offset for Y axis 

real number offset for Z axis 

Figure 5.6 Implementation structure for the rectangular matrix data structure. 
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Figure 5.7 Rectangular matrix illustration. 

Figure 5.7 illustrates a rectangular matrix configuration. The rectangular 

matrix provides an easy method of addressing a matrix of locations. Typically, objects 

are placed in a two-dimensional matrix of locations as found with the ASPS heater 

block. The third dimension (Z axis) may be used to facilitate objects of varying 

heights which may be placed in the two-dimensional matrix. 

In order to completely understand the rectangular matrix, an example of the 

set up and use is provided. 

LOC 1.0 2.0 3.0 RECfMAT MAT 

This particular example sets up a rectangular matrix which has offset spacings 

of 1.0, 2.0 and 3.0 for the X, Y and Z components, respectively. The base location 

is LOC and the rectangular matrix name is MAT. The run time portion of the 

rectangular matrix yields a location based on the previously specified parameters. 

111 <loc> MAT 
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This example would calculate the X, Y, and Z components of the matrix 

location (1,1,1) and deposit them in the location template <lac>. Each component 

is calculated using the offset information as shown in the following example. 

<loc>.x = LOC.X + (X-index * X-offset) 

By providing this data structure, we eliminate the need to either teach a 

myriad of locations and hence chew up unnecessary amounts of memory or the need 

to hard code such calculations for each object matrix. Implementation of the 

structure as an abstract data type produces an easy to use mechanism for locating 

objects in a robot workspace which has a number of rectangular object matrices as 

found in the ASPS. 

RADIAL MATRIX - The radial location matrix is designed for robot 

applications in which objects are located in a high precision three-dimensional circular 

(radial) matrix. The objects are located on a matrix such that they are all placed at 

equal distances along the Z axis (height) and between radial rings, and the same 

incremental angle between radials. The data abstraction automatically produces 

locations by calculating offsets along each of the three axes and shifting the location 

from a base address. 

As found with the rectangular matrix, the only way to simulate this function 

in RAPL is to teach the robot arm each and every location in the matrix. The radial 

matrix abstraction requires an initial calibration of the structure by teaching the arm 
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a base location and specifying the incremental angle between radials, the distance 

between rings, and the Z axis offset. 

The matrix is labelled using an ordered triple (x,y,z) for each location. By 

calling the routine with the specified ordered triple, the location is calculated and 

returned. The implementation structure for the radial matrix is illustrated in figure 

5.8. 

I 
base location 2 byte pointer to base location template 

I 
radial ring dist real number distance between radi~l rings 

I 

I 
. . 
i 

• I
J.ncremental angle real number incremental angle spacing between radials 

I 

I 
. . 
i 
I 

real number base angle base angle 
I 

I 
. . 
i 
!

radJ.us real number distance from centre to base point 

Figure 5.8 Implementation of the Radial Matrix Data Structure. 



77 

INCREMENTAL 
ANGLE 

BASE LOCATION 

Figure 5.9 Example of a radial matrix. 

RADMAT calculates several of the intermediate components and stores them 

in the data structure for use during runtime. These components are the base angle 

and the radius. The base angle is calculated by extracting the X and Y components 

of the base location, and using ANGLE-FROM-ORIGIN to calculate the base angle 

from the point (0,0). The radius is the distance from the centre to the base location. 
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The X and Y components of the base location are used to calculate this distance 

The runtime version of RADMAT uses the stored information coupled with 

the indices passed as parameters to calculate the corresponding location. Firstly, the 

radius to the indexed ring is calculated by multiplying the ring-index by the ring 

spacing. Next, the incremental angle is multiplied by the increment index to obtain 

the angle from the base location. At this point, we have the radius and the angle 

from the origin. By using CALCPT, we may now calculate the X and Y components 

of the location which is addressed by the specified parameters. The Z component 

is calculated as an offset as in the case of rectangular matrix calculations. 

Radius = Ring-Index* Ring-Spacing 

Angle = Radial-Index* Incremental-Angle 

X = Radius * COS( Angle) 

Y =Radius* SIN(Angle) 

Z = Z-index * Z-offset 

Figure 5.9 shows an example of the configuration of a radial matrix. This type 

of configuration takes advantage of the robot arm's total workspace. It provides a 

natural placement of objects which corresponds with the circular shape of the arm's 
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workplace. An example of the use of this data abstraction follows: 

inc-angle ring-dist Z-off base-lac RADMAT MAT 

0.2 0.5 1.0 LOC RADMAT MAT 

This example yields a radial matrix which has an incremental angle of .2 

radians, radial rings which are at 0.5'' spacing and a 1.0" Z axis offset. The base 

location is LOC and the radial matrix name created by RADMAT is MAT. The 

runtime portion RADMAT accepts the radial ring index, incremental angle index and 

Z-index as parameters and returns the calculated absolute location coordinates. 

rad-ring-index incremental-angle-index Z-index <loc> MAT 

1 1 2 <loc> MAT 

This example yields the location at index 1 1 2 and deposits the X, Y, and Z 

components in the location template <loc>. 

5.5 THREE-DIMENSIONAL CALffiRATION I MAPPING SYSTEM 

Many of the problems experienced with robotics systems is the precision and accuracy 

with which the object locations must be placed. With conventional systems, any 

movement of the placement of objects must be taught to the robot arm. Therefore, 

a movement of a base supporting many objects requires the programmer to reteach 

every position. This movement may be caused by the reorganization of the robot 

workspace or by the inability to reposition a base set of objects to required 
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tolerances. 

This latter scenario was experienced with the ASPS. Since the heating block 

must be removed for cleaning, problems arise in the placement of the block in the 

precise location with which each of the objects' locations were taught, consequently, 

the robot arm must be retaught each and every object location. 

A solution to this problem has been implemented in FBRL. A calibration and 

mapping system has been developed which calibrates the position of a block of 

objects and remaps the locations when the block is moved. A three-dimensional 

calibration and mapping system has been implemented for the calibration of a 

three-dimensional object block. 

The system is calibrated by designating three precise locations which represent 

a plane on the block to be calibrated. The first time an object block is used, it is 

calibrated by teaching the three locations and storing them in a calibration data 

structure. Each time the block is moved, the robot arm is guided to the three 

calibration locations. These locations are then used to form the new plane which 

defines the orientation of the block. From this point on, all previously taught 

locations are mapped to correspond to the new orientation and position of the block. 

One problem arises with this system when the block is moved from the original 

position and a new location must be taught. The system has no way of discerning 

when locations are taught. The way FBRL gets around this problem is by reversing 

the calibration method for taught locations where taught locations are mapped back 
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to the block orientation of the original calibration plane. All locations are converted 

to their corresponding locations on the original calibrated block orientation which 

alleviates the aforementioned problem. 

A data abstraction has been designed to implement the three-dimensional 

calibration system. Each block of objects may be defined by a different calibration 

abstraction. The robot work space may now be totally modular and dynamic. Object 

blocks may be moved freely without restrictions in terms of three-dimensional 

orientation. 

THETAXYC 

THETAXZC 

THETAXYR 

THETAXZR 

THETA3 

XRECl 

YRECl 

ZRECl 

X CALl 

YCALl 

ZCALl 

Figure 5.10 3D Calibration data structure. 
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A block is calibrated by using three locations to calculate intermediate data. 

This data is then used during runtime to map locations onto new block 

orientations. A detailed description of the steps and formulas required to perform 

the three-dimensional calibration system may be found in Appendix II. 

This calibration system is incorporated into FBRL as an abstract data type. 

The user may set up as many calibration surfaces as desired by naming each 

calibration system. The structure is an array of reals, 11 bytes in length. It contains 

the intermediate values for the calibration structure. The data structure is illustrated 

in Figure 5.10. 

5.6 DATA CONVERSION ROUTINES 

The ability to operate in different units is very desirable in robotics. RAPL units are 

strictly in imperial units whereas the ASPS and most other engineering systems are 

based on the metric system. Therefore the ability to readily switch between units 

should be available to the programmer. Although the task of converting between 

metric and imperial units is a simple task, the method of implementation determines 

the effectiveness and ease of use of the conversion system. 

It was decided that since RAPL only works in imperial units (inches), all 

numbers should be stored as such. Therefore we need only worry about the 

implementation of metric units (centimetres). This is done at the input and output 

stage providing the user with a metric or imperial interface. 
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A global flag is set by using the METRIC-ON and METRIC-OFF words. 

These words are used to switch between metric and imperial units respectively. All 

input and output of location components are subject to the conversions. Scalar 

variables are considered to be unitless and therefore are not subject to unit 

conversions. The programmer is responsible for ensuring that scalar variables 

considered to have specific units be converted as necessary using the IN->CM and 

CM->IN words. 

5.7 DATA FILE ROUTINES 

A set of routines were implemented for the use of disk files for mass storage. 

These routines include the mechanisms for opening and closing files and reading, 

writing and appending the various data types. Included in these types are integer, 

long integer, real, character, and location templates. 

Data is stored on disk in binary format. The Forth hwrite and bread words 

are used for the read and write routines. The routines are set up to perform 

rudimentary type checking and detect errors if the type does not match. 

To use the routines, the user must first create a file by specifying the file path 

using the CREATE-FILE word. Once a file bas been created it may be opened 

using the OPEN-FILE command. This command requires both the filename and a 

handle. From this point on, only the handle is required for file access. A file may 

be referenced from the beginning by using the RESET-FILE routine. This routine 
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uses the F-PC movepointer word by moving the file pointer to byte 0 of the file. 

The user may also append data to a file using the APPEND-FILE command. 

The command uses the FPC endfile and seek command to set the file pointer to the 

end of the file. Any data type may be read or written from a data file using the 

READ-FILE and WRITE-FILE words. These words require the variable name, the 

handle and the data type. The disk file. system was designed to enable the user to 

easily store and retrieve any type of data to and from a disk file. 

5.8 TYPE DEFINITIONS AND CONSTANTS 

FBRL includes 5 data types which are listed below. 

CHR Character (1 byte) 

INTEGER integer (2 bytes) 

LONG-INTEGER long integer (4 bytes) 

REAL floating point (F#BYTES where F#BYTES is a constant 

defined in the F-PC floating point package) 

LOCATION location template type (6 * F#BYTES) 

Data types are merely constants which contain the length, in bytes, of the data 

type. Therefore, programmers may define their own data types by defining a 

constant which contains the length of the data type. This is a very powerful 

mechanism which provides an interface to all abstract data structures and routines 

which access different data types such as the FILE routines. 



CHAPTER6 


SUMMARY 


6.1 PERFORMANCE CHARACfERISTICS 

Testing and debugging of FBRL was limited mainly to mathematical and 

theoretical comparisons due to mechanical problems with the robot arm and the 

ASPS. The system requires a mechanical and electronic overhaul in order to operate 

properly. Furthermore, the hardware system should be modified to incorporate 

recommendations suggested in the Povilonis [Povilonis 1988] report as well as those 

listed in this report. Those areas which require immediate modifications are the 

gripper, the wash probe and the syringe resting area. 

The current gripper is not designed to grasp cylindrical objects as found with 

the ASPS. A new design should enable the gripper to accurately grasp the objects 

without any slippage, thereby allowing the system to operate to tolerances at which 

it was designed. 

Experimentation with the ASPS wash probe revealed that the resin adheres 

to the probe. If this resin is removed from the reaction tube, analytical values would 

err on the low side. Further, there is a high probability of cross contamination 

between reaction vials. 

The current ASPS layout has the syringes located in an awkward position for 
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the robot arm gripper. The arm must perform two manouevers in order to use a 

syringe. The syringe must first be gripped with the gripper parallel to the base, then 

replaced closer to the arm and finally regripped with the gripper perpendicular to the 

base for dispensing. This is highly inefficient and requires unnecessary robot arm 

manipulation. 

FBRL data structures were tested thoroughly and were shown to be efficient 

and accurate. Robot language data abstractions were tested mathematically to ensure 

correctness. All structures operate very efficiently with respect to both memory 

requirements and operational speed. Data conversion routines were also tested 

mathematically to ensure correctness. 

The communications module was tested by communicating with both another 

micro-computer and the CRS-Plus controller. The FBRL communications interface 

works very well at communication speeds as high as 9600 baud. It was discovered, 

though, that this speed is too fast for the controller as transmitted characters were 

missed by the controller. There were no errors experienced when communicating 

with the controller at communication rates of 2400 baud and slower. 

The robot instruction set was tested both theoretically and partially on the 

robot arm. All instructions were transmitted to a micro-computer and all instruction 

codes received were manually checked for correctness. Instructions tested on the 

robot arm operated correctly, although the arm was not 100 % functional. 
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Further work should be performed to test the operation of the language once 

a fully functional CRS-Plus robot arm is made available. Most instructions not 

requiring parameters should work correctly as they were already tested on the robot 

arm. The area which has the highest potential for problems is robot instructions 

requiring parameters including location templates, variables and constants. The 

passing of parameters between the controller and the host computer is particularly 

complex and requires the interaction of FBRL and RAPL programs. 

6.2 OVERVIEW 

FBRL was designed to be a robotics language which would provide the basis 

for development of a powerful software system for the ASPS. Incorporated in the 

language is a set of powerful tools which will make the job of writing such a complex 

system much easier. FBRL utilizes Forth as the development language and therefore 

inherits Forth's interactive environment which is essential to the robot programming 

environment. The language was designed around the CRS-Plus RAPL robotics 

language to take advantage of the powerful robot manipulator constructs. The FBRL 

environment provides the maximum power from the micro-computer which enables 

the user to take advantage of disk storage, large user memory work area and other 

assorted peripherals. A summary of the FBRL characteristics are described below. 

Program development with FBRL is simplified using an environment 

comprised of an integrated system which includes an editor, interpreter, compiler and 
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debugger. The structured flow constructs of Forth and standard programming data 

structures were implemented to provide the programmer with the constructs for 

developing complex algorithms and provide a mechanism for creating readable, 

' 
modifiable and robust code. These structures include one-dimensional and two-

dimensional arrays, queues and strings. 

FBRL provides a user friendly and interactive environment making the 

implementation of any system as simple as possible. The FBRL language subset may 

be easily extended as with any Forth system and thus the language may be expanded 

as new constructs and commands are found to be useful. 

FBRL has the built-in ability to work with peripheral devices at a high level 

which is very desirable in the programming of robotics systems. Such devices as 

sensors, cameras, switches, etc. are commonly found in robotic systems. Data storage 

commands accommodating the storage of any data type have been included in the 

language to facilitate longterm mass storage of system data. 

The system runs on the host micro-computer in real time through a 

background communications interface providing a transparent interface between the 

host computer and robot arm controller. Mathematical functions are built in directly 

and real time clock accessability has been provided. 

Included in FBRL are standard robot language features including joint 

interpolated and straight line movements, location teach feature and location 

template data structures which are easy to use. Robot-specific data structures were 
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incorporated to provide powerful, yet easy to use, tools for the design of flexible 

robot plans. These structures include arrays of locations, location rectangular and 

radial matrix and a three-dimensional calibration system. The calibration system, 

which calibrates the system in 3 dimensions, provides the ability to move work areas 

without reteaching all positions in those areas. 

The next step in the development of the ASPS software is to utilize the power 

and facilities of FBRL to develop the ASPS system. Information gathered from the 

research and use of the ASPS has been used to compile the following specifications. 

These specifications should be considered during the design and development of the 

ASPS software system. 

A non-programming interface is needed for an implementation of a user­

friendly ASPS software system. A menu driven system should be designed to provide 

the user with a powerful interface which requires little training to use effectively. 

Programmed manouevers can be incorporated into this type of system. The system 

must also have the ability to be extended without the need for programming. New 

manoeuvres should be added through the ASPS user interface. This provides the 

mechanism for modifying the software system to correspond with new method 

developments without the need for computer programmers. 
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Levels of complexity should be built in to the system. This provides maximum 

ease of use with maximum flexibility. Users who wish only to use already developed 

methods may do so without learning much about the system. Users who wish to 

design and implement methods need learn only that required to complete the 

implementation. Those who wish to program new analytical techniques do so with 

a more intimate knowledge of the system. The user should only be required to learn 

enough to use the system at their level. Figure 6.1 illustrates a brief schematic design 

specification for the ASPS software system. 

In summary, FBRL has been designed as a general robotics language which 

has been designed with the analytical laboratory in mind. The language has been 

tailored to facilitate the development of the ASPS software system through a 

powerful and easy to use robot programming environment. 
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APPENDIX!· 

GLOSSARY OF FBRL WORDS 

This appendix presents a list of FBRL words, the entry and exit stack conditions and 
a description of each word's function. The routines described in this appendix 
include the data structures queues, one and two-dimensional arrays, and strings, as 
well as the routines which handle the communications with the robot controller, the 
robot commands, input routines, metric conversion routines, RAPL implementation 
commands, and file handling routines. 

1-1 QUEUES 

This section provides a description of the Forth words used to implement the Queue 
data structure. 

CREATE-Q (n - I PAR: "q-name" ) queue-size(n) CREATE-Q q-name 
Creates a queue structure which will hold n characters (bytes) named "q-name". 

ENQ (c addr-) character(c) q-name ENQ 
Adds a character (c) to the queue "q-name" 

DEQ (Q-addr --c) q-name DEQ 
Removes a character from the queue and leaves it on the stack 

. EMPTY-Q? (addr-- fl) q-name EMPTY-Q? 
Checks if the queue "q-name" is empty and returns a true or false on the stack 

FULL-Q? ( addr - fl) q-name FULL-Q? 
Checks if the queue "q-name" is full and returns a true of false on the stack 

The following words have been implemented in assembler and perform the same 
function.as the corresponding high-level words: 
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Low-level Word High-level Word 

ENQ-L ENQ 
DEQ-L DEQ 
EMPTY-Q?-L EMPTY-Q? 
FULL-Q?-L FULL-Q? 
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I-2 ARRAYS 

This section provides a description of the Forth words used to implement the One­
dimensional and two-dimensional array data structures. 

ONE-DIMENSIONAL ARRAY 

ARRAY ( num-cells cell-size -- I PAR "array-name" ) m n ARRAY "array-name" 
Creates an array "array-name", "num-cells" in length with a cell size of "cell-size" 
bytes. The runtime portion of this routine returns the absolute address of the cell 
given the array name and index. 

TWO-DIMENSIONAL ARRAY 

2ARRA Y ( rows cols c-size -- I PAR: "array") rows cols c-size 2ARRA Y "array" 
Creates an array "array" which is a matrix of "rows" rows and "cols" columns with a 
cell size of "c-size" bytes. The runtime portion of this routine returns the absolute 
address of the cell given the array name and indexes. 
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1-3 STRINGS 

This section provides a description of the Forth words used to implement the String 
data structure and the string functions. 

STRING ( length -- I PAR: "string-name") length STRING "string-name" 
Creates the string "string-name" which is "length" characters in length. 

STRING-CNT ( addr -- cnt) X STRING-CNT 
Returns the number of characters in the string "X". 

STRING-SIZE ( addr --size) X STRING-SIZE 
Returns the number of characters reserved for the string "X". 

TYPE-STRING ( addr -- ) n STRING X 
Prints the string "X" to the console. 

APPEND-CHR ( chr str-addr -- ) c n APPEND-CHR X 
Appends the character c to the string X. 

APPEND-STRING ( targ-addr src-addr -- ) targ src APPEND-STRING 
Appends the string "src" to the string "targ". 

COPY-STRING ( targ-addr src-addr --) targ src COPY-STRING 
Copies string "src" to string "targ". 

NULL-STRING ( addr --) X NULL-STRING 
Sets the string "X" to null. 

SUB-STRING (targ-addr src-addr left right--) targ src m n SUB-STRING 
Copies the substring in "src" from character m to character n into the string "targ". 

STRING->CHR ( addr pos -- chr) X n STRING->CHR 
Returns the character at position n from string "X". 

STRING-LIT ( addr -- I PAR: "string") X STRING-LIT "ABC" 
Stores the string literal "ABC" into the string "X". 

GET-STRING ( addr --) X GET-STRING 
Receives a string from the console and stores it in string "X". 
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1-4 COMMUNICATIONS 

This section provides a description of the Forth words used to implement the 
communications interface used for robot controller communications. 

INTERNAL VARIABLES 

AREG two-byte variable containing the A register bit code for 
programming the UART 

IN CHAR two-byte variable to hold the latest incoming character from the 
communications port 

INTAOO two-byte variable to hold the interrupt vector segment 
INTA01 two-byte variable to hold the interrupt vector offset 
COMMINT-SEG two-byte variable which contains the communications routine 

interrupt vector segment 
COMMINT-OFF two-byte variable which contains the communications routine 

interrupt vector offset 
UART-ADD two-byte variable which contains the UART address 
XON-XOFF? Flag for setting the XON/XOFF protocol (TRUE= on) 
XOFF? Flag for determining whether an XOFF code has been received 
Q-CHAR two-byte variable used to retrieve 1 character from the queue 

WORDS 

SETWORDLENGTH (num-bits -- ) 8 SETWORDLENGTH 
Sets the word length for communications port setup. The example sets the word 
length to 8 bits. 

SETSTOPBITS ( numbits -- ) 1 SETSTOPBITS 
Sets the number of stop bits for communications port setup. The example sets the 
number of stop bits to 1 bit. 

SETP ARITY ( parity-char -- ) asc E SETP ARITY 
Sets the parity for communications port setup. The example sets the port to even 
parity. 

SETBAUDRATE ( baud-rate -- ) 2400 SETBAUDRATE 
Sets the baud rate for communications port setup. The example sets the baud rate 
to 2400 baud. 
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COMMSET (baud parity stopbits wordlen --) 2400 asc E 1 8 COMMSET 
Sets up the communications port. The example sets the communications to 2400 
baud, even parity, 1 stop bit and 8 bit word length 

SETUPUART ( comm-port --) 1 SETUPUART 
Sets up the specified communications port according to prespecified parameters. The 
examples sets COMM1 according to the specified parameters. 

COMM-BASE-ADD ( offset -- addr) offset COMM-BASE-ADD 
Returns the base address of communications port specified at the offset 

GET-UART ( comm-port -- addr) 1 GET-UART 
Returns the base address of the specified communications port. The example gets 
the base address for COMl. 

WRITE-OFF 
Turns off the transmitter empty interrupt 

WRITE-ON 
Turns on the transmitter empty interrupt 

DIRECT-WRITE-COM ( c--) asc A DIRECT-WRITE-COM 
11 11Writes the character C to the communications port. The example writes the 


character 11A11 to the current communications port. 


READ-COM 

Reads a character from the current communications port and stores the character in 

the input buffer. 


WRITE-COM 

Writes a character to the communications port from the output buffer. 


COM 

Handles communication port interrupts for both read and write functions. 


START-WRITING-COM 

Starts the interrupt driven communications write routine. 


SAVE-VECI'ORS ( n -- ) 

Saves the interrupt vectors for the specified communications port number. 
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REVECfOR ( n -- ) 

Revectors the interrupt of the specified communications port to the FBRL interrupt 

routine. 


COMM-INT-ENABLE 

Unmasks the IRQ4 interrupts in the 8259's IRQ mask register and initializes the 

interrupt enable register. 


RESET-INTERRUPTS ( comm-port --) 

Restores the interrupt system for the specified communications port. 


EMIT-COM (char--) ASC E EMIT-COM 

Emits a character to the serial port given the character on the stack. 


TYPE-COM (chrs addr --) 24 TEST-STRING TYPE-COM 

Types a string to the communications port given the number of characters in the 

string and the starting address of the string on the parameter stack. 


.-COM (n --) 

Transmits a 16 bit number from the parameter stack to the communications port. 


F.-COM (F: r -- ) REAL-NUM F.-COM 

Transmits a floating point number from the floating point stack to the 

communications port. 


GET-COM (--char) 

Retrieves a character from the input buffer and returns it on the stack. 


RESET-COMM (uart-address --) ADDR RESET-COM 

Reads in all the backed up interrupts which have occurred before the routine was 

ready to accept them. 


COMM-SETUP (pt# bd prty stop-bit wrdlen --) 1 2400 ASC E 1 8 COMM-SETUP 

Sets up the specified communications port to the specified parameters and sets up 

the interrupt vectors to enable the communications interface. 


INSTALL-INTERRUPT ( addr in# -- ) 

Installs the interrupt vector to the give interrupt number. 


REMOVE-INTERRUPT (in#--) 

Removes the interrupt vector from the interrupt number and installs a noop service 

routine. 
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1-5 ROBOT COMMANDS 

This section contains the list of FBRL robot commands. 

INTERNAL VARIABLES TYPE 

TEMPl REAL 
TEMP2 REAL 

WORDS 

APPROACH ( lac -- I F: distance -- ) 

Joint interpolated approach command. 


APPROACH-STRT ( lac -- I F: distance -- ) 

Straight line approach command. 


DEPART (F:distance) 

Joint interpolated depart command. 


DEPART-STRT (F:distance) 

Straight line depart command. 


MOV (lac--) 

Joint interpolated move command. 


MOV-STRT ( lac -- ) 

Straight line move command. 


ACTUAL (PAR: location_name) 

Reads the actual position of the arm into the given location template in the 

controller. 


ALIGNTOOL 

Quick align of the tool flange. 


ARM (boolean -- ) 

Sets the status of the arm power relay. 
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CLOSE-GRIP 

Closes the pneumatic gripper. 


CONFIG ( dev baud parity #data #stop handshake echo) 

Configures the controller serial ports. 


FINISH 

Finish the last motion command before starting the next command. 


FLASH (interval -- ) 

Turns the teach pendant flash light on. 


NO FLASH 

Turns the teach pendant flash light off. 


GAIN (motor#-- I F:value) 

Sets the response of the robot arm. 


GRIP (torque -- I F: distance ) 

Opens and closes the gripper to the specified distance and torque. 


HALT 
Stops the current robot motion that is in progress. 


ARM-HERE (lac -- ) 

Returns the current robot position and stores it in the location template passed to 

it on the stack. 


HOME 

Initializes the robot position registers. 


JOG (F: dX dY dZ -- ) 

Moves the arm by the specified displacements. 


JOINT Goint degrees -- ) 

Drives a selected joint by a specified angular displacement. 


LIMP ( axis# -- ) 

Limps the specified joint. 


LOCK (axis# -- ) 
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Locks the specified joint. 


UNLOCK (axis# -- ) 

Unlocks the specified joint. 


MA ( F: j 1 j2 j3 j4 jS -- ) 

Joint interpolated move to specified end locations. 


MANUAL 

Turns on the manual mode which allows the user to manipulate the robot with the 

teach pendant. 


MI ( F: j 1 j2 j3 j4 j5 -- ) 

Joint interpolated move by the specified incremental amounts in radians. 


MOTOR (axis# #pulses--) 

Drives the specified motor by the specified number of pulses. 


NO HELP 

Turns off the RAPL syntax building feature. 


NOLIMP 

Re-establishes closed loop servo control after a limp command has been issued. 


NO MANUAL 

Cancels the manual mode. 


NOTEACH 

Cancels the teach mode. 


BASE-OFFSET ( F: dX dY dZ dO -- ) 

Sets an offset from the base of the arm. 


SHIFT-RIGHT ( n -- n b) 

Shifts the value on the stack right by 1 bit and pushes the value of the bit onto the 

stack. 


OUT2BYTE ( n -- ) 

Sends a 2 byte value to the specified output port. 


OUTPORT (output# -- ) 
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Sets the specified output port. 


READY 

Moves the arm to the ready position. 


SERIAL 

Displays the controller serial port information. 


SPEED (speed -- ) 

Sets the speed of the arm. 


ROBOT-STATUS 

Displays the robot status. 


TOOL ( lac-template -- ) 

Sets the tool transformation. 


TYPEINT (string -­ ) 
Types a controller variable in integer format. Used by the Forth language for 
interaction with commands requiring variables. 

TYPEREAL(string -­ ) 
Types a controller variable in real format. Used by the Forth language for 
interaction with commands requiring variables. 

wo 
Displays the current robot position in the motor, joint and world coordinate systems. 


Wl 

Continually displays the actual robot position in motor coordinates. 


W2 

Displays the current actual robot position in the motor, joint and cartesian 

coordinates. 


W3 

Continually displays the commanded robot position in motor coordinates. 


W4 

Displays the current path end point in motor, joint and cartesian coordinates. 
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W5 

Continually displays the robot velocity. 


WEl 

Continually displays the actual position of the extra axis. 


WE3 

Continually displays the command position of the extra axis in motor coordinates. 


WE5 

Continually displays the velocity commands to the extra axis. 


W AITPORT (input# -- ) 

Waits for the specified port to match the state. 


WGRIP (string--) 

Reads the value of the servo gripper and places it in the RAPL variable. 


XCAL (axis#--) 

Stores the home position for any extra axis. 


XHOME (axis# -- ) 

Homes a single extra axis. 


:XZERO (axis#--) 

Zeros out the position register for the specified axis. 


RAPL ( PAR: string ) 

Send the specified string directly to the communications interface. This allows the 

user to send RAPL commands directly to the controller. 


SET-RAPL-REAL (PAR: variable-name value) 

Sets a variable in the controller to the specified floating point value. 


SET-RAPL-INT (PAR: variable-name value) 

Sets a variable in the controller to the specified integer value. 


RAPL-ANALOG ( PAR: input# variable-name ) 

Reads an analog input into the specified RAPL variable. 


RAPL-HERE (PAR: template-name) 
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Reads the arm location into the RAPL location template. 


RAPL-RUN (PAR: program-name) 

Runs the specified RAPL program in the controller. 


RAPL-SET (PAR: loclloc2) 

Sets a location equal to another in the robot controller. 


RAPL-SHIFfA (PAR: loclloc2) 

Shifts a location by the location components in the robot controller. 


RAPL-POINT (PAR: rapl-loc fbrl-loc) 

Defines a point in the controller and changes it to the components specified by the 

FBRL location template. 
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1-6 INPUTS 

This section contains the FBRL words used to interpret parameters as reals, integers 
or strings from a Forth parameter line. 

INTERNAL VARIABLES 

PARSTACK 

WORDS 

GETREAL 

Interprets a floating point literal or variable from the TIB. 


GETINT 

Interprets a floating point literal or variable from the TIB. 


GETSTRING 

Reads a string from the TIB. 
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I-7 METRIC CONVERSION 

This section contains the words that implement the metric conversion system for 
FBRL. 

INTERNAL VARIABLES TYPE 

METRIC INTEGER 

WORDS 

METRIC-ON 

Turns on the metric flag. 


METRIC-OFF 

Turns off the metric flag. 


METRIC? 

Returns true if metric on and false if not. 


CM->IN (F: em-- in) 

Converts a real value from centimetres to inches. 


IN->CM (F:in -- em) 

Converts a real value from inches to centimetres. 


METRIC-OUT (F: F -- F ) 

Checks the metric flag and returns the appropriate converted value. 


METRIC-IN (F: F --F) 

Checks the metric flag and returns the appropriate converted value. 
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1-8 RAPL IMPlEMENTATION COMMANDS 


The following is a list of words used to implement RAPL commands in FBRL. 


WORDS 


SEND-COM (command#--) 

Sends a RAPL command number to the communications port. 


SEND-REAL (F: real--) 

Sends a floating point number to the communications port. 


SEND-INT ( n -- ) 

Sends an integer to the communications port. 


SEND-CR 

Sends a carriage return to the communications port. 


SEND-STRT 

Sends the RAPL straight line sequence ",S" to the communications port. 


SEND-LOC (loc-addr --) 

Sends a location template to the communications port. 


SEND-COMMA 

Sends a comma to the communications port. 
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1-9 FILES 

This section contains the FBRL words used for disk file manipulation. 

INTERNAL VARIABLES TYPE 

TEMP-TIB BUFFER SO CHARACTERS 
HNDL HANDLE 
TEMP->IN INTEGER 

WORDS 

SAVE-TIB 
Saves the type input buffer to TEMP-TIB. 


RESTORE-TIB 

Restores the type input buffer from TEMP-TIB. 


CREATE-FILE (PAR: <filename>) 

Creates a file using the specified name. If the file exists, it set zero length. 


OPEN-FILE (PAR: <hndl filename> ) 

Opens a file for read or write given a handle and filename. If the handle is not 

defined, it is automatically created by the routine. 


RESET-FILE ( hndl --) 

Sets an open file specified by hndl to the beginning of the file. 


APPEND-FILE (hndl --) 

Sets an open file specified by hndl to the end of the file for appending. 


CLOSE-FILE ( hndl -- return_code) 

Closes the file specified by hndl. A DOS error code is returned on the stack. 


WRITE-FILE ( addr type hndl -- ) 

Writes a variable to the file specified by hndl. The address and type of variable are 

required. 


READ-FILE ( addr type hndl --) 

Reads a variable from the file specified by hndl. The address and type of variable 

are required. 




APPENDIX II 


THREE-DIMENSIONAL CALffiRATION 

This appendix contains the implementation strategy and theory for the 
three-dimensional calibration as well as a list of FBRL words, the entry and exit 
stack conditions and a description of each word's function. 

ll-1 CALffiRATION ABSTRACfiON 

INTERNAL VARIABLES TYPE 

MAP-FLAG INTEGER 
MAP-VECTOR INTEGER 

CONSTANTS VALUE 

THETAAXYC 1 

THETAAXZC 2 

THETAXYR 3 

THETAXZR 4 

THETA3 5 

XRECl 6 

YRECl 7 

ZREC1 8 

XCALl 9 

YCALl 10 

ZCAL1 11 

NUM-CAL-CELLS 11 


WORDS 

MAP-ON 

Switches to "mapping on" status. 
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MAP-OFF 

Switches to 11mapping off' status. 


MAPPING? (--boolean) 

Returns the status of the mapping switch-- true = mapping on. 


WITH-CAL 

Revectors the calibration vector to use the specified calibration template structure. 


CREATE-CAL (PAR: cal-name) 

Creates a calibration data structure which stores 3 location templates. 

CAL-ADDR ( cal-name cal-index -- loc-addr ) 

Retrieves the address of allocation in a calibration structure and leaves it on the 

parameter stack. 


SET-CAL (cal-name cal-index lac-name--) 

Sets the specified calibration location slot to the specified location. 


GET-CAL (cal-name cal-index lac-name--) 

Retrieves the specified calibration location slot to the specified location. 


CREATE-CAL-STRU (PAR: cal-str-name) 

Creates a named calibration structure. 


CAL-STRU@ (cal-str-addr index-- I F: --value) 

Retrieves a calibration value. 


CAL-STRU! ( cal-str-addr index -- I F: value -- ) 

Stores a calibration value. 


GET-CAL-POINTS ( cal-addr --) 

Physically sets up a calibration structure. 
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II-2 CALIBRATION TRANSFORMATION 

INTERNAL VARIABLES (All. VARIABLES REAL) 

Xl 
X2 
Yl 
Y2 
DX 
DY 
ANG 
COSANG 
SINANG 
MAP-LOC 
UNMAP-LOC 

CONSTANTS 

PIDIV2 Pl/2.0 

WORDS 

ANG-FROM-ORIGIN ( F: Xl Yl X2 Y2 -- angle ) 

Calculates the angle from the positive X axis given 2 sets of points which define the 

line in a plane. The angle is returned in radians. 


ROTATE ( F: Xl Yl angle -- X2 Y2) 

Rotates a point through the specified number of radians and returns the new point 

on the floating point stack. 


CALIBRATE ( recal-addr cal-addr cal-stru --) 

Performs a 3 dimensional calibration of a real world system given 2 planes defined 

by 3 points each. 


(MAP) ( cal-stru loc-addr -- ) 

Performs the runtime transformation (mapping) of a point from one plane to another 

in a 3 dimensional, real world coordinate system. The location is altered to reflect 

the new mapped location. 
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UNMAP ( cal-stru loc-addr -- ) 

Performs the runtime transformation of a point from one plane to another in a 3 

dimensional, real world coordinate system in reverse. That is, the transformation is 

from the recalibration plane back to the base calibration plane. 
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ll-3 	 THEORY AND IMPLEMENTATION STRATEGY FOR THREE­
DIMENSIONAL CALIBRATION 

CALIBRATION OF THE ORIGINAL PLANE 

1) Get 3 calibration points 

PCl (XC1,YC1,ZC1) PC2(XC2,YC2,ZC2) PC3(XC3,YC3,ZC3) 

PC3······-----------------------------------.... 
y 

Figure 	II.l The calibration plane. 
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2) Calculate the angle formed by the line PCl,PC2 and the X-axis in the XY 
plane 

6XYC-arctan YC2-YCJ 
XC2-XC1 

3) Rotate line( PCl, PC2) in the XY plane to the X-axis (Y=O) 

PC4-(XT,Y1)-ROTATE((XC2-XCl),(YC2-YC1),-6XYC) 

z 


PC3 
·······... ----------------------------- y----------------·-Pt-L 

~-------------------.. -­ . 

--------P-C!---......_ 

PC2 
X 

Figure II.2 Rotation of the calibration plane along -eXYC in the XY plane. 
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4) 	 Calculate the angle formed by the line (Origin, PC4) and the X-axis in the XZ 
plane 

exzc-arctan zc2-ZCJ 
XT 

'z ' 

I 

l 
! 

-------------------------------------­ I 

-- ------- --PG1-~ 
y 

X 

Figure 11.3 Rotation of calibration plane along e:XZC in the XZ plane. 
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5) 	 These intermediate points are stored in the calibrate structure for use in the 
recalibration routines 

exYc, exzc 

The above steps set up the original plane for recalibration in the future. The next 
step is the recalibration. This step involves acquiring the 3 calibration points and 
calculating the information necessary for the mapping of the calibration plane onto 
the recalibration plane. 
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CALffiRATION OF THE NEW PLANE 

z 

PR3 
i'R1­ y 

Figure 11.4 New plane which is to be calibrated from calibration plane. 

1) Get 3 recalibration poi
PR1 (XR1,YR1,ZR1) 
PR2(XR2,YR2,ZR2) 
PR3(XR3,YR3,ZR3) 

nts 

2) Calculate the angle fo
plane 

rmed by the line PR1,PR2 and the X-axis in the XY 

6XYR-arctan YR2-YRl 
XR2-XR1 
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---------------------------------------- -PR1. 

----­

-------------y------------­

-------------­

3) 	 Rotate line( PRl, PR2) in the XY plane to the X-axis (Y=O) 

PR4-(XT,Y1)-ROTATE((XR2-XRJ),(YR2-YR1),-8XYR) 

z 

PR3 

Figure II.5 Rotation of the recalibration plane through -eXYR in the XY plane. 

4) 	 Calculate the angle formed by the line (Origin, PR4) and the X-axis in the XZ 
plane 

8XZR-arctan ZR2-ZR1 
XT 
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5) Rotate the calibration third point PC3 to the X-axis in the XY plane (Z=O) 

(XCTJ,YCTJ)-ROTATE((XC3,XCJ),(YC3,YCJ),-6XYC) 

z : ! 

! 
I 
! 
! 
! 

---------------------------­ ! 

----- ·PR-1-! 

! 
' : 

y 

Figure 11.6 Rotation of the recalibration plane through -eXZR in the XZ plane. 

in the XZ plane (Y =0) 

(XCT,ZC1)-ROTATE((O,XCTJ),(ZC3,ZCJ),-6XZC) 
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6) 	 Rotate the recalibration third point PR3 to the X-axis 
in the XY plane (Z=O) 

(XRTl,YR1)-ROTATE((XR3,XRl),(YR3,YRl),-6XYR) 

in the XZ plane (Y =0) 

(XRT ,ZRT)-ROTATE((O,XRT1),(ZR3,ZR1), -BXZR) 

z 

-------------------------------------­ -pR-1. 

-----­ -ri·c-·1 : __......................­ r l 

y 

Figure II.7 Angle between the calibration and recalibration planes (e3). 
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7) Calculate the angle between the Calibration and recalibration plane 

8R-ANGLEFROMORIGIN((O,O),(YRT,ZR1)) 

eC-ANGLEFROMORIGIN((O,O),(YCT ,ZCT)) 

93-9R-9C 



126 

MAPPING 

Maps a point from the calibration plane to the recalibration plane 

£ 

PC3 MAPPING STEPS 1 AND 2 

.. / .------·y. . . .:.:.·....,.--: _______.___......--­
--------------------------------------------­

~-----.......... 

---------------·­ .£R1 

Figure II.8 Mapping steps 1 and 2. 

1) 	 Rotate the point from the calibration plane to the X-axis 

in the XY plane 

(XMl,YMl)-ROTATE((XM,XCl),(YM,YCl),-9XYC) 
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in the :XZ plane 

(XM2,ZM2)-ROTATE((O,XMl),(ZM,ZCl),-9XZC) 

2) Rotate the third point in the YZ plane 

(YM2,ZM2)-ROTA TE((O,YMJ),(O,ZM1),03) 

3) Rotate back along recalibration angles to achieve the recalibration plane 
in the :XZ plane 

(XM3,ZM3)-ROTATE((O,XM2),(0,ZM2),0XZR) 

in the XY plane 

(XM4,YM3)-ROTATE((O,XM3),(0,YM2),0XYR) 

4) Perform translation back to origin of recalibration plane (PRl) 

XM-XM4+XR3 

YM-YM3+YRl 

ZM-ZM3+ZRl 
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---------------------------------------­

X 

Figure II.9 Mapping steps 3 and 4. 

Mapped Point-(XM,YM,ZM) 
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UNMAPPING 


IJ 

Figure 11.10 Unmapping steps 1 and 2. 

Maps a point from the recalibration plane to the calibration plane 

1) Translate to origin from recalibration plane 

XMJ-XM-XRI 

YMl-YM-YRl 

ZMl-ZM-ZRl 
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2) Rotate along recalibration angles to x-axis 
in the :XZ plane 

(XM2,ZM2)-ROTATE((O,XMJ),(O,ZMJ), -E>XZR) 

in the XY plane 

(XM3,YM2)-ROTATE((O,XM2),(0,YMJ),-E>XYR) 

3) Rotate third point in the YZ plane 

(YM3,ZM3)-ROTATE((O,YM2),(0,ZM2),-E>3) 

4) Rotate from the X-axis to the calibration plane 
in the XY plane 

(XM4,YM4)-ROTATE((O,XM3),(0,YM3),9XYC) 

in the :XZ plane 

(XM5,ZM5)-ROTATE((O,XM4),(0,ZM3),9XZC) 

5) Translate origin to calibration origin (PCl) 

XM-XM5+XCJ 

YM-YM4+YCJ 

ZM-ZM4+ZC1 
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Figure II.ll Unmapping steps 3, 4 and 5. 

unmappedpoint-(XM,YM,ZM) 
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The ROTATE function has been used throughout the preceding text. This function 
rotates a point with the X-axis as the base point through theta degrees. 

FUNCTION ROTATE(X,Y,9) 

Rotates the point (X,Y) through e degrees 

Yrotate - Xxsin(6) + Yxcos(6) 

Xrotate - Xxcos(6) - Yxsin(6) 



APPENDIX ill 

ROBOT SPECIFIC DATA STRUCTURES AND ABSTRACTIONS 

This appendix contains a list of FBRL words, the entry and exit stack conditions and 
a description of each word's function for the robotic data structures and abstractions. 

ill-1 LOCATION TEMPlATES 


This section contains the words for routines associated with location templates. 


VARIABLES TYPE 


TEMP-LOC LOCATION TEMPLATE 


WORDS 


SETX ( loc-addr -- I F: x -- ) 

Sets the X component of the location. 


SETY ( loc-addr -- I F: y -- ) 

Sets the Y component of the location. 


SETZ ( loc-addr -- I F: Z -- ) 

Sets the Z component of the location. 


SETO ( loc-addr -- I F: 0 -- ) 

Sets the 0 component of the location. 


SETA ( loc-addr -- I F: A -- ) 

Sets the A component of the location. 


SETT ( loc-addr -- I F: T -- ) 

Sets the T component of the location. 


GETX ( loc-addr -- I F: -- x) 

Gets the X component of the location and stores it on the floating point stack. 
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GETY ( loc-addr -- I F: -- y) 

Gets the Y component of the location and stores it on the floating point stack. 


GETZ ( loc-addr -- I F: -- Z ) 

Gets the Z component of the location and stores it on the floating point stack. 


GETO ( loc-addr -- I F: -- 0) 

Gets the 0 component of the location and stores it on the floating point stack. 


GETA ( loc-addr -- I F: --A) 

Gets the A component of the location and stores it on the floating point stack. 


GETT ( loc-addr -- I F: -- T) 

Gets the T component of the location and stores it on the floating point stack. 


SET-LOC (loc-address1loc-address2 --) 

Sets all six components of the location variable by copying the contents of location 2 

into location 1. 


DEFINE-LOC (loc-addr -- I F: dX dY dZ dO dA dT -- ) 

Sets all six components of the location template to the specified values. 


CREATE-LOC (PAR: location name) 

Creates a location template structure. 


SHIFT A (loc-addr1 loc-addr2 -- ) 

Shifts all six components of the location 1 variable by the amount specified in 

location 2. 


PRINT-LOC ( loc-addr -- ) 

Prints all six components of a location to the communication port - calibration 

mapping and metric conversion is included. 


DISPLA Y-LOC ( loc-addr --) 

Prints all six components of a location to the screen - calibration mapping and metric 

conversion is included. 
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ill-2 LOCATION MATRIX 


This section contains the words associated with the Radial and Rectangular location 

matrix data abstractions. 


RADIAL MATRIX 


RADMAT (base-lac-address-- I F: inc-angle ring-dist ) 

Creates a radial matrix structure for holding locations - the runtime portion calculates 

a new location given the radial ring number and the radial index. 


SHOW-RADMAT ( radial-matrix-address -- ) 

Displays the contents of a radial matrix abstraction. 


RECTANGUlAR MATRIX 


AUTOMAT (base-lac-address-- I F: x-space y-space z-space --) 

Creates an automated matrix structure for holding locations - the runtime portion 

calculates a location given the matrix indexes. 


SHOW-AUTOMAT ( matrix-address -- ) 

Displays the contents of an auto-matrix abstraction. 
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