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IN'lRODUCTION 

.Order-Disorder 

The order-disorder phase transition is a major problem 

~n physics. One of the simplest order-disorder systems to 

study is that of a binary alloy. For reasons to be discussed 

~ater, Ni3Mn has been chosen for our work. This system has 

been studied qualitatively by Shull and Siegel (1949). 

In order to clarify the characteristics of an order­

disorder phase transition let us consider a simple alloy AB. 

We presume this alloy to be a substitutional solid solution 

in which an atom A of one constituent substitutes at random 

for an atom B of the other species on the available sites of 

the lattice. When the substitution is random the system is 

denoted as a disordered solid solution. In some systems 

(including our own) such a structure can be transformed, by 

suitable heat treat ment, into an ordered solid solution in 

which the A atoms ar e preferentially located with respect to 

neighbouring B atoms but are still on the same lattice sites 

occupied in the d i sordered states. The A atoms occupy one 

set of lattice sites while the B atoms occupy another, thereby 

creating a superlattice structure. 

A simple exrunple of the order-disorder effects is shown 

in Fig. 1 for an AB alloy having equal atomic percentages of 
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the two atoms and crystallizing in a body-centred cubic struc-

ture. In the disordered state B atoms have merely substituted 

at random for A atoms whereas in the ordered state there are 

discrete planes of A atoms and discrete planes of B atoms. 

Geometrical Structure Factor 

The crystal lattice of the Ni3Mn alloy is face-centred 

cubic- and in the ordered phase, has Mn atoms at the cube 

corners and Ni atoms at the face-cent red positions. Kittel 

(1966) gives the geometrical structure factor for a crystal 

lattice . 

$ (kkl) =%. ~j e.")(.p L-l.~ii Cuih.-t-'\.l'4k-rw.il)] 
~ 

(where the position of the jth atom within the unit cell is 

specified by Ej = Uj~ + vj£ + w~ where Uj, vj, wj are 

constants. This factor need not be real since the intensity 

involves S*S where 3* is the complex conjugate of 8. It 

can be shown that for a lattice with a centre of symmetry 3 

is real. 

The basis of the fcc structure referred to the usual 

11 1 1 cubic unit cell has identical atoms at uvw = ooo; 0 22 ; ~; 

11 
~· For ordered Ni3Mn, however, we have Mn atoms at 000 

d 11 1 1 11 an Ni atoms at ~; ~' ~· Thus our geometrical struc-

ture factor becomes 
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If all indices are even integers or i f all are odd integers 

we have 

S(hkl) = fMn + 3fNi 

If the indices ar·e not all even or all odd we. have 

S(hkl) = fMn - fNi 

One of the reasons for selecting the Ni~ system is that 

the "superlattice" peak intensities are greatly enhanced 

because of the reversed phase neutron scattering for manganese 

with reference to that for nickel. The scattering length for 

manganese is -0.36 x lo-12 em. and that for nickel -is 1.03 x 

lo-12 em. Thus 80 (for Ordinary Reflections) is 

So = fMn + fNi 

:::: ( -0.36 + 3 x lo-12 em . 

= 2.73 x lo-12 em. 

and Ss (for Superlattice Reflections ) is 

Ss fMn - fNi 

= ( -0.36 - 1.03) x lo-12 em. 

= -1.39 x lo-12 em. 

We recall that intensity is proportional to 3*3 so that our 

intensities for ordinary and superlattice reflections will 

have a ratio of about 4 to 1 ordinary to superlattice judging 

by geometrical structure factors alone. 



4. 

Long-Range Order Parameter 

The long-range order parameter is easy to measure experi-

mentally and has fundamental significance. According to 

Guttman (1956) the amplitude of a superlattice reflection is 

_proportional to the difference in atomic scattering factors 

of the two metals comprising the crystal, to the number of 

scattering atom and to the long-range order parameter S. 

Hence the intensity is proportional to the products of the 

squares of these three variables. 

where N is the number of Mn atoms. 

I 0 , the intensity of a .fundamental reflection is given by 

Hence from the ratio Is the order parameter S can be determined. 
Io 

Extinction 

Comparisons are ordinarily made of "integrated inten-

sities", this is, of the areas under curves of i ntensity 

against diffracti on angle since peak intensi ties may be 

sensitive to line shape. We must be sure to account for all 

effects on our intensities because we hope to extract an order 

parameter from intensity measurements. We must take into 

account specifically the extinction properties of the crystal 

we are working with since it is fairly large. 
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What is extinction? There are two types - primary and 

secondary. Primary extinction is the result of attenuation 

of the incident beam by the process of reflection by success-

ive planes. For neutrons this will occur when the crystal 

thickness is greater than about 1000 A0 (Bacon 1962). We 

assume, however, that our large single crystal is made up of 

many small perfect crystals which are misoriented from one 

to another. It is known from other experimental work that 

these small perfect crystals have a thickness such that 

primary extinction is negligible. 

This brings us to the topic of secondary extinction. At 

any particular angular setting of the crJstal the beam will 

eventually reach mosaic blocks (the small perfect crystals) 

identical in orientation to some of those through which the 

beam has already passed. In this case the beam may be atten-

uated by secondary extinction between mosaic blocks. 

Assuming a Gaussian distribution of mosaic blocks with 

standard deviation~' then by a difficult calculation Bacon 

(1962) derives a criterion for negligible extinction infinite 

crystal .slabs 

I 
<L:f 

where t 0 is the thickness of the crystal; Q the reflectivity; 

and e the angle of entrance of the incident beam. The satis-

faction of this criterion ensures proportionality of predicted 

and measured reflectivities to within 5% accuracy. In order to 



6. 

apply this criterion to our own crystal we were forced to 

make use of a number of gross approximations. Our crystal is 

cylindrical and is not mounted in the equatorial position but 

has the cylindrical axis tilted 30° off the vertical. We 

assume for the calculation that the crystal is a vertically 

oriented infinite crystal slab. Also, the evaluation of~, 

the mosaic spread parameter is somewhat difficult so we have 

assumed a value of~= 25' for our crystal (since our narrowest 

measured Bragg peak has a full wi dth at half maximum of 1.1 

degrees). We replace to by D = 1.6 em., the diameter of . 
sine 

our crystal and calculated Q for the ( 200) plane where 

3 N'"' 
Q - '/-:. • F;L 

- ~~1"\.::!.& 

where "- is neutron wavelength, Ni is the number of unit cells 

per unit volume, F is the structure factor and e is the Bragg 

angle for the appropriate plane. Bacon defines the structure 

factor 

F = 1 ~ 5-~ e. )(.p [- L'-'TI (-u.i h+ v~ k.+ w.ii )] l.z.. e,_"' 
l 

(in our notation) which is the same as our geometrical struc-

ture factor except for the term e-ZW, the Debye-Waller factor, 

which takes into account the effect of thermal vibrations. 

We have already calculated the geometrical structure 

factor and we know ~,e and Ni. This leaves only e-~W to be 

evaluated. This factor arises in standard phonon theory and 
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describes the temperature dependence of Bragg reflections in 

terms of the Debye model for a solid. 

where csin e) contains the (hkl) planar dependence of the ,., 
factor. 

sin e = l 
.A 2d 

For (200) plane for Ni3Mn (a= 3.58 x lo-8 em.) 

sin e = ---
A 

Now we consider the temperature dependent factor 

where t accounts for zero-point motion; 

<pc~; :0 ~ ~ ... eJr_1 J.1 
0 

is the Debye phonon density of states term; 

e ~ 
"j... = T ~ ?JOel' 

if ·~ is the average Debye Temperature in degrees Kelvin; T 

is the temperature at which the measurement is taken; l-1a is the 

weighted average mass of the atoms involved, h is Planck's 

constant and k is the Boltzmann cons t ant. We use the cgs system 

of units. We thus find 

B = 39.03 x lo-18 cm. 2 



Hence for the 200 plane 

= 0.939 

Thus the reflectivity for the (200) plane is 

Now · 

F:z.. 

= 0.737 x 10-2 x o.939 cm.-1 

= 0.692 xlo-2 

QD 
=Q 

em. -1 

' . ~ .. 
4 . 

-'1 _, I,_,..,.. 
0. <0'\1- )(. 10 CA'(\. . .,.. . "' ....... . 

= 

This is greater than t so Bacon's cri terion for negligible 

8. 

extinction is not valid for our crystal and in order to make it 

valid we would have to reduce crystal thickness by a factor of 

about 6. 

- Walter C. Hamilton (1957) discusses secondary extinction 

in cylindrical single crystals. More particularly he gives 

approximate values for a secondary extinction correction Es, 

with sufficient conditions for certain error limits (2% or 5% 

error). 
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We again employed some rough approximations in order to 

compare the actual conditions of our crystal with those 

sufficient to give an extinction correction error comparable 

to our statistical error associated with neutron intensity 

measurements. 

Hamil ton bases his error conditions on a factor CJ D 

whe!e D is the crystal diameter (assuming that the crystal 

is oriented for an equatorial reflection - which ours 

approximates) and cr: Q' W L.t:.e) where Q' is the reflec-

tivity corrected for primary extinction (which we ignore) and 

W (.t.e) is the distribution function for mosaic blocks in 

terms of ~e the deviation of a mosaic block from the mean 

Bragg angle e. It i s gen; .rally assumed that W (.oeY :_ is a 

Gaussian distribution function with standard deviation ~ , 

termed the mosaic spread parameter. However, it will be con-

venient here to follow Hamilton's example and to adapt a 

simpler form for W (Ae) as follows: 

This step is justified in the appendix of Hamilton's paper. 

Let us now calculate C) D for the ( 200) reflection from 

our crystal of Ni3Mn. We assume 11_ z :ts: 
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= O.'i7 

'Ibis value for crD satisfies Hamilton ' s conditions for less than 

5~ error When using a . secondary extinction correction of the 

fonn 

We have also assumed for the above calculation a negligible 

absorption ter:n f'or our crystal and that 2e, the scattering 

angle, is 0°. The accuracy obtainable according to Hamilton 

is comparable with our other statistical errors. If necessary, 

higher order reflections with lower reflectivity may be used 

in order to decrease the effects of extinction. It appears 

therefore that extinction can be satisfactorily corrected 

for in this experiment. 
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Ising System 

We must now connect the eventual results of this experi-

ment with the appropriate theoretical background and predic-

tions. 

It can be shown (Huang, 19b~) that the order-disorder 

process in a binary alloy is able to be represented theoreti-

cally by the Ising Model whose Hamiltonian is generally given 

by 
jC '::. ~ ;r.,.i 010j 

l 

In our particular system o-.: , the Ising spin variable 

takes a value ~1 according to whether a lattice site is 

occupied by an Ni atom or an Mn atom. It is assumed that 

Jij = V if i and j are nearest neighbours and Jij = 0 

otherwise. 

This model has not been solved exactly in 3- dimensions, 

even though the spin dimensionality is only 1. The 3- ·-

dimensional Ising model results which have been obtained, 

were developed through the use of series expansions, Pade 

approximant method and other techniques. 

Our interest lies in the dynamical aspect of the order-

disorder phase transition. Some theoretical work (but no 

experimental work) has been done in this area. A theoretical 

study of a 2- dimensional Ising model using the method of 

computer simulation has been done by Ogita, Ueda, Matsubara 

Matsuda and Yonezawa (1969). 
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The authors have simplified a 3- dimensional lattice 

model to a 2- dimensional model projected onto a plane per­

pendicular to the o- axis of the crystal. Necessary parameters 

such as temperature, external field etc. are given as input 

data for the computer simulation. The ordered configuration 

is stored as an initial state, then a bond is chosen by a 

random number. The computer observes the spin values corres­

ponding to the chosen bond and its six neighbours. It finds 

the transition probability for the observed configuration, 

{which is assumed proportional to the Boltzmann factor for 

the activation energy) and compares this probab i lity with 

another random number between 0 and l. If the probability 

is larger than the random number, the sign of the spin 

variable is changed. After this process is repeated 215 

times, a _unit time is considered to have passed. Then, 

polarization, spin correlation and the pattern of the spin 

configuration at that time are output. The whole procedure 

is repeated until the system attains an equilibrium state. 

The most interesting result is contained in a log-log 

plot of the relaxation time of polarization versus (T-Tc)/Tc• 

The graphical points are joined very closely by a straight 

line with. gradient -7/4 which agrees very well with the value 

of the critical exponent of susceptibility obtained by the 

Pad~ approximation. 
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Yahata (1971) has used a Markoffian stochastic model of 

interacting Ising spins to study the long-time behaviour of 

relaxation of its magnetization and energy near Tc• The 

technique of high-temperature series expansion and the ratio 

method are employed in this investigat~on. A numerical 

estimate is made of the critical exponent bMM of slowing 

down of magnetization. For a 3-dimensional Ising model the 

exponent is predicted to be bMM ~ 1.4. 'lbe paper also 

shows the possibility that the critical exponent of slowing 

down of magnetization is different from that of static 

susceptibility, contrary to the estimate from the initial 

decay or the result which the molecular field theory gives. 

Magnetization, for a ferromagnet corresponds to long 

range order in a binary alloy such as Ni3Mn. Thus we can 

compare our experi mental measurements of long range order 

with the theoretical predictions for magnetization. 
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APPARA'IUS 

Our source of monochromatic neutrons is the two-axis 

spectrometer associated with the McMaster University reactor. 

The spectrometer consists of a monochromator, a specimen table 

(which can be rotated) and a helium-3 neutron counter with 

associated electronics. (See Fig.3) The monochromator is an 

aluminum single crystal oriented for the (220) Bragg reflec­

tion. The incident wavelength of our neutron beam is 1.054 A0 

and <J'o the straight-through beam angle is 341.5°. The 

spectrometer was hand operated. 

For preliminary orientation of our crystal we used a gun­

sight mount consisting of a rotatable table which can also be 

tilted through an angle of about 45°. 

The crystal itself is cylindrical in shape with a length 

of about 3.25 em. and a diameter of 1.6 em. We f ound a (110) 

plane 30° off the cylindrical axis so a suitable crystal mount 

was designed to hold the (110) plane vertical. This enabled 

. all (hhl) reflections to be seen simply by rotating the crystal. 

(SeeFig.4). 

An electric furnace designed and built by Stephen 

Boronkay is used for this project. The furnace can maintain 

temperatures from 350° C to 800° C or more with temperature 

variations less than + 1/10 of a degree. A controlled tempera­

ture change of between 5 and 10° C can be effected in a matter 

of 4 or 5 minutes, after which time the temperature fluctua­

tions are less than~ ~° C. (See Fig.5). 
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The furnace is water-cooled by means of copper-tubing 

around four equally spaced flanges at the base of the furnace 

through which various thermocouple junctions pass to its 

centre. Three concentric layers of thin steel cylinders help 

prevent radiation losses. The outer steel casing of the 

furnace is 1/4" thick except at the height of the neutron beam 

where the thickness is pared to 1/8" . 

Tb prevent heat conduction the crystal is mounted on a 

thin ceramic rod projecting verticall y from the centre of the 

base of the furnace. 

Attached to the furnace is a dif fusion pump and Pirani 

gauge. The furnace heaters are automatically shut off by a 

relay if the pressure inside the furnace rises above 0.02 

torr. The relay also has a high temperature trip and a low­

cooling-water flow trip to further pr otect the furnace heaters. 

The furnace has three heaters: 30-watt heaters at top 

and bottom, each of which is controll ed by a variable trans­

former, and a 1500-watt cage-type heater which is connected 

to the temperature controller and a variable transformer. 

The temperature controller varies the main heater power by 

means of a Silicon Controlled Rectif i er whose controlling 

input comes from a thermocouple locat ed in the furnace 

midway between the sample and the heater coils. A base 

thermocouple input voltage is selected on a digital dial 

setting connected to the controller. The chosen thermocouple 
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voltage is maintained by proportional power variation. This 

means that the difference between the actual heater output 

and the base heater output is proportional to the difference 

between the actual thermocouple voltage and the base thermo­

couple voltage. (See Fig.6) 

Thermocouple reference junctions were maintained at 0° C. 

through the use of a Zeref automatic ice-point unit. 
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EXPERIMENTAL WORK 

The crystal was initially found to be in the disordered 

state. An ordering process consisting of the following steps 

was carried out. The temperature was raised to 535° C. 

(,...20° above Tc) for 10 hours. Next, the temperature was 

lowered to 500° C. for 4 hours. Finally it was successively 

decreased in temperature intervals of 10 degrees for periods 

doubling in length for each change until a temperature of 

46o° C. was r ,eached. The duration of the process was 6o 

hours. 

Integrated intensity measurements of the (100) and (200) 

Bragg peaks indicated that the crystal was approximately 30% 

+ 15% ordered at the end of the above process. 

The crystal was mounted in the furnace and oriented on 

the spectrometer. The (100) reflection was obtained and the 

temperature in the furnace was raised to 502° C. at which 

point the decrease of intensity with time was measured. (See 

Figs. 7 and 8). It was found that the time constant for 

disordering, ~ , was 4.0 + 1.0 minutes. The large error 

results from the nearness of the temperature to Tc (515 =5° C.) 

and the associated short relaxation time for the disordering 

process. It is worth noting that our neutron statistics are 

good enough to enable measurement of such a short time constant. 

McMASTER UNIVERSITY 
rre~ 
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. The crystal was re-ordered at 46o° C. and (since a paper 

by Litvin, Udovenko and Vintaikin, 1971, cited this as the 

fastest orderi ng temperature) some measurements of superlattice 

peak intensity were recorded. The data was insufficient for a 

graphical display but an approximate ordering time constant of 

35 = 10 hours was obtained. 

Upon completion of this reordering process , ~-rocking 

curves were obtained for (100), (200) and (300) planes of the 

crystal. (S~e Figs. 9, 10, 11). The (100) peak was very 

broad, having a half-width, f , of 2.2 degrees. The (200) 

peak had a half-wi dth of 1.4 degrees and its peak intensity 

was seven times larger than that of the (100) reflection. 

The ratio of the measured integrated intensities however, was 

close to one, which indicated a higher degree of order in the 

crystal than had previously been obtained. The true order 

parameter was substantially less than one when the effect of 

extinction was accounted for. Nonetheless, this is of minor 

importance for it is not the exact degree of order which is of 

interest to us, but the rate of change of order. 

The reordered system was allowed to come to equilibrium 

at 480° C. before the temperature was suddenly raised to 487° c. 

Thermal fluctuations of crystal temperature dissipated after 6 

minutes and (100) Bragg peak measurements were recorded as a 

function of t i me. A plot of intensity versus time was made on 

s 
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a linear scale from which we deduced the equilibrium intensity 

after 18 hours. (See Fig. 12). 

On a semi-logarithmic scale a plot of (initial minus 

equilibrium) intensity versus time was constructed. (See 

Fig. 13). The experimental points fall (within error) on a 

straight line from whose slope is deduced an order relaxation 

time constant , 1C , of 39.0 ~ 2.0 minutes at a temperature of 

487° c. 
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DISCUSSION 

Order relaxation time constants have been measured for two 

temperatures near Tc• As the temperature is decreased below 

Tc the time constant of disordering increases in magnitude. 

It is seen that the time constants will be long in comparison 

. with the thermal equilibration time of the furnace and the time 

for a neutron measurement but still short enough to be easily 

measured. Thus the feasibility of the final experiment has 

been demonstrated. 

There remains only the collection of sufficient data f or 

measurement of the critical exponent of relaxation time for 

long-range order. 
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