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ABSTRACT 

 

Damage to the endothelium is an important contributor to the initiation and 

progression of atherosclerosis. GRP78 is an endoplasmic reticulum (ER)-

resident molecular chaperone in normal healthy endothelium that functions to 

assist in the correct folding of newly synthesized proteins and to prevent the 

aggregation of folding intermediates. In addition, GRP78 is present as a 

transmembrane protein on the surface of lesion-resident endothelial cells. 

Surface GRP78 is known to act as a surface signaling receptor in cancer cells 

and is activated by anti-GRP78 autoantibodies (GRP78a-Abs) isolated from the 

serum of cancer patients. However, the role of cell surface GRP78 on endothelial 

cells and the influence of GRP78a-Abs in atherosclerosis is unknown. The 

objectives of this study were to investigate the effects of GRP78a-Abs on lesion 

development, examine whether engagement of cell surface GRP78 by GRP78a-

Abs modulates endothelial cell function, and determine whether GRP78a-Abs 

were associated with cardiovascular disease (CVD) in humans. This research 

showed that ApoE-/- mice with advanced atherosclerotic lesions have elevated 

serum levels of GRP78a-Abs and ApoE-/- mice immunized against recombinant 

GRP78 demonstrated a significant increase in GRP78a-Abs titers as well as 

accelerated lesion growth. Furthermore, this work demonstrated that activation of 

surface GRP78 on endothelial cells by GRP78a-Abs significantly increases gene 

expression of adhesion molecules ICAM-1 and VCAM-1 as well as leukocyte 
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adhesion through the NFκB pathway. Additionally, middle-aged to elderly adults 

at risk for CVD showed a trend toward elevated circulating GRP78a-Ab levels.  

Our results suggest that signaling through cell surface GRP78 can activate 

intracellular pathways that contribute to endothelial cell activation and augment 

atherosclerotic lesion development. These findings demonstrate a novel role for 

GRP78a-Abs and surface GRP78 receptor activity in endothelial cell function and 

the early stages of lesion development, as well as establish an initial framework 

for future work involving circulating GRP78a-Abs and atherosclerotic disease in 

humans. Furthermore, this work indicates inhibiting the interaction of GRP78a-

Abs with cell surface GRP78 could present a novel therapeutic strategy to 

modulate lesion growth, thereby reducing the risk for atherosclerosis and 

cardiovascular disease. 
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Chapter 1 - Introduction 

1.1 Atherosclerosis 

Atherosclerosis is the underlying cause of cardiovascular disease (CVD) 

and its complications are key initiators of CVD development(1). Compounding 

factors such as dietary, genetic, and environmental pressures contribute to the 

occurrence and pathogenesis of atherosclerosis and its consequences such as 

myocardial infarction and stroke(2).  CVD and its associated diseases, including 

atherosclerosis, account for the leading cause of death in the world(3).  This is 

not predicted to change based on the continued rise of obesity and diabetes, 

strong risk factors for atherosclerosis(4), as well as an increasing elderly 

population(5, 6). 	
  	
  

Atherosclerosis is characterized by the accumulation of lipids in the 

arterial subendothelium, leading to focal areas of inflammation, particularly in 

regions of disturbed laminar flow,	
  which cause thickening and hardening of the 

arterial wall(7, 8). This accumulation of lipid increases the binding and 

transmigration of monocytes into the subendothelium, thereby triggering 

proliferation and migration of smooth muscle cells, expansion of the extracellular 

matrix, and a thickening of the arterial wall(9).  Early lesions, composed of fatty 

streaks containing lipid-laden monocyte-derived macrophages, progress into 

advanced lesions characterized by fibrous plaques.  Continued inflammation and 

lipid accumulation also induces macrophage apoptosis and impaired 
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efferocytosis, resulting in large regions of necrosis and cholesterol crystal 

accumulation in advanced lesions(1, 10). These atherosclerotic plaques become 

thin and destabilize over time, resulting in plaque rupture, acute arterial 

thrombosis, and occlusion of the artery(11). 

1.2 Endothelial Cell Function and Dysfunction 

The vascular endothelium acts as the physical barrier between the blood 

and the vessel wall and is responsible for maintaining vascular homeostasis. 

Healthy endothelial cells regulate localized inflammation through the transient 

expression of cell surface factors that recruit monocytes and aid in their trans-

endothelial migration(12) The disruption of vascular health and damage to the 

endothelium is regarded as the important initiating event which renders the 

vasculature susceptible to atherogenesis	
  (12).  Loss of normal endothelial 

function leads to disruption of vasomotion, loss of vascular integrity, and areas of 

local inflammation allowing leukocyte infiltration and initiating plaque 

development(13).  One hallmark feature of endothelial dysfunction is the 

decrease in the bioavailability of nitric oxide (NO) which acts as a vasodilator and 

is thought to be atheroprotective in the healthy endothelium(14). The loss of NO 

availability is attributed to the reduction in endothelial nitric oxide synthase 

(eNOS) activity and an increase in reactive oxygen species generation(15).  

Atherogenic and inflammatory signals can also trigger endothelial cell activation, 

characterized by increased expression of surface adhesion molecules ICAM, 

VCAM, and E-selectin(16).  Expression of these surface proteins promotes 
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leukocyte recruitment and migration into the vessel wall and initiates additional 

inflammatory stimuli including cytokine and growth factor expression(17).  

Prolonged endothelial cell activation causes injury to the vessel wall and can 

result in endothelial cell dysfunction, increased vascular stiffness, dysregulation 

of leukocyte trafficking, and subsequent formation of atherosclerotic plaques(16). 

 While multiple cardiovascular risk factors including dysglycemia, 

hypertension, and hyperlipidemia have been associated with impaired endothelial 

cell function, haemodynamic shear stress in regions of highly disturbed flow can 

drive endothelial cells towards a more pathological phenotype independent of 

other contributing disease states	
  (18-­‐21). Branching vessel geometry creates 

disturbances in blood flow and causes mechanical strain on the vessel wall. The 

arterial endothelium can adapt to some extent to local haemodynamic 

characteristics through continual structural remodeling and adjusting cellular 

signaling pathways	
  (22). However, these adaptations often result in a malformed 

endothelium leaving the vessel wall susceptible to atherogenic stimuli. 

Endothelial cells in regions of disturbed flow found at curvatures, branches, and 

bifurcations show reduced cell alignment and a polygonal morphology(23). 

Conditions of disturbed flow elicit disorganization of the F-actin cytoskeleton and 

a differential regulation of gap junction proteins in cultured endothelial cells, 

similar to those observed in advanced atheromas of human carotid arteries (24, 

25). 
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Atherosclerotic plaques preferentially develop at specific anatomical 

locations such as the coronary arteries or lesser curvature of the aortic arch that 

are characterized by disturbed flow patterns in both humans and animals	
  (26). 

Endothelial cells adjacent to unidirectional laminar flow maintain a homeostatic, 

atheroprotective program, whereas endothelial cells exposed to disturbed flow 

show an increase in expression of many proatherosclerotic genes including 

proapoptotic and proinflammatory molecules(27). Disturbed flow increases the 

expression of IL-8, MCP-1 and the receptors for a number of interleukins as well 

as enhanced the inducible expression of adhesion molecule VCAM-1 in human 

endothelial cells(24, 27). In a porcine model of atherosclerosis, transcriptional 

expression of proinflammatory markers such as IL-1α and IL-6 as well as 

members of the NFκB system were up-regulated in regions of disturbed flow, 

however no active nuclear NFκB was observed nor any difference in expression 

of ICAM-1 or VCAM-1, commonly associated with NFκB mediated signaling(28). 

These in vivo observations are consistent with findings from LDLR knockout mice 

showing endothelial cells located in lesion-prone sites express higher levels of 

p65 and IκBs, but lack NFκB activation, suggesting that these sites are primed 

for NFκB activation and that additional systemic proatherosclerotic stimuli 

contribute to the preferential lesion development seen in these regions(29). 

Another common feature associated with athero-susceptible regions of the 

endothelium is the upregulation of genes associated with the synthesis and 
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processing of proteins in the endoplasmic reticulum (ER).  Cells exposed to 

adverse conditions that disrupt protein folding and induce ER stress initiate the 

unfolded protein response (UPR) as a strategy to restore ER homeostasis(30).  

Work published from our lab and others demonstrates UPR activation during all 

stages of atherosclerotic lesion development and is a prominent feature in 

growing lesions(31, 32).  Endothelial cells isolated from atheroprone sites of the 

aortic arch from adult swine show an increased expression of the protein-folding 

chaperone GRP78 as well as p-ATF6 and p-IRE1α, both transducers of the 

UPR(33). Similar results were also observed in athero-susceptible sites of ApoE-/- 

mice and cultured endothelial cells, suggesting that disturbed flow contributes to 

a chronic altered endothelial phenotype associated with ER stress and activation 

of the UPR(22, 34, 35). These cellular changes indicate an active attempt by the 

stressed endothelium to adapt to the adverse conditions of disturbed flow, 

however this state leaves cells vulnerable to additional challenges from systemic 

proatherogenic stimuli.  

1.3 ER Stress and the Unfolded Protein Response  

The ER is a network of interconnected membrane-bound vesicles 

responsible for processing secretory and cell surface proteins. This organelle 

provides a unique chemical environment for nascent polypeptide folding, post-

translational modifications, and quality control prior to transport to the Golgi 

apparatus. In the Golgi the correctly folded proteins are further processed, sorted 
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and packaged. Nascent polypeptides translocate into the ER from ER 

membrane-bound ribosomes through the Sec61 complex	
  (36). The oxidizing 

environment of the ER lumen is optimal for Cys-Cys disulfide bond formation	
  (36,	
  

37)	
  . Additionally, the ER is the largest calcium store in the cell, containing a 

resting Ca2+ concentration of 400 µM (38) and Ca2+ is an essential cofactor for 

proper chaperone-nascent polypeptide and chaperone-chaperone interactions	
  

(38,	
  39). The importance of properly maintained Ca2+ levels in the ER is 

highlighted by experiments using Ca2+ ionophores, which cause ER Ca2+ 

depletion and inhibition of the secretion of proteins from the ER (40). The post-

translational modification of N-linked glycosylation is also catalyzed within the ER 

lumen. Interestingly, underglycosylated proteins (likely due to protein misfolding) 

have increased affinity for molecular chaperones which supports their role in 

post-translational modification	
  (41). Mature, properly folded and modified 

proteins are transported out of the ER to the Golgi cis-face in coatomer protein 

(COP) II coated vesicles (42). Irrevocably damaged or misfolded proteins are 

removed through the ER-associated degradation (ERAD) pathway which 

includes the retro-translocation of misfolded proteins via the Sec61 translocon 

into the cytosol (43). Following their clearance from the ER, damaged and 

misfolded proteins are ubiquitinated and targeted for degradation by the 

proteasome	
  (44). 

Perturbations of ER homeostasis can occur through physiological or 

pathological stimuli that affect its ability to fold polypeptide chains into functional 
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proteins, thereby leading to accumulation of unfolded proteins in the lumen of the 

ER(45). An accumulation of unfolded or misfolded proteins in the ER overwhelms 

the protein folding capacity of the cell, leading to ER stress.  Cells have 

developed a multi-faceted stress response pathway, termed the unfolded protein 

response (UPR) that is sensitized by ER stress and works toward reestablishing 

proper protein synthesis and restoring ER homeostasis(46). Three distinct 

classes of ER stress integral protein transducers have been identified and 

compose the divergent arms of the UPR pathway including: the inositol-requiring 

protein-1 (IRE1), activating transcription factor-6 (ATF6), and protein kinase RNA 

(PKR)-like ER kinase (PERK).   

Under normal conditions, IRE1, ATF6, and PERK are bound to the 

chaperone 78kDa glucose-regulated protein (GRP78), also known as Bip, which 

retains the three ER stress transducers in an inactive state(47).  ER stress 

promotes binding of GRP78 to accumulated unfolded proteins, resulting in the 

release of GRP78 from these signaling regulators and the initiation of the 

UPR(48).  Activation of these pathways by GRP78 dissociation ultimately serves 

to relieve the protein synthesis burden on the ER while simultaneously increasing 

folding capacity, thereby alleviating ER stress and restoring protein homeostasis 

(Fig. 1)(49). 
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Figure 1. ER stress triggers the UPR signaling network. In response to ER 
stress, GRP78 dissociates from the UPR stress sensors IRE1, PERK, and ATF6, 
leading to their activation. UPR signaling leads to suppression of general protein 
translation and specific upregulation of molecular chaperones and anti-oxidant 
response. The purpose of the UPR is to ultimately restore ER homeostasis, 
however prolonged and unrelieved ER stress culminates in the initiation of 
apoptosis and resulting cell death. 

 

1.3.1 IRE1 Pathway 

Discovered in the early 1990s, the IRE1 pathway was identified in budding 

yeast Saccharomyces cerevisiae using genetic screening for alterations in UPR 

signaling(50). IRE1 encodes a type I ER-resident transmembrane protein 
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comprised of a lumenal and a cytoplasmic domain, the latter containing a protein 

kinase domain(51). In normal cells, the IRE1 protein kinase is maintained in an 

inactive monomeric form by its binding with GRP78(52). In response to ER stress, 

IRE1 oligomerizes and autophosphorylates, subsequently activating its RNase 

activity	
  (46). Currently, there is some debate regarding the mechanism by which 

IRE1 senses ER stress. Accumulation of misfolded proteins in the ER lumen is 

known to trigger GRP78 dissociation from IRE1, allowing its oligomerization in 

the ER membrane(53, 54).  However, recent studies contend that IRE1 also 

binds directly to unfolded proteins as seen with GRP78, causing a conformational 

change and activating its RNase activity(55, 56).  

The RNase activity of IRE1 acts on XBP1 (X-box binding protein-I) mRNA 

and excises a 26 bp-intron fragment. The 5’ and 3’ mRNA fragments are then 

ligated to generate spliced XBP1 mRNA that encodes an activator of UPR target 

genes	
  (57). Although both the precursor and spliced mRNAs of XBP-1 are 

translated to protein, the difference in their primary sequences causes them to 

have contrasting functions. The spliced form of XBP1 is more stable and is a 

potent activator of UPR target genes while the precursor form acts as a repressor 

of the UPR target genes(58). Upon resolution of the UPR, the precursor form of 

XBP1 mRNA continues to accumulate as ER stress is alleviated and IRE1 is 

inactivated(58).  



Ph.D. Thesis – E.D. Crane  McMaster University - Biochemistry 

	
   10	
  
	
  

The functions of IRE1 and XBP1 may not be limited to activation of the 

UPR; in fact, studies with mice possessing a heterozygous genotype for XBP1 

have demonstrated insulin resistance when fed a high-fat diet(59).  Further, this 

very same pathway was also shown to mediate B-lymphocyte differentiation into 

plasma cells(60). Thus, while the IRE1/XBP1 pathway may act to relieve ER 

stress via upregulating the UPR, this pathway might also be required for 

differentiation of cells producing high levels of protein.  

1.3.2 ATF6 Pathway 

The discovery of the IRE1 pathway sparked interest in the UPR and 

further research lead to the discovery of the ATF6 pathway. ATF6 is synthesized 

in the ER as an inactive precursor that is tethered to the ER membrane and also 

bound to GRP78(61). Upon conditions of ER stress, GRP78 dissociates from 

ATF6 and translocates to the lumen of the ER to enhance its protein folding 

capacity. Subsequently, ATF6 is transported to the Golgi complex where it is 

cleaved by site-1 (S1P) and site-2 (S2P) proteases that release the cytosolic 

DNA binding fragment of ATF6 (ATF6f)(61).  ATF6f then translocates to the 

nucleus where it acts as a transcription factor that binds to the ATF/cAMP 

response element and the ER stress-response element (ERSE-1), activating 

UPR responsive genes necessary for the enhanced folding capacity of the 

secretory pathway.  
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The proteolytic system utilized by ATF6, S1P and S2P is shared with the 

sterol regulatory element-binding protein (SREBP) family of transcription 

factors(62). When cholesterol becomes depleted from the cell, the SREBP 

precursor moves from the ER to the Golgi where it is cleaved by S1P and S2P. 

After being released from the membrane, the transcriptionally active fragment of 

cleaved SREBP translocates to the nucleus where it enhances de novo lipid 

synthesis. While ATF6 and the SREBPs require processing in the Golgi, the 

signals required for their trafficking to the Golgi are completely separate. The 

SREBPs are translocated to the Golgi upon cholesterol depletion, however, 

ATF6 translocates to the Golgi in response to a greater burden of unfolded 

proteins in the ER lumen(63).  

Recent studies have now shown that ER stress can also activate the 

SREBPs, leading to the increased synthesis of cholesterol and triglycerides	
  (64-­‐

66). Interestingly, overexpression of GRP78, which is known to alleviate ER 

stress, was able to prevent SREBP cleavage, decrease the expression of 

SREBP target genes, and repress hepatic lipid accumulation in obese ob/ob 

mice(64, 66)	
  . It has also been proposed that GRP78 interacts with the SREBPs 

in the lumen, as has been reported for PERK, IRE1 and ATF6, to modulate their 

interaction. Collectively, these studies highlight the crosstalk of the UPR with 

other physiological processes in the cell.  
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1.3.3 PERK Pathway 

Similar to IRE1, PERK is an ER transmembrane protein containing a 

lumenal stress (unfolded protein) sensor as well as a cytoplasmic domain 

possessing protein kinase activity(54).  Under conditions of ER stress, PERK 

oligomerizes and trans-autophosphorylates similar to IRE1; however, once 

activated it further phosphorylates the α-subunit of eukaryotic translation initiation 

factor-2 (eIF2α) at Ser51(67), which lowers global protein synthesis in the cell. 

This signal effectively reduces the overall protein folding demand on the ER while 

specifically stimulating the activation of genes involved in the UPR(47, 68).  

Recent studies have proposed conflicting views regarding the effect of 

eIF2α phosphorylation on cell survival or death. Cells that are PERK-deficient 

have impaired eIF2α phosphorylation and are more sensitive to ER stress-

induced cell death(69), suggesting that eIF2α phosphorylation is a pro-survival 

strategy that is important for the cell’s ability to survive ER stress. However, 

phosphorylation of eIF2α has also been shown to stimulate translation of 

activating transcription factor-4 (ATF4), which in turn triggers expression of the 

transcription factor C/EBP homologous protein (CHOP) that promotes cell 

death(70, 71)	
  . 

The multifaceted consequences of eIF2α phosphorylation on cell viability 

highlight the need for its strict regulation. Researchers have identified two 

negative regulators of eIF2α: the growth arrest and DNA-damage inducible 
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protein-34 (GADD34), and the constitutive repressor of eIF2α phosphorylation 

(CReP)(72).  GADD34 expression is induced by eIF2α phosphorylation and 

serves as a negative feedback loop(73); conversely, CReP is constitutively 

expressed and impacts baseline eIF2α de-phosphorylation(74).  

1.4 GRP78 

GRP78, also known as BiP, is a well characterized molecular chaperone 

belonging to the HSP70 family and is present in the endoplasmic reticulum (ER) 

of all cells	
  (75).  The peptide sequence of GRP78 is highly homologous across 

species and is found in most eukaryotic organisms(76).  GRP78 is composed of 

a substrate recognition site and an ATPase activity domain(77).  In the ER, 

GRP78 is involved in protein folding and assembly by binding exposed 

hydrophobic regions on nascent polypeptides(77).  The protein is then released 

through ATP hydrolysis mediated by the ATPase domain on the N-terminus of 

GRP78(78).  GRP78 goes through repeated cycles of binding and release until 

no further hydrophobic regions are available for binding on the folded protein(78). 

Whole body deletion of GRP78 in mice is embryonic lethal due to rapid 

degeneration of the embryo, highlighting its essential role in cellular function(79).  

While classically known as an ER resident chaperone, GRP78 has also 

been identified in other regions of the cell including the cytosol, mitochondria, 

and on the cell surface(80).  In the cytosol an alternatively spliced isoform of 

GRP78 has been identified and is thought to be induced under conditions of ER 
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stress where it enhances cell survival by increasing PERK activation(81). GRP78 

is also believed to help maintain mitochondrial homeostasis during ER stress by 

balancing energy expenditure and buffering Ca2+ flux(82,	
  83)	
  .   

1.4.1 Surface GRP78 

Of all the known roles for GRP78 outside the ER, the greatest evidence 

has been obtained for cell-surface GRP78 in its function as a transmembrane cell 

surface receptor(84).  First described in 1997, GRP78 has been identified on the 

surface of stressed cells where it has been shown to mediate various cellular 

responses ranging from increased cell proliferation and angiogenesis to induced 

apoptosis(84,	
  85). The downstream signaling response stimulated by surface 

GRP78 appears dependent on its specific ligand and the region of cell-surface 

GRP78 the ligand recognizes. Work published by our lab demonstrated the 

ability of surface GRP78 to activate tissue factor procoagulant activity by 

mediating Ca2+ release from the ER through activation of PLC and IP3 production 

in bladder carcinoma cells(86).  Binding of the active proteinase inhibitor α2M* to 

the N-terminal domain of cell-surface GRP78 stimulates cell survival and 

proliferation in prostate cancer cells by increasing the anti-apoptotic protein Bcl-2 

and activating the Akt pathway through the MAPK and PI3K signaling(87). 

Similarly, a synthetic peptide, RoY, interacted with the N-terminus of surface 

GRP78 and stimulated endothelial cell proliferation and migration under hypoxic 

conditions by an unknown mechanism(88). Conversely, antibodies that 

recognizes the C-terminus of surface GRP78 induced apoptosis by increasing 
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p53 in prostate and melanoma cancer cells(89).  Moreover, peptides derived 

from kringle 5 of human plasminogen induced cell death in fibrosarcoma cells by 

interacting with surface GRP78(90).  These varied reports highlight the potential 

for several diverse cellular responses to be mediated by surface GRP78 

signaling and emphasize an important role beyond the ER for GRP78 as a 

surface receptor that could be exploited for therapeutic targeting (Fig. 2).  

 

Figure 2. Cell-surface GRP78 acts as a receptor and regulator of cell 
signaling. Cell-surface GRP78 interacts with a variety of ligands, including 
activated α2-macroglobulin (α2M*) and T-cadherin (T-cad), resulting in cell 
survival and proliferation signaling.  It also promotes tissue factor activity and 
angiogenesis when bound on the N-terminus by anti-GRP78 autoantibodies 
(GRP78a-Ab) or RoY respectively. Conversely, surface GRP78 stimulates pro-
apoptotic pathways upon interaction with an antibody directed against the C-
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terminal domain (C-terminal mAb) or with Kringle 5. Surface GRP78 also 
facilitates viral entry (e.g. Coxsackie and dengue virus) into host cells. 

 

 

To characterize vessel surface proteins present during atherosclerosis, Liu 

et al. performed biopanning of atherosclerotic lesions in ApoE-/- mice using a 

phage-displayed constrained peptidyl library and identified GRP78 as an 

endothelial surface protein(91).	
  	
  GRP78 was also confirmed to be present on the 

surface of lesion-resident endothelial cells in ApoE-/ -mice as well as on human 

lesions from iliac artery segments, however it was not present on normal 

endothelium or in areas that failed to have lesion formation(91).  However, in 

contrast to the known role of GRP78 cell surface signaling activity in cancer, the 

role of cell-surface GRP78 in atherogenesis remains unclear. 

While the precise molecular mechanisms which mediate GRP78 

translocation to the cell surface are still unknown, an important study had shown 

that induction of endoplasmic reticulum (ER) stress stimulates relocalization of 

GRP78 to the cell surface(92).  ER stress is a known hallmark of atherosclerotic 

lesion progression, suggesting a link between ER stress induced endothelial cell 

surface GRP78 signaling and atherosclerotic lesion development. 
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1.4.2 Anti-GRP78 Autoantibodies 

The presence of cell surface GRP78 can stimulate the formation of anti-

GRP78 autoantibodies (GRP78a-Abs) by the immune system. Autoantibodies to 

GRP78 have been identified in the serum of patients with a variety of cancers 

including prostate, melanoma and ovarian(93).  Although GRP78a-Abs that 

recognize both the N- and C-terminal regions of GRP78 have been found, it is 

important to note that the majority of GRP78a-Abs found in human circulation 

identify a specific epitope on the N-terminus of surface GRP78 (Leu98-Leu115), 

indicating the importance of this antigenic region(94).  Additionally, high levels of 

these GRP78a-Abs in cancer patients correlates with advanced disease 

progression and poorer prognosis(93).  Previous work published by our lab 

demonstrated that binding of anti-GRP78 autoantibodies to surface GRP78 

activated tissue factor procoagulant activity by mediating Ca2+ release from the 

ER through activation of PLC and IP3 production in bladder carcinoma cells	
  (86). 

However, the effect of GRP78a-Ab mediated activation of cell surface GRP78 on 

lesion resident endothelial cells and how it might contribute to atherosclerotic 

lesion development is unknown.	
  

1.5 Autoantibodies in Atherosclerosis 

 Atherosclerosis is most recently known as a chronic inflammatory disease, 

emphasizing the role of the immune system in the progression of lesion 

development.  A number of antibodies targeting self-antigens have been 

associated with atherosclerosis even in the absence of overt immunization or 
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additional infection, leading to the theory that atherosclerosis could 

fundamentally be an autoimmune disease(95). The most commonly known 

autoantigen linked to atherosclerosis is oxidized LDL (oxLDL), and the 

corresponding autoantibodies present in humans are related to the extent of 

atherosclerosis(95, 96).   

 OxLDL is generated by the oxidation of LDL and accumulates in the 

vascular wall during development of atherosclerotic lesions(97).  While the 

precise mechanism of LDL oxidation in vivo is unclear, it is thought that reactive 

nitrogen species produced in response to several proatherogenic factors 

contributes to the oxidative modification of LDL(98, 99). OxLDL contributes to 

atherogenesis through ER stress induced endothelial cell activation leading to 

adhesion molecule expression in addition to promoting secretion of inflammatory 

cytokines and chemokines that stimulate monocyte to macrophage differentiation 

and smooth muscle cell proliferation(100, 101). Additionally, macrophages can 

take up oxLDL through scavenger receptors, leading to foam-cell formation(102). 

Autoantibodies against oxLDL were identified circulating in sera as well as in 

atherosclerotic lesions from both rabbits and humans(103, 104). Increasing 

levels of autoantibodies to oxLDL corresponded to lesion progression in LDLR-/- 

mice fed an atherogenic diet, but did not rise in mice fed a normal chow diet, 

supporting the idea that measurement of autoantibody titers to oxLDL could be a 

useful tool for assessing plaque oxLDL levels and lesion composition(105). Since 

high levels of autoantibodies to oxLDL were observed during atherogenesis, it 
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was thought that perhaps oxLDL autoantibodies somehow promoted lesion 

progression. On the contrary, however, immunization against oxLDL in mice and 

rabbits proved to be atheroprotective and reduced lesion size compared to 

controls irrespective of an increase in antibodies to oxLDL(106).  While these 

results suggest a role for oxLDL autoantibodies in the clearance oxLDL, there 

was no evidence of increased clearange of oxLDL mediated by its corresponding 

autoantibodies in ApoE-/- mice(107).  Although additional potential roles of oxLDL 

autoantibodies have been suggested, including blocking the uptake oxLDL by 

macrophages, the exact function of these autoantibodies and their relevance in 

vivo remains unclear(108). 

1.6 Project Rational, Hypothesis and Objectives 

Although signaling through surface GRP78 has been described in cancer 

cells, the functional significance of endothelial cell surface GRP78 and its 

potential role in atherosclerotic lesion development is unknown. GRP78 is known 

as a cell-surface signaling receptor on stressed cells and has been identified on 

the surface of lesion resident endothelial cells, therefore it was hypothesized that 

signaling through cell-surface GRP78 on endothelial cells promotes endothelial 

cell activation and encourages atherosclerotic lesion development.  The overall 

objective of this project was to investigate the role of cell surface GRP78 and 

GRP78a-Abs in the development and progression of atherosclerosis.  Specific 

objectives include (i) assessing the relationship between GRP78a-Abs and the 
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extent of atherosclerosis (ii) examining the cellular function of surface GRP78 in 

endothelial cells (iii) investigating the significance of GRP78a-Abs in humans. 

In work described here, we identify GRP78a-Abs in murine models of 

atherosclerosis and show that serum levels correspond to lesion progression with 

an atherogenic diet.  Moreover, high levels of GRP78a-Abs accelerate early 

atherosclerotic lesion growth in ApoE-/ -mice, via a direct interaction and 

activation of surface GRP78 on lesion resident endothelial cells.  Furthermore, 

we demonstrate that blocking circulating GRP78a-Abs is a viable strategy toward 

attenuating lesion progression.  In addition, we establish that induction of ER 

stress stimulates surface GRP78 expression in primary human aortic endothelial 

cells.  We show activation of surface GRP78 by GRP78a-Abs exacerbates 

proinflammatory signaling and adhesion molecule expression through the NFκB 

pathway in cultured endothelial cells expressing surface GRP78.  Finally, we 

provide groundwork evaluation of the relationship of GRP78a-Abs in human 

populations at risk for cardiovascular disease.  These findings provide a basis for 

understanding the role of GRP78a-Abs and the activation of surface GRP78 in 

endothelial cells and atherosclerotic lesion development.  
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Chapter 2 – The Role of Anti-GRP78 Autoantibodies in Atherosclerotic 

Lesion Development In Vivo 

2.1 Introduction 

2.1.1 Animal Models of Atherosclerosis 

 Genetically modified animal models are extremely useful tools for studying 

the progression of a disease and the contribution of specific genes to cellular 

processes or pathology.  Wild type mice are protected from the development and 

progression of atherosclerosis, so to develop an animal model of the disease it 

was necessary to modify the genetics of mice to increase their susceptibility to 

atherogenesis(109). Gene targeting initially focused on apolipoprotein E (apoE), 

a glycoprotein and structural component of most lipoproteins(110).  ApoE serves 

as a ligand for receptors that allow uptake of lipoproteins by the liver, an 

important process in cholesterol metabolism.  ApoE-deficient mice were created 

in 1992 by the Maeda and Breslow groups and have since been an important 

advancement in understanding the pathology and progression of 

atherosclerosis(109, 111, 112).  Mice lacking this protein are 

hypercholesterolemic and spontaneously develop atherosclerotic plaques on a 

chow diet that resemble human lesions(111, 112). This phenotype becomes 

more severe when challenged with a high cholesterol or high fat diet(112). 

Therefore, the ApoE-/- strain is the primary mouse model used by our lab to study 

atherosclerosis and in the experiments described below. 
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 A second useful animal model for atherogenesis involves the ablation of 

the low density lipoprotein receptor(LDLR) gene in mice, which was developed 

by Ishibashi and colleagues	
  (113).  These animals have a modest increase in 

plasma cholesterol and LDL levels when fed a chow diet compared to wild-type 

mice	
  (113).  Unlike ApoE-/- mice, LDLR-/- mice do not develop atherosclerotic 

lesions on a normal chow diet but quickly develop large advanced lesions only 

when fed a high cholesterol diet, thus enabling temporal control over the initiation 

of lesion formation(114). 

2.1.2 A Small Peptide Mimetic of Surface GRP78  

The small peptide CNVSKDSC was originally described as a tool used by 

Mintz and colleagues during a screen for circulating tumor-associated antibodies 

in prostate cancer patients(93).  Reactivity of patient serum against the peptide 

CNVSKDSC was significantly higher in cancer patients than healthy controls and 

positively correlated with the natural progression of the disease(93). This peptide 

was shown to mimic the tertiary conformation of an epitope on the N-terminal 

region of cell surface GRP78 and could be recognized by antibodies against 

GRP78(93). Patient serum was shown to react with recombinant GRP78, and 

this reactivity could be blocked by the CNVSKDSC peptide, identifying for the 

first time autoantibodies against GRP78 and their link to human disease(93).  

Additional studies have utilized this small peptide conjugated to KLH and 

immobilized on 96-well plates to develop an ELISA assay for detection of 
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GRP78a-Abs in serum(94).  Moreover, the CNVSKDSC peptide was used to 

purify anti-GRP78 antibodies from human serum by immunoaffinity(94).  This 

peptide has been established as a useful tool for investigating GRP78a-Abs and 

provides a potential method for sequestering GRP78a-Abs in circulation. 

2.1.3 Objective 

Cell surface GRP78 in cancer leads to the development of circulating 

autoantibodies against GRP78 in cancer patients(84).  High levels of GRP78a-

Abs correlate with accelerated cancer progression and reduced survival in these 

patients(93).  Although cell surface GRP78 has been identified on atherosclerotic 

lesions in ApoE-/- mice(91), the relevance and influence of GRP78a-Abs in 

atherosclerosis is unknown.  The objective of this work was to assess the 

relationship between GRP78a-Abs and atherosclerosis in vivo.  Here we assess 

GRP78a-Abs in a number of animal models of atherosclerosis.  We also employ 

several strategies to modulate levels of circulating GRP78a-Abs in ApoE-/- mice 

and examine the resulting effects on atherogenesis. 

2.2 Materials & Methods 

2.2.1 Animals 

Female C57BL/6 and ApoE-/- mice were obtained from Jackson Laboratories and 

fed a normal chow diet or high-fat diet ad libitum (Harlan Tekland; 88137) with 

free access to water. In experiments described here, blood was collected from 
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the right ventricle under isofluorane anesthesia. The mice were then euthanized 

by cervical dislocation and immediately perfused with PBS followed by 4% 

paraformaldehyde. The heart and aorta were removed and fixed in buffered 

formalin overnight before further processing.  All procedures were approved by 

the McMaster University Animal Research Ethics Board. 

 Serum samples from LDLR-/- mice fed a chow or high-fat diet were 

generously provided by Dr. Geoff Werstuck. Serum samples from C57BL/6, 

ApoE-/-, LDLR-/-, and SRB1-/- mice fed a Paigen diet were generously provided by 

Dr. Bernardo Trigatti.   

2.2.2 Production and purification of human recombinant GRP78 protein 

His-tagged full length recombinant human GRP78 (rhGRP78) protein was 

expressed in Rosetta bacteria and purified by nickel affinity chromatography. 

Briefly, the GRP78-pET-28b vector was inserted into Rosetta cells by heat shock 

transformation. Transformed cells were grown in LB media containing 50ng/mL 

kanamycin and 50ng/mL chloramphenicol to an OD600 of 0.8-1.0 and 

subsequently treated with 500nM IPTG for 3-4 hours to induce rhGRP78 

expression. Cells were lysed with sonication and rhGRP78 was purified by 

gravity flow on a Ni-NTA Agarose (Qiagen) column at 4°C.  Contaminating 

endotoxin was removed by running the protein through a Detoxi-Gel pre-packed 

column (Pierce).  Endotoxin removal below 0.05 EU/mL was confirmed using the 

E-Toxate detection system (Sigma-Aldrich). Purity of the protein was evaluated 
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by SDS-PAGE. An ATPase Assay Kit (Innova Biosciences) was used to assess 

the ATPase activity of the purified protein as a measure of its functionality. 

Purified recombinant GRP78 was aliquoted and stored at -80°C until further use. 

2.2.3 Production and purification of GRP-MSAH6 recombinant protein 

Recombinant proteins containing residues 98-115 of GRP78 linked to a 

hexahistidine-tagged mouse serum albumin (GRP-MSAH6) and MSAH6 alone 

were produced by expressing the proteins in yeast cells using methods 

previously established (115, 116). Briefly, after the conditioned media was 

concentrated the proteins were isolated by affinity purification on nickel-chelate 

affinity columns. After dialysis against PBS, the proteins were characterized by 

immunoblotting using both anti-MSA and anti-H6 antibodies. Purified proteins 

were aliquoted and stored at -80°C until further use. 

2.2.4 Purification of mouse anti-GRP78 autoantibodies 

Anti-GRP78 autoantibodies were isolated from the serum of 24 week old female 

apoE-/- mice fed a chow diet. The autoantibodies were purified by affinity 

chromatography on the CNVSKDSC peptide immobilized on Sepharose 4B as 

previously described	
  (86,	
  117).  

2.2.5 Immunization against GRP78 

To stimulate production of antibodies against GRP78, female apoE-/- mice fed a 

chow diet were injected at 6 weeks of age with 100 µL TiterMax Gold adjuvant 



Ph.D. Thesis – E.D. Crane  McMaster University - Biochemistry 

	
   26	
  
	
  

emulsified in a 1:1 mixture with 50 µg endotoxin-free ovalbumin (OVA), or 50 µg 

recombinant GRP78 in sterile saline. Mice were given 2 booster injections at 10-

day intervals. Blood samples were collected at intermediate time points from the 

facial vein. Mice were sacrificed at 15 weeks of age (early lesion group) or 25 

weeks of age (advanced lesion group) using paraformaldehyde infusion as 

described above.  

2.2.6 Quantification of Cholesterol and Triglycerides 

Total cholesterol and triglycerides were measured in serum by enzymatic 

colorimetric assays Cholesterol E and L-Type Triglyceride M, respectively, 

according to manufacturers guidelines (Wako Diagnostics). 

2.2.7 Analysis of Serum Anti-GRP78 Autoantibody Titers 

Antibodies against GRP78 in the serum of mice were determined utilizing an 

ELISA originally described by Gonzalez-Gronow and colleagues that was 

optimized in our lab for use with mouse serum(94). Briefly, 96-well plates were 

coated with the CNVSKDSC peptide conjugated to KLH (5 µg/mL), blocked with 

PBS-Tween containing 3% BSA, and incubated overnight with serum samples at 

a 1:100 dilution. Plates were incubated with anti-mouse IgG conjugated to 

alkaline phosphatase and developed by adding an alkaline phosphatase 

substrate to the plate for 25 minutes, after which the reaction was stopped with 

3M NaOH. Absorbance was read at 405 nm. All assays were performed in 

triplicate and analyzed relative to a common sample. 
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2.2.8 Quantification of Atherosclerotic Lesion Size and Necrotic Area 

The fixed hearts (with the aortic root) were dissected from the aortic arch, cut 

transversely, and embedded in paraffin blocks. For each samples, one hundred 

and twenty 4-µm-thick serial sections were cut through the aortic root. 

Comparable sections were stained with hematoxylin and eosin. Lesion size and 

necrotic area were measured from 4-5 sections at 80µm intervals using ImageJ 

as previously described(118). Necrotic area, defined as regions greater than 

3,000-µm2 devoid of nuclei in the intima, was measured and expressed as a 

percentage of total lesion area as described previously(119). 

2.2.9 Immunohistochemistry 

Immunohistochemistry was performed on serial paraffin sections of the aortic 

root. Horseradish peroxidase substrate staining for Mac-3 (Pharmingen; #55322) 

and CD3 (Dako Cytomation; A0452) was done as described previously(32, 118). 

Briefly, dried sections were deparaffinized in xylene and endogenous peroxidase 

was blocked by incubating in 0.5% H2O2 for 10 min. Heat-induced epitope 

retrieval was performed followed by blocking with normal rabbit or goat serum, 

respectively. Slides were incubated with primary antibodies for 1.5-2 hours at 

room temperature, washed and incubated with the appropriate biotinylated 

secondary antibody for 30 min at room temperature. Following additional washes, 

slides were incubated with HRP-streptavidin (Invitrogen; #50-242Z) for 30 min at 

room temperature and exposed to prepared Nova Red (Vector Laboratories; 

#SK-4800) solution for 3-7 minutes.  The reaction was quenched with distilled 
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water. Sections were counterstained with Gills hematoxylin and mounted with 

Permount (Fisher Scientific). 

 

2.2.10 En face Immunofluorescence 

Purified mouse anti-GRP78 autoantibodies isolated previously from apoE-/- mice, 

as well as control mouse IgG (Sigma Aldrich) were biotinylated using EZ-Link 

Sulfo-NHS-Biotin (Thermo Scientific) according to the manufacturer’s instructions. 

Female apoE-/- mice at 18 wks of age were injected via the tail vein with 10 µg 

biotinylated GRP78a-Ab or 10 µg biotinylated IgG. Mice were sacrificed after 30 

minutes as described above. The aortic arch was dissected and cut open 

longitudinally. The aortas were blocked with 10% goat serum and incubated with 

rat anti-CD31 (1:200; BD Pharmingen) overnight followed by PBS washes and 

anti-rat Alexa 488 (1:200; Life Technologies) and streptavidin conjugated Alexa 

594 (1:200; Life Technologies) for 30 min. Nuclei were stained using DAPI 

(Sigma-Aldrich). The aortas were mounted on slides with ProLong Gold Antifade 

Mountant (Life Technologies) and viewed with a Zeiss Axioplan fluorescent 

microscope (Carl Zeiss Canada). Regions with and without lesions were 

identified based on published anatomical locations relative to the lesser and 

greater curvature area(29, 120). 

 

 



Ph.D. Thesis – E.D. Crane  McMaster University - Biochemistry 

	
   29	
  
	
  

2.2.11 Peptide Infusions  

Alzet osmotic mini pumps (Model# 1004) containing the CNVSKDSC peptide 

dissolved in saline (pump rate: 10 mg/kg/d) or saline alone were surgically 

implanted subcutaneously in the interscapular region of 11 week old female 

apoE-/- mice fed a chow diet. Mice were allocated to groups in a weight-matched 

fashion prior to commencement of the experiment. Body weight was measured 

each week after the procedure to confirm surgical recovery. No sign of health 

deterioration (i.e. reduced cage movement, hunching or Barbary) or chronic 

infection was observed in any of the mice. Mice were sacrificed 4 weeks after 

pump implantation as described above. 

2.2.12 Statistical Analysis 

Values are expressed as mean±SE. Statistical analysis was performed using an 

unpaired Student’s t test or ANOVA. When significance was attained using 

ANOVA, a Tukey’s post hoc test was used to determine specific differences. 

Significance was defined as p<0.05.  

 

2.3 Results 

2.3.1 Anti-GRP78 autoantibody titers increase in mice with atherosclerosis.   

While C57BL/6 mice are resistant to developing atherosclerosis, it is known that 

ApoE-/- mice aged 25 weeks have advanced lesion development even when fed a 

chow diet (32). Therefore, in order to determine the influence of atherosclerosis 
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progression on GRP78a-Abs, we collected serum from mice with little to no 

lesions (C57BL/6 mice) as well as those with advanced lesions (ApoE-/- mice). 

Titer levels of GRP78a-Abs in serum were measured in 26 week old female 

ApoE-/- mice and age-matched female C57BL/6 mice by ELISA.  ApoE-/- mice 

showed significantly higher levels of GRP78a-Abs, compared to C57BL/6 mice 

(Fig. 3A).  Additionally, ApoE-/- mice with advanced lesions (26 weeks of age) 

had significantly higher GRP78a-Abs levels than ApoE-/- mice with early lesions 

(12 weeks of age; Fig.3B).  This suggests GRP78a-Abs are associated with the 

occurrence and severity of atherosclerosis. 

To investigate in detail how GRP78a-Abs titers might change over time, 

plasma titer levels were measured repeatedly by ELISA in C57BL/6 and ApoE-/- 

mice from 8 to 20 weeks of age while on a chow diet. ApoE-/- mice begin to 

develop early lesions by 10 weeks of age that can be identified by fatty streaks 

composed of foam cells in the intima of the vessel wall	
  (32).  These areas 

develop into advanced lesions by 25 weeks of age, therefore this window of time 

represents a significant period of lesion development during growth in ApoE-/- but 

not C57BL/6 mice. GRP78a-Abs increased with age in ApoE-/- mice fed a chow 

diet, and were significantly higher than levels in C57BL/6 mice at 20 weeks of 

age (Fig. 3C).  To examine whether accelerated lesion development influenced 

GRP78a-Abs levels, mice were fed a high fat diet (HFD) which is known to 

increase the rate at which ApoE-/- mice develop atherosclerotic lesions(121).  

ApoE-/- mice on a HFD had significantly higher levels of GRP78a-Abs compared 
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to C57BL/6 mice at 17 weeks of age (Fig. 3D), suggesting a more rapid induction 

of GRP78a-Abs under more athlerogenic HFD conditions. 

	
  To further examine whether the increase in GRP78a-Ab titers observed in 

ApoE-/- mice is influenced by the development of atherosclerosis rather than 

simply being an artifact of the genetic strain, GRP78a-Ab titers were also 

measured by ELISA in 15 week old female LDLR-/- mice that were fed either a 

regular chow diet or high fat diet (HFD) for 10 weeks.  LDLR-/- mice do not 

develop atherosclerotic lesions unless challenged with a high fat diet, therefore 

we expected to see higher GRP78a-Ab titers in the mice fed a HFD compared to 

those remaining on a regular chow diet.  Although not significant, the LDLR-/- 

mice fed a HFD showed a tendency of higher GRP78a-Ab levels compared to 

the mice on a chow diet (p=0.21; Fig. 3E).  

To examine additional models of atherogenesis, four different strains of 

mice, C57BL/6, ApoE-/-, LDLR-/-, and SRB1-/- were fed the atherogenic Paigen 

diet for 20 weeks. There was no significant difference of GRP78a-Ab levels 

between these groups (Fig. 3F).  To reduce variability and because all previous 

work had been done using single-gender cohorts, the groups were separated into 

males and females.  When the groups were compared across only one gender, 

the levels of GRP78a-Abs were significantly higher in ApoE-/-, LDLR-/-, and SRB1-

/- male mice compared to C57BL/6 male mice (Fig. 3G). GRP78a-Ab levels were 

not significantly different in the female mice (Fig. 3H). 
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Figure 3. GRP78a-Abs are elevated in mouse models of atherosclerosis. 
Serum levels of GRP78a-Abs were measured by ELISA from (A) female C57BL/6 
or ApoE-/- mice at 26 weeks of age fed a chow diet, (B) female ApoE-/- mice at 12 
weeks of age (early lesion group) or 26 weeks of age (advanced lesion group) 
fed a chow diet, (C) female C57BL/6 or ApoE-/- mice 8-20 weeks of age fed a 
chow diet, (D) female C57BL/6 or ApoE-/- mice 8-17 weeks of age fed a high fat 
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diet starting at 8 weeks of age, (E) 15 week old female LDLR-/- mice on a high fat 
(HF) or chow diet for 10 weeks (n=5 per group).*p<0.05 versus age matched 
C57BL/6 mice.  Levels of anti-GRP78 autoantibodies are shown for (F) mice fed a 
Paigen diet and sub-divided by gender into (G) male and (H) female mice. 
*P<0.05 versus age matched C57BL/6 mice.	
  	
  All data are presented as 
absorbance units at 405 nm relative to a common sample.  

 

2.3.2 Production of functional human recombinant GRP78 protein.  

His-tagged full length human recombinant GRP78 (hrGRP78) protein was 

expressed in Rosetta cells and affinity purified by gravity flow using Ni2+ -agarose 

at 4°C.  Contaminating endotoxin was removed by placing the recombinant 

protein over a Detoxi-Gel pre-packed column.  Endotoxin removal below 0.05 

EU/mL was confirmed using the E-Toxate detection system (Sigma).  The purity 

of the isolated protein was confirmed with coomassie stain (Fig. 4A). The purified 

protein was analyzed by western blot and detected by anti-GRP78 and anti-His 

antibodies(Fig. 4B). Function of hrGRP78 was evaluated by determining ATPase 

activity with the ATPase assay kit, from Innova Biosciences, which showed that 

the purified hrGRP78 has 0.022 units/mL of activity (1 unit equals the amount of 

enzyme that catalyzes the reaction of 1µmol of ATP per minute). 

In some instances, the insertion of a His-tag can interfere with the folding 

or activity of a recombinant protein. Although the recombinant GRP78 included a 

His-tag, it has been previously shown that this modification does not affect the 

function or structure of GRP78 and provides a simple method for 

purification(122).  After confirming the activity and purity of rhGRP78, this protein 
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was used in vivo to immunize ApoE-/- mice and stimulate GRP78 autoantibody 

production. 

 

 

 

 
Figure 4. Purification of recombinant human GRP78 protein. Endotoxin was 
removed from full length recombinant GRP78 expressed in Rosetta cells and 
purified by nickel affinity gravity-flow chromatography (Ni) by running over a 
Detoxi-Gel column (D). Samples were separated on an SDS-PAGE gel and 
stained with A. coomassie dye, to visualize proteins and assess purity, or 
transferred to nitrocellulose and probed for B. GRP78 and C. HIS. 
 

 

2.3.3. ApoE-/- mice with elevated levels of anti-GRP78 autoantibodies have 

larger and more complex lesions. 

In order to specifically manipulate levels of GRP78a-Abs in vivo and determine 

whether it plays a role in lesion development, ApoE-/- mice were immunized 

αGRP78 

αHIS 

Ni D A B 
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against rhGRP78 or control ovalbumin.  Mice injected with rhGRP78 produced 

significantly higher levels of GRP78a-Abs at 12, 15 and 25 weeks of age, 

compared to ApoE-/- mice immunized against ovalbumin (Fig. 5A).  At 15 weeks 

of age, mice with higher levels of GRP78a-Abs had significantly larger lesions, 

compared to control immunized mice (Fig. 5B-C). There was no significant 

difference in lesion size in mice at 25 weeks of age (Fig. 5D-E). At 15 weeks of 

age, fatty streaks were observed in both control and rhGRP78 immunized mice.  

However areas of more complex lesions were also present in rhGRP78 

immunized mice at this time point.  Advanced intimal lesions consisting of 

necrotic area, lipid crystals, and a cellular cap were observed in both treatment 

groups at 25 weeks of age.  Areas of lipid rich necrotic core and cellular debris 

were observed in mice immunized against GRP78 at both 15 and 25 weeks of 

age and in control immunized mice with advanced lesions at 25 weeks of age 

(Fig. 5F). Quantification of the necrotic area in lesions demonstrated a 

significantly greater amount of necrotic area in mice with higher levels of 

GRP78a-Abs at 15 weeks of age (Fig. 5G) but not 25 weeks of age (Fig. 5H). 

This data suggest that the increased GRP78a-Abs exacerbate atherosclerosis 

formation at early stages of lesion development. 

Triglyceride and total cholesterol levels were not significantly different 

between groups at 15 or 25 weeks of age (Fig. 5I-L). This indicates that any 

difference in lesion size and characteristics observed between groups is not the 

result of alterations to triglyceride and total cholesterol levels. 
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Figure 5. Atherosclerotic lesion growth is accelerated in ApoE-/- mice with 
elevated GRP78a-Ab titers. (A) Serum levels of GRP78a-Abs were measured by 
ELISA in female ApoE-/- mice fed a chow diet and injected three times at 10 day 
intervals with 50 µg/ml of ovalbumine (OVA, n=6) (○) or full length recombinant 
GRP78 (n=6)(■) beginning at 6 weeks of age. Data are presented as absorbance 
units (AU) at 405 nm relative to a common sample. *p<0.05 versus OVA  at each 
time point. (B-E) Quantification of atherosclerotic lesion area and volume at the 
aortic root in 15 and 25 week old mice as indicated. Lesion size was measured in 5-
6 sections at 80 nm intervals, *p<0.01 versus OVA treated mice. (F) Representative 
cross sections of the aortic root stained with hematoxylin-and-eosin. Lesions are 
outlined in red. Images were taken at 20X magnification. Bar = 200 mm. (G-H) 
Quantification of necrotic area in lesions at the aortic root. Data are expressed as 
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percent of total lesion area. *p<0.01 versus OVA treated mice. Plasma levels of (I-J) 
triglycerides and (K-L) total cholesterol were measured in fed 15 and 25 week old 
mice as indicated by colorimetric assays. Data are represented as mg/dL.  

 

2.3.4. Anti-GRP78 autoantibodies bind to lesion resident endothelial cells in 

ApoE-/- mice. 

GRP78 has previously been identified on the surface of lesion resident 

endothelial cells in ApoE-/- mice(91). To determine whether GRP78a-Abs interact 

with endothelium expressing surface GRP78, GRP78a-Abs were isolated from 

24 week old female ApoE-/- mice. The purified autoantibodies as well as control 

mouse IgG were biotinylated for ease of detection. ApoE-/- mice were injected via 

the tail vein with biotinylated-GRP78a-Abs (b-GRP78a-Abs) or biotinylated-

mouse IgG (b-IgG) and sacrificed after 30 min. The ascending aorta and 

proximal arch were dissected and double stained en face for endothelial cells 

(anti-CD31) as well as binding of biotinylated antibodies (anti-Streptavidin-594). 

Binding of b-GRP78a-Abs was assessed in regions with high (HP) and low (LP) 

probabilities for developing lesions as previously identified and described by 

Iiyama K. and colleagues(120). We observed b-GRP78a-Abs associated with 

lesion-resident endothelial cells in HP regions, but no detectable b-GRP78a-Abs 

were observed on endothelial cells in LP regions (Fig. 6). This suggests 

GRP78a-Abs in mice directly interact with the endothelium and specifically 

interacts with lesion-resident endothelial cells. 
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Figure 6. GRP78a-Abs bound to endothelial cells on atherosclerotic lesions. 
Immunofluorescence images of biotinylated GRP78a-Abs binding lesion resident 
endothelium in the aortic arch from female apoE-/- mice (18 weeks of age). Mice 
were injected with 10 μg biotinylated GRP78a-Abs or biotinylated mouse IgG and 
sacrificed 30 min post injections. (A) LP and HP regions were stained en face. 
Dashed lines indicate areas of lesions. Endothelial cells report green with rat anti-
mouse CD31 and bound biotinylated antibodies report red with streptavidin-
conjugated secondary antibody (Strep-594). Nuclei were counterstained with DAPI 
(blue). HP regions stained with secondary antibodies only (2° Ab only) served as 
controls for autofluorescence and non-specific staining. These data indicate that 
GRP78a-Abs bind to lesion-resident endothelial cells. (B) Location of LP and HP 
regions for atherosclerotic lesion formation on the ascending aorta and proximal 
arch.  
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2.3.5. Production and characterization of a recombinant albumin containing a 

GRP78 peptide sequence. 

Previous studies have successfully shown that fusion of albumin to small 

molecules is an effective strategy to extend clearance half-life without inhibiting 

the effects of the small molecules	
  (116,	
  123,	
  124). Since GRP78a-Abs commonly 

bind the Leu98-Leu115 domain of GRP78, we were interested in linking this 

sequence to albumin to slow the clearance of the small peptide as a method to 

bind and neutralize GRP78a-Abs in circulation.  To this end, a recombinant 

protein containing residues 98-115 of GRP78 linked to hexahistidine-tagged 

mouse serum albumin (GRP-MSAH6) and a control hexahistidine-tagged mouse 

serum albumin (MSAH6) was generated. Production of the proteins was highest 

after 72 hours by methanol-induced yeast cells grown in BMMY medium (Fig. 7A). 

Western blot analysis showed the proteins were detectable by both anti-MSA and 

anti-HIS antibodies (Fig. 7B).   

 To test whether this GRP-MSAH6 protein complex was able to bind the 

GRP78a-Abs, immunoprecipitation assays were performed to measure the 

degree of protein interaction. In the first experiment, GRP78a-Abs were 

incubated with GRP-MSAH6 and the resulting complexes were collected with 

Protein G beads. Although GRP-MSAH6-GRP78a-Ab complex formation was 

detected with an anti-MSA antibody, GRP-MSAH6 was also detected in the 

absence of GRP78a-Abs suggesting non-specific binding of GRP-MSAH6 to the 
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beads. To minimize non-specific column binding, a second experiment utilized 

the hexahistidine tag on GRP-MSAH6. GRP-MSAH6 was incubated with 

GRP78a-Abs and pulled down using cobalt beads, which bind specifically to 

hexahistidine residues. Again, GRP78a-Abs were not detected in complex with 

GRP-MSAH6 and were only visible in wash fractions (Fig. 7C). Taken together 

these pull-down assays do not suggest a strong interaction between GRP78a-

Abs and the GRP-MSAH6 fusion protein.  

To further test the ability of GRP-MSAH6 to interact with GRP78a-Abs, 

GRP-MSAH6 was incubated with human serum overnight and subjected to 

ELISA to determine whether the fusion protein could reduce the signal generated 

by GRP78a-Abs. Serum pre-incubated with GRP-MSAH6 showed a modest 

reduction in GRP78a-Abs, however this reduction was also seen in serum 

incubated with MSAH6 (Fig. 7D), therefore it cannot be concluded that the 

difference was due to specific interactions between GRP78a-Abs and the fusion 

protein. As the published CNVSKDSC peptide shows a superior ability than 

GRP-MSAH6 to interact with GRP78a-Abs (Fig. 7D), this peptide was used as the 

primary strategy for neutralizing GRP78a-Abs in follow-up experiments.  
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Figure 7. Purification and assessment of recombinant GRP-MSAH6 and 
MSAH6 proteins. (A) Recombinant proteins were optimally expressed in yeast 
cells grown in BMMY media for 72 hours. Proteins were purified by nickel affinity 
gravity-flow chromatography and endotoxin was removed by running over a 
Detoxi-Gel column. (B) Samples were separated on an SDS-PAGE gel, 
transferred to nitrocellulose and detected by albumin and HIS antibodies. (C) 
Immunoprecipitations of GRP-MSAH6 and GRP78a-Abs (AA). Immunoblots 
visualized with anti-albumin or anti-human antibodies to detect GRP-MSAH6 or 
GRP78a-Abs respectively. (D) Levels of GRP78a-Abs measured by ELISA in 
serum from prostate cancer patients pre-incubated with GRP-MSAH6, MSAH6, or 
the CNVSKDSC peptide. Data are presented as absorbance units (AU) at 405 nm. 
*p<0.05 versus control. 
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2.3.6 The small peptide CNVSKDSC reduces lesion size in ApoE-/- mice. 

In order to determine whether blocking GRP78a-Abs could attenuate lesion 

growth, female ApoE-/- mice fed a chow diet were infused with the small peptide 

CNVSKDSC or saline for 4 weeks using mini-osmotic pumps.  Groups were 

distributed evenly based on starting body weight(Fig. 8A).  Body weight did not 

significantly differ between groups during the course of the experiment (Fig. 8B), 

suggesting no adverse heath effects due to the procedure. Levels of serum 

GRP78a-Abs were measured by ELISA and were not significantly different 

between groups or from baseline (Fig. 8C). Quantification of lesion area and 

volume in 6 sections at 80µm intervals showed no significant difference between 

groups (Fig. 8D-F). Although not significant, there was a 20% decrease of lesion 

volume in CNVSKDSC peptide infused mice compared to saline infused control 

mice, suggesting that neutralizing circulating GRP78a-Abs could be a valuable 

strategy toward reducing lesion growth in vivo.   
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Figure 8. Atherosclerotic lesion size in ApoE-/- mice infused with the 
peptide CNVSKDSC. ApoE-/- mice at 11 weeks of age fed a chow diet were 
infused with the CNVSKDSC peptide (10mg/kg/d, n=11, Peptide) or saline 
control (n=11, Vehicle) for 4 weeks via subcutaneous implantation of an osmotic 
pump. (A) Mouse weights at 11 weeks of age prior to pump implantation. (B) 
Mouse weights monitored weekly after surgical implantation of the pumps. (C) 
Serum levels of anti-GRP78 autoantibodies were measured by ELISA at baseline 
(wk0) and after 4 weeks (wk4) of infusions. Data are presented as absorbance 
units at 405 nm relative to the control mice at week 0. (E) Lesion areas plotted 
against the distance along the aortic root and ascending aorta. (F) Quantification of 
atherosclerotic lesion size at the aortic root. Lesion volume was measured in 5-6 
sections at 80 nm intervals. (D) Cross sections of the aortic root stained with 
hematoxylin-and-eosin. Representative sections are shown for each treatment 
group. Lesions are outlined in black. Images were taken at 10X magnification.  
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2.4 Discussion 

The experiments described above suggest a role for GRP78a-Abs in the 

occurrence and development of atherosclerotic lesions.  The correlation between 

GRP78a-Ab titer levels and the extent of lesion growth as well as detecting an 

increase in levels of GRP78a-Abs as mice develop more severe atherosclerosis 

parallels what has been previously observed between levels of GRP78a-Abs and 

cancer progression. The initial observation that ApoE-/- mice on a chow diet with 

complex, advanced lesions have higher GRP78a-Ab titers compared to age-

matched C57BL/6 mice indicates a possible link between the progression of 

lesions and the levels of GRP78a-Abs through 20 weeks of age.  Similarly, when 

lesion formation was accelerated by placing mice on a high fat diet, ApoE-/- mice 

had higher levels of GRP78a-Abs compared to C57BL/6 mice at a younger age 

than in the chow-fed mice (17 weeks of age).  Thus, the accelerated elevation in 

autoantibodies in parallel to the acceleration of lesion development further 

supports the idea that levels of GRP78a-Abs correlate with lesion progression. 

 It is important to note that although C57BL/6 mice are resistant to 

developing atherosclerosis, they still produce detectable levels of GRP78a-Abs.  

Before the introduction of the ApoE-/- mouse, C57BL/6 mice were commonly 

used as a model for studying the mechanisms that contribute to atherosclerosis.  

C57BL/6 mice do not form large, complex lesions, however small fatty streaks 

consisting of lipid-rich foam cells can occur at the aortic root.  It is possible that 
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surface GRP78 is present in these areas in low levels in C57BL/6 mice and might 

therefore contribute to the reported levels of GRP78a-Abs.  This is analogous to 

observations that low levels of GRP78a-Abs are detectable in humans 

considered to be healthy	
  (93,	
  94).  It has also been speculated that levels of 

GRP78a-Abs may be related to a general effect on cell death and turnover.  For 

example, basal levels of GRP78a-Abs may reflect plasma levels of GRP78 that 

are released from dead or dying cells.  However, based on work published by Al-

Hashimi et al.(2010), there may be a threshold level of GRP78a-Abs required to 

trigger deleterious effects in cells.  Perhaps a similar threshold level is required in 

mice for these autoantibodies to influence lesion development.  Alternatively, 

GRP78a-Abs might be inducing varied effects on lesions depending upon the 

abundance and availability in circulation.   

In order to confirm that GRP78a-Ab production was not simply related to 

apoE deletion, and to further extend our observations in other established 

models of atherosclerosis, we measured GRP78a-Abs in LDLR-/- mice. We 

observed a tendency toward higher GRP78a-Ab levels in LDLR-/- mice on a high 

fat diet compared to those on a chow diet, however the data is inconclusive as to 

whether GRP78a-Abs are elevated by lesion development in LDLR-/- mice.  The 

high amount of variability observed between mice compounded by a low n (n=5 

per group) could account for the lack of significance between the groups.  

Additional experiments assessing GRP78a-Ab levels in larger cohorts of LDLR-/- 

mice on chow and western diets are needed to determine whether GRP78a-Ab 
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titers are associated with the incidence of atherogenesis in this model of 

atherosclerosis. 

Additional evidence to indicate a role of GRP78a-Abs in atherosclerosis 

was shown through the direct binding of biotinylated GRP78a-Abs exclusively to 

regions of the aortic root containing atherosclerotic lesions. Together with the 

previously reported observation that GRP78 is expressed on the surface of 

endothelial cells only on lesions(91), it is likely that the GRP78a-Abs are 

interacting with surface GRP78 on lesion resident endothelial cells. 

To further explore the relationship between GRP78a-Abs and 

atherogenesis, ApoE-/- mice were immunized against rhGRP78 to see whether 

specifically manipulating autoantibody levels affected lesion development.  Mice 

immunized against rhGRP78 produced high levels of antibodies that recognized 

GRP78.  At 15 weeks of age mice with high GRP78a-Ab levels had larger lesions, 

however there was no significant difference at 25 weeks of age. This suggests 

that GRP78a-Abs might have a greater effect at an earlier time point during initial 

lesion progression, where the proximity of GRP78a-Abs to the endothelium could 

contribute to premature endothelial dysfunction. At 25 weeks of age, mice have 

developed more complex lesions in which many processes are influencing the 

continued growth of the lesion and deterioration of the vessel wall. Due to the 

dysregulated and dysfunctional nature of cellular processes within a more 

advanced lesion, it is possible that the effects of the autoantibodies are not 

significant enough to stimulate lesion growth to an even greater extent. This may 
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also reflect that lesion growth during this period of time may be maximal despite 

conditions or agents that would be expected to increase lesion size.  One way to 

test this theory would be to increase GRP78a-Ab levels in ApoE-/- mice fed a high 

fat diet as a model of accelerated lesion growth. 

Lesion size does not provide a complete picture of lesion composition.  

Therefore areas of necrosis were measured.  Mice with higher levels of GRP78a-

Abs also demonstrated a greater amount of necrotic area in lesions at 15 weeks 

of age.  It is uncommon to see large regions of necrotic area in early lesions, 

which supports the idea that GRP78a-Abs might be affecting the initiation and 

early lesion progression. Necrotic regions are largely thought to arise from the 

death of macrophage foam cells in the vessel wall and a lack of phagocytic 

clearance of cellular debris.  One way the GRP78a-Abs might be affecting 

necrotic area is through promotion of macrophage recruitment via augmentation 

of adhesion molecule expression on activated endothelial cells.  Alternatively, 

GRP78a-Abs might be acting directly on macrophage foam cells, potentially 

inducing cell death, thereby contributing to the development of necrotic regions. 

Since high levels of GRP78a-Abs in ApoE-/- mice correspond to larger 

lesions, we wanted to determine whether neutralizing circulating GRP78a-Abs 

with the CNVSKDSC peptide could attenuate lesion development in ApoE-/- mice. 

To this end, mice were infused with the small peptide or saline control for 4 

weeks.  ApoE-/- mice given the CNVSKDSC peptide had a 20% decrease in 

lesion size compared to controls. This reduction was not statistically significant, 
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however it suggests that blocking circulating GRP78a-Abs may be a viable 

approach toward reducing atherosclerotic lesion growth. 

Atherosclerotic lesion development is known to be a complex process 

involving multiple cell types and molecular processes. It is important to consider 

the possibility that blocking surface GRP78 activation by GRP78a-Abs has only a 

modest observable effect on overall lesion development in vivo due to the variety 

of factors and mechanisms underlying atherogenesis, requiring a much larger 

sample size to illicit statistical significance. However, total lesion size is not the 

only metric to consider when evaluating lesion characteristics and stability.  

Cholesterol crystal accumulation and growth within the necrotic core can 

perforate altherosclerotic plaque caps, stimulating aggressive inflammatory and 

coagulant responses and causing rupture(10).  Patients who died from acute 

myocardial infarction were shown to have cholesterol crystals perforating the 

intima on ruptured plaques(125).  Additionally, proteolytic enzymes and pro-

inflammatory cytokines present in atherosclerotic lesions can inhibit collagen 

fibre formation and illicit collagen breakdown, resulting in unstable, thin fibrous 

caps prone to rupture(11).  Plaque remodeling can improve lesion stability and 

resistance to plaque rupture. Moreover, a stable atherosclerotic plaque is 

clinically favored in humans	
  (126).  Strategies to reduce vascular inflammation 

and decrease lipid accumulation are considered the most promising avenues to 

stabilize plaques and lower susceptibility to rupture	
  (11).  Additional work will 
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need to determine whether blocking GRP78a-Abs alters lesion characteristics or 

improves plaque stability. 

There could also be several reasons for the incongruences in efficacy of 

the CNVSKDSC peptide between the published in vitro and cell free data and the 

results of the animal experiment described here. Although the peptide has been 

shown to react with serum in ELISA analysis, the exact binding affinity of the 

peptide to GRP78a-Abs under the conditions experienced in circulation is 

unknown. Concepts, strategies and limitations to assess molecular interactions 

are discussed in length in a recent review(127). To summarize, theoretical 

modeling and a variety of direct and indirect experimental methods are widely 

used tools to predict and describe the binding affinity, or the strength of the 

interaction, between two molecules. However, the authors describe how these 

strategies have inherent limitations, are generally focused on simple binary 

interactions, and are incapable of predicting interactions when considering the 

complex systems involving the biological, chemical, and physical conditions that 

influence the sensitivity and strength of interactions in a more physiologic 

situation.  Future work should explore the dose dependency of this peptide and 

alternative delivery methods that may enhance the effectiveness of the blockade 

of autoantibody formation. 

Additionally, the stability of the small peptide CNVSKDSC in plasma is 

unknown. Many peptides identified with promising pharmacologic activity fail to 

recapitulate effects when tested in vivo(128, 129). This is generally thought to 
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occur due to low stability, short plasma half-life time, or unexpected 

immunogenicity. Short plasma half-life can occur due to enzymatic degradation 

by enzymes produced from multiple organs and through fast renal clearance. 

Strategies and methods to prolong plasma half-life times is an area of high 

interested due to the obvious advantages in therapeutic drug development(129). 

These strategies include screens to identify specific proteolytic enzymes with the 

potential to degrade the peptide during systemic circulation followed by targeted 

modifications based on the exact knowledge of the enzymatic susceptibility of the 

particular construct. 
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Chapter 3 – Examining the Cellular Functions of Surface GRP78 in 

Endothelial Cells 

3.1 Introduction 

3.1.1 Surface GRP78 Activity In Vitro 

There are limited studies investigating the function of surface GRP78, 

often using cancer models, that have demonstrated GRP78 acts as a cell surface 

signaling receptor	
  (84)	
  and mediates a variety of signaling pathways through 

complexes with assorted ligands and co-receptors(80).  For cancer cells, the 

expression of GRP78 on the cell surface is part of an adaptive survival response 

to chronic stress present in the tumor microenvironment(130).  Recent evidence 

has highlighted the role of surface GRP78 as a regulator of cancer cell survival 

and proliferation.  In prostate cancer cells, surface GRP78 promotes cell 

proliferation upon interaction with α2-macroglobulin through activation of PI3K/Akt 

signaling(87).  Additionally, binding of α2-macroglobulin to surface GRP78 

activates PAK-2, known to increase cell motility, suggesting surface GRP78 may 

promote metastasis potential through this pathway	
  (131).  Conversely, signaling 

through surface GRP78 induced apoptosis through suppression of Ras/MAPK 

when bound by extracellular Par-4 in a different prostate cancer cell line(132).  

Similarly, binding of surface GRP78 to antibodies recognizing its C-terminal 

domain stimulated p53 activity and promoted apoptosis in melanoma cells(89).  
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3.1.2 Surface GRP78 in Endothelial Cells 

A handful of studies have examined surface GRP78 function in endothelial 

cells, however few have been in the context of atherosclerosis.  In human 

umbilical vein cells, surface GRP78 acts as a co-receptor for lipid-anchored T-

cadherin (T-cad) and is required for T-cad mediated cell survival under conditions 

of oxidative stress(133).  Surface GRP78 was shown to interact with visceral 

adipose tissue-derived serine proteinase inhibitor (vaspin), an adipokine shown 

to promote proliferation and inhibit apoptosis, in human aortic endothelial cells 

under high glucose conditions. However this group did not demonstrate whether 

these vaspin-mediated growth and survival signals were dependent on the 

interaction with surface GRP78(134).  Bhattacharjee and colleagues claimed 

surface GRP78 interacts with tissue factor on the surface of murine endothelial 

cells and inhibits its procoagulant activity(135), however their experiments only 

examined this interaction using artificial overexpression of tissue factor in murine 

cells.  Future work is necessary to test whether these effects are present in 

human cells and tissues. 

3.1.3 Objective 

These diverse functions of surface GRP78 highlight its various roles as a 

receptor or target, which depend largely upon the cell type and activating agonist 

or antibody.  For this reason, it is important to examine how surface GRP78 

might be acting under specific conditions and in specific cell types in the context 
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of various disease states.  GRP78 was identified on the surface of endothelial 

cells in atherosclerotic lesions(91), however the role of surface GRP78 activity in 

these cells and its potential significance in atherosclerotic lesion development is 

unknown.  The objective of this work was to examine the cellular function of 

surface GRP78 in primary human aortic endothelial cells (HAECs) in response to 

GRP78a-Abs as a model of the atherogenic endothelium.  HAECs are the most 

relevant in vitro model for testing human endothelial cell behavior in the context 

of atherosclerosis, as they most closely resemble the state of macrovascular ECs 

in vivo compared to alternatives such as EA.hy926 or HMEC-1, and thus are the 

most likely to provide physiologically relevant results(136).  Additionally, although 

multiple ligands are capable of interacting with surface GRP78, these 

experiments focused specifically on the activation of surface GRP78 by GRP78a-

Abs and the cellular consequences of that interaction in order to more fully 

elucidate the role of GRP78a-Abs and surface GRP78 signaling in endothelial 

cell function and atherogenesis.  

3.2 Materials & Methods 

3.2.1 Cell Culture 

Primary human aortic endothelial cells (HAECs) and human umbilical vein 

endothelial cells (HUVECs) were purchased from Clonetics and grown in 

endothelial growth medium-2 (EGM-2) supplemented with 1%FBS and growth 

factors (EGM Bullet Kit, Lonza). All experiments were performed using cells 
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between passages 4 and 8.  Cells were incubated at 37°C with 5% CO2. 

Experiments were performed with 300 nM thapsigargin (Tg; Sigma-Aldrich), 2.5 

µg/ml tunicamycin (Tm; Sigma-Aldrich), 100 ng/ml TNFα (R&D Systems), 30 nM 

NF-κB Activation Inhibitor II (JSH-23; Santa-Cruz), 60 µg/ml human anti-GRP78 

autoantibodies (GRP78a-Abs, collected and purified by affinity chromatography 

as described previously(86)), 60 µg/ml human IgG (Sigma-Aldrich), or the 

CNVSKDSC peptide (CanPeptide, Québec). 

3.2.2 Transfections  

HAECs were transfected with a pcDNA plasmid containing full length GRP78 

(pcDNA-GRP) and a GRP78 mutant replacing the KDEL sequence on the C-

terminus with a FLAG tag (pcDNA-ΔKDEL-FLAG).  Transfections were 

performed for 48 hrs with increasing ratios of the transfection reagent 

XtremeGeneHP (Roche) to plasmid DNA.  HUVECs were treated with 1-10 MOI 

of AdGRP78 or control adenovirus (AdDL) to optimize GRP78 expression.  

Whole cell lysates were collected from transfected cells and analyzed by western 

blotting as described below to determine optimum transfection conditions.   

3.2.3 Western Blotting 

After treatments, HAECs were washed with cold PBS and total lysates were 

collected in SDS-lysis buffer (60 mM Tris-Cl, pH 6.8, 12.8% glycerol, and 2.05% 

SDS) containing protease inhibitors (Roche). Cell lysates were disrupted by 

repeated passes through a 21-gauge needle and syringe, sonication, or repeated 

freeze-thaw cycles. Protein concentrations were measured using the colorimetric 
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DC Protein Assay (Bio-Rad Laboratories) in duplicate.  Total lysates and surface 

fractions (see isolation protocol below) were separated on 10% SDS-PAGE mini 

gels and transferred to nitrocellulose membranes. The membranes were 

incubated overnight at 4°C with the following antibodies: GRP78 (BD 

Transduction), CD31 (Cell Signaling), IRE-1α (Cell Signaling), β-actin (Sigma-

Aldrich). The membranes were then incubated with the appropriate secondary 

antibodies (BD Biosciences) conjugated with horseradish peroxidase and 

visualized with Western Lighting Chemiluminescence Reagent (Perkin Elmer) 

and Kodak X-OMAT Blue XB-1 film. 

3.2.4. Cell Surface Protein Isolation 

Cell surface proteins were biotinylated and isolated with the Pierce Cell Surface 

Protein Isolation Kit (Thermo Scientific) following the manufacturer’s instructions.  

Cells were grown to 80-90% confluence in four T75 flasks.  Flasks were washed 

twice with ice-cold PBS and 10 mLs of ice-cold sulfo-NHS-SS-biotin (0.25 mg/mL 

in PBS) was added to each flask.  Flasks were rocked at 4°C for 30 min and 500 

µL Quenching Solution was added to each flask.  Cells were gently scraped into 

solution and combined from all four flasks. Cells were collected by spinning at 

500 x g for 3min and washed once with TBS.  Cells were lysed in 500 µL Lysis 

Buffer on ice for 30 min with repeated vortexing and sonicated twice on ice using 

five 1-second bursts.  Total lysate aliquots were taken and the remaining lysate 

was rotated with Immobilized NeutrAvidin Gel for 60 min at room temperature.  

Columns were washed three times with Wash Buffer and proteins were eluted by 
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incubating with 50 mM DTT for 60 min.  Samples were analyzed by Western blot 

as described above.  

3.2.5 mRNA Quantification by RT-PCR 

Total RNA was isolated from HAECs with the RNeasy mini kit (Qiagen) and 

reverse transcribed using the High-Capacity cDNA Reverse Transcription kit 

(Applied Biosystems). Quantitative real-time PCR was performed in triplicate with 

Fast SYBR Green Master Mix (Applied Biosystems) under standard conditions. 

The primer sequences used are listed in Table 1. 

Table 1. 
Quantitative RT-PCR primers 

Gene Forward Primer Reverse primer 
ICAM-1 TATGGCAACGACTCCTTCT	
   CATTCAGCGTCACCTTGG	
  
VCAM-1 CCAGGTGGAGCTCTACTCATTCCC GCCGGTCAAGGGGGTACACG 

B2M ACTTGTCTTTCAGCAAGGACT TTCACACGGCAGGCATAC 
 

3.2.6 Cell Adhesion Assay 

HAECs were seeded into 24-well fluorescence plates and allowed to adhere 

overnight. Cells were treated without or with Tm (2.5 µg/mL, 24 hours) followed 

by the indicated conditions. U937 cells (ATCC) were washed and resuspended at 

1x106 cells/mL in HBSS containing HEPES with BCECF-AM (4 µM, Sigma-

Aldrich) for 30 minutes at room temperature.  Cells were washed with growth 

media to remove excess fluorophore and resuspended at 1x106 cells/mL with 

RPMI lacking phenol red (Cat# 11835; Life Technologies). Treated HAECs were 

washed with PBS and 500 µL BCECF-AM loaded U937 cells were added to each 

well.  Fluorescence was measured at 439 nm excitation to determine the 
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maximum signal for each well.  After 30 min of incubation at 37°C, 3 washes 

were performed to remove non-adherent cells. Fluorescence was measured a 

second time as described above.  Adhesion was determined for each well as a 

percentage relative to the maximum fluorescence detected prior to washing. All 

assays were performed in triplicate. 

3.2.7. Statistical Analysis 

Values are expressed as mean±SE. Statistical analysis was performed using an 

unpaired Student’s t test or ANOVA. When significance was attained using 

ANOVA, a Tukey’s post hoc test was used to determine specific differences. 

Significance was defined as p<0.05.  

 

3.3 Results 

3.3.1 ER stress causes increased GRP78 expression on the surface of 

endothelial cells. 

Previous reports have shown induction of ER stress is sufficient to cause 

increased cell surface localization of GRP78 in cancer cell lines	
  (92,	
  137).  

Consistent with these findings, primary human aortic endothelial cells (HAECs) 

treated with 300 nM thapsigargin (Tg) or 2.5 µg/ml tunicamycin (Tm) for 16, 24, 

or 32 hours expressed increased levels of GRP78 in surface fractions (s-GRP78). 

This increase was highest at 24 hours post induction of ER stress (Fig. 9A-B). To 

investigate whether more physiologically relevant factors known to induce ER 
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stress and contribute to atherogenisis could also stimulate surface GRP78 

expression in endothelial cells, HAECs were exposed to lipid oxidation products 

7-ketocholesterol and 4-HNE, as well as known inducers of oxidative stress: Sin-

1 and peroxynitrite.  Increased surface GRP78 expression was also observed 

under all of these conditions (Fig. 9C).  
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Figure 9. ER stress causes increased GRP78 expression on the surface of 
endothelial cells. Human aortic endothelial cells were treated with (A) 300 nM 
thapsigargin (Tg) and (B) 2.5 µg/mL tunicamycin (Tm) for the indicated time, or with 
(C) 7-ketocholesterol (7KC), Sin-1, 4-hydroxynonenal (4HNE), and peroxynitrite 
(Peroxy) for 8 hours after which surface proteins were biotinylated and separated 
from total cell lysates by streptavidin pulldown. Total cell lysates (t-) and surface 
protein fractions (s-) were subjected to western blot for detection of the indicated 
proteins. 
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As an alternative method to inducing ER stress for stimulating cell-surface 

GRP78 expression, experiments were performed using GRP78 containing 

plasmids and GRP78 encoding adenoviral particles to increase expression of 

GRP78.  HAECs were transfected with a pcDNA plasmid containing full length 

GRP78 (pcDNA-GRP) and a GRP78 mutant replacing the KDEL sequence on 

the C-terminus with a FLAG tag (pcDNA-ΔKDEL-FLAG).  Optimization 

experiments showed transfection ratios 2:1 and 3:1 of the transfection reagent to 

plasmid DNA were optimal for pcDNA-GRP78 and pcDNA- ΔKDEL-FLAG 

respectively (Fig. 10A).  These conditions were then used along with a 2:1 

treatment of the empty control pcDNA vector to examine whether there was an 

increase in levels of cell-surface GRP78.  pcDNA-GRP78 but not the KDEL null 

vector showed an increase in surface GRP78 levels (Fig. 10B).  An obvious 

caveat is the increased level of surface GRP78 observed in the control 

transfected cells. This is likely due to cellular and ER stresses caused by the 

transfection process itself(138), which we have shown is sufficient to induce 

surface GRP78 expression.   

Adenovirus encoding GRP78 was also used as a strategy to increase 

surface GRP78 expression. Initial optimization experiments treating HUVECs 

with 1-10 MOI of AdGRP78 or control virus (AdDL) showed no apparent increase 

in total GRP78 levels and were markedly lower than levels achieved when cells 

are treated with Tg (Fig. 10C).  However, a higher adenoviral load would have 

likely stressed the cells which lead us to rely on established chemical ER stress 



Ph.D. Thesis – E.D. Crane  McMaster University - Biochemistry 

	
   61	
  
	
  

inducers in further experiments which we and others have shown stimulate 

surface GRP78 expression(92, 139).  

 

 

Figure 10. Optimization of GRP78 over-expression in endothelial cells. (A) 
Human aortic endothelial cells (HAECs) were transfected with pcDNA-GRP78 or 
pcDNA-ΔKDEL-FLAG at increasing  ratios of transfection reagent to DNA for 48 hrs. 
Total cell lysates were subjected to western blot for detection of GRP78 and FLAG. 
(B) HAECs were treated/transfected with the indicated reagent/plasmid for 48 hrs 
after which surface proteins were biotinylated and separated from total cell lysates 
by streptavidin pulldown. Surface protein fractions were subjected to western blot for 
detection of GRP78, the endothelial cell surface marker CD31, and FLAG. Surface 
proteins isolated from DU145 prostate cancer cells were used as a positive control 
for the presence of GRP78. (C) HAECs (lane 1) or HUVECs (lanes 2-12) were 
treated for 24 hrs with AdGRP78 or the empty control virus AdDL. Total cell lysates 
were subjected to western blot for detection of GRP78 and β-actin as a loading 
control.  
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3.3.2 Anti-GRP78 autoantibodies increase adhesion molecule expression and 

induce leukocyte adhesion. 

GRP78a-Abs have been shown to interact with cell surface GRP78 in 

cancer cell lines. To investigate the impact of GRP78a-Abs on endothelial cells, 

HAECs pretreated with Tg or Tm for 24 hours to induce surface GRP78 

expression were subsequently exposed to GRP78a-Abs isolated from human 

cancer patients.  Preliminary experiments showed treatment with GRP78a-Abs 

after Tg or Tm treatment resulted in higher levels of mRNA expression of 

adhesion molecules ICAM-1 and VCAM-1, which peaked at 8 hrs (Fig. 11A-D).  

Further experiments demonstrated a significant increase in ICAM-1 and VCAM-1 

expression compared to Tg or Tm alone and IgG controls (Fig. 11E-H).  

Importantly, treatment of cells with GRP78a-Abs in the absence of ER stress did 

not significantly increase ICAM-1 or VCAM-1 levels (Fig. 11E-F), indicating the 

presence of cell surface GRP78 is required for the observed GRP78a-Abs 

mediated effects on adhesion molecule expression.  However, the small peptide 

WIFPWIQL (WIF), previously shown to interact with surface GRP78(140), did not 

induce ICAM-1 or VCAM-1 expression in cells treated with Tg (Fig. 11E-F), 

suggesting that adhesion molecule signaling mediated by surface GRP78 in 

these cells is specific to its interaction with GRP78a-Abs.  Moreover, incubation 

of GRP78a-Abs with the peptide CNVSKDSC (CP), previously shown to block 

GRP78a-Ab mediated signaling(86), significantly reduced induction of ICAM-1 

and VCAM-1 expression in Tm treated cells (Fig. 11G-H), again supporting that 
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the specific interaction with GRP78a-Abs is necessary for cell surface GRP78 

mediated induction of adhesion molecule expression in these cells. 
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Figure 11. GRP78a-Abs induce adhesion molecule expression in endothelial 
cells. mRNA levels of (A,C,E,G) ICAM-1 and (B,D,F,H) VCAM-1 analyzed with 
quantitative RT-PCR. Total RNA was isolated from HAECs pre-treated without or 
with (A-B) 300 nM thapsigargin (Tg) or (C-D) 2.5 µg/mL tunicamycin (Tm) for 24 hrs 
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followed by purified GRP78a-Abs (AA, 60 µg/mL) for the indicated times. HAECs 
pre-treated without or with (E-F) 300 nM thapsigargin (Tg) or (G-H) 2.5 µg/mL 
tunicamycin (Tm) for 24 hrs followed by purified GRP78a-Abs (AA, 60 µg/mL) or 
human IgG (60 µg/ml) for 8 hrs combined with the indicated treatments. Data is 
expressed as fold change relative to untreated cells. *p<0.05 versus all other 
groups.	
  †p<0.05 versus all other groups. 
 

 

3.3.3 Anti-GRP78 autoantibodies promote proinflammatory gene expression 

and adhesion molecule expression via the NFκB pathway. 

Adhesion molecule expression has been shown to be regulated by the NFκB 

signaling pathway(141).  To investigate whether the observed GRP78a-Abs 

mediated cellular responses are regulated by NFκB signaling, expression levels 

of a panel of cytokines and chemokines known to be regulated by NFκB  were 

measured by NanoString analysis in GRP78a-Abs or IgG stimulated ECs 

expressing surface GRP78.  mRNA levels of cytokines IL-6 and IL-1b, as well as 

chemokines MCP-1, MIP-1a, and IP-10 were significantly higher in GRP78a-Abs 

treated cells than in IgG treated cells (Fig. 12A).  This suggests that the 

engagement of GRP78a-Abs with surface GRP78 signals through the NFκB 

pathway.  Importantly, GRP78a-Abs did not increase expression of ER stress 

signaling/UPR activation markers (Fig. 12B), indicating changes in gene 

expression are due to signaling through surface GRP78 and not a side effect of 

additional cellular stresses. 

To confirm whether NFκB plays a role in GRP78a-Abs mediated signaling, 

ECs expressing surface GRP78 were pretreated with an NFκB Activation 
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Inhibitor (JSH-23) for 2 hours followed by GRP78a-Abs or human IgG.  NFκB 

inhibition significantly reduced GRP78a-Abs mediated induction of ICAM-1 and 

VCAM-1 expression in Tm treated cells (Fig. 11G-H).   

Expression of adhesion molecules on endothelial cells is critical for 

recruitment of monocytes into atherosclerotic lesions(142, 143).  However, 

mRNA expression of these molecules is not proof that adhesion is occurring.  

Therefore, we examined whether the observed increase of ICAM-1 and VCAM-1 

expression with GRP78a-Abs induced adhesion of human monocytic cells 

(U937) to ECs.  Treatment of ECs with Tm followed by GRP78a-Abs had 

significantly increased numbers of attached U937 cells compared to IgG controls 

(Fig. 12C). Consistent with effects seen on adhesion molecule expression, 

inhibiting GRP78a-Abs with the CNVSKDSC peptide (CP) reduced U937 

attachment.  Moreover, treatment with the NFκB inhibitor (JSH-23) reduced 

monocyte adhesion in GRP78a-Abs stimulated ECs (Fig. 12C), further 

supporting that GRP78a-Ab mediated surface GRP78 signaling acts through the 

NFκB pathway in these cells.  
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Figure 12. GRP78a-Ab stimulated endothelial cell activation occurs via the 
NFκB pathway. (A) Relative mRNA levels of cytokines and chemokines determined 
by NanoString analysis of HAECs treated with 2.5µg/mL tunicamycin (Tm, 24hrs) 
followed by GRP78a-Abs (AA, 60 µg/mL) or human IgG (IgG, 60 µg/mL) for 8 hrs. 
Data is expressed as fold change relative to tunicamycin with IgG treated cells. 
*p<0.05 versus Tm+IgG. (C) Adhesion of BCECF-AM loaded U937 cells to HAECs 
treated with 2.5µg/mL tunicamycin (Tm, 24hrs) followed without or with NFκB 
Activation Inhibitor II (JSH-23, 30nM) for 2hrs. Cells were then exposed to purified 
GRP78a-Abs (AA, 60 µg/mL) or human IgG (60 µg/ml) for 8 hrs without or with the 
CNVSKDSC peptide (90 µg/mL). TNFα (100 ng/mL, 8hrs) served as a positive 
control for adhesion. Data is expressed as percent adhesion relative to untreated 
cells. *p<0.05 versus all other groups.	
  †p<0.05 versus all other groups. (D) 
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Representative fluorescent images show adhesion of BCECF-AM loaded U937 cells 
to HAECs. 

 

3.4 Discussion 

Cell surface biotinylation was used to demonstrate the expression of 

GRP78 on the surface of endothelial cells under conditions of ER stress.  This 

finding is consistent with previous reports that thapsigargin and tunicamycin 

induced ER stress causes relocalization of GRP78 from the ER lumen to the cell 

surface in cancer cell lines(137). We have shown previously that markers of ER 

stress, including GRP78, are upregulated at all stages of atherogenesis in 

mice(32).  Here, we additionally show stimulation of ECs with 7-ketocholesterol, 

Sin-1, 4HNE, and Peroxynitrite, atherogenic mediators of ER stress in endothelial 

cells(100, 144),	
  induces	
  surface GRP78 expression.   

Although GRP78 has been found on the surface of many cell types, the 

precise cellular events that allow the evasion of ER retrieval mechanisms and 

subsequent translocation to the plasma membrane are not well understood. 

GRP78 contains a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence that is 

recognized by the KDEL receptor, resulting in selective retrograde transport to 

the ER	
  (145,	
  146). One possible explanation is that the retrieval function of the 

KDEL receptor is compromised as a result of saturation in response to ER stress, 

allowing proteins containing the KDEL sequence to escape to the cell surface	
  

(147,	
  148).  While it was proposed that overexpression of GRP78 lacking a KDEL 



Ph.D. Thesis – E.D. Crane  McMaster University - Biochemistry 

	
   69	
  
	
  

sequence would escape the ER retention mechanism, making it available to 

travel to the cell surface possibly resulting in increased surface GRP78 levels, 

the lack of surface GRP78 suggests that the sudden increase in production of a 

KDEL null GRP78 might result in shedding of GRP78 into the media.  Similarly, 

Zhang and colleagues showed expression of GRP78 lacking a KDEL domain or 

with a small peptide adjacent to the KDEL motif lead to secretion of the protein, 

suggesting that the KDEL sequence might be required for retention of GRP78 in 

the cell membrane(92).  A clear drawback in the experiments described here was 

the increased level of surface GRP78 expressed even in control transfected cells.  

This is likely due to stress induced in cells as a result of the transfection process.  

Taken together, these findings suggest ER stress contributes to the observed 

expression of GRP78 on the surface of endothelial cells in atherosclerotic lesions.   

GRP78 is classically known as a molecular chaperone involved in protein 

folding in the ER, however surface GRP78 has been shown to act as a signaling 

receptor in cancer cells and proliferating endothelial cells(80, 84).  Here we 

demonstrate that GRP78a-Ab activation of surface GRP78 stimulates expression 

of adhesion molecules ICAM-1 and VCAM-1, as well as cause increased 

adhesion of monocytic cells to endothelial cells.  Additionally, these effects can 

be reduced by blocking GRP78a-Abs with the peptide CNVSKDSC.  Expression 

of adhesion molecules as well as binding and transmigration of leukocytes into 

tissue are known to occur during the initial steps of atherosclerotic lesion 

development, and are considered hallmarks of endothelial cells activation(149). 
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This suggests GRP78a-Abs contribute to endothelial cell activation and play a 

role during early events of lesion development.   

 There is strong evidence suggesting the role of the NFκB signaling 

pathway in the pathogenesis of atherosclerosis(149).  NFκB has been shown to 

regulate expression of adhesion molecules in ECs, therefore we investigated 

whether surface GRP78 induction of adhesion molecule expression involved 

activation of the NFκB pathway.  Expression of cytokines and chemokines by the 

endothelium occurs during endothelial cell activation and has also shown to be 

regulated by NFκB (149).  We observed increased expression of known 

proinflammatory mediators in cells activated by GRP78a-Abs, further supporting 

a potential role of NFκB in GRP78a-Ab activated surface GRP78 signaling.  

Importantly, inhibition of NFκB impaired GRP78a-Ab mediated adhesion 

molecule expression.  NFκB inhibition also suppressed GRP78a-Ab induced 

leukocyte adhesion. 

 Further work will need to identify the precise upstream molecular signals 

that connect NFκB activation to GRP78a-Ab stimulated surface GRP78 receptor 

signaling in endothelial cells.  Some potential pathways are discussed here, 

however their relevance in endothelial cells remains to be established. Previous 

findings demonstrated cell surface GRP78 coupled to the G-protein-11 (G-α,Β,γ-

11) complex in α2M*-stimulated macrophages(150).  It is known that activation of 

the heterotrimeric G-protein Gαq leads to protein kinase C (PKC) activation, 
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which in turn results in canonical IKK/NFκB activation in ECs	
  (151,	
  152).  

Additionally, work from our group has demonstrated the ability of GRP78a-Abs to 

activate surface GRP78 in bladder carcinoma cells, resulting in PLC-mediated 

release of calcium from ER stores(86). Although not completely understood, it is 

thought that an increase in cytosolic calcium can activate NFκB, possibly through 

production of mitochondrial ROS generation(153, 154).  Finally, recent studies 

utilizing therapeutically resistant cancer cells showed surface GRP78 complexes 

with PI3K as well as the ability of GRP78a-Abs to induce surface GRP78 driven 

PI3K-dependent activation of AKT(94, 137).  In endothelial cells, NFκB activation 

is known to be mediated by PI3K/AKT in response to TNFα stimulation(155). 
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Chapter 4 – Investigating the Association of Cardiovascular Risk Factors 

and Anti-GRP78 Autoantibodies in Humans 

4.1 Introduction 

We have reported that GRP78a-Abs are elevated in atherosclerosis prone 

ApoE-/- mice, however it is unknown whether GRP78a-Ab levels are elevated in 

humans with carotid atherosclerosis.  It is also unclear whether known risk 

factors for cardiovascular disease (CVD) influences GRP78a-Ab levels in 

humans.  To investigate the relationship between GRP78a-Abs and CVD, we 

assessed GRP78a-Abs levels in human plasma samples from three clinical 

studies spearheaded by researchers at McMaster University: the SHARE, NIATH, 

and FIN-CAN studies. Below is a brief description and summary of the major 

findings thus far from each study.  

4.1.1 SHARE Study 

The Study of Health Assessment and Risk in Ethnic groups (SHARE) was 

a population-based study to assess cardiovascular disease risk factors in three 

ethic groups in Canada: Chinese, South Asians, and Europeans(156).  The study, 

lead by Dr. Sonia Anand at McMaster University, sought to examine why rates of 

cardiovascular disease differed between ethnic groups, having been previously 

shown to be highest in South Asian Canadians, intermediate in Canadians of 

European descent, and lowest in Chinese Canadians(157).  Participants between 

35 and 75 years old were evaluated for cardiovascular disease, subclinical 
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atherosclerosis, and associated risk factors including levels of circulating 

cholesterol, triglycerides, glucose, and homocysteine levels.  Participants were 

stratified into two groups as individuals with CVD or without CVD.  CVD was 

defined as participants with: coronary artery disease, defined as angina using the 

Rose questionnaire; self-reported myocardial infarction; silent myocardial 

infarction; coronary artery bypass surgery or angioplasty; or stroke, either self-

reported or confirmed by a physician(156).   

The major findings of the SHARE study included the observation that 

being of South Asian ethnicity itself was a strong, independent determinant of 

CVD, although the reasons for this effect are not well understood, and previous 

conclusions based on European population studies should not be directly applied 

to other ethnic groups(156).  South Asians showed more irregularities in blood 

lipid, glucose, and homocysteine levels, however Europeans had the highest 

amount of carotid atherosclerosis(156).  It was suggested therefore, that while 

the South Asians might have smaller atherosclerotic plaques, the higher 

irregularities in blood lipid and glucose levels might contribute to decreased 

stability of lesions, resulting in the previously observed higher prevalence of 

cardiovascular events(156, 157).  We sought to investigate whether adults with 

greater CVD risk using established clinical markers from this study had higher 

GRP78a-Ab levels. 
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4.1.2 NIATH Study 

The Non-invasive Assessment of Atherosclerosis (NIATH) study was 

based out of the Pediatric Lipid Clinic at McMaster Children’s Hospital and lead 

by Dr. Katherine Morrison. The intimal medial thickness (IMT) of the carotid 

artery, measured by carotid B-mode ultrasonography, is a widely accepted and 

validated surrogate marker of carotid atherosclerosis in adults and is considered 

a predictor of coronary atherosclerosis(158-160).  The aim of the NIATH study 

was to examine the age at which IMT could reliably predict vascular changes and 

whether cardiovascular risk factors influence IMT in children(161).  Children 5-16 

years old were recruited into one of three groups: overweight, elevated LDL-

cholesterol (hyperlipidemia), or healthy controls.  The overweight and 

hyperlipidemia groups were determined by a BMI in the 85th centile or higher and 

fasting LDL-cholesterol levels in the 95th centile or higher respectively. 

Participants were assessed for family history of coronary heart disease, pubertal 

stage, fasting blood glucose, insulin, circulating cholesterol and triglycerides, 

blood pressure, and IMT.   

 The NIATH study reported that the hyperlipidemia group had increased 

IMT and that lipid profiles predicted IMT in this group(161).  Interestingly, there 

was no difference in IMT between overweight and control children, regardless of 

multiple cardiovascular risk factors in the overweight group.  Age was reported as 

the strongest determinant of IMT, although the exact reason for this effect could 
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not be determined.  The authors proposed potential reasons that contributed to 

the observed effect could include pubertal development, worsening of 

cardiovascular risk factors with age, or cumulative time of exposure to risk 

factors(161).  Overall, IMT was determined to be a valid, non-invasive surrogate 

measure of atherosclerosis in children with altered lipid profiles, particularly in 

children over 10 years of age(161). Given the greater carotid IMT levels in the 

hyperlipidemic group, we sought to test whether this group had greater 

circulating GRP78a-Ab levels. Further, this cohort allows us to investigate 

GRP78a-Abs in a pediatric group, whereas previous clinical assessments of 

autoantibodies have been limited to adult populations.  

4.1.3 FIN-CAN Study 

 The FIN-CAN project has been an ongoing collaboration between 

pediatric researchers at McMaster University and Eero Kajantie’s group at the 

University of Helsinki in Finland.  This project, lead by Dr. Saroj Saigal, was 

initiated as one of the first population-based studies following cohorts of 

extremely low birth weight (ELBW) children from infancy to adulthood.  Infants 

born weighing 500-1000 gm and full term controls were recruited into the study 

from 1977 to 1982(162).  This cohort has been followed through their entire lives 

and are now in their early thirties.  Most of the findings from the study during their 

childhood and adolescent years were focused on cognitive and psychological 

outcomes, however it was reported that more ELBW children had deficits in 
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areas of mobility, self-care, and the ability to see, hear and speak at eight years 

of age compared to control references(163-166).  Additionally, Dr. Katherine 

Morrison’s research team at McMaster University is currently analyzing a thirty-

year follow up assessment of these participants.  Preliminary data indicate the 

ELBW group are shorter, have increased percent body fat, higher rates of 

dysglycemia, higher blood pressure, and generally having a higher predisposition 

to cardiometabolic disorders compared to their normal birth weight (NBW) 

counterparts (data not published). Thus, the ELBW cohort represents a 

population with potentially early developmental adversity that could accelerate 

athlerosclerotic lesion development and we hypothesized that these individuals 

may also have elevated GRP78a-Ab levels. 

4.1.4 Objective 

GRP78a-Abs have been identified in patients with a variety of cancers, 

and high circulating levels correlate with accelerated cancer progression and 

reduced survival(93), however whether GRP78a-Abs are associated with CVD in 

humans is unknown.  The objective of this work was to investigate the 

significance of GRP78a-Abs in humans.  These studies allowed us to clarify the 

relationship between circulating autoantibodies and CVD across three distinct 

clinical populations at risk for atherosclerosis: adults with known CVD risk factors 

(SHARE), high circulating lipids in children (NIATH), and early developmental 

adversity in premature born adults (FIN-CAN). 
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4.2 Materials & Methods 

4.2.1 Subject Samples 

Serum samples from study subjects were generously provided from the SHARE 

study by Dr. Sonia Anand and from the NIATH and FIN-CAN studies by Dr. 

Katherine Morrison. 

4.2.2 Analysis of Anti-GRP78 Autoantibody Titers in Human Serum 

Antibodies against GRP78 in human serum were analyzed utilizing an in-house 

ELISA originally described by Gonzalez-Gronow M. and colleagues(94).  The 

CNVSKDSC peptide was conjugated to keyhole limpet hemocyanin (KLH) using 

a Sulfo-SMCC linker.  KLH (Sigma Aldrich; Cat# H7017) and Sulfo-SMCC 

(Sigma Aldrich; Cat# M6035) were each dissolved to 10 mg/mL in activation 

buffer (0.1M NaHCO3, 0.9M NaCl, ph 8.0), after which 100 µL Sulfo-SMCC 

solution was added to each 1 mL of KLH solution and incubated for one hour at 

room temperature.  Excess Sulfo-SMCC was removed by size exclusion 

chromatography on a pre-packed PD-10 Sephadex G25-M (GE Healthcare 

Lifesciences) column equilibrated with conjugation buffer (0.1M NaHCO3, 0.9M 

NaCl, 0.1M EDTA, ph 8.0).  KLH-Sulfo-SMCC was eluted in conjugation buffer by 

collecting 0.25 mL fractions.  Elution fractions containing KLH-Sulfo-SMCC were 

determined with the DC Protein Assay (Bio-Rad Laboratories) and pooled.  The 

CNVSKDSC peptide was dissolved to 10 mg/mL in conjugation buffer, mixed 
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with the KLH-Sulfo-SMCC solution at an equivalent mass ratio (1 mg peptide per 

1 mg KLH-Sulfo-SMCC) and incubated for two hours at room temperature.  96-

well plates were coated with the CNVSKDSC-KLH conjugate (5 µg/mL) diluted in 

coating buffer (0.1M NaHCO3, 0.5M NaCl, pH 9.6), washed with PBST (1x PBS; 

0.1% Tween-20), and blocked with coating buffer containing normal goat serum 

(R&D Systems) at a 1:20 dilution for 1 hour at 37°C.  After washing plates two 

times with PBST, 50 µL per well of samples diluted 1:500 in PBST were added in 

triplicate and incubated overnight at room temperature.  Following three washes 

with PBST, 100 µL biotinylated goat anti-human IgG (Vector Laboratories) diluted 

1:500 in PBST was added per well and incubated 1-2 hours at room temperature.  

Plates were washed three times with PBST and incubated with 100 µL per well 

streptavidin conjugated to horseradish peroxidase (R&D Systems) diluted 1:200 

in PBST for 30 min at room temperature while covered. Following three washes 

with PBST, plates were developed with 200 µL per well of prepared TMB solution 

(Sigma Aldrich) for 15 minutes, after which the reaction was stopped with 50 µL 

per well Stop Solution (R&D Systems).  Absorbance was read at 450 nm and 

background signal from wells without sample added was subtracted.  All assays 

were performed in triplicate and the data expressed relative to a common sample 

used on every plate to control for plate-to-plate variation.  
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4.2.3 Statistical Analysis 

Data represent the mean ± SD when normally distributed. Categorical 

variables are described as number (%). Data was analyzed for normality using a 

D’Agostino-Pearson omnibus normality test.  When data were not normally 

distributed, data was log-transformed. If the transformed data then did not meet 

criteria for normality, non-parametric statistical analyses were used.  Statistical 

analysis of GRP78a-Ab levels were performed using an unpaired t-test when 

normally distributed and a Mann-Whitney non-parametric rank test when non-

normally distributed. Significance was defined as p<0.05.  Multiple comparisons 

were performed using a one-way ANOVA for normally distributed variables and a 

Kruskal Wallis non-parametric difference test for non-normally distributed 

variables.  In the FINCAN and NIATH studies, the determinants of GRP78a-Abs 

were first assessed with univariate analysis (Pearson or Spearman regression as 

per conditions of normality).  Further multivariate regression analysis was 

performed for GRP78a-Abs including all variables that were determined to be of 

interest (p<0.10) in the univariate analysis.  Significance was defined as p<0.05.   

 

4.3 Results 

4.3.1 SHARE Study: Anti-GRP78 autoantibody titres in serum from adult 

participants with cardiovascular disease  

To determine whether levels of GRP78a-Abs were altered in patients with 

CVD, we analyzed a subset of SHARE study blood samples from participants 
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with defined CVD and without CVD matched for age, gender, and ethnicity.  

Baseline participant characteristics are outlined in Table 2.  Serum GRP78a-Ab 

levels were assessed by enzyme-linked immunosorbent assay. No significant 

difference in GRP78a-Ab titre levels was observed between participants with 

CVD and those without CVD (Fig. 13A). 

 

 

It is not known how risk factors for CVD impact GRP78a-Abs levels.  To 

reduce the effect of these confounding factors on our analysis, all participants 

with diabetes, impaired glucose tolerance, high blood pressure, high cholesterol, 

high LDL levels, or that habitually smoked tobacco were excluded from the 

control group sample set.  The remaining samples were matched for age, gender, 

and ethnicity to samples from the CVD group.  Although not statistically 

significant, there was a tendancy toward increased GRP78a-Abs in the CVD 

group (p=0.074, Fig. 13B).  There were also no differences in titers observed 

!

Table 2. SHARE Study  
Characteristics of the study population, by group. 
 Control (n = 68) CVD (n = 69) 
Age (years)  60.9 (9.3) 60.7 (9.2) 
Male  34 (50.0) 32 (46.4) 
Diabetes 25 (36.8) 8 (11.6) 
Hypertension 28 (41.2) 13 (18.8) 
Impaired GT 8 (11.7) 11 (15.9) 
High Cholesterol 23 (33.8) 5 (7.2) 
Elevated LDL-cholesterol 44 (64.7) 36 (52.2) 
Low HDL-cholesterol 23 (33.8) 14 (20.3) 
Smoking 10 (14.7) 17 (24.6) 
Values are mean ± SD or n (%). LDL = low-density lipoprotein; HDL = high-
density lipoprotein; GT = glucose tolerance.  
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when samples from each group were compared based on the total number of risk 

factors reported for each participant (Fig. 13C-D).  The control and CVD groups 

were also compared after separation by gender, however no differences were 

seen between men or women with and without CVD respectively (Fig. 13E-F).  

While these data suggest that middle-aged adults with CVD tend to have higher 

GRP78a-Ab levels compared to healthy controls, the data is not conclusive as to 

how common risk factors for CVD might influence GRP78a-Abs.  Further work 

involving circulating GRP78a-Ab levels should be performed in a larger sample 

set to minimize the effects of confounding variables related to CVD. 
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Figure 13. GRP78a-Ab titers from participants in the SHARE study.  Levels 
of GRP78a-Abs were measured by ELISA from (A) age, gender, and ethnicity 
matched participants with defined cardiovascular disease (CVD) or without 
(Control). (B) Control participants with no risk factors for cardiovascular disease 
matched for age, gender, and ethnicity to participants with CVD (n=6 per group). 
Samples from the (C) control and (D) CVD groups were divided based on the 
number of risk factors for cardiovascular disease each participant displayed. 
Samples were divided by gender into males and females (E) from the entire 
cohort or (F) by group. Data is expressed as absorbance values at 450nm 
relative to a common sample. 
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4.3.2 NIATH Study: Anti-GRP78 autoantibody titres in serum from 

hyperlipidemic or overweight children 

 To examine GRP78a-Ab levels in children, serum from overweight, 

hyperlipidemic, or healthy control children 5-16 years of age were analyzed for 

GRP78a-Abs by enzyme-linked immunosorbent assay.  Baseline participant 

characteristics are outlined in Table 3.  GRP78a-Ab titre levels were significantly 

higher in the hyperlipidemic group compared to the overweight group, however 

neither were statistically different from the control group (Fig. 14).  Similar 

findings were seen in results adjusted for age.  Covariate analysis performed 

adjusting for age and body fat showed no differences between groups, 

suggesting the difference in GRP78a-Ab levels between the hyperlipidemic and 

overweight groups is due to the difference in body fat between the groups. 

Table 3. NIATH Study    
Characteristics of the study population, by group.  
 Control Hyperlipidemia Overweight 
 (n = 38) (n = 39) (n = 36) 
Male n (%)  20 (52.6) 20 (51.3) 23 (63.8) 
Age (years) 11.5 (2.7) 11.9 (3.1) 10.3 (2.5) 
% Body Fat 19.7 (8.9) 22.6 (3.8) 38.9 (6.5) 
BMI-Z 0.08 (1.2) 0.48 (1.1) 2.3 (0.4) 
Systolic BP (mmHg) 100 (9.1) 101 (6.8) 110 (11.3) 
Diastolic BP (mmHg) 64 (6.5) 65 (7.02) 66 (7.5) 
Total Cholesterol (mmol/L) 4.0 (0.6) 6.6 (1.4) 4.5 (0.9) 
LDL-cholesterol (mmol/L) 2.05 (0.5) 4.6 (1.4) 2.6 (0.8) 
HDL-cholesterol (mmol/L) 1.5 (0.3) 1.4 (0.3) 1.3 (0.3) 
Triglyceride (mmol/L) 0.87 (0.51) 1.27 (0.71) 1.36 (0.97) 
Glucose (mmol/L) 4.7 (0.35) 4.8 (0.44) 4.7 (0.34) 
Average maximum IMT (mm) 0.386 (0.027) 0.399 (0.039) 0.392 (0.034) 
Average mean IMT (mm) 0.385 (0.026) 0.398 (0.039) 0.391 (0.033) 
Values are mean ± SD or n (%). BP = blood pressure; LDL = low-density 
lipoprotein; HDL = high-density lipoprotein. 
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The main predictors of GRP78a-Ab levels were examined using univariate 

and multivariate regression analysis of the entire cohort.  GRP78a-Ab levels 

inversely correlated with body fat, BMI-Z score, waist/height ratio, and systolic 

blood pressure in univariate analysis (Table 4).  There was no relationship 

between GRP78a-Abs and carotid IMT, blood lipids, or fasting glucose levels. 

However, the multivariate linear regression model showed body fat was a 

predictor of GRP78a-Ab levels (Table 5).  The model explained 13.5% of the 

variability in GRP78a-Abs. These data suggest that greater body fat in children 

may reduce GRP78a-Abs.  

 

 

 

 

 

 

 
Figure 14. GRP78a-Ab titers from participants in the NIATH study. Levels of 
GRP78a-Abs were measured by ELISA from healthy control, hyperlipidemic, or 
overweight children 5-16 years of age. Data is expressed as absorbance values 
at 450nm relative to a common sample. *Indicates a significant difference (p<0.05) 
from the indicated group.	
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Table 4. NIATH Study  
Univariate regression analysis of GRP78a-Ab. 
Variable GRP78a-Ab 
 R2 p 
BMI-Z -0.329 0.002 
Waist-Z -0.356 0.0001 
Total Cholesterol 0.123 0.22 
LDL-cholesterol 0.141 0.16 
HDL-cholesterol 0.007 0.95 
Triglyceride -0.076 0.46 
Fasting GL 0.002 0.98 
Systolic BP -0.189 0.062 
Diastolic BP -0.080 0.43 
Average Max IMT -0.001 0.989 
Average Mean IMT -0.003 0.975 
 

 

 

Table 5. NIATH Study    
Determinants of GRP78a-Ab in multivariate analysis.  
Dependent Variable Independent variables β ± SE p 
R2 – 0.13    
    GRP78a-Ab Age 0.092 ± 0.002 0.401 
 Gender -0.118 ± 0.009 0.277 
 Group 0.180 ± 0.005 0.229 
 % Body Fat -0.375 ± 0.001 0.017 
 Systolic BP -0.098 ± 0.0001 0.373 
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4.3.3 FIN-CAN Study: Anti-GRP78 autoantibody titres in serum from individuals 

born at extremely low birth weight  

Premature birth with low birth weight predisposes individuals to 

dysglycemia, hypertension and obesity in adulthood.  To examine whether 

GRP78a-Ab levels are affected by prematurity and birth weight, GRP78a-Abs 

were analyzed in serum from individuals born premature with extremely low birth 

weight (ELBW) and compared to term, normal birth weight (NBW) subjects.  The 

samples were acquired from adults in their early 30s.  Baseline participant 

characteristics are outlined in Table 6.  In contrast to our hypothesis that 

prematurity would enhance levels of GRP78a-Abs and thus be related to the 

enhanced CVD risk typically seen in this population, GRP78a-Ab levels were 

significantly lower in the ELBW group than in the NBW comparison group (Fig. 

15A).  Additionally, GRP78a-Ab levels were significantly higher in females than in 

males in the entire cohort (Fig. 15B).  These data suggest that prematurity is 

associated with reduced circulating GRP78a-Abs.  
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Table 6. FIN-CAN Study   
Characteristics of the study population, by group.  
 NBW (n=80) ELBW (n=89) 
Male n(%)  (40) (38.2) 
Age (years) 31.6 (2.5) 31.6 (1.6) 
Gestational Age (weeks) 40.0 (0) 27.2 (2.5) 
% Body Fat 30.09 (10.4) 35.7 (11.02) 
BMI 26.2 (5.1) 27.1 (6.4) 
Systolic BP (mmHg) 109 (10.6) 114 (11.8) 
Diastolic BP (mmHg) 70 (8.3) 74 (10.1) 
Total Cholesterol (mmol/L) 4.7 (0.86) 4.8 (0.97) 
LDL-cholesterol (mmol/L) 2.7 (0.76) 2.7 (0.87) 
HDL-cholesterol (mmol/L) 1.5 (0.40) 1.5 (0.45) 
Triglyceride (mmol/L) 1.25 (1.03) 1.40 (0.73) 
Glucose (mmol/L) 4.9 (0.60) 5.2 (0.69) 
Average maximum IMT (mm) 0.644 (0.11) 0.627 (0.103) 
Average mean IMT (mm) 0.606 (0.106) 0.587 (0.095) 
Values are mean ± SD or n (%). BP = blood pressure; LDL = low-density 
lipoprotein; HDL = high-density lipoprotein. 
 

 

 

 

 

 
Figure 15. GRP78a-Ab titers from participants in the FIN-CAN study. Levels 
of GRP78a-Abs were measured by ELISA from (A) adults born at normal birth 
weight (NBW) or pre-term at extremely low birth weight (ELBW). (B) Levels of 
GRP78a-Abs in males and females from the entire cohort. Data is expressed as 
absorbance values at 450nm relative to a common sample. *Indicates a significant 
difference (p<0.05) from the indicated group.	
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4.4  Discussion 

Overall, the human cohort data do not support the idea that GRP78a-Abs 

are elevated in groups at risk for atherosclerosis. However, there are notable 

caveats to the current data that should serve as a guideline for future studies in 

this area.  

There was no significant difference in levels of GRP78a-Abs between 

controls and participants with CVD as defined based on parameters of the 

SHARE study.  However, this study may have not been an ideal cohort to 

examine a new biomarker of atherosclerotic lesion development. Firstly, in this 

study the control group contained individuals with potentially confounding factors 

including current and former smokers, diabetics, and those being treated for 

hypertension and/or high cholesterol.  It is unknown whether these risk factors 

are associated with GRP78a-Abs and could therefore be independently 

influencing GRP78a-Abs in the control group.  Although the control group was 

formed based on the lack of a CVD qualifying event, control subjects were not 

required to lack other heath problems or diseases.  However, the purpose of the 

SHARE study was to assess risk factors in three different ethnic groups, not 

compare characteristics of truly healthy people to those with CVD.  In an effort to 

address this problem in the current GRP78a-Ab analysis, participants with 

reported risk factors for CVD were excluded from the control group in order to 

better represent a cohort of “healthy” individuals.  It was thought that using more 

stringent exclusion criteria would allow for a more accurate evaluation of whether 
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there was a correlation between GRP78a-Abs and the occurrence of CVD.  

However, eliminating participants with risk factors for CVD severely reduced the 

sample size of the control group.  Therefore the lack of statistical significance in 

comparing GRP78a-Abs between the redefined control group and those with 

CVD was likely due to reduced statistical power.  Although not statistically 

significant, it is interesting to note the slight increase of GRP78a-Abs in control 

group samples with greater numbers of risk factors for CVD.  This classification 

was not based on one specific risk factor however, so it remains to be 

determined whether the type of risk factor differentially influences GRP78a-Abs 

and to what extent.  Another caveat to analysis was the lack of absolute values 

for the individual test characteristics.  The information provided for each sample 

included a “yes” or “no” indicator for the described characteristic rather than a 

quantitative measurement.  This prevented additional univariate or multivariate 

analysis on the continuous variables and limited analysis to categorical variables. 

Furthermore, while participants classified as having CVD presented with a 

symptomatic event, this does not necessarily correlate with the prevalence and 

extent of atherosclerosis.  Indeed, the original study found that although South 

Asians had the highest rates of CVD, they had less carotid atherosclerosis than 

Europeans(156).   

In the pediatric cohort from the NIATH study, children with hyperlipidemia 

had significantly higher GRP78a-Abs levels than obese children.  Similarly, 

GRP78a-Abs were inversely related to body fat and BMI-Z score in univariate 
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regression and body fat significantly contributed to GRP78a-Abs levels in the 

multivariate model, suggesting body fat is a determinant of GRP78a-Abs in 

children.  Additional work will be required to determine how body fat might be 

involved in modulating GRP78a-Abs, whether this relationship is also relevant in 

adults, and to identify other factors that modulate GRP78a-Ab levels.  

Adults born with extremely low birth weights had lower GRP78a-Abs than 

their normal birth weight counterpart controls in the FIN-CAN study.  Birth weight 

group classification was related to GRP78a-Ab levels in univariate analysis, but 

not age or gender, suggesting there is a relationship between prematurity and 

lower GRP78a-Ab levels.   

In order to more directly relate measures of atherogenesis to GRP78a-Abs, 

we compared carotid IMT to plasma autoantibody levels. No relationship was 

seen between IMT and GRP78a-Abs.  Age has been shown to be an important 

determinant of IMT in children, adolescents and adults, regardless of contributing 

CVD risk factors, therefore it was controlled for when analysis were 

performed(161, 167).  Although the NIATH study showed children with 

hyperlipidemia had greater IMT, overweight children did not have higher IMT 

even though they had multiple cardiovascular risk factors(161).  It is important to 

consider that children, even those with hyperlipidemia, have only very early 

atherosclerotic change consisting of fatty streaks, but not more advanced, 

complicated lesions(168).  For this reason, it may be too early in the progression 
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of lesion development in these subjects for us to observe a difference in 

GRP78a-Abs levels. 

 There was no relationship between GRP78a-Abs and IMT in the FIN-CAN 

study, regardless of group.  However, there was also no difference in IMT 

between groups, suggesting that premature birth does not strongly influence 

atherosclerosis at this age.  Additionally, the IMT values, lack of large unstable 

plaques and good CVD health suggests that these subjects do not have high risk 

for atherosclerotic CVD based on established guidelines(169).  This again 

suggests that in these subjects in their early 30s, it may be too early in life to 

detect a rise in GRP78a-Ab levels. 

 While the above data relating GRP78a-Abs to human atherosclerosis 

markers in primarily younger (<35 year old) subjects appears underwhelming, 

atherosclerosis is known to develop and increase with advanced age.  Carotid 

IMT, shown to be a marker of risk for coronary heart disease and atherosclerosis 

as well as ischemic events and stroke, increases at an average rate of ≤0.03mm 

per year(158, 160) and aortic plaques are most prevalent in individuals over 50 

years of age(170). The data presented here does support this in that only the 

oldest adult population analyzed (SHARE study) showed an increase in 

GRP78a-Ab levels in participants with CVD when compared to healthy controls.  

Future work should be focused on middle-aged to elderly adults using more in-

depth clinical phenotyping of CVD risk factors and carotid IMT analysis to truly 
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tease out whether GRP78a-Abs are related to human atherosclerosis.  The 

timing and progression of GRP78a-Ab formation and accumulation is not known 

in humans, and particularly unclear in relation to the development of 

atherosclerosis.  It is possible that there is a temporal lag between the onset of 

ER stress and endothelial activation and the point in which GRP78a-Abs 

accumulate in circulation to levels divergent enough to detect significant 

differences between population groups using our current methods of analysis. 
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Chapter 5 - Discussion and Conclusions 

5.1 Concluding Remarks 

 In this study, we investigated whether activation of surface GRP78 by 

GRP78a-Abs modulates endothelial cell function, the effects of circulating 

GRP78a-Abs on atherosclerotic lesion development in ApoE-/- mice, and whether 

GRP78a-Abs were associated with CVD in humans.   

 Overall this thesis supports our hypothesis that signaling through cell 

surface GRP78 on endothelial cells promotes endothelial cell activation and 

augments the progression of lesion development.  We showed levels of 

GRP78a-Abs correspond to lesion progression in ApoE-/- mice and demonstrated 

an interaction of GRP78a-Abs with resident endothelial cells on the surface of 

lesions.  Furthermore, we demonstrated increasing GRP78a-Abs accelerated 

lesion development in ApoE-/- mice.  Additionally, work here suggests blocking of 

circulating GRP78a-Abs is a viable strategy towards attenuating lesion 

progression. We also established that ER stress leads to surface GRP78 

expression in endothelial cells, and that activation of surface GRP78 by GRP78a-

Abs induces endothelial cell activation through the NFkB pathway.  Finally we 

present initial analysis of GRP78a-Abs in humans that suggest GRP78a-Abs 

levels are increased in middle aged to elderly adults at risk for cardiovascular 

disease.  Collectively, these results demonstrate a novel role for GRP78a-Abs 

and surface GRP78 receptor activity in endothelial cell activation and the early 

stages of atherosclerotic lesion development, as well as set a framework for 
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further investigation into the mechanism by which surface GRP78 signaling 

aggravates lesion development. 

5.2 Future Directions 

Since the above data suggest that reducing circulating GRP78a-Abs can 

mitigate lesion development, there are several possible ways to manage these 

autoantibodies therapeutically. The first may be by blocking cell surface GRP78 

signaling, possibly through direct binding neutralization of circulating GRP78a-

Abs in order to attenuate atherosclerotic lesion development.  Also, discovery of 

novel ligands with greater affinity for GRP78a-Abs than surface GRP78 are 

promising avenues for atherosclerosis therapy.  Finally, antibodies interacting 

with different epitopes on surface GRP78, specifically those that recognize the C-

terminus, have shown contrasting signaling effects to GRP78a-Abs in cancer 

cells and would be interesting to test on endothelial cells and in rodent models of 

atherosclerosis(171).  

While the current work provides evidence that GRP78a-Abs work to 

enhance atherogenesis via endothelial cell activation, it remains unclear how this 

signal is being transmitted from binding on the surface of the cell.  The work 

presented here indicates signaling of surface GRP78 initiated by GRP78a-Abs 

involves the NFκB pathway in endothelial cells, however further work is required 

to delineate the precise pathway linking surface GRP78 to NFκB in these cells.  

Previous work suggests surface GRP78 signals through G proteins, activating 

PLC which increases IP3 and results in Ca2+ release from the ER(86, 150).  
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Increased cytosolic [Ca2+] activates NFκB, therefore continued experiments 

should include blocking these potential pathway components, using a PLC 

inhibitor (i.e. U73122)(172), an IP3 receptor inhibitor (i.e. xestospongin C)(173), 

or a calcium chelator (i.e. BAPTA), to examine their effects on GRP78a-Ab 

stimulated endothelial cell activation. 

Another avenue to continue and strengthen the work presented here 

should be to examine the endothelial-specific role of NFκB in GRP78a-Ab 

mediated effects on lesion growth in vivo.  ApoE-/- mice expressing an 

endothelial-specific dominant-negative IκBα show inhibition of NFκB activity and 

NFκB-dependent gene expression exclusively in the vascular endothelium 

resulting in reduced plaque formation compared to ApoE-/- littermate controls	
  

(174).  Experiments modulating GRP78a-Abs in these mice would provide further 

insight into whether GRP78a-Ab mediated lesion progression is primarily 

occurring due to signaling via the endothelial cell NFκB cascade.  

 It is possible and likely that GRP78a-Abs also act as receptor agonists for 

surface GRP78 on other cell types involved in atherosclerosis.  In addition to 

endothelial cells, surface GRP78 is expressed on macrophage foam cells within 

atherosclerotic plaques(135) as well as on the surface of platelets(175).  Current 

evidence suggests surface GRP78 directly interacts with tissue factor (TF) on 

both macrophages and platelets, inhibiting TF function and resulting in reduced 

procoagulant activity and platelet adhesion	
  (135,	
  175).  Future studies to 

determine whether GRP78a-Abs influence surface GRP78 activity in these cell 
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types may provide support for a multifaceted role of GRP78a-Abs and surface 

GRP78 in atherosclerosis. 
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