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Abstract: 

The objective of this research project was to study applications of statistical 

unimolecular reaction theories to a simple model chemical process. Such studies are 

needed to test the existing theories and provide direction for their further development 

T-shaped Ar , a simple chaotic two degree of freedom system, is an excellent3 

candidate for such study, since statistical behavior is generally associated with chaotic 

dynamics. 

Chemical kinetics predicts fully statistical decay curves of microcanonical 

population associated with one of th(:·two equivalent arrangements ofT-shaped Ar3. 

However numerical computations, presented here, reveal nonstatistical characteristics of 

microcanonical T -shaped Ar inversi[on at energies associated with strongly chaotic 3 

dynamics. Nonstatisticality is most pronounced at higher energies where internal 

relaxation time scales are comparable to the inversion time. At such energies, 

population decay curves exhibit damped oscillations about the equilibrium population. 

At energies just above the inversion threshold, where inversion is very slow, near 

statistical nonoscillatory behavior is observed. The 11 absorbing barrier method11 of 

J.E. Straub and B.J. Berne [J. Chern. Phys. 83, 1138 (1985)] is shown to provide a 

reasonable model for observed population decays. Characteristics of corresponding gap 

distributions are described in terms of an adapted 11delayed lifetime gap model11 
• 

Analysis of the model which combines the absorbing barrier method and the adapted 

delayed lifetime gap model provides insight into the observation of both oscillatory and 

lll 



nonoscillatory population decays. Specifically, the analysis describes the ob~rvations 

in terms of an "underdamped" or "overdamped" harmonic oscillator, respectively. 
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Chapter 1 

Introduction 

Traditional statistical theories of chemical reactions, such as 

Rice-Ramsberger-Kassel-Marcus (RRKM) and transition-state theories1, have been 

remarkably successful as a practical means of calculating rate constants directly in 

terms of reacting species potential-energy characteristics2. This has been an invaluable 

aid to kineticists who do not wish to do large-scale dynamics computations. However, 

these theories are not without limitations3. Problems result from the breakdown of their 

implicit assumptions about the underlying dynamics. The RRKM rate constant depends 

on an equilibrium microcanonical average and thus does not depend on molecular 

dynamics. This breakdown has prompted a number of studies whose goal is to devise 

improved statistical theories which account for important dynamical effects. For 

example, recent investigations 4 have identified "bottlenecks" in phase space as a source 

of nonstatisticality. These bottlenecks are generalized transition states which determine 

the relevant unimolecular processes and their associated time scales. In this approach, 

rate constants associated with the relevant processes are estimated as ratios of flux to 

· · d. · 1 1 l · 2 Sap ase-space vo ume, h l JUSt as m tra ttlona ca cu attons ' . 

Another method of improving statistical theories of unimolecular decomposition 

is based on the partitioning of phase space into "direct" and "strong collision" 

components, with only the latter component treated statistically6. In this method, one 

1 




2 


keeps track of the "divergence" of trajectories initially adjacent on the transition state at 

the entrance to the metastable reactant complex region. If the divergence exceeds a 

predetermined threshold before the trajectories exit into product channels, then the 

trajectories are part of the strong collision component and are therefore taken to be 

subject to statistical treatment In this way, this "divergence" method avoids the 

detailed examination of phase space necessary in a bottleneck analysis 7. 

The chemical kinetics treatment of a unimolecular reaction is straightforward . 

Chemical equations for the reaction are established and directly translated into a set of 

linear kinetics equations. The latter are solved by diagonalizing the matrix of rate 

constants and the vector of populations at timet, C(t), is determined uniquely in terms 

of its initial value, C(O) . An exact dynamical treatment of unimolecular reaction is not 

so straightforward. While it is posssible, in principle, to numerically solve the classical 

equations of motion associated with the reaction, such a solution would give the phase 

space properties which in tum have to be related to chemically interesting properties 

such as populations . Since kinetics represents some sort of approximation to an exact 

dynamics treatment, the traditional statistical approach is to take kinetics for granted 

and use dynamics considerations to evaluate the required rate constants. Kinetics is 

valid only if the dynamics is both ergodic and mixing. Recent articles5 have used these 

characteristics of dynamics to develop generalized statistical theories of unimolecular 

reactions. These theories provide refined estimates of rate constants and go beyond 

simple kinetics to account for certain "nonstatistical" dynamical effects. 

Recent progress5, made on the foundations of statistical theories of 

unimolecular reactions2, demands dynamical studies of simple model chemical 

processes. Such studies are needed to test the theories and provide direction for their 

further development. T-shaped Ar , a simple chaotic8 two degree of freedom system, 3 
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is an excellent candidate for such a study, since statistical behavior is generally 

associated with chaotic dynamics. However, numerical computations, presented here , 

indicate that this process is not statisticat9, except at energies very close to the 

inversion threshold. Microcanonical population decay curves, associated with one of 

the two equivalent arrangements ofT-shaped Ar3 , are generally not simple 

exponential. They are therefore, not consistent with a simple kinetics treatment, 

characteristic of full statisticalitySc,d. 

While T -shaped Ar3 population decay curves are not simple exponential, they 

are well modeled by the "absorbing barrier method", or ABM, of Straub and Beme10 

(see Chapter 3). This suggests that the process dynamics satisfy the assumption of 

chaos employed by the ABM To understand how the statistical ABM is able to model 

the observed process nonstatisticality, we consider the nature of the ABM 

approximation. Specifically, the ABM assumes independence of successive "gap 

times", and reduces the inversion process to two independent virtual unimolecular 

decays; each characterized by a "gap distribution" which must be computed explicitly. 

It is the T -shaped Ar gap distributions which manifest the observed nonstatisticality. 3 

The principle goal of the present work is to rationalize and model these gap 

distributions, and thereby characterize the nonstatisticality of the inversion population 

decays. 

The delayed life-time gap model5a, or DLGM , is a statistical theory of 

unimolecular decay which goes beyond the fully statistical simple exponential gap 

distribution. It generalizes simple unimolecular decay kinetics by allowing for "direct 

trajectories", and by accounting for finitely rapid "internal relaxation". It is based on 

observations of ideally chaotic model dynamical systems1l, and has been successfully 

applied to the decay of "open stadium billiard" systems.Sb,c However, we see in 
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Chapter 4, that a simple application of the DLGM cannot describe T-shaped Ar3 

inversion gap distributions. It is necessary to adapt the DLGM via introduction of an 

additional delay time. The additional delay is distinct from the usual delay/relaxation 

time inherent in previous formulations of the DLGM. 

In combination with the ABM, the adapted DLGM provides a generalized 

statistical model of the T-shaped Ar inversion process. The model incorporates, via 3 

the adapted DLGM, two delay times which characterize internal relaxation processes. 

Statisticality of the inversion dynamics occurs only when the inversion time scale is 

much longer than the relaxation times. Observed nonstatistical behavior results when 

this condition is not met, and the relaxation time scales are manifest in inversion 

population decay curves. 

We begin, in Chapter 2, with a review of the classical dynamics theory of 

isomerization. There we define survival probability, reactive flux and the flux-flux 

correlation, emphasisizing both their physical significance and their importance in 

numerical computations. Chapter 3 deals with the absorbing boundary method and its 

basis in terms of the delayed life-time gap model. In Chapter 4, the DLGM is adapted 

to model the T -shaped Ar3 inversion process. There, model survival probabilities are 

obtained by combining the adapted delayed life time gap model and the absorbing 

boundary method and are shown to reproduce the characteristics of the observed 

survival probabilities. An analysis of the generalized statistical model provides a 

damped harmonic oscillator analog to the inversion process. When the inversion time 

scale is long, the harmonic oscillator is in its 11overdamped11 regime where it exhibits no 

oscillations. A shorter inversion time scale corresponds to an 11underdamped11 harmonic 

oscillator which exhibits damped oscillations. 
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Chapter 2 

Inversion Dynamics ofT-shaped Ar3 

In the following classical mechanics treatment of Ar3, argon atoms are 

restricted to a T -shaped configuration which is conserved under time evolution due 

to symmetry. It determines a two degree of freedom Hamiltonian system which 

admits a simple intramolecular 11 inversion11 process. Inversion corresponds to passage 

of the axial Ar atom between the other two atoms (see Fig. 1). Further, it is assumed 

that process takes place in strict isolation. Modeling the potential with two body 

interactions only, and using the two body potential of Aziz and Slaman12, the inversion 

threshold, Ethres ,~is given by the Ar3 saddle point energy of 140.38 K 13a. Figure 2 

shows a contour plot of the model potential energy surface and a typical inversion 

trajectory. 

Every energy = E hypersurface, for which E > Ethres , is split into two domains, 

A and B, representing the two 11arrangements11 of Ar linked by the inversion3 

process. Their projections onto configuration space, labeled in Fig. 2 , are separated by 

a 11dividing surface11 at q1 =0. The configuration space dividing surface corresponds 

to two phase space transition states, Sa and Sb; Sa is associated with motion into A 

from B, while sb is its time reversal. A reaction occurs when a phase space trajectory, 

satisfying Hamilton's equations, crosses from one domain to another.The chemically 

interesting features of this dynamics are the time scales for the transition process and 

the relative amount of time spent in each cell. 

5 
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(a) (b) (c) 

Fig. 1. 	 The inversion process ofT-shaped Ar3. In T-shaped Ar3, one of the 

argon atoms is constrained to move along the perpendicular bisector 

of the bond associated with the other two atoms. This constrained 

syst~m has two degrees of freedom, q 1 and q2, which are depicted in 

panel (c). The inversion process is illustrated in the succession of 

panels, (a), (b) and (c). In this process, the central argon passes 

from the left of the q2 bond to its right [(a) to (c)]. The left and 

right "cells" are separated by the collinear transition state 

configuration of panel (b). 
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15 

10 

5 

-5 0 5 

Fig. 2. Contour plot of T-shaped Ar potential energy surface; E = 100 K, 3 
125 K, 144 K, 150 K, 160 K and 175 K13. The three lowest energy 

contours are dashed, while the others are solid. The q = 0 line1 
(q2-axis) divides E > Ethres energy allowed wells into two domains, 

labeled A and B. They are associated with the two distinct 

arrangements of Ar3, depicted in Fig. 1. Also shown is a typical E = 
150 K trajectory which crosses the dividing surface. 
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In terms of the T -geometry restricted Jacobi coordinates of Fig. 2 , the two 

degree of freedom system Hamiltonian is given by 

2 2 
H(q,p) = ~ + Pz + V(ql'qz) (2.1) 

. 
2m1 2m2

2 
Here, m1 and m2 are reduced masses, m1 =2m.A/(3mAr) =2mp)3 =0.1539 eH/K 

2 13d
and m2 =mA/(2mAr) =mpj2 =0.1154 eH/K. 

2.1 Survival Probability 

The process of interest is the simple two-species isomerization, with chemical 

equation 

(2.2) 

Classical isomerization dynamics is treated in two stages, preparation and 

evolution. 

(1) First,there is the preparation stage where an initial ditribution of reactant 

species ~tates is somehow created. We consider the case of an initial ensemble of 

species A alone. The only other constraint placed on this phase-space distribution is 

14that it be associated with a single indecomposable manifold, r; i.e., the distribution 

is restricted to lie in a subset of phase space where the dynamics is necessarily 

ergodic15. This constraint ensures that it is not possible to break up the initial ensemble 

into subsets whose dynamics can be treated independently. 
I 

(2) The prepared initial distribution evolves in time according to Hamilton s 

equations of motion. The features of this evolution which are of chemical interest, are 

contained in the so-called "survival probability" or number-number correlation C(t): 

C(t) =<ata>/<a> (2.3a) 

Here, a is the characteristic function associated with species A, 
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1, x is a state of species A 
a(x) = (23b)

{ 0, otherwise, 

at is the time-evolved distribution function, 

at(x) = a(x _t) (23c) 

and <f> denotes the 'T integral" of phase-space function f, 

<f> = f. dll(x) f(x) (23d) 
r 

where ll is the invariant measure on the indecomposable invariant manifold, r. 

The phenomenological description of the isomerization process by a chemical 

kinetics rate law implies that survival probability decays exponentially from unity at 

t =0 to a long-time equilibrium value: 

C(O) =1 (24a) 

and 

C(t)-+ <a>, (24b) 

as t-+ oo where <a> is the microcanonical phase space "volume" associated with A In 

Eq. (24b), we assume that invariant measure ll is normalized such that <1> = ll (I)= 

1. This phenomenology has an important implication for the dynamics. Eq. (24b) holds 

only if the dynamics is mixing on r, since it has already been hypothesized to be 

ergodic.15 The mixing assumption is essential if the dynamics is to exhibit relaxation 

of species populations 

22 Reactive Flux 

The reactive flux or number-flux correlation, K(t) is defined in terms of the 

surival probability: 

K(t) =-dC(t)/dt (2.5a) 

(25b) 
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where, jt = da/dt is the "flux-density" associated with A Flux density, j, can be 

separated into its positive and negative parts: 

j(x) = jb(x)- j\x) .· (26a) 

where 

and 

jb(x) = {j (x), 
0, 

j(x) > 0, 

otherwise, 
(2.6b) 

ja(x) = {-j (x), j (x) < 0, (2 6c) 
0, otherwise. 

Since both ja(x) and jb(x) are positive functions, they provide densities for 

distributions of initial conditions in r just like a(x). The distribution associated with jb 

is concentrated on sb, while the ja distribution is concentrated on Sa. These assertions 

are made by the following calculation. Since a(x) is a unit step function, 

j(x) = da(x -t)/dt It = 0 
s= - v(x).n(x) o (x), 

where v(xt) =dx/dt is the "phase-space velocity" at xt' n(x) is the "idcoming unit 

normal" to Sat xES, and {JS is a delta function concentrated on S. Therefore, 

a 
ja(x) = v(x)·n(x) OS (x). (2.7a) 

and 

b sb 
j (x) = - v(x) · n(x) o (x). (2.7b) 

ForT-shaped Ar with the configuration space dividing surface shown in Fig. 2, the3 

transition state sa is given by 

Sa= {x = (q,p)lq = (O,q2)' p = (pl > 0 ,p2) 

& H(x) = E}. (2.8) 
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With the configuration space defined transition state of Eq. (28), v(x)·n(x) is just the 

usual configuration space velocity in the q 1 direction. 
. . 

Using Eq. (26a), Eq. (25b) can now be rewritten as : 


.a '1 .a .b · .b ) 
K()t =ak (<Jta>:<J >-<Jta><J1 >, (29) 

where 

(210) 

is termed the "statistical decay rate" of the virtual unimolecular d~mposition of 

arrangement A. Note that <ja> = <jb> follows from time-reversal symmetry of S. 

16 1Statistical rate, ka is easily evaluated using Monte Carlo methods . 't'a e ka - is the 

"mean gap time" associated with arrangement A ; i.e. the mean time to traverse the gap 

through A from Sa to Sb. It is the flux density weighted mean visitation time to 

region A , associated with energy = E trajectories. 

23 Flux-Flux Correlation 

For the purpose of present theoretical investigations , it is desirable to go one 

step further and work directly with the 11flux-flux correlation11
, F(t), instead of reactive 

flux: 

F(t) = -'t'adK(t)/dt. (211) 

In order to provide an independent interpretation of F(t) , we backtrack and consider 

the second alternative form of reactive flux. Using the time translation invariance of ll 

and r, Eq. (2.9) can be expressed as 

K(t) =<jaa_t>/<a>- <jba _ t>/<a> (212) 

The first and second terms on the right hand side of Eq. (2.12) are, respectively, the 

incoming (to A) and outgoing {from A) fluxes observed at time = -t, given an initial 

distribution uniform in A. Substitution of Eq. (212) into Eq. (211) (and using 

Eq. (210) for 't'a ) gives : 
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.a . I .a .b . I .aF()t = <J l_t> <J >- <J l_t> <J > (2.13) 

Using time translation invariance of tJ. and r, and Eq. (2.6a), we get 

.a .b I .a .a .a I .aF(t) = <Jt J > <J >- <Jt J > <J > 
.b .b I .b .b .a I .b

-<JtJ ><j >-<jtJ ><j > (2.14) 

Due to symmetry ofT- shaped Ar3 , Eq. (2.14) can be expressed in the following 

simpler form: 

2[ .a .b I .a .a .a I .a ]F() (2.15)t = <Jt J. > <J >- <Jt J > <J > 

The first and second terms in this expr~sion have the interpretation of incoming and 

outgoing fluxes observed at time = t , subsequent to preparation at time = 0 of 

"incoming" or "outgoing" phase space distributions concentrated on Sa, respectively. 

2.4 Numerical Computations 

Three different energies, E =166 K, 150 K and 144 K are considered in the 

present work. Numerical computation of F(t) via Eq. (2.15) proceeds in two steps: 

(i) First, a flux density ensemble of trajectories , denoted by jal<ja>, is initiated 

on Sa. General means of sampling the_ transition state according to flux density are 

described in Appendix A The method was employed in all T -shaped Ar3 computations 

presented here. It is an efficient Monte Carlo scheme which can be adapted to studies 

of more complex intramolecular processes associated with larger molecules. 

(ii) Then trajectories are evolved according to Hamilton's equations and j\xt) is 

observed. This step is simplified by the fact that nonzero flux appears only at discrete 

times when xt crosses sa or sb. The trajectories are propagated for timet 'the max 

longest time of interest. When a trajectory crosses Sb at time = tcross < tmax (i.e. it 

crosses the dividing surface heading into B), there is an N""16(t- tcross) contribution to 

F(t) , where N is the number of trajectories in the ensemble. When it crosses Sa at 
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another time= t • , there is a [- N-16(t- tc'"OSS)] contribution to the flux-flux cross ~· 

correlation. 

Reactive flux and survival probability are calculated from F(t) by succeSsive 

integration. In Monte Carlo sampling of initial conditions, errors in F(t) at successive 

times are uncorrelated. This results in small errors in the corresponding estimates of 

K(t), and C(t) as well, since the many uncorrelated errors that are summed on 

integration, tend to cancel each other. Thus, the present scheme provides accurate and 

efficient numerical estimate of C(t). 

To check the assumption of ergodicity on all energy = E hypersurfaces treated 

numerically in the present work, very long trajectories exhibiting approximately 10000 

successive visits to A and B were computed. The mean visitation time provides a mean 

gap time associated with the minimal invariant manifold containing the trajectory. Its 

agreement with Monte Carlo determined mean gap time represents evidence for 

ergodicity on the energy hypersurface. 

2.5 Results And Discussion: 

Results ofT-shaped Ar3 flux-flux correlation computations are shown in 

Fig. 3 . Associated survival probabilities are provided in Fig. 4. The dot- dashed lines, 

in Fig. 4, are the corresponding statistical survival probabilities, consistent with a 

kinetics treatment of the simple isomerization mechanism (2.2). The statistical survival 

probabilities are just simple exponential decays to equilibrium. Specifically, 

cstat(t) = i£1 + exp(-2kat)] . (2.16) 

The observed survival probabilities begin falling off with the initial statistical 

rate of 2ka . However, their decay quickly becomes more rapid than statistical. Most 

notable, is the case of E = 160 K, which exhibits a nonstatistical "overshoot" of the 
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(a) 
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2t-­

0 100 200 300 

t/ps 

Fig. 3. T-shaped Ar flux-flux correlation function at E = 144 K. The data 3 
are reported as histograms. The time resolution used is dt = 0.02 't . a 
80,000 trajectories were computed. Associated mean gap time, 't 

2 

(determined to within 0.2% by Monte Carlo calculations) is given in 

Table 1. 
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(b) 

0 50 100 150 

t/ps 

Fig. 3. T-shaped Ar flux-flux correlation function at E = 150 K. The data 3 
are reported as histograms. The time resolution used is dt = 0.02 'ta. 

80,000 trajectories were computed. Associated mean gap time, 't 
2 

(determined to within 0.2% by Monte Carlo calculations) is given in 

Table 1. 
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t/ps 

Fig. 3. T-shaped Ar flux-flux correlation function at E = 160 K. The data3 
are reported as histograms. The time resolution used is dt = 0.02 'ta. 

80,000 trajectories were computed. Associated mean gap time, 't 
2 

(detennined to within 0.2% by Monte Carlo calculations) is given in 

Table 1. 
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0.4 
0 100 	 200 300 

t/ps 

Fig. 4. 	 Observed survival probability at E = 144 K (solid curve) 

corresponding to the flux-flux correlation of Fig. 3 (a). The 

dot-d<l.shed curve shows associated fully statistical survival 

probability. The latter curve is consistent with simple inversion 

kinetics [see Eq. (2.16)]. The dashed curve shows absorbing barrier 

method model survival probability. 
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Fig. 4. 	 Observed survival probability at E = 150 K (solid curve) 

corresponding to the flux-flux correlation of Fig. 3 (b). The 

dot-dashed curve shows associated fully statistical survival 

probability. The latter curve is consistent with simple inversion 

kinetics [see Eq. (2.16)]. The dashed curve shows absorbing barrier 

method model survival probability. 
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0 20 40 60 80 

t/ps 
Fig. 4. Observed survival probability at E = 160 K (solid curve) 

corresponding to the flux-flux correlation of Fig. 3 (c). The 

dot-dashed curve shows associated fully statistical survival 

probability. The latter curve is consistent with simple inversion 

kinetics [see Eq. (2.16)]. The dashed curve shows absorbing barrier 

method model survi vai'probability. 
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long time equilibrium population, and a subsequent oscillatory approach to equilibrium. 

The case of E = 150 K exhibits the overshoot, but no subsequent oscillations. 

There is a marked contrast in the degree of nonstatisticality exhibited at the 

three different chosen energies. For example, the highest energy, E = 160 K, for 

which the inversion time scale is shortest, exhibits the greatest degree of 

nonstatisticality. This is in keeping with the principle that statistical behavior 

dominates when the time scale of the "reaction" process is much longer than those of 

. h" h "b . . I beh . 17 Thcompetmg processes, w tc contrt ute to nonstatlstlca avtor . us, we 

rationalize the observed survival probabilities by proposing that there is an intrinsic 

motion ofT-shaped Ar3 , with time scale at most weakly dependent on energy, which 

competes with inversion and contributes nonstatisticality to the inversion dynamics. 

This motion is not very important atE= 144 K, where the inversion time scale is 

much longer than that of the competing process. However, at higher energies, where 

inversion is faster, the effects of the fast competing process are more significant 

Mean gap time(r1), obtained from very long trajectories exhibiting 

approximately 10000 successive visits to A and B, are given in Table 1, together with 

the mean gap time(-r ), calculated using trajectories sampled from Sa, at three different 2

energies. Associated microcanonical values of mean gap time(-r3), obtained from 

Monte Carlo computations16 using statistical formula based on ergodicity, is also given 

for comparision. Both -r and -r agree, to within computational error, suggesting that 2 3 

there are no Trapped Islands(T)18 in phase space. If there were any, their 

microcanonical average < T > s 0, otherwise -r2 would have been smaller than -r3 . 
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Table 1. Mean gap times obtained by three different methodsa at three different 
energies 

energy 160K 150K 144K 

b-.;1 /ps 23.34 39.42 91.1~,90.4e 

T2c/ps 23.14 39.57 89.87 

-.;3/ps 23.22 39.56 89.06 

(a~ethods are defined in the text. 

(b)-.;1 is obtained to an accuracy of .... 1% ,exept at energy= 144 K. 
in which case an additional trial is made to get an accuracy of 
.... 0.7 %. 

(c)-.; is obtained to an accuracy of .... 0.35%.2 

(d) Mean gap time is obtained from 9777 successive visits 

to A and B. 

(e) Mean gap time is obtained from 19721 successive visits 

to A and B. 
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Agreement of -r1 with -r3 confirms that there are almost no Crossing Islands18, 

otherwise -r1 would have been larger than -r . Thus the agreement of -r and -r with3 1 2 . 
-r3 constitutes support for our contention that, trajectories do not access T or C and 

T-shaped Ar3 is ergodic (or very nearly so) at the energies considered. Specifically, 

the numerical results suggest that the chaotic minimal invariant manifolds occupy the 

bulk of their energy hypersurfaces( > 99% of microcanonical invariant measure). 

However it must be pointed out that , our assumption of ergodicity and its numerical 

support notwithstanding, T-shaped Ar cannot be ergodic at the energies considered 3 

here, or any other energy. No generic Hamiltonian system, such as this one, is strictly 

ergodic19. The single trajectory computation of mean gap time, together with the 

Monte Carlo mean gap time computations, are interpreted as evidence for a very small 

total relative size of regular "KAM regions", in the energy hypersurfaces in question. 

The assumption \of ergodicity is viewed only as a good approximation, useful in 

simplifying theoretical formulae. 

The above interpretation of the observed nonstatistical survival probabilities is 

further elaborated in Chapter 4. Before proceeding along those lines, however , we 

attempt to model the observed survival probabilities with the absorbing barrier method 

in Chapter 3. 
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Chapter 3 

Gap Distributions and the Absorbing Barrier Method 

The absorbing barrier method provides a statistical model expression for the 

flux-flux correlation in terms of "gap distributions" associated with phase space regions, 

A and B. Its derivation begins with Eq. (215), which expresses F(t) in terms of 

elementary correlations of the form 

...,ab .a .b I .a 
l' = <J t J > <J >. (3.1) 

It is possible to decompose these correlations into even more elementary components . 

For example5c, 

00 

F"b(t) ; ~ Pjb(t), . (3.2) 

where P~b(t) is the probability distribution for the j th transit time 
J 

Eq. (3.2) shows that computation of F(t) requires determination of all transit times from 

Sa and Sb to Sa and sb. Such a computation is simplified considerably if the dynamics 

in A and/ or B is sufficiently chaotic to eliminate correlations between successive first 

transit times (or gap times). This is because a jth transit time is the sum of 2j or 2j-1 

successive gap times. If all successive gap times are independent, then the jth transit 

time distribution can be expressed in terms of gap distributions. For example, 

23 
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abp. (t) =(P * p * p ... * p )(t)
J a b a a ' 

+-:i p 's-+ (3.3)a 

where, 

and 

are the A and B gap distributions, respectively, and* denotes convolution, 

t 

(Pa* P~(t) =fa dt'Pa(t')Pb(t- t') 


Eq. (3.3) constitutes the absorbing barrier method. It provides F(t), via Eqs. (2.15) and 

(3.2), in terms of gap distributions alone. Since only first transit times need to be 

computed, S acts as an absorbing barrier; i.e., we terminate each trajectory when it 

returns to S for the firsftime. In other words, it is absorbed by an "absorbing barrier" at 

the transition state. 

In practice, the Fourier (or Laplace) transform of Eq. (3.3) is used: 

ab j j-1
Pj (w) =P a (w) Pb (ro), (3.4) 

where 

P(ro) =J,
00 

dt exp(-irot) P(t). 
0 

In terms of Fourier transforms, Eq. (3.1) takes the form, 

00 

Fab(w) = ~ p! pi-1 

#. 

00 

=Pa ~ (PaPJ 

=Pa(ro)/ [1- Pa(ro) Pb(ro)], (3.5) 
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while the ABM flux-flux correlation is given by [see Eq. (2.15)] 

F(w) = 2[p3b(w)- p3a(w)] 

= 2 P a(w)[1 - P a(w)]/[1 - P;(w)] · (3.6a) 

or 

_1 [2 Pa(w) [1 - Pa(w)] l 
FAB~t) = :7 2 ' w -+t • (3.6b) 

1 - P/w) 

where, ::;--1 denotes inverse Fourier transformation. 

The inversion. ofT-shaped Ar is well described by the ABM. This is 3 

illustrated in Fig. 4, where ABM model C(t) data is shown, together with observed 

survival probabilities. The ABM clearly captures the essential features of the inversion 

dynamics. In particular, the ABM describes T-shaped Ar inversion much better than 
3 

it describes the siamese stadium billiard model isomerization5c. It appears that the 

statistical independence assumption, underlying the ABM is appropriate in the case of 

T -shaped Ar The trouble with the ABM, however, is that it does not provide a 3 . 

model gap distribution. Consequently, the ABM does not fully explain the 

nonstatisticality of observed survival probabilities. Rather, it associates the 

nonstatisticality with properties of the gap distribution, which in tum is obtained by 

explicit trajectory computation. To explain observed survival probabilities, we must 

correctly model associated gap distributions. 

The E = 150 K gap distribution is shown in Fig. 5 . It exhibits a long delay 

during which there ~re no gap times. This delay is the source of nonstatisticality in the 

E = 150 K survival probability. TheE= 144 and 160 K distributions show similar 

delays. However, the mean gap time of 89.17 ps at 144 K is so much larger that the 

delay time of~ 16 ps is relatively negligible. In contrast, the delay time of~· 10 ps 

dominates the E = 160 K gap distribution for which mean gap time 



26 


1.5 

1 

0.5 

0 
0 50 

Fig. 5. 

100 

t/ps 

E = 150 K gap distribution. 

150 



27 


Ta(E = 160 K) = 23.15 ps. The size of the delay time, relative to the mean gap time, 

determines the degree of survival probability nonstatisticality. This is demonstrated 

further, in Chapter 4, where a model gap distribution is combined with the absorbing 

barrier method [i.e. Eq. (3.6)]. The observed survival probabilities are described there 

in terms of a realistic model gap distribution which incorporates an appropriate internal 

delay time (or times). 

A delay is a characteristic of the "delayed lifetime gap model'• gap distribution 

(see Chapter 4 and Ref. Sa). However, the delay observed in theE= 150 K gap 

distribution is too long to be identified with the DLGM delay time. It is shown, further 

in Chapter 4, that the DLGM, in existing formulations, cannot describe T -shaped Ar3 

gap distributions. The DLGM is adapted, in the same chapter, to overcome this 

shortcoming, however. 

The source of the long delay time can be seen by examining the T-shaped Ar3 

potential well (see Fig. 2). This well possesses a long, approximately separable, 11 neck11 

region about the transition state saddle point which reacting trajectories must traverse at 

the beginning and end of visitations to A and B. From a kinetics point of view, the 

observed nonstatistical survival probabilities might be understood, qualitatively, in 

terms of the following variation of the mechanism of Eq. (2.2): 

+
;oN '\. 

A B, (3.7) 
'\ N_.t 

Here, N+ and N- correspond to motion of Ar in the neck region of the potential 
3 

surface, heading to the right and left, respectively. A kinetics treatment of this 

mechanism can produce oscillatory population time dependence, such as that observed 

atE= 160 K [see Fig. 4(c)], since the mechanism does not satisfy microscopic 

reversibility. Mechanisms satisfying microscopic reversibility are never associated with 
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oscillatory populations. Eq. (3. 7) does not satisfy microscopic reversibility because it is 

not consistent with the principle of detailed balance. This results because phase space 

N+ d N- . 1 . . 20 In . 1 N+ N- d. .celis, an , are not time reversa mvanant . particu ar -t un er time 

reversal. 

Rather than adopting a kinetics treatment which might provide a 

phenomenological description of observed survival probability nonstatisticality, we seek 

a more detailed model gap distribution which incorporates explicit dynamical 

information and is based on well-founded assumptions of chaos. Specifically, we seek 

a model in the spirit of the delayed lifetime gap model. The result is an adaptation of 

the DLGM (Chapter 4). The new model accommodates the neck region by 

incorporating an additional delay at the beginning and the end of every gap time. The 

additional delay essentially achieves the effects of the mechanism of Eq.(3. 7), while the 

use of the DLGM accounts for finitely rapid intramolecular relaxation. 
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Chapter 4 

4.1. Adaptation of the Delayed Lifetime Gap Model 

The delayed lifetime gap model is a statistical theory of the gap distribution 

which can be applied to simple decomposition processes, or to isomerizations in 

conjunction with the absorbing barrier method. Ideas associated with the DLGM can 

also be used to go beyond the independence of successive gap times approximation of 

the ABM5d. However, this level of sophistication is not required here, since correlation 

of successive gap times is not a significant source of nonstatisticality in T -shaped Ar
3 

inversion dynamics. Our strategy is to employ the ABM, and to consider the DLGM as 

a model of the required gap distributions. 

DLGM is based on the relationship between the gap and lifetime distributions of 

5unimolecular decompositions a. The lifetime distribution associated with species A is 

defined by 

00 , , 

Pa(t) = k J dt P (t ). (4.1) 
a t a 

The DLGM for species A results from the imposition of a second relationship between 

the gap and lifetime distributions: 

p a(t) = pa (t--r), (4.2) 

i.e. the gap distribution is just a delayed (by 11 intra-A relaxation time11 
, -r) version of the 

lifetime distribution. Eq. ( 4.2) follows from a strong mixing condition. It corresponds to 
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the complete relaxation, within A, of incoming trajectories after evolution through time 

-r, which is both relaxation time and smallest gap time. However, in general, the 

smallest gap time does not coincide with the relaxation time. This gives rise to the 

DLGM decomposition of a gap distribution into "direct" and "strong collision" 

5components : 

(4.3) 

Here Eq. (4.2) is satisfied by the gap and lifetime distributions associated with the 

strong collision component. fl and~= 1 - rx are the fractions of flux through sa 

associated with the direct and strong collision components, respectively. 

The direct gap distribution, P a(t), is the gap time distribution associated with 

trajectory segments through A which are insufficiently "relaxed" to warrant statistical 

treatment. Therefore, P a(t) is computed explicitly. Direct and strong collision 

trajectory segments are distinguished by their "divergence"; i.e. the factor by which an 

infinitesimal displacement of the trajectory is expanded during traversal of A . If the 

divergence is less than some predetermined relaxation threshold value, D , then the 

trajectory segment is labeled direct. Otherwise, it is part of the strong collision 

component. In the DLGM, the strong collision component gap distribution, P A (t), is 

treated using a statistical assumption5a. The DLGM is obtained by replacing P A (t) in 

Eq. ( 4.3) with the solution to the following delay differential equation: 

(4.4) 

This Equation is satisfied by P A (t), only for t = -r to t = oo • Here k A = llr:A is the 

reciprocal mean strong collision gap time 

-rA = (-ra- tx -ra )/~ (4.5) 

and -ra is the mean direct gap time. Eq. (4.4) follows from Eqs. (4.1) and (4.2), applied 

to the strong collision component. The DLGM model replaces explicit computation of 
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P A (t) with a statistical approximation, given here in terms of the Fourier transform 8b 

of the distribution: 

PA,DLG~ro) = l 
(X) 

dt exp(-irot) P A,DLG~t) (4.6) 
0 

To get the expression for PA,DLG~ro), we take the Fourier transform of Eq. (4.4): 
(X) • (X)J exp(-irot) P A(t) dt =- kA J P A(t-·t)exp(-irot) dl 

T T 

Integrating by parts gives: 

[exp(-irot) P A (t)]: + iro J
(X) 

exp(-irot) P A (t) dt 
T 

(X) , , , 

=-kA £ PA(t ) exp(-iOJ(t +-r)) dt 
0 

Here, P A ( T) =k A and the lower limit in the second term on left hand side can be 

changed to zero, since P A(t) =0 fort< 't'. Using Eq. (4.6) for P A(ro), we get 

exp(-iWT) kA + iro P A(ro) =- kA exp(-iWT) P A(ro) 

or, 

P A(ro) = 1/[1 + iro TA exp(iWT)] (4.7) 

In an application of the DLGM, fl, T a and P a(t) are determined by explicit 

trajectory computation of the direct component The DLGM relaxation time, T, must 

be supplied independently. It is closely related to the divergence threshold, D, which 

is most appropriate for modeling the data. The latter quantity must also be supplied 

independent!y. 

We test applicability of the DLGM toT-shaped Ar3 inversion via computations 

of direct component properties, P a(t), fl and Ta. These are used to evaluate TA, 

with Eq. ( 4.5), and P A (t), by inverting Eq. ( 4.3). The DLGM is tested by comparing 

the computed P A (t) with its associated lifetime distribution, 
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t 
0-(t) = kA [1- f dt1 P A(t1)] , (4.8) 

0 

where k A = llr:A is the strong collision statistical rate constant. The model strong 

collision gap distribution of Eq. ( 4.6) is related to its lifetime distribution by 

pA,DLG~t) = ~LG~t--r:) . (4.9) 

A simple visual comparison of computed P A (t) and PA(t) determines the degree to 

which Eq. ( 4.9) is satisfied and P A (t) is consistent with the DLGM 

Figure 6 shows E = 150 K strong collision gap and lifetime distributions, P A (t) 

5and 0-(t), forD= 103, 104 and 10 . The long delay at shorter times, where P A(t) is 

essentially zero, gives rise to a long 0-(t) = kA plateau [see Eq. (4.8)]. If the DLGM 

is to apply, then P A (t) should have a plateau of the same height shifted in time by -r: 

[see Eq. (4.9)]. This requires -r: to equal the gap distribution delay, or shortest gap time. 

It also requires, according to Eq. ( 4.8), -r: to determine the width of the 0-(t) plateau. 

The observed strong collision gap distributions can be roughly fitted with plateaus 

beginning at t = -r:. However, these plateaus are too high to be consistent with the 

DLGM They are greater than k A which is necessarily the height of the lifetime 

distribution. Furthermore, these plateaus are not as wide as corresponding lifetime 

distribution plateaus. 

We understand the failure of the DLGM in this case by recalling that the 

11DLGM is based on observations of ideally chaotic model dynamics . Specifically, the 

model systems on which the DLGM is based are characterized by uniform instability 

and a single global relaxation time. In contrast, T-shaped Ar3 dynamics has 

nonuniform instability. For example, very little divergence accumulates when 

trajectories are in the neck region of the potential well. This is because the potential is 

approximately separable in this region. 
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Nonuniform exponential divergence has been encountered before in studies of 

open stadium billiard systemsSb,ll. In these applications, the DLGM was found to 

account for observed gap distributions if the regions of low instability were somehow 

removed from the stadium phase space. Two types of open stadium were considered. 

For one type of open stadium, the region of low instability was associated with the 

direct component of the decay, and it was removed by the DLGM separation of direct 

-and strong collision components. In this case, the DLGM described the observed gap 

· distribution without adaptation. The other open stadium billiard considered could not 

be treated by a straightforward application of the DLGM, since its region of low 

instability was not associated with direct component trajectories. The treatment of this 

system required adoption of an alternate reaction mechanism, with decay in explicit 

competition with transition into and out of the region of low instability. The region of 

low instability was thereby separated from the remainder of the decaying open stadium 

reactant phase space. The latter region was then subject to a DLGM treatment. The 

gap distribution within the region of low instability was computed explicitly and 

· incorporated into the overall dynamics via an ABM-style "independence of successive 

gap times" assumption. 

The T-shaped Ar inversion region of low instability is encountered by all 3 

trajectories at the beginning and end of every visit to A . This is unlike either of the 

open stadium systems previously treated. However, T -shaped Ar3 inversion can be 

modeled in terms of a simple adaptation of the DLGM. 

The adapted delayed lifetime gap model presented here does not make direct 

use of the mechanism of Eq. (3.7). However, it does explicitly account for transit 

through the neck region. This account is accomplished by the introduction of an 

additional delay time, o. The additional delay represents a typical time spent in the 
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neck region during a single visit to A. We envision the delay as split into two equal 

parts. Half of the delay is associated with the initial time spent in the neck region, 

while the other half represents time spent in the neck just prior to exit from A . The 

essential simplification introduced here is the use of a single time, 6 , to represent neck 

region delay for all strong collision trajectories at a given energy. 

It is very easy to implement the adaptation of the DLGM All that is required is 

a reasonable value for the delay time. To determine such a value, we note that the 

delay is introduced in order that the DLGM might describe the gap distribution which 

results if the delay is subtracted from every gap time. Thus, we examine characteristics 

of such a gap distribution. Clearly, the only effect on the gap distribution which results 

from this effective removal of the neck region is a simple translation, or shift, in time. 

The lifetime distribution experiences both a shift and a renormalization. The latter 

effect is linked to the shift of the mean gap time. Note that a shift of all gap times is 

accompanied by the same shift of the mean gap time. The effect on the lifetime 

distribution is apparent from Eq. ( 4.8). 

The effects of a delay on the gap and lifetime distributions are summarized as 

follows: 

pA(t) = pA(t+6) ' (4.10a) 

has associated mean, TA =-r:A - {J , and 

tsA<t) = <-r:AfiAI pA(t+6) . (4.10b) 

Note that these equations are only valid if there are no gap times smaller than {J • This 

is a reasonable restriction, since {J represents time spent in the neck region by all 

trajectories. If every trajectory spends {J in the neck region of A , then none can have a 

gap time less than {J • The requirement that {J be less than the smallest gap time is not 
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difficult to satisfy here, since we are dealing with the strong collision component for 

which there are no short gap times. 

If PA (t) is to be described by the DLGM, then its plateau value must match that 

of tsA(t). This is the condition which is not met by the observed P A (t) and its 

associated lifetime distribution. From Eq. (4.10), it is easy to see that one can ensure 

coincidence of the shifted gap and lifetime distribution plateaus by choosing 6 such that 

(-r:~JJ ~lat = p A,plat ' (4.11a) 

where P A,plat and ~lat = kA =1/-r:A are the non-matching plateau values of the 

unshifted gap and lifetime distributions, respectively. Specifically, we choose 6 

according to 

6 = -r:A (1 - ~lafPA,plat) 

(4.11b)= -r:A- 1/PA,plat · 

Equations ( 4.10) and ( 4.11) determine shifted gap and lifetime distributions, 

PA (t) and tsA(t), for the three D values already considered. The plateau values 

employed are determined by examination of Fig. 6 . They are provided in Table 2 . 

Applicability of the DLGM to the shifted gap distribution is tested by comparing PA (t) 

to tsA(t--r:), with an appropriate choice for -r:. The results of such tests are shown in 

Fig. 7 . The DLGM -r: values are chosen to give the best possible agreement between 

PA (t) and tsA(t--r:). These and other parameters associated with the data are 

summarized in Table 2 . The figure shows rather good agreement between PA (t) and 

tsA(t--r:), particularly forD= 104 and 105. Other requirements necessary for validity of 

the delayed lifetime gap model are tested as follows: 

(1) The DLGM lifetime distribution has a plateau of width -r:. To see how well -r: 

approximates the width of the observed lifetime distribution plateaus, we have placed 



39 


Table 2 Parameters associated with adapted delayed lifetime gap modeling of 

E = 150 K T-shaped Ar gap distribution. (a) Times are reported here in ps. Note that 3 
-ra = 39.6 ps. 

D 103 104 105 

-rA(ps 44.1 47.7 50.8 

1.42 1.35 1.35-rJ!A,plat 
(b) 

6/ps (c) 12.7 11.9 12.7 

-r/ps (c) 4.2 6.5 8.2 

-r /ps (d) 27.9 28.0 27.9 gap 

;· /ps (d) 28.4 28.4 28.4tfe 

- (e) 26.9 28.5 28.7TDLGMps 

(a) Parameters are defined in the text 

(b) Appropriate plateau values were extracted from Fig. 6 . Note that 

~lat =kA =1/TA. 

(c) 6 is obtained from Eq. (4.11b), then rounded to the the nearest multiple of the time 
resolution, dt . -r is similarly rounded. 

(d) -rgap and -rlife are exponential time constants obtained from least square fits of 

strong collision gap and lifetime distribution log data. The range of times employed in 
the fittings is given by 21 ps < t < 140 ps. 

(e) :rDLGM is the adapted DLGM exponential time constant, obtained from Eq. (4.12). 
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Fig. 7. 	 As in Fig. 6 except for the incorporation of additional delay, o 
[see Eq. (4.10)]. o values employed are provided in Table 2. The 

arrows are placed at t = 2't. In the DLGM, this time determines the 

end of the gap distribution plateau. 
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Fig. 7. 	 As in Fig. 6 except for the_ incorporation of additional delay, o 
[see Eq. (4.10)]. o values employed are provided in Table 2. The 

arrows are placed at t = 2't. In the DLGM, this time determines the 

end of the gap distribution plateau. 
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Fig. 7. 	 As in Fig. 6 except for the incorporation of additional delay, 8 
[see :Eq. (4.10)]. 8 values employed are provided in Table 2. The 

arrows are placed at t = 2't. In the DLGM, this time determines the 

end of the gap distribution plateau. 
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an arrow in each panel of Fig. 7 to show where t = 2-r. Since pA(t) is plotted with a,; 

delay, we look for t =2-r to correspond to the end of the plateau. The agreement is 

best for the larger two divergence thresholds. 

(2) The adapted DLGM is characterized by an asymptotic exponential time 

constant, TDLGM, which is a function ofTA and -r. Specifically, TDLGM is the 

5solution to the following nonlinear equation : 

(4.12) 

To further test applicability of the adapted DLGM, we have fitted the observed gap and 

delayed lifetime distributions with exponential decays in the range 21 ps < t < 140 ps. 

The associated time constants are provided in Table 2 . DLGM gap and lifetime 

distributions are characterized by exponential decay according to ;::DLGM of 

Eq. ( 4.12). By comparing the observed time constants to ;::DLGM , for the three D 

values, we conclude that D =103 is not consistent with the DLGM. However, the 

DLGM is much more successful for the other D values, especially D = 104. 

If there were an a priori means of predicting a divergence threshold, D , on the 

4 5order of 10 or 10 , then the adapted DLGM/ABM would provide a reasonably 

accurate minimally dynamic model ofT-shaped Ar inversion at E =150 K . In3 

Sec. B, directly below, we consider characteristics of the model which enable it to 

describe observed survival probabilities. In particular, we examine how the model is 

capable of describing both oscillatory (E = 150 and 160 K) and non-oscillatory 

(E = 144 K) population decay. 

4.2 Adapted DLGM/ABM Model of Inversion 

The results of Chapter 2 suggest that the T -shaped Ar inversion process might 3 

be reasonably modeled by combining the adapted delayed lifetime gap model and the 
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Fig. 8. As in Fig. 4 except that adapted DLGM/ABM model survival 

probabilities are compared with observed data. A DLGM divergence 
5threshold of D = 10 was used for all three energies. Other 

parameters, 't and ~' were chosen to give the best fit to the observed 

data. 
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Fig. 8. 	 As in Fig. 4 except that adapted DLGM/ABM model survival 

probabilities are compared with observed data. A DLGM divergence 

threshold of D = 105 was used for all three energies. Other 

parameters, 't and ~. were chosen to give the best fit to the observed 

data. 
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Fig. 8. 	 As in Fig. 4 except that adapted DLGM/ABM model survival 

probabilities are compared with observed data. A DLGM divergence 

threshold of D = 105 was used for all three energies. Other 

parameters, 't and o, were chosen to give the best fit to the observed 

data. 
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absorbing barrier method. In this section, we present survival probabilities obtained 

with the proposed model. Figure 8 shows model survival probabilities which 

correspond to the data of Fig. 4 . Clearly, the model satisfactorily reproduces 

characteristics of the observed survival probabilities. 

It is instructive to re-examine the formulae underlying the model survival 

probabilities. In particular, we determine how the model is able to describe both 

oscillatory [Figs. 8(b) and (c)] and non-oscillatory [Fig. 8(a)] survival probabilities. 

First, we consider the Fourier transform of the survival probability within the ABM 

. . SdapproximatiOn, 

CAB~ro) = £
00 

dt exp(-irot) CAB~t)
0 

2= ka{(1- iorra)(1 + Pa(ro)]- 2Pa<m)}/{ro [1 + Pa(ro)]}. (4.13) 

This expression21 follows from Eqs. (2.5a) and (2.11) 

In general, the adapted DWM is inoorporated into Eq. ( 4.13) via substitution of 

the model gap distribution Fourier transfo~22, 

pa..DLG~ro) = 
~pa(ro) + :rAexp(-im6)/[1 + iro(rA-6)exp(iorr)]. (4.14) 

However, we simplify the treatment below by focusing solely on the case of no direct 

component, i.e. ~ = 0 . The intent here is to provide a qualitative understanding of 

model oscillatory and non-oscillatory behavior. Note that it is possible to incorporate 

effects of a direct component into results derived below. This could be achieved in 

terms of formulae derived in Ref. Sd . However, such an extension requires a more 

detailed model of the inversion process than is considered here. 

Eq. (4.14), with~= 0, is substituted into Eq. (4.13). The resulting expression 

is simplified by setting -r:A to 1 . This corresponds to letting -r:A be the unit of time. In 
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addition, the exponentials in -r and 6 are expanded and truncated to first and second 

order, respectively. This determines an approximation of C d 1(0J) which neglects . . moe 

high frequency, or short time scale, contributions. The result is 

2- i 1 1 + p - 2a + i OJ acmodel(OJ) 5! 2w + 2a _____,_""""2--'7'1"2____ , (4.15) 
. (/3/a + i OJ) - (J3 /a - 4)/a 

where a = 2(1 • 6)-r + 62 and J3 = 1 - 26 . 

The first term of Eq. (4.15) is a pole at OJ= 0. It corresponds to the 

equilibrium population of 1/2. Specifically, it determines the long time limit, 

Cmodel(oo) = 1/2. The denominator of the second term is easily factored to reveal two 

other poles of Cmodel(OJ). The Fourier inversion theorem and the Cauchy integral 

formula relate these poles to exponential decay rates (a pole at OJ= OJO corresponds to a 

decay rate of -iOJo). The decay rates are purely real as long as {l-;a- 4 is positive. 

This is the regime of E = 144 K. 

The survival probability of Eq. (4.15) is analogous to the amplitude of a damped 

harmonic oscil~ator23. In thi~ analogy, 2//U. and 2{3/a are identified with a harmonic 

oscillator frequency and a friction coefficient, respectively. Just like the damped 

harmonic oscillator, our model survival probability has "overdamped" and 

2"underdamped" conditions. The latter are determined by the sign of p - 4a. 

The overdamped conditions of (i2 > 4a include the chemical kinetics limit, 

where 6 and -r-+ 0 (and consequently a-+ 0 and f3-+ 1). Specifically, in this case we 

have 

- i 1 1 
cmodel(OJ) - 2w + 2 (2 + lOJ) . (4-16) 

Here, the transient population decays with rate 2 (or 2ka , if the frequency units of 

ka = k A = 1/'t' A are made explicit), and the weight of this exp( -2ka t) decay is 1/2 . 

This is just the kinetics result for simple isomerization. 
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If rJ2 < 4a , then the decay rates have imaginary parts. An imaginary 

component to a decay rate corresponds to an oscillation frequency. This is the case of 

an 11 underdamped" harmonic oscillator. In particular, this case corresponds to the 

observed survival probabilities atE= 150 and 160 K. The transition to underdamped 

oscillations occurs when f =4a . This determines a curve in ( 6,-r) space, depicted in 

Fig. 9 . This curve separates the overdamped region, of small 6 and -r , from the 

underdamped region (the regions are labeled in the figure). Note that if either 6 or-r is 

sufficiently large, then underdamping and the associated oscillatory survival probability 

behavior result. However, sufficiently large 6 and-rare likely to occur together as a 

result of -rA being insufficiently large to produce overdamping. Recall that 6 and -r , as 

they appear in the above formulae, are actually ratios with respect to -rA . Thus, the 

model of Eq. (4.15) illustrates the principle, described above, which associates 

nonstatisticality with a nonseparation of time scales. Specifically, statisticality results 

under mixing conditions if the reaction process time scale, -rA , is sufficiently long 

compared with internal relaxation time scales, 6 and -r . When the time scale 

separation does not occur, nonstatisticality appears and can take the form of an 

oscillatory survival probability. 

In principle, one could determine a lowest energy for which the T -shaped Ar3 

inversion process would first begin to exhibit survival probability oscillations. 

However, a quantitative analysis requires inclusion of direct component effects into the 

model presehted above. It also requires a firmer basis for choosing the relevant model 

parameters, 6 , -r , and D . At present, we are content with a qualitative understanding 

of the characteristics of nonstatisticality. Further investigations will be concerned with 

more quantitative approaches, and with more complex intramolecular dynamical 

processes. 
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0.3 

0.2 
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0.1 

overdamped 

0 
0 0.1 0.2 0.3 0.4 

Fig. 9. Overdamped and underdamped regions in delay time, -rand 8, parameter 

space. The boundary between these regions is depicted as a solid 
2 curve. It is determined by p = 4a.. Note that the axis labels make 

the time unit of 'ta explicit. 
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Conclusion 

Nonstatisticality ofT-shaped Ar3 inversion has been established via trajectory 

computations. It is most pronounced at higher energies where the inversion time scale 

is small compared with internal relaxation times. In particular, higher energies are 

associated with oscillatory survival probabilities. Lower energies, approaching the 

inversion threshold, have larger inversion time scales and nonoscillatory, near statistical 

survival probabilities. 

The observed data have been modeled using a combination of the absorbing 

barrier method and an adaptation of the delayed lifetime gap model. The model 

survival probabilities seem to capture the essential features of the observed survival 

probabilities, specifically the overshoot of the asymptotic population of 1/2 and 

oscillatory behaviour at energy, E =160 K and overshoot but no subsequent oscillations 

at energy, E = 150 KAt energy, E = 144 K, nearly statistical behaviour is reproduced. 

The adapted model incorporates an additional delay (i.e. in addition to the 

DLGM delay, -r) to account for slow exponential divergence in the neck region of the 

T-shaped Ar3 potential well. Analysis of the model employed reveals a damped 

harmonic oscillator analogy. Near-threshold energies correspond to the "overdamped" 

regime of the harmonic oscillator, while higher energies are in the "underdamped" 

regime and naturally exhibit oscillatory survival probabilities. 
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The model employed above required choices for DLGM parameters, D and ,; . 

D is the divergence threshold which defines the strong collision component, and -r is an 

internal relaxation time. These parameters were chosen above to ·give best agreement 

between shifted gap and delayed lifetime distributions. If these P.arameters were 

predictable, then the model could have been implemented in an a priori, minimally 

dynamic fashion. In particular, explicit computation of trajectories only up to a 

divergence of just beyond D would provide sufficient information to implement the 

model. (We must go beyond D , in order to estimate the height of the gap distribution 

5plateau.) However, while some guides to choosing D and T do exist they are not 

sufficiently general, and the goal of a comprehensive a priori statistical theory of 

unimolecular reactions has not been reached. Nevertheless, the model presented here 

provides insight into a source of nonstatistical population decay in isomerization 

reactions, since inversion ofT-shaped Ar3 is a prototype for sim~le isomerization. In 

addition, we have investigated ideas that could lead to a quantitative treatment of the 

' "transition to nonstatisticality" that occurs as energy is increased; 

Future investigations will be concerned with the development of a 

comprehensive statistical theory of unimolecular reactions, and with the exploration of 

more complex unimolecular processes and any associated nonstatistical phenomena. 



REFERENCES 




References and Footnotes: 

1. 	 (a) R. A Marcus and 0. K. Rice, J. Phys. Coli. Chern. 55, 894 (1951) ; S. 

Gladstone, K. J. Laidler, and lL Eyring, The Theory ofRate Proces 

(McGraw-Hill, New York, 1941); P. Pechukas, in Dynamics of Molecular 

Coil is ions, Part B, edited by W. lL Miller (Plenum, New York, 1976); 

(b) For a recent review, see B. J. Berne, M Borkevec, and J. E. Straub, J. Phys. 

Chern 92, 3711 (1988). 

2. 	 W.L Hase, in Dynamics ofMolecular Collisions, Part B, ed. W.lL Miller, 

·(Plenum Press, New York, 1976) for an introduction to statistical theories of 

,unimolecular reactions; D. M Wardlaw and R. A Marcus, Chern. Phys. Lett 

110, 230 (1984); D. G. Trulhar, W. L Hase, and J. T. Hynes, J. Phys. Chern. f)!, 

2664 (1983). 

3. 	 N. DeLeon B. J. Berne, J. Chern. Phys. 75, 3495 (1981); R. J. Wolf W. L Hase, 

ibid. 12, 316 (1980). 

4. 	 M J. Davis, J. Chern. Phys. 83, 1016 (1985); M. J. Davis and S. K. Gray, ibid. 

84, 5389 (1986); S. K. Gray, S. A Rice, and M J. Davis, J. Phys. Chern. 90, 

3470 (1986); S. K. Gray and S. A Rice, J. Chern. Phys. 86, 2020 (1987). 

5. 	 a) R.S. Dumont and P. BcGraw, J. Phys. Chern. 90, 3509 (1986); 

b) R.S. Dumont and P. Brumer, submitted to Chern. Phys. Lett; 

c) R.S. Dumont, J. Chern. Phys. 91, 4679 (1989); 

d) ibid. 6839 .(1989). 

53 




54 


6. 	 1 Hamilton and P. Brumer, J. Chern. Phys. 82, (1985). For applications to 

bimolecular reactions, see J. W. Duff and P. Brumer, J. Chern. Phys. 71, 3895 

(1979), and references therein. 

7. 	 For example, bottleneck analyses are currently based on surface of section 

techniques. The quantitative components of this methodology are so far 

restricted to two degree of freedom systems. Divergence, on the other hand, can 

. be calculated for any conservative, deterministic dynamical system. 

8. . Zero angular momentum Ar , in three dimensions, has been shown to possess 3 

dynamical characteristics typical of chaos. See T.L Beck, D.M Leitner and 

R.S. Berry, J. Chern. Phys. 89, 1681 (1988). 

9. 	 The nonstatisticality of chaotic T-shaped Ar contrasts recent claims of a strict 3 

connection between chaos and statistical unimolecular decay. See W. Bauer 

and G.F. Bertsch, Phys. Rev. Lett. 65, 2213 (1990). 

10. 	 J.E. Straub and B.J. Berne, J. Chern. Phys. 83, 1138 (1985); and J.E. Straub, 

D.A Hsu, and BJ. Berne, J. Phys. Chern. 89, 5188 (1985). 

11. 	 R.S. Dumont, Ph.D. Dissertation University of Toronto (1987). 

12. 	 R.A Aziz and MJ. Slaman, Mol. Phys. 58, 679 (1986). 

13. 	 a) Energy is measured in units of K , via scaling by Boltzmann's constant. 

b) The atomic unit of time consistent with energy units of K is TtiK ; 

1 TtiK = 7.6383 ps . However, times reported here, are given in ps . 

c) Distance is measured in Bohr; 1 Bohr= 0.52918x10-8 em. 

d) The usual atomic unit of mass, the "electron", is modified by the energy 

conversion factor of Hartrees to Kelvin; 1 electron Hartree/K = 173.17 amu. 

14. 	 If the energy hypersurface H(I) = E is metrically decomposable into regular and 

irregular regions, then any given trajectory crossing the barrier will not be able 



55 


to visit some measurable regions of phase space. The motion will then be 

nonergodic. 

15. 	 V. I. Arnold and A Avez, Ergodic Problems ofClassical Mechanics(Benjamin, 

New York, 1968). 

16. 	 R.S. Dumont, J. Comp. Chern. 12, 391 (1991). 

17. 	 D. Chandler, J. Chern. Phys. 68, 2959 (1978). See also Ref. 5b. 

18. 	 Two types of islands occur in phase space, Trapping Islands (I) and Crossing 

Islands (C). Motion on T corresponds to librations in one or another well with 

no crossing of the barrier while, motion on C corresponds to frequent crossing 

of the barrier with no trapping. Presence ofT reduces volume of phase space 

available for the propagation of the trajectories. which shortens the mean gap 

time,T ( = phase space volume/flux across transition state). Presence of 

Crossing Islands also reduces phase space volume but flux across the transition 

state is also reduced and the net effect is to enhance the mean gap time. 

19. 	 I. C. Percival, Proc. R. Soc. Lond. A 413, 131 (1987). 

20. 	 See Ref. 5d and N.G. van Kampen, Stochastic Processes in Physics and 

Chemistry (North-Holland, Amsterdam, 1981). 

21. 	 Integrating by parts of Fourier Transform of both sides of Eq. (2.5a) and using 

Eq. (2.4a), we get: k(c.o) =1 - ic.o C(c.o). Similar treatment on Eq. (2.11) gives: 

F(c.o) = 1 - ic.o "'a k(c.o). Substituting for k( c.o) from above , Eq. (3.6a) for F(c.o) 

and rearranging, we get the desired expression for C(c.o). 

22. 	 This is just the DLGM gap distribution Fourier transform [see Eq. (4.7)], except 

for the additional exp(-ic.oO) factor and the shift of TA by 6 . The latter two 

modifications constitute the Fourier representation of the shift by 6 

transformation. 

http:exp(-ic.oO


56 


23. The amplitude of a damped harmonic oscillator satisfies the following 

differential equation, 

It .
2 
X + ro0 X + y X = 0 . 


Its solution has the Fourier representation, 


x(ro) = £00 

dt exp(-irot) x(t) 
0 

x(O) + (iro + y)x&O)= 2 . ro0 + 1 yro - ro 

x (0) + (iro + y) x(O)= 
((.()+ + i (.())((.()- +i (.()) 

where ro± = y/2 ± i(ro~- 114)112 are interpretable as decay rates. When 

ro~- 114 < 0, the decay rates are real and the oscillator is "overdamped". If 

ro~ - I /4 > 0 , the decay rates have imaginary parts which correspond to 

oscillation frequencies. In this case, the oscillator is said to be "underdamped". 

Comparison with the model survival probability of Eq. ( 4.15) yields the 

identification of model parameters, 2{3/a and 2/..;a,, with damped harmonic 

oscillator parameters, y and ro , respectively. 0 
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Appendix 

Monte Carlo Sampling According to Microcanonical Flux Density 

Gap distributions and flux-flux correlations computed for this article can be 

viewed as averages of delta function phase space densities over microcanonical flux 

density weighted transition states. For example, the first term of the flux-flux 

correlation, in Eq. (2.14), is expressible as 

.a .b .a .a .b I .a 
< J t J >1< J > =< J J- t> < J > 

= < f> a p 

= Jdq dp p\q,p) f(q,p;t) " (Ala) 

where 

(Alb) 

is the normalized microcanonical flux density on Sa [see Eq. (2.7) for ja], while 

b 
f(q,p;t) = .L

00 

6[t- tcrossJ·(q,p)] (Ale)
j=l ' 

is at dependent delta function phase space density. tb .(q,p) is the j th time at
cross,J 

which the trajectory initialized at (q,p) crosses Sb. Note that, in practice, the delta 

functions off are replaced by step functions, and the flux-flux correlation is thereby 

computed as a histogram. The other contributions to flux-flux correlation in Eq. (2.14) 

are similarly expressed. In the case of a gap distribution, the function f consists of only 

the first term of Eq. (Ale). 
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From Eq. (Al), we see that the flux-flux correlation is computed from an 

ensemble of trajectories initialized on Sa, weighted according to the microcanonical 

flux density. This Appendix describes the Monte Carlo method used to carry out the 

necessary sampling of the initial conditions on Sa. 

We treat the case of an n degree of freedom system, making use of simplifying 

features of the Hamiltonian of Eq. (21) and the transition state of Eq. (28). 

H(q,p) = T(p) + V(q) . 

= " + V(q) . (A2)p~

~2m. 

I 

The transition state, sa, is defined by ql =0' as in Eq. (27). The associated flux 

density is given by 

pl
t(q,p) = - B(p1) 6(q1) 6[E- H(q,p)] (A3) 

ml 

* The support of ja is restricted to q =q e (O,q'), the transition state projected 

' 
configuration; q' = (q2, ... ,qn) gives configuration coordinates on Sa, and 6(p1) = 1 or 0 

if p1 > or < 0 respectively. 

With the above Hamiltonian and transition state, the integration in Eq. (Ala) 

over q1 is performed explicitly and the p integration is subject to a special treatment. 

Specifically, 

<f> = 

= Jsdq' [cps(q*/<I>] Jofdp Ps(q*)(p) f(q*,p;t) (A4a) 

where 
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(A4b) 

n 

[ "(n-1)/2 112(n-1)12TI(2 e) m. , s > 0 
r[(n+l)/2)] i=2 1 = (A4c) 

,ssO 

e(q) = E- V(q) (A4d) 

while 

(A4e) 

is the total flux through Sa. Sis the projection of Sa onto q' space. Equation (A4a) 

expresses < f > in terms of average values in the q' and p spaces, S and of respectively. 

Specifically, 

(AS) 

i.e., < f > is expressed as a q' space average, with respect to density qJ(q') =cpe( q *f<P , 
of a p space average, with ·respect to density pe( q *) . 

Although the average over momentum space involves a delta function density, it 

is possible to construct a simple Monte Carlo scheme for sampling momentum because 

of the quadratic momentum dependence of the kinetic energy. The scheme starts by 

sampling the reaction coordinate "mode kinetic energy", e1 = pi/2m , according to its 1 

"marginal distribution", 

2 

lCl(el) r)dpl ~ 6[el-~] J -ldp2... dpn 6[e- T(p)]/<PE 

0 m 2m1 of1 

= (n- 1)(1 - e
1
/e)(n-3)12/(2 e) B(e- s

1
) , (A6) 

where e = e( q *). 



60 


The cumulative probability distribution ~(e1 ), is given by, 

e1 

~(e1) = l de~ lC1(e~)0 
(n-1)/2 

= 1 - (1 - e1/e) (A7) 

1Now a random number, ~,uniformly distributed on (0,1) is choosen and if ~-

denotes the inverse cumulative probability, then e is given by 1 

or, 

-1
e1 = ~ (Q 

= e(q*) [1- (1- Q2/(n-1)] . (A8) 

The remaining mode kinetic energies, e· =p~/2m. (i =2, ... ,n), are then sampled 
1 l l 

identically and independently, except for the constraint that their sum equals the 

* remaining kinetic energy, e(q ) - e This sampling is achieved by generating n- 21 . 

independent random numbers uniformly distributed in (0, 1), {~i}~~~. After sorting 

the random numbers in ascending order (i.e. relabeling them so that ~.+1 > ~·),the 
. l l 

desir~ sampled mode energies are obtained from 

* E. = [e(q ) - e1] (~· - ~· 1) , i = 2, ... ,n , (A9a)
l 1 ~ 

with the convention, ~1 =0 and ~ =1 . Associated momenta are determined at 

random by 

1/2p. =± (2 m.e.)
l 1 1 

, (A9b) 

with:+ and -equally likely. 

In the case ofT-shaped Ar3 , the q' sampling is trivial. Sis a simple one 

dimensional interval. However, in cases where n > 2 , S can be complicated and 

difficult to sample according to q\q'). In such more general cases, the q' space average 

value is best evaluated with a q' space Metropolis random walk. 
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