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Abstract 


In this thesis, we investigate the possibility that a purely electronic mechanism is 

the cause of superconductivity in C60 materials. Several computational methods are 

adopted to calculate the pair-binding energy. They are perturbation theory, exact 

diagonalization, Gutzwiller projection, and auxiliary field Monte Carlo. Results from 

these different methods are compared with each other both in a C60 molecule and in 

other smaller molecules in order to test conclusions about whether or not a purely 

electronic mechanism can lead to an attractive interactions between electrons in C60 

molecules. 

Besides this test of the superconductivity mechanism, we also explain in detail 

how to apply these different computational methods to C60 for the specific geometry 

of C60 . Clearly illustrating these computational methods is the second goal of this 

thesis. 

Our final conclusion is that for both small and large Hubbard interaction U, 

there is pair binding in a single C60 molecule. For intermediate Hubbard interaction 

strength, there is no clear evidence for pair binding for the range of temperatures we 

explored. We suggest that the truncation of the Coulomb interaction, which is implicit 

in the Hubbard Hamiltonian, may suppress pair-binding of electrons in C60 and that 

it may be necessary to consider a model that includes the long range character of 

Coulomb interaction. This is a subject for further study. 
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Chapter 1 

Geometry of C6o Molecule 

C60 (Buckminsterfullerene), discovered [1] in 1985 by three Nobel laureates R.F. 

Curl, H.W. Kroto and R.E. Smalley, is regarded as the most symmetrical and beautiful 

molecule in the world. It was named after the famous architect Buckminster Fuller, 

because its structure resembles that of a dome built by the architect for the 1967 

Expo in Montreal. 

Figure 1.1: C60 molecule geometry. 

The molecule is a closed cage, consisting of 12 pentagons and 20 hexagons. It has 
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the symmetry of the icosahedral point group with 120 symmetry operations, and all 

the 60 carbon atoms are equivalent in the sense that the symmetry operations can 

always bring one atom to the other. See Fig. 1.1 for a picture of the molecule. 

X-ray analysis shows the diameter of the molecule to be approximately 7 A. Two 

kinds of bond lengths are present in C60 , the longer ones between a pentagon and a 

hexagon (single bonds, 1.46A) and the shorter ones between two hexagons (double 

bonds, 1.40A). When the molecules condense into a solid of fcc lattice (lattice con

stant 14A), the shortest separation between two atoms on different molecules is about 

3.1.A. There are two inequivalent molecule orientations allowed in pure C60 at low 

temperatures and they have a ratio of about 5 : 1 [2]. Most theoretical calculations 

assume a unidirection for all the molecules while Gelfand et al. [3, 4, 5] did consider 

orientation disorder. In this thesis, we will not touch this fcc lattice, but confine our 

calculations on a single molecule. We find it useful to list the coordinate, the nearest 

neighbor and next nearest neighbor data of the 60 atoms in a C60 molecule, which 

will be used for subsequent numerical calculations. The data are in Appendix M. 



Chapter 2 

Superconductivity and Pair 

Binding 

With the development of techniques for producing larger and larger C60 samples 

during the late 1980's, there came the discovery of superconductivity in electron 

doped C60 [6, 7] in 1991. C60 doped with potassium has a superconductivity transition 

temperature of 18K in bulk material. Higher transition temperatures were found for 

C60 doped with rubidium (28K) and later 33K for RbCs2C6o and 40K for Cs3C60 under 

pressure. Since then, more and more research has been done, both experimentally and 

theoretically [10], on C60 related materials. Despite the great effort devoted to it, the 

mechanism of the superconductivity in C60 related materials is still unclear. Whether 

it is a phonon mediated phenomenon, a purely electronic result or the combination of 

these two is still a subject of debate (10]. In this thesis, we carry out a study of what 

on earth causes superconductivity in this interesting material, and place our emphasis 

on how the pair binding energy is formed in C60 , which is, as in the BCS theory of 

conventional superconductors, thought to lead to superconductivity. Calculations 

here are based on the Hubbard model and hence on a purely electronic mechanism. 

The pair binding energy, in the case of free C60 molecules, is defined as 

Eb = (E(60) + E(62))- 2E(61) (2.1) 
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for electron doping or 

Eb = (E(60) + E(58))- 2E(59) (2.2) 

for hole doping. The numbers in the brackets refer to the electron numbers in a 

C60 molecule. Our criterion for the occurance of attractive interaction between elec

trons is that Eb is negative. This main quantity that we are going to calculate in 

the subsequent chapters has appeared in several papers. For example, Fye et al. 

[12] calculated hole binding energies in one-dimensional Hubbard chains using Bethe 

ansatz [13]. Fano et al. [14] calculated hole binding energies of a two-dimensional 

Hubbard model on a 4 x 4 cluster by exact diagonalization; and White et al. [15] 

exactly diagonalized the Hubbard model on small molecules, where both nearest and 

next nearest neighbor Coulomb interactions were taken into account. Especially, the 

paper of White et al. aimed at supporting a purely electronic mechanism of super

conductivity in doped C60 , which had been previously proposed by Kivelson et al. 

[16, 17, 18] by perturbation calculations, but White et al. did not deal with C60 

directly because it has too many sites (total 60) for exact diagonalization. 

In our article, we will treat the C60 molecule directly and calculate the pair binding 

energy for either electrons or holes with various methods. Results from different 

methods are compared with each other in order to draw a sound conclusion concerning 

whether or not a purely electronic mechanism can induce pairing interactions between 

electrons or holes. 

Calculations are also done on other molecules smaller than C60 • These smaller 

molecules include hydrogen, tetrahedron, cube, truncated tetrahedron, etc. Calcula

tions on these molecules can, on the one hand, check the validity of the results from 

C60 , and on the other hand, provide us with more information on some aspects of 

electronic interactions, such as the spin-spin correlation energies. Our discussions 

will also include the concept of mesocale physics [19], which is believed to play an 

important role in both high temperature superconductors and other more complex 

systems. 



Chapter 3 

Model 

In order to understand the physics underlying a phenomenon, models must be 

built. They must have the potential to contain the mechanism that causes the phe

nonmenon, and they should also be free of other unnecessary parameters to simplify 

calculations. The model that is most widely used in the study of high Tc supercon

ductivity and also in other strongly correlated systems is the Hubbard model, which is 

believed by most people to capture the main physics. See, for example, the discussion 

of Anderson in [20). 

The Hubbard model is usually written as 

H = -t L (ct.c;u + h.c.) + uL.: nitni.}- f.-£ L(nit + ni.J_), (3.1) 
<ij>,u 

where, Ci,u(ctu) annihilates (creates) an electron on site i with spin u; niu is the 

electron number on lattice site i with spin u; t is the hopping integral between nearest 

sites, f.-£ is the chemical potential and U is the Coulomb interaction between two 

electrons on the same lattice site; h.c. means Hermitian conjugate. 

Some basic properties of the Hubbard Hamiltonian can be found easily: First, it 

conserves the total number of particles in the system. Second, it conserves the total 

spin at the system. Third, with a bit of work, one can show that at half filling, there 

is one additional symmetry in the Hamiltonian, i.e., particle-hole symmetry. 

The difficulty in solving this model Eq.(3.1) results from the on-site Coulomb 

interaction term, i.e., U L:i nitni.J-· Generally, an analytic solution is not possible 
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at the level of mean field theory or for a one dimensional system, where an exact 

analytic solution is possible [13]. As a result, a lot of approximation schemes have 

been proposed to obtain at least some properties of the Hamiltonian. For example, 

the perturbation calculation in the small U case, Gutzwiller projection in the large 

U case, exact diagonalization of a system with a small number of lattice sites or 

Monte Carlo simulations. In this thesis, we will apply these techniques to study the 

pair-binding energy in C60 and other small or medium-sized molecules. We also make 

some comments on the strength and weakness of each of these techniques. For more 

introduction and discussion of the Hubbard model, we would refer interested readers 

to the book edited by M. Rasetti [21], where many computational approaches are 

reviewed. 

The the Hubbard model neglects the long-range Coulomb interaction between 

electrons. There may be some justifications for this in C60 crystals [16], based on 

screening of the long-range Coulomb interaction by nearby electron clouds. 

In the next chapter we will present detailed calculations for a single C60 molecule 

based on the Hubbard model. A large portion of the thesis is devoted to the dis

cussion of various computational techniques used in model Hamiltonian calculations. 

For every computational method, we will briefly explain the main steps in these tech

niques, which will serve as a natural preparation for their application to C60 . Some 

minor steps, which might not be trivial to obtain, are put in the appendices. Thus 

one goal of this thesis is to explain things as clearly as possible in a pedagogical way. 



Chapter 4 

Perturbation Calculation 

At the first attack on the Hubbard Hamiltonian Eq.(3.1), one might think of doing 

perturbation, regarding the on-site Coulomb interaction U as a small or not too large 

parameter compared to the energy band width in the single-electron picture. For 

instance, in a 2D square lattice, as long as U is less than Bt (the band width in 

single-electron picture), we will suppose that the on-site Coulomb interaction does 

not change the single-electron energy bands too much, and hence perturbation theory 

applies. 

The calculation goes as follows: First, one neglects the U term, diagonalizing the 

Hamiltonian trivially for specific lattice configurations, and gets a set of energy bands 

and single-electron wave functions. Second, one fixes the chemical potential J-t, i.e., 

the total number of particles in the system, and fills each energy band according 

to the Pauli principle. Third, one turns on the on-site interaction, and uses the 

wave functions obtained previously to calculate perturbatively (for the description 

of second order degenerate perturbation theory, see textbook [11]) the change of the 

energy bands and wave functions. 

Returning to the problem of C60 , we find that the perturbation calculation based 

on the above scheme has been done by Chakravarty, Gelfand and Kivelson [16]. To 

make this thesis self-contained, we redo the perturbation, and explain the main re

sults. 

As we have mentioned, the symmetry of the C60 molecule is that of the icosahe

.7 
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dral group, and is nearly a spherical one. In the half-filled case, 60 electrons move 

independently within the big "1r" molecular orbital that is formed by the 60 Pz atomic 

orbitals on the 60 carbon atoms. There are two kinds of hopping integrals in C60 : one 

is the hopping between two pentagons t', and the other is along the side of pentagons 

t. They have a ratio oft' jt ~ 1.2. An exact diagonalization of the non-interacting 

Hamiltonian gives 60 energy bands, and for the half- filled case, the 30 bands with 

the lowest energies are occupied. The lowest unoccupied molecular orbitals (LUMO) 

are 3-fold degenerate. The highest occupied molecular orbitals (HOMO) are 5-fold 

degenerate. The energy gap between them is 1.04t according to this single-electron 

picture. The detailed energy band information is drawn in Fig. 4.1. 

Molecular Orbitals of <60 

3 I = tg_ 	 &1 

Yg2
Iu 

= t2\l_ hg 

C'....., 

I 

-1 

-2 

-3 

l I 

tlg 
t1u 

0

++ ++ ++ ++ ++ Iu 
I- ++ ++ ++ ++ ++ hg 

++ ++ ++ ++ Yg 

++ ++ ++ ++ &1 
t2u++ ++ 	 ++-

hg++ ++ ++ ++ ++ 

t1u++ ++ 	 ++-
++ llg 

Figure 4.1: Ruckel energy level diagram for neutral C60 molecule. The lowest 30 levels 
are occupied. 
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With the above information from the non-interacting Hamiltonian, we can proceed 

to include the on-site U term, and do a perturbation calculation to second order. 

The whole task in the perturbation calculation, is to add up all the intermediate 

states that can be accessed through the on-site perturbation U term. In second order 

perturbation theory, we need to consider two possibilities: one is that two electrons 

are excited to higher energy states first, then destroyed, and returned to original state 

or another lower energy state (two-particle excitation case); the other is that only one 

electron is excited to a higher energy state, followed by being destroyed again and 

returning to its original state or another degenerate state, while the other electron is 

destroyed in a band, and appears immediately in the same band again (one-particle 

excitation case). These two electronic processes are illustrated in Fig. 4.2. 

I I 	 I 
I 

/ 

_,r-+- -~-~ 
\ .,7'--,-I 

II II 
I 

I
I 

' 	 / 

I I ' ' '' ~++,.I "',_+ t" 
I 

' '+ 
/ 
~-, 

I 

A. Two-particle excitation B. One-particle excitation 

Figure 4.2: Two kinds of electronic excitation in perturbation calculations. The solid 
short lines are electrons in initial states, and the dashed lines are those in excited 
states. 

For C60 molecules that are doped with electrons or holes, the perturbation calcu

lation is basically the same, except that these calculations are more complicated and 

tedious in view of the degeneracy of the non-interacting wavefunctions. There are 

two ways to classify the degenerate wavefunctions. One is based on the symmetry of 

the C60 molecule. The other is based on the symmetry of the Hamiltonian under spin 

rotation. We first list Kivelson et al's results [16] in Table 4.1. Then we divide these 

wavefunctions into total spin Sz = 0 and Sz = 1 sectors (with two electrons or holes 

doping) according to the rotational symmetry of the Hamiltonian. 
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EBo(L = 0, S = 0) -100.80069+ 15(U/t)- 0.74785(U/t):l 
E61 (L = 1, S = 1/2) -100.80069 + 0.32166 + 15.5(U/t) - 0.73772(U /t)2 
E62(L = O,S = 0) -100.80069 + 0.32166 X 2 + 16.05(U/t)- 0.74237(U/t)2 

E52 ( L = 1, S = 1) -100.80069 + 0.32166 X 2 + 16(U /t) - 0.72557(U/t) 2 

E62(L = 2, S = 0) -100.80069 + 0.32166 X 2 + 16.02(U /t) - 0.73128(U/t):l 

E59 -100.08003 + 14.5(U/t)- 0.74535(U/t):l 
E62(Sz = 0) -100.80069 + 0.32166 X 2 + 16.01(U/t) -1.48340(U/t)2 

E62(Sz = 1) -100.80069 + 0.32166 X 2 + 16.00(U/t)- 0.76447(U/t) 2 

E5s(Sz = 0) -99.35938 + 13.98748(U/t)- 0.78675(U/t)2 

E5s(Sz = 1) -99.35938 + 14(U /t) - 0.75604(U/t) 2 

Table 4.1: Total electronic energies of a C60 molecule, either neutral, electron-doped 
or hole-doped (in units oft). The first 5 lines are taken from Kivelson et al's paper 
[16]. In the two electrons (holes) doping case, the last four energies are from the 
calculation with the classification of unperturbed wavefunctions based on the spin 
rotation symmetry of the Hamiltonian. 
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Figure 4.3: Pair-binding energy from perturbation calculation according to the 
molecule geometry of C60 • The data are taken from Kivelson et al's paper [16]. 



l1 

I I I I 

o~~-~-~--~--~================~I -  -.. ..... 
..... , ...........
.:!:::.....-. .... .... .... -
 .... ....-~ -0.2 r .... .... .... ....('.1 ....I .... -
0 

\0
i:tr -0.4 
+-

.... .... .... 
' ' ' ' 

-

('.1 

~ 
l:il 
.......... -0.61

Sz=O 
Sz=l 

' ' ' ' ' ' ' ' ' 
-

' ' ' I 

2 
I 
4 

I 

6 
I 
8 

' ' 10 
U/t 

o,-----~--~-~~==~------------------1-........ , 
...... 
.:!::: ............................ 

~ -0.01 .... 
0'1 
V) 

........ 
.... 

i:tr 
('.1 

,.-!...-0.02 
00 
V)...._, 
~ 6' -0.03 Sz=O 
~ Sz=l 
.......... 

-0.04 

... ... ... .... .... ... .... 
' ... 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 
2 4 6 8 10 

U/t 

Figure 4.4: Pair-binding energy from perturbation calculation in electron- and hole
doped C60 according to the unperturbed wavefunctions classified by the spin rotation 
symmetry of the Hamiltonian. 



12 

From Fig. 4.3, we find that the pair binding does occur. For the electron dop

ing case, the attractive interaction between electrons appears for an intermediate U 

value (Usc ~ 3.4t). The transition between spin singlet and spin triplet is at about 

UFM = 3t, and this has been discussed by Kivelson in terms of quantum transition be

tween ferromagnetism and antiferromagnetism. In Fig. 4.4, where the unperturbed 

wavefunctions are divided into total spin Sz = 0 and Sz = 1 sectors, we see that 

Sz = 0 sector always has lower energy than the Sz = 1 sector. 

Perturbation calculations on other smaller molecules are also performed, but we 

will not list them until in a later chapter where we discuss and compare different 

calculational approaches. 



Chapter 5 

Exact Diagonalization 

As a way of approaching the solution of the Hubbard model, exact diagonalization 

has been applied to some small molecules or small clusters of atoms. The calculation 

begins with a counting of the number of states in the system. At every lattice site in 

the system, there are four kinds of occupation possibilities: doubly occupied, occupied 

by a spin-up electron, occupied by a spin-down electron and empty. Thus, the total 

number of basis wavefunctions (dimension of the Hilbert space) will be 4n, where n 

is the number of lattice sites in the system. Although we can reduce some of these 

basis wavefunctions by applying some conservation laws, such as the total number 

of electrons in the system, and divide these wavefunctions into different total spin 

sectors, such as a sector with total spin Bz = 0 or a sector with total spin Bz = ~' 
we still have a huge number of basis wavefunctions to deal with, whenever n > 8. 

Some considerations on the geometrical symmetry of the lattice system can further 

block diagonalize the Hubbard Hamiltonian, and reduce the dimension of the matrix, 

as did by Dagotto et al. (22]. But we do not plan to incorporate these symmetry 

considerations here, and are satisfied with the maximum number of lattice sites we 

can reach, as these further considerations do not significantly reduce the computation 

tasks. The matrix formed by these basis wavefunctions will need a large amount of 

time to diagonalize even if we employ some special techniques that are to be discussed 

in the next sections, such as the Lanczos algorithm and Davidson algorithm. Before 

we do this, we first need to explain how to write down the matrix elements in the 

13 
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matrix representation of the Hubbard Hamiltonian. 

5.1 Matrix Representation of Hamiltonian 

In the Configuration Interaction ( CI) study of chemical bonding in Chemistry, 

one writes down the basis wavefunctions in a Slater determinant, including all pos

sible permutations of electrons and atomic orbitals. However, we will not work with 

this representation but with the second quantization representation, which is more 

convenient for a model Hamiltonian calculations. 

The antisymmetric property of the basis wavefunctions (Slater determinants) will 

be reflected in the anticommutation relation of the electronic creation and annihila

tion operators. To take into account this anticommutation nature, we need to define 

a definite ordering of lattice sites in the second quantization picture. We do this in 

the following way: (1) Every possible wavefunction is created by the application of 

an electronic creation operator on the vacuum. (2) The order of action of creation 

operators on the vacumm is from left to right according to the increase of the labelled 

site numbers. (3) The spin-up electron creation operator is placed to the left of the 

spin-down electron creation operator of the same site, if the site is doubly occupied. 

With this definition, the ambiguity of the second quantized wavefunctions are elimi

nated. We also employ some symbols to describe different occupation information at 

each site. For example, a doubly occupied site will be denoted by 2, a site occupied by 

one spin-up electron will be denoted by 1, a site occupied by one spin-down electron 

will be denoted by -1, and an empty site will be represented by 0. To summarize the 

above discussions, we give an example of a sample wavefunction in anN-site system. 

(5.1) 

where IV> represents the vacumm. 

Having written down the basis wavefunctions in second quantization form, we 

need to calculate matrix elements of the Hamiltonian with respect to these basis 

wavefunctions. Suppose Ia > and 1,8 > are two of the wavefunctions, and we want 
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to calculate < aiHI,B >, where H is the Hubbard Hamiltonian Eq.(3.1). When 

Ia >= I,B >,then the value of< aiHI,B >is just the total number of doubly occupied 

sites multiplied by the on-site Coulomb energy U. When Ia >:/= I,B >, then the non

zero contribution to this matrix element comes from the kinetic energy term, and 

because of the bilinear nature of the kinetic energy operator, the difference between 

Ia > and I,B > can only be in two sites, i and j. Different combinations of Ia > and 

I,B > are listed in Table 5.1. 

phase Ia> 1.8 > phase Ia> I.B > 
+1 120 > 11-1 > -1 120 > l-11 > 
+1 102 > 11-1 > -1 102 > l-11 > 
+1 110 > IOl > -1 121 > 112 > 
+1 l-10 > 10-1 > -1 12-1 > l-12 > 

Table 5.1: Phase factors in the calculation of Hamiltonian matrix elements. In the 
representation of the basis wavefunctions, we include only the occupation information 
of sites i and j. 

In Table 5.1, we consider only the two different sites i and j, and the same oc

cupation information in other sites are not listed. To illustrate the different phase 

factors in the table, we discuss two combinations of basis wavefunctions below. 

For Ia >= 120 > and I,B >= 11- 1 >,the only non-zero contribution comes from 

ctCj.J. and its hermitian conjugate in the kinetic energy term. And 

< 02lctCj.j.C~c_tiV > 


- < 02lctc~IV > 

< 02lc~ct1V > 

< 02120 > 

1. (5.2) 

This gives the extra phase factor to be considered during the matrix element calcu
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lation. Similarly, for Ia >= 120 > and I.B >= 1- 11 >, we have 

< 02jc~citl - 11 > < 02ic~citc4c}tiV > 

- - < 02lc~c41V > 

- < 02120 > 

-1. (5.3) 

Certainly, besides these phase factors, we need to take into account the extra phase 

factors coming from the passing of the jth site operator, e.g. Cjt in the above equation 

(for j > i), through the operators for sites between site i and j in the wavefunction 

I.B >. 

After the above calculations, we obtain a large sparse matrix to diagonalize. Dense 

techniques from the standard lapack package work well for a small or medium size 

matrix (typically for matrix dimensions less than 500), but for a large matrix, the 

dense technique is not efficient. We then resort to Lanczos or Davidson algorithms, 

designed for obtaining several extremal eigenvalues efficiently. These techniques will 

be discussed below. 

5.2 Lanczos Algorithm 

Lanczos theory was, as the name suggests, proposed by Lanczos in 1950 [23] and 

it was not applied to any practical calculations until the development of the computer 

algorithm. The Lanczos algorithm and also the Davidson algorithm to be discussed 

in the next section are useful when only a few extreme eigenvalues of a sparse matrix 

are needed. A good introduction of the Lanczos algorithm can be found in Golub 

and van Loan's book [24], so we will introduce only briefly how this algorithm works 

and place the emphasis on the physical ideas behind the theory. 
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5.2.1 Rayleigh-Ritz Variational Principle 

Suppose we have a Hamiltonian H written in N x N matrix form and an N

dimensional wave vector il, we will have 

.A <.A= <il,Hil> (5.4)
1- < ........ > ' 
u,u 

where, .A1 is the ground state energy of the Hamiltonian or the minimum eigenvalue 

of the Hamiltonian matrix and .A is the expectation value of H with respect to an 

arbitrary wave vector il. 

This is an interesting point, because this means a diagonalization problem can be 

transformed into a minimization problem, provided that we only need several extreme 

eigenvalues. 

5.2.2 Iterative Method 

The Lanczos algorithm is actually an iterative method. It starts with a random 

wave vector, and through iteration a better and better eigenvector can be achieved 

together with the lowest or highest eigenvalues. The rules for the iteration calculation 

can be found in the following way. 

We have a set of orthonormal vectors {Qi}, with i = 1, 2, · · · ,j, and the lh approxi

mate eigenvector il; is spanned by these orthonormal vectors, i.e., il; Espace{ ih, · · · ,if;} 
and 

(5.5) 

The purpose of next iteration is to find a lower eigenvalue of the Hamiltonian. Since 

.A(x) decreases most rapidly in the direction of - \7 .A(x), as can be seen from the 

expansion of the function 

.A(x) = .A(xo) + \lA(xo) · (x- xo). (5.6) 

So, we require that il; E {- \J .A(ilj-1)}. On the other hand, we have 

(5.7) 
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It is clear now that, in order to get a better estimate of the lowest eigenvalue, we 

must have ili E span{ilj_1 , Hilj_1}. And by induction, we finally arrive at 

span{q1, • · • , qj} = span{qj_, Hqj_, · · · , Hi-1qj_}. (5.8) 

The right hand side of the above equation is called Krylov subspace in Mathematics 

and the remaining task is to find a way to calculate an orthonormal basis for this 

Krylov subspace, such as the set { qj_, · · · qj}. 

5.2.3 Algorithm 

The orthonormalization of the Krylov subspace can be achieved through the fol

lowing tridiagonalization process. The proof of the validity is not given here but 

from the result of the tridiagonalization process, we will find that this process really 

gives us a set of orthonormal bases for the Krylov subspace. Here we outline such a 

tridiagonalization process. 

As H is a real, symmetric matrix, there exists an orthogonal real matrix Q such 

that 

(5.9) 


where D(>..1, · · · , >..N) is a diagonal matrix, and QT denotes the transpose of Q (from 

Schur decomposition theorem in matrix theory). But our algorithm does not directly 

compute the diagonal matrix D, instead it first computes a partial transformation of 

the matrix H using a tridiagonal matrix T 

(5.10) 


with 
a1 f3z 0 

f3z az {33 0 

0 {33 

T= 0 0 (5.11) 

f3J-1 0 

0 f3J-1 C¥J-1 f3J 

0 f3J C¥J 
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and with 

Q = [qj_, ... 'Q:,], (5.12) 

where the vectors i/j are column vectors, and where the number of iterations J is 

much smaller than the dimensionality of the original Hamiltonian H, J << N. Then, 

the algorithm finds the diagonal decomposition ofT 

T= STDS. (5.13) 

The elements of the diagonal matrix D are an estimate of the eigenvalues of H, 

and an estimate of the eigenvectors are given by Y = [y1 , • • • , YJ], with 

Y=QS. (5.14) 

Eq.(5.10) can be written as 

HQ=QT, (5.15) 

or 

(5.16) 


for j = 1, · · · , J. The orthogonality of the vectors i/j implies that 

(5.17) 

Furthermore, if we set 

(5.18) 

and it is non-zero, then 
~ f; (5.19)%+1 = (3j' 

where (3j = ±J< f; · f; >. The iterative application of these equations, with a 

randomly chosen starting vector qj_, defines the Lanczos iterative procedure. The 

total number of iterations J determines the accuracy of the computation. As this 

number increases, we can get not only more precise lowest or highest eigenvalues but 

also more eigenvalues different from the lowest or highest ones. We shall not discuss 

this in detail. 

http:Eq.(5.10
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Figure 5.1: Ground state energy of a cube molecule from Lanczos algorithm. 

5.2.4 Results and Discussion 

As has been observed by other people [25, 26), state-of-the-art computer tech

nology nowadays can perform the exact diagonalization of about 12 lattice sites. 

Although, some further progress can be made by some techniques, the total number 

of lattice sites that can be exactly diagonalized is still very limited. In our calcula

tions, we apply the Lanczos technique to a cube molecule only, which has 8 lattice 

sites. The result is shown in Fig. 5.1. 

Different curves in Fig. 5.1 represent different total spin sectors, Sz = 0, Sz = fi, 
etc. From the figure, and also compared with results from other calculations, for 

instance, the Davidson algorithm that is discussed below, we find that the Lanczos 

result is rather unstable. In view of this, we will study another similar algorithm that 

is built on the Lanczos algorithm but is more stable, fast, and accurate. 
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5.3 	 Davidson Algorithm 

The theory of the Davidson algorithm can be found in [27], and it was proposed 

originally for the large-scale configuration interaction ( CI) calculations of electronic 

wavefunctions. The algorithm is still of great interest now, but here we only briefly 

describe how to do the matrix diagonalization with this kind of algorithm. 

b
1. If the kth eigenvalue is wanted, select a zeroth-order orthonormal subspace b1, 

2 , • • ·, b1 (l ~ k) spanning the dominant components of the first k eigenvectors. 

Form and save Hb1 , Hb2 , • • ·, Hb1 and (bi, Hbi)=Hij, 1 ::; i::; j ::; l. Diagonalize 

fi using the dense technique for small matrices. Select the kth eigenvalue A~) 
and the corresponding eigenvector a~>. 

D .... "'M (M) (Hb.... ) "'M (M) \ (M}b.... H M . th d" . f HA2. 	 rorm QM = L..,i=l ai,k i - L..,i=l ai,k Ak i· ere IS e 1menswn o 

used to find aand A. 

3. 	 Form IIQ'ull and check convergence by the formula, A~M) -IIQ'ull::; Ak::; A~M). 

4. 	 Form 6,(M+l) = (A~M}- Hu)- 1QI,M, I= 1, · · · , N. 


.... M .... J!r 

5. 	 Form d(M+l) = [Tii=l (1 - bibi )]~(M+l}· 

6. 	 Form b(M+l} = d(M+l}/lld(M+l)ll· 

7. 	 Form Hb(M+l)· 

9. 	 Diagonalize fi and return to step 2 with a~M+l) and At+l). 

Again we confine ourselves in the cube molecule in half-filling and divide the spin 

configurations into different total Sz spin sectors. The result is put in Fig. 5.2. Note 

in this figure, we have compared Davidson result with the dense technique ( "dsyev" 

subroutine in lapack) ones on some points, denoted by scatter points. They agree very 

well. When we extend the calculation to more lattice sites, for example the truncated 

tetrahedron (12 lattice sites), the same problem as the Lanczos technique is met: 
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Figure 5.2: Ground state energy of a cube molecule from Davidson algorithm. 

the memory of the computer is not big enough to accommodate such a big matrix 

(the maximum matrix is 853776 x 853776 for half-filling) diagonalization even when a 

supercomputer is resorted to. We rearrange the program and take out 500 rows of the 

matrix every time for calculation, which is roughly the maximum number of rows the 

computer memory can accommodate. But this reduced demand on computer memory 

results in the price of longer computer time in calculation. Despite this problem, we 

find that Davidson algorithm is more stable, accurate, and faster than the Lanczos 

one. 



Chapter 6 

t - J Model and Gutzwiller 

Projection 

As can be seen from its name, Gutzwiller projection was first proposed by Gutzwiller 

in one of his articles [28] on the Hubbard model. The projection is done in the limit 

of large U (again compared with the band width) and follows the idea that because of 

this large on-site Coulomb interaction, two electrons will not occupy the same lattice 

site. The projection is then followed by writing down a trial wavefunction, which 

must satisfy the condition that there are no doubly occupied sites in the lattice. 

Due to the constraints of his time, Gutzwiller could not envision a practical appli

cation of his scheme, though he did obtain some approximate formulae analytically, 

which, we think, are not sufficient to understand many properties of the system. It 

was perhaps first pointed out by Horsch and Kaplan [29, 30] that when combined 

with the Monte Oarlo technique, the energy of the system can be evaluated with 

respect to this kind of projected trial wavefunctions. Later Zhang et. al. [31] showed, 

through renormalized mean field theory, that in a two-dimensional lattice different 

trial wavefunctions are possible depending on different decoupling schemes and the 

Gutzwiller wavefunction (projected from a Fermi sea) is just one choice of such trial 

wavefunctions. Other trial wavefunctions that have been used include IRVB > (Res

onating Valence Bond) wavefunctions first proposed by Anderson [32] and jSDW > 
(Spin Density Wave) wavefunctions. These two trial wavefunctions will be discussed 
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in Appendix C. Here we apply only the projected Fermi sea to C6o calculations; we 

reserve IRV B > and ISDW > for possible future studies. 

In order to apply Gutzwiller projection and Monte Carlo simulation to the C6o 

problem, we need to first introduce what the projection actually means and the usual 

process of applying them. There is an excellent introduction of this kind of Gutzwiller 

calculation in Gros's paper [33, 34], and readers are referred to these papers for more 

applications of Gutzwiller projection. 

6.1 Trial Wavefunction 

The trial wavefunction that we are going to apply to C60 is a projected Fermi sea 

(6.1) 

with 
(6.2) 

Here Pd=O is projection operator which projects the wavefunction into the Hilbert 

space without double occupancy, and 

(6.3) 


is the Slater determinant of the Hartree-Fock-type ground state. The (i, j)th element 

of the determinants is written as 

(6.4) 


where, ki is understood as the ith irreducible representation of the icosahedral group, 

and 'Gu refers to the position of the lh lattice site with a spin a electron on it. 

The value of this matrix element is obtained when we diagonalize the non-interacting 

Hamiltonian for the C6o molecule. 

In Gutzwiller's original formulation, the projection operator is 

(6.5) 
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where g is a variational parameter that can be tuned for different physical situa

tions. For example, when g = 1, there is no projection acting on the Hartree-Fock 

wavefunction, and we return to the ordinary Hartree-Fock theory. This would be the 

situation when the on-site interaction U is small. Another example would be g = 0, 

which eliminates all the doubly-occupied sites from the variational wavefunction and 

corresponds to an extremely large U case. Thus, different values of the parameter 

g E [0, 1] can be used in the calculation to find the lowest energy of the system and 

hence the best trial wave function. However, in this thesis, we will not include the 

parameter g in the calculation, because we will apply the Gutzwiller projection to the 

large U case, and hence any double occupancy in the system will be very expensive 

in energy. In the following discussion, we set g = 0. 

6.2 t- J Model 

In the l~rge U limit, some simplification of the Hubbard Hamiltonian Eq.(3.1) 

can be made through a unitary transformation, which is capable of eliminating the 

high energy processes (which include virtual hopping between doubly occupied sites 

and empty sites) and retaining the low energy processes (which include hoppings that 

do not change the total number of doubly occupied sites in the system). The final 

effective Hamiltonian obtained through the unitary transformation will be expressed 

in power series of t/U. In our calculation, we will keep terms to second order in t/U, 

because we recognize that the higher order terms describe processes in which more 

than 2 lattice sites are doubly occupied and hence are negligible. 

We present detailed calculation of the unitary transformation in Appexdix A and 

list only main results here. The effective Hamiltonian that eliminates the high energy 

processes is 

Heff 	 eiS He-is (6.6) 

H + i[S, H] + i2 /2[8, [S, H]] + · · · , (6.7) 

where, H 	is the Hubbard Hamiltonian from Eq.(3.1). Up to second order in t/U, 
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Heff takes the form 

H (2) H(3)T 	 (6.8)+ eff + eff' 

T 	 -t L (atuaj,u + h.c.) (6.9) 
<ij>,u 

H(2) (6.10)eff 
<ij> 

2H~~~ - t /U L (at+r,uat-uai,-uai+r' ,u + at+r,-uatuai,-uai+r' ,u), {6.11) 
i,rf=r' ,u 

where, atu = (1 - ni,-u )ctu, ni,u = ct17Ci,u, i + 7 denotes a nearest neighbour of i, 

and §i is the spin operator on site i. H~~j) are two- and three-site contributions, 

respectively. Note that in the above Hamiltonian, we have omitted the chemical 

potential J.l which appeared in the previous Eq.(3.1). This is because we will work 

with a fixed number of electrons or we will work with the canonical partition function, 

not the grand canonical partition function. The chemical potential is thus redundant 

and is omitted. 

The above effective Hamiltonian is valid only in the subspace of no doubly occupied 

sites, as can be seen from the conclusion in Appendix A. In the half-filled case, i.e., 

ni = 1 for each lattice site i, the effective Hamiltonian reduces to the antiferromagnetic 

Heisenberg Hamiltonian, with a nearest neighbour coupling constant J = 4t2 /U. We 

will see in the numerical simulation that H!;~ is very small due to its three-site 

interactions. 

6.3 Monte Carlo Algorithm 

In the above discussions, we have confined ourselves to that part of Hilbert space 

where there are no doubly occupied lattice sites. Even in this subspace, we still 

encounter the problem of a large wavefunction basis for the single C6o molecule, where 

60 lattice sites are present. For example, at half-filling with no double occupancy, 

we will have C~8, approximately 1017 basis wavefunctions. That is a tremendously 

large number. Thus, some kind of Monte Carlo algorithm should be devised to handle 

these wavefunctions. 
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6.3.1 Basis Wavefunctions 

Suppose we have a trial wavefunction that we believe would be a good estimate 

of the true wavefunction, and we want to calculate the expectation value of the 

Hamiltonian with respect to this trial wavefunction. As we do not know the exact 

form of the trial wavefunction or it is hard to do calculations on this trial wavefunction 

directly, we will have to expand it in a complete wavefunction basis which we know, 

and evaluate probability amplitudes for each basis wavefunction. That is 

< o > = < wiOiw > (6.12)
<W'IW'> 

"'"" IOI/3 < W"la >< f31W' > (6.13)L.....t < a > ,y, Iw .<'£ > 
a,fJ 

In the expansion, a,/3 are states corresponding to specific configurations of the electron 

spins on each site, and can be written in terms of electron creation operators, 

Ia >= c"t · · · c"t c"t, · · · c"t, IO >, (6.14)
R1,t RNt't R1,..j.. RNJ.'..j.. 

where 10 > is a true vacuum. The form of< alw > depends on the choice of trial 

wavefunction IW" >, and in our calculation, the form of < alw > is just the Slater 

determinant, which has been previously given in Eq.(6.3). For other choices of trial 

wavefunctions, such as IRVB > or ISDW >, we list their expressions for < alw > 

in Appendix C. 

6.3.2 MC Weight 

To proceed further, we need to change Eq.(6.13) a little. 
2 

< 0 > = L(L < aiOI/3 >< f31w >)I <aI"Ill> 1 (6.15) 
a fJ < alw > < W"lw > 

L f(a)p(a), (6.16) 
a 

where, 

L < aiOI/3 >< /3IW' > (6.17)f(a) 
fJ < alw > 

I< aJw > 1
2 

p(a) (6.18)
<W'IW'> 

http:Eq.(6.13
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Note that, p(a) is always greater than 0 and 

LP(a) = 1. (6.19) 

This suggests that we are able to use this factor as the weight for Monte Carlo 

simulation. The advantage is that we have no sign problem, which is usually met in 

fermion Monte Carlo simulations. The transition probability T(a --+ a') for going 

from one spatial configuration a to another configuration a' can be chosen as 

') { 1 if p(a') > p(a);
( = (6.20)Ta-+a ,

p(a')/ p(a) if p(a) < p(a). 

To make the Monte Carlo simulation as quick as possible, we will use some tech

niques to generate a' out of a by the interchange of two electrons with opposite 

spins. Through this technique, the time needed to compute the transition probability 

T(a--+ a') is cut down greatly. See the discussion in Appendix D. 

By this procedure, a series of configurations { a 1, a2, · · · , aNMe} is generated, with 

NMC the total number of MC steps. The expectation value of operator 0 is then given 

by 
NMo1 

< 0 >= ~ L f(ai)· (6.21) 
MC i=l 

As the total number of MC steps is much less than the total number of spin config

urations or the basis wave functions, we need to evaluate the error in our simulation. 

We do this by producing Nrun independent MC runs, starting with different initial 

random spin configurations. Then the average expectation value of operator 0 in 

l'lltrial > is given by 

(6.22) 

and the accuracy is defined by the standard deviation 

(6.23) 
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6.3.3 Evaluation of Physical Quantities 

The physical quantities that we are going to evaluate are those operators from 

Eq.(6.9) to Eq.(6.11). As can be seen from Eq.(6.16), we need to do a counting of 

the non-zero < aiOI.B >. In order to calculate this quantity, we should first define 

a definite order of each product of creation operators as done in Eq.(6.14), where 

we put all the spin-up creation operators on the left and all the spin-down creation 

operators on the right, and ordered them according to their lattice site indices. This 

ordering is necessary to avoid ambiguity in the basis wavefuntions, and to take into 

account the anti-commutation relation of the fermion operators. We have seen this 

kind of ordering requirement before in the exact diagonalization chapter. 

Next, we illustrate some examples on how to get the phase factor when we evaluate 

< aiOI.B > with the ordering convention in Eq.(6.14). 

1. 	 0 = atuai,u of the kinetic energy term in Eq.(6.10). For the expectation value 

to be non-zero, Ia > and 1.8 > can differ in only two neighboring lattice sites, 

i e if Ia >= · · · c-:1- · · · 1 · · · ·IO > then IR >= · · ·1· · · · cTt · · ·IO > with i J. the. . ' ~t 3 ' ,_, ~ 3 ' ' 

two nearest neighbors and 1 the unit operator. Let n1 and n2 be the number 

of spin-up creation operators to the left of lattice sites i and j respectively in 

wavefunction 1.8 > written using the ordering convention. A simple counting 

gives 

(6.24) 

The above two cases can be reduced to the same expression ( -1)nbetween Ia >, 

where nbetween is the number of spin-up creation operators between lattice i and 

j in wavefunction 1.8 >. 

2. 	 0 = ~ ·~ of the potential energy term in Eq.(6.11). We divide this operator 

into diagonal and off-diagonal terms. The diagonal term SfSJ = !{c~cit 

ctCi.J..) ( cJtcit - ct.J..Cj.J..) always has a phase factor of 1 and for non-zero average, 

http:Eq.(6.11
http:Eq.(6.10
http:Eq.(6.14
http:Eq.(6.14
http:Eq.(6.16
http:Eq.(6.11
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1.8 > must be equal to Ia >. For the non-diagonal term, we have 

(6.25) 

Let n1 , n2 be the number of spin-up or spin-down creation operators to the 

left of lattice site i, and n3 , n4 be the number of spin-up or spin-down creation 

operators to the left of lattice site j. Then we have 

(-1)nbetweenl +nbetween2+11 a >' (6.26) 

for i < j, where nbetweenl (nbetween2) is the number of spin-up (spin-down) cre

ation operators between lattice site i and j in wavefunction I.B >, and nup is 

the total number of spin-up creation operators in I.B >. Similarly, fori> j, we 

have 

(6.27) 

We see that in this case the phase factor is the same for either i > j or i < j. 

For the three-site interaction term H!~j in Eq.(6.11), the analysis is a little compli

cated, but the final result is still simple. The phase factor is given by (-1 )nbetweenl +nbetween2 

for the first operator in H;~j and ( -1 )nbetweenl +nbetween2+ 
1 for the second operator in 

H;~j, where nbetweenl is the number of spin-up creation operators between the two 

spin-up lattice sites (in 1.8 >) and nbetween2 is the number of spin-down creation op

erators between the two spin-down lattice sites (in 1.8 > ). 

With the above rules, the expectation values of the effective Hamiltonian can be 

calculated easily with a computer. 

http:Eq.(6.11


31 

6.4 Results for C6o 


6.4.1 Pair-binding Energy 

As mentioned above, we will confine ourselves to the Hartree-Fock-type wavefunc

tion as in Eq.(6.1). 

We describe briefly the calculation procedure for neutral C60 : First, we diagonal

ize the non-interacting Hamiltonian and get a set of eigenvectors that contain the 

geometric information of C60 . Second, we randomly choose an initial spin configu

ration on the 60 sites, with 30 up spins and 30 down spins. Third, combining the 

non-interacting eigenvectors and the spin configuration, we write down the projected 

Hartree-Fock wave function for the initial configuration. Fourth, we calculate the 

determinant of the initial wavefunction once. Fifth, we interchange one up-spin elec

tron with one down-spin electron and get a new spin configuration. Then, with the 

technique introduced in Appendix D, we can calculate the transition probability very 

quickly. 

We repeat the above procedure until NMC Monte Carlo steps are passed. With 

this information, the expectation value of the Hubbard Hamiltonian can be evaluated. 

After Nrun such runs, the averaged expectation value or the energy of the neutral C60 

together with the error can be calculated. 

The calculation for C60 that is doped with one or two holes can also be per

formed similarly, except that, in the two hole case, we have two kinds of total 

spin configurations, total spin z component Bz = 0 or Bz = fi. The results for 

all these cases are listed in Table 6.1, and the result for the hole binding energy 

Eb = E(60) + E(58) - 2E(59) is drawn in Fig. 6.1. 

6.4.2 Spin-spin Correlation Energy 

In the above Gutzwiller projection formalism and the Monte Carlo procedure, the 

nearest neighbor spin-spin correlation energy < Si ·Si > can be calculated easily and 
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E6o -(4t/U) X 32.7(±0.1) 
E59 -0.07(±0.02)- (4t/U) X 31.2(±0.2) 

E5s(Sz = 0) -0.07(±0.01)- (4t/U) X 30.0(±0.3) 
E5s(Sz = 1) -0.08(±0.01)- (4t/U) X 30.1(±0.2) 

E::;z-=U 
b 0.07- 1.2t/U 

E!::J'z-=1 
b 0.06- 1.6t/U 

Table 6.1: Electronic energy of a C60 molecule, either neutral or hole-doped (in units 
oft) and pair-binding energy. 
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0\ 
V)_... 

0~~--~--~--~==~~T.~...~...~..~...~...~...~.. 
········ 
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...... ····· 
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I,.-.., 
00 
V)_... 
!l,:l+ -0.6 ,.-.., 
0 
1.0_... 
!l,:l...__. 

-0.8 

-1L-L--L----~---L--~~--~--~----~--~ 

0 5 10 15 20 
U/t 

Figure 6.1: Pair-binding energy from Gutzwiller projection in hole-doped C60 • 
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< si. sj > Gutz SDW RVB (~ = 1.0) 
C6o -0.113 ± 0.002 N.A. N.A. 

Icosahedron -0.148 N.A. N.A. 
Truncated Tetrahedron -0.311 N.A. N.A. 

Cube -0.341 N.A. N.A. 
2D Square -0.267 ± 0.003 -0.321 ± 0.001 -0.318 ± 0.002 

Table 6.2: Nearest neighbor spin-spin correlation energy in various systems from 
Gutzwiller Monte Carlo calculations at half-filling. The values in the 2D square 
lattice are all taken from reference [34]. All data are in units of J = 4t2fU. N.A. 
means "Not Available" . 

was produced at the same time that the ground state energy was obtained. We list the 

results in Table 6.2 together with those from other molecules and the two-dimensional 

square lattice, which are taken from Gros's paper [34]. 

We have also calculated the electron or hole binding energies for the molecules 

other than C60 . They are listed in Appendix E. 



Chapter 7 

Auxiliary Field Monte Carlo 

In the earlier sections, we have introduced the method of Monte Carlo simulation 

in Gutzwiller projection. Here we will use it again in another scheme for solving the 

Hubbard model exactly. The scheme is called "auxiliary field Monte Carlo" and is 

based on Scalapino's papers (35, 36]. It was later refined by Hirsch [37, 38, 39]. Our 

notation here follows that of Hirsch. 

The Hubbard model that will be considered here is still that of Eq.(3.1), where 

we rewrite H as a sum of two terms 

H=Ho+H1, (7.1) 

where 

(7.2) 

is the interaction term and H0 is the kinetic energy and chemical potential term. We 

have pointed out before that the difficulty in solving the Hubbard model lies in the 

on-site interactions. Thus if one could find a way to decouple this interaction term, 

then the difficulty will no longer exist. Actually this has been done by Hubbard [40] 

based on the identity from Stratonovich [41] 

12 1/ (12 )exp(2A) = ..j2K dx exp - 2x - xA , (7.3) 

where A is a quantum-mechanical operator. This transformation decouples the inter

acting fermion operators and couples them to an auxiliary field. In order to use this 

34 
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identity, we need to write the on-site interaction nitni-!. the following way 

nitni-!. =-~(nit- ni-!.) 2 +~(nit+ ni.J.), (7.4) 

where, we have used the property of fermion operators n~u = niu· Certainly, there are 

other ways to write identities to decouple on-site Coulomb interaction, like Eq.(7.4), 

but we think it is sufficient to use only one of them here. 

As will be seen later, for the purpose of Monte Carlo simulations, the above 

continuous Hubbard-Stratonovich transformation is inferior to the discrete Hubbard

Stratonovich transformation that will be introduced below. 

7.1 Discrete Hubbard-Stratonovich Transformation 

The partition function for the Hubbard Hamiltonian is: 

Z Tre-fJH 

Tre-fJ(Ho+Hl) 

L 

- Tr I1 e-Llr(Ho+Hl)' (7.5) 
i=l 

where we have treated f3 as imaginary time and divided it into L sections, i.e., f3 = 

LI::J.r. We have also used the fact that operators at different times commute. 

Using the Suzuki-Trotter formula [42], we arrive at 

L 

z ~ Tr IT e-LlrHoe-LlrHl + O(~::J.r2[Ho, HI]). (7.6) 
i=l 

As I::J.r --t 0, the error introduced by this approximation becomes negligible. So 

the magnitude of I::J.r will be an i~portant parameter in subsequent Monte Carlo 

calculations. 

To proceed further, we need an identity 

1 !::J.rU 
exp(-!::J.rUnitni.J.) = 2Truexp[-Xa(nit- ni.l-)- - -(nit + ni.~-)], (7.7)

2

where 

tanh2 (-X/2) = tanh(!::J..rU/4), (7.8) 
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and C7 = ±1 is the auxiliary Ising spin field index. The proof for this identity is given 

in Appendix F. 

The partition function is then 

Z = TruTr II
L 

e-~rHoexp[L(.Xe7(nit- ni+) 
1=1 

+~T(J-L- 2u 
)(nit+ ni+))] 

L U 
TruTr[II e-~rHotexp{L[AC7 + ~T(J-L- 2 )]nit}] 

1=1 i 

u 
x [e-MHo~exp{L[-.Xe7 + ~T(J-L- 2 )]ni+}]. (7.9) 

i 

Denote 

B1(a) e-~rKeV"(I) 

' (7.10) 

(K)ii 
_ { -t 

0 

for i,j nearest neighbours, 

otherwise, 
(7.11) 

Vij(l) 8ii[.Xae7i(l) + ~T(J-L- U/2)], (7.12) 

and define the operators 

(7.13) 

so that the partition function is 

Z = 

L 

TruTr II IID1(a). (7.14) 
a=±11=1 

We can take the trace over fermions explicitly, since there are only bilinear terms in 

fermion operators, and obtain 

z (7.15) 

(7.16) 

The proof of this identity is taken from Hirsch's paper [39] and given in Appendix 

G. Special attention should be paid when we want to write down the matrix B1 (a) 

according to the definition of the exponential matrix. Details on how to write the 

matrix are given in Appendix H. 
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7.2 Monte Carlo Procedure 

The partition function that we need to calculate has been reduced to Eq.(7.16). 

When the number of lattice sites is not small, the trace over the Ising spins is done 

numerically using a kind of Monte Carlo technique. 

7.2.1 MC Weight and Transition Probability 

From Eq.(7.16), we see that the Boltzmann weight can be easily taken as the 

product of determinants in the equation. For the half-filled case (J.L = U/2, see 

Appendix I for a proof), we can show that this Boltzmann weight is always positive 

and has no sign problem. Let's do a particle-hole transformation: 

(7.17) 

(7.18) 

Then the expression for the determinant becomes 

L 

detOt = Trc II e-b.rHote>.o-E,c~Cit 
l=l 

L 

Trd II e-b.rHote->.uL;; ~dit e). L:; u;(l)' (7.19) 
l=l 

so 

(7.20) 

or 

(7.21) 

And for the non-half-filled case, we have not found a way to prove whether the 

Boltzmann weight is positive or not, but we can still define it as 

(7.22) 

and from our experience, we have not yet found any negative weights that make our 

result unstable. 

http:Eq.(7.16
http:Eq.(7.16
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For the transition probability P, we use the usual Metropolis algorithm, i.e., the 

probability for flipping a given Ising spin is given by 

(7.23) 

where Ra is the ratio of the new determinant from the new Ising spin configuration 

to the old determinant from the old Ising spin configuration. 

Techniques used to compute Ra are similar to those discussed in the Gutzwiller 

projection, and result from the idea that a local change of the field is much easier to 

calculate than a global one. We explain how to use these techniques in Appendix J. 

7 .2.2 Average of Physical Quantities 

Consider now the evaluation of average quantities. Suppose we have operators P 

and Q, then the equal time correlation of these two operators is 

TruTrPQ I1a f11Dz(a)
<< PQ >>  z 

Tru < PQ > detOtdetO + 
(7.24)z 

TrPQ f11a Dz (a)
< PQ > = , (7.25)

detOtdetO+ 

By using the transformation to normal modes, we can easily get the expression for 

the appropriate correlation functions in Eq.(7.25). For example, the single-particle 

Green's functions are given by 

Trct_cj I1v e-cJlvCv 

< ct,cj > = 
 I1v(l + e-lv) 

Trc tC~ I1 e-ctlvCv 
~ < v'li >< ilv' > n)1 +ve-lv) 

v 

1 
""" < v'li >< jlv' > _10 1+e ./

v 

1 
(7.26)[1 + BLBL-1 ... B1]ij, 

where we have suppressed the spin indices for simplicity. Similarly, 

1 
< ctci >= [BL···B1 B B ]ji· (7.27)

1 + L' .. 1 

http:Eq.(7.25
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For two-particle Green's functions, it can be shown that Wick's theorem applies. 

For example, 

(7.28) 

And for averages involving fermion operators of both spins, we can simply factorize 

them, since everything is diagonal in spins, 

(7.29) 

7.3 Results for C6o 

The selection of parameters is according to Hirsch's paper [37], and a reasonable 

precision is achieved (about to the 3rd significant figures) when, for example, we set 

!J..T = 0.5 for U equal or less than the value of 4t. (Note f3 = L!J..T) Certainly, the 

result converges to the exact answer as L ~ oo. The calculations are performed 

at different temperatures, and then the available data are used to find the pairing 

tendency towards zero temperature. The errors in the calculation can be estimated 

both by doing the Monte Carlo simulation several times (for statistical error) and 

for the formula provided by Fye [43] (the truncation error of using a finite !J..T, the 

inverse of which will serve as the high energy cutoff). However, there is a way to 

minimize this truncation error, which is done trough an extrapolation to the zero !J..T 

limit at different temperatures. This is exactly what we have done in this thesis, and 

we will introduce this here for the case of C60 molecule, and in Appendix K for the 

case of the tetrahedron and cube molecules. 

The chemical potential J.L in the Hamiltonian is used to fix the electron number 

in the 0 60 molecule and will be substracted from the ground state energy estima

tion thereafter. The electron numbers of interest are 62, 61, 60, 59 and 58, which 

correspond to a filling factor of 1.033(62/60), 1.017(61/60), 1(60/60), 0.983(59/60) 

and 0.967(58/60), respectively. A standard program (subroutine "zbrent" in "Nu

merical Recipes") has been used in combination with the Monte Carlo procedure to 

determine the ground state energies of C60 molecules at different fillings and temper
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atures. We list in Table 7.1 energy data for pure and doped C60 molecules at different 

temperatures obtained through this process. 

n D.r L 1-' E 
58 0.25 2 1.733(2) -0.087(4) 

T=2.0 58 0.125 4 1.734(1) -0.062(2) 
58 0.0625 8 1.735(2) -0.054(5) 
58 0.03125 16 1.736(2) -0.051(4) 

-0.049(1) 
58 0.5 2 1.714(4) -0.455(9) 

T=l.O 58 0.25 4 1.741(2) -0.358(6) 
58 0.125 8 1.753(4) -0.319(6) 
58 0.0625 16 1.751(2) -0.307(5) 

-0.293(4) 
58 0.5 4 1.624(4) -0.664(7) 

T=0.5 58 0.25 8 1.683(2) -0.525(5) 
58 0.125 16 1.699{1) -0.475(5) 
58 0.0625 32 1.706(7) -0.435(16) 

-0.412(4) 
58 0.5 8 1.397(14) -0.731(8) 

T=0.25 58 0.25 16 1.500{15) -0.592(7) 
58 0.125 32 1.537(9) -0.539(7) 
58 0.0625 40 1.556(1) -0.515(12) 

-0.495(20) 
59 0.25 2 1.867(3) -0.067(3) 

T=2.0 59 0.125 4 1.867(1) -0.040(3) 
59 0.0625 8 1.867(2) -0.034(4) 
59 0.03125 16 1.868(1) -0.032(3) 

-0.032(1) 
59 0.5 2 1.855(3) -0.433(13) 

T=l.O 59 0.25 4 1.870(1) -0.338(7) 
59 0.125 8 1.873(1) -0.301(6) 
59 0.0625 16 1.873(2) -0.285(6) 

-0.271(1) 
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n D.r L p, Econtinued 
59 0.5 4 1.792(2) -0.647(6) 

T=0.5 59 0.25 8 1.826(1) 	 -0.509(5) 
59 0.125 16 1.835(1) 	 -0.458(4) 
59 	 0.0625 32 1.838(1) -0.426(11) 

-0.404(8) 
59 0.5 8 1.604(8) -0.725(3) 

T=0.25 59 0.25 16 1.685(9) 	 -0.582(4) 
59 0.125 32 1.710(5) 	 -0.526(9) 
59 0.1 40 1.711(1) 	 -0.514(8) 
59 	 0.0625 64 1.716(8) -0.511(10) 

-0.493(8) 
60 0.25 2 2.001(3) -0.044(3) 

T=2.0 60 0.125 4 2.000(1) -0.020(2) 
60 0.0625 8 2.000(1) -0.011(3) 
60 0.03125 16 1.999(1) -0.010(3) 

-0.008(2) 
60 0.5 2 1.989(6) -0.429(8) 

T=l.O 60 0.25 4 1.996(1) 	 -0.318(6) 
60 0.125 8 1.995(1) 	 -0.281(6) 
60 	 0.0625 16 1.996(1) -0.269(6) 

-0.259(1) 
60 0.5 4 1.965(1) -0.636(5) 

T=0.5 60 0.25 8 1.975(1) 	 -0.491(6) 
60 0.125 16 1.979(2) 	 -0.422(12) 
60 	 0.0625 32 1.976(4) -0.416(12) 

-0.392(20) 
60 0.5 8 1.922(2) -0.704(6) 

T=0.25 60 0.25 16 1.928(4) 	 -0.562(6) 
60 0.125 32 1.936(4) 	 -0.505(8) 
60 0.1 40 1.935(8) 	 -0.499(8) 
60 	 0.0625 64 1.933(8) -0.493(8) 

-0.473(7) 
61 0.25 2 2.132(3) -0.023(4) 

T=2.0 61 0.125 4 2.132(1) 0.004(3) 
61 0.0625 8 2.132(1) 0.013(5) 
61 0.03125 16 2.131(1) 0.012(2) 

0.013(3) 
61 0.5 2 2.132(1) -0.405(7) 

T=l.O 61 0.25 4 2.121(2) 	 -0.291(6) 
61 0.125 8 2.118(1) 	 -0.254(5) 
61 	 0.0625 16 2.117(1) -0.242(5) 

-0.232(1) 
61 0.5 4 2.141(2) -0.608(5) 

T=0.5 61 0.25 8 2.120(3) 	 -0.465(5) 
61 0.125 16 2.118(3) 	 -0.394(12) 
61 	 0.0625 32 2.114(2) -0.397(7) 

-0.375(28) 
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continued n /17 L J1 E 
61 0.5 8 2.240(9) -0.681(7) 

T=0.25 61 0.25 16 2.168(5) -0.540(7) 
61 0.125 32 2.154(2) -0.486(9) 
61 0.1 40 2.140(5) -0.474(14) 
61 0.0625 64 2.164(2) -0.471(9) 

-0.450(7) 
62 0.25 2 2.266(5) 0.002(4) 

T=2.0 62 0.125 4 2.264(1) 0.029(5) 
62 0.0625 8 2.263(2) 0.036(4) 
62 0.03125 16 2.263(1) 0.037(3) 

0.038(1) 
62 0.5 2 2.271(2) -0.381(11) 

T=l.O 62 0.25 4 2.248(2) -0.269(8) 
62 0.125 8 2.242(2) -0.228(5) 
62 0.0625 16 2.241(1) -0.217(5) 

-0.205(4) 
62 0.5 4 2.309(4) -0.582(6) 

T=0.5 62 0.25 8 2.266(4) -0.442(5) 
62 0.125 16 2.252(1) -0.391(3) 
62 0.0625 32 2.246(3) -0.367(8) 

-0.348(2) 
62 0.5 8 2.447(15) -0.651(9) 

T=0.25 62 0.25 16 2.347(8) -0.510(4) 
62 0.125 32 2.331(5) -0.453(7) 
62 0.1 40 2.327(1) -0.455(11) 
62 0.0625 64 2.331(4) -0.441(11) 

-0.425(8) 

Table 7.1: C60 molecule energies per bond at different dopings, temperatures and 
b..7's. All data are in units oft, the hopping integral. The parameter U is set to 
4t, n represents the total electron number in a C60 molecule, T = 1/(117£) is the 
temperature, J1 is the chemical potential, and E is the energy per bond of a C60 

molecule filled with n electrons. 
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We first use the table data to extrapolate b..r to zero value, which will give the 

single C60 molecule energies at each temperature for different electron dopings, see 

Fig. 7.1. - Fig. 7.5. Then, these energy values will be used to extrapolate the zero

temperature energy and calculate the electron or hole pair-binding energies at each 

temperature, see Fig. 7.6 and Fig. 7. 7. 
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Figure 7.1: Extrapolation of energy per bond with b..r at different temperatures for 
U = 4t in a C60 molecule doped with 2 holes. 
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Figure 7.2: Extrapolation of energy per bond with !:17 at different temperatures for 
U = 4t in a C60 molecule doped with 1 hole. 
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Figure 7.3: Extrapolation of energy per bond with !:17 at different temperatures for 
U = 4t in a neutral C60 molecule. 

From Fig. 7. 7 we see that there are no definite trends of pair binding for either 

electrons or holes in a doped C60 molecule. We only show the errors for two points 
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Figure 7.4: Extrapolation of energy per bo.nd with /::,..7 at different temperatures for 
U = 4t in a Cno molecule doped with 1 electron. 
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Figure 7.5: Extrapolation of energy per bond with /::,..7 at different temperatures for 
U = 4t in a C60 molecule doped with 2 electrons. 

in the hole-doping case, and the lower temperature points have larger errors, which 

are not shown for a clarity of the figure. 

From the discussion in Appendix K, we believe that the auxiliary field Monte 
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Figure 7.6: Energies of a C60 molecule at different temperatures and electron fillings; 
parameter U = 4t. 
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Figure 7. 7: Pair binding energies for C60 molecule at different temperatures for U = 
4t. 
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Carlo calculation can show a correct tendency of pair-binding when we go from high 

temperature to zero temperature. We thus tentatively conclude that for a single C60 

molecule and in the range of temperatures reached (0.25t f'.J 2.0t), there is no definite 

pair binding occurance for an intermediate Hubbard interaction U = 4t if we base our 

calculation on the Hubbard Hamiltonian, which is a little disappointing. However, it 

is interesting to investigate and compare the differences between various calculational 

approaches. This will be the topic of discussion in the next chapter. 



Chapter 8 

Comparison of Different 

Calculational Methods 

In the previous chapters, we have presented several different calculational methods 

for solving Hamiltonians involving Hubbard interactions. Some are approximate, such 

as the perturbation method and Gutzwiller projection, and some are exact, such as the 

Lanczos technique, the Davidson algorithm, and the discrete Hubbard-Stratonovich 

transformation. Generally, their results agree with each other qualitatively, but there 

are still some quantitatively appreciable differences. We believe these differences can 

not be neglected, and hence we devote this chapter of the thesis to this discussion. 

8.1 Hydrogen Molecule 

Our first comparison is made among the perturbation calculation, the Gutzwiller 

projection and the exact diagonalization on a hydrogen molecule in the half-filled 

case. As there are only two sites in the system, the ground state energy can be solved 

exactly and analytically. For a fixed number of electrons (2 electrons) in a hydrogen 

molecule, we have a total of 6 wavefunctions. Four of them can be grouped in a spin 

sector Bz = 0, and the other two can be divided into a Sz = 1i and a Bz = -li spin 

sector, respectively. Using these six wavefunctions as a basis and forming a matrix 

for the Hamiltonian, exact diagonalization of the matrix gives us the ground state 
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energy of the system 

(8.1) 

for the Hubbard model and 
t 0El = -J, (8.2) 

where J = 4t2fU, for the t - J model. 

Perturbation calculation starts with a non-interacting Hamiltonain and is followed 

by a first order and second order perturbation. It is the same as in the C60 calculation 

except that in hydrogen, we can do all these calculations with a pencil. The result is 

(8.3) 


hydrogen, half filling 

-exact 
·-· t-J exact 
· · · · perturbation 
-- gutzwiller 

5 10 15 20 
U/t 

Figure 8.1: Ground state energy per bond of a half-filled hydrogen molecule from 
exact, perturbation and Gutzwiller calculation. 

We plot the energy per bond from these two expressions versus Uft in Fig. 8.1 

together with the result from Gutzwiller projection. We can see from the figure that 
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for a small value of Ujt, the exact result agrees with the perturbation calculation, 

while in the large Ujt regime, the Gutzwiller result behaves very well. In the large Ujt 

limit, the Gutzwiller result coincides exactly with the exact diagonalization results of 

both the t- J model and the Hubbard model. 

Similar calculations can be performed for different total electron numbers on hy

drogen. Please see Appendix L for details. 

8.2 Tetrahedron Molecule 

Similar calculations are performed on a tetrahedron molecule; the difference from 

the hydrogen molecule is that the calculations now have to be done using a computer. 

The ground state energy per bond from different methods is drawn in Fig. 8.2. 

tetrahedron, half filling 
.----

-·- ---·

- dense technique ~ 

• davidson€ 
~ - - perturbation

-0.6 ···· gutzwiller 
·- t-J exact 

5 10 15 20 
U/t 

Figure 8.2: Ground state energy per bond of a half-filled tetrahedron molecule from 
various calculations. 

In this figure, we find again that perturbation theory works well in the small Ujt 

regime, while the Gutzwiller projection works well for large Uft. The t - J model 

has a lower energy than the Hubbard model. 
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-davidson 
• 

,' - lanczos 
· · · · 

8.3 Cube Molecule 

Another molecule that we have studied is the cube molecule, where there are 8 

lattice sites. We olot the result for this molecule in Fie:. 8.3 . 

II 


I' 


i' .~ 

.. ·. 
············... 

dense technique 

perturbation 
· - · gutzwiller 

t-J exact 

0 5 10 15 20 
U/t 

Figure 8.3: Ground state energy per bond of a half-filled cube molecule from various 
calculations. 

The label "dense technique" means the diagonalization of the matrix used the stan

dard program (subroutine "dsyev") from lapack. This curve may be regarded as exact 

and will be used to compare the other calculational approaches. 

We note that results from the Davidson algorithm coincide exactly with the dense 

technique (Scatter points from dense technique lie exactly on the Davidson algorithm 

curve in Fig. 8.3). The Lanczos algorithm behaves reasonably well, compared with 

the "dense technique" result. 

8.4 Checking of AMC Program 

In this section, we check the results from the auxiliary field Monte Carlo program 

with the exact results for the hydrogen molecule. There was some check of auxiliary 
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field Monte Carlo simulation in Hirsch's paper, [37]; and the energy calculated there 

is the energy per site with periodic boundary conditions. Our auxiliary field Monte 

Carlo program, adopting the same boundary condition, will produce the same result 

as Hirsch did in [37]. The calculations are carried out for half-filling, and the results 

are listed in Table 8.1, where the parameter tlr is in units of 1/t. The units of the 

temperature and energy are t. 

8.5 A Table 

Table 8.2 provides a qualitative comparison of the different calculational ap

proaches for solving the Hubbard model. 

The table shows that different calculational approaches have their own characters. 

The simplist perturbation calculation is fast and easy and the results apply from small 

to maybe intermediate Uft. 
The Gutzwiller projection is valid for large Ujt regime, and the time spent in 

calculation is a little longer than for the perturbation calculation. We also suggest 

that the results in its validity regime is trustworthy, as can be seen from its comparison 

with the exact diagonalization in the large Ujt regime. And the Gutzwiller projection 

also has the promise of doing a better job if we could find a more suitable trial 

wavefunction to approximate the true ground state or if we could find a way to write 

down the IRVB > trial wavefunction in the C6o molecule. 

As to the Lanczos or Davidson algorithm in exact diagonalization, the main prob

lems are the limit of computer memory, to accommodate the basis wavefunctions in 

the system, and the limit of the CPU speed to carry out calculations quickly (Even 

when we employ a supercomputer, a lot of time is still needed for the large matrix 

operations). In the present situation, we can calculate the truncated tetrahedron or 

icosahedron (Both have 12 sites), although a large amount of time is required. 

Our last method of approach is the auxiliary field Monte Carlo, and it has the 

advantage of being able to do calculations for large molecules, such as C60 , in a 

moderate cost of time and computer memory. Certainly, if we divide the imaginary 

time, i.e., f3 or 1/ksT into large number of small sections tlr and collect a large 
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hydrogen 

U=l 

kBT 
0.5 
0.5 
0.5 
0.5 
0.25 
0.25 
0.25 
0.25 

fl.7 
0.5 
0.25 

0.125 
0.0625 

0.5 
0.25 
0.125 
0.0625 

E/bond 
-1.1250(6) 
-1.092(1) 
-1.083(1) 
-1.081(1) 
-1.551(2) 
-1.510{1) 
-1.499(1) 
-1.496(1) 

exact 

-1.562 

U=2 
0.5 
0.5 
0.5 
0.5 
0.25 
0.25 
0.25 
0.25 

0.5 
0.25 
0.125 
0.0625 

0.5 
0.25 
0.125 
0.0625 

-0.923(2) 
-0.802(2) 
-0.769(2) 
-0.762{1) 
-1.373(2) 
-1.234{2) 
-1.193(2) 
-1.182(2) -1.236 

U=4 
0.5 
0.5 
0.5 
0.5 
0.25 
0.25 
0.25 

0.5 
0.25 
0.125 
0.0625 

0.5 
0.25 

0.125 

-0.911(4) 
-0.556{2) 
-0.463(2) 
-0.438(2) 
-1.319(4) 
-0.912(3) 
-0.783(4) -0.828 

U=6 
0.5 
0.5 
0.5 
0.5 
0.25 
0.25 
0.25 

0.5 
0.25 
0.125 
0.0625 

0.5 
0.25 
0.125 

-1.128(4) 
-0.487(3) 
-0.342(3) 
-0.303(3) 
-1.507(14) 
-0.758(9) 
-0.549{10) -0.606 

U=8 
0.5 
0.5 
0.5 
0.5 
0.25 
0.25 
0.25 

0.5 
0.25 
0.125 
0.0625 

0.5 
0.25 
0.125 

-1.461{11) 
-0.458(5) 
-0.273(4) 
-0.224(3) 

-1.640{59) 
-0.682(79) 
-0.399(50) -0.472 

Table 8.1: Comparison of exact diagonalization and auxiliary field Monte CarlG for 
the H2 molecule. The exact results in the table are forT= OK. 
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Perturbation Gutzwiller Lanczos Davidson AMC 
regime of Ujt small large all all all 

accuracy good VN good VN good VN good VN good VN 
time 5 4 1 2 3 

Table 8.2: Comparison of different calculational approaches. The amount of time 
decreases as number goes from 1 to 5. 

amount of Monte Carlo data, we will approach the exact result. However, from our 

experience, a modest number of Morite Carlo data (1000 for tetrahedron, 10000 for 

cube and 100 for C60 ) and a finite length of !::ir (0.5, 0.25, 0.125, 0.0625 etc.) at 

temperatures 2t, t, 0.5t, 0.25t etc. have produced a fairly good statistical result. 

Furthermore, from Appendix K, we find the auxiliary field Monte Carlo predicts a 

correct tendency for pair binding in both tetrahedron and cube molecules. We thus 

have confidence when we apply it to the C60 molecule. 

8.6 Mesoscale Physics 

Mesoscale physics is an interesting concept proposed by S. Chakravarty and S. 

Kivelson in [19]. They argue that a purely electronic mechanism of superconductivity 

requires structures at an intermediate or mesoscale system. The structures here 

include both the intermediate number of sites in the system and the intermediate 

magnitude of Hubbard interaction U. Their calculation is performed primarily on a 

one-dimensional Hubbard ring, and they found that for an intermediate number of 

lattice sites, the pair-binding energy achieves its maximum magnitude, and, when the 

number of lattice site is increased or decreased, the pair-binding tendency decreases. 

The second phenomenon is that for an intemediate Hubbard U, the pair-binding 

energy reaches its maximum magnitude (most attractive between electrons) and for 

smaller or larger U, it decreases (less attractive or repulsive). 

The argument is interesting and it inspires our further investigation in this section. 

Our scheme is as following: we systematically perform calculations on a series of 

molecules that are of different sizes from hydrogen to C60 and then compare the pair
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binding energies to test the above argument; we also check results in different Hubbard 

U regimes for completeness. We believe that our results will be a useful test of this 

argument, although we understand the difference between the possible and necessary 

consequences of intermediate scale as stressed by Chakravarty and Kivelson in [19]. 

Our results on hydrogen from the analytic formula in Appendix L, and for tetra

hedron and cube molecules from exact numerical calculations are plotted in Fig. 8.4, 

Fig. 8.5 and Fig. 8.6 for the cases of zero temperatures. 

2~--~--~----~---r----r---~--~--~ 

-- electron pair 
- holepair 
·- numerical 

0 5 10 15 20 
U/t 

Figure 8.4: Pair binding energy per bond of a hydrogen molecule doped with electrons 
or holes at different Hubbard U from the exact analytic formula in Appendix L, and 
the exact numerical results. 

Note that in Fig. 8.4, the analytic result coincides with the numerical result, 

which assures us again the correctness of our exact diagonalization programs that 

are applied to tetrahedron and cube molecules. In the large U limit, we see that the 

pair-binding energy calculated from Gutzwiller projected wavefunction (total Bz = fi 
spin sector pair-binding energy) agrees roughly with the exact diagonalization result, 

see Fig. 8.7. We thus believe the pair binding energy calculated in the C60 molecule 

with the Gutzwiller projection technique is reliable to some extent. 
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Figure 8.5: Pair binding energy per bond of a tetrahedron molecule doped with 
electrons or holes at different Hubbard U from the exact diagonalization. 
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Figure 8.6: Pair-binding energy per bond of a cube molecule doped with electrons at 
different Hubbard U from the exact diagonalization. 
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Figure 8.7: Pair-binding energy per bond of a cube molecule for singlet hole pairing 
state at different Hubbard U from the exact diagonalization compared to Gutzwiller
projected t - J model for singlet and triplet hole pairings. 

We see that from hydrogen to cube molecule, the pair binding occurs. And for the 

tetrahedron molecule, pair binding appears when the molecule is doped with holes, 

and the maximum strength of pair binding is for a Hubbard interaction strength of 

about U = 5t. For the cube molecule, both electron doping and hole doping give 

the same pairing tendency; and the maximum binding strength is at about U =lOt. 

We also see some pair binding possibilities in the intermediate strength of U from 

Appendix E, where a list of pair-binding energies as well as a figure (Fig. E.l) from 

Gutzwiller-projected wavefunctions are available. 



Chapter 9 


Conclusion 


In this thesis, we have focused on the calculation of the pair-binding energy in 

a single C60 and other small molecules. Different methods have been applied to the 

Hubbard Hamiltonian, which is used to describe the electronic interactions inside 

these molecules. 

The simplest perturbation calculation shows pair binding in some range of U 

values. Particularly, if we divide the unperturbed wavefunctions into two groups 

according to the symmetry of the Hubbard Hamiltonian, we find pair binding in 

small U regimes, and spin-singlet pairing is favored over the spin-triplet pairing. 

When we enter the larger U region, we have to reconsider the validity of the 

perturbation calculation. In the extremely large U case, the reduction of the Hubbard 

Hamiltonian to the t-J model is adopted. Variational Monte Carlo is then used, with 

the trial wavefunction constructed using the Gutzwiller projection. The calculation 

resulting from the Gutzwiller projected Fermi sea indicates that the pair-binding 

tendency in the single C60 molecule is in the spin-triplet channel. 

Between the above two regions, there is the intermediate Hubbard interaction 

U regime, which corresponds to the real C60 material situation, and it is thus the 

most important regime to explore. However, neither of the above two methods can 

be used to draw conclusions about pair binding. Because of this, we introduce the 

auxiliary field Monte Carlo technique, which is essentially an exact method and can 

be applied to any value of Hubbard interaction. The auxiliary field Monte Carlo 
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program is checked by comparing it with the exact diagonalization result, and it shows 

satisfactory agreement. Auxiliary field Monte Carlo gives the correct tendency of pair 

binding in tetrahedral and cubic molecules. This agreement leads us to believe that 

the auxiliary field Monte Carlo data in the C60 molecule is reliable. Unfortunately, 

for the temperature range that we can reach with the Monte Carlo program, we find 

no clear evidence of pair binding for either electrons or holes. It is possible that at 

lower temperature pair binding can occur, but this regime is inaccessible to auxiliary 

field Monte Carlo, which suffers from a low temperature instability, as is common in 

thermodynamic Monte Carlo simulations. 

The many-fermion problem in a single C60 molecule still needs further consider

ations; and it is desirable to improve the current Monte Carlo program to calculate 

not only with better statistics but also over a broader range of temperatures. An

other conclusion is that the Hubbard Hamiltonian defined and explored in this thesis 

might not capture all the physical pictures about superconductivity in C60 materials. 

Further study on this problem will continue. 
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Appendix A 

•Unitary Transformation Ill 

Gutzwiller Projection 

The Hubbard Hamiltonian Eq.(3.1) can be rewritten as 

H Th + Td + Tmix + V, 

-t L (1 - ni,-u )ct11Cju(1 - nj,-u) + h.c., 
<i,j>,u 

-t L: ni,-uct11Cj,unj-u + h.c., 
<i,j>,u 

-t L ni,-uct11Cj,u(1- nj,-u) + h.c. (A.1) 
<i,j>,u 

-t L (1 - ni,-u )ct11Cjunj,-u + h.c., 
<i,j>,u 

v uL:nitni,{.· 

Th describes the transport of holes and Td that of doubly occupied sites. They do 

not mix different Hubbard bands, while the term Tmix does so. We apply a unitary 

transformation to H, 

H +i[S,H] + .. ·. (A.2) 
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The purpose of the transformation is that the term Tmix' which represents the high

energy process, will disappear in lowest order. So this gives us the condition 

(A.3) 


or if we write S explicitly 

"I < nlTmixlm > IS -- L....t n > .( ) < m , (A.4) 
ZEn-Em 

n,m 

where In>, lm >are eigenstates ofTh +Td+V with eigenvalues En and Em· Although 

we do not exactly know the values of En and Em, we can expect that for the large U 

limit, En- Em = ±U + O(t). So we have 

it " + ( )s = U L....J ni,-uCi,uCj,u 1 - nj,-u 
<iJ>,u 

it " ( ) +- u L....t 1 - ni,-u ci,uc;,unj,-u· (A.5) 
<i,j>,u 

Note that in writing down the above equation, we have paid attention to the two 

kinds of different terms in Tmix· For instance, terms like ni,-uc"tc;u(1-n;,-u) should 

act on states lm > without doubly occupied sites from left and states < nl with one 

doubly occupied site from right; otherwise, it will give zero. So, such terms will be 

paired with En -Em = U in Eq.(A.4). Similarly, terms like (1 - ni,-u)ct17 c;,un;,-u 

should act on states lm > with one doubly occupied site from left and states < nl 
without doubly occupied sites from right, so they should be paired with En- Em = -U 

in Eq.(A.4). 

If we take the effective Hamiltonian between states with no doubly occupied sites, 

we will have the desired result 

Th + i[S, TmixJ 

4t2 I: .... .... 1
Tih + - (S· · S · - -) (A.6)u ' 4J . 

<iJ> 

Actually to get Eq.(A.6), we still need some nontrivial steps, and we would like 

to give the details in the following lines. First, we know 

(A.7) 
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Next, when we take the expectation value of the right hand side ofEq. (A.7) between 

two states with no doubly occupied sites, we find that in order to get a non-zero 

value, the application of the effective Hamiltonian should satisfy the conditions: in 

the first application of operators Tmix or S on the no-doubly-occupied-sites state, 

they will transfer a spin CJ electron from site i to site j to create a state with only one 

doubly occupied site j; then in the second application of operators S or Tmix' they 

will destroy this doubly occupied site j either by transferring a spin CJ electron back 

to site i or by transferring a spin -CJ electron from site j to site i. This process can 

be represented in the following effective Hamiltonian 
2 

2t """' 	( + + + + ) (A.8)Heff = Th - u ~ CjqCiuCiqCju + cj,-qci,-uCi<TCju ' 

<ij><T 

where the factor 2 comes from the commutation expression, i.e., one is from STmix 

and the other is from TmixS. So 
2 

)Heff = Th - U2t """' ~ ( + - ciqCiuCjqCjq+ + - + +CjqCjq ciuCi,-<Tcj,-qCjq 

<ij><T 

2 
2t """' ( 	 + + + + + + + Th - U 	~ citcit + ci.J.. Cj.J.. - citCitcjtcit - ci.J..Ci.J..Cj.J..ci.J.. 

<ij> 

+ + + + )-CitCi.J..Cj.j..Cjt - c4 CitCjtCj.j.. 

rh - 2gI:[ ( ~ + sn + ( ~ - sn - ( ~ + sn(~ + sn 
<ij> 

-(~- S~)(~- S~)- S"!" s-:- s-:-Sf]2 t2 J tJ tJ 

n- 2gL[~- 2s:s;- s:s;- s;st] 
<ij> 

4t
2 

"""' .... 	 .... 1n + U 	~ (Si · Si - 4" ). (A.9) 
<ij> 

In the above equations, we have used the relations between creation (annihilation) 

operators and spin operators in a no-doubly-occupied-sites system. These relations 

are discussed in the next appendix. 

Note that there is another way of reducing the Hubbard model in the large U 

limit to the t- J model by a perturbation calculation as in Emery's paper [45] and 

also Hirsch's paper [46]. We refer interested readers to these papers. 



Appendix B 

Some Relations 

In a half-filled system with no doubly occupied sites, we have the following equa

tion [47, 48] 

(B.l) 

Let (~) and (~) represent spin up and down states on a site, respectively. And we 

know that 

Cfct(~) = (~), Cfct(~) = 0, (B.2) 

where we have suppressed the site index for simplicity. Thus we can define the matrix 

representation of cict as 

(B.3) 

Similarly, we have 

+ (0c.,~. c.,~.= (B.4) 
0 ~)' 

+ (0 (B.5)ctc..l- = 0 ~)' 
(B.6)cjct = ( ~ ~) 
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Recall Pauli matrices 

Az ( 1 0 ) (B.7)
(J = 0 -1 ' 

(B.8)&"=U~)· 

Ay- ( 0 -i) (B.9)(J - ' 

i 0 

and the relation between them and spin operators 

(B.10) 


Recall also the definition of spin raising and lowering operators 

s+ = sx +iSY 
(B.ll){ s- = sx- iSY. 

We find, when taking into account Eq.(B.1) and anti-commutation relations of c 

operators, that 

I
sz 1( + + )2 ct ct- c+ C.J.. 

s+ + (B.12)CtC.J.. 

s- +c+ Cf, 
or 

H1 + 2SZ)cfct 
+c+ C.J.. ~(1- 2Sz) 

(B.13)
+ s+ct C.J.. 

s-.ctct 



Appendix C 

Other Trial Wavefunctions in 

Gutzwiller Projection 

In the Gutzwiller projection technique, there are some other kinds of trial wave

functions usually used besides the projected Fermi sea, such as the Resonating Valence 

Bond (RVB) wavefunction and the Spin Density Wave (SDW). They usually appear 

in the 2D square lattice geometries. 

C.l IRVB > Wavefunction 

The IRVB > wavefunction is formed by a Gutzwiller projection on a BCS wave

function 

IRVB> 	 Pv=oiBCS >, 

Pv=O n(uk + vkcttc~k.!-10 > (C.l) 
k 

where as before 

(C.2) 
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The parameters in the BCS wavefunction are given by 

u2 1 (1 ~k ) 
k 2 + J~i + ~~ 

v2 1(1 ~k ) (C.3) 
k 2 v'~i + ~~ 

~k -2t(cos kx +cos ky)- !-£ 

for a 2D square lattice. It is easy to show that 

Vk ~k 

Uk ~k+V~k+~~ 
ak. (C.4) 

The parameter ~k can have different expressions 

~' s- wave, 

llk = ~(cos kx- cos ky), d- wave, (C.5) 
{ 

~(cos kx +cos ky)- !-£, extended s-wave. 

Now we are ready to derive an expression for < ai'W >, where Ia > is the real 

space spin configuration in previous chapter. Let's concentrate on N lattice sites and 

half-filling, 

(C.6) 

PN is a projection operator that projects IRVB > into the subspace with fixed number 

of N particles. So 

IN>= PNPD=O II(uk + vkcttc:k+)IO >. (C.7) 
k 

Recall our definition before: vk/uk = ak. 

IN > = PNPv=o IIUk II(1 + akcttc:k+) IO > 
k k 

kN/2 

const. x Pv=o II (1 + akcttc:k+) IO > 

kN/2 

const. x Pv=o II akcttc:k+IO > 

const. x Pv=o(L= akcttc:k+)N/
210 > . (C.8) 

k 
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Note that in our calculation we are interested in terms like: < al\11 > / < ,BI\11 >, and 

the constant in the expression will not affect our calculation. We can hence omit it 

for simplicity. 

IN>= Pv=o(L akcktC-k.!-)NI2 IO > . (C.9) 
k 

After a Fourier transformation: 

or 

we get 

(C.lO) 

(C.ll) 

where {R1} is a set of lattice sites occupied by spin-up electrons and {R~} is the set 

of lattice sites occupied by spin-down electrons. Recall the expression of Ia > in 

Eq.(6.14). A careful inspection gives (for Nt = N-l- =Ncr= N/2) 

a(.ii~-l-- Rtt) a(.R~-l-- .R2t) a(R~-l-- RN"t) 

a(~.!-- Rtt) a(~.!-- R2t) a(~.!-- RN"t) 
. (C.l2)< aiN >= det 

C.2 ISDW > W.avefunction 

In two dimensions, the spin density wave is given by 

kEFermi sea,cr 

with 

II (C.l3) 

(C.14) 


http:Eq.(6.14
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where 

Ek = - 2t (COS kx + COS ky), (C.15) 

and 6AF is the antiferromagnetic order parameter. 

With the above spin density trial wavefunction, we can write down the amplitude 

< aiSDW > of a specific real space configuration Ia >. Suppose we have a spin 

configuration (N~, Nt), where Nt and N~ are number of spin-up or -down electrons in 

the system, then the amplitude< a!SDW >is the product of the determinant of an 

N~ x N~ matrix (Aa,~) and the determinant of an Nt x Nt matrix (Aa,t)· The (j, l)th 

element of these matrices is given by 

(C.l6) 

where ki is the jth wavevector occupied, Rz,u the lth lattice site occupied by a spin-0' 

electron, and Q is equal to ('rr, 1r). To make the calculation easier, it is advantageous 

to assume uk = u_k and vk = v_k and define 

ak(Rj,~) ukexp(ik · Rj,~)- vkexp(i(k + Q) · Ri,+) (C.l7) 

ak(Rl,t) ukexp(ik · Rl,t) + vkexp(i(k + Q) · Rl,t) (C.18) 

a(Rj,~, Rl,t) L ak(Rl,t)a-k(Ri,+)· (C.19) 

kEFermi sea 

With these definitions, Eq.(C.13) can be rewritten as 

L < aiSDW > Ia > . (C.20) 

And the amplitude< aiSDW >then has the form 

< aiSDW >= det 

a(R1~, R1t) 

a(R2~, R1t) 

a(R1~, R2t) 

a(R2~, R2t) 

a(RI~, RNut) 

a(R2~, RNut) 
(C.21) 

a(RNu~' Rlt) a(RNu~' R2t) 

for an equal number of spin-up and -down electrons. 

http:Eq.(C.13


Appendix D 

Techniques for Calculating < a Iw> 


In the Gutzwiller projection section, we have pointed out that to make our Monte 

Carlo simulation efficient, we can generate a new spin configuration Ia >i+l out of 

the old configuration Ia >i by interchanging the positions of two electrons that have 

opposite spins. We also pointed out that the physical quantity that is of interest to 

our calculation is the ratio of the new and old amplitudes i+l < aiW > /i < alw >. 
Denote two matrices as Aai+l and Aai, respectively, and suppose that the two electrons 

that interchange position with each other are sitting on R.;,t and RM; then we have 

(D.l) 

where Aai is given by Eq.(C.12) and ~A1 Aand ~A2 differ from each other by one 

column and one row; if we replaceR~ with R1 and Ri with iii, then the difference of 

two matrices are given by 

0 0 a(R~- Rj)- a(R~- Rj) 0 0 

D.A1= 
0 0 a(~- Rj)- a(~- Rj) 0 0 

(D.2) 

0 0 a(R'rvq - Rj)- a(R'rvq - Rj) 0 0 
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and 

0 0 

0 0 
..... ' ..... ....., ..... 

a( Rz - Rt) - a(R1 - R1) a( Rz - RNJ - a(fi; - RN,J · (D.3) 

0 0 

0 0 

We digress now to some mathematics before we discuss how to calculate i+l < 
aiW > out of i < ai"W >. Suppose we have N x N matrix A and its inverse B, i.e., 

AB = BA = I, and we have N x N matrix A' and its inverse E', A' E' = E' A' = I. 
A' differs from A by one column, say the jth column. We write 

A' =A+~A, (D.4) 

where 
0 0 

0 0 
(D.5) 

00 

Multiplying E' from right in Eq.(D.4), we get 

I = AB' +~A· E'. (D.6) 

Multiplying B from left in Eq.(D.6), we find 

B = E' +B~A ·B'. (D.7) 

Eq.(D. 7) is a Dyson-like equation and will be useful in simplifying our amplitude ratio 

calculations. 

Now suppose we want to calculate a quantity Q, which is defined as 

Q = det(A') (D.8)
det(A)' 
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then what should we do? We know from the matrix properties the following identity: 

Q = detA' = detB = d (BA') (D.9)detA detB' et · 

From the Dyson-like equation Eq.(D.7), we know 

BA' (B' + B~AB')A' 

l+B~A. (D.10) 

Thus 

Q = det(J + B~A). (D.ll) 

We need the expression for B~A, which is given by 

B~A= 

0 

0 

0 

0 

X1 

X2 

0 

0 

0 

0 
(D.12) 

0 0 XN 0 0 

where 

So 

Xm = EJ:1 Bmi~~j, m = 1,2,· ·· ,N. (D.13) 

1 0 0 X1 0 0 

0 1 0 X2 0 0 

(D.14)l+B~A= 
0 0 0 1+X; 0 0 

0 0 0 XN 0 1 

The value of Q is hence trivially given by 

Q 	 det(J + B~A) 

1+X;. (D.15) 

So if we know A, Band ~A, and use the above method to calculate Q, we need only 

N operations, which is compared with the N 3 operations of calculating detA' from 

A'. The time needed to calculate Q is greatly reduced. 
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Another question we will discuss is how to calculate B' if we know matrix A, B 

and ~A. The problem can be solved by looking at the Dyson-like equation Eq.(D.7), 

which gives 

B' 	 B-B~AB' 


B- B~A(B- B~AB') 


B- B~AB +B~AB~AB' 


B- (B~A- (B~A)2 + · · · + (-l)m+l(B~A)m +···)B. (D.l6) 

Recall Eq.(D.12). It is easy to show that for an arbitrary integer m 

0 0 

0 0 

0 

(D.17) 

Thus 

B' 	 B- B~AB(1- Xi+··.+ (-1)m+Ixj-1 + ... ) 

B- B~AB/(1 +Xi), (D.18) 

or written in another way 

' Xm
Bmz = Bmt- X Bit· 	 (D.19)

1+ j 

After the above mathematical preparation, we can now return to Eq.(D.1), where 

~A1 has only one column non-zero values and ~A2 has only one row non-zero values. 

Also suppose the inverse of matrix Aa; is Ba; and the inverse of matrix Aai+1 is Bai+1 , 

i.e. 

(D.20) 

(D.21) 

http:Eq.(D.12
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The question is if we know Aan Ban ~A1 and ~A2, how to calculate Q and Bai+
1 

efficiently? The parameter Q is as before defined as 

Q = detAai+1 • (D.22)
detAa; 

We need to define an intermediate matrix M = Aa; +~A1 , then with the method 

just mentioned above, we can calculate detM/detAa; and M-1 the inverse of M very 

easily. Note that 

(D.23) 


If we do a transpose on the above equation, we get 

(D.24) 


where ~AI now is a matrix that has only one column non-zero values. So we 

can apply the same technique as above on this equation and find the values for 

det(A~i+I)/detMT and (A~i+J- 1 conveniently. Thus 

detAai+1Q = 
detAa; 

det(A~i+I) detM 
(D.25)

detMT detAa; · 

Finally, the general properties of matrix will help us find 

(D.26) 




Appendix E 

A List of Binding Energy 

Here, we list some hole pair-binding energies for different molecules. Also see the 

following figure for pair-binding energies. 

Icosahedron: 
E(12) + E 8 (10)- 2E(11) = 0.19529- 0.55541(4t/U) + 0.03044(t/U) 
E(12) + ET(10)- 2E(11) = 0.11900- 0.20894(4t/U)- 0.14801(t/U) 

Truncated Tetrahedron: 
E(12) + E 8 (10)- 2E(11) = 0.25972- 0.48407(4t/U)- 0.13865(t/U) 
E(12) + W'(10)- 2E(11) = 0.15133- 0.32768(4t/U)- 0.36148(t/U) 

Cube: 
E(8) + E 8 (6)- 2E(7) = 1.03158- 0.93828(4t/U)- 0.58652(t/U) 
E(8) + ET(6)- 2E(7) = 0.4- 0.63377(4t/U)- 0.83631(t/U) 

Table E.1: Hole spin singlet or triplet pair-binding energies per bond for different 
molecules from Gutzwiller projection calculation. All data are in units oft. 
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---------........... 
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- icosahedron S =0 - z 
icosahedron S = 1- z 

truncated_tetrahedron_Sz=0 

truncated_tetrahedron_Sz= 1 

15 20 
U/t 

Figure E.l: Hole spin singlet or triplet pair-binding energies per bond of a truncated 
tetrahedron or icosahedron molecule. 



Appendix F 

Derivation of Eq.(7.7) 

The discrete Hubbard-Stratonovich transformation in Eq.(7.7) will be proved in 

this section. 

Recall Eq.(7.4) 

(F.l) 

We then have 

We concentrate on term exp[ u~T ( nt - n.JJ2]. A Taylor expansion gives 

Utlr )2]exp[--(nt- n4
2

(F.3) 

where we have noted that for k = 1, 2, 3, · · · we have the following properties of 

fermion operators 

(nt- n.l-)2k = (nt- n.l-)2 
(F.4){ (nt- n.l-)2k+I = (nt- n.l.)· 
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Let exp(u~7 )- 1 = cosh(2a)- 1 or equivently 

2 Ub..T
tanh a= tanh(

4
-), (F.5) 

we have 

1 + { cosh(2a)- 1}(nt- n+)2 

1 + {;!(2a)2 + ~!(2a)4 + .. ·}(nt- n+)2 

1 1 [ ( )] 1 2 1 32{1 + 1! 2a nt- n+ + 2![2a(nt- n+)] + 
3

![2a(nt- n+)] 

+· · ·} + ~{1 + :! [-2a(nt- n+)] + ;, [-2a(nt- n+)]2 

+;, [-2a(nt- n+)P + · · ·} 
~{e2a(nt-nJ.) + e-2a(nt-nJ.)} 
2 
1 
2Tr{u}exp[2aa(nt- n+)]. (F.6) 

Combining the above Eq.(F.6) and Eq.(F.2), we find that Eq.( 7.7) is proved. 



Appendix G 

Derivation of Eq.(7.16) 

The derivation of Eq.(7.16) here is taken from Hirsch's paper [39). The equation 

follows from the identity 

(G.l) 

where A and B are arbitrary matrices, and the summation over indices is assumed. 

To prove Eq.(G.l), we need to prove first the identity 

(G.2) 

where Ap, = e-l,.. are the eigenvalues of the matrix e-Ae-B. From Eq.(G.2), Eq.(G.l) 

follows immediately, since 

v 

v 

(G.3) 


To prove Eq.(G.2), we show that an arbitrary many-particle state propagates in the 

same way using the expression on either side. Consider first a single-particle state 

I¢>= LaicjiO > (G.4) 
j 
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with aj arbitrary numbers, and JO > the true vacuum state. Let JJ..t > be the basis 

where the matrix B is diagonal, i.e., 

(G.5) 

and define new fermion coordinates 

(G.6) 

with inverse 

Cj = L:~ < jJJ..t > c~, 
(G.7)

cj = L:~ < J..tJj >ct. 
With Taylor expansion and the properties of fermion operator, we can write the 

exponential of B as 

e-ctB;jCj = e-ctb,..cl' = rr[l + (e-b~-'- l)ctc~J. (G.8) 
~ 

On applying this to the state Eq. (G.4), expanding cj in terms of ct, and using fermion 

anticommutation relations, we find 

(G.9) 

Similarly, in operating with both factors on the left-hand side of Eq.(G.2), one finds 

after some algebra 

(G.lO) 

i.e., the amplitude of the propagated state is obtained by multiplying the original 

amplitude by the product of the matrices. Eq.(G.lO) is valid in any basis, in particular 

in the one where e-Ae-B is diagonal. If we start with a state that is an eigenstate of 

e-Ae-B: 

J¢> >= ctJO >, (G.ll) 

http:Eq.(G.lO
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then 

(G.l2) 

which is the same as we obtain from the right-hand side of Eq.(G.2). Thus we have 

proved Eq.(G.2) when applied to single-particle states, and it remains to be shown 

that if we have more than one particle they propagate independently. Consider first 

the propagation by one factor. If we take a two-particle state 

(G.l3) 

and propagate it with B, we have 

(G.14) 

(G.l5) 

Eq.(G.15) clearly holds if J.ll =/= J.-L 2 , since we pair J.ll and J.-L 2 with their corresponding 

factors, and also if J.ll = J.-L 2 , since then both sides are zero due to the Pauli principle. 

Clearly then, the propagation of an arbitrary two-particle state is a superposition 

of each particle independently, and similarly for many-particle states. By using the 

argument repeatedly, it follows also for propagation through more than one factor, 

which completes the proof of Eq.(G.l). Of course, this is then trivially extended to 

more than two factors. 

http:Eq.(G.15


Appendix H 

Exponential Matrix 

We find it necessary to discuss the problem of exponential matrix, an example of 

which appears in Eq.(7.11) in the auxiliary field Monte Carlo chapter. In Eq.(7.11), 

kinetic energy matrix K is a non-diagonal matrix, while potential energy matrix V is 

a diagonal one. The techniques to write their respective exponential matrices e-l:l.rK 

and eV"(l) are different. 

Suppose A is a common matrix, then the definition of eA is 

A 1 1 2 1 3 
e =1+-A+-A +-A+··· (H.1)

1! 2! 3! ' 

where I is a unit matrx. 

If A is diagonal matrix, then according to this definition, it is easy to check that 

(H.2)0 0 

0 0 0 

If A is non-diagonal matrix, then we assume that through a unitary transformation 

A can be reduced to a diagonal matrx D, i.e., 

(H.3) 
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We then have 

1( 1 1 2 1 3 )
B- I+ -A+ -A +-A + · · · B
1! 2! 3! 


1 1 2 1 3

1+-D+-D +-D +···. (H.4)

1! 2! 3! 

So 

1 1213 ) 1

B(I + !D + !D + !D + · · · B1 2 3


eDn 0 0 0 


eD220 0 0 

B 0 0 eD33 0 B-1. (H.5) 

0 0 



Appendix I 


Chemical Potential 


As is known to all, the chemical potential J.l in the Hubbard model is included in 

the grand canonical partition function to fix the electron number in the system. The 

reason why J.l = U/2 corresponds to half-filling of the system has been stated in [49]. 

Here, we outline the proof. 

In the derivation of the Hubbard Hamiltonian, Wannier functions are used to 

calculate the nearest neighbor hopping integrals, i.e. the hopping parameter tin the 

Hubbard Hamiltonian (3.1). 

(1.1) 

where i and j denote nearest neighbor sites. Suppose that we shift the phase of the 

Wannier representation cf>i(f') --+ ¢~(f')exp(iai), then because these two representations 

describe the same physical system, the grand canonical partition function is invariant 

under such a phase change. Particularly, if we choose 

ai- ai = 1r, fori, j nearest neighbor, (1.2) 

we will get t' = -t and 

(1.3) 

where H0 is the Hubbard model without the chamical potential term and Ne = l:i ni 

is the total electron number operator. 
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Next we do a particle-hole transformation on the Hubbard Hamiltonian, ct. --+ hiu· 

It is easy to show that the Hubbard Hamiltonian undergoes the following transfor

mation 

Ho(t)- J.-LNe = Ho( -t)- (U- J.-L)Nh + (U- 2J.-L)Nt. (I.4) 

Here Nt is the total number of lattice sites in the system, and Nh = Ei hihi is the 

hole number operator. Thus 

Zp.(t) Tre-/3(Ho-P,Ne) 

Trexp[-,B(Ho(-t)- (U- J.-L)Nh + (U- 2f-t)Nt)] 

exp[-,B(U- 2J.-L)Nt]Zu-p.(t), (I.5) 

where in the last step, we have used the property of Eq.(I.3). Taking the partial 

derivative of Eq.(I.5) with respect to J.-L, we obtain 

1 a 
-g a1-llnZP. 

/31 
af.-L
a 

ln{exp[-,B(U- 2J.-L)Nt]Zu-p.(t)} 

1 a 
2Nt- -g a(U _ J.-L) lnZu-p.(t), (I.6) 

or 

(I.7) 


At half-filling, i.e. < Ne >= Nt (the average electron number per site is one), we will 

find 

1 a 
-g a(U _ J.-L) lnZu-p.(t) Nt 

< Ne > 
1 a/3 af.-L lnZp.(t), (I.8) 

which certainly implies that U- J.-L = J.-L or J.-L = U/2. 



Appendix J 

Local Field Change Technique in 

MC 

In the auxiliary field Monte Carlo section, we have deferred the discussion of the 

local field change technique to this appendix. A good reference can also be found in 

[35]. 

We assume that a change in the auxiliary Ising field element on a single lattice 

site i: 

(J.1) 

at time slice Tm = (m- 1/2)/j.T induces a change in Vm(i), which is the diagonal ele

ment of the Hamiltonian and is given by Vm(i) =>..a in our calculation, see Eq.(7.12). 

The local change is represented as 

(J.2) 

The other elements of the Vm (and Vn, n =I= m at different time slices) remain fixed. 

We then have a change Bm -+ Bm;j.m , where the definition of Bm can be found in 

the previous section Eq.( 7.11) and ;j.m is a diagonal matrix with 

;j.m(i, i) = ~~ArOVm(i) =.Nm~i) + 1, 
(J.3)

{ ;j.m(J, J) = 1, for J =/= 'l. 
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The ratio R, see Eq.(7.23) for definition, is 


R _ det(I + Bm-1 · · · B1BL · · · Bmtl.m) 

(J.4)

- det(I + Bm-1 · · · B1BL · · · Bm) ' 

where we have suppressed the spin index in B for simplicity, and we have assumed 

that the imaginary time has been divided into L time slices. Let 

(J.5) 


or 

then we have 

(J.6) 


(J.7) 

So the ratio R can be written as 

R = det(I + (g;;/ - I)tl.m). (J.8)
detg;;;_I 

Thus 

R det(I + (g;;/ - I)tl.m)detgm 

det[(I + (g;;/- I)t1m)9m] 

det[gm(I + (g;;/- I)tl.m)] 

det[I +(I- 9m)(t1m- I)]. (J.9) 

Note that matrix (tl.m - I) has only one non-zero element, i.e., the ith diagonal 

element, which is Nm(i). It follows that 

R = 1 + [1- 9m(i, i)]Nm(i). (J.lO) 

So the ratio of the determinant R can be computed trivially as long as we know 

matrix 9m· 

The next thing to consider is that suppose we accept the local field change ac

cording to the metropolis or heat bath algorithm, how can we calculate the new 

http:Eq.(7.23
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green's function 9m quickly. First, we notice that if we accept the local field change 

¢m(i) --+ ¢m(i) + 6¢m(i), we then proceed to a new lattice site, which is still in the 

mth time slice 

(J.ll) 

9m can be calculated according to a Dyson-like equation, which is about the same as 

in the Gutzwiller projection. 

The process goes as follows. From Eq.(J.ll), we have 

I+ Bm-1 · · · B1BL · · · Bml::.m 


I+ (g~1 - I)t::.m, (J.l2) 


or multiplying by 9m from right 

(J.13) 

Then multiplying by 9m from left, we get 

(J.l4) 

After some collection, we find again the Dyson-like equation 

9m = 9m- (I- 9m)(f::.m- I)gm. (J.l5) 

This Dyson-like equation can then be solved by iteration as before 

9m- (I- 9m)(f::.m- I){I- (I- 9m)(l::.m- I) 

+(I- 9m)2 (f::.m- I) 2 + '· '}9m· (J.16) 

http:Eq.(J.ll
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We know 	that 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 	 1 0 0 0 
(J.17)~m= 

0 0 0 Nm(i) + 1 0 0 

0 0 0 0 1 0 

0 0 	 0 0 0 1 

The matrix (~m- I) then has only one non-zero diagonal element, i.e., the ith element, 

and 

(I- 9mH~m- I)= ( ~ . ; . 7 . ;. ~) , (J.18) 

0 ··· XN ••• 0 

where Xk = (1 - 9m(k, i))Nm(i) for k = 1, · · · , N. It is easy to show that for an 

arbitrary positive integer k, 

(J.19) 

is always true. so 

(J.20) 

or written in matrix elements 

_ _ (. k) _ [bji- 9m(j, i)]Nm(i)gm(i, k) 
(J.21)

gm- gm J, 1+ [1- 9m(i, i)]Nm(i) . 

After such updating is performed on every lattice site in the time slice Tm = 
(m- ~)~T, we can go on to the next time slice by replacing the index m with m + 1, 

and the green's function is 

9m+l 	 (I+ Bm · · · B1BL · · · Bm+I)-1 

BmgmB~1 . (J.22) 



Appendix K 

AMC Details on Tetrahedron and 

Cube Molecules 

We will, in this appendix, introduce the details on how to perform extrapolations of 

tetrahedron and cube molecule energies in auxiliary field Monte Carlo calculation. We 

first list data in the following tables for various temperatures and on-site interaction 

strengths for tetrahedron and cube molecules. Then we will extract the pair-binding 

energy from them, and compare them with the exact diagonalization results, which 

are obtained through 
E·Eie-E;/T 

< E >r= Ei e-Ei/T ' (K.l) 

where Ei is energy levels from exact diagonalization and we have set Kn = 1. 
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T= 2.0 

T = 1.0 

T= 0.5 

T = 0.25 

T=2.0 

T = 1.0 

T=0.5 

T = 0.25 

T= 2.0 

n IJ..T L p, E 
2 0.05 10 -1.825(10) 	 -0.325(2) 
2 0.025 20 -1.813(15) -0.324(2) 
2 0.0125 40 -1.819(14) -0.325(2) 
2 0.00625 80 -1.816(21) -0.327(2) 

-0.329(1) 
2 0.1 10 -0.974(11) 	 -0.612(4) 
2 0.05 20 -0.970(12) 	 -0.607(6) 
2 0.025 40 -0.975(13) 	 -0.605(6) 
2 	 0.0125 80 -0.971(13) -0.605(7) 

-0.605(1) 
2 0.5 4 -0.760(3) 	 -0.925(1) 
2 0.25 8 -0.655(3) 	 -0.875(2) 
2 0.125 16 -0.621(3) 	 -0.848(2) 
2 	 0.0625 32 -0.611(4) -0.839(2) 

-0.826(3) 
2 0.5 8 -0.613(4) 	 -0.966(1) 
2 0.25 16 -0.513(10) 	 -0.918(2) 
2 0.125 32 -0.478(12) 	 -0.891(3) 
2 	 0.0625 64 -0.468(14) -0.885(2) 

-0.873(6) 
3 0.05 10 0.149(9) 	 -0.248(3) 
3 0.025 20 0.154(7) -0.248(2) 
3 0.0125 40 0.152(10) -0.247(3) 
3 0.00625 80 0.155(5) -0.247(3) 

-0.246(1) 
3 0.1 10 0.619(8) 	 -0.502(7) 
3 0.05 20 0.626(8) 	 -0.499(3) 
3 0.025 40 0.624(8) 	 -0.497(4) 
3 	 0.0125 80 0.621(9) -0.496(5) 

-0.495(1) 
3 0.5 4 1.038(11) 	 -0.724(2) 
3 0.25 8 1.255(2) 	 -0.756(2) 
3 0.125 16 1.337(4) 	 -0.673(3) 
3 	 0.0625 32 1.092(26) -0.602(2) 

-0.518(2) 
3 0.5 8 1.254(4) 	 -0.757(2) 
3 0.25 16 1.336(3) 	 -0.672(2) 
3 0.125 32 1.354(3) 	 -0.636(3) 
3 	 0.0625 64 1.358(3) -0.623(2) 

-0.609(2) 
4 0.1 5 2.097(1) 	 0.013(1) 
4 0.05 10 2.097(1) 	 0.018(2) 
4 0.025 20 2.096(1) 	 0.018(1) 
4 	 0.0125 40 2.096(1) 0.022(2) 

0.023(3) 
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n ~T L 1-£ E 
4 0.5 2 2.306(3) -0.327(2) 

T = 1.0 4 0.25 4 2.256(2) -0.237(3) 
4 0.125 8 2.237(2) -0.207(1) 
4 0.0625 16 2.233(4) -0.199(2) 

-0.191(2) 
4 0.5 4 2.462(11) -0.444(6) 

T=0.5 4 0.25 8 2.372(6) -0.335(4) 
4 0.125 16 2.346(8) -0.294(4) 
4 0.0625 32 2.405(10) -0.302(8) 

-0.296(18) 
4 0.5 8 2.518(19) -0.526(5) 

T = 0.25 4 0.25 16 2.436(5) -0.400(2) 
4 0.125 32 2.404(8) -0.353(4) 
4 0.0625 64 2.389(5) -0.340(3) 

-0.325(5) 
5 0.05 10 4.011(5) 0.499(1) 

T=2.0 5 0.025 20 4.012(9) 0.498(2) 
5 0.0125 40 4.013(9) 0.499(2) 
5 0.00625 80 4.012(8) 0.499(3) 

0.500(1) 
5 0.1 10 3.868(9) 0.336(1) 

T = 1.0 5 0.05 20 3.860(7) 0.336(3) 
5 0.025 40 3.860(10) 0.338(3) 
5 0.0125 80 3.862(10) 0.338(2) 

0.339(1) 
5 0.5 4 4.074(2) 0.220(1) 

T=0.5 5 0.25 8 3.959(2) 0.241(1) 
5 0.125 16 3.922(4) 0.248(1) 
5 0.0625 32 3.914(1) 0.250(1) 

0.252(1) 
5 0.4 10 4.110(5) 0.189(3) 

T = 0.25 5 0.25 16 4.018(3) 0.193(3) 
5 0.2 20 3.991(14) 0.192(3) 
5 0.125 32 3.969(4) 0.192(2) 
5 0.0625 64 3.957(3) 0.193(5) 

0.192(1) 
6 0.05 10 5.872(16) 1.143(1) 

T=2.0 6 0.025 20 5.871(10) 1.142(1) 
6 0.0125 40 5.875(17) 1.142(2) 
6 0.00625 80 5.871(20) 1.142(2) 

1.142(1) 
6 0.1 10 5.156(10) 1.053( 4) 

T = 1.0 6 0.05 20 5.152(14) 1.055(3) 
6 0.025 40 5.157(9) 1.053(2) 
6 0.0125 80 5.158(11) 1.054(3) 

1.053(1) 
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Continued n !lr L J1 E 
6 0.5 4 4.985(2) 1.011(2) 

T=0.5 6 0.25 8 4.964(2) 1.014(1) 
6 0.125 16 4.956(4) 1.016(2) 
6 0.0625 32 4.956(3) 1.015(2) 

1.016(2) 
6 0.5 8 4.956(2) 1.056(101) 

T = 0.25 6 0.25 16 4.939(2) 0.998(5) 
6 0.2 20 4.937(8) 0.996(6) 
6 0.125 32 4.928(2) 0.995(7) 
6 0.0625 64 4.919(6) 0.984(40) 

0.998(8) 

Table K.1: Data for extrapolation of ground state energy in a tetrahedron molecule 
for different number of filled electrons n. These data are obtained by setting the on
site Coulomb interaction U = 4t. The last column is energy per bond and is in units 
oft; the extrapolated energy at !lr = 0 limit is also shown immediately following the 
energy data for each !lr's. The units ofT are t, too. Numbers in brackets are errors 
of the last digits. 

n !lr L J1 E 
2 0.5 2 -1.411(3) -0.702(2) 

T = 1.0 2 0.25 4 -1.403(4) -0.694(3) 
2 0.125 8 -1.401(4) -0.694(2) 
2 0.0625 16 -1.401(4) -0.691(2) 

-0.691(3) 
2 0.5 4 -1.118(3) -0.933(1) 

T=0.5 2 0.25 8 -1.256(6) -0.916(2) 
2 0.125 16 -1.168(8) -0.921(2) 
2 0.0625 32 -1.093(5) -0.921(4) 

-0.927(4) 
2 0.5 8 -1.019(4) -0.974(3) 

T = 0.25 2 0.25 16 -1.177(6) -0.960(2) 
2 0.125 32 -1.035(8) -0.961(2) 
2 0.0625 64 -0.955(6) -0.958(4) 

-0.960(4) 
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n /l.7 L J1 EContinued 
2 0.5 10 -1.008(5) 	 -0.973(1) 
2 0.25 20 -0.885(5) 	 -0.964(2)T = 0.20 
2 0.125 40 -0.882(4) 	 -0.963(3) 
2 	 0.0625 80 -0.926(4) -0.961(4) 

-0.961(2) 
3 0.5 2 -0.096(3) 	 -0.664(2) 
3 0.25 4 -0.094(4) 	 -0.658(2)T = 1.0 
3 0.125 8 -0.095(2) 	 -0.655(2) 
3 	 0.0625 16 -0.095(3) -0.654(2) 

-0.653(1) 
3 0.5 4 0.533(2) 	 -0.763(1) 
3 0.25 8 0.434(3) 	 -0.754(2)T=0.5 
3 0.125 16 0.504(3) 	 -0.750(2) 
3 	 0.0625 32 0.520(5) -0.749(2) 

-0.748(1) 
3 0.5 8 0.918(5) 	 -0.767(2) 
3 0.25 16 0.820(6) 	 -0.759(2)T = 0.25 
3 0.125 32 0.890(5) 	 -0.755(2) 
3 	 0.0625 64 0.900(3) -0.756(3) 

-0.755(2) 
3 0.5 10 0.995(8) 	 -0.768(3) 
3 0.25 20 0.895(5) 	 -0.758(4)T = 0.20 
3 0.125 40 0.960(3) 	 -0.757(2) 
3 	 0.0625 80 0.972(1) -0.755(2) 

-0.755(2) 
4 0.5 2 0.852(2) -0.481(1) 

T= 1.0 4 0.25 4 0.849(1) 	 -0.475(1) 
4 0.125 8 0.848(1) 	 -0.473(1) 
4 	 0.0625 16 0.848(1) -0.472(1) 

-0.471(1) 
4 0.5 4 1.147(1) 	 -0.534(1) 
4 0.25 8 1.117(1) 	 -0.531(1)T=0.5 
4 0.125 16 1.130(2) 	 -0.526(2) 
4 	 0.0625 32 1.128(1) -0.525(2) 

-0.522(2) 
4 0.5 8 1.313(2) 	 -0.546(1) 
4 0.25 16 1.271(4) 	 -0.542(4)T = 0.25 
4 0.125 32 1.271(1) 	 -0.538(2) 
4 	 0.0625 64 1.265(3) -0.538(1) 

-0.536(1) 
4 0.5 10 1.344(6) 	 -0.549(9) 

T = 0.20 4 0.25 20 1.296(5) 	 -0.546(10) 
4 0.125 40 1.291(3) 	 -0.542(3) 
4 	 0.0625 80 1.283(2) -0.543(3) 

-0.541(2) 
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Continued n !:iT L J..L E 
5 0.5 2 1.670{1) 	 -0.241{1) 
5 0.25 4 1.665(1) 	 -0.236(1)T = 1.0 
5 0.125 8 1.663(1) 	 -0.235(1) 
5 	 0.0625 16 1.664(1) -0.235(2) 

-0.235(1) 
5 0.5 4 1.658(1) -0.274(1) 

T= 0.5 5 0.25 8 1.681(1) 	 -0.273(1) 
5 0.125 16 1.656(1) 	 -0.270(1) 
5 	 0.0625 32 1.646(1) -0.269(1) 

-0.267(1) 
5 0.5 8 1.661{6) 	 -0.289(1) 
5 0.25 16 1.684(1) 	 -0.291(3)T = 0.25 
5 0.125 32 1.658(1) 	 -0.290(2) 
5 	 0.0625 64 1.649(1) -0.289{1) 

-0.288(1) 
5 0.5 10 1.663(2) 	 -0.300(10) 
5 0.25 20 1.684(4) 	 -0.298(1)T = 0.20 
5 0.125 40 1.659(1) 	 -0.298{1) 
5 	 0.0625 80 1.651(2) -0.297(2) 

-0.297(1) 
6 0.5 2 2.492(2) 	 0.039(1) 
6 0.25 4 2.488(3) 	 0.041(1)T = 1.0 
6 0.125 8 2.488(3) 	 0.042(1) 
6 	 0.0625 16 2.489(4) 0.042(1) 

0.042(1) 
6 0.5 4 2.170(2) 	 0.020(2) 
6 0.25 8 2.204(3) 	 0.020(2)T=0.5 
6 0.125 16 2.167(4) 	 0.022(1) 
6 0.1 20 2.147(2) 	 0.021(1) 
6 	 0.0625 32 2.152(4) 0.022{1) 

0.023(1) 
6 0.5 8 2.012(2) 	 0.010(1) 
6 0.25 16 2.049(2) 	 0.010{2)T = 0.25 
6 0.125 32 2.022{2) 	 0.011(2) 
6 	 0.0625 64 2.013{2) 0.010(1) 

0.010(1) 
6 0.5 10 1.978(2) 	 0.008(2) 
6 0.25 20 2.023(8) 	 0.006{2)T = 0.20 
6 0.125 40 2.002(3) 	 0.008{2) 
6 	 0.0625 80 1.994(2) 0.008(2) 

0.010(1) 

Table K.2: Continued data table for a tetrahedron molecule. Now the parameter 
U= lt. 
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n tl.T L J-t E 

T= 2.0 
6 
6 
6 
6 

0.1 
0.05 
0.025 
0.0125 

5 
10 
20 
40 

0.064(2) 
0.068(2) 
0.067(1) 
0.067(3) 

-0.214(1) 
-0.210(1) 
-0.209(1) 
-0.210(1) 
-0.210(1) 

6 0.25 4 0.311(2) -0.456(1) 
T = 1.0 6 0.125 8 0.332(1) -0.430(1) 

6 0.0625 16 0.337(2) -0.424(1) 
6 0.03125 32 0.341(2) -0.422(1) 

-0.422(1) 

T=0.5 
6 
6 

0.5 
0.25 

4 
8 

0.276(2) 
0.388(2) 

-0.664(1) 
-0.585(1) 

6 0.125 16 0.423(1) -0.555(1) 
6 0.0625 32 0.430(1) -0.547(1) 

-0.538(3) 
6 0.5 8 0.244(3) -0.719(1) 

T = 0.25 6 
6 

0.25 
0.125 

16 
32 

0.390(1) 
0.434(2) 

-0.640(1) 
-0.609(2) 

6 0.0625 64 0.445(3) -0.600(1) 
-0.590(3) 

7 0.1 5 1.024(1) -0.128(1) 
T=2.0 7 0.05 10 1.026(1) -0.124(1) 

7 0.025 20 1.027(1) -0.123(1) 
7 0.0125 40 1.026(1) -0.123(1) 

-0.123(1) 
7 0.25 4 1.102(1) -0.395(1) 

T= 1.0 7 
7 

0.125 
0.0625 

8 
16 

1.118(1) 
1.123(1) 

-0.364(1) 
-0.355(1) 

7 0.03125 32 1.124(1) -0.353(1) 
-0.352(1) 

7 0.5 4 0.943(2) -0.644(1) 
T=0.5 7 

7 
7 

0.25 
0.125 
0.0625 

8 
16 
32 

1.049(2) 
1.081(1) 
1.087(2) 

-0.535(2) 
-0.496(1) 
-0.486(1) 
-0.475(4) 

7 0.5 8 0.772(2) -0.716(1) 
T = 0.25 7 

7 
0.25 
0.125 

16 
32 

0.912(1) 
0.952(1) 

-0.604(1) 
-0.563(1) 

7 0.0625 64 0.960(2) -0.550(2) 
-0.537(3) 

8 0.1 5 2.000(0) 0.010(1) 
T=2.0 8 

8 
0.05 
0.025 

10 
20 

2.000(0) 
2.000(0) 

0.014(1) 
0.015(1) 

8 0.0125 40 2.000(0) 0.015(1) 
0.015(1) 
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Continued 

T = 1.0 

T=0.5 

T = 0.25 

T=2.0 

T=l.O 

T=0.5 

T=0.25 

T=2.0 

T=l.O 

n flT L 	 E!-" 
8 0.5 2 2.000(0) -0.372(1) 
8 0.25 4 2.000(0) 	 -0.270(1) 
8 0.125 8 2.000(0) -0.236(1) 
8 0.0625 16 2.000(0) -0.227(1) 
8 0.03125 32 2.000(0) -0.223(1) 

-0.219{3) 
8 0.5 4 2.000(0) -0.654(1) 
8 0.25 8 2.000(0) -0.431(1) 
8 0.125 16 2.000(0) 	 -0.387(2) 
8 	 0.0625 32 2.000(0) -0.374(1) 

-0.378(2) 
8 0.5 8 2.000(0) 	 -0.686(2) 
8 0.25 16 2.000(0) 	 -0.543(2) 
8 0.125 32 2.000(0) 	 -0.492(2) 
8 	 0.0625 64 2.000(0) -0.478(2) 

-0.463(4) 
9 0.1 5 2.976(1) 	 0.205(1) 
9 0.05 10 2.974(1) 	 0.209(1) 
9 0.025 20 2.975(1) 	 0.210(1) 
9 	 0.0125 40 2.974(1) 0.211(1) 

0.211(1) 
9 0.25 4 2.898(1) 	 -0.062(1) 
9 0.125 8 2.882(2) -0.031(1) 
9 0.0625 16 2.878(1) -0.022(1) 
9 0.03125 32 2.877(1) -0.020(1) 

-0.019(1) 
9 0.5 4 3.057(2) 	 -0.311{1) 
9 0.25 8 2.950(1) 	 -0.202(1) 
9 0.125 16 2.921(2) 	 -0.164(1) 
9 	 0.0625 32 2.914(1) -0.154(2) 

-0.144{4) 
9 0.5 8 3.227{2) 	 -0.384(2) 
9 0.25 16 3.088(3) 	 -0.269(2) 
9 0.125 32 3.048(2) 	 -0.230(2) 
9 	 0.0625 64 3.039(1) -0.218(2) 

-0.207(2) 
10 0.1 5 3.934(1) 	 0.453(1) 
10 0.05 10 3.932(2) 	 0.456(1) 
10 0.025 20 3.933(2) 	 0.457(1) 
10 	 0.0125 40 3.932(1) 0.457(1) 

0.457(1) 
10 0.25 4 3.690(2) 	 0.211(1) 
10 0.125 8 3.667(2) 0.235(1) 
10 0.0625 16 3.660(2) 0.243(1) 
10 0.03125 32 3.659(1) 0.245(1) 

0.247(1) 
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Continued n /).r L J1, E 

T=0.5 
10 
10 
10 
10 

0.5 
0.25 

0.125 
0.0625 

4 
8 
16 
32 

3.725(1) 
3.611(1) 
3.580(1) 
3.570(1) 

0.003(1) 
0.082(1) 
0.111(1) 
0.119(1) 
0.128(3) 

T=0.25 
10 
10 
10 
10 

0.5 
0.25 

0.125 
0.0625 

8 
16 
32 
64 

3.757(2) 
3.608(2) 
3.567(1) 
3.556(1) 

-0.052(2) 
0.026(1) 
0.057(2) 
0.064(3) 
0.074(5) 

Table K.3: Continued data table for a cube molecule. The parameter U = 4t. 

Extrapolations of the data in Table K.1, K.2 and K.3 are shown in Fig. K.1, K.2 

and K.3 below: 

And with the above extrapolation data, the energy of the system in different 

dopings can be shown in Fig. K.4, K.5, K.6, K.7. and K.8. 
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Figure K.l: Extrapolation of energy per bond with .6.7 at different temperatures and 
electron fillings for U = 4t in a tetrahedron molecule. 
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Figure K.2: Extrapolation of energy per bond with D.r at different temperatures and 
electron fillings for U = lt in a tetrahedron molecule. 
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Figure K.3: Extrapolation of energy per bond with !:l.r at different temperatures and 
electron fillings for U = 4t in a cube molecule. 

In Fig. K.9, K.lO and K.ll, we extract the pair binding energy figures from Fig. 

K.4, K.6 and K.7, respectively for different temperatures (we have omitted the error 

bars for a clarity of the figures). 

From Fig. K.4-K.ll, we see the scatter points from auxiliary field Monte Carlo 

calculation are close to the exact diagonalization lines. The difference between them 

shows a systematic deviation, as seen in Fig. K.4-K.8. When the temperature goes 

down, the Monte Carlo data and exact diagonalization data becomes closer and closer, 

which means the correct tendency of Monte Cairo data. 
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details of the exact diagonalization result for half filling at low temperatures. 
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Appendix L 

Details on Hydrogen Calculation 

In previous chapters, we have discussed the results on a hydrogen molecule from 

exact diagonalization, perturbation and Gutzwiller projection calculations. In this 

appendix, we will list the details on exact diagonalization and perturbation calculation 

which can be done analytically. This will also serve as an introduction on how to do 

perturbation on bigger and more complicated molecules, which certainly can not be 

done analytically but by computer techniques. Our exact diagonalization will include 

two models. One is the Hubbard model in Eq.(3.1), and the other is the t- J model 

in Eq.(6.9). 

L.l Calculations on Hubbard Model 

L.l.l Exact Calculation in Half Filling 

The Hamiltonian we are considering is still the Hubbard model in Eq.(3.1). We 

know that each site can have different occupations (t..j,., t, ..j,., 0), denoted as (2, 1, -1, 0) 

respectively. Our basis wavefunctions can be divided into 3 different total spin sectors 

according to the symmetry of the Hubbard model: Sz = 0, Sz = fi and Sz = -fi. 
For Sz = fi, we have only one wavefunction: 

w1 = (1, 1), (L.1) 
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where the first number in the right hand side bracket denotes the occupation infor

mation in the first hydrogen atom, and the second number in the bracket denotes 

that of the second hydrogen atom. The expectation value of Hubbard Hamiltonian 

H is easily calculated and the result is simply 

(1.2) 

For Bz = -fi, the calculation is basically the same 

(-1,-1) (1.3) 

(1.4) 

or t 2 = 0. 

The most interesting part comes from the Bz = 0 sector, where there are 4 basis 

wavefunctions: 

¢1 = (2,0) 

¢2 = (1, -1) 
(1.5) 

¢3 = (-1, 1) 

¢4 = (0, 2). 

In units of t, we can write , according to the rules discussed in the exact diagonaliza

tion chapter, the matrix representation of ii 

!l. 
t -1 1 0 

-1 0 0 -1 
(1.6)ii= 

1 0 0 1 

0 -1 1 u 
t" 

Exact disgonalization of Eq.(1.6) gives 

U/t, (1.7) 

0, (1.8) 

(¥) ± .j(¥)2 + 16 
(1.9)

2 
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Comparing the above eigenvalues, we find that the ground state energy of the hydro

gen molecule is 

(-Q:) - J(!l.)2 + 16 
E (2) = t t (L.10)

0 2 ' 

and two wavefunction is in the spin-singlet sector. 

L .1. 2 Exact Calculation in Other Fillings 

Now if the hydrogen molecule is filled with 3 electrons, we will have 4 different 

occupations, denoted by 4 wavefunctions: 

¢1 = (2, 1) 

¢2 = (2,-1) 
(L.ll) 

¢3 = (1, 2) 

¢4=(-1,2). 

Then in units oft, we write the Hamiltonian ii in matrix form 

U/t 0 1 0 

il= 
0 

1 

U/t 
0 

0 

U/t 
1 

0 
(L.12) 

0 1 0 U/t 

Exact diagonalization of Eq.(L.12) gives 

u 
E1,2 -+1 (L.13)

t ' 
u 

E3,4 --1 (L.14)t ' 
(L.15) 

Thus the ground state energy of the H:; molecule is 

u
Eo(3) =-- 1. (L.16)

t 

http:Eq.(L.12
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Similar calculations are applied to the hydrogen molecules filled with 1, 4 or 0 

electrons, and we list results below: 

Eo(1) (1.17) 

Eo(4) (1.18) 

Eo(O) (1.19) 

Note all the energies are in units oft. The binding energies for electrons or holes 

are also extracted 

E0 (4) + Eo(2)- 2Eo(3) 

1 u \j u-(-)-- (-) 2 + 16 + 2 (1.20)
2 t 2 t ' 

Eo(2) + Eo(O)- 2Eo(1)1 1J UU-(-)-- (-)2 + 16 + 2. (1.21)
2 t 2 t 

L.1.3 Perturbation Calculation 

If we treat the on-site Coulomb interaction term as a perturbation, then the 

unperturbed Hamiltonian is given by 

A "'"' + (1.22)Ho = -t L....J (ciuCju + h.c.), 
<i,j>u 

or in matrix representation 

A ( 0 -t)Ho= . (1.23) 
-t 0 

Diagonalization of Eq.(1.23) is trivial and we get two energy levels t 1 = -1 and t2 = 1 

(both in units oft). Thus to the oth order perturbation, the ground state energy of 

the hydrogen molecule is given by 

E(O) = -2, (1.24) 

and the unperturbed wavefunction is spin-singlet 

(L.25) 

http:Eq.(1.23
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where Wf3 is the eigenfunction corresponding to eigenvalue E2 and is going to be 

introduced below. 

The perturbation term is the on-site Coulomb interaction 

(L.26) 

In order to do perturbation calculation, we need the eigenfunctions of the unperturbed 

system. For E1 = 1, the eigenfunction is 

(L.27) 

And for E2 = -1, 

(L.28) 

Thus, we have a transformation of operators between real space and k space 

(L.29) 

The perturbation Hamiltonian is then transformed to 

U{(walc;!"t + Wf31ctt)(Wa1Cat + Wf31Cf3t)(walc;!"+ + Wf31ct+)(wa1Ca.J. + Wf31Cf3.J.) 

+('lla2c;!"t + Wf32ctt)(wa2Cat + Wf32Cf3t)(wa2c;!"+ + Wf32ct1)(wa2Ca.J. + Wf32Cf3.J.)} 

~ { natna.). + nf3tnf3.). + 2natnf3.). + c;!"tcf3tC~+Cf3.j. + cttcatC~.).Cf3.j. + 
(L.30) 

With Eq.(L.30), first order perturbation is simply given by 

< w13twf3+ih'iw 13tw !3+ > 
u 
2{0 + 1 + 0 + 0 + 0 + 0 + 0 + 0} 

u 
(L.31)

2 

http:Eq.(L.30
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~~ = W,etWat ~2 = W,etWat ~3 = WatWa.j.. 
E1 = 0 E2 = 0 E3 = 2t 

Table L.1: Excited state of a hydrogen molecule. 

For the second order perturbation, we have 3 different excited states, see Table 5. 

The second order perturbed energy is then easy to obtain 

2t I < ~ilh'l~o > 1 

i=l Eo- Ei 

I < ~olh'l~3 > 1 
2 

Eo -E3 
(¥)2 

-2t- 2t
u2 

- (L.32)
16t 

Thus in units oft, the ground state energy of a hydrogen molecule to the second order 

perturbation is 

E(o) + E(l) + E(2)E 
1 u 1 u 2

-2 + -(-)- -(-). (L.33)
2 t 16 t 

L.2 Calculations on t- J Model 

As the calculation is roughly the same as what we have done on the Hubbard 

model, we will only give details in the half-filling case. 

Our basis wavefunctions can be divided into 3 different total spin sectors: Sz = 0, 

Sz = 'fi, and Sz = -'fi. For Sz = 'fi, we have only one wavefunction: 

w1 = (1, 1). (L.34) 

The expectation value oft - J model Hamiltonian can then be easily evaluated 

(L.35) 
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For Bz = -fi, the same calculation gives 

E2 =< w-11HIW-1 >= 0, (L.36) 

where, w_1 = (-1,-1). 

For Sz = 0 sector, we have two basis wavefunctions: 

¢1 = (1, -1) 
(L.37)

{ ¢2 = (-1, 1). 

In units of J, we can write the matrix representation of the t- J Hamiltonian if 

(L.38) 

Exact diagonalization of Eq.(L.38) gives 

0, (L.39) 

-J. (L.40) 

Comparing the above eigenvalues, we find the ground state energy of the hydrogen 

molecule, which is 
. 2 

Et-J --J--~ (L.41)0 - - u. 

This ground state energy of the t - J model can also be obtained if we take the large 

Uft limit in Eq.(L.lO). 

http:Eq.(L.lO
http:Eq.(L.38


Appendix M 

C5o Molecule Coordinate Data 

The following C60 molecule coordinate data are taken from the website: 

www.ccl.net/ccafdata/fullerenes, where a lot of other molecular data can be found, 

too. These cartesian coordinate data can be converted to real length if we use the 

radius or diameter (7 A) of a C60 molecule. 

Table M.1: Cartesian coordinates of atoms in a C60 molecule. First column is the 
label of the 60 atoms, the fifth column is the nearest neighbor and last 2 columns are 
the 2 next nearest neighbors. 

atom number X y z n1 nn1 nn2 
1 0.000000 3.449997 0.684800 58 7 26 
2 3.002716 1.408493 -1.170975 59 9 27 
3 0.000000 -3.449997 0.684800 48 6 31 
4 2.279007 -2.579483 -0.723694 60 10 28 
5 -2.579483 -0.723694 2.279007 49 8 32 
6 -1.170975 -3.002716 1.408493 56 3 29 
7 -1.170975 3.002716 1.408493 50 1 33 
8 -2.579483 0.723694 2.279007 57 5 30 
9 2.279007 2.579483 -0.723694 46 2 34 
10 3.002716 -1.408493 -1.170975 47 4 35 
11 -3.002716 -1.408493 -1.170975 43 20 36 
12 -3.002716 1.408493 -1.170975 44 16 37 
13 -0.723694 2.279007 -2.579483 45 17 38 
14 0.684800 0.000000 -3.449997 41 18 39 
15 -0.723694 -2.279007 -2.579483 42 19 40 
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atom number 
16 

X y z nl nnl nn2 

-2.279007 2.579483 -0.723694 38 12 50 

17 0.723694 2.279007 -2.579483 39 13 46 

18 1.408493 -1.170975 -3.002716 40 14 47 

19 -1.170975 -3.002716 -1.408493 36 15 48 

20 -3.449997 -0.684800 0.000000 37 11 49 

21 2.579483 0.723694 2.279007 53 22 25 

22 2.579483 -0.723694 2.279007 54 21 23 

23 1.408493 -1.170975 3.002716 55 22 24 

24 0.684800 0.000000 3.449997 51 23 25 

25 1.408493 1.170975 3.002716 52 21 24 

26 1.170975 3.002716 1.408493 34 1 52 

27 3.449997 0.684800 0.000000 35 2 53 

28 2.279007 -2.579483 0.723694 31 4 54 

29 -0.723694 -2.279007 2.579483 32 6 55 

30 -1.408493 1.170975 3.002716 33 8 51 

31 1.170975 -3.002716 1.408493 28 3 55 

32 -1.408493 -1.170975 3.002716 29 5 51 

33 -0.723694 2.279007 2.579483 30 7 52 

34 2.279007 2.579483 0.723694 26 9 53 

35 3.449997 -0.684800 0.000000 27 10 54 

36 -2.279007 -2.579483 -0.723694 19 11 56 

37 -3.449997 0.684800 0.000000 20 12 57 

38 -1.170975 3.002716 -1.408493 16 13 58 

39 1.408493 1.170975 -3.002716 17 14 59 

40 0.723694 -2.279007 -2.579483 18 15 60 

41 -0.684800 0.000000 -3.449997 14 42 45 

42 -1.408493 -1.170975 -3.002716 15 41 43 

43 -2.579483 -0.723694 -2.279007 11 42 44 

44 -2.579483 0.723694 -2.279007 12 43 45 

45 -1.408493 1.170975 -3.002716 13 41 44 

46 1.170975 3.002716 -1.408493 9 17 58 

47 2.579483 -0.723694 -2.279007 10 18 59 

48 0.000000 -3.449997 -0.684800 3 19 60 

49 -3.002716 -1.408493 1.170975 5 20 56 

50 -2.279007 2.579483 0.723694 7 16 57 

51 -0.684800 0.000000 3.449997 24 30 32 

52 0.723694 2.279007 2.579483 25 26 33 

53 3.002716 1.408493 1.170975 21 27 34 

54 3.002716 -1.408493 1.170975 22 28 35 

55 0.723694 -2.279007 2.579483 23 29 31 

56 -2.279007 -2.579483 0.723694 6 36 49 

57 -3.002716 1.408493 1.170975 8 37 50 

58 0.000000 3.449997 -0.684800 1 38 46 

59 2.579483 0.723694 -2.279007 2 39 47 

60 1.170975 -3.002716 -1.408493 4 40 48 
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