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Abstract

Kinematic simulation (KS) is a means of generating a turbulent-like velocity field, in

a manner that enforces an input Eulerian energy spectrum. Such models have also

been applied in particle-laden flows, due to their ability to enforce spatial organiza-

tion of the fluid velocity field when simulating the trajectories of individual particles.

A critical evaluation of KS is presented; in particular, its ability to reproduce single-

particle Lagrangian statistics is examined. Also the ability of KS to reproduce the

preferential concentration of inertial particles is explored. Some numerical results are

presented, in which fluid tracers and inertial particles are transported alternatively

by (1) simulated turbulence generated by direct numerical simulation (DNS) of the

incompressible Navier-Stokes equations, and (2) KS. The effect of unsteadiness for-

mulation in particular is examined. It is found that even steady KS qualitatively

reproduces the continuity effect, clustering of inertial particles, elevated dispersion of

inertial particles and the intermittent turbulence velocity signal. A novel method is

then motivated and formulated, in which, for input RANS parameters, a simulated

spectrum is used to generate a KS field which enforces a target Lagrangian timescale.

This method is then tested against an existing experimental benchmark, and good

agreement is obtained.
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Notation and Abbreviations

Acronyms

CTE Crossing trajectories effect

DNS Direct numerical simulation

KS Kinematic simulation

RANS Reynolds-average Navier-Stokes

SSF Stochastic separated flow

TLKS Target Lagrangian integral timescale Kinematic Simu-

lation
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Roman letters

Bij Large-scale anisotropy tensor

C Courant number

D2 Correlation dimension

D2 Asymptotic correlation dimension

E(κ) Eulerian energy spectrum

E (κ) Cumulative distribution of energy in spectral space

f(r) Lateral Eulerian two-point velocity autocorrelation

g(r) Longitudinal Eulerian two-point velocity autocorrela-

tion

k Turbulent kinetic energy

L DNS domain length

LE, L11 Integral length scale

Nκ Number of KS modes

RE
ij(r, τ) Eulerian velocity autocorrelation tensor

RL
ij(τ) Lagrangian velocity autocorrelation tensor

Re Taylor-scale Reynolds number

SE(r) Eulerian second-order structure function of velocity

SL(τ) Lagrangian second-order structure function of velocity

St Stokes number

TL Lagrangian integral timescale

t Time

uf Fluid velocity

up Particle velocity

urms Root mean squared turbulent fluctuating velocity

xp Particle position vii



Greek letters

γu Skewness of velocity field

∆t Time step

ε Energy dissipation

η Kolmogorov length scale

κ Wavenumber in spectral space

κn Sequence of wavenumbers used in kinematic simulation

κ̃1 Lowest wavenumber of input spectrum for Target-

Lagrangian integral timescale Kinematic Simulation

κ̃N Highest wavenumber of input spectrum for Target-

Lagrangian integral timescale Kinematic Simulation

λ Unsteadiness parameter in KS

µ Dynamic viscosity

ν Kinematic viscosity

ρf Fluid density

ρp Particle density

τη Kolmogorov timescale

τp Particle relaxation time

ωn “Turnover” frequency of the n-th KS mode
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Diacritics and brackets

〈 〉 The spatial average (in the Eulerian frame of reference),

and over the ensemble of realizations OR average over

particle locations (in the Lagrangian frame of reference),

and over the ensemble of realizations

[ ] Average over ensemble of realizations

(̂) Fourier transform
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Chapter 1

Introduction

1.1 Background and objectives

Particle-laden flows are a class of two-phase flows in which one of the phases is a

continuously connected fluid, and the other phase is comprised of small, immiscible,

dilute particles dispersed throughout the fluid. The modelling of turbulent particle-

laden flows can be applied to a tremendous range of phenomena of environmental and

industrial interest, such as the dispersion of pollutants in the atmosphere, fluidiza-

tion and turbulent mixing in combustion processes, deposition of medicinal aerosols

in the human body, processing and transport of liquid/solid nuclear waste and water

droplet formation within clouds. Many physical/chemical processes depend upon the

transport and clustering properties of the dispersed species, hence the utility of com-

putational models of these processes depends on the ability to reproduce preferential

concentration and dispersion.

Even single-phase turbulent flows pose enormous challenges for researchers; the
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nonlinearity of the governing Navier-Stokes equations renders them resistant to ana-

lytical treatments. In practice, filtered or averaged equations are solved (with appro-

priate closure models) to achieve a reasonable computational cost. These difficulties

are exacerbated with the addition of a particle phase, since a balance must be sought

in simulating the turbulence in a manner which is computationally tractable, but

does not sacrifice the detailed, spatially and temporally-correlated information that is

“seen” by the dispersed particles. If the particles are treated in the Lagrangian frame

of reference, and if the only fluid information available is the time-averaged statistics

(as in the Reynolds-averaged Navier-Stokes (RANS) context), one can stochastically

generate a history of correlated fluid velocities seen by individual particles, (via a

discretized solution of a governing stochastic differential equation) in a manner which

reflects these statistics - this information is then used to integrate the (Lagrangian)

momentum equation to simulate an individual particle trajectory. This algorithm

is applied to a whole ensemble of computational dispersed particles. Such methods

are known as stochastic separated flow (SSF) models (Gosman & Ioannides (1983);

MacInnes & Bracco (1992)).

SSF approaches, however, lack the ability to reproduce key hallmarks of turbu-

lence structure in a comprehensive manner (this is addressed in detail in Sec. 2.2.3).

A potential alternative method of enforcing spatial structure of the turbulence is to

stochastically generate an entire turbulent-like flow field (rather than synthesizing

velocities independently for each particle), in a manner which reflects the expected

Eulerian second-order statistics - this is the idea behind kinematic simulation (KS),

a method which has its foundation in the work of Kraichnan (1970) and Fung et al.
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(1992), and has since attracted much attention from both pure and applied fluid dy-

namicists. While there exists a body of literature in which the Lagrangian properties

of KS turbulent-like flows are examined, its applicability to fundamentally important

features of particle dynamics (single-particle dispersion, as well as clustering), along

with its potential utility as a complement to RANS treatments, have received little

attention.

The specific questions addressed here are:

• If realistic Eulerian second-order statistics are known, to what extent does

KS reproduce the single-particle Lagrangian properties of turbulence, the La-

grangian properties of inertial particles (in particular in the presence of gravity),

and the clustering properties of inertial particles? In particular, what is the ef-

fect of the unsteadiness formalism in KS?

• Can a link between Eulerian and Lagrangian statistics of KS be formalized? If

so, does this hold any utility as a complement to RANS treatments of particle-

laden flows?

1.2 Thesis outline

The thesis is structured as follows: in Chapter 2, the appropriate background material

and literature review are presented. In Chapter 3, the methodology for the comparison

between KS and direct numerical simulation is given, the results of which are given in

Chapter 4. In Chapter 5, a novel link between Eulerian and Lagrangian properties of

KS are established, and a methodology for a new Target Lagrangian integral timescale

Kinematic Simulation (TLKS) is proposed. Also in Chapter 5, the TLKS method is

3
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tested against the experimental benchmark of Snyder & Lumley (1971). A summary

of interpretations of the results, along with suggestions for future work, are given in

Chapter 6.

4



Chapter 2

Background and Literature Review

2.1 Fluid phase

2.1.1 Governing fluid equations

The fluid dynamics are assumed to be governed by the traditional incompressible

Navier Stokes equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∆u (2.1)

∇ · u = 0

Hence to model a fluid, these nonlinear partial differential equations must be ap-

propriately rendered as a system of (algebraic) linear equations, whose rank scales

as the number of grid points. A time-stepping numerical method (with sufficient

resolution in space and in time to ensure stability and convergence) is called di-

rect numerical simulation (DNS). However real turbulence encompasses a large range
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of length/timescales, and for many real-world (high Reynolds-number) applications,

treatment with DNS remains far out of reach, even with today’s best supercomputers.

Fortunately there exist alternatives to DNS; in turbulence modelling, one employs

known statistical symmetries of real turbulence to reduce a given problem to that

of finding a solution of the filtered or averaged Navier-Stokes equations. A common

class of methods is the previously-mentioned RANS, in which a time-averaged version

of (2.1) is modelled. In a widely applied sub-class of such models, the transport of

turbulent kinetic energy (k) and its dissipation (ε) are modelled, which can in turn

be used as inputs for particle modelling (as seen in Sec. 2.2.3).

2.2 Particle phase

2.2.1 Eulerian treatment of particle phase

The dispersed phase can be treated in either the Eulerian or Lagrangian framework.

In the Eulerian framework, the particle phase is treated as a continuum, for which a

transport equation of the scalar quantity Φ (local particle concentration) is assumed

(as in Elghobashi (1994)):

∂

∂t
(Φpρp) +∇ · (ρpΦpup) = 0 (2.2)

D

Dt
(ρpΦpup) = ∇ · (Φpτ) + ρpΦpg (2.3)

where ρp, up and τ represent the particle density, local particle velocity and “particle

stress tensor” respectively. In other words, the particle phase is itself treated as a

fluid.

6
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Eulerian particle models bear the advantage of low computational cost, and they

allow the particle statistics to be readily determined at a given location. Also, the

interaction between the fluid and particle phases can be easily accommodated by the

inclusion of momentum source/sink terms. These models are often applied to the

modelling of low-inertia particles, such as in indoor pollutant modelling (Murakami

et al. (1992), Posner et al. (2005), Zhao et al. (2005) and Zhao et al. (2008)).

However for heavier inertial particles, it then becomes necessary to resort to a great

deal of empiricisms in order to determine an appropriate effective particle diffusivity,

and in order to model the higher order terms which result from averaging. Even if this

were achieved, gradient diffusion schemes - which are typically used to model higher

order terms - are unable to account for inertia (Elghobashi (1994)). In addition, such

approaches fail to capture the multifractal nature of particle clustering (Bec (2005)).

Consequently such an approach is avoided here.

2.2.2 Lagrangian treatment of particle phase

Particles can be treated in the Lagrangian framework, in which the dynamics are

analyzed from the point of view of an individual particle, rather than fixed positions

in space. In realistic scenarios, one must track a large number of trajectories, in order

to recover meaningful ensemble statistics, which renders such an approach generally

more computationally expensive than its Eulerian counterpart, though it avoids the

unphysical assumptions that underpin “diffusive” transport. The Lagrangian position

equation for a given particle is:

dxp
dt

= up (2.4)

7
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where xp and up respectively refer to the position and velocity of a particle. For a

passively advected particle (like a fluid tracer), the velocity is simply recovered from

the (directly numerically simulated or modelled) fluid velocity field, via an appropriate

interpolation scheme. For an inertial particle (whose density differs from the fluid

which contains it), its acceleration is proportional to a variety of forces acting upon

it, the formulation of which is the subject of an expansive body of literature (Basset

(1888), Boussinesq (1903), Oseen (1927), Tchen (1947), Corrsin & Lumley (1956),

Buevich (1966), Maxey & Riley (1983)). The following is the general inertial particle

momentum equation, along with the interpretation of the various terms (as given by

Elghobashi & Trusedell (1992)):

mp
dup
dt

=mf
Duf
Dt

(force due to pressure gradient and viscous stresses)

+
mf

2

(Duf
Dt
− dup

dt

)
(added or “virtual” mass)

+mp
f

τp
(uf − up) (modified Stokes drag)

+
3

2
d2p
√
πρfµf

∫ t

−∞

d
dτ (uf − up)√

t− τ
dτ (Basset (history) force)

+mpF (body force)

(2.5)

the variables have the following interpretations:

8
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Parameter Interpretation

mp particle mass

mf mass of displaced fluid

dp particle diameter

µ fluid dynamic viscosity

F body force (typically due to gravity)

uf fluid velocity

up particle velocity

In the Stokes’ drag term of (2.5), τp is given as:

τp =
d2p

18ν

ρp
ρf

(2.6)

and is referred to as the particle relaxation time. This quantity is a timescale of the

particle’s reaction to changes in the fluid velocity field. Also in the Stokes drag term,

f is given as

f = 1 + 0.15Re0.687p (2.7)

and represents a high Reynolds number correction (Clift et al. (1978)), in which Rep,

the particle Reynolds number, is defined as:

Rep =
dp|uf − up|

ν
(2.8)

For many practical purposes, in which the density of the particles greatly exceeds

that of the fluid (which will be assumed here), only the forces due to Stokes drag and

gravity are retained (Maxey & Riley (1983), Mei et al. (1991), Armenio & Fiorotto
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(2001)), which yields a simplified momentum equation:

d

dt
up(t) =

f

τp

(
uf (xp(t), t))− up(t)

)
+ F (2.9)

A parameter of interest, which will be encountered later, is the Stokes number, defined

as:

St =
τp
τη

(2.10)

where τη is the Kolmogorov timescale, that is, the smallest length scale of the turbulent

cascade. The interface between the (modelled or directly simulated) flow field and the

inertial particle motion is given by the fluid velocity at the inertial particle location,

uf (xp(t), t), and is seen in the drag term of (2.5).

Broadly speaking, inertial particles can either dissipate or enhance the fluid turbu-

lence, depending on their size and mass loading. If the fluid influences the particles,

and vice versa, this is referred to as two-way coupling. If the fluid influences the parti-

cles and the opposite is not true (which can be assumed if the particles are sufficiently

small and dilute (Elghobashi (1994))), then one has one-way coupling - this will be

assumed throughout this investigation. In addition, the particle phase is assumed to

be sufficiently dilute, such that particle collisions can be neglected.

2.2.3 Particle modelling within a RANS context

A great deal of particle-laden flow modelling occurs in flows for which only the time-

averaged fluid information is given. Mathematically, a RANS decomposition is given

as uf = uf + u′f , where uf is the mean velocity (given from the RANS solution)

10
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and u′f is the fluctuating velocity, which must in turn be modelled. In SSF models,

the trajectories of individual Lagrangian particles are simulated via the integration

of an appropriately formulated stochastic differential equation, which constructs an

appropriate distribution of u′f over the particle ensemble.

For example, a widely applied variety of SSF employs the Langevin equation

(Thomson (1984); Bocksell & Loth (2006); Dehbi (2011)):

duf = −uf
T
dt+ dξ(t) (2.11)

where ξ is a random function (with appropriate moments, such that the expected

variance of the random variable uf is enfroced), and T is an appropriate timescale

of the decorrelation of fluid velocities (often assumed to be the Lagrangian integral

timescale, defined in Sec. 2.2.5). To resolve the trajectory of an individual Lagrangian

particle, a discretized version of (2.11) is solved, say:

uf (t+ ∆t) = R(∆t)uf (t) + η (2.12)

where R(t) = exp(−∆t/T ), and η is a random variable with variance (1 − R(∆t))2.

Despite the widespread application of such models, there exists a number of significant

drawbacks:

• As is inevitably the case with models, one is presented with dilemmas regarding

which physically realistic aspects of particle transport one wishes to reproduce.

For instance, one must choose to either satisfy a well-mixed condition, or forcing

with the appropriate higher-order moments to ensure an appropriate distribu-

tion of particle velocities (Thomson (1984, 1987)).

11
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• The treatment of particle velocity histories as random processes may not be

applicable in real turbulence (Thomson (1987)). In particular, inertial parti-

cles drifting through real turbulence exhibit a certain “memory” of the spatial

structure, which manifests itself in the Lagrangian statistics - for example, the

continuity effect (defined in Sec. 2.2.5). Various authors have proposed modifi-

cations to recreate, in some sense, this impact on Lagrangian statistics (Lu et al.

(1993); Wang & Stock (1993); Oesterlé & Zaichik (2004); Hennick & Lightstone

(2000)), while appealing to heuristic arguments about the expected behaviour

of particle statistics in certain situations. Such models have been modestly suc-

cessful. Notwithstanding, the distribution and temporal structure of turbulent-

like velocities arising from random processes only approximately conform to the

properties of real turbulence (Thomson (1984); Lightstone (2007)).

• Each particle experiences a unique and independent series of simulated turbulent

fluid velocities, generated from something like (2.12). Thus a given particle

does not “know” what another particle sees, even if they are very close to

one another, hence any type of sensible spatial correlation, and consequently

preferential concentration, cannot be reproduced by such methods.

The difficulty in reproducing realistic particle behaviour is often attributed to the

inability of SSF models to reproduce turbulence structure - such a statement mer-

its some unpacking. What properties of an ensemble of Lagrangian particles are a

result of “turbulence structure”, and which are not? Of course there does not ex-

ist “structure”-less turbulence, so the meaning of this statement is not immediately

evident. The foundation of stochastic Lagrangian treatments of particle motion is

the representation of particle velocities as random variables. The properties of these

12
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random variables should, in a sense, conform to properties of corresponding Eulerian

random variables, which are assumed to characterize the turbulent flow - but it cer-

tainly cannot be said that this is the raison d’être of such models. Indeed the point

of stochastic Lagrangian models is to achieve results that simpler models cannot; in

particular, the correlation between the random variables, and all statistics for which

the correlation is the foundation. “Structure” is interpreted is being manifested in

the timescales of such correlations, and the only arbiter for the robustness of a par-

ticular stochastic Lagrangian model is whether or not structure - in this sense - is

reproduced.

2.2.4 Kinematic simulation

Rather than surmising a relationship between velocity random variables underpinned

by Lagrangian autocorrelations, as is done in SSF models, the particle velocity his-

tories can be implicitly related to an underlying stochastically-generated flow field,

in a manner that enforces, in a sense, the appropriate Eulerian autocorrelations. An

illustration of KS and SSF is given in Fig. 2.1. Fortunately, the behaviour of the

Eulerian second-order statistics in turbulence is well-documented; in particular, the

Eulerian energy spectrum is known to exhibit a universal behaviour over the inertial

range of scales, due to the self-similar transfer of energy from larger to smaller eddies

(see Fig. 2.2). It is emphasized that KS is still a stochastic Lagrangian model; when

the trajectory of a given particle is simulated, the turbulent-like field is reconstructed

only at the particle location.

A KS field is constructed by summing randomly oriented sines and cosines of

varying spatial scales, and whose amplitudes are determined by this input spectrum

13
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Figure 2.1: An ensemble of particles, transported by two alternative methods of sim-
ulating the turbulent flow that contains them. In the top panel, the chains of arrows
represent histories of the simulated turbulent fluctuating velocity. The processes for
generating these velocities are independent for each particle, so particles can expe-
rience very different “turbulent” fluid velocities, even if they are very close to one
another. In the bottom panel, turbulent-like velocity vector fields are reconstructed
via summation of trigonometric functions (which are referred to here as KS modes)
of varying wavelengths, amplitudes and orientations. For the purpose of visualiza-
tion, they are here depicted as waves, though in fact they are defined on an entire
3D domain. The simulated velocities are reconstructed from the summation of KS
modes only at the particle locations, for the purpose of simulating Lagrangian particle
transport.
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Figure 2.2: A typical Eulerian energy spectrum for homogeneous, isotropic turbulence
in a periodic domain (taken from a DNS, described in Sec. 3.1)

- this is akin to the manner in which a physical-space field is reconstructed from its

Fourier series. While there exist slight variations of KS techniques (which is discussed

in further detail in Sec. B.1), this investigation will adhere to a commonly applied

version in which the energy is enforced in every KS realization: (as in Thomson &

Devenish (2005); Nicolleau & Abou El-Azm Aly (2012)):

uf (x, t) =
Nκ∑
n=1

an cos(κn · x + ωnt) + bn sin(κn · x + ωnt) (2.13)

where the κn are randomly sampled vectors, whose orientations are uniformly dis-

tributed over a sphere. Also an and bn are chosen with random orientations, but

under the constraint that they be perpendicular to κn:

an · κn = 0 and bn · κn = 0 for all n (2.14)
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Also |κn| = κn, where κn is the sequence of Nκ wavenumbers for which the spectrum

is given. Consequently E(κn) is the sequence of corresponding energy density values.

The magnitudes of the vectors an and bn should be chosen such that the appropriate

energy density at each particular scale is enforced:

|an|2 = |bn|2 = 2E(κn)∆κn (2.15)

where ∆κn is the interval width associated with the wavenumber κn (See Sec. B.2

for a derivation of (2.15)). In the literature, ∆κn is commonly given as

∆κn =



κn+1−κn
2

if n = 1

κn+1−κn−1

2
if 2 ≤ n ≤ Nκ − 1

κn−κn−1

2
if n = Nκ

(2.16)

The given sequence of wavenumbers, κn, can be algebraic, geometric, or arithmetic

- in any case the sequence should be sufficiently dense such that no mode (with a given

orientation) dominates, and such that each dimensional component of the turbulent-

like field enforces the appropriate fluctuating velocity. The definition of the term ωn is

somewhat open to interpretation, but it is generally meant to enforce the unsteadiness

of the turbulence - this is discussed in further detail in Sec. 2.3.1.

2.2.5 Lagrangian statistics

Much literature has focused on whether KS can reproduce pairwise dispersion of fluid

particles, defined as:

〈|∆l(t)|2〉 (2.17)
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where ∆l(t) = l(t)− l(0), and l(t) = x
(1)
p (t)−x

(2)
p (t), with each x(1) and x(2) referring

to the positions of a particular particle pair with some imposed initial separation

l0, which gives |∆l(0)| = |x(1)
p (0) − x

(2)
p (0)| = l0. In this area, some results have

reproduced good agreement with either benchmark DNS’s and/or theoretical scal-

ing relations (Malik (1996); Malik & Vassilicos (1999); Nicolleau & Vassilicos (2003);

Nicolleau & Abou El-Azm Aly (2012)), however this topic is not without contro-

versy, with others disputing the ability to reproduce key benchmark scale relations,

notably Richardson’s law of pairwise dispersion (Thomson & Devenish (2005); Eyink

& Benveniste (2012)).

The scope of this investigation will encompass single-particle Lagrangian statistics,

in particular single-particle dispersion, or simply dispersion. This is defined as the

mean-squared displacement from the initial particle position. Mathematically, the

i-th component of displacement from initial position is defined as:

yp,i(τ) = xp,i(t+ τ)− xp,i(t) (2.18)

the mean-corrected displacement from initial position will be denoted as Yp,i(τ):

Yp,i(τ) = yp,i(τ)− 〈yp,i(τ)〉 (2.19)

where 〈·〉 denotes the average over an ensemble of particles, and over the ensemble of

flow realizations. “Dispersion” will refer to the mean square of this quantity, or the

variance of displacement from initial position:

〈Y 2
p,i(τ)〉 =

〈(
yp,i(τ)− 〈yp,i(τ)〉

)2〉
(2.20)
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Closely linked to dispersion is the Lagrangian velocity autocorrelation tensor:

RL
ij(τ) =

〈up,i(xp(t), t)up,j(xp(t+ τ), t+ τ)〉√
〈(up,i(xp(t), t))2〉

√
〈(up,j(xp(t+ τ), t+ τ))2〉

(2.21)

Here, ui is the i-th component of the particle velocity vector up. When no significant

difference is expected between the diagonal components of RL
ij, the related scalar

quantity, RL, will be employed, which is defined with inner products:

RL(τ) =
〈up(t+ τ) · up(t)〉√
〈|up(t+ τ)|2〉

√
〈|up(t)|2〉

(2.22)

and similarly for all subsequently defined Lagrangian statistics. As proven in the

classical work of Taylor (1921), the relationship between the autocorrelation and

dispersion is given as:

d

dτ
〈Y 2

p,i(τ)〉 = 2〈u2p,i〉
∫ τ

0

RL
ii(τ

′) dτ ′ (2.23)

For long times, the previous equation reduces to:

Λi(τ) = 〈u2p,i〉TLi (2.24)

where Λi(τ) = 1
2
d
dτ
〈y2p,i(τ)〉 is the diffusivity, and TLi , the Lagrangian integral timescale,

is defined as:

TLi =

∫ ∞
0

RL
ii(τ) dτ (2.25)

where the double appearance of the i subscript does not imply summation, rather the

diagonal components of the autocorrelation tensor.
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Closely linked to the autocorrelation tensor is the structure function tensor, de-

fined as:

SLij(τ) =
〈(
up,i(xp(t+ τ), t+ τ)− up,j(xp(t), t)

)2〉
(2.26)

For homogenous, stationary turbulence, this relates to RL(τ) as:

SLii(τ) = 2〈u2p,i〉
(
1−RL

ii(τ)
)

(2.27)

Also of interest is the Lagrangian frequency spectrum, ΦL(ω), which is related to the

autocorrelation as:

ΦL
i (ω) = 〈u2p,i〉

∫ ∞
0

RL
ii(s)e

−iωs ds (2.28)

Further information is revealed in even higher order moments of the Lagrangian

velocity signal, such as the flatness tensor, defined as:

FL
ij (τ) =

〈(
up,i(xp(t), t)− up,j(xp(t+ τ), t+ τ)

)4〉〈
(up,i(xp(t), t)− up,j(xp(t+ τ), t+ τ))2

〉2 (2.29)

An important property of real turbulence is that it is intermittent, which, following

Frisch (1995), occurs when a diagonal component of F increases above the Gaussian

value of 3, as τ approaches 0. Loosely speaking, intermittency occurs when the

mechanism of dispersion occurs in punctuated bursts, interspersed with periods over

which particles exhibit relatively straight trajectories.

Crossing trajectories and continuity effects

In the Lagrangian treatment of the dispersed phase, it is assumed that a given inertial

particle will tend to follow a different pathline than the collocated fluid particle at
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Figure 2.3: Illustration of the trajectories of inertial and fluid particles. Image repro-
duced from Lightstone (2007)

any given time (see Fig. 2.3). Mathematically, in general:

uf (x, t) 6= up(xp(t), t) (2.30)

The Lagrangian autocorrelation of fluid velocities conditioned at inertial particle

locations is defined as:

R
f |p
ij (τ) =

〈uf,i(xp(t), t)uf,j(xp(t+ τ), t+ τ)〉√
〈(uf,i(xp(t), t))2〉

√
〈(uf,j(xp(t+ τ), t+ τ))2〉

(2.31)

and for inertial particles, this quantity is nontrivially related to RL - indeed an ana-

lytical link was proven in Csanady (1963). It has been observed (Reeks (1977)) that

the effect of particle inertia, for drifting particles, is to accelerate the decay of Rf |p

(and also RL), which in turn reduces dispersion - this is the crossing trajectories effect

(CTE). There exists an important manifestation of the CTE; when inertial particles

are subjected to a sufficiently strong body force, and exhibit a high mean drift. As a

particle moves through an eddy, it tends to see a turbulent velocity, shortly followed
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Figure 2.4: Left: A downward-drifting inertial particle experiences a turbulent ve-
locity, then its reverse as it traverses an eddy. Right: This manifests itself in the
reduction of dispersion in the direction perpendicular to the mean drift, relative to
the parallel with the mean drift. The gravity vector is indicated by g. Image adapted
form Cernick (2013).

by its opposing “backflow” counterpart within the same eddy - a manifestation of

the incompressibility of the fluid. Hence inertial particle dispersion is reduced in the

direction perpendicular to the mean drift, compared with parallel to the mean drift

- this is the continuity effect (see Fig. 2.4). This phenomenon has been predicted

analytically (Townsend (1980); Csanady (1963)) and has been observed experimen-

tally (Wells & Stock (1983)) and numerically (Elghobashi & Trusedell (1992)). For

a sufficiently high drift velocity, the lateral diffusivity can be reduced to half the

longitudinal diffusivity: Λ⊥ ≈ 1
2
Λ‖.

21



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

2.2.6 Structure of particle ensemble

Also of great interest in particle-laden flows research is clustering phenomena, since

many natural phenomena are dependent upon the local concentration of the parti-

cle ensemble. Naturally if one wishes to reproduce this structure appropriately, it

seems necessary to recreate the appropriate structure of the fluid field, complete with

eddying, streaming and straining regions - and KS has been demonstrated to (qualita-

tively) achieve this (Fung et al. (1992); Fung & Vassilicos (1998)), though the length

of vortex filaments is underpredicted.

A word of caution is required when discussing “structure” of the particle phase:

when the particle phase is treated as an ensemble of points in the Lagrangian frame

of reference, an appropriate manner of translating their (gridless) positions into a

temporally (and spatially) varying concentration distribution is not entirely straight-

forward. Often in the KS literature, “structure” is discussed within the context of the

Fokker-Planck transport mechanism for pairwise Lagrangian statistics (as mentioned

in Flohr & Vassilicos (2000)), though this may offer an incomplete picture in some

scenarios, primarily for three reasons:

• This link is commonly employed for a subgrid complement to the convection-

diffusion equation of the particle phase; a treatment which might not be suitable,

especially for heavier inertial particles (Shotorban & Balachandar (2007)), as

was discussed in Sec. 2.2.1.

• The bridge between concentration variance and pairwise dispersion is con-

structed with highly nonlocal information (as noted in Flohr & Vassilicos (2000)),

thus limiting the scope of applicability of such an analysis to stationary, homo-

geneous flows.
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• Appeal to the Fokker-Planck mechanism employs the box index definition of

concentration, (see Chen et al. (2006)) which is sensitive to the choice of box

size. In practice, particle clusters can exhibit nontrivial multi-scale behaviour

(Bec (2005)).

In this study, preferential concentration is quantified by the correlation dimension, a

scale-independent metric extensively applied in dissipative dynamical systems theory

(Grassberger & Procaccia (2004); Monchaux et al. (2012)). This dimensionless quan-

tity describes, loosely speaking, the extent to which the particle phase is space-filling.

More rigorously, it is given by:

D2 = lim
r→0

d log(P2(r))

d log(r)
(2.32)

where P2(r) is a measure of the number of particles within r of one another (hence it

is a cumulative distribution function). If particles are uniformly distributed in three-

dimensional space, then D2 = 3, whereas if they are uniformly distributed along a

plane, then D2 = 2. For inertial particles in turbulence, this quantity is expected

to settle between 2 and 3, which can be interpreted as resulting from the localized

clustering of particles into “sheet”-like structures.

The structure of an ensemble of particles is known to exhibit dissipative dynamics

in phase-space, meaning trajectories converge to an attractor characterized by an

asymptotic correlation dimension (Bec et al. (2007b)). As such, the development

of correlation dimension is well described as a decaying exponential, allowing the

asymptotic correlation dimension (which is denoted here as D2) to be inferred from

an exponential of best fit applied to a history of D2(τ). See Sec. C.6 for further

details.
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Figure 2.5: Preferential concentration of St ∼ 1 inertial particles, from a 0.04L-thick
slice of particle-laden DNS. See details of simulation in 3.1.

2.3 Survey of known properties of KS

2.3.1 Unsteadiness

Since real turbulence is not steady, a wavenumber-dependent unsteadiness is modelled

with the inclusion of the ωnt term in (2.13). The precise feature of real turbulence

enforced by the unsteadiness parameter is somewhat open to interpretation, but the

traditional reasoning is as follows: eddies of size κ−1 have an associated velocity

scale according to the Eulerian energy spectrum as vκ ∼
√
κE(κ), so (vκκ)−1 is

generally regarded to be representative of the time it takes for an eddy of size κ to

deform or “turn over”. Therefore ωn can be set to capture this “eddy turnover time”

corresponding to κn:

(Type A KS): ωn = λ
√
κ3nE(κn) (2.33)
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where λ ∼ 1. There exists an alternative, considerably less widespread formulation

of unsteadiness (Turfus & Hunt (1987); Fung & Vassilicos (1998)), which, in a sense,

enforces the rate of variation of small-scale velocities to be proportional to a charac-

teristic “advection” velocity, and inversely proportional to their scale - this is meant

to simulate the dynamic sweeping of small scales by the large. Osborne et al. (2005)

demonstrated that under this formulation, the expected inertial and ballistic range

scalings of the Eulerian one-point, two-time second-order velocity structure function

(defined in Sec. B.3) are restored. This is hereafter referred to as Type B KS, and

ωn is alternatively given as:

(Type B KS): ωn = λurmsκn (2.34)

where, once again, λ ∼ 1. Both Types A and B KS are informed by heuristics

transposed from classical turbulence phenomenology, and their applicability to KS is

somewhat suspect. Ultimately the validity of such heuristics hinges upon the results

they yield. There exists a modest body of literature on the subject of the effect of

unsteadiness formulation on statistics of interest; the following is a summary:

• For Type A KS, there is no significant dependency of the pairwise Lagrangian

statistics on λ for 0 < λ < 1. (Malik & Vassilicos (1999))

• According to a simple dimensional analysis (and corroborated by numerical

evidence), SL(τ) ∼ τ and ΦL(ω) ∼ ω−2 scalings are expected. In Type A KS,

this behaviour is recovered only for large λ, in particular, λ ∼ 5. (Khan &

Vassilicos (2003); Osborne et al. (2005))

• The clustering of inertial particles is contingent upon the presence of persistent
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coherent structures in the turbulence. If the temporal variation of the field is

improperly enforced (i.e. high λ) the effect on the particle ensemble is that,

unsurprisingly, clustering (in the 2D case) is not reproduced. (Chen et al.

(2006))

• With the adoption of Type B KS, an improvement in the ΦL(ω) scaling is noted,

but RL(τ) remains highly unrealistic (Osborne et al. (2005)).

These results unfortunately do not endue KS models with the banner of broad appli-

cability, because particle behaviour is contingent on more than the scaling, but also

on the degree of proportionality (as was pointed out for pairwise dispersion by Flohr

& Vassilicos (2000)).

2.3.2 Preferential concentration

Preferential concentration in KS has most often been treated within the context of

pairwise dispersion, which may offer a limited scope for the reasons discussed in

Sec. 2.2.6. There exists only one assessment of correlation dimension for inertial

particles in 3D KS (Ijzermans et al. (2010)), in which good qualitative agreement was

obtained with the well-established relation of D2 vs St in DNS (for example, see Bec

et al. (2007a)). There exists a modest body of literature on the multi-scale properties

of clusters of inertial particles in 2D KS (Goto & Vassilicos (2006), Goto & Vassilicos

(2008), Chen et al. (2006)), though there is little reason to expect such conclusions

to be transferable to the 3D case.
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2.3.3 Lagrangian integral timescale

At the heart of Lagrangian statistics lies the integral timescale, TL - indeed the

favourable comparisons of even many pairwise statistics between DNS and KS are

predicated upon non-dimensionalization of time by TL (Malik & Vassilicos (1999)).

In the pursuit of a broadly applicable KS modelling tool, perhaps the most important

question one can ask regarding KS is, can it reproduce TL? And even if it can (for

fluid tracers), does this extend to cases where TL is considerably more elusive, to wit,

inertial particles exhibiting the continuity effect? The answer is, of course, it depends

on whether one is using the “correct” input. Unfortunately the only guidance in the

literature regarding these questions is summarized as follows:

• In a seminal study on KS (Fung et al. (1992)), it is observed that TLurms/L11 ≈

0.5 (where L11 is the integral length scale, defined in App. A), for their par-

ticular version of KS (which is not widely applied). The authors note that

their results for non-dimensionalized TL starkly contrast those in experimental

observations.

• In Osborne et al. (2005), favourable comparison of TL to experiments is ob-

tained, for the case of fluid tracers in very high Reynolds number flow, though

with a modified input energy spectrum.

To summarize, these investigations (along with those mentioned in 2.3.1 and 2.3.2)

do provide some hints on how to judiciously apply KS - though it appears statistics of

interest have, broadly speaking, been investigated in isolation. Consequently, there is

a need to develop a systematic manner of applying KS such that both single-particle

Lagrangian statistics and correlation dimension are realistically reproduced - and
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a natural first step in this endeavour is to observe the performance of KS for input

Eulerian statistics that are, in some sense, realistic. Such statistics could be furnished

by a DNS, which could also be used as a benchmark for comparison.

2.4 Summary

SSF models are widely-applied particle-laden flow models that, in a variety of senses,

have difficulty synthesizing the impact of turbulence structure on the particle ensem-

ble. KS is a method for enforcing the second-order Eulerian statistics, which hints

at the potential for prediction of realistic particle behaviour. Despite various indica-

tions in the literature that, when applied in a particular fashion, KS can realistically

restore isolated properties of particle statistics, a broadly applicable model is sought,

which can achieve reasonable reproduction of single-particle Lagrangian statistics and

correlation dimension.

KS will be evaluated against a DNS benchmark, for fluid tracers, and inertial

particles with a variety of St. Simulations will be run with and without gravity. The

effect of different types of unsteadiness (Types A and B), with varying unsteadiness

parameters, λ, will be investigated. Even if such a “realistic”-input strategy yields

an unfavourable comparison, such an investigation will nonetheless provide clues on

an appropriate strategy for the development of KS as a modelling tool.
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Chapter 3

Assessment of KS: Methodology

3.1 DNS solver

A parallelized DNS solver was used to solve the incompressible Navier-Stokes equa-

tions, within a periodic box geometry. The solver was pseudospectral, meaning all

terms were solved in spectral space, with the exception of the nonlinear convective

term, which was solved in physical space. A simple de-aliasing scheme was applied,

in which all modes above 2/3 the maximum wavenumber were zeroed after the com-

putation of the nonlinear term, in order to eliminate the spurious amplification of

energy at small scales. The energy was kept nearly constant with a simple forcing

scheme (Chen et al. (1993)): the energy at low-wavenumber components of the field

(namely at Fourier modes such that 1 < |κ/κmin| < 3) was maintained constant, and

such that the −5/3 scaling of E(κ) vs. κ was enforced over these wavenumber shells.

An approximate initial velocity field was generated (in a KS manner) according to

an approximate spectrum, and the DNS was allowed to evolve until the −5/3 scaling
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Parameter/statistic Value
Number of grid points, N3 2563

Domain length in DNS, L 1
Maximum resolved wavenumber, κmin 2π
Maximum resolved wavenumber, κmax 128π
Cutoff wavenumber (for de-aliasing) 2

3
kmax

Time step length, ∆t 0.001
Simulation length, tend 8
Mean Taylor scale Reynolds number, Re ∼ 90
Skewness of ∂ui

∂xj
, γu ∼ 0.5

Table 3.1: Relevant parameters and output statistics for the incompressible DNS

propagated through much of the inertial range, and until the skewness of the ve-

locity derivatives reached approximately 0.5 (as was done in Elghobashi & Trusedell

(1992)), indicating fully developed turbulence. The relevant parameters and averaged

statistics of the DNS are given in Table 3.1. Further details on the DNS are given in

App. A.

3.2 KS solver

The energy spectrum is defined as the derivative with respect to wavenumber:

E(κ) =
d

dκ
E (κ) (3.1)

where E (κ) is the measure of energy over all scales at or below κ. In practice for

a discretized DNS, this is simply the sum of the norms of Fourier coefficients of

velocities, at all wavenumbers whose norm does not exceed κ:

E (κ) =
1

2

∑
|K|≤κ

〈û(K) · û∗(K)〉 (3.2)
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where (∗) denotes complex conjugate. For the DNS method in question, the cumu-

lative spectrum is evaluated for an arithmetic sequence of wavenumbers (denoted

as γm, where γm = κminm = 2πm, and κmin is the minimum resolved wavenumber).

Therefore E (κ) is a step function, and correspondingly E(κ) is the sum of Dirac-delta

distributions.

Therefore it is prudent to simply set the wavenumber sequence to that which is

determined by the input DNS, therefore let κn = γn for all n (that is, let κn = 2πn).

A more appropriate rendering of (2.15) is thus:

|an|2 = |bn|2 =


2(E (κn)− E (κn−1)) if n > 1

2E (κn) if n = 1

(3.3)

A variety of choices for unsteadiness parameter were employed for both unsteadi-

ness formulations (Types A and B KS), in line with those tested in the literature:

λ = 0, 0.5, 1 and 5. (For instance, Malik (1991) tested pairwise dispersion for Type

A KS, with 0 ≤ λ ≤ 10). λ = 0 corresponds to a steady flow, in which case there is

no difference between Types A and B KS.

As mentioned, there exists much literature on pairwise dispersion results in KS,

which serves as a basis for verifying the KS solver - these results are presented in

App. D.

3.3 Lagrangian particle tracking solver

The DNS and KS were interfaced with a fourth-order, explicit Adams-Bashforth solver

of the Lagrangian momentum equation (2.9). For both DNS and KS, a fixed time step
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was employed, an appropriate choice of which should be significantly smaller than the

smallest relevant time scale of the flow; namely, the Kolmogorov timescale (τη). The

general rule of thumb is to enforce ∆t < 0.01τη (Osborne et al. (2006); Thomson

& Devenish (2005); Malik (2014)). In real turbulence, the Kolmogorov timescale is

controlled by, among other things, the viscosity, whereas all properties of the cascade

are explicitly defined for KS - consequently “Kolmogorov timescale” does not have a

clear meaning for a kinematically defined cascade. Consequently, to corroborate this

estimate, a sensitivity analysis was carried out - it was determined that for particle

tracking, ∆t = 0.001 granted confidence in all statistics of interest (See App. C).

Simulations were carried out for a variety of inertial particle Stokes numbers

(namely 0.25, 0.5, 0.75, 1, 1.5, 2, 5 and 10). Of particular interest is the behaviour of

the inertial particle ensemble for St ∼ 1, since the maximal clustering of such particles

is well documented both experimentally and numerically (Squires & Eaton (1990);

Wang & Maxey (1993); Fessler et al. (1994); Bec et al. (2007a)). Note that for par-

ticles in the DNS, Stokes numbers are approximate, since they are dependent on the

Kolmogorov timescale (by (2.10)), and in DNS (as in real turbulence), this quantity

does not remain perfectly constant (as was pointed in Monchaux et al. (2012)).

For the particle-laden DNS, the assumption of one-way coupling allows an entire

DNS to be carried out separately. Here, the DNS field (corresponding to the appropri-

ate timestep) was then read into the particle-tracking method, and the fluid velocities

at the (continuously-defined) particle locations were recovered via 3rd-order Hermite

polynomial interpolation. Alternatively for KS, the fluid velocities at the appropriate

locations and times are simply recovered by (2.13). Since a KS field is a superposition

of real-valued trigonometric functions, it is gridless, and numerical errors arising from

32



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

interpolation are avoided.

The inertial particle simulations were run with and without gravity. When gravity

was present, the acceleration was varied according to St, to ensure the drift velocity

exceeded the root mean squared turbulent velocity (a necessary condition for the

observation of the continuity effect (Wells & Stock (1983))), but not so large that the

solver was rendered unstable. For further details, see Sec. C.4

Ensuring confidence of statistics

If only Lagrangian statistics are sought, it is enough to allow the sample space of par-

ticle positions to be arbitrarily large, to ensure the velocities sampled at the particle

locations are truly representative of what is determined by the KS parameters. This

is termed Type I KS. When considering the structure of the ensemble of particles,

it becomes important to constrain the particles to a sufficiently small domain, such

that enough particles interact with the same turbulence structures. To satisfy this

requirement, a high mean concentration of particles is needed to minimize the sample

error of P2(r) for small values of r (since the correlation dimension is evaluated from

P2(r) near 0). Since the evaluation of D2 scales as the square of the number of par-

ticles (because every particle must be compared to every other particle), this places

a severe constraint on the size of domain in terms of computational cost.

Constraining the simulation to a finite domain has the following drawback: if the

orientation of κn is distributed uniformly over a sphere, periodicity is not guaranteed

for a given KS realization, therefore particles cannot be allowed to leave one edge of the

domain and enter the other, as is done in the (periodic) DNS, since the fluid velocity

history seen by a given particle could be rendered highly discontinuous. Previous
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authors (Flohr & Vassilicos (2000); Ijzermans et al. (2010)) applied a mildly modified

formulation, in which the sample space of orientations, and indeed choice of κn, are

constrained such that periodicity is enforced. This strategy is avoided here, in order

to avoid potentially spurious effects of the alignment of the large-scale motions.

An alternative solution to the aperiodicity problem is to impose an absorbing

boundary condition (that is, particles which exit the boundary are simply dropped

from the simulation). This in turn means a simulation constantly “bleeds” parti-

cles, potentially skewing the particle statistics. A solution is to employ an extended

domain; an ‘outer’ domain throughout which the particles are initially uniformly

distributed and advected (and whose boundary is given the absorbing boundary con-

dition), and an ‘inner’ subdomain over which the statistics of the particle ensemble

are evaluated - this scenario is roughly depicted in Fig. 3.1. Care must be taken so

that the inner domain contains roughly the same number of particles (Np(t)) over the

length of the simulation (see Sec. D.2). This strategy of constraining the evaluation

of particle statistics to a limited domain is termed Type II KS. Also the domain over

which statistics are evaluated is termed the sample domain - for the DNS and Type

I KS, the sample domain is the whole domain, and for Type II KS, it is the inner

domain. In the case of KS with gravity (in which particles are drifting downward),

the sample domain was placed near the bottom of the outer domain, once again to

maintain a roughly constant mean concentration in the sample domain. For all Type

II KS here, the length of the outer domain was twice that of the inner domain.

The restriction of the KS to a small bounded domain poses an additional prob-

lem: if the length of the domain is comparable to the largest scales of the KS, the

34



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

Figure 3.1: Illustration of particle-laden Type II KS. The computational domain
consists of an outer domain with an absorbing boundary condition, and a smaller
inner subdomain in which the statistics of the particles are calculated. The ensemble
of particles is depicted as dots. In contrast, Type I KS occurs on an arbitrarily large
spatial domain.

fluid energy averaged over the inner subdomain can be quite different from the im-

posed energy. Hence multiple realizations were carried out for a set of KS input

parameters, and the averaged results were considered (in other words, serial farm-

ing was employed). The case for multiple realizations is strengthened by additional

considerations: the ensemble of realizations is on average isotropic (whereas a single

realization can be highly anisotropic), and the sensitivity of particle clustering on the

mutual orientation of the largest scales is reduced (See Sec. B.4 for a semi-analytical

derivation of large-scale anisotropy tensor).

Multiple realizations of particle tracking were carried out in parallel also for the

particle-laden DNS, to lower the simulation runtime. For either DNS or KS, the total

number of particles vastly exceeds the amount required for statistical significance of

Lagrangian statistics (Strutt et al. (2011); Cernick et al. (2015)). The key particle

tracking parameters are summarized in Table 3.3.
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Statistic KS Type
Single-particle Lagrangian, without gravity I
Single-particle Lagrangian, with gravity II
Correlation dimension, without gravity II
Correlation dimension, with gravity II

Table 3.2: KS Type for various statistics of interest.

It should be noted that in Type II KS (bounded domain), the tendency of the do-

main to bleed particles to the absorbing boundary condition implies a limited period

during which the mean concentration of particles in the inner domain remains roughly

constant. For Type I KS (unbounded domain), there exists no such concern, and for

single-particle Lagrangian statistics, long simulations are preferred to ensure all par-

ticles have “forgotten” their ballistic range behaviour. All single-particle Lagrangian

statistics (in the no-gravity case) were simulated in Type I KS. In the gravity case,

particles which rapidly traverse a periodic domain in the DNS will see a spuriously

highly correlated fluid field (Cernick (2013)), thus there exists no benefit in running

a very long simulation for the corresponding KS case. Consequently for Lagrangian

statistics in KS with gravity, Type II KS was employed. All correlation dimension

values were calculated in Type II KS, again due to the need for a high mean con-

centration to obtain meaningful measurements of clustering. This is summarized in

Table 3.2.

Time units have been non-dimensionalized against the Kolmogorov timescale, τη

(defined as τη = (ν/ε)1/2, where ε is formally related to the spectrum as 2ν
∫∞
0
κ2E(κ) dκ)

and dispersion has been non-dimensionalized by the square of the domain length, L.
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Parameter DNS Value KS Value
Number of particles in

sample domain, per realization 200 000 ∼ 50000
Number of realizations 15 300
Timestep 0.001 0.001
Number of timesteps 8000 8000

Table 3.3: Relevant parameters for particle tracking methods.
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Chapter 4

Assessment of KS: Results

4.1 Eulerian statistics

Since KS is designed to enforce the Eulerian energy spectrum, a natural starting point

for a general assessment of KS is to test whether a variety of Eulerian statistics are

reproduced, and to compare to other results in the literature. Fortunately, many such

statistics can be evaluated analytically; see App. B for derivations of the turbulent

kinetic energy (as a verification of the choice of mode amplitudes in equation (2.15)),

two-point, one-time (and one-time, two-point) velocity autocorrelations, and large-

scale anisotropy.
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4.2 Tracers

4.2.1 Pairwise dispersion

There exist many results in the literature on pairwise dispersion of passively-advected

tracers in KS, which naturally provide a basis for verification of the KS solver. In

particular, in Malik & Vassilicos (1999), the authors observed the pairwise dispersion

in steady (λ = 0) Type A KS, whose input spectrum roughly matches the energy

spectrum from the DNS results of Yeung (1994), and for a variety of initial separations

of pairs of particles. This result is reproduced in App. D.

4.2.2 Single-particle Lagrangian statistics

For brevity, fluid particles are referred to as tracers in the results. For incompressible

flow, the Eulerian-averaged and Lagrangian-averaged energies coincide (Tennekes &

Lumley (1972)), thus a simple starting point for the assessment of Lagrangian statis-

tics in KS is to ensure that the energy (conditioned on fluid tracers) is equal to that

which is determined by the input spectrum. In Fig. 4.1, the history of 〈|up|2〉 in

KS is given, for a variety of unsteadiness parameters (normalized by the constant

2
∑
E(κn) ∆κn), and excellent agreement with the expected value of unity is ob-

served. This indicates that the output energy conditioned on tracer locations recovers

the input energy.

In Fig. 4.2, the dispersion histories of tracers is shown, for a variety of λ, for

Types A and B KS. Beyond the ballistic range of times, the linear scaling of both

DNS and steady (λ = 0) KS is evident, in accordance with the predictions of Taylor

(1921). In all cases, the dispersion is underpredicted, and indeed the larger λ is,
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Figure 4.1: The mean squared velocity of tracers, 〈|uf (xp)|2〉, in type A KS, for a
variety of unsteadiness parameters, non-dimensionalized by twice the input energy
(evaluated as k =

∑
E(κn) ∆κn).

the more severe the extent of underprediction. Consistent with the observations

of Malik (1991), dispersion is noticeably reduced for even a weakly unsteady field

(λ = 0.5 for either Type A or Type B); this stands in contrast to pairwise Lagrangian

statistics, which are largely insensitive to λ, for roughly λ < 1 (Malik (1991); Malik

& Vassilicos (1999)). The difference in asymptotic dispersion rate (diffusivity) is a

consequence of the differing integrals of RL(τ) as follows from (2.23) (and that the

energy evaluated by the Lagrangian average is independent from the unsteadiness).

An interpretation of this is that in a strongly unsteady field, a tracer travels only

a very short distance before encountering a new “eddy”, resulting in a decrease of

the Lagrangian autocorrelation (see Fig. 4.3 for Type A KS. Type B KS results are

similar).

In Fig. 4.4, the τ -separation of one diagonal component of the flatness tensor of the
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Figure 4.2: Dispersion of fluid tracers in Types A and B KS, with a range of un-
steadiness parameters λ = 0, 0.5, 1, 5. DNS results are shown for comparison.
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Figure 4.3: Lagrangian autocorrelation of fluid tracers in Type A KS, with λ =
0, 0.5, 1, 5, with comparison to DNS results. Type B results are similar.
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Figure 4.4: FL
11(τ) (component of the flatness of the Lagrangian velocity) for fluid

tracers for DNS, and for Type A KS, with λ = 0, 0.5, 1, 5. For the DNS case, FL
11(0) ∼

24.

Lagrangian velocity is shown for DNS and Type A KS. KS underpredicts the flatness

of velocity histories in all cases, though λ = 0 yields the most intermittent velocity

histories. More insight is offered by visualizations of typical particle trajectories

in DNS and KS; the curves in the DNS case are considerably smoother, and are

characterized by long stretches of relatively steady velocity, interspersed with fewer

rapid changes than the KS (Fig. 4.5).

It has been reported (Fung et al. (1992), Khan & Vassilicos (2003), Osborne et al.

(2005)) that in low-λ (weakly unsteady) KS, the Lagrangian structure function scales

as SL(τ) ∼ τ 2/3 in the intermediate range of times, in contrast to the Kolmogorov

scaling SL(τ) ∼ τ for real turbulence. SL(τ) is reported in Fig. 4.6 for DNS and

steady (λ = 0) KS, and the case for neither SL(τ) ∼ τ 2/3 in KS, nor SL(τ) ∼ τ in

DNS is particularly convincing. This is likely a result of a relatively small separation

42



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

0.06
0.04

0.02
0.00

0.02
0.04

0.06 0.06
0.04

0.02
0.00

0.02
0.04

0.06
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.06
0.04

0.02
0.00

0.02
0.04

0.06 0.06
0.04

0.02
0.00

0.02
0.04

0.06
0.06

0.04

0.02

0.00

0.02

0.04

0.06

Figure 4.5: Sample of particle paths in DNS (above) and the steady (λ = 0) KS
(below). The width of each dimension of the box in the visualization is approximately
four times the Kolmogorov microscale.
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Figure 4.6: The Lagrangian structure function, SL(τ), for fluid tracers for DNS (line
A) and for KS, with λ = 0 (B), λ = 0.5 (C) and λ = 1 (D).

of scales that characterizes low Reynolds number flows. This suspicion is confirmed

by the restoration of this scale relation for a wider inertial range (see Sec. 5.1.2).

In Fig. 4.7 the Lagrangian frequency spectrum is shown for steady (λ = 0) KS. In

accordance with the observations of Khan & Vassilicos (2003), the scaling ΦL(ω) ∼

ω−5/3 is roughly reproduced. In Fig. 4.8, the same result is shown for unsteady (λ =

1) KS, alongside the corresponding spectrum in DNS. In accordance with Osborne

et al. (2005), the elevation of λ somewhat restores the scaling to ΦL(ω) ∼ ω−2, and

there appears to be some evidence that this scale relation is also observed in the

DNS. Indeed ΦL(ω) ∼ εω−2 is expected according to the Kolmogorov scaling form

(given by dimensional analysis) (Tennekes & Lumley (1972)), and is also observed

in real turbulence (Lien et al. (1998); Mordant et al. (2001)). Due to the relative

brevity of the simulations here, the numerical evaluation of the inner product in (2.28)

(on a limited time domain) introduces error. Osborne et al. (2005) encountered the

44



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

100 101 102

ω

10-7

10-6

10-5

10-4

10-3

10-2

Φ
L

(ω
)

λ=0 ω−5/3

Figure 4.7: Lagrangian frequency spectrum, ΦL(ω), for steady KS (λ = 0)

same problem, and addressed it by filtering the result with a “simple sliding 10 Hz

nonoverlapping averaging window”, however this strategy is avoided here, since the

convolution of a filter and even an analytically defined power function, say ωr, will

not preserve r. In any event, the same concern in the previous paragraph applies

here; that due to the narrow inertial range in question, it may not be reasonable to

expect either the KS or DNS scalings of the frequency spectra to agree exactly with

observations in the literature.

Once again, KS is constructed such that the Eulerian energy spectrum in wavenum-

ber space is exactly reproduced. The inclusion of the ωnt term in (2.13) is informed

by heuristic arguments about how long it takes eddies of given scales to “turn over”

(Type A KS), or by a quasi-enforcement of the Eulerian frequency spectrum (Type

B KS). However elsewhere (Fung et al. (1992)) the inclusion of ωnt is motivated by

the need to account for the change of velocity experienced by a material volume.
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Figure 4.8: Lagrangian frequency spectrum, ΦL(ω), for KS, with λ = 1. Line A is
the theoretical scale relation ΦL(ω) ∼ ω−2, Line B is from unsteady KS (λ = 1), and
Line C is from the DNS.

This is most meaningfully interpreted as enforcing the proper integral scale of the

Lagrangian velocity autocorrelation, however this analysis suggests that, under the

traditional unsteadiness formulations, this does not occur for even moderate λ. Even

though λ = 0 yields a field with unphysical steadiness in the Eulerian frame of ref-

erence, even very simple kinematic fields have been observed to yield qualitatively

realistic, chaotic Lagrangian motion (Arnold (1965)) - indeed this was observed for

the application of KS as a subgrid complement by Khan et al. (2010).

4.2.3 Correlation dimension

The theoretical value of 3 was approximately recovered for D2 at all times for tracers

in DNS (in accordance with previous observations (Bec et al. (2007a); Strutt et al.

(2011); Cernick (2013))), which provides further confidence in the numerical tools.

46



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

0 10 20 30 40 50

 t/τη 

2.7

2.8

2.9

3.0

3.1

3.2

3.3

D
2

DNS KS

Figure 4.9: History of D2 for tracers, for DNS and steady (λ = 0) KS.

Steady (λ = 0) KS also very closely recovers 3 for tracers (see Fig. 4.9).

4.3 Inertial particles, without gravity

4.3.1 Single-particle Lagrangian statistics

The Lagrangian statistics for inertial particles exhibit largely the same dependence on

unsteadiness; the best match between DNS and KS occurs when there is no imposed

unsteadiness (λ = 0), in which case the dispersion is slightly underpredicted by KS.

The expected character of particle dispersion with gravity is verified for DNS.

Consistent with the results of Squires & Eaton (1991), the long-range dispersion

of all inertial particles exceeds that of tracers, and the dispersion is maximal for

intermediate St (See Fig. 4.10). For steady (λ = 0) KS, the increased dispersion of
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Figure 4.10: Dispersion in DNS, for tracers and all inertial particle types, without
gravity. Inset plot is zoomed-in view of long-range dispersion.

inertial particles over tracers is also seen (Fig. 4.11), though the increase in long-

range dispersion vs. St appears to be nearly monotonic. The long-range dispersion

is compared between DNS and steady (λ = 0) KS in Fig. 4.12 and the best match

occurs for high St inertial particles.

The dispersion of St ∼ 1 particles in DNS and Types A and B KS is shown in

4.13, and the corresponding results for Lagrangian autocorrelation are shown in Fig.

4.14 (though for just DNS and Type A KS). As was observed for tracers, the most

favourable match between KS and DNS occurs for the steady case, λ = 0.

4.3.2 Correlation dimension

As is the case with dispersion, the prediction of D2(t) is exacerbated by unsteadiness,

under either unsteadiness formulation, and indeed the extent of overprediction is
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Figure 4.11: Dispersion in steady (λ = 0) KS, for tracers and all inertial particle
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Figure 4.12: Long-range dispersion (evaluated at 95 τη), for DNS and steady (λ = 0)
KS, for all inertial particles, without gravity.

49



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

0 10 20 30 40 50

 τ/τη  

0.00

0.05

0.10

0.15

0.20

0.25

〈 Y2 p

〉 /L2
ωn =0

ωn =0.5
√
E( n ) 3

n

ωn =
√
E( n ) 3

n

ωn =5
√
E( n ) 3

n

ωn =0.5urms n

ωn =urms n

ωn =5urms n

DNS
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0 10 20 30 40 50

 τ/τη 

1.0

0.5

0.0

0.5

1.0

R
L

ωn =0

ωn =0.5
√
E( n ) 3

n

ωn =
√
E( n ) 3

n

ωn =5
√
E( n ) 3

n

DNS

Figure 4.14: Lagrangian autocorrelation of St ∼ 1 particles in Type A KS, with
λ = 0, 0.5, 1, 5, with comparison to DNS results. Type B results are similar.
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Figure 4.15: History of correlation dimension for Type A KS, with λ = 0, 0.5, 1, 5; for
St ∼ 1 inertial particles, with DNS shown for comparison.

proportional to λ. Once again, the best results are obtained for steady (λ = 0) KS

(See Fig. 4.15 for Type A KS).

Indeed, as noted in Osborne et al. (2005), high unsteadiness causes a lack of

persistence of the flow field, upon which depends the organization of the ensemble of

particles. The asymptotic correlation dimension (denoted D2) as a function of St, for

DNS and KS, is shown in Fig. 4.16. The profiles show good qualitative agreement

with observations in the literature, for both DNS (Bec et al. (2007a); Cernick (2013))

and KS (Ijzermans et al. (2010)), with the minimum D2 occurring for moderate Stokes

numbers (St ∼ 1), within either DNS or KS - again lowD2 indicates greater clustering.

A lack of quantitative agreement with previous DNS results may be explained by the

inherent difficulty in estimating the Stokes number (as pointed out by Monchaux et al.

(2012)), and qualitative differences in the spectra (perhaps arising from the choice of

forcing method). The lack of quantitative agreement with pervious KS results may be
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Figure 4.16: Correlation dimension (D2) as a function of St, without gravity, for DNS
and steady (λ = 0) KS.

explained by fundamental differences in the implementation of KS; Ijzermans et al.

(2010) employed an unsteady field (corresponding to neither Type A nor Type B KS

as described here), and enforced periodicity of the KS modes. All results hereafter

are for steady (λ = 0) KS.

For either dispersion or preferential concentration, it appears the most favourable

comparison between KS and DNS occurs for high-St particles. Insight into the reason

is offered by the observation of Coleman & Vassilicos (2009), that KS fields produce a

spurious spectral broadening of the energy spectrum in the frequency domain. Particle

inertia has the effect of filtering out the high frequency turbulent motions (Csanady

(1963)) and since the dynamics of high-St particles are dominated by the largest-

scale eddies, they are not as susceptible to “seeing” the spurious interaction of the

kinematic motions over a broad range of scales, and consequently the reproduced KS

field is more faithful to the DNS original, from the perspective of the particles.
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4.4 Inertial particles, with gravity

4.4.1 Single-particle Lagrangian statistics

The results for longitudinal and lateral (mean-drift-corrected) dispersion of St ∼ 1

inertial particles, in both DNS and KS, are shown in Fig. 4.17. There exists a

clear reduction in lateral dispersion compared with longitudinal for steady (λ = 0)

KS, indicating that KS indeed qualitatively reproduces the continuity effect. The

corresponding DNS case is shown for comparison, though the nonlinear character of

these dispersion histories indicates that any quantitative match between DNS and KS

should be treated with extreme caution, since the lateral vs longitudinal dispersion

in DNS is strongly influenced by the particular orientation of the large scales, over

the times for which the DNS was run.

KS appears to yield a more favourable comparison of D2 over the range of St (Fig.
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Figure 4.18: Correlation dimension as a function of St, with gravity, for DNS and
steady (λ = 0) KS.

4.18), as compared with the case without gravity. As was noted in the no-gravity case,

increasing particle inertia appears to reduce the sensitivity of particle behaviour to

the spurious Lagrangian properties of a KS field, and drift appears to enhance this

corrective effect.

It is well-documented in numerical results (Wells & Stock (1983); Hennick &

Lightstone (2000)) and experimental results (Snyder & Lumley (1971)) that, in the

presence of gravity, particle inertia causes a reduction in lateral dispersion, compared

to fluid tracers, and indeed the lateral dispersion is inversely proportional to St - this

is the opposite of the effect of particle inertia on dispersion in the no-gravity case (Fig.

4.10 for DNS and 4.11 for KS). The lateral dispersion of inertial particles is shown in

Fig. 4.19 for DNS and in Fig. 4.20 for KS. There appears to be some evidence of the

crossing trajectories effect (the reduction of dispersion in proportional to St) in the

DNS, though the trend is less clear in steady KS - these results should also be treated
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Figure 4.19: Lateral dispersion (〈Y 2
p,⊥〉) vs St in DNS

with caution, since gravity was varied according to Stokes number, in order to enforce

a target drift velocity. The trends observed in the aforementioned investigations are

for particles experiencing the same body force - this condition is satisfied in the KS

in Sec. 5.2, and indeed the reduction of lateral dispersion in proportion to St is

observed.

In the case of high mean drift, the correlation of drift-normal fluid velocities

conditioned on the (drifting) inertial particle locations (R
f |p
⊥ ) becomes dominated

by the spatial component (by Taylor’s frozen turbulence hypothesis), which is given

as the one-time, two-point Eulerian velocity autocorrelation in the direction of the

mean drift (mathematically, RE
11(re3/(udτη) - see Sec. B.3 for more information on

this quantity), where ud is the enforced drift speed (ud = 0.1, which exceeds urms =√
(2/3)k) and e3 is the unit vector in the downward direction - see Fig. 4.21). Again

KS enforces spatial statistics of the DNS, hence the domination of autocorrelations
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Figure 4.20: Lateral dispersion (〈Y 2
p,⊥〉) vs St in steady KS

by the spatial component consequently improves the prediction of dispersion (see

Fig. 4.22). Loosely speaking, the drift causes the inertial particles to “see” similar

turbulence structure between the KS and DNS, hence they exhibit similar dynamics.

4.4.2 Correlation dimension

This corrective effect of drift is also manifested in correlation dimension estimates; KS

appears to yield a more favourable comparison of D2 over the range of St, as compared

with the case without gravity, which achieved reasonable comparison only for high

St. This is consistent with the main theme in the observations of the Lagrangian

statistics; the interaction of particles with eddies becomes dominated by the properties

of the Eulerian spatial structure, hence there is a greater resemblance between the

clustering mechanisms in DNS and KS, and KS predictions of correlation dimension

are improved.
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Figure 4.22: Lateral dispersion for St ∼ 1 inertial particles, for DNS and steady KS,
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4.5 Discussion and further questions

The following is a summary of the results so far:

• KS qualitatively reproduces the turbulence structure, as it is manifested in in-

termittent velocity histories, the reduction of lateral diffusivity vs longitudinal

diffusivity (the continuity effect), the elevation of the dispersion of inertial par-

ticles over tracers in the absence of gravity, and preferential concentration.

• The unsteadiness formalism negatively impacts predictions of single-particle

Lagrangian statistics and structure; indeed the disparity between DNS and

KS dispersion as well as correlation dimension is roughly proportional to the

unsteadiness parameter λ. If KS is to be applied as a modelling tool for all

scales of turbulent motion, λ can be dispensed with as a parameter, due to the

open streamline topology of even steady KS fields (this was suggested in Malik

(1996)).

• KS appears to hold particular utility for simulating high-St inertial particles

exhibiting a mean drift, since particles “see” similar dynamics between the two

cases.

Some results show close quantitative agreement between DNS and steady (λ = 0) KS,

though some remarks of caution are warranted. In real turbulence, the manner in

which Eulerian scales map to the Lagrangian scales is highly opaque, and is itself the

subject of much literature. This appears to be true of KS as well, however the manner

in which Eulerian scales map to Lagrangian scales is different between DNS and KS, as

evidenced by the differing autocorrelations. When inertial particles “see” the narrower

range of interacting Eulerian scales, the mapping to Lagrangian scales in DNS and
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KS appears to converge - this suggests that the broader the range of scales seen by

the inertial particles, the more the kinematic motions spuriously manifest themselves

in the Lagrangian statistics. This suggests further that for broader inertial ranges

than are tested here, the comparison between Lagrangian timescales in DNS and KS is

likely to be less favourable. It is also noted that, like many other similar investigations,

only one DNS benchmark was employed, which grants only an approximation of

homogeneous, isotropic, stationary turbulence.

The ultimate goal is to develop KS as a modelling tool, and it should be remem-

bered that in practice, one does not have the luxury of knowing the precise input

spectrum. While one can estimate the shape of the Eulerian spectrum (with partic-

ular appeal to the Kolmogorov “five-thirds” scaling property of the spectrum in the

inertial range), it is shown here and elsewhere (Malik & Vassilicos (1999)) that the

Lagrangian statistics are highly sensitive to how to the largest scales are handled,

the behaviour of which is far from universal and is consequently difficult to estimate.

At first glance this is all bad news, however the previous analysis suggests that the

ability of KS to recover the Lagrangian statistics of turbulence does not hinge upon

realistic Eulerian statistics.
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Chapter 5

Target Lagrangian Integral

Timescale Kinematic Simulation

(TLKS)

5.1 Motivation and formulation

The fundamental barrier to the broader applicability of KS as a modelling tool appears

to be its inability to reproduce the correct Lagrangian timescales (even if the correct

Eulerian second-order statistics are known - and in practice, they are not). Supposing

one possesses some other means of reasonably estimating at least one property of the

Lagrangian statistics (namely the Lagrangian integral timescale, TL, as is common

for SSF models), the more appropriate question might be as follows:

• For a target TL, what is an appropriate choice of input spectrum for KS that

recovers TL?
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At first glance, the knowledge of such a hypothetical input spectrum appears

superfluous, since, if successful, it would simply recover the input TL as output.

But the results so far suggest that such a KS formulation would, in some sense,

reproduce additional phenomena (for example, the continuity effect), in addition to

recovering just TL. Loosely speaking, with KS there exists the prospect of a “return

on investment”, which SSF approaches lack.

A method is sought, whose basic outline is given as follows:

• Step 1: Based on RANS statistics (turbulent kinetic energy (k) and the negative

of its dissipation rate (ε)), estimate TL;

• Step 2: For the target TL and RANS parameters (k and/or ε), choose an ap-

propriate Eulerian energy spectrum;

• Step 3: Use the output from Step 2 as input for the traditional KS method. If

successful, TL will be recovered, along with other statistics of interest.

This method will be referred to as Target Lagrangian integral timescale Kinematic

Simulation (TLKS).

Fortunately Step 1 is already the topic of a great deal of literature, since this task

is also a component of SSF methodologies. One particularly widely applied version

is that of Zhou & Leschziner (1991), and is given as:

TL = β

(
C0.75
µ

k1.5

ε

)/(2

3
k

)0.5

(5.1)

and where β = 0.8 and Cµ = 0.09. This method will be applied here.

It is less clear just how Step 2 should operate. How can an Eulerian spectrum

be reverse engineered from TL? At first glance, it is tempting to inform Step 2 by
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Figure 5.1: Energy spectrum, determined by the parameters k (or equivalently urms),
κ̃1, and κ̃N

some link between Eulerian and Lagrangian statistics which is elucidated analyti-

cally. Unfortunately, the nonintegrability of streamlines in even simple kinematically

defined fields suggests that any a priori connection between Eulerian and Lagrangian

statistics in KS is opaque, just as it is for real turbulence.

In the absence of a clear analytical bridge between Eulerian and Lagrangian prop-

erties, the appropriate strategy appears to be to develop an empirical relationship

by which some parameters pertaining to the output of Step 2 (input for Step 3) can

be related to a target TL. It is not immediately obvious what canonical form the

Eulerian spectrum should be assumed to exhibit, and what the degrees of freedom

should be. At the very least, spectra are characterized by the following properties:

• κ̃1, smallest wavenumber of turbulent-like “cascade”

• κ̃N highest wavenumber of the cascade
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• urms, root-mean-squared velocity (related to energy as 3
2
u2rms = k)

It is assumed that the inertial range slope (in log-log coordinates) of such a spectrum

adheres to the classical Kolmogorov scaling (E(κ) ∼ κ−5/3). Such a spectrum is

visualized in Fig. 5.1. Once again, the input of any KS method is a sequence of

wavenumbers, κn, the lowest wavenumber of which is κ1, and the highest is κN ,

whereas κ̃1 and κ̃N describe the bounds over which the simple spectrum (as depicted

in Fig. 5.1) is assumed to be nonzero. It may appear superfluous to have κ1 < κ̃1

or κN > κ̃N (since such modes outside of the support would simply contribute zero

energy), but choosing a wider than necessary sequence of input wavenumber provides

flexibility in the event that κ̃1 and κ̃N change - the need for such an accommodation

becomes apparent in the inhomogeneous flow described in Sec. 5.2.2. There exist a

variety of justified objections over the realism of such a spectrum; indeed real energy

spectra exhibit a continuous rise and fall versus wavenumber, which, as seen in Fig.

5.1, is flagrantly violated at κ̃1 and κ̃N . Again, synthesizing a flow whose Eulerian

properties are realistic is not the primary objective of a stochastic Lagrangian particle

model. The objective is to map simple spectra to Lagrangian timescales, such that, for

a target Lagrangian timescale, an appropriate Eulerian spectrum can be constructed

that recovers the Lagrangian timescale.

5.1.1 Methodology for TLKS formulation

More precisely, the objective is to infer a relationship between the properties of a

simple Eulerian spectrum (given by κ̃1, κ̃N , and urms) and the Lagrangian properties

of the turbulent-like field (in particular TL). In order to establish such a relationship,

a variety of KS were carried out, all with simple spectra (visualized in Fig. 5.1), for
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Sim. urms κ̃1 Sim. κ̃N/κ̃1
P 0.105 8 1 104

Q 0.105 7.5 2 103.75

R 0.105 7 3 103.5

S 0.105 6.5 4 103.25

T 0.075 7.76 5 103

U 0.085 7.76 6 102.75

V 0.095 7.76 7 102.5

W 0.105 7.76 8 102.25

9 102

10 101.75

Table 5.4: Parameters of KS simulations. The input spectrum is determined by urms,
κ̃1 and κ̃N , hence a given simulation is determined by a letter and a numeral. For
example, simulation V7 denotes urms = 0.085, κ̃1 = 7.76 and κ̃N = 7.76×102.5 ≈ 2454.

a variety of input parameters, κ̃1, κ̃N , and urms. The parameters of each simulation

are summarized in Table 5.4. Since there is no such requirement that particles “see”

the same turbulent-like field, as would be the case when preferential concentration

is of interest, every fluid tracer was assigned independent sequences an and bn (see

Eq. (2.13)) - in other words, every tracer experienced a unique turbulent-like “field”.

For each simulation, 300 000 tracers were tracked, to ensure confidence in Lagrangian

statistics. Since the wider inertial ranges considered here are larger than that consid-

ered in Ch. 4, a longer sequence of wavenumbers, κn, is required to ensure isotropy

and convergence of TL (see Sec. D.3).

At first glance, it may appear that a spectrum defined by urms, κ̃1 and κ̃N (visu-

alized in 5.1) is overdetermined by the parameters, but this is not the case. To see

how such a spectrum is constructed, first note that the formal expression of such a
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simple “cascade” is:

E(κn) =


cκ
−5/3
n if κ̃1 ≤ κn ≤ κ̃N

0 otherwise

(5.2)

for some constant c. For such a spectrum, the total energy is given as:

k = c

∫ κ̃N

κ̃1

κ−5/3 dκ (5.3)

For a KS simulation, the discrete version of (5.3) is applied:

k = c
Nκ∑
n=1

κ−5/3n ∆κn (5.4)

Therefore, for a given κ̃1 and κ̃N , the appropriate choice of c is one for which k is

enforced:

c = k
/[ Nκ∑

n=1

κ−5/3n ∆κn
]

(5.5)

Indeed the same strategy is employed in Osborne et al. (2005). In particular, for

κ̃N →∞, and assuming a sufficiently dense sequence of wavenumbers:

E(κn) = u2rmsκ̃
2/3
1 κ−5/3n (5.6)

for κn > κ̃1 and 0 otherwise. Note that when the left-hand side of (5.6) is integrated

from 0 to ∞, it yields k (by definition). When the right-hand side is integrated in

the same manner, it yields 3
2
u2rms, as expected.
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For the analysis in the previous chapters, an arithmetic sequence of input wavenum-

bers, κn, was assumed, and the method of weighting each KS mode was adjusted, all

to allow the KS method to use the discrete-domain energy spectrum from the DNS.

Since such considerations are not present here, a geometrically defined sequence of

wavenumbers is assumed:

κn = κ1

(κN
κ1

)(n−1)/(N−1)
(5.7)

and also the traditional method for distributing the energy amongst the KS modes

(given in (2.15)) is once again assumed.

5.1.2 Results

To begin, some general results for single-particle Lagrangian statistics in KS are

shown, as a complement to the results in Ch. 4. As stated previously in Sec. 4.2.2,

the Lagrangian structure function scaling SL(τ) ∼ τ 2/3 has been reported in the KS

literature, though such a scaling was not convincingly reproduced in Ch. 4 (as shown

in Fig. 4.6), due to the narrow inertial range. The simulations here exhibit a greater

separation of scales (i.e. there exists a larger ratio between the largest and smallest

resolved wavenumbers), hence it is of interest whether the expected scaling of SL(τ) is

restored in such cases. SL(τ) is shown for selected simulations in Fig. 5.2 (simulations

P1, P4, P7 and P10, all described in Table 5.4), and indeed the 2/3 scaling appears

to be restored for a wide range of time scales - in fact, the higher κ̃N/κ̃1, the greater

the interval over which the SL(τ) ∼ τ 2/3 scaling appears to be valid. The restoration

of the expected scaling for steady KS (as observed in Fung et al. (1992); Khan &

Vassilicos (2003); Osborne et al. (2005)) provides further confidence in the numerical

tools.
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Figure 5.2: Lagrangian structure function, for selected KS cases (P1, P4, P7, P10),
with varying κ̃N/κ̃1. Shown for comparison is τ 2/3.

In Fig. 5.3, RL is shown for the same selected cases, and for higher κ̃N/κ̃1, the

autocorrelation appears to converge to a fixed form. Indeed such a convergence is

expected; the addition of energy at ever smaller scales corresponds to a decrease in the

marginal effect on particle dynamics. Beyond the ballistic range, the decay appears

to be well approximated by C0(τ − τ ∗)6, for some appropriate choice of C0 and τ ∗.

For the spectrum in the simulation P1, the Eulerian velocity autocorrelation,

RE
ii (r), was evaluated (see Sec. B.3 for a definition), and is shown in Fig. 5.4.

The Lagrangian autocorrelation is also plotted as a function of the scaled variable

τ̃ = ũτ , where ũ = 1
2
urms. In the near range of times/separations, agreement is ex-

cellent, whereas for large times/separations, the Lagrangian autocorrelation exhibits

(τ − τ ∗)6 decay, and the spatial autocorrelation exhibits a negative loop.

These results suggest the possibility that the Lagrangian autocorrelation can be
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Figure 5.3: Lagrangian autocorrelation, for the same selected KS cases (with varying
κ̃N/κ̃1). Shown for comparison is C0(τ − τ ∗)6.
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Figure 5.4: Eulerian autocorrelation, derived from the spectrum used in Sim. P1.
Also shown is the Lagrangian autocorrelation for P1, as a function of a scaled time
variable, τ̃ .
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Figure 5.5: RL vs non-dimensionalized time, for a variety of urms and κ̃1. In all cases,
κ̃N/κ̃1 = 104.

derived analytically from the input E(κ), in the case of high κ̃N/κ̃1, but further in-

vestigation on this matter is left for future work. Nonetheless, perhaps a link between

Eulerian and Lagrangian statistics can be established empirically. For a variety of

wide inertial range cases (κ̃N/κ̃1 = 104), the Lagrangian autocorrelation is shown as a

function of non-dimensionalized time, turmsκ̃1 (Fig. 5.5). In all cases, the curves are

nearly indistinguishable. This suggests that an appropriately non-dimensionalized

Lagrangian integral timescale will converge to a fixed value, for sufficiently large

κ̃N/κ̃1.

To find such a relationship, TL was evaluated via numerical integration of RL(τ)

(by 2.25) for a variety of simulations with varying κ̃N/κ̃1, and varying urms. The

non-dimensionalized timescale TLurmsκ̃1 is shown as a function of κ̃N/κ̃1. In the

same way that an increase in κ̃N/κ̃1 engenders a convergence in autocorrelation (Fig.

5.3), the increase in κ̃N/κ̃1 accordingly engenders a convergence of TLurmsκ̃1 to a fixed
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value (approximately 0.58), and this appears to be independent of urms (Fig. 5.6).

Similarly, TLurmsκ̃1 was plotted for a variety of κ̃N/κ̃1 and κ̃1, and TLurmsκ̃1 appears

to converge to nearly the same fixed value, regardless of κ̃1 (Fig. 5.7). Thus for the

wide inertial range case, (i.e. κ̃N/κ̃1 > 103), the following relationship is suggested:

TLurmsκ̃1 = 0.58 (5.8)

In Fung et al. (1992), it was observed that:

TLurms
LE

≈ 0.5 (5.9)

The Eulerian lengthscale for isotropic turbulence is given as (Monin & Yaglom (1975)):

LE =
3π

4

∫∞
0
κ−1E(κ) dκ∫∞

0
E(κ) dκ

(5.10)

It follows from (5.6) and (5.10) that, for the wide inertial range KS employed here:

TLurms
LE

= 0.62 (5.11)

which differs from the estimate of Fung et al. (1992). An exact match is perhaps

not expected, since the application of KS here differs from that of Fung et al. (1992)

in a variety of key respects; they employed a narrow inertial range, and enforced

unsteadiness. But nonetheless this provides some confidence in the relation (5.8).

It is emphasized that neither the approach here nor that of Fung et al. (1992) is

necessarily “correct”; it is conceivable that, for the method of Fung et al. (1992), a

similar link between input Eulerian parameters and output Lagrangian statistics could
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Figure 5.6: non-dimensionalized Lagrangian integral timescale, as a function of iner-
tial range width (κ̃N/κ̃1) for a variety of urms.

also be formalized. The advantage of TLKS as developed here is that it achieves the

desired Lagrangian timescale with few inputs.

To summarize, it was observed in Ch. 4 that KS qualitatively recovers a variety of

important features of a particle ensemble, though it fundamentally lacks the ability

to reproduce Lagrangian timescales. A novel method has been motivated for bridging

the gap between Eulerian and Lagrangian statistics in KS; the TLKS model. The

foundation of this method is relation (5.8), which, for a target TL (and for a known

urms), allows a spectrum to be constructed which recovers TL. Whether this Eulerian

spectrum is realistic is secondary; what matters is that it yields a turbulent-like field

with particular Lagrangian properties. To assess the broader applicability of TLKS,

it must be tested against a benchmark for which there exists hallmarks of turbulence

structure beyond simply TL for fluid tracers - for instance, the crossing trajectories

and continuity effects.
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5.2 Comparison to experimental results of Snyder

& Lumley (1971)

5.2.1 Overview

One of the seminal experiments on the Lagrangian properties of inertial particles

in turbulence is that of Snyder & Lumley (1971) (hereafter referred to as SL71).

In this experiment, particles (with a variety of relaxation times) were released into

grid-generated, decaying turbulence, and the particles’ lateral position was recorded

at regular intervals throughout a test section. See Fig. 5.8 for an illustration. In

addition to dispersion, the authors extensively catalogued the turbulence statistics

throughout the test chamber (which can be used as input for the TLKS), allowing

for a robust assessment of the proposed TLKS model.
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Figure 5.8: Schematic of the SL71 experiment. Particles were injected into grid-
generated, spatially-decaying turbulence. Their lateral position was measured by 10
cameras placed along the wind tunnel.
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Particle dp [m] ρp [kg m−3] St ud [m s−1] ∆t [s]
Hollow glass 4.65× 10−5 260 0.138 0.01635 0.001
Solid glass 8.7× 10−5 2500 4.64 0.437 0.01
Corn pollen 8.7× 10−5 1000 1.86 0.1932 0.001
Copper 4.65× 10−5 8900 4.72 0.477 0.01

Table 5.5: Particle properties in SL71. dp is particle diameter, ρp is particle density, St
is Stokes number, ud is terminal velocity, and ∆t is simulation timestep. The Stokes
numbers are based on a Kolmogorov timescale of τη = 1.17 × 10−2 m (evaluated
at 73 grid spacing lengths downstream of the grid), a kinematic viscosity of ν =
1.5× 10−5 m2s−1 and a fluid density of ρf = 1.225 kg m−3.

5.2.2 Methodology for comparison to SL71

Since only the single-particle Lagrangian statistics were examined, Type I (unbounded

domain) KS was employed. In SL71, four particle types were employed: copper, corn

pollen, solid glass and hollow glass. The particle properties are summarized in Table

5.5.

There exist two features of the turbulence in the SL71 experiment that necessitate

some mild changes in the KS method: mean flow and spatial decay.

Mean flow

The transport of turbulent eddies by the mean flow is incorporated into the traditional

KS model with an appropriate change of variables:

uf (x, t) =
Nκ∑
n=1

an cos(κn ·X + ωnt) + bn sin(κn ·X + ωnt) (5.12)

where X = x0−Ut, and where U is the mean flow vector. This is reminiscent of the

Kinematic Simulation Sweeping Model of Fung et al. (1992). This parallel is discussed
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further in Ch. 6.

Spatial decay

Among the immense variety of statistics recorded in SL71 is the spatial variation of

the root mean squared lateral component of the turbulent fluctuating velocity in the

test chamber (u2⊥), as a function of vertical position:

Ū2

u2⊥
= 39.4

( z
M
− 12

)
(5.13)

where M is the grid spacing (2.54 ×10−2 m), Ū is the magnitude of the mean velocity

(6.55 m s−1), z is vertical position, and the overline denotes the Eulerian time average.

Similarly the dissipation profile is given by:

ε = −U d

dz
k (5.14)

where the derivative is with respect to displacement along the length of the test

chamber. Since the objective is to reproduce lateral dispersion, the energy is assumed

to be given as:

k =
3

2
u2⊥ (5.15)

and consequently Eq. (5.14) becomes:

ε = −U 3

2

d

dz

[
Ū2

39.4
(
z
M
− 12

)] (5.16)

Since k and ε vary according to position, so does the estimate for TL (by Step 1 of the

TLKS), and accordingly so do the estimates for κ̃1 and E(κn) (by Step 2 of the TLKS).
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Therefore, the turbulence statistics for a given particle are a function of that particle’s

precise streamwise position. Consequently, the TLKS is applied independently for

each particle, such that every particle “sees” its own TLKS spectrum, constructed as

follows:

uf (x, t) =
Nκ∑
n=1

an(z) cos(κn ·X + ωnt) + bn(z) sin(κn ·X + ωnt) (5.17)

where

|an(z)|2 = |bn(z)|2 = 2E(κn, z)∆κn (5.18)

and where, by (5.13) and (5.15):

Nκ∑
n=1

E(κn, z)∆κn = k(z) =
Ū2

2
3
39.4

(
z
M
− 12

) (5.19)

Again since the sequences E(κn, z) depend on streamwise position (z), they will be

unique for each particle. In contrast, a single wavenumber sequence, as well as weights

(κn and ∆κn respectively) were assumed for all particles - individual modes were ac-

tivated and deactivated according to κ̃1 for the given particle. Naturally such an

approach possesses the same shortcoming as SSF models; all particles seeing inde-

pendent fluid velocities cannot exhibit clustering. This does not impact the present

simulations, for which only Lagrangian statistics are observed. In all cases, κ̃N should

be sufficiently large such that the relation (5.8) applies - to simplify matters, a single

κ̃N can be chosen such that κ̃N/κ̃1 > 103 for all particles throughout the simulation.

To ensure particles’ independence from the initial conditions in the original ex-

periment, particles were released from the same initial point, and the collection of

particle data commenced after the particles had traveled downstream a distance of 20
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Figure 5.9: History of observed terminal velocities for a variety of particle types in
TLKS-generated fields, compared with a priori estimates.

grid spacings. A similar strategy is employed here; an initial time for the evaluation

of Lagrangian statistics, t∗, was estimated based on the particle terminal velocity

(whose magnitude is given by ud), which was evaluated from equations (2.7) (2.8),

and (2.9) - see Sec. C.4. It was ensured that the average terminal velocity matched

the a priori estimates throughout the simulation (See Fig. 5.9).

5.2.3 Results

The results of dispersion for a variety of particle types, compared with the experimen-

tal benchmarks, are shown in Fig. 5.10; indeed the comparison is remarkably good.

In particular, the crossing trajectories effect (namely, reduced dispersion for high St

particles) is observed. The mild discrepancy may, in part, be explained by the sample

error of dispersion in the experiment. Following the method of Strutt et al. (2011),
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the confidence in dispersion results (as a function of number of particles sampled) is

evaulated. In the best case in SL71, 846 corn pollen trajectories were tracked, and

accordingly this corresponds to a 19.1% spread in the 95% confidence interval for

dispersion. For all TLKS trials, 300 000 particles were tracked, corresponding to a

1% spread in the 95% confidence interval.

Though not observed in SL71, the longitudinal mean-corrected dispersion is shown

in Fig. 5.11 (along with lateral dispersion), and the continuity effect is indeed cap-

tured for high St particles. As was predicted analytically (Csanady (1963)), and as

was observed numerically (Squires & Eaton (1991)), the strength of the continuity

effect (defined as the ratio of lateral diffusivity over longitudinal diffusivity) is roughly

proportional to St, and in the limiting case of very high St, this ratio approaches 1
2
.

This qualitative behaviour is recovered here (see Fig. 5.12).

The reciprocal of the mean-squared lateral particle velocity (non-dimensionalized

by the square of the mean velocity) is shown in Fig. 5.13. The authors themselves

noted: “The difference between the velocity of the glass and copper beads is somewhat

surprising since their time constants were nearly the same and their dispersion curves

were nearly identical. The tread [sic] however, is consistent.” This mismatch between

copper and solid glass is also reflected in the TLKS results. This is explained, in part,

by the presentation of the data in reciprocal form; in Fig. 5.14 the non-reciprocal

mean-squared lateral particle velocity is shown, and indeed the discrepancy between

copper and hollow glass (for both SL71 and TLKS) appears less dramatic.

The generally loose agreement between SL71 and TLKS may be explained by

the experimental uncertainty associated with position measurements, compounded

with error introduced by the numerical evaluation of velocity in SL71. Their method
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is explained in detail in Ch. 5.2 of SL71, and is summarized here as follows: the

mean-squared particle velocity (or particle “energy”) was evaluated by observing the

particle position data at the camera locations, and applying a filter to the Fourier

coefficients of velocities, to compensate for energy lost due to the coarse sampling.

The authors themselves noted: “It is likely that a significant portion of the energy of

the hollow glass beads was lost due to the low sampling rate”, explaining the discrep-

ancy between the TLKS and SL71 for hollow glass. The discrepancy between TLKS

and SL71 for heavy particles (solid glass and copper) is explained as follows: heavy

particles exhibit low lateral dispersion, and consequently exhibit high relative (posi-

tion) error. In turn, this is expected to amplify the error associated with numerical

derivatives, likely causing an overestimate of such mean-squared lateral particle ve-

locities. Notwithstanding these issues, it is borne in mind that such numerical errors

are avoided in the more direct observation of dispersion, which is of primary interest.

And it is here that good agreement is observed.

5.3 Summary

Perhaps the most fundamental expectation one can have of any worthwhile particle-

laden flow model is whether it reproduces the expected Lagrangian integral timescale

(TL). Whether KS yields the desired TL hinges upon whether one uses the “appro-

priate” input spectrum for KS, and in the literature there does not exist a systematic

method for achieving this, based on the desired output TL. Target Lagrangian inte-

gral timescale Kinematic Simulation (TLKS) was devised to address this need; the

inputs of the method are RANS parameters (k and ε), which correspond to a certain

TL. This corresponds to a simple Eulerian spectrum (via an empirical relationship),
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Figure 5.10: Dispersion for a variety of particle types in TLKS-generated fields, com-
pared with the experimental results of SL71.
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perimental results of SL71.

whose resulting turbulent-like field enforces TL. If the objective were solely to formu-

late a method that enforces TL, then the added expense of KS (relative to SSF) would

not be justified. But it is demonstrated here that its utility extends to restoring the

expected behaviour of inertial particles as well - namely the crossing trajectories and

the continuity effects. This occurs without appeal to further empiricisms, as is the

case for SSF approaches. It is also shown here that TLKS can effectively capture

Lagrangian statistics, even if the flow is decaying.

82



Chapter 6

Summary and Recommendations

6.1 Summary of accomplishments

Particle-laden flow modelling can be applied to a wide range of real-world scenar-

ios, and as such, computationally tractable simulation techniques are highly desired.

A widely-applied technique is stochastic separated flow (SSF), which, very loosely

speaking, models individual particles as random walks. The chief drawback of such

models is their blindness to turbulence structure, in a variety of important senses.

In parallel, there exists much literature devoted to exploring various properties of

turbulent-like fields generated via kinematic simulation (KS), though this literature

is primarily of theoretical interest, and there has lacked a comprehensive exploration

of its applicability to reproducing turbulence structure as it is manifested in a variety

of statistics of fundamental importance to modellers. Such an exploration was car-

ried out here, and good qualitative agreement was obtained with a benchmark direct

numerical simulation (DNS). It is noted that KS is foremost a stochastic Lagrangian

particle model, therefore, the Lagrangian properties of KS “turbulence” must be at
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the foundation of any investigation into its utility as a modelling technique. Ac-

cordingly, a method was devised and tested in which a target Lagrangian integral

timescale was enforced. This novel method casts an impression of structure on the

particle ensemble in a manner that SSF models cannot easily achieve. The following

is a more detailed summary:

• Various shortcomings of stochastic separated flow (SSF) applications to particle-

laden flow modelling were identified, and KS was proposed as an alternative

(Sec. 2.2.3 and 2.2.4).

• If preferential concentration is of interest for a particle-laden KS, there exist a

variety of subtle yet important considerations for ensuring confidence in single-

particle Lagrangian statistics and correlation dimension, while remaining true

to the classical KS formulation. Such issues have not been addressed in the

literature. A method for carrying out an ensemble of particle-laden KS realiza-

tions on an extended domain was motivated, and was shown to grant confidence

in the statistics of interest (Sec. 3.3 and App. C).

• Various second-order statistics of turbulent-like KS fields were derived analyti-

cally (App. B).

• KS was tested against a DNS benchmark for fluid tracers, and the most favourable

comparison between the Lagrangian statistics occurred when the turbulent-like

field was steady (ωn = 0 for all n, in equation 2.13) (e.g. Fig. 4.2).

• KS was tested against a DNS benchmark for inertial particles for a range of

St, with and without gravity. Without gravity, the most favourable comparison
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between DNS and KS occurred for high St (see Fig. 4.12 for long-range dis-

persion and Fig. 4.16 for correlation dimension). For the correlation dimension

of St ∼ 1 inertial particles (where St is the particle Stokes number), the most

favourable comparison occurred for a steady flow (Fig. 4.13).

• Steady KS qualitatively reproduces the elevated dispersion of inertial particles

in the absence of gravity (Fig. 4.11), in accordance with the DNS results, and

in accordance with results elsewhere in the literature.

• In the presence of a sufficiently strong body force, the continuity effect is repro-

duced; that is, the lateral dispersion of inertial particles is reduced compared

with the longitudinal dispersion (Fig. 4.17).

• Also in the presence of a body force, a generally favourable comparison between

asymptotic correlation dimension is observed between DNS and KS for all St,

but especially for St > 1 (Fig. 4.18). The improved performance is explained by

the domination of Lagrangian properties by the Eulerian properties, by Taylor’s

frozen turbulence hypothesis (Fig. 4.21).

• A simple method for applying KS in a manner that enforces the target La-

grangian integral timescale was motivated (and was termed Target Lagrangian

integral timescale Kinematic Simulation, or TLKS), and was tested against an

experimental benchmark (the experimental results of Snyder & Lumley (1971)).

Excellent agreement of dispersion was obtained; the crossing trajectories (Fig.

5.10) and continuity effects (Fig. 5.11) were reproduced.
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6.2 Lack of sweeping?

Throughout the KS literature, shortcomings of KS have been identified in a variety of

scenarios (according to varying expectations of what the model should achieve). Such

shortcomings are often ascribed to the lack of dynamic sweeping of small scales by

the large. This is reminiscent of the discussion in Sec. 2.2.3, in which the deficiencies

of SSF models are attributed to their lack of consideration of structure. Turbulence

results from the evolution of nonlinear dynamic equations, and as such, it is not clear

how the concepts of turbulence and sweeping can be divorced. Consequently it is not

immediately clear in what sense a given feature of Lagrangian statistics could be an

effect of sweeping, since sweeping is inherent in turbulence.

This underlines a key danger in KS model development. Classical turbulence

theory is based on heuristic arguments involving the properties of a hierarchy of

“eddies”, and such arguments have yielded conclusions that have been extensively

verified by numerical and experimental evidence. Of course there do not exist isolated

eddies in real turbulence, but nonetheless these heuristics work. KS formulations often

appeal to these same heuristic arguments, and transpose the properties of “elements”

of a cascade (eddies) onto the elements of KS (the individual terms in the generation

of a turbulent-like field - see Eq. (2.13)). Naturally such an approach is predicated

on the assumption that the “elements” of turbulence, in some sense, work in concert

in the same manner in either real turbulence or KS, and of course they do not. For

example, the unsteadiness formulation (Eq. (2.34)) is “based on an approximation

of small-scale sweeping” (Osborne et al. (2005)). While bearing intuitive appeal in

the Eulerian perspective, it is emphasized that the Lagrangian properties cannot be

easily surmised from the properties of the individual elements of the turbulent-like
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field, even if they are sensible in the Eulerian perspective. In Osborne et al. (2005),

it is shown that the “sweeping” heuristic succeeds in restoring a certain qualitative

agreement with the expected Lagrangian frequency spectrum and autocorrelation,

and this is seen as a certain validation of this heuristic. The danger in all this is that

it could grant legitimacy to models that are deemed successful according to properties

of secondary relevance.

The main consequence for this investigation is as follows: on the path to a widely-

applicable KS model, there exist many red herrings. Once again, the relationship

between Eulerian and Lagrangian properties in KS is opaque, therefore properties

of a given KS formulation - that correspond to a certain intuitive idea of “realism”

- are not necessarily manifested in the Lagrangian properties. The converse is also

true; it is possible to reproduce the desired Lagrangian statistics, while violating one’s

expectations of how a turbulent-like field should behave in the Eulerian perspective.

Indeed this was eminently demonstrated in Ch. 5; a successful model was constructed

with steady KS fields (advected by a mean flow), and of course real turbulence is not

steady. Indeed the only meaningful definition of success for a stochastic Lagrangian

particle model (such as KS) is whether or not it reproduces the desired Lagrangian

properties of a particle ensemble.

Is there a more meaningful sense in which the sweeping of small eddies by the large

can be simulated in KS? Yes, if “large eddy” is interpreted as mean flow, as was done

in Sec. 5.2.2. Fung et al. (1992) considered the question of whether this technique of

deforming coordinate systems can be extended to simulate the interaction amongst
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the hierarchy of eddies. They proposed a somewhat more general version of (5.17):

us(x, t) =
Nκ∑
n=1

an cos(κn ·X + ωnt) + bn sin(κn ·X + ωnt) (6.1)

where X is given by:

X(t) = x0 +

∫ t

0

ul(x(τ), τ) dτ (6.2)

Here, ul does not necessarily correspond to a mean flow, but to an appropriately

defined “large-scale motion”, perhaps given by large-eddy simulation.

Unfortunately, if ul is anything more complicated than a homogenous mean flow

- even if it contains a simple mean shear - the continuity of the overall velocity field

is not preserved. While deforming coordinate systems can, in a sense, incorporate

true sweeping motion, the fundamental problem remains; there is a lack of “commu-

nication” between the modes. In (6.1) and (6.2), the superposition of the small and

large motions can yield small-scale gradients that, in real turbulence, would not be

tolerated by viscosity. Indeed this shortcoming was recognized in Fung et al. (1992),

and it appears their KS formulation has not been explored since.

6.3 Suggestions for future research

With respect to the TLKS method proposed and tested in Ch. 5, there exist a variety

of promising avenues for the further development of this tool, namely:

• The clear scale relations observed in SL and RL for high-κ̃N/κ̃1 KS (in Sec.

5.1.2) hint at the possibility of deriving Lagrangian properties from an input

Eulerian field (perhaps only for an infinitely wide inertial range).
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• The method was constructed such that an input k (or urms) corresponds to a

unique κ̃1 (for recovering a desired TL), and κ̃N was assumed to be effectively

infinite. It was also observed that TL depends on κ̃1 and κ̃N (Figs. 5.6 and 5.7),

which suggests the existence of a set of (κ̃1, κ̃N) coordinates that can recover

a target TL (corresponding to a given k and ε). Let such a set be called Sk,ε.

While all members of Sk,ε restore TL (by definition), some members may be

better than others at restoring additional statistics of interest, for instance,

Lagrangian flatness, or correlation dimension for inertial particles.

Furthermore, one may assume the canonical input spectrum to be characterized

by additional parameters. For instance, the value of p in E(κ) = cκ−p may not

necessarily be 5/3 because, again, the primary goal is not to generate a field

that is realistic from the Eulerian perspective. Indeed, there exists a precedent

for the manipulation of p, with the goal of restoring reasonable Lagrangian

behaviour (Khan & Vassilicos (2003)).

Additionally the unsteadiness parameter, λ, (under either Type A or Type B

KS) could be reintroduced. While the results in Ch. 4 show that high unsteadi-

ness yields highly unrealistic Lagrangian properties, it should be emphasized

that this corresponds to certain assumed Eulerian second-order statistics. Since

the spectrum employed in TLKS does not enforce this Eulerian realism, the rein-

troduction of unsteadiness may enhance predictions in the same manner that

the reintroduction of κ̃N might; increasing the dimension of parameter space

offers the possibility of improving predictions of a greater variety of statistics

of interest.
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Notwithstanding these issues, the work presented here demonstrates that KS is ap-

plicable to simulating the full spectrum of motions that underlie particle behaviour.

Such a modelling technique has been shown to broadly restore features of a parti-

cle ensemble that are fundamentally important for modellers, in a manner that SSF

models are unable to comprehensively achieve.
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Appendix A

DNS Verification

Unless otherwise stated, all time variables were non-dimensionalized by the large eddy

turnover time, τeddy, defined as:

τeddy =
LE
urms

(A.1)

where LE is the longitudinal Eulerian length scale, defined as:

LE =
1

3
(L11 + L22 + L33) (A.2)

where:

L11 =

∫ L/2

0

RE
11(x + e1r) dr (A.3)

and similarly for L22 and L33. R
E
ii (r), the Eulerian velocity autocorrelation, is defined

in Sec. B.3.

To test for timestep independence, two decaying DNS were carried out with the

same initial condition, but one with timestep ∆t = 0.0005, and the other with
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Figure A.1: Turbulent kinetic energy, k, for decaying DNS, for ∆t = 0.001 and
∆t = 0.0005.

timestep ∆t = 0.001. The history of energy is compared between the two simu-

lations, and is shown in Fig. A.1 - the two histories are coincident, indicating that

∆t = 0.001 is suitable. It is noted that the large eddy turnover time (τeddy) does not

remain fixed in a decaying DNS; here it was calculated for the initial field. Regardless

of what constant τeddy assumes, the result is unaffected.

In order to generate flows in which the statistics are approximately stationary,

it is necessary to inject energy on the large scales, to compensate for the energy

dissipation at the small scales. Initially the method of Eswaran & Pope (1988) was

considered, however the statistically stationary properties of the field are difficult to

predict for a given set of forcing parameters. In forced DNS literature, the simple

method of Chen et al. (1993) has become increasingly favoured, and it is the method

applied here. This method operates by keeping the energy constant at large scales.
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The energy contained within a band around κn in wavenumber space in given by:

En =
1

2

∑
κn≤|K|<κn+1

〈
ûK(t) · û∗K(t)

〉
(A.4)

where κn is a sequence of wavenumbers, given as κn = 2πn. For the simulations here,

E2 and E3 were held fixed at each timestep, and were chosen such that E3/E2 =

(3/2)−5/3 (that is, the Kolmogorov scaling of the energy spectrum in this segment

of wavenumber space was enforced). Contrary to its common application in the

literature, E1 was not held fixed, since it was found that excessive energy at the

smallest wavenumber band increased the large-scale anisotropy (defined in (A.5)) to

unacceptable levels.

Further results of the forced DNS (as carried out in Ch. 4) are presented here,

and are compared to DNS results in the literature.

• A necessary condition to ensure numerical stability is that the Courant number,

C, should remain under unity (Eswaran & Pope (1988)): indeed it was observed

here that C < 0.15 throughout (Fig. A.2).

• As was noted in Sec. 3.1, it was ensured that ηκmax ≥ 1 throughout the

simulation, which ensures sufficient spatial resolution of all length scales of the

flow (Yeung & Pope (1988); Eswaran & Pope (1988)) (Fig. A.3).

• The large-scale anisotropy tensor Bij is defined as:

Bij =
〈uiuj〉

2k
− 1

3
δij =

〈uiuj〉
〈ukuk〉

− 1

3
δij (A.5)

The largest absolute value of any of the components was about 0.08 (See Fig.
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Figure A.2: History of the Courant number, C.

A.4) - this relatively high anisotropy is explained by the forcing method, in

which the largest scales of motion (which bear the greatest contribution to the

anisotropy) are continually amplified to maintain an approximately constant

energy. This highlights the importance of considering, whenever possible, the

Lagrangian statistics averaged over all components (see Sec. 2.2.5).

• The skewness of the velocity field (γu) is a measure of the nonlinear energy

transfer from large to small scales. It is calculated as:

Su = −
∑3

i=1〈(
∂ui
∂xi

)3〉
[
∑3

i=1〈(
∂ui
∂xi

)2〉]3/2
(A.6)

Throughout the simulation here, γu was roughly 0.5, in line with the DNS results

of Elghobashi & Trusedell (1992) and Cernick (2013) (see Fig. A.5).
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Figure A.3: History of ηκmax, where η is the Kolmogorov microscale, and κmax is the
largest resolved wavenumber.
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Figure A.4: History of components of the large-scale anisotropy tensor, Bij.
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Figure A.5: History of the skewness of the velocity derivatives, γu.
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Appendix B

Eulerian Second-Order Statistics in

KS

B.1 Alternative KS formulations

In the KS literature, there exist many shades of KS formulations. One widely applied

alternative is (as in Kraichnan (1970); Malik & Vassilicos (1999); Malik (2014)):

uf (x, t) =
Nκ∑
n=1

an × κ̂n cos(κn · x + ωnt) + bn × κ̂n sin(κn · x + ωnt) (B.1)

where κ̂n is the unit vector given by κ̂n = κn/κn. Here, the cross product ensures

incompressibility. For such a KS formulation, the magnitudes of an and bn can be

sampled from a distribution, such that over a very large ensemble of realizations,

the spectrum is (on average) enforced. In order to obtain meaningful data on pref-

erential concentration, a single realization must contain many particles, since many

particles must “see” the same turbulent-like structures. A large number of particles
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per realization - combined with a very large number of realizations required to ensure

confidence in energy - would likely be computationally intractable. Therefore, in the

KS formulation in this study, an and bn were chosen with fixed magnitudes, such that

the energy density was enforced exactly for every KS realization (following Thomson

& Devenish (2005) and Nicolleau & Abou El-Azm Aly (2012)).

B.2 Energy

It is now shown that the KS formulation in Sec. 2.2.4 gives the appropriate amplitude

of each KS mode, such that the appropriate energy density at each wavenumber is

enforced, for even a single realization. The energy is evaluated from (2.13) as:

〈
1

2
|u(x, t)|2

〉
=

[
1

2|V |

∫
V

∣∣∣ Nκ∑
n=1

an cos(κn · x) + bn sin(κn · x)
∣∣∣2 dV ] (B.2)

where the [ ] parentheses indicate the average over an ensemble of realizations, and

V is R3, or, all of three-dimensional space. Admittedly the use of 1
|V | is an abuse

of notation, but it is implied that the integrals would be evaluated improperly. Also

without loss of generality, t has been set to 0. First, consider the inner product:

∫
V

∣∣∣ Nκ∑
n=1

an cos(κn · x)
∣∣∣2 dV =

∫
V

Nκ∑
m=1

am cos(κm · x) ·
Nκ∑
n=1

an cos(κn · x) dV

=

∫
V

Nκ∑
m=1

Nκ∑
n=1

(am · an) cos(κm · x) cos(κn · x) dV (B.3)
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Now the integral of the product of sines (or cosines) of different periods over an infinite

domain is zero, hence the previous expression vanishes for m 6= n. Therefore:

∫
V

∣∣∣ Nκ∑
n=1

an cos(κn · x)
∣∣∣2 dV =

∫
V

Nκ∑
n=1

|an|2(cos(κn · x))2 dV (B.4)

and similarly for the product of sines. Therefore:

〈
1

2
|u(x, t)|2

〉
=

[
1

2|V |

∫
V

Nκ∑
n=1

|an|2(cos(κn · x))2 + |bn|2(sin(κn · x))2 dV

]

=

[
Nκ∑
n=1

|an|2
1

2|V |

∫
V

(cos(κn · x))2 dV + |bn|2
1

2|V |

∫
V

(sin(κn · x))2 dV

]

=

[
Nκ∑
n=1

|an|2
(1

4

)
+ |bn|2

(1

4

)]
(B.5)

and since an and bn have the same magnitude in every realization (it is only their

orientations that are random), one obtains:

〈
1

2
|u(x, t)|2

〉
=

1

4

Nκ∑
n=1

|an|2 + |bn|2 (B.6)

Also:

〈
1

2
|u(x, t)|2

〉
= k =

Nκ∑
n=1

E(κ)∆κn (B.7)

Equations (B.6) and (B.7) together yield:

Nκ∑
n=1

E(κ)∆κn =
1

4

Nκ∑
n=1

|an|2 + |bn|2 (B.8)
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and if |an|2 = |bn|2 = 2E(κ)∆κn, the above equation is satisfied.

B.3 Eulerian autocorrelations

The Eulerian two-point (or two-time) velocity autocorrelation tensor has the general

form:

RE
ij(r, τ) =

〈uf,i(x, t)uf,j(x + r, t+ τ)〉√
〈uf,i(x, t)2〉

√
〈uf,j(x + r, t+ τ)2〉

(B.9)

Consider the one-point, two-time autocorrelation RE
ii (τ):

RE
ii (τ) =

[ 1
|V |

∫
V
uf,i(t)uf,i(t+ τ) dV ]√

[ 1
|V |

∫
V
uf,i(t)2 dV ]

√
[ 1
|V |

∫
V
uf,i(t+ τ)2 dV ]

(B.10)

For stationary, isotropic turbulence, [
∫
V
uf,i(t)

2 dV ] = [
∫
V
uf,i(t + τ)2 dV ] = u2rms,

where 3
2
u2rms = k. The numerator of B.10 thus becomes:

[ 1

|V |

∫
V

uf,i(t)uf,i(t+ τ) dV
]

(B.11)

=
[ 1

|V |

∫
V

Nκ∑
m=1

(am,i cos(κm · x + ωmt) + bm,i sin(κm · x + ωmt)

×
Nκ∑
n=1

(an,i cos(κn · x + ωn(t+ τ)) + bn,i sin(κn · x + ωn(t+ τ))dV
]

If m 6= n, then

1

|V |

∫
V

am,i cos(κm · x + ωmt)an,i cos(κn · x + ωn(t+ τ)) dV = 0 (B.12)

and similarly for the terms involving the products of cosine and sine, sine and cosine,

and sine and sine. If m = n, and if the volume integral is, without loss of generality,
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evaluated first over the first spatial component, then:

1

|V |

∫
V

am,i cos(κm · x + ωmt)an,i cos(κn · x + ωn(t+ τ)) dV

= lim
p→∞

a2n,i
2p

[sin(ωn(τ + 2t) + 2(κn · x)) + 2κn,1p cos(ωnτ)

4κn,1

∣∣∣p
−p

=
2a2n,iωn cos(ωnτ)

4ωn

= a2n,i
cos(ωnτ)

2
(B.13)

and similarly for the product of sine and sine. For the product of sine and cosine (or

vice versa), the integral vanishes. Therefore:

1

|V |

∫
V

uf,i(t)uf,i(t+ τ) dV =
Nκ∑
n=1

(a2n,i + b2n,i)
cos(ωnτ)

2
(B.14)

Now over an ensemble of realizations,

[a2n,1] = [a2n,2] = [a2n,3] =
1

3
|an|2 =

2

3
E(κn)∆κn (B.15)

and similarly for bn,i (and bn). So:

[ 1

|V |

∫
V

uf,i(t)uf,i(t+ τ) dV
]

=
2

3

Nκ∑
n=1

E(κn)∆κn cos(ωτ) (B.16)

and finally, the general expression of a diagonal component of this tensor is:

RE
ii (τ) =

2

3u2rms

Nκ∑
n=1

E(κn)∆κn cos(ωnτ) (B.17)
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Similarly to how it is defined for Lagrangian statistics, the second-order, one-point,

two-time Eulerian structure function tensor, SEij (τ), is defined as:

SEij (τ) = 〈(ui(x, t)− uj(x, t+ τ))2〉 (B.18)

and for homogenous, isotropic turbulence, this quantity exhibits the following straight-

forward relationship to the autocorrelation:

SEij (τ) = 2〈u2i 〉(1−RE
ij(τ)) (B.19)

The diagonal components, SEii (τ), were compared to that of the corresponding DNS.

In line with a similar analysis of Osborne et al. (2005), SE(τ) ∼ τ 2 is obtained in the

ballistic range, and SE(τ) ∼ τ 2/3 in the inertial range for Type B KS, which more

closely resembles the scalings in DNS than Type A KS (and which corresponds to

the expected Eulerian frequency spectrum scaling ΦE(ω) ∼ ω−5/3 (Tennekes (1975);

Osborne et al. (2005))). Despite the close match of the slopes of the curves between

DNS and Type B KS, the KS values are shifted upward compared with the DNS,

indicating that the field becomes decorrelated more quickly at a fixed position (Fig.

B.1).

Now consider the case of the two-point, one-time Eulerian velocity autocorrelation

for homogeneous turbulence:

RE
ii (r) =

〈uf,i(x)uf,i(x + r)〉
〈(uf,i(x))2〉

(B.20)

When r is constrained to be parallel to the i-th direction, this is the longitudinal
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Figure B.1: Eulerian one-point, two-time velocity structure function for DNS, and
the corresponding Types A and B KS. For both KS, λ = 0.5

autocorrelation (and, following Batchelor (1953), will be denoted f(r) for isotropic

turbulence). When r is constrained to be perpendicular to the i-th direction, it gives

the lateral autocorrelation (similarly denoted as g(r)).

The numerator of f(r) can be evaluated, using a similar technique as for the

one-point two-time autocorrelation:

[ 1

|V |

∫
V

uf,i(x)uf,i(x + rei) dV
]

=
[ Nκ∑
n=1

(a2n,i + b2n,i)
cos(κn,ir)

2

]

And similarly the numerator for the lateral autocorrelation is derived as:

[ 1

|V |

∫
V

uf,i(x)uf,i(x + rej) dV
]

=
[ Nκ∑
n=1

(a2n,i + b2n,i)
cos(κn,jr)

2

]

where i 6= j. The longitudinal and lateral autocorrelations were evaluated numerically
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Figure B.2: One-dimensional longitudinal (f(r)) and lateral (g(r)) autocorrelations,
in both DNS and KS.

for 300 realizations, with an input spectrum obtained from the DNS. Consistent with

the observations of Osborne et al. (2005), the same qualitative behaviour is observed

between DNS and KS; in particular, there exists a significant negative loop in the

lateral autocorrelation - see Fig. B.2.

When the argument of the Eulerian autocorrelation is given with a scalar dis-

placement r, the autocorrelation is interpreted as follows:

RE
ii (r) =

∫
|r|=r

〈uf,i(x)uf,i(x + r)〉
〈(uf,i(x))2〉

(B.21)

This quantity admits the analytical description (Batchelor (1953); Malik (1991)):

RE
ii (r) =

∫ ∞
0

E(κ)
sin(κr)

κr
dκ (B.22)
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This quantity may hold clues regarding an a priori description of Lagrangian statistics

in KS (see Sec. 5.1.2).

B.4 Large-scale anisotropy

The large-scale anisotropy of a field is given in equation (A.5). Applying the definition

of KS, the correlation term is given as:

〈uf,i(x)uf,j(x)〉 =
〈( Nκ∑

m=1

am,i cos(κm·x)+bm,i sin(κm·x)
)( Nκ∑

n=1

an,j cos(κn·x)+bn,j sin(κn·x)
)〉

(B.23)

Once again, since correlations between m 6= n terms vanish, one obtains:

〈uf,i(x)uf,j(x)〉 =
Nκ∑
n=1

〈
an,i cos(κn · x)an,j cos(κn · x)

〉
+
〈
an,i cos(κn · x)bn,j sin(κn · x)

〉
+
〈
bn,i sin(κn · x)an,j cos(κn · x)

〉
+
〈
bn,i sin(κn · x)bn,j sin(κn · x)

〉
(B.24)

Employing the observation directly after (B.13), only the correlations of cosine times

cosine (and sine times sine) terms are preserved, yielding the following expression for

large-scale anisotropy:

Bij =
1

4k

Nκ∑
n=1

[an,ian,j + bn,ibn,j]−
1

3
δij (B.25)
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Using the input spectrum obtained from the DNS, the components of Bij were eval-

uated for 300 000 KS realizations. It was observed for the resulting distributions of

Bij, that the upper bound on the 99% confidence interval, for any component, did

not exceed 0.0122, which compares favourably with the large-scale anisotropy of 0.01

reported for decaying DNS in Elghobashi & Trusedell (1992).
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Appendix C

Particle Tracking Verification

C.1 Timestep independence for DNS

For the fourth-order Adams-Bashforth explicit solver, convergence occurs for a suffi-

ciently small timestep, ∆t. Generally speaking, the timestep should be smaller than

the smallest timescale of fluid velocity variations experienced by a particle.

Two groups of simulations with identical initial conditions for the particles (and

identical DNS flow fields) were carried out; one group employed ∆t = 0.001(< 0.01τη),

and the other group, ∆t = 0.0005. It was observed that between the two cases, the

dispersion results were virtually indistinguishable (see Fig. C.1). Since particle inertia

has the effect of filtering out the shortest timescales of the turbulent velocity signal,

this criterion was deemed sufficient for confidence in inertial particle statistics as well.
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Figure C.1: Dispersion for fluid tracers in DNS, for time steps ∆t = 0.0005 and
∆t = 0.001.

C.2 Timestep independence in KS (with DNS spec-

trum input)

The ∆t < 0.01τη criterion was also applied for the KS in Ch. 4, though of course τη is

understood as being a property of the corresponding DNS - naturally τη depends on

the dissipation, ε, and of course there is no dissipation in kinematic fields. Therefore it

must be proven that the ∆t < 0.01τη criterion is sufficient for timestep independence

in KS. The dispersion of tracers in steady KS is shown in Fig. C.2, for ∆t = 0.005

and ∆t = 0.001. The results are virtually identical, indicating that this criterion is

appropriate for the KS in Ch. 4.
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Figure C.2: Dispersion for tracers in steady KS, for time steps ∆t = 0.005 and
∆t = 0.001.

C.3 Timestep independence in a generalized KS

method

For a generalized KS method for an arbitrary input spectrum (characterized by

urms, κ̃1 and κ̃N - see Fig. 5.1), some other sufficient condition is needed. Using

a modified version of the criterion given in Thomson & Devenish (2005), it is hypoth-

esized that confidence in Lagrangian statistics is granted if:

∆t ≤ 0.01
1

urmsκ̃1
(C.1)

Generally speaking, the smaller the timescales of the flow, the smaller the timestep

must be to ensure timestep independence. Therefore, testing criterion (C.1) with a

very large κ̃N will demonstrate sufficiency for timestep independence, regardless of
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Figure C.3: Autocorrelation for KS, whose input spectra are detrained by input urms,
κ̃1 and κ̃N .

κ̃N . This criterion was tested for a two urms − κ̃1 pairs (with κ̃N/κ̃1 = 104), and the

autocorrelations are presented in Fig. C.3. The close match of the autocorrelations

grants confidence that criterion (C.1) is appropriate.

C.4 Gravity

In the Lagrangian particle momentum equation (2.9), there exists a body force, F,

which, in many real-world applications, arises due to gravity. For inertial particles,

simulations were carried out with and without gravity. When comparing to the

experimental benchmark (Snyder & Lumley (1971), as was done in Sec. 5.2), F

was given the usual form:

F = (0 m s−2, 0 m s−2,−9.81 m s−2) (C.2)

For the DNS-KS comparison, one group of simulations was run without gravity, but

another with gravity, to observe whether KS can reproduce the continuity effect. A

110



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

sufficient condition for the observation of the continuity effect (Wells & Stock (1983))

is that the drift (terminal) velocity of a given inertial particle type exceeds the root

mean squared turbulent fluctuating velocity (urms). Therefore, in order to test for the

continuity effect in KS, gravity must be sufficiently strong such that the magnitude of

the drift (terminal) velocity of the inertial particles exceeds urms. To find this critical

acceleration, it is observed that for an ensemble of inertial particles traveling at a

constant drift velocity (whose magnitude is ud) due to acceleration, (2.9) becomes:

0 =
f

τp
(0− ud) + g (C.3)

where g is the magnitude of the body force vector. For a given ud, (2.6), (2.7) and

(2.8) are then used (along with the assumption that |uf − up| = ud) to solve for a

corresponding acceleration (g) that yields this terminal velocity:

g =
18udν

d2p(ρp/ρf )

[
1 + 0.15

(dpud
ν

)0.687]
(C.4)

For all simulations in question, a choice of ud = 0.1 was sufficient to satisfy the

ud > urms criterion. It is noted that the imposed body force will vary according to

St.

In Sec. 5.2.2, the reverse calculation was done; equation (C.4) was used to find ud

based on a known acceleration (g = 9.81 m s−1). This was part of the methodology

for the replication of the results of Snyder & Lumley (1971) with TLKS, for which the

terminal velocity of each particle was calculated a priori. This was done to match the

initial timestep for the evaluation of Lagrangian statistics (t∗) with the “first camera”

position in the original experiment.
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C.5 Choice of initial time step

The discussion regarding an appropriate choice of initial timestep for evaluation of La-

grangian statistics is facilitated by the concept of the root mean-squared relative velocity,

defined as:

urel(t) = 〈|up(t)− uf (xp(t), t)|2〉1/2 (C.5)

This quantity is simply zero for tracers (since the tracer velocity is the local fluid

velocity), and is generally nonzero for inertial particles due to the crossing-trajectories

effect. At the start of all particle tracking simulations, all particles were simply

assigned the local fluid velocity (for either DNS or KS). While this initial condition is

sensible for tracers (for the reason just mentioned), the mean-squared relative velocity

is expected to converge to a stable equilibrium in stationary flow.

When particles are released into the flow field, a certain period must pass be-

fore the particle statistics become independent of their initial conditions. Similar to

the approach employed in Strutt et al. (2011) and Cernick (2013), three rounds of

simulations were carried out, all with the following choices of initial conditions:

• up(t = 0) = 0

• up(t = 0) = uf (xp(0), 0)

• up(t = 0) = 2uf (xp(0), 0)

The time at which the various statistics become indistinguishable for all three initial

conditions is denoted t∗. The values of t∗, for a variety of particle types, both with

and without gravity were determined. Naturally larger-St particles generally exhibit

a longer t∗, since such particles take longer to react to changes in the fluid velocity
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field. Higher St particles require longer to forget their initial conditions. Gravity

had the effect of reducing the time needed to achieve independence. The higher t?

for St ∼ 1 than St ∼ 0.5 in the gravity case appears anomalous - since t? is based

on a minimum time at which particles have forgotten their initial conditions, it was

elevated in both cases as a precaution; to 0.4 and 0.3 for the St ∼ 0.5 and St ∼ 1

cases respectively.

St 0.5 1 2 10

t∗
Without gravity 0.34 0.60 1.23 4.04

With gravity 0.37 0.23 0.58 2.62

Table C.6: t∗ (time for which Lagrangian statistics become independent of initial
conditions), for a variety of particle types, both with and without gravity

C.6 Method for calculation of asymptotic correla-

tion dimension

In Sec. 2.2.6, it was noted that the applicability of a dynamical systems treatment of

preferential concentration suggests the existence of an asymptotic correlation dimen-

sion, and that the history exhibits a decaying exponential behaviour. In Fig. C.4, the

history of correlation dimension for each particle type is shown. In contrast to the

Lagrangian statistics, the history is displayed from the very start of the simulation,

rather than waiting until t∗.

It appears that, particularly for the low St cases, D2 exhibits a decaying expo-

nential behaviour (beyond an initial transient). Beyond t∗, the exponential of best fit

113



Ph.D. Thesis - Stephen A. Murray McMaster - Mechanical Engineering

0 10 20 30 40 50

 t/τη 

1.8

2.0

2.2

2.4

2.6

2.8

3.0

D
2

St∼0.25

St∼0.5

St∼0.75

St∼1

St∼1.5

St∼2

St∼5

St∼10

Figure C.4: History of correlation dimension, for all inertial particle types in DNS,
without gravity. The black dashed lines indicate exponentials of best fit.

was found, according to the general form:

Ae−Bτ +D2 (C.6)

where D2 represents the asymptotic value. The dashed lines in Fig. C.4 represent

these functions of best fit, and, for low St, agreement is very good. Good agreement

for high St is not achieved, because in such cases the initial transient is longer. Since

the function fit occurs over a small interval, it is highly prone to error, in which

case the method is deemed indeterminate. It is, however, precisely in such cases that

significant clustering is not expected to have occurred, and the asymptotic correlation

dimension is taken as the final value of an appropriately smoothed D2 history.
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Appendix D

Verification of KS

D.1 Pairwise dispersion

KS (as described in 2.2.4 and 3.2) was applied with an input spectrum based on the

DNS spectrum of Yeung (1994), in an effort to replicate the KS results of Malik &

Vassilicos (1999). The pairwise dispersion results, along with the results of Malik

& Vassilicos (1999) are shown in Fig. D.1. Agreement is very good, though not

exact - the discrepancy likely arises from slightly differing methods of converting

the discrete DNS output spectra as input for KS, particularly in the largest scales

(smallest wavenumbers).

D.2 Verification of Type II KS

A verification of the “inner domain” method of sampling particles for Type II KS

(described in 3.3) is given here. The number of particles in the inner subdomain is

shown for St ∼ 10 particles in Type II KS (see Fig. D.2a) - St ∼ 10 inertial particles,
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Figure D.1: Growth in pairwise separation for steady (λ = 0) KS, from the KS
solver as described in 2.2.4 and 3.2 (solid lines). The results of Malik & Vassilicos
(1999) are given as dashed lines. Lines A-F correspond to initial separations of
l0/η = 0.25, 1, 4, 16, 32, 64 respectively.

because such particles exhibit maximal dispersion and would soonest exhibit particle

“bleed” (see Sec. 3.3). Np(t) decreases about 10% from the expected value of 50000,

indicating that, in the worst case, some bleed does occur. The corresponding case

for St ∼ 10 particles in gravity is shown in Fig. D.2b, and the bleed amounts to

about 2%. The dispersion for St ∼ 10 inertial particles in Types I and II KS without

gravity is shown in Fig. D.2a, and with gravity in D.2b. Particles require an initial

development to forget their initial conditions, and this interval depends on whether

or not gravity is present (see Sec. C.5), hence the interval lengths are different in the

two cases. In either case, the curves are virtually indistinguishable, indicating that,

despite the slight particle bleed, statistics are independent of the method of sampling

particles for Type II KS.
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Figure D.2: Number of particles in inner subdomain vs time (for steady Type II KS),
for St ∼ 10 inertial particles, without gravity.
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Figure D.3: Dispersion of St ∼ 10 inertial particles in steady (λ = 0) KS, for Type I
KS (unbounded domain) and Type II KS (bounded domain).
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Figure D.4: Lagrangian autocorrelation for steady KS with urms = 1.05, κ̃1 =
7.5, κ̃N = 75000, with varying Nκ (number of KS modes).

D.3 Independence of statistics from number of KS

modes

In a given realization of KS, the Lagrangian output statistics are affected by the

mutual orientation of the KS modes. Hence a sufficiently large number of KS modes

is required to ensure isotropy, as well as general confidence in Lagrangian statistics.

For the simulations described in Sec. 5.1.1, a variety of simulations were run with a

varying number of KS modes - the Lagrangian autocorrelation is shown in Fig. D.4.

While differences in the autocorrelation are not readily discernible, the Lagrangian

integral timescale is the integral of the autocorrelation (by (2.25)), and, as such,

even very slight differences in the autocorrelation can be magnified in the difference

of timescales. In Fig. D.5, TL is given as a function of Nκ, and it appears that

Nκ = 1000 was sufficient for granting confidence in TL.
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