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Lay Abstract

This thesis presents the development of a software system that analyzes se-

quences of 2D x-ray images to automatically measure organ motion in patients un-

dergoing radiation therapy for cancer treatment. The knowledge of motion statistics

obtained from this system creates opportunities for patient-specific treatment design

that may lead to a better outcome.

Automated processing of organ motion is challenging due to the low contrast

and high noise levels in the x-ray images. To achieve reliable detection, the proposed

system was designed to make use of 3D cone-beam computed tomography images

of the patient, where the features (markers) are easier to identify. This required

the development of a specific image registration framework for aligning the images,

including a number of novel feature modelling and image processing techniques.

The proposed motion tracking approach was implemented as a complete soft-

ware system that was extensively validated on phantom and patient studies. It

achieved a level of accuracy and reliability that is suitable for clinical implementation.
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Abstract

This thesis contributes to the topic of image-based feature localization and

tracking in fluoroscopic (2D x-ray) image sequences. Such tracking is needed to au-

tomatically measure organ motion in cancer patients treated with radiation therapy.

While the use of 3D cone-beam computed tomography (CBCT) images is a standard

clinical practice for verifying the agreement of the patient’s position to a plan, it is

done before the treatment procedure. Hence, measurement of the motion during the

procedure could improve plan design and the accuracy of treatment delivery. Using

an existing CBCT imaging system is one way of collecting fluoroscopic sequences for

such analysis. Since x-ray images of soft tissues are typically characterized with low

contrast and high noise, radio-opaque fiducial markers are often inserted in or around

the target. This thesis describes techniques that comprise a complete system for

automated detection and tracking of the markers in fluoroscopic image sequences.

One of the cornerstone design ideas in this thesis is the use of the 3D CBCT

image of the patient, from which the markers can be extracted more easily, to initial-

ize the tracking in the fluoroscopic image sequences. To do this, a specific marker-

based image registration framework was proposed. It includes multiple novel tech-

niques, such as marker segmentation and modelling, the marker enhancement filter,

and marker-specific template image generation approaches.

Through extensive experiments on testing data sets, these novel techniques

were combined with appropriate state-of-the-art methods to produce a sleek, compu-

tationally efficient, fully automated system that achieved reliable marker localization

and tracking. The accuracy of the system is sufficient for clinical implementation.

The thesis demonstrates an application of the system to the images of prostate cancer

patients, and includes examples of statistical analysis of organ motion that can be

used to improve treatment planning.
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Chapter 1

Introduction

Radiation therapy is a powerful tool in treatment and control of cancer. It is pre-

scribed to nearly half of all cancer patients in Western countries [77]. Image-guided

radiation therapy is a widely accepted technique to visualize inner structures in a

patient’s body to verify the position of the target immediately before or during a

radiation treatment procedure. The imaging is typically performed with a diagnostic

imaging x-ray, e.g., [243, 152, 159, 205]. However, the desire to reduce the imaging

x-ray dose to the patient often limits the use of image guidance to initial setup po-

sition verification. This verification is necessary to confirm that the actual patient

position at the beginning of the treatment conforms to the treatment plan. While

this helps to adjust the position and compensate for possible anatomical changes, it

does not account for all positioning errors introduced during treatment preparation

and execution [219]. In addition, since the imaging is performed before the treatment

procedure, the setup verification is inherently unable to deal with an internal organ

motion that happens during treatment delivery, referred to as an intra-fraction mo-

tion. To ensure that the treatment target in a patient’s body actually receives the

planned dose of radiation in spite of the motion, the target volume is extended by a

safety margin [219] that is supposed to cover most target displacements. Ideally, the

size of the margin reflects assumptions on magnitude of target positioning errors and

organ motion.

The ability to automatically measure the intra-fraction motion has the potential

to improve margin design by making it possible to incorporate realistic motion statis-

tics for each patient or certain patient cohorts. In particular, retrospective statistics

or real-time motion measurements may indicate the possibility to reduce the currently

accepted margin size for certain anatomical sites, e.g., [144]. The goal of the margin

reduction is to achieve the same level of tumour control, while aiming for better long-

term health outcomes for the patients by decreasing the damage done by radiation

to the healthy tissues and organs surrounding the tumour [67, 191]. Reducing the
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margin also has the potential to enable a safe dose escalation [21, 67], a technique

of increasing the radiation dose delivered to the target in one treatment fraction for

improved treatment result and potential reduction in the number of fractions [208].

This, in turn, may allow to increase the number of patients that a clinic can accept.

This thesis presents an approach to the automatic quantification of intra-

fraction motion from fluoroscopic image sequences , which are temporal sequences

of two-dimensional (2D) kilovoltage x-ray images [198, 214]. In brief, the main chal-

lenges for automatic motion analysis are the noise and the low contrast in fluoroscopic

images. Although it is possible to improve acquisition image quality by increasing the

imaging x-ray dose, the dose management philosophy currently adopted by the diag-

nostic imaging community is “as low as reasonably achievable” [158], which is due to

the desire to reduce possible radiation-related complications to the patient’s health.

Therefore, to achieve reliable image analysis, the difficulties associated with the noise

and low contrast should be overcome by the development of the appropriate digital

processing methods.

The culmination of the technical contributions of this thesis is the development

of a software system, named Gryphon1, for the automated processing of multiple im-

age sequences and collecting of the intra-fraction organ motion statistics. Using the

innovative techniques developed in this thesis, Gryphon performs an automatic local-

ization, i.e., it determines the position of the target in the first image of each sequence.

Then, it continues to motion tracking of the target by analyzing the subsequent im-

ages of the sequence. In the end, the motion statistics are reported back to the user.

On a very high level, the heart of the localization and tracking procedures consists

of image processing and image registration techniques. It also includes the use of a

priori information, such as the details of the geometric setup and incorporation of

other images of a patient, so that the system is able to achieve reliable results in a

computationally efficient fashion.

To help place the technical discussion of the following chapters in context, this

introductory chapter begins with the discussion of the problem of organ motion in

radiation therapy in Section 1.1, including details on the use of imaging in radiation

treatment procedures, hardware and software, positioning uncertainties caused by

organ motion, and a review of current advances in motion management. While these

topics are well covered in the domain specific literature, the inter-disciplinary nature

of this thesis calls for an appropriate introduction to the subject matter. Section 1.2

provides an explanation of the goals and challenges of the work reported in this thesis,

1In antique times, as described in myths and legends of multiple nations, gryphons were thought of
as magical creatures that guard hidden treasures, or, more generally, sacred knowledge. It seemed to
be an appropriate title for a system intended for medical image processing and detection of features
in low-contrast images.
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a description of the problem solving strategies used, and a brief presentation of the

main contributions. The chapter is concluded by the thesis outline in Section 1.3.

1.1 Problem of Organ Motion in Radiation

Therapy

1.1.1 Use of Imaging in Radiation Therapy Procedures

Radiation therapy (RT) is the medical use of ionizing radiation as part of cancer

treatment. Its therapeutic effect results from the fact that malignant cells have lower

recovery rates than normal cells following the deoxyribonucleic acid (DNA) damage

that is caused by the ionizing radiation. In this thesis, by RT we mean an external-

beam conformal therapy , that is, a treatment that is designed in such a way that

high-energy radiation from an external source is delivered to a target. The target ,

or target volume, closely conforms to the region in a patient’s body that is supposed

to receive the prescribed amount of radiation according to the treatment plan [62].

Anticipating a terminology that will be defined later, unless otherwise stated, by

target volume we mean the planning target volume (PTV, Section 1.1.4).

The approach to RT treatment planning can be described in terms of risks and

benefits [246]. Ideally, most malignant cells will be destroyed by being exposed to

sufficiently high doses of radiation. However, in general it is not possible to deliver

this radiation to the tumor without affecting surrounding healthy tissues. Therefore,

the main task of radiation therapy is to design and deliver such a treatment regimen

that provides the maximal possible tumor control and, at the same time, does not

produce unacceptable damage to the healthy tissues.

Figure 1.1 shows a hardware setup for RT delivery on a medical linear accelera-

tor [99] (LINAC, Elekta Oncology Systems, Atlanta, GA) with an integrated imaging

system. A high energy radiation source is located in the head of the machine (C ),

which is capable of rotating around a patient lying on a couch to allow a choice of

the best angle(s) for radiation entry. Typically, the patient is positioned so that a

treatment target appears in the centre of the machine’s rotation, called the isocentre.

The system depicted in Figure 1.1 allows acquisition of x-ray images of the patient

in the treatment position produced by using the kilovoltage x-ray source (A) and a

flat-panel detector (B, hidden behind the patient), both of which rotate together with

the treatment head (C ).

To conform to the target, the radiation beam must be shaped. A multileaf

collimator (MLC) [99], shown in Figure 1.2, is a device made up of individual slices,

or leaves, of a material with a high atomic number, such as tungsten. The leaves
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A

B

C

Figure 1.1: A patient on a medical linear accelerator
equipped with an imaging kilovoltage x-ray source (A) and
a flat-panel detector (B). A multileaf collimator shown in
Figure 1.2 is located inside the linear accelerator treatment
head (C ), in the path of the megavoltage beam.

Figure 1.2: A multileaf
collimator shapes the ra-
diation beam to conform
to the target in the pa-
tient’s body [2].

can move independently in and out of the path of the beam to block a part of it.

The MLC is installed in the LINAC’s treatment head (Figure 1.1, C ). Although the

LINAC creates an essentially uniform dose distribution, the intensity of the radia-

tion beam can be modulated by varying positions of the leaves in the MLC during

the treatment delivery. This technique is known as an intensity-modulated radiation

therapy (IMRT) [156], an extension of conformal therapy that is widely utilized today.

The choice of the position for the patient’s treatment, as well as the neces-

sity to use immobilization devices, depends on several factors, the most important

of which are patient comfort and stability, and the beam directions (angles) that will

be used [62], which, in turn, influence the effectiveness of the treatment. In order to

reduce the radiation impact on the healthy tissues adjacent to the tumor, conformal

therapy typically uses three or more radiation beams directed from different positions

intersecting in the target volume [62], where the prescribed dose accumulates. An-

other technique to spare healthy tissues is fractionation [48]. It has been noted that

healthy cells affected by radiation have a better chance of recovery than cancerous

cells. Therefore, the prescribed dose is divided into several fractions that are deliv-

ered on different days to allow normal tissue renewal between the fractions. Often,

treatment planning is only performed once, therefore, the reproducibility of the patient

position for each treatment procedure is extremely important.

Conformal therapy process involves several steps:
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1. Treatment simulation. A conformal therapy plan is based on a volumetric

anatomic model of the patient that is derived from a three-dimensional (3D)

or, sometimes, four-dimensional image (4D, a temporal sequence of 3D im-

ages) showing a target volume and adjacent critical structures. The critical

structures are healthy tissues or organs, to which radiation damage should be

avoided. They are often referred to as the organs at risk (OAR). Typically, the

target and surrounding OARs are represented in the anatomic model as sets of

contours or surfaces. In most of the cases, a computed tomography (CT) data

set is used as it provides the necessary anatomic information, and represents a

geometrically accurate base for planning [62]. However, it does not provide any

physiologic or functional information, and is characterized by limited soft-tissue

visualization, i.e., there is no or very little contrast between different types of

soft tissues. To overcome this drawback, other techniques, such as magnetic

resonance imaging (MRI), functional MRI (fMRI), positron emission tomogra-

phy (PET), and single-photon emission computed tomography (SPECT), can

be used in addition to CT (a detailed discussion on image acquisition methods

in application to RT is presented by Evans [53]). To be utilized for treatment

planning purposes, these additional data sets have to be geometrically aligned

with the original CT scan.

2. Treatment planning. Radiation therapy planning is a computer simulation

of the treatment process. It involves recreating the 3D anatomic model of the

patient inside the planning software, simulating radiation beams and the dose

delivered to the patient. This virtual model of the patient contains the target

(or targets) and OARs in the proximity of the target. One of the common ways

to describe these structures is through a series of contours on the CT slices. To

date, this is one of the most time-consuming parts of the RT planning process

due to the large amount of manual labour. Even with the use of image segmen-

tation software, the contours may need to be verified and corrected manually,

slice by slice, the total number of which may easily exceed 100 [62].

3. Treatment delivery. The delivery of the prescribed radiation dose to the tar-

get can not be achieved if the patient’s position at each treatment fraction is

not reproduced with sufficient accuracy. For many years, the initial setup of the

patient on a medical LINAC was performed using conventional laser alignment

in the room to patient’s skin marks, and immobilization devices. Weekly portal

films were obtained to verify the correctness of the target position, where the

term portal refers to the 2D images produced with the help of the treatment

megavoltage (MV) x-ray source on a film or a digital detector. In general, portal

5



Ph.D.Thesis – O.Peshko McMaster – Computational Sci.&Eng.

Figure 1.3: CBCT image slices of a pelvic area of a prostate cancer patient (left and
middle) and a corresponding fluoroscopic/kV x-ray projection image (right).

images are characterized with lower signal quality than images obtained with a

kilovoltage (kV) x-ray source. Nowadays, clinics perform high accuracy auto-

mated patient setup, enabled by such technologies as electronic portal imaging

devices (EPIDs) [10] for MV imaging, diagnostic kV x-ray imagers [11], and

cone-beam computed tomography scanners (CBCT) [92] mounted directly on

the LINAC as depicted in Figure 1.1. Hence, a therapist not only reproduces

the position of the patient based on the external skin marks and immobilization

devices, but can actually verify the position of internal structures before each

treatment fraction and make appropriate adjustments if necessary.

1.1.2 Imaging Modalities

In this thesis, we will use the following imaging modalities, demonstrated in Fig-

ure 1.32:

• X-ray projection (radiography) is a single 2D projection image of an object.

Structures contained in an imaged volume appear to be overlaid in the projection

image. The projection can be produced on a detector by an MV or kV beam.

To differentiate between the two, we will use the term x-ray projection to refer

to the kV image, and portal or MV image to refer to the MV projection.

• Fluoroscopic image sequence is a series of kV x-ray projections characterized

by some temporal resolution, for example, 5.5 to 30 Hz (frames per second),

acquired with the stationary imaging system. We use fluoroscopic sequences

to assess organ motion from a single viewpoint (“in-plane” motion, i.e., motion

that can be observed in the direction parallel to the flat-panel detector). The

term fluoroscopic frame refers to a single image within the sequence.

2In this thesis, images of the patients are courtesy of Dr. Cynthia Ménard, Dr. Timothy Craig,
and Dr. Douglas Moseley, Princess Margaret Hospital, University Health Network, Toronto, Ontario.
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• CT image and, likewise, CBCT image are both 3D images, where each slice

can be viewed individually. Typically, the CBCT image is reconstructed by ap-

plying the filtered back-projection algorithm [94] to a set of 2D x-ray projections

acquired by the imaging system from different viewpoints as the gantry of the

LINAC rotates around the patient. CBCT technology allows reconstruction of

an entire image from a single gantry rotation. It may take around 1–2 min-

utes to acquire and reconstruct. Naturally, the number of projections used in

the reconstruction affects the reconstructed image quality as, roughly speaking,

the angle intervals between the subsequent projections correspond to missing

information resulting in shadows and artifacts in the final CBCT image. So far,

CT images offer better quality than CBCT. However, they are acquired on a

designated CT scanner. As a result, CT images can not be produced shortly

prior to or during the treatment procedure with the patient in the treatment

position.

1.1.3 Hardware and Software

Imaging of the patient before or during radiation treatment to direct the process of

radiation delivery and verify its compliance with the treatment plan is often referred

to as the image-guided radiation therapy (IGRT) [91, 243]. For treatment, the patient

has to be placed in a way that reproduces their position during the planning CT ac-

quisition as accurately as possible. Two-dimensional IGRT usually involves matching

kV or MV x-ray projection images to the digitally reconstructed radiographs (DRRs).

The DRRs are simulated 2D projection images computed from the 3D planning CT

that imitate the geometrical setup and, if possible, intensity characteristics of the kV

or MV x-ray projections. Three-dimensional IGRT compares the 3D CBCT image

acquired immediately prior to treatment (daily CBCT) to the planning CT.

Naturally, for the success of the IGRT, it is strongly desirable that the hardware

for image acquisition is located in the close proximity to the LINAC, so that the

patient needs to not be repositioned between the daily target position verification

imaging and the treatment delivery stages. Figure 1.1 demonstrates a patient resting

on an Elekta medical LINAC with an integrated kV imaging system that is capable

of radiography, fluoroscopy, and CBCT. The imaging kV x-ray tube (A) is located on

a retractable arm at 90◦ to the MV treatment x-ray source (C ). A 41 × 41 cm2 flat-

panel x-ray detector (B) is mounted opposite to the kV tube. The imaging system is

supplied with a software package called XVI (X-ray Volume Imaging, Elekta Oncology

Systems, Atlanta, GA) that is capable of calibration, image acquisition and processing,

and CBCT reconstruction. Information about patients, treatments, and all images

acquired under the control of XVI is stored in a database. The detailed technical
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description of an IGRT system similar to the one used in this thesis is provided by

Jaffray et al. [92].

1.1.4 Uncertainties in Target Position Due to Organ Motion

To fight the disease or achieve palliative effects, it is important to precisely specify

the volume in the patient’s body that is supposed to receive high-energy radiation

treatment. The classification of the volumes in radiation oncology established by

the International Commission on Radiation Units and Measurements (ICRU) is as

follows [4, 6]:

• Gross tumour volume (GTV) is the volume of the macroscopic tumour, in-

volved lymph nodes, and metastatic disease that is either palpable or visible on

images.

• Clinical target volume (CTV) is the volume that should be treated to high

dose, typically incorporating both the GTV and subclinical microscopic disease.

The CTV is usually designed by expanding the GTV by a margin (typically, 0.5–

1 cm [62]) that accounts for microscopic invasion. Additional regions can also

be included in the CTV based on clinical experience with standard directions

of disease spread for particular anatomical sites [62] and pathology studies [99].

In many cases, the CTV cannot be considered a stable volume, as it may vary

in size, shape, and position due to physiological processes, such as filling of the

bladder, respiration, etc. In this case, the internal target volume (ITV) is

defined as the volume encompassing all known variations of the CTV.

• Planning target volume (PTV) is the volume that should be irradiated to

ensure that the CTV (or ITV) receives the prescribed dose. It is designed with

consideration of positioning uncertainties and organ motion. The PTV is often

created by expanding the CTV borders isotropically in three dimensions. How-

ever, for some sites, it may be desirable to expand the margin in an anisotropic

manner based on anatomy knowledge and the results of organ motion assess-

ment for a certain patient or patient cohorts, e.g., [129, 147]. In the previous

sections, by referring to the target volume we meant the PTV, and we will retain

this terminology for the rest of this thesis, unless an explicit differentiation is

required.

Expanding the PTV margin so that it always covers all variations of the CTV

satisfies the goal of obtaining maximal tumour control. However, this tactic can

cause unacceptable damage to surrounding healthy tissues and organs, the OARs,

thus defeating the overall purpose of treating the patient. Naturally, it is desirable to

keep the PTV margin at the necessary minimum.
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In radiation therapy, organ motion is loosely defined as the displacement of the

organ, or the target volume, in time, where the time interval can be as large as the

break between two different treatments. Among different types of motion observed

in patients during a course of radiation therapy, for the purpose of this thesis it is

important to define the following two [116]:

• Intra-fraction motion is the motion within one fraction, such as respiration,

heartbeat, peristalsis, swallowing, etc.

• Inter-fraction motion refers to the motion between the fractions, such as

changes in the patient anatomy (weight gain/loss), CTV shape and position

(often caused by daily changes in digestive system). To avoid confusion, we will

use the term inter-fraction displacement rather than inter-fraction motion.

The ability to precisely quantify organ motion for a specific anatomical site of

different patients, or even a particular patient, has direct implications for the PTV

margin design. Different approaches to derive formulas for margin size computation

based on measured motion have been proposed, e.g., [220, 219, 146] and references

therein. In an effort to minimize the influence of inter-fraction displacement, many

clinics have implemented daily CTV position verification and correction protocols by

using imaging devices integrated into the treatment machines, e.g., [92, 152]. Another

advancement is the clinical process termed adaptive radiotherapy (ART), in which the

treatment plan is modified based on changes observed in daily images of the target,

e.g., [144].

Management of intra-fraction motion ranges from dietary restrictions [8, 16,

206], to external body motion tracking [116, 230], to internal target motion mea-

surement or monitoring [71, 230]. In fact, it can even start at the planning image

acquisition stage: For some sites exhibiting large motions, such as the lung or liver, it

is desirable to incorporate CT scanning protocols that do not add motion-related arti-

facts, e.g., 4D CT [133] or respiratory-correlated CBCT [207]. During the treatment,

the radiation dose to normal tissues can be reduced by such techniques as respira-

tion/cardiac gating [50, 93, 111, 199, 229] or tumour tracking [157, 177, 194, 244].

Respiration gating allows radiation exposure only when the target is in the path of

the beam, while tumour tracking methods aim to track the target and modify the

beam to follow the target’s trajectory dynamically. Both approaches need real-time

information regarding the target’s position.

One of the most straightforward approaches to control the respiration induced

organ motion is breath-hold, either voluntary [100, 136] or controlled [82, 107, 210].

The active breathing coordinator (or active breathing control, ABC) [237] is a device

that works in coordination with the radiation beam and induces repeat breath holds

in patients at certain times. Another successfully utilized technique is visual or audio-
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visual feedback [128], when the patient is looking at the trace of their breathing motion

in time and is asked to comply to an appropriate pace and deepness of breath.

As not every patient can be put on the breath hold [65] or adapt their breathing

to restrictions of audio-visual feedback, many clinics develop alternative methods for

target tracking, for example, abdominal surface motion monitoring [61, 226, 222]. In

this technique, the external marker is incorporated into a block that is placed on

the patient body surface and is tracked with the infrared camera. Other approaches

include the measurement of respiratory volume using a spirometer [111, 247], the use

of a thermometer placed in the breathing airflow in the patient’s nostrils [236], and

a strain gauge, in the form of an elastic band that is wrapped around the patient’s

torso [111]. However, studies showed that the correlation between the motion of the

external surface and internal target can be weak and non-reproducible [87]. Due

to this fact, and also because the patient exhibits other types of motion that can

not be measured externally, such as peristaltic motion, a natural advancement in

tracking techniques involves assessing trajectories of internal structures. One of the

approaches, fluoroscopic tracking, is reviewed in the next section.

1.1.5 Fluoroscopic Tracking of Organ Motion

Due to relative affordability of kV x-ray imaging systems, and the technical ability to

mount them on or in the close proximity to the LINAC, fluoroscopic tracking is an

area of active exploration. However, in addition to exposing a patient to an imaging

radiation dose, the x-ray technology has another major drawback in the context of

internal organ motion tracking. As soft tissues are characterized by low contrast in

x-ray images, it may be very challenging to detect the target in many anatomical

sites, especially automatically. One of the approaches to bypass this problem is to

perform fluoroscopic tracking relative to the high-contrast bony anatomy. However,

it was shown that the correlation between the motion of the bones and the target is

not always strong enough for the bones to be used as a reliable position identifier for

the target [74, 161, 190]. Another research direction addresses fluoroscopic tumour

mass tracking through image intensity change [24, 50] and by using machine learning

techniques [49, 124]. This is typically applied to lung cancer studies.

Taking into account aforementioned low contrast of soft tissues, the position

of the target can be obtained more easily by tracking the fiducial markers , inserted

in the proximity to the target, locations of which have been shown to be accurate

internal surrogates for the position of the target [103, 198, 217]. Note that the use

of the markers may be inadvisable for some sites, such as the lung, due to possible

clinical complications of percutaneous intervention [14, 66]. For other sites, such as

the prostate, the use of the fiducial markers is an accepted clinical practice [152].
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Currently, there are two types of internal markers used: metallic radio-opaque

markers [152], measurements of which are visible in the x-ray and CT/CBCT images,

and electromagnetic transponders [113]. The electromagnetic transponders provide

reasonably reliable target position information without additional x-ray exposure [113]

but the use of the transponders alone does not produce images, which is often desired.

Also, these markers are larger in size3 and more expensive than the typical radio-

opaque markers. To reduce an additional dose to the patient caused by the use of

the radio-opaque markers and x-ray or CBCT imaging, the methods combining the

external motion tracking with occasional x-ray imaging were developed [193, 95, 44,

240].

This thesis presents a detailed description of a system for automatic quantifi-

cation of intra-fraction organ motion from fluoroscopic image sequences that is based

on fiducial marker tracking.

1.2 Goals, Approaches, Challenges, and Results

The main goal of this thesis is to propose a set of techniques that constitute a complete

system for automatic post-processing of multiple fluoroscopic image sequences in or-

der to measure patient intra-fraction organ motion. To validate these techniques, and

to demonstrate the collection of motion statistics for prostate cancer patients, a soft-

ware system called Gryphon was developed. The following chapters present problem

requirements and assumptions, mathematical models, algorithmic details, parameter

selection approaches and system validation in terms of accuracy and reliability.

To infer the displacement of the target that occurred between the acquisitions

of two consecutive frames of a fluoroscopic sequence, image registration [149, 150]

techniques are used. Image registration is the process of finding a geometrical trans-

formation between the objects portrayed in the images by computing the best align-

ment between the images. In order to be computationally efficient and reliable, i.e.,

legitimate and meaningful for the proposed application, it is desired that the regis-

tration be performed over small regions of interest (ROIs) in the images that include

measurements of the target. Automatic selection of such regions constitutes the main

challenge. According to the clinical protocol, in order to provide an easier target iden-

tification, all patients whose images we analyze had three small radio-opaque fiducial

markers inserted in the proximity to the tumour before their planning procedure. Al-

though the measurements of the fiducial markers in the images have a better contrast

than those of soft tissues, it is still challenging to automatically localize the markers

3Compare, for example, 8 × 1.85 mm [129] cylindrical electromagnetic transponder to 3 ×
0.8 mm [152, 174] radio-opaque marker, where the dimensions reflect “length× diameter”.
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due to overlaying anatomical structures appearing in the projection images and the

small size of the markers4 relative to the image field of view. For example, the images

used in this thesis show measurements of the cylindrical markers of 3 mm long and

0.8 mm in diameter within a field of view that is approximately 27 × 27 cm2. As

such, a marker occupies around 0.03% of the image area. As an illustration, try to

locate the markers in a part of a fluoroscopic frame shown in Figure 1.3 (right), which

appears on page 6. It is quite challenging to do without specific training.

In this thesis, this problem is overcome by first localizing the fiducial markers

in the 3D space by segmenting the markers in a better-contrast 3D CBCT image

(Chapter 3) that was acquired during the same treatment session as the given flu-

oroscopic image sequence. The acquisition of the CBCT images at each treatment

fraction is done according to a clinical target position verification protocol explained

in Section 2.2. Then, the positions of the markers in the 2D space (the plane in

which the 2D motion tracking is later performed) are estimated based on the known

geometric relationship between the coordinate systems of the 3D CBCT and 2D flu-

oroscopic images. To account for intra-fraction motion that likely happened between

the acquisition of the CBCT and the first fluoroscopic frame, as well as for possible

inaccuracies of the system’s geometric calibration, the images are aligned by applying

2D-3D image registration (Chapter 5). With an optimal geometric transformation,

found as a result of the registration, the positions of the markers are finally localized

in the first fluoroscopic frame. After this initialization, the system proceeds to marker

tracking by performing 2D-2D image registration between the template formed from

the first image of the sequence and the rest of the images (Chapter 6). In order to

successfully perform both 2D-3D and 2D-2D registration procedures, the images are

preprocessed by adapted and newly developed digital filters (Chapter 4). Having pro-

vided this broad outline of the marker localization and tracking procedure proposed

in this thesis, we will now describe our contributions in more detail.

A typical approach to the registration of a 3D CT/CBCT image to a 2D x-

ray projection/fluoroscopic image is to compute a digitally reconstructed radiograph

(DRR), a 2D synthetic projection from the 3D image that mimics the geometric

setup and intensity properties of the 2D image, and register the DRR to the 2D im-

age, e.g., [42, 154, 249]. Often, the DRR generation involves significant computational

resources. In addition, it can be challenging to register low-contrast images, in which

important features, such as the marker measurements, are overlayed by the measure-

ments of anatomical structures. To address these issues, the 2D-3D image registration

approach proposed in this thesis generates the 2D image from the markers segmented

4For simplicity, we will use the term marker to refer to the marker measurement, or the marker
feature, i.e., the graphical portrayal of the fiducial marker in the image. The term fiducial marker
will be used to denote the physical marker object itself.
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in the 3D CBCT image only, ignoring all other features found in the image. To dis-

tinguish this imaging modality, we introduce a new term – a selective DRR. Similar

approaches of generating the 2D images only from voxels (volumetric pixels) whose

intensity is above a certain threshold were presented in [7, 28]. In this thesis, the idea

is extended by a number of procedures and criteria to determine whether the selected

voxels actually belong to the markers or to other high-intensity features (explained

in Section 3.1). Those belonging to other features are dismissed before the DRR

generation.

In parallel with the construction of the selective DRR, the fluoroscopic images

are preprocessed by digital filters, such as temporal filtering detailed in Section 4.1, and

a newly designed marker enhancement filter proposed in Section 4.4. The application

of the filters creates an image that contains measurements and possesses intensity

characteristics similar to those in the selective DRR, making the process of registration

efficient and reliable.

The proposed marker tracking algorithm is based on similar principles. In

particular, the 2D-2D image registration between the first image and all other images

of the sequence is used to quantify the motion. Instead of using the first image directly,

we create a synthetic image from the markers that have been found by the localization

procedure, which is analogous to the selective DRR computation. At the same time,

all other images of the sequence are preprocessed by temporal filtering, followed by a

simplified version of the marker enhancement filter. In addition to improving image

quality by denoising and amplifying the markers, this approach incurs a much lower

computational cost than the conventional method of registering discrete images that

involves interpolation, as explained in detail in Section 6.1.

The key contribution of this thesis is the construction of the complete auto-

mated marker localization and tracking system. In the process of its development, a

number of novel techniques have been proposed, including:

• Method for computation of the 3D marker models. As the CBCT im-

ages are computed from a discrete set of x-ray projections acquired during the

rotation of the LINAC around the patient, they are often prone to reconstruc-

tion artifacts, in particular, metal streak artifacts [97, 151, 18, 248], around

high-intensity markers. Artifacts can be described as sets of voxels in a shape

of streaks possessing brightness comparable to the markers but, unlike mark-

ers, they do not represent a measurement of any real object or material with

high x-ray attenuation properties. These voxels, naturally, have the potential to

propagate into the synthetically created projection images, such as conventional

or selective DRRs. This situation is not desirable as it creates the potential for

a reduction in registration accuracy. As it may be challenging to separate the
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artifacts from the marker voxels purely based on their intensity values, it is pro-

posed to exploit knowledge about actual fiducial marker shape and dimensions,

and create marker models. The positions and orientations of the models in the

3D space are computed based on the segmented marker voxels as described in

Section 3.4. The models are subsequently used instead of the segmented markers

in one of the proposed selective DRR computation methods.

• Novel image generation approaches. The selective DRR is generated from

either the marker voxels or the marker models. The use of the marker models

is justified in the cases of average to high resolution CBCTs, where marker

orientations in 3D can be resolved reliably, and the use of the models further

improves the appearance of the markers in the generated 2D image. However, if

the CBCT voxel size is large, or there are other considerations involved, such as

running time, the marker models should not be used. The details are provided in

Section 3.5. To respond to these different possibilities, several image generation

methods have been proposed in this thesis:

• Marker model DRR. This method simulates an x-ray image creation pro-

cess, where a pixel intensity in a 2D projection image depends on attenu-

ation properties of the material that is placed between the corresponding

elements of the detector and an x-ray source. Mathematically, this image

generation method is based on a concept of raytracing [120]. In general,

raytracing is very expensive computationally, and can only be used if the

number of points is limited, such as the case with the marker models. The

details are provided in Section 5.1.1.

• Voxel splat DRR. If the marker models cannot be used but it is still desir-

able to include available orientation information into the generated image,

for example, to study the rigidity of the organ over time, all marker voxels

can be used to create a voxel splat DRR as explained in Section 5.1.2.

Although the image is generated from separate voxels, this method creates

contiguous features from contiguous sets of voxels, such as the segmented

marker. This property becomes especially important if the CBCT voxel

size is larger than the size of the pixels in the fluoroscopic images. Also,

this method can be applied if the fiducial markers are of irregular shapes,

e.g., long flexible coils [7].

• Marker splat DRR. In this case, no orientation information is used. The

markers in the generated image are represented by round spots as explained

in Section 5.1.3. This method is appropriate for low resolution CBCTs, and

is very computationally efficient.

• 2D marker splat image. This image generation method was designed for
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marker tracking. It is the 2D analogue of the marker splat DRR defined

above. Its use results in low computational cost of 2D-2D image registra-

tion as discussed in Section 6.1.

• Novel marker enhancement filter (MEF) and its variations. The MEF

is a non-linear digital filter specifically designed for enhancement of the markers

and suppression of the noise and anatomical features5 in fluoroscopic images.

The MEF amplifies features of certain sizes (scales) by analyzing the local struc-

ture of the image. Although the principles of local intensity analysis and linear

scale space have been explored before, in the field of medical image processing

they have been applied mostly in the enhancement of long line-like features,

such as vessels, nerves, and bronchi [132, 188, 63]. In this thesis, the idea is

adapted to the case of the markers, which are quite short, being only 3–4 times

as long as their diameter. In brief, the MEF is built upon two images, where

the first one amplifies the positions where the markers can be found with high

probability, while the second one amplifies marker shapes found within these

positions. The MEF also includes a novel contrast enhancement function. The

details of the MEF design are provided in Section 4.4.

Due to availability of additional information from the localization procedure, a

simplified version of the MEF is used in tracking, which allows to achieve high

computational efficiency as described in Section 6.1.

In addition to the necessity of the marker enhancement, which is very impor-

tant for fluoroscopic images as they contain multiple non-marker features that can

mislead the registration, the application of the MEF or its simplified version and the

image generation approaches listed above has other important advantages. Although

initially the images belong to different modalities (CBCT and fluoroscopy), and dif-

ferent input data is used in registration (marker positions in 3D or 2D versus a fluo-

roscopic image), the proposed MEF preprocessing and image generation approaches

enable us to create images that have similar properties and appear to have almost

the same modality. Indeed, their intensity characteristics and objects displayed in

the images (markers) are quite similar. This creates the potential for successful use

of the modelling and computational techniques that are typical for single-modality

registration. Multi-modality registration, on the other hand, often requires the use of

more flexible, sophisticated, and computationally expensive tools, which may require

an involved interpretation of results. The use of the MEF and custom image gener-

ation also allows us to create images with minimal noise, and the registration of the

smoother images is typically significantly faster and more reliable than of their noisy

5The term anatomical features refers to the measurements of anatomical structures in the images.
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counterparts.

In addition to the novel modelling techniques described above, this thesis also

presents a number of other innovations and thorough analysis of existing techniques

with the purpose of designing, selecting, and adapting appropriate models and their

parameters to incorporate them into our marker localization and tracking system. For

example, a model-based threshold for the segmentation of the markers in the CBCT

image was determined. It does not rely on the absolute intensity values of the voxels

and, therefore, works well for different CBCT images. Next, the use of hierarchical

clustering technique is an example of a justified selection of the system’s component.

It is utilized to divide the potential marker voxels into separate sets, each corre-

sponding to a measurement of one entity (a marker or other feature), a necessary

and important step before selective DRR generation. Both techniques are described

in Section 3.1. Then, a number of heuristical procedures determining whether the

clusters can be classified as the marker or non-marker features are presented in Sec-

tions 3.1 and 3.3. Further, the choice of the temporal filter for the fluoroscopic images

and its parameters, discussed in Sections 4.1 and 5.4, arose from thorough testing

with respect to the fluoroscopic image quality and temporal resolution of the filtered

image sequence. The components of the image registration problem, such as the dis-

tance measure, geometric transformation, and optimization technique were selected

among the pool of available tools as described in Sections 5.2, 5.3.2, and 5.3.3. The

bounds on optimization parameters are determined based on a detailed analysis of the

clinical literature presented in Section 5.3.1, where a large number of studies report-

ing on patient organ motion is summarized. The techniques to compute a reasonable

optimization starting point that greatly increases the reliability of registration are pre-

sented in Section 5.3.3. After thorough testing of available approaches, we selected

one of the known methods, and upgraded it to fulfil our task. Finally, the prediction

part of a tracking model and its parameters were selected by analyzing the results

presented in the literature and applying different models to our testing data sets as

presented in Section 6.2.

In order to estimate the accuracy of mathematical models in their description

of real-life processes or entities, it is important to perform validation procedures.

Chapter 7 presents a detailed description of testing procedures with definitions of

errors. The algorithms proposed in this thesis have been implemented as a Matlab

software package (Matlab, The Mathworks, Inc., Natick, MA) called Gryphon, and

tested on the CBCT and fluoroscopic images of physical phantoms and prostate pa-

tients. Validation results demonstrate that Gryphon can achieve submillimeter and

subpixel accuracy in marker localization and tracking, which makes the techniques

developed in this thesis suitable for clinical implementation.
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This thesis addresses the full gamut of the conceptualization – design – imple-

mentation process starting from formulation of requirements, through development

of model assumptions, derivation of mathematical models, discussion of algorithmic

and implementation issues, and finishing with validation on phantom images and test-

ing on patient data. As such, the writing style of this thesis may be viewed as an

interleaving of scientific and engineering modes: Mathematical models that aim to

hold some degree of generality and explore their options are followed by particular

design choices pertaining to the application of fluoroscopic tracking to prostate cancer

patients.

This thesis contains multiple forward references. First, the introductory parts

of the chapters and sections often discuss methods at a high level, and include forward

references to the details discussed later. We believe that such writing style is suitable

to the broad range of backgrounds that the expected audience of this thesis will have.

Professionals of different fields may find different selective parts interesting, and it

was felt that a layered structure with appropriate referencing would be preferred over

a linear storyline. Second, forward references are given to the experiments for the

selection of parameters and validation of methods that are collected in Chapter 7,

and implementation details that are provided in Appendix D, so as not to interfere

with the main discussion in Chapters 3 – 6.

1.3 Thesis Outline

This introductory chapter is followed by the discussion of the particulars pertaining

to motion tracking based on the fiducial markers, and explanation of intuition behind

suggested filtering, localization and tracking methodologies in Chapter 2, which also

establishes the mathematical foundation for the following discussion. Chapters 3 – 6

provide modelling and algorithmic details on each step of the 3D segmentation, filter-

ing, 2D localization, and tracking procedures, respectively. Next, Chapter 7 presents

the accuracy validation results of applying the proposed algorithms to the testing im-

age data sets of physical phantoms and patients. An example of the analysis that can

be performed on patient images in clinical setting using the methods proposed in this

thesis and implemented in the Gryphon software is given in Chapter 8. Conclusions

and possible extensions are presented in Chapter 9.

The thesis contains a number of appendices. First, software and hardware

details are given in Appendix A. Then, though the details of the geometric trans-

formation functions used in this thesis can be deduced, in a straightforward way,

from the description of the coordinate systems in Section 2.4.2, explicit statements

are provided in Appendix B for the convenience of the reader, and selected detailed
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formulations are given in Appendix C. Finally, implementation details and algorithm

listings are presented in Appendix D.
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Chapter 2

Problem and Solution Overview
and Preliminaries

This chapter begins with a discussion on the use of the fiducial markers in radiation

treatment process and their types, and a literature review on marker based organ

motion analysis in Section 2.1. This is followed by a description of the problem setup

in Section 2.2, which includes a high-level overview of the architecture of the pro-

posed system that consists of marker localization, image filtering, and marker tracking

modules implemented in the Gryphon software. Also, the modelling assumptions are

discussed. Following that, Section 2.3 briefly describes data sets with images used

for testing of the algorithms proposed in this thesis. The chapter is concluded with

a formal introduction to the modelling that will be employed, such as image model

formulation, and the description of the geometric systems associated with the images

used in this thesis in Section 2.4.

2.1 Organ Motion Analysis Based on Fiducial

Markers

2.1.1 Use of Fiducial Markers for Target Localization

In conventional clinical treatment, an initial (external) setup of the patient on a medi-

cal LINAC is performed by the use of immobilization devices and by aligning patient’s

skin marks to the in-room lasers defining the LINAC’s coordinate system. At Princess

Margaret Hospital, this is followed by a CBCT image acquisition to enable visualiza-

tion of the patient’s inner structures. This daily CBCT is then compared to the

planning CT image by the means of image registration to verify the target position,

and the patient’s position is adjusted if necessary. Insufficient soft-tissue contrast

in the images can complicate image registration and, thus, can be an obstacle for a
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patient daily setup. To mitigate this effect, metallic fiducial markers are often in-

serted into, or in close proximity to, the target. The markers produce measurements

of higher contrast in the images compared to soft tissues due to the high x-ray atten-

uation properties of the material, and their positions become surrogates for the target

position throughout the whole planning and treatment process.

In the proposed automated localization and tracking procedures, we will take

advantage of the markers. As was explained in Section 1.1.5, assessment of internal

organ motion through the fluoroscopic tracking of radio-opaque fiducial markers is

a crucial component of various tasks associated with reduction of the uncertainty of

the target position during radiation treatment. Fiducial markers appear as bright

features in the attenuation x-ray and CT/CBCT images and can be in the shape of

cylinders, spheres, long flexible coils, or spiral stents. The latter two types, however,

are rarely used. Some examples of the marker dimensions are 3× 0.8 mm [152, 174],

3 × 1 mm [98, 43], and 5 × 1.2 mm [141] for cylinders (length×diameter), 1.57 to

4 mm [141] or 2 mm [198] for spheres (diameter), 3 – 4 cm×0.35 mm for coils [7],

and 7 mm spring in diameter with the maximal expansion of the collar to 14 mm for

stents [39].

All phantom and patient images used in this thesis display the measurements

of gold cylindrical fiducial markers of 3 × 0.8 mm, as demonstrated in Figure 2.1.

These markers are used clinically for daily target position verification, in particular,

for prostate patients. Although models for the spherical markers are provided as well,

to demonstrate the generality of the proposed approaches, most of the parameters,

as well as validation and tracking results, are only presented for the aforementioned

cylindrical markers.

2.1.2 X-Ray Tracking Systems in Literature

The literature on target localization and tracking performed by analyzing kV and MV

x-ray images and CBCT projections is quite broad, and ranges from the description

of separate parts and particular techniques to complete tracking systems. To place

our work into the context, in this section we provide a brief overview of the existing

systems, and the literature pertaining to specific methods is deferred to appropriate

chapters and sections.

Several tracking systems combining hardware for image acquisition and soft-

ware for image analysis, that perform tracking based on radio-opaque fiducial markers,

have been reported in the literature:

• The Mitsubishi/Hokkaido fluoroscopic real-time tumour tracking radiotherapy

system (RTRT) presented by Shirato et al. [198] uses four x-ray imaging systems
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Figure 2.1: Gold fiducial markers (left) and their measurements in a fluoroscopic
image of a prostate patient pointed by white arrows (right). As can be seen, the
markers possess low contrast with the background in fluoroscopic images, making the
automatic, and even manual, localization challenging.

fixed in the room around the LINAC. The system tracks one 2 mm gold spherical

marker in real time, i.e., the images are processed on the fly, and the marker

3D position is reported every 0.033 seconds, with the accuracy of ±1 mm as

measured in the phantom experiment. Being synchronized with the LINAC,

the system is used for gating, i.e., the irradiation is only triggered when the

target is located in a predefined range of acceptable treatment positions.

• In the Accuray Cyberknife robotic radiosurgery system described by

Schweikard et al. [193], the treatment beam is moved by a robotic arm to follow

a moving target. To reduce the imaging dose to the patient, instead of using

real-time x-ray imaging, the system tracks the 3D positions of four gold spheri-

cal fiducial markers 2.5 mm in diameter by combining occasional x-ray images

with real-time tracking of the infrared emitters placed on the patient’s chest

or abdomen. The correlation between the motion of the infrared markers and

the 3D internal marker positions, computed based on images from two x-ray

imaging systems, has to be established prior to treatment. The model is con-

tinuously updated during the treatment. The described system does not use

prediction, and experimental results show that for typical respiratory velocity

of 2–4 mm/sec the beam lag is between 1 and 2 mm.

• A number of combined kV/MV imaging systems [141, 43, 204] compute the 3D

positions of the fiducial markers from 2D positions found in MV and kV x-ray

images. The kV x-ray imaging system is mounted so that the MV and kV beams

are orthogonal to each other. Mao et al. [141] used stainless steel ball bearings

from 1.57 mm to 4 mm and gold cylinders of 5× 1.2 mm in size. The reported
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positioning errors are within 1 mm. Cho et al. [43] synchronized the kV/MV

imaging system with the dynamic MLC for tumour tracking. The time delay of

the proposed tracking system is approximately 450 ms, and a tracking error for

one 3 × 1 mm gold marker with the use of prediction is 0.9 ± 0.5 mm for the

phantom experiment. In application to prostate patients, Slagmolen et al. [204]

reported the 3D positioning accuracy for four 5 × 1 mm markers to be 0.5 ±
0.5 mm.

• Berbeco et al. [23] experimented with the number of kV imaging systems mounted

on the LINAC. They observed that for one system mounted so that the MV and

kV beams are orthogonal to each other, positioning errors in the beam’s-eye-view

for seven lung cancer patients, averaged over 36 evenly spaced gantry angles,

ranged from 0.9 ± 0.3 to 7.5 ± 3.0 mm and the spread in the 99% range was

2.2–42.7 mm. The marker positions in 3D were derived from their 2D positions

observed in the images by using the previously collected information about the

3D trajectory and assuming the repeatability of the relationship between the

2D and 3D positions. Berbeco et al. concluded that one imaging system was

not adequate to resolve 3D marker positions with sufficient accuracy. Therefore,

they proposed to use two kV x-ray imaging systems for the integrated radio-

therapy imaging system (IRIS) created by the Massachusetts General Hospital

and Varian Medical Systems, Inc. (Palo Alto, CA). The imaging units were

mounted symmetrically on either side of the LINAC’s head with 90◦ between

the kV beams.

• Adamson and Wu [7] used one CBCT imaging system mounted on an Elekta

Synergy LINAC to measure the 3D motion of three gold coils for prostate pa-

tients undergoing IMRT treatment. The 3D motion was computed by combining

2D marker positions found at several gantry angles. The combined 2D marker

localization accuracy for three patients was 0.06±0.35 mm and 0.04±0.71 mm in

the two coordinate directions. In 3D, the accuracy was −0.04±0.3, 0.09±0.36,

and 0.03± 0.68 mm in the three coordinate directions. It was found that while

drifting motion can be generally observed using the proposed tracking method,

the oscillating motion, except for the very low frequencies, can not be accurately

estimated.

• Ng et al. [164] used a LINAC with one x-ray imaging system mounted so that

the MV and kV beams are orthogonal to each other to design a method for

3D tracking of three 3 × 1 mm fiducial markers in prostate patients. The kilo-

voltage intrafraction monitoring (KIM) approach uses a previously acquired set

of CBCT projections to build 3D Gaussian probability density functions of the

marker positions, that are later used to resolve the out-of-plane marker motion.
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The in-plane positions are obtained from the kV x-ray images acquired during

the treatment. The mean 3D marker positioning accuracy of KIM for ten pa-

tients ranged from 0.25 mm to 0.86 mm, with an average for all patients at

0.46± 0.58 mm.

The project described in this thesis originated from the desire to quantify intra-

fraction motion of a patient or a cohort of patients. While it may be useful to track

and quantify the motion in 3D, for many biological sites the PTV is designed by

isotropically expanding the CTV borders, as was explained in Section 1.1.4. There-

fore, among all possible directions in 3D, it may be the most desirable to quantify the

largest motion. As will be discussed in Section 2.2, the prostate’s smallest motion is

typically observed towards the patient’s side. Consequently, the prostate’s greatest

motion can be visible on the 2D x-ray images acquired from the patient’s side (lateral

images). Hence, we decided to use an already available Elekta Synergy LINAC with a

single kV x-ray imaging unit mounted so that the MV and kV beams are orthogonal

to each other (Elekta Oncology Systems, Atlanta, GA; This system is similar to an-

other commercially available LINAC with one imaging unit, on-board imager (OBI)

developed by Varian Medical Systems, Inc., Palo Alto, CA). Such systems are cur-

rently used clinically in the Princess Margaret Hospital to produce CBCTs for daily

patient treatment setup and are supplied with the XVI software for image acquisi-

tion [92, 152]. The system with one imaging unit is cheaper in comparison to the one

with multiple units, and simpler, meaning it is easier for production, daily operation,

and maintenance. Whether it will be possible to successfully resolve the out-of-plane

motion with such configuration (for example, through analyzing the relative position-

ing of multiple markers) is a question to explore, but it should be possible to track

the in-plane marker motion with sufficient accuracy. Another important difference

between the majority of the available systems and our proposed configuration is the

use of smaller fiducial markers. While smaller markers can offer reduced probability

of complications related to marker insertion, their automatic localization and tracking

is more challenging. Finally, the lateral images typically possess lower contrast and

higher noise comparing to the x-ray projections obtained from any other angle due to

the body anatomy. A number of tracking systems validated on patients or humanoid

phantoms report the decrease in tracking accuracy or the increase in failure rates for

the lateral images, e.g., [7, 15, 23].

Taking into account the differences in the technical configuration with the

systems described above, such as the use of a single imaging unit, small markers,

the necessity to track in the most challenging low contrast projections, and the desire

to be able to batch-process multiple data, we have identified the following general

directions for improvement and novelty:
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• Image enhancement. As the projection x-ray images possess low contrast

(see Figure 2.1), in part, due to the limited x-ray imaging dose, it is typically

necessary to preprocess them before any marker detection can be reliably per-

formed. Although there are many noise reduction filters available, there is a

particular need for a specific marker enhancement method, that can efficiently

and effectively amplify the markers and suppress other measurements in the

images.

• Automation and robustness. In the proposed tracking system, we aim to

limit the need for user interaction as much as possible by selecting models and

parameters that either work for multiple data, or by creating mechanisms for

automatic selection of parameters by the system itself. We perform extensive

validation to not only quantify the accuracy of marker localization and tracking,

but also to demonstrate that the system produces good results for ranges of

parameter values, and for different data.

• Computational efficiency and reliability. Although computer hardware im-

proves every year, computational efficiency of the algorithms remains a concern,

especially when working with large data, such as sets of images. While the use

of supercomputers, distributed systems, and graphic processing units (GPU)

can alleviate the problem, we believe that it is best to take a resource-savvy

approach. One side of it is to design efficient algorithms and implementation,

but the other is to reduce the volume of data that needs to be processed. By

carefully using the data collected prior to tracking, such as other images of the

patient and geometric calibration parameters, we are able to select very spe-

cific regions of the images. In addition to reducing computational time, this

approach also improves reliability of the system by increasing the probability of

obtaining the expected results and minimizing the chance of failure.

The following chapters address specific methods designed with these ideas of novelty

and improvement in mind, and the general scheme of the localization and tracking

approach is presented in the next section.

2.2 Problem Setup, Assumptions, and Overview of

Approach

We aim to characterize the intra-fraction motion of a target during some period of

time by analyzing 2D fluoroscopic image sequences.1 As explained in Section 1.1.3,

1Sometimes, the sequences of 2D images can be regarded as the 3D data, with the time as the
third dimension. The notation of the dimension that we use in this thesis always refers to the
dimension of the image in space, regardless of whether the time scale is involved or not.
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Figure 2.2: A protocol for a treatment session with the intra-fraction motion evalua-
tion experiment.

a fluoroscopic sequence is a temporal series of 2D x-ray projection images acquired

with a stationary kV imaging system. All image sequences used in this thesis were

acquired at 5.5 Hz (frames per second) at a technique of 120 kVp, 32 mA, 40 ms

per frame for phantom images, and 120 kVp, 64 mA, 20 ms for prostate patients.

Typically, the patient sequences consist of approximately 165 frames (30 seconds of

acquisition), while the phantom sequences differ in length depending on specifics of

each experiment. Marker tracking enables us to quantify the displacement of the

target in time, which creates an opportunity to make adjustments to the treatment,

in particular, select an appropriate PTV, whether for a single patient or a patient

cohort.

Figure 2.2 depicts a typical treatment session for a prostate patient with the

intra-fraction motion measurement experiment included2. When the patient comes in,

a verification image, denoted CBCTs, is acquired and compared against the planning

CT. After target position verification and correction (usually, by moving the couch),

and sometimes another CBCT acquisition, the treatment commences. At some point

in time during the treatment, typically when the machine has to be moved from

one angle to another, i.e., the MV beam is naturally turned off in accordance with

the treatment design, which typically involves irradiating from several angles, fluoro-

scopic image sequence is acquired. Then, the treatment continues and, at the end,

another image, CBCTe, is taken for verification: If the target exhibited significant

displacement during the treatment procedure, it probably did not receive the pre-

scribed radiation dose, in which case some adjustments to the treatment plan may be

required.

To be reusable and applicable to a large number of patients, a motion tracking

2That is, the motion measurement experiment is not a part of a standard treatment session, and
was designed and incorporated into the sessions for a collection of target motion data in multiple
patients.
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method should be implemented as a software tool, which provides automated pro-

cessing, and minimizes, or even eliminates, the need for user interaction. Although

the markers are characterized with higher intensities than the measurements of the

surrounding soft tissues, automatic marker detection is challenging due to overlaying

anatomical features and noise in the x-ray projection images (See Figure 2.1). Of-

ten, the markers have higher intensity values only in comparison to their immediate

neighbourhood, i.e., they possess local contrast in a small region rather than global in

the whole image. Hence, a reliable marker detection procedure would require to con-

duct local intensity analysis, which can be expensive to perform on the whole image.

Consequently, a definition of a smaller region of interest (ROI) within the image that

contains the markers is desirable.

To overcome the aforementioned 2D detection issues, we propose to first find

the markers in the CBCT image acquired during the same treatment session as the

fluoroscopic sequence that is to be processed. The markers are typically easier to

detect in the 3D CBCT images due to the absence of overlaying features and better

contrast with the background. Then, knowing a geometric relationship between the

coordinate systems of the CBCT and fluoroscopic images, approximate marker loca-

tions in 2D can be estimated. To account for the intra-fraction motion that likely

happened between the acquisition of the CBCT and the fluoroscopic sequence (see

Figure 2.2), as well as for a possible geometric miscallibration, the estimated posi-

tions are corrected using the 2D-3D image registration. This is only performed for

the first image of the sequence to initialize tracking. Then, the tracking is performed

by 2D-2D image registration between the first image with the localized markers and

the remaining images of the sequence.

Flowchart 2.1 presents an overview of the proposed approach.3 The boxes in

the figure correspond to the algorithmic blocks, each of which will be addressed in

the following chapters. The processing flow starts by localizing the markers in the

3D CBCT image using the segmentation procedure in block 〈〈 S 〉〉 as described in

Chapter 3. Either of the two CBCT images are preferred to the planning CT because

they are acquired during the same treatment session as the fluoroscopic sequence.

Therefore, there is no need to correct for inter-fraction displacement or deformation.

Real-time tracking would require the use of the CBCTs image and the parameters of

the couch correction (if available) that was likely performed as a result of the initial

target position verification. In the case of post-processing, such as described in this

thesis, we prefer to use the CBCTe image, similar to the approach suggested in [7],

to omit the necessity to compensate for couch correction. It is expected that CBCTe

gives a closer estimate of the marker locations than CBCTs.

3The flowchart notation is explained in Notation and Symbols section on page xxxi.
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Flowchart 2.1: Overview of the proposed approach for fiducial marker localization
and tracking.
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The segmentation is followed by the 2D marker localization in block 〈〈 L 〉〉 de-

scribed in detail in Chapter 5. It is performed by the means of 2D-3D image registra-

tion between the selective DRR, formed from the 3D markers found in block 〈〈 S 〉〉 , and
the first image of the fluoroscopic sequence, preprocessed in block 〈〈 F 〉〉 . As can be

seen from Flowchart 2.1, the filtering block 〈〈 F 〉〉 is called from both localization and

tracking procedures. After the temporal and marker enhancement filtering is applied

to the corresponding fluoroscopic images, as described in Chapter 4, the control is

returned to the calling procedure.

Although the filtering procedures are designed and tuned in a way that amplifies

the markers and suppresses the background, and in many cases the markers can be

identified in the filtered images by a simple intensity threshold, some anatomical

features can occasionally give a filter response similar to that of the markers, which

may lead to false positives in 2D marker detection. The localization of the markers

in the 3D CBCT followed by applying 2D-3D registration to the filtered fluoroscopic

image addresses this issue and improves detection reliability.

After the markers have been localized in the first image of the sequence,

marker tracking commences. The tracking procedure is referred to as block 〈〈T 〉〉 in

Flowchart 2.1, and is described in detail in Chapter 6. It is performed by the means

of 2D-2D image registration between a tracking template, which is created from the

markers localized in the first image of the sequence, and all subsequent fluoroscopic

images, preprocessed by the filters in block 〈〈 F 〉〉 .
Although we expect that the tracking system presented in this thesis can be

used for multiple anatomical sites, here we specialize it to perform automatic mea-

surement of intra-fraction motion in prostate cancer patients. A number of stud-

ies have been conducted to assess magnitudes of marker migration and prostate de-

formations by measuring inter-marker distances (IMD) during the course of treat-

ment [36, 114, 176, 190]. It was concluded that the migration of the fiducial markers

within the prostate is negligible and the positions of the markers represent an ac-

curate and reliable surrogate of the prostate location during the whole treatment

course. Variations in individual marker locations were attributed to deformation of

the prostate due to daily anatomical changes in surrounding organs or as a reaction

to the treatment itself, e.g., prostate shrinkage. Therefore, we make an assumption

that should the fiducial markers exhibit intra-fraction displacement relative to each

other between the acquisition of the fluoroscopic sequence and the CBCT within the

same session, it is deemed negligible. In other words, in registration of the CBCT and

the fluoroscopic images, we treat the fiducial markers as one object. Therefore, we

assume that markers as a whole are only subject to rigid transformations (rotations

and translations) during the time between fluoroscopic and CBCT acquisitions.
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A number of studies have indicated that the prostate motion in patient’s left-

right (LR) direction is smaller than in anterior-posterior (AP) and superior-inferior

(SI) directions (a review is provided in Section 5.3.1). For patients that follow a certain

dietary protocol intended to reduce intra-fraction organ motion, the prostate tends to

rotate in an orderly manner around its apex, and typically moves as a rigid body in a

slow and constant motion, consistent with physiologic patterns [68]. All fluoroscopic

image sequences analyzed in this thesis were acquired in a lateral direction, i.e., from

a patient’s side. Although lateral images are harder to analyze due to a typically

lower contrast (the human body is usually wider in LR direction comparing to AP),

such configuration gives an opportunity to measure the largest expected intra-fraction

prostate motion among all directions in 3D, as the AP and SI directions appear

in-plane. Apart from this particular clinical interest, a reliable method for marker

detection can potentially improve tracking performance in other applications, as the

reduction in detection and tracking accuracy in the lateral images has been repeatedly

noted, e.g., [7, 15, 23].

The next section describes the phantom and patient image data sets that were

used for testing of the proposed approach.

2.3 Testing Data Sets

Although all necessary details on the design of physical phantoms and phantom testing

data sets are provided in Chapter 7, and patient data sets are described in Chapter 8,

this section presents a brief introduction on the aforementioned topics necessary for

understanding the discussion in Chapters 3 – 6. The data sets used in this thesis

include sets of testing images with pertaining information, in particular, coordinate

systems associated with the images. First, our proposed algorithms are tested on the

images of two verification phantoms. When the design is finalized, we also perform

validation on a testing patient data set containing multiple measurements of three

prostate cancer patients.

2.3.1 Radio-Surgery Verification Phantom

The radio-surgery verification phantom (The Phantom Laboratory, Salem, NY, fur-

ther referred to as the RSVP) is a plastic pelvic hull filled with water shown in

Figure 2.3 (left). The phantom’s top part has an opening with a spherical plug that

can be used for mounting custom inserts inside. Such design allows to create rota-

tions of the insert, while shifts can be performed by moving the LINAC’s couch where

the phantom is placed for imaging. Inside the RSVP, there are two long structures

simulating bones.
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Figure 2.3: Radio-surgery verification phantom (RSVP, left) and a custom insert with
seven gold cylindrical fiducial markers (right).

Figure 2.3 (right) shows an insert used for all RSVP measurements in this

thesis. It consists of two half-cylinders that are fixed together with a screw. One

half-cylinder has seven gold fiducial markers 3 × 0.8 mm. They are placed to have

their axes in one plane, and their centres on one line, with 10 mm distance in between

the centres of the neighbouring markers.

All RSVP measurements were performed with a stationary phantom aimed at

the validation of the 3D and 2D marker localization, and the filtering procedures.

The phantom was placed on a LINAC equipped with a kV x-ray imaging system,

and imaged at different shifts and rotations. Altogether, nine fluoroscopic sequences

(1024× 1024 pixels) and nine corresponding CBCT projection sets (512× 512 pixels)

were acquired. The projections were reconstructed into the CBCT images with 0.5,

1, 2, and 4 mm voxels.4

2.3.2 Quasar Motion Phantom

The Quasar programmable respiratory motion phantom (Modus Medical Devices Inc.,

London, Ontario, further referred to as the Quasar phantom) shown in Figure 2.4 (left)

consists of the following parts: a plastic piece in a shape of a patient’s abdomen or

chest, a set of inserts simulating different body tissues, and a Scottish yawk mechanism

for moving the inserts. The phantom can produce sinusoidal motion (in time) along

its vertical axis, where a period and an amplitude can be adjusted. In addition, the

phantom can move the insert according to an arbitrary motion trace that is loaded

4When referring to cubic voxels, for simplicity we will always say, for example, 0.5 mm voxels,
meaning the voxels of 0.5× 0.5× 0.5 mm3 dimensions.
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Figure 2.4: Quasar motion phantom (left) and an insert with seven gold cylindrical
fiducial markers (right).

as a sequence of displacements.

Figure 2.4 (right) shows an insert that was used for the Quasar phantom in

experiments described in this thesis. It combines half of a standard Quasar insert that

attaches to the motion mechanism, and half of the plastic cylinder with the fiducial

markers described in Section 2.3.1.

The Quasar phantom was used to acquire image sequences for testing of the

filtering and marker tracking procedures. The sequences show cases in which the

phantom is stationary, steadily moving at three different speeds, performs three traces

simulating pseudo-regular breathing and irregular motion, and a sinusoidal motion

with peak-to-peak amplitudes of 2, 4, 10, and 20 mm and periods of 2.5, 5, 10, and

15 seconds. Also, 5 CBCT images with 0.25 mm voxel size were reconstructed from

projections of 1024× 1024 pixels. These images were used to test the 3D localization

procedure for high resolution, because it was not possible to reconstruct the 0.25 mm

voxel CBCTs from the RSVP projections of 512×512 pixels. Although CBCT images

with 0.5 and 1 mm voxels are often utilized clinically, there is an increasing demand

to use 0.25 mm voxel images for some anatomical sites. It was possible to reconstruct

the CBCT images of lower resolutions from the Quasar phantom as well. However,

we chose to use the RSVP, as it was bigger in size comparing to the Quasar: As a

result, its images had lower contrast, and better resembled the patient images.

2.3.3 Patient Testing Data Sets

Although testing of the algorithms and the assessments of their accuracies were per-

formed on the phantom images, due to the possibility to create a controlled environ-

ment with the phantoms, we also used a patient testing data set to verify that the
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procedures run smoothly, produce expected results, and that parameter values are

reasonable. The major difference between patients and phantoms is the presence of

multiple anatomical structures in the patients, which may result in the images with

lower contrast and higher noise. On the other hand, patient images do not have parts

such as phantom insert holders, screws, and surface fiducial markers.

The collection of patient data was approved by the University Health Network

Research Ethics Board (UHN-REB) [3]. The measurements of Patient 1, 2, and 3

include 10, 10, and 5 fluoroscopic sequences, respectively, and daily CBCTs for the

whole treatment duration, including the CBCTs produced during the fractions with

the fluoroscopy acquisition. Patient 1 has 74 CBCTs with 1 mm voxels and 6 with

2 mm, Patient 2 has 75 images, and Patient 3 has 74 CBCTs, both with 1 mm voxels.

2.4 Modelling Preliminaries

This section presents mathematical formulations necessary for understanding the dis-

cussion in Chapters 3 – 6: an image model definition, and a description of the coordi-

nate systems associated with the images and geometric transformations that will be

used in this thesis.

2.4.1 Image Model

A discrete image, or image data, is a d-dimensional array of intensity values A =

(Ai1,...,id) = (Ai), where ik = 1, . . . , mk. The size of the discrete image is m1× . . .×md,

and, in general, Ai ∈ R. The discrete image represents a measurement of some proper-

ties of an object or a set of objects, such as spectra of reflected light for a conventional

photography, or x-ray attenuation of the object’s material in x-ray images. Medical

images are usually 2D, 3D, or 4D (3D plus time). Due to the fact that the separation

between the intra- and inter-fraction motion is important in a clinical setting, at times

a data set can be referred to as 5D, meaning a set of 3D images that contains both

intra- (4th dimension, time within the fraction) and inter-fraction measurements (5th

dimension, time between the fractions).

The elements of A are often associated with a rectangular grid of points p̌i ∈
Γd ⊂ R

d. Such knowledge helps to relate the measurements to some coordinate

system, and, as a result, to a measured object or a patient. Hence, each value Ai = A[p̌i]

is an intensity corresponding to a d-dimensional rectangular cell i, called a pixel in

2D images and a voxel in 3D, which is centered in a grid point p̌i ∈ Γd. If ξk is the

sample spacing of grid Γd along the k-th dimension, the cell i is defined as a set of

points {q | (p̌ik − ξk/2) ≤ qk ≤ (p̌ik + ξk/2), k = 1, . . . , d}. In x-ray projection images,
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the value A[p̌i] relates to the number of photons that reach a detector element, i.e., it

can be treated as an integral value of all intensity values measured at points within

the corresponding cell i. More information and examples of grids can be found in

Modersitzki [150].

The grid can be isotropic or anisotropic, where isotropic pixels/voxels refer to

equally sized pixels/voxels in all dimensions, i.e., squares and cubes, while anisotropic

pixels/voxels can have different dimensions. The anisotropic grids are primarily used

in 3D images with anisotropic voxels, when the image consists of a set of 2D slices

with isotropic pixels but the distance between the slices is typically larger than the

pixel size, e.g., [188]. Although usually regular, the sample spacing of the grid can

sometimes be irregular in order to measure a particular region of interest in more

details than the rest of the scene.

At our perception scale we consider a measured object to be a continuous

entity. The fact that the measurement of properties of this continuous entity results

in a discrete image leads to two conceptually different approaches of defining an image

model : as a continuous intensity function or as a mapping defined for a grid of points.

Both approaches are used in the literature, e.g., Modersitzki [149] gives a continuous

definition and Hill et al. [83] a discrete one, and many authors implicitly switch

between the discrete definition (a measured image data array) and the continuous

model (interpolation) in situations when the intensity values between the grid points

have to be estimated, e.g., [34]. Following Modersitzki [149, 150], we define an image

as a continuous intensity function:

A : Ω ⊂ R
d → R, (2.4.1)

i.e., every point p ∈ Ω is assigned some intensity value A(p), where Ω is a bounded

set. The following assumptions are accepted in this thesis: (i) all images are greyscale,

or monochromatic; (ii) the image is not defined outside of Ω, which does not affect the

models presented in this thesis as the images typically show a scene larger than the

object of interest, and it is not required to operate outside Ω but rather on a region

of interest within Ω.

A continuous image can be computed from image data A by interpolation:

A(p) = I(A,Γd, p). The most common choices for I in the context of medical image

registration include nearest neighbour, linear, quadratic, and cubic spline interpola-

tion [69, 149]. Depending on the choice of I, A(p̌i) does not necessarily equal A[p̌i],

p̌i ∈ Γd. Although at first it may be viewed as the potential for increasing the error, it

can be justified by the assumption that the measured object is, in general, continuous

and smooth, and the digital measurement is typically quantized, which can add mea-

surement errors in addition to other physical processes that cause noise during image
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Figure 2.5: Coordinate systems associated with the patient and 3D images (XYZ),
and the 2D images (ŪV̄ and UV).

acquisition. There is also a practical reason behind: Image enhancement and regis-

tration methods typically perform better on images possessing certain characteristics,

such as smoothness.

In this thesis, we typically use continuous images when we describe mathemat-

ical models, and discrete for algorithms and implementation.

2.4.2 Coordinate Systems and Geometric Transformations

All images used in this thesis come with information about spatial location of their

grid points in the corresponding coordinate systems. In this thesis, we use three

coordinate systems called XYZ, UV, and ŪV̄ depicted in Figure 2.5:

• XYZ is a 3D right-handed coordinate system associated with the CBCT image

and the patient. It is fixed to the room with the origin at the LINAC’s centre of

rotation. The coordinates of the grid points are assigned by the XVI software

during volumetric image reconstruction from 2D x-ray projections. The units

are millimeters.

• ŪV̄ is a 2D left-handed coordinate system of the flat-panel detector that is used

for the x-ray projections and fluoroscopic images. The units of ŪV̄ are pixels,

i.e., integer numbers either spanning 0 tomk−1 or 1 to mk, where m1×m2 is the

size of the discrete image. We use 1 to mk numbering as this is the convention

for the Matlab arrays. The position of plane H̄ on which ŪV̄ is defined is not
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fixed in the XYZ system: It rotates with the flat-panel as the LINAC rotates

around the patient.

• The images in the ŪV̄ system do not provide spatial information about the

measurements, and the marker motion has to be quantified in millimeters, in

relation to the geometry of the patient’s organs. To achieve this, we introduce a

third coordinate system, called UV. It is a 2D left-handed system with the origin

at the LINAC’s centre of rotation defined on plane H, where the planes H and H̄

are parallel. We call H an isocentric plane. The system’s units are millimeters.

The positions of the points in UV are computed based on their positions in

ŪV̄ and the knowledge of the image acquisition geometry including calibration

information. Geometric transformations in XYZ, ŪV̄, and UV systems, as well

as the transformation from ŪV̄ to UV, are detailed in Appendix B.

The point psrc in Figure 2.5 corresponds to the position of the imaging kV

x-ray source, which can be treated as a point source. Matter present in the spatial

location corresponding to p0 ∈ R
3 (XYZ) is penetrated by the diverging x-rays. The

measurement of its x-ray attenuation, together with the measurements in all points

along the line going through the points psrc and p0, is recorded at point p̄ ∈ H̄ on

the flat-panel detector (ŪV̄). By performing transformation from ŪV̄ to UV, we find

point piso (UV).

When the LINAC rotates around the patient, the point psrc and the planes

H̄ and H rotate around the Y axis. The rotation angle φ is recorded during image

acquisition by the XVI software, and φ = 0◦ corresponds to the position for which

the kV x-ray source is on the positive part of X axis, denoted by X+, as shown in

Figure 2.5, and is increasing in the clockwise direction according to IEC gantry angle

convention [5]. Axes V̄ and V are parallel to Y and have a direction opposite to Y,

while Ū and U rotate together with H and H̄, and align with the negative Z direction

when φ = 0◦. The distances from psrc to H (χSAD, source to axis distance) and to

H̄ (χSDD, source to detector distance) are known from the technical setup, and the

values used in our experiments are given in Table B.1.

In our geometrical setup, we assume perfect alignment. However, any physical

system comes with certain geometric inaccuracy . For example, the flat-panel detec-

tor can be slightly tilted, and values of calibration parameters and rotation angles are

subject to the measurement and recording accuracy of the hardware and software.

These misalignments can to some extent be measured with specially designed phan-

toms, however, it can not always be performed in a real-life situation. We will provide

more discussion about this issue later in this thesis and explain how the design of our

model is immune to slight geometric miscalibration in Section 5.3.

As explained in Section 2.2, we assume that the markers are only subject to
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rigid transformations. The detailed definitions of geometric transformations are given

in Appendix B, and here we only provide short explanation and a list of notations

that will be used in this thesis. Note that before geometric transformations are per-

formed, the points are expressed in homogeneous coordinates [238], i.e., the points

are expressed as the vectors with one extra coordinate, e.g., p = (px, py, pz)
T becomes

p̃ = (px, py, pz, pw)
T , where pw = 1. After performing necessary transformations, the

points are transformed back to their initial dimensions by dividing by the last coordi-

nate, and discarding it, e.g., q̃ = (qx, qy, qz, qw)
T becomes q = (qx/qw, qy/qw, qz/qw)

T ,

qw 6= 0. The use of homogeneous coordinates allows to have a unified representation

for rotation, translation, and perspective transformation as 4×4 matrices for the 3D,

and as 3× 3 matrices for the 2D coordinates. In the discussion below, we will use the

tilde to denote the points in homogeneous coordinates.

The notation used for geometric transformations is the following:

• T 3D – 3D rigid transformation in the XYZ system. A transformed point q ∈ R
3

is obtained from p ∈ R
3 as:

q = T 3D(a, p), or q̃ = R3DT 3Dp̃, (2.4.2)

where T 3D : R
6 × R

3 → R
3 is the transformation with six parameters a =

(tx, ty, tz, γx, γy, γz)
T (three shifts and three rotation angles), and R3D and T 3D

are the 4 × 4 matrices of 3D rotation and translation, respectively, defined in

Appendix B.1.

• T 2D – 2D rigid transformation in the ŪV̄ and UV systems. An application of

T 2D : R3 × R
2 → R

2 to a point p ∈ R
2 results in:

q = T 2D(b, p), or q̃ = R2DT 2Dp̃, (2.4.3)

where b = (tu, tv, γ)
T is a vector of parameters (two shifts and one rotation

angle), and 3 × 3 matrices of 2D rotation and translation R2D and T 2D are

defined in Appendix B.2.

• Some models require the use of inverse rotation and translation transformations,

R−1 and T−1, the definitions of which can be found in Appendix B.3.

• The transformation from ŪV̄ to UV is only performed once in the beginning for

all fluoroscopic images, and all models and algorithms presented in this thesis

assume that the points are defined in the UV system. Appendix B.4 contains

the corresponding transformation equations.

• In the process of 2D-3D image registration, it is required to project the 3D

points whose coordinates are expressed in the XYZ system (CBCT image) to

the plane H, and express their coordinates in the UV system (fluoroscopic image

with the grid transformed to UV). The perspective transformation from XYZ

to UV is denoted by P : R3 → R
2, and is derived in Appendix B.5.
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Chapter 3

Marker Segmentation and
Modelling in 3D Space

This chapter describes the segmentation and modelling of the markers in 3D space,

that is the XYZ coordinate system associated with the CBCT image. This is the first

step in the proposed localization and tracking method, denoted by the label 〈〈 S 〉〉 in

Flowchart 2.1. The methods described here can also be used separately for marker-

based analysis of the CT/CBCT images. Examples include computation of inter-

marker distances (IMD) to detect organ deformations over time, and inter-fraction

marker displacements to verify the accuracy and reproducibility of the patient treat-

ment setup. Applications of both of these cases to a testing patient data set (described

in Section 2.3.3) are presented in Chapter 8.

Approaches to using 3D images to either predict the positions of the markers in

the 2D images, or to select a search ROI in the 2D images, were previously reported

in the literature [7, 60, 141, 169, 204]. To measure marker motion in fluoroscopic se-

quences of the prostate patients, Adamson and Wu [7] performed image registration

between fluoroscopic images and a 2D image constructed from the markers segmented

in the CBCT image. The ROI in the CBCT was selected manually, then the mark-

ers were detected by using an intensity threshold. Fledelius et al. [60] used the 2D

projection images, from which the pretreatment CBCT was reconstructed, to create

3D maker models consisting of size, orientation, and estimated 3D trajectory during

the CBCT scan. Then, they projected the models to the 2D space to assist with 2D

marker segmentation in real time. Mao et al. [141] and Slagmolen et al. [204] formed

a search ROI in the 2D images as a region around the predicted 2D marker positions

that were found by projecting the markers segmented in the planning CT by an in-

tensity threshold. Similarly, Park et al. [169] selected a ROI in a 2D image by using

a DRR of the planning CT.

As can be seen from multiple studies, marker localization or segmentation in
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3D is typically performed by applying an intensity threshold to the CT [204, 141, 161]

or CBCT images [151, 152, 7]. The result of universal, or global, thresholding is a

binary image, where 1’s are assigned to the points with the intensity larger than, or

larger or equal to, some threshold value θ, and 0’s otherwise1 [180]. Alternatively, it

is possible to set to 0 only the intensity values below θ but keep the original values

above θ unchanged.

While thresholding with a predefined value θ may work well for the CT, where

the CT intensity values relate to the x-ray attenuation of the material, and thus, the

measurements of different materials tend to be represented by different known CT

numbers, applying the same strategy to the CBCT images may be challenging, as

the images can have different scaling. For example, Figure 3.1 demonstrates intensity

distributions of the points in the volume of interest2 (VOI) containing the markers.

The results are shown for four CBCT images with the voxel sizes of 0.5, 1, 2, and

4 mm reconstructed from the same set of the CBCT projections displaying the RSVP,

where the description of the phantom is given in Section 2.3.1. Although the most

of the intensity values fall into the range between 750 to 1,150 intensity units, the

overall ranges of the VOIs are quite different: −1, 646 to 14,383 for the image with

0.5 mm voxels, 320 to 5,660 for 1 mm voxels, 445 to 2,088 for 2 mm voxels, and 733

to 1,407 for 4 mm voxels. While the selection of pixels with the intensity of at least

6,000 results in successful marker segmentation in the CBCT with 0.5 mm voxels, it

is not even valid for the rest of the images, as 6,000 falls outside of their ranges.

In addition, it is possible that measurements of other objects in the VOI possess

CBCT intensities similar to those of the markers. Based on our empirical observations

and general understanding of the CT/CBCT image formation, the occurrence of non-

marker measurements that have similar intensities to those of the markers has a

potential to increase with the voxel size increase. This happens due to the increase in

the number of voxels that contain partial marker measurements, i.e, measurements of

the space that includes both the part of a fiducial marker and a background. At the

same time, the number of voxels that are fully within the space corresponding to the

markers is decreasing. This phenomenon can be easily illustrated by the definition of

the voxel intensity given in Fitzpatrick et al. [57]: The intensity value of a voxel can

be approximated to the first order, ignoring noise and reconstruction artifacts, by a

linear function αvi + a0, where vi is the volume of intersection between the marker

and the voxel, and α and a0 are an imaging modality dependent coefficient and the

intensity of an empty voxel (air), respectively. For example, for the CBCTs of the

RSVP with the voxel sizes of 2 and 4 mm, the measurements of the phantom holder

1This definition can be reversed depending on the purposes of the segmentation.
2The VOI in this example contains a volume corresponding to the grid points {p̌ | −50 mm ≤ p̌i ≤

50 mm}, where i = {x, y, z}. More comments about the VOI selection are provided in Section 3.1.1.
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Figure 3.1: Intensity distributions of volumes of interest containing markers in four
CBCT images with the voxel sizes of 0.5, 1, 2, and 4 mm reconstructed from the
same set of CBCT projections (left column) with zoom-ins into [750, 1,150] range
of intensity units (right column). Different ranges make it challenging to select an
intensity threshold value to successfully segment the 3D markers in all images.
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and the 3× 0.8 mm markers possess similar intensities, and it is not possible to select

a threshold to separate the two. For patients, a similar problem can arise with bones.

Therefore, an application of a fixed intensity threshold may not be a reliable technique

to segment the 3D markers in the CBCT images.

To overcome the aforementioned issues of CBCT scaling with resulting inability

to use a single intensity threshold to separate marker and non-marker voxels, we

propose a technique for automatic 3D marker segmentation that:

• is independent of the CBCT resolution and scaling;

• selects high-intensity voxels and conducts analysis to reject non-marker mea-

surements based on the known parameters of the marker size and number, not

on the intensity values.

We introduce a concept of a marker set to model the markers in a 3D image

V. A 3D marker set is defined as a set of image points in 3D that corresponds to a

single marker, and the points are characterized by high intensity values and spatial

proximity within one marker set. We will use the term both in the continuous and

discrete cases. In a continuous image V : R3 → R, a 3D marker set is a set of points

p ∈ R
3, while in a discrete array of intensity values V (data array, or original 3D CBCT

image), a 3D marker set is composed of a number of grid points3 p̌i ∈ Γ3. Hence, we

aim to split a grid of the CBCT image, Γ3, into the subsets Mk, k = 0, . . . , n, such

that the sets M1, . . . ,Mn are the 3D marker sets, and M0 contains all other voxels

(measurements of other features and the background). This is a partition of Γ3, i.e.,⋃n
k=0Mk = Γ3, and Mk ∩Mj = ∅ if k 6= j.

As will be discussed later in this chapter, in some cases it may be beneficial to

use another construct, the 3D marker models .4 The marker model Mmod
k is a set of

points p ∈ R
3 that compose an ideal marker shape, either a cylindrical or a spherical

solid, depending on the fiducial markers used, of known dimensions. The substitu-

tion of the marker sets by the marker models eliminates the problem of inevitable

quantization of the measurements in a discrete image, and streak artifacts introduced

during CBCT image reconstruction. Therefore, such an approach has the potential to

improve the outcome of the 2D-3D image registration performed to localize markers

in fluoroscopic images (block 〈〈 L 〉〉 introduced in Flowchart 2.1, which is described in

Chapter 5). To the best of our knowledge, such a method of computing and using

the 3D marker models has not been previously presented. Currently, the application

of the proposed approach has some limitations, such as when the size of the voxels

3Recall that the grid point p̌i is the geometrical centre of a voxel i.
4A similar concept, called a 3D marker constellation model, is proposed by Fledelius et al. [59].

However, it is computed in a substantially different way, by combining the 2D markers segmented
in CBCT projections.
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is comparable to the size of the fiducial markers, and, consequently, the orientations

of the cylindrical markers can not be recovered reliably. However, it may become

the state-of-the-art in the future due to a constant improvement in technology, when

higher resolution images will become a part of a standard clinical practice.

Flowchart 3.1 provides a detailed scheme for the marker segmentation and

modelling block 〈〈 S 〉〉 introduced in Flowchart 2.1. The candidate marker sets M̂k are

found by successive application of the novel model-based thresholding 〈〈 S1 〉〉, clustering
〈〈 S2 〉〉, and marker set selection 〈〈 S3 〉〉 performed using knowledge about the number and

the dimensions of the fiducial markers. These three steps are described in Section 3.1.

Section 3.2 provides an explanation of how the 3D marker positions, ck3D, are computed

from the candidate marker sets. Points ck3D denote the positions of the fiducial markers

in the XYZ coordinate system, and are used to quantify the accuracy of 3D marker

localization. Next, the correction of the marker set selection is performed, if necessary,

at step 〈〈 S4 〉〉 as described in Section 3.3, and the 3D marker sets Mk are selected from

the candidates M̂k. Finally, depending on the choice of a template image generation

method used in 2D-3D image registration that is later performed in block 〈〈 L 〉〉 , a
computation of the marker models may be required. This step, referred to as step

〈〈 S5 〉〉 , is described in Section 3.4. This chapter is concluded with the discussion of the

results in Section 3.5.

3.1 Marker Set Segmentation in 3D Image

This section presents the methodology of selection of the marker points in the 3D

image, and the process of grouping them together in the marker sets that represent

markers. As mentioned above, a frequently used technique to segment the markers in

the CT or CBCT images is global intensity thresholding [7, 204, 141, 161, 152, 105,

137]. The threshold value θ is usually selected manually by the user or is based on an

image histogram, such as proposed by Moseley et al. [151, 152], where the threshold

is defined as three times the standard deviation of the intensity values. Alternatively,

Koch et al. [105] and Mahnken et al. [137] compute it as:

θ = γ max(VVOI), (3.1.1)

where VVOI is a volume of interest5 (VOI) in the image V. The value of γ = 0.2 is set

in [137], and the value of 0 < γ < 1 is selected by the operator in [105]. Also, in [137],

the value of the computed θ is not allowed to fall below the 3,000 HU CT intensity,

5Note that the terms VOI and ROI can be used in reference to discrete and continuous 3D and
2D images, as well as sets and grids on which the images are defined. Selection of a VOI or ROI in
the image implies the selection of a VOI or ROI in their corresponding set or grid, and vice versa.
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in order to exclude bones from the thresholding. Due to possibly different scaling

and resolution of the CBCT images discussed above, we will design a model-based

thresholding that selects high-intensity voxels based on the preliminary knowledge of

marker size and number rather than relying on their intensities.

The overall technique of segmenting the markers described in steps 〈〈 S1 〉〉 –
〈〈 S3 〉〉 is to some extent similar to the one presented by Koch et al. [105], though

it possesses a number of significant differences. The purpose of marker segmenta-

tion in [105] was to provide automatic means for daily setup verification through

landmark-based registration of the pretreatment CT and daily megavoltage cone-beam

(MVCB) images. While the marker positions in the CT were determined manually,

the high-intensity points in the VOI of the daily MVCB were thresholded as defined

in Equation (3.1.1). In contrast, we apply the model-based threshold described in

Section 3.1.1. Following thresholding in [105], the adjacent points were grouped into

contiguous features by the connected component analysis, and the features whose vol-

ume exceeded a maximum expected volume of a marker were removed. In order to

reduce the computational burden of registering the obtained points to the reference

CT points, the former were further grouped into possibly overlapping sets based on

close geometrical proximity, and their centroids were used for registration. Another

possibility of grouping the thresholded high-intensity points into sets corresponding to

the markers based on geometric proximity is proposed by Moseley et al. [152], where

the points are assigned to the sets based on their CBCT slice location (along Y axis).

In our method, we choose not to rely on the contiguity of high-intensity features but

only on the proximity of the points to each other due to the following reasons:

• As empirically observed in our testing data sets, it is possible that some recon-

struction scenarios produce images with low-intensity voxels within the overall

high-intensity markers. This puts the latter in the danger of not being neces-

sarily contiguous, as is demonstrated in Section 3.1.3;

• Relaxation of contiguity requirement also reduces the dependance of the final

segmentation result on the threshold value, thus making the method more reli-

able.6

Also, in our method, the candidate marker sets are selected among the high-intensity

features based on their size (largest dimension) rather than the volume, which can

be a more reliable approach in the presence of reconstruction artifacts in the CBCT

images as further discussed in Section 3.1.3.

6I.e., if the threshold happens to be higher than some voxels in the middle of the marker, they
will still be assigned to the same marker.
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3.1.1 Thresholding

At the first step of the segmentation procedure 〈〈 S1 〉〉 , a set of high-intensity points Θ

is created. The thresholding is based on the assumption that the marker set points

are among the highest-intensity points presented in the image: As explained in Sec-

tion 2.1.1, the radio-opaque fiducial markers are made of the material characterized by

high x-ray attenuation properties, where high attenuation translates into high values

in V. In many cases, to reduce computational cost and improve marker segmentation

or detection, a manually selected volume of interest VVOI is analyzed instead of the

whole image V, e.g., [105, 7]. The set Θ is computed as:

Θ = {p ∈ ΩVOI | VVOI(p) ≥ θ}, (3.1.2)

where ΩVOI ⊂ Ω ∈ R
3 is a VOI, V : Ω → R (for image definition, see Section 2.4.1),

and θ is a model-based intensity threshold. The following paragraphs discuss the

choice of ΩVOI and θ.

N ΩVOI, Volume of interest7

When the patient is in the treatment position, including the time of the CBCT image

acquisition, the target, together with the fiducial markers, is supposed to be in, or in

the close proximity to, the LINAC’s isocentre. Hence, a rectangular VOI encompass-

ing the XYZ origin can be used:

ΩVOI =
{
p ∈ Ω | pmin

j ≤ pj ≤ pmax
j , j = {x, y, z}

}
, (3.1.3)

where pmin and pmax are the vectors containing the lower and upper bounds of the

VOI, respectively, in X, Y, and Z dimensions. To include the isocentre, it must hold

that pmin
j ≤ 0 and pmax

j ≥ 0. The bounds can be determined based on the knowledge of

the typical PTV size. Moreover, if the PTV contours are available from the planning

CT image, and are expressed as a set of points P in the XYZ coordinate system,

and the parameters of the daily couch correction, t ∈ R
3, are known, we propose to

compute the bounds as8:

pmin
j = min

{
pij | pi ∈ P

}
+ tj (3.1.4)

and

pmax
j = max

{
pij | pi ∈ P

}
+ tj , (3.1.5)

7The paragraphs with parameter description start with N and end with for easy identification
in the text.

8Note that while in general we use the function notation min(·), max(·) with round brackets,
where “·” can be a set, a sequence or an array, the shorter notation min{·} will be used instead of
min({·}) for clarity when “·” is a description of the set such as in Equations (3.1.4) and (3.1.5).
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Figure 3.2: CBCT slices of the RSVP with different voxel sizes reconstructed from
the same set of CBCT projections. The markers in the image with 0.5 mm voxels
(left) tend to be smaller than the ones in the 2 mm voxel CBCT (right).

where j = {x, y, z}. The use of the rectangular VOI is favoured for the ease of

implementation.

For consistency in all our experiments, we have used a cuboid VOI with pmin
j =

−50 mm and pmax
j = 50 mm. This VOI guarantees the inclusion of all markers

for all experimental phantom positions and by far encompasses the markers in the

patient images. It also includes other high-intensity measurements, such as of the

phantom holder, or the patient bones, allowing to test the reliability of the proposed

segmentation procedure.

N θ, Segmentation threshold

To address the weaknesses of the previous approaches in application to the CBCT

images associated with the fixed value or image histogram based thresholds, we pro-

pose a novel model-based threshold that relies on prior knowledge of the number and

size of the fiducial markers. The idea is to select the points of the highest intensities

in V that, combined based on their geometric proximity, may create high-intensity

features, the compound volume of which is similar to the compound volume of all

fiducial markers, the measurements of which are expected to be observed in the im-

age. The minimal intensity value found in these features is the threshold θ. A valid

mechanism to achieve this is by marking iterative change to θ, and comparing between

the volume of the thresholded features and the expected volume of the markers.

While for continuous images there arises a non-trivial question of how the fea-

tures are created from the high-intensity points, and how their volumes are measured,

this idea is rather straightforward for algorithmic implementation with discrete im-
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ages: Rather than creating and measuring the volumes, we compute the number of

voxels, nvx, that are expected to constitute the markers, then sort the intensities in the

VOI of the discrete image VVOI, and finally, segment nvx brightest voxels. The value

of nvx is computed in the following way: Let n be a number of the fiducial markers,

and δvx be a voxel size.9 For cylindrical markers, which we assume all to be of the

same size, let r be a radius, and h be a height of a cylinder. Then, the number of the

voxels constituting the markers can be computed as a volume of the markers divided

by a volume of a voxel, and multiplied by the number of the markers: n ⌈π r2 h/δ3vx⌉,
where ⌈·⌉ is rounding towards +∞. The smaller δvx, the more precise this estimation

would be. In reality, for the fiducial markers of 3 to 5 mm long and the CBCT voxels

of 0.5 or 1 mm that are often used clinically, it becomes necessary to increase the

number of voxels per marker, both to include more voxels containing partial marker

measurements into the set Θ, and because the sizes of the markers tend to increase

with the increasing voxel sizes. This can easily be illustrated by comparing the CBCT

slices of the RSVP in Figure 3.2. Both CBCTs were reconstructed from the same set

of the CBCT projections. However, the voxel sizes are different, being 0.5 and 2 mm,

respectively. Therefore, we set:

nvx = n

⌈
π (r + ǫ1)

2 (h + ǫ2)

δ3vx

⌉
, (3.1.6)

where the parameters ǫ1 and ǫ2 are selected so that they extend the marker volume

uniformly, i.e., ǫ2 = 2 ǫ1. As explained above, they should also depend on the voxel

size. Thus, we set ǫ1 = κ δvx and ǫ2 = 2 κ δvx. The threshold flexibility parameter

κ = 1 is selected based on the experiments with the CBCT images in the phantom

and patient testing data sets presented in Section 7.1.2.

Although the inclusion of more voxels by having ǫ1, ǫ2 > 0 often leads to thresh-

olding of features other than the markers, those should be easy to detect based on

their size and position. The main task of the thresholding step 〈〈 S1 〉〉 is to select

enough points within the markers, regardless of whether or not other high-intensity

non-marker measurements are segmented along the way. Those can be removed dur-

ing the following steps of the segmentation procedure, 〈〈 S3 〉〉 and 〈〈 S4 〉〉 .
For spherical markers with radii r1, . . . , rn,

nvx =

n∑

i=1

⌈
4

3
π
(ri + ǫi)

3

δ3vx

⌉
. (3.1.7)

We have applied the segmentation technique described in this chapter to a testing

data set (not documented in this thesis) with spherical markers 7.83 and 12.65 mm

9CBCT voxels are cubic. For anisotropic voxels, it is necessary to account for different values in
different dimensions: (δvx)x, (δvx)y, and (δvx)z .
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in diameter. As these markers were of a significant size relatively to 1 mm voxels of

the CBCT, we used ǫi = 0.

After nvx is computed, the values in VVOI are sorted in a descending order to

obtain a sequence v1 ≥ v2 ≥ . . . ≥ vnvx
≥ . . .. Then, the threshold value is:

θ = vnvx
, (3.1.8)

and the set of high-intensity points Θ is computed according to Equation (3.1.2).

Naturally, the presence of a large high-intensity non-marker feature in the im-

age can jeopardize thresholding of the marker voxels. This scenario is discussed in

Section 3.3.

3.1.2 Clustering

At step 〈〈 S2 〉〉 , the set Θ is partitioned, or clustered, into q subsets M̂1, . . . , M̂q based

on the proximity between the points p ∈ Θ. Although the number of the markers is

known, there is no guarantee that VVOI does not contain high-intensity points that

belong to the measurements of the features other than the fiducial markers, i.e., a

number of subsets that Θ should be partitioned into is not known a priori. This leads

us to the use of hierarchical clustering method [139] that is based on a concept of the

shortest distance between sets A,B ⊂ R
d defined as:

dst(A,B) = inf {‖p− s‖ | p ∈ A, s ∈ B} . (3.1.9)

Clustering starts with initialization, where each of the subsets M̂1, . . . , M̂q contains

only one point. Then, the sets are iteratively merged, starting from the two sets

with the smallest shortest distance, until min{dst(·, ·)} becomes larger than η, or the

number of clusters reaches q = 1.

N η, Minimal distance between the marker sets

This parameter depends on what is known about the size of the fiducial markers

and their relative geometry. The parameter η should be large enough to collect the

points of one marker into one set, yet small enough not to include the points of the

neighbouring measurements. In all our testing phantom and patient data sets, the

distance between the markers was larger than their size, where the marker size δm
is defined as the largest of its dimension, i.e., height for cylindrical, δm = h, and

diameter for spherical markers, δm = 2r. Thus, we assign:

η = max (δm, 1.8 δvx) . (3.1.10)

The logic behind using δm in η is that even if only two points per marker set are

detected that geometrically correspond to the far ends of the fiducial marker, they
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will nevertheless be assigned to one marker. Selecting a maximal value between δm
and 1.8 of the voxel size serves as a safeguard: For coarse resolutions, when δm is

smaller than the voxel size, the neighbouring high-intensity voxels containing partial

marker measurements should still be joined into one set. In particular, this situation

happens in one of our phantom testing data sets that contains 4 mm voxels and the

measurements of the 3 mm long fiducial markers. The value of 1.8 δvx is selected so

as to be larger than the distance between the voxels touching diagonally (at their

corners), namely
√
3 δvx, but smaller than the distance to the next nearest voxel,

namely 2 δvx. If the fiducial markers are placed very close to each other, the value of

η should be reduced correspondingly.

3.1.3 Selection of Candidate Marker Sets

After the clustering has been performed, the segmentation procedure moves on to

step 〈〈 S3 〉〉 , where the candidate marker sets are selected among M̂1, . . . , M̂q by an-

alyzing their sizes. The size of a set A ∈ R
d is measured by its diameter, which is

defined as:

diam(A) = sup {‖p− s‖ | p, s ∈ A} . (3.1.11)

For each accepted candidate marker set M̂k, we require that:

δm − ǫℓ ≤ diam(M̂k) ≤ δm + ǫu, (3.1.12)

where δm is the marker size, and ǫℓ and ǫu are the lower and upper margins on the

marker set size. The margins are necessary as diam(M̂k) cannot be expected to be

equal to δm due to errors introduced during image acquisition, reconstruction, and

quantization (discreteness). In addition, the diameters of the candidate marker sets

may typically be larger than δm due to the inclusion of more high-intensity voxels by

setting the flexibility parameter κ > 0 as explained in Section 3.1.1.

Objects with high atomic number, such as gold fiducial markers, strongly atten-

uate x-rays, and doing so often induces weak signals in their shadows. This problem

is typical of all slice based CT systems, including CBCT. As a result, the recon-

structed images demonstrate loss of soft-tissue visibility and streak artifacts , a false

high-intensity signal in the reconstructed image in a form of bright streaks originat-

ing from the high-intensity measurement, e.g., see Figures 3.3 and 3.4. Due to the

reduction in image quality, which, in particular, can lead to the decrease of the target

localization accuracy, this problem is extensively addressed in medical physics and

radiation oncology literature. A number of approaches are proposed that mainly rely

on some kind of modification of projections by filtering and/or replacing missing infor-

mation with the modelled or interpolated data that is followed by the reconstruction
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Figure 3.3: A transverse CBCT slice (XZ plane) of the RSVP with 0.5 mm voxels and
short reconstruction data type (top left), its zoom-in (bottom left), and its intensity
profiles along the horizontal (top right) and diagonal (bottom right) lines overimposed
as the (dashed lines) on the (top left) image. In addition to the marker in the centre,
the image shows severe streak artifacts and the presence of very low-intensity points
within high-intensity marker measurement.
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Figure 3.4: A CBCT slice of the prostate patient with streak artifacts around the
marker.

of the 3D image with the reduced artifacts, e.g., [151, 18, 245, 137]. As such, these

approaches require CT/CBCT projections to perform corrections, and can only be

utilized if incorporated into the clinical reconstruction software, as in clinical practice

it is not uncommon to delete projections following 3D image reconstruction in order

to save space. Therefore, we do not rely on artifact reduction methods.

The XVI software, used clinically for the CBCT reconstruction, allows to choose

a number of settings, among which are voxel size and data type, such as short and

float. The data type can influence the quality of the output image significantly in

the presence of the fiducial markers. Figures 3.3 and 3.4 show transverse slices of the

RSVP CBCT with 0.5 mm voxels and prostate patient with 1 mm voxels reconstructed

with short data type, respectively. While streak artifacts were a comparable or

smaller issue for images with the float reconstruction data type, we have not observed

low-intensity points inside the high-intensity markers, such as shown in Figure 3.3.

We suspect that one of the possible causes for these false low-intensity points may be

numerical overflow when using short data type. Nevertheless, the images with the

short data type are included in the further analysis as they are often used clinically.

The severity of the artifacts, and the presence of the low-intensity points inside

the markers cause more artifact points to be selected as they can possess intensities

similar to the markers and higher than those low-intensity points inside the markers.
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0.5 mm voxels and short data type. In
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Figure 3.6: Candidate marker sets seg-
mented in the RSVP CBCT image with
0.5 mm voxels and float data type bet-
ter correspond to the shapes of the fiducial
markers than those in Figure 3.5.

This is demonstrated in Figures 3.5 and 3.6, where the candidate marker sets are

segmented in two RSVP CBCT images with 0.5 mm voxels, reconstructed with short

and float data types, respectively. In comparison to Figure 3.6, the sets in Figure 3.5

acquire a lot of points from the streak artifacts, while some points corresponding to

the inner part of the markers are missing, which results in enlarged irregularly shaped

sets. This leads us to understanding that the lower and upper marker set size margins,

ǫℓ and ǫu, should be selected based on information about the overall quality of the

CBCT images, including the level of noise and severity of the streak artifacts.

N ǫℓ, ǫu, Marker set size margins

The values of ǫℓ = 0.5 mm and ǫu = 11 mm were selected based on the statistics on

the marker set diameters in the phantom and patient data sets. This experiment is

described in detail in Section 7.1.3.

Note that the size margins can be even larger than the distance between the

markers, which is the case for all our phantom data sets, where the distance between

the neighbouring marker centres was 10 mm. It still comprises a reliable segmentation

scheme, as the points are assigned to one cluster based on another parameter, η,

defined in Section 3.1.2. Also, we believe that it is better to have ǫℓ and ǫu as loose as

the data dictates, even if some non-marker features are included into the candidate
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marker sets that can later be removed at the correction step 〈〈 S4 〉〉, than to have tighter

margins and miss out on the true marker sets.

Appendix D.1 provides implementation details for steps 〈〈 S1 〉〉 – 〈〈 S3 〉〉 of the

proposed segmentation procedure, and summarizes them in Algorithm D.1.

3.2 3D Localization of the Fiducial Markers

Marker localization in 3D space refers to the process of finding the geometric location

corresponding to the fiducial marker centre in the XYZ coordinate system. In the

following, by referring to a position of a marker in the CBCT image, or an estimation

of the fiducial marker position in the 3D space, we will mean the centre point ck3D of

a candidate marker set M̂k. In line with accepted practice, we compute this point

as the geometric or intensity-weighted centre. In discrete images, where the centres

of the segmented voxels (the grid points) are denoted by p̌i ∈ M̂k, i = 1, . . . , mk,

the intensity-weighted centroid of all voxels belonging to one marker is computed

as [57, 228]:

ck3D = mean(M̂k, w) =

∑mk

i=1wi p̌
i

∑mk

i=1wi
, p̌i ∈ M̂k, (3.2.13)

where w = (w1, . . . , wmk
)T are the weights computed as wi = V[p̌i] − w0, V[p̌

i] is an

intensity of the voxel i with the centre in point p̌i, and w0 is the intensity of an empty

voxel (air). For the geometric centroid [228], all weights are considered to be equal,

i.e., w1 = . . . = wmk
.

The references in [228] suggest that the use of the intensity-weighted centroid

provides better marker localization accuracy. The reason behind may be the follow-

ing: Localization of measurements in a discrete image is characterized with inherent

geometric uncertainty [57]. If a voxel contains partial marker measurement, i.e., it in-

cludes both a part of a marker and a background, the true position of a high-intensity

material within the voxel is not known. However, according to our discrete image

model, it is assumed to be concentrated in the geometric centre of a voxel, a grid

point p̌i. Therefore, using weights based on the voxel intensities helps to reduce the

influence of the voxels with the partial marker measurements in the estimation of the

marker position.

In the proposed marker localization method, we also compute the centre point

ck3D as the intensity-weighted centroid defined in Equation (3.2.13) but modify the

computation of the weights due to a reason explained below. In our data sets, most of

the values Vi of the marker voxels can be very close in magnitude, i.e., w1 ≈ . . . ≈ wmk
,

which means the application of Equation (3.2.13) will produce a point very close to

the geometric centroid. Therefore, to have an influence, the intensities Vi have to
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be modified. We rescale them so that the values Vi of the points belonging to one

candidate marker set take the range [0.1, 1]. The lower bound is selected to be 0.1,

and not 0, to give some small weight to the minimal intensity point in a candidate

marker set as well.

In some cases, the use of the geometric centroid may be preferable. For exam-

ple, in the experiment with the spherical markers of 7.83 and 12.65 mm in diameter

(not documented in this thesis), we used the geometric centroid to estimate the marker

positions. Firstly, the spheres are large in relation to the voxel size. Secondly, the

material of some of the spheres was inhomogeneous, and therefore, a simple geometric

centroid provided a better localization accuracy.

3.3 Correction for the Marker Set Selection

After the removal of the clusters that fall outside of the accepted size range at step

〈〈 S3 〉〉 , the candidate marker sets M̂1, . . . , M̂n̂ are selected. If the number of the sets,

n̂, is different from the known number of the fiducial markers, n, a correction for the

marker set selection is required. This step of the segmentation procedure is referred

to as 〈〈 S4 〉〉 .
If n̂ > n, some of the sets correspond to non-marker measurements, and have

to be removed. Before deciding on the procedure, let us look at several examples from

our phantom and patient data sets:

1. In addition to the marker measurements, ΩVOI included a partial measurement

of the RSVP insert holder that contained some high-intensity points as demon-

strated in Figure 3.7. The measurement was similar in size to the markers.

2. The RSVP had three slightly smaller fiducial markers on the surface in addi-

tion to the seven internal fiducial markers as shown in Figure 3.8. If ΩVOI is

large enough to include those, the smaller markers will also be accepted as the

candidate marker sets.

3. Depending on the choice of ΩVOI in the patient images, the candidate marker

sets can include high-intensity non-marker measurements, such as those of the

bones, as demonstrated in Figure 3.9.

What we observe from these examples, is that the non-marker sets of high-

intensity points are often located further away from the target denoted by the fidu-

cial markers. Hence, it can be argued that all situations described above could be

eliminated with a tighter choice of ΩVOI. However, we believe that a method of auto-

matic processing should not rely on a perfect choice of a parameter. An attempt to

55



Ph.D.Thesis – O.Peshko McMaster – Computational Sci.&Eng.

8 1012
−20

−10

0

10

20

30

40

50

5

10

x, mm

y, mm

z
, 
m

m

Figure 3.7: In the RSVP image, ΩVOI in-
cluded a part of an insert holder measure-
ment (arrow), that was similar in size to
the markers and contained high-intensity
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Figure 3.8: In addition to seven inter-
nal fiducial markers, the RSVP had three
slightly smaller markers on its surface (ar-
rows).

tighten the VOI, or a requirement to provide a VOI that does not include any other

high-intensity measurements except for those of the fiducial markers, will reduce the

generality of the method and may require an additional user interference with the

possible alteration in ΩVOI for each and every image, which defeats the purpose of au-

tomation. In all of our data sets, which include CBCT images of the prostate cancer

patients, and the RSVP and Quasar phantoms, the target, and hence the markers,

are located in close proximity to the LINAC’s isocentre, the point pprox = (0, 0, 0)T .

Therefore, if n̂ > n, we remove the candidate marker sets that are furthest away from

pprox. We believe this is a reasonable strategy for many scenarios, as the positioning

of the target close to the isocentre is a typical geometrical setup for treatment. The

implementation details for this correction procedure are provided in Algorithm D.2.

In cases in which the point pprox is not available, we suggest that one may seek the

sets that are positioned in a certain geometrical relationship known from the clinical

setup.

If n̂ < n, we assume that all found candidates represent true markers, and

accept them as the final marker sets M1, . . . ,Mn̂. One of the possible reasons that

not all markers have been identified may be the low value of ǫu, the upper marker

set size margin (Section 3.1.3). If streak artifacts are large enough to violate this

size requirement, the sets are removed. Another possible reason is that the voxels

belonging to the measurements of the two neighbouring markers were located next to

each other, and hence the points of the two measurements were combined into one

cluster, and discarded later due to a large size. This can be observed in the RSVP
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Figure 3.9: As shown in the XY view (top) and two coronal CBCT slices of a prostate
patient (XY plane, middle), that were selected at Z = −6 mm and Z = 15 mm as
schematically shown at the bottom, the part of the segmentation procedure described
in steps 〈〈 S1 〉〉 – 〈〈 S3 〉〉 selected three sets corresponding to the true markers (arrows)
and two sets that were parts of the bone measurements (ellipses).
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images with 4 mm voxels.

The following situations have never happened with our testing data sets, how-

ever, it is important to include their description for the generality of the methods. If

n̂ becomes smaller than n after step 〈〈 S3 〉〉 , the discarded sets should be analyzed. If

the number of the points in any particular one is several times larger than what is

expected for a marker (as defined in Equation (3.1.6)), it is possible that although

the markers possess reasonable intensity and could successfully be detected, ΩVOI

also contained a large higher-intensity measurement that took the point quota away

from the markers. An example may be a metallic implant in the patient’s body. In

this case, the large measurement should be digitally removed, and the whole marker

segmentation procedure must be repeated. We do not recommend digital removal of

the smaller measurements as those, in fact, may be partially recovered markers. In

a case of a very noisy image, where there are many isolated high-intensity points,

preliminary spatial smoothing of the image may be helpful.

As presented in Section 7.1.4, the application of the steps 〈〈 S1 〉〉 – 〈〈 S4 〉〉 to

phantom and patient testing data sets resulted in 100% of true positives and 0% of

false positives, except for the RSVP images with 4 mm voxels, where the numbers were

83% and 2%, respectively. The numerical results in Section 7.1.4 also demonstrate

that it is important to have both 〈〈 S3 〉〉 and 〈〈 S4 〉〉 steps in the segmentation procedure

as they both take part in successful removal of the non-marker sets.

3.4 Marker Models

Markers in the CBCT images, as judged by human observers and resulting from inten-

sity thresholding or edge detection methods, tend to be of a larger size in comparison

to the fiducial markers themselves and their measurements in the 2D fluoroscopic

images. Typically, this is due to reconstruction artifacts. Another factor is the dis-

creteness of the images, and the fact that the CBCT voxels are often larger in size than

the pixels in the fluoroscopic images.10 This may later cause positioning uncertainty

in the process of 2D-3D image registration. One example of a method to overcome

this problem is that of Adamson and Wu [7], who proposed to postprocess the mea-

surements of long coil markers obtained by thresholding the CBCTs in the following

way: In order to reduce their diameter, the measurements are analyzed slice by slice

(perpendicular to the marker’s lengthwise direction that is known from the setup) so

as to select only a central point in each slice and discard all other points. Naturally,

this technique can not be applied to our case, as the markers are significantly shorter

10For example, while the CBCT images with 0.5 or 1 mm voxels are often used clinically, the pixel
size in our fluoroscopic images measured at the isocentric plane is 0.2604 mm.
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Figure 3.10: Diagrams of the cylindrical (left) and spherical (right) marker models.

(3 × 0.8 mm as compared to coils of size 3 − 4 cm × 0.35 mm). Furthermore, the

markers in our application can have different orientations relative to the CBCT slices.

In this section, we propose a novel technique, that can be used to improve the

outcome of 2D-3D image registration. It is referred to as step 〈〈 S5 〉〉 in Flowchart 3.1.

We propose to utilize marker models instead of the marker sets in the process of

registration. The marker models are mathematical representations of the markers,

such as a continuous cylindrical or spherical model of the known dimensions. If the

orientations of the cylindrical fiducial markers can be estimated from the correspond-

ing marker sets with reasonable accuracy, the models can be used instead of the

marker sets in the process of 2D-3D image registration between the CBCT and the

fluoroscopic images.

To the best of our knowledge, no methods of marker model estimation based

on the segmented CT/CBCT voxels have been reported. Several studies use the ge-

ometry of the system to estimate the marker positions in 3D from their 2D positions

in fluoroscopic or CBCT projection images [7, 170, 141]. An interesting approach

was proposed by Fledelius et al. [59] for marker segmentation in the CBCT projec-

tions: The candidate measurements of the cylindrical markers were segmented in all

projections by a blob detection routine, and the traces of the blobs in 2D were recov-

ered. Then, the traces that could not reasonably correspond to an object in 3D were

rejected. From the remaining, a 3D constellation model was constructed consisting

of the size, position and orientation of the markers. Finally, the model was pro-

jected onto the CBCT projection images to serve as a template to yield final reliable

segmentation results. Poulsen et al. [178] proposed a semi-automated method for con-

structing a 3D marker model of an arbitrarily shaped marker from its 2D projections.

The markers were segmented by intensity thresholding in several CBCT projections

with large angular separation, good marker contrast and uniform background. Then,

the 3D marker model was constructed by finding the intersection of all the candidate

voxels that were computed from each of the segmentations by raytracing with parallel

rays. The CBCT voxels and CBCT projection pixels were of equal size.
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Figure 3.11: Marker sets segmented in a CBCT image of the RSVP with 0.5 mm
voxels (left) and their corresponding marker models (right).

The remainder of this section discusses the proposed method for defining the

3D marker models from the marker sets. As shown in Figure 3.10 (left), a cylindrical

marker is described by a cylindrical solid of a known radius r enclosed between two

planes perpendicular to the cylinder’s axis, at distance h (cylinder’s height) from

each other. Point c3D is a centre of the model and is located on the cylinder’s axis

equidistantly from the planes. To reveal cylinder orientations from the segmented

marker sets, we apply weighted principal component analysis (PCA) to the points

of each set. In brief, the PCA computes the directions t1⊥ . . .⊥td of the maximal

variance in the data. For the markers whose length is several times larger than their

diameter, it is expected that the first principal direction t1 would provide estimation

of the marker orientation for each marker set, i.e., the orientation of t1 is used to

compute the orientation of the line between the endpoints of the cylindrical model

e1 and e2 (see Figure 3.10, left). The use of the weights in the PCA is motivated

by the ideas explained in Section 3.2: The assumption is that the brighter the voxel,

the larger is the fraction of the marker measurement that is contained in its volume.

Hence, the weights wi for the voxels should be proportional to their intensities Vi, and

are computed as explained in Section 3.2 by rescaling Vi to the range [0.1, 1] for each

marker set. Algorithm D.3 provides implementation details for the computation of the

marker model orientations. An example of the marker sets and their corresponding

cylindrical marker models is demonstrated in Figure 3.11.

A spherical marker can be modelled by a sphere of a known radius r centered

at point c3D (see Figure 3.10, right). The detailed formulations and derivations of the

cylindrical and spherical marker models are provided in Appendix C.3.
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3.5 Discussion

In this chapter, we discussed novel and adapted techniques that constitute the pro-

posed marker segmentation and modelling procedure used for marker localization in

3D space. First, to overcome the challenges of selecting an appropriate global intensity

threshold for a CBCT image to segment the marker points, discussed in the introduc-

tion to this chapter, a novel model-based threshold was proposed (Section 3.1.1). To

increase the probability of selecting only the marker points rather than non-marker

high-intensity features, and to group the points into features corresponding to the

markers, the thresholding was followed by clustering (Section 3.1.2), marker set se-

lection (Section 3.1.3), and correction procedures (Section 3.3), all of which exploited

knowledge of marker size and number, and marker geometry in the 3D space. As a

result, we obtained the 3D marker sets, which consisted of voxels. To overcome the

discrete nature of the 3D marker sets, the use of the 3D marker models was proposed

(Section 3.4). The models are continuous mathematical entities describing cylinders

or spheres of sizes that correspond to the real fiducial markers. They can be used in

place of the segmented marker sets to improve the appearance of the markers in the

2D template image that is formed in the process of 2D-3D image registration between

the CBCT and the fluoroscopic image. The computation of the marker models reveals

the marker orientation in 3D, which can potentially be used in other applications, such

as marker-based 3D-3D image registration or an assessment of the organ deformation

over time.

The validation experiments on phantom images, described in Sections 7.1.6 and

7.1.7, suggest that the proposed procedure for marker segmentation and modelling

offers sufficient marker localization and orientation accuracy to be used in clinical

application. The magnitudes of the marker positioning errors for the CBCT images

with 0.25, 0.5, 1, 2, and 4 mm voxels are mostly well below 1 mm, with the exception

of the 4 mm voxels data set, where the maximal error was around 2 mm, and the

0.5 mm data set with the short data type, which has large streak artifacts, where the

maximal error slightly surpassed 1 mm. For most data sets, the positioning accuracy

depends almost linearly on the voxel size. For a detailed analysis, see Section 7.1.6.

From the results presented in Section 7.1.7, it follows that the marker models

can be successfully computed for the CBCT images with 0.25 and 0.5 mm voxels,

with the exception of the images reconstructed with the short data type. With

some caution, they can also be recovered from most images with 1 mm voxels. If the

voxels are larger than 1 mm, or large reconstruction artifacts are present, the marker

models should not be used, and the marker localization procedure should proceed by

only using the marker sets segmented from the CBCT images. We have seen some

correlation between the accuracy of the found marker position and orientation and
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the marker orientation in the 3D space. For detailed analysis, see Section 7.1.7.

Some comments on implementation are given in Appendix D.1. The methods

described in this chapter are summarized in Algorithms D.1 –D.3.
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Chapter 4

Design and Adaptation of Filters
for 2D Images

This chapter describes the filtering procedures performed on the 2D fluoroscopic im-

ages. Denoted as block 〈〈 F 〉〉 in Flowchart 2.1, it is called from both the marker

localization block 〈〈 L 〉〉 and the tracking block 〈〈T 〉〉 . Therefore, we have decided to

discuss it before the respective descriptions of the blocks 〈〈 L 〉〉 and 〈〈T 〉〉 provided in

Chapters 5 and 6. As shown in Flowchart 4.1, block 〈〈 F 〉〉 consists of three subblocks,

temporal filtering , that operates on fluoroscopic images, Si1 , . . . ,Si2, application of

the regions of interest (ROIs), ΩROI, computed in 〈〈 L 〉〉 and 〈〈T 〉〉 , and a novel marker

enhancement filter (MEF). These actions produce an image R that is ready for im-

age registration in either block 〈〈 L 〉〉 or block 〈〈T 〉〉 . The temporal filtering reduces

the noise, while the MEF amplifies the markers, suppresses non-marker features, and

flattens the background. The application of the MEF to ΩROI, rather than the whole

image, helps to reduce the computational burden and increase the reliability of the

filtering procedures.

The goal of the temporal filtering, referred to as step 〈〈 F1 〉〉 in Flowchart 4.1,

is to reduce the impact of noise. In order to select a filter and its parameters, sev-

eral commonly used digital filters are reviewed in Section 4.1.1, and the results of

their application to image sequences are analyzed in Section 4.1.3 with respect to

image quality, measured by a contrast-to-noise ratio (CNR). The CNR, defined in

Section 4.1.2, is sensitive to both changes in noise levels and blurring due to the

degradation of the temporal resolution. As the filtering procedure is a preprocessing

step for the application of the MEF, we aim to achieve a better CNR in the filtered

images compared to the original data by using a simple and computationally efficient

method.

The application of the ROI, denoted as step 〈〈 F2 〉〉 in Flowchart 4.1, is a straight-

forward procedure, and as such, does not require much discussion. This step can be
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Flowchart 4.1: Block 〈〈 F 〉〉 : Temporal and marker enhancement filtering of 2D fluoro-
scopic images.
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performed either before or after the temporal filtering 〈〈 F1 〉〉 . In our implementation

in Gryphon software, the same image opening procedure is used for multiple tasks,

such as image registration and image preview. To allow the preview of the temporally

filtered images, for example, in order to visually assess the improvement in quality,

temporal filtering is built into the image opening procedure, and is applied to the

whole image. Therefore, we reduce the image to the ROI after temporal filtering, and

before the application of the MEF. Since the ROIs in both 〈〈 L 〉〉 and 〈〈T 〉〉 blocks are
determined before the calls to the filtering block 〈〈 F 〉〉 , and are computed in a similar

fashion, we describe the principles of ROI computation in Section 4.3, rather than in

Chapters 5 and 6.

Next, the design of a novel filter, the MEF, is presented. It is schematically

shown as block 〈〈 F3 〉〉 in Flowchart 4.1. In brief, it enhances the markers by conducting

local intensity analysis at a particular scale, i.e., it seeks to enhance features of a cer-

tain size. The MEF is developed within the scale-space framework [127], described in

Section 4.2.2, which found its application in design of descriptors for scene matching

in computer vision (blob detection), e.g., [126, 96, 134, 148, 215], and feature enhance-

ment in medical images, mostly line-like vessels, e.g., [132, 189, 121, 63]. We analyze

the advantages and shortcomings of existing methods in Section 4.2 in application to

our images, and then present the proposed filter in Section 4.4. To the best of our

knowledge, there is no other marker-specific filter in the literature. In addition, our

filter is fortified with a novel contrast enhancement function that becomes especially

important when the contrast of images is low. The principles of the proposed MEF

are not specific to our localization and tracking method, and can be utilized in other

marker detection or tracking applications.

4.1 Noise Reduction with Temporal Filtering

All radiographic image guidance techniques, including fluoroscopy, can give a signifi-

cant imaging dose to a patient [158, 89]. Although it is possible to obtain fluoroscopic

images with higher contrast by adjusting the hardware settings of image acquisition,

this results in an undesirable increase in x-ray exposure. In the view of the current

philosophy for dose management adopted by the diagnostic imaging community, which

can be summarized by “as low as reasonably achievable” [158], another option to im-

prove the quality of the images, and make them suitable for automatic processing, is

digital image enhancement.

A common approach to noise suppression in the preprocessing of medical images

involves the use of simple spatial filtering, such as mean, median, or different types

of linear low-pass filters [168]. Although spatial filtering can provide a substantial
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Figure 4.1: The results of the application of the spatial mean filter to a marker
extracted from a fluoroscopic image of a prostate patient: the original image (left
image), after mean filtering with 3× 3 pixels kernel (central image) and 5× 5 pixels
kernel (right image). The graph at the far right shows the intensity profile of the row
at the 464 pixels level that contains the highest intensity pixel. The solid line denotes
the original measurement, dashed line the measurement filtered by the 3 × 3 filter
and dotted line by the 5 × 5 filter. Contrast in the filtered images, measured as the
absolute difference between the brightest and the darkest intensity values, amounts
to ∼ 50% and ∼ 40% of the original contrast for the images processed by the 3 × 3
and 5× 5 filters, respectively.

reduction in the high (spatial) frequency noise, these filters tend to smooth edges

of the features present in the image and this causes details smaller than the size of

the filter kernel to be suppressed. The size of the fiducial markers that are used for

all phantoms and patients in our data sets is 3 × 0.8 mm, which results in 12 × 3

pixel features with our current geometric setup, where the size of a pixel side at the

isocentric plane (UV coordinate system) is 0.2604 mm. Since effective spatial filters

have kernels that are at least on the order of the marker width, spatial filtering often

degrades the quality of an image from registration perspective by blurring the markers,

as can be seen from examples provided in Figure 4.1. On the other hand, the use of

smaller kernels does not provide sufficient noise reduction.

Instead of spatial filtering, we will use temporal filtering to improve the contrast

of the markers and to decrease the high (temporal) frequency noise. Combining

information from multiple frames inevitably raises a question of whether the ultimate

goal of tracking the markers to quantify the motion of the target is jeopardized by

motion blurring and the reduction in temporal resolution. In Section 4.1.3, we present

the results of the application of several filters to a fluoroscopic image sequence with

moving markers, and demonstrate how to select a filter that reduces noise but does

not introduce excessive blurring. Concerning the loss in temporal resolution, the

main goal of intra-fraction motion tracking is the detection of long term drifts that

are more important for margin design than fast incidental moves of the target. In
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other words, if the filter improves the quality of the fluoroscopic images enough to

sufficiently increase reliability of the marker localization and tracking procedures, but

substitutes the initial markers by the “moving average markers”,1 we consider it a

worthwhile tradeoff.

We start by reviewing existing temporal filters for fluoroscopy in Section 4.1.1,

then proceed with the definition of the contrast-to-noise ratio as a measure of image

quality in Section 4.1.2. Finally, we apply the filters to a fluoroscopic sequence showing

Quasar phantom with moving markers, compare the results, and select the temporal

filter in Section 4.1.3.

4.1.1 Temporal Filters for Fluoroscopy

In this section, we summarize several approaches reported in the literature that apply

temporal filtering to fluoroscopic images and discuss their suitability to our marker

localization and tracking application. Let us denote the fluoroscopic image sequence as

S0, . . . ,Sm−1, where all images of the sequence are defined on the same ROI. One of the

earliest techniques proposed in the literature is a simple form of recursive filtering [17,

192]. The output of the filter is the weighted average of a current unfiltered image Si
and a preceding filtered image S̄i−1:

S̄i = (1− λ) S̄i−1 + λSi, (4.1.1)

where S̄0 = S0, and 0 < λ ≤ 1 is a weighting factor for a current frame (the value

λ = 1 corresponds to no filtering). The choice of λ depends on the assumptions

about the motion observed in the image sequence, where higher λ should correspond

to higher speed of motion.

Another approach is the use of non-recursive filters, also known as finite impulse

response filters (FIR) [80, 32]. In this case, we compute the filtered image as:

S̄i =
ℓ−1∑

n=0

wn Si+n, 0 ≤ i ≤ m− ℓ, (4.1.2)

where ℓ is a filter kernel size and w is a vector of filter coefficients.2 All FIR filters

considered in this section have symmetric impulse response, i.e., wn = wℓ−1−n, and

the coefficients are scaled so that
∑ℓ−1

n=0wn = 1. One of the simplest filters, the mean

1The moving average term here is used in a broad sense and refers to the fact that the consecutive
filtered images are produced from the intersecting sets of unfiltered frames. For example, if the filtered
image k is computed from the frames i1, . . . , im, then the next image k + 1 can be produced from
the frames i2, . . . , im+1.

2The indices in S̄i and Si+n refer to the sequential numbers of the images in the corresponding
sequences rather than time instances, i.e., the filter is defined in a causal manner.
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filter (frame averaging, rectangle filter), corresponding to wn = 1/ℓ, was reported to

be used in fluoroscopic sequences by Adamson and Wu [7]. The mean filter, however,

introduces significant blurring when motion is present, which will become obvious later

in this chapter, hence we will investigate a number of other FIR filters in Section 4.1.3.

Another method that was used for fluoroscopic images is a filter based on

the Karhunen-Loève transform (KLT) [51, 227]. The KLT operates by exploiting

the second and higher order correlations between neighbouring frames. As noted by

Ding et al. [51], who used it for cardiac MRI, the KLT may be especially suited

for pseudo-periodic signals, such as heart beat or respiration. Although in many

cases the motion of the prostate is irregular, small pseudo-periodic motion caused

by respiration can sometimes be observed. Therefore, we decided to evaluate this

method as well, and compare it to the recursive and FIR filters in Section 4.1.3. The

detailed description of the KLT-based filter can be found in [51], but we summarize

it in Appendix C.1 for the convenience of the reader.

Finally, a method that results in the “motion-enhanced” image was also re-

ported in the literature [24, 50]. The filtered image is created as a difference between

an average image (computed as a mean of all frames in the sequence) and the current

frame. This filter was used to enhance moving structures in markerless respiratory

tracking. As such, it is inapplicable to prostate motion tracking as the prostate may

often remain stationary, in which case the filtered image will only contain fluctua-

tions of noise while the markers can be completely removed. Section 4.1.3 presents

the results of application of the recursive, FIR, and KLT methods to a testing data

set, and quality comparison of the filtered images is performed in terms of the CNR,

formulated in the next section, and visual examination.

4.1.2 Image Quality Assessment with Contrast-to-Noise
Ratio

A contrast-to-noise ratio (CNR) is a measure of contrast between two signals in pres-

ence of noise. In our case, the CNR characterizes the visibility of a marker on its

local background. Let us denote the mean intensity of the points belonging to the

marker by µM, mean intensity of the background points by µB, and the standard devi-

ation of the intensities of the background by σB. Following Siewerdsen et al. [202], we

will define the CNR to be the signal-on-background contrast divided by a standard

deviation of the background as a measure of noise [202]:

CNR =
|µM − µB|

σB

. (4.1.3)
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Note that σB is positive by its very nature, as it is not possible to achieve an ideally

flat background with the current imaging equipment.

Other definitions of the CNR are also used in the literature. For example, the

denominator of the ratio can be a standard deviation of the intensity of the signal

points σM [207, 227]3 or
√

σ2
M + σ2

B [112]. The general idea is to measure a pixel

or voxel noise level, which in most cases should be similar for the signal and the

background [202]. However, the estimate of this noise is more realistic if it is obtained

from regions in the image, in which the intensity is homogeneous. This helps to ensure

that the standard deviation is not artificially increased by the intensity variations

attributed to the signal rather than noise. Given the relatively small marker size in

our application, we conclude that the most accurate estimation of the noise in our

case is σB obtained from the background points in close proximity to the marker.

The computation of the CNR demands a definition of the points that belong

to the marker and to the background, and their intensities. While it is generally

easy to select the background points, the determination of the marker points can be

more involved. Ideally, the marker is a set of points in the 2D image that includes4

intensity measurements of the fiducial markers. Precise automatic localization of

these points is only possible under idealized conditions: knowledge about the exact

fiducial marker location and orientation in the 3D space, ideal system calibration and

an accurate model of image formation. It is very unlikely to satisfy these requirements

in practice. Even more so, the 2D projection image is discrete, and some of the pixels

contain only partial marker measurements, combined with the background. Hence,

we define the points of the marker in a discrete image as a set of the brightest grid

points in some ROI ΦM ⊂ Γ2, that is expected to contain all points of one marker and

possibly its immediate background. The choice of ΦM for our testing data set will be

explained in Sections 4.1.3.

The principle of automatic selection of the brightest points in ΦM is similar

to the model-based threshold method described in Section 3.1.1 modified for the 2D.

Let nM be a number of points that can constitute one marker. It is estimated in

the following way: Let r denote the radius of the cylindrical fiducial marker, h its

height, and δpx the pixel size of the fluoroscopic image. When the fiducial markers

are inserted into the patient’s prostate, every effort is made to place them so that

they can be imaged in the same sagittal slice of the daily CBCT (parallel to the YZ

plane). This also means that in the lateral fluoroscopic images all markers should

appear full-length, or almost full-length. Hence, an area occupied by the marker can

3In [227], it is called a signal-to-noise ratio (SNR).
4In the projection images, the measurements of all objects that x-rays encounter on their path from

the source to the detector, are superimposed. Hence, each point in the image contains measurements
of multiple objects.
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be approximated by 2rh, and the number of pixels is then computed as:

nM =

⌈
κ
2rh

δ2px

⌉
, (4.1.4)

where ⌈ · ⌉ is rounding towards +∞. Based on the same considerations, the number

of pixels for a spherical marker of radius r can be estimated as nM =
⌈
κ πr2

δ2px

⌉
. The

scalar κ is used to exclude the marker borderline points that only contain partial

marker measurements. These points can be close in intensity to the background

points, and using κ = 1 often results in selection of some background points in lieu of

marker points. Our experiments with the phantom and prostate patient fluoroscopic

sequences indicated that κ = 0.7 is a reasonable choice.

After nM is estimated, the mean and standard deviation values of the marker

and background intensities can be computed. The values S[p̌i], where p̌i ∈ ΦM, are

sorted in a descending order to obtain a sequence s1 ≥ s2 ≥ . . .. Then, the mean

intensity of the marker points, mean(·), is computed as:

µM = mean{s1, . . . , snM
}. (4.1.5)

Finally, the mean and standard deviation values, std(·), of the background points are

computed over the intensities of points ∀p̌j ∈ ΦB ⊂ Γ2 as:

µB = mean{S[p̌j ]}, σB = std{S[p̌j]}. (4.1.6)

We select ΦM and ΦB as non-intersecting regions in the image. Further details about

the choice of ΦM and ΦB are discussed in Section 4.1.3.

4.1.3 Choice of Temporal Filter

In general, it is expected that the CNR of the stationary components in the filtered

images improves with the increase in the number of unfiltered frames that were used

to create the filtered image. However, the use of the temporal filtering can, in fact,

blur the markers when motion is present, thus degrading the temporal resolution of

the filtered image sequence. Also, blurred markers are prone to loosing contrast on

their local background, which makes successful image registration more challenging.

Consequently, we aim to compare the ability of the filters to enhance image quality

when the marker motion is expected. This section presents the results of application

of the temporal filters listed in Section 4.1.1 to fluoroscopic sequences of the Quasar

phantom with linearly moving fiducial markers.
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Figure 4.2: The choice of ΦM (solid line rectangle) and ΦB (dashed line rectangle) for
the middle marker depicted over the first frame of the sequence. The white arrow
shows the direction of the marker motion.

Moving markers data set, and the choice of ΦM and ΦB

The Quasar phantom was described in Section 2.3.2, and its insert in Section 7.1.5.

To determine the most appropriate temporal filter, we used a fluoroscopic sequence

with the markers moving linearly along the direction of the insert’s axis (the V axis

in the UV coordinate system), as shown in Figure 4.2.

Each marker ROI, ΦM, was selected as a rectangle that includes one marker, lo-

cated at its bottom in the first frame of a sequence, given that the motion is performed

upwards, and stretches up to the next marker, not including it (see Figure 4.2). The

marker points used in CNR computation are selected as nM brightest points in ΦM

(see Section 4.1.2). The filtered image is created from the frames S0, . . . ,Sℓ−1, and

ΦM is the same for all frames. Such an ROI selection in this fluoroscopic sequence,

combined with the knowledge of the marker speed,5 allows us to analyze CNR of the

filtered images created from up to 17 unfiltered frames.

The initial fluoroscopic sequence contained 40 frames, from which 23 sequences

of 17 frames each were generated, i.e., the first generated sequence includes the frames

S0, . . . ,S16, the second S1, . . . ,S17, and so forth. In the following, we will refer to

this “moving markers” data set as “MM 23”. The marker and background ROIs,

ΦM and ΦB, were selected manually in the first generated sequence based on visual

examination, and were computed for the following generated sequences based on the

marker speed. Both ΦM and ΦB are the rectangles 15×36 pixels in size placed 4 pixels

apart.

5The velocity of the markers is about 2.3 mm/sec, and with the image acquisition rate of 5.5
frames per second, the markers travel the inter-marker distance of 10 mm in about 24 frames. A
shorter sequence of 17 frames has to be used to exclude the neighbouring markers from ΦM.
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Figure 4.3: CNR in images processed by the temporal recursive filter with λ = 0.1,
0.3, 0.5, 0.7 and 0.9 (numbers on the right). The “no filter” line shows the CNR
values of the frames before filtering.

Although the phantom contains seven markers, this section reports the CNR

results on five: The top and bottom markers had to be removed due to the inclusion

of high-contrast features belonging to the phantom insert into ΦM and ΦB in some of

the frames, that caused unreasonable values of the CNR.

Recursive filter

Figure 4.3 presents the CNR results after the application of the recursive filter defined

in Equation (4.1.1) to the images of the “MM 23” data set. The reported CNRs are

the least values among the markers for each of the filtered images, and median values

among all sequences. The medians of the CNRs of the unfiltered original frames across

all sequences are shown by a “no filter” line. For most values of the current frame

weight, λ, the recursive filter offers a rapid improvement in the CNR, which saturates

after the third frame. For this data set, the CNR was higher for smaller values of λ

(numbers to the right in Figure 4.3), except for small values of λ < 0.3.

In addition to the CNR analysis, we also conduct a visual examination of the

filtered frames. Figure 4.4 (a) shows a first unfiltered frame of one of the fluoroscopic

sequences. Figures (b) and (c) show the 3rd filtered frame with λ = 0.5 and 13th

filtered frame with λ = 0.3, respectively, both of which correspond to the peak CNR

values in that sequence. Visual analysis is important as the CNR itself only shows

72



Ph.D.Thesis – O.Peshko McMaster – Computational Sci. &Eng.

u, mm

v
, 

m
m

−20 0 20 40

−30

−20

−10

0

10

20

30

40

u, mm

v
, 

m
m

−20 0 20 40

−30

−20

−10

0

10

20

30

40

u, mm

v
, 

m
m

−20 0 20 40

−30

−20

−10

0

10

20

30

40

u, mm

v
, 

m
m

−20 0 20 40

−30

−20

−10

0

10

20

30

40

u, mm

v
, 

m
m

−20 0 20 40

−30

−20

−10

0

10

20

30

40

u, mm

v
, 

m
m

−20 0 20 40

−30

−20

−10

0

10

20

30

40

(a) (d)

(b) (e)

(c) (f)

Figure 4.4: The first unfiltered frame of a sample fluoroscopic sequence (a) and the
results of filter application: (b) 3rd recursive frame S̄2 with λ = 0.5; (c) 13th recursive
frame S̄12 with λ = 0.3; (d) The KLT filter applied to a sequence of m = 7 frames
with the eigenimage cutoff at k = 2 frames; (e) KLT of m = 9 with k = 3; (f) KLT of
m = 17 with k = 6. The images presented in (b) – (f) are sample filtered images with
high CNR values.
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Figure 4.5: CNR in images processed by the finite impulse response (FIR) filters
(titles on the right). For each kernel size, ℓ, the “no filter” line shows the CNR values
of the unfiltered frames with the largest coefficient.

the ratio between the contrast and the noise but can not always directly reflect on the

blurriness of the markers,6 which we aim to keep to the minimum, as otherwise the

geometric uncertainty and reliability of a subsequent registration may degrade. For

example, the comparison between the images in Figures 4.4 (b) and (c), which have

very similar CNR values, demonstrates that though markers are undesirably blurred

in image (c), a high CNR is still achieved by oversmoothing the background.

FIR filters

This section presents the results of application of various FIR filters to the images of

the “MM 23” data set described earlier. We consider the Dolph-Chebyshev, flat top,

Gaussian, Hamming, mean, triangular, and Tukey filters, the detailed descriptions of

the which are given in Appendix C.2.

Figure 4.5 displays the CNR results of the application of the FIR filters to

the images depending on the filter kernel size, ℓ, that was defined in Section 4.1.1.

Each line corresponds to the CNR values of one filter, that were computed as the

minimal CNR among the markers in each filtered image, and then the median across

the images in different sequences. A “no filter” line shows the median across the

sequences of the minimal CNR across markers that had the largest window coefficient

6Blurriness explicitly influences the CNR when the fiducial markers move so fast that they do
not overlap in the neighbouring frames, and the markers in the filtered image start to loose their
intensity.
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for each ℓ, i.e., the middle frame (ℓ + 1)/2 for odd ℓ or the mean between the least

CNRs of two middle frames ⌊(ℓ + 1)/2⌋ and ⌈(ℓ + 1)/2⌉ for even ℓ. The filter kernel

size is used in accordance to the notation accepted by Harris [80], where ℓ does not

always correspond to an effective kernel size: The definition of some filters is such

that w0 = wℓ−1 = 0 (e.g., Bartlett-Hann, Bartlett, Bohman, Hann, Tukey) or are

very small comparing to the other coefficients (e.g., Blackman-Harris, flat top). This

means that at the same ℓ these filters have a potential of a lower CNR comparing

to other filters whose side coefficients are larger, and hence, side frames S0 and Sℓ−1

have higher contribution to the filtered image.

We have also considered the following filters defined in [80, 1], which were

excluded from presentation of the results due to their like performance to at least one

of the seven presented filters:

• The Kaiser filter has essentially the same behaviour as the mean filter, with

slightly higher CNR;

• The performance of the Bartlett-Hann, Bartlett, and Hann filters conforms to

that of the Gaussian filter with either lower or comparable CNRs;

• The Parzen, Bohman and Blackman filters provide similar CNR values to those

of the Gaussian filter for 1 ≤ ℓ ≤ 7 and to those of the Dolph-Chebyshev filter

for 8 ≤ ℓ ≤ 17;

• The Taylor filter produces the CNR values similar to those of the triangular

filter for 1 ≤ ℓ ≤ 7 and to those of the Tukey filter for 8 ≤ ℓ ≤ 17.

From Figure 4.5, we conclude that, among the considered FIR filters, the Dolph-

Chebyshev window is the best choice for the fluoroscopic sequences for which the

marker motion is expected as it quickly improves the CNR even for small values of

ℓ < 5. The application of this filter keeps the CNR higher or comparable to other

filters for larger values of ℓ, with the exception of the flat top filter at ℓ ≥ 12. In

Figures 4.6 (a), (b), and (c) we present the results of the Dolph-Chebyshev filter

application at ℓ = 3, 5, and 9, respectively, to one of the fluoroscopic sequences in

the “MM 23” data set. For comparison, we also show the results of the mean filter

application to the same sequence in Figures 4.6 (d) – (e), as it was reported to be used

in temporal filtering of fluoroscopic sequences [7]. It can be seen that lower CNRs in

the images processed by the mean filter are caused by considerable and undesirable

blurring of the markers that decreases the intensities of the marker points.

The KLT method

One of the conceptual differences between the KLT and recursive or FIR filtering

is that the KLT method produces a filtered sequence of m frames (simultaneously)
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Figure 4.6: The results of filter application: Dolph-Chebyshev filter with kernel sizes
ℓ = 3 (a), 5 (b), and 9 (c) and the mean filter with ℓ = 3 (d), 5 (e), and 9 (f). The
unfiltered first frame of the sequence is shown in Figure 4.4 (a).

76



Ph.D.Thesis – O.Peshko McMaster – Computational Sci. &Eng.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
5

5.5

6

6.5

7

7.5

8

8.5

9

2

3

5

7

9

11

13
15

17  No filter 

Cutoff, frames

C
N

R

Figure 4.7: CNR in images processed by the KLT filter. The numbers on the left show
the length of the unfiltered image sequence, m, and the horizontal axis corresponds to
the cutoff, k. The “no filter” line shows the median CNR values of unfiltered frames,
where m = k.

from an unfiltered sequence of the same length. This means, that, contrary to any

FIR filter, where for each ℓ only one filtered image was produced from each of the

23 sequences, the KLT method produces m filtered images for every m and k value,

where k is a cutoff, or the number of eigenimages left after the filtering, as described

in Section C.1. Hence, to report the results, we compute the median CNRs across m

filtered images for each marker, then the minimal CNR across the markers, and finally,

the median CNR across the sequences. Figure 4.7 presents the resulting CNR values.

When m = k, no filtering is performed, which is shown by a “no filter” line. The

horizontal axis shows the cutoff k, and the numbers on the left of the lines correspond

to m.

The analysis of the sample filtered frames in Figures 4.4 (d) – (f), that attain

peak CNR values in their respective image sequence, reveals the trend to introduce

shadows of the markers from the neighbouring frames. This results in an incorporation

of artificial minima and maxima in the image intensity function. This phenomenon

is quite well known in image compression techniques that are based on related ideas,

and is known as “ringing”, e.g., [209]. Since we are seeking to filter the images in

order to facilitate accurate registration, this ringing behaviour is rather undesirable.
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Summary

The recursive, FIR, and KLT filtering methods described above have the following

advantages and drawbacks:

• Recursive: The CNR depends on the current frame weight, λ, which should

be selected according to the marker speed. This means that should the markers

move at varying speeds, which is likely to happen in patient image sequences,

the CNR of the markers will change rapidly, as well.

• FIR: As explained above, we concluded that a sensible choice among different

FIR filters is the Dolph-Chebyshev filter due to its ability for substantial CNR

improvement even for small values of ℓ, and competitive CNRs for larger values

of ℓ. Even in the presence of motion, the Dolph-Chebyshev filter tends to offer

high CNR values for a wide range of ℓ values.

• KLT: This method tends to be more expensive computationally than the FIR

or recursive filtering due to the necessity of eigenvalue computation. It is prone

to introducing the artificial shadows of the markers (ringing) that may later

mislead the registration. For fair comparison, it should be mentioned that both

FIR and recursive filters can also produce images with multiple markers or

shadows in lieu of one. However, that happens for faster moving markers when

their measurements in the consecutive frames do not overlap.

As can be seen from the results of applying different filters to the images of the

“MM 23” data set presented above, the Dolph-Chebyshev filter outperforms both the

recursive and KLT methods in terms of the CNR and visual assessment. It produces

higher CNRs for a wider range of ℓ values, making it better suited for fluoroscopic

sequences where marker motion speed is not known a priori. Hence, we use the

Dolph-Chebyshev temporal filter to preprocess the fluoroscopic images in the proposed

marker localization and tracking procedures. The selection of the filter kernel size, ℓ,

is discussed in the context of marker localization success rates in Section 5.4.

4.2 Marker Amplification using Existing

Techniques

As explained in Section 1.1.5, the positions of the fiducial markers represent an accu-

rate estimate of the target position. Therefore, it is essential that image registration

in both marker localization and tracking procedures aligns the corresponding markers

in the images, even if other features are not ideally aligned. This requirement leads

to the necessity of a method for amplification of the markers and suppression of the

background in fluoroscopic images. Given the local nature of the marker contrast (see
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an example in Figure 4.8 (d)), we conclude that there is a need for a digital filter that

will conduct a local intensity analysis to amplify the features that:

• possess local contrast by having intensity values that are significantly higher

than their immediate background, where significance is assessed relative to the

noise variation;

• are characterized by a certain known size and shape.

This section presents an overview of the existing feature enhancement methods.

We start with the discussion onmorphological opening [98] and template match-

ing [78, 43, 169, 31, 7, 174, 141] in Section 4.2.1. We also consider the marker extrac-

tion kernel (MEK) [160, 162] that was developed for detection of markers in portal

images and adapted or used directly in other studies [204, 159, 218, 217, 108]. Then,

Section 4.2.2 outlines the scale-space framework [127], which has found wide utiliza-

tion in the enhancement of vessels and other features [63, 189, 121, 132], and in feature

detection and image matching applications for computer vision [134, 126, 127, 47, 170,

35, 96, 148, 215].

Although we usually validate algorithms on phantom data sets, patient images

are used in this and the following sections to review existing strategies and design

the marker enhancement filter. We have done this because the characteristics of real

patient images are crucial for this step (the phantom images often possess a better

contrast than the patient images).

4.2.1 Existing Feature Enhancement Approaches

Morphological opening

The morphological opening technique [73] aims to extract features of a particular size

and shape in the image by using a structuring element E represented by a binary

image, where 1’s define the element of some predefined shape and 0’s the background.

Often, it is used for improving the signal in noisy binary images. Essentially, morpho-

logical opening removes (by flattening into the background) measurements smaller

than E by successively applying the following operations to each pixel of the input

image S̄:
1. Erosion: The value of the output pixel is the minimum value of all the pixels

in the input pixel’s neighbourhood, defined by the 1’s in E ;

2. Dilation: The value of the output pixel is the maximum value of all the pixels

in the input pixel’s neighbourhood.

While erosion removes small measurements and the noise, dilation restores the larger

measurements to their original size.
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To process the images with the measurements of the cylindrical fiducial mark-

ers, we have used a rectangular structuring element. To address the issue of marker

orientation, multiple structuring elements have to be generated, Eφi
, where φi is the

orientation angle. The application of the morphological opening with multiple ele-

ments creates a number of images:

Sφi
= imopen(S̄, Eφi

), (4.2.7)

which we can combine by applying the maximum intensity projection (MIP) [56]

operation

Y = MIP{Sφi
}, (4.2.8)

where each point p in the resulting image Y is computed as Y(p) = maxi{Sφi
(p)}.

Figure 4.8 (b) demonstrates the MIP result of the application of the morpho-

logical opening (implemented using the Matlab function imopen) to a sample fluoro-

scopic image of a prostate patient shown in Figure 4.8 (a) that was preprocessed by

the Dolph-Chebyshev temporal filter with kernel size ℓ = 7. We used a rectangular

structuring element 12 × 3 pixels in size, which is similar to the marker dimensions.

The structuring elements corresponding to different orientation angles, Eφi
, were gen-

erated from the initial rectangle by rotating it around its centre, and using the nearest

neighbour interpolation (recall that the structuring element is a binary image). The

rotation angle was discretized at a 5◦ step, i.e., φi = −85◦,−80◦, . . . , 90◦.
Although the application of morphological opening to the image results in a

significant noise reduction, as can be seen in Figure 4.8 (b) and its corresponding

intensity profile in (e), the markers possess only local contrast, while large intensity

variations of the background and anatomical features are preserved. Therefore, the

morphological opening alone is insufficient for our purposes. Other choices for the

structuring element, such as a circle, produced very similar results and hence are not

included in this discussion.

Template matching

Template matching is a technique for finding the points of maximal correspondence

between an image under consideration and a template image, which is often smaller

in size and restricted to a measurement of the object that is being sought in the larger

image. The template is compared to the parts of the image, and the goodness of the

match is usually quantified by the means of normalized correlation. The template

can be extracted from a similar image [43, 169, 174], synthesized based on the known

physical properties of the object and intensity characteristics of a typical object’s

measurement [78, 31], or by using other available images of the patient [7]. The result
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(a) (d) Original

(b) (e) Morphological opening

(c) (f) Template matching

Figure 4.8: The results of the application of morphological opening (b) and template
matching (c) to the prostate patient fluoroscopic image preprocessed by the temporal
Dolph-Chebyshev filter with ℓ = 7 kernel size (a). Figures (d), (e), and (f) show the
corresponding intensity profiles at rows in (a), (b), and (c), respectively, marked by
the dashed lines. Arrows point to one of the three markers.
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of template matching can be interpreted as an image that has high intensities in

the points where the image contains features similar to the template. As such, this

technique can be used for feature enhancement.

Figure 4.8 (c) shows an image that was produced by computing the normalized

cross-correlation between the templates and a sample fluoroscopic image of a prostate

patient shown in (a). The multiple templates Eφi
were the same that were used for

the morphological opening described above, with the same discretization step and

combination of Sφi
images by the MIP operation defined in Equation (4.2.8). The

analysis of the resulting image and its intensity profile in Figure 4.8 (f) shows that

template matching helped to suppress low-frequency background intensity variation,

and the markers now possess a better contrast. However, the difference in the intensity

between the markers and other features is still very small, and the noise is high,

which may result in unreliable detection and tracking, making a conventional template

matching approach unsuitable for our purposes.

Marker Extraction Kernel (MEK)

The MEK was designed by Nederveen et al. [160] to enhance the measurements of

the gold cylindrical fiducial markers of 5 × 1.2 and 5× 1.4 mm in the portal images.

Its parameters are adjusted so that it gives zero response on a constant intensity

background and reaches its maximum when calculated in the centre of the higher

intensity feature that is similar in size, shape, and orientation to the marker. When

applied to an image, the MEK quantifies how likely the feature is to be a marker by

taking into consideration the average intensities Iab, Iǫ, and Iδ inside the central part

of the feature, Lab, and its border areas, Lǫ and Lδ, respectively, shown in Figure 4.9.

The MEK response, referred to as the marker value, MV, is calculated as [160]:

MV =
w

1 + w
Iab +

1

1 + w
Iǫ − Iδ, (4.2.9)

where w is a weight parameter. The parameters a and b are selected to approximate

the width and length of the marker in the projection plane. To calculate the MV for a

particular pixel p̌ ∈ Γ2, the kernel’s centre is positioned at p̌, and the MEK responses

MVφi
(p̌) are computed for different orientations of the kernel described by the rotation

angles φi. The pixels from the neighbourhood of the point p̌ belong to Lab, Lǫ or Lδ

if their centres (grid points) belong to these areas. Finally, all MVφi
(p̌) are combined

by either computing their maximum, as described in the original method [160, 162],

or sometimes their sum [159].

The MEK was used for marker enhancement and detection in a number of

studies, both on its own [204, 218, 217, 108], and in combination with other methods,
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Lab

Lǫ

Lδ

ǫδ a

b

Figure 4.9: Marker structure exploited by the marker extraction kernel (MEK). The
filter response is calculated using the average intensity values in the central part of
the measurement, Lab, and its inner and outer border areas, Lǫ and Lδ with border
sizes ǫ and δ, respectively. The parameters a and b relate to the expected marker size.
This schematic is adapted from Nederveen et al. [160].

such as template matching [159, 97]. To reduce the expense of calculating the MV

for multiple orientations, knowledge about the marker orientation, that is obtained

from the portal images acquired during the first treatment fraction of a patient, can

be used [204]. Alternatively, the MVs can be computed only over a small range

around some preliminary estimated orientations [160, 162] that are derived from the

orientation of the phantom. As suggested by Nederveen et al. [160, 162], in the clinical

application the orientations can be found from the CT images and marker geometry.

In our experiment, we assumed that marker orientations were not known a

priori. The rotation angle was discretized at a 5◦ step, i.e., φi = −85◦,−80◦, . . . , 90◦.
The parameters assume the following values: a = 0.8 mm, b = 3 mm, and, as sug-

gested in [160], w = 3, δ = 2δpx, ǫ = δpx, where δpx is the pixel size. Although the

size of the markers at the isocentric plane can be slightly different from the fiducial

marker size, it will be reasonably similar, as the fiducial markers are positioned in the

close proximity to the LINAC’s isocentre. Also, as verified in [160] and confirmed by

our experiments, the variation of a and b over a few pixels is not critical to the MEK

response.

Figure 4.10 presents the results of the MEK application to the fluoroscopic

image of a prostate patient shown in Figure 4.8 (a). It is rather clear that in fluo-

roscopic images, the MEK is more successful in marker enhancement than the mor-

phological opening and template matching described above. The MEK flattens the

background, and has significantly stronger response to the marker-like measurements

than to anatomical features. Therefore, a global threshold can be employed after

MEK application to separate the markers from the background and other features.
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Figure 4.10: The result of the MEK application (left) to the image of the prostate
patient displayed in Figure 4.8 (a), and its corresponding intensity profile (right).
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Figure 4.11: Global thresholding of the image processed by the MEK (Figure 4.10,
left).
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Figure 4.11 demonstrates the result of the global thresholding of the image shown

in Figure 4.10 (left), which was performed as follows: The intensity value of 1 was

assigned to nM brightest points in the image, and 0 to the rest. The value nM is an es-

timate of the number of pixels that constitute the markers based on knowledge of the

marker size and number, and is computed as defined in Equation (4.1.4) with κ = 1.

Although the markers are greatly enhanced, there is a number of false positives in

the image. Also, given that the marker orientation is not known, the MEK computed

from multiple orientations distorts the shapes of the markers, which can potentially

decrease the accuracy of the subsequent image registration. These reasons led us to

the exploration of another approach, namely, the scale-space analysis described in the

next section.

4.2.2 Scale-Space Representation and Analysis

In the fields of computer vision and image understanding, there is a broadly accepted

perspective that features in the images exist as meaningful entities only over a limited

range of scales [106, 127]. Hence, to perform an automatic image interpretation, such

as segmentation and feature detection for image matching, amulti-scale representation

was proposed [235, 106]. In our case, the fiducial markers are a part of the standard

clinical procedure, and hence their size is known in advance. Therefore, we use general

principles of the multi-scale analysis explained below, but we produce images at a

single preselected scale.

In the scale-space framework, the original continuous image A : Rd → R is

embedded into a one-parameter family of derived images L : Rd × R+ → R, where

σ ∈ R+ is a scale parameter.7 The scale-space representation L for ∀p ∈ R
d is defined

as:

L(p, σ) =
{
A(p) for σ = 0,

A ∗ G(p, σ) for σ > 0,
(4.2.10)

where the Gaussian is defined as:

G(p, σ) = 1

(2πσ2)d/2
exp

(
−‖p‖

2

2σ2

)
. (4.2.11)

That is, representation for σ = 0 is the original image itself and for σ > 0 it is

computed as the convolution with the Gaussian of the corresponding scale. The con-

volution with the Gaussian generates a scale-space representation characterized with

the following property: New features should not be created when σ is increased [106]

(i.e., when the resolution is diminished, or the image is blurred).

7
R+ is a set of nonnegative real numbers.
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A common approach to analyze a local behaviour of an image is to consider its

second-order Taylor expansion in the neighbourhood of a point p:

L(p+ δp, σ) ≈ L(p, σ) + δpT∇L(p, σ) + 1

2
δpTH(p, σ)δp, (4.2.12)

where ∇L(p, σ) is the gradient vector, and H(p, σ) is the Hessian matrix of L com-

puted at p at a scale σ. The first and second partial derivatives of L for the

construction of the gradient, ∇L(p, σ)i = ∂
∂pi
L(p, σ), and the Hessian, H(p, σ)ij =

∂2

∂pi∂pj
L(p, σ), i, j = {1, . . . , d}, can be computed using convolution with the Gaussian

derivatives [127]:
∂

∂pi
L(p, σ) = A ∗ ∂

∂pi
G(p, σ) (4.2.13)

and
∂2

∂pi∂pj
L(p, σ) = A ∗ ∂2

∂pi∂pj
G(p, σ). (4.2.14)

To simplify the notation, in the following we will use Lu, Lv, Luu, Luv, and Lvv

to denote first and second partial derivatives in the U and V directions of the 2D

UV coordinate system, namely, ∂
∂u
L(p, σ), ∂

∂v
L(p, σ), ∂2

∂u2L(p, σ), ∂2

∂u∂v
L(p, σ), and

∂2

∂v2
L(p, σ), respectively.

Due to the fact that the fiducial markers are all of equal or very similar size to

each other, we conclude that it suffices to select one fixed scale for marker enhancement

or detection based on the scale-space framework. Therefore, we drop the notion of

the scale-normalized derivatives8 used to balance detector responses at different scales,

and use the simple derivatives defined in Equations (4.2.13) and (4.2.14) instead.

N σ, Gaussian scale

The Gaussian scale of σ = 0.7 mm was selected empirically based on our experiments

with the phantom and patient data sets as the one that provides the best preservation

of the marker size and shape. For example, compare the results of application of one

of the filters discussed later in this section, LoG2, to a prostate patient image with

σ = 0.7 mm (Figure 4.12 (c)), σ = 0.4 mm, and σ = 1 mm (Figure 4.13 (a) and (b)).

Smaller scales do not provide enough noise suppression, and create a chopped marker,

which is not desirable for a subsequent 2D/3D image registration. On the other hand,

as σ increases, the markers become smoothed out and rounded, and larger anatomical

features are amplified.

In the remainder of this section, we review a number of existing methods that

are based on the scale-space approach, and evaluate them in the application to marker

8The normalized derivative can be computed as ∂
∂pi

L(p, σ)norm = σγA ∗ ∂
∂pi

G(p, σ), where γ = 1

is a common choice [127].
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enhancement in the prostate patient images. The approaches can be split into two

groups: blob detection and line-like feature enhancement.

Blob detection in computer vision

The scale-space approach is extensively used in computer vision for the detection of

local features. A local feature can be defined as an image pattern that is different

from its immediate neighbourhood in intensity, color or texture [215]. Local features

can include points, edges, and small image patches. Feature identification has found

its application in the detection of measurements of specific objects in the images,

matching and tracking applications, camera calibration and 3D reconstruction, and

ability to recognize objects or scenes without the need for explicit segmentation,

among others [215].

A blob is a particular type of a local feature that can be usable in marker

enhancement or detection. It can be loosely defined as a region that is brighter or

darker than its background [125]. In other words, the blob is a region of connected

points associated with (at least) one local extremum, where all the points of the region

possess intensity higher or lower than their immediate background. The following

discussion deals with the bright blobs on a dark background.

While it is usual for feature detectors to only extract the extremum points of

the blobs at different scales, we seek to develop a method that will have the whole

image as its output rather than a set of points. The sought-for method should pro-

vide improvement in the marker contrast, preserve its size and shape, and suppress

background and other features in the image.

We considered the following approaches:

• Laplacian blobs. Detectors based on the Laplacian of Gaussian are widely

used in computer vision. The Laplacian of Gaussian for a 2D image is the trace

of the Hessian matrices at each image point p at a particular scale σ. That is,

LoG = Luu + Lvv, (4.2.15)

where Luu = ∂2

∂u2L(p, σ) and Lvv =
∂2

∂v2
L(p, σ). Blob detectors based on the LoG

seek the points of local maxima in −LoG [47], |LoG| [126] or LoG2 [127].

Filters based on the Laplacian of Gaussians were used to enhance 2D mark-

ers in portal images, as reported in several studies [170, 35]. In order to en-

hance the measurements of gold cylindrical fiducial markers of size 3 × 1 mm,

Park et al. [170] convolved the image with a Gaussian defined as

exp(−‖p‖2/(2σ2))/
√
2πσ2, and then the LoG was computed. After this, the in-

tensity threshold was applied to select candidate markers. Finally, to eliminate
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false positives and false negatives, the resulting image was registered to the CT

image. Buck et al. [35] enhanced the measurements of the spherical tungsten

markers of 2 and 1.5 mm in diameter by convolving the images with the Mex-

ican hat filter, which was defined as LoG computed for the images convolved

with exp(−‖p‖2/(2σ2)). Then, the markers were found by applying an intensity

threshold, and utilizing knowledge about marker size and shape.

• Hessian blobs. Detectors based on Hessian blobs seek the local maxima of the

determinants of the Hessians:

detH = LuuLvv −L2
uv (4.2.16)

or detH2 [127, 96].

• Combined Hessian-Laplace points are the points where both detH and LoG

simultaneously assume local maxima [134, 148, 215]. This is done to reduce the

strong response of the LoG-based detectors to edges, as points on the edges are

usually characterized with poor localization stability [134]. In [96], the points

are defined as: {
localmax

u,v
{detH2},

localmax
σ
{LoG}. (4.2.17)

As we are interested in generating the whole image rather than a set of points, we

suggest that a filter that will provide significant response at the Hessian-Laplace

points can be described as the point-wise multiplication:

Cmb = detH2 LoG (4.2.18)

The images in Figures 4.12 and 4.14 were obtained by applying variations of the

Laplacian, Hessian, and combined Hessian-Laplace filters defined above to an image

from the patient testing data set. Among them, the LoG2 method (Figure 4.12 (c))

appears to be the most promising as it efficiently combines the suppression of the noise

and the background, including anatomical features, with a reasonable preservation of

the marker size and shape. Together with the MEK, we will use the performance of the

LoG2 approach as a benchmark for the proposed filter in the experiments described

in Section 7.2.4.

Blob and line-like feature enhancement

Scale-space methods have found wide application in the enhancement of images of

blood vessels and bronchi [63, 121]. Retinal images are one prominent application.

Other applications include the detection of dendrites, fingerprints, and catheters.
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(a)

(d) −LoG

(b)

(e) |LoG|

(c)

(f) LoG2

σ = 0.7 mm

Figure 4.12: The results of the Laplacian blob enhancement −LoG (a), |LoG| (b),
and LoG2 (c) in the image of the prostate patient displayed in Figure 4.8 (a), and
their corresponding intensity profiles (d), (e), and (f).
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σ = 0.4 mm
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(d) LoG2

σ = 1 mm

Figure 4.13: The results of the Laplacian blob enhancement LoG2 with the Gaussian
scale parameter σ = 0.4 mm (a) and σ = 1 mm (b), and their corresponding intensity
profiles (c) and (d).
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Figure 4.14: The results of the Hessian detH (a) and detH2 (b), and the combined
Hessian-Laplace Cmb (c) blob enhancement in the image of the prostate patient dis-
played in Figure 4.8 (a), and their corresponding intensity profiles (d), (e), and (f).
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The key observation is that the magnitude and ratio of the eigenvalues of

the Hessian H(p, σ), λ1 = λ1(p, σ) and λ2 = λ2(p, σ), can characterize the shape of

intensity variations in the image. For example, large negative eigenvalues, λ1 ≪ 0 and

λ2 ≪ 0, indicate a concave shape in the intensity function, i.e., a bright spot on a dark

background. The values λ1 ≪ 0 and λ2 ≈ 0 of any sign mean that point p belongs to

a measurement in the shape of a bright line on a dark background. Different shapes of

intensity functions and characteristics of their corresponding eigenvalues are described

by Frangi et al. [63].

Several feature-enhancement filters that use eigenvalues can be found in the

literature, e.g., [132, 189, 63, 121]. To the best of our knowledge, no eigenvalue-based

methods that specifically deal with the enhancement of the markers have previously

been reported. Most of the known methods are designed for lines and blobs. Cylin-

drical fiducial markers can be treated as line-like structures that are, unlike vessels,

are very limited in length. On the other hand, the marker length and width are not

very different, which can make blob-specific filters suited for marker enhancement. In

the remainder of this section, we review the methods for line and blob enhancement

and compare the results of their application to our patient images. We use the name

of the first author of the publication as the name of the corresponding filter for easy

identification. The following methods were considered:

• Lorenz line filter. This filter is intended for amplification of line-like structures

to improve automatic segmentation. Assuming the eigenvalues of the Hessian,

|λ1| ≤ |λ2|, the filter is defined as [132]:

YLorenz
line =

{
|λ2|, if λ2 < 0,
0, otherwise.

(4.2.19)

• Sato’s filter for nodules and vessels. For this filter, no pre-sorting of the

eigenvalues is assumed. We formulate 2D versions of the 3D blob (nodules) and

line (vessels) filters presented in [189] in the following way:

YSato
blob =

{
|λ2|

(
λ1

λ2

)γ
, if λ2 ≤ λ1 < 0,

0, otherwise,
(4.2.20)

and

YSato
line =

{
|λ2|w(λ1, λ2), if λ2 < 0,

0, otherwise,
(4.2.21)

where the function w is defined as:

w(λ1, λ2) =





(
1 + λ1

|λ2|

)γ
, if λ2 ≤ λ1 ≤ 0,(

1− α λ1

|λ2|

)γ
, if |λ2|

α
> λ1 > 0,

0, otherwise.

(4.2.22)
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We use γ = 0.5 and α = 0.25 as suggested in [189].

• Li’s dot and line filters. Given eigenvalues that are sorted as |λ1| ≤ |λ2|,
selective filters for the enhancement of dot-like nodules and line-like vessels and

suppression of other structures in 2D images are defined as [121]:

YLi
dot =

{
λ2
1

|λ2|
, if λ1 < 0 and λ2 < 0,

0, otherwise,
(4.2.23)

and

YLi
line =

{
|λ2| − |λ1|, if λ2 < 0,

0, otherwise.
(4.2.24)

• Frangi’s vessel enhancement filter. The idea behind this vessel enhance-

ment filter is that measures of eigenvalue magnitudes and ratio are incorporated

into probability-like estimates. The higher the intensity values of the points in

the resulting vesselness image, the higher the probability of the presence of a

vessel structure. The eigenvalue magnitudes are measured as the Frobenius

norm of the Hessian matrix [63]:

Xm =
√

λ2
1 + λ2

2, (4.2.25)

and their ratio is defined as:

Xr =
λ1

λ2
, (4.2.26)

where |λ1| ≤ |λ2|.
The vesselness image is computed as [63]:

YFrangi
line =

{
0, if λ2 > 0,(

1− exp
(
−X 2

m

2γ2

))
exp

(
− X 2

r

2β2

)
, otherwise,

(4.2.27)

where β and γ are parameters used to normalize Xm and Xr. To guarantee a

strong response only when both the magnitude and ratio criteria are prominent,

they are combined by multiplication. In the demonstration of Frangi’s method

below, we will use β = 0.5 and γ = 0.5max{Xm(p, σ)}, where Xm is computed

for all points of the ROI to which the filtering is applied, as suggested in [63].

Figures 4.15 and 4.16 demonstrate the results of the application of the Lorenz,

Sato’s, Li’s, and Frangi’s filters to a patient fluoroscopic image shown in Figure 4.8 (a).

Among the presented methods, the best combination of the high filter response to the

markers and preservation of their shape is obtained in YSato
blob and YFrangi

line , although

many false positives, mostly related to anatomical features, are present. Based

on demonstrated results, we expect that designing measures that incorporate the
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Figure 4.15: The results of the application of Lorenz YLorenz
line (a), and Sato’s YSato

blob (b)
and YSato

line (c) filters to the image of the prostate patient displayed in Figure 4.8 (a),
and their corresponding intensity profiles (d), (e), and (f).
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Figure 4.16: The results of the application of Li’s YLi
dot (a) and YLi

line (b), and Frangi’s
YFrangi

line (c) filters to the image of the prostate patient displayed in Figure 4.8 (a), and
their corresponding intensity profiles (d), (e), and (f).
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probability-like estimates, such as those used in the Frangi’s filter, can provide a bet-

ter suppression of the background and anatomical features in comparison to a direct

use of the eigenvalues, such as in the Sato’s filter. In Section 4.4, we will examine the

application of the principles of the Frangi’s approach [63] to our problem, but will de-

sign a significantly different filter to that in (4.2.27). The proposed filter is composed

of several steps that combine different measures, in order to provide a high response

to the markers, preserve their shape, and suppress features in the background. In

addition, the proposed marker enhancement filter incorporates a novel contrast en-

hancement function that acts as a smooth thresholding that further improves the

intensity separation between the marker points and the background.
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4.3 Computation of Regions of Interest

As will be discussed in Chapters 5 and 6, the computation of the regions of interest

(ROIs) in both localization and tracking procedures, 〈〈 L 〉〉 and 〈〈T 〉〉 , happens before
the call to a filtering procedure 〈〈 F 〉〉 , described in this chapter. While for temporal

filtering the results do not depend on the selection of the ROI, and the filtering can be

performed either over the ROI or the whole image, the ROI is explicitly used in our

marker enhancement filter (MEF). Therefore, we provide the description of this step

here, so that the MEF design (Section 4.4) and validation procedures (Section 7.2)

are placed in the required context.

Narrowing the focus from the whole fluoroscopic image to a smaller ROI helps

to reduce computational burden both for filtering and image registration, and improve

reliability: The smaller the image with the sought-for measurements, the lower the

chance of failure, which may happen, in particular, in the presence of other features

similar in characteristics or causing a similar or higher filter response.

The usage of a smaller ROI within the image proved to be an efficient approach

in a number of studies, e.g., [141, 204, 7, 169]. While some authors used manually

defined ROIs [7, 169], others designed them as circular or square ROIs of the pre-

defined sizes around the expected marker positions computed from the planning CT

images [141, 204]. ROIs with a radius or half-side of 2 cm around the projected

marker positions were found to be adequate for prostate patients [141, 204], as no

displacement larger than 2 cm was observed.

While the application of a fixed ROI size based on the assumptions of the

target motion magnitude seems attractive due to its simplicity, we prefer to adaptively

compute it, since the filtering procedures in 〈〈 F 〉〉 prepare the original fluoroscopic

image for 2D-3D registration in 〈〈 L 〉〉 or 2D-2D registration in 〈〈T 〉〉. For computational

savings and marker enhancement success, the ROI should include the markers but

otherwise be as small as possible. However, to be adequate for registration purposes,

this ROI should also be large enough to include all possible marker displacements

that are allowed by the registration model. The allowable marker displacements are

computed based on the geometric transformation used in the registration, 2D or

3D rigid transformation, T 2D(a, ·) or T 3D(a, ·), respectively, and the bounds on the

parameters of these transformations, amin and amax, where a is a vector of translations

and rotations along the coordinate axes. We use symmetric bounds, amin = −amax,

and the size of the bounds for localization and tracking is given in Sections 5.3.1 and

6.1, respectively. The coordinate systems and geometric transformations are discussed

in Section 2.4.2 and Appendix B, and the 2D-3D and 2D-2D registration models will

be presented in Sections 5.3 and 6.1.
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Figure 4.17: Circular marker ROI, Υk,
computed for localization procedure with
T 3D geometric transformation includes
the projection of the 3D marker with cen-
tre in ck3D and its all possible displace-
ments, maximum of which equals to ̺k.
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Figure 4.18: Marker ROIs Υ1, Υ2, and Υ3

(circles), and registration ROI ΩROI (solid
rectangle) overimposed on a fluoroscopic
image of a prostate patient.

N Υk, 2D circular marker ROI

We select a 2D ROI, Υk, containing the kth marker and all of its allowable dis-

placements as a circle centered in the predicted marker position with the radius ̺k
computed as explained below. The predicted position in the localization procedure

〈〈 L 〉〉 is the point ĉk2D = P(ck3D), where ck3D is the 3D marker centre found from the

CBCT image (Chapter 3), and P is the 3D to 2D projection operator defined in

Equation (B.5.4). For tracking 〈〈T 〉〉 , the predicted position ĉk2D is computed based on

the marker positions in the preceding frames, as explained in Sections 6.2 and 6.3.

Figure 4.17 demonstrates the principle of computing Υk for the localization procedure

with T 3D. First, a maximal displacement of the marker in 3D is computed as:

̺3Dk = max
a
‖ck3D − T 3D(a, ck3D)‖,

s.t. |aj | ≤ amax
j .

(4.3.28)

Then, ̺3Dk is extended by the half of the marker size, h/2, to guarantee the inclusion

of the whole marker in the ROI, and scaled to 2D:

̺k = κ
(
̺3Dk + h/2

)
, (4.3.29)

where κ is the 3D to 2D scaling factor for the size of the object that is located in

the proximity to the point ck3D ∈ R
3 defined in Equation (B.5.5). For T 2D, in both
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localization and tracking, the value for ̺k is computed as:

̺k = max
a
‖ĉk2D − T 2D(a, ĉk2D)‖,

s.t. |aj | ≤ amax
j ,

(4.3.30)

where ĉk2D is defined above. Then, the circular marker ROI is computed as:

Υk =
{
q ∈ R

2 | ‖ĉk2D − q‖ ≤ ̺k
}
. (4.3.31)

An example of the marker ROIs superimposed on a fluoroscopic image of a prostate

patient is shown in Figure 4.18.

N ΩROI, 2D rectangular registration ROI

In addition to Υk, we also define a rectangular registration ROI, as in many cases it

is more convenient to perform computations over a rectangular ROI that includes all

markers, as it translates easily into an array or matrix data structure in the software.

We define the registration ROI as:

ΩROI =
{
q ∈ R

2 | min {∪nk=1Υk}u,v ≤ qu,v ≤ max {∪nk=1Υk}u,v
}
. (4.3.32)

In this chapter, we use the notation ΩROI to refer to both localization and tracking

registration ROIs, that are denoted by ΩLOC and ΩTR in Chapters 5 and 6, respec-

tively. Figure 4.18 demonstrates the marker and registration ROIs superimposed on

a fluoroscopic image of a prostate patient. The implementation details of the ROI

computation are summarized in Algorithm D.5.
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Figure 4.19: The use of β = 0.25 instead of β = 0.5 in Yr = 1 − exp (−X 2
r /(2β

2))
results in high filter response not only in circular blobs, where Xr = λ1/λ2 ≈ 1, but
also in elliptical blobs, where Xr < 1. The figures above the graph schematically show
the shapes that correspond to different values of Xr.

4.4 Novel Marker Enhancement Filter (MEF)

As reported in Section 4.2, the existing methods for feature enhancement that we have

evaluated did not provide sufficient marker amplification and background suppression.

In this section, we propose the design of a novel marker enhancement filter (MEF)

based on the scale-space approach, and inspired by the Frangi’s vessel enhancement

filter [63].

4.4.1 Principles of MEF Design

Analyzing the design principles of the Frangi’s vessel enhancement filter [63] discussed

in Section 4.2.2, we make the following two observations:

• Vessels are characterized by a much larger length than width. This means that

points belonging to bright vessel measurements on a dark background should

possess eigenvalues with the following properties: Having |λ1| ≤ |λ2|, it should
hold that λ1 ≈ 0 and λ2 ≪ 0.9 In contrast, the dimensions of the cylindrical

fiducial markers, namely their diameter and length, are not very different. Con-

sequently, if the probability-like measure that includes the eigenvalue ratio, Xr,

defined in Equation (4.2.26), is used for marker enhancement, it should attain

its maximum values when Xr is around 1 but not around 0 as required for vessel

9The eigenvalue ratio is inversely related to the ratio of semiaxes of a second order shape formed
by the image intensity function as λ2

1/λ
2
2 = a2/a1. For the vessels, the semiaxis a1 that is oriented

along the vessel becomes very large or infinite in length, which means that λ1 ≈ 0.
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enhancement. Hence, we define a magnitude-and-ratio image as:

Ymr =

{ (
1− exp

(
−X 2

m

2γ2

))(
1− exp

(
− X 2

r

2β2

))
, if λ1 < 0 and λ2 < 0,

0, otherwise,
(4.4.33)

where Xm is defined in Equation (4.2.25), and γ = 0.5max{Xm(p, σ) | p ∈ ΩROI},
as suggested by Frangi et al. [63]. Note that in contrast to vessel and other line

enhancement techniques, such as those defined in Equations (4.2.19), (4.2.21),

(4.2.24), and (4.2.27), we require both λ1 and λ2 to be negative. As for β, having

a value of 0.5 suggested in [63] will result in the highest Ymr values occurring

at the points where Xr is close to 1, i.e., for the circular blobs. We reduce

β to 0.25, a value that was selected empirically based on visual observations

of the filtered images, in order to produce high filter response for a range of

shapes from circular to elliptical blobs (see Figure 4.19). Although the marker

dimensions are known, it is not practical to tune the filter to elliptical blobs

with the corresponding semiaxes ratio exclusively, as the markers in fluoroscopic

images are often corrupted by the noise and overlaying features.

• Observing that the markers may often have reasonably high contrast in fluoro-

scopic images, we have also considered a magnitude-only image that we define

as:

Ym =

{
1− exp

(
−X 2

m

2γ2

)
, if λ1 < 0 and λ2 < 0,

0, otherwise,
(4.4.34)

where γ is the same as in the magnitude-and-ratio image. Note that both Ymr

and Ym take their intensity values within the [0, 1] range.

Analyzing the effect of Ymr and Ym on patient and phantom images, where

sample images are shown in Figure 4.20, we make the following observations that

govern the MEF design:

• The enhanced markers in Ym retain good preservation of the shapes of the

original unfiltered markers. Although they can appear slightly more round10 in

Ym than in the fluoroscopic image, their dimensions and orientations are very

similar.

• However, due to the absence of control over the feature shapes in Ym, it is

possible that anatomical features similar in scale to the markers are undesir-

ably amplified. For example, note the long vertical feature in Figure 4.20 (a)

encompassed by a rectangle.

10This is due to the use of 0.7 mm value for the Gaussian scale parameter, σ, which is slightly
larger than what is required to have the same width of the markers. The decreasing of σ is not
desirable as this may produce non-contiguous markers, which is further discussed in Section 4.4.4.
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Figure 4.20: The magnitude-only Ym (a), magnitude-and-ratio Ymr (b) images, their
absolute difference (c), and their corresponding intensity profiles (d), (e), and (f).
Rectangle marks an anatomical feature that was undesirably amplified in Ym.
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• Comparing Ymr and Ym for different patient and phantom images, we observed

that while both of them tend to attain high intensity values in the marker points,

many of the high-intensity points belonging to the noise and the anatomical

features in one image do not possess high intensities in the other image. For

example, Figure 4.20 (c) illustrates the absolute difference between Ymr and

Ym. The noticeable difference in the marker points is attributed to the different

marker shapes in Ymr and Ym (almost flat and rectangular in Ym versus smaller

in length with varying intensity in Ymr). However, it is easy to see that many

of the points belonging to anatomical measurements, such as the long vertical

feature to the left of the markers, possess high intensities in Ym and low in Ymr.

Hence, we conclude, that an approach that will provide effective marker enhancement,

noise and background elimination, and good marker shape preservation should be

based on computing Ym values only in the tight regions where the markers can be

found, and creating a flat background in all other areas of the image. One of the ways

to detect these small regions with high probability of marker presence is to analyze

values of Ymr.

The details of the proposed MEF are presented in Section 4.4.3. To provide a

concise discussion in the following sections, the contrast enhancement function used

in the MEF to perform smooth separation between the enhanced candidate marker

points and the background is defined beforehand in Section 4.4.2.

4.4.2 Contrast Enhancement Function

A common approach for the enhancement of the filtered image is to apply an intensity

threshold, which is designed to separate the sought-for markers from the background,

e.g., [35, 169, 159]. Let Y : R2 × R+ → R be a filtered image at a particular scale.

Then, a simple step thresholding function Cstep : R→ R can be defined as:

Cstep(Y(p, σ)) =
{

0, if Y(p, σ) < ϑ,
1, otherwise,

(4.4.35)

where ϑ is the threshold value. An example of Cstep with ϑ = 0.3 and 0 ≤ Y(p, σ) ≤ 1

is shown in Figure 4.21 (left). The result of the thresholding operation is a binary

image with 1’s (white) in the marker points and 0’s (black) in the background points.

Alternatively, it can be a grayscale image where the intensity values above ϑ are kept

while the values below ϑ are set to 0:

Cgray(Y(p, σ)) =
{

0, if Y(p, σ) < ϑ,
Y(p, σ), otherwise,

(4.4.36)

where an example of Cgray with ϑ = 0.3 and 0 ≤ Y(p, σ) ≤ 1 is shown in Figure 4.21

(centre). In the MEF, we will also use thresholding. However, we prefer to use a

103



Ph.D.Thesis – O.Peshko McMaster – Computational Sci.&Eng.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y(p, σ)

C
s
te

p

ϑ

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y(p, σ)

C
g
ra
y

(ϑ, ϑ)
T

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y(p, σ)

C (ϑ, τ)
T

Figure 4.21: Step Cstep (left), grayscale Cgray (centre), and smooth C (right) contrast
enhancement functions. In this example, ϑ = 0.3. The curve C (on the right) is
parameterized by τ = 0.5 and s = 3.

smooth threshold instead of Cstep or Cgray, such as shown in Figure 4.21 (right). The

rationale behind this is that it increases the overall reliability of the method: If some

of the markers produce a low filter response, they will be zeroed out by Cstep and Cgray.
On the contrary, these measurements will only be partially suppressed, not zeroed,

by the smooth threshold function, and can still provide useful information during

subsequent processing, such as image registration.

In the proposed threshold function C, separation into the marker and non-

marker points is done based on prior knowledge of fiducial marker size, shape and

number rather than on the varying intensity characteristics of different images. It is

assumed that the majority of the marker points have higher filter response than the

non-marker points.

The smooth threshold function should possess the following properties (see

Figure 4.21 (right) as a guideline):

• C(0) = 0;

• For all Y(p, σ) ≥ ϑ, it should hold that C(Y(p, σ)) ≥ τ . Therefore, if we set ϑ

to be the lowest intensity found among the candidate marker points (which is

determined as described later in this section), then for each candidate marker

point C(Y(p, σ) is not smaller than τ ;

• C(ϑ) = τ ;

• For all Y(p, σ) < ϑ, the result of thresholding should be less than τ ;

• C(1) = 1;

• C should be a non-decreasing function.

One of the functions that satisfies aforementioned properties is a power function
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Figure 4.22: Power function Z used in the smooth contrast enhancement function C.
Z is parameterized by ϑ = 0.3, τ = 0.5, and s = 3.

Z : R→ R, such that the contrast enhancement function is defined as:

C(Y(p, σ)) = Y(p, σ)Z(Y(p,σ)), (4.4.37)

where, since 0 ≤ Y(p, σ) ≤ 1, Z is a non-increasing function that should satisfy:

{
Z(1) = 0,
Z(ϑ) = logϑ τ,

(4.4.38)

such as shown in Figure 4.22. In particular, Z can be defined as:

Z(Y(p, σ)) = a

Y(p, σ)s + b, (4.4.39)

where parameter s determines the steepness of Z, and is interpreted as the sharpness

of the distinction between the candidate marker points and the background in the

final contrast enhancement function C. The function is steeper for larger values of

s. Solving (4.4.38) for a and b by substituting Z defined in (4.4.39) results in the

following expression:

Z(Y(p, σ)) = ϑs logϑ τ

ϑs − 1

(
1− 1

(Y(p, σ))s
)
. (4.4.40)

The remainder of this section explains the choice of the parameters for Z.
N τ , Minimal intensity of the candidate marker points after contrast

enhancement

The value τ = 0.5 is used, so that the intensity values of the marker points occupy

the upper half of the image intensity range.
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N s, Sharpness of distinction

We assign s = 3 as it was found to offer slight improvement for fluoroscopic images

compared to s = 2. There was no improvement observed for s > 3.

N ϑ, Marker-based threshold, or the lowest intensity found among

the candidate marker points before contrast enhancement

The principle of computing ϑ is similar to that of the model-based segmentation

threshold for 3D CBCT images described in detail in Section 3.1.1. For Z computed

on a discrete 2D image, ϑ is the minimal intensity found among m brightest pixels,

where m is the estimated number of pixels that constitute the markers. It is found

from the number of markers, n, and the number of pixels per marker defined in

Equation (4.1.4) in Section 4.1.2. In other potential applications, where the number

or the size of the fiducial markers is not known in advance, the MEF can still be used

with the intensity-based contrast enhancement, where ϑ is set to some fixed threshold

intensity value. For example, ϑ = 0.5 worked reasonably well for our fluoroscopic

images.

4.4.3 MEF Design Step by Step

The MEF schematic is provided in Flowchart 4.2. This section presents the details of

the MEF design, with an example of the MEF step by step application to a patient

image in Figure 4.23. Corresponding implementation details are given in Section D.2.

The MEF consists of the following steps:

• 〈〈 F3A 〉〉 : The scale-space representation L is computed for a temporally filtered

fluoroscopic image S̄i. The scale σ = 0.7 mm is selected in relation to the marker

size (more discussion is provided in Section 4.4.4). Next, the Hessian eigenvalues

λ1(p, σ) and λ2(p, σ) are computed at all points p ∈ ΩROI of the image L(p, σ).
Algorithm D.7 describes implementation details of this step.

• 〈〈 F3B 〉〉 , 〈〈 F3C 〉〉 , and 〈〈CE1 〉〉 : The images Ym and Ymr are computed as defined in

Equations (4.4.34) and (4.4.33), respectively. Then, the image Ymr undergoes

contrast enhancement with the function C defined in Equation (4.4.37) and

detailed in Algorithm D.8. It is performed to suppress high intensities of some

of the non-marker points to improve filtering outcome and reduce computational

cost of the next steps, in particular, flattening.

• 〈〈 F3D 〉〉 and 〈〈 F3E 〉〉 : Computation of the maskM. The markers in C(Ymr) often

appear smaller than in Ym and S̄i (see Figure 4.23). To create an effective mask,

the high-intensity regions in C(Ymr) are enlarged by morphological dilation [73],

described in Section 4.2.1. As a structuring element, we used a circle of a radius

h/2, where h is the marker size.
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Flowchart 4.2: Block 〈〈 F2 〉〉 : The schematic of the marker enhancement filter.
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Figure 4.23: Step by step application of the marker enhancement filter (MEF) to a
patient image. The magnitude-only Ym and the contrast-enhanced magnitude-and-
ratio image C(Ymr) are created from the temporally filtered fluoroscopic image S̄i.
Then, the high-intensity regions in C(Ymr) are enlarged and flattened to create a
mask M, which is applied to Ym. In the end, the MEF-image R is produced from
Ym · M by the final application of the contrast enhancement function C.
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Next, the maskM is created by flattening the contiguous regions in the dilated

image. This is done by assigning the maximal intensity found within each

region to all of its points, where the intensity is related to the probability that

the region encloses a marker. The flattening is performed in order to exclude

any distortion of Ym intensities during the subsequent mask application, except

for the scaling. To group the points, the hierarchical clustering technique is

used, which was described in Section 3.1.2. According to this method, a point is

added to a cluster if the shortest distance between it and the cluster is less than

1.5 δpx, where δpx is a pixel size. Hence, points of the same cluster are either

connected by their sides (δpx distance in between) or by their corners (δpx
√
2

distance).

Clustering and flattening is only performed for the points whose intensity is

greater or equal to the intensity threshold ϑ, defined in Section 4.4.2, i.e., the

points that most probably belong to the regions enclosing the markers, both

to reduce computational cost and to prevent amplification of non-marker fea-

tures. The implementation details of the computation of M are provided in

Algorithm D.9.

• 〈〈 F3F 〉〉 and 〈〈CE2 〉〉 : The maskM is applied to Ym, and the final MEF-image is

produced after another contrast enhancement step with the function C:

R = C(Ym · M). (4.4.41)

In order to further improve the outcome of the marker enhancement, all inten-

sities in R outside of the circular marker ROIs Υk, defined in Section 4.3, are

zeroed out. The final contrast enhancement step 〈〈CE2 〉〉 , however, is optional,
and depends on the images at hand and the purposes of the project. More

details are provided in Section 4.5.

4.4.4 MEF Parameters

While the selection of β (relates to the shape of the features we wish to amplify with

the MEF) and σ (the Gaussian scale) has been briefly covered earlier (Sections 4.4.1

and 4.2.2, respectively), this section offers final notes on parameter selection.

Although the use of β = 0.25 extends the range of the shapes that are amplified

from circular to elongated blobs in comparison to β = 0.5 proposed by Frangi et al. [63],

typical marker shapes correspond to even smaller values of β. On the other hand,

using a smaller β, such as 0.1 or below, results in a very small contribution from the

ratio measure, Xr, to the resulting image Ymr, in which case Ymr becomes similar to

Ym, which has high intensity values in some of the anatomical features. Hence, in the

proposed MEF design, the combination of σ = 0.7 mm and β = 0.25 produces high
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Ymr values at one or both ends of the markers, as can be seen in Figures 4.20 and

4.23. Then, these small patches of high-intensity points are extended by dilation into

the regions that are large enough to include the whole marker.

The Gaussian scale σ = 0.7 mm produces the best results for the fiducial

markers 3×0.8 mm in size. The use of smaller values, such as σ = 0.4 mm (Figure 4.24,

left column), does not sufficiently suppress noise and tends to create chopped and non-

contiguous markers. Larger values, such as σ = 1 mm (Figure 4.24, middle column),

generally work well but distort marker shape by generating marker measurements

that are smoothed out too much (rounded). Finally, values such as σ = 1.5 mm

(Figure 4.24, right column), tend to amplify anatomical features. It can be said that

σ is adjusted to the marker diameter rather than the marker length because it helps

to preserve the shape, and also helps to efficiently suppress the background. The

noise component of the background is typically on smaller scales while many of the

anatomical features are on larger scales.

4.4.5 Magnitude-Only Filter (MOF)

As was mentioned in Section 4.4.1, we believe that effective marker enhancement,

noise and background suppression, and marker shape preservation can be achieved

by computing the intensity values of the magnitude-only image, Ym, in the regions

where the markers are likely to be found, and enforcing a flat background outside of

these regions. In the MEF, we found these regions with the help of the magnitude-

and-ratio image, Ymr. In this form, the MEF was designed to be used for 2D marker

localization, where the displacement between the markers in the 3D CBCT and 2D

fluoroscopic images can be significant. During tracking, on the other hand, the marker

displacement between the frames is expected to be significantly smaller. Therefore, the

regions can be defined around the predicted marker positions, which can be computed

by using information from preceding images of the sequence as will be explained in

Section 6.2. Hence, for tracking we define a variation on the MEF, a magnitude-only

filter (MOF). It consists of steps 〈〈 F3A 〉〉, 〈〈 F3B 〉〉, and 〈〈CE2 〉〉 described in Section 4.4.3.

Although the full MEF can be used in tracking as well, this simplification allows the

reduction in computational cost, mainly due to the removal of the clustering and

flattening step 〈〈 F3E 〉〉 .

4.5 Discussion

By analyzing the results of the MEF application to several testing data sets reported

in Section 7.2.3 and comparing its performance to a number of other filters in Sec-

tion 7.2.4, we concluded that the MEF is an effective choice for the marker enhance-
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Figure 4.24: Images Ym, C(Ymr) andR produced with the Gaussian scales σ = 0.4 mm
(left column), 1 mm (middle column), and 1.5 mm (right column).
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ment task. In fact, to the best of our knowledge, it is the best among the available

filters.

Although the MEF was designed with a particular application in mind, it can

be used in a variety of marker localization and tracking applications. The main

advantages of the proposed filter over other filters are its marker enhancement and

shape preservation properties, and its successful background suppression. No prelim-

inary information about the marker orientation is required. The quantitative results

presented in Sections 7.2.3 and 7.2.4 suggest that the use of temporal filtering, in

particular, the Dolph-Chebyshev filter, prior to the MEF application improves the

filtering outcome. From our experience, temporal filtering also helps to reduce the

MEF processing time, as the overhead associated with opening multiple image files

for temporal filtering is significantly smaller than the time savings resulting from the

ability to process a smoother image. The savings come from the decrease in the

number of high-intensity pixels that should participate in the grouping and flattening

procedures at step 〈〈 F3E 〉〉 . In addition to a visibly better preservation of the marker

shapes and suppression of the background, the MEF also performs similarly or better

than other filters in terms of quantitative assessment of marker enhancement. Sec-

tion 7.2.4 presents comparative results between the MEF and other filters reported in

the literature, such as the MEK [160], LoG2 [127], Sato’s blob filter [189], and Frangi’s

line filter [63] reviewed in Section 4.2.

The main limitation of the MEF comes from the assumption that among all

the features observed at the selected scale σ, the markers should possess the highest

contrast. While a couple of features similar to the markers in size and contrast

typically do not jeopardize successful marker enhancement and subsequent 2D marker

localization or tracking, especially considering that in the proposed application they

are performed with the use of image registration, the presence of a higher-contrast

feature with one of the dimensions corresponding to σ and the other much larger is

not desirable.11

While the use of the contrast enhancement as the final step 〈〈CE2 〉〉 of the

MEF or MOF generally helps to amplify the markers, and is especially useful if the

image contains features causing a higher filter response than the markers (such as

an example with a portal image provided in Section 7.2.4), in some cases the use

of the CEF is not necessary (though it is still used at the step 〈〈CE1 〉〉 ). From our

experience with the lateral images of the prostate patients, one or sometimes several

markers can be overlayed by anatomical features. In this case, these markers possess

11Ideally, the magnitude of the eigenvalue that corresponds to the feature’s lengthwise direction
should be small, which makes both Xm and Xr small, and as such, the points of the feature should
not be amplified by the MEF. However, it is common that the intensity along the feature varies,
which makes the filter perceive it as a sequence of blob-like structures.
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very low contrast, and can further be suppressed by the final application of the CEF.

We observed that the performance of the localization and tracking procedures in

application to our patient testing data set was better when the step 〈〈CE2 〉〉 was

excluded even though the images appeared to be of a lower quality (higher noise and

more anatomical features present). In the end, the decision to use the CEF at the

step 〈〈CE2 〉〉 should be based on knowledge of data and purposes of the processing.

The design and validation of the MEF were reported in [173]. Appendix D.2

provides implementation details for the filtering block 〈〈 F 〉〉 . Temporal filtering pro-

cedure 〈〈 F1 〉〉 is summarized in Algorithm D.4, computation of the ROI 〈〈 F2 〉〉 in Algo-

rithm D.5, and the details of the MEF implementation are given in Algorithms D.6 –

D.9.
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Chapter 5

Marker Localization in 2D Space

This chapter presents methods for marker localization in 2D space, corresponding to

block 〈〈 L 〉〉 of the scheme in Flowchart 2.1. Flowchart 5.1 provides details of this block.

The localization is performed by the means of 2D-3D image registration between the

MEF-imageR produced in block 〈〈 F 〉〉 (Chapter 4) and a 2D template imageW formed

from the 3D marker sets Mk or models Mmod
k computed in block 〈〈 S 〉〉 (Chapter 3).

Medical image registration techniques and applications are discussed in a num-

ber of books [149, 150, 19, 57, 75] and surveys [143, 69, 83, 138, 81, 119, 145, 34].

At a high level, the image registration problem can be stated as follows: Given two

images,1 A : RdA → R (called the template, or moving image) and B : Rd → R (called

the reference, or fixed image) of dimensions dA ∈ N and d ∈ N, respectively, we aim

to find an optimal geometric transformation T that alters A to become similar to B.
The dissimilarity between the transformed template AT : Rd → R and the reference

B is quantified by some distance measure function D that is to be minimized :

T ∗ = argmin
T
D (AT , B). (5.0.1)

We assume that function D returns a real value, and that the minimizer exists. The

transformation T includes the dimension transformation from dA to d if dA 6= d, such

as in the case of 2D-3D image registration. The optimization problem can include

constraints, bounds on parameters, and regularization on T . The computation of D is

often restricted to some region of interest ΩLOC ⊂ R
d within images. We will discuss

our particular registration problem in more detail in Section 5.3.

Flowchart 5.1 provides a scheme of our proposed 2D marker localization pro-

cedure. The 3D positions of the marker sets or models, ck3D, and the assumptions

about the maximal displacement between the markers in the CBCT and fluoroscopic

1Although more than two images may be subject to simultaneous registration, in this thesis we
only consider two images at a time, as it suffices our purposes.
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Flowchart 5.1: Block 〈〈 L 〉〉 : Marker localization in 2D by 2D-3D image registration
between a 2D template image formed from the 3D marker sets or models computed
in block 〈〈 S 〉〉 and the MEF-image produced in block 〈〈 F 〉〉 .
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images are used to compute a localization ROI, ΩLOC, at step 〈〈 L1 〉〉 . At step 〈〈 L2 〉〉 ,
the fluoroscopic images are loaded, and the control is passed to block 〈〈 F 〉〉 , where
temporal and marker enhancement filtering takes place, returning a MEF-image R,
that is defined on ΩLOC. Step 〈〈 L3 〉〉 corresponds to 2D-3D image registration. In

the process of registration, we seek an optimal transformation T ∗ that solves a prob-

lem in the form of (5.0.1). The optimal transformation aligns the markers in the

2D template image W, produced from the 3D marker sets or models, Mk or Mmod
k ,

respectively, found in the 3D CBCT in block 〈〈 S 〉〉 , to the markers in R. Possible

constraints, bounds on variables, optimization stopping criteria, and other settings

are collectively referred to as localization parameters in Flowchart 5.1. The template

image generation methods and the distance measures used at step 〈〈 L3 〉〉 can be treated

as self-contained topics. Therefore, for the clarity of narration, we discuss them prior

to defining and discussing the solution to the optimization problem, and denote them

as steps 〈〈 L3A 〉〉 and 〈〈 L3B 〉〉 in Flowchart 5.1. Once T ∗ is found, it is applied to the 3D

marker positions ck3D at step 〈〈 L4 〉〉 in order to obtain the 2D marker positions ck2D.

Although many references are available on the image registration framework

and its components [149, 150, 19, 57, 75, 143, 69, 83, 138, 81, 119, 145, 34], the

specifics of each application may require reasoning and experiments to select the most

appropriate combination of component techniques. In our case, we did not want to

use any ready-made configuration offered in the literature as we perform registration

between unique types of images: Although the initial imaging modalities are common,

we use novel processing techniques, such as the MEF described in Section 4.4, and

template image generation approaches that will be discussed in Section 5.1. Therefore,

this chapter contains reviews of common techniques used in image registration, our

justifications based on knowledge about marker localization problem, and experiments

on our data sets that help to make choices for particular components of the registration

problem.

After Section 5.1, in which we propose three methods for template image gen-

eration that are designed specifically for the markers, we proceed by selecting an

appropriate distance measure among the commonly used functions based on experi-

ment results on our data sets in Section 5.2. Further, Section 5.3 provides details on

our image registration problem formulation. Based on the literature and experiments

on our data sets, we select a geometric transformation function in Sections 5.3.1 and

5.3.2. To perform the minimization, we use one of the standard techniques. However,

as our minimization problem is generally non-convex, we perform a thorough eval-

uation of techniques and their combinations to select an appropriate starting point

in Section 5.3.3. The overall performance of the 2D marker localization procedure

on our testing data sets is used to select the kernel width for the Dolph-Chebyshev
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temporal filter in Section 5.4. The chapter is concluded by a brief review of failure

detection and prevention techniques in Section 5.5, and a discussion of the results in

Section 5.6.

5.1 Template Image Generation

This section describes our novel marker specific template image generation methods.

It is referred to as step 〈〈 L3A 〉〉 in Flowchart 5.1.

As was discussed in Section 1.2, a conventional way to perform 2D-3D image

registration between a 3D CBCT and a 2D fluoroscopic or x-ray image is to register

the 2D image to a template image synthesized from the 3D CBCT, a digitally recon-

structed radiograph (DRR). In general, creating a DRR is a computationally expensive

procedure, especially if it has to be computed multiple times as a part of an iterative

optimization scheme, which is often the case in image registration, and is indeed the

case in our 2D marker localization procedure (Section 5.3.3).

Unfortunately, high computational cost is not the only disadvantage of the

conventional DRR method if used in our marker localization procedure. As the DRR

simulates an x-ray projection image, it is naturally prone to the same issues that arise

in projection. In particular, in addition to the markers, the DRR will also include

the “projections” of multiple anatomical features present in the CBCT image. This

will worsen the CNR of the markers and make registration between the markers in

the MEF-image and in the generated template extremely challenging. As the fiducial

markers are the indicators of the target position, we are interested to align the markers

in the two images rather than any other structures.

In the fluoroscopic image, we have overcome these problems by applying tem-

poral and MEF filtering (Chapter 4). To ease the computational burden, and to

perform registration based mainly on the markers, we propose to use the techniques

described in this chapter to create a selective DRR image that is formed from the

3D marker sets or models computed from the 3D CBCT image as was explained in

Chapter 3. This approach allows us to create two images, the MEF-image and the 2D

template, that have very similar intensity characteristics; both display bright markers

on a dark background (given that the segmentation and filtering procedures described

in Chapters 3 and 4 were successful).

In the remainder of this introduction, we provide a brief overview of the meth-

ods for DRR generation reported in the literature, discuss our novel marker specific

selective DRR approaches, and how they are related to the existing techniques. The

previously developed methods include raytracing [201, 120, 90], shear-warp factoriza-

tion [115, 42], attenuation fields [185, 181], splat rendering [28, 232], and point based
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methods [7, 197].

The first proposed method is the marker model DRR, which is based on the

principle of raytracing [201], that is, the intensities in the template image are com-

puted by accumulating the intensities in the 3D imaging data encountered as the

ray is traced from the x-ray source to the detector. Our approach differs from the

standard method in that we use the 3D marker models instead of the raw data. As

the marker models are continuous mathematical representations, this allows for an

elegant analytical solution as compared to the process of counting voxels and their

intensities used in the original method.

The second method, a voxel splat DRR, operates on the 3D marker sets. It is an

extension of the original splat rendering technique [232], which was proposed to gener-

ate 2D images from 3D data for orthographic views. The method is based on the idea

that each voxel’s intensity is spread among multiple pixels that lie within the extent

of the projected volume of the voxel (footprint). However, in the case of perspective

projection, such as used in our problem, the computation may become prohibitively

expensive, and some modifications have been proposed to obtain a reasonable image

quality in reasonable time [28]. Due to the fact that for the DRR generation we only

use voxels that belong to the 3D marker sets, our modification of the original method

allows to extend it to perspective projection views while maintaining a reasonable

computational cost.

The results presented in Section 7.1.7 suggest that it may not be possible to

precisely recover orientations of the fiducial markers from the CBCT images with the

voxel sizes of above 1 mm, making it unreasonable to use the marker model DRR.

Also, large voxels will produce unreasonably large splats, making it impractical to

use the voxel splat DRR. Hence, we propose a third approach, a marker splat DRR,

inspired by the voxel splat approach. It produces a single splat for each 3D marker in

the template image. The size of the splat, which has a circular symmetry, is related

to the marker dimensions. Sections 5.1.1, 5.1.2, and 5.1.3 describe the details of the

marker model, voxel splat, and marker splat DRR methods, respectively.

5.1.1 Marker Model DRR

In this section, we propose a DRR generation method that uses the 3D marker models,

Mmod
k , k = 1, . . . , n, computed in the segmentation block 〈〈 S 〉〉 (Section 3.4). It is re-

ferred to as the marker model DRR (MMDRR). The proposed method is similar to the

raytracing technique that was designed to produce 2D images from a 3D volume, and,

among other applications, was also used for DRR generation [26, 241, 201, 120, 90].

The raytracing method numerically approximates radiographic image formation pro-

cess, according to which, under a number of simplifications [94, 26], the non-diffracting
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homogeneous x-rays attenuate as they pass through the matter. This results in dif-

ferent measurements on the detector elements depending on the properties of the

material and the length of the path in the material that the x-rays went through on

their way. Each ray contributes to the intensity of some pixel by a value proportional

to
∫
ray

µ(p)dp, where µ(p) is an attenuation coefficient of the matter at the point

p ∈ ray ∈ R
3. The attenuation coefficients are related to the voxel intensities in

the CT and CBCT images [94, 26]. For discrete images, the raytracing involves the

detection of the voxels p̌1, . . . , p̌m through which a particular ray passes. Often, to

simplify computation, the 2D pixel intensity is computed as a value proportional to∑m
i=1 µ[p̌

i], i.e., the path lengths of the ray inside the voxels are neglected, e.g., [26].

Instead of tracing through the discrete data, i.e., through the voxels of the 3D

image, we propose to compute the rays through the 3D marker models Mmod
k , which

are continuous entities. With this approach, high quality projections of the fiducial

markers are created that are limited only by the pixel size of the 2D image and do not

suffer from the discrete nature of the 3D image, as is often the case with the DRRs

created by the conventional raytracing technique.

The following discussion assumes that the imaging system was rotated to its

initial position, such as displayed in Figure 2.5, i.e., the x-ray source psrc is located on

the positive part of the X axis, and the isocentric plane H coincides with the YZ plane.

The points are in homogeneous coordinates (Appendix B). The cylindrical marker

model can be mathematically described as the intersection of an infinite cylinder of

a radius r and two parallel planes that are perpendicular to the cylinder’s axis. Let

c3D denote the cylinder’s centre point, and e1 and e2 its endpoints, i.e., the points of

intersection between the cylindrical axis and the planes (see Figure 5.1). Then, we

define the marker model Mmod as a set of spatial points s such that:

Mmod =





sTAcyl s ≤ 0,
(s− e1)T (e1 − c3D) ≤ 0,
(s− e2)T (e2 − c3D) ≤ 0,

(5.1.2)

where the matrix Acyl is comprised by the cylinder’s shape, and spatial position and

orientation matrices that are computed using the cylinder’s radius r, and the points

c3D, e
1, and e2. A detailed derivation of Acyl that is given in Appendix C.3.

The intensities of the points that constitute the projection of the marker model

are computed in the following way. We assume that the x-rays attenuate equally at

any point inside the marker model. We assume that µ(p) = 1 for the points inside

Mmod and µ(p) = 0 outside of it. Therefore, we compute an intensity at some point

on the isocentric plane, piso, as the length of the part of the ray from psrc to piso that

falls inside the marker model. As shown in Figure 5.1, this is the distance between

sin and sout, i.e., the points of intersection between Mmod and the ray. Hence, the
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MmodH

rc3D
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Figure 5.1: Raytracing for the cylindrical model.

projection of one marker model Mmod
k results in the following intensity in point q in

image Wk:

Wk(q) = ‖sin − sout‖, (5.1.3)

where q ∈ R
2 is the point whose coordinates are expressed in the UV coordinate sys-

tem, and which geometrically corresponds to piso, expressed in the XYZ coordinates.

Under the assumption that the imaging system is in the initial position, the relation-

ship between q and piso is q = (−pisoz ,−pisoy )T , as defined in Equation (B.5.3) and the

accompanying explanations. Finally, the projection images of all marker models Wk

are combined into the MM DRR image as:

W =

n∑

k=1

Wk (5.1.4)

with the subsequent scaling of the intensities in W to the interval [0, 1].

Figure 5.2 demonstrates an example of a cylindrical model of radius r = 0.8,

height h = 5 that is rotated at 45◦ around Y, 45◦ around X, with the centre at

c3D = (5, 0, 0)T , i.e., it is oriented to be out of YZ plane. The centre of projection

(0, 0, 0)T is marked by the star. Figure 5.3 shows its integral projection on the plane

H computed by the MM DRR method.

N δa, Amplification of the marker model size

To demonstrate the method’s potential, Figure 5.3 shows the template image gen-

erated from the continuous marker model on a fine grid with the pixel size δpx =

0.02 mm, where the intensity values were computed for the rays going from the source

to the grid points, i.e., pixel centres. However, the pixel size in our fluoroscopic im-

ages is larger, namely 0.2604 mm at the isocentric plane. Taking into consideration

the small marker size, 3 × 0.8 mm, it may be necessary to shoot multiple rays to

cover each pixel sufficiently, where the pixel’s intensity will be the mean (or sum)
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Figure 5.2: Cylindrical model.
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Figure 5.3: Template image.

of the intensities in all points within the pixel. Otherwise, if only the central point

within each pixel is used, the marker model’s projection may appear smaller than it

should be. This effect can be observed in Figure 5.4, where the centres of the pixels

marked by unfilled circles will produce W(q̌) = 0, although these pixels should have

some intensity as part of their area is within the marker model projection edge (solid

line). As the increase in the number of rays inevitably increases the need for compu-

tational resources, we took an alternative approach: Enlarging the marker model in

3D before the template image generation requires virtually no additional computation

and produces desirable results. In Figure 5.4, the enlarged model and its correspond-

ing projection are shown using dashed lines. If the model in 3D is increased by an

amount that corresponds to half the fluoroscopic pixel size in 2D, the centres of the

pixels whose area is partially covered by the projection of the original model will be

included inside the projection of the enlarged model. The enlargement is done by

extending the model’s radius r by δr and moving its endpoints, e1 and e2, away from

its centre c3D by δh:

rnew = r + δr,

e1,2new = c3D + (e1,2 − c3D)
‖e1,2 − c3D‖+ δh
‖e1,2 − c3D‖

.
(5.1.5)

Ideally, δr = δh = δpx/(2κ), where κ is the 3D to 2D scaling factor for the size of the

object that is located in the proximity to the point c3D defined in Equation (B.5.5).

However, the generated template will have to be registered to the MEF-image. Taking

into account that application of the MEF to fluoroscopic images tends to make the

markers slightly more rounded, we set δh = 0, i.e., the enlargement is only performed

for the marker model radius.
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Figure 5.4: Enlargement of the marker model. The real-sized marker model and its
projection are shown in solid lines and their enlarged counterparts in dashed lines.
Enlargement of the model ensures that non-zero intensity is assigned to the pixels
that contain marker model edge and whose centres are shown by unfilled circles.
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Figure 5.5: Marker model DRR for of a CBCT image of the RSVP (left) and the
corresponding MEF-image (right).
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Figure 5.5 shows a sample MM DRR generated from the marker models com-

puted for a CBCT image of the RSVP with 0.5 mm voxels (left) and a corresponding

MEF-image (right), to which the registration will be later performed. The implemen-

tation details are provided in Appendix D.3 and summarized in Algorithms D.10 –

D.12.

5.1.2 Voxel Splat DRR

In this section, we present a voxel splat DRR (VS DRR) method that can be used when

the orientation of the marker models can not be computed reliably from the CBCT

images, such as for some CBCTs with 1 mm voxels or larger. It is also applicable to

irregularly shaped fiducial markers, such as long flexible coils [7]. As opposed to the

MM DRR, in which the intensity values at each grid point are computed by raytracing

through the marker model, the proposed method aims to form a template image by

projecting each CBCT voxel onto the isocentric plane. As can be seen in Figure 5.6, a

simple binary image created by projecting the voxel centres onto the pixel grid with the

nearest neighbour interpolation to the closest pixel centre can only provide acceptable

image quality if the fluoroscopic pixels and the CBCT voxels are of similar sizes, such

as δpx = 0.2604 mm and δvx = 0.25 mm (top figure). For δvx > 0.25 mm (middle and

bottom figures), the binary images do not produce contiguous projections of the 3D

markers, and are not suitable for subsequent image registration to the MEF-image.

Therefore, the voxel size should be taken into account.

The proposed VS DRR method is derived from splat rendering techniques [232,

153, 250, 28]. Westover [232] presents a method for image generation from 3D discrete

data sets for orthographic views, which can be summarized as spreading a single

voxel’s intensity onto multiple pixels that lie within the extent of the voxel’s projection.

Hence, in the generated image, every pixel can contain a sum of contributions from

multiple voxels. The method exploits the idea that continuous volumetric data can be

obtained by convolving the 3D samples (voxel intensities) with some reconstruction

kernel function. Then, the contribution from a voxel to a pixel can be computed by

multiplying the voxel’s intensity by its footprint, which is essentially an integration

through the 3D kernel along the viewing direction originating from the pixel centre.

In orthographic projection, each voxel will have the same footprint for a particular

view. Hence, to omit repeated computation, a footprint table is built once on a fine

grid at a preprocessing step, and then the footprint values are interpolated from it

for every pixel. The integration along the viewing axis can be substituted by using a

2D cone, Gaussian, sinc or bilinear functions [232]. Birkfellner et al. [28] proposed a

perspective volume rendering of x-ray images from the CT called wobbled splatting. In

a perspective projection, each voxel’s footprint has to be computed separately, and the
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Figure 5.6: Binary images created by projecting the voxel centres onto the pixel
grid and using the nearest neighbour interpolation may only demonstrate acceptable
quality if the voxels and pixels are of similar sizes (top figure) but are of little value
if the voxels are larger (middle and bottom figures).
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computational burden is eased by using only the voxels with intensities above a certain

threshold for DRR generation. This is particularly suitable for applications focused

on analysis of the bony structures. In [28], a truncated Gaussian kernel is used. The

authors argue that the use of a large kernel is too expensive, and propose to overcome

aliasing artifacts in the projection images by stochastic motion of parameters in the

splatting process, in particular, Gaussian motion of voxels and the viewpoint.

Similar to Westover [232], we use a 2D Gaussian function to model the voxel’s

integral projection in 2D:

G(q, σ) = exp

(
−‖q‖

2

2σ2

)
. (5.1.6)

In order to extend the method to perspective projection, we have to take into account

the fact that the 3D positions of the voxels (in the relation to the x-ray source and

the isocentric plane) influence the sizes of projections of these voxels in 2D. Hence,

we modify the method by using the Gaussians of different scales, σi, for different

voxels. The method remains computationally efficient as a very limited number of

voxels are used, namely those belonging to the 3D marker sets segmented as explained

in Chapter 3. Unlike in [232], no preliminary footprint lookup table is computed, and

no interpolation is required.

Let Mk be the kth 3D marker set, and |Mk| be the number of points in this

set. For every voxel centered at p̌i ∈ Mk, we put a Gaussian “splat” in the 2D point

where the voxel’s centre projects, P(p̌i), where P is the 3D to 2D projection operator

defined in Equation (B.5.4). Hence, a projection of one marker set is defined as:

Wk(q) =

|Mk|∑

i=1

wi G(q − P(p̌i), σi), (5.1.7)

where the weights wi are the the corresponding voxel intensities V[p̌i] scaled to the

interval [0.1, 1] as described in Section 3.2. The choice of the Gaussian scales σi is

explained below. Similar to the MM DRR, the VS DRR is computed by summing

the projections of all sets (see Equation (5.1.4)), and rescaling the resulting image to

the interval [0, 1].

N σi, Gaussian scales of voxel splats

Appropriate values for σi depend on the CBCT voxel size, δvx, and the positions

p̌i ∈ Γ3 of the corresponding voxels. The idea behind the choice of σi is that if the

marker set points belong to the neighbouring voxels, the sum of the corresponding

Gaussians should also form a contiguous high-intensity feature in the 2D template

image. Let δi = κ δvx be the size of the voxel projection to 2D, where κ is the 3D
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Figure 5.7: The scales σi of the voxel splat Gaussians (thin lines) affect the smoothness
of their sum (bold lines). In general, the smoothness increases for larger values of α,
as demonstrated from left to right for α = 0.3, 0.5, and 0.7. We select α = 0.5.

to 2D scaling factor for the size of the object that is located in the proximity to the

point p̌i defined in Equation (B.5.5). Then, the Gaussian scales are computed as:

σi = α δi, (5.1.8)

where α is a positive scaling factor. Figure 5.7 demonstrates a 1D example of the

Gaussians of different amplitudes wi separated by δi = 1 mm with α = 0.3, 0.5, and

0.7. As α increases, the individual Gaussians (thin lines) become wider, and their

sum becomes smoother (bold line), which is desirable for image registration. However,

it also makes a cluster of high-intensity points larger, which may increase geometric

uncertainty when registering to the smaller markers found in the MEF-image. Fig-

ure 5.8 shows the template images generated from the marker sets segmented in the

CBCTs of the RSVP with 0.5 (left column) and 1 mm voxels (right column) and

different values of α. We conclude that α = 0.5 is a good tradeoff for the proposed

application.

Figure 5.9 shows a sample VS DRR image generated from the marker sets

found in a Quasar CBCT image with 0.25 mm voxels (top) and RSVP CBCT images

with 0.5, 1, 2, and 4 mm voxels (middle and bottom). The implementation details are

provided in Appendix D.3, and summarized in Algorithm D.13. General considera-

tions and the examples in Figure 5.9 suggest that while the method works quite well

for high to medium CBCT resolutions, there is little benefit of using it when the size

of the marker is similar to the size of the voxel, such as 2 or 4 mm. That observation

led us to the development of the marker splat DRR generation method presented in

the next section.

5.1.3 Marker Splat DRR

The marker splat DRR (MS DRR) method is simple and computationally efficient

(sample computational times for all three image generation methods are provided in
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Figure 5.8: Voxel splat DRRs generated for different values of α from the marker
sets segmented in the RSVP CBCTs with 0.5 (left column) and 1 mm voxels (right
column). The value of α = 0.5 allows to generate contiguous features (compare to
α = 0.3) but does not oversmooth the markers (such as with α = 0.7).
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Figure 5.9: Voxel splat DRRs generated from the marker sets found in a Quasar
CBCT with 0.25 mm voxels (top) and RSVP CBCTs with 0.5, 1, 2, and 4 mm voxels
(middle and bottom).
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Section 7.3.4). It does not take marker orientation into account, only the position,

and can be used for CBCT images of any resolution, including images with large

voxels. This method can be viewed as a simplified version of the VS DRR described

in Section 5.1.2, in which, rather than having the 2D Gaussians for all voxels belonging

to the marker sets, one Gaussian (of a larger scale) is used for each marker:

Wk(q) = G(q − P(c3D), σ), (5.1.9)

where c3D is the centre of the kth marker, and the choice of σ is explained below. The

MS DRR is formed by summing Wk (Equation (5.1.4)) and rescaling the resulting

intensities to the interval [0, 1]. Unlike voxels, which possess various intensities, all

markers are treated equally, and therefore the Gaussians in (5.1.9) are not weighted.

N σ, Gaussian scale of marker splats

In the process of registration between the generated template and the MEF-image, the

distance measure function compares the intensities in the images directly or constructs

some measures based on the intensities (Section 5.2). Due to this fact, it is desirable

that the scales of the marker splat Gaussians are selected so that the clusters of high

intensity points created by the Gaussians are of comparable sizes to the markers in

the MEF-image, such as schematically shown in Figure 5.10 (centre). To estimate

an appropriate value for σ, we performed a least-squares fit between the Gaussian

(dashed line in Figure 5.11) and an idealized marker lengthwise profile defined as 1

for points −1.5 ≤ q ≤ 1.5 mm and 0 otherwise (solid line). The optimal value found

was 1.1692 mm. Therefore, we select σ̂ = 1 mm. Then, σ = κσ̂, where κ is the 3D to

2D scaling factor for the size of the object that is located in the proximity to the point

c3D defined in Equation (B.5.5). Therefore, for different marker splats their scales σ

depend on the 3D positions of the corresponding markers.

Figure 5.12 demonstrates an MS DRR image generated from a CBCT image of

the RSVP with 0.5 mm voxels (left) and a corresponding MEF-image (right). Note

that the size of the high-intensity clusters generated by the Gaussians does not depend

on the size of the CBCT voxels, thus making the MS DRR method applicable to the

CBCTs with large voxels. Implementation details are provided in Appendix D.3, and

summarized in Algorithm D.14.

Summary

To conclude, any of the three methods proposed above can be used for marker specific

template image generation. As can be seen in Section 7.3.4, the success rates of image

registration with the use of the MM, VS, and MS DRR methods are quite similar on

our testing data sets: The MS DRR slightly outperforms the other two approaches by
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Figure 5.10: The selection of an inappropriate scale for the marker splat Gaussians
can increase geometric uncertainty (left and right) in the process of registration of
the generated template image (dashed circle) to the MEF-image that contains the
markers (solid rectangle). It is desirable that the high-intensity clusters created by
the Gaussian are of a size comparable to that of the markers in the MEF-image
(centre).
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Figure 5.11: The scale of the marker splat Gaussian is selected based on the best
least-squares fit between an idealized marker intensity lengthwise profile (solid line)
and a Gaussian (dashed line).
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Figure 5.12: Marker splat DRR generated from a CBCT image of the RSVP (left)
and a corresponding MEF-image (right).
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successfully registering several more images out of the hundreds of images undergoing

registration.

The ability to generate the markers in the template image that closely resemble

those in the MEF-image, such as produced by the VS and MM DRR methods, may

have the potential of more precise localization compared to the use of the MS DRR

method. However, on our testing data sets, the accuracy of all methods was very

similar (see Section 7.3.2). In addition, as can be seen from the detailed analysis in

Section 7.3.4, the localization accuracy can drop in the presence of streak artifacts and

errors in estimation of marker orientations in 3D. Therefore, to process the images

similar to those in our current testing data sets, we select the MS DRR method as

the most reliable and efficient in our Matlab implementation (the computational cost

is discussed in Section 7.3.4), while the VS and MM DRR methods can successfully

be used for the CBCT images of better quality. For other applications, where the

markers are of an unknown shape or size, in particular, long flexible coils or spiral

stents, the VS DRR is likely to be the most appropriate method.

5.2 Distance Measures

Before presenting the details of the proposed 2D-3D image registration problem, we

would like to discuss the selection of a distance measure function, D, introduced

in (5.0.1), the minimization of which is referred to as step 〈〈 L3B 〉〉 in Flowchart 5.1.

The function D aims to quantify the difference between the images. Depending

on the assumptions about the images, such as whether they belong to the same or

different modalities, whether there is a linear dependance between the grayscale values

in the images, whether the edges of the structures may provide a reliable base for

registration, and the nature of the noise in the images, different distance measures

can be used. References [83, 84, 239, 172, 203, 241] contain definitions, discussions and

evaluations of the distance measures typically used in medical image registration. For

the convenience of the reader, we present a concise review of commonly used functions

in Appendix C.4. In this section, we compare these functions in application to our

image registration problem and select the most appropriate one. In spite of abundant

literature on distance measures, our selection has to be based on experiments with

our own images, as both the generated template and the MEF-image are created by

the novel processing techniques.

The selection of the distance measure is governed by the necessity to be able

to achieve desirable registration accuracy in reasonable time. In general, this requires

a function that can produce monotonically decreasing, or at least non-increasing, val-

ues towards the desired solution. A common practice to evaluate different distance
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Figure 5.13: The MEF-image of the RSVP and three template images generated from
the 3D markers: marker model (MM), voxel splat (VS) and marker splat (MS) DRRs
(from left to right).

measure functions is to conduct experiments with the typical images for a given reg-

istration task, e.g., [203, 83, 172, 241]. Likewise, we select an appropriate function

based on logical arguments originating from our specific registration problem, and

evaluate the application of the distance measures defined in Appendix C.4 to our

typical images. We also compare computational time of our implementations.

In our experiment, we compute 2D profiles of the distance measure functions

between the MEF-image of the RSVP and the three generated template images:

marker model (MM), voxel splat (VS), and marker splat (MS) DRRs, described in

Sections 5.1.1, 5.1.2, and 5.1.3, respectively. The images are shown in Figure 5.13.

The distance measure profiles presented in Figures 5.14 and 5.15 were computed by

extending the background of each of the the template images, shifting the MEF-image

along the U and V directions on a pixel grid,2 and computing a distance function value

for each shift. The distributions of the computational times are shown in Figure 5.16.

We observed the following:

• Intensity differences: Sum of squared differences, DSSD (C.4.1), and sum of

absolute differences, DSAD (C.4.2). These measures are attractive due to their

simple implementation and small computational times. In their conventional

definitions [83], the sums of the squared and absolute differences are divided by

the total number of pixels in the registration ROI, ΩLOC. This is to account

2Shifts are multiples of the pixel size and no interpolation is required. For each image, the distance
function was evaluated at 53,361 positions.
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Figure 5.14: DSSD (1st row), DSAD (2nd row), and DNNCC (3rd row) for MM (left
column), VS (middle column), and MS (right column) DRRs.
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Figure 5.15: DMI (1
st row), DNMI (2

nd row), DPI (3
rd row), and DGD (4th row) for

MM (left column), VS (middle column), and MS (right column) DRRs.
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for possible changes in the overlap between the two images, i.e., variations in

the size of ΩLOC. This is a reasonable approach for images where the most

of the pixels in ΩLOC contain information, i.e., have grayscale values different

from zero or other value denoting an empty background. However, in our case

the markers occupy a very small part of ΩLOC. Hence, the division by the total

number of pixels will result in very small function values that change very slowly,

i.e., in an almost flat function shape. This may complicate the design of an

optimization method. In particular, for the iterative optimization scheme that

we use (Section 5.3.3), it will be challenging to decide on the stopping criteria,

such as the minimal change in the function value for which the optimization

search should continue. In our case, it should probably be very small to achieve

a reasonable registration accuracy. However, having it too small may result in

the increase of computational time.

Another possibility is to divide by the number of pixels that contain useful

information, i.e., by the estimated number of pixels that are occupied by the

markers. However, the extension of this approach to multiresolution or reduced

resolution schemes (explained in Section 5.3.3) is not straightforward.

Finally, the scaling can be dropped altogether, such as in the results shown in

Figure 5.14 (1st and 2nd row). Although bothDSSD and DSAD provide reasonable

distance measure function shape, the main drawback is that the range of values

taken by the distance measures depends on the pixel intensities in the images

and on the size of ΩLOC.

• Correlation: The negation of normalized correlation coefficient, DNNCC (C.4.3).

As reviewed in Appendix C.4, the NCC was successfully used in many appli-

cations. Similar to DSSD and DSAD, DNNCC has a reasonable function shape

shown in Figure 5.14 (3rd row). In particular, the peak is not too narrow at its

base, and is sufficiently sharp around the minimum point, the properties neces-

sary for a reasonable capture range3 and accuracy. In addition, the NCC has

another important advantage: it is scaled from -1 (inverted images) through 0

(no correlation) to 1 (identical images), which makes it independent of the pixel

intensities and the ROI size. However, due to the normalization, the NCC can

be quite sensitive in regions of near uniform intensity, and has the potential

to artificially increase where a marker does not exist. In our application, the

background of the generated images is explicitly set to zero. These areas are

easily detected, and this sensitivity is mitigated.

3The size of the region around the global optimum of a registration problem, for which the
selection of a starting point from this region allows a local optimization method to reach the global
optimum. More discussion is provided in Section 5.3.3.
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• Information theoretic techniques: mutual information, DMI, and normal-

ized mutual information, DNMI, defined in Equations (C.4.6) and (C.4.7), respec-

tively. These distance measures are mainly used for multi-modality registration,

as they do not assume a linear relationship between the intensity values in the

images. Although they successfully register our test images, they are more

expensive computationally than all other tested measures, as demonstrated in

Figure 5.16. Also, they tend to have a slightly wider almost flat area around

the minimum in comparison to DSSD, DSAD, and DNNCC, which can reduce reg-

istration accuracy due to premature termination of the optimization algorithm.

It can be seen in Figure 5.15 (1st and 2nd rows) for the case of the MS DRR,

and to a less extent for the VS DRR, i.e., when the shapes of the markers in

the two images are different.

• Gradient measures: Pattern intensity, DPI, and gradient difference, DGD,

defined in Equations (C.4.9) and (C.4.11), respectively. Essentially, both DPI

and DGD rely on the assumption that the edges of the structures in the images

should coincide when the images are aligned. Then, they are likely to perform

well for the MM DRR, reasonably for the VS DRR, and perhaps not so well for

the MS DRR, as in the last case the shapes of the markers in the MEF- and

generated template images are considerably different. This is confirmed by the

testing, the results of which are shown in Figure 5.15 (3rd and 4th rows). Hence,

these distance measures are not suitable for our registration task.

Based on the analysis above, we select DNNCC as the distance measure for the reg-

istration problem of the proposed marker localization approach. It is characterized

by a reasonable function shape for all three image generation methods, is scaled to

a known range, which makes the selection of optimization stopping criteria straight-

forward, and is efficient to compute, which is important taking into account the need

for multiple evaluations within the iterative optimization procedure.
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Figure 5.16: Distributions of computational cost for different distance measures com-
puted between the MEF-image and the template images generated with the MS, VS,
and MM DRR methods shown in Figure 5.13. The times for DPI are significantly
different for the MM, VS, and MS DRRs as the number of points for which the com-
putation is performed depends on the size of the markers in the generated image (see
Appendix C.4).

5.3 2D-3D Image Registration

Following the discussion of the template image generation methods in Section 5.1 and

distance measure functions in Section 5.2, this section puts the pieces together by

formulating the 2D-3D image registration problem that is instrumental in the process

of marker localization in 2D space, and offering strategies for solving it. It is referred

to as step 〈〈 L3 〉〉 in Flowchart 5.1. We present details on the geometric transformations

in Sections 5.3.1 and 5.3.2, and optimization strategy, including the selection of the

starting point for the iterative procedure, in Section 5.3.3.

The top-level formulation for image registration problem was given in Equa-

tion (5.0.1). As was explained in Section 2.2, we assume organ rigidity, which allows

us to use rigid geometric transformations. Therefore, the search for an optimal trans-

formation T ∗ in our case means the search for the vector of optimal transformation

parameters a∗, consisting of translations and rotations. LetR denote the MEF-image,

and Wa the generated template image transformed by T (a, ·). Then, the search for
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optimal transformation parameters can be formulated as:

a∗ = argmin
a
D (Wa,R),

s.t. a ∈ Λ,
(5.3.10)

where Λ is a set of feasible parameter values, the choice of which will be discussed in

Section 5.3.1. The distance measure D, which is referred to as the objective function,

is computed only over the points in the localization ROI, ΩLOC, found as explained in

Section 4.3. In the problem we consider, Λ is compact and D(·, ·) is continuous, and
hence by the Weierstrass’ theorem [25] a minimizer exists.

5.3.1 Bounds on Optimization Parameters

In the optimization problem (5.3.10), the values of the geometric parameters a are

restricted to lie in a feasible set Λ. These constraints are used to ensure that the

solution is reasonable: The fiducial markers are, indeed, enclosed within the organ,

and can not exhibit an unreasonably large motion within a calmly lying patient.

It is traditional in radiation therapy to describe the patient rigid organ motion

in terms of the shifts along and rotations around the three patient axes, namely,

the left-right (LR), superior-inferior (SI), and the anterior-posterior (AP) directions.

Given the limited number of the predefined treatment positions, it is typical to have

the LR, SI, and AP axes of the prone or supine prostate patients aligned to the X, Y,

and Z axes, respectively. Therefore, it is natural to express the feasible set Λ as a box,

i.e., upper and lower bounds on a: amin ≤ a ≤ amax. In this thesis and the proposed

localization procedure, it is reasonable to select amin = −amax, i.e., |a| ≤ amax, where

≤ is an element-wise comparison.

The values for the elements of amax can be derived from the maximal observed

magnitude of the intra-fraction prostate motion between the CBCT and fluoroscopic

image acquisitions or on anatomical knowledge. We select amax by analyzing multi-

ple studies, which suggest that though the prostate motion is typically described as

irregular, it is characterized by the following trends:

• The appropriate dietary protocol, which is currently accepted in some clinics,

including the Princess Margaret Hospital where all our prostate patient image

sequences were produced, helps to reduce intra-fraction prostate motion [68,

206, 164].

• Prostate motion tends to be smaller in the patient’s LR direction (X axis),

and larger in AP and SI (Z and Y axes, respectively), as shown in [164, 16,

129] and multiple references in the reviews [68, 116, 38]. This means that the

largest prostate shifts should appear in-plane in the lateral fluoroscopic image

sequences. It can also be said that the prostate rotates around its apex, and
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its motion is mainly parallel to the YZ plane for supine and prone patients.

Therefore, the largest rotation in the 3D is also observed in-plane in the lateral

images as this is the rotation around the X axis.

• The maximal magnitudes of inter-fraction motion measured in 10 studies re-

viewed by Langen and Jones [116] cover the ranges of 7–14 mm for the AP,

4–9.9 mm for the SI, 2–9.3 mm for the LR, and 8–20 mm for the 3D displace-

ment. In a number of studies summarized by Byrne [38], it was concluded that

the intra-fraction motion tends to be smaller than the inter-fraction motion.

The studies that report on intra-fraction prostate motion differ in the patient

preparation protocols, such as dietary restrictions, the positioning particularities, such

as the use of immobilization devices and prone or supine patient positioning, the

number of patients involved in the study, the length of imaging sessions, the frequency

of image acquisitions, and finally, the methods to extract motion data from the images

and the formats in which the results are reported. We use analysis of the literature

to select such values for the elements of amax that are likely to include all possible

intra-fraction prostate displacements. Therefore, we focus mostly on the maximal

motion magnitudes reported.

We analyzed multiple studies that included manual, semi-automatic, and au-

tomatic methods of collecting the motion statistics from the images produced using

kV x-rays, fluoroscopy, ultrasound, EPID, MRI, and electromagnetic transponders.

A number of studies report the intra-fraction motion results in terms of the mean and

standard deviation values for the shifts along the patient axes, where all mean and

deviation numbers were below 2 mm [129, 108, 163, 174, 8, 68]. Langen et al. [117],

who used electromagnetic transponders to measure prostate motion, report that the

fraction of time during a treatment session for which the prostate was displaced more

than 10 mm from its initial position was 0.6%, 0.5%, 0%, and 1.3% for the AP, SI,

LR and 3D displacements, respectively. Two studies indicated no intra-fraction mo-

tion [190, 224]. The maximal values for the shifts that we discovered in the literature

were 23 mm, 24 mm, and 22 mm for the AP, SI, and LR directions, respectively,

observed in one of the patients in the study by Kitamura et al. [103], and 25 mm

in the 3D measured by Kron et al. [110]. Most of the other shifts were well within

10 mm, as reported in [88, 16, 103, 163] and referenced by Ghilezan et al. [68], with

the exception of 16.3 mm shift in the AP direction observed by Rosewall et al. [182].

Most studies indicate smaller LR displacements in comparison to the shifts in AP and

SI directions.

Concerning the rotations, Aubry et al. [16] report the mean ± standard de-

viations of the rotations around the LR, SI, and AP directions to be −0.5◦ ± 5.8◦,

0.5◦ ± 3.8◦, and 0.4◦ ± 2.0◦, respectively. As the data on the intra-fraction rotation
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is very scarce, we also analyzed the studies regarding inter-fraction rotation. Similar

to [16], the three inter-fraction studies [206, 217, 131] also showed the largest rotation

around the LR axis. The total mean, the standard deviations of the means of different

patients, and the root-mean-square of the standard deviations of different patients are

all within 7◦.

Based on the literature review presented above, we assume the bounds of 20 mm

and 10◦ for the in-plane shifts and rotation (shifts along Y and Z axes, and rotation

around X axis in the XYZ coordinate system, or shifts along U and V, and a rotation

angle in the UV coordinate system), and 10 mm and 5◦ for the out-of-plane shifts

and rotation (shift along X axis, and rotations around Y and Z axes). Although,

in general, we expect the prostate motion to be smaller, the literature suggests that

large displacements can occasionally occur for some patients [103], and so we believe

these large parameter bounds are necessary to tune the system to work reliably with

data from different patients.

5.3.2 Geometric Transformation

As mentioned above, we assume organ rigidity between the CBCT and fluoroscopic

image acquisitions. Therefore, T (a, ·) is a rigid transformation. Several cases regard-

ing the number of degrees of freedom used in 2D-3D medical image registration are

reported in the literature:

• Let ti denote the shift and γi the rotation angle around the I axis. The 3D trans-

formation T 3D(a, ·) described in Appendix B.1, where a = (tx, ty, tz, γx, γy, γz)
T ,

models the 3D shifts and rotations of an imaged object in the most accurate

way, and is used in a number of studies, e.g., [26, 155, 85].

• However, the imaging system may not be sensitive enough to detect the out-

of-plane displacements. Therefore, the use of the 2D transformation T 2D(a, ·)
described in Appendix B.2, where a = (tu, tv, γ)

T , can be justified, e.g., [7].

• Some approaches intend to determine the 3D shifts and rotations, but argue that

minimizing the distance measure in a 6-dimensional search space is prohibitively

expensive for some applications [64, 187, 29]. They propose to move a part of

the computation to the preprocessing stage [64, 187], or to use geometrical prop-

erties of the imaging system to split the problem into the subproblems of lower

dimensions [29]. In particular, Fu and Kuduvalli [64] and Sarrut and Clippe [187]

propose to compute a number of DRRs where the 3D volume is transformed by

a number of the most typical out-of-plane transformations. During the registra-

tion in [187], the precomputed DRR that is the most similar to the 2D image

defines the out-of-plane transformation parameters, while the in-plane param-
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eters are computed from 2D-2D registration. In [64], the 2D transformations

from two orthogonal projections are used to estimate the 3D parameters with

the use of a limited number of precomputed DRRs. Birkfellner et al. [29] ob-

served that the rotation around the viewing axis can be decoupled from the

other two rotations and three shifts, and hence, the search space is reduced to

five parameters for the first step of the approach. Then, the DRR is generated

from the volume transformed by these five optimal parameters. Finally, another

registration step between the 2D image and the DRR is carried out with the

2D rotation-only function, which allows to determine the optimal value for the

remaining rotation parameter around the viewing axis.

The maximal allowed out-of-plane shifts and rotations that we defined in Sec-

tion 5.3.1 were 10 mm and 5◦, respectively. In our three patient testing data sets,

the median 2D distance between the markers in the fluoroscopic images is around 23

mm. If the markers, that are located in the proximity to the isocentric plane, are

shifted in 3D by 10 mm out of plane (in the direction towards or away from the x-ray

source), the distance between them in the images will change by around 0.23 mm,

which is less than a pixel. If they are rotated 5◦ out of plane, this will translate into

a 0.1 mm change in the inter-marker distances, which is less than half of a pixel. The

change in the marker size resulting from the maximal out-of-plane shift and rotation is

virtually undetectable, being around 0.26 and 0.07 pixels, respectively. Therefore, we

conclude that our imaging system may be not sensitive enough to adequately detect

an out-of-plane motion.

To investigate the possibility of using the 2D transformation function, we con-

ducted several experiments. As reported in Section 7.3.2, the accuracy of the regis-

tration quantified with the fiducial registration error (FRE) is only slightly better for

the 3D geometric transformation compared to the 2D: Although the mean ± standard

deviation values are quite similar, ranging from 0.09 ± 0.02 mm to 0.11 ± 0.04 mm

for the three template image generation methods and 2D or 3D transformations, the

maximal FREs for using the 3D function take the range of 0.16–0.23 mm while the

2D transformation is characterized with slightly higher errors of 0.24–0.25 mm.

Another experiment, described in Section 7.3.3, examines the ability of the

localization procedure with the 3D geometric transformation to sensibly detect the

out-of-plane displacements. The presented results suggest that the imaging system

is not sensitive enough to detect these displacements. While the localization accu-

racy can be just slightly higher, the parameter values pertaining to the out-of-plane

displacements are quite meaningless. Finally, the comparison of the computational

cost presented in Section 7.3.3 that suggests a 4–6 times speedup for the optimization

procedure using the 2D transformation compared to the 3D function ultimately per-
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suades us that using the 2D transformation is a reasonable choice for the proposed

marker localization procedure.

5.3.3 Optimization

The solution to the minimization problem (5.3.10) can not be found analytically, and

we will use an iterative method to search for it. In general, iterative methods begin by

evaluating the objective function at a starting point a0, and proceed at each iteration

by trying to find another point at which the objective function value is smaller than at

the points found at the previous iterations. The optimization routine continues until

no further improvement can be found, or, more specifically, until the optimization

stopping criteria are satisfied.

Problem (5.3.10) is a non-convex constrained optimization problem: Regardless

of the distance function properties, a transformation function that includes rotation

is not convex, and the optimization search can be trapped in a local minimum. Con-

vexity is discussed in Ben-Tal and Nemirovski [22] and Boyd and Vandenberghe [33].

Multiple global optimization strategies are offered in the literature (a review can be

found in Pintér [175]). At a high level, most global optimization techniques operate

in one of two ways. Either they separate the feasible set into subsets with subsequent

comparison of the solutions found locally to select the one with the smallest objective

function value, or they replace the original problem by a sequence of subproblems

that are easier to solve. In general, these are non-trivial tasks, and in every particular

case preliminary knowledge about the problem is likely to be exploited in order to

make educated guesses about the separation of the feasible set, the selection of the

starting points, or the design of the subproblems/approximations that possess some

properties, e.g., convexity. For some problems, it may be possible to eliminate mul-

tiple optimization runs and approximations by selecting a good starting point in the

proximity to the global minimum.

In the proposed system, the use of the temporal and marker enhancement fil-

tering, as well as the marker specific template image generation approaches, helps

to reduce the number of the local minima associated with the noise and discretiza-

tion of the images, by forming two images with smooth amplified markers on a flat

background before the registration. The choice of the distance measure is also impor-

tant. For example, consider the smoothness of the DNNCC function and the clarity of

its minima demonstrated in Figure 5.17 that shows the central horizontal (left) and

vertical (right) 1D profiles of the 2D function profile from Figure 5.14 (bottom right,

where only the zoom-in into the global minimum is shown). The use of filtering and

template generation approaches creates a desired possibility of registering the images

by aligning the markers, while mostly excluding anatomical features and background
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Figure 5.17: A central horizontal (left) and vertical (right) profiles for DNNCC for the
MS DRR, the 2D zoom-in into the centre of which is shown in Figure 5.14 (bottom
right).
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Figure 5.18: For certain high-intensity pixel arrangements, the method of principal
axes transformation does not produce desirable results.

variations from consideration.

Unfortunately, this also creates a pitfall: It may be challenging or impossible

for an optimization method to find a direction in which the distance measure decreases

if the markers in the two images are too far from overlap, i.e., outside of the capture

range of the distance measure and optimization method. For example, in Figure 5.17

(left) the shape of DNNCC is flat around the shifts du = 10 or 20 mm along the U axis,

which means that it may be unlikely for an optimization method to find a decreasing

direction if a0 = (10, 0)T or a0 = (20, 0)T . A second issue is the existence of multiple

profound local minima, corresponding to matching of the wrong markers in the two

images, that can be seen in Figure 5.17 (right). Although our phantom images are

especially prone to this problem due to the periodicity of the marker placement (see

Figure 5.13), this can happen to the patient images, too.
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The problems of an insufficiently large capture range and multiple local minima

of the distance measure function are common in many medical image registration

applications. Several methods to overcome these issues are described in the literature.

The simplest one is manual selection of the starting point [135, 72]. As this method

is time consuming, and is not suited for automated processing of large number of

images, we have excluded it from consideration. The methods we considered include

the following:

• Pre-alignment by principal axes transformation [149, 145, 9]. In this

method, the image is treated as a density function or mass distribution. The

centroid of the image points, weighted by their intensity, is used as the ori-

gin, and the eigenvectors of the covariance matrix of these weighted points as

the axes of the object reference system. Hence, bringing into alignment the

centroids and axes of two images of similarly shaped objects yields their ap-

proximate registration. However, the method may not be reliable for certain

arrangements of the high-intensity points. Figure 5.18 (left) shows an example

of a generated template image with three equidistant marker splats. When this

image is rotated around its centre, i.e., the object reference system is rotated,

the principal axes should rotate by the same angle. However, as can be seen

in Figure 5.18 (right), because of this particular arrangement of high-intensity

points and image discretization, the difference between the rotation angle of the

object and its principal axes goes beyond ±60◦. Also, the centroid and prin-

cipal axes can be influenced by the noise and anatomical features that survive

filtering. Therefore, this technique can not be used in the unsupervised method

that we seek to develop.

• Multiple optimization runs [13, 213]. This method operates by selecting a

number of starting points, usually either randomly or by sampling the search

space uniformly, and runs optimization routine starting from each of these

points. Then, the solution that provided the best objective function value is

selected. To increase the probability of convergence to the global optimum from

at least one of the starting points, the domain has to be properly sampled.

This approach can potentially be more computationally expensive than other

methods, which is not desirable in our marker localization procedure.

• Exhaustive search over sampled parameter space [7, 26, 101] refers to

directly evaluating the distance measure function in a number of points from

the domain, and selecting the one that provides the smallest function value as

either the solution or the starting point for a more sophisticated optimization

procedure. Typically, the points are selected by sampling the search space uni-

formly. Similar to the case with the multiple optimization runs, the domain
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should be appropriately sampled to achieve acceptable accuracy or increase the

probability of finding a starting point from which an optimization method can

converge to the global optimum. This requirement may result in significant com-

putational cost, unless done for a simple geometric transformation and a small

number of points. For example, Adamson and Wu [7] performed an exhaustive

search with normalized correlation coefficient (NCC) at image pixel resolution,

i.e., a 2D shift only with the step size of one pixel in U and V directions.

• Multiresolution [155, 212, 20, 37, 150]. Also referred to as hierarchical or

multilevel strategies, multiresolution includes a number of methods [119], and

is generally described as a “coarse-to-fine” framework. Although varying the

complexity of geometric transformation or image registration method can also

be referred to as hierarchical approach, in this thesis by multiresolution we

mean a class of methods where the hierarchies consist of the levels of changing

data complexity. In this context, the goal of a multiresolution approach is to

smooth out the details in the images. Smoothing out is often combined with a

reduction in size. This is done to perform a rapid pre-registration between the

images on a coarse scale to reduce the possibility of a local optimum resulting

from matching wrong details. Then, the registration result from the coarser

level is used as the starting point for the registration at the next finer level,

and registration accuracy is expected to improve as the resolution increases.4

The image at the finest level typically corresponds to the original image. The

filtering of the image to obtain the coarse version (perceived as blurring) is often

performed by convolving the image with the Gaussian function [155, 212, 20, 37]

or by averaging the intensity of the adjacent pixels [150].

After analyzing the possibilities listed above in application to our registration

problem, we decided to focus our attention on multiresolution and exhaustive search

approaches. We evaluated the following strategies for the selection of a starting point

for the optimization procedure:

• Multiresolution with the Gaussian pyramid starting with a simple

projection (MR). The image at each successive level is formed by applying

Gaussian smoothing with an increasing scale and downsampling the image at

the previous level [155, 212, 20, 37]. Both the increase in scale and the down-

sampling are typically done with a factor of 2. The stack of images formed

by this approach is referred to as the Gaussian pyramid. The starting point

for the optimization at the highest level (most coarse) corresponds to a simple

projection of the 3D marker positions to the isocentric plane (in the UV coordi-

4This approach is referred to as sequential multiresolution registration. For some applications, it
may be more beneficial to perform registration between all levels simultaneously [212].
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nate system), i.e., no displacement is assumed and a0 is a vector of zeroes. The

intuition behind choosing the number of levels is that the images have to be

blurred until the markers form (i) a contiguous feature that (ii) is large enough

to overlap in the two images. For our images, we used six levels.

• Normalized 2D cross-correlation with multiple templates (NCC-MT).

The method of computing normalized correlation coefficient at the pixel level

resolution, such as used by Adamson and Wu [7], is referred to as the normalized

2D cross-correlation (NCC). Matlab offers an efficient implementation for this

exhaustive search approach in its normxcorr2 function, which we only perform

on the registration ROI. However, due to the fact that rotations are expected,

we upgraded the method by creating several template images rotated in-plane.

We will refer to this method as the NCC-MT. The number of the templates

and their rotation angles are selected based on the geometry of the marker

placement. The maximal 2D distance between the UV origin and any of the

markers in the fluoroscopic images of the three patient testing data sets is around

d ≈ 31 mm. For the fiducial markers of the size 3× 0.8 mm, let us assume that

the representative marker dimension is s = 2 mm. To efficiently cover the space

of possible rotations, we want to choose the rotation angles α for the templates

so that there exist two templates, for which the positions of some point, whose

distance to the origin is d, are not further apart than s after the rotation is

applied. This angle can be computed as α = 2 arcsin(0.5s/d) ≈ 3.7◦. We

select α = 3.5◦, and compute templates for the in-plane rotation angles {βi} =
{−nα,−(n − 1)α . . . ,−α, 0◦, α, . . . , nα}, where n ∈ N and nα ≤ γmax. In our

localization procedure, γmax = 10◦, therefore, {βi} = {−7◦,−3.5◦, 0◦, 3.5◦, 7◦}.
The rotation angle of the template that achieved the highest NCC value is

selected as the rotation angle for the starting point, γ0 = βi. As for the shifts

for the starting point, t0u and t0v, it has to be taken into account that in the NCC-

MT approach, the rotation is performed before the shifts, while the geometric

transformations defined in this thesis and used in our marker localization and

tracking procedures assume otherwise (see Appendix B). Therefore, t0u and t0v
have to be computed from the shifts that provided the maximal correlation value

and the rotation angle γ0 as detailed in Appendix D.4.1.

• NCC-MT on reduced resolution. In order to reduce the computational

burden associated with the NCC-MT method, we tried to reduce resolution of

the MEF- and the multiple template images before the NCC is computed. The

pixels in the reduced images are computed by averaging 3× 3 and 5× 5 blocks

of pixels in the original images.

• Multiresolution with the Gaussian pyramid and NCC-MT (MR +
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NCC-MT). Finally, we have also implemented a method based on the Gaussian

pyramid, where a smaller number of multiresolution levels is used, namely 3, and

the MT-NCC method is applied only at the coarsest level to obtain a starting

point for the registration.

All strategies described above are aimed at finding a reasonable starting point

a0, such that an optimization method that seeks a local optimum can be used to

solve Problem (5.3.10). We do not consider global optimization approaches. The

most frequently reported optimization methods used in medical image registration

are the Powell’s method [29, 41, 184], Nelder-Mead downhill simplex [7, 42, 101, 213],

steepest gradient descent [171, 167, 85, 102], conjugate gradient [104, 135], Quasi-

Newton [12, 70], and Levenberg-Marquardt methods [135], the detailed descriptions

of which can be found in the literature [45, 179, 104, 135].

To solve our optimization problem, we employ sequential quadratic program-

ming (SQP) approach, where a quadratic programming subproblem is solved at each

iteration [165]. We used an active set implementation of the SQP provided in Matlab

fmincon function. It demonstrated shorter computational time when applied to our

registration problem with similar registration success rates and accuracy in compar-

ison to other available methods, such as the trust region and interior point. The

average optimization run with the active set was about 6 times faster than with the

interior point, and 15 times faster compared to the trust region method.

To test the approaches for the selection of the starting point for the optimization

procedure described above (MR, NCC-MT on full and two reduced resolutions, MR

+ NCC-MT), we conducted an experiment on our phantom and patient testing data

sets, the details and results of which are described in Section 7.3.5. In the experiment,

we compared the marker localization success rates and average running times of the

registration procedure in our Matlab implementation. The following characteristics

were observed:

• The 6-level MR method was not able to reach a 100% success rate on any of

the patient testing data sets. Combined with a significant running time, this

method proves inadequate for the proposed marker localization procedure.

• The remaining four methods that used NCC-MT showed 100% success rates on

the test images. NCC-MT on full resolution and MR + NCC-MT methods have

similar execution times, which are consistently larger than those of the NCC-

MT on reduced resolutions, for both 3×3 and 5×5 pixel averaging approaches.

The use of reduced resolution results in an implementation that is 3–5 times

faster compared to the full resolution.

• The 3 × 3 and 5 × 5 pixel averaging methods are characterized with similar

running times. Taking into account small size of the markers, 3 × 0.8 mm,
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which in our fluoroscopic images results in about 12 × 3 pixel measurement,

we consider the NCC-MT method with 3 × 3 pixel averaging to be the most

reasonable choice, as the one that achieves efficient computation but does not

oversmooth the markers.

5.4 Selection of Temporal Filter Width

Taking into consideration that we have achieved a 100% registration success rate on

the testing data sets, as discussed in the previous section, the registration success

itself can not guide the choice of the temporal filter width, ℓ, that will be used in the

final configuration of our marker localization procedure. Therefore, we will base the

decision on general considerations and total running time of our Matlab implemen-

tation of the 2D localization procedure. The use of temporal filtering improves the

contrast-to-noise ratio (CNR) of the images, and while all images from the testing

data sets were registered correctly even without being temporally filtered (ℓ = 1), we

expect that images of other patients may have a lower CNR. Section 7.3.6 reports

computational cost of the 2D localization procedure depending on ℓ. The trend is

such that running time decreases for the larger values of ℓ. This is due to diminishing

computational cost of the MEF processing and optimization, as the process of group-

ing points in the MEF and image registration are faster when executed on smoother

images.

We select ℓ = 5, as the rate of time reduction becomes smaller around this

value. It can be viewed as being large enough to significantly improve the CNR, while

being small enough so as not to introduce too much blur for the moving markers: For

fluoroscopic image acquisition of 5.5 Hz, the use of ℓ = 5 allows to create an image

from the measurements acquired over an interval of just less than one second.

5.5 Failure Detection

In spite of many studies discussing topics in medical image registration, the literature

on failure detection is not abundant, and is mainly devoted to detecting tracking

errors, e.g., [196, 199, 214]. Some of these ideas may also be applied to localization

failure detection. Sharp et al. [196] introduced a set of error indicators that were

used to train an artificial neural network classifier to detect tracking errors. The

first indicator, a pattern recognition score, was based on the goodness of fit between

the marker template and the x-ray image (analogous to a distance measure value in

our localization procedure). The second indicator was the distance between rays: The

tracking was performed by two x-ray imaging systems, and so a 3D position of a marker
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Figure 5.19: Distributions of the objective function values, DNNCC, for the P1, P2,
P3, and RSVP data sets. The outliers (empty dots) for the P3 data set correspond
to registration failures on extremely noisy fluoroscopic images resulting from imaging
system issues, on which a human observer failed to localize the markers as well.

should have been close to the intersection of the rays going from the x-ray source to

the 2D markers. These first two indicators were also used by Shirato et al. [199].

In addition, the instantaneous velocity and acceleration of the marker were measures

of tracking stability over a short period of time. The system included a number

of manually set parameters, such as thresholds on error indicators and maximally

allowed errors. Tang et al. [214] used similar error indicators: an unreasonably small

correlation value between the template and the image; a large distance between the

marker positions in consecutive frames; and a significant change of the geometric

relationship between the markers that were tracked separately in consecutive frames.

Each detected marker was viewed as a hypothesis, whose probability to correspond to a

real marker was numerically evaluated by several scores dealing with intensity, position

and track’s correspondence to a breathing waveform. Thresholds on indicators and

scores were set empirically.

In the proposed marker localization module, we implemented three procedures

for failure detection and prevention. The first one is equivalent to comparing the

smallest found value of the distance measure to a manually set threshold similar

to other studies [196, 199, 214], and the other two are specific to our methods and

implementation:

• Optimal distance measure value. In general, a successful registration should
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result in a reasonably small objective function value. In our case, there is a

hope of expressing the notion of being “reasonably small” numerically, as the

objective function, i.e., the distance measure function DNNCC, is a negative of

the normalized correlation coefficient, where the latter ranges from -1 (inverted

images) through 0 (no correlation) to 1 (perfect match).

To analyze the distributions of the values of DNNCC on our data, we conducted

the following experiment: All images from all fluoroscopic sequences of the Pa-

tient 1, 2, and 3, and the RSVP, described as the P1, P2, P3, and RSVP data

sets in Section 7.3.1, were registered to their corresponding CBCT images, re-

sulting in 1618, 1619, 820, and 423 registrations, respectively. We used the 2D

rigid geometric transformation and the MS DRR generation method. The dis-

tributions of values of DNNCC for each data set are shown in Figure 5.19. In

this experiment, the 75th percentiles (top of the bold bars) for all data sets fell

below the −0.5 value, the largest among the data sets maximum was around

−0.3 (thin bars), and the registration failures (empty dots) were concentrated

around the −0.1 value. The registration failures happened in the cases of ex-

tremely noisy fluoroscopic frames found in the end of one of the sequences that

resulted from technical issues with the imaging system, and for which the suc-

cessful localization by a human observer was also not possible. Therefore, the

optimal objective function value can prove useful for failure detection in our lo-

calization problem. Based on the experiment described above, we suggest that

a registration producing DNNCC ≥ −0.2 is a candidate for localization failure.

• Optimization exit flag. In addition to the optimal parameters and the ob-

jective function value, fmincon can also return an exitflag parameter that

describes the reason for stopping of the optimization method. A successful reg-

istration corresponds to the situations when the change in the objective function

value or the parameters was less than a predefined tolerance, meaning that the

point is in the neighbourhood of a local optimum. The termination due to reach-

ing a maximum number of iterations or function evaluations is a candidate for

localization failure, and the situation where no feasible point found is definitely

a failure.

• Feasibility of the starting point. After the starting point a0 is computed by

the NCC-MTmethod, as described in detail in Section 5.3.3 and Appendix D.4.1,

it is verified that all of its elements satisfy |a0j | ≤ amax
j . The point a0 can be

infeasible due to the following reason: As explained in Section 4.3, the regis-

tration ROI within the MEF-image is formed as the minimal rectangular area

enclosing all projections of the 3D marker positions that is extended in the

U and V directions by a margin equal to the maximally possible 2D marker
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displacement. This displacement is computed based on information about the

geometric transformation used in registration and the bounds on transforma-

tion parameters, amax. While such ROI construction is simple to implement

and guarantees the inclusion of all possible 2D positions that the markers can

take in the MEF-image as a result of expected organ motion, it also includes

the positions that violate the bounds amax. If |a0j | ≤ amax
j is not satisfied, the

current maximal correlation value in the cross-correlation matrix5 is removed

from consideration, and the search for the maximum and the corresponding shift

parameters continues until the inequality is satisfied.

If a failure is suspected or detected, especially in potential real-time appli-

cations, it may be overcome by restarting the registration procedure with adjusted

parameters. In particular, it may be necessary to reduce the registration ROI if it

includes prominent anatomical features that survive filtering; enlarge the ROI, if the

underlying assumptions of the marker motion are underestimated; or increase the

number of frames used in temporal filtering to improve the CNR of the markers. In

our current implementation aimed at post-processing, a warning message is generated.

5.6 Discussion

Although the image registration framework and its components are widely explored

in the literature, e.g., [149, 150, 19, 57, 75, 143, 69, 83, 138, 81, 119, 145, 34], the

selection of the components and strategies for a particular registration problem may

require considerable analysis of the data, the problem, and the algorithms, and this

is indeed the case in our application.

According to the clinical protocol, the markers are inserted into the patient’s

prostate in order to provide positional guidance during the radiation treatment, as

they possess significantly better contrast in the images than the soft tissues (Chap-

ter 2). Therefore, in the process of registration between the CBCT and the fluoro-

scopic images, we are interested to align the markers more than any other features.

To achieve this, we designed the marker enhancement filter (MEF, Section 4.4), to

preprocess fluoroscopic images. To create a 2D template from the CBCT image that

is similar to the MEF-image, where the markers are amplified and anatomical fea-

tures and background variations are suppressed, we proposed marker specific template

image generation approaches in Section 5.1. While all three methods provide simi-

lar marker localization accuracy (Section 7.3.2) and success rates (Section 7.3.4), we

5Recall that the shift elements of a0 are computed from the position of the maximum in the
cross-correlation matrix. The details are provided in Appendix D.4.1.
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have selected the marker splat (MS) DRR method for the proposed localization pro-

cedure as the most computationally efficient and better suited for the CBCT images

of average or low resolutions that may contain reconstruction artifacts.

We proceeded by selecting an appropriate distance measure among the com-

monly used functions in application to our testing data sets in Section 5.2. Then, in

Section 5.3, the formulation of the registration problem was presented. The bounds

on the geometric transformation parameters were determined based on the thorough

literature review in Section 5.3.1. Then, the analysis of the geometry of the imag-

ing system and marker placement in Section 5.3.2, supported by the experiments

described in Section 7.3.3, suggested that it is more reasonable to use the 2D rigid

geometric transformation than the 3D, as the system was insensitive to out-of-plane

marker displacements. This choice was also cheaper computationally, as a smaller

number of variables were used in the optimization problem.

To perform minimization of the distance measure in the registration problem,

we have used the sequential quadratic programming in a standard Matlab imple-

mentation of the active set method. It performed similarly in terms of localization

accuracy and registration success rates but offered significant computational savings

compared to the trust region, interior point, and IPOPT solver. As we decided to use

a local optimization technique to solve the non-convex registration problem, we have

analyzed the literature and conducted experiments to suggest an appropriate strategy

for the selection of the optimization starting point (Section 5.3.3). In terms of capture

range and computational cost, the best performance was shown by the normalized 2D

cross-correlation method with multiple templates (NCC-MT) performed on reduced

resolution. We designed this approach as an upgrade of a standard NCC technique.

The overall performance of the 2D marker localization procedure on our testing

data sets was used to select the kernel width of five frames for the Dolph-Chebyshev

temporal filter in Section 5.4. Finally, we presented a brief literature review on failure

detection and prevention techniques, and designed the measures appropriate for the

proposed marker localization problem in Section 5.5.

The results of all experiments evaluating the accuracy and the performance of

the 2D marker localization procedure and its components are collected in Section 7.3.

Some implementation details are provided in Appendices D.3 and D.4.
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Chapter 6

Motion Tracking in 2D Image
Sequences

This chapter presents the design of the motion tracking module, which is used to

track the markers in the 2D fluoroscopic sequences. It is referred to as block 〈〈T 〉〉 in
Flowchart 2.1 and is detailed in Flowchart 6.1. The literature on image-based fidu-

cial marker tracking with application to radiation therapy can be roughly divided

into two approaches: independent 2D localization of the markers in each image of

the sequence1 [7, 98, 141, 169, 174, 233, 122], and the use of some tracking model

that aims to direct and improve tracking by providing a reasonable prediction for the

positions of the markers in every new image based on their positions in the preced-

ing images, assumptions on characteristics of motion, and marker placement geom-

etry [195, 214, 186, 140, 142]. Based on the literature, we can separate the process

of model-based marker tracking into several steps, such as initialization, prediction,

measurement/prediction update, measurement assessment/correction, and tracking

failure detection, each of which will be discussed in more detail below. In fact, the

first approach (independent 2D localization) can be treated as a simplistic tracking

model without the prediction stage.

The most commonly reported realizations of the steps in a model-based tracking

system are the following:

• Initialization: At this step, the marker positions are defined or a reduction of

search space is performed in the first image of a sequence. This can be fulfilled

by manually selecting the markers in a 2D image [142, 214, 122], predicting

their positions from the CT image [199], or reducing the search to a ROI that

1Recall that a fluoroscopic sequence may require the application of some preprocessing techniques,
e.g., the temporal filtering, to achieve reliable tracking. Therefore, in this chapter a reference to an
“image” means one image of a preprocessed sequence rather than an individual frame of an original
fluoroscopic sequence.
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can also be either defined manually [98, 233] or from other images, such as CT,

CBCT, or DRR [7, 141, 140, 169, 234].

• Prediction: The task of this step is to provide a reasonable prediction for

the marker positions in the incoming image, or, more generally, at a certain

instant of time. For real-time tumour tracking and gating applications, where

the time for hardware reconfiguration may be necessary, prediction is crucial.

Having a reasonably accurate prediction also allows for more reliable and timely

processing, mainly resulting from the narrowing of the parameter search space or

a reduction of the ROI. This is beneficial for both real-time and post-processing

applications. The most commonly used prediction models are the zeroth-order

predictor2 [142, 141], linear regression or extrapolation [195, 40, 214], artificial

neural networks [195], Kalman [195, 186] and particle filters [186]. More details

on prediction models will be provided in Section 6.2.

• Measurement/Prediction update: At this step, the positions of the mark-

ers are found in the current image, with or without prediction. The reported

methods include a search for local intensity peaks in the neighbourhood of the

predicted positions with the mean shift [142] or the MEK algorithms [204, 242],

and the application of morphological filters and blob detection [98, 233]. The

most commonly used technique is template matching, where a template image,

whether synthetically designed or extracted from a real image prior to tracking,

is registered to an image, for which the markers have to be found. The marker

positions are inferred from the minima of the distance measure function between

the template and the image of interest [7, 31, 43, 122, 141, 140, 164, 169, 174,

199, 214, 234].

• Measurement assessment/Correction: Some measurement methods gener-

ate multiple candidates for the marker positions in the current image, and at

this step the candidates are evaluated using some criteria to prune away false

positives. Examples include such criteria as the combination of the template

matching score3 and relative marker positioning [122]; the template matching

score and the size of the candidate markers [140]; the template matching score

followed by the intensity and marker shape similarity between the candidate

markers and the ones in the template, the smoothness of a marker trajectory,

and the correspondence to a breathing pattern [214]; and the similarity between

the measured and predicted marker shape/orientation, absolute position, and

distance to the closest marker [142].

2In this case, the predicted marker position is the position of the marker from the preceding
image. Sometimes, this has been referred to as the first-order predictor [142].

3The template matching score relates to the value of a distance measure function between a
template and an image.
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• Tracking failure detection: Some tracking systems rely on certain criteria to

detect a tracking failure, in order to stop the treatment in real-time or report

an error in post-processing. The reported methods mostly check for violation

of the thresholds on the template matching score [196, 199, 214], marker speed,

acceleration, smoothness of trajectory or its closeness to the predicted track [199,

214], and change in geometric relationship between the markers [214]. A detailed

discussion was presented in Section 5.5.

In the remainder of this introduction, we present some of the assumptions and

a scheme for the tracking module. Section 6.1 discusses the components of the 2D-

2D image registration problem used in the measurement step of the tracking. The

choice of the model for the prediction step is addressed in Section 6.2. After selecting

an appropriate prediction model, we complete the design of the tracking module

by providing the details about the optimization procedure used in registration in

Section 6.3, and conclude with the discussion of the results in Section 6.4.

The design choices for our marker tracking procedure are based on a number

of assumptions. We define organ motion observed in a fluoroscopic image sequence

as the displacement of the markers in time relative to their positions in the tracking

template. The template is created from one of the images, typically the first image of

the sequence, for which the markers have been localized prior to tracking as described

in Chapter 5. The displacements of the markers in a particular image relative to their

positions in the template are measured by registering this image to the template.

Hence, for each image in the sequence, a geometric transformation needs to be found

that, when applied to the template, minimizes the chosen distance measure between

the intensities in the template and the image.

Flowchart 6.1 shows a scheme for the marker tracking procedure. At the first

step 〈〈T1 〉〉 , the prediction for the geometric transformation, T̂i, is computed. Based

on T̂i and the marker positions in the template, ck2D, a tracking ROI ΩTR, over which

the images will be registered, is defined at step 〈〈T2 〉〉 . Then, a fluoroscopic frame, or

several frames in cases when temporal filtering is to be used, are selected from the

sequence at step 〈〈T3 〉〉. The control is passed to module 〈〈 F 〉〉 that applies the temporal

and marker enhancement filters described in Chapter 4, and returns a preprocessed

image Yi. At step 〈〈T4 〉〉 , the tracking template W is registered to Yi over ΩTR using

the iterative optimization procedure described in Sections 6.1 and 6.3. The resulting

transformation T ∗
i is saved at step 〈〈T5 〉〉 , in order to be used later in computation of

prediction for the subsequent images, and to produce the final tracking results. After

the process is completed for all images in the sequence, the results are reported at

the final step 〈〈T6 〉〉 of the tracking procedure as the 2D marker displacements, (dk)i,

relative to ck2D.
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Flowchart 6.1: Block 〈〈T 〉〉 : Marker tracking in 2D fluoroscopic image sequence by
2D-2D image registration.
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In this chapter, we complete the discussion of the design of the marker tracking

system. In this last module, we combine and further develop digital filtering, tem-

plate image generation, and registration and optimization techniques, discussed and

proposed in Chapters 4 and 5. The use of the aforementioned novel approaches allows

us to create a tracking system that is capable of accurate, reliable and computation-

ally efficient marker tracking in noisy fluoroscopic image sequences of the prostate

patients.

6.1 2D-2D Image Registration

The 2D-2D image registration problem in tracking is formulated in a similar way to

the localization registration problem (5.3.10), where the parameters ai of a geomet-

ric transformation have to be found that minimize some distance measure function

D between the tracking template transformed by ai, Wai , and the (preprocessed)

fluoroscopic image, Yi:

(a∗)i = argmin
ai
D(Wai ,Yi),

s.t. − amax ≤ ai ≤ amax,
(6.1.1)

where amax represents bounds on ai and is discussed later in this section, and ≤ is

an element-wise comparison. Based on the same considerations as in the 2D marker

localization procedure (Section 5.3.3), the distance measure in tracking is minimized

by applying the active set realization of the SQP optimization approach, beginning

from some starting point a0, that will be defined in Section 6.3.

Due to the assumption of the organ rigidity (Section 2.2), the particulars of

the marker geometry (close to the isocentre) and limitations of our imaging system

that was not able to detect the out-of-plane motion with sufficient accuracy in the

marker localization module (Sections 5.3.2 and 7.3.3), we use the 2D rigid geometric

transformation,4 T 2D, in our tracking procedure. The definition of T 2D can be found

in Appendix B.2. The same transformation is applied to all markers, i.e., they are

tracked together as a rigid structure.

The distance between the template and the reference images is measured by

DNNCC, the negation of the normalized correlation coefficient (NCC, defined in Ap-

pendix C.4). This choice of the distance measure is based on a number of studies,

where the NCC was successfully used for registration of the x-ray, fluoroscopic and

CT/CBCT images and their projections [7, 26, 43, 59, 169, 174], and our own experi-

ence of using it in the proposed marker localization procedure to register the generated

4In the case of the 3D transformation, the template could be formed from the 3D CBCT image
instead of the first 2D image of the sequence.
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templates to the fluoroscopic images preprocessed by the marker enhancement filter

(Section 5.2).

The vector amax contains the bounds on the transformation parameters. The

values we use for the bounds on the shifts, tu and tv, and rotation, γ, are the same as

in the 2D marker localization procedure (Section 5.3.1), i.e., for prostate patients:

amax = (tu, tv, γ)
T = (20 mm, 20 mm, 10◦)T . (6.1.2)

They define a maximal possible displacement of the markers during a treatment ses-

sion, whether it is between the acquisition of the CBCT image and the first image of

the fluoroscopic sequence, or between any of the images within the sequence.

As mentioned in the introduction to this chapter, it is expected that the use

of at least some form of prediction in a tracking application can be beneficial in

terms of decreasing the processing time and improving the tracking reliability through

reduction of the search space. In other words, given reasonable estimates of the marker

positions in the incoming image, the search for the markers should only be performed

in some close vicinity to these estimates. Hence, the motivation behind designing

a separate procedure for tracking and not simply using the independent 2D marker

localization in each image of the sequence is to create a method that is as reliable

and accurate as the proposed localization technique, but is more computationally

efficient. Although our tracking method is designed for post-processing, it should be

remembered that it is aimed at analyzing large numbers of patient images. Therefore,

spending less time and the ability to use the software on a conventional moderately

equipped computer is always a value, and can open doors for real-time application of

the methods proposed in this thesis.

The results of marker tracking in the preceding images of the sequence can be

used to perform the prediction in the incoming images. The rate of our fluoroscopic

image acquisition (5.5 Hz) is such that, for prostate patients, the scale of the ob-

served marker motion between the adjacent frames is typically small. In particular,

it is usually significantly smaller than the motion range defined by amax parameters.

This means that the tracking can be performed over a tracking ROI selected around

the predicted marker positions, that is considerably smaller than the one defined by

the parameters in amax in (6.1.2). Therefore, we define another set of parameters,

bmax, that are used to compute the marker circular ROIs and the encompassing rect-

angular ROI, ΩTR, according to the method proposed in Section 4.3, the same way as

the bounds amax are used to compute the localization ROIs, Υk and ΩLOC. While the

rectangular ROI in tracking is used for convenience of operating on images, such as se-

lecting a subregion in the images, the distance measure computation is only performed

over the circular ROIs. To reiterate, while amax defines the maximal displacement of
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the markers between the template and any of the images in the sequence, and rep-

resents bounds on the parameters of geometric transformation in the optimization

problem (6.1.1), bmax is used to determine the ROIs used in registration.

The values in bmax depend on expectations regarding the maximal motion speed

in a given data set. In the data set used for validation of the tracking procedure

described in Section 7.4.1, the Quasar phantom was set to execute motion along the V

direction. Therefore, based on the measurements of the maximal marker displacement

and maximal change in shift and rotation parameter values between the adjacent

images, we used amax = (5 mm, 25 mm, 5◦)T , and bmax = (0.5 mm, 8 mm, 0.5◦)T .

As defined in (6.1.2), amax for the prostate patients is (20 mm, 20 mm, 10◦)T . In

our patient testing data set, described in Section 7.4.1, that includes 25 fluoroscopic

sequences of three prostate patients, the maximal changes in the parameter values

between the adjacent frames were 1.5 mm, 0.5 mm and 2.7◦ for the U and V shifts, and

the rotation angle, respectively. The maximal 2D displacement between the markers

was 2.44 mm. As we expect that the prediction is at least as good as using the marker

positions from a preceding frame (zeroth-order prediction), the values given above can

be used to determine bmax. Due to the expectation that other patients can potentially

have more motion, we decided to use bmax = (5 mm, 5 mm, 5◦)T .

The ROI shrinkage introduced by using bmax instead of amax can reduce the

chances of finding in the ROI the measurements of anatomical features that possess

significant contrast and are of a width similar to the markers. Therefore, in con-

trast to the localization procedure, in tracking it may be possible to simplify or omit

altogether the preprocessing of the images, such as the application of the marker en-

hancement filter (MEF) to fluoroscopic images (Section 4.4.1), and hence reduce the

computational time. We compare two approaches:

• Registration using interpolation, without preprocessing: In this ap-

proach, the MEF-preprocessing, as well as the specific template image gener-

ation approaches (Section 5.1), are not used. The registration is performed

directly between the image and the template, where the template is the first

image of the sequence. In practice, the images are discrete, and the intensity

function is not defined between the grid points. The application of the geometric

transformation to the template requires to infer the intensity values between the

grid points in order to compute the distance between the transformed template

and the reference images. These intensity values can be found by using some

form of interpolation, where some of the most commonly used interpolation

schemes are the nearest neighbour, linear, cubic, and cubic spline [150, 69].

• Registration using marker enhancement preprocessing: Another real-

ization of 2D-2D image registration is similar to our 2D-3D registration method
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described in Chapter 5. In the process of registration, the template is generated

using the marker splat (MS) method (Section 5.1.3), modified for the 2D as

follows. Let c̃k2D be the position of the marker k that is obtained by applying a

transformation T 2D to the marker position in the template image found by 2D

marker localization, c̃k2D = T 2D(a, ck2D). Then, the modification of the MS DRR

(Equation (5.1.9)) for the 2D (2D MS) can be computed as:

Wk(q) = G(q − c̃k2D, σ), (6.1.3)

where the Wk for individual markers are then summed up, and rescaled to take

the range [0, 1], resulting in Wa (6.1.1). The reference image is preprocessed

prior to registration by the MEF or MOF, in order to amplify the markers and

suppress the background, and to obtain an image that has similar intensity

and structural characteristics to the generated template. Hence, interpolation

is not required, and the template is quickly recomputed for every new set of

transformation parameters a.

To compare these two approaches, we tested our Matlab implementation on

several fluoroscopic image sequences of the Quasar motion phantom. The detailed

descriptions of the data and experiment are presented in Section 7.4.2. The results

suggest, that though the registration using interpolation does not require an appli-

cation of the MEF, it may lead to much higher computational cost compared to the

independent 2D localization in every image of the sequence. The costs are similar

for the nearest neighbour, up to 9 times higher for the linear, 16 times for the cubic,

and 7 times for the cubic spline interpolation schemes. The application of the MEF

to the reference image and generation of the template by the 2D MS method offered

approximately 1/5 reduction in time compared to the independent 2D localization.

Further, we explored the fact that the MEF combines two images, produced by the

magnitude-only and magnitude-and-ratio methods, where the first one aims to amplify

and preserve the marker shapes while the second helps to suppress non-marker fea-

tures that are likely to be found in a relatively large localization ROI (Section 4.4.1).

Due to the ability to predict the 2D marker positions and, consequently, to use the

tracking ROI that is smaller than the localization ROI, we were able to successfully

substitute the application of the full MEF by its reduced version, the MOF method,

which is based on the magnitude-only image, and is described in Section 4.4.5. This

brought a significant reduction in computational time by being almost 6 times faster

than the independent 2D localization method.

We suggest that the reasons for significant computational savings of the ap-

proach using the MOF preprocessing comparing to the interpolation-based techniques

are the following:
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• The MS template image generation method is characterized with very short

computational time due to its simplicity, and a limited number of points involved

in the computation: The markers are generated as the Gaussians centered in

the transformed marker positions. Interpolation, on the other hand, needs to

be performed over all points of the image inside the registration ROI, resulting

in higher costs associated with data access and computation.

• The MOF preprocessing requires insignificant additional time5 and creates an

image similar in characteristics to the template, making registration reliable and

fast.

In addition to efficiency comparison, we have also compared the tracking ac-

curacy of the approaches to the independent 2D marker localization. The median

fiducial registration error (FRE, Equation (7.3.19)) was 0.0002 and 0.0003 mm for

the MOF and MEF methods, respectively, 0.02 mm for the nearest neighbour, and

0.15–0.16 mm for the linear, cubic, and cubic spline interpolation. Although all

methods showed very good (subpixel) tracking accuracy for almost all images, the

application of the MEF or MOF preprocessing coupled with the use of the 2D MS

template generation method provided a significant improvement in the computational

efficiency (Section 7.4.2). Therefore, we use this approach in the 2D-2D image regis-

tration procedure of our tracking module. The next section discusses the selection of

an appropriate prediction model.

6.2 Prediction Models

As mentioned in the introduction to this chapter, while some methods perform track-

ing using the independent 2D localization of the markers in each image of the se-

quence, others take advantage of some form of prediction to assist and guide the

tracking process. The main purpose of prediction in our post-processing application

is the reduction of the tracking ROIs in order to save computational time and increase

the reliability of tracking.

Although it is possible to observe relatively regular small prostate motion

caused by respiration, it is well accepted that most prostate moves can be charac-

terized as incident and irregular. Therefore, though we anticipate that a prediction

model can serve well in terms of providing the possibility for keeping the tracking

ROIs small, it may be rather challenging to predict the marker positions accurately.

The majority of the prediction models reported in the literature are some form

of linear prediction [195, 40, 234, 214, 123, 79, 140, 142]. In general, linear models use

5In the experiment with the Quasar motion phantom described in Section 7.4.2, the MOF pre-
processing took approximately half a second per sequence of 164 frames.
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marker or target positions found in the few preceding images, and a linear model, to

make a prediction in the current image. The following linear prediction methods are

described in the literature: zeroth-order (ZO) prediction [140, 142], linear extrapola-

tion (LE) [195], linear regression (LR) [195, 183, 214, 234], and linear adaptive (LA)

models [221, 40, 79]. Also used are artificial neural networks (ANN) [195, 123], sup-

port vector machines (SVM) [123], Kalman filter (KF) [195, 186, 130, 216], particle

filter [186, 200], and polynomial models [123].

Sharp et al. [195] compared different prediction models for motion tracking in

14 lung tumour cases with peak-to-peak motion larger than 8 mm. The prediction ac-

curacy was evaluated by the magnitude of the root mean squared (RMS) error between

the known and predicted tumour positions, averaged for all patients. For imaging fre-

quencies of 1–30 Hz and latencies of 33, 200, and 1,000 ms, the LR model gave similar

or better results in comparison to ANN, and consistently outperformed the KF. In

particular, for imaging and prediction conditions similar to ours, i.e., imaging rate of

5.5 Hz and prediction for the next incoming image, which approximately corresponds

to a latency of 200 ms in [195], the RMS error for no prediction was approximately

3.3 mm, improved by the KF and ANN to 3 mm, and by LR to 2.5 mm.6

Lin et al. [123] compared the LR, 2nd-degree polynomial, ANN, and SVM

models for tracking certain features in 10 fluoroscopic image sequences of 10 lung

cancer patients with the range of motion from 4 to 25.5 mm.7 All methods provided

comparable results with the mean prediction errors of approximately 1.1 mm for the

LR, polynomial, and SVM, and 1.05 mm for the ANN. After analyzing errors in the

training and testing data sets, the authors suggested that the 2nd-degree polynomial

may be over-fitting the data. Also, the ANN method may be more reliable, and its

maximal mean prediction error among different patients is smaller (2 mm for the

ANN comparing to 3 mm, 3.05 mm, and 3.45 mm for the LR, polynomial, and SVM,

respectively).

Krauss et al. [109] compared the performance of respiratory motion predic-

tion based on the LR, ANN, kernel density estimation (KDE), and support vector

regression (SVR) for various sampling rates and system latencies ranging from 0.2 to

0.6 seconds. The prediction models were evaluated on 12 3D lung tumour motion

traces. When averaging over all sampling rates and latencies, prediction errors nor-

malized to errors of using no prediction for the ANN, SVR, LR, and KDE were 0.44,

0.46, 0.49, and 0.55, respectively, i.e., a two-fold improvement in positioning accuracy

was observed.

Rottmann et al. [183] used the LR to perform prediction for dynamic multi-

6Data is inferred from Figure 8 in [195].
7The results in [123] are reported in pixels, and are translated to millimeters here for consistency

of discussion.
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leaf collimator system with the latency of around 230 ms and imaging frequency of

12.86 Hz. Image sequences reproduced the motion of a phantom that was programmed

to use the real motion target trajectories of three lung patients. The predictor was

trained on the first 100 target positions of each image sequence. The RMS error

between estimated tumour position and beam aperture position was between 0.6 ±
0.6 mm and 0.9± 0.9 mm for different traces.

Verma et al. [223] published a survey of real-time tumour motion prediction

methods used in image-guided radiation therapy. Comparison of the methods re-

ported by different authors reveals trends similar to the results discussed above: For

the 200 ms latency, (i) the improvement in accuracy comparing to no prediction ranges

from no improvement to around 2.5 times, and (ii) the errors in target position pre-

diction are similar for different variations of the ANN, KF and linear models.

Based on the reviewed literature, we concluded that the use of more sophisti-

cated models in our tracking application, such as the KF, ANN, SVM, or KDE, is not

likely to offer significant improvement in prediction compared to one of the simpler

linear models, for example, linear extrapolation or linear regression, discussed below.

To select the model and its parameters, we conducted an experiment using fluoro-

scopic sequences of the Quasar motion phantom (the details are provided later in this

section). In the following, the vector of predicted parameters in image i is denoted

by âi, and the optimized parameters by (a∗)i. We compared the following models:

• No prediction: No prediction means that the predicted positions of the mark-

ers in every image of the sequence are the same as the positions localized in the

first image. As the tracking parameters in image i refer to the displacement

between the markers in this image and in the template (created from the first

image), the predicted parameters are:

âi = (0, 0, 0)T . (6.2.4)

No prediction is used as a baseline for comparison and allows to measure a mo-

tion range of the markers during acquisition of the whole fluoroscopic sequence.

• Zeroth-order prediction (ZO) [142, 140]: In this method, the optimized pa-

rameters of the geometric transformation resulting from the registration between

the preceding image and the template are used as the predicted parameters in

the current image:

âi = (a∗)i−1. (6.2.5)

While it can be used on its own [140], ZO prediction can also be combined with

gantry rotation information or other marker motion [142].

• Linear extrapolation (LE) [199, 195]: This method assumes a constant

change in the parameters and uses the optimized parameters from the two pre-
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ceding images of the sequence:

âi = 2(a∗)i−1 − (a∗)i−2. (6.2.6)

• Linear regression (LR) [195, 214, 123, 183, 221]: The predicted parame-

ters are computed as a linear combination of the optimized parameters from n

preceding images, (a∗)i−1, . . . , (a∗)i−n:

âi = β0 + β1(a
∗)i−1 + . . .+ βn(a

∗)i−n, (6.2.7)

where the coefficient vector β is obtained beforehand from training. The number

of preceding images, n, used in the LR model is typically defined from experi-

ments and depends on the characteristics of the motion (speed, regularity) and

image acquisition (frame rate). Our approach to computing the coefficients β is

explained in Section 7.4.3.

The use of LR model [195, 183] can be extended by combining the LR prediction

with the breathing pattern [214]. It can also be used to find a correlation

between the marker motion observed in images produced by the kV and MV

imagers [234].

• Linear adaptive (LA) [40, 221, 79]: It can be argued that the nature of

motion can change over time, and as such, the coefficients obtained from the

training data can become obsolete and have to be corrected. For every incoming

image Yi, the update can be done based on the closest in time available data,

i.e., by minimizing the squared error for the preceding image Yi−1 between the

predicted parameters, âi−1, and the optimized parameters, (a∗)i−1, obtained

from the registration between Yi−1 and the template Wai−1 .

While the geometric parameters â for no prediction, ZO, and LE models can

be computed in a straightforward way, the LR and LA models typically have to

be trained beforehand on testing image sequences in order to obtain the coefficients

β = (β0, . . . , βn)
T to be used in Equation (6.2.7). A detailed discussion on how to

compute β is provided in Section 7.4.3. In the LA model, the coefficients are updated

for every new incoming image. The update strategies are described in [40, 221, 79],

and are based on the idea of minimizing the prediction error in the preceding images,

for which the marker positions have been already found. In this case, the elements

of β have a potential of significant change from image to image, especially in the

scenarios when the markers have been nearly stationary and then make a large rapid

move. Therefore, in the proposed application, the prediction can become infeasible,

i.e., the suggested geometric parameters â can fall outside of their feasible region,

limited to amax, which we indeed observed in our experiments. Hence, this approach
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requires careful application, tuning of parameters or some correction strategy, and

even with the correction, the prediction can cause misregistration between the image

and the template as the starting point for the optimization procedure can still be too

far from the solution. As such, the LA model is not a good choice for our tracking

procedure.

At the same time, it may be reasonable to apply β obtained from a train-

ing data set to all new images, such as assumed by the LR model. As noted by

Krauss et al. [109], the use of the same parameters β computed from model param-

eter optimization on a patient-average basis resulted in successful application of the

LR model to the patient-specific motion patterns.

Similarly to Krauss et al. [109], we compute β from various marker traces of the

Quasar motion phantom in the experiment described in Section 7.4.3. The data set

consists of 23 fluoroscopic sequences, where the phantom is performing several types

of motion, such as sinusoidal in time (linear in direction), simulated patient breathing

traces, and linear motion (for detailed description, see Section 7.4.1). We believe that

this set of trajectories includes a fair representation of possible ranges and speeds of

marker motion of the prostate patients, plus a number of trajectories of even larger

speeds and amplitudes, more typical of the lung or liver patients.

The same data set was used to compare the ZO, LE, and LR prediction models

in terms of fiducial prediction error (FPE), defined in Section 7.4.4. The temporal

filtering has not been used for phantom images due to sufficient marker contrast.

As can be seen from the results presented in Section 7.4.4, the ZO and LE

models are characterized with very similar FPE, and improve most of the statistical

indicators 10-fold and maximal FPE around 3.5 times in comparison to no prediction.

The FPE results for the LR model with different number of images are very similar,

which is explained by the fact that the corresponding coefficients βi are similar re-

gardless of the number of preceding images used, and the two largest coefficients are

assigned to the geometric parameters of the two preceding images (see Section 7.4.3).

The median FPE of the LR approach is similar to that of the ZO and LE models

(0.04 mm difference that corresponds to approximately 1/6 of a pixel size), however,

the maximal FPE is improved by around 1–1.5 mm (approximately 4–6 pixels).

The results reported in Section 7.4.4 showed that all considered models reduced

the FPE significantly comparing to no prediction. The LR models were better in

reducing the maximal FPE than ZO and LE. Therefore, we select the LR model

based on three preceding images (LR-3) as a predictor in the proposed marker tracking

module, as it provides slightly better results than the rest of the LR models. The

coefficient vector used was β = (0, 1.99,−1.23, 0.23)T . We have also validated the

models on the 25 fluoroscopic image sequences of the patient testing data set in
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Section 7.4.5, and our choice of the LR-3 was confirmed to be reasonable.

6.3 Optimization

The analysis of the results presented in Sections 6.2, 7.4.4, and 7.4.5 shows that

for the LR-3 model, the maximal FPE for the fluoroscopic image sequences of the

Quasar motion phantom reached as large as 5.39 mm (approximately 21 pixels). For

the patient data sets the typical maximal FPE was below 0.36 mm (slightly larger

than 1 pixel) and several outliers reached 1.63 mm (more than 6 pixels). With such

FPE values, and taking into consideration the fact that other patients may have

a larger range of motion, the use of the predicted geometric parameters â as the

optimization starting point a0 in the 2D-2D image registration procedure (6.1.1) may

cause the optimization method to become trapped in a local minimum or to fail

finding the direction of the decrease of the distance measure function, which can

result in misregistration or registration failure. Indeed, our experiment showed that

for the 23 Quasar image sequences described in Section 7.4.1 (3,723 images in total),

the misregistration or failure happens in 12.35% of images.

Fortunately, the problem of misregistration can be easily overcome by cor-

recting the starting point. We base our strategy on the results of the experiments

performed to make design choices for the 2D marker localization procedure (see Sec-

tion 5.3.3). In particular, there we compared different methods for computation of the

optimization starting point for the 2D-3D image registration, and found that the nor-

malized cross-correlation (NCC) on reduced resolution with multiple templates (dif-

ferent rotation angles) was the most reliable and computationally efficient method.

As 2D-2D registration in the tracking procedure operates on images similar to the

ones undergoing 2D-3D registration in the 2D marker localization, we expect that

the NCC approach can be as effective. As described in detail in Appendix D.5.1, the

starting point a0 is computed as the combination between the prediction â and the

point where the NCC between the template transformed by â and the image reaches

its maximum. However, as the tracking ROI is smaller than the localization ROI,

and not much rotation is expected between the consecutive images of the sequence,

the procedure can be further simplified by using the shift-only NCC on the original

resolution (single template, no rotation). For our Matlab implementation executed

on the system described in Appendix A, the use of the NCC on average took one

additional second per whole image sequence in comparison to no NCC (a0 = â) when

tested on the Quasar motion phantom image sequences described in Section 7.4.1, but

increased the registration success rate to the full 100%.
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6.4 Discussion

This chapter described the design of the marker tracking procedure, and concluded

the whole marker localization and tracking approach proposed in this thesis. In

Section 6.1, we defined a 2D-2D image registration problem used in tracking, and

discussed some of its components, such as the distance measure, the optimization

method, the geometric transformation, and the bounds on the geometric transforma-

tion parameters, all of which were selected based on our findings about 2D-3D image

registration problem used in 2D marker localization (Section 5.3). We discussed the

possibility of reduction of the tracking ROI in comparison to the localization ROI due

to a smaller displacement expected between the markers in the consecutive images of

a sequence compared to the expected displacement between the CBCT and the fluo-

roscopic sequence. This had two important implications. First, there was a necessity

to select another set of parameters that defined this new ROI. The second implication

is explained below.

We have compared two 2D-2D image registration approaches: (i) the direct

registration of the images to the template (first image of the sequence) by using a

traditional registration technique involving interpolation and (ii) the preprocessing

of the images in the sequence using the MEF with the subsequent registration to

the template formed from the 2D marker positions localized in the first image of the

sequence. As a basis for comparison, we also performed an independent 2D marker

localization in each image of the sequence. The details for this experiment are pro-

vided in Sections 6.1 and 7.4.2. While the marker positioning accuracy was good

for all methods (higher for the MEF), the use of the nearest neighbour interpolation

incurred a lower computational cost than the independent 2D marker localization.

However, other methods using linear, cubic, and cubic spline interpolation schemes

incurred similar cost for some sequences and substantially higher costs for most. The

second approach combined the use of the MEF with the marker splat template gen-

eration method modified for the 2D (2D MS, summarized in Algorithm D.17). This

approach led to some reduction in running time compared to the independent 2D

marker localization. Recall that the MEF combines two images: magnitude-only and

magnitude-and-ratio, where the first one aims to amplify and preserve the marker

shapes while the second helps to suppress non-marker features that are likely to be

found in a relatively large localization ROI (Section 4.4.1). Since the tracking ROI

is smaller, and is expected to include a smaller number of anatomical features that

may be amplified by the filter, we exploited the idea of using a variation of the MEF,

the magnitude-only filter (MOF, defined in Section 4.4.5), in the tracking. This is a

second implication of selecting a smaller ROI for tracking compared to localization

ROI mentioned in the previous paragraph. In addition to providing a better accuracy
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than the interpolation-based methods, the use of the MOF combined with the 2D MS

template generation method led to a significant reduction in the computational cost,

and thus, we decided to use it in our tracking procedure.

Further, we reviewed motion prediction models presented in the literature in

Section 6.2, and selected a number of promising approaches, such as zeroth-order pre-

dictor (ZO), linear extrapolation (LE), and linear regression (LR). The application

of the models to testing data set of the Quasar motion phantom described in Sec-

tion 7.4.1 revealed that the LR based on three preceding images is the most suitable

model for our typical data, though ZO and LE models also performed well. The

experiments and the results are described in Sections 7.4.3 – 7.4.5.

Then, we discussed the choice of the starting point for the optimization pro-

cedure in Section 6.3. Due to similar components of the optimization problems for

2D-2D and 2D-3D image registration, tracking failure detection and prevention pro-

cedures are the same (see Section 5.5).

Finally, the tracking accuracy results are presented in Section 7.4.6. For both

patient and Quasar data sets described in Section 7.4.1, the proposed system demon-

strated subpixel and submillimeter tracking accuracy, with extremely small tracking

errors for most image sequences. As such, it can be implemented for clinical use. For

the Quasar data set, no correlation was found between the tracking error and the

trajectory, speed, and magnitude of the motion, though the maximal errors tended

to be slightly higher for the sequences with higher phantom motion speed.

Experiments for evaluating the accuracy and performance of the tracking mod-

ule are collected in Section 7.4, and implementation details and algorithms are listed

in Appendix D.5. Chapter 8 provides an example of the results that can be obtained

for patient images using the proposed marker localization and tracking methods de-

scribed in Chapters 3 – 6 and implemented in the Gryphon software module.
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Chapter 7

Selection of Parameters and
Validation of Methods

This chapter provides descriptions of experiments for selecting some data-dependent

parameters for the proposed marker localization and tracking procedures, and in-

cludes a detailed description of the testing data sets. The greatest part of the chapter

is occupied by the validation results, such as definitions of errors and error estima-

tion procedures, assessment of accuracy of the methods, and their success rates in

application to testing data.

As a general rule, we report the quantitative results, such as error distributions,

in terms of their minimal, median, and maximal values, as well as their 25th and

75th percentile, both graphically and numerically. The corresponding notation for

tables and figures is explained in Table 7.1. This is done to achieve the reporting

that is compact enough to be presented in this thesis, but does not place too many

assumptions on the distributions. However, a widely accepted practice, in particular,

in radiation therapy community, is to assume the normal distribution of the errors.

Therefore, to provide an easy comparison to the literature, where applicable, we also

report the results in terms of their mean and standard deviation values.

7.1 Marker Segmentation and Modelling in

3D Space

7.1.1 Testing Data Sets for Marker Segmentation and

Modelling

Table 7.2 summarizes details on all data sets used for validation of 3D marker seg-

mentation and modelling procedure. Radio-surgery verification phantom (RSVP, de-
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Table 7.1: Notation for distributions of values in figures and tables.

Statistical value Table notation Figure symbols

median Med dotted circle
minimum, maximum Min, Max thin bar
25th, 75th percentile 25%, 75% thick bar
outliers Outliers empty circles
mean, average Mean
one standard deviation Std

scribed in Section 2.3.1) was placed in nine different positions, and CBCT projections

of 512× 512 pixels were acquired at each position. Then, the clinical software (XVI)

used the projections to reconstruct 3D CBCT images with 0.5, 1, 2, and 4 mm voxel

sizes. Clinically, images with 0.5 and 1 mm voxels are most commonly used but for

some sites the use of 0.25 mm voxels can be desirable. As it was not possible to recon-

struct an image with 0.25 mm voxels from the originally acquired CBCT projections,

and RSVP was not available at the time, we acquired another set of 5 CBCT images

(with different shifts along the Y axis). This was done with the same phantom insert

containing seven gold cylindrical fiducial markers 3 × 0.8 mm but placed inside the

Quasar phantom described in Section 2.3.2. As a result, the CBCT reconstructions

with 0.25 mm voxels were obtained from the CBCT projections of 1024×1024 pixels.

In addition to all the images described above that were reconstructed using

the float data type, we also had one data set reconstructed from the same set of

512 × 512 pixel projections of the RSVP with the short setting. Among those, one

image had 1 mm voxels, and the remaining eight had 0.5 mm voxels.

Justifications of parameter choices were also done for the patient testing data

set, which included measurements of three patients. We had 74 CBCTs for patients 1

and 3, and 75 CBCTs for patient 2, all of which had 1 mm voxels. For patient 1, we

also had 6 CBCTs with 2 mm voxels. All patients had three gold cylindrical fiducial

markers 3× 0.8 mm.

7.1.2 Threshold Flexibility

This section presents the results of thresholding the CBCT images with different values

of the flexibility parameter, κ, defined in Section 3.1.1. The value of κ influences the

number of the segmented voxels, nvx. The model-based thresholding proposed in

Section 3.1.1 was applied to all data sets described in Table 7.2. Table 7.3 lists

the thresholding success rates, defined as the percentage of successfully thresholded
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Table 7.2: Testing data sets for validation of 3D marker segmentation and modelling.

Data set
Measure- Voxel

Data type
Number Total number

ments of size, mm of images of markers

F 0.25 mm Quasar 0.25 float 5 35

F 0.5 mm RSVP 0.5 float 9 63
F 1 mm RSVP 1 float 9 63
F 2 mm RSVP 2 float 9 63
F 4 mm RSVP 4 float 9 63

S 0.5 mm RSVP 0.5 short 8 56
S 1 mm RSVP 1 short 1 7

P1 1 mm Patient 1 1 short 74 222
P2 1 mm Patient 2 1 short 75 225
P3 1 mm Patient 3 1 short 74 222
P1 2 mm Patient 1 2 short 6 18

Table 7.3: Thresholding success rates depending on the choice of the flexibility pa-
rameter κ.

Data set
Thresholding success rates, %

for threshold flexibility parameters:

κ = 0 κ = 0.25 κ = 0.5 κ = 0.75 κ = 1

F 0.25 mm 100 100 100 100 100

F 0.5 mm 92 100 100 100 100
F 1 mm 70 100 100 100 100
F 2 mm 17 43 75 97 100
F 4 mm 8 8 30 97 100

S 0.5 mm 100 100 100 100 100
S 1 mm 71 100 100 100 100

P1 1 mm 67 100 100 100 100
P2 1 mm 61 100 100 100 100
P3 1 mm 58 88 100 100 100
P1 2 mm 11 67 100 100 100
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Figure 7.1: The difference between cluster diameters, diam(M̂k), and the marker size,
δm, for Quasar phantom (0.25 mm voxels) and RSVP (0.5 to 4 mm voxels) data sets
described in Table 7.2. Table 7.4 provides corresponding numerical values.

markers. Success was registered if the marker consisted of at least two voxels, as

this is the minimal number of voxels that allow to estimate the size of the segmented

feature, which is required at step 〈〈 S3 〉〉 of the segmentation procedure.

The results in Table 7.3 suggest that among values κ = {0, 0.25, 0.5, 0.75, 1},
the successful thresholding for all data sets is achievable with κ = 1. As κ decreases,

the success of thresholding drops. Increasing of κ beyond 1 could not provide any

improvement but caused more non-marker points to be included into set Θ. Therefore,

in this thesis, we use κ = 1. If it is known that no images with the voxel sizes larger

than 1 mm are included into data sets, the use of 0.5 ≤ κ < 1 is reasonable, and

can decrease the number of thresholded non-marker points, thus reducing the burden

on the correction procedures in steps 〈〈 S3 〉〉 and 〈〈 S4 〉〉 of the proposed 3D marker

segmentation procedure.

7.1.3 Marker Set Size Margins

Marker set size margins, ǫℓ and ǫu, introduced in Section 3.1.3, Equation (3.1.12),

define a range of acceptable set diameters around the known marker size, δm. The

clusters whose diameters are within this range are accepted as the candidate marker

sets. In order to determine appropriate values for ǫℓ and ǫu, we computed the diam-

eters of the clusters that corresponded to the markers in all data sets described in

Table 7.2. Due to the fact that in the estimation of the number of voxels, nvx, that

should constitute markers (Equation (3.1.6) in Section 3.1.1) the height of the marker

is extended by ǫ2 = 2 κ δvx, where δvx is a voxel size, and κ = 1 (Section 7.1.2), it

is expected that the difference between the diameters of the candidate marker sets,
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Figure 7.2: The difference between cluster diameters, diam(M̂k), and the marker size,
δm, for the CBCTs of three patients with 1 and 2 mm voxels, where the data sets are
described in Table 7.2. Table 7.4 provides corresponding numerical values.

Table 7.4: The difference between cluster diameters, diam(M̂k), and the fiducial
marker size, δm, for phantom and patient CBCT images. Figures 7.1 and 7.2 pro-
vide corresponding graphical interpretation.

Data set
diam(M̂k)− δm, mm

Min 25% Med 75% Max Outliers

F 0.25 mm −0.06 0.13 0.22 0.48 0.64 –

F 0.5 mm 0.08 0.39 0.61 0.74 1.06 –
F 1 mm 0.61 0.74 0.74 1.12 1.58 –
F 2 mm −0.17 1.9 2.66 3.32 4.21 –
F 4 mm 1 2.66 4.46 5.94 9 –

S 0.5 mm 1.03 1.91 2.24 2.48 5.06 –
S 1 mm 0.61 0.74 0.74 1.37 1.58 –

P1 1 mm 0.74 1.58 1.69 2.2 5.6 –
P2 1 mm 1.12 1.58 1.58 2.2 4.68 –
P3 1 mm 0.74 1.58 1.9 2.2 6.11 10
P1 2 mm −0.17 1.47 1.47 1.47 3.32 –
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diam(M̂k), and δm should be around 2 δvx.

The results for the Quasar and RSVP presented in Table 7.4 and Figure 7.1,

with the exception of the “S 0.5 mm” data set, support the hypothesis given in

the previous paragraph: The median and maximal differences between the cluster

diameters and the marker size are about δvx and 2 δvx, respectively. For the patients,

results for which are presented in Table 7.4 and Figure 7.2, the maximal differences

for the “P1 2 mm” data set are within 2 δvx but all 1 mm voxel data sets demonstrate

larger maximal values, similar to the “S 0.5 mm” data set. The reason for this is

the presence of the streak artifacts associated with the short reconstruction data

type discussed in detail in Section 3.1.3. Although most of the values are smaller,

we assign ǫu = 11 mm, in order to accept all clusters corresponding to true markers,

including the outliers, such as 10 mm for the “P3 1 mm” data set. Typically, the

non-marker clusters that are accepted due to these loose size margin are positioned

further away from the isocentre, and thus are removed by correction at step 〈〈 S4 〉〉 of
the segmentation procedure. As for the lower margin, none of the data sets had the

difference between diam(M̂k) and δm being below -0.17 mm. Therefore, we assign

ǫℓ = 0.5 mm.

7.1.4 Correction Procedures and Segmentation Success Rates

The application of the marker set segmentation technique described by steps 〈〈 S1 〉〉 –
〈〈 S4 〉〉 presented in Sections 3.1 and 3.3 provided a 100% marker detection success in

almost all data sets described in Table 7.2, i.e., 100% of true positives (TP) and

0% of false positives (FP). The only exception was the “F 4 mm” data set, which

yielded 83% of TP and 2% of FP. For the nine images in that set, and seven fiducial

markers visible in the images, the TP/FP numbers of the detected markers were 6/1,

5/0, 7/0, 5/0, 5/0, 7/0, 5/0, 7/0, 5/0. In the first image, one non-marker set was

close to the isocentre and of an acceptable size. In all images, in which TP = 5, two

neighbouring markers were rejected because they occupied the neighbouring voxels,

and hence were recognized as one large cluster. This means that if the distances

between the neighbouring fiducial markers in the phantom were larger than 10 mm,

the detection success rates for 4 mm voxel images could be higher as well. For example,

average inter-marker distances for the patient data sets described in Table 7.2 ranged

from 20 to 36 mm.

Among all non-marker clusters, some were removed by violating the size re-

quirement (Equation (3.1.12) in Section 3.1.3, step 〈〈 S3 〉〉 ), and others due to their

location further away from the isocentre in cases when the number of candidate marker

sets, n̂, was larger than the known number of the fiducial markers, n (Section 3.3, step

〈〈 S4 〉〉 ). The number of clusters removed by either of the methods varies for different

178



Ph.D.Thesis – O.Peshko McMaster – Computational Sci. &Eng.

Table 7.5: The average number of the non-marker clusters removed per image at steps
〈〈 S3 〉〉 and 〈〈 S4 〉〉 of the marker segmentation procedure.

Data set
Number of clusters removed, per image

Step 〈〈 S3 〉〉 Step 〈〈 S4 〉〉
F 0.25 mm 0 0

F 0.5 mm 0 0
F 1 mm 0 0.78
F 2 mm 0 0.78
F 4 mm 1.89 0.33

S 0.5 mm 0 0
S 1 mm 0 1

P1 1 mm 0 0.01
P2 1 mm 0.76 0.99
P3 1 mm 0.42 0.19
P1 2 mm 1.33 2.67

data sets, however, as it can be seen in Table 7.5, both correction procedures are

important for reliable segmentation. As the number of images in the data sets was

different, in the table we provide an average number of clusters removed per image.

7.1.5 Design of Phantom Insert

This section presents a description of the plastic insert that holds the gold fiducial

markers and is used in both the RSVP and Quasar phantoms that were introduced

in Sections 2.3.1 and 2.3.2. The details of the marker placement inside the insert are

necessary for understanding the validation experiments in Sections 7.1.6 and 7.1.7.

The insert contains seven fiducial markers 0.8 mm in diameter and 3 mm long.

Such markers are used for daily target position verification for the patients. The

markers are placed in a known geometric configuration depicted in Figure 7.3, and

the following facts are known about their placement in the phantom insert:

(F1) The distance between the centres of the neighbouring markers is 10 mm.

(F2) The centres of all fiducial markers are on one line, and that is the axis of

symmetry of the cylindrical insert, the direction of which is denoted by a unit

vector a in Figure 7.3.

(F3) Axes of symmetry of all markers lie in the same plane, which we call a marker

placement plane.
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Figure 7.3: Design of the phantom insert with the fiducial markers.
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(F4) Orientation angles of the fiducial markers are also known. Let uk be an

orientation vector of FMk, coinciding with the axis of the cylindrical marker.

Orientation angles αk are measured as the angles between a and uk, where

−90◦ < αk ≤ 90◦, and are known to be 0, 30, 60, 90, -15, -45, and 0 degrees.

The phantom was imaged in different positions (shifts in the X, Y and Z direc-

tions, and rotations around the X axis), however, the angle between a and Y+ (the

positive direction of the Y axis) was always smaller than 90◦. Also, we made our best

effort to place the insert in a way that the marker placement plane is parallel to YZ.

This makes the markers appear full-length in the imaging plane when the kV x-ray

source is at the X axis (lateral images), and that is how the markers are placed in

the prostate patients. We number the fiducial markers starting from the insert holder

as FM1, . . . ,FM7. The orientation of the UV coordinate system of the fluoroscopic

images shown in Figure 7.3 corresponds to an acquisition setup of left-lateral images,

when the imaging x-ray source is located at the X+.

7.1.6 Marker Positional Errors

The validation of the method accuracy requires an existence of some “ground truth”

data to compare the results to. In our case, even for the phantom images, it is quite

challenging to obtain the exact positions and orientations of the markers in the 3D

space. One of the common ways is to compare the results of the method to the marker

positions and orientations selected manually in the CT or CBCT images. Here, we

take another (automatic) approach: The positional and orientational accuracy of the

proposed 3D marker segmentation and modelling procedure is evaluated based on the

relative geometry of the markers. In particular, we exploit the phantom insert design

facts (F1) – (F4) described in Section 7.1.5.

Based on (F1) and (F2), we compute an inter-marker distance error (IMDE),

and a marker positioning error (MPE), respectively (see Figures 7.4 and 7.5). In this

section, we provide formulations and results of the IMDE and MPE for the phantom

data sets described in Section 7.1.1.

Inter-Marker Distance Error (IMDE)

Let ck3D be a centre of FMk computed as given in Section 3.2. From the physical phan-

tom design, it is known that the distance between the neighbouring marker centres is

d = 10 mm. We define the inter-marker distance error (IMDE, Figure 7.4) as:

IMDEk = ‖ck3D − ck+1
3D ‖ − d, k = 1, . . . , n− 1, (7.1.1)
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Figure 7.4: Inter-marker distance er-
ror (IMDE): A distance in 3D be-
tween the marker centres.

FMk−1

FMk

FMk+1

MPEk

ℓk

Figure 7.5: Marker positioning error (MPE):
A distance in 3D from a marker centre to an
estimation of an insert axis, ℓk.

Table 7.6: Inter-marker distance error (IMDE).

Data set
IMDE, mm

Min 25% Med 75% Max Mean± Std

F 0.25 mm −0.08 −0.04 −0.02 0.01 0.05 −0.02± 0.04

F 0.5 mm −0.11 −0.03 0 0.05 0.1 0.01± 0.05
F 1 mm −0.15 −0.04 0.02 0.07 0.2 0.01± 0.08
F 2 mm −0.71 −0.08 0 0.18 0.64 0.01± 0.27
F 4 mm −2 −1.91 −0.76 1.13 2.13 −0.37± 1.53

S 0.5 mm −0.17 −0.21 0.02 0.09 0.17 0.03± 0.09
S 1 mm −0.18 −0.15 −0.03 0.05 0.1 −0.04± 0.11

where n is the number of the markers, and n = 7 for all phantom data sets used in

this section.

As discussed in Section 7.1.4, all markers in the CBCT images of the phantoms

were detected correctly, with the exception of the “F 4 mm” data set, where some

markers were discarded as they occupied the neighbouring voxels and formed a single

large contiguous feature. Also, the first CBCT image of the mentioned data set

included one erroneously accepted non-marker feature. We exclude this feature from

consideration in this and the following sections.

Figure 7.6 and Table 7.6 present the IMDE results. As expected, the IMDE

grows with the increasing voxel size. All data sets show IMDEs that are below 1 mm,

except for the “F 4 mm”, where the values take the range from −2 to 2.13 mm. In

order to place the IMDE in the context of the voxel size, we also present IMDE results

as fractions of the corresponding voxel sizes, δvx: IMDE [vx] = IMDE/δvx (Figure 7.6,

bottom). For voxel sizes from 0.25 to 2 mm the maximal and minimal IMDE [vx] values

approximately fall within 1/3 of a voxel size, whereas for 4 mm voxels at around 1/2
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Figure 7.6: Inter-marker distance error (IMDE) results for the phantom data sets in
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short data types, respectively. Table 7.6 provides numerical values for the top figure.
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with a much larger range of 25th to 75th percentile in comparison to the smaller voxel

sizes.

Figure 7.7 shows the IMDE results separately for each inter-marker interval,

where interval number k is the interval between FMk and FMk+1. The Pearson’s

linear correlation coefficients between the IMDE median values of all data sets except

for “F 2 mm” and “S 1 mm” take the range from 0.53 to 0.9, which, in turn, suggests

a correlation of the IMDE to the marker orientation in the 3D space.

Marker Positioning Error (MPE)

As described in the design fact (F2) in Section 7.1.5, the phantom insert is manufac-

tured in such a way that all marker centres are positioned on one line, ℓ, and that

is the insert’s axis of symmetry. We define the marker positioning error (MPE) as

the distance between the marker centre, ck3D, and ℓ. However, the precise location of

the insert within the XYZ coordinate system is not known, and therefore, we have to

estimate ℓ, which is done by the procedure described below.

The estimation of ℓ for each FMk, ℓk, is found by computing the best-fitting

line using leave-one-out principal component analysis (PCA), i.e., the components are

computed based on the centres of all markers except for the FMk. Let Λk = {ci3D | i =
1, . . . , n, i 6= k} 6= ∅ be a set of all marker centres except for FMk’s. Let vk be the

first (largest) principal component of Λk. Then,

ℓk = {mean(Λk) + vkt | t ∈ R}. (7.1.2)

Let p1, p2 ∈ ℓk, p
1 6= p2. The MPE for each FMk, k = 1, . . . , n, is computed as the

distance between the point ck3D and its projection to ℓk (see Figure 7.5):

MPEk = ‖ck3D − projℓk(c
k
3D)‖ =

(p2 − p1)× (ck3D − p1)

‖p2 − p1‖ . (7.1.3)

We compute the points p1 and p2 by using the largest and the smallest scores of the first

principal component in place of t in Equation (7.1.2). The score is the representation

of data in the principal component space. Using the minimal and maximal score of

the first principal component creates a line segment from p1 to p2 that approximately

extends from the first to the last marker.

To ensure an accurate MPE value for each marker, the estimates ℓk of the

insert axis should also be found with sufficient accuracy. For each data set, we test

the estimates by analyzing the inter-line variability (ILV) by computing the angles

between the pairs of the estimates ℓi and ℓj:

ILVij = {arccos((vi)Tvj) | i = 1, . . . , n− 1, j = i+ 1, . . . , n}. (7.1.4)
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Figure 7.7: IMDE by inter-marker intervals.
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Table 7.7: Marker positioning error (MPE).

Data set
MPE, mm

Min 25% Med 75% Max Mean± Std

F 0.25 mm 0.01 0.02 0.04 0.05 0.11 0.04± 0.02

F 0.5 mm 0 0.02 0.03 0.04 0.09 0.03± 0.02
F 1 mm 0.01 0.03 0.05 0.07 0.12 0.05± 0.03
F 2 mm 0.03 0.09 0.13 0.2 0.35 0.15± 0.07
F 4 mm 0.06 0.31 0.45 0.64 1.12 0.48± 0.25

S 0.5 mm 0.06 0.26 0.8 1.04 1.36 0.7± 0.4
S 1 mm 0.02 0.03 0.04 0.05 0.11 0.05± 0.03

The ILV results for the data sets described in Section 7.1.1 are shown in Fig-

ure 7.8. As expected, in general the ILV tends to grow with increasing voxel size, with

the exception of the “S 0.5 mm” and “S 1 mm” data sets, where the 0.5 mm CBCTs

had much larger reconstruction artifacts than the ones with 1 mm voxels. The result

for the first image in the “F 4 mm” data set was removed because the presence of

the outlier causes almost all line estimates to be erroneous. In order to have a fair

base for comparison, we will use the insert axis estimates of the “F 0.5 mm” data

set as the ground truth for all data sets with equal or larger voxel size. The position

and orientation of the insert axis in 3D were different for the “F 0.25 mm” data set.

Therefore, it requires its own insert axis estimates. Their accuracy is comparable to

that of the “F 0.5 mm” data set: For both, the maximal ILV is at round 0.1◦, which

means that the upper bound for displacements between the FM7’s corresponding to

different estimates given that the FM1’s coincide, is about 0.1 mm. To compare, for

“F 4 mm”, with the maximal ILV at around 1.4◦, the displacement would be around

1.5 mm, that is, half of the marker size. We conclude that the line estimates found

for the “F 0.25 mm” and “F 0.5 mm” data sets in the proposed way are sufficiently

accurate and can be used for computation of the MPE.

Figure 7.9 and Table 7.7 present the MPE results. Except for the “S 0.5 mm”

data set, the MPE tends to grow with the increasing voxel size. The corresponding

MPE results in voxels, i.e., MPE [vx] = MPE/δvx, shown in Figure 7.9 (bottom),

suggest a strong dependency between the error and the voxel size. The markers of

the “S 0.5 mm” data set include the points of significant reconstruction artifacts that

tend to be larger on one side of the markers. An example is shown in Figure 7.10,

where the number of the encircled artifact voxels to the left (negative X direction) of

the true marker voxels is larger than the number of artifact voxels to the right. This
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Figure 7.10: In the “S 0.5 mm” data set, it is common for the marker sets to include
more artifact voxels (encircled) on one side of the true marker voxels, which creates
a systematic displacement from the marker set centres to the estimates of the insert
axis obtained from the “F 0.5 mm” data set.

creates a significant systematic displacement with a median of around 0.8 mm from

all marker centres to the estimates of the insert axis. This displacement can also be

viewed in Figure 7.11 (top right), where the MPE results are presented separately

for each marker. The “by-marker” analysis did not reveal strong correlation between

the error and the marker orientation. The only correlation coefficients between the

median MPE values that exceeded 0.5 were between “F 0.25 mm” and “F 0.5 mm”

(0.86), and between “F 0.5 mm” and “S 1 mm” (0.55).

To conclude, the maximal MPE values for most data sets were well below

1 mm, with the exception of “S 0.5 mm” (1.3 mm) due to reconstruction artifacts, and

“F 4 mm” (1.12 mm) due to large voxel size. Based on mostly submillimeter IMDE

and MPE results, we conclude that the marker positional accuracy of the proposed

3D segmentation procedure, described in Sections 3.1 – 3.3, is sufficiently high to be

successfully used for marker segmentation in the CBCT images in clinical setting.

The following section provides validation results for the marker models proposed in

Section 3.4. We aim to quantify marker orientational errors to answer the question of

whether the marker models can be used in practice.
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Figure 7.11: MPE by markers.
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7.1.7 Marker Orientational Errors

Based on the phantom insert design facts (F3) and (F4) explained in Section 7.1.5,

stating that all marker axes lie in one plane, and that their orientations in relation

to the phantom insert axis are known, we quantify the accuracy of the marker model

orientations by computing the out-of-plane angle (OPA) and an orientation angle

error (OAE, see Figures 7.12 and 7.13, respectively). In this section, we provide

formulations and results of the OPA and OAE for the phantom data sets described

in Section 7.1.1.

FMk−1 FMk FMk+1

OPAk

fk

Figure 7.12: Out-of-plane angle
(OPA): An angle between a marker
model axis and an estimation of a
marker placement plane, fk.

FMk−1 FMk FMk+1

α̂k

fk
ℓk

Figure 7.13: Orientation angle error (OAE):
A difference between the marker orientation
angle, αk, known from the phantom design,
and an angle α̂k between the projection of the
marker model axis to fk and the estimation of
the insert axis, ℓk.

Out-of-Plane Angle (OPA)

As described in the phantom design fact (F3) in Section 7.1.5, all marker axes lie in

the same plane, which we call the marker placement plane, f . Similarly to the MPE,

where the exact positioning of the phantom insert axis ℓ was not known and had to be

estimated, we also have to estimate f . The estimation is performed in an analogous

manner. Let ck3D be a centre, and e1,k and e2,k be the endpoints of the marker model

corresponding to FMk found as described in Section 3.4. By Φk = {ci3D, e1,i, e2,i | i =
1, . . . , n, i 6= k} 6= ∅ we denote a set of all centres and endpoints except for the FMk’s.

The application of the PCA to Φk gives three component vectors, v1,k, v2,k, and v3,k,

where ‖v1,k‖ ≥ ‖v2,k‖ ≥ ‖v3,k‖, and v1,k⊥v2,k⊥v3,k. Then, an estimate of f for FMk,

fk, is the plane spanned by the vectors v1,k and v2,k that is perpendicular to v3,k:

fk = {mean(Φk) + v1,kt1 + v2,kt2 | t1, t2 ∈ R}. (7.1.5)

Let ûk = (e2,k − e1,k)/‖e2,k − e1,k‖ be a marker model orientation vector. Then, the

out-of-plane angle (OPA) can be computed as:

OPAk =
∣∣90◦ − arccos

(
(ûk)Tv3,k

)∣∣ . (7.1.6)
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Similar to the MPE, the OPA can only provide reasonable estimation of marker

out-of-plane angles if the estimates for fk are accurate. For each data set, an inter-

plane variability (IPV) is quantified by computing the angles between the pairs of

plane estimates fi and fj :

IPV = {arccos
(
(v3,i)Tv3,j

)
| i = 1, . . . , n− 1, j = i+ 1, . . . , n}, (7.1.7)

where n is a number of the fiducial markers. As can be seen in Figure 7.14, the IPV

grows rapidly with the increase of the voxel size. Therefore, we will use the marker

placement plane estimates for the “F 0.5 mm” data set for all data sets with the

voxel sizes of 0.5 mm and larger. As the “F 0.25 mm” data set was measured with

a different phantom, it has its own estimates for fk that are comparable in accuracy

to those of “F 0.5 mm”. The maximal IPV is around 1◦ for both “F 0.25 mm” and

“F 0.5 mm”, which translates into the distance of approximately 1 mm between the

FM7’s in different estimates given that the FM1’s coincide.

We expect that the OPA’s should grow with the increase in the voxel size.

As was shown in Section 7.1.6, the IMDE and MPE are almost linearly dependent

on the voxel size for most data sets (bottom graphs in Figures 7.6 and 7.9), i.e., the

localization accuracy is inevitably limited by the voxel size. In order to provide a

similar context for the OPA results, we define an angle β that corresponds to one

voxel size, δvx.

For the marker models, we believe that a sensible way to define β is depicted

in Figure 7.15: We compute a rotation angle that requires to be subtended by the

marker model axis, where one endpoint is fixed, and the other travels the distance

equal to δvx. Angle β quantifies the rotational uncertainty. For example, if the angular

difference between the marker model axis and its estimation is smaller than β, it can

not be expected to be accurately recovered. Analogously, we will use β to provide

relation between the voxel size and orientation angle error (OAE) presented later in

this section. The rotational uncertainty is computed as:

β = 2 arcsin

(
0.5 δvx

h

)
, (7.1.8)

where h = 3 mm is the length of the fiducial marker. The numerical values for β

depending on different voxel sizes are given in Table 7.8.

Figure 7.16 and Table 7.8 present the OPA results. We conclude that judging by

the out-of-plane angles, the marker orientation can be recovered reliably for the CBCT

images with 0.25 and 0.5 mm voxels, and for most images with 1 mm voxels, with

the exception being the “S 0.5 mm” data set that had large reconstruction artifacts.

While the orientations of most of the marker models in the 1 mm voxel images were

192



Ph.D.Thesis – O.Peshko McMaster – Computational Sci. &Eng.

0

2

4

1
Image number

        S 1 mm

0

5

10

15

1 2 3 4 5 6 7 8
Image number

        F 0.5 mm

0

20

40

60

80

2 3 4 5 6 7 8 9
Image number

        F 4 mm

0

20

40

60

80

1 2 3 4 5 6 7 8 9
Image number

        F 2 mm

0

10

20

1 2 3 4 5 6 7 8 9
Image number

        F 1 mm

0

0.5

1

1 2 3 4 5 6 7 8 9
Image number

        F 0.5 mm

0

0.5

1

1 2 3 4 5
Image number

        F 0.25 mm
IP

V
, 

d
e

g
IP

V
, 

d
e

g
IP

V
, 

d
e

g
IP

V
, 

d
e

g
IP

V
, 

d
e

g

IP
V

, 
d

e
g

IP
V

, 
d

e
g

Figure 7.14: Inter-plane variability (IPV).
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δvx

β

h

Figure 7.15: Rotational uncertainty is quantified by β, which is a rotation angle that
the marker model of length h must execute around one of its endpoints so that the
other endpoint travels the distance equal to the voxel size, δvx. The numerical values
for β depending on different voxel sizes are given in Table 7.8.

Table 7.8: Out-of-plane angle (OPA), and rotational uncertainty, β.

Data set
OPA, deg

β, deg/vx
Min 25% Med 75% Max Mean± Std

F 0.25 mm 0.04 0.55 0.84 1.41 6.76 1.18± 1.28 4.78

F 0.5 mm 0.04 0.39 0.7 1.12 4.88 0.91± 0.87 9.56
F 1 mm 0.08 0.86 1.79 4.18 81.05 5.84± 13.16 19.19
F 2 mm 1.97 7.21 17.82 46.23 86.04 29.47± 27.88 38.94
F 4 mm 1.54 10.48 33.1 75.42 87.47 41.62± 32.46 83.62

S 0.5 mm 0.07 52.43 76.43 81.37 86.87 61.98± 28.85 9.56
S 1 mm 0.36 1.33 4.48 4.88 6.51 3.46± 2.27 19.19
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recovered reasonably with medians of 1.79◦ and 4.48◦ in “F 1 mm” and “S 1 mm”,

respectively, some of them went out of plane reaching a value of 81.05◦. This means

that while the use of the marker models can prove beneficial for our current 1 mm

CBCT images, the method should be applied with caution by having error detection

procedures in place. For example, if it is known that every effort is made to insert the

fiducial markers to appear in one plane, this additional information can be used to

either correct the erroneously recovered orientations or detect an unacceptable error

and switch to the alternative processing method, such as working with the marker

sets directly without reconstructing the models.

The OPA results scaled by the voxel size, OPA [vx] = OPA/β (Figure 7.16,

bottom), show that, with the exception of “S 0.5 mm” and some of the marker models

from the “F 1 mm” data set, the model orientations are recovered with reasonable

accuracy. All data sets have their 75th percentile approximately within 1 voxel, and

maximal values within 2 voxels. Hence, the ratio between the marker and voxel size

plays an important role in the ability to find the marker position and orientation. The

“by-marker” analysis, presented in Figure 7.17, does not reveal significant correlation

between the OPA’s and the marker orientation for most data sets. The only corre-

lation coefficients between the OPA median values that exceeded 0.5 were between

“F 0.5 mm” and “F 4 mm” (0.91), and between “F 1 mm” and “F 2 mm” (0.63).

Orientation Angle Error (OAE)

As explained in the design fact (F4) in Section 7.1.5, the orientation angles αk between

the insert axis and the fiducial marker axes are known from the phantom design.

These angles are defined in the marker placement plane, where all axes of the fiducial

markers should lie according to the design fact (F3). However, as can be understood

from the OPA results presented above, the axes of the computed marker models are

not necessarily located in the marker placement plane. In this case, it does not make

sense to compare αk to the angles in 3D between the marker models and the phantom

axis. In the end, the 3D marker models will be used to generate 2D images that will

be compared to lateral fluoroscopic images, i.e., the plane of the 2D projection images

will be approximately parallel to the marker placement plane. This means that the

observed angles between the projections of the markers to the image plane and the

phantom axis can be different from the angles in 3D between the marker models and

the phantom axis. Therefore, we propose to compute the orientation angle error

(OAE) as shown in Figure 7.13: It is the difference between the known orientation

angles αk and the in-plane orientation angles of the marker models, α̂k, found as

the angles between the estimation of the phantom axis, ℓk, and the projections of

the 3D marker model axes to the estimation of the marker placement plane, fk. As
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Figure 7.17: OPA by markers.
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Table 7.9: Orientation angle error (OAE), and rotational uncertainty, β.

Data set
OAE, deg

β, deg/vx
Min 25% Med 75% Max Mean± Std

F 0.25 mm −4.04 −1.63 −0.71 0.09 1.98 −0.7± 1.38 4.78

F 0.5 mm −3.05 −1.82 −1.17 −0.02 3.52 −0.73± 1.68 9.56
F 1 mm −20.8 −11.52 −5.9 8.39 20.15 −2.4± 11.06 19.19
F 2 mm −87.41 −67.72 −25.49 31.8 89.89 −14.47± 56.67 38.94
F 4 mm −87.55 −52.87 −2.64 32.51 77.9 −9.33± 51.38 83.62

S 0.5 mm −89.47 −25.78 10.63 34.33 89.78 8.13± 43.72 9.56
S 1 mm −24.3 −18.76 −3.76 5.59 32.23 −3.22± 19.33 19.19

explained in the comments regarding Figure 7.3, the angle between the Y+ axis and

the vector a, that is a direction vector of the insert axis, is less than 90◦according

to our experiment design. If it is greater than 90◦, we change the direction of the

corresponding vectors v1,k (estimations of vector a for FMk).

Computation of the projection of the marker model axis to fk requires finding

the projections ekproj1 and ekproj2 of the model endpoints e1,k and e2,k. The distance

between e1,k and fk can be computed as:

d1,k = (v3,k)T
(
e1,k −mean(Φk)

)
. (7.1.9)

Then, the projection point is:

ekproj1 = e1,k − d1,k v
3,k. (7.1.10)

The computation for ekproj2 is performed analogously. Let ûk = ekproj2 − ekproj1 be the

projection of the marker model axes to fk. Then, the in-plane orientation angle can

be computed as:

α̂k = sign(ûk
z) arccos

(v1,k)T ûk

‖ûk‖ . (7.1.11)

Finally, we define the OAE as:

OAEk = α̂k − αk. (7.1.12)

If OAEk < −90◦ or OAEk > 90◦, the OAEk is assigned the value of OAEk −
sign(OAEk) 180

◦. As with the OPA’s, we use the plane estimates fk of the “F 0.5 mm”

for all data sets, except for the “F 0.25 mm”.
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199



Ph.D.Thesis – O.Peshko McMaster – Computational Sci.&Eng.

Figure 7.18 and Table 7.9 present the OAE results. In general, the errors grow

with the increasing voxel size. Based on the OAE, the marker orientation are well

recovered for the CBCT images with 0.25 and 0.5 mm voxels, except the “S 0.5 mm”

data set that had large reconstruction artifacts. In the “F 1 mm” data set, the minimal

and maximal OAE values are very close in magnitude to the rotational uncertainty,

β, and in “S 1 mm” somewhat surpass it. Although the error in orientation of the

marker model of around 20◦ may sound significant, in the CBCTs with 1 mm voxels

it corresponds to 1 pixel displacement.

Indeed, the OAE results scaled by the voxel size OAE [vx] = OAE/β (Fig-

ure 7.18, bottom) show that, with the exception of “S 0.5 mm”, the model orientations

are reasonably recovered. The “F 2 mm” data set has its minimal and maximal values

within 2.3 voxels, while OAE [vx] of all other data sets fall within approximately 1

voxel. The “by-marker” analysis, presented in Figure 7.19, suggests very high corre-

lation between the known marker orientation and the error. All data sets, except for

“F 0.25 mm” and “S 0.5 mm”, are mutually correlated with correlations of 0.72 to

0.94 between the median OAE values.

Based on the OPA and OAE results, we conclude that the technique of com-

puting the marker models proposed in Section 3.4 can be successfully used for the

CBCT images with 0.25 and 0.5 mm voxels, with the exception of the 0.5 mm images

reconstructed with the short data type, and with some caution for most images with

1 mm voxels. If the voxels are larger than 1 mm, or large reconstruction artifacts are

present, with the current hardware and 3D image reconstruction technique, there is

no benefit in using the marker models, and the marker localization procedure should

proceed by only using the marker sets segmented from the CBCT images as described

in Sections 3.1 – 3.3.
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Figure 7.19: OAE by markers.
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7.2 MEF Validation

This section discusses the success of the application of the marker enhancement filter

(MEF) to phantom and patient images, in particular, in Section 7.2.3. In Section 7.2.4,

we provide a comparison of the MEF to the selected existing filters described in

Section 4.2.

The success of the marker enhancement depends on characteristics of 2D pro-

jection images, such as the noise and contrast, that are affected by the properties

of the image acquisition system, the thickness of the volume along the viewing axis,

and the density of overlaying structures. In addition, filter performance is expected

to be influenced by the choice of the region of interest (ROI) on which filtering is

performed: In general, better marker enhancement results are expected on a smaller

ROI containing the markers and their immediate background than on a larger ROI

with lots of background full of anatomical features. We test the MEF on the data

sets described in Section 7.2.2 using several ROIs, the selection of which is discussed

in Section 7.2.1.

7.2.1 Selection of Regions of Interest

We used five different ROI sizes for the validation of the MEF. Although filter valida-

tion can be performed with no relation to image registration, we prefer to use ROIs

that are meaningful in the context of our proposed marker localization and tracking

methods. As explained in detail in Section 4.3, the ROIs are computed based on the

selection of the geometric transformation and bounds on its parameters, amax. For the

2D rigid transformation, T 2D, we compute the ROIs based on the following bounds

amax = (tmax
u , tmax

v , γmax)T , where tmax
u and tmax

v are shifts in the U and V directions,

and γmax is a bound on the rotation angle:

ROI1: amax = (0 mm, 0 mm, 0◦)T ;

ROI2: amax = (5 mm, 5 mm, 0◦)T ;

ROI3: amax = (10 mm, 10 mm, 3◦)T ;

ROI4: amax = (15 mm, 15 mm, 5◦)T ;

ROI5: amax = (20 mm, 20 mm, 5◦)T .

As explained in Section 4.3, amax is used to compute the maximal allowable displace-

ments of the markers, ̺k, that act as the radii of the circular ROIs Υk around the

predicted marker positions. The minimal rectangle that includes all Υk of the image

is ΩROI. The filter is applied to ΩROI, as it is easier to operate on a rectangular

region that in a straightforward way translates into an array data structure in the

software, and then all the values outside of
⋃n

k=1Υk are set to zero. Figure 7.20 shows
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Figure 7.20: ROIs used for the MEF validation, from left to right : Rectangular ROI
ΩROI, union of circular ROIs

⋃n
k=1Υk for the Quasar phantom, and rectangular and

circular ROIs for a prostate patient.

Table 7.10: ROI sizes for the MEF validation.

ROI
ROI sizes

Quasar Patient 1

px mm px mm

ΩROI1 32× 261 8.33× 67.97 69× 151 17.97× 39.32
ΩROI2 87× 315 22.66× 82.03 123× 205 32.03× 53.39
ΩROI3 151× 379 39.32× 98.7 181× 263 47.14× 68.49
ΩROI4 213× 439 55.47× 114.32 237× 320 61.72× 83.33
ΩROI5 267× 493 69.53× 128.39 291× 374 75.78× 97.4

the respective rectangular and circular ROIs of five sizes for sample fluoroscopic im-

ages of the Quasar phantom and a prostate patient. The corresponding sizes1 of the

rectangular ROIs are given in Table 7.10.

7.2.2 Testing Data Sets for MEF Validation

As already mentioned, the MEF is validated and compared to a number of existing

filters by using phantom and patient fluoroscopic images. The testing data sets for

this section are summarized in Table 7.11 and include the following:

• The RSVP data set consists of nine fluoroscopic image sequences showing the

1The sizes in pixels and millimeters are given as guidelines only, as they can vary in different
images depending on the respective marker positions in each image.
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Table 7.11: Testing data sets for MEF validation.

Data set Sequences× images Total number of images

RSVP 9× 20 180
Quasar 23× 1 23
Patient 1 10× 20 200
Patient 2 10× 20 200
Patient 3 5× 40 200

stationary phantom in different positions and orientations with 20 images in

each sequence, resulting in 180 MEF-images.

• The Quasar data set is similar to the “MM 23” set described in the experiments

with the temporal filters in Section 4.1.3. The 23 image sequences, each of which

is used to produce one MEF-image, show the Quasar phantom exhibiting linear

motion at 2.3 mm/sec.

• The patient testing data sets consist of the fluoroscopic sequences of three

prostate patients. Patient 1 and 2 had ten fluoroscopic sequences where 20

images were selected, and Patient 3 had five sequences of 40 images, resulting

in 200 MEF-images in each patient data set.

The images of both the RSVP and Quasar phantoms contained measurements

of seven fiducial markers, while all patients had three. Note that each of the MEF-

images is produced for different temporal filter width, ℓ, and different ROI sizes, i.e.,

for each ℓ and ROI there are 180, 23, or 200 MEF-images in the RSVP, Quasar, and

patient data sets, respectively.

7.2.3 MEF Success Rates

In this section, we report the results of the MEF application to five data sets con-

taining fluoroscopic images of the RSVP and Quasar phantoms, and three prostate

patients, described in Section 7.2.2. The MEF success rates are reported with respect

to different ROI sizes, defined in Section 7.2.1, and the kernel size, ℓ, of the temporal

Dolph-Chebyshev filter that was used before the MEF application, as discussed in

Section 4.1.3.

Let m be the number of points enhanced by the MEF in one image, which

is computed as explained in Section 4.4.2.2 Let the number of the points enhanced

by the MEF in image j that belong to the marker k be denoted by njk. Then, the

2Recall that m is estimated from the knowledge of the marker size, number of the markers, and
the pixel size. Therefore, in our case, m is the same for all images of the same data set.
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number of true positives for image j can be computed as TPj =
∑

k njk ≤ m. We

define the success rate (SR) for each ℓ and ROI as the median across all images in

the data set:

Median SR = median

{
TPj

m

}
· 100%. (7.2.13)

In addition, we would like to analyze the SRs separately by the markers as

the distribution of the MEF-enhanced points can be uneven due to variability in the

contrast between the markers in a fluoroscopic image. Let nM = m/n be the number

of points that are expected to constitute one marker, where n is the number of the

markers. We define the MEF SR of the marker k in image j as:

Marker SRjk =
njk

nM

· 100%. (7.2.14)

Since some of the markers can possess better contrast than the others, this number

can be greater than 100%.

We designed and implemented an automatic procedure to determine the num-

ber of the MEF-enhanced points belonging to each marker, njk. For each image,

the MEF-enhanced points are those whose intensity is larger or equal to τ = 0.5

(Section 4.4.2). In order to determine which of these points belong to particular

markers, it is necessary to determine some predicted marker positions, ĉjk2D ∈ R
2, and

regions Φjk ⊂ R
2 surrounding them that are only large enough to include one marker.

For the RSVP data set, where no marker motion was performed, we used a simple

projection ĉjk2D = P(ck3D), where P is the 3D to 2D projection operator defined in

Equation (B.5.4), and ck3D are the 3D marker positions determined from the CBCT

image as described in Chapter 3. For the Quasar phantom, the markers of which

were performing significant linear motion, the predicted marker positions had to be

estimated separately for each kernel size, ℓ, of the temporal Dolph-Chebyshev filter,

and we used our 2D marker localization procedure described in Chapter 5 to com-

pute ĉjk2D (the results of localization were validated visually). For the three patient

data sets, where automatic 2D marker localization for small values of ℓ can be chal-

lenging, we used the positions ĉjk2D found by our localization procedure for ℓ = 7. In

this controlled experimental environment, we determined that no displacement larger

than ξ = 2.5 mm for phantom and 3.5 mm for patient images occurred between ĉjk2D,

and the furthest ends of the markers. Therefore, we consider that the points with

intensities larger or equal than τ belong to the marker if they are inside the region

Φjk defined as:

Φjk = {q ∈ R
2 | ‖q − ĉjk2D‖ ≤ ξ}. (7.2.15)

The MEF processing precedes image registration. Therefore, it is important, that the

marker enhanced by the MEF is a contiguous feature, where no low intensity points
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Table 7.12: Median MEF success rate (SR) for the RSVP data set.

ℓ, frames
Median MEF SR, %

ROI1 ROI2 ROI3 ROI4 ROI5

1 97.62 87.1 79.76 73.81 67.86
2 100 98.21 92.06 89.68 87.3
3 100 100 96.03 93.45 91.67
4 100 100 97.62 96.23 93.85
5 100 100 98.21 97.22 94.44
6 100 100 99.01 98.21 95.63
7 100 100 99.21 99.21 95.24
8 100 100 100 99.4 97.02
9 100 100 100 99.8 96.63
10 100 100 100 100 97.62
11 100 100 100 100 98.41

separate the high intensity points of the same marker. Hence, njk is the number of

the high intensity points from Φjk that form the largest contiguous feature.3 In the

MEF, we also increase the radii ̺k of Υk (Section 4.3) by ξ in order to guarantee the

inclusion of all MEF-enhanced points into all ROIs, in particular, the smallest ROI1.

In the remainder of this section, we discuss the results of MEF application to

the testing data sets.

RSVP

The RSVP data set is described in Section 7.2.2. Table 7.12 presents the median MEF

SRs defined in Equation (7.2.13) for the MEF images produced from fluoroscopic

sequences with five different ROI sizes and Dolph-Chebyshev temporal filtering with

1 ≤ ℓ ≤ 11. It can be observed that the median MEF SRs increase for higher values

of ℓ, with a rapid improvement between ℓ = 1 and ℓ = 2. As expected, the median

SRs decrease for larger ROIs, where more background and anatomical features tend

to be included in the ROI. However, the values remain in the high 90%’s for the most

ROIs and ℓ’s.

On average, the RSVP images are good approximation to the patient images,

as they are noisy and the markers possess relatively low contrast, caused by a relative

thickness of the RSVP in the imaging direction. Figure 7.21 shows the distributions

of marker SRs defined in Equation (7.2.14). Graphs from top to bottom correspond

3In each feature, the pixels are connected by either their sides or the corners.
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Figure 7.21: Distributions of the marker MEF success rates (SR) for the RSVP data
set.
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Table 7.13: Median MEF SR for the Quasar data set.

ℓ, frames
Median MEF SR, %

ROI1 ROI2 ROI3 ROI4 ROI5

1 100 100 100 100 57.54
2 100 100 100 100 60.32
3 100 100 100 100 61.11
4 100 100 100 100 60.32
5 100 100 100 100 60.32
6 100 100 100 100 61.9
7 100 100 100 100 54.37
8 100 100 100 100 57.14
9 100 100 100 100 50.79
10 100 100 100 100 45.63
11 100 100 100 100 40.87

to different fiducial markers, FM1 to FM7, schematically shown in Figure 7.3. For

each marker and ℓ value, five distributions correspond to marker SR values in ROI1
to ROI5, from left to right. Due to large noise, the distributions in Figure 7.21 have

large ranges, which tend to decrease with increasing ℓ values. It can be noted that the

median values of individual marker SRs tend to slightly decrease from FM1 to FM7,

which is related to the fact that the phantom gradually thickens towards the bottom.

Quasar

The Quasar data set used for the MEF validation is described in Section 7.2.2. Ta-

ble 7.13 presents the median MEF SR results. The rapid drop in median SRs in

ROI5 is due to the inclusion of the phantom parts that possess significant contrast,

and give a strong filter response (the points belonging to the structure at the top in

Figure 7.20 (left)). For all other ROIs, the higher SR values for the Quasar data set

in comparison to the RSVP were expected, as the Quasar images are characterized

with a smaller noise and higher marker contrast in comparison to the RSVP.

Figure 7.22 shows the distributions of marker SRs. Except for the ROI5 men-

tioned above, there is very small difference between the marker SR values in different

ROIs. The linear motion of the phantom insert is performed along the insert axis. It

is easy to see that the markers whose axes are perpendicular to the direction of the

motion, e.g., FM4, or at a significant angle, e.g., FM3, include fewer MEF-enhanced

points for higher values of ℓ as they tend to lose contrast in the temporally filtered
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Figure 7.22: Distributions of the marker MEF SR for the Quasar data set.
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Figure 7.23: Sample fluoroscopic images from the Patient 1 (left), Patient 2 (middle),
and Patient 3 (right) data sets with the base, posterior, and apex markers denoted
by the arrows.

images due to blurring. On the contrary, those whose axes coincide with the motion

direction, e.g., FM1 and FM7, gain more MEF-enhanced points. For FM6 that is ori-

ented at 45◦ to the direction of the motion, the marker SRs are practically the same

for any value of ℓ.

Prostate patients

The patient testing data sets are described in Section 7.2.2. Figure 7.23 shows sample

fluoroscopic images preprocessed by the Dolph-Chebyshev temporal filter with ℓ = 7

for each of the patients. The three fiducial markers are typically placed as shown in

Figure 7.23 (left) and are called the base, posterior, and apex markers. The results

for the MEF median SR depending on the choice of ℓ and ROI are presented in

Tables 7.14, 7.15 and 7.16 for the Patient 1, 2, and 3 data sets, respectively. The

median SRs increase for the higher values of ℓ, with rapid improvement between

ℓ = 1 and ℓ = 2. As expected, the median SRs decrease for larger ROIs, where more

background and anatomical features tend to be included in the ROI.

Separate distributions of the marker SRs for the base, posterior, and apex

markers for the Patient 1, 2, and 3 data sets are shown in Figures 7.24, 7.25, and

7.26, respectively. In general, the deviations from the medians, as well as the difference

between the marker SRs in different ROIs, tend to decrease with the increasing values

of ℓ. The SRs reflect the contrast of the markers in the fluoroscopic images that can

be visually assessed in Figure 7.23. Often, out of the three markers, the measurements

of the base marker tend to possess the highest contrast while the posterior marker

typically has the lowest contrast.
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Table 7.14: Median MEF SR for the Patient 1 data set.

ℓ, frames
Median MEF SR, %

ROI1 ROI2 ROI3 ROI4 ROI5

1 92.59 83.33 76.85 69.44 52.78
2 100 97.22 92.59 89.81 70.37
3 100 100 97.22 95.37 75.46
4 100 100 99.07 96.3 76.85
5 100 100 100 98.15 78.7
6 100 100 100 99.07 78.24
7 100 100 100 99.54 78.7
8 100 100 100 100 80.56
9 100 100 100 100 81.48
10 100 100 100 100 83.33
11 100 100 100 100 83.33
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Figure 7.24: Distributions of the marker MEF SR for the Patient 1 data set.
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Table 7.15: Median MEF SR for the Patient 2 data set.

ℓ, frames
Median MEF SR, %

ROI1 ROI2 ROI3 ROI4 ROI5

1 100 98.61 92.59 88.89 75
2 100 100 99.07 94.44 78.24
3 100 100 100 98.15 79.63
4 100 100 100 98.15 81.48
5 100 100 100 100 80.56
6 100 100 100 100 81.02
7 100 100 100 100 81.48
8 100 100 100 100 81.94
9 100 100 100 100 81.48
10 100 100 100 100 82.41
11 100 100 100 100 81.94
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Figure 7.25: Distributions of the marker MEF SR for the Patient 2 data set.
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Table 7.16: Median MEF SR for the Patient 3 data set.

ℓ, frames
Median MEF SR, %

ROI1 ROI2 ROI3 ROI4 ROI5

1 98.15 88.89 73.15 63.89 55.09
2 100 98.15 86.11 75.93 68.52
3 100 100 88.89 80.56 71.3
4 100 100 89.81 83.33 74.07
5 100 100 90.74 84.72 76.39
6 100 100 90.74 85.19 76.85
7 100 100 90.74 87.04 78.7
8 100 100 91.67 87.04 80.56
9 100 100 91.67 88.43 81.48
10 100 100 93.06 88.43 81.48
11 100 100 93.52 88.89 83.8
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Figure 7.26: Distributions of the marker MEF SR for the Patient 3 data set.
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Summary

While the numbers are different for different data sets, ROI sizes and ℓ, it was impor-

tant to validate the MEF, and analyze the resulting trends. The assessment of the

SRs for the RSPV, Quasar phantom, and prostate patient data sets suggests that, for

most values of ℓ and ROI sizes, the MEF succeeds in enhancing the marker points,

and that this points constitute around 90 – 100% of all the points enhanced by the

MEF in an image. As explained in Section 7.2.1, the choice of the ROI depends on

the bounds on the parameters of the geometric transformation used in the localization

and tracking procedures, and as such, may be separately defined for each particular

experiment depending on the assumptions about the motion characteristics. The best

choice of ℓ is subject to successful 2D marker localization, and, as such, is discussed

in Section 5.4.

7.2.4 Comparing MEF to Other Filters

As explained in Sections 4.2 and 4.4.1, the existing filters either did not provide suffi-

cient marker enhancement or tended to distort marker shapes. The MEF successfully

enhances marker points, as was demonstrated in Section 7.2.3, and preserves the

shapes, as was explained in Section 4.4.1 and verified visually in multiple processed

images. To complete the validation, this section provides a numerical comparison

between the MEF and several existing filters. Taking into consideration that mul-

tiple methods require an application of a binary threshold to the filtered image for

successful marker detection, e.g., [35, 169, 159], we believe that a reasonable way to

compare the filters is to present the results in the form of receiver operating character-

istic (ROC) curves [55]. In general, the ROC curve illustrates the performance of a

binary classifier system as its discrimination threshold is varied. In filter comparison,

it means that a series of intensity thresholds is applied to the filtered images. The

points whose intensity is higher than the threshold value are split into the true and

false positives, TP and FP, where TP are the points that belong to the markers, and

FP to the background. Then, the number of TP is plotted versus the number of FP

for different threshold values. Often, instead of TP and FP, the graph shows the TP

and FP rates, TPR and FPR, which are computed as the fraction of TP out of the

positives and the fraction of FP out of the negatives, respectively. The higher the TP

or TPR and the lower the FP or FPR, the better is the performance of a filter.

The MEF is compared to the following filters: MEK [160], LoG2 [127], Sato’s

blob filter [189], and Frangi’s line filter [63] defined in Equations (4.2.9), (4.2.15)

(LoG), (4.2.20), and (4.2.27), respectively, and the simple step thresholding Cstep
defined in Equation (4.4.35). These filters were selected based on visual assessment
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as the ones providing the best marker enhancement, except for the global thresholding,

which is used as a baseline. Due to the fact that the filters can produce images in

different intensity ranges, the thresholds are selected in relation to the intensity range

as will be explained in more detail later in this section. The evaluation procedure for

each of the filters proceeds as follows:

• Circular and rectangular ROIs, Υk and ΩROI, are computed as explained in Sec-

tion 4.3 in a discrete fluoroscopic image temporally preprocessed by the Dolph-

Chebyshev filter;

• A filter is applied to ΩROI, resulting in image A;

• Intensity values outside of Υk are set to the minimum intensity found in the

image;

• A sequence of intensity thresholds is selected. We compute the threshold inter-

val as ∆θ = (max{A} − min{A})/(npt + 1), where npt = 20 is the number of

thresholds. Then,

θi = min{A}+ i∆θ, i = 1, . . . , npt. (7.2.16)

Let p̌ be the grid points, p̌ ∈ Γ2 ∩ ΩROI. The following steps are performed for

each threshold θi:

• All points {p̌ 6∈ ⋃k Υk | A[p̌] ≥ θi} are counted towards FP;

• The points {p̌ ∈ Υk | A[p̌] ≥ θi} are processed according to the procedure de-

scribed in Section 7.2.3 for the computation of the marker MEF SR defined

in Equation (7.2.14): The points within each region4 Φjk defined in Equa-

tion (7.2.15) are split into contiguous features and the points of the largest

feature are counted towards TP, while all other points are counted towards FP;

• If the number of TP for any Φjk is larger than the estimated number of points

that should constitute a marker, nM, used in Equation (7.2.14), then the number

of FP is increased by (TP− nM), and the number of TP for this particular Φjk

is set to nM.

As mentioned above, the ROC curve often shows the fraction of TP out of

the positives, i.e., the true positive rate (TPR), or sensitivity, versus the fraction of

false positives out of the negatives, i.e., the false positive rate (FPR), or one minus the

specificity. The expected number of the marker points, i.e., the number of positives, P,

is known: It can be computed based on the number and size of markers as explained

in Section 4.1.2. Hence, the TPR = TP/P. The number of negatives, N, is the

number of pixels in the image minus P, and FPR = FP/N. However, for our filter

4Υk is formed based on amax, and Φjk is computed in the experimental setting as a way of
selecting marker points within Υk based on geometry and intensity.
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evaluation, the comparison of TPR to FPR does not make sense, as N ≫ P: For

example, if TP = FP, the result of the filtering can not be considered acceptable

for marker detection or image registration purposes, as there are as many enhanced

points belonging to the markers as to the other features. Nonetheless, in this example

FPR ≪ TPR, which in a general case would suggest good performance. Therefore,

for filter evaluation, it is better to compare TP to FP rather than TPR to FPR.

However, to place TP and FP in the context of the ideal filter performance, we scale

them by P:

T̃Pj(θi) =
TPj(θi)

P
· 100%, (7.2.17)

F̃Pj(θi) =
FPj(θi)

P
· 100%, (7.2.18)

where TPj and FPj are the TP and FP numbers for the image j. To be consistent with

the results in Section 7.2.3, we report the percentage rather than the fraction. For

each threshold value θi, we report median values of T̃Pj and F̃Pj across all processed

images. Due to the fact that both TP and FP are scaled by P, 0% ≤ T̃Pj ≤ 100%,

while the values of F̃Pj can be much larger than 100%.

MEF benchmarking on RSVP data set

The filter performance is evaluated using the RSVP data set that consists of nine

fluoroscopic image sequences, 38 images each, totalling in 342 images. We present

the results for the images preprocessed by the Dolph-Chebyshev temporal filter with

kernel sizes ℓ = 7 and ℓ = 1 (no temporal filtering). The filtering is performed over

ROI3 defined in Section 7.2.1 as it is the one that includes a sufficient amount of the

background but does not have too many irrelevant measurements, such as those of

the phantom structures.

The T̃P and F̃P results in the form of the ROC curves for the MEF and

existing filters, such as LoG2, Frangi’s line, Sato’s blob, MEK, and a simple threshold

technique as a baseline are presented in Figure 7.27. The figures on the left show

0% ≤ F̃P ≤ 100% and 0% ≤ T̃P ≤ 100%, and the figures on the right give a zoom-in

into 0% ≤ F̃P ≤ 50%, 50% ≤ T̃P ≤ 100% for ℓ = 1 (top figures) and ℓ = 7 (bottom

figures). The corresponding numerical values at different thresholds θi are listed in

Tables 7.17 – 7.20 for the existing filters, and in Tables 7.21 and 7.22 for the MEF.

The underlined row in the tables approximately corresponds to the middle value in

the intensity range. For the MEF, this is the value of the threshold that separates

the candidate marker points from the background.

Without preliminary temporal filtering (ℓ = 1), the MEF clearly provides the

best performance of the considered filters by having the smallest F̃P and the highest
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Figure 7.27: Receiver operating characteristic (ROC) curves (T̃P versus F̃P) for the
MEF and existing filters for ℓ = 1 (top left) and ℓ = 7 (bottom left). The figures on
the right provide zoom-in into the corresponding graphs on the left.
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Figure 7.28: ROC curves for the MEF and existing filters for T̃P ≥ 80, F̃P ≤ 20, and
ℓ = 7.

T̃P values, as can be seen from Figure 7.27 (top). For ℓ = 7 (Figure 7.27, bottom),

other filters, especially LoG2 and Frangi’s line filter, tend to have similar T̃P and F̃P

values. Often, the best achievable T̃P values come at a cost of unreasonably high F̃P

values. For example, the value of T̃P = 100% for ℓ = 7 can be achieved for the LoG2

at a minimal value of F̃P = 91.02%, for the Frangi’s line filter at 101.43%, for the

Sato’s blob filter at 120.82%, for the MEK at 350.61%, for the simple threshold at

10,164.49%, and for the MEF at just 34.69%. The MEF also provides a larger range

of thresholds that correspond to acceptable values of T̃P and F̃P. For example, see

Figure 7.28 that shows the points for ℓ = 7, for which T̃P ≥ 80% and F̃P ≤ 20%.

By evaluating the performance of the MEF on several data sets reported in

Section 7.2.3 and comparing its performance to a number of other filters in this section,

we conclude that the MEF is an excellent choice for the marker enhancement task,

and, to the best of our knowledge, is the best among the available filters.

7.2.5 MEF Variations

In this section, we report the results on the MEF variations, that may be more

suitable for some applications. The results for the MEF, MEF without application

of the contrast enhancement function (CEF, Section 4.4.2) as the final MEF step,

the magnitude-only filter (MOF, Section 4.4.5), and the MOF without final CEF are
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Figure 7.29: ROC curves (T̃P versus F̃P) for the variations of the MEF for ℓ = 1
(top left) and ℓ = 7 (bottom left). The figures on the right provide zoom-in into the
corresponding graphs on the left.
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Figure 7.30: A portal image of the RSVP (left), and the results of the MEF application
with (centre) or without (right) CEF as the final MEF step.

presented in Figure 7.29, and Tables 7.21 and 7.22. For the RSVP data set described

in Section 7.2.4, all four variations provided fairly similar results, hence all can be

used in marker enhancement.

As discussed in Section 4.4.5, we used the full MEF in the 2D marker lo-

calization procedure, as the expected marker displacement between the CBCT and

fluoroscopic images can be significant, and we used the MOF in tracking to reduce

computational time. The application of the CEF as the final step of the MEF or

MOF may or may not be necessary. As an example, consider a portal image shown in

Figure 7.30 (left). It contains artifacts related to the portal flat-panel detector, where

the background consists of rectangular regions of different and varying intensities,

which creates high intensity features at the region borders. These features can give

very high filter response, much higher than the markers, as can be seen in Figure 7.30

(centre). Since the feature is not very large, the application of the CEF as the final

MEF step amplifies marker points as well. On the contrary, without the CEF, only

the artifact feature is amplified (Figure 7.30, right). A different example would be a

fluoroscopic image of a prostate patient, where one of the markers may be overlayed

by a high-intensity feature, such as the bones. In this case, other markers tend to

attract more MEF points, and at the final CEF step the first marker can be further

suppressed. In this case, it may be desirable to omit the final CEF application.
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Table 7.17: Receiver operating characteristic (ROC) values (T̃P versus F̃P) for the
LoG2, Frangi’s line, and Sato’s blob filters for ℓ = 1.

i in θi
LoG2 Frangi’s line Sato’s blob

T̃P (F̃P) T̃P (F̃P) T̃P (F̃P)

1 100 (3730.61) 100 (4647.14) 100 (6018.98)
2 100 (1269.59) 100 (2854.69) 100 (4973.27)
3 98.37 ( 475.51) 100 (1664.29) 100 (3775.1 )
4 91.43 ( 191.22) 100 ( 961.63) 100 (2668.78)
5 80.82 ( 82.86) 98.57 ( 549.18) 98.78 (1750.61)
6 67.96 ( 37.96) 95.51 ( 314.08) 95.92 (1067.96)
7 55.92 ( 18.37) 90.61 ( 177.14) 93.06 ( 608.37)
8 45.92 ( 10.2 ) 84.29 ( 99.39) 86.12 ( 325.51)
9 37.14 ( 6.12) 75.51 ( 53.88) 76.33 ( 163.06)
10 29.39 ( 4.08) 65.71 ( 27.76) 64.49 ( 80.61)

11 22.86 ( 2.45) 56.12 ( 14.69) 53.06 ( 39.8 )
12 17.55 ( 1.22) 45.71 ( 7.35) 41.84 ( 19.18)
13 13.47 ( 0.82) 36.73 ( 3.67) 32.65 ( 10.41)
14 9.8 ( 0 ) 28.57 ( 1.84) 24.9 ( 5.71)
15 7.14 ( 0 ) 20.82 ( 0.82) 17.55 ( 3.27)
16 4.9 ( 0 ) 15.51 ( 0 ) 11.84 ( 1.63)
17 3.27 ( 0 ) 10.2 ( 0 ) 7.55 ( 0.82)
18 2.24 ( 0 ) 6.12 ( 0 ) 4.49 ( 0 )
19 1.63 ( 0 ) 3.27 ( 0 ) 2.45 ( 0 )
20 0.82 ( 0 ) 1.63 ( 0 ) 0.82 ( 0 )
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Table 7.18: ROC values (T̃P versus F̃P) for the LoG2, Frangi’s line, and Sato’s blob
filters for ℓ = 7.

i in θi
LoG2 Frangi’s line Sato’s blob

T̃P (F̃P) T̃P (F̃P) T̃P (F̃P)

1 100 (1511.43) 100 (3332.65) 100 (7526.53)
2 100 ( 309.8 ) 100 (1273.27) 100 (5211.02)
3 100 ( 91.02) 100 ( 627.14) 100 (3036.12)
4 98.78 ( 33.67) 100 ( 337.55) 100 (1522.04)
5 93.88 ( 14.29) 100 ( 184.9 ) 100 ( 680.61)
6 84.9 ( 5.71) 100 ( 101.43) 100 ( 287.14)
7 73.88 ( 1.63) 99.59 ( 54.69) 100 ( 120.82)
8 63.06 ( 0.41) 96.53 ( 28.57) 99.59 ( 51.02)
9 53.06 ( 0.82) 91.02 ( 13.47) 95.1 ( 24.49)
10 44.08 ( 1.22) 82.24 ( 5.31) 86.94 ( 13.47)

11 35.1 ( 1.22) 71.63 ( 1.63) 76.33 ( 8.57)
12 27.76 ( 0.82) 60 ( 0 ) 63.67 ( 5.31)
13 22.04 ( 0.82) 48.16 ( 0 ) 50.41 ( 4.9 )
14 15.92 ( 0.82) 37.55 ( 0 ) 39.18 ( 4.9 )
15 11.43 ( 0.41) 28.98 ( 0 ) 28.98 ( 4.08)
16 7.76 ( 0.2 ) 20.82 ( 0 ) 19.59 ( 3.27)
17 5.31 ( 0 ) 14.29 ( 0 ) 11.02 ( 1.84)
18 3.27 ( 0 ) 8.98 ( 0 ) 6.12 ( 1.22)
19 1.63 ( 0 ) 5.1 ( 0 ) 2.86 ( 0.41)
20 0.82 ( 0 ) 2.04 ( 0 ) 0.82 ( 0 )
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Table 7.19: ROC values (T̃P versus F̃P) for the MEK and simple threshold for ℓ = 1.

i in θi
MEK Threshold

T̃P (F̃P) T̃P (F̃P)

1 100 (20 201.63) 100 (24 454.29)
2 100 (20 187.76) 100 (24 450 )
3 100 (20 083.88) 100 (24 422.65)
4 100 (19 808.78) 100 (24 351.63)
5 100 (18 816.12) 100 (24 231.02)
6 100 (16 571.63) 100 (24 043.06)
7 100 (12 937.35) 100 (23 744.08)
8 100 ( 8713.27) 100 (23 361.22)
9 100 ( 5090.2 ) 100 (22 883.47)
10 100 ( 2534.29) 100 (22 311.84)

11 97.96 ( 1100.41) 100 (21 641.84)
12 84.08 ( 412.86) 100 (20 852.86)
13 59.18 ( 140 ) 100 (19 705.92)
14 38.37 ( 45.92) 100 (17 953.06)
15 24.49 ( 12.86) 100 (15 210.61)
16 15.92 ( 3.67) 100 (11 105.92)
17 9.39 ( 0.82) 94.29 ( 5952.04)
18 5.31 ( 0 ) 42.45 ( 2149.18)
19 2.45 ( 0 ) 5.71 ( 397.14)
20 1.22 ( 0 ) 0.41 ( 24.08)
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Table 7.20: ROC values (T̃P versus F̃P) for the MEK and simple threshold for ℓ = 7.

i in θi
MEK Threshold

T̃P (F̃P) T̃P (F̃P)

1 100 (20 202.04) 100 (24 453.47)
2 100 (20 167.14) 100 (24 432.65)
3 100 (20 010.82) 100 (24 366.12)
4 100 (19 072.45) 100 (24 266.94)
5 100 (15 535.31) 100 (24 131.02)
6 100 ( 9126.94) 100 (23 917.35)
7 100 ( 3780 ) 100 (23 627.55)
8 100 ( 1200.61) 100 (23 256.94)
9 100 ( 350.61) 100 (22 808.78)
10 99.59 ( 92.86) 100 (22 285.1 )

11 87.35 ( 19.59) 100 (21 741.43)
12 65.71 ( 3.67) 100 (21 125.92)
13 48.57 ( 0.41) 100 (20 293.88)
14 35.92 ( 0 ) 100 (19 083.06)
15 26.53 ( 0 ) 100 (17 325.31)
16 17.96 ( 0 ) 100 (14 619.18)
17 11.43 ( 0 ) 100 (10 164.49)
18 6.53 ( 0 ) 93.06 ( 5051.63)
19 2.86 ( 0 ) 38.78 ( 1701.84)
20 1.22 ( 0 ) 3.27 ( 125.71)
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Table 7.21: ROC values (T̃P versus F̃P) for the MEF variations for ℓ = 1.

i in θi
MEF MEF no CEF MOF MOF no CEF

T̃P (F̃P) T̃P (F̃P) T̃P (F̃P) T̃P (F̃P)

1 95.31 ( 98.37 ) 100 (906.53) 95.1 (197.14) 100 (5049.39)
2 93.47 ( 82.45 ) 100 (564.29) 93.06 (148.16) 100 (3439.8 )
3 91.84 ( 70.61 ) 100 (381.43) 91.02 (118.57) 100 (2182.24)
4 90.61 ( 61.63 ) 100 (267.76) 89.39 ( 96.33) 100 (1357.76)
5 88.98 ( 53.88 ) 98.78 (186.73) 87.14 ( 81.63) 100 ( 814.08)
6 87.35 ( 47.76 ) 96.73 (128.16) 85.31 ( 68.57) 98.37 ( 480 )
7 85.31 ( 42.04 ) 93.88 ( 86.12) 82.45 ( 57.76) 96.33 ( 279.8 )
8 82.86 ( 36.53 ) 89.39 ( 55.31) 80.41 ( 48.57) 92.65 ( 157.96)
9 80.82 ( 31.63 ) 82.04 ( 35.51) 77.35 ( 40.41) 86.53 ( 85.51)
10 78.78 ( 27.35 ) 74.69 ( 22.04) 74.49 ( 33.47) 79.59 ( 48.16)

11 76.73 ( 23.67 ) 65.31 ( 13.06) 71.43 ( 27.35) 71.22 ( 25.1 )
12 73.47 ( 20 ) 56.33 ( 8.16) 67.76 ( 21.63) 61.63 ( 13.88)
13 70.00 ( 16.73 ) 46.94 ( 4.90) 64.90 ( 17.14) 51.84 ( 8.16)
14 66.12 ( 13.88 ) 38.37 ( 2.65) 61.02 ( 13.06) 42.45 ( 4.29)
15 61.63 ( 11.02 ) 30.2 ( 1.22) 56.94 ( 10.2 ) 33.88 ( 2.04)
16 57.14 ( 8.57 ) 22.04 ( 0.41) 51.43 ( 7.35) 25.51 ( 0.82)
17 51.43 ( 6.12 ) 15.51 ( 0 ) 45.71 ( 4.49) 17.55 ( 0 )
18 43.67 ( 4.08 ) 9.8 ( 0 ) 38.78 ( 2.86) 11.43 ( 0 )
19 34.29 ( 1.63 ) 5.31 ( 0 ) 29.39 ( 1.22) 6.53 ( 0 )
20 20.82 ( 0.41 ) 2.45 ( 0 ) 16.73 ( 0 ) 2.45 ( 0 )
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Table 7.22: ROC values (T̃P versus F̃P) for the MEF variations for ℓ = 7.

i in θi
MEF MEF no CEF MOF MOF no CEF

T̃P (F̃P) T̃P (F̃P) T̃P (F̃P) T̃P (F̃P)

1 100 ( 40.82 ) 100 (285.92) 100 ( 60.61 ) 100 (4111.22)
2 100 ( 34.69 ) 100 (173.67) 100 ( 46.12 ) 100 (1649.39)
3 99.18 ( 30.61 ) 100 (119.18) 99.59 ( 37.96 ) 100 ( 771.43)
4 98.78 ( 26.53 ) 100 ( 89.8 ) 98.78 ( 32.24 ) 100 ( 392.65)
5 97.96 ( 23.67 ) 100 ( 68.57) 97.96 ( 27.76 ) 100 ( 203.47)
6 97.14 ( 20.41 ) 100 ( 53.06) 97.14 ( 23.67 ) 100 ( 111.63)
7 95.92 ( 17.96 ) 100 ( 40 ) 95.92 ( 20 ) 100 ( 64.29)
8 94.69 ( 16.12 ) 98.78 ( 27.35) 94.69 ( 17.55 ) 99.59 ( 37.55)
9 93.47 ( 14.29 ) 95.92 ( 17.76) 93.27 ( 14.69 ) 96.73 ( 21.84)
10 91.43 ( 13.06 ) 90.61 ( 11.02) 91.84 ( 12.65 ) 91.84 ( 12.24)

11 89.59 ( 11.43 ) 83.27 ( 4.9 ) 89.8 ( 11.22 ) 84.9 ( 4.9 )
12 87.76 ( 10.2 ) 74.29 ( 1.63) 87.76 ( 10 ) 75.92 ( 1.63)
13 85.71 ( 9.18 ) 64.08 ( 0 ) 85.31 ( 8.37 ) 66.12 ( 0.2 )
14 82.86 ( 7.35 ) 53.67 ( 0 ) 82.86 ( 6.94 ) 55.51 ( 0 )
15 79.59 ( 5.71 ) 43.27 ( 0 ) 80 ( 5.1 ) 45.31 ( 0 )
16 75.92 ( 3.88 ) 33.06 ( 0 ) 74.69 ( 3.47 ) 34.9 ( 0 )
17 69.8 ( 2.04 ) 24.08 ( 0 ) 69.18 ( 1.63 ) 25.31 ( 0 )
18 62.45 ( 0.41 ) 15.92 ( 0 ) 61.22 ( 0.41 ) 17.14 ( 0 )
19 50.61 ( 0 ) 8.98 ( 0 ) 50.41 ( 0 ) 9.8 ( 0 )
20 33.88 ( 0 ) 3.47 ( 0 ) 33.47 ( 0 ) 3.67 ( 0 )
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Table 7.23: Testing data sets for validation of 2D marker localization.

Data set
Measure- Number of CBCTs Number Total number of
ments and fluoroscopic of images fluoroscopic
of sequences per sequence images

P1 Patient 1 10 ≈ 160 1618
P2 Patient 2 10 ≈ 160 1619
P3 Patient 3 5 ≈ 160 820
RSVP RSVP 9 47 423

P1-S Patient 1 10 5 50
P2-S Patient 2 10 5 50
P3-S Patient 3 5 10 50
RSVP-S RSVP 9 5 45

7.3 Marker Localization in 2D Space

7.3.1 Testing Data Sets for Marker Localization

The components of the 2D localization procedure are evaluated on the testing data sets

described in Table 7.23. The data sets P1, P2, P3, and RSVP contain fluoroscopic

sequences and their corresponding CBCT images, one CBCT image per sequence.

Each fluoroscopic sequence consists of around 160 images for the patient data sets,

and 47 for the phantom.

For some experiments, we also use the subsets of the P1, P2, P3 and RSVP

data sets, denoted by P1-S, P2-S, P3-S, RSVP-S, respectively. They are formed so

that ten nonconsecutive fluoroscopic images are selected from each sequence of the P3

data set, and five from each sequence of the P1, P2, and RSVP data sets, resulting

in 50 images (and registrations) for the patient data sets and 45 for the RSVP.

The accuracy of the 2D marker localization is validated on the RSVP-S data set

in Section 7.3.2. This data set is also used to justify the choice of the dimensionality

of the geometric transformation in Section 7.3.3. The full data sets, P1, P2, P3, and

RSVP, are used to quantify the computational cost and success rates of the proposed

image generation methods in Section 7.3.4. The reduced data sets, P1-S, P2-S, P3-S,

and RSVP-S, are employed in selecting the best strategy for an optimization starting

point in Section 7.3.5, and to justify the selection of the temporal filter width in

Section 7.3.6.
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7.3.2 Accuracy of 2D Marker Localization

To estimate the accuracy of a localization method, it is common to compare it to

other methods, the accuracy for which has been already established, by applying

the method to the same data. The positions or the displacements of the sought-

for features may be known from the “ground truth”, which can be obtained from

the construction of the phantom, other phantom images and motion or positioning

geometry [43, 59, 166], from synthetically constructed images [72], or manual selection

of the markers [78, 142, 159]. To improve the accuracy, manual localization is usually

performed several times on the same images, and then these multiple results are used

to estimate the “ground truth” data [78, 142].

Due to the fact that in the current clinical setup the precise calibration param-

eters for the fluoroscopic images were not available (this issue is addressed in detail

in Appendix B.4), and had to be estimated from either a flexmap (calibration file)

or from calibration parameters of the CBCT projections of the corresponding CBCT

image, the CBCT image can not be used directly to infer the 2D reference marker

positions in the fluoroscopic images. Therefore, to estimate the accuracy of our 2D

marker localization procedure, we compared it to manual localization. We have used

the RSVP-S data set described in Section 7.3.1. Five nonconsecutive frames were se-

lected from each of the nine fluoroscopic sequence, totalling 45 images. As we believe

that the manual selection of an edge of the marker is easier and can be more precise

than selecting its centre,5 the 2D marker positions in each image were computed as

a middle point between the two endpoints selected by an operator. Although the

RSVP was placed in different positions in each of the fluoroscopic sequences and their

respective CBCT images, it always remained stationary during the acquisition of the

sequence and the CBCT. Therefore, the reference marker positions for each sequence

were computed as the averages of the positions in the five selected frames of each

sequence.

The experiment for estimation of accuracy of our 2D marker localization is

summarized in Figure 7.31. Five frames were selected in each of the nine fluoroscopic

sequences F0, . . . ,F8. As a result of manual 2D localization, we obtained reference

marker positions (qk)i for each sequence F i, where k = 1, . . . , n, and n = 7 is the

number of the fiducial markers. Then, we formed nine data sets, where data set j

contained a CBCT image Vj and the same five images from each of the fluoroscopic

sequences F0, . . . ,F8 that were used in manual localization (Figure 7.31, right). The

2D-3D image registration between Vj and F i
f was performed, resulting in transforma-

tion parameters âjif , where f is the number of the fluoroscopic image. After that, the

2D marker positions (ĉk)jif were computed. Finally, to measure the 2D marker local-

5Discussion of such an approach can be found in the literature, e.g., [159].
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(ĉk)001

...
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(ĉk)801

...
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Figure 7.31: Protocol for estimation of accuracy of the 2D marker localization proce-
dure.

ization accuracy of our automatic method in comparison to the manual localization,

(ĉk)jif are compared to the reference positions, (qk)i, by the means of the fiducial

registration error (FRE) [57, 58], which is defined as the root-mean-square between

the reference and localized marker positions:

FRE =

√√√√ 1

n

n∑

k=1

‖(ĉk)jif − (qk)i‖2. (7.3.19)

Figure 7.32 presents the FRE results for different template image generation

methods (the MS, VS, and MM DRR) and dimensionality of the geometric trans-

formation (2D and 3D). For comparison, we also provide corresponding distribution

for the manual localization, for which the measurements were defined as the FREs

between the marker positions in each frame and the 2D reference marker positions

(averages over five frames). As can be seen in Figure 7.32 and Table 7.24, all FRE

values for all methods fell below the pixel size, which measures 0.2604 mm in our

fluoroscopic images, and 75% of them are around or below the half of a pixel size.

The FREs for the registrations performed with the 3D geometric transforma-

tion are typically somewhat smaller than with the 2D. The exception is the MM DRR

method, for which the use of the 2D and 3D transformations gives very similar results.

This is due to the errors in estimation of 3D marker orientations, which, though very

small (the largest error was around 3.5◦ for the CBCT images with 0.5 mm voxels,
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Figure 7.32: 2D marker localization accuracy for the RSVP-S data set in comparison
to manual localization by the means of fiducial registration error (FRE). The dotted
line shows the median level, and the dashed lines the minimal and maximal levels
of the FRE distribution corresponding to the manual localization. The dashed-dotted
line shows the level of a half of a pixel size. The corresponding numerical values are
given in Table 7.24.

Table 7.24: Fiducial registration error (FRE) for manual and automatic localization
results shown in Figure 7.32.

Localization FRE, mm

method Min 25% Med 75% Max Mean± Std

Manual 0.06 0.09 0.11 0.12 0.14 0.1± 0.02

MS, 2D 0.04 0.08 0.11 0.14 0.25 0.11± 0.04
MS, 3D 0.03 0.08 0.09 0.11 0.16 0.1± 0.02
VS, 2D 0.04 0.08 0.1 0.13 0.24 0.11± 0.04
VS, 3D 0.04 0.07 0.08 0.1 0.16 0.09± 0.02
MM, 2D 0.04 0.08 0.1 0.13 0.24 0.11± 0.04
MM, 3D 0.03 0.08 0.1 0.12 0.23 0.1± 0.03
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Section 7.1.7), can introduce some geometric uncertainty during registration.

A detailed analysis revealed that the largest FREs for the 2D transformations

were attained in registrations that had the CBCT and the fluoroscopic images display

the phantom in two different positions, for which the out-of-plane displacements were

5 and 10 mm. This is consistent with our earlier suggestion in Section 5.3.2 that the

variation in the in-plane distance between the markers in the 2D images, should the

fiducial markers be out of plane by 10 mm, may be around 0.23 mm, which is less than

a pixel. Based on the results presented above, we conclude that, under our assump-

tions on the maximal possible magnitude of the marker motion, any of the proposed

template image generation methods with either 2D or 3D geometric transformation

provide submillimeter and subpixel accuracy and are comparable to manual localiza-

tion, which makes them applicable in the clinical setting. The next section further

compares the registration results produced with the proposed template image gener-

ation methods and 2D or 3D transformations in order to select the most appropriate

combination for the use with our automatic 2D marker localization procedure.

7.3.3 2D versus 3D Geometric Transformations

In this section, we compare the results of the registration between the CBCT and flu-

oroscopic images using the 2D and 3D geometric transformations. Although the use

of the 3D transformation offers slightly better localization accuracy (Section 7.3.2),

the increased number of parameters in the optimization problem (six degrees of free-

dom for the 3D rigid transformation compared to three for the 2D) is associated with

significant increase in the computational cost. For example, compare the average

running times of an optimization procedure in our Matlab implementation shown in

Table 7.25, which was executed on the system described in Appendix A using the MS

DRR generation method with the 3D and 2D geometric transformations: Computa-

tional savings of more than 6 times can be achieved by using the 2D transformation

compared to the 3D.

Table 7.25: Average running times of an optimization procedure for the MS DRRs
with the 2D and 3D geometric transformations.

Localization Running time, sec

method P1 P2 P3 RSVP

MS, 3D 3.43 3.29 3.89 2.83
MS, 2D 0.57 0.55 0.71 0.76
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As mentioned in Section 5.3.2, we predicted that our imaging system might be

not sensitive enough to adequately detect the out-of-plane marker displacement, which

could make the use of the 3D transformation unjustifiable. To verify this, we designed

the following extension to the experiment described in Section 7.3.2 (Figure 7.31). In

that experiment, for the data set j, the registration was performed between the five

frames of each of the nine fluoroscopic sequences F0, . . . ,F8 and the CBCT image Vj,

resulting in transformation parameters âjif , where i is the index of the fluoroscopic

sequence, and f is the number of the fluoroscopic image. Knowing these parameters

for the 3D geometric transformation in the data set j, we aim to estimate the 3D

marker positions in the CBCT images V i, i = 0, . . . , 8, i 6= j. To do so, we apply

the 3D transformation with the found parameters to the 3D marker positions in the

image Vj, denoted by (ck3D)
j, that are known from the 3D marker segmentation step

(Chapter 3), i.e., T 3D
(
âjif , (ck3D)

j
)
. Then, because âjif includes both an estimated

displacement of the phantom and a correction for the geometrical miscalibration of

the system (Appendix B.4), the miscalibration has to be compensated for by apply-

ing an inverted 3D transformation with the parameters âiif , i.e., the transformation

parameters between F i
f and V i coming from the data set i. Hence, the 3D marker

positions in the image V i can be estimated from the data set j, fluoroscopic image f ,

as:

(ĉk3D)
jf
Vi =

(
T 3D

)−1 (
âiif , T 3D(âjif , (ck3D)

j)
)
, (7.3.20)

where the inverse rigid transformation is defined in Appendix B.3.

After the points (ĉk3D)
jf
Vi are computed, we compare them to the known 3D

marker positions in the image V i, (ck3D)
i. The results are displayed in Figure 7.33,

where the marker positions are shown separately for the X (out-of-plane displace-

ments), Y and Z axes (in-plane displacements). We only present the results produced

for the MS DRR method, as those for the VS and MM DRR are similar. The ex-

pected positions refer to (ck3D)
i, and the observed to (ĉk3D)

jf
Vi. As can be seen from

the figure, our imaging system is not sensitive enough to correctly estimate the out-

of-plane marker displacements. This observation can also be reiterated by analyzing

the 3D and 2D marker trajectories consisting of the localized marker positions in the

consecutive images of the fluoroscopic sequences. Figure 7.34 shows the XYZ (3D

transformation) and the UV (2D transformation) marker displacements between the

consecutive images along the corresponding axes for the P1, P2, P3, and RSVP data

sets described in Section 7.3.1. It is easy to see that the marker displacements along

the X axis are estimated to be much larger than those along the Y and Z axes. This

contradicts a number of studies reporting the smallest prostate motion in the left-right

patient direction (Section 5.3.1), and the fact that the phantom was stationary in this

experiment. On the other hand, the distributions of the displacements along the Y
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Figure 7.33: While the in-plane displacements along the Y and Z axes are accurately
estimated (centre and right), our imaging system is not sensitive enough to detect the
out-of-plane displacements along the X axis (left).

and Z, and U and V axes (in-plane motion) are similar, where the Y axis corresponds

to the negative V, and Z to the negative U, and their magnitudes are in agreement

with our observations of the marker motion in the testing data sets. Therefore, we

conclude that the use of the 2D rigid geometric transformation is appropriate for the

proposed marker localization procedure.
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Figure 7.34: Distributions of the marker displacements along the coordinate axes
between consecutive fluoroscopic images. For each axis, the four distributions cor-
respond to the displacements in the P1, P2, P3, and RSVP data sets (from left to
right). The inability to correctly estimate the out-of-plane motion is reflected in un-
reasonably large jumps along the X axis. The displacements along the Y and Z axes,
corresponding to the in-plane motion, are similar to those along the U and V axes,
where Y corresponds to the negative V, and Z to the negative U (zoom-in on the
right).

7.3.4 Success Rates of Template Image Generation Methods

The average running times of the optimization procedure for the P1, P2, P3, and

RSVP data sets described in Section 7.3.1 in our Matlab implementation executed on

the system described in Appendix A with the use of the 2D rigid transformation are

presented in Table 7.26. The MS DRR was the most efficient computationally, closely

followed by the VS DRR. The use of the MM DRR is the most expensive. However,

to place these numbers into the context of the whole marker localization procedure,

note that the optimization is only run once for each 2D localization. It means, that

given that a typical time for the whole 2D localization procedure for a patient CBCT

and fluoroscopic image pair takes around 7 sec with the use of the MS DRR in our

implementation, it is likely to take about 7.4 sec with the VS DRR, and 12 sec with

the MM DRR. In other words, while the VS DRR may take almost twice as much

time as the MS DRR, the whole localization procedure will only take a fraction of a

second longer.

The localization success rates, i.e., the percentage of correct localizations, for

the P1, P2, P3, and RSVP data sets for each template image generation method are

given in Table 7.27. While for the P1 and RSVP the localization success rates reached

100% with all image generation methods, the lower rates for the P2 and P3 data sets

require some explanation. As was discussed in Section 5.5, one of the fluoroscopic se-
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Table 7.26: Average running times of an optimization procedure for the MS, VS, and
MM DRRs with the 2D rigid transformation.

Localization Running time, sec

method P1 P2 P3 RSVP

MS, 2D 0.57 0.55 0.71 0.76
VS, 2D 0.91 0.92 1.07 1.49
MM, 2D 5.11 5.57 6.34 6.43

Table 7.27: 2D marker localization success rates for the MS, VS, and MM DRRs with
the 2D rigid transformation.

Localization Localization success rates, %

method P1 P2 P3 RSVP

MS, 2D 100 100 99.39 100
VS, 2D 100 96.66 99.51 100
MM, 2D 100 99.81 99.39 100

quences in the P3 data set contained 5 frames of extremely poor quality, for which the

manual marker localization by the human observer was virtually impossible. Localiza-

tion failures in these images cause the overall success rate drop to 99.39% (for the VS

DRR, the markers were localized correctly in one of these five frames, resulting in a

slightly higher success rate of 99.51%). For all other images in the P3, the 2D marker

localization was successful. As for the P2 data set, one of the CBCT images (with

0.5 mm voxels) had large streak reconstruction artifacts (false high-intensity pixels

surrounding the 3D markers in the CBCT image, see Section 3.1.3). Therefore, in the

VS DRR, there was a high-intensity spot next to the actual marker, the matching of

which to the marker in the MEF-image produced a local minimum. As a result, the

found marker positions were shifted more than the allowed 4 mm from the projected

3D marker positions (the number was selected based on the known extent of marker

motion in the patient testing data sets). While the use of the MS or MM DRRs for

this sequence also resulted in the shifted marker positions, those were accepted as the

correct localizations, as the shift was about half the size: The centre of the generated

marker (2D Gaussian) was placed in the middle between the actual marker and its

artifact, which was closer to the actual measurement. The use of the MM DRR for

the P2 data set resulted in an incorrect localization for only three frames out of 1619
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(99.81% success rate) due to a local minimum, where one of the markers was matched

correctly, but the second one registered to a thin bright anatomical feature in the

vicinity of the real marker. As a result, the second and especially the third localized

marker positions were too far from the estimated positions to be accepted.

To conclude, the ability to generate the markers in the template image that

closely resemble those in the MEF-image, such as produced by the VS and MM DRR

methods, has a potential benefit of precise localization. In particular, matching of

similar intensity shapes is expected to produce smaller values of DNNCC comparing to

matching of the elongated markers in the MEF-image to the roundish shapes of the

Gaussians generated by the MS DRR method. However, the localization precision

can be potentially reduced in the presence of streak artifacts and errors in estimation

of maker orientation in 3D (Section 7.1.7). Therefore, to process the images similar

to those in our current testing data sets, we select the MS DRR method as the most

reliable and efficient in our Matlab implementation, while the VS and MM DRR

methods can successfully be used for the CBCT images of better quality.

7.3.5 Success Rates Depending on Optimization Starting
Points

In Section 5.3.3, we discussed a number of approaches for the selection of the starting

point, a0, for the optimization method used in 2D-3D image registration. These meth-

ods are: multiresolution with the Gaussian pyramid starting with a simple projection

(MR), normalized 2D cross-correlation with multiple templates (NCC-MT), NCC-MT

on reduced resolutions (NCC-MT at 3× 3 and 5× 5 pixels), and multiresolution with

the Gaussian pyramid and NCC-MT (MR + NCC-MT). To justify the choice of the

method for selection of a0, we designed the following experiment. The 2D-3D image

registration was performed between the CBCT and fluoroscopic images of the P1-S,

P2-S, P3-S, and RSVP-S data sets described in Section 7.3.1. The MS DRR template

generation method and 2D rigid transformation were used. As we are interested in

designing a method that has a sufficiently large capture range, we have artificially

moved the markers in 3D prior to registration by 20 mm in the YZ plane, which is

the largest shift allowed in-plane. The registration results are evaluated in terms of

success rates, i.e., the percentage of correct registrations, and an average running time

of one registration in our Matlab implementation executed on the system described

in Appendix A. The registration procedure includes the definition/computation of a

starting point, forming of multiresolution levels (if necessary), and the optimization

procedure pertaining to this registration.

The results for P1-S, P2-S, P3-S, and RSVP-S data sets are presented in Ta-

bles 7.28 – 7.35, respectively. The success rates and running times are provided de-
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pending on the number of fluoroscopic frames, ℓ, used in Dolph-Chebyshev temporal

filtering prior to the MEF application. We observed the following:

• Although working well for the RSVP-S data set, the 6-level MR method never

reached a 100% success rate for any of the patient testing data sets. The rea-

son is illustrated in Figures 7.35 and 7.36, where we show the MEF- and the

template images before the registration (left) and the corresponding images at

each multiresolution level (right, numbered) before the registration at each level

is performed. While the correct displacement for the RSVP images under regis-

tration is recovered at the coarsest level, and the starting point at the level 2 is

already close to the solution (Figure 7.35), the patient images may be corrupted

by more noise and anatomical measurements that survived filtering. Applica-

tion of the Gaussian smoothing amplifies both markers and anatomical features,

and misregistration can happen at the coarsest levels, misleading the registra-

tion at the lower levels (Figure 7.36). This, in addition to a significantly larger

running time in comparison to all other methods we tested, makes this method

inadequate for our marker localization procedure.

• The remaining four methods that used NCC-MT showed 100% success rates on

test images for all values of ℓ. NCC-MT on full resolution and MR + NCC-MT

methods have similar running times, which are consistently larger than those of

the NCC-MT on reduced resolutions, for both 3 × 3 and 5 × 5 pixel averaging

approaches. The use of reduced resolution results in an implementation that is

3–5 times faster.

• The time difference between the 3 × 3 and 5 × 5 pixel averaging methods is

not dramatic. The 5 × 5 is slightly faster for most data sets, on the order

of 0.1 second, except for the P3-S data set, where additional time required to

form a coarse resolution image overweighs the savings resulting from executing

the NCC-MT on reduced resolution. Taking into account a small marker size,

3 × 0.8 mm, which in our fluoroscopic images results in about 12 × 3 pixel

measurement, we consider the NCC-MT method with 3 × 3 pixel averaging to

be the most reasonable choice: The one that provides efficient computation but

does not oversmooth the markers.
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Table 7.28: Localization success rates for P1-S data set.

Success rates, %

ℓ,
MR

NCC-MT NCC-MT NCC-MT MR +
frames (full) (3× 3) (5× 5) NCC-MT

1 48 100 100 100 100
2 66 100 100 100 100
3 46 100 100 100 100
4 74 100 100 100 100
5 72 100 100 100 100
6 70 100 100 100 100
7 82 100 100 100 100
8 82 100 100 100 100
9 82 100 100 100 100
10 86 100 100 100 100
11 84 100 100 100 100

Table 7.29: Average running times for P1-S data set.

Running time, sec

ℓ,
MR

NCC-MT NCC-MT NCC-MT MR +
frames (full) (3× 3) (5× 5) NCC-MT

1 12.19 2.48 0.8 0.69 3.01
2 11.38 2.46 0.76 0.66 2.9
3 11.58 2.45 0.76 0.65 2.76
4 11.2 2.46 0.73 0.66 2.81
5 11.9 2.45 0.72 0.64 2.95
6 11.4 2.46 0.73 0.65 2.83
7 11.44 2.45 0.74 0.64 2.77
8 11.24 2.5 0.74 0.65 2.87
9 11.27 2.45 0.74 0.63 2.81
10 11.3 2.44 0.74 0.63 2.79
11 10.89 2.45 0.74 0.66 2.77
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Table 7.30: Localization success rates for P2-S data set.

Success rates, %

ℓ,
MR

NCC-MT NCC-MT NCC-MT MR +
frames (full) (3× 3) (5× 5) NCC-MT

1 90 100 100 100 100
2 90 100 100 100 100
3 90 100 100 100 100
4 90 100 100 100 100
5 90 100 100 100 100
6 90 100 100 100 100
7 90 100 100 100 100
8 90 100 100 100 100
9 90 100 100 100 100
10 90 100 100 100 100
11 90 100 100 100 100

Table 7.31: Average running times for P2-S data set.

Running time, sec

ℓ,
MR

NCC-MT NCC-MT NCC-MT MR +
frames (full) (3× 3) (5× 5) NCC-MT

1 11.1 2.37 0.71 0.63 2.79
2 10.88 2.38 0.73 0.64 2.79
3 11.3 2.37 0.71 0.66 2.9
4 11.19 2.38 0.71 0.66 2.81
5 11.05 2.37 0.7 0.66 2.88
6 11.2 2.39 0.7 0.65 2.83
7 11.54 2.37 0.75 0.65 2.75
8 11.1 2.33 0.74 0.66 2.83
9 11.25 2.32 0.76 0.65 2.87
10 11.1 2.33 0.76 0.64 2.86
11 10.91 2.34 0.75 0.66 2.75
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Table 7.32: Localization success rates for P3-S data set.

Success rates, %

ℓ,
MR

NCC-MT NCC-MT NCC-MT MR +
frames (full) (3× 3) (5× 5) NCC-MT

1 82 100 100 100 100
2 86 100 100 100 100
3 84 100 100 100 100
4 84 100 100 100 100
5 88 100 100 100 100
6 90 100 100 100 100
7 86 100 100 100 100
8 90 100 100 100 100
9 96 100 100 100 100
10 98 100 100 100 100
11 98 100 100 100 100

Table 7.33: Average running times for P3-S data set.

Running time, sec

ℓ,
MR

NCC-MT NCC-MT NCC-MT MR +
frames (full) (3× 3) (5× 5) NCC-MT

1 13.84 2.33 0.58 0.64 2.77
2 13.18 2.32 0.55 0.61 2.81
3 12.49 2.32 0.56 0.63 2.64
4 13.14 2.33 0.56 0.62 2.79
5 12.94 2.31 0.55 0.62 2.75
6 13.26 2.32 0.55 0.61 2.66
7 13.27 2.34 0.55 0.61 2.68
8 13.15 2.31 0.55 0.61 2.79
9 13.44 2.35 0.55 0.61 2.64
10 12.49 2.41 0.54 0.62 2.74
11 13.26 2.3 0.56 0.62 2.78
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Table 7.34: Localization success rates for RSVP-S data set.

Success rates, %

ℓ,
MR

NCC-MT NCC-MT NCC-MT MR +
frames (full) (3× 3) (5× 5) NCC-MT

1 100 100 100 100 100
2 100 100 100 100 100
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100
8 100 100 100 100 100
9 100 100 100 100 100
10 100 100 100 100 100
11 100 100 100 100 100

Table 7.35: Average running times for RSVP-S data set.

Running time, sec

ℓ,
MR

NCC-MT NCC-MT NCC-MT MR +
frames (full) (3× 3) (5× 5) NCC-MT

1 13.82 3.19 0.98 0.85 3
2 13.25 3.21 0.92 0.81 2.83
3 13.08 3.24 0.89 0.78 2.78
4 12.8 3.24 0.88 0.78 2.73
5 13.29 3.28 0.9 0.78 2.74
6 12.62 3.23 0.89 0.78 2.51
7 12.85 3.2 0.88 0.75 2.62
8 12.32 3.26 0.89 0.75 2.69
9 12.63 3.21 0.87 0.76 2.77
10 12.46 3.21 0.88 0.77 2.68
11 12.24 3.12 0.88 0.76 2.67
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Figure 7.35: The initial MEF- and template images of the RSVP (left) and the corre-
sponding images at each multiresolution level (right, numbered) before the registration
was performed. The use of multiresolution leads to 100% registration success rates
for the testing RSVP data set, where a significant initial displacement is typically
recovered at the coarsest multiresolution level, and the solution is improved at the
lower levels.
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Figure 7.36: The initial MEF- and template images of a prostate patient (left) and
the corresponding images at each multiresolution level (right, numbered) before the
registration was performed. In some patient images, the prominent anatomical feature
that survived the MEF filtering can cause registration failure at the highest levels,
thereby misleading registration at the lower levels.
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7.3.6 Computational Cost Depending on Temporal Filtering

As explained in Section 5.4, the combination of the methods in the proposed marker

localization procedure and experiments in Sections 7.3.2 – 7.3.5 led to 100% registra-

tion success rates on our testing data sets. Therefore, the registration success itself

can not be a deciding factor in the selection of the filter width, ℓ, of the temporal

Dolph-Chebyshev filter that will be used before the application of the MEF.

We executed the complete 2D marker localization procedure on all images of

the P1-S, P2-S, P3-S, and RSVP-S data sets described in Section 7.3.1, consisting of

the total of 50 images for the patient and 45 for the phantom data sets. The total 2D

localization running times of our Matlab implementation on the system described in

Appendix A for different values of ℓ, divided by the total number of images in each

data set, are presented in Table 7.36. The reduction in time for the increasing values of

ℓ is due to diminishing computational time of the MEF processing and optimization:

It typically takes less time to filter and register smoother images.

We select ℓ = 5 as being small enough to not significantly reduce temporal

resolution of the markers while large enough to improve the CNR. Filtering five frames

acquired at 5.5 Hz produces an image that contains measurements gather over an

interval of just less than one second.
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Table 7.36: Average running times for the 2D localization procedure per image.

ℓ, frames
Running time, sec

P1-S P2-S P3-S RSVP-S

1 21.16 7.23 12.42 153.77
2 13.33 5.74 7.57 60.93
3 11.53 5.44 6.90 40.46
4 8.34 5.31 6.26 28.53
5 9.40 5.32 6.11 24.23
6 8.40 5.29 5.94 21.27
7 8.52 5.56 5.75 18.91
8 8.36 5.54 5.59 17.13
9 8.20 5.64 5.55 15.66
10 8.18 5.60 5.58 14.56
11 7.76 5.62 5.68 12.24

7.4 Marker Motion Tracking

7.4.1 Testing Data Set for Tracking Validation

In this section, we describe the data sets used to select an appropriate registration

approach in Section 7.4.2 and to select, train, and validate a prediction model in

Sections 7.4.3 – 7.4.6. The models under consideration are described in Section 6.2

and include zeroth-order prediction, linear extrapolation, and linear regression.

In total, we have acquired 23 fluoroscopic image sequences where the phantom

was performing different types of motion in the direction along the V axis. The traces

are shown in Figures 7.37, 7.38, and 7.39, and can briefly be described as follows:

• The phantom was moving back and forth between two positions along the V axis.

It gradually slowed down when approaching extreme points, and accelerated

towards the middle. The trace of the motion in time was sinusoidal, with the

peak-to-peak amplitudes of 2, 4, 10, and 20 mm, and the periods of 2.5, 5, 10,

15 sec, resulting in 16 sequences (Figures 7.37 and 7.38).

• The phantom was programmed to move according to three breathing traces of

patients selected from the library supplied with the phantom control software:

fast, slow, and an irregular motion traces (Figure 7.39, left column).

• The phantom remained stationary in one of the sequences.

• The phantom performed constant speed linear motion between two positions

with slow, medium, and fast speed (Figure 7.39, right column).
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Figure 7.37: Motion traces of the Quasar phantom: sinusoidal motion with the peak-
to-peak amplitudes of 2 and 4 mm and periods of 2.5, 5, 10, and 15 sec.

All sequences had 164–166 images, except for one sequence of 92 images, result-

ing in 3,723 images in total. The traces in Figures 7.37, 7.38, and 7.39 are produced by

following one of the seven markers. As can be seen from the figures, the non-ideality

in the phantom physical build, including the use of the custom insert with the fidu-

cial markers instead of the standard inserts supplied with the phantom, resulted in

non-ideality of the traces. Therefore, the tracking results had to be compared to the

positions of the markers directly extracted from the 2D images, rather than to the

programmed phantom motion traces.

Some of the experiments were also conducted using patient testing data sets.

They included ten fluoroscopic sequences for Patient 1, ten for Patient 2, and five for
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Figure 7.38: Motion traces of the Quasar phantom: sinusoidal motion with the peak-
to-peak amplitudes of 10 and 20 mm and periods of 2.5, 5, 10, and 15 sec.
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Figure 7.39: Motion traces of the Quasar phantom: fast, slow, and irregular breathing
of a patient (left column), and slow, medium, and fast linear motion (right column).

248



Ph.D.Thesis – O.Peshko McMaster – Computational Sci. &Eng.

Patient 3, around 160 images each. In Section 7.3, these data sets were referred to as

P1, P2, and P3, respectively.

7.4.2 Registration Approach for Tracking Procedure

In order to choose an appropriate image registration approach for the tracking proce-

dure, we have performed marker tracking in several fluoroscopic image sequences of

the Quasar motion phantom from the data set described in Section 7.4.1. The two ap-

proaches introduced in Section 6.1 that are compared in terms of computational cost

and tracking accuracy are (i) the direct registration of the images to the template

(first image of the sequence) by using different interpolation schemes and (ii) the

preprocessing of the images in the sequence prior to registration using the marker

enhancement filter (MEF, Section 4.4) or its modification, the magnitude-only filter

(MOF, Section 4.4), and generating the template with the 2D variation of the marker

splat (MS) method discussed in Section 6.1. Temporal filtering has not been used

as the markers in the fluoroscopic images of the Quasar phantom possessed sufficient

contrast with the background.

We first discuss the approach of image registration with the use of interpolation,

where no preprocessing was performed on the images. The first image of the sequence

was used as the template. The parameters of the geometric transformation for the

markers found in the preceding image were used as the prediction for the current image

(zeroth-order predictor, Section 6.2), and defined the tracking ROIs as described in

Sections 6.1 and 4.3. As described in Section 6.3, in order to decrease the probability

of an optimization routine becoming stuck in a local minimum in the process of

registration, the prediction was further improved by the shift-only normalized cross-

correlation method. The application of the 2D rigid geometric transformation to the

template was performed by applying commonly used interpolation schemes, such as

the nearest neighbour, linear, cubic, and cubic spline [150, 69].

Table 7.37 shows running times of tracking in our Matlab implementation on

the system described in Appendix A, applied to three image sequences of the Quasar

motion phantom, each of which has 164 images. The sequences 1, 2, and 3 correspond

to the medium step (one-time constant speed linear motion between two points), sinu-

soidal with 10 mm amplitude and 10 seconds period, and irregular patient breathing

sequences described in Section 7.4.1. In addition to the four interpolation schemes,

mentioned above, we also provide timing of the 2D marker localization performed

independently in each image of the sequence in the last column. As can be seen from

the presented results, while the nearest neighbour method incurs a lower computa-

tional cost than the independent 2D localization, the other methods incur similar or

substantially larger costs. Due to a large range of the running times for the different
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Table 7.37: Tracking running times for three fluoroscopic image sequences of the
Quasar motion phantom. The registration is performed using interpolation, without
prior marker enhancement, and compared to the independent 2D marker localization
in each image of the sequence.

Running times, hh :mm : ss

Interpolation scheme

Sequence Nearest
Linear Cubic

Cubic Independent
number neighbour spline 2D localization

1 00:18:39 03:08:01 05:14:43 02:27:53 00:20:54
2 00:05:41 00:16:12 01:07:52 01:04:59 00:20:23
3 00:06:56 00:21:51 00:27:12 01:10:42 00:20:53

methods, in this section we report results in the hours, minutes, and seconds format

(hh:mm:ss), rather than the usual seconds format.

In the search for a computationally efficient approach, we turned to another

option, namely using the 2D marker splat (MS) method to generate the template

image (Section 6.1) coupled with preprocessing of the fluoroscopic images by the

MEF (Section 4.4.1). The difference between such a model and the independent

2D localization is that the marker positions from the preceding image are used to

form a tracking ROI to perform image registration in the subsequent image, which is

smaller than the localization ROI. Also, in the process of registration, the 2D rigid

transformation is applied directly to the 2D marker positions in the template, without

the use of the 3D image. As can be seen from Table 7.38 (2nd column), the use of such

a scheme presents the possibility for moderate computational savings in comparison

to the independent 2D localization (Table 7.37, last column).

As explained in Section 6.1, the ability to predict the 2D marker positions and

to use small tracking ROIs (in comparison to the larger localization ROIs) can provide

opportunity for further improvement in the efficiency by using a reduced version of

the MEF, namely the MOF (Section 4.4.5). Similar to tracking with the full MEF,

the template in the process of registration is generated by the 2D MS method. The

results presented in Table 7.38 (last column) demonstrate a significant improvement

in computational efficiency.

Note that the use of the MS and MEF/MOF methods (both in tracking and lo-

calization) results in similar execution times for different fluoroscopic sequences (with

the same number of images, and the same parameters used for ROI computation).

This is due to the creation of the images that possess very similar intensities and fea-
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Table 7.38: Tracking running times for three fluoroscopic image sequences of the
Quasar motion phantom. The registration is performed with the application of the
MEF or MOF preprocessing and the 2D MS template image generation method.

Running times, hh :mm : ss

Sequence
MEF MOF

number

1 00:16:04 00:03:32
2 00:15:58 00:03:37
3 00:16:56 00:03:36

Table 7.39: The medians of the fiducial registration error (FRE) in comparison to the
independent 2D marker localization for three fluoroscopic sequences of the Quasar
motion phantom.

Fiducial registration error, mm

Interpolation scheme

Sequence Nearest
Linear Cubic

Cubic
MEF MOF

number neighbour spline

1 0.0294 0.1572 0.1552 0.1552 0.0002 0.0003
2 0.0200 0.1529 0.1591 0.1530 0.0002 0.0003
3 0.0279 0.1444 0.1460 0.1460 0.0003 0.0004

tures, unlike in the registration approaches that use interpolation, where the initial

fluoroscopic images can differ by noise levels and marker contrast, thus resulting in

different times required for optimization.

Finally, we have also analyzed marker tracking accuracy of all methods de-

scribed above in comparison to the marker positions obtained with the independent

2D localization. Figure 7.40 shows the distributions of the fiducial registration er-

ror (FRE, Equation (7.3.19)) [57, 58], which we define here as the root-mean-square

between the localized and tracked marker positions. While all methods demonstrate

subpixel accuracy for most of the images (most FRE measurements are below the

dashed line), the methods using digital preprocessing with MEF/MOF and 2D MS

template generation showed the best agreement with the independent localization.

The FRE medians for the three Quasar sequences are given in Table 7.39.

Based on computational efficiency of our Matlab implementation, and sup-
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Figure 7.40: Tracking accuracy in terms of fiducial registration error (FRE) for three
fluoroscopic sequences of the Quasar motion phantom, compared to the independent
2D marker localization. For each sequence, the six distributions (from left to right)
correspond to the FRE results where the registration was performed by using the near-
est neighbour, linear, cubic, spline interpolation, the MEF/MS, and the MOF/MS.
The dashed line shows the level of a pixel size, and the dashed-and-dotted line shows
the level of the half pixel size. The corresponding FRE median values are given in
Table 7.39.

ported by the tracking accuracy results, we use the 2D MS template generation

method coupled with the MOF preprocessing of the images in the 2D-2D image reg-

istration procedure of our tracking module.

7.4.3 Linear Regression Training

In an ideal situation, if the system can be exactly described by a linear regression (LR)

model, there should be coefficients β = (β0, . . . , βn)
T such that the transformation

parameters for the ith image, (a∗)i, can be expressed as β0+β1(a
∗)i−1+ . . .+βn(a

∗)i−n.

Since the geometric parameters (shifts and rotations) that describe marker motion are

not expected to be precisely defined by a linear system, and we would like to be able

to determine one set of the parameters β to be used for all images, the coefficients β

are computed as an approximate solution of an overdetermined system of equations,

where the number of variables in the system equals n+1, n is the number of preceding

images used in prediction, and the number of equations is the total number of images,

for which the training is done, multiplied by three, as there is one equation for each

geometric transformation parameter, a = (tu, tv, γ)
T . For 23 sequences described in

Section 7.4.1, the number of equations was more than 104. The solution β can be

found by minimizing the sum of squared differences between the predicted parameters

âiβ = β0+β1(a
∗)i−1+ . . .+βn(a

∗)i−n (Equation (6.2.7)) and the optimized parameters
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Table 7.40: Coefficients β for the linear regression model obtained from training on
23 image sequences of the Quasar motion phantom. The number of images (first
column) refers to the number of the preceding images that are used to predict the
transformation parameters in the current image.

Linear regression coefficients

Number of
β0 β1 β2 β3 β4 β5 β6 β7images

2 0 1.8 −0.83
3 0 1.99 −1.23 0.23
4 0 1.95 −1.07 −0.02 0.12
5 0 1.92 −1.08 0.29 −0.43 0.28
6 0 1.87 −1 0.24 −0.2 −0.12 0.21
7 0 1.87 −1 0.23 −0.19 −0.12 0.19 0.01

(a∗)i for all i in the following problem:

min
β

∑

i

‖(a∗)i − âiβ‖2. (7.4.21)

The optimized parameters a∗ of the geometric transformation were found by the

independent 2D marker localization in each image of each sequence as described in

Chapter 5.

Table 7.40 presents the values of β obtained by solving (7.4.21). For any

number of preceding images that we tested, the coefficient β0 for the constant term

was very small (on the order of 10−4), and the largest contribution to the prediction

was obtained from the geometric parameters of the two closest in time images, (a∗)i−1

and (a∗)i−2. Note that for the LR models with different number of preceding images,

the largest coefficients are similar. In fact, the coefficients are close in values to the

those of the linear extrapolation (LE) model defined in Section 6.2 (β0 = 0, β1 = 2,

and β2 = −1, see Equation (6.2.6)).

7.4.4 Validation of Prediction Models on Phantom Data

In this section, we compare the prediction models defined in Section 6.2 in application

to Quasar motion phantom data set described in Section 7.4.1. The models that we

evaluated were: zeroth-order prediction (ZO), linear extrapolation (LE), and linear

regression (LR) model with different numbers of preceding images (see Section 7.4.3).

To compare the prediction models, we define a fiducial prediction error (FPE)

similar to the fiducial registration error (FRE, Equation (7.3.19)) [57, 58]. For each
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Figure 7.41: Distributions of the fiducial prediction error (FPE) for phantom images
for different prediction models. Table 7.41 provides the explanation for the abbrevi-
ations used and FPE numerical values.

image of each sequence, let qk, k = 1, . . . , n be the known positions of n markers,

obtained by the independent 2D marker localization in every image, and ĉk be the

marker positions predicted by one of the models. Then, the FPE of the given model

is computed as:

FPE =

√√√√ 1

n

n∑

k=1

‖ĉk − qk‖2. (7.4.22)

The FPE results for the rest of the models in application to the 23 Quasar

image sequences (3,723 images in total) described in Section 7.4.1 are presented in

Figure 7.41 and Table 7.41. The “No prediction (None)” distribution corresponds to

the overall marker motion between the template created from the first image of the

sequence and all subsequent images of that sequence. As can be seen in Table 7.41,

the ZO and LE models are characterized with very similar results, and improve most

of the statistical indicators 10-fold and maximal FPE around 3.5 times in comparison

to no prediction. The LR model coefficients β used in this experiment were obtained

as described in Section 7.4.3 by a “leave-one-out” approach: For each sequence, the

vector β is computed from the 22 sequences, excluding the sequence of interest. We

experimented with different number of preceding images used in the LR model, from

2 to 7. The FPE results are very similar, which is explained by the fact that the

corresponding coefficients βi are similar regardless of the number of preceding images

used, and the two largest coefficients are assigned to the geometric parameters of the

two preceding images (see more details in Section 7.4.3). The median FPE of the LR

approach is similar to that of the ZO and LE models (0.04 mm difference corresponds

to around 1/6 of a pixel size), however, the maximal FPE is improved by around
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Table 7.41: Distributions of the fiducial prediction error (FPE) for phantom images
for different prediction models.

Fiducial prediction error, mm

Prediction model
Min 25% Med 75% Max

Prediction model
abbreviation description

None 0 0.39 1.81 5.96 23.01 No prediction
ZO 0 0.03 0.15 0.64 6.83 Zeroth order prediction
LE 0 0.04 0.07 0.24 6.29 Linear extrapolation
LR-2 0 0.05 0.11 0.31 5.87 Linear regression, 2 images
LR-3 0 0.05 0.11 0.32 5.39 Linear regression, 3 images
LR-4 0 0.05 0.11 0.32 5.46 Linear regression, 4 images
LR-5 0 0.06 0.12 0.29 5.54 Linear regression, 5 images
LR-6 0 0.05 0.13 0.31 5.54 Linear regression, 6 images
LR-7 0.01 0.05 0.13 0.32 5.54 Linear regression, 7 images

1–1.5 mm (4–6 pixels).

The results reported above showed that all considered models reduced the FPE

significantly comparing to no prediction. The LR models were better than ZO and

LE in reducing the maximal FPE. Therefore, we select the LR model based on three

preceding images (LR-3) as a predictor in our marker tracking module, as it provides

slightly better results than the rest of the LR models. The coefficient vector used in

the proposed tracking system was β = (0, 1.99,−1.23, 0.23)T (see Section 7.4.3). Our

choice of the prediction model was also validated by the experiments with the patient

testing data set, the results of which are reported in Section 7.4.5.

7.4.5 Validation of Prediction Models on Patient Data

In addition to testing different prediction models on image sequences of the Quasar

motion phantom, as described in Section 7.4.4, we have also applied the models to

the patient image sequences described in Section 7.4.1 to verify the findings. The

images were preprocessed by the temporal Dolph-Chebyshev filter with the kernel

size of ℓ = 5. In addition, we computed a patient-based LR model, denoted by PB in

the graphs. In this model, coefficients β were obtained from training the model on the

patient data with the “leave-one-out” approach, i.e., for each patient, the coefficients

β were found by training the model on the images of the two remaining patients.

The distributions of the FPE are shown in Figure 7.42 and corresponding median and

maximal FPE values are given in Table 7.42. The outliers in Figure 7.42 (bottom)
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Figure 7.42: Distributions of the FPE for patient images for different prediction mod-
els. Table 7.42 provides the corresponding FPE numerical values.
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Table 7.42: Distributions of the FPE for patient images for different prediction models.

Fiducial prediction error, mm

Patient 1 Patient 2 Patient 3

Prediction model Med Max Med Max Med Max Maximal outlier

None 0.32 1.09 0.23 1.61 0.28 3.51 3.51
ZO 0.06 0.29 0.07 0.56 0.05 0.33 1.71
LE 0.05 0.37 0.05 0.32 0.05 0.19 1.65
LR-2 0.05 0.34 0.04 0.32 0.05 0.23 1.61
LR-3 0.05 0.36 0.04 0.3 0.04 0.36 1.63
LR-4 0.05 0.38 0.04 0.3 0.05 0.26 1.6
LR-5 0.05 0.38 0.04 0.32 0.05 0.47 1.63
LR-6 0.05 0.34 0.04 0.33 0.04 0.4 1.65
LR-7 0.05 0.35 0.04 0.34 0.04 0.39 1.66
PB-3 0.05 0.3 0.05 0.43 0.04 0.6 1.64
PB-5 0.05 0.37 0.05 0.43 0.04 0.56 1.64
PB-7 0.05 0.29 0.05 0.43 0.04 0.57 1.64

correspond to the images where the markers performed rapid moves according to the

following scenario: The markers remained nearly stationary up until and including

image i, then moved by approximately 2 mm between the images i and i + 1 (the

prediction for image i+1 was close to the optimal transformation parameters of image

i, the first outlier), and after that remained almost stationary (but the prediction

moved further along the difference between the images i and i+1, the second outlier).

The analysis of the FPE distributions leads to conclusions similar to the ones presented

in Section 7.4.4: All models improve the FPE comparing to no prediction. However,

the difference between the models is not very significant. Based on the experiment

described above, the choice of LR-3 is confirmed to be reasonable. The patient-

based LR models produced similar (in many cases slightly higher) errors than the

LR-3 model: The maximal FPE for different patients and number of images used in

prediction ranged from 0.29 to 0.6 mm compared to 0.3 to 0.36 mm for the LR-3

model.

7.4.6 Accuracy of Marker Motion Tracking

The validation of the tracking method accuracy was performed by computing the fidu-

cial registration error (FRE, Equation (7.3.19)) between the marker positions found by

the tracking procedure and by the independent 2D localization performed in every im-
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Figure 7.43: Accuracy of marker tracking measured by the distributions of the FRE
in fluoroscopic image sequences of the Quasar moving phantom.

age of the sequence. The accuracy of the marker localization method was evaluated in

Section 7.3.2, and showed a median FRE of 0.11 mm and a maximal FRE of 0.25 mm

(smaller than a pixel size) on the testing data set, where manual localization was used

as the “ground truth”. Figure 7.43 presents the FRE distributions for 23 fluoroscopic

image sequences of the Quasar motion phantom described in Section 7.4.1. The FRE

results for the Quasar phantom demonstrate high agreement between the marker po-

sitions found by the tracking and the independent 2D localization procedures. For all

sequences, the minimal FREs were on the order of 10−5 mm, the medians were on the

order of 10−4 mm, and the maxima were ranging from 1.6 · 10−3 to 4.8 · 10−2 mm. For

all sequences combined, the median FRE was 2.7 ·10−4, and the mean ± one standard

deviation was (5.62 ± 24) · 10−4 (Table 7.43). The FRE magnitude did not seem to

have any particular relation to the trajectory and amplitude of the motion in our ex-

periment, although it tended to be slightly higher for higher speeds (shorter period).

Due to the submillimeter and subpixel accuracy, the proposed tracking method can

be implemented for clinical use.

The validation of the tracking procedure on the patient testing data set con-

sisting of 25 fluoroscopic image sequences described in Section 7.4.1 shows similar

results: Although the FRE magnitudes presented in Figure 7.44 and Table 7.43 are

larger in comparison to the FREs in the phantom image sequences, all maximal FREs

are within a pixel size, and median or mean FREs are much smaller than a millimeter.
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Figure 7.44: Accuracy of marker tracking measured by the distributions of the FRE in
patient fluoroscopic image sequences. The corresponding numerical values are given
in Table 7.43.

Table 7.43: Distributions of the FRE in Quasar phantom and patient image sequences.

Fiducial registration error, mm

Image sequence Min 25% Med 75% Max Mean± Std

Quasar 0 0 0 0 0.05 0± 0

Patient 1 0 0.01 0.02 0.03 0.22 0.02± 0.03
Patient 2 0 0.01 0.01 0.02 0.09 0.01± 0.01
Patient 3 0 0.01 0.01 0.02 0.12 0.02± 0.02
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Chapter 8

Patient Studies

This chapter presents the results obtained by applying the marker localization and

tracking methods proposed in this thesis and implemented in the Matlab package that

we called Gryphon. Examples are provided of both inter-fraction marker displacement

statistics extracted from the daily position verification CBCTs in Section 8.1, and

intra-fraction marker motion results computed from the fluoroscopic image sequences

of the prostate patients in Section 8.2.

8.1 Inter-Fraction Marker Displacement from

CBCT Images

After describing the CBCT patient data sets in Section 8.1.1, we demonstrate how

the 3D positions of the markers localized in the CBCT images of a patient or a

patient cohort are used to analyze inter-fraction anatomy changes in Section 8.1.2.

In Section 8.1.3, we give an example of organ motion statistics that could be used to

customize the radiation treatment.

8.1.1 Patient CBCT Data Set

For inter-fraction displacement analysis, we have used CBCT images of three prostate

patients. Each patient had two CBCT images acquired per treatment fraction, as was

briefly mentioned in Section 2.2. First, the image we denote as CBCTs was obtained

after the patient had been set up on the LINAC couch with the help of the room

lasers and immobilization devices. It was used to measure the displacement of the

target relative to the treatment plan, and to perform necessary corrections by moving

the couch. Then, another image, CBCTe, was acquired after the treatment procedure

was completed. If the target had moved too far from its initial position, it could mean
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that the prescribed radiation dose had not been delivered, and some adjustments to

the treatment regimen could be necessary.

The patients in our data set came in for the treatment every working day

(Monday through Friday) during the period of around two months, which resulted in

39 fractions for Patient 1, and 36 fractions for both Patient 2 and 3. For every fraction,

we have both CBCTs and CBCTe images. All patients had three gold cylindrical

fiducial markers, 3× 0.8 mm in size, inserted into their prostates.

Ideally, to measure an inter-fraction motion, the positions of the markers in the

daily CBCT images should be compared to their positions in the planning CT image.

However, we did not have this information available. Instead, we used the positions

of the markers in the CBCTe image of the first treatment fraction, which we expect

to be the closest to the ones in the planning CT among all other CBCT images of

each patient data set. First, this fraction is the closest in time to planning, implying

the hope for small anatomical changes. Second, the markers in the CBCTs image

from the same fraction are subject to the displacement between the CT and CBCTs

(inter-fraction motion), while CBCTe image is acquired after the couch correction

has been performed and may include some organ displacements that have taken place

during the treatment fraction (intra-fraction1 motion), which, according to multiple

studies summarized by Byrne [38], tend to be smaller than the inter-fraction motion.

Finally, the goal of this chapter is to demonstrate the application of the system to

real patient data. We aim to provide examples on the kind of analysis that can be

performed on patient images, rather than reporting clinically significant results.

8.1.2 Inter-Fraction Anatomical Changes and Marker
Migration

A number of studies reported the use of inter-marker distances (IMD) to examine

marker migration and anatomy changes during the course of radiation therapy [36,

114, 176, 190]. Similarly, our proposed 3D marker segmentation approach (Chapter 3)

implemented in the Gryphon software can be used to conduct such analysis.

Figure 8.1 and Table 8.1 present the results on the IMD variations for the data

sets described in Section 8.1.1. The distributions in Figure 8.1 show the change in the

IMD compared to the IMDs in the CBCTe image of the first treatment fraction. The

labels such as “M1/2-s” refer to the IMD variations between the markers 1 and 2 in

the CBCTs images, and “All-e” to the variations of all IMDs combined in the CBCTe

1Although most authors refer to any displacements measured within one fraction as the intra-
fraction motion, sometimes a term peri-fraction is used to separate the displacement measured by
two CBCT images acquired before and after the treatment fraction from a series of images acquired
during the fraction.
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Figure 8.1: Variations in inter-marker distances (IMD) during the course of treatment.

images. Markers 1, 2, and 3 correspond to the base, posterior, and apex markers in

the prostate patients, respectively (see Figure 7.23). We can also present the IMD

results as a cumulative distribution of the absolute IMD values of all IMDs and all

patients combined as shown in Figure 8.2.

Table 8.1 lists the numerical results for each patient for all IMDs combined in

the pre- or post-treatment CBCT images, CBCTs and CBCTe. The IMD variation

for all IMDs in all images of all patients combined is 0.4± 1.28 mm. Although based

on only three prostate patients, these results are similar to several other studies.

Kupelian et al. [114] collected statistics on the IMDs computed from a pair of x-ray

images for 56 patients, 36 fractions each, and found that the average IMD variation

was −0.31 ± 1.41 mm, with the largest observed change of 10.2 mm. They found

that the IMD values larger than 1, 2, and 3 mm constituted 38%, 11%, and 4% of all

IMDs (compare to 43%, 17%, and 3% presented in Figure 8.2, respectively). They

concluded that the IMDs varied minimally, meaning little deformation of the prostate

and the absence of significant marker migration. Budiharto et al. [36] showed that
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Figure 8.2: Absolute cumulative IMD variations for all patients.

Table 8.1: Variations in inter-marker distances (IMD) during the course of treatment.

Variations in inter-marker distances, mm

Position Min 25% Med 75% Max Mean± Std

Patient 1, All-s −1.95 0.04 0.75 1.35 3.16 0.7± 0.97
Patient 1, All-e −2.39 −0.42 0.01 0.73 2.41 0.15± 0.82

Patient 2, All-s −0.17 0.70 1.73 2.25 3.27 1.54± 0.93
Patient 2, All-e −0.54 0.66 1.56 2.33 3.57 1.52± 1.01

Patient 3, All-s −2.86 −1.36 −0.62 −0.11 1.15 -0.75± 0.81
Patient 3, All-e −2.70 −1.22 −0.53 0.04 0.92 -0.61± 0.89
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the number of times the variation in absolute IMDs exceeded values of 1, 2, 4, 6, and

10 mm was 33%, 14%, 5%, 3%, and 2%, respectively. The data was obtained from the

orthogonal portal images of 8 patients, totalling in 219 image pairs. Poggi et al. [176]

analyzed orthogonal radiographs of 9 patients, and found that the marker migration

was 1.2 ± 0.2 mm. Schallenkamp et al. [190] computed IMDs of 20 patients from

their portal images acquired during 39 to 41 treatment fractions, and found that they

exceeded 1 and 1.5 mm in 21% and 4% of the cases.

8.1.3 Inter-Fraction Marker Displacement

The knowledge of setup errors is important in radiation therapy, in particular, the

inter-fraction motion statistics can be used for safety margin design [219]. Figures 8.3 –

8.5 and corresponding numerical values of the distributions in Tables 8.2 – 8.4 repre-

sent the inter-fraction displacement results produced by using the proposed 3D marker

segmentation module for the data set described in Section 8.1.1. “M1” to “M3” de-

note markers 1 to 3, that correspond to the base, posterior, and apex markers in the

prostate patients, respectively (see Figure 7.23), “s” and “e” mark the data from

CBCTs and CBCTe images, respectively, and “CoM” denotes a 3D centre of mass of

all three markers, which we treat as the position of the target volume. Section 5.3.1

provides a brief description of the patient coordinate system, where the directions are

typically called the left-right (LR), superior-inferior (SI), and anterior-posterior (AP),

and correspond to the X, Y, and Z axes of the LINAC, respectively.

The displacements are computed relative to the marker positions in the CBCTe

image of the first treatment fraction. As practically all displacements are smaller in

the CBCTe images compared to the CBCTs (see also the cumulative inter-fraction

displacement distributions for all patients in Figure 8.6), we conclude that the intra-

fraction motion in the prostate patients in our data set is smaller than the inter-

fraction displacements, which agrees with multiple studies (see the summary provided

by Byrne [38]). The inter-fraction displacements of the centre of mass of all markers in

the CBCTs images combined for all patients were −2.04±2.82, 0.2±3.56, 1.83±3.61,

and 6±2.24 mm for the LR/X, SI/Y, and AP/Z directions, and in the 3D, respectively.

For CBCTe images, the corresponding statistics were−0.7±1.4, 0.33±2.23, 1.33±2.34,
and 3.37± 1.83 mm. The maximal displacements among all patients were 4.76, 8.19,

12.06, and 14.91 mm for the LR/X, SI/Y, and AP/Z directions, and in the 3D in the

CBCTs images, respectively, and 2.96, 6.12, 5.7, and 7.63 mm in the CBCTe images.

For comparison, the maximal magnitudes of the inter-fraction displacements measured

in ten studies reviewed in [116] cover the ranges of 2–9.3 mm for the LR/X, 4–9.9 mm

for the SI/Y, 7–14 mm for the AP/Z, and 8–20 mm for the 3D displacement. Figure 8.7

shows the 3D “trajectories” of the inter-fraction marker motion in the CBCTs and
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CBCTe images of the three prostate patients.

There was one outlier in the Patient 2 data set, which we removed from the

reported statistics and figures. In the pre-treatment image the patient was, indeed,

significantly shifted from the treatment position: The target position (centre of mass

of the markers) was displaced by −1.55, −25.36, and −1.56 mm in the X, Y, and Z

directions, respectively, which may indicate at error in the initial patient setup.

As pointed out by van Herk [219], the mean and standard deviation values

of the inter-fraction displacement can be used to determine the setup errors, and to

compute the treatment margin. While there are multiple “recipes” for computing

the margins, many of them use systematic and random components of the setup

error that are computed as explained below [219]. The inter-fraction displacements

are measured for a number of patients undergoing multiple treatment fractions, and

the mean and standard deviation (SD) values are computed for each patient across

multiple fractions, such as listed in Table 8.5. Then, the group systematic error, M ,

is a mean of the mean values of all patients. It often deviates from zero significantly

due to inaccuracy of the equipment. The SD of the systematic error, Σ, is the SD

computed over all patient means. It describes the reproducibility of the treatment

setup. Finally, individual patient SDs give the SD of the random error for each

patient. The group mean of SDs of the random error, σ, is computed as the root-

mean-square of the SDs of all patients. The results for our patient data set described

in Section 8.1.1 are presented in Table 8.5. Different combinations of M , Σ, and σ

have been used to estimate the radiation treatment margin [219].
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Figure 8.3: Inter-fraction displacements for Patient 1.
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Figure 8.4: Inter-fraction displacements for Patient 2.
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Figure 8.5: Inter-fraction displacements for Patient 3.

269



Ph.D.Thesis – O.Peshko McMaster – Computational Sci.&Eng.

Table 8.2: Inter-fraction displacements for Patient 1.

Inter-fraction displacements, mm

Position Min 25% Med 75% Max Mean± Std

Patient 1, LR/X
M1-s −9.22 −3.97 −2.75 −0.9 2.56 −2.63± 2.37
M2-s −9.1 −4.15 −2.78 −0.7 3.72 −2.59± 2.52
M3-s −9.84 −4.9 −3.27 −1.09 3.64 −3.13± 2.62
CoM-s −9.38 −4.29 −2.87 −0.83 3.31 −2.78± 2.49
M1-e −2.49 −0.77 −0.23 0.35 1.97 −0.25± 0.98
M2-e −2.7 −1.16 −0.26 0.19 2.26 −0.4± 1.13
M3-e −2.89 −1.38 −0.65 0.16 2.25 −0.66± 1.16
CoM-e −2.62 −1.07 −0.58 0.14 1.98 −0.44± 1.05

Patient 1, SI/Y
M1-s −9.59 −0.67 1.78 4.76 9.28 1.79± 3.85
M2-s −8.51 0.11 2.95 5.58 8.92 2.59± 3.68
M3-s −11.17 −1.42 0.26 2.19 6.36 0.12± 3.12
CoM-s −9.75 −0.78 1.96 4.22 8.19 1.5± 3.52
M1-e −7.11 −2.12 −0.86 0.26 3.09 −0.91± 2.11
M2-e −6.33 −1.8 −0.58 1.07 2.82 −0.68± 2.16
M3-e −5.94 −2.95 −1.7 −0.41 1.42 −1.82± 1.8
CoM-e −6.46 −2.09 −1.37 0.26 2.17 −1.13± 1.95

Patient 1, AP/Z
M1-s −3.4 0.22 2.74 7.76 14.53 4± 4.97
M2-s −5.63 −2.67 −0.28 4.01 11.45 0.92± 4.48
M3-s −7.16 −3.86 −0.66 1.97 9.84 −0.47± 4.19
CoM-s −5.23 −2.09 0.39 4.73 11.94 1.48± 4.42
M1-e −3.65 0.08 1.52 3.13 8.16 1.83± 2.61
M2-e −5.15 −2.1 −0.9 0.92 4.82 −0.77± 2.28
M3-e −7.31 −4.54 −2.44 −0.58 3.28 −2.51± 2.52
CoM-e −4.81 −1.67 −1.01 1.13 4.78 −0.48± 2.2

Patient 1, 3D
M1-s 1.27 4.45 6.23 10.71 17.61 7.45± 3.87
M2-s 1.5 5.07 6.5 8.83 14.85 6.78± 2.72
M3-s 2.67 4.32 5.12 7.18 12.48 6.13± 2.41
CoM-s 2.01 4.46 5.9 8.04 14.91 6.48± 2.74
M1-e 0 2.22 2.93 4.13 8.46 3.51± 1.99
M2-e 0 1.95 2.91 3.9 7.65 3.1± 1.59
M3-e 0 2.37 3.72 5.77 7.93 3.99± 2.21
CoM-e 0 2.08 2.42 3.91 7.63 2.99± 1.52
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Table 8.3: Inter-fraction displacements for Patient 2.

Inter-fraction displacements, mm

Position Min 25% Med 75% Max Mean± Std

Patient 2, LR/X
M1-s −7.27 −4.11 −0.64 0.86 3.99 −1.26± 3.05
M2-s −7.67 −4.3 −0.88 1.18 3.76 −1.31± 3.18
M3-s −6.8 −3.53 −0.07 2.18 4.26 −0.43± 3.23
CoM-s −7.25 −3.99 −0.6 1.36 4 −1± 3.15
M1-e −4.7 −2.71 −1.51 −0.26 2.87 −1.48± 1.81
M2-e −4.95 −2.65 −1.54 −0.59 2.68 −1.63± 1.84
M3-e −4.14 −1.68 −0.95 −0.05 3.33 −0.87± 1.85
CoM-e −4.6 −2.28 −1.33 −0.12 2.96 −1.33± 1.82

Patient 2, SI/Y
M1-s −1.51 1.38 3.15 4.56 5.81 3.03± 1.89
M2-s −2.03 0.13 1.65 3 4.06 1.6± 1.61
M3-s −3.05 −0.52 0.76 1.89 2.92 0.62± 1.52
CoM-s −1.96 0.2 1.83 3.13 4.27 1.75± 1.65
M1-e 0 2.21 3.45 5.1 6.84 3.57± 1.82
M2-e −0.78 0.67 2.26 3.29 5.13 2.17± 1.59
M3-e −1.12 −0.06 1.2 2.1 4.37 1.17± 1.46
CoM-e −0.39 0.77 2.44 3.48 5.37 2.3± 1.57

Patient 2, AP/Z
M1-s −1.23 3.5 5.15 5.62 11.89 4.47± 2.65
M2-s −1.48 2.67 3.5 4.7 12.32 3.4± 2.4
M3-s −1.77 1.85 3.11 4.07 11.97 2.99± 2.3
CoM-s −1.28 2.94 3.88 4.81 12.06 3.62± 2.39
M1-e −2.45 2.35 3.95 4.93 7.45 3.52± 2.05
M2-e −0.01 1.69 2.82 3.47 5.16 2.66± 1.32
M3-e −0.09 1.37 2.83 3.23 4.75 2.43± 1.24
CoM-e −0.45 2.09 3.08 3.95 5.7 2.87± 1.43

Patient 2, 3D
M1-s 1.76 5.91 6.59 7.68 11.89 6.86± 1.76
M2-s 1.92 4.53 5.32 6.26 12.32 5.52± 1.84
M3-s 1.94 3.94 4.64 5.44 11.97 4.87± 1.84
CoM-s 1.66 4.85 5.48 6.45 12.06 5.66± 1.76
M1-e 0 4.36 5.78 7.52 9.39 5.74± 2.24
M2-e 0 3.21 4.45 5.67 7.49 4.37± 1.69
M3-e 0 2.99 3.58 4.6 5.98 3.64± 1.34
CoM-e 0 3.65 4.41 5.58 7.48 4.47± 1.74
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Table 8.4: Inter-fraction displacements for Patient 3.

Inter-fraction displacements, mm

Position Min 25% Med 75% Max Mean± Std

Patient 3, LR/X
M1-s −7.71 −3.12 −1.8 −0.74 4.84 −1.97± 2.51
M2-s −8.25 −3.47 −2.05 −1 4.29 −2.43± 2.61
M3-s −8.57 −3.41 −2.14 −0.93 5.16 −2.32± 2.71
CoM-s −8.18 −3.32 −2.03 −0.92 4.76 −2.24± 2.6
M1-e −3.1 −0.2 0.34 0.65 1.64 0.02± 1.1
M2-e −3.41 −1.03 −0.17 0.14 1.12 −0.47± 1.08
M3-e −3.35 −1.23 −0.49 0.05 1.31 −0.58± 1.09
CoM-e −3.29 −0.86 0.02 0.24 1.31 −0.34± 1.06

Patient 3, SI/Y
M1-s −9.31 −4.78 −3.1 −0.7 3.74 −2.78± 3.08
M2-s −10.1 −5.97 −3.58 −1.61 3.02 −3.67± 3.32
M3-s −7.99 −3.61 −2.45 0.79 5.71 −1.64± 3.4
CoM-s −9.05 −4.95 −3.14 −0.56 4.07 −2.7± 3.24
M1-e −3.7 −1.02 −0.21 0.61 5.63 −0.17± 1.56
M2-e −3.89 −1.68 −0.94 0 5.76 −0.82± 1.72
M3-e −3.16 0.04 1.03 1.65 6.97 0.85± 1.7
CoM-e −3.42 −0.55 −0.27 0.69 6.12 −0.05± 1.58

Patient 3, AP/Z
M1-s −7.92 −3.33 −1.11 1.29 5.68 −0.89± 3.3
M2-s −4.48 −1.35 0.89 2.63 7.19 0.82± 2.86
M3-s −4.08 −0.5 1.12 3.49 7.79 1.47± 3.05
CoM-s −5.31 −1.79 0.51 2.49 6.32 0.47± 2.93
M1-e −3.95 −0.07 0.53 2.56 6.88 1.09± 2.4
M2-e −1.15 0.45 2.19 3.17 5.88 2.02± 1.87
M3-e −1.89 0.37 2.06 3.95 6.71 2.13± 2.14
CoM-e −1.75 0.28 1.85 2.93 5.32 1.75± 1.89

Patient 3, 3D
M1-s 2.31 3.92 5.36 7.9 10.09 5.8± 2.19
M2-s 2.09 4.09 6.41 8.37 11.34 6.31± 2.38
M3-s 2.07 4.22 5.72 7.4 9.14 5.82± 1.98
CoM-s 2.41 4.4 5.65 7.03 9.86 5.8± 2
M1-e 0 1.2 2.2 4.05 6.97 2.65± 1.85
M2-e 0 1.67 3.01 4.08 6.75 3.11± 1.66
M3-e 0 1.91 2.75 4.61 7.36 3.25± 1.89
CoM-e 0 1.35 2.37 3.47 6.54 2.68± 1.76
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Figure 8.6: Cumulative inter-fraction motion statistics for patient CBCT images.
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Figure 8.7: Three-dimensional trajectories of the inter-fraction motion in CBCTs and
CBCTe images of the prostate patients. The marker positions in the first and last
treatment fractions are denoted by the circle and star, respectively.
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Table 8.5: Inter-fraction error statistics.

Inter-fraction error statistics, mm

CBCTs CBCTe

Position Patient 1 Patient 2 Patient 3 Patient 1 Patient 2 Patient 3

LR/X
CoM mean −2.78 −1.00 −2.24 −0.44 −1.33 −0.34
CoM std 2.49 3.15 2.6 1.05 1.82 1.06

M = −2.01, Σ = 0.91, σ = 2.76 M = −0.7, Σ = 0.55, σ = 1.36

SI/Y
CoM mean 1.5 1.75 −2.7 −1.13 2.3 −0.05
CoM std 3.52 1.65 3.24 1.95 1.57 1.58

M = 0.18, Σ = 2.5, σ = 2.92 M = 0.37, Σ = 1.75, σ = 1.71

AP/Z
CoM mean 1.48 3.62 0.47 −0.48 2.87 1.75
CoM std 4.42 2.39 2.93 2.2 1.43 1.89

M = 1.86, Σ = 1.61, σ = 3.36 M = 1.38, Σ = 1.71, σ = 1.87

3D
CoM mean 6.48 5.66 5.8 2.99 4.47 2.68
CoM std 2.74 1.76 2 1.52 1.74 1.76

M = 5.98, Σ = 0.44, σ = 2.21 M = 3.38, Σ = 0.96, σ = 1.68
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8.2 Intra-Fraction Marker Motion Tracking in

Fluoroscopic Image Sequences

After a description of a patient testing data set in Section 8.2.1, we report the results

on intra-fraction marker motion tracking in Section 8.2.2.

8.2.1 Patient Fluoroscopic Data Set

The patient data set for intra-fraction motion tracking is the same as the set that

was briefly described in Section 7.4.1 and used for some experiments on tracking

validation. It consists of images of three prostate cancer patients. Patients 1, 2, and

3, respectively, have 10, 10, and 5 fluoroscopic image sequences acquired during the

first three treatment fractions and once a week thereafter. The sequences were taken

at 5.5 Hz for a duration of 30 seconds, which resulted in approximately 165 frames

per sequence. Each sequence has a corresponding CBCTe image obtained during the

same treatment fraction that is used for marker localization in the first image of each

sequence. The intra-fraction motion is measured as the displacement between the

positions of the markers in the current image from their positions in the first image

of the sequence.

8.2.2 Intra-Fraction Marker Motion

Figures 8.8 – 8.10 and their corresponding numerical values in Tables 8.6 – 8.8 provide

marker motion statistics for the three patients in the AP/U and SI/V directions, and

as the 2D displacements. The cumulative 2D intra-fraction motion statistics of the

centre of mass of all markers and all patients combined is demonstrated in Figure 8.11.

Analogous to inter-fraction analysis above, Table 8.9 provides intra-fraction motion

error statistics, such as M , Σ, and σ, the computation of which was explained in

Section 8.1.3.

The intra-fraction motion in our testing data set of three prostate patients

was quite small: The 2D marker displacement was larger than 1 mm only in 2% of

the images. The magnitude of the organ motion can be influenced by such things

as dietary restrictions, immobilization equipment, patient positioning, protocols for

treatment preparation and execution, and, finally, specific characteristics of individual

patients. The intra-fraction displacements of the centre of mass of all markers in all

patient image sequences were −0.04±0.44 mm in the AP/U direction, 0.02±0.3 mm

in the SI/V direction, and 0.26± 0.26 mm in the 2D, respectively. This is smaller or

similar to a number of other studies, where all mean and standard deviation values of

the prostate intra-fraction motion were below 2 mm [129, 108, 163, 174, 8, 68]. While
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the reported maximal shifts are typically well within 10 mm [68, 88, 16, 103, 163],

some patients can display large motions, such as 16–25 mm [182, 103, 110] (see details

in Section 5.3.1). As we allow the displacements of up to 20 mm in the AP/U and

SI/V directions, and the rotation of up to 10◦ in-plane, the marker localization and

tracking system proposed in this thesis, and implemented in the Gryphon software, is

able to provide accurate and reliable tracking for different patients with a wide range

of motion characteristics.

Figures 8.12 – 8.16 display the 2D trajectories of one of the three markers (M1,

or the prostate base marker) in the UV coordinates in all fluoroscopic sequences of

the three patients. The notation Fi means the ith fluoroscopic image sequence of a

patient. The positions in the first and last image of the sequence are denoted by the

circle and star, respectively. Figure 8.17 shows the U and V motion in time of the

same marker. While the marker trajectories of Patient 2 suggest clear correlation to

the respiration motion, Patient 1 and 3 are less influenced by it (slightly noticeable

in the V coordinate of Patient 1 and even less so in Patient 3), and are characterized

by more erratic prostate motion. The fact that prostate motion may be affected by

the respiratory cycle have been demonstrated in several studies, e.g., [103, 68].

This chapter concludes the part of the thesis devoted to method validation and

case studies. Here, we have demonstrated the applicability of the methods proposed

in this thesis to real patient images, and gave examples of typical statistical analysis

that can be performed in the context of organ motion tracking and management in

image-guided radiation therapy.
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Table 8.6: Intra-fraction motion for Patient 1.

Intra-fraction motion, mm

Position Min 25% Med 75% Max Mean± Std

Patient 1, AP/U
M1 −0.94 −0.17 −0.03 0.12 1.14 −0.05± 0.33
M2 −0.90 −0.19 −0.03 0.14 0.78 −0.03± 0.28
M3 −0.97 −0.24 −0.08 0.15 1.04 −0.02± 0.34
CoM −0.88 −0.18 −0.03 0.14 0.76 −0.03± 0.28

Patient 1, SI/V
M1 −0.65 −0.17 −0.03 0.11 0.62 −0.02± 0.22
M2 −0.66 −0.20 −0.06 0.10 0.94 −0.03± 0.25
M3 −0.67 −0.18 −0.04 0.11 0.53 −0.03± 0.21
CoM −0.48 −0.13 −0.03 0.08 0.51 −0.02± 0.17

Patient 1, 2D
M1 0.01 0.15 0.25 0.42 1.30 0.32± 0.24
M2 0 0.17 0.28 0.44 1.08 0.32± 0.21
M3 0 0.18 0.30 0.44 1.18 0.34± 0.21
CoM 0.01 0.14 0.22 0.35 1.01 0.27± 0.19
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Table 8.7: Intra-fraction motion for Patient 2.

Intra-fraction motion, mm

Position Min 25% Med 75% Max Mean± Std

Patient 2, AP/U
M1 −0.64 −0.09 0.03 0.16 0.71 0.04± 0.22
M2 −0.64 −0.14 −0.03 0.09 0.69 −0.01± 0.2
M3 −0.70 −0.17 −0.05 0.08 0.72 −0.04± 0.2
CoM −0.62 −0.13 −0.02 0.11 0.67 0± 0.2

Patient 2, SI/V
M1 −0.73 −0.07 0.05 0.22 1.48 0.12± 0.32
M2 −0.70 −0.06 0.08 0.26 1.49 0.14± 0.33
M3 −0.73 −0.08 0.05 0.21 1.48 0.1± 0.32
CoM −0.54 −0.05 0.04 0.18 1.11 0.09± 0.24

Patient 2, 2D
M1 0 0.11 0.21 0.35 1.62 0.26± 0.2
M2 0.01 0.13 0.22 0.34 1.62 0.27± 0.19
M3 0.01 0.13 0.21 0.31 1.60 0.25± 0.18
CoM 0.01 0.11 0.18 0.28 1.28 0.21± 0.15
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Table 8.8: Intra-fraction motion for Patient 3.

Intra-fraction motion, mm

Position Min 25% Med 75% Max Mean± Std

Patient 3, AP/U
M1 −4.58 −0.02 0.14 0.41 3.94 −0.25± 1.66
M2 −2.09 −0.04 0.09 0.20 1.73 −0.1± 0.73
M3 −0.63 −0.08 0.02 0.11 0.47 −0.01± 0.19
CoM −2.39 −0.04 0.11 0.21 2.03 −0.12± 0.85

Patient 3, SI/V
M1 −1.23 −0.03 0.07 0.16 1.19 0.01± 0.48
M2 −2.79 −0.01 0.11 0.28 2.44 −0.08± 1.04
M3 −1.50 −0.03 0.07 0.17 1.40 −0.01± 0.57
CoM −1.38 −0.02 0.06 0.15 1.24 −0.02± 0.52

Patient 3, 2D
M1 0 0.10 0.20 0.50 4.74 0.64± 1.01
M2 0 0.10 0.18 0.40 3.47 0.5± 0.74
M3 0 0.09 0.15 0.28 1.58 0.3± 0.35
CoM 0 0.09 0.15 0.31 2.76 0.39± 0.58

Table 8.9: Intra-fraction error statistics.

Intra-fraction error statistics, mm

Position Patient 1 Patient 2 Patient 3

AP/U
CoM mean −0.03 0 −0.12
CoM std 0.28 0.2 0.85

M = −0.05, Σ = 0.06, σ = 0.53

SI/V
CoM mean −0.02 0.09 −0.02
CoM std 0.17 0.24 0.52

M = 0.02, Σ = 0.06, σ = 0.34

2D
CoM mean 0.27 0.21 0.39
CoM std 0.19 0.15 0.58

M = 0.29, Σ = 0.09, σ = 0.36
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Figure 8.12: Two-dimensional trajectories of the markers in fluoroscopic sequences
F0 to F4 of Patient 1.
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Figure 8.13: Two-dimensional trajectories of the markers in fluoroscopic sequences
F5 to F9 of Patient 1.
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Figure 8.14: Two-dimensional trajectories of the markers in fluoroscopic sequences
F0 to F4 of Patient 2.
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Figure 8.15: Two-dimensional trajectories of the markers in fluoroscopic sequences
F5 to F9 of Patient 2.
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Figure 8.16: Two-dimensional trajectories of the markers in fluoroscopic sequences
F0 to F4 of Patient 3.
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Figure 8.17: Intra-fraction marker motion in time for Patient 1 (top row), 2 (middle
row), and 3 (bottom row).
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Chapter 9

Conclusions and Further Directions

In this chapter, we summarize the contributions of this thesis in Section 9.1, and

discuss possible extensions and directions for future work in Section 9.2.

9.1 Summary and Contributions

This thesis described the design and development of a complete system for auto-

matic marker localization and tracking. After the problem background information

in Chapter 1, the requirements, assumptions, and overview of the proposed approach

were described in Chapter 2. Then, Chapters 3 – 6 provided modelling details for each

of the four parts of the system, in particular, 3D marker segmentation and modelling,

filtering procedures, 2D marker localization, and tracking. The algorithms developed

in these chapters were extensively validated in Chapter 7. Chapter 8 demonstrated

the application of the proposed system to patient images. Some of the modelling, for-

mulation, and implementation details have been assembled in Appendices A –D. This

thesis contains a number of contributions that we describe below. For convenience,

we group them under the topics of (i) mathematical modelling, (ii) system design and

selection of the components, and (iii) implementation and computational efficiency.

Mathematical modelling

One of the initial ideas proposed in this thesis, on which the approach for marker

localization and tracking in fluoroscopic sequences was successfully constructed, was

to use a higher-contrast 3D CBCT image acquired during the same treatment fraction

in order to assist in initialization of the positions of the markers in the lower quality

fluoroscopic images. First, the markers were localized in the 3D CBCT. Although this

required a multi-step segmentation algorithm followed by the correction procedures, it

was still easier to localize the markers in the 3D compared to the 2D x-ray projection
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images, where multiple anatomical features were overlayed, resulting in low contrast

of the markers. Then, the 3D marker positions, knowledge of the system geometry,

and assumptions about motion that could have happened between the acquisition

of the CBCT and fluoroscopic images, were used to define a registration region of

interest (ROI). Further, the 2D-3D image registration between the fluoroscopic and

CBCT images was performed on this ROI. The transformation found as a result of

the registration incorporated the displacement of the target between the acquisition

of the images, and possible calibration inaccuracies. Finally, the 2D marker positions

in the first image of the fluoroscopic sequence were computed by application of the

found transformation to the 3D marker positions.

A common approach for registration of the 2D x-ray and 3D CBCT images

by using a digitally reconstructed radiograph (DRR) [42, 154, 249] could not provide

satisfying results in the proposed application. First, the DRR generation typically in-

volves significant computational resources. And second, our goal was to conduct the

registration based on the markers rather than any other features that can be found in

the CBCT and fluoroscopic images. To address these issues, a registration framework

was proposed, in which the fluoroscopic images were preprocessed by a specially de-

signed marker enhancement filter (MEF) that amplified the markers, and suppressed

the background and anatomical features. At the same time, instead of generating a

complete DRR from the CBCT image, a 2D template image was created using only

the markers localized in the 3D. To distinguish this new imaging modality, a new

term was introduced – a selective DRR. Hence, the proposed registration framework

creates two images that contain measurements of the markers with very similar inten-

sity characteristics. In addition to computational savings related to DRR generation,

and the ability to register images based on the markers, such approach also paved the

way for the use of registration tools more typical of the single-modality registration,

which are simpler, more reliable, and more computationally efficient. In particular,

the proposed framework made it possible to use a rigid geometric transformation, as

we consider the prostate to be a rigid organ for the purposes of marker localization and

tracking (Section 2.2). In contrast, registration of the complete images containing the

prostate with its surrounding soft tissues may have required a non-rigid registration

method.

A similar approach was undertaken in tracking, where the template image

was created from the markers localized in the first image of the sequence by one of

the proposed image generation methods described below, and all subsequent images

undergoing 2D-2D registration with the template were preprocessed by a simplified

version of the MEF.

The following novel mathematical modelling techniques were proposed within
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the registration framework discussed above:

• A definition of the 3D marker set was formalized as a set of points within an

image (voxel centres in a discrete image) possessing high intensities and lo-

cated in a close geometrical proximity that correspond to a measurement of a

fiducial marker. The 3D marker sets were formed as a result of the segmenta-

tion procedure described in Section 3.1, consisting of the thresholding to select

high-intensity points, clustering to group the points by their location proximity,

and checking the marker size selection criteria. Finally, the candidate marker

sets obtained by segmentation were analyzed by the correction procedures ex-

plained in Section 3.3 that were derived based on our knowledge about the

proposed application. In addition to careful selection and combination of the

existing components to successfully solve the problem, a novel adaptive thresh-

olding technique was designed, which selects high-intensity points by exploiting

information about the number and size of the fiducial markers (Section 3.1.1).

As the proposed method does not rely on particular intensity threshold or range,

it is applicable to the 3D images possessing different intensity ranges, such as

the case of the CBCT images reconstructed with different voxel sizes described

in the introduction to Chapter 3.

• The region of interest (ROI), on which the registration procedures of both

marker localization and tracking steps are to be performed, may greatly in-

fluence the registration outcome by affecting both reliability and computational

time. The usage of a smaller ROI within the image, centered around pre-

dicted marker positions, proved to be an efficient approach in a number of

studies [141, 204, 7, 169]. The ROI was either selected manually or as a circu-

lar or square area of the predefined size. Although the application of the fixed

ROI size based on the assumptions of the target motion magnitude may seem

attractive due to its simplicity, it may easily become a trigger for failure in the

software implementation, as in our case the range of allowable target motion is

defined in terms of both shift and rotation. In addition, the experiments were

conducted using both 2D and 3D rigid transformations. While it is desirable

to select the ROI as small as possible to decrease computational time and im-

prove reliability of the subsequent image registration, a ROI that is too small

may result in the markers moving outside of the ROI while transformed by the

legitimate parameter values. To solve this problem, the approach of adaptive

computing of the ROI size based on the geometric transformation parameters

was proposed. The details are provided in Section 4.3.

• While the registration ROI was computed from the positions of the 3D marker

sets and knowledge of the system geometry and calibration, the precise 2D
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marker positions in the fluoroscopic image were recovered by applying the 2D-

3D image registration. The voxels in the CBCT may often be of a larger size

than the pixels in the fluoroscopic image, which may result in larger 3D markers

compared to their counterparts in the 2D. This can potentially increase geo-

metric uncertainty during registration. In addition, it is not uncommon for the

CBCT images to have streak artifacts around the markers, i.e., a number of

bright voxels surrounding the high-contrast marker, which do not represent a

real measurement, and are not present in the corresponding fluoroscopic images.

To overcome these issues, it was proposed to estimate the marker models from

the 3D markers sets (Section 3.4). The models are mathematical representa-

tions of the markers in 3D, such as continuous cylindrical or spherical models

of the known dimensions. Detailed formulations are provided in Appendix C.3.

As was discussed in Section 3.5, the models of the fiducial markers, which are

3 mm long and 0.8 mm in diameter, can be successfully computed from the 3D

marker sets segmented in the CBCT images with the voxel sides of 0.25 and

0.5 mm, and in most CBCTs with 1 mm voxels. For the larger voxel sizes, the

cylinder orientations could not be reliably recovered for such a small marker

size.

• To address different CBCT resolutions and quality, three methods were proposed

for selective DRR generation that operated on the 3D marker models, marker

sets, and marker positions, respectively. The marker model DRR simulates an

x-ray image creation process by applying a raytracing principle (Section 5.1.1).

It is a good option for the CBCT images, for which the 3D marker models can be

reliably estimated, as it creates the 2D markers that are very similar in shape to

the ones found in the fluoroscopic images. An alternative that is computationally

cheaper and is also suitable for the markers of irregular shapes, such as long

flexible coils [7], is the voxel splat DRR (Section 5.1.2). This method “projects”

the voxels belonging to the 3D marker sets onto the 2D plane. It incorporates

the notion of the voxel size, hence it can create contiguous features in the 2D

from the contiguous features in the 3D, regardless of a difference in size between

the CBCT voxels and fluoroscopic pixels. For the CBCTs of lower quality and

resolution, a marker splat DRR method was proposed (Section 5.1.3), for which

no marker orientation information is used. The markers in the generated image

are represented by round spots of the size comparable to the fiducial marker.

Being very computationally efficient, this method may also be more suitable for

applications, for which execution time is important, such as in real-time motion

tracking. Finally, in the 2D-2D image registration of the tracking procedure,

the template was generated from the markers localized in the first image of the
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sequence by using a 2D version of the marker splat DRR, a 2D marker splat

image (Section 6.1).

• To preprocess fluoroscopic images prior to image registration, a novel marker

enhancement filter (MEF) was proposed, as no existing filter that was consid-

ered could provide satisfying results for our application. The proposed filter was

designed to amplify the features of a certain size by conducting local intensity

analysis. In brief, the MEF is built upon two images, where the first one ampli-

fies the regions where the markers can be found with high probability, while the

second one smoothes and preserves marker shapes found within these regions.

The MEF also includes a novel contrast enhancement function. The details of

the MEF design were provided in Section 4.4.

A simplified version of the MEF, called the magnitude-only filter (MOF), was

proposed for use in tracking (Section 4.4.5). It only amplifies the marker shapes

without the search for the probable marker regions, as we assume that the dis-

placement between the markers in the subsequent images of the sequence is

rather small, and hence the regions can be formed around the marker positions

found in the preceding image. The use of the MOF resulted in higher computa-

tional efficiency of the tracking compared to application of the full MEF (5-fold

decrease in time in our Matlab implementation) or the conventional 2D-2D im-

age registration approaches that use interpolation (7–100-fold improvement).

For details, see Sections 6.1 and 7.4.2.

System design and selection of the components

This thesis includes multiple literature reviews, justifications, and experiments to

select the components that were build into a complete marker localization and tracking

system:

• Prior to performing any processing on fluoroscopic images, including the MEF

or MOF application, it was desirable to reduce the noise. Common spatial filters

could not provide sufficient improvement without oversmoothing the markers.

Instead, temporal filtering was used (Section 4.1). Several existing temporal

filters used in fluoroscopy were evaluated, such as a simple form of recursive

filtering, a filter based on the Karhunen-Loève transform (KLT), and finite im-

pulse response filters, of which, to the best of our knowledge, only the mean

filter (frame averaging) was reported to be used in fluoroscopy. An experiment

with the images of the Quasar motion phantom demonstrated that the Dolph-

Chebyshev filter provided the best improvement in the contrast-to-noise ratio in

presence of the moving markers, and significantly outperformed the mean filter.

• The design of the MEF was motivated by reviewing and evaluating a number
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of existing methods, such as morphological opening, template matching, the

marker extraction kernel (Section 4.2.1), and multiple filters exploiting the scale-

space approach that were mostly designed for vessel detection and computer

vision applications (Section 4.2.2). None of these filters provided satisfying

results. Therefore, the MEF, and its simplified version, the MOF, were designed

as described in Sections 4.4.1 and 4.4.5.

• The optimization method to solve the registration problem was selected among

the existing approaches based on computational cost of our implementation (the

methods provided similar accuracy). However, the selection of an appropriate

starting point, which is crucial for successful registration using the functions

seeking a local optimum, required extensive evaluation (Section 5.3.3). Based

on our knowledge about the problem, multiresolution and exhaustive search

over sampled parameter space, and their modifications and combinations, were

considered as the most promising approaches. The use of conventional multires-

olution approach, in which the registration is performed on the highest level

first (the smallest, most blurred images), and then the solution is improved for

images with the increasing resolution, have not resulted in 100% localization

success rates for most data sets, unlike the other evaluated methods. The ex-

haustive search is often implemented as the normalized cross-correlation between

the image and the template, performed over one pixel shifts in 2D. To reduce

the computation, and incorporate rotation in addition to the shifts, the method

was modified by adding multiple templates with different rotation angles and

performing the cross-correlation on reduced resolution.

• The appropriate distance measure for the image registration problem was se-

lected by evaluating existing functions on our sample images (Section 5.2).

• Bounds on geometric transformation parameters were selected by reviewing

multiple studies to determine average and maximal displacements observed in

prostate patients (Section 5.3.1).

• Based on knowledge of the system geometry, marker placement, image resolu-

tion, and expected magnitude of the marker displacement, it was determined

that the proposed imaging system (including hardware, geometric setup, and

image acquisition software) was not sensitive enough to recover the out-of-plane

marker displacements with reasonable accuracy. Therefore, it was decided to use

the 2D geometric transformation in our registration problems (Section 5.3.2).

This justification was also reinforced by the experiments with the phantom im-

ages (Section 7.3.3).

• Due to the fact that the displacement between the markers in the neighbouring

images of the sequence is small, and, therefore, the registration ROI can be tight,
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it was speculated that it may be simpler and more computationally efficient

to conduct 2D-2D image registration in a conventional way, i.e., to register

images directly with the use of interpolation, without the application of the

MOF and the 2D marker splat image generation method (Section 6.1). The

experiment showed that while both approaches provided acceptable registration

accuracy, the application of the MOF and the 2D marker splat was, in fact,

much cheaper computationally (7–100 times, Section 7.4.2). The components for

the image registration problem used in tracking, such as the distance measure,

optimization method, optimization starting point, and geometric transformation

were selected based on our findings for the 2D-3D image registration problem

used in marker localization (Sections 6.1 and 6.3).

• By analyzing the literature on organ motion tracking, several promising predic-

tion models were selected for evaluation (Section 6.2). For the data set contain-

ing multiple sequences of the Quasar motion phantom, where markers perform

different kinds, magnitudes, and speeds of motion, it was concluded that the

linear regression model based on three preceding images was the most suitable

predictor for the proposed tracking procedure.

Implementation and computational efficiency

Even for post-processing applications, such as those described in this thesis, compu-

tational efficiency is important, and paves the way for the future real-time application

of the proposed methods. When conducting experiments to select the methods and

their parameters (Chapter 7), the algorithms were verified to provide expected re-

sults, reliable operation, and low computational cost. For example, the images were

quite large, and in many cases it would not be possible to operate on the whole image

or to have several images in memory simultaneously. Therefore, once the image was

opened, a ROI was typically selected and kept in memory, and all further process-

ing was performed on this ROI. This reduced both memory use, and execution time

of the computations. Another example is temporal filtering, where the images were

opened one at a time, multiplied by the corresponding filter coefficients, and added

to the resulting filtered image. Also, prior to template image generation, a ROI was

computed for each of the future generated markers first, and then computation was

conducted only in those ROIs.

As for the implementation, we described algorithms for every part of the sys-

tem and explained implementation details where appropriate and necessary in Ap-

pendix D.
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9.2 Extensions and Future Work

For the methods proposed in this thesis, the following possible extensions and future

developments are suggested:

• Further collaboration with clinicians may result in the selection of the projects

and applications to which the methods proposed in this thesis can be applied

directly or with modifications. For example, the current design of our system

can be used to track markers in the CBCT projections, where the angle of the

imaging system changes for each image of the sequence. Such tracking routine

can be used for 3D motion monitoring during the treatment. As an example,

our methods can be used to improve the tracking success of the kV monitoring

systems such as the one described by Ng et al. [164]. Another example is the use

of the MEF for marker segmentation in the stereotactic body radiation therapy

tracking system [15].

• Further evaluation of the marker localization and tracking approach proposed in

this thesis in application to fluoroscopic images produced using different settings

of the kV imaging system may result in finding an opportunity for reduction of

imaging dose to the patients.

• The methods proposed in this thesis were evaluated by implementing them as

a Matlab software module. This was appropriate for selection of the methods

and their components, proof-of-concept demonstration, and post-processing of

the data. For the clinical use, however, it may be more reasonable to implement

the algorithms in one of the more efficient software environments using C++,

C#, or Java, which may eventually enable the use of the proposed algorithms

in real-time applications.

• In the context of real-time tracking, it is also possible to modify the proposed

system to combine external motion tracking with occasional x-ray imaging for

certain anatomical sites, similar to [193, 95, 44, 240].

• The fluoroscopic image sequences used in the experiments described in this

thesis were acquired within the treatment fraction when the MV irradiation

was turned off. The MV scatter further reduces the contrast of the features

and increases the noise. The methods proposed in this thesis can be further

evaluated on the data sets acquired simultaneously with the MV irradiation.

It is expected that our tracking system may still work reasonably well: For

example, the MEF showed promising preliminary results in application to the

portal images (Section 7.2.4), which possessed significantly lower contrast. If

successful, and implemented for the real-time use, our proposed methods can

be applied to organ motion monitoring simultaneously with the MV radiation
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delivery. Encouraging results were reported by Arumugam et al. [15], who used

the MEF for marker segmentation in their tracking system that showed similar

performance for both with and without simultaneous MV irradiation.

• In addition to testing with the MV beam turned on, it may be interesting to

evaluate the performance of the MEF and the whole proposed marker localiza-

tion and tracking system with different imaging modalities, such as portal or

ultra-sound images, which may create opportunities to use the proposed meth-

ods in more applications.

• The ease of use of the automatic tracking system may eventually lead to the

possibility of designing custom and adaptive treatment plan for each patient.

In such a system, the motion patterns of each specific patient can be used to

determine treatment parameters, and those parameters can be adapted over

time should the motion patterns change.

• Finally, though this thesis presents the methods for marker localization and

tracking, modifications of the system can be used for markerless tracking in

gating and tumour tracking applications. Instead of the markers, other features

can be detected and tracked, such as edges, blobs, and intensity changes between

high and low x-ray attenuation regions. While the components of the system

will have to be adjusted, the general framework can be reused.
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Appendix A

System Hardware and Software

The computing system used to conduct experiments in this thesis possessed the fol-

lowing characteristics:

Processor: Intel R© CoreTM2 Quad CPU Q6700 @ 2.66GHz
RAM: 4 Gb
Operating system: Windows 7 Professional, 64-bit
Matlab: R2009b (7.9.0.529) 32-bit

The use of this particular Matlab version is due to the necessity of running pre-

compiled libraries for opening the image files of the XVI format (CBCT images with

all supporting information). To be able to access information on patients, treatments,

and images in the testing data sets from Matlab, we were bound to its 32-bit version,

as the Microsoft dBase driver was not available in the 64-bit version.
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Appendix B

Geometric Transformations

This appendix provides details on geometric transformations and coordinate conven-

tions used in this thesis. Reference [238] contains an extensive discussion of coordinate

transformations with formulations and examples.

One of the ways to express a rigid geometric transformation that acts on a

point p ∈ R
d to produce a new point q ∈ R

d is through the d × d matrix of rotation

R and the d-element vector of translation (shift) t as q = Rp + t, or q = R(p +

t) if the translation has to be applied first. We find it more convenient, however,

to be able to have a unified representation of the transformations as matrices of

the same size, especially taking into account that in addition to translations and

rotations we also use a perspective transformation that is involved in 2D-3D image

registration. Such representation is made possible through the use of homogeneous

coordinates [238]. In homogeneous coordinates, points in R
d are expressed as vectors in

R
d+1, e.g., a point p = (px, py, pz)

T can be interpreted in homogeneous coordinates as

p̃ = (px, py, pz, 1)
T . Correspondingly, all transformations are expressed as R(d+1)×(d+1)

matrices [238, 57], where the detailed definitions for our transformations are given later

in this appendix. After the transformations are applied, the point q̃ = (qx, qy, qz, qw)
T

can be converted back to R
3 by dividing by its last coordinate qw 6= 0 to obtain

q = (qx/qw, qy/qw, qz/qw)
T . The homogeneous coordinate transformation for p ∈ R

2 is

analogous. In this thesis, we may implicitly switch to homogeneous coordinates before

applying geometric transformations, and back after. However, in this appendix, the

notation with the tilde will be explicitly used to denote the points in homogeneous

coordinates.
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B.1 3D Rigid Geometric Transformation in XYZ

System

As explained in Section 2.4.2, XYZ is a 3D right-handed coordinate system fixed in the

room with the origin at the LINAC’s centre of rotation, the isocentre. The coordinates

of the grid points of the 3D CBCT images are recorded in the XYZ system by the

XVI software during volumetric image reconstruction from the 2D x-ray projections.

As explained in the problem setup in Section 2.2, the motion of a target is modelled

by the rigid transformations, i.e., by rotations and translations. A transformed point

q ∈ R
3 is obtained from p ∈ R

3 as:

q = T 3D(a, p), or q̃ = R3DT 3Dp̃, (B.1.1)

where p̃, q̃ ∈ R
4 are the points p and q in homogeneous coordinates, T 3D : R6×R

3 →
R

3 is the 3D rigid transformation with a vector of parameters a = (tx, ty, tz, γx, γy, γz)
T

(three shifts and three rotation angles), and R3D and T 3D are the 4 × 4 matrices of

3D rotation and translation, respectively, defined as explained below.

According to the Euler’s rotation theorem, any rotation can be described using

three angles, which means that decomposition into three matrices can be performed,

each corresponding to a rotation around one of the axes. To represent rotation, we

use an x-y-z (or pitch-roll-yaw) convention:

R3D = R3D(γx, γy, γz) = Rx(γx)Ry(γy)Rz(γz), (B.1.2)

where γx, γy, γz are the three rotation angles, and Rx, Ry and Rz are the corresponding

rotational matrices. There is a difference in matrix definition compared to the x-y-z

convention, as angle γy has the opposite positive direction1 (see Figure 2.5), which

corresponds to the IEC gantry angle definition [5] used in the XVI. Hence, the sine

signs in Ry are switched, and the three rotational matrices are:

Rx(γx) =




1 0 0 0
0 cos γx sin γx 0
0 − sin γx cos γx 0
0 0 0 1


 , (B.1.3)

1In the x-y-z convention, all rotation angles increase counter-clockwise if viewed from the negative
direction of the corresponding axes.
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Ry(γy) =




cos γy 0 sin γy 0
0 1 0 0

− sin γy 0 cos γy 0
0 0 0 1


 , (B.1.4)

Rz(γz) =




cos γz sin γz 0 0
− sin γz cos γz 0 0

0 0 1 0
0 0 0 1


 , (B.1.5)

and the matrix of translation is defined as:

T 3D = T 3D(t) =




1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


 . (B.1.6)

B.2 2D Rigid Geometric Transformation in ŪV̄

and UV Systems

ŪV̄ and UV are 2D left-handed coordinate systems associated with the flat-panel

detector H̄ and isocentric plane H, respectively (see Figure 2.5). They are used for

the x-ray projections and fluoroscopic images, where the positions of the grid points

are either expressed in pixels (integers, ŪV̄) or millimeters (UV). An application of

the 2D rigid transformation T 2D : R3 × R
2 → R

2 to a point p ∈ R
2 results in:

q = T 2D(b, p), or q̃ = R2DT 2Dp̃, (B.2.1)

where b = (tu, tv, γ)
T is a vector of transformation parameters (two shifts and one

rotation angle), and 3 × 3 matrices of 2D rotation and translation R2D and T 2D are

defined as:

R2D = R2D(γ) =




cos γ − sin γ 0
sin γ cos γ 0
0 0 1


 , (B.2.2)

and

T 2D = T 2D(t) =




1 0 tu
0 1 tv
0 0 1


 . (B.2.3)
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B.3 Inverse Transformations

The inverse of the translation transformation is defined as:

(T (t))−1 = T (−t), (B.3.1)

and the inverse of the rotation is its transpose:

R−1 = RT . (B.3.2)

Note that if the matrix R is formed as a multiplication of several rotational matrices,

its transpose is obtained as:

RT = (R1 . . . Rk)
T = RT

k . . . RT
1 . (B.3.3)

In general, an inverse of a rigid geometric transformation represented as a

multiplication of elementary rotations and translations Ai is the multiplication of the

inverses of elementary transformations in the reverse order, i.e.,

(A1 . . . Ak)
−1 = A−1

k . . . A−1
1 . (B.3.4)

B.4 Transformation from ŪV̄ to UV

To estimate the motion of the fiducial markers from the fluoroscopic images, grid

points of which are positioned in the ŪV̄ coordinate system with units in pixels, it

is necessary to transform the coordinates to the UV system in order to express the

motion in millimeters to make it meaningful in terms of the XYZ coordinate system

used for patient positioning.

Due to a significant weight of the x-ray tube and detector and their distance

from the isocentre, the system is subject to a flex during gantry rotation [30, 92]. It

means that the point located at the isocentre is not necessarily imaged in the middle of

the flat-panel detector2 but may be displaced by a vector (uoff , voff)
T (see Figure B.1),

measured in millimeters. In addition, the detector can deliberately be shifted to

control the size of a reconstructed CBCT volume. Therefore, the system needs to be

calibrated. The details of the calibration process are explained by Jaffray et al. [92].

2The centre of our 1024× 1024 pixels detector is a middle point between the four central pixels.
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Ū

V̄

H̄

Ū
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Figure B.1: Piercing point (white) is a point of projection of the isocentre on the
flat-panel detector plane H̄ with psrc centre of projection. The displacement vector
(uoff , voff)

T measured in millimeters between the centre of the flat-panel detector (black
point) and the piercing point change while the LINAC rotates and can be known from
calibration.

In short, a ball bearing is placed at the isocentre as represented by the in-room laser

system. The bearing centroid, which is called a piercing point , is computed from

every CBCT projection image, acquired as the gantry performs its rotation. The

parameters (uj
off , v

j
off)

T and their corresponding gantry angles φj are stored to a file

called a calibration map. The motion of the system is characterized by hysteresis,

therefore, it matters, from which angle to start, and in what direction, clockwise or

counterclockwise, to go. In clinical practice, several calibration maps are created for

every LINAC, each for a different imaging protocol. Flex corrections on the order of

2 mm were reported for a similar system [92], with a slightly larger source to detector

distance χSDD = 1, 550 mm versus our setup of 1,536 mm.

Later, before the CBCT image reconstruction can be performed for a patient,

all 2D CBCT projection images are corrected by using the flex parameters computed

by interpolation from the corresponding calibration map.

However, with the clinical setup of our imaging system, the flex parameters

were not recorded for the fluoroscopic images. In fact, there is a possibility that

the fluoroscopic sequences need a separate calibration, as the gantry is not moving,

and thus the shift associated with the flex may be different comparing to the CBCT

projections acquired at the same angle. To overcome the situation where patient
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fluoroscopic sequences do not have corresponding calibration maps, we estimate the

flex parameters from the parameters of the CBCT projections3 acquired during the

same treatment session as the fluoroscopic sequence (daily setup verification CBCT).

Although it may not be extremely accurate, it still provides a reasonable approx-

imation, which is then further improved by the 2D-3D image registration between

the CBCT and the fluoroscopic image. The registration also accounts for the organ

motion between the CBCT and fluoroscopic image acquisitions.

The flat-panel detector of 1024×1024 points was used to acquire images for this

thesis. However, often the images can be downsampled to save space by selecting an

appropriate downsampling factor in the XVI software. Often, the CBCT projections

are acquired on a 512 × 512 grid. Let m̃ = (m̃u, m̃v)
T be the physical size of the

detector grid, m = (mu, mv)
T be the size of the image grid, and δ̃ = (δ̃u, δ̃v)

T be a

size of the pixel at the detector, in mm. Then, the size of the image pixel can be

computed as:

δpx = δ̃u
m̃u

mu
. (B.4.1)

In our case, the grids are regular and square. However, if the grid is irregular and/or

rectangular with mu 6= mv, other arrangements must be made.

The pixels are numbered starting from 1 for the convenience of implementation,

as this is the convention for the Matlab arrays4. The transformation from ŪV̄ to UV

involves rescaling and shift of the original pixel grid, and the measurement point

q ∈ R
2 in UV shown in Figure B.1 (right) can be computed from the image point

p ∈ R
2 in ŪV̄ coordinate system as follows:

q =
(
(p− m

2
− 0.5) δpx − (uoff , voff)

T
) χSAD

χSDD
, (B.4.2)

where χSAD the distance between the x-ray source and the isocentric plane (source to

axis distance), and χSDD is the distance between the x-ray source and the detector

plane.

The transformation of the fluoroscopic image grids from the ŪV̄ to the UV

coordinate system is performed in the beginning, before any further processing takes

3While the possibility to estimate the flex parameters from the CBCT calibration map is incor-
porated into Gryphon, we did not have calibration maps for all data sets. Therefore, in order to
standardize data processing in this thesis, we always estimate them from the CBCT projections.

4The modification of the numbering to start from 0, which may be more convenient in other
implementation systems, such as C/C++/OpenCV is straightforward.
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Table B.1: Geometric setup parameters.

Parameter Notation Value

Source to axis distance χSAD 1000 mm
Source to detector distance χSDD 1536 mm

Detector element size δ̃u, δ̃v 0.4× 0.4 mm2

Detector grid size m̃u, m̃v 1024× 1024 px2

Pixel size at the detector plane (ŪV̄) δpx
1024× 1024 projections 0.4× 0.4 mm2

512× 512 projections 0.8× 0.8 mm2

Pixel size at the isocentric plane (UV)
1024× 1024 projections ∼ 0.2604× 0.2604 mm2

512× 512 projections ∼ 0.5208× 0.5208 mm2

place, i.e., all models and algorithms presented in this thesis assume that the positions

of the grid points are in the UV coordinates, expressed in millimeters. The parameters

of our geometric setup are summarized in Table B.1.

B.5 Perspective Transformation from XYZ to UV

In order to compute a selective DRR that is used as the 2D template image in the

process of 2D-3D image registration between a 3D CBCT and a fluoroscopic image,

a geometric relationship between the XYZ and UV coordinate systems has to be

established. Figure 2.5 shows a point p0 ∈ R
3. It has to be projected onto the plane

H (with psrc being the centre of projection) to obtain piso ∈ R
3. Then, the coordinates

of piso have to be expressed in terms of the UV coordinate system as q ∈ R
2.

Figure 2.5 shows the system in the position in which the kV x-ray source

psrc is located on the positive part of the X axis, and the isocentric and flat-panel

detector planes, H and H̄, respectively, are parallel to the YZ plane, which we call

the initial position. However, our 2D fluoroscopic image sequences can be acquired

with a different configuration of the imaging system for which psrc and H̄ are rotated

around the Y axis onto a known angle φ. Expressing the point p0 in homogeneous

coordinates is followed by the rotation to the initial position:

p̃∗ = Ry(−φ) p̃0. (B.5.1)
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The distance from the isocentre to the x-ray source χSAD = ‖psrc‖ is known from the

technical setup (see Table B.1). The projected point is then computed as:

p̃iso =




0 0 0 0
0 1 0 0
0 0 1 0

− 1
χSAD

0 0 1


 p̃∗. (B.5.2)

Note that after the perspective transformation (B.5.2) the last homogeneous coordi-

nate of p̃iso is likely to be different from 1. It is not equal to 0 either, as the measured

object is assumed to be situated between the x-ray source and the detector, i.e., the X

coordinates of the points that model the object are less than χSAD. The homogeneous

coordinates are discarded by diving p̃iso by its last coordinate to obtain piso. Finally,

piso ∈ R
3 is expressed in terms of the UV coordinate system as point q ∈ R2:

q =

(
0 0 −1
0 −1 0

)
piso =

(
−pisoz
−pisoy

)
. (B.5.3)

For convenience of referencing and formulations, the operations performed in Equa-

tions (B.5.1) to (B.5.3) and accompanying explanations are combined into one oper-

ator P : R3 → R
2:

q = P(p). (B.5.4)

Sometimes, it is necessary to estimate the size of a projection of a 3D object,

such as the marker or the voxel, to the isocentric plane H. It is assumed that the

object is located in the XYZ system close to some point p0 ∈ R
3. Let us denote the

size of the object by δ3D, and the size of its measurement in the 2D projection image

by δ2D. Then, δ2D can be computed as:

δ2D = κ δ3D, (B.5.5)

where

κ =
χSAD

χSAD − p̃∗x
, (B.5.6)

and p̃∗ is defined in Equation (B.5.1).
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Appendix C

Detailed Formulations

C.1 Filter Based on Karhunen-Loève Transform

One of the methods considered in this thesis for temporal filtering (Section 4.1.1)

is based on Karhunen-Loève transform (KLT) [51, 227]. The detailed description of

the KLT can be found in [51] but we summarize it here for the convenience of the

reader. For a sequence of discrete images, S0, . . . , Sm−1, a matrix A is constructed

so that row i corresponds to vec(Si)
T , where vec(·) is the column stacking operator,

i.e., vec(Si) is created from image Si by stacking its columns one by one to form a

long vector. Let n denote the length of vec(Si)
T . The m × m temporal covariance

matrix computed as AAT /n has m eigenvalues λ1 ≥ . . . ≥ λm and a corresponding

eigenvector matrix E with eigenvectors as rows, which is called the KLT matrix.

The matrix B = EA contains eigenimages represented as rows and sorted in the

descending order in accordance with the eigenvalues. The filtered image matrix Ā is

then reconstructed from the first k ≤ m eigenimages as Ā = ET
k Bk, where Ek and

Bk are the matrices composed of the first k rows of E and B, respectively. Finally,

the filtered images are produced by reshaping the rows of Ā into the 2D arrays (S̄i),

i = 0, . . . , m − 1. Naturally, when k = m, the original images are reconstructed. A

discussion on the choice of k is provided in Section 4.1.3. From an implementation

perspective, the KLT method conceptually differs from the recursive and FIR filtering

by its ability to produce several filtered images simultaneously. Hence, in addition

to a choice of k, another design decision that should be made is whether the KLT

should be applied to the whole sequence or whether, and how, the latter should

be separated into intersecting or non-intersecting subsequences, and how the results
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should be combined.

C.2 Finite Impulse Response Filters

One of the approaches for the temporal filtering of the fluoroscopic sequences is the

use of finite impulse response (FIR) filters, discussed in Section 4.1.1. Let N = ℓ− 1,

where ℓ is a filter kernel size, as defined in Section 4.1.1. The CNR results presented in

Section 4.1.3 were produced by the application of the following filters to the “MM 23”

data set:

• Dolph-Chebyshev window is defined in terms of samples of its Fourier trans-

form [80, 1]:

W̃ (k) = (−1)k
cos

(
N cos−1

(
β cos

(
πk

N

)))

cosh
(
N cosh−1(β)

) , (C.2.1)

where 0 ≤ |k| ≤ N − 1, β = cosh
(
1
ℓ
cosh−1(10α)

)
. To obtain the correspond-

ing window time samples w̃n, a discrete Fourier transform is performed on the

samples W̃ (k) and then scaled to unity peak amplitude. Parameter α is the

logarithm of the ratio of main-lobe level to side-lobe level.

• Flat top is a summation of cosines [1]:

w̃n =
4∑

k=0

(−1)k ak cos
(
2k

πn

N

)
, (C.2.2)

where 0 ≤ n ≤ N , and the coefficient values are a0 = 0.21557895, a1 =

0.41663158, a2 = 0.277263158, a3 = 0.083578947, a4 = 0.006947368.

• Gaussian filter coefficients are computed as [80, 1]:

w̃n = exp

(
−1
2

(
n−N/2

σN/2

)2
)
. (C.2.3)

Parameter 0 < σ ≤ 0.5 is the Gaussian’s standard deviation.

• Hamming filter [80, 32, 1]:

w̃n = 0.54 + 0.46 cos

(
2π(n−N/2)

N

)
. (C.2.4)
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• Mean, or rectangular, filter [80, 32, 1]:

w̃n = 1. (C.2.5)

• Triangular filter for ℓ odd [1]:

w̃n =





2(n+ 1)

ℓ+ 1
, 0 ≤ n ≤ ℓ− 1

2
,

2(ℓ− n)

ℓ+ 1
,

ℓ + 1

2
≤ n ≤ ℓ− 1,

(C.2.6)

and for ℓ even:

w̃n =





2n+ 1

ℓ
, 0 ≤ n ≤ ℓ

2
− 1,

2(ℓ− n)− 1

ℓ
,

ℓ

2
≤ n ≤ ℓ− 1.

(C.2.7)

• Tukey window is a constructed window that can be described as a cosine lobe

of width (α/2)N convolved with a rectangle window of width (1−α/2)N [80, 1]:

w̃n =





β(n), 0 ≤ n ≤ (1− α)
N

2
,

1, (1− α)
N

2
≤ n ≤ (1 + α)

N

2
,

β(n), (1 + α)
N

2
≤ n ≤ N,

(C.2.8)

where

β(n) =
1

2

(
1 + cos

(
π
n− (1 + α)N/2

(1− α)N

))
(C.2.9)

and 0 ≤ α ≤ 1 influences the widths of the window’s central rectangular and

side cosine parts.

To find w̃n, we use standard Matlab implementations1 chebwin, flattopwin, gausswin,

hamming, rectwin, triang, tukeywin. After obtaining coefficients w̃n, they are nor-

malized:

wn =
w̃n

ℓ−1∑

n=0

w̃n

. (C.2.10)

To provide a visual example, the normalized window functions of all FIR filters de-

scribed above for ℓ = 201 are shown in Figure C.1.

1The implementation of all FIR filters presented in this section is from the Signal Processing
Toolbox of Matlab R2009b (The Mathworks, Inc., Natick, MA) including default values for the filter
parameters if any.
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Figure C.1: Normalized window functions for Dolph-Chebyshev, flat top, Gaussian,
Hamming, mean, triangular, and Tukey filters for ℓ = 201.

C.3 Raytracing for Marker Models

Cylindrical Marker Models

The following discussion provides formulations for a marker model, Mmod, used for

marker model selective DRR computation described in Section 5.1.1. The extension

to multiple marker models is straightforward. Let the points c3D, e
1, and e2 be the

centre and endpoints of Mmod, respectively, found as explained in Section 3.4. Before

the 2D template image can be generated, the cylinder’s transformation has to be

found, i.e., the position and orientation of Mmod has to be expressed as the 3D rigid

transformation that, when applied to a cylindrical model centered at the XYZ origin

whose axis of symmetry is aligned with the Z axis, gives Mmod. This transformation

can be computed from the points c3D, e
1, and e2 as explained below.

In the following, we operate on 3D geometrical objects, however, all points are

expressed in homogeneous coordinates (explained in Appendix B), i.e., the points are

in R
4 and the transformations are the matrices in R

4×4. The cylindrical surface of
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radius r aligned with the Z axis is defined as a set of points s, such that:

sTQs = 0, (C.3.1)

where Q is given as:

Q =




1
r2

0 0 0
0 1

r2
0 0

0 0 0 0
0 0 0 −1


 . (C.3.2)

In order to bring the cylindrical surface to a given position and orientation (to describe

the positions and orientations of the markers), the matrix Q in Equation (C.3.1) has

to be substituted by:

Acyl = F TQF, (C.3.3)

where F is the 3D rigid geometric transformation computed as follows. The centre

c3D and the endpoints e1 and e2 are known from the computation of the 3D marker

model discussed in Section 3.4. Then, F has to move the point c3D to the origin of the

XYZ coordinate system, and points e1 and e2 to (0, 0, h/2)T and (0, 0,−h/2)T , where
h is the length of the fiducial marker. Such positioning corresponds to a cylinder

solid whose axis is aligned with the Z axis, and whose central point coincides with the

origin of the XYZ system.

The transformation F consists of a translation and rotations. Since a cylinder

is symmetric around its axis, only two rotation angles are required. Thus, we define

the transformation matrix as:

F = Rx(−γx)Rz(−γz) T 3D(−c3D). (C.3.4)

Appendix B.1 provides formulations for the rotational matrices Rx, Rz and translation

T 3D. It does not matter which two angles out of γx, γy and γz are selected, however,

we prefer to work with γx and γz as their positive directions in the IEC gantry angle

definition [5] used in this thesis coincide with the widely accepted x-y-z convention

(more details can be found in Appendix B.1).

Figure C.2 provides an illustration for computing the transformations for the

cylindrical marker model. Let psh = T 3D(−c3D) e1. If pshx = pshy = 0, then the marker

model is parallel to the Z axis, and F = T 3D(−c3D). If not, we first rotate psh around

the Z axis until prot = Rz(−γz) psh ∈ YZ. The angle γz is the angle between the
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Figure C.2: Transformations for the cylindrical marker model.

projection pproj of the point psh onto the XY plane and the positive direction of the

Y axis, pproj = (pshx , pshy , 0, 1)
T . Then,

sin γz =
pshx√

(pshx )2 + (pshy )2
, cos γz =

pshy√
(pshx )2 + (pshy )2

. (C.3.5)

Next, we rotate prot around X axis until p∗ = Rx(−γx) prot ∈ Z, where

sin γx =
proty

h/2
, cos γx =

protz

h/2
. (C.3.6)

After the sines and cosines of γx and γz are found, the matrices Rx and Rz, and then

F and Acyl can be computed according to Equations (B.1.3), (B.1.5), (C.3.4), and

(C.3.3), respectively. The method of finding Acyl is summarized in Algorithm D.11.

Finally, we define the cylindrical marker model as a set of points s such that:

Mmod =





sTAcyl s ≤ 0,
(s− e1)T (e1 − c3D) ≤ 0,
(s− e2)T (e2 − c3D) ≤ 0.

(C.3.7)

The first inequality in (C.3.7) is an infinite cylinder, the second and third are the

3D half-spaces created by the parallel planes perpendicular to the cylinder’s axis and

going through the endpoints e1 and e2, respectively (see Figure C.3). Both half-spaces

include the point c3D.
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Figure C.3: Raytracing for the cylindrical marker model.

As explained in Section 5.1.1 and shown in Figure C.3, MM DRR generation

requires computing the distance that the ray, that goes from the x-ray source, psrc,

to the point on the detector, piso, travels inside the marker model Mmod. This can

be computed by finding the distance between the points of intersection between the

ray and Mmod by analytically solving the system of equations describing the marker

model (C.3.7) and the ray. In general, if the ray does not belong to any of the planes

or the cylinder surface, four points of intersection are possible: two with the infinite

cylinder surface and one with each of the planes. For the example in Figure C.3, the

four points are:

• sa: with a continuation of the cylinder;

• sb: with the right plane;

• sc: with the cylinder;

• sd: with a continuation of the left plane.

Only two of these points, namely sb and sc, are the actual points of intersection of

the ray with the marker model. Therefore, for each found point of intersection, it is

necessary to verify whether the given point belongs to the marker model described

by (C.3.7). In fact, the substitution of each intersection point in place of s in (C.3.7)

should turn the left-hand-sides of one or more inequalities into a value that is very

close to 0 and the rest to the values less than 0. For example, the point sb will turn

the left-hand-sides of the first and second inequalities into < 0 and the third into

≈ 0. The substitution of the point sc will result in ≈ 0 for the first inequality and

< 0 for the second and third. To have a unified testing procedure for all the cases,
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Figure C.4: Raytracing for the spherical marker model.

and to allow for some computational inaccuracy, we require all left-hand-sides of the

inequalities in (C.3.7) to be smaller or equal to 10−8 instead of 0. This number was

found empirically.

For efficiency, the computation described above is only performed for the points

on the plane H (centres of the pixels of the 2D template image) that have the potential

to contain the “projection” of the 3D marker. The implementation details are provided

in Appendix D.3, and summarized in Algorithms D.10 and D.11.

Spherical Marker Models

Let the point c3D be the centre of the marker model Mmod, and let r be its radius

(see Figure C.4). After switching to homogeneous coordinates, the spherical marker

model can be defined as a set of points s such that:

Mmod = {s | sTAsphs ≤ 0}, (C.3.8)

where

Asph = F TQF. (C.3.9)

The matrix Q describes a spherical shape of radius r:

Q =




1
r2

0 0 0
0 1

r2
0 0

0 0 1
r2

0
0 0 0 −1


 , (C.3.10)
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Figure C.5: Spherical model.
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Figure C.6: Template image.

and the matrix F represents a rigid geometric transformation that moves the point

c3D to the origin of the XYZ coordinate system, i.e., the translation:

F = T 3D(−c3D), (C.3.11)

where T 3D is defined in Appendix B.1.

Similarly to the cylindrical model, the intensity at a point piso on the isocentric

plane H is computed as the distance between the points of intersection between the

marker model (C.3.8) and the ray from psrc to piso, namely the points sa and sb shown

in Figure C.4. This computation is only performed for the rays that have a potential

to intersect the marker model.

The implementation details are provided in Appendix D.3, and summarized

in Algorithm D.12. If required, the amplification of the marker model size can be

performed preceding image generation analogically to the method described for the

cylindrical marker models in Section 5.1.1.

Figure C.5 demonstrates a spherical marker model of radius r = 2.5, located

at c3D = (2, 1, 0)T , and Figure C.6 its integral projection on the H plane. Centre of

projection in Figure C.5 is marked by a star. It coincides with the origin of the XYZ

coordinate system.
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C.4 Distance Measures

This sections provides a review of commonly used distance measure functions used in

image registration. To remind, the distance measure D is a function that quantifies

the difference between two images by a real number. Let A, B : Γ2 ∩ ΩROI → R be

the two discrete images to register, where Γ2 ⊂ R
2 is the pixel grid, and ΩROI is a

registration ROI.

Intensity difference

One of the measures often used in single-modality registration is the sum of squared

intensity differences (SSD):

DSSD(A, B) =

N∑

i=1

(
A[p̌i]− B[p̌i]

)2
, (C.4.1)

where N is a number of grid points p̌i in ΩROI. Examples of the SSD application

include 2D-3D registration between digital subtraction angiographic (DSA) and mag-

netic resonance angiographic (MRA) images [41], the preliminary step of 2D-3D reg-

istration of the x-ray and CT images in cranial radiosurgery [64], and serial MR

registration [76].

The SSD is very sensitive to a small number of pixels with significantly different

intensities, e.g., in the case when a contrast material is injected to the patient between

the acquisition of the images A and B [83]. This can be partially reduced by using the

sum of absolute differences (SAD) instead of the SSD:

DSAD(A, B) =

N∑

i=1

∣∣A[p̌i]− B[p̌i]
∣∣ . (C.4.2)

The SAD was reported to be used for 3D registration of SPECT and PET images [52],

and 3D registration of PET images [86].

In the conventional definition, bothDSSD andDSAD are divided by N to account

for possible change in the overlap between the images in the process of registration [83].

Since our registration problems are solved over a fixed ROI, and the division by

the number of pixels may result in very small distance function values, which may

complicate optimization (see Section 5.2), we drop the scaling.
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Correlation

The SSD and SAD methods deal directly with intensities and hence they need a

direct correspondence of intensities in A and B for meaningful registration. Otherwise,

the image intensities have to be modified before the registration. In contrast, the

normalized correlation coefficient (NCC) only assumes a linear relationship between

the intensity values in the images, and thus may be more suitable for a wider range

of applications:

DNNCC(A, B) = −

N∑

i=1

(
A[p̌i]− µA

) (
B[p̌i]− µB

)

√√√√
N∑

i=1

(A[p̌i]− µA)
2

N∑

i=1

(B[p̌i]− µB)
2

, (C.4.3)

where µA and µB are the mean intensity values of A and B, respectively. The for-

mulation (C.4.3) is the negation of the conventional NCC definition given in, e.g.,

Hill et al. [83], as our image registration task (5.0.1) is a minimization problem, and

in the literature it is customary to formulate it as the maximization of the NCC. The

NCC was successfully used in registration of CBCT to fluoroscopic images based on

the measurements of the long coil markers for prostate motion evaluation [7], esti-

mation of 3D orientation of the CT volume of a vertebra from its 2D fluoroscopic

images [26], patient C-arm pose estimation by registration of 2D C-arm images to 3D

ultrasound [54], and detection of the markers in 2D kV or MV images for tracking

applications by maximizing the correlation with the template image [43, 59, 169, 174].

Information Theoretic Techniques

The distance measures derived from the concepts of information theory rely on the

idea that the amount of information in the combined image should reduce when the

images are aligned [150, 83, 211]. In brief, the measure of information is the Shannon-

Wiener entropy that can be defined as H = −∑N
i=1 hi log hi, where H is the average

information supplied by N symbols of the discrete finite alphabet whose probabilities

of occurrence are h1, . . . , hN [83]. Entropy H is maximized when all symbols have equal

probability of occuring, i.e., hi = 1/N , and minimized (equal to 0) if the probability

of one symbol occurring is 1, and all the others is 0. In the application to image
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registration, the lower the entropy of the combined image, the better is the alignment

between the images.

Some of the popular distance measures based on the entropy are explained

below. The marginal entropy of the image A is defined as [83]:

H(A) = −
∑

a

hA(a) log hA(a), (C.4.4)

where hA(a) is the probability that the points (pixels) in image A have the intensity

value a. The value H(A) can be calculated from the (normalized version of the) image

intensity histogram, in which the probabilities hA(a1), . . . , hA(ak) are the histogram

entries. The value H(B) is computed by analogy. The joint entropy is defined as [83]:

H(A, B) = −
∑

a

∑

b

hA,B(a, b) log hA,B(a, b), (C.4.5)

where hA,B(a, b) correspond to the probability of pairs of image values a and b occurring

in the corresponding points of A and B. Modersitzki [150] provides a detailed discussion

on estimating the joint density hA,B(a, b).

One of the common registration techniques is the maximization of the mutual

information (MI), where the best alignment of the images is considered when a low

joint entropy H(A, B) and high image entropies H(A) and H(B) are achieved. The

distance measure based on the MI [83] is defined as:

DMI(A, B) = − (H(A) + H(B)−H(A, B)) , (C.4.6)

where the negation is due to minimization of the distance measure in (5.0.1). The

MI was independently proposed by Collignon et al. [46] and Viola [225] for multi-

modality medical image registration. It was successfully used in such applications as

determination of the pose of an object in 3D from its x-ray projections [13, 225], 2D-2D

registration between the x-ray projections and the DRRs generated from the CT data

sets [29], 2D-3D registration between x-ray/fluoroscopic and CT images [102, 249],

and CT to MRI registration of the brain images [135].

The formulation (C.4.6) has been shown to be sensitive to changes in the

amount of overlap between the reference and template images. In particular, changes

in overlap of very low-intensity regions, such as air around the patient, can dispropor-

tionately contribute to the MI value [211, 70, 83]. Hance, the normalized MI (NMI)
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was introduced [211]. The distance measure based on NMI is defined as:

DNMI(A, B) = −
H(A) + H(B)

H(A, B)
, (C.4.7)

where the negation is due to minimization in (5.0.1). The examples of using NMI

include alignment of MR, CT and PET images of the brain [211, 118], and registration

of CT DRRs to x-ray or fluoroscopic images of the phantom and chest [42] or the

liver [27].

Pattern Intensity

To align the fluoroscopic images obtained during surgical interventions to the pre-

treatment CT data set, a new distance measure called Pattern Intensity (PI) was

proposed by Weese et al. [231] and Penney et al. [172]. It is based on the idea that if

the DRR generated from the object of interest, such as a segmented vertebra, is sub-

tracted from the x-ray image, the vertebra structures will diminish in the difference

image when a proper alignment is achieved. The PI considers that a pixel belongs

to a structure if it has a significantly different intensity value from the neighbouring

pixels. The difference image is defined as:

C = A− κB, (C.4.8)

where κ is an intensity scaling factor. For every pixel p̌, its intensity is compared

to the intensities of the points ši, i = 1, 2, . . ., in its neighbourhood, such that the

distance between p̌ and ši is less or equal to r. In [231] and [172], r = 3 pixels is

suggested. The distance measure based on the PI is defined as:

DPI(A, B) = −
∑

p̌

‖p̌−ši‖≤r∑

ši

α2

α2 + (C[p̌]− C[ši])2
, (C.4.9)

where α is the sensitivity of the PI to image structures, which should be selected

so that it is larger than the standard deviation of the noise in the x-ray/fluoroscopic

images but smaller than the contrast of features of interest. As such, it depends on the

intensity range of the image. For efficient computation and meaningful registration,

it is suggested that the DRR is only generated from the segmented points, and the PI

is only computed for non-zero DRR points and their respective neighbourhoods [231].
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The PI was used for registration of fluoroscopic and CT spinal images [231, 172], and

2D-3D registration of CT and simulated x-ray images of the tibia, pelvis and skull

base [29]. It is claimed that the use of the PI results in stable and accurate registration

even in the presence of interventional instruments in one of the images and soft-tissue

structures that can reduce the CNR significantly [172].

In the experiment described in Section 5.2, we only compute DPI for non-

zero DRR points and their neighbours, and use the empirically selected parameters

r = 3 pixels and α = 0.1.

Gradient Difference

The gradient difference method operates on image gradients computed along the co-

ordinate directions. To build insight, let us assume that the images are continuous.

In this case, the gradients of the difference image are defined as [172]:

Hj =
∂A

∂pj
− κ

∂B

∂pj
, (C.4.10)

where j = {u, v}, and κ is an intensity scaling factor. In practice, finite differences

method can be used to approximate gradients. The distance measure based on the

gradient difference (GD) [172] is computed as:

DGD(A, B) = −
∑

j

∑

p̌

θj
θj + (Hj [p̌])2

, (C.4.11)

where θj are the sensitivity constants. In [172], it is suggested that θj are computed

as the variances of the respective gradient images Hj . Similar to the PI, the GD is

reported to produce stable and accurate registration results even in the presence of

soft tissues and intervention instruments in one of the images [172, 64].
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Appendix D

Implementation Details and
Algorithm Listings

D.1 3D Marker Segmentation and Modelling

Algorithm D.1 summarizes methods described in Sections 3.1 and 3.2, i.e., thresh-

olding 〈〈 S1 〉〉 , clustering 〈〈 S2 〉〉 and candidate marker set selection 〈〈 S3 〉〉 of the marker

segmentation procedure. For better understanding of the approach, we provide details

on how the clusters are formed in step 〈〈 S2 〉〉 by the method of hierarchical clustering,

though in the Gryphon Matlab function clusterdata [1] is used in the following for-

mat:

T = clusterdata((p̌i), ’cutoff’, η, ’criterion’, ’distance’);

where p̌i ∈ Θ and (p̌i) is a |Θ| × 3 array of point coordinates. Resulting vector T of

size |Θ| contains cluster numbers for the points.

Next, Algorithm D.2 provides implementation details for the step 〈〈 S4 〉〉 , the
selection of the marker sets among the candidates based on their proximity to the

LINAC’s isocentre, point pprox.

Finally, Algorithm D.3 gives details for finding the orientations of the marker

models 〈〈 S5 〉〉 by the use of the weighted principal component analysis (PCA). First,

we shift and weight the points of the marker sets, and then use the Matlab function

princomp [1]. Let X be a matrix of size m× 3 composed of the weighted points wip
i,

where m is a number of points in a marker set. Then, the first principal direction,

v1,k, is computed as:

coeff = princomp(X); v1k = coeff(:, 1);
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Algorithm D.1: Segmentation of the candidate marker sets and estimation of
the marker positions in the 3D CBCT image.

Input:
ΩVOI ⊂ Γ3 – volume of interest,
VVOI – VOI in CBCT image,
θ – segmentation intensity threshold,
η – minimal distance between the marker sets,
ǫℓ and ǫu – lower and upper marker set size margins,
δm – marker size,
[ξℓ, ξu] = [0.1, 1] – intensity rescaling range, Sect. 3.2

S1 Thresholding: Θ = {p̌i ∈ ΩVOI | VVOI[p̌
i] ≥ θ, i = 1, . . . , |ΩVOI|}

S2 Clustering:
create initial clusters M̂1, . . . , M̂q, q ← |Θ| (one point in each cluster)

compute all dst(M̂k, M̂j), k = 1, . . . , q − 1, j = k + 1, . . . , q

υ ← min{dst(M̂k, M̂j)}
while υ < η and q > 1 do

select M̂k1 and M̂k2 such that dst(M̂k1 , M̂k2) = υ
M̂k ← M̂k1 ∪ M̂k2

discard M̂k1 , M̂k2 , dst(M̂k1 , ·), and dst(M̂k2 , ·)
q ← q − 1
compute dst(M̂k, M̂ℓ), ℓ = 1, . . . , q, ℓ 6= k
find υ ← min{dst(M̂k, M̂ℓ)}

end

S3 Candidate marker set selection:
for k ← 1 to q do

if diam(M̂k) < δm − ǫℓ or diam(M̂k) > δm + ǫu then

discard M̂k

else
compute weights wi by rescaling (VVOI)i to [ξℓ, ξu] range
for points p̌i ∈ M̂k

compute ck3D ← mean(M̂k, w)
end

end

Output:
M̂k, k = 1 . . . , n̂ ≤ q – candidate marker sets in 3D,
ck3D – candidate marker set positions in the 3D CBCT, centres of M̂k
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Algorithm D.2: Correction for the candidate marker set selection procedure
based on the estimated marker positions.

Input:
M̂k, k = 1, . . . , n̂ – candidate marker sets,
ck3D ∈ R

3 – positions of the candidate marker sets,
pprox ∈ R

3 – target proximity point,
n – number of the fiducial markers

S4 Correction of the candidate marker set selection:

if n̂ > n then
for k ← 1 to n̂ do

dk = ‖ck3D − pprox‖
end

Perform ascending sorting for d: dj1 ≤ . . . ≤ djn̂

for k ← 1 to n do

Mk ← M̂jk

end

else
for k ← 1 to n̂ do

Mk ← M̂k

end

n← n̂
end

Output: M1, . . . ,Mn – marker sets in 3D
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Algorithm D.3: Estimation of orientations for the cylindrical marker models
from the marker sets using a weighted PCA.

Input:
Mk, k = 1, . . . , n – marker sets,
ck3D – centres of the marker sets,
VVOI – VOI in CBCT image,
[ξℓ, ξu] = [0.1, 1] – intensity rescaling range, Sect. 3.4
h – height of the cylindrical marker

S5 for k ← 1 to n do

Weights:
compute weights wi by rescaling VVOI[p̌

i] to [ξℓ, ξu] range
for points p̌i ∈ Mk

Directions:
∀p̌i ∈ Mk: p̌

i ← p̌i − ck3D
perform PCA on set of weighted points {wip̌

i}, find first principal
direction v1,k

Cylinder endpoints:
e1,k ← ck3D + v1,kh/2
e2,k ← ck3D − v1,kh/2

end

Output: e1,k, e2,k, k = 1, . . . , n – endpoints of the cylindrical marker models
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D.2 Temporal and Marker Enhancement Filtering

In our implementation, in addition to marker localization and tracking, the same

image opening procedure is used for other tasks, e.g., image preview. To allow the

preview of the temporally filtered images, for example, in order to visually assess the

improvement in quality, temporal filtering is built into the image opening procedure,

and is applied to the whole image. Hence, the ROI is applied after temporal filtering

but before the marker enhancement.

Algorithm D.4 gives details of implementation of temporal filtering 〈〈 F1 〉〉 , de-
scribed in Section 4.1. It was concluded that the Dolph-Chebyshev is the most suitable

among considered existing filters for application to the fluoroscopic sequences that re-

quire reduction of the noise, and for which marker motion is expected. A Matlab

function chebwin [1] is used to compute the filter coefficients:

w ← chebwin(ℓ); w ← w/sum(w̃);

Algorithm D.5 provides the details of the computation of the circular marker

and rectangular ROIs, Υk and ΩROI, respectively, that were discussed in Section 4.3

and are applied to the image at step 〈〈 F2 〉〉 . The ROIs themselves are computed

in the localization (step 〈〈 L1 〉〉 ) and tracking (step 〈〈T2 〉〉 ) procedures. The ROI

computation is based on the estimation of the maximal possible 2D displacement, ̺k,

k = 1, . . . , n, from the predicted marker positions, ĉk2D, that can either be computed as

projections of the 3D positions, P(ck3D) in 2D-3D image registration of the localization

procedure, or from the preceding images of the sequence in 2D-2D registration of

the tracking. The values ̺k are computed from the geometric transformation, T 2D

or T 3D, and the assumptions on maximal magnitude of marker motion, which are

expressed as the bounds on geometric transformation parameters, |aj| ≤ amax
j . The

optimization problem of finding ̺k is solved using SQP implemented as the active

set method in Matlab function fmincon [1]. Should the optimization fail or return

an unreasonably small value for ̺k caused by sticking in the local optimum, the ̺k

is assigned the maximal displacement computed from the upper bounds on the shift

parameters tmax
u , tmax

v or tmax
x , tmax

y , tmax
z that constitute a part of the amax vector.

Finally, step 〈〈 F3 〉〉 corresponds to the application of the novel marker enhance-

ment filter (MEF), described in Section 4.4, to the ROI in the temporally filtered
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image1 S̄ in order to produce a MEF-image R, that is further used in registration

of either localization or tracking procedure. In R, the markers are amplified while

anatomical features, background, and the noise are suppressed. Here, we describe the

full MEF used in localization. The reduced variation of the MEF, the magnitude-

only filter (MOF) used in tracking, can be straightforwardly deduced by selecting

appropriate steps from the MEF as described in Section 4.4.5.

As explained in Section 4.4.1, the MEF starts with construction of a scale-space

representation L of S̄, which involves the convolution with the Gaussian of scale σ

(Section 4.2.2). The magnitude-only and magnitude-and-ratio images, Ym and Ymr,

respectively, are built using the eigenvalues λ1(p, σ) and λ2(p, σ) of the 2× 2 Hessian

matrices H(p, σ), where the Hessians are constructed from the second derivatives of

L, Lij(p, σ) =
∂2

∂pi∂pj
L(p, σ), i, j ∈ {u, v}:

H(p, σ) =

[
Luu(p, σ) Luv(p, σ)
Luv(p, σ) Lvv(p, σ)

]
. (D.2.1)

As described in Section 4.2.2, Lij = Lij(p, σ) can be computed by convolution of the

image with the second derivatives of the Gaussian:

Lij = S̄ ∗
∂2

∂pi∂pj
G, (D.2.2)

where the 2D Gaussian G = G(p, σ) at the scale σ is defined as:

G(p, σ) = 1

2πσ2
exp

(
−‖p‖

2

2σ2

)
, (D.2.3)

where p = (pu, pv)
T . The second derivatives of the Gaussian are computed as:

∂2

∂p2i
G(p, σ) = p2i − σ2

2πσ6
exp

(
−‖p‖

2

2σ2

)
, (D.2.4)

∂2

∂pi∂pj
G(p, σ) = pipj

2πσ6
exp

(
−‖p‖

2

2σ2

)
, (D.2.5)

where i, j ∈ {u, v} and i 6= j.

Although the Gaussian second derivatives are non-zero for all finite p, they

become small fast. In addition, practical implementation requires them to be dis-

cretized and truncated. Hence, they have to be expressed as (2g + 1) × (2g + 1)

1Here, we refer to one of the images of the sequence, S̄i, but the index i is dropped to simplify
the notation.
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size matrices Guu, Guv and Gvv (see Figure D.1). The matrix elements are com-

puted as Gij [q̌] = ∂2

∂q̌i∂q̌j
G(q̌, σ), i, j = {u, v}, where q̌ ∈ Φ ⊂ R

2, and Φ is a

(2g + 1) × (2g + 1) grid with the same spacing δpx between the points as in Γ2,

defined as Φ = {(kδpx, mδpx)
T | k,m = −g, . . . , g ∈ Z}.

Discretization of the Gaussians introduces artifacts in the images resulting

from convolution [215]. The larger the g value, the less artifacts are present and the

more noise is suppressed, though larger matrices increase convolution time. Based

on empirical observations with our data sets, we found that for σ = 0.7 mm a good

noise suppression with the minimal computational effort can be reached by selecting

g = 13 px, i.e., Guu, Guv, and Gvv are the 27× 27 element matrices.

The discrete second derivatives of the scale-space representation Lij are ob-

tained by a 2D convolution between Gij and the ROI in the image S̄ (S̄ROI) defined

on Γ2 ∩ ΩROI. One of the ways to have Lij of the same size as S̄ROI is to extend S̄ROI

by the margins of g pixels padded with zeros before the convolution. Instead, we fill

the margins with the intensity values from S̄, i.e., the image before the convolution,

denoted S̄FL, is formed as a ROI within S̄ whose grid points are in Γ2 ∩ ΩFL rather

than Γ2∩ΩROI. The ΩFL region is computed from ΩROI by extending ΩROI by g pixels

in four directions.

The convolution at step 〈〈 F3A 〉〉 between SFL and Guu, Guv, and Gvv is performed

by using Matlab function conv2 [1]:

Lij = conv2(S̄FL, Gij, ’valid’);

where i, j = {u, v}. The Hessian eigenvalues are computed as:

[·, D] ← eig(H);

where D is a matrix with eigenvalues λ1 and λ2 on the diagonal, and zeroes elsewhere.

After the images Ym and Ymr are computed at steps 〈〈 F3B 〉〉 and 〈〈 F3C 〉〉 , the dilation

〈〈 F3D 〉〉 is performed by first constructing a structuring element E:

E = strel(’disk’, [0.5h/δpx], 0);

where [0.5h/δpx] is a radius of the circular structuring element, computed as a half-

length of the fiducial marker in pixels, rounded to the closest integer. Then, the

dilation of the contrast-enhanced magnitude-and-ratio image C(Ymr) is performed by:

Yd = imdilate(C(Ymr), E);

Clustering step 〈〈 F3E 〉〉 uses a hierarchical clustering technique to combine high-

intensity points Θ = {p̌ | Yd[p̌] ≥ ϑ}, into connected clusters. It is invoked as:
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Figure D.1: 27 × 27 matrices of discrete and truncated Gaussian second derivatives
Guu (left), Guv (centre), and Gvv (right) for σ = 0.7 mm.

T = clusterdata((p̌), ’cutoff’, 1.5 δpx, ’criterion’, ’distance’);

where (p̌) denotes an array of point coordinates from Θ. The resulting vector T

contains cluster numbers for the points. Then, all points of each cluster are assigned

the maximal intensity value found within the cluster, by which the mask M is formed

from Yd. It is applied to image Ym by elementwise multiplication of the arrays M

and Ym at step 〈〈 F3F 〉〉 . Finally, image R is computed by application of the contrast

enhancement function at step 〈〈CE2 〉〉 .
The MEF implementation is summarized in Algorithm D.6. The details on

scale-space representation and computation of the Hessian eigenvalues are given in

Algorithm D.7, marker-based contrast enhancement function in Algorithm D.8, and

creation of the mask by dilation and flattening in Algorithm D.9.
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Algorithm D.4: Temporal filtering.

Input:
S0, . . . , Sm−1 – unfiltered fluoroscopic images,
ℓ – filter kernel size

F1 Filter coefficients:
compute ℓ Dolph-Chebyshev coefficients: w

normalize: w ← w/

ℓ−1∑

n=0

wn

Temporal filtering of images:

S̄i =

ℓ−1∑

n=0

wn Si+n, 0 ≤ i ≤ m− ℓ

Output: S̄0, . . . , S̄m−ℓ – filtered fluoroscopic images
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Algorithm D.5: Computation of regions of interest.

Input:
ck3D, k = 1, . . . , n – marker set/model centres in 3D,
T – transformation used in 2D-3D registration,
amax ∈ R

m – bounds on the transformation parameters a, where m
is a number of degrees of freedom,
P – 3D to 2D projection operator defined in Eq. (B.5.4),
κ – 3D to 2D scaling factor for the size of the object that is located
in the proximity to the point ck3D ∈ R

3 defined in Eq. (B.5.5),
h – marker size

L1/T2 Maximal 2D displacement:
switch T do for k ← 1 to n

case T 2D, shift only, amax = (tmax
u , tmax

v )T

̺k ← ‖amax‖
case T 2D, shift and rotation, amax = (tmax

u , tmax
v , γmax)T

̺k ← max
a
‖P(ck3D)− T 2D(a,P(ck3D))‖,

s.t. − amax
j ≤ aj ≤ amax

j

̺k ← max{̺k, ‖(tmax
u , tmax

v )T‖} % Safeguard

case T 3D, shift only, amax = (tmax
x , tmax

y , tmax
z )T

̺k ← κ ‖amax‖
case T 3D, shift and rotation, a = (tx, ty, tz, γx, γy, γz)

T

̺3Dk ← max
a
‖ck3D − T 3D(a, ck3D)‖,

s.t. − amax
j ≤ aj ≤ amax

j

̺k ← κ ̺3Dk
̺k ← max{̺k, ‖(tmax

x , tmax
y , tmax

z )T‖} % Safeguard

end

Extend by half marker size: for k ← 1 to n do ̺k ← ̺k + 0.5κh

Circular marker ROIs:
for k ← 1 to n do Υk =

{
q ∈ R

2 | ‖P(ck3D)− q‖ ≤ ̺k
}

Rectangular registration ROI:

ΩROI =
{
q ∈ R

2 | min {∪nk=1Υk}u,v ≤ qu,v ≤ max {∪nk=1Υk}u,v
}

Output: Υk and ΩROI – circular marker and rectangular ROIs
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Algorithm D.6: Marker enhancement filter (MEF).

Input:
γ – magnitude parameter,
β = 0.25 – ratio parameter

Note: All discrete images are processed for p̌ ∈ Γ2 ∩ ΩROI

F3A Hessian eigenvalues of scale-space representation:
λ1,2[p̌], Alg. D.7

F3B Magnitude-only image, Eqs. (4.2.25) and (4.4.34):
Xm[p̌] =

√
λ1[p̌]2 + λ2[p̌]2

γ = 0.5max{Xm[p̌]}
if p̌ 6∈ Γ2 ∩Υk, k = 1, . . . , n then

Ym[p̌] = 0
else

Ym[p̌] =

{
1− exp

(
−Xm[p̌]2

2γ2

)
, if λ1[p̌] < 0 and λ2[p̌] < 0,

0, otherwise

end

P3C Magnitude-and-ratio image, Eqs. (4.2.26) and (4.4.33):
Xr[p̌] = λ1[p̌]/λ2[p̌]

Ymr[p̌] =

{
Ym[p̌] ·

(
1− exp

(
−Xr[p̌]2

2β2

))
, if λ1[p̌] < 0 and λ2[p̌] < 0,

0, otherwise

CE1 Contrast enhancement:
C(Ymr), Alg. D.8

F3D−3E Mask computation:
mask M is produced from C(Ymr) by dilation and flattening, Alg. D.9

F3F Mask application to the magnitude-only image:
Y[p̌] = M[p̌] · Ym[p̌]

CE2 Final contrast enhancement:
R = C(Y), Alg. D.8

Output: R – discrete MEF-image
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Algorithm D.7: Scale-space representation and computation of the Hessian
eigenvalues.

Input:
S̄ – temporally filtered discrete 2D image,
ΩROI – rectangular ROI,
σ – scale of the Gaussian,
g = 13 px – Gaussian half-size,
δpx – pixel size

F3A Gaussian grid:

create grid Φ = {(kδpx, mδpx)
T | k,m = −g, . . . , g ∈ Z}

Gaussian derivatives:

Gii[q̌] =
∂2

∂q̌2i
G(q̌, σ) = q̌2i − σ2

2πσ6
exp

(
−‖q̌‖

2

2σ2

)

Gij [q̌] =
∂2

∂q̌i∂q̌j
G(q̌, σ) = q̌iq̌j

2πσ6
exp

(
−‖q̌‖

2

2σ2

)

where q̌ = (q̌u, q̌v)
T ∈ Φ, i, j ∈ {u, v} and i 6= j

Filtering ROI:
ΩFL = {p ∈ R

2 | min(ΩROI)u,v − gδpx ≤ pu,v ≤ max(ΩROI)u,v + gδpx}
SFL[p̌] = S̄[p̌], where p̌ ∈ Γ2 ∩ ΩFL

Derivatives of scale-space representation:
Lij = convolve SFL and Gij , cut to Γ2 ∩ ΩROI

Hessian matrices: H [p̌] =

[
Luu[p̌] Luv[p̌]
Luv[p̌] Lvv[p̌]

]

Eigenvalues of the Hessians:
for p̌ ∈ Γ2 ∩ ΩROI do

find D, diagonal matrix with H [p̌] eigenvalues

if |D11| ≤ |D22| then
λ1[p̌] = D11, λ2[p̌] = D22

else
λ1[p̌] = D22, λ2[p̌] = D11

end

end

Output: λ1,2[p̌], p̌ ∈ Γ2 ∩ ΩROI – Hessian eigenvalues of scale-space
representation for all points of the image
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Algorithm D.8: Marker-based smooth contrast enhancement.

Input:
Y – discrete image,
n – number of fiducial markers,
r, h – radius and length of the marker,
δpx – pixel size,
τ = 0.5 – minimal intensity of the candidate marker points,
s = 3 – sharpness of distinction between marker and non-marker
points

CE Marker-based threshold:
number of marker points in the image: m = n⌈2rh/δ2px⌉
sort Y[p̌] in a descending order: y1 ≥ y2 ≥ . . .
ϑ = ym

Contrast enhancement, Eqs. (4.4.37) and (4.4.40):

Z(Y[p̌]) = ϑs logϑ τ

ϑs − 1

(
1− 1

(Y[p̌])s

)

C(Y[p̌]) = Y[p̌]Z(Y[p̌])

Output: C(Y) – contrast-enhanced image, ϑ – marker-based intensity threshold

Algorithm D.9: Creation of the mask image by dilation and flattening.

Input:
h – length of the fiducial marker,
δpx – pixel size,
C(Ymr) – magnitude-and-ratio image after contrast enhancement,
ϑ – marker-based intensity threshold computed in Algorithm D.8

F3D Dilation:
create a structuring element E, a circle of [0.5h/δpx] px radius
Yd ← dilate C(Ymr) with E

F3E Flattening:
M← Yd
points enhanced at 〈〈CE1 〉〉 step: Θ = {p̌ | Yd[p̌] ≥ ϑ}
separate into connected subsets: [T1, . . . ,Tm]← cluster(Θ, η = 1.5 δpx)
by hierarchical clustering described in step 〈〈 S2 〉〉 of Alg. D.1

for k ← 1 to m do
v ← max{Yd[p̌] | p̌ ∈ Tk}
M[p̌ ∈ Tk]← v

end

Output: M – mask image
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psrc

c3D

r

H
P(c3D) P(e)η

r2D

Figure D.2: Extent of projection of the marker model.

D.3 2D Template Image Generation

Prior to discussing the implementation details and providing algorithm listings in

Appendix D.3.2, we define the regions of points in the generated template, for which

the computation should be performed in Appendix D.3.1. Those are the points that

can potentially contain the “projections” of the 3D markers, and can be computed

based on the positions (and orientations) of the markers in 3D.

D.3.1 Extents of Generated Markers

Template images consist of the generated bright markers on a flat dark background.

For computational efficiency, a set of pixels, for which the DRR computation is per-

formed, or the extents of the generated markers, is determined at the preprocessing

step for any of the three DRR generation methods. For the marker model DRR (MM

DRR), the extent is comprised of the pixels that can potentially contain a non-zero

intensity, i.e., the rays projected from the x-ray source to the centres of these pix-

els have the potential to intersect the 3D marker model, Mmod. For the voxel splat

and marker splat DRRs (VS and MS DRRs), the extent is determined as the small-

est region outside of which the corresponding Gaussians can be truncated without

unreasonable sacrifice of image quality as will be discussed later in this section.
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Figure D.3: The use of the voxel splat Gaussians (thin lines) computed over small
extents ρVS

i also affects the smoothness of their sum (bold lines). We select ρVS
i = 3σi.

N ρMM, Extents of the marker model projections

We define a set of points on the isocentric plane H, which belong to the rays that can

potentially go through the cylindrical marker model, as a circular region around the

projection of the marker model centre c3D:

ΦMM = {q ∈ R
2 | ‖q − P(c3D)‖ ≤ ρMM}, (D.3.1)

where P is the 3D to 2D projection operator defined in Equation (B.5.4), and ρMM is

the maximal dimension of the projection of the marker model from the point P(c3D)
computed as shown in Figure D.2 and explained below. Let e1, e2 be the endpoints

of the kth cylindrical marker model and r its radius. Let

η = max
{
‖P(c3D)− P(e1)‖, ‖P(c3D)−P(e2)‖

}
. (D.3.2)

Then, ρMM can be computed as η + r2D, where r2D = α r, and α is the 3D to 2D

scaling factor for the size of the object that is located in the proximity to the point

c3D defined in Equation (B.5.5). Similar approach can be undertaken to compute the

extent of the circular markers.

N ρVS
i , Extents of the voxel splats

Similar to the MM DRR, the values of each voxel splat should only be computed at

the points that are close to the points P(p̌i), where p̌i are the centres of the segmented
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CBCT voxels, as the Gaussians used for the voxel splats become small fast. We define

the voxel splat extent as ΦVS
i = {q ∈ R

2 | ‖q − P(p̌i)‖ ≤ ρVS
i }, where ρVS

i = 3σi and

σi are the voxel splat Gaussian scales defined in Section 5.1.2. As can be seen from

the 1D example in Figure D.3, the use of shorter extents introduces noticeable and

undesirable intensity variations in the sum of the splats (bold lines), while the use

of the splats with ρVS
i > 3σi increases computational cost but does not improve the

smoothness of the generated markers significantly.

N ρMS, Extents of the marker splats

For efficiency, the Gaussian values for the marker splats are only computed for the

points that lie in the proximity to the projected marker centres: ΦMS = {q ∈ R
2 | ‖q−

P(c3D)‖ ≤ ρMS}. Similar to the considerations on the voxel splat extents explained

above, we select the extents of the marker splats to be ρMS = 3σ, where σ is the scale

of the marker splat Gaussian defined in Section 5.1.3.

D.3.2 Implementation and Algorithms

In this section, we provide implementation details and algorithm listings for template

image generation step 〈〈 L3A 〉〉 of the marker localization procedure described in Sec-

tion 5.1. Algorithms D.10 –D.12 summarize the MM DRR generation method for

cylindrical and spherical markers described in Section 5.1.1. The detailed formula-

tions of the marker models are given in Appendix C.3. The VS and MS DRR methods

described in Sections 5.1.2 and 5.1.3, respectively, are summarized in Algorithms D.13

and D.14.

Common to all three methods, the discrete 2D template image W is initialized

with zeros in all points q̌ ∈ Γ2 ∩ΩLOC, where ΩLOC is the registration ROI computed

as explained in Section 4.3 and Algorithm D.5. Then, for each marker model, voxel

or marker splat, a corresponding region of interest within Γ2 ∩ ΩLOC is computed,

denoted by Φ̌MM, Φ̌VS, and Φ̌MS, respectively. This is done to reduce computational

cost by only evaluating the template image intensity values in small relevant parts

of the image. Furthermore, for the VS and MS DRRs, we perform computation on

rectangular regions that include Φ̌VS and Φ̌MS, as it simplifies implementation and, in

fact, reduces computational times. After the markers are generated, the image W is

rescaled from 0 to 1 to occupy an intensity range similar to that of the MEF-image.
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Algorithm D.10: Template image generation for cylindrical marker models.

Input:
Γ2 – pixel grid,
ΩLOC ⊂ R

2 – registration region of interest,
psrc ∈ R

3 – x-ray source location,
r, ck3D, e

1,k, e2,k ∈ R
3, k = 1, . . . , n – marker model radius, centres, endpoints,

φ – angle of rotation of the imaging system around the Y axis,
χSAD – distance between the x-ray source psrc and the isocentric plane H

L3A Initialize: psrc ← Ry(−φ) psrc

Fill in default background: W[q̌]← 0, q̌ ∈ Γ2 ∩ ΩLOC

for k ← 1 to n do

Rotate to the initial position:
ck3D ← Ry(−φ) ck3D, e1,k ← Ry(−φ) e1,k, e2,k ← Ry(−φ) e2,k

Compute Acyl, Alg. D.11

Compute Φ̌MM: r2D ← Scale3DTo2D (r, ck3D, φ, χSAD), Alg. D.15
ρMM ← r2D +max

{
‖P(ck3D)− P(e1,k)‖, ‖P(ck3D)−P(e2,k)‖

}

Φ̌MM ← Γ2 ∩
{
q ∈ R

2 | ‖q −P(ck3D)‖ ≤ ρMM
}

for each q̌ ∈ Φ̌MM do

piso ← (0,−q̌v,−q̌u, 1)T

Solve for sa,b (and λa,b):

{
sTAcyl s = 0,
s = psrc + λ (piso − psrc)

if sa and sb are real then

if sa and sb satisfy (5.1.2) then
W[q̌]← W[q̌] + ‖sa − sb‖

else

Solve for sc (and λc):

{
(s− pke1)

T (pke1 − pkc ) = 0,
s = psrc + λ (piso − psrc)

Solve for sd (and λd):

{
(s− pke2)

T (pke2 − pkc ) = 0,
s = psrc + λ (piso − psrc)

Select sℓ1, . . . , sℓm from sa, . . . , sd that satisfy (5.1.2)

W[q̌]← W[q̌] + max
{
‖sℓi − sℓj‖, i, j = 1, . . . , m

}

end

end

end

end

Rescale W to [0, 1] range

Output: W – marker model DRR for cylindrical markers defined on Γ2 ∩ ΩLOC
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Algorithm D.11: Cylinder model transformation.

Input:
r, h – marker model radius and length,
c3D, e – centre and one of the endpoints of the marker model
(in homogeneous coordinates)

Cylindrical shape:

Q←




1/r2 0 0 0
0 1/r2 0 0
0 0 0 0
0 0 0 −1




Geometric transformation:

psh ← e− c3D

d←
√
(pshx )2 + (pshy )2

if d > 0 then
% Marker model axis is not parallel to Z

sin γz ←
pshx
d
, cos γz ←

pshy
d
, Rz(−γz)←




cos γz − sin γz 0 0
sin γz cos γz 0 0
0 0 1 0
0 0 0 1




prot ← Rz(−γz) psh

sin γx ←
proty

h/2
, cos γx ←

protz

h/2
, Rx(−γx)←




1 0 0 0
0 cos γx − sin γx 0
0 sin γx cos γx 0
0 0 0 1




F ← Rx(−γx)Rz(−γz)T 3D(−c3D)
else

F ← T 3D(−c3D)
end

Transformed cylindrical shape: Acyl ← F TQF

Output: Acyl – matrix of the transformed cylindrical shape

364



Ph.D.Thesis – O.Peshko McMaster – Computational Sci. &Eng.

Algorithm D.12: Template image generation for spherical marker models.

Input:
Γ2 – pixel grid,
ΩLOC ⊂ R

2 – registration region of interest,
psrc ∈ R

3 – x-ray source location,
rk, c

k
3D ∈ R

3, k = 1, . . . , n – radii and centres of the marker models
φ – angle of rotation of the imaging system around the Y axis,
χSAD – distance between the x-ray source psrc and the isocentric plane H

L3A Initialize: psrc ← Ry(−φ) psrc

Fill in default background: W[q̌]← 0, q̌ ∈ Γ2 ∩ ΩLOC

for k ← 1 to n do

Rotate to the initial position: ck3D ← Ry(−φ) ck3D
Compute Φ̌MM:

ρMM ← Scale3DTo2D (r, ck3D, φ, χSAD), Alg. D.15

Φ̌MM ← Γ2 ∩
{
q ∈ R

2 | ‖q −P(ck3D)‖ ≤ ρMM
}

Compute Asph as defined in Eq. (C.3.9)

for each q̌ ∈ Φ̌MM do

piso ← (0,−q̌v,−q̌u, 1)T

Solve for sa,b (and λa,b):

{
sTAsph s = 0,
s = psrc + λ (piso − psrc)

if sa and sb are real then
W[q̌]← W[q̌] + ‖sa − sb‖

end

end

end

Rescale W to [0, 1] range

Output: W – marker model DRR for spherical markers defined on Γ2 ∩ ΩLOC
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Algorithm D.13: Voxel spat DRR generation.

Input:
Γ2 – pixel grid,
ΩLOC ⊂ R

2 – registration region of interest,
ck3D ∈ R

3, k = 1, . . . , n – marker model centres,
δvx – voxel size,
φ – angle of rotation of the imaging system around the Y axis,
χSAD – distance between the x-ray source psrc and the isocentric plane H

L3A Initialize: Fill in default background: W[q̌]← 0, q̌ ∈ Γ2 ∩ ΩLOC

for k ← 1 to n do
for i← 1 to |Mk| do

Compute Φ̌VS for pi ∈ Mk:

δ2Dvx ← Scale3DTo2D (δvx, p
i, φ, χSAD), Alg. D.15

σi ← 0.5 δ2Dvx

ρVS ← 3 σi

Φ̌VS ← Γ2 ∩
{
q ∈ R

2 | P(pi)u,v − ρVS ≤ qu,v ≤ P(pi)u,v + ρVS
}

for each q̌ ∈ Φ̌VS do
W[q̌]← W[q̌] + G(q̌ −P(pi), σi)

end

end

end

Rescale W to [0, 1] range

Output: W – voxel splat DRR defined on Γ2 ∩ ΩLOC
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Algorithm D.14: Marker splat DRR generation.

Input:
Γ2 – pixel grid,
ΩLOC ⊂ R

2 – registration region of interest,
ck3D ∈ R

3, k = 1, . . . , n – marker model centres,
σ̃ – Gaussian scale for the marker splat, Sect. 5.1.3,
φ – angle of rotation of the imaging system around the Y axis,
χSAD – distance between the x-ray source psrc and the isocentric plane H

L3A Initialize: Fill in default background: W[q̌]← 0, q̌ ∈ Γ2 ∩ ΩLOC

for k ← 1 to n do

Compute Φ̌MS:

σ ← Scale3DTo2D (σ̃, ck3D, φ, χSAD), Alg. D.15

ρMS ← 3 σ

Φ̌MS ← Γ2 ∩
{
q ∈ R

2 | P(ck3D)u,v − ρMS ≤ qu,v ≤ P(ck3D)u,v + ρMS
}

for each q̌ ∈ Φ̌MS do
W[q̌]← W[q̌] + G(q̌ − P(ck3D), σ)

end

end

Rescale W to [0, 1] range

Output: W – marker position DRR defined on Γ2 ∩ ΩLOC

Algorithm D.15: Scaling a size of the object from 3D to 2D.

Function δ2D = Scale3DTo2D (δ3D, p, φ, χSAD)
Input:
δ3D – length of the object in 3D,
p – point in 3D in the proximity or within the object,
φ – angle of rotation of the imaging system around the Y axis,
χSAD – distance between the x-ray source psrc and the isocentric plane H

Scale from 3D to 2D:

κ← χSAD

χSAD − (Ry(−φ) p)x
, Eq. (B.5.6)

δ2D ← κ δ3D, Eq. (B.5.5)

Output: δ2D – length scaled to 2D
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D.4 2D Marker Localization

D.4.1 Optimization Starting Point

As explained in Section 5.3.3, in order to provide a reasonable starting point for

the optimization procedure that is used in image registration between the generated

template and the MEF-image, we apply the normalized 2D cross-correlation method

with multiple templates (NCC-MT) at reduced resolution. Several template images

at different rotation angles {βi} are generated, and downsampled, together with the

MEF-image, by applying a 3 × 3 pixel averaging. Then, the NCC is computed by

the Matlab function normxcorr2 between the MEF-image and each of the templates,

producing matrices Ci[du, dv], where du and dv correspond to the shifts of the ith

template relative to the MEF-image in the U and V directions, respectively. Let

Cm[u, v] be the largest correlation value among all values in all Ci matrices. Then,

the rotation angle of the optimization starting point, a0 = (t0u, t
0
v, γ

0)T , equals to the

template rotation angle, γ0 = βm. However, the found shifts u and v do not directly

correspond to t0u and t0v due to the fact that the NCC-MT approach assumes the

application of rotation before the shifts, while the geometric transformations defined

in this thesis, and used in our marker localization and tracking procedures, assume

otherwise (see Appendix B). Given that the 2D geometric transformation is used in

registration, the elements of the optimization starting point a0 can be computed from

the NCC shifts, u and v, and the rotation angle, βm, as follows:

t0u = u cosβm + v sin βm,
t0v = −u sin βm + v cos βm,
γ0 = βm.

(D.4.1)

D.4.2 Implementation and Algorithms

This section provides implementation details for the 2D marker localization procedure

described in Chapter 5. The approach is summarized in Algorithm D.16. We start

by estimating the calibration parameters for the fluoroscopic frames from the cor-

responding parameters of the CBCT projections (Appendix B.4). This is necessary

to establish the correspondence between the ŨṼ (imaging plane H̃, pixels) and UV

(isocentric plane H, millimeters) coordinate systems, and compute the coordinates of
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the grids points in millimeters. Then, the marker model enlargement is performed

as explained in Section 5.1.1 if the MM DRR template image generation method is

used.2

The algorithm proceeds with the computation of the localization ROI, ΩLOC,

referred to as step 〈〈 L1 〉〉 in Flowchart 5.1 and described earlier in Algorithm D.5. At

step 〈〈 L2 〉〉 , the control is passed to the filtering block 〈〈 F 〉〉 that processes fluoroscopic
images to obtain the MEF-image R. Then, at step 〈〈 L3 〉〉 , R is registered to the

template W computed as explained in Appendix D.3. Optimal geometric parameters,

a∗, that bring into alignment R and the transformed template, Wa, are computed by

solving (5.3.10) using SQP implemented in Matlab function fmincon (active set) that

iteratively minimizes DNNCC, defined in Section C.4, over ΩLOC. The optimization

search starts with the point a0 that is computed as explained in Section 5.3.3 and

Appendix D.4.1. At step 〈〈 L4 〉〉, the 2D marker positions ck2D are computed by applying

a geometric transformation with the optimal parameters a∗ found at step 〈〈 L3 〉〉 to

the 3D marker positions, ck3D. Note that in Algorithm D.16 we will use the notation

ck2D = T (a∗, ck3D) to denote an operator that transforms the points ck3D by either the

3D or 2D rigid geometric transformations, T 3D or T 2D, respectively:

ck2D = T (a∗, ck3D) = P(T 3D(a∗, ck3D)), (D.4.2)

or

ck2D = T (a∗, ck3D) = T 2D(a∗,P(ck3D)) (D.4.3)

where T 3D and T 2D, and their corresponding parameter vectors a, are defined in

Appendices B.1 and B.2, respectively, and P is the 3D to 2D projection operator

defined in Equation (B.5.4).

2Although we decided to use the MS DRR method to process our images (Section 5.1), the
description provided here corresponds to the Gryphon implementation, which allows choosing dif-
ferent modelling options, including image generation methods and dimensionality of the geometric
transformation.
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Algorithm D.16: Marker localization in 2D space.

Input:
Mk or Mmod

k – 3D marker sets or marker models,
ck3D ∈ R

3 – 3D marker positions

Initialize:
Estimate calibration parameters for fluoroscopic frames,
express grid point coordinates in millimeters instead of pixels, App. B.4

if MM DRR used then
Enlarge Mmod

k , Sect. 5.1.1
end

L1 Compute localization ROI: ΩLOC, using amax in Alg. D.5

L2 Open and filter fluoroscopic images: block 〈〈 F 〉〉 , obtain MEF-image R

L3 Register images:

Define optimization starting point a0, App. D.4.1

L3B Call fmincon to solve (5.3.10):
a∗ = argmin

a
DNCC (Wa, R),

s.t. |aj| ≤ amax
j ,

where:
L3A Wa is computed in App. D.3, Algs. D.10 –D.14,
DNNCC defined in Sect. 5.2 and App. C.4,
and amax in Sect. 5.3.1

L4 Compute ck2D = T (a∗, ck3D)
Output: a∗ – optimal transformation parameters, ck2D ∈ R

2 – 2D marker
positions
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D.5 Marker Motion Tracking

D.5.1 Optimization Starting Point

As explained in Section 6.3, the optimization starting point a0 = (t0u, t
0
v, γ

0)T is com-

puted as the combination of the prediction â = (t̂u, t̂v, γ̂)
T obtained by using the

linear regression model based on three preceding images of the sequence (LR-3), and

the point (u, v, β)T , where the normalized cross-correlation (NCC) between the in-

coming image and the template transformed by â reach its maximum. In contrast to

2D-3D image registration used in the marker localization procedure (Section 5.3 and

Appendix D.4.1), the displacements between the markers in the neighbouring images

of the sequence are expected to be smaller than between the CBCT and the fluoro-

scopic sequence. Therefore, we do not use multiple templates with the NCC (multiple

rotation angles), i.e., β = 0◦. The elements of the starting point a0 are computed as:

t0u = t̂u + u,
t0v = t̂v + v,
γ0 = γ̂.

(D.5.1)

D.5.2 Implementation and Algorithms

This section provides implementation details for the marker tracking procedure de-

scribed in Chapter 6. The approach is summarized in Algorithm D.18. The details on

the 2D template image generation method used in 2D-2D image registration can be

found in Algorithm D.17. For clarity, Algorithm D.18 describes tracking in one image

sequence. The Gryphon software, however, is built in a way that allows creating a list

of sequences to process (the same is done for the 2D marker localization procedure

described in Appendix D.4).

We start by defining the ROI ΩLOC, which is the same as in 2D marker localiza-

tion. This ROI is used to perform the initial reduction of the image size. Registration

in tracking is performed on ΩTR (computed at step 〈〈T2 〉〉 ), that is different for every
image of the sequence and depends on â (a prediction for geometric transformation

parameters computed at step 〈〈T1 〉〉 ) and bmax (bounds on displacements between the

markers in consecutive images defined in Section 6.1).
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After the image is opened and preprocessed by temporal and marker enhance-

ment filtering at step 〈〈T3 〉〉 , it can be registered to the template, generated by the

modification of the marker splat DRR method (Section 5.1.3, Algorithm D.14) for

the 2D (Section 6.1, Algorithm D.17) at step 〈〈T4 〉〉 . Finally, the resulting geometric

transformation parameters (a∗)i and the corresponding 2D marker positions for image

i, (ck2D)
i, are saved at step 〈〈T5 〉〉 . After the procedure described above is performed

for each image of the sequence, the final results, in particular, the displacements (dk)i

of the markers from their positions in the first image of the sequence, (ck2D)
0, are

produced at step 〈〈T6 〉〉 .

Algorithm D.17: 2D marker splat template image generation.

Input:
Γ2 – pixel grid,
ΩLOC ⊂ R

2 – region of interest,
ck2D ∈ R

2, k = 1, . . . , n – marker centres,
σ̃ – Gaussian scale for the marker splat, Sect. 5.1.3

T4A Initialize: Fill in default background: W[q̌]← 0, q̌ ∈ Γ2 ∩ ΩLOC

for k ← 1 to n do

Compute Φ̌MS:

ρMS ← 3 σ̃

Φ̌MS ← Γ2 ∩
{
q ∈ R

2 | (ck2D)u,v − ρMS ≤ qu,v ≤ (ck2D)u,v + ρMS
}

for each q̌ ∈ Φ̌MS do
W[q̌]← W[q̌] + G(q̌ − ck2D, σ)

end

end

Rescale W to [0, 1] range

Output: W – 2D marker splat template image defined on Γ2 ∩ ΩLOC

372



Ph.D.Thesis – O.Peshko McMaster – Computational Sci. &Eng.

Algorithm D.18: Marker tracking.

Input:
(ck2D)

0 ∈ R
2 – 2D marker positions from localization 〈〈 L 〉〉

Initialize:
Compute/load localization ROI, ΩLOC % used for initial reduction of image size

% for each image in the sequence:
for i← 1 to m− 1 do

T1 Compute tracking prediction: â = (t̂u, t̂v, γ̂)
T , Sect. 7.4.3

T2 Compute tracking ROI: ΩTR, using â and bmax in Alg. D.5

T3 Open and filter fluoroscopic images: block 〈〈 F 〉〉 , obtain MEF-image Yi

T4 Register images:

Generate template Wâ, Alg. D.17
Compute point (u, v, β)T of maximal NCC between Wâ and Yi, Sect. 6.3
Define optimization starting point a0 from â and (u, v, β)T , App. D.5.1

T4B Call fmincon to solve (6.1.1):
(a∗)i = argmin

ai
DNNCC(Wai , Yi),

s.t. |aij | ≤ amax
j ,

where:
T4A Wai is computed in Alg. D.17,

DNNCC defined in Sect. 5.2 and App. C.4,
and amax in Sect. 6.1

T5 Save results: (a∗)i, (ck2D)
i = T 2D((a∗)i, (ck2D)

0)
end

T6 Compute 2D marker displacements: (dk)i = (ck2D)
i − (ck2D)

0

Output: (a∗)i – optimal transformation parameters, (ck2D)
i ∈ R

2 – 2D marker
positions, (dk)i – marker displacements from the initial positions
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Index

artifacts, see streak artifacts

blob detection, 87–88

calibration, 12, 35, 328–330, 368
CBCT, see imaging techniques
CEF, see filters

cell, 32
clustering, 16, 49–50, 109, 293, 347, 353

computed tomography, see imaging tech-
niques

cone-beam computed tomography, see
imaging techniques

contrast, 2, 5, 10, 12, 19

contrast enhancement function (CEF), see
filters

contrast-to-noise ratio (CNR), 63, 68–70,
72–78, 149

coordinate systems, 34–37, 325–332

CT, see imaging techniques
CTV, see target volume

data sets, 29–32, 173–174, 203–204, 227,
245–249, 261–262, 276

data types, 52, 174
digitally reconstructed radiograph, see im-

age

distance measures, 132–138, 159, 296, 342–
346

DRR, see image

electronic portal imaging, see imaging tech-
niques

errors

fiducial prediction error (FPE), 167–
168, 253

fiducial registration error (FRE), 142,
163, 229–231, 257

inter-marker distance error (IMDE),
181–184

marker positioning error (MPE), 181,
184–189

orientation angle error (OAE), 191,
196–200

out-of-plane angle (OPA), 191–196

failure detection, 149–152, 157, 170

fiducial markers, see markers

filters

Frangi’s vessel enhancement filter, 93

Li’s dot and line filters, 93

Lorenz line filter, 92

magnitude-only filter (MOF), 110, 162,
249, 295, 352

marker enhancement filter (MEF), 13,
15, 63, 100–113, 162, 204–220, 249,
295, 351

contrast enhancement function
(CEF), 15, 103–106, 295, 353

magnitude-and-ratio image, 101, 352,
353

magnitude-only image, 101, 352, 353

marker extraction kernel (MEK), 79,
82–85, 296

Sato’s blob and line filters, 92

temporal filters, 13, 63, 65–78, 295, 351

finite impulse response (FIR) filters,
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67, 74–75, 149, 244, 295, 334–335

Karhunen-Loève transform (KLT),
68, 75–77, 295, 333–334

recursive filter, 67, 72–74, 295

finite impulse response (FIR) filters, see fil-
ters

flex, 328

fluoroscopic frame, see image

fluoroscopic image sequence, see image

fluoroscopy, see imaging techniques

FPE, see errors

FRE, see errors

geometric transformation, 28, 35–37, 139–
143, 159, 231–233, 296, 325–332

grid, 32

Gryphon, see software

GTV, see target volume

homogeneous coordinates, 36, 325

IGRT, see radiation therapy (RT)

image

2D marker splat image, 14, 162, 249,
295, 372

digitally reconstructed radiograph
(DRR), 7, 12, 118, 234–236, 292,
360–362

marker model DRR, 14, 119–124, 294

marker splat DRR, 14, 119, 127–130,
294

selective DRR, 13, 14, 28, 118, 292,
294

voxel splat DRR, 14, 119, 124–127,
294

discrete image, 32

fluoroscopic frame, 6

fluoroscopic image sequence, 2, 6, 24

image model, 33

lateral projection, 29

portal image, 5, 6

x-ray projection, 6

image registration, 2, 11, 115

2D-2D image registration, 12, 26, 28,
159–163, 249–252, 371

2D-3D image registration, 12, 26, 28,
138–149, 325, 369

multi-modality registration, 15
single-modality registration, 15

image-guided radiation therapy (IGRT), see
radiation therapy (RT)

imaging techniques

computed tomography (CT), 5, 7
cone-beam computed tomography

(CBCT), 6, 7

electronic portal imaging, 6
fluoroscopy, 2, 10–11, 20–23, 67

IMDE, see errors
inter-marker distances (IMD), 28, 262

interpolation, 33, 161, 297
isocentre, 3, 34, 35, 326, 328

isocentric plane, 35
ITV, see target volume

Karhunen-Loève transform (KLT), see fil-
ters

linear accelerator (LINAC), 3, 13, 19, 29,
30, 34, 35, 265, 326

localization, 2, 12
2D marker localization, 28, 117, 138,

228–231, 368

3D marker localization, 26, 54–55, 347

margin, 1

margin design, 1, 9, 266
marker localization, see localization

marker tracking, see motion
markers, 12

fiducial markers, 10, 11, 20, 21
marker models, 13, 42, 58–60, 294, 336–

341, 347

marker sets, 42, 50–58, 176–178, 293,
347

MEF, see filters

megavoltage (MV) image, see portal image
MLC, see multileaf collimator (MLC)
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morphological operators, 79–80, 106, 296,
353

motion, 9, 157
in-plane, 29, 141
inter-fraction, 9, 261–266
intra-fraction, 1, 2, 9, 12, 24, 26, 28,

276–277
motion tracking, 2, 10, 25, 28, 257–258,

372
out-of-plane, 141

MPE, see errors
multileaf collimator (MLC), 3

noise, 2, 13, 15

OAE, see errors
OPA, see errors
optimization, 139, 143–149, 159, 168, 237,

296, 368, 371
organ motion, see motion

PCA, see principal component analysis
(PCA)

phantom
insert design, 30, 179–181
Quasar motion phantom, 30
radio-surgery verification phantom

(RSVP), 29
piercing point, 329
portal image, see image
prediction, 156, 163–168, 252–257, 297, 371
principal component analysis (PCA), 60,

184, 191, 347
PTV, see target volume

Quasar motion phantom, see phantom

radiation therapy (RT), 1, 3
external beam conformal radiation

therapy, 3, 4
image-guided radiation therapy

(IGRT), 1, 7
treatment delivery, 5

treatment planning, 5

treatment simulation, 5

radio-surgery verification phantom (RSVP),
see phantom

raytracing, 14

reconstruction artifacts, see streak artifacts

recursive filter, see filters

region of interest (ROI), 11, 26, 97–100, 155,
160, 202–203, 351, 369, 371

RSVP, see radio-surgery verification phan-
tom (RSVP)

RT, see radiation therapy (RT)

safety margin, see margin

scale-space representation, 79, 85–86, 296,
352–353

segmentation, 12, 26, 43–54, 178–179, 293,
347

shortest distance, 49

software

Gryphon, 2, 11, 65, 170, 261, 262, 277,
371

X-ray Volume Imaging (XVI), 7, 23, 34,
35, 326

streak artifacts, 13, 42, 50, 294

target volume, 3

clinical target volume (CTV), 8, 23

gross tumour volume (GTV), 8

internal target volume (ITV), 8

planning target volume (PTV), 3, 8, 23

template matching, 79–82, 296

thresholding, 16, 40, 46–49, 174–176, 293,
347

tracking, see motion

validation, 16, 173–258

x-ray attenuation, 13, 14, 20

x-ray projection, see image

X-ray Volume Imaging (XVI) software, see
software

377


	Contents
	List of Flowcharts
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Notation and Symbols
	Introduction
	Problem of organ motion in radiation therapy
	Use of imaging in radiation therapy procedures
	Imaging modalities
	Hardware and software
	Uncertainties in target position due to organ motion
	Fluoroscopic tracking of organ motion

	Goals, approaches, challenges, and results
	Thesis outline

	Problem and Solution Overview and Preliminaries
	Organ motion analysis based on fiducial markers
	Use of fiducial markers for target localization
	X-ray tracking systems in literature

	Problem setup, assumptions, and overview of approach
	Testing data sets
	Radio-surgery verification phantom
	Quasar motion phantom
	Patient testing data sets

	Modelling preliminaries
	Image model
	Coordinate systems and geometric transformations


	I Mathematical Modelling and Algorithm Design
	Marker Segmentation and Modelling in 3D Space
	Marker set segmentation in 3D image
	Thresholding
	Clustering
	Selection of candidate marker sets

	3D localization of the fiducial markers
	Correction for the marker set selection
	Marker models
	Discussion

	Design and Adaptation of Filters for 2D Images
	Noise reduction with temporal filtering
	Temporal filters for fluoroscopy
	Image quality assessment with contrast-to-noise ratio
	Choice of temporal filter

	Marker amplification using existing techniques
	Existing feature enhancement approaches
	Scale-space representation and analysis

	Computation of regions of interest
	Novel marker enhancement filter (MEF)
	Principles of MEF design
	Contrast enhancement function
	MEF design step by step
	MEF parameters
	Magnitude-only filter (MOF)

	Discussion

	Marker Localization in 2D Space
	Template image generation
	Marker model digitally reconstructed radiograph (DRR)
	Voxel splat DRR
	Marker splat DRR

	Distance measures
	2D-3D image registration
	Bounds on optimization parameters
	Geometric transformation
	Optimization

	Selection of temporal filter width
	Failure detection
	Discussion

	Motion Tracking in 2D Image Sequences
	2D-2D image registration
	Prediction models
	Optimization
	Discussion


	II Validation and Case Studies
	Selection of Parameters and Validation of Methods
	Marker segmentation and modelling in 3D space
	Testing data sets for marker segmentation and modelling
	Threshold flexibility
	Marker set size margins
	Correction procedures and segmentation success rates
	Design of phantom insert
	Marker positional errors
	Marker orientational errors

	MEF validation
	Selection of regions of interest
	Testing data sets for MEF validation
	MEF success rates
	Comparing MEF to other filters
	MEF variations

	Marker localization in 2D space
	Testing data sets for marker localization
	Accuracy of 2D marker localization
	2D versus 3D geometric transformations
	Success rates of template image generation methods
	Success rates depending on optimization starting points
	Computational cost depending on temporal filtering

	Marker motion tracking
	Testing data set for tracking validation
	Registration approach for tracking procedure
	Linear regression training
	Validation of prediction models on phantom data
	Validation of prediction models on patient data
	Accuracy of marker motion tracking


	Patient Studies
	Inter-fraction marker displacement from CBCT images
	Patient CBCT data set
	Inter-fraction anatomical changes and marker migration
	Inter-fraction marker displacement

	Intra-fraction marker motion tracking in fluoroscopic image sequences
	Patient fluoroscopic data set
	Intra-fraction marker motion



	Conclusions and Further Directions
	Summary and contributions
	Extensions and future work

	Bibliography
	System Hardware and Software
	Geometric Transformations
	3D rigid geometric transformation in XYZ system
	2D rigid geometric transformation in UV and UV systems
	Inverse transformations
	Transformation from UV to UV
	Perspective transformation from XYZ to UV

	Detailed Formulations
	Filter based on Karhunen-Loève transform
	Finite impulse response filters
	Raytracing for marker models
	Distance measures

	Implementation Details and Algorithm Listings
	3D marker segmentation and modelling
	Temporal and marker enhancement filtering
	2D template image generation
	Extents of generated markers
	Implementation and algorithms

	2D marker localization
	Optimization starting point
	Implementation and algorithms

	Marker motion tracking
	Optimization starting point
	Implementation and algorithms


	Index

