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Abstract

Bandlimited optical intensity channels, arising in applications such as indoor infrared

communications and visible light communications (VLC), require that all signals sat-

isfy a bandwidth constraint as well as average, peak and non-negative amplitude

constraints. However, the signaling designed for conventional radio frequency (RF)

electrical channels cannot be applied directly, since they take energy constraints

into consideration instead of amplitude constraints. In addition, conventional trans-

mission techniques optimized for broad-band optical channels such as fiber optics,

terrestrial/satellite-to-satellite free-space optical (FSO) communications are typically

not bandwidth efficient.

In this thesis, a two-dimensional signal space for bandlimited optical intensity

channels is presented. A novel feature of this model is that the non-negativity and

peak amplitude constraints are relaxed. The signal space parameterizes the likeli-

hood of a negative or peak amplitude excursions in the output. Although the inten-

sity channel only supports non-negative amplitudes, the impact of clipping on system

performance is shown to be negligible if the likelihood of negative amplitude excursion

is small enough. For a given signal space, a tractable approximation approach using

a finite series is applied to accurately compute the likelihood of clipping under aver-

age and peak optical power constraints. The uncoded asymptotic optical power and
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spectral efficiencies using two-dimensional lattice constellations are computed. The

Monte-Carlo (MC) simulation results show that for a given average or peak optical

power, schemes designed in the presented signal space haver higher spectral efficiency

than M -ary pulse amplitude modulation (PAM) using previously established tech-

niques.
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Acronyms

AWGN additive white Gaussian noise

BER bit error rate

ccdf complementary cumulative distribution function

cdf cumulative distribution function

DC direct current

FSO free-space optical

IM/DD intensity-modulation direct-detection

ISI inter-symbol interference

LD laser diode

LED light emitting diode

MC Monte-Carlo

OFDM orthogonal frequency-division multiplexing

OOK On-Off keying
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PAM pulse amplitude modulation

pdf probability density function

PL parametric linear

PSD power spectral density

PSK phase-shift keying

QAM quadrature amplitude modulation

RC raised-cosine

RF radio frequency

RV random varaible

SER symbol error rate

S2 squared sinc

SNR signal-to-noise ratio

VLC visible light communications
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Notations

dmin minimum distance between any two arbitrary points in a constellation

η spectral efficiency

φ̂1 maximum amplitude of φ1(t)

κ ratio of the energy of truncated basis to the energy of non-truncated basis

Λn N -dimensional lattice

R real numbers set

Z integers set

E[·] statistical expectation

Kurt[·] Pearson measure of kurtosis

Skew[·] skewness

Var[·] variance

µ0 DC bias

µi,j,k(X, Y, Z) the (i, j, k) multivariate moment about the (E [X] ,E [Y ] ,E [Z])
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µj,k(X, Y ) the (j, k) bivariate moment about the (E [X] ,E [Y ])

µn(·) n-th central moment

NT number of one-sided truncated lobes

Ω constellation

Ωa constellation under average optical power constraint

Ωp constellation under peak optical power constraint

Ωref baseline constellation

Pe probability of bit error

Φ1(f) Fourier transform of φ1(t)

φ1(t) first basis function

Φ2(f) Fourier transform of φ2(t)

φ2(t) second basis function

Πε(p) essentially peak-limited bounding region parameterized by ε and p

P o average optical power

P
ref

o average optical power of baseline

P o,gain average optical power gain over baseline

P̂o,gain peak optical power gain over baseline

P̂o peak optical power
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P̂ ref
o peak optical power of baseline

Ps probability of symbol error

ψ(ν) characteristic function of random variable

Ψ? optimum shaping region in the sense of minimum average power

σ2 variance of AWGN

θ half the apex angle

Υε essentially non-negative admissible region parameterized by ε

ε signal space parameter

% photodiode detector responsivity

~φ1 unit vector in φ1 direction

A2 two-dimensional hexagonal lattice

ai φ1 direction component of the symbol drawn from constellation during i-th

symbol interval

B one-sided bandwidth

bi φ2 direction component of the symbol drawn from constellation during i-th

symbol interval

C electro-optical conversion factor

FX(x) cumulative distribution function of the random variable X
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fX(x) probability density function of the random variable X

G1(f) Fourier transform of g1(t)

g1(t) first branch receive filter

G2(f) Fourier transform of g2(t)

g2(t) second branch receive filter

H(f) Fourier transform of channel response h(t)

h(t) channel response

I(t) instantaneous optical intensity

n(t) channel noise

n1,i output sample noise after filter g1(t) at i-th symbol interval

n2,i output sample noise after filter g2(t) at i-th symbol interval

nc,1,i clipping distortion after filter g1(t) at i-th symbol interval

nc,2,i clipping distortion after filter g2(t) at i-th symbol interval

q variable defined as the ratio of t to symbol period T

Q(·) tail probability of the standard normal distribution

R residual sum

r1(t) output waveform of filter g1(t)

r2(t) output waveform of filter g2(t)
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Rb bit rate

T symbol period

TNyq Nyquist sampling period

V (·) volumn of the region

x(t) output electrical current signal

xa
c(t) clipped negative current excursion under average optical power constraint

xp
c (t) clipped current excursion under peak optical power constraint

y(t) received photocurrent

y1,i discrete output of g1(t) sampled at i-th symbol interval

y2,i discrete output of g2(t) sampled at i-th symbol interval
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Chapter 1

Introduction

1.1 Background

Detection methods for modulated optical signals are mostly classified into two cate-

gories: noncoherent detection and coherent detection. In coherent detection, a signal is

detected using both the amplitude and phase of a carrier which also implies the usage

of coherent receiver and synchronization requirement. In coherent optical applications

such as long-haul optic fiber and free-space optical (FSO) links [1], the transmission

system requires a narrow-band laser and an external Mach-Zehnder (MZ) modula-

tor [2] and coherent detection can be implemented using homodyne or heterodyne

downconversion by a local-oscillator laster and balanced optical receiver, followed by

an electrical-domain detector [3]. Experimental optical links on coherent channels

by using phase-shift keying (PSK) modulation have been investigated and realized

in the past two decades [2, 4–8]. However, this type of detection has relatively high

complexity.

In contrast, noncoherent detection can be implemented at lower complexity using
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direct detection (DD). Intensity modulation (IM) is a technique which conveys the

information by modulating the instantaneous radiated intensity of an optical source.

IM/DD are widely used in many low-complexity, cost-effective optical communica-

tions links such as short-haul fiber optics [9, 10], indoor visible light communications

(VLC) [11–15], in-house infrared data transmissions [16–19], free-space optical (FSO)

communications [20–22], and even long-distance fiber optical links combined with

orthogonal frequency-division multiplexing technique (OFDM) [23,24].

For IM links, all emitted signals are restricted to be non-negative since intensity

is a non-negative physical quantity. However, IM/DD channels are often bandwidth

limited due to device limitations or multipath distortion in diffuse indoor wireless

optical intensity links [19]. Although the design of signal sets for bandlimited electri-

cal channels has been extensively studied, comparatively little has been investigated

on bandlimited optical intensity signaling under average, peak and non-negativity

amplitude constraints.

1.2 Previous Work

Many research has been done on the signaling design for IM/DD channels. In

[25], an indoor wireless infrared communications channel model considering the non-

negativity and average optical power constraints was studied. The dominant shot-

noise generated at photodetector is modelled as an additive white Gaussian noise

(AWGN) plus a direct current (DC) offset. Power and bandwidth efficiency of sev-

eral forms of pulse-position modulation (PPM) schemes, including uncoded PPM,

multiple PPM, overlapping PPM, and convolutional coded PPM, were compared and
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analyzed. The trade-off between power efficiency and bandwidth efficiency were ex-

amined. In [19], physical characteristics of infrared channels including path losses and

multipath response were presented. In addition, the performance of various modula-

tion formats such as on-off keying (OOK), PPM, and subcarrier modulation in the

presence of multipath distortion for short-range wireless infrared channels were dis-

cussed in detail. The use of rectangular pulse sets were studied for bandwidth-efficient

signaling. A signal space model for optical intensity channels was presented in [26] and

a geometric representation of non-negativity and average optical power constraints

were provided. The performance of lattice code for optical IM/DD systems with

AWGN were quantified for raised-quadrature amplitude modulation (QAM). Coding

and shaping gain over the baseline scheme were computed. Examples of bandwidth-

efficient modulation for high data-rate applications were presented. The result was

extended to lattice codes in related direct-detection optical channels with amplified

spontaneous emission noise in [27]. The difference is that the dominant noise consid-

ered is a form of signal-dependent noise. An N -dimensional signal space was formed

by using a sequence of N time-disjoint pulses. It was shown that the ultimate shaping

gain is 1.53 dB as N →∞ and can be approached when the 1-dimensional constituent

constellation follows a truncated half-Gaussian distribution. Karout et al. proposed a

novel quaternary subcarrier modulation format for IM/DD systems which is a hybrid

between OOK and ternary PSK [28]. It was shown that a 0.6 dB average optical

power gain over OOK can be obtained at asymptotically high signal-to-noise ratio

(SNR). The scheme was also demonstrated to be more power efficient than other

known formats with a spectral efficiency of 1 bit/s/Hz. The optimization of a set of

M -ary (e.g. M = 4, 8, 16) single-subcarrier modulation formats for IM/DD systems

3
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with and without confining them to a lattice structure was studied in [29] and a wider

class of pulse sets were considered. The gain of the optimized formats over previously

known formats range from 0.3 dB to 1 dB. A simplified two-dimensional signal space

with reduced complexity compared to the three-dimensional formats studied in [29]

was presented in [30]. It was shown that the two-dimensional formats wee good

for single-wavelength optical systems since the formats have superior performance if

the bandwidth is measured as 90% in-band power. In all of above studies, signals

were strictly duration-limited and bandwidth was quantified by a fractional power

bandwidth.

For signaling on bandlimited IM/DD channels, the squared sinc (S2) pulse was

shown to be the minimum bandwidth optical intensity intersymbol interference (ISI)

free Nyquist pulse and it was further shown that there is no bandlimited optical

intensity root-Nyquist pulse [31]. The minimum bandwidth required was shown to

be twice that of conventional electrical channels. In addition, a trade-off between

bandwidth and average optical power efficiency in pulse design was quantified. In [32],

non-negative OOK and 4-ary pulse amplitude modulation (PAM) for bandlimited

IM/DD channels with dominant AWGN was developed using electrical Nyquist and

root-Nyquist pulses with a DC bias to satisfy non-negativity constraint. A bandwidth

versus average optical power efficiency trade-off was investigated. In the case of OOK

with no excess bandwidth, S2 pulse has the highest power efficiency. As an extension

to Tavan’s work which introduces a constant bias to satisfy non-negativity constraint,

a time-varying bias is added to the output to guarantee non-negativity [33]. The

optimal bias was searched numerically. After pulse design, the authors showed a gain

of about 0.6 dB power gain over S2 OOK with a matched filter receiver and no gain

4
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when using a sampling receiver.

1.3 Contributions of the Thesis

A two-dimensional signal space is presented based on amplitude and derivative mod-

ulation for optical IM/DD systems in which all constructed signals are strictly ban-

dlimited [34]. A novel feature of this model is that the strict non-negativity and

peak amplitude constraints are relaxed. The probability that the resulting output

amplitude is negative or exceeding the peak limitation is parameterized in the signal

space [35]. The motivation for this relaxation is that even if the optical intensity

channel only supports non-negative amplitudes due to devices limitation, the impact

of clipping on system performance will be negligible if the clipping distortion is small

enough.

Lattice codes to construct essentially non-negative and peak-limited signals for

optical IM/DD channels are defined. The likelihood of negative amplitude excursion

under average optical power constraint is rigorously upperbounded for a given signal

space. In addition, an efficient and accurate approach to numerically compute the

likelihood of clipping under average and peak amplitude constraints is applied.

Compared to previously studied schemes (e.g., [31, 32]), such relaxation of strict

non-negativity and peak amplitude constraints provides more degrees of freedom per

second and Monte-Carlo simulation results demonstrate that modulation based on

the essentially non-negative and peak-limited signal space and optical lattice codes

in the thesis has better uncoded power and spectral efficiencies.

5



M.A.Sc. Thesis - Dingchen Zhang McMaster - Electrical Engineering

1.4 Organization of the Thesis

The reminder of this thesis is organized as follows. The IM/DD system model is pre-

sented in Chapter 2. Chapter 3 presents the signal space model as well as a geometric

representation of average and peak amplitude constraints. The lattice codes are de-

fined and analyzed in Chapter 4.1. Upper bound of likelihood of clipping is derived

and a tractable finite series approach applied to numerically compute the likelihood

of clipping are discussed in Chapter 4.2. Chapter 5 presents system performance

under average optical power constraint with and without added DC bias as well as

under peak optical power constraint. Conclusions are drawn in Chapter 6 with some

directions for future work. The derivation of first four central moments of residual

sum in detail is presented in appendix.
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Chapter 2

System Model

The system model including transceiver and channel is presented in this chapter.

Two different channel models are defined under average and peak optical power con-

straints, respectively. A sub-optimal sampling receiver is designed to get estimation

of transmitted symbol.

Consider the reconstruction of a finite energy bandlimited function f(t) with band-

width B in Fig.2.1. The Shannon-Nyquist Theorem states that f(t) can be recon-

structed from amplitude samples taken every TNyq = 1
2B

seconds as follow:

f(t) =
∞∑

i=−∞

f(iTNyq)sinc(t/TNyq − i)

where sinc(x) , sin πx/(πx) is the normalized sinc function. The bandwidth con-

straint can be viewed as imposing a limit on the number of degrees of freedom per

second which can be modulated. A generalized sampling theorem showed that f(t)

can be reconstructed from samples of amplitude and first derivative every 2TNyq sec-

onds [36,37] which leads to the study of this thesis.

7
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Figure 2.1: Bandlimited function f(t) can be reconstructed by the amplitude samples
every TNyq seconds (blue dashed) or by amplitude and first derivative samples every
2TNyq seconds (red solid).

As illustrated in Fig. 2.1, a bandlimited signal f(t) with bandwidth B can be

expressed in terms of its amplitude and derivative sampled at half the Nyquist rate [37,

eq.14]

f(t) = sin2 πt

T

∞∑
i=−∞

f(iT )(
πt
T
− πi

)2 +
f ′(iT )

π
T

(
πt
T
− πi

)
= sinc2(t/T − i)

∞∑
i=−∞

f(iT ) + (t− iT )f ′(iT ) (2.1)

where T = 2TNyq = 1/B is the symbol period, f(·) and f ′(·) are samples of amplitude

and first derivative at t = iT , respectively. Thus to reconstruct a B-band limited

signal, two basis functions are defined in terms of sinc2(t/T ) and tsinc2(t/T ).

8
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2.1 Transmitter

Define two orthogonal basis functions φ1(t) and φ2(t) as

φ1(t) =

√
2

T
sinc2

(
t

T

)
, (2.2)

φ2(t) =

√
8π2

3T

t

T
sinc2

(
t

T

)
. (2.3)

Notice that φ1(t) is even and φ2(t) is odd. For any i ∈ Z,

φ1(iT ) =


√

2

T
, i = 0 ,

0, i 6= 0 .

And φ
′
1(iT ) = 0,∀i ∈ Z, where φ

′
1(t) is the first derivative of φ1(t). Similarly, for

derivative of φ2(t)

φ′2(iT ) =


√

8π2

3T 3
, i = 0 ,

0, i 6= 0 .

And φ2(iT ) = 0 for all i ∈ Z. Thus, φ1(t) and φ
′
2(t) satisfy the Nyquist criterion [38].

Fig 2.2 presents the waveform of φ1(t) and φ2(t). At each symbol instance, the

derivative of φ1(t) and the amplitude of φ2(t) are all zeros.

Let Φ1(f) and Φ2(f) be the Fourier transforms of φ1(t) and φ2(t), respectively. It

can be shown that φ1(t) and φ2(t) are bandlimited to 1/T Hz, i.e.

Φm(f) = 0, |f | > 1/T, m = 1, 2 .

9
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t/T

 

 

c

φ2(t)

Figure 2.2: Waveforms of φ1(t) and φ2(t), where φ
′
2(0) =

√
8π2/(3T 3).

Fig. 2.3 presents the spectrum of Φ1(f) and Φ2(f). From (2.1), every bandlimited

signal with one-sided bandwidth B = 1/T lies in the span of the set of time shifted

basis functions {φ1(t− iT )} and {φ2(t− iT )}.

Fig. 2.4 presents the model of a baseband IM/DD system based on φ1(t) and φ2(t).

The bandlimited electrical current signal x(t) is generated as a linear combination of

{φ1(t− iT )} and {φ2(t− iT )} and takes the form

x(t) =
∞∑

i=−∞

aiφ1(t− iT ) + biφ2(t− iT ) (2.4)

where (ai, bi) ∈ R2 are two-tuples drawn from a constellation Ω. Symbols are assumed

to be independently and equiprobably drawn from Ω for each symbol period.

Since φ1(t) and φ
′
2(t) are scaled Nyquist pulses, the amplitude and derivative of

10
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Figure 2.3: Fourier transform of the basis functions φ1(t) and φ2(t).

x(t) at each symbol instant can be expressed as

x(t)
∣∣
t=iT

= ai

√
2

T
,

d

dt
x(t)

∣∣∣
t=iT

= bi

√
8π2

3T 3
.

That is, at every symbol instant the amplitude of x(t) is defined by the coefficients of

φ1(t− iT ) and the derivative of x(t) is fixed by coefficients of φ2(t− iT ), respectively.

In practical applications, a light emitting diode (LED) or laser diode (LD) is often

used to modulate the instantaneous optical intensity, I(t) in Fig. 2.4, which is defined

as the optical power emitted per solid angle [26]. Thus the constraints on optical

power can be equivalently viewed as constraints on the amplitude of I(t). Clearly,
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Figure 2.4: Diagram of the based IM/DD system model.

since I(t) is an optical intensity, it must remain non-negative for all t ∈ R. The optical

intensity I(t) has a nonlinear relation to the modulator input electrical current x(t)

due to the device limitations. The device nonlinear characteristic transfer functions

of LEDs are studied in [39–42]. In addition, amplitude constraints on I(t) are also

be imposed for safety reasons. In this thesis, we consider two particular amplitude

constraints: average and peak optical power limitations.

2.1.1 Average Optical Power Constraint

The emitted optical intensity must be non-negative and the electro-optical conversion

process can be modelled as

I(t) =

 0, if x(t) < 0

Cx(t), if x(t) ≥ 0
(2.5)

where C is the electro-optical conversion factor in units of watts per ampere [W/A].

Without loss of generality, let C = 1. In many applications, especially in the infrared

band, the average optical power must be bounded for eye- and skin-safety concerns

or to control illumination levels in VLC systems [19]. The modulator outputs zero

12
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optical intensity in response to the negative current amplitude and an output optical

intensity in response to non-negative current is linear. The nonlinear characteristic

can be viewed equivalently as the clipping of all the negative amplitude excursion.

The average optical power is given by

P o = lim
τ→∞

1

2τ

∫ τ

−τ
I(t)dt . (2.6)

The definition of average optical power is in contrast to the case of conventional radio

frequency (RF) channels where the average emitted power is proportional to the

squared amplitude. Using (2.5) and (2.4), the average optical power can be simplified

as

P o = lim
τ→∞

1

2τ

∫ τ

−τ
x(t)− xa

c(t)

= lim
j→∞

1

2jT

j−1∑
k=−j

∫ (k+1)T

kT

x(t)dt− lim
τ→∞

1

2τ

∫ τ

−τ
xa

c(t)

= lim
j→∞

1

2j

∞∑
i=−∞

aiφ1 + biφ2 − P
a

o,c (2.7)

= E [ai]φ1 + E [bi]φ2 − P
a

o,c (2.8)

= E [ai]φ1 − P
a

o,c (2.9)

where

P
a

o,c = lim
τ→∞

1

2τ

∫ τ

−τ
xa

c(t)dt ,

φ1 =
1

T

∫ ∞
−∞

φ1(t)dt =

√
2

T
,

φ2 =
1

T

∫ ∞
−∞

φ2(t)dt = 0 .

13
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Notice that xa
c(t) is a non-positive signal representing any clipped negative current

excursion in the amplitude of x(t) which is performed by the modulator and thus P
a

o,c

is the time-average of clipped amplitude. In (2.7) the infinite integral is transformed

into an infinite sum, when it exists. (2.8) arises by using the strong low of large

numbers since each 2-tuples (ai, bi) is selected independently and equiprobably. E [·]

denotes the statistical expectation. Both φ1 and φ2 are constants. As in (2.9), the

average optical power P o can be represented by the constellation and the clipped

component of the electrical current.

2.1.2 Peak Optical Power Constraint

In many practical optical communications systems, particularly in illumination, a

constraint is placed on the peak amplitude emitted from the source. In particular,

the dynamic range of the input is limited to ensure high efficacy of the luminary or

to limit non-linear distortion [43]. In contrast to the case under solely average optical

power constraint, the electro-optical conversion process in this case is modelled as:

I(t) =


0, if x(t) < 0

Cx(t), if 0 ≤ x(t) ≤ pφ̂1

pφ̂1, if x(t) > pφ̂1

(2.10)

where C = 1 without loss of generality, p is a parameter selecting the current satura-

tion threshold of the modulator and

φ̂1 = max
t∈R

φ1(t) =

√
2

T
. (2.11)

14
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Similarly, the device input current to output intensity transfer characteristic is equiva-

lently viewed as the clipping of all the negative amplitude excursion and the amplitude

exceeding saturation level. The modulator output satisfies linearity of input over the

region [0, pφ̂1].

The peak optical power is defined as the maximum possible amplitude of intensity

and takes the form as

P̂o = max
t∈R

I(t) = max
t∈R

x(t)− xp
c (t) ≤ pφ̂1 (2.12)

where the maximum is imposed by channel. xp
c (t) denotes the clipped current excur-

sion of x(t) which is negative or exceeding pφ̂1. Notice additionally, that the impo-

sition of a peak amplitude constraint imposes an implicit constraint on the average

optical power.

2.2 Channel

The modulator converts electrical current to optical intensity as the input of channel.

The received photocurrent y(t) in Fig. 2.4 can be modeled as

y(t) = %I(t) ∗ h(t) + n(t)

= %(x(t)− xc(t)) ∗ h(t) + n(t) (2.13)

where % is the photodiode detector responsivity in units of ampere per watt [A/W]

which can also be set as 1 without loss of generality and xc(t) represents clipping

distortion that is either xa
c(t) or xp

c (t) depending on the constraint imposed. The

15
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channel response, h(t), is assumed to be bandlimited and flat within the bandwidth

of interest [−1/T, 1/T ] Hz. Let H(f) be the Fourier transform of h(t) and H(f) =

1, f ∈ [−1/T, 1/T ]. The channel noise n(t) is independent to x(t) and is modelled as a

zero-mean AWGN process with double-sided power spectral density (PSD) N0/2 [19].

Given that x(t) is bandlimited to bandwidth of the channel, y(t) can be simplified as

y(t) = x(t) + n(t) + nc(t) (2.14)

where nc(t) = −xc(t) ∗ h(t) is the filtered clipping distortion at the receiver.

2.3 Sampling Receiver

The receiver used in this thesis is a generalized sampling receiver which is assumed

to have ideal synchronization. As shown in Fig. 2.4, y(t) passes through two receive

filters g1(t) and g2(t) which are designed to detect amplitude and derivative samples

of x(t) at each symbol instance, respectively. The filters are defined as

g1(t) =

√
2

T
sinc

(
2t

T

)
(2.15)

g2(t) =

√
3T

2π2

d

dt
sinc

(
2t

T

)
(2.16)

Let G1(f) and G2(f) denote the Fourier transform of g1(t) and g2(t), respectively.

Using the properties of Fourier transform [44, Chp.4], it can be shown that the two

filters are bandlimited to 1/T Hz. Fig. 2.5 illustrates the Fourier transform of g1(t)

and g2(t), where G1(f) has a rectangular spectrum and G2(f) is the scaled product

of j2π and spectrum of dsinc(2t/T )/dt. The energy of G1(f) and G2(f) in frequency

16
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Figure 2.5: Fourier transform of the two receive filters g1(t) and g2(t).

domain can be calculated:

∫ ∞
−∞
|G1(f)|2df =

∫ 1/T

−1/T

T

2
df = 1∫ ∞

−∞
|G2(f)|2df = 2

∫ 1/T

0

3T 3f 2

2
df = 1

From Plancherel’s theorem [45–47], we have

∫ ∞
−∞

g1(t)g∗2(t)dt =

∫ ∞
−∞

G1(f)G∗2(f)df = 0

since G1(f) is even and G2(f) is odd. Thus, g1(t) and g2(t) have unit energy and are

orthonormal.

The Fourier transform of the filtered waveforms, i.e. φ1(t) ∗ g1(t) and φ2(t) ∗ g2(t),

17
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are presented in Fig. 2.6. The Fourier transform of the convolution between two

functions in time-domain is the product of Fourier transform of each function in

frequency-domain. Thus, Φ1(f)G1(f) has a triangular spectrum and Φ2(f)G2(f) is

an flipped triangular spectrum, which are both bandlimited to 1/T Hz. Let P1(f) =

Φ1(f)G1(f) and P2(f) = Φ2(f)G2(f), it can be shown that φ1(t)∗g1(t) and φ2(t)∗g2(t)

are Nyquist pulses since they satisfy the Nyquist criterion in frequency domain [48,

Chp.5]:

1

T

∞∑
k=−∞

Pm(f − k/T ) = 1, m = 1, 2

The system is inter-symbol interference (ISI) free in a straightforward manner since

φ1(t) ∗ g1(t)
∣∣
t=iT

= δi0 and φ2(t) ∗ g2(t)
∣∣
t=iT

= δi0, where δkl is the Kronecher delta

function

δkl =

 1, if k = l

0, otherwise

On the other hand, the spectrum of φ2(t) ∗ g1(t) and φ1(t) ∗ g2(t) are presented in

Fig. 2.7. Similarly, Let P3(f) = Φ2(f)G1(f) and P4(f) = Φ1(f)G2(f) as the Fourier

transforms of φ2(t) ∗ g1(t) and φ1(t) ∗ g2(t), respectively. It can be shown that

∞∑
k=−∞

Pm(f − k/T ) = 0, k = 3, 4 .

Thus the cross-correlation of two filter branches at each symbol instant are zero since

φ1(t) ∗ g2(t)
∣∣
t=iT

= 0 and φ2(t) ∗ g1(t)
∣∣
t=iT

= 0 for all i ∈ Z.

The outputs of the filters, r1(t) and r2(t), are sampled at the symbol interval to
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Figure 2.6: Fourier transforms of the output waveforms φ1(t) ∗ g1(t) and φ2(t) ∗ g2(t).

yield discrete samples y1,i and y2,i, where

r1(t) = y(t) ∗ g1(t) =

∫ ∞
−∞

y(t− τ)g1(τ)dτ ,

r2(t) = y(t) ∗ g2(t) =

∫ ∞
−∞

y(t− τ)g2(τ)dτ .

Denote n1,i and n2,i as the output sample noises of processes n(t)∗g1(t) and n(t)∗g2(t)

at t = iT , respectively. Since g1(t) and g2(t) are both linear time-invariant (LTI)

systems and unit energy, and also channel noise n(t) is a stationary white Gaussian

process, n1,i and n2,i are both Gaussian random variables (RV) with zero-mean and

variance σ2 = N0/2.
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Figure 2.7: Fourier transforms of the output waveforms φ2(t) ∗ g1(t) and φ1(t) ∗ g2(t).

Computing the cross-correlation of n1,i and n2,i at each sampling instant:

E[n1,in2,i] = E

[∫ ∫
n(t1)g1(iT − t1)n(t2)g2(iT − t2)dt1dt2

]
=

∫ ∫
E [n(t1)n(t2)] g1(iT − t1)g2(iT − t2)dt1dt2

=
N0

2

∫ ∫
δ(t2 − t1)g1(iT − t1)g2(iT − t2)dt1dt2 (2.17)

=
N0

2

∫
g1(iT − t1)g2(iT − t1)dt1

= 0 (2.18)

It shows that noise sample n1,i and n2,i are uncorrelated and thus mutually indepen-

dent since they are jointly Gaussian. The (2.17) in the above equation group arises
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by applying E [n(t1)n(t2)] = N0

2
δ(t2 − t1) since n(t) is a wide-sense stationary (WSS)

white Gaussian process. And (2.18) is derived from the orthonormal property that

∫
g1(iT − t1)g2(iT − t1)dt1 = −

∫
g1(t)g2(t)dt = 0 .

The autocorrelation of n1,i and n2,i are computed to characterize the output dis-

crete noises of the two filter branches. Denote N(f) = N0/2 as the PSD of n(t).

The PSD of n(t) through filter g1(t) and g2(t) are N(f)|G1(f)|2 and N(f)|G2(f)|2,

respectively. Denote Rn1(τ) and Rn2(τ) as the autocorrelation of n(t) through g1(t)

and g2(t), respectively. Since the autocorrelation of a stochastic process is the inverse

Fourier transform of its PSD,

Rn1(t) = F−1
[
N(f)|G1(f)|2

]
=

N0

2
sinc

(
2t

T

)

where F−1[·] denotes the inverse Fourier transform. The autocorrelation of n1,i is

given by

Rn1(iT ) =


N0

2
, i = 0 ,

0, i 6= 0 .

The sequence {n1,i} is uncorrelated to each other and thus white. Similarly, the

autocorrelation of n2,i is given by

Rn2(iT ) = F−1
[
N(f)|G2(f)|2

] ∣∣∣
t=iT

=
N0

2
3T 3

∫ 1/T

0

ej2πfiTf 2df .
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Figure 2.8: Scaled autocorrelation of n(t) through filters g1(t) and g2(t) by factor
N0/2.

Fig. 2.8 presents the scaled autocorrelation of n(t) through g1(t) and g2(t) and illus-

trates that sequence {n2,i} is correlated since Rn2(iT ) 6= 0 for i 6= 0 and thus colored

noise.

The overall discrete outputs yielded by sampling at t = iT can be expressed as:

y1,i = ai + n1,i + nc,1,i (2.19)

y2,i = bi + n2,i + nc,2,i (2.20)

where nc,1,i and nc,2,i are the sampled clipping distortions after g1(t) and g2(t), respec-

tively. The system is impacted by clipping distortion nc,1,i and nc,2,i, which depend

on x(t) and on the particular amplitude constraint of the channel.

In design of the receiver, the impact of clipping distortion is ignored and this

assumption is shown to be good in simulation results in Chap. 5. The output sample
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noises n1,i and n2,i are independent, Gaussian distributed with zero mean and variance

N0/2. The demodulation module is assumed to apply symbol-by-symbol maximum

likelihood detection in the thesis. Thus, the receiver here is not optimal since the

noise correlation of {n2,i} is ignored.

2.4 Summary

In this chapter, two orthogonal basis functions which represent the amplitude and first

derivative of electrical current signal x(t) are defined. The optical channel is modelled

as interrupted by a signal-independent AWGN. Two input current to output intensity

characteristic transfer functions under average and peak amplitude constraints are

presented. Finally, a sub-optimal sampling receiver is designed based on the symbol-

by-symbol maximum likelihood detection and the noise correlation of {n2,i} is ignored.

Based on the two basis functions, a two-dimensional signal space under average and

peak amplitude constraints will be defined in the next chapter.
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Chapter 3

Essentially Non-negative and

Peak-limited Signal Space

In this chapter, a signal space model for bandlimited optical intensity signals is de-

fined by constraining ai and bi in (2.4). Strict non-negativity and peak amplitude

constraints are, however, relaxed and the signal space parameterizes the likelihood of

violating the constraints.

3.1 Essentially Non-negative Admissible Region

The non-negative amplitude constraint for optical intensity channels requires that

∀t ∈ R x(t) ≥ 0 .

As φ1(t) is a scaled minimum-bandwidth optical intensity Nyquist pulse [31], φ1(t) ≥ 0

for all t ∈ R. Thus
∑

i aiφ1(t − iT ) is non-negative for all t ∈ R if ai ≥ 0. On the
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other hand, φ2(t) is odd and has zero average in time and necessarily assumes negative

amplitudes.

For a given ε > 0, define a two-dimensional signal space spanned by bases φ1(t)

and φ2(t). In [26], the admissible region is defined as the set of all points corresponding

to non-negative signals time-limited to t ∈ [0, T ). In this thesis, the essentially non-

negative admissible region, Υε, is defined in an analogous fashion as

Υε =

{
(a, b) ∈ R2 : min

|t/T |≤
√
3

ε2π

aφ1(t) + bφ2(t) ≥ 0

}
(3.1)

Notice that Υε contains the origin and for ε1 > ε2, Υε2 ⊂ Υε1 . In addition, Υε is

closed under scaling by a non-negative value and is located in the half plane a ≥ 0.

Lemma 1. For a fixed ε > 0, (a, b) ∈ Υε if and only if |b| ≤ aε.

Proof. Consider the symbol s(t) represented by point (a, b) in the signal space,

s(t) = aφ1(t) + bφ2(t) =

(
a+ b

2π√
3

t

T

)
φ1(t) . (3.2)

Since φ1(t) ≥ 0 for all t and applying the definition in (3.1)

(a, b) ∈ Υε ⇐⇒ min
|t|≤ 1

ε

a+ bt ≥ 0 . (3.3)

For any given a ≥ 0 and ε > 0, consider the range of allowable b in (3.3) for three

sub-intervals of t: (i) t = 0, b ∈ R; (ii) t ∈ (0, 1
ε
], b ∈ [−aε,∞); (iii) t ∈ [−1

ε
, 0),

b ∈ (−∞, aε]. The constraint (a, b) to be in Υε is the intersection of the range of b

for all sub-intervals, i.e. {(a, b) | a ≥ 0, |b| ≤ aε}.

Hence, Υε is a two-dimensional cone with vertex at the origin, apex angle 2θ =
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Figure 3.1: The admissible region is a cone with vertex at origin, apex angle 2θ =
2 tan−1 ε, and opening about the φ1-axis (ε = 0.4 in plot). The highlighted average
optical power bounding region Υε ∩Ψ?(h) is a triangle, where h/dmin = 12. A lattice
code is defined by intersecting the bounding region with hexagonal lattice A2 with
minimum distance dmin

2 tan−1 ε, opening about the φ1-axis as illustrated in Fig. 3.1. By adjusting ε,

the domain over which each transmitted symbol, s(t), is guaranteed to be strictly

non-negative can be controlled. In other words, ε parameterizes the degree of non-

negativity that can be accepted for transmission.

Fig. 3.2 presents the waveform of aφ1(t) ± bφ2(t) where (a, b) is selected from

boundary of Υε to illustrate how essentially non-negative the signal is built. For

example, when ε =
√

3/(2π), the waveform is non-negative within the main lobes,

i.e. t ∈ [−T, T ] as shown in Fig. 3.2(a). The smaller ε means that the domain of
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Figure 3.2: Time-domain waveform of aφ1(t)± bφ2(t), where a = 1 and b = εa for a
fixed ε where ε ∈ {0,

√
3/(4π),

√
3/(2π),

√
3/π}.

t to guarantee the non-negativity of s(t) = aφ1(t) + bφ2(t) is increased as shown

in Fig. 3.2(b). In contrast, for a larger ε, the domain of t to guarantee the non-

negativity of s(t) is decreased as illustrated in Fig. 3.2(c). The extremal case occurs

when ε = 0 such that s(t) converges to a simple squared sinc (S2) pulse and thus

strictly non-negative for all t ∈ R.

Intuitively, when ε → 0, Υε→0 approaches a one-dimensional non-negative half-

infinite interval in φ1-axis and x(t) is guaranteed to be non-negative for all t ∈ R.

Larger values for ε provide more degrees of freedom for constellations, i.e. higher

spectral efficiency, with the price of more negativity introduced into x(t).
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3.2 Average Optical Power Bounding Region

Analogous to the definition in [26], a shaping region must be defined to represent

both average or peak optical power constraints. For the average optical power con-

straint, assuming that the impact of clipping negative excursions (2.9) is negligible,

the average optical power is solely related to the component of each symbol in the

φ1-axis. In this case, the optimal shaping region in the sense of minimum average

optical power, for a given volume and admissible region Υε is [26, Sec.IV-H]

Ψ?(h) = {(a, b) ∈ R2 | 0 ≤ a ≤ h, b ∈ R} . (3.4)

Notice that the geometric interpretation of Ψ?(h) is a two-dimensional strip as illus-

trated in Fig. 3.1. Thus, the average optical power bounding region for a given ε > 0

is the intersection of essentially non-negative admissible region and optimal shaping

region and takes the form as Υε ∩Ψ?(h).

3.3 Essentially Peak-Limited Bounding Region

Similar to the definition in [26, Sec.III-C], define the essentially peak-limited bounding

region, Πε(p) for p > 0, as the set of all points in the signal space such that s(t) is

bounded from above by pφ̂1 in the interval |t/T | ≤
√

3/(2πε). Formally, for p > 0

Πε(p) =

{
(a, b) ∈ R2 : max

|t|≤T
√
3

ε2π

aφ1(t) + bφ2(t) ≤ pφ̂1

}
. (3.5)
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φ1

φ2O 2θ = 2 tan−1 ε

Υε

Πε(p)

Figure 3.3: The essentially peak-limited bounding region Πε(p) and admissible region
Υε, apex angle 2θ = 2 tan−1 ε (ε = 0.5 in plot). The highlighted area is Υε ∩ Πε(p).

Similar to [26, Sec.III-C], it is possible to relate Πε(p) to Υε via the affine transform

Πε(p) = −Υε + p~φ1

where ~φ1 is an unit vector in φ1 direction.

Notice that although Πε(p) constrains the peak amplitude of each symbol over

a given time interval, this is not necessarily true for sequences of symbols used to

construct x(t) as in (2.4). However, at the sample instants, i.e., x(iT ), i ∈ Z, the

amplitude is determined only by the ai component. Thus, selecting (ai, bi) ∈ Πε(p)

is sufficient to bound x(iT ) ≤ pφ̂1. Excursions beyond the pφ̂1 will be clipped by the

modulator and will contribute to clipping distortion, as shown in (2.10). Intuitively,
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to satisfy both constraints of essentially non-negative and peak-bounded from above

by pφ̂1, it is required to select (ai, bi) from the intersection of essentially peak-limited

bounding region and essentially non-negative admissible region, i.e. Υε ∩ Πε(p) as

shown in the highlighted region in Fig. 3.3. Chap. 4.2.3 quantifies the likelihood of

peak amplitude clipping as a function of ε.

3.4 Summary

In this chapter, a two-dimensional signal space for bandlimited optical intensity

channels is presented by relaxing the strict non-negative and peak optical power

constraints. The essentially non-negative admissible region, average optical power

bounding region, and the essentially peak-limited bounding region are defined. In

next chapter, the lattice codes which satisfy essentially non-negative and peak-limited

constraints will be provided and the performance will be analyzed.
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Chapter 4

Lattice Codes and Likelihood of

Clipping

In this chapter, essentially non-negative and peak amplitude limited lattice codes for

bandlimited IM/DD channels are defined. The asymptotic average and peak opti-

cal power gain over a baseline scheme under the assumption of negligible clipping

distortion are presented. The likelihood of clipping applying the continuous approx-

imation [49] is used to quantify how the signals constructed using such essentially

non-negative and peak-limited lattice codes violate the non-negativity and amplitude

constraints. Numerically computed upper bound of the likelihood of clipping un-

der average optical power constraint is presented. A tractable series approximation

approach is applied to compute the likelihood of clipping under average and peak

amplitude constraints.
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4.1 Lattice Codes

An n-dimensional (n-D) lattice Λn is a discrete subset of Rn that has the group

property. The points of the lattice then form a uniform infinite packing of Rn. For

example, the set of integers Z is a one-dimensional lattice since Z is a discrete subgroup

of R. Any 1-D lattice is in the form Λ1 = kZ for some scalar k > 0.

The use of lattice codes over bandlimited conventional electrical channel has been

explored in previous studies [49–52]. However, the optimized modulation techniques

in these channels cannot be applied directly to bandlimited IM/DD channels, since

the conventional electrical channels do not take the amplitude and non-negativity

constraints into consideration. The lattice codes over optical intensity channel are

investigated in literatures [26, 27]. Coding and shaping gain over a baseline for large

constellation were derived and ultimate shaping gain was presented. However, lattice

codes were used for time-limited signaling designed.

This chapter uses the signal space in Chap. 3 to define lattice codes which es-

sentially satisfy the amplitude and non-negative constraints with high probability for

bandwidth limited signaling since the current signal x(t) in (2.4) is a strictly ban-

dlimited output for a sequence of input symbols. Average, peak optical power gains

with respect to a baseline scheme and spectral efficiency as measure of performance

are derived by applying the continuous approximation [49] under the assumption of

negligible clipping distortion. Numerical validation of these claims is provided in

Chap. 5.
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4.1.1 Definitions

To be consistent with previous work [31–33], the baseline scheme chosen is on-off

keying (OOK) using S2 pulse shape φ1(t) with a sampling receiver with front-end

filter g1(t). The baseline constellation is denoted as Ωref = {0, dref
min}. Notice that

this baseline outputs signals which are strictly non-negative and limited from above

by dref
minφ̂1 since

∑∞
i=−∞ φ1(t − iT ) = φ̂1 for all t ∈ R. Thus, the baseline does not

suffer from any clipping distortion under average optical power constraint or the peak

amplitude constraint either, if pφ̂1 ≥ dref
minφ̂1.

The spectral efficiency, η, is defined as the ratio of bit rate Rb to one-sided band-

width B in units of bit per second per Hz, that is,

η =
Rb

B
[bit/s/Hz] (4.1)

where Rb = 1
T

log2 |Ω|.

4.1.2 Average Optical Power Constraint

Under an average optical power constraint, an essentially non-negative lattice code

can be defined as

Ωa(Λ2,Υε,Ψ
?(h)) = (Λ2 + t) ∩Υε ∩Ψ?(h) (4.2)

where Λ2 + t is a two-dimensional lattice translate. Thus, Ωa is the intersection of

Λ2 +t and the average optical power bounding region Υε∩Ψ?(h), as shown in Fig. 3.1

for the case of a hexagonal lattice. Notice that the average optical power of Ωa is

controlled by the selection of h.
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The average optical power gain of one scheme over the baseline scheme is defined

as

P o,gain =
P

ref

o

P o

(4.3)

where P o and P
ref

o are the average optical powers required for the two schemes to

achieve a given probability of bit error, Pe, given a fixed bandwidth B. For signal

space model in Chap. 3.1, a modulation scheme is then described by Ωa, bases φ1, φ2,

and the two filters g1, g2. For schemes in this thesis using φ1 and φ2, the spectral

efficiency is equal to log2 |Ωa| since BT = 1. Thus the spectral efficiency of baseline

is thus 1 bit/sec/Hz.

For the baseline scheme, using (2.9), the average optical power is

P
ref

o =
dmin(Ωref)

2
φ1 . (4.4)

Notice that for the baseline this is not an approximation since the modulation output

is strictly non-negative. In addition, this baseline does not suffer for any negative

clipping distortion or clipping at the peak.

The expression for average optical power of Ωa in (2.9) depends on the clipping dis-

tortion introduced by any negative excursions of x(t). As will be shown in Chap. 4.2,

the likelihood of clipping can be made small through the proper selection of ε. Ignor-

ing clipping, P o in (2.9) can be approximated by applying the continuous approxima-

tion to estimate discrete sums over the constellation points by normalized integrals

34



M.A.Sc. Thesis - Dingchen Zhang McMaster - Electrical Engineering

over Υε ∩Ψ?(h) [49]. Thus, using [26, (35)], P o is approximated as

P o ≈ φ1

∫
Υε∩Ψ?(h)

a

V (Υε ∩Ψ?(h))
dadb =

2

3
φ1h . (4.5)

The continuous approximation is tight when V (Υε∩Ψ?(h))� V (Λ2), or equivalently

when |Ωa| is large.

For the baseline, the probability of a symbol error, Ps, is equal to Pe and can be

related to the dref
min and Gaussian noise variance σ2 by [48]

Pe(Ω
ref , σ) = Q

(
dref

min

2σ

)

where Q(·) is the Gaussian tail function which takes the form as

Q(x) ,
1√
2π

∫ ∞
x

exp(−u2/2)du .

Thus dref
min can be expressed in terms of Pe

dref
min = 2σQ−1(Pe) . (4.6)

For the given scheme using Ωa, Pe can be approximated by the relation

Pe(Ω
a, σ) ≈ N(Ωa)

log2 |Ωa|
·Q
(
dmin(Ωa)

2σ

)
(4.7)

where N(Ωa) is the error coefficient related to the number of adjacent neighbors to

each constellation point in Ωa. The above equation arises under the assumption of

Gray mapping [53, Chp.2], i.e. the binary number representing each symbol in any
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given constellation Ω only differs by one bit to each adjacent symbol. Thus, at high

signal-to-noise (SNR) scenario, the symbol error can be viewed most likely resulted

from error decision to nearest symbol and the relation between bit error rate (BER)

and symbol error rate (SER) is Pe ≈ Ps/ log2 |Ω|. From (4.7),

dmin(Ωa) ≈ 2σQ−1

(
Pe log2 |Ωa|
N(Ωa)

)
. (4.8)

Similar to [26, 33], substituting (4.4) and (4.5) into (4.3), the asymptotic average

optical power gain of a given scheme over baseline in the limit as Pe → 0 is

P o,gain =
3dmin(Λ2)

4h
. (4.9)

The above equation takes advantage of the fact that as P e → 0, dmin(Ωref) →

dmin(Ωa) = dmin(Λ2). Equation (4.9) shows that the asymptotic average optical power

gain is independent of ε and channel noise.

The spectral efficiency (4.1) can also be approximated via the continuous approx-

imation as,

ηa ≈ log2

V (Υε ∩Ψ?(h))

V (Λ2)
= log2

εh2

V (Λ2)
(4.10)

where the notation V (·) denotes the volume of a region and V (Υε ∩Ψ?(h))/V (Λ2) is

the approximation of size of the constellation Ωa.
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4.1.3 Peak Amplitude Constraint

For case of peak optical power bounded above from by pφ̂1, essentially peak amplitude

limited lattice codes can be defined in a manner analogous to Chap. 4.1.2, as

Ωp(Λ2,Υε,Πε(p)) = (Λ2 + t) ∩Υε ∩ Πε(p) . (4.11)

Using the same baseline as in Chap. 4.1.2, the peak optical power gain of a lattice

code is defined as

P̂o,gain =
P̂ ref

o

P̂o

(4.12)

where P̂ ref
o and P̂o are the peak amplitudes needed for each to achieve a given bit

error rate.

Notice that P̂ ref
o = dref

minφ̂1 and P̂o = pφ̂1 from (2.12). Similarly, the asymptotic

peak optical power gain in the limit as Pe → 0 is

P̂o,gain =
dmin(Λ2)

p
. (4.13)

Similarly, the spectral efficiency (4.1) can also be approximated as,

ηp ≈ log2

V (Υε ∩ Πε(p))

V (Λ2)
= log2

εp2

2V (Λ2)
. (4.14)

4.2 Likelihood of Clipping

The lattice codes constructed in Chap. 4.1.2 and Chap. 4.1.3 violate the non-negative

amplitude constraint and both peak and non-negative amplitudes constraints, respec-

tively, with some positive probability whenever ε > 0. In this part, the severity of
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clipping is quantified by the likelihood that x(t) < 0 and x(t) > pφ̂1 under the contin-

uous approximation, where x(t) is the output electrical current signal from a sequence

of inputs. In [34], an upper bound on P(x(t) < 0) using Hoeffding’s inequality [54] is

obtained and a Gaussian approximation is applied for numerical computation of the

likelihood of negative amplitude excursion under average optical power constraint. In

this thesis, the comparison amongst upper bound on P(x(t) < 0) by applying one-

sided Cantelli’s inequality, Bhattacharyya’s inequality, and Hoeffding’s inequality are

presented. In addition, a more accurate and efficient finite series approach [55] is

applied to compute the likelihood under average and peak optical power constraints.

Results using series approach are compared to Monte-Carlo results.

4.2.1 Average Optical Power Constraint: P(x(t) < 0)

Considering a constraint on the average optical power, the bounded region to form

a constellation for a fixed ε is a truncated cone discussed in Chap. 3.2 and shown in

Fig. 3.1. This part of work determines P(x(t) < 0) for such average optical power

limited signaling sets.

Since the likelihood of a negative excursion is independent of scaling, without loss

of generality, assume the bounded region is Υε ∩ Ψ?(1). Furthermore, we apply the

continuous approximation and consider that constellation points (ai, bi) are drawn

independently and equally likely over Υε ∩ Ψ?(1). Under these assumptions, RV ai

(in the φ1 direction) satisfies a triangular distribution with lower limit 0, upper limit

1 and mode 1. Given the uniform distribution over Υε ∩ Ψ?(1), it is also clear that

P(bi|ai) is uniform over [−εai, εai].

Notice that V (Υε ∩Ψ?(1)) = ε. The probability density function (pdf) of RV ai
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is

fa(x) =

∫ xε

−xε
fab(x, y)dy

= 2x, x ∈ [0, 1] . (4.15)

Similarly, the pdf of RV bi can also be shown as

fb(x) =


1

ε2
(x+ ε), if x ∈ [−ε, 0] ,

− 1

ε2
(x− ε), if x ∈ (0, ε] .

(4.16)

The statistics of x(t) =
∑∞

i=−∞ aiφ1(t − iT ) + biφ2(t − iT ) in (2.4) are cyclosta-

tionary in period T since (ai, bi) are selected independently and equiprobably every

T . Therefore, it is only needed to consider the statistics of x(t) in the interval [0, T ).

Define variable q = t/T for t ∈ [0, T ) and

Xa(q) = x(qT ) =
∞∑

i=−∞

aiϕ1,i(q) + biϕ2,i(q) (4.17)

where (ai, bi) ∈ Υε ∩Ψ?(1) and

ϕ1,i(q) = φ1 ((q − i)T ) ,

ϕ2,i(q) = φ2 ((q − i)T ) .

Notice that

ϕ1,1−i(1− q) = ϕ1,i(q)

ϕ2,1−i(1− q) = −ϕ2,i(q)
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since φ1(t) is even and φ2(t) is odd. Thus

Xa(1− q) =
∞∑

i=−∞

aiϕ1,i(1− q) + biϕ2,i(1− q)

=
∞∑

i=−∞

aiϕ1,1−i(q)− biϕ2,1−i(q) . (4.18)

Recall that the conditional pdf of bi given ai is even symmetric and {(ai, bi)} is

independently and equiprobably selected at each symbol instant. Thus the statistics

of Xa(q) is also even symmetric about q = 0.5. For t = iT, i ∈ Z, x(t) is simplified

to a single RV, i.e., aiφ1(0), and is strictly non-negative. Thus, for analysis of the

likelihood of negativity of Xa(q), the domain of q is focused on the interval (0, 0.5].

Define the RVs Zi(q) as a function of q and ε

Zi(q) = aiϕ1,i(q) + biϕ2,i(q) . (4.19)

Thus, Xa(q) in (4.17) is the sum of independent RVs {Zi(q)}. The minimum and

maximum of Zi(q) for given q and ε can be obtained through linear programming in

the form as

minimize/maximize ϕ1,i(q)ai + ϕ2,i(q)bi

subject to (ai, bi) ∈ Υε ∩Ψ?(1)

Each Zi(q) can be shown to have a bounded triangular distribution with lower limit

pl
i(q) = min (0, αi(q)), mode pm

i (q) = max (0, αi(q)), and upper limit pu
i (q) = βi(q)
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where

αi(q) = ϕ1,i(q)− ε |ϕ2,i(q)| , (4.20)

βi(q) = ϕ1,i(q) + ε |ϕ2,i(q)| . (4.21)

For notational simplicity, hereafter ε and q are omitted. From previous work on

the study of triangular distributions [56] [57, Chp.1], the pdf of Zi can be written as

fZi(x) =



0 x < 0 ,

2(x− pl
i)

(pu
i − pl

i)(p
m
i − pl

i)
pl
i ≤ x ≤ pm

i ,

2(pu
i − x)

(pu
i − pl

i)(p
u
i − pm

i )
pm
i < x ≤ pu

i ,

0 x > βi .

As an example, Fig. 4.1 shows the pdfs of Zi where i ∈ {−1, 0, 1, 2} for q = 0.4 and

ε = 0.3. For i = 0, 1, αi > 0. For i 6= 0, 1, α < 0 and thus Zi has mode point 0.

4.2.2 Approaches to Find Likelihood of Clipping

The characteristic function of a sum of independent RVs is equal to the product of

the individual characteristic function of each RV [58]. Since the pdf of a RV and its

characteristic function are a Fourier transform pair and {Zi} are independent, the

pdf of Xa is

fXa = · · · fZ0 ∗ fZ1 ∗ fZ2 · · · . (4.22)

It is a challenging task to obtain a closed form for this infinite convolution. However,

we only focus on the likelihood of negativity of Xa, or equivalently, FXa(0), where
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Figure 4.1: pdf of triangular distributed RVs Zi, where i = {−1, 0, 1, 2}, ε = 0.3, q =
0.4 applying the continuous approximation.

FXa is the cumulative distribution function (cdf) of Xa. Consider splitting the terms

in Xa =
∑

i Zi into two parts denoted as S and R such that

S =
∑
j∈V

Zj

R = Xa − S

where V is the finite set of index j such that RV Zj has non-negative support, i.e.

αj > 0, and R is termed the residual sum. Thus the sufficient and necessary condition
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to j ∈ V is

|q − j| ≤
√

3

ε2π
. (4.23)

It is clear that RVs S and R are mutually independent. From elementary probability

theory [59, Chp.7.2],

FXa(0) =

∫ 0

−∞
fXa(τ)dτ

=

∫ 0

−∞

∫ ∞
−∞

fS(u)fR(τ − u)dudτ

=

∫ ∞
−∞

fS(u)FR(−u)du (4.24)

where FR(τ) is the cdf of R. Since the domain of each Zj ∈ S is bounded over [0, βj],

the support of S is also bounded in the interval [0,
∑

j∈V βj]. Then (4.24) is simplified

to a definite integral from 0 to
∑

j∈V βj. It is tractable to numerically compute the

pdf of S. An upper bound on P (Xa < 0) can be achieved by finding an upper bound

of FR(u) over the domain [−
∑

j∈V βj, 0].

As an example, Fig. 4.2 illustrates the numerically computed pdf of S = Z0 + Z1

for a given q = 0.5 and ε = 0.3. The pdf of S is computed via the convolution of two

triangular distributions fZ0 and fZ1 .

Cantelli’s Upper Bound

In probability theory, Cantelli’s inequality [60] which is also called one-sided Cheby-

shev’s inequality states that for any real random variable Y with mean µ and variance
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Figure 4.2: Numerically computed fS(τ) for a given q = 0.5 and ε = 0.3 over the
interval τ ∈ [0, β0 + β1].

σ2
Y , and any positive number c > 0,

P (Y − µ ≥ c) ≤ σ2
Y

σ2
Y + c2

(4.25)

P (Y − µ ≤ −c) ≤ σ2
Y

σ2
Y + c2

(4.26)

The inequality has great utility because it can be applied to completely arbitrary dis-

tributions and thus an upper bound of FR(−τ) over τ ∈ [0,
∑

j∈V βj] can be obtained

given variance and mean of R denoted as σ2
R and µR, respectively.
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The closed form of µR is derived as follow

µR = E [Xa]− E [S]

= E [ai]
∞∑

i=−∞

ϕ1,i + E [bi]
∞∑

i=−∞

ϕ2,i − E [S]

=
2

3

(
φ1 −

∑
j∈V

ϕ1,j

)
. (4.27)

The last step arises since E [ai] = 2/3 and E [bi] = 0 which are described in Ap-

pendix. A.1 and the fact
∑∞

i=−∞ ϕ1,i is a constant φ1 [61].

The derivation of variance of R is presented in Appendix A.1, Var [R] takes the

form

σ2
R =

φ
2

1
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(
2 cos2 πq + 1 + 12ε2 sin2 πq

)
−
∑
j∈V

ϕ2
1,j

18
+
ε2ϕ2

2,j

6
. (4.28)

Notice that µR must be positive for any q ∈ (0, 0.5] since ϕ1,i > 0 and τ + µR > 0

holds for any non-negative τ . From (4.26), the upper bound of FR(−τ) via Cantelli’s

inequality is

FR(−τ) = P (R− µR ≤ −(τ + µR))

≤ σ2
R

σ2
R + (τ + µR)2

. (4.29)

Hence an upper bound on P (Xa < 0) can be computed by numerical integration of

(4.24) which takes the form as

P (Xa < 0) ≤
∫ ∑

j∈V βj

0

fS(τ)
σ2
R

σ2
R + (τ + µR)2

τ . (4.30)
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Bhattacharyya’s Upper Bound

In [62], Bhattacharyya extended Cantelli’s inequality and derived an one-sided Cheby-

shev’s inequality when the first four order moments are known. For any real random

variable Y with zero mean and variance σ2
Y , denote µ3 and µ4 as the third and fourth

central moments, respectively. Let Skew [Y ] = µ3/σ
3
Y and Kurt [Y ] = µ4/σ

4
Y be the

corresponding Pearson measure of skewness and kurtosis, respectively, where σY rep-

resents the standard deviation of Y . Notice that the kurtosis is bounded below by

the squared skewness plus one [63]:

Kurt [Y ] ≥ Skew [Y ]2 + 1 . (4.31)

For every non-negative real c satisfying c2 − Skew [Y ] c− 1 > 0,

P (Y ≥ cσY ) ≤ Kurt [Y ]− Skew [Y ]2 − 1

(Kurt [Y ]− Skew [Y ]2 − 1)(1 + c2) + (c2 − Skew [Y ] c− 1)2
.

(4.32)

Notice that the classical Cantelli’s inequality is given by P (Y ≥ cσY ) ≤ 1/(1 + c2).

Thus the Bhattacharyya’s inequality is an improvement over the classical bound using

Cantelli’s inequality.

To compute the upper bound of FR(−τ) using Bhattacharyya’s inequality, mean

µR, variance σ2
R, skewness Skew [R], and kurtosis Kurt [R] are needed. Let µ3(R) and

µ4(R) be the third and fourth central moments of R respectively. It is equivalent to

build a zero-mean random variable R − µR and the variance, skewness, and kurtosis

of R− µR are unchanged since µR is a constant.

For a fixed q ∈ (0, 0.5] and τ ∈ [0,
∑

j∈V βj], using (4.32) and the property that
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Kurt [−R] = Kurt [R] and Skew [−R] = −Skew [R],

FR(−τ) = P (R ≤ −τ)

= P (−(R− µR) ≥ τ + µR)

≤ Kurt [R]− Skew [R]2 − 1

(Kurt [R]− Skew [R]2 − 1)(1 + c2) + (c2 + Skew [R] c− 1)2
(4.33)

where positive number c = (τ + µR)/σR. The closed-form of skewness and the nu-

merical approach to compute the approximation of kurtosis are provided in detail

in Appendices A.2 and A.3. Notice additionally the above inequality holds only if

c2 + Skew [R] c − 1 > 0. Thus an upper bound applying Bhattacharyya’s inequality

can be computed numerically by substituting (4.33) into (4.24).

Hoeffding’s Upper Bound

As all the Zi inside the sum R =
∑

i/∈V Zi have a bounded support, Hoeffding’s

inequality [54] [64, Chp.2.6] can be applied to get another upper bound of FR(−τ)

for τ ∈ (0,
∑

j∈V βj].

Hoeffding’s inequality provides an upper bound on the probability that the sum

of independent RVs deviates from its statistical expectation value. Let Y1, . . . , Yn be

n mutual independent RVs such that Yi is strictly bounded by the interval [ui, vi] for

all 1 ≤ i ≤ n. Denote the sum of Yi as

W =
n∑
i=1

Yi .
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Then for every c > 0,

P (W − µW ≥ c) ≤ exp

(
− 2c2∑n

i=1(vi − ui)2

)
(4.34)

where µW is the expectation value of W .

The upper bound of FR(−τ) using Hoeffing’s inequality can be obtained through

a similar fashion as in Chap. 4.2.2 and 4.2.2. Since each Zi, i /∈ V in R is bounded by

the interval [αi, βi],

FR(−τ) = P (−(R− µR) ≥ τ + µR)

≤ exp

(
− 2(τ + µR)2∑

i/∈V(βi − αi)2

)
. (4.35)

Using (4.20) and (4.21), the denominator term in the exponential power (4.35) can

be expressed in the form as

∑
i/∈V

(βi − αi)2 =
∞∑

i=−∞

4ε2ϕ2
2,i −

∑
j∈V

4ε2ϕ2
2,j

=
16ε2φ

2

1 sin2 πq

3

[
1−

∑
j∈V

sinc2(q − j)

]
. (4.36)

The second step arises from

ϕ2
2,i(q) =

4φ
2

1

3π2
· sin4 πq

(q − i)2
,

∞∑
i=−∞

1

(q − i)2
=

π2

sin2 πq
.

Using (4.24)(4.35) and (4.36), an upper bound on P (Xa < 0) applying Hoeffding’s
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inequality can be numerically computed.

Gaussian Approximation Method

In [34], a Gaussian approximation method to numerically compute P (Xa < 0) is

proposed. The idea is to approximate the distribution of residual sum R using an

Gaussian distribution. In addition, the mean and variance of R are chosen to be the

parameters of the Gaussian distribution.

Fig. 4.3 presents the histogram plot of RNT
with Gaussian curve fitting using

parameters µR and σ2
R for a fixed ε = 0.3 and q. Recall (4.23), i.e.

j ∈ V ⇐⇒ |q − j| ≤
√

3

ε2π

the index j such that j ∈ V for ε = 0.3 and all q ∈ [0.1, 0.5] is j ∈ {0, 1}. It shows

that the Gaussian curve fits the distribution of R well. Since S is strictly bounded

to an non-negative finite set [0,
∑

j∈V βj], it suffices to focus on the distribution of

FR(−τ) to the same interval.

Then FR(−τ) can be approximated as the cdf of a Gaussian distributed RV using

parameters µR and σ2
R :

FR(−τ) ≈ 1− 1

2
erfc

(
−τ + µR

σR
√

2

)
(4.37)

where erfc (x) is the complementary error function defined as

erfc (x) =
2√
π

∫ ∞
x

exp (−u2)du .
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Figure 4.3: pdf of R (blue bar) and Gaussian fitting curves (red solid) using mean
and variance of R, given ε = 0.3 and NT = 128. (a)q = 0.1; (b)q = 0.2; (c)q = 0.3;
(d)q = 0.4; (e)q = 0.5

Finite Series Approach

In [55], a convergent infinite series for the computation of the complementary cu-

mulative distribution function (ccdf) of a sum of independent but not necessary

identically distributed random variables was introduced. Since Xa (4.17) is the

sum of independent {Zi}, the series method can be applied to numerically compute

FXa(0) = P (Xa < 0). Notice that this computation must be done for every choice of

q and ε.
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The strictly bandlimited signals are duration unlimited and thus unachievable in

practice. For numerical computation, the bases φ1(t) and φ2(t) are truncated in time

domain to NT lobes such that

∫ NTT

−NTT

|φi(t)|2dt∫ ∞
−∞
|φi(t)|2dt

≥ κ, i = 1, 2 (4.38)

where κ is a fraction coefficient typically chosen close to unity. The denominator in

(4.38) represents the energy of basis function. Using Parseval’s theorem and from

Fig. 2.3, the energy of φ1(t) and φ2(t) are

∫ ∞
−∞
|φ1(t)|2dt = 2

∫ 1/T

0

|G1(f)|2df

= 2

∫ 1/T

0

2T 3(f − 1/T )2df =
4

3
, (4.39)∫ ∞

−∞
|φ2(t)|2dt = 2

∫ 1/T

0

|G2(f)|2df

= 2

∫ 1/T

0

2T

3
df =

4

3
. (4.40)

The numerator in (4.38) can be computed symbolically via using a symbolic math-

ematics computational engine [65] and computed numerically. The integral of the
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truncated basis functions takes the form as

∫ NTT

−NTT

|φ1(t)|2dt = 2φ
2

1T

∫ NT

0

sinc4(u)du

=
4

π

[
−2Si(2u)− 4Si(4u)

3
− sin4 u

3u3
− 2 cosu sin3 u

3u2
− 2 sin2 u(1 + 2 cos 2u)

3u

] ∣∣∣∣∣
πNT

0∫ NTT

−NTT

|φ2(t)|2dt = 2φ
2

1T
4π2

3

∫ NT

0

u2sinc4(u)du

=
16

3π

[
Si(2u)− Si(4u)

2
− sin4 u

u

] ∣∣∣∣∣
πNT

0

where

Si(x) ,
∫ x

0

sinu

u
du

is the sine integral function function.

Fig. 4.4 presents the log-scale of 1−κ versus number of one-sided truncated lobes.

From the plot, for the same NT, the energy of the truncated φ1(t) is more close to 1

than that of φ2(t). For example, κ > 99.999% for φ1(t) when NT = 10. However, for

φ2(t) the fractional energy is only approximate 98% for the same NT. With increased

NT,
∫ NTT

−NTT
|φ1(t)|2dt converges rapidly to 100%. To achieve κ > 99.9% for the two

truncated basis functions, NT should be selected to be greater than 152.

The truncation of basis functions to 2NT lobes is equivalent to truncate the infinite

sum in (4.17) from index −NT + 1 to NT. Define the truncated sum of Xa as

Xa
NT

=

NT∑
i=−NT+1

Zi (4.41)

The support for Xa
NT

is lower by BL =
∑NT

i=−NT+1 min(0, αi) and upper bounded by
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Figure 4.4: Log-scale plot of 1− κ versus NT for φ1(t) and φ2(t).

BU =
∑NT

i=−NT+1 βi.

Let GXa
NT

(x) be the ccdf of Xa
NT

and it is defined as

GXa
NT

(x) = P
(
Xa
NT
≥ x

)
= 1− FXa

NT
(x) .

Using [55, Eq.6], given any real λ, FXa
NT

(λ) takes the form as

FXa
NT

(λ) =
1

2

−
∞∑
n=1
n odd

exp(−j 2πnλ

TB
)

NT∏
i=−NT+1

ψi

(
2πn

TB

)
− exp(j

2πnλ

TB
)

NT∏
i=−NT+1

ψi

(
−2πn

TB

)
nπj

(4.42)
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where TB = 2 max(BU−λ, λ−BL), j here represents the imaginary unit, and ψi(ν) is

the characteristic function of each triangularly distributed Zi which takes the form [57,

Chp.1]

ψi(ν) = −2
(pu
i − pm

i )ejp
l
iν − (pu

i − pl
i)e

jpmi ν + (pm
i − pl

i)e
jpui ν

(pu
i − pl

i)(p
m
i − pl

i)(p
u
i − pm

i )ν2
(4.43)

Substituting λ = 0 into (4.42), the likelihood P
(
Xa
NT

< 0
)

may be written as

FXa
NT

(0) =
1

2
−

∞∑
n=1
n odd

NT∏
i=−NT+1

ψi

(
2πn

TB

)
−

NT∏
i=−NT+1

ψi

(
−2πn

TB

)
nπj

(4.44)

where TB = 2 max(BU,−BL).

Due to computational precision limitation of machine, it is impossible to calculate

infinite series to get the likelihood in (4.44). In practice, to estimate this likelihood

the summation can be calculated iteratively for n = 1, 3, 5, . . . and terminated when

the absolute value of any summand is less than a predefined threshold δ. Thus, the

numerical results using truncated finite series is an approximation of P (Xa < 0). The

performance and accuracy of the finite series will be presented and analyzed in the

next part.

Simulation Results

In this section, upper bound on P (Xa < 0) (4.24) using three different inequalities

will be presented compared to the results using Gaussian approximation and Monte-

Carlo simulations. Also the finite series is applied and the accuracy is analyzed with

comparison to Monte-Carlo results.

Fig. 4.5a presents the numerically computed upper bound of P (R < τ) , τ < 0
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compared to Gaussian approximation for a fixed q = 0.5 and ε = 0.3. The upper

bound using Bhattacharyya’s inequality is tighter than the results of Cantelli’s in-

equality since higher order moments are introduced. The bound applying Hoeffding’s

inequality is loose compared to other two inequalities over τ ∈ [0.4, 0] and becomes

tighter with decreased τ . Fig. 4.5b depicts the upper bound of P (Xa < 0) via ap-

plying three different inequalities as a function of q and ε = 0.3 with NT = 128.

In general, the highest P (Xa < 0) occurs at q = 0.5 for all methods. Among the

three upper bound, the Bhattacharyya’s inequality is tightest. However, there exists

a gap with the order of approximate 103 between the Bhattacharyya’s upper bound

and Monte-Carlo simulation results. The Gaussian approximation is closest to the

Monte-Carlo results for all q.

Fig. 4.6a presents P (Xa < 0) as a function of ε for a variety of q estimated via

Monte-Carlo simulations and via finite series (4.44) with NT = 128 and δ = 10−20.

Fig. 4.6b is the plot of P (Xa < 0) as a function of q for a fixed ε. The Monte-Carlo

simulations were performed with identically truncated φ1(t) and φ2(t) and repeated

109 times for each given ε and q. Numerical results indicate that the estimates of

P (Xa < 0) using series and Monte-Carlo simulations match closely, suggesting finite

series (4.44) is a good and accurate estimate.

Notice that for all ε, the worst case, i.e. the maximum likelihood of negative am-

plitude excursion occurs at q = 0.5. For any given ε, as q decreases to 0, the likelihood

of clipping also tends to zero as analyzed in Chap. 3.1 since Xa is guaranteed to be

non-negative when ε→ 0. For a given q, the likelihood of negative amplitude excur-

sion increase rapidly with ε. Larger values of ε lead to more negativity introduced into

Xa(q) which is consistent to the description in Chap. 3.1. Thus, for any q, Fig. 4.6
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Figure 4.5: (a) Upper bound of P (R < τ) , τ < 0 using three inequalities, and Gaus-
sian approximation for a fixed ε = 0.3 and q = 0.5; (b) Upper bound of P (Xa < 0)
using Cantelli’s, Bhattacharyya’s, and Hoeffding’s inequality, and results using Gaus-
sian approximation and Monte-Carlo simulations as a function of q for a fixed ε = 0.3.
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Figure 4.6: (a) Likelihood of negative amplitude excursion as a function of ε for a
fixed q ∈ {0.1, 0.2, 0.3, 0.4, 0.5}; (b) Likelihood of negative amplitude excursion as a
function of q for a given ε ∈ {0.3, 0.4, 0.5, 0.8}.
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quantifies the trade-off between increasing the spectral efficiency of the lattice code

(through increasing ε) and the amount of clipping distortion introduced (as measured

by the likelihood of clipping). For example, when ε ≤ 0.4, P (Xa < 0) < 10−4 for all

q, and as shown in Chap. 5, the impact of clipping distortion on system performance

is negligible for selected ε.

In addition, the complexity in terms of MATLAB script running time of the finite

series approach is much lower than that of Monet-Carlo simulations. As an example,

the running time to get numerical computation results using series approach for a

fixed ε = 0.5, NT = 128 and δ = 10−20 (the magenta solid curve in Fig. 4.6b) is less

than 8 seconds while the time consumption to get Monte-Carlo simulations (black

solid circles in Fig. 4.6b) requires several hours. The platform to run script is a

laptop equipped with Intel Core i5-2410M 2.3GHz dual-core processors and 8 GB

1333MHz memory.

4.2.3 Peak Amplitude Constraint: P (x(t) < 0 ∪ x(t) > pφ̂1)

In an analogous fashion to Chap. 4.2.1, the likelihood of clipping in the peak limited

channel is quantified here when signals are selected from the bounded region Υε ∩

Πε(p). All the results are computed merely by using series method due to its good

performance. Firstly, define

Xp(q) =
∞∑

i=−∞

aiϕ1,i(q) + biϕ2,i(q) (4.45)

=
∞∑

i=−∞

Zi(q) (4.46)
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Figure 4.7: Essentially non-negative and peak-limited bounding regions. The rhom-
bus ABOC is Υε ∩ Πε(p) while the triangle BOC is Υε ∩Ψ?(p/2).

where (ai, bi) ∈ Υε ∩ Πε(p) are chosen independently and equally likely over the

region. Thus, employing the continuous approximation, the following theorems bound

P(Xp(q) < 0 ∪Xp(q) > pφ̂1).

Theorem 1. For a given ε and any h, p > 0,

P(Xa(q) < 0) ≥ P(Xp(q) < 0).
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Proof. Consider the regions depicted in Figure 4.7. For any point (ar, br) ∈ Υε ∩

Ψ?(p/2), i.e., triangle BOC, there exists a “mirror” point (am, bm) in triangle ABC,

where br = bm and am + ar = p. Notice that ∀t ∈ R

arφ1(t) + brφ2(t) ≤ amφ1(t) + bmφ2(t) (4.47)

that is, the signals corresponding to points in triangle ABC are more positive than

those in BOC.

Consider selecting points uniformly and independently over Υε ∩ Ψ?(p/2) with

resulting probability of negative excursion P(Xa(q) < 0). Additionally, consider

splitting the elemental probability associated to every point in triangle BOC with its

mirrored counterpart in triangle ABC. Clearly, this results in points being selected

uniformly and independently over Υε ∩ Πε(p). In addition, since every mirror point

is necessarily more positive, as noted in (4.47), the likelihood of negative excursion,

i.e., P(Xp(q) < 0), must be reduced.

Theorem 2. If Ω ⊆ Υε ∩ Πε(p) is symmetric about both φ1-axis and Ψ?(p/2), and

points are chosen independently and equiprobably then

P(Xp(q) < 0) = P(Xp(q) > pφ̂1) .

Proof. Since Ω is symmetric about φ1-axis and Ψ?(p/2), Ω is an affine transform of

itself, i.e. Ω = −Ω + p~φ1, where ~φ1 is a unit vector in φ1 direction. Thus, following
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are equivalent events

P(Xp(q) < 0) = P(−Xp(q) > 0)

= P(−Xp(q) + pφ̂1 > pφ̂1)

= P(Xp(q) > pφ̂1)

where the last step arises since
∑

i φ1(t− iT ) = φ̂1 [61].

Since the events {Xp(q) < 0} and {Xp(q) > pφ̂1} are disjoint, the likelihood of

their union is the sum of probabilities. Additionally, via Thm. 2, the likelihood of the

two events are identical.

Finite Series Approach

An approximation of P(Xp(q) < 0) can be computed via [55], as in Sec. 4.2.1, using

a finite series under both non-negativity and peak optical power constraints. The

minimum and maximum possible value of Zi(q) for a given q and ε can also be

obtained via linear programming

minimize/maximize ϕ1,i(q)ai + ϕ2,i(q)bi (4.48)

subject to (ai, bi) ∈ Υε ∩ Πε(p) . (4.49)

Fig. 4.8 illustrates the linear programming of ϕ1,i(q)ai + ϕ2,i(q)bi with the con-

straint (ai, bi) selected from region Υε∩Πε(p) for any given q and ε > 0. The maximum

possible value of Zi(q), i.e. upper limit of the support, is obtained corresponding to
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Figure 4.8: Linear programming of ϕ1,i(q)ai + ϕ2,i(q)bi subject to the constraint
(ai, bi) ∈ Υε ∩ Πε(p) for a fixed q and ε.

the red solid line. Similarly, the lower limit, left mode, and right mode points corre-

spond to the dashed-dot, dot, and dashed lines respectively. From a geometric view,

it is clear that each Zi in this case has an isosceles trapezoidal distribution [66] as

illustrated in Fig. 4.9. Hereafter, q is omitted for simplicity.

The characteristic function of each Zi can be shown to take the for

ψi(ν) =
ξi
ν2

[
ejm

1
i ν − ejpliν

m1
i − pl

i

− ejp
u
i ν − ejm2

i ν

pu
i −m2

i

]
(4.50)

where we define

γi =
p

2
(ϕ1,i − ε |ϕ2,i|)

ρi =
p

2
(ϕ1,i + ε |ϕ2,i|)
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Figure 4.9: pdf of trapezoidal distributed Zi, i ∈ {−1, 0, 1, 2} for a fixed ε = 0.5,q =
0.4,and T = 1. Applying the continuous approximation, each (ai, bi) is selected
uniformly and independently from Υε ∩ Πε(2).

and parameters ξi = 2/(pu
i + m2

i − m1
i − pl

i), p1 = min (0, γi), p2 = max (ρi, pφ1,i),

m1 = max (0, γi), and m2 = min (ρi, pφ1,i) are the lower limit, upper limit, left mode,

and right mode point of Zi. A similar series approximation can also be formulated to

compute P(Xp > pφ̂1) as (4.44).
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Figure 4.10: Comparison of P(Xp(q) < 0 ∪ Xp(q) > pφ̂1) as a function of ε for a
fixed q ∈ {0.1, 0.2, 0.3, 0.4, 0.5} using Monte-Carlo simulations and finite series with
NT = 128. Symbols are selected independently and equally likely over Υε ∩ Πε(p).

Simulation Results

In this part, only finite series approach is utilized to compute the approximation of

likelihood of clipping under the peak amplitude constraint.

Fig. 4.10 presents P(Xp < 0 ∪ Xp > pφ̂1). The parameters used for these

results are identical to those in Sec. 4.2.1. Notice that the results from Monte-Carlo

simulations closely match those computed via the series approximation. The results

have a similar behaviour to P(Xa < 0) in Fig. 4.6 with the likelihood of clipping

rising with increasing ε and having a maximum for q = 0.5.

Comparing Fig. 4.6a to Fig. 4.10, for a given q and ε, it is apparent that P(Xa <
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0) > P(Xp < 0 ∪ Xp > pφ̂1) which is in fact a stronger bound than that in Thm. 1.

4.3 Summary

In this chapter, essentially non-negative and peak-limited lattice codes under average

and peak amplitude constraints are defined for IM/DD channels. Asymptotic average

and peak optical power efficiency in the limit Pe → 0 and spectral efficiency applying

the continuous approximation are derived. All the computations are based on the

assumption that the clipping distortion introduced into system is negligible.

The likelihood of clipping under average and peak optical power constraints are

computed. Three different inequalities are applied to numerically compute the upper

bound of P (x(t) < 0) under average optical power constraint and it is shown that

Bhattacharyya’s inequality provides the tightest bound. The results applying finite

series approach to compute the approximation of likelihood of clipping under average

and peak amplitude constraints match closely to the Monte-Carlo simulation results

and the running time of this method is tolerable. In Chap. 5, numerical system

simulations and its performance analysis will be presented.
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Chapter 5

Performance Analysis

This chapter presents examples of essentially non-negative lattice codes formed via

the intersection of a two-dimensional hexagonal lattice A2,

(a, b) = dmin · (m,n)

 1 0

1/2
√

3/2

 , (m,n) ∈ Z2


and bounded region defined in Chap. 3.2 or 3.3 depending on different constraints.

Notice that the fundamental volume of the lattice is V (A2) =
√

3
2
d2

min. Non-negative

M -PAM using S2, parametric linear (PL) [67] and raised-cosine (RC) Nyquist pulses

with sampling receiver in [32] are also presented as reference schemes. The impact of

clipping distortion is quantified through Monte-Carlo simulations under both average

and peak amplitude constraints.
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5.1 Results under Average Optical Power Constraint

In this part, Monte-Carlo simulation results are presented to analyze the signaling

scheme performance under average optical power constraint. DC bias is introduced

to reduce the clipping distortion but increase the radiated optical power as well.

Thus, the trade-off between power efficiency and impact of clipping distortion is also

quantified in this part.

5.1.1 Performance without Added DC Bias

Figure 5.1 presents the average optical power gain (4.3) versus spectral efficiency (4.1)

for reference schemes and essentially non-negative hexagonal lattice codes. Notice

that the strict non-negativity constraint is satisfied for schemes of M -PAM using PL

and RC pulses by adding DC bias. S2 M -PAM scheme implies the inherent non-

negativity since S2 pulse is non-negative for all t. Thus, the three reference schemes

are not impacted by the clipping process of the optical modulator model (2.5). All

discrete constellations points were constructed following (4.2) using the A2 lattice

with translate t = 0.

To estimate P o for the discrete constellations, Monte-Carlo simulations were per-

formed in MATLAB [68]. Constellation points were selected independently and

equiprobably from Ωa and a ten times oversampled estimate of x(t) is generated

via (2.4). All negative amplitude excursions of the resulting x(t) are clipped at zero

following (2.5). In addition, the basis functions and receive filters are truncated to

NT = 512 one-sided lobes. The average optical power gain is numerically computed

via (4.3) and quantifies the excess optical power needed over the baseline to achieve

a bit error rate of Pe ≈ 10−6. The spectral efficiency for the discrete essentially
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Figure 5.1: Average optical power gain versus spectral efficiency using essentially non-
negative hexagonal lattice codes for Pe ≈ 10−6 without added DC bias, ε = {0.3, 0.4}.

non-negative lattice codes is computed using the definition in (4.1).

The solid red circles represent the power versus spectral efficiency using the scheme

of one-dimensional M -PAM with S2 pulse and sampling receiver. The black and

blue dashed curves represent the power versus spectral efficiency using the M -PAM

PL and M -PAM RC schemes, respectively, where M ∈ {2, 4, 8, 16}. The average

optical power gain for M -PAM PL and RC schemes are plotted using the closed form

expressions in Tavan’s paper [32] and by varying the excess bandwidth parameter.

The magenta and green solid lines are the asymptotic average optical power gain

versus spectral efficiency curves using the hexagonal lattices for ε = 0.3 and ε = 0.4,
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respectively. The continuous approximation (Ct.App.) is applied to compute the

asymptotic average optical power gain (4.9) and spectral efficiency (4.10) under the

assumption of negligible clipping impact for the computation of such asymptotic

curves. The magenta and green discrete plots are the numerically computed average

optical power gain using hexagonal lattice codes versus spectral efficiency by taking

the clipping into consideration for ε = 0.3 and ε = 0.4, respectively.

From Fig. 5.1, essentially non-negative hexagonal lattice codes have an average

optical power gain over previous approaches. Comparing to M -PAM scheme using the

S2 pulse, a gain of more than 3 dB can be achieved for ε = 0.4 when η > 3.8 bit/s/Hz

and similar gains are achieved for ε = 0.3 when η > 4.6 bit/s/Hz. Notice that the

power gain of essentially non-negative lattice codes over M -PAM S2 scheme increase

rapidly with rising spectral efficiency.

For strictly non-negative PL and RC PAM schemes, essentially non-negative lat-

tice codes are more power efficient especially for large η. The gain of essentially

non-negative lattice over PL PAM scheme can be obtained for ε = 0.4 when η > 2.5

and for ε = 0.3 when η > 3.9. At a spectral efficiency of approximately 5.9, essen-

tially non-negative lattice codes realize an approximate 2 dB gain over 16−PAM PL

scheme for ε = 0.4. Notice that the gain of essentially non-negative lattice codes over

RC and PL techniques also grows with increasing η.

For comparison, the asymptotic average optical power gains are plotted in Fig. 5.1

versus spectral efficiency (4.10). Notice also, that as expected, the continuous ap-

proximation is loose for small η and becomes increasingly accurate for higher spectral

efficiencies, i.e. larger size of constellation. These approximations may, thus, be useful

in estimating optical power gain in VLC systems which are bandlimited and operate
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Figure 5.2: Normalized histogram of Xa(q)/(E [ai]φ1) using a discrete constellation
constructed by essentially non-negative hexagonal lattices for a given q = 0.5 and
ε = 0.4 at η = 5.91.

at high spectral efficiencies.

To visualize the impact of clipping distortion, Fig. 5.2 presents an example of

the normalized histogram of Xa(q)/(E [ai]φ1) for a discrete constellation for a fixed

q = 0.5 and ε = 0.4 at spectral efficiency η = 5.91 (i.e., |Ωa| = 60). The conditions

of the simulation are identical to those used to compute the average optical power

gain in Figure 5.1 to achieve a BER of 10−6. Notice that the likelihood of negative

excursion for this discrete constellation is approximately 8 × 10−5. This is in close

agreement to the estimate of 2× 10−5 in Fig. 4.6 which was found via the continuous

approximation.
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5.1.2 Performance with Added DC Bias

The selection of ε is a critical parameter governing the performance of our scheme.

Larger ε increases the spectral efficiency by providing more degrees of freedom for

modulation and thus increasing |Ωa|. However, clipping distortion also increases with

larger ε as evidenced by the increase of P(Xa(q) < 0) in Fig. 4.6. In particular,

we have noticed that clipping distortion becomes sufficiently severe to eliminate any

gains over previous approaches for ε ≥ 0.5.

An intuitive approach to reduce the impact of clipping distortion is to decrease

the likelihood of negative amplitude excursion under average amplitude constraint.

This can be realized via adding a constant bias component µ0 to electrical current

signal x(t). Fig. 5.3 presents a normalized histogram of Xa(q)/(E [ai]φ1) for a given

q = 0.5 and ε = 0.4 with NT = 128 applying the continuous approximation without

added DC bias. Each symbol (ai, bi) in Monte-Carlo simulations is assumed to be

selected independently and uniformly from region Υε ∩ Ψ?(h). Since ai satisfies a

triangular distribution, E [ai] = 2h/3 [57].

The clipping distortion is indeed reduced by increasing DC component. However,

this part of constant bias does not carry any information but increases the instan-

taneous radiated optical power. Thus, the average optical power efficiency decreases

with increasing bias and there exists a trade-off between clipping distortion and av-

erage optical power efficiency.

Denote xb(t) as the current signal generated in (2.4) plus a DC bias µ0. Since
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Figure 5.3: Normalized histogram of Xa(q)/(E [ai]φ1) for a given q = 0.5 and ε = 0.4
with NT = 128 by applying the continuous approximation without added DC bias.

∑
i φ1(t− iT ) =

√
2/T = φ1,

xb(t) = µ0 +
∞∑

i=−∞

aiφ1(t− iT ) + biφ2(t− iT ) (5.1)

=
∞∑

i=−∞

(ai + µ0/φ1)φ1(t− iT ) + biφ2(t− iT ) . (5.2)

The geometric interpretation of adding bias µ0 to x(t) in the above equation is

the up-shifting of constellation Ωa by µ0/φ1 in φ1-axis. Since µ0 is a constant, the

pdf of xb(t) in (5.1) is definitely right-shifted of the pdf of x(t) in (2.4) by µ0 for a

fixed t. Thus, the likelihood of negative amplitude excursion is decreased via adding
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Figure 5.4: Likelihood of negative amplitude excursion as a function of normalized
DC bias for a given q = 0.5 and ε ∈ {0.3, 0.4, 0.5, 0.6}.

DC bias.

To compute the likelihood of clipping after adding bias, define

Xa
b(q) = Xa(q) + µ0 .

Since P (Xa
b(q) < 0) = P (Xa < −µ0), the likelihood of negative amplitude excursion

with DC bias can be computed directly via substituting λ = −µ0 into (4.42).

Fig. 5.4 presents the likelihood P (Xa
b(q) < 0) as a function of normalized bias for

a given q = 0.5 and variety of ε applying continuous approximation, where (ai, bi)

is selected independently and uniformly from Υε ∩ Ψ?(h), h > 0. For ε = 0.5, the
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Figure 5.5: Average optical power gain versus spectral efficiency using essentially
non-negative hexagonal lattice codes for Pe ≈ 10−6, no DC bias for ε ∈ {0.3, 0.4} and
DC bias is added for ε = 0.5.

likelihood of negative amplitude excursion is improved from approximate 5 × 10−4

without added DC component to 10−5 by adding µ0 ≈ 0.12hφ1. For a given ε, bit

error rate, and constellation set, there exists an optimal DC bias, which provides the

maximum possible average optical power gain. This optimization is difficult to solve

analytically but simple to implement numerically.

Fig. 5.5 presents the average optical power gain versus spectral efficiency using

essentially non-negative hexagonal lattice codes to achieve Pe ≈ 10−6 with and with-

out added DC bias. The magenta and green discrete plots are power versus spectral

74



M.A.Sc. Thesis - Dingchen Zhang McMaster - Electrical Engineering

efficiency for ε = 0.3 and ε = 0.4 without added DC bias, respectively, as the same

in Fig. 5.1. The red triangular plots represent the average optical power gain versus

spectral efficiency with a numerically searched optimal DC bias at each different η.

For example, the sub-figure illustrates the average optical power gain versus normal-

ized DC bias for a given Pe ≈ 10−6, ε = 0.5, and η = 5. The optimal normalized

bias is approximate 0.036 and the achieved average optical power gain over baseline

is −10.21 dB.

In addition, the discrete orange circles are the asymptotic average optical power

gain as Pe → 0 versus spectral efficiency using essentially non-negative hexagonal

lattice codes under assumption of negligible clipping distortion for ε = 0.5 without

added DC bias. This asymptotic average optical power gain of hexagonal lattice takes

the form,

P o,gain(Ωa)
∣∣
Pe→0

=
1

2E [ai/dmin(Ωa)]
.

where ai is the component of each lattice code in φ1-axis. The gain over M -PAM PL

scheme can be achieved for ε = 0.5 by adding an optimal DC bias at η > 2.5. For

example, a gain of 0.5 dB over 4-PAM PL scheme is obtained at η = 3.46. The result

using hexagonal lattice with optimal bias is close to the asymptotic average optical

power gain and thus the clipping distortion does not impact the power efficiency a

lot. Additionally, an approximate 1.3 dB and 1.1 dB gain over 8-PAM PL scheme

is achieved at η = 4 and η = 5, respectively. For η > 5, the power efficiency

performance by adding bias for varepsilon = 0.5 is close to that without DC bias for

ε = 0.4. However, schemes using essentially non-negative lattice codes with optimal

DC bias for ε = 0.5 are still more power efficient than those for ε = 0.4 without bias.

Notice also, that there is still an approximate 2.1 dB gain over 16-PAM PL scheme
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at η = 5.91 for ε = 0.5 with bias.

5.2 Results under Peak Optical Power Constraint

In a similar fashion to Chap. 5.1, the gain of essentially peak-limited lattice codes

over existing techniques is given in Fig. 5.6. The lattice codes are constructed as in

(4.11) using the region Υε ∩ Πε(p) and ensuring that there exists one lattice at peak

vertex, i.e (p, 0). This was done to ensure the symmetry of the constellations and to

ensure that the peak optical power of the lattice scheme is pφ̂1.

For strictly non-negative schemes M -PAM using S2, PL and RC pulses, the peak

optical power gain is equivalent to the average optical power gain due to constella-

tion symmetricity [32, Thm.4]. This statement is also true for the essentially peak-

limited lattice codes in this thesis under the assumption that the likelihood of clipping

P(x(t) < 0∪x(t) > pφ̂1) is negligible and the lattice constellation is strictly symmetric

about φ1-axis and Πε(h/2).

Fig. 5.6 illustrates the simulation results of peak optical power gain versus the

spectral efficiency for a fixed ε and Pe ≈ 10−6. These results were obtained in the

same manner as described in Sec. 5.1 using the negative and peak amplitude clipping

modulation model in (2.10).

Notice that when η > 4, essentially peak-limited lattice codes have a significant

peak optical power gain over the S2 M -PAM scheme for ε ∈ {0.3, 0.4, 0.5}. For

η > 3.5, gains over 4-, 8-, and 16-PAM schemes using the PL pulse are realized.

In general, the peak optical power gains of the designed hexagonal lattice codes

increase with η. For example, for ε = 0.5 and η > 6, essentially peak-limited lattice

codes provide more than 2 dB gain over the 16-PAM PL scheme. Notice additionally
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Figure 5.6: Peak optical power gain versus spectral efficiency using essentially peak-
limited hexagonal lattice codes for ε ∈ {0.3, 0.4, 0.5} and reference schemes for a given
Pe ≈ 10−6.

that the performance of the discrete essentially peak-limited lattice codes is closely

predicted at high η by (4.13) and (4.14) derived in Chap. 4 by applying the continuous

approximation.

Another important feature to note is that larger values of ε can be used to con-

struct essentially peak-limited lattice codes than for the average optical power con-

straint in Sec. 5.1. Indeed, this fact is clear since for a given ε, the likelihood of

clipping is smaller in the peak-limited case as seen in Figs. 4.6 and 4.10.

The normalized histogram of Xp(q)/(pφ̂1) at q = 0.5 is plotted in Fig. 5.7 for
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Figure 5.7: Normalized histogram of Xp(q)/(pφ̂1) using a discrete constellation con-
structed by essentially peak-limited hexagonal lattices for a given q = 0.5 and ε = 0.4
at η = 5.97.

ε = 0.4 and spectral efficiency η = 5.97 (i.e., |Ωp| = 63). The simulation to compute

the histogram was done with identical conditions as for those in Fig. 5.6. The re-

sulting distribution is symmetric and has approximately equal likelihood of clipping

on negative and positive sides (as required in Thm. 2). Additionally, this plot nu-

merically validates Thm. 1 which demonstrates that essentially peak-limited lattice

codes are less likely to have negative amplitude clipping than those design for average

optical power limited channels.
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5.3 Summary

In this chapter, some two-dimensional lattice codes constructed by the intersection

of hexagonal lattice and bounded region under average and peak optical power con-

straints are presented. Performance of the modulation schemes is examined by run-

ning Monte-Carlo simulations. Average and peak optical power gain over baseline

versus spectral efficiency for a Pe ≈ 10−6 using hexagonal lattice modulation schemes

are analyzed and compared to previous studied works in [32].

Under average optical power constraint and without added constant bias, an ap-

proximate 2 dB average optical power gain is obtained over 16-PAM PL scheme with

added DC bias for a signal space parameter ε = 0.4 and power efficiency η ≈ 5.91.

The impact of clipping distortion rises with increased ε and severely decreases the

power efficiency for ε ≥ 0.5. The clipping distortion can be reduced by adding a DC

bias but with the price of higher radiated optical power. There exists a trade-off be-

tween clipping distortion and average optical power efficiency. By adding an optimal

DC bias, an approximate 1.1 dB gain over 8-PAM PL scheme is obtained for ε = 0.5

and η = 5 and 2.1 dB gain over 16-PAM PL scheme is achieved for ε = 0.5 and

η ≈ 5.93. Compared to the non-bias scheme for ε = 0.4 at η ≈ 5.91, an approximate

0.1 dB gain by adding optimal DC bias for ε = 0.5 is achieved.

Under peak optical power constraint, a more than 2 dB peak optical power gain

is obtained over 16-PAM PL scheme under high spectral efficiency regime, e.g. η > 6,

for a given ε = 0.5. Larger ε can be selected to construct lattice codes under peak

optical power constraint than for the average optical power constraint.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a novel method is proposed for signaling on bandlimited optical intensity

channels under average and peak optical power constraints. By relaxing the strict

non-negativity constraint on intensity channels, a degree of freedom is added to the

S2 PAM scheme to improve the power and spectral efficiency with comparison to

previously studied schemes. These essentially non-negative and peak-limited lattice

codes satisfy the channel constraints with high probability. In fact, the likelihood

that the lattice codes violate channel constraints are included in the design of the

signal space. A tractable numerical method based on finite series is then applied to

compute the likelihood of clipping.

To compare the proposed schemes with previously designed cases, asymptotic

power gains and spectral efficiencies are estimated by applying continuous approxi-

mation. Several essentially non-negative and essentially peak-limited discrete hexag-

onal lattice constellations are designed and their performance using clipping models
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is quantified via Monte-Carlo simulations.

Under an average optical power constraint, for a given error tolerance Pe ≈ 10−6

and ε = 0.4, the essentially non-negative lattice codes have more than a 2 dB optical

power gain over previous approaches with gain increasing as η. The impact of clipping

distortion on system performance is shown to be negligible for ε < 0.4. Larger ε

provides more degrees of freedom efficiency but at the cost of increased negativity.

Under a peak optical power constraint and for a given ε, the likelihood of negative

excursion is significantly smaller than that under an average optical power constraint

with the same ε. The designed essentially peak-limited lattice codes show a significant

gain in peak power gain over previous schemes which become significant at high η.

These results are especially significant for a variety of bandwidth constrained

IM/DD channels which have sufficient signal-to-noise ratios to operate reliably at high

spectral efficiencies. In particular, VLC channels have these features and future work

includes prototyping the designed essentially non-negative and peak-limited schemes

for visible light communications.

6.2 Future Work

The thesis is a starting point for multi-dimensional modulation design for bandlimited

optical intensity channel. Here are some suggestions for the future work:

• How to model the clipping distortion under average and peak optical power

constraints is a challenge since clipping distortion is generating due to intensity

modulator and closely correlated to the electrical current signal. Finding a

model to approximate clipping distortion and take it into account for maximum

likelihood detection.
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• The sampling receiver in the thesis is sub-optimal since no matched filter is uti-

lized. The basis function φ2(t) is also a root-Nyquist pulse and its corresponding

matched filter can be applied. However, the cross-correlation of filter outputs

must be considered and the realization complexity should be measured.

• The likelihood of clipping under average optical power constraint is periodic

with period T and even symmetric about t = (k + 1/2)T, k ∈ Z. A periodic

non-DC bias can be added to electrical current at transmitter to reduce the

clipping distortion. The additional power consumption by adding non-DC bias

is required to be less than using DC bias. Finding an optimized bias to improve

power efficiency over previous studied work for high spectral efficiency.

• Designing higher order dimensional signal space and modulation schemes to

increase system spectral efficiency.

• All the simulations and power gain in thesis are uncoded results. Designing

channel coding/decoding schemes, such as LDPC code, to improve the BER

performance.
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Appendix A

Variance, Skewness, and Kurtosis

of Xa and R

This appendix presents detailed derivation of the variance, skewness and Pearson

measure of kurtosis of Xa(q) and R(q) applying continuous approximation for a given

q ∈ (0, 0.5] and ε > 0. To compute the skewness and kurtosis, closed-forms of the

third and fourth central moments of Xa(q) are presented.

For notation simplicity, q is omitted hereafter. Each (ai, bi) is assumed to be

independently and uniformly selected over the bounded region Υε ∩ Ψ?(1). Recall

that R = Xa − S, where S =
∑

j∈V Zj and Zi = aiφ1,i + biφ2,i. Notice that ai and

bi subject to triangular distributions as discussed in Chap. 4.2, their expectation and
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variance can be computed via [69,70],

E [ai] =
2

3
(A.1)

E [bi] = 0 (A.2)

Var [ai] =
1

18
(A.3)

Var [bi] =
ε2

6
(A.4)

which will be applied throughout this appendix.

A.1 Variance of Xa and R

Since the variance of a sum of independent RVs is equal to the sum of variance of

each individual [71, Eq.(2.16)],

Var [Xa] =
∞∑

i=−∞

Var [Zi] (A.5)

Var [R] = Var [Xa]−
∑
j∈V

Var [Zj] (A.6)

where {Zi} is mutual independent. The variance of Zi can be written as

Var [Zi] = Var [ai]ϕ
2
1,i + Var [bi]ϕ

2
2,i + 2ϕ1,iϕ2,iµ1,1(ai, bi) (A.7)
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where µ1,1(X, Y ) is the (1, 1) bivariate moment about the mean (E [X] ,E [Y ]), or

equivalent to the covariance of X and Y . Thus,

µ1,1(ai, bi) = E [aibi]− E [ai] E [bi]

= 0 (A.8)

where the last step arises since E [bi] = 0 and conditional expectation equation

E [aibi] = E [E [aibi|ai]] = 0. In addition, since bi|ai is symmetrically distributed

over [−εai, εai], µn,1(ai, bi) = 0 for any integer n ≥ 1.

The variance of Zi can be obtained via substituting (A.3),(A.4) and (A.8) into

(A.7),

Var [Zi] =
ϕ2

1,i

18
+
ε2ϕ2

2,i

6
. (A.9)

Thus, the variance of Zi can be simplified as

Var [Xa] =
1

18

∞∑
i=−∞

ϕ2
1,i +

ε2

6

∞∑
i=−∞

ϕ2
2,i . (A.10)

The terms
∑∞

i=−∞ ϕ
2
1,i and

∑∞
i=−∞ ϕ

2
2,i can be obtained from poly-Gamma functions

[72, Chp.6.4] [73] which take the forms :

ψ(n)(m) = (−1)n+1n!
∞∑
k=0

(m+ k)−n−1 m 6= 0,−1,−2, . . .

ψ(n)(1−m) + (−1)n+1ψ(n)(m) = (−1)nπ
dn

dmn
cot (πm)
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where ψ(n)(z) is the n-th derivative of Digamma function ψ(z). Thus,

∞∑
k=−∞

1

(k +m)n+1
=

(−1)nπ

Γ(n+ 1)

dn

dmn
cot (πm) (A.11)

where Γ(n + 1) = 1 · 2 · 3 · · · (n − 1)n = n! is the Gamma function. Summations∑
i(q − i)−2 and

∑
i(q − i)−4 can be computed using (A.11),

∞∑
i=−∞

1

(q − i)2
= −π d

dq
cot πq =

π2

sin2 πq
, (A.12)

∞∑
i=−∞

1

(q − i)4
=
−1

3!
π
d3

dq3
cotπq

=
π4 (2 cos2 πq + 1)

3 sin4 πq
. (A.13)

Using (A.12) and (A.13),

∞∑
i=−∞

ϕ2
1,i =

sin4 πq

π4
φ

2

1

∞∑
i=−∞

1

(q − i)4
=

2 cos2 πq + 1

3
φ

2

1 , (A.14)

∞∑
i=−∞

ϕ2
2,i =

4π2

3

sin4 πq

π4
φ

2

1

∞∑
i=−∞

1

(q − i)2
=

4 sin2 πq

3
φ

2

1 . (A.15)

Thus, substituting (A.14) and (A.15) to (A.10) ,

Var [Xa] =
φ

2

1

54

(
2 cos2 πq + 1 + 12ε2 sin2 πq

)
. (A.16)

Substituting (A.16) into (A.6), the variance of R takes the form as

Var [R] =
φ

2

1

54

(
2 cos2 πq + 1 + 12ε2 sin2 πq

)
−
∑
j∈V

φ2
1,j

18
−
∑
j∈V

ε2φ2
2,j

6
. (A.17)
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A.2 Skewness of Xa and R

Skewness is a measure of symmetry. The negative skew means the left tail of distri-

bution is longer, or more precisely, the mass of the distribution is concentrated on

the right. Similarly, the positive skew means the right tail of distribution is longer

and a zero skew indicates the distribution is strictly symmetric. From definition, the

skewness of Xa is its third standardized moment in the form as

Skew [Xa] =
µ3(Xa)

Var [Xa]3/2
(A.18)

where µ3(·) denotes the third central moment. An additivity property holds for the

third central moment [74] that

µ3(A+B) = µ3(A) + µ3(B) provided A,B are independent.

Since {Zi} is mutual independent ,

µ3(Xa) =
∞∑

i=−∞

µ3(Zi) (A.19)

µ3(R) = µ3(Xa)−
∑
j∈V

µ3(Zj) (A.20)

where the third central moment of each Zi can be written as the

µ3(Zi) = ϕ3
1,iµ3(ai) + ϕ3

2,iµ3(bi) + 3ϕ2
1,iϕ2,iµ2,1(ai, bi)

+ 3ϕ1,iϕ
2
2,iµ1,2(ai, bi) .

(A.21)

Notice that µ3(bi) = 0 since bi has a symmetric distribution and µ2,1(ai, bi) = 0. The
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third order central moment of ai is

µ3(ai) =

∫ 1

0

2a(a− 2

3
)3da = − 1

135
. (A.22)

The term µ1,2(ai, bi) can be calculated as follow:

µ1,2(ai, bi) = E
[
(ai − E [ai])(bi − E [bi])

2
]

= E
[
aib

2
i

]
− E [ai] E

[
b2
i

]
=

∫ 1

0

∫ εa

−εa

1

ε
ab2dbda− 2

3

ε2

6

=
ε2

45
. (A.23)

Thus (A.19) can be simplified as

µ3(Xa) = − 1

135

∞∑
i=−∞

ϕ3
1,i +

ε2

15

∞∑
i=−∞

ϕ1,iϕ
2
2,i (A.24)

where

∞∑
i=−∞

ϕ3
1,i = φ

3

1

sin6 πq

π6

∞∑
i=−∞

1

(q − i)6
, (A.25)

∞∑
i=−∞

ϕ1,iϕ
2
2,i = φ

3

1

4π2 sin6 πq

3π6

∞∑
i=−∞

1

(q − i)4
. (A.26)

Using the same approach in Appendix. A.1, the closed-form of
∑

i(q − i)−6 is

∞∑
i=−∞

1

(q − i)6
=
−1

5!
π
d5

dq5
cot (πq)

=
π6 (2 cos4 πq + 11 cos2 πq + 2)

15 sin6 πq
. (A.27)
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Using (A.13)(A.25)(A.26)(A.27) and (A.24), the closed-form of third central mo-

ment of Xa is

µ3(Xa) =
φ

3

1

135

[
4ε2
(
1 + cos2 πq − 2 cos4 πq

)
− 2 cos4 πq + 11 cos2 πq + 2

15

]
.

(A.28)

Thus the skewness of Xa can be obtained by substituting (A.28) and (A.16) into

(A.18). Similarly, the third central moment of R takes the form as

µ3(R) = µ3(Xa) +
1

135

∑
j∈V

φ3
1,j −

ε2

15

∑
j∈V

φ1,jφ
2
2,j . (A.29)

In addition, the skewness of R can be computed via substituting (A.17) and (A.29)

into the definition

Skew [R] =
µ3(R)

Var [R]3/2
. (A.30)

A.3 Kurtosis of Xa and R

Kurtosis is a descriptor of the shape of a probability distribution and there are differ-

ent ways of quantifying it. In this work, the Pearson measure of kurtosis is applied

and such kurtosis is defined as

Kurt [Xa] =
µ4(Xa)

Var [Xa]2
(A.31)

where µ4(·) is the fourth central moment operator. Unlike the case of variance and

skewness, the additivity property for the sum of independent RVs does not hold for
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the fourth central moment, i.e.

µ4(Zi + Zj) 6= µ4(Zi) + µ4(Zj)

even if Zi and Zj are mutual independent. Also ϕ1,i and ϕ2,i are written as ϕ1,i and

ϕ2,i, respectively. Expand the Xa in terms of infinite sum of Zi,

µ4(Xa) = E
[
(Zi − E [Zi])

4]
=

∞∑
i=−∞

µ4(Zi) +

(
4

3

) ∞∑
i=−∞

∞∑
i<j

µ3,1(Zi, Zj) + µ1,3(Zi, Zj)

+

(
4

2

) ∞∑
i=−∞

∞∑
i<j

µ2,2(Zi, Zj)

+

(
4

2

)(
2

1

) ∞∑
i=−∞

∞∑
i<j

∞∑
j<k

µ2,1,1(Zi, Zj, Zk)

+

(
4

2

)(
2

1

) ∞∑
i=−∞

∞∑
i<j

∞∑
j<k

µ1,2,1(Zi, Zj, Zk)

+

(
4

2

)(
2

1

) ∞∑
i=−∞

∞∑
i<j

∞∑
j<k

µ1,1,2(Zi, Zj, Zk)

+

(
4

1

)(
3

1

)(
2

1

) ∞∑
i=−∞

∞∑
i<j

∞∑
j<k

∞∑
k<l

µ1,1,1,1 (Zi, Zj, Zk, Zl)

(A.32)

where
(
n
r

)
denotes combination, µi,j,k and µi,j,k,l are multivariate moments which are

defined as

µi,j,k(X, Y, Z) = E
[
(X − E [X])i(Y − E [Y ])j(Z − E [Z])k

]
µi,j,k,l(W,X, Y, Z) = E

[
(W − E [W ])i(X − E [X])j(Y − E [Y ])k(Z − E [Z])l

]
Notice that all the multivariate moment terms except for µ2,2(Zi, Zj) in (A.32)
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are zero since {Zi} are mutual independent. Thus the fourth central moment of Xa

and R can be simplified as

µ4(Xa) =
∞∑

i=−∞

µ4(Zi) + 6
∞∑

i=−∞

∞∑
i<j

µ2,2(Zi, Zj) , (A.33)

µ4(R) =
∑
i/∈V

µ4(Zi) + 6
∑
i/∈V

∑
i<j,j /∈V

µ2,2(Zi, Zj) . (A.34)

For close-form of
∑

i µ4(Zi), since any triangularly distributed RV has a constant

kurtosis 12/5 [75] and Kurt [Zi] = µ4(Zi)/Var [Zi]
2,

∞∑
i=−∞

µ4(Zi) =
∞∑

i=−∞

Kurt [Zi] Var [Zi]
2

=
2

5

∞∑
i=−∞

[
ϕ4

1,i

54
+
ε2ϕ2

1,iϕ
2
2,i

9
+
ε4ϕ4

2,i

6

]
. (A.35)

Similarly, terms
∑

i φ
4
1,i,
∑

i φ
2
1,iφ

2
2,i, and

∑
i φ

4
2,i can be computed using the same

approach, i.e. poly-Gamma function, as in Appendix. A.2 and A.1,

∞∑
i=−∞

ϕ4
1,i = φ

4

1

sin8 πq

π8

(−π)

7!

d7

dq7
cot πq

=
φ

4

1

315

(
4 cos6 πq + 114 cos4 πq + 180 cos2 πq + 17

)
, (A.36)

∞∑
i=−∞

ϕ2
1,iϕ

2
2,i = φ

4

1

4π2

3

sin8 πq

π8

∞∑
i=−∞

1

(q − i)6

=
4φ

4

1 sin2 πq

45

(
2 cos4 πq + 11 cos2 πq + 2

)
, (A.37)

∞∑
i=−∞

ϕ4
2,i = φ

4

1

16π4

9

sin8 πq

π8

∞∑
i=−∞

1

(q − i)4

=
16φ

4

1 sin4 πq

27

(
2 cos2 πq + 1

)
. (A.38)

91



M.A.Sc. Thesis - Dingchen Zhang McMaster - Electrical Engineering

Thus, the closed-form of
∑

i µ4(Zi) is obtained by substituting (A.36)–(A.38) into

(A.35).

For computation of
∑

i=

∑
i<j µ2,2(Zi, Zj), since Zi and Zj are independent,

∞∑
i=−∞

∞∑
i<j

µ2,2(Zi, Zj) =
∞∑

i=−∞

∞∑
i<j

Var [Zi] Var [Zj]

=
∞∑

i=−∞

∞∑
i<j

ϕ2
1,iϕ

2
1,j

324
+

ε2

108

(
ϕ2

1,iϕ
2
2,j + ϕ2

1,jϕ
2
2,i

)
+
ε4ϕ2

2,iϕ
2
2,j

36
(A.39)

where

∞∑
i=−∞

∞∑
i<j

ϕ2
2,iϕ

2
2,j =

φ
4

116π4

9

sin8 πq

π8

∞∑
i=−∞

∞∑
i<j

1

(q − i)2(q − j)2
, (A.40)

∞∑
i=−∞

∞∑
i<j

ϕ2
1,iϕ

2
2,j =

φ
4

14π2

3

sin8 πq

π8

∞∑
i=−∞

∞∑
i<j

1

(q − i)4(q − j)2
, (A.41)

∞∑
i=−∞

∞∑
i<j

ϕ2
1,jϕ

2
2,i =

φ
4

14π2

3

sin8 πq

π8

∞∑
i=−∞

∞∑
i<j

1

(q − i)2(q − j)4
, (A.42)

∞∑
i=−∞

∞∑
i<j

ϕ2
1,iϕ

2
1,j = φ

4

1

sin8 πq

π8

∞∑
i=−∞

∞∑
i<j

1

(q − i)4(q − j)4
. (A.43)

To compute the summations in (A.40) to (A.43), partial fraction expansion is

applied. For example, let F1(q) = 1
(q−i)2(q−j)2 and expand it in the form as

F1(q) =
C1

q − i
+

C2

(q − i)2
+

C3

q − j
+

C4

(q − j)2
(A.44)
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where

C1 =
dF1(q)(q − i)2

dq

∣∣∣
q=i

=
−2

(i− j)3
,

C2 = F1(q)(q − i)2
∣∣
q=i

=
1

(i− j)2
,

C3 =
dF1(q)(q − j)2

dq

∣∣∣
q=j

=
−2

(j − i)3
= −C1 ,

C4 = F1(q)(q − j)2
∣∣
q=j

=
1

(j − i)2
= C2 .

Thus

∞∑
i=−∞

∞∑
i<j

1

(q − i)2(q − j)2
= 2

∞∑
i=−∞

1

(q − i)2

∞∑
n=1

1

n2

=
π4

3 sin2 πq
.

The last step is resulted from specific value of Riemann-zeta function [76, Chp.9.54]

[77–79] that
∞∑
i=1

1

n2
=
π2

6
.

Substituting (A.45) into (A.40),

∞∑
i=−∞

∞∑
i<j

ϕ2
2,iϕ

2
2,j =

16φ
4

1 sin6 πq

27
. (A.45)

Similarly, let F2(q) = 1
(q−i)4(q−j)2 and F3(q) = 1

(q−i)2(q−j)4 . The partial fraction

expansion of F2(q) can be written as

F2(q) =
C1

q − i
+

C2

(q − i)2
+

C3

(q − i)3
+

C4

(q − i)4
+

C5

q − j
+

C6

(q − j)2
(A.46)
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where

C1 =
1

(4− 1)!

d3

dq3
F2(q)(q − i)4

∣∣∣
q=i

=
−4

(i− j)5
,

C2 =
1

(4− 2)!

d2

dq2
F2(q)(q − i)4

∣∣∣
q=i

=
3

(i− j)4
,

C3 =
d

dq
F2(q)(q − i)4

∣∣∣
q=i

=
−2

(i− j)3
,

C4 = F2(q)(q − i)4
∣∣
q=i

=
1

(i− j)2
,

C5 =
d

dq
F2(q)(q − j)2

∣∣∣
q=j

=
−4

(j − i)5
,

C6 = F2(q)(q − j)2
∣∣
q=i

=
1

(j − i)4
.

Notice that the partial fraction expansion of F3(q) can be obtained directly through

swapping i and j in (A.46). Thus,

∞∑
i=−∞

∞∑
i<j

1

(q − i)4(q − j)2
+

1

(q − j)4(q − i)2

= 2

(
∞∑

i=−∞

1

(q − i)2

∞∑
n=1

4

n4
+

∞∑
i=−∞

1

(q − i)4

∞∑
n=1

1

n2

)
.

Similarly, using the same approach as to obtain (A.45), it can be shown that

∞∑
i=−∞

∞∑
i<j

ϕ2
1,iϕ

2
2,j + ϕ2

1,jϕ
2
2,i =

8φ
4

1 sin4 πq

3

(
2 sin2 πq

45
+

2 cos2 πq + 1

18

)
, (A.47)

∞∑
i=−∞

∞∑
i<j

ϕ2
1,iϕ

2
1,j = 2φ

4

1

(
2 sin6 πq

189
+

(1 + 2 cos2 πq) sin4 πq

270

)
. (A.48)

Using (A.31) and (A.35)–(A.48), the closed-form of kurtosis of Xa is obtained. No-

tice that it is complicated to compute the closed-form of µ4(R) due to non-additivity
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property of fourth central moment. However, it is simple to numerically compute

the fourth central moment of a truncated residual sum, RNT
using (A.34). Thus, an

approximation of Kurt [R] via

Kurt [R] ≈ µ4(RNT
)

Var [RNT
]3/2

. (A.49)
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