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Abstract

Let R = (R,<,S) be an o-minimal expansion of an ordered group. In this thesis,

we define the class C of asymptotically monotone cells and we show they have the

property that, for any cell C ∈ C and for any definable, continuous, bounded function

f : C → R, it is always possible to continuously extend f “almost everywhere” to

the frontier of C. We make this notion precise using a theory of dimension for sets

definable in an o-minimal structure. This result is a generalization of a known fact

about continuous extensions of definable, continuous, bounded functions on open cells;

we show by way of counterexample that the original result does not generalize to

the class of all cells and hence that the assumption that our cells are asymptotically

monotone is required. Background on o-minimality and the theory of dimension for

definable sets is provided.
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Chapter 1

Introduction and preliminaries

O-minimality is the study of ordered structures, in the sense of first-order logic, whose

definable subsets of one variable have finitely many connected components. Remarkably,

this property turns out to imply that all definable subsets have finitely many connected

components. This fact allows for the development of a “tame” theory of topology within

the framework of such ordered structures. Naturally, one would expect that these

tameness results stemming from o-minimality have numerous applications to other

areas of mathematics; indeed, o-minimality has been successfully applied, for instance,

to Tarski’s problem of the decidability of the real field with the exponential function

(as in [1]), as well as to long-standing questions arising from Diophantine geometry

(see, e.g., [6]). The study of o-minimality and related conditions emerged from model

theory via the study of the theory of dense linear orders and the definable subsets of

its models. One of the initial motivations for studying o-minimal structures, however,

was to find a suitable generalization of semialgebraic and subanalytic geometry and

hence it is possible to view o-minimality as a subject in its own right, without explicit

reference to its place within the vast sea of model theory – this is the approach we

take in our development of the theory of o-minimal structures.

We begin by recalling the basic definitions and main results of o-minimality. Almost

nothing in this chapter will be proven; we refer the reader to [2, Chapters 1-4] for the

relevant details.
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1.1 O-minimal structures

Throughout this paper, N will denote the set of non-negative integers. Given a function

f : X → Y between two sets X and Y , we denote by gr(f) := {(x, f(x)) : x ∈ X} the

graph of f , viewed as a subset of the cartesian product X × Y .

Definition 1.1. LetR be a non-empty set. A structure on R is a sequence S = (Sn)n∈N

such that for each n ≥ 0:

(S1) Sn is a boolean algebra of subsets of Rn, i.e. Sn is a collection of subsets of Rn

which is closed under the operations of taking finite unions and complementation.

(S2) If A ∈ Sn, then R× A and A×R belong to Sn+1.

(S3) The set {(x1, . . . , xn) ∈ Rn : x1 = xn} belongs to Sn.

(S4) If A ∈ Sn+1, then π(A) ∈ Sn where π : Rn+1 → Rn is the projection

(x1, . . . , xn, xn+1) 7→ (x1, . . . , xn)

onto the first n coordinates.

In this case we also say that (R,S) is a structure. Given a structure S on R and a set

A ⊆ Rn, we say that A is definable in S (or just definable if S is clear from context) if

A ∈ S. We say a function f : Rn → R is definable in S if gr(f) ⊆ Rn+1 is definable.

Axioms (S1), (S2) and (S4) in the definition provide a correspondence between

the above set-theoretic operations and the standard logical operations of disjunction,

negation, existential quantification and the operation of adding free variables, while

axiom (S3) provides us with a notion of equality. We shall be interested exclusively in

structures defined on sets which are equipped with a linear order.

Definition 1.2. Let R be a non-empty set with a linear order < such that R has no

endpoints (that is, R has no maximal or minimal element with respect to <). We say

the linearly ordered set (R,<) is dense if, whenever a, b ∈ R satisfy a < b, there exists

c ∈ R such that a < c < b. Add two endpoints −∞,+∞ such that −∞ < a < +∞
for all a ∈ R. An interval is a subset of R of the form

(a, b) := {x ∈ R : a < x < b}

2
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where −∞ ≤ a < b ≤ +∞. For us, an interval will always refer to a non-empty “open”

interval as above; that is, sets of the form [a, b) with −∞ < a < b ≤ +∞, (a, b] with

−∞ ≤ a < b < +∞, or [a, b] with −∞ < a ≤ b < +∞ are not considered intervals.

Given a non-empty, densely linearly ordered set (R,<), we can equip R with the

interval topology by declaring that the intervals form a base. We then equip each

cartesian product Rn with the corresponding product topology. The base for the

product topology is given by the collection of all boxes in Rn, where a box in Rn is a

cartesian product of the form (a1, b1)× · · · × (an, bn) where (ai, bi) is an interval for

each i = 1, . . . , n. One can check that Rn is Hausdorff under this topology. Given a

set A ⊆ Rn, its topological closure is denoted by cl(A) and its topological interior in

Rn is denoted by int(A).

Definition 1.3. Let (R,<) be a non-empty, densely linearly ordered set without

endpoints. An o-minimal structure on (R,<) is a structure S on R such that:

(O1) The set {(x, y) ∈ R2 : x < y} belongs to S2.

(O2) The sets in S1 are exactly the finite unions of points and intervals.

In this case, we also say that (R,<,S) is an o-minimal structure.

Axiom (O1) allows us to define subsets of Rn using the dense linear order <, while

axiom (O2) – often referred to as the o-minimality axiom – says that the definable

subsets of R are precisely the ones obtained from quantifier-free first-order formulas

involving = and < (that is, from quantifier-free formulas in the language of dense

linear orders). We will see later that the o-minimality axiom has many significant

consequences which, for instance, eventually allow us to decompose definable sets into

finitely many definable subsets of a “nice” form.

Example 1.4. (i) (See [3, Example 1.2].) Let alg be the structure on the ordered

set of real numbers (R, <) containing the set {(x, y) ∈ R2 : x < y}, each set of

the form {r} for r ∈ R, and the graphs of + : R2 → R and · : R2 → R, viewed

as subsets of R3. Then one easily verifies that the subsets of the form

{x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gm(x) > 0}

3
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are definable, where f, g1, . . . , gm : Rn → R are real polynomials in n variables.

Finite unions of sets of this form are called semialgebraic sets ; hence the semi-

algebraic sets are definable in alg. It is a deep theorem, however, that the

semialgebraic sets are exactly the sets definable in alg. So any subset A of

R1 definable in alg is a semialgebraic set and so A must be a finite union of

points and intervals in R, which shows that the structure Ralg := (R, <, alg) is

o-minimal.

(ii) Let sine be the structure on (R, <) given by alg, together with the graph of the

sine function sin : R→ R. Then (R, <, sine) is not o-minimal, because the set

{x ∈ R : sin(πx) = 0}

is definable and is an infinite union of points in R. In general, any structure in

which the integers are definable cannot be o-minimal.

(iii) (See [3, Example 1.6].) Denote by I := [−1, 1] the closed unit interval in R. Let

an be the structure on (R, <) given by alg, together with the graphs of all the

restricted analytic functions, that is, the graphs of all the functions f : Rn → R
such that f �In is analytic and f is identically zero outside of In. Then the

structure Ran := (R, <, an) turns out to be o-minimal. This fact is highly

non-trivial and uses results from subanalytic geometry; see, for instance, [5] for

a detailed treatment of the theory of subanalytic sets.

For the rest of this chapter, we fix an o-minimal structure S on (R,<). Let

R∞ := R ∪ {−∞,+∞}.

We begin with some basic facts about o-minimal structures which we will use repeatedly,

without mention.

Lemma 1.5. (i) If A ⊆ R is definable, then inf(A) and sup(A) exist in R∞ (where

inf(A) and sup(A) denote the greatest lower bound of A and the least upper bound

of A, respectively.)

(ii) If A ⊆ Rn is definable, then so are cl(A) and int(A).

(iii) If A ⊆ B ⊆ Rn are definable and A is open in B, then there is a definable open

set U ⊆ Rn such that U ∩B = A.

4
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The usual notion of topological connectedness has a definable analogue:

Definition 1.6. A definable set A ⊆ Rn is definably connected if A is not the union of

two disjoint, non-empty, definable open subsets of A. A definably connected component

of a non-empty definable set X ⊆ Rn is a maximal definably connected subset of X.

Note that a priori is it not evident that the definably connected components of a

definable set are definable; this issue will be addressed in the next section.

Lemma 1.7. (i) The definably connected subsets of R are precisely the empty set,

the intervals, and the sets of the form (a, b], [a, b) and [a, b] described in Definition

1.2.

(ii) The image f(A) of a definably connected set A ⊆ Rn under a definable continuous

function f : A→ Rm is definably connected; in particular, definable continuous

functions have the intermediate value property.

(iii) If A and B are definably connected subsets of Rn and A∩B 6= ∅, then A∪B is

definably connected.

(iv) If A is definably connected, then so is cl(A).

For the next result, recall that an ordered group (G,<,+) is a group (G,+) equipped

with a linear order < such that, for all x, y, z ∈ G,

x < y =⇒ z + x < z + y and x+ z < y + z.

The following result heavily determines the nature of groups definable in an o-minimal

structure:

Proposition 1.8. Let (R,<,S) be an o-minimal structure and suppose S contains

group operations 0 : R0 → R and + : R2 → R such that (R,<, 0,+) is an ordered

group. Then the group (R,+) is abelian, divisible and torsion-free.

We also recall that an ordered ring (G,<, 0, 1,+, ·) is an associative ring with unity

equipped with a linear order < such that, for all x, y, z ∈ G,

(i) 0 < 1,

(ii) x < y implies x+ z < y + z (and hence z + x < z + y by the above proposition),

and

5
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(iii) x < y and z > 0 implies x · z < y · z.

An ordered field is then an ordered ring G as above with commutative multiplication,

with the additional property that for each 0 6= x ∈ G there is a y ∈ G such that

x · y = 1.

Definition 1.9. Let (R,<,S) be an o-minimal structure. We say that (R,<,S)

expands an ordered group if there are group operations 0 : R0 → R,+ : R2 → R and

− : R→ R definable in S such that (R,<, 0,+,−) is an ordered group. In this case

we also say (R,<,S) expands the ordered group (R,<, 0,+,−). Similarly, we say that

(R,<,S) expands an ordered ring (resp. field) if there are definable ring operations

0, 1 : R0 → R, +, · : R2 → R and − : R → R such that (R,<, 0, 1,+,−, ·) is an

ordered ring (resp. field). In this case we say (R,<,S) expands the ordered ring (resp.

field) (R,<, 0, 1,+,−, ·).

1.2 The cell decomposition theorem

Recall that, given two linearly ordered sets (R1, <) and (R2,≺) and a function f :

R1 → R2, we say that f is strictly increasing if x < y in R1 implies f(x) ≺ f(y) in

R2, and we say that f is strictly decreasing if x < y in R1 implies f(y) ≺ f(x) in R2;

f is strictly monotone if f is either strictly increasing or strictly decreasing.

Theorem 1.10 (Monotonicity). Let f : (a, b) → R be a definable function on the

interval (a, b) ⊆ R, where a < b. Then there is a finite set of points {a1, . . . , ak} in R

such that

a =: a0 < a1 · · · < ak < ak+1 := b

and, for each j = 0, . . . , k, the restriction of f to the subinterval (aj, aj+1) is either

constant, or strictly monotone and continuous.

The monotonicity theorem says that functions definable in an o-minimal structure

are piecewise “well-behaved,” and easily implies the following result, which yields a

quick proof that if a structure is o-minimal, then the usual trigonometric functions are

not definable. (More generally, any periodic function cannot be definable.) First, given

a function f : X → H from a set X into a Hausdorff space H together with a point

p ∈ cl(X \ {p}), we define limx→p f(x) to be the (necessarily unique) point q ∈ H such

6
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that, for every neighbourhood V of q, there is a neighbourhood U of p such that

f(U ∩ (X \ {p})) ⊆ V.

The point q is the limit of f(x) as x approaches p. Similarly, we can define the

one-sided limits limx→p− f(x) and limx→p+ f(x) when f is a function of one variable.

Corollary 1.11. Let f : (a, b) → R be definable. Then the limits limx→b− f(x) and

limx→a+ exist in R∞.

Our goal in this section is to state the fundamental theorem of o-minimality – the

cell decomposition theorem – which says that it is possible to decompose definable sets

into finitely many “cells,” each of which is a definable set of a particularly nice form.

This theorem forms the basis of much of the machinery of o-minimality; the reader is

encouraged to peruse through the latter chapters of [2] to witness some of its uses.

Let X ⊆ Rn be a definable set and denote by C(X) the set of all continuous

definable functions f : X → R. Given f, g ∈ C(X), we write f < g if f(x) < g(x)

for all x ∈ X. We also allow for the possibility that f = −∞ or g = +∞, where we

regard −∞ and +∞ as constant functions on X, and so we set

C∞(X) := C(X) ∪ {−∞,+∞}.

Given two functions f, g ∈ C∞(X), we define the interval between f and g above X to

be the (definable) set

(f, g)X := {(x, r) ∈ X ×R : f(x) < r < g(x)}.

We also refer to such a set as an interval of functions when f, g and X are clear from

context. It is a straightforward exercise to check that if X is definably connected then

(f, g)X is also definably connected, provided that f and g are continuous and definable.

Definition 1.12. Let (i1, . . . , in) be a sequence of n zeros and ones. An (i1, . . . , in)-cell

is a definable subset of Rn obtained by induction on n ≥ 1, as follows:

(i) A (0)-cell is a point {r} in R; a (1)-cell is an interval (a, b) ⊆ R.

(ii) Suppose the class of all (i1, . . . , in)-cells has been defined. An (i1, . . . , in, 0)-cell

is the graph gr(f) ⊆ Rn+1 of a function f ∈ C(X) defined on an (i1, . . . , in)-cell

7
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X ⊆ Rn. An (i1, . . . , in, 1)-cell is an interval of functions (f, g)X where X ⊆ Rn

is an (i1, . . . , in)-cell, f, g ∈ C∞(X) and f < g.

A cell in Rn is an (i1, . . . , in)-cell for some sequence (i1, . . . , in) ∈ {0, 1}n. If C is

(i1, . . . , in)-cell with ij = 1 for all j = 1, . . . , n, then we call C an open cell in Rn.

For instance, the cells in R2 consist of: the graphs of continuous definable functions

f : I → R where I is a definable interval in R; the intervals (f, g)I where f, g ∈ C∞(I)

and f < g; the points {(r, s)} ⊆ R2; and the “vertical intervals” of the form {a} ×R,

where a ∈ R. Also, note that a box in Rn is an (i1, . . . , in)-cell with ij = 1 for all

j = 1, . . . , n.

Proposition 1.13. (i) The union of finitely many non-open cells in Rn has empty

interior.

(ii) Let C ⊆ Rn be a cell. Then C is open as a subset of its closure cl(C).

(iii) Let C ⊆ Rn be an (i1, . . . , in)-cell, and let i := i1 + · · ·+ in. Then there exists a

coordinate projection π : Rn → Ri such that π(C) is an open cell in Ri.

(iv) If C is a cell in Rn then Πn−1(C) is a cell in Rn−1, where Πn−1 : Rn → Rn−1 is

the projection map onto the first n− 1 coordinates.

(v) Each cell is definably connected.

The coordinate projection described in part (iii) of the proposition is a definable

homeomorphism when restricted to C, and we refer to it as the canonical projection

associated to C. We also note that, from now on, we will always denote the projection

map

Rn → Rn−1 : (x1, . . . , xn) 7→ (x1, . . . , xn−1)

by Πn−1, as in part (iv) of the above proposition.

In addition to part (v) of Proposition 1.13 we also need another “connectedness”

property of cells which is not found in [2], and so we state and prove it here for

convenience. First, we say that a definable set A ⊆ Rn is locally connected at x ∈ Rn

if, for every open neighbourhood U of x, there is an open neighbourhood V of x such

that V ⊆ U and V ∩ A is definably connected.

Lemma 1.14. Let C ⊆ Rn be a cell. Then C is locally connected at each x ∈ C.

8
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Proof. By induction on n: If n = 1 then C is either a point or an open interval in R,

in which case the result is immediate. So let n > 1 and suppose the result holds for

lower values of n. Let (x, y) ∈ Rn−1 ×R be a point in C, let U × I ⊆ Rn−1 ×R be an

open box about (x, y), and set D := Πn−1(C).

Suppose first that C = gr(f) for some continuous definable function f : D → R.

Since f is continuous, the pre-image f−1(I) of I under f is an open subset of D such

that x ∈ f−1(I); write f−1(I) = V ∩D for some open set V ⊆ Rn−1. Then W := U ∩V
is an open neighbourhood of x in Rn−1 and so by the inductive hypothesis we may

shrink W , if necessary, so that W ∩D = W ∩D∩ f−1(I) is definably connected. Then

(W × I) ∩ C = {(ξ, f(ξ)) : ξ ∈ W ∩D, f(ξ) ∈ I}

= {(ξ, f(ξ)) : ξ ∈ W ∩D ∩ f−1(I)}

= gr
(
f �W∩D∩f−1(I)

)
and gr

(
f �W∩D∩f−1(I)

)
is definably connected since f is definable and continuous.

Hence (W × I) ∩ C is definably connected.

Now suppose C = (f, g)D for continuous definable functions f, g ∈ C∞(D) such

that f < g. Then, by continuity of f , there exists an open box V1 × J1 about (x, y)

such that (V1 × J1) ∩ gr(f) is empty, since otherwise we would have (x, y) ∈ cl(gr(f)).

But (x, y) ∈ D × R and gr(f) is a closed subset of D × R by continuity (and since

our topology is Hausdorff) and hence (x, y) ∈ gr(f), a contradiction. Similarly we

can find an open box V2 × J2 about (x, y) such that (V2 × J2) ∩ gr(g) is empty. Let

W := U ∩ V1 ∩ V2 and J = I ∩ J1 ∩ J2, so that W × J is an open box about (x, y)

which is disjoint from both gr(f) and gr(g); write J = (a, b) for a, b ∈ R such that

a < b and note that f(ξ) < a < b < g(ξ) for each ξ ∈ W . Then

(W × J) ∩ C = {(ξ, η) : ξ ∈ W ∩D, η ∈ J, f(ξ) < η < g(ξ)}

= {(ξ, η) : ξ ∈ W ∩D, a < η < b}

= (a, b)W

where a, b : W → R are viewed as constant functions on W taking the values a ∈ R
and b ∈ R, respectively. Hence (W ×J)∩C can be written as an interval of continuous

definable functions defined on a definably connected set, and so (W×J)∩C is definably

connected.

9
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Before we can state the cell decomposition theorem, we need more terminology:

Definition 1.15. Let n ≥ 1. A decomposition of Rn is a partition of Rn into finitely

many cells, obtained by induction on n:

(i) A decomposition of R1 is a finite collection

{(−∞, a1), (a1, a2), . . . , (ak,+∞), {a1}, {a2}, . . . , {ak}}

where each ai is a point in R.

(ii) Let n > 1. A decomposition of Rn is a finite partition C of Rn into cells such

that the collection

Πn−1(D) := {Πn−1(D) : D ∈ D}

is a decomposition of Rn−1.

Furthermore, a decomposition D of Rn is said to partition a set S ⊆ Rn if S can be

written as a finite union of cells in D, i.e. if, for every cell D ∈ D, either D ⊆ S or

D ∩ S = ∅.

Theorem 1.16 (Cell decomposition). Let n ≥ 1.

(In). Given any finite collection of definable sets A1, . . . , Ak ⊆ Rn, there is a decom-

position of Rn partitioning each of A1, . . . , Ak.

(IIn). For any definable function f : A→ R, A ⊆ Rn, there is a decomposition D of

Rn partitioning A such that the restriction f �B: B → R of f to each cell B ∈ D
with B ⊆ A is continuous.

We only mention that the proof is by induction on n; the base case n = 1 follows

immediately from the o-minimality axiom together with the monotonicity theorem.

We also record the following consequences of the cell decomposition theorem.

Theorem 1.17. Let X ⊆ Rn be a non-empty definable set. Then X has only finitely

many definably connected components, each of which is definable. They are open and

closed in X and form a finite partition of X.

Given a definable set S ⊆ Rn ×Rm and a ∈ Rn, we let

Sa := {x ∈ Rm : (a, x) ∈ S}

10
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denote the fibre of S above a; in this way we can view S as describing a definable

family (Sa)a∈Rn of subsets of Rm, with parameter space Rn.

Theorem 1.18. Let S ⊆ Rn × Rm be definable. Then there is a number MS ∈ N
such that, for each a ∈ Rn, the set Sa ⊆ Rm has a partition into at most MS cells. In

particular, each fibre Sa has at most MS definably connected components.

Corollary 1.19. Let X ⊆ Rn be a definable set and let x ∈ Rn. There exists an open

box B ⊆ Rn about x such that the number M of definably connected components of

B ∩X is maximal as B ranges over all possible open boxes about x.

Proof. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be points in Rn. Define a subset B of

R3n by setting

B := {(α, β, ξ) ∈ Rn ×Rn ×X : αi < xi < βi and αi < ξi < βi for all i}.

Then for (a, b) ∈ Rn ×Rn, the fibre B(a,b) is simply the intersection of the open box

Πn
i=1(ai, bi) about x with X, where Πn

i=1(ai, bi) denotes the n-fold cartesian product

(a1, b1) × · · · × (an, bn) of the intervals (ai, bi), i = 1, . . . , n. By Theorem 1.18 there

is an M ∈ N such that the number of definably connected components of each fibre

B(a,b), as (a, b) ranges over Rn × Rn, is at most M ; choose a tuple (a, b) ∈ Rn × Rn

witnessing the maximality of M and set B to be Πn
i=1(ai, bi).

1.3 Dimension and curve selection

The cell decomposition theorem allows us to introduce a well-defined notion of dimen-

sion; the first goal of this section is to provide a list of properties of dimension to be

used in the next chapter (see [2, Chapter 4] for details).

Definition 1.20. The dimension of a non-empty definable set X ⊆ Rn is given by

dim(X) := max{i1 + · · ·+ in : X contains an (i1, . . . , in)-cell.}.

We set dim(∅) := −∞.

By definition, dim(X) ∈ {−∞, 0, 1, . . . , n}, and dim(X) = n if and only if X

contains an open cell.

11
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Proposition 1.21. (i) If X ⊆ Y ⊆ Rn and X, Y are definable, then dim(X) ≤
dim(Y ) ≤ n.

(ii) If X ⊆ Rn and Y ⊆ Rm are definable and there is a definable bijection between

X and Y , then dim(X) = dim(Y ).

(iii) If X, Y ⊆ Rn and X, Y are definable, then dim(X∪Y ) = max{dim(X), dim(Y )}.

(iv) Let X ⊆ Rn be definable and let f : X → Rm be a definable function. Then

dim(X) ≥ dim(f(X)).

(v) For any pair of definable sets X and Y , dim(X × Y ) = dim(X) + dim(Y ).

We will make use of the following proposition in a few places, often without mention;

the proof is by induction on n.

Proposition 1.22. Let C,D be cells in Rn, where C is an (i1, . . . , in)-cell and D ⊆ C.

Then the following are equivalent:

(i) D is an (i1, . . . , in)-cell.

(ii) dim(C) = dim(D).

(iii) D is open in C.

Given a definable set S ⊆ Rn, we define the frontier of S to be the set fr(S) :=

cl(S) \ S. Here we point out that, for subsets S, T of a topological space, fr(S ∪ T ) ⊆
fr(S) ∪ fr(T ) – this fact will be used repeatedly in the next chapter. We also have the

following result, which will become crucial in the next chapter.

Theorem 1.23. Let S ⊆ Rn be a non-empty definable set. Then dim(fr(S)) < dim(S).

In particular, dim(cl(S)) = dim(S).

Note that one cannot expect such a result to hold in a general setting: Consider,

for instance, any structure on (R, <) which contains the graph X of the topologist’s

sine curve, i.e. the graph of the function x 7→ sin(1/x) for x > 0, x ∈ R. The closure

cl(X) of this curve is the union of X together with the closed straight line segment

L connecting the points (0, 1) and (0,−1) in the plane R2. Hence L ⊆ fr(X) and so

dim(fr(X)) = dim(X) = 1.

12
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The second goal of this section is to introduce curve selection, which allows us to

formalize a notion of sequential limit which makes sense in an o-minimal setting; we

are unable to make use of the usual notion of a sequential limit, since the domain of a

sequence (e.g. the natural numbers) is a set with infinitely many definably connected

components and hence cannot be definable in an o-minimal structure. If R is an

o-minimal expansion of an ordered group, then curve selection provides us with a

useful alternative to sequences.

For the rest of this section, fix an o-minimal expansion R = (R,<,S) of an ordered

group (R,<, 0,+,−). First, a preliminary result:

Theorem 1.24 (Definable choice). If S ⊆ Rn+m is a definable set and π : Rn+m → Rn

denotes the projection map onto the first n coordinates, then there is a definable map

f : π(S)→ Rm such that gr(f) ⊆ S.

Definable choice can be used, for instance, to show that for any definable equivalence

relation E ⊆ R2n on Rn, there is a definable function f : Rn → Rk for some k ∈ N
such that, for all x, y ∈ Rn, xEy if and only if f(x) = f(y). In model-theoretic terms,

this says that R has elimination of imaginaries and so Req = R.

We will make use of the following corollary of definable choice:

Corollary 1.25 (Curve selection). Let X be a definable set and let x ∈ fr(X). There

is a definable continuous injective map γ : (0, ε) → X, for some ε > 0, such that

limt→0 γ(t) = x.

In this situation, we call γ a definable curve. Curve selection does not hold for

arbitrary o-minimal structures, and so the assumption that R expands an ordered

group is necessary (see [2, Chapter 6] for a counterexample).

13



Chapter 2

An extension theorem for

continuous bounded functions on

cells

Given an arbitrary structure R = (R,<,S), a definable set A ⊆ Rn and a definable

continuous function f : A → R, one may ask if there exists a definable continuous

function f̃ : B → R on a definable set B ⊇ A such that f̃ �A= f . In this case we

say that f extends continuously to B, or that f̃ is a continuous extension of f to B.

When R is an o-minimal expansion of an ordered field, we have the following result

(see [2, Chapter 8]).

Theorem 2.1. Let R be an o-minimal expansion of an ordered field (R,<, 0, 1,+,−, ·)
and let A ⊆ B be definable subsets of Rn such that A is closed in B. Then every

definable continuous function f : A → R can be extended to a definable continuous

function f̃ : B → R. Furthermore, if f is bounded then so is f̃ .

This theorem and its proof, however, tell us nothing about definable functions

defined on non-closed subsets of Rn. Furthermore, the proof relies on a definable

triangulation result which only makes sense when dealing with expansions of ordered

fields. The aim of this chapter is to consider extension theorems in o-minimality which

do not rely on either of these hypotheses; the bulk of the chapter consists of a proof of

an extension theorem for definable, continuous, bounded functions on bounded cells

which are asymptotically “well-behaved,” a notion which we make precise later. The

proof of the result makes use of definable curve selection and hence we must assume

14
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thatR is an o-minimal expansion of an ordered group. Prior to the statement and proof

of this result, we consider an extension theorem found in [4] for definable, continuous,

bounded functions on bounded open cells, and we show by way of counterexample

that this result cannot be generalized to arbitrary cells without requiring additional

hypotheses.

2.1 The open cell case

From now on we work in an arbitrary o-minimal structure R = (R,<,S). In light of

Theorem 2.1, one may ask if it is possible to extend continuous, definable functions on

arbitrary subsets of Rn. The first result in this direction is proved in [4], in which the

authors show that it is possible to extend continuous, bounded functions defined on a

bounded open cell “almost everywhere” to the frontier of the cell.

Theorem 2.2. Let R = (R,<,S) be an o-minimal structure, C ⊆ Rn be a bounded

open cell and F : C → R be a definable, continuous, bounded function. Then there is

a definable set X ⊆ fr(C) such that

dim(fr(C) \X) ≤ dim(C)− 2

and F extends continuously to C ∪X.

(Note that Theorem 2.1 cannot be applied to obtain a result of this kind since each

cell C is open in its closure cl(C).) The resulting extension F̃ of F to C ∪X is given

by F̃ (y) := limx→y F (x) and so F̃ is always definable and unique.

Theorem 2.2 is obtained by proving the following two claims together by induction

on n ≥ 1 under the same assumptions stated in the theorem.

(In). There is a definable X ⊆ fr(C) such that dim(fr(C) \X) ≤ dim(C)− 2 and C

is locally connected at every x ∈ X.

(IIn). There is a definable Y ⊆ fr(C) such that dim(fr(C) \ Y ) ≤ dim(C)− 2 and F

extends continuously to C ∪ Y .

Hence, as a corollary to the proof of Theorem 2.2, we also obtain (In) as an independent

result whenever C is a bounded open cell in Rn.

The following examples show that the upper bounds on dim(fr(C) \ X) and

dim(fr(C) \ Y ) above are optimal in the sense that equality can occur.

15
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Example 2.3. Let R be an o-minimal expansion of the real field (R, <, 0, 1,+,−, ·).

(i) Let C be the open cell {(x, y) ∈ R2 : 0 < y < x < 1} and define a function

f : C → R by f(x, y) = y
x
. Then f is a definable, continuous, bounded

function which does not extend continuously to the origin (0, 0) ∈ R2, but does

extend continuously to every other point of fr(C). Hence we can take Y to be

fr(C) \ {(0, 0)} and so dim(fr(C) \ Y ) = dim({(0, 0)}) = 0 = dim(C)− 2.

(ii) Let C be the open cell{
(x, y, z) ∈ R3 : |x| < 1, 0 < y < 1, and − 1 < z <

√
|x|
y

}
,

i.e. C is the cell

(
−1,

√
|x|
y

)
D

where D is the open box (−1, 1)×(0, 1). Then C is

bounded and is not locally connected at any point of Z := {(0, 0, z) : 0 < z < 1},
and so we can take X to be fr(C) \ Z. Then dim(fr(C) \X) = dim(Z) = 1 =

dim(C)− 2.

Naturally, the following question arises: Does Theorem 2.2 hold when C is not

assumed to be open? It turns out that, without too much effort, one can construct

an example which yields a negative answer to this question; we do so as follows. Fix

an o-minimal expansion R = (R,<,S) of an ordered group (R,<, 0,+,−) and fix

an arbitrary positive element 1 ∈ R. Then, by Proposition 1.8, R is a torsion-free,

divisible abelian group and hence we can regard R as a vector space over Q (see [2]

for details). Since R is an ordered group, we can define the absolute value function

| · | : R→ R≥0 by setting

|x| =

x if x ≥ 0

−x if x < 0

where R≥0 is the set of non-negative elements of R. We will use the absolute value

function to construct a cell which fails to satisfy the conclusion of Theorem 2.2.

Example 2.4. Let C = gr(f) ⊆ R3 where f : (−1, 1)2 → R is given by

f(x, y) =

1 if y ≥ 1
2
(1− x) or y ≤ 1

2
(x− 1)

2 |y|
(1−x)

otherwise
.

16
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Figure 2.1: A plot of the function f given in Example 2.4.

Then C is a bounded cell definable in R. Define F : C → R by

F (x, y, z) =



−1 if y ≤ 1
4
(x− 1)

−2z if 1
4
(x− 1) ≤ y ≤ 0

2z if 0 ≤ y ≤ 1
4
(1− x)

1 if y ≥ 1
4
(1− x)

.

Then F is continuous, bounded and definable. Note that the line segment Z :=

{(1, 0, t) : 0 < t < 1} is contained in the frontier fr(C) of C. Furthermore, F does

not extend continuously to Z: If z ∈ Z then every neighbourhood of z intersects the

domain of F restricted to

{(x, y) : y ≤ 1

4
(x− 1)} ∪ {(x, y) : y ≥ 1

4
(1− x)}

and so z is approached by points taking on the values 1 and −1. Thus limx→z F (x)

does not exist and hence F does not extend continuously to Z, a set of dimension 1.

In particular, this means that if there was a definable X ⊆ fr(C) such that

dim(fr(C) \X) ≤ dim(C)− 2 = 0

and F extends continuously to X, we must have Z ⊆ fr(C) \X and so dim(Z) ≤ 0

17
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must hold, which contradicts dim(Z) = 1.

By studying the proof of Theorem 2.2 given in [4], one will note that the proof of

(IIn) does not rely at all on the fact that our cells are open and merely depends on the

existence of the set guaranteed by (In). So we can reduce the problem of generalizing

Theorem 2.2 to that of determining sufficient conditions for a bounded cell to be

“almost everywhere locally connected” at its frontier. The guiding question is thus:

Question 2.5. What conditions must one impose on a bounded cell C in order to

guarantee the existence of a set X ⊆ fr(C) as in (In) above? In other words, when is

a bounded cell “almost everywhere locally connected” at its frontier?

2.2 Asymptotically monotone cells

We wish to determine a class of cells (preferably the largest such class) which are

almost everywhere locally connected at their frontier, and hence for which Theorem

2.2 holds unconditionally. The problem with the cell C given in Example 2.4 is that

the frontier of C contains an asymptote which comes from the frontiers of two disjoint

subcells of C. Indeed, using the same set-up given in Example 2.4, let

C1 := gr
(
f �(−1,1)×( 1−x

4
,1)

)
and

C2 := gr
(
f �(−1,1)×(−1,x−1

4
)

)
so that C1 is the portion of C lying above (−1, 1)× (1−x

4
, 1) and C2 is the portion of C

lying above (−1, 1)× (−1, x−1
4

). Then the line segment Z intersects both fr(C1) and

fr(C2) in a set of maximal dimension in fr(C). So C contains disjoint subcells C1, C2

of maximal dimension such that C1 and C2 are, in some sense, “far apart” in C, yet

dim(fr(C1) ∩ fr(C2) ∩ Z) = dim(C)− 1.

If we can rule such phenomena out then we obtain a class of cells for which the theorem

holds; the main definition of this section attempts to make this precise.

From now on, we work in an arbitrary o-minimal structure R = (R,<,S) unless

otherwise specified.

18
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Figure 2.2: The two subcells C1 and C2 constructed above.

Definition 2.6. Let C = gr(f : D → R) be a cell and let

X := {x ∈ fr(C) :
∣∣Π−1

n−1(Πn−1(x)) ∩ fr(C)
∣∣ > 1}.

Then C is asymptotically monotone at x ∈ X if, for every open box U × I ⊆ Rn about

x and for every pair Di, Dj of distinct definably connected components of U ∩ f−1(I),

we have

fr(gr(f �Di)) ∩ fr(gr(f �Dj)) ∩X = ∅,

and if the implication

Πn−1(x) ∈ cl(Di) =⇒ Di is locally connected at Πn−1(x)

holds for each such component Di.

Definition 2.7. We define the class of asymptotically monotone cells by induction on

the dimension n ≥ 1 of the ambient space Rn, as follows:

(i) If C ⊆ R is an open interval or a point, then C asymptotically monotone.

(ii) Let D ⊆ Rn−1 be an asymptotically monotone cell. Let f, g : D → R be

continuous definable functions such that f < g. If C = (f, g)D, C = (−∞, f)D,

or C = (f,+∞)D, then C is asymptotically monotone.

(iii) Let D ⊆ Rn−1 be an asymptotically monotone cell. Suppose C = gr(f) where

f : D → R is definable and continuous, and let X be as in Definition 2.6. Then
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C is asymptotically monotone if there is a definable subset X0 of X such that

dim(X \ X0) ≤ dim(C) − 2 and C is asymptotically monotone at x for every

x ∈ X0.

We point out that X is a definable set, and if X is empty then C is vacuously

asymptotically monotone. Notice that each open cell is asymptotically monotone.

Furthermore, the definition of asymptotic monotonicity in the final case above allows

for exceptions at sets of small dimension (compared to that of the frontier of the cell),

rather than requiring the cell to be asymptotically monotone at every point of its

frontier. This loosening allows us to capture as many cells as possible when attempting

to determine the largest class of cells for which the conclusion to Theorem 2.2 holds.

2.3 The general case

Before we can prove a general result in the direction of Theorem 2.2, we need a

preliminary result about the frontier of cells with a “top” and a “bottom.”

Definition 2.8. Let C ⊆ Rn be a bounded cell of the form (f, g)Πn−1(C) for continuous

functions f, g : Πn−1(C)→ R such that f < g. The side of C is defined as

side(C) := (fr(Πn−1(C))×R) ∩ cl(C).

Furthermore, we denote by T (C) := gr(g) the top of C and by B(C) := gr(f) the

bottom of C. Note that each of side(C), T (C) and B(C) are subsets of fr(C).

Lemma 2.9. Suppose C = (f, g)D ⊆ Rn is a bounded cell where D = Πn−1(C) and

n > 1. Then side(C), T (C) and B(C) form a partition of fr(C).

Proof. Let (x, y) ∈ fr(C) and suppose (x, y) 6∈ T (C) ∪B(C). Then (x, y) ∈ cl(C) and

so it suffices to check that x ∈ fr(D). By continuity of Πn−1, x ∈ cl(D). Now suppose

x ∈ D. Then, by the fact that (x, y) ∈ cl(C), either y = f(x) or y = g(x), since if

y < f(x) or y > g(x) then there must be a neighbourhood of (x, y) which is disjoint

from C. So one of y = f(x) or y = g(x) must hold, which contradicts the assumption

that (x, y) 6∈ T (C) ∪ B(C). Thus x 6∈ D and hence x ∈ side(C). Furthermore, T (C)

and B(C) are disjoint by definition, while side(C) and B(C) (resp. T (C)) are disjoint

since their projections Πn−1(side(C)) ⊆ fr(D) and Πn−1(B(C)) = D are disjoint. Thus

side(C), T (C) and B(C) are pairwise disjoint and cover fr(C).
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We also need the following easy fact about the frontier of cells without a top and

bottom; we will use this occasionally, and always without mention.

Lemma 2.10. Let C = gr(f : D → R) ⊆ Rn be a cell and let x = (x1, . . . , xn) ∈ fr(C).

Then x′ := Πn−1(x) ∈ fr(D).

Proof. The fact that x′ ∈ cl(D) is immediate by continuity of Πn−1. Suppose x′ ∈ D;

then (x′, xn) = x ∈ D×R. Since f is continuous, its graph is a closed subset of D×R
and hence x ∈ cl(C) = C, which contradicts the assumption that x ∈ fr(C).

We are now in a position to state and prove our main result, which generalizes

Theorem 2.2 to non-open cells in the case where our cells are all assumed to be

asymptotically monotone, assuming R expands an ordered group. The proof of (In),

Case 1 below is inspired by that of the corresponding result given in the proof of

Theorem 2.2 in [4].

Theorem 2.11. Let R = (R,<,S) be an o-minimal expansion of an ordered group

(R,<, 0,+,−), let C ⊆ Rn be a bounded asymptotically monotone cell and let F :

C → R be a definable, continuous, bounded function. Then there is a definable set

X ⊆ fr(C) such that

dim(fr(C) \X) ≤ dim(C)− 2

and F extends continuously to C ∪X.

Proof. We will prove the following claims together by induction on n ≥ 1.

(In). There is a definable X ⊆ fr(C) such that dim(fr(C) \X) ≤ dim(C)− 2 and C

is locally connected at every x ∈ X.

(IIn). There is a definable Y ⊆ fr(C) such that dim(fr(C) \ Y ) ≤ dim(C)− 2 and F

extends continuously to C ∪ Y .

If n = 1 then C is either a point or an open interval, so (I1) is clear and (II1) follows

immediately from the monotonicity theorem. Now let n > 1 and suppose (In) and

(IIn) hold for lower values of n. Throughout, we set D := Πn−1(C).

(In). Case 1: C = (f, g)D for definable, continuous, bounded functions f, g : D →
R such that f < g.
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First note that C is locally connected at every x ∈ T (C) ∪ B(C). Indeed, let

x ∈ B(C) = gr(f) (the case where x ∈ T (C) is similar) and let U × I ⊆ Rn be an open

box about x where I is an open interval (a, b) ⊆ R for a, b ∈ R such that a < b. By

continuity of g, we may shrink U × I so that b < g(ξ) for all ξ ∈ D∩U , since otherwise

x ∈ cl(gr(g)) = gr(g) which contradicts gr(f)∩gr(g) = ∅. Let x′ := (x1, . . . , xn−1) ∈ D
be the projection of x onto the first n−1 coordinates, so that (x′, f(x′)) = x. Consider

the pre-image f−1(I) of I under f . By continuity, f−1(I) is open in D; let D0 be the

definably connected component of f−1(I) which contains x′ and note that D0 is open

in D. Hence D0 = W ∩D for some open box W ⊆ Rn−1 and so x′ ∈ W ∩ U . Since,

by Lemma 1.14, cells are locally connected at each of their points, there is an open

box V ⊆ W ∩ U in Rn−1 such that V ∩D is definably connected and x′ ∈ V . Then

(V × I) ∩ C = {(z, r) ∈ Rn : f(z) < r < g(z), z ∈ V ∩D, r ∈ I}

= {(z, r) ∈ Rn : f(z) < r < b, z ∈ V ∩D}

= (f, b)V ∩D

where b : V ∩ D → R is the constant function taking the value b ∈ R everywhere.

But (f, b)V ∩D is an interval of definable continuous functions defined on a definably

connected set, and so (V × I) ∩ C is definably connected.

So by Lemma 2.9, it suffices to show the existence of a set X ⊆ side(C) such that

dim(side(C) \X) ≤ dim(C)− 2 and C is locally connected at every x ∈ X, since then

T (C) ∪B(C) ∪X ⊆ fr(C) and

dim(fr(C) \ (T (C) ∪B(C) ∪X)) = dim(side(C) \X) ≤ dim(C)− 2

and C is locally connected at every x ∈ T (C) ∪ B(C) ∪ X. By (In−1) and (IIn−1),

there is a definable Z ⊆ fr(D) such that dim(fr(D) \ Z) ≤ dim(D)− 2, D is locally

connected at each z ∈ Z and f, g extend continuously to functions f̃ , g̃ : D ∪ Z → R.

Let

X := {(z, r) : z ∈ Z, f̃(z) < r < g̃(z)}.

Then X ⊆ side(C); we claim that

side(C) \X ⊆ fr(gr(f)) ∪ fr(gr(g)) ∪ ((fr(D) \ Z)×R).

Indeed, if (x, y) ∈ side(C) \X then either x 6∈ Z, or x ∈ Z and y 6∈ (f̃(x), g̃(x)). If
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the former holds then (x, y) ∈ (fr(D) \ Z) × R by definition of side(C), so assume

the latter holds. Since y 6∈ (f̃(x), g̃(x)), we must have one of y = f̃(x) or y = g̃(x);

if not, then by continuity of f and g we obtain an open box B ⊆ Rn about (x, y)

such that B ∩ C = ∅, contradicting (x, y) ∈ cl(C). So one of y = f̃(x) or y = g̃(x)

must hold, which implies (x, y) ∈ fr(gr(f)) ∪ fr(gr(g)) since f̃ and g̃ are continuous

extensions of f and g, respectively. Therefore the above inclusion holds and so

dim(side(C) \X) ≤ dim(C)− 2.

Now let (z, r) ∈ X and suppose U is an open neighbourhood of (z, r) in Rn.

By continuity of f̃ and g̃ there is an open box B × I ⊆ U containing (z, r) such

that B × I is disjoint from gr(f̃) and from gr(g̃): Otherwise we would have, say,

(z, r) ∈ cl(gr(f̃)) = gr(f̃), which contradicts the assumption that f̃(z) < r. By the

inductive hypothesis, D is locally connected at z ∈ Z and so we may shrink B so that

B ∩D is definably connected. Then

(B × I) ∩ C = (B ∩D)× I

is definably connected, and so C is locally connected at every y ∈ X, thus proving (In)

in the case where C is of the form (f, g)D.

Case 2: C = gr(f) for a definable, continuous, bounded function f : D → R.

By (In−1) and (IIn−1), there is a definable Z ⊆ fr(D) such that dim(fr(D) \ Z) ≤
dim(D) − 2, D is locally connected at each z ∈ Z and f extends continuously to

f̃ : D ∪ Z → R. We consider two possible subcases, depending on the asymptotic

behaviour of fr(C).

Subcase 2.1: {x ∈ fr(C) :
∣∣Π−1

n−1(Πn−1(x)) ∩ fr(C)
∣∣ > 1} = ∅.

Let ψ := Πn−1 �cl(C); ψ is a bijection since the above assumption implies injectivity.

Let

X := gr(f̃ �Z) = {(z, f̃(z)) : z ∈ Z}.

Then C is locally connected at each x ∈ X: Given an open box U × I in Rn about a

point (z, f̃(z)) ∈ X, the continuity of f̃ implies

f̃−1(I) = U ′ ∩ (D ∪ Z)
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for some open box U ′ ⊆ Rn−1 such that z ∈ U ′. By local connectedness of D at z there

exists an open box V ⊆ U ′ in Rn−1 about z such that V ∩D is definably connected.

Note that V ∩D is contained in f−1(I), since x ∈ V ∩D implies x ∈ U ′ and x ∈ D∪Z,

i.e. x ∈ f̃−1(I), so f̃(x) ∈ I. But f and f̃ agree on D and so f̃(x) = f(x) and hence

x ∈ f−1(I). Then, after replacing V with V ∩U if necessary to ensure V × I ⊆ U × I,

we have

(V × I) ∩ C = {(x, f(x)) : x ∈ V ∩D, f(x) ∈ I}

= gr(f �V ∩D) ∩ (Rn−1 × I)

= gr(f �V ∩D)

where the last equality follows from the fact that im(f �V ∩D) ⊆ I. But V ∩ D is

definably connected and f is definable and continuous, and so the graph of f �V ∩D is

definably connected.

Furthermore, dim(fr(C) \X) ≤ dim(C)− 2: If not, then there is a cell E such that

dim(E) = dim(C)− 1 and E ⊆ fr(C) \X. By injectivity of ψ,

ψ(E) ⊆ ψ(fr(C) \X) = ψ(fr(C)) \ ψ(X) ⊆ fr(D) \ Z,

where we also use the fact that ψ is continuous and so ψ(cl(C)) ⊆ cl(ψ(C)) = cl(D)

which, together with injectivity, yields

ψ(fr(C)) = ψ(cl(C) \ C) = ψ(cl(C)) \ ψ(C) ⊆ cl(D) \D = fr(D).

But ψ is a bijection and hence

dim(E) = dim(ψ(E)) ≤ dim(D)− 2 = dim(C)− 2

which contradicts the fact that dim(E) = dim(C)− 1. Thus C is locally connected at

every point in X and dim(fr(C) \X) ≤ dim(C)− 2.

Subcase 2.2: X ′ := {x ∈ fr(C) :
∣∣Π−1

n−1(Πn−1(x)) ∩ fr(C)
∣∣ > 1} 6= ∅.

To begin, we claim that

dim(fr(C) \ (gr(f̃ �Z) ∪X ′)) ≤ dim(C)− 2.
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Otherwise there is a cell E ⊆ fr(C) with dim(E) = dim(C)− 1, E ⊆ fr(C) \ gr(f̃ �Z)

and E ⊆ fr(C) \X ′. Since E is disjoint from X ′, the restriction ϕ of Πn−1 to the union

E ∪ gr(f̃ �Z) must be injective, since otherwise there are points

(ξ, ζ1) ∈ E, (ξ, ζ2) ∈ E ∪ gr(f̃ �Z)

such that ζ1 6= ζ2. But then |Π−1
n−1(ξ) ∩ fr(C)| ≥ 2 and so (ξ, ζ1) ∈ X ′, which

contradicts the disjointness of E from X ′. Hence by injectivity E must be of the form

gr(γ : Πn−1(E)→ R) for some definable continuous function γ, and so

dim(Πn−1(E)) = dim(C)− 1 = dim(D)− 1.

Then by injectivity of ϕ

∅ = ϕ(E ∩ gr(f̃ �Z)) = ϕ(E) ∩ ϕ(gr(f̃ �Z)) = Πn−1(E) ∩ Z

which implies Πn−1(E) ⊆ fr(D) \ Z. But now

dim(Πn−1(E)) ≤ dim(fr(D) \ Z) ≤ dim(D)− 2

contradicting dim(Πn−1(E)) = dim(D)− 1. Now, since C is asymptotically monotone,

there is a definable subset X0 of X ′ such that dim(X ′ \X0) ≤ dim(C)− 2 and C is

asymptotically monotone at every x ∈ X0. Then

fr(C) \ (gr(f̃ �Z) ∪X0) ⊆
(

fr(C) \ (gr(f̃ �Z) ∪X ′)
)
∪X ′ \X0

and thus

dim
(

fr(C) \ (gr(f̃ �Z) ∪X0)
)
≤ dim(C)− 2.

So we set X := gr(f̃ �Z) ∪X0 and we aim to show that C is locally connected at each

x ∈ X.

By the same argument as in Subcase 2.1, C is locally connected at every x ∈ gr(f̃ �Z)

and so it remains to check that C is locally connected at every x ∈ X0. Let U×I be an

open box about a point x ∈ X0 and let x′ := (x1, . . . , xn−1). By Corollary 1.19 there

exists an open box V ⊆ U about x′ such that the number M of definably connected

components of V ∩ f−1(I) is maximal as V ranges over all possible open boxes in Rn−1
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about x′ contained in U . We write

V ∩ f−1(I) = D1 ∪ · · · ∪DM

as a disjoint union of its definably connected components Di, i ∈ {1, . . . ,M}. Now let

D̃i := gr(f �Di), i ∈ {1, . . . ,M}

and notice that each set

fr(D̃i) ∩ ({x′} ×R)

is a closed subset of {x′}×R with dim(fr(D̃i)∩ ({x′}×R)) = 1. By maximality of M

there are exactly M such sets, each of which is definably connected; hence each such

set forms a “closed interval” lying above {x′}.
Our first goal is to show that x ∈ fr(D̃i) for precisely one i ∈ {1, . . . ,M}. Note

x ∈ fr(C) ⊆ fr
(
gr(f �V ∩f−1(I))

)
∪ fr

(
gr(f �D\V )

)
∪ fr

(
gr(f �D\f−1(I))

)
.

If x ∈ fr
(
gr(f �D\V )

)
then in particular V ×I must intersect gr(f �D\V ) and so there is

a point (ξ, f(ξ)) such that ξ ∈ V ∩ (D \V ), and so it must be that x 6∈ fr
(
gr(f �D\V )

)
.

Similarly, x ∈ fr
(
gr(f �D\f−1(I))

)
implies there is a point (ξ, f(ξ)) such that f(ξ) ∈

I ∩ (R \ I), and so we must have x 6∈ fr
(
gr(f �D\f−1(I))

)
. Thus x ∈ fr

(
gr(f �V ∩f−1(I))

)
must hold. But

gr(f �V ∩f−1(I)) =
M⋃
i=1

gr(f �Di) =
M⋃
i=1

D̃i

and so x ∈ fr(D̃i) for at least one i ∈ {1, . . . ,M}. But C is asymptotically monotone

at x and so the sets fr(D̃i) are pairwise disjoint in X0. Hence x ∈ fr(D̃i) for exactly

one i ∈ {1, . . . ,M}; let η be this unique index. Now, since the fr(D̃i) are pairwise

disjoint in X0 and form disjoint, closed intervals above {x′}, there is an open interval

J about xn, the last coordinate of x, such that

(V × J) ∩ ({x′} ×R) = fr(D̃η) ∩ ({x′} ×R).

We claim that there is an open box W ⊆ V about x′ such that

gr(f �W∩Dη) ⊆ W × J.
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If not, then for every open box W ⊆ V such that x′ ∈ W , the set W ∩Dη ∩ f−1(I \ J)

is non-empty, and so x′ ∈ cl(Dη∩f−1(I \J)). By curve selection, we obtain a definable

curve

γ : (0, ε)→ Dη ∩ f−1(I \ J)

such that limt→0 γ(t) = x′. We lift γ to a definable curve

Γ : (0, ε)→ gr(f �Dη∩f−1(I\J)) = D̃η ∩ (Rn−1 × (I \ J))

by setting Γ(t) := (γ(t), f(γ(t))). Then

lim
t→0

Γ(t) =
(

lim
t→0

γ(t), lim
t→0

f(γ(t))
)

=
(
x′, lim

t→0
f(γ(t))

)
∈ {x′} ×R.

Furthermore, limt→0 Γ(t) belongs to fr(D̃η) and so by definition of J we must have

lim
t→0

Γ(t) ∈ (V × J) ∩ ({x′} ×R)

which contradicts limt→0 f(γ(t)) 6∈ J ; indeed, I \ J is a closed set and so

lim
t→0

f(γ(t)) ∈ cl(I \ J) = I \ J

must hold. Thus we can take an open box W ⊆ V about x′ with the desired property.

Next, we also claim that there is an open box W0 ⊆ W about x′ such that

W0 ∩ f−1(J) ⊆ W0 ∩ Dη. If not then x′ ∈ cl(f−1(J) ∩ (D \ Dη)) and so, by curve

selection, there is a definable curve

γ : (0, ε)→ f−1(J) ∩ (D \Dη)

such that limt→0 γ(t) = x′. Lift γ to a definable curve

Γ : (0, ε)→

(⋃
i 6=η

D̃i

)
∩ (Rn−1 × J)

as before, so that

lim
t→0

Γ(t) ∈ (V × J) ∩ ({x′} ×R)

and so limt→0 Γ(t) ∈ fr(D̃η) by definition of J . But the image of Γ is definably
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connected and so

im(Γ) ⊆ D̃i ∩ (Rn−1 × J)

for a unique i ∈ {1, . . . ,M} \ {η}. Then limt→0 Γ(t) ∈ fr(D̃i) for some i 6= η, which

contradicts the fact that

fr(D̃η) ∩ fr(D̃i) ∩X = ∅

when i 6= η.

Thus we can find an open box W0 ⊆ W about x′ such that W0∩f−1(J) ⊆ W0∩Dη.

By asymptotic monotonicity of C at x, Dη is locally connected at x′ and so we may

shrink W0 if necessary so that W0 ∩Dη is definably connected. To finish the proof of

(In) we note that by definition of W we have

gr(f �W0∩Dη) ⊆ W0 × J

and so W0 ∩Dη ⊆ W0 ∩ f−1(J). Then, combined with the fact that W0 ∩ f−1(J) ⊆
W0 ∩Dη, we obtain W0 ∩ f−1(J) = W0 ∩Dη. So we have

W0 × J ⊆ W × J ⊆ V × I ⊆ U × I,

and the set

(W0 × J) ∩ C = {(ξ, f(ξ)) : ξ ∈ W0 ∩D, f(ξ) ∈ J}

= {(ξ, f(ξ)) : ξ ∈ W0 ∩ f−1(J)}

= gr
(
f �W0∩f−1(J)

)
= gr

(
f �W0∩Dη

)
is definably connected, since f is definable and continuous and W0 ∩Dη is definably

connected.

(IIn). We now use (In) and the inductive hypothesis to prove (IIn) for all asymptoti-

cally monotone cells. (The proof of (IIn) given here is based on that of the corresponding

result given in [4].)

Let C ⊆ Rn be a bounded asymptotically monotone cell and let F : C → R be

a definable, continuous, bounded function. Let Z be the set of all points z ∈ fr(C)

such that limx→z F (x) exists. We first claim that dim(fr(C) \Z) ≤ dim(C)− 2: If not,
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then there is a cell E ⊆ fr(C) such that dim(E) = dim(C)− 1 and

lim inf
x→y

F (x) < lim sup
x→y

F (x)

for every y ∈ E. By (In) there is a definable X ⊆ fr(C) such that dim(fr(C) \X) ≤
dim(C) − 2 and C is locally connected at every x ∈ X. Let E0 be the set of x ∈ E
such that C is locally connected at x. Since

dim(C)− 1 = dim(E) = max{dim(E0), dim(E \ E0)}

and

dim(E \ E0) ≤ dim(fr(C) \X) ≤ dim(C)− 2,

we must have dim(E0) = dim(C)− 1 and so we may replace E with E0 so that C is

locally connected at each y ∈ E. But then

fr(gr(F )) ⊇ {(y, r) ∈ Rn+1 : y ∈ E and lim inf
x→y

F (x) < r < lim sup
x→y

F (x)}

since, given any such (y, r) ∈ Rn+1 and any open neighbourhood U × I about (y, r),

by local connectedness we may assume U ∩C is definably connected after shrinking U ,

if necessary. Furthermore, by definition of the lim inf and the lim sup, there are points

ξ1, ξ2 ∈ U ∩C such that F (ξ1) < r and F (ξ2) > r. Since U ∩C is definably connected

and F is definable and continuous, the image F (U ∩ C) is definably connected and so

there exists ζ ∈ U ∩ C such that F (ζ) = r. Thus the intersection (U × I) ∩ gr(F ) is

non-empty and so (y, r) ∈ cl(gr(F )). The above inclusion then yields

dim(fr(gr(F ))) ≥ dim(E) + 1 = dim(C) = dim(gr(F )) > dim(fr(gr(F )))

where the last inequality is by Theorem 1.23 and hence we obtain a contradiction.

Now define G : Z → R by

G(z) := lim
x→z

F (x)

and let Y be the set of points of continuity of G. By the cell decomposition theorem,
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dim(Z \ Y ) < dim(Z) and so

dim(fr(C) \ Y ) = dim((fr(C) \ Z) ∪ (Z \ Y )) = max{dim(fr(C) \ Z), dim(Z \ Y )}

which implies dim(fr(C) \ Y ) ≤ dim(C)− 2. Finally, define F̃ : C ∪ Y → R by setting

F̃ �C := F and F̃ �Y := G �Y . Then F̃ is a continuous extension of F . This completes

the proof of (IIn) and hence the theorem is proven.

Given a bounded cell C ⊆ Rn, we say that C has the almost everywhere extension

property if C satisfies the conclusion of Theorem 2.11 for any definable, continuous,

bounded function F : C → R. Theorem 2.11 then says that, whenever R expands an

ordered group, all asymptotically monotone cells have the almost everywhere extension

property.

Corollary 2.12. Let R be an o-minimal expansion of an ordered group and let C be

a bounded cell. Then (1) =⇒ (2) =⇒ (3), where:

(1) C is asymptotically monotone.

(2) There is a definable X ⊆ fr(C) such that dim(fr(C) \X) ≤ dim(C)− 2 and C

is locally connected at every x ∈ X.

(3) C has the almost everywhere extension property.

Question 2.13. Let C be a bounded cell. If C has the almost everywhere extension

property, must C be asymptotically monotone? Must C be “almost everywhere locally

connected” at its frontier?

Notice that the assumption that R expands an ordered group is only used in the

proof of (In), Subcase 2.2; in fact, definable curve selection is only used in two places

in the proof, and it is plausible that the proof still goes through when R is an arbitrary

o-minimal structure:

Conjecture 2.14. Let R be an arbitrary o-minimal structure and let C be a bounded

asymptotically monotone cell. Then C has the almost everywhere extension property.

We have at the very least the following result for an arbitrary o-minimal structure.

First we define a class of cells which is strictly contained in the class of asymptotically

monotone cells.
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Definition 2.15. We define the class of non-asymptotic cells by induction on n:

(i) If C ⊆ R is an open interval or a point, then C non-asymptotic.

(ii) Let D ⊆ Rn−1 be a non-asymptotic cell. Let f, g : D → R be continuous definable

functions such that f < g. If C = (f, g)D, C = (−∞, f)D, or C = (f,+∞)D,

then C is non-asymptotic.

(iii) Let D ⊆ Rn−1 be a non-asymptotic cell. Suppose C = gr(f) where f : D → R

is definable and continuous, and let X be as in Definition 2.6. Then C is

non-asymptotic if X is empty.

The proof of Theorem 2.11 then goes through, since Subcase 2.2 becomes an empty

case. Hence, as a corollary to the proof, we obtain the following:

Corollary 2.16. Let R be an o-minimal structure and let C be a bounded cell. Then

(1) =⇒ (2) =⇒ (3), where:

(1) C is non-asymptotic.

(2) There is a definable X ⊆ fr(C) such that dim(fr(C) \X) ≤ dim(C)− 2 and C

is locally connected at every x ∈ X.

(3) C has the almost everywhere extension property.

If we also assume that R expands an ordered field then we have the following result,

which could potentially be used to answer Question 2.13 in the affirmative. First let

us say that a cell C is asymptotically non-injective if there exist disjoint, open subcells

C1, C2 ⊆ C such that

cl(C1) ∩ cl(C2) ∩ C = ∅ and dim(fr(C1) ∩ fr(C2) ∩X) = dim(C)− 1

where X is as in Definition 2.6.

Theorem 2.17. LetR be an o-minimal expansion of an ordered field (R,<, 0, 1,+,−, ·)
and let C ⊆ Rn be a bounded cell which is asymptotically non-injective. Then there

exists a definable, continuous, bounded function F : C → R such that F does not

extend continuously almost everywhere to fr(C), i.e. there is a definable Z ⊆ fr(C)

such that dim(Z) = dim(C)− 1 and F does not extend continuously to x for all x ∈ Z.
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Proof. Let X be as in Definition 2.6 and let C1, C2 ⊆ C be disjoint open subcells of C

such that cl(C1)∩ cl(C2)∩C = ∅ and dim(fr(C1)∩ fr(C2)∩X) = dim(C)− 1. Define

a function

F : (cl(C1) ∪ cl(C2)) ∩ C → R

by setting

F �cl(C1)∩C := c1 and F �cl(C2)∩C := c2

where c1, c2 are arbitrary elements of R such that c1 6= c2. Note that F is well-

defined since cl(C1) ∩ cl(C2) ∩ C is empty. Furthermore, F is continuous since the

pre-image of an open set in R under F is either empty, or all of (cl(C1) ∪ cl(C2)) ∩ C,

or cl(C1) ∩ C, or cl(C2) ∩ C; the latter two sets are open since they are definably

connected components of (cl(C1) ∪ cl(C2)) ∩ C. Hence F is a definable, continuous,

bounded function on (cl(C1) ∪ cl(C2)) ∩ C. Note that (cl(C1) ∪ cl(C2)) ∩ C is closed

in C and so by Theorem 2.1 we can continuously extend F to a definable, bounded

function F̃ : C → R. But F̃ does not extend continuously almost everywhere to fr(C)

since dim(fr(C1) ∩ fr(C2) ∩X) = dim(C)− 1 and, for any x ∈ fr(C1) ∩ fr(C2) ∩X, x

belongs to the closure of the domain of F̃ restricted to cl(Ci) ∩ C, for each i ∈ {1, 2},
and so the limit of F̃ (z) as z approaches x does not exist.

Hence, if one could show that the negation of asymptotic monotonicity implies

asymptotic non-injectivity, then we would obtain (in the case where R expands an

ordered field) the implication (3) =⇒ (1), using the shorthand of Corollary 2.16.

Question 2.18. Let C be a bounded cell which is not asymptotically monotone. Is C

asymptotically non-injective?

If not, then it is not unreasonable to suggest that there is a property which satisfies

each of our requirements:

Conjecture 2.19. Let R be an o-minimal expansion of an ordered field. There is a

property P of cells such that the following are equivalent for a bounded cell C:

(1) C has property P.

(2) There is a definable X ⊆ fr(C) such that dim(fr(C) \X) ≤ dim(C)− 2 and C

is locally connected at every x ∈ X.

(3) C has the almost everywhere extension property.
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Furthermore, it is not known if asymptotic monotonicity at a point is a defin-

able condition, nor is it known if one can partition an arbitrary definable set into

asymptotically monotone cells. Hence we conclude with the following:

Question 2.20. Let C and X be as in Definition 2.6. Is the set of all x ∈ X such

that C is asymptotically monotone at x a definable set? Is there a cell decomposition

theorem for asymptotically monotone cells?
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