
LARGE-SCALE DYNAMIC OPTIMIZATION UNDER UNCERTAINTY
USING PARALLEL COMPUTING

LARGE-SCALE DYNAMIC OPTIMIZATION UNDER UNCERTAINTY
USING PARALLEL COMPUTING

by

IAN D. WASHINGTON, B.A.Sc., M.A.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University

c© Copyright by Ian D. Washington, April 2016

DOCTOR OF PHILOSOPHY (2016) McMaster University

(Chemical Engineering) Hamilton, Ontario, Canada

TITLE: Large-Scale Dynamic Optimization Under Uncertainty

using Parallel Computing

AUTHOR: Ian D. Washington

B.A.Sc. (University of Waterloo, Waterloo, Ontario, Canada)

M.A.Sc. (University of Waterloo, Waterloo, Ontario, Canada)

SUPERVISOR: Dr. Christopher L.E. Swartz

NUMBER OF PAGES: xiii, 158

iii

Abstract

This research focuses on the development of a solution strategy for the optimization of

large-scale dynamic systems under uncertainty. Uncertainty resides naturally within the

external forces posed to the system or from within the system itself. For example, in chemical

process systems, external inputs include flow rates, temperatures or compositions; while

internal sources include kinetic or mass transport parameters; and empirical parameters

used within thermodynamic correlations and expressions. The goal in devising a dynamic

optimization approach which explicitly accounts for uncertainty is to do so in a manner

which is computationally tractable and is general enough to handle various types and

sources of uncertainty. The approach developed in this thesis follows a so-called multiperiod

technique whereby the infinite dimensional uncertainty space is discretized at numerous

points (known as periods or scenarios) which creates different possible realizations of the

uncertain parameters. The resulting optimization formulation encompasses an approximated

expected value of a chosen objective functional subject to a dynamic model for all the

generated realizations of the uncertain parameters. The dynamic model can be solved,

using an appropriate numerical method, in an embedded manner for which the solution

is used to construct the optimization formulation constraints; or alternatively the model

could be completely discretized over the temporal domain and posed directly as part of the

optimization formulation.

Our approach in this thesis has mainly focused on the embedded model technique for

dynamic optimization which can either follow a single- or multiple-shooting solution method.

The first contribution of the thesis investigates a combined multiperiod multiple-shooting

dynamic optimization approach for the design of dynamic systems using ordinary differential

equation (ODE) or differential-algebraic equation (DAE) process models. A major aspect

of this approach is the analysis of the parallel solution of the embedded model within the

optimization formulation. As part of this analysis, we further consider the application of

the dynamic optimization approach to several design and operation applications. Another

v

major contribution of the thesis is the development of a nonlinear programming (NLP) solver

based on an approach that combines sequential quadratic programming (SQP) with an

interior-point method (IPM) for the quadratic programming subproblem. A unique aspect of

the approach is that the inherent structure (and parallelism) of the multiperiod formulation

is exploited at the linear algebra level within the SQP-IPM nonlinear programming algorithm

using an explicit Schur-complement decomposition. Our NLP solution approach is further

assessed using several static and dynamic optimization benchmark examples.

An accompanying contribution of the thesis is a proof-of-concept dynamic optimization tool,

written in C/C++, that automatically discretizes infinite dimensional dynamic optimization

formulations to multiperiod nonlinear programming formulations. Additionally, all corre-

sponding objective and constraint derivative information is generated via a combination of

automatic differentiation and sensitivity analysis. Furthermore, a separate and stand-alone

NLP solver, based on an SQP-IPM algorithm, was written in C++ which we utilized for dis-

cretized multiperiod dynamic formulations, but could also be used for general NLPs with a

known user-defined structure.

vi

Acknowledgments

The author wishes to thank his advisor, Christopher L.E. Swartz for his support throughout

the course of the project. Further gratitude is owed to the McMaster Advanced Control Con-

sortium (MACC) and its industrial partners, as well the Department of Chemical Engineering

at McMaster University for project funding.

vii

Table of Contents

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Main Contributions . 2

1.3 Dynamic Optimization under Uncertainty . 3

1.4 Dynamic Optimization Solution Approach . 5

1.5 Intended Applications . 5

1.6 Thesis Outline . 6

2 A Parallel Implementation for Multiperiod Dynamic Optimization of ODE Sys-

tems 9

2.1 Introduction . 10

2.2 Dynamic Multiperiod Optimization . 13

2.3 Proposed Solution Framework . 18

2.4 Example Problems . 27

2.5 Concluding Remarks . 47

2.6 Evaporator Model Equations . 48

2.7 Distillation Model Equations . 51

References . 55

3 A Parallel Implementation for Multiperiod Dynamic Optimization of Large-Scale

DAE Systems 61

3.1 Introduction . 62

3.2 Problem Statement . 64

3.3 Proposed Solution Approach . 67

3.4 Example Problems . 82

3.5 Concluding Remarks . 97

3.6 Air Separation Model Equations . 98

ix

References . 102

4 Towards a Structure Exploiting Parallel NLP Algorithm for Multiperiod Dynamic

Optimization 109

4.1 Introduction . 110

4.2 Problem Formulation . 113

4.3 Proposed Solution Algorithm . 116

4.4 Example Problems . 133

4.5 Concluding Remarks . 148

References . 149

5 Conclusions and Future Work 155

5.1 Concluding Remarks . 155

5.2 Future Work . 157

x

List of Figures

2.1 Implementation of ODE solution within the parallel multiperiod multiple-

shooting dynamic optimization algorithm . 25

2.2 Example 1 – evaporator process schematic and control structure 29

2.3 Example 1 – evaporator dynamic optimization trajectories for ns = 5: (a)–(b)

uncertain disturbance inputs v(t); (c)–(d) closed-loop inputs u(t); (e)–(f)

controlled outputs y(t) . 34

2.4 Example 1 – parallel multiperiod multiple-shooting algorithm speedup and

efficiency with increasing number of processors and scenarios 39

2.5 Example 2 – distillation process schematic and control structure 41

2.6 Example 2 – distillation dynamic optimization trajectories for ns = 10: (a)–(b)

uncertain disturbance inputs v(t); (c)–(d) closed-loop inputs u(t); (e)–(f)

controlled outputs y(t) . 44

2.7 Example 2 – parallel multiperiod multiple-shooting algorithm speedup and

efficiency with increasing number of processors and scenarios 46

2.8 Example 2 – ODE and NLP solution wall clock timings with increasing number

of processors and scenarios . 47

3.1 Multiperiod multiple-shooting discretization for DAEs 68

3.2 Example 1 – (a) control input & state trajectories (nominal solution repre-

sented by the solid line) and (b) base line DAE & NLP solution times for

increasing ns . 84

3.3 Example 1 – speedup, efficiency and wall clock times for increasing ns 87

3.4 Example 2 – air separation process schematic 89

3.5 Example 2 – (a) robust control & select output trajectories (nominal solution

represented by the solid line) and (b) base line DAE & NLP solution times for

increasing ns . 92

xi

3.6 Example 2 – speedup and wall clock times for increasing N and ns, where

n = 6 fixed for (a)–(c) and n = 12 fixed for (d)–(f) 95

3.7 Example 2 – speedup and efficiency for increasing DAE size nx/nz based on

nt = {5, 17, 39}, with n = 6, ns = 80 fixed . 96

4.1 Example 1 – weak scaling results for increasing ns and processors 137

4.2 Example 1 – strong scaling results for fixed ns = 16 and increasing processors 139

4.3 Example 2 – weak scaling results for increasing ns and processors 143

4.4 Example 3 – (a)–(c) weak scaling results for increasing ns and processors; (d)

strong scaling speedup for fixed ns = 800 and increasing processors 147

xii

List of Tables

2.1 Example 1 – evaporator model variable definitions 29

2.2 Example 1 – evaporator optimal design and control parameters 33

2.3 Example 1 – evaporator optimization timings for parallel multiperiod algorithm 38

2.4 Example 2 – distillation optimal design and control parameters 43

2.5 Example 2 – distillation optimization timings for parallel multiperiod algorithm 45

2.6 Example 1 – evaporator model parameter values 51

2.7 Example 2 – distillation model variable definitions 54

2.8 Example 2 – distillation model parameter values 55

3.1 Example 1 – parallel computation results comparing increasing ns 84

3.2 Example 1 – serial computation results comparing Hessian generation approach 89

3.3 Example 2 – parallel computation results comparing increasing n and ns . . . 93

3.4 Example 2 – parallel computation results comparing different DAE dimensions 95

3.5 Example 2 – air separation model parameter values 102

4.1 Example 1 – computation results for QP-IPM algorithm comparing increasing

ns, nq and np using full-space (FS) and Schur-complement decomposition

(SCD) approaches . 138

4.2 Example 2 – computation results for SQP-IPM algorithm comparing increasing

ns using full-space (FS) and Schur-complement decomposition (SCD) approaches141

4.3 Example 3 – computation results for SQP-IPM algorithm with embedded

ODE comparing increasing ns using full-space (FS) and Schur-complement

decomposition (SCD) approaches . 146

xiii

Chapter 1

Introduction

1.1 Motivation and Goals . 1

1.2 Main Contributions . 2

1.3 Dynamic Optimization under Uncertainty 3

1.4 Dynamic Optimization Solution Approach. 5

1.5 Intended Applications . 5

1.6 Thesis Outline . 6

This chapter outlines and defines the research problem and further highlights the solution

path taken. The research goals and contributions are clearly stated.

1.1 Motivation and Goals

Higher operating costs and shrinking profit margins in the chemical and petro-chemical

industries are driving greater applications of advanced control techniques and even further

consideration of control at the process design stage. These applications are often model-based

and require the solution of optimization formulations comprising very large systems of vari-

ables and equations that can be computationally demanding requiring considerable computer

memory and solution times. Accordingly, these applications are motivating the development

and implementation of solution approaches, numerical techniques and algorithms capable

of efficiently exploiting modern computational resources in terms utilizing multiprocessor

systems and/or acceleration devices.

The particular direction that we focus on in this work is the development of efficient solution

strategies for multiperiod dynamic optimization formulations which incorporate process mod-

1

2 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

els described by differential-algebraic equations (DAEs) with uncertain parameters and/or

disturbance inputs. To this end, we are investigating a direct multiperiod discretization

approach of the uncertainty space combined with a multiple-shooting discretization of the

temporal domain which requires the solution of an embedded dynamic model within an over-

all nonlinear programming algorithm. The goals of the project include: (1) a proof-of-concept

implementation of a multiple-shooting dynamic optimization tool applicable to multiperiod

formulations; (2) an analysis of solving large-scale dynamic optimization formulations, in

which aspects of the solution algorithm are performed in parallel, where the idea is to provide

insight into potential computation improvements; (3) a proof-of-concept parallel computing

nonlinear programming implementation applicable to multiperiod dynamic optimization

formulations.

1.2 Main Contributions

The main novel contributions of this work include:

1. A proposed solution methodology and framework for solving dynamic opti-

mization formulations that explicitly accounts for uncertainty within the model

parameters or inputs, is impartial to the type of uncertainty, and is applicable to

and effective at solving large-scale model-based design and control formulations.

2. A demonstration of the solution methodology via an analysis of the parallel

implementation of the embedded model solution, and application to large-scale

chemical process systems.

3. The development and investigation of a multiperiod nonlinear programming

technique that uses sequential quadratic programming (SQP) where each QP sub-

problem utilizes an interior-point method (IPM) which exploits the formulation

structure via a Schur-complement decomposition of the primal-dual equations

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 3

with a parallel implementation.

1.3 Dynamic Optimization under Uncertainty

Real processes have uncertain and time varying parameters and disturbances, which must be

accounted for in order to develop robust design criteria and control algorithms for flexible

process operation. Accounting for uncertainty within a mathematical process design or

predictive control formulation, amounts to optimizing a particular objective function while

satisfying feasibility conditions over a possible range of uncertain operational parameters or

input disturbances. Process design formulations that consider the influence of dynamics allow

for the simultaneous assessment of the economic cost of the design and the corresponding

control system design and performance. On the other hand, the consideration of uncertainty

within model-based predictive control strategies allows one to effectively design robust

control strategies that maintain the process within a design feasible region while achieving a

desired optimal objective criterion. Particular examples of interest to our project include:

1. the determination of optimal time-invariant design parameters subject to opera-

tional parameter uncertainty and open- and closed-loop set-point transitions

2. the establishment of robust optimal control profiles for open-loop set-point

transitions with uncertain time-invariant model parameters (e.g., thermodynamic

parameters, pressure drop) and/or time-varying disturbances (feed flow rate,

compositions)

The class of dynamic optimization formulation that we focus on can be defined as a nonlinear

dynamic stochastic program which seeks to optimize, as degrees of freedom, a time-varying

control profile and/or design/model parameters. This formulation can be stated according

4 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

to,

min
u(t), p

φ0(p, tf) + Eθ∈Γ{φ(x(tf), z(tf),p,θ, tf)}

st : ẋ(t)− fd(x(t), z(t),u(t),v(t),p,θ, t) = 0

fa(x(t), z(t),u(t),v(t),p,θ, t) = 0

x(t0)− h0(u(t0),v(t0),p,θ, t0) = 0

g(x(t), z(t),u(t),v(t),p,θ, t) ≤ 0

u(t) ∈ U, p ∈ P, t ∈ T

(P.1.1)

where an expectation function is utilized to capture the mean objective value over an infinite

set of random parameters θ and is defined as,

Eθ∈Γ{φ(·)} =
∫
θ∈Γ P (θ) · φ(x(tf), z(tf),p,θ, tf) dθ (1.1)

Furthermore, we define the sets X ⊆ Rnx and Z ⊆ Rnz for differential and algebraic state

variables, U = [uL,uU] ⊂ Rnu for the open-loop control variables, V ⊆ Rnv for input

disturbance variables, P = [pL,pU] ⊂ Rnp for optimization design parameters, Γ ⊆ Rnθ for

uncertain parameters, and T = [t0, tf] ⊂ R for the independent time domain. Accordingly,

φ0(·) : P × T 7→ R and φ(·) : X × Z × P × Γ × T 7→ R represent scalar deterministic and

stochastic objective function criteria, respectively; fd(·) : X×Z×U×V ×P×Γ×T 7→ Rnx and

fa(·) : X×Z×U×V ×P×Γ×T 7→ Rnz represent the dynamic process model (in semi-explicit

DAE form); h0(·) : U × V × P × Γ× R 7→ Rnx represents a parameter dependent function

governing the initial differential state conditions; g(·) : X × Z × U × V × P × Γ× T 7→ Rng

are path inequality constraints (possibly including a subset of point or end-point constraints

on closed-loop control performance and/or open-loop inputs); u(t) ∈ U are time-variant

control input variables; v(t) ∈ V are time-variant disturbance input variables (typically

defined a priori); and p ∈ P are time-invariant model/design parameters; P (θ) : Γ 7→ R is

a continuous probability density function that represents the uncertainty distribution and

θ ∈ Γ = {θ ∈ Rnθ : θL ≤ θ ≤ θU} are time-invariant parameters that lie within this

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 5

uncertainty region around some nominal/mean value.

1.4 Dynamic Optimization Solution Approach

The approach taken in this thesis to solve large-scale stochastic dynamic optimization

problems given by Problem P.1.1 is to discretize both the infinite dimensional uncertainty

space and the temporal domain. The resulting formulation produces a nonlinear program

which can be solved using a number of possible algorithms. The particular approach

adopted to transform the continuous stochastic program of Problem P.1.1 follows a sampling

method, which we denote as a multiperiod or multiscenario discretization. In this method,

numerous scenario realizations of select model parameters or parameterized disturbance

trajectories are generated (via sampling from a particular distribution or uniformly within

an interval of the random “uncertain” variables) and the underlying model equations and

variables are repeated for each realization and then posed as single large-scale continuous

dynamic optimization formulation. Practical solution methods to solve the resulting dynamic

optimization formulation typically follow direct discretization approaches whereby the time-

varying infinite dimensional control input variable trajectories, and possibly the state variable

trajectories, are parameterized over the optimization time horizon and a particular objective

function is minimized using a nonlinear programming solver. Popular direct methods include

direct sequential (control vector parameterization), direct simultaneous (full transcription),

and multiple-shooting, which is a hybrid between sequential and simultaneous methods.

1.5 Intended Applications

The type of applications we are targeting with our dynamic optimization solution approach

lean mainly towards off-line problems for optimal process design and operation under

transient conditions. These types of optimization formulations are posed in manner that seek

6 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

to determine the best possible economic design with good control performance such that the

system is able to respond in an agile manner to possibly unforeseen circumstances imposed

on the system. In addition, operation problems may include determining a robust set-point

or reference trajectory subject to uncertain disturbance inputs to the system, where we use

the term robust in referring to the ability of the optimal control trajectory to satisfy the

imposed system constraints given the uncertainty in the input disturbance and/or internal

model parameters.

1.6 Thesis Outline

This thesis is organized according to the following chapters:

In Chapter 2, we present our first contribution which considers applying a proof-of-concept

multiperiod multiple-shooting dynamic optimization algorithm in Matlab for the design of

dynamic systems. In particular, we focus primarily on potential solution speedup by consider-

ing the parallel solution of the embedded ODE models within the nonlinear programming

algorithm of the discretized dynamic optimization formulation.

In Chapter 3, we present our second contribution which follows from our first, and considers

large-scale multiperiod dynamic optimization formulations with embedded differential-

algebraic equation (DAE) models. The key aspects beyond those noted in Chapter 2 include:

the specific treatment of semi-explicit index-1 DAEs, the investigation and use of higher-order

state sensitivities within the NLP algorithm, a more complete parallel algorithm performance

analysis using a proper C/C++ implementation with shared-memory OpenMP constructs.

In Chapter 4, we present our third contribution which focuses on the development of a

nonlinear programming algorithm that uses distributed parallel computing concepts via the

message-passing interface (MPI) to facilitate the solution of structured large-scale dynamic

optimization formulations. Note, that our investigation in this chapter goes beyond those

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 7

in previous chapters, which only looked at the parallelization of the embedded dynamic

model solution. Furthermore, with this new contribution we seek to alleviate the bottleneck

associated with using a serial NLP solver encountered in the previous chapters

In Chapter 5, we summarize the thesis and reiterate what we consider to be the main

contributions to this area of study. Furthermore, future directions are discussed and our

proposed next steps are laid out.

Chapter 2

A Parallel Implementation for Multiperiod Dynamic Optimization

of ODE Systems

2.1 Introduction . 10

2.2 Dynamic Multiperiod Optimization 13

2.3 Proposed Solution Framework . 18

2.4 Example Problems . 27

2.5 Concluding Remarks . 47

2.6 Evaporator Model Equations . 48

2.7 Distillation Model Equations . 51

References . 55

This chapter develops a technique for optimizing dynamic systems under uncertainty using a

prototype parallel programming implementation. A multiple-shooting discretization scheme

is applied, whereby each shooting interval is solved using an error-controlled differential

equation solver. In addition, the uncertain parameter space is discretized, resulting in a

multiperiod optimization formulation. Each shooting interval and period (scenario) real-

ization is completely independent, thus a major focus of this chapter is on demonstrating

potential computational performance improvement when the embedded dynamic model

solution of the multiperiod algorithm is implemented in parallel. We assess our parallel

multiperiod and multiple-shooting based dynamic optimization algorithm on two case studies

involving integrated plant and control system design, where the objective is to simultaneously

determine the size of the process equipment and the control system tuning parameters that

minimize cost, subject to uncertainty in the disturbance inputs.

Note, portions of this chapter were published according to the journal article:

9

10 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

I.D. Washington and C.L.E. Swartz. “Design under Uncertainty using Parallel Multiperiod

Dynamic Optimization”. In: AIChE Journal, 2014. 60 (9), 3151–3168.

2.1 Introduction

Dynamic optimization is an important tool for solving practical problems of model predictive

control (MPC), moving horizon state estimation (MHE), optimal control, parameter estima-

tion, and design with dynamic performance considerations. Practical dynamic optimization

methodologies involve the use of direct techniques whereby partial or full discretization

is applied to a dynamic system to yield an algebraic nonlinear program. Within this do-

main, there are three well established practical classes of algorithms for continuous dynamic

optimization applicable to large-scale systems, namely sequential (i.e., single-shooting),

simultaneous (i.e., full transcription), and multiple-shooting methods. Sequential methods

solve an embedded dynamic model at each optimization iteration; simultaneous methods

fully discretize the process model and then solve the optimization and model simultaneously;

multiple-shooting is a hybrid of sequential and simultaneous methods that independently

solves the embedded model over a number of independent successive intervals, while an

outer nonlinear programming (NLP) solver is used to satisfy the particulars of the desired

optimization formulation and to ensure that continuity is achieved in the state trajectories

between each successive shooting interval. All techniques have been applied successfully to

a number of large-scale chemical process systems [1–3], with more detail on the algorithmic

aspects given in [4].

In terms of advancing the state of direct dynamic optimization solution techniques such

that larger plant-wide models can be used, recent work has focused on parallel implemen-

tations for: (1) the parameter sensitivity computation within the sequential approach [5];

(2) the embedded model and sensitivity solution over each shooting interval within the

multiple-shooting algorithm [6]; (3) the structured linear algebra of the Karush-Kuhn-Tucker

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 11

(KKT) system solution for the interior-point NLP algorithm, used within the simultaneous

method [7]. Furthermore, with scenario-based solution strategies for handling uncertainty,

many past implementations have been serial with no exploitation of parallelism for the

multiple periods/scenarios used. One exception where parallelization is used is a recent

study by Zhu, Legg, and Laird [8], who demonstrated a multiperiod nonlinear programming

algorithm for the optimal operation of an air separation process under uncertainty. Their

approach considers using a multiperiod algorithm to include parametric uncertainty within

the disturbances (discretized into several possible realizations) as opposed to simply using

nominal model inputs, and then applies large-scale nonlinear programming solution tech-

niques where the underlying linear algebra structure is exploited using a parallelized solution

strategy. In another direction, Ricardez-Sandoval [9] has used parallel techniques for Monte

Carlo simulation within an integrated design and control framework, whereby independent

function evaluations for dynamic model simulation are performed in parallel.

The particular application that we focus on in this chapter is the integration of design and

control problem, which offers a systematic approach to address poor control performance,

violation of safety and environmental constraints, and degradation in economic performance

through dynamic optimization design formulations. The design of chemical process plants is

traditionally performed by first sizing the equipment via heuristic based calculations under

steady-state conditions, followed by the development of a control system structure and

corresponding tuning under transient conditions. It has been well recognized that using

such an approach can lead to a process design with unfavorable process dynamics, which

can be difficult to adequately control in the presence of unforeseen disturbances or process

variability [10]. A more recent strategy has been to design the plant considering dynamic

performance by integrating both design and control at the same stage, such that operational

variability can be directly addressed at the design stage. The central idea to combining

both design and control tasks into a single phase is to permit potential control performance

limiting factors to be addressed simultaneously during system design so that designs that

12 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

are likely to cause control difficulties can be avoided. Detailed discussions of integration

techniques for design and control can be found in the comprehensive reviews by Schijndel

and Pistikopoulos [11], Sakizlis, Perkins, and Pistikopoulos [12], and more recently by Yuan

et al. [13].

In order to construct a realistic design formulation, uncertainty must be explicitly embedded

within the dynamic system that describes possible unknown exogenous disturbance inputs

and/or model parameters. Our focus is on a stochastic optimization formulation, for which a

straightforward route involves using a scenario-based or multiperiod optimization technique

which describes uncertainty through a set of possible parameter scenarios based on a discrete

probability distribution or discretized probability functions.

The focus of this chapter is on the underlying solution techniques utilized in systematic opti-

mization approaches to the integration of design and control. More specifically, this chapter

is on the development of a parallel computing implementation that utilizes a multiperiod

approach to handle disturbance uncertainty, and a multiple-shooting dynamic optimiza-

tion solution technique. The discretization of the infinite dimensional uncertainty space

(multiperiod or multiscenario approach), when applied to large-scale ordinary differential

equations (ODEs), often yields large and potentially unwieldy systems of equations, which

must be solved in an efficient manner for computational tractability. Fortunately, the resulting

uncertainty realizations at the ODE level are independent within the state space, which allows

the solution to be implemented in a highly parallel manner. Parallelization can be further

exploited by adopting a parallel multiple-shooting algorithm for solving the dynamic opti-

mization problem [6]. As with the sequential (single-shooting) approach, multiple-shooting

readily employs error-based step-size control through the integration routine, but it is less

prone to failure when optimization iterates yield values of the optimization variables that

result in unstable dynamics. Our current algorithm decomposes the differential equations

within the optimization formulation by partitioning both the number of periods and shooting

intervals and off-loading each of these independent integration tasks to a parallel computing

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 13

cluster, thus significantly speeding up each iteration of the nonlinear programming algorithm.

The approach is well suited for use as a tool in existing optimization-based design and control

frameworks [14], or as a core solver in robust operational problems of MPC or open-loop

robust optimal control [15].

The chapter is laid out by first discussing the multiperiod formulation, followed by our

dynamic optimization solution approach and implementation. Next, two case studies of

different scale are presented to illustrate the computational performance of the algorithm.

Finally, some concluding remarks are provided which highlight the benefits of the proposed

algorithm.

2.2 Dynamic Multiperiod Optimization

Multiperiod optimization is a commonly used technique to approximate stochastic programs

whereby an infinite dimensional (continuous) stochastic program is reformulated as a

discrete-time problem such that the probability distribution is discretized at several points

in the random variable space [16]. This type of formulation has been widely applied in the

context of plant-wide design and scheduling of chemical processes under uncertainty [17,

18]. Steady-state process models are typically used whereby the objective is to optimize

an economic criterion while ensuring that the plant can operate under several possible

conditions arising in a sequence of possibly different time periods.

The extension of multiperiod formulations to include system dynamics, and hence optimal

control formulations, has been addressed by a number of researchers. Ruppen, Benthack,

and Bonvin [19] discuss batch reactor trajectory optimization under parametric uncertainty

and utilize a simultaneous-based optimization scheme with a successive linear programming

(SLP) solution strategy to solve the resulting NLP. Bhatia and Biegler [20] discuss the design

and scheduling of batch process plants and utilize sequential quadratic programming (SQP)

14 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

for the resulting NLP. The authors’ focus was primarily on the optimization formulation

to facilitate the integration of design and scheduling. From a design under uncertainty

perspective, Mohideen, Perkins, and Pistikopoulos [14] proposed a framework for the

integration of design and control which uses an iterative decomposition algorithm involving

two optimization stages comprising a mixed-integer multiperiod dynamic optimization

design problem and a feasibility analysis problem which is also a mixed-integer dynamic

optimization problem.

Many of the past studies that utilize a multiperiod formulation with dynamic systems have

generally considered a relatively small number of scenarios to approximate the expected

value of the objective function and constraint satisfaction. To accurately capture the effects of

uncertainty on systems with many uncertain parameters requires a large number of scenarios.

The introduction of numerous scenarios, particularly in large-scale dynamic systems, raises

the issue of computational tractability, which consequently requires an efficient solution

implementation. In this chapter, we explore the use of parallel computing strategies.

2.2.1 Multiperiod Formulation

For a dynamic system consisting of ordinary differential equations (ODEs) over a fixed time

horizon, a general stochastic dynamic program can be stated as,

min
u(t),p

J := φ0(p, tf) + Eθ∈Γ{φ(x(tf),p,θ, tf)}

st : ẋ(t)− f(x(t),u(t),v(t),p,θ, t) = 0

x(t0)− h0(u(t0),v(t0),p,θ, t0) = 0

g(x(t),u(t),v(t),p,θ, t) ≤ 0

u(t) ∈ U, p ∈ P, t ∈ T

(P.2.1)

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 15

where the expectation function is defined as,

Eθ∈Γ{φ(·)} =
∫
θ∈Γ P (θ) · φ(x(tf),p,θ, tf) dθ (2.1)

Furthermore, we define the sets X ⊆ Rnx for state variables, U = [uL,uU] ⊂ Rnu for the

open-loop control variables, V ⊆ Rnv for input disturbance variables, P = [pL,pU] ⊂ Rnp

for optimization design parameters, Γ ⊆ Rnθ for uncertain parameters, and T = [t0, tf] ⊂ R

for the independent time domain. Accordingly, φ(·) : X × P × Γ × T 7→ R represents a

scalar objective function criterion, evaluated at the final time, that could possibly represent

economic, state/output tracking, or a combination thereof; f(·) : X × U × V × P × Γ× T 7→

Rnx represents the ordinary differential equation right-hand-side function of the process

model; g(·) : X × U × V × P × Γ × T 7→ Rng are path inequality constraints (possibly

including a subset of interior-point or end-point inequality constraints on closed-loop control

performance, open-loop inputs, and/or design parameters); u(t) ∈ U are time-variant control

input variables; v(t) ∈ V are time-variant disturbance input variables (typically defined

a priori); and p ∈ P are time-invariant model/design parameters; P (θ) : Γ 7→ R is a

continuous probability density function that represents the uncertainty distribution and

θ ∈ Γ = {θ ∈ Rnθ : θL ≤ θ ≤ θU} are time-invariant parameters that lie within this

uncertainty region around some nominal/mean value.

The infinite dimensional formulation given by Problem P.2.1 can be discretized using a num-

ber of scenarios with an associated probability of occurrence (uncertainty space sampling).

Accordingly, the objective function can be approximated as a weighted sum of different

possible scenarios sampled from a particular distribution. As such, we can formulate Problem

P.2.2 by considering θ ∈ Γ ≡ {θi}nsi=1 in a multiperiod (or multiscenario) form defined by a

16 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

specified number of uncertain parameter scenarios ns (realizations),

min
ui(t),di∀ i,p

J := φ0(p, tf) +
∑ns

i=1 wi · φi(xi(tf),di,p,θi, tf)

st : ẋi(t)− f(xi(t),ui(t),vi(t),di,p,θi, t) = 0

xi(t0)− h0(ui(t0),vi(t0),di,p,θi, t0) = 0

g(xi(t),ui(t),vi(t),di,p,θi, t) ≤ 0

ui(t) ∈ U, di ∈ D ∀ i = 1, . . . , ns

p ∈ P, t ∈ T

(P.2.2)

where the states xi(t), open-loop controls ui(t), disturbances vi(t), local scenario-specific

parameters di and uncertain parameter realizations θi are associated with a particular

scenario i, and the design or global model parameters p are uniform over all scenarios. The

weight (or probability) associated with each scenario i is represented as wi ∈ [0, 1]. This

particular formulation, where we associate the control variables with each scenario, is of the

form of a two-stage stochastic program. The parameters p constitute first-stage decisions,

and the control inputs ui(t) constitute second-stage decisions that can provide compensatory

action in response to disturbance and parameter realizations. Due to the discretization

approach, the NLP formulation (constraint gradient/incident matrices) has a distinct block

structure whereby each scenario realization represents a block [17]. General NLP techniques

to exploit block structured formulations and associated software tools are currently the

subject of much research [7, 21]. The approach proposed in this chapter does not focus

on structure exploitation at the NLP level, but instead takes advantage of the decomposed

model structure that is embedded within the multiple-shooting approach. This permits the

use of existing NLP solvers, with expensive model function evaluations (i.e., DAE solution)

handled in an efficient manner via parallelization.

A popular technique for generating scenarios is Monte Carlo sampling, which entails sampling

from probability distributions describing the uncertain parameters. A realization for each pa-

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 17

rameter, taken together, constitutes a scenario, and each scenario is assigned an equal weight

with the sum of weights equal to one [22]. Several alternative sampling techniques have

been proposed, with the goal of maintaining good approximation accuracy with increased

computational efficiency; some discussion of such approaches is given in Diwekar [23].

2.2.2 Design and Control Formulation

In the context of design and control, the optimization parameters p defined in problem P.2.2

refer to the equipment sizes (e.g., reactor, distillation column, or heat exchanger dimensions),

controller tuning parameters and process set-points. Furthermore, the objective function

would typically be an economic index of the combined annualized capital and operating

costs of the process plant. As a result, the particular form of the objective function differs

slightly from problem P.2.2, in that one is able to partition the overall cost into a design

or capital cost portion Ccap(p), as a function of the design parameters p, and a control or

operation cost portion Cop(x(t),u(t),v(t),p,θ, t), as a function of the system response x(t),

manipulated inputs u(t), specified disturbances v(t), design parameters p and uncertain

parameters θ. Accordingly, the objective function can be stated as follows,

J := Ccap(p) +
∑ns

i=1 wi · Cop(xi(tf),ui(tf),vi(tf),di,p,θi, tf) (2.2)

where the manipulated control inputs u(t) are determined via an embedded control law

and the time-varying disturbance inputs can be specified directly via v(t), or parameterized

through the time-invariant parameters θ, as stepwise profiles according to,

v(t;θ) := v0 + ∆v γ(t, tstep) (2.3)

where the uncertain parameters include the initial disturbance values v0 and the step

magnitude values ∆v, and can be stated accordingly as θ := [v>0 ,∆v>]>. The function v(t;θ)

18 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

is defined for single-step disturbance inputs and approximates the disturbance trajectories as

continuous profiles in order to avoid discontinuities within the model equations and thus

avoid potential integration difficulties or the necessity to stop and restart the integration

routine [24]. The approximation is performed using an appropriate smoothing function

γ(t, tstep), which is triggered at tstep. One possible smoothing function approximation is via

the exponential function defined as,

γ(t, tstep) := [1 + exp(−α(t− tstep))]−1 ∈ (0, 1) (2.4)

where α > 0 is a tuning parameter used to adjust the rate of transition of the step and

tstep > t0 is the point in time to initiate the transition. Similar disturbance functions can be

derived for multi-step profiles or even sinusoidal profiles with an uncertain amplitude and/or

frequency [12].

The system inputs that are defined through the control laws are not independent deci-

sion variables. However, they remain scenario-dependent, along with the other system

states. Controller parameters such as the controller gain, reset time, set-point and bias in a

proportional-integral (PI) control law can be treated as being uniform over all scenarios or

scenario dependent (by defining a separate set of parameters for each scenario). The most

appropriate set-up would depend on the particular context of the application.

2.3 Proposed Solution Framework

As previously noted, direct methods used to solve dynamic optimization problems fall into

three major categories: sequential, simultaneous, and multiple-shooting approaches. In

this chapter, we focus on the multiple-shooting approach. It typically results in moderately

sized NLP problems, allows for automatic control of integration accuracy through the use of

DAE solvers, is less susceptible to failure due to unstable process dynamics than sequential

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 19

approaches, and is well suited to parallelization.

In this section we define the multiple-shooting approach, explore the extension to solve

multiperiod formulations, and discuss our particular parallel implementation.

2.3.1 Multiple-Shooting Discretization

The multiple-shooting technique was made widely accessible through the MUSCOD software

originally developed by Bock and Plitt [25] for optimal control using ordinary differential

equation (ODE) models, and subsequently adapted for differential-algebraic equation (DAE)

models [26, 27]. The technique combines aspects of both the sequential (or single-shooting)

and simultaneous methods in that one is able to expose the embedded model states to the

optimization layer. The time horizon is partitioned into a number of shooting intervals.

Within each interval, the inputs can be further parameterized and the dynamic system

integrated, much like the sequential method. The multiple-shooting technique entails

introducing new optimization parameters to represent the state variable initial conditions

at the beginning of each interval and new equality constraints to remove the discrepancy

or defect between the state values at the final time from the previous interval and the

initial time in the current interval. A general dynamic optimization formulation that utilizes

the multiple-shooting discretization applicable to ODE models can be written according to

Problem P.2.3. Note that to make the presentation of the multiple-shooting formulation

less cumbersome, we exclude the functional presence of disturbance variables v(t), the

local parameters di, and uncertain parameters θ, as well as the index representing the

scenario realizations. Furthermore, the continuous control input vector can be defined using

a parameterized function u(t) := U(t,uj) based on a piecewise approximation within each

shooting interval Ij for j = 0, . . . , n − 1, where uj ∈ R(M+1)nu represent local polynomial

coefficients for a polynomial of order M . For example, it is common practice to use Lagrange

20 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

interpolation polynomials (see [4], for a detailed discussion).

min
w,p

J := φ(xn,p, tn)

st : ẋ(t) = f(x(t),U(t,uj),p, t)

0 = h0(u0,p, t0)− x0

x(tj+1; xj ,uj ,p)− xj+1 = 0

g(xk,U(tk,uk),p, tk) ≤ 0

∀ t ∈ Ij , j = 0, . . . , n− 1

∀ k = 0, . . . , n

w ∈ [wL,wU], p ∈ [pL,pU]

(P.2.3)

The optimization parameters are partitioned into model or design parameters p, and the

shooting node parameters for state and input variable parameters, defined collectively as

w := [x>0 ,u
>
0 , . . . ,x

>
n]> ∈ Rnx(n+1)+(M+1)nun. Note that un is used in formulation P.2.3 for

notational simplicity, where un := un−1, and can be removed from the NLP. Additionally, we

consider here a fixed end-time formulation where the objective function φ(·) is represented

in Mayer form, which typically only directly depends on the final model states xn, parameters

p, and possibly the final time tn. The ODE model, F(·) := ẋ(t) − f(·) is embedded within

the NLP function evaluations and is solved using an appropriate integration solver for t ∈ Ij ,

j = 0, . . . , n−1 with initial state conditions x(tj) := xj for all intervals Ij , where the intervals

are decoupled using the new parameters and are thus independent from each other. In order

to remove the defect between the initial state parameters xj and the previous interval’s final

integrated state values x(tj−1), continuity equality constraints are imposed at each shooting

node j. The approach to handling inequality path constraints, g(·), is to approximate them

as interior point constraints at each shooting node, which avoids any otherwise necessary

reformulation which is typically used in single-shooting approaches. In some cases this

approximation may not suffice to remove inter-node constraint violation and in such cases

the modeler can apply an end-point constraint to the integral of the constraint violation, such

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 21

as proposed for single-shooting methods [28]. In the final optimization formulation posed

to the NLP solver, the state variables x(tj+1) appear only within the continuity constraint

evaluations, all other constraint and objective function evaluations are with respect to direct

optimization parameters. As a result of the direct state variable presence, sensitivity analysis

techniques are necessary when deriving the continuity constraint derivatives.

2.3.2 Objective & Constraint Function Derivative Evaluation

The gradient of the objective function (in Mayer form) can be evaluated directly at the final

shooting node with respect to wn := xn and p, and can be stated as,

∇{w,p}J :=
[
0>nr ,J

xn>
n ,Jp>n

]>
(2.5)

where the first nr := (nx + (M + 1)nu)n vector components are zero, and Jxnn and Jpn

represent first derivative vectors making up the NLP objective gradient evaluated at the

end-point (xn,p, tn). These vectors can be either specified analytically or more suitably

generated via automatic differentiation at the current optimization parameter iterates.

The multiple-shooting continuity equality constraints, including the initial conditions at t0,

can be defined as,

c0 (w0,p) ≡ h0(u0,p, t0)− x0 = 0

cj+1 (wj ,xj+1,p) ≡ x(tj+1; xj ,uj ,p)− xj+1 = 0

(2.6)

where wj := [x>j ,u
>
j]> for j = 0, . . . , n− 1. The remaining inequality constraints represent

NLP point constraints and can be defined at each shooting node according to,

qj (wj ,p) ≡ g(wj ,p)

qn (un−1,wn,p) ≡ g(un−1,wn,p)

(2.7)

22 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

The combined constraint vector for all NLP constraints can now be stated as,

c(w,p) :=

c0(w0,p)(
q0(w0,p)>, c1(w0,x1,p)>

)>
...(

qj(wj ,p)>, cj+1(wj ,xj+1,p)>
)>

...(
qn−1(wn−1,p)>, cn(wn−1,xn,p)>

)>
qn(un−1,wn,p)

(2.8)

where c(w,p) ∈ R(nx+nq)(n+1). As a result of the stacked structure of both the constraint

functions and optimization parameters w := [w>0 , . . . ,w
>
n]>, we maintain a sparse diagonal

matrix structure within the constraint Jacobian matrix with respect to w, and a block vector

structure for the derivatives with respect to p. This matrix is denoted as ∇{w,p}c(w,p) and

can be defined as,

∇{w,p}c(w,p) :=

−Inx Hu0
0 Hp

0

Qx0
0 Qu0

0 Qp
0

Xx0
1 Xu0

1 −Inx Xp
1

. . .
...

Q
xj
j Q

uj
j Qp

j

X
xj
j+1 X

uj
j+1 −Inx Xp

j+1

. . .
...

Q
xn−1

n−1 Q
un−1

n−1 Qp
n−1

X
xn−1
n X

un−1
n −Inx Xp

n

Q
un−1
n Qxn

n Qp
n

(2.9)

where Hu0
0 and Hp

0 are the first derivatives of h0(·) with respect to u0 and p, respectively;

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 23

while QM
j represent point constraint first derivatives, at each shooting node, defined as,

Q
xj
j :=

∂qj(wj ,p)

∂xj
; Q

uj
j :=

∂qj(wj ,p)

∂uj
; Qp

j :=
∂qj(wj ,p)

∂p
(2.10)

Again, the derivatives Hu0
0 , Hp

0 and QM
j can be either specified analytically or generated

via automatic differentiation. The matrices given by XM
j+1 represent the embedded state

parameter sensitivities, for each parameter M := {xj , uj , p}, evaluated at the end of each

shooting node, and are defined according to,

X
xj
j+1 :=

∂x(tj+1)

∂xj
; X

uj
j+1 :=

∂x(tj+1)

∂uj
; Xp

j+1 :=
∂x(tj+1)

∂p
(2.11)

Many large-scale differential equation solvers provide state sensitivities via forward sensi-

tivity analysis [29] or possibly adjoint (reverse) sensitivity analysis [30], and the particular

numerical methods used to compute this information are highly important in terms of both

solution accuracy and speed when using large-scale chemical process engineering models

[5]. Due to the direct presence of the state variables x(tj+1) in the continuity constraints,

a natural approach to generate the optimization function derivatives is forward sensitivity

analysis. Accordingly, this involves solving the forward sensitivity equation system alongside

the original ODE system, which can be defined in matrix form as,

ẋy(t) = fx(t) xy(t) + fy(t) t ∈ [tj , tj+1], j = 0, . . . , n− 1 (2.12)

xy(tj) = [Inx |0nx×(ny−nx)] (2.13)

where xy(t) := ∂x(t)/∂yj represents the desired sensitivity variable solution, f{x,y}(t) :=

∂f(x(t),yj , t)/∂{x(t),yj} are Jacobian matrices of the ODE model, and yj := {xj ,uj ,p}

represents a subset of NLP parameters at each shooting node j. The solution of this system

is determined at tj for j = 1, . . . , n and subsequently used in Equation 2.11. We will forgo

any further details of sensitivity analysis and direct the reader to Biegler [4] for an in depth

discussion.

24 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

2.3.3 Combined Multiperiod Multiple-Shooting NLP Formulation

The fully discretized combined multiperiod multiple-shooting NLP formulation of problems

P.2.2 and P.2.3, can now be stated according to,

min
w̄i ∀ i,p

J := φ0(p) +
∑ns

i=1 wi · φi(wi,n,di,p)

st : cLi ≤ ci(w̄i,p) ≤ cUi

w̄i ∈ [wL,wU] ∀ i = 1, . . . , ns

p ∈ [pL,pU]

(P.2.4)

where depending on the constraint type (equality or inequality), the vectors cLi and cUi

are appropriately defined. For each scenario i, the concatenated shooting node parameters

are defined as w̄i := [w>i,0, . . . ,w
>
i,n,d

>
i]>, where for each shooting interval we define

wi,j := [x>i,j ,u
>
i,j]
>. Again, the NLP as posed produces a highly sparse diagonal structure

within the constraint Jacobian matrix, where for each scenario block we have an additional

sparse matrix for each shooting interval. Once constructed, the objective and constraint

functions and corresponding objective gradient vector and block sparse constraint Jacobian

matrices can be passed to an appropriately selected nonlinear programming solver. Typically,

the multiple-shooting technique utilizes SQP-based algorithms, as these algorithms are often

designed with efficient Lagrangian Hessian approximation schemes, thus allowing the user

to provide only first-order derivatives. Interior point algorithms, on the other hand, are

often best utilized with the explicit definition of second-order derivatives [31, 32]. Thus, to

effectively apply an interior point NLP solver to a multiple-shooting formulation, one would

need to further generate second-order sensitivity information at an added computational

expense.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 25

2.3.4 Algorithm Parallelization and Implementation

The multiple-shooting algorithm benefits from a naturally parallel structure that does not

require any additional decomposition techniques. This natural decoupling of each shooting

interval is induced by the introduction of the optimization parameters xj for j = 0, . . . , n− 1,

and allows the ODE in each shooting interval to be independently solved in parallel. Parallel

multiple-shooting implementations have been explored to varying degrees by Kiehl [33] for

ODE models, Leineweber et al. [6] for DAE models, Jeon [34] for DAE models with parallel

adjoint sensitivity computation, and Bachmann et al. [35] within a Modelica modeling

environment.

I0,1 I1,1 · · · In−1,1x0,1

I0,2 I1,2 · · · In−1,2x0,2

...

I0,ns I1,ns · · · In−1,nsx0,ns

t0 tf
n

ns

shooting intervals

sc
en
ar
io
s parallel

ODE
eval.

P0

P0

P0 P1 · · · PN

send

receive

obj/constr.eval.

Figure 2.1: Implementation of ODE solution within the parallel multiperiod multiple-shooting
dynamic optimization algorithm

The main difference in our proposed optimization formulation and corresponding imple-

mentation is that we have incorporated an additional layer of parallelization in terms of the

individual scenarios used within the multiperiod approach. This concept can be visualized

in Figure 2.1, where for a single scenario realization i each integration task (Ij,i) for each

shooting interval j over the entire time horizon is stacked into a vector and then this is

repeated for all scenarios ns. The result is a large n · ns dimensional vector of independent

26 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

integration tasks which can be broken up and solved in parallel using several processors

(Pi for i = 0, . . . ,N). However, for numerous integration tasks per ODE evaluation (e.g.,

100− 1000), it is more likely that the tasks are divided into several evenly distributed blocks

(in terms of number, not computation work load) and then off-loaded to a parallel computing

server for evaluation. To reap the full potential of the parallel computation, the processors

must be loaded with a sufficient amount of computation work. Note that our implementation

goes beyond the standard parallel multiple-shooting approach [33] which is confined to

parallelizing only the shooting intervals.

A prototype implementation of the multiperiod multiple-shooting dynamic optimization

algorithm was created in the Matlab scripting language where the NLP and DAE solutions

were performed using third-party solvers. The parallelization of the ODE solution was

implemented using the Matlab Parallel Computing Toolbox (PCT). Additionally, the codes

were run on a server within the Shared Hierarchical Academic Research Computing Network

(SHARCNET), which is a high performance parallel computing network comprising several

universities within southern Ontario, Canada. Submission of the codes to the server was

performed using the Matlab Distributed Computing Server (DCS) whereby the codes were

sent to a scheduler and appropriately executed with a specified level of resource allocation

(i.e., amount of RAM and number of processors). The NLP solution utilized the sparse

reduced SQP solver SNOPT (version 7.2-11) [36], while for the integration of the dynamic

model we utilized the tools available from the SUNDIALS suite of solvers (version 2.5.0)

[37]. In particular, for explicit ODE models, our implementation uses the provided Matlab

interface to CVODES. The particular focus of parallelization within our implementation is

on the ODE and sensitivity solution as opposed to the NLP solution; the former is known

to consume up to 90 percent of the total program computation time on serial machines

[38]. Accordingly, the NLP solution is performed in serial (on a single processor), while

for each function evaluation (objective and constraints) the embedded dynamic model and

corresponding sensitivity solution is solved in parallel. Timing measurements were taken

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 27

based on the wall clock time of: (1) the full program using Matlab’s tic/toc technique; (2)

the in-solver NLP solution; and (3) the parallel ODE and sensitivity solution (which includes

the serial vector formation of the objective/constraints and sparse derivative matrices).

2.4 Example Problems

In this section we apply the parallel multiperiod multiple-shooting approach to two different

benchmark design and control problems of different magnitude and complexity. The purpose

here is to assess potential performance improvements through a parallel computing imple-

mentation. Our first example uses a modified version of the Newell and Lee [39] evaporator

benchmark model described by Kookos and Perkins [40], where we consider determining

an economically optimal design and controller tuning parameters subject to uncertain input

flow rate and composition disturbances. The second example utilizes a larger model of

a continuous binary distillation column discussed by Schweiger and Floudas [24]. Each

example comprises a set of nonlinear differential-algebraic equations describing the process

model, path constraints on the state and closed-loop manipulated variables, and a nonlinear

economic objective function that includes design and operating costs. Closed-loop control is

achieved via multi-loop PI controllers based on a fixed control structure.

For the particular multiperiod design and control formulations which embed continuous

closed-loop PI controllers considered in this chapter, we define the first stage variables as

equipment dimensions and controller tuning parameters (i.e., proportional gain Kc, reset

time τI , and output set-points yset). The second stage decision variables include the closed-

loop manipulated variables ui(t) over each scenario i, which are implicitly determined by

the PI controller equations defined as,

ui(t) = ūi +Kc(yi(t)− yset) + Kc
τI
Ii(t)

Ii(t) =
∫ t
t0

(yi(τ)− yset) dτ

(2.14)

28 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

where the controller bias terms ūi are the explicit second stage optimization decision variables

for each scenario i = 1, . . . , ns. These control actions allow for recourse once the uncertainty

is resolved, and in this chapter we consider uncertainty solely within the disturbance inputs

v(t), which are defined as a function of each uncertain parameter θ over all scenario

realizations. The disturbance inputs are applied as step inputs to the system, which require

two uncertain parameters per disturbance trajectory representing the initial value before

the step is applied (defined previously in vector form for all disturbance variables as v0),

and a second parameter corresponding to the step magnitude (defined previously as ∆v).

These uncertain parameters are generated from a uniform distribution by sampling between

a specified upper and lower bound for v0 and ∆v. Throughout the chapter we adopt the

terminology of a complete disturbance step realization (or vector of different disturbances)

representing a single scenario realization. For example, 10 scenario realizations (ns = 10) of

a set of two independent disturbance variables (nv = 2) would correspond to the generation

of 2 · nv · ns = 40 random variables.

2.4.1 Example 1: Evaporator Process Design

The evaporation process considered for this first example is depicted in Figure 2.2, where

it is desired to remove a volatile liquid from a solution to yield a high concentration of a

non-volatile solute. The process is composed of a pressurized evaporation vessel, a separator

or settling tank, a recirculation pump and an overhead condenser (heat exchanger). For

convenience the chosen model equations used in this study are provided in Section 2.6.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 29

Evaporator

Separator

Condenser

Pump

CC

PC

Steam

Condensate

Condensate

Cooling
Water

Feed Product

PT

CT

F2, x2, T2

F1, x1, T1

F100

P100, T100

P2
F4, T3

T201 F200, T200

F5

Figure 2.2: Example 1 – evaporator process schematic and control structure

Table 2.1: Example 1 – evaporator model variable definitions

F1: feed flow rate (kg/min) P2: operating pressure (kPa)

F2: product flow rate (kg/min) P100: steam pressure (kPa)

F4: vapor flow rate (kg/min) T1: feed temperature (◦C)

F5: condensate flow rate (kg/min) T2: product temperature (◦C)

F100: steam flow rate (kg/min) T3: vapor temperature (◦C)

F200: cooling water flow rate (kg/min) T100: steam temperature (◦C)

x1: feed composition (%) T200: cooling water inlet temperature (◦C)

x2: product composition (%) T201: cooling water outlet temperature (◦C)

The optimization design parameters p comprise the evaporator and heat exchanger areas

(combined with the heat transfer coefficient, U) (UA1, UA2), PI controller tuning parameters

(Kci , τIi , i = 1, 2) and output variable set-points (x̄2, P̄2). The differential state variables

x(t) are the evaporator product composition (x2) and operating pressure (P2), which are

30 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

also considered as output variables to be controlled using the manipulated variables u(t) of

inlet steam pressure (P100) and cooling water flow rate (F200). Additionally, we consider two

uncertain external input disturbances v(t) of feed flow rate (F1) and composition (x1). A

detailed listing of the variables shown in Figure 2.2 is provided in Table 2.1, while a further

listing of variable and parameter specifications is provided in Section 2.6.

The chosen design and control formulation can be described as a continuous multiperiod

dynamic optimization problem according to the following equations,

min
di ∀ i,p

J := Ccap(p) +
∑ns

i=1 wi · Cop(xi(tf),di,p,θi, tf)

st : ODE model (5 eqns.)

ẋi(t0) = 0

P100,i(t) = P̄100,i +Kc1(x2,i(t)− x̄2) +
Kc1
τI1

I1,i(t)

F200,i(t) = F̄200,i +Kc2(P2,i(t)− P̄2) +
Kc2
τI2

I2,i(t)

F1,i(t) = F̄1,i + ∆F̄1,i γ(t)

x1,i(t) = x̄1,i + ∆x̄1,i γ(t)

εise,i(tf) ≤ ε

xL2 − x2,i(t) ≤ 0

x2,i(t)− xU2 ≤ 0

PL2 − P2,i(t) ≤ 0

P2,i(t)− PU2 ≤ 0

P100,i(t)− PU100 ≤ 0

F200,i(t)− FU200 ≤ 0 ∀ t ∈ [t0, tf], i = 1, . . . , ns

(E.2.1)

We note that the formulation is continuous in the optimization parameters as we consider

a fixed plant topology and control structure. The multiperiod algorithm that we consider

comprises a single optimization stage (i.e., a single NLP formulation), in which a number

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 31

of scenarios is introduced to approximate the uncertainty in the disturbance inputs and

hence the stochastic nature of the problem. The investigation to be performed considers the

effect on the computational performance of parallelization over uncertainty scenarios and

multiple-shooting intervals.

Within the above formulation, the objective is to determine an economically optimal and

control feasible design, where it is desired to keep the process at steady-state prior to the

input disturbance, and subsequently to drive the process back to the original steady-state

using feedback control (i.e., disturbance rejection). The formulation follows the structure of

a two-stage stochastic program, where the first stage costs correspond to the design, given

here as the capital cost of the plant as a function of the design parameters (Ccap(p)), and

the second stage costs are dependent on the operating costs of the plant for a given design

(Cop(·)). The stochastic aspect of the problem is captured using a weighted deterministic

formulation where the associated weights are specified equally for each scenario as wi = 1/ns.

The equality constraints within this formulation are the dynamic process model equations;

the initial state variable conditions at time t0 (i.e., steady-state constraints); the closed-

loop PI controller equations; and the single-step disturbance approximation equations. The

inequality constraints comprise an end-point constraint on the integrated squared error

control performance metric (εise) and path constraints on the state (x2, P2) and manipulated

variables (P100, F200). The experiments performed considered running the optimization

algorithm using a high and low number of scenarios for the uncertain disturbance variables

θ := [v>0 ,∆v>]>, where v0 := [F̄1, x̄1]> and ∆v := [∆F̄1,∆x̄1]>. The idea is to emulate a

high and low work load on the processors in order to examine its effect on the computation

speedup and efficiency.

We make several additional remarks to elucidate the optimization formulation and solution

procedure:

• The process model can be generally stated as a system of differential-algebraic equations

32 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

(DAEs); however, for the examples shown in this chapter, the algebraic equations for the

controller and disturbance inputs (as defined in formulation E.2.1) were eliminated via

substitution of explicit algebraic variable expressions into the differential equations thus

only requiring the solution of an explicit ODE system.

• The steady-state constraints were imposed by setting the explicit right-hand-side of the

ODEs to zero at t0 (i.e., ẋ(t0) = 0 7→ f(x̄, ū, v̄,p, t0) = 0).

• Bound constraints were introduced on the manipulated variables by adding appropriate

inequality constraints at each shooting node.

• An end-point constraint on the integrated squared error control performance metric was

introduced to influence the control performance. The metric is defined as,

εise(tf) :=
∫ tf
t0

{
(x2(t)− x̄2)2 + (P2(t)− P̄2)2

}
dt (2.15)

Using such an approach allows one to directly set a tolerance on the control performance

via an inequality end-point constraint (εise(tf) ≤ ε).

• The variables and constraints of this formulation can be broken down as follows:

multiple-shooting equality constraints for n intervals (including initial constraints at t0)

of dimension nc := nxns(n+ 1) (where nx are the number of continuity constraints at

the shooting nodes and ns are the number of scenarios), similarly we have the same

number of shooing node variables (xj,i); closed-loop control signals at t0 (P100,i(t0),

F200,i(t0)) must be set to their controller bias values (P̄100,i, F̄200,i) via equality con-

straints of dimension nh1 = nuns, again we have the same number of decision variables

as equations; finally, we have equality constraints at t0 stating that the initial output

variables be equal to their set-points of dimension nh2 = nyns. For this last set of

equality constraints, the outputs are simply the states, which are already specified via an

initial steady-state equality constraint; thus, these output constraints may be removed.

The remaining constraints are inequalities for path or end-point constraints, and the

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 33

main degrees of freedom for the formulation are the design variables UA1, UA2, Kcj ,

τIj , j = 1, 2, x̄2, and P̄2.

• In order to remove any obscurity in the solution timing results incurred by possible

automatic derivative generation techniques, the first-order derivatives of the NLP ob-

jective/constraints with respect the optimization parameters were specified analytically

and provided directly to the optimization algorithm.

Table 2.2: Example 1 – evaporator optimal design and control parameters

Initial Guess Bounds Optimal Solution

Parameter (p) † pg ∈ [L,U] ns = 1 ns = 5 ns = 50

J ($/year) – – 71690.52 71556.57 71769.11

UA1 [kW/K] 9.6 ∈ [2, 15] 4.652 4.795 4.932

UA2 [kW/K] 6.8 ∈ [2, 15] 7.430 7.584 7.734

Kc1 −20 ∈ [−50, 50] −50 −50 −50

Kc2 20 ∈ [−50, 500] 216.75 500 500

τI1 2 ∈ [1, 5] 1.07 1 1

τI2 2 ∈ [1, 5] 5.00 1 1

x̄2 [%] 29 ∈ [25, 30] 25.06 25.23 25.25

P̄2 [kPa] 49 ∈ [40, 80] 40.00 40.04 43.07

†Note, the controller bias parameters (P̄100, F̄200) are scenario dependent optimization

parameters as defined by di, not shown. Initial guesses defined as P̄100 = 193.45 kPa,

F̄200 = 207.32 kg/min.

Before considering the potential computation speedup via our parallel solution implementa-

tion, we first assess the optimization solution. Table 2.2 lists the design parameters, their

initial guesses and lower and upper bounds as posed to the optimization solver. Additionally,

stated are the final objective and parameter values for 1, 5 and 50 scenario realizations of the

34 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

uncertain disturbance variables.

9.8

10

10.2

v 1
(t
)

[F
1

(k
g/

m
in

)]

4.8

5

5.2

v 2
(t
)

[x
1

(%
)]

360

370

380

390

400

u
1
(t
)

[P
1
0
0

(k
Pa

)]

200

250

300

u
2
(t
)

[F
2
0
0

(k
g/

m
in

)]

0 10 20 30

25

25.1

25.2

25.3

Time (min)

y 1
(t
)

[x
2

(%
)]

0 10 20 30

40

40.05

40.1

Time (min)

y 2
(t
)

[P
2

(k
Pa

)]

(a)

(c)

(e)

(b)

(d)

(f)

Figure 2.3: Example 1 – evaporator dynamic optimization trajectories for ns = 5: (a)–(b)
uncertain disturbance inputs v(t); (c)–(d) closed-loop inputs u(t); (e)–(f) controlled outputs
y(t)

In Figure 2.3 we illustrate the optimal solution trajectories for 5 scenarios, which corresponds

to 5 sets of variable trajectories. For both the closed-loop inputs u(t) and controlled outputs

y(t), we see that the discretized inequality path constraints are not violated, and for variables

P100, x2 and P2 the constraint becomes active for a short period of time when the output

variables overshoot their set-points (see dashed lines in Figure 2.3). Furthermore, in Table

2.2 we see that for the desired control performance tolerance ε (specified a priori) and

the chosen parameter bounds, the PI controller parameters Kc and τI converged to either

an upper or lower bound at the optimal objective value solution. Relaxing the controller

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 35

parameter bounds did not significantly change the results as the parameter values remained

active at the bounds upon convergence to an optimal solution. This behavior is likely a

consequence of the constraint on the integrated squared error where we set a relatively low

tolerance value (e.g., ε = 0.1) which would induce a rather aggressive control action (i.e.,

high gain magnitudes).

The parameters obtained using a single scenario realization represent nominal disturbance

conditions and are presented for comparison to the more robust solutions which utilize

multiple scenarios. There are a few notable aspects that can be observed from the optimal

design solution. First, as the number of scenarios ns is increased, the optimal surface area

of both the evaporator (UA1) and condenser (UA2) also increases. This behavior reflects

an increasing conservativeness of the design, with increasing scenarios, which implicitly

supplement the necessary control actions to reject the uncertain disturbance inputs. In other

words, in order for the control system to adequately handle all possible disturbance scenarios,

the overall equipment surface areas must be increased at an economic penalty to dampen

the disturbance effects. Another related observation is that to ensure the path constraints on

the controlled variables are not violated, the output set-points (i.e., design solution) must

back off from their bounds to adequately account for the anticipated control action used to

reject the uncertain disturbance realizations.

For this example, the algorithm was set up using n = 30 shooting intervals over a time

horizon of 30 minutes and a low and high number of scenarios ns defined according to

Table 2.3. This corresponds to n · ns independent integration tasks which are solved in

parallel. Thus, we are parallelizing over both the shooting intervals and scenario realizations,

by viewing each independent integration task as parallelizable and appropriately grouping

these tasks into blocks such that a relatively even amount of tasks are distributed among

the available processors. The optimization problem is nonlinear and non-convex, and is

solved in serial using the SNOPT solver. To solve the embedded dynamic model equations

and associated sensitivity equations, we used the CVODES solver, where the model equations

36 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

are posed as an explicit ODE. The design problem being considered has 8 main degrees

of freedom for the design and control variables (UA1, UA2, x̄2, P̄2, Kcj , τIj , j = 1, 2).

Additionally, the PI controller bias parameters are introduced as degrees of freedom for

each specific scenario. Since we required the system to be at steady-state initially, and each

initial disturbance realization (F̄1,i, x̄1,i) is defined a priori, then the controller bias must be

introduced for each scenario to appropriately compensate for the initial disturbance values.

The potential computation speedup attainable using the parallelized multiperiod multiple-

shooting implementation will now be investigated. As previously discussed, the portion of

the algorithm that we are parallelizing is the embedded ODE solution, as opposed to the

NLP algorithm. To examine the potential speedup and efficiency of using more processors to

evaluate the embedded dynamic model, we have selected the number of processors according

to N = 2k where k = 0, 2, 3, 4, 5. The computation speedup and processor efficiency are

computed according to the following equations,

Speedup (S) =
user function eval. time (N = 1)

user function eval. time(N = 2k)
=

Tserial

Tparallel

Efficiency (E) = Speedup/N =
Tserial

N Tparallel

(2.16)

where we use the NLP constraint and objective (i.e., user) function evaluation time (which in-

cludes the parallel ODE and sensitivity solution and a much smaller serial constraint/objective

construction component) as a basis of performance measurement, as opposed to the total

program wall clock time which includes the serial in-solver NLP solution time. In these defi-

nitions, Tserial represents the constraint/objective evaluation time using a single processor

and Tparallel corresponds to the evaluation time using multiple processors. The compu-

tation speedup is one measure of potential performance improvement, and under ideal

conditions where the program can be fully parallelized and the processors are sufficiently

utilized, the addition of processors should reveal a parallel solution time corresponding

to Tparallel := Tserial/N and thus produce a linear speedup of S = N (see 45 degree solid

line in Figure 2.4 (a)) and an efficiency of 100%. However, in practice these conditions

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 37

are not usually observed, as (1) there is an inherent aspect of the program that is serial,

and (2) the increase of processors invariably introduces greater communication overhead

which impedes both the speedup and efficiency. For example, for a given amount of work

governed by the number of integration tasks, the true parallel solution time approximates

to Tparallel := Tserial/N + Toverhead, where Toverhead is the total cumulative amount of time

spent communicating data between processors (i.e., parallel overhead). This results in an

observed speedup that is lower than the number of processors, with the relative drop off

in speedup increasing as the number of processors increases. However, if we increase the

amount of computation work, Toverhead will grow more slowly relative to Tserial/N, and

allow for increased speedup and efficiency, and ultimately better utilization of the available

resources. For a more detailed and in depth discussion on computation performance metrics

and problem size versus machine size dependencies we refer the readers to Pacheco [41].

In our particular implementation, the timing captures the dynamic model solution whereby

the combined initial condition vector xj,i is communicated in a balanced manner to the

available processors, the computation is performed in parallel, and then the state variable

solution at the end of each shooting node, xi(tj+1) for all j = 0, . . . , n− 1 and i = 1, . . . , ns,

is communicated back to the master processor. For example, if we have N = 4 processors

and n · ns integration tasks, then the work load for each processor is n · ns/4 where any

remaining tasks are distributed among the four processors. The time to communicate the data

incurs overhead (denoted as Toverhead), which accumulates for each NLP function evaluation;

thus, for the entire NLP solution there will have been performed two communication calls

between master and slave processors to solve the entire embedded dynamic model for each

objective/constraint evaluation.

38 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Table 2.3: Example 1 – evaporator optimization timings for parallel multiperiod algorithm

NLP size and solution statistics Wall clock time (sec) for N processors ∗

ns #vars † nh ng #iter ‡ N = 1 N = 4 N = 8 N = 16 N = 32

5 793 795 315 37 318.3 83.5 41.1 22.8 17.7

50 7858 7950 3150 36 3158.2 799.2 387.6 189.3 110.8

† discretized formulation w/ n = 30 shooting intervals, nh equality and ng inequality con-

straints, respectively; ‡ no. of major iterations using SNOPT SQP solver w/ optimality,

feasibility tolerance of 1× 10−4 and 1× 10−6, respectively; ∗ average wall clock times

over 3 experiments.

Table 2.3 lists the optimization setup in terms of the number of scenarios used (ns); the total

number of discretized optimization variables (#vars); the total number of equality (nh) and

inequality (ng) constraints, respectively. Additionally, we list the total number of major SQP

iterations and the average total program wall clock times (combined NLP and ODE solution

timings) using an incremental number of computing processors. The optimization algorithm

was run using a local parallel computing server within the SHARCNET cluster which uses two

12 core 2.2 GHz AMD Opteron chips and 32 GB of memory per computing node, and solution

timings are reported based on an average of several experiments. Given a single node of 24

processors, we required the use of two computing nodes for the 32 processor trials. Note that

the wall clock timings should be interpreted as the potential computation speedup from a

relative perspective between each of the number of processors used and not as a reflection

of the NLP or ODE solver solution speed. We make this statement since the results come

from a prototyped implementation within the Matlab scripting language, which by its nature

contains significant overhead not present in compiled programming languages. Nevertheless,

we observe that when using a single processor with ns = 5 scenarios, the optimization

algorithm requires approximately an average of 8.7 seconds per major SQP iteration and

when increased to 16 processors the time per iteration decreased to about 0.6 seconds which

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 39

indicates an average speedup of 15. When the number of scenarios is increased 10 fold we

observe an improved relative speedup of approximately 16, indicating near linear speedup

and close to perfect scalability of the embedded model solution.

1
5
10
15
20
25
30

Sp
ee

du
p

(S
) linear speedup

ns = 5

ns = 50

1
5

10
15
20
25
30

N = 4 N = 8

N = 16 N = 32

1 4 8 16 32

0.6

0.8

1

N processors

Ef
fic

ie
nc

y
(E

)

ns = 5
ns = 50

5 50

0

1,000

2,000

3,000

ns scenarios

w
al

lc
lo

ck
(s

ec
) N = 1

N = 4

N = 8

N = 16

N = 32

(a)

(c)

(b)

(d)

Figure 2.4: Example 1 – parallel multiperiod multiple-shooting algorithm speedup and
efficiency with increasing number of processors and scenarios

Figure 2.4 provides plots of the speedup and efficiency and depicts the behavior when

the number of scenarios is increased. Note that this figure is not directly based on the

wall clock times reported in Table 2.3, and instead uses the cumulative average wall clock

time of constraint/objective evaluation, as defined in Equation 2.16, excluding the serial

in-solver NLP evaluation time. In Figure 2.4 (a) and (c), when we increase the number of

processors N from 16 to 32 at a fixed amount of work (ns = 5), which doubles the overall

communication overhead, we see a significant decrease in speedup and efficiency. This

behavior occurs because the communication time is relatively large, for the given amount

of computation work, compared to the serial solution time. When we increase the problem

size from ns = 5 to ns = 50, we see significantly improved speedup and efficiency from

N = 16 to N = 32. This is due to a relatively small increase in communication overhead

40 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Toverhead compared to the serial solution time Tserial. Figure 2.4 (b) further illustrates the

behavior of speedup when we increase the computation work at a fixed number of processors.

Here we see improved speedup using N = 16 and N = 32 when increasing ns from 5 to 50,

with an unnoticeable effect using lesser processors. Therefore, the effect of communication

overhead can be reduced by introducing more computation work (i.e., greater loading of

the processors). Ultimately, when utilizing 32 processors on a problem with 50 scenarios, we

achieve a speedup in the dynamic model solution of approximately 29 times at 89% processor

efficiency.

2.4.2 Example 2: Binary Distillation Process Design

The second example considered is the design and control of a continuous binary distillation

column. Our purpose here is to provide further demonstration of our multiperiod multiple-

shooting algorithm using a larger model and investigate the algorithm performance in terms

of speedup and efficiency, and additionally to look at the timing breakdown between the

embedded dynamic model and nonlinear program solution. The design and control problem

follows in a similar manner to the previous example, where we fix the control structure

and solve an economic optimization formulation for the distillation column diameter and

PI controller tuning parameters. For illustrative purposes, we consider a fixed/specified

column height, tray dimensions, feed tray location, and reboiler and condenser surface areas.

The process is illustrated in Figure 2.5, where F and z correspond to uncertain disturbance

inputs for feed flow rate and composition, respectively; R and V represent the manipulated

reflux and boil-up flow rates; and x0 and xnt+1 are controlled output compositions within

the bottoms and distillate product.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 41

F, z

PI

x0

PI

xnt+1

V

R

Kc2 , τI2 , x̄nt+1

Kc1 , τI1 , x̄0

Figure 2.5: Example 2 – distillation process schematic and control structure

The design and control optimization parameters of interest include the column diameter

Dcol, the PI controller tuning parameters Kci , τIi for i = 1, 2 and output set-points x̄0, x̄nt+1.

The dynamic model of the distillation column contains roughly 40 differential equations and

a similar number of algebraic equations (see Section 2.7 for a detailed listing). The model

is solved as an ODE by eliminating the algebraic equations via the explicit substitution of

the algebraic state variables into the differential equations. The resulting design and control

42 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

formulation is posed in a general manner as follows,

min
di ∀ i,p

J := Ccap(p) +
∑ns

i=1 wi · Cop(xi(tf),di,p,θi, tf)

st : ODE model (40 eqns.)

ẋi(t0) = 0

Vi(t) = V̄i +Kc1(x0,i(t)− x̄0) +
Kc1
τI1

I1,i(t)

Ri(t) = R̄i +Kc2(xnt+1,i(t)− x̄nt+1) +
Kc2
τI2

I2,i(t)

Fi(t) = F̄i + ∆F̄i γ(t)

zi(t) = z̄i + ∆z̄i γ(t)

εise,i(tf) ≤ ε

xLnt+1 − xnt+1,i(tf) ≤ 0

x0,i(tf)− xU0 ≤ 0

Dmin
col (V̄i)−Dcol ≤ 0 ∀ t ∈ [t0, tf], i = 1, . . . , ns

(E.2.2)

where we use an economic objective function, similar to the previous example, consisting

of the capital cost of the column tray/shell construction and the operating costs associated

with the cooling water and steam flow rates used in the condenser and reboiler, respectively.

Additionally, we pose equality path constraints for V and R; disturbance input equality

constraints with uncertain parameters θ := [v>0 ,∆v>]>, where v0 := [F̄ , z̄]> and ∆v :=

[∆F̄ ,∆z̄]>; a control performance inequality end-point constraint to explicitly influence the

disturbance rejection; end-point constraints on the controlled output variables; and a column

flooding constraint (as defined by the final inequality in formulation E.2.2) which ensures

that the column maintains a minimum diameter based on the vapor boil-up rate. A detailed

formulation of the objective function is provided in Section 2.7.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 43

Table 2.4: Example 2 – distillation optimal design and control parameters

Initial Guess Bounds Optimal Solution

Parameter (p) † pg ∈ [L,U] ns = 1 ns = 10 ns = 20

J ($/year) – – 20497.49 21077.36 21023.70

Dcol [m] 0.75 ∈ [0.1, 2] 0.721 0.745 0.746

Kc1 0.74 ∈ [−50, 50] 1.376 2.476 6.747

Kc2 −4.0 ∈ [−50, 50] −4.185 −5.113 −10.501

τI1 3.5 ∈ [1, 9] 1.181 2.206 2.992

τI2 8.0 ∈ [1, 9] 2.671 1.998 3.159

x̄0 0.01 ∈ [0.005, 0.05] 0.05 0.05 0.05

x̄nt+1 0.97 ∈ [0.85, 1] 0.98 0.98 0.98

†Note, the controller bias parameters (R̄, V̄) are scenario dependent optimization pa-

rameters as defined by di, not shown. Initial guesses defined as R̄ = 1.0024 kmol/min,

V̄ = 1.5426 kmol/min.

The optimization design parameter initial guesses and bounds are listed in Table 2.4. Ad-

ditionally stated are the optimal objective and parameter values for nominal disturbance

conditions and uncertain disturbance realizations constructed from 10 and 20 scenarios.

The objective function solution indicates the expected result that the economics worsen as

uncertainty is introduced into the formulation. In other words, in order to account for possi-

ble uncertain disturbance realizations, the distillation column diameter must be increased

from its nominal value at an economic expense. Also notable, from the listed parameter

solution, are the non-unique values of the controller tuning parameters between scenario

levels of 10 and 20. These non-unique values reflect the multiple possible tuning settings to

adequately control the nonlinear system, which is a known behavior when including both the

controller gain and integral reset time as degrees of freedom in the optimization formulation.

Figure 2.6 provides the imposed disturbances realizations v(t) (with uncertain initial and

44 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

final step values), the optimal manipulated variables u(t) and optimal output trajectories

y(t) for a problem size of 10 scenario realizations per disturbance variable. Additionally, the

multiple-shooting discretization consisted of n = 25 shooting nodes over a 50 minute time

horizon, which amounts to total of n · ns integration tasks Ii,j distributed over the available

processors.

0.8

1

1.2

v 1
(t
)

[F
(k

m
ol

/m
in

)]

0.4

0.45

0.5

v 2
(t
)

[z
]

1

1.2

1.4

u
1
(t
)

[V
(k

m
ol

/m
in

)]

0.6

0.8

u
2
(t
)

[R
(k

m
ol

/m
in

)]

0 10 20 30 40 50
2

4

6

8

·10−2

Time (min)

y 1
(t
)

[x
0
]

0 10 20 30 40 50

0.97

0.98

0.99

Time (min)

y 2
(t
)

[x
n
t
+
1
]

(a)

(c)

(e)

(b)

(d)

(f)

Figure 2.6: Example 2 – distillation dynamic optimization trajectories for ns = 10: (a)–(b)
uncertain disturbance inputs v(t); (c)–(d) closed-loop inputs u(t); (e)–(f) controlled outputs
y(t)

With an optimal solution established, we now turn to assessing the potential performance

improvement via parallelization of this much larger distillation model, relative to the previous

evaporator model. In a similar manner to the previous example, we provide in Table 2.5 the

dimensions of the discretized NLP formulation, the number of major SQP iterations required

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 45

by SNOPT to meet the specified feasibility/optimality tolerances, and the total program wall

clock times (combined NLP and ODE solution timings). The NLP formulation for ns = 20 is

about 2.5 times the size (in terms of variables/constraints) of the largest previous example,

and required, using a single processor, about 1.8 hours of total computation time with an

average solution time per major SQP iteration of 5.4 minutes. Increasing the number of

processors to 16, we observed a reduction in computation time to 0.3 hours or an average of

0.9 minutes per iteration.

Table 2.5: Example 2 – distillation optimization timings for parallel multiperiod algorithm

NLP size and solution statistics Wall clock time (sec) for N processors

ns #vars † nh ng #iter ‡ N = 1 N = 4 N = 8 N = 16 N = 32

10 10167 10190 40 29 4188.25 1760.24 867.35 584.86 508.31

20 20327 20380 80 20 6457.16 2385.95 1406.15 1067.57 880.29

† discretized formulation with n = 25 shooting intervals, nh equality and ng inequality con-

straints; ‡ SNOPT SQP solver with optimality, feasibility tolerance of 1× 10−4 and 1× 10−5

An assessment of the cumulative solution time for the dynamic model and sensitivity equa-

tions is provided in Figure 2.7. In a similar manner to the previous example, this figure was

constructed excluding the in-solver serial NLP solution time, which is present in the wall

clock times reported in Table 2.5. The behavior of the speedup and efficiency profiles follows

the same trends seen in the previous case study, where for the considered scenario levels

of ns = 10 and 20, we see an approximate linear speedup up to N = 8 followed by a slight

decline to about S ≈ 13 and E > 80% at N = 16, ending with a significant drop off at N = 32.

In comparison to the largest example in the previous case study, this example involves a much

larger NLP formulation which accordingly involves a greater fraction of serial computation.

As a result, we see a slightly greater decline in speedup and efficiency at N = 16 and 32, due

to a smaller fraction of parallel work load, which indicates that for greater efficiency we

46 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

should either increase the work load or decrease the number of processors used. A related

aspect when increasing the problem size (via an increase in scenario realizations) is the

adverse effect created on the memory requirements within the serial NLP solver.

1
5
10
15
20
25
30

Sp
ee

du
p

(S
) linear speedup

ns = 10

ns = 20

1
5

10
15
20
25
30 N = 4 N = 8

N = 16 N = 32

1 4 8 16 32

0.6

0.8

1

N processors

Ef
fic

ie
nc

y
(E

)

ns = 10
ns = 20

10 20

0

2,000

4,000

6,000

ns scenarios

w
al

lc
lo

ck
(s

ec
)

N = 1

N = 4

N = 8

N = 16

N = 32

(a)

(c)

(b)

(d)

Figure 2.7: Example 2 – parallel multiperiod multiple-shooting algorithm speedup and
efficiency with increasing number of processors and scenarios

An important computation aspect to highlight with this example is the relative computation

time between NLP and ODE solutions. Accordingly, we break down the timing measurements

into the total ODE and sensitivity solution (for all shooting intervals and scenarios) which

includes the complete NLP objective/constraint construction, and the remaining in-solver

NLP solution time. Note, the ODE solution is the parallelized portion of the algorithm which

should reflect a decreased time with increased processors. Figure 2.8 plots a breakdown

in time between each of these solutions from which we observe that the serial NLP portion

of the code remains relatively constant as processors are added, while the parallel ODE

portion enjoys significant speedup. Increasing the number of processors further, beyond

that shown, can certainly improve even more the ODE solution time; however, doing so

without additionally increasing the problem size is at a cost of reduced efficiency. Introducing

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 47

more processors is most beneficial if we increase the problem size and hence provide more

computation work to the processors.

1 4 8 16 32
0

2,000

4,000

6,000

N processors

w
al

lc
lo

ck
(s

ec
) ODE solution

NLP solution

1 4 8 16 32
0

2,000

4,000

6,000

N processors(a) (b)

ns = 10 ns = 20

Figure 2.8: Example 2 – ODE and NLP solution wall clock timings with increasing number of
processors and scenarios

2.5 Concluding Remarks

In this chapter, we have presented a novel parallel computing approach for large-scale

dynamic optimization under uncertainty. A multiple-shooting approach was used for the

dynamic optimization, and the uncertain parameter space discretized to yield a multiperiod

formulation. The dynamic model and sensitivity equations corresponding to each shoot-

ing interval and scenario constitute independent integration tasks, well-suited for parallel

processing. The formulation was applied to two integrated design and control case studies,

where the objective was to determine design and controller tuning parameters that mini-

mize the combined annualized capital and operating cost of the plant subject to uncertain

disturbance inputs and the dynamic process model. The solution of the dynamic model was

parallelized by evenly distributing the independent integration tasks from each shooting

interval and scenario realization over several processors. Through parallelization, the embed-

ded dynamic model function evaluations were able to be solved with near linear speedup as

the number of processors were increased, before observing an expected drop off in efficiency.

Ultimately, the cumulative model solution time could be reduced to less than half of the

48 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

total optimization program run time. Additionally, speedup and efficiency results indicate an

appropriate number of processors to use for a given problem size and how to most efficiently

scale up the computation resources with problem size.

2.6 Evaporator Model Equations

The evaporator model is based on the adaptation of the Newell and Lee [39] model given in

Kookos and Perkins [40]. The dynamic closed-loop evaporator model is defined in terms of

the differential x(t) and algebraic z(t) states; the closed-loop manipulated input variables

u(t); the uncertain disturbance input variables v(t); the design parameters p; and the

controller bias parameters d. The variables and parameters are defined as,

x(t) := [x2, P2, I1, I2, εise]
> (2.17)

z(t) := [T2, T3, T100, Q100, F100, F4, F2, Q200, T201, F5]> (2.18)

u(t) := [P100, F200]> (2.19)

v(t) := [F1, x1]> (2.20)

p := [UA1, UA2,Kc1 , τI1 , x̄2,Kc2 , τI2 , P̄2]> (2.21)

d := [P̄100, F̄200]> (2.22)

The system of nonlinear first-order ordinary differential equations making up the model

include: a balance on composition x2; a relation balance for pressure P2; integrated out-

put error equations for I1 and I2; and a cumulative integrated squared error equation to

determine εise(tf).

Mẋ2 − (F1x1 − F2x2) = 0 (2.23)

CṖ2 − (F4 − F5) = 0 (2.24)

İ1 − (x2 − x̄2) = 0 (2.25)

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 49

İ2 −
(
P2 − P̄2

)
= 0 (2.26)

ε̇ise −
(
(x2 − x̄2)2 + (P2 − P̄2)2

)
= 0 (2.27)

The algebraic equations used to explicitly define the algebraic variables, and subsequently

eliminate them from the model, are defined as follows,

T2 := 0.5616P2 + 0.3126x2 + 48.43 (2.28)

T3 := 0.507P2 + 55 (2.29)

T100 := 0.1538P100 + 90 (2.30)

Q100 := UA1(T100 − T2) (2.31)

F100 := Q100/λs (2.32)

F4 :=
Q100 + F1Cp(T1 − T2)

λ+ Cp(T3 − T2)
(2.33)

F2 := F1 − F4 (2.34)

Q200 :=
2CpF200UA2(T3 − T200)

2CpF200 + UA2
(2.35)

T201 := T200 +
Q200

F200Cp
(2.36)

F5 := Q200/λ (2.37)

Additionally, the algebraic controller and disturbance expressions are given as,

P100 := P̄100 +Kc1 (x2 − x̄2) +
Kc1
τI1

I1 (2.38)

F200 := F̄200 +Kc2

(
P2 − P̄2

)
+

Kc2
τI2

I2 (2.39)

F1 := F̄1 + ∆F̄1 γ (2.40)

x1 := x̄1 + ∆x̄1 γ (2.41)

Expressions for the evaporator capital and operating costs were obtained from Douglas [42].

In our calculations, we consider the annualized process capital cost defined based on the

50 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

evaporator unit and the overhead condenser as a function of the overall surface areas for

each unit, UA1 and UA2, respectively. The operating cost is based on the average steam and

cooling water flow rates over a one year period.

Cevap := 5463 (UA1)0.65 (2.42)

Ccond := 2820 (UA2)0.65 (2.43)

Csteam := cs ∆Hvap F100(tf)TA = 4890F100(tf) (2.44)

Ccw := ccw ∆Hcond F200(tf)TA = 4.9F200(tf) (2.45)

The final capital and operating cost expressions (prior to discretization and using open-loop

inputs) are,

Ccap(p) := 1
βp

(Cevap + Ccond) (2.46)

Cop(x(tf),u(tf),v(tf),d,p, tf) := βt (Csteam + Ccw) (2.47)

where βp and βt are the payback period and tax fraction, respectively. We remark that

the operating cost expression evaluated at tf assumes a sustained period of steady-state

operation at the final time conditions. The following table defines the model parameters.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 51

Table 2.6: Example 1 – evaporator model parameter values

Description Symbol Value Units

cooling water heat capacity Cp 0.07 kW min/(K kg)

latent heat of evaporation (water) λ 38.5 kW min/kg

latent heat of steam (saturated) λs 36.6 kW min/kg

feed temperature T1 40 ◦C

cooling water inlet temperature T200 25 ◦C

evaporator liquid holdup M 20 kg

pressure equation parameter C 4 kg min/kPa

steam cost parameter cs ∆Hvap 1.0× 10−2 $/kg

cooling water cost parameter ccw ∆Hcond 1.0× 10−5 $/kg

payback period βp 3 yr

tax rate fraction βt 1 –

annual operating time TA 8150 hr/yr

initial feed flow rate interval F̄1 [9.75, 10.25] kg/min

feed flow rate step interval ∆F̄1 [−0.25, 0.25] kg/min

initial feed composition interval x̄1 [4.75, 5.25] %

feed composition step interval ∆x̄1 [−0.25, 0.25] %

product composition bounds x2 [25, 30] %

operating pressure bounds P2 [40, 80] kPa

steam pressure upper bound PU100 400 kPa

cooling water flow rate upper bound FU200 600 kg/min

2.7 Distillation Model Equations

The binary distillation model was adapted from Schweiger and Floudas [24]. The variables

for the distillation model are defined on a stage-wise basis where we label each stage starting

from the reboiler at n = 0, proceeding with each tray from n = 1, . . . , nt, and ending with

the condenser at n = nt + 1. The variables and parameters are defined as,

x0(t) := [x0, L0]> (2.48)

52 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

xn(t) := [xn, Ln]> ∀ n ∈ N\{0, nt + 1} (2.49)

xnt+1(t) := [xnt+1, D]> (2.50)

x(t) := [x0(t)>, . . . ,xnt+1(t)>, I1, I2, εise]
> (2.51)

zn(t) := [M l
n, yn]> ∀ n ∈ N\{nt + 1} (2.52)

znt+1(t) := M l
nt+1 (2.53)

z(t) := [z0(t)>, . . . , znt+1(t)>]> (2.54)

y(t) := [x0, xnt+1]> (2.55)

u(t) := [R, V]> (2.56)

v(t) := [F, z]> (2.57)

p := [Dcol,Kc1 , τI1 , x̄0,Kc2 , τI2 , x̄nt+1]> (2.58)

d := [R̄, V̄]> (2.59)

where we use the index set N := {0, . . . , nt + 1} to represent all stages in the column. A

detailed explanation of the system variables is given in Table 2.7. The system of nonlinear

first-order ordinary differential equations making up the model include: a relation balance

for the liquid flow down the column for each stage; a composition balance for the light key

component for each stage; integrated output error equations for I1 and I2; and a cumulative

integrated squared error equation to determine εise(tf).

τ0 L̇0 − (L1 − (L0 + V)) = 0 (2.60)

τ L̇n − (Ln+1 − Ln + Fn) = 0 ∀ n ∈ N\{0, nt, nt + 1} (2.61)

τ L̇nt − (R− Lnt) = 0 (2.62)

τnt+1Ḋ − (V − (R+D)) = 0 (2.63)

M l
0ẋ0 − (L1(x1 − x0) + V (x0 − y0)) = 0 (2.64)

M l
nẋn − (Ln+1 (xn+1 − xn) + V (yn−1 − yn) + FZXn) = 0 ∀ n ∈ N\{0, nt, nt + 1} (2.65)

M l
nt ẋnt − (R (xnt+1 − xnt) + V (ynt−1 − ynt)) = 0 (2.66)

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 53

M l
nt+1ẋnt+1 − V (ynt − xnt+1) = 0 (2.67)

İ1 − (x0 − x̄0) = 0 (2.68)

İ2 − (xnt+1 − x̄nt+1) = 0 (2.69)

ε̇ise −
(
(x0 − x̄0)2 + (xnt+1 − x̄nt+1)2

)
= 0 (2.70)

The algebraic equations used to explicitly define the algebraic variables are given as follows,

yn := αxn/(1 + xn(α− 1)) ∀ n ∈ N\{nt + 1} (2.71)

M l
n ≈M := γ1D

2
col

(
hweir + γ2/D

2/3
col

)
(2.72)

τ := γ3D
4/3
col (2.73)

τ0 = τnt+1 := 100 τ (2.74)

M l
0 = M l

nt+1 := 10M (2.75)

Fn :=

F if n = nf

0 otherwise
(2.76)

FZXn :=

F (z − xn) if n = nf

0 otherwise
(2.77)

Dmin
col := γ4 V̄

0.5 (2.78)

Additionally, the algebraic controller and disturbance expressions are given as,

V := V̄ +Kc1 (x0 − x̄0) +
Kc1
τI1

I1 (2.79)

R := R̄+Kc2 (xnt+1 − x̄nt+1) +
Kc2
τI2

I2 (2.80)

F := F̄ + ∆F̄ γ (2.81)

z := z̄ + ∆z̄ γ (2.82)

54 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Table 2.7: Example 2 – distillation model variable definitions

xn: liquid composition F : liquid feed flow rate (kmol/min)

yn: vapor composition R: reflux flow rate (kmol/min)

z: feed composition D: distillate flow rate (kmol/min)

Ln: liquid flow rate (kmol/min) V : vapor boilup flow rate (kmol/min)

M l
n: liquid molar holdup (kmol) I{1,2}: integrated controller error

εise: cumulative integrated squared error

Expressions for the distillation column capital and operating costs were again obtained from

Douglas [42] and are defined in a simplified form as,

Ctray := 95.5D1.55
col Hcol (2.83)

Cshell := 2928D1.066
col H0.802

col (2.84)

Cutility := (cs ∆Hvap + ccw ∆Hcond) V̄ TA = 7756 V̄ (2.85)

where the column height is defined as Hcol = Stray nt. The final capital and operating cost

expressions (in $/year) are,

Ccap(p) := 1
βp

(Ctray + Cshell) (2.86)

Cop(x(tf),u(tf),v(tf),d,p, tf) := βtCutility (2.87)

The model parameters used in defining the distillation model are listed in the following table.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 55

Table 2.8: Example 2 – distillation model parameter values

Description Symbol Value Units

number of trays nt 16 –

feed tray location nf 8 –

relative volatility α 2.5 –

weir height hweir 0.0254 m

tray spacing Stray 0.5080 m

tray holdup parameter γ1 6.0305 kmol/m3

tray holdup parameter γ2 0.008929 m5/3

time constant parameter γ3 0.05271 min m−4/3

flood constraint parameter γ4 0.6719 m min1/2 kmol−1/2

steam cost cs 4.99× 10−7 $/kJ

cooling water cost ccw 1.23× 10−8 $/kJ

heat of vaporization ∆Hvap 3.1× 104 kJ/kmol

heat of condensation ∆Hcond 3.2× 104 kJ/kmol

initial feed flow rate interval F̄ [0.5, 1.5] kmol/min

feed flow rate step interval ∆F̄ [−0.5, 0.5] kmol/min

initial feed composition interval z̄ [0.3, 0.6] –

feed composition step interval ∆z̄ [−0.1, 0.1] –

condenser composition lower bound xLnt+1 0.98 –

reboiler composition upper bound xU0 0.05 –

List of References

[1] A. Cervantes and L. T. Biegler. “Large-Scale DAE Optimization using a Simultaneous

NLP Formulation”. In: AIChE Journal 44.5 (1998), pp. 1038–1050 (cit. on p. 10).

[2] M. C. Colantonio and B. Pytlak. “Dynamic optimization of large scale systems: case

study”. In: International Journal of Control 72.9 (1999), pp. 833–841 (cit. on p. 10).

56 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

[3] M. Fikar, M. A. Latifi, and Y. Creff. “Optimal changeover profiles for an industrial

depropanizer”. In: Chemical Engineering Science 54.13-14 (1999), pp. 2715–2720

(cit. on p. 10).

[4] L. T. Biegler. Nonlinear Programming: Concepts, algorithms, and applications to chemical

processes. SIAM, 2010 (cit. on pp. 10, 20, 23).

[5] A. Hartwich et al. “Parallel sensitivity analysis for efficient large-scale dynamic opti-

mization”. In: Optimization and Engineering 12.4 (2011), pp. 489–508 (cit. on pp. 10,

23).

[6] D. B. Leineweber et al. “An efficient mulitple shooting based reduced SQP strategy for

large-scale dynamic process optimization. Part II: Software aspects and applications”.

In: Computers & Chemical Engineering 27.2 (2003), pp. 167–174 (cit. on pp. 10, 12,

25).

[7] C. D. Laird, A. V. Wong, and J. Akesson. “Parallel Solution of Large-Scale Dynamic

Optimization Problems”. In: 21st European Symposium on Computer Aided Process

Engineering ESCAPE 21. 2011, pp. 2–6 (cit. on pp. 11, 16).

[8] Y. Zhu, S. Legg, and C. D. Laird. “Optimal operation of cyrogenic air separation systems

with demand uncertainty and contractual obligations”. In: Chemical Engineering Science

66.5 (2011), pp. 953–963 (cit. on p. 11).

[9] L. A. Ricardez-Sandoval. “Optimal design and control of dynamic systems under

uncertainty: A probabilistic approach”. In: Computers & Chemical Engineering 43.10

(2012), pp. 91–107 (cit. on p. 11).

[10] M. Morari and J. D. Perkins. “Design for operations”. In: Foundations of Computer-Aided

Process Design. Ed. by L. T. Biegler and M. F. Doherty. Vol. 91. AIChE Symposium

Series, No. 304. New York: CACHE AIChE, 1995, pp. 105–114 (cit. on p. 11).

[11] J. M. G. van Schijndel and E. N. Pistikopoulos. “Towards the integration of process

design, process control & process operability - Current status and future trends”. In:

Foundations of Computer-Aided Process Design. Ed. by M. F. Malone, J. A. Trainham, and

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 57

B. Carnahan. New York: American Institute of Chemical Engineers, 2000, pp. 99–112

(cit. on p. 12).

[12] V. Sakizlis, J. D. Perkins, and E. N. Pistikopoulos. “Recent advances in optimization-

based simultaneous process and control design”. In: Computers & Chemical Engineering

28.10 (2004), pp. 2069–2086 (cit. on pp. 12, 18).

[13] Z. Yuan et al. “State-of-the-art and progress in the optimization-based simultaneous

design and control for chemical processes”. In: AIChE Journal 58.6 (2012), pp. 1640–

1659 (cit. on p. 12).

[14] M. J. Mohideen, J. D. Perkins, and E. N. Pistikopoulos. “Optimal design of dynamic

systems under uncertainty”. In: AIChE Journal 42.8 (1996), pp. 2251–2272 (cit. on

pp. 13, 14).

[15] R. Huang and L. T. Biegler. “Robust nonlinear model predictive controller design based

on multi-scenario formulation”. In: Proceedings of the 2009 Conference on American

Control Conference. ACC’09. 2009, pp. 2341–2342 (cit. on p. 13).

[16] A. Shapiro. “Stochastic programming approach to optimization under uncertainty”. In:

Mathematical Programming 112.1 (2008), pp. 183–220 (cit. on p. 13).

[17] M. G. Ierapetritou, J. Acevedo, and E. N. Pistikopoulos. “An optimization approach

for process engineering problems under uncertainty”. In: Computers & Chemical

Engineering 20.6-7 (1996), pp. 703–709 (cit. on pp. 13, 16).

[18] N. V. Sahinidis and I. E. Grossmann. “Reformulation of multiperiod MILP models for

planning and scheduling of chemical processes”. In: Computers & Chemical Engineering

15.4 (1991), pp. 255–272 (cit. on p. 13).

[19] D. Ruppen, C. Benthack, and D. Bonvin. “Optimization of batch reactor operation

under parametric uncertainty – computational aspects”. In: Journal of Process Control

5.4 (1995), pp. 235–240 (cit. on p. 13).

58 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

[20] T. K. Bhatia and L. T. Biegler. “Dynamic Optimization for Batch Design and Scheduling

with Process Model Uncertainty”. In: Industrial & Engineering Chemistry Research 36.9

(1997), pp. 3708–3717 (cit. on p. 13).

[21] J. Gondzio and A. Grothey. “Exploiting structure in parallel implementation of interior

point methods for optimization”. In: Computational Management Science 6.2 (2009),

pp. 135–160 (cit. on p. 16).

[22] A. Shapiro. “Monte Carlo Sampling Methods”. In: Stochastic Programming. Ed. by

A. Ruszczynski and A. Shapiro. Vol. 10. Handbooks in Operations Research and

Management Science. Oxford, UK: Elsevier, 2003, pp. 353–425 (cit. on p. 17).

[23] U. Diwekar. Introduction to Applied Optimization. Springer, 2008 (cit. on p. 17).

[24] C. A. Schweiger and C. A. Floudas. “Interaction of design and control: Optimization

with dynamic models”. In: Optimal Control: Theory, Algorithms, and Applications. Ed.

by W. W. Hager and P. M. Pardalos. New York: Kluwer Academic Publishers, 1997,

pp. 388–435 (cit. on pp. 18, 27, 51).

[25] H. G. Bock and K. J. Plitt. “A Multiple Shooting Algorithm for Direct Solution of

Optimal Control Problems”. In: Ninth IFAC World Congress. Budapest, 1984 (cit. on

p. 19).

[26] H. G. Bock et al. “A direct multiple shooting method for real-time optimization of

nonlinear DAE processes”. In: Nonlinear Model Predictive Control. Ed. by F. Allgower

and A. Zheng. Vol. 26. Progress in Systems and Control Theory. Basel, Switzerland:

Birkhauser Verlag, 2000, pp. 245–267 (cit. on p. 19).

[27] D. B. Leineweber et al. “An efficient mulitple shooting based reduced SQP strategy for

large-scale dynamic process optimization. Part I: Theoretical aspects”. In: Computers

& Chemical Engineering 27.2 (2003), pp. 157–166 (cit. on p. 19).

[28] V. S. Vassiliadis, R. W. H. Sargent, and C. C. Pantelides. “Solution of a class of

multistage dynamic optimization problems. 2. Problems with path constraints”. In:

Industrial & Engineering Chemical Research 33.9 (1994), pp. 2123–2133 (cit. on p. 21).

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 59

[29] M. Caracotsios and W. E. Stewart. “Sensitivity analysis of initial value problems with

mixed ODEs and algebraic equations”. In: Computers & Chemical Engineering 9.4

(1985), pp. 359–365 (cit. on p. 23).

[30] Y. Cao et al. “Adjoint sensitivity analysis for differential-algebraic equations: The ad-

joint DAE system and its numerical solution”. In: SIAM Journal on Scientific Computing

24.3 (2003), pp. 1076–1089 (cit. on p. 23).

[31] A. Wachter and L. T. Biegler. “On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming”. In: Mathematical Pro-

gramming 106.1 (2006), pp. 25–57 (cit. on p. 24).

[32] R. H. Byrd, J. Nocedal, and R. A. Waltz. “Large-Scale Nonlinear Optimization”. In:

ed. by G. Pillo and M. Roma. Springer, 2006. Chap. Knitro: An Integrated Package for

Nonlinear Optimization, pp. 35–59 (cit. on p. 24).

[33] M. Kiehl. “Parallel multiple shooting for the solution of initial value problems”. In:

Parallel Computing 20.3 (1994), pp. 275–295 (cit. on pp. 25, 26).

[34] M. Jeon. “Parallel optimal control with multiple shooting, constraints aggregation

and adjoint methods”. In: Journal of Applied Mathematics and Computing 19.1 (2005),

pp. 215–229 (cit. on p. 25).

[35] B. Bachmann et al. “Parallel Multiple-Shooting and Collocation Optimization with

OpenModelica”. In: 9th International Modelica Conference. Munich, Germany, Sept.

2012, pp. 659–668 (cit. on p. 25).

[36] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP algorithm for large-scale

constrained optimization”. In: SIAM Review 47.1 (2005), pp. 99–131 (cit. on p. 26).

[37] A. C. Hindmarsh et al. “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equa-

tion Solvers”. In: ACM Transactions on Mathematical Software 31.3 (2005), pp. 363–

396 (cit. on p. 26).

60 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

[38] B. R. Keeping and C. C. Pantelides. “A distributed memory parallel algorithm for the

efficient computation of sensitivities of differential-algebraic systems”. In: Mathematics

and Computers in Simulation 44.6 (1998), pp. 545–558 (cit. on p. 26).

[39] R. B. Newell and P. L. Lee. Applied Process Control – A Case Study. New Jersey: Prentice

Hall, 1989 (cit. on pp. 27, 48).

[40] I. K. Kookos and J. D. Perkins. “An algorithm for simultaneous process design and

control”. In: Industrial & Engineering Chemistry Research 40.19 (2001), pp. 4079–4088

(cit. on pp. 27, 48).

[41] P. S. Pacheco. An Introduction to Parallel Programming. New York, NY, USA: Morgan

Kaufmann, 2011 (cit. on p. 37).

[42] J. M. Douglas. Conceptual Design of Chemical Processes. New York: McGraw-Hill, 1988

(cit. on pp. 49, 54).

Chapter 3

A Parallel Implementation for Multiperiod Dynamic Optimization

of Large-Scale DAE Systems

3.1 Introduction . 62

3.2 Problem Statement. 64

3.3 Proposed Solution Approach . 67

3.4 Example Problems . 82

3.5 Concluding Remarks . 97

3.6 Air Separation Model Equations 98

References . 102

This chapter develops a technique for optimizing large-scale differential-algebraic equation

process models under uncertainty using a parallel embedded model approach. A combined

multiperiod multiple-shooting discretization scheme is used, which creates a significant

number of independent numerical integration tasks for each shooting interval over all

scenario/period realizations. Each independent integration task is able to be solved in parallel

as part of the function evaluations within a gradient-based nonlinear programming solver.

This chapter seeks to extend the concepts laid out in the previous chapter and focuses more

on demonstrating potential parallel computation performance improvement when applied to

large-scale embedded differential-algebraic equations (DAEs) using a more rigorous software

framework. We assess our parallel dynamic optimization approach on two examples; the

first is a benchmark literature problem, while the second is a large-scale air separation

problem that considers a robust set-point transition under parametric uncertainty. Results

indicate that focusing on the speedup of the embedded model evaluation can significantly

decrease the overall computation time; however, as the multiperiod formulation grows with

61

62 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

increased realizations the computational burden quickly shifts to the internal computation

performed within the nonlinear programming algorithm. This highlights the need for further

decomposition, structure exploitation and parallelization within the nonlinear programming

algorithm and is the subject for further investigation in the next chapter.

Note, portions of this chapter were published according to the journal article:

I.D. Washington and C.L.E. Swartz. “Multiperiod Dynamic Optimization for Large-Scale

Differential-Algebraic Process Models under Uncertainty”. In: Processes, 2015. 3, 541–567.

3.1 Introduction

The optimization of process systems under uncertainty is important and in many cases

necessary for capturing realistic solutions to the optimal operation and design of physical

systems. Both external system disturbances (e.g., environmental conditions, feed stream

availability, product demands) and inherent internal unknowns (e.g., kinetic parameters,

physical and transport properties) within the process necessitate considering uncertainty

within the optimization model formulation and solution. This has long been realized and

many computational approaches specifically from the process systems community have been

proposed (see, Geletu and Li [1] for a recent review). In this chapter we are concerned with

the solution of dynamic optimization under uncertainty for which, from a design perspective,

a number of applications include [2–4]. In general, optimization under uncertainty can

be classified depending on how uncertainty is modeled and fall under two categories:

stochastic optimization and robust optimization. In the stochastic optimization approach,

uncertain parameters are modeled as random variables with a known or imposed probability

distribution. Stochastic objective functionals and possibly constraint functionals are often

expressed using a probabilistic representation, and the practical solution implementation

requires the conversion from an infinite to finite dimensional formulation. This is often

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 63

achieved through the use of sampling techniques (to approximate the various probability

distributions) followed by a deterministic optimization procedure. Furthermore, to properly

quantify the influence of parametric uncertainty on the optimization solution, multiple

repeated sampling and optimization solutions are often performed followed by a statistical

analysis [5]. A popular stochastic optimization approach that has emerged over the last

several decades is chance constraint programming (CCP), in which constraints are relaxed

according to a particular probability distribution. A key aspect when using chance constraint

optimization is efficiently and accurately approximating multivariate integrals associated

with the probabilistic terms, and recent work covering dynamic systems is discussed by

Arellano-Garcia and Wozny [6] and Kloppel et al. [7]. The robust optimization approach, on

the other hand, requires no a priori knowledge of the uncertain parameters and instead these

parameters are assumed to take values from a bounded interval or set. The central idea of

this approach is to ensure no constraint violation under all possible realizations within the

imposed uncertainty interval. Robust optimization formulations are conveniently posed as

min-max problems, where the idea is to minimize the maximum impact of uncertainty on

the performance index subject to the largest possible constraint violation (i.e., worst-case

analysis). Recent work in this direction is discussed by Diehl et al. [8] and Houska et al.

[9] who provide a framework for robust optimal control of dynamic systems. Regardless of

the particular uncertainty classification, the conversion of an infinite dimension problem to

an implementable finite deterministic nonlinear programming formulation is necessary and

one approach to do so is a multiperiod discretization. The approach can serve as a complete

solution such as in a robust model predictive control framework [10, 11] or as a component

of a more elaborate iterative solution process [2].

In this chapter we are primarily concerned with the use of dynamic process models described

by a system of differential-algebraic equations (DAEs) and the efficient incorporation of

uncertainty using multiperiod optimization. This approach can be used to fully or partially

address stochastic or robust optimization formulations, depending on how one characterizes

64 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

uncertainty. Given the widespread use of multiperiod formulations, our approach in this

work is to focus on the computational aspects and in particular the use of dynamically

constrained formulations and their efficient implementation. We further remark that this

chapter is an extension of our previous work described in Chapter 2, and key contributions

of this work include: (1) the application of the ideas of Chapter 2 to DAE systems; (2)

the implementation of a C/C++ software framework that links several reputable numerical

packages; (3) the assessment of second-order sensitivity generation when using higher-order

gradient-based nonlinear programming methods; (4) the application to a large-scale air

separation system; (5) the exploration of parallel performance with respect to discretization

refinement versus embedded model size that was not previously considered. The chapter is

laid out by first discussing the particular optimization formulation addressed and relevant

literature pertaining to solution algorithms of such formulations. Next, we provide our

solution approach to multiperiod problems with embedded DAE functionals, followed by

a discussion on our particular implementation. Following this, we give two examples of

different scale to illustrate the computational performance of our approach. Finally, some

concluding remarks are provided and future work noted.

3.2 Problem Statement

The multiperiod optimization formulation considered in this chapter seeks to extend Problem

P.2.2 from Chapter 2 where we specifically tailor our new formulation to problems with

embedded semi-explicit index-1 differential-algebraic equation models. Accordingly, we

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 65

consider the general multiperiod nonlinear dynamic optimization formulation:

min
ui(t),di ∀ i, p

J := φ0(p, tf) +
∑ns

i=1 wi · φi(xi(tf), zi(tf),di,p,θi, tf)

st : ẋi(t)− fd(xi(t), zi(t),ui(t),di,p,θi, t) = 0

fa(xi(t), zi(t),ui(t),di,p,θi, t) = 0

xi(t0)− h0(ui(t0),di,p,θi, t0) = 0

g(xi(t), zi(t),ui(t),di,p,θi, t) ≤ 0

ui(t) ∈ U = {ui(t) ∈ Rnu |uL ≤ ui(t) ≤ uU}

di ∈ D = {di ∈ Rnd |dL ≤ di ≤ dU}

p ∈ P = {p ∈ Rnp |pL ≤ p ≤ pU}

t ∈ T = [t0, tf] ∀ i = 1, . . . , ns

(P.3.1)

In the above formulation, the differential and algebraic states are represented by xi(t) ∈

X ⊆ Rnx and zi(t) ∈ Z ⊆ Rnz , respectively; the open-loop continuous control variables

are ui(t) ∈ U ⊆ Rnu; the scenario dependent model parameters are di ∈ D ⊆ Rnd; the

uncertain parameters are θi ∈ Γ ⊆ Rnθ . All of these variables are associated with a particular

period/scenario i. The model parameters p ∈ P ⊆ Rnp are defined uniformly over all

scenarios, and are often referred to as first stage, scenario independent, or complicating

variables in the literature. The objective function comprises two terms: φ0(p, tf) : P ×T 7→ R

which represents a scalar scenario independent portion, and φi(·) : X×Z×D×P×Γ×T 7→ R

which represents a scalar scenario dependent portion. The embedded dynamic model is

comprised of two separate functionals: fd(·) : X × Z × U × D × P × Γ × T 7→ Rnx and

fa(·) : X × Z × U ×D × P × Γ× T 7→ Rnz , which represent the differential and algebraic

functions, respectively, of the DAE model in semi-explicit form, assumed to be index-1

such that the Jacobian of fa(·) with respect to zi(t) is nonsingular. Furthermore, the DAE

functionals are assumed to be sufficiently smooth to ensure existence and uniqueness of the

solution [12]. Additionally, g(·) : X × Z × U ×D × P × Γ× T 7→ Rng are path inequality

66 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

constraints. The weight (or probability) associated with each scenario i is represented as

wi := 1/ns or more generally as wi ∈ [0, 1], where ns is the total number of scenarios

considered. This particular formulation, where the control variables ui(t) are associated

with each scenario i, allows for recourse to uncertainty and is in the form of a two-stage

stochastic program. The parameters p constitute first-stage decisions, and parameters di

and the control inputs ui(t) constitute second-stage decisions that can provide compensatory

action in response to disturbance and (uncertain) parameter realizations. Alternatively, the

control inputs could be assumed scenario independent and if we neglect design parameters

the resulting formulation would resemble a robust optimal control problem.

Nonlinear programming solution techniques tailored to multiperiod formulations have re-

ceived some attention in the literature. Varvarezos, Biegler, and Grossmann [13] proposed

a reduced sequential quadratic programming (rSQP) approach (based on an active-set QP

subproblem) which decomposes the multiperiod nature through introducing additional linear

constraints and scenario dependent parameters which effectively removes the potentially

nonlinear complicating scenario independent parameters and forms a new NLP structure

which is easier to solve at the QP level. This decomposed rSQP approach was further

explored by Bhatia and Biegler [14] who introduced an interior-point solution technique

for each QP subproblem. Ultimately, the resulting interior-point rSQP technique showed

superior scalability (with respect to scenario realizations) compared to the active-set rSQP

approach. A similar interior-point SQP approach has been used on discretized dynamic

optimization formulations which result in highly structured NLP formulations (see, [15, 16]).

More recently, Zavala, Laird, and Biegler [17] have demonstrated a parallel primal-dual

interior-point approach to tackle discretized multiperiod dynamic optimization formulations.

This has ultimately led to general interior-point approaches to handle discretized nominal

dynamic optimization formulations [18] and structured NLP formulations [19]. All of these

previously noted studies have been on structured NLP techniques involving explicit objective

and constraint functionals; however, our particular interest in the present chapter is on

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 67

solution techniques involving implicit or embedded functionals which require a secondary so-

lution algorithm for evaluation within the NLP constraints. These types of formulations arise

in shooting approaches to dynamic optimization and require the solution of an embedded

differential-algebraic system in order to fully evaluate the NLP functions. In conjunction with

the multiperiod approach to uncertainty, very little has be demonstrated in the literature on

shooting-based multiperiod dynamic optimization.

3.3 Proposed Solution Approach

Our proposed solution approach to Problem P.3.1 uses a combined multiperiod multiple-

shooting discretization whereby the embedded DAE model integration tasks are solved in

parallel. The main contribution of this chapter is the assessment of such an approach when

applied to reasonably large differential-algebraic process models for design under uncertainty

with recourse and alternatively robust optimal control. The main difference in our proposed

approach and corresponding implementation, from other multiple-shooting approaches

presented in the literature [20, 21], is that we have incorporated an additional layer of

parallelization in terms of the individual scenarios used within the multiperiod approach.

3.3.1 Multiperiod Multiple-Shooting Discretization

The multiperiod multiple-shooting approach discretizes a continuous nonlinear uncertain

dynamic optimization formulation to an algebraic nonlinear program (NLP) with an embed-

ded DAE model within the constraints. The technique entails introducing new optimization

parameters (xj,i, zj,i) for all periods/scenarios i to represent the differential and algebraic

state variable initial conditions at the beginning of each shooting interval j, and new equality

constraints to remove the discrepancy or defect between the differential state variable values

at the final time from the previous interval and the initial time in the current interval.

68 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

t0 tnt1 tn−1

ui(t)

zi(t)

xi(t)

u0,i

u1,i

un−1,i un−1,i

z0,i
z1,i

zn−1,i
zn,i

x0,i

x1,i

xn−1,i

xn,i

differential state continuity defect

· · ·

Figure 3.1: Multiperiod multiple-shooting discretization for DAEs

This idea is sketched in Figure 3.1 for scenario realization i, where we assume that the time

intervals used in the input control trajectory parameterization (i.e., parameterized by the

uj,i) corresponds directly to the defined shooting grid. Our current approach has been to

use a rather straight forward implementation of the multiple-shooting technique whereby

we provide the discretized formulation in full space to an existing sparse NLP solver, as

opposed to exploiting the structure of the formulation by implementing a custom (possibly

reduced-space) nonlinear programming technique (cf. the SCPGEN code generation solver

within CASADI [22] or the nonlinear optimal control solver MUSCOD-II which uses a tailored

reduced SQP algorithm [23]).

A general multiperiod dynamic optimization formulation that utilizes the multiple-shooting

discretization applicable to semi-explicit differential-algebraic equation models can be written

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 69

as,

min
w,p

J := φ0(p, tn) +
∑ns

i=1 wi · φi(xn,i, zn,i,di,p,θi, tn)

st : ẋi(t) = fd(xi(t), zi(t),U(t,uj,i),di,p,θi, t)

0 = fa(xi(t), zi(t),U(t,uj,i),di,p,θi, t)− ϑ(γj,i, t)

0 = h0(U(t0,u0,i),di,p,θi, t0)− x0,i

xi(tj+1; xj,i, zj,i,uj,i,di,p,θi)− xj+1,i = 0

fa(xk,i, zk,i,U(tk,uk,i),di,p,θi, tk) = 0

g(xk,i, zk,i,U(tk,uk,i),di,p,θi, tk) ≤ 0

∀ t ∈ Ij,i , j = 0, . . . , n− 1

∀ k = 0, . . . , n , ∀ i = 1, . . . , ns

w ∈ [wL,wU], p ∈ [pL,pU]

(P.3.2)

In the above formulation, j = 0, . . . , n− 1 represents n shooting intervals. The optimization

parameters are partitioned into scenario-independent global parameters p, and scenario-

dependent parameters defined collectively for all shooting intervals and scenario realizations

as,

w := [x>0,1, z
>
0,1,u

>
0,1, . . . ,x

>
n,ns , z

>
n,ns ,d

>
ns]
> ∈ R((nx+nz)(n+1)+(M+1)nun+nd)ns (3.1)

The continuous control input vector can be defined using a parameterized function ui(t) =

U(t,uj,i) based on a piecewise approximation within each shooting interval Ij,i, where

uj,i ∈ R(M+1)nu represent local polynomial coefficients. Note that un,i is used in defining

the final end point constraint in Problem P.3.2 for notational simplicity, where un,i = un−1,i,

and can be removed from the NLP (see Figure 3.1 for a sketch of the parameterization).

Additionally, we consider here a fixed end-time formulation where the objective function

is represented in Mayer form, which typically only directly depends on the final model

states xn,i, zn,i, parameters di and p and, possibly, the final time tn. The relaxed DAE

model, F(·) = {[ẋi(t)− fd(·)]>, [fa(·)− ϑ(γj,i, t)]
>}>, is embedded within the NLP function

70 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

evaluations and is solved using an appropriate DAE solver for t ∈ Ij,i, j = 0, . . . , n− 1 with

initial differential state conditions xi(tj) = xj,i and algebraic state conditions zi(tj) = zj,i for

all intervals Ij,i, where the intervals are effectively decoupled using the new parameters and

are thus independent of each other. The particular formulation given here relies on the use of

a relaxed form of the DAEs using a so-called relaxation function represented here through the

function ϑ(γj,i, t), where γj,i := fa(xj,i, zj,i,uj,i,di,p,θi, tj) is functionally dependent on

the shooting parameters at node j. One particular representation of this relaxation function

can be given as,

ϑ(γj,i, t) := γj,i · α(t) (3.2)

α(t) := exp [−β (t− tj)/(tj+1 − tj)] (3.3)

where α(t) represents a scalar damping factor which is non-increasing and non-negative

over the shooting interval t ∈ Ij,i and at each shooting node j takes the value α(tj) = 1.

This in turn causes the relaxation function ϑ(·) to induce consistent algebraic equations

at each shooting node (ϑ(γj,i, tj) = γj,i), where upon convergence of the NLP, γj,i = 0

and the relaxation function vanishes (ϑ(0, tj) = 0) such that the original DAE model holds.

The symbol β is a scalar tuning parameter set, according to Leineweber et al. [23], as

β = 5. This relaxed DAE form also requires the addition of point equality constraints (for

the algebraic model equations) in the NLP at each shooting node to ensure that the original

model is obtained upon NLP convergence (see [23, 24] for a more complete treatment of

DAE relaxation). It is worth noting that using the relaxed DAE approach avoids the otherwise

necessary DAE (re-)initialization problem.

To simplify the formulation and to assist in our presentation, the multiple-shooting continuity

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 71

equality constraints, including the initial conditions at t0, can be defined as,

c0,i(w0,i,di,p) ≡ h0(u0,i,di,p,θi, t0)− x0,i = 0

cj+1,i(wj,i,xj+1,i,di,p) ≡ xi(tj+1; xj,i, zj,i,uj,i,di,p,θi)− xj+1,i = 0

∀ j = 0, . . . , n− 1 , ∀ i = 1, . . . , ns

(3.4)

wherewj,i = [x>j,i, z
>
j,i,u

>
j,i]
> ∈ Rnx+nz+(M+1)nu for j = 0, . . . , n−1, and at the final shooting

node, wn,i = [x>n,i, z
>
n,i]
>. The algebraic consistency equality constraints and remaining

inequality constraints represent NLP point constraints and can be defined at each shooting

node according to,

qj,i(wj,i,di,p) ≡
[
fa(wj,i,di,p,θi)

>,g(wj,i,di,p,θi)
>
]>

qn,i(un−1,i,wn,i,di,p) ≡
[
fa(un−1,i,wn,i,di,p,θi)

>,g(un−1,i,wn,i,di,p,θi)
>
]>

∀ j = 0, . . . , n− 1 , ∀ i = 1, . . . , ns

(3.5)

The combined constraint vector for each period/scenario can now be stated as,

ci(wi,p) :=

c0,i(w0,i,di,p)(
q0,i(w0,i,di,p)>, c1,i(w0,i,x1,i,di,p)>

)>
...(

qj,i(wj,i,di,p)>, cj+1,i(wj,i,xj+1,i,di,p)>
)>

...(
qn−1,i(wn−1,i,di,p)>, cn,i(wn−1,i,xn,i,di,p)>

)>
qn,i(un−1,i,wn,i,di,p)

, ∀ i = 1, . . . , ns (3.6)

The fully discretized combined multiperiod multiple-shooting NLP formulation of Problem

72 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

P.3.2, can now be stated in parameterized form according to Problem P.3.3.

min
wi ∀ i,p

J := φ0(p) +
∑ns

i=1 wi · φi(wn,i,di,p)

st : cLi ≤ ci(wi,p) ≤ cUi

wi ∈ [wL,wU] ∀ i = 1, . . . , ns

p ∈ [pL,pU]

(P.3.3)

Depending on the constraint type (equality or inequality), the vectors cLi and cUi are appro-

priately defined. For each scenario i, the concatenated shooting node parameters are defined

as wi = [w>0,i, . . . ,w
>
n,i,d

>
i]> ∈ R(nx+nz)(n+1)+(M+1)nun+nd . Note that the embedded DAE

model F(·) is removed from the NLP formulation, as it is solved using an embedded DAE

solver in order to construct the shooting node continuity constraints.

The multiple-shooting approach benefits from a naturally decoupled temporal domain struc-

ture that does not require any additional decomposition techniques. This decoupling of each

shooting interval is induced by the introduction of the optimization parameters xj,i, zj,i for

j = 0, . . . , n− 1 and i = 1, . . . , ns and allows the embedded DAE in each shooting interval

and scenario realization to be independently solved in parallel. Accordingly, all scenario

realizations i and shooting intervals j over the entire time horizon result in m = n · ns
independent integration tasks, which can be broken up and solved in parallel using several

processors.

3.3.2 First-Order Derivative Generation

Shooting-based dynamic optimization approaches necessitate the use of DAE parameter

sensitivity in order to generate derivatives of constraints involving implicit functionals. For

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 73

example, a relaxed semi-explicit index-1 parameterized DAE system can be stated as,

ẋi(t)− fd(xi(t), zi(t),yj,i, t) = 0nx

fa(xi(t), zi(t),yj,i, t)− ϑ(γj,i, t) = 0nz

t ∈ [tj , tj+1] (3.7)

xi(tj) = xj,i (3.8)

where all time-invariant parameters within each interval j and scenario i are denoted by

yj,i = {xj,i, zj,i,uj,i,di,p}. From this system, the linear first-order forward sensitivity

equations can be derived (in matrix form) as,

ẋyi (t)−
[
fxd (t) xyi (t) + f zd (t) zyi (t) + fyd (t)

]
= 0nx×ny

fxa (t) xyi (t) + f za (t) zyi (t) + fya (t)−∇yϑ(γj,i, t) = 0nz×ny

t ∈ [tj , tj+1] (3.9)

xyi (tj) = [Inx |0nx×(ny−nx)] (3.10)

where {xyi (t), z
y
i (t)} := ∂{xi(t), zi(t)}/∂yj,i represents differential and algebraic sensitivity

variables, respectively, and f
{x,z,y}
{d,a} (t) := ∂f{d,a}(xi(t), zi(t),yj,i, t)/∂{xi(t), zi(t),yj,i} are

Jacobian matrices of the DAE model with respect to the differential variables, algebraic

variables and parameters. This extended linear DAE system is solved forward in time

alongside the original system to generate xyi (tj+1), which are used to construct the block

structured continuity constraint Jacobian (see, Equation 2.9 in Chapter 2). Particularly

efficient techniques and software tools to solve the combined systems of Equations 3.7 and

3.9 are discussed by Maly and Petzold [25], Feehery, Tolsma, and Barton [26], Schlegel et al.

[27], and Kristensen et al. [28]. In the context of large-scale chemical process engineering

models, Hartwich et al. [29] discuss a parallel implementation of the combined DAE and

sensitivity system and demonstrate reasonable orders of speedup.

74 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

3.3.3 Second-Order Derivative Generation

Sequential quadratic programming (SQP) algorithms (e.g., filterSQP) or primal-dual non-

linear interior-point methods (IPM) (e.g., IPOPT, KNITRO) can often utilize second-order

derivatives of the objective/constraint functions, which are used to construct the Lagrangian

Hessian (used in the QP subproblem or primal-dual search direction linear solve). To provide

such information when using embedded DAE models (i.e., implicit functionals) requires that

a second-order sensitivity analysis be performed to construct an approximate representation

of the continuity constraint Hessian. All other contributing portions of the Lagrangian Hes-

sian (i.e., explicit objective and point constraint functionals) can be computed exactly using

automatic differentiation. A question that arises, and that we seek to address, is whether

supplying the second-order derivatives via sensitivity analysis can reduce the number of

nonlinear programming algorithm iterations sufficiently to justify the additional computation

work of second-order sensitivity analysis.

The complete Lagrangian Hessian for our particular multiperiod formulation can be stated

as,

H(x,ν) = ∇2
xxJ(x) +

∑ns
i=1

∑n
j=0

[∑nx
s=1ν

c
s,j,i∇2

xxcs,j,i(x) +
∑nq

l=1ν
q
l,j,i∇2

xxql,j,i(x)
]

(3.11)

where the italicized symbol x represents a composite vector of all primal NLP variables (as

distinct from the model states given by xi(t)) and ν = {νcs,j,i, νql,j,i} is a similar concatenation

of all dual variables. More specifically, νcs,j,i are equality constraint multipliers related to

the continuity constraints in Equation 3.4, represented individually here by cs,j,i(x), and

νql,j,i are either equality or inequality constraint multipliers related to the point constraints

in Equation 3.5, which are again defined individually as ql,j,i(x). In order to compute the

individual Hessian portions related to the continuity constraints, νcs,j,i∇2
xxcs,j,i(x), a direct

second-order sensitivity analysis can be performed on the portion of the Lagrangian involving

the embedded functionals. For example, consider the continuity constraint Lagrangian

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 75

portion as,

Lc(x,ν
c) =

∑ns
i=1ν

c>
0,ic0,i(y0,i) +

∑ns
i=1

∑n−1
j=0 ν

c>
j+1,i cj+1,i(xi(tj+1; yj,i),yj+1,i) (3.12)

where the second portion of this term can be taken as a scalar point-wise implicit functional

for each scenario and shooting interval and defined accordingly as,

gj+1,i(yj,i) = νc>j+1,i cj+1,i(xi(tj+1; yj,i),yj+1,i) (3.13)

Using the sensitivity generation approach described by Ozyurt and Barton [30], the direc-

tional Hessian of this point-wise functional can be determined using a forward-over-adjoint

direct second-order sensitivity analysis. The particular purpose here is to investigate the

application of this technique in the context of a multiperiod multiple-shooting algorithm. Fur-

thermore, the application considered for our analysis is in the form an ODE; thus, we restrict

our presentation of second-order sensitivity analysis to the purely ODE case. Accordingly, we

consider the ODE system given by,

ẋi(t) = f(xi(t),yj,i, t) t ∈ [tj , tj+1] (3.14)

xi(tj) = xj,i (3.15)

For the more general semi-explicit index-1 DAE case, we refer readers to the work by Cao

et al. [31] for first-order methods, Hannemann-Tamas [32] for higher order methods and

Albersmeyer and Diehl [33] for higher order relaxed DAE methods. The final form of the

directional Hessian of a point-wise functional, in the context of our multiperiod approach,

can be stated as,

∂2gj+1,i

∂y2
j,i

u = (λi(tj)
> ⊗ Iny) xyyi (tj)u + xyi (tj)

>µi(tj) +

gyy(tj+1)u + gyx(tj+1) si(tj+1)− qi(tj)

(3.16)

76 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

where ⊗ represents the Kronecker product; λi(tj) ∈ Rnx is a vector of first-order adjoint

variables at tj for scenario i; µi(tj) ≡ λyi (tj)u ∈ Rnx is a vector of directional second-order

adjoint variables at tj; si(tj+1) ≡ xyi (tj+1)u ∈ Rnx is a vector of directional first-order forward

sensitivity variables at tj+1 (i.e., the solution of directional first-order forward sensitivity

equations); qi(tj) ∈ Rny is a vector of directional second-order adjoint quadrature variables;

xyyi (tj)u ≡ 0nxny is a vector of directional second-order forward sensitivity variables initially

known at tj , while xyi (tj) ≡ [Inx |0nx×(ny−nx)] is a matrix of first-order forward sensitivity

variables initially known at tj; gyy(tj+1) ≡ 0ny×ny and gyx(tj+1) ≡ 0ny×nx are second-order

derivatives of the scalar functional gj+1,i evaluated directly at tj+1, which for the multiple-

shooting continuity constraints, are simply matrices of zeros. In order to determine the

first-order and directional second-order adjoint variables, one needs to first solve forward

from tj to tj+1 the first-order forward sensitivity equations to compute the directional

sensitivities si(tj+1) and then solve backward from tj+1 to tj for each direction u ≡ el,

l = 1, . . . , ny, the combined first- and second-order directional adjoint system given by,

λ̇i(t) = −fx(t)> λi(t)

µ̇i(t) = −fx(t)>µi(t)− (λi(t)
> ⊗ Inx) (fxy(t)u + fxx(t) si(t))

λi(tj+1) = gx(tj+1) ≡ νcj+1,i

µi(tj+1) = gxy(tj+1)u + gxx(tj+1) si(tj+1) ≡ 0nx

(3.17)

Additionally, alongside the adjoint system, the quadrature variable vector qi(tj) can be

determined from the system,

q̇i(t) = fy(t)
>µi(t) + (λi(t)

> ⊗ Iny) (fyy(t)u + fyx(t) si(t)) , qi(tj+1) = 0ny (3.18)

where fx(t) := ∂f(xi,yj,i, t)/∂xi(t) ∈ Rnx×nx and fxy(t) := ∂2f(xi,yj,i, t)/∂xi(t)∂yj,i ∈

Rnxnx×ny in which this latter term is in the form of a stacked Hessian to avoid the otherwise

tensor form. Similarly, fxx(t) := ∂2f(xi,yj,i, t)/∂xi(t)
2 ∈ Rnxnx×nx , with all other derivatives

defined in an analogous manner. The evaluation of both adjoint and quadrature systems

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 77

requires the efficient evaluation of several matrix-vector products, comprised of first and

second derivative terms, using an appropriate automatic differentiation (AD) tool. Once

the adjoint and quadrature variables are determined at tj , the directional Hessian given

by Equation 3.16 can be formed. This process is repeated for all j = 0, . . . , n − 1 and

i = 1, . . . , ns, and the Lagrangian Hessian∇2
xxLc(x,ν

c) is assembled (based on each direction

that corresponds to a particular parameter) and further combined with the objective and

point constraint Hessian.

3.3.4 Implementation Details

The results in this chapter were generated using a C/C++ implementation which acts to coor-

dinate the user model input, multiperiod multiple-shooting discretization, and interaction

between several available DAE integration and NLP optimization routines. The implemen-

tation utilizes several CSPARSE routines [34] and interfaces the integration routines CVODES

and IDAS from the SUNDIALS suite of solvers [35], the NLP solvers SNOPT [36] and IPOPT

[37], and the AD tool ADOLC [38]. The particular implementation aspect we investigate in

this chapter is an OpenMP loop parallelization of the high-level DAE integration tasks and

we sketch the approximate solution steps according to Algorithms 1 and 2. Note that the

sensitivity generation approach employed by the SUNDIALS integrators follows a so-called

“first-differentiate-then-discretize” methodology (i.e., the first- and second-order sensitivity

equations are formed prior to applying the discretized numerical integration routine); an

alternative approach is a so-called “first-discretize-then-differentiate” technique, whereby

certain aspects of the internally discretized integration algorithm are differentiated either via

AD or through numerical differences during the integration procedure. This latter approach is

generally known as internal numerical differentiation (IND) and has shown greater solution

accuracies and speeds when used in conjunction with embedded model shooting-based

dynamic optimization schemes [39–41]. Despite the merits of this newer approach, for ease

of availability through existing solvers we have followed the first approach in this study.

78 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Algorithm 1 sketches a high-level SQP-type solution procedure for the NLP given by Problem

P.3.3. The purpose of outlining the NLP solution approach is to provide some insight to

where specifically within the algorithm an embedded DAE solver (and possibly a first- and

second-order sensitivity solution) is required. Alternatively, one could utilize a nonlinear

interior-point approach where the major differences from Algorithm 1 are an adaptive barrier

update strategy that nests a procedure similar to Steps 11 to 18 where the Newton search

direction is determined from a single solution of the primal-dual equations as opposed to

Step 13 shown here, which solves the QP to optimality (see [42] for the details). For the

particular algorithm shown, initially, a complete specification of the scenario realization set,

initial primal (and possibly dual) variables and termination tolerances is provided. Note

that an initial simulation of the embedded DAE can be used to determine initial feasible

guesses for the primal shooting variables xj,i and zj,i for all j and i, given uj,i, di and p. The

dual variables can be initialized at zero (cold start) or warm started if a previous similar

NLP solution is available. Following this, an iterative quadratic programming procedure is

performed whereby: (1) objective, constraint and derivative functions are evaluated; (2)

termination criteria are checked (and possibly termination signaled); (3) a search direction

is determined from a quadratic program (using either an active-set or primal-dual interior-

point method) (this step is often preceded by a dimensionality reduction of the original

QP; additionally, infeasible QP’s are handled in a so-called feasibility restoration phase); (4)

a globalization procedure is performed to determine the step size (we note a line search,

but a trust-region approach within the QP itself is possible); and (5) primal and dual

variables are updated and objective, constraint and derivative functions are re-evaluated.

The time-dominant aspect of the algorithm occurs with the embedded implicit function

evaluations denoted by DAE_SOLVE, which we handle specifically within our implementation

by Algorithm 2. Additionally, note that during the step size globalization procedure, re-

evaluation of objective and constraint functions is required, and for the multiple-shooting

continuity constraints, sensitivity generation is deactivated within DAE_SOLVE. We remark

that an algorithm for the procedure DSOA_SOLVE follows in a similar manner to Algorithm

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 79

2, whereby a second-order forward-over-adjoint sensitivity analysis is performed for each

shooting interval j and scenario i, which is specifically handled by the SUNDIALS integration

solvers.

Algorithm 1 Multiperiod gradient-based nonlinear program (NLP) solution approach
with embedded differential-algebraic equations (DAE). QP, quadratic programming.

Input: initial primal and dual variable guesses and tolerances

1: generate scenario realizations: θ := θi ∈ [θL,θU] ∀ i = 1, . . . , ns

2: define initial guesses for primal, x[0] := {{x[0]
j,i, z

[0]
j,i,u

[0]
j,i}j,i, d

[0]
i , p[0]}, and dual variables ν[0]

3: provide optimality (tolkkt) and feasibility (tolfeas) tolerances

Output: primal/dual solution x∗, ν∗ to a local minimum of the NLP satisfying tolerances

4: procedure {x∗,ν∗} ← NLP_SOLVE(x[0], ν[0], tol{kkt,feas})

5: k ← 0

6: initial eval of objective/constraints and 1st derivatives (gradient, Jacobian)

7: J(x[0]), ∇xJ(x[0]) . explicit function eval ∀ j, i

8: {cj,i(x[0]), ∇xcj,i(x
[0])}j,i ← DAE_SOLVE(x[0],θ) . implicit function eval ∀ j, i

9: {qj,i(x[0]), ∇xqj,i(x
[0])}j,i . explicit function eval ∀ j, i

10: initial Lagrangian Hessian approximation (or eval exactly via DSOA_SOLVE(x[0],ν
[0]
c ,θ))

11: repeat until termination criteria satisfied

12: check KKT conditions (and other termination criteria)

13: compute search direction of primal/dual variables (d[k]
x , d

[k]
ν) via QP solver

14: compute step size α[k] via a line search (requires objective/constraint eval)

15:

perform step:
x[k] ← x[k] + α[k]d[k]

x

ν[k] ← ν[k] + α[k]d[k]
ν

16: k ← k + 1

17: re-evaluate function derivatives ∀ j, i (used to construct the next QP)

{∇xcj,i(x
[k])}j,i ← DAE_SOLVE(x[k],θ)

{∇xqj,i(x
[k])}j,i

18: update Hessian approximately (or eval exactly via DSOA_SOLVE(x[k],ν
[k]
c ,θ))

19: end

20: end procedure

80 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Algorithm 2 Parallel multiperiod DAE and first-order sensitivity function evaluation.

Input: state initial conditions, control parameters and invariant model parameters

1: specified scenario realizations θ := {θi}ns
i=1

2: NLP variables x := {{xj,i, zj,i,uj,i}j,i, {di}i,p}

3: provide relative (tolrel) and absolute (tolabs) integration tolerances for DAE solution

Output: differential state solution xi(tj+1), xyi (tj+1) := ∂xi(tj+1)/∂{wi,di,p} ∀ i, j

4: procedure {xi(tj+1),xyi (tj+1)} ← DAE_SOLVE(x, θ, tol{rel,abs}) ∀ i, j

5: for i := 1 to ns do . in parallel using OpenMP for k = 1, . . . , n · ns tasks

6: for j := 0 to n− 1 do

7: set initial differential and algebraic DAE variables:

xi(tj)← xj,i, ẋi(tj)← ODERHS_EVAL

zi(tj)← zj,i, żi(tj)← 0nz

8: set initial differential DAE sensitivity variables:

xyi (tj)← [Inx |0nx×(ny−nx)]

żyi (tj)← 0nz×ny

9: compute initial differential and algebraic DAE sensitivity variables:

{ẋyi (tj), zyi (tj)} ← LINEAR_SYSTEM_SOLVE

10: solve DAE and 1st order sensitivity system

{xi(tj+1), xyi (tj+1)}← SUNDIALS_DAE_SOLVER

11: end for

12: end for

13: end procedure

Algorithm 2 computes the solution of the discretized relaxed embedded DAE (both state and

first-order sensitivity variables over each interval and scenario), which is used to evaluate the

continuity constraints and associated Jacobian at each major iteration of the NLP algorithm.

Note that using the relaxed DAE approach, the initial conditions of the differential and

algebraic states are by formulation always consistent at tj . For each shooting node and

scenario realization, the embedded DAE is initialized in Step 7 of Algorithm 2 by the NLP

parameters; next, in Step 8, the initial values of the differential sensitivity variables (in matrix

form) are set to an augmented identity matrix. The next step is to solve the DAE and first-

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 81

order sensitivity system using an appropriate DAE solver with efficient methods for handling

the sensitivity equation solution. The last step (not shown) is to construct the continuity

equations and Jacobian, the latter of which is a matrix with appropriately positioned blocks

of sensitivity variables at tj+1. Several remarks are warranted with respect to Algorithm 2:

(1) when using an implicit integration routine, such as IDAS from SUNDIALS, one needs to

additionally provide initial values for the time-derivatives of the differential states ẋi(tj), the

initial time-derivatives of the differential sensitivity variables ẋyi (tj) and the initial algebraic

sensitivity variables zyi (tj); (2) the differential time-derivatives are determined from a single

evaluation of the ODE portion of the DAE; and (3) the differential time-derivative sensitivity

variables and algebraic sensitivity variables are computed from a linear solve of the initial

sensitivity equations (note that this requires a single initial factorization and several back

solves using multiple right-hand-side vectors for a linear system given by A X = B). We

elaborate on this last point. For example, given that variables xi(tj), zi(tj), and xyi (tj) are

known at tj , we can rearrange the initial first-order sensitivity equation system as,

Inx −f zd (tj)

0nz×nx f za (tj)

ẋyi (tj)

zyi (tj)

 =

 fxd (tj) xyi (tj) + fyd (tj)

−fxa (tj) xyi (tj)− fya (tj) +∇yϑ(γj,i, tj)

 (3.19)

and solve for the initial values of ẋyi (tj) and zyi (tj) (in matrix form).

The particular details of the underlying ODE/DAE or NLP solution used in this chapter can

be found in the previously noted references. However, we remark on the following: both

first- and second-order sensitivity analysis is handled directly by the SUNDIALS integrators,

and all the user needs is an appropriate AD tool to form Equations 3.9 and 3.16 to 3.18; for

our implementation, we used the tape-based features of ADOLC for all serial computation

and the tapeless forward differentiation features when evaluation is needed within parallel

OpenMP regions of the code (we refer readers to the ADOLC manual for the particular details

of tapeless and tape-based operator overloaded AD). We further note that all code and

third party libraries used for our example problems were compiled using gcc-4.7 (with

82 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

openmp-3.1) and run using 64-bit Linux. The hardware was an HP Proliant computing server

configured with four sockets using AMD Opteron 6386SE series chips (16 cores per chip)

at 2.8 GHz, which provide a total of 64 available cores (processors/threads). Furthermore,

an appropriate amount of memory was allocated/utilized to suit the requirements of the

program.

3.4 Example Problems

We demonstrate our proposed parallel multiperiod dynamic optimization approach using a

batch reactor problem and a large-scale air separation problem. The objective is to assess the

computational performance (resource utilization efficiency and scalability) of the proposed

method when the number of scenarios and shooting intervals (embedded integration tasks),

model size and available computing processors are increased.

3.4.1 Example 1: Batch Reactor Problem

The initial portion of this example is performed with a parallel implementation using the

ODE integration solver CVODES and NLP solver SNOPT. Subsequently, further comparison is

made using second-order sensitivity analysis for generating the Lagrangian Hessian when

using the NLP solver IPOPT with the exact Hessian versus an approximate limited memory

quasi-Newton update, which only requires first-order sensitivity information. For this last

portion, we currently only report serial solution times of the implementation.

The example considered is adapted from [14] and involves a batch reactor problem in a

purely ODE form that follows a first order competing reaction scheme A → B and A → C,

where B is the desired product and the kinetic parameters are assumed to be uncertain.

Similar batch reactor models can be found in [43] and in Example 8.4 from [44]. The

objective is to operate the reactor for an indeterminate duration (i.e., design variable),

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 83

such that a maximum profit is achieved. The objective function comprises a revenue term

proportional to the product conversion xB and an operating cost dependent on the duration

of operation tf . The optimization problem is defined according to formulation E.3.1,

min
tf ,ui(τ) ∀ i

J := c1 t
c2
f −

∑ns
i=1 wi c0 xB,i(1)

st : ẋA,i(τ) = −[θ1,i ui(τ)θ2,i + ui(τ)]xA,i(τ) tf

ẋB,i(τ) = θ1,i ui(τ)xA,i(τ) tf

x{A,B},i(0) = x{A0,B0}

x{A,B},i(τ) ∈ [0, 1]

ui(τ) ∈ [0, 5] , tf ∈ [0.5, 1.25] , τ ∈ [0, 1], ∀ i = 1, . . . , ns

θ1 ∈ (0.45, 0.55), θ2 ∈ (2.15, 2.25)

(E.3.1)

The initial state conditions are taken as xA0 = 1, xB0 = 0 ∀ i, where we use a normalized

time horizon such that the end-time tf is taken as a design parameter. The cost/objective

coefficients are set as c0 = 700, c1 = 50, c2 = 2; and the weights are set as wi = 1/ns.

The parameterized control profile is taken to be piecewise constant and initial guesses for

the polynomial coefficients are set to 1.0 for all scenarios and shooting intervals. For this

example we kept the number of shooting intervals constant at n = 25 and with a uniform

size over the time horizon. The uncertain model parameters (θ1, θ2) were determined by

sampling uniformly between the defined bounds.

Figure 3.2 depicts a base line solution to formulation E.3.1 using a single processor with

increasing scenario realizations. For the input and state solution trajectories in Figure 3.2 (a),

the solid input and state trajectory lines represent the nominal solution, while the shaded

bands represent an envelope of possible solutions generated via discrete realizations of

the uncertain parameter values. Interesting aspects to note include: (1) as the number of

scenarios is increased, both the optimal objective value (defined here as the ratio of the

multiperiod objective value to the nominal objective value, J/J̄) and parametric degree of

84 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

freedom, tf , converge to a point (or rather confidence interval) which can be considered close

to the true solution of the original infinitely dimensional stochastic program; (2) considering

ns = 40 as the base line, we see a ×2.26, ×4.20, ×8.81 increase in total computation time

per major SQP iteration for ns = {80, 160, 320}, respectively (i.e., almost a linear increase in

computation time as scenario realizations are added). Based on Figure 3.2 (a) an appropriate

number of scenarios to use would exceed 80, where the profiles for J/J̄ and tf level off.

0
2
4
6

u
(τ
)

0.77

0.78

0.79

t f

0 0.5 1
0

0.5

1

τ = t/tf

x
{A

,B
}(
τ
)

0 10 20

1

1.02

1.04

√
ns

J
/J̄

(a)
40 80 160 320

0

1

2

3

ns scenarios

w
al

lc
lo

ck
(s

ec
/i

te
r.) DAE time

NLP time

N = 1

(b)

Figure 3.2: Example 1 – (a) control input & state trajectories (nominal solution represented
by the solid line) and (b) base line DAE & NLP solution times for increasing ns

Table 3.1: Example 1 – parallel computation results comparing increasing ns

Total program solution time (sec)

ns m? #vars #cons #iter† J/100‡ tf N = 1 N = 4 N = 8 N = 16 N = 32

1 25 78 53 24/60 −1.4911 0.7683 0.389 0.251 0.235 0.201 –

40 1000 3081 2081 40/1239 −1.5235 0.7785 17.48 8.87 7.01 6.26 6.24

80 2000 6161 4161 46/2244 −1.5463 0.7868 45.41 21.61 16.88 15.20 14.87

160 4000 12321 8321 49/4395 −1.5340 0.7823 90.00 42.37 34.74 30.87 30.35

320 8000 24641 16641 49/8718 −1.5200 0.7772 188.69 82.60 65.10 56.74 55.67

?m = n · ns, total no. integration tasks, where n = 25; † SNOPT solver w/ major/minor iterations;

‡ NLP optimality/feasibility tol. = {1× 10−6, 1× 10−8}, DAE relative/absolute tol. = {1× 10−6, 1× 10−8}

Parallel solution times for the total program are reported in Table 3.1 for ns = {40, 80, 160, 320}

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 85

(number of scenario realizations) and N = {4, 8, 16, 32} (number of processors/threads).

Additionally, the serial solution time is reported for each scenario realization level and the

time required for the nominal dynamic optimization solution (i.e., ns = 1). We further

remark that the parallel solution times are an average of several independent experiments;

the NLP problem dimension is represented by the total number of variables #vars and

equality/inequality constraints #cons; and the number of NLP iterations until termination is

given by #iter. Considering ns = 80 as the ideal number of scenarios to use, we see a ×116

total computation increase from the nominal solution and if 16 processors are used (i.e.,

the maximum advisable N for the given problem size – see discussion below) this number

drops by 66% indicating a ×39 increase from the nominal serial solution. Given that we

are only parallelizing the discretized implicit DAE integration tasks, a 66% improvement is

a promising result. A breakdown of the specific computation performance using speedup

S = Tserial/Tparallel, where Tserial and Tparallel represent serial and parallel program run

times, respectively, and efficiency E = S/N is sketched in Figure 3.3. Note, for our particu-

lar case we consider each metric to be based on the time to evaluate objective/constraint

functionals and derivatives (denoted as DAE time) and exclude the serial in-solver time

related to the matrix computations within the NLP solver (denoted as NLP time). From

Figure 3.3 (a), the parallel performance in terms of speedup is quite good up to about 8

processors/threads, after which a significant deviation from ideal speedup is observed. This

undesirable behavior using N ≥ 16, for our chosen problem size of m = n · ns, can be

explained using the laws of Amdahl and Gustafson [45]. Amdahl’s law gives us an indication

of the possible scalability or maximum speedup for a fixed problem size, while Gustafson’s

law can be used to understand the influence of problem size on scalability. Considering first

Amdahl’s law, the parallel time can be approximated as Tparallel := f Tserial + (1− f)Tserial/N,

where f represents an inherent serial fraction of the overall computation, which results in

the speedup expression S(N) = (f + (1 − f)/N)−1 and as N → ∞ the maximum possible

speedup is S(∞) = f −1. So for our particular example, if the time to evaluate the NLP

objective/constraint functionals has an inherent serial portion of 10% then we would achieve

86 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

a maximum possible speedup of 10. Fortunately, if we further consider the influence of

problem size m, whereby the serial fraction of the program is now considered a function

of problem size f (m), it can be shown using Gustafson’s law that speedup can be given by

S(m,N) = f (m) + N(1 − f (m)), where f (m) := a(m)/(a(m) + b(m)), and a(m) and b(m)

represent the inherent serial and parallel portions, respectively. Thus, if we are able better

load the processors with more work such that the inherent serial portion diminishes relative

to each parallel portion (b(m) � a(m)) then the fraction f (m) decreases with increasing

m and as m→∞ the speedup will approach N. This concept can be better seen using the

log-p model where Tparallel := Tserial/N + log2(N) and Tserial ∝ m (see, pg. 79 of [45]). The

speedup expression can be derived as S(m,N) = N/(1 + (N/m) log2(N)) and if m = M N

where M is the work per processor, then the speedup (and efficiency) can be controlled by

limiting the influence of the log2(N) term by increasing M . Additionally, to ensure a uniform

M on each processor one needs to properly balance and schedule the distribution of work.

For example, in our case study we found that if the computation time on each processor for

a chunk size of M is relatively constant between processors then a so-called OpenMP static

scheduling policy is adequate, while if the computation time differs a dynamic (round-robin)

policy is preferred which is able to better balance the computation load between processors.

To achieve good scalability, one often tries keep the efficiency fixed by increasing the problem

size (or rather work per process, M) at the same rate as the number of processors/threads

N. If this is possible then the algorithm can be considered weakly scalable; on the other

hand, if one is able to keep the efficiency constant for a fixed problem size as N increases

then the algorithm is considered strongly scalable. Based on these definitions of scalability,

our particular parallel implementation is not strongly scalable; however there is enough

evidence to suggest weak scalability. For example, from Figure 3.3 (d) the “DAE time” (i.e.,

out-of-solver NLP function evaluation time of which the majority represents the parallelized

DAE solution) remains relatively constant for a work load of M = 250 integration tasks per

processor up to about N = 16 after which a slight increase in wall clock time is observed (i.e.,

decrease in efficiency) which can be attributed to a greater influence of parallel computation

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 87

overhead (i.e., the previously noted log2(N) term) relative to the chosen computation load

M .

2 4 8 16 32

2
4
8

16

32

N processors

Sp
ee

du
p

(S
)

Effect of increasing N, ns

linear speedup
ns = 80
ns = 320

0 0.2 0.4 0.6 0.8 1

1

2

4

8

16

32

wall clock (sec/iter.)

N
pr

oc
es

so
rs

Effect of increasing N with ns = 80

DAE time

NLP time

2 4 8 16 32
0.2

0.4

0.6

0.8

1

N processors

Ef
fic

ie
nc

y
(E

)

40/4 80/8 160/16 320/32
0

0.5

1

1.5

ns/N

w
al

lc
lo

ck
(s

ec
/i

te
r.)

Effect of increasing ns/N ratio

Total time
NLP time
DAE time

ns = 80

(a) (b)

(d)(c)

Figure 3.3: Example 1 – speedup, efficiency and wall clock times for increasing ns

The next aspect of the study considers assessing the use of forward-over-adjoint second-order

sensitivity analysis in order to form a representation of the Lagrangian Hessian. Note, that

such a procedure is quite expensive given the numerous forward and reverse sweeps of

the integrator for all shooting intervals and scenarios, and the objective here is to provide

some insight on the additional cost when compared to a quasi-Newton approximation

scheme. For demonstration purposes we use the interior-point nonlinear programming

solver IPOPT-3.11.9 with default options and MA27, MC19 for the linear solver and scaling,

respectively. Results comparing the limited memory BFGS approximation to the sensitivity

approach are reported in Table 3.2, where we highlight the total number of primal-dual

IPM iterations, total computation time, time spent in the NLP solver, total time to compute

88 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

the continuity constraint Jacobian using forward sensitivity analysis and additional point

constraint 1st derivatives using AD which we denote overall as FSA, and total time to compute

the lower triangular portion of the Lagrangian Hessian (Equation 3.11) via second-order

sensitivity analysis (including all AD computations) which we denote as DSOA. From Table

3.2, comparing columns qn and ex for quasi-Newton and exact Hessian, respectively, we make

the following observations: the DSOA approach reduces the overall number of primal-dual

iterations (as one would expect); the total computation time increases on average by about

×25 over the quasi-Newton approach where about 98% of the total computation is spent

generating the Lagrangian Hessian. From these results it is quite clear that providing the

Lagrangian Hessian of our multiperiod NLP formulation by means of second-order sensitivity

analysis is very expensive. From an implementation perspective, the computation in each

shooting interval could be parallelized; however, this is unlikely to lead to a significant

enough decrease in time to justify the use of second-order sensitivities as implemented in

our study. An alternative approach proposed by Hannemann and Marquardt [46] is to use

a so-called composite or aggregated approach which only requires a single second-order

sensitivity computation encompassing all shooting intervals. Such a technique has shown

to reduce the Hessian computation time considerably when used in the context of implicit

Runge-Kutta integration techniques. Given our adherence to the SUNDIALS solvers in this

work, we have not explored this new technique, but it would be the next logical step.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 89

Table 3.2: Example 1 – serial computation results comparing Hessian generation approach

#iter Total (sec) NLP (sec) FSA (sec) DSOA (sec)

ns J/100† qn ex qn ex qn ex qn ex ex

1 −1.4911 52 48 0.793 22.96 0.311 0.111 0.482 0.297 22.56

40 −1.5235 70 66 27.81 632.42 2.277 0.591 25.54 12.27 619.56

80 −1.5463 65 64 48.61 1218.46 3.697 1.060 44.91 23.57 1193.82

160 −1.5340 71 65 107.3 2204.61 8.023 1.920 99.32 47.12 2155.57

320 −1.5200 49 44 151.2 4397.64 11.70 3.962 139.5 92.78 4300.90

† IPOPT optimality tolerance = 1× 10−6

3.4.2 Example 2: Air Separation Problem

This next example explores further the influence processor loading on algorithm scalability

and additionally the influence of DAE model size. A large-scale DAE air separation model is

used which considers the separation of nitrogen from air. The model used here was adapted

from Cao [47], and a simplified process schematic is shown in Figure 3.4.

HPC

IRC

PHX

EXP

COM

AIR

LN2

GN2
Waste

Drain

F1(t)

VN2(t)

Figure 3.4: Example 2 – air separation process schematic

90 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

As a first step, air enters from the atmosphere and is compressed using a multi-staged

compressor (COM); impurities are then removed using several adsorption units; high pressure

purified air is then cooled in a multi-path heat exchanger (PHX) using the returning gas

product (GN2) and waste streams from a high pressure distillation column (HPC); the cooled

air stream is then split where a portion goes through a turbine (EXP) to promote further

cooling before entering the bottom of the distillation column, while the other stream goes

directly to the distillation column. The air entering the column is converted into high purity

gaseous nitrogen which exits at the top and crude liquid oxygen which accumulates at the

bottom. A portion of the high purity nitrogen gas is drawn off as product (VN2) while the

remainder is fed to an integrated reboiler/condenser (IRC) to exchange heat with a crude

oxygen stream which is drawn from the bottom of the column. The heat exchange converts

gaseous nitrogen to liquid which is then refluxed back to the top of the column and optionally

drawn off as liquid nitrogen product (LN2).

The portion of the process we focus on in this study is the distillation column (HPC) and

integrated reboiler/condenser (IRC) units, with the air feed to the bottom of the distillation

column (F1) as the input stream. A detailed listing of the variables and equations used in our

particular model can be found in Section 3.6 with further details in [47]. The optimization

formulation considered seeks to determine a robust control profile to transition from one

steady-state to another while satisfying path inequality constraints on product composition

(defined in the form of product impurity yO2) and tray flooding (defined implicitly by

ensuring the vapor velocity νnt is below the flooding velocity ν̄nt on the critical tray of nt

which represents the top tray of the column) all while under the influence of uncertainty

within key model parameters. The formulation can be defined as a continuous multiperiod

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 91

dynamic optimization problem according to the following equations,

min
u(t)

J :=
∑ns

i=1 wi
∫ tf
t0
‖yi(t)− ysp‖2 + ‖∆u(t)‖2 dt

st : DAE model (125 ODEs, 329 AEs)

xi(t0)− xss = 0 (initial steady-state)

V sp
N2 − VN2,i(tf) ≤ 0 (min. production rate at tf)

yO2,i(t)− ymax
O2 ≤ 0 (max. product impurity)

νnt,i(t)− ν̄nt,i(t) ≤ 0 (avoid tray flooding)

u(t) ∈ [uL,uU] , ∀ t ∈ [t0, tf] , i = 1, . . . , ns

θ ∈ [θL,θU]

(E.3.2)

where y(t) := VN2(t) and ysp := V sp
N2 are the measured output and corresponding final

desired set-point for the nitrogen production rate; u(t) := F1(t) is the manipulated input

feed rate of air to the first tray (i.e., column bottom), which we penalize in the objective

function according to the rate of change ∆u(t) := du(t)/dt; θ := [η, ∆P]> is a vector of

uncertain model parameters, which we select a priori as the tray efficiency η ∈ [0.4, 0.6] and

pressure drop between trays ∆P ∈ [0.45, 0.55] kPa. Note the stated DAE model dimension of

nx = 125 differential and nz = 329 algebraic variables/equations excludes all subexpression

algebraic variables/equations; thus, the algebraic portion of the model is in fact quite larger

than it might appear. Select output and state solution trajectories of formulation E.3.2 are

plotted in Figure 3.5 for variables: F̄1(t) ≡ F1(t)/F1(t0) and V̄N2(t) ≡ VN2(t)/VN2(t0), and

path constrained variables: yO2(t) and α(t), where α(t) := νnt(t)/ν̄nt(t) ≤ 1.

92 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

1

1.2

F̄
1

1
1.1
1.2
1.3

V̄
N
2

0 1 2

0

1

2

Time (hrs)

y O
2

(p
pm

)

0 1 2
0.8

0.9

1

Time (hrs)

α

(a)
20 40 80

0

2

4

×103

ns scenarios

w
al

lc
lo

ck
(s

ec
/i

te
r.) DAE time

NLP time

N = 2

(b)

Figure 3.5: Example 2 – (a) robust control & select output trajectories (nominal solution
represented by the solid line) and (b) base line DAE & NLP solution times for increasing ns

A piecewise linear input control profile was selected and the rate of change of this profile was

penalized in the optimization objective function. Note, that in order to prevent unnecessary

chattering of the control input in the latter portion of the time horizon, the profile uses an

evenly distributed parameterization of n− 1 shooting intervals within the first 0.5 hrs of the

time horizon and a final single interval within the remaining 1.5 hrs. From Figure 3.5, we

see that the production rate of nitrogen vapor V̄N2(t) and the vapor velocity ratio α(t) both

increase in proportion to the feed air input F̄1(t) (as one would logically expect); however,

due to the flooding constraint there is a clear limitation on the rate of production increase

and the influence of parametric uncertainty within the model directly affects the onset of

constraint activation. Ultimately we are able to establish an optimal control profile that

is robust to the prescribed uncertainties within the model and adherent to the constraints

within the formulation. In order to establish a performance base line, we consider a fixed

number of shooting intervals, three increasing scenario sizes and two processors. For shooting

intervals n = 6 and scenarios ns = {20, 40, 80}, the average total solution time per major

SQP iteration was approximately 1.37 × 103 sec (22.7 min), 3.22 × 103 sec (53.6 min) and

8.12×103 sec (135.4 min), respectively; which are about ×15.53, ×36.68, and ×92.51 greater

than the nominal solution time of 1.46 min. The corresponding ratio of time spent in the NLP

solver versus the DAE solver was 0.14, 0.30 and 0.88, respectively, which indicates that as the

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 93

problem size increases the computational burden shifts dramatically from the DAE solver to

the in-solver aspects of the NLP solver (e.g., active-set determination, matrix factorizations,

matrix-matrix/matrix-vector multiplications, etc.)

Table 3.3: Example 2 – parallel computation results comparing increasing n and ns

Total solution time (sec)/1.0× 105

n ns m #vars #cons #iter J/10† N = 2 N = 16 N = 32 N = 48 N = 64

6 1 6 3184 3194 9/1308 1.0159 0.0079 – – – –

20 120 63680 63974 14/42704 1.0134 0.1908 0.0535 0.0420 0.0426 0.0501

40 240 127360 127955 16/85672 1.0181 0.5146 0.1785 0.1589 0.1596 0.1688

80 480 254720 255915 17/170391 1.0156 1.3808 0.7166 0.6669 0.6720 0.6882

12 1 12 5914 5930 12/3221 1.0141 0.0135 – – – –

20 240 118280 118808 18/81273 1.0114 0.7163 0.1955 0.1558 0.1491 0.1474

40 480 236560 237628 11/162037 1.0159 0.9167 0.5179 0.4891 0.4732 0.4714

80 960 473120 475268 17/322952 1.0129 7.7468 3.2047 2.8156 2.7239 2.6748

† NLP optimality/feasibility tol. = {1× 10−4, 1× 10−6}, DAE relative/absolute tol. = {1× 10−3, 1× 10−4}

With the base line solution properties established, we now turn to assessing the potential

computation speedup via our parallel multiperiod approach. Table 3.3 lists the optimization

problem size and solution results, in terms of the number of SQP iterations and total wall

clock times, for an incremental number of integration tasks m = n · ns (where n = {6, 12}

and ns = {20, 40, 80}) using an increasing number of computing processors. Considering first

a problem with n = 6 and increasing scenario realizations (ns = {20, 40, 80}), we observed

good scaling properties using at most N ≤ 32. For example, using N = 16 we observe

an overall average computation speedup of ×3.57, ×2.88, ×1.93 for each ns, respectively;

and for N = 32, ×4.54, ×3.24, ×2.07; where the decrease in rate of speedup from 16 to 32

processors is due to the increasing serial portion of the NLP solver. If we remove this large

serial NLP portion, it can be confirmed that the parallel implementation of the embedded

94 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

DAE shooting intervals can be done fairly efficiently. For example, Figure 3.6 (a) provides

speedup trends for N from 2 to 64 at a fixed amount of work (m) based on the so-called

“DAE time” as defined in the previous case study. It is evident that good strong scaling

properties are observed up to about 32 processors, after which a more sharply decreasing

rate is observed which can be attributed in part to an insufficient work load per processor M .

Figure 3.6 (b) compares the amount of time, per major SQP iteration, spent in the DAE solver

versus the NLP solver. Considering a problem size of m = 480 and imposing an increase in

processors from 2 to 64, we see a significant reduction in DAE solution time relative the serial

NLP solution time. Furthermore, from Figure 3.6 (c), if we increase the number of processors

in proportion to the problem size m the DAE solution time remains relatively constant which

indicates reasonably good weak-scaling properties. For the case of n = 12 (see, Figure 3.6

(d)–(e)), where we effectively double the NLP size, better speedup with increasing number

of processors is observed, which indicates the expected result that as we increase the work

per processor (M) we also reduce the relative parallel overhead and ultimately see better

strong scaling properties. However, for the particular active-set SQP solver used in this study,

we quickly run into significant serial computation overhead within the QP subproblems (i.e.,

a sharp increase in the number of QP iterates).

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 95

2 16 32 48 64
2

16

32

48

64

N processors

Sp
ee

du
p

(N
=

2
ba

se
)

Effect of increasing N, ns

linear speedup
ns = 20

ns = 40

ns = 80

0 2 4 6 8

×103

2
4
8
16
32
48
64

wall clock (sec/iter.)

N
pr

oc
es

so
rs

Effect of increasing N with ns = 80

DAE time
NLP time

20/16 40/32 80/64
0

2

4

×103

ns/N

w
al

lc
lo

ck
(s

ec
/i

te
r.)

Effect of increasing ns/N ratio

Total time
NLP time
DAE time

2 16 32 48 64
2

16

32

48

64

N processors

Sp
ee

du
p

(S
)

0 20 40

×103

2
4
8
16
32
48
64

wall clock (sec/iter.)

N
pr

oc
es

so
rs

20/16 40/32 80/64

0

5

10

15

×103

ns/N

w
al

lc
lo

ck
(s

ec
/i

te
r.)

ns = 80

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Example 2 – speedup and wall clock times for increasing N and ns, where n = 6
fixed for (a)–(c) and n = 12 fixed for (d)–(f)

Table 3.4: Example 2 – parallel computation results comparing different DAE dimensions

Total solution time (sec)/1.0× 105

nx/nz
∗ m† #vars #cons #iter J/10 N = 2 N = 16 N = 32 N = 48 N = 64

23/57 6 566 568 19/184 0.8559 0.0006 – – – –

480 45280 45915 22/16326 0.8560 0.0824 0.0230 0.0247 0.0368 0.0416

59/153 6 1490 1492 12/616 1.0111 0.0011 – – – –

480 119200 119835 18/38928 1.0110 0.2185 0.0896 0.0870 0.0881 0.1052

125/329 6 3184 3194 10/1294 1.0159 0.0079 – – – –

480 254720 255915 17/170391 1.0156 1.3808 0.7166 0.6669 0.6720 0.6882

∗ dimension based on number of distillation trays nt = {5, 17, 39};
† problem size based on n = 6 and ns = {1, 80}

Finally, we consider the aspect of increasing the embedded DAE size and provide a relative

comparison on the influence of DAE size on the overall parallel scalability of the implementa-

96 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

tion. Table 3.4 compares model sizes of nx/nz = {23/57, 59/153, 125/329} where nx and

nz represent the number of differential and algebraic state variables, respectively, that are

a result of increasing the number of distillation column trays according to nt = {5, 17, 39}.

The base line total solution time per SQP iteration for each model size using ns = 80 sce-

narios was 6.24 min, 20.23 min and 135.37 min, respectively, which are over 100 times the

nominal solution time. Through parallelization these base line times can be reduced by about

×3.6, ×2.4, and ×1.9, respectively; where again we observe that as the serial NLP portion

grows the potential speedup diminishes. Figure 3.7 reveals more closely the speedup and

efficiency excluding the influence of the serial in-solver NLP contribution. As the model

size is increased (i.e., more expensive integration tasks) a more pronounced improvement

is observed when compared to increasing the number of integration tasks per processor

via discretization alone (i.e., increasing M via increasing ns or n). In other words, if one

compares the delta in speedup from nx/nz = 59/153 and nx/nz = 125/329 in Figure 3.7 (a)

to the delta in speedup from ns = 40 and ns = 80 in Figure 3.6 (a) then a larger deviation

results from increasing the model size versus the discretization refinement. This result is

particularly positive and highlights that one is able to more easily achieve better parallel

scalability using larger embedded DAE models versus creating more independent integration

tasks.

2 16 32 48 64
2

16

32

48

64

N processors

Sp
ee

du
p

(S
)

linear speedup

nx/nz = 23/57

nx/nz = 59/153

nx/nz = 125/329

2 16 32 48 64
0

0.5

1

N processors

Ef
fic

ie
nc

y
(E

)

(a) (b)

Figure 3.7: Example 2 – speedup and efficiency for increasing DAE size nx/nz based on
nt = {5, 17, 39}, with n = 6, ns = 80 fixed

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 97

3.5 Concluding Remarks

In this chapter we have presented a parallel computing approach for large-scale dynamic

optimization under uncertainty that targets the decomposition of the embedded differential-

algebraic equation model. A combined multiperiod multiple-shooting approach was used

to discretize the DAE optimization formulation to yield a multiperiod NLP formulation with

embedded implicit DAE functionals within the constraints. The DAE model and sensitivity

equations corresponding to each shooting interval and scenario constitute independent

integration tasks, well-suited for parallel processing. Our multiperiod approach was applied

to a large-scale DAE air separation model comprising up to 125 ODEs and 329 algebraic

equations for the purpose of obtaining a robust optimal control profile subject to uncertainty

in the model parameters. Results indicated fairly good parallel scalability using a parallel

OpenMP implementation of the DAE solution; however, the extent of scalability depends

largely on the amount of work per processor and on the ability to effectively balance the

work load between processors. In this chapter we were able to demonstrate the benefits

of parallelizing the DAE solution portion of the multiple-shooting algorithm; however, as

the NLP size grows with scenario realizations, the computation bottleneck shifts to the NLP

solver. While it is possible to alleviate some of the computation burden through the use of a

sparse interior-point NLP solver (as opposed to an active-set solver, primarily used in this

study), a better approach, and the subject for future work, would be to take advantage of the

multiperiod block structure of the NLP by exploiting the partial separability of the system

and tailoring the linear algebra within the algorithm (possibly through an interior-point QP

solution strategy within an overall SQP approach) to suit a given structure which would

speed up the algebraic computations and reduce the overall memory consumption.

98 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

3.6 Air Separation Model Equations

The air separation system considered in this study is limited to just the distillation column

model. The column is modeled using several component sub-models; (1) column sump, (2)

tray and (3) condenser and reboiler sides of a combined integrated reboiler-condenser. The

combination of these components represents a DAE system comprising material and energy

balances, composition summation equations, a tray efficiency equation, a tray hydraulic

equation, and an equation of state to determine the vapor phase molar volume. The

model represents a continuous tray-by-tray equilibrium-based distillation system and the

formulation utilized here is an index-1 DAE, which we manually reduced from an initially

index-2 formulation. The notation used in the model presentation is similar to that used

in many standard separation/thermodynamic textbooks; however, for a description of the

specific variables and equations one can refer to [47].

Sump model (n = 0):

Ṁ0 − (L1 − L0) = 0 (3.20)

M0 ẋi,0 − L1(xi,1 − xi,0) = 0 ∀ i = 2, 3 (3.21)∑3
i=1 xi,0 − 1 = 0 (3.22)

L0 −M0/τ0 = 0 (3.23)

Tray model (n = 1, . . . , nt):

Ṁn − (Ln+1 + Vn−1 − (Ln + Vn) + Fn) = 0 ∀ n = 1, . . . , nt (3.24)

Mn ẋi,n − (Ln+1(xi,n+1 − xi,n) + Vn−1(yi,n−1 − xi,n)

−Vn(yi,n − xi,n) + Fn(zi,n − xi,n)) = 0

∀ i = 2, 3 , n = 1, . . . , nt (3.25)

Mn Ĥ
l
n − (Ln+1(H l

n+1 −H l
n) + Vn−1(Hv

n−1 −H l
n)

−Vn(Hv
n −H l

n) + Fn(Hz
n −H l

n)) = 0

∀ n = 1, . . . , nt (3.26)

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 99

∑3
i=1 xi,n − 1 = 0 ∀ n = 1, . . . , nt (3.27)∑3
i=1 yi,n − 1 = 0 ∀ n = 1, . . . , nt (3.28)

yi,1 −Ki,1 xi,1 = 0 ∀ i = 1, 2, 3 (3.29)

yi,n − (yi,n−1 + η(Ki,nxi,n − yi,n)) = 0 ∀ i = 1, 2, 3 , n = 2, . . . , nt (3.30)

Mn/(ρnAtray)− (hweir + 1.41(Ln/(
√
g ρn lweir))

2/3) = 0 ∀ n = 1, . . . , nt (3.31)

Pn −
(

RTn
vn − bn

− an
(vn − 0.414 bn)(vn + 2.414 bn)

)
= 0 ∀ n = 1, . . . , nt (3.32)

IRC condenser-side model (n = nt + 1):

Vnt(1− rdraw)− Lnt+1 = 0 (3.33)

Lnt+1 − Lreflux − LN2 = 0 (3.34)

Vnt(1− rdraw)Hv
nt − Lnt+1H

l
nt+1 −Q = 0 (3.35)

xi,nt+1 − yi,nt = 0 ∀ i = 1, 2, 3 (3.36)

Pnt+1 −
∑3

i=1 xi,nt+1 P
∗
i,nt+1 = 0 (3.37)

IRC reboiler-side model (n = nt + 2):

Ṁnt+2 − (L0 − (Lnt+2 + Vnt+2)) = 0 (3.38)

Mnt+2 ẋi,nt+2 − (L0(xi,0 − xi,nt+2)− Vnt+2(yi,nt+2 − xi,nt+2)) = 0 ∀ i = 2, 3 (3.39)

L0(H l
0 −H l

nt+2)− Vnt+2(Hv
nt+2 −H l

nt+2) +Q = 0 (3.40)∑3
i=1 xi,nt+2 − 1 = 0 (3.41)∑3
i=1 yi,nt+2 − 1 = 0 (3.42)

yi,nt+2 −Ki,nt+2 xi,nt+2 = 0 ∀ i = 1, 2, 3 (3.43)

∆Tirc − Tnt+1 + Tnt+2 = 0 (3.44)

Lnt+2 −Mnt+2/τnt+2 = 0 (3.45)

100 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Subexpressions:

Q := (UA)irc ∆Tirc (3.46)

Pn := Pnt+1 + (nt − n+ 1) ∆P (3.47)

Ki,n := γi,nP
∗
i,n/Pn (3.48)

γi,n := exp
[∑3

j=1

∑3
k=1(Aji − 0.5Ajk)xj,nxk,n/(RTn)

]
(3.49)

P ∗i,n := exp(Ai +Bi/(Tn + Ci)) (3.50)

H l
n :=

∑3
i=1 xi,n h

l
i,n (3.51)

Hv
n :=

∑3
i=1 yi,n h

v
i,n (3.52)

hli,n := ci,1 + ci,2 Tn (3.53)

hvi,n := di,1 + di,2 Tn (3.54)

ρn :=
∑3

i=1 xi,n ρi,n (3.55)

ρi,n :=
P ci
RT ci

r
−(1+(1−Tn/T ci)2/7)
i (3.56)

an :=
∑3

i=1

∑3
j=1 yi,nyj,n(ai,naj,n)0.5(1− kij) (3.57)

ai,n := 0.45724(RT ci)2/P ci
(
1 + fi

(
1−

√
Tn/T ci

))2
(3.58)

bn :=
∑3

i=1 yi,n bi,n (3.59)

bi,n := 0.0778RT ci /P
c
i (3.60)

fi := 0.37464 + 1.54226ωi − 0.26992ω2
i (3.61)

lweir := fweirDcol (3.62)

Acol := (π/4)D2
col (3.63)

Atray := factiveAcol (3.64)

Ĥ l
n :=

∑3
i=1

∂H l
n

∂xi,n
x̂i,n +

∂H l
n

∂Tn
T̂n (3.65)

T̂n :=
−∑3

i=1

(
Ki,n x̂i,n + xi,n

∑3
k=1

∂Ki,n
∂xk,n

x̂k,n

)
∑3

i=1 xi,n
∂Ki,n
∂Tn

(3.66)

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 101

x̂i,n := (Ln+1(xi,n+1 − xi,n) + Vn−1(yi,n−1 − xi,n)

− Vn(yi,n − xi,n) + Fn(zi,n − xi,n))/Mn

(3.67)

Objective/constraint function subexpressions:

VN2 := Vnt rdraw (3.68)

yO2 := ynt,2 × 106 (3.69)

νn := Vn vn/Atray (3.70)

ν̄n := Cn

(σn
0.02

)0.2
(
ρnmw

l
n −mwvn/vn
mwvn/vn

)0.5

(3.71)

Cn := (0.0744S + 0.0117) log10(FP−1
n) + 0.0304S + 0.0153 (3.72)

FPn :=
Lnmw

l
n

Vnmwvn

(
mwvn/vn
ρnmwln

)0.5

(3.73)

σn :=
(∑3

i=1 pi (ρn xi,n − yi,n/vn)
)4

(3.74)

mwln :=
∑3

i=1 xi,nmwi (3.75)

mwvn :=
∑3

i=1 yi,nmwi (3.76)

Many of the subexpression equations represent thermodynamic properties which require

parameter values. These parameters are readily available from standard reference books

or thermodynamic property databases. For our study we primarily obtained all parameter

values from the Multiflash thermodynamic database. However, for the liquid and vapor phase

enthalpy expressions we used Aspen Properties data to fit a linear expression as a function of

temperature. Additional parameters used are listed in Table 3.5.

102 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Table 3.5: Example 2 – air separation model parameter values

Description Symbol Value Units

feed tray nf 1 –

gravitational constant g 9.81 m/s2

gas constant R 8.31451 m3kPa/(kmol K)

column diameter Dcol 0.8 m

weir height hweir 0.05 m

tray spacing S 0.1778 m

fraction of active tray area factive 0.67 –

fraction of column diameter fweir 0.75 –

IRC heat transfer area/coefficient (UA)irc 0.113488 MJ/(K s)

liquid N2 distillate product LN2 1.26× 10−7 kmol/s

product gas draw fraction rdraw 0.2 –

condenser-side pressure Pnt+1 319.0673 kPa

sump holdup time constant τ0 120 s

reboiler-side holdup time constant τnt+2 120 s

feed composition i = {N2, O2, Ar} zi {0.7811, 0.2096, 0.0093} –

List of References

[1] A. Geletu and P. Li. “Recent Developments in Computational Approaches to Opti-

mization under Uncertainty and Application in Process Systems Engineering”. In:

ChemBioEng Reviews 1.4 (2014), pp. 170–190 (cit. on p. 62).

[2] M. J. Mohideen, J. D. Perkins, and E. N. Pistikopoulos. “Optimal design of dynamic

systems under uncertainty”. In: AIChE Journal 42.8 (1996), pp. 2251–2272 (cit. on

pp. 62, 63).

[3] V. Sakizlis, J. D. Perkins, and E. N. Pistikopoulos. “Recent advances in optimization-

based simultaneous process and control design”. In: Computers & Chemical Engineering

28.10 (2004), pp. 2069–2086 (cit. on p. 62).

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 103

[4] S. Wang and M. Baldea. “Identification-based optimization of dynamical systems under

uncertainty”. In: Computers & Chemical Engineering 64 (2014), pp. 138–152 (cit. on

p. 62).

[5] U. Diwekar. Introduction to Applied Optimization. Springer, 2008 (cit. on p. 63).

[6] H. Arellano-Garcia and G. Wozny. “Chance constrained optimization of process systems

under uncertainty: I. Strict monotonicity”. In: Computers & Chemical Engineering 33.10

(2009), pp. 1568–1583 (cit. on p. 63).

[7] M. Kloppel et al. “Using Sparse-Grid Methods To Improve Computation Efficiency in

Solving Dynamic Nonlinear Chance-Constrained Optimization Problems”. In: Industrial

& Engineering Chemistry Research 50.9 (2011), pp. 5693–5704 (cit. on p. 63).

[8] M. Diehl et al. “Numerical solution approaches for robust nonlinear optimal control

problems”. In: Computers & Chemical Engineering 32.6 (2008), pp. 1279–1292 (cit. on

p. 63).

[9] B. Houska et al. “Robust optimization of nonlinear dynamic systems with application

to a jacketed tubular reactor”. In: Journal of Process Control 22.6 (2012), pp. 1152–

1160 (cit. on p. 63).

[10] R. Huang and L. T. Biegler. “Robust nonlinear model predictive controller design based

on multi-scenario formulation”. In: Proceedings of the 2009 Conference on American

Control Conference. ACC’09. 2009, pp. 2341–2342 (cit. on p. 63).

[11] S. Lucia et al. “Handling uncertainty in economic nonlinear model predictive control:

A comparative case study”. In: Journal of Process Control 24.8 (2014), pp. 1247–1259

(cit. on p. 63).

[12] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical solution of initial-value

problems in differential-algebraic equations. Philadelphia: SIAM, 1996 (cit. on p. 65).

[13] D. K. Varvarezos, L. T. Biegler, and I. E. Grossmann. “Multiperiod design optimization

with SQP decomposition”. In: Computers & Chemical Engineering 18.7 (1994), pp. 579–

595 (cit. on p. 66).

104 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

[14] T. K. Bhatia and L. T. Biegler. “Multiperiod design and planning with interior point

methods”. In: Computers & Chemical Engineering 23.7 (1999), pp. 919–932 (cit. on

pp. 66, 82).

[15] J. Albuquerque et al. “Interior point SQP strategies for large-scale, structured process

optimization problems”. In: Computers & Chemical Engineering 23.4-5 (1999), pp. 543–

554 (cit. on p. 66).

[16] A. M. Cervantes et al. “A reduced space interior point strategy for optimization of

differential algebraic systems”. In: Computers & Chemical Engineering 24.1 (2000),

pp. 39–51 (cit. on p. 66).

[17] V. M. Zavala, C. D. Laird, and L. T. Biegler. “Interior-point decomposition approaches

for parallel solution of large-scale nonlinear parameter estimation problems”. In:

Chemical Engineering Science 63.19 (2008), pp. 4834–4845 (cit. on p. 66).

[18] D. P. Word et al. “Efficient parallel solution of large-scale nonlinear dynamic opti-

mization problems”. In: Computational Optimization and Applications 59.3 (2014),

pp. 667–688 (cit. on p. 66).

[19] J. Kang et al. “An interior-point method for efficient solution of block-structured

NLP problems using an implicit Schur-complement decomposition”. In: Computers &

Chemical Engineering 71 (2014), pp. 563–573 (cit. on p. 66).

[20] D. B. Leineweber et al. “An efficient mulitple shooting based reduced SQP strategy for

large-scale dynamic process optimization. Part II: Software aspects and applications”.

In: Computers & Chemical Engineering 27.2 (2003), pp. 167–174 (cit. on p. 67).

[21] B. Bachmann et al. “Parallel Multiple-Shooting and Collocation Optimization with

OpenModelica”. In: 9th International Modelica Conference. Munich, Germany, Sept.

2012, pp. 659–668 (cit. on p. 67).

[22] J. Andersson. “A General-Purpose Software Framework for Dynamic Optimization”.

PhD thesis. Arenberg Doctoral School, KU Leuven, Department of Electrical Engineer-

ing (ESAT/SCD) and Optimization in Engineering Center, 2013 (cit. on p. 68).

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 105

[23] D. B. Leineweber et al. “An efficient mulitple shooting based reduced SQP strategy for

large-scale dynamic process optimization. Part I: Theoretical aspects”. In: Computers

& Chemical Engineering 27.2 (2003), pp. 157–166 (cit. on pp. 68, 70).

[24] B. Houska and M. Diehl. “A quadratically convergent inexact SQP method for optimal

control of differential algebraic equations”. In: Optimal Control Applications and

Methods 34.4 (2013), pp. 396–414 (cit. on p. 70).

[25] T. Maly and L. R. Petzold. “Numerical methods and software for sensitivity analysis

of differential-algebraic systems”. In: Applied Numerical Mathematics 20.1-2 (1996),

pp. 57–79 (cit. on p. 73).

[26] W. F. Feehery, J. E. Tolsma, and P. I. Barton. “Efficient sensitivity analysis of large-

scale differential-algebraic systems”. In: Applied Numerical Mathematics 25.1 (1997),

pp. 41–54 (cit. on p. 73).

[27] M. Schlegel et al. “Sensitivity analysis of linearly-implicit differential-algebraic systems

by one-step extrapolation”. In: Applied Numerical Mathematics 48.1 (2004), pp. 83–

102 (cit. on p. 73).

[28] M. R. Kristensen et al. “Sensitivity analysis in index-1 differential algebraic equations

by ESDIRK methods”. In: IFAC World Congress. Vol. 16. 1. 2005, pp. 895–895 (cit. on

p. 73).

[29] A. Hartwich et al. “Parallel sensitivity analysis for efficient large-scale dynamic opti-

mization”. In: Optimization and Engineering 12.4 (2011), pp. 489–508 (cit. on p. 73).

[30] D. B. Ozyurt and P. I. Barton. “Cheap Second Order Directional Derivatives of Stiff

ODE Embedded Functionals”. In: SIAM Journal on Scientific Computing 26.5 (2005),

pp. 1725–1743 (cit. on p. 75).

[31] Y. Cao et al. “Adjoint sensitivity analysis for differential-algebraic equations: The ad-

joint DAE system and its numerical solution”. In: SIAM Journal on Scientific Computing

24.3 (2003), pp. 1076–1089 (cit. on p. 75).

106 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

[32] R. Hannemann-Tamas. “Adjoint Sensitivity Analysis for Optimal Control of Non-

Smooth Differential-Algebraic Equations”. PhD thesis. RWTH-Aachen University, 2012

(cit. on p. 75).

[33] J. Albersmeyer and M. Diehl. “The Lifted Newton Method and Its Application in

Optimization”. In: SIAM Journal on Optimization 20.3 (2010), pp. 1655–1684 (cit. on

p. 75).

[34] T. Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006 (cit. on p. 77).

[35] A. C. Hindmarsh et al. “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equa-

tion Solvers”. In: ACM Transactions on Mathematical Software 31.3 (2005), pp. 363–

396 (cit. on p. 77).

[36] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP algorithm for large-scale

constrained optimization”. In: SIAM Review 47.1 (2005), pp. 99–131 (cit. on p. 77).

[37] A. Wachter and L. T. Biegler. “On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming”. In: Mathematical Pro-

gramming 106.1 (2006), pp. 25–57 (cit. on p. 77).

[38] A. Walther and A. Griewank. “Getting started with ADOL-C”. In: Combinatorial Scien-

tific Computing. Ed. by U. Naumann and O. Schenk. Chapman-Hall CRC Computational

Science, 2012. Chap. 7, pp. 181–202 (cit. on p. 77).

[39] J. Albersmeyer and H. G. Bock. “Sensitivity Generation in an Adaptive BDF-Method”.

In: Modeling, Simulation and Optimization of Complex Processes. Ed. by H. G. Bock

et al. Springer, 2008, pp. 15–24 (cit. on p. 77).

[40] R. Quirynen et al. “Autogenerating microsecond solvers for nonlinear MPC: A tutorial

using ACADO integrators”. In: Optimal Control Applications and Methods 36.5 (2014),

pp. 685–704 (cit. on p. 77).

[41] R. Hannemann-Tamas and L. S. Imsland. “Full algorithmic differentiation of a Rosenbrock-

type method for direct single shooting”. In: Control Conference (ECC), 2014 European.

June 2014, pp. 1242–1248 (cit. on p. 77).

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 107

[42] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd. Springer, 2006 (cit. on

p. 78).

[43] T. K. Bhatia and L. T. Biegler. “Dynamic Optimization in the Design and Scheduling

of Multiproduct Batch Plants”. In: Industrial & Engineering Chemistry Research 35.7

(1996), pp. 2234–2246 (cit. on p. 82).

[44] L. T. Biegler. Nonlinear Programming: Concepts, algorithms, and applications to chemical

processes. SIAM, 2010 (cit. on p. 82).

[45] P. S. Pacheco. An Introduction to Parallel Programming. New York, NY, USA: Morgan

Kaufmann, 2011 (cit. on pp. 85, 86).

[46] R. Hannemann and W. Marquardt. “Continuous and discrete composite adjoints for

the hessian of the lagrangian in shooting algorithms for dynamic optimization”. In:

SIAM Journal on Scientific Computing 31.6 (2010), pp. 4675–4695 (cit. on p. 88).

[47] Y. Cao. “Design for Dynamic Performance: Application to an Air Separation Unit”.

MA thesis. Hamilton, On., Canada: Department of Chemical Engineering, 2011 (cit. on

pp. 89, 90, 98).

Chapter 4

Towards a Structure Exploiting Parallel NLP Algorithm for Mul-

tiperiod Dynamic Optimization

4.1 Introduction . 110

4.2 Problem Formulation . 113

4.3 Proposed Solution Algorithm. 116

4.4 Example Problems . 133

4.5 Concluding Remarks . 148

References . 149

This chapter develops a sequential quadratic programming (SQP) algorithm that utilizes

a parallel interior-point method (IPM) for the QP subproblems. Our approach is able to

efficiently decompose and solve large-scale multiperiod nonlinear programming (NLP) for-

mulations with embedded dynamic model representations, through the use of an explicit

Schur-complement decomposition within the IPM. The algorithm implementation makes

use of an appropriate computing environment that uses the parallel distributed computing

message passing interface (MPI) and specialized vector-matrix class representations, as im-

plemented in the third-party software package OOPS. The proposed approach is assessed, with

a focus on computational speedup, using several benchmark examples involving applications

of parameter estimation and design under uncertainty which utilize static and dynamic

process models. Results indicate significant improvements in the NLP solution speedup when

moving from a serial full-space direct factorization approach, to a serial Schur-complement

decomposition, to a parallelized Schur-complement decomposition for the primal-dual linear

system solution within the IPM. Consequently, we have demonstrated progress towards

solving multiperiod formulations, particularly those with expensive embedded ODE/DAE

109

110 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

model evaluations, which can tractably accommodate a significant increase in the number

scenario realizations. This highlights the possibility for solving even larger plant-wide model

representations with finer discretization levels which previously required impractical solution

times.

Note, portions of this chapter were submitted for review to the journal Computers & Chemical

Engineering.

4.1 Introduction

Higher operating costs and shrinking profit margins in the chemical and petro-chemical

industries are driving greater applications of advanced control techniques and even further

consideration of control at the process design stage. These applications are often model-based

and require the solution of dynamic optimization formulations comprising very large systems

of variables and equations that can be computationally demanding, requiring considerable

computer memory and solution times. Accordingly, these applications are motivating the de-

velopment and implementation of solution approaches, numerical techniques and algorithms

capable of efficiently exploiting modern computational resources in terms utilizing multiple

computers, multiprocessor systems and/or acceleration devices. Applications of industrial

relevance include: model predictive control (MPC) and moving horizon state estimation

(MHE) formulations comprised of large block structured matrices due to their respective

discretized time horizons [1]; and multiperiod approximations of stochastic optimization

formulations, which present a block-bordered diagonal matrix structure as a result of the

repetitive scenario/period realizations [2]. Industrial applications of this nature typically

produce optimization formulations involving upwards of a few hundred thousand to a mil-

lion variables and constraints, which makes the use of decomposition techniques combined

with some form of parallel computing a necessity. Early chemical engineering applications

involving multiperiod formulations include the simultaneous design and operation of batch

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 111

distillation [3], and the integration of design, planning and scheduling for multi-product

batch plants [4].

Past work on algorithm development has primarily focused on improving the efficiency of

the linear algebra computations through exploiting structure via decomposition. Varvarezos,

Biegler, and Grossmann [5] proposed a reduced sequential quadratic programming (rSQP)

approach (based on an active-set QP subproblem) which decomposes the multiperiod struc-

ture through introducing additional linear constraints and scenario dependent parameters

which effectively removes the potentially nonlinear complicating scenario independent pa-

rameters and forms a new NLP structure which is easier to solve at the QP level. Bartlett and

Biegler [6] present an active-set QP algorithm that uses a Schur-complement decomposition

and demonstrate its superiority when compared to several other active-set QP solvers on

structured linear MPC and reduced SQP problems. This decomposed rSQP approach was

further explored by Bhatia and Biegler [7] who use an interior-point method (IPM) for each

QP subproblem. Ultimately, the resulting interior-point rSQP technique showed superior

scalability (with respect to scenario realizations) compared to the active-set rSQP approach

[8]. Following this work, Albuquerque et al. [9] developed a similar interior-point SQP

approach for discretized dynamic optimization formulations which resulted in significant per-

formance improvements. More recently, Zavala, Laird, and Biegler [10] have demonstrated

a parallel primal-dual nonlinear interior-point approach to tackle discretized multiperiod

dynamic optimization formulations. This has ultimately led to general nonlinear interior-

point approaches to handle discretized nominal dynamic optimization formulations [11]

and structured NLP formulations [12]. In a similar direction, Gondzio and Grothey [13, 14]

introduced a primal-dual interior-point QP algorithm and linear algebra library that uses a

block-wise Cholesky decomposition within a Schur-complement decomposition. Their algo-

rithm uses a distributed-memory parallel implementation and they demonstrate near perfect

speedups on several large scale stochastic QP formulations. Following this, further extensions

were made in [15] to demonstrate a parallel SQP-IPM algorithm for stochastic nonlinear

112 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

optimization. From an on-line control perspective, Domahidi et al. [16] discuss a primal-dual

interior-point QP algorithm tailored to structured linear MPC formulations, which again

uses a block-wise Cholesky factorization. They demonstrate superior performance when

using the block-wise factorization approach compared to the full-space approach. Following

from this, Frasch, Sager, and Diehl [17] proposed a novel QP solution approach, algorithm

and software package that targets optimal control formulations and demonstrate superior

solution times when compared to a few other established solvers.

The particular direction that we follow in this work is a solution algorithm for nonlinear

multiperiod optimization formulations which targets dynamic process models with uncertain

parameters and/or disturbance inputs. To this end, we are investigating the efficiency of

an SQP-IPM algorithm for multiperiod optimization formulations, as well as discretization

approaches of the uncertainty space combined with a multiple-shooting discretization of the

temporal domain, which requires the solution of an embedded dynamic model within an

overall nonlinear programming algorithm. It is hypothesized that the proposed SQP-IPM

approach is more efficient than nonlinear IPM algorithms for handling NLP formulations

with embedded dynamic models which are very expensive to evaluate at each iterate of the

algorithm. In this chapter, we are primarily concerned with building on the work performed

in [18] by addressing the computational bottleneck encountered when using a serial active-

set rSQP algorithm. Accordingly, we seek to demonstrate a sequential quadratic programming

algorithm where the QP subproblems are solved with an interior-point method via the OOPS

solver which employs a direct Schur-complement decomposition [14]. Additionally, a partially

separable quasi-Newton strategy is developed and used to iteratively approximate and update

second-order information required to formulate the QP subproblems. A novel aspect of the

work is the development and assessment of a parallel nonlinear multiperiod optimization

approach for design under uncertainty, where we specifically target the application of

large-scale dynamic optimization using embedded ODE/DAE model formulations via the

multiple-shooting solution approach.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 113

The chapter is laid out by first discussing the nonlinear programming solution algorithm and

relevant supporting literature. Next, we discuss how the underlying problem formulation is

decomposed to facilitate structure exploitation within the linear algebra of the interior-point

solution algorithm. Following this, we provide several illustrative numerical examples for

both steady-state and dynamic optimization design problems. Finally, some concluding

remarks are provided with some recommendations for further work.

4.2 Problem Formulation

In this section we consider multiperiod approximations to continuous nonlinear stochastic

programs which are formulated as structured nonlinear programs [2, 19]. Our particular

interest is the efficient solution of two-stage stochastic programming approximations which

classify decision variables into first and second stage variables such that the first stage

variables represent system design decisions while second stage variables represent scenario

dependent system operation variables which are used for recourse to disturbance or uncertain

parameter realizations. These particular formulations have seen significant use for chemical

process design and operations applications under uncertainty [20, 21] and more recently

in model-based robust control applications [22, 23]. The particular multiperiod nonlinear

programming formulation we consider can be stated as,

min
wi ∀ i, p

φ0(p) +
∑ns

i=1 wi φi(wi,p)

st : c0(p) = 0

ci(wi,p) = 0 ∀ i = 1, . . . , ns

wi ∈W = {wi ∈ Rnw |wL ≤ wi ≤ wU}

p ∈ P = {p ∈ Rnp |pL ≤ p ≤ pU}

(P.4.1)

where the vector wi ∈ Rnw represents all second stage primal variables from a particular

scenario/period realization with lower and upper bounds given by wL and wU , respec-

114 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

tively; p ∈ Rnp represent all first stage primal design variables that are common over all

scenario realizations, again with bounds given by pL and pU ; ns represents the number

of periods/scenarios used in the approximation. The objective function involves two non-

linear functional components, the first is φ0 : Rnp 7→ R which represents a design cost

that is only dependent on the design variables, while the second is φi : Rnw × Rnp 7→ R

which represents a weighted operational cost that is summed over all scenario realizations.

The associated weight or probability for each scenario occurrence is given by wi ∈ [0, 1].

Similarly, c0 : Rnp 7→ Rm1 and ci : Rnw × Rnp 7→ Rm2 represent nonlinear constraints of

a scenario-independent and scenario-dependent nature, respectively. Problem P.4.1 may

include steady-state design problems, discretized dynamic optimization or optimal control

formulations, and dynamic optimization formulations which include embedded dynamic

models. This latter application class is of particular interest, as we seek to improve on current

solution algorithms for dynamic optimization formulations which incorporate embedded

dynamic models.

The first step to facilitating the application of a solution algorithm capable of exploiting the

formulation structure is to re-formulate Problem P.4.1. The idea here is that we need to

introduce a decomposable structure within the formulation that can be exploited in the NLP

solution algorithm. An established approach is to decouple the common parameters p ∈ Rnp

from the scenario-dependent objective and constraint functionals by introducing artificial

decoupling parameters and linking constraints [5]. Accordingly, such a reformulation involves

appending wi with qi ∈ Rnq , which represent local design parameters within each scenario,

followed by the mapping of these local variables back to the original global parameters

p. Note, the dimension nq may be greater or equal to np, depending on the particular

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 115

application. Thus, a revised form of Problem P.4.1 can be stated as,

min
zi ∀ i, p

φ0(p) +
∑ns

i=1 wi φi(zi)

st : c0(p) = 0

ci(zi) = 0 ∀ i = 1, . . . , ns

Mi zi − p = 0 ∀ i = 1, . . . , ns

Fi zi − z̄ ≤ 0 ∀ i = 1, . . . , ns

(P.4.2)

where zi := [w>i ,q
>
i]> ∈ Rnz , nz = nw + nq, and Mi := [0np×nw |Inp |0np×(nq−np)] represents

a mapping matrix that extracts the local parameters qi from zi. The variable bounds

are written as inequalities by introducing the definitions F>i := [−Inz , Inz] and z̄> :=

[−z>L , z
>
U]. For the case of dynamic optimization formulations, we consider a multiple-

shooting discretization approach which involves the solution of an embedded system of

ordinary differential equations (ODEs) for each shooting node. The embedded model takes

the form,

ẋi(t) = f(xi(t),ui(t),qi, t) t ∈ [tj , tj+1]

xi(tj) = xj,i

(4.1)

where ui(t) represents a control profile parameterized by uj,i and f(·) : Rnx×Rnu×Rnq×R 7→

Rnx represents the explicit ODE model right-hand-side. Accordingly, the constraints ci(zi)

take the form,

ci(zi) :=

xi(t0)− x0,i

xi(xj−1,i,uj−1,i,qi; tj)− xj,i j = 1, . . . , n

(4.2)

which represent continuity constraints at each shooting node, where xi(t0) are specified

initial conditions of the ODE, xi(tj) represent the ODE solution at nodes j = 1, . . . , n, xj,i

represent state variable parameters, uj,i represent control variable parameters or degrees

of freedom. These parameters relate back to the NLP by the structured definition, w>i :=

116 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

[x>0,i,u
>
0,i, . . . ,x

>
n−1,i,u

>
n−1,i,x

>
n,i], which are further repeated for each scenario i = 1, . . . , ns.

Additionally, ci may also include other forms of point or path equality and inequality

constraints. Introducing an embedded ODE within the constraints requires the application of

appropriate parameter sensitivity and derivative generation techniques in order to supply

the NLP algorithm with the necessary first-order and possibly second-order objective and

constraint derivatives. Such techniques are widely available in modern ODE/DAE integration

packages [24] and for the particular multiple-shooting discretization used in this chapter

we refer readers to our previous work in this area which discusses the constraint derivative

formulation in Chapter 3.

4.3 Proposed Solution Algorithm

In this section we present our proposed SQP algorithm that uses an interior-point method

(IPM) for the QP subproblems capable of exploiting the formulation structure as defined

by Problem P.4.2. Interior-point methods were originally designed to solve large linear

programs due to the polynomial growth of their worst-case solution time with problem

size, as opposed to the worst-case exponential growth characteristic of the more traditional

active-set simplex algorithm [25]. Since their original inception, IPMs have been extended

for quadratic (convex/nonconvex) and general nonlinear/nonconvex programs [26]. Our

use here focuses on IPMs for QPs, as encountered within the SQP algorithm. The proposed

algorithm is particularly amenable to large-scale NLP formulations with expensive function

evaluations such as those commonly encountered when evaluating embedded differential

equations within the formulation constraints. Many of the steps in our proposed approach

follow those in existing SQP-IPM algorithms [9, 27, 28]; however, of particular distinction

here is the use of an explicit Schur-complement decomposition within the IPM step direction

solution which exploits the multiperiod formulation structure [7, 29]. It is this last aspect that

we seek to investigate in the context of embedded model dynamic optimization formulations.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 117

4.3.1 SQP Approach

To start, we outline the basic aspects associated with an SQP solution approach to NLP

formulations, focusing on implementation choices that we have adopted. For generality, we

consider an NLP written according to,

min
x

f(x)

st : h(x) = 0

g(x) ≤ 0

(P.4.3)

where x ∈ Rn represent primal variables and f : Rn 7→ R, h : Rn 7→ Rm1 , and g : Rn 7→ Rm2

represent nonlinear, possibly nonconvex, twice continuously differentiable functions. Note

that bound constraints on x can be concatenated into g. An optimal solution to Problem

P.4.3 can be characterized using the Lagrangian function defined as,

L(x,λ,µ) := f(x) + λ>h(x) + µ>g(x) (4.3)

where λ ∈ Rm1 and µ ∈ Rm2 represent Lagrange multipliers or dual variables which provide

a degree of optimal cost sensitivity with respect to perturbations of constraints within the

active-set. Candidate primal-dual solutions (x∗,λ∗,µ∗) must satisfy the first-order necessary

optimality conditions (KKT conditions) defined as,

∇xL(x∗,λ∗,µ∗) = 0

h(x∗) = 0

g(x∗) ≤ 0

µ∗>g(x∗) = 0

µ∗ ≥ 0

(KKT)

118 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

where the gradients of all active constraints at x∗ are required to be linearly independent. In

addition to the first-order optimality conditions, further verification is needed to sufficiently

assess whether the KKT point is a true minimizer of Problem P.4.3 and not a possible

maximizer. Accordingly, second-order sufficient optimality conditions can be defined which

require the Lagrangian Hessian to be strictly positive definite at the optimal solution. Due

to the expensive nature of computing accurate second-order derivatives, many numerical

algorithms do not check for second-order sufficient conditions of optimality. Instead many

algorithms (and SQP in particular) try to build in positive definite approximations, thus

implicitly ensuring such conditions while searching for a KKT point. Nevertheless, some SQP

algorithms are capable of utilizing second-order information directly, and as such provide

appropriate steps to check and correct second order derivatives [27].

The SQP approach to determining a KKT point successively solves quadratic programming

approximations to Problem P.4.3, where for each succession a search direction d is determined

that satisfies the QP optimality conditions [26], followed by determining an appropriate step

size, and subsequent iterate update and re-evaluation of the QP approximation until the

desired termination criteria are satisfied. At a given primal-dual iterate (x[k],λ[k],µ[k]), a

linearly constrained quadratic approximation to Problem P.4.3 can be stated as,

min
d
∇xf(x[k])>d + 1

2 d>∇2
xxL(x[k],λ[k],µ[k]) d

st : ∇xh(x[k]) d + h(x[k]) = 0

∇xg(x[k]) d + g(x[k]) ≤ 0

(P.4.4)

where the QP objective function can be derived based on a second-order Taylor series expan-

sion of L around d in which constant terms are dropped and second-order terms could be

computed as∇2
xxL(x[k],λ[k],µ[k]) := ∇2

xxf(x[k])+
∑m1

j=1∇2
xxhj(x

[k])λj+
∑m2

j=1∇2
xxgj(x

[k])µj .

However, most SQP algorithms rely on generating convex approximations or appropriate

regularizations to the exact Lagrangian Hessian ∇2
xxL which ensure positive definiteness,

such that convex quadratic programming algorithms can be employed. Furthermore, a direct

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 119

solution to Problem P.4.4 may not be possible due to inconsistencies within the linearized con-

straint approximation which causes an infeasible solution. Accordingly, constraint relaxation

techniques can be used to restore feasibility [27, 30].

Once the step direction is known, a suitable step size α must be determined which is able

to drive the algorithm to a local solution. The particular method we use is an inexact line

search with an `1-penalty function, which seeks to approximate,

α[k] := arg min
ᾱ∈(0,1]

φ(x[k] + ᾱd,η[k]) (4.4)

where the penalty function is defined as,

φ(x[k+1],η[k]) := f(x[k+1]) +

m1∑
i=1

η
[k]
i |hi(x[k+1])|+

m2∑
i=1

η
[k]
m1+i max{0,gi(x[k+1])} (4.5)

where x[k+1] := x[k] + ᾱd and η[k] is a penalty vector for constraint violation that is updated

at each major SQP iteration (see, pg. 542 and Equation 18.36 of [26] for further details).

The exact solution of Equation 4.4 is unnecessary and it is sufficient only to satisfy the Armijo

condition given by,

φ(ᾱ) ≤ φ(0) + σᾱD(0) (4.6)

where σ is a small positive constant and D(0) represents the directional derivative of φ(0)

(see, pg 541 and Equation 18.31 from [26]). Now, using the condition in Equation 4.6,

defined as δ := φ(0) + σᾱD(0)− φ(ᾱ), and an initial step size guess of ᾱ = 1, the step size is

accepted if δ > 0 and modified otherwise. The update model we choose follows a quadratic

interpolation (see pg. 58 and Equation 3.58 of [26] for further details) and can be defined

as,

ᾱ← 0.5 ᾱ2D(0)

φ(0) + ᾱD(0)− φ(ᾱ)
(4.7)

120 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Once both step direction and size are known, both primal and dual variables are updated as,

x[k+1] ← x[k] + α[k] d (4.8)

{λ[k+1],µ[k+1]} ← {λ[k],µ[k]}+ α[k]({y,v} − {λ[k],µ[k]}) (4.9)

where y and v represent multipliers returned from the QP solver. The process of forming

the QP and determining the step direction and size continues until the KKT conditions are

satisfied to within a specified tolerance. A set of particular termination criteria that we adopt

are defined as,

‖∇xL(x[k],λ[k],µ[k])‖ ≤ εopt (4.10)

‖h(x[k])‖ ≤ εfeas (4.11)

µ
[k]
i gi(x

[k]) ≤ εcomp i = 1, . . . ,m2 (4.12)

where εopt, εfeas, εcomp are user specified tolerances for optimality, feasibility and complemen-

tarity, respectively.

In order to set the stage for approximating the second-order Lagrangian derivative posed in

Problem P.4.4, with reference to Problem P.4.2, we note that primal variables can be stated

as x := [z>1 , . . . , z
>
ns ,p

>]> and define the multiperiod Lagrangian function as,

L(x,λ,µ) := L0(p,λ0) +

ns∑
i=1

Li(zi,p,λi,µi) (4.13)

where the partially separable Lagrangian components are further defined as,

L0(p,λ0) := φ0(p) + λ>0 c0(p) (4.14)

Li(zi,p,λi,µi) := wiφi(zi) + λ>i

 ci(zi)

Mizi − p

+ µ>i [Fizi − z̄] (4.15)

Considering this Lagrangian form, the approach adopted to approximate the Lagrangian

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 121

Hessian follows the well known damped BFGS method. However, given the form of Equation

4.13, our particular approach approximates each separate Hessian block H0 ≈ ∇2
ppL0 and

Hi ≈ ∇2
ziziLi for i = 1, . . . , ns as,

∇2
xxL := H ≈ diag (H1, . . . ,Hns ,H0) (4.16)

which corresponds to a partitioned quasi-Newton update. Due to the introduction of the

linear linking constraints in Problem P.4.2, this second-order update approximation can be

considered completely separable and as such each block component is updated independently

[7, 26, 31]. The update for each block follows the standard BFGS formula defined as,

H
[k]
i ← H

[k]
i −

H
[k]
i si s

>
i H

[k]
i

s>i H
[k]
i si

+
ri r
>
i

r>i si
i = 0, . . . , ns (4.17)

where the vectors si ∈ Rnz and ri ∈ Rnz are defined as,

si := z
[k+1]
i − z

[k]
i (4.18)

ri := ∇ziLi(z
[k+1]
i ,λ

[k+1]
i ,µ

[k+1]
i)−∇ziLi(z

[k]
i ,λ

[k+1]
i ,µ

[k+1]
i) (4.19)

where zi, λi, µi represent local primal and dual variables for i = 1, . . . , ns blocks. The

bottom diagonal block, comprised solely of the complicating common parameters p, as seen

from c0(p) within Problem P.4.2, is updated using,

s0 := p[k+1] − p[k] (4.20)

r0 := ∇pL0(p[k+1],λ
[k+1]
0)−∇pL0(p[k],λ

[k+1]
0) (4.21)

where λ0 represents dual variables for c0(p). The vector ri is modified if s>i ri < 0.2 s>i H
[k]
i si

using a damping parameter defined as,

θ := 0.8 s>i H
[k]
i si/(s

>
i H

[k]
i si − s>i ri) (4.22)

122 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

where the final modification, if necessary, is performed as,

ri ← θ ri + (1− θ)H[k]
i si (4.23)

This approach, as highlighted in Equations 4.17 to 4.23 (which we adapted herein from

Procedure 18.2 of [26]), is sufficient for block sizes that are relatively small (perhaps less

than a 1000 variables). However, as the blocks Hi become large (e.g., with finer levels of

discretization within the multiple-shooting approach), more compact BFGS representations

are preferred [32].

4.3.2 IPM QP Approach

Interior-point methods have been shown highly effective at solving large-scale mathematical

programming formulations with a relatively insensitive increase in iteration count as the

problem size increases [9]. Traditionally, the solution of the quadratic program given by

Problem P.4.4 is handled by an active-set strategy [26]. In this approach, all equalities and

some inequality constraints are used to establish a working active-set of constraints, where a

choice is made a priori of an active inequality (i.e., primal slack variable of zero) or inactive

inequality (i.e., dual variable of zero). Using the current working-set, a Newton direction for

the QP is determined and using constraint gradient and dual variable values a new working

set is established (see, Algorithm 16.3 from [26]). Interior-point methods, on the other hand,

function by shifting the bound constraints into the primal objective function to penalize

primal slack variables and ensuring they remain strictly positive. From another perspective,

one can view this approach as perturbing the complementarity constraints by a factor of µ,

followed by determining a Newton direction using a fixed µ, which is subsequently repeated

for µ→ 0 and terminated once the optimality conditions are satisfied. Using this approach

avoids the combinatorial active-set approach of selecting a priori the active and inactive

inequality constraints, and as the interior-point algorithm proceeds the partitioning of primal

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 123

slack and dual variables into zero and nonzero elements is gradually revealed.

It is this second approach we utilize in this work to solve the QP subproblems using a third-

party software package. However, we sketch out the approach to show how our formulation is

arranged to fit within the structure that can be exploited by the QP decomposition approach.

Accordingly, such QP formulations can be written as,

min
d, s

c>k d + 1
2 d>Qk d

st : Ak d− bk = 0

Ck d− nk + s = 0

s ≥ 0

(P.4.5)

where we re-write the inequality constrained formulation into standard QP form through

the introduction of nonnegative slack variables s ∈ Rm2 . For convenience, we relate this for-

mulation back to Problem P.4.4 using the following definitions ck := ∇xf(x[k]) ∈ Rn,

bk := −h(x[k]) ∈ Rm1 , nk := −g(x[k]) ∈ Rm2 , Ak := ∇xh(x[k]) ∈ Rm1×n, Ck :=

∇xg(x[k]) ∈ Rm2×n, Qk := ∇2
xxL(x[k],λ[k],µ[k]) ∈ Rn×n, where Qk is at least positive

semi-definite.

A central aspect of interior-point methods is the reformulation of primal variable bounds by

adding them to the objective function through the use of a log-barrier term with a positive

penalty parameter µ > 0. Accordingly, we can re-write Problem P.4.5 as,

min
d, s

c>k d + 1
2 d>Qk d− µ∑m2

j=1 log sj

st : Ak d− bk = 0

Ck d− nk + s = 0

(P.4.6)

where µ can be seen to control the relation between the barrier formulation and the original

QP problem. The first-order QP optimality conditions of the barrier formulation given by

124 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Problem P.4.6 can now be derived (see, [27, 33]) as,

ck + Qk d + A>k y + C>k v = 0

Ak d− bk = 0

Ck d + s− nk = 0

S V e− µe = 0

(qpKKT)

where y ∈ Rm1 , v ∈ Rm2 represent the QP Lagrange multipliers, and the last equation

represents the perturbed complementarity condition, which implies that at least one of the

two variables, s or v, have to be zero at the optimum where µ = 0. {S,V} = diag({s,v}) are

diagonal matrices and e = [1, . . . , 1]> is a unit vector. The interior-point solution of Problem

P.4.5 involves a central path following algorithm which keeps the iterate (d[j], s[j],y[j],v[j])

biased towards the interior of the feasible region (s,v) > 0 [25, 34]. The Newton step of the

jth iterate in the QP solution could be determined from the solution of the following linear

system,

Qk A>k C>k 0

Ak 0 0 0

Ck 0 0 I

0 0 S[j] V[j]

∆d

∆y

∆v

∆s

=

r1

r2

r3

r4

=

−ck −Qkd
[j] −A>k y[j] −C>k v[j]

−Akd
[j] + bk

−Ckd
[j] − s[j] + nk

−S[j]V[j]e + µe

(4.24)

However, rather than solving this non-symmetric and indefinite system directly it is more

amenable to transform this system into the augmented form given by,

Qk A>k C>k

Ak 0 0

Ck 0 −(V[j])−1S[j]

∆d

∆y

∆v

 =

r1

r2

r3 − (V[j])−1r4

 (4.25)

where through some algebraic manipulation we eliminate ∆s, which can be recovered as

∆s := (V[j])−1(r4 − S[j]∆v) [7]. Further elimination of ∆v produces the better known

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 125

augmented form given by,

Qk + G
[j]
k A>k

Ak 0

︸ ︷︷ ︸

Φ

∆d

∆y

 =

r̄1

r2

 (4.26)

where ∆v is recovered as ∆v := −V[j](S[j])−1(r3 − (V[j])−1r4 −Ck∆d) and the diagonal

matrix G
[j]
k and the modified right-hand-side vector r̄1 are defined as,

G
[j]
k := C>k V[j](S[j])−1Ck (4.27)

r̄1 := r1 + C>k V[j](S[j])−1(r3 − (V[j])−1r4) (4.28)

The symmetric indefinite linear system given by Equation 4.26 can be directly solved by

a number of direct factorization or iterative methods. However, possible rank deficiency

of Ak or near singularity in Qk + G
[j]
k can present problems. Thus, adaptive primal-dual

regularization methods are typically used to ensure the matrix Φ is at least symmetric

quasi-definite which is known to be strongly factorizable [35, 36].

4.3.3 Decomposition within IPM

The formulation of Problem P.4.2 aims to facilitate the decoupling of the common design

parameters p from each scenario/period realization. Considering the QP subproblem of

Problem P.4.5 and the augmented system given by Equation 4.26, our particular multiperiod

formulation produces several block diagonal and block bordered diagonal matrices given by,

Ak :=

D1 E1

. . .
...

Dns Ens

D0

,

Qk := diag(Q̄1, . . . , Q̄ns , Q̄0)

G
[j]
k := diag(Ḡ

[j]
1 , . . . , Ḡ

[j]
ns ,0np×np)

Ck := diag(F1, . . . ,Fns)

(4.29)

126 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Note, we describe this decomposition by considering that a single scenario realization

maps directly to a single block of equations/variables within the Jacobian/Hessian matrices.

However, one could further group multiple scenario realizations into a single block which

is often required in order to map each block to a limited number of processors. We will

elaborate this point further in the example problems of this chapter. The constituent matrix

blocks in Ak are diagonal blocks Di and right-border blocks Ei for each scenario/period

i = 1, . . . , ns, and bottom diagonal block D0 for constraints involving only the complicating

parameters p. These block definitions relate back to the QP approximation of Problem P.4.2

through,

Di :=

∇zici(z[k]
i)

Mi

 , Ei :=

0nz×np

−Inp

 , D0 := ∇pc0(p[k]) (4.30)

Similarly for Qk, we have diagonal blocks representing Hessian contributions for each

scenario, given by Q̄i := ∇2
ziziLi(z

[k]
i ,λ

[k]
i ,µ

[k]
i) ≈ Hi and a single bottom diagonal block

Q̄0 := ∇2
ppL0(p[k],λ

[k]
0) ≈ H0 for the complicating parameters, where the Hi represent BFGS

approximations. For the augmented system block G
[j]
k , we have constituent sub-blocks given

by Ḡ
[j]
i := F>i V

[j]
i (S

[j]
i)−1Fi, with Fi defined as in Problem P.4.2.The remaining vectors in

Equation 4.26 are determined through the specification of r1, r2, r3 and r4, which in terms of

the functions and variables of our multiperiod optimization problem P.4.5 may be expressed

as,

r1 := [rd>1 , . . . , rd>ns , r
d>
0]>

r2 := [ry>1 , . . . , ry>ns , r
y>
0]>

r3 := [rv>1 , . . . , rv>ns]>

r4 := [rs>1 , . . . , rs>ns]>

(4.31)

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 127

with subvectors defined as,

rdi := −c̄i − Q̄i d
[j]
i −D>i y

[j]
i − F>i v

[j]
i

rd0 := −c̄0 − Q̄0 d
[j]
0 −D>0 y

[j]
0 −

∑ns
l=1E

>
l y

[j]
l

ryi := −Di d
[j]
i −Ei d

[j]
0 + b̄i

ry0 := −D0 d
[j]
0 + b̄0

rvi := −Fi d
[j]
i − s

[j]
i + n̄i

rsi := −S
[j]
i V

[j]
i ei + µei

(4.32)

where,

c̄i := wi∇ziφ(z
[k]
i)

c̄0 := ∇pφ(p[k])

b̄i := [−ci(z
[k]
i)>,−(Mi z

[k]
i − p[k])>]>

b̄0 := −c0(p[k])

n̄i := −(Fiz
[k]
i − z̄)

(4.33)

We further note that ck, bk and nk in Problem P.4.5 are defined as,

ck := [c̄>1 , . . . , c̄
>
ns , c̄

>
0]>

bk := [b̄>1 , . . . , b̄
>
ns , b̄

>
0]>

nk := [n̄>1 , . . . , n̄
>
ns]
>

(4.34)

with c̄i, c̄0, b̄i, b̄0 and n̄i defined as above in Equation 4.33. Note that within these vector

definitions, k represents the SQP iterate, j represents the QP iterate and i represents the

particular period within the multiperiod formulation.

The solution efficiency of the QP subproblem, based on the multiperiod formulation of

Problem P.4.2, can be significantly improved through exploiting the formulation structure

given in Equation 4.29. This advantage is primarily achieved through the particular solution

approach used to solve the augmented system given by Equation 4.26. One approach that

128 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

has shown great promise for solving the augmented linear system is the explicit Schur-

complement decomposition, which has seen considerable application in the context large-

scale multiperiod uncertain design, multi-data set parameter estimation, and discretized

dynamic optimization formulations [10, 11]. This technique is able to break up the direct

factorization of Φ into several smaller independent steps, based on the permutation Φ 7→

PΦP−1, and thus facilitate the parallel solution of each subsystem and further reduce overall

memory requirements [14, 29]. The permuted system (equivalent to Equation 4.26) is

defined according to the double bordered diagonal structure given by Equation 4.35,

Φ1 B1

. . .
...

Φns Bns

B>1 · · · B>ns Φ0

︸ ︷︷ ︸

PΦP−1

∆w1

...

∆wns

∆w0

=

r1

...

rns

r0

(4.35)

where ∆wi := [∆d>i ,∆y>i]> represent the desired QP Newton direction for i = 0, . . . , ns,

with corresponding right-hand-side vectors given by,

ri := [(rdi + F>i V
[j]
i (S

[j]
i)−1(rvi − (V

[j]
i)−1rsi))

>, ry>i]> (4.36)

r0 := [rd>0 , ry>0]> (4.37)

The remaining matrix blocks are defined as,

Φi :=

Q̄i + Ḡ
[j]
i D>i

Di 0

 , Φ0 :=

Q̄0 D>0

D0 0

 , B>i :=

0 E>i

0 0

 (4.38)

Note that the permutation matrix P is used to illustrate the transformation of Equation 4.26

to Equation 4.35, and it is not explicitly defined or used within the linear algebra of the

transformation. Instead, within the algorithm implementation, an appropriate mapping is

performed to decompose the matrices in Equation 4.29 to those shown in Equation 4.38.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 129

The solution of this linear system proceeds in several steps [14, 37]. The first and most

computationally demanding step is to form the Schur-complement defined according to,

C := Φ0 −
ns∑
i=1

B>i Φ−1
i Bi (4.39)

which involves several smaller steps based on the individual contributions from B>i Φ−1
i Bi,

each of which can be computed in parallel. Following this, the Schur linear system is solved

in serial for ∆w0 according to,

C ∆w0 = r0 −
ns∑
i=1

B>i Φ−1
i ri (4.40)

where the contributions from each B>i Φ−1
i ri can be computed in parallel. Following this,

the second-stage linear systems for i = 1, . . . , ns, can be solved in parallel for each ∆wi

according to,

Φi∆wi = ri −Bi∆w0 (4.41)

A detailed account of the specified steps involved in solving Equations 4.39, 4.40 and 4.41

are highlighted in the following section.

4.3.4 Implementation Details

The proposed SQP-IPM algorithm was implemented in C++ using appropriate object-oriented

software design principles. Our implementation incorporates the QP solver OOPS and relies

heavily on the structured linear algebra classes within this package for all vector-matrix com-

putations [13, 14]. The particular IPM used in OOPS is a higher-order primal-dual technique

which follows a predictor-corrector algorithm [25]. Dynamic optimization formulations are

handled using the multiple-shooting discretization approach [38] whereby the embedded

integration tasks are performed using the ODE solver CVODES [24]. The chosen integration

routine provides the necessary parameter sensitivity computations, and using this informa-

130 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

tion the constraint Jacobian of Equation 4.2 is constructed. An illustrative algorithm for

the NLP solution with embedded ODE/DAE’s was previously provided in our work [39],

which we follow in this chapter with the exception that we now use an IPM QP solver and

a block-based BFGS update scheme according to Equation 4.17. This revised algorithm is

given in Algorithm 3 using the general notation of Problem P.4.3 where we highlight the

associated communication costs of the parallel implementation.

Algorithm 3 Parallel SQP algorithm using IPM decomposition for the QP
solution

1: set initial primal-dual point: x[0], λ[0], µ[0]

(vector/matrix memory stored based on structure, see [14])

2: evaluate initial function and derivatives:

f [0], h[0], g[0], ∇f [0], ∇h[0], ∇g[0]

(scalar f [0] incurs communication: MPI all-reduce)

(vector/matrix pieces evaluated on select processors)

3: set Lagrangian Hessian approximation: H[0] ← σI

repeat until termination criteria satisfied

4: check termination (possibly exit) via Eqns. 4.10–4.12

(norm calculation incurs communication: MPI all-reduce)

5: form QP approximation: c[k], b[k], n[k]

A[k] := ∇h[k], C[k] := ∇g[k], Q[k] := H[k]

(vector/matrix pieces evaluated on select processors)

6: compute Newton direction via IPM using OOPS

QP solver: d[k], y[k], v[k] (see [13, 14, 25])

7: compute step size α[k] via line search, Eqns. 4.4–4.7

(incurs communication: MPI all-reduce)

8: update primal-dual point: x[k], λ[k], µ[k]

9: update Lagrangian Hessian approximation H[k] via Eqns. 4.16–4.23

(matrix blocks H
[k]
i evaluated on select processors)

10: k ← k + 1

end

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 131

The software implementation is tailored to the distributed computing framework and makes

use of the message passing interface (MPI) for all parallel computation. Conceptually,

one can think of this as having several independent copies of the main program running

simultaneously (based on a number of defined processes) whereby certain computations

are simultaneously performed on select processes and then communicated to select or all

processes (e.g., MPI all-reduce calls, see [40]) as per the software design. The computation

aspects performed in parallel within our implementation, beyond the internal QP solution

handled by OOPS, include the matrix-vector computations within the line-search algorithm,

termination criteria norm calculations, all major SQP user-function evaluations, and the

BFGS evaluation. This is primarily achieved through the unique linear-algebra class design

within OOPS, which abstracts much of lower level MPI communications away from the user,

allowing for a rather straightforward user-level algorithm implementation.

To provide further insight on the parallel solution of the QP subproblem, we identify the key

steps in solving the augmented linear system given by Equation 4.35 according to Algorithm

4. We note that this particular parallelization approach is fairly well established and its

discussed, as well as some further improvements, by a number of independent research

groups (see, [10, 12, 37]). For the particular algorithm presented, we provide the following

remarks. The solution of the augmented linear system is performed in the usual two phase

procedure of factorization (Schur-complement formation) and back-solve. Steps 1 to 6

involve forming the Schur-complement C as per Equation 4.39 where: in step 1 Φi is

factorized for i = 1, . . . , ns (on each processor for a predefined scenario/block allocation)

using a modified Cholesky procedure into lower triangular Li and diagonal Di matrices; in

step 2 an intermediary matrix Vi is formed, which requires the solution of separate linear

system for each corresponding matrix column; in step 3 we form another intermediary

matrix Si, which is accumulated into S on each processor in step 4; next we form the

Schur-complement C on each processor in step 5, which is subsequently factored into L0

and D0 matrices in step 6. Note, the specific formation and factorization of C is done on

132 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

all processes (i.e., a potential serial bottleneck) through the appropriate communication of

each Si, or alternatively through a slightly modified scheme according to [37]. Next, a back

solve phase is performed in steps 7 to 14 in order to solve Equations 4.40 and 4.41. Steps 7

and 8 involve determining intermediary vectors zi and matrices Ti for i = 1, . . . , ns (on each

processor for a predefined scenario/block allocation), and step 9 accumulates Ti into T on

all processors. Note, steps 7 to 9 relate back to Equation 4.40 through the following relation

T :=
∑ns

i=1 V>i L−1
i ri ⇔

∑ns
i=1 B>i Φ−1

i ri. Steps 10 to 12 solve, in sequence, for intermediary

vectors z0, y0 and x0 on all processors, where this last vector x0 ≡ ∆w0 relates back to

the complete solution of Equation 4.40. Finally, in steps 13 and 14, the vectors yi and xi

are determined in sequence on each processor for a predefined scenario/block allocation.

Again, we note that this last vector xi ≡ ∆wi relates back to Equation 4.41. In this algorithm,

we represent the complete solution as [x0, . . . ,xns]
> ≡ [∆w0, . . . ,∆wns]

> for notational

convenience.

Implementation aspects unique to our approach are primarily related to the evaluation of

the user-supplied functions and derivatives, which based on Problem P.4.2, are performed

across several processes that govern the predefined location of each scenario/period group

(see [14] for a description of how the vector/matrices are allocated). The most expensive

computations in our implementation are associated with the evaluation of each ODE and

sensitivity system required to formulate Equation 4.2 and respective derivatives. In our

multiperiod multiple-shooting implementation (see, [39]), the equations/variables associated

with each period/scenario are grouped into so-called blocks (as defined by the user) where

each block is assigned to a particular computing process/processor. On each processor,

we further allocate separate memory associated with CVODES for the system of ODEs of a

single shooting interval and then reuse this memory to solve each successive ODE system for

the remaining shooting intervals. This is further repeated for each period/scenario within

each block, all of which occurs simultaneously across each defined processor. Thus, we

are parallelizing the solution of the defined block groups, as opposed to each integration

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 133

task. Accordingly, this leaves further possibilities for future work in terms of using shared-

memory OpenMP constructs for finer levels of parallelization associated with each block on

each computing node.

Algorithm 4 Parallel Schur-complement decomposition algorithm for linear IPM
augmented system: PΦP−1∆w = r

procedure {∆w0, . . . ,∆wns} ← SCHUR_SOLVE(Φ, r)

Schur-complement formation phase

1: factorize via modified Cholesky Φi → LiDiL
>
i for each i = 1, . . . , ns (on each process)

2: compute intermediary matrix Vi ← D−1
i L−1

i Bi for each i = 1, . . . , ns (on each process)

where each column j in Vi is determined by solving (LiDi) V<j>
i = B<j>

i

3: compute Si ← V>i DiVi for each i = 1, . . . , ns (on each process)

4: compute S←
∑ns
i=1Si (all-reduce communication from each process)

5: compute C← Φ0 − S (on all processes)

6: factorize via modified Cholesky C→ L0D0L
>
0 (on all processes)

Back-solve phase

7: solve Li zi = ri for each i = 1, . . . , ns (on each process)

8: compute Ti ← V>i zi for i = 1, . . . , ns (on each process)

9: compute T←
∑ns
i=1Ti (all-reduce communication from each process)

10: solve L0 z0 = r0 −T (on all processes)

11: solve D0 y0 = z0 (on all processes)

12: solve L>0 x0 = y0 (on all processes)

13: solve Di yi = zi for each i = 1, . . . , ns (on each process)

14: solve L>i xi = yi −Vi x0 for each i = 1, . . . , ns (on each process)

end procedure

4.4 Example Problems

To demonstrate the potential of our proposed SQP-IPM algorithm for tackling large-scale

multiperiod NLP formulations, we consider several example problems. The first example

aims to highlight the QP solution performance of OOPS on a constrained linear least-square

134 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

problem, the second example uses a static NLP representing an uncertain design formulation,

and the final example considers an uncertain dynamic optimization formulation using a

multiperiod multiple-shooting discretization approach. In these examples, the multiperiod

nature of the formulation is related to using either multiple data sets or multiple uncertain

parameter realizations. This data are then grouped into independent blocks which resemble

the form given in Equation 4.35. For example, if one generated 10 uncertain parameter

realizations, then they could be grouped into 2 blocks of 5 scenarios each, or 5 blocks with

2 scenarios each. In either case, we only parallelize based on the number of independent

blocks; however, the manner in which this grouping is performed can facilitate the assessment

of different scaling properties of the algorithm. These scaling/performance properties are

measured using strong and weak scaling metrics which are typically presented in the form

of speedup and efficiency. For strong scaling, these metrics are formed by measuring the

computation time to handle a fixed amount of work balanced over the available processors,

while increasing the number of processors (i.e., the work per process would decrease for

an increase in processors). In this manner, one would access the strong scaling of the

algorithm using the metrics of speedup defined as S := Tserial/Tparallel and efficiency as

E := Tserial/(Tparallel ·N), where N is the number of processors used, Tserial is the serial wall

clock time required to run the program, and Tparallel is the corresponding time using multiple

processors. Based on how parallelization is achieved within the algorithm, measuring

strong scaling requires changing the size of each block as processors are added so that

the overall problem size remains constant. The process of measuring weak scaling, on the

other hand, requires that the number of blocks used be increased in direct relation to the

number of processors. Therefore, for weak scaling, one defines the efficiency metric as

E := Tserial_one_unit/Tparallel_N_units, where Tserial_one_unit is the serial computation time for

a single unit of work (i.e., single block) and Tparallel_N_units is the parallel time for N units

of work (i.e., N blocks) using N processors, such that the units of work and processors are

increased in a one to one ratio.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 135

4.4.1 Example 1: Parameter Estimation

In this first example we consider a scalable demonstrative QP in the form of a constrained

linear least-squares multi-data-set parameter estimation problem, similar to that used in

Kang et al. [12]. The purpose here is to set the stage by providing a quantitative comparison

between IPMs that use a serial full-space factorization versus a serial and parallel Schur-

complement decomposition of the augmented system matrix. The IPM QP solver we selected

that uses a full-space factorization approach is OOQP [34], which further uses the linear

solver MA27 [41] and Gondzio’s modification to Mehrotra’s predictor-corrector algorithm (as

implemented therein). For the Schur-complement decomposition we utilize the solver OOPS

[14]. In order to provide a systematic comparison, we assess several scalability factors of

the QP algorithm by increasing the size of each data set ny and, independently, the number

of complicating model parameters np within the formulation. More specifically, for our

numerical experiments we consider a data set size (i.e., size of model response or data vector)

defined arbitrarily as ny = 2 · nq where nq represents the number of local model parameters

for each data set selected as nq = {5000, 50000}. The number of global model parameters to

be estimated from the combination of each data set are selected as np = {1000, 5000}, and

the number of independent data sets used is defined as ns = {2, 4, 8, 16}. The multi-data-set

parameter estimation formulation can be generally stated as,

min
zi ∀ i,p

∑ns
i=1

1
2‖yi − y∗i ‖22

st : yi −G qi = 0

M zi − p = 0

zi ∈ [zL, zU] , ∀ i = 1, . . . , ns

p ∈ [pL,pU]

(E.4.1)

where zi := [y>i ,q
>
i]> ∈ Rnz , nz = ny + nq, represent scenario-dependent parameters

(second-stage variables), p ∈ Rnp are common or complicating parameters (first-stage vari-

136 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

ables), and y∗i ∈ Rny represents a vector for the ith set of randomly generated measurement

data of dimension ny for i = 1, . . . , ns data sets. The coefficient matrix G ∈ Rny×nq is

arbitrarily defined as G := [T>, T>]> where T ∈ Rnq×nq is a tridiagonal matrix with

sub-diagonal and super-diagonal coefficient vectors of −1 and a diagonal coefficient vector

of 2. Furthermore, the mapping matrix M := [0np×ny , Inp ,0np×(nq−np)] is used to extract

the appropriate subset of linking parameters qi from zi, which are linked back to p. Note,

for this particular formulation nq > np. The primal variable initial guesses were set as

{z1, . . . , zns ,p} = 1, while the corresponding bounds were set as {zL,pL} = −10 and

{zU ,pU} = 10. This formulation can be written in standard QP form as per Problem P.4.5

and Equation 4.29 through the following definitions,

d := [z>1 , . . . , z
>
ns ,p

>]>

c := [−y∗>1 ,0>nq , . . . ,−y∗>ns ,0
>
nq ,0

>
np]
>, b := 0(ny+np)ns

Q := diag
(
Iny ,0nq×nq , . . . , Iny ,0nq×nq ,0np×np

)

A :=

D1 E1

. . .
...

Dns Ens

 , Di :=

Iny | −G

M

 , Ei :=

0ny×np

−Inp

(4.42)

where the data y∗i for each i = 1, . . . , ns was generated a priori by adding randomly generated

noise to a known model response yi. Note that to improve convergence of the QP, a small

constant regularization term (e.g., ε = 1 × 10−4, in our case) was added to zero diagonal

elements of Q such that all eigenvalues are strictly positive.

Figure 4.1 plots weak scaling results where the number of processors N are increased in

relation to the number of blocks (nb ≡ ns), such that a single scenario is assigned to each

block and each block is assigned to a dedicated processor. In Figure 4.1 (a) we plot the wall

clock time for each QP iteration versus the number of blocks used, which in the parallel case

is also the number of processors used. A comparison is shown between a serial full-space (FS)

factorization via MA27 within OOQP and serial and parallel Schur-complement decomposition

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 137

(SCD) as per OOPS. From this plot we see that the serial full-space factorization time grows

exponentially as the problem size increases, the serial Schur-complement decomposition time

grows almost linearly, while the parallel Schur-complement decomposition time remains

relatively constant. In Figure 4.1 (b) we show the weak scaling efficiency at two different

values of nq, which in both cases indicates a degradation in parallel performance from the

ideal value of one as we increase the number of blocks and processors. However, for the

larger value of nq the efficiency trends are generally improved, which can be attributed to

a decrease in communication overhead relative to computing time on each processor. The

overall declining efficiency behavior, in either case, is likely related to an inadequate balance

of work and resources when the number of blocks is increased in direct proportion to the

number of processors, as opposed to an alternative relation that maximizes processor loading,

thus creating a sense of under utilization. Furthermore, this could be attributed to a greater

influence of communication operations as the processors are increased.

2 4 8 16
0

2

4

6

Number of blocks / processors

W
al

lc
lo

ck
(s

ec
/i

te
r.) FS serial

SCD serial
SCD parallel

2 4 8 16
0

0.5

1

Number of blocks / processors

Ef
fic

ie
nc

y
(E

)

ideal efficiency
nq = 5000

nq = 50000

nq = 5000

(a) (b)

Figure 4.1: Example 1 – weak scaling results for increasing ns and processors

138 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Table 4.1: Example 1 – computation results for QP-IPM algorithm comparing increasing ns,
nq and np using full-space (FS) and Schur-complement decomposition (SCD) approaches

Problem Dimension FS (OOQP) SCD (OOPS)

np nq ns
? n † m ‡ #iter ∗ wcs / #iter ∗ wcs / wcp � S • E •

1 · 103 5 · 103

2 3.1 · 104 5.3 · 104 7 0.978 12 2.446 1.365 1.79 0.90

4 6.1 · 104 1.05 · 105 7 2.995 12 4.656 1.564 2.98 0.74

8 1.21 · 105 2.09 · 105 7 9.874 12 9.223 1.799 5.12 0.64

16 2.41 · 105 4.17 · 105 7 40.17 12 18.38 2.173 8.46 0.53

5 · 103 5 · 103

2 3.5 · 104 6.5 · 104 7 1.72 12 22.13 19.98 1.11 0.55

4 6.5 · 104 1.25 · 105 7 5.77 12 31.41 23.25 1.35 0.34

8 1.25 · 105 2.45 · 105 7 21.57 12 49.29 26.47 1.86 0.23

16 2.45 · 105 4.85 · 105 7 102.56 12 86.67 31.89 2.72 0.17

1 · 103 5 · 104

2 3.01 · 105 5.03 · 105 7 54.78 12 38.86 19.99 1.94 0.97

4 6.01 · 105 1.005 · 106 7 239.02 12 75.94 22.28 3.41 0.85

8 1.201 · 106 2.009 · 106 7 1497.10 12 153.17 25.94 5.90 0.74

16 2.401 · 106 4.017 · 106 7 7187.57 12 342.11 33.77 10.13 0.63

5 · 103 5 · 104

2 3.05 · 105 5.15 · 105 7 62.91 12 167.97 100.38 1.67 0.83

4 6.05 · 105 1.025 · 106 7 250.05 12 287.73 114.04 2.52 0.63

8 1.205 · 106 2.045 · 106 7 1642.94 12 566.67 128.48 4.41 0.55

16 2.405 · 106 4.085 · 106 7 7640.42 12 1121.78 171.87 6.53 0.41

? number of data sets ns = number of blocks nb; † number of variables: n = (ny + nq)ns + np;

‡ number of constraints: m = (ny + np)ns + n; ∗QP convergence tolerance 1 × 10−8;

/ total program serial wall clock time (seconds); � total program parallel wall clock time (seconds);

•weak scaling S = speedup and E = efficiency, both on a per QP iteration basis

Table 4.1 provides a more comprehensive display of timing results, where we assess the influ-

ence of increasing the size of each data set through nq, the number of complicating/global

parameters np and the number of scenario realizations ns (i.e., blocks – in this case). Key

observations are: (1) increasing nq for a fixed np creates larger blocks that can be solved with

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 139

an improved efficiency as ns is increased (i.e., greater processor utilization); (2) increasing

np, regardless of ns, creates a larger dense Schur-complement matrix C, as per Equation

4.39, which ultimately increases the time of the serial direct factorization and back solve

operations thus degrading parallel performance, as seen by the drop in efficiency. These

observations are generally well known in the literature, and exemplify the bottleneck in the

direct factorization of C when np becomes exceptionally large. An established remedy is the

use of an iterative conjugate gradient approach for the solution of the Schur-complement

system of Equation 4.39 which avoids direct factorization altogether [12].

2 4 8 16
0

5

10

15

Number of processors (N)

W
al

lc
lo

ck
(s

ec
/i

te
r.) nq = 5000

nq = 50000

2 4 8 16

2
4

8

16

Number of processors (N)

Sp
ee

du
p

(S
)

linear speedup
nq = 5000

nq = 50000

(a) (b)

Figure 4.2: Example 1 – strong scaling results for fixed ns = 16 and increasing processors

Next, we assess the strong scaling properties of OOPS, where we fix ns and nq and then

increase the number of processors N such that the number of blocks is kept evenly distributed

among each processor. Accordingly, as N is increased the number of blocks dedicated to

each processor decreases and thus the computational work per process decreases. The

consequence of decreasing the work load per processor is that communication overhead

can become more pronounced at higher processor numbers which will deteriorate parallel

performance. In Figure 4.2, we illustrate this parallel performance, considering processor

work loads of nq = {5000, 50000} where np = 1000, by plotting both the wall clock time

per QP iteration and speedup versus an increasing number of processors. As illustrated,

140 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

the speedup drifts from the ideal linear speedup at higher processor levels, and when the

work load is increased the influence of the associated parallel overhead and serial Schur-

complement formation/solution can be masked, thus allowing improved performance.

4.4.2 Example 2: Design Under Uncertainty

The next example considered formulates a multiperiod nonlinear program for design under

uncertainty. With this problem we seek to provide an initial assessment of our proposed

SQP-IPM algorithm using a significant number of scenario realizations evenly grouped into

blocks. The problem was adapted from Bhatia and Biegler [7] who use a serial reduced-

space SQP-IPM algorithm, and our purpose here is to use this benchmark formulation for

comparison to our parallel SQP-IPM implementation. The particular mathematical program

is written as,

min
zi ∀ i, p

p2 +
∑ns

i=1 αi exp(−y1,i)− 5 y2,i + y2
3,i

st : y1,i + βi y2
2,i − 2 y3,i − 5 qi − 2 = 0

− y2,i − γi y3,i + 0.1 q2
i ≤ 0

m>zi − p = 0

zi ∈ [zL, zU] , ∀ i = 1, . . . , ns

p ∈ [pL, pU]

(E.4.2)

where zi := [y>i , qi]
>, m ∈ Rnz is an appropriately defined mapping vector which extracts

qi ∈ R from zi; α ∈ [0.5, 10], β ∈ [1, 9.2], and γ ∈ [1, 8.5] represent uncertain parameters

which are generated a priori by sampling uniformly within the defined intervals. In this

formulation there is only one degree of freedom given by the design parameter p ∈ R, one

nonlinear equality and inequality constraint, respectively, and one linear linking constraint

per scenario. The primal variable initial guesses were set as {z1, . . . , zns ,p} = 1, while the

corresponding bounds were set as yL = 0, {qL,pL} = 1, yU = 3 and {qU , pU} = 50.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 141

Table 4.2: Example 2 – computation results for SQP-IPM algorithm comparing increasing ns
using full-space (FS) and Schur-complement decomposition (SCD) approaches

Problem Dimension FS (WORHP) SCD (OOPS)

ns
? nb

† ng
‡ n m #iter ∗ wcs #iter ∗ wcs wcp S • E •

10 2

5

51 30 6/42 0.011 29/305 0.24 0.25 0.96 0.48

20 4 101 60 10/63 0.027 53/537 0.79 0.51 1.56 0.39

40 8 201 120 9/77 0.044 41/416 1.08 0.45 2.41 0.30

80 16 401 240 18/83 0.113 44/486 2.85 1.08 2.63 0.16

100 2

50

501 300 7/110 0.125 7/61 0.64 0.47 1.36 0.68

200 4 1001 600 20/132 0.306 58/713 12.24 5.18 2.36 0.59

400 8 2001 1200 12/125 0.478 63/893 36.39 10.23 3.56 0.44

800 16 4001 2400 6/134 1.135 7/75 10.83 2.54 4.27 0.27

1000 2

500

5001 3000 9/128 1.153 12/156 21.92 11.98 1.83 0.91

2000 4 10001 6000 22/326 5.706 45/585 107.66 35.29 3.05 0.76

4000 8 20001 12000 10/210 9.609 41/492 229.21 42.78 5.36 0.67

8000 16 40001 24000 17/250 23.95 20/262 591.24 72.37 8.17 0.51

? number of scenario realizations; † number of blocks; ‡ number of scenarios per block; ∗major SQP

iter./minor QP iter. where SQP convergence tolerances are: {εopt, εfeas, εcomp} = {1×10−8, 1×10−8, 1×10−3};
• S = speedup and E = efficiency, both on a per SQP iteration basis

Table 4.2 provides an assessment of the SQP-IPM algorithm performance, where we consider

several different numbers of scenario realizations ns of increasing magnitude grouped

into blocks of nb = {2, 4, 8, 16} where each block is comprised of scenario groups of size

ng = {5, 50, 500}. Note, the chosen scenario groupings and the number of blocks used allow

each block to be stored and solved on each processor in a one to one relation. Additionally,

we list the NLP dimension in terms of the number of variables (n) and constraints (m)

and provide solution statistics based on the number of major SQP and minor QP iterations

(#iter), the serial (wcs) and parallel (wcp) wall clock times for the entire program to run and

speedup and efficiency statistics associated with the parallel implementation (based on the

142 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

average wall clock time for a single major SQP iteration, in order to normalize these statistics

for comparison purposes). Note, the manner in which we assess parallel performance in this

example is based on increasing both the number of processors and blocks in direct relation

and thus constitutes a weak scaling evaluation. In addition to providing timing statistics

of our SQP-IPM implementation (using OOPS), we also list serial computation statistics for

the commercial state-of-the-art SQP-IPM solver WORHP which uses the linear solver MA97 [27,

41]. It should be noted that this commercial solver performs much better in serial than

our proposed implementation and is equipped with many more features, such as warm

starting each successive QP and better recourse to QP infeasibility failures. However, our

intent here is not to directly compare this solver with our implementation and instead use

the serial WORHP solution timings as a benchmark for reference. Currently, our SQP-IPM

implementation does not warm start each QP, and as a result we see considerably more

minor QP iterations at a significantly greater computational expense than the WORHP solver.

Key observations from the results of our implementation include: (1) at high work loads of

ng = 500 scenarios per block/processor, the parallel computation time of each major SQP

iteration (for a simultaneous increase of processors and blocks given by nb = {2, 4, 8, 16})

is maintained relatively constant at Toops
parallel = {0.99, 0.78, 1.04, 3.62} seconds compared to

Toops
serial = {1.83, 2.39, 5.59, 29.56} seconds in serial, which translates to a parallel efficiency of

E = {0.91, 0.76, 0.67, 0.51}; (2) for lower values of ng and ns, where the NLP dimension is

rather small, performance is comparatively poorer; (3) through parallelization, for a ×100

increase in problem size using groups ng = {5, 500} (see the rows for ns = {80, 8000} and

the column for wcp in Table 4.2), the total program wall clock time increases by about ×67,

while in the purely serial case (see the respective rows and column wcs) the increase is

much larger at ×207. The postulated reason for the poorer parallel performance at smaller

NLP sizes (see the column labeled E for rows ng = 5 versus ng = 500) is that the serial

components of the algorithm (i.e., the line search algorithm highlighted in Equations 4.4 to

4.7 and termination criteria in Equations 4.10 to 4.12) are likely more dominant relative to

the parallel components.

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 143

2 4 8 16
0

10

20

30

Number of blocks / processors

W
al

lc
lo

ck
(s

ec
/i

te
r.) SCD serial

SCD parallel

2 4 8 16
0

0.5

1

Number of blocks / processors

Ef
fic

ie
nc

y
(E

)

ideal efficiency
ng = 5
ng = 50
ng = 500

ng = 500

(a) (b)

Figure 4.3: Example 2 – weak scaling results for increasing ns and processors

The weak scaling results are further plotted in Figure 4.3, where the time per major SQP

iteration and overall parallel efficiency are given for a simultaneous increase of blocks and

processors defined by N = nb = {2, 4, 8, 16}. Furthermore, for the parallel efficiency shown

in Figure 4.3 (b) we consider problem sizes described by ng = {5, 50, 500} and illustrate

an improved performance as ng increases. Ideally, we would like the efficiency to remain

constant at unity as we increase the number of blocks and available computing resources.

However, in the case of our implementation, we see a progressive decline in efficiency. It is

again postulated that this behavior is a result of communication overhead (mainly through

all-reduce MPI operations prior to evaluating the objective function) particularly within

the line search algorithm, which consequently becomes more pronounced when using higher

processor numbers.

4.4.3 Example 3: Dynamic Optimization Under Uncertainty

In our final example we consider a multiperiod dynamic optimization formulation for design

under uncertainty. The problem was again adapted from [7], however unlike the full

discretization approach used therein, we consider a multiple-shooting approach as per

Equation 4.2, which requires the solution of an embedded dynamic system in the form of

144 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

Equation 4.1. The design problem considers determining the shortest time-span given by tf

(design variable) in order to achieve a maximum yield of product xB(tf) from a batch reactor,

all while incorporating uncertainty within the reaction kinetics through the parameters

θ = [θ1, θ2]>. The multiperiod dynamic optimization formulation can be stated over a

normalized time horizon τ ∈ [0, 1] as,

min
tf , ui(τ) ∀ i

c1 t
c2
f −

∑ns
i=1 wi c0 xB,i(1)

st : ẋA,i(τ) = −[θ1,i ui(τ)θ2,i + ui(τ)]xA,i(τ) tf

ẋB,i(τ) = θ1,i ui(τ)xA,i(τ) tf

x{A,B},i(0) = x{A0,B0}

x{A,B},i(τ) ∈ [0, 1]

ui(τ) ∈ [0, 5], tf ∈ [0.5, 1.25] ∀ τ ∈ [0, 1], i = 1, . . . , ns

θ1 ∈ (0.45, 0.55), θ2 ∈ (2.15, 2.25)

(E.4.3a)

where the objective function represents the combined costs of the operation time and the

product revenue; the cost coefficients are defined as {c0, c1, c2} = {700, 50, 2}; the weights

associated with each scenario realization are given by wi = 1/ns. In the context of two-stage

stochastic programming, the variable tf represents the first stage decision, while the second-

stage decisions are given by the open-loop control action ui(τ) which provides compensatory

action to uncertainty within the uncertain θ parameter space. The fully discretized NLP

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 145

formulation can be further stated as,

min
tf , zi ∀ i

c1 t
c2
f −

∑ns
i=1 wi c0 s2,i,n

st : x0 − si,0 = 0

x(ti,j ; si,j−1, ui,j−1, qi)− si,j = 0

qi − tf = 0

si,j ∈ [0, 1], ui,j ∈ [0, 5]

{qi, tf} ∈ [0.5, 1.25]

∀ i = 1, . . . , ns, j = 1, . . . , n

(E.4.3b)

where si,j := [s1,i,j , s2,i,j]
> represent shooting node state parameters, ui,j are control param-

eters for a piecewise constant profile, x0 := [xA0, xB0]
> are specified initial conditions with

xA0 = 1 and xB0 = 0, and zi := [s>i,0, ui,0, . . . , s
>
i,n−1, ui,n−1, s

>
i,n, qi]

> represents a concatena-

tion of all scenario-related parameters. The embedded ODE solution at each shooting node

is represented by x(ti,j ; si,j−1, ui,j−1, qi), which is functionally dependent on shooting node

and local design parameters.

In this example, the performance of the SQP-IPM algorithm is further investigated where

a more in-depth analysis is performed on embedded model ODE formulations. Table 4.3 is

displayed in a similar manner to the previous example with similar connotations for each

column heading. In addition, we include the fraction of the total program wall clock time

spent solving the embedded ODEs, as represented by fem. Again, for reference purposes we

compare the Schur-complement SQP-IPM algorithm developed here to the full space SQP-IPM

solver WORHP. Considering several levels of scenario realizations ns = {100, 200, 400, 800}, the

serial wall clock time per major SQP iteration for WORHP is Tworhp
serial = {0.62, 0.99, 3.17, 4.38}

seconds, while that of our implementation run in serial is about 1.5 times greater at Toops
serial =

{0.67, 1.64, 4.46, 7.05} seconds. These results are expected given that the number of minor

QP iterations is over 2 times greater in our implementation. Now, if we consider using

146 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

N = nb = {2, 4, 8, 16} processors and blocks, the wall clock timings per iteration of our

implementation drop to Toops
parallel = {0.37, 0.47, 0.81, 1.06} seconds, which can be considered

a significant improvement over the full space approach, particularly when considering the

additional work incurred by neglecting the warm starting of each QP in our implementation.

This additional work is further manifested by an increased in-solver NLP time when compared

to the total ODE solution time. This is evident as the problem size grows and the fem

statistic decreases, which is primarily due to an increase in the total number of QP iterations

associated with our particular implementation and the additional communication overhead

as the number of blocks nb and processors N increase. If we compare our implementation

to the full space serial solver, results suggest that the fem should otherwise remain fairly

constant.

Table 4.3: Example 3 – computation results for SQP-IPM algorithm with embedded ODE
comparing increasing ns using full-space (FS) and Schur-complement decomposition (SCD)
approaches

Problem Dimension FS (WORHP) SCD (OOPS)

ns
? nb

† n � m neq
‡ #iter ∗ wcs fem #iter ∗ wcs fem wcp fem S • E •

100 2 7801 5300 5000 101/449 63.01 0.84 88/805 59.41 0.64 32.96 0.72 1.80 0.90

200 4 15601 10600 10000 177/589 175.62 0.84 121/1175 198.07 0.54 58.07 0.67 3.41 0.85

400 8 31201 21200 20000 102/439 323.80 0.87 164/1874 731.12 0.43 132.03 0.52 5.54 0.69

800 16 62401 42400 40000 51/154 223.18 0.85 75/874 529.83 0.36 79.80 0.46 6.64 0.41

? number of scenario realizations; † number of blocks (ng = 50 scenarios per block);

‡ total number of embedded ODEs (2 per (j, i)) with number shooting intervals n = 25;

� total number of NLP variables; ∗major SQP iter./minor QP iter. where SQP convergence tolerances are:

{εopt, εfeas, εcomp} = {1× 10−6, 1× 10−8, 1× 10−3}; • S = speedup and E = efficiency, both on a per SQP

iteration basis

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 147

2 4 8 16
0

0.2

0.4

0.6

Number of blocks / processors

W
al

lc
lo

ck
(s

ec
/q

p
it

er
.)

SCD serial
SCD parallel

2 4 8 16
0

0.5

1

Number of blocks / processors

Ef
fic

ie
nc

y
(E

) ideal efficiency

2 4 8 16
0

2

4

6

8

Number of blocks / processors

W
al

lc
lo

ck
(s

ec
/i

te
r.) ODE time (s)

NLP time (s)

2 4 8 16

2
4

8

16

Number of processors N

Sp
ee

du
p

(S
)

linear speedup
ns = 800

(a) (b)

(d)(c)

ODE time (p)
NLP time (p)

Figure 4.4: Example 3 – (a)–(c) weak scaling results for increasing ns and processors; (d)
strong scaling speedup for fixed ns = 800 and increasing processors

Figures 4.4 (a) to (c) provide a visual assessment of weak scaling performance, while Figure

4.4 (d) gives strong scaling speedup results. In Figure 4.4 (a), the wall clock time is broken

down based on the time per QP iteration, where the parallel time only slightly increases when

both the number of blocks nb and processors N are increased simultaneously. Figure 4.4 (b)

provides the corresponding parallel efficiency, and is observed to decrease with an increase in

nb/N, which ideally should remain constant. However, for the same reasons in the previous

examples (serial and communication overhead) we did not observe this ideal situation within

our implementation. One approach to curb this declining performance would be to increase

the amount of work per processor; however, the better approach would be to re-examine or

148 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

re-design the particular communication calls used in the implementation to limit the overhead

as much as possible. Figure 4.4 (c) provides a further comparison of the wall clock times,

on a major iteration basis, where the timings are broken down into the ODE solution time

and in-solver NLP time. As evident, we observe a speedup of SODE = {1.6, 2.75, 4.54, 5.16}

for the ODE solution and SNLP = {2.29, 4.75, 6.58, 7.95} for the in-solver NLP computations,

which together produce an overall parallel efficiency of E = {0.90, 0.85, 0.69, 0.41}. As a

final analysis, we consider the strong scaling performance in Figure 4.4 (d), where the

problem size is kept constant at ns = 800 and the number of processors is increased such

that the number of blocks remain evenly balanced on each processor. As evident, we see a

significant degradation in speedup at the higher processor levels, which again is related to a

combination of decreased work and increased communication overhead.

4.5 Concluding Remarks

In this chapter, we have proposed and demonstrated an SQP algorithm for solving large-scale

NLP formulations that is capable of exploiting the structure of the formulation and thus

facilitate the parallelization of the underlying linear algebra within the algorithm. The

algorithm was applied to two NLP formulations, one of which was a discretized uncertain

dynamic optimization formulation that utilized a combined multiperiod multiple-shooting

discretization approach. Our SQP implementation utilized an existing parallel IPM QP solver

that was designed for the distributed computing paradigm using the message passing interface

(MPI), and to this we added an appropriate globalization technique via a quadratic line search

method and block-wise BFGS quasi-Newton update method. The parallel performance of the

algorithm was assessed considering weak and strong scaling indicators and results suggest

good scalability if the processor work load is significantly more dominant than the combined

aspects of the parallel communication overhead and serial computation within the algorithm.

The current quasi-Newton approach used herein is based on updating dense block matrices,

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 149

which can be quite expensive for large blocks. Future work will consider a block-wise BFGS

update using a limited memory implementation [32], which is more appropriate for large-

scale models; a feasibility restoration phase to handle infeasible QPs; further investigation

of different MPI communication protocols within the line search and function evaluation

routines to limit the associated parallel overhead and resulting performance degradation; an

investigation of fine-grain parallelization using OpenMP constructs when solving the embedded

ODEs/DAEs over each shooting interval; and additional applications that specifically consider

the use of large-scale DAE process models.

List of References

[1] F. Allgower et al. “Nonlinear Predictive Control and Moving Horizon Estimation – An

Introductory Overview”. In: Advances in Control. Ed. by P. M. Frank. Springer, 1999,

pp. 391–449 (cit. on p. 110).

[2] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on stochastic programming:

Modeling and Theory. 2nd. SIAM, 2014 (cit. on pp. 110, 113).

[3] J. S. Logsdon, U. M. Diwekar, and L. T. Biegler. “On the simultaneous optimal design

and operation of batch distillation columns”. In: Chemical Engineering Research and

Design 68.5 (1990), pp. 434–444 (cit. on p. 111).

[4] T. K. Bhatia and L. T. Biegler. “Dynamic Optimization for Batch Design and Scheduling

with Process Model Uncertainty”. In: Industrial & Engineering Chemistry Research 36.9

(1997), pp. 3708–3717 (cit. on p. 111).

[5] D. K. Varvarezos, L. T. Biegler, and I. E. Grossmann. “Multiperiod design optimization

with SQP decomposition”. In: Computers & Chemical Engineering 18.7 (1994), pp. 579–

595 (cit. on pp. 111, 114).

150 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

[6] R. A. Bartlett and L. T. Biegler. “QPSchur: A dual, active-set, Schur-complement

method for large-scale and structured convex quadratic programming”. In: Optimiza-

tion and Engineering 7.1 (2006), pp. 5–32 (cit. on p. 111).

[7] T. K. Bhatia and L. T. Biegler. “Multiperiod design and planning with interior point

methods”. In: Computers & Chemical Engineering 23.7 (1999), pp. 919–932 (cit. on

pp. 111, 116, 121, 124, 140, 143).

[8] D. J. Ternet and L. T. Biegler. “Interior-point methods for reduced Hessian successive

quadratic programming”. In: Computers & Chemical Engineering 23.7 (1999), pp. 859–

873 (cit. on p. 111).

[9] J. Albuquerque et al. “Interior point SQP strategies for large-scale, structured process

optimization problems”. In: Computers & Chemical Engineering 23.4-5 (1999), pp. 543–

554 (cit. on pp. 111, 116, 122).

[10] V. M. Zavala, C. D. Laird, and L. T. Biegler. “Interior-point decomposition approaches

for parallel solution of large-scale nonlinear parameter estimation problems”. In:

Chemical Engineering Science 63.19 (2008), pp. 4834–4845 (cit. on pp. 111, 128, 131).

[11] D. P. Word et al. “Efficient parallel solution of large-scale nonlinear dynamic opti-

mization problems”. In: Computational Optimization and Applications 59.3 (2014),

pp. 667–688 (cit. on pp. 111, 128).

[12] J. Kang et al. “An interior-point method for efficient solution of block-structured

NLP problems using an implicit Schur-complement decomposition”. In: Computers &

Chemical Engineering 71 (2014), pp. 563–573 (cit. on pp. 111, 131, 135, 139).

[13] J. Gondzio and A. Grothey. “Parallel interior-point solver for structured quadratic pro-

grams: Application to financial planning problems”. In: Annals of Operations Research

152.1 (2007), pp. 319–339 (cit. on pp. 111, 129, 130).

[14] J. Gondzio and A. Grothey. “Exploiting structure in parallel implementation of interior

point methods for optimization”. In: Computational Management Science 6.2 (2009),

pp. 135–160 (cit. on pp. 111, 112, 128–130, 132, 135).

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 151

[15] J. Gondzio and A. Grothey. “Solving non-linear portfolio optimization problems with

the primal-dual interior point method”. In: European Journal of Operational Research

181.3 (2007), pp. 1019–1029 (cit. on p. 111).

[16] A. Domahidi et al. “Efficient interior point methods for multistage problems arising

in receding horizon control”. In: Decision and Control (CDC), 2012 IEEE 51st Annual

Conference on. Dec. 2012, pp. 668–674 (cit. on p. 112).

[17] J. V. Frasch, S. Sager, and M. Diehl. “A parallel quadratic programming method for

dynamic optimization problems”. In: Mathematical Programming Computation 7.3

(2015), pp. 289–329 (cit. on p. 112).

[18] I. D. Washington and C. L. E. Swartz. “Multi-Period Dynamic Optimization for Large-

Scale Differential-Algebraic Process Models under Uncertainty”. In: Processes 3.3

(2015), pp. 541–566 (cit. on p. 112).

[19] J. Kang et al. “Nonlinear Programming Strategies on High-Performance Computers”.

In: IEEE Conference on Decision and Control. Osaka, Japan, 2015 (cit. on p. 113).

[20] V. Sakizlis, J. D. Perkins, and E. N. Pistikopoulos. “Recent advances in optimization-

based simultaneous process and control design”. In: Computers & Chemical Engineering

28.10 (2004), pp. 2069–2086 (cit. on p. 113).

[21] D. Navia et al. “A comparison between two methods of stochastic optimization for

a dynamic hydrogen consuming plant”. In: Computers & Chemical Engineering 63

(2014), pp. 219–233 (cit. on p. 113).

[22] R. Huang and L. T. Biegler. “Robust nonlinear model predictive controller design based

on multi-scenario formulation”. In: Proceedings of the 2009 Conference on American

Control Conference. ACC’09. 2009, pp. 2341–2342 (cit. on p. 113).

[23] S. Lucia et al. “Handling uncertainty in economic nonlinear model predictive control:

A comparative case study”. In: Journal of Process Control 24.8 (2014), pp. 1247–1259

(cit. on p. 113).

152 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

[24] A. C. Hindmarsh et al. “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equa-

tion Solvers”. In: ACM Transactions on Mathematical Software 31.3 (2005), pp. 363–

396 (cit. on pp. 116, 129).

[25] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997 (cit. on pp. 116, 124,

129, 130).

[26] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd. Springer, 2006 (cit. on

pp. 116, 118, 119, 121, 122).

[27] C. Buskens and D. Wassel. “The ESA NLP Solver WORHP”. In: Modeling and Optimiza-

tion in Space Engineering. Ed. by G. Fasano and J. D. Pinter. Vol. 73. Optimization and

Its Applications. Springer, 2013, pp. 85–110 (cit. on pp. 116, 118, 119, 124, 142).

[28] B. Sachsenberg and K. Schittkowski. “A combined SQP-IPM algorithm for solving

large-scale nonlinear optimization problems”. In: Optimization Letters 9.7 (2015),

pp. 1271–1282 (cit. on p. 116).

[29] C. D. Laird and L. T. Biegler. “Large-Scale Nonlinear Programming for Multi-scenario

Optimization”. In: Modeling, Simulation and Optimization of Complex Processes. Ed. by

H. G. Bock et al. Springer Berlin Heidelberg, 2008, pp. 323–336 (cit. on pp. 116, 128).

[30] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP algorithm for large-scale

constrained optimization”. In: SIAM Review 47.1 (2005), pp. 99–131 (cit. on p. 119).

[31] M. J. Tenny, S. J. Wright, and J. B. Rawlings. “Nonlinear Model Predictive Con-

trol via Feasibility-Perturbed Sequential Quadratic Programming”. In: Computational

Optimization and Applications 28.1 (2004), pp. 87–121 (cit. on p. 121).

[32] R. H. Byrd, J. Nocedal, and R. B. Schnabel. “Representations of quasi-Newton matrices

and their use in limited memory methods”. In: Mathematical Programming 63.1-3

(1994), pp. 129–156 (cit. on pp. 122, 149).

[33] J. Gondzio. “Interior point methods 25 years later”. In: European Journal of Operational

Research 218.3 (2012), pp. 587–601 (cit. on p. 124).

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 153

[34] E. M. Gertz and S. J. Wright. “Object-oriented software for quadratic programming”. In:

ACM Transactions on Mathematical Software 29.1 (2003), pp. 58–81 (cit. on pp. 124,

135).

[35] A. Altman and J. Gondzio. “Regularized symmetric indefinite systems in interior point

methods for linear and quadratic optimization”. In: Optimization Methods and Software

11.1-4 (1999), pp. 275–302 (cit. on p. 125).

[36] M. P. Friedlander and D. Orban. “A primal-dual regularized interior-point method for

convex quadratic programs”. In: Mathematical Programming Computation 4.1 (2012),

pp. 71–107 (cit. on p. 125).

[37] C. G. Petra et al. “An Augmented Incomplete Factorization Approach for Computing

the Schur Complement in Stochastic Optimization”. In: SIAM Journal on Scientific

Computing 36.2 (2014), pp. C139–C162 (cit. on pp. 129, 131, 132).

[38] H. G. Bock and K. J. Plitt. “A Multiple Shooting Algorithm for Direct Solution of

Optimal Control Problems”. In: Ninth IFAC World Congress. Budapest, 1984 (cit. on

p. 129).

[39] I. D. Washington and C. L. E. Swartz. “Design under uncertainty using parallel multi-

period dynamic optimization”. In: AIChE Journal 60.9 (2014), pp. 3151–3168 (cit. on

pp. 130, 132).

[40] P. S. Pacheco. Parallel Programming with MPI. San Francisco, CA, USA: Morgan

Kaufmann, 1996 (cit. on p. 131).

[41] HSL. A collection of Fortran codes for large scale scientific computation. 2015. URL:

http://www.hsl.rl.ac.uk/ (cit. on pp. 135, 142).

http://www.hsl.rl.ac.uk/

Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks . 155

5.2 Future Work . 157

In this final chapter, the main contributions of this thesis are summarized and further

directions are noted.

5.1 Concluding Remarks

In this work, we investigated an approach for solving stochastic dynamic optimization

formulations using modern computational tools and algorithms which specifically utilized

parallel computing approaches.

In Chapter 2, we proposed a multiperiod optimization approach for stochastic dynamic

optimization formulations and demonstrated a prototype solution algorithm. Our focus here

was on demonstrating potential algorithm performance improvement through parallelization

where we targeted improving the speedup of the embedded dynamic model solution. Our

approach specifically handles explicit ordinary differential equation (ODE) model represen-

tations and our applications were related to the integration of process systems design and

control. The dynamic optimization application was to simultaneously determine economically

optimal design/operation costs and control performance through the selection of optimal

design parameters subject to closed-loop control profiles and parametric uncertainly within

input disturbances. We addressed several computational performance aspects that arise when

using multiperiod multiple-shooting dynamic optimization discretizations, in particular the

exponential increase in computing requirements that occurs when increasing the granularity

155

156 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

of the discretization.

In Chapter 3, we extended our contributions made in Chapter 2 to include model repre-

sentations given by semi-explicit differential-algebraic equations (DAEs). Furthermore, our

intended applications and model representations were of a large-scale nature, which required

the re-development of our proposed multiperiod multiple-shooting dynamic optimization

algorithm presented in Chapter 2, into a more appropriate software tool written in C/C++

that utilized appropriate OpenMP complier constructs for parallel computing. Additionally,

we investigated the use of second-order parameter sensitivity methods for generating ex-

plicit Lagrangian Hessian representations typically used in NLP algorithms that utilize exact

second-order information. To demonstrate the performance of our parallel multiperiod

multiple-shooting dynamic optimization tool we considered a large-scale air separation prob-

lem where the objective was to determine a robust open-loop control profile for transitioning

the plant between two operating points, subject to uncertainty in the underlying plant model.

A key result of the investigation was that the solution time of the embedded dynamic model

within the overall nonlinear programming implementation was dramatically reduced, so

much so that the computation bottleneck shifted to the interval in-solver NLP computation

within the chosen active-set reduced SQP algorithm. Consequently, this result suggested

a switch from an active-set method to an interior-point solution approach within the SQP

algorithm.

In Chapter 4, we developed and investigated an SQP algorithm that incorporates an interior-

point method for the solution of each quadratic programming (QP) subproblem. Our

proposed approach was able to efficiently decompose and solve in parallel large-scale multi-

period nonlinear programming formulations with embedded dynamic model representations.

Our SQP algorithm development was performed in C++ using the MPI library and additionally

utilized an existing interior-point QP solver, to which we added several components making

up the complete SQP algorithm. Several examples were used to assess the algorithms’

parallel performance, which indicated a significant time reduction within the solution of the

I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering) 157

algorithms’ linear algebra with relatively good parallel scalability.

Ultimately this thesis has demonstrated progress towards using parallel computing techniques

for solving large-scale multiperiod approximations to stochastic dynamic optimization formu-

lations. Throughout the project several pieces of software were written that resulted in a

multiperiod dynamic optimization tool and additionally a standalone nonlinear programming

solver. The first tool uses OpenMP parallelization for solving the embedded ODE/DAE model

with a multiple-shooting discretization, the second tool uses the MPI library for parallelizing

the solution blocks of scenario groupings within the linear algebra of an NLP solver.

5.2 Future Work

Aspects for further work are noted as follows,

• The application of our developed software tools within model-based control and

estimation studies which explicitly account for uncertainty as approximated through

the multiperiod approach.

• The SUNDIALS ODE/DAE solvers used within the proposed multiperiod multiple-

shooting algorithm were not utilized with the currently available OpenMP or MPI

features. Thus, further parallelization aspects within the underlying linear algebra

within these solvers could be investigated without much effort.

• The addition of several algorithmic aspects to the developed SQP-IPM algorithm which

would allow greater recourse to potential algorithm failures when applied to difficult

NLP problems and facilitate the application to larger formulations.

• Further investigation within our SQP-IPM algorithm to solving multiperiod multiple-

shooting dynamic optimization formulations where the solution of the embedded

dynamic model is parallelized using OpenMP constructs while the solution of the NLP

158 I.D. Washington, Ph.D. Thesis (McMaster University, Chemical Engineering)

utilizes MPI. This hybrid approach would allow the embedded model solution to be

evaluated using considerably more processors/threads than that needed for each block

of the Schur-complement decomposition; thus, facilitating a greater utilization of

parallel computing within the overall solution algorithm.

	Introduction
	Motivation and Goals
	Main Contributions
	Dynamic Optimization under Uncertainty
	Dynamic Optimization Solution Approach
	Intended Applications
	Thesis Outline

	A Parallel Implementation for Multiperiod Dynamic Optimization of ODE Systems
	Introduction
	Dynamic Multiperiod Optimization
	Proposed Solution Framework
	Example Problems
	Concluding Remarks
	Evaporator Model Equations
	Distillation Model Equations
	References

	A Parallel Implementation for Multiperiod Dynamic Optimization of Large-Scale DAE Systems
	Introduction
	Problem Statement
	Proposed Solution Approach
	Example Problems
	Concluding Remarks
	Air Separation Model Equations
	References

	Towards a Structure Exploiting Parallel NLP Algorithm for Multiperiod Dynamic Optimization
	Introduction
	Problem Formulation
	Proposed Solution Algorithm
	Example Problems
	Concluding Remarks
	References

	Conclusions and Future Work
	Concluding Remarks
	Future Work

