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Abstract 

           The operative deformation mechanisms which include both dislocation slip and 

twinning have a significant impact on the mechanical response of hexagonal close-packed 

(HCP) metals. Twinning plays an important role in accommodating plastic deformation 

due to the limited number of independent slip systems in HCP metals. The objective of 

this research is to study the deformation mechanisms associated with twinning in HCP 

metals (magnesium and zirconium alloys).    

         Heat treatments are often involved in the manufacturing of zirconium alloys. These 

alloys exhibit a strong thermal anisotropy with a thermal expansion coefficient along the 

c-axis nearly two times of that along a-direction. Therefore, residual stresses/strains are 

generated during the heat treatment process which influences the mechanical response 

(e.g. lattice evolution) under subsequent loading. The elastic viscoplastic self-consistent 

(EVPSC) model has been improved which includes thermal strain to study the behavior 

of a Zircaloy-2 slab under moderately large strains. Various self-consistent schemes 

(SCSs) of the EVPSC model are evaluated in terms of the deformation behavior of the 

material under different uniaxial strain paths. Numerical results show that the Affine and 

Meff=0.1 self-consistent models give much better performance for the Zircaloy-2 slab 

than the Secant and Tangent models. 

        The EVPSC-TDT model has been employed to mimic the twinning and detwinning 

behavior of extruded Mg alloy ZK60A under monotonic and cyclic loading. The model 

differentiates between the stress required to initiate twinning and that required to grow 
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(thicken) existing twins. This enables the model to simulate the unusual sharp yielding 

behavior during twinning as well as the gradual yielding associated with detwinning. It is 

demonstrated that this model gives a good prediction of the strength anisotropy, strength 

asymmetry, and strain hardening behavior along different directions, for cases in which 

the contribution of twinning is large, small and intermediate. For the first time, the lattice 

strain evolution is well predicted in an extruded magnesium alloy under cyclic loading 

which involves twinning and detwinning. 

         In all polycrystal models, an empirical equation for the termination of twinning in a 

grain is required. A new physics-based empirical equation for describing this 

phenomenon in magnesium alloys has been proposed in this study. It should be noted that 

the popular empirical equation currently used in all polycrystal models is applied at the 

grain level, while the new empirical equation is introduced at the twinning system level. 

The new description is represented by a single parameter while the commonly used 

empirical equation depends on two parameters. It is demonstrated that the proposed 

empirical equation is easily calibrated with the single parameter and is able to accurately 

simulate the experimentally observed rapid hardening associated with twinning 

exhaustion. 
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 1 

Chapter 1. General introduction 

1.1 Background 

        Magnesium has the lowest density of all structural metals. As a consequence, 

magnesium alloys have great potential in applications where weight reduction is essential. 

The automotive industry is particularly interested in magnesium and its alloys due to the 

pressure to reduce greenhouse gas emissions through vehicle weight reduction. Table 1.1 

shows the physical properties of magnesium, aluminum and steel. 

Table 1.1 Physical properties of Mg, Al and Iron (Kulekci, 2008) 
Property Magnesium Aluminum Iron 

Crystal structure HCP FCC BCC 

Density at 20oC (g/cm3) 1.74 2.70 7.86 

Coefficient of thermal expansion 

20-100 oC (10-6/ oC) 
25.2 23.6 11.7 

Elastic modulus (GPa) 44.126 68.947 206.842 

Tensile strength (MPa) 240 (for AZ91) 320 (for A380) 350 

Melting point (oC) 650 660 1.536 

Other advantages of magnesium materials include high specific strength, good 

castability and weldability as well as improved corrosion resistance (Mordike and Ebert, 

2001). However, the poor formability at room temperature and high cost during high-

temperature manufacturing significantly restrict its use in a wide range of applications. 

The main reason for the poor ductility of magnesium is related to the low symmetry of the 

hexagonal-close-packed (HCP) crystal structure. In recent years, numerous studies have 
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been carried out by researchers from industrial and scientific communities with the 

objective to improve the ductility of these alloys (Kubota et al., 1999; Mukai et al., 2001; 

Agnew et al., 2004; Agnew et al., 2006a; Foley et al., 2011; Rosalie et al., 2012; 

Sandlöbes et al., 2014; Kumar et al., 2015). Nevertheless, the fundamental deformation 

mechanisms of magnesium alloys have not been clearly understood, so further efforts are 

required to advance magnesium technology.  

     Zirconium is known as a material with high corrosion-resistance and low neutron 

absorption. The corrosion-resistance of zirconium is directly related to the impurity 

content of the material. As the purity of zirconium based materials increases the 

corrosion-resistance decreases. With the development of nuclear industry, zirconium 

alloys (for example zircaloy-2, zircaloy-4) have become popular structural materials used 

in pressure tubes and thin-walled tubing. These alloys have excellent corrosion-resistance 

due to their compositions which consists of impurity elements such as tin, iron, chronium 

and nickel (Murty and Charit, 2006). The compositions of zircaloy-2 and zircaloy-4 are 

listed in Table 1.2. In addition, the zirconium alloy, Zr-2.5Nb, has been applied in 

medical applications such as knee and hip replacements due to its excellent wear 

resistance (Nomura, 2015). 

Table 1.2 Compositions of zircaloy-2 and zircaloy-4 

Alloy 
Mean composition in weight % 

Sn Fe Cr Ni 
Zircaloy-2 1.50 0.12 0.10 0.05 
Zircaloy-4 1.50 0.22 0.10 N/A 
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Zirconium alloys also have a HCP crystal structure for a large range of temperatures, 

existing as an alpha phase which exhibits strong anisotropy in its thermal, elastic and 

plastic properties. The thermal expansion coefficient along the c-axis is nearly two times 

of that along a-direction, which makes it more sensitive to temperature variation than 

magnesium alloys. The elastic constants of zirconium alloys are often assumed to be the 

same as those of the single crystal. The anisotropy associated with the elastic properties 

of zirconium is more obvious than magnesium, which may be regarded as isotropic in 

many situations. Intensive studies on zirconium alloys have been found in literature due 

to its importance in the nuclear industry and its potential in medical applications 

(Zaimovskii, 1978; Northwood et al., 1975; Griffiths, 1988; Griffiths et al., 1995; Lee et 

al., 2001; Cox, 2005; Straumal et al., 2012; Sarkar et al., 2014; Trivedi et al., 2015). 

However, a thorough understanding of the deformation mechanisms for this alloy system 

has not been achieved due to the strong intrinsic anisotropy in elasticity, thermal 

expansion, and plasticity. 

1.2 Deformation modes in HCP metals 

Slip and deformation twinning are two major deformation modes which can 

accommodate plastic deformation in HCP metals. Slip can be considered as blocks of 

crystal sliding over one another along definite crystallographic planes (slip planes). Slip 

occurs when the resolved shear stress reaches a critical value in a specific slip system and 

the atomic displacements are often larger than the lattice spacing. The deformation 

induced by slip causes the lattice to reorient in a gradual manner. 
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Six types of slip systems have been observed in HCP metals, which are listed in 

Table 1.3. The first two types can provide four independent slip systems, which are 

equivalent as those offered by pyramidal <a> slip. These four independent slip systems 

are not enough to accommodate an arbitrary deformation according to the Von Misses 

criterion (Taylor, 1938). Thus, one of the <c> or <c+a> slip systems which can 

accommodate deformation along the c-axis is required to satisfy the Taylor criterion. 

However, these types of slip systems are very difficult to activate at room temperature 

due to their relatively high values of critical resolved shear stress (CRSS). In this case, 

tensile twinning is a significant alternative deformation mode in HCP metals to 

accommodate the deformation along the c-axis at room temperature.  

Table 1.3  Independent slip systems in HCP metals (Partridge, 1967) 
Slip 

system 
Burgers 
vector 

Slip 
direction 

Slip 
plane 

No. of slip systems 
Total Independent 

1 a  11 20   {0001}  3 2 

2 a  11 20   {10 10} 3 2 

3 a  11 20   {10 11}  6 4 
4 c a  11 23   {11 22} 6 5 
5 c  0001   {10 10} 3 2 

6 c  0001   {11 20}  3 2 

Deformation twinning is caused by a small uniformly distributed shear component 

imposed on a specific plane, which causes a sudden reorientation of the parent lattice by 

atom displacements. The lattice in the twinned region is a mirror representation of that in 

the matrix. 
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A twin can be described by four elements (Figure 1.1): the first undistorted plane 1K , 

the direction of shear 1 , the second undistorted plane 2K , and 2 . The plane 1K  is the 

twin plane and remains unchanged during twinning, the shear direction of 1  that lies in 

the plane 1K  is the direction where twinning occurs. The plane 2K  is displaced to '
2K  by 

the twinning shear . 2  and '
2  are the lines of intersection of the shear plane (normal to 

1K  and 2K ) with plane 2K  and '
2K , respectively. A specific twinning mode will be 

defined when the four elements are fixed. The magnitude of the twinning shear   is 

given by 

      2cot(2 )   (1.2.1) 

The magnitude of the twinning shear   for a specific twinning mode is determined 

by the ratio c a  (Mathewson and Phillips, 1928). The most predominant twinning mode 

for most HCP materials at room temperature is {1012} 1011   twinning and the 

twinning shear   for this mode can be written as   

        acca 3//3   (1.2.2) 

For magnesium (zirconium) with c a =1.624 (1.593), this type of twinning is called 

"extension" twinning which elongates the c-axis. The extension twinning results in a 

shear of 0.129 (0.168) and a lattice reorientation of approximately 86.3º (85.2º). It should 

be noted that if 3/ ac as in cadmium and zinc, this twinning mode activates under a 

compressive stress along the c-axis and is named as "contraction" twinning. The 



 6 

schematic representation for the shape changes produced by tensile twinning is illustrated 

in Figure 1.2. 

2 2
o 1K

1

2K
2

s '
2K

'
2

 
Figure 1.1 Crystallographic elements of twinning (Partridge, 1967) 
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1
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'
2
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3a

c


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Figure 1.2 Shape changes produced by tensile twinning (Partridge, 1967) 

        The commonly observed deformation modes (Yoo, 1981; Partridge, 1967) in 

Magnesium at room temperature are: basal slip {0001} 1120  , prismatic a   

( {10 10} 1120  ), pyramidal a   ( {10 11} 1120  ), pyramidal c a    
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({1122} 1123  ) slips, and tensile twinning {10 12} 10 11   as well as compressive 

twinning{10 11} 10 12  . The primary slip system of magnesium is the basal slip which 

is the glide along the closed-packed direction (<a>) and on the most closed-packed plane 

( (0002) plane) due to its lower CRSS than other slip systems. The compressive twinning 

and pyramidal c a    slip are much harder than the basal slip and tensile twinning at 

room temperature. Ward Flynn et al (1961) concluded that the prismatic a   is more 

important than pyramidal a   slip. In addition, as pointed by Agnew et al. (2001), the 

deformations and crystallographic textures induced by  pyramidal a  slip could be 

resulted from a combination of basal slip a   and prismatic a   slip. Therefore, 

pyramidal a   slip is often not included in the crystal-based plastic analysis. Figure 1.3 

presents the frequently observed deformation modes in magnesium at room temperature. 
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(a) Basal a  slip 

{0001} 11 20   

(b) Prismatic a  slip 

{10 10} 11 20   

(c) First order pyramidal a  or 
c a   slip 

{10 11} 11 20  or 
{10 11} 11 23   

  
(d) Second order 

pyramidal c a   slip 

{11 22} 11 23   

(e) Tensile twinning 
{10 12} 10 11   

(f) compressive twinning 
{10 11} 10 12   

  

Figure 1.3 Frequently observed deformation modes in magnesium at room temperature 
(Partridge, 1967; Staroselsky, 1998) 

 

For zirconium and its alloys, prismatic a   slip ( {1010} 1120  ) is the main 

deformation mechanism for a large range of temperatures (Akhtar, 1975; Rapperport and 

Hartley, 1960). Other observed deformation modes at room temperature include 

pyramidal <a> ( {1011} 1120  ), basal ( {0001} 1120  ), pyramidal <c+a> 

( {1011} 1123   or {1122} 1123  ), tensile twinning ( {10 12} 10 11   or 

{1121} 1126  ), and compressive twinning ( {10 11} 10 12   or {1122} 1123  ) 
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(Ballinger et al, 1984; Martin and Reed-Hill, 1964; Numakura et al, 1991; Rapperport and 

Hartley, 1960).  Murty and Charit (2006) reported that the operable twinning modes are 

dependent on the type of loading: {10 12} 10 11  twins are more likely to be activated 

than {1121} 1126  twins under tension along the c-axis, {1122} 1123  twins are 

dominant during compressive loading, and {10 11} 10 12   twins are observed at high 

temperatures. A schematic of these twinning mechanisms is presented in Figure 1.4 

(Tenckhoff, 1988). There are some disagreements in literature about the evidence of basal 

slip or pyramidal <a> slip at room temperature due to the difficulty in unambiguously 

identifying the slip plane by transmission electron microscopy observations. Martin and 

Reed-Hill (1964) reported slip markings near the basal plane trace in polycrystalline 

zirconium samples deformed at room temperature. Some researchers included basal slip 

as an active slip mode in crystal plasticity analysis of zirconium alloys (Castelnau et al, 

2001; Francillette et al, 1998; Xu et al, 2008a), while Philippe et al (1988) and Tome et al 

(1991) preferred to include pyramidal <a> slip as an alternative in their analysis to basal 

slip in order to improve agreement with experimental data. Recently, Knezevic et al. 

(2013) revealed anomalous basal slip activity in zirconium under high strains and 

concluded that basal slip is an important deformation mechanism in Zr at room 

temperature under high to severe strain-deformation conditions. Table 1.4 lists the 

deformation modes employed by several typical research organizations for the numerical 

analyses of zirconium alloys based on different crystal plastic models. 
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Figure 1.4 Schematic of twinning systems in zirconium (Tenckhoff, 1988) 
 
 

Table 1.4 Deformation modes used for numerical simulation based on crystal plastic 
models at room temperature 

 
Prismatic a   

{10 10} 11 20   
Basal a   

{0001} 11 20 

Pyramidal c a    
{10 11} 11 23   

Tens. 
twinning 

{10 12} 10 11 

LPMTM-CNRS, 
Universite Paris 

(a,b) 
√ √ √ √ 

LANL(c,d) √  √ √ 
Queen’s 

University (e,f) 
√ √ √ √ 

LANL, Los Alamos National Laboratory;  
a. (Castelnau et al., 2001); b. (Francilliette et al., 1998) ; c. (Tome et al., 2001); d. (Proust et al., 
2007); e. (Xu et al., 2008b) ; 
f. (Mareau and Daymond, 2010) 
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1.3 CRSS for slip and twinning 

 

     The well-known Schmid law (Schmid, 1931) states that plastic deformation occurs 

when the shear stress on a specific slip system reaches a critical value. This value is 

called the critical resolved shear stress (CRSS) of the slip system. Considering a bar 

under uniaxial load with a given slip pane and slip direction (Figure 1.5), the resolved 

shear stress (RSS) on the plane along the direction can be given by;    

                                                   )cos( )cos(                                              (1.3.1) 

where   is the angle between the tensile axis and the normal to the slip plane,   is the 

angle between the tensile axis and the slip direction, and )cos( )cos(   is the so called 

Schmid factor. Therefore, the slip will occur when the RSS  reaches the CRSS c . 

 
Figure 1.5  A uniaxial loaded bar with given slip plane and slip direction. 

       It is generally accepted that the CRSS criterion (Schmid law) is acceptable for 

dislocation slip in FCC and HCP metals, although a breakdown of the Schmid law has 

been reported for BCC metals (e.g. Duesbery and Vitek., 1998; ITO, 2001; Vitek et al., 
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2004; Groger and Vitek, 2005). Furthermore, the Schmid law has introduced controversy 

in the literature related to twin nucleation. Bell and Cahn (1957) observed a large scatter 

in CRSS for zinc single crystals which suggested that there is no single CRSS existing for 

twinning. Some researchers reported evidence in support of the hypothesis that in metal 

crystals mechanical twinning starts when the resolved shear stress on the twinning plane 

along the twinning direction reaches a critical value (Thompson and Millard, 1952; Chin 

et al., 1969; Gharghouri et al, 1999). In general, the CRSS criterion has been used by 

researchers for most analytical/numerical studies on plastic deformation associated with 

slip and twinning in HCP metals.  

       CRSSs for polycrystals must be derived indirectly through polycrystalline modeling 

using an inverse approach (Agnew et al., 2006b; Herrera-Solaz et al., 2014), since the 

manufacturing of single crystals of many alloys to allow measurement of the CRSSs is 

either very difficult or in some cases impossible. Furthermore, the observed CRSSs 

required for polycrystals will be different from those found in a single crystal due to the 

interactions of the dislocations with grain boundaries (Xu et al., 2008a). 

        Lou et al. (2007) summarized CRSS values reported from Mg and its alloys 

containing aluminum and zinc solutes (Table 1.5). For Mg and Mg-Zn, the single-crystal 

data shows that basal slip has the lowest CRSS, twinning has a CRSS 2-4 times larger 

than basal slip, and prismatic slip has a relatively large CRSS. The CRSS values reported 

for polycrystalline AZ31 and AZ61 are fitted by polycrystal calculations in order to 

match the macroscopic response, or obtained using in situ neutron diffraction 

measurements (Gharghouri, 1997; Brown, 2005). Xu et al. (2008b) summarized CRSS 
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values for Zircaloy-2 and reported the approximate ranges for prismatic <a>, basal <a>, 

and pyramidal <c+a> slips as well as tensile twining: 12090 Pr
0    MPa, 

240120 0  bas MPa, 340240 0  Pyr MPa, and 280180 0  tt MPa. It is clear that the 

scatter is quite large for both Mg and Zirconium alloys. 

Table 1.5 Critical resolved shear stresses (CRSS) reported for Mg and its Al-Zn alloy 
(Lou et al., 2007). 

Metals Conditions CRSSbasal CRSStwin CRSSprism CRSStwin/ CRSSprism/
  (MPa) (MPa) (MPa) CRSSbasal CRSSbasal 
Mg SC 0.81a;0.76b; 2f 39.2g 2.5-4.4 48-87 
  0.45c;0.65d;     
  0.52e     
Mg 0.5 
at. Pct 
Zn 

SC      

AZ31B PC,VPSC,XRD 45i 15i 110i 0.33i 2.4i 
 PC,EPSC,ND 10j 30j 55j 3j 5.5j 
 PC,Taylor,XRD    2k 1-2.4k 
 PC,TEM     1.1l 
 PC,ND,Schmid 

factor 
 25-35m    

AZ61 PC,XRD     1.5-2n 
Mg 7.7 
at. Pct 
Al 

PC,ND  65-75o    

SC, single crystal; PC, polycrystal; XRD, X-ray diffraction; ND, neutron diffraction; 
VPSC, visco-plastic self-consistent model; EPSC, elasto-plastic self-consistent model; 
Taylor, Taylor model. 

a. Schmid (1931). 
b. Bakarian and Mathewson (1943). 
c. Burke and Hibbard (1952). 
d. Hsu and Cullity (1954). 
e. Conrad and Robertson (1957). 
f. Reed-Hill and Robertson (1957a, b); 

Miura (2004). 
g. Reed-Hill and Robertson (1957a, b). 

h. Miura (2004). 
i. Agnew (2002). 
j. Agnew et al. (2003). 
k. Styczynski et al. (2004). 
l. Koike et al. (2003). 
m. Brown et al. (2005). 
n. Koike and Ohyama (2005). 
o. Gharghouri (1997). 
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       It is commonly accepted that a much higher local stress is needed to nucleate a twin 

than that for the twin to propagate and grow. The surface to volume ratio is very high 

when the twin is nucleated. A high surface to volume ratio will induce a high shear stress 

(Hosford, 1993). Thus, a fine grain size will result in a higher shear stress for nucleation. 

The interaction mechanisms between slip and twin modes as well as factors affecting the 

twinning stress have been thoroughly reviewed by Christian and Mahajan (1995). 

1.4 Detwinning in HCP metals 

        In addition to slip and twinning, detwinning is another important deformation 

mechanism which accommodates plastic deformation in HCP metals. The phenomenon of 

detwinning has been known for many years (Obreimov and Startsev, 1959; Cooper, 1962). 

Indeed, detwinning of martensite is one of the key mechanisms upon which the shape 

memory phenomenon is built (see Miyazaki et al. 1989a, 1989b; Liu and Xie, 2003). In 

short, detwinning is actually twinning of the twinned region back into the orientation of 

the parent material from which it came. Twins can disappear or contract under reverse 

loading or unloading through detwinning. Figure 1.6 clearly shows the twinning and 

detwinning behavior in a Mg single crystal under cyclic tension and compression applied 

in the [0001] direction (Yu et al., 2011). In addition, intensive experimental studies on the 

deformation mechanisms associated with the twinning and detwinning behavior of 

magnesium alloys have been found in literature (Gharghouri et al., 1999; Cáceres et al., 

2003; Kleiner and Uggowitzer,  2004; Brown et al., 2007; Lou et al., 2007; Wu et al., 

2008a, 2008b; Proust et al., 2009; Hong et al., 2010b; Wu et al., 2012; Yu et al., 2012; 
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Chapuis et al., 2014a; Morrow et al., 2014a; Sarker and Chen, 2014). In contrast, for 

zirconium and its alloys, the experimental studies on detwinning behavior are sparse. 

Proust et al. (2010) observed the detwinning behavior in high purity Zr under reversal 

loading based on in-situ neutron diffraction experiments. Kapoor et al. (2014) studied the 

effect of strain rate on twinning in an extruded Zr alloy under uniaxial compression along 

extrusion direction and concluded that the decrease of twin volume fraction in Stage B 

with an increasing strain hardening rate may be caused by detwinning.   

 

Figure 1.6 Stress-strain hysteresis loop and corresponding in-situ observation by light 
microscopy (Yu et al., 2011) 

 
       Partridge (1965) indicated that the stress required for detwinning is less than that for 

twinning nucleation and larger than that for twin growth during the study of cyclic 

twinning in HCP metals. Acoustic emission (AE) technology is used by material 

scientists to monitor the deformation process accompanied by plastic deformation, 
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fracture and phase transformations to provide further insights on these phenomena (Yudin 

and Ivanov, 1985). This technology has been used to study the deformation mechanisms 

of magnesium alloys (Chmelik et al., 2002; Bohlen et al., 2004; Lamark et al., 2004; Lou 

et al., 2007; Lu et al., 2008; Muránsky et al., 2010a). Two types of signals can be 

distinguished in AE analysis which consist of burst and continuous signals. A burst AE 

signal is associated with twin nucleation while a continuous one is related to dislocation 

slip. Lou et al. (2007) suggested that twinning required nucleation events detectable with 

AE signal while the shrinkage of twins (detwinning) was not accompanied by a 

significant AE signal. In addition, they established that the activation stress for twinning 

is larger than that for detwinning due to the need for nucleation. It has been demonstrated 

by (Muránsky et al., 2010a) that the coupled AE technique with in-situ neutron diffraction 

facilitates the distinction between twin nucleation and twin growth. These authors 

concluded that a sudden stress relaxation (stress drop) is associated with twin nucleation. 

Furthermore, they established that collaborative twin nucleation in many grains 

dominates yielding in fine-grained alloys, while twin nucleation is progressive over a 

larger strain range in coarse-grained alloys. Barnett and Muránsky and their coworkers 

have systematically studied the effects of grain size on the twinning process in wrought 

Mg alloys (Barnett et al., 2004, 2012, 2013; Muránsky et al., 2010a, 2010b). 

          To better characterize the deformation mechanisms associated with twinning, some 

researchers in the mechanics community have attempted to implement the effect of stress 

relaxation into crystal plasticity models. Beyerlein and Tomé (2010) and Mu et al. (2014) 

employed two different CRSSs for twin nucleation and growth with the CRSS for 
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nucleation being larger than the CRSS for growth. Clausen et al. (2008) incorporated the 

stress relaxation associated with twin propagation in the Elastic Plastic Self-Consistent 

(EPSC) model based on a Finite Initial Fraction (FIF) approach. In this research, the 

EVPSC-TDT model is used with different values between the stress required to initiate 

twinning and that required to grow (thicken) previously existing twins in order to mimic 

the deformation behavior of Mg alloy ZK60A under cyclic loading. It is also 

demonstrated that this enables the model to simulate the unusual stress-strain hysteresis 

behavior during twinning (e.g., sharp yielding behavior) as well as that of detwinning 

(characterized by quite gradual yielding). The CRSSs associated with twin nucleation, 

twin growth, and detwinning will also be discussed. These details will be reported in 

Chapter 3. 

1.5 Constitutive models for polycrystalline materials 

        Plastic deformation behavior in metals is often modeled using two major approaches. 

One is polycrystal plasticity modeling which considers the polycrystalline material as a 

composite composed of many grains with different orientations; the other is 

phenomenological modeling which is based on the observed macroscopic deformation 

behavior. For the latter approach, the plastic deformation can be characterized by 

proposing an appropriate yield criteria, flow rule and hardening law. In this section, a 

polycrystal modeling approach based on the crystal plastic finite element method is 

included in an independent subsection 1.5.3. The equilibrium and compatibility 
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throughout the polycrystalline aggregate can be naturally accommodated in a weak finite 

element sense which is different from the other homogenized polycrystal models. 

1.5.1 Phenomenological models 

       Crystallographic plasticity modelling is based on the microscopic deformation 

mechanisms of materials. With the initial crystallographic texture and hardening 

parameters set as inputs for the various deformation modes, the material anisotropy and 

yielding asymmetry are natural outputs. However, the so called phenomenological model 

is based on the observed macroscopic deformation behavior of materials and the plastic 

deformation can be characterized in terms of the stress/strain tensors as well as their 

invariants. The most common phenomenological theory for elastic-plastic deformation of 

metals is the Prandtl-Reuss flow theory with isotropic hardening based on the von Mises 

yield criterion. Based on such isotropic phenomenological models, various anisotropic 

phenomenological models have been proposed to describe the plastic anisotropy in cubic 

metals (Hill, 1948; Barlat et al., 1991; Barlat et al., 1997; Cazacu and Barlat, 2001, 2003). 

However, these models have been challenged by the strong strength differential (SD) 

effect observed in HCP metals where twinning is to be activated under favorable loading 

conditions and hence causes strong yielding asymmetry in tension and compression. To 

characterize the SD effect, the first method is to develop anisotropic continuum 

phenomenological models by adding stress invariants into the existing anisotropic yield 

functions. Hosford (1966) modified Hill's (1948) yield criterion by adding linear stress 

terms. A third invariant of stress deviator was added into an orthotropic yield surface by 
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Cazacu and Barlat (2004, 2006) and Plunkett et al. (2008). The other method is to 

introduce initial translation of yield surface by assuming a non-zero back stress in a 

combined isotropic-kinematic hardening model (Yoon et al., 1998; Li., 2006; Lee et al., 

2008). Besides the yielding asymmetry and plastic anisotropy, unique hardening behavior 

associated with twinning and untwinning can be found in magnesium alloys under 

complex loading conditions such as reverse and cyclic loading. To mimic such unique 

hardening behavior, the two/multi-yield surface modeling approach has been proposed 

where separate hardening laws will be used for twinning, untwinning and slip modes (Lee 

et al., 2008; Li et al., 2010; Kim et al., 2013; Nguyen et al., 2013; Muhammad et al., 

2015).  

        In summary, the phenomenological models are computationally time-efficient and 

easier to implement into commercial finite element software for industrial applications; 

however, these models could not track the texture evolution and correctly describe the 

microscopic mechanical responses in grain level. 

1.5.2 Polycrystal models 

     Various polycrystal plasticity models have been developed in literature to describe the 

deformation mechanisms for polycrystalline materials. Among them, the most popular 

ones are the Taylor model (Taylor, 1938), the Sachs model (Sachs, 1928), and the Self-

consistent model (Molinari et al., 1987; Lebensohn and Tomé, 1993; Turner and Tomé, 

1994). The Taylor model assumes that all grains must accommodate the same plastic 

strain equal to the macroscopically imposed strain. With the iso-strain assumption, the 
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compatibility of deformation is satisfied while equilibrium amongst grains is violated 

which may cause unrealistic stress concentrations in some cases. The Taylor assumption 

is reasonable for materials with a mildly anisotropic plastic response. Therefore, it works 

well for face centered cubic (FCC) and body centered cubic (BCC) materials having high 

crystallographic symmetries. The Sachs model assumes that each grain in the 

polycrystalline aggregate is under a uniform stress and equal to the macroscopic stress. 

Under this assumption, adjacent grains in the aggregate will deform independently which 

will cause some gaps or overlaps at grain boundaries. The Sachs model is suitable for 

aggregates with soft grains and is commonly called the lower bound model in comparison 

to the upper bound Taylor model. The self-consistent approach (Kroner, 1958; Hill, 1965; 

Hutchinson, 1976) has proven to be more suitable than the classic Taylor model for 

modeling the mechanical behavior of HCP polycrystals (MacEwen et al., 1989; Wang et 

al., 2010b). In self-consistent models, all grains with the same orientation are treated as a 

single inclusion embedded in a Homogenous Effective Medium (HEM), which is the 

aggregate of all inclusions. Grain interaction is captured indirectly through the 

interactions of the inclusions with the HEM using the Eshelby inclusion formalism 

(Eshelby, 1957). The macroscopically imposed stress and strain coincide with the 

corresponding averages for the aggregate without imposing equal strains (or stresses) for 

all the grains.  

        Among the self-consistent models reported in the literature, the visco-plastic self-

consistent (VPSC) model proposed by Molinari et al. (1987) and extended by Lebensohn 

and Tomé (1993) is the most popular one. The VPSC model has been employed to 
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investigate the deformation behavior of HCP materials (Lebensohn et al., 1996; Agnew 

and Duygulu, 2005; Jain and Agnew 2007; Proust et al., 2007, 2009; Xu et al., 2009; 

Wang et al., 2010b; Hutchinson et al., 2012; Steglich et al., 2012; EI Kadiri et al., 2013a; 

Oppedal et al., 2013; Kabirian et al., 2015).  Turner and Tomé (1994) proposed an elasto-

plastic self-consistent (EPSC) model.  The EPSC model works only for small deformation 

and earlier EPSC models did not include texture evolution associated with slip or 

twinning. The model has been employed to investigate the deformation mechanisms of 

HCP metals via the interpretation of elastic lattice strain results (Agnew et al., 2003; 

Agnew et al., 2006b; Muransky et al., 2008; Xu et al., 2008b).  Clausen et al. (2008) 

extended the EPSC model by including texture development and stress relaxation due to 

twinning, while Neil et al. (2010) developed a large strain EPSC model to approximately 

account for the kinematics of large strain, rigid body rotations, texture evolution and grain 

shape evolution. Mathis et al. (2015) employed such models to study the effect of loading 

mode on the evolution of  the deformation mechanisms in randomly textured magnesium 

polycrystals. Recently, based on the framework of EPSC model, Zecevic et al. (2015) 

proposed a multi-scale EPSC model with hardening based on dislocation density, 

twinning and detwinning. However, the rate-insensitive character of the constitutive law 

upon which the EPSC model is based prevents us from addressing strain rate-sensitivity, 

and the experimentally observed stress relaxation and creep associated with finite hold 

times for acquisition of lattice-strain data.  

          Wang et al. (2010a) developed a finite strain Elasto-Viscoplastic Self-Consistent 

(EVPSC) model for polycrystalline materials. The proposed EVPSC model is a general 
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rate-sensitive self-consistent polycrystal plasticity model valid at arbitrarily large 

deformations. The EVPSC model has been successfully applied to analyze the 

deformation mechanisms of HCP metals (Wang et al., 2010b, 2010c, 2010d, 2011, 2012a; 

Guo et al., 2013; Qiao et al., 2015a). A twinning and detwinning model (TDT) has been 

proposed by Wang et al. (2012b, 2013a) and implemented into the EVPSC model, 

referred to as EVPSC-TDT. The EVPSC-TDT model has been applied to simulate the 

deformation mechanisms associated with the twinning/detwinning behavior for HCP 

metals under monotonic/cyclic loading (Wang et al., 2013c, 2015; Lee et al., 2014; Wu et 

al., 2014; Wang et al., 2015; Guo et al., 2015a, 2015b; Qiao et al., 2015b). Recently, Wu 

et al. (2015) proposed a new constitutive model to describe twin nucleation, propagation 

and growth (TNPG) for magnesium crystals. The TNPG model has been implemented 

into the EVPSC model and is able to capture key macroscopic features associated with 

twin nucleation, propagation and growth observed experimentally. 

         As mentioned above, the self-consistent scheme assumes each grain as an 

ellipsoidal inclusion embedded in a homogeneous effective medium. The Eshelby (1957) 

inclusion formulism is used to describe the interaction between the grain and aggregate. 

However, to apply the inclusion theory, it is necessary to linearize the elastic/visco-plastic 

constitutive response. Various SCSs have been evaluated by Wang et al. (2010b) through 

the study of the deformation behavior of a magnesium alloy AZ31B sheet under different 

uniaxial strain paths. The VPSC model was used to evaluate each scheme and the authors 

concluded that the Affine scheme gave the best overall performance among the self-

consistent schemes (SCSs) examined for the AZ31B magnesium alloy. Due to the 
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differences in the operative deformation mechanisms between magnesium and zirconium 

alloys, one question arises: which self-consistent scheme is best for zirconium alloy (e.g. 

zircaloy-2). To answer the question, an evaluation of various SCSs for zirconium alloys 

will be one focus of this research and details will be reported in Chapter 2. 

1.5.3 Crystal plasticity finite element method 

       Crystal plasticity finite element method (CPFEM) is another important alternative 

modeling method to investigate the deformation mechanisms of HCP metals, where both 

equilibrium and compatibility throughout the polycrystalline aggregate can be naturally 

accommodated in a weak finite element sense. In CPFEM simulations, the constitutive 

response at an integration point can be described by a single crystal or polycrystal 

constitutive model. The CPFE method using a polycrystal constitutive description at each 

integration point has been employed to study the deformation behaviour of HCP metals 

(see e.g., Tomé et al., 2001; Segurado et al., 2012; Herrera-Solaz et al., 2014). For the 

CPFE analysis with the single crystal constitutive model at each integration point, an 

element of the FE mesh represents a single crystal or a part of a single crystal. Based on 

the seminal work by Staroselsky and Anand (1998) and Kalidindi (1998), much of the 

progresses in the application of such CPFE models for the study of deformation 

mechanisms in HCP metals have been made in literature (Wu et al., 2007; Graff et al., 

2007; Mayama et al., 2009; Choi et al., 2011; Hama and Takuda, 2011, 2012; Hama et al., 

2013; Zhang and Joshi, 2012; Abdolvand and Daymond, 2011, 2012, 2013a, 2013b; 

Abdolvand et al., 2015). 
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1.6 Incorporation of twinning into crystal plasticity 

An important aspect associated with various crystal plasticity models in the analyses 

for HCP materials is how to incorporate a reorientation scheme for deformation twinning 

into the constitutive model. Several methods for the incorporation of twinning have been 

proposed in literature (Van Houtte et al., 1978; Tomé et al., 1991; Kalidindi, 1998; Wang 

et al., 2012b, 2013a). 

In Van Houtte's approach (Van Houtte et al., 1978), the decision to re-orient the grain 

was based on the increments of the twin volume fractions in a given time-step 

independent of the previous deformation history, such that the selected orientation may 

not be the most dominant one. Tomé et al. (1991) proposed a predominant twin 

reorientation (PTR) scheme which rectified the above deficiency of Van Houtte’s 

approach. In the PTR scheme, twinning is treated as a pseudo slip and the evolution of 

twin volume fraction in a grain is tracked during the analysis. Once the accumulated twin 

volume fraction of all twin variants reaches a threshold, the grain will be reoriented 

according to the most predominant twin system. Kalidindi (1998) proposed a new 

approach to incorporate twinning as an additional mode of plastic deformation. The 

original multiplicative decomposition of the deformation gradient (Asaro and Rice, 1977) 

was utilized but the plastic part of the deformation gradient was extended to include 

deformation twinning. The same deformation gradient was applied on both the twinned 

and untwinned (matrix) regions. The orientation of all possible twins in the twinned 

region was determined according to the initial orientation of the untwinned region (matrix) 
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at the beginning of analysis. With further straining twinning volume fraction is 

transferred between the matrix and twins. The proposed TDT model (Wang  et al., 2012b, 

2013a) employed a similar twin reorientation scheme as the Kalidindi's approach. 

However, in the TDT model, twins are treated as new grains and there are no deformation 

constraints applied among the matrix and the twins.  

        In all of the approaches mentioned, a threshold value of twin volume fraction should 

be employed to prevent grains from twinning in their entirety, since this is rarely 

experimentally observed. Once the accumulated twin volume fraction of the grain reaches 

the threshold value, the grain will re-orientate itself (PTR scheme) or cease the transfer of 

twin volume fraction among matrix and twins (TDT and Kalidindi's approaches). In this 

research, a new physics-based empirical equation for the threshold value of twin volume 

fraction is proposed. The details will be reported in Chapter 4. 
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Chapter 2. Evaluation of elastic-viscoplastic self-consistent polycrystal 
plasticity models for zirconium alloys 

2.1 Introduction 

         Due to the variety of slip and twinning systems typically active in Hexagonal-Close-

Packed (HCP) crystals, aggregates of HCP crystals often show strong anisotropic 

mechanical behavior. As a result, the predicted overall mechanical response of a 

polycrystal depends strongly on how the various slip and twinning systems are activated 

and evolve with deformation in different grain orientations, and is thus very sensitive to 

the homogenization method used in the model. The wide variation in grain response in 

HCP metals such as zirconium and its alloys provides an excellent opportunity to evaluate 

various homogenization methods used in models of polycrystal plasticity.   

        Different homogenization schemes have been employed to model polycrystal 

plasticity. The self-consistent approach (Kroner, 1958; Hill, 1965; Hutchinson, 1976) has 

proven to be more suitable than the classic Taylor model (Taylor, 1938) for modeling 

mechanical behavior of HCP polycrystals (see e.g. MacEwen et al., 1989 and Wang et al., 

2010a). In self-consistent models, all grains with the same orientation are treated as a 

single inclusion embedded in a Homogenous Effective Medium (HEM), which is the 

aggregate of all inclusions. Grain interaction is captured indirectly through the 

interactions of the inclusions with the HEM using the Eshelby inclusion formalism 

(Eshelby, 1957). The macroscopically imposed stress and strain coincide with the 

corresponding averages for the aggregate without imposing equal strains (or stresses) for 
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all the grains. Among the self-consistent plasticity models, the Elasto Plastic Self-

Consistent (EPSC) model (Turner and Tomé, 1994), the Visco-Plastic Self-Consistent 

(VPSC) model (Molinari et al., 1987; Lebensohn and Tomé, 1993) and the Elastic-

Viscoplastic Self-Consistent (EVPSC) model (Wang et al., 2010b) have been successfully 

employed to simulate the deformation behavior of HCP polycrystals (Agnew and 

Duygulu, 2005; Clausen et al., 2008; Hutchinson et al., 2012; Muránsky et al., 2008, 2009; 

Neil and Agnew, 2009; Oppedal et al., 2013; Xu et al., 2008b, 2009; Turner et al., 1995; 

Wang et al., 2010c, 2010d, 2011, 2012a, 2012b, 2013b, 2013c; Wu et al., 2012; Guo et al., 

2013; Qiao et al., 2015b).  It is now generally accepted that the numerical results are very 

sensitive to the stiffness of the grain-matrix interaction associated with different Self-

Consistent Schemes (SCSs). Various SCSs have been evaluated by Wang et al. (2010b) 

through the study of the deformation behavior of a magnesium alloy AZ31B sheet under 

different uniaxial strain paths. It was found that the Affine self-consistent scheme gave 

the best overall performance among the SCSs examined.   

        In the nuclear industry, zirconium alloys (for example Zircaloy-2, Zircaloy-4 and Zr-

2.5Nb) are used for pressure tubes and for thin-walled fuel cladding (Murty and Charit, 

2006). Single phase zirconium alloys have an HCP crystal structure over a wide 

temperature range (alpha phase) and exhibit strong anisotropy in thermal, elastic and 

plastic properties. The thermal expansion coefficient along the c-axis is nearly twice that 

along the a-axis, resulting in strong thermal intergranular residual stresses after cooling 

from an elevated temperature. The elastic properties of alpha-zirconium are also 

anisotropic. The most readily activated slip mode in alpha-zirconium and its alloys over a 



 28 

wide temperature range is prismatic a   slip {10 10} 1120  . Zirconium alloys have 

been extensively studied experimentally in terms of stress-strain behavior, evolution of 

texture, and evolution of internal elastic strain (Francillette et al., 1998; Castelnau et al., 

2001; Tomé et al., 2001; Proust et al., 2007; Xu et al., 2008b, 2008c, 2009).  

       For Zr alloys, the EPSC model is usually used to study lattice strain evolution at 

relatively small strains, while the VPSC model has been most frequently applied to study 

the stress-strain response, texture evolution and R-value. However, the EPSC model 

works only for small deformation and earlier EPSC models did not include texture 

evolution associated with slip or twinning reorientation. Clausen et al. (2008) extended 

the EPSC model by including texture development and stress relaxation due to twinning, 

while Neil et al. (2010) developed a large strain EPSC model to approximately account 

for the kinematics of large strain, rigid body rotations, texture evolution and grain shape 

evolution. However, the rate-insensitive character of the constitutive law upon which the 

EPSC model is based prevents us from addressing strain rate-sensitivity in general, and 

the experimentally observed stress relaxation and creep associated with finite hold times 

for acquisition of lattice-strain data. Such macroscopic relaxation and creep can only be 

accounted for using a rate-sensitive elastic-plastic model.  

Mareau and Daymond (2010) proposed an Elasto-Viscoplastic Self-Consistent 

(EVPSC) model to study the development of lattice strains in a moderately textured 

Zircaloy-2 slab. However, their EVPSC model is applicable only to small deformations. 

The large strain EVPSC model developed by Wang et al. (2010a) is a completely general 

elastic-viscoplastic, fully anisotropic, self-consistent polycrystal plasticity model, 
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applicable to large strains and to any crystal symmetry. The EVPSC model has been used 

to study lattice strain evolution in magnesium alloys (Wang et al., 2012a) and stainless 

steels (Wang et al., 2013b). Very recently, Lee et al. (2014) applied the EVPSC model to 

understand the deformation mechanisms during loading and unloading under uniaxial 

tension in a solid-solution-strengthened extruded Mg-9wt.%Al alloy. Wu et al. (2014) 

employed the real-time in-situ neutron diffraction technique under continuous loading 

combined with numerical simulations using the EVPSC model to study the twinning and 

detwinning behavior of a wrought AZ31B Mg alloy. 

In the present paper, various self-consistent polycrystal plasticity models for HCP 

polycrystals are evaluated by studying the strain behavior of a Zircaloy-2 slab under 

different deformation processes; strains up to 20% are considered, for which grain 

rotation is significant. In order to take into account the effects of thermal residual strains 

generated during the cooling process (from 898 K to 298 K) on the subsequent 

mechanical loading, the EVPSC model developed by Wang et al. (2010b) is extended by 

including the thermal strain effect. Values of the material parameters for the various 

models are fitted to experimental uniaxial tension and compression stress-strain curves 

along the normal direction (ND) and uniaxial tension along the rolling direction (RD). 

These values are then used to predict uniaxial tension and compression along other 

directions. An assessment of the predictive capability of the polycrystal plasticity models 

is made based on comparisons of the predicted and experimental stress responses, R-

values, lattice strains, and texture coefficients. The experimental data are taken from Xu 

et al. (2008b, 2008c, 2009).  



 30 

Though the mechanical behavior of Zr alloys under various deformation processes 

has been extensively studied, both experimentally and numerically (see e.g. Camposilvan 

et al., 2014; Gloaguen et al., 2014; Gurao et al., 2014; Kapoor et al., 2014; Keskar et al., 

2014; Li et al., 2014; Morrow et al, 2014b; Mozzani et al., 2014; Muránsky et al., 2014; 

Padilla et al., 2012; Sattari et al., 2014; Knezevic et al., 2013; Yapici et al., 2009), the 

experiments performed on a Zircaloy-2 slab by Xu et al. (2008b, 2008c, 2009) represent 

the most extensive sets of currently available experimental data for a Zr polycrystal. We 

believe that the predictive capability of self-consistent plasticity models can be most 

efficiently assessed using the experimental data of Xu et al. (2008b, 2008c, 2009). 

The Crystal Plasticity based Finite Element (CPFE) approach has also been used to 

study the large strain behavior of polycrystalline materials (see e.g. Abdolvand and 

Daymond, 2013a; Alharbi and Kalidindi, 2015; Choi et al., 2011; Fernandez et al., 2011; 

Hama et al., 2014; Ghosh and Anahid, 2013; Herrera-Solaz et al., 2014; Lim et al., 2014; 

Wu et al., 2004; Zhang et al., 2015). In CPFE simulations, an element of the finite 

element mesh represents either a single crystal or a part of a single crystal, and the 

constitutive response at an integration point is described by the single crystal constitutive 

model. This CPFE approach enforces both equilibrium and compatibility throughout the 

polycrystalline aggregate in the weak finite element sense (Anand and Kalidindi, 1994; 

Bronkhorst et al., 1992). Furthermore, the CPFE approach allows consideration of grain 

morphology and the modeling of deformation inhomogeneity within individual grains 

(Wu and Lloyd, 2004; Wu et al., 2007; Kanjarla et al., 2010). However, CPFEM 
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simulations are computationally much more intensive than the corresponding self-

consistent polycrystal calculations. 

The paper is organized as follows: In Section 2, we describe the theoretical basis for 

including thermal strains in the EVPSC model. The results of the simulations are 

presented, compared with the experimental data, and discussed in Section 3. Conclusions 

are presented in Section 4. 

2.2 The EVPSC model 

The total strain in a single crystal is composed of elastic strain, thermal strain and 

plastic strain. The elastic constitutive equation for a crystal is as follows: 

                                   )(tr:
* Tee εεσεσ  

 L                                          (2.2.1) 

where L  is the fourth order elastic stiffness tensor, eε  is the elastic strain rate tensor, Tε  

is the thermal strain rate tensor and 
*

σ  is the Jaumann rate of the Cauchy stress σ  based 

on the lattice spin tensor ew .  

The thermal strain rate Tε  relates to the temperature rate T   

                                        TTT  αε                                                                 (2.2.2) 

in terms of the thermal dilation tensor Tα  defined as 
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where a  and c are the single crystal thermal expansion coefficients along the a-axis 

and c-axis, respectively.  

Due to the large thermal expansion anisotropy of zirconium, inclusion of thermal 

strains has previously been demonstrated by other authors to be required for the accurate 

modeling of internal strains; this is true for both self-consistent (Turner et al., 1995, Xu et 

al, 2008b, Mareau and Daymond, 2010) and finite element (Abdolvand et al., 2012) based 

crystal plasticity modeling approaches.  It is worth mentioning that our approach of 

introducing the thermal strain effect is almost the same as the one developed by Turner et 

al. (1995) and used by Xu et al. (2008b). The only difference between our approach 

presented above and the one in Turner et al. (1995) is that we use the Jaumann rate of the 

Cauchy stress (
*

σ ), while Turner et al. (1995) apply a simple rate of the Cauchy stress 

(σ ). This is because the EVPSC model is valid for arbitrary large deformations and it is 

necessary to use an objective stress rate to accurately account for effects of large rotations 

in addition to large strains. However, for all the cases considered in the present paper, the 

thermal strains are relatively small and whether one uses the Jaumann rate of the Cauchy 

stress or not will have a negligible effect on the predicted results. Our numerical results 

have demonstrated that the difference in the predicted thermal strain effect between the 

present study and the one reported by Xu et al. (2008b) is negligible. 

The plastic deformation of a crystal is assumed to be due to crystallographic slip 

and twinning on crystallographic systems ),(  ns . Here, s  and n  are, respectively, 

the slip/twinning direction and the normal to the slip/twinning plane for system  . The 
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following equation gives the grain (crystal) plastic strain rate pε  (see e.g., Asaro and 

Needleman, 1985): 

                                        


 Pε  p                                                        (2.2.4) 

in terms of the shear rate   and the Schmid tensor )(  snnsP   for system  . 

For both slip and twinning, the driving force for shear rate   is the resolved shear 

stress  Pσ : , where σ  is the Cauchy stress tensor.  

For slip, 

                               )sgn(
1

0
  m

cr                                                (2.2.5) 

where 0 is a reference shear rate,  cr  is  the critical resolved shear stress (CRSS), and m 

is the strain rate sensitivity. Due to its polar nature, the shear rate due to twinning is 

described by: 
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         For both slip and twinning, the evolution of the critical resolved shear stress 

(CRSS)  cr as deformation proceeds is given by: 
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where ac  is the accumulated shear strain in the grain, and h  are the latent hardening 

coupling coefficients, which empirically account for the obstacles on system   
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associated with system  . ̂  is the threshold stress, described here by an extended Voce 

law (Tomé et al., 1984):     

                                      ))(exp1)((ˆ
1

0
1100 acac

h
h 


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
                           (2.2.8) 

Here, 0 , 0h , 1h  and 10    are the initial CRSS, the initial hardening rate, the asymptotic 

hardening rate, and the back-extrapolated CRSS, respectively.  

The response of a polycrystal comprised of many grains is obtained using a self-

consistent approach: each grain is treated as an ellipsoidal inclusion embedded in a 

Homogeneous Effective Medium (HEM), which represents the aggregate of all the grains. 

Interactions between each grain and the HEM are described using the Eshelby inclusion 

formalism (Eshelby, 1957). The behaviour of the inclusion (single crystal) and HEM 

(polycrystal) can be linearized as follows: 

                             0:: εασMσMε   TTve                                         (2.2.9)       

                           0:: EαΣMΣME   TTve                                     (2.2.10)  

Here, eM , vM , Tα , ε , σ and 0ε  are, respectively, the elastic compliance, the 

viscoplastic compliance, the thermal dilation tensor, the strain rate, the true stress, and the 

back-extrapolated strain rate for the grain. eM , vM , Tα , E , Σ and 0E  are the 

corresponding terms for the HEM. The temperature rate T  is assumed to be uniform 

across the polycrystal.  Equations (9, 10) can be written in component form as follows:  

                      0
ijkl ij

T
ijklkl

e
ijklij εTMM                                             (2.2.9a) 
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                     0e
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T
ijklijklklij ETαΣMΣME                                        (2.2.10a) 

The grain-level stress and strain rates are related self-consistently to the corresponding 

values for the HEM (Turner and Tomé, 1994; Wang et al., 2010a):  

                            )(:
~
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)( ΣσMΣσMEε  ve                                  (2.2.11) 

where eM
~

 and vM
~

 are the interaction tensors that can be given by: 
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where eS  and vS  are the elastic and visco-plastic Eshelby tensors for a given grain, 

respectively, and I  is the identity tensor. In the present study, we assume that the thermal 

residual strains are generated during the initial cooling process from a stress-free state at 

898 K down to 298 K. The thermal deformation during cooling results in residual elastic 

strains and corresponding stresses, which bias subsequent plasticity. The overall thermal 

dilation tensor Tα relates self-consistently to the elastic terms (Turner and Tomé, 1994; 

Turner et al., 1995) as follows: 
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As discussed in (Wang et al., 2010a; 2010b), various linearization schemes can be 

used to solve Eq. (2.2.9). The Secant linearization scheme, proposed by Hutchinson 

(1976), can be written as: 
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The Tangent scheme, proposed by Lebensohn and Tomé (1993), is obtained by a first-

order Taylor expansion of the plastic strain rate pε around the grain stress; it can be 

written in terms of the Secant scheme as follows:  

                               0,
1 tan,0sec,tan,  vv

m
MM                                      (2.2.15) 

The Secant and Tangent approaches lead to excessively stiff and soft interactions, 

respectively, which led Molinari and Toth (1994) and Tomé (1999) to propose a modified 

Tangent scheme by replacing m with an empirical adjustable parameter 

effm )1( eff  mm . The so-called effm scheme is expressed as follows: 
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1 eff,0sec,
eff

meff,  effvv mm
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MM              (2.2.16) 

The Affine method (Masson et al., 2000; Lebensohn et al., 2004) employs the same 

formulation for the grain compliance as the Tangent method, but keeps the back 

extrapolated term in the local /global relation between strain rate and stress, which 

provides a harder inclusion/matrix interaction than the Tangent model as the rate 

sensitivity m  decreases. The Affine method applies the following linearization: 

                          p

cr

m

cr

affv

mm

















)
1

1(, aff,0

1
1

0, 











 PP
M              (2.2.17) 

For details concerning the self-consistent equations associated with the different visco-

plastic self-consistent algorithms, we refer to Lebensohn et al. (2007). 

To model twinning, the Predominant Twin Reorientation (PTR) scheme proposed 

by Tomé et al. (1991) is used. PTR prevents grain reorientation by twinning until a 

threshold volume fraction 1thA  is accumulated in any given system and rapidly raises the 
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threshold to a value around 21 thth AA  . Secondary twinning is not allowed in the PTR 

model and grain size effects on twinning are not explicitly modelled.  

2.3 Results and discussions 

      The material considered in the present paper is a Zircaloy-2 slab studied by Xu et al. 

(2008b, 2008c, 2009). The measured initial crystallographic texture is discretized to 1944 

grains ( o o o10 10 10   grid in Euler space) with independent orientations and weights. 

This set of Euler angles is used in most of the simulations reported in the present paper. 

Following Xu et al. (2009), however, the initial texture with 15456 orientations 

( o o o5 5 5   grid in Euler space) is employed to analyze the evolution of the texture 

coefficients. The }0002{  and }0110{  pole figures of the texture with 1944 orientations 

are shown in Figure 2.1. The material exhibits a typical rolling texture, with a large 

number of grains having the basal pole aligned along the ND. The plastic deformation of 

Zircaloy-2 is assumed to be due to prismatic ({10 10} 1120  ), basal ({0001} 1120  ) 

and pyramidal <c+a> (  3211}1110{ ) slip as well as  1110}2110{  tensile 

twinning. 
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Figure 2.1 Initial texture of the Zircoaloy-2 slab represented in terms of the {0001} and 

{ 0110 } pole distributions. 
 

In all the simulations reported in the present paper, the reference slip/twinning rate, 

0 , and the rate sensitivity, m , are prescribed to be the same for all the slip/twinning 

systems: 1
0 0001.0  s  and 05.0m . The room temperature single crystal elastic 

constants of zirconium are taken to be 5.14311 C , 5.7212 C , 4.6513 C , 9.16433 C and 

1.3244 C (GPa). The thermal expansion coefficients are chosen as 16103.5  Ka  

and 16101.10  Kc (Xu et al., 2008b). The applied macroscopic strain rate is 

15105.5  s  for all tests considered in the present paper. Values of the hardening 

parameters for various SCSs are determined by curve-fitting numerical simulations of 

uniaxial tension and compression along the ND as well as uniaxial tension along the RD 

to the corresponding experimental data. For the initial texture considered, uniaxial tension 

along the RD is used to estimate the hardening parameters associated with basal and 

prismatic slip since little twinning is expected. The hardening parameters associated with 

 0.5
 0.7
 1.0
 1.2
 1.5
 1.7
 2.0
 2.5
 3.0
 3.5
 4.0

TD

RD

)0001( }0110{



 39 

extension twinning are determined from uniaxial tension along the ND, for which 

twinning is expected to contribute significantly to the deformation. Uniaxial compression 

tests along the ND were used to determine the hardening parameters for pyramidal slip, 

since basal and prismatic slip, as well as twinning, are not expected to contribute 

significantly to the deformation. Table 2.1 lists values of the material parameters for the 

various self-consistent polycrystal plasticity schemes. These values are used in all the 

simulations reported in the present paper. The critical resolved shear stresses and the 

Voce hardening parameters for the Meff=0.1 model listed in Table 1 are very close to 

those used by Xu et al. (2008c) ,who used the VPSC model (Lebensohn  and Tomé, 1993). 

Table 2.1  List of material parameters for various self-consistent models. The parameter 
'ssh denotes latent hardening effect of the slip/twin mode 's  upon the other deformation 

mode s . 

Model Mode 0 1 h0 h1 
Latent 

Ath1 Ath2

hsPr hsBa hsPy hsTw 

Affine Prismatic 
Basal  

Pyramidal  
Tensile Twin 

95 
155 
310 
260 

35 
10 
70 
70 

120 
30 

2200
460 

35 
0 

280
360

2 
1 
1 
1 

1 
1 
1 
1 

1 
1 
2 
1 

14 
1 
1 
2 

  
 
 

0.15 0.45
Meff Prismatic 

Basal  
Pyramidal  

Tensile Twin 

100 
160 
320 
250 

44 
30 
110
10 

500 
120 
2600
600 

50 
0 

30 
80 

2 
1 
1 
1 

1 
1 
1 
1 

1 
1 
2 
1 

9 
1 
1 
2 

  

0.15 0.45
Secant Prismatic 

Basal  
Pyramidal  

Tensile Twin 

85 
150 
300 
250 

20 
10 
80 
100

40 
20 

960 
500 

28 
10 
145
400

2 
1 
1 
1 

1 
1 
1 
1 

1 
1 
2 
1 

14 
1 
1 
2 

  

0.15 0.45
Tangent Prismatic 

Basal 
Pyramidal  

Tensile Twin  

110 
180 
310 
237 

50 
30 
200
60 

530 
100 
5200
120 

45 
10 
0 

40 

2 
1 
1 
1 

1 
1 
1 
1 

1 
1 
2 
1 

8 
1 
1 
2 

  

0.15 0.45
We start by focusing on the macroscopic behavior of the material in terms of the 

stress-strain responses and R-values under uniaxial tension/compression along different 
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directions. Figures 2.2-2.4 present the measured and fitted stress-strain curves, the 

predicted R-values, and the relative activities of the various deformation mechanisms 

under uniaxial tension and compression along the ND, and under uniaxial tension along 

the RD, respectively. Figure 2.2a shows that the experimental stress-strain curve under 

uniaxial tension along the ND is fitted well by all the SCSs (i.e. the Affine, Secant, 

Meff=0.1 and Tangent self-consistent schemes). The predicted R-values shown in Figure 

2.2b are all in reasonable agreement with the experimental value. The predicted relative 

activities of the various deformation mechanisms for the different SCSs are shown in 

Figures. 2.2c-f. The relative activity of a given plastic deformation mode is defined as the 

ratio of the plastic shear rate due to this plastic mode to the total plastic shear rate from all 

the plastic deformation modes considered. It is clear that basal and prismatic slips are the 

most important deformation mechanisms under tension along the ND. Since the material 

exhibits a typical basal texture, extension twinning can be easily activated in uniaxial 

tension along the ND. Tension twinning is found to be very active initially but then 

decreases gradually with further deformation. The predicted maximum twin volume 

fraction based on the Secant model is about 30%, while all the other models give a 

maximum value of around 20%. Figure 2.2 shows that the activity of pyramidal <c+a> 

slip is significant only in the Secant model.  

Figures 2.2c-f show that tensile twinning accounts for almost 100% of the plastic 

deformation at very small strains (relative activity ~100%). Twinning is activated before 

any other deformation mode at small strains because the cooling process generates tensile 

residual stress along the ND in the majority of grains, corresponding to the {0002} 
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reflection in Table 2.2. As a result, the large majority of grains experience a tensile stress 

parallel to the c-axis which favors tensile twinning in the early stages of deformation. At 

very small strains, only tensile twinning contributes to plastic deformation, resulting in a 

corresponding very high relative activity even though the macroscopic strain is negligible. 

Thus, activity plots must be interpreted carefully especially at very small strains or during 

an elastic-plastic transition stage. 

 

Table 2.2  List of the predicted and experimental thermal residual strains of different 
families along the RD,TD, and ND induced by the cooling process. 

 0002 
10-10 

(20-20) 
10-11 10-12 11-20 11-22 20-21 

RD 
1241.6 
(1170) 

-116.1 
(-108) 

245.6 
(207) 

705.3 
(598) 

-113.4 
(-106) 

343.8 
(271) 

-1.8 
(-20.5) 

TD 
1062.9 
(990) 

-328.1 
(-322) 

23.2 
(6.6) 

463.9 
(411) 

-328.1 
(-322) 

102.9 
(71) 

-217 
(-230) 

ND 
463.9 
(430) 

-960.1 
(-936) 

-709.7 
(-699) 

-265.6 
(-317) 

-959.8 
(-961) 

-618.3 
(-579) 

-880.5 
(-889) 

(Note: the values in the brackets are the corresponding experimental data taken from Xu 
(2007)) 
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Figure 2.2  Fitted stress strain curves (a) and predicted R values (b) and activities (c-f) 

under tension along ND (NDT) 
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As shown in Figure 2.3a, the experimental stress-strain curve under uniaxial 

compression along the ND is fitted well by all the models. The predicted R-values agree 

well with the experiment, especially for the Affine model, which gives the best prediction 

(Figure 2.3b). The predicted relative activities of the various slip and twinning systems 

are presented in Figures 2.3c-f. Since the material has a typical basal texture, it is 

expected that extension twinning will contribute little during uniaxial compression along 

the ND. This trend is confirmed by all the models. The Affine and Meff=0.1 models 

exhibit quite similar relative activities: basal slip is the most active deformation 

mechanism during the entire deformation process; prismatic slip is also active but its 

activity decreases with continued straining, and the contribution of pyramidal slip 

increases gradually with loading.  Basal slip (>80% at large strains), is predominant in the 

Tangent model, and the rest of the deformation is accommodated by prismatic slip. 

Almost no pyramidal slip is predicted up to a strain of 0.16. In contrast, the Secant model 

predicts that pyramidal slip is predominant. The activity of basal slip predicted by the 

Secant model is much less than predicted by the other models, especially the Tangent 

model.  
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Figure 2.3 Fitted stress strain curves (a) and predicted R values (b) and activities (c-f) 

under compression along ND (NDC). 
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The measured and calculated macroscopic mechanical responses of the material 

under uniaxial tension along the RD are shown in Figure 2.4. All of the models capture 

the stress and strain curve well (Figure 2.4a). The measured R-value is in excellent 

agreement with the values obtained from the Meff=0.1 and Tangent models. The Affine 

model predicts the R-value reasonably well, but the Secant model significantly over-

estimates the R-value. From Figures 2.4c-f, all the models predict that prismatic and basal 

slip are the primary and secondary deformation mechanisms, respectively, while tension 

twinning is inactive. Pyramidal slip contributes significantly in the Secant model but not 

in the other models. 
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Figure 2.4 Fitted stress strain curves (a) and predicted R values (b) and activities (c-f) 

under tension along RD (RDT). 
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Figures 2.2-2.4 show that all the models fit the experimental flow curves reasonably 

well (Figures 2.2a, 2.3a and 2.4a). The Secant model gives the worst R-value prediction 

in the case of uniaxial tension along the RD, while the other models predict the measured 

R-values reasonably well.  

Figure 2.5 shows the measured and predicted macroscopic stress-strain curves and 

R-values as well as the predicted relative activities of the various deformation 

mechanisms under uniaxial compression along the RD. The agreement between the 

predicted and measured macroscopic stress-strain curves is reasonable for all the models. 

However, all the models, especially the Secant model, significantly over-estimate the R-

value. The predicted activities are found to be somewhat similar to those under uniaxial 

tension along the RD except that under uniaxial compression tension twinning becomes 

noticeable, especially in the Secant model.  
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Figure 2.5 Predicted stress strain curves (a), R values (b) and activities (c-f) under 

compression along RD (RDC). 
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Figure 2.6 shows the measured and predicted stress-strain curves and R-values 

under uniaxial tension along the transverse direction (TD). The Meff=0.1 and Tangent 

models predict the flow curve well, while the Affine and Secant models noticeably under-

estimate the flow curve. Under uniaxial tension along the TD, the Affine model predicts 

the R-value very well; the Meff=0.1 and Tangent models under-estimate the R-value, 

while the Secant model significantly over-estimates the R-value. The corresponding 

results for uniaxial compression along the TD are presented in Figure 2.7. All the models 

give similar flow curves and clearly over-estimate the flow curve beyond a strain ~0.08. 

The Tangent and Meff=0.1 models predict the R-value well, while the Affine and Secant 

models over-estimate the R-value, especially the Secant model. The predicted relative 

activities under uniaxial tension and compression along the TD are very similar to those 

under uniaxial tension and compression along the RD  (see Figures 2.4 and 2.5), 

respectively, and thus are not presented here. 
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Figure 2.6 Predicted stress strain curves (a) and R values (b) under tension along TD 

(TDT). 
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Figure 2.7 Predicted stress strain curves (a) and R values (b) under compression along TD 

(TDC) 
 

Based on the flow curves and R-values shown in Figures 2.2-2.7, it is evident that 

the Secant model is significantly worse than the other models, and that it is difficult to 

distinguish between the Affine, Meff=0.1 and Tangent models. The evolution of the 

elastic lattice strains during loading in different grain orientations can be used as a very 

sensitive indicator of plastic deformation mechanisms at the microscopic level (see e.g., 

MacEwen et al., 1983, 1989; Gharghouri et al., 1999; Daymond and Priesmeyer, 2002; 

Xu et al., 2008b). Since the lattice strain evolution is sensitive to the constitutive model 

employed, it is expected that the choice of self-consistent scheme will have a significant 

influence on the predicted lattice strain evolution, hence providing a quantitative measure 

to evaluate self-consistent methodologies. We therefore use lattice strain data to evaluate 

the relative qualities of the Affine, Meff=0.1 and Tangent models. Our numerical lattice 

strain results for the Secant model are much worse than for the other models and are 

therefore not presented here. It is worth mentioning that lattice strain analyses are usually 
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preformed for various specific families of crystallographic planes. These grain families 

are used because they are the ones for which experimental lattice strain data are available. 

The thermal residual strains induced during the cooling process have a great effect 

on the lattice strain evolution during subsequent loading.  The thermal strain effect has 

been included in our EVPSC model to deal with the cooling process from 898 K to 298 K. 

The predicted thermal residual strains for different grain families along the RD, TD, and 

ND are listed in Table 2.2; the experimental data (Xu, 2007) are also provided for 

comparison. The unit of lattice strain in Table 2.2 and Figures 2.8-2.11 is microstrain 

( 610 ). The lattice strains in Figures 2.8-2.11 are reported relative to the residual strains 

in Table 2.2, and are thus shown with a starting value of zero. 

Figure 2.8 compares the measured and predicted lattice strains during uniaxial 

tension along the ND (NDT). In Figure 2.8, the first index “NDT” in the notation 

“NDT/RD” indicates that the material is under uniaxial Tension along the ND, and the 

second index “RD” denotes that the lattice strains are along the RD. Similarly, the 

notation “RDC/TD” in Figure 2.11 is for lattice strains along the TD in the case of 

uniaxial Compression along the RD. Figure 2.8 shows that the material starts to deform 

plastically at a stress of ~250 MPa, as indicated by the deviations of the stress-lattice 

strain curves from linearity. However, the apparent yield stress from the macroscopic 

stress-strain curve is ~450MPa. This implies that at a stress of around 250 MPa some soft 

grains start to deform plastically, while other hard orientations are still elastic. This 

phenomenon is called micro-yielding. At a stress of about 450 MPa most of the grains 

deform plastically and the polycrystal is macroscopically in a plastic state. 
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Figure 2.8  Predicted and experimental lattice strains along the ND, TD, and RD under 
uniaxial tension along ND (NDT). 

 
Figures 2.8a-c show experimental and calculated lattice strains along the ND based 

on the Affine (Figure 2.8a), Meff=0.1 (Figure 2.8b) and Tangent (Figure 2.8c) models, 

respectively.  Generally speaking, all the models successfully reproduce the trends in the 

lattice strain data. The response of the {0004} grain family is very well captured up to a 

stress of 500 MPa (a macroscopic strain of about 0.055), after which the predicted {0004} 

lattice strains cease to evolve because the models predict that the grains within this family 
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have been completely reoriented due to twinning. Beyond this strain, tensile twinning still 

contributes to plastic deformation in some of the other grain orientations modeled, as 

revealed in Figures 2.2c-f which show that tensile twinning activity is finite in the strain 

range 12000550 ..   . Indeed, though the {0004} grain family is the one most 

favorably oriented for tensile twinning, other grain families in which the c-axis is less 

than ~45 from the applied stress axis can also be expected to undergo twinning. 

When considering uniaxial tension along the ND (NDT) but for lattice strains 

measured along the TD (NDT/TD; Figures 2.8d-f) and RD (NDT/RD; Figures 2.8g-i), the 

predicted lattice strain curves for the {0004} family show clear relaxation effects at a 

stress of ~470 MPa for all the models. This relaxation is caused by the sudden twinning-

related reorientation of grains having the c-axis along the ND. Some reoriented grains 

align their c-axis in the RD or TD. The stress state in the twinned material becomes 

highly compressive with further straining along the ND. For all the models, the abrupt 

change in the {0004} family in the case of NDT/RD is more pronounced than for 

NDT/TD because initially there are more {0004} poles aligned along the TD than RD; as 

a result, more material is reoriented by twinning to the RD than the TD. This poor 

agreement between the simulations and experiments is mainly caused by the employed 

PTR twinning scheme, where the whole grain is suddenly reoriented once a threshold 

value of twin volume fraction is reached. Similarly, the poor agreement observed in the 

lattice strain evolution of the { 0220 }, { 0211 }, and { 1220 } families is also due to the 

PTR twinning scheme applied in the present study. A much more gradual evolution of the 

lattice strain of the {0004} family was reported by Xu et al (2008b) for the same material. 
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However, the reorientation due to twinning was not accounted for in their study. 

Generally speaking, all the models give similar lattice strain results except that the Affine 

scheme does not show excessive relaxation in the NDT/TD curves.  

Figure 2.9 presents the predicted and measured lattice strains under compression 

along the ND (NDC). For the NDC/ND lattice strains, it is clear that all the models fail to 

reproduce the lattice strain data for the { 0110 } grain family. The volume fraction of 

these grains is very small at the start of the test due to the initial rolling texture, and can 

be expected to decrease further during the course of the test as a result of tensile twinning 

since they are compressed normal to the c-axis. These grains can thus be considered as 

isolated soft inclusions in a hard matrix since they are favorably oriented for tensile 

twinning while the majority of grains are unfavorably oriented for tensile twinning. As a 

result, the experimental data show strong relaxation effects as these grains twin and 

transfer their load to their hard neighbors at an applied stress of ~-300 MPa. All of the 

models incorrectly predict the applied stress at which these grains start to shed load, and 

also underpredict the extent of the relaxation associated with tensile twinning. 

Furthermore, at an applied stress of ~-500 MPa, all the models predict that these grains 

resume loading, in contrast to the trend exhibited by the experimental data. These poor 

simulation results occur because the models cannot handle strong local neighborhood 

effects which dominate the behavior of small grain families. Fortunately, since this grain 

family represents only a small component of the microstructure, failure to capture its 

behavior does not unduly affect the ability of the simulations to adequately capture the 

macroscopic flow behavior or the behavior of the other larger grain families. It is found 
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that the predicted results for the {0002}, { 2110 } and { 1110 } diffraction families by the 

Affine model are in good agreement with the experiments both qualitatively and 

quantitatively. On the other hand, the predictions of the Meff=0.1 and Tangent models are 

in poor agreement with the experiments, especially for the { 1110 } family. For the lattice 

strains along the TD (NDC/TD; Figure 2.9d-f) and RD (NDC/RD; Figure 2.9g-i), the 

Meff=0.1 model gives the best prediction for the {0002} family for NDC/TD, while the 

Affine model shows the worst prediction of this family. All models give reasonable 

agreement between the predictions and experiments for the other families. From Figure 

2.9, it seems that the Tangent scheme gives the worst predictions. 
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Figure 2.9 Predicted and experimental lattice strains along the ND, TD, and RD under 
uniaxial compression along ND (NDC). 

The lattice strain evolution in the material under uniaxial tension (Figure 2.8) and 

compression (Figure 2.9) along the ND should correlate with the activities of deformation 

mechanisms shown in Figures 2.2 and 2.3, respectively. The activation of tensile twinning 

under uniaxial tension along the ND makes the {0004} family elongate plastically along 

the c-axis and therefore the {0004} family carries less ND lattice strain than the other 

families. Under uniaxial compression along the ND, the {0004} family carries more ND 

lattice strain due to the polar nature of twinning, and the fact that the critical resolved 
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shear stress for pyramidal slip is quite high. In addition, during compression along the ND,  

the { 1110 } and { 2110 } families can plastically accommodate the deformation along the 

ND through the activation of the basal and prismatic slip, which results in these families 

carrying less ND lattice strain  than the {0004} family.  

Figure 2.10 shows the predicted and measured lattice strains under tension along the 

RD (RDT). Along the loading direction of RD (RDT/RD; Figure 2.10a-c), the lattice 

strain variations for the different diffraction families can be reproduced by all the models. 

Along the two lateral directions (Figures 2.10d-i), the Affine model gives the best 

prediction. The Meff=0.1 and Tangent models clearly underestimate the load bearing of 

the {0002} family in the RDT/TD, and also depart from the positive shifts exhibited by 

the lattice strain in the { 0211 }, { 1220 } and { 2211 } families. The { 0220 }, { 0211 }, 

{ 2211 } and { 1220 } grain families, corresponding to lattice strains measured along the 

loading direction, have orientations for which it is easy to activate either prismatic or 

basal slip and therefore their lattice strains do not depart much from simple linear 

behavior. For TD/ND, the {0002}/{0004} family is the hardest one because pyramidal 

slip and twinning are difficult to activate and thus contribute very little. These 

observations are consistent with the predicted activities of the various deformation 

mechanisms in Figures 2.4c, 2.4d and 2.4f.  
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Figure 2.10  Predicted and experimental lattice strains along the RD, TD, and ND under 
uniaxial tension along RD (RDT). 

 
Figure 2.11 compares the predicted lattice strain developments under compression 

along the RD (RDC) to the experimental ones. Along the loading direction (RDC/RD), 

the sudden increase in lattice strain in the {0002} family at an applied stress of ~370 MPa 

(strain ~0.02) in the experiment is due to grain reorientation by twinning. The Affine 

model gives a good agreement between predictions and experiments after stress ~400 

MPa, where some grains are reoriented to the {0002} family by the PTR twin scheme, 
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although the relative intensity is small. The Meff=0.1 and Tangent models predict the 

general trends too but with a less good agreement. In addition, the Affine model shows 

the best agreement with the experiment for the { 1110 } family. All models predict well 

the lattice strain of the { 0110 } family before the macroscopic yield stress ~350 MPa 

(strain ~0.01). Beyond this applied stress, the lattice strains in the }0110{  family are 

overestimated by all the models. As shown in Figures 2.5c-f, a decrease in prismatic 

activity and an increase in basal activity were predicted by all the models. Therefore, the 

}0110{  family, relaxing through prismatic slip, should become plastically harder and 

exhibit larger lattice strains under further straining. Also, the }1110{  and }2110{  

families which undergo increased basal activities should become softer and exhibit 

smaller lattice strain. In the TD and ND directions (Figures 2.11d-i), the Meff=0.1 model 

gives a much better prediction than the Affine and Tangent models for all examined 

families. From Figure 2.11, it seems that the Meff=0.1 model gives the best predictions.  
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Figure 2.11 Predicted and experimental lattice strains along the RD, TD, and ND under 
uniaxial compression along RD (RDC). 

 
As mentioned by Xu et al. (2009), the VPSC model does not capture the 

development of texture coefficients for some of the basal and prismatic planes when 

significant twinning occurs. Therefore, we have further evaluated the models in terms of 

the evolution of texture coefficients in the material under uniaxial tension along the ND 

and uniaxial compression along the RD. However, our numerical results indicated that 
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there was no clear evidence that showed one model was better than the others in 

predicting the evolution of texture coefficients. 

Based on the above discussion in terms of stress-strain curves, R-values, and evolutions 

of lattice strains and texture coefficients, we can conclude that the Affine and Meff=0.1 

models give  much better performance than the Secant and Tangent models. However, 

there is no clear evidence to show which is best among all the models. This finding is not 

consistent with the previous studies on magnesium alloys (Wang et al., 2010b; Askari et 

al., 2013). Wang et al. (2010b) concluded that the Affine self-consistent scheme gave the 

best overall performance among the SCSs examined, while Askari et al. (2013) preferred 

to employ the Tangent self-consistent approach. Note that the lattice strain evolution of 

the same material has been simulated by Xu et al. (2008a) using the EPSC model, by 

Mareau and Daymond (2010) using their EVPSC model, and by Abdolvand et al. (2011) 

and Abdolvand and Daymond (2012) based on CPFEM. Although the main purpose of 

this study is to evaluate the various self-consistent schemes (SCSs), it is found that the 

predictions based on the EVPSC model with the Affine and Meff=0.1 schemes are at least 

not worse than those based on the above mentioned models for the Zircaloy-2 slab.   

2.4 Conclusions 

         In this study, the EVPSC model proposed by Wang et al. (2010b) has been 

improved by incorporating the thermal deformation effect to account for the effects of 

thermal residual strains generated during initial cooling process on subsequent 

mechanical loading of a Zircaloy-2 slab. Various self-consistent schemes used in the 
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modified EVPSC model have been evaluated in terms of the quality of predictions of the 

macroscopic behaviors of stress-strain curves and R-values and the microscopic behaviors 

of evolution of lattice strains and texture coefficients. The deformation mechanisms of 

prismatic, basal, first order pyramidal <c+a> slips and tensile twinning are chosen to 

accommodate the plastic deformation. The material parameters involved in the Voce-law 

hardening and latent hardening are obtained by adjusting to fit three sets of experimental 

stress strain curves (tension/compression along the ND and tension along the RD). It has 

been demonstrated that, among the models examined, the EVPSC model with the Affine 

and Meff=0.1 self-consistent schemes give much better performance for the Zircaloy-2 

slab than the Secant and Tangent SCSs.  

The main purpose of this study is to evaluate the quality of various homogenization 

methods for polycrystalline materials. The effect of the behavior of the single crystal is 

eliminated as much as possible by using the same single crystal description. More 

specifically, the slip/twinning hardening is described by (7) and (8) and twinning is 

characterized by the PTR model. Of course, the evaluation made in the present paper 

depends on the single crystal plasticity linearization employed. The mismatch between 

predictions and experiments in the cases where twinning is significant strongly suggests 

that a more realistic and accurate twinning model is required. Wang et al. (2012b, 2013a) 

have recently proposed a physically based twinning and detwinning (TDT) model. The 

TDT model, together with the EVPSC model, has been successfully used to study the 

twinning behaviors of Mg alloys under various monotonic and strain-path changes (see 

Guo et al., 2013; Lee et al., 2014; Qiao et al., 2015b; Wang et al., 2013c; Wu et al., 2014). 
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We have very recently applied the EVPSC-TDT model to study the mechanical behavior 

of Zr alloys. Our preliminary results seem to be very promising. This work is in progress 

and will be reported elsewhere. 

 
 



 64 

Chapter 3. Modeling twinning and detwinning behavior of Mg alloy 
ZK60A during monotonic and cyclic loading 

3.1 Introduction 

           The phenomenon of detwinning has been known for many years (Obreimov and 

Startsev, 1959; Cooper, 1962). Indeed, detwinning of martensite is one of the key 

mechanisms upon which the shape memory phenomenon is built (e.g., Miyazaki et al. 

1989a, 1989b; Liu and Xie, 2003). In short, detwinning is actually twinning of the 

twinned crystal back into the orientation of the parent material from which it came. In 

some cases, this process involves reverse motion of the boundaries which surround the 

original twin, denoted stage C in the presently employed Twinning-DeTwinning (TDT) 

model (Wang et al., 2012b, 2013a, 2013c). In other cases, it actually involves the 

nucleation of a new twin (with the parent orientation) within the original twin (denoted 

stage D in the TDT model, Wang et al., 2012b, 2013a, 2013c). 

         In the context of Mg alloys, it was the recent work of Cáceres et al. (2003) which 

made the research community pick up this topic again. Cáceres et al. (2003) were 

interested in the pseudoelastic behavior of cast alloy AZ91. Shortly thereafter, Kleiner 

and Uggowitzer (2004) showed that the phenomenon was not strictly limited to anelastic 

loading/unloading conditions at low strains. They showed that a rather unique stress-

strain response during reverse loading was observed in textured alloy AZ61 subjected to 

larger strains which induced twinning. The work of Lou et al. (2007) generated a great 

deal of interest, both from materials scientists interested in measuring the phenomenon in-
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situ (Muransky et al., 2008; Jain et al., 2007; Wu et al., 2008a, 2008b) and from members 

of the mechanics community which became interested in constitutive modeling (discussed 

below). The work of Lou et al. (2007) is experimentally significant for two reasons: first, 

because it made use of novel testing equipment, permitting relatively thin sheets to be 

tested in in-plane compression to considerable levels of strain without buckling (Boger et 

al., 2005) and second, because it employed acoustic emission (AE) which provided clues 

about the relation between the twinning-detwinning phenomenon and nucleation events. 

Later research coupled the AE technique with in-situ neutron diffraction (ND) so that 

both twin nucleation and growth could be monitored simultaneously (Muransky et al., 

2010a). 

The constitutive modeling efforts have followed two main streams. One stream 

developed analytical phenomenological models (e.g., Lee et al., 2008; Li et al., 2010; 

Kim et al., 2013) which are easier to implement within finite element modeling codes. 

The other stream took a crystal plasticity modeling approach: Proust et al. (2009) and 

Guillemer et al. (2011) employed self-consistent approaches, Hama and Takuda (2012) 

employ a finite element crystal plasticity-based approach, and Gu et al. (2014) recently 

employed a full-constraints Taylor-Lin model. A consistent feature of these models is a 

failure to capture the significant distinction in the shape of the flow curve during 

twinning- and detwinning-dominated flow. In the former case, yielding can be rather 

abrupt (approaching elastic-perfectly plastic). Recent authors have associated the yield 

plateau observed during testing of textured Mg alloys along certain directions with Lüders 

banding (Muransky et al., 2010b; Barnett et al., 2012). While the phenomenological 
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models often capture this sharp yielding behavior, most crystal plasticity models fail to 

capture sharp initial yielding phenomenon. Additionally, even when initial yielding by 

twinning is experimentally observed to be abrupt, the reverse-yielding due to detwinning 

is often observed to be quite gradual. In some respects, it is reminiscent of a classic 

Bauschinger (1886) effect. However, both types of model generally fail to capture the 

very gradual reverse yielding phenomenon.  

As was recently introduced by Beyerlein and Tomé (2008) and subsequently 

employed in work which additionally stressed the stochastic nature of twin nucleation 

(e.g., Capolungo et al., 2009; Beyerlein and Tomé, 2010; Niezgoda et al., 2014), the 

present study employs a lower critical resolved shear stress for twin boundary motion 

(twinning or detwinning) relative to twin nucleation provides. We show that this provides 

a good description for the behavior observed experimentally using the in-situ neutron 

diffraction technique. Notably, it enables modeling of the sharp yielding behavior during 

initial twinning and the comparatively gradual yielding behavior during detwinning. 

Further, favorable comparison is made with the intensity changes and internal strain 

evolution observed in-situ. The intensity changes provide a measure of the volume 

fraction of twinning and the internal strain developments provide another constraint for 

the selection of model parameters governing the various deformation mechanisms. There 

are outstanding features in the data, which have yet to be modeled, and these 

opportunities for further improvement are highlighted. 
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3.2 Modeling Approach 

3.2.1 Crystal plasticity 

The polycrystal is modeled using a mean-field micromechanical homogenization 

approach which involves self-consistently determining the responses of both the 

aggregate and the large number of discrete volume weighted “grains” from which it is 

composed. The orientations and weights of the individual grains are selected to model an 

experimentally measured crystallographic texture using the POLE8 software (Tomé, 

2007). As such, there is no knowledge of the immediate neighborhood of individual 

grains, nor is there any attempt to model the neighborhood dependence of the response. 

Rather, the interaction between the individual grain and the surrounding homogeneous 

effective medium is regarded as adequate to capture the constitutive response of interest.  

      The details of the particular elasto-viscoplastic self-consistent (EVPSC) approach 

employed have recently been published in detail (see Wang et al., 2010a). In short, the 

approach of Molinari and coworkers (Kouddane et al., 1993; Molinari et al., 1997; 

Mercier and Molinari, 2009) and Li and Weng, (1997, 1998a, 1998b) is employed to 

additively decompose the elastic and viscoplastic portions of the deformation rate tensor, 

d . The elastic portion, ed , is linked with the Cauchy stress rate via the elastic 

compliance tensor, eM , while the viscoplastic portion, vpd , is linked to the Cauchy stress 

itself via an instantaneous (linearized) viscoplastic compliance tensor, vpM .  

0:: dσMσMddd e  vpevp   (3.2.1) 
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with 0d being back extrapolated term. One can link the grain-level response to that of the 

surrounding homogeneous (anisotropic) matrix separately, for each of these portions 

(elastic and viscoplastic). The homogenization of the viscoplastic portion follows the 

approach of Molinari et al. (1987) and Lebensohn and Tomé (1993), while the elastic 

problem follows the approach of Nemat-Nasser and Obata (1986).  

   ΣσMΣσMDd  :
~

:
~ vpe   (3.2.2)

where D  and Σ  are the strain rate and the Cauchy stress for the effective medium, 

respectively. 
eM

~
 is the so-called elastic interaction tensor, which is a function of the 

surrounding medium elastic compliance and the ellipsoidal shape of the inclusion. 

Similarly, vpM
~

 is the linearized viscoplastic interaction tensor, which is a function of the 

medium viscoplastic compliance and the shape of the inclusion. This combined elasto-

viscoplastic interaction equation is the same as that developed by Turner et al. (1994) and 

shown to be valid for the case of a linear elastic-linear (Newtonian) viscoplastic material, 

i.e. the Maxwell solid. For the present, we assume that this equation remains valid for the 

non-linear (high power law exponent) viscoplastic response used to model low 

temperature behavior of metals. This permits the following independent self-consistent 

equations for the homogeneous elastic ( eM ), viscoplastic ( vpM ) compliances, and back-

extrapolated term ( 0D ) to be developed: 

 eee BMM  (3.2.3a) 

 vpvpvp BMM  (3.2.3b) 

 00 dbMD vp  (3.2.3c) 
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where eB  and vpB  (and b ) are the elastic and viscoplastic concentration tensors which 

relate the medium stress rate and stress to the inclusion stress rate and stress, respectively.  

3.2.2 Grain level response 

The kinematics of slip-based crystal plasticity have been published many times (e.g. 

Asaro and Needleman, 1985), so only the highlights are given here. The plastic 

deformation rate, pd , within a given crystal is the sum of that due to each of the 

individual slip systems,  . 




 Pd p  (3.2.4) 

where P  is the Schmid tensor, corresponding to shear rate,  , on a given 

crystallographic plane in a given crystallographic direction. The power-law viscoplastic 

constitutive rule provides a relationship between the resolved shear stress within the 

crystal. 

cσP :   (3.2.5)

and the resulting shear rate   ( cσ is the Cauchy true stress acting on the crystal.) 

 
   sgn

1

0
m

cr   (3.2.6)

The constants 0 and  rc are the reference shear rate and critical resolved shear stress for 

the slip system  . The sgn operation simply determines the direction of straining with 

respect to the stressing direction. This seemingly innocuous final point will be critical as 

concerns twinning. The rate sensitive approach is used for expediency, rather than 
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attributing physical meaning to the particular value of the rate sensitivity employed. As 

highlighted by many previous authors (e.g., Asaro and Needleman, 1985), the power law 

relation provides a solution to the so-called ambiguity problem by offering a unique 

relationship between the stress and the straining direction. Using high power law 

exponents, as required for describing room temperature behavior of most metals, causes 

numerical problems (i.e., very stiff matrices as noted by Bronkhorst et al., 1992). A 

possible solution to this conundrum was proposed by Kok et al. (2002) and by ascribing 

the imposed strain rate in the test to the reference rate constant, 0 , they effectively 

eliminate the overall rate sensitivity implied by the relationship. 

 During each straining step, initial guesses are made for the elastic and viscoplastic 

compliances of the homogeneous matrix and then self-consistency is solved iteratively 

(per Eq. 3.2.3). The initial guesses for each straining step are the converged results of the 

previous straining step except the very first straining step, for which we employ the upper 

bound, Voigt estimate, for elasticity and a value close to zero (e.g. 10101  ) for 

viscoplasticity. The latter assumption is good for any of the common linearization 

strategies employed in self-consistent codes (e.g. tangent, secant, or affine) and power 

law viscoplasticity (Eq. 3.2.6). 

3.2.3 Twinning model 

                                                 
 The model was developed to describe phenomena associated with {10.2} tension twinning in HCP crystals. 
However, the principles are expected to be applicable to deformation twinning more generally, particularly 
those cases for which twin boundary migration is easy. 
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In the present TDT model, the deformation processes of twinning and de-twinning 

can take place by four operations as illustrated in Figure 3.1:  

A. twin initiation (which here comprises nucleation and propagation phases), 

B. twin growth,  

C. twin shrinkage, and  

D. re-twinning (initiation of a twin with the parent orientation within the twin.) 

Note that operation D is actually a subset of a broader class of secondary twinning 

operations, which include twinning of all possible variants within the twins.  

(a) (b) (c) (d) (e)

BA C D
Aτ Bτ

Cτ
Dτ

(a) (b) (c) (d) (e)

BA C D
Aτ Bτ

Cτ
Dτ

 
Figure 3.1 Schematic representation of twinning and detwinning in a grain, after Wang et 

al. (2012b). (a) The grain is twin-free and is called the matrix in the text. (b) The grain 
undergoes twin initiation (Operation A) resulting in a twin band (called twin). Solid green 

lines represent twin boundaries (TBs). Lattices in the matrix (represented by blue lines) 
and twin (red lines) are crystallographic mirrors of one another. (c) Operation B is growth 
of the twin, thereby consuming the matrix. (d) Operation C is the reverse of operation B, 

involving propagation of the TBs back into the twin, causing growth of the matrix. (e) 
Operation D is another means of shrinking the twinned region through twin nucleation 
within the existing twin back into the orientation of the original matrix (hence the blue 

dotted lines). 
 
 

Starting with a twin-free grain (referred to as ‘matrix’) in Figure 3.1a, the grain starts 

twinning on variant α (Figure 3.1b) when the resolved shear stress (RSS) in the matrix, 
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equals the critical resolved shear stress (CRSS) for operation A ( A ). The grain is then 

split into a twinned domain (twin) and an un-twinned domain (matrix). The 

corresponding crystallographic lattices are mirrored across the twin boundary (TB) plane. 

When it is stated that a grain is “split,” note that an entirely new “grain” is introduced into 

the self-consistent formulation to represent each twin variant that is activated, with a 

volume fraction corresponding to the amount of shear that has been accumulated during 

that straining step. Note further that the newly formed twin grains are free to undergo slip 

according to the same laws as the matrix grains. At this point, secondary twinning 

(twinning within the twins) is not accounted for, since this would lead to a proliferation of 

grains. The stress level in the newly formed grains is determined by the self-consistent 

algorithm and requires no assumptions. The accumulated shear strain (or strain hardening 

state) within the twin domain reset to zero. 

Due to the polar nature of twinning, the initial twinning event can only produce shear 

in the forward (twinning) direction. It is clear that the Cauchy stress acting on the matrix 

must be used to calculate the RSS of twin initiation because the twin is not born yet. The 

RSS acting on the twinning system is calculated in the same way as for slip Eq. (3.2.4), 

and must be positive for twin nucleation to take place. In the present modeling scheme, 

no differentiation is made between twin nucleation and the rapid propagation (presumably 

at speeds approaching the speed of sound) across the matrix grain; this is denoted 

operation A. After this operation, twin growth (thickening) will occur when the RSS on 

the twinning system exceeds B , the CRSS for twin growth, termed operation B. It is 

generally understood that the CRSS for twin growth is less than or equal to that required 
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for initiation (Venables 1964; Partridge 1967; Christian and Mahajan, 1995; Christian, 

2002).  

 A key feature of the TDT model is an acknowledgement that the driving force for 

twin growth is provided by stresses acting on the twin boundary (TB) and the strategy 

employed is designed to approximate this reality. “Because the model is implemented 

within an effective medium approximation, it does not provide the local stresses at the TB, 

only the average stress in the ellipsoids that represent matrix and twin.” (Wang et al. 

2012b) Thus, the Cauchy stress acting on the matrix grain and that acting on the new twin 

grain are both interrogated to assess the level of twin growth which may occur within a 

given straining increment. This is a key feature, which permits the model to describe the 

strain hardening plateau that is often observed when twinning is the primary strain 

accommodation mechanism. Other modeling strategies have not succeeded in predicting a 

strain hardening plateau without resorting to ad hoc solutions, such as delaying the 

reorientation associated with twinning until after the plateau is complete (e.g.  Agnew et 

al., 2001) or adopting a very low CRSS value for prismatic slip when twinning is the 

dominant mechanism (Clausen et al., 2008; Muransky et al, 2009). The former is known 

to be a poor representation, given all of the in-situ (and ex-situ) data which has been 

developed for twin volume fraction, twf , as a function of strain (e.g., Brown et al., 2005; 

Muransky et al., 2009; Lou et al., 2007). These data have unequivocally shown that twf  

is rapidly increasing throughout the plateau region. The suggestion of Clausen et al. 

(2008), that prismatic slip in Mg is strongly sensitive to the applied pressure (such that 
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tensile and compressive responses would be so asymmetric), has failed to develop 

experimental support.  

  The lowering of the parameter describing prismatic slip strength during 

compression testing adopted by Clausen et al. (2008) has since been proven unnecessary 

by Wang et al. (2013a), though a number of recent papers have repeated this error as they 

reanalyzed the data published by Clausen et al. (2008) by employing the low value for 

prismatic slip strength for modeling ED compression (see Abdolvand and Daymond, 

2012 and Juan et al., 2014). In addition, there are examples of FE-based crystal plasticity 

models in which no reorientation is accounted for at all (Graff et al., 2007). In such case, 

the appearance of a plateau and subsequent rapid hardening are entirely 

phenomenological and should not be viewed as physically based. 

  Twin growth (operation B shown in Figure 3.1c) occurs when the sign of the 

resolved shear stress is positive. When the sense of the stress is negative, detwinning 

(operation C) can occur. This simply means that the twin boundary retreats from the 

matrix into the twin. Hence, the twin volume fraction twf decreases. To some readers, this 

may initially seem like a violation of the twin polarity introduced above. However, the 

aforementioned polarity of twinning only applies to the creation of a twin. Stresses in the 

anti-twinning direction will never result in twin nucleation, but once the twin is created, 

there is nothing to prevent the reverse motion of the TB, thereby accommodating 

twinning shear in the reverse sense. In the present model, no discrimination is made 

between the CRSS values of twin growth B  and twin shrinkage C ; i.e., it is imagined 

that the twin boundaries can move with equal ease in the forward and reverse directions. 
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This is contrary to the conclusion of Lou et al. (2007), that twinning is somewhat more 

difficult than detwinning, so this item will be discussed later in the paper.  

   Finally, operation D is introduced for the sake of completeness. The critical stress 

conditions for this nucleation event could be less than, equal to, or greater than that of the 

initial nucleation event. However, we do not discriminate between operations C and D in 

the present analysis. (Consider the possibility that nucleation D requires a higher critical 

stress than boundary motion, C. In such a case, operation D would never occur in the 

present mean-field formulation. Discriminating between these two mechanisms will 

require a full-field approach such as the crystal plasticity finite element method with 

many elements per grain or molecular dynamics.) In summary, we 

assume DCBA   , and there is no distinction made between operations C and D in 

the present code. As such, operation D will not be discussed further. 

  In mathematical terms, the following criterion is polled within the parent crystals 

for all possible twin variants,  . 
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A- twin initiation (nucleation and initial propagation across matrix grain) 

This expression explicitly accounts for the polarity of twinning. The power law form 

is identical to that employed for slip (Eq. 3.2.6). As mentioned earlier, this is for 

mathematical convenience and does not reflect a belief that twinning is similarly rate 

sensitive to slip. On the contrary, the authors acknowledge that {10.2} extension twinning 

in Mg alloys is apparently rate insensitive over a wide range of temperatures and strain 
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rates (Livescu et al., 2006; Jain and Agnew, 2007; Tucker et al., 2009; Ulacia et al., 2011; 

Agnew et al., 2014b). Future work is planned to investigate modeling this aspect of 

twinning phenomenon as well. The volume fraction of twin produced is directly 

proportional to the twin shear accommodated and the characteristic shear of the twinning 

mode in question. 

tw
AAf      (3.2.8)

Once twins have been created and a critical level of twin strain tw
cr  ( tw

crf ) accommodated, 

the stress for continued growth drops to B . The concept of discriminating between the 

stress required to initiate twins A and that required to grow them B  was introduced 

previously by Wang et al. (2012b; 2013a). However, it was not to this point exploited. 

Here, it is shown that the concept makes it possible to describe the sudden yielding and 

the yield plateau observed in materials where twinning is the main strain accommodation 

mechanism responsible for yield. This is a simplified model and further work on the issue 

of transition between nucleation, propagation and growth is merited.  

 The criterion for twin growth is examined within both the matrix and the twin. This 

is a key distinction between the present model and that proposed by prior authors (Van 

Houtte, 1978; Tomé et al., 1991; Kalidindi, 1998; Clausen et al., 2008; Levesque et al., 

2010) which reflects the authors’ desire to approximate the fact that twin growth is 

actually governed by stresses applied on the TB interface itself. 
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B- twin growth (due to reaching the critical stress level within the matrix, M) 
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B-twin growth (due to reaching the critical stress level within the twin, T) 

The negative sign in equation (3.2.9b), relative to equations (3.2.7&3.2.9a) is not a 

violation of the polarity of twinning, rather it reflects the fact that the sense of stress 

within the twin which drives the outward motion of the twin boundary is of opposite sign. 

Consideration of the crystallography and geometry of the problem will make this 

requirement obvious. It is important to note that the resolved shear stress  in (3.2.9a) is 

calculated from the true stress tensor σ  of the matrix and the Schmid tensor 

P associated with the lattice of the matrix for system  , while the one in (3.2.9b) from 

those of the twin.  The volume fraction change 
Bf during the growth phase is the sum of 

that due to (3.2.9a) and (3.2.9b). 

tw
BT

tw
BMBf      (3.2.10)

Similar to the situation described by equations (3.2.9a&3.2.9b) for twin growth, the 

possibility of twin shrinkage (Operation C) is probed within the matrix (Eq. 3.2.11a), as 

well as the twin itself (Eq. 3.2.11b). 
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C- twin shrinkage (due to reaching the critical stress level within the matrix, M) 
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C- twin shrinkage (due to reaching the critical stress level within the twin, T) 

Again, these equations (3.2.11a) and (3.2.11b) do not reflect a violation of the 

polarity of twinning. If no twin is present, then only one sense of stress can create a twin, 

per equation (3.2.7). However, once a twin is created, a stress in the anti-twinning 

direction can drive the twin boundary in the reverse direction. Similar to the description 

of equation (3.2.9), the resolved shear stresses in (3.2.11a) and (3.2.11b) are calculated 

from the true stresses and the Schmid tensors  in the matrix and twin, respectively. The 

volume transfer 
Cf during this “detwinning” is governed by an equation of the same form 

as equation (3.2.10) 

tw
CT

tw
CMCf      (3.2.12)

At the risk of redundancy, it is reiterated that the only coupling between the twin and 

matrix are the common critical resolved shear stress values for twinning and the volume 

fraction transfers (Eqs. 3.2.10 & 3.2.12). The stress states in the matrix and twin grains 

are computed independently, via the self-consistent algorithm, which employs linearized 

versions of the single crystal constitutive law such that the respective orientations of the 

twin and matrix are naturally taken into account. 

 The final element of this crystal plasticity model is a threshold approach which is 

employed to prevent grains from twinning in their entirety, since this is rarely observed 

experimentally. When the volume fraction of twins in a given grain exceeds a threshold 
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value, thV , that grain ceases being able to twin. Two empirical parameters, 1B  and 2B , 

are employed to control this aspect of the response.  











acc

eff
th

V

V
BBV 21,0.1min  (3.2.13)

The total accumulated twin volume fraction in the polycrystal is denoted as 
accV , and the 

volume fraction of grains which have ceased twinning is denoted as 
effV . 1B essentially 

controls the level of strain (volume fraction) which a grain can undergo prior to the 

twinning mechanism beginning to undergo exhaustion. 2B , on the other hand, essentially 

controls the rate at which this exhaustion takes place once it has begun. Eventually, the 

capacity to twin is completely exhausted and additional straining within the twins (and 

surrounding matrix grains) will rely on other means of straining. Since the alternatives 

involve deforming by basal slip (low critical stress, but poorly oriented) or non-basal slip 

(well oriented, but high critical stresses), the applied stress on the grain must be high in 

order for it to continue straining. As such, the combination of 1B  and 2B  control the 

length of the plateau and the steepness of the subsequent strain hardening. Note that the 

present model is completely empirical at this time. However, it provides twin exhaustion 

as the basis for rapid hardening, which is alternative to the Hall-Petch effect, such as 

employed by previous modelers (CG model, e.g. Proust et al., 2007, 2009; Levesque et al., 

2010). Further, it will be shown unnecessary to employ a special latent hardening effects 

associated with twinning, though previous modeling attempts using VPSC have required 

it (e.g., Jain and Agnew, 2007; Oppedal et al., 2012). The former group employed a high 
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value of the latent hardening of slip modes by twinning, while the latter employed a high 

value of a transmutation storage parameter to induce a high dislocation density (hence 

high Taylor hardening) within the twins (Niewczas, 2010). While it has been proposed 

that dislocations may be transmuted, based upon crystallographic relationships, there is 

conflicting evidence that suggests twins may actually sweep the matrix of preexisting 

dislocations (Rampton et al. 2012). 

  For both slip and twinning, the evolution of the CRSS values,  cr , is potentially 

controlled by an empirically determined latent hardening matrix, h . 
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
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   h
d

d
cr

ˆ
 (3.2.14)

where   is the total accumulated shear strain within the grain due to all slip and twinning 

systems;  is the shear on a specific slip or twinning system,  ; and ̂  is an empirical 

Voce hardening law (with an initial CRSS value 0 , an initial hardening rate 0h  , and a 

saturation stress ( 10   ). Note, however, that the twins do not appear to undergo strain 

hardening in the present work. The strain hardening behavior of twinning appears to be a 

function of grain size, as pointed out in recent work of Barnett et al. (2012). In the present 

work, all components of the latent hardening matrix are assumed to be equal to 1, due to a 

lack of available theoretical or experimental data to justify alternative values. The area of 

latent hardening within hexagonal close packed metals appears to be an open topic, with 

very little work to date on the subject (e.g., Lavrentev and Pokhil, 1975 and Hiura, 2010). 
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3.2.4 Comparison with experiments 

For comparison with experimentally measured in-situ neutron diffraction data, 

subsets of grains are identified which would satisfy the Bragg diffraction conditions for a 

given set of crystallographic {hk.l} planes. The experimental spectrometer (described 

previously by Bourke et al., 2002) has a detector with a central square region having an 

angle of 13º. Within the EVPSC simulation code, all grains which have {hk.l} normal 

vectors which fall within this acceptance angle are added to subset. The volume fraction 

of these grains is directly proportional to the diffracted intensity, and so it may be 

compared with experimentally measured, normalized intensity. Similarly, the predicted 

stress level within each grain permits the normal component of the elastic strain parallel 

to the diffraction vector (i.e. the {hk.l} normal vector) to be calculated via generalized 

Hooke’s law and the known elastic constants for Mg single crystals. A volume weighted 

average of this strain over the subset of grains, denoted {hk.l}, permits direct comparison 

with experimentally measured lattice strain, which is computed as the normalized 

difference between the lattice plane spacing under load and at zero load as follows: 

}.{
0

}.{
0

}.{
}.{

lhk

lhklhk
lhk

d

dd 
  (3.2.15)

3.3 Results 

The initial texture of the material was modeled as 2,160 or 15,552 discrete 

orientations (grains) having volume fractions selected to well-represent the 

experimentally measured (neutron diffraction) texture of the extruded alloy, ZK60A, plate 
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measured using synchrotron X-ray diffraction and published by Wu (2009).  The smaller 

grain set was used for rapid initial parameterization, and the larger grain set was 

employed for final simulations in order to improve statistics of the intensity and internal 

strain predictions. Contour plot pole figures of the discretized texture generating using 

POLE8 (Tomé, 2007) are presented in Figure 3.2. Note that this extruded plate essentially 

exhibits the <10.0> || the extrusion direction (ED) texture typical of axis-symmetric 

extrusions, but the {00.2} pole figure exhibits the strongest intensity parallel to the plate 

transverse direction (TD). Note also that this texture is distinct from the one published 

with the original in-situ neutron diffraction study of cyclic deformation (Wu et al.; 2008b). 

That prior texture measurement was made using a laboratory X-ray diffractometer and 

deviates from numerous synchrotron measurements made later on the same plate. It is 

suggested that the texture published by Wu et al. (2008b) was collected from the surface 

of the extrusion, which is characterized by heavy shear and not representative of the bulk 

of the extrusion. 
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Figure 3.2 Initial texture of the ZK60A plate represented in terms of the {00.1} and {10.0} 

pole figures. 
 



 83 

3.3.1 Parameterizing the model with data from monotonic straining 
along the ED 

 
Uniaxial tension and compression curves (Figure 3.3) and in-situ neutron diffraction 

(Figure  3.4) published by Wu et al. (2008a) were used to develop the initial guesses for 

the crystal plasticity model parameters. These initial guesses are then tuned manually to 

obtain the best fit to the flow curves, internal strain data, and texture evolution. In the 

present study, we consider three types of slip systems: Basal <a> (  0211}0001{ ), 

Prismatic <a> (  0211}0110{ ) and Pyramidal <c+a> (  2311}2211{ ), and one 

twinning mode: the  0111}2110{  extension twin system. The reference slip/twinning 

rate 0  and the rate sensitivity m are prescribed to be the same for all slip/twinning 

systems: -1 s001.00   and 05.0m , respectively. Wang et al. (2010b) have evaluated 

several self-consistent approaches by studying the large strain behaviour of magnesium 

alloy AZ31B sheet under tension and compression along different directions. It has been 

demonstrated that, of the approaches examined, the Affine self-consistent scheme gives 

the best overall performance. Therefore, all the simulations reported in the present paper 

are based on the Affine self-consistent scheme. The internal strains are simulated based 

on the numerical procedure described by Wang et al. (2012a, 2013b) and recently used by 

Lee et al. (2014).   
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Figure 3.3 (a) Measured and simulated (fit parameters in Table 3.1) stress-strain 
responses in monotonic, uniaxial tension/compression along the ED. The dash-dot curve 
illustrates that quite sudden yielding can be predicted for twinning-dominated response, if 
high values of the twin activation stress, A  = 70 MPa, and the threshold volume fraction, 

tw
crf = 0.045, are employed. (b) The Kocks-Mecking plot (Kocks and Mecking, 2003) of 

the normalized strain hardening rate versus the flow stress minus the yield stress, where 
E0 (45GPa)and G (16.3GPa) are the Young's modulus and shear modulus, respectively. 
 

The internal strain data obtained from in situ diffraction are particularly useful for 

determining the parameters which describe the behavior of the various slip and twinning 
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systems. At first, all of the grain orientations strain similarly and this is a reflection of the 

near elastic isotropy of Mg alloys (Figure 3.4). The room temperature elastic constants of 

the Mg-Zn alloy are assumed to be close to those of pure Mg: C11 = C22 = 58.0; C33 = 

61.2; C12 = 25.0; C13 = C23 = 20.8; C44 = C55 = 16.6; and C66 = 16.5 GPa (Simmons and 

Wang, 1971), though the possible role of a stiffer (Xie et al., 2013) Mg-Zn intermetallic 

phase is discussed later in the paper. The first subset of grains to undergo yielding (during 

both tension and compression) of Mg alloy, ZK60A, are those with {10.2} poles parallel 

to the stress axis (Agnew et al., 2014a). The {10.1} are the first grains to yield in the 

present data set of Wu et al. (2008a), since the {10.2} data were not presented (Figure 

3.4). The {10.1} grains begin to slow their accumulation of elastic strain at an applied 

stress level of ~ 100 MPa. Simultaneously the {10.0} and {11.0} oriented grains begin 

load sharing a greater fraction of the imposed load. Because all grains are deforming 

similarly at this point in the deformation, it is reasonable to employ the Schmid law (Eq. 

3.2.5), and the macroscopically imposed stress to define an initial estimate of the critical 

resolved shear stress for basal slip of 36 MPa (Schmid factor ~ 0.36).  
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Figure 3.4 Measured and simulated (fitted) internal strain during the first quarter cycle 
(compressive strain to 1.2%) of in situ cyclic deformation. Predicted strain levels within 
the {00.2} grains should be ignored up to the point at which twinning begins, (~150 
MPa) since there is an initially low volume fraction of grains with this orientation, 
making estimation of an internal strain impossible. 

 The next major event during compressive loading is the sudden yielding at 150-175 

MPa (depending upon the sample), and which has already been associated with {10.2} 

extension twinning. In particular, the intensity of the {00.2} diffraction peak begins to 

increase in intensity at ~150 MPa, due to the reorientation of portions of grains which 

were previously oriented to have their {10.0} poles parallel to the extrusion axis 

(discussed in more detail below).  These {10.0} grains are perfectly oriented to undergo 

extension twinning (i.e. the Schmid factor is close to 0.5). These facts permit setting the 

CRSS for the initiation of twinning (τA) in the vicinity of 75 MPa. For those who may 

object to the use of the macroscopic (polycrystalline) stress in the Schmid relation to 

determine the CRSS for application in a grain-level model, it is emphasized that the 

internal stress levels within various {hk.l} subsets of grains are still not so different at this 

stage in the deformation (see the lattice strain values at 150 MPa, Figure 3.4). 
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The comparison of measured and predicted internal strains reveals three important 

points. First, the purely elastic loading portion (up to 25 MPa) correlates well between 

simulation and experiment. However, once the slightest bit of microplasticity occurs, the 

experimental data deviate from the simulated. This signifies that there is a load sharing 

effect due to the presence of a hard elastic phase. In a previous study, including an 

appropriate phase fraction of elastic second phase inclusions provided a sufficient level of 

load sharing to explain the observation (Agnew et al., 2013). In the present study, 

simulation trials with including hard elastic inclusions failed to immediately correct this 

deficiency and further consideration will be required to overcome this deviation between 

model and experiment. Second, it is emphasized that the {00.2} grains should be ignored 

up to the point at which twinning begins, (~150 MPa) since there is an initially low 

volume fraction of grains with this orientation, making estimation of an internal strain 

impossible. Once twinning has initiated, the new grain orientations appear, which are 

unloaded with respect to the matrix grains. This strong relaxation phenomenon has been 

previously modeled by Clausen et al. (2008), but this effect is not accounted for in the 

present work. Third, the major inflections observed in the internal strain evolution (such 

as the deviation of {10.0} and {10.1}) do occur at similar applied stress levels. The 

oscillations in the predictions correspond with the predicted yield point peak associated 

with twinning. 

  The final aspects which can be readily determined from the experimental 

compression are the empirical parameters which govern the rate at which grains cease 

twinning (see Eq. 3.2.13). The regime of rapid strain hardening begins at a strain of about 
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0.04. This enables fixing parameter 1B , the volume fraction when continued twinning 

begins to become more difficult. Since the majority of the strain throughout the plateau 

region has been associated with twinning (Brown et al., 2005), the majority grains have a 

Schmid factor for twinning of near 0.5, and the characteristic shear for {10.2} twinning is 

~0.13, we can invoke relation (3.2.8) to estimate 1B  ~ 0.04/(0.5·0.13) ~ 0.6. As 

mentioned earlier, the rate of strain hardening beyond this point is governed by the 

empirical parameter 2B , which determines the rate at which grains cease twinning. 

 Examination of the tensile test data shows that monotonic, macroscopic yielding 

occurs at ~260-275 MPa. In-situ neutron diffraction data obtained from similar, extruded 

ZK60A, material (Agnew et al., 2014a) shows microyielding due to basal slip at the same 

stress level as during compression. On the other hand, the macroscopic yielding of such 

textured extrusions has previously been shown via in-situ neutron diffraction and 

polycrystal plasticity modeling to be due to the slip of <a> dislocations on prismatic 

planes. These prior works were performed on distinct extruded alloys, AZ31B (Agnew et 

al., 2006; Wang et al., 2012a) and ZM20 (Muransky et al., 2010b), which demonstrates 

the broad applicability of the notion that prismatic slip is responsible for the yielding of 

extrusions in tension. An initial estimate for the CRSS of prismatic slip of 115 MPa is 

given by again assuming that the stress within the relevant grains is similar to that 

imposed on the aggregate (something confirmed by in-situ measurements, Agnew et al, 

2014a) and invoking the Schmid factor of the majority <10.0> oriented grains, Schmid 

factor = 0.43.  
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  The present monotonic data do not permit fixing the CRSS for <c+a> pyramidal 

slip; it would require knowing the flow stress at higher levels of compressive strain. 

However, results from in-situ monotonic compression data from similar extruded ZK60A 

material (Agnew et al., 2014a) show that the grains oriented for <c+a> slip, i.e. the {00.2} 

grains, undergo an inflection in lattice strain development in the vicinity of 8000 με (close 

to 340 MPa, assuming isotropy). The Schmid factor for <c+a> slip in these grains is also 

in the vicinity of 0.43. As such, the CRSS for <c+a> slip may be estimated as in the 

vicinity of 145 MPa within alloy ZK60A, though the present alloy samples are somewhat 

stronger than those tested by Agnew et al. (2014a).  

 The initial CRSS values and hardening responses were adjusted to best-fit the 

experimentally observed flow curves (first the monotonic and then the cyclic ED data, 

discussed below). The resulting parameters are presented in Table 3.1. Concerning the 

strain hardening of the individual deformation modes, the basal slip system has been 

shown to harden very little in recent crystal plasticity modeling studies of magnesium 

alloys (Clausen et al., 2008; Agnew et al., 2013, Wang et al., 2012a, 2012b). Consistent 

with the suggestion of Jain et al. (2012), we employ a value for the initial hardening rate 

of basal slip, in the vicinity of μ/100, given μ ~ 16.3 GPa.  The twinning mode has been 

shown to exhibit very little strain hardening; many current studies assume no hardening at 

all (Wang et al., 2010b, 2012a). The fact that the present material has a dramatic strain 

hardening plateau is particularly suggestive of low strain hardening behavior. Thus, the 

strain hardening of the aggregate is largely associated with strain hardening of the non-

basal slip modes. Notably, we employ a higher level of strain hardening to the non-basal 
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slip modes than Jain et al. (2012), but consistent with prior studies of the present authors. 

This empirical result again suggests that the fundamental mechanisms of strain hardening 

(i.e. dislocation interactions) within hexagonal close packed metals remain an open topic. 

Works like that of Capolungo et al. (2010) and Bertin et al. (2014) represent a start in this 

direction. 

Table 3.1 List of material parameters for slip and twin systems used in the EVPSC model. 
(All latent hardening parameters are 1.) 

Mode τ0(MPa) τ1(MPa) h0(MPa) tw
crf ( tw

cr ) B1
 B2

Basal 40 15 150    
Prismatic 115 15 800    
Pyramidal 125 160 1200    
Extension 

twin 
      A(56 ) 

B=C=D (32) 
0 0 0.035(0.0046) 0.56 0.70 

 

 The resulting model can be used to map out the slip and twinning mode activities 

predicted to occur during monotonic deformation (Figure 3.5). The basal slip mode is the 

most active at low stresses, below the macroscopic yield point. From the macroscopic 

yield stress and beyond, other mechanisms are similarly important. During tension along 

the extrusion axis, it is the non-basal (prismatic) slip of <a> dislocations which becomes 

most prominent. During compression along the extrusion axis, the {10.2} extension 

twinning mode is a dominant mechanism until it is exhausted at a compressive strain, ε ~ 

0.1. The sharp oscillation between twinning and basal slip at low strains is due to the 

simplistic model presently employed to transition from twin nucleation to twin growth. 
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Figure 3.5 The relative deformation mode activities under uniaxial (a) compression and (b) 
tension along the extrusion direction (ED). 

 
  The total predicted twin volume fraction Totf reaches ~80% at the strain ~0.1, 

where twinning is almost exhausted. The relative contributions of twinning driven by 

stresses within the matrix f Mat  and within the twin Twinf , respectively, are presented in 

Figure 3.6. At the low strain levels, the twin growth is mainly driven by the stress within 

the matrix and gradually taken over by the driving force within the twin itself with further 

straining. The cross-over when twinning driven by stresses within the twin itself begins to 

exceed twinning driven by the stresses within the matrix occurs at a strain of ~0.04 

(Figure 3.6b), the same strain level at which the strain hardening rate starts to increase 

dramatically. 
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Figure 3.6 (a) Predicted twin volume fraction and (b) the derivative of the same, as a 
function of macroscopic strain under uniaxial compression along the ED. Note the cross-
over when twinning driven by stresses within the twin itself begins to exceed twinning 
driven by the stresses within the matrix occurs at a strain of ~0.04, the same strain level at 
which the strain hardening rate starts to increase dramatically. 

3.3.2 Cyclic deformation along the ED 

The stress-strain response during the first 2 ¼ cycles of deformation provides a direct 

means of refining the model parameters obtained from the monotonic data by comparing 

the simulation predictions and experiment. The initial loading in compression activates 

twinning, which gives rise to a sudden yield (even a slight yield point peak in the 

simulation results) followed by a relative strain hardening plateau. In comparison, the 

yielding upon compressive unloading and reloading in tension is very gradual. The 

response is well-captured by the EVPSC-TDT model, and this may be attributed to the 

lower CRSS value employed for twinning operation C (“ungrowing”) relative to 

operation A (“initiation”) (see Table 3.1). The correlation of the stress strain response and 

                                                 
 The ED compressive yield point was significantly different between the monotonic and cyclic test data 
published by Wu et al. (2008a). Hence, the critical stress for twinning was adjusted downward only after 
comparing the predictions with the cyclic test data. 
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the twinning behavior can be made by examining Figures 3.7-3.9. Recall that the critical 

stress for operation C is set equal to that of twin thickening (operation B) in the present 

model. Twin thickening or thinning correspond to motion of the same boundary in the 

forward or reverse direction. Without strong evidence to the contrary, it seemed most 

prudent to assume that the critical stress to drive such interfacial motion is independent of 

direction, and the present results provide evidence to support this assumption. Rapid 

hardening occurs during the tensile straining cycles, once the detwinning operation is 

complete. Note that the model which controls the exhaustion of twinning (Eq. 3.2.13) and 

associated parameters 1B  and 2B  are not used to govern detwinning behavior. However, 

there may be a small residual twin volume fraction left after detwinning which has been 

observed experimentally (Hama et al., 2012). Such a parameter could be important for 

larger strain cycles and/or larger numbers of cycles. For the present case, it was not 

essential (values between tw
residualf  = 0 and 0.005 were explored and shown to give similar 

results.) 
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Figure 3.7  Comparison of the measured (symbols, after Wu et al., 2008b) and predicted 

(curves) stress-strain responses under cyclic loading along the extrusion direction. 
 

  Figure 3.8 presents a comparison between the evolution of the normalized diffracted 

intensity of the {00.2} diffraction peak and the predicted volume fraction of grains that 

satisfy the corresponding Bragg condition. Because the intensity of the {00.2} diffraction 

peak is proportional to the volume fraction of twins, this comparison may be viewed as a 

validation of the approach. The model parameters were not adjusted to achieve these 

predictions. However, it must be admitted that “twinning is kinematically-driven” 

(Eisenlohr, 2013). Note the linear relationship between twin volume fraction and 

twinning strain (e.g. Eqs. 3.2.8, 3.2.10, & 3.2.12). Similarly, previous publications have 

also emphasized that achieving a good prediction of twin volume fraction does not 

depend strongly upon model details (Clausen et al., 2008). Figure 3.9 shows the complete 

texture evolution due to twinning and detwinning. Note that each alternate pole figure 

looks similar, after twinning and detwinning, respectively. Although such a collage has 



 95 

not been experimentally measured for alloy ZK60A, these simulation results compare 

well with similar compilations produced by x-ray or neutron diffraction of AZ31 (Lou et 

al. 2007; Wu et al., 2010). During the initial compressive quarter-cycle, twin initiation 

(operation A) dominates the evolution. During the compressive unload, tensile-reload 

cycle Operation C (reverse boundary motion or “ungrowth”) dominates the response. It is 

reassuring that this correlates so well with the acoustic emission data of Lou et al. (2007) 

which suggested that twinning required nucleation events detectable with AE, while 

detwinning was not accompanied by a significant AE signal. 
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Figure 3.8  Normalized intensity of the {00.2} diffraction peak along longitudinal 

direction (after Wu et al., 2008a) as a function of macroscopic strain (a), and applied 
stress (b) under cyclic loading along the ED. 
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Figure 3.9 Basal {00.2} pole figures for (read left to right): the initial texture, that after -
1.2% (first quarter cycle), +1.2% (first cycle), -1.2% (early second cycle), +1.2% (late 
second cycle), and -1.2% (early third cycle). Note that each alternate pole figure looks 
similar, after twinning and detwinning, respectively. The pole figures are oriented such 
that ED is horizontal, ND is vertical, and TD is out of the page. 

 

The measured and simulated internal strains may be plotted as functions of the 

macroscopic applied strain or stress (as they were in Figure 3.4). The latter has been more 

conventional in the literature even though the independent variable in the present tests 

was the applied strain. The overall trends of the predictions well match those observed 

experimentally (Figure 3.10). For example, the lattice strain decreases within all grain 

orientations along the longitudinal direction during compressive loading and increases 

during tensile loading. As shown earlier, the {10.0}, {10.1}, and {11.0} predictions for 

the longitudinal direction are qualitatively good. Only the {00.2} subset of grains shows 

gross variation from the experiment and this is related to the fact that the present model 

does not adequately account for the relaxation that occurs within the twins (Clausen et al., 

2008), despite the fact that there is some relaxation associated with the decrease in critical 

stress between twin initiation and growth (Table 3.1). 

During the subsequent unload and reload in the tensile direction, there is good 

agreement, up until the point where detwinning is exhausted (i.e., all the twins are gone, 

about 1/3 of the way from 0 to PT1 in Figure 3.10). At this point, the experimental data for 

{10.1} and {11.0} grains, in particular, exhibit a slowing evolution in the lattice strain, 
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which is not evidenced by the model predictions. The disagreement with the {10.0} 

grains is not so strong and the {00.2} grains have “disappeared” due to detwinning, so the 

model {00.2} predictions at this stage are somewhat meaningless (indeed the volume 

fraction of grains with this orientation is only 0.0014, relative to ~ 0.02-0.068 in the other 

orientations). It is not immediately obvious how all of these grain orientations are 

predicted to show higher lattice strains than the experimental, while the overall stress 

strain curve (Figure 3.7) and intensity (twin volume fraction) variations (Figure 3.8) 

match so well. During the subsequent unload, reload in compression, unload and reload in 

tension, the agreement between the experimental and predicted lattice strain is regained. 

Only after detwinning is nearing completion the second time does the variance reappear 

again, most strongly in the {10.1} oriented grains.  

  Predicting the lattice strains in the transverse direction is notoriously difficult. Neil 

et al. (2010) recently showed that grains which belong to a single {hk.l} subset can have 

very different responses to the applied loads and develop very different lattice strains. In 

fact, they noted that the range of lattice strains within a single subset of grains which 

satisfy a Bragg condition was greater than the range of lattice strains observed 

experimentally across all possible diffraction conditions. Nevertheless, we present the 

predictions of the model for comparison with data that Wu et al. (2008b) made available. 

As with the longitudinal direction, it can be stated that the major trends are captured, even 

if quantitative agreement between the experiment and predictions are not observed. Again, 

the reason the {00.2} predictions look erratic is because the intensity associated with this 

direction is coming and going throughout the simulations. (When there is {00.2} intensity 
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in the longitudinal bank, there is low intensity in the transverse bank, etc.) The strongest 

mismatch between model and experiment in the transverse lattice strain data again 

appears in the {10.1} and {11.0} grain sets. The mismatch occurs during the unloading 

from compressive loading. During subsequent tensile reload, the agreement is regained. 
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Figure 3.10 Lattice strains of the {00.2} family (a),{10.0} family (b), and {10.1} family 
(c), {11.0} family (d)  as a function of applied stress under cyclic loading along the ED. 
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3.3.3 Predictions of monotonic straining along the TD and ND 

 
Wu (2009) also published monotonic tension and compression curves obtained from 

the transverse (TD) and normal (ND) directions. The results of simulations of TD and ND 

deformation performed using parameters obtained after fitting the model to ED tension, 

compression, and cyclic data are presented in Figures 3.11 and 3.12. The results of these 

predictions are quite encouraging. They show that the model can correctly predict the 

level of strength anisotropy and asymmetry, as well as the strain hardening behavior. It is 

admitted that the strength of the ND compression curve is a bit high, relative to the 

experimentally observed. However, subtle variations in the local texture are known to 

exist and it is not known how closely the position of the extracted test samples matched 

that of the sample on which the texture measurement was made. Note that changes to 

even the least constrained fit parameters obtained from the ED testing (e.g. the strength of 

the <c+a> slip system) lead to degradation of these predictions.  It is also interesting that 

twinning process may be different during tension along c-axis from that during 

compression perpendicular to c-axis. Twinning is equally favored in both cases, but the 

former leads to much more twin intersection than the latter (Hong et al., 2010a). Further, 

based on the EBSD analyses of two distinct grains deforming within the same extruded 

AM30 alloy, it has been shown by El Kadiri et al. (2013b) that twin intersection does lead 

to greater incidence of nucleation, but the overall amount of twinning may remain the 

same. 
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Figure 3.11 (a) Measured and simulated stress-strain responses in monotonic, uniaxial 
tension/compression along the TD and (b) the Kocks-Mecking plot of the normalized 

strain hardening rate versus the flow stress minus the yield stress, where E0 (45GPa) and 
G (16.3GPa) arethe Young's modulus and shear modulus, respectively. 
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Figure 3.12 (a) Measured and simulated stress-strain responses in monotonic, uniaxial 
tension/compression along the ND, and (b) the Kocks-Mecking plot of the normalized 

strain hardening rate versus the flow stress minus the yield stress, where E0 (45GPa) and 
G (16.3GPa) arethe Young's modulus and shear modulus, respectively. 

 
  The deformation mode activity which is predicted to be responsible for the observed 

behavior is a natural output of the model (Figures 3.13 & 3.14). The results show that 

basal slip is much more active during compression testing along these straining directions 
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than either of the ED tests. Twinning exhibits an intermediate level of activity 

( 5.0～3.0twf ) relative to that observed during tension (0.05) and compression (0.8) 

along the extrusion direction.  This is noteworthy, because previous authors have 

commented on the difficulty of predicting the stress strain response for cases involving 

intermediate levels of twinning, even when the cases of dominant twinning and minimal 

twinning were well-described (Oppedal et al., 2013). The texture which results from 

twinning has a significant impact upon secondary slip mode operation. The twinning 

places c-axes parallel to the loading axis during compression testing and they reorient 

orthogonal to the loading axis during tension. This results in more <c+a> slip during 

compression and more prismatic slip during tension. A comparison of the predicted 

normalized intensity evolution with that observed in situ, during TD tension, is presented 

in Figure 3.15. It shows a good overall agreement with the {00.2} and {10.0} normalized 

intensities observed parallel and orthogonal to the loading direction. In particular, this 

suggests that the predicted level of twinning is correct, since twinning produces the most 

rapid texture evolution responsible for intensity change. 
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Figure 3.13 The relative deformation mode activities under uniaxial (a) compression and 
(b) tension along the TD. 
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Figure 3.14  The relative deformation mode activities under uniaxial (a) compression and 
(b) tension along the ND. 
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Figure 3.15  Comparison of the measured (symbols, after Wu, 2009) and predicted 
normalized intensity evolutions under monotonic tension along the TD. 

3.3.4 Predictions of cyclic straining along the TD 

 
Samples from the TD were tested at the same strain amplitude (1.2%) as the ED 

presented above. The predictions are (not surprisingly) less impressive than the fits to ED 

behavior shown earlier (Figure 3.16). However, the shapes of the hysteresis loops look 

similar to experimental hysteresis loops obtained at higher levels of cycles. The hysteresis 

loops obtained at higher strain amplitudes (3.0%) show similar deficiencies, whether they 

are compression first (Figure 3.17) or tension first (Figure 3.18) cycling experiments. 

Namely, the twinning and detwinning plateau behaviors complete in the case of the 

simulations, leading to rapid hardening at the tips of the hysteresis loops. 
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Figure 3.16  Comparison of the measured (symbols, after Wu, 2009) and predicted 

(curves) stress-strain responses under cyclic loading along the TD. 
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Figure 3.17  Comparison of the measured (symbols, after Wu, 2009) and predicted 
(curves) (a) stress-strain responses under cyclic loading along the TD and (b) normalized 
intensity of the {00.2} diffraction peak along stress axis direction during cyclic loading 

along the TD beginning with compression. The dash-dot-dot line shown in (a) is the 
experimental data during monotonic compression along the TD. 
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Figure 3.18  Comparison of the measured (symbols, after Wu, 2009) and predicted 
(curves) (a) stress-strain responses under cyclic loading along the TD and (b) normalized 
intensity of the {00.2} diffraction peak along stress axis direction during cyclic loading 

along the TD beginning with tension. 
 

3.4 Discussion 

3.4.1 Modeling of twinning/detwinning 

 The concept of discriminating between the stress required to initiate twins A  and 

that required to grow them B  was introduced previously by Wang et al. (2012b, 2013a). 

However, it was not to this point exploited. Here, we show that the concept makes it 

possible to describe the sudden yielding and the yield plateau observed in materials where 

twinning is the main strain accommodation mechanism responsible for yield. In this 

initial example, a yield point peak results because of the way the formalism is introduced. 

Very simply, A  controls twin activation until the volume fraction of each twin system   

reaches a threshold value (recall, tw
crf  = 0.035). Henceforth, the code requires the stress 

only reaches B  for continued growth of the twin. Then, when the volume fraction of 
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twins exceeds the threshold value, thV , the parent grain is no longer permitted to twin. 

The evolution of the critical stress with respect to the twin volume fraction of each grain 

is schematically shown in Figure  3.19 for clarity. More work needs to be done to fully 

develop this model and describe mechanistically how (and under what circumstances) the 

critical stress should undergo these transitions. As mentioned above, the presently 

employed values result in a sort of yield point peak, which is sometimes experimentally 

observed in Mg alloys (e.g.,  Clausen et al., 2008; Barnett et al., 2012), but is not clearly 

observed in the present case. It is suggested that the values for twin initiation and twin 

growth will likely have distinct grain size dependencies, which would enable modeling 

the effects observed by Barnett et al. (2012). 
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Figure 3.19  Schematic illustration of the model concept for twinning in each grain 
showing A , B  and the threshold twin volume fraction. 

 
 One of the clear failures of the present model is the inability to capture the 

experimentally observed relaxation, which occurs upon twinning (see the discrepancy in 

Figure 3.4 between the predicted and observed {00.2} internal strains). There is an 

outstanding question pertaining to the internal strain state within twins when they are 
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born, based upon discrepancies between experiments and predictions originally 

highlighted by Clausen et al. (2008) and taken up by others in the meantime (Aydiner et 

al., 2009; Abdolvand and Daymond, 2012; Juan et al., 2014). It is suggested that the 

present transition between A  and B  and the threshold twin volume fraction tw
crf  are 

related to the relaxation effect introduced by Zhang et al. (2008) and Clausen et al. (2008). 

A future work will explore this connection in more detail and introduce a means of 

including this relaxation effect within the present TDT modeling scheme. Another aspect 

that previous authors have emphasized, with respect to the nucleation phase is the 

stochastic nature of it, as revealed by analyses of electron back-scattered diffraction data 

(Capolungo et al., 2009; Beyerlein et al., 2010). This is not accounted for in the present 

model, as it does not seem to help the main shortcoming identified above. 

  As mentioned earlier in the paper, no discrimination is made between the CRSS 

values of twin growth B  and twin shrinkage C ; i.e., it is imagined that the twin 

boundaries can move with equal ease in the forward and reverse directions. At this point, 

it is considered why Lou et al. (2007) concluded that twinning is somewhat more difficult 

than detwinning. First of all, they employed the VPSC modeling approach for assessing 

the impact of texture upon the flow strength. As we have tried to emphasize throughout 

this paper, the texture evolution due to twinning does not immediately impact the flow 

strength as one might suppose (and as the VPSC modeling in the paper by Lou et al. 

predicts). Rather, it is only after the twinning (or detwinning) mechanism is exhausted 

that the orientation of the grains vis a vis other deformation mechanisms (e.g. slip) begins 

to impact the flow strength. Until that point, the grains which are undergoing the 
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relatively soft mechanism of twinning (or detwinning) will control the flow strength. 

Thus, it is not possible/correct to assess the impact of texture on the slip mechanism (as in 

App. B, Lou et al., 2007) without also accounting for the twinning mechanism. The 

authors concluded that the material was softened with respect to slip since they measured 

the texture at a point prior to the completion of twinning. In reality, the texture evolution 

explored in that paper (and the present) ultimately leads to significant hardening since 

grains are reoriented to the hardest orientation possible, where the c-axes are essentially 

parallel with the compression axis.  

  The other aspect overlooked by that prior analysis was the role of intergranular 

backstress. The EVPSC strategy presently employed naturally accounts for the internal 

stresses between grains. This stress has the effect of “pushing back” on the twins thereby 

making detwinning appear easier than twinning, from a macroscopic perspective. The 

results show that employing an equal stress for twinning and detwinning at the grain level 

well-represents the observed phenomenon. In particular, the gradual yielding behavior 

which is observed during unloading and reloading in the opposite direction (here tension) 

to the initial straining direction (here compression) is well-captured by the model. This 

more gradual yielding behavior in detwinning is not because it is easier that twin growth, 

but because there is no requirement for twin initiation, which does require a higher stress 

level. 
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3.4.2 Strengthening mechanisms 

Stanford and Barnett (2013) have just performed a rather exhaustive study of the 

effect of Zn solid solution strengthening (and softening) of basal and non-basal slip of 

<a> type dislocations and deformation twinning. If we assume that the Zn content in the 

alloy is close to the equilibrium solubility limit (~0.2 wt %) at the aging temperature, we 

can compare the present results with those of Stanford and Barnett. The grain size 

extruded Mg alloy, ZK60A, is in the range of ~10-30 μm (this is not a precise number as 

extruded Mg alloy, ZK60A, typically exhibits a heterogeneous microstructure consisting 

of fine and coarse grains, see for example Agnew et al., 2014a.) Considering first basal 

slip, Stanford and Barnett (2013) report τbasal = 0.9 + 1.55·d-1/2 (with d given in mm) 

which yields a range τbasal ~ 10-16 MPa. For non-basal (prismatic) slip, they show a value 

of τprism ~ 45-55 MPa for the present grain size range. For the initiation of {10.2} 

twinning, they show a critical resolved shear strength of A  ~ 17-28 MPa. 

 Stanford and Barnett (2009), Rosalie et al. (2012), and Rosalie and Pauw (2014) all 

recently published rather complete analyses of the precipitate microstructure within 

binary Mg-Zn alloys. Each of these analyses have shown that the particle aspect ratios are 

in the range of 10:1 (5:1 – 30:1). Employing precipitate geometries relevant to the present 

study (i.e. yielding comparable macroscopic yield strengths for aging conditions similar 

to those employed commercially), Stanford and Barnett (2009) employ the Ashby-

Orowan equation to predict a strengthening increment of 40 and 70 MPa for basal and 

prismatic slip, respectively. Finally, the work of Robson et al. (2011, 2013) sought to 
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determine the strengthening increment provided by precipitation to deformation twinning. 

If we add these values to the ranges given above, for the combined effect of solute 

strengthening and grain size strengthening, we can make a comparison with the values 

obtained in the present EVPSC modeling study of in-situ neutron diffraction data (Table 

3.2).  

 
Table 3.2 List of critical resolved shear stress values derived from experimental 
assessments of solid solution and grain size effects (Stanford and Barnett, 2013), 
strengthening due to Orowan bowing (Stanford and Barnett, 2009; Robson et al., 2011), 
the sum of these strengthening contributions, and the values derived in the present 
EVPSC study. 

Mode Solid solution  
and grain size 
strengthening  

(MPa) 

Precipitate 
strengthening 

(MPa) 

Total 
predicted 
strength  
(MPa) 

EVPSC 
critical 

strength, τ0 

(MPa) 

EVPSC 
saturation 
stress, τ0 

+ τ1(MPa)
Basal 10-16 ~40 50-56 40 55 

Prismatic 45-55 ~70 115-125 115 130 
<c+a> - - - 125 285 

Twinning 17-28 7-15 24-43 50-70/ 32 32 
 

 The results are encouraging, since we appear close to the point of being able to 

predict the response of the individual slip modes. It is noted that the basal slip system 

strength predicted (by the sum of the solid solution and precipitation strengthening) is 

higher than the critical stress inferred by EVPSC modeling of the in-situ neutron 

diffraction data and more in line with the saturation stress. This may be a result of the 

manner in which Stanford and Barnett (2013) determined the basal slip strength from 

simple shear tests. Alternatively, it is cautiously suggested that there may be an upper 

limit on the degree of precipitation strengthening which the basal slip system can undergo. 

Perhaps the stress at which basal screw dislocations can cross-slip onto prismatic planes 
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(presumably in the range of 45-55 MPa for the present Mg-Zn alloy composition and 

grain size) governs the basal slip system strengthening limit, since such a cross-slip event 

could enable dislocations to avoid having to immediately bow around an obstacle. The 

notion that cross-slip may limit the precipitation strengthening potential was already 

hinted at by Rosalie et al. (2012), and it merits further investigation. The predictions for 

the prismatic slip strength are very similar the present “observations,” and there have 

been not yet been and predictions of the effect of solute on <c+a> dislocation slip strength, 

although there is presently work on the mentioned in a recent paper by Ghazisaeidi et al. 

(2014).  

   Regarding the effect on twinning, the results are quite interesting. Robson et al. 

(2011) made careful considerations of the effect of precipitation on twinning. They show 

that, due to the small Burgers vector of the partial dislocations responsible for twinning, 

the Orowan strengthening contribution is predicted to be quite small. (It is the value of 7 

MPa shown in Table 3.2.) They predict a larger contribution to be due to the requirement 

for slip accommodation (this is the larger value of 15 MPa presented in Table 3.2.) 

However, even when this value is added to the solid solution and grain size strengthening 

effect, the total falls short (by at least 25 MPa or ~60%) of the value observed in the 

present study, for the activation of twinning A  ~ 56-70 MPa. Robson et al. (2011) 

implicitly acknowledge that their model is missing some aspect, since the level of 

tension-compression asymmetry is over predicted. (They predict σC/σT = 0.22, while they 

observe 0.53 experimentally, and we observe σC/σT ~ 0.63 in the present study.) 

Interestingly, the range of strength that they predict overlaps the range presently observed 
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for twin growth B  ~ 32 MPa. It seems plausible that the strengthening concepts 

employed by Robson et al. (2011) are appropriate for the growth of {10.2} twins, but do 

not relate specifically to twin nucleation. 

3.4.3 Cyclic deformation 

The hysteresis loops simulated for ED compare well with the experimentally 

measured data. However, the loops predicted for TD cycling show some characteristic 

distinctions from those observed experimentally. The predictions show a rapid hardening 

toward the tips of the hysteresis loops, which is associated with the exhaustion of 

twinning or detwinning. An element which is missing from the present model, which may 

be able to account for the observed early twin exhaustion is a back-stress (kinematic 

hardening) implemented at the slip system level. Such a back-stress, which is commonly 

employed in crystal plasticity models of fatigue deformation (McDowell, 2008; 

Wollmershauser et al., 2012), including a recent attempt to model a Mg alloy (Guillemer 

et al., 2011). The absence of such a back-stress could also explain the general failure of 

the present model to capture the gradual yielding of the polycrystal during unload and 

reload along the TD, except for the case of transition from compression to tension in the 

tension first case. Interestingly, the predicted hysteresis loops look more like those 

obtained experimentally after a large number of cycles (Wu, 2009). This experimental 

result suggests that there is some slow, cyclic hardening of the slip systems, which forces 

the twinning/detwinning mechanisms to accommodate more strain after cycling, which 

then leads to more rapid exhaustion of twinning/detwinning followed by rapid hardening. 
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This observation also supports the notion that the model of slip-based deformation would 

benefit from combined “kinematic” and “isotropic” hardening. However, this is beyond 

the scope of the present work, which shows good agreement for the monotonic 

deformation cases, and illuminates some specific opportunities for more work on the 

cyclic. 

3.4.4 Load sharing of the second phase 

The load sharing effect of the strengthening precipitates in heat treatable alloys is 

often ignored because the volume fractions are often low. In the present case, however, a 

load sharing effect of the precipitates is suggested by the presence of a lower than 

expected level of internal strains within the matrix phase. In a previous study, including 

an appropriate phase fraction of elastic second phase inclusions provided a sufficient level 

of load sharing to explain the observation (Agnew et al., 2013). In the present study, that 

was not the case. It was insufficient to account for the interaction between properly 

oriented precipitates with the homogenous effective medium of the self-consistent 

approach. Even though the strengthening phase is stiffer than the matrix, including an 

appropriate volume fraction of second phase particles has only a nominal effect on the 

level of internal strains predicted. One reason for the distinction between the two cases is 

the different level of strain hardening observed between the two cases. The present 

material does not begin to flow appreciably until a stress level of about 150 MPa and the 

highest stress level observed during the cyclic is 175 MPa. In contrast, the age-hardened 
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material in the previous study yielded at about 150 MPa and was observed up to a stress 

level greater than 250 MPa.  

      One hypothesis for further study is the use of a truly multi-scale approach which 

considers the interaction between precipitates and the individual grains in which those 

precipitates reside. This could help overcome the present problem of loading the 

precipitates insufficiently (as also noted previously by Oliver et al., 2004) because rather 

than interacting with the mean field, the precipitate would be interacting with a very 

compliant matrix grain. A larger strain mismatch between the grains and the elastic 

inclusions within them is anticipated, which would improve predictions by lowering the 

internal strain within the matrix grains.  

3.5 Conclusions 

A recently developed crystal plasticity model (denoted TDT, Wang et al., 2012b, 

2013a, 2013c) for describing twinning and detwinning behavior is employed to simulate 

the cyclic deformation behavior of extruded Mg alloy, ZK60A. The results of the 

modeling effort permit the following conclusions to be drawn: 

1. Unlike other crystal plasticity models to date, the TDT model permits simulation 

of the yield strain plateau often observed in strongly textured Mg alloys without 

resorting to ad hoc approximations which have been misproven since their 

introduction. 

2. The rapid strain hardening which follows the strain hardening plateau is simulated 

using an empirical model which determines the exhaustion of the twinning 
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mechanism (i.e. describes the point when grains can no longer undergo twinning.) 

This model requires future work to develop a physical/mechanistic basis. 

3. As suggested in the recent literature, it is necessary to discriminate between the 

stress required to initiate twinning and that required to grow (thicken) previously 

existing twins. In the present context, the stress for twin nucleation (operation A) 

is significantly higher than twin growth and twin shrinkage (operations B & C) 

(see Tables 3.1 and 3.2).  

4. The resulting model is able to simulate the unusual stress-strain hysteresis 

behavior during twinning (e.g., sharp yielding behavior) as well as that of 

detwinning (characterized by quite gradual yielding).  

5. The diffracted intensity evolution, which is indicative of the volume fraction of 

twinning compares well with the experimental data. This reflects the fact that 

twinning (and detwinning) is largely “kinematically driven” (i.e. the strains 

imposed dictate the amount of twinning observed). 

6. Lattice strain evolutions during cyclic loading (and involving twinning and 

detwinning) are predicted. Most features of the experimentally observed internal 

strain evolution are well-described. In particular, the inflections which may be 

associated with the initiation of particular deformation mechanisms: basal and 

non-basal slips, as well as deformation twinning are predicted. 

7. The model is able to predict the texture-induced strength anisotropy and 

asymmetry as well as anisotropic strain hardening behavior without requiring a 
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complex, dislocation density based latent hardening approach, though complex 

strain path change simulations may require such an approach. 

8. Careful comparison of the simulated and measure lattice strains reveals greater 

expected load sharing by the precipitate phase and modeling shows that 

precipitate shape and orientation strongly influence the tension-compression 

asymmetry of the strain hardening response. 

9. On two points, the lattice strain predictions are viewed as requiring more work: (i) 

the experimental results show a stronger twin relaxation than that predicted by the 

current model and (ii) once detwinning is complete, certain grain orientations are 

predicted to undergo more rapid lattice strain evolution than was observed 

experimentally. Perhaps these two shortcomings are related.   

10. Aspects for future work include: (i) accounting for the strain rate independence 

(i.e. the athermal character) of twinning in the rate and temperature range of 

interest; (ii) accounting for the relaxation due to twin initiation, taking cues from 

the partially successful concepts of Clausen et al. (2008); (iii) developing a 

physically based model for exhaustion of the twinning and detwinning 

mechanisms; (iv) incorporating a back-stress which affects slip system hardening; 

and (v) accounting for load sharing of the precipitates by directly modeling the 

interaction between individual grains and the precipitate microstructure within 

them. 
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Chapter 4. A new empirical equation for termination of twinning in 
magnesium alloys 

         Plastic deformation in Magnesium (Mg) and its alloys is accommodated by both slip 

and twinning. The most commonly observed twinning mode is the  1110}2110{  

extension twinning. Intensive research has been recently focused on the role of twinning 

in plastic deformation of Mg alloys (Bohlen et al., 2006; Barnett, 2007; Lou et al., 2007; 

Muránsky et al., 2010a; Hong et al., 2010a; Jager et al, 2011; Jain et al., 2011; Wang et al., 

2012b, 2013a; Abdolvand and Daymond, 2013a; Wu et al., 2015; Mathis et al., 2015; 

Barnett et al., 2015). Based upon acoustic emission data (Bohlen et al., 2006; Lou et al., 

2007; Muránsky et al., 2010a; Mathis et al., 2015), it has been generally accepted that 

under twinning dominated conditions, the yielding and immediate post-yielding plasticity 

is governed largely by twin nucleation, whereas plastic deformation at higher strains is 

governed by twin growth and dislocation slip. After a region of low stress and low strain 

hardening, the material hardens rapidly resulting in an S-shaped flow curve. This is 

associated with two aspects: the radical texture evolution due to extensive extension 

twinning and the exhaustion of twinning as a strain accommodation mechanism. 

Therefore, to perform accurate deformation process modeling, it is important to develop 

constitutive models which properly account for reorientation due to twinning and 

twinning exhaustion. Different schemes for modeling the effect of twinning have been 

proposed, including the widely used predominant twin reorientation (PTR) scheme (Tomé 

et al., 1991) and the recently developed twinning and de-twinning (TDT) model (Wang et 

al., 2012b, 2013a) 



 119 

        In both the PTR and TDT models, a threshold twin volume fraction is defined to 

terminate twinning because it is rare that a grain can be fully twinned. Correspondingly, 

the models introduce two statistical variables: accumulated twin fraction accV  and 

effective twinned fraction effV , with accV  and effV  being respectively the weighted volume 

fraction of the twinned region and volume fraction of grain in which twinning is 

exhausted. The threshold volume fraction thV  is defined as 

  









acc

eff
th V

V
AAV 21  01min ,.                                            (4.1) 

where 1A  and 2A  are two parameters.  It has been demonstrated that the above equation is 

able to simulate experimental flow curves for Mg alloys by carefully calibrating the two 

parameters. However, it has been noticed that values of the fitted 1A  and 2A adopt a wide 

range of values, are difficult to be determined, and have no clear connection with a 

physical process. It is important to point out that the PTR model considers only the twin 

variant with the maximum Schmid Factor (SF), while the TDT model considers all 

possible twin variants. Furthermore, the TDT model considers a twin as a new grain. The 

orientation of the new grain is initially related to that of the parent through the 

crystallographic twin relation, and the volume fraction associated with the new grain is 

updated at the end of the first straining step in which the twin variant is activated. 

Therefore, even considering only the }2110{  extension twinning mode, a parent grain 

could potentially become seven grains (parent plus six twins). In the PTR model, the 
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number of grains remains fixed throughout the simulation, which gives it a computational 

advantage, though there is a compromise in the fidelity of the results. 

        After carefully reviewing recent crystal plasticity based modeling of plastic 

deformations of Mg alloys, a new empirical equation to terminate twinning is proposed. 

For a given grain g, assume that 
gf  is the twin volume fraction of extension twinning 

system )6,1(  , and 
gthV , is its threshold value. Consequently, twinning is terminated 

by α
,

α
gthVf  g  or 1 

α
g  αf , where the latter condition corresponds to the point where the 

entire parent grain has been consumed.  We define 
gthV ,  as 
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                               (4.2) 

Here, 
gm denotes the Schmid Factor (SF) of twinning system  at the beginning of 

loading, max is the twinning system with the maximum value of the SF, max
gm . Same as in 

Eq. (4.1) accV is the accumulated twin fraction in the aggregate and is written 

as )( 



g

g
gacc fwV , with gw being the weight or volume fraction of the grain g  in the 

aggregate. In (4.2) effV  is the effective twinned fraction defined by   









g α

α,T
ggeff fwV , 

with T
gf , denoting the twin volume fraction of the twinning system  in which twinning 

has been terminated. It is noted that in Eq. (4.1) used in the PTR and TDT approaches, 
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
g

geff wV for those grains in which twinning has been terminated. This implies that 

if 1
α

T
gf α, is assumed, effV in Eq. (4.2) reduces to effV in Eq. (4.1). 

        It is important to point out that the popular empirical equation, Eq. (4.1), is applied 

at the grain level, while the proposed new empirical equation is at the twinning system 

level. According to the proposed empirical formulation, for a given grain g, twinning 

system  is terminated when α
,

α
gthVf  g  . However, the other twinning systems in the grain 

can be still active if 1 
α

g  αf . Therefore, for a given grain, while twinning exhaustion is 

a sudden event according to Eq. (4.1), twinning exhaustion described by Eq. (4.2) is a 

gradual process, which more closely approximates what is observed physically. It is also 

important to note that since the proposed new empirical equation is at the twinning 

system level, the new empirical equation can be applied only to the TDT model. 

       For the twinning system having the maximum SF, 










50.

max
gm

  is used in Eq. (4.2). This 

is rationalized that the threshold volume fraction should scale with the SF.  It is important 

to note that the term 

5











max



g

g

m

m
 is used in Eq. (4.2) for the twinning systems other than the 

one with the maximum SF. This implies that a twinning system with a very low SF 

should not still be active at large strains.  It is also important to mention that in the early 

stage of the development of the proposed empirical equation (4.2), the power of 
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









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

g

g

m

m
was a free parameter. We have carried out a detailed parametrical study to assess 

effects of the power on the calculated stress-strain response and twin volume fraction. For 

example, for an extruded AZ31 cylinder under uniaxial compression along the extrusion 

direction (this materials will be studied in Fig. 4.2), it was found that at small strains the 

power has a negligible effect. At strains larger than 0.06, the predicted twin volume 

fraction decreases with increasing the power, while the predicted stress-strain curve is not 

very sensitive to the power. This implies that a high power will significantly reduce the 

non-maximum system contribution. It is noted that Pei et al. (2012) investigated activities 

of the extension twin variants in a commercially available AZ31 sheet under uniaxial 

compression along the RD. They found that at a strain of 5% approximately 30% of the 

examined grains contain twins corresponding to twin variants with the third or lower 

ranked SF. This figure increases to 40% for samples deformed to 10% compression. 

Probabilistic meaningful statistics, such as the one reported by Beyerlein et al. (2010) for 

Mg, show results consistent with those reported by Pei et al. (2012). Eq. (4.2) suppresses 

twin variants with very low SF but allows the other twin variants, those with their SFs not 

being significantly lower than the highest SF, to be active at large strains. Surprisingly, 

fixing the value of the power at 5 and employing A as a fitting parameter, Eq. (4.2), could 

accurately simulate the mechanical behavior of all the Mg alloys examined. 
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The proposed new empirical equation, Eq. (4.2), has been implemented in the elastic 

visco-plastic self-consistent (EVPSC) model (Wang et al., 2010a), with the recently 

developed twinning and detwinning (TDT) description (Wang et al., 2012b, 2013a). In 

addition, it has been shown that, among the popular self-consistent schemes examined, the 

Affine self-consistent scheme gives the best overall performance for Mg alloys (Wang et 

al., 2010b), while both the Affine and Meff schemes are suitable for Zr alloys (Qiao et al., 

2015a). Therefore, the Affine self-consistent scheme is applied in the present study.  

The proposed empirical equation is validated by applying it to (4.1) three typical 

wrought Mg alloys: a rolled AZ31B plate, an extruded AZ31 cylinder and an extruded 

ZK60 sheet; and to (4.2) a cast Mg alloy AZ80. The three Mg alloys have previously been 

studied based on the EVPSC-TDT model, with Eq. (4.1) being used for termination of 

twinning. On the other hand, the behaviour of cast Mg alloy AZ80 has been studied 

previously using the VPSC-PTR model by Jain et al. (2012).  In all the simulations 

reported in the present paper, we consider slip in the Basal  0211}0001{ , 

Prismatic  0211}0110{ , and Pyramidal  2311}2211{  slip systems, and twinning 

in the  0111}2110{  extension twinning system. 

We start by applying the model to a rolled AZ31B plate with a H24-temper, which 

has been investigated by Guo et al. (2013) and Wu et al. (2014). Figure 4.1a presents the 

measured and simulated true stress and true strain curves under uniaxial tension and 

compression along the rolling direction (RD). In the simulations based on Eq. (4.1), the 

values of the hardening parameters for various slip systems and twinning are the same as 
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the ones used in the simulations reported previously by Guo et al. (2013), with parameters 

65.01 A  and 75.02 A . In the simulations based on Eq. (4.2), the values of the 

hardening parameters for various slip systems and twinning system are the same as in the 

simulations using Eq. (4.1), and the single parameter of Eq. (4.2), 360.A . It is clear that 

the proposed new empirical equation with a single fitting parameter can numerically 

reproduce both tension and compression behavior simultaneously and precisely for the 

H24-temper AZ31B. Figure 4.1b demonstrates that by adjusting value of the parameter A 

the proposed empirical equation is able to cover a range of different hardening behaviour 

associated with the termination of twinning. 
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 Figure 4.1 Measured (symbols) and simulated (solid lines are based on Eq. (4.1) with 
6501 .A  and 7502 .A , and dashed lines are according to Eq.(4.2) with 360.A ) true 

stress and true strain curves under uniaxial tension and compression along the RD (a), and 
predicted effect of parameter A on flow curve of uniaxial compression along the RD (b) 
for a H24-temper AZ31B sheet. The experimental data are taken from Guo et al. (2013). 
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We proceed by investigating an extruded AZ31 bar already studied by Clausen et al. 

(2008) and Wu et al. (2015). Figure 4.2 shows the measured and simulated true stress and 

true strain curves under uniaxial tension and compression along the extrusion direction 

(ED) (Figure 4.2a), and the measured and simulated twin volume fraction under uniaxial 

compression along the ED (Figure 4.2b). In the simulations, based on the EVPSC-TDT 

model with the termination of twinning described by the popular empirical equation (4.1), 

the values of the hardening parameters are the same as those listed in Wu et al. (2015). It 

is found that using these values of the hardening parameters, together with 250.A , the 

EVPSC-TDT model with Eq. (4.2) can reproduce both tension and compression behavior 

for the extruded AZ31 bar.  
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Figure 4.2 Measured (symbols) and simulated (solid and dashed lines) true stress and true 
strain curves under uniaxial tension and compression along the ED (a), and twin volume 
fraction under uniaxial compression along the ED (b) for an extruded AZ31 cylinder. 
Solid lines are based on Eq. (4.1) with 3001 .A  and 6502 .A , and dashed lines are 
according to Eq. (4.2) with 250.A . The experimental data are taken from Clausen et al. 
(2008). 
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Figure 4.3 shows the measured and simulated true stress and true strain curves 

under uniaxial tension and compression along the ED (Fig. 4.3a) and the transverse 

direction (TD) (Fig. 4.3b), as well as the measured and predicted normalized {0002} 

diffraction peak intensity for the diffraction vector parallel to the stress axis during 

uniaxial tension along the TD (Fig. 4.3c) for an extruded ZK60 sheet,  which has been 

investigated experimentally by Wu et al. (2009) and numerically by Qiao et al. (2015b). 

The values of the hardening parameters involved in the EVPSC-TDT model with the 

popular empirical equation (4.1) are the same as those listed in Qiao et al. (2015b). It is 

found that using these values of the hardening parameters, together with 350.A , the 

EVPSC-TDT model with Eq. (4.2) can reproduce both tension and compression behavior 

along the ED. Significantly, the EVPSC-TDT model with 5601 .A  and 7002 .A  in Eq. 

(4.1) or 350.A  in Eq. (4.2) can accurately predict uniaxial tension and compression 

along the TD where twinning neither dominates nor is strongly suppressed, but exhibits 

an intermediate level of twinning and a intermediate hardening response. More 

significantly, Fig. 4.3c clearly indicates that the EVPSC-TDT model with Eq. (4.1) 

greatly overestimates the experimental data after the strain of ~0.04 since twinning in 

most of the grains which contribute to the {0002} diffraction peak is suddenly terminated 

when the total twin volume fraction reaches the threshold value. The EVPSC-TDT model 

with Eq. (4.2) provides a much better prediction. This is due to the fact that although one 

twinning system in a grain has been terminated, the proposed empirical equation allows 

the other twinning systems in the grain to be still active and to continue accommodating 
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plastic deformation. Incidentally, although it is not shown in Fig 4.3c, it was found that 

the predicted intensity is not sensitive to the value of the power used in Eq. (4.2). 
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Figure 4.3 Measured (symbols) and simulated (solid and dashed lines) true stress and true 
strain curves under uniaxial tension and compression along the ED (a), and TD (b),  as 
well as the measured and predicted normalized {0002} diffraction peak intensity for the 
diffraction vector parallel to the stress axis during uniaxial tension along the TD (c) for an 
extruded ZK60 sheet. Solid lines are based on Eq. (4.1) with 5601 .A  and 7002 .A , and 
dashed lines are according to Eq. (4.2) with 350.A . The experimental data are taken 
from Wu et al. (2009). 

 
Although the results are not shown in the present paper, we have also validated the 

proposed equation by investigating other wrought Mg alloys we have access to their 

experimental data necessary for carrying out numerical simulations. For example, it was 
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found that 5001 .A  and 6002 .A  in Eq. (4.1) or 240.A  in Eq. (4.2)  reproduced the 

mechanical behaviour of an extruded AM30 tube experimentally investigated by Jiang et 

al. (2007) and numerically studied by Levesque et al. (2010) and Guo et al. (2015b). It 

was also revealed that both Eq. (4.1) with 6001 .A  and 8002 .A  and Eq. (4.2) with 

300.A predicted well the anisotropic and twinning behaviour in a hot-rolled AZ31 

sheet under uniaxial compression (Chapuis et al. 2014b; Guo et al., 2015a). For a cold-

rolled AZ31B sheet already studied experimentally by Lou et al. (2007) and numerically 

by Wu et al. (2015), Eq. (4.1) with 6501 .A  and 8002 .A  and Eq. (4.2) with 

400.A reproduced well the experimentally observed mechanical behavior. 

While the cases presented above are all for the wrought Mg alloys with strong basal 

textures, it is very interesting to see if the proposed empirical equation can model cast Mg 

alloys with weak textures. Figure 4.4 presents the measured and simulated true stress and 

true strain curves under uniaxial tension and compression along the cast direction (CD) 

for a cast Mg alloy AZ80, which has been studied by Jain et al. (2012) and Tomlinson et 

al. (2013). It is found that, using same values of the hardening parameters, the EVPSC-

TDT model with 2001 .A  and 7502 .A in Eq. (4.1) or 200.A  in Eq. (4.2) can 

reproduce both tension and compression behavior for the cast AZ80.  
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Figure 4.4 Measured (symbols) and simulated (solid and dashed lines) true stress and true 
strain curves under uniaxial tension and compression along the cast direction for a cast 
AZ80. Solid lines are based on Eq. (4.1) with 2001 .A  and 7502 .A , and dashed lines 
are according to Eq. (4.2) with 200.A . The experimental data are taken from 
Tomlinson et al. (2013). 

Finally, it is worth mentioning that although fixing the power of 
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accurately simulate the mechanical behavior of all the Mg alloys examined, with a very 

wide range of initial textures, it could be better or even necessary to consider the power as 

an adjustable parameter when the proposed empirical equation is applied to other metals 

like Ti and Zr alloys. Furthermore, although the proposed empirical model can be applied 

only to the TDT model in the currently form, it could be slightly modified for using in the 

PTR model. All these are in progress and will be reported elsewhere. 

In summary, we have developed a new empirical equation (4.2) for termination of 

twinning in Mg alloys. In contrast with the popular two parameter empirical equation (4.1) 

widely used in the PTR and TDT twinning schemes, the new empirical equation involves 
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only a single parameter. The proposed equation has been implemented in the EVPSC-

TDT model, and it has demonstrated that the EVPSC-TDT model with the proposed 

empirical equation is able to capture key macroscopic features associated with twinning 

and its termination experimentally observed in a variety of magnesium alloys with 

different textures, including a nearly randomly textured casting. 
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Chapter 5. General conclusions and future work 

       This study aims to investigate the deformation mechanisms in HCP metals. Twinning 

and detwinning play important roles in accommodating plastic deformation in HCP 

metals due to the limited number of independent slip systems. A better understanding of 

the mechanisms associated with twinning and detwinning will assist further industrial 

applications of HCP metals.  

       This study first focuses on the study of the deformation behavior of a Zircaloy-2 slab 

under different deformation processes. In order to take into account the effects of thermal 

residual strains generated during the cooling process (from 898 K to 298 K) on the 

subsequent mechanical loading, the EVPSC model (Wang et al., 2010a) is extended by 

including the thermal strain effect. It is known that the predicted overall response of a 

polycrystal closely depends on the activated slip and twinning systems during the loading 

process and should be sensitive to the homogenization method employed in polycrystal 

models. Therefore, various self-consistent schemes used in the modified EVPSC model 

have been evaluated in terms of the quality of predictions of the macroscopic (flow curves 

and R-values) and microscopic behaviors (lattice strain and texture coefficients). It is 

demonstrated by numerical results that among the models examined, the EVPSC model 

with the Affine and Meff=0.1 self-consistent schemes give much better performance for 

the Zircaloy-2 slab than the Secant and Tangent SCSs. 

       Detwinning is twinning in the twinned region which reorients the orientation of a 

twin back into its parent orientation. Detwinning occurs after twinning during reverse 
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loading. Twinning and detwinning alternatively appear during cyclic loading. This study  

has investigated the twinning and detwinning behavior of Mg alloy ZK60A during 

monotonic and cyclic loading based on the EVPSC-TDT model (Wang et al., 2012b, 

2013a). Notably, accounting for the initial texture and calibrating the model using tension 

and compression along one direction permits prediction of the strength anisotropy, 

strength asymmetry, and strain hardening behavior along other directions, for cases in 

which the contribution of twinning is large, small and intermediate. The model 

discriminates between the stress required to initiate twinning and that required to grow 

(thicken) previously existing twins. This enables the model to simulate the unusual stress-

strain hysteresis behavior during twinning (sharp yielding behavior) as well as that of 

detwinning characterized by quite gradual yielding. The strain hardening plateau which 

occurs during both twinning and detwinning are captured, as are the rapid hardening 

induced by the exhaustion of these mechanisms. Finally, the modeling is validated using 

previously published in-situ neutron diffraction data. The predicted diffracted intensity 

evolution, which is indicative of the volume fraction of twinning compares well with the 

experimental data. For the first time, the lattice strain evolutions during cyclic loading 

(involving twinning and detwinning) of an extruded magnesium alloy are predicted. Most 

features of the experimentally observed internal strain evolution are well-described. In 

particular, the inflections which may be associated with the initiation of particular 

deformation mechanisms: basal and non-basal slips, as well as deformation twinning are 

predicted. Careful analysis of the lattice strains reveals a greater than expected load 

sharing by the precipitate phase. 



 133 

       To perform accurate deformation process modeling for a polycrystal, it is important 

to develop constitutive models which properly account for twinning induced reorientation 

and twinning exhaustion. In all existing polycrystal models, an empirical equation for the 

termination of twinning in a grain is often needed. A new empirical equation for 

describing the termination of twinning in magnesium alloys has been developed in this 

study.  It is important to point out that the popular empirical equation currently used in all 

polycrystal models is applied at the grain level, while the proposed new empirical 

equation is at the twinning system level. According to the proposed empirical formulation, 

a twinning system will be terminated when the twin volume fraction of the twinning 

system reaches a threshold value. However, the other twinning systems in the grain can 

be still active if the total twin volume fraction of all twinning systems in the grain is still 

less than 1.0. According to the widely used empirical equation, twinning exhaustion is a 

sudden event within a given grain. In contrast, the twinning exhaustion described by the 

new proposed empirical equation is a gradual process, which is more representative of 

what is observed physically. In addition, the new description introduces only a single 

parameter, while the widely used empirical equation involves two parameters. It is 

demonstrated that it is easy to calibrate the single parameter and the proposed empirical 

equation is able to accurately simulate the experimentally observed rapid hardening 

associated with twinning exhaustion. 

        As mentioned in the general introduction, crystal plasticity finite element method 

(CPFEM) is another important alternative modeling method to investigate the 

deformation mechanisms of HCP metals, where both equilibrium and compatibility 
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throughout the polycrystalline aggregate can be naturally accommodated in a weak finite 

element sense. Wu et al. (2015) have developed a new twin nucleation, propagation and 

growth (TNPG) model for HCP materials. The TNPG model explicitly takes into account 

the stress relaxation associated with twin nucleation and it has been implemented into the 

EVPSC-TDT model (Wang et al., 2012b, 2013a). The authors mentioned that the 

EVPSC-TNPG model is still not able to explicitly show how a twin nucleates and 

propagates due to the nature of homogenized polycrystal plasticity models. However, the 

finite element model combined with the TNPG model is expected to visually describe the 

spatially inhomogeneous deformation process of twin nucleation, propagation and growth. 

In order to investigate the idea, a crystal plastic finite element method with 

implementation of the TNPG model has been developed to simulate the deformation 

behavior of a Mg single crystal under compression perpendicular to the c-axis. 

Preliminary numerical results show a successful modeling on how a twin nucleates, 

propagates and grows in a matrix. However, further validation of the code and careful 

analyses of numerical results are still needed in the future. 
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