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ABSTRACT:

The role of membrane-intrinsic enzymes of lipid metabolism in complex
biological processes is being realized through comprehensive structure function studies.
Detailed analysis of substrate-enzyme interactions occurring within the restrictive
membrane environment has proved to be exceedingly challenging. Using detergent
micelles, we describe a detailed model for substrate recognition and binding by the outer-
membrane intrinsic enzyme PagP from Escherichia coli. PagP is an 8-stranded
antiparallel p-barrel that transfers a palmitoyl group from a phospholipid molecule to
lipid A, the endotoxin component of lipopolysaccharide. This simple modification
provides bacterial resistance to host antimicrobial peptides and attenuates the
inflammatory response signalled through the host toll-like receptor 4 pathway. We
describe a molecular embrasure and a crenel, which display weakened transmembrane -
strand hydrogen bonding, to provide site-specific routes for lateral entry of substrates into
the PagP active site. A Tyrl47 localized to the L4 loop gates the entry of the
phospholipid substrate through the crenel, while lipid A enters via the embrasure. The
side chains of the catalytic residues that are located in the extracellular loops point
towards the central axis of the enzyme, directly above the active site. An acyl-chain
binding pocket known as the hydrocarbon ruler is buried within the transmembrane B
barrel structure, and is optimized to accommodate a 16-carbon saturated palmitate chain.
The hydrocarbon ruler, therefore, accounts for PagP’s stringent selectivity for a palmitate

chain. Substituting Gly88 lining the floor of the hydrocarbon ruler with residues
XXxiii
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possessing linear, unbranched, aliphatic side chains changes the selectivity of PagP to
utilize shorter acyl chains. The serendipitous discovery of an exciton interaction between
Trp66 and Tyr26 at the floor of the hydrocarbon ruler provides an intrinsic spectroscopic
probe to monitor the methylene unit acyl-chain resolution of PagP. A compromised acyl
chain resolution of the Gly88Cys mutant is attributed to an unexpected decrease of the
Cys sulfhydryl group pKa within the $-barrel interior, resulting in a burying of a charged
thiolate within the PagP core. The structural perturbation associated with the Cys thiolate
extinguishes the exciton and expands the acyl-chain selectivity. These molecular details
of lateral lipid diffusion and acyl-chain selection provide the first such example for any

membrane-intrinsic enzyme of lipid metabolism.

XX1V
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1.0 Introduction:
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The molecular basis of enzyme-lipid interactions in a membrane-intrinsic
environment is poorly understood because most membrane bound enzymes of lipid
metabolism have proven refractory to structural determination. However, robust enzymes
from the outer membranes (OM) of Gram-negative bacteria have proven to be an
exception, and are now helping to reveal detailed molecular insights into long-standing
unresolved structural questions of lipid metabolism. For example, how does a membrane-
intrinsic enzyme measure the length of an acyl-chain in its lipid substrate? How do lipid
substrates in the membrane plane access enzyme active sites? What are the
conformational changes associated with the catalytic cycle of membrane-bound
enzymes? Such questions are now being answered by recent structural studies of OM
enzymes of Gram-negative bacteria. These structural studies have laid the groundwork
necessary to predict, understand and define the principles of membrane protein

enzymology.

My research interests have been to answer such questions, using an enzyme
localized to the OM of Gram-negative pathogens. The enzyme is responsible for a
specific modification of endotoxin and may prove to be of clinical significance. I will
present the findings of my research in the following chapters by addressing substrate

specificity and substrate entry during catalysis.
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1.1: Gram-Negative Cell Envelope:

The cell envelope unique to Gram-negative bacteria constitutes the perimeter
defence against cationic anti microbial peptides (CAMPs) and hydrophobic antibiotics.
Structurally, it is composed of three parts: an inner membrane (IM) containing a
phospholipid bilayer, the periplasmic space that contains a thin peptidoglycan layer, and

an outer membrane (OM) (figure 1.1) (/).

1.1.1: Inner membrane:

Like the plasma membrane of eukaryotic cells, the bacterial IM is significant
because it generates an electrochemical gradient responsible for generating the energy to
drive all cellular functions. The phospholipid bilayer of the IM is permeable to lipophilic
compounds. Therefore, CAMPs will cause membrane depolarization by puncturing holes
in the phospholipid bilayer, effectively killing the cell. The proteins of the IM govern
many necessary cellular functions ranging from lipid, protein and nutrients transport, cell

signalling and several metabolic functions.

1.1.2: Peptidogylcan and Periplasmic Space:

The space between the OM and the IM contains a thin peptidoglycan layer that
protects the IM from rupturing under the influence of high osmotic pressure. The
peptidoglycan of Escherichia coli (E. coli) consists of alternating residues of B-(1, 4)

linked N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues.
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Figure 1.1 Gram-negative cell envelope: The IM is a phospholipid bilayer. This is
followed by the periplasmic space, which includes a thin peptidoglycan layer. The OM is
the external barrier for the bacterium and is a bilayer that has distinct lipid asymmetry
between its leaflets. The inner leaflet is composed of phospholipids, while the outer
leaflet is made up of LPS [Figure from Raetz et al., 2007].
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Each MurNAc is attached to a short (4- to 5-residue) amino acid chain, containing L and
D-alanine, D-glutamic acid, and meso-diaminopimelic acid. The peptidogylcan is secured
to the OM by Braun lipoprotein (2), and is surrounded in a gelatinous material called

periplasm. The periplasm contains enzymes involved in nutrient and protein transport.

1.1.3: Outer Membrane:

The OM is a protective structure that is unique to Gram-negative bacteria. It
possesses a distinct asymmetry of lipids between its inner and outer leaflets. While the
inner leaflet is mainly composed of 80% phosphatidylethanolamine (PtdEtn) and 20%
phosphatidylglycerol (PtdGro) and cardiolipin, the outer leaflet consists almost entirely
of lipopolysaccharide (LPS). The low fluidity of LPS hydrocarbon domain and strong
lateral interactions between neighbouring molecules (3) creates a barrier against
spontaneous diffusion of lipophilic compounds (4). The OM houses a unique class of

proteins with wide ranging functions, which are essential to bacterial survival.

1.1.3.1: LPS Structure:

A unique molecule of the OM resides in the outer leaflet of the OM and is known
as LPS. LPS is composed of three parts: The lipid A hydrophobic anchor, the
interconnecting core-oligosaccharide, and the O-antigen repeats (figure 1.2). The two

Kdo sugars are connected to the lipid A molecule through a ketosidic linkage that is
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Figure 1.2 Schematic representation of LPS: Lipid A is the essential component of LPS
and is required for growth. The core-sugars are conserved, but the O-antigen repeats are
highly variable. In the figure N-acetylglucosamine, 3-deoxy-D-manno-2-octulosonic acid,
Heptose and Hexose sugars are represented by GlcN, Kdo, Hep and Hex, respectively.
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susceptible to mild-acid hydrolysis (5). Kdo,-lipid A is an essential constituent of the
LPS and is the simplest Re-chemotype of LPS that supports growth of E. coli (1) under
laboratory conditions. Bacterial strains that exhibit the Re-chemotype are referred to as
deep rough mutants and are typically not found in natural isolates. Attachment of core
sugars and the O-antigen to lipid A generates smooth-LPS, which is necessary for

bacterial survival in different ecological niches (6).

1.1.3.2: LPS: Clinical Significance and Inflammatory Response:

LPS is shed from the bacterial OM during an infection and induces an
inflammatory response in the host through its lipid A component. It is detected via the
Toll like receptor 4 (TLR4) located on mononuclear cells and neutrophils. The release of
host chemokines, cytokines and antimicrobial agents results in an effective innate
immune response against the invading bacteria. However, persistent infections can lead
to the overwhelming production of tumor necrosis factor o (TNF-a) and interleukin 1
(IL-1B), resulting in septic shock that can be fatal (7). Similarly, activation of TLR4 by
lipid A may result in an adaptive immune response by initiating the expression on antigen
presenting cell surfaces of co stimulatory molecules (8). Recently, it was reported that the
levels of TLR4 receptors are regulated at the surface of neutrophils and mononuclear
cells during different stages of LPS induced sepsis (9). In many cases common urinary
tract infections, if left unchecked, can easily result in occurrence of sepsis. It is a

prominent problem amongst intensive care unit patients. Recent estimates put septic
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shock related deaths in the United States at nearly one hundred thousand patients per
year. More alarmingly, these numbers have steadily increased since the 1930s, when the
first reported cases of septic shock were documented (/0). For such reasons, LPS has
always sparked a wide interest amongst immunologists and pathologists. Recently, it has
been reported that LPS shed from E. coli can alter pharmacokinetic and
pharmacodynamic properties of several drugs targeting hepatic and urinary tract diseases
(11). In order to evade immune recognition and allow bacterial survival, evolutionary

pressures have forced bacteria to develop mechanisms of lipid A modification.

1.1.3.3: Lipid A Synthesis:

The biosynthesis of lipid A is a cytoplasmic event and is best characterized in E.
coli (12) (figure 1.3). Termed the Raetz pathway, the process begins with the key
precursor molecule UDP-N-acetylglucosamine (UDP-GIcNAc). The first enzyme is a
cytosolic acyltransferase (LpxA) that selectively transfers R-3-hydroxymyristate from
acyl carrier protein (ACP) to the 3-OH of UDP-GIcNAc (13). Recently, inhibitor-bound
and substrate-bound structures of LpxA have been resolved and provide a detailed picture
of lipid interaction with the enzyme (/4, 15). The enzyme exists as a homotrimer and
forms three substrate-binding sites. The presence of conserved residues in substrate
binding pockets allows for high selectivity of a hydroxymyristate chain, and provides a
first example of a hydrocarbon ruler in proteins. E. coli LpxA is extraordinarily selective

for hydroxymyristoyl-ACP (3-OH-14:0-ACP) as the acyl donor substrate, while the
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Pseudomonas aeruginosa LpxA prefers hydroxydecanoyl-ACP (3-OH-10:0-ACP).
However, the specificity could be modulated through mutation of certain residues lining
the active site cleft. For example, the specificity for Glyl73Met mutant of E. coli LpxA
was shifted from 3-OH-14:0-ACP to 3-OH-10:0-ACP. In contrast, the specificity of P.
aeruginosa LpxA could be extended to accommodate 3-OH-14:0-ACP in the

corresponding Met169Gly mutant.

The acylation of UDP-GIcNAc is reversible and unfavourable (16). Therefore, the
first committed step in lipid A biogenesis is the subsequent deacetylation by LpxC, a
Zn*? dependent enzyme (17). Sequence alignments of LpxC have indicated no homology
with deacetylases, making the enzyme an important target for drug design (/8). The first
crystal structure of LpxC was published in 2003 at a resolution of 2 A (/9). The study
identified the location of the enzyme active site, as well as a hydrophobic tunnel lined
with many conserved residues (/9). During catalysis the tunnel is occupied by a myristate
chain, which coordinates the substrate with the enzyme active site. This work has allowed
for testing of several inhibitors of LpxC that may be of pharmacological significance.
Recently, an inhibitor complexed crystal structure of LpxC with compound BB 78485

(20) and a NMR structure with compound TU-514 (21) have been reported.

Following deacetylation, a second N-linked R-3 hydroxymyristate moiety derived
from ACP is incorporated by LpxD to generate UDP-2,3-diacylglucosamine (22). Crystal

structure of LpxD has recently been resolved (23), and it displays a homotrimeric enzyme
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that shares many similarities with LpxA, specifically in its lipid binding domain regions.
A highly selective pyrophosphatase LpxH then cleaves UDP-2,3-diacylglucosamine at its
pyrophosphate bond to form lipid X and UMP (24). Next, a disaccharide synthase, LpxB,
transfers the 2,3-diacylglucosamine portion of another UDP-2,3-diacylglucosamine
molecule to position 6 of lipid X, generating the f 1’-6-linkage found in all lipid A
molecules (25). LpxK, a membrane-bound kinase phosphorylates the 4’ end of the
disaccharide backbone generating lipid IV (26). This permits two 3-deoxy-D-manno-2-
octulosonic acid (Kdo) sugars to be incorporated by a bifunctional Kdo-transferase
encoded by the kdtA (waaAd) gene (27). The labile nucleotide sugar CMP-Kdo serves as
the Kdo donor. Attachment of the first sugar to lipid IVA precedes the addition of the
second Kdo sugar. In Haemophilus, a homolog of KdtA may add a phosphate group upon
addition of the first Kdo sugar (28). The last steps of E. coli lipid A biosynthesis involve
the transfer of lauroyl and myristoyl groups from ACP to the distal glucosamine unit,
producing acyloxyacyl moieties generated by LpxL (HtrB) and LpxM (MsbB),
respectively (29). Note that all the enzymes involved in the generation of Kdo,-lipid A

have a requirement for cytosolic substrates (figure 1.3).

Several variations of lipid A structures are scattered across the Gram-negative
bacteria and many are known in detail. In Francisella tularensis, the causative agent of
tularaemia (30), the lipid A moiety lacks Kdo sugars and therefore, has no core sugars or
O antigen. Furthermore, a phosphatase, LpxE and a deacylase, LpxF, generates a lipid A

lacking the 4’ phosphate and a 3’ myristate chain (31, 32).
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1.1.3.4: Core sugar attachment and LPS transport:

Core oligosaccharides and O antigens are also synthesized in the cytoplasm. The
core sugars are attached to the Kdo,-lipid A moiety at the inner leaflet of the IM (/).
After assembly, the core-Kdo,-lipid A is flipped to the periplasmic side of the IM via an
ABC transporter MsbA (33). The O-antigen is assembled on undecaprenylpyrophosphate
(Und-PPi), which is flipped to the periplasmic side and then ligated to the core-Kdo»-lipid
A, releasing Und-PPi (34, 35). The completed LPS molecule is transported from the outer
leaflet of the IM to the bacterial cell surface by the Lpt system (36). A complex localized
to the inner membrane consists of LptB, LptC, LptF and LptG (YbrK) that form an ABC-
transporter, and are proposed to be responsible for releasing the LPS molecule from the
IM and delivering it to the periplasmic chaperone LptA (YhbN) (37-40). Once LPS has
reached the inner leaflet of the OM, it is flipped to the outer leaflet by an OM protein
LptD (Imp) (41-43), which is in complex with the lipoprotein LptE (RIpB) (44). Figure

1.4 outlines the major stages of LPS secretion.
1.4: Cationic antimicrobial peptides (CAMPs):

LPS contains phosphate groups and acidic sugars that confer a net negative charge
on the molecule. In order to reduce the electrostatic repulsion between neighbouring LPS
molecules at the cellular surface, the bacterial OM sequesters divalent cations consisting
mainly of Mg (45). The electrostatic attraction of the LPS to cationic molecules is what
renders it susceptible to CAMP. CAMPs are amphipathic molecules (46), which are
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Figure 1.4: Schematic representation of the different stages of LPS secretion:
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initially unstructured in the aqueous medium. Their initial electrostatic interaction with
the bacterial surface serves to displace some Mg ions. The reduced dielectric constant at
the membrane interface induces dehydration of the peptide bonds, which become
hydrogen-bonded in a or B-motifs. This reveals the amphipathic features that facilitate the
translocation of CAMPs through the hydrocarbon layer by a non-porin pathway, termed
the “self promoted uptake pathway” (47). Once inside the periplasm CAMPs are then
believed to target the IM bilayer and to produce a detergent-like disruption of
permeability. The consequences of IM permeation include the fatal depolarization of the
transmembrane potential across the IM (48), leakage of cytoplasmic contents, cell lysis

and cell death.
1.5 Lipid A modifications:

External stimuli such as Mg"-limitation and presence of CAMPs regulates the
covalent modifications of lipid A. Figure 1.5 outlines such modifications in E. coli and S.
enterica (28, 49). Regulated modifications of lipid A can be divided into two major

classes: reduction of lipid A negative charge and changes in acylation patterns.
1.5.1 Reduction of Lipid A Negative Charge:

CAMPs are able to gain access through bacterial perimeter defences by
establishing electrostatic interactions with the OM. In order to minimize this attractive
force, bacteria actively reduce the negative charge of the OM by adding

phosphoethanolamine (pEtN) and L-4-aminoarabinose (L-Ara4-N) to lipid A. Under
14
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Figure 1.5 Lipid A modifications: PagP is responsible for adding a palmitate to lipid A,
while PagL acts as a deacylase. LpxR is also a deacylase that cleaves 3’-acyloxyacyl
moeity. LpxO, a hydroxylase, generates S-2-OH at the 3’-position. pEtN and L-Ara4-N
groups are added to the 1 and 4’ positions of lipid A, respectively. Enzymes with a star
beside their names are not found in E. coli. [Adapted from Raetz et al., 2007].
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PhoP/PhoQ control, EptA adds pEtN to the phosphate at position 1 (50), while ArnT
modifies the 4’ phosphate with L-Ara4-N. The modification by EptA occurs at the outer
surface of the inner-membrane (28). The cellular pool of phosphatidylethanolamine
serves as the substrate source for the pEtN modification. Under certain conditions, where
L-Ara4-N is not available, EptA may add a second pEtN moiety to the phosphate at 4’
position (57). In E. coli K12, mild acidic conditions are required to trigger the addition of
pEtN to the lipid A (57), while in case of E. coli O157:H7, such modifications are

constitutively expressed (52).

The pathway for modification of lipid A by rL-Ara4-N has recently been
elucidated. The precursor molecule for the pathway is UDP-glucose. The oxidized
species, UDP-glucuronic acid is acted upon by the dual purpose ArnA (PmrL) enzyme, to
generate a UDP-4-Ketopentose (53). This serves as a substrate for the transaminase ArnB
(PmrH), which forms UDP-B-L-Ara4N (54). AmA further drives the pathway by
formylating the amino group of UDP-B-L-AradN generating UDP-B-L-Ara4FN (53).
ArnC (PmrF) transfers this molecule to the undecaprenyl phosphate moiety (55). ArnD
(PmrJ) deformylates the Undecaprenyl Phosphate-a-L.-Ara4dFN molecule, to produce
Undecaprenyl Phosphate-a-L-Arad4N (55). This is flipped by recently discovered proteins
ArmE/ArmF (PmrL/PmrM) to the periplasmic side of the IM (56). Finally, ArnT (PmrK)

catalyzes the addition of L-Ara4N to lipid A (50).
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These substituents serve to reduce the overall negative charge of lipid A and
inhibit the electrostatic interaction between the LPS and CAMPs (57). This neutralization
of negatively charged bacterial surface is associated with resistance to polymyxin B, a

lipid A-binding cationic cyclic peptide antibiotic, in E. coli and S. enterica (58, 59).
1.5.2 Changes in Acylation Patterns:

Under low Mg conditions, PagP, a transacylase, incorporates a palmitate chain
at the 2-position (60). PagL, a deacylase removes the acyl chain at the 3-position (50).
These two enzymes are under the control of a 2-component regulatory system termed
PhoP/PhoQ. A non-PhoP/PhoQ regulated protein, LpxO belongs to the Fe'*/o-
ketoglutarate/O, superfamily and catalyses the formation of the S-2-hydroxymyristate
moiety. This presumably results in an increase in hydrogen bonding between lipid A
moieties that may decrease penetration by organic molecules that could harm bacteria
(61, 62). The active site of the enzyme faces the cytoplasm (33). Similar to PagL, a
second OM deacylase, LpxR, that is not under PhoP/PhoQ control, catalyses the cleavage
of 3’-acyloxyacyl moiety of lipid A. Such modifications of lipid A acylation may block
the subsequent hydrophobic interaction between CAMPs and the membrane bilayer.
Lipid A acylation is also critical in modulating its endotoxic activity through interaction
with the TLR4 signal transduction pathway (63, 64). Recently, changes of lipid A

acylation have been shown to attenuate lipid A mediated TLR4 activation (65).
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1.5.3 Regulation of lipid A modifications:

Gram-negative bacteria have adapted the PhoP/PhoQ two-component signal
transduction pathway to respond to environmental stimuli including divalent cation
limitation and the presence of CAMPs that may be encountered during infections (66)
(67). PhoQ was identified as the membrane bound sensor histidine kinase that is
maintained in a repressed state in the presence of high concentrations of divalent cations
(figure 1.6) (67-69). These cations associate with a patch of acidic residues located in the
sensor domain of PhoQ. CAMPs will compete with divalent cations for these binding
sites and trigger a signalling cascade resulting in phosphorylation of PhoP.
Phosphorylated PhoP controls the expression of many genes that are involved in Mg"
transport and in LPS modification. For example, transcription of pagP and pagL, which
are involved in the modification of lipid A acyl chains, are under the direct influence of
PhoP/PhoQ (50, 61, 70). The PmrA/PmrB, two-component regulatory system is a
downstream regulator of the PhoP/PhoQ system. It is required for the modification of
lipid A with pEtN and r-Ara4-N (77). PmrA/PmrB can be PhoP/PhoQ-activated via a
mediating protein PmrD (72). A non-functional homolog of PmrD has been identified in
E. coli (73). In Salmonella typhimurium, the PmrD protein has high affinity for
phosporylated PmrA and, upon binding PmrA it inhibits subsequent dephosphorylation
steps (74). PmrA-induced genes can also be activated independently of PhoP/PhoQ by
exposure to Fe™ or mild acidic conditions (75). Similar to PhoQ, extracellular triggers

cause autophosphorylation of the sensory transducer PmrB, which then transfers the
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phosphate group to PmrA. The activated PmrA can then initiate transcription of several
downstream genes. PmrA/PmrB activation has also been shown <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>