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Abstract 

Vibration Analysis (VA) is a key technique used for maintenance and fault detec­
tion of vibrating machinery. The purpose of maintenance is to analyze how well 
the machinery is operating within its target parameters, while fault detection is 
done to diagnose and locate a fault that might be developing on the machinery. 

If we consider s(n) to be the true signal from a rotating system and e(n) to 
be the additive noise corrupting the signal, then the observed signal is x(n) = 
s(n) + e(n). If s(n) is composed of a main driving frequency sm(n) and summed 
fault frequencies s1(n), then fault detection is the study of s1(n). In fault detection, 
we eliminate e(n) as much as possible so that s1(n) can be isolated and studied. 

This thesis presents a technique based on cross-correlation, utilizing a network 
of sensors, to eliminate e ( n) from the measurements, preserving just the correlated 
frequency content. This is extended to provide a means of localizing the source of 
the frequency content, based on the relative strengths of the members of the com­
plete set of cross-correlations between all sensors. This technique has been shown 
to be able to extract a signal buried by noise, in situations where the traditional 
FFT fails. 

To enable this, a new VA system has been developed. This introduces new 
wireless vibration sensors as well as a data capture unit capable of providing real­
time VA data to technicians. The system can simultaneously capture data from 
eight sensors, so the data can be used not only for traditional VA techniques, but 
also in conjunction with the cross-correlation technique described above. This 
system is now commercially available and in use by dozens of technicians around 
the world. 
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Chapter 1 

Introduction 

In the field of rotating machinery, Vibration Analysis (VA) is one of the most 
widely used techniques for fault detection and maintenance. VA typically involves 
time-domain discrete sampling of the accelerations of the machinery, followed by 
both time and frequency domain analysis of the results by expert technicians. As 
the data is already stored as a set of discrete samples, conversion to and from the 
frequency domain is an easy and fast operation, thanks to techniques such as the 
Fast Fourier Transform [1] (FFT). 

While much research is currently ongoing to develop new techniques for data 
analysis of vibration data [2] [3], the fact remains that industry technicians still 
often only employ basic filtering, FFT and waveform analysis while performing 
VA in the field. New techniques are required that these technicians will not only 
be comfortable with, but will also be able to realistically deploy. 

Vibration analysis is typically performed for one of two purposes: 

• Maintenanceffuning 

• Fault detection 

Maintenance includes preventative maintenance: ensuring that the machine is 
running in a correct state both for the purpose of preventing future faults but also 
to ensure that it is running optimally/efficiently/etc. 

Fault detection is performed to diagnose why a machine is operating incor­
rectly. It might be that the machine began to make an odd sound, components 
are wearing faster than expected, or any number of other issues have presented 
themselves. 

1 
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To describe this in a more formal way, assume that when measuring a rotating 
machine, the system presents 

• s( n), the true signal of the system 

• e(n), the additive noise corrupting the signal s(n) 

The observed signal x( n) is then 

x(n) = s(n) +e(n) 

Vibration analysis is the study of s(n). 
Furthermore, consider the separation of s(n) into multiple components: the 

main driving frequency sm(n) of the rotating machine, and s1(n), the summation 
of any other interesting frequency components present in the machine. These are 
often caused by faults occurring in the machine. 

So the observed signal x(n) can be written as 

x(n) = [sm(n) +s1(n)] +e(n) 

Maintenance, for the purpose of ensuring optimal and efficient behaviour is 
the study of sm(n), while fault detection is the study of s1(n). 

Tools currently used by technicians in the field of VA are often focused on 
the maintenance aspect. These tools concentrate on the fundamental frequency, 
employing filters that emphasize the effects of sm(n) but seriously attenuate both 
e(n) and s1(n). 

When done with tuning and maintenance in mind, there is no problem with 
this approach. These filters can precisely show the motion of the rotating machine 
relative to Sm ( n) and provide a great deal of valuable information to technicians. 

When approached from the fault detection direction, these filters hurt more 
than help. By attenuating all frequency content except that of sm(n), the interest­
ing effects from s1(n) are destroyed. 

We propose a method of using cross-correlation with multiple sensors attached 
to a rotating machine to aid in the removal of e(n) from x(n), i.e. removing noise, 
even very high amplitude noise, while leaving only the interesting frequency con­
tent. Not only is this technique useful to VA, but to any system comprised of 
desired periodic components and undesired uncorrelated noise. 

To illustrate the utility of cross-correlation as a means of noise filtering, we 
will consider a fixd-base rotating machine (though this applies to any system 

2 
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driven by periodic components). We can simultaneously measure the signals at 
two different physical locations on the machine, and name them a(n) and b(n). 

With two of these signals a(n) and b(n) we can compute the cross correlation 
R(a,b)(m) as 

00 

R(a,b)(m) = [ a(n)b(n+m) 
n=-oo 

... 

••• 1.0 0.9 

------m ------.. •• 
Figure 1.1: Cross Correlation 

The index variable m allows computation of the correlation at different lags or 
time points. The more correlated the signals are at some time m, the higher the 
value of R(a,b)(m). 

Figure 1.1 shows an example of this. Signals a(n) and b(n) are identical 
sinewaves, and for each different lag value m, the signal b(n) is shifted to the 

3 
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right, and the correlation is re-computed. The particular instance shown in the fig­
ure has b(n) shifted one-quarter of a cycle from a(n). As mis increased, the phase 
shift between the two signals increases, and the correlation drops. As m continues 
to increase, the signals will move back into phase with each other, increasing the 
correlation as they go. 

The key here is that uncorrelated noise will fall out directly, leaving only the 
periodic signal R(a, b )(m). Even more importantly, if a(n) and b(n) have the same 
frequency f, then R(a,b)(m) will also have the frequency f. This will be explored 
in much more depth in Chapter 4. 

Using this technique provides a means for eliminating uncorrelated noise from 
a random process when two random signals exist for that system, providing a 
means for identifying the true signal. 

To apply this technique to VA, an entire hardware and software system had 
to be developed, which can simultaneously measure multiple points on a rotating 
machine, providing the signals required to perform cross-correlation. 

This VA system had to be capable of doing at least what is already possible 
with existing (single measurement point) industrial VA systems, to make it accept­
able as a replacement for older systems, but also had to be capable of measuring 
multiple points simultaneously. While theoretically a hardwired system would 
have worked here, for safety and technician-convenience reasons a wireless sys­
tem was required, adding an extra layer of complexity to the task. 

Such a system was developed as part of this work, and is now commercially 
available and in use by VA technicians across the globe. 

The hardware and software of the system were developed in a generic way so 
as to provide a platform for future VA work and research. Both are extensible 
and existing components can easily be modified or swapped out. In fact, it is 
already being extended as part of a research project to develop fixed-installation 
continuous monitoring and control for a certain class of vibrating machinery. 

Many important lessons were learnt in the development of the hardware and 
software, important to other researchers wishing to embark on similar tasks. Lessons 
learned, pitfalls encountered and problems solved will all be presented here. 

The hardware and software system was developed as a specific case study for 
VA of vibrating screens (a mechanical device which will be introduced later), but 
most of the work was generic enough as to be useful to any VA researcher. 

4 
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1.1 Motivation, Goals and Objectives 

Current VA systems employed in industry that we have experience with are 
limited to a single accelerometer in communication with a Data Acquisition Unit 
(DAU). Performing VA on an entire system consists of measuring the interesting 
points of the system, individually, and then analyzing the data using waveforms, 
acceleration orbits and the frequency spectrum. The accelerometers are typically 
attached to the DAU via a wire, impeding a technician's ability to move around 
during data acquisition, and causing safety concerns for those technicians. 

The overarching goal of this project was to create new methods for performing 
VA and interpreting the results, methods that would be feasible for actual imple­
mentation. 

A common problem in many fields is that of frequency identification within 
a captured signal. In a VA setting, this would involve identifying interesting fre­
quencies from recorded accelerometer data. The presence of different frequencies 
can often indicate certain faults or malfunctions in the rotating machinery. These 
frequencies can be buried under noise making them very difficult to identify and 
extract. A technique for frequency identification and noise removal using a net­
work of sensors and cross-correlation is introduced in this thesis, applicable to 
many situations where multiple recordings of a single system are available. This 
is extended to the particular case of VA, and in particular, to the topic of fault loca­
tion detection, the process of locating the physical location on a piece of rotating 
machinery from which a fault is emanating. 

This thesis also explores the requirements that would be necessary to build 
an advanced VA system, identifying potential pitfalls and needed components. 
In particular, these systems should be built in a manner such that they present 
themselves as a generic framework for VA; not just limited to the capabilities of 
the system as implemented, but with an eye to the future, to make integration of 
later developments in VA as simple as possible. The system should be capable 
of wirelessly recording multiple sensor points simultaneously. This is required to 
increase safety for the technicians, increase time correlation between the measured 
signals, and to simply reduce the amount of time it takes to perform a full data 
capture over all interesting points. 

To solidify these requirements, a full VA system has been built as a case study. 
This system is now in use by VA technicians around the world. Important details 
and insights into the design and implementation of this system are presented, as 
well as lessons learnt. 

The system itself is comprised of both hardware and software components, 
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each of which will be described. It allows for a network of sensors to simultane­
ously monitor a vibrating system, as opposed to the single-sensor systems found 
in industry, and in the literature. The component costs of the hardware platform 
were kept in mind at all times, again to promote a final solution that would be 
feasible for real-world use. The software platform was designed with a Model­
View-Controller (MVC) [4] architecture, with a short-term goal of implementing 
two drastically different user interfaces (the View component), as well as provid­
ing a means to abstract-out the data input methods so the sources of data can be 
easily swapped (real-time sensor data vs previously recorded data, for example). 

1.2 Novelty of the Research Presented in this Thesis 

This thesis provides two primary contributions. The first is the noise removal 
and frequency identification/localization technique based on cross-correlation of 
multiple sensors monitoring a single system. This technique should be applica­
ble to any system where signal noise is burying potentially interesting frequency 
content. A specific use case applied to VA is presented, with particular focus on 
vibrating screens. The technique is used to aid in vibration location detection on 
these screens. 

To be able to perform this technique on real vibrating machines, and test its 
efficacy, a new type of VA system was required, one capable of simultaneously 
acquiring data from multiple locations on a vibrating machine. 

As such, the second contribution is the development of both the hardware 
and software for a multi-sensor wireless VA system. This system is capable of 
performing many traditional VA techniques, as well as the vibration location de­
tection technique described above. The main design criteria are presented, as well 
as discussion of pitfalls and issues encountered during the system's development. 
The system was designed in such a way as to provide a platform for future VA 
research and developments. For the purposes of this research, particular emphasis 
was placed on abstractions around key components within the system, generaliz­
ing the interfaces such that replacement of those components would be relatively 
simple. Researchers wishing to develop similar systems will find many useful re­
sults from this work. Work has already begun on taking the research and systems 
presented here and extending them towards a fixed-installation continuous mon­
itoring VA system. Through the work on these two primary contributions, two 
secondary contributions presented themselves. 

The first is a description of an issue surrounding high-speed data transfers 
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within a Bluetooth network, and the various hardware and software components 
in the system that play a part in these issues. Our solution, involving handshaking 
protocols, buffering schemes and atomic memory access, is described in detail. 
While the system here makes use of Bluetooth, the results are generally applicable 
to any wireless sensor network. 

The second is an analysis of another wireless network issue we encountered. 
This is related to the synchronization of sensor nodes, and the ways that less-than­
ideal synchronization techniques affect the system. The details of this and lessons 
learnt are applicable to anyone building a wireless sensor network. Solutions are 
also presented, as well as descriptions as to how the networking issue affects the 
current and proposed VA techniques. 

1.3 Problem Statement 

The primary problem dealt with in this work is: 

Aiding technicians in the field of vibration analysis, improving their 
tools and techniques for both maintenance and fault detection of ro­
tating machinery. 

As such, the original goals of this thesis can be summarized as follows: 

1. Develop algorithms and techniques for improved instantaneous fault detec­
tion in vibrating systems 

2. Design and implement a multi-sensor wireless VA system, helping to iden­
tify missing requirements and pitfalls that designers of similar systems might 
encounter 

While the first goal is listed as "fault detection", in actuality the developed 
process is more general than that. The algorithm and tool developed aid a techni­
cian in localizing vibration sources on a running machine. These sources may or 
may not be directly related to a present or developing fault, that is left up to the 
technician to determine. 

The end result of both of these goals is to aid technicians in the process of VA, 
so the tools must not only be applicable in a laboratory setting but also usable in 
the field. To this end, the developed system has undergone extensive testing and 
use by industry technicians in the field of VA, resulting in an iterative feedback 

7 



Ph.D. Thesis -J.B. Parlar McMaster University - Software Engineering 

cycle where comments and issues were taken in, addressed, and improved systems 
were sent out to the users. 

The sensors should be capable of withstanding the harsh environments that 
much VA takes place in, must take into account potential issues such as signal 
strength, signal range, available bandwidth, power consumption, etc. 

The entire system not only has to work in the ideal case, but also in less than 
ideal circumstances. Can it be used in low-light scenarios? How does it behave if 
a battery dies during operation? Does it take a long time to setup a test? Will the 
system actually be usable if dozens of rotating machines need to be analyzed in a 
very short period of time. These are questions that are often ignored in systems 
meant for the lab, but were deemed vitally important in this work. 

1.4 Vibration Analysis System 

As mentioned, one of the contributions of this thesis is the design and im­
plementation of a wireless VA system. The work here will attempt to present 
acceptable requirements for any wireless VA system, not just the one developed 
for this project. In addition, the requirements and design, as much as possible, 
will be presented in such a way as to be useful to the development of any wireless 
sensor system. Many of the components and needs of a VA system are identical 
to a wireless system performing some other form of measurement. 

The high-level goals for such a system include: 

• Wireless sensors 

• Multiple sensors running simultaneously 

• A portable DAU which coordinates with and controls the sensors 

• Data Acquisition unit which can perform multiple types of computation and 
analysis 

A high-level system component diagram is shown in figure 1.2. This will be 
referred to throughout the thesis, to give the reader context for given sections. 

This diagram illustrates the two major components, the wireless sensor, and 
the DAU. In actuality, the real system is run with multiple sensors simultaneously, 
but for simplicity in the image, only one is shown. 

Within each wireless sensor are five generic components. The analog sensor 
is the first. In the VA system presented here, this is an accelerometer, but for other 
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Figure 1.2: System Structure 
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types of systems, it could be anything. Temperature sensors, pressure sensors, 
light sensors, etc. 

The next part, the low pass filter, is present simply to smooth out the values 
coming from the analog sensor. Some systems might prefer to remove this com­
ponent, depending on need. 

Next is the AID converter. This is required to convert the analog values from 
the sensor into digital values that can be used and transmitted. Depending on 
the particular hardware selected, the sensor might incorporate the AID converter 
internally. In our system it did not, and there are enough interesting aspects to the 
AID converter to warrant showing it here (section 5.2.5). 

This is followed by the CPU, responsible for collecting the values from the 
AID converter, performing any necessary pre-transmit computations, packing up 
the values for transit, and passing them off to the wireless transceiver. The wireless 
transceiver, which could be based on any number of wireless technologies, will 
typically perform all necessary networking operations and perform the actual act 
of sending the values from the CPU over the air to the DAU. 

Within the DAU, a matching wireless transceiver is the first component. The 
values received here are passed to the pre-computation block. 

For our system, pre-computation includes unpacking the transmitted values 
(dependent on the particular packet format chosen), as well as performing DC 
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filtering. DC filtering simply removes the constant gravity component from the 
recorded accelerometer values. The technicians never see the pre-DC-filtered val­
ues, so this is considered part of the pre-computation. 

The computation block performs further filtering (Butterworth), does FFT 
computations, RPM calculations, stroke calculations, etc. The particular com­
putations here are very dependent on the field, but in general comprise all mathe­
matical computations that will interest the user. 

Values from the computation block are simultaneously sent to the storage and 
UI blocks. Storage is simply permanent storage of the values, for later analysis. 
The UI block is responsible for taking the computed values and displaying them 
on screen in a manner that is useful to the end-user. 

Our hope is that this structure is general enough to be useful to anyone de­
signing their own wireless sensor system. As has been presented here, it is overly 
general, but further specifics will be given throughout the course of this work. 

No other VA system with this full set of features was known to be available 
at the time of this research. The eventual hardware and software of the wireless 
sensors was designed and implemented from the ground up, while the DAU itself 
is a manufactured component with completely custom VA software running on it. 

The selected DAU is shown in figure 1.3 and the final production sensors that 
we manufactured are shown in figure 1.4 

This system had to be capable of performing traditional forms of VA, including 
RPM identification, filtering and orbit plots, but also able to be used for the new 
vibration location detection technique introduced in this thesis. Details of the 
more traditional forms will be given in Chapter 2, while specifics of the vibration 
location detection are presented in Chapter 4. 

1.5 Overview of the Thesis 

Chapter 2 provides background details for the field of vibration analysis. This 
includes different types of analysis as well as mathematical techniques often em­
ployed. Vibrating screens are used as part of a case-study for this thesis, so infor­
mation on these screens is also presented here. 

Chapter 3 provides a literature review focusing on vibration analysis, noise 
removal and fault detection. 

Chapter 4 presents our theory for using cross-correlation as an ideal filter. 
Cross-correlation is introduced, as is our definition and criteria for an "ideal filter". 
A formal distinction is made between noise and features of a system, and finally a 
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Figure 1.3: Data Acquisition Unit 

Figure 1.4: Sensors 

technique is presented for using cross-correlation to identify the possible location 
of vibration sources on a vibrating system. 

Chapter 5 details the design and implementation of the wireless sensors built 
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for this thesis. Pitfalls encountered and solutions discovered are presented, with 
the goal of aiding other researchers hoping to develop similar systems. This chap­
ter covers both the hardware and software that comprise the sensors. 

Chapter 6 covers the design and implementation of both the software for the 
DAU as well as the Vibration Location Detection Tool. 

Chapter 7 describes in detail a particular network issue encountered in our 
system. While this issue does not actually affect the work done in this thesis, it is 
possibly important to anyone hoping to do other forms of vibration analysis with 
the system. It is also relevant to any wireless sensor system, so the faults and 
possible solutions are generally applicable. 
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Chapter 2 

Background of Vibration Analysis 

In the field of VA, there are a few techniques widely used in industry, in­
cluding: orbit analysis, waveform analysis, FFT analysis and filtering. Any tool 
proposed as a candidate for use by technicians in VA should, at a bare minimum, 
be able to implement these techniques, as well as any new techniques it might 
bring to the table. 

The common goal of most of these techniques is to analyze frequency-related 
information in the presence of noise, for the purpose of understanding how a vi­
brating system is behaving. 

Novices in VA often think there is a single "correct" way to process and in­
terpret vibration signals [5]. In reality though, the nature of the problem plays 
a significant role. Some problems can be solved with a simple glance at the vi­
bration waveforms, while others require more complicated filtering, frequency 
analysis, time averaging, etc. 

For example, with a steady vibrating system like an engine or a pump, the 
average over many cycles is sometimes important, while at other times it may be 
the difference between cycles that matters. The approaches to these are different. 
Similarly, the steady vibrations of a gearbox relay one kind of information, but it 
is unsteady vibrations that give clues to tooth damage. 

This chapter will introduce a selection of techniques. These include the graph­
ical techniques of orbit, waveform and FFT analysis, as well as FFT-based RPM 
calculation techniques and the DC and Butterworth filters. Orbit and waveform 
analysis operate in the time-domain, while FFT analysis is done in the frequency 
domain. The DC filter is used to remove DC (constant) components from a sig­
nal, while the Butterworth filter is often used as a bandpass filter, necessary when 
isolating a particular frequency component. While one purpose of the DC and 
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Butterworth filters is to "clean" the data so it may be better used with the graphi­
cal techniques, other calculations are often based on the outputs of these filters. 

The basic mathematical components of these filters will be described, and their 
effects and characteristics illustrated. 

Especially when dealing with filtering techniques, the point from Chapter 1 
must be kept in mind: VA can be distinguished as for maintenance/tuning or for 
fault detection. For example, the Butterworth filter described later in section 2.6 is 
employed as a bandpass filter, completely attenuating all frequency content except 
for that around a desired centre frequency. For the purpose of maintenance and 
tuning, this is ideal. Centre the filter around the operating frequency of the ma­
chinery and analyze the output. A visual inspection will clearly illustrate whether 
or not the system is operating as it should be. 

However, this particular filtered output cannot be used for fault detection. If 
we assume that faults show themselves as frequency components in a measured 
signal, then a bandpass filter, which attenuates those very frequencies, will be 
useless. 

So different techniques must be used when VA is approached as a fault de­
tection activity. The technique we introduce in Chapter 4 consists of a particular 
kind of filter that strictly highlights frequency components, both the main oper­
ating frequency and any other components that might be present. And while one 
cannot directly say that those frequencies are indicative of a fault, they do provide 
a first-course of investigative action for a technician performing VA on a machine. 

In terms of the measurement source for the techniques illustrated here, ac­
celerometers will be assumed. In the past, much VA was done using microphones 
as the primary sensor, and performing frequency analysis on this input. In more re­
cent years, accelerometers have become quite popular for VA, and the techniques 
presented here assume three-axis accelerometers. 

The introduction to the thesis briefly describes a case study in which a hard­
ware/software system for performing VA on vibrating screens was developed. The 
system implements all of these traditional techniques, as well as some new ones. 
To provide the reader with a concrete context in which to understand the tech­
niques described here, the techniques will be presented using real data from vi­
brating screens. This is only done to aid understanding, as the techniques them­
selves are applicable to almost any fixed-base rotating system 

As such, this chapter will begin with a background summary of vibrating 
screens. 
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2.1 Vibrating Screens 

A vibrating screen is a fixed-base rotating mechanical device used to sort and 
classify aggregates. Depending on the characteristics of the desired aggregates, 
machines of various sizes and screens of varying fineness will be used. 

A common use case for vibrating screens is in the field of mining. Materials 
from a mining site are fed onto a mesh screen attached to a vibrating machine, 
which provides an excitation force, causing aggregate of the right size to filter 
through the screen. These machines can be capable of sorting through dozens of 
tonnes of material per hour. Some machines generate up to 7Gs of acceleration, 
running in a circular, elliptical or linear motions at close to 1 OOORPM. 

Traditionally, to perform VA on this class of machines, a VA system consisting 
of a single accelerometer and a large data capture station was used. A technician 
would record accelerometer data from one point on a machine, move to a second 
point, record data, move to a third point, etc. Depending on the class of machine, 
there could be up to eight interesting points for data capture. As the system could 
only record one point at a time, the correlation between the recorded readings was 
potentially greatly reduced. 

The accelerometer measures accelerations in the machine, measured in G 
(9.8m/s2). The system samples the accelerometer, creating a Time-vs-G data 
set. These accelerometers can measure three axes of motion simultaneously, X, Y 
andZ. 

Figure 2.1 shows the side and top views of a typical vibrating screen. The side 
view is what you would see if you were looking at the side of the machine, and the 
top view would be seen if standing above the machine and looking down. Material 
enters the screen at the Feed end, and anything that does not pass through the 
screen comes out again at the discharge end. Most vibrating screens are mounted 
at an angle, with the one in the figure being 20°. This is simply so gravity will 
assist in moving the aggregate over the screen. 

While the axes could be interpreted in any way, for historical reasons X is 
considered to be along the length of the machine, parallel with the material flow. 
Together X and Y define the main motion of the machine. The Z axis is perpendic­
ular to the main motion of the machine. Theoretically there should be no motion 
at all along the Z axis, but realistically this is never the case. 

At a typical mining site, it is not unusual for other large machinery to be in 
operation at the same time as the vibrating screens, in fact, it is common. These 
machines (for instance, dump trucks capable of carrying 400 tonnes) are often so 
large and powerful that they can introduce motion into the vibrating screens, even 
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Figure 2.1: Vibrating Screen - Side and Top Views 

at quite a distance. If some of this other machinery happened to be reacting in one 
way at time point A, and a completely different way at time point B, the recorded 
data of the vibrating screen might differ if the recordings happened to be taken at 
separate time points A and B. These machines tends to be large enough that it is 
not unheard of for one to induce harmonics in another. 

From a purely practical point of view, a system that could simultaneously 
record multiple points on a vibrating screen not only reduces the amount of time 
it takes to gather the readings, but also provides better correlated data. This desire, 
and the system required to implement it provided an opportunity to try to improve 
the state of the art of VA. 

The screens under analysis for this case study will make best use of four or 
eight sensors, depending on whether or not the screens are two or four bearing. 

The naming scheme of the key positions is illustrated in figure 2.2. This is the 
same top view of a screen shown in figure 2.1. The first letter of each location, 
"L" or "R" is for "left" and "right". The left side of a screen is always interpreted 
from standing behind the machine looking at the feed end. The second letter, "D" 
or "F" is for "discharge" or "feed". The third letter, "B" or "S" is for "body" or 
"side-arm", and simply illustrates whether or not the sensor is placed directly on 
the body of the screen or mounted to one of the side-arms. The particulars of this 
are not important to the work presented here, but are given simply for clarity 
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Figure 2.2: Screen Location Names 

2.2 Orbit Analysis 

As mentioned above, the accelerometers measure three axes simultaneously. 
The X axis and the Y axis are interpreted as the main axes of motion, the axes on 
which the circular or linear motion of the vibrating screen occurs. The Z axis is 
always interpreted as the axis perpendicular to this main motion. 

Orbit Analysis is the plotting of the axes against each other and interpreting 
the results. Namely, X vs. Y, Y vs. Z and X vs. Z are all plotted. 

Plotting these axes against each other essentially allows one to view the mo­
tion of the machine in two-dimensions. A technician will know what the motion 
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of a machine should be, and the plots allow for this to be verified. For example, 
a vibrating screen with a circular throw (i.e. circular motion) should give a circle 
when X vs. Y is plotted, while both X vs. Z and Y vs. Z should be straight lines. 
Ideally, the Z-related plots should not only be a straight line, but also a perfectly 
vertical straight line. Any skew outside of perfect verticality implies that the vi­
brating screen is experiencing some kind of off-centre motion, which is typically 
undesired. 
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Figure 2.3: Orbit Plots 

Figure 2.3 shows all three orbit configurations, as well as the raw X, Y and Z 
waveforms responsible for these orbits. 

To interpret these in terms of motion of the machine, the viewer must imagine 
positioning themselves looking through the unused axis of a particular plot. 

For example, the X vs. Y plot shows the motion of the machine when standing 
at the side of the machine, looking through the (unused) Z axis. X vs. Z is the mo-
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tion when "hovering" directly above the vibrating screen, looking down through 
the Y axis. 

2.3 Waveform Analysis 

Of these techniques for VA, Waveform Analysis is the most basic. It is simply 
a plot of the raw data acquired from a sensor, plotting G-force against time. For 
a vibrating screen, or any rotating machinery, the main motion should be periodic 
and harmonic, so when plotted it should be a simple sine wave. Figure 2.4 shows 
data we captured from a vibrating screen with a loose deck casting, and figure 2.5 
shows the same screen with the deck casting repaired. 

I 
I 

Figure 2.4: Loose Deck Casting Waveform 

While Waveform Analysis provides a quick method for a technician to see if a 
machine is running properly, it suffers when trying to determine why a machine is 
not running properly. A malformed sine wave shows that something is wrong, but 
generally provides no information as to what the problem might be. Moreover, 
for different definitions of "malformed", it might be that nothing at all is wrong 
with the system, it just happens to show small jitters in the waveforms even when 
operating ideally. 

The figure above shows how waveforms can be used to see low-frequency 
problems, but as soon as higher frequency components are present, the waveform 
is much less useful. 
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Figure 2.5: Repaired Deck Casting Waveform 
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Figure 2.6: Failing Bearing Waveform; X, Y and Z Axes 

Figure 2.6 shows a waveform from a running vibrating screen where a bear­
ing was in the initial stages of a failure. Bearing faults usually show themselves 
through high frequency components in the measured signal, and depending on the 
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way the sensor was placed on this screen, that harmonic component is usually 
seen most strongly through the Z axis. 

With the high frequencies in the Z axis, it is nearly impossible to use the wave­
form, other that to say that something high-frequency is occurring. The primary 
frequency component is still visible through the X and Y axis, but even those show 
a high degree of high frequency harmonics on them. 

The FFT provides a more realistic way to analyze high frequency components 
of a signal. 

2.4 FFT Analysis 

Probably the most powerful VA technique currently employed by technicians 
in the field is that of FFT Analysis. Given time domain measurements, such as 
those from the last section, the FFT is able to analyze the frequency components 
that comprise the time domain signal, showing relative amplitudes of the various 
frequencies present in the signal. 

Returning to the failing bearing example introduced in the last section, fig­
ure 2.7 shows the same measurements, but in the frequency domain. Notice in the 
Z axis the components present at 114Hz, 144Hz and 228Hz. 

The bearings used in vibrating screens usually come with fault tables, showing 
which measured frequencies are associated with a particular type of bearing fault. 
For the system under analysis, 114Hz fell perfectly into the range of one of the 
known types, indicating that a particular fault is probably occurring. 

The interpretation of meaning behind the presence of different frequency com­
ponents is highly dependent on the machine under study. Some knowledge of the 
behaviour of the machine under different conditions is thus a pre-condition to 
successfully interpreting an FFT analysis. This can lead to situations in which an 
harmonic is present in a system that has never before been seen in that type of 
system, necessitating further study and analysis. 

As another example, figures 2.8 and 2.9 show the same loose casting screen 
from the previous section. In both figures, the fundamental 14Hz frequency is 
clearly visible, but a great deal of high-frequency content is present with the loose 
deck casting. After the deck casting is repaired, most of the high-frequency con­
tent simply disappears. Technicians thus will often use the presence of high fre­
quency content as a possible indicator that a fault is developing on a machine. 
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Figure 2.7: Failing Bearing FFT; X, Y and Z Axes 

2.5 DC Filter 

The DC filters, often called DC blockers [6] are used to remove the constant 
component from a signal. They are implemented with a small recursive filter as 

y(n) =x(n)-x(n-1) +Ry(n-1) 

where R is typically somewhere between 0.9 and 1. Smaller R values allow for 
faster tracking of "wandering de levels" [6]. These smaller values will result in 
greater low-frequency attenuation, so the value should be chosen in accordance 
with the situation. 

With fixed-base rotating machinery, the DC value is the gravity component 
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Figure 2.8: Loose Deck Casting FFT 
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measured by the accelerometers. Since this DC component should not wander 
(i.e. gravity will not change), a relatively high value of 0.98 can be used. This 
minimizes low-frequency attenuation as the ability to quickly track wandering 
DC levels is unnecessary. 

If the vibrating screens were installed exactly perpendicular to gravity then 
the gravity component could be subtracted out from the Y axis without requiring 
a DC filter, but this is generally not the case. Typical screens are mounted at some 
angle (as shown in figure 2.1), so gravity will have some effect on both the X 
and Y axes. Individual DC filters on the X and Y axis are thus used to remove 
whatever gravity effect is present. 

Figure 2.10 shows the results of passing simulated input through a DC fil-
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Figure 2.9: Repaired Deck Casting FFT 
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ter. Two separate input channels x(n) and y(n) are simulated, both 15Hz signals 
sampled at 500Hz ( one sine and one cosine), which roughly matches sampling a 
typical vibrating screen. A constant value of 2 is added to each system to provide 
the DC filter a component to remove. 

While a typical system will not actually have a constant of 2 on each of the X 
and Y axes, it does not matter. The DC filter does not care what the magnitude of 
the constant component is, only that there is a constant component. 

Two separate DC filters, DCx and DCy were used, one for each channel, and the 
two simulation channels were passed through them, resulting in xdc ( n) and y de ( n). 
The DC filters perfectly removed the constant components without affecting the 
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Figure 2.10: Unfiltered and DC Filtered Orbits 

shape of the orbit. 
Figure 2.10 does not actually tell the entire story of DC filtering. As with most 

filters, the DC filter has a settling time when first used. In particular, the first 300 
results from DCx and DCy have been removed, for clarity. 

Figure 2.11 illustrates this settling time. It shows the first 300 results of Ydc(n) 
as they relate to the first 300 samples of y( n). By sample 300 the filter has settled 
and its results can safely be used. 

As a comparison to figure 2.10, figure 2.12 nicely shows the plot of the orbits 
when settling is not taken into account. A system implementing real-time plots 
of DC filtered orbits must consider this, otherwise users will see the spiralling on 
startup. Users of the system we developed for the case study were confused by the 
spiralling when shown it, and expressed preference for a version that takes settling 
into account, even when that means it takes a short amount of time before values 
are allowed to be drawn to screen. 
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Figure 2.11: First 300 Output Values of DCy 

2.6 Butterworth Filter 

;ID() 

The Butterworth filter is often used to show a "smooth" view of the orbit of 
a rotating machine, implemented as a bandpass filter centred around the main 
operating frequency of the vibrating screen. In systems where the operating fre­
quency is explicitly known beforehand, the filter can simply be designed around 
that frequency. When it is possible for the frequency to vary, the frequency has to 
be determined at runtime using the RPM calculation technique from section 2. 7. 
The system must then be able to dynamically generate a new filter based on this 
frequency. 

The Butterworth filter is an infinite-impulse-response filter chosen for its char­
acteristic of being mathematically maximally flat in the passband region[?]. Cen­
tred around the operating frequency of a rotating machine, the passband region 
can be used to show the fundamental motion. 
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Figure 2.12: DC Orbits Without Taking Settling Into Account 

While other filters, such as Chebyshev[8] exhibit faster roll-offs, roll-offs that 
would require increasing the order of the Butterworth filter to match, the flat pass­
band and monotonic frequency response of the Butterworth filter is more impor­
tant for VA. 

In the developed VA system, the acceleration values output from the Butter­
worth filters are used for various calculations in the software, including maximum 
G and average G, so a gain of 1 and no ripple in the pass-band is vitally important. 
Chebyshev filters have the faster roll-off, but at a cost of ripple in the pass-band. 
Any ripple in the pass-band will skew the acceleration-based calculations and give 
an incorrect view of the motion and forces created by the vibrating system under 
analysis. 

The magnitude response of a low-pass Butterworth filter is given by [7] 
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IH(Q)I = l J1 + ( _g_ )2N nc 

where Qc is the 3-dB or cutoff frequency and N is a positive integer, the order 
of the filter. The (f;) 2N in the denominator ensures that H(O) = 1, and that all 
the derivatives H' ( 0) = 1, H" ( 0) = 1, . . . . This means the function is as flat as 
possible at Q = 0, without being equal to unity everywhere, and that the filter is 
maximally flat. The magnitude response is also monotonic in both the passband 
and stopband, as shown in figure 6.10. 

The buttord function (available in many engineering software packages such 
as Numpy[9] and MATLAB) can be used to choose the order of a Butterworth 
filter, based on desired frequency characteristics. A lower order is better for com­
putational resources, but higher orders have narrower transition bands, as show in 
figure 2.13. The developed system uses N = 4, though this is easily modifiable. 

As an example of the Butterworth filter, real data from a running vibrating 
screen was passed through the Butterworth filter, and the results plotted. 

Figure 2.14 shows the first 300 unfiltered X and Y axis data points, x(n) and 
y(n) from the accelerometer. A great deal of high-frequency noise is visible, mak­
ing the primary motion of the screen difficult to see through visual inspection. 
Figure 2.15 shows the result of passing these points through Butterworth filters 
Butterworthx and Butterworthy, i.e. 

XButterworth(n) = Butterworthx(x(n)) 

YButterworth(n) = Butterworthy(y(n)) 

The real utility of smoothing the data is when plotting acceleration orbits. 
These orbits allow a technician to see the general motion of the machine. The 
unfiltered orbit is shown in figure 2.16, and while the general shape is present, 
there is too much noise. This plot contains 10000 data points, representing a full 
recording session. 

Figure 2.17 again shows the acceleration orbit, but using the filtered data. The 
motion of the machine is clearly visible, with all the high frequency noise having 
been successfully removed by the Butterworth filters. 

The settling time of the Butterworth filter must be kept in mind when actually 
using it. Figures 2.15 and 2.17 do not show all 10000 points of XButterworth ( n) and 
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Figure 2.13: Magnitude Response of Butterworth Filters at Orders 1 Through 5 

YButterworth ( n). Instead they chop off the first n = 0 ... 500 points to give the Filter 
time to settle. 

The effects of the settling time are shown in figure 2.18, where there is ampli­
tude oscillation occurring at the beginning of XButterworth(n). The filter seems to 
have settled by the time it reaches n = 200, the removal of the first 500 points in 
the software is an arbitrary choice. 

2.7 RPM Calculation 

In many vibrating systems, the revolutions-per-minute (RPM) that the system 
is operating at is one of the most important parameters. Most rotating machinery 
will have a designed RPM, and operating outside of that RPM is usually a sign 
that the machine is experiencing some kind of fault. 
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Figure 2.14: Unfiltered Data From X and Y Axes 

2.7.1 Frequency Identification 

The FFT is the basis for calculating the RPM. The FFT of a set of data is 
taken, the fundamental frequency component is extracted, giving revolutions-per­
second, and then this is multiplied by 60. This basic procedure is illustrated in 
figure 2.19. 

In particular, the fundamental frequency is interpreted as the frequency com­
ponent with the highest amplitude in the FFT. 

More formally, where argmax is defined as 

argmaxf(x) = {xl\iy: J(y) ::::; f(x)} 
x 

and the Discrete Fourier Transform (DFT) is defined [10] as 

N-1 

X(m) = L e-jwonm,o::::; m::::; N-1 
n=O 

h 21t w ere wo = N. 

The frequency component max_m with the highest amplitude is 
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max_m = argmax IX(m)I 
m=[l...(N/2)-1] 

While the standard DFT normally operates over frequency bins m = 0 ... N - 1, 
we need only use m = 1 ... (N /2) -1 with argmax. m = 0 is unneeded because 
this is simply the DC component of the Fourier Transform, and with the DC filter 
discussed in section 2.5, there should be no DC present. The upper bound of 
m can be limited to (N /2) - 1 because of DFT symmetry; the DFT outputs for 
m = 1 ... (N /2)- 1 are redundant with frequency output values form> (N /2). 

The value for max_m is simply a discrete integer index value associated with a 
particular analytical frequency. The corresponding frequency in Hz can be found 
with 

) 
mfs 

fanalysis(m = N (2.1) 

where fs is the sampling frequency the data was sampled at and N is the length of 
the input sequence. 

Thus the final value for the RPM is 
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Figure 2.16: Unfiltered Orbit Plot 

RPM = 60 * !analysis ( max_m) 

2.7.2 DFT Interpolation 

Ideally the value for the RPM from the previous section would be correct as-is. 
Unfortunately a characteristic of the DFT called "DFT leakage" can result in the 
calculated RPM being incorrect. 

The DFT (and thus FFT) are constrained to operate on N input points sampled 
from the real-world signal at a rate offs, producing an N-point transform whose 
outputs are associated the individual frequencies of fanalysis(m). 

Because Equation 2.1 operates on discrete values of m, only N different fre­
quencies are possible, so only N different RPMs can possibly be reported. 

The DFT produces exactly correct results only if the frequencies present in the 
input signal are precisely at analysis frequencies of fanalysis(m). If the input signal 
has any frequency component at some intermediary point between two analysis 
frequencies, then some energy from that component will appear in every one of 
the N analysis frequencies [10]. 
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Figure 2.17: Butterworth Filtered Orbit Plot 

Figure 2.20 shows two plots. The first is a 64-point input time signal, sampled 
at 64Hz, generating five complete sinewaves over the 64-points, namely 

sin(21t·5·nts),wheren=0 ... 63,ts = 1/64 

The second plot is the first half of the FFT magnitude of this signal. It shows 
frequency content at precisely m = 5, and no where else. 

Figure 2.21 shows two similar plots, but instead of the input sinewave cycling 
five times, it cycles 5.4 times, 

sin(21t · 5.4 · nts), where n = 0 ... 63,ts = 1/64 

This small change to the input frequency results in an enormous change to the 
DFT. Frequency content is shown in all of the frequency bins, despite only a single 
frequency being present in the input. This is the classic DFT Leakage problem. 

Two traditional schemes exist to minimize this issue. The first is to increase 
the size of the DFT. As the size increases the individual frequency bins become 
smaller, and the probability of the true frequency fitting exactly into one increases. 
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Figure 2.18: Butterworth Filter Settling Time 

Of course the size of the FFT must always be finite, so it is impossible to cover 
every single frequency. 

A second scheme is classic DFT windowing. The FFT causes frequency leak­
age because of its very nature of performing a Fourier Transform over a finite 
number of samples. Sectioning off a set of samples is equivalent to multiplying 
an infinite sequence by a rectangular window function. Multiplication in the time 
domain is convolution in the frequency domain, and the Fourier Transform of a 
rectangular window is the sine function. The convolution of the true signal with 
the sine function causes sidelobes, or leakage. 

To mitigate this, an alternative window can be used. Figure 2.22 shows the re­
sults using two common windows, the Hamming window and Blackman window. 
Rather than the abrupt change of a rectangular window, these two windows both 
gradually approach 1. 

While the windowing functions drastically reduce the amount of DFT leakage, 
figure 2.22 shows that it still occurs. Even if it completely eliminated leakage, the 
result from the DFT would not be correct. The fact remains that if the input signal 
contains a frequency that lies between two frequency bins, the exact frequency 
cannot be recovered simply by inspecting the result of the DFT. 

34 



Ph.D. Thesis - J.B. Parlar McMaster University - Software Engineering 

14000 

12000 

10000 

Ql 
-c 8000 
::I 

:!:::: 
c: w 
::ii: GOO() 

-1000 

200() 

I I 
00 

:., \.;__ . l ' 
20 -Ill 60 80 100 120 

Frequency (Hz) 

Figure 2.19: Locating Frequency Component with Highest Magnitude 

Very high precision was required for the RPM calculation, as the RPM is run­
ning at is a key indicator of machine health to technicians. The FFT size could 
be further increased to reduce the frequency bin sizes, but this comes at fairly 
severe performance costs. When running with eight sensors, 24 different RPM 
calculations must constantly be performed ( one on each of the three axes for each 
sensor). 

The low-cost solution to this was to perform a polynomial interpolation over 
the results of the DFT. Centred around the identified frequency (as described in 
the previous section), a three point interpolation is performed, as illustrated in 
figure 2.23. This interpolation allows for the identification of frequencies between 
bins, something the DFT cannot do alone. 

Using Maple [11], a three-point polynomial interpolation was solved in the 
general case. This result is 
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Figure 2.20: 64-point DFT with the Input Signal Precisely at an Analysis Fre­
quency 

where 

_!. _;qy3 -_;qy2 -_;qy3 +x~y1 -x~y1 +x~y2 

2 x3y1 - x1y3 - x2y1 + x2y3 - x3y2 + X1Y2 

• x1, x2, x3 are the bin numbers, where x2 is the bin number of the centre fre­
quency (and thus x1 = x2 - 1 and x3 = x2 + 1) 

• Y1 ,Y2,Y3 are the corresponding amplitudes 

To test this implementation, a simulated input sinewave at 14.4Hz was sam­
pled at lOOOHz. 14.4Hz equates to exactly 864RPM. Performing only an FFT puts 
the input frequency into the 14.16Hz frequency bin, or 849.61RPM. Putting the 
FFT result through a polynomial interpolation routine gives an improved 14.369Hz, 
or 862.183 RPM. Using a Hamming window before the FFT, followed by the 
polynomial interpolation gives an even better 14.395Hz, or 863.714RPM. 
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Figure 2.21: 64-point DFT with the Input Signal Between Analysis Frequencies 

The polynomial interpolation is a clear improvement over simply using the 
result from the DFT, and adding a Hamming window improves the situation even 
more. The question is whether or not the extra cost of a windowing function is 
worth the improvement, and this is wholly dependent on the circumstances of use. 

2.7.3 Potential problem with RPM calculation technique 

There is a possible drawback with the mechanism used to calculate the RPM, 
coming from the method used to identify the operating frequency. 

The argmax function is fairly simple in its operation, and when used with the 
DFT, it finds the frequency bin with the highest magnitude. Under normal con­
ditions, this frequency will be the operating frequency of the rotating machinery. 
What if some other frequency component were also present, with an even higher 
magnitude than that of the operating frequency? argmax would instead identify 
that frequency, and the reported RPM would be completely wrong. 

Software implementing this technique could limit the frequency range over 
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Figure 2.22: DFT Windowing Functions; Hamming and Blackman Windows Ap­
plied to the Input 

which it calculates argmax, but identifying that range is highly dependent on the 
machine under analysis. 

For rotating machinery running at high G-forces, this turns out to not be much 
of an issue. In a situation like this, if the frequency identified with the highest 
amplitude is drastically apart from the designed fundamental frequency, then it 
would often be obvious just from watching the machine operate, without using 
any VA tools. It would most likely start to shake itself apart. 
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Figure 2.23: Polynomial Interpolation of FFT Magnitudes 
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Chapter 3 

Literature Review 

The topics of fault detection and vibration analysis are both areas of heavy 
research. The ability to monitor structures and machinery - to detect damage or 
non-optimal operation - is pervasive throughout multiple communities: mechani­
cal, civil, aeronautics, etc. Any mechanical system subject to movement, noise or 
vibration is a candidate for fault detection and vibration analysis. 

Within the field of fault detection, multiple areas of study present themselves 
and are common to find in the literature. At one end of the spectrum are the highly­
mechanical studies of individual components commonly found in these systems. 
The most common component to study are rolling bearings, vital to almost any 
rotating machine. 

Bearings permit linear motion, or constrained relative rotation, between two 
parts. Operating conditions can be quite severe, resulting in damage to the bear­
ings. As the bearings are vital to the rotational movement of the machine, a dam­
aged bearing could seriously damage the machine it operates in. 

For this reason, early fault detection on bearings is an active topic. Zhang 
et al. [12] provide a detailed introduction to the problem of bearing faults, and 
introduce a feature extraction method developed to overcome the limitations of 
time domain features. The typical time domain features (RMS, peak, kurtosis, 
crest, etc. [13]) are compared to the frequency domain envelope analysis [14]. 

Ghafari [ 15] notes that, 

So far, vibration-based condition monitoring of a rolling element bear­
ing has been mostly studied from a signal processing point of view. 
Very little attention has been paid to the effect of the fault on the 
bearings vibration behaviour. Therefore, the first step in successfully 
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implementing of bearing health monitoring is to establish the base­
line behaviour of a healthy bearing. Furthermore, although a number 
of rotary machines operate under variable speed and load conditions, 
very few researchers have proposed robust techniques for the fault 
diagnosis and prognosis of such systems. 

Ghafari proceeds to present the nonlinear dynamics of rolling element bear­
ings, backed up with numerical simulations and experiments. The effects of bear­
ing damage on vibration signatures are then investigated, resulting in the selection 
of the three fault features least dependent on speed and load conditions. Finally, 
a neural network decision-making scheme is designed and presented for mapping 
the conditions into the bearings health. 

The use of neural networks, or other automated decision/expert systems is a 
common theme in the literature. 

Despite the large body of work in fault detection, the general consensus re­
mains that VA is still typically manual work performed by experienced techni­
cians [ 1] [ 16] [ 17]. This has led to the use of expert systems to try to automate the 
VA problem. 

More traditional model-based techniques [18][19] require extensive knowl­
edge about the system under study as well as detailed mathematical models for 
the systems, models that typically do not exist. For very large industrial machin­
ery, a realistic simulation model is very difficult to obtain [20]. Expert systems 
offer an opportunity to build up a knowledge base for a system, built on direct 
experience with the system or through another expert. 

Yang et al. [17] built an expert system called VIBEX (VIBration EXpert), a 
decision table based system for diagnosing the cause of abnormal vibrations in ro­
tating machinery. VIBEX works on a set of rules built through IF (symptom) and 
THEN (cause) statements, with an embedded Bayesian algorithm for obtaining 
confidence factors. 

Another rule based system is presented by Ebersbach and Peng [1]. A knowl­
edge base was constructed to detect the typical faults associated with fixed plant 
mechanical systems, resulting in a 75 rule expert system with IF/THEN statements 
similar to VIBEX. 

Systems such as VIBEX based on a vibration analyst's basic knowledge can 
be effective for diagnosis of basic faults, but tend not to perform well against 
machine-specific anomalies [20]. This is the prime impetus of the machine­
leaming systems. 

Lei et al. [21] present improvements to the artificial neural networks (ANN) 
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based on an improved distance evaluation technique for optimizing the choice of 
vibration features to fed into the neural network. The neural networks are trained 
and used to tune a rule-based fuzzy system to approximate the ways humans pro­
cess information. The authors' experimental results show promising results in 
detecting abnormalities within bearings while categorizing and identifying the 
severity of the faults. 

Sun et al. [22] present an ANN customized for pattern recognition of bearing 
fault signatures, again showing the focus on bearing diagnosis in the literature. 
Feature extraction happens with the typical time-domain and frequency-domain 
tools, but also adds in "Segmentation Indices", targeted at analyzing bearing dy­
namics. This takes advantage of a correlation which exists between the location 
of a defect within a bearing - inner race, outer race, rolling element, etc. - and 
the impulse patterns that would be observed through one cycle of the signal. This 
allows for descriptions of various impulse patterns. The authors detail the effects 
of the possible defects, and bring the results into the feature extraction, which can 
be used with an ANN. 

A great many more ANN-based systems are present in the literature, with most 
containing discussions on feature extraction. The ability to identify features in a 
running system suitable for applying to a diagnosis situation is vital. 

The bases of feature extraction tend to revolve around time-domain and frequency­
domain analysis [19]. The work by Zhang et al. has already been mentioned, as 
has the paper by Lei. In addition to the ANN discussed by Lei, the authors also 
provide a detailed analysis of the features they take advantage of. These include 
11 different time-domain parameters and 13 frequency parameters. 

Time-domain Frequency-domain 
T _ E~=l x(n) 

1 - N 
F - Ef=1s(k) 

1 - K 

T2= 
E~=l (x(n)-T1)2 F - Ef=1(s(k)-F1)2 

N-1 2 - K-1 

T3 = ( I:~, ~r F - Ef=1 (s(k)-F1)3 
3 - K( y'Fi_)3 

T4= E~=l (x(n)) 2 F_ - Ef=1 (s(k)-FJ)4 
N 4 - KF{ 

x( n) is a signal series for n = 1 ... N s(k) is a spectrum fork= 1 .. . K 

Table 3.1: Feature Parameters 

A small sampling of these features are presented in table 3.1. 
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A common recurrence with the feature extraction discussions in the literature 
is that they tend to focus on single measurement points. We propose that the 
unique feature detection of Chapter 4 and the corresponding vibration localization 
tool we have developed can be used as an additional feature. This tool generates 
unique patterns for the spread of a vibration component throughout a machine, 
which could be used for damage and fault detection. As described in [23], 

Because changes in modal properties or properties derived from these 
quantities are being used as indicators of damage, the process of 
vibration-based damage detection eventually reduces to some form 
of a pattern recognition problem. 

The patterns resulting from our tool could be used to classify and identify fault 
situations for that class of machine. 

Besides the standard time-domain and frequency-domain feature extraction 
techniques, a new technique found in the literature is that of the wavelet trans­
form [24] [25] [26] [27]. Not only is this technique being used successfully for 
fault detection in VA, but also in many other fields [28] [29] [30]. 

In terms of the frequency-domain, a negative aspect is that one cannot see 
the time-evolution of frequency components. The short-time Fourier transform 
is able to account for this, generating spectrograms with time as the indepen­
dent variable and frequency as the dependent, but the drawback is that the choice 
of window length affects both time and frequency resolution [31]. However the 
wavelet transform enables high resolution observation of the evolution in time of 
the frequency content of a signal. 

Wavelets are basis functions derived from one mother wavelet by dilation and 
translation [32]. They are used to decompose a signal into different frequency 
components, and study each component with a resolution appropriate to its scale. 
Low frequencies have more time resolution but less frequency resolution than high 
frequencies, and vice versa. 

This proves very useful for non-stationary signals, where the frequency con­
tent might vary over a short period of time. 

In addition, wavelets have been successfully used for de-noising vibration sig­
nals. 

In any measured system, but especially vibrating systems, noise will be present. 
The ability to attenuate this noise is vital to fault detection. 

Mallat [33] was the first to use wavelets for de-noising, while the method pro­
posed by Donoho [34] is considered efficient for Gaussian noise. However these 
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and many of the other reported methods are not suitable for gearboxes or roller 
bearings (i.e. typical VA targets) because measured impulses are not smooth. The 
Morlet wavelet [24] is more suited to this task. 

Lin and Qu [24] detail the steps necessary to apply the wavelet transform to de­
noising vibration signals with possibly low signal-to-noise rations. They introduce 
the use of the Morlet wavelet to makeup for deficiencies of the Donoho technique 
when working with mechanical dynamic signals. This paper does not describe 
how to setup the thresholds required for the wavelet, a task instead presented 
by Lin et al. [26]. The authors had positive results for de-noising a mechanical 
vibration signal with a low signal-to-noise ratio. 

Singh et al. [27] apply the wavelet transform to a field of VA not yet dis­
cussed, namely the identification of electrical faults in an induction machine. Luo 
et al. [31] more closely analyze the use of wavelets for monitoring bearings, with 
good success detecting small defects that otherwise would go unnoticed. 

With regards to using wavelets for noise removal, and in fact to all the systems 
described so far, an assumption has always been made that a single time series 
signal recording is available. Few systems found in the literature attempt to make 
use of multiple sensors operating simultaneously on a vibrating system. 

The system we propose takes advantage of cross-correlation to act as a de­
noising filter, capable of extracting frequency content from a sensor that would 
otherwise be completely buried by noise. The secondary result of this is that we 
are capable of building a "vibration flow" diagram for a system, showing how the 
relative strength of an individual vibration component varies over the surface of a 
vibrating machine. 

When cross-correlation is used for VA, it tends to be in the more traditional 
form of the cross-correlation function for similarity [35], and for checking time 
lags [36]. 

To enable the use of cross-correlation for noise filtering, we had to develop 
a system capable of running multiple sensors simultaneously. Clayton et al. [36] 
also developed wireless accelerometer-based sensors, but they are only capable 
of measuring up to 20 and are limited to two axes. They also present very little 
information as to the actual design of the sensors and their data acquisition sys­
tem, information which would be very useful to other researchers building similar 
systems. This thesis presents detailed design and implementation notes on both 
the sensors and the DAU. 

Vollmer et al. [37] present a "construction kit" for building low-cost VA sen­
sors. These sensors are more capable than ours in terms of maximum G rating 
and sampling rate, but are not wireless, and once again, do not go into much detail 
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in terms of design and implementation concerns for building such sensors. The 
simple act of moving to a wireless system introduces a raft of additional design 
considerations. 
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Chapter 4 

Unique Feature Detection 

A primary objective of VA is the identification of faults or features in a vibrat­
ing system. An excellent review of current techniques is available in [38]. 

Noise of varying degrees is normally present in vibrating systems, sometimes 
with incredibly high amplitudes, and we wish to provide a means for filtering out 
this noise to extract useful signal information. Let the true signal of the system 
be s(n), which is corrupted by additive noise e(n). The observed signal x(n) is 
calculated as 

x(n) =s(n)+e(n) 

From this observed signal we wish to extract s(n). 
In a typical filtering situation, a filtered signal s( n) is calculated via a filter 

g(n) through convolution, 

for some filter g(n ). 
In an ideal case, the target properties of s(n) are known beforehand and g(n) 

can be constructed appropriately to filter out everything except those properties. 
Often though these properties are not known beforehand. A typical objective 

of VA techniques is to explore the frequency characteristics of x( n) ( although work 
does exist on time domain analysis [39]). Depending on the characteristics of the 
system being analyzed and the noise inherent to that system, interesting frequency 
content in s(n) might end up being buried by e(n), and will not appear in a simple 
FFT of the signal. 
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We propose to use the properties of cross-correlation to aid in the recovery 
and identification of buried signal components (where s(n) is composed of com­
ponents of multiple frequencies) in a sensor-network scenario, where multiple 
measurements of a single system are available. Cross-correlation will be pre­
sented as an ideal tool for the removal of noise when Fourier-based frequency 
analysis is the desired method of signal analysis. 

As an application of this theory, a tool has been built for the purpose of 
frequency-based fault detection. The tool itself is designed for the vibrating screen 
scenario used throughout the rest of the thesis, but the principles are applicable to 
any VA situation in which our concept of frequency location detection is applica­
ble. 

4.1 Cross-Correlation as an Ideal Filter 

Cross-correlation is a measure of the similarity between two signals, with re­
spect to different time lags. This is often used to look for the amount of time 
it takes for one signal to propagate in another signal, or simply to look at how 
strongly two signals resemble each other. 

For the purposes of using cross-correlation for filtering, some assumptions are 
necessary. 

The first is an assumption on the system under study; noise is additive rather 
than cumulative. 

For the algorithm itself, we make three assumptions: 

1. Any frequency that is not visible at more than one measurement point will 
not be detected by this technique 

2. If at one measurement point a sinusoidal signal with amplitude A, frequency 
f and phase 'ta is present, and at another measurement point a sinusoidal 
with the same frequency, but with amplitude Band phase 'tb is present, we 
will say that the same signal is present at both points, regardless of their 
differences in amplitude and phase 

3. We are only attempting to detect periodic features. One-time events mea­
sured during a recording period will be ignored 

We define a noise filter to be "ideal" when it only removes frequency content 
that is not visible at two different measurement points, with the condition that 
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only the frequency itself, and not the amplitude or phase, must be the same at 
both points. 

Thus "noise" is anything that is uncorrelated between two points. 

Cross-Correlation as a Noise Filter 4.1.1. Cross-correlation is an ideal noise 
filter 

Various properties of cross-correlation must first be illustrated before the idea 
of using it as a filter becomes apparent. 

4.2 Cross-Correlation 

Cross-Correlation If two processes are wide sense stationary, the cross-correlation 
is the expected value of the product of a random variable from one process 
with a time-shifted, random variable from a different random process [6] 

4.2.1 Definition of Cross-Correlation 

A nice introduction to cross-correlation and random processes is presented 
in[40], and will be briefly summarized here. 

When dealing with real, discrete signals x( n) and y( n), as we are with the 
sensor system, the cross-correlation formula is 

R(x,y)(m) = L x(n)y(n+m) 
n=-oo 

where R is the cross-correlation operator and m is the applied lag. 

4.3 Cross-Correlation Theorem 

The core to the entire filtering operation is the cross-correlation theorem, which 
itself is dependent on the Fourier transform. As a reminder, the Fourier transform 
of x(n) is denoted as .5{x(n)} with the result being the frequency domain value 
X(k). A Fourier transform pair is often written as: 

x(n) B X(k) 
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Cross-Correlation Theorem 4.3.1. The Discrete Fourier Transform of the cross­
correlation R(x,y) is equal to the product of the complex conjugate of the Fourier 
transform ofx and the Fourier transform ofy, XY. 

In other words, 

R(x,y) ttXY 

The proof of this requires two other components, 

• Convolution theorem 

• Conjugation and reversal relationship 

First, the convolution theorem, 

Convolution Theorem 4.3.1. The Discrete Fourier Transform of the convolution 
x * y is equal to the product of the individual Fourier transforms X and Y. 

i.e. 
X*yttX·Y 

where x * y is defined as 

N-1 

(x*y)(n) b. L x(m)y(n-m) 
m=O 

The proof follows from[41], where DFT is the Discrete Fourier Transform 
operator. 

Proof Let wo = 2;, 

N-1 

DFT(X*Y)(k) b. L (X*Y)ne-jwonk 
n=O 
N-IN-1 

= L L x(m)y(n-m)e-jwonk 
n=O m=O 
N-1 N-1 

= L x(m) [ y(n-m)e-jwonk 
m=O n=O 
N-1 

= ( L x(m)e-jwomk)Y(k) (by Shift Theorem) 
m=O 

= X(k)Y(k) 
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D 

Definition We define the operator FLIP as one that takes a sequence x[n] of 
length N and returns that sequence in reverse order, i.e. 

Vi: (0 ~ i ~ N =} FLIP(x)(i) = x(N-i)) 

The FLIP operator has a variety of properties relating it to the complex con­
jugate and Fourier Transforms. One in particular is required in building the cross­
correlation theorem: 

4.3.1. For all x E c_N, the Fourier transfonn of FLIP(x) is the complex conjugate 
of the Fourier transform of x, 

FLIP(x) ..+X 

Proof Let m D. N - n 

N-1 
DFT(FLIP(x))(k) b. L x-(~N---n-)e-jwonk 

n=O 

1 
= L x(m)e-jw0 (N-m)k 

m=N 
N-1 

= L x(m)ejwomk 
m=O 

N-1 

= L x(m)e-jwomk 
m=O 

=X(k) 

Finally, we can prove the Cross-Correlation theorem 

Cross-Correlation Theorem 4.3.2. 

R(x,y) ..+XY 
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Proof 

N-1 

R(x,y)(n) Li L x(m)y(n+m) 
m=O 
N-I 

= L x-(--m-)y(n- m) m +- -m 
m=O 

= (FLIP(x) *Y)(n) 

+-+XY 

This leads directly to an important property of cross-correlation 

D 

Definition The Periodicity Property states that the cross-correlation of two pe­
riodic signals will generate a third signal containing only frequency components 
that are common to both of the input signals, i.e. 

{m: Nim::; (N /2) /\ IDFT(R(x,y))(m)I > O} = {m: Nim::; (N /2) /\ IDFT(x)(m)I > O} 

n{m: Nim::; (N /2) /\ IDFT(y)(m)I > O} 

where N is the length of sequences x(n) and y(n). 

This follows directly as a consequence of the Cross-Correlation theorem. As­
sume two signals are present, x(n) and y(n), each a sinusoid with amplitudes Ax 
and Ay, phases 'tx and 'ty and a common frequency f. 

If we take the DFf of x and y (where both x and y have the same number of 
samples N), we get 

X(k) = DFT(x(n)) 

and 

Y(k) = DFT(y(n)) 

In each of these DFfs, the frequency component f will show up in frequency 
bins mx and my, respectively. More importantly, it will appear in the same bin, i.e. 
mx = my. All other bins will contain only O (ignoring the effects of DFf leakage). 

When X ( k) and Y ( k) are then multiplied, the resulting signal 
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X(k)Y(k) = C(k) 

is the Fourier transform of the cross-correlation, and it will only contain con­
tent in bin m. An Inverse Discrete Fourier transform (IDFT) is then applied to give 
the actual result of the cross correlation. Because the inverse was applied to C, 
which only contained content at the single frequency m, the resulting IDFT will 
give some signal with amplitude D and phase 't but with frequency J. 

This easily extends to signals x(n) and y(n) that contain multiple sinusoidal 
frequencies Ji , h, ... f M. As long as both x( n) and y( n) contain the same compo­
nents, then the resulting cross-correlation will also contain those components. 

What about periodic components that are only present in one of the signals 
being cross-correlated? 

X(k) Y(k) C(k) 
Bin O 0 

Bin 1 0 

Bin 2 

Bin 3 0 

Bin 4 0 

Bin 5 

Bin 6 0 

Bin 7 

Bin 8 0 

Figure 4.1: FFT of Cross-Correlated Components 

Figure 4.1 shows the result. The DFT is taken for x and y, and the results X(k) 
and Y(k) are multiplied together. Constant values are shown in each of the bins for 
X and Y. When both have a component in the same bin, then the result X(k)Y(k) 
also has a result. In every other case, a value is being multiplied by 0. The IDFT of 
this resulting product will give the cross-correlation, which will contain frequency 
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content only at the frequencies common to both x and y, as described above for 
the Periodicity Property. 

This only holds true if we assume no DFT leakage. In reality, a peak-finding 
algorithm is required, to look at the product X ( k )Y ( k) and find actual meaningful 
content in the frequency bins. The specific algorithm we designed for that is 
detailed in section 6.4.4. 

And an implicit benefit, and one of the goals of this chapter, is that a particular 
frequency that might be buried in one FFT might be highlighted and extracted 
when that signal information is cross-correlated with another signal where the 
frequency is much stronger. 

Look again at figure 4.1. Imagine that the value a in Bin 2 of X(k) is so small 
that it is not visible (i.e. buried) when looking at that FFT alone. Now imagine 
that the value fin the same bin of Y(k) has a much higher amplitude. Multiplying 
them together to get value j, and specifically not a value of O shows that X ( k) does 
in fact contain that frequency. The simulation in section 6.4.3 shows a very nice 
example of this in action. 

In conclusion, we have shown how cross-correlation can be used as an ideal 
filter for recovering and identifying frequency components in a multi-sensor situ­
ation. The remainder of this chapter will explain how to apply this technique to 
the particular vibrating screen situation of VA. 

4.4 Noise versus Features 

It was mentioned earlier that if the target properties of a signal are known 
beforehand, then a filter can easily be constructed which eliminates everything 
except those properties. For the particular case of vibrating screens, this has of­
ten been done with a Butterworth filter centred around the fundamental operating 
frequency of the screen. 

When viewing the sensor data with the filtered-orbit view, as in figures 2.16 
and 2.17, the desire is to look at the main motion of the screen. The fundamental 
operating frequency is the source of this motion, so to centre the Butterworth filter 
around this frequency causes all other content to be removed from the filtered 
view. Traditionally, this removed content was considered "noise" by technicians. 
Other frequency content would be looked at in the FFTs ( which were performed 
on unfiltered data), but the issue was that "filtered" data was strictly considered to 
be data that had all frequencies other than the main operating frequency removed. 
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The problem with this definition of noise is that any interesting frequencies 
aside from the fundamental frequency have more or less been ignored. 

To make our observed signal x(n) = s(n) +e(n) more explicit than in section 4, 
we will rewrite it as 

x(n) = sm(n) +s1(n) +e(n) 

where 

• sm(n) is the fundamental operating frequency 

• s1(n) is the summation of any other interesting frequency content 

• e(n) is the noise 

So s(n) = sm(n) +s1(n). 
Ideally, a filter should be available that only filters out e(n), and maintains any 

interesting frequency content s1(n) as well as sm(n). 
For this technique to filter out the noise e(n), the noise must be uncorrelated 

between different sensor points. The filter operates by simultaneously analyzing 
two signals and eliminating any uncorrelated content. Any correlated noise might 
come through. For vibrating screens this will not be an issue, but care must be 
taken when using this technique in other fields. 

If the specific properties of this "interesting" content happened to be known 
beforehand, then producing a filter like this would be trivial. Unfortunately there 
is no complete knowledge-base of fault-causing frequencies for every vibrating 
screen in existence, so instead the filter must be able to dynamically determine 
what is noise and what is not noise, and act appropriately. This is precisely what 
our cross-correlation based filter is able to accomplish. 

Traditional vibration-analysis on vibrating screens would centre the Butter­
worth filter around the designed frequency of sm(n), but this would eliminate all 
content from sf ( n). So while useful for looking at the fundamental motion of the 
screen, it does not help with fault analysis. 

4.5 Vibration Localization 

Vibration localization is the process of determining the physical location that a 
certain measured frequency component is originating from, or at least determining 
where the effects of the fault are the strongest. While not applicable to all VA 
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scenarios, at least with the case of vibrating screens, fault localization can often 
be performed by finding the area on the screen in which a particular frequency is 
most prevalent. The way in which that frequency degrades when moving away 
from that point can be informative as to the nature of the fault itself. 

We have developed techniques that can be combined to automatically perform 
frequency localization for the purpose of detecting periodic unwanted frequency 
components and presenting the results to a technician in a means more useful that 
the simple FFT plots typically used. The techniques are also capable of illustrating 
the presence of vibration in a physical location that would be missed by normal 
FFT and filtered-orbit data analysis. 

4.6 Process Description 

As mentioned previously, the cross-correlation of two signals with the same 
periodic component results in a new third signal with that same periodic compo­
nent present. This property is especially useful when that periodic signal is so 
weak in one of the two input signals that it otherwise gets buried by noise when 
analyzing that signal in isolation. 

The two primary means thus far for analyzing signals have been the FFT, and 
the filtered-orbits. 

An ideally performing screen will show the main vibrational driving force, 
and no other strong frequency components on the FFT. The presence of additional 
frequency components is typically looked at as problematic, often indicating a 
fault. 

In regards to the filtered orbits, only the main motion of the screen is shown. 
The filters have traditionally been bandpass filtered, centred around the fundamen­
tal frequency. While this has always been helpful in removing noise when trying 
to inspect the main motion of the machine, the problem is that it also removes any 
actual fault components that might be present. 

The problem with using the FFf alone to look at non-fundamental frequencies 
is that it can be difficult to find common frequencies between the sensors, and a 
potential fault frequency might be buried by so much noise that it cannot be seen 
on the FFT. 

So we propose using cross-correlation between sensors, and taking the FFf of 
the cross-correlation. This is a new way of analyzing accelerometer data for vi­
brating screens, fully separate from the traditional single FFTs and filtered-orbits. 
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For a particular sensor recording session, let A be the set of individual record­
ings from the N = IA I sensors. Let G be the group of combinations of A. 

We then take the cross-correlation of each of these combinations, 

CC= {R(x,y)i(x,y) E G} 

For each of these cross-correlations, we take the DFT, 

FCC= {DFT(c)ic E CC} 

Finally we find the set of frequencies such that each frequency in that set 
appears as a frequency component in more than one of the DFTs, 

{mlO ~ m ~ (N /2) /\match(FCC,m) ~ 2} 

where match is a function that takes in a set like FCC and a frequency bin number 
m and returns the number of DFTs in that set which have frequency content at that 
bin. 

Note that the description here assumes that all bins other than those with dis­
tinct frequency content will contain a value of 0. Because of DFT leakage and 
other factors, this will typically not be true. After computing the DFTs, an auto­
mated peak-finding algorithm is employed, to locate the frequencies which have 
shown themselves to be present through the cross-correlation. This algorithm is 
discussed in detail in section 6.4.4. 

A tool has been developed which fully automates this process. Given the 
recorded data files from a VA session, it will calculate the FFT of the cross­
correlations between every sensor, automatically discover the relevant resulting 
frequencies (subject to user-supplied thresholds), and plot the results in a manner 
usable to technicians. The plot is an undirected graph showing the prevalence of 
a particular frequency between each possible pair of sensors. An example of one 
of these plots is shown in figure 4.2 

In this figure, a simulation is run with a fault at a particular frequency occur­
ring between locations RFS and RDS on the vibrating screen, with the severity of 
the fault decreasing as the other sensors move further from this point. The cross­
correlation with the highest resulting amplitude for this frequency (in this case the 
cross-correlation of RFS and RDS) results in an edge between those two nodes 
with the greatest weight. Any other edges on the plot have weights proportional 
to the amplitude of that fault in their cross-correlation. As one can plainly see, the 
weights of the edges decreases as the edges move further away from the vibration 
location. 
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RFB LFB 

RFS LFS 

RDS LDS 

RDB LDB 

Figure 4.2: Vibration Location Detection; A Fault is simulated in the physical 
location between sensors RFS and RDS 

This tool and the simulation are explained in further detail in section 6.4. 
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Chapter 5 

Design of the Vibration Analysis 
Sensors 
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Figure 5.1: Wireless Sensor Components 

This chapter describes the design and implementation of wireless sensors used 
for VA. In terms of the system component diagram, figure 5 .1 shows the compo­
nents that will receive focus here. 

This chapter will cover not only the final designs of the components and soft­
ware, but also the decisions leading up to these designs, problems encountered 
and solutions to these problems. 
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The most important contribution of this chapter is the detailed description of 
the issues surrounding high data transfers over Bluetooth in an embedded system. 
A full grasp of potential pitfalls requires understanding of the transceiver, hand­
shaking protocols between the transceiver and processor, buffering schemes and 
atomic memory access on embedded processors. 

The hardware section (section 5.3) will describe solely the hardware of the fi­
nal system, including design decisions and discoveries that lead to each prototype 
stage. 

5.1 Wireless Network Technologies 

Wireless Sensor 
,.----------.... ,----------- ... 

I I f l I l I I 
I I I ::',=jf,S I I _ I I I 

: /.,F1<:li()Jc)t"r''.)A i~ :iitur i~ A/Uc/;:1vA1te: i~ CPU i 
''----------~· ', __________ } ', __________ ) 1, __________ ) 

Wireless ] 
Transceiver 

Figure 5.2: Components Affected by Choice of Wireless Technology 

An early design decision in a wireless sensor system will be the choice of wire­
less technology to use. As long as the system is modularized properly, then this 
choice of technology should only affect the overall sensor as shown in figure 5.2. 

For wireless communications within a close-range sensor network, there are 
three primary technologies used today. 

• ZigBee [42] 

• 802.11 WiFi 

• Bluetooth 

ZigBee is a wireless technology designed specifically to allow multiple sen­
sors in a small area to communicate with each other. It has a maximum data rate of 
20-250 KB/sand very lower power requirements. Unfortunately it is still a some­
what niche product, and desktop/laptop compatible transceivers are still relatively 
difficult to find. 

WiFi is the familiar wireless technology that most computers now come stan­
dard with. While it has high theoretical data rates and ranges, its power draw is 
typically considered too high for standalone wireless sensors. 
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Bluetooth [43] is a standard wireless networking protocol typically employed 
in short-range low-power situations. The standard defines different "Classes", 
discussed in more detail in section 5.3.3, with different range and power ratings. 

An interesting technical limitation of Bluetooth is the size of a network. An 
individual Bluetooth network, called a piconet, can only contain eight devices. 
The system designed here requires eight sensors simultaneously, but also requires 
the DAU to communicate with them, creating a requirement for nine simultaneous 
Bluetooth devices. The PDA chosen to act as the DAU comes with a Bluetooth 
transceiver built-in, so the solution to this problem was to create two separate 
Bluetooth networks. 

The Bluetooth standard does allow for the concept of scatternets [44], a mech­
anism wherein several small Bluetooth networks can be linked together into a 
larger network topology. This would have allowed for eight sensors and the DAU, 
without requiring the extra transceiver on the DAU. Unfortunately the availability 
of Bluetooth devices which support this system is extremely limited. 

The creation of a Bluetooth network is currently a fairly manual process, de­
spite some work done towards automatically configured networks [44]. As it 
stands, a control device will typically initiate a "Discovery Process", transmitting 
a special message that all nearby Bluetooth devices will recognize and respond to, 
asking for the devices' names and unique addresses. After determining which de­
vices are the sensors, it can initiate individual connections to each of the sensors. 
These are akin to TCP-based sockets in a standard networked environment. 

The choice of wireless technology will be highly dependent on the particular 
system under development. For the system developed here, Bluetooth was deemed 
most acceptable. The drawback of the piconet size could be dealt with, and the 
power, speed and availability of devices were all enough to win out over the other 
two contenders. 

5.2 Design of the Sensor Software 

Wireless Sensor 

I I I 

CPU 
I 1idll'.::CHrv18I 

I ' ' (' I I LO/I/ PdS'.::-
: t-'lr1acq ,)en,--;nr ;+: .=iitcr I AID Converter 
\ I I I I .. __________ , .. __________ , .. _________ _ 

Figure 5.3: Sensor Components Containing Software 
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This section describes particular design and implementation details of the sen­
sor software. Section 5.2.2 will provide a general introduction to the software 
components present, and the main operations the software undertakes, to provide 
the reader with a high-level understanding of the system. 

Section 5.2.3 will introduce the issues described at the beginning of the chap­
ter, concerning high data transfers over a Bluetooth sensor network. The particular 
aspects factoring into the issues will be discussed, but details on each will be saved 
for their own sections. 

At a minimum, the software written on a wireless sensor will affect the CPU 
component of figure 5.3, but in many cases, including the VA system presented 
here, the software also controls the AID conversion process. 

Most embedded processors contain internal AID modules. External AID con­
verters are usually used for higher precision, but the Microchip PIC 18F2523, used 
in this project, contains a high-precision 12-bit AID converter, thus making the 
AID conversion process part of the software developed for the sensor. 

5.2.1 Sensor States 

For a wireless sensor tasked with sampling its environment, there are five pri­
mary states to be concerned with, as shown in figure 5.4. 

In short, the device is turned on, putting the sensor into the BOOTING. From 
here the bootloader waits to see if new software is available for loading, and if not, 
moves the device to the ON state. From here the sensor sits, waiting for a connec­
tion from a control device. This connection moves the sensor to the CONNECTED 

state. Often times the control device can configure the sensor from this state, 
but from a high-level, the control device will tell the sensor to start recording 
data (putting it in the SEND ING state) and tell it to stop recording (returning it to 
CONNECTED). 

The sensors developed for the VA system include status LEDs, one red and 
one green, to let the technician know which state the sensor is current in. Their 
possible states are: 

Other than moving from the BOOTING stage to the ON stage, all visible state 
transitions are controlled directly by the user through either the physical On/Off 
button on the sensor, or via the user's DAU. 
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Power Off 

Received start 
message 

Received stop 
message 

Wait for new 
softWare 

Figure 5.4: Sensor States 

5.2.2 Software Operations 

Power Off 

In an embedded sensor device, there are six main operations that must take 
place. 

1. Bootloader 

2. Initializing processor services 

3. Communicating with control device 
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I Red I Green II Meaning I Identifier 

Off Off Sensor is turned off OFF 
Off Flashing Sensor is booting, awaiting new software BOOTING 
On Off Sensor is booted and waiting for a connection ON 
On On Sensor is connected to the DAY CONNECTED 
Off On Sensor is sending accelerometer data SENDING 

Table 5 .1 : State Descriptions 

4. AID conversion of analog sensor values (hard real-time) 

5. Temporary storage of converted values 

6. Formatting and transmitting values over wireless transceiver 

Each of these areas will be discussed, and made concrete using specifics from 
the developed VA system. 

Bootloader 

The bootloader is the first software module to run with an embedded processor 
first receives power. It is responsible for loading the main application software 
and beginning its execution. Often times, the bootloader is also responsible for 
checking whether new application software is available for the processor, and will 
load and store this new software. 

On the 18F2523, the bootloader is placed in code memory location OxOOO [ 45], 
and is immediately executed by the microprocessor. It has two main tasks: 

1. Check for new software upload 

2. Start the main program if an upload is not initiated 

Upon starting, the bootloader first initializes an RS-232 communication chan­
nel with the Bluetooth transceiver. It then spends 15 seconds blinking an LED and 
waiting to see if a particular message arrives over the Bluetooth, specifically one 
to tell the bootloader that the user wishes to upload new software to the sensor. If 
this message does arrive, then the bootloader switches to a mode wherein it can 
receive the new software and save it to the sensor's memory. 
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If no message arrives over the Bluetooth in 15 seconds, or more specifically the 
"new software available" message does not arrive, then the bootloader will assume 
that no new software is available and that it should begin running the main sensor 
software. The bootloader then instructs the l 8F2523 to move its Program Counter 
to code memory location Ox0800, as specified in the processor's data sheet [45]. 

Most of the work in developing the bootloader is related to processing and 
storage of new software from the user. A specific protocol has been defined for 
this data transfer to ensure the software arrives intact and without corruption. 

Initializing processor services 

The first steps the main software application must take after being loaded by 
the bootloader is to initialize system services. These often include, but are not 
limited to: 

• Interrupts 

• Timers 

• Communication modules 

• Status LEDs 

Embedded processors tend to require very specific, ordered steps to be taken to 
bring each of these services up. Interrupt vectors need to be pointed at appropriate 
interrupt handlers. Timer lengths need to be set, and timer complete operations 
defined. Communication modules (such as RS-232) get their baudrates set, hand­
shake parameters configured, etc. And usually at the end of the process any status 
LEDs present on the device are turned on, to notify the user that the software has 
been initialized successfully. 

In the designed system, the process is as follows: 

• The real-time sampling timer interrupt is setup to occur every 2ms, and 
indicates that it is time for a new sample of the accelerometer to be taken. 
This will be discussed in detail in section 5.2.4. 

• The analog-to-digital interrupt is turned on, to signify that a full conversion 
operation has completed, and the 18F2523 is ready to have the resulting 
conversion value read out of memory. This will be discussed in section 5.2.5 
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• The USART module is initialized for RS-232 communication between the 
processor and the Bluetooth transceiver. The use of RS-232 is expounded 
upon in section 5.2.8. 

• The custom FIFOs which are used for storage of accelerometer data. The 
FIFO is described in section 5.2.6. 

• The final system service to be initialized is the analog-to-digital module. 
The module is setup, but conversions do not yet begin. 

After all of these services are initialized, the software turns on the red LED, in­
dicating that the software has started but does not yet have a Bluetooth connection 
to the DAU. The full list of states for the LEDs is described in section 5.2.1. At 
this point the sensor is fully initialized, and enters a loop, waiting for a Bluetooth 
connection from the DAU. 

Interrupts 

In general interrupts are used to notify the processor that some pre-defined 
condition has occurred, without application software having to explicitly check 
for the condition. One of the most common interrupts, and most important to this 
system, are timer interrupts. 

For almost any wireless sensor system, the sensors themselves will be tasked 
with measuring their environment at a regular period. Whether or not this period is 
on the order of milliseconds or hours, timer modules can be used to automatically 
notify the software that the time has come to sample the environment, rather than 
the software having to continuously poll a clock to check whether the time has 
arrived. 

The timer on the 18F2523, and most embedded processors, can use interrupts 
for notification. This requires configuring the interrupt vectors on the processor, 
pointing individual interrupts at particular "interrupt handlers", custom code for 
servicing a given interrupt. 

The 18F2523 provides two interrupt levels, low and high. Various services 
on the 18F2523 can be configured to raise an interrupt during certain events, and 
these interrupts can be marked as low or high priority. When an interrupt is raised, 
the 18F2523 checks if it is a low or high interrupt, and executes the appropriate 
interrupt handler. When the handler completes its operation, execution will imme­
diately resume at the code location being executed prior to the generation of the 
interrupt. If a high priority interrupt is already being serviced when a low priority 
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interrupt occurs, then the low interrupt will be ignored. If a low interrupt is being 
serviced when a high priority interrupt occurs, then execution will immediately 
jump to the high priority interrupt handler. After completion of the high priority 
handler, execution will return to the low priority handler. 

The system as designed and implemented defines two interrupts: 

1. Real-time sampling timer (low) 

2. Analog-to-digital conversion complete (high) 

5.2.3 Communication Path Issues 

This section presents the general contribution of this chapter, detailing a prob­
lem encountered with the communications path, an issue relevant to any wireless 
sensor network, but particularly to Bluetooth networks. 

The communications path used here was fairly simple: 

• PIC18F2523 processor transmits bytes to a Bluetooth transceiver via RS-
232 

• Bluetooth transceiver transmits those bytes to a connected listening device 
( eg. laptop) 

During the development of the sensors, extensive testing was done on the com­
munication path, to ensure that all data transmitted from the processor success­
fully made its way to the Bluetooth transceiver, through the air, and onto a paired 
laptop. This was to check consistency of the communication protocol and the 
communication path. 

The test consisted of the processor continuously sending a pre-configured 
stream of data to the laptop. The laptop could then check that every byte arrived 
properly, as it knew ahead of time what the data stream should look like. 

Early on, very occasional problems were detected, where it seemed that quite 
randomly a byte would go missing, failing to appear at the end-point of the com­
munication path. At this point in the development, we were fairly certain that it 
was not related to an actual software bug, but instead some issue with the commu­
nication path itself. 

The first part of the path investigated was the RS-232 connection between the 
processor and the Bluetooth transceiver. This was simply two data lines, a "trans­
mit" and a "receive". An oscilloscope was placed on the transmit line, and the 
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tests were started. When a byte of data was missed on the laptop, the oscilloscope 
was paused, and the transmit line was inspected. No problems were found here, 
every byte that was supposed to go from the processor to the transceiver was going 
over the line correctly. 

At that point, the RTS/CTS lines (described in section 5.2.8) were not in use. 
In short, these lines allow one member of an RS-232 connection to tell the other 
whether or not it is ready to receive data. The oscilloscope was placed on these 
lines, and the tests were rerun. This was the first success in tracking down the 
issue. Whenever a byte of data was missed, the RTS line would be seen going 
high, indicating that the Bluetooth transceiver was telling the processor to suspend 
data transfer. 

The question then is what was causing the transceiver to raise the RTS line. 
We soon discovered that it was caused by Bluetooth discovery. In short, if another 
Bluetooth device nearby happened to initiate a discovery request, the transceiver 
on the sensor would respond to the request, temporarily halting its transfer of data 
to the laptop. 

What was interesting was that discovery requests did not always cause data 
loss. 

Without access to the software for the transceiver we can only postulate as to 
the reason, but an understanding of typical networking devices lead to the follow­
ing theory: 

The Bluetooth transceiver implements a local buffer, temporarily stor­
ing bytes of data before transmitting them over-the-air. 

If true, this completely explains the witnessed behaviour; If the transceiver's 
buffer happens to be empty, or near-empty, when it begins responding to a dis­
covery request, it can still receive data from the processor. This data will just be 
held in the buff er until the discovery is complete, and then transmitted. However, 
if there is already data in the buffer when the discovery response initiates, the in­
coming data from the processor will quickly fill the buffer, forcing the transceiver 
to tell the processor (through the RTS line) to stop sending it bytes. 

Our solution to this problem was to implement our own local buffer on the 
processor. All data read from the accelerometer is temporarily placed in our own 
buffer, and only transmitted to the transceiver when, through the RTS line, the 
transceiver communicates that it is ready to receive data. Sections 5.2.6 and 5.2.6 
present the implementation details of this buffer, which was non-trivial to im­
plement on the 18F2523. The difficulties came from the memory layout of the 
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processor, as well as the lack of atomic memory operations. The methods for 
dealing with both of these issues are explained in detail in the mentioned sections. 

Very late in the development of the system, another issue related to the com­
munications path was discovered. Surprisingly, we started to see missing bytes of 
data again, in a similar fashion as before the first problem was fully understood. 

What we found was that when the system was running with seven and eight 
sensors, a situation we could not test until enough prototypes had been manufac­
tured, too much data was being sent, and the buffer implemented on the processor 
was overrunning. 

Bluetooth networks operate on a time-slice basis, each device in the network 
gets a slice of time in which to transmit, before having to stop and pass the tum to 
another device. What we found was that with a full network of eight devices, the 
sensors did not have enough time to transmit all the data that was being sent. This 
would cause the transceivers' buffers to fill, cause them to raise their RTS lines. 
These lines would stay raised for so long that the buffers on the processors would 
also fill up, causing identical issues as the discovery problem. 

The only solution to this problem was to reduce the amount of data being 
transferred. This was done both by using more efficiently packed data, as well 
as reducing the sampling rate. These techniques are described in detail in sec­
tion 5.2.11. 

Neither of the main issues described in this section were anticipated before 
development had begun, and each cost a great deal of time for diagnosis and de­
velopment of solutions. Anyone hoping to use Bluetooth for a high data-transfer 
wireless network must be aware of these issues. The solutions presented here are 
fairly general, though many of the specifics would require modifying the details 
to deal with the particulars of selected hardware. 

The other idea that should be recognized is the importance of testing with 
the maximum number of sensors, as early in the development cycle as possible. 
An extra effort should be made to manufacture additional sensors just for this 
purpose, as the demands on the network with a full complement of sensors are 
hard to anticipate without actually testing it. 

5.2.4 Timing 

The sensor software contains one critical timing component, controlling the 
sampling frequency of the accelerometer data. These sensors were designed to 
sample at a rate of 500Hz, therefore a 2ms timer must be present, so that at every 
2ms interval a complete sampling of the X, Y and Z axes can be performed. 
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This 500Hz sampling is a hard real-time constraint, there can be no wavering, 
as the FFT requires that the data it operates on be sampled at an exact frequency. 
Shaw [46] defines hard and soft real-time systems: 

A qualitative distinction can be made between hard and soft real-time 
systems. Hard real-time systems are those that, without exception, 
must meet their timing constraints-if a constraint is violated, the sys­
tem fails. At the other extreme are soft real-time systems which can 
still be considered successful, that is, perform their mission, despite 
missing some constraints. There is a continuum between the extremes 
of "hardness" and "softness," and most systems fit somewhere in be­
tween. 

The l 8F2523 provides a means for scheduling hard real-time operations, through 
its TimerO module [45]. The TimerO module is a software configurable 8 or 16-bit 
timer which can be used to generate an interrupt at a fixed interval. The basic 
mechanism for interrupt generation is to pre-load an 8 or 16-bit counter with a 
fixed value. At every clock cycle this counter will be incremented. When the 
counter eventually overflows, the overflow detection circuitry of the 18F2523 will 
detect the overflow, notice that it occurred on a special counter associated with 
TimerO (specifically TMRO), and will raise an interrupt. This interrupt will then be 
handled by the appropriate interrupt handler. 

The interrupt handler for the timer (specifically the low priority interrupt han­
dler) has two jobs to complete. It must first reset the TMRO counter with the ap­
propriate pre-loaded value, then it must instruct the 18F2523 to begin analog-to­
digital conversion. This second operation is handled in its own procedure and is 
described in section 5.2.5. 

It is important to note that that the timer does not stop counting. It is reset to an 
appropriate value at the beginning of the interrupt handler, and continues count­
ing from there. Thus it is important that the entire analog-to-digital conversion 
procedure completes in less than 2ms. 

The method for determining the value to load into the TMRO counter is depen­
dent on the selected clock frequency of the 18F2523 as well as desired resolution. 
Details on this configuration can be found in Appendix B .1. 

To verify that timing configurations in the software were correct, a 1 OOMHz 
oscilloscope was attached to a sensor and used to measure the time between TMRO 

interrupts. The oscilloscope reported it as exactly 2ms. 
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Definition of the Scheduling Scheme 

Shaw details [46] a variety of scheduling schemes for real-time systems. One 
of the simplest schemes, and the one that best matches our scheduling implemen­
tation is the foreground-background model. 

In this model, all real-time processes are considered to be periodic. Such a 
system contains two sets of processes, high-priority foreground processes go into 
the set FG, while low priority processes go into a background set BG. 

The periodic real-time processes are allocated to FG, and are non-preemptible. 
Processes in BG are preemptible by processes from FG. 

Foreground-background systems execute processes from FG periodically, ac­
cording to a pre-determined schedule. Whenever there happens to be free time 
available, processes in BG are allowed to execute. If one happens to still be run­
ning when the period restarts, then it is preempted. 

In our system, the only real-time process is the analog-to-digital conversion, 
which must take place every 2ms. All other processes, which will be discussed 
later, are considered non-realtime. They should be executed as quickly as possible, 
but do not have a hard timing requirement on them. The TMRO interrupt ensures 
the periodicity of the schedule, interrupting whatever process from BG happens to 
be running, every 2ms. 

5.2.5 Analog to Digital Conversion 

The 18F2523 contains a 12-bit Analog to Digital conversion module capable 
of operating on up to 13 different channels, three of which the software makes use 
of for the accelerometer's three analog output lines (X,Y,Z). While the module can 
operate on up to 13 channels, it can only perform analog-to-digital conversion on 
one channel at a time. A special register in the processor is used to select which 
of the 13 channels should be converted at a given time. 

The basic order of operations to perform the three necessary analog-to-digital 
conversions is: 

1. Select the appropriate channel with the ADCONO register 

2. Start the conversion 

3. Put the processor into sleep mode 

4. The processor will automatically wake from sleep when the conversion 
completes 
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5. Move the resulting value from the ADRESH and ADRESL to the FIFO 

6. Select the next channel, and repeat this process 

A few of these steps are particularly important to a full understanding of the 
process. 

First, it should be mentioned that the analog-to-digital conversion process is 
the source of the high priority interrupt. The software configures the 18F2523 
such that a high priority interrupt will automatically be raised when the conver­
sion process completes. The handler for this interrupt does not actually perform 
any useful task. What is its purpose then? The only reason for raising a high pri­
ority interrupt upon completion of the conversion is to wake the processor from 
sleep mode. A configuration setting is available which states that interrupts can 
be used to wake the processor from sleep. 

What then is the reason for putting the processor to sleep? This is done to 
ensure the highest possible accuracy for the analog-to-digital conversion. The 
18F2523 contains two sleep modes, Idle and Sleep. The Sleep mode com­
pletely shuts down the CPU and all peripherals, while the Idle mode just shuts 
down the CPU. Normally these are invoked for power-saving reasons, but in this 
situation, shutting down the CPU can increase the precision of the analog-to­
digital conversion. Shutting down the CPU reduces the possibility of electrical 
noise from the CPU interfering with the conversion process. 

The 18F2523 can be configured so that an interrupt being raised will wake the 
processor from the Idle and Sleep mode. Waking the processor is the only rea­
son that an interrupt is required on completion of the analog-to-digital conversion 
process, and explains why the high priority interrupt handler does not perform 
any actual work. The 18F2523 requires that a handler is present for the interrupt, 
but the implementation of the handler is equivalent to an empty sub-routine. 

When the analog-to-digital conversion process completes, it not only raises an 
interrupt, it also puts the result into two registers, ADRESH and ADRESL. Two reg­
isters are required because the 18F2523 uses a 12-bit analog-to-digital converter, 
but is only 8-bit processor. Four bits of the 12-bit result go into the bottom half of 
AD RESH, while the remaining eight bits of the result go into ADRESL. A subsequent 
analog-to-digital conversion will overwrite these values, so they must be stored 
somewhere else until the time comes to transmit them. The values are put into the 
FIFO (described in section 5.2.6), and then the next analog-to-digital conversion 
process is started. 

The time taken to perform all three analog-to-digital conversions and store all 
the results in the FIFO was measured with an oscilloscope to have a maximum of 
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80 µs. The worst case execution time is easy to calculate, as the datasheet for the 
processor details the exact execution times of each instruction. Taking branches 
and conditional statements into account, the worst case time can be shown to be 
80µs. 

5.2.6 Use of a FIFO 

As mentioned in the previous section, a FIFO was used in the software. The 
primary reason for this is that occasionally the Bluetooth transceiver will be un­
able to receive data from the processor, and that data must be stored until the 
transceiver is ready for it. The simplest way to handle this was to always put all 
data from the accelerometer into a FIFO, and have a separate process routinely 
check if the transceiver is ready. Whenever it is, have that process pull data from 
the FIFO and transmit it. Otherwise continue to wait for the transceiver. 

The PIC 18F2523 architecture and language do not provide a native FIFO, so 
one had to be implemented in software 

The 18F series of PIC processors have their data memory broken into multiple 
256-byte banks. It is an 8-bit processor, but uses 12-bit addressing, meaning there 
is usually no way to access a full 12-bit address in one instruction (though a few 
special instructs exist which can address 12-bits at once). Instead, a bank selector 
must be used. The basic idea is that the programmer selects which 256-byte bank 
they wish to use with the Bank Select Register, which accounts for the first four 
bits of the address, and then uses 8-bit addressing to access the particular one-byte 
register address they want within the bank. 

This makes implementation of a FIFO non-trivial. Bytes have to be stored 
within the data memory, being careful to check for the right time to change the 
access bank (every 256 bytes), for both writing to the FIFO and reading from the 
FIFO. Further checks must take place for wrapping around the end of the valid 
memory space. 

The FIFO must track the current "put" location and the current "get" location, 
signifying where the next byte should be written to, and what the next byte to be 
read is, respectively. Bytes will be written to and read from the FIFO at different 
rates, making it important to track these two locations separately. 

The 18F2523 provides three registers, FSRO, FSRl and FSR2 (collectively re­
ferred to as "F SRn" registers) to aid in this process. These are special registers 
that can store a full 12-bit address, and are matched with a collection of special 
instructions (e.g. LFSR, CLRF, etc.) that know how to address them. These FSRn 
registers are used to implement indirect addressing, allowing for access to an ad-
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dress in memory without specifying a fixed address to the instruction. This is 
similar to pointers in C-based languages. 

FSRO 

OxOBO 

Ox081 

Ox082 

Ox083 

Ox084 
NthroughN 

Ox5fb 

Ox5fc 

Ox5fd 

FSR1 

FSRO 

OxOBO 

Ox081 

Ox082 

Ox083 

Ox084 
NthroughN 

Ox5fb 

Ox5fc 

Ox5fd 

Ox5fe Ox5fe 

Ox511 Ox5ff 

FSRO 

FSR1 

(A) After FIFO initialization (B) 3 bytes written, 1 byte read 

OxOBO 

Ox081 

Ox082 

Ox083 

Ox084 
N throughN 

Ox5fb 

Ox5fc FSR1 

Ox5fd _J 
Ox5fe 

Ox5ff 

(C) FIFO wrap-around 

Figure 5.5: FIFO Implementation 

FSRO and FSRl are initially configured to point at the beginning of the FIFO 
(figure 5.5(A)). Whenever a byte of data needs to be added to the FIFO, it is 
written to whatever memory location is pointed to by FSRO, and then the address 
in FSRO is incremented by one. The POSTINCO register shadows the current values 
of FSRO, and will automatically increment itself after an access, simplifying this 
procedure. A separate counter is also kept counting the number of items currently 
in the FIFO, which must be incremented here. Finally a routine checks to see if 
the FSRO is currently pointing at the end of the FIFO. If so, it gets reset back to 
the memory address associated with the beginning of the FIFO, implementing the 
wrap-around functionality. 

The process of pulling a byte from the FIFO is very similar. FSRl points to 
the next byte to be retrieved, which is shadowed by POSTINCl, which itself will 
automatically increment after access. A similar wrap-around check then occurs, 
and finally the FIFO size counter is decremented. 

Figure 5 .5(B) shows the state of the pointers after three bytes have been written 
to the FIFO, and one byte read out. 

Figure 5.5(C) shows the wrap-around that occurs. Three more bytes have been 
written to the FIFO than read, and those bytes caused FSRO to require a wrap-
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around back to the beginning of the FIFO. FSRl will also wrap-around after three 
more bytes are read from it. 

The memory locations shown in figure 5.5 are the actual ones used in the im­
plementation. Though the addressable memory within the PIC18F2523 starts at 
location OxOOO, the first 128 bytes have been reserved for general purpose vari­
ables used throughout the software. Ox5FF represents the end of the usable mem­
ory. 

5.2. 7 Atomic Memory Access 

Another function that many embedded processors lack is a mechanism for 
atomic memory access. The FIFO mentioned above is constantly being written to 
by the analog-to-digital conversion process, and routinely read from for the pur­
pose of transmitting the data within it. Without an atomic lock scheme provided 
by the processor, a method had to be devised to ensure that no race conditions 
would be present in FIFO access. 

To accomplish this, the deterministic timing nature of the 18F2523 was used. 
While the timing details are specific to the l 8F2523, the techniques used are ap­
plicable to any embedded processor. Briefly ignoring the effects of interrupts, 
each instruction available to the 18F2523 takes a fixed amount of time to execute. 
This time could be one of a few values, depending on the arguments passed to the 
instruction and the results of the execution. The datasheet for the processor details 
all of these timing conditions for each instruction. 

Using this information, it is possible to calculate how long a certain sequence 
of instructions will take, and then verify this calculation using an oscilloscope. 
The timing requirements for accessing the FIFO could then be exactly calculated. 
In particular, the key instruction sequences related to reading from the FIFO took 
the following times: 

Instruction Sequence I Time Requirement I 
Check if FIFO is empty 1 µs 

Read one byte from FIFO 3 µs 

Table 5.2: Key Instruction Sequence Timing 

Thus the two key components of reading from the FIFO require a total of 4 µs. 
How can this value be used to prevent race conditions? The only way that 

the full 4 µs would not be available is if an interrupt happened to occur during the 
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time. The only interrupt that could occur during execution would be the TimerO 
interrupt, which fires to start an analog-to-digital conversion. As mentioned in 
section 5.2.4, this interrupt is controlled by a register counter that increments every 
instruction cycle, TMRO. Fortunately, the current value loaded into this counter can 
be read from software. 

The technique is to check the current value of TMRO, and if enough time is 
remaining before the interrupt is going to be raised, pull a byte from the FIFO. If 
there is not enough time, then the software simply begins to loop back and check 
again, which will be interrupted by the interrupt. The interrupt is then free to 
perform the analog-to-digital conversion, and write to the FIFO upon completion. 
At this point the code to read from the FIFO will resume, find there is enough time 
until the next interrupt, and do its work. 

Using deterministic timing knowledge of the system and the particular con­
ditions of FIFO access within the software, we were able to implement atomic 
memory access to the FIFO. 

5.2.8 RS-232 

All data received from the accelerometer must eventually be passed to the con­
trol unit via the Bluetooth transceiver. The CPU is responsible for transmitting the 
data to the transceiver, and the specific method for this is an RS-232 connection 
between the CPU and the transceiver. The Bluetooth chip selected for this project 
can only communicate with the CPU via RS-232, but other Bluetooth devices are 
available that support other protocols such as SPI and I2C. 

Three of the most popular inter-component communication protocols for em­
bedded devices are RS-232, SPI and I2C Links. The PIC18F2523 supports RS-
232 via its Enhanced USART module, and SPI and I2C via its Master Synchronous 
Serial Port (MSSP) module. RS-232 is an asynchronous protocol, meaning the 
clock signal is embedded in the data itself, while SPI and I2C are synchronous 
protocols, requiring the presence of a dedicated receive/transmit clock signal. The 
master device generally outputs this clock signal, which any slave device con­
nected to the master will synchronize on. 

RS-232 is a simple point-to-point protocol, allowing one device to connect to 
another. This provides a great deal of simplicity in setup and configuration, as 
the two connect via a minimum of only two wires, and need only to agree on a 
baudrate. 

The advantage of both SPI and I2C over RS-232 is that one can setup a net­
work topology, allowing multiple devices to communicate. With SPI, a single 
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master device can communicate to multiple slave devices, while I2C allows for 
multiple master devices and multiple slaves. SPI allows for multiple slave de­
vices by requiring an individual chip select line to each slave, while I2C utilizes 
an addressing scheme, so chip select lines are unnecessary. 

A negative aspect of RS-232 is that depending on the device, there is a fairly 
low maximum baudrate that can be used. With the 18F2523 and selected Blue­
tooth transceiver, it was found that a baudrate of 115.2kbps was as fast as the chips 
could be configured before the protocol became unusable. If there was a need to 
transmit data at a faster rate than that, then either the PIC18F2523 would have 
had to have been replaced with a more capable processor, or the interface would 
have had to change from RS-232 to either SPI or I2C. The Bluetooth transceiver's 
documentation claims to support baudrates up to 921.6kbps, but the 18F2523 only 
lists settings up to 115.2kbps. 

The baudrate is selected on the 18F2523 via two hardware registers, and the 
manufacturer provides a formula for calculating the value of these registers based 
on the desired baudrate [45]: 

Desired Baud Rate= FOSC/(64 ([SPBRGH:SPBRG] + 1)) 

where FOSC is the frequency of the oscillator used with the processor, and SPBRGH 
and SPBRG are the baud select registers. This formula then lets the user configure 
the PIC18F2523 for baudrates higher than 115.2kbps, but in testing it was found 
that any baudrate higher than that would cause incorrect data transmissions. 

As the device only required digital communication between the CPU and the 
Bluetooth transceiver, RS-232 was chosen. There are a plethora of RS-232 based 
Bluetooth transceivers available, so the number of devices became the main cri­
teria. Had more components been added that required communication with the 
CPU, then SPI or I2C would have been required. 

It should be noted that the digital accelerometers are available, those that com­
municate via SPI and I2C instead of analog lines. Had one of these been used, then 
it might have made sense to use SPI or I2C to communicate both with the digital 
accelerometer and a Bluetooth transceiver, but nothing would have prevented both 
from being used at the same time. 

An optional aspect of RS-232 are the CTS/RTS lines. These allow a level of 
"handshaking" between two devices, so one device can tell the other whether or 
not it is ready to receive data. In particular, one end of the RS-232 connection can 
raise its RTS output to inform to the other end that it is not ready to receive data, 
while lowering the line indicates that it is ready to receive data. 
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A need for this was found in our setup due to the nature of Bluetooth. While in 
general the Bluetooth chip had no trouble receiving all the data the CPU attempted 
to send it, it was discovered that in two particular situations the Bluetooth chip 
needed the CPU to temporarily halt data transfer. 

The first of these situations occurs if a Bluetooth discovery is taking place. 
Bluetooth allows for a general discovery procedure, so one Bluetooth device can 
gather information on other devices in its vicinity. What was found was that if 
some Bluetooth device initiated a Bluetooth discovery in range of our Bluetooth 
transceiver, the transceiver would be forced to stop transmitting data it was receiv­
ing from the CPU, and instead respond to the discovery request. This was causing 
data to "get lost". The CPU would send it to the Bluetooth transceiver, but the 
transceiver was simply ignoring it so it could respond to the discovery. Fortu­
nately it was found that when the transceiver begins responding to a discovery 
request it will raise its RTS line, indicating that no data should be sent to it. Sim­
ply monitoring this line on the CPU and temporarily halting transmission while it 
was high was enough to solve this problem. It did require the implementation of 
a buffer system (the FIFO) on the processor, as a means to temporarily store data 
from the accelerometer whenever the transceiver sets the RTS line high. After the 
line went low again the CPU would send all data in the buff er. 

The second situation is if the Bluetooth chip is not currently in its transmit 
time slice, and data must be sent. The Bluetooth chip only has a small buffer, and 
if it fills up because the chip does not have a time slice and cannot transmit data, 
then it will raise its RTS line, telling the processor to temporarily stop sending 
data. This situation ended up causing a problem in the prototyping stages, and is 
described more fully in section 5.2.11. 

5.2.9 Control Communication Protocol 

Figure 5.4 represents the main operating states of the sensor, but for clarity, 
only a subset of states were actually shown in the figure. 

The CONNECTED state in the figure shows three outward transitions. "Power 
Off" represents either the power being switched off on the sensor or the batteries 
dying. "Connection Closed" indicates that the Bluetooth connection was lost, 
either because it was properly closed, or because it was lost (e.g. other side of 
connection dying, other side going out of range, etc.). Finally, the diagram shows 
that if a start message is received over the Bluetooth connection, then the sensor 
will enter the SENDING state. 

What is not shown here is the set of other valid characters that the sensor can 
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receive which will cause it to perform some other action. The total set of control 
characters are summarized in table 5.3. 

I Character I Description 

{ Start sending data 
} Stop sending data 

< Get battery level 
101010XX G-select byte mask 

? ReadEEPROM 
# Write EEPROM 

Table 5.3: Valid Control Characters 

Full descriptions of the operations performed upon reception of these charac­
ters are given in Appendix A.1. 

5.2.10 Data Transmit Procedure 

After a sensor receives the { character, it moves to the SENDING mode and 
begins transmitting data. This simple operation actually requires quite a few dis­
tinct steps: 

1. Clear FIFO 

2. Clear packet count 

3. Adjust LEDs 

4. Start TimerO 

5. Check if data is in the FIFO 

6. Transmit the data 

The first step is required to make sure that no previous accelerometer data is 
transmitted in this particular instance of moving to the SENDING state. Clearing 
the packet count will be described below, as it requires knowledge of the particular 
packet format. The LEDs are adjusted accordingly as described in table 5.1 and 
TimerO is started. This latter point is important to note: If the sensor is not in 
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the SENDING state, then TimerO is not running, and no accelerometer values are 
being read. Only when transitioned to the SENDING state does TimerO run, and 
it is turned off immediately upon exiting the SENDING state. 

The fourth step makes explicit what is described in section 5.2.4: There is 
typically more time available in each of the 2ms periods than is necessary to send 
all the data in the FIFO. This "spare time" will often be needed though, and this 
will be described below. 

Figure 5.6 illustrates the exact manner in which packets of data are transmitted 
from the sensor to the DAU. 

r Header 1 
Packet Counter 

OxFF Ox FF High Low High Low I High Low I High Low High Low CNT 

Figure 5.6: Data Transfer Protocol Packet; Each box represents one byte 

The first part of each packet is a two byte header, OxF FF F. This is used to 
signal the start of the packet because there is no other place in the packet that it 
is possible to have the byte OxF F sent twice in a row. Two bytes of data are sent 
per axis, per sample, but these two bytes of data (16 bits total) are used to store 
just 12 bits (from the analog-to-digital converter). So there are four unused bits in 
each two byte sample, and these are explicitly zeroed out. By zeroing them out, 
the software has ensured that no two subsequent bytes in the DATA section of the 
packet will have the value OxF FF F. 

The DATA section represents the results from 10 sequential sample periods, 
where the result from each sample period consists of the results for each of the X, 
Y and Z axes. This can be interpreted as transmitting ten three-tuples in a row 

[(X, Y,Z)t+l, (X,Y,Z)t+2, · · ·, (X,Y,Z)t+10J 

where t is the time point of the last three-tuple in the previous transmitted packet 
of ten samples. 
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The final component of each packet is a one-byte counter. When the sensor 
moves to the SENDING state, this counter is cleared, as mentioned above. It is then 
incremented once per packet, and placed at the tail of the packet. This is used as 
a very simple CRC mechanism, so the DAU can check that no packets have been 
dropped, and that 

currenLcounter _value = previous_counter _value+ 1 

This counter is allowed to roll over past OxF F to O every 256 packets, and 
continue on from there. 

As measured (using an oscilloscope) for a baudrate of l 15.2kbps, it takes 80µs 
to read one byte of data from the FIFO and transmit it through the USART, 3 µs 
of which is spent on the read portion, and 77 µs on the transmit. A single packet 
contains 2 + 60 + 1 = 63 bytes of data, 60 of which include a FIFO read (the 2-byte 
header and the tail do not need any data from the FIFO). The total time required 
to transmit one full packet of data is then 

2 x 73µs +60 x 80µs+ 1 x 73µs 5019µs 

5.019ms 

Typically though during an individual sampling period, only 6 bytes will be 
placed in the FIFO (two bytes each for X, Y and Z). So during a single period the 
time taken to transmit data will be 

2 x 80µs 160µs 

0.160ms 

Thus a full packet will be transmitted over the course of 10 sample periods, 
where the first sample period transmits the header and the data, the second through 
ninth periods transmit just data, and the tenth period transmits data and the packet 
counter tail. 

In section 5.2.5 the entire analog-to-digital conversion process was shown to 
take 80µs. So a typical 2ms period (specifically the second through ninth periods) 
will require 80µs + 160µs = 240µs. 
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This leaves 1760µs of time normally unused in a typical sample period. The 
software will spend this entire time checking to see if more data is available in the 
FIFO. There is a situation in which more data will be present. 

There are two scenarios where this extra time is required. As mentioned in 
section 5.2.6, if a Bluetooth discovery process is taking place, or the transceiver 
does not currently have an available transmit time slot in the Bluetooth network, 
then the Bluetooth transceiver will temporarily be unable to transmit data. The 
2 ms sampling periods will continue, and the analog-to-digital process will con­
tinue to sample the accelerometer and place data in the FIFO, and the FIFO will 
slowly start to fill up. After the discovery completes and the transceiver can begin 
to transmit again, the software will start to send all the bytes that are waiting in the 
FIFO. With 1760µs available, this allows for an extra 22-bytes to be sent, which 
translates to just under 4 sample periods (8ms) worth of data. This free time in 
each subsequent sampling period will continue sending bytes sitting in the FIFO 
until it is one again empty. 

5.2.11 Sampling Rate Selection 

During the initial design phases, a desired sampling rate of 1 OOOHz was se­
lected, such that the new system would match the old one. The accelerometers 
were selected with this requirement in mind and the sensor software was written 
to implement the 1 OOOHz rate. 

During the design and early prototyping phases there were never more than 
three working sensors that could be used for testing. This presented a constant 
worry, an uncertainty as to whether something might fail when the full comple­
ment of eight sensors were used. 

A first manufactured prototype run was eventually completed, providing eight 
sensors to test with. Unfortunately this immediately showed issues. With eight 
sensors running simultaneously, each individual sensor did not seem to be re­
ceiving a long enough time slice to transmit all of its data. As mentioned in 
section 5.2.8, if the Bluetooth chip's own buffers fill up because it does not have 
enough time to transmit, then it will raise its RTS line high, instructing the sen­
sor's CPU to stop sending it data. If this line stays high for too long, then the 
sensor's own FIFO will overflow. causing incorrect data to be transmitted. 

The FIFO itself does not maintain any information as to what an individual 
byte of data within it represents, it is simply a collection of bytes written to by the 
analog-to-digital conversion process. The software knows the order that bytes are 
supposed to be written into it, and this information is used to interpret the data in 
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the DAU. If the FIFO begins to overflow then the bytes within the FIFO no longer 
represent the known order of bytes that result from data collection. The software 
that reads from the FIFO and transmits the bytes has no idea that anything has 
gone wrong, and simply continues to transmit. This results in incorrect packets 
being sent to the DAU. 

A few steps were taken to solve this problem. 
The first was to change the packet format. In the current implementation, 

a single packet contains ten sets of data samples, as shown in figure 5.6. The 
original versions put just one set of data samples into a single packet. With the 
current scheme, sending 10 sets of samples ( one full packet) requires transmitting 
63 bytes of data. With the original scheme each set of samples requires 9 bytes 
total (two-byte header, one byte counter and six bytes of data), so ten sets would 
require 90 bytes to be transferred. This simple change reduced the bandwidth 
requirements by a third. 

The second solution reduce the sampling rate from 1 OOOHz to 500Hz. This 
halved the amount of data that each sensor had to transmit, so the time slices were 
once again long enough for all the data to be transmitted within. While a higher 
sampling rate is of course desirable, a rate of 500Hz will work fine in a system 
with frequency content below 250Hz. 250Hz is still well above the range of a 
typical vibrating screen, so this trade-off was deemed acceptable. 

With these two changes implemented, the data rate was low enough such that 
eight sensors could be run simultaneously with no problems. 

5.3 Design of the Sensor Hardware 

5.3.1 Introduction 

The final sensors of the system are sealed, dust-proof wireless units capable 
of transmitting acceleration data to a central control unit via a Bluetooth trans­
mitter. Each sensor has a PIC18F2523 [45] microprocessor which is responsible 
for performing analog-to-digital conversion on data from a Freescale Semicon­
ductor MMA 7261 QT ±2.5-1 OG accelerometer at a rate of 500Hz, organizing the 
accelerometer readings and transmitting them through the Bluetooth transmitter 
to the control unit, using the designed protocol (section 5.2.9). 

On the exterior of each sensor unit are three high-strength magnets on the 
backside for the purpose of mechanical mounting to high G-force vibrating ma­
chinery. Each unit has a mechanical toggle switch for turning the unit on and off, 
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as well as two LEDs ( one green and one red) for communicating to the user which 
of the four possible states the sensor is currently in. These states are described in 
section 5.2). 

5.3.2 Sensor Requirements 

At the outset of the project, a few main criteria were decided upon for sensor 
portion of the system. These were: 

1. 500- lOOOHz sampling rate 

2. Capable of running at up to 1 OG in three axes 

3. Dust-proof enclosure 

4. High-powered magnetic mounting system 

5. Low manufacturing cost 

6. Up to eight units running simultaneously 

The 500-1 OOOHz sampling rate was based on understanding of the machines 
that will typically be analyzed for this particular case study. As described in sec­
tion 2.1, the operating frequency of most of the vibrating screens is typically in the 
14Hz range. Bearing faults can cause frequency content of up to 1 lOHz, and typ­
ically frequency content above 150Hz has been deemed "noise". A·lOOOHz sam­
pling rate would allow the system to recognize frequency content up to 500Hz[8], 
but for reasons described in section 5 .2.11 a sampling rate of 500Hz was the even­
tual rate, allowing the recognition of content up to 250Hz. 

Point 2 states that the sensor should be able to read acceleration values up 
to lOG. While vibrating screens do not typically run past 6.7G, a screen that is 
malfunctioning could run at higher G-forces. lOG was thus considered to be a 
"safe" maximum value for accelerometers. The chosen accelerometer can run at 
up to 1 OG, and can operate at lower maximum-G settings, to allow for higher 
accuracy (see sections 5.3.3 and 6.2). 

The dust-proof enclosure is required due to the environments in which the VA 
system will typically be employed, namely active mine sites. A unit that fails due 
to dust would essentially be useless. 

The decision to use high-powered magnets to mount the sensor to the system 
is based on three facts: 
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1. High G-forces 

2. Mud and dirt coated machinery 

3. Hundreds of pre-existing deployed screens 

Due to the high G-forces that the vibrating screens operate under it is impor­
tant that the magnets be strong enough to hold the sensor to the machine without 
moving. Any movement or vibration of the sensor itself would cause incorrect 
acceleration readings. Because of the environments that the screens operate in, 
they are usually covered with dust, dirt and mud, and while the technicians do 
their best to clean mounting points before attaching a sensor, only so much can be 
done. Very strong magnets allow the sensor to stay mounted to the machine even 
in the presence of dirt. 

Ideally each vibrating screen would have built-in mounting points for the sen­
sors that provided some kind of mechanical locking system. Unfortunately this is 
impossible. Hundreds of vibrating screens are already deployed around the world, 
and the VA system must be useful on all of these machines. 

Low manufacturing cost was a key idea that had to be kept in mind at all times 
of the hardware design process. A system with a sensor network is much less 
likely to be used or expanded upon if the cost to manufacture it is too high. 

Finally the system must be able to operate with eight sensors running at the 
same time. The reasons for this were described in section 2.1, and this requirement 
affected not only the wireless transceiver selection but also had consequences on 
the software design, as described in sections 5.2 and 6.2. 

5.3.3 Selected Hardware Components 

While the sensors contain dozens of discrete electrical components, the three 
most important are the accelerometer, the microprocessor and the wireless transceiver. 
The rest of the components are typical of any electronics project (i.e. resistors, ca­
pacitors, LEDs), and were not important relative to the main requirements of the 
project. 

Accelerometer 

One of the first decisions made was which accelerometer to use. A variety of 
accelerometers are commercially available, in one, two and three-axis configura-
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tions. An early requirement was that the accelerometer be capable of detecting up 
to 1 OG of acceleration. 

The chosen sensor is the Freescale MMA7261QT, a Microelectromechani­
cal system (MEMS) component. It is a 3.3V device that can run in maximum­
detection modes of ±2.5G, ±3.3G, ±6.7G and ±lOG. It can simultaneously read 
accelerations in the X, Y and Z axes. The sensor operates by outputting three 
separate voltages, one per axis. The voltage can then be analog-to-digital con­
verted into a digital value, and interpreted based on the selected G-mode. At the 
time of hardware design, this accelerometer was the only commercially available, 
low-cost three-axis accelerometer that could measure up to lOG. 

In the 2.5g mode, the sensor outputs at approximately 480mV/G, and at IOG 
mode 120mV/G, so a lower G-mode gives a higher resolution. For this reason, it 
is important that the software allows the user to select the G-mode, so the most 
appropriate one can be used for the given application. 

The timing of this project was actually advantageous in terms of accelerom­
eter selection. Historically accelerometers have often been built as piezo-electric 
systems, but recent advances in MEMS technology have driven prices and sizes 
of MEMS-based accelerometers down to levels such that they can be used in low­
cost components [ 4 7]. 

Any similar project would need to closely look at its accelerometer require­
ments. A huge variety of accelerometers are commercially available, with dif­
ferent communications interfaces, maximum G ratings, numbers of sensitivity 
modes, etc. For the case study it was desirable to have a multi-mode sensor at 
1 OG, but other projects might differ. 

Microprocessor 

From the outset, it was decided that using a Microchip PIC microprocessor 
would be used, due to existing familiarity with the architecture and development 
tools. 

While Microchip manufactures a wide variety of PIC micro-controllers, the 
18F2523 was chosen mainly for its 12-bit analog-to-digital converter. The ac­
celerometer outputs its measurements as voltages, ranging from 0-3.3V. A 12-bit 
analog-to-digital controller can take a 3 .3V analog voltage and represent it as a 
value from 0 .. .4095, or 4096 total values (2 12). 

Dividing out, we get a resolution of 

3.3 V /4096 = 0.806mV 
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In total, the l 8F2523 allows ten of its pins to be dedicated to analog-to-digital 
conversion. The accelerometer uses three of these, a temperature sensor uses one, 
and a method of measuring the remaining battery uses another, for a total of five. 

The 18F2523 also provides a built-in USART module for RS-232 communi­
cations (section 5.2.8) with the wireless module, and 1536 bytes of data memory, 
and comes in at an extremely low cost. The initial designs of the sensor actu­
ally used a chip from the same family, the 18F2423, which is almost identical but 
with half the data memory. This eventually had to be changed to the l 8F2523 to 
provide more memory for a FIFO, as described in section 5.2. 

Bluetooth transceiver 

An important issue that should be noted is the "Class" classification used for 
Bluetooth devices. The Bluetooth specification [43] lists three separate power 
classes for devices, Class 1, Class 2 and Class 3. The power and range specifica­
tions for these are as follows: 

Class Maximum Allowed Power Range (metres) 
mW dBm 

Class 1 100 20 lOOm 
Class 2 2.5 4 lOm 
Class 3 1 0 Im 

Table 5.4: Bluetooth Output Power Classes 

For the purposes of the VA system, the longest range possible was required. 
The vibrating screens are often suspended off the floor and difficult to reach. It 
is easier for the technician to perform VA if they are not strictly required to be 
proximate to the screen. 

With this in mind, the first prototypes of the sensor hardware were built with 
Class 1 Bluetooth transceivers. It was not discovered until after the prototypes 
were completed that the range permitted by the chosen device was nowhere near 
1 OOm, especially when the signal must pass through the vibrating screen itself. 

The problem is that to be considered a Class 1 device, the Bluetooth transceiver 
need only to have power output higher than 4dBm. A manufacturer can give a 
device with a rated power output of 4.ldBm a Class 1 designation. This was es­
sentially the case with the first selected Bluetooth used in the early prototypes. 
More specifically they were at 7dBm, but this was not immediately obvious. A 
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misunderstanding of the class designations caused us to believe that Class 1 meant 
that the device ran at 20dBm. The Bluetooth device used in the final production 
units is a 14dBm device. This is the most powerful device that could be located 
and sourced, and proved to be powerful enough for the Bluetooth signal to pass 
through even the largest vibrating screens. 

For a Class 1 device to be effective on the sensor, it must be matched with a 
Class 1 device on the DAU. This device is briefly described in section 6.5. 

5.3.4 Power Supply 

From an electrical point of view, the layout of the sensor circuit is fairly 
straight forward. The power supply to the sensor and handling of analog values 
required greater care. 

The final sensor design operates on two AA batteries, giving a total of 3V 
when run in serial. Most modem integrated circuits operate at 3.3V, so the 3V 
provided was not enough. To compensate for this a pump-charger had to be used, 
a device capable of bringing a 3V input up to 3.3V. Early prototypes of the sensor 
used 4AA batteries, giving 6V, but there was some concern that this would too 
greatly increase the weight of the sensor, possibly past the holding point of the 
magnets. 

Given the analog-to-digital resolution, a very good signal-to-noise ratio was 
required. This required a precision reference voltage to be used for the analog 
components (including the accelerometer), and a strict separation between the 
analog and digital components in both power supply usage and board layout. The 
accelerometer signals pass through an analog low-pass filter and are buffered to 
ensure a very low impedance at the analog-to-digital converter. The pump-charger 
had to be selected to ensure no interference or ribble on the power rails. 

Finally, great care was taken to minimize the amount of capacitance in the 
power supply, as the accelerometer and Bluetooth transceiver had very strict power­
up requirements to prevent latch-up. In the earliest hardware experimentation 
phases the accelerometer was tied to a power-supply with a very slow ramp-up 
time, and this caused the accelerometer to latch and provide incorrect values. 

5.3.5 Calibration Procedure 

After a sensor arrives from the factory, it is important to calibrate the device 
to ensure that the values it is returning reflect the desired use of the sensor. 
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Particularly each sensor must be checked to see how physically skewed the 
accelerometer is inside the sensor. Ideally the accelerometer face is perfectly par­
allel with the face of the magnets on the back of the sensor, but small flaws in 
the manufacturing process (of the sensor) could affect this. The accelerometer is 
placed on a PCB, and the PCB is screwed into the sensor casing. If the place­
ment of the accelerometer is slightly off, either skewer around the face of it, or 
not sitting flush on the PCB (possibly due to too much solder under one portion 
compared to another), then the accelerometer will not reflect the intended orienta­
tion. If the screws through the PCB into the sensor casing are not uniformly tight 
then one comer of the PCB might be raised higher or lower in the casing than the 
others, causing a similar issue. 

The calibration procedure consists of checking each of the X, Y and Z axes 
against gravity. The sensor is placed on a precisely machined steel structure, and 
this structure is moved six times, twice per axis. 

For example, to measure the X axis, the structure is placed on a perfectly level 
service such that the X axis should be aligned with gravity. The DAU software 
then asks the sensor to start transmitting values, and the DAU checks the X axis. 
When aligned with gravity and no motion is occurring, the accelerometer should 
return exactly 1 G in one orientation, and -1 G in the other. This is repeated for Y 
and again for Z. 

After calibration is completed, the individual values for each axis are stored on 
the sensor itself. This allows the sensors to be calibrated by any DAU, and then 
bundled with another DAU for operation. The DAU s simply query the sensors 
for their calibration data before a Data Acquisition run. Details of the calibration 
protocol and storage mechanism are given in Appendix A.2. 

During the calibration stage an extra operation is performed; the naming of the 
sensor. Every sensor manufactured gets an unique name. A device name is part 
of the Bluetooth specification, and is the ASCII string returned by a Bluetooth 
device responding to a discovery request. The sensors are named in such a way 
that the DAU can distinguish them as sensors for this system, apart from any other 
Bluetooth device that might happen to be in range while the DAU is performing a 
discovery. 

5.3.6 Prototype Stages 

For completeness, descriptions and images of each of the physical prototype 
stages are described below, including the reasons for moving between each stage. 

88 



Ph.D. Thesis -J.B. Parlar McMaster University - Software Engineering 

Original Prototype 

The board shown in figure 5.7 was the first soldered prototype built in the lab 
(after a few breadboard versions). The PCB was built by hand, and the soldering 
was also all done by hand. 

The Bluetooth chip used here was a BlueRadios Inc. surface-mount device, 
and the processor was a PIC18F22423 . The final product uses the 18F2523 to 
gain the additional data memory, as described in section 5.3.3. 

This prototype included two physical buttons and an On/Off switch, seen in 
the lower right comer of the image. One of the physical buttons could be held 
on power-up to put the processor into Upgrade mode, so new software could be 
uploaded. The other physical button was used to perform a soft-reset on the pro­
cessor. The final version of the sensor has neither of these buttons, which will be 
described later. 

Figure 5.7: Original Prototype Board 
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Second Prototype 

Figure 5.8: Second Prototype Board 

The second prototype board (figure 5.8) introduced multiple changes to the 
system, including: 

• Professionally manufactured PCB 

• Removal of physical buttons 

• Addition of header ports 

• Processor swap to I 8F2523 

• Separation of power supplies 

• New Bluetooth transceiver 
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While the previous PCB had been laid out and etched by hand, this prototype 
was the first board to be automatically laid out by a software process and built by 
a professional manufacturer. This allowed the board to be made much smaller, 
as the manufacturer was capable of building two-sided PCBs, and the software­
designed layout is optimized for board size. 

The physical buttons were removed early on. The reason was to reduce as 
much as possible any moving parts on the board, in case long term use of the sen­
sors on high G machinery could wear out the parts. This prompted the move to the 
header port seen at the top of the image. The header allowed the full functionality 
of the physical buttons ( except for power), but with jumpers instead of buttons. In 
addition, the header port allowed for in-circuit programming of the 18F2523. 

The previous prototype used a Dual In-Line Package (DIP) version of the pro­
cessor, meaning the processor had physical legs on it to attach to the board, and 
could easily be removed. Removing the processor from the previous prototype 
was a common scenario, as the bootloader (section 5.2.2) can only be modified by 
directly attaching the processor to a special programmer tied to a desktop com­
puter, through a process called In-Circuit Serial Programming [48]. 

The processor on this new board switched from a DIP version to Surface 
Mount Device (SMD) version, allowing for a much smaller physical footprint. 
SMD chips are much smaller than DIP chips, but they must be soldered directly 
to the board, making it very difficult to constantly remove and reattach them. Un­
fortunately bootloader changes were still being made at this point, so a method 
was needed for updating the software without removing the chip. The headers 
allowed for this. A special cable was manufactured in the lab with a matching 
header on one end, and a socket that could be used with the programmer on the 
other. This permitted the in-circuit programming necessary to make bootloader 
software changes. 

This prototype was also the first to employ the separated power supplies de­
scribed in section 5 .3 .4. A large amount of noise was being seen on the accelerom­
eter lines in the previous prototype and it was suspected that shared power lines 
were the cause of this. Moving to separate supplies on this prototype reduced the 
noise to negligible levels. 

Finally this prototype introduced a completely different Bluetooth transceiver, 
the Philips Semiconductors BGB203. This change was not made for technical rea­
sons, instead it was simply a matter of no longer being able to source the previous 
transceiver from the supplier. Unfortunately, this change caused a multitude of 
unforeseen issues, including much more difficult configuration of the transceiver 
for a new sensor, vastly lower power-output (as described in section 5.3.3 and data 
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buffering problems as described in section 5.2.6. 

First Manufactured Prototype 

Figure 5.9: First Manufactured Prototype Board 

Figures 5.9 and 5.10 show the first fully manufactured board and enclosure, 
respectively. As the manufacturer is different than the one who designed the pre­
vious PCB, a new PCB layout was created. A push-down On/Off button is used 
on this board, seen attached to the board in the top right of figure 5.9. 

This is also the first prototype board to make use of the pump-charger 5.3.4. 
There was some concern as to whether or not the circuit layout for the pump­
charger would be correct, as it was impossible totes it in the lab. The only pump­
chargers available that met our desired electrical characteristics were physically 
too small to solder by hand. Fortunately the circuit was designed correctly and the 
pump-charger behaved properly. 
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Figure 5.10: First Manufactured Enclosure 
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Final Manufactured Device 

Figure 5.11: Final Manufactured Prototype Board 

The final board and enclosure prototypes are shown in figures 5.11 and 5.12. 
These exact versions are now being produced and have already been distributed 
worldwide. 

Two main changes took place between the previous prototype and this one. 
First, the On/Off button was changed away from the spring-loaded variety previ­
ously used to a rocking toggle switch. This was to alleviate previously mentioned 
concerns about the durability of moving physical components. While the rocking 
toggle switch is also a moving component, it is much sturdier. 

Second, the Bluetooth transceiver was switched back to the one used in the 
first prototype. After the previous prototypes were built, the low-power issues of 
the Philips transceiver were discovered. While all the other issues with the Philips 
device (complex configuration, buffer issues) were already solved with software, 
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Figure 5.12: Final Manufactured Enclosure 

nothing could be done about the power. Fortunately a new supplier was found that 
could provide the original BlueRadios Inc. Bluetooth chip. 

95 



Ph.D. Thesis - J.B. Parlar McMaster University- Software Engineering 

Chapter 6 

DAU and Vibration Location 
Detection Tool Software Designs 

Apart from the software running on the sensors, described in the previous 
chapter, two additional software systems were designed and built. The first is the 
software running on the DAU for control of the sensors and basic vibration analy­
sis (along with its sister software running on the PC for basic vibration analysis). 
The second is the frequency/vibration location identification tool mentioned in 
section 4.5. 

This chapter will describe the designs of both software components, starting 
with the DAU software and followed by the vibration location tool. 

6.1 DAU Software 

The sensors described in Chapter 5 make up only half of the designed system, 
as the sensors need to be under the control of a DAU to perform any actions. 

The DAU is responsible for controlling the sensors, and is the technician's 
interface to the system. The only physical interface on the sensors themselves 
is the On/Off button and the LEDs, after they have been powered the DAU is 
responsible for configuring the sensors, instructing them when to start collecting 
data, receiving and recording the collected data, and performing calculations on 
this data to present the technician with real-time numerical and graphical results 
of the operation of the vibrating screen. 

The DAU is comprised of the hardware platform it runs on and the VA software 
written for this research. The hardware of the DAU was not designed for this 
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Figure 6.1: DAU Components 

project in particular, but the software was. 
While not strictly part of the portable DAU that a technician brings to a site, a 

version of the software running on the DAU is available for regular desktop/lap­
top computers, which provides some additional post-processing functionality not 
currently present in the DAU itself. These extra desktop features include ellipse 
and phase computations, which were too computationally expensive for the DAU, 
as well as report generation functionality. The report generation requires a large 
amount of screen space to do properly, so it was left off of the DAU. 

The general structure of the software for a wireless sensor system will be pre­
sented. While components specific to VA will be described, the overall structure 
is applicable to any wireless sensor system. 

For the purposes of the user interface, a constant iterative cycle took place 
with a variety of industry technicians. Discussion sessions were commonplace, 
where the technicians would give their feedback concerning new changes to the 
system. No user interface feature was ever considered final until a majority of the 
consulting technicians approved it. 
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Figure 6.2: Detailed System Components; Arrows show data flow 

6.2 Design of the Data Acquisition System 

Figure 6.2 shows a more detailed version of the system components graph 
from figure 6.1. Each of the components from the original figure are highlighted, 
illustrating the individual pieces that make up these components. 

Other modules are part of the system which are not shown here, but they are 
much more system specific. They can be seen later in the Uses Hierarchy of 
figure 6.3 as well as in the Module Guide. 

The software application written for the DAU is a custom piece of software 
designed specifically for this project. It is primarily implemented in the Python 
programming language, with certain performance critical sections being written 
in Cython [49]. The software was designed with a touchscreen interface in mind, 
and particularly such that it is usable with just a finger, not requiring a stylus. 

The software has multiple duties and responsibilities to perform during a typ­
ical data acquisition session, including: 

• Provide a simple-to-use interface which at least 95% of the target audience 
feels comfortable with 

• Connecting to a complete set of wireless sensors in less than 30 seconds 

• Configuring each of the sensors 

• Implementing the control protocol with the sensors 
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• Starting data collection 

• Recording data from sensors at a sampling rate of at least 500 Hz 

• Displaying waveforms, orbits and FFf plots 

• Displaying numerical results 

• Replaying previously recorded results 

• Transferring results off the DAU in a manner that at least 95% of technicians 
find simple 

This section will describe the overall design of the DAU software, focusing on 
areas that required particular care during the design and implementation. 

6.2.1 Problem Description 

The five blocks from figure 6.2 show the necessary components when design­
ing a wireless sensor system. 

Wireless Transceiver 

The first block, Wireless Transceiver, actually encompasses a few things. From 
a high-level, it is viewed simply as the software necessary to speak to whatever 
wireless component is part of the system. However, this is a limited definition. 
Notice one of the requirements from the list above was "Replaying previously 
recorded results". 

After a recording session, a technician will often want to replay that particu­
lar session multiple times. One could implement a completely separate code-path 
capable of reading files, performing computations on values from files, etc. The 
better solution though is to abstract out the interface for receiving data. In the 
Wireless Transceiver block are the modules BluetoothHandler and FileHandler. 
The first knows all the details of communicating with Bluetooth hardware, con­
necting to the hardware, receiving and transmitting with the hardware. The sec­
ond, FileHandler, presents the exact same external interface as BluetoothHandler. 
But instead of communicating with hardware, it knows how to read the stored data 
files from a recording session. 

Using this shared interface, the Pre-computation block does not need to con­
cern itself with where the data is coming from. All the details of reading from 
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a file are encapsulated in FileHandler, such that all data leaving the Wireless 
Transceiver block is identical in form, no matter what the source was. 

In addition, by abstracting out the details of the hardware interface, this allows 
for future extensions to change the hardware interface, without having to adjust 
any other part of the software. If a future version of the sensor uses a differ­
ent wireless technology, it will only require a new Handler, limiting the changes 
necessary to the rest of the code. 

Even during development this proved beneficial. When first developing the 
hardware for this project, a wired connection was used between the sensors and 
the DAU. This was simply for testing purposes, before the Bluetooth was ready. 
When it was time to move to the Bluetooth, only a new Handler was required, it 
did not affect the other components of the system. 

Pre-Computation 

As shown above, a Pre-computation block should primarily be responsible for 
two things: 

1. Detecting the presence of, and reading, new data 

2. Collecting and preparing this data for the Computation block 

The three left-most modules, Reader, SocketRead and Unpacker are responsi­
ble for the first of these. Reader abstracts out the method for detecting when new 
data is available. It then informs SocketRead which is responsible for pulling out 
the data. Unpacker is responsible for decoding that data, given whatever encoding 
scheme is chosen. Recall figure 5.6 for the scheme used in this system. 

This separation into the three modules makes sense given the likely changes 
that might occur in the future. The three logical steps of this part of pre-computation 
are 

1. Detecting the presence of new data 

2. Reading this new data 

3. Interpreting the data 

For example, the best way to detect the presence of new data is highly depen­
dent on operating systems and networking techniques. A system developed for 
Linux might want to use the epoll interface, while one for OS X might prefer 
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kqueue. And both of those are assuming a standard socket is used. Changing the 
communication mechanism would change the detection method. 

Reading the data is also dependent on the chosen networking techniques. Stan­
dard sockets in most operating systems support a read () function, with a stan­
dardized interface. The use of something other than a socket would change this. 

Finally, interpretation of the data is wholly dependent on the protocol created 
for transmitting the data from the sensors. 

The second stage of the Pre-computation block has the interpreted data going 
to some kind of SensorManager, which in tum sends the data for DC filtering. 
The act of DC filtering is dependent on a VA situation where gravity is present, 
but many systems would employ some kind of early stage filtering here. 

The SensorManagers themselves represent a mechanism for coordinating be­
tween the low-level interfaces to the datastreams, and the higher-level computa­
tions and user interfaces. The true interaction in the developed system is slightly 
more complex than the diagram above suggests. 

Computation 

The Computation block is where most of the mathematical computation and 
analysis will take place. It is responsibly for performing the computations neces­
sary to display useful results to a user in the User Interface block. 

The internal modules shown above are fairly specific to VA, but this is not sur­
prising. The actual computations that take place will always be domain specific. 

The computation block shows all the internal modules passing data through 
the Computation boundary, as each of these modules generates data that can be 
displayed in the User Interface. 

User Interface 

The modules in the User Interface block are drawn to represent their tight 
interdependency. Base Viewer provides all basic interfaces services, while the 
PDAViewer and PCViewer modules provide device specific display customiza­
tions. 

The goal of separating the modules in such a way is to make it as easy as 
possible to add new "views", new ways for a user to interact with the system. For 
the VA system developed, this includes the DAU as well as standard laptops and 
desktops. 
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The rest of this chapter will present how these blocks were actually imple­
mented in the system we designed. They will be explored in further detail, pre­
senting problems and solutions that were encountered during the design and de­
velopment. 

6.2.2 Module Guide 

This section presents the Module Guide for the system, as described by Par­
nas [50]. Specifically, 

It defines the responsibilities of each of the modules by describing the 
design decisions that will be hidden (encapsulated) by that module (its 
secrets). 

More modules are present here than in figure 6.2, representing more of the 
specific details needed to implement the actual system. 

Name Base Viewer 
Service Main entry point of software, controls GUI interactions 
Secret GUI implementation data structures 

Table 6.1: Module: BaseViewer 

Name PCViewer 
Service Provides desktop-specific GUI features 
Secret Algorithms for desktop screen layout 

Table 6.2: Module: PCViewer 

Name PDAViewer 
Service Provides PDA-specific GUI features 
Secret Algorithms for PDA screen-size layout 

Table 6.3: Module: PDAViewer 
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Name Sensor Manager 
Service Processing and short-term storage of data samples 
Secret Processing algorithms and internal storage data structures 

Table 6.4: Module: SensorManager 

Name FFT 
Service Performs frequency domain calculations 
Secret FFT and interpolation related algorithms 

Table 6.5: Module: FFT 

Name CircularQueue 
Service Provides a thread-safe circular queue data structure 
Secret Algorithms and data structures to implement the circular queue 

Table 6.6: Module: CircularQueue 

Name Logger 
Service Writes data samples to a log file, and reading from a log file 
Secret Data structure of log files 

Table 6.7: Module: Logger 

Name Calibration 
Service Transforms data samples based on stored calibration data 
Secret Algorithm for transformation 

Table 6.8: Module: Calibration 
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Name DC Filter 
Service Implements a DC filter to remove DC components from a signal 
Secret DC Filter coefficients 

Table 6.9: Module: DC Filter 

Name Butterworth Filter 
Service Implements an adaptive bandpass Butterworth filter 
Secret Coefficient calculation 

Table 6.10: Module: Butterworth Filter 

Name Handler 
Service Base class providing low-level communications with data sources 
Secret Algorithms for communicating with a data source 

Table 6.11: Module: Handler 

Name Ellipse Fitter 
Service Calculates eccentricity and ellipse-phase 
Secret Algorithms for calculation 

Table 6.12: Module: Ellipse Fitter 

Name Scalers 
Service Responsible for scaling data so it fits on-screen properly 
Secret Algorithms for performing the scaling 

Table 6.13: Module: Scalers 
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Name Utility Menu 
Service Implements all functionality available in the Utility Menu 
Secret Algorithms and data structures for various functionality 

Table 6.14: Module: Utility Menu 

Name Data Export 
Service Services to export recorded data off the DAU 
Secret Algorithms for the particular export implementation 

Table 6.15: Module: Data Export 

Name Reader 
Service Provides the main run loop of the communication channels 
Secret Algorithms and techniques for detecting new data and handling it 

Table 6.16: Module: Reader 

Name SocketRead 
Service Reads data from a given communication channel 
Secret Algorithms for reading data and tracking packet progress 

Table 6.17: Module: SocketRead 

Name Unpacker 
Service Decodes raw stream data into packets 
Secret Communication protocol between the sensors and the DAU 

Table 6.18: Module: Unpacker 
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Name ReportGeneration 
Service Generates final reports for a particular VA session 
Secret Algorithms and data structures for layout of reports 

Table 6.19: Module: ReportGeneration 

Name Numerical Values Computer 
Service Calculates numerical results of incoming data 
Secret Algorithms and data structures for calculation 

Table 6.20: Module: Numerical Values Computer 

Name Report Calculations 
Service Performs numerical computations required for final reports 
Secret Algorithms and data structures used to perform calculations 

Table 6.21: Module: Report Calculations 

CircularQueue 

Figure 6.3: Uses Hierarchy 
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The Uses Hierarchy in figure 6.3 shows how the modules interact with each 
other. An arrow between modules A and B like A -+ B means that "module A uses 
module B". 

6.2.3 Main System Loops 

After initial configuration and connection phases with the sensors, the soft­
ware can be generalized to be performing two main tasks: 

I . Collecting and processing data from all connected sensors 

2. Displaying processed data on screen 

Figure 6.4 is similar to figure 6.3, but now shows two logical groupings, "Dis­
play" and "Collect and Process", representing the modules that are employed in 
the two separate tasks. 

. . . • 

. . 
. . . 
. . 
. . . . 
. . 
. . . 
. . 

~-·······-·~···-················ : . 
• . . 

• -------------· 
Figure 6.4: Grouped Uses Hierarchy 

The "Collect and Process" modules are those that communicate directly with 
the sensors. The acceleration data is collected and decoded, before being sent 
to the SensorManager by the SocketRead module. The SensorManager is where 
filtering happens on the data, and the results are stored into two separate queues, 
"Filtered Data Queue" and "Raw Data Queue". Unfiltered data is considered to 
be data that has been transformed for calibration and DC filtered (to remove the 
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constant gravity component) but not Butterworth filtered. It might be odd to call 
it "unfiltered" when it has in fact passed through a filter, but the DC filter does not 
affect the shape of the machine's motion, it simply removes the constant G-force 
resulting from gravity. 

Filtered data is the result of passing this raw data through a Butterworth filter. 
The Butterworth was introduced in section 2.6, but in short it implements a 

bandpass filter, centred around the main operating frequency of the rotating ma­
chinery under analysis. 

This is also the stage where data logging happens. The only data that is logged 
is the DC filtered raw data. The filtered data can always be recreated, so there is 
no point in separately logging it. 

This process is shown in figure 6.5 to emphasize the flow of data through this 
main processing stage. 

After placing the filtered and unfiltered data in the appropriate queues, the 
"Display" process is able to grab the data and display it appropriately. 

These queues represent the thread barrier of the software. The "Collect and 
Process" and "Display" operations run in separate threads, and the only interac­
tion between these threads (during data collection) happens through the queues, as 
shown in figure 6.6. These are thread safe queues, with Thread 2 acting solely as a 
producer, and Thread 1 as a consumer, essentially acting as an asynchronous mes­
sage passing system (the queues are non-blocking, hence asynchronous). Mes­
sage passing not only makes the interaction between the threads easier to manage, 
avoiding the complexity of mutexes and semaphores around shared resources, but 
also adds a level of safety. In software where threads share resources, if one thread 
crashes then typically the state of the other threads becomes corrupted [51]. In a 
message passing system a single thread can die without ruining the state of the 
threads it communicates with. Strictly limiting thread communication to message 
passing is often called "Erlang style concurrency" [52], after the Erlang program­
ming language. 

Why is it that threads are even required, why not use just a single process of 
control? wxWidgets, the chosen graphical toolkit, essentially requires this by de­
sign. Like most modern graphical toolkits, it is an event based system, with its 
own run loop. When the software starts, wxWidgets takes control of the main run 
loop of the system, and various events (button presses, key presses, etc.) are reg­
istered with the system, along with appropriate event handlers. When the toolkit 
receives a graphical event notification from the operating system, it checks if any 
handlers are registered to respond to that event, and if so, calls the appropriate 
handler function. After the function completes the main loop continues to listen 
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for events. This means that none of the DAU code is executed, except in response 
to graphical events. 
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This is problematic for software that is constantly receiving data from non­
graphical sources, such as the data coming in from the sensors. Collection and 
processing of the sensor data must continuously occur, and this does not fit well 
with the event-based model of the graphical event run loop. For this reason the 
collection and processing software is started in a separate thread, so it can run in­
dependently of the wx Widgets run loop. This separate thread is then free to do its 
work, and simply place its results into the "Filtered Data Queue" and "Unfiltered 
Data Queue". 

The "Display" thread runs a low-precision wxWidgets-based timer, which is 
used to periodically pull data from the two queues and update on-screen graphs 
and calculated values. An attempt was made to use this timer to run the data 
collection, but its accuracy was too low, and the collection code was not being 
called often enough. 

6.2.4 Base Viewer 

A very important module in the "Display" group, as seen by the number of 
modules it uses, is Base Viewer. This module implements most of the base classes 
used for the GUI, and is responsible for registering the event handlers used by 
the wxWidgets main loop. It is also responsible for creating the SensorManagers, 
Handlers and the Reader thread, the three main points of control and activity in 
the "Collect and Process" group. 
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An important design goal was to make the DAU software usable not only on 
the PDA, but also to allow versions of it to run on Windows and Mac computers. 
Not only do these alternate systems provide different operating systems (com­
pared to Linux running on the PDA), but more importantly the look and interac­
tion methods different drastically between the DAU and the desktop computers. 
The DAU runs at a relatively small 480x640 resolution, while Windows and Mac 
machines could theoretically be at any resolution. The DAU also expects most in­
put and interaction to happen with a technician's finger, while desktop machines 
typically expect keyboard and mouse. This requires large buttons and interfaces 
on the DAU [53], where less pointing precision will be available, but also requires 
that the on-screen data displays be minimized for the vastly smaller screen space. 

To accomplish both goals simultaneously, object-oriented inheritance and com­
position structures were used. Base Viewer defines the software interfaces to be 
used in all systems, and implements all logic that would be common between 
different visual interfaces, but makes no assumptions about screen-size or in­
tended input method. Instead wherever a situation comes up where that infor­
mation might be required at the Base Viewer level, an abstract method is defined, 
one that can be overridden and specifically implemented in the appropriate child 
class. In certain circumstances it made more sense to use composition instead of 
inheritance, the two styles were intermingled as deemed necessary. 

The two modules defining the child classes and appropriate composition ob­
jects are PDAViewer and PCViewer. PDAViewer implements the elements neces­
sary for the DAU's user-interface, while PCViewer handles the user-interface for 
a desktop-style system. No real distinction is made between Windows and Mac 
system, as wxWidgets automatically handles drawing operating-system-specific 
widgets and interface objects. 

Note only do these modules implement the functionality that Base Viewer re­
quires, but there are certain functionality that exist only in the DAU software or 
the desktop software, not in both. These platform-specific functions can be found 
in PDAViewer and PCViewer. 

6.2.5 PDAViewer 

The main tasks of PDAViewer are to implement the sub-classes and compo­
sition components required by Base Viewer to run the software on the DAU. This 
consists of laying out buttons and other widgets on-screen, and implementing a 
few bits of logic that are dependent on the platform. 

One feature that is only available on the DAU is the "Utility Menu" 6.7. This 
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Figure 6.7: Utility Menu 

provides functionality specific to operating the DAU. The DAU is intended to 
be used as a black box, the users should not need to know that it operates on 
Linux, should not need to understand how to perform software upgrades on a 
Linux system, or know how to work with the Linux filesystem. The Utility Menu 
provides an abstraction around all of this functionality, in a way consistent with 
the typical use of the DAU. 

PDAViewer is responsible for inserting access to this functionality into the 
user-interface, and communicating with the "Utility Menu" module which imple­
ments the actual mechanics of these operations. 

Figure 6.8 shows the main running screen of the PDA, with eight sensors run­
ning and transmitting data from a vibrating screen. This shows the unfiltered view 
of the data, before recording has begun. 

An important consideration when developing PDAViewer was the overall us­
ability of the system on the small screen employed by the DAU. As previously 
mentioned, the DAU is often used in harsh environments. It is not unusual to have 
very little light to work with, and for the area to be surrounded in dust. 
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Figure 6.8: Main Loop 

Early versions of the DAU software had many overly-small interface elements, 
which were often hard to read, and required the use of a stylus to operate. Us­
ability tests with industry technicians showed that this was unacceptable. Every 
technician polled said that it would be too hard to read the interface in a real-life 
situation, and that reliance on a stylus was a bad idea. Because of the nature of the 
environments, there is a good chance that a dropped sytlus would never be found 
again. 

113 



Ph.D. Thesis -J.B. Parlar McMaster University- Software Engineering 

The solution to this was a complete redesign of the interface. Everything was 
rethough and resized, such that all elements could easily be pressed with a finger, 
rather than a stylus. This necessitated a size increase of all elements. This size 
increase brought everything to a level such that not a single technician we polled 
said they would have a problem with it. 

Another interface element that was developed with real technicians in mind 
was the data entry system. Before beginning a test, the technician is responsible 
for entering various pieces of data associated with the screen: customer name, 
manufacturer name, serial number, number of bearings, date, etc. Technicians 
found this incredibly tedious in early prototypes, and would often leave out infor­
mation, just to save time. 

A feature was then added to simplify this. Instead of having to enter all the 
information every time, the system would default to the information from the last 
measured screen. Technicians often have multiple screens at the same customer 
site that they must analyze, and what we found was that the only information that 
usually needed to change was the serial number. By presenting the information 
from the last screen, the technicians then usually just had to change the serial 
number. 

In addition, a Utility Menu item was added to let the technician enter this de­
fault information ahead of time. Before heading to the customer site, they could 
fill in the information that would be common between all the screens, saving them­
selves some time at the customer site. 

These are just some of the decisions and features that were required on the 
DAU to aid technicians in the field, and it was with the feedback of these techni­
cians that led to the features. 

6.2.6 Reader 

The Reader module is responsible for checking which sensors have new data 
for the system, and appropriately dealing with the sensors. 

As mentioned above, the software runs two main threads. The "Collect and 
Process" thread's main loop resides in Reader. This main loop continuously 
checks each sensor for new data. This is done via the standard POSIX socket 
interface [54]. The main loop collects all the active sockets from the Handler 
module and every time through the loop checks the status of each of the sockets 
using the standard select() function. This function tells Reader whether each 
socket has any data ready, or if an error has occurred on the socket. 
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It should be mentioned that select () is simply an implementation detail. 
epoll () or another similar interface could be used instead, depending on oper­
ating system availability. select () was chosen because it is available on all of 
the current target operating systems. Each operating system tends to provide their 
own particular method of doing something similar, usually with much higher per­
formance. If it is ever found that the use of select () has become a bottleneck, 
then operating system-specific implementations could be used. 

If no data is available for a given socket, then a special "timeout" variable is 
incremented for that socket. After this timeout variable reaches a pre-determined 
threshold, it is assumed that for some reason the connection to the sensor has been 
lost, and the socket is marked as dead. 

When a socket does have data available, its timeout variable is first reset to 
0, and then the socket is passed off to the SocketRead module for reading and 
processing. Despite its name, the Reader module does not actually read data from 
the sockets, it is strictly responsible for detecting when new data is available, and 
looking for dead connections. 

When a socket is marked as dead, this information is propagated to the "Dis­
play" thread via the Message Queue. This provides a means for the technician 
using the DAU to be informed that the connection was closed, allowing them to 
ask for the connection to be re-initiated. Because of this, a secondary job of the 
Reader main loop is to check for the availability of newly started sockets. In­
formation about new sockets comes to the Reader via the same Message Queue, 
after which it must add that socket to the collection of sockets it is already check­
ing each time through the loop. Because this is a very rare occurrence, the Reader 
module does not check for new sockets every time through the loop. Instead it 
checks every 20 times through the loop. 

This value of 20 was determined through experimentation. Accessing the 
Message Queue is a reasonably expensive operation, as it implements a two-way 
thread-safe queue, which automatically performs all the locking and unlocking 
operations needed every time it is accessed. Checking this queue too often caused 
performance to degrade. Checking every 20 times through the loop was found 
to have a negligible performance impact, while still being often enough that a 
user will not have to wait too long in-between asking for the connection to be 
re-established and Reader actually checking that connection for new data. 

Why would a connection die in the first place? There are multiple reasons this 
could occur, including: 

• Battery dies on a sensor during operation 
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• Technician moves the DAU out of range of a sensor 

• Sensor is accidentally powered down 

It is not uncommon for the DAU to be moved out of range. Most technicians 
move around the vibrating screen while performing VA, to see if they can visually 
identify potential problems with the screen that might be responsible for the data 
they're seeing on screen. This can put the majority of the screen between the 
technician and the sensor, forcing the Bluetooth signal to pass through a massive 
steel structure. Even with the high-power Bluetooth devices used in the system, 
this can still cause the signal to drop. 

This was happening with just enough regularity that a system for re-establishing 
connections during a run was required, as opposed to early versions of the soft­
ware that required the entire VA procedure to be restarted. 

When at a site, technicians are often tasked with a large number of tests to 
run. The early versions of the software required that the whole system be started 
over again if a single sensor connection was lost, and this simply cost the user too 
much time. While it was no problem in a lab environment, where the sensor were 
never too far from the DAU and the batteries were always freshly charged, it was 
a serious problem in the real-world. 

This necessitated new components capable of notifying the user that a con­
nection was lost, presenting a new interface for re-establishing the connection, 
and attempting a new connection with the disconnected sensor. These would have 
been unnecessary in a system meant simply for lab use, but completely necessary 
on a real-world system such as this. 

6.2. 7 SocketRead 

Whenever the Reader module sees that a particular sensor has data available 
to be read, it tells the SocketRead module to actually do the read. The definition 
of "data available to be read" is that a sensor has transmitted data to the DAU, and 
that data has passed through the communication stacks of the DAU to a point such 
that it is available for reading into userspace. 

The primary argument that is passed to the SocketRead module is the Handler 
instance for the particular sensor. The SocketRead module does not speak directly 
to the low-level communication routines, instead using higher-level abstractions 
provided by the Handler module. 
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The first task of the SocketRead module is to actually read the bytes of data 
that Reader was told were available. This is done using an interface provided by 
the Handler. 

Once the data has been read, it is appended to any "unused" data from the last 
time this particular sensor was passed to SocketRead. 

It is important to remember (as mentioned in section 5.2.10) that a full packet 
takes 10 sample periods on the sensor to fully transmit, but that the sensor does not 
wait until the full packet is available before it actually begins passing the data to 
the Bluetooth transceiver for transmit to the DAU. The Bluetooth chip has its own 
buffers and networking protocols that will determine when particular bytes are 
actually transmitted, but the general situation is that the Bluetooth chip is simply 
transmitting a stream of bytes. Even when the data does arrive at the DAU, the 
Linux kernel and Bluetooth stacks will make their own determinations as to when 
to pass received data up to userspace (such that select () will see that data is 
available). 

For all of these reasons, SocketRead will typically not receive multiple full 
packets when it reads the data from the socket. Instead, it is much more likely that 
the beginning of the data read off will represent the end of the previous packet, 
then there will be one or two full packets, followed by the beginning of another 
packet. 

This is illustrated in figure 6.9, which shows a situation in which 3 + 60n + 2 
bytes happened to be available and read in. The first 3 bytes represent the end of 
a packet that had only partially arrived at the DAU during the previous read. The 
next 60n bytes represent n full packets that arrived during this read. The final two 
bytes are the header bytes for the next packet, the rest of which is not yet available 
to be read. 

This clearly shows why on a read in SocketRead any "unused" data (the final 
two bytes in figure 6.9) must be stored, and the data on the next read must be 
appended to this unused data. 

The Handler instance for the sensor will store this data but it is the respon­
sibility of SocketRead to perform the logic necessary to append data and decide 
what new data must be held over until the next read. 

After determining how many full packets are available for processing, the raw 
data representing those packets is passed to the Unpacker module where it is de­
coded and turned into accelerometer readings. 

Finally, the accelerometer readings are passed to the appropriate SensorMan­
ager instance for the sensor, for filtering and all subsequent processing. 
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Figure 6.9: Packet Fragments 

6.2.8 Handler 

The Handler module is responsible for controlling access to the sensors, or in 
cases of replaying data from a file, access to the files themselves. This is where 
the low-level protocols described in section 5.2.9 are actually implemented on 
the DAU. Whether communicating with live sensors or simulating a sensor by 
replaying data from a file, the Handler module provides a consistent interface 
to the other modules in the program for accessing these services, without those 
modules having to know the low-level details of communicating with a sensor or 
reading from a data file. 

The Handler is also responsible for creating the sockets used for communi­
cation with the sensors. The implementation details of this are specific to the 
particular Bluetooth libraries used in the software, but the external interface is 
consistent, so if the Bluetooth library used happens to change, the calling mod­
ules will not have to change their interaction with Handler. 

The technical aspects of reading data from a file are naturally much simpler 
than connecting to a remote Bluetooth device, but the interface remains the same. 
A desire throughout the rest of the software was, as much as possible, to write the 
modules such that they did not need to be aware of whether or not the data was 
coming from a running sensor or from a file. Wrapping access to data files with 
the Handler module ensures that the rest of the software only needs to know how 
to interact with the Handler module, and not be concerned with the actual source 
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of the data. 
There are currently implementations for Bluetooth sensors and local data files, 

but if more data sources were to be added in the future (hard-wired sensors, 
network-connected databases storing global results, etc.), adding support would 
be a trivial task, and the rest of the software would not need to be modified. 

Another important role for the Handler, at least in the Bluetooth case, is to 
track the packet counter variable and temporarily store unprocessed data. 

The packet counter shown in figure 5.6 must be tracked in the DAU, to ensure 
that the packets are arriving in the correct order, and no data corruption is occur­
ring. The Handler module tracks the last packet counter value for each sensor. 
The process of checking that the next incoming value is correct is handled else­
where, but it is important to note that the value itself is stored in the Handler. The 
Handler is intended to encapsulate the complete set of control routines and state 
for each connection, including the packet counter value. 

The Handler is also responsible for storing any unprocessed data. The Reader 
loop only checks that some data is available from a particular sensor, not neces­
sarily that an entire 63-byte packet is available. SocketRead pulls all the data that 
is available from the sensor, and proceeds to process all the complete packets that 
are available. If only part of a packet has arrived, then that partial packet must be 
stored until the next check for data occurs. 

6.2.9 FFT 

The FFT module is responsible for performing the key FFf operations in the 
system. This includes performing an FFf over every 2048 samples, calculating 
the fundamental frequency and RPM, and refining these values with a polynomial 
interpolation scheme. 

In section 2.7.2 the DFT interpolation was discussed. One question left open 
was whether or not it was worthwhile to perform both polynomial interpolation 
and DFT windowing. 

The system was designed to perform 2048 point FFTs. At a sampling rate of 
500Hz, this equates to starting an FFT computation roughly every 2 seconds. One 
must remember that the FFf is calculated for each of the three axes and for up to 
eight sensors. A 2048 point FFT would require a 2048 DFT window, so with eight 
sensors, each requiring three full FFTs, this would equate to 2048 · 24 = 49152 
extra multiplications per complete round of FFT computations. 

These extra multiplications were deemed too expensive to run on the DAU, 
though if the extra accuracy is deemed important enough, techniques are avail-
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able to modify the source code of the FFf function such that the multiplications 
essentially happen for free. The complexity to modify the FFT routines was not 
thought to be worth the effort at this time. 

For any VA system, this question would have to be asked again. Is the extra 
accuracy provided by DFT windowing worth the extra computations, and more 
plainly, does the VA system even have enough computational resources to add 
DFT windowing to the rest of its calculations. 

6.2.10 Butterworth Filter 

While software such as MATLAB and Numpy can generate the necessary 
IIR coefficients for a Butterworth filter of pre-designed specifications using their 
butter function, and those coefficients can be passed to the filter or lfilter 
functions (MATLAB and Numpy, respectively) to perform the actual filtering, the 
software on the DAU does not make use of these features. 

The butter function requires the desired centre frequency of the bandpass 
Butterworth filter as part of the filter's specification, but the DAU does not know 
this centre frequency ahead of time. Instead, the desired centre frequency of the 
filter is calculated based on the actual operating frequency of the vibrating screen 
determined during RPM calculation. 

This frequency is then passed to a custom function implementing a fourth­
order Butterworth filter, where the coefficients are generated during run-time. Be­
cause of the high computational cost of calculating the coefficients, this operation 
only takes place whenever the centre-frequency has changed past some tolerance 
level. 

The filter then implements a high performance calculation phase, taking in 
samples in chunks with length a multiple of 4, allowing for fine-tuned loop unrolling[55] 
based around a Butterworth filter of order 4. 

The knowledge that the Butterworth filter will be order 4 allows for these opti­
mizations. With eight sensors running, the DAU will have to have 24 Butterworth 
filters running simultaneously, making it one of the most computationally expen­
sive components in the entire system. Passing samples in chunks reduces cache 
misses, and using a hand-rolled filter evaluation routine made specifically for this 
purpose gave much higher performance than the filter or l filter functions. 

To show the correctness of our implementation, the coefficients were gener­
ated (for an operating frequency of 14Hz) and then used with the freqz [56] func­
tion to produce the frequency response. The overall frequency response is shown 
in figure 6.10, and the magnitude response alone in figure 6.11. These show the 
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Figure 6.10: Butterworth Magnitude (dB) and Phase Response 
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Figure 6.11: Butterworth Magnitude Response 
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desired results of a maximally flat magnitude passband and a linear phase response 
in the passband. 

6.3 Design of the Desktop Software 

Alongside the DAU and sensors is a version of the software intended for use on 
a typical desktop/laptop Windows or Mac computer. The purpose of this software 
is to process the data files created during a VA session with the DAU, and use the 
greater CPU and display capabilities to provide more information than is available 
on the DAU. 

Particularly, this includes showing more simultaneous information on the main 
screen, as show in figure 6.12, computationally expensive calculations like the 
phase and eccentricity, and the report generation feature . 
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Figure 6.12: Main PC View 
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6.3.1 PCViewer 

In short, the PCViewer module performs the same duties as the PDAViewer 
module, except with the goal of rendering the display on a desktop/laptop PC. 
More data is available on screen when using the PC software, so more display 
components must be laid out, but in general the same data is available. On the 
DAU a technician cannot simultaneously look at the FFT, waveform and orbits 
for a sensor, but all can be seen at the same time on the PC thanks to the increased 
screen real-estate. 

Two numerical values that are available on the PC but not at all on the DAU 
(because of computational expense) are the calculated phase and eccentricity for 
an orbit. 

The phase of an orbit is defined as the angle of the major axis of the orbit 
from the X axis of the plot, while the eccentricity is a measure of how "circular" 
an orbit is. A value of O for the eccentricity indicates a circle, while a value of 1 
indicates a straight line. 

6.3.2 ReportGeneration 

The report generation capabilities of the software are centred around creating 
PDF reports based on certain calculations often performed on accelerometer data. 
The work in this module is essentially a straight port of pre-existing (and confi­
dential) Microsoft Excel spreadsheets provided by an industrial partner, so they 
will not be analyzed as part of this thesis. 

6.4 Vibration Location Detection Tool 

In Chapter 4, a technique for using cross-correlation as an ideal filter was in­
troduced, along with a description of using this technique to aid in the localization 
of vibrations on a rotating machine. 

The VA system described in this thesis was built in part for the purpose of 
employing this new technique. The requirement for multiple sensors operating 
simultaneously was driven by this technique, as well as other reasons listed previ­
ously. 

A tool, the Vibration Location Detection Tool (VLDT) has been developed to 
perform automated vibration location detection. It is currently separate from the 
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main VA system, but uses the data files created by the system. Future versions of 
the DAU software could incorporate it directly. 

The VLDT is not a real-time tool. It is a post-processing step, requiring the 
results from a full VA run before it can be used, much like the output of the 
ReportGeneration module. 

6.4.1 Design 

The basic structure of the VLDT is a system that reads data files created by the 
DAU, analyzing them to identify vibrations, and creating a plot for each vibration 
to illustrate that vibration's affect on the machine. 

Technically, the VLDT can only currently be applied to vibrating screens, with 
data recorded by the DAU described above. However, the necessary components 
that are specific to the DAU and vibrating screens are modular, and can very easily 
be swapped out. Namely, the module for reading data files generated by the DAU 
could easily be replaced if a new source of recordings were to be used, and the 
module for creating the visualizations of the vibrations on the vibrating screen 
could easily be replaced with one that does visualizations for another structure. 

----------------
Parameters 

----------------------
Frequencyldenllflcallon 

CU Parameters - -.1 CrossCorrelat,onFFT I r-----------------------------~ 
Plots 

StoredParameters 

• FFTPlots 

I I Peak Identification -
r---------------~ ScreenFrequencylocalionPlot Data Sources 

+ 
Logger I CommonFrequencies ~ 

Simulator 

Figure 6.13: Vibration Location Detection Tool Components; Arrows show data 
flow 

Figure 6.13 shows the structure of the VLDT. Two inputs are required up front: 
Parameters for frequency detection, and the data files (DataSources) generated by 
the DAU. 
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The connection between the DAU and this tool is the Logger module. This 
module is used by both software applications. It entirely encapsulates the process 
of writing to and reading from data files generated by the DAU. This module 
could easily be replaced in the future to enable reading from a different vibration 
analysis tool. 

Alternatively, a Simulator module is present. This can be used to configure 
simulated vibrated screens, with vibrations present at different locations and with 
different amplitudes and frequencies, for the purposes of testing the VLDT's abil­
ity to detect those vibrations. 

The Frequency Identification block of the diagram contains the three modules 
which perform the actual mathematics and computations of vibration location de­
tection. CrossCorrelationFFT implements the techniques of section 4.6, perform­
ing the necessary cross-correlations and FFTs amongst all the sensor recordings. 
This data is passed to a Peakldentification module, where frequencies from the 
FFTs are isolated and identified (this process is described in section 6.4.4. Fi­
nally, the CommonFrequencies module identifies vibration frequencies present in 
multiple locations on a machine, and packages them together. 

The results of this block are passed to the Plots block, where appropriate vi­
sualizations are created, displaying the presence of vibrations through a screen. If 
a different vibrating machine were under analysis, the ScreenFrequencyLocation­
Plot would simply be replaced with a different visualization module. 

To repeat, the only components that would need to be changed to support dif­
ferent types of vibration machinery are the appropriate module in the DataSources 
block and the ScreenFrequencyLocationPlot module. 

6.4.2 Module Guide 

Name CLIParameters 
Service Responsible for reading/parsing command-line thresholds 
Secret Command-line argument parsing algorithms 

Table 6.22: Module: CLIParameters 
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Name StoredParameters 
Service Stores default command-line parameters 
Secret Data structures for storing and retrieving default parameters 

Table 6.23: Module: StoredParameters 

Name Logger (Same as DAU Logger) 
Service Reads data samples from a DAU created log file 
Secret Data structures of log files 

Table 6.24: Module: Logger (Same as DAU Logger) 

Name CrossCorrelationFFT 
Service Computes the FFT of the cross-correlation of two inputs 
Secret Algorithms for computation of FFT and cross-correlation 

Table 6.25: Module: CrossCorrelationFFT 

Name Peakidentification 
Service Identifies peaks in FFT to isolate frequencies 
Secret Algorithm for identifying peaks 

Table 6.26: Module: Peakldentification 

Name CommonFrequencies 
Service Determines frequencies common to multiple sensor points 
Secret Algorithm for determining common frequencies 

Table 6.27: Module: CommonFrequencies 
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Name FFTPlots 
Service Generates raw FFT plots 
Secret Algorithms for working with drawing libraries 

Table 6.28: Module: FFTPlots 

Name ScreenFrequencyLocationPlot 
Service Creates vibration location visualizations 
Secret Algorithms for interpreting identified and rendering frequencies 

Table 6.29: Module: ScreenFrequencyLocationPlot 

6.4.3 Simulation 

To illustrate the VLDT and the Simulator module, a simulation was created 
reflecting one possible fault situation. In particular, a screen is operating at 15Hz 
and two faults are present on the screen, one directly between points RFS and 
RDS, with another between LDB and LDS. 

The data for each sensor is a combination of four possible data sources: 

• The fundamental operating frequency, 15Hz, amplitude 3, random phase 

• Fault 1, 80Hz, amplitudes from 0.1 to 2 

• Fault 2, 115Hz, amplitudes from 0.3 to 3 

• Gaussian random noise, zero-mean, standard deviation of 3 

All sensors receive the fundamental frequency at the same amplitude, but the 
phase is randomly generated for each. 

The amplitudes of Fault 1 and 2 are determined based on how far the sensor 
is from the fault source. Fault 1 is centred between RFS and RDS, and fault 2 is 
between LDB and LDS. Table 6.30 shows the particular contributions of each. 

It is important to note that the amplitudes of the fault frequencies are all small 
compared to the amplitude of the Gaussian noise. While a normal FFT is usually 
fairly good at pulling out frequencies from noise, figure 6.14 shows the FFT plots 
for sensors LDS and LFS. Both of those sensors are receiving the 80Hz fault signal 
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I Sensor Location I Fault 1 Amplitude (80Hz) I Fault 2 Amplitude (115Hz) I 
LDB 0 3 
LFS 0.1 1 
LFB 0 0.5 
LDS 0.1 2 
RDB 0.8 1 
RFS 2 0 
RFB 0.8 0 
RDS 2 0.3 

Table 6.30: Cross-Correlation Simulation Data Sources 

at an amplitude of 0.1, and this is not strong enough to come through to the FFT. 
Instead the FFT only shows the fundamental frequency at 15Hz and the 115Hz 
fault frequency. 

I 
'\"""i ----5(-J ---1"""m ___ 1""',,o---2(""'l0 ---..!2rin 

LFS 

I 0c ... , ---5,-l ---1"""m ___ 1"""~,o---21"""xi--""'"'!l2:;o 
Frequency (Hz) 

Figure 6.14: Buried Fault Signal; Only the l 15Hz fault signal comes through the 
FFT, the 80H z signal is too small and gets buried in noise 

A technician looking at these FFT plots for LDS and LFS would assume that 
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the fault frequency is not being transmitted as far as those sensors, and any filtered­
orbit analysis would eliminate those frequencies anyway, so the orbit would offer 
no additional information. 

Looking at all the FFT plots, the technician would notice that other frequencies 
are present. For instance, figure 6.15 clearly shows two fault frequencies present 
in addition to the fundamental frequency. However it is difficult to localize where 
the various fault might be originating from. This is the power of cross-correlation 
and in particular, the power of the tool we have developed. 

RDB 

I I 
lllJ._ ......... 111[1,ll ... l ............ JOO~iilll,i(j....._l!l!Jl,,~.1 ---.,1200-----~2'j(). 

Frequency (Hz) 

Figure 6.15: Fourier Transform of RDS signal 

As mentioned, the tool performs a cross-correlation between each possible 
pair of sensors, and performs an FFT on this result. For each resulting FFT, our 
custom peak-finding algorithm (section 6.4.4) is employed to automatically detect 
frequencies that are present in the FFT. 

Figure 4.2 shows the result of this for the fault frequency at 80Hz, and fig­
ure 6.16 shows the result for l 15Hz. Recall that the simulated data centred the 
80Hz fault between the RDS and RFS sensors, and the 115Hz fault between LDB 
and LDS. The plots clearly show to the technician where the fault signals are most 
strongly correlated, data that was never automatically available before. 
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Figure 6.16: Fault Location Detection at 115Hz; Fault is centred between sensors 
LDB andLDS 

6.4.4 Peak-Finding 

A common task surrounding FFT processing is identifying the fundamental 
frequency in the analyzed signal. Typically this is done with the argmax function, 
simply finding the point in the FFT with the highest magnitude. This was shown 
in section 2.7 as a reasonably simple task. 

For the purposes of the fault localization tool developed here, this is not enough. 
Instead of identifying just the strongest peak in the FFT of, the goal instead is to 
identify all peaks. While it could be left up to the user of the tool to manually 
identify all the peaks resulting from the FFT, the entire goal of the tool is to au­

tomatically do the work of fault localization. As such, user intervention is not 
desired. 

The basis of the peak detection algorithm is slope changes, which is often the 
case in local maxima/minima algorithms. The basic algorithm is based on the 
work in [57] but with modifications. 

The algorithm iterates through all the points of the FFT. As soon as the slope 
changes from negative to positive, or two positive slopes in a row are seen, then 
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the variable can_looLfor_peak gets set to True. These two cases are shown in 
figures 6.17 and 6.18, respectively. 

can_look_for_peak= True 

I 

t+l t+2 t+3 t+4 t+S t+6 

Figure 6.17: Negative-to-Positive Slope Change 

can_look_tor _peak= True 

\ 

t+l t+2 t+3 t+4 

Figure 6.18: Positive-to-Positive Slope 

The high-level steps the algorithm takes are: 

1. Check for a negative-to-positive slope change or consecutive positive slopes 

2. Set can_looLfor_peak to True when either occur 

3. Begin looking for candidate peaks 

4. Mark a peak at point t as a candidate if its value X [t J is greater than a. 
(figure 6.19) 
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5. Check if \1(0 :Si :S 't!X[t] > L\*X[t + i]) 

6. If that condition is met, then mark point t as a peak, and continue 

where 

a A minimum threshold that a peak must pass to be considered 

't The number of points after point t that must be less than X [t] to keep t in con­
sideration as a candidate peak 

L\ Used to verify that the 't points after tare all less than X[t] by a certain value 

These three parameters are all configurable in the tool, but empirical testing 
has found that default values of 

a=5.0 

't = 4 

L\ = 0.2 

tend to produce very reasonable results. 
Marking a peak as a candidate is shown in figure 6.19. The plot had a negative 

slope from t + 1 to t + 2 and a positive slope from t + 2 to t + 3, allowing the 
algorithm to check the next peak t + 3 for possible candidacy. X[t + 3] is greater 
than the chosen a, so t + 3 is marked as a candidate peak point. 

When the condition in figure 6.19 is met, a special variable peaLfound gets 
set to True, at which point the algorithm inspects the next 't points after t + 3. 
Each of these 't points must have a magnitude less than a factor of L\ · X[t + 3]. 
Figure 6.20 shows a case where this restriction fails immediately on t + 4. In this 
case the point t + 3 has its candidacy removed, peaLfound is reset to False, and 
the algorithm returns to the basic slope checking. Figure 6.21 shows the condition 
passing for all 't points. 

6.5 Description of the Data Acquisition Hardware 

For completeness, aspects of the hardware platform used for the DAU are 
presented. These are specific based on choices and needs of a VA system for 
vibrating screens. 
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Figure 6.19: Marking a Peak as a Candidate 
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Figure 6.20: Peak Not Passing the~ Criteria 

While the sensors themselves were custom-designed for this research, as noth­
ing appropriate was available "off-the-shelf", the hardware components of the 
Data Acquisition unit are developed by commercial companies. Specifically the 
main unit (the Personal Digital Assistant, or PDA) is a Tripod Data Systems (TDS) 
Nomad outdoor rugged handheld computer [58] running a version of Linux pro­
vided by SDG Systems Inc. 

While this unit contains an internal Bluetooth transceiver, a USB-based exter­
nal Bluetooth dongle was also selected for use with the system. 
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I confirmed peak 
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Figure 6.21: Confirming a Peak 

6.5.1 PDA 

The brochure for the Nomad states [58] 

... the Nomad computer meets rigorous MIL-STD-81 OF military stan­
dards for drops, vibration, humidity, altitude and extreme tempera­
tures. It also comes with an IP67 rating. That means the Nomad 
handheld is completely sealed against dust, and it can survive immer­
sion in up to a meter of water for 30 minutes. 

Being sealed for dust and water, as well as high standards for drop resistance 
were essential to the choice of this unit. The Nomad has an 806MHz ARM [59] 
processor, l 28MB or RAM and 512MB of Flash storage. These were found to 
be adequate for the computational requirements of the DAU. The display is a 
480x640 VGA TFf touchscreen LCD. Many other handheld units that were found 
had resolutions much lower than this, and because of the requirement to collect 
data from eight sensors simultaneously, the highest resolution possible was needed 
to show data for all eight sensors at the same time. 

The Nomad also incorporates an internal Bluetooth transceiver, an SD-card 
slot, a CompactFlash card slot and full USB2.0 host and client ports. 
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6.5.2 USB-Based Bluetooth Transceiver 

While the Nomad contains an internal Bluetooth transceiver it is unfortunately 
inadequate for the needs of the system. Specifically it is only a Class 2 Bluetooth 
transceiver, and as mentioned in section 5.3.3 this provides only a very short the­
oretical maximum operating range. Even if it were a Class 1 device, there would 
still be the issue from section 5.1 wherein a single Bluetooth network can only 
contain eight devices. With the Nomad being one required device in the network, 
this would only allow communication with seven sensors. 

To solve both of these issues an external USB-based Bluetooth dongle is at­
tached to the Nomad during operation. This is a Linksys USBBTlOO Class 1 
unit [60], shown in figure 6.22. This was chosen over a multitude of other Class 
1 USB devices because empirical testing showed it had the best range. Unfortu­
nately most manufacturers of USB-based Bluetooth devices do not list the dBm 
rating of the device, only if it is Class 1, 2 or 3. Linksys does give a rating for this 
device, at 13 - 17 dBm. Multiple units had to be purchased and tested before the 
Linksys device was decided on. 

Figure 6.22: Linksys Bluetooth USB Adapter USBBTl 00 

Not only does using this dongle allow the system to operate at Class 1 ranges, 
it also provides a way for skirting around the eight device limit. While the Linksys 
device does not allow the unit to communicate with anymore sensors than any 
other Bluetooth device would, what it does do is provide a second Bluetooth de­
vice for the Nomad. 

When seven or fewer sensors are going to be used for data acquisition, the 
software only makes use of the Linksys device. When eight sensors are desired, 
the software has the Linksys communicate with seven of them, while using the 
internal Bluetooth for the eighth. So in essence two separate Bluetooth networks 
are running simultaneously. 

There is still the problem that the internal Bluetooth transceiver of the Nomad 
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is only Class 2, so the software allows the user to specify which sensor they are 
physically closest to, and the software will have the internal Bluetooth communi­
cate with that sensor. 

6.5.3 Linux Operating System 

While not actually a piece of hardware, it is important to note that the No­
mads purchased for the DAU all come loaded with a customized version of the 
Angstrom OpenEmbedded Linux Distribution [61]. This was actually a major 
factor in the selection of the Nomad, as the Linux distribution is essentially equiv­
alent to what one would find on a desktop or server Linux machine, meaning the 
majority of open-source software for Linux would simply work, and not require 
any modifications for running on a handheld device. 

This is in contrast to the Windows Mobile-based devices that were found, 
where only software specifically made for Windows Mobile (which is distinct 
from the standard Windows operating systems) would work. 

In particular, using Linux allowed the software to make use of the standard 
GTK [62] and wxWidgets [63] window and widgets systems, the NumPy and 
SciPy numerical computation libraries and recent versions of the Python [64] pro­
gramming language. 

6.6 Cython 

Certain components in the software were not implemented in Python, the main 
language used, but instead in a related language called Cython [49]. 

A common technique in Python programming is to write C-based modules 
(called "extension modules") where performance is vital. Being an interpreted 
language, Python is often not as fast as compiled C-based software. A C-based 
API is available for writing modules in C that can be imported and used in a 
Python program. This allows performance critical components to be written in C 
and used from within Python. 

Cython is a speciality language that itself compiles down to C modules, which 
can then be compiled such that they are directly usable in Python. The advantage 
of using Cython over programming directly in C is that the Cython language is 
itself very similar to Python, and the programmer does not need any knowledge 
of the C-based API required by Python. Thus the amount of work required to 
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implement a component in high-performance C is greatly reduced from working 
directly with C. 

In simple terms, Cython is Python with explicit static-type declarations. A 
number of base types (with direct mappings into C) are defined in Cython, such as 
integers, floats, character arrays, etc., and variables and functions can be marked 
as being of that type at compile time. This allows for compile-time optimiza­
tions not available with the dynamic run-time type system used in Python. This 
provides impressive speed gains for certain classes of problem. 

Every module in the software was first written in Python, and only transi­
tioned to Cython when performance was found to be lacking. In the end, every 
single module in the "Collect and Process" group was eventually transitioned to 
Cython. These modules are all used extensively (each is invoked in almost every 
loop iteration of the Reader module's main loop), and many are computationally 
expensive. The DAU itself has limited computational resources ( compared to a 
modem desktop or laptop computer), so these speed gains were necessary. 

In the "Display" group, only the Scalers and CircularQueue modules were 
moved to Cython. They contain functions that are called almost continuously, and 
impressive performance increases were gained with the move to Cython. 
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Chapter 7 

Analysis of Wireless Network Issues 

To reliably use this system not only for the capabilities of the current software, 
but as well for future versions of the software, a catalogue of existing and potential 
system issues must be examined and analyzed. 

One problem with the system is currently known, and will be discussed at 
length in this chapter. Namely the issue of synchronization delays between the 
nodes in an active sensor network. 

This problem is not unique to wireless VA systems, but any system with wire­
less sensors that require a strong degree of synchronization. The use of Bluetooth 
added an additional layer to the issue, one that any researcher using Bluetooth for 
wireless networks should be made aware of. 

7 .1 Description of Synchronization Problem 

In addition to the cross-correlation analysis described in Chapter 4, some work 
was started on using lag calculations from cross-correlations to determine phase 
differences between physical locations. 

To begin this work with the VA system, the synchronization level of the sen­
sors needed to be tested. The first tests were performed by placing eight sensors 
on a flat, stable surface. Recording was started, and impulses were introduced by 
hitting the surface with a solid object. These tests were called "Spike Tests", and 
were performed to see what kind of time lag, if any, existed between the sensors. 
For certain kinds of cross-correlation analysis (including the work of Chapter 4), 
the lag does not really matter, but for phase analysis, an understanding of lag 
within the system was vitally important. 
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The first results are shown in table 7 .1. This shows the number of samples 
between a given pair of sensors recording the same event. 

I LDB I LFS I LFB I LDS I RDB I RFS I RFB I RDS I 
LDB -14 -38 -80 83 -65 -55 -26 
LFS -24 -65 97 -51 -40 -12 
LFB -41 100 -27 -16 13 
LDS 95 14 25 54 
RDB -81 -95 -88 
RFS 11 40 
RFB 29 

Table 7 .1: Eight Sensor Spike Test; Sample lag between eight sensors 

The NumPy function xcorr (similar to the MATLAB function of the same 
name) was used to perform cross-correlations between each of the sensors. It takes 
two data sets, and returns a list oflags (oflength 2 ·maxlags+ l ), and correlations, 
a 2 · maxlags + 1 length correlation vector. The conditions for the recording con­
sisted of five distinct spikes on the surface, so the lag for each cross-correlation 
giving the strongest correlation should represent the point in time when both sen­
sors saw the spikes. For each pair of sensors the lagged cross-correlation was 
calculated as in 7.3. 

(lags , correlations) = xcorr(x, y) 
max_correlation = argmax correlations 

x 

max_lag = lags(max_correlation) 

(7.1) 

(7.2) 

(7.3) 

The value maxJag shows how many samples apart two sensors were when 
viewing the same physical event. The worst result happened to be between sensors 
RDB and LFB, where there was a full 100-sample difference in the time between 
recordings. At 2 ms between samples, this equates to a full 200 ms difference 
between the time that RDB recorded a spike and LFB recorded the same spike. 
This is obviously unacceptable if trying to use the DAU to detect phase delays 
between physical events occurring in a vibrating system. 

What is the source of this error? How could it be that two sensors recording 
the same physical event would report that event 200 ms apart? 

Four separate issues revealed themselves: 
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1. Unsynchronized reception of "Start sending data" message 

2. Lack of proper time stamp 

3. Unsynchronized recording between SensorManager instances 

4. Propagation time of data through communication stacks 

Each of these issues can be traced back to improper synchronization of the 
wireless network. Synchronization of wireless sensor networks is actually a field 
with active research. A brief summary of the current research will be presented, 
before returning to the problem of these four issues . 

7.2 Synchronized Wireless Sensor Networks 

In a Wireless Sensor Network (WSN) where distributed nodes take sensor 
readings from their environment, time synchronization between the nodes is needed 
for two main purposes: 

1. Scheduling when nodes should coordinate to simultaneously take samples 

2. Time stamping the individual samples that a node records 

In traditional networks connected via a physical medium, time synchroniza­
tion is a well understood problem. These networks either have a dedicated cable 
used exclusively for propagating a clock signal, or use a data channel for synchro­
nization, embedding the clock signal inside the data. 

Recent advances in component miniaturization and low-cost/low-power de­
vice designs have increased not only research into distributed WSNs, but also 
practical implementations [65]. These networks must be highly energy efficient 
and cost effective to make their use practical in the real world. In response to 
this, new algorithms have been developed to facilitate clock synchronization in 
systems lacking a physical clock signal medium. Time synchronization is just as 
important in wireless sensor systems, but the problem is much more difficult. 

One classical solution is to employ GPS receivers on each sensor node. GPS 
provides high accuracy, better than 200µs relative to UTC [66]. Unfortunately 
GPS receivers still tend to be expensive, both in cost and energy use, to make them 
a viable solution for low-cost high-density sensor networks. GPS also requires a 
line-of-site view of the sky, limiting them to outdoor scenarios. 
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More realistically, algorithms have been developed for propagating a clock 
signal through the same wireless medium that the data is transmitted. 

The two main systems for clock synchronization are Master-slave and Peer­
to-peer. In a master-slave protocol, one node or unit is defined as a master, and all 
other nodes are the slaves. 

Many examples of protocols based around master-slave can be found in the 
literature. Arias et. al [67] built a sample WSN wherein a beacon broadcasts a 
synchronization message every T seconds to each node in a three-node network. 
The nodes are sampling a signal at 400Hz, and a general purpose output line on 
the node is measured with an oscilloscope to record when it actually performs its 
sampling. Using just their simple synchronization procedure, the authors were 
able to show that the nodes could be kept in sync if a maximum inter-node phase 
of 100 µs is allowed. 

Mock et. al. [68] were able to use the IEEE 802.11 clock synchronization 
procedure, which employees MAC level clock synchronization. 

A particularly interesting mechanism is described in [69], entitled Reference­
Broadcast Synchronization (RBS). In this system nodes send reference beacons to 
their neighbours using MAC or physical-layer broadcasts, so instead of coordinat­
ing with a central unit, receivers coordinate with each other. The beacon message 
contains no time stamp, nor does it need to. 

An excellent survey of clock synchronization systems for WSNs can be found 
in[70]. 

Bluetooth wireless networks in particular present issues to network synchro­
nization. One of the best papers found discussing this topic is [71]. The authors 
not only analyze the issues surrounding synchronization with Bluetooth, but also 
propose a new synchronization method, Broadcast Synchronization over Blue­
tooth (BSB), with included tests on their own implementation. They were able 
to find that the synchronization error average only 4.6µs, with a worst case error 
of 17.4µs. This compares to 16.9µs and 44µs for the TPSN method introduced 
in [72], and 29.13 µs and 93 µs for the RBS method. 

Unfortunately BSB requires low-level access to the Bluetooth transceiver, on 
both the sensor-side and the DAU, that is not available to us with the selected 
hardware. It does prove though that Bluetooth can be a suitable choice for wireless 
networks requiring tight synchronization. 
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7 .3 Analysis of the four synchronization problems 

To reiterate, the four synchronization problems present in the system are: 

1. Unsynchronized reception of "Start sending data" message 

2. Lack of proper timestamp 

3. Unsynchronized recording between SensorManager instances 

4. Propagation time of data through communication stacks 

7.3.1 Unsynchronized Reception of "Start sending data" Mes­
sage 

Problem 1 comes from the way in which the DAU tells the sensors to start 
transmitting their data. At the beginning of a session, after the DAU has con­
nected to each of the sensors, the technician presses a "Run" button. This tells the 
DAU to send the "Start sending data" message (table 5.3) to each of the sensors. 
With eight sensors, this equates to sending eight separate messages, one to each 
sensor. Unlike 802.11 networks, Bluetooth does not nonnally allow for broadcast 
messages. Anything that must be sent to every sensor has to be sent individually 
to each. 

This causes an immediate problem because each sensor will receive the mes­
sage at a different time, and thus start transmitting data at separate times. Not only 
do each of the messages have to be transmitted separately, but there are multiple 
layers of software that each must pass through before actually passing through the 
air to the sensor, possibly changing the time it takes for each message to transmit. 

At a very basic level, sending a single byte causes that byte to travel through an 
application layer, top-level kernel layer, link layer (Bluetooth driver) and hardware 
layer (Bluetooth transceiver). 

Each of the layers of the stack potentially has its own buffers, and as the DAU 
is a full Linux system, we cannot predict when process switching might take place, 
meaning passing the same message through the stack multiple times might require 
a different amount of elapsed time. 

The BSB synchronization method described in [72] proposes a solution to this 
problem. Some Bluetooth devices provide very low-level access to the HCI layer, 
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a base layer of the Bluetooth protocol used for implementing most of the higher­
level functionality. HCI not only allows for broadcast messages (a single trans­
mitted message simultaneously received by all listening devices), but presents an 
interface for detecting exactly when a message has arrived, before any processing 
of the message occurs. This would completely eliminate the problem of having 
to send multiple start messages, each having to individually pass through all the 
layers and buffers of a normal Bluetooth message. Figure 7. l clearly shows the 
timing characteristics of using HCI for the BSB protocol. The physical flight time 
of the message TOFi is negligible, and the reception times TsT; and Tue; will be 
essentially identical as long as the exact same Bluetooth devices are used. 

PC BT MODULE#O ·· ..... ' BT MODULE 11 uCONTROLLER 11 
HCI COMMAND HCI COMMAND BTMODULEIIO~ MESSAGE RE- HCI COMMAND 
SENDING PROCESSING + BTMODULE#1 CEPTION + PROCESSING + 
(BROADCAST MESSAGE BC MESSAGE TIME HCI COMMAND GPIO RAISING 
MESSAGE) SENDING OF FLIGHT SENDING 

~~~-,---l BT MODULE #N uCONTROLLER 
BT MODULE IIO~ MESSAGE RE- : HCI COMMAND , 
BT MODULE #N CEPTION + , PROCESSING + , 
BC MESSAGE TIME HCI COMMAND , GPIO RAISING , 
OF FLIGHT SENDING 

T,c TaTo TOF; Tar; Tuci 

Figure 7.1: BSB Timing (image from [72]) 

Unfortunately the hardware selected for the sensors is incapable of using the 
HCI layer, so none of the currently manufactured sensors will ever be able to take 
advantage of this technique, and future sensors would require both a hardware and 
software redesign. Suitable Bluetooth hardware with enabled HCI and supported 
our power requirements could not currently be found anywhere. 

This changes the timing diagram to require i Tpc times and i TsTO time peri­
ods, each one being different. 

Timing experiments on our system have shown that typically the total time 
between starting to send the "Start" message and reception of all messages, for 
eight sensors, is roughly lOms. Unfortunately every few tests this would jump to 
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as much as 40ms. If the time was consistently IOmsthen post-processing could 
be done to improve the synchronization results, but with the occasional jump to 
40ms, and no way to detect this 40ms jump, this cannot be done. 

Even when the time does not jump to 40ms, the time between sensors receiv­
ing the messages varied drastically. 

The timing experiments were performed by connecting eight sensors to a 16-
channel digital oscilloscope, and setting a GPIO line high on each sensor when it 
received its individual start message. This let us compare the relative times that 
each sensor received the message. 

Eight-sensor tests were performed, as well as five-sensor. The results of two 
of the five-sensor tests are shown in figure 7.2. Time t = 0 is interpreted as the 
time that the first sensor received its start message. The time differentials are then 
shown for every subsequent sensor receiving its message. Though both tests were 
performed under identical conditions, using the exact same sensors and DAU, the 
total time for all messages was almost double in the first experiment compared to 
the second, and the inter-sensor times varied quite a bit. 

Multiple experiments were performed, but only the first two are shown, as they 
are fairly indicative of the rest. 

The results of these experiments reflect just how variable the time required 
can be for the DAU to go from calling the appropriate send () function in code to 
the contents of that message actually being transmitted over the air. The software 
on the sensors is architected in such a way that the time between receiving a 
Bluetooth message at the transceiver and processing its contents is negligible, so 
the times shown in figure 7 .2 are almost entirely from the DAU side. 

7.3.2 Lack of Proper Timestamp 

The next issue we discovered preventing proper wireless synchronization is 
the lack of a true timestamp on readings coming in from the sensors. Almost all 
of the published synchronization schemes begin with the master sending out some 
form of timestamp, so that all the sensors in a network have a common time point 
to synchronize on. When each sensor then sends a message with data, it attaches 
its own local time to that message (where the local time was synchronized with the 
master), letting the master know exactly when that particular data was recorded. 

Our data messages from the sensors contain no such timestamp, as shown in 
figure 5.6. 
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Figure 7 .2: Timing Diagram 
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7.3.3 Unsynchronized Recording Between SensorManager In­
stances 

A problem that arose from the implementation of data recording on the DAU 
was that the individual SensorManager instances were initially told to start record­
ing in a fairly haphazard manner. 

The SensorManager module is where data coming in from the sensors is ac­
tually recorded to disk. Each sensor connected to the DAU has its own Sensor­
Manager instance, and the (up to eight) SensorManager instances record the data 
coming into them into their own individual data files. 

When a user of the DAU wishes to start recording the data that is coming in, 
they simply press the "Record" button on screen, and a message is sent to each of 
the Sensor Managers telling them to start recording all of the data they process. 

Unfortunately, no care was taken to look at the current progress of each of 
the SensorManagers. The DAU is a single processor system, so even with multi­
threading, no more than one SensorManager is actually processing data at any 
individual point in time. Because of this, the SensorManager for sensor i might 
be a few hundred samples ahead of sensor j when the "Record" message comes 
in. Those samples already processed for i will not be recorded, but the samples 
representing the same set of time for sensor j will be recorded. This will cause a 
huge skew in the final recorded data, because the first recorded sample for sensor 
i will not represent the same point in time as the first recorded sample for sensor 
j. 

This has been verified as the prime contributor to the huge skew shown in 
table 7.1. 

7 .3.4 Propagation Time of Data Through Communication Stacks 

The final issue is very much related to one of the problems preventing synchro­
nization of the "Start sending data" message described in section 7.3.1. In that 
case, the multiple buffers caused variable delays in the transmission of the mes­
sage, but all of the same communication stacks will have receive-buffers, causing 
variable delays in the reception of data from the sensors. When the select () 
function is used to query for the availability of new data, the Linux kernel may or 
may not return all currently available data. Just because the function returns data 
for only m < n sensors does not necessarily mean that data is not already present 
for all n sensors. 

This is one of the main issues causing the SensorManagers to process data 
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representing the same instant in time, at different times. A theoretical scenario 
might be: 

1. Sensors i and j simultaneously transmit data representing time t, i(t) and 
j(t) respectively 

2. select () is called in the Reader module 

3. The Linux kernel has so far only processed data i(t), so only sensor i is 
marked as currently having data by select () 

4. SocketRead is informed that sensor i has data, but sensor j has none, so it 
reads the data in 

5. Data i(t) is passed to the SensorManager instance for sensor i, SensorManager; 

6. SensorManageri performs the DC and Butterworth filtering on the data, but 
it is not recorded 

7. The user presses the "Record" button, which informs all Sensor Manager 
instances to start recording 

8. The Linux kernel finally processes data j(t) 

9. select () is called again, and sensor j is marked as having data 

10. Data j(t) is finally read by SocketRead and passed to SensorManagerj 

11. SensorManager j DC and Butterworth filters data j(t) and then records it 

This clearly illustrates a very likely scenario in which data i(t) and j(t), rep­
resenting the same moment in time do not both get recorded to the respective files 
for sensors i and j. 

7.3.5 Summary 

While four separate issues were detailed, in reality they are tightly intercon­
nected, with one directly affecting the other. 

The unsynchronized "Start" messages make it impossible for the sensors to 
have a common time reference. The lack of an explicit timestamp marker in the 
data packets is a direct result of not considering the common time reference prob­
lem. The unsynchronized recording of the SensorManager instances is partially 
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the fault of not being able to coordinate packets from different sensors, which 
is directly compounded by the various receive buffers in the different commu­
nication stacks causing multiple sets of data to arrive at the application level at 
different times, even if they were physically received over the air simultaneously. 

7 .4 Potential improvements to wireless synchroniza­
tion 

While a proper solution to the synchronization issue is essentially impossible 
without changing the Bluetooth transceiver on the sensors, various steps can and 
have been taken to mitigate the issue as much as possible. 

7.4.1 Optimized send () Routine 

Until recently, the software was sending the start character to each of the sen­
sors in a fairly inefficient way. The software was looping through a list of Handler 
instances, building the send message individually for each, sending the message 
through the Handler interface, and iterating to the next Handler to perform the 
same step. This caused all of the time required to iterate through the list of Han­
dlers, as well as accessing the Handlers interfaces, to be added to the time between 
actually calling the send () function for each sensor. 

A very low-level optimization, requiring knowledge of the internals of the 
Handler module, was necessary to solve this. 

While iterating through the list of Handler instances, a new list was created, 
containing function references to the actual send () function for each of the low­
level Bluetooth sockets contained within each of the Handler instances. 

Each sensor receives an identical start message, so the message was then con­
structed just once, and finally the list of function references was iterated over, 
calling each of the references with the same constructed message. 

Now the only computation performed between each of the send () calls is the 
code necessary for iterating through the list. 

7 .4.2 Ad-hoc Timestamping 

With regards to the lack of tirnestarnp, figure 5.6 showed the structure of the 
data corning in from the sensors, and there is no explicit tirnestarnp being used. 
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Fortunately though, there is the CNT byte appended to the end of the packet. 
As mentioned in section 5.2.10, this was put in place as a simple CRC. Because 
of the nature of how it's incremented, it could be used as an ad-hoc timestamp 
mechanism. 

The CNT is known to always start at 0, and roll over after 255 (being a one­
byte value). Because it is only incremented once for every 10 sample periods, and 
each sample period is 2 ms long, this one byte counter can be used to timestamp 
10 · 2 ms· 255 = 5120 ms worth of time. Though it rolls over to O after 5120 ms, the 
DAU can simply keep track of the number of times it has rolled over, effectively 
implementing a full timestamp. 

The main problem with this approach is that we still cannot guarantee at what 
point in time each of the original CNT = 0 messages actually come from. Even 
though experiments on the system showed that it typically takes IOms for all the 
sensors to receive their "Start" message, the inter-sensor receive times varied so 
much that we cannot really be sure when a sensor actually received it, relative to 
the other sensors. 

7 .4.3 Synchronized Recording in Sensor Managers 

As described in section 7 .3.3, the SensorManager instances were not starting 
their recording in a synchronized way. The goal should be that the first sensor 
readings actually recorded by each SensorManager should all represent the exact 
same moment in time. 

Because we have no way of actually synchronizing the incoming data with 
respect to each other, this cannot be fully accomplished. However the effects of 
it can certainly be mitigated. As was shown in table 7 .1, the effects were fairly 
serious. 

The easiest way to reduce the severity would be to track a little more state with 
respect to how many packets each SensorManager has processed. The example 
in section 7.3.4 showed how easy it was for the start point of the data files for 
two different SensorManagers could vary so greatly. If the technique for ad-hoc 
timestamping from the previous section were implemented, it would suddenly be 
very easy for each SensorManager to track exactly how many milliseconds worth 
of data they have already processed. 

Let the variable num_packetsi represent the number of packets each SensorManageri 
has processed, for 1 :::; i :::; n and n sensors. 

When it is time to begin recording incoming packets, the software would sim­
ply find max(num_packetsi)· Each SensorManageri would then have to wait until 
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it had processed that many packets before it begins recording subsequent values 
to its file. 

If all of the sensors were perfectly synchronized with respect to time, then this 
would completely solve the issue of delays in processing causing unsynchronized 
files. 

Since the sensors are not synchronized, this will at best reduce the magnitude 
of the problem. 

7 .4.4 Replacement Bluetooth Transceivers 

To attain true synchronization, the hardware on the sensors has to be changed, 
replacing the current Bluetooth transceiver with one that allows access to the HCI 
level of the Bluetooth communication stack. The changes suggested here will 
improve the situation to a degree. 

The difficulty is finding a Bluetooth transceiver that provides HCI access and 
is powerful enough to meet the environment requirements of vibrating screens. 
Thus far, such a device has not been found. 

7 .4.5 Cross-Correlation Lag Adjustment 

The cross-correlation technique used in section 7. I to detect the lag error be­
tween two sensors can also be used to perform posterior synchronization on the 
recorded data files. 

If the cross-correlation between two sensors shows that the maximal corre­
lation comes at a lag of m packets, then the first m - 1 packets can simply be 
subtracted from the second data file. 

The signal providing the greatest amplitude for the sensors will be that result­
ing from the main operating frequency of the machine, so the point of maximum 
correlation should occur when that component of each signal overlaps in the cor­
relation. 

7 .5 Practical Consequences 

While a great detail of discussion has taken place regarding the synchroniza­
tion issue, a simple fact is that this problem does not affect VA as is currently 
being performed, nor does it affect much of the advanced analysis proposed in 
this thesis. 
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Quite simply, the lack of microsecond synchronization really only affects the 
ability to analyze the cross-correlation of sensors for lag differences. 

Each sensor is individually recorded correctly, so individual comparisons, 
which make up the bulk of current VA techniques, are not affected. 

The lack of synchronization does not affect the ability to perform frequency 
domain analysis (phase response comparisons not withstanding). 

It does not even affect the proposed cross-correlation techniques from sec­
tion 4.1. The point of that work is to look at the resulting frequency peaks after 
an FFf is performed on a cross-correlation result. Even if the phase between two 
sensors is measured incorrectly, the periodicity of the cross-correlation remains 
the same. 

For sensors in close proximity to each other on the vibrating screen, phase 
differences are already unlikely (when assuming the screen as a rigid body, at 
least within small sections), so the techniques from section 7.4.5 should be fairly 
reliable. 

Using this technique, posterior synchronization of the recorded data files can 
be performed. The main operating frequencies will definitely be synchronized, 
and producing the main peaks of the cross-correlation. It is then not unreasonable 
to do phase-based analysis of any possible fault frequencies in the system. 
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Chapter 8 

Conclusion 

Signal analysis is an incredibly important topic, relevant to hundreds if not 
thousands of fields. One such field, Vibration Analysis - which itself can be bro­
ken into many sub-fields - was the topic of focus for this thesis. Vibration Analy­
sis makes use of many of the traditional signal analysis techniques, time-domain 
and frequency-domain, while also presenting certain challenges with regards to 
signal capture. 

Depending on the particular vibrating structure under analysis, conditions can 
be quite extreme. Some structures are massive in size, while others reside in 
hazardous environments. Vibrating screens, the particular type of system used 
in this thesis, are often present in mines or mounted atop multi-story open-air 
structures. Safety is a constant concern for VA technicians, and the tools which 
they use to perform VA must be both convenient to operate in these environments, 
as well as reliable. A reliable system plays a major role in reducing the amount of 
time required to actually perform the analysis, thus reducing the amount of time 
necessary in the environment. 

Signal analysis for VA and the development of tools for performing the signal 
capture and analysis were the two main focuses of this thesis. We presented a 
new technique using cross-correlation for identifying the levels and locations of 
harmonic components present over a rotating machine, as well as designed and 
developed a new VA system capable of performing the necessary signal capture 
and analysis under the often extreme conditions faced by VA technicians. This 
VA system is now professionally manufactured, commercially available, and in 
use by dozens of Vibrating Screen technicians around the world. 

The cross-correlation technique performs two tasks: 

• Utilizes information from multiple sensors to eliminate noise and identify 
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frequencies 

• Provides a physical mapping of frequency content to physical machine lo­
cations 

Many of the traditional filtering techniques employed in VA require the tech­
nician to already know what frequencies to look for, or are actually more appro­
priate for machine tuning and maintenance. The bandpass filters often used must 
be placed around some frequency component. If there are known possible fault 
frequencies on a machine, then the bandpass filter can be centred there and the 
output analyzed. Often though the filter is centred around the operating frequency 
of the machine, which helps emphasize how well the system is performing within 
its designed parameters, but has the negative side-effect of eliminating all other 
frequency information. 

The cross-correlation technique makes no assumptions about which frequen­
cies should be analyzed. Instead it uses cross-correlation between simultaneous 
sensor readings to automatically eliminate noise and identify which frequencies 
are present. By utilizing the data from multiple sensors, the cross-correlation tech­
nique is often able to identify the presence of frequencies that the traditional FFT 
would miss. While it cannot be strictly said that the presence of a frequency indi­
cates a fault is occurring, it is the case often enough that any detected frequency 
outside of the operating frequency warrants investigation by the technician. By 
first identifying frequencies, and then providing a physical mapping of how they 
are occurring on a machine, this technique provides a powerful new tool to VA 
technicians. 

In short, filtering as has been traditionally performed is not necessarily the 
right way to approach fault detection. Too often important frequencies are filtered 
out, or too buried in noise to be detected, and cross-correlation opens the door to 
interesting possibilities for fault detection. 

The VA system we designed was created not only to provide improved hard­
ware and software compared to what technicians were currently using, but also 
to take advantage of this cross-correlation technique. With its wireless sensors it 
more easily enables multiple simultaneous sensor recordings, a task that would be 
onerous with a portable wired system. In addition, the system allows technicians 
to record vibration readings in a much safer manner. Rather than being physically 
tethered to a machine which rotates at over 6G and processes hundreds of tonnes 
of material per hour, they can instead place a network of sensors over the machine, 
then stand at a safe distance to record the measurements and analyze the output. 
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The VA system has been designed in a very general and modifiable way, and 
the overall design and implementation has been presented with more specificity 
than we have seen in the literature. Our hope was that such a development would 
reduce the implementation complexity for future researchers hoping to create sim­
ilar systems. In fact, work has already begun to take the developed system and 
modify it for use in a fixed-installation continuous monitoring setup for Vibrating 
Screens. 

Along with presenting the design of the system, we have also discussed a few 
issues that presented themselves during the development, which anyone design­
ing a similar system should be interested in. Of these, two in particular stood 
out. The first was related to the amount of raw data we were attempting to trans­
mit over a Bluetooth network. This presented problems we did not foresee at 
the outset of the project. It caused issues not only in how low-level communi­
cations were handled between components on the sensor itself, but also in the 
final sampling rate we could use for the system. Second was an issue related to 
the ability to perform correct time synchronization between the sensors. Without 
very specific hardware, it is simply not possible to use Bluetooth and have a level 
of synchronization between the sensors that would be necessary for phase-related 
cross-correlation analysis. While this did not affect the work presented here, any­
one who wishes to use the system as-is for phase analysis must be wary. Future 
versions of the sensors should be able to easily correct this problem. 

Knowing what we know now about the wireless system, it might be worth con­
sidering 802.11 WiFi for future systems. While the power drain is much higher 
than Bluetooth, data transfer speeds are also much higher and time synchroniza­
tion is much easier to perform. 

As the costs for sensor systems continues to drop, and the availability of high­
precision sensors rise, it should be expected that more and more structures that 
require VA will begin to ship with the necessary sensors built into the structure 
itself. Be this as it may, the need for portable VA systems will be present for 
decades to come. Too many systems which require VA are already out in the field, 
and most of these will not be retrofitted with permanently installed sensors. Our 
hope is that the system developed here and the lessons learnt can provide guidance 
to those building future generations of wireless VA systems. 
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8.1 Future Work 

Regarding the cross-correlation technique, the next steps should be to attempt 
to use it for feature extraction within some existing expert systems. All of the 
expert systems discovered in the research based their feature extraction on a single 
sensor, so a great deal of modification to these systems might be required to enable 
this. 

Work has already begun on modifying the VA system presented here for the 
purpose of a permanently installed, continuously monitored VA system for Vibrat­
ing Screens. However more work could be done on the current system, to both im­
prove the wireless synchronization of the sensors, and to add additional forms of 
VA. Some of the wavelet-based noise elimination techniques could be employed, 
to identify frequency content only present at one physical location (which would 
make it undetectable using our cross-correlation technique). 

We had planned on implementing a wavelet analysis system to enable time­
frequency analysis of the screens, but this was eliminated from this stage of devel­
opment. For typical issues with Vibrating Screens, the frequency characteristics 
will not change over a short period of time, so this type of analysis probably would 
not have been overly useful to the technicians. However, for a continuous monitor­
ing setup, it would be extremely beneficial, showing the evolution of a frequency 
component through time. 
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Appendix A 

Communication Protocols 

The specifics of the protocols between the sensors and the DAU are described 
here. Parts of these protocols have been presented throughout the thesis, but all 
are presented here for completeness. 

A.1 Control Protocols 

The total set of control characters, first presented in section 5.2.9 are presented 
again here. 

Character Description 

{ Start sending data 
} Stop sending data 

< Get battery level 
101010XX G-select byte mask 

? ReadEEPROM 
# Write EEPROM 

Table A.1: Valid Control Characters 

All actions are initiated by the DAU by sending a single byte to a sensor. The 
valid bytes are shown in the table. 

No matter what byte is sent by the DAU to the sensor, whether or not it's 
a control byte, the sensor will always echo that byte back to the DAU before 
taking action. This is a simple mechanism to ensure that the byte arrived properly 
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at the sensor, and gives an easy way to test that the communication channel is 
functioning correctly. 

A.1.1 "Start sending data" Message 

The first control character is the "Start sending data" message {. 
Upon receiving this byte, the sensor will immediately begin sampling the ac­

celerometer and transmitting data back to the DAU via the packet format described 
in section 5.2.10. The sensor will continue to transmit until the "Stop sending 
data" message } byte is received. 

While transmitting, all other bytes will be ignored. Not even the echo mech­
anism previously described is available, the sensor simple ignores all other bytes 
except for } . 

A.1.2 "Stop sending data" Message 

When the sensor is sending data, a } byte will immediately stop the transfer 
and return the sensor to a waiting state. If the sensor is already in a waiting state 
and this byte is received, the sensor will simply echo it back, taking no additional 
action. 

A.1.3 "Get battery level" Message 

The battery level character < tells the sensor to check its current battery level 
(reading the voltage corning from the batteries at a point before the pump-charger). 
The value is returned as an 8-bit unsigned integer representing the raw value from 
the analog-to-digital converter. It is the responsibility of the DAU to interpret this 
raw value as a percentage of total battery remaining. 

It should be noted that only an 8-bit value is returned here, despite the analog­
to-digital converter being a 12-bit unit. As very high precision is not needed for 
the battery level reading the sensor simply sends the eight most-significant-bits of 
the 12-bit value, throwing away the bottom four bits. 

A.1.4 G-Select Byte Mask 

The G-select byte mask character is actually a set of four possible characters, 
used for G selection. These characters tell the sensor to put the accelerometer in 
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one of its four G modes, 2.5G, 3.3G, 6.7G or lOG. The first six bits of the char­
acter, ' 101010' are used as an identifier mask. If the incoming character matches 
those six bits exactly (logical AND the incoming character with '10101000' fol­
lowed by a logical XOR), then the remaining two bits are used to determine which 
of the four G modes to use. 

In particular, the representations are: 

Byte I G-mode I 
10101000 2.5 
10101010 3.3 
10101001 6.7 
10101011 10.0 

Table A.2: G-Select Mask 

This message will only be interpreted by the sensor as a G-select message if 
the sensor is in the waiting state. 

A.1.5 Read/Write EEPROM 

The two EEPROM commands are associated with the reading and writing of 
calibration data stored in the sensor's EEPROM. At the factory each sensor goes 
through the calibration procedure described in section 5.3.5, and the individual 
scaling factors associated with that sensor are stored on the sensor itself. Storing 
the calibration values on the sensor rather than a DAU means that any sensor can 
be used with any DAU, the unit just has to query the sensor for its calibration 
values before data collection begins. 

These two EEPROM commands do involve further control characters and 
very specific send and receive procedures, and these are described fully in Ap­
pendix A.2. 

A.2 Calibration Protocol 

Calibrating the accelerometer on a sensor requires generating calibration val­
ues for each of the three axes, for each of the four possible G-ranges that the 
sensor is capable of operating in. Each axis generates a slope and offset value, 
each being 32-bit (4-byte) floating point values, so for each G-range a total of 
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Listing A. I: Calibration Protocol Network Message 
<''#''><g_value_id><x_slope><x_off><y_slope><y_off><z_slope 

><z_off> 

six floating point values need to be stored requiring 6 · 4 = 24bytes. With four 
G-ranges available, a total of 96-bytes of storage are required on the sensor. 

The values themselves are stored into the EEPROM of the 18F2523. The 
18F2523 provides both Flash and EEPROM storage. EEPROM is suitable for 
long-term storage of program data [45] and is somewhat simpler to access via 
software than the Flash memory of the 18F2523. The 18F2523 comes equipped 
with 256-bytes of EEPROM. 

A.2.1 Writing Calibration Values 

A method for writing the calibration values to the sensor and reading them 
from the sensor has been devised. It requires the sensor to be fully booted into the 
normal software to be used. 

The generates values for a particular G-range are sent to the sensor at once, so 
four separate messages must be sent to the sensor to store all four G-ranges. A 
single message looks as follows: 

The first character "#" is simply the unique character used to determine the 
type of message (as described in section 5.2.9). g_value_id is the G-value iden­
tifier, telling the sensor which of the four possible G-ranges is being sent. These 
break down as shown in table A.3. 

I G-Value I g_value_id I 
2.5G 0 
3.3G 1 
6.7G 2 
10.0G 3 

Table A.3: G-Value Identifier Encoding 

The values for g_value_id must be properly serialized before transmission. 
For example, in the Python language you would do chr (2) for 6.7G. 
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Listing A.2: Calibration Serialization 
struct. pack ( '' ! ffffff' ', x_slope, x_off, y_slope, y_off, 

z_slope, z_off) 

The six remaining values in the message all represent four-byte floating point 
values. These must be transmitted as binary values in network byte order. Using 
Python again as an example, if each of the six values were stored as Python floats, 
the serialized data to transmit would be 

After the data is stored on the sensor, the sensor will send back another "#" 
character, to let us know that its done. In total, this means you will receive two 
"#" characters when you send this. The first one is simply echoing the"#" at the 
beginning of the message (like all things get echoed by the sensor), the second 
one is to tell us the EEPROM writing is done. 

A.2.2 Reading Calibration Values 

Reading back stored calibration values is relatively simple. Transmit two char­
acters, the first being "?" to identify the type of message, and the second being an 
appropriate g_value_id, encoded the same as in table A.3. The sensor will echo 
back the "?", and then transmit the 24 bytes, in the same order as they would have 
originally been sent to the sensor. 
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Appendix B 

Sensor Software Configuration 

B.1 TimerO Configuration 

The TimerO module of the 18F2523 is used to generate an interrupt every 2ms, 
so the software can perform analog-to-digital conversion at 500Hz. 

Configuring the TimerO module can be split into two main sections, calculat­
ing the pre-load values and performing the actual initialization of the necessary 
registers. 

B.1.1 Calculating TimerO Pre-Load Values 

TimerO operates by incrementing an 8 or 16-bit counter variable every instruc­
tion cycle (or every few cycles, as discussed below), and raising an interrupt when 
the counter overflows. Typically there is a specific amount of time one wishes to 
wait before the interrupt is generated, and to accommodate this the counter can 
be pre-loaded before it starts, so it does not have to count through the entire 8 or 
16-bit range. 

Depending on the desired accuracy or length of time, the user can select to 
operate TimerO in 8 or 16-bit modes. When used in 8-bit mode, only the TMROL 
counter register is used, while 16-bit mode requires both the TMROL (low) and 
TMROH (high) to be used. These are not the actual registers directly used by the 
hardware, but instead represent buffered versions of the true high and low bytes 
of TimerO, which are not directly writable or readable via software. 

When choosing the pre-load values, one must take into account more than 
just the values in these registers. The other factor is the prescaler. This is an 
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8-bit software controllable register which determines how often the counters will 
actually be updated. It can be configured for 1 : 2, 1 : 4, 1 : 8, ... , 1 : 256. In 1 :2 
mode, the counter will update once per every two full instructions. In 1 :4 mode it 
will update once per every four full instructions, and so on. This prescaler can be 
used to create very long counter intervals. 

For highest accuracy, the sensors were configured with the 16-bit timer and 
1 :2 prescaler. 

Before showing how to configure the timer in software, it is important to show 
the necessary calculations for choosing the prescale values. 

The sensor is equipped with a 20MHz oscillator, i.e. 20 million clock cycles 
per second. The PIC architecture requires four full clock cycles to perform one 
complete instruction, so this 20MHz oscillator allows for 5 million instructions 
per second. 

ls 
5 x 106 instructions 

2 x 10-7 (B.1) 

200 x 10-9 (B.2) 

200 nanoseconds/instruction (B.3) 

With no prescale, overflowing a 16-bit counter (65536 values, requiring 65536 
instruction cycles ) requires 

65535 instructions· 200 x 10-9 = 13.1072ms (B.4) 

With the 1 :2 prescaler, the counter will increment every 

2 · 200 x 10-9 = 4 x 10-7 = 0.4µs 

Using the 1 :2 prescaler, and a desired 2ms interrupt period, the counter would 
need to be incremented 

2 x 10-3 

4 x 10-7 = 5000 

5000 counter increments from a 16-bit counter means the counter must be 
pre-loaded to 

65536 - 5000 = 60536 
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The 16-bit counter is split into the TMROH and TMROL mentioned above. The 
division of 60536 into the split counters is easily found with bitwise operations 

TMROH = (60536 >> 8) = 236 (B.5) 

TMROL = 60536 & OxFF = 120 (B.6) 

B.1.2 Initializing TimerO 

Once the appropriate prescale, timer size and pre-load values have been deter­
mined, the TimerO module can be properly initialized in software. This is done in 
seven distinct steps: 

1. Clear TMROL and TMROH 

2. Set the prescaler and timer size 

3. Write pre-load values into TMROL and TMROH 

4. Turn on TimerO 

5. Set TimerO interrupt priority level 

6. Clear TimerO interrupt flag 

7. Enable TimerO interrupt 

Lines 1 and 2 in Listing B.1 simply clear the TMROL and TMROH registers. The 
prescaler and timer size are both set within the TOCON register, and for a 16-bit 
timer and 1 :2 prescale, the appropriate bits within that register are both set to 0. 
Lines 4 and 5 perform this step. 

The preload values (236 and 120) are defined as constants LHIG and LLOW, 

and are loaded and stored into the appropriate registers in lines 7 through 10. 
Line 12 sets the TMROON bit in the TOCON register to 1, turning on TimerO. 

Line 13 sets the TimerO interrupt to be low priority. 
Line 15 ensures that the TimerO interrupt flag (TMROIF) is cleared in the global 

interrupt flag tracker, INTCON. If this is not not before enabling interrupts for 
TimerO, then there is a chance an interrupt will be raised immediately upon en­
abling the interrupt. 

Finally line 16 enables the TimerO interrupt. 
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Listing B .1 : Timer() Initialization 

clrf 
clrf 

4 movlw 
s movwf 

1 mov 1 w 
s movwf 
9 movlw 

10 movwf 
11 

12 bsf 
13 bcf 
14 

15 bcf 

TMROL 
TMROH 

B'OOOOOOOO' 
TO CON 

T_HIG 
TMROH 
T_LOW 
TMROL 

TOCON,TMROON 
INTCON2,TMROIP 

INTCON,TMROIF 
16 bs f INT CON, TMRO IE 
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Appendix C 

System Identification 

While the work presented has its utility in aiding a technician at a site with 
VA, an eye must be kept on future applicability of the sensors and DAU. 

A long term goal is to adapt the system for a permanently installed monitoring 
situation. This would allow the sensors to run continuously and have the system 
constantly looking for faults and changes. 

A technique that identified when the overall state of the system changed would 
be beneficial in this situation. It may not (currently) be able to directly interpret 
what the state change means, but could at least provide a means of automatically 
notifying a trained technician that some change has occurred. 

"System Identification" is a technique for automatically identifying the defin­
ing characteristics of a system. One tool used for this is adaptive filters [7]. They 
provide a means for generating the representative coefficients of a difference equa­
tion of a system without any real previous knowledge of the mechanics of the 
system, or even a guess as to what the coefficients might be. 

The topic of adaptive filters is new to most readers, so an introduction to the 
structure of adaptive filters will be given, followed by introductions to the charac­
teristics of adaptive filters, the optimal but unrealizable Wiener Filter, and algo­
rithms that attempt to iteratively achieve the Wiener solution. Finally simulations 
will be presented showing how adaptive filters might be used in conjunction with 
a vibrating screen. 

One of the best introductions to adaptive filters is by Bose [7]. Most of the 
content presented here is a summary of the adaptive filters introduction from that 
text. 

This section presents an introduction to our work related to using a similar 
vibration analysis system for long-term continuous monitoring. This work is not 
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yet complete, but it is our hope that it provides a reasonable starting point for 
anyone hoping to research continuous vibration analysis systems. In particular, 
testing the developed system identification software libraries with data from real 
vibrating screens would always cause severe numerical instability in the results. 
While we were not able to track down the cause of this ourselves, our hope is that 
someone with a strong background in system identification might be able to solve 
the issues and apply this work to continuous monitoring systems. 

C.1 Goal 

The goal of using system identification techniques should be to provide an au­
tomated means of characterizing the mathematical model of a system. With such 
a model in place, it should be possible to automatically identify faults occurring in 
the system. The current disadvantage of this technique when applied to vibrating 
screens is that no existing mathematical model exists for the screens. So there 
will be no way to take the coefficients for the generated difference equation and 
translate them directly to particular faults or errors. 

What must be done in the future is "break tests", taking vibrating screens 
known to be fault free, and purposely causing faults in them. The results of system 
identification for each different break will be instrumental in understanding how 
the model of a screen changes with particular faults. 

Of course this brings back the present problem of multiple screens from multi­
ple manufacturers existing out in the field. There will be no way to perform break 
tests on every kind of screen a technician might possibly encounter. 

Instead, the topic of system identification should probably be limited to future 
generations of vibrating screens. With knowledge of system identification princi­
ples, these screens could be designed with permanently installed sensors, and go 
through a battery of break tests in the design stages. 

Even without break tests and a mathematical model, there is still benefit in 
using system identification over the long term. The coefficients generated from 
the identification uniquely identify the current state of the system. A change in 
time of these coefficients indicates that the state of the system has changed, and 
this alone is useful information. 

Often times a technician is not called to a site until a fault has visibly occurred. 
Permanently mounted sensors which continuously calculate the coefficients for 
the system's difference equation would provide a way to see that the state of the 
system is changing, even before a change is visible from simply looking at the 
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screen. 

C.2 Adaptive Filter Structure 

In a digital filter, compensation for a changing system is done by varying the 
coefficients of the filter, appropriate to the changes occurring in the system. This 
is done by coupling a digital filter with an adaptive algorithm. The basic filter 
structure is shown in figure C. l. A desired signal d ( n) is fed into the system. The 
signal x( n) is the input to the filter, and y( n) is the output. The signal e( n) is called 
the estimation error. This estimation error is fed into the adaptive algorithm, which 
adjusts the coefficients of the filter, in an attempt to minimize the estimation error. 

d(n}------------to'!I( a.-----.----1~ c(n) 
+ 

y(n) 

Figure C.1: Adaptive Filter Structure 

Many different adaptive filtering schemes exist, with two major points of dif­
ference between them: 

• Source of the desired signal d ( n) 

• The actual adaptive algorithm 

As an example of one possible scheme, a sinusoid tracker is shown in fig­
ure C.2. In this system, a sinusoid enters the system with noise covering a wide 
frequency spectrum. The goal of the system is to extract the sinusoid. 
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.,__ __ Sinusoid u.; 

+ 

Sinusoid w + noise,-~--

<-------1 Adaptive Algorithm 

Figure C.2: Sinusoid Tracker 

In this system, the adaptive filter used is a notch filter, filtering out all frequen­
cies except for co, the frequency of the sinusoid. This gives the error signal e(n). 
If this error signal is subtracted from the original input to the system, then just the 
sinusoid of frequency co remains. The objective function of the adaptive algorithm 
is minimized when the target frequency of the notch filter is co, resulting in e(n) 
approximately equal to noise. 

If co were to change over time, the adaptive algorithm would automatically 
update the notch frequency of the filter, ensuring that the system is still able to 
output just the sinusoid. 

C.3 Characteristics of Adaptive Filters 

There are a large variety of adaptive filter algorithms described in the liter­
ature, but in general there are four characteristics to be considered with when 
evaluating an adaptive algorithm: 

1. Computational complexity 

2. Rate of convergence 

3. Numerical robustness 

4. Misadjustment 
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The first three of these are fairly typical when analyzing any form of numerical 
algorithm. The importance of computational complexity and the rate of conver­
gence of the algorithm greatly depend on the target system. If the system can 
change quickly, and requires a high sampling rate, then computational complexity 
and rate of convergence will both be very important. There is a direct relationship 
between computational complexity and sampling rate. The higher the required 
sampling rate, the lower we require the computational complexity to be. Some 
systems might require a high sampling rate, but changes occur very slowly. In 
that case, we would be concerned with the computational complexity, but not nec­
essarily with the rate of convergence. 

As mentioned in section C.2, the goal of the adaptive algorithm is to minimize 
the objective function, related to the error e ( n). Quite often, the objective function 
to be minimized is the mean square error (MSE), given by E { e2 ( n)}. 

The Wiener algorithm is the theoretical optimal solution for this objective 
function. As will be discussed in section C.4, the Wiener algorithm is not practical 
for real world implementations. Instead, the goal is usually to develop an algo­
rithm that attempt to approach the Wiener solution. If lopt is the MSE obtained 
by the Wiener algorithm, and lss is the MSE obtained by some other adaptive 
algorithm, then lex = lopt - lss is the Excess MSE. The misadjustment is simply 
lex/ lopt· Clearly, a lower misadjustment is better. 

C.4 Wiener Algorithm 

The Wiener Filter [73] is the optimal, but unrealizable filter that adaptive filter 
theory is based on. The basic problem is illustrated in figure C.3. 

This is the same basic structure as we've seen before. The input x( n) is passed 
through a filter with coefficients wo, w1, ... , WN-1, giving an output y( n). The goal 
is to find the coefficients that minimize the MSE. The output y( n) is that of a basic 
FIR filter, namely: 

y(n) wox(n) +w1x(n-1) + ... +wN-ix(n-N + 1) 
WTx(n) 

Our goal is to minimize the objection function, which will be 

l(w) = E{e2(n)} 
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d(n;------------M 
+ 

x(n)---N FIR Filter 
wo., w1 1 .... , UlN-J 

y(n) = w'1'x(n) 

Figure C.3: Wiener Filtering 

Expanding this gives us: 

J(w) E{ e2(n)} 

E{[d(n)-y(n)]2} 
E{ d2 (n) - 2d(n)y(n) + i(n)} 

Substituting in y(n) = wT.x(n), gives: 

J(w) E{d2 (n)-2d(n)y(n) + (wT.x(n)) 2
} 

E{d2 (n) -2d(n)wT.x(n) + wT.x(n).xT (n)w} 

(C.1) 

(C.2) 

(C.3) 

The filter coefficients w are not random variables, so they can be pulled out of 
the expectation operator: 

We can apply some simplifications to the cost function, to aid in understanding 
it. 

If we assume that d ( n) is zero mean (i.e. µ = 0) then E { d2 
( n)} is actually cr~, 

the variance of d ( n). 
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E{d2(n)} = E{ld(n)-µ1 2
} 

= E{ld(n)-012
} 

2 
=(jd 

(C.4) 

(C.5) 

(C.6) 

Define fi- E{ d(n)x(n)} = [p(O),p(l ), ... ,p(N -1 )]T as the cross-correlation 
between the desired signal d ( n) and the input signal x( n). In the third term of the 
cost function, we have E { x( n )xT ( n)}, which is actually the correlation matrix R 
[74]. 

We can now rewrite the cost function as: 

J(w) =crJ-2wTfi+wTRw 

The second term is linear, and the third is quadratic, or convex. Since convex 
functions have minimum points (found by taking the gradient w.r.t. wand setting 
to zero), we can easily solve it. 

As an example, let us examine a 2-tap Wiener filter. A 2-tap filter will have 
two elements in thew vector, namely w = [wo, wi]. So we want to solve J(wo, w1). 
The objective function is defined as follows: 

J(wo, w1) = E{d2(n)} -2E{d(n)y(n)} + E{y2(n)} 

= crJ -2E{d(n)[wox(n) + w1x(n- I)]} 

+ E{[wox(n) + w1x(n- l)]2} 

= crj-2woE{d(n)x(n)}-2w1E{d(n)x(n- l)} 

+ w5E{x2(n)} + 2wow1E{x(n)x(n- l)} 

+wfE{x2(n- l} 

This simplifies to the Wiener objective function 

(C.7) 

J(wo, w1) = crj-2wop(O) -21p(l) + w5r(O) + 2wow1r(l) + wf r(O) (C.8) 

Now take the partial derivative, w.r.t. wo and w1: 

dJ 
~ = -2p(O) +2wor(O) +w1r(l) 
uwo 

(C.9) 
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a1 
-a = -2p(l) +2wor(l) +w1r(O) 

W1 

The gradient of the cost function can now be written as 

v' J(wo, w1) = [a~o] 
OW] 

= _2 [p(O)] + 2 [r(O) r(l)] [wo] 
p(l) r(l) r(O) w1 

So for the general case (N - 1) tap filter, we get: 

v1(w) = -2p+2Rw 

Set this to O and solve for w to get the Wiener filter: 

..... R-1 ..... 
W= p 

(C.10) 

(C.11) 

(C.12) 

(C.13) 

(C.14) 

w is the optimal coefficient vector for the filter. In reality though, this is infea­
sible, as computing R-1 is too computationally expensive. 

Fortunately there are algorithms that do quite a good job of approaching the 
Wiener solution (low misadjustment), via an iterative method, while minimizing 
the computational overhead. 

The first class of such algorithms are based on a gradient search, or Newton's 
algorithm. It can be shown [7] that Newton's algorithm can converge to the Wiener 
solution in one step. However, the computation requires performing an inverse 
on a Hessian, and is thus still infeasible. For the sake of reference, the Newton 
algorithm is 

w(n+l) =w(n)-H-1v'J (C.15) 

The Steepest Descent algorithm, shown in Equation C.16 uses an approxima­
tion of H = 21 for the Hessian, allowing for a computationally feasible approx­
imation of Wiener's algorithm. The valueµ is introduced to control the rate of 
convergence. 

w(n + 1) = w(n) - ~v'J (C.16) 
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For adaptive filtering, we can substitute for the gradient VJ with the value 
from Equation C.13 to give: 

w(n + 1 )_ = w(n) + µ[p-Rw(n)] (C.17) 

Unfortunately, for many real-time applications the Steepest Descent algorithm 
is still infeasible. Note the presence of p and R. We defined both of these val­
ues via the expectation operator E{-}. In many real-time systems, only a single 
realization of the signal is available, thus p and R must be estimated. 

C.4.1 Least Mean Squares 

The Least Mean Squares (LMS) algorithm is a popular means for implement­
ing Steepest Descent with estimations for p and R. The estimations are given 
as 

and 

R = E{x(n)xT (n)} 

~ .x(n).xT (n) 

p = E{d(n)xT (n)} 

~ d(n).xT (n) 

Substituting these into Equation C.17 and simplifying, we get: 

w(n+ 1) = w(n)-µx(n)e(n) 

This is the LMS algorithm, first introduced by Widrow and Hoff [75]. 

(C.18) 

(C.19) 

(C.20) 

(C.21) 

(C.22) 

The LMS is quite popular for both its simplicity in implementation and a low 
O(N) computational complexity, where N is the number of taps in the filter. 

While LMS is popular for real-time systems, it does have a few drawbacks. 
Namely, it can never have a misadjustment of zero (i.e. it cannot reach the Wiener 
filter). The larger the step size, the higher the misadjustment, but the larger the 
step size, the faster the rate of convergence. So a step size must be chosen that 
allows for the best trade off. 
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C.4.2 Recursive Least Squares 

There is a separate class of algorithms called least-squares algorithms which 
are not as popular for high speed applications (thanks to a relatively high computa­
tional complexity), but are much better than LMS when it comes to misadjustment 
and convergence speed. The most popular is the Recursive Least Squares (RLS). 
RLS approaches the optimal weight vector solution in a finite number of steps, 
while LMS approaches as the number of iterations approaches infinity. Also, the 
RLS MSE tends towards zero, while LMS can never achieve this. The RLS though 
has a complexity of O(N2 ) [7]. 

C.4.3 Experimental Comparison of LMS and RLS 

x(n)----1 

Unknown 
System d(n) 

+ 

e(n) 

Figure C.4: System Identification 

Adaptive 
Algorithm 

As a comparison, we have built implementations of both the LMS and RLS 
algorithms. To test them, a system identification experiment proposed in [7] was 
used. This problem is diagrammed in figure C.4. 

In short, we started with an FIR filter given by 

g(n) = O.lx(n) +0.2x(n-1) +0.3x(n-2) 

We want to add some noise to the output of this, and attempt to have an adap­
tive filter discover and match the coefficients. 
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The input signal x(n) is a white Gaussian sequence with unit variance. The 
output is generated using the FIR equation g(n), and then added to white Gaus­
sian noise, giving the "desired signal" d(n). The same input signal is fed into 
the Adaptive Filter. The adaptive algorithm attempts to minimize the difference 
between the Unknown System and the Adaptive Filter. The best it can do is match 
the coefficients of the Adaptive Filter and the original FIR of the system, with the 
eventual error signal being just the white Gaussian noise that was added to the 
output of the FIR. 

The results of this experiment for an LMS filter and an RLS filter are shown 
in figures C.5 and C.6, respectively. Notice how little variance around the coef­
ficients there is in the RLS case, vs LMS. Also notice that the RLS experiment 
converged in far fewer steps than the LMS algorithm. However, for a 300 sample 
test, the RLS algorithm was thirty times slower. 

Each experiment was run one hundred times to get an ensemble of data. 

0.30 

0.25 

.l!l 
'E, 0.20 

·1 
c:: 
~ 0.15 

::;: 

0.10 

0.05 

50 100 150 200 250 300 
Number of samples 

Figure C.5: LMS System Identification 

A faster version of RLS has recently been developed, called Euclidean Direc­
tion Search (EDS), which combines the best of both RLS and LMS [76] . EDS 
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Figure C.6: RLS System Identification 

is still O(N2 ), but the computational complexity lands somewhere between LMS 
and RLS. It has been proved that the EDS algorithm converges to the optimal 
solution [77]. 

C.5 Adaptive Filters for System Identification of Vi­
brating Screens 

Returning to the original problem, how can these adaptive filters be used to 
identify the state of a screen, and more importantly, how can they be used to 
identify changes to the state over time? 

Referring again to figure C.4, the first question is where x(n) input signal 
would come from. Ideally this would be a signal directly from the motor driving 
the screen, so the driving force of the motor could be used to directly generate the 
state of the system. 

Unfortunately on the current generation of screens, this is just not possible. 
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There is too much variability in terms of the types of motors, and most have no 
way to connect an output channel for monitoring the signal generated from the 
motor. 

Instead, the input signal from the motor must be determined indirectly. 
On a correctly functioning screen, the driving force of the motor is directly 

proportional to the main operating frequency and motion of the running screen. 
Using the Butterworth-filtered output of the signal from the sensors, all harmonic 
content is eliminated except for the main driving force of the machine. Thus the 
output of the Butterworth filter can be interpreted as the input x(n) of figure C.4. 

Essentially we propose to take the filtered values as x(n) and use the unfiltered 
values as d(n), the desired value the adaptive filter should attempt to reach. So 
the unfiltered values are the result of an unknown system being driven by an input 
defined by the filtered values. 

The main assumption being made here is that interesting changes to the state 
of the system will take place outside of the operating frequency of the screen. To 
guarantee this assumption holds, a check will be required before running through 
the adaptive filter. 

Before passing the x(n) values through, it must be verified that the frequency 
and amplitude of x(n) has not changed since the last time this experiment was 
performed. Even in a continuous monitoring situation, the system state will most 
likely not be checked continuously. Instead it would probably be checked period­
ically, say every few hours. Every time a new system identification period begins, 
the system will first check that neither the frequency nor amplitude of x(n) have 
changed. If they remain the same, it means the assumed input signal remains the 
same. 

As an aside, if either the frequency of amplitude have changed, then some­
thing more fundamental is going wrong. Frequency and amplitude are just the 
mathematical bases for RPM and stroke, two characteristics that technicians al­
ready look at. If either of these values are outside of a normal range, then those 
problems need to be addressed first. 

Assuming that x( n) has not changed, then the filtered and unfiltered values can 
be used with the adaptive filter, to generate system coefficients within the filter 
itself. If these coefficients have changed since the last time the test was run, then 
some factor of the system state has changed and the technician should investigate 
further. 

While the end-goal would be to implement these systems on permanently in­
stalled screens, there is a benefit to performing system identification with the sys­
tem designed for this thesis. Technicians are often sent to a site to look at one 
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problematic screen, sites where there are sometimes dozens of screens present. 
Because a VA session can be completed very quickly with the new system, it 
might be worth the effort to have the technician perform VA on every screen, each 
time they are present at the site. 

This would be useful for preventative fault detection. If the state of the system 
has changed, then some component of the screen's operation has changed, and 
even if nothing appears to have gone wrong yet, it would provide enough evidence 
to warrant further investigation by the technician while they are at the site. Faults 
detected early are invariably cheaper to repair than faults detected only after a 
problem has already occurred, and it reduces the number of trips a technician 
might have to make to an individual site. 
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