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Lay Abstract

Cancer patients are at a high risk of developing depression. In addition to
the psychological stress caused by a cancer diagnosis, there is evidence that
cancer causes depression through biological pathways. To investigate these
pathways, a mouse model of cancer-induced depression (CID) was developed.
This model showed comparable behavioural and structural brain deficits to those
observed in a stress model of depression. Cancer cells secrete elevated levels of
glutamate, a signalling molecule that is involved in depression. In CID mice,
inhibiting glutamate release had an antidepressant effect similar to that of
fluoxetine, a standard clinical antidepressant. A genetic analysis on brain samples
from the CID model revealed significant overlap with the stress model of
depression. CID mice had additional changes relevant to learning, memory, and
brain cell development that were not detected in the stress model. A better
understanding of CID will lead to better treatment strategies developed

specifically for cancer patients.
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Abstract

Despite the lack of robust clinical response, treatment strategies for
cancer-induced depression (CID) are currently limited to those developed for non-
cancer-related depression. The work presented in this dissertation conceptualizes
CID as a pathophysiologically distinct form of depression. To investigate CID at
the most basic level, we first developed a preclinical model that was validated by
comparison to an established model of stress-induced depressive-like behaviours.
The positive control model was developed by chronically treating female BALB/c
mice with oral corticosterone (CORT). The CID model was developed using
subcutaneous inoculation with 4T1 mammary carcinoma cells. Anhedonia,
behavioural despair, and dendritic atrophy in the medial prefrontal cortex (mPFC)
were observed in both models. Similar to many human cancer cell lines, 4T1 cells
were shown to secrete significant amounts of glutamate, which was markedly
attenuated using the system X, inhibitor sulfasalazine (SSZ). In CID mice, oral
treatment with SSZ was at least as effective as fluoxetine, a popular clinical
antidepressant, at preventing depressive-like behaviours. This effect was primarily
attributable to intact SSZ, rather than its anti-inflammatory metabolite. RNA-
sequencing was performed on hippocampal samples from CID and CORT animals.
Analysis of differential expressed genes (DEGs) revealed significant overlap
between the two models. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and biological process gene ontologies (GO:BP) terms related to ion

homeostasis and neuronal communication were enriched for both models. CID
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was associated with additional DEGs that were not identified in the CORT model.
These DEGs were enriched in KEGG pathways and GO:BP terms related to
neuronal development, intracellular signalling cascade, learning, and memory.
These studies suggest that CID may involve a distinct aetiology, and that
glutamate secretion by cancer cells presents a viable target for antidepressant
treatment. The development of mechanism-based therapeutics for CID will

dramatically improve the quality of life for cancer patients.



Preface

This doctoral dissertation is presented as a sandwich thesis, and consists of
four manuscripts that were prepared for publication during the author’s Ph.D.
candidacy. Two manuscripts have been published (Chapters 1 and 2), and two
manuscripts have been submitted for publication (Chapters 3 and 4). Each
manuscript is presented as a separate chapter and includes a preface detailing each
author’s contributions, as well as a description of the underlying context for the
manuscript. The first manuscript presented in Chapter 1 was prepared as a book
chapter for Oncodynamics: Effects of Cancer Cells on the Body. This manuscript
provides a conceptual overview and comprehensive background information on
the pathophysiology of depression, the role of cancer in depression, and related
topics. The three chapters that follow (Chapters 2, 3, and 4) detail experiments
that were performed during the author’s Ph.D. candidacy. A concluding chapter
(Chapter 5) summarizes the major findings of this dissertation and discusses

future directions to be considered in the study of cancer-induced depression.

Literature cited within each manuscript are independent and consistent
with the requirements of their corresponding journal. Literature cited elsewhere
use the American Psychological Association (5" edition) style, and appear in a
separate References section at the end of the dissertation. Appendices are included,
which describe relevant optimization experiments and provide details for certain

methodologies used in this research.
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Preface

In this chapter, an author-generated version of the manuscript entitled
“Oncodynamic Effect of Cancer on Depression”, published as a book chapter in G.
Singh (Ed.), Oncodynamics: Effects of Cancer Cells on the Body (pp. 105-127).
Cham: Springer International Publishing, Switzerland, is presented. This chapter
is reprinted with permission from Springer Publishing (see Appendix 3 for

Licence Agreement).

For this manuscript, I performed a thorough literature review on all topics
discussed. I wrote the manuscript, generated the table and figure therein, and
modified the manuscript based on editor suggestions. Dr. Benicio Frey and Dr.
Patricia Rosebush provided clinical input on the content of the manuscript. They
also reviewed and provided feedback on the structure of the chapter. Dr. Gurmit

Singh provided intellectual direction and edited the manuscript.

Context and Background Information

The book for which this chapter was written introduces the term
oncodynamics to the field of oncology and defines the term as “the impact of
abnormal cues generated by tumors on the physiological functioning of the body™.
This chapter specifically focuses on the oncodynamic effect that cancer has on the
development of depression. A detailed discussion is provided for topics that are

relevant for the rationale of this dissertation.
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The chapter begins with an introduction highlighting the prevalence of
depression in cancer patients, and the lack of specific treatment strategies
developed for cancer-induced depression (CID). A discussion of the history of
depression is provided and highlights the 19" century shift in our understanding of
depression as a biologically mediated illness. The modern clinical criteria of
major depressive disorder (MDD) are provided, followed by a detailed discussion
of the major neurobiological theories of depression. This discussion covers the
monoamine hypothesis of affective disorders, the involvement of neurotrophins
(such as brain derived neurotrophic factor; BDNF), stress, inflammation, and
glutamatergic signalling. Antidepressants are considered in the context of the
neurobiology of depression. In particular, the benefits and limitations of modern
antidepressants based on the monoamine hypothesis of the 1950s’ are emphasised.
Antidepressant treatment for cancer patients is then considered, and it is
concluded that more high quality clinical trials are needed to assess the efficacy of
antidepressants for CID. The last section of the chapter reviews the common
physiological abnormalities associated with both cancer and depression. The
common pro-inflammatory state, physiological stress, and glutamatergic
dysregulation associated with cancer and depression are considered as plausible
oncodynamic mechanisms of CID. This dissertation predominantly focuses on

glutamatergic dysregulation in CID.
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Since this manuscript was prepared as a book chapter, it does not include
the hypothesis and objectives of this dissertation. Therefore, the hypothesis is

stated here:

Cancer can induce depression through defined biological mechanisms,
which represent a distinct subtype of depression. Glutamatergic signalling
is involved in the induction and maintenance of cancer-induced depression,

and is modifiable by pharmacological intervention at the tumour site.

This hypothesis was investigated through 3 objectives, which are explored in

Chapters 2, 3, and 4:

Objective 1: To develop a validated behavioural mouse model of CID.

Objective 2: To investigate the antidepressant efficacy of
pharmacologically inhibiting system x_ glutamate release at the tumour

site.

Objective 3: To investigate the CID model at the level of gene expression

in comparison to a stress model of depressive-like behaviours.
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Abstract

Depressive disorders are among the most prevalent psychiatric illnesses in
the general population. In cancer patients, the prevalence of depression is
dramatically increased. In addition to the psychosocial impact of a negative
diagnosis, recent evidence suggests that cancer-induced depression is mediated by
biological processes. This oncodynamic effect of cancer on the development of
depression is poorly understood, leading to ineffective treatment of cancer-
induced depression with drugs that are developed for depressive disorders in the
general population. This chapter begins by outlining the clinical profile of major
depressive disorder. We then provide a discussion of the most prominent
neurobiological hypotheses of depression, including the monoamine hypothesis,
the role of neurotrophins, physiological stress, inflammation, and glutamatergic
signalling. The efficacy of current antidepressants is then discussed for depression
in the general population and in cancer patients. This leads to a discussion of the
biological basis of cancer-induced depression, including the effects of
physiological stress, inflammation, and glutamatergic signalling. We conclude
that more research is needed to determine oncodynamic events in the development
of cancer-induced depression. Development of validated animal models is the first
step in delineating contributing biological mechanisms, which will ultimately lead

to more targeted drug development and improved efficacy.
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Introduction

The psychosocial impact of a cancer diagnosis undoubtedly contributes to
co-morbid depression in cancer patients. While depression in the general
population occurs with a lifetime prevalence of ~8 — 12% [4], it can reach as high
as 57% in breast cancer patients and can be a staggering 95% in high grade
glioma [77]. In addition to the psychosocial contribution, recent preclinical and
clinical evidence suggests the involvement of biological mechanisms in cancer-
induced depression (CID). This biological underpinning, and the development of
the capacity to investigate it at the basic level, has a potentially profound impact
on the quality of life of cancer patients. Currently, treatment for CID is limited to
therapies developed for non-cancer-related major depressive disorder (MDD)
despite lack of convincing evidence for the efficacy of these treatments in cancer
patients [73]. A more effective strategy for treating CID begins with the
investigation of the oncodynamic effect of cancer on depression at the most basic
level. A better understanding of this interaction would provide the framework for
developing new pharmacotherapy aimed at novel targets. This chapter will discuss
what is currently known about the oncodynamic effect of cancer on depression by
first reviewing depression at the clinical and etiological level, then examining

cancer signalling events that are likely to contribute to CID.
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Depression

The term melancholia (ancient Greek for “black bile”) was first used by
Hippocrates around 400 B.C. to describe a disease state of persistent fear and
despair [101]. According to the humoral theory, this disease state arose from
excess black bile—one of the four bodily liquids, or humors. In the early 19"
century, a “clinico-anatomical” view of disease asserted that symptoms of
illnesses could be correlated with anatomical lesions [10]. During the second half
of the 19" century, this conceptual shift led to greater focus on the brain in an
effort to better understand melancholia. Today, insight from preclinical,
biochemical, genetic, post-mortem, and neuroimaging studies have led to a greater
understanding and classification of mood disorders. In addition to developing
cognitive behavioural therapy, the last several decades have seen a proliferation of
psychotropic drugs, which target specific biological pathways, enter the market.

In the case of antidepressants, while the efficacy and tolerance have generally
improved, low clinical response rates underscore the importance of continued

progress in understanding the neurobiology of depression.

Diagnosis & Classification of Depression

Mood disorders are characterized by persistent periods of intensely
reduced or elevated mood that interfere with normal functioning. The subcategory
of mood disorders that is defined by reduced mood is termed depressive disorders.

According to the current fifth edition of the Diagnostic and Statistical Manual of
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Mental Disorders (DSM-5) of the American Psychiatric Association (APA), the
common feature of this subcategory is the presence of sad, empty, or irritable
mood [5]. This can be accompanied by various somatic and cognitive changes that
impede day-to-day functioning. Differences between depressive disorders depend
on duration and timing of symptoms, as well as presumed aetiology.

In the case of Major Depressive Disorder (MDD; commonly called major
depression, clinical depression, or simply depression), changes in affect, cognition,
and neurovegetative function occur in discrete episodes with inter-episodic
remission [5]. Episodes must persist for at least 2 weeks, although typically last
considerably longer, and at least one episode is required to make a diagnosis of
MDD. If the mood disturbances persist for 2 or more years without periods of
remission, a diagnosis of persistent depressive disorder (or dysthymia) is given.
The depressive episodes required to make a diagnosis of MDD or dysthymia are
characterized by the presence of 5 (or more) of 9 symptoms, summarized in Table
1 below. In addition, at least one of the symptoms must be either (1) depressed

mood or (2) anhedonia (loss of interest or pleasure).
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Table 1. Symptoms for major depressive episode

1. Depressed mood most of the day, nearly every day

2. Markedly diminished interest or pleasure in all, or almost all, activities most of
the day, nearly every day

3. Significant weight loss when not dieting or weight gain, or decrease or increase
in appetite nearly every day.

4. Insomnia or hypersomnia nearly every day.

5. Psychomotor agitation or retardation nearly every day

6. Fatigue or loss of energy nearly every day.

7. Feelings of worthlessness or excessive or inappropriate guilt nearly every day
8. Diminished ability to think or concentrate, or indecisiveness, nearly every day
9. Recurrent thoughts of death, recurrent suicidal ideation without a specific plan,
or a suicide attempt or a specific plan for committing suicide.

Neurobiology of Depression

There are several neurochemical and neuroanatomical correlates of
depression, which have led to multiple etiological hypotheses. In reviewing these
hypotheses, it is worth noting that no single model can sufficiently account for all
aspects and variations of depression. Rather than a unified hypothesis of
depression, it is likely that the true aetiology of a complex and heterogeneous
mental disorder such as depression incorporates components from all current

theories.

The Monoamine Hypothesis of Affective Disorders

Monoamine neurotransmitters are a class of neurotransmitters derived
from aromatic amino acids, and most notably include serotonin, norepinephrine,
and dopamine. In the 1950’s, the role of monoamines in mood disorders became
apparent through a series of inadvertent discoveries, which eventually culminated

in the monoamine hypothesis of affective disorders [101]. In 1955, some patients

10
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being treated with the antihypertensive agent reserpine were found to become
depressed after treatment [48, 95]. It was later shown that reserpine depletes
vesicular storage of brain serotonin, which in turn reduces the available serotonin
for synaptic transmission [48, 101, 135]. Conversely, the antimycobacterial agent
iproniazid was shown to improve mood in tubercular patients with depression [22,
48]. Iproniazid inhibits monoamine oxidase (MAO), the enzyme that degrades
free monoamines in the presynaptic nerve terminal. By inhibiting MAO,
iproniazid enhances central serotonin and norepinephrine transmission. This
discovery prompted the development of other monoamine oxidase inhibitors
(MAOISs). Further support for the monoamine hypothesis came when imipramine,
a drug initially developed as an anxiolytic for agitated patients with psychosis,
was shown to have antidepressant effects [48, 69]. Imipramine, now classified as
a tricyclic antidepressant (TCA), acts by blocking monoamine reuptake
transporters, thereby increasing the level of serotonin and norepinephrine in the
synapse. Together, MOAIs and TCAs constitute first generation antidepressants.
In the late 1980’s, momentum for the monoamine hypothesis prompted a second
generation of antidepressants to enter development. These drugs aimed to increase
receptor specificity and, therefore, decrease adverse side effects and increase
tolerability. This second generation of antidepressants includes selective serotonin
reuptake inhibitors (SSRIs), which are currently the most prescribed class of
antidepressants, as well as serotonin-norepinephrine reuptake inhibitors (SNRIs).

Although current antidepressants that target monoamine transmission are

11
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clinically efficacious for some patients, their delayed antidepressant effect has
proven to be problematic for the monoamine hypothesis. SSRIs increase
monoamine transmission within hours of administration and begin to cause side
effects within hours or days [48, 68]. However, enhanced mood requires weeks of
chronic treatment. Additionally, monoamine depletion studies have found that
acute reduction of monoamines can decrease mood in patients with a personal or
family history of depression but not in healthy controls [68, 104, 123]. Rather
than a direct effect of monoamine neurotransmission on mood state, it is now
thought that antidepressants induce secondary transcriptional and translational
changes that ultimately lead to synaptogenesis and neurogenesis [68, 101, 113].
For example, the transcription factor CREB (cAMP response element binding
protein) is downstream of serotonin receptors and regulates expression of brain-
derived neurotrophic factor (BDNF). Clinical studies report decreased levels of
CREB in the cortex of depressed patients, and experimentally increased CREB
activity in the hippocampus of rodents has been reported to induce antidepressant-
like effects on behavioural tests [12, 101]. Additionally, CREB levels in the
hippocampus are increased following chronic administration of antidepressants,
such as the SSRI fluoxetine [12, 106]. These neuroplastic changes require several
weeks and are necessary to achieve behavioural changes, which is consistent with
the delayed response to antidepressants. Although the monoamine hypothesis has
been the most clinically relevant theory of depression, leading to the development

of first and second generation antidepressants, the delayed clinical response to

12
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increased monoamines suggests that monoamine deficiency is not a primary

abnormality in the aetiology of depression.

Neurotrophins, BDNF, and the Anatomy of Depression

In the brain, the monoamines serotonin and norepinephrine are largely
released by the raphe nuclei and the locus coeruleus, respectively. These
brainstem structures project to regions in the cerebral cortex and limbic system
that regulate emotion, reward, attention, and executive function. Specifically,
neuroimaging and volumetric post-mortem studies have identified reduced neural
activity and dendritic atrophy in the hippocampus and the prefrontal cortex (PFC)
[25, 60, 102, 134]. Although functional imagining studies have produced limited
overlap in the brain regions identified in depression, meta-analytic results suggest
that the regions with the most consistently reduced neural activity include the PFC,
insula, cerebellum, and the parahippocampal gyrus (PHG; the major inflow tract
to the hippocampus) [32, 45]. More consistent results have been provided through
structural neuroimaging studies. These results were summarized in a meta-
analysis, which revealed consistent volume reductions in frontal regions (anterior
cingulate, orbitofrontal, and prefrontal cortex), as well as in the hippocampus and
dorsal striatum [45, 63]. Moreover, volume reductions have been shown to be
attenuated with antidepressant treatment [134].

The precise mechanism of region-specific volume reductions in depression
has not been established. However, the role of BDNF has attracted interest in
recent years. Stress-induced downregulation in hippocampal BDNF expression

13
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has been well documented in preclinical studies [26]. Conversely, chronic
treatment with antidepressants has been shown to upregulate hippocampal and
PFC BDNF expression [87]. Post-mortem studies on humans support preclinical
results, showing decreased levels of hippocampal BDNF in untreated subjects
compared to subjects treated with antidepressant at the time of death [16, 26, 58,
87]. These correlation studies have prompted investigation into a more causal role
of BDNF regulation in depression. To explore the possibility of a causal
association, a single-nucleotide polymorphism (SNP) in BDNF was investigated,
which substitutes methionine for valine at amino acid 66 (Val66Met), leading to
improper storage of BDNF in neurons [30, 68]. Consequently, less BDNF is
secreted from the nerve terminals. When implemented into a biological system,
knock-in mice with this polymorphism exhibited increased anxiety-related
behaviours when exposed to stressors [17, 68]. Antidepressants have also been
shown to increase other growth factors in the hippocampus, such as vascular
endothelial growth factor (VEGF), likely through the activation of transcriptional
regulators such as CREB [68, 143]. However, a direct neuroprotective role of
growth factors such as BDNF has not been straightforward to establish due to
region-specificity. For example, in the ventral tegmental area (VTA; most notably
involved in reward response and drug addiction) and the nucleus accumbens
(NAc; also involved in reward processing), infusion of BDNF causes increased

depressive-like behaviours in mice [67].

14



Ph.D. Thesis — M. G. Nashed McMaster University Medical Sciences

Stress and Cytokines

There is strong evidence in the literature that dysregulation of the
hypothalamic-pituitary-adrenal axis (HPA) is an important factor in the biological
aetiology of depression. In response to perceived stress by the cortical regions, the
hypothalamus releases corticotropin-releasing hormone (CRH). CRH then
stimulates the anterior pituitary gland to release adrenocorticotropic hormone
(ACTH), which in turn stimulates the adrenal cortex to release cortisol, a
glucocorticoid. In a negative feedback mechanism, excess cortisol inhibits the
hypothalamus and anterior pituitary, halting further production of cortisol.
Although the first depressive episode usually involves a stressful psychosocial
“trigger”, later episodes of depression become increasingly “endogenous” as the
illness progresses [45]. Even in the absence of exogenous triggers, increased
plasma, urine, and cerebrospinal fluid (CSF) cortisol levels have been well
documented in a subset of patients with depression [57, 85, 110, 111]. Chronic
exposure to elevated levels of glucocorticoids can have a deleterious impact on
brain structures involved in cognition and emotional functions [82]. In fact,
hypercortisolaemia has been shown to cause structural remodelling in the
hippocampus, amygdala, and PFC [90]. In the hippocampus, certain types of acute
stress have been demonstrated to suppress neurogenesis in the dentate gyrus,
leading to atrophy —an effect that has also been observed in patients with
Cushing’s syndrome, which is primarily characterized by increased ACTH release

from the pituitary gland and hypercortisolaemia [139]. This stress-induced
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atrophy has been postulated to be the underlying mechanism of the volumetric
reductions observed in the hippocampus and PFC of patients with depression.
Further support for the role of chronic stress in depression has come from
preclinical studies. The most successful and widely used murine models of
depression have, in fact, relied on the clinical observations of stress as a risk
factor in depression [103]. Chronic mild stress, chronic unpredictable stress,
social defeat paradigms, as well as direct chronic administration of corticosterone
have all provided some measure of construct validity in modelling depression by
causing anhedonia in the sucrose preference test [39, 103, 114, 146, 147]. These
paradigms have also demonstrated face validity by modelling demonstrable
symptoms of depression (e.g. decreased investigative and locomotor activity), and
predictive validity through the reversal of depressive-like behaviours following
chronic antidepressant treatment [103, 146]. It is important to note, however, that
true construct validity cannot be achieved in models of depression, as this would
require re-creating the disease aetiology, which remains largely unknown. At the
molecular level, there is evidence that hypercortisolaemia is associated with
modulation of the serotonergic system. The serotonin receptor subtype 5-HT,, has
been strongly implicated in depression and anxiety, with reduced receptor
numbers and affinity reported in some patients [126]. Recently, preclinical and
clinical evidence has suggested a causal role of stress-induced hypercortisolaemia

on 5-HT,, receptor downregulation [72, 80].
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“Sickness behaviour” constitutes a set of clinically recognized behaviours
that human and animal subjects exhibit at the onset of infectious disease [44].
These behaviours, which are due to activation of the inflammatory response, share
many characteristics with depression, such as anhedonia and cognitive
impairment [45]. Cytokines are the molecular mediators of inflammatory
responses. Pro-inflammatory cytokines such as interleukin 1 (IL-1), IL-6, and
tumour necrosis factor alpha (TNF-a) have been found to be elevated in the
plasma and CSF of patients with depression [151]. In rodents, direct injection of
low doses of IL-1 has also been shown to induce “sickness behaviour” [28, 68]. In
humans, depressive symptoms have been reported as a common side effect of
treatment with interferon alpha (IFN-a), a pro-inflammatory agent, occurring in
approximately 30-50% of patients [52]. Conversely, evidence suggests that anti-
inflammatory treatment such as non-steroidal anti-inflammatory drugs (NSAIDs)
can be effective adjuvant drugs, particularly for treatment-resistant depression
[65]. Despite strong evidence for a possible role of inflammation in the aetiology
of depression, the neurobiological mechanism involved remains unknown. Further
investigations should focus on the effect of neuroimmunological mediators (i.e.

microglia) on surrounding glia and neurons [68].

Glutamate

Glutamate is the anionic form of the amino acid glutamic acid. In the
nervous system, glutamate is the most abundant neurotransmitter [92] and plays a
key role in cognitive processes that are dependent on synaptic plasticity, such as

17
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learning and memory [89]. Peripherally, glutamate is released as a response to
induced inflammation and activation of peripheral nociceptive fibres [19, 109].
Additionally, direct injection of glutamate has been shown to increase sensitivity
to thermal and mechanical stimuli in murine models [11, 54].

Ketamine is a widely used general anaesthetic, and is pharmacologically
classified as an antagonist to N-Methyl-D-aspartate receptors (NMDAR), a type
of ionotropic glutamate receptors. In recent years, ketamine has become the focus
of accumulating reports assessing its antidepressant effects in both humans and
animal models [97, 153]. In 2000, Berman and colleagues carried out the first
clinical study that reported on ketamine’s rapid antidepressant properties. The
antidepressant effects of ketamine were robust for the 9 patients involved in the
randomized trial [9] and were then replicated in a larger study involving 18
treatment-resistant patients [153]. Since then, glutamate signalling has become
well established as a factor in the neurostructural changes in depression [29, 125],
with extensive preclinical [8, 38, 39, 75] and clinical evidence [53, 152] to
support the validity of glutamate modulation for treating depression.

In 2010, interested in the potential for new depression therapeutics, Li and
colleagues carried out a study on rats that began to elucidate a possible
antidepressant mechanism for ketamine. They found that administration of
ketamine rapidly activated the mammalian target of rapamycin (mTOR) pathway,
leading to increased synaptogenesis in the prefrontal cortex [74]. Additionally,

blocking mTOR signalling effectively blocked ketamine’s ability to induce
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synaptogenesis. It is now suggested that antagonism of NMDARSs by ketamine
causes an increased concentration of extracellular glutamate, resulting in fast
excitation of neurons through increased activity of a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptors (AMPARSs), another type of ionotropic
glutamate receptors [27]. This fast excitation causes an influx of calcium ions
through voltage-gated calcium channels, which in turn stimulates the release of
BDNEF. BDNF subsequently stimulates tropomyosin-related kinase B (TrkB) and
downstream signalling pathways including PI3K-Akt and MAPK. These
pathways stimulate mTOR, a serine-threonine protein kinase, which in turn
regulates genes that increase the density of synaptic proteins, ultimately leading to
synaptogenesis and antidepressant behavioural responses [27]. Although ketamine
is also known to interact with other signalling systems, including the dopamine
D2 receptors, opioid receptors, and sigma (0) receptors [66, 119], there is
considerable evidence to suggest that the primary antidepressant response of
ketamine is mediated by the NMDAR. For example, other NMDA antagonists,
including MK-801 and CPPene, have also shown effectiveness in inducing anti-
depressive effects in animal models [7, 84]. Moreover, the behavioural
antidepressant effects of ketamine in animal models of depression have been
shown to act independently of o receptors [119]. In addition to ketamine, the
antidepressant action of tianeptine, a clinically used TCA, has recently been
attributed to glutamatergic regulation, possibly through the modulation of both

AMPAR and NMDAR [91].
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Clinically, concentrations of glutamate are elevated in the serum or plasma
of patients with MDD [3, 61, 88, 94]. At the brain level, studies using magnetic
resonance spectroscopy (MRS) reveal a decreased unresolved
glutamate/glutamine signal (Glx) and glutamate alone signal (Glu) in brain
regions that are relevant to depression, such as the PFC and anterior cingulate

cortex [6, 46].

Antidepressants

Treatment for MDD has improved significantly since the serendipitous
discovery of MAOIs and the formation of the monoamine hypothesis of
depression in the 1950’s. However, with the underlying aetiology of the illness
still unclear, efforts to create increasingly targeted therapy has been relatively
stagnant. Monotherapy with first and second-generation antidepressants often fails
to alleviate symptoms, and it may take multiple attempts with different
antidepressants and adjunct therapy to achieve clinical efficacy. Treating
depression becomes even more difficult when it presents as comorbidity, in part
due to a lack of understanding of the relationship between the primary disease and
depression. Few studies have examined depression in cancer patients at the basic
level, and thus treatment options for CID are limited to those therapies developed
for use in non-cancer-related MDD. In this section, we will consider the clinical

efficacy of antidepressants in MDD as well as CID.
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Antidepressants in Major Depressive Disorder

The Sequenced Treatment Alternatives to Relieve Depression (STAR*D)
trial was the largest effort to date on the efficacy of antidepressants. It was
commissioned by the National Institute of Mental Health (NIMH) and completed
in 2006 [124]. In 2008, data from the trial became available. The study recruited
4,041 adult patients (1,127 dropped out; 2,876 were analyzable) with MDD from
primary care and psychiatric settings [50, 124]. As the primary outcome measure
for remission, STAR*D used the Hamilton Depression Rating Scale (HAM-D) to
measure the severity of depression. The HAM-D is a commonly used 52-item
questionnaire that rates severity of depression on a 17-point scale, with scores of
0-7 considered normal [42]. In level 1 treatment, patients received citalopram
monotherapy, one of the most prescribed SSRIs, and remission rates were
approximately 28% based on HAM-D scores [51]. In levels 2, 3, and 4 of the trial,
patients who did not achieve remission in the previous level were either switched
to a different antidepressant or received an augmentation to citalopram treatment.
Switches to new antidepressants consisted of other SSRIs, SNRIs, TCAs, or other
agents that act on monoamine transmission. In the case of treatment augmentation,
a wide range of agents were used, including anxiolytics, lithium, and thyroid
hormone T3 [51]. In each level of the trial, the treatment-resistant patients from
the previous level were randomized to the new treatment regimens. Remission
rates in levels 2, 3, and 4 of the trial were all below 30%. With only a third of

MDD patients responding to initial monotherapy, systematic reviews of
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randomized control trials (RCTs) have sought to better define the role of
antidepressants in the clinical setting. In 2009, Cipriani et al. showed that of the
commonly prescribed second generation antidepressants, escitalopram and
sertraline were the most efficacious and best tolerated, leading to fewer
discontinuations [18]. In another meta-analysis, Fournier et al. investigated
antidepressant efficacy relative to initial symptom severity [33]. They concluded
that patients with severe MDD benefit substantially from antidepressant treatment,
whereas benefit is minimal in mild or moderate MDD. In addition to
pharmacological modulation, cognitive behavioural therapy (CBT) has been
shown to be beneficial for patients with depression, even in the case of severe
MDD [24, 49]. In some cases of severe MDD that is not responsive to
antidepressants, electroconvulsive therapy (ECT) may be used. ECT has been
extensively shown to be effective in achieving remission in treatment-resistant
patients [93]. However, due to the requirement of anaesthetic, ECT is rarely used
as a first line of treatment. More recently, Repetitive Transcranial Magnetic
Stimulation (rTMS) has also been shown to provide some benefit as adjunct

therapy in treatment resistant patients [93].

Antidepressants in Cancer-Induced Depression

In stark contrast to the large-scale and high-quality RCTs available for
primary MDD, few studies have investigated antidepressant efficacy and
alternative or adjunct therapies in cancer patients. This is surprising considering
the high prevalence of depression comorbidity in cancer, a clinical observation
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that spans decades [13, 31, 35, 62, 78, 144]. Difficulties in studying and treating
CID are found at the preclinical and clinical levels. At the preclinical level, the
lack of validated animal models for CID has restricted inquiry into the possible
biological mechanisms involved. Cancer patients with comorbid depression are,
therefore, limited to antidepressant treatment developed for non-cancer patients.
Clinically, depression is underdiagnosed and undertreated in cancer patients,
largely owing to the psychosocial complication of what might be considered
“appropriate sadness” in terminally ill patients compared to treatable psychiatric
disease [13, 78, 137]. In addition, factors such as cancer type, cancer stage, and
demographic convolute an already complex mental disorder. Thus, in the absence
of more precisely tailored treatment, antidepressants (particularly SSRIs) remain
the first line of treatment in the oncologic setting.

Although few studies have examined the efficacy of antidepressants in
CID, a handful of systematic reviews have compiled such studies in an attempt to
draw clinical conclusions. In 2006, 2007, and 2011, three groups examined the
literature for antidepressant efficacy in cancer. The first review focused on SSRIs
and found that four of the five studies reported positive results, and one study
using fluoxetine showed no difference in incidence of depression compared to
placebo [145]. The second review, which had overlapping studies with the first,
also examined the efficacy of mianserin (a tetracyclic antidepressant; TeCA) in
two included studies [120]. In this review, three placebo-controlled trials

(including the two mianserin studies) showed positive results. Of the remaining
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four studies, the two placebo-controlled trials did not detect a difference between
treatment and placebo, while the two trials comparing active treatments found
temporal improvement of depressive scores but no group differences. The third
review in 2011 updated the previous results with one additional study, which did
not detect a difference between placebo and paroxetine or desipramine [105].
Underscoring the lack of high-quality studies on the topic, a 2013 Cochrane
review found no eligible RCTs, controlled trials, cohort studies or case-control
studies investigating antidepressant efficacy in patients with primary brain
tumours [122]. Studies under consideration were excluded for a wide range of
issues, such as reporting on usual clinical care rather than systematically
evaluating specific treatments. Most recently, another systematic review has
investigated antidepressant efficacy in breast cancer specifically [15]. This review
identified two eligible studies with mixed results, both of which have been
included in other systematic reviews [105, 120, 145]. Concerns raised in this
review included small sample sizes, and therefore, a significant risk of bias.
Overall, these systematic reviews highlight the inadequacy of currently available
literature on the question of antidepressant efficacy in cancer patients. From these
studies, broad clinical conclusions cannot be drawn, which points to a need for
larger and better designed clinical trials as well as a capacity to study CID at the
basic level.

In addition to pharmacotherapy, psychological interventions such as CBT,

supportive psychotherapy, and group psychotherapy may be efficacious for cancer
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patients either as primary treatment or in combination with antidepressants [2, 73,
79]. However, in clinical trials of antidepressants, physiological interventions,
including regular hospice care, may be a confounding variable that can mask
antidepressant effect [79]. Therefore, intervention models under investigation

need to be well designed and appropriately analyzed to control for such confounds.

Cancer-Induced Depression

Strong clinical and preclinical evidence exists in the literature to support a
causal role of cancer on depression. In the introduction to this chapter, the
prevalence of depression in the oncologic setting was discussed in comparison to
depression in the general population. While the staggeringly high prevalence of
depression in cancer patients suggests a strong correlation, the impact of
psychosocial factors make it difficult to establish causation or biological
mechanisms. However, early clinical studies reveal that psychological changes
relating to depression may in fact precede the diagnosis of cancer [40, 55, 112].
More recently, a breast cancer study, which included 428 women, reported that
over 25% of women with breast cancer exhibited symptoms of depression prior to
being informed of their cancer diagnosis [142]. Using data from the World Mental
Health Survey Initiative, another study performed a retrospective analysis on the
mental health of cancer patients, which included nineteen countries and more than
52,000 patients [107]. The study found that depression symptoms appear
predictive of a later cancer diagnosis. By demonstrating an increased prevalence
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of depression in patients who have cancer but are unaware of their diagnosis,
these clinical findings effectively eliminate the confounding psychosocial effect
of a cancer diagnosis, and suggest a possible causal role of cancer on mental
health at the biological level. In addition to clinical support, this oncodynamic
impact of cancer on depression is supported through common biological systems
between cancer and depression; namely, inflammation, physiological stress, and
glutamatergic dysregulation. In order to investigate the possible causal role of
these systems in the induction of depression by cancer cells, validated CID animal
models need to be established. In 2009, Pyter et al. reported that peripheral
mammary tumours induce behavioural changes such as anhedonia in rats and
increase plasma biomarkers such as cytokines and corticosterone [115]. Similarly,
in 2011 Lamkin et al. were able to replicate these findings using ovarian cancer in
mice [71]. To investigate possible neurological correlates in CID, Yang et al.
recently showed that tumour-bearing mice had reduced proliferating and
progenitor neurons in the dentate gyrus of the hippocampus when compared to
control animals [149]. Although these studies have provided compelling insight
into the association between cancer and depression, more rigorous validation of
CID models is needed. Behavioural and relevant neuroanatomical comparisons to
existing validated models of depression would yield more convincing animal
models. In addition, reversal trials using antidepressants on the positive control
depressive models would further establish the validity of the behavioural tests

used prior to evaluating the CID models. Properly validated CID models would be
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an essential tool in manipulating inflammatory, stress, and glutamatergic systems
in the investigation of the causal oncodynamic effect of cancer on depressive
symptoms. To date, only correlative associations have been established between
cancer and depression, although a causal relationship has been postulated based
on the clinical studies discussed in earlier in this chapter. Expanding on what is
currently known about the common biological systems that are involved in cancer
and depression, we can discuss the most plausible oncodynamic mechanisms of

CID. These proposed mechanisms of CID are summarized in Figure 1.

Oncodynamic Effect Through Inflammation

A well-established characteristic of most cancer cells is their ability to
exploit the host’s immune system at multiple stages of tumour development and
metastasis [1, 20, 21, 34, 41, 43]. Specifically, cancer cells recruit an array of
cytokine-producing leukocytes, such as tumour-associated macrophages (TAMs)
[20, 100]. Cancer cells themselves are also capable of expressing various
cytokines, such as TNF-a and IL-6, that attract more leukocytes [20]. In doing so,
cancer cells employ the same mechanisms that are normally activated to repair
tissue in response to tissue damage [70]. For example, in order to repair normal
tissue damage, the extracellular matrix (ECM) that binds cells together must be
broken down in order to allow for the recruitment of new cells to the site of injury.
Platelets aggregating at the site of injury release platelet derived growth factor
(PDGF), which in turn stimulate fibroblasts to secrete matrix metalloproteinases
(MMPs). These enzymes break down the ECM of damaged cells and allow the
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arrival of new cells [70]. Cancer cells that secrete PDGF can exploit this
mechanism by recruiting MMP-secreting fibroblasts to break down the ECM of
healthy epithelial cells and by replacing them with multiplying cancer cells [70,
76].

As previously discussed in this chapter, depression is strongly associated
with pro-inflammatory mediators in clinical and preclinical studies. The ability of
cancer cells to directly secrete pro-inflammatory mediators highlights one
possible oncodynamic pathway of CID. We can further postulate on the specific
downstream effect of this oncodynamic event through closer investigation of
inflammatory consequences in depression. Clinical studies investigating the
cytokine profile of cancer patients have shown that IL-6, which is directly
secreted by cancer cells [127], is elevated in the plasma of cancer patients who
also exhibit depressive symptoms, compared to cancer patients who do not exhibit
depressive symptoms [56, 99, 138]. In another study, the increased plasma
concentration of IL-6 in ovarian cancer patients was associated with the
vegetative symptoms of depression (such as fatigue and weight loss), but not with
affective symptoms or overall depression [83]. Similar effects on vegetative, but
not affective, depression symptoms have been observed with IFN-a therapy-
induced inflammation [14, 70, 98]. Taken together, these results suggest that
cancer cell-secreted IL-6 (and possibly other inflammatory mediators) induces an
oncodynamic effect on depression, which specifically exacerbates vegetative

symptoms.
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Oncodynamic Effect Through Physiological Stress

Physiological stress through activation of the sympathetic nervous system
is an adaptive response to environmental stressors. As previously discussed,
dysregulation of this response is strongly implicated in the aetiology of depression.
Undoubtedly, the psychosocial impact of a cancer diagnosis is one source of this
dysregulation. The induction of chronic physiological stress in cancer patients is
supported by the clinical observation of increased plasma cortisol in advanced
cancer patients [81, 128]. Additionally, plasma levels of cortisol are higher with
increased tumour burden, metastasis, and pervasiveness of the cancer [116, 129,
141]. This suggests a direct impact of cancer cells on physiological stress, in
addition to the psychosocial contribution. However, the mechanism of cancer-
induced activation of the stress response has not been investigated, with the
notable exception of adrenal tumours that autonomously produce and secrete
cortisol [36]. Other studies have investigated general HPA activation in cancer
patients, but not the mechanism of activation, and often in the context of
investigating depressive symptoms [83, 138]. Although clinical studies suggest a
direct oncodynamic effect of cancer on the dysregulation of the physiological
stress response (and ultimately depression), a discussion on the biological

mechanisms is lacking in the literature.
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Oncodynamic Effect Through Glutamatergic Signalling

As early as the 1980’s, results from clinical investigations have
demonstrated elevated plasma levels of glutamate in cancer patients [108, 118].
More recently, the mechanism of glutamate release by cancer cells as well
downstream consequences of this release have garnered attention in the literature.
Initial studies focused on glioma cell lines and found that glutamate secretion into
the extracellular environment involved the glutamate/cystine antiporter system x.
[59]. This excess glutamate secretion causes excitotoxicity and death of
surrounding neurons through over-activation of NMDARs [131, 150]. The same
mechanism of glutamate secretion through system x_ was later characterized in
multiple cancer cell lines, including metastatic breast and prostate cancers,
through in vitro and in vivo studies [130, 131, 132, 133, 140].

Earlier in this chapter, the emerging role of glutamatergic signalling in the
aetiology of depression was discussed. Excess glutamate secretion by cancer cells
provides a biologically plausible cause of glutamate dysregulation in depression.
This connection is particularly convincing in the case of gliomas, which secrete
very high amounts of glutamate and which are also associated with a very high
incidence of depression, as previously discussed. Neuronal hyperactivation due to
glioma-secreted glutamate would interfere with neuroplastic and synaptoplastic
events in the mPFC and the hippocampus, ultimately leading to depression. In
peripheral cancers, the effect of glutamate on depression may not be as direct.

Because of glutamate’s key role in many neuronal signalling events, glutamate
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distribution and extracellular fluid (ECF) concentrations in the brain are tightly
controlled. The vast majority of glutamate in the brain is stored in astrocytes,
while glutamate in the ECF is maintained at very low concentrations relative to
plasma levels in the periphery [47, 86, 136]. The blood-brain-barrier (BBB) is a
crucial structure in the maintenance of this concentration difference between
plasma and brain ECF glutamate. Excitatory amino acid transporters (EAATs) on
the abluminal (brain-facing) membrane of the BBB transport glutamate from the
ECEF to the peripherally circulating blood. The luminal (blood-facing) membrane
lacks EAATS, thus preventing the entrance of glutamate from the blood into the
brain under normal physiological conditions. However, recent evidence has
suggested that pathological conditions disrupt the BBB, leading to increased
permeability. Substance P (SP) is a pro-inflammatory neuropeptide that has been
implicated in nociception [23], depression [64, 96, 148], and is expressed in breast
cancer cells [117]. It was recently shown that breast cancer cell-secreted SP is
involved in the transmigration of cancer cells across the BBB [121]. To do this,
SP activates an inflammatory response in the endothelial cells that comprise the
BBB, which ultimately increases their permeability. Therefore, under pathological
conditions such as metastatic disease, tight regulation of brain glutamate may be
impaired by breaches in the BBB. This represents one possible mechanism
through which glutamate secreted by peripheral tumours can affect brain

physiology and induce depression.
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An alternative oncodynamic mechanism would be analogous to pain
transmission. Glutamate released by peripheral cancer cells causes pain in a
model of bone metastasis, which is attenuated using an antagonist of system x_
[140]. In this paradigm, glutamate does not need to cross the BBB in order to
transmit a pain signal. Nociceptive fibres are activated peripherally and the signal
is transmitted through the ascending pathway to cortical regions that perceive pain
[37]. Similarly, it is plausible that peripheral glutamate activates CNS pathways
indirectly through signal transmission, culminating in brain alterations consistent
with depression. Therefore, although a mechanism has not been investigated in
the literature, preclinical and clinical evidence suggests that cancer-secreted
glutamate imparts an oncodynamic effect on the development of CID. In this
section, two biologically plausible mechanisms for this oncodynamic effect have

been suggested.
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Figure 1. Schematic summarizing proposed oncodynamic mechanisms of

cancer-induced depression. Glioma cells in the brain release large amounts

of glutamate (Glu), which directly cause excitotoxicity of neurons by

hyperexcitation of NMDARs. This causes a decrease in neurogenesis and

synaptogenesis in brain regions such as the hippocampus (HIP) and

prefrontal cortex (PFC),

which leads to depressive symptoms. Peripheral
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cancer cells also release large amounts of glutamate. Substance P (SP)
released by cancer cells impairs the blood-brain barrier (BBB), causing
increased permeability, which may allow peripherally secreted glutamate
to enter the brain. Alternatively, peripherally secreted glutamate may act
on the spinal cord through signal transduction pathways that project to
brain regions involved in depression. Peripheral cancer cells also secrete
cytokines, which may be a causal factor in vegetative depressive
symptoms. Tumour burden has also been shown to influence the
hypothalamic-pituitary-adrenal (HPA) axis, which leads to chronic

physiological stress and depressive symptoms.

Conclusion

Depression in cancer patients is a highly prevalent comorbidity, which
affects quality of life and survivorship. Although psychosocial factors contribute
to depression in the cancer setting, the clinical evidence reviewed in this chapter
suggests a more causal role of cancer on the induction of depression. Through
careful consideration of the overlapping biological mechanisms involved in
depression aetiology and cancer physiology, we can postulate on the initial
oncodynamic signalling event(s) that lead to the induction of depression. However,
a robustly validated preclinical model of CID is lacking in the literature.

Therefore, the capacity to investigate the oncodynamic mechanism of CID
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through manipulation of a valid model has yet to be established. Future direction
in this field of research should focus on developing the capacity to investigate the
mechanism(s) of CID, while being attentive to advancements in the understanding

of depression aetiology.
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Preface

In this chapter, an author-generated version of the manuscript entitled
“Depressive-like behaviours and decreased dendritic branching in the medial
prefrontal cortex of mice with tumors: A novel validated model of cancer-induced
depression”, published in Behavioural Brain Research November 2015, is
presented. The paper is reproduced with permission from Elsevier, as stated on

the copyright agreement:

Authors can use their articles, in full or in part, for a wide range of
scholarly, non-commercial purposes as outlined below:

*  Use by an author in the author’s classroom teaching (including
distribution of copies, paper or electronic)

* Distribution of copies (including through e-mail) to known
research colleagues for their personal use (but not for Commercial
Use)

e Inclusion in a thesis or dissertation (provided that this is not to be
published commercially)

* Use in a subsequent compilation of the author’s works
* Extending the Article to book-length form

* Preparation of other derivative works (but not for Commercial
Use)

*  Otherwise using or re-using portions or excerpts in other works

These rights apply for all Elsevier authors who publish their article as
either a subscription article or an open access article. In all cases we
require that all Elsevier authors always include a full acknowledgement
and, if appropriate, a link to the final published version hosted on Science
Direct.

(http://'www sciencedirect.com/science/article/pii/S016643281530111X)

59



Ph.D. Thesis — M. G. Nashed McMaster University Medical Sciences

For this paper, I performed the behavioural assays, animal drug treatments,
cancer cell culturing and inoculations, tissue harvest and processing, dendritic
analysis, blood collection and processing, CORT ELISA, and data analysis.
Furthermore, I created all of the figures, tables, and both wrote and revised the
manuscript. Dr. Eric Seidlitz revised the manuscript and provided critical training
for techniques, input regarding experimental groups, design, and interpretation. Dr.
Benicio Frey and Dr. Gurmit Singh provided intellectual direction and revised the
manuscript. Please note that American spellings are used throughout the article, as

required by the journal.

Context and Background Information

In the introductory chapter of this manuscript, I argued that it is necessary
to develop an animal model in order to begin exploring the pathophysiology of
cancer-induced depression (CID) at the basic level. The manuscript presented in
this chapter establishes the first validated preclinical model of CID.
Immunodeficient models with human tumour cell xenografts were initially
explored and rejected based on observed confounding behaviours, which
diminished test reliability (Appendix 1). For example, immunodeficient BALB/c
nu/nu mice exhibited a leg-grabbing behaviour on the tail suspension test (TST),

which rendered it ineffective at determining escape vs. despair behaviours.

Other studies have recently established an associated between tumour

burden and depressive-like behaviours, with a particular focus on the role of
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inflammation (Lamkin et al., 2011; Norden et al., 2015; Pyter, Pineros, Galang,
McClintock, & Prendergast, 2009; Yang et al., 2014). However, these studies do
not validate their models using positive control models of depressive-like
behaviours. To validate that the behavioural alterations observed in a new model
are due to the induction of a depressive state, the same alterations must first be
observed using the same assays in a an established model of a depressive-like
state. Furthermore, the alterations observed in the positive control model must be
reversible by antidepressant treatment to establish that the assays are sensitive to
antidepressant effects. This is particularly important to control for the significant
variability in animal behaviours of different strains and in different laboratory

conditions (Krackow et al., 2010).

In this manuscript, a positive control model was established using chronic
administration of corticosterone (CORT). A group of CORT mice were also
treated chronically with fluoxetine (FLX), a popular clinical antidepressant. The
CID model was induced with subcutaneous inoculation of murine 4T1 mammary
carcinoma cells. Both the CORT and CID models displayed anhedonic and
despair behaviours. The depressive-like behaviours observed in the CORT model
were reversible by FLX treatment. In addition to the behavioural assays, a
neuroanatomical assessment was conducted on the medial prefrontal cortex
(mPFC) in both models. Dendritic atrophy and reduced neuronal activity have
been demonstrated in the mPFC of depressed patients (Fitzgerald, Laird, Maller,

& Daskalakis, 2008; Kempton et al., 2011; Koolschijn, van Haren, Lensvelt-
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Mulders, Hulshoff Pol, & Kahn, 2009). Our results demonstrated reduced mPFC
apical and basilar dendritic arbour branching in CORT and CID mice. FLX

treatment partially reversed these deficits in CORT mice.

This manuscript represents the first validated preclinical model of CID.
Similar to the positive control CORT model, this model exhibited robust

depressive-like behaviours and neuroanatomical deficits in the mPFC.
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Abstract

Depression is commonly comorbid in cancer patients and has detrimental
effects on disease progression. Evidence suggests that biological mechanisms may
induce the onset of cancer-induced depression (CID). The present investigation
aims to establish a validated preclinical animal model of CID. Female BALB/c
mice were allocated to four groups: control (n = 12), chronic oral exposure to
corticosterone (CORT) (n = 12), CORT exposure followed by chronic low dose
fluoxetine (FLX) treatment (n = 12), and subcutaneous inoculation of 4T'1
mammary carcinoma cells (n = 13). Anhedonia was evaluated using the sucrose
preference test (SPT), and behavioural despair was evaluated using the forced
swim test (FST) and tail suspension test (TST). Sholl analyses were used to
examine the dendritic morphology of Golgi-Cox impregnated neurons from the
medial prefrontal cortex (mPFC). CORT exposure and tumor burden were both
associated with decreased sucrose preference, increased FST immobility, and
decreased basilar and apical dendritic branching of neurons in the mPFC. CORT-
induced behavioural and dendritic morphological changes were reversible by FLX.
No differences in TST immobility were observed between groups. On the
secondary TST outcome measure, CORT exposure and tumor burden were
associated with a trend towards decreased power of movement. CORT exposure
induced a positive control model of a depressive-like state, with FLX treatment
confirming the predictive validity of the model. This verified the sensitivity of

behavioural and histological tests, which were used to assess the CID model. The
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induction of a depressive-like state in this model represents the first successfully

validated animal model of CID.
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Introduction

Major depressive disorder (MDD) is one of the most commonly diagnosed
psychiatric disorders in primary care settings. Its lifetime prevalence is ~8 — 12 %
[1], increasing to as high as 57 % in breast cancer patients and a staggering 95 %
in high-grade glioma [2]. Depression in cancer patients has often been
conceptualized as “reactive depression” due to the expected psychosocial
influence of a cancer diagnosis [3]. However, treating the onset of depression as
purely reactive in cancer patients does not account for any possible biological
influence of the cancer itself. There is considerable clinical evidence that
psychological changes relating to depression actually precede the diagnosis of
cancer [4-6]. Over 25 % of women with breast cancer exhibit symptoms of
depression prior to being informed of their cancer diagnosis [7], and depression
symptoms appear to be predictive of a later cancer diagnosis [8]. These clinical
findings suggest a biologically causative effect of cancer on the initiation of
depressive symptoms, independent of confounding factors such as a patient’s
knowledge of a psychologically stressful cancer diagnosis.

A major impediment to the mechanistic study, drug development, and
effective treatment of CID has been the lack of valid animal models that would
facilitate preclinical research. The current investigation aims to address this need
by developing a robust, validated mouse model of CID. To accomplish this, we
first aimed to demonstrate that our chosen tests were sensitive to depressive-like

behaviours induced by an existing, well-established animal model of non-cancer
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related depression-like state. Predictive validity of the model was also assessed by
intervention with a clinical antidepressant, fluoxetine (FLX). Anhedonia, the
diminished ability to experience pleasure, is considered a core symptom of MDD
[9, 10]. In the present investigation, anhedonia was assessed with the sucrose
preference test (SPT), which is based on the neurobiological assumption that
intake of sucrose-sweetened water is a valid measure of sensitivity to reward [11].
Another common measure of depressive-like behaviour in animals is “behavioural
despair”, which we assessed using the forced swim test (FST) [12] and tail
suspension test (TST) [13]. In these paradigms, despair is characterized by the
duration of immobility (i.e. lack of escape behaviour) when exposed to forced
swimming or tail suspension. To induce a positive control model of a depressive-
like state, we exposed mice chronically to corticosterone (CORT), which provides
a well-established preclinical model of depressive-like behaviours [14-21]. FLX, a
selective serotonin reuptake inhibitor (SSRI), was used at a low chronic dose to
reverse CORT-induced behavioural changes [22, 23]. CORT-induced depressive-
like behaviours and their reversal by FLX established the sensitivity of the
behavioural tests. In parallel with this, a group of animals were inoculated with
4T1 mammary carcinoma cells subcutaneously to determine if a depressive-like
state could be induced by cancer alone, and if this model could conform to the
requirements of a robust preclinical animal model.

Depression has been associated with dendritic atrophy and reduced

neuronal activity in specific brain regions, particularly the hippocampus and
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medial prefrontal cortex (mPFC) [24-28]. Therefore, a histological analysis of
dendritic branching of pyramidal neurons in the mPFC was performed to
investigate structural evidence of an induced depressive-like state and corroborate
results from the behavioural analyses.

We hypothesized that the behavioural tests and the dendritic analyses
would reliably identify depressive-like behaviours and structural changes in the
mPFC in the CORT model of a depressive-like state, and that these changes
would be reversible by chronic administration of FLX. We further hypothesized
that our subcutaneous tumor model would exhibit depressive-like behaviours and
dendritic atrophy using the same analyses, thereby validating an animal model of
CID for further use in mechanistic studies and pharmaceutical development.

In the current investigation, reversal of CORT-induced behavioural and
dendritic changes by FLX confirmed the predictive validity of this model and
verified the sensitivity of the behavioural and histological tests. Using these tests,
tumor burden was shown to be associated with depressive-like behaviours and
decreased dendritic branching in the mPFC, demonstrating a physiological
association between cancer and a depressive-like state, and validating this animal

model of CID.
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Materials and Methods

Mice

Forty-nine female BALB/c mice aged 4-6 weeks were obtained from
Charles River Laboratories (St. Constant, QC, Canada). Female mice were
selected as male mice appear to more frequently gnaw and bite at tumor sites [29].
Mice were single-housed in sterile cages maintained at 24 °C with a 12-h
light/dark cycle, and were provided ad libitum access to autoclaved food and
water. All procedures were performed according to guidelines established by the
Canadian Council on Animal Care under a protocol reviewed and approved by the

Animal Research Ethics Board of McMaster University.

Drug treatments

To induce a positive control model of a depressive-like state, mice were
administered chronic oral CORT as outlined previously [15]. Briefly, the pH of
sterile water was increased to 12-13 using 10 N NaOH and CORT hemisuccinate
(Steraloids, Newport, RI, USA) was added and allowed to dissolve overnight at
4 °C to slow its decay. Once dissolved, the pH was neutralized to 7.0-7.5 using 10
N HCI. The resulting CORT solution (35 pg/mL) was administered ad libitum to
mice in place of their normal drinking water over a 21-day period. Mean dose was
calculated to be 6.53 + 0.16 mg/kg/day in these animals.

For the reversal of CORT-induced depressive-like behaviours, CORT

treatment in drinking water was stopped, and the SSRI FLX was administered ad
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libitum in drinking water for a 21-day period. FLX hydrochloride (Sigma-Aldrich,
St. Louis, MO, USA) was dissolved in sterile drinking water at a concentration of
150 pg/mL to obtain dosages between 10 and 18 mg/kg/day [23]. The mean dose

of FLX consumed was 16.46 + 0.16 mg/kg/day. FLX was administered in opaque

bottles to protect it from light.

Tumor cell inoculation

Murine 4T1 mammary carcinoma cells are derived from a spontaneously
arising mammary tumor in BALB/c mice [30,31].4T1 cells (American Type
Culture Collection, Manassas, VA, USA) were maintained in culture according to
supplier specifications. Mice were anesthetized by isoflurane inhalation and
inoculated with 15,000 4T1 cells in serum-free RPMI 1640 media (Life
Technologies, Burlington, ON, Canada) subcutaneously on the right side of their
lower backs. This tumor site was selected instead of the orthotopic site to avoid
movement constraints and potential confounding behaviours in the FST and TST.
All other mice that did not receive 4T1 injections were sham-inoculated with
serum-free RPMI 1640 media. Tumor size was monitored using a digital caliper
every 3-4 days once tumors became palpable at day 8. Mice were weighed weekly
and overall health status was monitored every 3-4 days initially, and then daily
during the final week prior to endpoint. All mice were euthanized 28 days after

the mice in the tumor group were inoculated with cancer cells.

70



Ph.D. Thesis — M. G. Nashed McMaster University Medical Sciences

Behavioural analyses

Sucrose preference was evaluated as a measure of anhedonia. Mice were
first habituated to 3 % sucrose over a 72-h period. During this period, regular
drinking water was replaced with 3 % sucrose solution. This concentration of
sucrose has been shown in our preliminary experiments to provide a robust
sucrose preference of approximately 70 % in BALB/c mice, which allows for
reliable detection of both elevations and reductions in preference (data not shown).
The SPT was performed prior to any intervention at baseline and again after
experimental treatments. During each testing period, mice were presented with a
two-bottle option of water and 3 % sucrose solution for 48 h in their home cages.
At 24 h, the positions of the two bottles were switched to eliminate any effect of
location bias. Bottles were weighed before and after testing and preference was
calculated as the percentage of sucrose solution intake relative to total fluid intake
[32].

Two tests were used to assess behavioural despair: the automated dual-
sensor FST (BioSeb, Vitrolles, France) and the automated TST (BioSeb, Vitrolles,
France). For the FST, mice were individually placed into 20 cm diameter beakers
with 10 cm depth of sterile water warmed to 28 °C to counter hypothermia [33].
This system combines overhead video with input from vibration sensors attached
to the beakers to distinguish between active state of swimming/climbing and
inactive state of immobility/floating. The total testing duration was 6 min, with

the first minute discounted from analysis to allow for behavioural stabilization.
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The primary outcome measure of the FST was the duration of time spent
immobile. For the TST, a piece of masking tape was placed around the tail of each
animal. To suspend the mice, the tape was pierced with a hook attached to a strain
gauge on the TST apparatus. Again, the total testing duration was 6 min, with the
first minute discounted from analysis. Input from the strain gauge was used to
compute immobility time, as well as secondary measures including power of

movement (P.M.; arbitrary units).

Experimental groups

The FST and TST were performed once prior to endpoint to avoid
confounding learned behaviours that could arise from repeated testing (e.g. leg-
grabbing on the TST). However, multiple exposures to the SPT did not confound
later testing, and was found to be necessary to habituate mice to the sucrose
solution. The SPT was initially performed at baseline and scores were used to
divide animals into four experimental groups such that the means and standard
deviations of sucrose preference were uniform between groups at baseline. The
four groups were then randomly assigned to treatments: no treatment control (n =
12), CORT-only (+CORT/-FLX; n = 12), CORT followed by FLX
(+CORT/+FLX; n = 12), and subcutaneous tumor (n = 13). The detailed timeline

of the experiment is presented in Figure 1.
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Euthanasia and tissue processing

Euthanasia was performed by isoflurane anesthesia and cardiac puncture
exsanguination for endpoint blood collection, followed by decapitation.
Euthanasia and endpoint monitoring were performed in accordance with protocols
approved by the Animal Research Ethics Board of McMaster University. Brains
were immediately removed, rinsed with sterile phosphate-buffered saline, and
placed in Golgi-Cox impregnation solution (Hitobiotec Inc., Wilmington, DE,
USA) for 2 weeks at room temperature. Following impregnation, brains were
rapidly frozen in cooled isopentane. 200 wm sections were obtained using a
cryostat and air dried on gelatin-coated slides at room temperature in the dark.
Golgi-Cox impregnation was visualized by immersion of slides in an ammonium
hydroxide-based solution provided with the Hito Golgi-Cox OptimStain Kit.
Slides were dehydrated in increasing concentrations of ethanol, then cleared in
xylene and coverslips applied using a xylene-based resinous mounting medium.

Mounted sections were viewed by light microscopy.

Dendritic analysis

Eight mice from each experimental group were randomly selected for
dendritic analysis (N = 32). Golgi-Cox stained brain sections between +2.45 and
+1.45 relative to bregma were examined under light microscopy to identify
pyramidal neurons in layer II-III of the mPFC [34]. Pyramidal neurons were

identified by their characteristic triangular soma, basilar dendritic tree, and apical
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dendrites extending towards the pial surface [35, 36]. Only neurons that appeared
fully intact and were unobscured by other neurons were selected for imaging,
yielding between 6 and 10 viable neurons for each animal. Z-stacked images were
captured for each neuron in 2 pum increments using OpenLab 5 (PerkinElmer,
Waltham, MA, USA). Neurons were digitally reconstructed using the Simple
Neurite Tracer plugin for the open source software Fiji (ImagelJ platform) [37],
with the investigator blind to condition. Cumulative basilar and apical branch
lengths were recorded following neuronal reconstruction. Assessing the variability
between the 6 and 10 neurons selected from each brain provided a mean within-
animal standard error of the mean (SEM) of 9.4 + 0.7 % for total basilar branch
length, and 13.2 + 0.8 % for total apical branch length. Cumulative basilar and
apical branch lengths were also us