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ABSTRACT 

Stroke is an acute neurological deficit that results from abnormal blood flow to the brain. 

The term stroke encompasses two primary subgroups: hemorrhagic stroke that is due to 

extravasation of blood and ischemic stroke that is due to vessel obstruction. Determining 

stroke type and underlying etiology is a crucial step in patient management as it 

influences treatment strategies. Currently diagnosis of stroke relies on clinical 

examination and neuroimaging, but there is a lack of rapid diagnostic and prognostic 

testing. Using microarray technology we identified a novel association between elevated 

peripheral blood expression of MCEMP1 and stroke. We have also shown that MCEMP1 

discriminates between primary stroke types and predicts one-month post-stroke 

prognosis. Since genetic mechanisms underlying stroke remain incompletely understood 

we next conducted a global gene network analysis. Network analysis identified four large 

groups of co-expressed genes associated with ischemic stroke. NLRC4, CKLF, and 

HS.546375 were the most interconnected genes within unique modules and each was also 

independently associated with ischemic stroke. We show that multi-gene models have 

greater discriminative capacity for stroke and stroke prognosis, than single gene models. 

In addition to stroke biomarkers we also identified biomarkers of atrial fibrillation (AF), a 

known risk factor of stroke. Currently our understanding of the molecular mechanisms 

underlying AF remains incompletely understood. Thus we conducted whole blood 

expression profiling in patients with persistent AF before and after successful electrical 

cardioversion, a procedure that aims to restore sinus rhythm to the heart. We identified 

elevated expression of SLC25A20 and PDK4 during AF as compared with sinus rhythm. 
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Furthermore we show that SLC25A20, PDK4 and NT-proBNP have incremental utility to 

discriminate AF from sinus rhythm. Taken together, the thesis implicates new genes with 

stroke and AF, and also indicates that whole blood RNA biomarkers may have clinical 

utility.  
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 BURDEN OF STROKE 

 Stroke is the underlying cause of 11.1% of all deaths worldwide (Lozano et al., 

2012) and is the third leading cause of disability (Murray et al., 2012). Stroke is 

classically defined as a neurological deficit that results from acute focal injury to the 

central nervous system due to a vascular cause (Donnan et al., 2008; Sacco et al., 2013). 

Globally, stroke consumes approximately 2 to 7% of total health-care costs (Evers et al., 

2004). In Canada alone, there are approximately 38, 000 stroke admissions each year, 

which costs the health care system over $2.8 billion CAD annually (Mittmann et al., 

2012). 

 Age, gender (Appelros et al., 2009) and ethnicity (Stewart et al., 1999; Sacco et 

al., 2001; Stansbury et al., 2005) are non-modifiable risk factors for stroke. The 

INTERSTROKE study further characterized ten additional stroke risk factors; 

hypertension, current smoking, abdominal obesity, diet, physical activity, diabetes 

mellitus, alcohol intake, psychosocial stress, cardiac causes and ratio of apolioprotein B 

to A1 (Martin J O’Donnell et al., 2010). Stroke incidence increases with age and as global 

life expectancy increases in high-income counties, the prevalence and cost of stroke in 

Canada is projected to escalate in the future. 
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1.2 CLINICAL DIAGNOSIS OF STROKE 

 Stroke is a broad disease category encompassing two primary subgroups, ischemic 

stroke and hemorrhagic stroke. Ischemic stroke results from vessel obstruction and can be 

further subdivided based on the underlying stroke etiology (Adams et al., 1993; Ay et al., 

2007). Hemorrhagic stroke results from extravasation of blood within or on the brain 

following vessel rupture. Approximately 72% of first-time stroke cases are due to 

ischemia, and 28% are due to hemorrhage (Krishnamurthi et al., 2013). The diagnosis of 

stroke and distinction between primary stroke types is currently based on clinical 

examination and neuroimaging. However, clinical symptoms of stroke are heterogeneous. 

Both ischemia and hemorrhage cause damage to neurologic tissue leading to symptoms 

such as: hemiparesis, hemisensory loss, aphasia, impaired vision and/ or headaches. Non-

vascular disease can also mimic the symptoms of stroke. Approximately 5% of patients 

with stroke-mimics, such as seizures, migraines and sepsis, are misdiagnosed with 

ischemic stroke (Scott and Silbergleit, 2003). Since primary stroke type cannot be 

identified solely based on clinical assessment, neurologic imaging with computed 

tomography (CT) or magnetic resonance imaging (MRI) is central for diagnosis. Though 

MRI is superior to CT for stroke diagnosis (Fiebach et al., 2002; Kidwell et al., 2004; 

Chalela et al., 2007), CT is generally the modality of choice due to its lower cost and 

greater availability. However, CT scans are not sensitive for early ischemic stroke and 

studies report only moderate agreement between physicians interpreting early CT images 

(Grotta et al., 1999; Wardlaw and Mielke, 2005). Since stroke diagnosis relies on 

neuroimaging, ambiguous CT results can hinder patient management.  
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1.3 THERAPEUTIC TREATMENT OF STROKE  

 Multiple studies report that thrombolytic therapy with tissue plasminogen 

activator (tPA) is a cost-effective and safe treatment for ischemic stroke, (Troke and 

Roup, 1995; Yip and Demaerschalk, 2007; Hacke et al., 2008) but tPA is currently 

underused. Indeed only 2 to 9% of patients with ischemic stroke are treated with tPA (Hill 

and Buchan, 2005; Nadeau et al., 2005; Adeoye et al., 2011). tPA is a serine protease that 

specifically bind to fibrin to promote clot dissolution by facilitating the conversion of 

plasminogen to plasmin (Hoylaerts et al., 1982) (Figure 1.1). Therefore hemorrhagic 

stroke is a direct contraindication for tPA therapy; clot dissolution therapy worsens 

hemorrhage. Since treatment differs significantly between ischemic and hemorrhagic 

stroke, distinction between these primary subtypes is a crucial step in rapid stroke 

management.  

 The efficacy of tPA is also time dependent. Studies indicate that tPA offers the 

most benefit and least harm when prescribed to ischemic stroke patients within 4.5 hours 

of symptom onset (Lansberg et al., 2009); patients given tPA after more than 4.5 hours of 

symptom onset had greater occurrence of intracranial hemorrhage and mortality 

(Emberson et al., 2014). Rapid stroke diagnosis is, in part, hindered by the lack of 

confirmatory diagnostic testing but also by lack of rapid pre-hospital diagnostic tests for 

stroke. Experienced neurologists excel at diagnosing stroke, but stroke diagnosis may also 

be made by less experienced practitioners such as emergency department (ED) and rural 

physicians. Due to the associated risks, some non-neurologists are hesitant to prescribe 

tPA. For instance, 65% of ED physicians report feeling uncomfortable using tPA without 
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a neurology consult (Scott et al., 2010). Furthermore, rural physicians report that the 

biggest barriers to the use of tPA are risk of hemorrhage and diagnostic uncertainty 

(Williams et al., 2013). As a result, there would be clinical utility in identifying additional 

diagnostic tools for stroke that supplement current clinical practice. 
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Figure 1.1 Stages of clot dissolution using tPA.  

Ischemic stroke results from vessel obstruction. Blood clots can form within one or more 

arties that supply blood to the brain, or can embolize from secondary locations, and 

inhibit blood flow. These clots are commonly composed of cross-linked fibrin strands. 

Both tPA and plasminogen bind to fibrin. Since the proteins are localized together, tPA 

converts plasminogen to plasmin. Plasmin then cleaves the cross-linked fibrin clot 

generating soluble degradation products.  Clot dissolution facilitates recanalization of the 

blood vessel.  
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1.4 PREDICTING STROKE PROGNOSIS    

 Predicting a patient’s risk for mortality or severe disability may be used to inform 

clinical decision-making and optimize stroke resource allocation. Modified Rankin Scale 

(mRS) score is a commonly used end point to assess disability and independence after 

stroke. The scale consists of simple, well-defined grades that describe global disability 

(Rankin, 1957; UK-TIA Study Group, 1988) (Table 1.1). A mRS score of 0 is indicative 

of no disability, 5 is disability requiring constant care and 6 is death.   

 Although stroke is a leading cause of death and functional disability, tools to 

predict patient outcome or mRS are infrequently used by clinicians. Currently physicians 

predominantly use clinical judgment to estimate stroke prognosis, yet several clinical 

scores have been proposed to predict functional outcome (Adams Jr. et al., 1999; Weimar 

et al., 2004; Smith et al., 2010; Saposnik et al., 2012; G. et al., 2013; Saposnik et al., 

2013; Flint et al., 2013). For instance, the National Institutes of Health Stroke Scale 

(NIHSS) has been shown to predict stroke outcome and mortality (Adams Jr. et al., 1999; 

Weimar et al., 2004; Saposnik et al., 2013). NIHSS takes into account: level of 

consciousness, eye movement, motor skills, language, speech and attention. However, 

clinicians infrequently record NIHSS scores. For example in a stroke related study 

conducted in 1036 hospitals, NIHSS was recorded for only 40% of the 274,988 stroke 

patients (Smith et al., 2010). NIHSS score may not be recorded due to the time required 

to conduct the assessment or unfamiliarity of the score by non-neurologists. Therefore 

prognosis scores involving subscales, including NIHSS, (Adams Jr. et al., 1999; Weimar 

et al., 2004; Smith et al., 2010; Saposnik et al., 2012; G. et al., 2013; Saposnik et al., 
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2013; Flint et al., 2013) would also be infrequently used in the clinic. Some prediction 

scores are not used because they lack precision (Weimar et al., 2002; König et al., 2008; 

Lewis et al., 2008) or involve complex scoring systems that are challenging to recall 

(Smith et al., 2010; Saposnik et al., 2012). Alternatively, the PLAN score has been 

developed. A patients PLAN score is determined based on preadmission comorbidities 

(P), level of consciousness (L), age (A) and neurologic deficit (N) (O’Donnell et al., 

2012). The PLAN score was able to predict 30-day mortality and 1-year mortality in the 

study population that was used to derive the score. However validation of the score is 

required in an independent population to confirm significance. Since neither NIHSS nor 

PLAN scores are regularly used in the clinic, there is still a need to identify simple tools 

to predict stroke prognosis.  
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Table 1.1 Modified Rankin Scale (mRS) score.  

SCORE DESCRIPTION  

0 No symptoms at all 

 

1 No significant disability despite symptoms; able to carry 

out all usual duties and activities 

 

2 Slight disability; unable to carry out all previous activities 

but able to look after own affairs without assistance  

 

3 Moderate disability; requiring some help but able to walk 

without assistance 

 

4 Moderately severe disability; unable to walk without 

assistance and unable to attend to own bodily needs 

without assistance  

 

5 Severe disability; bedridden, incontinent and requiring 

constant nursing care and attention 

 

6 Dead 
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1.5 PERIPHERAL BLOOD BIOMARKERS  

 Biomarkers may be used to facilitate stroke diagnosis and prediction of prognosis. 

A biomarker is a substance measureable in the body or in bodily fluid that is an indicator 

of disease presence or outcome. Gold-standard biomarker tests are rapid, relatively non-

invasive, highly sensitive, and disease specific. Good biomarker should also add 

independent information beyond the current standard of care. Identifying biomarkers of 

stroke is challenging due to the heterogeneity of the disease with regards to infarct size, 

location, cell population and underlying cause. Previous studies have assessed the utility 

of protein biomarkers that were selected based on their known functional association with 

stroke, such as markers of brain injury or inflammation. However detection of brain 

injury biomarkers is limited by the breakdown of the blood brain barrier (BBB), which 

normally prevents large molecules from leaving the brain capillaries and crossing into the 

systemic circulatory system. In addition, brain injury and inflammatory markers may be 

elevated in other neurologic disorders thus lacking specificity for stroke. Our currently 

incomplete understanding of stroke pathophysiology and protein function also hampers 

this knowledge-driven candidate biomarker approach. As a result more recent biomarker 

studies aim to use an agnostic discovery approach, such as proteome and gene expression 

profiling.  

 Currently, proteome profiling is costly and labour intensive because highly 

abundant proteins must be removed in order to detect low abundant proteins that would 

potentially have biomarker utility (Jacobs et al., 2005). There are also few bioinformatics 

tools for proteomic data analysis, which may be due to the lack of high quality data and 
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lack of standardized methodologies. On the other hand, gene expression profiling is 

relatively cheap, reproducible, simultaneous measurement of transcriptome-wide 

expression is feasible, and numerous computation tools are available to facilitate analysis. 

In addition, mRNA expression changes are generally induced prior to protein level 

changes, which could allow earlier detection. For instance, Hamaouri et al., demonstrated 

that whole blood rhodopsin mRNA was elevated in patients with diabetic retinopathy as 

compared with healthy individuals (Hamaoui et al., 2004), but elevated levels of the 

rhodopsin protein in these patients has not been reported.  

 The utility of RNA biomarkers to guide patient treatment is currently being 

evaluated. For instance, expression of 21-genes was recently assessed for prognostic 

utility in breast cancer patients (Sparano et al., 2015). The study observed that patients 

with favourable, low expression of the 21-genes had lower rates of tumour recurrence 

when treated with only endocrine therapy, as compared with individuals with 

unfavourable, high expression that underwent both endocrine therapy and chemotherapy. 

Thus the gene expression data is able to provide valuable clinical information beyond 

currently available means. Similarly, agnostic transcriptome-wide RNA expression 

profiling may lead to the discovery of novel, clinically useful biomarkers for stroke.  

 

1.6 RNA BIOMARKERS FOR STROKE DISCRIMINATION 

 Both animal (Tang et al., 2001) and human (Moore et al., 2005; Tang et al., 2006; 

Barr et al., 2010) studies have observed unique RNA expression changes in peripheral 

blood following stroke. The majority of RNA in whole blood is derived from leukocytes. 
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Gene expression within leukocytes may be influenced by factors associated with stroke 

pathogenesis such as blood clots or atherosclerotic plaques, circulating inflammatory 

molecules and/or interaction with necrotic cells. In the first proof of principle study, 

experimental neurologic injury was performed on rats and peripheral blood leukocyte 

expression was assessed using microarray after 24-hours (Tang et al., 2001). The 

neurologic injuries were representative of ischemic stroke, hemorrhagic stroke, seizure, 

hypoglycemia or a sham surgery. The following results were observed: (1) many RNA 

transcripts were differentially expressed in each injury model, (2) a single gene did not 

differentiate between the injury models, and (3) a group of specific genes were 

differentially expressed in each injury model and together could be used to distinguish 

between the disease models.  

 The first leukocyte expression study in humans identified 22 unique genes that 

could distinguish between ischemic stroke cases and control participants (Moore et al., 

2005). Two additional studies using whole blood respectively reported 18 (Tang et al., 

2006) and 9 (Barr et al., 2010) unique genes associated with ischemic stroke. 

Concordance between genes identified through the three human RNA biomarker studies 

(Moore et al., 2005; Tang et al., 2006; Barr et al., 2010) was low, ranging from 0-45% 

overlap. The lack of concordance may be due to the heterogeneity of stroke between 

individuals and the small sample size used for biomarker discovery; at most 39 ischemic 

cases and 24 controls were used for RNA biomarker discovery. Alternatively, the low 

concordance may be due to differences in cell population or confounders. For instance, 

two of the study results may have been confounded by stroke risk factors since 
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established risk factors, age and hypertension, were more prevalent in stroke cases as 

compared with controls (Moore et al., 2005; Tang et al., 2006).  

 Limited verification of microarray results and validation in external populations 

was conducted by the three previous human studies. However, a targeted quantitative 

real-time polymerase chain reaction (qPCR) test to identify differential gene expression is 

currently the most simple, cost-effective and rapid test currently available for use in the 

clinical setting. qPCR verification was conducted for 0-44% of genes in the previous 

studies and qPCR was not utilized for independent validation studies. Thus, larger studies 

with adequate verification and external validation are required to identify biomarkers of 

stroke and to confirm previous reports. 

 

1.7 INTERSTROKE COHORT  

 INTERSTROKE was an international, multicenter case-control study for stroke. 

The objective of the study was to systematically evaluate the association between stroke 

and traditional or emerging risk factors among different ethnic groups and geographic 

regions (M O’Donnell et al., 2010). Between March 1, 2007 and April 23, 2010, 

participants were recruited from 84 centers in 22 countries worldwide: Argentina, 

Australia, Brazil, Canada, Chile, China, Colombia, Croatia, Denmark, Ecuador, Germany, 

India, Iran, Malaysia, Mozambique, Nigeria, Peru, Philippines, Poland, South Africa, 

Sudan, and Uganda (Martin J O’Donnell et al., 2010). Stroke cases were patients with 

acute first-time stroke, enrolled within 5 days of symptom onset and 72-hours of hospital 

admission that also had neuroimaging (CT or MRI). Controls were recruited in hospital or 
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in the community and had no history of stroke. Hospital-based controls were patients 

admitted to hospital or attending outpatient clinics for disorders or procedures unrelated 

to stroke or transient ischemic attack, or visitors or relatives of inpatients. Controls were 

matched to cases based on age (within 5 years), sex, site location and ethnic origin 

(Martin J O’Donnell et al., 2010).  

 A gene expression sub-study was conducted on consenting INTERSTROKE 

participants. Between March 2007 to April 2010, 375 INTERSTROKE participants (164 

cases and 211 controls) consented to the gene expression sub-study from 6 centers in 4 

countries: Canada, Columbia, Poland and Ecuador. Questionnaires were administered and 

physical examinations performed for consenting cases and controls. Whole blood samples 

were drawn from cases (within 5 days of symptom onset) and controls (at the time of 

interview) and frozen immediately after processing.  

 

1.8 RNA EXPRESSION ANALYSIS WITH MICROARRAYS  

 Microarrays facilitate high-throughput gene expression profiling. A microarray is 

a small glass wafer on which thousands of oligonucleotide sequences, known as probes, 

are attached. Hybridization between a sample and corresponding probe results in 

fluorescence, which can be quantified. Analysis of fluorescent intensity values provides a 

snapshot of RNA transcript abundance within a sample. Comparison of fluorescence 

between samples can provide insight into molecular pathways underlying the biology of 

interest. The concept of gene expression microarrays is simple and successful, leading to 
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the production of many different array platforms; the two most common being the 

Affymetrix GeneChip® and Illumina BeadArray™.  

 The Affymetrix GeneChip® is a stationary piece of glass to which thousands of 

probe pairs are attached at specific locations (Affymetrix, n.d.). The probe pairs consist of 

a perfect match oligonucleotide and a mismatch oligonucleotide. The perfect match probe 

complements a known RNA sequence, while the mismatch probe differs by a single base 

substitution in the middle of the probe. As a result any hybridization to mismatch probes 

is indicative of non-specific binding or background fluorescence. Each probe is 25 bases 

in length and corresponds to unique regions near the 3’ end of a gene.   

In contrast, probes for Illumina BeadArrays™ are 79 oligonucleotides in length 

(Illumina, n.d.). Each probe is composed of a 50-oligonucleotide gene-specific sequence 

with a unique 29-oligonucleotide identifier sequence. Illumina probes are bound to silica 

beads, rather than dotted on a stationary chip. Each bead is ~3 microns in diameter and 

has ~700,000 copies of the same probe sequence covalently attached. Each bead type is 

replicated ~30 times on every BeadArray™. In addition to gene-specific sequences, there 

are also over 1000 non-genomic control bead types. Any hybridization to the control 

probes is indicative of non-specific binding. Both the gene-specific and control bead 

types are randomly arranged into etched wells on a stationary glass chip. As a result the 

location and identity of each bead is determined using the identifier sequence after the 

BeadArray™ has been assembled.  

 The MicroArray Quality Control (MAQC) project has reported that the 

Affymetrix and Illumina platforms can both yield high quality data with comparable 
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differential gene expression results (Shi et al., 2006). However the Illumina BeadArray™ 

has greater intra-array redundancy of probes and is less costly than the Affymetrix 

GeneChip®.  

 

1.8.1 PRE-PROCESING OF ILLUMINA MICROARRAY DATA  

 In order to obtain biologically relevant data from microarrays, data ‘cleaning’ is 

required. The general ‘cleaning’ or pre-processing steps include: background correction, 

normalization, transformation, and filtering. The fluorescent intensity from each gene 

probe measures the abundance of a specific RNA sequence but is also affected by non-

specific sources such as, auto-fluorescence on the chip surface. The purpose of 

background correction is to remove the non-specific signal from the total signal. 

Normalization adjusts the individual fluorescent intensity values to compensate for effects 

of variation in the technology that could hide the true biologic variation. Intensity values 

may be impacted by unequal quantities of starting RNA, or difference in labeling and 

hybridization efficiency. Normalization aims to make the overall expression distribution 

similar between all of the arrays in an experiment. Next, data transformation is applied to 

produce a continuous spectrum of values so that up- and down regulated gene expression 

can be interpreted similarly (Figure 1.2). The most commonly used transformation 

method for all microarrays is logarithm base 2 (log2). The final data pre-processing step 

is probe filtering, which involves removal of intensity data from low quality probes. 

Although many methods of background correction and normalization have been 
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developed (Quackenbush, 2002; Xie et al., 2009; Shi et al., 2010), there is little 

agreement in the literature regarding how best to pre-process Illumina BeadArray™ data.  

 Illumina has created analytical software, BeadStudio, for the analysis of 

BeadArray™ data. BeadStudio provides a simple background correction method whereby 

the average signal from the control beads is subtracted from the gene-specific probe 

signals. However Dunning et al., (Dunning et al., 2008) have reported that Illumina’s 

simple method introduces variability into the data, increases the number of false positives 

and causes a large number of low expression values to become negative, which is 

inappropriate for normalization and downstream analysis. Shi et al., (Shi et al., 2010) 

conducted a systematic analysis of five BeadArray™ background correction and 

normalization methods and determined that Normexp Background Correction Using 

Control Probes (neqc) was the superior method.  

 Regarding normalization, multiple studies report that quantile normalization in 

combination with log2 transformation results in good quality data that corresponds with 

quantitative real-time polymerase chain reaction (qPCR) data (Dunning et al., 2008; 

Schmid et al., 2010). Quantile normalization is a technique for making two distributions 

identical and involves replacement of probe intensity values with the ranked-mean probe 

intensity value (Figure 1.3). A limitation of quantile normalization is that genes with very 

high intensity are forced into the same distribution, thus reducing biological variation as 

well as technical variation.  

 Finally, probe filtering of Illumina BeadArray™ data is determined using the 

detection p-value. Each probe has a corresponding detection p-value describing the 
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confidence that the measure fluorescent intensity value of a given transcript is expressed 

above background noise, where background is determined based on the fluorescence 

observed from non-genomic, negative control bead types (Abed et al., 2013). A detection 

p-value threshold less than either 0.01 or 0.05 is sufficient to reject the null hypothesis of 

no transcript detection.  

Based on the literature a valid protocol for BeadArray pre-processing consists of: 

neqc background correction, quantile normalization, log2 transformation, and probe 

filtering based on the detection P-values. 
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Figure 1.2 Microarray data transformation.  

Let the blue and red bars represent the true expression for a test and control group 

respectively. Suppose we are interested in the ratio between test and control [R=T/C]. 

Without transformation, A) genes up-regulated by a factor of 2 have an expression ratio 

of 2/1=2 whereas, B) genes down-regulated by the same factor would have an expression 

ratio of 1/2=0.5. Changing the scale to log2 makes the data more interpretable.  
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Figure 1.3 Steps of quantile normalization.  

Quantile normalization is a technique to make two distributions identical. Each row of 

microarray data contains fluorescent intensity values from different probes while the 

columns represent individual samples. Initially raw intensity values are ranked. Next 

intensity values are ordered within each sample according to rank. The average intensity 

across each probe, or row, is determined. The individual intensity values are then 

substituted for the average intensity value. Finally the average intensity values are re-

ordered according to their initial order, prior to ranking. 
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1.8.2 QUALITY CONTROL FOR MICORARRAY DATA  

 Quality control (QC) is also an essential step to obtain biologically applicable 

results from microarray data. QC is conducted before and after pre-processing to identify 

samples with suspicious intensity values relative to the majority. These atypical samples 

are referred to as outliers. Poor performing chips, or experimental failure may influence 

data quality and results in outlier samples. Since outliers can negatively impact data 

normalization and downstream analysis, it is preferable to identify and remove them prior 

to data pre-processing. However data pre-processing can also make outliers more 

apparent thus providing support for sample exclusion. There are no standardized 

protocols for microarray QC. However, relative QC metrics are commonly used to 

compare each array’s intensity values against other arrays within the dataset. Samples that 

fail multiple QC matrices are more likely to be true outliers. Removal of outliers and 

subsequent data pre-processing will more likely result in high quality, biologically 

relevant microarray data. Some QC diagnostics include: 

1. Boxplots of the negative and gene-specific fluorescent intensity values for each 

individual (Figure 1.4A). Since median expression and inter quartile range are 

expected be similar between samples, those samples with an unusual intensity 

distribution may be outliers.  

2. Density plots of the gene-specific intensity values for each individual (Figure 

1.4B). Samples with a bimodal intensity distribution or relatively atypical 

distribution may be outliers.  
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3. Pearson correlation of transcriptome-wide expression between samples. The 

majority of genes are not differentially expressed therefore high correlation is 

expected between the total microarray intensity values between individuals. As 

such, samples that have low correlation with other arrays in the dataset may be 

outliers.  

4. Hierarchical clustering (Figure 1.4C) to identify samples that do not conform to 

the expected patterns in a dataset. Clustering methods can be used to identify 

samples that are similar to one another. The more similar samples will be 

clustered together within the same branch. Samples that group ‘far away’ from the 

majority of the dataset may be outliers.  

5. Principle component analysis (PCA) (Figure 1.4D). PCA summarize the total 

expression variance within each array into a finite set of values known as principle 

component eigenvalues. Commonly, the first two principle components 

summarize the majority of the expression variance. By plotting the eigenvalues of 

principle component 1 against principle component 2 we can visualize the 

variation between samples. Samples that group ‘far away’ from the majority of the 

dataset may be outliers. 
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Figure 1.4 Diagnostic plots to evaluate microarray data quality before 

normalization.  

Useful plots include: A) Boxplots B) Density plots, C) Hierarchical clustering, and D) 

scatter plot of first two principle components from PCA. The two columns contain QC 

plots for two separate experiments. Cumulatively QC metrics from experiment #1 suggest 

reasonable data quality where as an outlier is apparent in experiment #2; sample C3 is 

likely an outlier.   
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A) 

 

B) 

 

C) 
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1.8.3 DIFFERENTIAL EXPRESSION ANALYSIS 

 Due to the normalization step, microarrays measure relative, rather than absolute, 

gene expression. As a result, differential gene expression is reported as relative fold 

change (FC). A simple microarray experiment may assess gene expression changes 

between a treatment and control group. There are many methods to analyze differential 

expression, but two simple univariate methods are Student t-test and regression. In 

univariate analyses each of the microarray gene-specific probes is individually assessed 

for association with a phenotype. Regression is the more powerful method since 

additional variables can be incorporated into the model such as age, body mass index 

(BMI), and smoking status. Since thousands of probes are being tested simultaneously, 

there is high probability that a false significant result would be observed by chance. 

Increasing the sample size increases the statistical power to detect expression difference 

and can also decrease the false positive rate. However the common p-value threshold of 

α=0.05 or α=0.01 would not be appropriate due to the high probability of identifying one 

or more false positive. P-value correction methods may be applied to control the false 

positive rate. The most simple and conservative method is Bonferroni adjustment. If a 

significance threshold of α is used, but n independent tests are performed, then the 

Bonferroni adjustment deems a score significant only if the corresponding p-value is ≤α/n 

(Noble, 2009). Bonferroni adjustment ensures that for a given threshold, one or more 

large values would be expected in the null distribution with a probability of α.  

 However, a limitation with univariate analysis is that it assumes each test is 

independent of one another, but in reality gene expression values are highly correlated. 
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For instance, genes may be co-expressed when they are functionally related (Eisen et al., 

1998) or involved in a similar regulatory system. Nonetheless, univariate analysis with 

Bonferroni adjustment is an effective method to identify differentially expressed genes.  

 

1.8.4 NETWORK ANALYSIS  

 Traditional univariate analyses of microarray data assess the relationship between 

gene expression and a phenotype, however addition biomarkers may be discovered using 

network analysis. Univariate methods assume that each biomarker is expressed 

independently of one another. However, this assumption may not be appropriate for 

agnostic biomarker discovery. For instance, genes may be co-expressed when they are 

functionally related or involved in a similar regulatory system. Although univariate 

methods are able to identify genes associated with a clinical trait, they disregard co-

expression patterns and thus provide little insight into the molecular biology underlying 

the phenotype or disease 

 Weighted gene co-expression network analysis (WGCNA) (Langfelder and 

Horvath, 2008) is an agnostic, computational technique to identify groups of genes with 

correlated expression. WGCNA has been previously used for the study of complex 

diseases such as atrial fibrillation (Tan et al., 2013) and Alzheimer’s (Lunnon et al., 

2012). WGCNA identifies groups of genes with correlated expression through 

hierarchical clustering and a tree-cutting algorithm. The large groups of genes with 

related expression are referred to as a module. A benefit of grouping genes into modules 

is that it can drastically reduce multiple hypotheses testing. Rather than test thousands of 
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individual genes for association with a phenotype, a small number of modules can be 

tested for association. Next, genes within phenotype-associated modules may be 

characterized. For instance, biologically significant patterns can be identified using 

pathway analysis. In addition, central genes to each module can be isolated. Genes with 

high connectivity within the module network are referred to as hub genes. Hub genes are 

identified based on high correlation with a clinical trait, and high correlation to the overall 

module variance.  

 Hub genes from different modules are unlikely to have correlated expression. 

Thus network analysis can facilitate the discovery of biomarker panels. A gene panel 

consisting of hub genes from independent modules may summarize more of the 

underlying phenotype biology and thus have greater discriminative specificity and 

sensitivity as compared with a single gene biomarker.  

 

1.9 ATRIAL FIBRILLATION 

 Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. 

Common risk factors associated with AF include: age, diabetes, hypertension, congestive 

heart failure and valvular heart disease (Benjamin et al., 1994). In addition, men are at 1.5 

times greater risk of developing AF as compared with women (Benjamin et al., 1994). 

Currently AF affects approximately 33 million people worldwide (Rahman et al., 2014), 

but this number is projected to increase rapidly as the global population ages (Go et al., 

2001; Chugh et al., 2014; Rahman et al., 2014). Although AF itself is not life threatening, 

it negatively influences quality of life and is associated with increased risk of stroke 
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(Wolf et al., 1991; Conen et al., 2011) and heart failure (Benjamin et al., 1998; Stewart et 

al., 2002; Conen et al., 2011). The specific molecular mechanisms underlying AF have 

yet to be unravelled. However structural changes and electrical remodelling play an 

important role in the perpetuation of AF (Iwasaki et al., 2011). AF occurs when 

disorganized electrical signals cause the atrial chambers to contract quickly and 

irregularly. Due to the irregular contractions, blood is not completely pushed into the 

ventricles. As a result, blood pools in the atria and is prone to thrombosis.  

 

1.10 ATRIAL FIBRILLATION AND STROKE  

 The Framingham study has reported that AF is associated with 5-fold increased 

risk for stroke (Wolf et al., 1978; Wolf et al., 1991; Conen et al., 2011). Indeed, 

approximately 15% of stroke cases are likely due to documented AF (Wolf et al., 1987). 

In order to reduce stroke risk AF patients are commonly prescribed oral anticoagulants 

(Ezekowitz et al., 1992; Connolly et al., 2009; Granger et al., 2011; Patel et al., 2011). 

Oral anticoagulants inhibit blood coagulation therefore blood pooling in the atria has less 

propensity to clot. Another treatment for AF is cardioversion, which aims to restore sinus 

rhythm to the heart using medication or an electrical procedure (Lown et al., 1962). 

However, electrical cardioversion has limited long-term success rates and significant 

risks. Indeed, 40-60% of patients who undergo cardioversion experience AF recurrence 

(Raitt et al., 2006). Developing a more detailed understanding of AF pathophysiology 

may allow optimization of AF therapy.  
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 Standard methods for AF detection involve electrocardiogram (ECG). Recent 

studies have suggested that long-term rhythm assessment can further improve diagnosis 

of AF. For instance, a Swedish study observed that a single ECG was able to detect AF in 

1.2% of participants while 24-hour Holter monitoring detected AF in 7.4% of participants 

(Engdahl et al., 2013). The ASSERT study further increased monitoring time by studying 

implanted pacemaker data for three months in patients that had no previous history of AF 

and identified subclinical AF, short episodes of AF that spontaneously revert to sinus 

rhythm, in 10.1% of participants (Healey et al., 2012). ASSERT also reported an 

association between subclinical AF and a 2.5-fold increased risk for ischemic stroke 

(Healey et al., 2012). Specifically, it has been suggested that subclinical AF may be an 

underlying cause of cryptogenic stroke, a subtype of ischemic stroke for which cause 

cannot be determined (Gladstone et al., 2014; Sanna et al., 2014).  

 Stroke prognosis, recurrence risk and secondary prevention differ based on the 

underlying stroke etiology. Since cause cannot be determined for cryptogenic stroke 

patients, there are no standardized management guidelines. However detecting subclinical 

AF in cryptogenic stroke patients has the potential to impact stroke management. For 

example, risk of stroke recurrence may be reduced in these patients by prescribing new 

oral anticoagulants, similar to cardioembolic stroke patients. Although long term cardiac 

monitoring can identify AF in patients with no AF history, these methods can be 

moderately invasive, costly, and cumbersome to patients.  
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 Cumulatively there is a need to improve our understanding of AF pathophysiology 

in order to optimize treatment strategies. In addition, development of new diagnostic tools 

for AF may supplement current clinical practice and improve detection of subclinical AF.  

 

1.11 PROTEIN BIOMARKERS FOR ATRIAL FIBRILLATION  

 Peripheral blood biomarkers of AF may have clinical utility and improve our 

understanding of AF pathophysiology. Several biomarkers associated with neurohumoral 

responses and inflammation have been assessed for association with AF (Hijazi, Oldgren, 

et al., 2013; Vílchez et al., 2013). Current research has focused on N-terminal B-type 

natriuretic peptide (NT-proBNP). NT-proBNP is the stable N-terminal cleavage product 

of proBNP. proBNP is synthesized and released by cardiomyocytes in response to 

elevated cardiac wall stress (Nakagawa et al., 1995; Molkentin et al., 1998; Wiese et al., 

2000). Studies report that elevated NT-proBNP concentrations independently predict the 

risk of developing AF (Patton et al., 2009) and having a thromboembolic event (Hijazi et 

al., 2012; Hijazi, Wallentin, et al., 2013). Studies have also shown that NT-proBNP levels 

rapidly decrease in AF patients that undergo successful cardioversion (Vinch et al., 2004; 

Wozakowska-Kapłon, 2004; Buob et al., 2006) suggesting that NT-proBNP may be an 

AF specific biomarker.  

 C-reactive protein (CRP), an established marker of systemic inflammation, is 

another biomarker under investigation for association with AF. However reports are 

inconsistent regarding: the relationship between CRP and risk of developing AF (Aviles 

et al., 2003; Nyrnes et al., 2012), association between CRP and stroke risk (Conway et 
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al., 2004; Lip et al., 2007) and change in CRP levels following cardioversion (Buob et 

al., 2006; Liu et al., 2007; Henningsen et al., 2009). As such additional studies are 

required to determine the utility of CRP for AF.  

 

1.12 RNA BIOMARKERS FOR ATRIAL FIBRILLATION  

 Agnostic biomarker discovery may lead to the identification of new clinical tools 

and further improve our understanding of AF. Unique gene expression change have been 

detected in atrial tissue from patients with AF as compared with patients that had no 

history of AF (Ohki et al., 2005; Barth et al., 2005; Deshmukh et al., 2014). The 

Framingham Heart Study recently conducted whole blood gene expression profiling in 

patients with prevalent AF and a large reference population (Lin et al., 2014). Seven 

differentially expressed genes were identified. Many of the genes had relevant biological 

significance, but the microarray results have yet to be verified with qPCR or validated in 

an independent population. Additional studies are also required to evaluate the added 

benefit of gene expression biomarkers as compared with promising AF biomarkers, such 

as NT-proBNP.  
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CHAPTER 2: GENERAL HYPOTHESIS, OBJECTIVE & 

APPROACH 
 

2.1 GENERAL HYPOTHESIS  

We hypothesize that peripheral blood RNA expression can be used to discriminate 

between stroke cases and controls, predict stroke outcome, and/or identify patients 

currently in AF. We also believe RNA biomarkers will also provide new insight into the 

underlying pathophysiology of cerebrovascular disease.  

 

2.2 GENERAL OBJECTIVE  

 The overall objective of this PhD thesis is to identify novel RNA biomarkers of 

cerebrovascular disease. 

 

2.2 RATIONALE AND APPROACH 

Both animal and human studies have detected unique RNA expression changes in 

peripheral blood following stroke. However previous human studies have not had 

complementary results. In addition, limited qPCR verification and/or validation have been 

conducted. Furthermore, studies have yet to evaluate RNA biomarkers for stroke 

prognosis and AF discrimination.  

We will conduct agnostic RNA biomarker discovery using low-cost Illumina 

microarrays that measure transcriptome-wide gene expression simultaneously. Since 

stroke is a heterogeneous disease we take advantage of the large INTERSTROKE cohort 



Ph.D. Thesis – K. Raman               McMaster University – Medical Sciences 

42 
 

to identify novel biomarkers. The discriminative capacity of biomarkers for stroke, 

primary stroke type and stroke prognosis will be evaluated. Significant results will be 

verified using qPCR and validated in a small group of samples independent from the 

discovery cohort (Chapter 3).  

Since previous stroke expression studies have disregarded global gene networks, 

we will apply new statistical methods to identify groups of genes with correlated 

expression. We will further characterize these large groups of genes by conducting 

pathway analysis and isolating central, highly interconnected genes within each group. 

The most significant gene within each group will be assessed for discrimination of stroke 

and stroke prognosis (Chapter 4).  

Finally, we will compare whole blood between participants with and without AF 

to identify novel AF biomarkers. Blood samples will be collected at two time points for 

each participant: pre-electrical cardioversion (ECV) while patients are in AF and post-

ECV when participants are in sinus rhythm. We believe that the case-cross over study 

design, assessing the same individuals at two time points, will minimizes the impact of 

inter-individual heterogeneity and co-morbidities. Novel biomarkers identified through 

microarray analysis will be verified using qPCR and validated in an independent cohort 

(Chapter 5). 
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CHAPTER 3: Peripheral blood MCEMP1 gene expression as a 

biomarker for stroke prognosis 
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3.1 FORWARD 

 The lack of rapid diagnostic and/or prognostic testing hinders rapid treatment of 

stroke patients. Previous stroke biomarker studies have used a candidate biomarker 

approach or involved few participants. This manuscript conducts agnostic RNA 

biomarker discovery on a portion of participants recruited for the INTERSTROKE study. 

We identify a novel association between elevated expression of MCEMP1 in stroke cases 

as compared with controls. We also demonstrate that MCEMP1 discriminates between 

ischemic stroke from hemorrhagic stroke, one-month disability from no disability, and 

mortality from survival. Moreover, MCEMP1 expression improves discrimination of one-

month prognosis as compared with available clinical characteristics, such as stroke type 

and baseline mRS.  

  

 This manuscript was published in the journal Stroke on March 2016, Volume 47, 

Issue 3 (PMID: 26846866). In addition, the results of the manuscript have been 

highlighted in Nature Reviews Neurology (PMID: 26891770) and EBioMedicine (PMID: 

26288825).Salim Yusuf and Guillaume Paré conceptualized and designed the study. 

Kripa Raman designed the analysis plan, conducted all data analysis, qPCR-related 

laboratory work, and wrote the manuscript. Critical revisions to the manuscript were 

made by: Martin O’Donnell, Anna Czlonkowska, Yan Carlos Duarte, Patricio Lopez-

Jaramillo, Ernesto Peñaherrera, Mike Sharma, Ashkan Shoamanesh, Marta Skowronska, 

Salim Yusuf and Guillaume Paré.   
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3.2 ABSTRACT 

BACKGROUND AND PURPOSE:  A limitation when making early decisions 

regarding stroke management is the lack of rapid diagnostic and prognostic testing. Our 

study sought to identify peripheral blood RNA biomarkers associated with stroke. The 

secondary aims were to assess the discriminative capacity of RNA biomarkers for 

primary stroke type and stroke prognosis at one-month.  

METHODS: Whole blood gene expression profiling was conducted on the discovery 

cohort, 129 first-time stroke cases that had blood sampling within five days of symptom 

onset and 170 control participants with no history of stroke.  

RESULTS: Through multiple regression analysis we determined that expression of the 

gene MCEMP1 had the strongest association with stroke, out of 11,181 genes tested. 

MCEMP1 increased by 2.4 fold in stroke as compared with controls (CI 2.0-2.8, 

p=8.2x10
-22

). In addition, expression was elevated in intracerebral hemorrhage as 

compared with ischemic stroke cases (p=3.9x10
-4

). MCEMP1 was also highest soon after 

symptom onset and had no association with stroke risk factors. Furthermore, MCEMP1 

expression independently improved discrimination of one-month outcome. Indeed, 

discrimination models for disability and mortality that included MCEMP1 expression, 

baseline modified Rankin score, and primary stroke type improved discrimination as 

compared with a model without MCEMP1 (disability Net Reclassification Index=0.76, 

p=3.0x10
-6

 and mortality NRI=1.3, p=1.1x10
-9

). Significant associations with MCEMP1 

were confirmed in an independent validation cohort of 28 stroke cases and 34 controls.  
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CONCLUSION: This study demonstrates that peripheral blood expression of MCEMP1 

may have utility for stroke diagnosis and as a prognostic biomarker of stroke outcome at 

one-month. 

 

KEYWORDS: Biomarker; Blood; Gene expression profiling; Stroke; Prognosis 
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3.3 INTRODUCTION 

 Stroke is the second leading cause of death worldwide, and a major cause of 

disability.
1,2

 Stroke diagnosis is dependent on clinical assessment and neuroimaging. 

However the lack of rapid diagnostic testing hinders patient management. Although an 

effective ischemic stroke treatment is available, tissue plasminogen activator (tPA),
3
 

studies have observed an underuse by rural
4
 and ER physicians

5,6
 owing in part to 

diagnostic uncertainty, risk of hemorrhage and the short therapeutic time window. 

However a biomarker that establishes diagnosis of stroke and distinguishes hemorrhage 

from ischemia has the potential to minimize the time from symptom onset to treatment, 

and improve patient outcomes. Determining a patient’s risk for disability or mortality 

may also be used to inform clinical decision-making, evaluate risk-benefit and optimize 

allocation of healthcare resources. Indeed, although one third of stroke patients die or 

experience disability within the first month,
2
 clinical risk scores to predict patient 

outcome are infrequently used by clinicians due to lack of precision, validation and 

complexity. Identification of biomarkers that quickly distinguish stroke cases from 

controls, ischemia from hemorrhage and predict prognosis could improve patient 

management. 

 The advent of high-throughput genomic technology provides a novel, agnostic 

approach for biomarker discovery. RNA gene expression levels vary rapidly in response 

to physiologic changes. Rapid point-of-care RNA tests are currently in development,
7
 

therefore peripheral blood RNA may be used in the clinic in the future. Both animal
8
 and 

human
9,10

 studies have observed unique RNA expression changes in whole blood 
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following ischemic stroke. However these clinical studies were conducted on a relatively 

small sample size, consisting of a maximum of 39 ischemic stroke cases and 25 

controls,
9,10

 and still require validation. In addition, previous studies have assessed RNA 

biomarkers for stroke diagnosis, but not stroke prognosis. Due to the clinical need for 

stroke biomarkers and heterogeneity in stroke pathophysiology, large studies are crucial 

to robustly identify novel biomarkers and to assess clinical value. 

 In this report, we used a large discovery population, 299 INTERSTROKE 

participants (129 stroke cases and 170 controls), to identify novel RNA biomarkers of 

stroke. We then determined whether RNA biomarkers distinguished between primary 

stroke types and stroke outcome. Significant results were validated in an independent 

group of participants (28 stroke cases and 34 controls). 

 

3.4 METHODS 

3.4.1 Patient population   

 The INTERSTROKE study has been described in detail elsewhere.
11

 Briefly, 

INTERSTROKE was a large, international, standardized case-control study consisting of 

stroke cases and control participants from 22 countries. Stroke cases were patients 

admitted to hospital with first-time acute stroke that presented within five days of 

symptom onset and within 72-hours of hospital admission. Distinction between stroke 

subtypes was confirmed with neuroimaging (CT or MRI). Control participants were 

recruited from the hospital or within the community, and had no history of stroke. 375 
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INTERSTROKE participants recruited from six centers consented to the expression 

profiling sub-study. Our expression study benefitted from the international recruitment by 

the increased ethnic diversity, and the greater prevalence of ICH in South America
12

 that 

increased the number of samples available for analysis. Peripheral whole blood was 

collected into PAXgene Blood RNA tubes (PreAnalytiX) and stored at -80⁰C prior to 

sample processing.  

 Only two patients with subarachnoid hemorrhage had blood samples collected, 

and so were excluded from the analysis. 99% of participants were either Latin American 

or Caucasian, so we excluded participants of other ethnicities (N=9) to reduce potential 

population stratification. As a result, our study consisted of 364 participants. Initially 302 

participants (131 cases and 171 controls) were recruited and consecutively assigned for 

biomarker discovery. An additional 62 participants (28 cases and 34 controls) were 

recruited for independent validation. 

 

3.4.2 Sample processing and array hybridization  

 Total RNA was isolated from the discovery cohort using the QIAsymphony 

PAXgene Blood RNA kit (Qiagen) according to the manufacturer’s protocol. RNA was 

isolated from the validation cohort using the MagMAX Stabilized Blood Tube RNA 

Isolation kit (LifeTech). RNA quality was assessed with Nanodrop2000 (Nanodrop) and 

2100 Bioanalyzer (Agilent) then quantified using Quant-IT RiboGreen (LifeTech). Total 

RNA was amplified and biotinylated using the Illumina TotalPrep RNA Amplification 
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Kit (LifeTech). Samples were then hybridized to Illumina HumanRef-8v4 BeadChips 

(Illumina) and scanned on the iScan System (Illumina) as per manufacturer protocol. 

 

3.4.3 Microarray data pre-processing  

 The Illumina HumanRef-8v4 BeadChip interrogates expression of 34,694 unique 

genes using 47,323 probes. The raw sample probe profile and control probe profile were 

exported from GenomeStudio version1.9.0 (Illumina). All analysis was performed in R 

(http://r-project.org). In the discovery cohort, three samples did not pass quality control 

metrics and were excluded from further analysis. Data pre-processing involved 

background correction using the non-genomic control probes,
13

 quantile normalization 

and log2 transformation.
14

 Probes with detection p<0.01 in >50% of the samples were 

considered expressed.   

 

3.4.4 Statistical analysis 

 Microarrays (and quantitative PCR) measure relative rather than absolute gene 

expression, or in other words the relative increase or decrease in expression of a gene as 

compared with global expression (or housekeeping genes). Differential gene expression 

was thus reported as fold change (FC), with 95% confidence intervals (CI). Regression 

models were used to identify RNA transcripts associated with stroke in the discovery 

cohort. Each model tested a single gene’s association with stroke while adjusting for 

gender, age, body mass index (BMI), ethnicity, and hybridization chip. The hybridization 

chip variable acted as a surrogate for batch effect and other unwanted technical 



Ph.D. Thesis – K. Raman               McMaster University – Medical Sciences 

51 
 

variation.
15

 To correct for multiple hypotheses testing a conservative Bonferroni 

correction was applied, setting the significance threshold at 0.05/11,181=4.5x10
-6

. As 

external validation, we assessed the significance of genes reported to be associated with 

stroke by Tang et al.,
9
 and Barr et al.

10
  

 Further analysis was conducted on the most significant transcript associated with 

stroke in the discovery cohort. Regression was used to assess the association between 

expression and stroke risk factors. The relationship between expression and hours from 

symptom onset was assessed using regression and T-tests. Comparison of expression 

between controls and primary stroke types, hemorrhagic and ischemic stroke, and 

between ischemic subtypes was performed with T-tests. We used ordinal logistic 

regression to evaluate the association between functional disability, measured as modified 

Rankin Scale score (mRS) and gene expression. Our analysis utilized mRS recorded soon 

after the stroke (at baseline) and at the one-month follow-up. One-month mRS was also 

dichotomized to represent either functional disability (mRS 0-2 vs mRS>2) or mortality 

(mRS 0-5 vs mRS 6). Using pROC,
16

 receiver operator curves (ROC) were constructed 

from logistic regression models for the dichotomized outcomes. Area under the ROC 

(AUC) was determined as a measure of sensitivity and specificity. The odds ratio (OR), 

positive predictive value (PPV) and negative predicative value (NPV) were determined 

based on the optimal univariate ROC expression threshold. The continuous Net 

Reclassification Index (NRI)
17

 was calculated using Hmisc
18

 to compare multiple 

discrimination models. An NRI >0.6 was considered a strong improvement in 

discriminative capacity, 0.4 was intermediate, and 0.2 was considered weak.  
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3.4.6 Quantitative PCR validation and replication 

 For quantitative real-time PCR (qPCR), complementary DNA was synthesized 

using the QuantiTect Reverse Transcription Kit (Qiagen). TaqMan qPCR was performed 

on a Viia7 Real-Time System (LifeTech) where MCEMP1 was monitored with 

Hs00545333_g1 (LifeTech) and normalized to ACTB, monitored with Hs01060665_g1 

(LifeTech). Cycle threshold values were calculated automatically with default parameters 

and FC was calculated using the δCT method.
19

 qPCR confirmed microarray results if 

Pearson correlation>0.8 and regression p<0.05. The independent validation cohort was 

analyzed using one-sided T-tests and ordinal logistic regression.  

 

3.5 RESULTS 

3.5.1 Patient Characteristics 

 Between March 2007 to April 2010, 364 INTERSTROKE participants consented 

to the gene expression sub-study. Biomarker discovery was conducted on 299 samples 

(129 stroke cases and 170 controls) that passed quality control. 62 additional participants 

(28 stroke cases and 34 controls) were recruited as an independent validation cohort. 

Patient demographics for the discovery and validation cohorts are presented in 

Supplemental Table I. Among stroke cases in the discovery cohort, 19.4% (N=25) were 

intracerebral hemorrhage (ICH) and 80.6% (N=104) were ischemic. Based on TOAST 

criteria,
20

 21.7% of the ischemic strokes were classified as cardioembolic, 7.8% large 
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vessel, 15.5% small vessel, 24% cryptogenic and 11.6% other. Clinical features of stroke 

cases were similar to controls in the discovery cohort, except for presence of hypertension 

(p=0.02), migraine (p=4.5x10
-3

) and smoking (p=0.01), all of which were more common 

among stroke cases. 

 

  



Ph.D. Thesis – K. Raman               McMaster University – Medical Sciences 

54 
 

Supplemental Table I. Participant demographics 
 

 DISCOVERY (N=299) VALIDATION (N=62) 

 

Stroke, 

N = 129  

Control, 

N = 170  
P-value 

Stroke, 

N = 28  

Control, 

N = 34 
P-value 

Gender (% female) 54 (41.9) 78 (45.9) 0.49 12 (42.9) 14 (41.2) 0.90 

Age, mean ± SD 67.6 ± 13.3 66.0 ± 14 0.34 67.5 ± 12.5 67.9 ± 12.1 0.92 

BMI, mean ± SD 26.56 ± 4.6 27.16 ± 4.8 0.27 25.84 ± 3.8 26.8 ± 4.0 0.33 

Hyperlipidemia (N) 46 (35.7) 62 (36.5) 0.89 14 (50.0) 15 (44.1) 0.65 

Hypertension 95 (73.6) 103 (60.6) 0.02* 21 (75.0) 18 (52.9) 0.07 

Diabetes 23 (17.8) 21 (12.4) 0.20 5 (17.9) 8 (23.5) 0.59 

Atrial fibrillation 9 (7.0) 6 (3.5) 0.20 0 1 (2.9) 0.32 

Migraine 33 (25.6) 21 (12.4) 0.0045* 5 (17.9) 2 (5.9) 0.16 

Current smoker  26 (20.2) 15 (8.8) 0.01* 3 (10.7) 0 0.08 

 

Race, (%) 
      

   European 43 (33.3) 53 (31.2)  2 (7.1) 13 (38.2)  

   Latin American 86 (66.7) 117 (68.8)  26 (92.9) 21 (61.8)  

 

Stroke type, (%) 
      

   Intracranial hemorrhage  25 (19.4) NA  4 (14.3) NA  

   Subarachnoid hemorrhage  0 NA  0 NA  

   Ischemic stroke  104 (80.6) NA  24 (85.7) NA  

      Cardioembolic  28 (21.7) NA  8 (28.6) NA  

      Large vessel 10 (7.8) NA  1 (3.6) NA  

      Small vessel 20 (15.5) NA  3 (10.7) NA  

      Cryptogenic 31 (24.0) NA  8 (28.6) NA  

      Other  15 (11.6) NA  4 (14.3) NA  

 

Stroke severity (N) 
      

   Baseline mRS 0-2 53 NA  10 NA  

   Baseline mRS >2 76 NA  18 NA  

   One-month mRS 0-2 65 NA  11 NA  

   One-month mRS >2 64 NA  17 NA  

       

Time from symptom onset, 

mean ± SD 
52.1 ± 23.7 NA  63.2 ± 26.5 NA  

<24hrs 17 NA  1 NA  

24-48 38 NA  8 NA  

48-72 41 NA  8 NA  

72-96 29 NA  7 NA  

96+ 4 NA  4 NA  
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3.5.2 Association between gene expression and stroke  

 Microarray expression profiling was conducted in the discovery cohort (129 

stroke cases and 170 controls). Each of the 11,181 RNA probes were tested for 

association with stroke and 19% were significantly associated after Bonferroni correction 

(p<4.5x10
-6

, Supplemental Figure IA). As external validation, we compared our 

significant associations to the 18 genes previously associated with stroke by Tang et al.
9
 

and 9 genes by Barr et al.
10

 81.2% of genes identified by Tang et al. and 77.8% of genes 

identified by Barr et al. had genome-wide significant association with stroke in our data 

(Supplemental Table II and III). The direction of effect was consistent between our study 

and previous reports for all replicated genes. 

 Table 1 presents the ten most significant genes associated with stroke in our 

discovery cohort. The most significant gene identified was MCEMP1, which had a 2.4 

fold expression increase in stroke cases compared with controls (CI 2.0-2.8, p=8.2x10
-22

, 

Figure 1A). The AUC of MCEMP1 for stroke was 0.81 (CI 0.76 - 0.86, Supplemental 

Figure IIA). To test whether multiple probes were non-redundantly associated with 

stroke, we included MCEMP1 expression in the initial association models as a co-variable 

and tested all 11,180 remaining probes.  Under this model, the most significant gene was 

MSRA (p=4.6x10
-6

), which did not reach our threshold for statistical significance after 

Bonferroni correction (Supplemental Figure IB).  

 Differential expression of MCEMP1 was verified using qPCR in a subset of the 

discovery cohort (76 stroke cases and 66 controls). We observed high correlation between 

MCEMP1 expression levels measured by qPCR and microarray (r
2
=0.88 and      
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p=4.8x10
-48

). Using qPCR a 2.4 fold increase in MCEMP1 was detected in stroke cases as 

compared with controls (CI 1.8-3.2, p=1.6x10
-8

, Supplemental Figure III).  
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Supplemental Figure I. Quantile-quantile plots of P-values from the association 

between microarray gene expression and stroke 

Each point represents one of the RNA transcript probes tested. The x-axis represents 

expected P-value under the Null hypothesis of no association. The y-axis represents the 

observed P-value based on association with stroke. Points in blue represent probes that 

are differentially expressed after Bonferroni correction (p<4.5x10
-6

). The solid red lines 

represent the expected distribution under the Null (i.e. uniform distribution) with dashed 

red lines highlight the 95%CI. Panel (A) illustrates the P-value distribution from the 

association between each of the 11, 181 probes and stroke, after adjustment for gender, 

age, BMI, ethnicity and hybridization chip, while panel (B) illustrates a similar 

association, but further adjusts for MCEMP1 gene expression. As such this plot visualizes 

the P-values distribution from 11, 180 probes. 
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Supplemental Table II. Significance of genes identified by Tang et al., in our 

INTERSTROKE dataset 

Tang et al., identified 18 genes associated with stroke.
9
 Only 16 of these genes are 

represented on the Illumina microarray. In our data set, 13 of the genes had significant 

association with stroke (p < 4.5 x10
-6

). 

 

Gene  P-value Fold Change 

S100A12 1.7 x 10
-16

 1.8 

BCL6 7.9 x 10
-16

 1.6 

ARG1 2.7 x 10
-14

 2.5 

ETS2 4.2 x 10
-13

 1.5 

PYGL 7.0 x 10
-13

 1.4 

F5 1.1 x 10
-12

 1.5 

LY96 2.0 x 10
-12

 1.6 

CKAP4 2.0 x 10
-10

 1.4 

SLC16A6 2.4 x 10
-10

 1.3 

MMP9 6.3 x 10
-10

 1.8 

S100P 1.1 x 10
-9

 2.0 

CA4 2.4 x 10
-9

 1.5 

FPR1 1.6 x 10
-6

 1.3 

RNASE2 8.2 x 10
-6

 1.4 

NPL 1.8 x 10
-5

 1.2 

S100A9 0.01 1.0 

HOXA2 NA NA 

HIS2H2AA3 NA NA 
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Supplemental Table III. Significance of genes identified by Barr et al., in our 

INTERSTROKE dataset 

Barr et al., identified 9 genes associated with stroke.
10

 In our data set, 7 of these genes 

surpassed the pre-processing criteria and had significant association with stroke (p < 4.5 

x10
-6

).  

 

 

 

  

Gene P-value Fold Change 

S100A12 1.7 x 10-16 1.8 

ARG1 2.7 x 10-14 2.5 

IQGAP1 1.8 x 10-12 1.3 

LY96 2.0 x 10-12 1.6 

CA4 2.4 x 10-9 1.5 

CCR7 1.8 x 10-8 0.7 

ORM1 2.7 x 10-6 1.7 

CSPG2 NA NA 

MMP9 NA NA 
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Table 1. Ten most significant genes associated with stroke in the discovery cohort 
 

Gene P-value Fold Change Upper CI Lower CI Description 

MCEMP1 8.2x10
-22

 2.4 2.8 2.0 Mast cell-expressed membrane 

protein 1 

SPOCK2 6.3x10
-19

 0.6 0.7 0.6 Sparc/osteonectin, cwcv and 

kazal-like domains proteoglycan 

SEPT9 8.6x10
-18

 0.8 0.8 0.7 Septin 9 

IRAK3 9.0x10
-18

 1.7 2.0 1.6 Interleukin-1 receptor- associated 

kinase 3 

ANXA3 1.9x10
-17

 2.3 2.8 1.9 Annexin A3 

RBM47 2.8x10
-17

 1.6 1.7 1.4 RNA binding motif protein 47 

IL18BP 2.8x10
-17

 0.7 0.8 0.7 Interleukin 18 binding protein 

TLR5 3.9x10
-17

 1.8 2.0 1.6 Toll-like receptor 5 

PCED1B 5.0x10
-17

 0.7 0.8 0.6 PC-esterase domain containing 1B 

HS.407903 9.0x10
-17

 1.6 1.8 1.5 - 
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Figure 1. Box-plots of MCEMP1 microarray expression 

Box-plots of MCEMP1 expression grouped by (A) stroke cases and controls, (B) controls, 

ischemic and hemorrhagic cases and (C) ischemic stroke subtypes. A symbol directly 

above a bar indicates a significant difference between groups using Student t-test; 

p<0.0005 (***), p<0.005 (**), p<0.05 (*). 
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Supplemental Figure II. Receiver-operating-characteristic curves for MCEMP1 

expression discrimination of stroke  

(A) Depicts the discriminative capacity of MCEMP1 for stroke cases vs controls, and (B) 

depicts discrimination between the primary stroke types, hemorrhagic stroke vs ischemic 

stroke.  
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Supplemental Figure III. Box-plots of MCEMP1 expression in a subset of the 

discovery cohort (N=142) 

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. The CT (cycle threshold) is the number of PCR cycles 

required for the fluorescent signal to exceed background levels. Unlike microarray values, 

CT values are inversely proportional to the amount of target nucleic acid in a sample. (A) 

Stroke cases and controls, (B) controls, ischemic stroke cases and ICH stroke cases. Mean 

∆CT values are inversely proportional to the amount of target nucleic acid in a sample.  A 

symbol directly above a bar indicates a significant difference between groups; p <0.0005 

(***), p<0.005 (**), p<0.05 (*). 
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3.5.3 MCEMP1 expression is not associated with stroke risk factors 

 Restricting the analysis to healthy controls (N=170), we tested MCEMP1 for 

association with stroke risk factors including age, gender, BMI, ethnicity, hyperlipidemia, 

diabetes, atrial fibrillation, hypertension, migraine and smoking status. After adjustment 

for multiple hypothesis testing, we observed no association between MCEMP1 and stroke 

risk factors (p>0.05/9=0.0056, Supplemental Table IV).  A modest association between 

elevated MCEMP1 and hypertension was identified (FC=1.2, CI 1.1-1.4, p=8.8x10
-3

). 

However, adjusting the initial stroke association model for all available risk factors did 

not attenuate the association with MCEMP1 (FC=3.4, CI 2.4-4.9, p=2.6x10
-11

). 
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Supplemental Table IV. Association between MCEMP1 expression and available 

stroke risk factors in controls (N=170) 

 

Risk Factor P-value 

Gender 0.05 

Age 0.06 

BMI 0.38 

Ethnicity 0.97 

Hyperlipidemia 0.82 

Hypertension 0.0088* 

Diabetes 0.58 

Atrial fibrillation 0.88 

Migraine 0.29 

Current smoker 0.12 
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3.5.4 MCEMP1 expression is associated with time from symptom onset 

 INTERSTROKE case participants were recruited at varying times after symptom 

onset. Since the time from symptom onset to blood sampling varied between individuals, 

we were able to assess the temporal profile of MCEMP1 change after stroke. We 

identified a significant relationship where MCEMP1 decreased by 1% per hour from 

symptom onset (CI 0.98-1.0, p=3.7x10
-3

, Figure 2), even after adjustment for stroke risk 

factors. Separating stroke cases by primary stroke type, we also observed that MCEMP1 

decreased as time from symptom onset increased (Supplemental Figure IV). Furthermore, 

MCEMP1 was highest in samples collected <24-hours of symptoms onset as compared 

with controls (FC=5.3, CI 3.2-8.5, p=1.7x10
-6

) or stroke cases collected >24-hours 

(FC=1.9, CI 1.4-3.9, p=1.9x10
-3

).  
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Figure 2. Box-plot of MCEMP1 expression according to hours from symptom onset 

 
Box-plot of MCEMP1 expression in controls (N=170) and stroke samples according to 

hours from symptom onset; <24 (N=17), 24-48 (N=38), 48-72 (N=41), 72-96 (N=29), and 

96+ (N=4). A symbol directly above a bar indicates a significant difference between 

groups using Student t-test; p<0.0005 (***).  
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Supplemental Figure IV. Boxplots of MCEMP1 expression according to hours from 

symptom onset and primary stroke type 

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. Dark grey boxes are controls (N=170), white are ischemic 

cases (N=104) and light grey are ICH cases (N=25). Of the ischemic cases, 12 samples 

were collected within 24hrs, 31 within 24-48hrs, 35 within 48-72hrs, 22 within 72-96hrs 

and 4 after 96+hrs. Of the ICH cases, 6 samples were collected within 24hrs, 7 within 24-

48hrs, 8 within 48-72hrs, 4 within 72-96hrs, and 0 after 96+hrs. 
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3.5.5 MCEMP1 expression differs between stroke types  

 MCEMP1 was increased by 4.5 fold in ICH cases as compared with controls (CI 

3.1-6.4, p=3.4x10
-9

) and by 2.1 fold in ischemic cases compared with controls (CI 1.8-

2.6, p=3.4x10
-13

). Accordingly, a 2.1 fold increase in MCEMP1 was observed in ICH 

cases as compared with ischemic (CI 1.4-3.1, p=3.9x10
-4

, Figure 1B). The area under the 

ROC for primary stroke type discrimination by MCEMP1 was 0.75 (CI 0.65-0.85, 

Supplemental Figure IIB). Expression differences were also detected between ischemic 

stroke subtypes. MCEMP1 was elevated in cardioembolic (FC=1.5, CI 1.1-2.1, 

p=8.1x10
-3

) and large vessel (FC=2.3, CI 1.2-4.1, p=0.012) stroke as compared with small 

vessel stroke (Figure 1C). 

 

3.5.6 Baseline and one-month mRS associated with MCEMP1 expression  

 Baseline mRS, measured soon after stroke, was associated with MCEMP1 

expression (p=4.0x10
-13

, Supplemental Figure V). One unit MCEMP1 expression increase 

was associated with a 3.3 odds (CI 2.4-4.5) increase in baseline mRS. The association 

remained significant after adjustment for stroke risk factors, stroke type, tPA treatment 

and hours from symptom onset (OR=3.1, CI=2.4-4.5, p=1.8x10
-9

).  

One-month mRS was also associated with MCEMP1 expression (p=1.3x10
-14

, 

Supplemental Figure VI). One unit MCEMP1 expression increase was associated with a 

3.4 odds (CI 2.5-4.6) increase in one-month mRS and the association remained significant 

after adjustment for stroke risk factors, primary stroke type, tPA treatment, hours from 

symptom onset and baseline mRS as a categorical variable (OR=1.8, CI=1.2-2.8, 
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p=6.6x10
-3

). In fact, only MCEMP1 expression (p=6.6x10
-3

), baseline mRS (p=3.2x10
-3

-

6.4x10
-10

), and primary stroke type (p=1.0x10
-3

) were independently associated with one-

month mRS. 
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Supplemental Figure V. Boxplots of MCEMP1 expression according to baseline 

modified Rankin Score (mRS) 

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. (A) Includes all stroke cases (N=129), (B) ICH stroke cases 

(N=25), and (C) ischemic stroke cases (N=104). 
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Supplemental Figure VI. Boxplots of MCEMP1 expression according to one-month 

modified Rankin Score (mRS) 

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. (A) Includes all stroke (N=129), (B) hemorrhagic stroke 

cases (N=25), and (C) ischemic stroke cases (N=104). 
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3.5.7 MCEMP1 expression is associated with disability at one-month  

 To further explore the association, we dichotomized one-month mRS into two 

groups, mRS of 0, 1 or 2 and mRS >2, representing the ability to live autonomously or 

not post-stroke. Individuals with disability at one-month had elevated baseline MCEMP1 

as compared with controls (FC=4.7, CI 3.5-5.7, p=1.6x10
-19

) or individuals without 

disability (FC=3.2, CI 2.5-4.2, p=1.8x10
-14

, Figure 3A). A disability discrimination model 

including MCEMP1 expression, primary stroke type, and baseline mRS as a categorical 

variable, strongly improved discrimination as compared with a model including only 

primary stroke type and baseline mRS (AUC with MCEMP1=0.96, AUC without 

MCEMP1= 0.93, NRI=0.76, p=3.0x10
-6

). The optimal MCEMP1 threshold had a 

specificity of 80.3%, sensitivity of 86.2%, with corresponding PPV of 78.1% and NPV of 

87.7%, for disability (Supplemental Table V).  The odds ratio for disability was 6.6 (CI 

1.9-22.7) in individuals with high versus low MCEMP1 expression after adjustment for 

stroke type and baseline mRS.  
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Figure 3. Box-plots of MCEMP1 expression according to dichotomized one-month 

mRS 

Box-plots of MCEMP1 expression in controls (N=170) and in cases according to one-

month mRS representing (A) functional disability, mRS 0-2 (N=65) and mRS >2 (N=64), 

or (B) mortality, mRS 0-5 (N=114) and mRS >5 (N=15). A symbol directly above a bar 

indicates a significant difference between groups using Student t-test; p<0.0005 (***). 
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Supplemental Table V. Two-way contingency table of disability at one-month and 

baseline MCEMP1 expression 

One-month disability was determined by dichotomizing one-month mRS to represent no 

disability (mRS < 2) or disability (mRS > 2). 

 

  

One-month outcome 

  

No  disability (mRS 0-2) Disability (mRS >2) 

M
C

E
M

P
1
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p
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n

 

High 8 50 

Low 57 14 
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3.5.8 MCEMP1 expression is associated with mortality at one-month 

 MCEMP1 was also associated with one-month mortality after adjustment for 

stroke risk factors, baseline mRS, primary stroke type, tPA treatment and hours from 

symptom onset (FC=3.8, CI 1.4-11.0, p=9.9x10
-3

, Figure 3B). Comparing univariate one-

month mortality discrimination models, MCEMP1 appeared more informative 

(AUC=0.88) than primary stroke type (AUC=0.80). Moreover a model including 

MCEMP1, primary stroke type and baseline mRS, as a categorical variable, strongly 

improved mortality discrimination as compared with a model without MCEMP1 (AUC 

with MCEMP1=0.97, AUC without MCEMP1= 0.92, NRI=1.3, p=1.1x10
-9

). Selecting 

the optimal discrimination threshold, MCEMP1 had a specificity of 97.8%, sensitivity of 

35.1%, PPV of 86.7%, and NPV of 78.9% for mortality (Supplemental Table VI). The 

odds ratio for mortality was 20.7 (CI 2.5-174.6) in individuals with high as compared 

with low expression, after adjustment for baseline mRS and stroke type.  

 

 

  



Ph.D. Thesis – K. Raman               McMaster University – Medical Sciences 

77 
 

Supplemental Table VI. Two-way contingency table of one-month mortality and 

baseline MCEMP1 expression 

One-month mortality was determined by dichotomizing one-month mRS to represent 

survival (mRS < 5) or death (mRS = 6). 

 

  

One-month outcome 

  

Alive (mRS 0-5) Dead (mRS 6) 

M
C

E
M

P
1
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High 24 13 

Low 90 2 
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3.5.9 Replication of MCEMP1 associations in validation cohort  

 The significance of MCEMP1 was validated in a small independent cohort (28 

stroke cases and 34 controls) using qPCR. Power calculations indicated that we had 

sufficient power (>99%) to detect expression difference at a significance of p<0.05. We 

detected increased MCEMP1 in stroke cases as compared with controls (FC=1.6, 

p=0.039, Supplemental Figure VII). We also observed trends towards higher MCEMP1 in 

ICH cases compared with controls (FC=5.6, p=0.05), higher expression in ischemic cases 

than controls (FC=1.3, p=0.14), and higher expression in ICH cases than ischemic 

(FC=4.4, p=0.074). Finally, both baseline mRS and one-month mRS were associated with 

MCEMP1 expression (baseline p=0.049, one-month p=3.3x10
-3

).   
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Supplemental Figure VII. Box-plots of MCEMP1 qPCR values in the validation 

cohort (N=62) 

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. The CT (cycle threshold) is the number of PCR cycles 

required for the fluorescent signal to exceed background levels. Unlike microarray values, 

CT values are inversely proportional to the amount of target nucleic acid in a sample. (A) 

Stroke cases and controls, (B) controls, ischemic stroke cases and ICH stroke cases. Mean 

∆CT values are inversely proportional to the amount of target nucleic acid in a sample.  A 

symbol directly above a bar indicates a significant difference between groups; p<0.05 (*). 
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3.6 DISCUSSION 

 The present study evaluated peripheral blood gene expression in a sub-group of 

INTERSTROKE participants. We identified elevated expression of a novel gene, 

MCEMP1, in stroke cases as compared with controls. MCEMP1 decreased as time from 

symptom onset increased and expression was increased in hemorrhagic stroke cases as 

compared with ischemic.  We also identified an association between one-month mRS and 

MCEMP1, where increased functional disability and mortality were associated with 

increased MCEMP1. One-month prognosis discrimination models that included 

MCEMP1, primary stroke type and baseline mRS improved discrimination as compared 

with similar models without MCEMP1. The associations between MCEMP1 with stroke, 

primary stroke type and stroke prognosis were independently confirmed in the validation 

cohort.  

 Our results demonstrate that non-invasive measurement of MCEMP1 soon after 

stroke provides additional prognostic information to clinical characteristics. We observed 

that MCEMP1 decreased as time from symptom onset increased, suggesting that 

MCEMP1 may have utility for estimating time from symptom onset. In addition, 

identifying patients with poor prognosis may be beneficial for informed clinical decision 

making and assessing the risk-benefit ratio for acute therapies. Although several clinical 

scores have been proposed to predict outcome and mortality,
21–23

 these scores are not 

routinely used in the clinic in part due to their complexity. We have shown that a simple 

model including only baseline mRS, primary stroke type and MCEMP1 expression may 
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predict one-month disability and mortality. Indeed, inclusion of MCEMP1 strongly 

improved discrimination of one-month prognosis.  

 Mast-cell expressed membrane protein 1 (MCEMP1), also known as C19ORF59, 

is a transmembrane protein first identified in mast cells,
24

 but also expressed by 

macrophages and other tissue.
25

 The exact function of MCEMP1 has yet to be 

determined, however the gene’s promoter region contains NF-kB and NF-AT binding 

motifs, similar to many immune receptor genes.
24

 Although limited research has been 

conducted on MCEMP1, recent findings indicate an emerging role for brain resident mast 

cells in acute stroke. Experimental stroke studies have reported that mast cells are first 

responders to cerebral ischemia and act as early regulators of blood-brain barrier (BBB) 

permeability.
26-28

 The increase in MCEMP1 expression observed in stroke cases may be 

the result of cerebral mast cell activation and mast cell mediated BBB disruption. 

Furthermore the expression difference detected between the primary stroke types and 

ischemic stroke subtypes may indicate an association between MCEMP1 expression and 

infarct size.  

 Whole genome expression following ischemic stroke has been previously 

assessed
9,10

 in small studies including 15 to 39 stroke cases. We used a larger discovery 

cohort of 129 stroke cases and 170 controls, and verified expression of 77.8% to 81.2% of 

previously reported genes. To our knowledge, our study shows the largest proportion of 

overlap with previous reports, providing confidence in both novel and known results. In 

addition, a recent study reported significantly elevated MCEMP1 in 12 ischemic stroke 

cases as compared with 12 controls.
29

 Though the study had a small sample size and 
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lacked replication, stroke samples were collected within 24-hours of symptom onset thus 

further positioning MCEMP1 as a marker of acute stroke. Our study robustly identified 

MCEMP1 as a stroke biomarker in a significantly larger, multi-ethnic population and 

confirmed our findings in an independent validation cohort. The overlap and concordance 

between our study and previous works add credence to our findings and the significance 

of MCEMP1 as an acute stroke biomarker.  

 There are a few study limitations that warrant further discussion. First, our study 

lacks stroke mimics and non-strokes such as transient ischemic attacks, migraines, seizure 

and other neurological or inflammatory disorders. Thus we were unable to assess the 

specificity of MCEMP1. Second, an acute stroke biomarker would have the greatest 

clinical utility if increased concentrations were detected very shortly after symptom onset. 

In our discovery cohort only 17 samples were collected within 24-hours of symptom 

onset, but we observed elevated MCEMP1 expression in these samples, as compared with 

controls or stroke samples collected after 24-hours. Nonetheless, very early sampling (<6 

hours) will be required to assess the utility of MCEMP1 in guiding acute stroke treatment. 

Third, due to the nature of the INTERSTROKE study design, there was limited 

neurological imaging data available, and consequently, the effect of infarct size on 

expression could not be assessed. However, MCEMP1 may provide useful information 

early after stroke onset at times where stroke volume is difficult to assess with plain CT-

scans. Future studies including neurological imaging and NIHSS score will be useful to 

further characterize the association between MCEMP1 and stroke severity. Finally our 



Ph.D. Thesis – K. Raman               McMaster University – Medical Sciences 

83 
 

study focused on a single gene to differentiate between the various stroke groups, but 

there may be other genes with diagnostic potential.  

 The results of the study demonstrate that MCEMP1 expression has prognostic 

capacity beyond baseline mRS and stroke type. MCEMP1 may also have diagnostic 

capacity. These observations are promising given the currently limited number of simple 

clinical tools available to predict outcome and mortality, and lack of an established non-

invasive stroke biomarker. The results also point towards an important role for mast cells 

in stroke and unraveling the biological mechanisms may lead to the identification of new 

therapeutic targets. Future clinical studies including a stroke mimic cohort, very early 

blood sampling and measurement of stroke severity will help determine the diagnostic 

capacity and clinical utility of MCEMP1.  
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4.1 FORWARD 

 Previous RNA biomarker studies for stroke have disregarded gene expression 

correlations. However, study of global gene expression networks may provide new 

insights into the molecular biology underlying stroke and lead to the identification of 

biomarker panels. Using weighted gene co-expression analysis (WGCNA) we identified 

groups of genes with correlated expression that were associated with ischemic stroke. 

These groups of genes are referred to as modules. Central, interconnected genes within 

each module were then identified and tested for discriminative capacity. These highly 

interconnected genes are referred to as hub genes. NLRC4, CKLF, and HS.546375 were 

the top hub greens associated with three different modules. Each gene was also 

independently associated with ischemic stroke. We then determined that multi-gene 

models had greater discriminative capacity for stroke and stroke prognosis as compared 

with single gene models.  

 

 This project was designed, conducted and written by Kripa Raman and Guillaume 

Paré.  
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4.2 ABSTRACT 

INTRODUCTION: Genetic mechanisms underlying ischemic stroke remain 

incompletely understood. Previous differential expression studies for ischemic stroke 

have been limited by small samples sizes and provided limited understanding of global 

gene networks, suggesting a need for large-scale, network-based analyses.   

METHODS: As a sub-study of INTERSTROKE, whole blood gene expression profiling 

was conducted on 104 first-time ischemic stroke cases and 170 controls with no history of 

stroke. Weighted gene co-expression network analysis was performed to detect groups of 

co-expressed genes referred to as modules.  

 RESULTS: Of the 15 modules identified, four were associated with ischemic stroke 

after adjustment for clinical risk factors. Pathway analysis of genes within the four 

modules suggested activation of cytokine-cytokine receptor interactions, chemokine 

signalling and RNA transport. NLRC4, CKLF, and HS.546375 were the most highly 

connected genes within unique modules and were independently associated with stroke. 

An ischemic stroke discrimination model including the three genes (AUC=0.83, CI 0.78-

0.88) moderately improved performance compared with single gene models (NRI>0.54). 

One-month disability discrimination was also improved using the three-gene model 

(AUC=0.81, CI 0.73-0.90) as compared with single gene models (NRI>0.45). Disability 

discrimination was further improved using a multi-gene model consisting of NLRC4, 

CKLF, HS.546375, MCEMP1 and baseline modified Rankin scale score as compared 

with the three-gene model (NRI=0.48, p=0.013) or single-gene MCEMP1 model 

(NRI=0.52, p=0.0073). 
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CONCLUSION: This study demonstrates that network analysis can implicate new genes 

with stroke such as NLRC4, CKLF and HS.546375. In addition, multi-gene panels 

identified through network analysis can improve discrimination of stroke and stroke 

prognosis.  

 

KEYWORDS: Biomarker; Blood; Gene expression profiling; Stroke 
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4.3 INTRODUCTION 

 Stroke is a leading cause of death and disability worldwide.
1,2

 Ischemia is the 

underlying cause of 80% of stroke cases,
3
 however treatment of ischemic stroke patients 

is impeded by the lack of rapid diagnostic testing. Multiple studies have sought to identify 

blood-based biomarker of ischemic stroke.
4–7

 Biomarkers may also provide insight into 

the molecular mechanisms underlying stroke. With advancements in high-throughput 

genomic technology, such as microarrays and sequencing, it is now possible to evaluate 

the expression of thousands of genes simultaneously. Using microarray data and 

univariate analysis, we have previously reported that whole blood expression of 

MCEMP1 may have utility for stroke diagnosis and predicting prognosis.
7
 A limitation of 

our previous work was that the study focused on a single gene to differentiate between the 

various groups and thus provided little understanding of the global gene interactions.  

 Univariate analysis assumes that each gene is expressed independent of one 

another. However genes are often co-expressed. For instance, genes may be co-expressed 

when they are functionally related
8
 or involved in a similar regulatory system. Weighted 

gene co-expression network analysis (WGCNA)
9
 is a computational technique that 

identifies groups of genes with correlated expression. These large groups of co-expressed 

genes are referred to as modules. Study of gene modules may provide new insight into the 

molecular pathways underlying ischemic stroke. In addition, modules may lead to the 

identification of a biomarker panel with greater discriminative capacity than single 

biomarkers.   
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 In this study we implement WGCNA to 1) gain insight into the molecular 

pathways and genes associated with ischemic stroke, 2) use network analysis to derive 

multi-gene models and 3) determine the discriminative capacity of a multi-gene score for 

stroke prognosis. 

 

4.4 METHODS 

4.4.1 Patient population   

 The INTERSTROKE study has been described in detail elsewhere.
10

 Briefly, 

INTERSTROKE was a large, international, standardized case-control study consisting of 

stroke cases and controls from 22 countries. Stroke cases were patients admitted to 

hospital with first-time acute stroke that presented within five days of symptom onset and 

within 72-hours of hospital admission. Distinction between stroke subtypes was 

confirmed with neuroimaging (CT or MRI). Control participants were recruited from the 

hospital or within the community, and had no history of stroke. Peripheral whole blood 

was collected into PAXgene Blood RNA tubes (PreAnalytiX) and stored at -80⁰C prior to 

sample processing. Only confirmed ischemic stroke cases and controls were assessed in 

this study. 

 

4.4.2 Sample processing and microarray hybridization  

 All sample processing was conducted at the Genetic and Molecular Epidemiology 

Laboratory of PHRI and McMaster University. Total RNA was isolated using the 
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QIAsymphony PAXgene Blood RNA kit (Qiagen) on the QIASymphony (Qiagen). RNA 

quality was determined using Nanodrop2000™ (Nanodrop) and 2100 Bioanalyzer 

(Agilent), while quantity was determined using Quant-IT RiboGreen® (LifeTech). 500ng 

of total RNA was amplified and biotinylated using the Illumina TotalPrep RNA 

Amplification Kit (LifeTech). The final biotin-labeled cRNA species were then 

hybridized to the Illumina HumanRef-8v4.0 expression BeadChip (Illumina). BeadChips 

hold 12 samples at a time, so to minimize batch effect samples were randomly assigned to 

chips for hybridization. BeadChips were then washed, dried and scanned on the iScan 

System (Illumina) as per manufacturer protocol. 

 

4.4.3 Microarray data pre-processing   

 The Illumina HumanRef-8v4.0 expression BeadChip interrogated expression of 

34,694 unique genes using 47,323 probes. The raw sample probe profile and control 

probe profile were exported from GenomeStudio version 1.9.0 (Illumina). All analysis 

was performed in R (http://r-project.org). Data pre-processing was conducted with the 

LIMMA (Linear models for microarray analysis)
11

 package and involved background 

correction using the non-genomic control probes,
12

 quantile normalization and log2 

transformation.
13

 Probes with detection P-value < 0.01 in >50% of the samples were 

considered expressed. As a result the final pre-processed expression data set consisted of 

11,099 RNA transcript probes for each of the 274 individuals (104 ischemic stroke cases 

and 170 control participants).  
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4.4.4 Statistical analysis  

 Groups of co-expressed genes, referred to as modules, were identified by 

constructing weighted gene co-expression networks as previously described.
14

 Briefly, 

networks were determined using pairwise Pearson correlation between all probes across 

all participants. The absolute value of the Pearson correlation was raised to a power of β 

=6 to emphasize large correlations at the expense of low correlations thus resulting in a 

weighted network. Using the default tree-cutting algorithm, modules were identified.  

 Principal component analysis was used to summarize the expression variance 

within each module. The first principle component eigenvalue for each module is referred 

to as the module summary (MS) value.  MS values were assed for correlation with stroke 

and stroke risk factors using Pearson correlation. A Bonferroni corrected p-value 

<0.05/15=0.0033 was considered significant. We also constructed multivariable 

regression models to evaluate the association between MS values and stroke while 

adjusting for risk factors. As external validation, we determined module assignment for 

genes reported to be associated with stroke by Moore et al.,
4
 Tang et al.,

5
 and Barr et al.

6
  

 Signalling Pathway Impact Analysis (SPIA)
15

 was conducted on ischemic stroke 

associated modules. SPIA identifies the number of differentially expressed genes per 

pathway, in comparison to the probability of identifying more pathway-associated genes 

by chance. A Bonferroni corrected global p-value <3.5x10
-2

 was indicative of significant 

pathway activation or inhibition. 

 Next we identified highly connected genes within each module, referred to as hub 

genes. Hub genes were defined as genes with high gene significance (GS), correlation 
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between gene expression and case-control status, and high module membership (MM), 

correlation between gene expression and respective MS value. Genes with GS>0.3 and 

MM>0.75 were considered hub genes. To confirm that the top hub genes were associated 

with ischemic stroke, we regressed on stroke status while adjusting for available risk 

factors. Correlations in hub gene expression were evaluated using Pearson correlation. To 

then identify hub genes independently associated with ischemic stroke we constructed a 

multivariable logistic regression model.  

 Finally, regression models were constructed to evaluate the association between 

hub gene expression and functional disability, measured as modified Rankin Scale score 

(mRS). Our analysis utilized mRS recorded soon after the stroke (at baseline) and at the 

one-month follow-up. One-month mRS was dichotomized to represent functional 

disability (mRS 0-2 vs mRS>2). Using pROC,
16

 receiver operator curves (ROC) were 

constructed from logistic regression models associating one-month disability and hub 

gene expression. Area under the ROC (AUC) was determined as a measure of sensitivity 

and specificity. The strength of multiple models were compared using the Net 

Reclassification Index (NRI).
17,18

 NRI was calculated using the Hmisc
19

 package. An NRI 

>0.6 was considered a strong improvement in discriminative capacity, 0.4 was 

intermediate, and 0.2 was considered weak. 
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4.5 RESULTS  

4.5.1 Patient characteristics 

 Demographic and clinical features of the 104 ischemic stroke cases and 170 

controls are summarized in Table 1. The average age for stroke cases was 68.9 ± 12.3 and 

43% were female. 26.9% of ischemic cases were classified as cardioembolic, 9.6% large 

vessel, 19.2% small vessel, 29.8% cryptogenic and 14.4% other. Clinical features of 

ischemic stroke cases were similar to controls, except for presence of smoking (p=0.01), 

which was more common among stroke cases.  
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Table 1. Participant demographics.  

 Ischemic Stroke 

N = 104 

Control 

N = 170 

P-Value 

Gender (% female) 45 ( 43.3 ) 78 ( 45.9 ) 0.67 

Age, mean ± SD 68.9 ± 12.3 66.1 ± 14.2 0.08 

BMI, mean ± SD 26.6 ± 4.8 27.16 ± 4.8 0.37 

Hyperlipidemia 44 ( 42.3 ) 62 ( 36.5 ) 0.34 

Hypertension 73 ( 70.2 ) 103 ( 60.6 ) 0.10 

Diabetes 21 ( 20.2 ) 21 ( 12.4 ) 0.10 

Atrial Fibrillation 9 ( 8.7 ) 6 ( 3.5 ) 0.10 

Migraine 21 ( 20.2 ) 21 ( 12.4 ) 0.10 

Current smoker 21 ( 20.2 ) 15 ( 8.8 ) 0.01* 

 

Race, (%) 

   

  European 42 ( 40.4 ) 53 ( 31.2 )  

  Latin American 62 ( 59.6 ) 117 ( 68.8 )  

 

Stroke Type, (%) 

   

  Cardioembolic  28 ( 26.9 ) NA  

  Large vessel  10 ( 9.6 ) NA  

  Small vessel  20 ( 19.2 ) NA  

  Cryptogenic  31 ( 29.8 ) NA  

  Other 15 ( 14.4 ) NA  
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4.5.2 Gene co-expression network construction and module identification 

 Microarray expression profiling was conducted on all samples and groups of co-

expressed genes were identified.  These groups of genes are referred to as modules and in 

total 15 were identified (Figure 1). Module size ranged from 86 genes to 2,758 genes. 

Five of the 15 modules were correlated with ischemic stroke after adjustment for multiple 

hypothesis testing (p<0.05/15=0.0033, Supplementary Figure 2, Supplementary Table 1). 

Modules were named based on the significance in association with stroke. Thus module 1 

was most significantly correlated with stroke (p=2.4x10
-13

), then module 2 (p=1.6x10
-8

), 

module 3 (p=6.1x10
-6

), module 4 (p=1.1x10
-5

) and module 5 (p= 8.5x10
-4

).  

 We also tested each module for correlation with stroke risk factors including: age, 

gender, BMI, ethnicity, hyperlipidemia, diabetes, atrial fibrillation, hypertension, 

migraine and smoking status. A modest association between module 5 and smoking was 

identified (p=2.6 x10
-3

).  Each module was further tested for association with ischemic 

stroke while adjusting for available risk factors. Under these models, only modules 1, 2, 3 

and 4 were significantly associated with stroke (p<0.05/15=0.0033, Supplementary Table 

2).  

 As external validation, we determined module assignment for the 18 genes 

previously associated with stroke by Tang et al.
5
, 9 genes by Barr et al.

6
 and 22 genes by 

Moore et al.
4
 The majority of genes identified by each group corresponded to our stroke 

associated modules 1 or 2. Specifically, 37-71% of genes in each list were associated with 

module 1 and, 5-14% of genes were associated with module 2. Module membership for 
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the remaining genes was inconsistent between the gene lists. The full results are presented 

in Supplementary Table 3. 
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Figure 1. Dendogram of gene expression and identification of modules.  

The dendogram was constructed by average-link hierarchical clustering. Initially each 

gene was considered a unique cluster. Clusters were progressively combined based on 

shortest distance (ie greatest similarity); the distance between two clusters was equal to 

the average distance from any member in one cluster to any member of the other cluster. 

Modules were identified by dividing the dendogram at significant branch points. 15 

modules were identified. Genes within each module were color-coded to improve 

visualization.  
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Supplementary Figure 1. Heat maps of module summary values with clinical traits. 

Modules summary (MS) values summarize the variation in gene expression between all 

genes within each module for each individual (N=274); MS values are equivalent to the 

eigenvector of the first principal component. Each MS value was tested for correlation 

with stroke and stroke risk factors using all samples. The heat map colors indicate 

strength and direction of correlation. Dark red indicates a strong positive correlation, 

white no correlation, and dark blue a strong negative correlation. MS values were named 

based on the significance of their association with stroke.  

 

 

 

 

 

 



Ph.D. Thesis – K. Raman               McMaster University – Medical Sciences 

102 
 

Supplementary Table 1. P-values from the correlation between module summary 

values and clinical traits.  

An adjusted p-value <0.0033 was considered significant.  
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Supplementary Table 2. Association between module summary value and stroke 

after adjustment for clinical risk factors.  

An adjusted p-value <0.0033 was considered significant. 

 

 Beta P-value 

MS1 0.050 1.70 x 10
-11

 

MS2 -0.038 3.65 x 10
-7

 

MS3 -0.031 3.28 x 10
-5

 

MS4 0.032 2.81 x 10
-5

 

MS5 0.022 3.61 x 10
-3

 

MS6 -0.018 1.48 x 10
-2

 

MS7 0.018 2.49 x 10
-2

 

MS8 0.011 0.16 

MS9 0.017 0.04 

MS10 -0.005 0.51 

MS11 -0.005 0.52 

MS12 -0.002 0.78 

MS13 0.001 0.88 

MS14 -0.005 0.53 

MS15 -0.003 0.72 
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Supplementary Table 3. Module membership of genes previously associated with 

stroke.  

Tang et al.,
6
 identified 18 genes associated with stroke, Barr et al.,

7
 identified 9 genes and 

Moore et al.,
5
 identified 22 genes. Respectively, 16, 7 and 19 genes were represented in 

our gene expression data. Module membership for the overlapping genes was determined.  

 
Module Tang et al.6 Barr et al.7 Moore et al.5 

1 

ARG1, BCL6, PYGL, 

RNASE2, 

S100A12, F5, S100P 

ARG1, CCR7, 

IQGAP1, ORM1, 

S100A12 

ADM, FCGR1A, ENTPD1, 

CD163, TLR2, IL13RA1, 

PTEN 

2 LY96 LY96 CD36 

3 MMP9 NA PILRA 

4 C44, CKAP4 CA4 NA 

5 NA NA VCAN, KIAA0146 

6 NPL, ETS2, FPR1 NA BST1, FOS, NPL, ETS2 

7 NA NA NA 

8 NA NA NA 

9 NA NA NA 

10 NA NA NA 

11 NA NA NA 

12 NA NA 
APLP2, CD14, LTA4H, 

CYBA 

13 NA NA NA 

14 S100A9 NA NA 

15 NA NA NA 
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4.5.3 Pathway analysis of stroke associated modules  

 Pathway analysis of genes in module 1 indicated increased activation of cytokine-

cytokine receptor interaction pathways in ischemic stroke as compared with controls 

(p=4.3x10
-9

). Additional pathways with significant activation or inhibition are listed in 

Supplementary Table 4. In module 2 we detected increased activation of chemokine 

signalling pathways (p=9.0x10
-6

) and inhibition of actin cytoskeletal regulation 

(p=8.5x10
-5

). Significant changes were not observed in module 3. In module 4, increased 

activation of RNA transport pathways was detected (p=2.65x10
-4

).  
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Supplementary Table 4. Significant pathways identified in module 1.  

 
Molecular or disease pathway P-Value Bonferroni 

P-value 

Status 

Cytokine-cytokine receptor 

interaction 
4.3 x10-9 5.8 x10-7 Activated 

Asthma 6.9 x10-8 9.3 x10-6 Activated 

Salmonella infection 1.1 x10-6 1.5 x10-4 Inhibited 

Allograft rejection 7.2 x10-6 9.7 x10-4 Activated 

Leishmaniasis 1.0 x10-5 1.4 x10-3 Inhibited 

Rheumatoid arthritis 1.1 x10-5 1.5 x10-3 Inhibited 

Legionellosis 1.1 x10-5 1.5 x10-3 Inhibited 

Autoimmune thyroid disease 3.4 x10-5 4.7 x10-3 Activated 

Focal adhesion 5.4 x10-5 7.4 x10-3 Activated 

Intestinal immune network for IgA 

production 

 

7.8 x10-5 1.0 x10-2 Inhibited 

Systemic lupus erythematosus 1.2 x10-4 1.6 x10-2 Activated 

Toxoplasmosis 1.6 x10-4 2.1 x10-2 Inhibited 

Type I diabetes mellitus 1.7 x10-4 2.3 x10-2 Inhibited 

Graft-versus-host disease 2.6 x10-4 3.5 x10-2 Inhibited 
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4.5.4 Identification of hub genes within stroke associated modules   

 Each module consists of many genes, so we sought to pinpoint genes with the 

greatest impact on each network. These central genes with high connectivity are referred 

to as hub genes. 207 hub genes were identified in module 1, the two most significant 

being NLRC4, and MCEMP1. Within modules 2, 3 and 4 we respectively identified 49, 

32 and 31 hub genes. The top hub gene in module 2 was CKLF, module 3 was ITGAM 

and module 4 was HS.546375. Table 2 describes the ten most significant hub genes for 

each stroke-associated module.  

 Expression of NLRC4, CKLF, HS.546375 and ITGAM were associated with stroke 

after adjustment for available risk factors. A 1.6 fold increase in NLRC4 was identified in 

ischemic stroke cases as compared with controls (CI 1.4-1.8, p=3.0x10
-15

, Supplementary 

Figure 2A). In addition, elevated expression of CKLF (FC=1.3, CI 1.2-1.4, p=1.6x10
-10

) 

and ITGAM (FC=1.3, CI 1.2-1.4, p=1.0x10
-8

) were observed in stroke cases, while 

HS.546375 expression was decreased (FC= 0.6, CI 0.6-0.7, p=2.8x10
-13

, Supplementary 

Figure 2D). Correlation was low between expression of NLRC4, CKLF, HS.546375 and 

ITGAM (r
2
<0.66, Supplementary Table 5). To identify genes independently associated 

with stroke, we constructed an association model including the four genes and available 

stroke risk factors. The model indicated that only NLRC4 (p=0.0025), CKLF (p=0.018) 

and HS.546375 (p=3.6x10
-4

) were independently associated with stroke status.  
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Table 2. Top 10 stroke associated hub genes identified within modules 1 to 4.  

Genes with high connectivity tend to have high module membership (MM) and gene 

significance (GS). MM is the correlation between gene expression and module summary 

(MS) values. GS is the correlation between gene expression and stroke or control status of 

a sample. Hub genes had MM>0.75 and GS>0.3.  

 
 

Module 1 

Gene GS MM 

NLRC4 0.49 0.79 

MCEMP1 0.49 0.81 

IRAK3 0.47 0.83 

SPOCK2 0.46 0.84 

PPP4R1 0.44 0.80 

ANXA3 0.44 0.87 

BCL6 0.44 0.78 

EXOC6 0.44 0.85 

CLEC4D 0.44 0.79 

FLJ20273 0.44 0.81 
 

 

Module 2 

Gene GS MM 

CKLF 0.40 0.78 

CCPG1 0.40 0.80 

FAM160B1 0.39 0.84 

LY96 0.39 0.77 

E2F3 0.38 0.85 

TXN 0.38 0.77 

RP5-1022P6.2 0.38 0.88 

CKLF 0.37 0.80 

KIAA1600 0.37 0.91 

TXN 0.36 0.78 

 

 

Module 3 

Gene GS MM 

ITGAM 0.38 0.78 

KIAA1881 0.37 0.81 

TMEM88 0.37 0.81 

REM2 0.37 0.75 

DOCK5 0.36 0.80 

LOC100134734 0.35 0.80 

MMP25 0.35 0.83 

ALPL 0.35 0.77 

SLC9A8 0.34 0.81 

MANSC1 0.34 0.78 
 

Module 4 

Gene GS MM 

HS.546375 0.42 0.81 

LOC646294 0.41 0.80 

BCL11B 0.40 0.79 

ATP5G2 0.40 0.76 

HS.534439 0.39 0.75 

IMP3 0.37 0.86 

RPS2 0.37 0.82 

EIF3F 0.36 0.85 

ST6GAL1 0.36 0.83 

LOC347544 0.36 0.78 
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Supplementary Figure 2.  Boxplots of gene expression for the top hub genes for 

stroke associated modules. 
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Supplementary Table 5. Absolute pair-wise Pearson correlation between the top hub 

genes from stroke associated modules.  

 

 

Module 1 Module 2 Module 3 Module 4 

 NLRC4 CKLF ITGAM HS.546375 

NLRC4 1 0.55 0.64 0.66 

CKLF 0.55 1 0.46 0.41 

ITGAM 0.64 0.46 1 0.53 

HS.546375 0.66 0.41 0.53 1 
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4.5.5 Multi-gene model improves discrimination of ischemic stroke 

 To assess the discriminative capacity of NLRC4, CKLF and HS.546375 for stroke 

we constructed ROC curves. Based on univariate models, NLRC4 (AUC 0.80, CI 0.74-

0.85) had greater discriminative capacity as compared with either CKLF (AUC=0.74, CI 

0.68-0.80) or HS.546375 (AUC=0.76, CI 0.70-0.82). However, a model combining 

expression of NLRC4, CKLF and HS.546375, had the best discriminative capacity 

(AUC=0.83, CI 0.78-0.88, Supplementary Figure 3). The three-gene model strongly 

improved discrimination as compared with univariate models (NLRC4 NRI=0.54, 

p=7.8x10
-6

; CKLF NRI=0.81, p=8.9x10
-13

; and HS.546375 NRI=0.73, p=2.3x10
-10

). 

Furthermore, the three-gene model strongly improved ischemic stroke discrimination as 

compared with a model including only clinical variables (AUC=0.66, CI 0.59-0.72, 

NRI=0.83, p=3.1x10
-13

, Supplementary Figure 4).   
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Supplementary Figure 3. Discriminative capacity of hub genes for ischemic stroke.  
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Supplementary Figure 4. Discriminative capacity of hub gene panel and clinical 

variables for ischemic stroke.  
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4.5.5 Multi-gene model improves discrimination of one-month disability  

 Modified Rankin Scale score (mRS) was recorded for each stroke patient soon 

after stroke, at baseline, and re-evaluated one-month after the stroke. We dichotomized 

one-month mRS into two groups, mRS of 0, 1 or 2 and mRS >2, which represented post-

stroke disability. We observed that a model including expression of the NLRC4, CKLF 

and HS.546375 (AUC=0.81, CI 0.73-0.90) improved disability discrimination as 

compared with single gene models (NLRC4 NRI=0.62, p=0.0013; CKLF NRI=0.79, 

p=1.7x10
-5

; HS.546375 NRI=0.45, p=0.019; Supplementary Figure 5).  

 Our previous study observed that whole blood expression of MCEMP1, baseline 

mRS and primary stroke type had prognostic capacity for stroke.
7
 Thus we sought to 

evaluate the discriminative capacity of multi-gene models as compared with a single gene 

model. Since all stroke cases in this study were due to ischemia the stroke type variable 

was disregarded, but baseline mRS was included in all models. We observed that a 

disability discrimination model including three genes, NLRC4, CKLF, HS.546375 

(AUC=0.93, CI 0.88-0.98) had equivalent performance to the MCEMP1 model 

(AUC=0.93, CI 0.88-0.98). However a model consisting the three genes identified 

through network analysis and MCEMP1 (AUC=0.94, CI 0.90-0.98) moderately improved 

disability discrimination as compared to the three-gene model (NRI=0.48, p=0.013) or 

MCEMP1 (NRI=0.52, p=0.0073). Models for mortality discrimination could not be 

developed due to the limited number of fatal events one-month after ischemic stroke.  
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Supplementary Figure 5. Discriminative capacity of hub genes for one-month 

disability.  
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4.6 DISCUSSION 

 In this study we identified four gene modules associated with ischemic stroke. We 

further characterized the modules by identifying enriched pathways and hub genes. 

NLRC4, CKLF and HS.546375 were the top hub genes identified in three different 

modules and each was independently associated with ischemic stroke. Stroke 

discrimination was improved using a model that included all three genes as compared 

with single gene models or a model with clinical variables. Similarly, the three-gene 

model improved discrimination of one-month disability. One-month disability 

discrimination was similar between the previously reported MCEMP1 model and the 

three-gene model. But, disability discrimination was moderately improved by the model 

consisting of NLRC4, CKLF, HS.546375, MCEMP1 and baseline mRS.  

 Network analysis can provide new insights into the genes and molecular pathways 

underlying ischemic stroke. In our previous work
7
 we employed univariate analysis which 

implicated only one gene, MCEMP1, with stroke whereas network analysis identified 

many hub genes with possible biomarker capabilities. For instance, one of the top hub 

genes identified was NLRC4. Nucleotide-binding and oligomerization domain–like 

receptor (NLR) proteins are involved in immune-surveillance. Upon sensing pathogenic 

bacteria, it has been reported that NLRC4 oligomerizes and leads to the formation of the 

NLRC4 inflammasome.
20

 Inflammasomes are multi-protein complexes that play a critical 

role in mediating innate immune responses. The inflammatory response in cerebral tissue 

following stroke contributes to the progression of brain injury and exacerbation of 

neurological deficits. Previous studies have implicated NLRP1 and NLRP3 with 
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stroke,
21,22

 but a recent study suggests that NLRC4 may be the driver of sterile 

inflammatory responses in the brain.
23

 Denes et al.,
23

 observed that NLRC4
-/-

 mice that 

underwent experimental stroke had reduced ischemic brain injury and improved 

neurological outcomes as compared with wild type or NLRP3
-/-

 mice. In concordance, we 

have identified elevated NLRC4 expression in ischemic stroke patients as compared with 

controls. Together these studies are the first studies to implicate NLRC4 with stroke.  

 Since network analysis implicates many genes it is possible to conduct pathway 

analysis. It is well recognized that inflammatory mechanisms are triggered by stroke.
24,25

 

In agreement, we detected activation of cytokine-cytokine receptor interactions and 

chemokine signalling in ischemic stroke. We also observed activation of RNA transport 

pathways. Although the role of RNA transport is rather non-specific it could reflect 

activation of leukocytes and other inflammatory cells. Pathway analysis of stroke-

associated modules did not provide novel insights, but they were able to confirm known 

aspects of stroke biology. Indeed, the ability to identify new pathways is dependent on 

annotation of protein functions and interactions, which is expected to improve as our 

understanding of biological pathways increases. 

 Our results also demonstrate that multi-gene panels can improve discrimination as 

compared with single genes. For instance, a stroke discrimination model including three 

genes that were identified through network analysis had greater discriminative capacity as 

compared with single gene models or clinical variables. Thus network analysis can 

improve the derivation of discriminative gene scores. Our three-gene model included 

NLRC4, CKLF and HS.54637, which represented three different modules. NLRC4 is 
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involved in inflammasome formation; the chemokine-like receptor (CKLF) protein is a 

potent chemoattractant for neutrophils, monocytes and lymphocytes
26

 and HS.54637 

encodes a protein of unknown function. Together the three genes may describe three 

distinct and significant mechanisms underlying ischemic stroke, which facilitates 

improved discriminative capacity.  

 In our previous work we demonstrate that MCEMP1 expression may have utility 

as a non-invasive biomarker for stroke prognosis. The study focused on the discriminative 

capacity of a single gene since multiple genes independently associated with stroke could 

not be identified. In the current study we observed that the discriminative performance of 

MCEMP1 was similar to the three-gene model identified through network analysis. But, 

we determined that a one-month disability score comprised of NLRC4, CKLF, HS.54637, 

MCEMP1, and baseline mRS, had improved performance as compared with other model, 

albeit a moderate improvement. Although there is greater complexity and cost associated 

with multi gene scores, the increased test sensitivity may have clinical benefits. Future 

studies including stroke mimics and neurologic inflammatory conditions are required to 

determine the specificity of a multi gene models for stroke as compared with single 

genes. With additional research we can determine the clinical utility of multi gene panels.  

 The results of the present study demonstrate that network analysis can implicate 

new genes and molecular pathways with stroke. To our knowledge, ours is the first 

human study to implicate NLRC4 with ischemic stroke. Network analysis also improves 

detection of multi-gene scores as compared to univariate gene expression analysis. We 

demonstrate that multi-gene scores for ischemic stroke diagnosis and one-month 
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prognosis have greater discriminative capacity as compared with single-gene models. The 

multi-gene scores may describe more of the expression changes associated with stroke, 

which increases complexity but also improves discriminative capacity. Additional 

research will be required to determine the cost-benefit ratio of multi-gene models. 

However, our results suggest that network analysis and identification of modules may be 

a superior method for RNA biomarker discovery. Further analysis of genes within each 

module may improve our understanding of the molecular mechanisms of stroke.  
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5.1 FORWARD 

 Atrial fibrillation (AF) is the most common cardiac arrhythmia and increases 

stroke risk by 5-fold. Current treatment strategies to restore sinus rhythm have limited 

long-term success. In addition our understanding of the molecular biology underlying AF 

and conversion to sinus rhythm is incomplete. Recently the association between elevated 

levels of NT-proBNP and AF are being evaluated but additional validation is required. 

This study compared whole blood gene expression and circulating biomarkers in patients 

with AF as compared with paired sinus rhythm samples, collected after successful 

cardioversion. We detected elevated expression of SLC25A20 and PDK4 during AF. We 

also demonstrate that RNA biomarkers independently improve AF discrimination as 

compared with circulating NT-proBNP.  

 

 This manuscript has been submitted for publication in PlosOne and is currently 

under review. Guillaume Paré and David Conen conceptualized and designed the study. 

Kripa Raman created the analysis plan, conducted all analysis, qPCR-related laboratory 

work and wrote the manuscript. The following individuals aided with data collection and 

provided feedback on the manuscript: Stefanie Aeschbacher, Matthias Bossard, Thomas 

Hochgruber, Andreas J. Zimmermann, Beat A. Kaufmann, Katrin Pumpol, Peter 

Rickenbacker and David Conen.  

  

 

  



Ph.D. Thesis – K. Raman               McMaster University – Medical Sciences 
 

 126 

5.2 ABSTRACT 

BACKGROUND: Treatment to restore sinus rhythm among patients with atrial 

fibrillation (AF) has limited long-term success rates. Gene expression profiling may 

provide new insights into AF pathophysiology.  

OBJECTIVE: To identify biomarkers and improve our understanding of AF 

pathophysiology by comparing whole blood gene expression before and after electrical 

cardioversion (ECV).  

METHODS: In 46 patients with persistent AF that underwent ECV, whole blood 

samples were collected 1-2 hours before and 4 to 6 weeks after successful cardioversion. 

The paired samples were sent for microarray and plasma biomarker comparison. 

RESULTS: Of 13,942 genes tested, expression of SLC25A20 and PDK4 had the 

strongest associations with AF. Post-cardioversion SLC25A20 and PDK4 expression 

decreased by 0.8 (CI 0.7-0.8, p=2.0x10
-6

) and 0.7 (CI 0.6-0.8, p=3.0x10
-5

) fold, 

respectively. Median N-terminal pro B-type natriuretic peptide (NT-proBNP) 

concentrations decreased from 121.6 pg/mL to 36.4 pg/mL (p=1.8 x10
-8

) after 

cardioversion. AF discrimination models combining NT-proBNP and gene expression 

(NT-proBNP + SLC25A20 area under the curve=0.88, NT-proBNP + PDK4 AUC=0.86) 

had greater discriminative capacity as compared with NT-proBNP alone (AUC=0.84). 

Moreover, a model including NT-proBNP, SLC25A20 and PDK4 significantly improved 

AF discrimination as compared with other models (AUC=0.89, Net Reclassification 

Index >0.6, p<4.0x10
-3

). We validated the significance of SLC25A20 and PDK4 

expression with AF in an independent sample of 17 patients.  
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CONCLUSION: This study demonstrates that SLC25A20, PDK4, and NT-proBNP have 

incremental utility as biomarkers discriminating AF from sinus rhythm. Elevated 

SLC25A20 and PDK4 expression in AF indicates an important role for energy metabolism 

in AF. 

 

KEYWORDS: Atrial fibrillation; Biomarker; Blood; NT-proBNP; Gene expression 

profiling; Electrical cardioversion  
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5.3 INTRODUCTION 

 Atrial fibrillation (AF), the most common cardiac arrhythmia, is associated with 

an increased risk of death, stroke
1,2

 and heart failure.
2–4

 Its incidence is projected to 

increase with the ageing of population and increased prevalence of obesity.
5–7

 However, 

treatment strategies aiming to revert AF to sinus rhythm have limited long-term success 

rates and significant risks.
8,9

 While it has been demonstrated that a substantial proportion 

of AF originates from the pulmonary veins,
10

 our current understanding of the complex 

pathophysiology remains incomplete. Improvements in this area may not only help to 

develop novel treatment strategies for AF patients, but also to anticipate the rhythm 

stability among patients with AF, and to develop better methods to detect intermittent 

forms of AF.  

We hypothesized that identification of novel biomarkers associated with rhythm 

changes among AF patients may provide insights into our pathophysiological 

understanding of the disease. Assessment of whole blood gene expression is an emerging 

and promising class of biomarkers. Gene expression levels vary rapidly in response to 

physiologic changes and its disease specificity may outreach conventional parameters. 

Recently, gene expression patterns of left atrial tissue from AF patients has been 

described.
11–13

 In addition, the Framingham group has analyzed peripheral blood gene 

expression among patients with prevalent AF as compared with a large population of non-

affected individiduals.
14

 However, neither of these studies has assessed changes in 

peripheral blood gene expression within an individual patient after conversion from AF to 

sinus rhythm.  
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 We therefore aimed to study AF patients pre- and post-electrical cardioversion 

(ECV), in order to identify AF specific whole blood RNA biomarkers potentially 

implicated in AF pathophysiology. We also wanted to assess their ability to discriminate 

AF from sinus rhythm in this setting. Novel gene expression biomarkers were validated in 

an independent set of participants.  

 

5.4 METHODS 

5.4.1 Study population 

We prospectively enrolled consecutive patients >18 years with persistent AF, 

defined as a non-self-terminating episode lasting >7 days, who were scheduled for non-

urgent electrical cardioversion (ECV) at two tertiary hospitals in Switzerland. We 

excluded patients with untreated severe valvular disease, unstable and acute heart failure, 

limiting active or chronic major diseases, and a history of open-heart surgery within 3 

months of inclusion. Informed consent was obtained from all patients and the study was 

approved by the local ethics commission.  

 

5.4.2 Study procedures 

 Study visits were scheduled approximately 24 hours before electrical 

cardioversion and after 4 ± 1 weeks of follow-up. Information on baseline characteristics, 

concomitant medication and co-morbidities was collected through study questionnaires 

both at baseline and follow-up. In addition, conventional blood pressure measurements, 
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standard 12-lead electrocardiogram (ECG), 24-hour Holter ECG monitoring, real time 3-

dimensional echocardiography and blood sampling were obtained at both visits. At 

baseline, all examinations were performed 1-2 hours prior to the cardioversion procedure. 

ECV was performed according to local standards. After cardioversion, changes in 

personal medication were strongly discouraged until the follow-up visit. The second 

blood sampling was obtained directly after the follow-up 24-hour Holter ECG, in order to 

confirm stable sinus rhythm. Patients who had recurrent AF between the two scheduled 

visits were excluded from this study.  

 

5.4.3 Blood sampling and biomarker measurements  

Prior to ECV and at follow-up, venous blood samples were collected in EDTA 

tubes and PAXgene™ Blood RNA tubes (PreAnalytiX). EDTA tubes were immediately 

centrifuged to isolate plasma and all tubes were stored at -80°C. High-sensitivity C-

reactive protein (hs-CRP), cystatin C (CYSC), and interleukin-6 (IL6) were measured on 

a Beckman Coulter Unicel DxC600 Synchron Clinical System (Beckman) according to 

the manufacturer’s protocol. Myeloperoxidase (MPO) was measured using the 

ARCHITECT MPO immunoassay on the ARCHITECT Clinical Chemistry Analyzer 

(Abbott). N-terminal pro B-type natriuretic peptide (NT-proBNP) was measured on the 

Elecsys 2010 immunoassay analyzer (Roche). 

5.4.4 RNA extraction  

The PAXgene™ Blood RNA tubes were processed at the Genetic and Molecular 

Epidemiology Laboratory of PHRI and McMaster University, Hamilton ON. Paired 
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samples were processed using the same RNA extraction and amplification method. Total 

RNA was isolated from samples using the QIAsymphony PAXgene Blood RNA Kit 

(QIAGEN) or the MagMAX Stabilized Blood Tube RNA Isolation Kit (LifeTech). RNA 

was then quantified with RiboGreen® (LifeTech) and Nanodrop (Nanodrop). 

 

5.4.5 Microarray hybridization  

200ng of total RNA was amplified and biotinylated according to the 

manufacturer’s protocol. Samples were amplified with the TotalPrep RNA Amplification 

Kit (LifeTech) or the Illumina TotalPrep-96 RNA Amplification Kit (LifeTech). The final 

biotin-labeled cRNA species were then hybridized to the Illumina HumanRef-8v4 

expression BeadChips (Illumina). Each BeadChip hold 12 samples at a time so paired 

samples were hybridized on to the same chip.  BeadChips were then washed, dried and 

scanned on the iScan System (Illumina) as per the manufacturer’s protocol.  

 

5.4.6 Microarray pre-processing and quality control 

The Illumina HumanRef-8v4 BeadChip interrogates expression of 34,694 unique 

genes using 47,323 probes. The raw BeadChip sample probe profile and control probe 

profile were exported from GenomeStudio version 1.9.0 (Illumina). All data 

preprocessing and quality control was performed in R (http://r-project.org) using 

microarray-specific packages available through Bioconductor.
15

 Four samples were 

deemed outliers during quality control and were excluded from further analysis, including 

their corresponding pairs. Data pre-processing involved background correction using the 
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non-genomic control probes, quantile normalization and log2 transformation.
16,17

 Probes 

with detection P-value <0.05 in >50% of the samples were included for further statistical 

analysis. As a result the final pre-processed expression set consisted of expression values 

for 13,942 RNA probes for each of the 92 samples from 46 individuals.  

 

5.4.7 Quantitative Real-time Polymerase Chain Reaction 

Reverse transcription was performed using the QuantiTect Reverse Transcription 

Kit (Qiagen). SLC25A20 expression was monitored with the Hs00386383_m1 probe 

(LifeTech), PDK4 with the Hs01037712_m1 probe (LifeTech) and ITGB5 with the 

Hs00174435_m1 probe (LifeTech) as per the manufacturer protocol. Each qPCR was 

performed in duplex with the housekeeping gene ACTB, measured using the 

Hs01060665_g1 probe (LifeTech), to normalize expression. The TaqMan qPCR was 

conducted on a Viia7 Real-Time System (LifeTech) and cycle threshold (CT) values were 

calculated automatically with default parameters. Fold change (FC) differences were 

calculated using the δCT method.
27

 

 

5.4.8 Statistical analysis 

All statistical analyses were performed using R. Clinical demographics were 

grouped according to pre- or post-cardioversion status. Normally distributed variables 

were compared using paired Student t-tests, otherwise Wilcoxon rank sum tests were 

used. A two-sided p-value<0.05 was considered as statistically significant. 
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Microarrays (and quantitative PCR) measure relative rather than absolute gene 

expression, or in other words the relative increase or decrease in expression of a gene as 

compared with global expression (or housekeeping genes). Differential gene expression 

was thus reported as FC, with 95% confidence intervals (95% CI). Linear regression 

models were used to identify RNA transcripts that changed significantly after the 

cardioversion (in sinus rhythm) compared with pre-cardioversion samples (in AF). Each 

model tested a single gene’s association with AF while adjusting for sample pairs. To 

correct for multiple hypothesis testing a conservative Bonferroni correction was applied, 

setting the significance threshold at 0.05 / 13,942 = 3.6 x 10
-6

.  

Significant genes and plasma biomarkers were also tested for association with AF 

risk factors, ECG, and echocardiography parameters using linear regression models. An 

adjusted p-value <0.05/12=0.0042 was considered significant. Receiver operating 

characteristic (ROC) curves were constructed, using pROC,
19

 to determine the 

discriminative capacity of significant plasma and RNA biomarkers for pre-cardioversion 

AF. The area under the ROC curve (AUC) was determined as a measure of sensitivity and 

specificity. To compare models we calculated the continuous Net Reclassification Index 

(NRI)
20

 using Hmisc.
21

 We considered an NRI greater than 0.6 a strong, 0.4 an 

intermediate, and 0.2 a weak improvement in discriminative capacity. To verify and 

validate microarray expression results qPCR data was analyzed with linear regression 

models and adjusted for sample pairs.  
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5.5 RESULTS 

5.5.1 Patient characteristics  

Between March 2010 to April 2013, 108 consecutive patients with persistent AF 

were enrolled into the study. 67 patients had successful cardioversion and confirmed 

sinus rhythm at the follow-up visit; 50 were selected for biomarker discovery and 17 for 

independent validation. After microarray quality control, the biomarker discovery cohort 

was reduced to 46 patients. Patient demographics in the discovery cohort are presented in 

Table 1. Mean age was 65.9 ± 10.6 and 26.1% of participants were female. The post-

cardioversion follow-up examination took place 35 days ± 8 days after ECV. Successful 

cardioversion resulted in a significant decrease in heart rate (pre 86 ± 16 vs. post 59 ± 9, p 

= 6.5x10
-14

). We also observed a decrease in E-wave velocity (pre 0.94 m/s, post 0.79 

m/s, p = 2.1x10
-4

), an increase in E-wave deceleration time (pre 200 ms, post 255 ms, p = 

1.0x10
-4

), and an increase in left ventricular ejection fraction (pre 45%, post 53%, p = 

8.1x10
-4

) following cardioversion. 
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Table 1. Participant demographics for biomarker discovery cohort. 

 

 

Pre-cardioversion 

n = 46 

Post-cardioversion 

n = 46 

P-Value 

Gender (n, % female) 12 ( 26.1 ) 12 ( 26.1 ) 

 

Age (years), mean ± SD 65.9 ± 10.6 66.0 ± 10.7 

 

Body mass index (kg/m
2
), mean ± SD 

27.8 ± 3.7 28.0 ± 3.7 0.83 

Systolic BP (mmHg), mean ± SD 136.8 ± 19.7 135.3 ± 19.2 0.73 

Diastolic BP (mmHg), mean ± SD 83.5 ± 20.9 77.2 ± 9.7 0.08 

 

Holter ECG (mean ± SD) 

   

   Heart rate (bpm) 86.0 ± 16.3 58.9 ± 9.4 6.5x10
-14

 

   HRmax (bpm) 104.4 ± 21.7 NA NA 

   HRmin (bpm) 41.8 ± 6.6 NA NA 

 

Echocardiography (mean ± SD) 

   

   E wave (m/s) 0.94 ± 0.2 0.79 ± 0.2 2.1x10
-4

 

   A wave (m/s) NA 0.614 ± 0.3 NA 

   Deceleration time E wave (ms) 188.6 ± 69.3 255.2 ± 74.9 1.0x10
-4

 

   Left ventricle ejection fraction (%) 44.9 ± 12.2 53.4 ± 9.3 8.1x10
-4
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5.5.2 Association between gene expression and AF 

Each of the 13,942 RNA probes was tested for association with AF while 

adjusting for sample pairs. The ten most significant genes from the analysis are presented 

in Table 2. SLC25A20 expression was most significantly associated with AF, and the only 

gene that remained significant after adjustment for multiple hypothesis testing (Figure 1). 

A 0.8 fold decrease in SLC25A20 was observed in post-cardioversion samples as 

compared with baseline (CI 0.7-0.8, p = 2.0x10
-6

, Supplementary Figure 1A). PDK4 was 

the second most significant gene and decreased by 0.7 fold post-cardioversion (CI 0.6-

0.8, p = 3.0 x10
-5

, Supplementary Figure 2A). ITGB5 was the third most significant gene 

and increased by 1.2 fold post-cardioversion (CI 1.1-1.4, p = 3.1 x10
-5

, Supplementary 

Figure 3A).  

 Differential expression of the top three genes, SLC25A20, PDK4 and ITGB5, was 

verified using qPCR. A consistent decrease in SLC25A20 expression was observed in 

post-cardioversion sinus rhythm samples as compared with baseline AF using qPCR (FC 

= 0.7, CI 0.6-0.7, p = 1.6x10
-9

, Supplementary Figure 1B). Similarly, a 0.6 fold decrease 

in PDK4 expression was observed post-cardioversion (CI 0.5-0.7, p = 4.0x10
-5

, 

Supplementary Figure 2B). Differential expression of ITGB5 could not be verified 

(p=0.086, Supplementary Figure 3B).  
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Table 2. Top genes associated with cardioversion. 
 

 
Gene P-value Fold Change Upper CI Lower CI Description 

SLC25A20 2.0 x10
-6

 0.8 0.8 0.7 

Solute carrier family 25  
(carnitine/acylcarnitine 
translocase), member 20 
 

PDK4 3.0 x10
-5

 0.7 0.8 0.6 
Pyruvate dehydrogenase 
kinase, isozyme 4 
 

ITGB5 3.1 x10
-5

 1.2 1.4 1.1 Integrin, beta 5 
 

DDX11L2 3.2 x10
-5

 1.3 1.4 1.2 DEAD/H box helicase 11 
 

NAT8B 4.1 x10
-5

 1.2 1.3 1.1 N-acetyltransferase 8B 
 

TSC22D1 7.8 x10
-5

 1.2 1.2 1.1 
TSC22 domain family, 
member 1 
 

LOC732450 9.9 x10
-5

 0.8 0.9 0.8 

 
SF1 1.1 x10

-4
 0.9 0.9 0.8 Splicing factor 1 

 
PLIN2 1.2 x10

-4
 0.9 0.9 0.8 Perilipin 2 

 
LRP5L 1.7 x10

-4
 0.8 0.9 0.7 Low density lipoprotein 

receptor-related protein 
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Figure 1. Volcano plot of gene expression association with cardioversion treatment. 

Each point represents one of the RNA transcripts tested and the ten most significant genes 

have been labeled. The x-axis represents the effect of each gene, reported as log2 fold 

change, and a positive log2 fold change is indicative of increased expression in post-

cardioversion samples. The y-axis represents the –log10(P-value). Triangle points 

represent genes that have significant differential expressed after Bonferroni correction (P-

value <3.6x10
-6

).  
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Supplementary Figure 1. Boxplots of SLC25A20 expression pre- and post- 

cardioversion.  

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. The CT (cycle threshold) is the number of PCR cycles 

required for the fluorescent signal to exceed background levels. Unlike microarray values, 

CT values are inversely proportional to the amount of target nucleic acid in a sample. A) 

Microarray expression of SLC25A20 decreased following cardioversion. B) qPCR 

expression of SLC25A20 also decreased following cardioversion. A symbol directly 

above a bar indicates a significant difference between groups; p <0.0005 (***). 
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Supplementary Figure 2. Boxplots of PDK4 expression pre- and post-cardioversion.  

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. The CT (cycle threshold) is the number of PCR cycles 

required for the fluorescent signal to exceed background levels. Unlike microarray values, 

CT values are inversely proportional to the amount of target nucleic acid in a sample. A) 

Microarray expression of PDK4 decreased following cardioversion. B) qPCR expression 

of PDK4 also decreased following cardioversion.  A symbol directly above a bar indicates 

a significant difference between groups; p <0.0005 (***). 
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Supplementary Figure 3. Boxplots of ITGB5 expression pre- and post-cardioversion.  

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. The CT (cycle threshold) is the number of PCR cycles 

required for the fluorescent signal to exceed background levels. Unlike microarray values, 

CT values are inversely proportional to the amount of target nucleic acid in a sample. A) 

Microarray expression of ITGB5 decreased following cardioversion. B) qPCR expression 

of ITGB5 also decreased following cardioversion. A symbol directly above a bar indicates 

a significant difference between groups; p <0.0005 (***). 
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5.5.3 SLC25A20 and PDK4 expression are not associated with clinical variables  

Restricting the analysis to pre-cardioversion AF samples, we tested SLC25A20 

and PDK4 for association with AF risk factors, such as age, gender, BMI, systolic and 

diastolic blood pressure; Holter ECG and echocardiography parameters. We observed no 

association between pre-cardioversion expression of either gene and measured variables 

(all p>0.05=NS). We also restricted the analysis to samples collected post-ECV. After 

correction for multiple hypotheses testing, we observed a modest association between 

post-cardioversion SLC25A20 expression and elevated diastolic blood pressure (p = 

0.0029). PDK4 had no association with the measured variables. 

 

5.5.4 Association between plasma biomarkers and AF 

NT-proBNP levels were significantly decreased in post-cardioversion samples, as 

compared with baseline (median 121.6 vs. 36.4 pg/mL, p = 1.8x10
-8

). Circulating levels 

of hs-CRP, CYSC, IL6, and MPO did not change between pre and post-cardioversion 

samples (Table 3). Limiting the analysis to either pre-cardioversion AF samples or post-

cardioversion sinus rhythm samples, we observed no association between NT-proBNP 

concentrations and AF risk factors, Holter ECG or echocardiography parameters (all 

p=NS).  
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Table 3. Plasma biomarker concentrations in participants pre- and post-

cardioversion.  

 

 Pre-cardioversion 

n = 46 

Post-cardioversion 

n = 46 

P-Value 

hs-CRP (mg/L) 1.65 (2.7 - 5.9) 2.215 (0.5 - 5.9) 0.31 

CYSC (mg/L) 0.93 (0.7 - 1.1) 0.925 (0.7 - 1.2) 0.97 

IL6 (pg/mL) 2.24 (2.4 - 4.8) 2.77 (1.8 - 4.9) 0.28 

MPO (pmol/L) 1114.8 (202.1 - 2100.3) 1113.4 (176.8 - 2560.6) 0.38 

NT-proBNP (pg/mL) 121.6 (42.9 - 270.5) 36.4 (2.4 - 119) 1.8x10
-8

 

 

Data are medians (interquartile range)  
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5.5.5 Discriminative capacity of NT-proBNP, SLC25A20 and PDK4 for AF 

A multivariable logistic regression model for AF including NT-proBNP, 

SLC25A20 and PDK4, indicated that all three biomarkers were independently associated 

with AF (Supplementary Table 1). To determine the discriminative capacity of each 

biomarker we constructed receiver operator characteristics (ROC) curves. In single 

variable models, AUC of the ROC curves discriminating between pre-cardioversion and 

post-cardioversion samples was 0.84 (CI 0.75-0.93) for NT-proBNP, 0.78 (CI 0.67-0.88) 

for SLC25A20 and 0.70 (CI 0.58-0.81) for PDK4 (Supplementary Figure 4). A two 

variable model including NT-proBNP and expression of either gene strongly improved 

discrimination as compared with NT-proBNP alone (NT-proBNP + SLC25A20 AUC = 

0.88 (CI 0.81-0.96), NRI = 0.85, p = 1.6x10
-5

; NT-proBNP + PDK4 AUC = 0.86 (CI 

0.78-0.94), NRI = 0.65, p = 1.7x10
-3

). Moreover a model including all three biomarkers 

had the greatest discriminative capacity (AUC = 0.89, CI 0.82-0.96). The combination of 

NT-proBNP, SLC25A20 and PDK4 further improved discrimination as compared with 

other models (all vs NT-proBNP NRI = 0.79, p = 7.8x10
-5

; all vs SLC25A20 NRI = 0.89, 

p = 5.6x10
-6

; all vs PDK4 NRI = 1.2, p = 2.5x10
-11

; all vs NT-proBNP+SLC25A20 NRI = 

0.60, p = 4.0x10
-3

; all vs NT-proBNP+PDK4 NRI = 0.70, p = 5.8x10
-4

).  
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Supplementary Table 1. Results of multiple regression between biomarkers and 

rhythm status.   

A logistic regression model was constructed for rhythm status. The model included only 

NT-proBNP, SLC25A20 and PDK4.  

 

 

Biomarker  Beta P-value 

SLC25A20 2.17 0.016 

PDK4 0.95 0.024 

NT-proBNP 0.018 0.0010 
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Supplementary Figure 4. Receiver-operating characteristic curves for the 

discrimination of pre-cardioversion AF from post-cardioversion sinus rhythm. 
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5.5.6 Replication of SLC25A20 and PDK4 in the validation cohort 

We validated the decrease in SLC25A20 and PDK4 expression post-cardioversion 

in an independent sample consisting of 17 individuals. Patient demographics are shown in 

Supplementary Table 2. The successfully cardioverted patients had significantly 

decreased heart rate (pre = 83.8 bpm, post = 56.5 bpm, p = 2.9x10
-6

) and decreased 

diastolic blood pressure (pre = 83.8. post = 76.0, p = 0.015), similar to the main sample. 

qPCR validated the initial microarray findings. We observed a 0.8 fold decrease in 

SLC25A20 (CI 0.7-0.9, p = 2.0x10
-4

, Supplementary Figure 5) and 0.7 fold decrease in 

PDK4 (CI 0.5-1.0, p = 0.05, Supplementary Figure 5B) in post-cardioversion sinus 

rhythm samples as compared with baseline AF. Restricting the analysis to pre-

cardioversion AF samples or post-cardioversion sinus rhythm, we tested both SLC25A20 

and PDK4 for association with AF risk factors and observed no association (p=NS for all 

comparisons).  
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Supplementary Table 2. Demographics for the independent validation cohort 

samples. 

 

 
 Pre-cardioversion 

n = 17 

Post-cardioversion 

n = 17 

P-value 

Gender (n, % female) 6 (35.3) 6 (35.3)  

Age, mean ± SD 69.1 ± 8.9 64.7 ± 19.2  

Body mass index (kg/m
2
), mean ± SD 25.3 ± 4.3 25.5 ± 4.4  

Systolic BP, mean ± SD 139.9 ± 18.1 131.0 ± 11.1 0.12 

Diastolic BP, mean ± SD 85.9 ± 12.4 76.0 ± 7.3 0.015 

Heart rate, mean ± SD 83.8 ± 13.2 56.5 ± 12.4 2.9x10
-6
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Supplementary Figure 5. qPCR gene expression in the independent validation 

cohort.  

Boxes extend from the 25
th

 to the 75
th

 percentile, with the horizontal line representing the 

median. Outliers are identified as samples with an expression value 1.5 times more or less 

than the interquartile range. The CT (cycle threshold) is the number of PCR cycles 

required for the fluorescent signal to exceed background levels. Unlike microarray values, 

CT values are inversely proportional to the amount of target nucleic acid in a sample. A) 

qPCR expression of SLC25A20 pre- and post- cardioversion in the independent validation 

cohort. B) qPCR expression of PDK4.A symbol directly above a bar indicates a 

significant difference between groups; p <0.0005 (***), p <0.05(*). 
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5.6 DISCUSSION 

The present study evaluated peripheral blood gene expression and plasma protein 

biomarkers associated with AF rhythm by comparing paired patient samples pre- and 

post-ECV. We identified novel associations between whole blood gene expression of 

SCL25A20 and PDK4 with AF. Expression of both genes was elevated in AF as 

compared with post-ECV sinus rhythm. Adding either RNA marker to a model with NT-

proBNP strongly improved AF discrimination. A model including SLC25A20, PDK4 and 

NT-proBNP had the greatest ability to discriminate between AF and sinus rhythm. The 

association between both SLC25A20 and PDK4 with rhythm status was confirmed in an 

independent validation cohort.  

Using transcriptome-wide expression profiling we identified an association 

between AF and SLC25A20. SLC25A20 encodes the carnitine-acylcarnitine translocase 

(CACT), which transports fatty acids into the inner mitochondrial membrane for β-

oxidation.
22,23

 CACT deficiency, an autosomal recessive disorder, results in fatal 

cardiomyopathy early in life.
24

 We observed decreased expression of SLC25A20 

following successful cardioversion. Hence suggesting that fatty acid metabolism is 

associated with AF, and up-regulated during AF episodes. In conjunction, decreased 

expression of PDK4 was identified following successful cardioversion. Since PDK4 

inhibits the pyruvate dehydrogenase complex
25

, the study results indicate that glucose 

metabolism may be inhibited during AF episodes.  

Taken together, the elevated levels of SLC25A20 and PDK4 pre-cardioversion are 

suggestive of an adaptive response to the increased metabolic demand during AF 
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episodes, which are characterized by high atrial rates and a consecutive high metabolic 

demand. As such SLC25A20 and PDK4 expression may be associated with AF burden 

and may have utility for the diagnosis of paroxsysmal AF. In this context, recent studies 

showing that weight reduction was associated with reduced AF burden may also point 

towards the importance of energy metabolism in the occurrence of AF episodes.
26,27

  

 Recently a gene expression study observed that atrial tissue expression of 

SLC25A20 was significantly decreased in patients that had no history of AF as compared 

with patients that had AF.
11

 In addition, the researchers reported a decrease in SLC25A20 

and PDK4 in patients currently in sinus rhythm that had a history of AF, as compared 

with patients currently in AF. Our study confirms the potential importance of these 

markers in the pathophysiology of AF, and shows that these changes can be observed not 

only across different patients, but also in an individual patient, if a sustained change in 

rhythm occurs. Considering a potential clinical applicability of these markers, it is of 

crucial importance that our changes were detected in peripheral blood samples, given that 

atrial biopsies are not feasible in clinical practice.  

 The Framingham whole blood expression study
14

 did not report an association 

between AF and SLC25A20 or PDK4. These potential differences are not surprising since 

our study evaluated expression changes occurring during AF episodes as compared to 

sinus rhythm within the same individual, while the Framingham study assessed 

differential expression between individuals with and without AF.   

 There are limitations of our study, which need to be taken into account. First, we 

included only patients with persistent AF, and therefore generalizability to other AF 
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populations remains uncertain. Second, all participants were of European origin thus the 

generalizability to other ethnicities remains uncertain. Third, fasting may have impacted 

gene expression. Pre-cardioversion samples were mostly collected after several hours of 

fasting, whereas fasting was not specified prior to post-cardioversion sampling. Studies 

have shown that free fatty acid concentrations increase with long term fasting.
27,28

 

Expression profiling of PBMCs after 24-hours of fasting has revealed increased 

expression of genes involved in fatty acid metabolism, including SLC25A20 and PDK4.
28

 

However, studies have not described the time-course of expression changes with respect 

to the duration of fasting. As such the impact of shorter fasting episodes on gene 

expression, as in our study, has yet to be published. We have evaluated expression of 

SLC25A20 and PDK4 in a control population for up to 12 hours of fasting and observed 

no association between expression and hours since last meal (data not shown). The 

significance of SLC25A20 and PDK4 in AF is further supported by the atrial tissue study 

that observed elevated expression of both genes in AF patients as compared with patients 

in sinus rhythm that had a history of AF.
11

 Since surgery is required to collect atrial 

tissue, all individuals were fasting prior to sampling. Therefore, the results indicate that 

SLC25A20 and PDK4 are truly associated with AF. Finally, our study populations were 

relatively small which may have hindered the detection of subtle expression differences in 

other genes. 

In conclusion, the results of this study demonstrate that expression of SLC25A20 

and PDK4 are independently associated with rhythm status among patients with persistent 

AF. These findings indicate that alterations in metabolic pathways are associated with the 
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prevalent cardiac rhythm in an individual AF patient, providing not only novel 

pathophysiological insights but also new potential intervention targets that can be tested 

in future studies. In addition, our study demonstrates that NT-proBNP, SLC25A20 and 

PDK4 have incremental utility as biomarkers discriminating AF from sinus rhythm. 

Future studies should explore whether these markers may be helpful for predicting AF 

recurrence in clinical practice.  
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CHAPTER 6: GENERAL DISCUSSION  

6.1 GENERL OVERVIEW 

 Biomarkers of stroke have the potential to facilitate timely-diagnosis, estimate 

patient prognosis and to identify patients at higher risk for stroke. Protein biomarkers 

have had limited robustness (Whiteley et al., 2009) and are not currently used in the 

clinical setting. With the advent of high throughput genomic technology, studies have 

sought to identify novel RNA biomarkers of stroke. However many of these studies have 

been limited by small sample sizes and have lacked microarray verification and validation 

(Moore et al., 2005; Tang et al., 2006; Barr et al., 2010). In contrast, this thesis has 

identified novel whole blood RNA biomarkers by: utilizing a large discovery cohort, 

assessing global gene networks or applying a unique study design. Many of the 

microarray findings have also undergone verification with qPCR and validation in small 

independent cohorts. Cumulatively, the thesis results demonstrate that RNA biomarkers 

have clinical value since they improve discrimination, as well as lending further insight 

into the pathogenesis of stroke and stroke risk factors. This section briefly summarizes the 

main research findings, the clinical implications, biologic significance and current 

challenges translating RNA biomarkers to the clinic.  

 

6.2 CHAPTER 3 SUMMARY 

 In the univariate analysis of peripheral blood RNA expression in INTERSTROKE 

participants, elevated expression of MCEMP1 was observed in stroke cases as compared 
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with controls. The association remained significant even after adjustment for available 

risk factors. MCEMP1 expression differed between primary stroke subtypes. 

Furthermore, MCEMP1 expression was highest within 24-hours of symptom onset and 

also had prognostic discriminative capacity. One-month disability and mortality 

discrimination models comprised of MCEMP1 expression, baseline modified Rankin 

score (mRS), and primary stroke type performed significantly better than models without 

MCEMP1 expression. The novel association between stroke and MCEMP1 expression 

was verified and validated in an independent cohort.  

 

6.3 CHAPTER 4 SUMMARY 

 Global gene co-expression network analysis was performed on ischemic stroke 

cases and controls from the INTERSTROKE study. NLRC4, CKLF and HS.546375 were 

highly interconnected genes within three gene networks and were each independently 

associated with stroke. A model including all three genes improved ischemic stroke 

discrimination as compared with single gene models or clinical variables. Similarly, one-

month disability discrimination was also improved using the three-gene model as 

compared with single gene models. Disability discrimination could be further improved 

with the addition of MCEMP1 and baseline mRS to the three gene model.  
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6.4 CHAPTER 5 SUMMARY 

 Whole blood RNA and plasma biomarkers were evaluated from persistent atrial 

fibrillation (AF) patients before and after successful cardioversion. Decreased expression 

of SLC25A20 and PDK4 were detected during sinus rhythm. Similarly, circulating NT-

proBNP concentrations decreased after successful cardioversion. The three markers, 

SLC25A20, PDK4 and NT-proBNP, were independently associated with AF. 

Furthermore, an AF discrimination model consisting of all three biomarkers had better 

performance than single biomarker models. The novel association between AF and 

expression of SLC25A20 and PDK4 was verified and validated in an independent cohort.  

 

6.5 CLINICAL IMPLICATIONS 

 The thesis results indicate that RNA biomarkers can provide additional diagnostic 

and prognostic information to what is currently available. Specifically, RNA biomarkers 

were able to discriminate: stroke cases from controls, ischemic stroke from hemorrhage 

stroke, patients with one-month post-stroke disability from those without, patients with 

one-month mortality from survivors and atrial fibrillation from sinus rhythm. The 

association between RNA biomarkers and both diagnostic and/or prognostic outcomes 

remained significant even after adjustment for clinical variables and available risk factors. 

Moreover discrimination models that included gene expression had better performance 

than models without gene expression. For instance, the model consisting of MCEMP1 

expression, baseline mRS and stroke type improved stroke prognosis discrimination. 

Similarly, SLC25A20, PDK4 and NT-proBNP had incremental utility for AF 
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discrimination. Thus the results indicate that RNA biomarkers have independent clinical 

utility.  

 

6.6 BIOLOGIC SIGNIFICANCE 

 Non-invasive RNA biomarkers can provide further insights into the 

pathophysiology of stroke and AF. Literature indicates that inflammation plays an 

important role in the pathogenesis of stroke (Jin et al., 2010; Iadecola and Anrather, 

2011),  but the specific molecular pathways and cells involved still require elucidation. 

Similarly, AF is an established risk factor of stroke however our understanding of the 

molecular biology underlying AF remains incomplete. Chapter 3 and 4 of the thesis 

suggest that the mast cells and the NLRC4 inflammasome have an important 

inflammatory role in stroke, while Chapter 5 implicates energy metabolism genes with 

AF. Cumulatively the results identify putative therapeutic target and provide new avenues 

for research.  

 

6.6.1 MAST CELLS IN STROKE 

 Chapter 3 identified and evaluated the association between MCEMP1 expression 

and stroke. MCEMP1 encodes mast cell expressed membrane protein 1, a newly 

identified protein for which function has yet to be determined. However, mast cells are 

known to be both sensor and effector cells of the innate immune system. Upon activation, 

mast cells secrete granules. Mast cell granules contain a plethora of pre-activated 
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molecules with vasoactive, pro-inflammatory, anticoagulant and proteolytic activity 

(Wernersson and Pejler, 2014). Recent studies indicate that brain resident mast cells act 

as early regulator of blood-brain barrier (BBB) permeability and neutrophil infiltration 

(Strbian, Karjalainen-Lindsberg, et al., 2006; McKittrick et al., 2015). Specifically 

gelatinase, released from mast cell granules, may play a role in mediating BBB disruption 

during stroke (Mattila et al., 2011). Since mast cell degranulation can trigger a multitude 

of pathways, mast cell stabilization may be a new pharmacologic target for stroke.  

 Mast cell stabilizers block calcium channels essential for mast cell degranulation. 

When granules are not secreted, enzymes such as gelatinase are not released. As a result, 

mast cell stabilizer may reduce BBB dysregulation and minimize other inflammatory 

responses. Thus these stabilizers may be used to reduce progressive tissue damage 

following stroke. Initial proof of concept has been demonstrated in animal models 

(Strbian, Tatlisumak, et al., 2006; Strbian, Karjalainen-Lindsberg, et al., 2006; Jin et al., 

2009). Experimental stroke was conducted on rats deficient in mast cells, rats given mast 

cell blocking agents and wild-type rats. Study results indicate that rats without mast cells 

and rats with inactive mast cells had significantly better neurologic outcomes as 

compared with wild-type rats. Further research will be required to unravel the molecular 

mechanisms underlying mast cell activation during stroke. Currently, mast cell stabilizing 

drugs are used to prevent allergic reactions (Finn and Walsh, 2013). In future, clinical 

trials may be conducted to evaluate the utility of mast-cell blocking agents for stroke 

management.  
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6.6.2 INFLAMMATORY MECHANISMS OF STROKE 

 Inflammation is a protective response to injury, but the inflammatory response 

triggered by stroke also contributes to the progression of neurologic injury. During stroke, 

molecules such as damage associated molecular patterns (DAMPs) are released from 

stressed and necrotic cells. DAMPs are recognized by intracellular immune receptors. 

One family of immune receptors is the nucleotide-binding domain and leucine-rich repeat 

containing receptor (NLR) family (Kanneganti et al., 2007). Several members of the NLR 

family, including NLRP3 and NLRC4, can assemble into multi-molecular complexes 

known as inflammasomes. Inflammasomes control activation of proteolytic caspase-1 

(Rathinam et al., 2012). Caspase-1 regulates the maturation of pro-inflammatory 

cytokines (Martinon and Tschopp, 2007) and pyropotosis (Bergsbaken et al., 2009; Miao 

et al., 2011).  

 NLRP3 is the best-characterized inflammasome and previous studies report that 

NLRP3 mediates sterile inflammatory responses (Cassel and Sutterwala, 2010; Yang-Wei 

Fann et al., 2013; Yang et al., 2014), such as inflammation during ischemic brain injury. 

However, in Chapter 4, elevated expression of NLRC4 was independently associated with 

ischemic stroke. In support of these findings a recent gene knockout study also reported 

an association between NLRC4 and stroke (Denes et al., 2015). The study observed that 

NLRC4
-/-

 mice had reduced neurologic injury as compared with NLRP3
-/-

 or wild type 

mice. Although the NLRC4 inflammasome has been regarded as a sensor of pathogenic 

bacteria via NAIP co-receptors (Franchi et al., 2012; von Moltke et al., 2013), NLRC4 

may also have an active role in sterile inflammation. NLRC4 may be a sensor of DAMPs 
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released following brain inflammation. NLRC4 can also be activated by phosphorylation 

(Qu et al., 2012). Therefore an alternative method of NLRC4 activation during stroke 

may be through post-translational modification. These results give insight into the 

regulation of NLRC4 and may trigger new research into the role of NLRC4 during stroke. 

With additional research, NLRC4 may prove as a useful therapeutic target to regulate 

post-stroke inflammation.  

 

6.6.3 CARDIAC METABOLISM AND STROKE 

 AF is characterized by irregular atrial contractions that cause blood to pool in the 

ventricles thus increasing the likelihood of clot formation and cardioembolic stroke. 

Chapter 5 demonstrated that expression of SLC25A20 and PDK4 were elevated during 

AF. SLC25A20 encodes carnitine-acylcarnitine translocase (CACT), which is responsible 

for fatty acid transport into the inner mitochondrial membrane for β-oxidation (Pande, 

1975; Ramsay and Tubbs, 1975). PDK4 inhibits the pyruvate dehydrogenase complex 

and thus acetyl-CoA formation for glycolysis (Patel and Korotchkina, 2006). Elevated 

expression of both genes indicates increased fatty acid oxidation and decreased glucose 

metabolism in response to the increased metabolic demands of the heart during AF 

episodes. SLC25A20 and PDK4 expression may have utility as AF biomarkers. However 

additional studies are required to determine the specificity of SLC25A20 and PDK4 as 

markers of cardiac stress. Although RNA biomarkers are not necessary for detection of 

permanent or persistent AF, they may have utility for discrimination of cardioembolic 

stroke or reclassification of cryptogenic stroke cases. 



Ph.D. Thesis – K. Raman               McMaster University – Medical Sciences 
 

 164 

 Stroke prognosis, recurrence risk and secondary prevention differ based on stroke 

etiology. However 22 to 35% of ischemic stroke cases are deemed cryptogenic, also 

known as stroke with undetermined cause (Petty et al., 2000; Grau et al., 2001; 

Kolominsky-Rabas et al., 2001; Bang et al., 2003). Randomized clinical trials (RCTs) 

assessing secondary prevention have not been conducted for cryptogenic stroke patients 

and as result there are currently no standardized treatment guidelines (European Stroke 

Organisation (ESO) Executive Committee, 2008; Furie et al., 2011). Consequently, it is 

not surprising that cryptogenic stroke patients have the second highest rate of stroke 

recurrence (Petty et al., 2000; Grau et al., 2001; Kolominsky-Rabas et al., 2001; Bang et 

al., 2003).  

 Recent literature suggests that the underlying cause of stroke in a subgroup of 

cryptogenic patients, may be low-risk cardioembolic sources such as: paroxysmal AF, 

mitral annular calcification, aortic valve stenosis, patent foramen ovale (PFO), and atrial 

septal defects (Hart et al., 2014). These low-risk cardioembolic sources may increase 

metabolic demands on the heart. Since elevated SLC25A20 and PDK4 may be the result 

of increased metabolic demands, these RNA biomarkers may facilitate reclassification of 

cryptogenic stroke cases and in turn improve patient management. Patients with 

cryptogenic stroke and low-risk cardioembolic sources may benefit from anticoagulant 

therapy similar to cardioembolic stroke patients. RCTs will be required to evaluate the 

utility of anticoagulation therapy to prevent stroke in cryptogenic patients, but RNA 

biomarkers could facilitate identification of eligible patients.  
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6.7 CHALLENGES ASSOCIATED WITH IMPLEMENTATION OF 

ROUTINE RNA BIOMARKER TESTING  

 Although the study results indicate that RNA biomarkers can improve diagnosis 

and prognosis of disease, there are a few challenges to overcome in order to implement 

routine RNA testing.  

 

6.7.1 BIOMARKER SPECIFICITY  

 Foremost, well-validated and high-quality evidence supporting clinical utility and 

specificity is required. The studies using INTERSTROKE data are the first, large-scale 

gene expression studies for stroke, while the AF study is the second whole blood 

expression study for AF. Each of the studies was conducted for the purpose of biomarker 

discovery. Large sample sizes with independent validation are crucial to the identification 

of general biomarkers for heterogeneous disorders. However additional research is 

required to characterize the clinical specificity of these biomarkers. Elevated expression 

of MCEMP1, NLRC4, CKLF and HS.546375 was detected in stroke cases as compared 

with controls, but elevated expression may also be expected in other inflammatory or 

neurologic conditions. Determining stroke specificity is crucial since the results may be 

used to support the prescription of life saving or life threatening tPA therapy. Therefore 

future validation studies including patients with stroke mimics (migraine and seizure), 

inflammatory disorders (encephalitis), and neurologic conditions (dementia and 

depression), will be required to determine the specificity of the identified RNA 

biomarkers for stroke.   
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 Similarly, an association between SLC25A20 and PDK4 with AF was identified, 

but baseline expression must be evaluated in healthy individuals. In addition elevated 

expression must be assessed in patients with structural cardiac abnormalities that may 

also have increased metabolic demands (PFO and atrial septal defects). Unlike stroke, all 

patients with cardiac abnormalities may benefit from the prescription of novel 

anticoagulants. However, identifying specific biomarkers of AF may be useful to identify 

patients with intermittent AF episodes, predict AF recurrence or to quickly determine 

success after cardioversion.  

 

6.7.2 ADDED VALUE VS COST 

 Studies are also required to determine the added diagnostic and prognostic value 

of new biomarkers as compared to commercially available tests. Currently there are no 

diagnostic tests for stroke and scores to determine stroke prognosis are currently 

underused. Therefore a simple test for MCEMP1 may facilitate diagnosis and improve 

resource allocation regardless of its comparative predictive value.  Statistically the studies 

have shown that biomarker panels are superior to single RNA biomarkers, but the added 

clinical value of biomarker panels has yet to be determined. Net reclassification index 

(NRI) was used to compare the discriminative capacity of different models.  NRI 

determines the change in true and false positive assignment between two tests. Given a 

null hypothesis that a new score does not change the true or false positive rates, a 

statistically significant NRI indicates that the null hypothesis can be rejected. Therefore 

statistical significance refers to the likelihood of a chance finding that cannot be 
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replicated, but does not take into account the magnitude of the difference. NRI provides 

some information regarding magnitude of improvement; an NRI>0.6 was considered 

strong improvement, NRI 0.4 considered moderate and NRI 0.2 considered weak. 

However the magnitude of improvement to confer clinical improvement has not been 

established. Due to the added cost and complexity of RNA biomarker panels, additional 

studies are required to determine the clinical value of the modest improvement in 

discrimination. 

 AF diagnosis is most commonly made using standard 12-lead ECG, which is 

effective for the identification of permanent and persistent AF. Conversely, standard 12-

lead ECG is poor at identifying paroxysmal AF, intermittent episodes of AF. This 

limitation is important since the ASSERT study reports that paroxysmal AF is associated 

with increased risk of stroke (Healey et al., 2012). It has been suggested that long-term 

monitoring techniques may improve paroxysmal AF detection, but these methods are 

moderately invasive and cumbersome to patients. NT-proBNP, SLC25A20 and PDK4 

may be independent biomarkers of AF, but the cost associated with RNA biomarker 

testing for all possible AF candidates would be exorbitant as compared with the cost of 

ECG.  However elevated expression of the RNA biomarkers may be expected in 

paroxysmal AF patients since AF increases the metabolic demands of the heart. Thus 

although biomarkers would not be cost effective for the diagnosis of persistent AF, future 

studies may assess the utility of RNA biomarkers for detection of paroxysmal AF.  
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6.7.3 IMPACT ON PATIENT MANAGEMENT 

 Clinical trials are required to determine whether RNA biomarkers can improve 

patient management. The studies identify RNA biomarkers and determine their 

discriminative capacity. However, there is no clinical consensus as to the discriminative 

capacity necessary for a biomarker to be of value or improve stroke or AF management. 

Therefore following biomarker discovery, further research is required to ascertain the 

diagnostic accuracy required for clinical utility. In such studies it is crucial to have a large 

control population with similar comorbidities, regulate the timing of the test, and to report 

changes in medical treatments - such as prescription of tPA. In addition, biomarker 

validation studies should be designed to evaluate the biomarker test that will ultimately be 

used in the clinic.  

 

6.7.4 POINT-OF-CARE TESTING 

 The clinical utility of RNA biomarkers is currently limited by the availability of 

point-of-care RNA testing. Transcriptome-wide microarray expression profiling is an 

excellent method of biomarker discovery, but the: associated costs, sample preparation 

time, requirement of multiple pieces of specialized equipment, and need for experienced 

personnel to interpret the data, prevents this technology from being used for routine 

diagnostic testing. In Vitro Diagnostic Multivariate Assays (IVDMIAs) are emerging 

classes of tests that combine multiple markers using an interpretation function to produce 

a diagnostic, prognostic and/ or predictive value for patients. Unlike microarrays used for 

biomarker discovery that assess thousands of targets, IDVMIAs probe for a few specific 
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targets. An example of such a test would be the 21-gene Onctotype DX test (Genomic 

Health) that is under evaluation for guiding breast cancer treatment (Sparano et al., 2015). 

Initial results of the clinical trial indicate that the 21-gene IDVMIA provides clinically 

useful information, however the tests are still costly and labour intensive due to the RNA 

isolation and cDNA synthesis steps.  

 Diagnostic tests that bypass RNA isolation and sample preparation would have the 

greatest clinical utility and are currently being developed by DxTerity Diagnostics 

(DxTerity, n.d.) and Luminex (Luminex, n.d.). The DxTerity DxDirect assays utilize 

chemical ligation dependent probe amplification chemistry (CLPA) to conduct direct-

from blood testing of up to 40 RNA transcripts in a single tube. Quantification is relative 

to one or more housekeeping genes in the assay, similar to qPCR. The Luminex 

QuantiGenePlex assay also facilitates direct-from blood testing by combining branched 

DNA signal amplification technology and multi-analyte profiling xMAP beads. Both 

methods measure RNA at the sample source, which eliminates the variation introduced by 

traditional RNA extraction and amplification techniques. Currently, DxDirect and 

QuantiGenePlex are used only for research purpose. However further validation and proof 

of clinical utility may one day lead to routine use of these technologies and RNA 

biomarkers.  

 

6.8 CONCLUSION 

 Peripheral blood RNA is emerging as a new class of biomarkers. This thesis has 

1) identified novel RNA biomarkers, 2) determined that RNA biomarkers improve 
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discrimination of stroke, AF and stroke prognosis, and 3) has provided insights into the 

pathogenesis of stroke and AF. Despite successfully identifying RNA biomarkers there 

are several challenges to overcome in order to translate these initial results to clinical 

practice.  However with advancements in technology and further validation studies, RNA 

biomarkers have the potential to transform stroke management.   
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