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Resume 

L'amplitude diffusee par une surface rugueuse peut-etre decrite par une marche 

aleatoire avec des variations dans le nombre de pas com me propose par J akeman. 

L'idee sous-jacente est de decomposer l'amplitude re<;ue comme la somme de con­

tributions independantes d'un grand nombre de diffuseurs. Si leur population suit 

un modele de naissance-mort-immigration, les statistiques qui s'ensuivent obeissent 

a une distribution de J( et une representation en termes d 'une tavelure Gaussien 

moclulee par la surface equivalente radar (SER) peut-etre etablie. L'objectif de cette 

these est de proposer des techniques permettant d'inferer la SER, en temps reel , 

pour renclre plus aisee la detection d 'anomalies. En premier lieu, nous demontrons 

comment la classe des diffusions de Pearson, que nous clerivons sur les bases cl 'un 

modele de population prenant des values entieres, couvre a la fois la distribution de 

Gamma (propre ala distribution de K) et cl'autres clensites de probabilites pour la 

texture . Ensuite, nous rappelons comment Field et Tough ont derive, a partir de la 

marche aleatoire, l 'evolution temporelle et !'auto-correlation de !'amplitude diffusee 

clans le cadre du calcul stochastique d'Ito. En particulier, ils ont clemontre comment 

laSER etait observable par le truchement clu procluit de l'intensite et des fluctuations 

carrees de la phase. Nous poursuivons ce travail en clerivant une expression analy­

tique de l'erreur propre a cette inference en meme temps qu'une condition pour la 

recluire au minimum. N ous etenclons egalement ces resultats aux diffusions de Pear­

son dont l'importance dans ce contexte a ete prececlemment expliquee. Ensuite , nous 

nous interessons a un caveat experiemental, la presence cl 'un bruit blanc Gaussien 

qui s'ajoute a l'amplitude re<;ue. Le filtre a reponse impulsionnelle finie de Wiener 

permet d'obtenir un estimateur ideal pour eliminer ce bruit. Finalement, nous nous 

interessons au rayonnement diffuse avec une distribution non-uniforme de phase. La 

principale difference avec la situation prececlente est la structure de la correlation en­

tre les composantes radiales et angulaires de l'amplitude diffuse. Une etude cletaillee 

de ces caracteristiques geometriques permet de proposer deux techniques clistinctes 

pour est imer la SER, permettant clone de generaliser les resultats obtenus pour une 

distribution uniforme de phase. 
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Abstract 

Jakeman's random walk model with step number fluctuations describes the ampli­

tude scattered from a rough medium in terms as the coherent summation of (in­

dependent) individual scatterers' contributions. For a population following a birth­

death-immigration (BDI) model, the resulting statistics are J( ~distributed and the 

multiplicative representation of the amplitude as a Gaussian speckle modulated by 

a Gamma radar cross-section (RCS) is recovered. The main objective of the present 

thesis is to discuss techniques for the inference of the RCS in local time in order to 

facilitate anomaly detection. We first show how the Pearson class of diffusions, which 

we derive on the basis of a discrete population model analogous to the BDI, encom­

passes this Gamma texture as well as other texture models studied in the literature. 

Next we recall how Field & Tough derived, in an Ito calculus framework, the dy­

namics and the auto-correlation function of the scattered amplitude from the random 

walk model. In particular, they showed how the RCS was observable through the 

intensity-weighted squared fluctuations of the phase. Thanks to a discussion of the 

sources of discrepancy arising during this process, we derive an analytical expression 

for the inference error based on its asymptotic behaviours, together with a condi­

tion to minimize it. Our results are then extended to the Pearson class of diffusions 

whose importance for radar clutters is described. Next, we consider an experimental 

caveat, namely the presence of an additional white noise. The finite impulse response 

Wiener filter enables the design of the optimal filter to retrieve the scattered ampli­

tude when it lies in superposition with thermal noise, thus enabling the usage of our 

inference technique. Finally, we consider weak scattering when a coherent signal lies 

in superposition with the aforementioned (strongly) scattered amplitude. Strong and 

weak scattering patterns differ regarding the correlation structure of their radial and 

angular fluctuations. Investigating these geometric characteristics yields two distinct 

procedures to infer the scattering cross-section from the phase and intensity fluctua­

tions of the weakly scattered amplitude, thus generalizing the results obtained in the 

strong scattering case. 
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Chapter 1 

Introduction 

1.1 Radars in a maritime environment 

Since the introduction of radars in the 1930s, their applications to maritime envi­

ronments have attracted continuing interest (one could reflect upon the fact that the 

earth is mostly covered with water). Motivated by military demands or more recent 

civilian uses (e.g., remote-sensing of the environment), a wide body of knowledge 

was constructed to meet the specificities of sea surfaces. The present work places 

itself in these continuing efforts by investigating procedures to facilitate detection in 

a maritime context. Sea surfaces are often referred to as rough surfaces owing to 

the asperities originating from the water currents that have a tendency make more 

complex the scattering of an incident radar wave. A witty definition of a rough sur­

face reads as follows (Beckmann and Spizzichino, 1987): "a surface which will scatter 

the energy of an incident wave into various directions, whereas a surface that reflects 

specularly will be called smooth". To be more specific, the amplitudes scattered from 

a rough surface often exhibit undesired backscattered returns when illuminated by 

an incident radar wave. These sea clutters do not convey any information 1 and pas­

sively interfere with the legitimate radar target. As they can have large magnitude, 

their study is not only of theoretical but also of practical importance since otherwise 

1in contrast, for synthetic aperture radar (SAR) applications, sea clutter is desirable since they 
provide valuable information on the large scale features of the ocean 
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the detection of small targets ( aircrafts flying at low altitude, Somali skiffs, subma­

rine periscopes) would not be possible. Their characteristics are determined by the 

interaction between the sea level and the wind as well as by the radar parameters 

(e.g., wavelength, polarization, grazing angle). Radar experimentalists have observed 

that sea clutters are more important as the grazing angle decreases and as the radar 

resolution range becomes higher. On the other hand, Maxwell's equations governing 

the scattering of an incident wave at high (Hughes, 1978; Holliday et al., 1987) or 

medium (e.g. Wright, 1968) grazing angles may be solved analytically whereas only 

empirical models exist for low grazing angle (Horst et al., 1978). Since modern radars 

are operating with higher resolution, sea clutter modeling has attracted much atten­

tion for the radar specialist to face these experimental limitations. In particular, the 

stochastic2 nature of the radar returns was shown to be greatly helpful. 

1.2 Existing techniques 

Owing to the complexity of the interaction between the incident wave and the rough 

surface, it is easier to provide a statistical description of the scattering process as 

opposed to one based on solutions of Maxwell's equations with boundary conditions 

(Blackledge, 2009). Earlier strategies following a Gaussian approach, a school of 

thought initiated by the classical work of Rice (1951), yielding Rayleigh distributed 

amplitudes were shown to face limitations as the radar resolution increased at low 

grazing angles. To account for the numerous high amplitude samples Rayleigh statis­

tics failed to capture, a variety of distributions with heavier tails were proposed, 

the log-normal distribution (Trunk and George, 1970), the Weibull distribution (Fay 

et al., 1977) and the K-distribution (Jakeman and Pusey, 1976). The latter gained 

prominence, in particular because it postulates that the received amplitude may be 

written as a Gaussian speckle modulated by a root-Gamma texture. The texture is 

particulary interesting since it varies more slowly than the speckle. A target may 

thus be detected through by a sudden change in the radar cross-section (RCS) time­

series. This multiplicative representation coincides with experimental observations 

2from the Greek appow arrow 
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(Ward, 1981) that the received amplitude has two different components, varying over 

timescales of different order. The compound K - distribution, or compound Gaussian­

model, was further extended to cover additional situations: coherent signal in K ­

distributed clutter (Jakeman, 1980), presence of a white noise (Watts, 1985, 1981) 

or discrete spikes (Middleton, 1983, 1999). Other sea clutter statistical models ori­

ented for SAR applicat ions may be found in Bucciarelli et al. (1996) which postulates 

\tVeibull speckle or in Anastassopoulos et al. (1999) which provides a parametric gen­

eralization of the existing literature. Also to be introduced are the concepts of strong 

and weak scattering. In the former situation, the dynamics and the asymptotic dis­

tributions of the backscattered signal are invariant to multiplication by exp (iA) for 

constant A. In the latter case, the strongly scattered amplitude lies in superposition 

with a coherent offset, and the resultant scattered amplitude has a preferred phase. 

Also , these statistical models enable the derivation of realistic simulation schemes 

(see Tough and Ward, 1999). Thus, easier and cheaper simulations enable one to 

reduce the costs of live testing of radar performance ( cf. discussion in Ward et al., 

2006, Chap. 11). 

The radar signal consists of a collection of samples that will be characterized by 

an anomalous sample of higher amplitude in the presence of a target. Radar engineers 

therefore set up a threshold to separate clutter plus target from clutter only samples. 

The magnitude of this threshold is obtained from a trade-off between the probability of 

detection and the probability of false alarms. Given a measurement of the scattered 

intensity z , it is assigned either to the distribution lP'zA (z) that models the set of 

values z A corresponding to the clutter (for example, a Rayleigh distribution) or to 

the distribution lP'z8(z) for signal plus clutter (e.g., Rice distribution). Thereafter, 

the detection and false alarm densities are defined as (Skolnik, 1980) 

(1.1) 

(1.2) 

Building on the statistical models for the sea clutter and for the target(cf. Swerling, 

1960, 1997, for a description of target models) , these probabilities may be evaluated, at 

3 
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least numerically. Thereafter, a given sample z is ascribed clutter only or clutter plus 

signal. Under the Neyman~Pearson criterion (Pearson, 1966), the optimal decision 

rule is to compare the likelihood ratio with a threshold 

(1.3) 

which may be generalized if the distributions parameters are not known ( cf. Ward 

et al., 2006, Chap. 6, for a more detailed exposition and illustration examples) . 

In particular, it is possible to derive sub-optimal but tractable estimators for the 

K ~distribution parameters. A salient feature of the compound representation of the 

scattered amplitude in terms of a speckle and a texture with different correlation prop­

erties is the possibility to de-correlate the speckle by frequency agility whilst the tex­

ture remains unchanged. For a given radar system3 , the compound K ~representation 

therefore enables one to compute the probabilities of detection and false alarms, hence 

the specifications of a radar. A common configuration for radars is the constant false 

alarm rate (CFAR) requirement for which a variety of techniques optimize the de­

tection for various experimental situations (Ward et al., 2006, Chap. 9) by averaging 

the received signal over adjacent spatial cells. In particular, CFAR techniques may 

adjust the detection threshold to manage a changing clutter. 

With coherent radars which can measure both the amplitude and the phase 

of the received signal, the radar signal can be represented as a vector in the complex 

plane. Researchers have suggested different models for the resulting power spec­

trum (Doppler). They may take the return spectrum as the summation of Gaussian 

(Walker, 2000) or Lorentzian/Voigtian terms (Lee et al., 1998). A more recent contri­

bution suggested a stochastic description that encompasses these two cases (Lacaze, 

2006). These models are empirical, in contrast to the spectral properties of a K ~ 

amplitude derived from first principles in Field and Tough (2003b). Nonetheless, 

they are useful to understand underlying physics (in particular, about the differences 

observed between polarization). These models help to detect moving targets from 

their shifts from the sea clutter spectrum. 

3there exist empirical models to express the parameter of the J( -distribution in terms of the 
radar configuration (for instance, the so-called GIT model (Horst et al., 1978)). 
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A long-term work by Haykin et coworkers (e.g. Haykin and Puthusserypady, 

1997) has attracted considerable interest for a few years. Burning the boats with 

the well-accepted statistical description of sea clutter, it aimed to classify them as 

chaotic (as opposed to stochastic) processes. If this were to be the case, the com­

plexity of sea clutters dynamics could be down-sized to a system of non-linear (but 

deterministic) equations. Although later work has questioned the techniques used to 

assert the chaotic nature of clutters (Unsworth et al., 2002), this work had the merit 

to devote itself to the study of the sea clutter dynamics rather than to its statistical 

characteristics. 

1.3 Observability of the cross-section 

Except for Haykin 's work, the statistical nature of the sea clutter has not been cast 

in any doubt . The stance adopted in this thesis is broader since we shall consider 

a dynamical description of the sea clutter, that yields the statistical description in 

its asymptotic limit, in sense of large number of samples. That is, we consider the 

temporal evolution of an amplitude scattered from a rough medium rather than its 

ensemble averaged quantities. Statistical and dynamical representations are closely 

connected and do share common physical justifications. This methodology, building 

on a series of papers (Field and Tough, 2003b; Field, 2005; Field and Tough, 2005) 

summarized in Chapter 3, represents a shift of viewpoint in the design of target detec­

tion strategies. vVe aim to derive procedures to extract the RCS, in local time, from 

the scattered ampli tude time-series alone. As we shall see in detail, our results stem 

from first principles based on the mathematical structure of the received amplitude 

and are closely connected to its geometrical structure. 

A major element of our approach is to describe the scattered amplitude in 

an Ito stochastic framework. It bears a close resemblance with the anterior work of 

Tough (1987) and his Fokker- Planck description. Ito calculus, developed in the 1940s 

5 



Ph.D Thesis - Patrick Fayard 
Chap. 1: Introduction 

McMaster - Electrical Engineering 

by Kiyoshi Ito4, is a generalization of standard calculus that enables the differentia­

tion of certain random processes (Karatzas and Shreve, 1988; 0ksendal, 1988, or the 

brief exposition in Appendix B). In Ito calculus, the analog of an ordinary differential 

equation (ODE) is the stochastic differential equation (SDE) which incorporates an 

additional term driven by a Brownian motion in addition to the usual differentiable 

term. One of the salient features of a Brownian motion is to have positive quadratic 

variation (cf. Appendix B). Brownian motion is a simple instance of a continuous 

valued continuous time stochastic process. It is named after a nineteenth century 

Scottish botanist, Robert Brown, who observed that pollen grains suspended in wa­

ter obeyed a quivering motion (an experiment he repeated for dust particles). A 

theoretical explanation for this phenomenon was only given nearly a century later by 

Einstein (1905). 

Jakeman's random walk model with step number fluctuations (Jakeman, 1980) 

decomposes the received scattered amplitude in terms of the summation of individual 

scatterers' contributions. Their population is taken to be driven by a birth-death­

immigration (BDI) population scheme to recover the Gamma distribution of the tex­

ture. The BDI process (Bartlett, 1966) posits a linear dependence of the population 

changes on its current value. We prove that a BDI process with additional quadratic 

terms paves the way towards a class of diffusion processes, the Pearson class5 , which 

is important for our discussion since four different texture models considered in the 

literature (Delignon and Pieczynski, 2002; Balleri et al., 2007) may be obtained as 

particular instances of this class. These results establish the scope of the observability 

techniques presented in the thesis. 

In the strong scattering case, an earlier contribution from Field (2005) demon­

strated how the RCS was observable through the (smoothing over a sample window of 

the) intensity-weighted instantaneous (squared) fluctuations of the phase. However, 

the closeness (in terms of the correlation coefficient) between the hidden population 

(exact cross-section) and the population obtained through the highly volatile phase 

de-coherence (inferred cross-section) was heavily influenced by the smoothing process, 

4an earlier and ground-breaking contribution of Wolfrang Doblin was acknowledged only after 
Ito's work (Yor and Bru, 2002) 

5 thoroughly studied in Wong (1963) 
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i.e., over how many pulses the phase de-coherence was averaged. In our stochastic 

framework, we derive an expression for the error between the hidden and the es­

timated cross-sections. Moreover, we provide analytical formulae for the optimal 

window length (a value to be used for experimental situations) and for the corre­

sponding error. We also demonstrate that these findings can readily be extended to 

encompass the broader range of Pearson diffusions. Then, we address an experimental 

caveat , the presence of an additional measurement noise (Watts, 1985). In this case, 

the local power incorporates an additional thermal noise term- a situation for which 

we give a dynamical representation suitable to our Ito framework. To overcome this 

experimental obstacle, a method to retrieve the original sea clutter is proposed. From 

the spectral dynamics of the J( - scattered amplitude (derived from first principles in 

Field and Tough, 2003b), we derive the ·wiener filter which permits to recover opti­

mally, in the sense of the minimum mean square error (MMSE) criterion, the pure 

K-distributed amplitude from the surrounding noisy environment. This enables the 

inference of the RCS by the same token as in the absence of measurement noise. 

Next, we direct our attention towards weak scattering, when the scatterers ' 

phases are no longer isotropic. An important feature of a strongly scattered ampli­

tude is the independence between its angular and radial fluctuations. For a weakly 

scattered amplitude however, the presence of an additional offset spoils this useful ge­

ometrical property. Nevertheless, the structure of the angular-radial cross-volatility 

conveys information about the hidden cross-section if we introduce an orthogonal 

dyad w.r.t. which resultant amplitude fluctuations de-correlate. Exploring the angle 

of rotation of this dyad from that aligned to the instantaneous radial direction, en­

ables us to demonstrate how the scattering cross-section may be inferred through the 

(intensity-weighted) fluctuations of the phase, minus a correcting term accounting for 

the angular-radial cross-volatility. We thus establish that the earlier result reported 

in Field (2005) for the K-scattered amplitude (where the correction term vanishes by 

virtue of the independence between the angular and radial fluctuations) is a particular 

instance of a broader situation. We also derive a companion formula giving the cross­

section in terms of the intensity fluctuations (weighted by the reciprocal intensity). 

These two techniques enable the inference of the RCS from the time-series of a weakly 

scattered amplitude - thus facilitating anomaly detection. Since state estimates are 
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obtained in local time, this approach is computationally lighter than the usual sta­

tistical approach which requires large batches of data. Finally, we discuss how this 

inference might be optimized by the same token as for the strong scattering case and 

we discuss the relationship between the strong and weak scattering situations. 

Besides its mathematical elegance, the dynamical description of the scattered 

amplitude possesses numerous advantages. For instance, the auto-correlation function 

(ACF) of the received amplitude may be derived analytically by finding the propaga­

tors (Wong, 1963) of the SDEs pertaining to the texture and to the speckle(Field and 

Tough, 2003b). These formulae may then be used to retrieve the pure K -distributed 

amplitude in the presence of an additional noise. Also, our techniques to infer the 

RCS, for strong and weak scattering, provide an estimate for the RCS in local time 

without using ensemble averages most characteristic of a statistical approach6 . Thus, 

anomalies in the radar signal may be detected in real-time. Moreover, the proposed 

techniques are not restricted to a single experimental situation. Whereas in a sta­

tistical framework the detection procedures depend, for example, on the texture dis­

tribution, our techniques are valid for an arbitrary texture for a weakly or strongly 

scattered amplitude. Next, they make essential use of coherent data since the infer­

ence process exploits the geometrical properties of the received amplitude represented 

in the complex plane. 

The techniques presented in this work are not restricted to anomaly detection, 

even if they were developed for radar applications. Their range covers that of waves 

scattering from random media in general. A closely related field is SAR applications, 

when one aims to detect the large-scale correlated structures of the sea/ ocean. Since 

the compound-Gaussian model of the sea clutter has been validated in this context 

(Blacknell and Tough, 1995), our techniques may also be pertinent. More generally, 

they also cover scattering of acoustic waves with applications to sonar ( J ahangir and 

Oliver, 1997). Finally, as discussed upon in the conclusion, our findings may also be 

useful for nuclear magnetic resonance (NMR) applications as the underlying physics 

bears mathematical resemblance to that of scattering from a rough medium ( cf. Field, 

2006, for an account on the analogies between NMR and sea clutter). 

6 computing higher-order moments requires a large number of samples 
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1.4 Organization of the thesis 

The thesis is organized as follows. In Chapter 2, we discuss how an incident radar 

wave is scattered from a rough marine surface, since the detection of a target over 

the sea surface is the primary application of our work. This purely physical descrip­

tion is translated into radar terminology and quantities such as the speckle and the 

texture components are defined. Next, starting with a random walk model with step 

number fluctuations, we recall from Jakeman (1980) the K -distribution, a statistical 

model that suits actual experimental radar returns. In particular, we discuss how a 

BDI process for the step number fluctuations yields the Gamma distributed texture 

characteristic of the K -distribution. Furthermore, we show how several other texture 

models studied in the literature may be obtained as the asymptotic densities of the 

Pearson class of diffusion process. We then relate this class of diffusion with the BDI 

process by showing that the former is an extension of the latter when quadratic terms 

in the population changes are incorporated. As an alternative to this statistical de­

scription, we describe in Chapter 3 a stochastic model ( orig. Field and Tough, 2003b) 

on which the present thesis elaborates. In this Ito framework, the random walk with 

step number fluctuations yields a compound representation of the scattered ampli­

tude as a Rayleigh speckle modulated by the (square-root of the) RCS. Equipped 

with Ito's formula, we derive a SDE for the latter and also show how the BDI process 

yields a SDE for the RCS when the number of scatterers gets large. Consequently, 

the temporal evolution of the scattering process may be fully described by a set of 

coupled SDEs accounting for the scattered amplitude, intensity and phase. At this 

point, we introduce a distinction between strong scattering, where the random walk's 

phasors are uniformly distributed in phase, and weak scattering, where the random 

walk is biased. For the former, considering the propagators of the texture and speckle 

SDEs enables the derivation of the ACF and spectral properties. The weak scatter­

ing case is alternatively described as a coherent signal lying in superposition with 

a strongly scattered amplitude. We conclude this Chapter by a presentation of the 

Euler-Mayamura simulation scheme that shall be used thoroughly to illustrate our 

claims (Tough, 1987). Building on this anterior stochastic model, we then present 

the main contributions of the present work concerning the inference of a RCS for a 
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coherent scattered amplitude. Chapter 4 deals with the strong scattering case for 

which an earlier contribution (Field, 2005) has shown how the RCS was observable 

through the intensity-weighted phase fluctuations. To enable this inference process 

in more practical terms, we derive analytical formulae for the smoothing error and a 

condition to optimize it. We then discuss how these results are not restricted to a 

K -distributed amplitude and extend to an arbitrary RCS, as illustrated upon with 

three other instances of statistical models established in the radar literature that re­

late to the Pearson class we have introduced earlier. Furthermore, we show how an 

experimental caveat, the presence of an additive white noise, may be addressed by 

using the spectral properties of the scattered amplitude. They enable the design of 

a Wiener filter from which the pure K -scattered amplitude may be estimated. After 

this filtering step, we show how the RCS may be inferred. In Chapter 5, we focus our 

attention on the weak scattering case, whose dynamics are more cumbersome owing 

to the presence of a coherent offset. By decomposing the weakly scattered amplitude 

fluctuations into terms originating from the speckle and the texture, we show how 

their geometrical features have useful practical consequences. Incidently, we derive 

analytical expressions for the drift and volatility tensors of a weakly scattered ampli­

tude for an arbitrary coherent offset. Based on the scattered amplitude fluctuations' 

geometry, we provide two distinct techniques the inference of the RCS that are closely 

related to the analogous result described earlier for strong scattering. 

Nearly all the results given in this thesis first appeared in various peer-reviewed 

papers co-authored with the author's supervisor, Dr. Field. These publications are 

mapped with the thesis contents as follows. Section 2.3, where we discuss diffusion 

models for the RCS derived on the basis of discrete population models roughly cor­

responds to Fayard and Field (2010c). Chapter 4 discusses how the RCS can be 

optimally inferred from the intensity-weighted phase fluctuations of a strongly scat­

tered amplitude. The main results were first published in Fayard and Field (2008) 

as well as in a consecutive conference publication (Fayard and Field, 2009). An ex­

tension of these results for a more general RCS (Fayard and Field, 2010a) is recalled 

in Sections 4.1.4,4.1.5 and 4.2.6. To overcome an experimental challenge, namely 

the presence of an additional white noise, we discuss in 4.3 how this undesired com­

ponent can be optimally filtered out, thus enabling again the inference of the RCS 
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(orig. Fayard and Field, 2010b). Our most recent contribution (Fayard and Field, 

2011) demonstrated that similar inference/optimization techniques can also be used 

for a weakly scattered amplitude, as exposed in Chapter 5. 

Throughout we shall consistently adopt the notation for a continuous time 

stochastic process qt , with Ito differential dqt and diffusion coefficients dqtdPt = 

E~q ,p) dt and abbreviate via dqz = E~q) dt. 

11 



Chapter 2 

Scattering from random media 

2.1 Scattering from a rough surface 

2.1.1 Physical descript ion 

Scattering of waves from a rough surface is a proliferous field for research clue to the 

broadness of the possible applications. The t remendous complexity of t he underly­

ing physics phenomena (e.g., the various layers of waves' motion of the sea surface) 

prohibits a complete analytical descript ion of the scatt ered wave (that would in any 

case be too complex for fur ther handling) . Cohorts of researchers (see Rice, 1951; 

Beckmann and Spizzichino, 1987; Valenzuela, 1978; Alpers and Hennings, 1984, for 

historical references) have therefore attempted to propose some simplifying empirical 

models. In part icular , the physics pertaining to the scat tering of t he incident wave 

on a rough sea surface may reasonably be described at medium or high grazing angle. 

Unfortunately, t he hypotheses enabling a simplified solut ion do not hold at low graz­

ing angle and/ or for high resolution radar , urging the introduction of more elaborated 

scattering models. 

Consequent ly, an experimental description of the sea surface returns is prompted. 

The sea-surface does not appear to be purely chaotic but possesses some significant 

structures that are maintained over t ime. For instance, small ripples are generated 
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as the wind is blowing, ripples that grow before transferring their energy to longer 

waves. This latter wave will reach a maximum height after which it breaks out. Con­

sequently, the average power received from a particular radar cell will fluctuate along 

the complex structure of these waves. Accordingly, the RCS is defined by the area 

reflectivity and fluctuates extensively around its mean value. It is characterized by 

temporal and spatial correlation. 

An additional challenge arises from the impact of the incident wave's polar­

ization on the response of the sea surface. The plane of polarization is defined by 

the vector E, i.e., either horizontal (H) or vertical polarization (V). Consequently, 

the transmitted and received polarized waves are described by a pair of symbols: 

HH,VV,HV,VH (Skolnik, 1980) 1
. Any candidate model for the radar returns needs 

to be sufficiently flexible to account for these various polarizations. 

Radar returns will also be influenced by the roughness of the sea (speed of 

the wind, height of the waves). A measure for the latter is the sea-sate such as 

standardized by maritime organizations ( cf. Long, 1983, Tab. 2.1). An alternative 

parameter is the ratio of the variance of the RCS to its squared mean. 

Experimentalists have established three different origins of scattering phenom­

ena (Lamont-Smith et al.) 

• Scattering from small ripples riding on top of longer ocean waves. This yields 

polarization dependent scattering described by the composite model (Valen­

zuela, 1978). The scattering is stronger (respectively, weaker) when the the 

long wave is tilting the patch towards (respectively, away from) the radar. 

• Scattering from the very rough whitecaps of broken waves. This component 

does not change with the polarization and is localized around the white-cap of 

the wave. The RCS mean value is noted to be much higher than that of the 

corresponding resonant scattering. 

• Specular scattering from the crest of the wave, just before it spills. It causes 

a burst of scattering of much shorter timescale (of order up to 200 ms). The 

1for instance, HH for a horizontally transmitted, horizontally received signal 
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mean value of the RCS depends heavily on the polarization, HH being much 

higher than VV. 

The radar resolution impacts the received signal by determining which features 

of the sea surface are resolved. The structure of the sea surface is characterized by 

many length scales, ranging from 1 em or less (foams, ripples) to tens of meters 

(swell structure). (cf. discussion of scattering phenomena). If the range of the 

radar is of several order the characteristic length of the greater substructure, its 

frequency spectrum will have two distinct frequency components: from the order of 

tens of milliseconds to the order of many seconds, if not minutes (Ward et al. , 2006, 

pp. 106- 107). For a low resolution radar , only scattering phenomena with a long 

timescale are captured , for which the result ing amplitude obeys Gaussian statistics. 

A supplementary feature of t he sea clutter emerges as the resolution range increases. 

vVhen the RCS resolut ion is resolved two sources of fluctuations for the scattered 

amplitude emerge. Many small structures (often called scatterers) will contribute 

to the texture, whose magnitude is the envelope of the received signal. At a longer 

range scale, the structure of the long waves will alter the mean power of the scattered 

amplitude. 

2.1.2 Gaussian statistics 

Confronted to t he tremendous difficulty of the scattering phenomena involved in the 

scattering of the incident radar wave on a rough sea surface , radar engineers have 

adopted for several decades t he strategy of giving a statistical description of the 

scattered amplitude. Such a method is not as precise as would be an analytical 

solution based on Maxwell 's equation but provides a picture of the scattered signal 

sufficiently detailed for practical purposes. In this vein, the speckle ment ioned in 

Section 2.1.1 is convenient ly described by the following random walk 

(N ) 
{!t 

N 

~ aj exp [i<p~j ) ] 
j = l 
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where the form factors { aj} are a collection of i.i.d. random variables and where the 

phases' shifts { <p~j)} are uniformly distributed in the interval [0, 27T} The represen­

tation (2.1) holds for both horizontal and vertical scattered wave polarizations and 

e~N) depicts the relevant (complex) component. N denotes the number of scatterers . 

Fig. 2.1 illustrates the geometry of the scattered amplitude. The resulting scattered 

amplitude, displayed in red, is the summation of N = 10 scatterers' contribution 

(dotted blue line). Each one of the individual phasors is characterized by a phase 

(for instance, cp~ 1 ) = 185°) and therefore takes value in a circle of radius aj. The first 

moment of the (!~N) is zero whereas its the second moment obeys 

5 

-1 

IE [ 
(N) (N)*] 

(!t (!t 

0 2 3 4 

FIGURE 2.1: Geometry of the random walk 

(2.2) 

Over a low resolution range (that does not resolve the longer waves structure), 

the radar return consists of the (independent) contributions of a large number of 

scatterers, that is of the numerous small structures from which the incident signal 

is backscattered, the total received amplitude being written as the summation of 
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these individual contributions. The random walk model is supported by experimental 

scattering patterns whereas it cannot be justified solely on the scattering physics ( cf. 

discussion in J akeman and Pusey, 1976). 

To pursue a statistical description of the resulting scattered amplitude, let us 

introduce the characteristic functions CN(u) 

CN(u) = (exp [iue]). (2.3) 

Owing to the independence between the individual scatterers ' contributions, 

the characteristic function can be expressed in terms of a zeroth-order Bessel function 

(see definition in (C.20) or in Jeffreys and J effreys (1956)) 

(exp [i u aj])N 

(Jo( u aj) )N. 

(2.4) 

(2.5) 

As described in J akeman (1980) , the asymptot ic distribution for the case of a large 

number of scatterers is obtained by normalizing the step magnitude by a factor JN 
in (2.3) . Correspondingly, the scattered amplitude e~N) /IN is determined by the 

following characteristic function for a large number of scatterers 

(2.6) 

which corresponds to the Rayleigh distribut ion 

2E [ 2 2 J IP'(E) = (E2 ) exp -E /(E) . (2.7) 

The envelope E (i. e. , non-coherent statistics obtained through a linear detector) de­

scribes the effect of many small scattering structures for a low range radar that does 

not resolve the fluctuations of the RCS . Consistently, the scattering pattern can be 

described by t he received intensity (square law detector) z = E 2 which obeys an 
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inverse exponential distribution 

1 
IP[ z] = W exp [- z / ( z)] . (2.8) 

Equations (2. 7) and (2.8) show explicitly the Gaussian nature of the radar return 

for a low resolution range or at medium/high grazing angle. It can be seen as a 

special case of the central limit theorem (CLT) (Papoulis, 1984) since there is a large 

number of i.i.d. scatterers' contributions. Although these distributions were the first 

ones to be used to model scattering data (e.g. Goldstein, 1951), they fail to account 

for scattering patterns with a high-resolution radar at low grazing angle. 

2.1.3 Step number fluctuations 

We have demonstrated how a constant (but large) number of steps in the random walk 

(2.1) yields a resulting Gaussian amplitude. Scattering patterns, particulary those 

obtained with a high-resolution radar, may deviate from Gaussian statistics, urging 

a more elaborated model. This situation is conveniently addressed by introducing 

step-number fluctuations, i.e., by considering temporal fluctuations in the population 

of scatterers. In the steps of Jakeman (Jakeman and Pusey, 1976; Jakeman, 1980), 

let us posit a negative binomial distribution for the population of scatterers N whose 

probability mass function (PMF) reads 

IP[N] (2.9) 

where ( : ) ~ a!/(b!(a- b)!) denotes the binomial coefficient and N denotes the 

average number of steps. 
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To investigate the statistical distribution of the number of scatterers N , let us 

consider the characteristic function (2.3) averaged over the fluctuations of N 

00 

CN(u) (2.10) 

[ 1 + ( : ) ( 1- \Jo(ua/VN)))] -a (2.11) 

whose asymptote reads 

(2.12) 

As a constant number of scatterers yields the familiar Rayleigh distribution, 

so does a population distributed along (2.9) result in a K - distributed envelope ( cf. 

C.32) 

IP[E] 
(

00 (uE)J0 (uE)du 

la [1+u2J~2) r 
(2.13) 

4b(a+l)/2 Ea 
= r(a) Ka-1(2EVb) (2.14) 

where b = a/ (E 2 ) and where K denotes the modified Bessel function of the second 

kind , see (C.23) for its definition (Jeffreys and Jeffreys, 1956). Non tantum is the 

K - distribution physically motivated by the random walk model sed etiam it was 

validated by experimental tests over the last three decades (see for instance ( J akeman 

and Pusey, 1976) or (Conte et al.) for a more recent work) . It combines the advantages 

of having an elegant justification in terms of a random walk model , and of suiting 

scattering data fairly well. Typically the parameter a falls in the range 0.1 :::; a :::; oo 

(Ward et al., 2006). Rayleigh scattering is recovered for a ---+ oo whereas small values 

of a account for spiky clutter. 
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2.1.4 Texture and local power 

The probability density of the scattered envelope was obtained through its charac­

teristic function. It might be described in an alternative (but equivalent) fashion by 

positing that the fluctuations in the number of steps induce variations in the average 

backscattered power. As a result, (E) in ( 2. 7) is related to the random local power, 

Xt, the RCS. 

In this vein, (2. 7) depicts the (magnitude of) the amplitude scattered from 

an object with a fixed RCS and non-Gaussian statistics are addressed by consider­

ing fluctuations in the RCS. As discussed earlier, we reckon the mean value of the 

scattered intensity as 

(2.15) 

whilst describing the resulting envelope distribution through a Bayesian scheme 

JF[E] = JF[EJx]JF[x] (2.16) 

where JF[x] is the distribution of the cross-section and lF[EJx] the likelihood (i.e., the 

Rayleigh amplitude due to a single point). 

Accordingly, the K -distributed enveloped (2.14) is decomposed into 

. 12E JF[ E] = - exp [-E2 
/ x J JF[ x ]. 

X X 
(2.17) 

As seen from (C.31), by identification with (2.14), we obtain a Gamma distributed 

RCS 

JF[x] 
b00 xa-l exp( -bx) 

r(a) 
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2.1.5 Moments 

In the Gaussian limit , the normalized moments of the scattered intensity (2.8) satisfy 

(2.19) 

Higher resolution clutters usually display normalised intensity moments greater than 

(2 .19). The statistics of the clutter therefore offer a key to reckon non-Gaussian 

radar returns. On the contrary, a scattered intensity conforming to the multiplicative 

representation (2.17) has moments 

(zn) = 100 

IP[x] [21 E 2n+1 exp(-E2/x)dE] dx 

n ! 100 

xnlP[x]dx. 

(2.20) 

(2.21) 

Since x represents the local power, the normalized moments of the scattered intensity 

are governed by (see Chap.4 in Ward et al. (2006)) 

(2.22) 

which reduces to 

(2.23) 

in the !(- distributed case. As evidenced upon by (2. 19) and (2.22), a non-Gaussian 

distribution (like the K - distribution) might be seen as Gaussian distributions where 

an addit ional ingredient, the fluctuations of the RCS, modifies the recurrence rela­

tionship for the moments. 
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2.2 Diffusion model for the scattering cross-section 

2.2.1 Fokker-Planck description 

The negative binomial distribution of the number of steps (2.9) was justified on the 

basis of a discrete population model (Jakeman and Pusey, 1976; Jakeman, 1980). 

More precisely, a discrete population model accounting for the fluctuations in the 

number of scatterers N yields (2.9) from its asymptotic distribution, thus reinforcing 

the random walk model (2.1). In what follows, we shall discuss further this population 

model. 

For a time-dependent population consisting of N scatterers, let us introduce 

the probability density 

(2.24) 

which captures the continuous time evolution of the integer-valued process N. If 

we restrict the model to first-order transitions, only transitions from the neighboring 

states N - 1 and N + 1 are possible. Accordingly, the probability density is governed 

by (Bartlett, 1966) 

(2.25) 

where GN(t) and RN(t) denote, respectively, the generation and recombination rates 

for the state N (as shown in Fig. 2.2). 

A Taylor expansion of (2.25) with step size l, via the identity f(x ± l) = 
exp(±ojox)f(x), yields the alternative expression for the master equation, in terms 

of the continuous-valued counterpart Xt of the discrete Nt, 

oP(x, t) 
at [ exp (-[:X) - 1] ( G (X, t) p (X, t)) 

+ [exp (z%x) -1] .(R(x,t)P(x,t)). 
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N+l 

R.v-1 

N 

N-1 

FIGURE 2.2: First-order transition rates 

This expression is to be compared with the Kramers- Moyal expansion for the evolu­

tion of the probability (Kramers, 1940; Moyal and Bartlett, 1949) density 

(2.27) 

where the Kramers- Moyal coefficients, defined as 

(2.28) 

are, by inspection of (2.26), connected to the transition rates as ( cf. Risken, 1989; 

Field and Tough, 2003a) 

zn 
-JlG(x, t) + ( -1tR(x, t)]. 
n. 

(2.29) 

In fact, the order of this expansion does not have much degree of freedom. In 

effect, Pawula theorem states that Kramers- Moyal expansion (2.27) either truncates 

for n = 2 or is a infinite order (its proof relies on the density's positiveness (0ksendal, 

1988)) . 

For the sake of formalism, let us rewrite (2.27) in terms of normalized popula­

tion Xnor = xj N. The Kramers- Moyal expansion of Xnor (for a step size l = 1) w.r.t. 
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the re-scaled time parameter t' = t / N reads 

ap = ~-1- (--a-)n [V(nlp]. 
8t' ~~N -l ax 

n=l nor 

(2.30) 

in which, the indices shall be omitted for future references. This Fokker-Planck 

description captures the temporal properties of the RCS (as opposed to its statistical 

distribution). 

2.2.2 Birth-death-immigration process 

The negative binomial distributed number of steps (2.9) and its associated Gamma 

distributed texture are recovered from (2.25) for a BDI population model. The latter 

(see Bartlett, 1966, for a thorough discussion) posits that the transition rates G(N) 

and R(N) are linear w.r.t. the population state N, that is 

{ 

G(N, t) = )..N + v 

R(N, t) = 11N 
(2.31) 

expressed in terms of the birth, death, immigration rates respectively denoted by ).., 

11 and v. Alternatively, the population parameters may be understood as follows 

IP[1 individual dies during bt] = f10t (2.32) 

with similar expressions for ).. or v. 

A more detailed account of the BDI process is proposed in Appendix A. The 

BDI process originates from attempts to model the growth of human population, ( cf. 

Bowley, 1924, for a reference of historical interest). Besides its application for radar 

data analysis described here, it has been applied to a variety of domains: cosmology 

(Bartlett, 1966), quantum populations (Jakeman, 2005), anthropology (for example 

Tavare, 1987), gene mutations (see Novozhilov et al., 2006, for a review of recent 

applications) etc. 
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Upon the substitution of the transition rates (2.31) in (2.25), we obtain 

d:; = (A(N- 1) + v) PN-l - ((A+ Jt)N + v) PN + (JL(N + 1)) P N+l·(2.33) 

Rather than solving (2.33) for the (infinitely many) PN, let us introduce the 

partition function IIt( z) 2
, a gadget that incorporates all these solutions, 

00 

IIt( z ) = (zN) = L zNPN(t). (2.34) 
Nt=O 

By considering the summation of (2.33) weighted by zN for any N, we can 

obtain a part ial differential equation (PDE) for the partition function. For A < JL , 

the corresponding steady-state partition function reads ( cf. Appendix A) 

(2.35) 

which can be identified with the characteristic function of an inverse binomial distri­

bution (C.3) 3 . Consequently, the PMF of t he number of steps postulated in (2.9) is 

recovered. As a direct consequence of (2.35), t he population mean given by DIT /Dz z=O 

reads 

N 
v 

(2.36) 

which tends to infinity as /\ approaches JL from below while maintaining v finite. 

2.2.3 Continuous limit 

The negative binomial distribution for the number of steps (2.9) has just been derived 

on the basis of a BDI process. The following paragraph explores how the Gamma 

distributed texture may also be obtained from this population scheme. Let us consider 

2which is nothing but an abstraction of the partition function in statistical mechanics 
3 indeed, from a comparison of (2.35) and (C.3) we observe that the distribution for the number 

of steps (2.9) is recovered for p = 1 - V p,, a = v / .\ 
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the density of the RCS x = N / N which conforms to P(x, t) = PN(t) = PNx(t). 

Taking a Taylor expansion of (2.33) with step 1/ N yields 

1 [jp 

Nat fL ( x + ~) P(x + ~' t)- [(A+ tt)x + ~] P(x, t) 

( 
v- A) 1 + AX + N P( X - N' t) 

1 [- a[xP] ap (1 8
2
P ap)] =- N(ft- A)-- - v- + (p- A) -x-+- . 

N 2 ax ax 2 8x2 ax 

(2.37) 

(2.38) 

With respect to the re-scaled time t ---+ tj N, considering the limit N ---+ oo 

yields 

(2.39) 

that is a Fokker-Planck equation (FPE) for the RCS (i.e., a truncation of the Kramers­

Moyal expansion (2.30) for n = 24
). The asymptotic distribution of the RCS (2.18) 

is recovered by setting the l.h.s in (2.39) to zero 

(2.40) 

for a= vj A. 

The FPE obtained for a BDI process (2.39) is a simple case of a broader 

definition 

1 8P o[bP] 82 [0"P] 
A -a-t = - _a_x_ + ____.:..ax._,2----.::. (2.41) 

where b, O" denote, respectively, the drift and volatility parameters and where A -I is 

the process characteristic timescale. It appears from (2.41) that any two of the asymp­

totic distribution Prxn band O" determine the other. More precisely, (cf. Lemma 3.2 

4which is, by virtue of Pawula theorem, the only finite expansion of the probability density 
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in Field and Tough, 2003a) 

b 

2.2.4 The K -distribution 

O"Ox log (O"P00 ) 

k Jx bPoo -+.::....__ __ 
Poo Poo 

(2.42) 

(2.43) 

(2.44) 

As discussed earlier , the complexity of the physics phenomena involved in the scatter­

ing of an incident wave on a rough surface (marit ime radar) described in Section 2.1.1 

prevents any analytical description of the scattering process. Nevertheless, Section 2. 2 

provides some physical insight into the behaviour of the scattered amplitude in terms 

of the summation of N scat terers ' cont ribut ions labelled the speckle, with a num­

ber of individual scatterers driven by a BDI process (the RCS , which modulates the 

speckle) . The result ing K - distribut ion is therefore a strongly motivated model for 

the distribution of the radar returns. 

The application of the K - distribut ion for radar applications was pioneered 

by J akeman who demonstrated its significance for scattering experiments ( J akeman 

and Pusey, 1978) . It was also used to describe land-clutter (Jao, 1984.) and SAR 

images (Joughin et al. , 1993). The K - distribut ion is referred to as a double stochastic 

distribut ion since it embodies two degrees of freedom (see for instance Yasuda, 1975, 

where it was derived from the Gamma distributed stopping time of a Rayleigh random 

walk in a human population context). It has also been used in a variety of other 

contexts (e .g., ultrasound imaging Weng et al. , 1991). 

The K - distribut ion has been extensively confronted with actual scattered data 

(as early as Ward , 1981). Among other distributions , especially the Weibull and the 

log-normal types, it was shown to provide a satisfactory fit to actual radar returns 

even though the tail of the K - distribut ion does not fit well large intensity values. 

In the same mult iplicative framework (2.17), various authors have proposed texture 

models extending beyond the Gamma distribut ion (Delignon et al. , 1997; Gini et al. , 
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2000; Delignon and Pieczynski, 2002; Balleri et al., 2007). The following section 

discusses how the BDI process could be extended to cover these additional situations. 

2.3 Extension to other diffusion models 

2.3.1 Class of Pearson diffusions 

2.3.1.1 Definition 

Let us now consider a class of (continuous-valued) diffusion processes: the Pearson 

diffusions (Pearson, 1916; Forman and S0rensen, 2008) which are the stationary so­

lutions to a FPE bearing a close resemblance to (2.39) 

fJP fJ fJ2 
at = ox [A(x- m)P] + fJx 2 [A(ax

2 + bx + c)P] (2.45) 

An associated SDE reads 

(2.46) 

where A> 0 is a time scaling parameter and a, b, care the process' state parameters. 

If it exists, the mean of the asymptotic distribution for Xt is given by (xt) = m. The 

domain of Xt is constrained to ensure that the square-root in (2.45) is well-defined. 

This condition may be fulfilled by setting c = 0 (like in Delignon and Pieczynski 

(2002)), but we shall consider here a broader range of processes. This process is a 

diffusion (rather than a mere Ito process) since the drift bt = m - Xt and volatility 

crz = axz + bxt + c coefficients are state-dependent (i.e., functions of Xt)· Pearson 

diffusions may alternatively be defined through the following differential equation 

satisfied by their asymptotic distributions W(x) 

dW(x) 
dx 

_ (2a + 1)x- m + bvV(x) 
ax2 + bx + c ' 
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the so-called Pearson system. The first investigation of the equivalence between the 

probability densities satisfying the Pearson system and the stationary distributions 

for processes represented by (2.45) was performed by Wong (1963). 

2.3.1.2 Importance for scattering applications 

From (2.17), the dynamics of the scattered amplitude 1/J = lEI are uniquely deter­

mined by the dynamics of x . Keeping this in mind, the Pearson class is of interest 

since it covers a variety of probability distributions used by experimentalists to model 

the texture of a compound-Gaussian distribut ion for the scattered amplitude. The 

Pearson class encompasses heavy-tailed distributions which, by virtue of (2.17), yield 

a resulting amplitude distribution that is also heavy-tailed. For a volatility coefficient 

given by 0"
2 = kx , the RCS is asymptotically r - distributed with scale parameter k and 

shape parameter m/ k. The resulting scattered envelope will have a K - distribution 

where the usual parameters b and v are given, respectively, by b = 1/ k and v = m/ k. 

For maritime radars , the normalized variance R = Var[x]/ (x)2 = v is a measure of 

the sea-state which is high or calm for , respectively, a large or small R. Another 

Pearson diffusion with parameters b = (a - x) and O" = (3x 2 yields a texture that has 

an inverse Gamma distribution with scale parameter (3 = ajm and shape parameter 

a= 1- 1/a 

JID[x] = lim P (x) = _f!:__x- (a+ 1)e-f3!x for x >_ 0. 
t-+oo r(a) (2.48) 

which is displayed in Fig. 2.3. Experimental data (Balleri et al. , 2007) have assessed 

the performances of this texture against lake-clutter. 

The last two diffusions were used in a slightly different context (synthetic 

aperture radar interferometry). The first one yields a Beta distribution of the first 

kind ( cf. Fig. 2.4) 

JID[x] f (p+ q) p-1(/3 )q-1 f 0 < < (3 
(3P+q- 1 f(p)f(q)x - x , or _ x _ (2.49) 
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whose drift and volatility coefficients are given, respectively, by b = (3pj(p+q)-x and 

O" = (3 (x - x2 )j(p + q) . The second one is associated with a Beta prime distribution 

(b = (3pj (q- 1)- x and O" = ((3x + x2 )j (q- 1)), shown in Fig. 2.5, 

TTll X - (3q f (p + q) Xp- 1 
u- [] for x2: 0. 

- f (p) f(q) ((3 + x)P+q 
(2.50) 

The first two moments of the Beta distribution of the first kind (2.49) are given by 

(x) = (3pj (p + q) and Var[x] = (3 2pq(p + q) - 2(p + q -1)-1 whereas these expressions 

read (x) = (3pj(q- 1) and Var[x] = (3 2p(p + q- 1)(q- 2)- 1(q- 1)- 2 for the Beta 

prime distribution (2.50) (which exist, respectively, for q > 1 and q > 2). 

2.3.2 A ssociated population model 

We have described above the pert inence of the Pearson class for scattering appli­

cations. Motivated by the derivation of (2.39) on the basis of a discrete population 

model in the continuum limit , we attempt to derive the class of the Pearson diffusions 

on a similar basis of equivalent underlying discrete-valued population models. To this 

31 



Ph.D Thesis- Patrick Fayard McMaster - Electrical Engineering 
Chap. 2: Scattering from random media 

end, let us first extend the BDI process as follows 

{ 
G = v + )..N + EN2 

R = J-LN + EN2 
(2.51) 

- --1 
where the non-negative parameter E = E/ N is of order N to ensure that the con-

tinuous limit of the resulting population is of diffusive type ( cf. discussion in Field 

and Tough (2003a), Section II). Following the same token as for a BDI process, if we 

substitute the transition rates (2.51) in (2.25) and consider a Taylor expansion, the 

SDE associated with the resulting FPE reads 

(2.52) 

By virtue of I to calculus, the transformed cross-section x N m ( x + p) / ( 1 + p) is also 

a Pearson diffusion with ad hoc parameters, as captured by the following result for 

constant p identified below . 

Proposition 2.1. The class of Pearson diffusions, as embodied by (2.45) or (2.46), 

emerges as the affine transformed version x N m (x + p) /(1 + p) of the continuous 

limit of a discrete-valued population model with transition rates G = v + )..N + EN2
, 

R = J-LN + EN2 with 

1/ 

E -

p 

A 

A a 

A [b(1 + p)jm + 2ap] 

-(2c + mb) + mvb2 - 4ac 

2(am2 + bm +c) 

where J-l is a free parameter that determines the asymptotic population mean N. 
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2.3.3 Observability of associated population model 

vVe have discussed in Section 2.1.5 how the multiplicative representation of the scat­

tered amplitude enables the expression of its moments in terms of the texture statis­

tics. In the same vein, for Pearson diffusions, a recursive expression for the moments 

of the RCS proceeds from Ito's formula applied to the process Yt = xr in (2.46) 

d (x7) = -Anx7- 1(xt - m)dt + A (axz + bxt + c)n(n- 1)x7-2dt 

+nx7-1 j2A(ax~ + bxt +c) dWt(x) (2 .53) 

Taking the expectation removes the Brownian term and yields the well-known recur­

rence relation for the moments of a Pearson diffusion (Kenney and Keeping, 1951) 

(m + (n- 1)b) (x~- 1 ) + (n- 1)c(x7-2
) 

1- (n -1)a 
(2.54) 

initialized with (x~) = 1,(xt) = m 5 . On the other hand, we have seen that for 

a compound-Gaussian clutter the moments of the RCS Xt and of the intensity Z t 

are related according to (2 .22) so a recursive relation also exists for the former. 

Conversely, if a probability distribution for the scattered intensity does not exhibit 

such a recurrence relation for the intensity moments (e.g., the vVeibull distribution 

(zn) = anr(n//3 + 1)) , one cannot postulate a speckle distribution belonging to the 

Pearson system (although a compound distribution may exist6). Combining (2.22) 

and (2 .54) enables the expression of the Pearson diffusion parameters in terms of the 

5 the nth moment exists for a < 1/ (n - 1) as observed from the asymptotic dist ribution obtained 
from these drift and volatility coefficients (2.42). 

6a compound model of a Rayleigh speckle modulated by a Weibull texture has been considered 
in Bucciarelli et al. (1996) for clutter that deviate heavily from Gaussian statistics 
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first four moments of the intensity, if they exist, by 

(zf) - 2(zt) 2 2(zt) 2 

(zf) - 3(zl) (zt) 6(zf) 12(zt) 

(z{) - 4(z~) (zt) 12(zf) 36(zf) 
(2.55) a= 

(zl) 2(zt) 2 

2(zf) 6(zf) 12(zt) 

3(z{) 12(zf) 36(zl) 

(zl) (zl) - 2(zt) 2 2 

2(z~) (zf) - 3(zl) (zt) 12(zt) 

b= 
3(z{) (z{) - 4(zf) (zt) 36(zl) 

(zl) 2(zt) 2 
(2.56) 

2(z~) 6(zl) 12(zt) 

3(z{) 12(zf) 36(zl) 

(zf) 2(zt) (zf) - 2(zt) 2 

2(zf) 6(zf) (zf) - 3(zf) (zt) 

3(z{) 12(zf) (zt) - 4(zf) (zt) 
(2.57) C= 

(zl) 2(zt) 2 

2(z~) 6(zf) 12 ( Zt) 

3(z{) 12(z~) 36(zl) 

In other words, the state parameters a, b, c of (2.45) and (2.47) can be extracted 

from the intensity moments, which are observable. Since these state parameters also 

specify the discrete valued underlying population model (via Proposition 2.1), it is 

possible to express the transition rates of the latter in terms of the intensity raw 

moments (which are directly observable). A precise knowledge of the underlying 

population model parameters provides some insight into the underlying physical phe­

nomena. For instance, experimental data show that the scattering pattern depends 
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on the incident wave polarization (e.g. , (Farina et al., 1997)). Comparing the popu­

lation parameters for different polarizations may improve the understanding of this 

discrepancy. 

Besides the state parameters, the knowledge of the characteristic frequency 

constant A is also required to fully determine the population model. This quantity 

may also be extracted from the observed t ime-series of the intensity (as discussed 

in Fayard and Field (2008)). As a result , the discrete population model driving the 

speckle can be entirely inferred from the intensity time series alone (Fayard and Field, 

2010c). 
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Chapter 3 

Dynamical stochastic model 

3.1 Random walk model and compound presenta­

tion 

3.1.1 Ray le igh scattering 

In Chapter 2, the scattered amplitude/ intensity were only considered from a statisti­

cal point of view. This description has been successfully applied to actual scattered 

situations for several decades but fails to capture the instantaneous variations in the 

scattered signal. This ensemble-average approach may be sublimed by reconsider­

ing the random walk model (2.1) in a stochastic calculus framework. Appendix B 

proposes an overview of this Ito framework (see also Karatzas and Shreve, 1988; 

0 ksendal, 1988). This SDE description shares the same principles than the FPE 

description anteriorly proposed in Tough (1987). 

Let us recall t he random walk model (2.1 ) 

N 

rAN) = L a1 exp[icp~j) ] . 
j=l 
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Rather than considering the characteristic function of rAN) which is a statistical tool, 

if we apply Ito's formula to (3.1) it is possible to derive the scattered amplitude 

dynamics. The random walk (3.1) does contain a dynamical seed but was only char­

acterized in Section 2.1.2 by a statistical tool, the characteristic function CN(u) which 

is an ensemble average quantity. On the contrary, Ito calculus makes use of a process 

differential, thus describing the time-evolution of the process during an infinitesimal 

time-interval. The superiority of this dynamical description over the more traditional 

statistical description shall be obvious while cruising through this thesis' results. Be­

sides its natural applications on electromagnetic scattering, the aforementioned model 

has shown adequacy for the modelling of wireless network (Feng et al., 2007) (more 

precisely, to predict modifications to the channel spectra) and for NMR applications 

(Field, 2006; Field and Bain, 2009, where Xt accounts for the spin population). 

We have mentioned earlier in Section 2.1. 2 that the phases { cp~J)} were taken 

as uniformly distributed in the interval [0, 21r). A corresponding dynamical model is 

obtained when { cp~J)} are taken as a collection of (displaced) Wiener processes {W?)} 

on a suitable time scale (Field and Tough, 2003b) 

(3.2) 

with random initializations { .6.. (j)}, a set of independent random variables uniformly 

distributed on the interval [0, 21r). The Ito differential of the phase satisfies 

(3.3) 

whereas its square reads 

Bdt (3.4) 

On the other hand, Ito's formula applied to the random walk model (3.1) yields 

N 

de~N) = L (idcp~J) - ~dcp~J)2) aJ exp[icp~J)] 
J=l 

(3.5) 
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which becomes 

(3.6) 

once the phase differentials have been substituted. We reckon the first term in (3.6), 

labeled d(t, as the summation of N independent randomly phased (unsealed) Wiener 

process (the independence holding if { <p~j ) } have negligible correlation 1) , with a vari­

ance equal to CL:1 a]) Belt . We can therefore introduce a complex- valued2 random 

process d~ such that d( = (2.:1 a])
1 12B1 1 2d~t 3 . Defining the (normalized) Rayleigh 

amplitude by 'Yt = limN-+oo [Qt/ N 112
] leads to the resultant dynamics (Field and Tough, 

2003b) 

(3.7) 

If we re-scale the Rayleigh amplitude according to 'Yt ~ (a2 )-~'Yt, then the re-scaled 

field satisfies (3. 7) with the form factors equal to unity. In what follows we shall 

therefore assume the field to be scaled in this way, i.e. , (a 2 ) = 1. In light of ( 2. 7) and 

(3. 7), the distinction between statistical and dynamical descriptions of the scattering 

process, both originating from a normalized random walk model, is obvious (the 

former being the asymptotical behaviour of the latter). The speckle 'Yt obeys an 

asymptotic Rayleigh distribution (2 .7) whose instantaneous fluctuations are driven 

by (3. 7). It accounts for the Rayleigh nature of the scattered amplitude in the case 

of the number of steps in (3.1) is fixed. The SDE (3.7) can be solved by considering 

the stochastic differential dbt exp( Bt / x)] 

1 a con eli tion fulfilled if t 2 T, the relaxation time 
2 that is, lci~t l 2 =cit and c1~; = 0 

(3.8) 

3cf. the Levy characterisation of Brownian motion from a collection of continuous martingales 
(Applebaum, 2004, p. 223). 
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so that It is a complex Ornstein-Uhlenbeck (COU) process. Consequently, the first 

two moments of It are given by Field and Tough (2003b) 

1 
exp( - 2Bt)ro 

1 + exp( -Bt)(Jrol 2
- 1) 

and fully determine It as Gaussian variate 4
. 

3.1.2 Compound representation 

(3.9) 

(3.10) 

The statistics of It are of Gaussian nature, as evidenced by the linear SDE (3. 7) 5 . 

In the same vein than in Section 2.1.3, non-Gaussian statistics might be obtained by 

introducing a fluctuating number of steps N--+ Nt into the random walk model (3.1). 

In effect, if we define the (continuous-valued) cross-section as Xt = limNt--+oo[Nt/ N], 

the (normalized) resultant amplitude '1/Jt = limN-roo[Q~Ntl I N 112
] has the following com­

pound representation (Field and Tough, 2003b) 

1/Jt lim [Q~Nt) I Nl/2)] 
Nt--+oo 

lim [ ( Nt/ N) 1/2 (Q~Nt) I Ntl/2)] 
Nt--+oo 

1 
2 

Xt It (3.11) 

with It= limN-roo[Q~Nt) INt~], and in which .Tt and It are independent processes. 

On the other hand, as the speckle has unit power E[lrtl 2
] = 1 (cf. (3.10)) 

the scattered intensity Zt = Xt!rtl 2 satisfies E[zt] = Xt asserting that the texture Xt 

is nothing but the local power (cf. Equation (2.15)). The dynamics of this RCS are 

governed by the following SDE corresponding to the FPE (2.41) 

(3.12) 

4since the phase distribution is uniform about '"Yt ='"Yo exp( -~Bt) (which tends to zero as t ----t oo) 
5this observation is a corollary of Doob's theorem which states the forms of the correlation 

function, spectral density and probability densities of any random process which is both Gaussian 
and Markov (Doob, 1942). Since the probability density companion to (3.7) (obtained through 
(2.42)) conforms to the generic form specified by Doob, the speckle '"Yt is Gaussian. 

40 



Ph.D Thesis - Patrick Fayard McMaster - Electrical Engineering 
Chap. 3: Dynamical stochastic model 

in which the drift bt and diffusion O"t parameters are (real-valued) stochastic processes, 

not necessarily Ito processes, adapted to the filtration .Ft(x) corresponding to the 

\tViener process d W/x). The Gamma distributed texture, most characteristic of a 

K - scattered amplitude is recovered for the following SDE 

(3.13) 

which is equivalent to its companion FPE (2.39) for the re-scaled process Xt 1-t CtXt. 

3.2 Strong scattering dynamics 

3.2.1 Field equation 

The compound representation (3.11) coincides with the (experimentally evidenced) 

multiplicative representation of the sea clutter in terms of a speckle modulated by 

a texture. In effect, by scrutinizing the time-series of the received scattered signal 

radar experimentalists have demonstrated that some geometrical structures remain 

constant over time. More precisely, \tVard (1981) has distinguished two components 

in the radar returns, a geometric pattern kept invariant by frequency agility and a 

ragged profile for a fixed frequency. Thus, since the compound representation has 

been experimentally validated, it enables the derivation of the scattered amplitude 

dynamics from the SDEs for the texture (3.12) and the speckle (3.7). In effect, 

applying Ito product formula to (3.11) yields 

(3.14) 

since Xt and "ft are independent (hence, d "ftdXt = 0). Equipped with the Ito differential 

Xt and "ft , the Ito differential of the scattered amplitude, for a generalized cross-section 
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(see Section 2.3), reads 

(3.15) 

In the above expression, A and B are the reciprocals of the characteristic times 

for the autocorrelation of the cross-section and the speckle, respectively. (The fre­

quency A is inherent to the RCS and independent from the incident field whereas B 

is proportional to the wavenumber of the illumination radiation B ,...,_, cikl.) In the 

limiting case A = 0, (3.15) reduces to (3. 7) and Rayleigh scattering is recovered. 

Equation (3.15), known as the Field's equation, (orig., Field and Tough, 2003b) is a 

major result since it captures the instantaneous fluctuations of the scattered ampli­

tude (as opposed to the statistical representation of the scattering envelope E = l'lf)l 
(2.14) ). 

We note that the squared fluctuations of the scattered amplitude are given by 

(3.16) 

which reduces to 

(3.17) 

for a K -distributed amplitude. The linearity of the right-hand side in Zt forms the 

basis of the anomaly detection procedure proposed in Field and Tough (2003a) 6 . In 

the presence of a target, the correlation between the received intensity of the squared 

amplitude fluctuations will no longer hold. These claims were illustrated therein 

from data of K-distributed radar returns from a region of the ocean surface. The 

correlation between the squared amplitude fluctuations and the intensity were lost in 

the presence of a target, thus providing a means of anomaly detection. 

6additionally, the Doppler effect accentuates the correlation between Zt and the squared amplitude 
fluctuations (Field, 2009, Chap. 11) 
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3.2.2 Intensity and phase dynamics 

From the definition of the scattered intensity Zt = l'l{ltl 2
, its Ito differential is given by 

(3.18) 

that is 

dzt [A ( b::t ) + B (xt - zt)] dt 

+(2AO"t) 1 ( ;: ) d vVt(x) + (2Bxtzt) 1 d Wt), (3.19) 

where the fluctuations of Zt are expressed in terms of the RCS Brownian differential 

dvVt(x) and of the radial Brownian differential dWt) 

I 

( *l l "*) ( 2XZtt) 2 dLVt(r-). "ftC f,t + "ftC f,t = v (3 .20) 

We also verify that the squared intensity fluctuat ions obey 

(3.21) 

and that , for A « B, the instantaneous scattered intensity and its squared intensity 

fluctuations are strongly correlated since the first term in (3 .21) becomes negligible. 

The dynamics for the scattering cross-section Xt (3.12) and the (correlated) intensity 

Zt (3 .19) are thus written as a system of coupled SDEs (correlated over their timescale 

A- 1 and s-1, respectively) , a model appropriate for scattering from marine surfaces. 

To derive the dynamics of the scattering phase, let us express the scattered 

amplitude in polar form 'l{! t = Rt exp( iBt) and thus , writing iBt = log( 'l{!t/ Rt), we 

deduce from Ito 's formula that 

(3 .22) 
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Since the left-hand side is purely imaginary, we can express dBt in terms of '1./Jt alone 

as 

~ [(d~t- ~ (d~t)
2

) - (d~;- ~ (d~;)
2

)] ' 
2z ~t 2 ~t 1./Jt 2 ~t 

(3.23) 

or, alternatively, as 

(3.24) 

Meanwhile, from (3.15) 

(3.25) 

Accordingly, the phase is governed by the SDE 

(3.26) 

where the terms involving ~t were expressed in terms of a distinct real-valued angular 

Wiener process 

(3.27) 

It appears from (3.26) that the phase is a pure volatility process (vanishing 

drift) which has the important consequence that the cross-section is proportional to 

the intensity-weighted squared fluctuations of the phase 

(3.28) 

whatever the dynamics of Xt· This observation has major consequences since it facil­

itates the inference of the RCS from the scattered amplitude. 
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3.2.3 Correlation of fluctuations 

We note that the two Wiener processes arising above, dW?) (3.20) and dW?'l (3.27), 

are independent (the radial and angular fluctuations in the resultant amplitude are 

statistically independent). This observation, not valid in the weak scattering case 

described below, is most characteristic of the compound representation in terms of 

two independent processes. On the other hand, the scattered intensity is correlated 

with the RCS through (3.11). 

vVe may also investigate the correlation between the scattered amplitude com­

ponents. Radar signals usually have the It ,Qt representation (e .g. Helstrom, 1960) 

in terms of an in-phase and a quadrature-phase components with It = Rt cos Bt and 

Qt = Rt sin Bt. Owing to the independence between the radial and angular compo­

nents, we obtain the following geometric relation (Field and Tough, 2003b) 

(3 .29) 

As a result, the It and Qt components of 1/Jt are independent if and only if 

E~z) = 2zE~0 ) . This case only occurs for Rayleigh scattering A = 0 for which It 

and Qt can be described by the imaginary and real parts of the complex Ornstein­

Uhlenbeck process (3.7) . Radar engineers' assumption that the It and Qt components 

are independent is therefore only legitimate for certain contexts . 

3.3 Weak scattering dynamics 

3.3.1 Definition 

The strong scattering amplitude was derived for uniformly distributed scatterers' 

phases. This assumption is no longer satisfied for a weakly scattered amplitude where 

the random walk individual contributions will have a preferred direction - the random 

walk will be biased (Jakeman and Tough, 1987). Weak scattered distributions are 

also relevant to describe wireless network communications (e.g., the channel fading 
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of a radio signal has weakly scattered statistics (Ye et al., 2003)). Moreover, multi­

path diversity in multiple input multiple output (MIMO) systems can be exploited 

by asserting a biased random walk (Salmi et al., 2009). 

The weakly scattered amplitude Wt is conveniently described as the strongly 

scattered amplitude 1/Jt lying in superposition with a coherent offset amplitude et 

(3.30) 

This situation is known as weak scattering since the magnitude of the scattering term 

(i.e., 1/Jt) is assumed to be small in comparison with et, which can be seen as the signal 

of interest. 

To account for a broader range of experimental situation, we only specify that 

this latter term is a function of the state Xt. By virtue of Ito's formula, its stochastic 

differential is given by 

(3.31) 

Equation (3.30) essentially encompasses three different models for the scat­

tered amplitude, all of which may be understood by imposing a bias on each step s(j) 

of the associated random walk model: 

(3.32) 

The Rice model is obtained for a time invariant number of scatterers. The 

constant offset contribution, after an appropriate scaling by the reciprocal mean and 

root population for the respective terms under the summation, yields a resultant 

amplitude 

a+ It· (3.33) 
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The Rice distribution (cf. Jeffreys and Jeffreys, 1956), which posits a constant RCS 

(A= 0 in (3.12)) , has played a fundamental role in early radar signals (target model, 

(Minkoff, 2002)) . 

The Homodyned K - scattering model (HK) originates from a constant offset 

et = a in the random walk that does not fluctuate with Nt , in the case of the number 

of scatterers fluctuates with time. In the continuum limit, this amounts to adding a 

constant to the K - amplitude 

(3.34) 

This model was also proposed to emulate scattering from turbulent media. This 

model combines the homodyning feature of the Rice distribution with the scatterers' 

characterization of the K - distributed amplitude. Recent work in medical imaging 

has been using this distribution (Ditt and Greenleaf, 1994). 

The Generalized K - scattering model (GK) occurs when the scattering popula­

tion has fluctuations and t he coherent offset fluctuates in proportion to this population 

(by virtue of the number of terms summed in (3 .32)). Scaling by the reciprocal mean 

and root mean population yields 

T,GK ,,, 
\jJ t = axt + ''f' t (3 .35) 

when Nt -t oo. The main difference with the HK model lies in the fact that the 

random walk itself is biased. Among other applications , this model was successfully 

applied to polarimetric and interferometric SAR (Tough et al. , 1995; Blacknell and 

Tough, 1995). 

3.3.2 Scattering dynamics 

The dynamics of the strongly scattered amplitude (3. 15) and the definition of a weakly 

scattered amplitude (3.30) enable the derivation, separately, of the dynamics pertain­

ing to a Rice, HK or GK amplitude (Field and Tough, 2005). For the sake of general­

ity, it is more instructive to consider the dynamics of the weakly scattered amplitude 
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independently of the coherent offset's details. The Ito differential of Wt is given by 

(3.36) 

that is 

(3.37) 

Substituting the dynamics of the speckle (3. 7) and cross-section (3.12) yields the 

following result. 

Proposition 3.1. The dynamics of a weakly scattered amplitude with an arbitrary 

offset et, Wt = et + 1/Jt, are given by 

By virtue of the weakly scattered intensity definition, Zt 

stochastic differential reads 

(3.38) 

(3.39) 

From the representation of W t in polar form, the phase Ito differential satisfies ( cf. 

strong scattering (3.23) 

(3.40) 
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and their products 

(3 .41) 

3.4 Spectral properties of the K -distributed noise 

3.4.1 Autocorrelation function 

An important advantage of the dynamical description of the scattered amplitude de­

scribed above, in contrast to the usual statistical description, is the possibility to 

derive a generic form for the autocorrelation function (ACF) (and any higher dynam­

ics) since the ampli tude temporal evolut ion is accessible 7
. Echoing the mult iplicative 

representation of the scattered amplitude in terms of two (statistically independent) 

processes, it is necessary to derive separately the autocorrelation functions of the 

(square root of the) cross-section and of the speckle- as described in Field and Tough 

(2003b). 

Proposition 3.2. The A CF of the scattered amplitude, symmetric w. r.t. tim e, is 

given by 

(3.42) 

fort > 0, and where 2F1 denotes the hypergeometric fun ction 8 . 

7 as pointed out in Field (2009), a remark from J akeman and Tough (1988) reads "A full analysis 
of the temporal correlation properties of the variables x and z implicit in (5 .24) would require 
knowledge of its fundamental solution or propagator, which is as yet , unknown .. . " 

8cf. useful mathematical formulae in Appendix C 
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Proof. The propagator (i.e., Green's function for the corresponding FPE (Risken, 

1989)) for (3.13) is given by 

IP(x, tlxo) = 
1 (xexp(At))(a-1)/2 

1- exp( -At) Xo 

( 
x + x 0 exp (-At) ) I ( 2 exp (-At/ 2) y'xXQ) ) ( ) 

exp - ( X a-1 3.43 
1- exp -At) 1- exp( -At) 

where Ia denotes the modified Bessel function . This can be re-expressed as a series 

expansion 

00 ' 
lfD(x, tlx0 ) = xa-1 exp( -x) ~ f(nn~ a) exp( -Ant)L~- 1 (x)L~- 1 (x0 ) (3.44) 

where the Laguerre polynomials L~ are defined by 

(3.45) 

( c.f. Wong, 1963) for corresponding derivations. 

The SDE (3.15) does not exhibit explicit time dependence, and since there 

exists an asymptotic distribution (which the initial values are drawn from), the am­

plitude process 1/Jt is stationary. Therefore, we can apply the Wiener-Khintchine the­

orem which asserts that the power spectral density (PSD) S ( w) is equal to the Fourier 

transform (denoted by a tilde) of the ACF, i.e., (J;(w)';f(w')) = 7f<5(w- w')S(w) where 
------S(w) = (1/Jt1/J0). The amplitude ACF satisfies 

(1/Jtl/J~) = ( yfx;XO) (ro~) = ( yfx;XO) exp ( -Bitl/2) (3.46) 
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where the evaluation of the factor ~ proceeds according to the propagator ex­

pansion (3 .44), 

( ,;x-;xQ) 

(3.47) 

where we have used formula (C.30). 0 

3.4.2 Spectral properties of the scattered intensity 

Owing to the linear drift in (2.46), the Pearson diffusions share the feature that their 

normalized covariance function is an exponentially decaying funct ion of time, 

IE [( Xt -v m) (xo -v m)] = exp (-At). (3.48) 

(The mean m and the variance v2 in the above expression can be deduced from 

(2.54). Also, x 0 denotes the initial value drawn from the asymptotic distribution, 

thus ensuring stationarity of the process.) Meanwhile, from the compound expression 

(3.11), the scattered intensity Zt has a multiplicative representation in terms of two 

independent processes and its ACF is given by 

(3 .49) 
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The dynamics of the process Ut = lrtl 2 proceed from (3.7) 

(3.50) 

where ltd~;+ ,;d~t = ~clvVt(u). As a consequence, Ut also belongs to the class of 

Pearson diffusions and conforms to (3.48). Therefore, for a texture distribution con­

forming to the Pearson equation (2.46), the autocorrelation of the resultant intensity 

reads 

(3.51) 

The normalized covariance of the intensity Zt is the product of two exponentially 

decaying terms with timescales A- 1 and s- 1 characteristic of, respectively, Xt and Ut 

(in radar applications, A- 1 is typically of the order of many seconds whereas B- 1 is 

of the order of ten milliseconds (\Vard et al., 2006)). vVe also readily observe that the 

intensity power spectral density is given by 

() 2() 2 A 2 B 
Sz w = m 0 w + v 27r(A2 + w2) + m 27r(B2 + w2) 

2 2 (A+B) 
+mv---------

27r((A + 8)2 + w2) 
(3.52) 

Equation (3.51) generalizes the expression obtained in Field and Tough (2003b) for 

a K -distributed amplitude. We have thus encompassed the intensity distributions 

derived in Delignon and Pieczynski (2002); Balleri et al. (2007) for which we have 

derived their ACF and spectral properties. 

3.5 Numerical methods 

3.5.1 Rationale 

The SDEs pertaining to the RCS dynamics (3.12) and amplitude dynamics (3.15) may 

be solved numerically through an Euler-Mayamura method (Tough, 1987; Higham, 

52 



Ph.D Thesis - Patrick Fayard McMaster - Electrical Engineering 
Chap. 3: Dynamical stochastic model 

2001). For this purpose, let us consider the differential form of an Ito process 

(3 .53) 

with X (0) = X 0 and for 0 :::; t :::; T . The difficulty here is to integrate the Brownian 

term dWt (cf. Appendix B for a brief exposition of the Wiener process) . For some 

positive integer n, let M = T jn be the integration step and t1 =jOt . The numerical 

approximat ion of the Ito process at time tj is denoted as X1 = X(t1). The Euler­

Mayamura method takes the form 

(3.54) 

where vV1 denotes a realization of the Wiener process vVt at t1. For a deterministic 

process where the volatility term in the r.h.s. of the above equation vanishes, this 

method reduces to the usual Euler finite difference scheme. The Euler- Mayamura 

converges slowly (in the order of M112 ). More precise outputs may be obtained by 

considering higher-order integration terms (see Field , 2009 , Chap. 11) or (Higham, 

2001). 

A realization of the Brownian motion at the time T i = io't , where o't = T /n' 
is the integration step9 , is obtained through 

(3.55) 

initialized with W0 = 0 and where each dWi is an independent random variable of the 

form fftN(O, 1) (thus satisfying the properties of a \tViener process, cf. Appendix B 

Section B.1.2). For the sake of simplicity, we may consider n = n', in which case 

(3.54) reduces to 

(3.56) 

where Wi rv N (O, 1) . 

9 which should satisfy5't :::; M to ensure that the set of points { T;} over which the Wiener process 
is generated contains t he points { tj } where the Euler- l\!Iayamura solution is computed 
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3,-----~-----,-----,------.-----.------.-----, 

FIGURE 3.1: Dynamics of the Gamma distributed normalized RCS xtf (xt) for 
low /moderate/high values of the shape parameter. (For parameters values A = 

2.5 * w-3 ,8t = 0.4, a= 2, 20, 200). 
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FIGURE 3.2: Dynamics of the RCS for inverse Gamma (a = 4), Beta of the first 
kind (/3 = 3.5, p = 1.5, q = 1.9) and Beta prime (/3 = 2.5, p = 1.2, q = 1.5) textures. 

For parameters values A = 10-3 and 8t = 0.05. 
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3.5.2 Cross-section 

Let us first illustrate this technique by generating samples for the RCS of a K­

distributed amplitude (3.13). Substituting the drift b = o: - x and volatility (]" in 

(3.56) generates a sample path of a RCS whose asymptotic distribution is Gamma. 

Fig. 3.1 compares three RCS with different parameter values for o:, a measure of 

the sea-state. In effect, the relative variance R = V ar [ Xt] I (xt? = 1 I o: is related to 

the sea-state. A large and small R represent, respectively, a high and calm sea-sate. 

Other diffusion models may be numerically solved by a similar token. Fig. 3.2 shows 

the time-evolution of the Pearson diffusions discussed in Section 2.3.2. 

3.5.3 Strong scattering 

The first step to generate a random sample of the scattered amplitude is to solve 

numerically the COU process (3.7) (where o: is chosen to be large to avoid com­

putational difficulties). The real and imaginary parts of the speckle are plotted in 

Fig. 3.3. Thereafter, the scattered amplitude is obtained from (3.15) which is more 

conveniently achieved via the compound representation (3.11) from the (independent) 

integration of the Rayleigh amplitude (3.7) and of the texture (3.13). The real and 

imaginary parts of the resultant amplitude are given in Fig. 3.4. 

3.5.4 Weak scattering 

Finally, the numerical integration of a weakly scattered amplitude (3.30) is closely 

connected to the strong scattering case - except for the additional coherent offset 

that is directly adjoined to the simulated strongly scattered amplitude \lit = ·~;t + et. 

Fig. 3.5 shows a Rice scattered amplitude which is nothing but a Rayleigh speckle 

( cf. Fig. 3.3) to which was adjoined a constant offset. Fig. 3.6 gives a realization 

a HK amplitude which is a shifted version of the K -distributed amplitude shown in 

Fig .3.4. Finally, a GK amplitude is obtained when the coherent offset is proportional 

to the RCS Fig. 3. 7. 
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In-phase component 

-JOL----Q~,----~02~--~0L3 __ ~0l4----~05~--~0L6 __ ~0~7----~08~--~0~9--~ 

Quadrature-phase component 

-30L ____ 0~1----~02~--~0L3----0l4 ____ J05~--~0L6--~0~7----J08~--~0~9--~ 

FIGURE 3.3: Dynamics of the Rayleigh speckle It (quadrature- and in-phase com­
ponents) 

In-phase component 

_,,L_ __ ~,~,----~,,~--~,~,--~,~,----~,,~--~,~,--~0~7----0~8~--~,.~,--~ 

Quadrature-phase component 

FIGURE 3.4: Dynamics of the K -scattered amplitude 1/Jt (quadrature- and in-phase 
components) 

56 



Ph.D Thesis - Patrick Fayard McMaster - Electrical Engineering 
Chap. 3: Dynamical stochastic model 

-•'---'---'---'---'-----,"------,"------,"----L__L___J 
0 01 02 OJ 0 4 05 0 6 07 08 0 9 

F IGURE 3.5: In-phase component of a Rice distributed ampli tude as compared with 
the Rayleigh speckle. (For parameter values A = 10- 3 ,B = 10- 2 ,Ot = 0.05,a = 4.) 

-•,'------,,'-, --=,'-, --:,_'-, --=,'-, --:,':-, --=,':-. --:,':-, --:,':-, --:,:':-, _ _J 

FIGURE 3.6: In-phase component of a HK amplit ude for a coherent offset et = 3. 
(For parameter values A= 10- 3 ,B = 10- 2,8t = 0.05 ,a = 4.) 
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FIGURE 3. 7: In-phase component of a GK amplitude for a coherent offset et = 3*Xt· 
(For parameter values A= w-3 ,B = w-2 ,b"t = 0.05,a = 4.) 
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Chapter 4 

Observability of the RCS for 

strong scattering 

4.1 Intensity-weighted fluctuations of the phase 

4.1.1 Objective 

The multiplicative nature of the scattered amplitude (3 .11) was derived from the 

random walk model (2.1) and involves two components that have quite distinct ex­

perimental significations: t he speckle, the amplitude scattered for a large but constant 

number of scatterers, and the texture, which is connected to the time-evolution of 

the scatterers' population. Moreover, the former is of electromagnetic essence, as a 

measure of the scattering pattern from a particular scatterer whereas the latter is 

related to the sea level whose time evolution will influence the number of scatterers 

seen by the radar. Then , if a target happens to be present within the illumination 

range of the radar, it will influence the texture but not the speckle. Thus, extracting 

Xt from the received amplitude facilitates methods for anomaly detection. 

Many radar detection algorithms are based on frequency agility (see Ward 

et al. , 2006, Chap. 8) or vVatts (1985); Shnidman (1995) in order to de-correlate the 

speckle. If the radar frequency changes, the speckle will be correspondingly modified 
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(but the texture won't). Two different frequencies are said to be de-correlated if their 

difference causes a change of phase of a least 2n for the clutter patch. Consequently, 

for a frequency step equal to the radar bandwidth, successive pulses will be de­

correlated. Detection is enabled by setting a threshold level for the received amplitude 

convoluted over the pulses. 

Instead of this classical procedure, a novel approach to detect targets is em­

bedded with the stochastic model described in Chapter 3. The exact dynamics of the 

scattered amplitude it provides permits the design of an inference algorithm for the 

texture, in local time, from the received scattering pattern. This chapter builds upon 

this approach, pioneered by Field for a strongly scattered amplitude ( cf. Field and 

Tough, 2003a,b, for, respectively, experimental evidence and theoretical description). 

4.1.2 Inference 

If we consider the square of (3.26), we obtain the following result ( orig. Field, 2005). 

Proposition 4.1. The instantaneous values of the scattering cross-section are ob­

servable through the intensity-weighted squared phase fluctuations according to 

( 4.1) 

if Xt is an Ito process, not necessarily a diffusion, and throughout space and time. 

This result emerges as a geometrical feature of the random walk representation 

of the scattered amplitude and can be traced to the independence between the radial 

and angular fluctuations of the scattering amplitude. It is neither affected by the 

scatterers' dynamics Xt nor by the phasors' magnitude ( { aj} in (2.1)) as long as they 

are drawn independently from an arbitrary distribution. In ( 4.1), the inferred RCS 

scales with B. For anomaly detection, knowing the RCS up to proportionality is 

sufficient. 

A slight complication is posed in the computation of dBz from experimental 

data, owing to the discontinuous-valued behaviour of Bt at coordinate intervals of 
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2n (Field, 2005). This is resolved by instead using the (continuous-valued) phase­

wrapped process Wt = exp ( iet) , whose stochastic differential is dwt = exp ( iet) [idet­

~de;) , which enables the squared phase fluctuations to be computed from the single­

valued process Wt via jdwtl 2 = de;. In respect of discrete-time implementation, we 

remark that if Wt is a Wiener process, then 8Wt = vVt+h- Wt is normally distributed 

as N(O, h), so that its square is a chi-squared x2 (1) variable. The sum of n such 

variables is therefore distributed as x2 (n) , from which an estimate of dqz from 8qt 

can be obtained (via the weak law of large numbers) by considering the interval from 

t to t + 8t divided into n pulse intervals each of length h and letting n -+ oo before 

taking the limit 8t -+ dt . 

The structure of the SDEs pertaining to the population and to the intensity 

dynamics (recalled below from (3.12) and (3.19)) provides some insight into (4.1). 

Abtdt + (2AO"t) ~ dWt(x) (4.2) 

[A ( b::t ) + B ( Xt - Zt)] dt 

+(2AO"t) ~ ( :: ) dvVt(x) + (2Bxt zt) ~ dW?'). (4.3) 

This coupled system of SDEs could be interpreted as an instance of the generalized 

Kalman filter (see 0ksendal, 1988, Chap. 6) in which the unknown state Xt is to 

be estimated from observations of Zt· It is instructive t hat in this situation the 

dynamics of the filter stem from first principles and that the resulting statistics are 

non-Gaussian (notwithstanding the Gaussian nature of the Wiener process). The 

noise originates through two components, namely the intrinsic system noise 1-Vt(x) 

which derives from fluctuations in the (endogenously specified) population model, 

and the measurement noise ~t arising from the particulars of the wavelike interference 

effects. The latter should be viewed as an exogenous device whose purpose is to probe 

the true underlying state of the system that is of primary interest , in the case of the 

signal Xt· This statement is reminiscent of earlier results for the error on a frequency 

modulation determination bas·ed on measurements of the intensity-weighted phase 

(Jakeman and \tVatson, 2001; Watson et al. , 2006). As contrasted to this earlier work 
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which assumes a differentiable phase, herein we consider the quadratic variation of 

the phase dBl and Bt is taken as a non-differentiable process. 

4.1.3 Experimental implications 

Although valid for values drawn from experiments, the efficiency of ( 4.1) is more 

conveniently verified through synthetically generated data. In effect, the inferred 

state that is to be estimated from the observed state (the intensity) could in that 

case be compared with the hidden state (known from the simulation), enabling us to 

quantify the accuracy of the inference. In particular, this permits the computation of 

the discrepancy between the hidden and the estimated cross-sections, an experimental 

measure to be compared with its theoretical counterpart. 

We generate a distributed scattered amplitude 1/Jt, which is more conveniently 

achieved by the (independent) integration of the texture and the speckle ( cf. Euler~ 

Mayamura scheme in Section 3.5). Since the intensity and phase fluctuations time­

series are known, an estimate for the RCS may be obtained through Proposition 4.1 

which implies, for discretely sampled data, 

( 4.4) 

where i is a discrete time index and {ni} are an independent collection of N(O, 1) 

distributed random variables (i.e., Xi denotes the value of the process Xt for the 

discrete value t = ibt, where bt is the sampling interval). Applying a smoothing 

average (.)_a to the left-hand side (the observations) of (4.4) with window .6. =[to-

6.bt, t 0 + 6.bt] yields an approximation to Xt0 , with an error that tends to zero as the 

number of pulses inside .6. tends to infinity and .6. ~ 0 (see discussion of x2 statistics 

following Proposition 4.1). Further on, we shall consider a variety of texture models 

for which the estimated RCS obtained through ( 4.4) is plotted against the exact RCS 

known from the simulation. 
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4.1.4 Examples 

4 .1.4. 1 Gamma distributed texture 

To illustrate Proposition 4. 1, let us first consider a Gamma distributed cross-section 

(2.40) -the usual texture for a J( - distribution. The drift and volatili ty coefficients in 

(3. 12) are given, respectively, by b = a-x and CJ = x. Fig. 4. 1 compares the exact 

cross-section from the cross-section inferred through the intensity-weighted fluctua­

tions of a the phase, averaged over a smoothing window of 6. samples, according to 

the token described by (4.4). They exhibit a correlation coefficient of 0.9959. 

FIGURE 4.1: Estimation of the RCS/ population through the effect of phase de­
coherence for a Gamma distributed texture. (For parameter values a = 10, A = 

10-3 , B = 10-2 .) 

4 .1.4.2 Other Pearson distributions 

The class of Pearson diffusions yields candidate probability distributions to model the 

scattered amplitude 's texture (refer to Section 2.3.2 for their derivation on the basis 

of a discrete population model). The simulation described in 4.1.4.1 is repeated for 

the three other Pearson distributions discussed therein. The simulation for an inverse 
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Gamma distribution, i.e., b =a-x and rJ = x2
, was published in Fayard and Field 

(2009). Finally, we consider the Beta distribution with parameters b = f3pl(p+q) -x, 

rJ = (f3x - x2
) I (p + q) and the Beta prime distribution b = f3p I ( q - 1) - Xt and 

rJ = (f3xt + x;)l(q- 1) that were both investigated in Fayard and Field (2010a). 

Figs. 4.2(a),4.2(b) and 4.2(c) illustrates how the cross-section can be recovered from 

the intensity fluctuations thanks to Proposition 4.1. 

We have hereby verified the accuracy of Proposition 4.1 for several texture 

models. Whichever the drift and volatility parameters considered, the inferred RCS 

was a good estimate of the exact cross-section. 

4.1.5 Anomaly detection: toy example 

To illustrate the interest of this technique, let us recall a simulation from Fayard and 

Field (2010b). We shall remind the reader that a target within the radar illumination 

range will yield a discontinuity in the texture temporal evolution. In the following 

figure, a constant offset was arbitrarily added to the normal RCS time-evolution to 

emulate a target. The blue and red curves give the inferred RCS (according to the 

token given in Proposition 4.1) obtained from the scattering amplitude, respectively, 

in the presence of this target (discrete jump) or without the target. The blue curve 

exhibits a clear discontinuity which, translated into the texture temporal evolution, 

is synonymous to an anomaly detection. On the other hand, the intensity time­

series, which is also impacted by the jump through (3.11), does not have any visible 

discontinuity since the RCS jump is concealed by the rapid fluctuations of the speckle. 

This example illustrates why the inference of the RCS facilitates means for anomaly 

detection. In particular, we observe that this technique works for a non-stationary 

process (which is highly desirable for anomaly detection). 
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values A= 10-4 , B = 10- 3 , <5t = 0.05). 
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FIGURE 4.3: Inference of the RCS when a target is present and resulting anomaly. 
(For parameter values A= 10-4 , A= 10-3 , o = 0.1, a= 4) 

4.2 Optimization 

4.2.1 Propositions 

The inference procedure (as illustrated in 4.1,4.2(a),4.2(b),4.2(c)) offers an accurate 

estimate of the unknown RCS - as evidenced by the strong correlation coefficient 

between the exact and inferred RCSs. Nevertheless, a discrepancy emerges while 

smoothing the intensity weighted phase fluctuations. In effect, for a numerical simu­

lation where the pulse rate must be finite, the estimated state will differ from the true 

hidden state; the convergence being obtained only in the (unfeasible) case where the 

pulse rate tends to infinity (as anticipated in Section 4.1.3). The resulting deviation, 

in the sense of the mean square error (MSE), for a given Ot, will moreover depend on 

the window length ,6. and can be measured by the error function 

N 

'""'(~) = IE[~ (x1"' - x,)
2

] (4.5) 

where x~m denotes the average of zi6Bt over a window .6. and xi the exact cross-section. 
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A follow-up question is how to determine 6 , the length of the smoothing 

window over which the phase fluctuations are averaged- the window must neither be 

so large that the structure of the temporal variation is lost, nor too small that an 

average over the normal random seeds is no longer affected. This issue was addressed 

in Fayard and Field (2008) for the K - distributed case for which the following results 

hold. 

Proposition 4. 2. The discrepancy between the cross-section inferred from the intensity­

weighted phase fluctuations of a K - distributed amplitude and the underlying cross­

section is given by 

( 4.6) 

where 6 denotes the number of samples over which the phase fluctuations are aver­

aged. 

which has the following corollary 

Proposition 4.3. The cross-section is optimally recovered when the intensity-weighted 

squared fluctuations of the phase are averaged over a window of length 

6 opt (4.7) 

We readily check that 82 Esm / 86 2 > 0, so 6 opt is indeed a minimum. Calculus 

properties ensure that for the optimal window length , Exi and Eni exactly compensate. 

Moreover, for this particular window length, the MSE error is 

Esm(6 opt) = ( 4.8) 

We observe that the expression for 6 opt depends only on the population char­

acteristics. In particular, the dynamics of the scattered amplitude (phase or intensity) 
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do not intervene, e.g. the time constant s-1 does not appear. It is likewise notewor­

thy that the values of the phase de-coherence (which the cross-section is extracted 

from) are irrelevant to the discussion of their smoothing. Also, even though xi ap­

pears in the numerator as well as in the denominator, we must stress that in the 

latter it represents the volatility term O"t whereas the former is not directly related to 

the SDE (i.e., valid for an arbitrary population). It is worth investigating the case 

of an infinite sampling rate (i.e., bt ---+ 0), which has been anticipated in the discus­

sion following the cross-section inference. We remark that the (normalized) window 

length 6. opt tends to infinity, whereas the (actual) window length 6. opt * bt tends to 

zero. Accordingly, the corresponding error ( 4.8) vanishes in this limit. 

4.2.2 Proof 

4.2.2.1 Rationale 

We first notice that dW?) is independent from Xt owing to the independence between 

rt and Xt (as can be seen from (3.11) and (3.27) ). Since nt was introduced from 

dW?) = nt(dt) 112, it is also independent of Xt and (4.4) becomes 

(zidBl) a 
(nf)a 

(4.9) 

if we assume that A is small w .r. t. the characteristic time A - 1 of the cross-section 1
. 

This condition is ensured since the Gamma-distributed component is constant over a 

beam dwell time (Ward et al.). 

Equation ( 4.9) gives some insight into the understanding of the error due to 

the phase de-coherence smoothing. If 6. is small, the variance of the averaged (nf) a 

is high and makes the inferred state diverge from the weighted phase fluctuations in 

(4.9). On the other hand, a large window length, although guaranteeing (nf)a = 1, 

will cause the averaged phase fluctuations (zidBl) a not to capture well enough the 

instantaneous variations of the phase de-coherence. Then, the smoothing process is 

1for practical experiments, the characteristic time A~ 1 is of the order many seconds (if not 
minutes). The sampling time is in the range of milliseconds (cf. Ward et al., 2006) 
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a trade-off between the lost of information (i.e., (zidB[) ~ is not accurate enough), 

and a sensitivity to the sampling process (i.e., (nf)~ is volatile w.r.t. to its mean 

1). Since those two sources of error, respectively labeled Ex; and Enp vanish when Ll 

is small and large respectively, they represent the asymptotic behaviour of the total 

error ( 4.5) for the extreme values of fl. 

Under the hypothesis that the total error Esm can be approximated by these 

two asymptotes, we can guess that the MSE discrepancy between the inferred cross­

section and the hidden one will posses (w.r.t. the window length 6.) a shape that 

exhibits a minimum Ll opt optimizing the smoothing process. We first confine our 

derivations to the Gamma distributed texture that yields the K -distribution for the 

scattered intensity. 

4.2.2.2 Error due to the Xi's 

When Ll » Llopt the prominent error arises from (xi)~=/=- xi whereas (nT)~ c:::: 1, and 

( 4.5) may be written as 

N 

L IE [ ( (Xi)~ - Xi) 
2] (4.10) 

i=l 

To proceed further, let us consider the discrete SDE for the population dy­

namics (3.13), given the sampling interval bt, 

(4.11) 

where wi rv N(o, 1), or 

( 4.12) 
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where it is taken for granted that the dimensionless constant Abt verify Abt « 1; 

this condition is contained within a previous assumption used to write (4.9), namely 

A~« 1, since A. is normalized by bt. It has to be understood as the sampling time 

bt being small w.r.t. the correlation time of the cross-section A-1 or, in other words, 

the fluctuations of the population level being negligible within a sampling window. 

If we now iterate ( 4.12), we can write 

IJI 
xi+ jo:Abt + sgn(j) L (2Abtxi+z)~ wi+L 

k=l 

(4.13) 

where sgn(j) denotes the sign of j (its instance in front of the sum may be removed 

due to the symmetry of wi+1). We have defined l _ i + k - 1 for positive j's and 

l - i - k for negative ones. If we examine carefully this expression, we notice that it 

tells us that any sample xi+J is weighted with a deviation from the median value over 

the window (xi)~, that deviation being partly stochastic in nature. If we substitute 

(4.13) in (4.10), 

"' 
Ex; ~2 t, E [ (~~ [iaA8, 

+sgn(j) t, (2A81x,) l Wt]) ']. ( 4.14) 

We notice that the first term in the inner sum, jo:Abt, is odd, and therefore 

its summation over an even interval is zero. Then, we expand the square product and 

use the independence between nt and Xt ( Wt being a function of nt), 
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"' "' 1 N [ 2 2 

112 8 2AO, ;~~ i'~~ 
IJI IJ' I 1 1 l 

sgn(j)sgn(j') t; 6; ( IE[x[ x1J) ( JE[wlwl']) . ( 4.15) 

The summation above is firstly simplified by noticing that the right hand 

expectation is non-zero if and only if j, j' are of the same sign, a condition fulfilled by 

introducing a factor 1/2. Moreover from 2.::::2.:::: JE[w1wl'] = min(ljl, IJ'I), the formula 

reduces to (under the assumption that L xi+kwi+k "" L xiwi+k) 

( 4.16) 

( 4.17) 

The step from ( 4.16) to ( 4.17) is purely geometrical. Finally, we recall the 

well-known expression L~=O i 2 = n(n + 1)(2n + 1)/6 according to which (for a large 

~), 

(4.18) 

The error increases linearly with the smoothing window length. The above formula 

incorporates the volatility of the population ( cr( x) = x for K -scattering). It therefore 
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results as a property of the cross-section SD E, which produces changes over a timescale 

of order A- 1 . 

4.2.2.3 Error due to the ni's 

Armed with the idea that the dominant term in the error when ~ « ~opt arises from 

the variance of the samples ni, i.e. (n7) b. -=f. 1, whereas (xi) b. :::::::: xi since the window 

length is small, we can approximate ( 4.5) by 

N 

Eni LIE [(\n?)A xi- xi)
2

] (4.19) 
i=l 
N 

LIE [x?J IE [((ni)A -1) 2
] ( 4.20) 

i=l 

~ (tE [xi]) (4.21) 

We used above the property that the variance of the mean of N i.i.d. random variables 

is the variance of one divided by N and, as previously mentioned, the independence 

between nt and Xt. Furthermore, since nt rv N(O, 1), n; rv x2 (1) and Var[n7J = 2. 

As expected, that error decreases with the smoothing window length. It is 

noteworthy that this formula does not take explicit account of the population SDE, 

it is valid for arbitrary dynamics. As justified in Section 4.2.1, writing the smoothing 

error as the summation of its two asymptotic expressions ( 4.18) and ( 4.21) yields 

Props. 4.2 and 4.3. 

4.2.3 Evaluation of fl opt 

If the cross-section reaches its statistical equilibrium density, it observes a Gamma 

distribution, where (x) = Var[x] =a. Then, ( 4. 7) reduces to 

~opt 
(

12(a + 1)) 
112 

A5t 
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and can be numerically evaluated. 

A contrario, to obtain a numerical value when the equilibrium density has not 

been achieved, we need to approximate the ratio of the sums in ( 4. 7) as 

E [2::~ 1 x;J 
E [ 2::~ 1 xi] 

rt drift2 d 
Jo xs s 

rt xdrift ds 
Jo s 

where x~rift is the drift only solution of (3.13) satisfying 

x~rift = o: + (xo - o:) exp( -As). 

(4.23) 

(4.24) 

Even though such a process does not capture the volatility of the cross-section, it 

accounts for the average spread (stochastic velocity). Following the hypothesis of 

( 4.23) leads to an approximation of 6. opt for a non-equilibrium population, at time t, 

6-opt = (~ Ao:2t + 2o:(x0 - o:)(1- exp (-At)) 
A5t Aat 

+ ~(xo- o:) 2(1- exp ( -2At))) 112 

+ (x0 - o:)(1- exp (-At)) 
( 4.25) 

The equilibrium cross-section distribution is attained for large time, t --+ oo. However, 

the corresponding limit of ( 4.25) does not reduce to the statistical equilibrium solution 

(4.22), because the volatility was not taken into account for the former expression. 

4.2.4 Experiment 

In the case of K -scattering, the validity of ( 4.6) is established by computing the MSE 

deviation between the inferred ( cf. Proposition 4.1 and following discussion) and the 

exact cross-sections over a range of window length 6. (normalized in terms of the 

sampling interval bt)· Fig. 4.4 shows that the analytical error from (4.6) (solid line) 

captures accurately the experimental error (circles), both of them averaged over 50 

repetitive runs. As expected, there exists an optimum 6-opt that optimizes the filter­

mg error. For practical experiments (unknown exact cross-section), ( 4. 7) guarantees 
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the best achievable estimate of the underlying cross-section (more precisely, its ex­

pectation) whatever the phase fluctuations should be. The (dimensionless) condition 

Ad « 1 is also verified to be reasonable within the experimental parameters. The 

procedure to detect anomalies in the RCS (cf. Proposition 4.1), as described in Field 

(2005), is enhanced by selecting this particular smoothing window. 

The demonstration above was based on the MMSE criterion to compare the 

exact and the inferred cross-sections. In spite of scale in variance of ( 4.1), the MMSE 

criterion is not appropriate if a ---t oo (since then (x) ---t oo). Another criterion 

should then be used, the (invariant under scaling) correlation coefficient. It can be 

quantitatively verified ( cf. Fig. 4.5) that the correlation coefficient is also maximized 

for the window length given in ( 4. 7). 

For a given instance of the cross-section inference, D. opt is only the expectation 

of the optimal window length, rather than being the optimal value for this very 

realization. But since the error surface is nearly flat around its extremum, we can 

expect that probabilistic value to fit most practical instances. 

4.2.5 Sensitivity to parameters 

The expression for the optimal window length ( 4. 7) depends on cross-section param­

eters, namely its characteristic time A - 1 and its equilibrium value a. A measure of 

the robustness for our analytical expression is provided in Tab. 4.1 which shows the 

deviation (in percentage) between the theoretical D.opt and its corresponding experi­

mental value (known from the simulation). Over these varying ranges for a and A, 

one may verify the exactness of the proposed formula. For radar applications, A- 1 

represents the modulation timescale of the radar cross-section. The relative variance, 

defined as R = Var[x]/(x) = 1/a , is related to the sea behaviour. A large and 

small R represent, respectively, a high and calm sea state. The parameter a therefore 

depicts the sea state. 

For practical instances, the parameters a and A may be unknown, requiring 

their separate deduction from the data. In the context of K -scattering, the shape 
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FIGURE 4.4: Comparison of the analytical and experimental MSE deviation be­
tween the inferred and the exact cross-sections/populations for different smoothing 
window lengths. The optimal window length is clearly apparent and experimentally 
verified. Also shown are the asymptotic expressions of the error. (For parameter 

values o: = 10, A= w-3 , B = w-2 .) 

parameter of the compound K -distribution v is connected to the parameter o: of the 

stationary cross-section distribution ( 2.40) as v = o:- 1 ( cf. Field and Tough, 2003a), 

allowing the latter to be deduced from raw data of the K -distributed intensity. 

As a consequence of the compound representation (3.11), the scattered ampli­

tude spectrum is the convolution of the cross-section square root rt = xi/
2 with the 

Rayleigh amplitude It: 81/J = Sr * 81 . Their respective correlation time characteristics 

A-1 and B-1 will therefore occur in the scattered amplitude spectrum. In the time 

domain, the amplitude ACF recalled from (3.42) reads 

( 4.26) 

for t 2: 0 and where (!/Jtl/J0) is a symmetric function of time. 
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FIGURE 4.5: Correlation coefficient c between the exact RCS and the inferred 
RCS for different smoothing window lengths. For the sake of visualization, the 
correlation function shown is M - (!VI - c) 112 where M = sup( c). (For parameter 

values o: = 10, A= w-3 , B = w-2 .) 

The time characteristics A and B, which satisfy A« B, may be found from the 

experimental autocorrelation by fitting its parameters as compared to its theoretical 

expression ( 4.26). From the series expansion of the hypergeometric function, the 

RCS component of the resultant amplitude autocorrelation ( 4.26) may be written 

as a sum of terms proportional to exp( -nAt), whose spectra are therefore Cauchy 

or 'Lorentzian', while the Rayleigh spectral component is also Cauchy. 2 Since the 

Cauchy distribution is stable (Nolan, 2005), via the Fourier convolution S'lj; = Sr * S"0 

and taking the leading ( n = 1) term in the hypergeometric expansion, it follows 

that the spectrum of the resultant amplitude '1/J is also (approximately) Cauchy, with 

FWHM equal to 2A +B. (The DC part of the RCS spectrum, equal to o:6(w) and 

reflecting merely the fact that the RCS has a constant non-zero mean value of o:, has 

been removed.) A more precise alternative the inference of A is offered by Equation 

2an ACF R(T) = exp(-~k[t[) has associated power spectrum S(w) = 2k/'rr(k2 + 4w 2 ) with full 
width at half maximum (FWHM) equal to k. 
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(2.35) in Field and Tough (2003b), 

drz = ~A 
dt 2 

( 4.27) 

as the volatility of the population level square-root rt. Since it requires an estimate 

of Xt, in practical situations, the wisest approach would be to combine both solutions 

through an iterative scheme. 

TABLE 4.1: Discrepancy (in percentage) between the experimental and the theo­
retical ~opt over a range of parameters o: and A. 

0:=4 0: = 10 0: = 20 
A= 10 4 4.33 % 1.16 % 3.09 % 
A= 10-3 1.83 % 1. 79 % 2.94 % 
A= 10-2 1.48 % 1.51 % 0.14 % 

4.2.6 Extension for a generalized population 

The results given in Section 4.2.1 for a K-scattered amplitude may be extended to a 

generalized population (i.e., instead ofrestricting the population model to (3.13), any 

process conforming to (3.12) may be accommodated). The actual derivation steps for 

a Gamma texture can readily incorporate a broader range of diffusion processes, as 

thoroughly described in Fayard and Field (2010a). Motivated by their importance 

for practical applications, we shall especially consider the class of Pearson diffusions 

described in Section 2.3.2. In effect, for a Pearson diffusion obeying (2.46), ( 4.12) 

becomes 

xi+l = (1 - o:A8t) Xi + o:A8t 

+ (2A8tO"i) 112 
Wi 
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where wi ('V N(O, 1). We know that the fluctuations of the RCS are negligible within 

the sampling window, that is, the dimensionless constant AJt verifies Abt « 1. There­

fore, it is reasonable to assume that 1-Abt ;::::::: 1; yielding a revised expression of ( 4.13) 

xi+J = xi + jaAJt 
IJI 

+sgn(j) L (2AJtai+sg(j)k) l/
2

wi+sg(j)k. 

k=l 

( 4.29) 

Apart from this difference, the derivation of fsm proceeds exactly like for the K­

scattering case, yielding the following results 

fsm ( 4.30) 

and 

,6. opt (4.31) 

Figs. 4.6(a),4.6(b),4.6(c), obtained from the same token as for a Gamma distributed 

texture, demonstrate the agreement between our analytical findings above and actual 

experimental results. 

4.3 Scattered amplitude in additive noise 

4.3.1 Additional thermal noise 

Radar experimentalists have observed that radar clutters are in some cases better 

described as a K -scattered amplitude lying in an additional thermal noise (e.g., mea­

surement noise) (Watts, 1981). A situation that might be described consistently with 

the stochastic framework given in Chapter 3 as follows. In the presence of an addi­

tional thermal noise, the observed scattered amplitude may be written (Fayard and 
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Field, 2010b) 

( 4.32) 

~ 

where 1/Jt denotes the raw scattered amplitude and rt the thermal noise, which is 

assumed to be independent of the (hidden) amplitude '1/Jt. The relative power of the 

noise is characterized by a signal-to-noise ratio (SNR): SNR = 10 log10 ( ('lj;;) / (q) ). 

Equation ( 4.32) proposes a dynamical representation of the aforementioned model 

for a K~distributed sea clutter and thermal noise (cf. Watts (1981) or Ward et al. 

(2006)), which states that the probability density function for the intensity Zt = !0tl 2 

of the combined signal obeys3 

P(z!x) 1 ( z ) --~exp ---
Pn +X Pn +X 

( 4.33) 

where Pn denotes the thermal noise power. We readily observe that 

( 4.34) 

Alternatively, we may derive from ( 4.32) the following expression for the raw intensity 

mean 

( 4.35) 

where the cross-terms vanish since the (zero-mean) component rt is independent of 

'lj;t. As a consequence of the compound representation (3.11), the first term reads 

IE[I1,UI 2 Ix] = x (since 1 has unit power) and ( 4.34) is recovered (for IE[Ifl 2 lx] = Pn is 

the thermal noise power). In other words, ( 4.32) asserts that the average power of 

the scattered intensity (which is nothing but the RCS) is effectively increased by the 

thermal noise power; a property characteristic of the clutter and noise model ( 4.33). 

This supplementary thermal noise prohibits the direct use of Proposition 4.1. 

In order to exploit the information about the target contained in the sea clutter, it 

is necessary to remove this noisy component. Here comes one of the advantages of 

3 to he compared with (2.8) where the intensity has a negative exponential distribution 
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the stochastic description of the scattered amplitude. Since the spectral properties 

of the various processes are known ( cf. Section 3.4), one can adopt the Wiener filter 

(Kamen and Su, 1984, Chap. 4) in its finite impulse response (FIR) form to retrieve 

the sea clutter. The use of a Wiener (as opposed to matched) filter is furthermore 

appropriate since the scattered intensity is inherently stochastic. The filter requires 

the processes involved to be jointly wide sense stationarity, a condition fulfilled by 

1/Jt, as evidenced by (4.32). 

4.3.2 Filtering out the thermal noise 

4.3.2.1 Filter derivation 

A FIR Wiener filter, of order N, posits an estimate of the form: 

N-1 

:({;(n) = L h(i);f(n- i) ( 4.36) 
i=O 

that means as the convolution between a filter function h and the noisy data history. 

The filter function h is chosen to minimize, in the sense of the MMSE criterion, 
~ 

the discrepancy between the underlying 1/Jt and the estimated l/Jt amplitudes. The 

lower bound of the MMSE is actually reached through the orthogonality principle 

(cf. Chap. 12 in Papoulis (1984)), written as 

IE [ ( 1j1(n)-~ h(i),J;(n- i)) ,J;(n- j)] ~ o. 

Vj E {0, ... , N- 1 }. ( 4.37) 
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Some forward derivations (cf. Kamen and Su, 1984) yield (for zero-mean pro­

cesses) the following optimum linear time-invariant estimator, 

-1 
h(O) R;j(O) R;j(N- 1) 

h(1) R;j(1) R;j(N- 2) 

h(N- 1) R;j(N- 1) RJ;(O) 

R1/J;j(O) 

X 
R1/JJ;(1) 

( 4.38) 

R1/J;j(N- 1) 

where R;j and R1/J0 represent, respectively, the autocorrelation of the noisy amplitude 
~ ~ 

~t and the correlation between ~t and the de-noised amplitude ~t . The filter weights 

are deduced from this system of N equations (Wiener-Hop£ equations). For a white 

noise disturbance (i.e. Rr(i) = N0 /2 6(i)), the system of equations (4.38) further 

simplifies since R0 = R1/J + R1 and R;j1/J = R1fJ, where R1/J is given by ( 4.26). The same 

system of equations would apply if all we knew were the autocorrelation functions 

but not the full dynamics. 

4.3.2.2 Non-causal solution 

In the degenerate case where the population remains constant .Tt = a (i.e., the fre­

quency constant A tends to 0), due to Gauss identity 

the amplitude ACF (3.42) reduces to 

f(c)f(c- a- b) 
r(c- a)r(c- b) 

( 4.39) 

( 4.40) 

allowing us to derive an analytical expression of the impulse response. In effect, the 

continuous version of the Wiener filter (see Papoulis, 1984, Chap. 14) states that the 
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non-causal transfer function satisfies (in frequency-domain) H(f) = 81/J;p(f)/S;p(f), 

where S(f) denotes the PSD. Then, the (computationally intensive) Wiener-Hopf 

system of equations becomes superfluous; h(t) can be found directly as the inverse 

Fourier transform of H (f), 

aB ~--~--~--~ 
h(t) = exp (- J2aB/No + (B/2)2 itl) 

N0 J2aBjN0 + (B/2)2 
( 4.41) 

where N0/2 was previously introduced for the white noise PSD. The impulse response 

( 4.41) is non-causal, but for applications where there exists historical data, a non­

causal Wiener filter is preferable. If we think ofT = (2aBjN0 + (B/2)2 )-112 as 

the exponential timescale, its dependence w.r.t. B determines the behaviour of the 

impulse response. If B is small, the transfer function observes a flat shape: the 

filtering process uses a wide history. On the other hand, for a large B, h(t) becomes 

spiky: only neighboring samples are used for any estimate. 

4.3.2.3 Filtering error 

It is also of interest to know how the noise level has been reduced by the ·wiener 
- ~ 

filter. In effect, quantifying the error l/Jt = l/Jt - ·l/Jt allows to have some insight into 

the filter quality. If h satisfies the orthogonality principle, one can derive an analytical 

expression of the MSE (Kamen and Su, 1984): 

N-1 

E R1/J(O) - 2:: h(j)R1/J;p(j), ( 4.42) 
j=O 

or consider the MSE error reduction in decibels (i.e., compare the estimate with the 
~ -

case where -ljJ = l/Jt), 

reduction in MSE 

( 4.43) 
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The above expression only depends on the processes' auto- and cross-correlations. 

Since the autocorrelation functions of the (zero-mean) processes '1/Jt and ft are, re­

spectively, known from (3.42) and derivable (given the SNR) from the average power 

of '1/Jt (IE[I'I/Jtl 2
] = R'lj;(O) = a) the noise reduction (4.43) can be evaluated indepen­

dently of the experiment. 

4.3.3 Simulation 

4.3.3.1 Filtering 

To assess the filtering step efficiency we reconsider the experiment from Section 4.2.4 

with the supplementary ingredient of a thermal noise ft characterized by a partic­

ular SNR (in decibels) and adjoined to the K -scattered amplitude. The analytical 

expression for the ACF of the process 1/Jt = r t + '1/Jt was used to solve numerically 

the Wiener-Hop£ system of equation in order to find the weights of the filter im­

pulse response h, as described in Sect. 4.3.2.1. The (positive-valued) intensities Zt for 

the hidden, raw and estimated signals are shown in Fig. 4.7 (see Fayard and Field, 

2010b, Fig. 1). The noisy scattered amplitude is filtered to recover the original signal. 

In contrast to its noisy version, the filtered signal exhibits the geometric structures 

characteristic of the sea clutter. It can therefore be used for inferring the RCS. 

Remark: The knowledge of the parameters a, A and B is a requisite for an 

analytical construction of the Wiener filter. Otherwise, i.e. for practical applications, 

the collected data ACF is sufficient to populate the elements in the right-hand side 

of (4.38). Since the processes involved are independent and ft is zero-mean, the 

autocorrelation of the raw amplitude '1/Jt will be given by R;J;(T) = N0/2 5(7) + R'lj;(T) 

where R'lj; ( T) is the pure K -amplitude autocorrelation. A scheme to extract A from 

the scattered amplitude was given in Fayard and Field (2008). Since a is related to 

the usual parameter shape of the K -distribution, comparing the observed scattered 

amplitude with the nearest-fit theoretical K -distribution permits to deduce a. The 

sole unknown parameter is therefore B, whose extraction from the filtered amplitude 

is described below. 
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FIGURE 4. 7: Shown, from top to bottom, are the scattered intensity Zt as the 
absolute value squared of the ~attering amplitude for the exact 1/Jt generated via the 
integration of (3.15), the raw 1/Jt = 1/Jt+ ft (i.e., a corrupted version of the underlying 
amplitude) and the filtered ;j;t (obtained from the Wiener filter). (Parameter values 

a= 7 A= 10-3 B = 10-2 SNR = 10 dB N =50) ' ' ' ' . 

4.3.3.2 Parameter Estimation 

In most practical situations, Xt will be constant over the fluctuations of It since their 

time characteristics verify B-1 « A - 1
. As discussed above, it is useful to estimate 

the parameter B, characteristic of the speckle. Since It is a mean reverting process 

with a exp( -~Bit!) decay in the ACF, the intensity Zt = l!tl 2
xt will possess, for a 

cross-section roughly constant over the fluctuations of It, a spacing of the order of B-1 

between two consecutive peaks (B- 1 being the characteristic correlation time). This 

is a direct consequence of the compound representation of the scattered amplitude, 

in terms of two processes that are statistically independent. As an interesting result 

of the filtering above, we can track the peaks of the (filtered) amplitude to deduce an 

estimate of B. To do so, the Wiener filtering step is necessary since, otherwise, the 

amplitude peaks will be hidden within the surrounding noise ft. 
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An algorithm for this task (requiring a rough value of B-1) will proceed as 

follows. We first localize the maximal peak of the intensity Zt over a window of length 

of order 10 B- 1
. We neutralize this peak and the neighboring samples located within 

a distance of about s- 1 /10. We now consider a secondary window (centered at the 

peak) of iterated length 6, starting with 6 = s- 1/10, and extract its maximum value. 

At first, this maximum value will be positioned close to the former maximal peak, 

until it reaches (for a larger 5) the following amplitude peak (expected at an average 

distance of B-1 ). If we now plot the position of the 5-window's maximum w.r.t. the 

value of 6, the graph will exhibit a first discontinuity due to the passage from the 

original peak to the following one in the intensity pattern. The average size of this 

discontinuity is a reliable estimate of the time characteristic s- 1
. 

We use the algorithm detailed above to estimate the parameter B from the 

filtered amplitude. Tab. 4.2 investigates the sensitivity of our algorithm to A and a, 

given the value of B. The algorithm is only slightly altered by such changes. In the 

same vein, Tab. 4.3 verifies that the algorithm results are acceptable if the value of the 

parameter B or of the SNR change. These two tables therefore assert the robustness 

of our approach. 

TABLE 4.2: Sensitivity of the parameter estimation algorithm to A and o:. (For 
SNR = 20 dB and a true parameter value B = 10-2 .) 

A= 1e- 5 A= 5e- 4 A= 1e- 4 A= 5e- 4 A= 1e- 3 
a=2 1.10e-2 1.04e-2 1.05e-2 1.03e-2 1.03e-2 
a=5 1.08e-2 1.07e-2 1.02e-2 1.03e-2 i.OOe-2 
a= 10 1.10e-2 1.06e-2 1.04e-2 1.01e-2 0.99e-2 
a= 15 1.06e-2 1.06e-2 1.06e-2 i.OOe-2 i.OOe-2 
a= 20 1.08e-2 1.08e-2 1.02e-2 1.02e-2 0.99e-2 
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TABLE 4.3: Sensitivity of the parameter estimation algorithm to B and to the 
SNR. (Parameters A= B/10, a= 10.) 

B = 1e- 2 B = 5e- 3 B = 1e- 3 B = 5e- 4 
SNR= 5 dB 1.04e-2 5.41e-3 1.08e-3 5.33e-4 
SNR = 14 dB 1.03e-2 5.35e-3 1.12e-3 5.30e-4 
SNR = 20 dB 1.05e-2 5.32e-3 1.11e-3 5.37e-4 
SNR = 30 dB 1.08e-2 5.52e-3 1.09e-3 5.17e-4 

4.3.3.3 Anomaly detection: additional white noise 

The methodology described above is also of interest to observe the scattering cross­

section through the phase de-coherence. A shortcoming of technique detailed in Sec­

tion 4.1.3 is to assume that the pure J( -distributed amplitude is available, which is 

not true for experimental data where an additional noise is present. Simulated data 

illustrate how this difficulty could be overcome. The synthetic population determined 

by (3.13) (on the bottom) is compared with the population extracted from the filtered 

amplitude ,;;;t (middle) and from the corrupted amplitude 1/Jt (on the top), the latter 

two being obtained through the modus operandi detailed in Section 4.1.3. Fig. 4.8 

shows the time series for the three different cross-sections, which have been re-scaled 

(the correlation coefficient being invariant for such an affine transformation). Con­

sistently, we observe that the cross-section obtained through the filtered amplitude 

offers a faithful picture of the exact cross-section, whereas the cross-section obtained 

from the corrupted amplitude does not (as evidenced by their respective correlation 

coefficients with the exact RCS). An anomaly in the resulting time series for the RCS 

would indicate the presence of a target. Instead of, for example, de-correlating the 

speckle by frequency agility, applying successively the Wiener filter and the technique 

embodied by ( 4.1) enables a reasonably accurate extraction of the RCS from the raw 

amplitude 1/Jt. 
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FIGURE 4.8: Comparison of the exact RCS (bottom) with the RCS inferred from 
the filtered amplitude (middle) and noisy amplitude (top). The latter two exhibit, 
respectively, a correlation coefficient of 0.83 and -0.08 with the exact RCS. (Pa-

rameter values o: = 2,A = w-2 , B = w- 1, SNR = 15 .) 
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Chapter 5 

Observability of the RCS for weak 

scattering 

5.1 Volatility of a weakly scattered amplitude 

5.1.1 Objective 

We have described in Chapter 4 how the RCS was observable, for a strongly scat­

tered amplitude, through the intensity-weighted squared fluctuations of the phase. 

This result motivates us to investigate whether a corresponding result holds for a 

weakly scattered amplitude. To answer this question, one should appreciate that 

the prominent difference between the two scattering patterns lies in the geometry of 

the scattered amplitude diffusion tensor. Whereas angular and radial fluctuations 

de-correlate for a strongly scattered amplitude, this is no longer the case for a weakly 

scattered amplitude, owing to the presence of a coherent offset in (3.30). Nevertheless, 

the structure of the weakly scattered amplitude cross-volatility conveys information 

about the RCS if we introduce an orthogonal dyad w.r.t. which the resultant ampli­

tude fluctuations de-correlate. 
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5.1.2 Decomposition of the amplitude fluctuations 

Motivated by the representation of the strongly scattered amplitude 1/Jt in terms of two 

independent processes, the cross-section and the speckle, let us follow a similar token 

to decompose the weakly scattered amplitude fluctuations into terms originating in 

Xt and It· As we are only concerned with the processes' volatility, we may combine 

drift terms in the Ito differentials for the phase 8t (3.39) and intensity Zt (3.40) as 

o( dt112
). Hence, we obtain the following expression for the (intensity-weighted) phase 

2Ztd8t and intensity dZt differentials 

2SS [w;dwt] + o( dt112
) 

2~ [w;dwt] + o(dt112
). 

(5.1) 

(5.2) 

The parallelism between (5.1) and (5.2) shall facilitate subsequent derivations. The 

Ito differential of the weakly scattered amplitude may be expressed along the same 

lines as 

(5.3) 

where we have combined the drift terms in (3.37) as o(dt112
). If we substitute (5.3) 

in (5.1) and (5.2), we obtain the following decomposition for the phase and intensity 

differentials 

2 (Bxt) 112 SS [w;d~t] + (2Aat)~ ft(e)dWt(x) + o(dt112
) 

2 (Bxt) 112 !R [w;d~t] + (2Aat) ~ ft(z) dvv?l + o( dt112
) 

where we have introduced 

ss [ w; ( ~~ + 2e~) J 

!R [ w; ( ~~ + 2e~) J . 
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The coupled equations (5.4) and (5.5) have important characteristics. First, 

they tell us that the differentials of 8t and Zt are, respectively, the imaginary and real 

parts of the same quantity- prompting parallel derivations. Next, they yield explicitly 

the two Brownian terms influencing the phase and the intensity fluctuations. In this 

respect, both the intensity and phase fluctuations contain terms arising from the 

speckle (proportional to d~t) and from the scattering cross-section (proportional to 

dWt(xl), which have respective timescales s-1 and A-1 . A last observation is that the 

cross-volatility is only induced by the fluctuations originating in the cross-section 

A (Z) (8) 
~~Z,8) = (J ft ft 

Zt 
(5.8) 

since d~t is a complex valued Wiener process orthogonal to dWt(x) and satisfies d~z = 0. 

Equation (5.8) explains why the radial and angular fluctuations of a weakly 

scattered amplitude do not de-correlate. Upon considering the cross-product of (5.4) 

and (5.5), cross-terms vanish as d~t and dWt(x) are independent, the terms originating 

in the speckle also vanish as d~t is a complex Wiener process so that only the terms 

driven by dW?) are left. Thus, phase and intensity differentials are correlated through 

the product ft(Z) ft(e). On the other hand, in the strong scattering situation, the 

expression w~(2e~ + 1/Jt/xt) that features in the right-hand sides of (5.6) and (5.7) 

reduces to (the purely real) zt/xt, yielding ft(e) = 0, that is, the angular and radial 

fluctuations de-correlate. Also, we observe from the squares of (5.4) and (5.5) that 

If we consider the quantity 

2BZtxtdt + (2Aat) ft(e) 2dt 

2BZtxtdt + (2Aat) ft(z) 2dt. 

2 (;~~~~~ : ~~:~~2' 
we notice that the state processes ft(e) and ft(Z) satisfy 

91 

2ft(G) ft(Z) 
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5.1.3 Scattering vector 

5.1.3.1 Proposition 

A set of SDEs pertaining to the dynamics of the weakly scattered phase and intensity 

are readily derived from (3.39) and (3.40). They are conveniently represented with 

the dynamical characterization of the vector scattering process St = (xt, Zt, 8t)tr 

(see Chap. 3 in Field (2009), for a detailed exposition of the underlying stochastic 

differential geometry) 

(5.13) 

(no summation over i) for a collection of ·wiener processes {WHv'i} (not necessarily 

independent) with respective drift and diffusion coefficients bi, 6ij determined by 

(dSDt 
dt ' 

6ijdt 
t (5.14) 

where ( · )t denotes the conditional expectation up to and including time t. For the 

Markov diffusions that arise here, Ot can be considered as the expectation conditional 

on the state of the system at timet. Although it is easier to consider separately Rice, 

HK and GK amplitudes (as proposed in Field and Tough (2005)), it is more instructive 

to derive such expressions for an arbitrary offset et. 
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Proposition 5.1. For an arbitrary weakly scattered amplitude Wt = et + '1/Jt, the drift 

and diffusion coefficients of the scattering vector are given by 

and 

L:ij 

Ab 

A [z (.!!. - .£...) - 2z! cos e (e_Q_ - e_Q_ - e'b- e" (J)] 
x 2x 2x 4x2 

+B [x- Z + ez! cose] + ~ACJ (J(Z) 2 + f( 8 l2) jZ 

sine [A ( 2bx- 4~2 - e'b- e"CJ)- ~Be] jz!- f(z) f( 8 ) jZ2 

2ACJ f(Z) 

2BxZ + 2ACJ f(z) 2 

2ArJf(
8

l ) 
ACJ f(Z) j(8) I z . 

~ (ArJf(8 l 2 + BxZ) /Z2 

(5.15) 

(5.16) 

The expressions for the HK and GK cases given in Field and Tough {2005) for a 

Gamma texture {2.40) are recovered for et =a and et = axt, respectively. 

The tensors (5.15) and (5.16), originally derived in Fayard and Field (2011), 

have been abbreviated with the functions ft(e) and ft(Z) whose definitions in (5.6) and 

( 5. 7) yield the formulae 

1 

Z? sin 8t ( et - 2e~x) 

X 

t [ Z + zt COS 8(2e~Xt - et)] . 

5.1.3.2 Proof 

(5.17) 

(5.18) 

Proof. the volatility tensor L:ij (5.16) is embodied in the coupled equations (5.4) and 

(5.5). The drift coefficients proceed as follows. 
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The phase differential d8t defined by (3.40) is recast as 

1 
i
2

Z [(?j;* + e)(d?j; +de)- (l/J + e)(d·lj;* +de)] 

- 4~i [ w*2(d?j;2 + 2d?j;de + de2)- w2(d?j;*2 + 2d?j;*de + de2)] + o(dt112) 

The first term in the right-hand side of the above equation only involves the drift 

terms of the amplitude differential dwt from (3.38). The second term is rewritten by 

making use of the following Ito products 

de2 = AO"e' dt dedlj; = Ae' ~·lj;dt 

Accordingly, we obtain 

i 2
1
2 [(¢'+e) ( e' A<l + c"A<l H [A( 2~ - 4:, -~B)]) 

-(¢+e) (e'AO" + e" A<l H' [A(;x - 4:, -~B)]) l dt 

-~[w*2 (l/J
2 

+ 
4

e'?j; +4e'2)- w2(1j;*
2 

+ 
4

e'?j;* +4e'2)]dt+o(dt112) 
4Zz x 2 x x 2 x 

A e b + e O" + A - - - - -e dt ?j; - ?j;* [ ( , , ) ( eb eO" ) 1 s] 
2iZ 2x 4x2 2 

_ AO" (w* (~ + 2e')- w (7 + 2e')) (w* (~ + 2e')- w (7 + 2e')) dt + o(dtl/2) 
2P ~ ~ 

from which the second row in (5.15) is recovered. 

94 



Ph.D Thesis- Patrick Fayard McMaster- Electrical Engineering 
Chap. 5: Observability of the RCS for weak scattering 

For the intensity differential, our starting point is (3 .39) in which we substitute 

(3.38) for t he weakly scattered amplitude different ial dllft 

dZ 

dZ 

dZ = (e+ 1/;*) ( A[e'b+e"CJ]+ 1/; [A( 2:- 4: 2 ) ]) 

+(e + ?j; ) ( A[e'b+ e"CJ]+ ?/J* [A( 2:- 4: 2 )]) 

+ (d?/Jd?j;* + d?j;de + d?j;*de + de2
) + o(dt112

) 

A (Ill* + Ill ) ( e' b + e" CJ) dt + 

e(?j;* + 1/;) [A(_!!__-~) -~a] dt + 2z [A(_!?__-~) -~a] dt 
2x 4x2 2 2x 4x2 2 

+ [ x B + ACJ ( ~:: + e' ~ ('tj; + 1/;*) + 2e'2)] dt + o( dt112
) 

( 2AZ1
/

2 cos 8 ( e'b + e" (/) + e2z112 cos e) [A (_!!__ - (/ 
2

) - ~ s] dt 
2x 4x 2 

+2z [A(_!!__ - ~) - ~s] dt + Bxdt + 
2x 4x2 2 

Au 2~ [ W ( ~· + 2e')] [ W' ( ~ + 2e')] dt + a(dt112
). 

This last expression is not satisfactory since dZt is expressed in terms of the strong 

scattering phase Bt and amplitude 1/Jt . In order to express the drift coefficient solely 

in terms of weak scattering quantities, we shall use the following formulae 

Z 1
/

2 cos e = z112 cos e + e z = z + 2ez112 cos e + e2 

whence the second row of (5. 15) is recovered. D 

5.1.4 Geometry of amplitude fluctuations 

We have proposed in Section 5.1.3 a detailed description of the dynamics of a weak 

scattered amplit ude Wt which are fully characterized by its drift (5 .15) and volatility 
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(5.16) tensors. Some insight into the correlation structure of the amplitude fluctu­

ations may be gained as follows. Combining drift terms as o( dt) 112 , we write the 

amplitude stochastic differential as 

iRt exp(i8t)d8t + exp(i8t)dRt + o(d112
) 

O:t exp[i(8t + rPt)] + 'lPt exp['i(8t + rPt)] + o(d112
), 

(5.19) 

(5.20) 

where O:t, f3t are real-valued Ito differentials and rPt is chosen so that their Ito product 

O:tPt vanishes, i.e., the Wiener components of O:t, f3t are statistically independent 

(see, e.g., Karatzas and Shreve, 1988). The point of interest here is the correlation 

structure in the amplitude fluctuations. In the strong scattering case, the radial and 

angular fluctuations are statistically independent. For a weakly scattered amplitude 

the amplitude fluctuations de-correlate w.r.t. the orthogonal dyad rotated by angle 

rPt from that defined by the instantaneous radial and angular directions, as shown in 

Fig. 5.1 (cf. Fig. 1 in Field and Tough (2005)). In the newly defined basis {at,f3t}, 

the projected angular and radial fluctuations of the scattered amplitude read 

at cos qyt - Pt sin rPt 

at sin rPt + Pt cos rPt 

(5.21) 

(5.22) 

where drift terms of order ( dt112 ) have been neglected. Even though it is not possible 

to derive an exact expression for O:t, f3t, one may verify that their volatility coefficients 

satisfy ( cf. Field and Tough, 2005) 

(5.23) 

(5.24) 

which posses the expected symmetry O:t --t f3t. Another result from Field and Tough 

(2005) reads 

Proposition 5.2. The phase rotation rPt that yields an orthogonal dyad (cf. 5.1) 

associated with independent Wiener increments in the resultant amplitude process Wt 
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satisfies the geometrical identity 

(5.25) 

Equivalently, in terms of the resultant amplitude process, we have the geometrical 

identity 

tan 2¢ t 
:;s [ \[!; d \[! ;2] 
~ [ w;d w~2 ]. 

(5.26) 

Thus, the right-hand side of (5.25) may be expressed in the natural basis 

rotated by <Pt (5 .25) as well as the radial/ angular basis as (5.12). A direct comparison 

between the two yields the following expression for tan <Pt 

tan ¢t (5.27) 

where we have made use of the trigonometric identity tan 2a = 2 tan a/ ( 1 - tan 2 a). 

Interestingly, <Pt is observable from the scattered amplitude through (5.25) (as a func­

t ion of volatilities) but not from (5.27) since the expressions for ft(e), J}Z) involve the 

hidden state Xt in ( 5.17) and ( 5.18) , respectively. 

For a GK amplitude, we may understand Proposition 5.2 as follows. In this 

case, the coherent offset has intrinsic fluctuations (i.e., the boundaries 3D and 3D' 

fluctuate in time). Substituting the volatility coefficients of a GK amplitude et = axt 

from (5.16) into (5.26) yields, after a straightforward trigonometric identity 

tan¢t = (5.28) 

(and minus the reciprocal). The above tangent corresponds to an axis of s cK along 

R' P (as seen, e.g., by drawing a perpendicular from R' to the continuation in Fig. 

5.1 of OP) . The symmetry axes of the error surface s cK of the resultant amplitude 

are no longer aligned to those of the underlying K - amplitude- as opposed to the HK 

case (Field and Tough, 2005). 
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Q 

------~----

FIGURE 5.1: Geometry of fluctuations for the weak scattering process depicting 
orthogonal dyad w.r.t. which resultant amplitude fluctuations de-correlate. 

5.2 Geometrical inference of the RCS 

We have discussed in Section 4.1.2 how the RCS was observable, for a strongly scat­

tered amplitude, through the intensity-weighted squared fluctuations of the phase. 

Interestingly, an equivalent set of results, based on the geometry described in Sec­

tion 5.1.4, may be derived for a weakly scattered amplitude. 

5.2.1 Phase fluctuations 

If we write 

(f (8)f(Z)) 1£__ ( 
(8)) 

t t ft(Z) ' 
(5.29) 
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the second term in the right-hand side of (5.9) featuring ft(e) 2 is found to be deter­

mined by 

(5.30) 

where we have taken advantage of the expressions for t he radial-angular cross-volatility 

L:~z,e ) (5.8) and for tan <Pt (5.27). Upon the substitution of (5.30) in (5.9) , we obtain 

the following equation 

(5.31) 

where the first term in the right-hand side is a linear function of our quantity of 

interest, the RCS X t· After rearranging the various terms we obtain the following 

proposition (Fayard and Field, 2011). 

Proposition 5.3. The instantaneous values of the scattering cross-section are observ­

able through the intensity-weighted squared phase fluctuations, minus the intensity­

phase cross-volatility weighted by the tangent of the dyad angle <Pt 

(5 .32) 

if Xt is an Ito process, not necessarily a diffusion, and throughout space and time. 

Echoing the formula obtained for strong scattering ( 4. 1), we observe that the 

RCS Xt is expressed in terms of quadratic variations (which are positive for Ito pro­

cesses) and that the estimated state is known up to proportionality. 

5.2.2 Intensity fluctuations 

The similitude between the phase and intensity differentials (5.1) and (5 .2) suggests 

that a result analogous to Proposition 5.3 but in terms of the intensity fluctuations 

may exist. Indeed, after taking the square of (5.5) , we get 

(5.33) 
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where the first term in the right-hand side is a linear function of the state Xt. We 

then write 

(f
(E>)f(Z)) L ( 

(Z)) 
t t ft(E>) . (5.34) 

We can substitute in (5.33) an expression for ft(Z) obtained from (5.8) and (5.27) 

2Z I;(Z,E>) 

dZJ = 2BZtxtdt + t t¢ 
tan t 

(5.35) 

which yields the following result where the RCS is expressed in terms of the intensity 

fluctuations - in lieu of the phase fluctuations as in Proposition 5.3 ( orig. Fayard and 

Field, 2011). 

Proposition 5.4. The instantaneous values of the scattering cross-section are observ­

able through the reciprocal intensity-weighted squared intensity fluctuations, minus the 

intensity-phase cross-volatility weighted by the reciprocal of the tangent of the dyad 

angle cPt 

Xt = __!__ [ I;~Z) - I;~Z,8) l 
B 2Zt tanc/Jt 

(5.36) 

if Xt is an Ito process, not necessarily a diffusion, and throughout space and time. 

5.3 Experimental implications 

The practical consequences of Props. 5.3 and 5.4 are conveniently illustrated through 

synthetically generated data. In effect, and as opposed to experimentally collected 

data, this enables a comparison of the inferred cross-section obtained through the 

geometrical features of the scattered amplitude with the hidden state known from 

the simulation. These results are illustrated with a few distinct scattering situations. 

In both cases, the appropriate weakly scattered amplitude is generated through the 

numerical integration of (3.15) to which the appropriate coherence offset is adjoined as 
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in (3 .30). The amplitude 't/Jt is more conveniently generated through the (independent) 

integration of the speckle (3.7) and the texture (3.12) SDEs by the Euler- Mayamura 

method ( cf. Section 3. 5 or Higham ( 2001)). 

5.3.1 Phase fluctuations 

For discretely sampled data, Proposition 5.3 yields the following estimate for the state 

2 1 2 Z6G . - -c5Z·68 (tan A. .) ex x·n t t 2 t t '1-'t t t (5.37) 

where i is a discrete time index and { ni} are an independent collection of N(O , 1) 

distributed random variables. Applying a smoothing average (.) a to the left-hand 

side (the observations) of (5 .37) with window .6. = [to- 6c5t, t0 + 66t ], where bt and 6 

are respectively the sampling interval and the number of samples within a sampling 

window, yields an approximation to X t0 with an error that tends to zero as the number 

of pulses inside .6. tends to infinity and 6 ---t 0. 

We then consider a homodyned weakly scattered amplitude (i.e. , a constant co­

herent offset) for a Gamma distributed texture (which has respective drift and volatil­

ity coefficients b = o: - x and CJ = x). An estimate of the state is obtained through 

the smoothing of (5.37). Fig. 5.2 compares the cross-section obtained through the 

phase fluctuations (red solid) with the exact cross-section known from the simulation 

(black dot ted) , exhibiting a statistical correlation between the two of 0.9927. 

Our second simulation example takes a generalized weakly scattered amplitude 

for an inverse Gamma distributed texture (cf. Section 2.3.1.2), that is b = (o:-1)(o:­

x) and CJ = x2 . The inferred RCS is also a close match of the exact RCS (as evidenced 

from Fig. 5.3 with a correlation coefficient of 0.9912. 
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FIGURE 5.2: RCS inferred from a homodyned weakly scattered amplitude with a 
Gamma texture through the phase fluctuations Prop. 5.3. (For parameter values 

a= 5, A= w-3 , B = 10-2
, 8t = 0.025.) 
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FIGURE .5.3: RCS inferred from a generalized weakly scattered amplitude with an 
inverse Gamma texture through the phase fluctuations Prop. 5.3. (For parameter 

values a= 5, A= w-3 , B = w-2 , 8t = 0.025.) 
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FIGURE 5.4: RCS inferred from a generalized weakly scattered amplitude with a 
Gamma texture through the intensity fluctuations Prop. 5.4. (For parameter values 

a= 20, A= 10- 3 , B = 10-2, Ot = 0.05.) 
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FIGURE 5.5: RCS inferred from a homodyned weakly scattered ampli tude with an 
inverse Gamma texture through the intensity fluctuations Prop. 5.4. (For parame­

ter values a= 20, A= 10- 3 , B = 10- 2 , Ot = 0.05 .) 
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5.3.2 Intensity fluctuations 

The discretization of Proposition 5.4 yields the following estimate for the state 

(5.38) 

where { ni} are an independent collection of N(O, 1) distributed random variables 

(compare with (5.37)). As the companion estimate of (5.37), (5.38) yields another 

estimate of the RCS according to the procedure thoroughly described in Section 5.3.1 

for Proposition 5.3. 

Also provided are two simulation examples. First, a generalized weakly scat­

tered amplitude for a Gamma distributed RCS for which the estimated state and the 

exact state have a correlation coefficient of 0.986 ( cf. Fig. 5.4) and then a homo­

dyned weakly scattered amplitude amplitude for an inverse Gamma texture (Fig. 5.5, 

statistical correlation of 0.97 4 ) . 

5.4 Discussion 

5.4.1 Optimization 

The discrepancy between the RCS estimates (obtained through Props. 5.3 and 5.4) 

and the exact RCS is an important criterion to asses the fidelity of the inference 

processes. The smoothing error, in a MSE sense, is defined as 

N 

Esm(~) = IE [2:: (x~m- Xi)2] 
z=l 

(5.39) 

and depends on ~' the number of pulses over which the intensity and phase fluc­

tuations in, respectively, (5.37) and (5.38) are averaged. It is actually possible to 

derive analytical expressions for this analytical error and a subsequent condition on 

~ to optimize the inference. As the inference procedures for strongly and weakly 
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scattered amplitude share many features, these formulae are bearing a certain simil­

itude with those derived in the strong scattering case ( cf. Section 4.2.1, orig. Fayard 

and Field, 2008). In effect, the derivation steps for a strongly scattered amplitude in 

Section 4.2.2 are only concerned with the left-hand side of (4.4) and do not depend on 

the right-hand side, that is on the estimate obtained from the amplitude time-series. 

In other words, these results are connected to the time-evolution of the RCS rather 

than to the expression of the RCS estimate. 

Consequently, Propositions 4.2 and 4.3 are also valid for a weakly scattered 

amplitude. They are illustrated for a scattering pattern considered earlier in Sec­

tion 5.3.1. We consider a generalized weakly scattered amplitude for an inverse 

Gamma distributed texture. ARCS estimate was obtained through the phase fluctu­

ations (5.37). Simulation results are shown in Fig. 5.6. We can see therein that the 

analytical expression derived for a strongly scattered amplitude ( 4.6) captures also 

the MSE error for an inferred RCS extracted from a weakly scattered amplitude. 

5.4.2 Link with the strong scattering case 

Equation (5.32) is a generalization, for a weakly scattered amplitude, of an earlier 

result on the observability of the scattering cross-section for a strongly scattered 

amplitude (cf. Proposition 4.1, orig. Field, 2005). In this former situation, L:;~z,e) = 0 

and the scattering cross-section emerges as the intensity-weighted squared fluctuations 

of the phase. Before discussing further the connection between these two results, let 

us recall the respective expressions for the phases of the strong (from (3.26)) and 

weak (obtained from the drift (5.15) and volatility (5.16) diffusion tensors) scattering 

105 



Ph.D Thesis- Patrick Fayard McMaster- Electrical Engineering 
Chap. 5: Observability of the RCS for weak scattering 

x"104 

7,---,----,----,---,----,----,---.----,----,---~ 

6 

5 

4 

2 

experim~ntal error 
I 
I 

,,' /{_~,'s.·,, .,,, .. ,,_, :·:r. 

asymptotes 

,,'\ 

analytical error 

QL---~---L--~L---~---L----L---~--~----L---~ 

0 200 400 600 800 1000 1200 1400 1600 1800 :woo 
# of samples a windov,r 

FIGURE 5.6: Experimental and analytical MSEs between the exact RCS and the 
RCS inferred from a generalized weakly scattered amplitude with an underlying in­
verse Gamma texture, whose amplitude random walk structure conforms to (3.35), 
through the phase fluctuations (5.3). (For parameter values a = 20, A = w-3 , 

amplitude 

13 = w- 2
, ot = o.o5.) 

1 

(
Bxt) 2 dWt(O) (5.40) 
2Zt 

sm 8 -- - - - e b - e rJ - -Be Z 2 dt · [A(b r7 , ") 1 ];l 
2x 4x2 2 

-:2 zt~ sin 8t ( et - 2e~x) [ z + z~ cos 8(2e~Xt - et)] I Z2dt 

+ 2~, [ 2 (Bx,) t/2 ~ [ w;dC,] + (2Ao-,) l z,l sin<->, ~e,- 2c;x) dW,i"l] . 

(5.41) 

Since dBt is a pure volatility process, the fact that the cross-section is observable 

through the phase fluctuations is rather intuitive. Guessing the corresponding result 

for d8t requires a bit more of imagination. In the natural radial/angular basis, the 
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volatility coefficients are rather cumbersome whereas they have simpler expressions in 

the {at, ,Bt} basis when expressed in terms of et. In effect, the presence of a coherent 

offset in (3.30) spoils the geometrical structures of a strongly scattered amplitude, 

namely the independence between the radial and angular fluctuations. 

Upon the comparison of (4.1) and (5.32), the RCS estimate for a weakly scat­

tered amplitude possesses an additional term originating in the radial/ angular cross­

volatility. It is instructive that it also involves the angle of rotation of the dyad from 

that aligned to the instantaneous radial direction et. The result obtained in the strong 

scattering case was a consequence of the independence between the angular and radial 

fluctuations. Our discussion of the scattering amplitude fluctuations in Section 5.1.4 

projects the weakly scattered amplitude onto a new basis {at, ,Bt} in which the RCS 

is observable as the radial/ angular fluctuations d8t and dZt de-correlate like in the 

strong scattering case. Thereafter, the second term in the right-hand side of (5.32) 

accounts for the change of basis. 

As the coherent offset et tends to zero, so strong scattering is approached, 

L:~z,e) and tanc/>t tend identically to zero, whereas their ratio tends to AZtat/ x;. In 

such a case, the cross-section can only be obtained by solving the resulting cubic 

equation for Xt or alternatively by taking the limit of the aforementioned ratio. On 

the other hand, (5.32) is directly expressed in terms of observable quantities for 

et = 0. Consequently, out of the two expressions for the cross-section (5.32) and 

(5.36), only the former offers a convenient means the inference of the cross-section 

when no coherent offset is present. Nevertheless, since the volatility coefficients and 

the angle cPt are observable quantities, we have thus provided two procedures to extract 

the hidden cross-section from scattering data. 

Interestingly, Propositions 5.3 and 5.4 are purely geometrical in nature. They 

only stem from the compound representation of the strongly scattered amplitude in 

terms of a Gaussian process modulated the square-root of a real-valued population or, 

alternatively, from the dynamical random walk model (Jakeman, 1980). Moreover, 

both this multiplicative nature and the underlying statistical independence between 

Xt and It are well-established in the literature and have been justified on experimental 

grounds. An essential feature of these results (5.32) and (5.36) lies in their validity for 
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a broad range of experimental situations (as evidenced by the quite distinct simulation 

examples). It does not only pertain for an arbitrary cross-section Xt but also for any 

coherent offset et. It is a direct consequence of the multiplicative nature (3.11) of the 

scattered amplitude in terms of two independent components. As such, this technique 

might be used without prior assumption concerning the scattering pattern, provided 

that it conforms to the compound representation (and is likewise less sensitive to the 

formalism). 
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Chapter 6 

Conclusion 

6.1 Summary 

Firstly, in Chapter 2 we have described scattering from a rough medium, e.g., a marine 

surface. In particular, we have introduced the concepts of speckle and RCS. Owing 

to the complexity of the interaction between the incident wave and the rough surface, 

it is easier to provide a statistical description of the scattering process as opposed to 

one based on solutions of Maxwell's equations with boundary conditions (Blackledge, 

2009). A widespread model for the received amplitude is that of a random walk with 

a fluctuating number of steps which paves the way towards the K ~distribution for 

the scattered intensity that radar engineers are using to model radar returns. Of 

the two components it involves, the Rayleigh speckle and the local power (the RCS), 

the latter may be justified on the basis of an underlying discrete BDI population 

model (for which the transitions are linear functions of the actual population level). 

Next, we have provided a Fokker~Planck description for the texture of the scattered 

amplitude. Extending this model to a broader class of diffusion processes, the Pearson 

class, enables the derivation of a few other probability distributions, principled after 

an extension of the BDI process, that have been successfully confronted with actual 

radar data. 
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In Chapter 3, which does not contain any new result, we have provided a 

thorough account of the dynamical stochastic model ( orig. Field and Tough, 2003b) 

accounting for the strong scattering amplitude, phase and intensity dynamics. Based 

on the same conceptual decomposition of the scattered amplitude as a random walk 

model with step number fluctuations, it yields the compound representation of the 

K-scattered amplitude in terms of a Rayleigh speckle and a Gamma texture most 

characteristic of actual scattering data (Ward, 1981). vVe have also defined the weak 

scattering situation in which the strongly scattered amplitude lies in the presence of 

a coherent offset. Next, we have recalled the spectral properties of a weakly scattered 

amplitude that can be obtained from the propagator of the RCS SDE. In effect, an 

advantage of the dynamical representation is the possibility to derive any high-order 

statistics from the propagator of the RCS. This chapter ends with a discussion of the 

numerical simulation of SDEs which enables one to emulate scattering patterns in 

order to assess this thesis' findings. 

In Chapter 4 we have investigated how the RCS could be inferred from the 

time-series of a strongly scattered amplitude. Out of the two components of '1/Jt intro­

duced in Chapter 3, the slowly varying RCS and the more rapidly varying speckle, 

only the former is of interest for radar engineers. Walking in the steps of Field (2005) 

where a procedure to extract the RCS from the intensity-weighted fluctuations of 

the phase was outlined, we have provided an analytical expression for the subsequent 

discrepancy between the exact RCS and the estimated RCS. This formula, depending 

on the number of samples over which the phase de-coherence is averaged optimizes 

the inference procedure by specifying a condition on the smoothing window length. 

Also considered was another experimental situation where a strongly scattered am­

plitude lies in superposition with an additional white noise (see Watts, 1981). In this 

case, anomaly detection was shown to still be possible through the phase fluctuations 

after a filtering step which takes advantage of the known spectral properties of the 

received amplitude, derived from the stochastic dynamical model developed by Field 

and Tough (2003b). 

Chapter 5 aims to extend the result given in Chapter 4 to a weakly scattered 

110 



Ph.D Thesis - Patrick Fayard 
Chap. 6: Conclusion 

McMaster - Electrical Engineering 

amplitude. An essential feature of the strongly scattered amplitude is the indepen­

dence between its radial and angular fluctuations which permits the inference of the 

RCS. Owing to the presence of a coherent offset, this property is no longer valid for a 

weakly scattered amplitude. Nevertheless, scrutinizing the geometry of weakly scat­

tered amplitude fluctuations permits the derivation of two distinct procedures to infer 

the RCS. In effect, the angle ofrotation of the dyad cPt w.r.t. which the fluctuations of 

Wt de-correlate is connected to the cross-volatility of the process. As such, decompos­

ing the scattered amplitude fluctuations into radial and angular components enables 

the expression of the RCS in terms of observable quantities. These results originate 

from the geometrical features of the weakly scattered amplitude and thus encompass 

the aforementioned equivalent result for a strongly scattered amplitude described in 

Chapter 4. 

6. 2 Discussion 

The compound Gaussian model for the scattered amplitude posits a Gaussian speckle 

/t modulated by a slowly varying cross-section Xt· For the latter, we have consid­

ered four different probability densities: Gamma, inverse Gamma, beta of the first 

kind and beta prime distributions. The various scattered amplitudes resulting from 

these textures through (2.17) have all been shown to suit scattered data (Delignon 

et al., 1997; Gini et al., 2000; Delignon and Pieczynski, 2002; Balleri et al., 2007). 

They were obtained as the asymptotic densities of diffusions belonging to the Pearson 

class. Stating the dynamics of these textures under the form (2.46) has experimental 

advantages since their propagators, known from Wong (1963), enables the derivation 

of any higher-order statistics. This family of processes has been justified on the basis 

of an underlying discrete population model, accounting for the step number fluctua­

tions of the random walk model (2.1), which is nothing but the BDI process (which 

yields a K -distributed amplitude) with additional quadratic terms in the state transi­

tion functions. Thus provided is a framework, physically motivated, that incorporates 

the aforementioned textures. As a parametric generalization of the BDI process, the 

Pearson class of diffusions could provide a more refined model for scattering data 

111 



Ph.D Thesis- Patrick Fayard 
Chap. 6: Conclusion 

McMaster - Electrical Engineering 

that exhibit a slight deviation from the K -distribution. Another advantage of the 

Pearson class of diffusions coupled with the multiplicative representation of the scat­

tered amplitude is the possibility to extract the population model parameters from 

the scattered intensity moments. 

The stochastic framework detailed in Chapter 3 enables the inference of the 

RCS from the scattered amplitude time-series (coherent data) through the intensity­

weighted phase de-coherence (Field, 2005), as illustrated for the texture models dis­

cussed in Section 4.1.4. This theorem is of crucial importance for radar applications 

since it facilitates means of anomaly detection. In spite of the very strong correlation 

coefficient between the hidden and estimated cross-sections, they exhibit a certain dis­

crepancy since the data are necessarily sampled/ generated at finite pulse frequency. 

An important new result of the current thesis is to quantify analytically the extent 

of this error and the derivation of a condition (on the number of pulses over which 

the phase de-coherence is averaged) to minimize it. These formulae have been shown 

to capture precisely the inference error (as illustrated in Section 4.2.4 for syntheti­

cally generated data). They are rooted on the independence between the sampling 

process and the cross-section dynamics and as such, they solely depend on the RCS 

dynamics (more precisely, its volatility coefficient). In particular, they are neither 

impacted by the scattered amplitude time-series which they are extracted from nor 

by the exact expression of the state estimate which is proportional to zi6BT. In an 

experimental context, a benefit of these findings is to be equipped beforehand with an 

estimate of the number of samples necessary to obtain a proper estimate of the RCS. 

The strong correlation guaranteed by Proposition 4.1 could be lost if the smoothing 

window were to be too large or too small ( cf. Fig. 4.5 for the impact of the smoothing 

length). Another advantage is to reduce the computational cost of the smoothing 

procedure. Without knowing 6 opt, it would be necessary to try a number of different 

window lengths to make sure that the inferred state is a good estimate. Thanks to 

( 4. 7) this supplementary computational burden may be reduced. Furthermore, the 

derived formulae are only marginally sensitive to the range of the model parameters 

(e.g., sea-state, characteristic de-correlation time) as discussed in Section 4.2.5, thus 

asserting their robustness for experimental situations. Next, we have considered the 

experimental situation where the K -distributed noise lies in superposition with an 
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additional white noise. The presence of this undesired term is a likely challenge to 

overcome for real scattering data. A first contribution was to give a dynamical rep­

resentation of the noisy K-scattered amplitude originally described in Watts (1981). 

Indeed, ( 4.32) is easier to apprehend than the usual statistical description ( 4.33) and 

resembles a classic filtering problem which could be solved by the classical Wiener 

filter. After a filtering step, it is possible to extract the RCS from the de-noised 

amplitude. The resulting inferred RCS, though not as accurate as the RCS extracted 

from a pure K -scattering process, facilitates anomaly detection in the presence of an 

additional white noise. 

The major contribution of the present work was to demonstrate how the RCS 

could be extracted from the time-series of a weakly scattered amplitude, thus gener­

alizing the results described in Chapter 4 for strong scattering. We shall remind the 

reader of the definition of a weakly scattered amplitude 

(6.1) 

as a strongly scattered amplitude lying in superposition with a coherent offset. This 

additional state-dependent term et annihilates the most important features of 1/Jt = 
rtxi12 from which the results given in Chapter 4 are derived: its multiplicative repre­

sentation and the independence between its angular and radial fluctuations. It should 

be appreciated that the argument for the observability of the RCS for a weakly scat­

tered amplitude is rooted on two ingredients related to these two properties. The first 

element is to decompose the fluctuations of dZt and d8t into (independent) terms 

originating from the speckle and terms originating from the texture (for the coherent 

offset et is a function of the state Xt). It is as if we were to transpose the multiplicative 

nature of a strongly scattered amplitude to the fluctuations level. Incidently, this de­

composition of d'llt facilitates the derivation of the scattered amplitude dynamics for 

an arbitrary coherent offset ( cf. the diffusion tensor (5.16) which can be seen as the 

transposition of the formulae anteriorly given in Field and Tough (2005) to a more 

natural basis). Moreover, this decomposition points out the analogies between the 

(fluctuations of the) radial and angular components of the scattered amplitude which 

are nothing but the real and imaginary parts of the same quantity W~dWt. Also, from 
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(5.27), the (tangent of the) angle cPt emerges as a measure of the relative strength 

of the radial and angular fluctuations originating from the texture. The second ele­

ment is the geometry of a weakly scattered amplitude fluctuation (its investigation in 

Field and Tough (2005) is thereafter a posteriori motivated by the thesis' findings). 

As described in Field (2005), the observability of the RCS for a strongly scattered 

amplitude applies to a situation where the angular and radial fluctuations of 'lj;t are 

independent. Keeping this in mind, our derivation of Propositions 5.3 and 5.4 may 

be seen as a basis transformation which projects the radial and angular fluctuations 

into a more natural basis where they de-correlate. Thereafter, the observability of 

the RCS is proven by the same token as in the strong scattering case. If we develop 

further this idea, the additional terms in (5.32) and (5.36) account for the change 

of basis. Thereafter, the observability of the RCS for a strongly scattered amplitude 

reported in Field (2005) is a particular instance of Proposition 5.3. In light of our 

present contribution, this earlier result is encompassed by our discussion when the 

second term in the right-hand side of (5.32) vanishes and thus requires the angular 

and radial components of the scattered amplitude fluctuations to be statistically in­

dependent. For certain radar applications, this is a legitimate assumption. For weak 

scattering however, this assumption fails (as evidenced by (5.8)) and the correlation 

structure represented by the cross-volatility provides an essential ingredient to observe 

the cross-section. Moreover, a supplementary method of inferring the RCS through 

the intensity fluctuations, which was not given in Field (2005), can be derived thanks 

to the aforementioned similarities between the radial and angular fluctuations. All 

these inference algorithms provide estimates for the RCS in local time at a small 

computational cost. The techniques, as in Field (2005), are also not confined to the 

category of diffusions, extending into the wider class of Ito processes for the vari­

ous scattering quantities. Next, our methods can be applied with little assumptions 

concerning the amplitude model. In effect, both strong and weak scattering (for any 

coherent offset) are covered by this expression. As such, the techniques presented 

may be used without prior assumption concerning the detailed scattering dynamics, 

provided they conform to the compound representation. It is an advantage since 

the procedure is less sensitive to modeling approximations which could enhance its 

robustness w.r.t. real data. This is illustrated by the various simulation examples 
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which show that the inference procedures work equally well for a HK/GK amplitude, 

or for any texture. Finally, it is comforting that the expressions derived in Chapter 4 

to optimize the recovery of the RCS of a strongly scattered amplitude are also valid 

for our two procedures. 

6.3 Future research 

The performance of any processing scheme is ultimately limited by the extent to which 

its underlying modeling of the signal is realistic. The results given in this thesis are no 

exception. Although experimental accounts in Field and Tough (2003a) or in Bakker 

et al. (2007) have successfully confronted the theoretical description of the scatter­

ing amplitude given in Chapter 3 with actual radar returns, the inference techniques 

proposed in Chapters 4 and 5 are still awaiting experimental validation. We can an­

ticipate the two following challenges for more practical applications. Firstly, real data 

are likely to be corrupted by an additive measurement noise that might spoil the geo­

metrical properties of the scattered amplitudes on which our inference procedures are 

based. Secondly, data will need to be sampled at high enough frequency, as discussed 

in Section 4.1.2. A number of experimentalists (e.g. Farina et al., 1997) have observed 

that different polarizations yield distinct scattering patterns. Our discussion does not 

incorporate this issue and it would be interesting to see how the polarization influ­

ences the stochastic model discussed in Chapter 3. In particular, would it just impact 

the RCS parameter o: in (3.13), as suggested by the empirical models for the RCS 

(Horst et al., 1978), or more generally, the drift and volatility functions. As discussed 

in Section 2.3.3, as the parameters of the underlying population model are observable 

through the intensity moments, experimental differences between polarization could 

be better understood in terms of the associated population model. One should ob­

serve that Proposition 5.3 is valid as it stands for: arbitrary cross-section dynamics 

Xt, weak or strong scattering, any coherent offset et. As such, the inference procedure 

may be expected not to be much impacted by modeling shortcomings. For actual 

scattering data, this feature represents an asset. In another more applied setting, it 

would also be useful to devise more efficient schemes to compute the cross-volatility 
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I:~z,e) and tan rPt that feature on the right-hand sides of (5.32) and (5.36). Also, 

the statistical description of the sea clutter enables the derivation of probabilities of 

detection/false alarms which in turn permit to set up a radar's specifications. Our 

approach should also be translated in terms of radar specifications. 

The findings highlighted in this thesis may also be relevant to spin dynamics in 

NMR and spectroscopy applications. In this context, the sample to be examined lies 

inside a constant magnetic field B0 which aligns the spins of the protons. After being 

excited by a RF pulse, the orientation of the magnetization vector is shifted by goo. 

The free induction decay (FID) signal arises from the motion of the spins moments 

back to their equilibrium situation. The random fluctuations of a spin system at 

equilibrium (as postulated by NMR pioneers like Bloch (1946)) is a key ingredient 

to understand the nature of the FID signal. Physically, these fluctuations originate 

from a number of small molecular interactions. As investigated in Field and Bain 

(2009) they may be accommodated by the random walk model (2.1) for a constant 

number of steps. In effect, NMR imaging and scattering from a random medium 

share certain features, that is, the in-phase and quadrature-phase decomposition of 

the received signal. Nevertheless, the analogy between NMR scattering and scattering 

from a rough medium is more mathematical than physical (since magnetic resonance 

is mainly near field). This random walk model could provide a theoretical description 

of the spin noise which recently attracted interest (Miiller and Jerschow, 2006) where 

a spin-noise signal (weak compared to the signal following a pulse) is observed for a 

spin population at equilibrium. Thereafter, the relaxation time T2 is observable as the 

reciprocal of the characteristic frequency B in (3. 7). As opposed to the current thesis 

which aims to infer the time-varying population of scatterers, most NMR applications 

posit a spins' population constant over time. As such, most of the findings exposed 

in Chapters 4 and 5 are not directly relevant to NMR applications. Nonetheless, the 

coherent offset in (3.30) could account for an exogenous disturbance of ferromagnetic 

origin that would prompt the spins towards a particular orientation. Moreover, the 

K -distribution plus noise model ( 4.32) echoes spin noise experiments where the tiny 

signal of interest lies in an additional thermal noise. As such, the discussion of the 

spectral properties of the scattered amplitude and the algorithm to extract B could 
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motivate further work to investigate the relevance of the current thesis to magnetic 

resonance applications. 

We have discussed in Chapter 2 how the texture dynamics could be derived on 

the grounds of a first-order population model. Further extensions of this scheme may 

well deserve attention (e.g., considering higher-order transitions) to account for more 

exotic temporal correlation structure. Also, the current description (2.25) does not 

reflect the spatial correlation experimentally observed in the texture. Recent work has 

extended the population model for the RCS at a single point in space to be spatially 

a correlated one, in which the spatial correlation is induced by inter-site migration, 

and a corresponding continuum (space) limit in terms of a path integral formalism 

has been discovered (Field and Tough, 2010). Although this work is restrained to a 

discrete population (i.e., it does not cover the SDE description of scattering when the 

population's mean gets asymptotically large), it has significant potential for radar 

simulations, especially for the generation of spatially correlated RCS patterns. 

For temporal correlation, non-stationary patterns may be introduced in (3.12) by al­

lowing the variable A to be explicitly time-dependent. By virtue of the corresponding 

appearance of A(t) in (2.41), the asymptotic distribution of the RCS is unaffected. 

Another possibility is to consider stochastic delay differential equations where the 

drift term is expressed as Guillouzic et al. (1999) 

(6.2) 

for a delay T. This recent extension of stochastic calculus was used for optics ap­

plications (Garcia-Ojalvo and Roy, 1996) for example. Interestingly it is possible to 

justify (6.2) on the basis of a delayed random walk (Ohira, 1997). The advantage 

of this approach is that it enables the derivation of non-stationary processes whose 

autocorrelation exhibits the temporal correlation experimentally observed for radar 

clutters (cf. Farina et al., 1997, Fig. 11). Further work may also attempt encompass 

the spikes observed in the radar return by the means of discrete jumps in the scatter­

ers' population. The class A (Middleton, 1983) model posits the presence of spikes 

that are coherently added. Physically, they correspond to scattering from the crests 

of incipiently breaking waves and to the whitecaps. 
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As discussed in Section 4.1.2, for a strongly scattered amplitude, the inference 

process may be seen as related to the generalized Kalman filter1 ( cf. 0ksendal, 1988, 

Chap. 6) where we extract a hidden state Xt through an observable state Zt 

Abtdt + (2Aat)! dWt(x) (6.3) 

[A (b~:t) + B(xt- Zt)] dt 

+(2Aat)! (~:) dvVt(x) + (2Bxtzt)! dw?l. (6.4) 

Interestingly, the solution originally provided by Field (2005) to this non-linear prob­

lem is independent of the dynamics of the hidden-state since Proposition 4.1 is valid 

for an arbitrary RCS Xt. By comparison, the Kalman estimate builds upon the state 

transition model of the hidden state (here, the drift bt and volatility O"t parameters) 

to construct a state estimate continually updated by comparing the actual state to 

the expected one. In the current thesis, the procedure we have outlined provides the 

exact time-series of the hidden state, directly extracted from the observed state. The 

situation becomes more intriguing for a weakly scattered amplitude where 

Abt(t, xt)dt + (2Aaz(t, :rt)) 112 dWt(x) 

e( t, Xt) + /txi 12
. 

(6.5) 

(6.6) 

Noticeably, a broad range of processes are covered since the inference techniques stand 

for any texture Xt and any coherent offset et. The above coupled system of equations 

is more indirectly reminiscent of the generalized Kalman filter where et represents 

the observation model that maps the hidden state Xt into the observation state Wt 

and where '1/Jt = rtxi 12 is a state-dependent non-linear noise additive component of 

the measurement. However, close scrutiny reveals that the weak scattering dynamics 

does not fit precisely into the standard filtering framework, even if one allows for non­

linearity in the dynamical equations. This is due to the precise dependencies of the 

measurement process on the state in terms of the noise and dynamical parameters. 

Thus, a non-linear filter does not exist to extract an estimate of the state for weak 

1which requires the Brownian terms of the hidden/observed states to be independent which is 
not the case for (6.3) and (6.4) 
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scattering. Similar remarks apply to attempts to estimate the cross-section from 

intensity time series, for strong (or weak) scattering. The approach developed in 

Chapter 5 is therefore of essential value, enabling filtering for situations in which 

standard non-linear filtering methods fail. In this vein, Propositions 5.4 and 5.3, 

which enable the recovery of the state Xt, emerge as a filtering algorithm that exploits 

the geometry of the observed state's volatility. Motivated by the change of perspective 

offered by these inference techniques, one may investigate whether in a more general 

situation, when '1/Jt is not specified by (3.11), the observed state volatility also permits 

the inference of the state Xt· The performance of such an 'ideal filter' that extracts 

time-series of the hidden state should then be compared with existing (approximate) 

non-linear filtering techniques. 
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Appendix A 

BDI model 

The following appendix provides an overview of the BDI model. Refer to Bartlett 

(1966) for a complete exposition. 

A.l PDE for the partition function of a BDI model 

For generation rate G N ( t) and recombination rate RN ( t), the master equation reads 

(cf. Fig. 2.2) 

(A.1) 

If we consider a BDI population model with transition rates GN(t) = >..N + v 

and RN(t) = pN, (A.1) becomes 

(>..(N- 1) + v) PN-1- ((>.. + ~t)N + v) PN + (~t(N + 1)) PN+l· 

(A.2) 
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By considering the summation over N of (A.2) weighted by zN, we obtain 

CXl (X) CXl 

L (>..N + v) zN+1 PN- L (>..N + f-lN + v) zN PN + L (pN) zN- 1 PN 
N=O N=O N=1 

CXl CXl 

v(z- 1) L zN PN + (z- 1)(>..z- p) L zN-1 PN 
N=O N=1 

8IIt(z) 
(>..z- p)(z- 1) [)z + v(z- 1)IIt(z) 

with the initial condition 

(A.4) 

where N0 is the initial number of individuals. 

A.2 Partition function for a BDI population 

A.2.1 Forward Kolmogorov equation 

To find the solution of the FPE (A.3) with initial condition (A.4), we first need to 

consider the partition function in discrete time IIr(z)r=0,1,2· Let us introduce the 

distribution of the progeny 

(A.5) 

G(z) represents the evolution over one time-step of a single individual. Given G, 

one can propagate IIr (under the assumption that the individuals behave identically, 

independently) through the backward and forward Kolmogorov equations 

G (IIr(z)) 

IIr ( G(z)) 
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For a sufficiently small time-step Ot , G can be expanded as 

G( z) = z + g( z )bt + l(bt) (A.8) 

where the first time accounts for the self-replication of the individual if Ot = 0. The 

time-derivative of the partition function may be expressed as 

arrt( z ) 
at 

arrt( z) 
at 

1
. I1r( z ) - I1r-l (z ) 
llll -----,-----

Ot ---+0 Ot 

g(I1t( z )) 

(A.9) 

(A.10) 

where we have used the backward Kolmogorov equation (A.7) to substitue I1r_1(z + 
g( z )ot + l(Ot)) ~ I1r_1 (z) + arrr-daz * g( z) Ot. By identifying g between (A.2) and 

(A.10) without taking into account the immigration v = 0, 

g( z ) = /\ (z2
- z ) + J-L(1 - z ). (A.ll) 

A.2.2 Birth-death process 

Equation (A.10) is solved via the method of characteristic functions (Bartlett , 1966). 

Let Ilt(z) = \I!(Z). A constant Z corresponds to curves in (t, z) plane. Along such a 

curve, 

diT 0 (A.12) 

arr arr 
az dz + at dt = 0. (A.13) 

So, ( A.10) reduces to the differential equation along a curve 

dz an -at 
(A.14) 

dt 8"il 
oz 

dz 
-(z - 1)(,\z - J-L). (A.15) -

dt 
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Under the change of variables z- 1 = 1/u, a solution to (A.15) reads 

where we have introduced 

p 

In terms of the partition function, (A.16) is recast as 

Ilt(z) = W (____!!__- t .AePdt) . 
z- 1 } 0 

(A.16) 

(A.17) 

(A.18) 

Next, we have to make sure that our solution complies with the initial condition 

(A.4), namely II0 (z) = z. Therefore, we have z = 'l/(1- 1/z) and w(x) = 1 + 1/x. 

The solution to (A.3) is therefore 

1 + [____!!__ - t .AePdt]-l 
z -1 Jo 

A.2.3 Effect of immigration 

(A.19) 

Before taking into account the immigration, let us introduce G(z, t, T ), the partition 

function at timet for an individual present at timeT in absence of immigration. Next, 

at any given time, the number of individuals may be written as 

(A.20) 
r 

where the superscripts (BD) and ( Tr) denote, respectively, the individuals of the pure 

birth-death process and the individuals that have immigrated at time Tr· 
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Since the N (Tr) are independent over r, we can write the partition function as 

(A.21) 

(A.22) 

where the first term can be written as GN°(z , t , 0) 1 since it depicts the original in­

dividuals subjected to a birth-death process at time t. As the probability that one 

individual immigrates in the interval h, Tr + ~T) is given by v(Tr)~T, we can sub­

stitute 

(A.23) 

and the partition func t ion reads 

(A.24) 

which reduces to 

GN°(t , z, 0)exp [it (G(t,z,T) -l)v(T)dT] (A.25) 

in the limit ~T ---+ 0. 

For a BDI model with constant transition rates, (A.25) is found to be 

(A.26) 

where T = e(>,-p.)t if we substitute G( z, t , T) the formula (A.l9) evaluated at time 

t' = t- T. 

1this term actually tends to one since the original individuals will die at some point. Compare 
with (Vyasa, before 3rd century BCE): "For the born, death is certain. These bodies come to an 
end , only the vast embodied Atman is eternal. Therefore, you must fight Arjun !" 
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Ito calculus 

The following appendix provides an overview of stochast ic calculus, for the reader 

unfamiliar with these concepts. Refer to 0 ksendal (1988) for a complete exposit ion. 

B.l Brownian motion 

B.l.l Derivation 

Consider the independent coin tossing experiments with p = q = 1/ 2. Put 

X _ { 1 if w1 = H 
1 - -1 1.f H Wj =-

(B.1) 

and define the 1-D symmetric random walk 

(B.2) 
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The 1-D random walk is a discrete stochastic process with positive quadratic 

variation The quadratic variation of the 1-D random walk, defined as 

n 

[NI, 1\II]n L (Mk- 1\lh-1)
2

' (B.3) 
k=l 

is positive and reads 

(B.4) 

This notion of quadratic variation is a key ingredient of Ito calculus (Karatzas and 

Shreve, 1988, Chap. 3). The Wiener process is obtained as the limit for a large n of 

the scaled random walk 

(B.5) 

B.l.2 Properties 

A Brownian motion or Wiener process Wt, illustrated in Fig. B.1, is a stochastic 

process satisfying the following three properties 

1. Initial condition: Wt=O = 0 

2. Independent increments 

(B.6) 

where s < t :::;; u < v so that the increments over non-overlapping intervals are 

independent. 

3. Normal increments 

Wt- Ws rv N(o, it- si) (B.7) 
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B.2 
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FIGURE B .1: Realizat ion of a Wiener process. 

Stochastic Differential Equation 

A SDE for the stochastic process Xt is, in terms of the drift coefficient bt and of the 

volatility coefficient :Et, an equation of the form: 

(B.8) 

which is a shorthand notation for 

t t Xt = Xo + Jo b(s , Xs)ds + Jo :E(s, X 8 )dW8 . (B.9) 

B.3 Ito integral 

The definition of the SDE (B.8) makes use of an Ito integral, where the integrand is 

taken with respect to a Brownian motion Wt. This notion is a key point in stochastic 

calculus and appears as an extension of the Lebesgue integral. Let 0 = t 0 < h < ... < 
tn = T be a partition and F8 (w) be a bounded and elementary stochastic process. 

We define its integrands fj as F5 (w) = 2.:.::7~~ Jj(w)] [tj;tJ+tl where ] is the indicator 
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function. For these integrands, we can define the Ito integral I 8 , for tk _S s _S tk+l by 

n-1 

L Jj (Wtj+ 1 - Wtj) + fk(Ws- Wk)· 
j=O 

(B.lO) 

for the Brownian motion Wt. The Ito integrand satisfies the additional property 

B.4 Ito's formula 

dt, if a= 2 

0, \:Ia > 2. 

(B.ll) 

(B.l2) 

For a twice continuously differentiable function j, the Ito differential of the random 

variable yt = j(t, Xt) is given by 

(B.13) 

Ito's formula constitutes a departure from the classical rules of calculus as the process 

Xt has positive quadratic variation. 

B.5 Ito product rule 

Ito product rule is a modification of the classical Leibnitz rule. Explicitely, for a pair 

of stochastic processes Ut vt, we write the product differential as 

(B.l4) 

in which the third term accounts for the processes' quadratic variations. 
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B.6 Stratonovich vs Ito integrals 

A stochastic process Xt has two concurrent representations 

dX, = { 
b(I ) dt + Eel Wt 

b(5 )dt +E o dvVt 
(B.15) 

in which b(I) b(S) denote the drifts in the Ito and Stratonovich senses and 'o' is a 
' 

shorthand that indicates the Stratonovich prescription for taking the stochastic in­

tegral, i,e., the volatility is evaluated at the midpoint of each interval. These two 

prescriptions define uniquely a stochastic process X t and their coefficients are related 

as (Field, 2009, pp. 155- 156) 

1 
Eel vVt + "2 Eox Edt 

b(S) +~Eo .E 
2 X 

(B.16) 

(B.17) 

where the factor ~ originates from the fact t hat the Stratonovich integral is evaluated 

at the midpoint . 
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Useful mathematical facts 

This Appendix provides the reader with a definition of the common probability 

distributions mentioned in the thesis and of various special functions quoted from 

Abramowitz and Stegun (1972); Wolfram (1999). Also given are a few formulae from 

Gradshteyn and Ryzhik (1967). 

C.l Probability distributions 

C.l.l Poisson distribution 

JP> [x] (C.1) 

for x = 0, 1, 2 .... 

¢x (s) = ea(es- l ) IE[x] =a Var(x) =a 
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C.1.2 Negative binomial aka Pascal 

IP'[x] (x-1) 
k-1 

pk(1 _ 1)x-k (C.2) 

for x = 0, 1, 2 ... k. 

( )' ¢x(s) 
pes 

(C.3) 
1- (1- p)e8 

IE[x] = kjp Var(x) = k(1- p)jp2 

C.1.3 Gaussian 

IP'[x] (C.4) 

for -oo < x < oo. 

C.1.4 Gamma 

IP'[x] (C.5) 

for x > 0. 

1 v 

¢x(s) = 1 _ s/b IE[x] = ~ Var(x) =; 
for x 2: 0. 
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C.1.5 Cauchy 

IP[x] 
1 b 

1r (x - m) 2 + b2 
(C.6) 

for x > 0. 

A.. ( ) eims-blsl 2 

'f'x S = (C.7) 

The moments J-ln are undefined for n 2:: 1. 

C.1.6 Rayleigh 

IP[x] (C.8) 

for x > 0. 

IE[x] = {!; 2- 7r /2 
Var(x) = 

2 a 

C.l. 7 K - distribution 

bv roo 
IP[z] r(v) Jo xv-2exp( - bx)exp( - z/x)dx (C.9) 

(C .10) 

(C. ll) 

(C.12) 
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(exp( -uz)) 
blJ rX) rXJ 

f(v) lo X
11

-
2exp( -bx)dx lo exp( -tlZ- zjx)dz (C.13) 

--- dx 
b11 100 

X
11

-
1 exp( -bx) 

r(v) 0 1 + ux 
(C.14) 

~ {
00 exp( -bsju) ds 

u}0 (1+s) 11 
(C.15) 

from which the moments (C.10) are recovered by an appropriate small u expansion. 

The behaviour of the tail of (C.9) is approximated by the same token as (C.28) 

(Ward et al., 2006) 

IP[z] = -z(v-1)/2 sv-2 exp( -vz(bs + 1/ s ))ds blJ 100 

r(v) 0 
(C.16) 

~ --z(v-l)/2 exp( -2v;i;) exp( -by'b";p2 )dp 
bv/2+1 joo 
r(v) -oo 

(C.17) 

b(2v+l)/4 . 
~ r(v) z(2v-3)/4 exp( -2VZb)Vif. (C.18) 

C.2 Special functions 

C.2.1 Bessel functions 

The nth Bessel function of the first kind ln(x) is defined as the solution to the differ­

ential equation 

(C.19) 

that is non-singular at the origin. It can also be defined by the contour integral 

(C.20) 

for a contour containing the origin, traversed in counterclockwise direction. 
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The nth Bessel function of the second kind Yn(x) is the solution to (C .19) that 

is singular at the origin. It is related to In ( x) by 

Jn(x) cos(mr)- ]_n(x) 
Yn(x) = 

sin(mr) 
(C .21 ) 

The modified Bessel function of the first kind In ( x) is defined by the contour 

integral 

I (7) = - 1
- f eHt+i )cn- 1clt 

n ~ 2nj 

for a contour containing the origin, traversed in counterclockwise direction. 

The modified Bessel function of the second kind Kn ( x) is defined as 

7r In(x)- In(x ) 
Kn(x ) = 

2 sin(nn) 

C.2.2 Gamma function 

(C.22) 

(C.23) 

The Gamma function is defined to be an extension of the factorial to complex and 

real number arguments. Thus, for an integer argument, the Gamma function reduces 

to 

r(n) = (n- 1)!. (C.24) 

If R(z) > 0, it has the integral representation 

r(z) = 100 

exp( -t)e-1clt. (C.25) 

The Gamma function may be recast as 

r(z) = zz 100 

exp(z(log(t)- t))clt, (C.26) 
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which can be approximated as (Stirling's approximation) 

f(z) ~ z2 exp( -z) 1: exp( -zp2 /2)dp 

r(z) ~ Z
2 exp( -z)f¥. 

C.2.3 Hypergeometric function 

(C.27) 

(C.28) 

The hypergeometric function pFq(a1 , ... , ap; b1 , ... , bq; x) is a function defined in forms 

of a hypergeometric series, that it, the ratio of successive terms is given by 

(k + bi)(k + b2) ... (k + bp)(k + 1) X, 
(C.29) 

where the terms (k + 1) is present for historical reasons. 

C.3 Formulae 

1
00 

v-1 _fi_'Yxd x e x x 
0 

r(r)r(1 + 1-L + n- r) 
n!f(1 + 1-L- r) 

for ~[r] > 0 (C.30) 

2 ( ~)' K"(2.jjfY) for 'R[1] > 0, 'R[;J] > 0 (C.31) 

(C.32) 
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