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ABSTRACT

Background and Objectives:

I investigated the use of sensitivity analyses in assessing statistical results or analytical
approaches in three different statistical issues: (1) accounting for within-subject
correlations in analyzing discrete choice data, (2) handling both-armed zero-event studies
in meta-analyses for rare event outcomes, and (3) incorporating external information using

Bayesian approach to estimate rare-event rates.

Methods:

Project 1: I empirically compared ten statistical models in analyzing correlated data from a
discrete choice survey to elicit patient preference for colorectal cancer screening. Logistic
and probit models with random-effects, generalized estimating equations or robust

standard errors were applied to binary, multinomial or bivariate outcomes.

Project 2: I investigated the impacts of including or excluding both-armed zero-event
studies on pooled odds ratios for classical meta-analyses using simulated data. Five
commonly used pooling methods: Peto, Mantel-Haenszel fixed/random effects and inverse

variance fixed/random effects, were compared in terms of bias and precision.
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Project 3: I explored the use of Bayesian approach to incorporate external information
through priors to verify, enhance or modify the study evidence. Three study scenarios were
derived from previous studies to estimate inhibitor rates for hemophilia A patients treated
with rTAHF-PFM: 1) a single cohort of previously treated patients, 2) individual patient

data meta-analysis, and 3) an previously unexplored patient population with limited data.

Results and Conclusion:

Project 1: When within-subject correlations were substantial, the results from different

statistical models were inconsistent.

Project 2: Including both-armed zero-event studies in meta-analyses increased biases for

pooled odd ratios when true treatment effects existed.

Project 3: Through priors, Bayesian approaches effectively incorporated different types of

information to strengthen or broaden research evidence.

Through this thesis I demonstrated that when analyzing complicated health research data,
it was important to use sensitivity analyses to assess the robustness of analysis results or

proper choice of statistical models.



PREFACE

This thesis is a “sandwich thesis”, which combines three individual projects prepared for
publication in peer-reviewed journals. The following are contributions of J. Cheng in all
the papers included in this dissertation: developing the research ideas and questions;
developing analysis plans; designing the simulations and programming the codes;
conducting all the statistical analysis; preparing all figures and tables; writing all of the
manuscripts; submitting the manuscripts; and responding to reviewers’ comments. The

work in this thesis was conducted between Fall 2010 and Winter 2015.

The work of the first paper has been published. The send and third papers have been

submitted to peer-reviewed journals.
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CHAPTER 1

INTRODUCTION

“Evidence based medicine is the conscientious, explicit, and judicious use of current best

evidence in making decisions about the care of individual patients.”

-- David Sackett et al. BMJ. 1996[1]

Decision-making in patient care is an interactive process which integrates three
components: clinical state, patient preference and research evidence [2]. As Sackett et al
[1] note in the above quote, the use of the current best research evidence under the
principle of evidence-based medicine (EBM) is involved in evidence generating,
synthesizing, appraising and implementing. Throughout the entire research process,
properly implementing statistical methods is crucial to ensure the use of appropriate study

design, data analysis methods and reporting/interpretation of the results.

Statistical inference is the process of applying certain statistical procedures (models) to

some collected data (sample) to generate a statistical property (evidence) which can be
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generally applied to all unknown subjects (population) with similar characteristics[3—5].
All statistical models or analytical approaches are based on certain underlying statistical
assumptions. Choosing appropriate statistical method(s) according to the research
questions and distribution of data is important. Unlike simulated data, clinical research
data are real world samples collected through health research projects under different
types of designs which can be experimental, such as randomized controlled trials (RCTs),
or non-experimental, also called observational data such as cross-sectional survey. When
analyzing the collected study data, the data are assumed to follow certain distributions for
certain statistical models, but the assumptions may not be perfectly true. This is why
sometimes discrepancies between the results obtained from different statistical models or
approaches can be found. Therefore, fully assessing the appropriateness of the choice of
the statistical models or approaches is important to generate a reliable statistical inference
which can later be confidently transferred to clinical evidence. However, choosing the
most appropriate statistical model or analytical approach over its alternatives is not
straightforward, particularly when the clinical data have a complex structure or represent

a complicated clinical setting.

The assessment of the credibility of the statistical analysis results can be done through
sensitivity analysis, an array of comparisons aiming to examine the consistency

(robustness) and discrepancy (uncertainty) caused by various reasons such as model
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choice or sample selection. In the Dictionary of Epidemiology[6], sensitivity analysis is
defined as a method to determine the robustness of an assessment by examining the extent
to which results are affected by changes in methods, models, values of unmeasured
variables, or assumptions. Regardless of the design or scope of the study, sensitivity is a
useful tool in providing the statistical result in a comprehensive way, as has been
discussed in guidelines or methodological papers for conducting observational study[7] ,
RCTs[8], knowledge synthesis[9]/meta-analysis[10] and health economic study[11]. In
this thesis, I would discuss the use of sensitivity analysis on three unsolved issues

regarding analyzing health research data.

The objectives of this thesis are: 1) addressing the challenges in analyzing health research
data when no consensus of the statistical method is available; and 2) providing some
resolutions on choosing statistical analysis approaches through the scope of sensitivity
analyses. I compared alternative statistical models or analytical approaches for some
unsolved or not fully investigated statistical problems by assessing the consistency and
discrepancy of analysis results and their impacts on the implications. Three specific
statistical issues examined are: 1) analyzing correlated discrete choice outcomes on
eliciting patient preference; 2) dealing with both-armed zero-event studies in meta-

analyses; and 3) the use of Bayesian statistical approach to incorporate external
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information or existing literature with available data in generating estimates for rare

diseases or events.

Issue 1: Within-subject correlation in discrete choice survey data

Discrete choice experiment (DCE) design originated in marketing research as a tool to
differentiate consumer’s choice among alternative products[12] and has been increasing
used in the area of health economics and policy making to help researchers and policy
makers to elicit patient and other stakeholder’s preference for alternative healthcare
programs or services[13—16]. In recent years, many researchers have dedicated their work
to improve DCE methods by providing guidelines in health research[17,18]. However,
compared to the attention given to the design aspects such as defining the key attributes,
constructing the choice sets and administering the survey[19,20], there was not a lot of
research addressing some analytical issues regarding the analysis of DCE data[14] with
within-subject correlations, and the statistical methods used in analyzing clustered DCE

data are inconsistent[ 16].

A typical DCE uses the factorial or partial factorial design principle to create a series
(panel) of hypothetical choice scenarios (choice sets) to describe the attributes (or

characteristics) and their associated levels for certain products or services[13]. The panel
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of several choice sets is delivered through survey questionnaires, and each participant is
asked multiple times to choose his/her preferred products or services over their
alternatives. The fundamental assumption that DCE is based on is random utility theory
(RUT) which assumes that any choice from any respondent is made by maximizing the
utilities (or benefits)[21]. However, decision making is a complex process. The choices
made by one person or group could be inter-related[12], particularly when the “opt-out”
option is available[22]. Therefore, the within-group or with-subject correlations need to

be accounted for in analyzing DCE data using proper statistical models[13,23,24].

Depending on the number of choice alternatives, basically all fixed or random effects
statistical models for binary or multinomial outcomes can be used to analyze DCE data. A
newly published review of DCE studies in the health economics field reported that the
most used models in recent years (2009-2012) in analyzing DCE data were fixed-effect
logit model (10%) and random-effects probit model (10%) for the designs with two
choice alternatives and fixed-effect multinomial logit model (44%) for the designs with
three or more choice alternatives[25]. Regarding adjusting potential correlations, health
researchers paid more attention to two types of correlations that may occur in DCE data.
One is the correlation among the choice alternatives, i.e. the violation of orthogonal

design[23], which is dealt with typically by using probit models. Another is the so-called



Ph.D. Thesis — J Cheng; McMaster University

Health Research Methodology, Biostatistics Specification

preference heterogeneity, a type of correlations among certain groups of respondents,

which is dealt with by using random-effects, nested or latent class models[15,26].

However, the within-subject correlation is largely ignored in the analysis of health
research related DCEs. Although I found a few investigations of this problem that have
been conducted in other research fields that used DCE designs such as marketing [27],
and transportation engineering[28,29], the proposed solutions were mainly theoretical and

thus difficult to adopt using common statistical analysis software.

Issue 2: Inconsistence in handling both-armed zero-event in meta-analysis

A systematic review (SR) synthesizes the available literature on a certain topic through a
rigorous and systematic searching and selecting process using predefined inclusion and
exclusion criteria, and meta-analysis (MA) quantitatively synthesize the evidence by
pooling results of individual studies identified by the SR using statistical methods[30]. As
a matter of principle, all studies with available data included in an SR need to be included
in the MA. However, this principle cannot always be applied to the MA with binary
outcomes when both-armed zero-event (BAZE) studies are among the identified

studies[31].
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BAZE study, also called zero-total event study, is a study that has no observed outcome
event in both comparison groups, for example, treatment and control arms in a
randomized control trial (RCT). Currently, there are no guidelines developed as to how
to deal with BAZE studies in meta-analysis, and thus BAZE studies are handled
inconsistently in the practice of conducting MA[32]. The analytical approaches may vary
depending on the choice of the effect measure of statistical pooling methods and as well
as the considerations or decisions of the researchers. Although several recently conducted
simulation studies provided some statistical procedures to include BAZE studies[33-37],
it remains unclear as to how including or excluding BAZE studies in or from MA may

impact the accuracy.

Issue 3: How to incorporate external information to enhance, modify or compare the

evidence presented in the observed data for rare event outcomes

Statistics is the essential tool to quantitatively summarize the evidence for the available
study data. There are two main approaches in statistics: Frequentist and Bayesian. Unlike
Frequentist which is also known as classical statistical approach, in which the hypothesis
is tested based on the long-run frequency[38], Bayesian approach rooted on the Bayes’
Theorem is a conditional probability which updates the current knowledge based on
newly obtained data[39] and previous evidence. Although with its broadly educated base

and easy-to-use software, classical statistics is dominant force in analyzing health
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research data, Bayesian approach as the alternative has been increasingly used in many

health research areas[40,41].

With the way of adaptively updating all available knowledge by incorporating the
evidence from past (priors) to the current observations (data) to make prediction for the
future (posterior estimates), Bayesian analyses naturally simulate how human brains
process information and make decisions[42,43]. With the ability of combining the
external information or historical events, Bayesian approach is more appealing when
studies are conducted to investigate rare diseases or events[44]. An example to show the
methodological or statistical challenges of using the classical approach to analyze rare
event data is estimating inhibitor rate of the patients under hemophilia A treatment with
the Factor VIII or IX replaced products. Hemophilia A is a rare blood disorder which
occurs in 8 of 100,000 males in North America. An inhibitor which is an antibody to the
product used to treat or prevent bleeding episodes, is considered to be a serious
complication affecting 1-6% of hemophilia A patients[45]. A large systematic review
(2013) summarized the rates of developing inhibitor among the previously treated
hemophilia A patients: 43 inhibitors were reported in 4323 patients across 33 cohorts[46].
Due to the small sample size and extremely low event rate, the estimates of inhibitor rates

from most individual studies presented huge uncertainties with unreasonably wide 95%
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confidence intervals (CIs): 9 estimates reported the lower bounds of 95% CI as 0%; the

widest 95% CI was between 0.6% and 23.5%.

With the challenges presented in analyzing rare event data, more researchers have turned
to the Bayesian approach for solutions, in particular for assessing the robustness of the
results by using different priors that incorporate relevant information from different
sources. However, conducting Bayesian analyses can sometimes be complicated by
programming Bayesian codes, properly choosing priors, setting up the likelihood function
and interpreting the results. Therefore, to efficiently promote the use of the Bayesian
approach among health researchers, more technical supports with examples need to be

provided.

Summary of Chapters

In this sandwich thesis, the issues described above were investigated through three
independent but inter-connected projects under the general topic of sensitivity analyses.
The papers dedicated to these projects were separated in the next three chapters starting

with Chapter 2.
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In Chapter 2, I empirically compared the commonly used statistical models with the
ability of adjusting within-subject correlate in analyzing DCE data. The data used in the
project were collected through a survey conducted in Hamilton, Ontario, Canada in 2002.
The aim of this survey was to elicit participant preference for colorectal cancer (CRC)
screening tests. A two-staged DCE design with the opt-out option was used to investigate
how six important attributes (process, pain, preparation, specificity, sensitivity and cost)
which defined the four CRC screening tests could impact participants’ choice of one test
over its alternatives and their willingness to undertake the test. The choices made by the
participants were organized in three ways: binary, multinomial and bivariate-binary
outcomes. Six statistical models for analyzing clustered binary data were applied, which
included logistic and probit regression with cluster-robust standard error (SE), random-
effects logistic and probit models, and logistic and probit models using generalized
estimating equation (GEE) approaches. For the multinomial outcomes, I fitted three
models: multinomial logistic/probit models with clustered robust SE and random-effects
multinomial logistic model. The bivariate probit model with clustered-robust SE was used
to analyze bivariate-binary outcome which treated the choices in two stages as two
correlated binary outcomes. The rank of relative importance of attributes and the

magnitude of # were used to assess the model’s robustness.

10
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Chapter 3 is a simulation study in evaluating the impact of including or excluding bother-
armed zero-event studies in meta-analysis of RCTs using rare event outcomes. The values
of simulation parameters were chosen based on a review paper which summarized the
characteristics of MAs in the Cochrane Database of Systematic Reviews. Some 2500
datasets were generated for a series of scenarios which represented the different settings
of treatment effect, control arm event rate, number of patients of each individual trial and
between study variance. I investigated five pooling methods using odds ratio (OR) as the
effect measure for classical meta-analyses, namely Peto, Mantel-Haenszel (M-H) method
with fixed-effects and random-effects model, and inverse variance (IV) method with
fixed-effects and random-effects model. The above methods were applied to each
simulated dataset using the approaches of including and excluding BAZE studies. With
the focus of the potential bias of the treatment effect introduced when trials with both
zero-event arms were included or excluded in the MAs, I assessed the performance of the
above methods using percentage bias, root mean square error (RMSE), length of 95%

confidence interval (CI), and coverage.

Chapter 4 is a methodological paper to explore the merits of using Bayesian approaches
to generate evidence for complex clinical settings. This paper also serves as a tutorial for
clinicians who are interested in this topic. I aim to illustrate how to adopt the Bayesian

approach to analyze the current available data while incorporating the external

11
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information for rare event rates. After introducing the concepts behind Bayesian
inference, step by step, I showed the process of choosing non-informative and informative
priors, comparing the results to thresholds and evaluating the impact of sample size in
three study scenarios based on published papers which collectively investigated the
inhibitor rate of hemophilia A patients treated with rAHF-PFM (ADVATE): 1) analyzing
the inhibitor rate (a rare adverse event) in a single cohort of previously treated patients
(PTPs)[46]; 2) meta-analyzing inhibitor rate by pooling a set of studies with individual
patient level data[47]; and 3) generating evidence of inhibitor rate using very limited data
for a previously unexplored patient population[48]. The individual patient level data used
in this project were from PASS (Post-Authorization Safety Surveillance) studies provided

by Baxter Healthcare, Global Affairs (Westlake Village, California, USA).

Chapter 5 summarized the findings of Chapter 2 to Chapter 4, and discusses the
implications of the findings and the limitations. I hope to use this thesis to raise awareness
among researchers regarding the importance of assessing the robustness of statistical
analysis results through a range of sensitivity analyses by sharing our experience using
real examples. The individual papers also provide some solutions or suggestions for

certain statistical and methodological issues in health research field.

12
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CHAPTER 2

AN EMPIRICAL COMPARISON OF METHODS FOR ANALYZING
CORRELATED DATA FROM A DISCRETE CHOICE SURVEY TO
ELICIT PATIENT PREFERENCE FOR COLORECTAL CANCER

SCREENING
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An empirical comparison of methods for
analyzing correlated data from a discrete choice
survey to elicit patient preference for colorectal
cancer screening

N Chere™, Bleanar Pullenavegum ', Deborah A tarshell’, John K Marshall® and Leharz Thebana %

Abstract

Background: & discrese choice experiment (DOF) iz A preference s hich z2sks participants 1o make 2 choics
armong product portiolios cormparing Uhe key product chiaraclenislics Ly pedorming several choice Lasks, Analyzing
LOE data needs to account for within-paricipan: correlation becawse choices from the same participant are likaly
1o ke sirilar. Im this stady, we empirically corpared some commonbe-used statisticzl methocds far anzlyzing DCC
data while accounting for within-participant correlation based on a survey of patient preference for colorsctsl

-

cancer [CRC) scrooning tosts conducted in |Hamilen, Cnmario, Canada in 2062,

Methods: A Lwo-slage DCE design was used Lo invesligale the impacl of siz allibules on paricipanls’ prefersnces
far CRC screening test and willingness o undemake the test VWe compared six madels for clusterad Binary
cutcomes {logistic and prokit regressions asing slaster rabust standard error (50), randem-effects and generalized
estimaling equation approsches) 2nd teze micdzls for cusiered nominal cutcomes imultinemizl logiztic and
probit regressions with claster robust 50 and random offects mukinemial logistic modell. We zlso fitted a bivariaze
probit madel with cluster-rabust 5F treating the choices from two stages as twa corelated binzry autcomes. The
rank of relative importance between ettribuzes and the estimazes of B coeffidient within aztributes were used
azsess The model rokustness.

Results: In clal 458 participants with each compleding 10 choices were analyeed. Similar resalls were reported lor
the rank of reletive imporance and B cocfficionts across models for stage one data en evaluating pericipants’
praterances for the tast, The six attriburas ranked trom hidgh to low follcws: cost, specificity, process, sensitivity,
preparation and pain. However, the resualts differed across models for stage-twe data on evaldating paricipans’
willinoness —o underake the tests. | itle within-patient correlation (100 = 0 was found in stage-one data, bur
substantial withinpatient correlation exisied 100 = 0859 in s.age-two data.

Conclusions: YWhen small clustering offect presented in CCE datze, resals remained robust agross satstcal models.
Fowever, resulzs varied whean larger clustering etfect presentad. Theretore, it is important 1o assess the rabistnass
of the estimates via sensitivity analysis using differant models for analvzing clustered data frem DCE studies,

Keywords: Uistie e choice experiment, Intrz-Class correlalion, Satistical model, Fatienl preference

Clinical Enideriology amd Biostatistics, Moklaseer Licversi,
L Canack
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Background

With increased emphasis on the role of patients in
healthcare decision making, discrete choice experimental
(DCE) designs are more often used to elicit patient pre-
ferences among proposed health services programs [1,2]
DCE is an attribute-based design drawn frem Lancas-
Ler's economic theory of consumer behaviour [3] and
the statislical principles of the design of experiments [4].
This method measures consumer prefercnce according
to McFadden’s random utility (benefit} maximisation
(RUM) framewark amongst a choice set which contains
two or mere alternatives of preducts or goods varying
along several characleristics (attributes) ol inlerest. In
the carly 1980s, Louviere, Hensher and Woodworth
[5,6] introduced DCE into marketing research, and since
then DCE has been rapidly adeopted by researchers in
other arcas such as tmnnpnrtatinn, environment and
social science. Its applications in health research
emerged in the early 1990s, and il has been increasingly
used to evaluate patient preferences for currently avail-
able and newly-proposed health services or programs in
health econemics and policy-making related topics. For
example, in the health economics related research area,
34 published studies used DNCE design in the period
fram 1990 to 2000, and 114 DCE design studies were
published in the period from 2001 to 2008 [7].

In the short history of using DCE in health research,
there were several reviews [7-9], and debates about
methodological and design issues, challenges and future
development [1(-12]. In generating a 13CE stady, three
major formats of the chaice design have requently been
used: i) a forced choice between twe alternatives, ii) a
choice amonyg three or more alernatives with an opl-
out option, and iii) a two-staged choice process which
forces participants to choose one of the alternatives and
then an opt-nut choice is provided to allow participants
to say no to all proposed products |13]. Despite the
rupid developments in design aspects [12,14], less alten-
Lo was paid Lo the stutistical analysis and maodel selec-
tion issues. Lancaster and Louviere [15] and Ryan and
el al. [13] diseussed several statistical models used for
IHCE including multinamial logistic madel (MNL), mul-
tinomial probit model (MNP}, and mixed logit model
(MIXL). However, these studies did not provide detailed
comparisons amengst competing medels, or a clear indi-
cation ol how Lo best deal with model selection issues.
Ancther aspect related to the analysis of DCE data is
adjustment for clustering cffects. For cxample, in the
DCE survey, it is common to ask participants te respond
to several choice tasks in one survey. Each chaoice task
has the same format but different attribute combina-
tions. Naturally the choices made by sume person would
be expecled 1o be mure similar than the choices of
other persons, leading to the within- paticnt correlation
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of responses. This within-subject correlation caused by
the clustering elfects or repeated observations needs to
be accounted for in the analysis [16]. It is often mea-
sured using the intra-class correlation coefticient (ICC)Y
where ICC = 0 indicates no intra-person correlation and
1CC = 1 indicates perfect inlra-person correlalion. In
this paper, we empirically compared some commenly-
used statistical models which also account for the clus-
tering effects in IXCE analysis. We assessed the robust-
ness (consistency and discrepancy) of the models on
ranking of the relative importance between the attri-
butes and the estimates of the § coellicients within each
level of the attributes.

The dala we used were taken [rom the preference sur-
vey on colarectal cancer (CRC) screening tosts con-
ducted in Hamilton, Ontarie, Canada in 2002 [17]. This
project used a two-level choice design. Thus, the data
structure allowed us to investigate the statistical models
[or analyzing binary, nominal und bivariale solcomes for

LCE data.

Methods
Overview of the CRC screening project
The Canadian Cancer Saciety reported in 2011 that
CRC is the fourth moest commonly diagnosed cancer
and Lhe second leading cause of cancer death in Canada
[18]. Acrording to the same report, the estimates of new
cases of CRC and CRC related death in 2011 were
22,200 (50 per 160,066 person) and 8,900 (20 per
100,000 persons) in 2011. Altheugh CRC has a high
incidence rate, patients have a betler chance of success-
ful treatment i diagnosis can be made earlier. Although
a population-based CRC screening program is highly
recommended for people over 50 years of age [19,20],
the uptake rate in North America is only about 50%
|21]. Therefore, better understanding of patient prefer-
ences [or screening tests may be the key to the snccess-
ful implementation and uptake of CRC screening
programs. This survey was the [irst conducted in
Cuanada to evaluale patient prelerences [or various CRC
screcning tests to identify the key attributes and levels
that may influence CRC screening test nptake.
Traditional CRC screening modalities such as fecal
occult blood testing (FOET), flexible sigmoidoscopy
(5163), colunoscopy (COL) and deuble-contrast barium
enemy (DCBE) vary on their process, sceuracy, com-
fort and cost [22]. In this survey, five important attri-
butes of features ef the screening tests were identified
through review af the literature, consultation with clin-
ical specialists and patient focus groups. They were:
process (4 levels), pain (2 levels), preparation (3 levels),
specificity {3 levels) and sensitivity (3 levels). In addi-
tien, cost {1 levels) was included due Lo its potential
influence on the uptake [(Table 1). To reduce the
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Table 1 Attributes and Levels Used in the 5tated Preference Survey

Attributes Attribute description as Levels Level description as presented to patients
presented to patients
Frocese Haow s it denes St o olace 2 steo) sanples oot specizl cands for 3 consenutive cays and retain themn e
woLr doctor
A ferible tabe with asmal camera at tae £p is Tnserted into your rectum and through
yoeLT Cukon
|
Friaiia Al and & white liouicdl ale Rectae i L ool Throlicgh A ractal T deray picTLes
znd Koy aro taker as the Ggud rncvies throu ur colan®
Fain s there pala o diszerrfom? Leme ¥iou foel ne sdn during the test
Edilet ot miay fee mild pain o clscomiod durng the test®
wehat do vou oo to prepars? Rizne tior racuirad
Mzt ar ywolr dist for 5 days by aveldivg some specific fonds and cverthe-
icelice s
Croraadks o the tost wou rust tale Eatives or eqomas wich cause dizivhea to clear your

colonn®

5 it aocurate T wog DC NG
Aave cancel?

Speciiity

1w D M Fave cancer, the test rasuit will never say you may have cancen Mo ather
test iz noaded.

If o DE HOT Bave cancer, the taat et will sy vy may davs caacs 2 oul of 10
timex You then need o hav
I yain DG NOT Fave ca

R
of, the tast rezult will say vou may jave cancer b out of 10

2L iest dure

fimee Yo then need o bave a dffzeert e dore ©

s it accurats T you DO

Serstivity

If wou D

Coet Howe nuch wieuld Ll e

If wau D aave camcar tae tast will miss it 1 oot of 10 times
Ity D Aave carcen fhe fest will riss t 2 ool of 10 Tines

1@ve cancer the test will miss 't 6 oot of [ times®

*Re‘erenca level for atribute

burden on respondents for making their choices on
864 (4 % 2 % 3 x 3 % 3 x 4) unique combination [rom
full factorial design, we used a fractional factorial
design. In this design, 40 choice tasks were divided
inlo four blocks 1o create a subsel of 10 choice tasks
of the attribute combinations for cach survey partici-
pant to evaluate. The original design was developed
using the SAS Optex procedure and optimized several
measures of efficiency: 1) level balance; 2) orthogonal-
ity; and 3) D-efficiency [17,23]. T'his desiagn ensured
the ability of estimating the main effects of the attri-
butes while minimizing the number of combinations.
No prior information on the ranking of attributes from
the literature was available at the time of the design of
the study. The survey used the pair-wise hinary twao-
stage response design [24] with the choice between
two choice sels ol the aliribules at dillerent levels as
the first step and the addition of an opt-cut option as
the second step (Table 2). This design maximized the
informaltion gained through the queslicnnaire o
understand patient preferences on the CRC screening
tests and the lactors alfecting the uptake rate. ow-
cver, the analysis presented challenges. First, the

answers were likely to cluster within subjects because
each .'iuh'ir!(‘.l made two sequential choices lor ten
choice tasks. Therefore, a statistical model adjusting
for within-subject correlution lor repeated measure-
ments was needed. Second, in the original paper, the
analysis was done asing the bivariate probit model, but
the analysis could be approached using different meth-
ods: treating the responscs at the two stages as inde-
pendent responses, as sequential and correlated
bivariate responses, or as a single response with three
levels (Test 4, Test B or No screening).

Outcames

According to the unique data structure of the two-stage
design, we canducted three analytic approaches. 1} Ana-
Iyze the two-staged sequential choices of each choice
lask separately, ie. binury oulcomes: a) subject preler-
ences on the screening modalities which only included
patient responses at the first stage, and b) subject will-
ingness 1o participale in the screening program which
only included subjects’ responses at the second stage. 2)
Treat the two-staged data as paralleled three-choice
options including Test A, Test B and “opt-out”, i.c.
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Features

Test A

Test B

How is it done?

Is there pain or discomfort?

What do you do to prepare?

Is It accurate if you DO NOT have cancer?

Is It accurate if you DO have cancer?

How much would you pay?

Which test would you prefer (please mark
cne box only)

Suppose you now have the option of no
screening, What would you prefer now?
(please mark one box only)

You place 2 stool samples onto special cards for 3
consecutive days and return them to your doctor

You feel no pain duting the test

You must alter your diet for 5 days by avoiding some
specific foods and over-the-counter medications

If you DO NOT have cancer, the test result will say you
may have cancer 5 out of 10 times. You then need to
have a different test done

If you DO have cancer, the test will miss it 3 out of 10
times

S50
Prefer A

| would still prefer the test chosen above

I would prefer no screening

A flexible tube with a small camera at
the tip is inserted into your recturm and
through your colon

You may feel mild pain or discomfort
during the test

Before the test you must take laxatives or
enemas which cause diarrhea to clean
your colon

Same as for Test A
Same as for Test A

5250
Prefer B

nominal data. 3) Treat the two-staged data as two corre-
lated binary choice sets, i.e. bivariate outcomes. Figure 1
presents the data structure of the original design and

these three analysis approaches.

Random utility theory
As mentioned above, the DCE design is generally based
on random utility theory [25] which expresses the utility

(benefit) i/;, of an alternative i in a choice set C,

Outcomes

Program A?

Program B?

* Yes/No to participate: Binary

* A/B/MNo: nominal

*AB

Yes™o

Opt Out?

Figure 1 Two-stage design and outcomes for analysis.

* A/B: Binary

Bivariate
Binary
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(perceived by individual #) as two parts: 1) an explain-
able component specified as a tunction of the attributes
ol the alternatives VWX, fi) and 2} an unexplainable
component (randowm variation) .

U = V{0, 8) + 20

The individual s will choose alternative § over other
alternatives if and only if this alternative gives the maxi-
mized utility. I'he relationship of the utlity function and
the observed & attributes of the alternatives can be
assumed under a linear-in-parameter function.

Vo= o+ i + .00+

According to the assumption of the distribution of the
crror term oy, the models specification of DCE data can
be varied.

Statistical methods

The statistical models discassed in this paper were orga-
nized according to the type of outcomes: i) logistic and
prabit models for binary outcomes, i} multinomial
lagistic and probit models for nominal outcomes, and
iii} bivariate probit model for bivariate binary outcomes.
We provide some details an how the different statistical
techniques account for the within-cluster correlation in
analyzing clustered DCE duta.

For the binary type of outcomes, we examined six sta-
tisticul models which have the capacity 10 account for
the within-patients correlations [26,27], including logis-
tic regression with clustered robust standard error, ran-
dom-effects logistic regression, logistic medel using
generalized estimating equations ((GEE), probit regros-
sion with clustered robust standard error, random-
effects probit regression, and probit regression using
generalized estimating equation (GEE) model. Below are
some brief descriptions of the methods.

Stondard logistic regression and standard probit regression
Both standard logistic and probit regressions assume
that the observations are independent. However m our
dataset, each subject completed ten choice tasks, i.e.
euch subject had ten observations (choice tasks) which
fermed a cluster or can be considered repeated mea-
suremenl. Normally, the observations in the same clus-
ters are more similar {correlaled) comparing to the
obscrvations out of the cluster. Therefore, adjusting the
correlation within the cluster is necessary, We used
three methads to adjust the within- cluster carrelation.
Clustered robust standard error

In this method the independence assumptions are
relaxed among all observations, but it is assumed that
the observations across clusters are independent. The
total variance is empirically estimated using Huber-
White (also called Sandwich} standard errer [28]. This
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method takes only the intra-class correlation into
account, but the degrees of freedom are still based on
the number of observations, not the number of clusters
[29]. Therefore, this methed only adjusts the standard
errar related (o the conlidence interval, but the point
estimates are left unchanged.

Random-effects method

In this method, the total variance has two components:
between-cluster variance and within-cluster variance.
We assume that, at the cluster level, data [ollow a nor-
mal distribation with mecan zere and between-cluster
variance t°: and that within each eluster, data vary
according to some within-cluster variance [30]. This
methed takes two tvpes of variance into account when
estimating the total variance and the degrees of freedom
are calculated based on the number of clusters [31).
Therefore, the point estimates and their corresponding
variances are adjusted for intra-cluster correlation. For
the covariance structure, we assumed equal variances
[or the random eflfects and 4 common pairwise covar-
iance [32]. This structure corresponds to the exchange-
able correlation structure speciflied [or GEE method,
which we describe below, The key difference between
the random-eflects method and other methoeds discussed
here is that the random-effects method estimates the
paramcters for cach subject within cluster or clustors
sharing the same random elfects. Therefore, the random
effect is alse often called subject specific effect [33].

GEE methad

This methed allows a working cerrelation matrix to be
specified to adjust the within-cluster correlation, We
assumed that there was no ordering effect among the
observation in each cluster, allowing us to use an
exchangeable correlalion malrix [34]. As in the random-
effects method, the degrees of freedom are based on the
number of clusters, which in turn adjusts the estimale
ol the conlidence interval [35]. Unlike the random-
effects method, the GEE approach estimates the regres-
sion paramelers averaging over the clusters (so-called
population average madel) [36].

For the nominal type of cutcomes, we used three sta-
tistical models [37]: multinamial logistic model with
clustered robust standard error, random-effects multino-
mial lngistic madel, and multinemial prabit model with
clustered robust standard error. We also fitted a hivari-
ate probit model in which the choices from two stages
were treated as two binary omtcomes [38].

Multinomial fogistic modef

MeFadden's conditional logit. model {CLM], also called
mmltinomial logistic (MWL} model, was the pioneer and
most commonly used model in the early DCE studies
[39]. The key assumplion ol this model is that the ervor
terms g, are independent and identically distributed
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(IID2) |13], which leads to the independence of irrelevant
alternatives (IIA) property [10]. Another assnmption for
this model is that the error term has an extreme value
distribution with mean 0 and variance w /6 [37]. To
take the inlra-class correlalion into accound, the olus-
tered robust SE was used.

Rondom-effects multinomial logistic modef

Similar to the random-cffects models used for analyzing
binary outcomes, this model takes two levels of variance,
between-cluster variance and within-cluster variance,
intn account for clustered or longitudinal nominal
responses [11,42).

Multinomiol probit modef

Multinomial probit model (MNT) (heteroscedastic mod-
els) is considered ta be one of the mast rebust, flexible
and general medels in IMCE, especially when the correla-
tion (heteroscedasticity) between alternatives is pre-
sented [43]. ‘The model is assumed to have a normally
distributed error term. The benefit of using MKT model
is that the 1A assumplion which is the stricl require-
ment for MNL model can be somehow relaxed [37].
The main concern in using this maodel is thal its maxi-
mization invelves Mante Carle simulation but net the
analytical maximization which could lead 1o a computa-
tional burden. Again, the clustered robust SE was used
to incorparate the intra-class correlation.

Bivariate probit model!

In this model, we assume that the cheices hetween twa
stages (stage 1: choice between screening test; stage X
choice between participation and opt-out) are not inde-
pendent, It says that subject choice as to whether or not
to participate in the screening program was conditional
on subject preference for the screening maodalities [44].
By fitting this model, two tvpes of correlation can be
taken inlo account: the correlation between the oul-
comes from stage 1 and stage 2, incorporated through
Lthe bivariate nalure of the model isell, and the intra-
class correlation, incorporated through use of the cluster
robust SE.

To assess Lhe necessity of accounting [or the intra-
class corrclation for analyzing clustered correlated DCE
data, we also presented the results from the above mod-
cls using simple standard error {(5E)—which does nat
take clustering into account. They are the standard
lngistic, probit, multinomial logistic, multinomial probit
and bivariate probit models.

We compared results from the above models on the
following criteria: rank on the relative importance of the
attributes, and magnitude, direction and significance ef
the estimates ol the § coefllicient within each level of
the attributes, which were obtained by regressing prefer-
ence onle the dillerence In allribules belween Lthe two
choices. The ranking criterion was measured by the per-
cent change between the log-likelihood value of the full
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medel and the value after removing one specific attri-
bute from the madel [45]. T'a evaluate the significance
of the estimate of the § coefficients within each atri-
bute, the criterion for statistical signiticance was set at
alpha = 0.05. All stalistical models were conducted
using STATA 10.2 (College Station TX) and the fignres
were plotted using PASW Statistics 19 (SP55: An IBM
Company).

Results

A random sample of 1,170 paticnts was sclected from a
roster of 9,959 patients aged 10-60 years from the
Hamilton Primary Care Network. After excluding the
patients who did net pass the inclusion criteria, ques-
tinnnaires were mailed to 1,049 patients. OF these, 547
were retarned and 485 had complete data. Ameng the
patients with complete data, we excluded 17 patients
wha did nat pass the rationale test, which were two
warm-up cheice tasks. For these warm-up tasks, ene
alternalive was dominanl over another possessing all
favourable attribute levels and the respondents whe did
nol choose the dominant allernalive were considered (o
have failed the rational test. Finally, we analyzed the
data for 468 patients (Figure 2) [rom [our blocks with
the block size of 105, 124, 120 and 119 respectively.

The mean age of the subjcr,ts was 50.8 years {standard
deviation, 5.95 vears), which was similar to the recom-
mended age to start CRC sereening [46]. Of the 468
included subjects, about 18% were female, 12% had
family history of CRC and two patients [0.2%) had been
diagnosed with CRC, The detailed demographic charac-
teristics are presented in Table 3.

Far the two-point. outeomes (binary), the rank of the
attributes en the choice of Test A and Test B was con-
sistent across models. From most imporlant Lo least
impertant, they ranked as follows: cost, specificity, pro-
cess, sensilivity, preparation and pain (Figure 3). With
the exception of the random-effects logistic and probit
models, the ranking ([rom most important Lo least
important) of the six atiributes for assessing parlicipa-
tHon or apt-out (stage-twa), was as follows: cost, scnsi-
tivity, preparation, process, specificity and pain. The
ranking from random-cffects models was: cost, sensitiv-
ity, process, specificity, preparation and pain (Figure 4).
For the three-point outcomes (nominal and bivariate) in
which the choices of Test A, Test B and cpt-ont were
estimated simultanzously, the attributes were ranked
consistently: cost, sensitivily, specificity, process, pre-
paratien and pain (Figure 5). Comparing to the medels
using simple SE, using clustered robust SE 1o incorpo-
rate intra-class correlation did have any effects on caleu-
lating the relative importance of altribules.

When looking at how certain levels of each attribute
alfected the choice between Test A und Test B {stage-
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onel, the estimates of the B coefficients were similar in
magnitude and divection across different. statistical maod-
els. The most preferred screening test had the following
leatures: stoul sample, no preparation, 100% specificily,
T0% sensitivity, without pain and with an associated cost
of $56. The least preferred screening test had the com-
bination of colonoscopy, special diet for preparation,
80% specificity, 20% sensitivity, with mild pain and ne
associated cost (Table 4 and Table 5).

When assessing the impact of certain levels of cach
attribute on patient cheice ef participating or opt-out
{stage-twa), the B cocfficient estimates for 90% sensitiv-
ity and no preparation had a significantly positive effect
an uptake and this was consistent across all models. For
ather attribates and levels, results appeared similar
across all three global analvsis appreaches: the random-
effects and GEFE logistic models and the random-effects
and GEE prebit moedels (Table 6) MNL with clustered
rabust SE, MNL random-elTects and MNP with clus-
tered robust SE (Table 7); and logistic with clustered
rubust SE, probil with clustered robust SE and bivariale
probit (Table 6 and Table 7). The following two exam-
ples showed Lthe estimates across models could dilfer by
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Figure 3 Relative importance of choice between Test A and Test B {stage-one).
.

magnitude and direction. The magnitude of estimates of  preferred no cost. MNL with clustered robust SE, MNL
the effect of 90% sensitivity varied by model, but the random-effects and MNP with clustered robust SE
direction was similar across all models. When compar-  model reported that participants preferred the $50 cost.
ing the cost of 550 to no cost, logistic and probit ran-  For other models, no significant statistical differences
dom-effects and GEE models reported that participants  were found (Figure 6). We also found that unlike the

r 3
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W Logistic with Clustered SE
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Figure 4 Relative importance of choice between participation and opt-out {stage-two).
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Figure 5 Relative importance of choice between Test A, Test B and opt-out {combined stage one and twa).

results from the stage-one data (Table 4 and Table 5),
for the stage-two data there was noticeable differcnce
between the B coefficient estimates from the models
with and without incarporating the intra-class corrcla-
tion (Table 6 and Table 7).

When assessing the clustering effect, we found that
intra-class cerrelation was small amoeng the stage-cne
data {1CC = 0) and r[—‘.]ativul:,f |m'g(*. among the stage-two
data (1€ = (.659). Far this survey, it appears as though
many patients had predetermined their participation for
CRC screening. For example, among the 468 partici-
pants included in the analyses, 48% alwavs chose to
undertake the screening program and 15% always chose
no participation regardless of how the screening modal-
ilies varied al the [irst stuge. Although Test A und Test
B were gencric terms of the combinations of the differ-
ent levels of six attributes and they were randemly
assigned to appear [irst or second in one choice task, we
found that 24% more participants chose Test A over
Test B. All the design limitatiens had some impact on
our interpretation of the analysis results.

Discussion

We applied six statistical models to binary outcomes,
three models to nominal multinemial cutcomes and one
model to bivariate hinary outcomes Lo estimate the
ranking of key attributes of CRC screening tests using
duta from DCE survey conducted in Hamillon, Ontarin,

Canada in 2002, We used three metheds to adjust the
within-cluster correlations: clustered robust standard
error, random-effects, and GEE methods. The resualts
showed consistent answers for estimating subject prefer-
ence for CRC screening tests, both on ranking the
importance of the attributes and identifying the signifi-
cant factors influencing subject choice between testing
maodalities. For estimating subject willingness to partici-
pate or undertake CRC sereening (ie. ineorporating
“put-put” option), models disagreed both on ranking the
importance of the attributes and identifying the signili-
cant factors (ie. attributes and levels) affecting whether
ur not subjecls would participale.

Overall, our analyses showed that participants pre-
[erred 4 CRC sereening Lest with the [ollowing charac-
teristics: stool sample, no preparation, 100% specificity,
T0% sensitivity and without pain. The CRC test with
such a combination of attribute levels would be the
FOBT test [18]. Thus, our findings apprar to be consis-
tent with the results from Nelson and Schwarte's survey
in 2004 [47] which shawed FOBT to he the most pre-
ferred option for CRC screening. In that survey, they
also reviewed 12 previous studies, all of which showed
FOBT to be a preferred choice by maost patients.

The reason for the consistency in estimating the
choice between screening lesis and the discrepancy in
estimating the choice between participation and “out-
put” might be due 1o the model’s ability W adjust the
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$50 va No Cost ES (956% CI)
Lexggislic
Logistic Simple SE s -0.09 {-0.2G, 0.08)
Legistic Clusterad SE —_— 0,09 {-0.21,0.02)
Logistic Random Effects =040 40,71, -0.08)
Logislic GEE —_— -0.12 {-0.24, -0.02)
MMultinomial Loegistic Simple SE —— Q.16 {-0.03, 0.35)
Multinomial Logistic Clustered SE —_— Q.16 40.04, 0.28)
Multinemial Logistic Random Effects —_— 0.25 {0.05, 0.48)
Probit
Prabil Simpls SE —_— -0.05 {-0.16, 0.05)
Probit Clustarsd SE — 0,05 {-0.12, 0.01)
Frobit Random Effects —— =027 40,39, =0,04)
Prohil GEE —— -0.07 =013, 0,017
Mullinomial Probil Simple SE ol —— 0.12{-0.03, 0.27)
Multinamial Probit Clustesad SE —_— 0.1240.02, 0.21)
Bivariate Prohit Simple 5E ——— -0.05 {-0.16, 0.05)
Bivariate Frobit Clustered SE — -0.05 {-0.12, 0.02)
T T T T T T
-6 -4 -2 a s 4 6

Favouritc No Cost

Figure & f Coefficients with 95% Cl (Cost: $50 vs. Mo cost) of patient choice between participation and opt-out

Favouritc $50

within-participant (cluster) correlation. When the
within-cluster correlation is small (choice between Test
A and Test B), the assumption of the independently and
identically distributed error term &, is held. Therefore,
it might not be necessary to take the clustering effects
inta account and thus the estimates are similar across
statistical models. However, when the intra-class corre-
lation presents, the analysis needs to account for hoth
the within-cluster variance and between-cluster variance
[48&].

To the best of our knowledge, this is the first empiri-
cal study to compare different methods to address the
wilhin-participant correlution in the analysis of DCE
data. However, many authors have emphasized the
importance of adjusting [or clustering in analysis of
clustered data or repeated measurements for binary out-
comes [19,50]. When intra-class correlations are present
in clustered or longitudinal data, the random-cfferts and
GEE models are two commonly recommended
approaches, Although they are estimating different para-
meters (the cstimates from random-effects model are
interpreted for the observations in the same cluster: the
estimates from (GEE madel are interpreted as the mean
across entire sample), the results from these two medels
are similar most of the time [41,51]. Some researchers

generally prefer random-effocts model when the results
from these two approaches disagree, 1lowever, some
rescarchers argue that the random- effects model could
provide biased results due to nnverifiable assumptions
about the data distribution [52].

Comparing to the models for analyzing correlated hin-
ary data, statistical software seldom has ready-to-use sta-
tistical models developed for multinomial outcomes ar
multi-variate eutcomes, The multinomial probit medel
is routinely used to deal with correlation between alter-
natives |53, but it does not take intra-class or intra-
respondent correlation into account. Robust standard
error can be specified lor multinomial logistic or probit
and bivariate logistic models to adjust the estimate of
standard error, but this would not correct the bias
related to point cstimates [cocfficients). A simulation
stndy has shown that the bias and the inconsistency for
cstimating the within-clustor carrelation increasc with
the size of the cluster |54]. The newly developed gener-
alized lincar latent and mived model (gilawnmn) proce-
dure in STATA has the ability to run random-effects
multinomial logistic model |55] to address the intra-
class correlation issue, but this model has yet ta be eval-
uvated for performance (le. whether or not vields
unbiased estimates). Some researchers have supgested
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using Bayesian hierarchical randem-effects logistic and
probit regression for clustered or panel data |56].
Although the Bayesian approach allows the flexibility to
specify random effects, it requires considerable skill in
programming.

This study has some limitations. First, this stady is an
empirical comparison of the analytic models and there-
fore we cannot know which model performs the best.
Such an analysis would require simulation studies to
assess Lthe performance of the models in terms of the
bias, precisien, and coverage. Sccond, some cstimates of
the cost attribute in our study were inexplicable, For the
test assaciated cost, participants’ preference had a non
linear order: 550, 50, 5500 and 5250, This could be a
result of as the violation of the model assumptions or
model misspecification. Most DCE analyses assume a
linear utility function, but some recent studies have
shown that this assumption may not be brue for price-
related attributes. A study of MPS players fennd that
the utility lunction of the price und storage sive had W-
shaped curves rather than smooth linear trends [57]. A
local travel mode study also fuund thal the preference
of time savings followed a nen-linear utility function
[58]. Another reason which may cause inaccurate results
in our stady is the use of two-staged design. The two-
stagnd dcsign had the advantagn of maximizing thie
information gained by fercing participants to make a
choice at the first stage, but it also gave us some artifi-
cial informatien. Third, many respondents in this survey
seemed to have predetermined their participation in
CRC screening befere seeing the questiennaire. This
may have caused an unusually high with-in cluster cor-
relation when choosing between participation and apl-
out, We also deubt that the predetermination might
cause the ordering eflect [59] when choosing the pre-
ferred screening tests. When individuals are forced to
make a choice between prodocls which they have
decided that they do not want, the answer might not
resemble the Lruth. Therefore, the results need 1o be
interpreted caaticusly—replication from similar studies is
needed to better understand participant preferences for
CRC screening and the willingness to undertake the
SCICCNing program.

Conclusion

Responses fram the same participant are likely to be
more similar than the responses between participants in
1XCE data leading to possible ntra-class or intra-partici-
pant correlation, Therefore, it is impertant to investigate
the size ol intra-class correlation belure [ilding any sta-
tistical model. We found that when within-cluster corre-
Lation is very small, all models gave consistend resulis
both on the estimales ranking und coellicients. There-
fore, the simplest logistic regression and multinomial

Ph.D. Thesis — J Cheng; McMaster University

Pace 1h of 17

logistic regression are recommended for the computa-
tion advantage being ease. Multinomial probit model
may be a preferred choice method of analysis il we
assume the existence of the correlation between
alternatives.

When within-cluster correlation is high, sensitivity
analyses are needed o examine the consistency of the
results. Instead of making generalized inferences accord-
ing Lo the estimate from any single statistical model,
results from the sensiivity analyses based on different
models can provide some insight about the rabustness
of the findings.

Qur study empirically compared some commonly used
statistical model on taking intra-class correlation into
account when analyzing IXCE data. To completely
understand the necessity of acceunting for the intra-
class correlation for DCE data, particularly on analyzing
nominal type of outcomes, simulation studies are
needed.
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Abstract

Objectives: There is no consensus on whether studies with no observed events in both the
treatment and control arms, the so-called both-armed zero-event studies, should be
included in a meta-analysis (MA) of randomized controlled trials (RCTs). Current
analytic approaches handled them differently depending on the choice of effect measures
and authors’ discretion. Our objective is to evaluate the impact of including or excluding
both-armed zero-event (BAZE) studies in MA of RCTs with rare outcome events through

a simulation study.

Method: We simulated 2500 datasets for different scenarios varying the parameters of
baseline event rate, treatment effect and number of patients in each trial, and between-
study variance. We evaluated the performance of commonly used pooling methods in
classical MA—namely, Peto, Mantel-Haenszel (M-H) with fixed-effects and random-
effects models, and inverse variance (IV) method with fixed-effects and random-effects
models—using bias, root mean squared error (RMSE), length of 95% confidence interval

[CI] and coverage.

Results: The overall performance of the approaches of including or excluding BAZE

studies in meta-analysis varied according to the magnitude of true treatment effect.
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Including BAZE studies introduced very little bias, decreased MSE, narrowed the 95%
Cl, and increased the coverage when no true treatment effect existed. However, when a
true treatment effect existed, the estimates from the approach of excluding BAZE studies
led to smaller bias than including them. Among all evaluated methods, the Peto method

excluding BAZE studies gave the least biased results when a true treatment effect existed.

Conclusion: We recommend including BAZE studies when treatment effects are
unlikely, but excluding them when there is a decisive treatment effect. Providing results
of both including and excluding BAZE studies to assess the robustness of the pooled
estimated effect is a sensible way to communicate the results of a MA when the treatment

effects are unclear.
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Strengths and limitations of this study

e A simulation study thoroughly investigated the impacts of including or excluding
both-armed zero-event studies in meta-analyses by comparing all commonly used
pooling methods

e The simulation parameters were chosen according to the characteristics of meta-
analyses in the Cochrane Database of Systematic Reviews to closely reflex the
reality

e Qur results not only confirmed the findings from the previous empirical studies
but also added more details on how including or excluding both-armed zero-event
may impact the estimates of meta-analyses differently depending on the
magnitude of true treatment effects

e Only odds ratio was investigated through simulations, thus the findings from this
study may not be able to be fully extended to other effect measures such as

relative risk or absolute risk difference
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Background

Systematic review (SR) with meta-analysis (MA) has become an important research tool
for the health research literature which synthesizes evidence from individually conducted
studies that assess the same outcomes on the same topic. The PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) Statement[1] adopted the
definition used by Cochrane Group[2] which defines SR as a review of a clearly
formulated question that uses systematic and explicit methods to identify, select, and
critically appraise relevant research, and to collect and analyze data from the studies that
are included in the review. Meta-analysis refers to the use of statistical techniques in a
systematic review to integrate the results of included studies. Therefore, the results of
MAs from randomized controlled trials (RCT) are considered to be the best quantitative
clinical evidence in the literature.[3,4] Studies included in a SR are selected rigorously
according to predefined exclusion and inclusion criteria. Thus all identified studies in a
SR with available data should be included in the MA. However, there is no consensus
among researchers whether this principle should be fully applied and how to apply to the

MAs using dichotomous outcomes.

The outcomes of dichotomous data are events. The number of observed events in a RCT
using dichotomous outcomes is most affected by the event rate and sample size, and also

affected by the length of the study period. When the event rate is low, the sample size is
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small and the study period is short, it is possible that no outcome event is observed in the
RCT although the probability of the event happening is not zero. A study with no
outcome event observed in either treatment or control arms is called a zero-event study.
Both-armed zero-event (BAZE), also called double-zero event or zero-total-event, is an
extreme case of zero-event, which is defined as no event is observed in both treatment

and control arms.

When rare adverse events or rare diseases are used as the study outcomes, it is not an
uncommon phenomenon that no outcome events are observed at the end of the study. In
the United States, a rare adverse event is defined as one per 1000 patients.[5] In the
European Union, a rare disease is defined as one per 2000 people.[6] To obtain a
representative number of outcomes for a rare event study, a large number of patients are
needed. However, very often, RCTs are either not designed primarily to investigate
adverse events or do not have the resources to recruit the sample size required for such
events. A published review of the Cochrane Database of systematic reviews showed that
the median sample size for dichotomous outcomes was 102 (inter-quartile range of 50-
243).[7] Therefore, when the primary outcome in a MA is a rare event, zero-event studies
could be among the qualified studies. Warren (2011) and colleagues conducted a
systematic review of meta-analyses published between 1994 and 2006 where rare events

were a primary outcome.[8] Among 166 MAs, 65 (39%) included zero-event studies, and
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41 (25%) included BAZE studies. Amongst the 41 MAs with BAZE studies, 19 MAs
(46%) included them in the primary or sensitivity analyses, 18 (44%) excluded them and
4 (10%) were unclear. This review also found that the continuity correction was most
used approach to incorporate zero-event studies, and 0.5 was the common choice of the

correction factor (93%).

For single-armed zero-event studies, there is consensus on their inclusion in MAs.
Bradburn (2007) and colleagues reported a simulation study comparing commonly used
methods of handling zero-event studies in MAs.[9] This provides a good guideline for
the subsequent MAs. However, when BAZE studies were present in systematic reviews,

the practice of handling varies.[8,10]

There are two major reasons why BAZE are handled variably in meta-analyses. First, the
statistical methods and software such as RevMan[11], Stata’s metan module[12] and
Comprehensive Meta-analysis[13]to handle BAZE studies differ according to the choice
of effect measures. BAZE studies are included in the pooled results when risk difference
(RD) is used, but automatically excluded by all statistical software used for MA when
odds ratio (OR) or relative risk (RR) is used. Second, there is no guideline for handling

BAZE studies in MAs. A few published papers examined various approaches using
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empirical data have produced ambiguous results. In 2007, Friedrich and colleagues
empirically compared the statistical methods of handling BAZE studies in MA and
recommended that BAZE studies should be included in all MAs. They concluded that
including BAZE studies could narrow the confidence interval and increase the precision
of the pooled estimates.[14] In 2008, Dahabreh and colleagues conducted a sensitivity
analysis to re-evaluate the treatment effect of Rosiglitazone and found that including
BAZE studies changed the pooled odd ratio of myocardial infarction between treatment
and control groups from significant to not significant statistically.[15] Although the
above empirical studies showed us that including BAZE studies could impact the results
of MAs, the impact may not be beneficial towards the truth in all scenarios. In addition to
the above empirical studies, a recently published simulation study argued that
incorporating BAZE studies using a relatively complicated Beta-binomial regression
could generate unbiased estimates for MAs.[16] However, due to its complexity and lack
of available procedures in commonly used statistical software, this model may not a

practical choice.

Since number of events observed in studies using dichotomous outcomes is determined
by event rates and number of subjects, zero-events are more likely to occur with the
conditions of extremely low event rates or small sample sizes even though the event rates

are different between two study groups. In the intuitive way, the arithmetical difference
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between two study groups with no observed events is null. Therefore, we believe that
depending on the magnitude of true treatment effects, including BAZE studies in MA
may affect the pooled estimates of treatment effects in two different ways. When there is
no true treatment effect, i.e. the event rates are similar in treatment and control arms,
including BAZE studies can narrow the confidence interval of the pooled studies of a
MA. But on the other hand, we suspect that when a true treatment effect exists, including
BAZE studies could moderate the magnitude of the pooled estimate and lead to the

underestimation of the treatment effect.

To test this hypothesis, we conducted a simulation study to evaluate the impact of
excluding and including BAZE studies. Although it is not difficult to statistically deduct
deduce that the bias brought by including BAZE studies is affected by the following
factors: 1) low event rate, 2) large treatment effect, and 3) small sample size, stimulation
is still needed to quantifying the magnitude of the bias. Our investigation was focused on
comparing the statistical pooling methods adopted by the commonly used software such

as RevMan and Stata for meta-analyzing aggregated data.
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Method

Odds ratio and relative risk are the most commonly used effect measures for assessing the
treatment effect for dichotomous outcomes in meta-analyses. The results of these two
effect measures are similar when the event probability is less than 20%.[16,17] Since the
event rates used in our simulation study were much lower, we chose OR as the effect
measure to engage the Peto method in our investigation. Bradburn (2007) et al have
shown that the Peto method was a better choice for rare event meta-analyses for

dichotomous outcomes when only one-armed zero event studies were included.[9]

Simulation Scenarios

The simulation scenarios in our study were chosen based on a combination of several
simulation parameters. Three types of parameters were used in this simulation study:
fixed, varied and derived. We believed some parameters had more impact on the
simulation results than others. We chose fixed values for the low impact parameters
across all simulation scenarios and let the values of those high impact parameters vary in
certain ranges. The parameter values were drawn from the published literature (Table 1).

The derived parameters were calculated by the input parameters according to a statistical
formula. For the fixed parameters, we tested the following values. The numbers of studies

(m) in each MA was set at 5. The review published in 2011 reported that the median
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(interquartile) of the numbers of studies included in the meta-analysis in the Cochrane
Database was 3 with inter quartile range (IQR) from 2 to 6.[7] For the treatment and
control arm ratio (r), we only considered 1:1 allocation. A review paper have shown that
78% of clinical trials were conducted with equal patient allocation strategies.[19] To
reduce the number of simulation scenarios, we deliberately chose to use the same number

of patients across all studies in each MA.

For the following parameters, we chose to input multiple values instead of constants. The
control arm event probabilities (p) investigated in this simulation were 0.001, 0.005, and
0.01. They are chosen according to the varying definitions of rare events.[5,6] The
treatment effects measured as odds ratio (OR) were set as no effect ( OR =1), medium
sized (0.8), large (0.5) and extremely large (0.2). [20] The numbers of patients (n) in
each individual study included were 50, 100 and 200 based on the same review
mentioned above,[7] which revealed that the median (Q1, Q3) of the sample size in each
individual study was 102 (100, 243). We also considered the potential impact of between
study variance in our simulation design. We set the between study standard deviation
(SD) as 0.1, 0.5 and 1, which represented little, moderate and large between study

variance.[20] The between study variation was added in the OR, i.e. the treatment effect.
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In this simulation study, the treatment arm event probabilities were calculated through the

control arm event probabilities and treatment effects (OR).

(1 —p%c)) °i

L+ (2500,

Tj

Where py= treatment arm probability, p. = control arm probability, Q = odds ratio, i =

1, 2, ..., study.

Number of simulations

We simulated 2500 data sets for each scenario to ensure the accuracy of our simulation

results.[21]

Analysis Methods

Five pooling procedures were used to meta-analyze each simulated data set. They were
Peto, Mantel-Haenszel (M-H) with fixed-effects and random-effects models, and inverse

variance (IV) method with fixed-effects and random-effects models.[2]
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Methods to Including Both-armed Zero-events

To implement the above 5 pooled methods to incorporate studies with BAZE in MA, a
continuity correction factor was add to each of the four cells of the 2 x 2 table for a BAZE
study, i.e. event in the treatment arm, non-event in the treatment arm, event in the control
arm, and non-event the in control arm. We chose to use the constant continuity factor 0.5.
It is common and plausible choice when the group ratio is balanced between treatment

and control arms.[22]

Evaluating simulation performance

Four measures were used to assess the performance of this simulation study [21]
(Table2): 1) percentage bias, which is calculated as the percentage of the difference
between the average of the estimated value and the true value (absolute bias) over the true
value; 2) root mean square error (RMSE), which measures the average distance of
estimated treatment effects from the parameter value; 3) the average length of 95%
confidence intervals (CI) is also used to compare the precisions between pooling
methods; 4) coverage, which measures the percentage of the true treatment effects
included in the available 95% confidence intervals (CI) over all generated data sets. The
RMSE and average 95% CI length were reported the log OR scale. The performances of
the simulation were compared across the five pooling methods used for the approaches of

including and excluding BAZE studies in the meta-analyses. We also reported the
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inclusiveness of the approach of excluding BAZE studies in MA, which reported the

percentage of number of studies included in the pooling process.

Statistical Software and Program

The data sets for each simulation scenario are generated using R 2.15.2 (The R
Foundation for Statistical Computing). The meta-analyses were conducted using Stata
13.1 (College Station, TX). The estimates summarizing the overall performance of this

simulation were also calculated using Stata.

Results

In this study, we ran 57 simulated scenarios. The scenarios were grouped to investigate
the impact of the value changing on the following variable parameters while holding the
number of studies (m = 5) and allocation ratio (1:1) fixed: 1) the treatment effect (OR =1,
0.8, 0.5, 0.2), 1i) the control arm event probability (p= 0.001, 0.005, 0.01), the number of
patients in each individual study (n = 50, 100, 200) and the between-study standard
deviation (SD = 0.1, 0.5, 1). When examining the changes on one variable parameter, we
held the other variable parameters on the common scenario, which was set as (OR = 0.5,

p = 0.001, n = 100 and between-study SD = 0.5). We assessed the simulation results by
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comparing bias, RMSE, the length of 95% CI, and coverage. We also reported the

inclusiveness of the approach of excluding BAZE studies

Including BAZE studies

Our simulation results supported our hypothesis that when there is no true treatment
effect (OR =1), the approach of including BAZE studies in meta-analyses had the best
overall performance regardless of the choice of pooling methods, which gave the smallest
bias (<0.1%) (Table 3a) and RMSE (Figure 1), and narrowest 95% CI (Figure 2).
However, when there was true treatment effect, this approach gave the larger bias
compared to the alternative approach of excluding BAZE studies. The magnitude of the
bias increased with an increase in the treatment effect. Compared to the approach of
excluding BAZE studies, the result obtained by including BAZE studies had smaller
RMSEs when the treatment effects were small (OR =0.8) or moderate (0.5), but when the
treatment effect was large (OR = 0.2), RMSEs were also larger (Figure 1). The changes of
the treatment effect also impacted the coverage. For all methods, the coverage was high
(> 99%) when the treatment effect was zero (OR = 1) to moderate (OR = 0.5), but then
dropped to 95% when the treatment effect was large (OR = 0.2). We also found that the
bias of the pooled estimates increased with decreasing control arm probability (Table 3b)

and number of patients (Table 3c) and increasing between-study variance (Table 3d).
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Excluding BAZE studies

Similarly excluding BAZE studies for meta-analyses introduced little bias on the pooled
estimates (0.7-1.4%) when there was no true treatment effect (Table 3a) When a true
treatment effect existed, the pooled estimates obtained using this approach yielded
smaller bias compared to including BAZE studies. Again the magnitude of bias increased
with a decrease in the control arm probability (Table 3b) and number of patients (Table
3¢) and an increase in between-study variance (Table 3d). We also noticed that excluding
BAZE studies didn’t have much impact on RMSE, the length of confidence intervals and
coverage, except for Peto method—which had slightly wider confidence interval (Figure
2) and lower coverage (91%) when large treatment effect presented (OR =0.2). However,
the inclusiveness, i.e. the number of studies included in MA dropped noticeably (72%,
67%, 59%, 46%) with the increase of the treatment effects (OR = 1, 0.8, 0.5, 0.2),

respectively.

Peto method excluding BAZE studies

Among all five pooling methods, the Peto method excluding BAZE studies provided the
most reliable results (percentage bias < 0.8) for this rare event setting (control arm
probability = 0.001, 0.005, 0.01) when the true treatment effect and between-study
variance were small to moderate and number of patients were equal or greater than 100 in

each individual study (Table 3a-3d).
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In summary, our simulation study verified that when there was no true treatment effect
(OR = 1), the approach of including BAZE studies consistently outperformed the
approach of excluding BAZE studies across all five pooling methods by providing less
biased results with smaller RMSE, narrower 95% CI and higher coverage regardless of
the changes of control arm probability, number of patients and between-study variance.
However, whenever a true treatment effect was present, the results from the approach of

including BAZE studies introduced larger bias than the approach of excluding them.

Discussion

This simulation study investigated the impact of including or excluding BAZE studies in
MAs for rare event outcomes when odds ratio is used as the effect measure for pooled
estimates of dichotomous outcomes. We found that including BAZE studies provided
more accurate overall pooled estimates than excluding them when there was no true
treatment effect. However, when there was a true treatment effect, the results from both
approaches underestimated the true treatment effect, and including BAZE studies
increased bias further. Amongst the pooling methods, Peto’s method with exclusion of
BAZE studies provided the pooled OR considerably closer to the true treatment effect for
small to moderate treatment effects under the condition of small to moderate between-

study variance and relatively large sample size.
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Our simulation study confirmed the empirical findings obtained by Friedrich et al. (2007).
They recommended including BAZE studies in all meta-analyses for the benefits of
providing conservative point estimates and increasing the study integrity.[14] However,
the “conservative” estimate is a double-edged sword. In the sense of drawing the
estimates towards null hypothesis, although underestimating benefit may delay or deny
patient’s access to a new treatment[23] when evaluating the beneficial treatment effect for
a new drug, with the patient safety as physician’s priority concern, the conservative result
might be a the safer choice. With many uncertainties unchecked, quickly shifting from the
standard care to a new treatment based on the findings from a small study (even it is a
MA) can be a dangerous move. Some studies have showed that the treatment effect tend
to be over estimates when the trials were underpowered.[21,22] On the other hand, when
the result of a MA is regarding the safety measures such as serious adverse event, the
conservative result means underestimating the harm, which could lead to expose patients
to unnecessary danger.[26] Therefore, depending the purpose of the SR (evaluating

benefits or harms), including BAZE studies in MA could have different implications.

This simulation study confirmed that among all five commonly used pooling methods,
only the Peto method without inclusion of BAZE studies produces a pooled OR
approaching the true treatment effect when sample size are relatively large. This finding

is consistent with the simulation study conducted by Bradburn et a/ (2007),[9] which
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evaluated performances of the common methods used to meta-analyze the sparse data for
binary outcomes. In addition to their findings, our simulation study also shows that
compared to the random-effects model (IV or H-M), the Peto method as a fixed-effect
model gave the least biased estimates when the between-study variance is from small to
moderate.. The reason of the Peto method outperforming the random-effects model is that
as Sweeting at el [22]has shown in their simulation study, the heterogeneity was difficult
to estimate for the rare event data. Therefore, the benefit of using random-effect model
doesn’t overcome the bias introduced by the IV or H-M methods, which were proven by

the simulation study conducted by Bradburn and at el.[9]

This simulation study clearly showed that including both-armed (and even single armed)
zero-event studies in MA could do more harm than benefit when the treatment effect is
comparing harmful outcomes. However, in reality, it is not easy or sometimes even
impossible to know whether a true treatment effect exists or not. Therefore, a
comprehensive approach of a series of sensitivity analyses need to be conducted when
performing systematic reviews that include zero-event studies. An example could be used
is Dahabreh at el (2008) who re-analyzed the cardiovascular events in randomized trials
of rosiglitazone.[15] Although, the results showed that including BAZE studies turned
the pooled odds of myocardial infarction (MI) from statistically significant to not

significant. Their conclusion that rosiglitazone increased MI was made after assessing the
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consistency of results from different methods. The above example demonstrates that
when MAs are conducted to evaluate rare events, it is difficult to get a concordant result.
To assist readers to make their own informative decision about the results of a MA, its
methods should be communicated in full transparency. In addition to reporting the result
following the PRISMA guideline,[1] the eligible studies with zero-event and the methods
used to deal with zero-event studies need to be clearly described. We believe that an
extension of the PRISMA guideline on how to report MAs on rare event outcomes with
zero event studies needs to be developed to include a section of reporting the methods

used to deal with zero-event studies and impact on the overall estimates of MAs.

Although we chose the values of simulation parameters from literature review, we realize
that the results of our simulation study cannot be generalized to all situations in MA. To
reduce the simulation scenarios to a manageable level, we used fixed values for some
parameters. We only considered the balanced group ratio between treatment and control
arms, but only 22% of RCTs used unbalanced design among previous in a recent
review.[19] Within each simulated MA data set, we fixed the number of studies to five,
each with the same number of patients. This approach might be over simplified.
Although we chose to investigate OR using common pooling methods, we believe that
our findings can be applied to RR under similar condition for the estimates of OR and RR

are similar when event rates are less than 0.2.[16,17] For the continuity correction
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approach to incorporate zero-event studies, we only used 0.5 as continuity correction
factor, which works well when the trial arms are balanced, but will increase the bias when
there is a big difference on the numbers of patients between two arms and the treatment

effect are large. [22]

The commonly used MA pooling methods we discussed in this simulation are based on
parameter estimation, which requires the use of continuity correction to include zero
events. The likelihood maximization based Poisson Regression can incorporate zero
events without continuity correction and supposedly generates an unbiased estimate of
RR. The simulation from Spittal and et al[27] showed that random-effects Poisson
Regression outperformed the standard pooling methods when meta-analyzing the
incidence rate ratio for zero events data. We ran the random-effects model Poisson
Regression on our stimulated data, and there was a convergence issue. The reason could
be that there were a large proportion of zero-event (either in one arm or both arms)
studies presented in a relatively smaller number of studies in each MA due to extremely
low event rate. This convergence problem may not be a problem for MAs with larger
number of studies. However, the most commonly used MA software such as RevMan
doesn’t have the capacity to conduct any advanced statistical model, which may present a
challenge for researchers who use the standard MA analysis packages. Similar to random-

effect Poisson Regression, Bayesian approach using none-informative prior as an
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alternative of the standard classical MA method we investigated in this study has the
advantage of incorporating zero-event studies without applying a continuity correction.
[22] How including BAZE studies in Bayesian MA impacts the pooled estimates will be

studied in subsequent simulations.

Conclusion

To conclude, we recommend including BAZE studies in MA using OR as effect measure
when treatment effects are unlikely to preserve data integrality of the systematic review.
When treatment effects are clearly present, excluding BAZE studies and using the Peto
method is a safer choice for evaluating rare events. However, most of the time, the real
situation about the treatment effect is hard to foresee from the available data, it is
important to conduct sensitivity analyses using alternative approaches to assess the
robustness of the primary analysis. And the purpose of the SR also need to be considered
when deciding on how to deal with BAZE studies in MAs. Furthermore, the results of

MAs for rare events need to be interpreted within the clinical content.
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Parameter

Assigned Value

Rational

Reference

Odds Ratio (OR)

1,0.8,0.5, 02

Small, medium and
large treatment effect

Cohen J. Statistical Power Analysis for the Behavioral
Sciences. Second ed. Hillsdale, NJ: Erlbaum: 1988.

Control group event
probability (p)

0.001,0.005,0.01

1 in 2000 rare disease
in EU; 1 in 1000 rare
adverse event,

1. Marodin G, Goldim JR. Confusions and ambiguities in the
classification of adverse events in the clinical research. Rev
Esc Enferm USP 2009;43:690-6.

2. Institution of Medicine. Adverse Drug Event Reporting:
The Roles of Consumers and Health-Care Professionals:
Workshop Summary (2007)

Number of studies in
each meta-analysis (m)

median = 3;
interquartile: 2-6; less
than 1% >29

Davey J. Characteristics of meta-analyses and their
component studies in the Cochrane Database of Systematic
Reviews: a cross-sectional, descriptive analysis. BMC 2011

Number of patients in
individual study (n)

50, 100, 250

Median=102;
interquartile 50-243

Davey J. Characteristics of meta-analyses and their
component studies in the Cochrane Database of Systematic
Reviews: a cross-sectional, descriptive analysis; BMC
Medical Research Methodology 2011, 11:160

Between study standard

Cohen J. Statistical power analysis for the behavioral

deviation (SD) 0.1,05,1 Small, moderate, large | sciences. 2nd ed. 1988
Dumvillev JC._The use of unequal randomisation ratios in
78% trials had equal | clinical trials: A review. Contemporary Clinical Trials 27
Ratio of group size (r) 1:1 group ratio | (2006) 1-12
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Table 2 Measures for evaluating simulation performance

criteria Formula

3, p—
Percentage bias ((E) %) ('B 7 F ) x 100

Root mean square error (RMSE)

V(B - B) +(SE@®)D

Average length of 95% CI P zzl_a/ZSE([?i)
B

fori=1,2,..., B, where B = the number of

meta-analyses conducted using simulated

data sets

Coverage of 95% CI Percentage of times the 95% CI of B; include
B, fori=1,2,..., M, where M = the number
of meta-analyses conducted using simulated

data sets

Inclusiveness Average percentage of number of studies

included in the meta-analysis.

B: the true value of estimate of interest; J: estimate of f; £: mean of § in simulation
d: bias
SE: standard error

Zi_a /' a-« / 2) quantile of the standard normal distribution
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Table 3a Impact of the treatment effect changes on bias
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Number of studies = 5

Number of patients = 100

Group ratio = 1

Control arm probability = 0.001

Number of simulated data sets = 2500

Between-study SD = 0.5

Excluding BAZE studies

Including BAZE studies

OR=1 OR 0.8 OR =0.5 OR=0.2 OR=1 OR 0.8 OR =0.5 OR=0.2
o | BR|% R D% R |D% | R |P% | R |P% | GR (P% | G |G% | G| G
IV Random effects 1.01 0.8 0.88 -9.9 0.70 -40.6 0.47 -133.1 1.00 <0.1 0.99 -23.2 0.97 -93.0 0.94 -370.7
IV Fixed effects 1.01 0.7 0.88 -9.9 0.70 -40.6 0.47 -133.1 1.00 <0.1 0.98 -23.0 0.96 -92.3 0.93 -367.4
M-H Radom effects 1.01 0.8 0.88 -9.9 0.70 -40.6 0.47 -133.1 1.00 <0.1 0.99 -23.2 0.97 -93.0 0.94 -370.7
M-H Fixed effects 1.01 0.8 0.88 -9.9 0.70 -40.6 0.47 -133.1 1.00 <0.1 0.98 -23.0 0.96 -92.3 0.93 -367.4
Peto 1.01 1.4 0.80 0.2 0.54 -7.8 0.26 -30.6 1.00 <0.1 0.95 -22.6 0.90 -90.6 922 -360.9

Note: E/ B =1+ Taylor expansion (bias_log);
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Table3b Impact of the control arm probability changes on bias

Ph.D. Thesis — J Cheng; McMaster University

Health Research Methodology, Biostatistics Specification

Number of studies = 5 Number of patients = 100 Group ratio = 1 OR=0.5 Number of simulated data sets = 2500 Between-study SD = 0.5
Excluding BAZE studies Including BAZE studies
Methods pc =0.001 pc = 0.005 pc=0.01 pc =0.001 pc =0.005 pc=0.01
R |Q@% | R |@% | GrR [@% | GR |Q% | GrR Q% | Tr |G%
IV Random effects 0.70 -40.6 0.68 -35.1 0.64 -28.5 0.97 -93.0 0.85 -70.8 0.76 -51.3
IV Fixed effects 0.70 -40.6 0.67 -349 0.64 -27.3 0.96 -92.3 0.84 -68.5 0.74 -48.0
M-H Radom effects 0.70 -40.6 0.68 -35.1 0.64 -28.5 0.97 -93.0 0.85 -70.7 0.76 -51.3
M-H Fixed effects 0.70 -40.6 0.67 -349 0.64 -27.3 0.96 -92.3 0.84 -68.5 0.74 -48.0
Peto 0.54 -7.8 0.52 -4.6 0.51 -1.1 0.90 -90.6 0.80 -59.5 0.67 -33.2
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Table 3c: Impact of the number of patient changes on bias
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Number of studies=5  Control group probability = 0.001 Group ratio = 1 OR =0.5 Number of simulated data sets = 2500 Between-study SD = 0.5
Excluding BAZE studies Including BAZE studies
Methods n=>50 n=100 n=200 n=>50 n=100 n=200
R |Q@% | R |@% | GrR [@% | GR |Q% | GrR Q% | Tr |G%
IV Random effects 0.73 -45.7 0.70 -40.6 0.68 -36.5 0.98 -96.8 0.97 -70.7 0.93 -86.0
IV Fixed effects 0.73 -45.8 0.70 -40.6 0.68 -36.3 0.98 -96.5 0.96 -68.5 0.92 -84.5
M-H Radom effects 0.73 -45.7 0.70 -40.6 0.68 -36.5 0.98 -96.8 0.97 -70.7 0.93 -86.0
M-H Fixed effects 0.73 -45.8 0.70 -40.6 0.68 -36.3 0.98 -96.5 0.96 -68.5 0.92 -84.5
Peto 0.58 -15.2 0.54 -7.8 0.51 24 0.98 -95.8 0.95 -59.5 0.90 -80.7
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Table 3d: Impact of the between-study variance changes on bias

Number of studies = 5 Control group probability = 0.001 Group ratio = 1 OR=0.5 Number of simulated data sets = 2500 number of patients per arm = 100
Excluding BAZE studies Including BAOE studies
Methods SD=0.1 SD=0.5 SD=1 SD=0.1 SD=0.5 SD=1
R |Q@% | R |@% | GrR [@% | GR |Q% | GrR Q% | Tr |G%
IV Random effects 0.68 -35.3 0.70 -40.6 0.88 -76.7 0.96 -92.5 0.97 -93.0 0.99 -97.3
IV Fixed effects 0.68 -35.3 0.70 -40.6 0.88 -76.7 0.96 -91.6 0.96 -92.3 0.99 -97.0
M-H Radom effects 0.68 -35.3 0.70 -40.6 0.88 -76.7 0.96 -92.5 0.97 -93.0 0.99 -97.3
M-H Fixed effects 0.68 -353 0.70 -40.6 0.88 -76.7 0.96 -91.6 0.96 -92.3 0.99 -97.0
Peto 0.50 -0.9 0.54 -7.8 0.80 -60.5 0.95 -89.9 0.90 -90.6 0.98 -96.4
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Figure 1: Comparing root mean square error (RMSE)
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Figure 2: Comparing length of 95% confidence interval (CI)
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ABSTRACT

Background: Bayesian modelling empowers analysis of rare events via incorporation of
external data. To illustrate how the approach will i) compare with classical one; ii) change

with different priors; and enable testing iii) thresholds and iv) size of information.

Methods: We used three different scenarios: s1) a single cohort of previously treated
patients (PTPs), s2) a meta-analysis of PTPs cohorts, and s3) a previously unexplored

clinical setting (patients with positive inhibitor history). Patient population: Hemophilia A

patients from the ADVATE Post Authorization Surveillance Studies. Outcome: Any

inhibitors. Statistical analysis: Non-informative and informative priors were applied to

Bayesian standard (sl1) and random-effects (s2,s3) logistic models (i.ii). Bayesian
probabilities of satisfying three meaningful thresholds of the risk of developing a clinical
significant inhibitor (10/100, 5/100 [high rates] and 1/86 [FDA mandated cut-off rate in
PTPs])(iii) were estimated. The effect of scaling up the study data size by 2 and 10 times

was evaluated (iv).

Results: Results based on non-informative priors were similar to the classical approach.

Using priors from PTPs lowered the point estimate and narrowed the credible intervals
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(sl: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; s2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; s3: 2.3
[0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above
0.65. Increasing the number of patients by 2 and 10 times substantially narrowed the
credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8],
respectively). Increasing the number of studies by 2 and 10 times for the multiple-studies
scenarios (s2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; s3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5],

respectively) had a similar effect.

Conclusion: Bayesian approach as a robust, transparent and reproducible analytic method

can be efficiently used to answer the complex clinical questions.
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Background

Developing inhibitors against factor VIII concentrates is the most severe and costly
complication of the treatment of hemophilia A.' Patients who develop inhibitors have
more episodes of bleeding and require larger doses of factor replacement to achieve

hemostasis.

There are several reasons that complicate studying the determinants of inhibitor
development.” The first is that the development of inhibitory antibodies is a combination
of different events, more than a single one, with nothing as simple as black and white.>
The second is the multifactorial nature of the phenomenon with both known and unknown
risk factors and only some modifiable.”® The third is the rarity of the disease, which

hampers the opportunity to obtain substantial comparative data.

In this challenging scenario, it is important to determine the risk associated with specific
brands or classes of factor concentrates because the type of product is one of the few
actionable risk factors in the field.”' Other characteristics of the treatment regimen like
dose, frequency, indication, and concomitant treatments or exposures also contribute to

the risk of inhibitor development.''
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Progress in this field requires a close collaboration with complementary expertise.
Knowledge of immunology and basic science can help gain a broader and deeper
understanding of the molecular and cellular mechanisms driving the development or

breach of tolerance.'*"’

Clinical investigators can work to dissect the common
characteristics among the heterogeneous clinical manifestations of inhibitory responses.

Epidemiologists and biostatisticians can develop more powerful and efficient ways of

looking at the available data and generating new ones.

There are several unmet needs in the statistical models used to analyze observational data
about inhibitor development, which relate to the rarity of adverse events in an already rare
disease.'?* The first critical issue is the scarcity of evidence, which emphasizes the need
for incorporating external evidence to increase the power and the informative value of
small and otherwise weak cohorts.”” A second issue is the need for an efficient way to
analyze the intricate relationship between treatment, time and the varying risk of events

over time.?

A third is the need to adjust for covariates (known risk factors) when
performing multivariable exploration of, for example, inhibitor rates in previously

untreated patients. The fourth and last, is the proper assessment and comparison of event
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27-29

rates generated by non-parallel cohorts In the present paper, we will address the first

and fourth issues.

A powerful approach to the above problems might be a Bayesian framework. The
Bayesian approach to interpreting experimental data from a clinical study consists of
modeling the logical process leading to a change in opinion from before to after the

availability of new information (the evidence provided by a new observation).

Here is a simple example of the Bayesian approach. Assume it is 7:00 AM a day in
March. You look out of the windows and you see overcast. What is your estimate of the
chance of snow? With nothing more than that, you would probably say that the chance of
snow that day is 25%, chance of rain 25%, the chance of clearing up 25%, and the chance
of staying the same 25%. Assume now you are in Toronto. Your estimate of the chance of
snow that day would probably become 50%, chance of rain about 1%, the chance of
cleaning up 20%, and chance of staying the same about 30%. If instead you were in Hong
Kong, you might estimate the chance of snow at 0%, chance of rain at 80%, etc. The
same exact information gets a different interpretation based on your previous knowledge

about the city and it would be improper not to take it into account. To add another level of
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complexity, you might imagine you will get different estimates if it is your first day in
Toronto or in Hong Kong, or instead if you are familiar with the area. In fact, conditional
on your previous knowledge, you will have a different level of confidence in your
forecast estimates. In clinical practice, it is very useful and ethical to express some
degree of credibility or confidence in your forecast with a patient. The power of the
Bayesian approach is in formalizing and making transparent the way you define your
previous knowledge, translate it into a technical language, and incorporate the new
information. This process then provides a way to express the credibility of your forecast

that is analogous to the classical measure of confidence in the result.

The power of the Bayesian approach derives from the opportunity of making use of -
existing knowledge in the assessment of data that extends to either incorporating that
knowledge in the final results or using it as a standard for comparison. That knowledge
could be a similar measure in a similar unrelated trial, or a threshold of clinical

importance.

Here is another example. It is still 7:00 AM, in March, overcast, in Toronto. The weather

forecast is for a 50% chance of heavy rain, and you are ready to go for a walk. You don’t
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mind walking under a light rain, and you are a risk taker, but you always carry your coat
and umbrella when the chance of heavy rain is over 80%. Based on the observation of
historical trends, the average chance of heavy rain is not higher than 20% that day in
Toronto. That said, the horizon looks unusually dark and the US east coast has been
recently hit by the most powerful tornado of the last century. Now you ask yourself: can
the chance of heavy rain be higher than 80% today? Sure it can. After putting all pieces
of information together, you update your own estimates of the chance of heavy rain for
today to 80% (Figure 1). This is enough for you to consider taking your coat and

umbrella.

This paper demonstrates how the Bayesian approach works in comparison with a classical
(frequentist) approach; how it can incorporate external evidence in the analysis of a single
cohort of patients and a pooled analysis of a set of studies; whether it can help increase
credibility of the results and the understanding of the underlying mechanisms; and how
can we generate probabilities to be used in a physician-to-patient interaction. Recently

30-32

published data were used to work out three examples.
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Methods

Overall study design: This paper is built around three case studies, and uses a
standardized multistep approach to show i) how the Bayesian results compare with those
based on the commonly used classical approach; ii) the impact of different sources of
external information used to construct a Bayesian prior; iii) the use of different sources of
external information as thresholds against which to benchmark Bayesian posterior
estimates of risk; and iv) the impact of the size of information on the Bayesian posterior
estimates. In the material and methods section we will describe the three case studies, the

statistical details, and the data source we used for the simulation.

Case Study scenarios:

Case one: analyzing a rare adverse event in a single cohort (inhibitor rate in a cohort of

previously treated patients, PTPs). The first example was set to represent the analysis of

a single study where all patients were treated with the same FVIII product, aiming to
assess the rate of inhibitor development in cohort of Hemophilia A PTPs. For this
example, we re-analyzed the same cohort already published by Oldenburg and
colleagues.”® We used this example to explore and discuss the basics of the Bayesian

approach and the pros and cons of choosing different priors.
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Case two: analyzing a rare adverse event by pooling a set of studies in a meta-analysis.

The second example was conceived to represent a meta-analysis of studies assessing the
rate of inhibitors in a set of independent but similar studies in comparable populations of
Hemophilia A patients; for this example we used a previous paper we published.’’ The
main goal of this example -was to show how the Bayesian approach can -be a natural

framework for a meta-analytical process.

Case three: analyzing the inhibitor rate in a previously unexplored setting. The third

example illustrates the Bayesian analysis, interpretation and reporting of a small cohort
study exploring a new clinical setting for which no obvious priors are available in the
literature. We chose as a working example a previous report, studying the rate of inhibitor
development in patients with low titer inhibitor at baseline or positive personal history of
inhibitors. Although the study design and data collection were similar to the multi-
national studies described in the previous case, the patient population was definitely
different and not overlapping, thus adding to the complexity of data not directly
comparable to any existing.’> Another challenge presented in this example was pooling
extremely sparse data in a multi-center study where no outcomes were observed in some

centers (so-called zero-event).
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By using the three study examples, the steps of conducting Bayesian analyses, and the

potential benefits of using the Bayesian approach are showed step-by-step hereafter.

The Concepts behind Bayesian Inference:

Statistical inference is the process of fitting a probability model to a set of observed
samples from a population to summarize the results by a probability distribution on the
parameters of interests to make a general statement -about the population and predictions
for new observations. In the classical (frequentist) approach, the statistical modeling only
involves fitting a probability distribution to the observed experimental data to model the
likelihood of the observed experimental data for a given estimate of interest such as
treatment effect, incidence rate and etc. Unlike the classical approach, the Bayesian
approach combines experimental and prior or external information via the Bayes theorem,
to produce the posterior distribution which is used to make all inferences about the

estimate of interest.

p (o|data) = p(data|d) x p(d), where J is the parameter of interest

Posterior distribution = Data Likelihood x Prior distribution
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As shown in the textbox, p(J) represents prior distribution of the parameter of interest
(hereforth to be referred to as “the parameter”), which present prior or external
information about the estimate of treatment effect, incidence rate and etc.; p(data| o ), the
likelihood function, specifies the statistical model of the observed experimental data
given the parameter and p (0 |data) is the posterior distribution of the parameter —
which is essentially a combination of the evidence provided by the observed experimental

33,34
> In

data and prior relevant data from clinical experience or past research evidence.
many cases, the posterior distribution p(d|data) is intractable and therefore to make
inferences about the paramete , the Bayesian approach uses Monte Carlo Markov Chain
(MCMC) to obtain samples from the posterior p(ddata).”> MCMC is an iterative
process, with each iteration yielding a realization or observation from the posterior
distribution p(d|data). Typically, investigators will conduct a large number of
iterations or simulations: 1,000, 10,000, or even more. These are used to inform
posterior inferences about the parameter. For example, the posterior mean or median is
used to estimate the parameter, while the 2.5™ and 97.5™ observations are used as the
95% credible interval for the parameter. To calculate the probability that the estimate of
the parameter< K, where K is some threshold is given by the proportion of observations

less than K. Table 1 provides a brief summary of the comparison main features of the

frequentist and Bayesian approaches in clinical trials.

88



Ph.D. Thesis — J Cheng; McMaster University

Health Research Methodology, Biostatistics Specification

How can our questions be framed using the abovementioned Bayesian framework? We
take our first scenario as an example. In this example, we are interested in estimating the
inhibitor rate from the collected data. The likelihood p(data| §) in our Bayesian model has

a binomial distribution

data| 6 ~ Binomial (J, n)

where 0 represents the inhibitor rate, and » is the total number of patients on some
underlying treatment. The prior, p(d), could be the inhibitor rate reported in an external
study. After we run our Bayesian model to combine the information on the inhibitor rate
contained in our data and the knowledge on the inhibitor rate found in the external study,
we will have an updated estimate of the inhibitor rate that is represented through the

posterior distribution.

How probabilities are used in the frequentist and the Bayesian approach is fundamentally
different. For instance, let’s say that we have a clinically meaningful reason to consider as
sufficiently low an inhibitor rate less than 10%; thus, we want to test - if “the inhibitor
rate (in our population) is less than 10%”. In fact the frequentist frames test whether the
null hypothesis (known) hold, i.e. “the inhibitor rate is greater or equal to 10%”at an

arbitrary acceptable probability p that the null hypothesis may be wrongly rejected, say
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0.05 *°. In our example, if the “probability” of “the inhibitor rate is greater or equal to
10%” is less than 0.05, we conclude that this hypothesis can be rejected. However, this
probability is not in fact a probability directly related to the acceptance of the testing
hypothesis, but a level of credibility that, given the rate of inhibitor in our sample, and
given the frequentist theoretical construct based on the normal distribution of the means
of the infinite possible samples of the theoretical population, we can refuse the null
hypothesis. In fact, when p =< 0.05, we will reject the null hypothesis, but we are never
able to say that the probability of “the inhibitor rate being less than 10%” is truly 0.95. On
the other hand, the Bayesian probability is a quantity of the testing hypothesis. The
Bayesian can really test the probability that the rate of inhibitor in our sample is less than
10%. If p = 0.95, we are confident that the probability of “the inhibitor rate being less
than 10%” is actually 0.95. The estimates associated with the probability are confidence
interval (CI) in classical approach and credible interval (Crl) in Bayesian approach. Back
to our example, the 95% Cl is interpreted as “the estimates of the inhibitor rate will fall in
between these two boundaries 95% of the time if the data can be repeated infinitely”. It
cannot be used to make an assertion about the current test based on a single sample set
without the assumption of the infinite repetition. In comparison, the 95% CrI tells us a
straight forward story, “given the data and the model, the chance of the true inhibitor rate

fall in this interval is 95%".
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Setting basic_models_with non-informative priors: For all three cases, Bayesian

statistical models with non-informative priors were introduced first as the basic starting
model. Non-informative priors are vague priors that carry relatively minimal information;
consequently, the posterior estimates are derived predominantly from the study data, and
directly comparable to the results obtained through the classical frequentist approach. For
the first example (one single cohort of patients) classical logistic and Bayesian logistic
models were used. For the second and third examples (multiple studies setting) classical
random-effects logistic and Bayesian hierarchical random-effects logistic models were
adopted, through which the patients from the same cohort were clustered. The random-
effects model was adopted as the commonest choice for individual patient data meta-

analyses.

Choosing informative priors: As a second step, we replaced non-informative priors with

information-rich priors to incorporate the pre-existing external information/knowledge
from previous studies into the analysis of the current study data. Unlike non-informative
priors, informative ones contribute information to the posterior estimates, which can be
looked at as a “combination” of the pre-existing evidence with -evidence generated by the
current experiment. . In fact, posterior estimates are weighted averages based on prior and

current experimental evidence/data, with the weights determined by the precision of the
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corresponding evidence. For examples one and two, the main goal of using prior was to
incorporate the existing evidence and increase the comprehensiveness of the conclusion.
To this scope, we sought relevant comparable priors, and tested two different sets of
informative priors. The first set (a) comprised data obtained during the treatment with a
certain molecule (e.g. rAHF-PFM) in different studies; specifically a-i) estimates of
inhibitor rates from the manufacturer pivotal studies;’’ a-ii) estimates of inhibitor rates
from a meta-analysis *° and a-iii) estimates of inhibitor rates from an independent

% The second set of informative priors (b) comprised

prospective multicentric cohort.
pooled inhibitor rates for any FVIII concentrate, including: b-i) a meta-analysis ** and b-

ii) an independent prospective multicenter cohort.*

The third study example was specifically chosen not to have a study on the same patient
population already available; thus, no obvious informative priors can be located in the
literature. Notwithstanding, we wanted to show the value of the Bayesian approach in
exploring how the rate of inhibitor development in this population would change when
the known rate in previously treated patients (PTP) and that in previously untreated
patients (PUPs) are added in. Consequently, in addition to the informative priors used in
the first two examples, we also added the inhibitor rates for PUPs reported in the

EUHASS study *’ for a) the specific molecule and for b) all products. The key rationale
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was to assess the robustness or sensitivity of the posterior inhibitor rates see when a prior
based on a truly high-risk population is used. The details of generating priors can be

found in Appendix A.

Calculating probabilities: Unlike the frequentist probability model, which tests whether

the null hypothesis can be rejected successfully, the Bayesian probability approach
generates a quantitative estimation of the “degree of truth” of the study hypothesis.
Another interesting characteristic of the posterior probability is its nature of conditional
probability, which lends it to be continually updated upon the availability of new data.
The most informative example of using the conditional probability framework is where
the inhibitor rate among the patients with low titer inhibitor at baseline or personal history
of inhibitor had been given little consideration to date. Therefore, comparing the posterior
estimates of the inhibitor rate obtained from the study data commonly used as clinical
thresholds will provide clinicians with meaningful ways to interpret the results. To make
this more evident, and show another peculiar property of the Bayesian framework, we
further calculated for the third example the Bayesian probabilities of the posterior
inhibitor rates being lower than three specific clinically meaningful thresholds, two high

rates (10/100 and 5/100) and the FDA mandated cut-off rate in PTPs (1/86).*""!
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Testing more complex hypotheses: We moved then to show the effect of scaling down

or discounting the value of the prior information. We used the third example, for which
due to the inability to -use -a full consistent informative prior one might want to assign
less weight to the - information carried by the selected - priors. The weight of the prior

could be reduced in at least 2 ways:

1)by decreasing the precision i.e. enlarging the variance of the priors depending on how

34,42
7. In our

relevant the particular piece of information is to the study we are assessing
third example, we will discount the precision of the rates of inhibitor in PUPs in
EUHASS for the specific molecule and for any factor VIII concentrate by 75% and 95%
each, respectively. This equals to the human process of any perceived information: you
told me that the rate of event is this, but I only 25% trust your information. 2) a second
approach to obtain the same objective, i.e. to undervalue the contribution of the priors, is
scaling up the weight of study data by increasing the precision assigned to the
experimental data. One easy and understandable way to do this is to simulate the impact
on posterior estimates of increasing the study sample size. Thus, we showed the effect of
increasing the study data sample size by 2 times and 10 times respectively, for all three
studies examples when using pooled estimates as priors. The increment of sample was

done in two ways: 1) increasing the number of events and number of patients in each

center proportionally; ii) increasing the number of centers and keeping the number of
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patients in each center the same. We re-ran the Bayesian model with non-informative
priors using new inflated data for all three examples, and we further re-analyzed the effect

of data inflation in the third example for all informative priors previously used.

Analysis and reporting: Throughout this study, posterior inhibitor rates (our results)

were reported as percentage rates with 95% associated confidence interval (CI) in the
case of classic statistics, or 95% credibility interval (Crl) in the case of Bayesian
statistics. Graphic, descriptive statistics and classical meta-analyses were performed using
Stata 13.1 (Statacorp, College Station, Tx, US). Bayesian analyses were performed using
WinBUGS software 1.4.3 (http://www.mrc-bsu.cam.ac.uk/bugs/). In every Bayesian
analysis, two chains were run simultaneously and the convergence of the Bayesian
models was assessed based on the history trace, posterior density and auto-correlation
plots for parameters of interest. The codes of Bayesian models detailed setups on the

Bayesian simulations can be found in Appendix B.

Source data used in the present paper: The individual data sets used to build our
examples for illustration purposes °°>” were from the ADVATE PASS (Post-

Authorization Safety Studies) program. The study population in PASS studies was
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severe-moderate Hemophilia A patents undergoing treatment (prophylaxis or on-demand)
with ADVATE in routine clinical use. The primary safety outcome in these studies is
defined as measurable inhibitors levels during the study period, including de novo,
recurrent and persistent inhibitors. We adopted the cut-offs specified in the original PASS
protocols: 1.0 Bethesda Unit (BU) for USA- EU- and Australia-PASS; and 0.6 BU for

Japan-, Italy-, Korea and Taiwan-PASS (studies adopting the Nijmegen modification).’**

Results

Description of the three datasets used for the examples. For Example 1, six inhibitors
were reported among 428 patients (all severity patients, de-novo and recurrent, in 4 PTPs
and 2 PUPs). For Example 2, five cohorts were included the IPD meta-analysis, and 21
inhibitors were reported in 1188 patients. For Example 3, individual patient data were

extracted from seven PASS studies and 6 inhibitors were reported in 219 patients.

Comparing results from Bayesian approach to classical approach

As expected, the results obtained from classical analytical approach and Bayesian
statistical model using non-informative priors were similar for all the three examples. For

the single cohort study (example one), the estimates were the same to one decimal place
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(percent rate (95% CI): 1.3% (0.5, 2.7); percent rate (95% Crl): 1.3% (0.5, 2.7)). For the
pooled analysis (example two), the Bayesian posterior estimates gave a slightly wider
95% Crl (1.9% (0.5, 4.5)) toward the lower end as compared to the estimate from the
classical approach (1.9% (0.8, 4.5)). For the cohort of patients with previous/current
inhibitor (example three), the posterior estimates from the Bayesian model showed a
slightly lower percent rate and wider 95% Crl (2.3% (0.5, 6.8)) as compared to the

estimate from classical approach (2.6% (1.0, 6.8)). (Table 2, Figure2a, 2b, 2c¢).

Impact of using informative priors in Bayesian analysis

For example one and two, using external information as priors consistently narrowed the
credible intervals and lowered the central estimate of percentage rates. The range of the
inhibitor percentage rates for the single cohort (example one) was 0.8% to 1.3% and for
the pooled analysis was 0.8% to 1.9%. For the cohort of patients with previous/current
inhibitor (example three), the posterior estimates of inhibitor percentage rates changed
depending on the external information brought in by priors. The lowest percentage rates
with narrowest 95% Crl was obtained using the informative prior generated from
EUHASS study of PTP patients for all FVII products: 0.7% (0.5, 1.1). The highest
percentage rate was gained using the informative priors generated from EUHASS study

of PUP patients for all FVIII products: 24.9% (21.1, 29.2). (Table 2, Figure2a, 2b, 2c¢).
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Comparing posterior inhibitor rates to thresholds

For the cohort of patients with previous/current inhibitor (example three), the posterior
estimates of inhibitor rates were compared to the selected thresholds and the probabilities
of posterior inhibitor rates lower than the thresholds were then calculated. A probability
of 1 means that the calculated rate of inhibitors is certainly below the threshold, a
probability of 0.5 would mean a 50% likelihood that the rate is below the threshold.
Testing a threshold for the rate of inhibitors of 10%, six out of eight comparisons (when
non-informative prior and informative priors were generated from the studies of PTP
patients) showed a probability greater than 0.99. In contrast, when EUHASS PUPs study
results were used as priors, the probabilities of a rate lower than 10% dropped
dramatically to less than 0.001. Similar findings were obtained when the threshold was
dropped to lower than 5%. When the threshold was dropped further to the FDA approved
rate for PTPs of 1/86, only the probability using priors for EUHASS study in PTPs for all
products was greater than 0.9, but all estimations using PTPs as priors were still above

0.65. (Table 3)
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Impact of sample size of data

We found that increasing the number of patients narrowed the credible interval for
example one (i.e. the mimic of single center studies), but had little impact on the posterior
estimates of example two and three, which represented multi-center study settings.
However, when more centers were added to get to the same sample size, the credible
intervals noticeably narrowed. Another interesting observation is that when the number of
patients was increased in each center while the number of centers remained the same, the
posterior inhibitor rates decreased for example three, in which three of seven centers
reported no inhibitor event in the original data Table 2. (More exploratory results can be

found in Appendix C.)

Discussion

In this paper we used three real-world examples to guide the reader to appreciate the
power of the Bayesian approach to analyze and interpret rare events observed in a rare
population. Initially using vague priors (not having or ignoring prior knowledge), we
showed how the Bayesian estimation process generates point estimates very similar to the
frequentist approach. We demonstrate how the iterative process typical of the Bayesian

estimation can be used to generate credible intervals around the point estimate, which are
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the range of possible values of the estimate. We show how the credibility interval has a
precise probabilistic distribution of discrete values, which can be used to assess whether
the likelihood of the event is above or below a given value. We discuss how this is of
much greater interest for the clinician and the researcher than the distribution of the point
estimate in hypothetical repetitions of the experiment, which is what the confidence
intervals represent. Subsequently, we moved to show how the point-estimate and the
credibility interval change when we consider a specific set of experimental data in light of

what we already know of a given or similar phenomenon.

Some further considerations are hopefully of value. For example one and two, the
Bayesian models with non-informative priors yielded results comparable to the classical
approach. For third study case, the point estimate of inhibitor rate obtained from the
Bayesian random-effects logistic model was lower than that obtained from the classical
random-effects logistic model. The reason is that the data used for this example are
extremely sparse. In three out of seven pooled studies, there were no inhibitors observed.
The classical logistic model directly takes event as outcome and thus fails to generate the
estimates when no event is in the data. Therefore, when classical random-effect logistic
was used to pool the data from seven individual studies, the three studies without

outcomes were ignored, and the inhibitor rate was estimated from the four studies with
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observed inhibitor. Unlike the classical model, the Bayesian model re-samples data for
certain times (say 100,000) based on the information provided by the current data and
then generate the estimates in accordance before reporting the posterior estimates which
usual is the median of the entire estimates. In our example, when data reported no event,
the Bayesian model resampled data using the probability of event sampled around zero.
By doing so, the Bayesian model was able to incorporate those studies reporting no
inhibitor into the posterior estimates and thus gave a lower inhibitor rate. On the other
hand, for the same example, the 95 Crls were wider than the 95% CI. This is because the
Bayesian model introduced more random uncertainty through non-informative priors -that
had very large variance. When the study data are not large enough, random uncertainty
will be added in the posterior estimates. In our example, we had seven studies that were
not even able to provide saturated information for estimating the between study variance.
Therefore, the model borrowed information from non-informative priors that only added

uncertainty to estimate the between study variance.

In example three, we show how our set of experimental data can or cannot change our
previous belief. We modeled the effect of observing six inhibitors in about 200 patients
from the unlikely expectation that the inhibitor rate would have been as in RODIN, to the

optimistic expectation that the rate would have not been different from that in PTPs. We
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also showed how we could model the “strength™ of this belief, by “discounting” the
previous information. Critics of the Bayesian approach would certainly say- that by
adding “discounts” you may play with data until you show what you want. We would
object that this would be the case if you were only using one set of priors (maybe even
discounted). If you instead show the results produced by using a whole range of priors,
you explore the relevance of your previous beliefs and assumptions. Along the same
lines, we showed how Bayesian modeling can be used to simulate the effect of repeating
the study or doubling the population, either by increasing the number of patients in the
same centers or by increasing the number of centers. All of this richness of information is
completely unavailable when using the frequentist approach. The reader needs to be
aware, at this point, that most of the modeling of the impact of health care interventions
on economics of health care systems or quality of life of patient population is generally
obtained via Monte Carlo chain simulations which are, in essence, Bayesian probability

L3444
applications ~"".

To come back to the clinical ground, we showed how the Bayesian posterior distribution
can be interrogated to get, for example, the posterior probability that the rate of inhibitors
in a population like the one we studied (e.g. patients with previous history of inhibitors)

was above or below a given (clinically meaningful) threshold. This is what, in our
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opinion, is needed for clinical decisions, and, indirectly, for policy making decisions like
taking into account the 30% of patients with a previous history of inhibitors in the
proportion of population to be suitable to switch concentrate as a result of a tender

process.

Although the interpretation of probability is clinically intuitive, we are painfully aware
that the wisdom of probability is a difficult concept to grasp. However, we would like to
think that most of the difficulty is in the limited number of attempts made in the past to
present the basics of the Bayesian approach in a practical and simplified manner. We
made such an attempt, targeting practicing hematologists as our audience, by using three
real-world examples in the field of hemophilia. We used real data to generate new
evidence via a Bayesian simulation, and we added as much educational value as well. The
Bayesian approach offers a great opportunity to move science forward in the rare disease
field by maximizing the use of existing knowledge. If we guess about today’s probability
of rain blinded to where we are and when, we have a very high chance of getting soaked,

or uselessly carrying our umbrella.
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Conclusion

The Bayesian estimates of the inhibitor rate of patients undergoing treatment with
ADVATE provide a broader understanding for the clinicians, which can be utilized to
inform clinical decisions in management of patients with Hemophilia A. Bayesian
approach as a robust, transparent and reproducible analytic method can be efficiently used

to answer the complex clinical questions.
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33,34,44
)

Feature

frequentist Approach

Bayesian Approach

Interpretation of probability

The proportion of times an event will
occur in an infinitely long series of
repeated identical situations

The “degree of belief” of an event (or a
number of repeatable events) will occur

Main question

What is the probability of data (trial
result), given the hypothesis (treatment
effect)?

What is the probability of the hypothesis
(treatment effect), given the data (trial result)?

Design features

Hypotheses, type I and II errors

Hypotheses, Prior or external information

Reasoning paradigm

Deductive reasoning

Inductive reasoning

Trial monitoring

Pre-specified with adjustments for type I
error for interim analyses

Adaptive by design based on accumulating
evidence

Condition of drawing statistical inference

Inference based observed experimental
data

Inference based on observed experimental data
and prior information

Use of external
information/pre-belief

Information for
Analysis

Informally considered only at study
design stage, e.g. sample size calculation

Formally incorporated in the design, analysis
and interpretation as a prior

Experimental data

Summarized via the likelihood function, which captures all information provided by data
regarding any unknown population parameters
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Results summaries

Point estimate

The "best estimate" obtained from
observed experimental data

An “weighted point estimate from the posterior
distribution derived by combining all relevant
sources of information including the external
information and observed experimental data

Interval estimates

95% confidence interval (CI)—an interval
that we are 95% confident that the true
value of the unknown parameter would be
as low as its lower bound and as high as
its upper bound

95% credible interval (Crl)—an interval in
which the unknown parameter would lie with
probability 0.95 given the observed

experimental data

Probabilities P-value, the chance of observing a result | Posterior probabilities
as extreme as what is seen in the
experiment when the null hypothesis of
no effect is true
Decision-making Frame-work Not straightforward and hard to apply in | Intuitive and based on minimizing expected

clinical practice

losses; easy to apply in clinical practice
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Example 1

Example 2

Example 3

Method

Single study

Meta-analysis

Multicenter cohort—
no appropriate priors

Test data (number of inhibitors/number of patients)

PASS data’®

PASS data'

PASS data’’

(6/428) (21/1188) (6/219)

Classical Statistical Analysis: percent rate (95% CI) 1.3(0.5,2.7) 1.9 (0.8,4.5) 2.6 (1.0, 6.8)
Bayesian Statistical Analysis: percent rate (95% Crl)

Non-informative prior 1.3(0.5,2.7) 1.9 (0.6, 6.0) 2.3(0.5,6.8)

Informative prior: Baxter Pivot Study (1/102) 1.3 (0.5, 2.5) 1.6 (0.6,4.1) 1.8 (0.5, 4.8)

Informative prior: meta-analysis of OS (7 ADVATE studies) 0.9 (0.4,1.9) 1.0 (0.4,2.2) 0.9 (0.3,2.3)

(3/569)

Informative prior: meta-analysis of OS (38/3866) 1.0 (0.8, 1.4) 1.0 (0.8, 1.4) 1.0 (0.8, 1.4)

Informative prior: EUHASS study de novo inhibitor PUPs NO NO 23.4(17.5,30.7)

ADVATE (37/141)

Informative prior: EUHASS study de novo inhibitor PUPs NO NO 249 (21.1,29.2)

(108/417)

Informative prior: EUHASS study inhibitors in PTPs ADVATE 1.0 (0.5, 1.8) 1.1(0.5,2.1) 1.0(04,2.1)

(5/707)

Informative prior: EUHASS study inhibitors in PTPs (all FVIII) 0.8 (0.5, 1.1) 0.8 (0.5, 1.1) 0.7 (0.5, 1.1)

(26/3736)

Discounted prior: Discounting EUHASS PUPs ADVATE by NO NO 16.9 (9.0, 29.4)

75%
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Discounted prior: Discounting EUHASS PUPs ADVATE by NO NO 5.3(2.2,16.0)
95%

Discounted prior: Discounting EUHASS PUPs ALL by 75% NO NO 22.2 (15.7,30.4)
Discounted prior: Discounting EUHASS PUPs ALL by 95% NO NO 12.3(5.4,25.8)
Enhanced data : Enhancing study data by 2 times - increasing 1.4 (0.7,2.3) 2.0 (0.6, 6.4) 2.2(0.5, 6.6)
number of patients (with non-informative prior)

Enhanced data: Enhancing study data by 2 times - increasing NO 1.9 (0.9, 4.0) 2.4 (0.9,5.0)
number of studies (with non-informative prior)

Enhanced data: Enhancing study data by 10 times - increasing 1.4 (1.1, 1.8) 2.1 (0.6, 6.6) 1.6 (04,5.4)
number of patients (with non-informative prior)

Enhanced data: Enhancing study data by 10 times - increasing NO 1.9 (1.5,2.6) 2.6 (1.9,3.5)
number of studies (with non-informative prior)

PASS: post-authorization safety studies

OS: observational study ClI: confidence interval Crl: credible interval

PUP: Previously untreated patient PTP: Previously treated patient

EUHASS: European Haemophilia Safety Surveillance
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Table 3: Probabilities for the inhibitor rate from PASS [32] to be lower than pre-specified thresholds

Example 3: PASS Threshold 1 | Threshold 2 | Threshold 3
Bayesian Statistical Analysis: percent rate (95% Crl) Multicenter study —no | <10/100 <5/100 <1/86
appropriate priors

Non-informative prior 2.3 (0.5, 6.8) 0.994 0.921 0.165

Informative prior: Baxter Pivot Study (1/102) 1.8 (0.5,4.8) >0.999 0.979 0.225

Informative prior: meta-analysis of OS (7 ADVATE 0.9 (0.3,2.3) >0.999 >0.999 0.677

studies) (3/569)

Informative prior: meta-analysis of OS (38/3866) 1.0 (0.8, 1.4) >0.999 >0.999 0.782

Informative prior: EUHASS study de novo inhibitor PUPs 23.4(17.5,30.7) <0.001 <0.001 <0.001

ADVATE (37/141)

Informative prior: EUHASS study de novo inhibitor PUPs 249 (21.1,29.2) <0.001 <0.001 <0.001

(108/417)

Informative prior: EUHASS study inhibitors in PTPs 1.0 (0.4, 2.1) >0.999 >0.999 0.658

ADVATE

(5/707)

Informative prior: EUHASS study inhibitors in PTPs (all 0.7 (0.5, 1.1) >0.999 >0.999 0.988

FVIII)

(26/3736)

Discounted prior: Discounting EUHASS PUPs ADVATE 16.9 (9.0,29.4) 0.051 <0.001 <0.001

by 75%

Discounted prior: Discounting EUHASS PUPs ADVATE 5.3(2.2,16.0) 0.876 0.449 0.001

by 95%

Discounted prior: Discounting EUHASS PUPs ALL by 22.2(15.7,30.4) <0.001 <0.001 <0.001
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75%
Discounted prior: Discounting EUHASS PUPs ALL by 12.3 (5.4, 25.8) 0.306 0.016 <0.001
95%
Enhanced data : Enhancing study data by 2 times - 2.2(0.5,6.6) 0.995 0.932 0.161
increasing number of patients (with non-informative prior)
Enhanced data: Enhancing study data by 2 times - 2.4(0.9,5.0) 0.998 0.967 0.305
increasing number of studies (with non-informative prior)
Enhanced data: Enhancing study data by 10 times - 1.6 (0.4,5.4) 0.998 0.976 0.067
increasing number of patients (with non-informative prior)
Enhanced data: Enhancing study data by 10 times - 2.6(1.9,3.5) >0.999 >0.999 <0.001
increasing number of studies (with non-informative prior)

PASS: post-authorization safety studies

OS: observational study ClI: confidence interval Crl: credible interval

PUP: Previously untreated patient

EUHASS: European Haemophilia Safety Surveillance

PTP: Previously treated patient
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Figurel: Bayesian concept graphic illustration
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Figure2a: Example 1: Single study

percent rate [95% CI/Crl)
Example 1: Single study

Classical meta-analysis + 1.30 (0.50, 2.70)
Bayesian meta-analysis

Non-informative prior + 1.30(0.50, 2.70)
Baxter pivotal study: (1/102)(informative prior) + 1.30 {0.50, 2.50)
MA of 05 of 7 ADVATE studies (3 /359)(informative prior) + 0.90 (040, 1.90)
MA of 08 [38,/3866)(informative prior) —— 1.00 (0,80, 1.40)
EUHASS de novo inhibitor PTPs ADVATE (5/707](informative prior) + 1.00 [0.50, 1.80)
EUHASS de novo inhibitor PTPs (26,/3736) (informative prior) —— 0.B0 [0.50, 1.10)
Increasing number of patients by 2 times [enhenced data) * 140 [0.70, 2.30)
Increasing number of patients by 10 times (enhenced data) —_—, 1.40{1.10, 1.80)

1 2z 3%
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Figure2b: Example 2 — Meta-analysis

percent rate (95% C1/Crl)
Example2: Meta-analysis

Classical meta-analysis +- 1.90 (D80, 4.50)
Bayesian meta-analysis

Nomn-informative prior +* 1.90 (0640, 6.00)
Baxter plvotal study: (1/102)(Informative prior) -+ 160 (060, 4.10)
MA of 05 of 7 ADVATE studies (3/359)(informative prior) —— 1.00 {0.40, 2.20)
MA of 05 [38/3866)(informative prior) —— 1.00 {080, 1.40)
EUHASS de nova inhibitor PTPs ADVATE (5/707 ){informative prior) —_————— 1.10 (050, 2.10)
EUHASS de novo inhibitor PTPs (26/3736) (Informative prisr) —— 080 (050, 1.10)
Increasing number of patients by 2 times (enhenced data) + 2,00 (0.64), &40)
Increasing number of studies by 2 times (enhenced dama) 4 1.90 (0.90, 4.00)
Increasing number of patients by 10 tmes (enhenced data) + 2.10 (0.6, 6.60)
Increasing number of studies by 10 times (enhenced data) —— 1.90 (1.50, 2.60)

I 1 I T T T
L] 1 2z 3 4 5 & 7 %
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percent rate [95% C1/Crl)

Classical meta-analysis ——e 260 {100, G80)
Bayesian meta-analysis
Non-informative prior —— 230 (0.50, GH0)
Baxter pivatal study: {1/ 102) (informative prior) e 180 (050, 4.80)
MA of 05 of 7 ADVATE studies [3/359){informative prior) - 0.90 (030, 230)
MA of 05 [38/3866)(informative prior) * 100 (080, L4a)
EUHASS de novo inhibitor PUPs ADVATE (37, 141 ){informative pricr]) 23.40 (1750, 30.70)
EUTHASS de novo inhibitor PUPs (108417 ){informative prior) —_— 24.90 (Z1.10, 29.20)
EUHASS de nova inhibitor PTPs ADVATE (5/707)(informative prior) - 1.00 (040, 2.10)
EUHASS de nova inhibitor FTPs (26/3736) (informative prior) * 0.70{0.50. 1.10)
Discounting EUHASS PUPs ADVATE by 75% (discounted prior) 16.90 (9.00, 29.40)
Discounting EUHASS PUPs ADVATE by 955 (discounted prior) + 5.30(2.20, 16.00)
Discounting EUHASS PUPs ALL by 75% [discounted prior]) : 2220 (15.70, 30040)
Discounting EVHASS PUPs ALL by 95% [discounted prinr) + 1230 (5.40. 25.80)
Increasing number of patients by 2 times [enhenced data) —— 220 (050, 560)
Increasing number of studies by 2 times [enhenced data) e — 240 (090, 504
Increasing number of patients by 10 imes (enhenced data ) e — 160 (040, 5.40)
Increasing number of stidies by 10 times (enbenced data) —— 260 (1.90, 3.50)

I I I I I |

5 10 15 20 25 30%
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Appendix A: Analysis Methods and the choice of priors

Example 1 Example 2 Example 3
Method Single study Meta-analysis Multi-centric
cohort — no
appropriate priors
Test data PASS data [30] PASS data [31] PASS data [32]
(6/428) (21/1188) (6/219)

Classical Statistical Analysis

Logistic model

Random-effects
logistic model

Random-effects
logistic model

Bayesian Statistical Analysis

Logistic model

Hierarchical
(Random-effects)
logistic model

Hierarchical
(Random-effects)
logistic model

Non-informative prior OK OK OK
Informative prior: Baxter Pivotal Study (1/102) OK OK OK
Informative prior: meta-analysis of OS (7 ADVATE studies) OK OK OK
(3/569)

Informative prior: meta-analysis of OS (38/3866) OK OK OK
Do you need data per study?

Informative prior: EUHASS study de novo inhibitor PUPs NO NO OK
ADVATE (37/141)

Informative prior: EUHASS study de novo inhibitor PUPs NO NO OK
(108/417)

Informative prior: EUHASS study inhibitors in PTPs ADVATE OK OK OK
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(5/707)

Informative prior: EUHASS study inhibitors in PTPs (all FVIII) OK OK OK
22/3736

Discounted prior: Discounting EUHASS PUPs ADVATE by NO NO OK
75%

Discounted prior: Discounting EUHASS PUPs ADVATE by NO NO OK
95%

Discounted prior: Discounting EUHASS PUPs ALL by 75% NO NO OK
Discounted prior: Discounting EUHASS PUPs ALL by 95% NO NO OK
Enhanced data : Enhancing study data by 2 times - increasing OK OK OK
number of patients

Enhanced data: Enhancing study data by 2 times - increasing NO OK YES
number of studies

Enhanced data: Enhancing study data by 10 times - increasing OK OK OK
number of studies

Enhanced data: Enhancing study data by 10 times - increasing NO OK YES
number of studies

PASS: post-authorization safety studies
OS: observational study ClI: confidence interval Crl: credible interval
PUP: Previously untreated patient PTP: Previously treated patient

EUHASS: European Haemophilia Safety Surveillance
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Appendix B: Bayesian codes

Number updates: 300000; Number of chain: 2; Number of thin: 5

Burn in: 10000; Seed: 314159

Model 1 simple logistic regression
model {
r ~ dbin(p, n)
logit(p) <- mu #log odds
mu ~ dnorm(0, 1.0E-5) # non-informative

#mu ~ dnorm (-4.615, 0.990) # PIVOT 1/102, log_odds=log(1/101),
var=1/1+1/101

#mu ~ dnorm (-5.24, 2.984) # Meta-0S ADVATE, 3/569
#mu ~ dnorm (-4.613, 37.626) # Meta-0OS ADVATE, 38/3866
#mu ~ dnorm (-4.944, 4.965) # EUHASS PTP ADVATE, 5/707

#mu ~ dnorm (-4.961, 25.819) # EUHASS PTP ALL, 26/3736

odds<-exp(mu)
prop<-odds/(1+odds)
perc<-prop*100

}
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Model 2: Random-effects logistic model
model {
for(iin1:Num){
r[i] ~ dbin(p[i], n[i])
logit(p[i]) <- mu[i] #log odds
muli] ~ dnorm(d, tau)
}
d ~ dnorm(0,1.0E-5) # Non-informative prior
# Priorl: Baxter Pivot Trial, 1/102

#d ~ dnorm(-4.62,0.99) # log_odds, variance=1/1+1/(102-1),

percision=1/var

#d ~ dnorm (-5.24, 2.984) # Meta-0OS ADVATE, 3/569

#d ~ dnorm (-4.613, 37.626) # Meta-OS ADVATE, 38/3866

#d ~ dnorm (-1.033, 27.291) # EUHASS PUP ADVATE, 37/141

#d ~ dnorm (-1.051,80.029) # EUHASS PUP ALL, 108/417

#d ~ dnorm (-4.944, 4.965) # EUHASS PTP ADVATE, 5/707

#d ~ dnorm (-4.961, 25.819) # EUHASS PTP ALL, 26/3736

#d ~ dnorm (-1.033, 6.822) # EUHASS PUP ADVATE(-75%), 9.25/35.25
#d ~ dnorm (-1.033, 1.365) # EUHASS PUP ADVATE(-95%), 1.85/7.05

#d ~ dnorm (-1.051, 20.007) # EUHASS PUP ALL(-75%), 27/104.25
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#d ~ dnorm (-1.052, 4.001) # EUHASS PUP ALL(-95%), 5.4/20.85
tau<-1/(sigma*sigma)
sigma~dunif(0,2) # between study variance is estimated from PASS1
odds<-exp(d)
prop <- exp(d)/(1+exp(d))
perc<-prop*100
pposl<-step(10/100-prop)
ppos2<-step(5/100-prop)
ppos3<-step(1/86-prop)

}
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Appendix C: Assessing the impact of sample size change and priors choice on the Bayesian posterior estimates (Example 3

[32])

Original data

Increasing sample size by 2 times

Increasing sample size by 10 times

Test data (number of

Example 3 : PASS

Increasing No.

Increasing No. of

Increasing No.

Increasing No. of

inhibitors/number of patients); number (6/219); 7 of patients in centers: of patients in centers:

of centers each center: (12/438); 14 each center: (60/2190): 70
(12/438); 7 (60/2190); 7

Non-informative prior 2.3(0.5,6.8) 2.2(0.5,6.6) 2.4(0.9,5.0) 1.6 (04,54) ]2.6(1.9,3.5)

*Informative prior: Baxter Pivotal 1.8 (0.5, 4.8) 1.8 (0.5, 4.6) 2.1(0.8,4.2) 1.4(04,39) |2.6(1.8,3.4)

Study (1/102)

Informative prior: meta-analysis of OS 0.9 (0.3,2.3) 0.9(0.3,2.4) 1.3(0.5,2.7) 0.8(0.3,2.0) |[2.3(1.5,3.1)

(7 ADVATE studies) (3/569)

Informative prior: meta-analysis of OS 1.0 (0.8, 1.4) 1.0 (0.8, 1.4) 1.1 (0.8, 1.5) 1.0 (0.7, 1.4) 1.4 (1.0, 1.8)

(38/3866)

Informative prior: EUHASS study de
novo inhibitor PUPs ADVATE
(37/141)

23.4(17.5,30.7)

23.2(17.3,30.4)

21.4(15.6, 28.1)

22.8(17.0, 29.8)

11.2 (7.7, 15.4)

Informative prior: EUHASS study de
novo inhibitor PUPs (108/417)

24.9 (21.1,29.2)

24.8(20.1, 29.1)

24.1(20.4, 28.3)

24.7(20.8, 28.9)

19.2 (16.1, 22.5)

Informative prior: EUHASS study 1.0 (0.4,2.1) 1.0 (0.4, 2.1) 1.2 (0.6,2.4) 0.9(0.4,1.9) |23(1.5,3.0
inhibitors in PTPs ADVATE (5/707)

Informative prior: EUHASS study 0.7 (0.5, 1.1) 0.8 (0.5, 1.1) 0.8 (0.5, 1.2) 0.7(0.5,1.1) | 1.2(0.8,1.7)
inhibitors in PTPs (all FVIII)

(26/3736)
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PASS: post-authorization safety studies

OS: observational study ClI: confidence interval Crl: credible interval

PUP: Previously untreated patient PTP: Previously treated patient

EUHASS: European Haemophilia Safety Surveill
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CHAPTER 5

CONCLUSIONS

Properly conducting statistical analysis is one of the essential steps towards the success of
any health research project. However, finding a suitable analytic model or approach can
sometimes be challenging. Choosing one method over its alternatives often involves
comparing and evaluating all available analysis options based on the understanding of the
underlying statistical assumptions and the nature of the outcomes. In this manuscript-
based thesis, I investigated three situations where the use of different statistical models or
approaches could impact the results of the analyses. Situation (1): the choice of
statistical models may affect the analysis results. In particular, I compared the commonly
used models in analyzing correlated choice experiment (DCE) data. Situation (2):
including or excluding a sub-set of data may affect the analysis results. In this case, I
assessed the impact of including or excluding both-armed zero-event (BAZE) studies on
the pooled results for meta-analyses (MA). Situation (3): incorporating in external
information may affect the analysis results of the current study data. In this case, I

showed how the Bayesian approaches used to incorporate the external information may
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affect the understanding of the evidence contained in the current research data. In this
chapter, I will summarize the findings, discuss the implications and limitations and shed

light on future studies.

In Chapter2, I empirically compared commonly-used statistical models for analyzing
correlated data of DCE survey while accounting for within-participant correlation. The
data used in this project were from a choice survey conducted in Hamilton, Ontario,
Canada in 2002 (ref), which was designed to evaluate patient preference for the various
colorectal cancer (CRC) screening tests to identify the key attributes and levels that may
influence the uptake of CRC screening tests. This DCE study used a two-stage design:
the choice between two hypothetical tests at the first stage, and the choice between taking
the preferred test and opting out. This design gave us the chance to define the outcome in
three ways: 1) binary outcome (Test A/B; Yes to the test/ No), 2) multinomial outcome
(Test A/B/No), and 3) bivariate outcome (A/B and Yes (to A or B)/No). For the clustered
binary outcomes, six models were investigated: logistic and probit regressions using
cluster-robust standard error (SE), random-effects and generalized estimating equation
approaches. For the clustered multinomial outcomes, three models were applied:

multinomial logistic and probit regressions with cluster-robust SE and random-effects
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multinomial logistic models. And for the bivariate outcomes: bivariate probit models with

cluster-robust SE were fitted.

The following findings and observations of comparison of the results from different

models may be worth further consideration in future DCE design and analysis.

1)

2)

3)

4)

When participants were repeatedly asked to make a choice between two alternative
tests (combinations of the attributes at different levels) at stage one, there was little
within-participant correlation. However, when the choices were between participation
(on the preferred test chosen at stage one) and opt-out, the within-participant
correlation was substantial.

The results from different models were consistent when little within-participant
correlation was present. Therefore, simple logistic model (for binary outcome) or
multinomial logistic model (for multinomial outcomes) is as a good choice as other
complicated statistical models.

When there was substantial within-participant correlation, the results were
inconsistent between different methods used to account for intra-class correlation.

The observed within-participant correlation was likely caused by the participant’s pre-

determination on participation or opt-out for the screening tests. This pre-
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determination seemed also lead to the ordering effect which might bias the estimates
of participant preference of the screen test.
5) Participant preference on the cost-related attribute may not preform linearly, which

violates the linear utility assumption.

The most import contribution of this paper is that, to my best knowledge, this was one of
the first studies to investigate the commonly used statistical models in accounting for the
within-participant correlation (intra-class correlation) issue in DCE data conducted for
health research. It has been well recognized that the data collected for the studies using
repeated measurement or cluster design are correlated. Taking this type of correlation into
account is crucial in both the study design and data analysis stages. Ignoring the intra-
class correlation will lead to under-calculated sample size[1] and biased estimates of the
parameter [2]. However, this issue has not drawn enough awareness for designing and
analyzing DCE studies. Both ISPOR (International Society for Pharmacoeconomics and
Outcomes Research) guidelines for constructing DCE studies[3] and analyzing DCE data
[4] did not mention how to deal the potential within-participant correlation. Although this
empirical study cannot provide the answer as to which model is superior for accounting
for within-participant correlation while analyzing DCE data, it points out that it is an

important issue and needs of further investigations. Given the different statistical models

135



Ph.D. Thesis — J Cheng; McMaster University

Health Research Methodology, Biostatistics Specification

available to analyze DCE studies, I believe that when analyzing DCE data with potential
within-participant correlation, the analysis results obtained from the primary statistical
model need to be examined thoroughly through sensitivity analysis for robustness by
checking the consistency and discrepancy. For policy makers, we recommend exercising

caution in interpreting findings from DCE studies.

There are some limitations to this study. First, this is an empirical study. It cannot serve
as a direct tool to find the “best” statistical model to analyze DCE data with within-
participant correlation. Second, the data were collected through a study with a two-stage
design with the forced choice between the screen tests at stage-one and the opt-out option
at stage-two. The intention on adopting this design was to maximize the information
collected about participant preferences on the screen tests. However, by forcing the
participants who have already decided to decline the screen test before even seeing the
questionnaire, the data collected to elicit participant preference on the tests may not
accurately reflect the facts. Third, I focused on comparing the commonly-used statistical
models which were available through standard statistical software. Some complicated
models with potential advantages, particularly on dealing with nonlinear utility functions
such as Bayesian random-effects and GEE models with polynomial logit function, were

omitted from this paper.
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In Chapter 3, I conducted a simulation study to investigate the impact of including both-
arm zero-event (BAZE) studies in small meta-analysis (MA) for rare event outcomes for
standard meta-analysis methods with continuity correction. It is not difficult to logically
deduce that including BAZE studies in meta-analysis for rare event outcomes may
introduce bias in estimating the treatment effect. This simulation is the first study to

confirm and quantify this hypothesis.

The key findings in this chapter include:

1) I confirmed that including BAZE studies in MA using continuity correction methods
provided unbiased point estimates of OR and narrowed the 95% confidence interval
when there was no true treatment effect existing between treatment and control arms.

2) I verified my hypotheses that when a true treatment effect existed, including BAZE
studies in MA added bias by pulling the point estimates of OR towards the null
hypothesis in the direction of underestimating treatment effects, and the bias increased
substantially with decreasing event rate, number of patients and increasing treatment

effect and between study variance.
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3) My study once again proved that the Peto method without including BAZE studies
generated the least biased results when the event rate was low, treatment effect was
small to moderate, and between-study variance was small to moderate.

4) My study also showed that when there was a true between-study variance, the Peto
method still out-performed random-effects models by providing the least biased point

estimate.

The focus of my study was s to investigate the bias which might be introduced in the
estimates of small MA for rare events by including BAZE studies using the standard
pooling methods with continuity correction. A certain degree of bias towards the null
hypothesis provides more conservative estimates when evaluating beneficial treatment
outcomes between new and standard treatments[5—7]. It is considered a safer approach
for patient care. My main concern is that when evaluating harmful events such as serious
adverse event (SAE), this type of bias, i.e. underestimating harm may hinder the action on
stopping the unsafe treatment [8]. Most RCTs are not designed to investigate rare
harmful events, e.g. SAE, and thus the sample size is not large enough to detect the true
proportion of such events due to low statistical power. With the combination of extremely
low event rates and insufficient sample size, zero events are very likely to be observed by

chance. Including BAZE studies in MAs for the purpose of evaluating the safety-related
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outcomes may lead to the risk of underrating the harm. The impact of including BAZE
study may also be different depending on the size of the MA. Currently, with the no
guideline being established, the approaches to dealing with the BAZE studies in MAs are
varied. Therefore, I recommend sensitivity analyses to assess the consistency and
discrepancy by including and excluding BAZE studies in MAs. 1 believe that an
extension of PRISMA statement on reporting the approaches to dealing with zero-event
studies (including either-arm zero-event and both-arm zero-event) in MA is necessary to
communicate the results of MA on rare event outcomes with full transparency. The next
phase of this investigation will involve creating a checklist to summarize the
recommendations for dealing with zero-event studies in MAs. Last, but not the least, the
results of MAs of rare event outcomes need to be cautiously interpreted within the clinical

contents.

I set up my simulation based on the following scenarios: 1) rare event outcomes, 2) small
meta-analysis, and 3) standard MA pooling methods for commonly used meta-analysis
software. Therefore, the findings in this study cannot be extended to all types of MAs.
First, I investigated only the effect measure OR by incorporating BAZE studies using
default continuity correction options, i.e. adding 0.5 to all cells. Although the results can

be implied to the standard MA using RR (relative risk or risk ratio) as pooled estimates, I
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cannot make the similar conclusion for the meta-analysis using a statistical model based
on likelihood maximization, such as Poison random-effects model. 1 also left the
Bayesian meta-analysis for future investigation. Bayesian approach has a probability-
based sampling mechanism[9] which may provide the means to reduce the bias

introduced by including BAZE studies.

In Chapter 4, I illustrated how Bayesian statistical methods can be used to incorporate
other relevant evidence via priors to enhance or modify the evidence presented in the
current study data. The data I used for my scenario-based analysis were from three
published PASS (Post-Authorization Safety Surveillance) studies[10—12], which were
single-armed Phase IV trials conducted to evaluate the safety outcomes. The patient-level
data were provided by Baxter Healthcare, Global Affairs (Westlake Village, California,
USA). The outcome I used in this study was inhibitor, a rare serious adverse event which
may report among the patients undertaking the medication treatment for hemophilia A. In
this paper, I compared the use of three different types of priors in incorporating external
information: non-informative prior, informative prior and discounted prior through three
study scenarios: 1) estimating event rate in a single cohort study, 2) pooling estimates for
a set of studies using meta-analysis, and 3) generating estimates from small studies in a

previously unexplored study population.
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The key points demonstrated in this chapter are:

1) Results from Bayesian statistical models with non-informative priors are comparable
to the classical (Frequentist) approaches on estimating the rare event rate.

2) Incorporating external information through informative priors can enhance the
evidence presented in the study data.

3) Borrowing information from previously studied similar populations through
informative priors can create a range of estimates for an unstudied population.

4) Bayesian probability can be directly used to quantify the comparison between the
evidence obtained through the current study and a threshold.

5) The evidence can be weighted through discounting the prior information or scaling up

the presentation of the study data

This study investigated how Bayesian methods can be used to optimize the evidence for
rare event data for current study by maximizing the use of existing knowledge through
priors. Furthermore, I demonstrated how Bayesian estimates can be utilized to inform
clinical decisions in patient management in complex clinical settings. The success of
integrating all relevant evidence through a Bayesian approach depends on two aspects: 1)
how to properly choose the clinically relevant priors, and 2) how to statistically formulate

the clinical knowledge. These tasks need the joint force of clinicians and statisticians.
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Properly implementing the Bayesian results in the clinical decision making depends on
the comprehensive understanding of the evidence, in particular for the findings obtained
from the first-time-ever exploration regarding new study settings or populations.
Therefore, comparing the results obtained using different priors can be useful to
strengthen the existing evidence by assessing the consistency and explore the uncertainty

for new findings by examining the discrepancy.

In regarding the purpose of serving as examples of how to conduct Bayesian analysis for
hematologists to analyze and generate evidence for rare events among rare study
populations, I chose to use Bayesian random-effect logistic regression throughout the
entire project for three scenarios for simplicity. I am aware that other statistical models
such as random-effect Poisson regress may be a better choice for rare event data with zero
outcomes. It is worth noting that properly setting up priors can be challenging because it

depends on the type of outcomes and Bayesian models.

Statistical analysis is never as simple as “my-way-or-the-highway”. It is a comprehensive
process involving assessing, comparing and decision making on study samples, statistical

models and relevant information. And for studies with complicated design, data structure
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or content, the choice of an appropriate analytical strategy relies on the comparison of the
alternatives. In this PhD thesis, I discussed three cases where sensitivity analysis was
helpful in this regard. I hope my work will bring awareness to the importance of

conducting sensitivity analysis for health research projects.
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