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ABSTRACT 

Background and Objectives:  

I investigated the use of sensitivity analyses in assessing statistical results or analytical 

approaches in three different statistical issues: (1) accounting for within-subject 

correlations in analyzing discrete choice data, (2) handling both-armed zero-event studies 

in meta-analyses for rare event outcomes, and (3) incorporating external information using 

Bayesian approach to estimate rare-event rates. 

 

Methods: 

Project 1: I empirically compared ten statistical models in analyzing correlated data from a 

discrete choice survey to elicit patient preference for colorectal cancer screening. Logistic 

and probit models with random-effects, generalized estimating equations or robust 

standard errors were applied to binary, multinomial or bivariate outcomes.  

Project 2: I investigated the impacts of including or excluding both-armed zero-event 

studies on pooled odds ratios for classical meta-analyses using simulated data. Five 

commonly used pooling methods: Peto, Mantel-Haenszel fixed/random effects and inverse 

variance fixed/random effects, were compared in terms of bias and precision. 
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Project 3: I explored the use of Bayesian approach to incorporate external information 

through priors to verify, enhance or modify the study evidence. Three study scenarios were 

derived from previous studies to estimate inhibitor rates for hemophilia A patients treated 

with rAHF-PFM: 1) a single cohort of previously treated patients, 2) individual patient 

data meta-analysis, and 3) an previously unexplored patient population with limited data. 

 

Results and Conclusion: 

Project 1: When within-subject correlations were substantial, the results from different 

statistical models were inconsistent.  

Project 2: Including both-armed zero-event studies in meta-analyses increased biases for 

pooled odd ratios when true treatment effects existed. 

Project 3: Through priors, Bayesian approaches effectively incorporated different types of 

information to strengthen or broaden research evidence.  

Through this thesis I demonstrated that when analyzing complicated health research data, 

it was important to use sensitivity analyses to assess the robustness of analysis results or 

proper choice of statistical models.  
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PREFACE 

 

This thesis is a “sandwich thesis”, which combines three individual projects prepared for 

publication in peer-reviewed journals. The following are contributions of J. Cheng in all 

the papers included in this dissertation: developing the research ideas and questions; 

developing analysis plans; designing the simulations and programming the codes; 

conducting all the statistical analysis; preparing all figures and tables; writing all of the 

manuscripts; submitting the manuscripts; and responding to reviewers’ comments. The 

work in this thesis was conducted between Fall 2010 and Winter 2015. 

 

The work of the first paper has been published. The send and third papers have been 

submitted to peer-reviewed journals. 
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CHAPTER 1 

INTRODUCTION 

 

 “Evidence based medicine is the conscientious, explicit, and judicious use of current best 

evidence in making decisions about the care of individual patients.” 

                                                                               -- David Sackett et al. BMJ. 1996[1]  

 

Decision-making in patient care is an interactive process which integrates three 

components: clinical state, patient preference and research evidence [2]. As Sackett et al 

[1] note in the above quote, the use of the current best research evidence under the 

principle of evidence-based medicine (EBM) is involved in evidence generating, 

synthesizing, appraising and implementing.  Throughout the entire research process, 

properly implementing statistical methods is crucial to ensure the use of appropriate study 

design, data analysis methods and reporting/interpretation of the results.  

 

Statistical inference  is the process of applying certain statistical procedures (models) to 

some collected data (sample) to generate a statistical property (evidence) which can be 
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generally applied to all unknown subjects (population) with similar characteristics[3–5]. 

All statistical models or analytical approaches are based on certain underlying statistical 

assumptions. Choosing appropriate statistical method(s) according to the research 

questions and distribution of data is important. Unlike simulated data, clinical research 

data are real world samples collected through health research projects under different 

types of designs which can be experimental, such as randomized controlled trials (RCTs), 

or non-experimental, also called observational data such as cross-sectional survey.  When 

analyzing the collected study data, the data are assumed to follow certain distributions for 

certain statistical models, but the assumptions may not be perfectly true. This is why 

sometimes discrepancies between the results obtained from different statistical models or 

approaches can be found.  Therefore, fully assessing the appropriateness of the choice of 

the statistical models or approaches is important to generate a reliable statistical inference 

which can later be confidently transferred to clinical evidence. However, choosing the 

most appropriate statistical model or analytical approach over its alternatives is not 

straightforward, particularly when the clinical data have a complex structure or represent 

a complicated clinical setting.   

 

The assessment of the credibility of the statistical analysis results can be done through 

sensitivity analysis, an array of comparisons  aiming to examine the consistency 

(robustness) and discrepancy (uncertainty) caused by various reasons such as model 
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choice or sample selection. In the Dictionary of Epidemiology[6], sensitivity analysis is 

defined as a method to determine the robustness of an assessment by examining the extent 

to which results are affected by changes in methods, models, values of unmeasured 

variables, or assumptions. Regardless of the design or scope of the study, sensitivity is a 

useful tool in providing the statistical result in a comprehensive way, as has been 

discussed in guidelines or methodological papers for conducting observational study[7] , 

RCTs[8], knowledge synthesis[9]/meta-analysis[10] and health economic study[11].  In 

this thesis, I would discuss the use of sensitivity analysis on three unsolved issues 

regarding analyzing health research data. 

 

The objectives of this thesis are: 1) addressing the challenges in analyzing health research 

data when no consensus of the statistical method is available; and 2) providing some 

resolutions on choosing statistical analysis approaches through the scope of sensitivity 

analyses. I compared alternative statistical models or analytical approaches for some 

unsolved or not fully investigated statistical problems by assessing the consistency and 

discrepancy of analysis results and their impacts on the implications. Three specific 

statistical issues examined are: 1) analyzing correlated discrete choice outcomes on 

eliciting patient preference; 2) dealing with both-armed zero-event studies in meta-

analyses; and 3) the use of Bayesian statistical approach to incorporate external 
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information or existing literature with available data in generating estimates for rare 

diseases or events. 

 

Issue 1:  Within-subject correlation in discrete choice survey data 

Discrete choice experiment (DCE) design originated in marketing research as a tool to 

differentiate consumer’s choice among alternative products[12] and has been increasing 

used in the area of health economics and policy making to help researchers and policy 

makers to elicit patient and other stakeholder’s preference for alternative healthcare 

programs or services[13–16]. In recent years, many researchers have dedicated their work 

to improve DCE methods by providing guidelines in health research[17,18]. However, 

compared to the attention given to the design aspects such as defining the key attributes, 

constructing the choice sets and administering the survey[19,20],  there was not a lot of 

research addressing some analytical issues regarding the analysis of DCE data[14] with 

within-subject correlations, and the statistical methods used in analyzing clustered DCE 

data are inconsistent[16]. 

 

A typical DCE uses the factorial or partial factorial design principle to create a series 

(panel) of hypothetical choice scenarios (choice sets) to describe the attributes (or 

characteristics) and their associated levels for certain products or services[13].  The panel 
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of several choice sets is delivered through survey questionnaires, and each participant is 

asked multiple times to choose his/her preferred products or services over their 

alternatives. The fundamental assumption that  DCE is based on is random utility theory 

(RUT) which assumes that any choice from any respondent is made by maximizing the 

utilities (or benefits)[21]. However, decision making is a complex process. The choices 

made by one person or group could be inter-related[12], particularly when the “opt-out” 

option is available[22]. Therefore, the within-group or with-subject correlations need to 

be accounted for in analyzing DCE data using proper statistical models[13,23,24]. 

 

Depending on the number of choice alternatives, basically all fixed or random effects 

statistical models for binary or multinomial outcomes can be used to analyze DCE data. A 

newly published review of DCE studies in the health economics field reported that the 

most used models in recent years (2009-2012) in analyzing DCE data were fixed-effect 

logit model (10%) and random-effects probit model (10%) for the designs with two 

choice alternatives and fixed-effect multinomial logit model (44%) for the designs with 

three or more choice alternatives[25]. Regarding adjusting potential correlations, health 

researchers paid more attention to two types of correlations that may occur in DCE data.  

One is the correlation among the choice alternatives, i.e. the violation of orthogonal 

design[23], which is dealt with  typically by using probit models. Another is the so-called 
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preference heterogeneity, a type of correlations among certain groups of respondents, 

which is dealt with by using random-effects, nested or latent class models[15,26]. 

 

However, the within-subject correlation is largely ignored in the analysis of health 

research related DCEs. Although I found a few investigations of this problem that have 

been conducted in other research fields that used DCE designs such as marketing [27], 

and transportation engineering[28,29], the proposed solutions were mainly theoretical and 

thus difficult to adopt using common statistical analysis software.  

 

Issue 2: Inconsistence in handling both-armed zero-event in meta-analysis  

A systematic review (SR) synthesizes the available literature on a certain topic through a 

rigorous and systematic searching and selecting process using predefined inclusion and 

exclusion criteria, and meta-analysis (MA) quantitatively synthesize the evidence by 

pooling results of individual studies identified by the SR using statistical methods[30]. As 

a matter of principle, all studies with available data included in an SR need to be included 

in the MA. However, this principle cannot always be applied to the MA with binary 

outcomes when both-armed zero-event (BAZE) studies are among the identified 

studies[31].  
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BAZE study, also called zero-total event study, is a study that has no observed outcome 

event in both comparison groups, for example, treatment and control arms in a 

randomized control trial (RCT).  Currently, there are no guidelines developed as to how 

to deal with BAZE studies in meta-analysis, and thus BAZE studies are handled 

inconsistently in the practice of conducting MA[32]. The analytical approaches may vary 

depending on the choice of the effect measure of statistical pooling methods and as well 

as the considerations or decisions of the researchers. Although several recently conducted 

simulation studies provided some statistical procedures to include BAZE studies[33–37], 

it remains unclear as to how including or excluding BAZE studies in or from MA may 

impact the accuracy. 

 

Issue 3: How to incorporate external information to enhance, modify or compare the 

evidence presented in the observed data for rare event outcomes 

Statistics is the essential tool to quantitatively summarize the evidence for the available 

study data.  There are two main approaches in statistics: Frequentist and Bayesian. Unlike 

Frequentist which is also known as classical statistical approach, in which the hypothesis 

is tested based on the long-run frequency[38], Bayesian approach rooted on the Bayes’ 

Theorem is a conditional probability which updates the current knowledge based on 

newly obtained data[39] and previous evidence.  Although with its broadly educated base 

and easy-to-use software, classical statistics is dominant force in analyzing health 
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research data, Bayesian approach as the alternative has been increasingly used in many 

health research areas[40,41]. 

 

With the way of adaptively updating all available knowledge by incorporating the 

evidence from past (priors) to the current observations (data) to make prediction for the 

future (posterior estimates), Bayesian analyses naturally simulate how human brains 

process information and make decisions[42,43]. With the ability of combining the 

external information or historical events, Bayesian approach is more appealing when 

studies are conducted to investigate rare diseases or events[44]. An example to show the 

methodological or statistical challenges of using the classical approach to analyze rare 

event data is estimating inhibitor rate of the patients under hemophilia A treatment with 

the Factor VIII or IX replaced products. Hemophilia A is a rare blood disorder which 

occurs in 8 of 100,000 males in North America. An inhibitor which is an antibody  to  the 

product used to treat or prevent bleeding episodes, is considered to be a serious 

complication affecting 1-6% of hemophilia A patients[45]. A large systematic review 

(2013) summarized the rates of developing inhibitor among the previously treated 

hemophilia A patients: 43 inhibitors were reported in 4323 patients across 33 cohorts[46]. 

Due to the small sample size and extremely low event rate, the estimates of inhibitor rates 

from most individual studies presented huge uncertainties with unreasonably wide 95% 
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confidence intervals (CIs): 9 estimates reported the lower bounds of 95% CI as 0%; the 

widest 95% CI was between 0.6% and 23.5%.  

 

With the challenges presented in analyzing rare event data, more researchers have turned 

to the Bayesian approach for solutions, in particular for assessing the robustness of the 

results by using different priors that incorporate relevant information from different 

sources.  However, conducting Bayesian analyses can sometimes be complicated by 

programming Bayesian codes, properly choosing priors, setting up the likelihood function 

and interpreting the results. Therefore, to efficiently promote the use of the Bayesian 

approach among health researchers, more technical supports with examples need to be 

provided. 

 

Summary of Chapters 

In this sandwich thesis, the issues described above were investigated through three 

independent but inter-connected projects under the general topic of sensitivity analyses. 

The papers dedicated to these projects were separated in the next three chapters starting 

with Chapter 2. 

  



Ph.D. Thesis – J Cheng; McMaster University 

Health Research Methodology, Biostatistics Specification 

 

10 

 

In Chapter 2, I empirically compared the commonly used statistical models with the 

ability of adjusting within-subject correlate in analyzing DCE data. The data used in the 

project were collected through a survey conducted in Hamilton, Ontario, Canada in 2002. 

The aim of this survey was to elicit participant preference for colorectal cancer (CRC) 

screening tests. A two-staged DCE design with the opt-out option was used to investigate 

how six important attributes (process, pain, preparation, specificity, sensitivity and cost) 

which defined the four CRC screening tests could impact participants’ choice of one test 

over its alternatives and their willingness to undertake the test. The choices made by the 

participants were organized in three ways: binary, multinomial and bivariate-binary 

outcomes. Six statistical models for analyzing clustered binary data were applied, which 

included logistic and probit regression with cluster-robust standard error (SE), random-

effects logistic and probit models, and logistic and probit models using generalized 

estimating equation (GEE) approaches. For the multinomial outcomes, I fitted three 

models: multinomial logistic/probit models with clustered robust SE and random-effects 

multinomial logistic model. The bivariate probit model with clustered-robust SE was used 

to analyze bivariate-binary outcome which treated the choices in two stages as two 

correlated binary outcomes. The rank of relative importance of attributes and the 

magnitude of β were used to assess the model’s robustness. 
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Chapter 3 is a simulation study in evaluating the impact of including or excluding bother-

armed zero-event studies in meta-analysis of RCTs using rare event outcomes. The values 

of simulation parameters were chosen based on a review paper which summarized the 

characteristics of MAs in the Cochrane Database of Systematic Reviews. Some 2500 

datasets were generated for a series of scenarios which represented the different settings 

of treatment effect, control arm event rate, number of patients of each individual trial and 

between study variance. I investigated five pooling methods using odds ratio (OR) as the 

effect measure for classical meta-analyses, namely Peto, Mantel-Haenszel (M-H) method 

with fixed-effects and random-effects model, and inverse variance (IV) method with 

fixed-effects and random-effects model. The above methods were applied to each 

simulated dataset using the approaches of including and excluding BAZE studies. With 

the focus of the potential bias of the treatment effect introduced when trials with both 

zero-event arms were included or excluded in the MAs, I assessed the performance of the 

above methods using percentage bias, root mean square error (RMSE), length of 95% 

confidence interval (CI), and coverage. 

  

Chapter 4 is a methodological paper to explore the merits of using Bayesian approaches 

to generate evidence for complex clinical settings. This paper also serves as a tutorial for 

clinicians who are interested in this topic. I aim to illustrate how to adopt the Bayesian 

approach to analyze the current available data while incorporating the external 
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information for rare event rates. After introducing the concepts behind Bayesian 

inference, step by step, I showed the process of choosing non-informative and informative 

priors, comparing the results to thresholds and evaluating the impact of sample size in 

three study scenarios based on published papers which collectively investigated the 

inhibitor rate of hemophilia A patients treated with rAHF-PFM (ADVATE): 1) analyzing 

the inhibitor rate (a rare adverse event) in a single cohort of previously treated patients 

(PTPs)[46]; 2)  meta-analyzing inhibitor rate by pooling a set of studies with individual 

patient level data[47]; and 3) generating evidence of inhibitor rate using very limited data 

for a previously unexplored patient population[48].  The individual patient level data used 

in this project were from PASS (Post-Authorization Safety Surveillance) studies provided 

by Baxter Healthcare, Global Affairs (Westlake Village, California, USA).   

 

Chapter 5 summarized the findings of Chapter 2 to Chapter 4, and discusses the 

implications of the findings and the limitations. I hope to use this thesis to raise awareness 

among researchers regarding the importance of assessing the robustness of statistical 

analysis results through a range of sensitivity analyses by sharing our experience using 

real examples. The individual papers also provide some solutions or suggestions for 

certain statistical and methodological issues in health research field. 
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CHAPTER 2 

AN EMPIRICAL COMPARISON OF METHODS FOR ANALYZING 

CORRELATED DATA FROM A DISCRETE CHOICE SURVEY TO 

ELICIT PATIENT PREFERENCE FOR COLORECTAL CANCER 

SCREENING 
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Abstract 

Objectives: There is no consensus on whether studies with no observed events in both the 

treatment and control arms, the so-called both-armed zero-event studies, should be 

included in a meta-analysis (MA) of randomized controlled trials (RCTs). Current 

analytic approaches handled them differently depending on the choice of effect measures 

and authors’ discretion. Our objective is to evaluate the impact of including or excluding 

both-armed zero-event (BAZE) studies in MA of RCTs with rare outcome events through 

a simulation study. 

 

Method: We simulated 2500 datasets for different scenarios varying the parameters of 

baseline event rate, treatment effect and number of patients in each trial, and between-

study variance. We evaluated the performance of commonly used pooling methods in 

classical MA—namely, Peto, Mantel-Haenszel (M-H) with fixed-effects and random-

effects models, and inverse variance (IV) method with fixed-effects and random-effects 

models—using bias, root mean squared error (RMSE), length of 95% confidence interval 

[CI] and coverage. 

 

Results: The overall performance of the approaches of including or excluding BAZE 

studies in meta-analysis varied according to the magnitude of true treatment effect.  
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Including BAZE studies introduced very little bias, decreased MSE, narrowed the 95% 

CI, and increased the coverage when no true treatment effect existed. However, when a 

true treatment effect existed, the estimates from the approach of excluding BAZE studies 

led to smaller bias than including them. Among all evaluated methods, the Peto method 

excluding BAZE studies gave the least biased results when a true treatment effect existed. 

 

Conclusion: We recommend including BAZE studies when treatment effects are 

unlikely, but excluding them when there is a decisive treatment effect.  Providing results 

of both including and excluding BAZE studies to assess the robustness of the pooled 

estimated effect is a sensible way to communicate the results of a MA when the treatment 

effects are unclear.  
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Strengths and limitations of this study 

 

 A simulation study thoroughly investigated the impacts of including or excluding 

both-armed zero-event studies in meta-analyses by comparing all commonly used 

pooling methods 

 The simulation parameters were chosen according to the characteristics of meta-

analyses in the Cochrane Database of Systematic Reviews to closely reflex the 

reality 

 Our results not only confirmed the findings from the previous empirical studies 

but also added more details on how including or excluding both-armed zero-event 

may impact the estimates of meta-analyses differently depending on the 

magnitude of true treatment effects 

 Only odds ratio was investigated through simulations, thus the findings from this 

study may not be able to be fully extended to other effect measures such as 

relative risk or absolute risk difference 
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Background 

Systematic review (SR) with meta-analysis (MA) has become an important research tool 

for the health research literature which synthesizes evidence from individually conducted 

studies that assess the same outcomes on the same topic.  The PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses) Statement[1] adopted the 

definition used by Cochrane Group[2] which defines SR as a review of a clearly 

formulated question that uses systematic and explicit methods to identify, select, and 

critically appraise relevant research, and to collect and analyze data from the studies that 

are included in the review. Meta-analysis refers to the use of statistical techniques in a 

systematic review to integrate the results of included studies. Therefore, the results of 

MAs from randomized controlled trials (RCT) are considered to be the best quantitative 

clinical evidence in the literature.[3,4]  Studies included in a SR are selected rigorously 

according to predefined exclusion and inclusion criteria. Thus all identified studies in a 

SR with available data should be included in the MA. However, there is no consensus 

among researchers whether this principle should be fully applied and how to apply to the 

MAs using dichotomous outcomes.  

 

The outcomes of dichotomous data are events. The number of observed events in a RCT 

using dichotomous outcomes is most affected by the event rate and sample size, and also 

affected by the length of the study period. When the event rate is low, the sample size is 
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small and the study period is short, it is possible that no outcome event is observed in the 

RCT although the probability of the event happening is not zero.  A study with no 

outcome event observed in either treatment or control arms is called a zero-event study.  

Both-armed zero-event (BAZE), also called double-zero event or zero-total-event, is an 

extreme case of zero-event, which is defined as no event is observed in both treatment 

and control arms.  

 

When rare adverse events or rare diseases are used as the study outcomes, it is not an 

uncommon phenomenon that no outcome events are observed at the end of the study. In 

the United States, a rare adverse event is defined as one per 1000 patients.[5]  In the 

European Union, a rare disease is defined as one per 2000 people.[6]  To obtain a 

representative number of outcomes for a rare event study, a large number of patients are 

needed. However, very often, RCTs are either not designed primarily to investigate 

adverse events or do not have the resources to recruit the sample size required for such 

events. A published review of the Cochrane Database of systematic reviews showed that 

the median sample size for dichotomous outcomes was 102 (inter-quartile range of 50-

243).[7]  Therefore, when the primary outcome in a MA is a rare event, zero-event studies 

could be among the qualified studies. Warren (2011) and colleagues conducted a 

systematic review of meta-analyses published between 1994 and 2006 where rare events 

were a primary outcome.[8]  Among 166 MAs, 65 (39%) included zero-event studies, and 
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41 (25%) included BAZE studies. Amongst the 41 MAs with BAZE studies, 19 MAs 

(46%) included them in the primary or sensitivity analyses, 18 (44%) excluded them and 

4 (10%) were unclear. This review also found that the continuity correction was most 

used approach to incorporate zero-event studies, and 0.5 was the common choice of the 

correction factor (93%). 

 

For single-armed zero-event studies, there is consensus on their inclusion in MAs. 

Bradburn (2007) and colleagues reported a simulation study comparing commonly used 

methods of handling zero-event studies in MAs.[9]  This provides a good guideline for 

the subsequent MAs. However, when BAZE studies were present in systematic reviews, 

the practice of handling varies.[8,10] 

 

There are two major reasons why BAZE are handled variably in meta-analyses. First, the 

statistical methods and software such as RevMan[11], Stata’s metan module[12] and 

Comprehensive Meta-analysis[13]to handle BAZE studies differ according to the choice 

of effect measures. BAZE studies are included in the pooled results when risk difference 

(RD) is used, but automatically excluded by all statistical software used for MA when 

odds ratio (OR) or relative risk (RR) is used. Second, there is no guideline for handling 

BAZE studies in MAs. A few published papers examined various approaches using 
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empirical data have produced ambiguous results.  In 2007, Friedrich and colleagues 

empirically compared the statistical methods of handling BAZE studies in MA and 

recommended that BAZE studies should be included in all MAs. They concluded that 

including BAZE studies could narrow the confidence interval and increase the precision 

of the pooled estimates.[14]  In 2008, Dahabreh  and colleagues conducted a sensitivity 

analysis to re-evaluate the treatment effect of Rosiglitazone and found that including 

BAZE studies changed the pooled odd ratio of myocardial infarction between treatment 

and control groups from significant to not significant statistically.[15]  Although the 

above empirical studies showed us that including BAZE studies could impact the results 

of MAs, the impact may not be beneficial towards the truth in all scenarios. In addition to 

the above empirical studies, a recently published simulation study argued that 

incorporating BAZE studies using a relatively complicated Beta-binomial regression 

could generate unbiased estimates for MAs.[16]  However, due to its complexity and lack 

of available procedures in commonly used statistical software, this model may not a 

practical choice. 

 

Since number of events observed in studies using dichotomous outcomes is determined 

by event rates and number of subjects, zero-events are more likely to occur with the 

conditions of extremely low event rates or small sample sizes even though the event rates 

are different between two study groups. In the intuitive way, the arithmetical difference 
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between two study groups with no observed events is null. Therefore, we believe that 

depending on the magnitude of true treatment effects, including BAZE studies in MA 

may affect the pooled estimates of treatment effects in two different ways.  When there is 

no true treatment effect, i.e. the event rates are similar in treatment and control arms, 

including BAZE studies can narrow the confidence interval of the pooled studies of a 

MA. But on the other hand, we suspect that when a true treatment effect exists, including 

BAZE studies could moderate the magnitude of the pooled estimate and lead to the 

underestimation of the treatment effect.  

 

To test this hypothesis, we conducted a simulation study to evaluate the impact of 

excluding and including BAZE studies. Although it is not difficult to statistically deduct 

deduce that the bias brought by including BAZE studies is affected by the following 

factors: 1) low event rate, 2) large treatment effect, and 3) small sample size, stimulation 

is still needed to quantifying the magnitude of the bias.  Our investigation was focused on 

comparing the statistical pooling methods adopted by the commonly used software such 

as RevMan and Stata for meta-analyzing aggregated data.  
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Method 

Odds ratio and relative risk are the most commonly used effect measures for assessing the 

treatment effect for dichotomous outcomes in meta-analyses. The results of these two 

effect measures are similar when the event probability is less than 20%.[16,17]  Since the 

event rates used in our simulation study were much lower, we chose OR as the effect 

measure to engage the Peto method in our investigation. Bradburn (2007)  et al have 

shown that the Peto method was a better choice for rare event meta-analyses for 

dichotomous outcomes when only one-armed zero event studies were included.[9] 

 

Simulation Scenarios 

The simulation scenarios in our study were chosen based on a combination of several 

simulation parameters. Three types of parameters were used in this simulation study: 

fixed, varied and derived. We believed some parameters had more impact on the 

simulation results than others. We chose fixed values for the low impact parameters 

across all simulation scenarios and let the values of those high impact parameters vary in 

certain ranges. The parameter values were drawn from the published literature (Table 1). 

The derived parameters were calculated by the input parameters according to a statistical 

formula. For the fixed parameters, we tested the following values. The numbers of studies 

(m) in each MA was set at 5. The review published in 2011 reported that the median 
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(interquartile) of the numbers of studies included in the meta-analysis in the Cochrane 

Database was 3 with inter quartile range (IQR) from 2 to 6.[7]  For the treatment and 

control arm ratio (r), we only considered 1:1 allocation. A review paper have shown that 

78% of clinical trials were conducted with equal patient allocation strategies.[19]  To 

reduce the number of simulation scenarios, we deliberately chose to use the same number 

of patients across all studies in each MA. 

 

For the following parameters, we chose to input multiple values instead of constants. The 

control arm event probabilities (p) investigated in this simulation were 0.001, 0.005, and 

0.01. They are chosen according to the varying definitions of rare events.[5,6]   The 

treatment effects measured as odds ratio (OR) were set as no effect ( OR =1), medium 

sized (0.8), large (0.5) and extremely large (0.2). [20]  The numbers of patients (n) in 

each individual study included were 50, 100 and 200 based on the same review 

mentioned above,[7]  which revealed that the median (Q1, Q3) of the sample size in each 

individual study was 102 (100, 243). We also considered the potential impact of between 

study variance in our simulation design. We set the between study standard deviation 

(SD) as 0.1, 0.5 and 1, which represented little, moderate and large between study 

variance.[20]  The between study variation was added in the OR, i.e. the treatment effect. 
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In this simulation study, the treatment arm event probabilities were calculated through the 

control arm event probabilities and treatment effects (OR). 

௜்݌ ൌ
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Where ்݌= treatment arm probability, ݌஼ = control arm probability, Ω = odds ratio, i = 

1, 2, …, study. 

 

Number of simulations  

We simulated 2500 data sets for each scenario to ensure the accuracy of our simulation 

results.[21]  

 

Analysis Methods 

Five pooling procedures were used to meta-analyze each simulated data set. They were 

Peto, Mantel-Haenszel (M-H) with fixed-effects and random-effects models, and inverse 

variance (IV) method with fixed-effects and random-effects models.[2] 
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Methods to Including Both-armed Zero-events 

To implement the above 5 pooled methods to incorporate studies with BAZE in MA, a 

continuity correction factor was add to each of the four cells of the 2 x 2 table for a BAZE 

study, i.e. event in the treatment arm, non-event in the treatment arm, event in the control 

arm, and non-event the in control arm. We chose to use the constant continuity factor 0.5. 

It is common and plausible choice when the group ratio is balanced between treatment 

and control arms.[22]   

 

Evaluating simulation performance  

Four measures were used to assess the performance of this simulation study [21] 

(Table2): 1) percentage bias, which is calculated as the percentage of the difference 

between the average of the estimated value and the true value (absolute bias) over the true 

value; 2) root mean square error (RMSE), which measures the average distance of 

estimated treatment effects from the parameter value; 3) the average length of 95% 

confidence intervals (CI) is also used to compare the precisions between pooling 

methods;  4) coverage, which measures the percentage of the true treatment effects 

included in the available 95% confidence intervals (CI) over all generated data sets.  The 

RMSE and average 95% CI length were reported the log OR scale. The performances of 

the simulation were compared across the five pooling methods used for the approaches of 

including and excluding BAZE studies in the meta-analyses. We also reported the 
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inclusiveness of the approach of excluding BAZE studies in MA, which reported the 

percentage of number of studies included in the pooling process. 

 

Statistical Software and Program 

The data sets for each simulation scenario are generated using R 2.15.2 (The R 

Foundation for Statistical Computing). The meta-analyses were conducted using Stata 

13.1 (College Station, TX). The estimates summarizing the overall performance of this 

simulation were also calculated using Stata.  

 

Results  

In this study, we ran 57 simulated scenarios. The scenarios were grouped to investigate 

the impact of the value changing on the following variable parameters while holding the 

number of studies (m = 5) and allocation ratio (1:1) fixed:  i) the treatment effect (OR = 1, 

0.8, 0.5, 0.2), ii) the control arm event probability (p= 0.001, 0.005, 0.01), the number of 

patients in each individual study (n = 50, 100, 200) and the between-study standard 

deviation (SD = 0.1, 0.5, 1). When examining the changes on one variable parameter, we 

held the other variable parameters on the common scenario, which was set as (OR = 0.5, 

p = 0.001, n = 100 and between-study SD = 0.5).  We assessed the simulation results by 
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comparing bias, RMSE, the length of 95% CI, and coverage. We also reported the 

inclusiveness of the approach of excluding BAZE studies 

 

Including BAZE studies 

Our simulation results supported our hypothesis that when there is no true treatment 

effect (OR =1), the approach of including BAZE studies in meta-analyses had the best 

overall performance regardless of the choice of pooling methods, which gave the smallest 

bias (<0.1%) (Table 3a) and RMSE (Figure 1), and narrowest 95% CI (Figure 2). 

However, when there was true treatment effect, this approach gave the larger bias 

compared to the alternative approach of excluding BAZE studies. The magnitude of the 

bias increased with an increase in the treatment effect. Compared to the approach of 

excluding BAZE studies, the result obtained by including BAZE studies had smaller 

RMSEs when the treatment effects were small (OR =0.8) or moderate (0.5), but when the 

treatment effect was large (OR = 0.2), RMSEs were also larger (Figure 1). The changes of 

the treatment effect also impacted the coverage. For all methods, the coverage was high 

(> 99%) when the treatment effect was zero (OR = 1) to moderate (OR = 0.5), but then 

dropped to 95% when the treatment effect was large (OR = 0.2). We also found that the 

bias of the pooled estimates increased with decreasing control arm probability (Table 3b) 

and number of patients (Table 3c) and increasing between-study variance (Table 3d).   
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Excluding BAZE studies 

Similarly excluding BAZE studies for meta-analyses introduced little bias on the pooled 

estimates (0.7-1.4%) when there was no true treatment effect (Table 3a) When a true 

treatment effect existed, the pooled estimates obtained using this approach yielded 

smaller bias compared to including BAZE studies. Again the magnitude of bias increased 

with a decrease in the control arm probability (Table 3b) and number of patients (Table 

3c) and an increase in between-study variance (Table 3d). We also noticed that excluding 

BAZE studies didn’t have much impact on RMSE, the length of confidence intervals and 

coverage, except for Peto method—which had slightly wider confidence interval (Figure 

2) and lower coverage (91%) when large treatment effect presented (OR =0.2).  However, 

the inclusiveness, i.e. the number of studies included in MA dropped noticeably (72%, 

67%, 59%, 46%) with the increase of the treatment effects (OR = 1, 0.8, 0.5, 0.2), 

respectively.  

 

Peto method excluding BAZE studies 

Among all five pooling methods, the Peto method excluding BAZE studies provided the 

most reliable results (percentage bias < 0.8) for this rare event setting (control arm 

probability = 0.001, 0.005, 0.01) when the true treatment effect and between-study 

variance were small to moderate and number of patients were equal or greater than 100 in 

each individual study (Table 3a-3d).  
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In summary, our simulation study verified that when there was no true treatment effect 

(OR = 1), the approach of including BAZE studies consistently outperformed the 

approach of excluding BAZE studies across all five pooling methods by providing less 

biased results with smaller RMSE, narrower 95% CI and higher coverage regardless of 

the changes of control arm probability, number of patients and between-study variance. 

However, whenever a true treatment effect was present, the results from the approach of 

including BAZE studies introduced larger bias than the approach of excluding them. 

 

Discussion 

This simulation study investigated the impact of including or excluding BAZE studies in 

MAs for rare event outcomes when odds ratio is used as the effect measure for pooled 

estimates of dichotomous outcomes. We found that including BAZE studies provided 

more accurate overall pooled estimates than excluding them when there was no true 

treatment effect. However, when there was a true treatment effect, the results from both 

approaches underestimated the true treatment effect, and including BAZE studies 

increased bias further. Amongst the pooling methods, Peto’s method with exclusion of 

BAZE studies provided the pooled OR considerably closer to the true treatment effect for 

small to moderate treatment effects under the condition of small to moderate between-

study variance and relatively large sample size. 
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Our simulation study confirmed the empirical findings obtained by Friedrich et al. (2007). 

They recommended including BAZE studies in all meta-analyses for the benefits of 

providing conservative point estimates and increasing the study integrity.[14]  However, 

the “conservative” estimate is a double-edged sword. In the sense of drawing the 

estimates towards null hypothesis, although underestimating benefit may delay or deny 

patient’s access to a new treatment[23] when evaluating the beneficial treatment effect for 

a new drug, with the patient safety as physician’s priority concern, the conservative result 

might be a the safer choice. With many uncertainties unchecked, quickly shifting from the 

standard care to a new treatment based on the findings from a small study (even it is a 

MA) can be a dangerous move. Some studies have showed that the treatment effect tend 

to be over estimates when the trials were underpowered.[21,22]  On the other hand, when 

the result of a MA is regarding the safety measures such as serious adverse event, the 

conservative result means  underestimating the harm, which could lead to expose patients 

to unnecessary danger.[26]  Therefore, depending the purpose of the SR (evaluating 

benefits or harms), including BAZE studies in MA could have different implications. 

 

This simulation study confirmed that among all five commonly used pooling methods, 

only the Peto method without inclusion of BAZE studies produces a pooled OR 

approaching the true treatment effect when sample size are relatively large. This finding 

is consistent with the simulation study conducted by Bradburn et al (2007),[9] which 



Ph.D. Thesis – J Cheng; McMaster University 

Health Research Methodology, Biostatistics Specification 

 

59 

 

evaluated performances of the common methods used to meta-analyze the sparse data for 

binary outcomes. In addition to their findings, our simulation study also shows that 

compared to the random-effects model (IV or H-M), the Peto method as a fixed-effect 

model gave the least biased estimates when the between-study variance is from small to 

moderate.. The reason of the Peto method outperforming the random-effects model is that 

as Sweeting at el [22]has shown in their simulation study, the heterogeneity was difficult 

to estimate for the rare event data. Therefore, the benefit of using random-effect model 

doesn’t overcome the bias introduced by the IV or H-M methods, which were proven by 

the simulation study conducted by Bradburn and at el.[9] 

 

This simulation study clearly showed that including both-armed (and even single armed) 

zero-event studies in MA could do more harm than benefit when the treatment effect is 

comparing harmful outcomes.  However, in reality, it is not easy or sometimes even 

impossible to know whether a true treatment effect exists or not. Therefore, a 

comprehensive approach of a series of sensitivity analyses need to be conducted when 

performing systematic reviews that include zero-event studies. An example could be used 

is Dahabreh at el (2008) who  re-analyzed the cardiovascular events in randomized trials 

of rosiglitazone.[15]  Although, the results showed that including BAZE studies turned 

the pooled odds of myocardial infarction (MI) from statistically significant to not 

significant. Their conclusion that rosiglitazone increased MI was made after assessing the 
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consistency of results from different methods.  The above example demonstrates that 

when MAs are conducted to evaluate rare events, it is difficult to get a concordant result. 

To assist readers to make their own informative decision about the results of a MA, its 

methods should be communicated in full transparency. In addition to reporting the result 

following the PRISMA guideline,[1] the eligible studies with zero-event and the methods 

used to deal with zero-event studies need to be clearly described. We believe that an 

extension of the PRISMA guideline on how to report MAs on rare event outcomes with 

zero event studies needs to be developed to include a section of reporting the methods 

used to deal with zero-event studies and impact on the overall estimates of MAs. 

 

Although we chose the values of simulation parameters from literature review, we realize 

that the results of our simulation study cannot be generalized to all situations in MA. To 

reduce the simulation scenarios to a manageable level, we used fixed values for some 

parameters. We only considered the balanced group ratio between treatment and control 

arms, but only 22% of RCTs used unbalanced design among previous in a recent 

review.[19]  Within each simulated MA data set, we fixed the number of studies to five, 

each with the same number of patients. This approach might be over simplified.  

Although we chose to investigate OR using common pooling methods, we believe that 

our findings can be applied to RR under similar condition for the estimates of OR and RR 

are similar when event rates are less than 0.2.[16,17]   For the continuity correction 
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approach to incorporate zero-event studies, we only used 0.5 as continuity correction 

factor, which works well when the trial arms are balanced, but will increase the bias when 

there is a big difference on the numbers of patients between two arms and the treatment 

effect are large. [22]   

 

The commonly used MA pooling methods we discussed in this simulation are based on 

parameter estimation, which requires the use of continuity correction to include zero 

events.  The likelihood maximization based Poisson Regression can incorporate zero 

events without continuity correction and supposedly generates an unbiased estimate of 

RR. The simulation from Spittal and et al[27] showed that random-effects Poisson 

Regression outperformed the standard pooling methods when meta-analyzing the 

incidence rate ratio for zero events data. We ran the random-effects model Poisson 

Regression on our stimulated data, and there was a convergence issue. The reason could 

be that there were a large proportion of zero-event (either in one arm or both arms) 

studies presented in a relatively smaller number of studies in each MA due to extremely 

low event rate. This convergence problem may not be a problem for MAs with larger 

number of studies. However, the most commonly used MA software such as RevMan 

doesn’t have the capacity to conduct any advanced statistical model, which may present a 

challenge for researchers who use the standard MA analysis packages. Similar to random-

effect Poisson Regression, Bayesian approach using none-informative prior as an 
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alternative of the standard classical MA method we investigated in this study has the 

advantage of incorporating zero-event studies without applying a continuity correction. 

[22]  How including BAZE studies in Bayesian MA impacts the pooled estimates will be 

studied in subsequent simulations. 

  

Conclusion 

To conclude, we recommend including BAZE studies in MA using OR as effect measure 

when treatment effects are unlikely to preserve data integrality of the systematic review. 

When treatment effects are clearly present, excluding BAZE studies and using the Peto 

method is a safer choice for evaluating rare events. However, most of the time,  the real 

situation about the treatment effect is hard to foresee from the available data, it is 

important to conduct sensitivity analyses using alternative approaches to assess the 

robustness of the primary analysis. And the purpose of the SR also need to be considered 

when deciding on how to deal with BAZE studies in MAs.  Furthermore, the results of 

MAs for rare events need to be interpreted within the clinical content.   
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Table 2 Measures for evaluating simulation performance 

 

β: the true value of estimate of interest;  ߚመ: estimate of β;  ߚመ: mean of ߚመ  in simulation 

δ: bias 

SE: standard error 

ܼଵିఈ ଶൗ
: (1 െ ߙ

2ൗ ሻ quantile of the standard normal distribution 

criteria Formula 

Percentage bias ((
ఋ

ఉ
ሻ	%) 

൭
መߚ െ ߚ
ߚ

൱ ൈ 100 

Root mean square error (RMSE) 
√ሺ ቀ መߚ െ ቁߚ

ଶ
 + ൫ ܧܵ ሺߚመሻ൯

ଶ
) 

Average length of 95% CI ∑ 2ܼଵିఈ ଶൗ
መ௜ሻߚሺܧܵ

஻
௜ୀଵ

ܤ
 

for i = 1, 2 ,…, B, where B = the number of 

meta-analyses conducted using simulated 

data sets 

Coverage of 95% CI Percentage of times the 95% CI of ߚመ௜ include 

β, for i = 1, 2 ,…, M, where M = the number 

of meta-analyses conducted using simulated 

data sets 

Inclusiveness Average percentage of number of studies 

included in the meta-analysis. 
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Table 3a Impact of the treatment effect changes on bias 

Number of studies = 5 Number of patients = 100 Group ratio = 1 Control arm probability = 0.001  Number of simulated data sets = 2500 Between-study SD = 0.5 

Methods 

   Excluding BAZE studies Including BAZE studies 

OR = 1 OR  0.8 OR =0.5 OR = 0.2 OR = 1 OR  0.8 OR =0.5 OR = 0.2 

ܱ෢ܴ  
(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% 

IV Random effects 1.01 0.8 0.88 -9.9 0.70 -40.6 0.47 -133.1 1.00 < 0.1 0.99 -23.2 0.97 -93.0 0.94 -370.7 

IV Fixed effects 1.01 0.7 0.88 -9.9 0.70 -40.6 0.47 -133.1 1.00 <0.1 0.98 -23.0 0.96 -92.3 0.93 -367.4 

M-H Radom effects 1.01 0.8 0.88 -9.9 0.70 -40.6 0.47 -133.1 1.00 <0.1 0.99 -23.2 0.97 -93.0 0.94 -370.7 

M-H Fixed effects 1.01 0.8 0.88 -9.9 0.70 -40.6 0.47 -133.1 1.00 <0.1 0.98 -23.0 0.96 -92.3 0.93 -367.4 

Peto 1.01 1.4 0.80 0.2 0.54 -7.8 0.26 -30.6 1.00 <0.1 0.95 -22.6 0.90 -90.6 92.2 -360.9 

Note:  ߚመ/	1 = ߚ + Taylor expansion (bias_log);  bias_log: bias calculated on log scale.  
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Table3b Impact of the control arm probability changes on bias 

Number of studies = 5 Number of patients = 100 Group ratio = 1 OR = 0.5 Number of simulated data sets = 2500 Between-study SD = 0.5 

Methods 

Excluding BAZE studies Including BAZE studies 

pc = 0.001 pc = 0.005 pc = 0.01 pc = 0.001 pc = 0.005 pc = 0.01 

 ܱ෢ܴ  
(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% 

IV Random effects 0.70 -40.6 0.68 -35.1 0.64 -28.5 0.97 -93.0 0.85 -70.8 0.76 -51.3 

IV Fixed effects 0.70 -40.6 0.67 -34.9 0.64 -27.3 0.96 -92.3 0.84 -68.5 0.74 -48.0 

M-H Radom effects 0.70 -40.6 0.68 -35.1 0.64 -28.5 0.97 -93.0 0.85 -70.7 0.76 -51.3 

M-H Fixed effects 0.70 -40.6 0.67 -34.9 0.64 -27.3 0.96 -92.3 0.84 -68.5 0.74 -48.0 

Peto 0.54 -7.8 0.52 -4.6 0.51 -1.1 0.90 -90.6 0.80 -59.5 0.67 -33.2 
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Table 3c: Impact of the number of patient changes on bias 

Number of studies = 5 Control group probability = 0.001 Group ratio = 1 OR = 0.5 Number of simulated data sets = 2500 Between-study SD = 0.5 

Methods 

Excluding BAZE studies Including BAZE studies 

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 

 ܱ෢ܴ  
(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% 

IV Random effects 0.73 -45.7 0.70 -40.6 0.68 -36.5 0.98 -96.8 0.97 -70.7 0.93 -86.0 

IV Fixed effects 0.73 -45.8 0.70 -40.6 0.68 -36.3 0.98 -96.5 0.96 -68.5 0.92 -84.5 

M-H Radom effects 0.73 -45.7 0.70 -40.6 0.68 -36.5 0.98 -96.8 0.97 -70.7 0.93 -86.0 

M-H Fixed effects 0.73 -45.8 0.70 -40.6 0.68 -36.3 0.98 -96.5 0.96 -68.5 0.92 -84.5 

Peto 0.58 -15.2 0.54 -7.8 0.51 -2.4 0.98 -95.8 0.95 -59.5 0.90 -80.7 
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Table 3d: Impact of the between-study variance changes on bias 

Number of studies = 5 Control group probability = 0.001 Group ratio = 1 OR = 0.5 Number of simulated data sets = 2500 number of patients per arm = 100 

Methods 

Excluding BAZE studies Including BA0E studies 

SD = 0.1 SD = 0.5 SD = 1 SD = 0.1 SD = 0.5 SD = 1 

 ܱ෢ܴ  
(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% ܱ෢ܴ  

(
ఋ

ఉ
ሻ% 

IV Random effects 0.68 -35.3 0.70 -40.6 0.88 -76.7 0.96 -92.5 0.97 -93.0 0.99 -97.3 

IV Fixed effects 0.68 -35.3 0.70 -40.6 0.88 -76.7 0.96 -91.6 0.96 -92.3 0.99 -97.0 

M-H Radom effects 0.68 -35.3 0.70 -40.6 0.88 -76.7 0.96 -92.5 0.97 -93.0 0.99 -97.3 

M-H Fixed effects 0.68 -35.3 0.70 -40.6 0.88 -76.7 0.96 -91.6 0.96 -92.3 0.99 -97.0 

Peto 0.50 -0.9 0.54 -7.8 0.80 -60.5 0.95 -89.9 0.90 -90.6 0.98 -96.4 
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Figure 1: Comparing root mean square error (RMSE) 
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Figure 2: Comparing length of 95% confidence interval (CI) 
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ABSTRACT 

Background: Bayesian modelling empowers analysis of rare events via incorporation of 

external data. To illustrate how the approach will i) compare with classical one; ii) change 

with different priors; and enable testing iii) thresholds and iv) size of information. 

 

Methods: We used three different scenarios: s1) a single cohort of previously treated 

patients (PTPs), s2) a meta-analysis of PTPs cohorts, and s3) a previously unexplored 

clinical setting (patients with positive inhibitor history). Patient population: Hemophilia A 

patients from the ADVATE Post Authorization Surveillance Studies.  Outcome: Any 

inhibitors. Statistical analysis: Non-informative and informative priors were applied to 

Bayesian standard (s1) and random-effects (s2,s3) logistic models (i.ii). Bayesian 

probabilities of satisfying three meaningful thresholds of the risk of developing a clinical 

significant inhibitor (10/100, 5/100 [high rates] and 1/86 [FDA mandated cut-off rate in 

PTPs])(iii) were estimated. The effect of scaling up the study data size by 2 and 10 times 

was evaluated (iv). 

 

Results: Results based on non-informative priors were similar to the classical approach. 

Using priors from PTPs lowered the point estimate and narrowed the credible intervals 
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(s1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; s2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; s3: 2.3 

[0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 

0.65. Increasing the number of patients by 2 and 10 times substantially narrowed the 

credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], 

respectively). Increasing the number of studies by 2 and 10 times for the multiple-studies 

scenarios (s2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; s3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], 

respectively) had a similar effect.  

 

Conclusion: Bayesian approach as a robust, transparent and reproducible analytic method 

can be efficiently used to answer the complex clinical questions.  
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Background 

Developing inhibitors against factor VIII concentrates is the most severe and costly 

complication of the treatment of hemophilia A.1  Patients who develop inhibitors have 

more episodes of bleeding and require larger doses of factor replacement to achieve 

hemostasis. 

 

There are several reasons that complicate studying the determinants of inhibitor 

development.2  The first is that the development of inhibitory antibodies is a combination 

of different events, more than a single one, with nothing as simple as black and white.3–6  

The second is the multifactorial nature of the phenomenon with both known and unknown 

risk factors and only some modifiable.7,8  The third is the rarity of the disease, which 

hampers the opportunity to obtain substantial comparative data.2 

 

In this challenging scenario, it is important to determine the risk associated with specific 

brands or classes of factor concentrates because the type of product is one of the few 

actionable risk factors in the field.9,10  Other characteristics of the treatment regimen like 

dose, frequency, indication, and concomitant treatments or exposures also contribute to 

the risk of inhibitor development.11–13 
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Progress in this field requires a close collaboration with complementary expertise. 

Knowledge of immunology and basic science can help gain a broader and deeper 

understanding of the molecular and cellular mechanisms driving the development or 

breach of tolerance.14–17  Clinical investigators can work to dissect the common 

characteristics among the heterogeneous clinical manifestations of inhibitory responses. 

Epidemiologists and biostatisticians can develop more powerful and efficient ways of 

looking at the available data and generating new ones. 

 

There are several unmet needs in the statistical models used to analyze observational data 

about inhibitor development, which relate to the rarity of adverse events in an already rare 

disease.18–24  The first critical issue is the scarcity of evidence, which emphasizes the need 

for incorporating external evidence to increase the power and the informative value of 

small and otherwise weak cohorts.25  A second issue is the need for an efficient way to 

analyze the intricate relationship between treatment, time and the varying risk of events 

over time.26  A third is the need to adjust for covariates (known risk factors) when 

performing multivariable exploration of, for example, inhibitor rates in previously 

untreated patients. The fourth and last, is the proper assessment and comparison of event 
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rates generated by non-parallel cohorts27–29  In the present paper, we will address the first 

and fourth issues. 

 

A powerful approach to the above problems might be a Bayesian framework. The 

Bayesian approach to interpreting experimental data from a clinical study consists of 

modeling the logical process leading to a change in opinion from before to after the 

availability of new information (the evidence provided by a new observation).  

 

Here is a simple example of the Bayesian approach. Assume it is 7:00 AM a day in 

March. You look out of the windows and you see overcast. What is your estimate of the 

chance of snow? With nothing more than that, you would probably say that the chance of 

snow that day is 25%, chance of rain 25%, the chance of clearing up 25%, and the chance 

of staying the same 25%. Assume now you are in Toronto. Your estimate of the chance of 

snow that day would probably become 50%, chance of rain about 1%, the chance of 

cleaning up 20%, and chance of staying the same about 30%. If instead you were in Hong 

Kong, you might estimate the chance of snow at 0%, chance of rain at 80%, etc. The 

same exact information gets a different interpretation based on your previous knowledge 

about the city and it would be improper not to take it into account. To add another level of 
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complexity, you might imagine you will get different estimates if it is your first day in 

Toronto or in Hong Kong, or instead if you are familiar with the area. In fact, conditional 

on your previous knowledge, you will have a different level of confidence in your 

forecast estimates.  In clinical practice, it is very useful and ethical to express some 

degree of credibility or confidence in your forecast with a patient. The power of the 

Bayesian approach is in formalizing and making transparent the way you define your 

previous knowledge, translate it into a technical language, and incorporate the new 

information. This process then provides a way to express the credibility of your forecast 

that is analogous to the classical measure of confidence in the result. 

 

The power of the Bayesian approach derives from the opportunity of making use of - 

existing knowledge in the assessment of data that extends to either incorporating that 

knowledge in the final results or using it as a standard for comparison. That knowledge 

could be a similar measure in a similar unrelated trial, or a threshold of clinical 

importance. 

 

Here is another example. It is still 7:00 AM, in March, overcast, in Toronto. The weather 

forecast is for a 50% chance of heavy rain, and you are ready to go for a walk. You don’t 
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mind walking under a light rain, and you are a risk taker, but you always carry your coat 

and umbrella when the chance of heavy rain is over 80%. Based on the observation of 

historical trends, the average chance of heavy rain is not higher than 20% that day in 

Toronto. That said, the horizon looks unusually dark and the US east coast has been 

recently hit by the most powerful tornado of the last century. Now you ask yourself: can 

the chance of heavy rain be higher than 80% today? Sure it can.  After putting all pieces 

of information together, you update your own estimates of the chance of heavy rain for 

today to 80% (Figure 1). This is enough for you to consider taking your coat and 

umbrella.  

 

This paper demonstrates how the Bayesian approach works in comparison with a classical 

(frequentist) approach; how it can incorporate external evidence in the analysis of a single 

cohort of patients and a pooled analysis of a set of studies; whether it can help increase 

credibility of the results and the understanding of the underlying mechanisms; and how 

can we generate probabilities to be used in a physician-to-patient interaction. Recently 

published data 30–32 were used to work out three examples.  
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Methods 

Overall study design: This paper is built around three case studies, and uses a 

standardized multistep approach to show i) how the Bayesian results compare with those 

based on the commonly used classical approach; ii) the impact of different sources of 

external information used to construct a Bayesian prior; iii) the use of different sources of 

external information as thresholds against which to benchmark Bayesian posterior 

estimates of risk; and iv) the impact of the size of information on the Bayesian posterior 

estimates. In the material and methods section we will describe the three case studies, the 

statistical details, and the data source we used for the simulation. 

 

Case Study scenarios:  

Case one: analyzing a rare adverse event in a single cohort (inhibitor rate in a cohort of 

previously treated patients, PTPs).  The first example was set to represent the analysis of 

a single study where all patients were treated with the same FVIII product, aiming to 

assess the rate of inhibitor development in cohort of Hemophilia A PTPs.  For this 

example, we re-analyzed the same cohort already published by Oldenburg and 

colleagues.30 We used this example to explore and discuss the basics of the Bayesian 

approach and the pros and cons of choosing different priors. 
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Case two: analyzing a rare adverse event by pooling a set of studies in a meta-analysis. 

The second example was conceived to represent a meta-analysis of studies assessing the 

rate of inhibitors in a set of independent but similar studies in comparable populations of 

Hemophilia A patients; for this example we used a previous paper we published.31  The 

main goal of this example -was to show how the Bayesian approach can -be a natural 

framework for a meta-analytical process. 

 

Case three: analyzing the inhibitor rate in a previously unexplored setting.  The third 

example illustrates the Bayesian analysis, interpretation and reporting of a small cohort 

study exploring a new clinical setting for which no obvious priors are available in the 

literature. We chose as a working example a previous report, studying the rate of inhibitor 

development in patients with low titer inhibitor at baseline or positive personal history of 

inhibitors. Although the study design and data collection were similar to the multi-

national studies described in the previous case, the patient population was definitely 

different and not overlapping, thus adding to the complexity of data not directly 

comparable to any existing.32 Another challenge presented in this example was pooling 

extremely sparse data in a multi-center study where no outcomes were observed in some 

centers (so-called zero-event). 
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By using the three study examples, the steps of conducting Bayesian analyses, and the 

potential benefits of using the Bayesian approach are showed step-by-step hereafter. 

  

The Concepts behind Bayesian Inference: 

Statistical inference is the process of fitting a probability model to a set of observed 

samples from a population to summarize the results by a probability distribution on the 

parameters of interests to make a general statement -about the population and predictions 

for new observations.  In the classical (frequentist) approach, the statistical modeling only 

involves fitting a probability distribution to the observed experimental data to model the 

likelihood of the observed experimental data for a given estimate of interest such as 

treatment effect, incidence rate and etc. Unlike the classical approach, the Bayesian 

approach combines experimental and prior or external information via the Bayes theorem, 

to produce the posterior distribution which is used to make all inferences about the 

estimate of interest. 

  

 

 

p (δ|data) = p(data|δ)  x  p(δ),  where δ is the parameter of interest 

Posterior distribution = Data Likelihood  x  Prior distribution 
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As shown in the textbox,  p(δ) represents prior distribution of the parameter of interest 

(hereforth to be referred to as “the parameter”), which present prior or external 

information about the estimate of treatment effect, incidence rate and etc.; p(data| δ ), the 

likelihood function, specifies the statistical model of  the observed experimental data 

given the parameter  and p (δ |data) is the posterior distribution of the parameter — 

which is essentially a combination of the evidence provided by the observed experimental 

data and prior relevant data from clinical experience or past research evidence.33,34  In 

many cases, the posterior distribution p(δ|data) is intractable and therefore to make 

inferences about the paramete , the Bayesian approach uses Monte Carlo Markov Chain 

(MCMC) to obtain samples from  the posterior p(δ|data).35  MCMC is an iterative 

process, with each iteration yielding a realization or observation from the posterior 

distribution p(δ|data). Typically, investigators will conduct a large number of 

iterations or simulations: 1,000, 10,000, or even more.  These are used to inform 

posterior inferences about the parameter. For example, the posterior mean or median is 

used to estimate the parameter, while the 2.5th and 97.5th observations are used as the 

95% credible interval for the parameter. To calculate the probability that the estimate of 

the parameter< K, where K is some threshold is given by the proportion of observations 

less than K. Table 1 provides a brief summary of  the comparison main features of the 

frequentist and Bayesian approaches in clinical trials.  
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How can our questions be framed using the abovementioned Bayesian framework? We 

take our first scenario as an example. In this example, we are interested in estimating the 

inhibitor rate from the collected data.  The likelihood p(data| δ) in our Bayesian model has 

a binomial distribution 

data| δ  ~ Binomial (δ, n) 

where δ represents the inhibitor rate, and n is the total number of patients on some 

underlying treatment. The prior, p(δ), could be the inhibitor rate reported in an external 

study.  After we run our Bayesian model to combine the information on the inhibitor rate 

contained in our data and the knowledge on the inhibitor rate found in the external study, 

we will have an updated estimate of the inhibitor rate that is represented through the 

posterior distribution.   

 

How probabilities are used in the frequentist and the Bayesian approach is fundamentally 

different. For instance, let’s say that we have a clinically meaningful reason to consider as 

sufficiently low an inhibitor rate less than 10%; thus, we want to test - if “the inhibitor 

rate (in our population) is less than 10%”.  In fact the frequentist frames test whether the 

null hypothesis (known) hold, i.e. “the inhibitor rate is greater or equal to 10%”at an 

arbitrary acceptable probability p that the null hypothesis may be wrongly rejected, say 
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0.05 36.  In our example, if the “probability” of “the inhibitor rate is greater or equal to 

10%” is less than 0.05, we conclude that this hypothesis can be rejected. However, this 

probability is not in fact a probability directly related to the acceptance of the testing 

hypothesis, but a level of credibility that, given the rate of inhibitor in our sample, and 

given the frequentist theoretical construct based on the normal distribution of the means 

of the infinite possible samples of the theoretical population, we can refuse the null 

hypothesis.  In fact, when p =< 0.05, we will reject the null hypothesis, but we are never 

able to say that the probability of “the inhibitor rate being less than 10%” is truly 0.95. On 

the other hand, the Bayesian probability is a quantity of the testing hypothesis. The 

Bayesian can really test the probability that the rate of inhibitor in our sample is less than 

10%. If p = 0.95, we are confident that the probability of “the inhibitor rate being less 

than 10%” is actually 0.95.  The estimates associated with the probability are confidence 

interval (CI) in classical approach and credible interval (CrI) in Bayesian approach. Back 

to our example, the 95% CI is interpreted as “the estimates of the inhibitor rate will fall in 

between these two boundaries 95% of the time if the data can be repeated infinitely”.  It 

cannot be used to make an assertion about the current test based on a single sample set 

without the assumption of the infinite repetition. In comparison, the 95% CrI tells us a 

straight forward story, “given the data and the model, the chance of the true inhibitor rate 

fall in this interval is 95%”.   



Ph.D. Thesis – J Cheng; McMaster University 

Health Research Methodology, Biostatistics Specification 

 

91 

 

 

Setting basic models with non-informative priors: For all three cases, Bayesian 

statistical models with non-informative priors were introduced first as the basic starting 

model. Non-informative priors are vague priors that carry relatively minimal information; 

consequently, the posterior estimates are derived predominantly from the study data, and 

directly comparable to the results obtained through the classical frequentist approach.  For 

the first example (one single cohort of patients) classical logistic and Bayesian logistic 

models were used. For the second and third examples (multiple studies setting) classical 

random-effects logistic and Bayesian hierarchical random-effects logistic models were 

adopted, through which the patients from the same cohort were clustered. The random-

effects model was adopted as the commonest choice for individual patient data meta-

analyses.   

 

Choosing informative priors: As a second step, we replaced non-informative priors with 

information-rich priors to incorporate the pre-existing external information/knowledge 

from previous studies into the analysis of the current study data. Unlike non-informative 

priors, informative ones contribute information to the posterior estimates, which can be 

looked at as a “combination” of the pre-existing evidence with -evidence generated by the 

current experiment. . In fact, posterior estimates are weighted averages based on prior and 

current experimental evidence/data, with the weights determined by the precision of the 
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corresponding evidence.   For examples one and two, the main goal of using prior was to 

incorporate the existing evidence and increase the comprehensiveness of the conclusion. 

To this scope, we sought relevant comparable priors, and tested two different sets of 

informative priors. The first set (a) comprised data obtained during the treatment with a 

certain molecule (e.g. rAHF-PFM) in different studies; specifically a-i) estimates of 

inhibitor rates from the manufacturer pivotal studies;37  a-ii) estimates of inhibitor rates 

from a meta-analysis 38 and a-iii) estimates of inhibitor rates from an independent 

prospective multicentric cohort.39  The second set of informative priors (b) comprised 

pooled inhibitor rates for any FVIII concentrate, including: b-i) a meta-analysis 38 and b-

ii) an independent prospective multicenter cohort.39 

 

The third study example was specifically chosen not to have a study on the same patient 

population already available; thus, no obvious informative priors can be located in the 

literature. Notwithstanding, we wanted to show the value of the Bayesian approach in 

exploring how the rate of inhibitor development in this population would change when 

the known rate in previously treated patients (PTP) and that in previously untreated 

patients (PUPs) are added in. Consequently, in addition to the informative priors used in 

the first two examples, we also added the inhibitor rates for PUPs reported in the 

EUHASS study 39 for a) the specific molecule and for b) all products. The key rationale 
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was to assess the robustness or sensitivity of the posterior inhibitor rates see when a prior 

based on a truly high-risk population is used. The details of generating priors can be 

found in Appendix A. 

 

Calculating probabilities:  Unlike the frequentist probability model, which tests whether 

the null hypothesis can be rejected successfully, the Bayesian probability approach 

generates a quantitative estimation of the “degree of truth” of the study hypothesis. 

Another interesting characteristic of the posterior probability is its nature of conditional 

probability, which lends it to be continually updated upon the availability of new data.  

The most informative example of using the conditional probability framework is where 

the inhibitor rate among the patients with low titer inhibitor at baseline or personal history 

of inhibitor had been given little consideration to date. Therefore, comparing the posterior 

estimates of the inhibitor rate obtained from the study data commonly used as clinical 

thresholds will provide clinicians with meaningful ways to interpret the results. To make 

this more evident, and show another peculiar property of the Bayesian framework, we 

further calculated for the third example the Bayesian probabilities of the posterior 

inhibitor rates being lower than three specific clinically meaningful thresholds, two high 

rates (10/100 and 5/100) and the FDA mandated cut-off rate in PTPs (1/86).40,41  
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Testing more complex hypotheses:  We moved then to show the effect of scaling down 

or discounting the value of the prior information. We used the third example, for which 

due to the inability to -use -a full consistent informative prior one might want to assign 

less weight to the - information carried by the selected - priors.  The weight of the prior 

could be reduced in at least 2 ways: 

 1)by decreasing the precision i.e. enlarging the variance of the priors depending on how 

relevant the particular piece of information is to the study we are assessing 34,42.  In our 

third example, we will discount the precision of the rates of inhibitor in PUPs in 

EUHASS for the specific molecule and for any factor VIII concentrate by 75% and 95% 

each, respectively. This equals to the human process of any perceived information: you 

told me that the rate of event is this, but I only 25% trust your information.  2) a second 

approach to obtain the same objective, i.e. to undervalue the contribution of the priors, is 

scaling up the weight of study data by increasing the precision assigned to the 

experimental data. One easy and understandable way to do this is to simulate the impact 

on posterior estimates of increasing the study sample size. Thus, we showed the effect of 

increasing the study data sample size by 2 times and 10 times respectively, for all three 

studies examples when using pooled estimates as priors. The increment of sample was 

done in two ways: i) increasing the number of events and number of patients in each 

center proportionally; ii) increasing the number of centers and keeping the number of 
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patients in each center the same.   We re-ran the Bayesian model with non-informative 

priors using new inflated data for all three examples, and we further re-analyzed the effect 

of data inflation in the third example for all informative priors previously used. 

 

Analysis and reporting: Throughout this study, posterior inhibitor rates (our results) 

were reported as percentage rates with 95% associated confidence interval (CI) in the 

case of classic statistics, or 95% credibility interval (CrI) in the case of Bayesian 

statistics. Graphic, descriptive statistics and classical meta-analyses were performed using 

Stata 13.1 (Statacorp, College Station, Tx, US). Bayesian analyses were performed using 

WinBUGS software 1.4.3 (http://www.mrc-bsu.cam.ac.uk/bugs/). In every Bayesian 

analysis, two chains were run simultaneously and the convergence of the Bayesian 

models was assessed based on the history trace, posterior density and auto-correlation 

plots for parameters of interest. The codes of Bayesian models detailed setups on the 

Bayesian simulations can be found in Appendix B. 

 

Source data used in the present paper: The individual data sets used to build our 

examples for illustration purposes 30–32 were from the ADVATE PASS (Post-

Authorization Safety Studies) program. The study population in PASS studies was 
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severe-moderate Hemophilia A patents undergoing treatment (prophylaxis or on-demand) 

with ADVATE in routine clinical use.  The primary safety outcome in these studies is 

defined as measurable inhibitors levels during the study period, including de novo, 

recurrent and persistent inhibitors. We adopted the cut-offs specified in the original PASS 

protocols: 1.0 Bethesda Unit (BU) for USA- EU- and Australia-PASS; and 0.6 BU for 

Japan-, Italy-, Korea and Taiwan-PASS (studies adopting the Nijmegen modification).30,43 

 

Results 

Description of the three datasets used for the examples. For Example 1, six inhibitors 

were reported among 428 patients (all severity patients, de-novo and recurrent, in 4 PTPs 

and 2 PUPs). For Example 2, five cohorts were included the IPD meta-analysis, and 21 

inhibitors were reported in 1188 patients. For Example 3, individual patient data were 

extracted from seven PASS studies and 6 inhibitors were reported in 219 patients. 

 

Comparing results from Bayesian approach to classical approach  

As expected, the results obtained from classical analytical approach and Bayesian 

statistical model using non-informative priors were similar for all the three examples. For 

the single cohort study (example one), the estimates were the same to one decimal place 
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(percent rate (95% CI): 1.3% (0.5, 2.7); percent rate (95% CrI): 1.3% (0.5, 2.7)). For the 

pooled analysis (example two), the Bayesian posterior estimates gave a slightly wider 

95% CrI (1.9% (0.5, 4.5)) toward the lower end as compared to the estimate from the 

classical approach (1.9% (0.8, 4.5)). For the cohort of patients with previous/current 

inhibitor (example three), the posterior estimates from the Bayesian model showed a 

slightly lower percent rate and wider 95% CrI (2.3% (0.5, 6.8)) as compared to the 

estimate from classical approach (2.6% (1.0, 6.8)). (Table 2, Figure2a, 2b, 2c). 

 

Impact of using informative priors in Bayesian analysis 

For example one and two, using external information as priors consistently narrowed the 

credible intervals and lowered the central estimate of percentage rates. The range of the 

inhibitor percentage rates for the single cohort (example one) was 0.8% to 1.3% and for 

the pooled analysis was 0.8% to 1.9%.  For the cohort of patients with previous/current 

inhibitor (example three), the posterior estimates of inhibitor percentage rates changed 

depending on the external information brought in by priors. The lowest percentage rates 

with narrowest 95% CrI was obtained using the informative prior generated from 

EUHASS study of PTP patients for all FVIII products: 0.7% (0.5, 1.1). The highest 

percentage rate was gained using the informative priors generated from EUHASS study 

of PUP patients for all FVIII products: 24.9% (21.1, 29.2). (Table 2, Figure2a, 2b, 2c). 
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Comparing posterior inhibitor rates to thresholds 

For the cohort of patients with previous/current inhibitor (example three), the posterior 

estimates of inhibitor rates were compared to the selected thresholds and the probabilities 

of posterior inhibitor rates lower than the thresholds were then calculated. A probability 

of 1 means that the calculated rate of inhibitors is certainly below the threshold, a 

probability of 0.5 would mean a 50% likelihood that the rate is below the threshold. 

Testing a threshold for the rate of inhibitors of 10%, six out of eight comparisons (when 

non-informative prior and informative priors were generated from the studies of PTP 

patients) showed a probability greater than 0.99. In contrast, when EUHASS PUPs study 

results were used as priors, the probabilities of a rate lower than 10% dropped 

dramatically to less than 0.001. Similar findings were obtained when the threshold was 

dropped to lower than 5%.  When the threshold was dropped further to the FDA approved 

rate for PTPs of 1/86, only the probability using priors for EUHASS study in PTPs for all 

products was greater than 0.9, but all estimations using PTPs as priors were still above 

0.65. (Table 3) 
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Impact of sample size of data 

We found that increasing the number of patients narrowed the credible interval for 

example one (i.e. the mimic of single center studies), but had little impact on the posterior 

estimates of example two and three, which represented multi-center study settings. 

However, when more centers were added to get to the same sample size, the credible 

intervals noticeably narrowed. Another interesting observation is that when the number of 

patients was increased in each center while the number of centers remained the same, the 

posterior inhibitor rates decreased for example three, in which three of seven centers 

reported no inhibitor event in the original data Table 2. (More exploratory results can be 

found in Appendix C.)  

 

Discussion  

In this paper we used three real-world examples to guide the reader to appreciate the 

power of the Bayesian approach to analyze and interpret rare events observed in a rare 

population. Initially using vague priors (not having or ignoring prior knowledge), we 

showed how the Bayesian estimation process generates point estimates very similar to the 

frequentist approach. We demonstrate how the iterative process typical of the Bayesian 

estimation can be used to generate credible intervals around the point estimate, which are 
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the range of possible values of the estimate. We show how the credibility interval has a 

precise probabilistic distribution of discrete values, which can be used to assess whether 

the likelihood of the event is above or below a given value. We discuss how this is of 

much greater interest for the clinician and the researcher than the distribution of the point 

estimate in hypothetical repetitions of the experiment, which is what the confidence 

intervals represent. Subsequently, we moved to show how the point-estimate and the 

credibility interval change when we consider a specific set of experimental data in light of 

what we already know of a given or similar phenomenon.  

 

Some further considerations are hopefully of value. For example one and two, the 

Bayesian models with non-informative priors yielded results comparable to the classical 

approach. For third study case, the point estimate of inhibitor rate obtained from the 

Bayesian random-effects logistic model was lower than that obtained from the classical 

random-effects logistic model. The reason is that the data used for this example are 

extremely sparse. In three out of seven pooled studies, there were no inhibitors observed. 

The classical logistic model directly takes event as outcome and thus fails to generate the 

estimates when no event is in the data. Therefore, when classical random-effect logistic 

was used to pool the data from seven individual studies, the three studies without 

outcomes were ignored, and the inhibitor rate was estimated from the four studies with 
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observed inhibitor. Unlike the classical model, the Bayesian model re-samples data for 

certain times (say 100,000) based on the information provided by the current data and 

then generate the estimates in accordance before reporting the posterior estimates which 

usual is the median of the entire estimates. In our example, when data reported no event, 

the Bayesian model resampled data using the probability of event sampled around zero. 

By doing so, the Bayesian model was able to incorporate those studies reporting no 

inhibitor into the posterior estimates and thus gave a lower inhibitor rate. On the other 

hand, for the same example, the 95 CrIs were wider than the 95% CI. This is because the 

Bayesian model introduced more random uncertainty through non-informative priors -that 

had very large variance. When the study data are not large enough, random uncertainty 

will be added in the posterior estimates. In our example, we had seven studies that were 

not even able to provide saturated information for estimating the between study variance. 

Therefore, the model borrowed information from non-informative priors that only added 

uncertainty to estimate the between study variance.    

 

In example three, we show how our set of experimental data can or cannot change our 

previous belief. We modeled the effect of observing six inhibitors in about 200 patients 

from the unlikely expectation that the inhibitor rate would have been as in RODIN, to the 

optimistic expectation that the rate would have not been different from that in PTPs. We 
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also showed how we could model the “strength” of this belief, by “discounting” the 

previous information. Critics of the Bayesian approach would certainly say- that by 

adding “discounts” you may play with data until you show what you want. We would 

object that this would be the case if you were only using one set of priors (maybe even 

discounted). If you instead show the results produced by using a whole range of priors, 

you explore the relevance of your previous beliefs and assumptions.  Along the same 

lines, we showed how Bayesian modeling can be used to simulate the effect of repeating 

the study or doubling the population, either by increasing the number of patients in the 

same centers or by increasing the number of centers. All of this richness of information is 

completely unavailable when using the frequentist approach. The reader needs to be 

aware, at this point, that most of the modeling of the impact of health care interventions 

on economics of health care systems or quality of life of patient population is generally 

obtained via Monte Carlo chain simulations which are, in essence, Bayesian probability 

applications 34,44. 

 

To come back to the clinical ground, we showed how the Bayesian posterior distribution 

can be interrogated to get, for example, the posterior probability that the rate of inhibitors 

in a population like the one we studied (e.g. patients with previous history of inhibitors) 

was above or below a given (clinically meaningful) threshold. This is what, in our 



Ph.D. Thesis – J Cheng; McMaster University 

Health Research Methodology, Biostatistics Specification 

 

103 

 

 

opinion, is needed for clinical decisions, and, indirectly, for policy making decisions like 

taking into account the 30% of patients with a previous history of inhibitors in the 

proportion of population to be suitable to switch concentrate as a result of a  tender 

process. 

 

Although the interpretation of probability is clinically intuitive, we are painfully aware 

that the wisdom of probability is a difficult concept to grasp. However, we would like to 

think that most of the difficulty is in the limited number of attempts made in the past to 

present the basics of the Bayesian approach in a practical and simplified manner. We 

made such an attempt, targeting practicing hematologists as our audience, by using three 

real-world examples in the field of hemophilia. We used real data to generate new 

evidence via a Bayesian simulation, and we added as much educational value as well. The 

Bayesian approach offers a great opportunity to move science forward in the rare disease 

field by maximizing the use of existing knowledge. If we guess about today’s probability 

of rain blinded to where we are and when, we have a very high chance of getting soaked, 

or uselessly carrying our umbrella. 
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Conclusion 

The Bayesian estimates of the inhibitor rate of patients undergoing treatment with 

ADVATE provide a broader understanding for the clinicians, which can be utilized to 

inform clinical decisions in management of patients with Hemophilia A. Bayesian 

approach as a robust, transparent and reproducible analytic method can be efficiently used 

to answer the complex clinical questions.   
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Table 1: Brief comparison of the frequentist and Bayesian approaches in clinical trials 

 (adopted and modified from several sources 33,34,44)  

Feature frequentist Approach Bayesian Approach 
Interpretation of probability  The proportion of times an event will 

occur in an infinitely long series of 
repeated identical situations 

The “degree of belief” of an event (or a 
number of repeatable events) will occur 

Main question What is the probability of data (trial 
result), given the hypothesis (treatment 
effect)? 

What is the probability of the hypothesis 
(treatment effect), given the data (trial result)? 

Design features Hypotheses, type I and II errors Hypotheses, Prior  or external information 

Reasoning paradigm Deductive reasoning Inductive reasoning  

Trial monitoring Pre-specified with adjustments for type I 
error for  interim analyses 

Adaptive by design based on accumulating 
evidence 

Condition of drawing statistical inference   Inference based observed experimental 
data  

Inference based on observed experimental data 
and prior information 

Information for 
Analysis 

Use of external 
information/pre-belief 

Informally considered only at study 
design stage, e.g. sample size calculation 

Formally incorporated in the design, analysis 
and interpretation as a prior 

Experimental data Summarized via the likelihood function, which captures all information provided by data 
regarding any unknown population parameters 
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Results summaries Point estimate The "best estimate" obtained from 
observed experimental data  

An “weighted point estimate from the posterior 
distribution derived by combining all relevant 
sources of information including the external 
information and  observed experimental data 

Interval estimates 95% confidence interval (CI)—an interval 
that we are 95% confident that the true 
value of the unknown parameter would be 
as low as its lower bound and as high as 
its upper bound 

95% credible interval (CrI)—an interval in 
which the unknown parameter would lie with 
probability 0.95 given the observed 
experimental data  

Probabilities P-value,   the chance of observing a result 
as extreme as what is seen in the 
experiment when the null hypothesis of 
no effect is true  

Posterior probabilities 

Decision-making Frame-work Not straightforward and hard to apply in 
clinical practice 

Intuitive and based on minimizing expected 
losses; easy to apply in clinical practice 
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Table 2: Inhibitor rates for three different examples 

 Example 1 Example 2 Example 3 
Method Single study Meta-analysis Multicenter cohort– 

no appropriate priors 
Test data (number of inhibitors/number of patients) PASS data30  

(6/428) 
PASS data31  

(21/1188) 
PASS data32  

(6/219) 
Classical Statistical Analysis: percent rate (95% CI) 1.3 (0.5, 2.7) 1.9 (0.8, 4.5) 2.6 (1.0, 6.8) 
Bayesian Statistical Analysis: percent rate (95% CrI)    

Non-informative prior 1.3 (0.5, 2.7) 1.9 (0.6, 6.0) 2.3 (0.5, 6.8) 
Informative prior: Baxter Pivot Study (1/102) 1.3 (0.5, 2.5) 1.6 (0.6, 4.1) 1.8 (0.5, 4.8) 
Informative prior: meta-analysis of OS (7 ADVATE studies) 
(3/569) 

0.9 (0.4, 1.9) 1.0 (0.4, 2.2) 0.9 (0.3, 2.3) 

Informative prior: meta-analysis of OS (38/3866) 1.0 (0.8, 1.4) 1.0 (0.8, 1.4) 1.0 (0.8, 1.4) 
Informative prior: EUHASS study de novo inhibitor PUPs 
ADVATE (37/141) 

NO NO 23.4 (17.5, 30.7) 

Informative prior: EUHASS study de novo inhibitor PUPs 
(108/417)  

NO NO 24.9 (21.1, 29.2) 

Informative prior: EUHASS study inhibitors in PTPs ADVATE 
(5/707) 

1.0 (0.5, 1.8) 1.1 (0.5, 2.1) 1.0 (0.4, 2.1) 

Informative prior: EUHASS study inhibitors in PTPs (all FVIII) 
(26/3736) 

0.8 (0.5, 1.1) 0.8 (0.5, 1.1) 0.7 (0.5, 1.1) 

Discounted prior: Discounting EUHASS PUPs ADVATE by 
75% 

NO NO 16.9 (9.0, 29.4) 
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Discounted prior: Discounting EUHASS PUPs ADVATE  by 
95% 

NO NO 5.3 (2.2, 16.0) 

Discounted prior: Discounting EUHASS PUPs ALL by 75% NO NO 22.2 (15.7, 30.4) 
Discounted prior: Discounting EUHASS PUPs ALL by 95% NO NO 12.3 (5.4, 25.8) 
Enhanced data : Enhancing study data by 2 times - increasing 
number of patients (with non-informative prior) 

1.4 (0.7, 2.3) 2.0 (0.6, 6.4) 2.2 (0.5, 6.6) 

Enhanced data: Enhancing study data by 2 times - increasing 
number of studies (with non-informative prior) 

NO 1.9 (0.9, 4.0) 2.4 (0.9, 5.0) 

Enhanced data: Enhancing study data by 10 times - increasing 
number of patients (with non-informative prior) 

1.4 (1.1, 1.8) 2.1 (0.6, 6.6) 1.6 (0.4, 5.4) 

Enhanced data: Enhancing study data by 10 times - increasing 
number of studies (with non-informative prior) 

NO 1.9 (1.5, 2.6) 2.6 (1.9, 3.5) 

PASS: post-authorization safety studies  

OS: observational study  CI: confidence interval  CrI: credible interval 

PUP: Previously untreated patient  PTP: Previously treated patient 

EUHASS: European Haemophilia Safety Surveillance 
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Table 3: Probabilities for the inhibitor rate from PASS [32] to be lower than pre-specified thresholds 

 Example 3: PASS Threshold 1 Threshold 2 Threshold 3 
Bayesian Statistical Analysis: percent rate (95% CrI) Multicenter study – no 

appropriate priors 
<10/100 <5/100 <1/86 

Non-informative prior 2.3 (0.5, 6.8) 0.994 0.921 0.165 
Informative prior: Baxter Pivot Study (1/102) 1.8 (0.5, 4.8) >0.999 0.979 0.225 
Informative prior: meta-analysis of OS (7 ADVATE 
studies) (3/569) 

0.9 (0.3, 2.3) >0.999 >0.999 0.677 

Informative prior: meta-analysis of OS (38/3866) 1.0 (0.8, 1.4) >0.999 >0.999 0.782 
Informative prior: EUHASS study de novo inhibitor PUPs 
ADVATE  (37/141) 

23.4 (17.5, 30.7) <0.001 <0.001 <0.001 

Informative prior: EUHASS study de novo inhibitor PUPs 
(108/417)  

24.9 (21.1, 29.2) <0.001 <0.001 <0.001 

Informative prior: EUHASS study inhibitors in PTPs 
ADVATE 
(5/707) 

1.0 (0.4, 2.1) >0.999 >0.999 0.658 

Informative prior: EUHASS study inhibitors in PTPs (all 
FVIII) 
(26/3736) 

0.7 (0.5, 1.1) >0.999 >0.999 0.988 

Discounted prior: Discounting EUHASS PUPs ADVATE 
by 75% 

16.9 (9.0, 29.4) 0.051 <0.001 <0.001 

Discounted prior: Discounting EUHASS PUPs ADVATE 
by 95% 

5.3 (2.2, 16.0) 0.876 0.449 0.001 

Discounted prior: Discounting EUHASS PUPs ALL by 22.2 (15.7, 30.4) <0.001 <0.001 <0.001 
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75% 
Discounted prior: Discounting EUHASS PUPs ALL by 
95% 

12.3 (5.4, 25.8) 0.306 0.016 <0.001 

Enhanced data : Enhancing study data by 2 times - 
increasing number of patients (with non-informative prior) 

2.2 (0.5, 6.6) 0.995 0.932 0.161 

Enhanced data: Enhancing study data by 2 times - 
increasing number of studies (with non-informative prior) 

2.4 (0.9, 5.0) 0.998 0.967 0.305 

Enhanced data: Enhancing study data by 10 times - 
increasing number of patients (with non-informative prior) 

1.6 (0.4, 5.4) 0.998 0.976 0.067 

Enhanced data: Enhancing study data by 10 times - 
increasing number of studies (with non-informative prior) 

2.6 (1.9, 3.5) >0.999 >0.999 <0.001 

PASS: post-authorization safety studies  

OS: observational study  CI: confidence interval  CrI: credible interval 

PUP: Previously untreated patient  PTP: Previously treated patient 

EUHASS: European Haemophilia Safety Surveillance 
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Figure1: Bayesian concept graphic illustration 
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Figure2a: Example 1: Single study 
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Figure2b: Example 2 – Meta-analysis 
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Figure2c: Example 3 – Multicenter cohort – no appropriate priors  
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Appendix A: Analysis Methods and the choice of priors 

 Example 1 Example 2 Example 3 
Method Single study Meta-analysis Multi-centric 

cohort – no 
appropriate priors 

Test data  PASS data [30] 
(6/428) 

PASS data [31] 
(21/1188) 

PASS data [32] 
(6/219) 

Classical Statistical Analysis Logistic model Random-effects 
logistic model 

Random-effects 
logistic model 

Bayesian Statistical Analysis Logistic model Hierarchical 
(Random-effects) 

logistic model 

Hierarchical 
(Random-effects) 

logistic model 
Non-informative prior OK OK OK 

Informative prior: Baxter Pivotal Study (1/102) OK OK OK 
Informative prior: meta-analysis of OS (7 ADVATE studies) 
(3/569) 

OK OK OK 

Informative prior: meta-analysis of OS (38/3866) 
Do you need data per study? 

OK OK OK 

Informative prior: EUHASS study de novo inhibitor PUPs 
ADVATE (37/141) 

NO NO OK 

Informative prior: EUHASS study de novo inhibitor PUPs 
(108/417)  

NO NO OK 

Informative prior: EUHASS study inhibitors in PTPs ADVATE OK OK OK 
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(5/707) 
Informative prior: EUHASS study inhibitors in PTPs (all FVIII) 
22/3736 

OK OK OK 

Discounted prior: Discounting EUHASS PUPs ADVATE by 
75% 

NO NO OK 

Discounted prior: Discounting EUHASS PUPs ADVATE by 
95% 

NO NO OK 

Discounted prior: Discounting EUHASS PUPs ALL by 75% NO NO OK 
Discounted prior: Discounting EUHASS PUPs ALL by 95% NO NO OK 
Enhanced data : Enhancing study data by 2 times - increasing 
number of patients 

OK OK OK 

Enhanced data: Enhancing study data by 2 times - increasing 
number of studies 

NO OK YES 

Enhanced data: Enhancing study data by 10 times - increasing 
number of studies 

OK OK OK 

Enhanced data: Enhancing study data by 10 times - increasing 
number of studies 

NO OK YES 

PASS: post-authorization safety studies  

OS: observational study  CI: confidence interval  CrI: credible interval 

PUP: Previously untreated patient  PTP: Previously treated patient 

EUHASS: European Haemophilia Safety Surveillance 
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Appendix B: Bayesian codes 

 

Number updates: 300000;  Number of chain: 2;  Number of thin: 5 

Burn in: 10000;  Seed: 314159 

	

Model	1	simple	logistic	regression	

	 model	{	

	 			 	r	~	dbin(p,	n)	

	 	 	logit(p)	<‐	mu	#log	odds	

						 	 	mu	~	dnorm(0,	1.0E‐5)	#	non‐informative	

	#mu	~	dnorm	(‐4.615,	0.990)	#	PIVOT	1/102,	log_odds=log(1/101),										

var=1/1+1/101	

									 	 #mu	~	dnorm	(‐5.24,	2.984)	#	Meta‐OS	ADVATE,	3/569	

									 	 #mu	~	dnorm	(‐4.613,	37.626)	#	Meta‐OS	ADVATE,	38/3866	

								 	 #mu	~	dnorm	(‐4.944,	4.965)	#	EUHASS	PTP	ADVATE,	5/707	

									 	 #mu	~	dnorm	(‐4.961,	25.819)	#	EUHASS	PTP	ALL,	26/3736	

	 	 		odds<‐exp(mu)	

	 	 		prop<‐odds/(1+odds)	

	 	 		perc<‐prop*100	

		 	 	 			}	



Ph.D. Thesis – J Cheng; McMaster University 

Health Research Methodology, Biostatistics Specification 

 

128 

 

 

Model	2:	Random‐effects	logistic	model	

	 model	{	

	 				 for(	i	in	1	:	Num	)	{	

	 				 	 r[i]	~	dbin(p[i],	n[i])	

	 	 	 logit(p[i])	<‐	mu[i]	#log	odds	

									 	 	 mu[i]	~	dnorm(d,	tau)	

	 	 	 			}		

	 				 d	~	dnorm(0,1.0E‐5)	#	Non‐informative	prior		

	 	 #	Prior1:	Baxter	Pivot	Trial,	1/102	

	 	#d	~	dnorm(‐4.62,0.99)	#	log_odds,	variance=1/1+1/(102‐1),		

percision=1/var	

						 	 	#d	~	dnorm	(‐5.24,	2.984)	#	Meta‐OS	ADVATE,	3/569	

							 	 #d	~	dnorm	(‐4.613,	37.626)	#	Meta‐OS	ADVATE,	38/3866	

							 	 #d	~	dnorm	(‐1.033,	27.291)	#	EUHASS	PUP	ADVATE,	37/141	

							 	 #d	~	dnorm	(‐1.051,80.029)	#	EUHASS	PUP	ALL,	108/417	

						 	 	#d	~	dnorm	(‐4.944,	4.965)	#	EUHASS	PTP	ADVATE,	5/707	

							 	 #d	~	dnorm	(‐4.961,	25.819)	#	EUHASS	PTP	ALL,	26/3736	

							 	 #d	~	dnorm	(‐1.033,	6.822)	#	EUHASS	PUP	ADVATE(‐75%),	9.25/35.25	

						 	 	#d	~	dnorm	(‐1.033,	1.365)	#	EUHASS	PUP	ADVATE(‐95%),	1.85/7.05	

							 	 #d	~	dnorm	(‐1.051,	20.007)	#	EUHASS	PUP	ALL(‐75%),	27/104.25	
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						 	 	#d	~	dnorm	(‐1.052,	4.001)	#	EUHASS	PUP	ALL(‐95%),	5.4/20.85	

	 				 tau<‐1/(sigma*sigma)	

	 		 sigma~dunif(0,2)	#	between	study	variance	is	estimated	from	PASS1	

	 				 odds<‐exp(d)	

	 			 prop	<‐	exp(d)/(1+exp(d))		

	 			 perc<‐prop*100	

	 														ppos1<‐step(10/100‐prop)		

	 				 ppos2<‐step(5/100‐prop)	

	 				 ppos3<‐step(1/86‐prop)	

	 	 }	
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Appendix C: Assessing the impact of sample size change and priors choice on the Bayesian posterior estimates (Example 3 
[32]) 

 Original data Increasing sample size by 2 times Increasing sample size by 10 times 
Test data (number of 
inhibitors/number of patients); number 
of centers 

Example 3 : PASS 
(6/219); 7  

Increasing No. 
of patients in 
each center: 
(12/438); 7 

Increasing No. of 
centers: 

(12/438); 14 

Increasing No. 
of patients in 
each center: 
(60/2190); 7 

Increasing No. of 
centers: 

(60/2190): 70 

Non-informative prior 2.3 (0.5, 6.8) 2.2 (0.5, 6.6) 2.4 (0.9, 5.0) 1.6 (0.4, 5.4) 2.6 (1.9, 3.5) 
*Informative prior: Baxter Pivotal 
Study (1/102)  

1.8 (0.5, 4.8) 1.8 (0.5, 4.6) 2.1 (0.8, 4.2) 1.4 (0.4, 3.9) 2.6 (1.8, 3.4) 

Informative prior: meta-analysis of OS 
(7 ADVATE studies) (3/569) 

0.9 (0.3, 2.3) 0.9 (0.3, 2.4) 1.3 (0.5, 2.7) 0.8 (0.3, 2.0) 2.3 (1.5, 3.1) 

Informative prior: meta-analysis of OS 
(38/3866) 

1.0 (0.8, 1.4)  1.0 (0.8, 1.4) 1.1 (0.8, 1.5) 1.0 (0.7, 1.4) 1.4 (1.0, 1.8) 

Informative prior: EUHASS study de 
novo inhibitor PUPs ADVATE  
(37/141) 

23.4 (17.5, 30.7) 23.2 (17.3, 30.4)  21.4 (15.6, 28.1) 22.8 (17.0, 29.8) 11.2 (7.7, 15.4) 

Informative prior: EUHASS study de 
novo inhibitor PUPs (108/417)  

24.9 (21.1, 29.2) 24.8 (20.1, 29.1) 24.1 (20.4, 28.3) 24.7 (20.8, 28.9) 19.2 (16.1, 22.5) 

Informative prior: EUHASS study 
inhibitors in PTPs ADVATE (5/707) 

1.0 (0.4, 2.1) 1.0 (0.4, 2.1) 1.2 (0.6, 2.4) 0.9 (0.4, 1.9) 2.3 (1.5, 3.0) 

Informative prior: EUHASS study 
inhibitors in PTPs (all FVIII) 
(26/3736) 

0.7 (0.5, 1.1) 0.8 (0.5, 1.1) 0.8 (0.5, 1.2) 0.7 (0.5, 1.1) 1.2 (0.8, 1.7) 
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PASS: post-authorization safety studies  

OS: observational study  CI: confidence interval  CrI: credible interval 

PUP: Previously untreated patient  PTP: Previously treated patient 

EUHASS: European Haemophilia Safety Surveill
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CHAPTER 5 

CONCLUSIONS 

 

Properly conducting statistical analysis is one of the essential steps towards the success of 

any health research project. However, finding a suitable analytic model or approach can 

sometimes be challenging.   Choosing one method over its alternatives often involves 

comparing and evaluating all available analysis options based on the understanding of the 

underlying statistical assumptions and the nature of the outcomes.  In this manuscript-

based thesis, I investigated three situations where the use of different statistical models or 

approaches could impact the results of the analyses.  Situation (1):  the choice of 

statistical models may affect the analysis results. In particular, I compared the commonly 

used models in analyzing correlated choice experiment (DCE) data. Situation (2): 

including or excluding a sub-set of data may affect the analysis results. In this case, I 

assessed the impact of including or excluding both-armed zero-event (BAZE) studies on 

the pooled results for meta-analyses (MA).  Situation (3): incorporating in external 

information may affect the analysis results of the current study data.   In this case, I 

showed how the Bayesian approaches used to incorporate the external information may 
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affect the understanding of the evidence contained in the current research data. In this 

chapter, I will summarize the findings, discuss the implications and limitations and shed 

light on future studies. 

 

In Chapter2, I empirically compared commonly-used statistical models for analyzing 

correlated data of DCE survey while accounting for within-participant correlation. The 

data used in this project were from a choice survey conducted in Hamilton, Ontario, 

Canada in 2002 (ref), which was designed to evaluate patient preference for the various 

colorectal cancer (CRC) screening tests to identify the key attributes and levels that may 

influence the uptake of CRC screening tests.  This DCE study used a two-stage design: 

the choice between two hypothetical tests at the first stage, and the choice between taking 

the preferred test and opting out. This design gave us the chance to define the outcome in 

three ways: 1) binary outcome (Test A/B; Yes to the test/ No), 2) multinomial outcome 

(Test A/B/No), and 3) bivariate outcome (A/B and Yes (to A or B)/No). For the clustered 

binary outcomes, six models were investigated: logistic and probit regressions using 

cluster-robust standard error (SE), random-effects and generalized estimating equation 

approaches. For the clustered multinomial outcomes, three models were applied: 

multinomial logistic and probit regressions with cluster-robust SE and random-effects 
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multinomial logistic models. And for the bivariate outcomes: bivariate probit models with 

cluster-robust SE were fitted.  

 

The following findings and observations of comparison of the results from different 

models may be worth further consideration in future DCE design and analysis. 

1) When participants were repeatedly asked to make a choice between two alternative 

tests (combinations of the attributes at different levels) at stage one, there was little 

within-participant correlation. However, when the choices were between participation 

(on the preferred test chosen at stage one) and opt-out, the within-participant 

correlation was substantial.  

2) The results from different models were consistent when little within-participant 

correlation was present. Therefore, simple logistic model (for binary outcome) or 

multinomial logistic model (for multinomial outcomes) is as a good choice as other 

complicated statistical models. 

3) When there was substantial within-participant correlation, the results were 

inconsistent between different methods used to account for intra-class correlation. 

4) The observed within-participant correlation was likely caused by the participant’s pre-

determination on participation or opt-out for the screening tests. This pre-



Ph.D. Thesis – J Cheng; McMaster University 

Health Research Methodology, Biostatistics Specification 

 

135 

 

 

determination seemed also lead to the ordering effect which might bias the estimates 

of participant preference of the screen test. 

5) Participant preference on the cost-related attribute may not preform linearly, which 

violates the linear utility assumption. 

 

The most import contribution of this paper is that, to my best knowledge, this was one of 

the first studies to investigate the commonly used statistical models in accounting for the 

within-participant correlation (intra-class correlation) issue in DCE data conducted for 

health research. It has been well recognized that the data collected for the studies using 

repeated measurement or cluster design are correlated. Taking this type of correlation into 

account is crucial in both the study design and data analysis stages. Ignoring the intra-

class correlation will lead to under-calculated sample size[1] and biased estimates of the 

parameter [2]. However, this issue has not drawn enough awareness for designing and 

analyzing DCE studies.  Both ISPOR (International Society for Pharmacoeconomics and 

Outcomes Research) guidelines for constructing DCE studies[3] and analyzing DCE data 

[4] did not mention how to deal the potential within-participant correlation.  Although this 

empirical study cannot provide the answer as to which model is superior for accounting 

for within-participant correlation while analyzing DCE data, it points out that it is an 

important issue and needs of further investigations. Given the different statistical models 
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available to analyze DCE studies, I believe that when analyzing DCE data with potential 

within-participant correlation, the analysis results obtained from the primary statistical 

model need to be examined thoroughly through sensitivity analysis for robustness by 

checking the consistency and discrepancy.  For policy makers, we recommend exercising 

caution in interpreting findings from DCE studies. 

 

 There are some limitations to this study. First, this is an empirical study. It cannot serve 

as a direct tool to find the “best” statistical model to analyze DCE data with within-

participant correlation. Second, the data were collected through a study with a two-stage 

design with the forced choice between the screen tests at stage-one and the opt-out option 

at stage-two. The intention on adopting this design was to maximize the information 

collected about participant preferences on the screen tests. However, by forcing the 

participants who have already decided to decline the screen test before even seeing the 

questionnaire, the data collected to elicit participant preference on the tests may not 

accurately reflect the facts. Third, I focused on comparing the commonly-used statistical 

models which were available through standard statistical software. Some complicated 

models with potential advantages, particularly on dealing with nonlinear utility functions 

such as Bayesian random-effects and GEE models with polynomial logit function, were 

omitted from this paper. 



Ph.D. Thesis – J Cheng; McMaster University 

Health Research Methodology, Biostatistics Specification 

 

137 

 

 

 

In Chapter 3, I conducted a simulation study to investigate the impact of including both-

arm zero-event (BAZE) studies in small meta-analysis (MA) for rare event outcomes for 

standard meta-analysis methods with continuity correction. It is not difficult to logically 

deduce that including BAZE studies in meta-analysis for rare event outcomes may 

introduce bias in estimating the treatment effect. This simulation is the first study to 

confirm and quantify this hypothesis.  

 

The key findings in this chapter include: 

1) I confirmed that including BAZE studies in MA using continuity correction methods 

provided unbiased point estimates of OR and narrowed the 95% confidence interval 

when there was no true treatment effect existing between treatment and control arms. 

2) I verified my hypotheses that when a true treatment effect existed, including BAZE 

studies in MA added bias by pulling the point estimates of OR towards the null 

hypothesis in the direction of underestimating treatment effects, and the bias increased 

substantially with decreasing event rate, number of patients  and increasing treatment 

effect and between study variance. 
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3) My study once again proved that the Peto method without including BAZE studies 

generated the least biased results when the event rate was low, treatment effect was 

small to moderate, and between-study variance was small to moderate. 

4) My study also showed that when there was a true between-study variance, the Peto 

method still out-performed random-effects models by providing the least biased point 

estimate. 

 

The focus of my study was s to investigate the bias which might be introduced in the 

estimates of small MA for rare events by including BAZE studies using the standard 

pooling methods with continuity correction. A certain degree of bias towards the null 

hypothesis provides more conservative estimates when evaluating beneficial treatment 

outcomes between new and standard treatments[5–7].  It is considered a safer approach 

for patient care. My main concern is that when evaluating harmful events such as serious 

adverse event (SAE), this type of bias, i.e. underestimating harm may hinder the action on 

stopping the unsafe treatment [8].  Most RCTs are not designed to investigate rare 

harmful events, e.g. SAE, and thus the sample size is not large enough to detect the true 

proportion of such events due to low statistical power. With the combination of extremely 

low event rates and insufficient sample size, zero events are very likely to be observed by 

chance.  Including BAZE studies in MAs for the purpose of evaluating the safety-related 
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outcomes may lead to the risk of underrating the harm. The impact of including BAZE 

study may also be different depending on the size of the MA. Currently, with the no 

guideline being established, the approaches to dealing with the BAZE studies in MAs are 

varied. Therefore, I recommend sensitivity analyses to assess the consistency and 

discrepancy by including and excluding BAZE studies in MAs.  I believe that an 

extension of PRISMA statement on reporting the approaches to dealing with zero-event 

studies (including either-arm zero-event and both-arm zero-event) in MA is necessary to 

communicate the results of MA on rare event outcomes with full transparency.  The next 

phase of this investigation will involve creating a checklist to summarize the 

recommendations for dealing with zero-event studies in MAs. Last, but not the least, the 

results of MAs of rare event outcomes need to be cautiously interpreted within the clinical 

contents. 

 

I set up my simulation based on the following scenarios: 1) rare event outcomes, 2) small 

meta-analysis, and 3) standard MA pooling methods for commonly used meta-analysis 

software. Therefore, the findings in this study cannot be extended to all types of MAs. 

First, I investigated only the effect measure OR by incorporating BAZE studies using 

default continuity correction options, i.e. adding 0.5 to all cells. Although the results can 

be implied to the standard MA using RR (relative risk or risk ratio) as pooled estimates, I 
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cannot make the similar conclusion for the meta-analysis using a statistical model based 

on likelihood maximization, such as Poison random-effects model. I also left the 

Bayesian meta-analysis for future investigation. Bayesian approach has a probability-

based sampling mechanism[9] which may provide the means to reduce the bias 

introduced by including BAZE studies. 

 

In Chapter 4, I illustrated how Bayesian statistical methods can be used to incorporate 

other relevant evidence via priors to enhance or modify the evidence presented in the 

current study data. The data I used for my scenario-based analysis were from three 

published PASS (Post-Authorization Safety Surveillance) studies[10–12], which were 

single-armed Phase IV trials conducted to evaluate the safety outcomes. The patient-level 

data were provided by Baxter Healthcare, Global Affairs (Westlake Village, California, 

USA). The outcome I used in this study was inhibitor, a rare serious adverse event which 

may report among the patients undertaking the medication treatment for hemophilia A.  In 

this paper, I compared the use of three different types of priors in incorporating external 

information: non-informative prior, informative prior and discounted prior through three 

study scenarios: 1) estimating event rate in a single cohort study, 2) pooling estimates for 

a set of studies using meta-analysis, and 3) generating estimates from small studies in a 

previously unexplored study population.  
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The key points demonstrated in this chapter are: 

1) Results from Bayesian statistical models with non-informative priors are comparable 

to the classical (Frequentist) approaches on estimating the rare event rate. 

2) Incorporating external information through informative priors can enhance the 

evidence presented in the study data. 

3) Borrowing information from previously studied similar populations through 

informative priors can create a range of estimates for an unstudied population. 

4) Bayesian probability can be directly used to quantify the comparison between the 

evidence obtained through the current study and a threshold.  

5) The evidence can be weighted through discounting the prior information or scaling up 

the presentation of the study data 

 

This study investigated how Bayesian methods can be used to optimize the evidence for 

rare event data for current study by maximizing the use of existing knowledge through 

priors. Furthermore, I demonstrated how Bayesian estimates can be utilized to inform 

clinical decisions in patient management in complex clinical settings. The success of 

integrating all relevant evidence through a Bayesian approach depends on two aspects: 1) 

how to properly choose the clinically relevant priors, and 2) how to statistically formulate 

the clinical knowledge.  These tasks need the joint force of clinicians and statisticians.  
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Properly implementing the Bayesian results in the clinical decision making depends on 

the comprehensive understanding of the evidence, in particular for the findings obtained 

from the first-time-ever exploration regarding new study settings or populations. 

Therefore, comparing the results obtained using different priors can be useful to 

strengthen the existing evidence by assessing the consistency and explore the uncertainty 

for new findings by examining the discrepancy. 

 

In regarding the purpose of serving as examples of how to conduct Bayesian analysis for 

hematologists to analyze and generate evidence for rare events among rare study 

populations, I chose to use Bayesian random-effect logistic regression throughout the 

entire project for three scenarios for simplicity. I am aware that other statistical models 

such as random-effect Poisson regress may be a better choice for rare event data with zero 

outcomes. It is worth noting that properly setting up priors can be challenging because it 

depends on the type of outcomes and Bayesian models. 

 

Statistical analysis is never as simple as “my-way-or-the-highway”. It is a comprehensive 

process involving assessing, comparing and decision making on study samples, statistical 

models and relevant information.  And for studies with complicated design, data structure 
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or content, the choice of an appropriate analytical strategy relies on the comparison of the 

alternatives. In this PhD thesis, I discussed three cases where sensitivity analysis was 

helpful in this regard. I hope my work will bring awareness to the importance of 

conducting sensitivity analysis for health research projects. 
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