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Abstract 

The main idea of this thesis is to formulate the smooth variable structure filter (SVSF) for 

target tracking applications in the presence of measurement origin uncertainty. Tracking, 

by definition is the recursive estimation of the states of an unknown target from indirect, 

inaccurate and uncertain measurements. The measurement origin uncertainty introduces 

the data association problem to the tracking system.  

The SVSF estimation strategy was first presented in 2007. This filter is based on sliding 

mode concepts formulated in a predictor-corrector form. Essentially, the SVSF uses an 

existence subspace and smoothing boundary layer to bind the estimated state trajectory to 

within a subspace around the true trajectory. The SVSF is demonstrated to be robust to 

modeling uncertainties and provide extra measures of performance such as magnitude of 

the chattering signal. Therefore, with respect to specific nature of car tracking problems 

that involves modeling uncertainty, it was hypothesized that a robust estimation strategy 

such as the SVSF, would improve the performance of the tracking system and give more 

robust tracking results. Also, having the extra information provided by the SVSF strategy, 

i.e. the chattering magnitude signal, would lead to algorithms that could better account for 

measurement origin uncertainty in the context of the data association process. Further to 

these hypotheses, this research has focused on investigating the performance of the SVSF 

in the target tracking problems, advancing the development of the SVSF, and employing 

its characteristics to deal with data association problems.  

The performance of the SVSF, in its current form, can be improved when there is fewer 

measurements than states by using its error covariance in target tracking. 
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As the first contribution in this research, the SVSF is formulated in the context of target 

tracking in clutter and combined with data association algorithms, resulting in the SVSF-

based probabilistic data association (PDA) and joint probabilistic data association (JPDA) 

for non-maneuvering and maneuvering targets. The results are promising in the tracking 

scenarios with modeling uncertainties. Therefore, the thesis is then expanded by 

generalizing the covariance of the SVSF for the cases where the number of measurements 

is less than the number of states. The generalized covariance formulation is then used to 

derive a generalized variable boundary layer (GVBL) SVSF. This new derivation gives an 

estimation method that is optimal in the MMSE sense and in the meantime preserves the 

robustness of the SVSF. The proposed algorithm improves the performance measures and 

makes a more reliable tracking algorithm. 

This thesis explores the hypothesis that multiple target tracking performance can be 

substantially improved by including chattering information from SVSF-based filtering in 

the data association method. A Bayesian framework is used to formulate a new set of 

augmented association probabilities which include the chattering information. The 

simulation and experimental results demonstrate that the proposed augmented probabilistic 

data association improves the performance of the tracking system including maneuvering 

cars, in particular for highly cluttered environments.   

The derived methods are applied on simulations and also on real data from an experimental 

setup. This thesis is made up of a compilation of papers that include three conference papers 

and three journal papers.  
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Chapter 1 

 

1 General Introduction 

Multiple target tracking (MTT) is an ever-increasing field of research with a wide range of 

application areas. The initial dawn of the research field was mainly driven by military 

applications, including state estimation of aircrafts using on-ground radar systems. Since 

its inception, the application field for MTT has greatly expanded to include biological 

systems, environmental studies, finance, air traffic surveillance and automotive safety 

systems. The MTT system is based on estimation theory which involves a recursive 

extraction and estimate of unknown variables from measurements over time. In general, 

the unknown variable could be the temperature of the room, the movement of a blood cell, 

or the stock value in a financial market. In the setting of the MTT systems, the variables of 

interest are commonly the position, velocity and possibly the acceleration of the objects or 

targets, often referred to as states.  

The target states evolve in time and to make a prediction of their future value, a model 

known as a process model or motion model is used. Typically, a process noise needs to be 

added to the motion model to reflect modeling errors. Given the knowledge of the current 

state, in the next step state is predicted using the motion model. The predicted value along 

with the additional information is used to update the state. Typically, the source of the 

additional information is measurements from sensors, such as radar, camera, LiDAR, etc. 

The sensory data in turn relate to the states through a model called the measurement model. 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

2 

 

To account for the measurement errors and potential sensor imprecisions, a realistic 

measurement model includes a measurement noise term.  

Apart from the process and measurement uncertainties, often in MTT systems the 

measurement origin uncertainty must also be resolved. The measurement origin uncertainty 

is translated into data association uncertainty and occurs when the origin of the 

measurements from the remote sensing device are not certain, i.e. not necessarily from the 

target of interest. This uncertainty occurs when the target is not detectable, the targets are 

interfering, or some measurements are received from clutter as false alarms. Another issue 

to address in a generic MTT system is the track management which is caused by targets 

entering and exiting the sensor’s field of view. These require algorithms to manage the 

initiation, confirmation and possibly deletion of tracks.  

The title of this thesis is “SVSF estimation for target tracking with measurement origin 

uncertainty”.  Several aspects of the SVSF is modified in this context and the potential of 

the SVSF to improve the MTT system is exploited. Section 1.1 provides the theme and 

objectives of this dissertation. In section 1.2 the outline and the overview of the thesis 

chapters are presented. Section 1.3 reviews the background and literature on several topics 

including multiple target tracking, estimation, gating and data association, and track 

management. Finally, section 1.4 is devoted to overall proposed car tracking system 

including the experimental setup, different simulation models and scenarios, and the 

potential application areas.  
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1.1 Theme and Objective of Dissertation 

In compliance with the regulations of McMaster University, this dissertation is assembled 

as a sandwich thesis format composed of three conference and three journal articles. These 

articles represent the independent work of the author of this dissertation.  

The articles in the dissertation follow a cohesive flow aimed at defining and investigating 

the Smooth Variable Structure Filter (SVSF) in the context of tracking in the presence of 

measurement origin uncertainty. The general theme is based on the following: 

i. To examine the performance of the combination of probabilistic data 

association methods and SVSF (Conference papers a, b and c) 

a. To formulate and simulate the SVSF-based single target tracking in clutter 

(Conference paper a). 

b. To investigate the SVSF-based multiple target tracking in clutter 

(Conference paper b). 

c. To examine the SVSF-based maneuvering target tracking in clutter 

(Conference paper c). 

ii. To generalize the covariance derivation of the SVSF and examine the 

performance of the covariance modified SVSF for tracking in the presence of 

clutter (Journal paper I). 

iii. To generalize the optimal formulation of the SVSF, namely the variable 

boundary layer SVSF, and examine its improvements in dealing with target 

tracking with measurement origin uncertainty (Journal paper II). 

iv. To formulate an augmented set of association probabilities using the extra 

information provided by the SVSF and to investigate its performance (Journal 

paper III).  
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Explanation of the basic concepts and related literature review are provided throughout the 

papers. Additionally, section 1.3 is dedicated to provide a cohesive overview of the entire 

thesis. 

1.2 Thesis Outline 

The thesis contains six chapters. The chapters and the associated papers as listed in Section 

1.1 are briefly described and listed as follows. 

1.2.1 Chapter II: SVSF-Based Target Tracking - Papers a, b, and c  

The following papers are contained in this chapter: 

a. M. Attari, S. A. Gadsden, S. Habibi, “Target Tracking Formulation of the SVSF as a 

Probabilistic Data Association Algorithm”, American Control Conference (ACC), 

Washington D.C., June 17-19, 2013 

b. M. Attari, S. A. Gadsden, S. Habibi, “A Multi-Target Tracking Formulation of the SVSF 

with the Joint Probabilistic Data Association Technique”, ASME 2014 Dynamic Systems 

and Control Conference (DSCC), San Antonio, TX, October 22-24, 2014 

c. M. Attari, and S. Habibi, “Automotive Tracking Techniques Using a New IMM based 

PDA-SVSF”, International Mechanical Engineering Congress and Exposition (IMECE), 

Montreal, QC, November 14-20, 2014 

Preface: Prior research demonstrate some promising characteristic of the SVSF, 

particularly its robustness to modeling uncertainties and also extra sources of information 
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it provides. These properties motivated the first steps to explore the SVSF in the context of 

target tracking in the presence of measurement origin uncertainty. The well-studied 

probabilistic data association (PDA), joint probabilistic data association (JPDA) and 

interacting multiple model (IMM) are combined with SVSF and compared to their Kalman 

filter (KF) based counterparts. The performance measure is the root-mean-squared-error 

(RMSE) of the estimation that is averaged over a number of Monte Carlo runs. The 

comparison results confirm a performance improvement of the SVSF-based algorithms 

over the KF-based methods for the cases involving modeling uncertainties. These 

promising results encouraged further research on advancing the development of the SVSF 

and employing its characteristics to deal with data association problem. 

1.2.2 Chapter III: Generalized Covariance SVSF, Journal Paper I   

This Chapter consists of a paper that is currently under review (submitted on December 

2014):  

M. Attari, S. A. Gadsden, and S. Habibi, “Target Tracking Formulation of the SVSF with 

Data Association Techniques”, IEEE Trans. on Aerospace & Electronic Systems. 

Preface: After a preliminary demonstrative investigation of the SVSF, this paper elaborates 

on the generalization of the covariance formulation of the SVSF. This generalization 

considers the cases where the number of measurements is less than the number of states. 

This was an essential step to employing the SVSF in target tracking algorithms. The reason 

is that in a generic tracking scenario, the estimation of position, velocity and possibly 

acceleration is required. However the direct measurements of these variables are not always 

available. In this paper, the generalized covariance formulation of the SVSF (covariance-
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modified SVSF, CM-SVSF) is used with probabilistic data association methods and 

explored and compared with KF-based methods for different tracking scenarios.  

1.2.3 Chapter IV: Generalized Variable Boundary Layer SVSF, Journal Paper II 

This Chapter consists of a paper that is accepted and available online:  

M. Attari, Z. Lou, and S. Habibi, “An SVSF-Based Generalized Robust Strategy for Target 

Tracking in Clutter”, IEEE Trans. on Intelligent Transportation Systems, DOI: 

10.1109/TITS.2015.2504331, 23 Dec. 2015 

Preface: This paper expands on the results of the above mentioned papers and provides a 

generalized variable boundary layer SVSF (GVBL-SVSF). This new derivation gives an 

estimation method that is optimal in the MMSE sense and in the meantime preserves the 

robustness of the SVSF to modeling uncertainties. The GVBL-SVSF is combined with 

probabilistic data association methods and tested under simulation scenarios as well as in 

an experimental set up. The experimental setup used for data acquisition includes a Ford 

escape car equipped with a Velodyne HDL32 LiDAR (Light Detection and Ranging) 

sensor. The LiDAR provides a 3D point cloud in each frame with a frame rate of 0.1 second. 

The point cloud data is processed and the vehicle-like objects are detected. The centre-

points of these objects are in turn fed into the tracking algorithm. The performance of the 

GVBL-SVSF is then compared with the KF-based methods.  

1.2.4 Chapter V: SVSF-Based Augmented Probabilistic Data Association, Journal 

Paper III 

This Chapter consists of a paper that is currently under review (submitted on December 

2015):  
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M. Attari, and S. Habibi, Augmented Probabilistic Data Association based on SVSF 

Estimation, IEEE Trans. on Aerospace and Electronic Systems  

Preface: This paper completes the formulation of the SVSF estimation strategy in the 

context of target tracking in clutter. The probabilistic data association method is augmented 

to include the chattering information provided by SVSF-based filtering. The chattering 

magnitude signal is probabilistically analyzed and its probability distribution function is 

derived. Then, a Bayesian inference is used to formulate a new set of association 

probabilities which included the chattering information. This augmented probabilistic data 

association (APDA) method in conjunction with GVBL-SVSF is simulated and tested. The 

results are compared with the KF-based probabilistic data association. 

1.2.5 Chapter VI: General Conclusion 

This chapter provides the general concluding remarks of the thesis. The objective and main 

focus of the thesis is discussed. Supporting arguments and confirmation of the research 

hypotheses for each chapter are highlighted and a general overview of the results are 

presented. 

1.3 Background and Literature Review 

In this section, a brief introductory review is provided on multiple target tracking (MTT) 

system and its constituent blocks. A literature review of related work is presented in an 

attempt to provide a cohesive context to the published papers and the remaining chapters 

of this thesis. A review on estimation strategies with an emphasis on the smooth variable 

structure filter is provided. Also, the concept of data association to deal with measurement 
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origin uncertainty is briefly discussed. The track management, as a constituent block in 

every generic MTT system is also reviewed. The overall proposed car tracking system is 

then discussed and the car motion models, simulation scenarios, experimental set-up and 

the application areas are discussed to provide a cohesive picture of the research which is 

later presented in more details in the remaining chapters. 

1.3.1 Multiple Target Tracking System 

Target tracking algorithms have been used in a wide-variety of applications; ranging from 

air traffic control and monitoring, to data processing of medical images [1]. Most recently, 

target tracking systems are being applied to the area of autonomous vehicle research. For 

example, intelligent and cognitive vehicles make use of target tracking algorithms for active 

safety and advanced driver assistance systems (ADAS) [2, 3]. In surveillance and 

monitoring systems, the fundamental role of tracking algorithms is to interpret the 

surrounding environment using sensory information in an effort to form target tracks and 

estimates [1, 4]. Recent research on car safety systems shows that major improvements can 

be achieved if the information of the surrounding environment is added to the information 

of the internal states of the car in order to assist the driver to take appropriate decisions 

using tracking algorithms [3, 2]. 

Tracking is the estimation of the state of a moving object [4]. A vehicle tracking algorithm 

is used to interpret the environment by analyzing sensor information, which are typically 

noise-corrupted observations. These are then partitioned into tracks (of vehicles) based on 

their origin, in an effort to estimate their position, velocity, or other quantities of interest 

[1]. Figure 1.1 illustrates typical elements in a conventional tracking system. 
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Figure 1.1 Basic elements of a conventional multiple target tracking system 

The fundamental blocks of a multiple target tracking (MTT) system are: (i) estimation, (ii) 

gating and data association, and (iii) track management. An introduction to these typical 

functions and the manner in which they interrelate is provided as follows. The main 

distinction between an MTT system and a conventional estimation problem is the 

measurement origin uncertainty issue in the MTT system. A track is a state trajectory 

estimated from a set of received measurements that are associated with the same target in 

time. The source of the measurements might be uncertain because of the random false 

alarms, clutter, or interfering targets. The gating and data association blocks of an MTT 

system are responsible for this measurement to track association issues. Once the 

measurement association is resolved, the estimation block functions to update the tracks 

and provide the proper output for the user. The track management block is responsible for 

initializing the new tracks and properly validating them. It also ensures that tracks that are 

no longer detected or are unlikely to exist, get deleted.  The fundamental blocks and their 

functions are further discussed in the following sections.  
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1.3.2 Estimation 

A general recursive estimation problem aims at recursively calculating the posterior 

probability density function of the state of the system, given all the previous measurements. 

In a general Bayesian framework, this problem translates into the calculation of an integral 

[5], which is seldom analytically solvable, and requires to keep track of an infinite many 

moments of prior information. However, if both the system and measurement models are 

linear with additive Gaussian noise, the optimal solution in the minimum mean square error 

(MMSE) sense is analytically derivable and tractable. This assumption is named linear-

Gaussian (LG) assumption and results in the well-studied Kalman filter [6].  

1.3.2.1 Kalman Filter 

The Kalman filter was first presented in 1960s [7] and quickly became one of the most 

commonly used estimation methods [6, 8]. Using the LG assumption, the system and 

measurement models are expressed by a linear set of equations as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑣(𝑘) (1.1) 

𝑧(𝑘) = 𝐶𝑥(𝑘) + 𝑤(𝑘) (1.2) 

where 𝑣(𝑘) and 𝑤(𝑘) are zero mean white Gaussian process noise and measurement noise, 

with covariance matrices 𝑄(𝑘) and 𝑅(𝑘), respectively. The KF algorithm is based on two 

main steps. The first step is referred to as the prediction step, and consists of the following 

equations: 

�̂�(𝑘 + 1|𝑘) = 𝐴�̂�(𝑘|𝑘) + 𝐵𝑢(𝑘) (1.3) 

�̂�(𝑘 + 1|𝑘) = 𝐶�̂�(𝑘 + 1|𝑘) (1.4) 
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𝑃(𝑘 + 1|𝑘) = 𝐴𝑃(𝑘|𝑘)𝐴𝑇 + 𝑄(𝑘) (1.5) 

The state estimates are first predicted in (1.3), and the corresponding state error covariance 

is calculated as per (1.5). Equation (1.4) gives the predicted measurement. These values are 

then used in the updated step, which consists of the following equations: 

𝐾(𝑘 + 1) = 𝑃(𝑘 + 1|𝑘)𝐶𝑇[𝐶𝑃(𝑘 + 1|𝑘)𝐶𝑇 + 𝑅(𝑘 + 1)]−1 (1.6) 

�̂�(𝑘 + 1|𝑘 + 1) = �̂�(𝑘 + 1|𝑘) + 𝐾(𝑘 + 1)[𝑧(𝑘 + 1) − �̂�(𝑘 + 1|𝑘)] (1.7) 

𝑃(𝑘 + 1|𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐶]𝑃(𝑘 + 1|𝑘) (1.8) 

Equations (1.3)-(1.8) summarize the KF solution for linear estimation problems. The 

process is repeated iteratively.  

For many practical applications the LG assumption is too restrictive. If the LG assumption 

is violated, the KF results in a suboptimal solution and can become unstable [9]. Nonlinear 

estimation problems deal with the following format of the system and measurement 

models: 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) + 𝑣(𝑘) (1.9) 

𝑧(𝑘 + 1) = ℎ(𝑥(𝑘 + 1)) + 𝑤(𝑘) (1.10) 

Many variations of the KF have been presented in literature [6, 10] to deal with the system 

of (1.9) and (1.10). The most popular and simplest strategy is the Extended KF (EKF), 

which uses a first order linearization of the nonlinearities [11, 10] to analytically propagate 

the random Gaussian variables. The partial derivatives yield the linearized system and 

measurement matrices as follows [6]: 
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𝐴(𝑘) =  
𝜕𝑓(𝑥(𝑘))

𝜕𝑥
|
𝑥=�̂�(𝑘|𝑘)

 (1.11) 

𝐶(𝑘 + 1) =
𝜕ℎ(𝑥(𝑘 + 1))

𝜕𝑥
|
𝑥=�̂�(𝑘+1|𝑘)

 (1.12) 

Equations (1.11) and (1.12) are used in the same framework of KF filtering to formulate 

the EKF. 

An alternative to EKF is Unscented Kalman filter (UKF) that uses a deterministic sampling 

approach to approximate the mean and covariance and captures the nonlinearities to the 

second order of Taylor series expansion [9]. The KF, EKF and UKF use mean and 

covariance to describe the posterior probability distribution function, either exactly or by 

some sort of approximation, which implicitly assume that the Gaussian distribution is an 

adequately valid approximation. For the case when the Gaussian assumption is breached, 

one solution is to approximate the non-Gaussian distribution with a Gaussian mixture for 

the cost of increasing computational complexity [11]. The PF or sequential Monte Carlo 

method is proposed for nonlinear non-Gaussian systems [12]. The state probability 

distribution is approximated by a large number of Monte Carlo independent identical 

distribution samples, namely particles [12]. The PF is expensive in implementation, yet 

powerful in handling difficult problems [12].  

The KF yields suboptimal results and is prone to instability if the LG assumption does not 

hold [11]. In an effort to reduce the effects of modeling uncertainties, robust Kalman 

filtering has been suggested [13, 14, 11]. These techniques try to deal with uncertainties in 

the system and measurement matrices, or noise covariance matrices. When dealing with 

uncertainties in the system and measurement matrices, the robust estimator is designed such 

that it gives an upper bound on the error variance for any allowed modeling uncertainty 
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[13, 14]. When the uncertainties in noise covariance matrices are dealt with, the KF gain is 

derived to minimize the estimation error covariance as well as its variation due to changes 

in process and measurement noise covariance matrices. In this way the sensitivity of the 

estimation error covariance to changes in the process and measurement noise covariances 

is reduced [11].  

1.3.2.2 Smooth Variable Structure Filter 

The smooth variable structure filter (SVSF) is the core concept behind the research 

presented in this thesis. In this section a brief review of the method is provided.  

The smooth variable structure filter (SVSF) is a revised form of the variable structure filter 

(VSF), and was first presented in 2007 [15]. The VSF-based methods is a group of robust 

estimation techniques [16], where similar to sliding mode concept, the stability of the filter 

is guaranteed given bounded parametric uncertainties [16].  Similar to the KF strategy, the 

SVSF consists of two main steps: prediction and update. However, the main difference lies 

in how the SVSF gain is formulated. Conceptually, by use of the SVSF corrective gain, the 

SVSF converges the estimated state trajectory to within an existence subspace around the 

true trajectory. The width of the existence subspace is a function of uncertain dynamics due 

to uncertainties. Once the estimated states are in that subspace, they switch back and forth 

across the true trajectory and will remaining within this subspace [15]. This switching effect 

is referred to as chattering and for a normal operating condition is filtered out by using a 

smoothing function [15]. However, the magnitude of the chattering signal, if it exists, is an 

indicator of modeling uncertainty [15]. Therefore, in addition to conventional filter 

performance measures, the SVSF provides a unique set of performance indicators, which 

quantifies the degree of uncertainty [15].  
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The SVSF, in its original form [15], did not have a covariance formulation. In [17], an 

iterative strategy for generating an error covariance matrix was proposed. The error 

covariance was then used for obtaining a variable and optimal smoothing boundary layer 

in [17]. To deal with the cases when there are fewer measurements than states, a Luenberger 

observer based approach was originally adopted in [15]. In later modifications of the SVSF, 

as in [17], however, this approach was not used. In Chapter III of this thesis, the SVSF 

covariance formulation is modified to a general form to include the case when there are 

fewer number of measurements than states. In Chapter IV, based on the generalized 

covariance derivation of Chapter III, a generalized variable boundary layer form of [17] is 

presented.  

1.3.2.3 Interacting Multiple Model 

A real-world system may behave according to a number of different operating regimes. For 

example a moving car may travel straight with a constant speed, or may have a coordinated 

turn [6]. The operating modes may differ in noise level or their structure. Such systems are 

called hybrid systems [6]. Hybrid systems are characterized by their state that evolves 

according to a stochastic difference (or differential) equation model, and their mode that is 

governed by a discrete stochastic process [18]. In these systems, the implementation of 

adaptive estimation, which adapts to different operating modes in an effort to minimize the 

estimation error, is more desirable [6]. The so-called multiple model (MM) algorithms 

assume that the behaviour of the system can be modeled with a finite number of models 

[6]. In the static MM algorithm the system evolves on a fixed model and no switching 

happens among models during the estimation process evolution [19]. In contrast, in the 

dynamic MM estimator, the mode the system is in can undergo switching in time based on 

a homogeneous Markov chain with known transition probabilities [20, 21].  Compared with 

the static MM approach, the main advantage of dynamic MM algorithms is that the a priori 
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switching probabilities make these algorithms alert to regime changes while the static MM 

approach goes toward the single-mode hypothesis [18]. The dynamic MM algorithms 

include generalized Pseudo-Bayesian (GPB) [6, 22], and interacting multiple model (IMM) 

[6, 23, 24].  

The GPB methods combine histories of models that differ in older models [6]. In first-order 

GPB (GPB1), only the possible models in the last sampling step are considered. In second-

order GPB (GPB2) the possible models in the last two sampling steps are considered [6]. 

The IMM estimator is a suboptimal dynamic MM filter that has been demonstrated to be 

one of the most computationally effective hybrid state estimation schemes [21]. The main 

feature of this algorithm is that it is the best compromise available between computational 

complexity and performance [6, 25]; its computational requirements are almost linear in 

the number of models (as for GPB1), whereas its performance is almost the same as that of 

an algorithm with quadratic computational complexity (as for GBP2) [6, 20]. The IMM 

uses several filters in parallel for a finite number of target maneuvers. Its algorithm is 

composed of four main steps [6]: interaction or mixing the individual filter estimates with 

respect to the predicted model probabilities; model-matched filtering or state prediction and 

update of each filter using its own dynamic model assumptions; model probability update 

or updating the model probability of each model with respect to the innovation error; and 

estimate combination or combination of state estimate as a weighted sum of model-matched 

estimates, for output purposes. Figure 1.2 illustrates one cycle of the IMM estimator.   
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Figure 1.2 One cycle of the IMM estimator 

In IMM method the state at time 𝑘 is estimated under each possible current model using 𝑚 

filters, where each filter uses a different combination of previous model-conditioned 

estimates [6, 20]. One cycle of the IMM estimation consists of the following [6, 20]: 

1. Computation of the mixed initial conditions for the model matched filter 𝑖 is performed: 

�̂�𝑘−1|𝑘−1
0𝑖 =∑ �̂�𝑘−1|𝑘−1

𝑗
𝜇𝑘−1|𝑘−1
𝑗|𝑖

𝑚

𝑗=1
     𝑖 = 1, … ,𝑚 (1.13) 
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where 𝜇𝑘−1|𝑘−1
𝑗|𝑖

=
𝑝𝑗𝑖𝜇𝑘−1

𝑗

∑ 𝑝𝑗𝑖𝜇𝑘−1
𝑗𝑚

𝑗=1

 and, 𝑝𝑗𝑖 is the model switching probability and 𝜇𝑘−1
𝑗

 is the 

model probability at the time 𝑘 − 1. The covariance corresponding to above state 

estimation is as follows: 

𝑃𝑘−1|𝑘−1
0𝑖 =∑ 𝜇𝑘−1|𝑘−1

𝑗|𝑖
{𝑃𝑘−1|𝑘−1

𝑗
+ (�̂�𝑘−1|𝑘−1

𝑗
− �̂�𝑘−1|𝑘−1

0𝑖 )(�̂�𝑘−1|𝑘−1
𝑗

𝑚

𝑗=1

− �̂�𝑘−1|𝑘−1
0𝑖 )′}                  𝑖 = 1,… ,𝑚 

(1.14) 

2. Likelihood function for each of model-matched filters is calculated. The estimate (1.13) 

and the associated covariance (1.14) are used as inputs to each model-matched filter to 

calculate the likelihood function corresponding to 𝑚 filters, as follows: 

𝛬𝑘
𝑖 = 𝒩[𝑧𝑘; �̂�

𝑖
𝑘|𝑘−1(�̂�𝑘−1|𝑘−1

0𝑖 ), 𝑆𝑘
𝑖 (𝑃𝑘−1|𝑘−1

0𝑖 )]           𝑖 = 1,… ,𝑚 (1.15) 

3. The model probabilities are updated: 

𝜇𝑘
𝑖 =

𝛬𝑘
𝑖 ∑ 𝑝𝑗𝑖𝜇𝑘−1

𝑗𝑚
𝑗=1

∑ 𝛬𝑘
𝑖𝑚

𝑖=1 ∑ 𝑝𝑗𝑖𝜇𝑘−1
𝑗𝑚

𝑗=1

 (1.16) 

4. Combined model-conditioned state estimate and covariance matrix are calculated. 

Combination of the model-conditioned estimates and their corresponding covariances is 

done according to the following mixture equations: 

�̂�𝑘|𝑘 =∑ �̂�𝑘|𝑘
𝑖

𝑚

𝑖=1
𝜇𝑘
𝑖  

(1.17) 

𝑃𝑘|𝑘 =∑ 𝜇𝑘
𝑖 {𝑃𝑘|𝑘

𝑖 + (�̂�𝑘|𝑘
𝑖 − �̂�𝑘|𝑘)(�̂�𝑘|𝑘

𝑖 − �̂�𝑘|𝑘)′}
𝑚

𝑖=1
 

(1.18) 
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This combination is only for output purposes and is not part of the recursion of the 

algorithm [6]. 

1.3.3 Gating and Data Association 

In a conventional estimation algorithm, any uncertainty in measurement-to-track 

association is disregarded. In a practical MTT system, however, it is seldom known that 

which measurements is originated from which target. This uncertainty is known as data 

association problem. Algorithms are required to be in place to find the likely measurement-

to-track associations. To illustrate the problem, suppose a sensor is mounted on a vehicle 

observing the traffic as in Figure 1.3. At time 𝑘, there are 2 targets in the traffic, but 5 

measurements are received. The data association algorithm is responsible to find out which 

of the received measurements (if any) are likely to belong to the targets of interest. 

 

Figure 1.3 Illustration of the data association problem 
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A convenient approach to reduce the computational load of the data association algorithm 

is to remove unlikely measurement-to-track associations. This method is called gating. 

Therefore, to avoid searching the entire measurement set for the measurements originated 

from a specific target, an ellipsoidal gate is set up for each track, or rather around the 

predicted measurement of each track, �̂�𝑖(𝑘 + 1|𝑘), and such a gate is called a validation 

region [5]. In this way, the number of possible measurement-to-track assignments is 

limited. The validation region is defined as a stochastic distance to the predicted 

measurements, as follows [5]: 

𝑑𝑖,𝑗
2 = [𝑧𝑘+1

𝑖 − �̂�𝑗(𝑘 + 1|𝑘)]
𝑇
𝑆𝑘+1
𝑇 [𝑧𝑘+1

𝑖 − �̂�𝑗(𝑘 + 1|𝑘) ] (1.19) 

𝒱𝑗(𝑘 + 1, 𝛾) = {𝑧: 𝑑𝑖,𝑗
2 ≤ 𝛾} (1.20) 

where 𝛾 is the gate threshold, and 𝑧𝑘+1 − �̂�
𝑗(𝑘 + 1|𝑘) is the residual between a received 

measurement and the predicted measurement of the track, that is assumed to be Gaussian 

distributed. Therefore, 𝑑𝑖,𝑗
2  is Chi-squared distributed. This assumption is used to determine 

the gate threshold [4].  All the measurements that satisfy the gate criterion, are later 

considered in the data association algorithm. Figure 1.4 shows the validation gates and 

received measurements for two hypothetical targets. 
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Figure 1.4 Validation region,  

several measurements 𝑧𝑘+1
𝑖   in the ellipsoidal validation region of two targets centered at their 

predicted measurements �̂�𝑘+1|𝑘
𝑗

 (𝑖 = 1, . . ,7 and 𝑗 = 1, 2) 

If more than one measurement falls within the gate, then an association uncertainty arises. 

It is required to decide which measurement is originated form the target and therefore 

should be used to update the track [4]. There are a number of different data association 

algorithms proposed in the literature [4, 1]. A good review is given in [4, 1]. One of the 

simplest algorithms is the standard nearest neighbor filter (SNNF). In this method, the 

single most likely measurement to target association hypothesis is chosen in each time step. 

The SNNF associates the nearest measurement, in the sense of the statistical distance, target 

by target and in this manner is similar to a local optimization. This might lead to association 

of one measurement to several targets, which in turn lead to poor tracking performance and 

track losses [4].  The global nearest neighbour filter (GNNF) is an extension of SNNF that 

looks for one single best global association hypothesis, considering all targets and 

measurements simultaneously [1]. The GNNF is formulized in the form of a convex 

optimization problem and therefore can be solved by an optimization algorithm such as 

Auction algorithm [26]. Both SNNF and GNNF make a hard decision on association.  This 
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single assignment made at a certain time might not be the best assignment in retrospect 

under difficult scenarios with interfering targets and high number of false alarms. This is a 

drawback of the SNNF and GNNF as a single-hypothesis method.  

The probabilistic data association filter (PDA) is one of the most commonly used data 

association methods [27]. The PDA takes all feasible measurement-to-track association 

hypotheses into consideration, and calculates the association probability for the track [5]. 

Hence, it is an all-neighbor data association method. Since the PDA assumes that the track 

has already been initialized, another algorithm is required to handle the track maintenance. 

The integrated probabilistic data association (IPDA) is a derivation of the PDA without the 

aforementioned assumption, that yields the data association probabilities as well as track 

existence probabilities [28].  

The PDA filter is typically formulated for single target tracking in the presence of clutter. 

Assume that the target track has been initialized. Also, define past information through time 

𝑘 − 1 about the target trajectory in the form of a normal distribution as follows [5]: 

𝑝[𝑥𝑘|𝑍
𝑘−1] = 𝒩[𝑥𝑘; �̂�𝑘|𝑘−1, 𝑃𝑘|𝑘−1] (1.21) 

It is also assumed that if the target is detected, then, there is only one target originated 

measurement within the validation gate, and the remaining measurements are clutter 

originated. The number of validated false measurements is Poisson distributed with spatial 

density 𝜆 and their spatial distribution is modeled as independent and identically distributed 

uniform [5]. The 𝑚𝑘 candidate measurements at time 𝑘 are named as 𝑧𝑖 , 𝑖 = 1,… ,𝑚𝑘. The 

set of available measurements at time 𝑘 are defined as 𝑍𝑘 = {𝑧1, … , 𝑧𝑚𝑘} ∪ 𝑍𝑘−1. For 𝑚𝑘 

validated measurements in time 𝑘, one can describe 𝑚𝑘 + 1 distinct association hypotheses 

as [1]: 
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ℋ𝑘
𝑖 = {𝑧𝑖  𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑 }         (1.22) 

ℋ𝑘
0 = {𝑛𝑜𝑛𝑒 𝑎𝑟𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑} (1.23) 

where 𝑖 = 1,… ,𝑚𝑘. Since these hypothesis are mutually exclusive and exhaustive, the use 

of the total probability theorem is allowed [5, 6]. The minimum variance estimate is written 

as follows: 

�̂�𝑘|𝑘 = 𝔼{𝑥𝑘|𝑍
𝑘} = ∑ 𝔼{𝑥𝑘|ℋ𝑘

𝑖 , 𝑍𝑘}𝑃{ℋ𝑘
𝑖|𝑍𝑘}

𝑚𝑘
𝑖=0 = ∑ �̂�𝑘|𝑘

𝑖 𝛽𝑘
𝑖𝑚𝑘

𝑖=0  (1.24) 

where �̂�𝑘|𝑘
𝑖  is the updated state given that the 𝑖th hypothesis is correct and 𝛽𝑘

𝑖  is named 

association probability which is the conditioned probability of the 𝑖th hypothesis [29, 1]. 

These association probabilities are computed as follows [5, 4] : 

𝛽𝑘
𝑖 =

{
 
 

 
  

1 − 𝑃𝐷𝑃𝐺

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘
𝑖𝑚𝑘

𝑖=1

,

     
𝑖 = 0

ℒ𝑘
𝑖

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘
𝑖𝑚𝑘

𝑖=1

,   𝑖 = 1, … ,𝑚𝑘

 (1.25) 

where 𝑖 = 0 is association probability of the hypothesis when none of the validated 

measurements is target originated, 𝑃𝐺  is gate probability [4], and 𝑃𝐷 is the target detection 

probability. In addition: 

ℒ𝑘
𝑖 =

𝒩[𝑧𝑘
𝑖 ; �̂�𝑘|𝑘−1, 𝑆𝑘]𝑃𝐷

𝜆
 (1.26) 

which is the likelihood ratio of the measurement 𝑧𝑘
𝑖 , assuming that it is target originated 

[5]. The combined innovation to be used in the filter update is calculated as a weighted sum 

of 𝑚𝑘 validated measurements, as follows: 
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�̃�𝑘 =∑𝛽𝑘
𝑖 𝑒𝑧,𝑘+1|𝑘
𝑖

𝑚𝑘

𝑖=1

 (1.27) 

where 𝑒𝑧,𝑘+1|𝑘
𝑖 = 𝑧𝑘

𝑖 − 𝐶𝑥𝑘|𝑘−1 [30]. The states are updated with a standard estimation 

strategy. To update the covariance, the following equation is used: 

𝑃𝑘|𝑘 = 𝛽𝑘
0𝑃𝑘|𝑘−1 + [1 − 𝛽𝑘

0]𝑃𝑘|𝑘
∗ + �̃�𝑘  (1.28) 

where 𝑃𝑘|𝑘
∗  is the covariance matrix and �̃�𝑘 accounts for uncertainty increment due to 

association uncertainty. It is computed as follows [29]: 

�̃�𝑘 = 𝐾𝑘 [∑𝛽𝑘
𝑖 𝑒𝑧,𝑘+1|𝑘
𝑖 𝑒𝑧,𝑘+1|𝑘

𝑖 ′

𝑚𝑘

𝑖=1

− �̃�𝑘�̃�𝑘′] 𝐾𝑘′ (1.29) 

The original derivation of the PDA is for single-target tracking in the presence of clutter. 

For multiple-target tracking, a number of PDA’s may be used in parallel [5]. When the 

target trajectories are interfering, an extension of PDA, named as the joint probabilistic data 

association (JPDA), is utilized and has improved performance [31]. In JPDA, the 

association probabilities are calculated in a joint manner across all targets [31]. To calculate 

the association probabilities, the conditional probabilities of the following joint events are 

evaluated as follows [5]: 

ℋ𝑘 =⋂ℋ𝑘
𝑗𝑖

𝑚𝑘

𝑖=1

         (1.30) 

where ℋ𝑘
𝑖𝑡𝑖 is the hypothesis that measurement 𝑗 originated from target 𝑡, 0 ≤ 𝑖 ≤ 𝑚𝑘 , 

0 ≤ 𝑡 ≤ 𝑇, 𝑘 is the time index, 𝑡𝑗 is the target that measurement 𝑗 is associated with, 𝑚𝑘 is 
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the number of measurements, and 𝑇 is the number of targets [31]. The joint association 

probabilities are calculated as follows [5]: 

𝑃{ℋ𝑘|𝑍
𝑘} = 𝑐∏{𝜆−1ℒ𝑘

𝑡𝑖}
𝜏𝑖

𝑖

∏(𝑃𝐷
𝑡 )𝛿𝑡(1 − 𝑃𝐷

𝑡 )1−𝛿𝑡

𝑡

 (1.31) 

where 𝑃𝐷
𝑡  is the detection probability of target 𝑡; and 𝜏𝑖 and 𝛿𝑡 are the target detection and 

measurement association indicators, respectively [31]. In addition: 

ℒ𝑘
𝑡𝑖 = 𝒩[𝑧𝑘

𝑖 ; �̂�𝑘|𝑘−1
𝑡𝑖 , 𝑆𝑘

𝑡𝑖] (1.32) 

The state estimation is carried out separately for each target using the marginal association 

probabilities [5, 31]. These probabilities are obtained from joint probabilities (1.31) by 

summing the joint hypotheses in which the marginal hypothesis of interest is included, as 

follows [5]: 

𝛽𝑘
𝑖𝑡 = 𝑃{ℋ𝑘

𝑖𝑡|𝑍𝑘} = ∑ 𝑃{ℋ𝑘|𝑍
𝑘}

ℋ:ℋ𝑖𝑡∈ℋ

 (1.33) 

These probabilities are used to create the combined innovation for each target, which is 

used during the filter update stage. 

Further to PDA-based methods, a number of other approaches are suggested to deal with 

measurement origin uncertainty in the literature. In 1979 the multiple hypothesis tracker 

(MHT) was presented [32]. In MHT all the measurement-to-track assignments are 

enumerated; then the infeasible assignments are eliminated using pruning and gating 

methods, which imposes the risk of the elimination of the correct measurement sequences. 

Unlike the traditional MHT, the probabilistic multi hypothesis tracking (PMHT) is based 
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on the calculation of the probability of each measurement belonging to each track by a 

Bayesian inference [33]. In PMHT, the hard decision of measurement to track is avoided 

by a joint estimation of the target states and measurement-to-track association probabilities 

[33]. A literature review of the advances in PMHT is presented in [34]. Another approach 

to treat multiple targets and observations is a method based on random finite set concept, 

named as probability hypothesis density (PHD) filter. Some of the approximations to deal 

with the PHD recursion are suggested, including Sequential Monte Carlo PHD (SMCPHD) 

filter [35], Cardinalised PHD (CPHD) filter [36] and Gaussian Mixture PHD (GMPHD) 

filter [37]. 

1.3.4 Track Management 

An essential function in the application of MTT systems is the track management block. 

This block makes sure that only tracks of sufficient quality continue to carry over frame by 

frame. The track management can be divided into three main phases [1]: 

1. Track initiation: a tentative track is initialized for measurements that are not 

associated with any of the existing and previously identified targets. An initialized 

track is named as a tentative track. 

2. Track confirmation: if the subsequent observations indicate that the tentative track 

truly represents a target; the status of the track is updated from “tentative” to 

“confirmed”. The confirmed track is reported as a real target.  

3. Track deletion: if the tracking system no longer receives enough information to 

maintain the validity of a track, the track gets removed and no longer is considered.  

The track management can be implemented in several ways [4, 1]. A logic-based track 

formation procedure follows a logic of 𝑚 detections out of 𝑛 frames (𝑚/𝑛) validation rule. 
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The algorithm states that if a track has been associated to a measurement in 𝑚 of the last 𝑛 

frames, its status becomes a confirmed track, otherwise it is dropped [4].  

An alternative approach of determining the quality and status of a track is based on the 

concept of track score [1]. A track score is conceptually a hypothesis testing with the 

following two hypotheses; ℋ0, the track is originated from clutter, and  ℋ1, the track is 

originated from real target. The track score is a measure based on a standard detection 

method as sequential probability ratio test (SPRT) [38], and is calculated using the 

probability of each hypothesis given the information through time step 𝑘 , 𝑍𝑘 = 𝑧𝑘 ∪ 𝑍
𝑘−1, 

as follows: 

𝑠(𝑘) =
𝑃{ℋ1|𝑍

𝑘}

𝑃{ℋ0|𝑍𝑘}
=
𝑝(𝑍𝑘|ℋ1)𝑃{ℋ1}

𝑝(𝑍𝑘|ℋ0)𝑃{ℋ0}
 (1.34) 

where 𝑃{ℋ1} and 𝑃{ℋ0} are the prior probability of hypotheses ℋ1 and ℋ0, respectively. 

A recursive form of (1.34), with the assumption of independent measurement noise from 

frame to frame, is given as follows [1]: 

𝑠(𝑘) =
𝑝(𝑧𝑘|ℋ1)𝑝(𝑍

𝑘−1|ℋ1)𝑃{ℋ1}

𝑝(𝑧𝑘|ℋ0)𝑝(𝑍𝑘−1|ℋ0)𝑃{ℋ0}
=
𝑝(𝑧𝑘|ℋ1)

𝑝(𝑧𝑘|ℋ0)
𝑠(𝑘 − 1) (1.35) 

In application, often the logarithm of the track score, the log likelihood ratio, is used to 

make the score update a simple summation. As the new set of observations arrive, the track 

scores get updated. If a track score exceeds confirmation threshold, the corresponding track 

gets confirmed and is named a confirmed track. On the other hand, if a track score goes 

below deletion threshold, the corresponding track gets deleted. If a track score is between 

two thresholds, then the track remains tentative and the decision is postponed until the 
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arrival of sufficient information. Figure 1.5 shows the flowchart of one cycle of such track 

management algorithm. 

 

Figure 1.5 Flowchart of one cycle of track management algorithm based on track score 

 

1.4 Overall Proposed Car Tracking System 

In this section, the overall proposed car tracking system is discussed. The simulation 

scenarios and car motion models, experimental set-up and the application areas are included 
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to provide a cohesive picture of the research which is later discussed in more details in the 

remaining chapters.  

In Figure 1.6 a schematic flowchart of overall proposed car tracking system is presented.  

 

Figure 1.6 Overall proposed car tracking system 

The experimental set-up of this project is a LiDAR (light detection and ranging) sensor 

based perception system. A Ford escape car equipped with a Velodyne HDL-32E LiDAR 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

29 

 

sensor is used for data acquisition. The LiDAR sensor and the overall experimental set-up 

is shown in Figure 1.7.  

 

Figure 1.7 LiDAR sensor and experimental set-up 

The principle of operation of the HDL-32E LiDAR is as follows. The sensor creates 360° 

3D images by using 32 laser/detector pairs whose housing rapidly spins to scan the 

surrounding environment. Table 1.1 tabulates the specification of HDL-32E LiDAR sensor 

[39].  
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Table 1.1 Velodyne HDL-32E LiDAR specifications 

Specification Velodyne HDL-32E 

Laser Class 1- eye safe 

903 nm wavelength 

Time of flight distance measurement 

Measurement range 70 m (1m to 70m) 

Max Altitude of Operation 2000m 

Sensor 32 laser/detector pairs 

+10.67 to -30.67 degree field of view (vertical) 

360 degree field of view (horizontal) 

10 Hz frame rate 

Mechanical Power : 12 V @ 2 Amps 

Operation voltage : 9-32 VDC 

Weight: < 2 kg 

Dimensions: 5.9” height  × 3.36” diameter 

Output Approximately 700,000 points/second 

UDP packets(distance , intensity) 

The LiDAR provides a 3D point cloud in each frame with a frame rate of 0.1 second. A 

point cloud is basically a large collection of points that are placed on a three-dimensional 

coordinate system with the origin at the sensor. Point cloud data provides a dense 

representation of the real-world context where one can re-create the referenced objects. The 

LiDAR 3D point cloud is processed with an algorithm of two steps: segmentation and 

clustering. The segmentation step tries to find the non-ground points. Once the ground 

points are removed, in the clustering step, the remaining non-ground points are clustered. 

The representative points of these vehicle-like objects, in turn, are fed into the MTT system 

for data association and tracking. 

The gating and data association step is a crucial function of the MTT system to disregard 

the unlikely assignments and to deal with measurement origin uncertainty. As discussed in 

section 1.3.3, in the first place a validation region is constructed around the predicted 
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measurement of each track. This validation region is an ellipsoid that discriminates the 

received measurements based on their statistical distance to the predicted measurement, 

and in this way eliminates the unlikely measurements from the association process. Then, 

a measurement to track association algorithm comes to play to resolve the measurement 

origin uncertainty issue. In the proposed methods of this dissertation, the probabilistic data 

association (PDA) based methods are used for such task.  

In the initial design phases, the SVSF estimation method is generalized and modified. The 

generalized SVSF is then used as the basis for the further development of the proposed 

MTT system. The SVSF-based PDA, JPDA and IMM-PDA are used to deal with single, 

multiple and maneuvering target tracking in clutter, respectively. Also, the chattering 

information of the SVSF estimation method is employed as an extra source of information 

to resolve the measurement origin uncertainty in a more efficient manner. 

Finally, a track maintenance algorithm is designed to take care of the track initiation and 

confirmation for new targets entering the field of view of the sensor and track deletion for 

the existing targets that exit the field of view of the sensor. As discussed in section 1.3.4, 

the implemented track management system in the proposed car tracking system of this 

thesis is based on the track score measure.  

1.4.1 Simulation Scenarios 

Various driving patterns of a vehicle on a road, as depicted in Figure 1.8, include straight 

line and curve, cut-in-out, U-turn and interchange [40].  
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Straight Line and Curve Cut-In-Out 

 

 

U-Turn Interchange 

Figure 1.8 Various driving patterns of a vehicle [40] 

The driving patterns of Figure 1.8 are simulated using the two models: near constant 

velocity model and near constant speed turn model as presented below:  

The near constant velocity model [6, 40] describes the uniform motion and captures 

constant velocity motions with possible accelerations. There are four states, related to the 

target position and velocity defined as 𝑥 = [𝜉 𝜂 �̇� �̇�]′. Note that 𝜉 and 𝜂 are the position in 

two Cartesian directions, and �̇� and �̇� are the corresponding velocities. This model assumes 

that the accelerations of the target between two sequential samples are constant and are 

drawn from a discrete-time zero mean white Gaussian noise. The motion model is defined 

as follows: 
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𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑣(𝑘) (1.36) 

where the system and process noise gain matrices are defined by: 

𝐴 = [

1 0
0 1

𝑇𝑠 0
0 𝑇𝑠

0 0
0 0

1  0
0  1

]      ,    𝐵 =  

[
 
 
 
𝑇𝑠
2/2 0

0 𝑇𝑠
2/2

𝑇𝑠       0
0        𝑇𝑠 ]

 
 
 

 (1.37) 

The white acceleration noise is defined as follows: 

𝑄 = 𝑐𝑜𝑣{𝑣(𝑘)} = [
𝜎𝑣
2 0

0 𝜎𝑣
2] (1.38) 

The near constant speed turn model [6, 40] describes maneuvering car moving at a constant 

turn rate.  The state vector is 𝑥 = [𝜉 𝜂 �̇� �̇� 𝜔]. Note that 𝜉 and 𝜂 are the position in two 

Cartesian directions, and �̇� and �̇� are the corresponding velocities and, ω is the angular 

velocity. The motion model is defined as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑣(𝑘) (1.39) 

where the system and process noise gain matrices are defined by: 
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(1.40) 

The remaining equations are the same as the near constant velocity model.  
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Different maneuvering and non-maneuvering car simulation scenarios are designed as a 

combination of different driving patterns. 

1.4.2 Application Areas 

In the early dawn of multiple target tracking systems, the driving motivation was its military 

applications, such as estimating the position and velocity of airborne vehicles using ground-

based remote sensing. As the scope of research evolved, the developed tools for the original 

application were applied to several other domains including sonar image processing in 

unmanned underwater vehicles [41], video image processing [42], medical imaging [43], 

biomedicine [44], finance [45], automotive safety systems [46, 47], and autonomous or 

driverless cars [48, 49]. 

In the automotive sector, car safety systems are divided in two general groups: protective 

or passive safety systems and preventive or active safety systems. The preventive safety 

systems are designed to passively protect the car occupants in the case of a crash. These 

systems are the components of the vehicle such as airbags, seatbelts and the physical 

structure of the vehicle that are constructed to absorb energy or to hold the driver firmly 

during the accident. 

The preventive safety systems help the driver to avoid an accident by using in-vehicle 

systems, taking the status of the driver into account. The preventive safety systems, will 

take the following actions, depending on the significance and timing of the situation: 

- inform the driver of the threat as soon as possible; 

- warn the driver in the case of no reaction to the information; and 

- actively assist or intervene to avoid or mitigate the likely accident. 
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The preventive safety systems may also assist the driver through the following functions: 

- maintain a safe speed keeping a reasonable distance from other vehicles; 

- maintain driving within the lanes; 

- avoid critical or dangerous overtaking; 

- assist the driver to safely pass through intersections; and  

- prevent accidents with vulnerable other road users. 

In general, preventive safety systems aim to improve the safety of driving by the use of 

information from the vehicle, surrounding environment, communications and positioning 

systems. Some of the current preventive safety systems are as follows: forward collision, 

collision avoidance by breaking, adaptive cruise control, and lane departure warning. 

Furthermore, the new generation of automotive safety systems include integrated safety 

systems that combine the functionalities of passive and active systems. The perceived 

information from active safety systems is used to improve the protective safety systems. 

Such improvements may include better positioning of the occupants’ seat, pre-tightening 

of the seat belt, or pre-firing the air bag system. 

Several active safety systems use MTT algorithms to assess the situation including the own-

vehicle, obstacles, other vehicles on the road, pedestrians, lane markings, curbs, etc. The 

MTT system is considered to be an efficient solution to provide sufficient awareness of the 

surrounding environment and desired detection and tracking capabilities. In such intelligent 

vehicles, the MTT algorithms are designed to resolve the issues related to missing marking 

line, ambiguity identification, road curvatures and texture changes, variations in lane width, 

shadows, occluded cars, daylight condition variations and false alarms. 
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Besides intelligent vehicles equipped with active safety systems, self-deriving or semi-

autonomous cars are other application areas that use MTT systems. Statistical data show 

human error is a major cause in fatal car accidents. A tremendous amount of research has 

been devoted to make cars safer by using active and passive safety systems. However, the 

tendency of human beings to make mistakes has been a serious motivation for researchers 

to try to realize and implement autonomous systems that remove the human element from 

the car operation. Self-driving cars are being developed by large corporations despite their 

legal complications. The proposed algorithms will serve the technological evolution taking 

place towards autonomous vehicles. 

 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

37 

 

Chapter 2 

 

2 Target Tracking Formulation of the SVSF 

2.1  Target Tracking Formulation of the SVSF with PDA (Conference 

paper a) 

2.1.1 Abstract 

Target tracking algorithms are important for a number of applications, including: physics, 

air traffic control, ground vehicle monitoring, and processing medical images. The 

probabilistic data association algorithm, in conjunction with the Kalman filter (KF), is one 

of the most popular and well-studied strategies. The relatively new smooth variable 

structure filter (SVSF) offers a robust and stable estimation strategy under the presence of 

modeling errors, unlike the KF method. The purpose of this paper is to introduce and 

formulate the SVSF-PDA, which can be used for target tracking. A simple example is used 

to compare the estimation results of the popular KF-PDA with the new SVSF-PDA. 

2.1.2 Introduction 

Target tracking algorithms make a fundamental element of surveillance and monitoring 

systems. These algorithms are used to interpret the environment by analyzing sensor 

information and partitioning it into tracks based on their origin, in an effort to estimate 
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quantities of interest [1, 30]. There are numerous applications for target tracking 

algorithms, including: physics, air traffic control (ATC), ground vehicle monitoring, and 

data processing for medical images [1]. Recent applications of target tracking algorithms 

include the automotive industry. These applications include law enforcement systems and 

vehicle safety systems [3, 2]. 

The essential issue in multi-target tracking (MTT) systems is dealing with data association 

uncertainty that occurs when the sensor provides measurements whose origin is uncertain 

and complex. Data association logics are required to differentiate received sensor data into 

different categories including targets of interest, background clutter, and false alarms [5]. 

There are several methods proposed to solve data association problems. A comprehensive 

survey of the methods is provided in [1] and [30]. In one classification [1], there are two 

types of data association methods: nearest neighbour association, and all-neighbour’s 

association. The former involves associating the measurement nearest to the predicted 

measurement of each track. In the latter, one may use all validated measurements for data 

association. 

In the standard nearest neighbour method, the statistical distance is used to predict and 

associated measurements of each track [4]. However, due to some flaws in this method, the 

global nearest neighbour method was proposed which takes all of the possible 

measurement-to-track associations and generates the most probable assignment hypothesis 

[1]. The probabilistic data association (PDA) method is a type of ‘all-neighbour’ data 

association method. It calculates the association probabilities for each probable association 

hypothesis, and utilizes them to form a combined innovation used for filtering [29]. PDA 

was originally formulated for single target tracking. An extension of it for multiple targets 

was named joint probabilistic data association (JPDA), in which the association 

probabilities are calculated in a combined manner across the targets in a cluster [31]. 
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In the aforementioned methods, the basic filtering algorithm employed is based on the 

popular Kalman filter (KF). The KF was introduced in the 1960s and remains one of the 

most popular estimation methods because it yields a statistically optimal solution for linear 

systems and measurements [7, 8]. A number of extensions were created to formulate the 

KF for nonlinear systems and to tackle issues with modeling uncertainty and instability [50, 

11]. In 2007, the smooth variable structure filter (SVSF) was proposed [15]. It is a recursive 

predictor-corrector filter based on the sliding mode concept [17]. In the SVSF, a hyper-

plane was introduced which is a projection of the true state trajectory, and a corrective gain 

is applied to force the estimated states to go towards the desired hyper-plane. Once it 

reaches within a region of the hyper-plane referred to as the existence subspace, the 

estimated states are forced to remain within this subspace by going back and forth across 

the hyper-plane or desired state trajectory [15]. Significant features of the SVSF are its 

robustness, multiple indicators of performance (innovation vector and indicators that 

quantify the degree of uncertainty and modeling error specific to each state), and the ability 

to identify the source of uncertainty [15]. 

This paper introduces the SVSF in a formulation that can be used for target tracking, 

making use of the probabilistic data association (PDA) technique. The paper is organized 

as follows. Section 0 provides a brief overview of the KF and SVSF equations. The main 

PDA algorithm is highlighted in Section 2.1.4. Section 2.1.5 introduces the SVSF-PDA 

estimation strategy. A simple target tracking example is studied in section 2.1.62.1.7, and 

the results of the KF-PDA are compared with the SVSF-PDA. The main findings are 

summarized in the section 2.1.7. Also, the following is a list of the main nomenclature used 

throughout the paper. 
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Table 2.1 List of Important Nomenclature and Parameters 

Parameter Definition 

𝒙 State vector or values 

𝒛 Measurement (system output) vector or values 

𝒘 System noise vector 

𝒗 Measurement noise vector 

𝑨 Linear system transition matrix 

𝑩 Linear input gain matrix 

𝑪 Linear measurement (output) matrix 

𝑬 SVSF error vector (or matrix) 

𝑲 Filter gain matrix 

𝑷 State error covariance matrix 

𝑸 System noise covariance matrix 

𝑹 Measurement noise covariance matrix 

𝑺 Innovation (measurement error) covariance matrix 

𝒆𝒛 Measurement (output) error vector 

𝜸 SVSF ‘memory’ or convergence rate 

𝝍 SVSF smoothing boundary layer 

𝒅𝒊𝒂𝒈[𝒂] 𝒐𝒓 �̅� Diagonal of some vector or matrix 𝑎 

𝒔𝒂𝒕() Saturation function 

|𝒂| Absolute value of 𝑎 

𝑻 Transpose of a vector (if superscript) or sample rate 

+ Pseudoinverse of some non-square matrix 

∘ Denotes a Schur product (element-by-element 

multiplication) 

~ Denotes error or difference 

^ Estimated vector or values 

𝒌 + 𝟏|𝒌 or 

𝒌|𝒌 − 𝟏 

A priori values 

𝒌 + 𝟏|𝒌 + 𝟏  

or 𝒌|𝒌 

A posteriori values 
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2.1.3 Estimation Strategies 

A. Kalman Filter 

As described in [17], the success of the KF comes from the optimality of the Kalman gain 

in minimizing the trace of the a posteriori state error covariance matrix [51, 17]. The 

following five equations form the core of the KF algorithm, and are used in an iterative 

fashion. Equations (2.1.1) and (2.1.2) define the a priori state estimate �̂�𝑘+1|𝑘 based on 

knowledge of the system 𝐴, the previous state estimate �̂�𝑘|𝑘, the input matrix 𝐵, and the 

input 𝑢𝑘, and the corresponding state error covariance matrix 𝑃𝑘+1|𝑘, respectively. 

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑢𝑘 (2.1) 

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑢𝑘 (2.2) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (2.3) 

The Kalman gain 𝐾𝑘+1 is defined by (2.4), and is used to update the state estimate �̂�𝑘+1|𝑘+1 

and the a posteriori state error covariance 𝑃𝑘+1|𝑘+1. 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐶
𝑇[𝐶𝑃𝑘+1|𝑘𝐶

𝑇 + 𝑅𝑘+1]
−1

 (2.4) 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1[𝑧𝑘+1 − 𝐶�̂�𝑘+1|𝑘] (2.5) 

𝑃𝑘+1|𝑘+1 = [𝐼 − 𝐾𝑘+1𝐶]𝑃𝑘+1|𝑘 (2.6) 

Note that the KF, in the above form, may be only applied on linear systems and 

measurements. The most popular and simplest method used to formulate the KF for 

nonlinear functions is the extended Kalman filter (EKF) [11, 10]. The EKF is conceptually 

similar to the KF; however, the nonlinear system is linearized according to its Jacobian. 
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This linearization process introduces uncertainties that can sometimes cause instability 

[10]. 

B. Smooth Variable Structure Filter 

The smooth variable structure filter (SVSF) is based on the sliding mode concept, 

formulated in a predictor-corrector fashion. The SVSF estimation strategy is illustrated in 

Fig. 1. Essentially, a switching gain is utilized which forces the estimates to within a region 

of the true state trajectory. As previously described, this region is referred to as the 

existence subspace and is a function of modeling uncertainties and unwanted noise. 

 

Figure 2.1 SVSF estimation concept [17] 

The SVSF estimation method is described by the following series of equations. Note that 

this formulation includes state error covariance equations as presented in [52], which was 
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not originally presented in the standard SVSF form [15]. The prediction stage is similar to 

the KF stage, and is defined by the following equations. 

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑢𝑘 (2.7) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (2.8) 

𝑒𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 − 𝐶�̂�𝑘+1|𝑘 (2.9) 

The SVSF gain is calculated as follows [17]: 

𝐾𝑘+1 = 𝐶
+𝑑𝑖𝑎𝑔 [(|𝑒𝑧,𝑘+1|𝑘|𝐴𝑏𝑠

+ 𝛾|𝑒𝑧,𝑘|𝑘|𝐴𝑏𝑠
) 𝑠𝑖𝑔𝑛 (

𝑒𝑧,𝑘+1|𝑘

𝜓𝑖
)] [𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]

−1
 

(2.10) 

As described in [17], the SVSF gain is a function of: the a priori and a posteriori 

measurement error vectors 𝑒𝑧,𝑘+1|𝑘 and 𝑒𝑧,𝑘|𝑘; the smoothing boundary layer widths 𝜓𝑖 

where 𝑖 refers to the 𝑖th width; the ‘SVSF’ memory or convergence rate 𝛾 with elements 

0 < 𝛾𝑖𝑖 ≤ 1; and the linear measurement matrix 𝐶. However, for numerical stability, it is 

important to ensure that one does not divide by zero in (2.10). This can be accomplished 

using a simple 𝑖𝑓 statement with a very small threshold (i.e. 1 × 10−12). 

The remaining equations update the SVSF estimate �̂�𝑘+1|𝑘+1 and the state error covariance 

matrix 𝑃𝑘+1|𝑘+1, as well as the a posteriori measurement error 𝑒𝑧,𝑘+1|𝑘+1 which is used in 

the next time step. 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1𝑒𝑧,𝑘+1|𝑘 (2.11) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐶)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝐶)
𝑇 + 𝐾𝑘+1𝑅𝑘+1𝐾𝑘+1

𝑇  (2.12) 
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𝑒𝑧,𝑘+1|𝑘+1 = 𝑧𝑘+1 − 𝐶�̂�𝑘+1|𝑘+1 (2.13) 

Equations (2.7) through (2.13) summarize the SVSF estimation process. 

2.1.4 Data Association Principles 

PDAF is an algorithm which is basically formulated for tracking single target in clutter. 

The track is assumed to be initialized and the density of state vector conditioned on the past 

measurements is approximated by a normal distribution as follows [5]: 

𝑝[𝑥(𝑘)|𝑍𝑘−1] = 𝒩[𝑥(𝑘); �̂�(𝑘|𝑘 − 1), 𝑃(𝑘|𝑘 − 1)] (2.14) 

The algorithm provides some validated measurements around the predicted measurement 

of the track. The 𝑛𝑚 candidate measurements at time 𝑘 are named as 𝑧𝑗 , 𝑗 = 1, … , 𝑛𝑚. Thus, 

the total available validated measurements at time 𝑘 are 𝑍𝑘 = {𝑧1, … , 𝑧𝑛𝑚} ∪ 𝑍𝑘−1. Also, 

it is assumed that when the corresponding measurement of the detected target is within the 

validation gate, then, only one of the validated measurements is originated from the target 

[5]. The remaining non-target originated measurements are considered as clutter originated 

or false alarms. The number of such measurements points is assumed to have a Poisson 

distribution (with spatial density of 𝜆) and the spatial distribution of them is modeled as 

i.i.d. uniform. 

Suppose that there are 𝑛𝑚(𝑘) validated measurements in time step 𝑘, then, one can describe 

𝑛𝑚(𝑘) + 1 distinct events (association hypotheses) as [1]: 

ℋ𝑖(𝑘) = {𝑧
𝑖 𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑 } (2.15) 

ℋ0(𝑘) = {𝑛𝑜𝑛𝑒 𝑎𝑟𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑} (2.16) 
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where 𝑖 = 1,… , 𝑛𝑚(𝑘), then the minimum variance estimate can be written as follows: 

�̂�(𝑘|𝑘) = 𝔼{𝑥(𝑘)|𝑍𝑘} = ∑ 𝔼{𝑥(𝑘)|ℋ𝑖(𝑘), 𝑍
𝑘}𝑃{ℋ𝑖|𝑍

𝑘}

𝑛𝑚(𝑘)

𝑖=0

= ∑ �̂�𝑖(𝑘|𝑘)𝛽𝑖(𝑘)

𝑛𝑚(𝑘)

𝑖=0

 

(2.17) 

where �̂�𝑖(𝑘|𝑘) is the updated state given that the 𝑖th hypothesis is correct and 𝛽𝑖(𝑘) is 

named association probability which is the conditioned probability of the 𝑖th hypothesis. 

Using the calculations provided in [5] and [4], these association probabilities are computed 

as follows: 

𝛽𝑖(k) =

{
 
 

 
  

1 − PDPG

1 − PDPG + ∑ ℒi(k)
nm(k)

i=1

,

     
i = 0

ℒi(k)

1 − PDPG + ∑ ℒi(k)
nm(k)

i=1

,   i = 1,… , nm(k)

 
(2.18) 

where 𝑖 = 0 is association probability of the hypothesis when none of the validated 

measurements is originated from the target, 𝑃𝐺  is gate probability [4], 𝑃𝐷 is the target 

detection probability and also, 

ℒ𝑖(𝑘) =
𝒩[𝑧𝑖(𝑘); �̂�(𝑘|𝑘 − 1), 𝑆(𝑘)]𝑃𝐷

𝜆
 (2.19) 

which is the likelihood ratio of the measurement 𝑧𝑖(𝑘), if it is originated from the target. 

After calculation of the association probabilities, the combined innovation to be used in the 

Kalman filter update is calculated as a weighted sum of 𝑛𝑚(𝑘) validated measurements: 
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�̃�(𝑘) = ∑ 𝛽𝑖(𝑘)�̃�𝑖(𝑘)

𝑛𝑚(𝑘)

𝑖=1

 (2.20) 

where �̃�𝑖(𝑘) = 𝑧𝑖(𝑘) − 𝐶𝑥(𝑘|𝑘) [30]. Then, the states are estimated as the same procedure 

in standard Kalman filter. The updated covariance is calculated as follows: 

𝑃(𝑘|𝑘) = 𝛽0(𝑘)𝑃(𝑘|𝑘 − 1) + [1 − 𝛽0(𝑘)]𝑃
∗(𝑘|𝑘) + �̃�(𝑘) (2.21) 

Note that 𝑃∗(𝑘|𝑘) is the standard KF covariance matrix and �̃�(𝑘) is an increment as an 

effect of uncertain associations and is computed by [29]: 

�̃�(𝑘) = 𝐾(𝑘)[ ∑ 𝛽𝑖(𝑘)�̃�𝑖(𝑘)�̃�𝑖(𝑘)
′

𝑛𝑚(𝑘)

𝑖=1

− �̃�(𝑘)�̃�(𝑘)′]𝐾(𝑘) (2.22) 

2.1.5 Formulation of the SVSF-PDA 

In this section, a novel formulation of the SVSF based on the PDA method is introduced, 

referred to as the SVSF-PDA. Using the notation of previous section and the algorithm 

provided in [17], the proposed algorithm consists of the following steps. 

A. Gating Step 

The received measurements are validated based on the assumption made earlier. The 

validation region is an elliptical region defined for stochastic distance to the predicted 

measurements as follows [5]: 

𝒱(𝑘, 𝛾) = {𝑧: [𝑧 − �̂�(𝑘|𝑘 − 1)]′𝑆(𝑘)−1[𝑧 − �̂�(𝑘|𝑘 − 1)] ≤ 𝛾} (2.23) 
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where 𝛾 is the gate threshold corresponding to the gate probability with which the actual 

measurement lies within the gate (if detected), and 𝑆(𝑘) is the covariance of the innovation 

corresponding to the actual measurement. 

B. Prediction Step 

In this step, the state estimates and measurements are predicted using motion and 

measurement models, and then the a priori state error covariance is calculated. 

�̂�(𝑘|𝑘 − 1) = 𝐴(𝑘 − 1)�̂�(𝑘 − 1|𝑘 − 1) (2.24) 

𝑃(𝑘|𝑘 − 1) = 𝐴(𝑘 − 1)𝑃(𝑘 − 1|𝑘 − 1)𝐴(𝑘 − 1)′ + 𝑄(𝑘 − 1) (2.25) 

𝑧(𝑘|𝑘 − 1) = 𝐶(𝑘 − 1)�̂�(𝑘|𝑘 − 1) (2.26) 

The association probabilities and the combined innovation are calculated using (2.18) and 

(2.20), respectively. The a priori measurement error is calculated to be equal to the 

combined innovation: 

𝑒𝑧(𝑘|𝑘 − 1) = �̃�(𝑘) (2.27) 

C. State Update Step 

For state estimation, the SVSF correction gain is calculated and the states are updated.  

�̂�(𝑘|𝑘 − 1) = 𝐴(𝑘 − 1)�̂�(𝑘 − 1|𝑘 − 1) (2.28) 

�̂�(𝑘|𝑘) = �̂�(𝑘|𝑘 − 1) + 𝐾(𝑘)𝑒𝑧(𝑘|𝑘 − 1) (2.29) 
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𝐾(𝑘) = 𝐶+𝑑𝑖𝑎𝑔[(|𝑒𝑧(𝑘|𝑘 − 1)|𝐴𝑏𝑠 + 𝛾|𝑒𝑧(𝑘 − 1|𝑘 − 1)|𝐴𝑏𝑠)

∘ 𝑠𝑎𝑡 (
𝑒𝑧(𝑘|𝑘 − 1)

𝜓
)][𝑑𝑖𝑎𝑔(𝑒𝑧(𝑘|𝑘 − 1))]

−1 
(2.30) 

The covariance associated with the updated states is then calculated by (2.21). Note that 

𝑃∗(𝑘|𝑘) is the SVSF covariance matrix, and is computed by: 

𝑃∗(𝑘|𝑘) = [𝐼 − 𝐾(𝑘)𝐶(𝑘)]𝑃(𝑘|𝑘 − 1)[𝐼 − 𝐾(𝑘)𝐶(𝑘)]′ + 𝐾(𝑘)𝑅(𝑘)𝐾′(𝑘) (2.31) 

Furthermore, �̃�(𝑘) is calculated by (2.22). To obtain the a posteriori measurement error, 

the actual measurement is required. It is assumed that the combined innovation is the 

difference between the actual and the predicted measurements: 

𝑧𝑎(𝑘) = 𝑒𝑧(𝑘|𝑘 − 1) + 𝐶(𝑘)�̂�(𝑘|𝑘 − 1) (2.32) 

𝑒𝑧(𝑘|𝑘) = 𝑧𝑎(𝑘) − 𝐶(𝑘)�̂�(𝑘|𝑘) (2.33) 

Substitution of (2.32) into (2.33), and using (2.29), yields a posteriori measurement error 

as: 

𝑒𝑧(𝑘|𝑘) = [𝐼 − 𝐶(𝑘)𝐾(𝑘)]𝑒𝑧(𝑘|𝑘 − 1) (2.34) 

2.1.6 Estimation Problem and Results 

A. Problem Setup 

In this section, the estimation problem is described. A simple two-dimensional discrete, 

constant velocity model is implemented [6]. There are four states, related to the target 

position and velocity (𝑥 and 𝑦 directions), defined as follows: 𝑥 = [𝜉 𝜂 𝜉̇ �̇�]. Note that ξ 

and η are the position in two Cartesian directions, and ξ̇ and η̇ are the corresponding 
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velocities. This model assumes that the accelerations of the target between two sequential 

samples are constant and are drawn from a discrete-time zero mean white Gaussian noise. 

The motion model is defined as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑣(𝑘) (2.35) 

where the system and process noise gain matrices are defined by: 

𝐴 = [

1 0
0 1

𝑇𝑠 0
0 𝑇𝑠

0 0
0 0

1  0
0  1

] (2.36) 

𝐵 =  

[
 
 
 
𝑇𝑠
2/2 0

0 𝑇𝑠
2/2

𝑇𝑠       0
0        𝑇𝑠 ]

 
 
 

 (2.37) 

The white acceleration noise is defined as follows: 

𝑄 = 𝑐𝑜𝑣{𝑣(𝑘)} = [
𝜎𝑣
2 0

0 𝜎𝑣
2] (2.38) 

The measurement function, matrix, and noise covariance are defined respectively as 

follows:  

𝑧(𝑘) = 𝐶𝑥(𝑘) + 𝑤(𝑘) (2.39) 

𝐶 = [
1 0
0 0

0 0
1 0

] (2.40) 

𝑅 = 𝑐𝑜𝑣{𝑤(𝑘)} = [
𝜎𝑤
2 0

0 𝜎𝑤
2] (2.41) 
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B. Estimation Results 

Simulations are run for the KF-PDA and SVSF-PDA algorithms. The parameter values 

used for the simulations are 𝑇𝑠 = 30 𝑠 and 𝑃𝐷 = 0.9. The clutter is assumed to have a 

spatial uniform distribution, and the number of cluttered measurements is generated by a 

Poisson’s distribution of 𝜆 = 10−6. The process noise variance is 𝜎𝑣
2 = 0.012, and the 

measurement noise variance is 𝜎𝑤
2 = 72. 

The following figure illustrates the simulation results for both the KF-PDA and SVSF-PDA 

strategies. Both filters are able to successfully track the actual path of the target. 

 

Figure 2.2 PDA-KF and PDA-SVSF estimation results (normal case) 

The RMSE errors for the four states of the system are computed and shown in the following 

table. Note that the SVSF-PDA strategy performed slightly better than the KF-PDA, in 

terms of RMSE. 
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Table 2.2 RMSE Estimation Results – Normal Case 

Filter KF-PDA SVSF-PDA 

𝝃 92.4 64.5 

�̇� 0.81 0.48 

𝜼 210.8 198.5 

�̇� 0.83 0.57 

To further investigate the robustness of the proposed SVSF-PDA strategy, modeling 

uncertainty is injected roughly 25% of the way into the simulation in the form of 2% change 

in the system matrix for 5 iterations. The results are shown in the following figure. 

 

Figure 2.3 KF-PDA and SVSF-PDA estimation results (uncertainty) 

The RMSE under this scenario was recalculated, and is shown in the following table. 

Table 2.3 RMSE Estimation Results – Uncertainty Case 

Filter KF-PDA SVSF-PDA 

𝜉 721.7 125.1 

𝜂 284.3 207.3 

Note that the SVSF-PDA provided a more stable estimate, as the results did not diverge 

from the true state trajectory. Furthermore, the 𝑥-position RMSE was reduced by about 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

52 

 

82%, and the 𝑦-position RMSE was reduced by about 28%. This is a significant 

improvement for target tracking applications. As shown next, further increasing the 

modeling uncertainty causes the KF-PDA strategy to fail. 

 

Figure 2.4 KF-PDA and SVSF-PDA results (increased uncertainty). 

As shown in the above figure, when the modeling uncertainty was increased further to 4%, 

the KF-PDA failed to obtain the correct target track. However, due to the unique switching 

action of the SVSF, the SVSF-PDA method maintained the correct track and was able to 

provide a good estimate. 

2.1.7 Conclusion 

The purpose of this paper was to introduce a new target tracking strategy referred to as the 

SVSF-PDA. A simple target tracking simulation was studied in an effort to compare the 

popular KF-PDA with the SVSF-PDA. Under normal conditions, both methods were able 

to provide good target tracking estimates. However, when modeling uncertainty was 

injected into the simulation, the KF-PDA failed to yield a good target track of the estimate. 
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Future research will study multi-target tracking scenarios, by implementing the joint 

probabilistic data association (JPDA) technique. 

2.2 Multi-Target Tracking Formulation of the SVSF with JPDA 

(Conference paper b) 

2.2.1 Abstract 

Target tracking scenarios offer an interesting challenge for state and parameter estimation 

techniques. This paper studies a situation with multiple targets in the presence of clutter. In 

this paper, the relatively new smooth variable structure filter (SVSF) is combined with the 

joint probability data association (JPDA) technique. This new method, referred to as the 

JPDA-SVSF, is applied on a simple multi-target tracking problem for a proof of concept. 

The results are compared with the popular Kalman filter (KF). 

2.2.2 Introduction 

The purpose of multiple target tracking is to maintain true tracks using noisy measurements 

originated from true targets or the clutter. This environment interpretation has many 

applications in air traffic control, road vehicle tracking, medical image processing, and 

biology [1]. A recently investigated area of application for target tracking methods is in 

automotive industries. The ever increasing interest in intelligent vehicles broadens the use 

and development of multiple-target tracking algorithms in active automotive safety systems 

and advanced driver assistance system. 
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In the situations where the tracking is handled in the presence of measurement origin 

uncertainty, one of the fundamental parts of target tracking methods is the data association 

algorithm, which differentiates the received measurements and categorizes them into 

target-originated and clutter-originated [5]. A comprehensive survey of several data 

association methods can be found in [1] and [30]. 

Probabilistic data association (PDA) is a widely used data association and tracking method 

[29, 4]. PDA is a type of ‘all- neighbour’ data association methods, which assumes several 

feasible hypotheses for the measurement to track associations and then calculates the 

association probabilities for each of them [5]. However, PDA is a formulization for tracking 

single target in clutter and to use it for multiple targets, simply multiple copies of a similar 

filter are employed [5]. Moreover, PDA is derived with assumption that the tracks are 

initialized and, consequently, there should be some other algorithms taking care of track 

initiation [1]. In [28] integrated probabilistic data association (IPDA) is proposed, which is 

basically a re-derivation of PDA without the assumption of initialized tracks and therefore, 

provides both the data association and track existence probabilities. An extension of PDA 

for multi-target tracking, where the targets are interfering, is the joint probabilistic data 

association (JPDA) [31]. In JPDA, the targets are clustered and then the association 

probabilities are calculated in a jointly manner across the targets in a cluster [4, 31]. A 

similar extension of IPDA for multiple targets, named joint integrated probabilistic data 

association (JIPDA), is suggested in [53]. 

The aforementioned association methods provide an association probability for each 

feasible hypothesis which is used to construct a combined innovation term. The combined 

innovation term substitutes the innovation term in Kalman filtering structure of these 

algorithms [4].  
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Kalman filter (KF) is the most well-known filtering strategy because of its optimal 

estimation properties for linear systems [7, 8]. Since its introduction in the 1960’s, there 

were some modifications to extent the formulation of KF for nonlinear systems and to cope 

with the issues of uncertainty and instability [50, 11]. In 2007, a recursive predictor-

corrector filtering strategy based on the sliding mode concept [17], named smooth variable 

structure filter (SVSF) was proposed [15]. Basically, the SVSF owes its stability to 

selecting a corrective gain in a way that in each step decreases the error in the estimated 

states [15]. In order to achieve this, a hyper-plane as a projection of true state trajectory is 

introduced and applying the corrective gain, the estimations are forced to go toward this 

region, and then remain in between [15].  The main characteristic of SVSF, which suggests 

it as a useful filter in systems with modeling uncertainty, is its robustness against this type 

of uncertainties [15].  

Employing SVSF as the filtering strategy in target tracking algorithms is firstly proposed 

in [54] for single target tracking in clutter. This paper is an extension of that work for 

multiple targets in combination with JPDA algorithm.  

In section 2.2.3, KF and SVSF filtering algorithms are briefly overviewed. The basic 

formulation of JPDA algorithm is provided in section 2.2.4. Section 2.2.5 introduces the 

JPDA-SVSF tracking algorithm. In section 2.1.6 a simple multiple-target tracking example 

is studied to get a comparison between JPDA-KF and JPDA-SVSF. The paper is concluded 

in section 2.2.7. 

2.2.3 Estimation Strategies 

The Kalman filter is the best estimator in MMSE sense [6]. Indeed, KF minimizes the trace 

of state covariance matrix [51, 17]. In its original form, KF is based on two models: system 
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model (2.42) which describes the evolution of the states, and measurement model (2.43) 

which relates the measurements to states. 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑣(𝑘) (2.42) 

𝑧(𝑘) = 𝐶𝑥(𝑘) + 𝑤(𝑘) (2.43) 

where 𝑣(𝑘) and 𝑤(𝑘) are respectively zero mean white Gaussian process and measurement 

noises with covariance matrices 𝑄(𝑘) and 𝑅(𝑘). The KF algorithm is based on recursive 

prediction and updating the estimated states and their corresponding error covariance.  The 

prediction consists of the following steps: 

�̂�(𝑘 + 1|𝑘) = 𝐴�̂�(𝑘|𝑘) + 𝐵𝑢(𝑘) (2.44) 

𝑃(𝑘 + 1|𝑘) = 𝐴𝑃(𝑘|𝑘)𝐴𝑇 + 𝑄(𝑘) (2.45) 

The Kalman gain 𝐾(𝑘 + 1) is calculated and then used to obtain the updated states and 

covariance, as follows: 

𝐾(𝑘 + 1) = 𝑃(𝑘 + 1|𝑘)𝐶𝑇[𝐶𝑃(𝑘 + 1|𝑘)𝐶𝑇 + 𝑅(𝑘 + 1)]−1 (2.46) 

�̂�(𝑘 + 1|𝑘 + 1) = �̂�(𝑘 + 1|𝑘) + 𝐾(𝑘 + 1)[𝑧(𝑘 + 1) − 𝐶�̂�(𝑘 + 1|𝑘)] (2.47) 

𝑃(𝑘 + 1|𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐶]𝑃(𝑘 + 1|𝑘) (2.48) 

The Kalman filter in the above form is only applicable on linear systems. A very popular 

extension of KF for nonlinear systems is Extended KF, which linearizes the nonlinear 

function using the Jacobian matrix and then uses the same algorithm as KF [11, 10].  
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The smooth variable structure filter (SVSF) is a relatively new state and parameter 

estimation technique based on sliding mode concepts [17]. The basic concept is shown in 

the following figure. 

 

Figure 2.5 SVSF estimation concept [17]. 

The prediction stage of the SVSF is similar to the KF, and may be summarized by the 

following sets of equations: 

�̂�(𝑘 + 1|𝑘) = 𝐴�̂�(𝑘|𝑘) + 𝐵𝑢(𝑘) (2.49) 

𝑃(𝑘 + 1|𝑘) = 𝐴𝑃(𝑘|𝑘)𝐴𝑇 + 𝑄(𝑘) (2.50) 

Note that the SVSF may also be formulated to handle nonlinear system and measurement 

functions [17]. The a priori or predicted measurement error is also calculated as follows: 

𝑒𝑧(𝑘 + 1|𝑘) = 𝑧(𝑘 + 1) − �̂�(𝑘 + 1|𝑘) (2.51) 

The SVSF gain is calculated as follows [17]: 
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𝐾𝑆𝑉𝑆𝐹 = 𝐶+𝑑𝑖𝑎𝑔 [(|𝑒𝑧(𝑘 + 1|𝑘)|𝐴𝑏𝑠 + 𝛾|𝑒𝑧(𝑘|𝑘)|𝐴𝑏𝑠)

∘ 𝑠𝑎𝑡 (
𝑒𝑧(𝑘 + 1|𝑘)

𝜓𝑖
)] [𝑑𝑖𝑎𝑔(𝑒𝑧(𝑘 + 1|𝑘))]

−1
 

(2.52) 

As described in [17], the SVSF gain is a function of: the a priori and a posteriori 

measurement error vectors 𝑒𝑧,𝑘+1|𝑘 and 𝑒𝑧,𝑘|𝑘; the smoothing boundary layer widths 𝜓𝑖 

where 𝑖 refers to the 𝑖th width; the ‘SVSF’ memory or convergence rate 𝛾 with elements 

0 < 𝛾𝑖𝑖 ≤ 1; and the linear measurement matrix 𝐶. However, for numerical stability, it is 

important to ensure that one does not divide by zero in (2.52). This can be accomplished 

using a simple 𝑖𝑓 statement with a very small threshold (i.e. 1 × 10−12) [17]. 

The SVSF update equations are also very similar to the KF, and may be defined as follows: 

�̂�(𝑘 + 1|𝑘 + 1) = �̂�(𝑘 + 1|𝑘) + 𝐾𝑆𝑉𝑆𝐹𝑒𝑧(𝑘 + 1|𝑘) (2.53) 

𝑃(𝑘 + 1|𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐶]𝑃(𝑘 + 1|𝑘) (2.54) 

However, note that the a posteriori or updated measurement error needs to be calculated as 

per (2.55). This value is used in the next time step. 

𝑒𝑧(𝑘 + 1|𝑘 + 1) = 𝑧(𝑘 + 1) − �̂�(𝑘 + 1|𝑘 + 1) (2.55) 

2.2.4 Joint Probabilistic Data Association Principles 

Originally, PDAF was formulated for tracking single targets in clutter. In PDAF, it is 

assumed that all the non-target originated received measurements are from clutter and are 

of a uniform distribution in the validation gate [29]. This assumption is violated in the 

presence of interfering targets [5]. The extension of PDAF to tackle this issue in tracking 
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multiple targets in clutter is JPDAF [5]. In JPDAF, it is assumed that the number of 

initialized tracks is known and the density of state vector conditioned on past data is 

approximated by a Gaussian distribution as [31]: 

𝑝[𝑥(𝑘)|𝑍𝑘−1] = 𝒩[𝑥(𝑘); �̂�(𝑘|𝑘 − 1), 𝑃(𝑘|𝑘 − 1)] (2.56) 

The JPDA and PDA algorithms utilize the same estimation equations. The difference is on 

the way the association probabilities are calculated [5, 31]. The association probabilities in 

PDA are calculated separately for each target, whereas in JPDA these probabilities are 

calculated in a jointly manner across the targets in a cluster [5]. In this sense, in JPDA 

algorithm the conditional probabilities of the following joint events are evaluated [5]: 

ℋ(𝑘) = ⋂ ℋ𝑗𝑡𝑗(𝑘)

𝑚(𝑘)

𝑗=1

 (2.57) 

 

Figure 2.6 Schematic representation of JPDA-SVSF algorithm 
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where ℋ𝑗𝑡𝑗(𝑘) is the hypothesis that measurement 𝑗 is originated from target 𝑡, 0 ≤ 𝑗 ≤

𝑚(𝑘) , 0 ≤ 𝑡 ≤ 𝑇, 𝑘 is the time index, 𝑡𝑗 is the target that measurement 𝑗 is associated with, 

𝑚𝑘 is the number of measurements, and 𝑇 is the number of targets [31]. The measurements 

at time 𝑘 are named as 𝑧𝑗. Thus, the total available measurements at time 𝑘 are 𝑍𝑘 =

{𝑧1, … , 𝑧𝑛𝑚} ∪ 𝑍𝑘−1. Assuming the number of false measurements being from a Poisson 

distribution with spatial density 𝜆, the joint association probabilities are calculated as below 

[5]: 

𝑃{ℋ|𝑍𝑘} = 𝑐∏{𝜆−1ℒ𝑡𝑗[𝑧𝑗(𝑘)]}
𝜏𝑗

𝑗

∏(𝑃𝐷
𝑡 )𝛿𝑡(1 − 𝑃𝐷)

1−𝛿𝑡

𝑡

 (2.58) 

where  

ℒ𝑡𝑗[𝑧𝑗(𝑘)] = 𝒩[𝑧𝑗(𝑘); �̂�
𝑡𝑗(𝑘|𝑘 − 1), 𝑆𝑡𝑗(𝑘)] (2.59) 

and 𝑃𝐷
𝑡  is the detection probability of target 𝑡, 𝜏𝑗 and 𝛿𝑡 are respectively, the target detection 

and measurement association indicators [31].  

To carry out the estimation, the marginal association probabilities are needed. These 

probabilities are obtained from joint probabilities (2.58) by summing over all joint 

hypotheses in which the marginal hypothesis of interest happens as below [5]: 

𝛽𝑗𝑡(𝑘) = 𝑃{ℋ𝑗𝑡(𝑘)|𝑍
𝑘} = ∑ 𝑃{ℋ(𝑘)|𝑍𝑘}

ℋ:ℋ𝑗𝑡∈ℋ

 
(2.60) 

These probabilities are used to make the combined innovation for each target. 
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2.2.5 Formulation of the JPDA-SVSF 

This section is a generalization of the method introduced in [54]. Here, we propose a novel 

formulation of SVSF for multi-target tracking in clutter based on JPDA method. Figure 2.6 

illustrates a schematic presentation of the method, referred to as SVSF-JPDA. The JPDA-

SVSF algorithm is outlined as follows. 

A. Gating Step 

A validation gate is constructed around the predicted measurement of each track, based on 

the statistical distance, as follows [5]: 

𝒱𝑡(𝑘, 𝛾) = {𝑧: [𝑧 − �̂�𝑡(𝑘|𝑘 − 1)]
′𝑆𝑡(𝑘)

−1[𝑧 − �̂�𝑡(𝑘|𝑘 − 1)] ≤ 𝛾} (2.61) 

where 𝛾 is the gate threshold corresponding to the gate probability, and 𝑆𝑡(𝑘) is the 

covariance of the innovation for each track. Then, the feasible hypotheses are determined 

and target detection and measurement association indicators are obtained [31]. 

B. Prediction Step 

This step provides the prediction of states and measurements. 

�̂�𝑡(𝑘|𝑘 − 1) = 𝐴𝑡(𝑘 − 1)�̂�𝑡(𝑘 − 1|𝑘 − 1) (2.62) 

𝑃𝑡(𝑘|𝑘 − 1) = 𝐴𝑡(𝑘 − 1)𝑃𝑡(𝑘 − 1|𝑘 − 1)𝐴𝑡(𝑘 − 1)
′ + 𝑄𝑡(𝑘 − 1) (2.63) 

𝑧𝑡(𝑘|𝑘 − 1) = 𝐶𝑡(𝑘 − 1)�̂�𝑡(𝑘|𝑘 − 1) (2.64) 

The marginal association probabilities of (2.60) are used to calculate the combined 

innovation for each track as: 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

62 

 

�̃�𝑡(𝑘) = ∑ 𝛽𝑖𝑡(𝑘)�̃�𝑖𝑡(𝑘)

𝑚(𝑘)

𝑖=1

 (2.65) 

The a priori measurement error of each track is set to be equal to the corresponding 

combined innovation: 

𝑒𝑧𝑡(𝑘|𝑘 − 1) = �̃�𝑡(𝑘) (2.66) 

C. State Update Step 

In this step, the SVSF gain is calculated for each track and is used to update the states [17].  

�̂�𝑡(𝑘|𝑘 − 1) = 𝐴𝑡(𝑘 − 1)�̂�𝑡(𝑘 − 1|𝑘 − 1)        (2.67) 

�̂�𝑡(𝑘|𝑘) = �̂�𝑡(𝑘|𝑘 − 1) + 𝐾𝑡(𝑘)𝑒𝑧𝑡(𝑘|𝑘 − 1)   (2.68) 

𝐾𝑡(𝑘) = 𝐶𝑡
+𝑑𝑖𝑎𝑔[(|𝑒𝑧𝑡(𝑘|𝑘 − 1)|𝐴𝑏𝑠 + 𝛾𝑡|𝑒𝑧𝑡(𝑘 − 1|𝑘 − 1)|𝐴𝑏𝑠)

∘ 𝑠𝑎𝑡 (
𝑒𝑧𝑡(𝑘|𝑘 − 1)

𝜓𝑡
)][𝑑𝑖𝑎𝑔(𝑒𝑧𝑡(𝑘|𝑘 − 1))]

−1 

(2.69) 

The updated state covariance associated with each track is calculated as below [17]: 

𝑃𝑡(𝑘|𝑘) = 𝛽0𝑡(𝑘)𝑃𝑡(𝑘|𝑘 − 1) + [1 − 𝛽0𝑡(𝑘)]𝑃𝑡
∗(𝑘|𝑘) + �̃�𝑡(𝑘)   (2.70) 

where 𝑃𝑡
∗(𝑘|𝑘) is the SVSF covariance matrix computed as below [17]: 

𝑃𝑡
∗(𝑘|𝑘) = [𝐼 − 𝐾𝑡(𝑘)𝐶𝑡(𝑘)]𝑃𝑡(𝑘|𝑘 − 1)[𝐼 − 𝐾𝑡(𝑘)𝐶𝑡(𝑘)]

′

+ 𝐾𝑡(𝑘)𝑅𝑡(𝑘)𝐾𝑡′(𝑘) 
(2.71) 

and �̃�(𝑘) is an added uncertainty because of the associations uncertainties, as follows [29]: 
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�̃�𝑡(𝑘) = 𝐾𝑡(𝑘)[∑ 𝛽𝑖𝑡(𝑘)�̃�𝑖𝑡(𝑘)�̃�𝑖𝑡(𝑘)
′𝑚(𝑘)

𝑖=1 − �̃�𝑡(𝑘)�̃�𝑡(𝑘)
′]𝐾𝑡(𝑘)  (2.72) 

A posteriori measurement error for each track is calculated as follows: 

𝑒𝑧𝑡(𝑘|𝑘) = [𝐼 − 𝐶𝑡(𝑘)𝐾𝑡(𝑘)]𝑒𝑧𝑡(𝑘|𝑘 − 1) (2.73) 

2.2.6 Simulation Problem and Results 

A. Problem Setup 

A simple near constant velocity model is implemented as per [24]. There are four states in 

total, related to the target’s position and velocity (𝑥 and 𝑦 directions), defined as follows: 

𝑥 = [𝜉 𝜂 �̇� �̇�]. Note that 𝜉 and 𝜂 are the position in two Cartesian directions, and �̇� and �̇� 

are the corresponding velocities. This model assumes that the accelerations of the target 

between two sequential samples are constant and are drawn from a discrete-time zero mean 

white noise. The near constant velocity model is defined as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑣(𝑘) (2.74) 

where the system and process noise gain matrices are defined by: 

𝐴 = [

1 0
0 1

𝑇𝑠 0
0 𝑇𝑠

0 0
0 0

1  0
0  1

] (2.75) 

𝐵 =  

[
 
 
 
𝑇𝑠
2/2 0

0 𝑇𝑠
2/2

𝑇𝑠       0
0        𝑇𝑠 ]

 
 
 

 (2.76) 
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The white acceleration noise is defined as follows: 

𝑄 = 𝑐𝑜𝑣{𝑣(𝑘)} = [
𝜎𝑣
2 0

0 𝜎𝑣
2]      (2.77) 

The measurement function, matrix, and noise covariance are defined respectively as 

follows: 

𝑧(𝑘) = 𝐶𝑥(𝑘) + 𝑤(𝑘) (2.78) 

𝐶 = [
1 0
0 1

0 0
0 0

] (2.79) 

𝑅 = 𝑐𝑜𝑣{𝑤(𝑘)} = [
𝜎𝑤
2 0

0 𝜎𝑤
2] (2.80) 

The JPDA-KF and JPDA-SVSF algorithms were implemented on two scenarios, with three 

targets under the presence of clutter. The parameter values used for the simulations are 𝑇𝑠 =

0.5 𝑠 and 𝑃𝐷 = 0.9. The clutter is assumed to have a spatial uniform distribution, and the 

number of cluttered measurements is generated by a Poisson’s distribution of 𝜆 = 10−4. 

The process noise variance is 𝜎𝑣
2 = 12, and the measurement noise variance is 𝜎𝑤

2 = 32. 

B. Estimation Results 

For the normal scenario, three targets are tracked and clutter occurs at 𝑇 =  229 𝑠𝑒𝑐 and 

𝑇 =  294 𝑠𝑒𝑐. The total simulation length is 300 𝑠ec. For a well-defined smoothing 

boundary layer (i.e., implementing the time-varying boundary layer presented in [17]), the 

JPDA-SVSF is able to match the performance of the JPDA-KF. This is shown in the 

following figures. 
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The RMSE errors for this scenario were computed across the three targets and are shown 

in the following table. Note that, for this case, the two filters yielded the same results. 

Table 2.4. RMSE Estimation Results – Normal Case 

 Car #1 Car #2 Car #3 

JPDA KF JPDA 

SVSF 

JPDA KF JPDA 

SVSF 

JPDA KF JPDA 

SVSF 

𝜉 10.09 10.31 9.92 10.15 12.38 12.57 

𝜂 10.16 10.39 10.33 10.55 5.70 6.08 

�̇� 4.57 5.21 4.57 5.12 4.61 5.17 

�̇� 4.59 5.13 4.60 5.02 4.55 5.11 
 

 

Figure 2.7 JPDA-KF and JPDA-SVSF estimation results: normal case 

The second scenario looked at the case of modeling errors or uncertainties. To further 

investigate the robustness of the proposed JPDA-SVSF strategy, modeling uncertainty is 

injected at 𝑡 = 75𝑆 for a duration of 10 sampling times into the simulation in the form of 

changes in the state transition matrix of the model. Figure 2.8 shows the simulation results 

for the level of modeling uncertainty of 3% (𝐴𝑢𝑛𝑐 = 1.03𝐴), where JPDA-SVSF provides 

a more stable estimate, as the results did not diverge from the true state trajectory. 
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Figure 2.8 JPDA-KF and JPDA-SVSF estimation results (error case) 

The RMSE under this scenario was recalculated, and is shown in the following table. The 

position RMSEs of JPDA-SVSF method are considerably smaller than of JPDA-KF 

method.  

Table 2.5. RMSE Estimation Results –uncertainty of 3% 

 Car #1 Car #2 Car #3 

JPDA KF JPDA 

SVSF 

JPDA KF JPDA 

SVSF 

JPDA KF JPDA 

SVSF 

𝜉 86.88 10.31 75.21 10.23 25.79 12.49 

𝜂 21.03 10.29 28.65 10.57 18.45 6.24 

�̇� 5.88 5.91 5.43 5.41 5.61 5.77 

�̇� 5.46 5.55 4.98 5.01 5.49 5.61 

Furthermore, increasing the modeling uncertainty causes the JPDA-KF strategy to fail. 

While due to the unique switching action of the SVSF, the JPDA-SVSF method maintained 

its tracking capability and was able to provide a good estimate with up to 8% uncertainty 

in the system matrix. 
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2.2.7 Conclusion 

This paper introduced a new multi-target tracking strategy referred to as the JPDA-SVSF. 

A multi target tracking simulation was studied to compare the well-studied JPDA-KF 

algorithm with the JPDA-SVSF. Both methods were able to perform a good target tracking 

in normal cases. However, the proposed JPDA-SVSF outperforms JPDA-KF in the case of 

modeling uncertainty in the system matrix, and yielded a more robust estimation method. 

Future work will build upon the results of this paper, and will study more challenging multi-

target tracking scenarios, including interfering targets. Also, some unique characteristics of 

SVSF method, such as extra indicators of performance will be formulated to improve the 

data association probabilities. 

 

2.3 Automotive Tracking Technique Using a New IMM based PDA-

SVSF (Conference paper c) 

2.3.1 Abstract 

Car tracking algorithms are important for a number of applications, including self-driving 

cars and vehicle safety systems. The probabilistic data association (PDA) algorithm, in 

conjunction with Kalman Filter (KF), and interacting multiple model (IMM) are well 

studied, specifically in the aero-tracking applications. This paper studies single targets 

while performing maneuvers in the presence of clutter, which is a common scenario for 

road vehicle tracking applications. The relatively new smooth variable structure filter 

(SVSF) is demonstrated to be robust and stable filtering strategy under the presence of 
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modeling uncertainties. In this paper, SVSF based PDA technique is combined with IMM 

method. The new method, referred to as IMM-PDA-SVSF is simulated under several 

possible car motion scenarios. Also, the algorithm is tested on a real experimental data 

acquired by GPS device. 

2.3.2 Introduction 

The key challenge in the advanced driver assistance systems is the detection of the object 

of interest on the road as well as estimation of its quantities of interest such as position and 

velocity. Tracking a maneuvering target in the presence of clutter is a challenging part of 

these systems. However, generally clutter originated measurements are not easily 

distinguished from target originated measurements. A number of data association methods 

have been proposed to deal with this problem [1, 4]. These techniques range from the 

probabilistic data association (PDA) [5] to more computationally demanding multiple 

hypothesis tracking (MHT) [55, 1, 32].  The PDA, as an all neighbour association 

algorithm, considers all feasible measurement-to-track association events to calculate the 

association probability of each track [5]. In the derivation of PDA, the tracks are assumed 

to have already been initialized and thus another algorithm is used for track initialization 

[1, 56].  A derivation of the PDA without this assumption, referred to as the integrated 

probabilistic data association (IPDA) algorithm, is proposed in [28]. The extensions of 

PDA and IPDA methods for multiple-target tracking are respectively referred to as the joint 

probabilistic data association (JPDA) [31] and the joint integrated probabilistic data 

association (JIPDA) [53]. These methods calculate the association probabilities in a jointly 

manner across all the neighbouring targets. Once the measurement-to-track association is 

completed, the tracks are updated with KF [17] strategy. For each hypothesis, an 

association probability is calculated, which is used to construct a combined innovation term 

to be used by the KF [4]. The KF and its variants are the most popular estimation methods 
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[7, 8]. Another estimation strategy referred to as the smooth variable structure filter (SVSF) 

was proposed in [15]. SVSF is a recursive predictor-corrector filter based on the sliding 

mode concept [17]. Robustness, multiple indicators of performance (innovation vector and 

chattering term), and the ability to identify the source of uncertainty are some of the 

characteristics of the SVSF [15]. In particular, due to its inherent robustness to modeling 

uncertainties and disturbances, the SVSF is an appropriate candidate for target tracking in 

clutter problems. In [54] a formulation of SVSF based PDA, namely PDA-SVSF, is 

proposed for single target tracking in the presence of measurement origin uncertainty. An 

extension of the method for multiple-target tracking is proposed in [57].  

Typical targets can maneuver; therefore beside data association, target trajectory estimation 

can be a challenge. The tracking filter should be able to accurately estimate the maneuvers. 

The interacting multiple model (IMM) algorithm is a computationally efficient method 

which is extensively used for tracking maneuvering targets [20]. There are a number of 

dynamic models in the IMM algorithm which together can describe the behaviour of the 

target in time [6]. A number of methods have been proposed to track maneuvering targets 

in clutter. These algorithms typically use a combination of the IMM and the PDA or one of 

its extensions [56, 58, 23] . In this paper, a new SVSF based maneuvering target tracking 

in clutter is presented. The IMM-SVSF method has been proposed in [17] and demonstrated 

to be efficient in a fault detection application in [59]. The proposed method of this paper, 

uses the new formulation of SVSF which considers the data association uncertainty as well 

as the target maneuver.  

In section 2.3.3 the SVSF based data association algorithm is summarized. The proposed 

IMM-PDA-SVSF method is derived in section 2.3.4. The method is evaluated using a 

scenario designed to include different car motion patterns and also a set of experimental 

GPS data in section 2.3.5. The paper is summarized and concluded in section 2.3.6.  
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2.3.3 PDA-SVSF 

It is assumed that the system can be described based on two models: system model (2.81) 

which describes the evolution of the states, and measurement model (2.82) which relates 

the measurements to states. 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣𝑘 (2.81) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑤𝑘 (2.82) 

Where 𝑥𝑘 is the state vector, 𝐴 is the system matrix, 𝐵 is the input matrix, 𝑧𝑘 is the 

measurement vector, 𝐻 is the measurement matrix, 𝑣𝑘 and 𝑤𝑘 are zero mean white Gaussian 

process and measurement noises and their corresponding covariance matrices are  𝑄𝑘 and 

𝑅𝑘. The smooth variable structure filter (SVSF) is a relatively new state and parameter 

estimation technique [17]. The stability of the SVSF is achieved by selecting a corrective 

gain in a way that in each step the error in the estimated states decreases [15]. By 

introduction of a hyper-plane, which is a projection of true state trajectory, and application 

of the corrective gain the estimations are forced to go toward this region, and then remain 

in between [15]. The basic concept is shown in the following figure. 

 

Figure 2.9. SVSF estimation concept [17] 
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The SVSF estimation consists of the prediction stage ((2.83) to (2.87)) and update stage 

((2.88) to (2.90)) [17]. The a priori state vector, covariance matrix and measurement vector 

are respectively calculated as follows. 

�̂�𝑘|𝑘−1 = 𝐴�̂�𝑘−1|𝑘−1 + 𝐵𝑢𝑘 (2.83) 

𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴
𝑇 + 𝑄𝑘 (2.84) 

�̂�𝑘|𝑘−1 = 𝐻�̂�𝑘|𝑘−1 (2.85) 

The a priori or predicted measurement error is also calculated as below. 

𝑒𝑧,𝑘|𝑘−1 = 𝑧𝑘 − �̂�𝑘|𝑘−1 (2.86) 

The SVSF gain is calculated as follows [17]: 

𝐾𝑘
𝑆𝑉𝑆𝐹 = 𝐻+𝑑𝑖𝑎𝑔 [(|𝑒𝑧,𝑘|𝑘−1|𝐴𝑏𝑠

+ 𝛾|𝑒𝑧,𝑘−1,𝑘−1|𝐴𝑏𝑠)

∘ 𝑠𝑎𝑡 (
𝑒𝑧,𝑘|𝑘−1

𝛹
)] [𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘|𝑘−1)]

−1
 

(2.87) 

The SVSF gain is a function of the a priori and a posteriori measurement error vectors 

𝑒𝑧,𝑘|𝑘−1 and 𝑒𝑧,𝑘−1|𝑘−1, the smoothing boundary layer widths Ψ, the ‘SVSF’ memory or 

convergence rate 𝛾 with elements 0 < 𝛾𝑖𝑖 ≤ 1, and the linear measurement matrix 𝐻 [17]. 

The SVSF state vector and covariance matrix are updated as follows: 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘
𝑆𝑉𝑆𝐹𝑒𝑧,𝑘|𝑘−1  (2.88) 

𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘
𝑆𝑉𝑆𝐹𝐻]𝑃𝑘|𝑘−1 (2.89) 
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However, note that the a posteriori measurement error needs to be calculated as per (2.90). 

This value is used in the next time step for gain calculation. 

𝑒𝑧,𝑘|𝑘 = 𝑧𝑘 − �̂�𝑘|𝑘 (2.90) 

To deal with the data association uncertainty, the formulation of the PDA-SVSF is 

presented [54]. The PDA-SVSF is basically formulated for tracking single target in clutter. 

A number of measurements around the predicted measurement ((2.85)) of the track are 

validated based on an elliptical region defined for stochastic distance to the predicted 

measurements as follows [5]. 

𝒱𝑘,𝜗 = {𝑧: [𝑧 − �̂�𝑘|𝑘−1]
′
𝑆𝑘
−1[𝑧 − �̂�𝑘|𝑘−1] ≤ 𝜗} (2.91) 

where 𝜗 is the gate threshold corresponding to the gate probability with which the actual 

measurement lies within the gate (if detected), and 𝑆𝑘 is the covariance of the innovation 

corresponding to the actual measurement. 

Then a priori state estimate, a priori state covariance, and the SVSF gain are respectively 

calculated using equations (2.83), (2.84) and (2.87). To calculate the a priori measurement 

error, the following procedure is used. 

The 𝑛𝑚 candidate measurements at time 𝑘 are named as 𝑧𝑖 , 𝑖 = 1,… , 𝑛𝑚. Therefore, one 

can define 𝑛𝑚,𝑘 + 1 distinct association hypotheses at the time 𝑘 for these candidate 

measurements as follows [1, 54]: 

ℋ𝑘
𝑖 = {𝑧𝑖  𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑 } (2.92) 

ℋ𝑘
0 = {𝑛𝑜𝑛𝑒 𝑎𝑟𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑} (2.93) 
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Then the estimate can be written as follows: 

�̂�𝑘|𝑘 = ∑ �̂�𝑘|𝑘
𝑖 𝛽𝑘

𝑖

𝑛𝑚,𝑘

𝑖=0

 (2.94) 

where �̂�𝑘|𝑘 
i  is the updated state given that the 𝑖th hypothesis is correct and 𝛽𝑘

i  is the 

corresponding association probability and calculated as follows [5, 4, 54]. 

𝛽𝑘
𝑖 =

{
 
 

 
  

1 − 𝑃𝐷𝑃𝐺

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘
𝑖𝑛𝑚(𝑘)

𝑖=1

,

     
𝑖 = 0

ℒ𝑖(𝑘)

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘
𝑖𝑛𝑚(𝑘)

𝑖=1

,   𝑖 = 1, … , 𝑛𝑚,𝑘

 (2.95) 

where 𝑃𝐺  is the gate probability [4], 𝑃𝐷 is the target detection probability and ℒ𝑘
𝑖  is the 

likelihood ratio of the measurement 𝑧𝑘
𝑖 , if it is originated from the target, which is calculated 

as follows. 

ℒ𝑘
𝑖 =

𝒩[�̃�𝑘
𝑖 ; �̂�𝑘|𝑘−1, 𝑆𝑘]𝑃𝐷

𝜆
 (2.96) 

where 𝜆 is the spatial density of the Poisson distribution describing the number of clutter 

measurements and �̃�𝑘
𝑖 = 𝑧𝑘

𝑖 − �̂�𝑘|𝑘−1  [5]. The combined innovation, which is used as a 

priori measurement error, is calculated as a weighted sum of 𝑛𝑚,𝑘 validated measurements: 

�̃�𝑘 = ∑ 𝛽𝑘
𝑖 �̃�𝑘
𝑖

𝑛𝑚,𝑘

𝑖=1

 (2.97) 
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Then, the states are estimated using (2.88), where 𝑒𝑧,𝑘|𝑘−1 = �̃�k. The updated covariance is 

calculated as follows [5]. 

𝑃𝑘|𝑘 = 𝛽𝑘
0𝑃𝑘|𝑘−1 + [1 − 𝛽𝑘

0]𝑃𝑘|𝑘
∗ + �̃�𝑘  (2.98) 

Note that 𝑃𝑘|𝑘
∗  is calculated by (2.89) and �̃�k is an increment as an effect of uncertain 

associations and is computed by [5]: 

�̃�𝑘 = 𝐾𝑘
𝑆𝑉𝑆𝐹[ ∑ 𝛽𝑘

𝑖 �̃�𝑘
𝑖 �̃�𝑘
𝑖 ′

𝑛𝑚(𝑘)

𝑖=1

− �̃�𝑘�̃�𝑘′]𝐾𝑘
𝑆𝑉𝑆𝐹 (2.99) 

As described in [54], the a posteriori measurement error is calculated as follows. 

𝑒𝑧,𝑘|𝑘 = [𝐼 − 𝐻𝑘𝐾𝑘
𝑆𝑉𝑆𝐹]𝑒𝑧,𝑘|𝑘−1 (2.100) 

2.3.4 IMM-PDA-SVSF 

The fundamental assumption of IMM-based tracking methods is that the target trajectory 

can be explained at any time by one of a finite number of models. Each of these models 

yields a covariance, or estimated state error which is the basis for the estimator to select a 

model [6]. The interacting multiple model (IMM) estimator is demonstrated to be an 

efficient and computationally acceptable method, in which there is a filter for each of the 

models. Each filter is initialized based on the probability that its corresponding model is in 

effect [6]. The second assumption of the IMM is that the dynamic model evolves as a 

Morkov chain with given transition probabilities [6].  

The IMM algorithm in its original form does not consider the problem of measurement 

origin uncertainty, i.e. in the derivation of IMM, it is assumed that there is only one 
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measurement received and that measurement is originated from the target.  To consider the 

clutter originated measurements, it has been proposed in this paper to replace each of the 

model matched filters in IMM configuration by a PDA-SVSF. The resulting algorithm will 

be referred to as the IMM-PDA-SVSF algorithm. Although the IMM-PDA-SVSF 

algorithm is obtained by combining the IMM and the PDA-SVSF methods, some 

considerations should be taken into account which do not arise in either the IMM or in the 

PDA-SVSF.  

Assuming that the PDA-SVSF track is formed and there are 𝑟 imbedded models, the IMM-

PDA-SVSF algorithm includes the following steps [1, 54]: 

1. Computation of the mixed initial conditions for the model matched filter 𝑖: 

�̂�𝑘−1|𝑘−1
0𝑖 =∑ �̂�𝑘−1|𝑘−1

𝑗
𝜇𝑘−1|𝑘−1
𝑗|𝑖

𝑟

𝑗=1
     𝑖 = 1, … , 𝑟 (2.101) 

where 𝜇𝑘−1|𝑘−1
𝑗|𝑖

=
𝑝𝑗𝑖𝜇𝑘−1

𝑗

∑ 𝑝𝑗𝑖𝜇𝑘−1
𝑗𝑟

𝑗=1

,𝑝𝑗𝑖 are model switching probabilities and 𝜇𝑘−1
𝑗

 are the model 

probabilities at the time 𝑘 − 1. 

𝑃𝑘−1|𝑘−1
0𝑖 =∑ 𝜇𝑘−1|𝑘−1

𝑗|𝑖
{𝑃𝑘−1|𝑘−1

𝑗
+ (�̂�𝑘−1|𝑘−1

𝑗
− �̂�𝑘−1|𝑘−1

0𝑖 )(�̂�𝑘−1|𝑘−1
𝑗

𝑟

𝑗=1

− �̂�𝑘−1|𝑘−1
0𝑖 )′} 

(2.102) 

2. Calculation of likelihood function for each of model-matched filters in parallel and 

independently (This step is one of the key differences between IMM-SVSF and IMM-PDA-

SVSF algorithms): 
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𝛬𝑘
𝑖 = 𝜆(1 − 𝑃𝐷𝑃𝐺) +∑ 𝒩[�̃�𝑘

𝑖 ; �̂�𝑘|𝑘−1, 𝑆𝑘]𝑃𝐷
𝑛𝑚(𝑘)

𝑗=1
 (2.103) 

3. Calculation of association probabilities as per (2.95), combined innovation as per (2.97), 

and updating each PDA-SVSF using (2.88) and (2.98) yielding �̂�𝑘|𝑘
𝑖  and 𝑃𝑘|𝑘

𝑖 . 

4. Updating the model probabilities: 

𝜇𝑘
𝑖 =

𝛬𝑘
𝑖 ∑ 𝑝𝑗𝑖𝜇𝑘−1

𝑗𝑟
𝑗=1

∑ 𝛬𝑘
𝑖𝑟

𝑖=1 ∑ 𝑝𝑗𝑖𝜇𝑘−1
𝑗𝑟

𝑗=1

 (2.104) 

5. Calculation of combined model-conditioned state estimate and covariance (for output 

purposes): 

𝜇𝑘
𝑖 =

𝛬𝑘
𝑖 ∑ 𝑝𝑗𝑖𝜇𝑘−1

𝑗𝑟
𝑗=1

∑ 𝛬𝑘
𝑖𝑟

𝑖=1 ∑ 𝑝𝑗𝑖𝜇𝑘−1
𝑗𝑟

𝑗=1

 (2.105) 

𝑃𝑘|𝑘 =∑ 𝜇𝑘
𝑖 {𝑃𝑘|𝑘

𝑖 + (�̂�𝑘|𝑘
𝑖 − �̂�𝑘|𝑘)(�̂�𝑘|𝑘

𝑖 − �̂�𝑘|𝑘)′}
𝑟

𝑖=1
 (2.106) 

2.3.5 Simulation and Results 

Generally, car motion models can be divided into two categories: 

The near constant velocity model [6, 40] describes the uniform motion and captures both 

constant velocity and constant acceleration motions. There are four states, related to the 

target position and velocity defined as 𝑥 = [𝜉 𝜂 �̇� �̇�]′. Note that ξ and η are the position in 

two Cartesian directions, and ξ̇ and η̇ are the corresponding velocities. This model assumes 

that the accelerations of the target between two sequential samples are constant and are 
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drawn from a discrete-time zero mean white Gaussian noise. The motion model is defined 

as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑣(𝑘) (2.107) 

where the system and process noise gain matrices are defined by: 

𝐴 = [

1 0
0 1

𝑇𝑠 0
0 𝑇𝑠

0 0
0 0

1  0
0  1

]      ,    𝐵 =  

[
 
 
 
𝑇𝑠
2/2 0

0 𝑇𝑠
2/2

𝑇𝑠       0
0        𝑇𝑠 ]

 
 
 

 (2.108) 

The white acceleration noise is defined as follows: 

𝑄 = 𝑐𝑜𝑣{𝑣(𝑘)} = [
𝜎𝑣
2 0

0 𝜎𝑣
2] (2.109) 

The near constant speed turn model [6, 40] describes maneuvering car moving at a constant 

turn rate.  The state vector is 𝑥 = [𝜉 𝜂 �̇� �̇� 𝜔]. Note that ξ and η are the position in two 

Cartesian directions, and ξ̇ and η̇ are the corresponding velocities and 𝜔 is the angular 

velocity. The motion model is defined as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑣(𝑘) (2.110) 

where the system and process noise gain matrices are defined by: 
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(2.111) 

The remaining equations are the same as the near constant velocity model. 

The various driving patterns of a vehicle on a road, as depicted in Figure 1.8, include 

straight line and curve, cut-in-out, U-turn and interchange [40].  

For the purpose of using the IMM method, the hybrid system will use the near constant 

velocity model for uniform motion, and the near constant speed turn model for 

maneuvering motion [6, 40]. To track a maneuvering target in the presence of clutter, the 

proposed IMM-PDA-SVSF method has been used. The SVSF is used for uniform motion 

model, while the EK-SVSF [17] is used for the maneuvering model.  
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Straight Line and Curve Cut-In-Out 

 

 

U-Turn Interchange 

Figure 2.10 Various driving patterns of a vehicle [40] 

The simulation scenario is designed based on four aforementioned driving patterns as 

follows: 

The car’s initial state is [𝜉0 = −1000 𝑚 , 𝜂0 = 0 , �̇�0 = 33 𝑚/𝑠 , �̇�0 = 0] . It performs a 

non-maneuvering near constant velocity motion between 0 𝑠 and 115 𝑠 , a “straight line 

and curve” maneuver between  116 𝑠 and 155 𝑠, a non-maneuvering near constant velocity 

motion between 156 𝑠 and 237 𝑠, a “cut-in-out” maneuver between 238 𝑠 and 283 𝑠, a 

non-maneuvering near constant velocity motion between 284 𝑠 and 343 𝑠 , an 

“interchange” maneuver between 344 𝑠 and 378 𝑠, a “straight line and curve” maneuver 

between 379 𝑠 and 399 𝑠, a non-maneuvering near constant velocity motion between 400 𝑠 

and 543 𝑠, a “U-turn” maneuver between 544 𝑠 and 559 𝑠, and a non-maneuvering near 

constant velocity motion between  560 𝑠 and 800 𝑠. Also, the parameters’ values used for 

this set of simulations are 𝑇𝑠 = 1 𝑠 and 𝑃𝐷 = 0.95. The clutter is assumed to have a spatial 
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uniform distribution, and the number of cluttered measurements is generated by a Poisson’s 

distribution with parameter of 𝜆 = 10−4. The process noise variance is set to be 𝜎𝑣
2 = 22, 

and the measurement noise variance is 𝜎𝑤
2 = 32. 

Figure 2.11, Figure 2.12, and Figure 2.13 respectively illustrate estimated trajectories of 

the cars, estimated state variables, and uniform motion mode probabilities for the scenario. 

The simulation results compared the IMM-PDA-KF method and the IMM-PDA-SVSF in 

terms of the RMS of state estimation error (See Table 2.6).  

The IMM-PDA-SVSF provided a stable estimate, as the results did not diverge from the 

true state trajectory. Furthermore, when compared with the IMM-PDA-KF, the 𝑥-position 

RMSE of the IMM-PDA-SVSF was reduced by about 12.5%, and the 𝑦-position RMSE 

was reduced by about 16%. This is due to the strict assumptions of the KF that the system 

is known, while SVSF does not have this assumption and therefore is a more robust filtering 

strategy against the modeling uncertainties.  

The stability of the SVSF method comes from the special switching gain of the SVSF 

algorithm that is designed in a way that reduces the absolute value of the estimation error 

at each step. 

Table 2.6. RMS of state estimation error for simulation scenario comparing IMM-PDA-KF and 

IMM-PDA-SVSF 

State IMM-PDA-KF IMM-PDA-SVSF 

𝑥 36.57 32.00 

𝑦 10.24 8.58 

𝑣𝑥 5.05 4.38 

𝑣𝑦 3.57 4.04 
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Figure 2.11 The estimated trajectories for the IMM-PDA-KF and the IMM-PDA-SVSF 

 

Figure 2.12 The estimated states for the IMM-PDA-KF and the IMM-PDA-SVSF 

 

Figure 2.13 The uniform motion mode probabilities for the IMM-PDA-KF and the IMM-PDA-

SVSF 
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To further demonstrate the efficiency of the method, the algorithm is applied on a GPS data 

gathered from a path starting from McMaster University to the east Hamilton with the 

sample rate of 1 second (see Figure 2.14). This path resulted in a number of uniform 

motions and maneuvers [17]. Also, the clutter is artificially added to the data with a spatial 

uniform distribution, and the number of cluttered measurements is generated by a Poisson’s 

distribution of 𝜆 = 10−4. Figure 2.15, Figure 2.16, and Figure 2.17 respectively illustrate 

the trajectories, states, and mode probabilities comparing both the IMM-PDA-KF and the 

IMM-PDA-SVSF. The RMS of state estimation errors are presented in Table 2.7. The 

simulation results indicated that both algorithms have a reliable performance to track a 

maneuvering target. Furthermore, the IMM-PDA-SVSF when compared with the IMM-

PDA-KF, has slightly reduced the 𝑥-position RMSE and the 𝑦-position RMSE because of 

the robustness of the filtering method against the modeling uncertainties. 

 

Figure 2.14 The path where the GPS data is gathered 

Table 2.7. RMS of state estimation error for GPS data for IMM-PDA-KF and IMM-PDA-SVSF 

State IMM-PDA-KF IMM-PDA-SVSF 

𝑥 10.65 10.04 

𝑦 21.13 19.51 

𝑣𝑥 3.90 4.11 

𝑣𝑦 4.46 4.27 
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Figure 2.15 The estimated trajectories of GPS data for IMM-PDA-KF and IMM-PDA-

SVSF 

 

Figure 2.16 The estimated states of GPS data for IMM-PDA-KF and IMM-PDA-SVSF 

 

Figure 2.17 The uniform motion mode probabilities of IMM-PDA-KF and IMM-PDA-

SVSF for GPS data 
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2.3.6 Conclusion 

This paper introduced new formulation for the smooth variable structure filter (SVSF) for 

tracking the maneuvering target in the presence of clutter. The IMM-PDA-SVSF algorithm 

was introduced and described, and applied on a designed simulation problem consisted of 

several driving pattern, as well as an acquired GPS data. The results were compared with 

the popular KF based IMM-PDA strategy. It was determined that the SVSF-based target 

tracking strategies provided better results in terms of RMS error of the states. This is due 

to the inherent stability present in the SVSF caused by the switching effect of the gain. The 

future work will include the extension of the work for multiple maneuvering target tracking 

in clutter. 
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Chapter 3 

 

3 Generalized Covariance SVSF for Target 

Tracking in Clutter 

3.1 Abstract 

An important area of study for aerospace and electronic systems involves target tracking 

applications. To successfully track a target, state and parameter estimation strategies are 

used in conjunction with data association techniques. Even after 50 years, the Kalman filter 

(KF) remains the most popular and well-studied estimation strategy in the field. However, 

the KF adheres to a number of strict assumptions that leads to instabilities in some cases. 

The smooth variable structure filter (SVSF) is a relatively new method which is becoming 

increasingly popular due to its robustness to disturbances and uncertainties. This paper 

presents a new formulation of the SVSF. The probabilistic and joint probabilistic data 

association (PDA, JPDA) techniques are combined with the SVSF and applied on multi-

target tracking scenarios. In addition, a new covariance formulation of the SVSF is 

presented based on improving the estimation results of non-measured states. The results are 

compared and discussed with the popular KF method. 
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3.2 Introduction 

Target tracking algorithms have been used in a wide-variety of applications; ranging from 

air traffic control and monitoring, to data processing of medical images [1]. Most recently, 

target tracking systems are growing in popularity in the area of automotive research. For 

example, intelligent and cognitive vehicles make use of target tracking algorithms for active 

safety systems and advanced driver assistance systems (ADAS) [60, 61, 2, 3]. In 

surveillance and monitoring systems, the fundamental role of tracking algorithms is to 

interpret the surrounding environment, which typically consists of noise and other 

disturbances, using sensor information in an effort to form target tracks and estimates [1, 

30]. 

Data association algorithms are an important component in multi-target tracking (MTT) 

scenarios, especially when handling measurements with uncertain or complex origins. Data 

association algorithms categorize measurements from various sources into target-

originated and clutter-originated classifications. The algorithms differentiate measurements 

belonging to different targets of interest [5]. A comprehensive survey of several data 

association methods can be found in [1] and [30]. 

There are a number of different data association algorithms. The standard nearest neighbour 

filter (SNN), which uses statistical distance to predict and associate measurements to tracks, 

is considered one of the simplest algorithm [4]. One of the most popular technique is the 

probabilistic data association filter (PDA) [5]. The PDA also has a number of extensions, 

like the joint probabilistic data association filter (JPDA) [31]. The PDA is a type of all-

neighbour data association method. It considers all feasible measurement-to-track 

association hypotheses, and calculates the association probabilities for each track [5, 29]. 

In deriving the PDA, it is assumed that the tracks have already been initialized. Hence, 
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another algorithm must be used to initialize the tracks [1, 56]. A derivation of the PDA 

without track initialization was proposed in [28]. This method, referred to as the integrated 

probabilistic data association (IPDA) technique, provides the data association probabilities 

as well as track existence probabilities. The PDA was originally formulated for single-

target tracking in the presence of clutter. A number of PDA’s may be utilized in parallel 

for multiple-target tracking [5]. Joint probabilistic data association (JPDA) is an extension 

of PDA for multiple-target tracking. It has improved performance when target trajectories 

are interfering, thereby increasing the tracking complexity [31]. The main difference 

between PDA and JPDA is the calculation procedure of association probabilities. In JPDA, 

the association probabilities are jointly calculated across the previously clustered targets in 

a cluster [31]. For multiple targets, the IPDA has been extended and is referred to as the 

joint integrated probabilistic data association (JIPDA) [53]. 

A multiple hypothesis tracker (MHT) was presented in 1979 [32]. In this strategy, the 

received measurements of each frame are assigned to the initialized targets, new targets, or 

false alarms. This algorithm relies on the enumeration of all measurement-to-track 

assignments, and then pruning and gating to limit the set of feasible associations. There is 

a risk of elimination of the correct measurement sequences [62]. In probabilistic multiple 

hypothesis tracking (PMHT), the measurements are not assigned to specific tracks; the 

probability of each measurement belonging to each track is calculated using a Bayesian 

approach [33]. The PMHT estimates the target states and measurement-to-track association 

probabilities in a jointly manner; this way, PMHT avoids hard measurement to track 

assignment decisions [33]. The PMHT is implemented for maneuvering target tracking in 

[63] on the basis of hidden Markov chain model-switch. Also, a thorough review of the 

advances in PMHT and a generalized version of it is presented in [34]. 
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An alternative approach (to MHT, JPDAF, and PMHT) is a method based on random finite 

set concepts. In this approach, the multiple targets and observations are treated as a set-

valued state and a set-valued observation, respectively. The so-called probability 

hypothesis density (PHD) filter is a successful marriage of such approaches with finite set 

statistics (FISST) [64]. Several approximations of the PHD recursion are presented such as 

the sequential Monte Carlo PHD (SMCPHD) filter [35], the Gaussian mixture PHD 

(GMPHD) filter [37], and the Cardinalized PHD (CPHD) filter [36]. 

Once the measurement-to-track association is completed, the tracks are updated with an 

estimation strategy. The most common method employed is the Kalman filter (KF) and its 

variants [17]. In the case of maneuvering targets, an interacting multiple model (IMM) 

approach is used [20], which uses several filters in parallel for a finite number of target 

maneuvers [23, 65, 4]. For each hypothesis, an association probability is calculated which 

is used to construct a combined innovation term. This term is a weighted sum of all the 

innovations, and is used by the KF [4]. 

The KF was initially introduced in the 1960s, and remains one of the most popular 

estimation methods. It provides a statistically optimal solution for linear estimation 

problems [7, 8]. In [50, 11], the KF was modified in an effort to handle nonlinear systems 

and measurements, as well as to overcome modeling uncertainties and instability. In [15], 

another estimation strategy referred to as the smooth variable structure filter (SVSF) was 

proposed. It is a recursive predictor-corrector filter based on the sliding mode concept [17]. 

In the SVSF concept, the true trajectory of a system is projected as a hyper-plane, and to 

within an existence subspace. A corrective gain forces the estimated states towards the 

existence subspace. The estimates remain within this subspace by the use of a switching 

gain, which causes the estimates to chatter or go back-and-forth across the actual state 

trajectory [15]. Some interesting characteristics of the SVSF are its robustness, multiple 
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indicators of performance (innovation vector and chattering term), and the ability to 

identify the source of uncertainty [15]. In particular, due to its inherent robustness to 

modeling uncertainties and disturbances, the SVSF was applied to target tracking problems 

with the presence of clutter [54, 57]. The SVSF covariance formulation of [17] was 

implemented, and was shown to work well when each state has a corresponding 

measurement. Since the state error covariance matrix plays a pivotal role in data association 

procedures, a new SVSF state error covariance matrix that is a generalization for the cases 

when the number of measurements is less than the number of states, is presented in this 

paper. The new SVSF formulation, called covariance modified SVSF (CM-SVSF) was 

combined with the PDA and JPDA techniques, and are referred to as the CM-PDA-SVSF 

and CM-JPDA-SVSF, respectively. The simulation results are compared with the KF-based 

methods. Note that it is possible to make the KF more robust by implementing methods 

such as estimating the system matrix, or modeling the unknown system matrix as 

multiplicative noise to capture the modeling uncertainties. However, these approaches are 

equivalently applicable to the SVSF-based filtering. Furthermore, a comparison of the 

robustness of the SVSF to Kalman filter has been made in [66, 67, 68]. Therefore, in this 

paper, the original form of the KF is compared to the basic form of the CM-SVSF.  

In section 3.3, the KF and SVSF estimation strategies are summarized. Data association 

principles are discussed in Section 3.4. Section 3.5 introduces the proposed PDA-SVSF 

and JPDA-SVSF tracking algorithms, including the corresponding covariance derivations. 

In Section 3.6, a number of target tracking cases are studied. The estimation and tracking 

results are discussed and compared with the popular KF method. The paper is then 

summarized and concluded. 
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3.3 Estimation Strategies 

3.3.1 Kalman Filter 

The Kalman filter (KF) is an optimal estimation strategy and yields the minimum mean 

square error solution [6]. The KF accomplishes this task as it is formulated based on 

minimizing the trace of the state covariance matrix [51, 17]. Most estimation methods are 

based on a system and measurement model, described as follows: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣𝑘 (3.1) 

𝑧𝑘 = 𝐶𝑥𝑘 + 𝑤𝑘 (3.2) 

where 𝑣𝑘 and 𝑤𝑘 are zero mean white Gaussian process and measurement noises, with 

covariance matrices 𝑄𝑘 and 𝑅𝑘, respectively. 

The KF is a recursive predictor-corrector strategy, based on two main steps. The first step 

is referred to as the prediction step, and consists of the following equations: 

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑢𝑘 (3.3) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (3.4) 

The state estimates are first predicted in (3.3), and the corresponding state error covariance 

is calculated as per (3.4). These values are then used in the prediction or updated step, 

which consists of the following equations: 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐶
𝑇[𝐶𝑃𝑘+1|𝑘𝐶

𝑇 + 𝑅𝑘+1]
−1

 (3.5) 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1[𝑧𝑘+1 − 𝐶�̂�𝑘+1|𝑘] (3.6) 
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𝑃𝑘+1|𝑘+1 = [𝐼 − 𝐾𝑘+1𝐶]𝑃𝑘+1|𝑘 (3.7) 

Equations (3.3)-(3.7) summarize the KF solution for linear estimation problems. The 

process is repeated iteratively. For nonlinear estimation problems, many variations of the 

KF have been presented in literature [6, 10]. The most popular and simplest strategy is the 

extended KF (EKF), which linearizes the nonlinearities using a Jacobian matrix [11, 10]. 

3.3.2 Smooth Variable Structure Filter 

The smooth variable structure filter was first presented in 2007, and is a state and parameter 

estimation technique based on sliding mode concepts formulated in a predictor-corrector 

fashion [17, 15]. The basic concept is shown in the following figure. 

 

Figure 3.1 SVSF estimation concept [17]. 
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Similar to the KF strategy, the SVSF consists of two main steps: prediction and update. 

However, the main difference lies in how the SVSF gain is formulated. The prediction stage 

begins as follows: 

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑢𝑘 (3.8) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (3.9) 

The SVSF may also be formulated to handle nonlinear system and measurement functions 

[17]. The a priori or predicted measurement error is calculated by the following: 

𝑒𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 − �̂�𝑘+1|𝑘  (3.10) 

The SVSF gain is calculated next, as follows [17]: 

𝐾𝑆𝑉𝑆𝐹 = 𝐶
+𝑑𝑖𝑎𝑔 [(|𝑒𝑧,𝑘+1|𝑘|𝐴𝑏𝑠

+ 𝛾|𝑒𝑧,𝑘|𝑘|𝐴𝑏𝑠
)

∘ 𝑠𝑎𝑡(𝑒𝑧,𝑘+1|𝑘, 𝜓)] [𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]
−1

 
(3.11) 

where |. |𝐴𝑏𝑠 is the element-wise absolute value of the vector; the operator ∘ is the Schur 

product [69]; 𝑒𝑧,𝑘+1|𝑘 and 𝑒𝑧,𝑘|𝑘 are the a priori and the a posteriori measurement error 

vectors; 𝛾 is the ‘SVSF’ memory or convergence rate in the form of a diagonal matrix with 

elements 0 < 𝛾𝑖𝑖 ≤ 1; and 𝐶 the measurement matrix. The elements of the function 

𝑠𝑎𝑡(𝑣𝑒𝑐, 𝜓) are defined as 

𝑠𝑎𝑡𝑖(𝑣𝑒𝑐, 𝜓) = {
𝑣𝑒𝑐𝑖/𝜓𝑖         ;          |𝑣𝑒𝑐𝑖/𝜓𝑖| ≤ 1

𝑠𝑖𝑔𝑛(𝑣𝑒𝑐𝑖/𝜓𝑖);      |𝑣𝑒𝑐𝑖/𝜓𝑖| > 1
  (3.12) 
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where 𝜓𝑖 is the smoothing boundary layer widths in which 𝑖 refers to the 𝑖th width. For 

numerical stability, it is important to ensure that one does not divide by zero in (3.11). This 

can be accomplished using a simple 𝑖𝑓 statement with a very small threshold [17]. 

The update step is summarized by the following equations: 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑆𝑉𝑆𝐹𝑒𝑧,𝑘+1|𝑘 (3.13) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑆𝑉𝑆𝐹𝐶)𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑆𝑉𝑆𝐹𝐶)
𝑇 + 𝐾𝑆𝑉𝑆𝐹𝑅𝑘+1𝐾𝑆𝑉𝑆𝐹  (3.14) 

The a posteriori or updated measurement error needs to be calculated as per (3.15). This 

value is used in the next time step, and the process is repeated iteratively. 

𝑒𝑧,𝑘+1|𝑘+1 = 𝑧𝑘+1 − �̂�𝑘+1|𝑘+1 (3.15) 

The SVSF concept may be further described by the following two figures. The chattering 

effect shown in Figure 3.2 (a) allows the SVSF estimates to be robust to modeling 

uncertainties and disturbances. Essentially, given some initial estimate, by use of the SVSF 

corrective gain, the SVSF converges the estimated state trajectory to within an existence 

subspace around the true trajectory. The width of the existence subspace is a function of 

uncertain dynamics due to uncertainties. Once the estimated states are in that subspace, 

they switch back and forth across the true trajectory and will remaining within this subspace 

[15]. This is similar to the sliding mode concept, however it has been formulated in a 

predictor-correction fashion for state and parameter estimation.  

The smoothing boundary layer is a common strategy used in sliding mode control to reduce 

or remove chattering effects due to discontinuous corrective action, such as used in the 

SVSF. Here a boundary layer is introduced around the switching hyperplane such that 

discontinuous corrective action is made linearly variable with respect to the distance from 
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the switching hyperplane; while outside the boundary layer the full magnitude of the 

discontinuous action is applied. If the size of the smoothing boundary layer is greater than 

the existence subspace, then the chattering effects are removed as shown in Figure 3.2 (b) 

[15]. However, the smoothing boundary layer is effective by removing chattering but at the 

expense of robust performance. 

 

Figure 3.2 (a) Chattering effect of the SVSF gain, and (b) Smoothed estimated state trajectory 

[59]. 

3.4 Data Association Principles 

In target tracking scenarios, there are often more than one measurements associated with 

one target. This is due to the presence of false measurements of targets. Data association 

methods assign measurements to targets based on probabilities. The first step, in an effort 

to improve the computational efficiency, is to select the portion of the measurements that 
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are over a probability threshold. This is referred to as gating the measurements. The gate is 

defined as a region in which the associated measurement is highly probable to fall within. 

For the gated measurements, a decision is made in order to assign the measurement to a 

corresponding target. The simplest approach to assign gated measurements to targets is the 

standard nearest neighbour filter [4]. Other variations of this strategy include the global 

nearest neighbour filter, probabilistic nearest neighbour, and distributed sequential nearest 

neighbour [4, 1] 

The nearest neighbour filter associates the measurement with the smallest normalized 

distance squared among the validated measurements to the corresponding target [4]. The 

main drawback of this filter is that the nearest neighbour measurement may be based on 

clutter which are unwanted measurements. This problem may be overcome by 

implementing a probabilistic approach for data association, such as the probabilistic data 

association filter (PDAF) [29, 5]. The PDAF has several extensions, such as the joint 

probabilistic data association filter (JPDAF) for multiple target tracking, and the integrated 

PDAF (IPDAF) and integrated JPDAF (IJPDAF) which resolves track initiation and 

termination issues [31, 28, 53] . 

The PDAF is typically formulated for single target tracking in the presence of clutter based 

on the KF. Consider the following. Assume that the target track has been initialized. Also, 

define past information through time 𝑘 − 1 about the target trajectory in the form of a 

normal distribution as follows [5]: 

𝑝[𝑥𝑘|𝑍
𝑘−1] = 𝒩[𝑥𝑘; �̂�𝑘|𝑘−1, 𝑃𝑘|𝑘−1] (3.16) 

It is also assumed that if the target is detected, then, there is only one target originated 

measurement within the validation gate, and the remaining measurements are clutter 
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originated. The number of validated false measurements is Poisson distributed with spatial 

density 𝜆 and their spatial distribution is modeled as i.i.d.(independent and identically 

distributed) uniform [5]. The 𝑚𝑘 candidate measurements at time 𝑘 are named as 𝑧𝑖 , 𝑖 =

1, … ,𝑚𝑘. The set of available measurements at time 𝑘 are defined as 𝑍𝑘 = {𝑧1, … , 𝑧𝑚𝑘} ∪

𝑍𝑘−1. For 𝑚𝑘 validated measurements in time 𝑘, one can describe 𝑚𝑘 + 1 distinct 

association hypotheses as [1]: 

ℋ𝑘
𝑖 = {𝑧𝑖  𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑 }         (3.17) 

ℋ𝑘
0 = {𝑛𝑜𝑛𝑒 𝑎𝑟𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑} (3.18) 

where 𝑖 = 1,… ,𝑚𝑘. Since these hypothesis are mutually exclusive and exhaustive, the use 

of the total probability theorem is allowed [5, 6]. The minimum variance estimate is written 

as follows: 

�̂�𝑘|𝑘 = 𝔼{𝑥𝑘|𝑍
𝑘} = ∑ 𝔼{𝑥𝑘|ℋ𝑘

𝑖 , 𝑍𝑘}𝑃{ℋ𝑘
𝑖|𝑍𝑘}

𝑚𝑘
𝑖=0 = ∑ �̂�𝑘|𝑘

𝑖 𝛽𝑘
𝑖𝑚𝑘

𝑖=0  (3.19) 

where �̂�𝑘|𝑘
𝑖  is the updated state given that the 𝑖th hypothesis is correct and 𝛽𝑘

𝑖  is named 

association probability which is the conditioned probability of the 𝑖th hypothesis [29, 1]. 

These association probabilities are computed as follows [5, 4] : 

𝛽𝑘
𝑖 =

{
 
 

 
  

1 − 𝑃𝐷𝑃𝐺

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘
𝑖𝑚𝑘

𝑖=1

,

     
𝑖 = 0

ℒ𝑘
𝑖

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘
𝑖𝑚𝑘

𝑖=1

,   𝑖 = 1, … ,𝑚𝑘

 (3.20) 
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where 𝑖 = 0 is association probability of the hypothesis when none of the validated 

measurements is target originated, 𝑃𝐺  is gate probability [4], and 𝑃𝐷 is the target detection 

probability. In addition: 

ℒ𝑘
𝑖 =

𝒩[𝑧𝑘
𝑖 ; �̂�𝑘|𝑘−1, 𝑆𝑘]𝑃𝐷

𝜆
 (3.21) 

which is the likelihood ratio of the measurement 𝑧𝑘
𝑖 , assuming that it is target originated [5] 

. The combined innovation to be used in the filter update is calculated as a weighted sum 

of 𝑚𝑘 validated measurements, as follows: 

�̃�𝑘 =∑𝛽𝑘
𝑖 𝑒𝑧,𝑘+1|𝑘
𝑖

𝑚𝑘

𝑖=1

 (3.22) 

where 𝑒𝑧,𝑘+1|𝑘
𝑖 = 𝑧𝑘

𝑖 − 𝐶𝑥𝑘|𝑘−1 [30]. The states are updated with the standard KF 

estimation strategy. To update the covariance, the following equation is used: 

𝑃𝑘|𝑘 = 𝛽𝑘
0𝑃𝑘|𝑘−1 + [1 − 𝛽𝑘

0]𝑃𝑘|𝑘
∗ + �̃�𝑘  (3.23) 

where 𝑃𝑘|𝑘
∗  is the standard KF covariance matrix and �̃�𝑘 accounts for uncertainty increment 

due to association uncertainty. It is computed as follows [29]: 

�̃�𝑘 = 𝐾𝑘 [∑𝛽𝑘
𝑖 𝑒𝑧,𝑘+1|𝑘
𝑖 𝑒𝑧,𝑘+1|𝑘

𝑖 ′

𝑚𝑘

𝑖=1

− �̃�𝑘�̃�𝑘′] 𝐾𝑘′ (3.24) 

The PDAF is formulated for tracking single targets in the presence of clutter. In a multi-

target tracking scenario, a number of PDAFs may be used in parallel for several targets. 

However, in the presence of multiple interfering targets that share measurements, the 
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assumption of uniform distribution for all measurements which are not originated from the 

target is violated [5] [29]. To tackle this problem, the PDAF has been extended to a joint 

probabilistic data association (JPDA) formulation, which considers joint association 

hypotheses. PDAF and JPDAF algorithms utilize similar prediction and update equations. 

The main difference occurs in the calculation of association probabilities [5, 31]. In PDAF, 

the association probabilities are calculated separately for each target; whereas in the 

JPDAF, these probabilities are calculated jointly across all of the targets which share some 

validated measurements [5]. The conditional probabilities of the following joint events are 

evaluated as follows [5]: 

ℋ𝑘 =⋂ℋ𝑘
𝑗𝑖

𝑚𝑘

𝑖=1

         (3.25) 

where ℋ𝑘
𝑖𝑡𝑖 is the hypothesis that measurement 𝑗 originated from target 𝑡, 0 ≤ 𝑖 ≤ 𝑚𝑘 , 

0 ≤ 𝑡 ≤ 𝑇, 𝑘 is the time index, 𝑡𝑗 is the target that measurement 𝑗 is associated with, 𝑚𝑘 is 

the number of measurements, and 𝑇 is the number of targets [31]. The joint association 

probabilities are calculated as follows [5]: 

𝑃{ℋ𝑘|𝑍
𝑘} = 𝑐∏{𝜆−1ℒ𝑘

𝑡𝑖}
𝜏𝑖

𝑖

∏(𝑃𝐷
𝑡 )𝛿𝑡(1 − 𝑃𝐷

𝑡 )1−𝛿𝑡

𝑡

 (3.26) 

where 𝑃𝐷
𝑡  is the detection probability of target 𝑡; and 𝜏𝑖 and 𝛿𝑡 are the target detection and 

measurement association indicators, respectively [31]. In addition: 

ℒ𝑘
𝑡𝑖 = 𝒩[𝑧𝑘

𝑖 ; �̂�𝑘|𝑘−1
𝑡𝑖 , 𝑆𝑘

𝑡𝑖] (3.27) 
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The state estimation is carried out separately for each target using the marginal association 

probabilities [5, 31]. These probabilities are obtained from joint probabilities (1.31) by 

summing the joint hypotheses in which the marginal hypothesis of interest is included, as 

follows [5]: 

𝛽𝑘
𝑖𝑡 = 𝑃{ℋ𝑘

𝑖𝑡|𝑍𝑘} = ∑ 𝑃{ℋ𝑘|𝑍
𝑘}

ℋ:ℋ𝑖𝑡∈ℋ

 (3.28) 

These probabilities are used to create the combined innovation for each target, which is 

used during the filter update stage. 

3.5 Proposed Strategies 

In this section, novel approaches for simultaneous data association and filtering are 

investigated and presented. The approaches are based on a robust filter known as the SVSF 

[15]. This filter is based on sliding mode concepts and formulated in a predictor-corrector 

fashion, and is demonstrated to be robust to modeling errors and uncertainties [17, 15]. This 

section describes the so called PDA-SVSF for single target tracking in the presence of data 

association uncertainty [54]. In addition, its extension known as the JPDA-SVSF which 

handles multiple target tracking is presented [57]. The main difference between these data 

association filters with previously published versions is in the extraction of a new state 

covariance when handling fewer measurements than states. In [15], a similar strategy to 

Luenberger’s reduced order observer is used to estimate the non-measured states. In [17], 

a state covariance matrix is formulated for the SVSF for the case when there is full 

measurement matrix ((3.14)). However, to handle the cases when the number of 

measurements are fewer that the number of states, a generalized form of the SVSF 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

100 

 

covariance was needed. Particularly, the covariance matrix plays a key role in the data 

association procedure. Therefore, a new strategy for calculating the state covariance matrix 

is formulated and presented in this paper based on the SVSF formulation for fewer 

measurements than states. 

3.5.1 Covariance Modified PDA-SVSF (CM-PDA-SVSF) 

Consider system and measurement models (equations (3.1) and (3.2)) where the 

measurement matrix 𝐻 is of dimension 𝑚 × 𝑛, and 𝑚 < 𝑛 is the number of measured 

states, 𝑛 is the rank of the system, and also: 

𝐶 = [𝐶1 𝐶2] (3.29) 

where 𝐶1 is of dimension 𝑚×𝑚 and 𝐶2 is a null matrix of dimension 𝑚× (𝑛 −𝑚). 

The state space representation of the system can be partitioned, or if necessary transformed, 

into two parts as follows: 

𝑥𝑘 = [
𝑥𝑢𝑘
𝑥𝑙𝑘
] =

[
 
 
 
 
 
𝑥1𝑘
⋮
𝑥𝑚𝑘

𝑥𝑚+1𝑘
⋮
𝑥𝑛𝑘 ]

 
 
 
 
 

 (3.30) 

The segment 𝑥𝑢𝑘  is directly linked to the measurements and the related corrective gain is 

defined as per [17, 15]: 

𝐾𝑢𝑘+1 = 𝐶1
−1𝑑𝑖𝑎𝑔 [(|𝑒𝑧,𝑘+1|𝑘| + 𝛾|𝑒𝑧,𝑘|𝑘|) ∘ 𝑠𝑎𝑡 (

𝑒𝑧,𝑘+1|𝑘

𝜓𝑧
)] [𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]

−1
 (3.31) 
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where 𝛾 is an 𝑚×𝑚 diagonal matrix with elements such that 0 ≤ 𝛾𝑖𝑖 < 1. 

If the system model is completely observable and completely controllable, then a reduced 

order estimator is constructed for 𝑥𝑙𝑘. The state vector is transformed into a partitioned 

form so that the upper portion has an identity relationship with the measurement vector. 

𝑇𝑥𝑘 = [
𝑦𝑢𝑘
𝑦𝑙𝑘
] (3.32) 

where 𝑇 is a transformation matrix, then: 

𝑧𝑘 = 𝐼𝑦𝑢𝑘 + 𝑣𝑘  (3.33) 

A revised state vector is defined such that: 

𝑦𝑘 = [
𝑧𝑘
𝑦𝑙𝑘
] (3.34) 

The system model or equation can be restated in a partitioned form as follows: 

[
𝑧𝑘+1
𝑦𝑙𝑘+1

] = [
𝛷11 𝛷12
𝛷21 𝛷22

] [
𝑧𝑘
𝑦𝑙𝑘
] + [

�̅�1𝑘
�̅�2𝑘

] (3.35) 

where Φ = T−1𝐴𝑇 = [
Φ11 Φ12
Φ21 Φ22

], and �̅�𝑘 = 𝑇−1𝑤𝑘 − [
Φ11
Φ21

] 𝑣𝑘 = [
�̅�1𝑘
�̅�2𝑘

]. In this case, 

the corresponding output matrix is an identity matrix. As demonstrated in [15], the 

following equations may be obtained for the a posteriori and a priori errors of 𝑦𝑙𝑘: 

𝑒𝑦𝑙𝑘|𝑘 
= 𝛷12

−1𝑒𝑧,𝑘+1|𝑘 − 𝛷12
−1�̅�1𝑘  (3.36) 
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𝑒𝑦𝑙𝑘+1|𝑘 
= 𝛷22𝛷12

−1𝑒𝑧,𝑘+1|𝑘 − 𝛷22𝛷12
−1�̅�1𝑘 + �̅�2𝑘  (3.37) 

Using the proven corrective gain for the lower portion of the state vector as per [15], and 

the modified version of the gain as per [17], consider the following proposed corrective 

gain used to update the lower portion of the state vector: 

𝐾𝐿𝑘+1 =  𝑑𝑖𝑎𝑔 [(|𝛷22𝛷12
−1𝑒𝑧,𝑘+1|𝑘| + 𝛾|𝛷12

−1𝑒𝑧,𝑘+1|𝑘|)

∘ 𝑠𝑎𝑡 (
𝛷22𝛷12

−1𝑒𝑧,𝑘+1|𝑘

𝜓𝑦
)] [𝑑𝑖𝑎𝑔(𝛷22𝛷12

−1𝑒𝑧,𝑘+1|𝑘)]
−1

 

(3.38) 

The new SVSF state update equation is therefore defined as follows: 

𝑥𝑘 = [
𝑥𝑢𝑘+1|𝑘+1
𝑥𝑙𝑘+1|𝑘+1

] = [
𝑥𝑢𝑘+1|𝑘
𝑥𝑙𝑘+1|𝑘

] + [
𝐾𝑢𝑘+1 0

0 𝐾𝑙𝑘+1
] [

𝑒𝑧,𝑘+1|𝑘

𝛷22𝛷12
−1𝑒𝑧,𝑘+1|𝑘

] (3.39) 

Rearranging (3.39), gives the following simplified new SVSF state update equation: 

𝑥𝑘 = [
𝑥𝑢𝑘+1|𝑘+1
𝑥𝑙𝑘+1|𝑘+1

] = [
𝑥𝑢𝑘+1|𝑘
𝑥𝑙𝑘+1|𝑘

] + [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] 𝑒𝑧,𝑘+1|𝑘 (3.40) 

where 𝐾𝑙𝑘+1 = 𝐾𝐿𝑘+1Φ22Φ12
−1. 

The following presents the derivation of the complete a priori and a posteriori state error 

covariance equations for the SVSF with fewer measurements than states. In most cases, the 

system and measurement matrices are assumed to be known and time invariant. However, 

this assumption is not critical for the derivation of the SVSF [15]. The a priori state error 

covariance matrix is defined as follows: 
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𝑃𝑘+1|𝑘 = 𝐸{�̃�𝑘+1|𝑘�̃�𝑘+1|𝑘
𝑇 } (3.41) 

where �̃�𝑘+1|𝑘 = 𝐴�̃�𝑘+1|𝑘 + 𝑤𝑘.  Based on this, the a priori state error covariance matrix is 

defined by: 

𝑃𝑘+1|𝑘 = [
𝑃𝑘+1|𝑘
11 𝑃𝑘+1|𝑘

12

𝑃𝑘+1|𝑘
21 𝑃𝑘+1|𝑘

22 ] = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (3.42) 

Note that (3.42) is identical to the formulation in [17]. The a posteriori state error 

covariance matrix is defined as follows: 

𝑃𝑘+1|𝑘+1 = 𝐸{�̃�𝑘+1|𝑘+1�̃�𝑘+1|𝑘+1
𝑇 } (3.43) 

where �̃�𝑘+1|𝑘+1 = 𝑥𝑘+1 − �̂�𝑘+1|𝑘+1. Manipulation of (3.40) with knowledge of the 

measurement, measurement errors, and measurement model yields: 

[
�̃�𝑢𝑘+1|𝑘+1
�̃�𝑙𝑘+1|𝑘+1

] = [
�̃�𝑢𝑘+1|𝑘
�̃�𝑙𝑘+1|𝑘

] − [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] (𝐶1�̃�𝑢𝑘+1|𝑘 + 𝑣𝑘+1) (3.44) 

The a posteriori state covariance matrix is defined by: 

𝑃𝑘+1|𝑘+1 = [
𝑃𝑘+1|𝑘+1
11 𝑃𝑘+1|𝑘+1

12

𝑃𝑘+1|𝑘+1
21 𝑃𝑘+1|𝑘+1

22 ]

= [
𝐸{�̃�𝑢𝑘+1|𝑘+1�̃�𝑢𝑘+1|𝑘+1

𝑇 } 𝐸{�̃�𝑢𝑘+1|𝑘+1�̃�𝑙𝑘+1|𝑘+1
𝑇 }

𝐸{�̃�𝑙𝑘+1|𝑘+1�̃�𝑢𝑘+1|𝑘+1
𝑇 } 𝐸{�̃�𝑙𝑘+1|𝑘+1�̃�𝑙𝑘+1|𝑘+1

𝑇 }
] 

(3.45) 

The elements of the new a posteriori state error covariance are calculated as follows: 
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𝑃𝑘+1|𝑘+1
11 = 𝑃𝑘+1|𝑘

11 − 𝐾𝑢𝑘+1𝐶1𝑃𝑘+1|𝑘
11 − 𝑃𝑘+1|𝑘

11 𝐶1
𝑇𝐾𝑢𝑘+1

𝑇 +𝐾𝑢𝑘+1𝑆𝑘+1𝐾𝑢𝑘+1
𝑇  (3.46) 

𝑃𝑘+1|𝑘+1
12 = 𝑃𝑘+1|𝑘

12 − 𝐾𝑢𝑘+1𝐶1𝑃𝑘+1|𝑘
12 − 𝑃𝑘+1|𝑘

11 𝐶1
𝑇𝐾𝑙𝑘+1

𝑇 +𝐾𝑢𝑘+1𝑆𝑘+1𝐾𝑙𝑘+1
𝑇    (3.47) 

𝑃𝑘+1|𝑘+1
21 = 𝑃𝑘+1|𝑘

21 − 𝐾𝑙𝑘+1𝐶1𝑃𝑘+1|𝑘
11 − 𝑃𝑘+1|𝑘

21 𝐶1
𝑇𝐾𝑢𝑘+1

𝑇 +𝐾𝑙𝑘+1𝑆𝑘+1𝐾𝑢𝑘+1
𝑇    (3.48) 

𝑃𝑘+1|𝑘+1
22 = 𝑃𝑘+1|𝑘

22 −𝐾𝑙𝑘+1𝐶1𝑃𝑘+1|𝑘
21 − 𝑃𝑘+1|𝑘

12 𝐶1
𝑇𝐾𝑙𝑘+1

𝑇 +𝐾𝑙𝑘+1𝑆𝑘+1𝐾𝑙𝑘+1
𝑇     (3.49) 

where 𝑆𝑘+1 = 𝐶1𝑃𝑘+1|𝑘
11 𝐶1

𝑇 + 𝑅. The proposed formulation of the a posteriori state error 

covariance ((3.46)-(3.49)) includes the uncertainties of all measured and non-measured 

states. This is an essential step in applying data association methods in the context of 

smooth variable structure filtering. 

The following assumptions are used to formulate PDA-SVSF algorithm: 

- The target of interest has been initialized. 

- If the target-originated measurement falls within the validation gate, then at most 

one of the validated measurements is originated from the target, and the remaining 

are originated from any existing clutter. 

- The past information through time 𝑘 − 1 about the target state is approximated by 

a normal distribution. 

- The stochastic portion of the estimation error is bounded, which is a required 

condition of stability for the SVSF [15]. 

The proposed PDA-SVSF algorithm is summarized by three steps: prediction, gating, and 

update. In the prediction step, the state estimates and measurements are predicted using the 

system (or motion) and measurement models, and the a priori state error covariance is 

calculated. 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

105 

 

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 (3.50) 

𝑃𝑘+1|𝑘 = [
𝑃𝑘+1|𝑘
11 𝑃𝑘+1|𝑘

12

𝑃𝑘+1|𝑘
21 𝑃𝑘+1|𝑘

22 ] = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (3.51) 

𝑧𝑘+1|𝑘 = 𝐶�̂�𝑘+1|𝑘 (3.52) 

𝑆𝑘+1 = 𝐶𝑃𝑘+1|𝑘𝐶
𝑇 + 𝑅𝑘+1 (3.53) 

The association probabilities and the combined innovation are calculated using (3.20) and 

(3.22), respectively. The a priori measurement error is calculated to be equal to the 

combined innovation, and based on this, the a priori measurement error for the unmeasured 

states is calculated from (3.37). 

𝑒𝑧𝑘+1|𝑘 = �̃�𝑘 (3.54) 

The gating step is described next. The received measurements are validated based on the 

assumptions made earlier. The validation region is an elliptical region defined as a 

stochastic distance to the predicted measurements, as follows [5] (see the following figure): 

𝒱(𝑘 + 1, 𝛾) = {𝑧: [𝑧𝑘+1 − �̂�𝑘+1|𝑘]
𝑇
𝑆𝑘+1
𝑇 [𝑧𝑘+1 − �̂�𝑘+1|𝑘] ≤ 𝛾} (3.55) 

where 𝛾 is the gate threshold or probability. This value corresponds to the measurement 

that falls within the gate, if detected. 
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Figure 3.3 Several measurements 𝑧𝑘+1
𝑖   in the validation region of a single target: an ellipse 

centered at the predicted measurement �̂�𝑘+1|𝑘. 

Finally, as per state and parameter estimation, the SVSF correction gain is calculated and 

the states are updated as follows: 

𝐾𝑘+1 = [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] 
(3.56) 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1𝑒𝑧𝑘+1|𝑘  (3.57) 

where: 

𝐾𝑢𝑘+1 = 𝐻1
−1𝑑𝑖𝑎𝑔[(|𝑒𝑧,𝑘+1|𝑘| + 𝛾|𝑒𝑧,𝑘|𝑘|)

∘ 𝑠𝑎𝑡(𝑒𝑧,𝑘+1|𝑘, 𝜓𝑧)][𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]
−1

 

(3.58) 

𝐾𝑙𝑘+1 =  𝑑𝑖𝑎𝑔[(|𝛷22𝛷12
−1𝑒𝑧,𝑘+1|𝑘| + 𝛾|𝛷12

−1𝑒𝑧,𝑘+1|𝑘|)

∘ 𝑠𝑎𝑡(𝛷22𝛷12
−1𝑒𝑧,𝑘+1|𝑘, 𝜓𝑦)][𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]

−1
 

(3.59) 

The covariance associated with the updated states is then calculated by (3.8). Note that 

𝑃∗(𝑘|𝑘) is the SVSF covariance matrix, and is computed by (3.45)-(3.49). Furthermore, 

�̃�(𝑘) is calculated by (3.24). Note that an a posteriori measurement error is needed in 
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(3.57). In the typical SVSF scenario, the a posteriori measurement error is calculated as 

follows: 

𝑒𝑧𝑘|𝑘 = 𝑧𝑘 − 𝐶�̂�𝑘|𝑘 (3.60) 

However, in a target tracking scenario with the presence of clutter, there may be more than 

one available measurement.  To handle this issue, a direct relation between the a posteriori 

measurement error and the a priori measurement error (which is calculated as a combined 

innovation of all validated measurements) is required. The a priori measurement error can 

be interpreted as the innovation of a projected real measurement and the predicted 

measurement, as follows: 

𝑒𝑧𝑘|𝑘−1 = 𝑧𝑘
ℎ − �̂�𝑘|𝑘−1 (3.61) 

therefore: 

𝑧𝑘
ℎ = 𝑒𝑧𝑘|𝑘−1 + �̂�𝑘|𝑘−1 (3.62) 

𝑧𝑘
ℎ = 𝑒𝑧𝑘|𝑘−1 + 𝐶�̂�𝑘|𝑘−1  (3.63) 

Substitution of the projected real measurement from (3.63) into (3.60), yields the following 

equation: 

𝑒𝑧𝑘|𝑘 = 𝑒𝑧𝑘|𝑘−1 + 𝐶�̂�𝑘|𝑘−1  − 𝐶�̂�𝑘|𝑘 (3.64) 

Simplification of the above equations yields a direct relation between the a posteriori and 

a priori measurement errors, as follows: 
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𝑒𝑧𝑘|𝑘 = [𝐼 − 𝐶𝐾𝑘]𝑒𝑧𝑘|𝑘−1 (3.65) 

Equation (3.65) is used to update the a posteriori measurement error in the CM-PDA-SVSF 

process. The above three steps are repeated recursively. 

3.5.2 Covariance Modified JPDA-SVSF (CM-JPDA-SVSF) 

The joint probabilistic data association smooth variable structure filter (JPDA-SVSF) is an 

extension of the PDA-SVSF, described earlier. The JPDA-SVSF enables tracking multiple 

targets with the presence of clutter [57]. In the JPDA-SVSF algorithm, the association 

probabilities are calculated jointly across the targets; while in the PDA-SVSF, different 

filters are used for each target. The following figure illustrates a schematic representation 

of the JPDA-SVSF process [57]. 

 

Figure 3.4 Flowchart of the proposed JPDA-SVSF algorithm [57] 

Similar to the PDA-SVSF, the JPDA-SVSF algorithm consists of three main steps: state 

prediction, gating, and state update. However, in the prediction step, the association 
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probabilities are calculated using all of the feasible association hypotheses, as per (3.26). 

The marginal association probabilities defined by (3.28) are used to calculate the combined 

innovation for each track: 

�̃�𝑘
𝑡 =∑𝛽𝑘

𝑖𝑡𝑒𝑧,𝑘+1|𝑘
𝑖𝑡

𝑚𝑘

𝑖=1

 (3.66) 

The update step is performed separately for each track, and the state error covariance is 

calculated by (3.45)-(3.49). Furthermore, note that the new covariance formulation 

presented in this paper improves both the gating and data association steps of the method. 

3.6 Target Tracking Cases and Results 

This section describes the results of a number of target tracking scenarios. The first case 

compares the results of applying the PDA-KF and the PDA-SVSF to a single target tracking 

scenario. The second compares the results when the methods are applied to a multiple target 

tracking problem. 

3.6.1 Single Target Tracking with Clutter 

This scenario studies the results of a single target tracking scenario with clutter. There are 

two parts to this problem: presence of no modeling uncertainty, and presence of modeling 

uncertainty. A simple two-dimensional discrete, constant velocity model is implemented as 

per [6]. The PDA-KF, the PDA-SVSF, and CM-PDA-SVSF are applied for the purposes 

of target tracking and the results are compared. Note that the PDA-SVSF refers to the 

standard covariance matrix as per [17], whereas the CM-PDA-SVSF refers to the modified 
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covariance formulation presented earlier in Section 3.5 ((3.45)-(3.49)). The state vector is 

defined as 𝒙 = [𝑥 𝑦 𝑣𝑥 𝑣𝑦], where 𝑥 and 𝑦 are the position in two Cartesian directions, and 

𝑣𝑥 and 𝑣𝑦 are the corresponding velocities. In this model, the accelerations of the target 

between two sequential samples are assumed to be constant with discrete-time zero mean 

white Gaussian noise. The system or motion model is defined as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺𝑣(𝑘) (3.67) 

where the system and process noise gain matrices are defined by: 

𝐴 = [

1 0
0 1

𝑇𝑠 0
0 𝑇𝑠

0 0
0 0

1  0
0  1

] (3.68) 

𝐺 = 

[
 
 
 
𝑇𝑠
2/2 0

0 𝑇𝑠
2/2

𝑇𝑠       0
0        𝑇𝑠 ]

 
 
 

 (3.69) 

The white acceleration noise is defined as follows: 

𝑄 = 𝑐𝑜𝑣{𝑣(𝑘)} = [
𝜎𝑣
2 0

0 𝜎𝑣
2]      (3.70) 

The measurement function, matrix, and noise covariance are defined respectively as 

follows:  

𝑧(𝑘) = 𝐶𝑥(𝑘) + 𝑤(𝑘) (3.71) 

𝐻 = [
1 0
0 1

0 0
0 0

] (3.72) 
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𝑅 = 𝑐𝑜𝑣{𝑤(𝑘)} = [
𝜎𝑤
2 0

0 𝜎𝑤
2] (3.73) 

Simulations are run for the PDA-KF, PDA-SVSF, and CM-PDA-SVSF algorithms. The 

parameter values used for the simulations are 𝑇𝑠 = 0.5 𝑠 and 𝑃𝐷 = 0.95. The clutter is 

assumed to have a spatial uniform distribution, and the number of cluttered measurements 

is generated by a Poisson’s distribution of 𝜆 = 10−2. The process noise variance is 𝜎𝑣
2 =

12, and the measurement noise variance is 𝜎𝑤
2 = 42. 

The RMSE errors for the four states of the system are computed for 250 Monte-Carlo runs 

and shown in Table 3.1. Note that all three strategies have an acceptable level of 

performance. In terms of RMSE, the KF-PDA performed slightly better than the SVSF-

based PDAs. Figure 3.5 illustrates the trace of the covariance matrix for the strategies. The 

proposed covariance of this paper, described in Section 3.5, improved the efficiency of the 

estimator in terms of the trace of the covariance matrix or state estimation errors. 

Table 3.1 RMSE Results for Single Target Tracking Case (No Uncertainty) 

 PDA-KF PDA-SVSF 
CM-PDA-

SVSF 

𝑥 1.26 2.23 2.02 

𝑦 1.25 2.12 1.99 

𝑣𝑥 0.98 5.92 1.62 

𝑣𝑦 0.95 5.13 1.46 
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Figure 3.5 Trace of the covariance matrix for the three strategies (no uncertainty) 

The consistency of the proposed estimation algorithm is also examined. The examination 

is based on normalized estimation error squared (NEES) [6]. The results for CM-PDA-

SVSF algorithm are shown in Figure 3.6 for 250 Monte-Carlo runs. The one-sided 95% 

probability interval was used. The results show that the CM-PDA-SVSF is a pessimistic 

filtering approach. 

 

Figure 3.6 NEES (normalized estimation error squared) for CM-PDA-SVSF compared to upper 

bound of 95% probability interval 
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To further investigate the robustness of the proposed SVSF-based methods, modeling 

uncertainty of 4% was injected into the simulation between 𝑡 = 50𝑠 and 𝑡 = 60𝑠. The 

uncertainty is an incremental change of two elements of the state transition matrix (3.68) 

in the form of increasing the sampling time 𝑇𝑠 by a specified percentage 𝜀, as follows. 

𝐴 = [

1 0
0 1

𝑇𝑠(1 + 𝜀) 0
0 𝑇𝑠(1 + 𝜀)

0 0
0 0

1                0
0                1

] (3.74) 

The tracking success rate for three algorithms for two scenarios with injected uncertainty 

under 100 Monte-Carlo runs is shown in the following table. 

Table 3.2 Tracking success rate for single target tracking case 

Injected 

Uncertainty 
PDA-KF PDA-SVSF CM-PDA-SVSF 

2% 43% 93% 99% 

4% 9% 54% 81% 

As the higher tracking success rate indicates, the SVSF-based PDAs and more specifically 

CM-PDA-SVSF provided more stable estimate. The following figure, illustrates a sample 

scenario of injecting modeling uncertainty into the estimation process which causes the 

PDA-KF to fail. These results are due to the strict assumptions of the KF. 
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Figure 3.7 Trace of the covariance matrix for the three strategies (uncertainty case) 

3.6.2 Multiple Target Tracking with Clutter 

This target tracking scenario consists of three maneuvering cars, described as follows 

(Figure 3.8). 

Car #1. The initial state is (𝑥0 = 200 𝑚, 𝑦0 = 50, 𝑣𝑥0 = 28 𝑚/𝑠, 𝑣𝑦0 = 1). It performs 

a non-maneuvering constant velocity motion between 0 𝑠 and 93𝑠, a “straight line and 

curve” maneuver between  94 𝑠 and 138 𝑠 , and a non-maneuvering constant velocity 

motion between  139 𝑠 and 500 𝑠. 

Car #2. The initial state is (𝑥0 = −1000 𝑚 , 𝑦0 = 25 , 𝑣𝑥0 = 33 𝑚/𝑠 , 𝑣𝑦0 = 1). It 

performs a non-maneuvering constant velocity motion between 0 𝑠 and 115 𝑠 , a “straight 

line and curve” maneuver between  116 𝑠 and 157 𝑠, a non-maneuvering constant velocity 
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motion between 158 𝑠 and 236 𝑠, a “cut-in-out” maneuver between 237 𝑠 and 312 𝑠, and 

a non-maneuvering constant velocity motion between  305 𝑠 and 500 𝑠. 

Car #3. The initial state is (𝑥0 = −2000 𝑚, 𝑦0 = 0, 𝑣𝑥0 = 34 𝑚/𝑠, 𝑣𝑦0 = 1). It 

performs a non-maneuvering constant velocity motion between 0 𝑠 and 139 𝑠, a “straight 

line and curve” maneuver between 140 𝑠 and 180 𝑠, a non-maneuvering constant velocity 

motion between 181 𝑠 and 357 𝑠, a “cut-in-out” maneuver between 358 𝑠 and 407 𝑠, and a 

non-maneuvering constant velocity motion between 407 𝑠 and 500 . 

 

Figure 3.8 Vehicle trajectories illustrating their maneuvers 

Although the cars experience maneuvering behaviours, the three algorithms (JPDA-KF, 

JPDA-SVSF and CM-JPDA-SVSF) will only use the near-constant velocity model as the 

motion model: in addition to dealing with measurements from interfering vehicles and 

clutter, the algorithms will also have to overcome modeling uncertainty. The following 

figure shows the true trajectories for the three cars, as well as the estimated trajectories. All 

of the methods overcame the uncertainties, and were able to track the trajectories. The 

following table provides the RMSE of the states for the three vehicles. 
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Figure 3.9 Vehicle trajectories with corresponding estimates  

(all three performed similarly) 

Table 3.3 RMSE Results for Multiple Target Tracking Case (First Case) 

 Car #1 Car #2 Car #3 

 JPDA-

KF 

JPDA-

SVSF 

CM-

JPDA-

SVSF 

JPDA-

KF 

JPDA-

SVSF 

CM-

JPDA-

SVSF 

JPDA-

KF 

JPDA-

SVSF 

CM-

JPDA-

SVSF 

𝒙 27.55 27.60 27.58 32.57 32.57 32.57 33.55 33.55 33.54 

𝒚 4.83 4.84 4.86 5.25 5.29 5.27 5.46 5.49 5.50 

𝒗𝒙 1.99 2.01 1.92 1.84 2.13 1.74 1.79 2.02 1.97 

𝒗𝒚 1.23 1.51 1.15 1.65 1.61 1.28 1.69 1.52 1.38 

To increase the complexity of this scenario, the car trajectories were made to infer with 

each other. Car #1 and Car #2 were brought as close as 6.49 meters at 𝑡 = 240 𝑠 during 

which Car #2 performs a cut-in-out maneuver. Also, Car #1 and Car #3 were as close as 8 

meters at 𝑡 = 375 𝑠, during which Car #3 performs a cut-in-out maneuver (Figure 3.10).  
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Figure 3.10 Interfering car trajectories 

The performance of the three algorithms is illustrated in the following figure. Since the 

SVSF-based methods are more robust against modeling uncertainties, they were expected 

to handle the interfering trajectories. 

 

Figure 3.11 Interfering vehicle trajectories with corresponding estimates. 
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The proposed CM-JPDA-SVSF and JPDA-SVSF successfully handled the interfering car 

trajectories, whereas the JPDA-KF failed to track the correct vehicle trajectories. These 

results further demonstrate the robustness of the SVSF filtering strategy, which is 

inherently stable due to the switching nature of the corrective gain. The following figure 

shows the trace of the covariance over time. 

 

Figure 3.12 Trace of the covariance matrix for the interfering vehicle trajectories. 

Furthermore, note that 100 Monte Carlo runs were performed to ensure an average result. 

The RMSE for the estimated states provided by the JPDA-SVSF and CM-JPDA-SVSF are 

shown in the following table. Note that the results were similar for the states that have 

corresponding measurements. However, the CM-JPDA-SVSF method significantly 

improves the non-measured estimates. 
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Table 3.4 RMSE Results for interfering Multiple Target Tracking case (JPDA-SVSF and CM-

JPDA-SVSF) 

 Car #1 Car #2 Car #3 

 JPDA-

SVSF 

CM-JPDA-

SVSF 

JPDA-

SVSF 

CM-JPDA-

SVSF 

JPDA-

SVSF 

CM-JPDA-

SVSF 

𝒙 27.48 27.30 32.65 32.65 33.71 33.97 

𝒚 5.03 5.12 5.56 5.57 5.60 5.81 

𝒗𝒙 2.07 1.89 2.25 1.74 2.19 1.97 

𝒗𝒚 1.47 1.06 1.55 1.28 1.56 1.38 

3.7 Conclusions 

This paper introduced new formulations for the smooth variable structure filter (SVSF) for 

target tracking scenarios. The PDA-SVSF and JPDA-SVSF algorithms were introduced 

and described, and applied on a series of target tracking problems. The results were 

compared with the popular Kalman filter (KF) based strategies. It was determined that the 

SVSF-based target tracking strategies were more robust to the presence of modeling 

uncertainty and interfering targets. This is due to the inherent stability present in the SVSF 

caused by the switching effect of the gain. In addition, a new covariance formulation based 

on the Luenberger observer was formulated and the CM-SVSF was presented. The CM-

SVSF was found to outperform the SVSF in terms of estimating non-measured states. 

The main contribution of this paper is based on the proposed estimation strategy used in 

the context of data association methods. Future work may include implementation with 

other data association trackers. 
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Chapter 4 

 

4 An SVSF-Based Generalized VBL-SVSF for 

Target Tracking in Clutter 

4.1 Abstract 

Autonomous self-drive requires intelligence and cognition that relies on observations and 

tracking of the state of motion of surrounding vehicles. This information can be acquired 

by using sensors; but these are often affected by clutter and noise that in turn introduce the 

issues of estimation and data origin uncertainty into the tracking system. The most popular 

methods for estimation and tracking are based on the well-studied Kalman filter (KF). KF 

is optimal when noise is white and remains so despite uncertainties in the filter model; the 

robustness and stability of the KF is affected if this condition is not met. The smooth 

variable structure filter (SVSF) is a relatively new method which is more robust to 

disturbances and uncertainties. The SVSF ensures stability by using a discontinuous 

corrective term that maintains estimates to within a subspace of the true state trajectory. 

The discontinuous corrective term result in chattering that is removed by using a smoothing 

boundary layer. In this paper, a generalized covariance formulation of the SVSF and a 

generalized optimal time varying smoothing boundary layer is proposed. The generalized 

optimal SVSF is then combined with joint probabilistic data association (JPDA) technique 
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for target tracking. The robustness and accuracy of the new form of filtering and data 

association is validated and comparatively analyzed by its application to an experimental 

traffic monitoring system based on LiDAR (LIght Detection And Ranging). 

4.2 Introduction 

Tracking has numerous applications such as in surveillance, air traffic control, medical 

imaging, finance, autonomous vehicles, driver assist, and aerospace. Tracking involves 

recursively estimation of an unknown variable or state over time from indirect, inaccurate 

and uncertain observations [6]. The unknown variable might be the temperature in a 

chamber, the position or velocity of a vehicle, stock value in the market, or the movement 

of a cell in a blood vessel. Tracking is increasingly being used in automotive applications 

as a consequence of a societal need for autonomous cars or those with advanced driver 

assist capability [70, 61].  In autonomous vehicles or driver-assist systems applications, 

tracking requires observations of the position of surrounding vehicles acquired using 

sensors mounted on the car, such as a radar, a LiDAR, and/or cameras [70, 71]. The sensory 

observations are often affected by clutter and noise. As such tracking systems requiring 

filtering and estimation strategies that are robust and capable of dealing with data origin 

uncertainty, especially when dealing with multiple targets.  For the latter problem of data 

origin uncertainty in multiple target tracking, there are a number of different data 

association algorithms proposed in the literature [4, 1]. Data association techniques 

differentiate measurements from different targets of interest [4, 1]. One of the simplest 

algorithms is the standard nearest neighbor filter (SNNF), which associates the nearest 

measurement, in the sense of the statistical distance, to each target [4]. The global nearest 
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neighbour filter is an extension of SNNF that looks for one single most probable association 

hypothesis [1]. 

The probabilistic data association filter (PDA) is one of the most commonly used data 

association methods [27]. The PDA takes all feasible measurement-to-track association 

hypotheses into consideration, and calculates the association probability for the track [5]. 

Hence, it is an all-neighbor data association method. Since the PDA assumes that the track 

has already been initialized, another algorithm is required to handle the track maintenance, 

such as logic-based track formation [4], or track-score base methods [1]. Also, the 

integrated probabilistic data association (IPDA) is a derivation of the PDA without the 

aforementioned assumption, that yields the data association probabilities as well as track 

existence probabilities [28]. The original derivation of the PDA is for single-target tracking 

in the presence of clutter. Therefore, for multiple-target tracking, a number of PDA’s may 

be used in parallel [5]. When the target trajectories are interfering, an extension of PDA, 

named as the joint probabilistic data association (JPDA), is utilized and has improved 

performance [31]. In JPDA, the association probabilities are calculated in a joint manner 

across all targets [31].  

In 1979 the multiple hypothesis tracker (MHT) is presented [32]. In MHT all the 

measurement to track assignments are enumerated; then the infeasible assignments are 

eliminated using pruning and gating methods, which imposes the risk of the elimination of 

the correct measurement sequences. Unlike the traditional MHT, the probabilistic multi 

hypothesis tracking (PMHT) is based on the calculation of the probability of each 

measurement belonging to each track by a Bayesian inference [33]. In PMHT, the hard 

decision of measurement to track is avoided by a joint estimation of the target states and 

measurement-to-track association probabilities [33]. A literature review of the advances in 

PMHT is presented in [34].  
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Another approach to treat multiple targets and observations is a method based on random 

finite set concept, named as probability hypothesis density (PHD) filter. Some of the 

approximations to deal with the PHD recursion are suggested, including Sequential Monte 

Carlo PHD (SMCPHD) filter [35], Cardinalised PHD (CPHD) filter [36] and Gaussian 

Mixture PHD (GMPHD) filter [37]. 

Once the measurement-to-track association is performed, an estimation strategy is required 

to update the tracks. For each hypothesis, an association probability is calculated which is 

used to construct a combined innovation term. This term is a weighted sum of all the 

innovations, and is used by the estimation strategy [4]. 

The most popular and well-studied model based estimation strategy is the Kalman filter 

(KF) introduced in late 1950s [6]. The KF is described based on the following motion and 

measurement models: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (4.1) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (4.2) 

where 𝑥𝑘 and 𝑧𝑘 are state and measurement vectors, of dimensions of (𝑛 × 1) and (𝑚 ×

1), respectively, and 𝑤𝑘 and 𝑣𝑘 are zero mean white Gaussian process and measurement 

noise, with covariance matrices 𝑄𝑘 and 𝑅𝑘, respectively. The KF provides the best solution 

in the sense of minimum mean square error for linear estimation problems in the presence 

of Gaussian noise [6]. The KF succeeds this task as its gain is optimized to minimize the a 

posteriori state covariance matrix [17]. The formulation of the KF consists of two major 

steps: prediction and update. The prediction step of the KF is governed by (4.3) and (4.4), 

where the state estimate is predicted in (4.3), and the corresponding state error covariance 

is calculated as per (4.4). 
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�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑢𝑘 (4.3) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (4.4) 

In the next step, the gain is calculated and the a posteriori estimated state and its 

corresponding covariance are updated as follows: 

𝑆𝑘+1 = 𝐻𝑃𝑘+1|𝑘𝐻
𝑇 + 𝑅𝑘+1 (4.5) 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐻
𝑇𝑆𝑘+1

−1  (4.6) 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1[𝑧𝑘+1 − 𝐻�̂�𝑘+1|𝑘] (4.7) 

𝑃𝑘+1|𝑘+1 = [𝐼 − 𝐾𝑘+1𝐻]𝑃𝑘+1|𝑘  (4.8) 

Equations (4.3) to (4.8) summarize the KF method for linear estimation problems. For 

nonlinear estimation problems, the classical KF has been reformulated [6]. The most 

popular and simplest revised strategy is the Extended KF (EKF), where the system is 

linearized according to the Jacobian matrix [11]. However, the linearization process 

introduces some uncertainty to the system that may cause instability [6]. 

The KF is based on the linear Gaussian (LG) assumption, i.e. the system is known and 

linear, system noise and measurement noise are zero-mean white Gaussian with known 

covariance matrices, and the initial state is modeled as Gaussian with known mean and 

covariance [6]. The KF yields suboptimal results and is prone to instability if these 

assumptions do not hold [11]. In an effort to reduce the effects of modeling uncertainties, 

robust Kalman filtering has been suggested [13, 14, 11]. These techniques try to deal with 

uncertainties in the system and measurement matrices, or noise covariance matrices. When 

dealing with uncertainties in the system and measurement matrices, the robust estimator is 

designed such that it gives an upper bound on the error variance for any allowed modeling 
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uncertainty [13, 14]. When the uncertainties in noise covariance matrices are dealt with, 

the KF gain is derived to minimize the estimation error covariance as well as its variation 

due to changes in process and measurement noise covariance matrices. In this way the 

sensitivity of the estimation error covariance to changes in the process and measurement 

noise covariances is reduced [11].  

The Gaussian assumption for the noise distribution may be relaxed by implementing a 

Gaussian mixture to approximate the non-Gaussian probability distribution function (pdf), 

though increasing the computational complexity [11]. Another approach for nonlinear and 

non-Gaussian systems is the particle filter (PF) [12]. The PF represents the posterior density 

by a set of random independent identical distribution (i.i.d.) samples (particles) from the 

pdf. 

A recent robust filtering technique that is less sensitive to modeling uncertainties and is 

computationally efficient is the Smooth Variable Structure Filter (SVSF) [15]. The SVSF 

is based on concepts that are closely related to sliding mode control, where the stability can 

be guaranteed given bounded parametric uncertainties [15]. The SVSF uses a discontinuous 

gain to maintain the estimated states to within a subspace around the true trajectories known 

as the existence subspace [15]. Modifications to the SVSF have been proposed, including 

an optimal form in [17]. To deal with the cases when there are fewer measurements that 

states, Luenberger observer based approach has originally been proposed in [15]. In later 

modifications of the SVSF, as in [17], however, this approach has not been mathematically 

derived and justified.  

The SVSF has been used in target tracking applications in the presence of clutter [72, 57, 

54, 73]. In [54] and [57], the SVSF has been combined with the PDA and the JPDA, and 

the results indicate a notably improved performance over the original PDA and JPDA 
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methods. A combination of PDA-SVSF for maneuvering target tracking has been discussed 

in [72]. A generalized form of SVSF covariance in the context of tracking single and 

multiple targets in the presence of clutter has been derived and discussed in [73]. In order 

to get the best use of the SVSF in the target tracking in clutter applications, a generalized 

optimal form of the SVSF is addressed in this paper. In the previous derivations of the 

optimal SVSF [15], there was an assumption of a full measurement matrix, which is relaxed 

by this new derivation providing a generalized form for the case of fewer number of 

measurements than the number of states. This new formulation is used for multiple target 

tracking when there is the issue of data origin uncertainty. 

Section 4.3 provides a brief overview of data association principles. The SVSF estimation 

strategy is summarized in Section 4.4. Section 4.5 presents a new methodology for multiple 

target tracking in the presence of clutter. A new formulation of SVSF covariance and the 

derivation of a generalized optimal smoothing boundary layer with respect to the 

generalized state error covariance matrix is presented. In Section 4.6, a tracking simulation 

problem is described and then the new proposed method is comparatively analyzed in terms 

of its estimation accuracy and robustness to uncertainties. Furthermore, the method is 

experimentally evaluated and applied to a LiDAR based automotive tracking system. The 

conclusions are provided in Section 4.7.  

4.3 Probabilistic Data Association Principle 

In multiple-target tracking, there are often more than one measurements associated with 

one target. The reason is the presence of false measurements or clutter. The aim of a data 

association method is to assign the measurements to the targets in an efficient way. To 
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avoid searching the entire measurement set for the measurements originated from a specific 

target, an ellipsoidal gate is set up for each target, and such a gate is called a validation 

region [5] (Figure 4.1).  

 

Figure 4.1 The ellipsoidal validation region of a target centered at its predicted 

measurement �̂�𝑘|𝑘−1. Two of the three measurements have fallen within the validation region of 

the target. 

The probability with which the target-originated measurement falls within the validation 

region is called the gate probability [5, 1]. If more than one measurement falls within the 

gate, then an association uncertainty arises. It is required to decide which measurement is 

originated form the target and therefore should be used to update the track [4].  

The probabilistic data association (PDA) and its extensions are used to handle the problem 

of data origin uncertainty in multi-target tracking scenarios. The PDA is originally 

formulated for single target tracking in the presence of clutter. 

In PDA, it is assumed that the track of the target has been initialized, and the past 

information through time 𝑘 − 1 about the target trajectory is in the form of a normal 

distribution [5]: 
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𝑝[𝑥𝑘|𝑍
𝑘−1] = 𝒩[𝑥𝑘; �̂�𝑘|𝑘−1, 𝑃𝑘|𝑘−1] (4.9) 

Also, if the target is detected, it is also assumed that at most one target originated 

measurement has fallen within the validation region. The number of false measurements 

inside the gate is Poisson distributed with parameter 𝜆 and their spatial density is modeled 

as an independent and identically distributed (i.i.d.) uniform distribution [5]. The PDA is a 

type of all-neighbor association that uses all the validated measurements to update the 

corresponding track. The idea is to define a weight for each validated measurement 𝑧𝑖  , 𝑖 =

1, … , 𝑛𝑘
𝑚, in accordance with the probability that it is originated from the associated track 

[5]. These weights are named as association probabilities. For 𝑛𝑘
𝑚 validated measurements 

at time 𝑘, one can form 𝑛𝑘
𝑚 + 1 distinct association hypotheses as [1]: 

ℋ𝑘
𝑖 = {𝑧𝑖  𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑 }         (4.10) 

ℋ𝑘
0 = {𝑛𝑜𝑛𝑒 𝑎𝑟𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑} (4.11) 

The total available measurements at time 𝑘 are 𝑍𝑘 = {𝑧1, … , 𝑧𝑛𝑘
𝑚
} ∪ 𝑍𝑘−1. The association 

probability, 𝛽𝑘
𝑖  is defined as the conditioned probability of the 𝑖th hypothesis at time 𝑘, as 

follows [1]: 

𝛽𝑘
𝑖 = 𝑃{ℋ𝑘

𝑖|𝑍𝑘} (4.12) 

These association probabilities for each hypothesis are computed as follows [4, 5]: 
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𝛽𝑘
𝑖 =

{
 
 

 
  

1 − 𝑃𝐷𝑃𝐺

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘
𝑖𝑛𝑘

𝑚

𝑖=1

,

     

𝑖 = 0

ℒ𝑘
𝑖

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘
𝑖𝑛𝑘

𝑚

𝑖=1

,   𝑖 = 1,… , 𝑛𝑘
𝑚

 (4.13) 

where 𝑃𝐺  is gate probability [8], and 𝑃𝐷 is the target detection probability. In addition: 

ℒ𝑘
𝑖 =

𝒩[𝑧𝑘
𝑖 ; �̂�𝑘|𝑘−1, 𝑆𝑘]𝑃𝐷

𝜆
 (4.14) 

which is the likelihood ratio of the measurement 𝑧𝑘
𝑖 , assuming that it is target originated 

[5]. The association probabilities are used to calculate a combined innovation to be used in 

the filter update, as follows: 

�̃�𝑘 =∑ 𝛽𝑘
𝑖 �̃�𝑘
𝑖

𝑛𝑘
𝑚

𝑖=1
 (4.15) 

where �̃�𝑘
𝑖 = 𝑧𝑘

𝑖 − 𝐻𝑥𝑘|𝑘 is the innovation of measurement 𝑖 [5]. The states are updated with 

the standard KF estimation strategy (Equations (4.3) to (4.7)). To update the covariance, 

the following equation is used: 

𝑃𝑘|𝑘 = 𝛽𝑘
0𝑃𝑘|𝑘−1 + [1 − 𝛽𝑘

0]𝑃𝑘|𝑘
∗ + �̃�𝑘  (4.16) 

where 𝑃𝑘|𝑘
∗  is the standard KF covariance matrix as in equation (4.8) and �̃�𝑘 accounts for 

uncertainty increment due to association uncertainty. It is computed as follows [4]: 

�̃�𝑘 = 𝐾𝑘 [∑ 𝛽𝑘
𝑖 �̃�𝑘
𝑖 �̃�𝑘
𝑖 ′ −

𝑛𝑘
𝑚

𝑖=1
�̃�𝑘�̃�𝑘′] 𝐾𝑘

′  (4.17) 
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The PDA has been extended to the Joint Probabilistic Data Association (JPDA) for dealing 

with the interfering targets in the multiple target tracking problems. The difference between 

PDA and JPDA is in the way the association probabilities are calculated. The PDA 

considers the tracks as separate elements and forms the association probabilities separately 

for each track. However, in the presence of multiple interfering targets that share some 

measurements, the tracks are no longer acting as separate entities [5]. The JPDA considers 

joint association hypotheses to calculate the association probabilities, and hence the 

interfering targets are handled more efficiently by JPDA [31]. The conditional probabilities 

of the following joint hypotheses are evaluated as follows [5]: 

ℋ𝑘 =⋂ℋ𝑘

𝑗𝑡𝑗

𝑚𝑘

𝑗=1

         (4.18) 

where ℋ𝑘
𝑗𝑡

 is the hypothesis that measurement 𝑗 originated from target 𝑡, 1 ≤ 𝑗 ≤ 𝑚𝑘 , 0 ≤

𝑡 ≤ 𝑇, 𝑘 is the time index, 𝑡𝑗 is the target that measurement 𝑗 is associated with in the 

considered hypothesis, 𝑚𝑘 is the number of measurements, and 𝑇 is the number of targets 

[31]. The joint association probabilities are calculated as follows [5]: 

𝑃{ℋ𝑘|𝑍
𝑘} = 𝑐∏{𝜆−1ℒ𝑘

𝑡𝑗}
𝜏𝑗

𝑗

∏(𝑃𝐷
𝑡 )𝛿𝑡(1 − 𝑃𝐷

𝑡 )1−𝛿𝑡

𝑡

 (4.19) 

where 𝜆 is the spatial density of the number of false measurements defined from a Poisson 

distribution, and 𝑃𝐷
𝑡  is the detection probability of target 𝑡. 𝜏𝑗 and 𝛿𝑡 are the target detection 

and measurement association indicators, respectively [31] and,  

ℒ𝑘
𝑡𝑗 = 𝒩[𝑧𝑘

𝑗
; �̂�
𝑘|𝑘−1

𝑡𝑗 , 𝑆𝑘
𝑡𝑗] (4.20) 
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To carry out the state estimation for each target, the marginal association probabilities are 

needed [31]. These probabilities are obtained from joint probabilities (4.19) by summing 

the joint hypotheses in which the marginal hypothesis of interest is included, as follows [5]: 

𝛽𝑘
𝑗𝑡
= 𝑃{ℋ𝑘

𝑗𝑡
|𝑍𝑘} = ∑ 𝑃{ℋ𝑘|𝑍

𝑘}

ℋ:ℋ𝑗𝑡∈ℋ

 (4.21) 

These probabilities are used to create the combined innovation for each target, which is 

used during the filter update stage. 

4.4 Smooth Variable Structure Filter 

The smooth variable structure filter (SVSF) is a revised form of the VSF, and was first 

presented in 2007 [15]. The SVSF is a predictor-corrector state and parameter estimation 

method based on the sliding mode concept [15, 17]. The SVSF operation is shown in 

Figure 4.2. Basically, the SVSF uses a switching corrective gain to force the estimated 

stated to within a boundary around the true state trajectory, named as the existence 

subspace. The corrective gain is designed based on a Lyapunov based stability theorem 

[15] such that it makes sure that the estimation error keeps getting smaller by each iteration. 

This way, it maintains the estimates within this subspace given bounded disturbances [15, 

17]. The discontinuous corrective action of the SVSF results in chattering that can be 

removed by using a smoothing boundary layer.  

The SVSF, in its original form [15], did not have a covariance formulation. In [17], an 

iterative strategy for generating an error covariance matrix was proposed. The error 

covariance was then used for obtaining a variable and optimal smoothing boundary layer 
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in [17]. To deal with the cases when there are fewer measurements than states, Luenberger 

observer based approach has originally been proposed in [15]. In later modifications of the 

SVSF, as in [17], however, this approach has not been mathematically derived and justified. 

The SVSF formulation has been modified to a general form to include the case when there 

are fewer number of measurements than states in [73].  

 

Figure 4.2 SVSF estimation concept [15] 

A similar strategy to Luenberger’s reduced order observer [15] is adopted, and then the 

respective modified covariance is derived. The steps of the aforementioned covariance 

modified SVSF applied to a linear system are considered as follows [73].  

Similar to the KF strategy, the SVSF consists of two main steps: prediction and update. 

However, the main difference lies in how the SVSF gain is formulated. Conceptually, by 

use of the SVSF corrective gain, the SVSF converges the estimated state trajectory to within 

an existence subspace around the true trajectory. The width of the existence subspace is a 

function of uncertain dynamics due to uncertainties. Once the estimated states are in that 

subspace, they switch back and forth across the true trajectory and will remaining within 

this subspace [15], as shown in Figure 4.2. To formulate the SVSF approach, consider the 
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model of equations (4.1) and (4.2) where the measurement matrix 𝐻 is of dimension 𝑚 ×

𝑛, 𝑚 < 𝑛 is the number of measured states, 𝑛 is the rank of the system, and: 

𝐻 = [𝐻1 𝐻2] (4.22) 

where 𝐻1 is of dimension 𝑚 ×𝑚 and 𝐻2 is a null matrix of dimension 𝑚 × (𝑛 −𝑚). The 

state vector of the system can be transformed and partitioned into two segments as follows: 

𝑥𝑘 = [
𝑥𝑢𝑘
𝑥𝑙𝑘
] =  

[
 
 
 
 
 
 
𝑥𝑘
1

⋮
𝑥𝑘
𝑚

− −−
𝑥𝑘
𝑚+1

⋮
𝑥𝑘
𝑛 ]
 
 
 
 
 
 

 (4.23) 

where, 𝑥𝑢𝑘 is the measured portion of the states and 𝑥𝑙𝑘  is the non-measured portion of  the 

states. This partitioning of states is required to treat the system with an approach similar to 

the Luenberger’s reduced order observer. The SVSF approach uses a switching hyperplane 

based on the state trajectory to achieve robust stability. The state partitioning of (4.23) 

allows a projection of switching hyperplane for states that do not have direct measurements 

associated with them [15]. The prediction step consists of the following equations ((4.24) 

to (4.26)): 

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 + 𝐵𝑢𝑘 (4.24) 

The a priori state error covariance matrix is defined as follows: 

𝑃𝑘+1|𝑘 = 𝐸{�̃�𝑘+1|𝑘�̃�𝑘+1|𝑘
𝑇 } (4.25) 
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where �̃�𝑘+1|𝑘 = 𝐴�̃�𝑘|𝑘 + 𝑤𝑘.  Based on this, the a priori state error covariance matrix is 

calculated as: 

𝑃𝑘+1|𝑘 = [
𝑃𝑘+1|𝑘
11 𝑃𝑘+1|𝑘

12

𝑃𝑘+1|𝑘
21 𝑃𝑘+1|𝑘

22 ] = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (4.26) 

The a priori measurement error is calculated by equation (4.28): 

�̂�𝑘+1|𝑘 = 𝐻�̂�𝑘+1|𝑘 (4.27) 

𝑒𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 − �̂�𝑘+1|𝑘  (4.28) 

The next step is the calculation of the SVSF gain, as follows. The segment 𝑥𝑢𝑘  in (4.23) is 

directly linked to the measurements and the corresponding corrective gain is defined as per 

[15, 17]: 

𝐾𝑢𝑘+1 = 𝐻1
−1𝑑𝑖𝑎𝑔[𝐸𝑧 ∘ 𝑠𝑎𝑡(𝑒𝑧,𝑘+1|𝑘 , 𝜓𝑧)][𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]

−1
 (4.29) 

where 𝜓𝑧 is the smoothing boundary layer, and the symbol ∘ denotes the Schur product 

[15]. 𝐸𝑧 is an error vector defined as: 

𝐸𝑧 = |𝑒𝑧,𝑘+1|𝑘| + 𝛾𝑧|𝑒𝑧,𝑘|𝑘| (4.30) 

where 𝛾𝑧 is an 𝑚×𝑚 diagonal matrix with elements such that 0 ≤ 𝛾𝑧,𝑖𝑖 < 1. It is assumed 

that the motion model is completely observable and completely controllable. Therefore, a 

reduced order estimator is designed for the segment 𝑥𝑙𝑘 . The state vector is transformed 

into a partitioned form using a transformation matrix, 𝑇. The result is such that the upper 

portion has an identity relationship with the measurement vector. 
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𝑇𝑥𝑘 = [
𝑦𝑢𝑘
𝑦𝑙𝑘
] (4.31) 

Thus, the transformed state transition matrix is as follows:  

𝛷 = 𝑇𝐴𝑇−1 = [
𝛷11 𝛷12
𝛷21 𝛷22

] (4.32) 

In this case, the corresponding output matrix is an identity matrix. The lower portion 

corrective gain is as follows [73]: 

𝐾𝑙𝑘+1 =  𝑑𝑖𝑎𝑔(𝐸𝑦)

∘ 𝑠𝑎𝑡(𝛷22𝛷12
−1𝑒𝑧,𝑘+1|𝑘, 𝜓𝑦) [𝑑𝑖𝑎𝑔(𝛷22𝛷12

−1𝑒𝑧,𝑘+1|𝑘)]
−1
𝛷22𝛷12

−1 
(4.33) 

where 𝐸𝑦 is an error vector defined as: 

𝐸𝑦 = |𝛷22𝛷12
−1𝑒𝑧,𝑘+1|𝑘| + 𝛾𝑦|𝛷12

−1𝑒𝑧,𝑘+1|𝑘| (4.34) 

where 𝛾𝑦 is an (𝑛 − 𝑚) × (n − 𝑚) diagonal matrix with elements such that 0 ≤ 𝛾𝑦,𝑖𝑖 < 1. 

The SVSF state update equation to be used in the algorithm is as follows [73]: 

�̂�𝑘+1|𝑘+1 = [
�̂�𝑢𝑘+1|𝑘+1
�̂�𝑙𝑘+1|𝑘+1

] = [
�̂�𝑢𝑘+1|𝑘
�̂�𝑙𝑘+1|𝑘

] + [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] 𝑒𝑧,𝑘+1|𝑘 (4.35) 

The a posteriori measurement error needs to be calculated as per (4.36). This value is used 

in the gain calculation of the next time step. 

𝑒𝑧,𝑘+1|𝑘+1 = 𝑧𝑘+1 − 𝐻�̂�𝑘+1|𝑘+1 (4.36) 
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The last step is the calculation of the generalized a posteriori state error covariance matrix 

for the SVSF with fewer measurements than states. The a posteriori state error covariance 

matrix is calculated as follows [73]: 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

]𝐻𝑃𝑘+1|𝑘 − 𝑃𝑘+1|𝑘𝐻
𝑇 [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

]

𝑇

+ [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] 𝑆𝑘+1 [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

]

𝑇

 

(4.37) 

where 𝑆𝑘+1 = 𝐻1𝑃𝑘+1|𝑘
11 𝐻1

𝑇 + 𝑅. Note that the covariance formulation in (4.37) is similar 

to the derived covariance in [17]. However, in that derivation, the SVSF gain for non-

measured states was not explicitly expressed in the formulation. The proposed formulation 

of the a posteriori state error covariance (4.37) includes the uncertainties of all measured 

and non-measured states. This is an essential step in applying data association methods in 

the context of smooth variable structure filtering. 

The SVSF has been demonstrated to be robust against modeling uncertainties [15], 

however, each benefit comes at a price: for the case of LG assumption, the SVSF is a sub-

optimal estimation solution and its covariance matrix does not meet the CRLB (Cramer-

Rao lower bound). Therefore, an optimal derivation of the SVSF is required. 

The SVSF process has been demonstrated to be stable and converging to the existence 

subspace if the absolute value of the estimation error keeps getting smaller in each iteration 

[15]. This condition is satisfied through the design of the corrective gain as discussed. The 

SVSF gain causes a high frequency switching, called chattering, that is undesirable [15]. 

As shown in Figure 4.3, a smoothing boundary layer may be used to reduce the magnitude 

of the chattering and provide a more accurate estimate, while preserving the inherent 
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robustness in the SVSF process. The smoothing boundary layer is a common strategy used 

in sliding mode control to reduce or remove chattering effects due to discontinuous 

corrective action, such as used in the SVSF. Here a boundary layer is introduced around 

the switching hyperplane such that discontinuous corrective action is made linearly variable 

with respect to the distance from the switching hyperplane; while outside the boundary 

layer the full magnitude of the discontinuous action is applied. If the size of the smoothing 

boundary layer is greater than the existence subspace, then the chattering effects are 

removed as shown in Figure 4.3. Such smoothing boundary layer in the SVSF switching 

gain is achieved by using a saturation function instead of a sign function in (4.29) and 

(4.33). The terms 𝜓𝑧 and 𝜓𝑦 represent the width of the smoothing boundary layer. A full 

description of the use of smoothing boundary layer in SVSF is given in [15]. 

 

Figure 4.3 Smoothed estimated state trajectory, when the smoothing boundary layer width is 

bigger than the existence subspace width 
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4.5 A Novel Approach for Multiple Target Tracking in Clutter 

In this section a novel approach for simultaneous data association and filtering is 

introduced. A generalized variable boundary layer-SVSF (GVBL-SVSF), which has the 

optimal characteristics of the KF, while maintaining the robustness against modeling 

uncertainties due to the SVSF, will be derived as a basis for this approach. The proposed 

generalized formulation includes the uncertainties of all measured and non-measured states 

and optimizes the smoothing boundary layer accordingly. This is a fundamental step in 

applying data association in the context of smooth variable structure filtering, while 

maintaining optimality.  

Similarly to a conventional multiple target tracking (MTT) system, the proposed strategy 

consists of four functions as illustrated in Figure 4.4. 

 

Figure 4.4 Conventional MTT system components 

In the gating block of Figure 4.4  elliptical validation regions are constructed around 

predicted measurements of each track as calculated by (4.27) to reduce the number of 

possible measurement to track associations (see Figure 4.6). The validation region is 

defined as a stochastic distance to the predicted measurement, as follows [5]. 

𝒱𝑘+1
𝑖 (𝛼) = {𝑧𝑘+1

𝑗
: [𝑧𝑘+1

𝑗
− �̂�𝑘+1|𝑘

𝑖 ]
𝑇
𝑆𝑘+1
𝑇 [𝑧𝑘+1

𝑗
− �̂�𝑘+1|𝑘

𝑖 ] ≤ 𝛼} (4.38) 
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where 𝛼 is the gate size [5]. 

In most investigations of target tracking methods in the presence of data association 

uncertainty, it is assumed that all tracks have already been initialized and that the number 

of targets is known. However, this is not a practical assumption. An algorithm is required 

to carry out the track management in any tracking system. The track management algorithm 

needs to be responsible for the following [1] (Figure 4.5): 

- Track initiation: a tentative track is initialized for measurements that are not associated 

with any of the existing and previously identified targets. An initialized track is named as 

a tentative track, to which an initial track score is assigned. 

- Track maintenance: As the new set of observations arrive, the track scores get updated. 

If a track score exceeds confirmation threshold, the corresponding track gets confirmed and 

is named a confirmed track. On the other hand, if a track score goes below deletion 

threshold, the corresponding track gets deleted. If a track score is between two thresholds, 

then the track remains tentative and the decision is postponed until the arrival of sufficient 

information. 

The track management can be formulized in several ways [4, 1]. In this paper, the track 

score is calculated and updated based on a recursive likelihood ratio [1]. Figure 4.5 shows 

the flowchart of the track maintenance algorithm. 
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Figure 4.5 The flowchart of the track maintenance algorithm 

The data association and estimation functions are handled simultaneously by a novel 

strategy proposed in this paper, named as JPDA-GVBL-SVSF. This method is proposed 

for multiple target tracking in the presence of clutter. This method is based on the 

generalized variable boundary layer- SVSF which is derived in next section. 
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Figure 4.6 Validation regions 

Several measurements 𝑧𝑘+1
𝑗

 in the ellipsoidal validation region of two targets centered at their 

predicted measurements �̂�𝑘+1|𝑘
𝑖  (𝑗 = 1, . . ,7 and 𝑖 = 1,2) 

4.5.1 Derivation of a New Generalized Variable Boundary Layer for the SVSF 

The width of the smoothing boundary layer 𝜓 reflects the level of uncertainties and the 

disturbances [15, 17]. The partial derivative of the trace of the generalized a posteriori state 

covariance with respect to the width of the smoothing boundary layer has been used as a 

basis for deriving an optimal SVSF. The approach is similar to methodology in [17]. 

However, unlike the previous derivations, the generalized covariance formulation is 

utilized, and thus the optimal smoothing boundary layer is generalized for the case when 

less measurements than states are available. With this derivation, the new SVSF 

formulation is applicable to observable systems. 

In [17], an artificial measurement construction approach is suggested to form a full 

measurement matrix for when there are fewer measurements than states. However, in this 

paper, the exact formulation of the generalized covariance matrix and optimal smoothing 

boundary layer derivation is proposed.  
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The smoothing boundary layer width 𝜓, has been considered in a vector form in the original 

SVSF [15]. A vector form of 𝜓 implies a single smoothing boundary term for each state, 

and therefore, the terms are assumed independent of each other in the calculation of their 

corresponding gains. The vector form of 𝜓 prevents an optimal derivation for the 

smoothing boundary layer. As suggested in [17], a full smoothing boundary layer matrix 

has been utilized in this paper, where the off-diagonal terms correspond to zero for the 

original SVSF formulation in [15]. In this full matrix form, the SVSF corrective gain from 

(4.29) and (4.33) is modified as follows: 

𝐾𝑢𝑘+1 = 𝐻1
−1𝑑𝑖𝑎𝑔(𝐸𝑧)𝑠𝑎𝑡 (𝜓𝑧

−1𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)) [𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]
−1

 (4.39) 

𝐾𝑙𝑘+1 =  𝑑𝑖𝑎𝑔(𝐸𝑦)𝑠𝑎𝑡 (𝜓𝑦
−1𝑑𝑖𝑎𝑔(𝛷22𝛷12

−1𝑒𝑧,𝑘+1|𝑘)) 

    [𝑑𝑖𝑎𝑔(𝛷22𝛷12
−1𝑒𝑧,𝑘+1|𝑘)]

−1
𝛷22𝛷12

−1 

(4.40) 

where 𝜓𝑧 is an invertible 𝑚 ×𝑚 matrix,  𝜓𝑦 is an invertible (𝑛 −𝑚) × (𝑛 −𝑚) matrix. 

In order to solve for an optimal time-varying smoothing boundary layer, the partial 

derivative of the trace of the generalized a posteriori state covariance (4.37) with respect to 

the width of the smoothing boundary layers 𝜓𝑧 and 𝜓𝑦 is equated to zero, as follows: 

{
 
 

 
 𝜕 (𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1))

𝜕𝜓𝑧
= 0

𝜕 (𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1))

𝜕𝜓𝑦
= 0

 (4.41) 

where 𝑃𝑘+1|𝑘+1 is calculated by using:  
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𝑃𝑘+1|𝑘+1
11 = 𝑃𝑘+1|𝑘

11 − 𝐾𝑢𝑘+1𝐻1𝑃𝑘+1|𝑘
11 − 𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝐾𝑢𝑘+1

𝑇 + 𝐾𝑢𝑘+1𝑆𝑘+1𝐾𝑢𝑘+1
𝑇  (4.42) 

𝑃𝑘+1|𝑘+1
12 = 𝑃𝑘+1|𝑘

12 − 𝐾𝑢𝑘+1𝐻1𝑃𝑘+1|𝑘
12 − 𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝐾𝑙𝑘+1

𝑇 + 𝐾𝑢𝑘+1𝑆𝑘+1𝐾𝑙𝑘+1
𝑇    (4.43) 

𝑃𝑘+1|𝑘+1
21 = 𝑃𝑘+1|𝑘

21 − 𝐾𝑙𝑘+1𝐻1𝑃𝑘+1|𝑘
11 − 𝑃𝑘+1|𝑘

21 𝐻1
𝑇𝐾𝑢𝑘+1

𝑇 + 𝐾𝑙𝑘+1𝑆𝑘+1𝐾𝑢𝑘+1
𝑇    (4.44) 

𝑃𝑘+1|𝑘+1
22 = 𝑃𝑘+1|𝑘

22 − 𝐾𝑙𝑘+1𝐻1𝑃𝑘+1|𝑘
21 − 𝑃𝑘+1|𝑘

12 𝐻1
𝑇𝐾𝑙𝑘+1

𝑇 +𝐾𝑙𝑘+1𝑆𝑘+1𝐾𝑙𝑘+1
𝑇     (4.45) 

One can deduce the following:  

𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1) =  𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1
11 ) +  𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1

22 ) (4.46) 

From (4.46) and given that 𝜓𝑧 is only an element of 𝑃𝑘+1|𝑘+1
11  and 𝜓𝑦 is only an element 

of 𝑃𝑘+1|𝑘+1
22 , (4.41) may be specified as below: 

𝜕 (𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1
11 ))

𝜕𝜓𝑧
= 0 (4.47) 

𝜕 (𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1
22 ))

𝜕𝜓𝑦
= 0 (4.48) 

In an attempt to avoid significant chattering, the solution of (4.47) and (4.48) is considered 

inside the saturation terms of the SVSF gain (4.39) and (4.40) [17]. With this consideration, 

the SVSF gain will be as follows:  

𝐾𝑢𝑘+1 = 𝐻1
−1𝑑𝑖𝑎𝑔(𝐸𝑧)𝜓𝑧

−1𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)[𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]
−1

 (4.49) 

𝐾𝑙𝑘+1 =  𝑑𝑖𝑎𝑔(𝐸𝑦)𝜓𝑦
−1𝑑𝑖𝑎𝑔(𝛷22𝛷12

−1𝑒𝑧,𝑘+1|𝑘)[𝑑𝑖𝑎𝑔(𝛷22𝛷12
−1𝑒𝑧,𝑘+1|𝑘)]

−1
𝛷22𝛷12

−1 (4.50) 
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Adopting the bar notation �̅� to signify a diagonal matrix form of the vector 𝑎, the gain 

(4.49) and (4.50) may be simplified to the following: 

𝐾𝑢𝑘+1 = 𝐻1
−1�̅�𝑧𝜓𝑧

−1 (4.51) 

𝐾𝑙𝑘+1 = �̅�𝑦𝜓𝑦
−1𝛷22𝛷12

−1 (4.52) 

Substituting (4.51) and (4.52) into (4.42) and (4.45) yields  

𝑃𝑘+1|𝑘+1
11 = 𝑃𝑘+1|𝑘

11 − 𝐻1
−1�̅�𝑧𝜓𝑧

−1𝐻1𝑃𝑘+1|𝑘
11 − 𝑃𝑘+1|𝑘

11 𝐻1
𝑇(𝐻1

−1�̅�𝑧𝜓𝑧
−1)𝑇

+ 𝐻1
−1�̅�𝑧𝜓𝑧

−1𝑆𝑘+1(𝐻1
−1�̅�𝑧𝜓𝑧

−1)𝑇 
(4.53) 

𝑃𝑘+1|𝑘+1
22 = 𝑃𝑘+1|𝑘

22 − �̅�𝑦𝜓𝑦
−1𝛷22𝛷12

−1𝐻1𝑃𝑘+1|𝑘
21 − 𝑃𝑘+1|𝑘

12 𝐻1
𝑇(�̅�𝑦𝜓𝑦

−1𝛷22𝛷12
−1)

𝑇

+ �̅�𝑦𝜓𝑦
−1𝛷22𝛷12

−1𝑆𝑘+1(�̅�𝑦𝜓𝑦
−1𝛷22𝛷12

−1)
𝑇
    

(4.54) 

The next step is to solve for (4.47) and (4.48), considering the individual terms of (4.53) 

and (4.54) respectively. The procedure for solving (4.47) is as follows [74, 17], where: 

𝜕 (𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘
11 ))

𝜕𝜓𝑧
= 0 (4.55) 

𝜕 (𝑡𝑟𝑎𝑐𝑒(−𝐻1
−1�̅�𝑧𝜓𝑧

−1𝐻1𝑃𝑘+1|𝑘
11 ))

𝜕𝜓𝑧
= 𝜓𝑧

−𝑇�̅�𝑧𝐻1
−𝑇𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝜓𝑧

−𝑇 (4.56) 

𝜕 (𝑡𝑟𝑎𝑐𝑒(−𝑃𝑘+1|𝑘
11 𝐻1

𝑇(𝐻1
−1�̅�𝑧𝜓𝑧

−1)𝑇))

𝜕𝜓𝑧
= 𝜓𝑧

−𝑇�̅�𝑧𝐻1
−𝑇𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝜓𝑧

−𝑇  (4.57) 

𝜕(𝑡𝑟𝑎𝑐𝑒(𝐻1
−1�̅�𝑧𝜓𝑧

−1𝑆𝑘+1(𝐻1
−1�̅�𝑧𝜓𝑧

−1)𝑇))

𝜕𝜓𝑧
  = −2𝜓𝑧

𝑇�̅�𝑧𝐻1
−𝑇𝐻1

−1�̅�𝑧𝜓𝑧
−1𝑆𝑘+1𝜓𝑧

−𝑇 (4.58) 
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Combining (4.55) to (4.58) into (4.47) and (4.53) yields: 

𝜕 (𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1
11 ))

𝜕𝜓𝑧

= 2𝜓𝑧
−𝑇�̅�𝑧𝐻1

−𝑇𝑃𝑘+1|𝑘
11 𝐻1

𝑇𝜓𝑧
−𝑇 − 2𝜓𝑧

𝑇�̅�𝑧𝐻1
−𝑇𝐻1

−1�̅�𝑧𝜓𝑧
−1𝑆𝑘+1𝜓𝑧

−𝑇

= 0 

(4.59) 

Simplifying (4.59) and solving for the smoothing boundary layer 𝜓𝑧 results in the following 

equation:  

𝜓𝑧
−1 = �̅�𝑧

−1𝐻1𝑃𝑘+1|𝑘
11 𝐻1

𝑇𝑆𝑘+1
−1  (4.60) 

The smoothing boundary layer 𝜓𝑧 is then obtained as: 

𝜓𝑧 = (�̅�𝑧
−1𝐻1𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝑆𝑘+1

−1 )
−1

 (4.61) 

The matrix 𝜓𝑧 is an (𝑚 ×𝑚) matrix and is invertible if the matrix �̅�𝑧
−1𝐻1𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝑆𝑘+1 is 

nonsingular. 

Next, the same procedure is employed to solve for (4.48), considering the individual terms 

of (4.54), where: 

𝜕 (𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘
22 ))

𝜕𝜓𝑦
= 0 (4.62) 

𝜕 (𝑡𝑟𝑎𝑐𝑒(−�̅�𝑦𝜓𝑦
−1𝛷22𝛷12

−1𝐻1𝑃𝑘+1|𝑘
21 ))

𝜕𝜓𝑦
= 𝜓𝑦

−𝑇�̅�𝑦𝑃𝑘+1|𝑘
21 𝐻1

𝑇(𝛷22𝛷12
−1)𝑇𝜓𝑦

−𝑇 (4.63) 
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𝜕 (𝑡𝑟𝑎𝑐𝑒 (−𝑃𝑘+1|𝑘
12 𝐻1

𝑇𝛷12
−𝑇𝛷22

𝑇 (𝜓𝑦
−𝑇�̅�𝑦

𝑇)
𝑇
))

𝜕𝜓𝑦
= 𝜓𝑦

−𝑇�̅�𝑦𝑃𝑘+1|𝑘
21 𝐻1

𝑇(𝛷22𝛷12
−1)𝑇𝜓𝑦

−𝑇 (4.64) 

𝜕(𝑡𝑟𝑎𝑐𝑒(𝐻1
−1�̅�𝑧𝜓𝑧

−1𝑆𝑘+1(𝐻1
−1�̅�𝑧𝜓𝑧

−1)𝑇))

𝜕𝜓𝑦

= −2𝜓𝑦
𝑇�̅�𝑦�̅�𝑦𝜓𝑦

−1𝛷22𝛷12
−1𝑆𝑘+1(𝛷22𝛷12

−1)𝑇𝜓𝑦
−𝑇 

(4.65) 

Combining (4.62) to (4.65) into (4.48) and (4.54) yields 

𝜕 (𝑡𝑟𝑎𝑐𝑒(𝑃𝑘+1|𝑘+1
22 ))

𝜕𝜓𝑦

= 2𝜓𝑦
−𝑇�̅�𝑦𝑃𝑘+1|𝑘

21 𝐻1
𝑇𝛷12

−𝑇𝛷22
𝑇 𝜓𝑦

−𝑇

− 2𝜓𝑦
𝑇�̅�𝑦�̅�𝑦𝜓𝑦

−1𝛷22𝛷12
−1𝑆𝑘+1(𝛷22𝛷12

−1)𝑇𝜓𝑦
−𝑇 = 0 

(4.66) 

Simplifying (4.66) and solving for the smoothing boundary layer 𝜓𝑦 yields the following 

equation:  

𝜓𝑦
−1 = �̅�𝑦

−1𝑃𝑘+1|𝑘
21 𝐻1

𝑇𝑆𝑘+1
−1 (𝛷22𝛷12

−1)−1 (4.67) 

The smoothing boundary layer 𝜓𝑦 is then obtained as: 

𝜓𝑦 = (�̅�𝑦
−1𝑃𝑘+1|𝑘

21 𝐻1
𝑇𝑆𝑘+1

−1 (𝛷22𝛷12
−1)−1)

−1
 (4.68) 

The matrix 𝜓𝑦 is an (𝑛 − 𝑚) × (𝑛 −𝑚) matrix and is invertible if the matrix 

�̅�𝑦
−1𝑃𝑘+1|𝑘

21 𝐻1
𝑇𝑆𝑘+1

−1 (Φ22Φ12
−1)−1 is nonsingular. 

The proposed smoothing boundary layers in (4.61) and (4.68) are directly related to the 

level of modeling uncertainties (captured by the error terms �̅�𝑧 and �̅�𝑦) and the estimated 
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system and measurement noise (by virtue of state and measurement covariance matrices). 

The optimal width of the smoothing boundary layer for both measured and unmeasured 

states can now be updated in each time step in accordance with updates in the modeling 

uncertainty and noise.  

As in (4.51) and (4.52), the SVSF gain is dependent on the width of smoothing boundary 

layer. In an attempt to examine the effects of the optimal smoothing boundary layer 

(generalized variable boundary layer – GVBL) terms on the SVSF gain, (4.60) and (4.67) 

are substituted into (4.51) and (4.52) respectively, which yields the following equations. 

𝐾𝑢𝑘+1
𝐺𝑉𝐵𝐿 = 𝐻1

−1�̅�𝑧(�̅�𝑧
−1𝐻1𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝑆𝑘+1

−1 ) (4.69) 

𝐾𝑙𝑘+1
𝐺𝑉𝐵𝐿 = �̅�𝑦(�̅�𝑦

−1𝑃𝑘+1|𝑘
21 𝐻1

𝑇𝑆𝑘+1
−1 (𝛷22𝛷12

−1)−1)𝛷22𝛷12
−1 (4.70) 

which is simplified as follows: 

𝐾𝑢𝑘+1
𝐺𝑉𝐵𝐿 = 𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝑆𝑘+1

−1  (4.71) 

𝐾𝑙𝑘+1
𝐺𝑉𝐵𝐿 = 𝑃𝑘+1|𝑘

21 𝐻1
𝑇𝑆𝑘+1

−1  (4.72) 

One can arrange the two gains into a matrix form as follows: 

𝐾𝐺𝑉𝐵𝐿 = [
𝐾𝑢𝑘+1
𝐺𝑉𝐵𝐿

𝐾𝑙𝑘+1
𝐺𝑉𝐵𝐿] = [

𝑃𝑘+1|𝑘
11 𝑃𝑘+1|𝑘

12

𝑃𝑘+1|𝑘
21 𝑃𝑘+1|𝑘

22 ] [𝐻1
𝑇

0
] 𝑆𝑘+1

−1 = 𝑃𝑘+1|𝑘𝐻
𝑇𝑆𝑘+1

−1  (4.73) 

The SVSF gain of (4.73) is the same as the KF gain (4.6), which is the optimal solution in 

the MMSE sense for linear Gaussian systems. To preserve the robustness of the SVSF to 

modeling uncertainties, a generalized combined strategy is proposed, referred to here as 

GVBL-SVSF. The novel generalized strategy maintains an accurate estimate for both 
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measured and unmeasured states, using the GVBL calculation, while ensuring the stability 

of the state estimation by virtue of the standard SVSF gain. A saturation limit, 𝜓𝑚𝑎𝑥 is 

imposed on the optimal boundary layer, inside which the optimality of GVBL is maintained 

and outside which the robustness of standard SVSF is ensured. The calculation process of 

GVBL-SVSF can be summarized as follows (also see Figure 4.7). 

1. The state and covariance are predicted by (4.24) and (4.26) respectively, and the 

measurement innovation is calculated by (4.28). 

2. The GVBL is calculated using (4.61) and (4.68), and its diagonal elements are compared 

with 𝜓𝑚𝑎𝑥; if larger, the corrective gain is calculated by (4.39) and (4.40), if smaller, the 

corrective gain is obtained from (4.71) and (4.72).  

3. The state, the state covariance matrix, and the measurement a posteriori error are updated 

via (4.35), (4.37) and (4.36) respectively. 

4.5.2 Proposed JPDA-GVBL-SVSF for Multiple Target Tracking in Clutter 

The following assumptions are used to formulate JPDA-GVBL-SVSF algorithm: 1. The 

number of tentative and confirmed tracks is known. 2. The targets may be interfering, i.e. 

measurements from one target can fall within the validation gate of a neighboring target. 3. 

The past information of the system is approximated by a normal distribution, i.e. the 

approximate sufficient statistics include approximate conditional means and the 

covariances for each target. 4. The stochastic portion of the estimation error is bounded, 

which is a required condition of stability for the SVSF [15]. 

The proposed JPDA-GVBL-SVSF algorithm is summarized by three steps:  
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1- The joint measurement-to-target association probabilities are calculated according to 

(4.19).  

2- The marginal association probabilities for the latest set of measurements are made 

according to (4.21). 

3- The states are estimated with the procedure summarized at the end of Section IV-A, and 

sequentially according to equations (4.24); (4.26); (4.28); (4.61); (4.68); one of the pairs of 

(4.39) and (4.40) or (4.71) and (4.72); (4.35);(4.37); and (4.36).  

Examples of the JPDA-GVBL-SVSF parameters are provided in 4.6. The number of false 

measurements is assumed to obey the Poisson distribution with the spatial density 𝜆 [4]. 

Hence, the joint association probabilities are as (4.19). The state estimation of the targets 

are carried out in a decoupled manner with the assumption that the target states conditioned 

on the past information are mutually independent [5]. 
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Figure 4.7 The flowchart of the proposed algorithm 

With this assumption, the marginal association probabilities are calculated by summing the 

joint hypotheses in which the marginal hypothesis of interest is included as in (4.21) [4]. 

Consequently, although the association probabilities for all targets are calculated in a jointly 

manner, the state estimation procedure is decoupled amongst the targets. The decoupled 

state estimation avoids the curse of dimensionality as the number of targets increases. 

Therefore, the computational complexity of the algorithm increases linearly as the number 

of targets increases.  

In the proposed MTT system, the initiation, confirmation and deletion of the tracks is 

performed using a track-score based track maintenance system. Since the track-score based 
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track maintenance is not a hard-decision technique, the system is able to tolerate a number 

of missed detections until the track score falls below a threshold, hence is robust against 

missed detections for a number of frames.  

Employing the proposed JPDA-GVBL-SVSF, the system takes the uncertainties of all 

measured and non-measured states into account such that the problem of multiple target 

tracking in the presence of clutter is dealt with in a robust and optimized manner. 

4.6 Multiple Target Tracking Cases and Results 

This section describes the results of a number of target tracking scenarios. The first case 

compares the results of applying the JPDA-KF and the JPDA-GVBL-SVSF to a multiple 

target tracking simulation scenario. The second compares the results when the methods are 

applied to a LiDAR-based car tracking experimental data. 

4.6.1 Multiple Target Tracking with Clutter 

The multiple target tracking scenario consists of three maneuvering cars as described by 

Table 4.1 and Figure 4.8. A simple two-dimensional discrete constant velocity model is 

implemented as follows [6]. The state vector is defined as 𝒙 = [𝑥 𝑦 𝑣𝑥 𝑣𝑦], where 𝑥 and 𝑦 

are the position in two Cartesian directions, and 𝑣𝑥 and 𝑣𝑦 are the corresponding velocities. 

In this model, the accelerations of the target between two sequential samples are assumed 

to be constant with discrete-time zero mean white Gaussian noise. The motion model is 

defined as follows: 

𝑥(𝑘 + 1) = 𝐹𝑥(𝑘) + 𝐺𝑣(𝑘) (4.74) 
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where the state transition and process noise gain matrices are defined by: 

𝐹 = [

1 0
0 1

𝑇𝑠 0
0 𝑇𝑠

0 0
0 0

1  0
0  1

] , 𝐺 =  

[
 
 
 
𝑇𝑠
2/2 0

0 𝑇𝑠
2/2

𝑇𝑠       0
0        𝑇𝑠 ]

 
 
 

 (4.75) 

The white acceleration noise covariance matrix is defined as follows: 

𝑄 = 𝑐𝑜𝑣{𝑣(𝑘)} = [
𝜎𝑣
2 0

0 𝜎𝑣
2] (4.76) 

To emphasize on the performance comparison of the methods, the simulation model is 

chosen to be a simple kinematic model. From an implementation point of view, the 

computational complexity of the algorithm should be manageable for real time 

applications. This limits the complexity of car motion models as the number of targets 

increase.  

The measurement model, matrix, and noise covariance are defined respectively as follows:  

𝑧(𝑘) = 𝐻𝑥(𝑘) + 𝑤(𝑘) (4.77) 

𝐻 = [
1 0
0 1

0 0
0 0

] (4.78) 

𝑅 = 𝑐𝑜𝑣{𝑤(𝑘)} = [
𝜎𝑤
2 0

0 𝜎𝑤
2] 

(4.79) 
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Table 4.1. Simulation scenario for three cars 

Initial State Maneuver Duration 

Car#1 

𝑥0 = 200 𝑚 

𝑦0 = 50 𝑚 

𝑣𝑥0 = 28 𝑚/𝑠 

𝑣𝑦0 = 1 𝑚/𝑠 

a near constant velocity motion 0-93s 

a “straight line and curve” 94-139s 

a near constant velocity 140-500s 

Car#2 

𝑥0 = −1000 𝑚 

𝑦0 = 25 𝑚 

𝑣𝑥0 = 33 𝑚/𝑠 

𝑣𝑦0 = 1 𝑚/𝑠 

a near const. velocity motion 0-115s 

a “straight line and curve” 116-156s 

a near constant velocity 157-241s 

a “cut-in-out” 242-325s 

a near constant velocity motion 326-500s 

Car#3 

𝑥0 = −2000 𝑚 

𝑦0 = 0 𝑚  

𝑣𝑥0 = 34 𝑚/𝑠 

𝑣𝑦0 = 1 𝑚/𝑠 

a near constant velocity motion 0-139s 

a “straight line and curve” 140-179s 

a near constant velocity 180-368s 

a “cut-in-out” 368-418s 

a near constant velocity motion 419-500s 

 

Figure 4.8 Vehicle trajectories illustrating their maneuvers [73] 

As the measurement matrix 𝐻 indicates, the available measurements are the positions in 𝑥 

and 𝑦  direction, while the state vector includes the position (𝑥 and 𝑦) as well as the velocity 

(𝑣𝑥 and 𝑣𝑦) states, i.e. the number of measurements are less than the number of states.  
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Although the cars have maneuvering behaviors, the two algorithms (JPDA-KF and JPDA-

GVL-SVSF) will only use the near-constant velocity model as the motion model, i.e. in 

addition to dealing with measurements from interfering vehicles and clutter, the algorithms 

will also have to overcome modeling uncertainty. Both algorithms are tuned for non-

maneuvering scenario. Then to check the performance of the algorithms, the maneuvering 

scenario is simulated for both algorithms without retuning.  

The following parameter values are used for the simulations: process and measurement 

noise covariances are 𝜎𝑣
2 = 0.52, 𝜎𝑤

2 = 32 respectively, gate threshold is 𝛼 = 16 , gate 

probability is 𝑃𝐺 = 0.9997, detection probability is 𝑃𝐷 = 0.9, spatial density of the number 

of false alarms is 𝜆 = 10−2, the SVSF gain parameter is 𝛾 = 0.1 and the smoothing 

boundary layer limit is equal to 20. 

The RMSEs of state estimations averaged over 500 Monte Carlo runs for three vehicles are 

tabulated in Table 4.2. Due to the simultaneous optimal-robust characteristics of GVBL-

SVSF, the RMSEs of estimations are considerably decreased using the proposed method. 

More specifically, in average, there are 9% and 18% decrease in RMSE associated with the 

position and velocity estimation errors, respectively. The simulation model assumes the 

near constant velocity motion in both 𝑥- and 𝑦- directions. However, the scenarios are 

designed to include a maneuvering motion to represent the modeling uncertainties. The 

maneuvers are mostly performed in 𝑦-direction, hence modeling uncertainty is larger in y-

direction. Consequently, the effect of the performance of JPDA-GVBL-SVSF is more vivid 

in the 𝑦-direction. 
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Table 4.2. RMSE of State Estimations for Multiple Target Tracking Case 

Stat

es 

Car #1 Car #2 Car #3 

JPDA-KF JPDA-

GVBL-

SVSF 

JPDA-KF JPDA-

GVBL-

SVSF 

JPDA-KF JPDA-

GVBL-

SVSF 

𝒙 1.43 1.37 2.12 2.06 2.33 2.28 

𝒚 1.21 0.70 1.39 0.94 1.62 1.26 

𝒗𝒙 0.71 0.71 0.82 0.77 0.83 0.77 

𝒗𝒚 0.99 0.94 1.27 1.04 1.46 1.25 

Furthermore, the traces of the covariance matrices for three cars are illustrated in Figure 4.9. 

Due to the optimized generalized variable boundary layer calculations, the traces of the 

covariance matrices are decreased to the minimum level of the KF which meets the CRLB 

condition for the estimator [6]. The modeling uncertainty is imposed on to the system by 

the choice of model, however, only when the car maneuvers. These cases are detected as 

an increase in the trace of the covariance matrices in Figure 4.9. The JPDA-GVBL-SVSF 

benefits from the robustness property of the smooth variable structure filtering strategy and 

increases the covariance to suppress the effects of modeling uncertainty, which is the reason 

for the significant improvement in its RMSE in state estimation.  
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Figure 4.9 Trace of the covariance matrices for three cars, comparing JPDA-KF and JPDA-

GVBL-SVSF methods 

4.6.2 Experimental Validation: LiDAR-Based Multiple Road Vehicle Tracking 

The proposed JPDA-VBL-SVSF algorithm has been tested on a number of processed 

LiDAR data sets acquired in actual driving in a highway linking two cities (Hamilton and 

Toronto in Canada along a highway called the Queen Elizabeth Way (QEW)). The 

proposed method can be used for other types of sensors, including video cameras and 

radars. However, each sensory data should be processed in order to be fed into the tracking 

algorithm. The experimental set-up used in this project for data acquisition includes a Ford 

escape car equipped with a Velodyne HDL32 LiDAR sensor (Figure 4.11). The LiDAR 

provides a 3D point cloud in each frame with a frame rate of 0.1 second (as shown in 
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Figure 4.10), which requires to be processed before feeding into tracking algorithm. A 

concise scheme of the data processing algorithm is as follows:  

The data processing algorithm consists of two phases: The first phase is called segmentation 

which enables the system to distinguish non-ground points from ground points. Since, 

reducing the computation time plays a critical role in real time implementation, the 

segmentation step would reduce the computational load of the algorithm by filtering out 

the false readings. In the second phase, a bounded nearest neighbour based on Euclidean 

distance is used to make clusters. The clustering from the second phase is to classify the 

non-ground points into different vehicle-like objects. The clusters are processed to obtain 

the position of the centre-point of each vehicle-like object and then fed into the tracking 

algorithm (proposed in Section 4.5) as the input data.  

The gating and the track management functions are performed as described in Section IV. 

The performances of the two algorithms, the JPDA-KF and the JPDA-VBL-SVSF, are 

summarized and compared in Table 4.3. For the purpose of the calculation of association 

probabilities it is assumed that the clutter is uniformly distributed and the number of clutter 

originated measurements abides by a Poisson’s distribution with spatial density of 𝜆 =

10−2. The spatial density is roughly obtained by averaging the number of detected clutter 

objects over the total number of frames of the experimental data. 

Note that the table provides the rates of true positive (TP), that is an indicator of the number 

of correctly tracked targets, and false positive (FP), that is an indicator of the number of 

falsely tracked objects, attained by the algorithms. The track break-ups rate is a 

performance index that counts the number of re-labeled targets. The relabeling of targets 

happens if for any reason the detection system misses a previously confirmed target over a 

number of frames, and when detected again, it is treated as a new track, with a new label. 
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From Table 4.3, the proposed algorithm has improved the TP (%) by around 8% and the 

rate of track break-ups by 6%. Also, the FP (%) indicates that a number of clutter objects 

are falsely detected and tracked as objects of interest. The proposed algorithm improved 

this indicator by reducing the FP (%) by around 6%. The performance of the tracking 

algorithm is limited by the accuracy of the detection algorithm. 

 

Figure 4.10 One sample frame of raw LiDAR data 

 

Figure 4.11 The car equipped with Velodyne HDL32 LiDAR 
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Table 4.3. The performance evaluation of multiple car tracking algorithms comparing JPDA-KF 

and JPDA-GVBL-SVSF  

MTT Strategy 
# of 

Cars 

Correctly 

Tracked 

Falsely 

Tracked 

TP 

(%) 

FP 

(%) 

Rate of Track 

Break-ups (%) 

JPDA-KF 

58 

49 9 84.48 15.52 8 

JPDA-GVBL-

SVSF 
53 5 91.38 8.62 2 

4.7 Conclusion 

In this paper, a new approach for multiple target tracking in the presence of clutter, referred 

to as JPDA-GVBL-SVSF, is introduced. A generalized form of the SVSF covariance is 

used to derive the generalized optimal SVSF. This method is then combined with JPDA 

into the JPDA-GVBL-SVSF strategy. The proposed method has been compared to the 

JPDA-KF method under a multiple target tracking simulation scenario in terms of 

estimation accuracy and robustness to uncertainties. The proposed method performed 

significantly better than the JPDA-KF method due to its combined optimality and 

robustness to modeling uncertainties. To further investigate the performance of the 

proposed method, it has been tested on a number of processed LiDAR data sets acquired in 

actual driving in a highway linking two cities (Hamilton and Toronto in Canada along a 

highway. The overall performance of the MTT system has been compared for the JPDA-

KF and the JPDA-GVBL-SVSF in terms of the TP and FP rates and the rate of track 

breakups. The proposed algorithm has improved the TP(%), FP(%) and the rate of track 

break-ups, and made a more reliable tracking algorithm for real car tracking scenarios. 

The main contribution of this paper was on the estimation strategy used in the context of 

data association methods based of probabilistic data association. The proposed estimation 
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strategy of this paper can be used with other data association methods, and is considered 

for future work. 
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Chapter 5 

 

5 Augmented Probabilistic Data Association 

Based on SVSF Estimation 

5.1 Abstract 

In many intelligent car applications, it is required to observe and track the state of motion 

of surrounding vehicles by use of some sensors. Often, the sensory data is affected by noise 

and false alarm. The tracking system relies on estimation and data association techniques 

to resolve these issues. The Kalman filter (KF) is the mostly studied method for estimation 

and tracking. KF is optimal for a linear-Gaussian assumption. If this assumption is not held, 

the optimality and stability of KF is affected. The smooth variable structure filter (SVSF) 

is a relatively new method which is more robust to modeling uncertainties. The SVSF 

provides extra measures of performance, such as the magnitude of chattering signal. In this 

paper, a novel data association method has been proposed that extracts extra information 

of the SVSF in a Bayesian framework. This novel method, named augmented probabilistic 

data association-SVSF (APDA-SVSF) is presented and analyzed. The robustness and 

accuracy of the new form of filtering and data association is validated and comparatively 

analyzed by its application to an experimental traffic monitoring system based on LiDAR 

(LIght Detection And Ranging). 
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5.2 Introduction 

Tracking techniques are commonly used in surveillance, advanced driver assistance 

systems (ADAS), air traffic control, medical imaging, finance and autonomous vehicles 

amongst others. Tracking, by definition is the recursive estimation of the states (position, 

velocity, etc.) of an unknown target from indirect, inaccurate and uncertain measurements 

[6]. Data association uncertainty occurs when some of the measurements are not necessarily 

originated from the targets of interest [5]. In such data association problems, an estimate of 

the target’s states is used to predict the target’s state of motion and associated measurement 

for the next upcoming time step. This prediction is the basis for discriminating and 

eliminating measurements.  

The literature on target tracking in the presence of clutter is extensive [4, 1].  One of the 

most commonly used data association methods is the probabilistic data association (PDA) 

filter [5, 27]. In the PDA the association probability for each track is calculated by taking 

all feasible measurement-to-track association hypotheses into consideration [5, 29]. The 

PDA assumes that the track has already been initialized [5]. Therefore, in practice, the PDA 

is used in conjunction with a track maintenance algorithm such as logic-based track 

formation [4], or a track-score based method [1]. The joint probabilistic data association 

(JPDA) is an extension of the PDA to handle the problem of multiple interfering targets 

[31]. In JPDA, the association probabilities are calculated in a joint manner across all 

targets [31]. Data association techniques may be enhanced by using additional information 

of measurements from each target. These additional information are referred to as target 

features or target signatures [75, 76, 4]. The inclusion of a feature or signature information 

in the hypothesis probability calculation is what makes the difference between signature-

aided approaches and the traditional approaches [4]. 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

163 

 

The data association process provides an association probability for each hypothesis. The 

association probabilities are used to construct a combined innovation term. This term is a 

weighted sum of all the innovations, and is used in the estimation algorithm [4]. The most 

popular model-based estimation strategy is the Kalman filter (KF) which provides the best 

solution in the minimum mean squared error (MMSE) sense under the linear Gaussian (LG) 

assumption [6, 8, 7].  

The KF is derived for linear systems. Some extensions of KF to work with nonlinear 

systems are the Extended KF (EKF) [6] and Unscented KF (UKF) [77]. More recently, 

particle filters (PF) are also being widely used [12].  In EKF, the state probability 

distribution is approximated with a Gaussian distribution. Then a first order linearization 

of the system is used to propagate this approximation [6]. However, this process may lead 

to suboptimal performance or even filter divergence in some cases. In the UKF, the state 

probability distribution is approximated with a Gaussian distribution that is represented by 

a set of deterministic sample points. These sample points are then propagated through the 

nonlinear system [77].  In comparison, for the same order of complexity, the EKF captures 

the nonlinearities of first order, while the UKF achieves at least 2nd order accuracy [77]. 

The KF is optimal for linear Gaussian systems. For the case when the Gaussian assumption 

is breached, one solution is to approximate the non-Gaussian distribution with a Gaussian 

mixture at the cost of increasing computational complexity [11]. The PF or the sequential 

Monte Carlo method is proposed for nonlinear non-Gaussian systems [12]. The state 

probability distribution is approximated by a large number of Monte Carlo independent 

identical distribution samples, namely particles [12]. The PF is very expensive in 

implementation, yet powerful in handling difficult problems [12]. 

A group of robust estimation techniques is the variable structure filter based methods [16]. 

In these methods, similar to sliding mode concept, the stability of the filter is guaranteed 
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given bounded parametric uncertainties [16]. The smooth variable structure filter (SVSF) 

is a type of variable structure filter that uses a discontinuous corrective gain to force the 

estimated states toward a subspace around the true trajectories, namely the existence 

subspace. Once the estimated states are within this subspace, they would switch back and 

forth within its boundaries. This switching effect is referred to as chattering and for a 

normal operating condition is filtered out by using a smoothing function [15]. The 

magnitude of the chattering signal is an indicator of modeling uncertainties [15]. Therefore, 

in addition to conventional filter performance measures, the SVSF provides a unique set of 

performance indicators that quantify the degree of uncertainty [15]. 

Some modifications have been proposed to the SVSF from its original form, such as 

derivation of an optimal form in [78, 17]. Also, a number of SVSF-based methods have 

been used for target tracking in the presence of data association uncertainty [54, 73, 79, 57, 

72]. The SVSF in combination with PDA and JPDA is investigated in [54, 57]  and the 

results indicate an improvement over the original PDA and JPDA approaches. The SVSF-

based PDA is used for maneuvering target tracking in conjunction with the interacting 

multiple model method in [72]. In [73, 79] a generalized version of the SVSF and its 

optimal form is proposed and examined for automotive tracking applications in the 

presence of cluttered measurements. In all of the methods proposed in [54, 73, 79, 57, 72] 

the data association and filtering are performed simultaneously, however, the data 

association is handled by conventional PDA or JPDA methods. In this paper, an augmented 

probabilistic data association method is proposed. This proposed method uses the extra 

source of information that the SVSF provides that is the chattering magnitude signal. Use 

of chattering is unique to the SVSF concept and has never been implemented before. It is a 

source of additional information that relates directly to the uncertainty of the filter model. 

This extra information is used in the Bayesian inference procedure of association 
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probabilities calculation and can enhance the tracking performance significantly as shown 

here. 

Section 5.3 of this paper provides a brief overview of the SVSF method. The data 

association principles are summarized in Section 5.4. In Section 5.5 the probability 

distribution function of the chattering magnitude signal is derived. Then through a Bayesian 

inference a new augmented set of association probabilities are proposed and discussed. In 

Section 5.6, a tracking simulation problem is described and then the new proposed method 

is comparatively analyzed in terms of its estimation accuracy and robustness to 

uncertainties. Furthermore, the method is experimentally evaluated and applied to a LiDAR 

based automotive tracking system. The conclusions are provided in Section 5.7.  

5.3 Smooth Variable Structure Filter 

The smooth variable structure filter (SVSF) is a predictor-corrector model-based estimation 

strategy which was first presented in 2007 [15]. The operation of the SVSF is shown in Fig 

1. Conceptually, the SVSF uses a switching corrective gain to force the estimated states to 

within a boundary around the true state trajectory, named as the existence subspace. It 

guarantees the stability through the calculation of the corrective gain using a Lyapunov 

based stability theorem [15, 17]. The discontinuous corrective action of the SVSF results 

in chattering that can be suppressed by using a smoothing boundary layer. The filter also 

allows extraction of a higher degree of information from the measurements through 

secondary indicators of performance. 

The SVSF process has been demonstrated to be stable for bounded uncertainties and 

converges to a neighborhood of the actual state trajectory referred to as the existence 
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subspace [15, 17]. Thereafter, the estimates switch back and forth across the true trajectory 

while remaining within this subspace, as shown in Figure 5.1. The SVSF gain causes a high 

frequency switching, called chattering, that is undesirable [15, 17]. As shown in [15, 17], a 

smoothing boundary layer may be used to reduce or remove the magnitude of the chattering 

at the expense of  estimation accuracy, while preserving the inherent robustness in the 

SVSF process. 

The SVSF has been modified and improved since its introduction [79, 17]. In this paper, 

the generalized variable boundary layer SVSF (GVBL-SVSF) [79] is used. 

 

Figure 5.1 SVSF estimation concept [15] 

The main steps of the GVBL-SVSF are the prediction and the update as follows. Consider 

the following state space model: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 (5.1) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘  (5.2) 

where 𝑥𝑘 and 𝑧𝑘 are the state and measurement vectors, of dimensions of (𝑛 × 1) and (𝑚 ×

1), respectively, and 𝑤𝑘 and 𝑣𝑘 are zero mean white Gaussian process and measurement 
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noise, with covariance matrices 𝑄 and 𝑅, respectively. Also, measurement matrix 𝐻 is of 

dimension 𝑚 × 𝑛, 𝑚 < 𝑛 is the number of measured states, 𝑛 is the rank of the system. The 

system is assumed to be observable, therefore without loss of generality, the measurement 

matrix 𝐻 is of the form: 

𝐻 = [𝐻1(𝑚×𝑚) 𝐻2(𝑚×(𝑛−𝑚))] (5.3) 

where 𝐻1 is an identity matrix of dimension 𝑚 ×𝑚 and 𝐻2 is a null matrix of dimension 

𝑚 × (𝑛 −𝑚). In the same way, the state transition matrix is partitioned as follows. 

𝐴 = [
𝐴11(𝑚×𝑚) 𝐴12(𝑚×(𝑛−𝑚))

𝐴21((𝑛−𝑚)×𝑚) 𝐴22((𝑛−𝑚)×(𝑛−𝑚))
] (5.4) 

The state vector of the system can be transformed and partitioned into two segments as 

follows, where the states in the upper segment have measurements signals directly 

associated, and the remaining ones in the lower segment are the non-measured part.  

𝑥𝑘 = [
𝑥𝑢𝑘(𝑚×1)
𝑥𝑙𝑘((𝑛−𝑚)×1)

] (5.5) 

For target tracking, the prediction step consists of the following equations ((5.6) to (5.9)). 

�̂�𝑘+1|𝑘 = 𝐴�̂�𝑘|𝑘 (5.6) 

The a priori state error covariance matrix is defined as follows. 

𝑃𝑘+1|𝑘 = 𝐸{�̃�𝑘+1|𝑘�̃�𝑘+1|𝑘
𝑇 }= [

𝑃𝑘+1|𝑘
11 𝑃𝑘+1|𝑘

12

𝑃𝑘+1|𝑘
21 𝑃𝑘+1|𝑘

22 ] = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (5.7) 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

168 

 

where �̃�𝑘+1|𝑘 = 𝐴�̃�𝑘|𝑘 + 𝑤𝑘. The a priori measurement error is calculated by equation (5.8) 

and (5.9). 

�̂�𝑘+1|𝑘 = 𝐻�̂�𝑘+1|𝑘 (5.8) 

𝑒𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 − �̂�𝑘+1|𝑘 (5.9) 

The innovation covariance matrix is computed as follows. 

𝑆𝑘+1 = 𝐻1𝑃𝑘+1|𝑘
11 𝐻1

𝑇 + 𝑅 (5.10) 

The next step is the update. The SVSF state update equation is as follows.  

�̂�𝑘+1|𝑘+1 = [
�̂�𝑢𝑘+1|𝑘+1
�̂�𝑙𝑘+1|𝑘+1

] = [
�̂�𝑢𝑘+1|𝑘
�̂�𝑙𝑘+1|𝑘

] + [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] 𝑒𝑧,𝑘+1|𝑘 (5.11) 

The corresponding SVSF corrective gain is calculated as follows [79]. 

𝐾𝑢𝑘+1 = 𝐻1
−1𝑑𝑖𝑎𝑔(𝐸𝑧)𝑠𝑎𝑡 (𝛹𝑧,𝑘+1

−1 𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)) [𝑑𝑖𝑎𝑔(𝑒𝑧,𝑘+1|𝑘)]
−1

 (5.12) 

𝐾𝑙𝑘+1 =  𝑑𝑖𝑎𝑔(𝐸𝑦)𝑠𝑎𝑡 (𝛹𝑦,𝑘+1
−1 𝑑𝑖𝑎𝑔(𝐴22𝐴12

−1𝑒𝑧,𝑘+1|𝑘)) 

[𝑑𝑖𝑎𝑔(𝐴22𝐴12
−1𝑒𝑧,𝑘+1|𝑘)]

−1
𝐴22𝐴12

−1 

(5.13) 

𝐸𝑧 and 𝐸𝑦 are the error vector terms defined as below [79].  

𝐸𝑧,𝑘+1 = |𝑒𝑧,𝑘+1|𝑘| + 𝛾𝑧|𝑒𝑧,𝑘|𝑘|  (5.14) 

𝐸𝑦,𝑘+1 = |𝐴22𝐴12
−1𝑒𝑧,𝑘+1|𝑘| + 𝛾𝑦|𝐴12

−1𝑒𝑧,𝑘+1|𝑘| (5.15) 
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where 𝛾𝑧 and 𝛾𝑦 are 𝑚×𝑚 and (𝑛 − 𝑚) × (n − 𝑚) diagonal matrices with elements such 

that 0 ≤ 𝛾𝑧,𝑖𝑖 < 1 and 0 ≤ 𝛾𝑦,𝑖𝑖 < 1. Ψ𝑧 and Ψ𝑦 are the smoothing boundary layer matrices 

of dimensions 𝑚 ×𝑚 and (𝑛 − 𝑚) × (𝑛 −𝑚) respectively. The diagonal elements of the 

smoothing boundary layer matrices reflect the level of uncertainties and the disturbances 

in their corresponding state. The optimal smoothing boundary layers are calculated as 

follows [79]. 

𝛹𝑧,𝑘+1 = (𝑑𝑖𝑎𝑔(𝐸𝑧,𝑘+1)
−1
𝐻1𝑃𝑘+1|𝑘

11 𝐻1
𝑇𝑆𝑘+1

−1 )
−1

 (5.16) 

𝛹𝑦,𝑘+1 = (𝑑𝑖𝑎𝑔(𝐸𝑦,𝑘+1)
−1
𝑃𝑘+1|𝑘
21 𝐻1

𝑇𝑆𝑘+1
−1 (𝐴22𝐴12

−1)−1)
−1

 (5.17) 

The smoothing boundary layers in (5.16) and (5.17) are directly related to the level of 

modeling uncertainties (captured by the error terms 𝐸𝑧 and 𝐸𝑦 and the estimated system 

and measurement noises. Substituting (5.16) and (5.17) in the SVSF gain terms (5.12) and 

(5.13), the following equation is obtained for optimal GVBL-SVSF gain [79]. 

𝐾𝐺𝑉𝐵𝐿 = [
𝐾𝑢𝑘+1
𝐺𝑉𝐵𝐿

𝐾𝑙𝑘+1
𝐺𝑉𝐵𝐿] = [

𝑃𝑘+1|𝑘
11 𝑃𝑘+1|𝑘

12

𝑃𝑘+1|𝑘
21 𝑃𝑘+1|𝑘

22 ] [𝐻1
𝑇

0
] 𝑆𝑘+1

−1 = 𝑃𝑘+1|𝑘𝐻
𝑇𝑆𝑘+1

−1  (5.18) 

The above GVBL gain calculation maintains an accurate estimate for both measured and 

unmeasured states, while ensuring the stability of the state estimation by virtue of the 

standard SVSF gain. To preserve the robustness of the SVSF to modeling uncertainties in 

the GVBL-SVSF, a saturation limit, 𝜓𝑚𝑎𝑥 is imposed on the optimal boundary layer, inside 

which the optimality of GVBL is maintained and outside which the robustness of standard 

SVSF is ensured. The GVBL is calculated using (5.16) and (5.17), and its diagonal 

elements are compared with 𝜓𝑚𝑎𝑥; if larger, the corrective gain is calculated by using 

equations (5.12) and (5.13), if smaller, the corrective gain is obtained from (5.18) [79].  
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The a posteriori measurement error needs to be calculated as per (5.19). This value is used 

in the gain calculation of the next time step. 

𝑒𝑧,𝑘+1|𝑘+1 = 𝑧𝑘+1 − 𝐻�̂�𝑘+1|𝑘+1 (5.19) 

The last step is the calculation of the generalized a posteriori state error covariance matrix 

for the SVSF with fewer measurements than states. The a posteriori state error covariance 

matrix is calculated as follows [79, 17]. 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

]𝐻𝑃𝑘+1|𝑘 − 𝑃𝑘+1|𝑘𝐻
𝑇 [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

]

𝑇

+ [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] 𝑆𝑘+1 [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

]

𝑇

 

(5.20) 

Figure 5.2 illustrates one cycle of the GVBL-SVSF algorithm.  
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Figure 5.2 One cycle in the GVBL-SVSF estimation 

5.4 Data Association Principles 

The measurement origin uncertainty often arise in target tracking scenarios. This is 

due to the presence of clutter and false measurements, which gives more than one 

measurement for each target. In data association methods, the measurements are associated 
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to tracks, or sets of observations, based on the likelihood that each measurement could have 

originated from the track. In probabilistic data association (PDA), it is assumed that the 

target track has been initialized. Also, the past information through time 𝑘 − 1 about the 

target trajectory is in the form of a normal distribution as follows [5]. 

𝑝[𝑥𝑘−1|𝑍
𝑘−1] = 𝒩[𝑥𝑘−1; �̂�𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1] (5.21) 

In PDA-based filtering methods, there are three main steps for data association and 

filtering: state prediction, measurement gating and data association, and state update as 

follows [79]. 

State prediction: the system of equations (5.1) and (5.2) is assumed. The state and 

measurement vectors and the covariance matrix are predicted at time 𝑘 + 1 from time 𝑘 as 

in GVBL-SVSF by (5.6) to (5.8). The innovation covariance matrix corresponding to the 

correct measurement is also calculated as (5.10). 

Measurement gating and data association: gating refers to selection of a portion of the 

measurements that are more probable to be originated from the target. The validation gate 

is defined as an elliptical region around the predicted measurement as follows: 

𝐺𝑘+1,𝛾 = {𝑧: [𝑧 − �̂�𝑘+1|𝑘]
′
𝑆𝑘+1
−1 [𝑧 − �̂�𝑘+1|𝑘] ≤ 𝛾} (5.22) 

where 𝛾 is the gate threshold corresponding to gate probability 𝑃𝐺  [4]. The set of validated 

measurements according to validation criterion is  

𝑧𝑘+1 = {𝑧𝑘+1
𝑖 }

𝑖=1

𝑚𝑘+1  (5.23) 
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There are 𝑚𝑘+1 + 1 distinct association hypothesis one can describe for 𝑚𝑘+1 validated 

measurements, as below [5].  

ℋ𝑘+1
0 = {𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑} (5.24) 

ℋ𝑘+1
𝑖 = {𝑧𝑘+1

𝑖  𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑 } (5.25) 

The total available measurements at time 𝑘 + 1 are 𝑍𝑘+1 = {𝑧𝑘+1
1 , … , 𝑧𝑘+1

𝑚 } ∪ 𝑍𝑘. For the 

parametric PDA, with the Poisson clutter model with spatial density 𝜆, the association 

probability  𝛽𝑘+1
𝑖  is defined as the conditioned probability of the 𝑖th hypothesis at time 𝑘 +

1, as (5.26) and computed as (5.27) [4, 1]  

𝛽𝑘+1
𝑖 = 𝑃{ℋ𝑘+1

𝑖 |𝑍𝑘+1} (5.26) 

𝛽𝑘+1
𝑖 =

{
 
 

 
  

1 − 𝑃𝐷𝑃𝐺

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘+1
𝑖𝑚𝑘+1

𝑖=1

,

     
𝑖 = 0

ℒ𝑘
𝑖

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑘+1
𝑖𝑚𝑘+1

𝑖=1

,   𝑖 = 1,… ,𝑚𝑘+1

 (5.27) 

where 𝑃𝐷 is the target detection probability and, ℒ𝑘+1
𝑖  is the likelihood ratio of the 

measurement 𝑧𝑘+1
𝑖  originating from the target, and computed as follows [5, 4]:  

ℒ𝑘+1
𝑖 =

𝒩[𝑧𝑘+1
𝑖 ; �̂�𝑘+1|𝑘, 𝑆𝑘+1]𝑃𝐷

𝜆
 (5.28) 

State update: the states in PDA-GVBL-SVSF are updated according to (5.11), as follows:  

�̂�𝑘+1|𝑘+1 = [
�̂�𝑢𝑘+1|𝑘+1
�̂�𝑙𝑘+1|𝑘+1

] = [
�̂�𝑢𝑘+1|𝑘
�̂�𝑙𝑘+1|𝑘

] + [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] 𝜗𝑘+1 (5.29) 
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where 𝜗𝑘+1|𝑘 is the combined innovation term, defined as the weighted sum of the validated 

measurements’ innovation terms as follows [80, 79]. 

𝜗𝑘+1 = ∑ 𝛽𝑘+1
𝑖 𝑒𝑧,𝑘+1|𝑘

𝑖

𝑚𝑘+1

𝑖=1

 (5.30) 

To update the covariance, the following equation is used [80, 79]. 

𝑃𝑘+1|𝑘+1 = 𝛽𝑘+1
0 𝑃𝑘+1|𝑘 + [1 − 𝛽𝑘+1

0 ]𝑃𝑘+1|𝑘+1
∗ + �̃�𝑘+1 (5.31) 

where 𝑃𝑘+1|𝑘+1
∗  is calculated as in (5.20) and �̃�𝑘+1 accounts for the spread of innovation 

terms and is computed as follows [4]: 

�̃�𝑘+1 = [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

] [∑ 𝛽𝑘+1
𝑖 𝑒𝑧,𝑘+1|𝑘

𝑖 𝑒𝑧,𝑘+1|𝑘
𝑖 𝑇

−
𝑚𝑘+1

𝑖=1
𝜗𝑘+1𝜗𝑘+1

𝑇 ] [
𝐾𝑢𝑘+1
𝐾𝑙𝑘+1

]

𝑇

 (5.32) 

The PDA-GVBL-SVSF is formulated for tracking single targets. The extension of PDA-

GVBL-SVSF for multi-target tracking problems is the joint PDA-GVBL-SVSF (JPDA-

GVBL-SVSF) [79]. These two algorithms use similar state prediction and state update 

approaches. However, the main difference is in the data association and the calculation of 

association probabilities [5, 79]. In PDA-GVBL-SVSF, the association probabilities are 

calculated separately for each target, while in the JPDA-GVBL-SVSF, the probabilities are 

calculated jointly across all the targets which share some validated measurements [5, 79]. 

The conditional probabilities of the following joint events are evaluated as follows [5, 79]. 

ℋ𝑘+1 = ⋂ ℋ𝑘+1
𝑗,𝑡𝑗

𝑚𝑘+1

𝑗=1

         (5.33) 
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where ℋ𝑘+1
𝑗,𝑡𝑗

 is the hypothesis that measurement 𝑗 originated from target 𝑡, 𝑗 = 1, … ,𝑚𝑘+1 

, 𝑡 = 0,… , 𝑇 is the time index, 𝑡𝑗  is the target that measurement 𝑗 is associated with, 𝑚𝑘+1 

is the number of measurements, and 𝑇 is the number of targets [31]. The total available 

measurements at time 𝑘 + 1 are 𝑍𝑘+1 = {𝑧𝑘+1
1 , … , 𝑧𝑘+1

𝑚 } ∪ 𝑍𝑘. The joint association 

probabilities are calculated as follows [5]. 

𝑃{ℋ𝑘+1|𝑍
𝑘+1} = 𝑐∏{𝜆−1ℒ𝑘+1

𝑡𝑗 }
𝜏𝑗

𝑗

∏(𝑃𝐷
𝑡 )𝛿

𝑡
(1 − 𝑃𝐷

𝑡 )1−𝛿
𝑡

𝑡

 (5.34) 

where 𝜆 is the spatial density of the number of false measurements defined from a Poisson 

distribution,  and  𝑃𝐷
𝑡  is the detection probability of target 𝑡. 𝜏𝑗 and 𝛿𝑡 are the target 

detection and measurement association indicators, respectively [31] and, 

ℒ𝑘+1
𝑡𝑗 = 𝒩[𝑧𝑘+1

𝑗
; �̂�𝑘+1|𝑘
𝑡𝑗 , 𝑆𝑘+1

𝑡𝑗 ] (5.35) 

The state estimation is carried out separately for each target using the marginal association 

probabilities [5, 31]. These probabilities are obtained from joint probabilities (5.34) by 

summing the joint hypotheses in which the marginal hypothesis of interest is included, as 

follows [5]. 

𝛽𝑘+1
𝑗,𝑡

= 𝑃{ℋ𝑘+1
𝑗,𝑡
|𝑍𝑘+1} = ∑ 𝑃{ℋ𝑘+1|𝑍

𝑘+1}

ℋ:ℋ𝑗,𝑡∈ℋ

 (5.36) 

These probabilities are used to create the combined innovation for each target, which is 

used during the filter update stage. 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

176 

 

5.5 A Novel Approach for Augmenting Probabilistic Data Association  

5.5.1 A. Chattering Magnitude in SVSF and the Information Content 

The probabilistic data association (PDA) methods utilize the likelihood that each 

measurement could have originated from each track to assign the measurements to the 

various tracks. Using the SVSF in the structure of PDA provides an extra source of 

information (chattering) that is employed in this section to augment the association 

probabilities. 

The SVSF approach gives two sets of indicators of performance. The primary set of 

indicators of performance are the estimation errors and the error covariance matrix, which 

is in common with other filtering strategies like the Kalman filter. The secondary set of 

indicators of performance are the chattering signals from the application of discontinuous 

corrective gains, which in a predictor-corrector sense is unique to the SVSF. By use of the 

smoothing boundary layer, the chattering which is inherently an undesirable phenomenon, 

is eliminated in the normal working condition. However, when modeling uncertainties 

exist, the chattering will occur and the magnitude of the chattering is an indicator of the 

severity of the uncertainties. Therefore, the magnitude of the chattering signal carries 

information that can be exploited.  

The magnitude of chattering is equal to the difference between the width of the smoothing 

boundary layer and the magnitude of the a priori measurement error [15], as follows. 

𝐶𝑘+1|𝑘 =  𝑚𝑎𝑥 (0, |𝑒𝑧,𝑘+1|𝑘| − 𝜓𝑧,𝑘+1)

= {
|𝑒𝑧,𝑘+1|𝑘| − 𝜓𝑧,𝑘+1,   |𝑒𝑧,𝑘+1|𝑘| ≥ 𝜓𝑧,𝑘+1    

0                       ,   |𝑒𝑧,𝑘+1|𝑘| < 𝜓𝑧,𝑘+1
 

(5.37) 
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where 𝝍𝑘+1 is a vector consisting of diagonal elements of boundary layer matrix Ψ𝑘+1. 

The following procedure is used to calculate the probability distribution function of the 

chattering magnitude signal 𝐶𝑘+1|𝑘. It is assumed that the measurements are normally 

distributed as 𝑧𝑘+1~𝒩(𝑧𝑘+1; �̂�𝑘+1|𝑘, 𝑆𝑘+1). As a result, the distribution of the a priori 

measurement error is as follows.  

𝑒𝑧,𝑘+1|𝑘~𝒩(𝑒𝑧,𝑘+1|𝑘; 0, 𝑆𝑘+1) (5.38) 

The probability distribution of the absolute value of a normally distributed random variable 

is a half-normal distribution function [81]. The half-normal distribution is a special case of 

the folded normal distribution when the expected value of the random variable equals zero. 

A multivariate folded normal distribution is recently formulated in [81]. This formulation 

represents the multivariate folded normal distribution as the sum of a number of 

multivariate normal distributions, noted as ℎ𝑝. Let 𝑺(𝒑) = {𝒔: 𝒔 = (𝑠1, 𝑠2, … 𝑠𝑝), 𝑤𝑖𝑡ℎ 𝑠𝑖 =

±1, ∀ 1 ≤ 𝑖 ≤ 𝑝}, where 𝑝 denotes the order of the random vector. Then the multivariate 

folded normal distribution is represented as below. 

𝑓𝑝(𝑧1, 𝑧2, … , 𝑧𝑝) = ∑ ℎ𝑝(𝑠1𝑧1, 𝑠2𝑧2, … , 𝑠𝑝𝑧𝑝)

(𝑠1,𝑠2,…,𝑠𝑝)∈ 𝑺(𝑷)

,   𝑓𝑜𝑟 ∀ 𝑧𝑖 > 0 
(5.39) 

For example, the bivariate half-normal distribution for random vector 𝒛 = [
𝑧1
𝑧2
] with zero 

mean and covariance matrix Σ may be shown as follows.  

𝒩ℎ(𝒛; 0, 𝛴) =
1

4𝜋√|𝛴|
 {𝑒𝑥𝑝 (−

1

2
𝒛′𝛴−1𝒛)

+ 𝑒𝑥𝑝 (−
1

2
𝒛′(2𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝛴)) − 𝛴)−1𝒛) } ;  ∀ 𝑧𝑖 > 0 

(5.40) 
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The distribution of the absolute value of the a priori measurement error is a half normal 

distribution of order 𝑚, where 𝑚 is the order of measurement vector. For a 2-dimentional 

measurement matrix, this distribution is as follows.   

𝒩ℎ(|𝑒𝑧,𝑘+1|𝑘|; 0, 𝑆𝑘+1)

=
1

4𝜋√|𝑆𝑘+1|
 {𝑒𝑥𝑝 (−

1

2
|𝑒𝑧,𝑘+1|𝑘|

′
𝑆𝑘+1

−1|𝑒𝑧,𝑘+1|𝑘|)

+ 𝑒𝑥𝑝 (−
1

2
|𝑒𝑧,𝑘+1|𝑘|

′
(2𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝑆𝑘+1))

− 𝑆𝑘+1)
−1|𝑒𝑧,𝑘+1|𝑘|) } ; |𝑒𝑧,𝑘+1|𝑘| ∈ (0,∞) 

(5.41) 

From (5.37) and (5.41), and with a simple change of variable the probability distribution 

function of chattering magnitude signal is as follows, and depicted in Figure 5.3. 

𝑓(𝐶𝑘+1|𝑘) =
1

4𝜋√|𝑆𝑘+1|
 {𝑒𝑥𝑝 (−

1

2
(𝐶𝑘+1|𝑘)

′
𝑆𝑘+1

−1(𝐶𝑘+1|𝑘))

+ 𝑒𝑥𝑝 (−
1

2
(𝐶𝑘+1|𝑘)

′
(2𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝑆𝑘+1))

− 𝑆𝑘+1)
−1(𝐶𝑘+1|𝑘)) } ; (𝐶𝑘+1|𝑘) ∈ (0,∞) 

(5.42) 
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Figure 5.3 Probability distribution function of chattering magnitude signal 

Having the probability distribution function of the chattering magnitude signal, provides 

the required tool to use this information content to improve the data association 

probabilities. The next section is devoted to deriving the augmented association 

probabilities. 

5.5.2 Derivation of Augmented Association Probabilities 

The association probabilities in the probabilistic data association methods are derived by a 

Bayesian inference. The probability density of each association hypothesis given the prior 

information is sought to calculate the association probabilities. In its conventional form, 

PDA uses the current measurement and its history as the prior information, as 𝑃{ℋ𝑘
i)|𝑍𝑘} 

[80]. The SVSF-based approaches give an extra source of information which is the 

chattering information, extracted in the form of chattering magnitude. The total available 

chattering magnitude signals at time 𝑘 + 1 are 𝐶𝑘+1 = {𝐶𝑘+1
1 , … , 𝐶𝑘+1

𝑚 } ∪ 𝐶𝑘. Thus, the 

new set of conditional hypotheses densities are given as follows. 

𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘+1, 𝐶𝑘+1} =  𝑃{ℋ𝑘

𝑖 |𝑧𝑘+1, 𝑍
𝑘 , 𝐶𝑘+1, 𝐶

𝑘} (5.43) 
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Using the Bayesian rule (5.43) is written as follows. 

𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘+1, 𝐶𝑘+1} =  𝑐−1 𝑝[𝑧𝑘+1, 𝐶𝑘+1|ℋ𝑘+1

𝑖 , 𝑍𝑘, 𝐶𝑘  ]𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘, 𝐶𝑘} (5.44) 

where 𝑐 = 𝑝[𝑧𝑘+1, 𝐶𝑘+1|𝑍
𝑘, 𝐶𝑘] is the normalization constant and is independent of 

particular hypotheses.  

It is required to further break the equation (5.44) into computable probability distribution 

functions. For this purpose, there are two valid and possible alternatives for applying the 

conditional probability rule to (5.44). The first alternative is as follows.  

𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘+1, 𝐶𝑘+1}

= 𝑐 𝑝[𝐶𝑘+1|𝑧𝑘+1,ℋ𝑘+1
𝑖 , 𝑍𝑘 , 𝐶𝑘 ]𝑝[𝑧𝑘+1|ℋ𝑘+1

𝑖 , 𝑍𝑘 , 𝐶𝑘 ]𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘, 𝐶𝑘} 

(5.45) 

The second alternative is as below. 

𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘+1, 𝐶𝑘+1}

= 𝑐 𝑝[𝑧𝑘+1|𝐶𝑘+1,ℋ𝑘+1
𝑖 , 𝑍𝑘 , 𝐶𝑘 ]𝑝[𝐶𝑘+1|ℋ𝑘+1

𝑖 , 𝑍𝑘, 𝐶𝑘 ]𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘, 𝐶𝑘} 

(5.46) 

Both (5.45) and (5.46) are perfectly valid applications of conditional probability theorem. 

However, (5.46) is less appropriate for our purposes. The density 𝑝[𝐶𝑘+1|ℋ𝑘+1
𝑖 , 𝑍𝑘, 𝐶𝑘  ] 

lacks conditioning on the most recent measurement. Due to the nature of the chattering 

signal, the most recent chattering is affected by both the recent measurement and the history 

of measurements. So, the calculation of the second term in (5.46) would be difficult if not 

impossible. Note that the density of chattering magnitude signal is conditioned on the most 

recent measurement in (5.45). Therefore, (5.45) is the suitable alternative to continue with. 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

181 

 

At this point a discussion of the factors influencing the densities in (5.45) is necessary. In 

the right hand side of equation (5.45), the density of the most recent chattering signal 

magnitude is only affected by the most recent measurement, thus in the first term the 

conditioning on the history of measurement and chattering signal can be disregarded. Also, 

since the density of the most recent measurement is not affected by the history of the 

chattering signal, in the second term the condition of 𝑧𝑘+1 on 𝐶𝑘 can be eliminated. 

Furthermore, without conditioning on the recent information, the density of hypothesis is 

not affected by the history of information and hence in the third term one can eliminate the 

conditioning of ℋ𝑘+1
𝑖  on 𝑍𝑘 and  𝐶𝑘. As such (5.45) is updated as follows. 

𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘+1, 𝐶𝑘+1} = 𝑐 𝑝[𝐶𝑘+1|𝑧𝑘+1,ℋ𝑘+1

𝑖  ]𝑝[𝑧𝑘+1|ℋ𝑘+1
𝑖 , 𝑍𝑘 ]𝑃{ℋ𝑘+1

𝑖 } (5.47) 

Equation (5.47) gives the relation for new augmented association probabilities that also 

include the chattering information. Each of the terms in the right hand side of (5.47) will 

be derived next. 

Calculation of 𝑝[𝑧𝑘+1|ℋ𝑘+1
𝑖 , 𝑍𝑘 ]: The probability distribution function of the correct 

measurement, 𝑧𝑘+1
𝑖 , with Gaussian assumption that is restricted with gate probability of 𝑃𝐺  

is as follows. 

𝑝[𝑧𝑘+1
𝑖 |ℋ𝑘+1

𝑖 , 𝑍𝑘 ] = 𝑃𝐺
−1𝒩(𝑒𝑧,𝑘+1|𝑘; 0, 𝑆𝑘+1) (5.48) 

Therefore, with the assumption of uniform distribution for clutter, the pdf of 

𝑝[𝑧𝑘+1|ℋ𝑘+1
𝑖 , 𝑍𝑘 ] is as follows [80]. 

𝑝[𝑧𝑘+1|ℋ𝑘+1
𝑖 , 𝑍𝑘  ] = {

𝑉𝑘+1
−𝑚𝑘+1+1𝑃𝐺

−1𝒩(𝑒𝑧,𝑘+1|𝑘; 0, 𝑆𝑘+1), 𝑖 = 1,… ,𝑚𝑘+1

𝑉𝑘+1
−𝑚𝑘+1                               , 𝑖 = 0

 (5.49) 



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

182 

 

where 𝑉𝑘+1 is the volume of the validation gate. 

Calculation of 𝑃{ℋ𝑘+1
𝑖 }: Assuming a Poisson model with spatial density 𝜆, for the  number 

of false alarms, the probabilities of association hypotheses are calculated as below [80]. 

𝑝{ℋ𝑘+1
𝑖 }

= {
𝑃𝐷𝑃𝐺[𝑃𝐷𝑃𝐺𝑚𝑘+1 + (1 − 𝑃𝐷𝑃𝐺)𝜆𝑉𝑘+1]

−1   , 𝑖 = 1,… ,𝑚𝑘+1

(1 − 𝑃𝐷𝑃𝐺)𝜆𝑉𝑘+1[𝑃𝐷𝑃𝐺𝑚𝑘+1 + (1 − 𝑃𝐷𝑃𝐺)𝜆𝑉𝑘+1]
−1 , 𝑖 = 0

 
(5.50) 

Calculation of 𝑝[𝐶𝑘+1|𝑧𝑘+1,ℋ𝑘+1
𝑖  ]: The probability distribution function of the chattering 

magnitude signal for correct measurement, 𝐶𝑘+1
𝑖 , is a multivariate half-Normal distribution 

as in (5.39) restricted with gate probability of 𝑃𝐺   as follows. 

𝑝[𝐶𝑘+1
𝑖 |ℋ𝑘+1

𝑖 , 𝑍𝑘  ] = 𝑃𝐺
−1𝒩ℎ(𝐶𝑘+1

𝑖 ; 0, 𝑆𝑘+1) (5.51) 

Therefore, with the assumption of uniform distribution for clutter in the volume outside the 

smoothing boundary layer’s hyper rectangular and inside the gate ellipsoid, the pdf of 

𝑝[𝐶𝑘+1|ℋ𝑘+1
𝑖 , 𝑍𝑘 ] is as follows [80]. 

𝑝[𝐶𝑘+1|ℋ𝑘+1
𝑖 , 𝑍𝑘 ]

= {
(𝑉𝑘+1 − 2

𝑛𝑧 𝑑𝑒𝑡(𝛹𝑘+1))
1−𝑚𝑘+1𝑃𝐺

−1𝒩ℎ(𝐶𝑘+1
𝑖 ; 0, 𝑆𝑘+1), 𝑖 = 1,… ,𝑚𝑘+1

(𝑉𝑘+1 − 𝑑𝑒𝑡(𝛹𝑘+1))
−𝑚𝑘+1                                        , 𝑖 = 0

 
(5.52) 

where the volume of the smoothing boundary layer hyper rectangular is calculated by 

2𝑛𝑧 det(Ψ𝑘+1), in which 𝑛𝑧 is the dimension of measurement vector. 
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Calculation of the augmented association probability 𝑃{ℋ𝑘+1
𝑖 |𝑍𝑘+1, 𝐶𝑘+1}: Substitution 

of (5.49), (5.50) and (5.52) into (5.47) gives the new set of association probabilities as 

follows. 

𝛽𝑖 =

{
 
 

 
 

𝑓𝑖

𝑎 + ∑ 𝑓𝑖
𝑚𝑘+1

𝑖=1 
                  , 𝑖 = 1,… ,𝑚𝑘+1

𝑎

𝑎 + ∑ 𝑓𝑖
𝑚𝑘+1

𝑖=1

 , 𝑖 = 0

 (5.53) 

where  

𝑎 ≜
𝜆𝑃𝐺(1 − 𝑃𝐷𝑃𝐺)

𝑉𝑘+1 − 2𝑚𝑘+1 𝑑𝑒𝑡(𝛹𝑘+1)
 

𝑓𝑖 ≜ 𝒩(𝑒𝑧,𝑘+1|𝑘; 0, 𝑆𝑘+1)𝒩ℎ(𝐶𝑘+1
𝑖 ; 0, 𝑆𝑘+1) 

(5.54) 

5.5.3 Chattering Signal Magnitude and Size of Validation Gate 

In this section the relation between the magnitude of chattering signal and the validation 

gate is investigated. In the process of estimation and data association, a multi-dimensional 

gate is set up to validated the more probable measurements. This approach avoids the search 

for the candidate measurements in the entire measurement space, and only considers the 

measurements within the validation gate. The equation of the gate ellipsoid from (5.22) is 

as follows. 

[𝑧 − �̂�𝑘+1|𝑘]
′
𝑆𝑘+1
−1 [𝑧 − �̂�𝑘+1|𝑘] = 𝛾 (5.55) 
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which is an ellipsoid centered at �̂�𝑘+1|𝑘. This ellipse is defined by the solutions of 𝑧 to 

(5.55) where 𝑆𝑘+1
−1  is a positive definite matrix and 𝛾 is the gate threshold. One can write 

(5.55) as below: 

[𝑧 − �̂�𝑘+1|𝑘]
′
𝛾−1𝑆𝑘+1

−1 [𝑧 − �̂�𝑘+1|𝑘] = 1 (5.56) 

The eigenvalues of 𝛾−1𝑆𝑘+1
−1  are the reciprocals of the squares of the semi-axes of the gate 

ellipsoid [82]. Assume that the eigenvalues of 𝑆𝑘 are 𝜆𝑆1 , … , 𝜆𝑆𝑚  . Then the axes of the gate 

ellipsoid will be √𝛾√𝜆𝑆1 , … , √𝛾√𝜆𝑆𝑚.  

A number of measurements fall within the validation gate. These are the most probable 

candidates for target-originated measurements. Among the validated measurements, some 

of them, however, may fall outside the smoothing boundary layer. These measurements 

will cause a chattering signal. Figure 5.4 is a 2-dimensional illustration of this situation. In 

Figure 5.4 �̂�𝑘+1|𝑘 is the predicted measurement. Three measurements are received. 𝑧𝑘+1
3  is 

out of the validation gate and is disregarded. 𝑧𝑘+1
1  and 𝑧𝑘+1

2  are inside the gate and 

considered for further processing. However, 𝑧𝑘+1
1  is outside the smoothing boundary layer 

rectangular and causes a chattering signal. 

 

Figure 5.4 Validation gate and smoothing boundary layer rectangular 
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With respect to (5.37), the boundaries beyond which a measurement will cause a chattering 

signal is given below. 

|𝑧 − �̂�𝑘+1|𝑘| = 𝝍𝑧,𝑘+1 (5.57) 

which represents the equation of a hyper-rectangular. For the measurements which are 

inside the gate ellipsoid, but outside the boundary hyper-rectangular there exists a 

chattering signal. The magnitude of this chattering signal abides by the distribution (5.42). 

To compare the gate ellipsoid with the boundary hyper-rectangular, a conservative way is 

to compare the gate ellipsoid with the bounding ellipsoid of the boundary hyper-

rectangular. There are an infinite number of bounding ellipsoids for one hyper-rectangular, 

among which the bounding ellipsoid with the same proportions as the hyper-rectangular is 

assumed. The equation representing such ellipsoid is as follows. 

[𝑧 − �̂�𝑘+1|𝑘]
′
(𝑚𝛹𝑧,𝑘+1

2 )
−1
[𝑧 − �̂�𝑘+1|𝑘] = 1 (5.58) 

where 𝑚 is the dimension of the measurement vector. The axes of ellipsoid (5.58) are the 

eigenvalues of 𝑚𝛹𝑧,𝑘+1
2 . Therefore, assuming that the off-diagonal elements of 𝛹𝑧,𝑘+1are 

negligible, the vector consisting of axes for such ellipsoid is √𝑚𝝍𝑧,𝑘+1. 

With respect to (5.3) and (5.16), the smoothing boundary layer matrix is calculated as 

follows. 

𝛹𝑧,𝑘+1 = 𝑆𝑘+1𝑃𝑘+1|𝑘
11 −1

𝑑𝑖𝑎𝑔(𝐸𝑧,𝑘+1) (5.59) 

The following theorem from [83] is used to find upper and lower bounds for the smoothing 

boundary layer.  
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Theorem [83]: Let 𝐴 and 𝐵 be 𝑚 dimensional positive definite matrices. Let 𝜆1(𝐵) and 

𝜆𝑚(𝐵) denote the smallest and the largest eigenvalues of 𝐵, and the eigenvalues of 𝐴 and 

𝐴𝐵 are ascendingly ordered. Then,  

∀𝑘 , 1 ≤ 𝑘 ≤ 𝑚: 𝜆𝑘(𝐴)𝜆1(𝐵) ≤ 𝜆𝑘(𝐴𝐵) ≤ 𝜆𝑘(𝐴)𝜆𝑚(𝐵) (5.60) 

To apply (5.60) to (5.59), assume that 𝐴 = 𝑆𝑘+1 and 𝐵 = 𝑃𝑘+1|𝑘
11 −1

𝑑𝑖𝑎𝑔(𝐸𝑧,𝑘+1). 𝑆𝑘+1 is a 

positive definite matrix. Also, the product of a positive definite matrix (𝑃𝑘+1|𝑘
11 −1

) and a 

diagonal matrix with positive diagonal elements (𝑑𝑖𝑎𝑔(𝐸𝑧,𝑘+1)) is a positive definite 

matrix. Therefore, the conditions of the theorem hold and the below inequalities are valid. 

{

𝜆𝑆1𝜆1(𝐵) ≤  √𝑚𝜓1 ≤ 𝜆𝑆1𝜆𝑚(𝐵)

⋮
𝜆𝑆𝑚𝜆1(𝐵) ≤  √𝑚𝜓𝑚 ≤ 𝜆𝑆𝑚𝜆𝑚(𝐵)

 (5.61) 

If the upper bound of inequality (5.61) is smaller than the eigenvalues of 𝛾−1𝑆𝑘+1
−1   as in 

(5.56), then the gate ellipsoid will encompass the boundary layer hyper-rectangular. 

Therefore, the following inequality should hold. 

{
 
 

 
 𝜆𝑆1𝜆𝑚(𝐵) ≤ √𝛾√𝜆𝑆1

⋮

𝜆𝑆𝑚𝜆𝑚(𝐵) ≤ √𝛾√𝜆𝑆𝑚

 (5.62) 

Inequality (5.62) is rearranged as follows. 
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[
 
 
 √𝜆𝑆1

√𝜆𝑆𝑚]
 
 
 

𝜆𝑚(𝐵) ≤ √𝛾 (5.63) 

The term 𝜆𝑚(𝐵) in (5.63) is a function of predicted state covariance matrix 𝑃𝑘+1|𝑘
11  and the 

error vector 𝐸𝑧,𝑘+1. Inequality (5.63) defines the criteria that if it holds for any 

measurements, that measurement is inside the validation gate, but outside the smoothing 

boundary layer. For such measurement chattering signal is observed. The magnitude of the 

chattering signal is used to discriminate this measurement against other measurements with 

less or no chattering magnitude. Therefore, if a validated measurements is inside the 

smoothing boundary layer, it will be weighted with a higher association probability relative 

to a validated measurement which is outside the smoothing boundary layer. For the case 

that the condition (5.63) does not hold, the boundary layer is larger than the validation gate. 

Therefore, none of the validated measurements cause a chattering signal. Since no extra 

information exists, for this case, the APDA coincides the conventional PDA. 

5.6 Results 

5.6.1 Simulation Examples 

The following scenario of a highly maneuvering target trajectory in clutter is considered. 

The true trajectory is as depicted in Figure 5.5 and detailed in Table 5.1.  
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Figure 5.5 True trajectory of the maneuvering target in X-Y plane 

Table 5.1 Detail of the true trajectory of simulation scenario (Sampling Time = 0.1 Sec) 

Initial 

State 
Maneuver Duration 

 

𝑥0 = 1 𝑚 

𝑦0 = 25 𝑚 

𝑣𝑥0
= 33 𝑚/𝑠 
𝑣𝑦0
= 1 𝑚/𝑠 

a non-maneuvering near constant velocity 0.0-7.0s 

a maneuvering coordinated turn motion with 

angular velocity of 𝜔 = 0.2 𝑟𝑎𝑑/𝑠 
7.1-14.0s 

a non-maneuvering near constant velocity 14.1-17.0s 

a maneuvering coordinated turn motion with 

angular velocity of 𝜔 = 0.4 𝑟𝑎𝑑/𝑠 
17.1-20.0s 

a non-maneuvering near constant velocity 20.1-24.0s 

a maneuvering coordinated turn motion with 

angular velocity of 𝜔 = 0.2 𝑟𝑎𝑑/𝑠 
24.1-30.0s 

For the motion model a two-dimensional discrete constant velocity model is implemented 

as follows [6]. The state vector is defined as 𝒙 = [𝑥 𝑦 𝑣𝑥 𝑣𝑦], where 𝑥 and 𝑦 are the position 

in Cartesian coordinates, and 𝑣𝑥 and 𝑣𝑦 are the respective velocities. In this model, the 

accelerations of the target between two sequential samples are assumed to be constant with 

discrete-time zero mean white Gaussian noise. The motion model is defined as follows. 

𝑥(𝑘 + 1) = 𝐹𝑥(𝑘) + 𝐺𝑣(𝑘) (5.64) 

where the state transition matrix and process noise gain matrix are defined as follows. 
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𝐹 = [

1 0
0 1

𝑇𝑠 0
0 𝑇𝑠

0 0
0 0

1  0
0  1

] , 𝐺 =  

[
 
 
 
𝑇𝑠
2/2 0

0 𝑇𝑠
2/2

𝑇𝑠       0
0        𝑇𝑠 ]

 
 
 

 (5.65) 

The white acceleration noise covariance matrix is defined as follows. 

𝑄 = 𝑐𝑜𝑣{𝑣(𝑘)} = [
𝜎𝑣
2 0

0 𝜎𝑣
2] (5.66) 

The measurement model, matrix, and noise covariance are defined respectively as follows. 

𝑧(𝑘) = 𝐻𝑥(𝑘) + 𝑤(𝑘) (5.67) 

𝐻 = [
1 0
0 1

0 0
0 0

] (5.68) 

𝑅 = 𝑐𝑜𝑣{𝑤(𝑘)} = [
𝜎𝑤
2 0

0 𝜎𝑤
2] 

(5.69) 

For the purpose of simulations, the following parameters are assumed: 𝜎𝑣
2 = 62 , 𝜎𝑤

2 = 1, 

and 𝑇𝑠 = 0.1 𝑠. Also, the clutter is generated from a uniform distribution with the number 

of false measurements, or clutter points obtained from a Poisson’s distribution. The 

simulation is performed for several values of spatial densities for the clutter and compares 

the performance of APDA-SVSF, the PDA-SVSF and the PDA-KF for different values of 

clutter densities. 

For the first simulation the spatial density equals 𝜆 =  1/𝑚2, in the surveillance window. 

All three methods were able to track the target. Table 5.2 shows the root mean squared 

estimation error (RMSE) for three methods, PDA-KF, PDA-SVSF, and APDA-SVSF, for 

500 Monte Carlo runs. Based on the RMSE results the SVSF-based methods outperform 
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the KF based method. This is the consequence of the robustness of the SVSF against 

modeling uncertainties. 

Table 5.2. RMSE of State Estimations for Target Tracking Case 

States PDA-KF PDA-SVSF APDA-SVSF 

𝒙 0.56 0.29 0.08 

𝒚 0.51 0.35 0.07 

𝒗𝒙 2.09 1.99 1.61 

𝒗𝒚 2.07 2.01 1.36 

The second simulation is performed with the spatial density of clutter equal to 𝜆 =  10/𝑚2. 

Figure 5.6 shows a sample run of the tracking scenario for APDA-SVSF, PDA-SVSF and 

PDA-KF. Both APDA-SVSF and PDA-SVSF are able to handle the tracking scenario. 

However, the PDA-KF fails to track the target in its maneuvering motion, since the 

maneuver imposes a modeling uncertainty to the filtering system. Table 5.3 shows the root 

mean squared estimation error (RMSE) for APDA-SVSF and PDA-SVSF, for 500 Monte 

Carlo runs. Because of the proposed augmented probabilistic association technique, the 

RMSE of APDA-SVSF is dramatically decreased compared to original PDA-SVSF. The 

APDA-SVSF provides a more efficient set of association probabilities that in turn translates 

to lower estimation errors. More specifically, if the spatial density of the clutter further 

increases, the PDA-SVSF also fails to track the clutter in this very highly cluttered 

condition. However, the APDA-SVSF still performs well, with almost similar estimation 

error range, thanks to extracting extra information in the augmented association probability 

calculation procedure. 
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Figure 5.6 Illustration of the operation of PDA-KF, PDA-SVSF, and APDA-SVSF in the presence 

clutter (shown by cyan cross marks) with spatial density 𝜆 =  10/𝑚2 

Table 5.3. RMSE of State Estimations for Target Tracking Case 

States PDA-SVSF APDA-SVSF 

𝒙 0.28 0.09 

𝒚 0.34 0.08 

𝒗𝒙 2.13 1.98 

𝒗𝒚 2.04 1.11 

5.6.2 Experimental Results 

The proposed APDA-SVSF algorithm has been tested on a number of processed LiDAR 

data sets acquired in actual driving in a highway linking two cities (Hamilton and Toronto 
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in Canada along a highway called the Queen Elizabeth Way (QEW)). The experimental 

setup for data acquisition consists of a Ford escape car equipped with a Velodyne HDL32 

LiDAR sensor. The driving path and the experimental setup is shown in Figure 5.7. 

 

 

 

 

Figure 5.7 Driving path for experimental data gathering and the experimental set up 

The LiDAR provides a dense 3D point cloud in each frame with a frame rate of 0.1 second, 

which requires to be processed before feeding into tracking algorithm. The data processing 

algorithm includes a segmentation phase followed by a clustering phase. The output of this 

algorithm are the positions of the centre point of vehicle like objects, which are fed into a 

data association and tracking system, as shown in Figure 5.8. 
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Figure 5.8 Conventional data association and tracking system components 

Figure 5.8 provides a pictorial representation of the overall algorithm. It should be noted 

that the gating, the data association, and the track estimation blocks are those discussed in 

sections 5.35.4 and 5.4. These complement the new chattering based data association 

method proposed in section 5.5. 

The track management block is required to carry out the track initiation, maintenance and 

termination. The initiation of a track means forming the initial track state and its associated 

covariance matrix. The tracks are managed through a rule based process using track score 

functions. Track score function is a likelihood ratio which is defined and iteratively updated 

for each track [1]. In each update, the track score is compared to a deletion threshold and a 

confirmation threshold. An illustration of the implemented track management block is 

shown in Figure 5.9. 
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Figure 5.9 The flowchart of the track maintenance algorithm 

The performance of the two algorithms, the PDA-KF and the APDA-SVSF, for 

experimental data is summarized and compared in Table 5.4. Note that the table provides 

the true positive (TP %), i.e. the percentage of correctly tracked objects, and false positive 

(FP %), i.e. the percentage of falsely tracked objects, attained by the algorithms. The track 

break-ups rate is an index that shows the number of relabeled tracks. The relabeling may 

occur if for any reason a previously confirmed target is missed over a number of frames, 

and then in the case of redetection, it is treated as a new track, with a new label. From 

Table 5.4, the proposed algorithm has improved the TP (%) by around 10% and the rate of 

track break-ups by 4%. 
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Table 5.4. The performance evaluation of multiple car tracking algorithms comparing JPDA-KF 

and JPDA-GVBL-SVSF  

MTT Strategy 
Total # of 

frames 
TP (%) FP (%) 

Rate of Track 

Break-ups (%) 

JPDA-KF 
4275 

84.21 14.79 7.3 

JPDA-GVBL-SVSF 93.42 6.58 3.1 

5.7 Conclusion 

In this paper, a new data association method has been proposed that extracts extra 

information using the SVSF method. This novel method, named augmented probabilistic 

data association-SVSF (APDA-SVSF) uses the chattering information and introduces new 

set of augmented association probabilities. The APDA-SVSF is derived and then compared 

with PDA-KF and PDA-SVSF strategies under a designed simulation scenario. The 

comparison is in terms of estimation accuracy and robustness under different clutter 

densities. The proposed method significantly improves the performance of the tracking 

under highly cluttered scenarios.  Also, the algorithm is tested on a processed data set from 

an experimental traffic monitoring system based on LiDAR. The overall performance of 

the multiple target tracking system is compared to PDA-KF in terms of TP (%), FP (%) and 

the rate of track break-ups. The proposed algorithm made a more reliable performance for 

the car tracking experimental data. 
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Chapter 6 

 

6 General Conclusion 

This thesis mainly deals with further development and formulation of the smooth variable 

structure filter (SVSF) for single and multiple target tracking in the presence of 

measurement origin uncertainty. The SVSF is demonstrated to be robust to modeling 

uncertainties and also giving extra measures of performance, such as the magnitude of the 

chattering signal. The objective of this research was to elaborate on these characteristics 

and modify and use them in target tracking and data association. The performance of the 

SVSF, in its current form for the case when there is fewer measurements than states can be 

improved by an optimal derivation and by deriving and using its error covariance. 

Expanding on the current form of the SVSF and preparing it for its combination with data 

association techniques yields many opportunities for its applications to target tracking 

problems as well as estimation. 

The general overview of the research and the results is shown in Figure 6.1. Considering 

the interesting characteristics of the SVSF, the research considered the combination of the 

SVSF with advanced data association algorithms, namely PDA and JPDA. The outcome of 

this stage was three published conference papers that constituted the first chapter of this 

thesis.  



Ph.D. Thesis – Mina Attari                         McMaster University - Mechanical Engineering 

 

197 

 

 

Figure 6.1 Research Flowchart and Outcome 

As a second contribution from this research, the covariance of the SVSF was generalized 

for the cases where the number of the measurements is less than the number of states. This 

is an essential step in the optimal derivation of the SVSF and in the context of multiple 

target tracking systems; in a generic tracking system, a number of states describe the 

dynamics of the system and do not necessarily have a direct measurement associated with 

them. The proposed covariance formulation of the SVSF is based on the Luenberger 

observer derivation of the SVSF gain and gives a general formulation of the SVSF 

covariance. The so called covariance-modified SVSF, CM-SVSF, was then used in 

combination with probabilistic data association methods, including probabilistic data 

association (PDA) and joint probabilistic data association (JPDA), and applied to a number 

of single and multiple target tracking scenarios. The outcome of this research contribution 

is described in a manuscript submitted to the IEEE Transaction on Aerospace and 

Electronic systems, and is currently under the second revision. 
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To further develop the formulation of the SVSF, a generalized variable boundary layer 

SVSF (GVBL-SVSF) was derived. This new derivation gave an estimation method that is 

optimal in the MMSE sense when the system does not encounter severe modeling 

uncertainties; in the existence of modeling uncertainties in the system, the GVBL-SVSF 

switches back to the SVSF and preserves the robustness of the SVSF to modeling 

uncertainties. The generalized covariance of the SVSF was used to derive the GVBL-

SVSF, hence the algorithm was well equipped to deal with systems with less measurements 

than states. The GVBL-SVSF was then combined with probabilistic data association 

methods and tested for a number of tracking scenarios in simulation as well as 

experimentally. The experimental setup for this study used a LiDAR (light detection and 

ranging) sensor attached to a car to monitor its surrounding traffic using a dense point cloud. 

The point cloud is processed and clustered into vehicle-like objects. The centre-point of 

these objects make the input to the tracking system. The outcome of this step was a journal 

paper published in IEEE Transaction on Intelligent Transportation Systems. 

The SVSF provides extra performance measures including the magnitude of the chattering 

signal. This performance measure is potentially another source of information to 

discriminate the measurements and perform the data association more effectively. In the 

last chapter of this thesis, to examine the above hypothesis, the magnitude of the chattering 

signal is probabilistically analyzed. The probability distribution function (pdf) of the 

magnitude of the chattering signal is then calculated. The calculated pdf is used to improve 

the association probabilities. A Bayesian inference is used to formulate a new set of 

association probabilities which included the pdf of chattering information. The proposed 

augmented probabilistic data association (APDA) method in conjunction with GVBL-

SVSF constitutes another contribution of this thesis. The APDA-GVBL-SVSF was tested 

for a number of simulation scenarios as well as LiDAR-based experimental data. The 
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outcome of this step was a journal paper submitted to IEEE Transaction on Aerospace and 

Electronic Systems. 

This thesis expands the theory of the smooth variable structure filter and provides a general 

form of the SVSF. This general form opens the path to use the SVSF in several application 

and research areas in a more efficient manner. Furthermore, the interesting characteristics 

of the SVSF is examined and demonstrated to be beneficial and effective in the MTT 

systems. With the introduced concepts and algorithms of this thesis, a new set of tools are 

now available to solve different multiple target tracking problems.  
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