Modelling Concurrent Systems with Interval

Processes

MODELLING CONCURRENT SYSTEMS WITH INTERVAL
PROCESSES

BY
MOHAMMED A. ALQARNI, M.Sc.

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTING AND SOFTWARE
AND THE SCHOOL OF GRADUATE STUDIES
OF MCMASTER UNIVERSITY
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DocTOR OF PHILOSOPHY

(© Copyright by Mohammed A. Algarni, April 2016

All Rights Reserved

Doctor of Philosophy (2016) McMaster University

(Computing and Software) Hamilton, Ontario, Canada
TITLE: Modelling Concurrent Systems with Interval Processes
AUTHOR: Mohammed A. Algarni

M.Sc. (Computational Sciences)

Laurentian University, Sudbury, ON, Canada

SUPERVISOR: Ryszard Janicki (Professor)

NUMBER OF PAGES: [, [[I0]

i

To my wife Nada and my son Ali, I dedicate this thesis.

Abstract

Standard operational semantics of the majority of concurrency models is defined
in terms of either sequences or step sequences, while standard concurrent history
semantics is usually defined in terms of partial orders, stratified order structures (or
structures equivalent to them as net processes).

It is commonly assumed (first argued by N. Wiener in 1914) that any system run
(execution) that can be observed by a single observer must be an interval order of
event occurrences.

However, generating interval orders directly is problematic for most models of
concurrency, as the only feasible sequence representation of interval order is by using
Fishburn Theorem (1970) and appropriate sequences of beginnings and endings of
events involved. It was shown by Janicki and Koutny in 1997 that concurrent histories
involving interval orders can be represented by interval order structures, but how these
interval order structures could be derived for particular concurrent systems was not
clear.

My original contribution to knowledge is defining an interval order semantics for
Petri Nets with Inhibitor Arcs. We start with introducing operational interval order
semantics, and then we generalize the concept of net process to represent the set of

equivalent executions modelled by interval orders.

il

Next we will show that our interval processes correspond to appropriate interval
order structures. Finally, we will prove that our model is equivalent to that of |Janicki
and Yin|(2015) where novel interval traces are used to represent equivalent executions.

We will also demonstrate that our model covers simpler cases where sequences or

step sequences were used to represent system runs.

v

Acknowledgements

First and foremost I would like to thank my advisor Professor Ryszard Janicki. It
has been an honor to be his Ph.D. student. I appreciate all his contributions of time,
and ideas to make my Ph.D. experience productive and stimulating. His expertise
and keen logic have been of great value to me. His advice on both research as well as
on my career have been priceless.

I would also like to thank Professor Sanzheng Qiao, and Professor Michael Soltys
for serving as my advisory committee members.

Furthermore, I would like pay tribute to the late King Abdullah of Saudi Arabia
for giving me and many other of my fellow countrymen and women the opportunity
to seek post secondary education all over the world. If it was not for his scholarship
program, I would not have gotten this far. May he rest in peace. For that, I acknowl-
edge the financial support provided by the Ministry of Education in Saudi Arabia
through The Saudi Arabian Cultural Bureau in Canada.

Last but not least, my deepest gratitude and love belong to my wife Nada, whose
support and patience were with me all these years, and my little son Ali, who gave

me a different perspective of life.

Contents

[Abstract]
[Acknowledgements|
T T ich [Motvation
[LI Motivationl.

4_Petr1 Nets|

4.1 Elementary Nets|,

[4.1.1 Formal Definition ot Elementary Nets|.

[4.1.2 Operational Semantics of Elementary Nets|

[4.1.3 Fundamental Situations in Dynamic Systems Modeling]

vi

iii

13
13
16

21
21
22
25

6 Process Semantics|
6.1 Semantical Framework for Process Semantics
[6.2 Processes ot Elementary Nets|
[6.3 Processes of Elementary Nets with Inhibitor Ares|
6.4 Processes and Concurrent Histories|
[r__Trace Semantics|
(.1 Mazurkiewicz Tracesl
[[.2 Comtraces
[[.3 Tnterval Traced
Ii ';i'l IIll§:I !;11 II;ig:g::i g:(!ll:ill!l(:ti!!lll -------------------

37

44
45
49
53
57

70

[7.3.2 Interval Traces Semantics for Elementary Net with Inhibitor Arcs| 73

8 Interval Processes and Interval Order Structures|

vil

75

88

91
92
97

100

(Bibliography| 1
04

viil

List of Figures

(1.1 Inhibitor nets N and N;, and all their behaviours involving one occur- |
| rence of a, b and c. The net N generates <7, <5, <z, <,, and two con- |
| current histories, while N;, generates only an interval order <j. Partial |
| orders are represented by Hasse diagrams. All orders except <j are |
| stratified) oo 7

[2.1 Various types of partial orders (represented as Hasse diagrams), the to- |
| tal order defined by the sequence aaba, and the stratified order defined |
| by the step sequence x = {a,b}{a,c}{at{b,c}. | 10

4.1 A simple example of an elementary net.|. 24

[4.2 An illustration of local changes of states and firing rules.| 25

4.3 Concurrency of transition t; and ¢5.| 28

4.4 Causality of transition ¢ty and #o.f. 28

4.5 Conflict between transition ¢t and ¢ 29

4.6 An example of an elementary net with inhibitor arc.|. 32

4.7 An example of an activator net.| 35

(.1 ENIN tfrom Figure|l.1l| and its interval representation V.| 39

X

[6.1 Semantical framework for process semantics from |Kleijn and Koutny |
(2004) (right) and complete semantical framework for process seman- |

tics from |Juhas et al.| (2007)o 47

[6.2 A step by step construction of a process for EN from Figure 4.1 gener- |
ated by @ = {t1tatste}|o 52

[6.3 Complement closed ENI.| 54
[6.4 A step by step construction of a process for ENI from Figure [6.3] gen- |
erated by y = {{t1}, {to, 3}, {t1}, {tats}} - - - o o o oo 56

(6.5 Direct acyclic graph associated with the process in Figure [6.2(e) and |
| its transitive closurel 57
[6.6 Rules of deriving a partial order from an ENI process generated by a |
firing sequence .| 58

[6.7 Direct acyclic graph associated with the activator occurrence net in |
Figure [6.4(e) and its transitive closure assuming it was generated by |

T = {libalalilsla]« o o o o 59

[6.8 Rules of deriving a stratified order from an activator occurrence net |
(process) generated by a step sequence y.|. 60

69 Sanfed ond PRGN . l

in Figure[6.4(e)|.o o 61
[7.1 The partial order <{[* generated by the trace [s] where s = abcbca |
and ind = {(b,c),(c,b)}|o 66
[7.2 An example of relation sim (simultaneity), and congruence relation |
ser (serializability).|. oo 69
8.1 Process construction for N (interval representation of N from Figure|5.1)).| 76

R2

An example of a process P9 the directed acyclic graph <! the

partial order <P the relations <,, C, and the interval order structure

ST = ({a',b',c'}, <., C,). The net here is N from Figure [5.1, and

r = Babckal/cBOEDIo 7
[8.3 An example of an ENI that generates only interval orders. Our method |
results in the process P4 and the interval order <., which is isomor- |
phic to <j of Figure [I.1 while all techniques based on either firing |
sequences or firing step sequences produce emptyset.| 83
[8.4 An example of an ENI, its interval representation, processes and con- |
current histories they generate. The process P>*9 generates a concurrent |
history {<3, <3 } while the process P4 generates {<y, <y, <u}.| .. 87
(10.1 An interval-timed Petri net (ITPN)f. 93
[10.2 An initial part of an arbitrary process of the 'TPN of Figure[10.1f . . 97
[10.3 The splitting of transition a (left) into a~ and a™ (right).|. 98

xi

Chapter 1

Introduction and Motivation

Concurrent systems have become the norm, due to technological development and our
demand for computing power. Such systems can be characterized by having a number
of different activities being executed at the same time. Moreover, there is usually a
number of distributed components which need to communicate with each other in
concurrent systems. Thus, they are complex in nature. Due to this complexity, the
history of concurrency theory research consists of both: the construction of languages
and models to make this complexity manageable, and the development of theories for
describing and reasoning about interacting components. One of the most prominent
development is Petri Nets.

Petri nets introduced by Carl Adam Petri in his dissertation “Communication
with Automata”, see |Petri (1962, 1966). Petri nets provide both comprehensible
graphical constructs to model concurrent systems and a rich set of analysis techniques
to reason about those systems; therefore, it appeals to both practitioners and theorist.
In its most common formulation, a Petri net consists of places, or local states, and

transitions effecting the change of local states. The latter is possible if, for a given

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

transition, a specified set of local states is currently active, or marked in Petri net
terminology. Petri nets (the basic model and other Petri net classes) have been used
to model a variety of dynamic event-driven systems like computers networks (Marsan
et al| (1986)), manufacturing plants (Venkatesh et al. (1994))), real-time computing
systems (Tsai et al.| (1995)), and workflow (Van Der Aalst and Van Hee| (2004);
Chuang et al. (2002))) to name just a few examples. This wide spectrum of applications
is accompanied by a wide spectrum of different classes of Petri nets that has made such
applications possible. Such classes were built upon the basic notion of a net defined
by Petri and went to introduce concepts that were not present in the basic net; take
Petri nets with inhibitor or activator arcs, Timed Petri nets, and colored Petri nets for
example. The differences between those classes are generally in the relation between
transitions, and how expressive the nets are. Although some classes of Petri nets will
be touched upon, Elementary Petri nets with inhibitor arcs will be the primary model
in this thesis. Petri nets with inhibitor arcs are in one hand very simple as they are
just classical nets accompanied with inhibitor arcs (allowing to test for the absence of
a token) and on the other hand they are far more expressive than the classical model.
Requiring a transitions executability to be also dependent on some specific local states
not being marked is perhaps the most natural extension of the basic net model. As
stated in Peterson (1981)), ‘Petri nets with inhibitor arcs are intuitively the most direct
approach to increasing the modelling power of Petri nets.” In general, Petri net with
inhibitor arcs can simulate the computations of Turing machines (i.e. test for the
absence of a token can be translated to ‘test for zero’). Therefore, several important
decision problems like reachability and liveness which are decidable for basic Petri

nets are undecidable for Petri nets with inhibitor arcs [Hack| (1979)). ‘Test for zero’

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

means that inhibitor arcs are well suited to model situations involving testing for a
specific condition, rather than producing and consuming resources. Therefore, Petri
nets with inhibitor arcs have been found useful in area like communication protocols
and performance analysis.

Once a system is model as a Petri net, the simplest form to describe the be-
haviours of that net is using operational semantics (i.e. sequential semantics) which
can be viewed in two ways based on how transitions’ occurrences are captured. If
interleaved concurrency is the goal, then firing sequences are used, however, if true
concurrency is of interest, then firing step sequences are used. As their names suggest,
a firing sequence is simply a sequence of transitions that fire one after another while
firing step sequences are sequences of sets (possibly singleton) of transitions that fire
concurrently.

Although firing step sequences provide some insights about the relationships be-
tween transitions (which ones can occur concurrently) of the systems, it is still of a
sequential flavor and lacking the ability to convey some important information (such
as causality between transitions). Therefore, operational semantics, in both forms
(firing sequences and step sequences), cannot provide enough information that allows
for determining what systems runs/executions are equivalent, despite the importance
of this equivalence in the concurrent processing.

To address the shortcomings of operational semantics, different semantics have
been developed with the goal of obtaining more information about the relation be-
tween transitions of a given net. One example is concurrent histories (also called

non-sequential execution histories) which are defined as abstractions of equivalent

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

runs. Those abstractions are modelled based on the assumptions made about sys-

tem runs/executions. They could be partial orders (as in (Goltz and Reisig (1983);

Nielsen et al. (1990))), stratified orders structures (as in [Janicki and Koutny| (1991,

11995)); Kleijn and Koutny| (2004); Rozenberg and Engelfriet| (1998)), or interval orders

structures (as in [Janicki and Koutny| (1991)); |Janicki and Yin| (2015))).

Although concurrent histories semantics yield better insights about systems, it
is important to note that, unlike validity of operational semantics which is usually
obvious, the validity of concurrent history/behaviour semantics is often not. It relies

on the validity of the definition of a concurrent history/behaviour, which is often not

trivial and may involve complex reasoning (cf. Baldan et al. (2004)); Janicki (2008]);

Janicki et al.| (2010)); Nielsen et al.| (1990))). On the other hand, the process semantics

(in the sense of Busi and Pinna (1999); Kleijn and Koutny, (2008); Nielsen et al.|

(1990)); Rozenberg and Engelfriet| (1998)), does not usually require much validation

as intuitively it is just a set of system unfoldings, so it is as natural as any operational

semantics (c.f. Kleijn and Koutny| (2004)); [Nielsen et al.| (1990); [Vogler et al. (1998)).

Hence it can be used as a benchmark for validity of other types of history/behaviour

semantics, they just have to be equivalent to the process semantics (c.f.

Pinnal (1999)); |Kleijn and Koutny| (2004} 2008))).

That being said, recording observations as firing sequences and step sequences
(and consequentially abstractions generated by them) is not the most precise way

when it comes to defining semantics based on observations. It is commonly assumed

(first argued in (1914) and formally analyzed in details in Janicki and Koutny

(1993))) that observations that are observed by a single observer must be interval

orders of event occurrences. This means that the most precise observational semantics

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

is defined in terms of interval orders. Moreover, representing observations as interval
orders allows to capture behaviours that neither of the standard semantics can really
describe. However generating interval orders directly is problematic for most models

of concurrency, as the only feasible sequence representation of interval order is by

using Fishburn Theorem |Fishburn (1970) and appropriate sequences of beginnings

and endings of events involved. It was shown in Janicki and Koutny (1997) that

concurrent histories involving interval orders can be represented by interval order

structures (proposed in [Janicki and Koutny| (1991)); Lamport| (1986))), but how these

interval order structures could be derived for particular concurrent systems was not
clear.
The main contributions of our research include the following. First we define

an interval process semantics for Petri Nets with Inhibitor Arcs. It is achieved by

modifying and extending the ideas of [Kleijn and Koutny| (2004) so we can generate

processes that are equivalent to interval orders when their sequence representation
derived from Fishburn Theorem is used. While various process semantics for Petri

Nets with inhibitor arcs have been proposed in the past, the most representative and

prolific are probably Busi and Pinnal (1999)); |Janicki and Koutny| (1995)); Juhas et al.

(2007); Kleijn and Koutny| (2004); Montanari and Rossi (1995); Vogler et al.| (1998);

‘Winkowski| (1998), they all assume that the operational semantics is defined in terms

of sequences Montanari and Rossi (1995)); [Vogler et al. (1998); Winkowski (1998) or

step sequences Busi and Pinnal (1999)); Janicki and Koutny! (1995)); [Juhés et al.| (2007);

Kleijn and Koutny| (2004). None of these models is able to deal with observations

(system runs) that are neither step sequences nor semantically equivalent to any

step sequence. We then show that such processes can be interpreted as appropriate

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

interval order structures of |Janicki and Koutny| (1991). Finally, we will show that our
interval processes correspond uniquely to appropriate interval traces of |Janicki and
Yin| (2015).

The initial results of this thesis have been published in |Algarni and Janicki| (2015)),

Algarni and Janicki (2016al), and |Algarni and Janicki| (2016b)).

1.1 Motivation

Consider the elementary net with inhibitor arcs N in Figure together with its
concurrent histories hist] and hist} involving one occurrence of each transition a, b
and ¢ (elementary net with inhibitor arcs will be formally defined in Section and
concurrent histories is the focus of Chapter [3)).

Standard operational semantics (firing sequences and step sequences) and stander
concurrent semantics (partial orders and stratified order) can model <J, <}, <} gen-
erated by N. Intuitively, <} is when transition a occurs, then b followed by ¢, <3§ is
when transition ¢ occurs, then a followed by b, and <} is when both transition a and
¢ can occur concurrently then b occurs. However, neither can model <} which can
also be considered as a possible run/execution that involves occurrences of a, b and ¢,
for both N and N;,. Intuitively, if the events a, b and ¢ are not instantaneous, one can
imagine a situation where b follows a but ¢ overlaps with both a and b. This means
that for the net N and N, of Figure 1.1, one can, intuitively, ‘hold on’ to a token taken
from sy until a token taken from s; is placed in ss.

Moreover, we would like to point out that for the net N,, from Figure the
set of all firing sequences that start from the marking {s1, so} and end at the mark-

ing {s4,s5} is empty and the set of all firing step sequences that start from the

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

81
2] Ia IC a ¢ a Ia
; VA N
530) I I J Dl Ib
oc: . b b - b : time
m <Iil . . <g <g : <ﬂ . example of
------------------------------------- intervals that
. . define <)
550) hist) hist eIne e

Figure 1.1: Inhibitor nets N and N;, and all their behaviours involving one occurrence
of a, b and c¢. The net N generates <Y, <3, <}, <}, and two concurrent histories, while
N,, generates only an interval order <. Partial orders are represented by Hasse
diagrams. All orders except < are stratified.

marking {s1, s2} and end at the marking {s4, s5} is also empty, and the only obser-
vation/system run that starts from the marking {s, s>} and ends at the marking
{s4, 85} is the interval order <%'.

We will define a tool that, unlike standard semantics, allows to generate not only

<, <5, <} but also the interval order <.

1.2 Organization of Thesis

This thesis consist of ten chapters of which this the first. In the second chapter
we provide some mathematical basics needed through out the thesis. Then, a brief
overview of concurrent histories and order structures is given in chapter three. Chap-
ter four is devoted for the background knowledge of Petri nets and given how big
its body of knowledge, we only included the essentials. Then, we introduce one of
our contributions which is interval elementary net with inhibitor arcs in chapter five.

Chapters six and seven are about different semantics of Petri nets, namely process

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

semantics and trace semantics respectively. We then define our own process seman-
tics for interval elementary net with inhibitor arcs in chapter eight under the title
interval processes and interval order structures. In chapter nine we overview some
of the other classes of Petri nets where the notion of interval orders has been used

before the thesis is concluded in chapter ten.

Chapter 2

Mathematical Foundation

2.1 Partial, Total, Stratified and Interval Orders

In this chapter, a short introduction to partial orders (c.f. |[Fishburn| (1985))), as they
are the principal tool to describe executions and operational semantics of concurrent

systems.

Definition 1. A relation < C X x X is a (strict) partial order if it is irreflexive
and transitive, i.e. for all a,c,b € X, a £ a anda <b<c¢ = a < c. We also
define: a—~cb PR —(a<b)AN=(b<a)Na#b, and

a<~b <L a<bva~_b

Note that a ~~ b means a and b are incomparable (w.r.t. <) elements of X. O
Let < be a partial order on a set X. Then:

1. < is total if ~. = (). In other words, foralla,be X,a<b V b<a V a=b;

2. <is stratified if a ~- b ~-c=a ~-c V a=c,i.e., the relation ~_ Uidx

is an equivalence relation on X

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Bla
a a a E Ea% a® b® a' a ot
B(b) .
b B(c) a2 a c
¢ b ¢ E(b)
¢ B(d) c® d® p! a’
E(c)
d d d E(d) a,3 b C2
<1 <2 <3 <3 <4 aaba <z
total stratified interval total not interval

Figure 2.1: Various types of partial orders (represented as Hasse diagrams), the total
order defined by the sequence aaba, and the stratified order defined by the step

sequence = = {a,b}{a, c}{a}{b,c}.
3. <is wnterval if for all a,b,c,d e X, a<c ANb<d=a<dV b<c. Inother

words, < is interval if all its four element restrictions are different from <4 in

Figure

It is clear from these definitions that every total order is stratified and every
stratified order is interval. Partial orders are usually represented as Hasse dz’agmmsﬂ.
Figure illustrates the above definitions. Every finite total order is uniquely rep-
resented by a sequence. For example the order <; of Figure is represented by
a sequence abcd. Similarly, every stratified order is uniquely represented by a step
sequence. For example the order <, of Figure is represented by a step sequence
{a}{b, c}{d}. The opposite is also true as every sequence uniquely defines a total or-
der if it is enumerated elements, and every step sequence uniquely defines a stratified
order if it is enumerated elements.

Each sequence of events represents a total order of enumerated events in a natural

way. For precise definitions see for example |Janicki and Koutny| (1995). Here we will

LA Hasse diagram of a partial order < is the smallest relation R such that the transitive closure
of R, i.e. RT,is equal to < (c.f. [Fishburn| (1985)).

10

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

be using the following notation.

Notation 1. 1. For each set of events &, let & = {a' | a € X,i > 1} denote the

set of enumerated events generated by .

2. For each sequence x € ©* and each step sequence z € (2%)*, let & € S* and
€ (22)* denote their enumerated representations.
For example, if v = abbaa then & = a'b'b*a’a®, and if = = {a,b}{a,b,c}{a}

then z = {a',b' H{a?, V?, Ha?}.

3. For every sequence x € ¥*, <, is the total order defined by the enumerated

sequence T. For example: <gppaa = a* — b' — b> = a? — a?.

4. For every step sequence z € (2%)*, <, is the stratified order defined by the
enumerated step sequence Z.

For example: <fapH{apciar = {0, 0"} — {a?, 0%, '} — {a’}. O

The two orders on the far right of Figure illustrate points (3) and (4) of the
notation presented above. For the interval orders, the name and intuition follows

from Fishburn’s Theorem:

Theorem 1 (Fishburn| (1970)). A partial order < on X is interval iff there exists

a total order < on some T’ and two mappings B, E : X — T such that for all x,y € X,
1. B(z) < E(x),
2. x <y <= E(x)<B(y). O

Usually B(x) is interpreted as the beginning and E(x) as the end of an interval

x. The intuition of Fishburn’s theorem is also illustrated in Figure [2.1] with <3 and

11

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Q3. For all x,y € {a,b,c,d}, we have B(x) <3 E(x) and © <3y <= FE(x) <3 B(y).
For better readability we will skip parentheses in B(z) and E(x) in the future. Note
that the interval order <3 is (not uniquely) represented by a sequence that represents
<3, i.e. BaFaBbBcEbBdEcEd. Fishburn’s Theorem will be essential in interval
semantics of inhibitor nets.

We will say that a total order <t on X extends a partial order < on X, if for all
x,y € X <y = x <y, and for every partial <, total(<) denotes the set of all total
extensions of <.

By Szpilrajn’s Theorem Szpilrajn| (1930), we know that every partial order <
is uniquely represented by the set total(<). Szpilrajn’s Theorem can be stated as

follows:

Theorem 2 (Szpilrajn (1930)). For every partial order <,

<= N <«

<€total(<)

i.e. each partial order is the intersection of all its total extensions. O

12

Chapter 3

Concurrent Histories and Order

Structures

An important model for abstracting non-sequential behaviour of concurrent systems
has been developed and proved to be sound in |Janicki and Koutny| (1993} [1997). In
principle, the model assumes that concurrent behaviour is fully described by a triple
(X, <,C), where X is the set of event occurrences, < is causality (i.e. an abstraction
of “earlier than”), and C is weak causality (i.e. an abstraction of “no later than”);

both relations are on X.

3.1 Concurrent Histories

The abstraction model is based in three fundamental concepts: observations of con-
current behaviours, concurrent histories, and paradigms of concurrency. Following,
we will briefly discuss those concepts.

A run (observation, instance of concurrent behaviours) is an abstract model of

13

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

the execution of a concurrent system. In|Janicki and Koutny| (1993), it was argued
that an observation must be an initially finite order that is either total, stratified, or
intervall.

A Concurrent history is a complete set of equivalent runs. To elaborate, let’s
assume that all possible runs (observations) are total orders. A set A = {abc, cba}
is not a concurrent history. This is because the intersection of the runs abc and cba
(denoted by <a or <fape,cha}) is the empty set which means that there is no causal
relation between event a, b and c¢. This implies that bca is a possible run, for instance,
but bea ¢ A; a contradiction. Now, let the A? be the set of all total extensions of
<a (i-e. {abe,bac,ach,bea, cab, cba}). < is complete and thus can be considered a
concurrent history.

The above was in the case of all runs being total orders. However, when it is not
the case, then a definition of concurrent histories require using more complex analysis
of the runs. The set <A can be viewed as an invariant characterizing the set A
(i.e. all elements of A adheres to the ordering relation defined by <a). A concurrent
history is a set of partial orders (of an appropriate type) with common domain that
is fully characterized by all its relational invariants |Janicki and Koutny| (1993).

A relational invariant over a set of partial order A is any relation R C X x X

defined by a formula of the type

(ﬂf,y) € R<=VYoe€ A ¢R(x7y70)7

where ¢r(x,y,0) is any propositional formula built from atoms z 5 gy >
r,z > y and True; for instance, ¢p(x,y,0) = v — yV x +>+ y. Note that

o € O where O denote any partial order (i.e. total, stratified, interval, partial) and

14

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

—, instead of < while +—,=~.

Let RInv(A) denote the set of all relational invariants generated by A, let O be
a class of partial orders and let A C O be a set of partial orders with a common
domain X.

We define the closure of A with respect to RInv(A) (A%) as the set of all partial

orders in O with the domain X that satisfy:

0€ A} <= (VR € RInv(A).Vz,y € X.(x,y) € R = ¢r(x,y,0)).

Given all the above, a formal definition follows.
Definition 2 (Janicki and Koutny| (1993)). A set of runs A is a concurrent his-

tory in O iff A = AY. O

In Janicki and Koutny| (1993)), it was shown that RInv(A) consists, at most,
of eight different relations of which, at most, two are independent (i.e. cannot be
calculated from each other using standard set theory operator union, intersection,

and complement).
Lemma 1 (Janicki and Koutny| (1993))).

1. RInv(A) = {0,0a,Ca, CA <a, <a',>a, X X X}

2. RInv(A) is the smallest set of relations containing {Oa, Ca} and closed under

union, intersection, and complement and their inverse operators.
3. <A= QAN CAaA, Xa=CaA N I:;l. [l

The relation <, is causality abstracting the “earlier than” relation (z <a y means

x is performed earlier than y in all observation from A). The relation C is weak

15

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

causality which abstracts the “no later than relation” (xr Ca y means that z is
performed no later than y in all observations in A; i.e. x is either performed earlier
than or simultaneously with y). The relation { is commutativity which can be seen
as an abstraction of “interleaving” or “not simultaneously” relation (xr{ay means
that x and y are not performed simultaneously in any observation from A). Lastly,
the relation i is synchronization and can be seen as an abstraction of simultaneity

(x >a y means that x and y are performed simultaneously in all observation from

A).

3.2 Stratified and Interval Order Structures

When the system runs are represented by stratified or interval orders, or when we
want to express not only “earlier than” but also “no later than” relationship, partial
orders alone are not enough, we need to use pairs or relations called order structures
(c.f. [Janicki (2008); [Janicki et al. (2010)); Kleijn and Koutny| (2004)).

In this section, we will define two concrete classes of structures which are used to

model concurrent histories.

Definition 3 (Gaifman and Pratt (1987); Janicki and Koutny| (1991)). A strat-

ified order structure is a relational structure S = (X,<,C) such that for all
a,b,ce X;

Sl. alZ a S3. aCbCcha#c=alc
S2.a<b=alCbh S4.,aCb<cha<bCc=a<c U

We will say that a stratified order < on X extends the structure S, if < C < and

16

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

C C <™. The set of all such extensions of S will be denoted by strat(S). If < is a
stratified order on X, then the triple (X, <, <7) is a stratified order structure. The
axioms S1-S4 (see Definition |3)) can be seen as an abstraction and generalization of
the relationship between < and <™ when < is a stratified order (c.f. [Janicki and
Koutny| (1993} 1997)).

Theorem 2] (Szpilrajn Theorem) states that each partial order is uniquely repre-
sented by its set of total extensions. We have a similar relationship between stratified

order structures and stratfied orders.

Theorem 3 (Janicki and Koutny| (1997))). For each stratified order structure S =

(X, <,C), we have

s=(x. N < N <)

<EStrat(S) <€Strat(S)

i.e. S 1s entirely defined by the set of all its extensions. 0

The above theorem is a generalization of Szpilrajn’s Theorem to stratified order
structures (c.f. |Janicki (2008); Kleijn and Koutny (2008)). It is interpreted as the
proof of the claim that stratified order structures uniquely represent sets of equivalent
system runs, provided that the system’s operational semantics can be fully described
in terms of stratified orders (see [Janicki| (2008)); |Janicki and Koutny| (1997); |Janicki

et al.| (2010); Kleijn and Koutny| (2008) for details).

The formalism provided by interval order structures is more general than those
provided by partial orders and stratified order structures. Interval order structures
models concurrent behaviour that neither partial orders nor stratified order structures

can model.

17

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Definition 4 (Janicki and Koutny| (1991); |Lamport| (1986)). An interval or-

der structure is a relational structure S = (X, <,) such that for all a,b,c,d € X :

I1. alZ a Ij.a<bCchaCb<c=alCc
I2. a<b=alCb 15, a<bCc<d=a=<d
13. a<b<c=a<c I6. aCb<cCd=aCdVa=d U

Note that every stratified order structure is also an interval order structure.

We will say that an interval order < on X eztends the structure S, if < C < and
C C <™. The set of all such extensions of S will be denoted by interv(S). If < is
an interval order on X, then the triple (X, <, <7) is an interval order structure. The
axioms [1-14 can be seen as an abstraction and generalization of the relationship
between < and <~ when < is an interval order (c.f. |Janicki and Koutny| (1993
1997)).

Theorem [3]states that each stratified order structure order is uniquely represented
by its set of stratified extensions. We have the similar relationship between interval

order structures and interval orders.

Theorem 4 (Janicki and Koutny| (1997))). For each interval order structure S =

(X, <,C), we have

s=(x. N < N <)

<Elnterv(S) <Elnterv(S)

i.e. S 1s entirely defined by the set of all its extensions.

The above theorem is a generalization of Szpilrajn’s Theorem to interval order
structures, similarly as Theorem [3]is a generalization of Szpilrajn’s Theorem to strat-

ified order structures. It shows that if the system’s operational semantics is fully

18

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

described in terms of interval orders, then the interval order structures uniquely rep-
resent sets of equivalent system runs (see |Janicki (2008)); Janicki and Koutny| (1997)

for details).

In both order structures the relations < and [are called causality and weak
causality respectively, and in both models < is an abstraction of “earlier than” re-
lation while C is an abstraction of “no later than” relation. In both models < is
always a partial order, while = does not have to be. The fundamental difference is
that for Stratified Order Structures the system runs/executions are assumed to be
modeled by at most stratified orders, while for Interval Order Structures the system
runs/executions are assumed to be modeled by general interval orders.

For interval order structures we have the following equivalent of Fishburn Theorem

which is one of the main tool that will be used in our model Abraham et al.| (1990).

Theorem 5 (Abraham et al. (1990)).
A triple S = (X, <,) is an interval order structure if and only if there exists a partial
order < on some Y and two mappings B,E : X =Y such that B(X)NE(X) =10

and for each x,y € X:

1. Bx < Ez,

2. r <y <= Ex < By,

3. xrCy < Bxr<FEy O
The partial order < from Theorem [5| is not unique and does not need to be inter-

val. For more on the theory of order structures and their applications, the reader is

referenced to |Janicki| (2008); [Janicki et al.| (2010); |Janicki and Koutny| (1997).

19

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

There is a connection between order structures (Section [3.2]) and concurrent his-
tories. Formally, for every set of observations (on the same set of event occurrences
X) A, define: <a=(\.cp < and Ca= ().~ C. Also, define Sy = {X, <a,Ca}

Then, it was shown in Janicki and Koutny| (1993) that

e if A consists of only total orders, then A is a concurrent history if and only if

A = total(<a),

e if A consists of only stratified orders, then A is a concurrent history if and only

if A = Strat(Sa), and

e if A consists of only interval orders, then A is a concurrent history if and only

if A = Interv(<a).

For example, lets A = {<], <, <i} and A" = {<}, <8, <§, <}} where <¥, <J, <},
and <Y are from Figure[L.1] Then, A and A’ are concurrent histories as Strat(Sa) =

A and Interv(Sar) = A'.

20

Chapter 4

Petri Nets

In this chapter an overview of all different nets that are used in our research is given
to a varying degree of details. It starts with an informal introduction to Elementary
nets (EN) which form the most fundamental class of Petri nets. Then, a more formal
and detailed overview of the elementary nets with Inhibitor arcs (ENI) is given. In

addition, we will briefly introduce activator nets.

4.1 Elementary Nets

Elementary nets (EN) are the most fundamental class of Petri nets. The basic idea
of a net-based model is that it consists of a net (structure) and a set of “token game”
rules. The net describes the static structure of the concurrent system while the token
game describe the dynamic behaviour of such a system. Different classes of Petri nets
differs in the underlying structure, the dynamic rules, or in both of them.

The token game rules are primarily concerned with how to get from one global

state of the net to the other. Therefore, those rules define the potential state space of

21

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

the system. However, in order to get the actual state space, an initial global state of
the system must be specified. Then, starting from this initial global state, the state
space can then be obtained based on the token game rules. Hence, a given elementary
net system is given by a net and an initial global state (called initial configuration or
marking).

A defining characteristic of Petri nets is that it is the local states that form a
global state and it is through local transition(s) acting on those local states that a
change from global state to another global state can occur. In other words, subset of
the local states forming the global space is replaced by another subset of local states
as a result of local transition firing.

The local states of an EN are called places and local transition are called transi-
tions. The net is a finite directed graph with its nodes being places (drawn as circles)
and transitions (drawn as boxes) while its edges assigning inputs and outputs to each
transition. Thus, the net defines which local states are replaced by other local states
for each transition. The actual global state is indicated by putting tokens (drawn
as thick dots) in the places forming the local state and the token game is played by
moving those token based on the transitions that are firing.

Following, we formalize the above concepts.

4.1.1 Formal Definition of Elementary Nets

The static structure of an EN system (i.e. the underlying net) is the main part of
the system. There are a number of possible equivalent definitions of EN that differs

mainly in notations; following is one of them.

Definition 5. An elementary net (EN) is a tuple EN = (P, T, F) such that

22

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

1. P and T are finite disjoint sets of places and transitions;
2. F C(PxT)U(T x P) is the flow relation of EN (dom(F)Urange(F) = PUT);

3. Cinir C P is the initial marking/configuration of EN (generally, any C C P is

a marking); O

The net in Figure [4.1] is an example of an EN. Each transition ¢ € T has a
neighbouring places with which it is connected by incoming and outgoing arrows. It
is those neighbours which determine the firing rules of a transition as well as the
effect of such a firing. For every x € P U T, we define its input set (or preset)
‘v ={y | (y,z) € F} and its output set (or post set) z* = {y | (z,y) € F}. A
transition with no input places is called a source transition, and one with no output
places is called a sink transition. Moreover, a net is said to have a self-loop if for a
pair of a place p and a transition ¢, p is both an input place and an output place of ¢.
A net is said to be pure if it has no self-loops. The input and output definitions are
extended to subsets of transitions as for any subset U C T :*U = |J *t,U* = | t°.
For EN, it is assumed that for every t € T, %t # () # t* and *t N ¢° :% ~

For EN in Figure[4.1] the input and output of any transition or place can be defined,
for example, *t; = {s1, 52}, and *s3 = {t1}, etc; while ¢ = {s3, s4}, and s = {t4, 2},
etc.

While the structure of EN describe its static features, the dynamics of an EN
is defined through the set of markings or configurations (i.e. a subset of places
representing conditions holding at any given global situation). Those conditions are
represented as tokens.

Once a marking is known, the firing rules of a transition can be defined. The most

basic rule for a transition to fire is that its input has a token and its output does not

23

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Figure 4.1: A simple example of an elementary net.

have a token. When a transition has fired, it is said that it has consumed a token

from its input place(s) and has produced token(s) in its output place(s). Formally;

Definition 6. A transition t is enabled (i.e. can fire) at a marking C, if
1. *te 2.t ¢C

The notation Ct) is used to denote that transition ¢ is enabled at marking
C. We will also write Clt; ...t,)C" if C[t;)Cy ... C,_1[t,)C" for some configurations
Ci,...,C,_1. From Definition |§| and given the initial marking Cj,;; = {s1, s2} for EN
(Figure , one can see the following Cj,;i[a) and Cj,if[c) (i.e. transitions a and ¢
are enabled at Cy,;;). Note that a source transition is always enabled, and that the
firing of a sink transition consumes tokens, but does not produce tokens. When a
transition (or more than one transition) occur, the global state of the entire system is
changed. This is captured through the new configuration, denoted as C’, which the

firing(s) lead to. C” is defined simply as C' = (C'\ *t) Ut® showing which tokens have

24

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

been consumed and which ones have been produced. See Figure [4.2]for an illustration

of firing rules and local changes of states.

(a) t is enabled ([t)). (b) ¢ has fired. (c) t is not enabled. (d) t is not enabled.

Figure 4.2: An illustration of local changes of states and firing rules.

4.1.2 Operational Semantics of Elementary Nets

The rules of transitions occurrences can be generalized to be applied not only to
individual transitions but also sequences of transitions as well as sequences of set of
concurrently enabled transitions. The operational semantics of EN is defined through
the token game which simulates the occurrence of transitions and the changes of
tokens in places. There are two standard operational semantics for ENI, one in terms

of firing sequences and another in terms of firing step sequences.

Definition 7. A firing sequence of an EN is any sequence of transitions t, ..., t,
for which there are configurations C, ..., C, satisfying:
Cinit[t1)Ci[t2)Cs .. . [tn) Ch. O

The definition above can be generalized to sequences of sets of transitions occurring

simultaneously. Let U C T be a non-empty set such that for all distinct ¢1,t, € U:

25

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Then U is enabled at a marking C if *U C C and U* N C = (). We also denote this
by C[U)C" where, C" = (C'\ *U) U U®.

Definition 8. A firing step sequence is a sequence of sets (or steps) Uy, ..., U,
for which there are configuration C1, ..., C, satisfying:
Cinit|U1)C1[U2)Cy .. . [Up)Cy. O

Note that, firing sequence can be seen as a special case of the more general definition
of firing step sequences (i.e. each step has only one transition).
For EN in Figure [1.1} we can define a firing sequences (among infinitely many)

T = {t1t4t5t6t1} as follows:

Cinit[t1){s3, sa}t[ta){sa, s5}t5) {55, s6}te) {51, 52}

Additionally, a step firing sequence (again among infinitely many)

y = {{t1}, {ta, ts},{t1}, {ts, t5}} as follows:

Cinit[{t1}){83, sa}[{t2, ta}){s1, s2} [{t1 }) {53, sa}[{tar t5}) {55, 56}

Generally speaking, the theory of Petri nets does not assume anything about the
nature of transitions; thus, they can be treated as instantaneous and non-instantaneous
(i.e. last for a duration of time) Petri (1996); Reisigl (2013); Desel and Reisig| (1998).
If firing sequences semantics is of interest like in the popular paper Murata (1989)
then the distinction between instantaneous or non-instantaneous transitions is often
negligible. However, such distinction cannot be neglected in the case of step sequence
semantics Baldan et al.| (2004); | Janicki and Koutny| (1995); Kleijn and Koutny] (2008))

or interval orders |Janicki and Koutny| (1997)).

26

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

4.1.3 Fundamental Situations in Dynamic Systems Modeling

Having defined the behaviours of concurrent systems as firing sequences and firing step
sequences allow us to discuss some of the complex relationship between transitions.
This will be illustrated in the study the three fundamental relationships which could
hold between transitions ¢; and ¢, at any configuration of EN; namely, concurrency,
causality, and conflict.

Concurrency: the first observation is that when, at some configuration, two
transitions can occur simultaneously, it does not mean that they have to. They can
still occur one after another in any order which in turns mean that if they can occur in
any order, they must be concurrently enabled and non-interfering. This is formulated

as what is called “diamond property” which is formally defined as follows:

Fact 1. Let N = (P, T, F,Cjnit) be an EN system, let C,C" C P, and let U CT. Let
{U1,Us} be partitions of U, i.e. U= Uy, Uy, Uy NUy =0 and Uy, Uy # 0. If ClU)C’,
then there exist a marking C" C P such that C[U)C" and C"[Us)D. O

The reason for its name is that in diagrams (reachability graphs for example), this
case yield a diamond shape. For more on the diamond properties, readers can refer
to Hoodgeboom and Rozenberg (1991) Rozenberg and Engelfriet| (1998) and Kleijn
and Koutny| (2008). Moreover, the notion of concurrency between two transition t;
and to is illustrated in Figure [4.3]

It is worth mentioning here that the case in Figure is a part of a bigger picture
where there may be more than two transitions which can occur concurrently. Fig-
ure [4.3| also lacks the illustration of how °t1, *t5 and ¢, ¢3 fits at a given configuration

but it shows the essence of concurrency.

27

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Figure 4.3: Concurrency of transition t; and t,.

Causality: the relation between two transitions is said to be causal, if one tran-
sition must occur in order for the other to be enabled. Intuitively, this can happen in
one of two cases: the first case is when the first transition ¢; produces a token which
populates the input place of a transition ¢y given that there is only one input place
and/or all other places have tokens on them (Figure [4.4|(a)); the second case is when

transition ¢; consumes a token that populates one of ¢, output places (Figure |4.4{(b)).

(a) t3 Nty # 0. (b) *t; Nts # 0.

Figure 4.4: Causality of transition ¢; and ¢.

Conflict: two transitions, t1,ty are said to be in conflict when at some config-
uration C, we have C[t;) and Cltz) but not C[{t1,t2}). This can be the result of
either ¢; and ty share a common input place so the firing of either one consumes a
token; therefore, disabling the other or that ¢; and t, share a common output place

and again firing one disables the other. This is presented in Figure .5 A conflict is

28

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

called input-conflict (or backward conflict) when *t; N *ty #), and is called output-
conflict (or forward conflict) when ¢ N¢3 # (). Both types of conflicts can also be

present together.

(a) *t; Nty # 0. (b) 3Nt #0.
Figure 4.5: Conflict between transition ¢; and t,.

It is interesting to take a close look at concurrency and conflict in the sense that
in both cases, we have t; and t, enabled at some configuration. However, In case
of concurrency t; and t, are independent, while in the case of conflict they are not.
This leads to nondeterministic choice between transitions in case of conflict which

is not present in concurrency. Intuitively, EN where there is no choice are easier to

understand and work with.

Definition 9. An EN is conflict-free if for every reachable configuration C' and

every transitions t; and tq, it is the case that if C[t1) and C[ta), then C[{t1,t2}). O

Conflict-freeness is an important characteristic that will be used later in this research.

4.1.4 Contact Freeness

Equivalence notion is important to any theory of systems, especially when some mod-

ification of the system are desirable but its behaviours must not change. This is true

29

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

for elementary nets theory as well. Those changes to define “better” equivalent sys-
tems results in what is called normal forms. Although there are a number of normal
forms, we only define the one that is used later in our research (when defining the
notion of non-sequential processes generated by EN) and that is contact-free. The
importance of such a normal form arises from the fact that one often deals with only
contact-free nets in the theory of elementary nets Pomello et al. (1992)). In addi-
tion, for every EN, there exist an equivalence contact-free EN system Rozenberg and

Thiagarajan (1986).

Definition 10. An EN is contact-free if for every reachable configuration C and

every transition t, it is the case that *t C C implies t* N C = (). O

In other words, while in the definition of elementary nets presented earlier, the firing
rule for a transition checks explicitly for its output(s) emptiness, checking its input(s)
is enough when dealing with contact-free nets. Transforming an EN to a contact-free
net is simple and require only introducing complementary places to the original

net.

Definition 11 (Goltz and Reisig (1983)). Places p,q € P are complementary
(p is a complement of q and vice versa) if p # q, *p = ¢° and p* = *q, and |Cipi N

{r,qg}| =1 O

If p and ¢ are complementary we will write p = ¢, q¢ = p, and clearly p = 5, q= 5
Thus far, we have covered the basics of the basic class of Petri nets and we will
now introduce a simple yet very powerful extension to Petri nets, namely inhibitor

arcs.

30

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

4.2 Elementary Nets with Inhibitor Arcs

Elementary Nets with inhibitor Arcs (ENI) differs from the classical elementary nets
only in the introduction of inhibitor arcs which was introduced in|Agerwala and Flynn
(1973). Inhibitor arcs (drawn as an arc with a circle head) allows to check for the
absence of a token in the place to which it is connected. ENI extends EN in the way
that notion and notations concerning the structure and the token game with only one
notation introduced as a result of introducing inhibitor arcs. That is °¢ which denotes
the set of all places p € P where the presence of a token “inhabits” the firing of a

transition ¢t to which it is connected.

Definition 12. An elementary net system with inhibitor arcs (ENI) is a

tuple {P, T, F, Cinit, [} such that:

e P and T are finite disjoint sets of places and transitions,

o ['C (PxXT)U(T xP) is the flow relation of EN (dom(F)Urange(F) = PUT);

o Cinit C P is the initial marking/configuration of EN (generally, any C C P is
a marking); and

e [C P x T is the set of inhibitor arcs. O

Note that the first four components are the underlying elementary net (see Defin-

tion [f)).
For example, consider the ENI in Figure which is the same as the EN in

Figure 4.1 with the addition of an inhibitor arc between s; and transition ¢5. This

means when there is a token in place ss, transition ¢5 is not enabled. The inhibitor

31

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

arc defines the “no later than” relation and in this example, t5 must occur no later

than t4 as the firing of ¢4 inhibits the firing of 5.

Figure 4.6: An example of an elementary net with inhibitor arc.

Intuitively the transition firing rules and subsequently the definition of firing se-
quences and firing step sequence of ENI extends that of EN while addressing the
addition of inhibitor arcs (°¢ denotes the set of places concocted to ¢ with inhibitor
arcs). A transition ¢; is enabled at marking C if *¢t; C C and (°t; Ut*)NC = 0.
Similarly to EN, there are two standard operational semantics for ENI, one in terms
of firing sequences and another in terms of firing step sequences (c.f. |Chiola
et al.| (1991); Janicki and Koutny| (1995))).

A firing sequence of an ENI is any sequence of transitions ¢y, ...,%, for which
there are markings (7, ..., C,, satisfying:

Cinit[t1)Ci[t2)Cs .. . [tn) Ch.

The definition above can be generalized to sequences of sets of transitions occurring

32

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

simultaneously. Let U C T be a non-empty set such that for all distinct t1,t, € U:

(tTUt) N (ts U ty) = 0.

Then U is enabled at a marking C if *U C C and (U*U°U)NC = (). We also denote
this by C[U)C" where, C' = (C'\ *U) U U®.
A firing step sequence is a sequence of sets (or steps) Ui, ..., U, for which

there are markings C', ..., C, satisfying:

Cim't[U1>C1 [U2>CQ R [Un>Cn

Examining the firing sequence x = {t1t4t5t6t1} and the firing step sequences y =
{{t:}, {t2, ts}, {t:}, {ta, t5}} defined for the EN in Figure[4.1]shows that z is not a firing
sequence of the ENT in Figure [4.6| while the firing step sequence y is a step sequence
of ENI. This is because when the transition t, fires, it populates its output place ss
with a token which then inhibits the firing of ¢5. This means that ¢5 must fire “no
later than” ¢4 which is possible to happen when either t5 fires before or concurrently
with t4. The latter is the case in y where {t4,%5} occurs in one step.

Firing sequence semantics is sometimes called ‘a-posteriori’ while firing step se-
quence semantics is sometimes called ‘a-priori’ (see |Chiola et al.| (1991)); Janicki and
Koutny| (1995)). It is often assumed that if the events (transitions) are interpreted as
representations of activities whose completion takes some time, then ‘a-priori’ model
is frequently preferable, however if the events (transitions) are instantaneous, i.e. their
occurrence takes zero time, then simultaneous executions must be excluded |Janicki
(2008)); [Janicki and Koutny| (1995)), so only firing sequence approach remains.

Assume that when a non-instantaneous transition ¢ begins its firing, the tokens

33

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

that it consumes disappear for consumption by other transitions but continue to
inhibit other transitions, if connected to an inhibitor arc. Such interpretation allows
possible executions where transitions overlap, so they can be interpreted as interval
orders. This assumption is crucial to the development of the interval elementary net

with inhibitor arcs which will be the focus of Chapter [5]

4.3 Activator Nets

Activator arcs (also called ‘read’, or ‘contextual’ arcs Baldan et al.| (2004); | Montanari
and Rossi| (1995))), formally introduced in [Janicki and Koutny| (1995); Montanari and
Rossi| (1995)), are conceptually orthogonal to the inhibitor arcs, they allow a transition

to check for a presence of a token.

Definition 13. An Activator Net is a tuple {P,T, F, Cipy, A} such that:

P and T are finite disjoint sets of places and transitions,
o ['C(PxT)U(T x P) is the flow relation of EN (dom(F)Urange(F) = PUT);

Cinit € P is the initial marking/configuration of EN (generally, any C C P 1is

a marking); and

e AC P xT isthe set of activator arcs. U

For example, consider the net in Figure [4.7| which is the same as the ENI in Fig-
ure [4.6| with the an activator arc replacing the inhibitor arc between s; and transition
t5. This means that in order for t5 to fire, a token must be presented in s5. Formally,

the set of activator places (places to which a transition is connected via an activator

34

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Figure 4.7: An example of an activator net.

arc) is denoted by *t. Thus a transition ¢; is enabled at marking C'if, in addition to
rules defined in Definition [6] *¢, € C.

Moreover, the firing sequence and step sequences are defined accordingly. A firing
sequence of an activator net is any sequence of transitions ¢y, ..., ¢, for which there
are markings (1, ..., C, satisfying:

Cinit[t1)Ci[t2)Cy .. . [t,) Ch.
The definition above can be generalized to sequences of sets of transitions occurring

simultaneously. Let U C T be a non-empty set such that for all distinct ¢1,¢, € U:

(t3Ut) N (t5 U °ty) = 0.

Then U is enabled at a marking C if *U C C, *U C C, and U* N C = 0. We also
denote this by C[U)C" where, C" = (C'\ *U) U U®".

35

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

In this chapter, a general introduction covering the basic of Petri net (more specifi-
cally elementary net with and without inhibitor arcs) was provided. We have included
what is necessary for this thesis to be self contained, and given the large body of lit-
erature on Petri nets, it is minimal.

It is also worth mentioning here that we only introduce the elementary class of
Petri nets. There are higher classes of Petri nets where they differ in the number
of tokens allowed in every place (e.g. Place/Transition Petri nets). There are also
classes of Petri nets where individual tokens can be distinguished; this class is called

Colored Petri nets.

36

Chapter 5

Interval Elementary Net with

Inhibitor Arcs

This chapter contains the first part of our contribution. We defined an interval
representation of ENI that allows for recording observation as interval orders.

Since every interval order of events can be represented by some total order (i.e.
an appropriate sequence) of event beginnings and ends (Theorem [I| by Fishburn), if
we figure out how a given inhibitor net can generate appropriate sequences of event
beginnings and ends, we might be able to describe all interval orders the net generates.

In the approach used in our research, we assume that the events (transitions)
in the ENI systems are not instantaneous. On the contrary, they are interpreted
as representations of activities whose completion takes some time. However, their
beginnings and ends are instantaneous.

If inhibitor arcs are not involved (i.e. the case of elementary nets), to represent
transitions by their beginnings and ends, we might just replace each transition

by the net B#~O—+El as proposed for example in [Zuberek| (1980) for Timed Petri

37

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

nets. However, adding inhibitor arcs presents a challenge which will be dealt with in
this chapter.

The basic idea of defining the set of firing interval sequences i.e. sequences of
beginnings and ends (will be formally defined shortly) for a given inhibitor net N is
briefly presented in Figure by the transformation of the net N into the net N.

In Figure , while the inhibitor arc (s3, Be) in the net AV is obvious, the inhibitor
arc (b, Bc) is not. It is true that Nuuaia (the far right net in Figure represents a
more natural transformation. However, since a token in s3 of N prevents ¢ from being
enabled while a token in s3 of NVipaiuq prevents the starting of ¢ from being enabled,
Ninvatia does not work. Take for example the interval sequences BaFEaBbBcEcEb
and BaEaBbBcEbEc, although they are valid sequences for Ny,yaia from {sq, s2} to
{s4, 85}, they define a stratified order corresponding to the step sequence {a}{b,c}
which cannot be generated by N. Moreover, the interval sequences BeBbEcEb and
BeBbEbDEc that also generate the stratified order corresponding to the step sequence
{a}{b, c} are not firing sequences of Ni,yaiid-

One the other hand, N (the middle net in Figure seems to have all the
desired properties as the inhibitor arc (b, Bc) prevents the execution of Be before Eb
(assuming that Fa has occur and Bc has not). In other order, after a fires, if ¢ has
not started firing yet, then ¢ cannot start until b ends; this is what we want as it
confirms with the semantics of the original ENI.

We assume that the net N fully describes the behaviour of the net N and later
provide formal justification of this claim.

Below we provide a formal transformation of elementary nets with inhibitor arch

into their interval representations.

38

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

N -/\[invalid

Figure 5.1: ENI N from Figure and its interval representation .

Definition 14 (Transforming ENTI into its interval representation).
Let N = (P,T,F,I,C;nit) be an ENI system. We define N = (P, T,F,Z,Cinit), its

interval representation as follows:
1. P=PUT
2. T={Bt|teT}U{Et|teT}
3. VpeP. teT. (pt)€eF < (p,Bt)eF
4. VpeP. teT. (t,p)eF < (Ft,p)eF
5. YteT. (Btt),(t, Et)eF

6.VpeP teT. (pt)el< (p,Bt)ecZNNrep®. (r,Bt)el). O

39

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Note that each of the sequences BaBcEaBbEbEc, BaBcEaBbEcEb BeBaFEaBbEbECc,
and BcBaFaBbEcED, for example, are firing sequences of N, and each of them rep-

resents the interval order <} from Figure via Fishburn Theorem (Theorem [I]).

This means that event b follows event a and event ¢ overlaps both events a and b in

the original net N.

Directly from the above definition we have the following convenient result.

Fact 2. Let N = (P, T, F,I,C;n;) be an ENI system and N = (P, T, F,Z, Cipnit) its
interval representation. Then for eacht € T we have: *Bt = %, Bt* = {t}, *Et = {t},

Et* =1*, °Bt = °t U (°t)*, and °Et = 0. O

Since N is just another inhibitor net, we may use the standard definition of a
firing sequence from Section but with the following caveat: not every sequence
from 7 can be interpreted as an interval order, for example BaBcBb represents no
interval order.

Let D C T and let s € T*. We define the projection of s onto D standardly as:

df af |mp(s)a if a €D,
mp(e) = € mp(sa) = io(s) ifadD

For example 7(pq pa} (BbBaEbBaFaEc) = BaBaFa and
T{Ba,Ba,Be,Ec}(BbBaEbBaFaEc) = BaBaFaLEc.

Definition 15. We say that a string x € T* is an interval sequence iff
VBt,Et € T*. W{Bt’Et}(x) € (BtEt)*.

We use InSeq(T*) to denote the set of all interval sequences of T*. d

40

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Definition 16. Let N = (P, T, F,Z,Ci.it) be an interval representation of ENI. A

sequence T = «ay...q, € T* is an interval firing sequence of N if there are

configurations Cy, . .., Cy, such that C1,C, € P (i.e. CyNT =C,NT =0) and
Cinitlan) C1aa)Cy . .. o) Cy. O

To improve readability, we use [a)) to denote firing transition « in some configuration
of the net V.
For example, for N from Figure 5.1}, we have {s1, so}[BcBaEaBbEcEDb){sy, s5}.

The following result validates the above definition.

Proposition 1. If z is an interval firing sequence of N, then x € InSeq(T™*).

Proof. We have to show that for each a € T', T4 pa}(z) € (BaFEa)*.

Let © = y Ba z and Cj,ie[y Ba)C'. Since Ba® = {a}, then a € C’. We also have:
for any C, € PUT, if a € C,, then Ba is not enabled in C,, and the only way to
remove a from C, is to fire Fa (as *Ea = {a}). Hence we must have z = y Baw Fav,

where 7(gq ga} (W) = €. O

Since all transitions of the interval representation of ENI are instantaneous, si-
multaneous executions of any kind are disallowed. Although defining interval firing
step sequences is mathematically possible (for example the net A/ from Figure
can produce a step sequence {Ba, Bc}{Ea}{Bb, Ec}{Eb}), it does not make much
sense as Bt and Et are interpreted as event beginning and end, i.e. they are instan-
taneous, so their simultaneous occurrence is not observable since we cannot measure
time points with infinite precision. Therefore. the only operational semantics for

interval representations, is the firing sequences semantics (c.f. \Janicki (2008))).

41

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

The net A from Figure has ten interval firing sequences that involve all el-
ements of 7 = {Ba, Ea, Bb, Eb, Be, Ec}, namely BaEaBbEbBcEc - which repre-
sents a total order <Y from Figure ; BcEcBaFEaBbED - which represents a total
order <§ from Figure BaBcEcEaBbED, BaBcEaFEcBbEb, BcBaEcEaBbED,
BcBaFEaFEcBbED - all four represent a stratified order <3 of Figure and BaBcEaBbEbECc,
BaBcEaBbEcEb, BcBaFEaBbEbEc, BcBaFEaBbEcED - all four represent an interval
order <} of Figure . It is important to stress that if observations are not allowed
to be recorded as interval firing sequences, then < can be generated by neither firing
sequence nor by firing step sequence. This order is an interval order, but it is not
stratified, so step sequence semantics does not work.

The following proposition shows soundness and completeness of the interval rep-
resentation from Definition with respect to step sequence operational semantics.
Note that a separate analysis of firing sequence semantics is not needed as each se-
quence a ... a, is uniquely represented by a step sequence {a;}...{a,}.

For every A = {t1,....,t;,} C T, let A®” C T* be defined as follows.
APP ={Bt,;,..Bt; Et;,..Etj, | i1,...,1 and ji, ..., j, are permutations of 1,2, ..., k}.

For example {a,b}?” = {BaBbEaEb, BaBbEbEa, BbBaEaFEb, BbBaFEbEa}.

Proposition 2. For every two configurations C,C" C P C P and every A C T,

C[A) C' < Yz A" C [2) C'.

Proof. (=) Let A= {t;,...,tx}. This means, if i # j then (7 U *t;) N (5 U*t;) =0,

*ACC, (A*Nn°A)NC =0,and C" = (C'*A) U A*. Let y = Bt;,...Bt;, and z =

42

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Et; ...Et;, , where iy, ..., and ji, ..., Ji are permutations of 1, 2, ..., k. Since *t; = *Bt;
and °t; = °Bt;, we have C' [y)) Cp, where Cp = (C\(*Bt;,U...*Bt;,))U(Bt; U...Bt}) =
(C*A)u(Bt; U...Bt;). But Bt} = {t;}, so Cp = (C*A)UA. However, *Et; = {t;},
so Cp [2)) Cg, where Cp = (Cp\(*Et;, U..U°Et;,)) U(EL;, U...EtS,). Since *Et; = {t;}
and Bt} =1}, Cp = (Cp\A)UA* = (((C\"A)UA)\ A UA* = (C\"A)UA ="
Hence C [A) C" = Vz € AP". C [z)) C".

(<) Let A={ty,...,tx} and C [yz)) C'". Hence there are configurations

C%,CL ...CE C% CL,...,C% in NPE such that C = C%, Ck = €%, C% = C’, and
C% [Bti,)) Cp [Bti,) C3..Cy ' [Bty) CF [Et;,)) Cy [Bty,) Ch..O5

[Et,.) Ck. We have C5™ = (C4L *Bt;,) U Bt

27

and Cj' = (C, * Et;,) U Et,, for
[=0,...,k— 1. Because *Bt; =*t;, and Bt; = {t;}, then C% = Ck = (CY\"A)U A =
(C\"A)U A. However, *Et; = {t;} and Et; =2, s0 Ok = (C%\ A) U A°.

Thus, " = Ok = (CL\ A) U A® = ((C\"A)UA)\ A) U A* = (C* A) U A°. But

this means C' [A) C". O

Proposition [2] shows that firing a step A in the net N is properly simulated by
firing an appropriate sequence from 7* in the net N. Moreover, while the net N/
defines behaviours that cannot be defined by N (as <Y for the net from Figure , it
does not generate any new behaviour that can be described by step sequences of N.

It is worth pointing out that there is a connection between Theorem 1 (Fishburn
(1970)), Theorem 2 (Abraham et al.| (1990))) and the results of this chapter. In all
three cases, interval orders are represented by entities built from beginnings and ends.
We then formally showed that such a representation is sound and complete in our

case.

43

Chapter 6

Process Semantics

This chapter comprises the main results of |Janicki and Koutny| (1995); Kleijn and
Koutny| (2004); | Juhds et al| (2007) as our approach presented in Chapter[§]is partially
based on them.

Whiile firing sequences represent the absolute sequential semantic of EN and ENI,
which allows only one transition firing at any given marking, the firing step sequences
offers the possibility of more than one transition occurring together at some config-
uration. However, step sequences still has a sequential flavour and it is closer to
simultaneity than it is to concurrency. Despite the importance of operational seman-
tics (firing sequences and firing step sequences) as a starting point, they are still very
limited for providing a useful semantics for Petri nets.

One of the essential parts of concurrent processing is that many different system
runs/executions are equivalent, but this aspect is virtually impossible to capture when
only operational semantics is considered. Abstractions of these equivalent executions
are often called concurrent histories or non-sequential execution histories, and depen-

dent on the assumptions made about systems and system runs, are usually modeled

44

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

by partial orders Goltz and Reisig (1983)); Nielsen et al.| (1990), stratified order struc-
tures or interval order structures|Janicki and Koutny| (1991},1995); |Kleijn and Koutny
(2004). However, such modeling is complex and not as straightforward as construct-
ing occurrence nets which can be defined to be equivalent to the aforementioned
structures. Put simply, the goal of using occurrences net is to record the changes of
configurations due to transitions being executed along some legal behaviour (defined
as firing sequence and/or firing step sequences) of EN and ENI systems. Recording
changes implies keeping track of places whose tokens were consumed (input places)
and places which are being populated with tokens (output places).

In this chapter, we will provide a brief overview of the semantical framework,
defined in Kleijn and Koutny| (2004) and then extended in |Juhas et al. (2007)), which
aims at a systematic presentation of the process and causality semantics for various
classes of Petri nets. Although, the framework is not followed exactly, its main parts
are embedded in our research. In fact, the framework was a sort of a guideline for the
development of the process semantics for interval ENI (defined in Chapter . After
recalling the framework, a formal definition of occurrence nets will be given, and some
theory about it will be provided before two algorithms for constructing occurrence
nets generated by firing sequences, and firing step sequences of EN are discussed. The
presence of inhibitor arcs requires a modified version of occurrence net with activator

arcs; this will also be discussed in this chapter.

6.1 Semantical Framework for Process Semantics

For a given class of Petri nets, one has to define the following semantical domains:

(see Kleijn and Koutny| (2004))

45

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

e £X are executions, such as step sequences, employed by the operational (be-

havioural) semantics of nets in PA/;

e LAN are labelled acyclic nets, such as occurrence nets, providing the structural
description of abstract processes of nets in PN, with each labelled net in LAN

representing a single non-sequential history;

o LEX are labelled executions, such as labelled step sequences, employed by the

operational semantics of nets in LAN;

e LCS are labelled causal structures, such as labelled partial orders, defining an

abstract causality semantics of nets in PN

The relation between those domains is defined in terms of functions that, when
instantiated, define and relate the three views on semantics for the Petri net. Those
functions are illustrated in Figure|6.1| (taken from Juhas et al. (2007)). The functions
are defined as follows. The function w : PN — P(EX) provides the operational
semantics of the net through a non-empty set of executions. The function a : PN —
(P)(LAN) associates with the net a non-empty set of processes. A process is given
an operational semantics via A : LAN — P(LEX) which associates with it a non-
empty set of labelled executions. The labelled executions can be interpreted as an
ordinary execution through the function ¢ : LEX — £X. To conclude the square-
like part of Figure (i.e. the part concerned with process semantics), the partial
function 7y : EX — P(LAN) defines a none empty set of labelled acyclic nets for
each execution of the net. As for the triangle-like part which is to define the abstract
causality semantics of processes we have the following function. The function & :

LAN — LCS associating a labelled causal structure with each process in LAN. The

46

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

function € : LCS — P(LEX) is used to relate the abstract causality semantics to the
operational semantics of processes. Finally, the function ¢ : P(LEX) — LCS which

allows to go back and forth between labelled causal structure and labelled executions.

PN LAN
Tia
i
11‘
o
EX LEX

Figure 6.1: Semantical framework for process semantics from Kleijn and Koutny
(2004) (right) and complete semantical framework for process semantics from |Juhas
et al.| (2007)

The ultimate goal of the framework is to show that, for a given Petri net, different
types of semantics agree with each other. This is done through introducing some nat-
ural conditions (called properties) which in turn allow one to focus solely on defining
the different semantical domains and functions, then establishing the properties in
question will lead the desired result (i.e. showing the agreement between different
semantical domains). Those semantical characteristics are called aims. Here we will
just list those properties and aims; readers are referred to Kleijn and Koutny| (2004)

and [Juhas et al.| (2007) for full formal arguments and formulation.

e Property 1. The functions w, o, A, ¢ and 7y|,(v) are total. Moreover, w, o, A

and 7y |,(n) never return the empty set.

47

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

e Property 2 (Consistency). For all £ € EX and LN € LAN;

£ € W(N)ALN € nn(€) iff LN € a(N) A€ € (NLN)).

Provided that this property has been established for a given net in PN, the

two aims formulated above follow.

Aim 1. o = 7y o w.

Aim 2. w=¢oloa.

e Property 3. The functions s, €, and | A\(LAN) are total. Moreover, € never

return the empty set.
e Property 4 (Representation). ¢ o€ = idecs.
e Property 5 (Fitting). A = € o k and then we have
Aim 3. k=10 A\

To use the above setup in practice, one needs to establish Properties 1 and 3, and
check that the consistency, representation and fitting properties hold true (Properties
2, 4, and 5) then the semantical aims will follow.

The framework defined above was extended by the completeness-requirement in
Juhas et al. (2007). The requirement was formulated in terms of enabled causality
structures. In its essence, it states that causality semantics deduced from process nets
should be complete w.r.t. step semantics in the sense that each causality structure
which is consistent with the step semantics corresponds to some process net. This is

done by introducing two additional functions (see Figure namely ¢ and ¥ where

48

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

the former represents the definition of enabled labeled causal structures ££CS while
the latter relates enabled labeled causal structures (££CS) and runs (k(LAN) C

LCS). Then through v o ¢ the aim of completeness can be added to the framework.

Aim of completeness. The mapping ¢ assigns a set of step sequences EX onto
the set of causal structures ELCS enabled w.r.t. £X. The mapping v assigns a
run LCS with less causality to each enabled causal structure in ELCS for which

such a run exists.

Formally, a labeled causal structure is said to have less causality than a second one,
if each labeled execution in £X generated by the second one is also generated by the
first one (where the labeled executions generated by a labeled causal structure are
given by ¢€) Juhas et al.| (2007).

Again, in our research we did not explicitly define the properties and aims for any
of the Petri net models we use but rather the connection between various semantical
domains are more implicit. In the rest of this chapter, we recall the result of |Janicki
and Koutny (1995)); Kleijn and Koutny (2008)) which deals with defining process

semantics for elementary nets and elementary nets with inhibitor arcs.

6.2 Processes of Elementary Nets

In the case of EN, an occurrence net is generated by either a firing sequence or a step
sequence is just a plain net unfolding caused by the execution of it (c.f. (Goltz and
Reisig| (1983); Rozenberg and Engelfriet| (1998); [Kleijn and Koutny (2008))). A process
of an EN is an occurrence net the describes its structure and its legal behaviours

through configurations and labeling.

49

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Occurrence nets (sometimes called processes nets, or causal nets) is a special class

of Petri nets that is acyclic and with “unbranching” places.

Definition 17. A net N = (B, E,R) is a condition/event net if BN E = () and
R C (B x E)U(E x B). An occurrence net (ON) is a condition/event net N such

that:
1. ON s acyclic, and

2.1 |< 1 and | b* |< 1 for every b € B. O

Places of an occurrence nets are called conditions (‘Bedingungen’ in German thus the
letter B) and transitions are called events (‘Ereignisse’ in German thus the letter £).
Additionally, in an occurrence net, the initial configuration consists of all condition
with no incoming arcs (i.e. COY = {b € B | *b = 0}), and the finial configuration
consists of all condition with no outgoing arcs (i.e. CN¥ ={b € B |b* =0}).

A process of an EN is constructed by a firing sequence or a step sequence of an
EN using Algorithm [I}, or Algorithm [2| respectively; (see Kleijn and Koutny] (2008)).

We, first, define the processes generated by the firing sequence © = t;...t, as
P, = ON,, where ON,, is the last occurrence net in the sequence ONj,...,ON,,.
Each net ONy, = (By, Ey, Ry),0 < k < n, is a net that model an unfolding of the EN
by the sequence t; ...t;. The components of ON,. correspond to places P, transitions
T, and flow relation F' of the underlying EN. The elements of By U Fj are of the
form 7', where r € PUT and i > 1. We will denote I(r") = r. Moreover, for every
r € PUT and k < n, Ar is the number of nodes of Nj_; labelled by r (i.e. the

number of a € By, U Ej, such that [(a) =1.)

Algorithm 1 (Constructing P,, for z =1t;...t,).

20

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

b Step 0. ONU = ({(pl) | JURS Cinit}a ®7®>®>
o Step k. Given ONy_1, we define ONy, in the following way:

— Bk = Bk,1 U {p1+Ap | P I~ t;}
— By = B, U{t,T2%}

= Ry = R U{(p®,6;75%) | p €t U (1,72, p27) | p € 17} N

An extension of Algorithm [1]to the case of firing step sequence y = U, ... U, is rather

straightforward.
Algorithm 2 (Constructing P, for y = U, ...U,).
e Step 0. ONg = ({(p*) | p € Cinit},0,0,0)
o Step k. Given Ni_1, we define ONy in the following way:

— B, =B, U {pHAp |p c U,:}
- B, =FE,_1U {tH_At | t e Uk}

— R, =R;_1 U {(pAp,tH_At) ‘ t e U, ApeE .t} U

{(#FALpI+AP) |t € Uy Ap € t°} O

Let’s consider the EN in Figure [4.1|together with the firing sequence = = {t1t,4t5t6}.
A process can be constructed following Algorithm (1| as details in Figure It starts
by recording the initial configuration of EN as in Figure (a). Then, t; fires for the
first time (i.e. t}) recording its output {s},si} as in Figure [6.2(b). In (c), and (d)
from the same figure, transition ¢4 occurs then followed by the firing of t5, both for

the first time. Lastly, ¢ fires causing conditions {s?, s3} to hold; see Figure[6.2f¢). It

o1

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

is also worth mentioning here that a process does not necessarily describe a complete
run of the system as such run can be infinite. It rather describes an initial finite part
of it. Moreover, processes have special characteristic: 1) if an event occurs, a possible
conflict is resolved, and 2) different occurrences of the same event and/or condition
are recorded differently. Furthermore, processes record conditions that hold and not
the condition that do not hold. This implies that processes can only be defined for
contact-free nets. Note that EN from Figure [4.1]is contact-free (see Definition and

the resulted occurrence net Figure [6.2fe) is conflict-free (see Definition [J)

Figure 6.2: A step by step construction of a process for EN from Figure 4.1] generated
by Tr = {t1t4t5t6}.

As we have seen, constructing a process for an elementary net is rather straight-

forward as it is just unfolding of the EN based on either a firing sequence or a step

o2

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

sequence. However, for elementary net with inhibitor arcs, activator arcs are needed

to deal with inhibitor arcs and this will be discussed next.

6.3 Processes of Elementary Nets with Inhibitor
Arcs

It was shown in Janicki and Koutny| (1995)); and Kleijn and Koutny| (2008) that
the plain unfolding of elementary nets to construct processes dose not work with ENI
systems. This is because the absence of a token, unlike the presence of a token, cannot
be tested. Hence we have to replace inhibitor arcs by appropriate activator arcs.
Activator arcs allow a transition to check for a presence of a token (see Section [4.3).
The idea is that an inhibitor arc which tests whether a place is empty, can be simulated
by an activator arc which tests whether its complement place is not empty. To do such
simulation, each inhibitor place must have its complements (See Definition , if it
does not we can always add it, as it does not change the net behaviour (c.f. (Goltz and
Reisig| (1983); Janicki and Koutny| (1995); |[Kleijn and Koutny (2004); Nielsen et al.
(1990)). We will call the nets with this property complement closed. The addition
of complement places to the ENI in Figure is presented in Figure [6.3] Now, we
fix the ENT to be the complement closed presented in Figure for the rest of this

section.

Definition 18. An activator occurrence net (AO) is a relational tuple AN =
(B, E, R, Act) such that the first three components are the underlying occurrence net

and

e Act C B x FE is the set of activator arcs. O

23

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Figure 6.3: Complement closed ENT.

Similarly to the construction of processes for elementary nets, we will now demon-
strate the construction of processes for the complement closed elementary nets with
inhibitor arcs: first generated by a firing sequence x = t;...t,, t; € T (c.f. |Janicki
and Koutny| (1995); [Kleijn and Koutny| (2008)) and then generated by a step sequence
y=U...Uy,, U; CT (ctf. Janicki and Koutny| (1995); |[Kleijn and Koutny| (2008))).

We define the processes generated by © = ¢,...t, as P, = AN,, where AN,
is the last activator occurrence net in the sequence ANy, ..., AN,. Each net AN, =
(B, Bk, Ry, Ax),0 < k < n, is a net with activator arcs that model an unfolding of the
net KNI by the sequence t; ...t;. The first three components of AN, correspond to
places P, transitions 7', and flow relation F' of the underlying ENI, while A, C By, X E,
is the set of activator arcs derived from inhibitors arcs I.

The elements of B;, U E}, are of the form r?, where r € PUT and i > 1. We will
denote [(r') = r. Moreover, for every r € PUT and k < n, Ar is the number of

nodes of Nj_; labelled by r (i.e. the number of a € By, U Ej, such that [(a) = r.)

o4

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Algorithm 3 (Constructing P,, for z =t;...t,).
o Step 0. ANy = ({(p") | p € Cinit},0,0,0)

e Step k. Given ANy_1, we define ANy, in the following way:

— By =B U{p"t* [petr}

— B, = Ep U {2}

— Ry = Ry U{(p"7, 1,75%) | p € i} U {(t 7%, p'+2) | p € 3}

— Ay = A1 U{(p*?, tzljmk) | p €t} O

An extension of Algorithm [3|to the case of firing step sequence y = U; ... U, (first

proposed in Janicki and Koutny| (1995)) is rather straightforward.
Algorithm 4 (Constructing P, for y = U, ...U,).

e Step 0. ANy = ({(p") | p € Cinit},0,0,0)

o Step k. Given ANy_1, we define ANy in the following way:

— B,=B,_1U {pHAp |p c U,:}
- B, =FE._1U {tH_At ’ t e Uk}

— R, =R, U {(pAp,tH_At) | t e Uy ApeE .t} U

{12 pHAn) |t e U, Ap €t°)
— A}C:Ak_1U{(ﬁAﬁ,tl+At) |t€ Uk /\peot} 0
Now let’s consider the ENI in Figure together with the firing step sequence y =

{{t1},{t2, t3}, {t1}, {ts,ts}}. Using Algorithm |4 the construction is laid out step

by step in Figure It is very similar to the EN process in Figure [6.2] with two

95

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

noticeable differences. First, in Figure [6.4](c), one can see that the concurrent firing
of transition ¢; and t, (i.e. event ¢} and t1). Second, in Figure [6.4(e), there is the
activator arc that connects SN% with ¢} simulating the inhibitor arc in the ENI between

s5 and ts.

(e)

Figure 6.4: A step by step construction of a process for ENI from Figure[6.3| generated

by y = {{t1},{t2, ta}, {t1 }, {ta, 5} }.

The generated process can be viewed as partial unfoldings of the original net such
that each event in the process represents a transition occurrence of the original net
while each condition corresponds to the presence of a token in a place in the original
net. If the original net does not have any inhibitor arcs, the generated process are the
same as these for standard elementary nets (c.f. [Janicki and Koutny| (1995)); Nielsen

et al. (1990)).

o6

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

6.4 Processes and Concurrent Histories

We will now show how processes, i.e. occurrence nets, can be interpreted as concurrent
histories starting with the simple case of processes of elementary nets. Then we will do
the same for processes of elementary nets with inhibitor arcs (i.e. activator occurrence
nets). For an elementary net , given a process generated by a firing sequence x, one
can simply abstract from the conditions of the process. Such an abstraction results
in associating a directed acyclic graph (<) where the events of the process F are
its nodes. Since the relation between the transitions in the underlying EN (and
subsequently between the events in ON) can only be causality, the defined graph
(<) represents the direct causality between event and its transitive closure (partial
order <?°¢) gives indirect causal relations (in addition to the direct ones) between
events.

For the process in Figure [6.2fe) which is generated by x = {tit4tsts}, a corre-

sponding < = (E, Ro R |pxp) and (<)* (i.e. <Pr°) are presented in Figure[6.5]

t1t t1t
he el thel | et
o []
t t
(a) <intt (b) <free

Figure 6.5: Direct acyclic graph associated with the process in Figure (e) and its
transitive closure.

In case of elementary nets with inhibitor arcs, the relation between transitions in

the original net (and consequently between events in the process) is more complex.

57

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

This is true in the case of processes that are generated by firing step sequence. How-
ever, in case of processes generated by a firing sequence z, similarly to processes of
EN, it can be interpreted as some partial order <27, Such a partial order can be
obtained by first transforming the process into a directed acyclic graph <™ using

described in Figure [6.6} see Kleijn and Koutny| (2008)).

(b) i1 <§;nit to (C) i1 <;nit to

Figure 6.6: Rules of deriving a partial order from an ENI process generated by a
firing sequence x.

Formally, the construction of both the directed acyclic graph < and the partial

order <?¢ is defined as follows.

Definition 19. Let AN, = (B,, E,, R., A,) be the process generated by firing se-
quence. We define a directed acyclic graph <™ and a partial order <?7°¢, both

on E, as follows:

1. For all ti,ty € E,,

1 <;3mt 1y — t1<Rn o Rn)tg V tl(Rn o An)tg Vit (A,:Ll o Rn)tg

2. For all ti,to € E,, t <£TOC ty <— t1(<§:mt)+t2 U

Note that although the processes of ENI presented in Figure (e) is generated by

a firing step sequence y = {{t1}, {t2, 3}, {t1}, {t4,15}}, the same process would have

o8

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

been constructed if a firing sequence x = {t;totst1t5t4} (which is a valid sequence
for the ENI in Figure . The steps of such a construction would not be the same,
however. Now, let’s assume that Figure (e) was generated by firing sequence z,
the the directed acyclic graph < and the partial order <2™¢ associated with it are
presented in Figure [6.7]

The partial order <2 defines a concurrent behaviour comprising all total ex-
tensions of itself (this includes the total order defined by the sequence generating

the process to which it is associated, in this case x = {t1tatst1tsts}). Another se-

proc

quence (defined as a total order) that is also an extension of the partial order <®

sz = {t1t3t2t1t5t4}.

t1t

t
fel el

(a) <

Figure 6.7: Direct acyclic graph associated with the activator occurrence net in Fig-
ure [6.4)(e) and its transitive closure assuming it was generated by x = {t1tatst1tst4}.

On the other hand, when processes are generated by firing step sequences v,
a partial order is no longer enough to capture ENI behaviours. Instead, we need to
define a stratified order structure that allows us to capture not only causality between
events but also the “no later than” relation. The rules for defining such a stratified
order are informally presented in Figure . The relation -<;”it captures causality

while the relation E;"it captures what is known as weak causality or no later than

29

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

relation. Intuitively, %th is when the first event has to produce a token which is
consumed or tested (for existence) by the second event and E;"“ is when the first
event must occur before the second one as the latter consumes a token for which the

former test.

(a) 1 _<Znit to (b) t1 _<Zn2't to (C) t1 Eznit to

Figure 6.8: Rules of deriving a stratified order from an activator occurrence net
(process) generated by a step sequence .

The rules in Figure can be formalized as follows.
Definition 20. S, = (E,, <™, C""), where for all t1,t; € E,,
ot <" 1y <= ti(Ro Rty Vt1(Ro Act)ty
oty Tty <= t1(Act™ o R)ty O

Given the process of ENI presented in Figure (e), a stratified order structure
is constructed following Definition [20| and presented in Figure in which <" is
represented as solid lines and E;”“ is represented as dashed lines. Dashed lines are
omitted if solid ones are present.

The stratified order structure S, = (En,—<;mt,|jzmt) defines a concurrent be-

haviour comprising all stratified order extensions of S,. For the case of Figure [6.9]

Stitihita s b {t b tats}y = Of{tahita s b {ta b {tsh,{ta}}-

60

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

t1!
/.\
t3 o\ / t
°
ti
ty @«----- ti

Figure 6.9: Stratified order structure associated with the activator occurrence net in
Figure [6.4]e).

In this chapter we have given a practical overview of the well-developed process
semantics for elementary nets and elementary nets with inhibitor arcs and their asso-
ciation with causal structures. However, none of those semantics and causal structure
suffices when system observations are assumed to be interval orders. To do so, we will
define process semantics for interval elementary nets with inhibitor arcs (defined in
Chapter [5)) in a similar fashion that had been provided in this section. However, be-
fore we do that, we will discuss another semantics for elementary nets and elementary
nets with inhibitor arcs which aim to provide a sequential semantics that is enriched
with important information about the complex relation between transitions (just like
the important information provided by process semantics). The Trace semantics will

be the focus of the next chapter.

61

Chapter 7

Trace Semantics

In this chapter, we overview briefly Mazurkiewicz traces which are suitable for mod-
eling elementary nets, as well as comtrace which is used when Mazurkiewicz traces
are not enough. This is the case with elementary nets with inhibitor arcs. We then
discuss interval traces in more details as our model will be compared to them in a

later chapter.

7.1 Mazurkiewicz Traces

Motivated by Petri nets and formal languages with automata, Antoni Mazurkiewicz
came up with trace theory in Mazurkiewicz (1977). Its aim was to provide a mean to
describe the behaviour of concurrent systems (Petri nets) in a more meaningful way
than just interleaving which was the most common way to describe concurrency. To
achieve such a goal, there was a need to reconcile the sequential nature of observation
of the behaviour of the system on one hand and the non-sequential nature of causality

between actions of the system on the other hand. Trace theory can be seen in two

62

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

different ways either rooted in formal language theory with the notion of partial
commutativity at its center or rooted in the theory of labeled acyclic directed graphs
Aalbersberg and Rozenberg (1988)).

The general idea of traces can be explained as follows. The use of sequential
observation is very natural to describe the behaviour of a concurrent system. This
results in a record of behaviours of the system given as a sequence of actions as
observed by a sequential observer. The set of all records gives the description of
the behaviour of an entire system in a sequential fashion. The sequential nature of
such records means that there is some information that is missing about the system:
two action a and b may appear adjacent within a sequential record when they are
actually performed concurrently within the system. Therefore, in order to extract
faithful information about the system from sequential records, additional information
about the system itself must be provided. The solution of trace theory is elegant as
such information is given as a binary relation (called independence) over the set of
all actions in the system. A pair (a,b) belongs to the independence relation if there
is no direct causal relation between them within the system. Now, given that (a,b)
belongs to independence and given a sequential record x of the form ziabxs, one may
commute the occurrences of a and b to obtain another valid equivalent sequential run
(i.e. x1baxy). Thus, when trace theory is used, one works with the equivalence classes
of observation rather than with single observation only. The above concepts can be

formalized as follows.
Definition 21 (Diekert et al.| (1995); Mazurkiewicz| (1977, [1995))).

1. Let ¥ be a finite set and let the relation ind C 3 X X be an irreflexive and

symmetric relation (called independency). The pair (3,ind) is called a trace

63

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

alphabet.

2. Let =€ X* x X* be a relation defined as follows:
TRy =

dz1, x5 € ¥*.3(a,b) € ind. x = z1abxy ANy = x1baxs

*

3. Let =;,q the reflexive and symmetric closure of =, i.e. =;q = ~*. Clearly is

an equivalence relation.

4. For every x € 3, the equivalence class [x] 1s called a Mazurkiewicz trace,

=ins

or just a trace. 0

We will often write [z] or [z];,q instead of [z]= One may show that [z][y] =

Ind”
[z] o [y] = [zy], where o is a concatenation of sets of sequences, a symbol that is
usually omitted Diekert et al. (1995); Mazurkiewicz (1995).

Formally, an algebra of Mazurkiewicz traces is a quotient equational monoid over

sequences (or words) Diekert et al.| (1995); |Mazurkiewicz| (1977).

Example 1. Let ¥ = {a,b,c}, ind = {(b,c),(c,b)}. Given three sequences s =
abcbea, sy = abc and sy = bca, we can generate the traces [s] = {abcbca, abecba,
acbbca, acbeba, abbeca, acebbal, [s1] = {abe,ach} and [s9] = {bca, cba}. Note that

[s] = [s1][s2] since [abcbea] = [abel[bca] = [abe beal. O

Each sequence of events represents a total order of enumerated events in a natural
way. For precise definitions see for example |Janicki and Koutny| (1995). Here we will

be using the following notation.
Notation 2.
1. For each set of events X, let & = {a® | a € B,i > 1}.

64

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

2. For each sequence s € ¥, let § € S* denote its enumerated representation. For

example if s = abbaa then § = aWpMp2 a3,

3. For each sequence s € 3%, is denotes the set of all enumerated events of s. For

example

~

Xatbaa = {1, a,a® 1) b},
4. For each trace [s], we define i[s] =5,

5. For ever s € ¥*, <, is a total order defined by the enumerated sequence s. For
example

Qabbaa = Y = b = p@ 5 ¢ 5 (O,
Each trace can be interpreted as a finite partial order.

Definition 22 (Mazurkiewicz| (1995)). For every trace |x], the partial order

trace __
Gl = N s

is called the partial order generated by [z]. O

Note, for each trace [z] its set of all enumerated events can be defined as i[s] = fs.

Example 2. For the trace [s| = [abcbea] from Ezample|l], we have
i[s] = {aW, bM D b2 @ @Y. The partial order <t’”]aCe generated by [s] is de-

[s

picted as Hasse diagram in Figure [7.1] O

The partial order <’E§f€e generated by [s] defines a concurrent behaviour comprising

all total extensions of <" (i.e. all the words s’s in that trace). Thus, all information
on the dependencies between the occurrences in a trace is represented uniquely in the

partial order generated by the trace.

65

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

pl) — p(2)

4D 42

™~ e

)y @)

trace

Figure 7.1: The partial order <[4 generated by the trace [s] where s = abcbca and
ind = {(b,0), (¢, b)}.

In relation to elementary net (Section the theory of traces can be applied to
extract partial orders from firing sequences representing the necessary causal ordering

of transition within these sequences.

Definition 23. The trace alphabet of EN is the pair (T, Indgy) where Indgy is
defined as follow.

Indgy = {(t1,t2) | t1,t2 € T A *t3 N *ts = (0}, O

In other words, Indgy is the structural independence relation of EN comprising all
pairs of distinct transitions with disjoint neighbourhoods. For the EN in Figure [4.1]
Indgy = {(t2,t3), (t3,t2), (to, t5), (5, t2), (t3,t4), (ta,t3), (ta, t5), (t5,t4)}. For firing se-
quences of EN, an important observation is that adjacent occurrences of independent
transition could have occurred also in other order (due to the diamond property, see
Fact . Therefore, all trace equivalent sequences of every firing sequence of a given
EN are also firing sequences of that EN. The partial order defined by a trace gives
the entire causal relations between transitions in the EN (Kleijn and Koutny| (2008)).

Mazurkiewicz Traces and partial orders are useful when we are dealing only with

causality but they fall short when the relations between transitions get more complex.

66

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

This was the case for occurrence nets (processes) and its associated partial order and
it is the case with traces the partial order generated by them. In dealing with that for
processes, activator occurrence nets and stratified orders were introduced and similar
approach had been defined for the theory of traces, namely Comtraces (combined

trace) which we will introduce next.

7.2 Comtraces

Traces can be thought of as a language representation of partial orders, therefore they
can only model what partial orders can (i.e. “true concurrency). However, we have
seen that partial orders cannot model some aspects of concurrency such as the “no
later than” relation. When an event a is performed “no later than” event b, then this
relation can be modeled by the following set of two step sequences z = {{a}{b}, {ab}}.
The set x cannot be modeled by a trace (or a partial order).

Faced with this limitation of traces, Janicki and Koutny proposed the comtrace
(combined trace) notion Janicki and Koutny| (1995]) in which a relation sim (called si-
multaneity), and a congruence relation ser (called serializability) were defined. Those
two relations serve two distinct purposes; sim defines valid steps, and ser defines valid
ways to split such steps. More precisely, if (a,b) € sim then a and b may occur to-
gether in one step {ab} while (a,b) € ser means that a and b may occur in one step
{ab} and such step can be split into the sequence {a}{b}. Clearly the relation ser is

a subset of sim. The notion of comtrace is formally defined as follows.
Definition 24 (Janicki and Koutny| (1995)).

1. let X be a finite set and let ser C sim C X X3 be two relation called serializability

67

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

and simultaneity respectively and the relation sim is irreflexive and symmetric.

Then the triple (3, sim, ser) is called a comtrace alphabet.

2. We define the set of all potential step S as the set of all cliques of the graph
(X, sim) asS={A|A#DAVa,be A(a=0bV (a,b) € sim)}.

3. let © = (X, sim, sir) be a comtrace alphabet and let =, called comtrace con-
gruence, be the EQ)-congruence defined by the set of equations
EQ={A=BC|A=BUCeSANAxCCser}.

4. The equational monoid (S*/ =sim ser, ©, [A]) is called a monoid of comtraces (i.e.
the set of all comtrace over a comtrace alphabet with comtrace concatenation

and the empty comtrace forms a monoid). 0

For simplicity, [2](sim,ser) 1S written instead of [x] Similarly to traces and

=(sim,ser) "
partial orders (where each trace can be uniquely interpreted as a finite partial order),
it can be shown that each comtrace uniquely defines a stratified order structure.

This is defined as follows; see |Janicki and Koutny| (1995); [Kleijn and Koutny (2008);
Janicki and Lé| (2011); |L¢ (2010) for more details.

Definition 25 (Janicki and Koutny| (1995)). For every comtrace & = [2](sim,ser)
over (X, sim, ser), let the set Strat(x) = {<| t € x} be the set of all stratified orders
defined by the elements of x, and let ST = (i;_';, <z, Cx) be the relational structure

<p = ﬂ <, Cpe = ﬂ <.

<eStrat(X) <eStrat(T)

given by:

Then, for every comlrace & = [X](sim,ser) 0ver (3, sim, ser), the relational structure
ST is a stratified order structure called stratified order structure generated by the

comtrace X. N

68

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Example 3. Let ¥ = {a,b,c,d}; and sim and ser defined as in Figure . Then

the set of step sequences is [2](sim,ser) = {{a}{b}{c}{d}, {a}{bH{d}{c}, {aH{b, c}{d},
{a}{b}{c,d}} is the comtrace generated by the step sequence x. O

aZb a, b
C d Céd
sim ser

Figure 7.2: An example of relation sim (simultaneity), and congruence relation ser
(serializability).

Comtraces can be applied to elementary nets with inhibitor arcs (defined in Sec-
tion [4.2)) to capture the intrinsic causality in their behaviours. To do so, we associate

with ENI the comtrace alphabet as follows.

Definition 26. The comtrace alphabet of ENI is the triple (T, sim, ser) where

stm and ser are given respectively by:
o (t1,ts) € sim if *£3 Nty = °ty N *t = °t; N *y = 0.
o (t1,ts) € ser if (t1,t2) € sim and t3 N °ty = . O
For the ENI in Figure [6.3] we have
sim = {(t2, t3), (t3,12), (Lo, t5), (t5, t2), (t3,14), (s, t3), (ta, t5), (t5,14)}, and
ser = sim \ {(ts,t5)}.

Let’s consider two different step sequences, y = {{t1}, {t2,t3},{t1}, {ts,t5}} (defined

in Section and v = {{t1}, {t2, ta}, {t1}, {ta}, {ts}}. While y is a valid step se-
quence for ENI in Figure[6.3] ¢/ is not since splitting {t4, 5} into {¢4}, {¢5} means that

69

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

t, will populate s5 to which t5 is connected by a inhibitor arc (i.e. t5 cannot fire).
This is dealt with in the comtrace alphabet by excluding (t4,t5) from ser. Similarly
to traces and ENs, we may state that the causal behaviour of ENIs can be captured
by the stratified order structure corresponding to the comtrace |Kleijn and Koutny
(2008)).

Since traces theory (and comtrace) are based on sequential observations of a given
system, the assumptions made about such observations are quite important. In fact,
neither traces nor comtrace suffices to capture the behaviour of a system if observa-
tions are assumed to be interval orders (e.g. modelled as interval elementary net with
inhibitor arcs). Therefore, interval traces were developed to address the shortcomings

of traces and comtrace and it will be the topic of the next section.

7.3 Interval Traces

Interval traces, introduced in [Janicki et al. (2012) and refined in [Janicki and Yin
(2015), stem from Mazurkiewicz traces and Fishburn’s representation of interval or-
ders. Since we will compare our model of interval process (to be defined in the next

chapter) to interval traces, we will provide a more detailed overview of them.

7.3.1 Interval Traces Construction

Let ¥ be a finite set (of events), and let
Es={Ba|lacX}U{Fa|acX},
be the set of all beginnings and ends of events in X. We will often just write £ instead

of &. Every sequence from z € £* defines a total order to(x), however not every

70

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

such total order can be interpreted as a representation of some interval order. For

example, BaBcBb represents no interval order (see Definition [15]).

Definition 27 (Janicki et al.| (2012)). Let x € InSeq(&5:), and let 4, be a relation
on i\], defined by

a®) <, b = Ea9 <, BbW.
By Theorem[1], the relation <, is an interval order, and it is called the interval order

defined by the sequence x of beginnings and ends. O

For example if x+ = BaFaBbBcEbBdEcEd then <, is the interval order <3 from

Figure 2.1

Definition 28 (Janicki et al.| (2012))). Let ind C € x & be a symmetric and ir-

reflexive relation such that for all a,b € %
1. (Ba, Fa) ¢ ind and (Fa,Ba) ¢ ind,
2. (Ba, Bb) € ind and (Ea, Eb) € ind.

The relation ind is called interval independence, and the pair (€,ind) is called

interval trace alphabet. 0

The condition (1) above follows from the fact that in any representation of any order,
the beginning of an event always precede the end so that cannot commute. The
condition (2) follows from the generalization of the observation that the interval
sequences BaBbEaFEb, BbBaFEaFEb, BaBbEbEa, and BbBaFEbEa represent the same
fact, namely that a and b are simultaneous.

The interval traces are defined as a special distinctive class Mazurkiewicz traces.

71

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Definition 29 (Janicki et al.| (2012)). A trace [x];nq over the interval trace alpha-

bet (€,ind) is called an interval trace if [z];qa C InSeq(E*). O

The soundness of the above definition follows from the following non-trivial result.

Proposition 3 (Janicki and Yin (2015)). Let (£,ind) be an interval trace alpha-

bet, and let x,y € InSeq(E*).
1. For each x,y € £, if x € InSeq(E*) and y € InSeq(E*) then xy € InSeq(E*).

2. For each s € £*, we have:

s € InSeq(E*) <= Vx € [s]ina- = € InSeq(E*).

3. For each x,y € £*,
if [x]ina C InSeq(E*) and [ylina C InSeq(E*), then [z|imalylina = [TYlina C
InSeq(E*).

4. 4=4y= T =jpg Y- [

As a partial orders generator, each interval trace can be interpreted twofold. First,
it is also a Mazurkiewicz trace so it generates a partial order by Definition [22] second,
each element of the interval trace is an interval sequence, so the trace can also be

interpreted as representing a set of appropriate interval orders.
Definition 30. Let [x] C InSeq(E*) be an interval trace.

1. The partial order <f;]ace defined as:

trace __
<[w} - ﬂse[m} s

is called canonical order defined by [z].

72

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

2. The set interv'"*([z]) = {4 t € [z]}

is the set of all interval orders defined by [z]. O

Both the canonical order and the interval orders defined by an interval trace will be
used to show the equivalence of interval order semantics and interval process semantics

for elementary inhibitor nets.

7.3.2 Interval Traces Semantics for Elementary Net with In-

hibitor Arcs

Let N = (P, T, F,I,Cjn;) be an ENI system and let CN = (P, T, F,Z,Cinit) be its
complement closed interval representation.

We define the interval trace independency relation inden C T x T as follows.
Definition 31. For all distinct a,b € T':

1. (Ba, Bb) € indey N (Ea, Eb) € indepn

2. (Ba, Eb) € indey <=

[(Ba®* U *Ba) N (Eb* U *Eb) = 0]A
0

[(Ba® N *Eb) U (Eb° N *Ba) = 0]A

[(Ba®* N Eb) U (Eb* N Ba®) = ().
The interval trace alphabet is (T, indcy). O

The relation indeyr is a refinement of the similar relations from [Janicki and Koutny

(1995); |[Kleijn and Koutny (2004)).

Definition 32. Let x = 4 ..., be an interval firing sequence of CN'. The interval

trace [z]ing., is the interval trace of CN generated by . O

73

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Proposition [1| and the result below prove the soundness of the above definition.

Proposition 4 (Janicki and Yin| (2015)). If = is an interval firing sequence of
CN, Cinit]x))Cy, for some n, and y € [x]indq, s then Cinit[y)Cn. O

For the net CN in Figure [8.1] we have:

inden{(Ba, Bb), (Ba, Eb), (BaEc), (Ba, Be), (Ea, Eb), (Ea, Ec), (Bb, Ba), (Bb, Ec),
(Eb, Ba), (Eb, Ea), (Eb, Ec), (Bc, Ba), (Ec, Ba), (Ec, Ea), (Ec, Bb), (Ec, Eb)}. We also
have:

[BaEaBbEbBcECc]ing.,, = {BaEaBbEbBcEc} and

[BcEcBaEaBbED|ng., = {BcEcBaEaBbEb, BaBcEcEaBbVEb, BaBcEaEcBbED,
BcBaFEcEaBaFEb, BaBcEaFEcBbEb, BaBcEaBbEbEc, BaBcEaBbEcED,
BeBaFEaBbEbEc, BaBcEaBbEcED}

Note that the fact that (Ba, Bb) € indcy, (Ea, Eb) € indey, and (Ba, Eb) €
indcyr are never used, as there is no extended firing sequence x starting from {sy, s}
such that ¢ = uBaBbw,x = uFaFEbw or x = uBaFEbw, so indcy is bigger than
needed. This is due to deriving the independency relation directly from the static

structure of the net |Janicki and Yin| (2015).

74

Chapter 8

Interval Processes and Interval

Order Structures

We will now introduce interval processes and show how they represent interval runs/
executions as well as how they relate to interval order structures. Then we will
compare interval processes with interval traces and show that they describe the same
concurrent histories (represented by interval order structures) which can be seen as a
validation of our approach.

Let N= (P, T, F,I,C;ni;) be an ENI, N = (P, T, F,Z,Cinit) be its interval repre-
sentation and let # = ay ..., be an interval firing sequence of N. Since N is just
another inhibitor nets, we can use Algorithm |3/ and produce a process (an occurrence
net) P54 generated by x = o . .. a,. For example, let’s consider the A/ in Figure .
When, Algorithm [3] is applied to A/ (actually CA as the presence of inhibitor arcs
requires introducing complement places, see Section with x = BaBcEaFEcBbED,
it generates P in Figure [8.1]

Assume that P59 = N, = (B,,, &, Ry A, where N, is the last step of Algorithm

I6)

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Figure 8.1: Process construction for A/ (interval representation of N from Figure [5.1)).

B

Similarly to processes generated by ENIs, where every process is associated with
some partial order, we can formally define a partial order <, derived from the process
Pisea a5 in Definition . After all, N is just another ENI, however, such a partial
order will be used to define an interval order structures. In Figure Pisea produces
<t and < produces <P°.

In most cases many different z’s can generate the same process P9, In fact if =
is any sequence of { BcEcBaEaBbEb, BaBcEcEaBbEb, BaBcEaEcBbED,
BcBaEcEaBaEb, BaBcEaFEcBbED, BaBcEaBbEbEc, BaBcEaBbEcED,
BcBaEaBbEbEc, BaBcEaBbEcEb}, then the same process P*9 would be produced.
The idea is that if P = P then x and y are different observations of the same
behaviour, so they are equivalent (w.r.t. concurrent behaviour) c.f. Kleijn and Koutny
(2004, 2008). Take { BcEcBaFaBbEb, and BaBcEcEaBbEb}, in both sequences we
have the c is no later than a as in the first sequence, it starts and ends before a starts,

and in the second one, it starts and end before the end of a. This is simply what

76

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Bae eBc'Bae. #Bct I oc! a o
Ea EctEa Fct :
BbY Bb',

0C1

cproc
<

'

A
3
S
&

T

Q
: ; —
@)
—
Se—eog

T <4

interv?"o¢(Pised)

Figure 8.2: An example of a process P*®, the directed acyclic graph < the partial
order <P™¢_ the relations <, C, and the interval order structure S* = ({a', b}, '}, <,
,C). The net here is N from Figure p.1 and « = BaBcEaEcBbED.
equivalent (w.r.t. concurrent behaviour) means.

Recall that for every sequence z, <, denotes a total order defined by z (see
Notation [1[(3)) and <2"°¢ is defined in Definition

The partial order <27¢ is derived from the process P by just deleting places
and preserving causality among transitions, so technically some information is lost.
The lemma below shows that in reality no essential information is lost, so the partial

order <P™¢ can be interpreted as a faithful representation of the process Pis.
Lemma 2.

1. Let x,y be interval firing sequences. Then:

_proc _ _.proc iseq __ piseq
<G =G = P =P

2. For each interval firing sequence x, total(<2'¢) = {<, | P54 = Ppred}. O

7

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Proof. (1) Clearly P = P9 = <Pr¢ = <t We need only to show <2 =
ATt = Pised — P?ijeq.

To prove this we first recall how finite partial orders can induce Mazurkiewicz
traces (c.f. [Diekert et al.|(1995)); |Janicki et al. (2010)). Let < be a finite partial order
and < = a3 — ... — a4 be its total extension. The total order <1 can be represented
by a sequence «; ...« in a standard way. Therefore, we can identify < with a; ... ay,
and, by a small abuse of notation, write << = ay...ay. Define the relation ~_ on

total extensions of < as follows:
Qe <y = < =xabra N\ <y =11 faxs Ao~ (.

Now define =. = ~%. The pair ({a1,...,a,}, ~<) is a legal trace alphabet and
total(<) = [<]=_ for any < € total(<).

Now it suffices to show that <, <, € total(<2™) and <, & _prec <y = P9 =
Pred. First we show <, € total(<2™). Let 2 = o Let (P$9)" denote a process
defined by the prefix a; ...q; of z, and let (<™"*)" denote a directed acyclic graph
generated by (Ps9)’. By Algorithm [3] (<?#)i*! is derived from (<) by adding
a;11, but we always have = (a1 (<) ay) for all k <i. Hence <, is an extension
of <P 50 <, € total(<2™¢), and consequently <, € total(<?*?). Let <, = z1afx,,
<y = x1fazs and a ~ rrec 5. Since a —~ proc 8, then —=(a <t) and —(8 <),
so from Definition {19 we have: (a®*U *a)N(B*U *8) =0, a°N (*fUL*) =0 and
BoN (*aUa®) =0, which from Algorithm [3{immediately implies P = P/

(2) From the proof of (1) we have total(<2™¢) = [<,|=_pree = {<, | <P/ =

T

<bree} which, by (1) of this lemma, gives total(<?") = {<, | Pyt = P9} O
Lemma (2) states that total orders defined by all sequences that can generate

78

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

a process (occurrence activator net) Pis®9 are just total extensions of a partial order
<Pro¢ that is defined by the process Pis.

We will now formally define interval orders and interval order structures generated
by interval firing sequences of N using interval processes semantics. Interval order
structures represent concurrent histories, for every interval order structure S, the
set of interval orders interv(S) (see Theorem [4) represents equivalent observations
belonging to the same concurrent history. We will show that the same set of equivalent

observations can directly be derived from a given interval process.

Definition 33. Let x € InSeq(T*), P = N, = (B,, &y, R, Ay) be the process
generated by =, and let E, = {t| Bl e, NEti € £} CT.

We define the relations 4, <., ", on E’n, and the tuple S* as follows:

1. a' 4,V (d:f> Ead' <1, BY,

2. ai <, b <L Eal < By,

3. dc, ¥V <L Ba <Proc By and

4. 5% = (B, <0, Ca). 0
The above definition allows us to connect interval processes with appropriate interval
structures.
Corollary 1.

1. The relation 4, 1s an interval order.

2. The tuple S* is an interval order structure.

79

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

3. Pises = Piset = §T = GV, O

Proof. By Theorem (1| we have (1) and by Theorem [5| we have (2). From (2) and (3)
of Definition [33, we have <}/ = <I"¢ <= S = 5% which by Lemma (1), implies

(3). O

The interval order structure S* will be called induced by process Ps.
Each P is generated from A by an interval sequence x and each interval se-
quence x defines an interval order «,. The set of all interval orders that can be

derived from P9 or <Pr°¢ is defined as follows.

Definition 34. For each interval firing sequence x, we define,
1. interv®d(<Proc) = {4, | <1, € total(<?o%)}.
2. interv?"(Pised) = {4, | Pised = P;feq}. O
The main result of this chapter states that for every interval firing sequence z, an

interval process P9 and interval order structure S* describe the same concurrent

behaviour, so they can be seen as equivalent concepts.

Theorem 6. For each interval firing sequence x,
intervstr(sx) — intervord(<£roc) — intervproc(r]):itseq).

OJ

Proof. First we prove interv®™(<27¢) = interv?"**(Pid). By Lemma (2), we have

total(<2¢) = {<, | P59 = P} Hence «€,€ interv” (<) «— <, €

30

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Def 134}

total(<Pro) = Pised = P'Seq <y € interv??¢(Pised) . Thus intervo’"d(<§mc) =
intervP ¢ (Piseq).,
We will now show interv" (S%) = interv"?(<?7). First we will prove interv®™(<2¢) C

interv" (S7). Let «4,€ interv”?(<?roc) ie. Pised = Pped. Consider the relation <.

Def3 33](2) Pised_pisea 2(2) Def)

We have: i < b/ Eai<’Bb <=’ Eai<rBb 8% Beiq, Bl

Def[33(3
a' 4, b'. Hence 4, is an extension of <. For the relation C, we have: a' C V/ PLE QY

Bai <toc B el Bai <o B 2B Boi g, BV = ~(EV <, Ba') "LEL
(Y 4, d') <= o €V, so 4, extends C, too. Hence @ € interv™(S%), i.e
interv?"(<Pro¢) C interv®’(S%).

Now we show interv*" (S%) C interv”?(<2°¢). Let <4< interv®”(S7) and let <4 be
a total order representation of <« via Theorem [1] i.e. ' 4V <= FEa' <1 BY. Let
T4 € &, be the sequence representation of the total order <, i.e. <q = <y, where

<. is the total order generated by x4. By Definition , <4=4«,,. To show that

<
<< interv (<o) it suffice to show that <14 € total(<?°¢). Since €€ interv®(S%),
and S* = (&,, <4, C,), then <, C«q and C,C«". To prove <14 € total(<?¢), we
need to show that for all o, 8 € {Ba', EFa', BY, EVV/} we have o <P"° 8 = o < 3.
First note that by Theorem [5{(1) and Theorem [I[1) we already have Ba' <?™¢ Ed',
BV <P B Ba' <l Ea’ and Bb <1 EV, so only four cases remain.

Case I: o= Fa' and = BbW. We have Ea' <F™¢ Bl PLEY?)

al <,V = a' <
v 28 pai 9, BY. Hence <4 € total(<2).
Case 2: a=FEVW and 8= Bad'. Similarly as Case 1.

Case 3: a= Ba' and = FEi’. We have Ba' <?"¢ Eb g ES)

ad b = d 4
v 29 pui g, EBY.

Case 4. a=DBlV and 8=FEa‘. Similarly as Case 3.

81

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Hence <14 € total(<2"°¢), so by Deﬁnition(l), <€ interv? (<) e, intervT(S?) C

interv®"?(<Proc), O

This means the relationship between interval processes and interval order struc-
tures is the same as that between stratified processes and stratified order structures
described and analyzed in [Janicki et al.| (2010)); |[Kleijn and Koutny]| (2004, 2008)). Fig-
ure [8.2| illustrates the relationships between Pised, <init - «proc and §% = (En, <2 Ca),
for a given x = BaBcEaFEcBbED and the net N from Figure [5.1

Note that the relationship from Figure is valid for any = € { BaEaBbEbBcEc,
BcecEcBaFEaBbEb, BaBcEcEaBbED, BaBcEaEcBbEb, BcBaEcEaBbED,
BcBaFEaEcBbEb, BaBcEaBbEbEc, BaBcEaBbEcED, BcBaFEaBbEbECc,
BcBaFEaBbEcEb}. Also for each z from above, interv”*(Pisd) = interv®"(S%) =
{<8, <8, <1}, where <5, <} < are these of Figure|l.1| (when a', b', ¢! are replaced by
a,b,c).

Considering the net N;, from Figure [I.1} N;, can generate only interval behaviours.
It generates neither sequences nor step sequences that start from the marking {s, s2}
and end at {s4,ss}. This also means that the nets N;,, CN;,, and AN;, generate no
appropriate process, if the process derivation is based on a firing sequence or firing
step sequence, and this includes all techniques presented in Busi and Pinnal (1999);
Janicki and Koutny| (1995); Juhas et al.| (2007); Kleijn and Koutny| (2004); Montanari
and Rossi| (1995); Vogler et al.| (1998); Winkowski (1998) and all their modifications.
On the other hand, the interval representation of N,,, the net N, generates interval
sequences, for example z = BaBcEaBbFEcED, that lead from {si, so} to {s4, s5}. The
interval sequence z generates the process P9, which in turn describes the interval

order <, which equals <} (again with a',b', ¢! replaced by a,b,c). Since <} is the

82

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Neither sequences nor
step-sequences can be generated.

Figure 8.3: An example.of an ENI that generates only interval orders. Our method
results in the process P9 and the interval order <., which is isomorphic to <} of
Figure[I.1] while all techniques based on either firing sequences or firing step sequences
produce empty set.
only observation generated by N;,, we have S* = ({a!,b',c'}, <., C.), where <, = <}
and C, = (<Y)7, and interv?"¢(Pis9) = interv®""(S?) = {<}}. This all is illustrated
in Figure 8.3

We will now show that the model based on the concept of step sequences and
stratified processes can be defined in terms of interval processes with identical results,
which could be seen as a validation of our approach. However, first we need to recall
some established results about the relation between stratified order structures and
processes of elementary nets with inhibitor arcs.

Let N = (P, T, F,I,C;,;;) be an ENI system, N = (P, T, F,Z, Cini) be its interval

representation, x = A ... A, be a firing step sequence of N, and let ifs(z) be the set

33

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

of interval firing sequences of N corresponding to z, i.e.
ifs(x) ={z|z=a1...xp, 2, € A7, fori=1...n}.

Let T € ifs(z) and assume that length(T) = k. Let P = N,, = (B, Ey, Rk, Ax)
be a process derived from N by using Algorithm [] and step firing sequence z, and let
PEA = N, = (B, &, Ri, Ar) be a process derived from A by using Algorithm [3{and

xT

interval firing sequence 7.
We also define:

strat?”“(PE) = {<,| PP = P3)

(c.f. [Kleijn and Koutny| (2004)), and for each set X, let strat(X) denote the set
of all stratified orders on X. The following result has been proved in [Janicki and

Koutny] (1995]).

Theorem 7 (Janicki and Koutny| (1995); Kleijn and Koutny (2004)). For ev-

ery firing step sequence x,
strat?”*¢(PS'P) = strat®"(S"),

where S* is a stratified order structure derived from PSP, OJ

The following two results show that for firing step sequences, i.e. when runs are
represented by stratified orders, standard stratified order processes of [Janicki and
Koutny| (1995)); Kleijn and Koutny| (2004) and our interval processes produce the

same results.

84

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Lemma 3. For each firing step sequences x,y and each T € ifs(x), y € ifs(y), we
have

step __ pstep iseq __ yiseq
Py =P — P =P,

Proof. The proof uses the fact that processes are also a kind of activator nets.

Let N be an elementary net with inhibitor arcs, let CN = (P, T, F', I, C;,;) be its
complement closed (if N # CN) and, let CN = (P, T, F,Z, C;nit) be the interval repre-
sentation of CN. Consider the step sequence x and the process P$? = (B,,, E,,, R, A,)
derived by Algorithm Let C}

nat

= By = {p' | p € Ciyut}. The quintuple
N(P;t6p> = (Bn7En7Rn7Anuc'1

nat

) is a well defined conflict free (see Definition [9))
elementary net with activator arcs. Define Cﬁnal ={p|pe€ B, Ap* =0} Let
T € ifs(z). The process P2 = (Byy, Em, R, Am) also can be regarded as a conflict

free elementary net with activator arcs N'(PE%9) = (B, Em, Roms Am, Ck

init

). Note that
we have Cﬁnal ={p|p€ B, Ap* =0}. There is a special relationship between CN

and N(P%t) and a similar relationship between CA” and CP=

Namely, for every step sequence y, we have P5'® = P3P iff there is a marking
C, C P such that (Chna) = Cp and Cini[y)Cr <= CL.[y)Chinai, where the left
firing (i.e. [y)) is in CN while the right [y) is in N(PS*P).

Moreover, we have Pi;eq = Pi;eq iff Conit[U)Ce <= CL..[U) China, for the same C,
as above, where the left firing [7)) is in CA while the right [y)) is in A/ (P59). These
two properties are direct consequences of Algorithm 4 applied to CN and Algorithm
applied to CA. From Proposition [2| it follows Cj,;[y)C, <= Cini[y))Cs, which

immediately implies P5' = PP <= Pl = Pi;eq. O

The above result shows that if two processes generated by two step sequences (x,y) of

85

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

an elementary net with inhibitor arcs are equivalent, then the two interval processes
generated by the interval representation of the two step sequences (7, y) are equivalent

as well.

Theorem 8. For every firing step sequence x, we have
strat? ¢ (PS*P) = interv?™*°(P5*9) N strat(E,).

OJ
Proof. Let < € strat?’¢(P$9). This means there is a step sequence y = B;...B,
such that < = <, where <, is a stratified order defined by y, and P = P{'**. By
Lemma , P — Pi;eq, 50 <z € interv?™°(PE) and by Proposition [2 <€z = <,
(where <z is an interval order defined by the sequence T), and 4z € strat(&,), so
strat?”o¢(PSteP) C interv”"*°(P%) N strat(E,).

Let < € interv(Pz) Nstrat(&,). This means there is an interval sequence z such
that <1, represents < via Theorem [I| and P, = Pz. Since < is a stratified order, by
Proposition [2| there is a set of steps By, ..., B, such that z = 2; ... 2, and 2; € B/”,
1 =1,...,r. Define 2/ = By ...B,. By Proposition [2| again, < = <./, where <,/ is
the stratified order defined by 2. Clearly 2/ = 2. By Lemma (2), P39 = P, so

<y € strat(P9). Hence interv(Pz) Nstrat(E,) C strat(P9). O

The last two results are partially illustrated by the far right part of Figure
8.4 For z = {a,c}{b}, we have ifs(x) = {BaBcFaEcBaBb, BaBcEcEaBaBb,
BcBaFaEcBaBb, BcBaEcEaBaBb}, so y = BaBcEaEcBaBb € ifs(x).

We can show by inspection that interv(Ppe?) = {<}, <}, <I'} and interv(P=9) N

strat({a!, b}, ct}) = {<), <N}. Moreover, using the results of |Janicki and Koutny

36

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Figure 8.4: An example of an ENI, its interval representation, processes and concur-
rent histories they generate. The process P59 generates a concurrent history {<}, <1
while the process Plifeq generates {<), <N <N}

1995); [Kleijn and Koutny (2004), we may show that strat(Psd) = {<) <N}l as
T 2 3

required by Theorem

87

Chapter 9

Interval Processes and Interval

Traces

The interval processes of elementary nets with inhibitor arcs presented in our research
are an extension and generalization of step sequence process semantics of elementary
inhibitor Petri nets proposed in|Janicki and Koutny| (1995) and improved in Kleijn and
Koutny (2004); while the interval traces are a generalization of classical Mazurkiewicz
traces Diekert et al. (1995)); Mazurkiewicz (1995)). In this section, we aim to show that
interval trace semantics is equivalent to the interval process semantics. The process
semantics studied in this thesis, i.e. in the style of Kleijn and Koutny| (2004)); |[Nielsen
et al| (1990), does not usually require complex validation as intuitively it is just a
set of system unfoldings, so it is as natural as any operational semantics. Hence, the
results of this section can also be interpreted as a validation of the interval traces

semantics; another contribution of our research.

For the net CN of Figure and x = BaBcEaEcBbED, the content of [x]inag,

consists of ten sequences analyzed in Sectionm and <f;fce is the same as <?™¢ from

38

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Figures Moreover interv™([x]inge) = interve(<2ro¢) = interv?™o¢(Pised) = { <}

, <&, <V} (see Figure[8.2).

Following, we will formally show that this kind of relationship holds in all cases.

Theorem 9 (Equivalence of Process and Interval Traces Semantics). LetN =
(P,T,F,I,Cinit) be an ENI system, CN = (P, T,F,Z,Cinit) be its complement closed
interval representation and let x = vy . .. v, be an interval firing sequence of CN'. The

the following equations hold.

Lo, =
2. interv” " ([2]ing) = interv”(<27) = intery?”*(Piseq) 0

~

Proof. (1) For every x € T*, let T, is the set of all enumerated transitions from
which 7 is built. For example for x = BaBbEbEaBaFEa we have

7 = Ba'Bb'Eb'Ea' Ba?Ed?, and T, = {Ba', Ea', Ba?, Ea?, Bb', Eb'}.

Define the relation indgN - 7A; X 7A;, as follows:

(o, B7) € indsy <= (a,B) € indey

Note that (ﬁ,ind@,\[) and (7, ~ rroc) are proper traces alphabets. Moreover from

Definition [31] and Algorithm [3] applied to CN, we have
(o',) € indly <= a' —_proc 3.
Hence for any y which is an interval firing sequence of CN

x Eznch y — T Ef\<p'roc y’
x

39

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

ie. ¥ € [Xlinde,y, = Y E [/x\]ﬂdmc. Now we have:
total(<™) = {<, | T € [7]~_yroc} = {<y | 1 € [t } = total(<lg),

which means <f;]“fzw = <proc,

(2) Recall that interv"?(<?r¢) = {4,| <, € total(<?")} and

interv'”** ([z)indcy) = { el t € [€]imacn }

By Theorem [we already have

interv” 4 (<?ro¢) = interv’"°(Pisq). Let <€ interv™([z]ingqy), i.6. 4= for some t €

[Z)inders S0 <i € total(<Pr), i.e. <€ interv®(<P™¢). Now let «€ interv” ¢ (<Proc).
x

Hence 4=, for some ¢ such that <; € total(<}"*¢) = total(<[;{* N). But this means
m C.

that ¢ € [T]ingg,, 1.6. €€ intervtmce([ﬂmch>' H

The above theorem is an equivalent of similar seminal results for step sequences
(i.e. stratified orders) operational semantics, comtraces and stratified orders process
semantics of [Janicki and Koutny| (1995)); Kleijn and Koutny| (2004). In principle, it
states that the interval process semantics and interval traces semantics are equivalent

for elementary inhibitor nets.

90

Chapter 10

Interval Semantic for Other Petri

Nets

The notion of interval runs has been applied successfully in Pelz et al.| (2015); Pelz
and Kabouche (2016 for Timed Petri nets and |Chatain et al. (2015]) for Contextual
nets.

First, the idea of treating transitions as intervals rather than atomic actions have
been applied to Timed Petri Nets (TPN) resulting in the introduction of Interval
Timed Petri Nets (ITPN). ITPN was introduced and interval calculus for it was
provided in [Pelz et al| (2015). Then, a process semantics for ITPN was defined
in Pelz and Kabouche (2016). Similarly to our interval representation of ENI, a
transition of ITPN is divided into a beginning and end (called sartfire and endfire in
ITPN). However, the concept of time that a transition takes (from starting to end) is
different between the two approaches as in I'TPN, clearly, considering time is essential
while in our approach, time is disregarded. The time a transition takes in ITPN is

given by an interval (thus duration is not fixed) rather than a fixed number showing

91

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

a transition’s duration in classical TPN.

In |Chatain et al.| (2015, similar ideas to the ones presented here are applied to
Contextual nets (i.e. net with contextual or activator arcs which is orthogonal to the
inhibitor arcs used in our model).

In this chapter, a summary of those papers is presented for the purpose of com-

paring them to our approach.

10.1 Interval-Timed Petri Nets

The initial goals of Petri nets was to model concurrent systems focusing only on
the causal relation between activities in such system. The rational of such a goal
was that other factor like time is not important for a wide spectrum of systems.
However, in real systems, time is of a great importance and cannot be neglected.
As a result, a number of new classes of Petri nets taken time into consideration
have been developed (Heiner and Popova-Zeugmann| (1997); |Ramchandani (1974);
Popova-Zeugmann (2014)); Zuberek (1980) are a few examples). Enriching classical
Petri nets with time increases the modeling power of the nets such that almost all
time-dependent Petri nets models are Turing equivalent.

Interval-Timed Petri nets (ITPN) extends Timed Petri nets (TPN) Ramchandani
(1974); |Sifakis| (1980) by allowing the firing duration of a transition (which is given
by a fixed natural number in TPN) to vary with an interval associated with the

transition.

Definition 35 (Pelz et al. (2015)). Let N be an elementary net (Definition[5) and
D :T — NxN be a function. Then the pair Z = (N, D) is called an Interval-

Timed Petri net (ITPN) where N is its the skeleton and D is its duration function

92

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

including zero duration. O

The net in Figure is an example of a simple ITPN (taken from [Pelz and
Kabouche| (2016))).

[0, 2] P2 (L, 3] Pa

t m ta
p1 2 _A [1,2]
G<[1y 1] P3 0 N
N

Figure 10.1: An interval-timed Petri net (ITPN).

The function D defines an interval for each transition within which its firing dura-
tion can vary. The bounds sfd(t) and [fd(t) with D(t) = <sfd(t), lfd(t)> are called
the shortest firing duration for ¢t and the longest firing duration for ¢, respectively and
are allowed to be zero (i.e. the firing can be considered to take no time). Additionally,
o; € (D(ti) N N> can be the actual duration of transition ¢;.

The behaviour of ITPN is defined as maximal steps with (enforced) auto-concurrency.
This means that when transitions are enabled they must start firing even when an-
other instance of the same transition is being executed. Thus a maximal step will
be a multiset of events which occur at the same moment. Formally, a multiset U of
events F is a total function U : F — N, where U(e;) denotes how many times event
e; occurs in U.

A token arrives to the output place of a transition ¢; only after the time corre-
sponding to the actual duration of #; has passed. Such a duration is not known at
the beginning of the firing of ¢; which can stop after an arbitrary number o; € D(t;)

of ticks has elapsed.

93

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Unlike the configurations of other Petri nets which are given by places, configu-
rations of ITPN uses the notion of state which includes both the marking (subset of
places) and the corresponding temporal information. That is, a state in ITPNs are
pairs S = (M, h) where M being the subset of places and h codes the clocks of the
transitions in the form of matrix of dimension (| T | xd). Thus the clock-matrix h
has as many rows as transition of the skeleton N and (rtng%((l fd(t;)) + 1) columns.
The value h; j11 represents the number of active transitions ¢; with age j (i.e. fired
since j times ticks) where j € D(t;).

The initial state S© = (M© r) of Z is given by the initial marking of the
skeleton and the zero-clock-matrix where h(®) = 0 for all i, j. Additionally, the firing

rules of ITPN distinguishes between three different types of event:

1. Startfire event: denoted as [t; and must occur immediately (even n times) if
t; becomes enable in the skeleton. For each occurrence of [t;, tokens from ¢;’s
input places are removed, the clock associated with ¢; counts this occurrence by

increasing the number h;; and ¢; is called active.

2. Endfire event: denoted as t;) and must occur (even n times) if the clock associ-
ated with ¢; is expiring (i.e. h; j41 =n # 0 and j = [fd(t;)). For each occurring
endfire event, the corresponding h; ;41 decreases and the output places of ¢; is

populated with tokens.

3. Tick events: denoted as v'and is enabled if and only if there is no firing event
that must either start firing or end firing. A tick event occurrence increments

the clocks for all active transitions (i.e. it is global).

An ITPN changes from an (after-tick) state to another one by the occurrence of

94

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Globalstep which consists of Endstep (a multiset of endfire events), and [teratedstep
(an iterative union of two multisets Mazstep and EndstepZero). A Maxstep is a
maximal step of startfire events and an EndstepZero is a multiset of endfire events of
transitions with zero firing duration. The iteration stops when no further Maxstep
exists. The formalization of those concepts are rather complex and readers are referred
to [Pelz et al.| (2015) for more. Ultimately, a firing step sequence of an ITPN is an
alternating sequence of Globalstep and ticks. Formally, a firing sequence o is given

by

v globalstepa
—

globalstep1 = v globalstep,, = v
o= SO — SO — Sl —

31 — SQ R Sn,1 Sn,1 — Sn

A possible firing step for the ITPN on Figure [10.1]is

({}7 {[tfv [t27t1>7 [t37t3>})7 v = (Hti [t27 t1>7 [t37t3>}7 ‘/>

The set of all after-tick states and intermediate states are used to build the reach-
ability graph which tends to grow very quickly. Such a quick growth makes the
consideration of the state equation to decide unreachability a better alternative.

In Pelz and Kabouche (2016) a process semantics has been defined for ITPN. For-
mally a process of ITPN is a pair (N, ¢) where N’ is an occurrence net (Definition
and ¢ is a homomorphism which labels the CN with information from the ITPN. The
set of clock labels C'L is introduced to capture information about time passed since

a transition has start firing.

CL={(t;,j) | t: € T and j <1fd(t;)}.

95

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

A clock label (t;,7) shows that ¢; has started firing and has age j. Also, the set of

firing event FE is defined as

FE=At; | t; eT}U{t;) |t e T}U{V }.

The net ¢ = (N, ¢) is a process of N if ¢ : BUE — (PUCL)UFE is a homomorphism

satisfying:
1. Vb€ B,¢(b) inP UCL and Ve € E.¢(e) € FE.
2. *7r C Band Vp € P,| ¢(e)H(p) N°II |= My(p).
3. For each event e of the occurrence net N’ one of the following cases holds

- Casel: if ¢(e) = [t; then
a) Vb € e, o(b) € P,
b) ¥p € P,| ¢~ (p) N *e [=v(p,t;) and ¢(e*) = {(#;,0)} and
¢) *e is an antichain.
- Case2: If ¢(e) = t;) then
a) ¢(%e) = {(ti,)} for some j € [sfd(t;),lfd(t;)] and
b) Vb € e*, ¢(b) € Pand ¥p € P,| ¢ (p) Ne* |= v(ti, p)
- Case3: If ¢(e) = v then
a) Vb e *eUe®,¢(b) € CL,
b) Wb in®e, (4(b) = (t:; 7)) A (J < Lfd(t:)),
¢) Wt € T,¥j € [0,d],| ¢~ (ti,7) N %€ |=| 6 (ts,j + 1) Ne* | and
d) Vb & e, (¢(b) € CL = 3 ine,b < b/ VI < b).

96

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

The process in Figure (from Pelz and Kabouche| (2016)) illustrates this construc-

tion.

b1 P2

Figure 10.2: An initial part of an arbitrary process of the ITPN of Figure [10.1

Again, there are similarities rather at a higher level between interval elementary
nets with inhibitor arcs and the interval timed Petri nets. In both cases, transitions

are divided and are assumed to be allowed to take time which is more important in

ITPN.

10.2 Interval Semantic for Activator Nets

Interval semantics have been defined for activator nets in (Chatain et al. (2015)). The
general idea of such semantics is that a transition is split into two phases: ¢~ (checking
phase of a transition ¢) and t* (firing phase for t). Then the step semantics of activator
nets (defined in Section can be redefined such that every step consists of any
permutation of the actions of type ¢~ followed by any permutation of the actions ¢™.
The explicit splitting of transitions on the net makes the idea of two phases firing

clearer as illustrated in Figure [10.3]

97

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

p1 P2 pi pi P3 P3

[a] P

-0

O

y

%0

s

4
Figure 10.3: The splitting of transition a (left) into a~ and a~ (right).

The spiting of transitions is formalized as follows (see |Chatain et al.| (2015)).

Definition 36 (Chatain et al. (2015))). For every activator net N = (P, T, F, A, Ciniti),

an activator net split split(N) is defined as follows:
1. T" contains two copies, denoted t~ and t™ of every transition t € T.

2. P’ contains two copies, denoted p° and p" of every place p € P, plus one place

pe per transition t € T.
3. ={p"|pet}
4.4 ={p" [pet}
5. 17 ={p:}
6. *t*={p" [pet}U{p}
7. %t =10
.t ={plpettu{p |pet}

9. Cliw=Ar"p € Cinir} U{D" | Cinis }- 0

98

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

The construction of split(N) allows for a more general semantics that captures
cases where both standard firing sequences and step sequences cannot. This is defined

as interval semantics.

Definition 37 (Chatain et al. (2015)). FEvery firing sequence of split(N) is called
i-run of N or run of N under the interval semantics. An i-run is complete if every

t~ is matched by a tT. O

Given an i-run, a process can be constructed for the split(/N) in the standard way

where processes are just unfolding of the original net.

99

Chapter 11

Conclusion

In this thesis, we have provided both an interval order operational semantics and an
interval process semantics for elementary Petri nets with inhibitor arcs. Then, from
the interval process semantics we derived an interval ‘true concurrency’ semantics in
terms of interval order structures. Interval order or rather observing transitions of a
concurrent system under the assumption that they are interval is often regarded as
the most general and precise way when it comes to recording observations of systems.
This fact has been argued from a philosophical perspective in Wiener| (1914 and
formally proved in |Janicki and Koutny| (1993).

Our approach started with transforming a given net with inhibitor arcs N into
another net A that is called the interval representation of N. This is done by splitting
every transition of the original net N into a beginning and an end of the transition
with a place in between (i.e. in the form B#~O—Et). Such a transformation is
trivial in the case of elementary nets. However, introducing inhibitor arcs presents
a challenge. In N a transition ¢ that is connected to a place p by an inhibitor arc is

not enabled unless the place is not marked (i.e. has no token), therefore, the token

100

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

has to be consumed by another transition ¢'. However, “during” the firing of ¢’, the
inhibitor arcs continues inhibiting ¢. This assumption is subtle in N, however, in N/
it is of great importance. The idea is that, an inhibitor arc in N is represented by
two inhibitor arcs in A to address the aforementioned subtlety. This ensures that
an inhibited transition will not begin until the transition consuming the token from
inhibitor place ends, provided that the inhibited transition has not already started.
In N, this allows for occurrences of transition to overlap while disallowing undefined
behaviours of N.

We formally defined the construction of A (given N) and its operational semantics
in terms of interval firing sequences. Then we assumed that all behavioral properties
of N are defined by appropriate behavioral properties of N before we formally demon-
strated that firing a step sequence in N is properly simulated by firing an appropriate
interval sequence in /. Moreover, while A defines behaviours that cannot be defined
by N, it does not generate any new behaviour that can be described by step sequences
of N.

Although it is possible to derive interval processes directly from N, without using
N or explicit complementary places, some intuition is then lost so we do not explore
this issue here.

In addition, we define process semantics of ' which can be seen as an extension
and generalization of the already well developed step sequence process semantics of
elementary nets with inhibitor arcs [Janicki and Koutny (1995)); Kleijn and Koutny
(2004)). Generally speaking, a process is an unfloding of the original net along some
predefined legal behaviours. In case of N, activator occurrence nets generated by

interval firing sequences are used to defined processes. Then, we demonstrated how

101

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

an interval order structure that characterizes N is derived from a given interval process
of V. Since the process type semantics is based on the concept of nets unfolding, it is
very natural and usually does not require complex justification. Therefore, the results
presented in this thesis can also be interpreted as some validation of the interval order
semantics for inhibitor nets.

This idea of validating other domains of interval semantics is applied to interval
trace semantics [Janicki et al.| (2012)); |Janicki and Yin| (2015). We applied the interval
traces semantics to the interval representation of elementary nets with inhibitor arcs,
and showed that the interval process semantics proposed in this thesis and the interval
traces semantics are equivalent.

Moreover, we demonstrated that when operational semantics is restricted to step
sequences, or stratified orders, our model produces the same results as that of |Janicki
and Koutny| (1995); Kleijn and Koutny| (2004)).

Last but not least, it is important to point out that there are concurrent systems
that, when modeled as Petri nets with inhibitor arcs, produce only pure interval be-
haviours, i.e. they generate neither firing sequences nor firing step sequences, only
interval firing sequences. The net N;, from Figure [1.1]is one of such nets. If observa-
tions are only represented as step sequences, then N;, generates no behaviour at all.
However, if runs are represented as interval orders, then it generates an observation
(system run) that is exactly the interval order <}. This cannot be modeled by stan-
dard semantics and behaviours of such nets can only be analyzed using our model.
Concurrent systems are known for generating extremely complex behaviours, so there
is a need for tools that can adequately model all of them, even if some do not occur

that often.

102

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Our research can be extended in a few direction. For instance, an extension of
interval order semantics to general Place/Transition Petri nets with inhibitor arcs (a
higher class of Petri nets) is a serious future research project. Another direction is
to apply the interval semantics to other extensions of Petri nets. For example, our

approach can be applied to activator nets (Section [4.3)) or to interval-timed Petri nets

(Section (10.1)).

103

Bibliography

Aalbersberg, 1. J. and G. Rozenberg (1988). Theory of traces. Theoretical Computer

Science 60(1), 1 — 82.

Abraham, U., S. Ben-david, and M. Magidor (1990). On global-time and inter-process

communication. In Semantics for Concurrency, pp. 311-323. Springer-Verlag.

Agerwala, T. and M. Flynn (1973). Comments on capabilities, limitations and ” cor-

rectness” of petri nets. SIGARCH Comput. Archit. News 2(4), 81-86.

Alqarni, M. and R. Janicki (2015). On interval process semantics of petri nets with
inhibitor arcs. In Application and Theory of Petri Nets and Concurrency, pp. 77-97.

Springer.

Algarni, M. and R. Janicki (2016a). Interval process semantics of petri nets with

inhibitor arcs. Theoretical Computer Science. submitted.

Alqarni, M. and R. Janicki (2016b). On modeling inhibitor nets with interval pro-
cesses and interval traces. In The 2015 International Conference on Foundations

of Computer Science, pp. 3-9.

104

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Baldan, P., N. Busi, A. Corradini, and G. M. Pinna (2004). Domain and event struc-
ture semantics for petri nets with read and inhibitor arcs. Theoretical Computer

Science 323, 129-189.

Busi, N. and G. M. Pinna (1999). Process semantics for place/transition nets with

inhibitor and read arcs. Fundamenta Informaticae 40((2, 3)), 156-197.

Chatain, T., S. Haar, M. Koutny, and S. Schwoon (2015). Non-atomic transition
firing in contextual nets. In R. Devillers and A. Valmari (Eds.), Application and
Theory of Petri Nets and Concurrency, Volume 9115 of Lecture Notes in Computer

Science, pp. 117-136. Springer International Publishing.

Chiola, G., S. Donatelli, and G. Francheschinis (1991). Priorities, inhibitor arcs and
concurrency in p/t-nets. In Proc. of ATPN’91. (Applications and Theory of Petri
Nets), pp. 182-205.

Chuang, L., Q. Yang, R. Fengyuan, and D. C. Marinescu (2002). Performance equiv-
alent analysis of workflow systems based on stochastic petri net models. In Engi-

neering and Deployment of Cooperative Information Systems, pp. 64-79. Springer.

Desel, J. and W. Reisig (1998). Place/transition petri nets. In Lectures on Petri Nets

I: Basic Models, pp. 122-173. Springer.

Diekert, V., G. Rozenberg, and G. Rozenburg (1995). The book of traces, Volume 15.
World Scientific.

Fishburn, P. C. (1970). Intransitive indifference with unequal indifference intervals.

Journal of Mathematical Psychology 7, 144-149.

105

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Fishburn, P. C. (1985). Interval graphs and interval orders. Discrete Mathemat-
ics 55(2), 135 — 149.

Gaifman, H. and V. Pratt (1987). Partial order models of concurrency and the
computation of function. In Proc. of LICS’87. (Logic in Computer Science), pp.
72-85.

Goltz, U. and W. Reisig (1983). The non-sequential behaviour of petri nets. Infor-

mation and Control 57(2), 125-147.
Hack, M. (1979). Decidability questions for Petri nets. Garland.

Heiner, M. and L. Popova-Zeugmann (1997). Worst Case Analysis of Concurrent

Systems with Duration Interval Petri Nets. Citeseer.

Hoodgeboom, H. J. and G. Rozenberg (1991). Diamond properties of elementary net

systems. Fundamenta Informaticae 14(3), 287-300.

Janicki, R. (2008). Relational structures model of concurrency. Acta Informatica 45,

279-320.

Janicki, R., J. Kleijn, and M. Koutny (2010). Quotient monoids and concurrent

behaviours. Scientific Applications of Language Methods 1, 313-385.

Janicki, R. and M. Koutny (1991). Invariants and paradigms of concurrency theory.
In Proc. of PARL’91. (Lecture Notes in Computer Science), Volume 506, pp. 59-74.

Janicki, R. and M. Koutny (1993). Structure of concurrency. Theoretical Computer
Science 112, 5-52.

106

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Janicki, R. and M. Koutny (1995). Semantics of inhibitor nets. Information and

Computation 112, 5-52.

Janicki, R. and M. Koutny (1997). Fundamentals of modelling concurrency using

discrete relational structures. Acta Informatica 34, 367-388.

Janicki, R. and D. T. M. Lé (2011). Modelling concurrency with comtraces and

generalized comtraces. Information and Computation 209(11), 1355 — 1389.

Janicki, R. and X. Yin (2015). Modeling concurrency with interval orders. Information

and Computation.

Janicki, R., X. Yin, and N. Zubkova (2012). Modeling interval order structures with
partially commutative monoids. In M. Koutny and I. Ulidowski (Eds.), CONCUR

2012 Concurrency Theory, Volume 7454 of Lecture Notes in Computer Science,
pp. 425-439. Springer Berlin Heidelberg.

Juhds, G., R. Lorenz, and S. Mauser (2007). Complete process semantics for inhibitor
nets. In Proc. of ICATPN’07. (Lecture Notes in Computer Science), Volume 4546,
pp. 184-203.

Kleijn, H. C. M. and M. Koutny (2004). Process semantics of general inhibitor nets.

Information and Computation 190, 18-69.

Kleijn, J. and M. Koutny (2008). Formal languages and concurrent behaviour. Studies

in Computational Intelligence 113, 125-182.

Lamport, L. (1986). The mutual exclusion problem. Journal of ACM 33(2), 313-326.

107

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Le, D. T. M. (2010). A characterization of combined traces using labeled stratified
order structures. In Applications and Theory of Petri Nets: 31st International
Conference, PETRI NETS 2010, Braga, Portugal, June 21-25, 2010. Proceedings,

pp. 104-124. Springer.

Marsan, M. A., G. Balbo, and G. Conte (1986). Performance models of multiprocessor

systems.

Mazurkiewicz, A. (1977). Concurrent program schemes and their interpretations.

DAIMI Report Series 6(78).

Mazurkiewicz, A. (1995). The Book of Traces, Chapter Introduction to Trace Theory,
pp- 3-40. World Scientific.

Montanari, U. and F. Rossi (1995). Contextual nets. Acta Informatica 32(6), 545—
596.

Murata, T. (1989). Petri nets: Properties, analysis and applications. In Proc. of
IEEFE, Volume 77, pp. 541-579.

Nielsen, M., G. Rozenberg, and P. S. Thiagarajan (1990). Behavioural notions for

elementary net systems. Distributed Computing 4, 45-57.

Pelz, E. and A. Kabouche (2016). On processes and branching processes of itpns.
Draft.

Pelz, E., A. Kabouche, and L. Popova-Zeugmann (2015). Interval-timed petri nets
with auto-concurrent semantics and their state equation. In Proceedings of the
International Workshop on Petri Nets and Software Engineering (PNSE’15), pp.
245-265.

108

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Upper Saddle

River, NJ, USA: Prentice Hall PTR.

Petri, C. A. (1962). Kommunikation mit Automaten. Ph. D. thesis, Universitt Ham-

burg.

Petri, C. A. (1966). Communication with automata. Ph. D. thesis, Universitt Ham-

burg.
Petri, C. A. (1996). Nets, time and space. Theoretical computer science 153(1), 3-48.

Pomello, L., G. Rozenberg, and C. Simone (1992). A survey of equivalence notions

for net based systems. In Advances in Petri Nets 1992, pp. 410-472. Springer.

Popova-Zeugmann, L. (2014). Time petri nets: theory, tools and applications. part
1.

Ramchandani, C. (1974). Analysis of asynchronous concurrent systems by timed petri

nets.
Reisig, W. (2013). Understanding Petri Nets, Volume 4. Springer.

Rozenberg, G. and J. Engelfriet (1998). FElementary net systems. In Lectures on
Petri Nets I: Basic Models, Advances in Petri Nets. (Lecture Notes in Computer

Science), pp. 12-121.

Rozenberg, G. and P. Thiagarajan (1986). Petri nets: Basic notions, structure, be-
haviour. In J. de Bakker, W.-P. de Roever, and G. Rozenberg (Eds.), Current
Trends in Concurrency, Volume 224 of Lecture Notes in Computer Science, pp.

585-668. Springer Berlin Heidelberg.

109

Ph.D. Thesis - Mohammed A. Algarni McMaster - Computing and Software

Sifakis, J. (1980). Use of petri nets for performance evaluation. Acta Cybernet-
ica 4(1978), 185-202.

Szpilrajn, E. (1930). Sur lextension de l'ordre partiel. Fundam. Mathematicae 16,
386-389.

Tsai, J., S. Jennhwa Yang, and C. Yao-Hsiung (1995). Timing constraint petri nets
and their application to schedulability analysis of real-time system specifications.

Software Engineering, IEEE Transactions on 21(1), 32-49.

Van Der Aalst, W. and K. M. Van Hee (2004). Workflow management: models,

methods, and systems. MIT press.

Venkatesh, K., M. Zhou, and R. J. Caudill (1994). Comparing ladder logic diagrams
and petri nets for sequence controller design through a discrete manufacturing

system. Industrial Electronics, IEEE Transactions on 41(6), 611-619.

Vogler, W., A. Semenov, and A. Yakovlev (1998). Unfolding and finite prefix for nets
with read arcs. In Proc. of CONCUR’98. (Lecture Notes in Computer Science),
Volume 1466, pp. 501-516.

Wiener, N. (1914). A contribution to the theory of relative position. In Proc. of the

Cambridge Philosophical Society, Volume 17, pp. 441-449.

Winkowski, J. (1998). Process of contextual nets and their characteristics. Funda-

menta Informaticae 33, 1-31.

Zuberek, W. M. (1980). Timed petri nets and preliminary performance evaluation.

In Proc. of the 7th Annual Symp. on Computer Architecture, pp. 89-96.

110

	Abstract
	Acknowledgements
	Introduction and Motivation
	Motivation
	Organization of Thesis

	Mathematical Foundation
	Partial, Total, Stratified and Interval Orders

	Concurrent Histories and Order Structures
	Concurrent Histories
	Stratified and Interval Order Structures

	Petri Nets
	Elementary Nets
	Formal Definition of Elementary Nets
	Operational Semantics of Elementary Nets
	Fundamental Situations in Dynamic Systems Modeling
	Contact Freeness

	Elementary Nets with Inhibitor Arcs
	Activator Nets

	Interval Elementary Net with Inhibitor Arcs
	Process Semantics
	Semantical Framework for Process Semantics
	Processes of Elementary Nets
	Processes of Elementary Nets with Inhibitor Arcs
	Processes and Concurrent Histories

	Trace Semantics
	Mazurkiewicz Traces
	Comtraces
	Interval Traces
	Interval Traces Construction
	Interval Traces Semantics for Elementary Net with Inhibitor Arcs

	Interval Processes and Interval Order Structures
	 Interval Processes and Interval Traces
	Interval Semantic for Other Petri Nets
	Interval-Timed Petri Nets
	Interval Semantic for Activator Nets

	Conclusion
	Bibliography

