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Abstract

In his monograph [Ne], Nekovar studies cohomological invariants of big Galois represen-
tations and looks at the variations of Selmer groups attached to intermediate number
fields in a commutative p-adic Lie extension. In view of the formulation of the “main
conjecture” for noncommutative extensions, it seems natural to extend the theory to a
noncommutative p-adic Lie extension. This thesis will serve as a first step in an extension
of this theory, namely, we will develop duality theorems over a noncommutative p-adic
Lie extension which are extensions of Tate local duality, Poitou-Tate global duality and
Grothendieck duality.
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Introduction

Iwasawa theory, as does much of number theory, revolves around the study of the rela-
tionship between algebraic objects and analytic objects that are naturally attached to
number fields, elliptic curves, and even objects as general as motives. In Iwasawa the-
ory, one studies the behavior of algebraic objects, most often Selmer groups, in a tower
of number fields, and the analytic objects of comparison are the p-adic L-functions. A
precise formulation of this relationship is usually called a “main conjecture”, which is
known in certain cases but conjectural in general. There are two parts to the conjecture,
namely the existence of an appropriate p-adic L-function and the statement of a precise
relationship between the algebraic object in question and the p-adic L-function.

It was observed by Iwasawa that a limit up a tower of algebraic objects that are p-
torsion groups for a fixed prime p is a module over the completed Z,-group ring Z,[I']
of the Galois group I' of the tower. In the setting of Iwasawa’s main conjecture, I' was
isomorphic to Z,, and the ring Z,[I'] was then simply isomorphic to a power series ring in
one-variable over Z, (an observation of Serre). The main conjecture stated that a so-called
characteristic power series of an eigenspace of the Galois group X, of the maximal abelian
pro-p unramified outside p and oo extension of the cyclotomic Z,-extension of an abelian
field agrees up to unit with a power series interpolating the values of a Kubota-Leopoldt
p-adic L-function.

Of course, it is natural to consider towers with Galois group other than Z,, and the
class of such towers that has come under the greatest consideration is that of the p-adic Lie
extensions, i.e., for which the Galois group of the tower is a compact p-adic Lie group, and
so isomorphic to a closed subgroup of GL,(Z,) for some n > 1. Such Galois groups arise
naturally in number theory: for instance, one obtains a GLy(Z,)-extension by adjoining to
Q the coordinates of all p-power division points of a non-CM elliptic curve E defined over
Q. In the past decade, a great deal of activity in the study of Iwasawa theory has been
focused on noncommutative generalizations of the main conjecture [CFKSV, FK, RW].

In this thesis, we are interested in exploring duality theorems in Galois cohomology



in the context of noncommutative Iwasawa theory. To see why this might be of interest,
we observe that in the situation of the cyclotomic Z,-extension F, = U, F,, of a number
field F, the direct limit of cohomology groups

lim H (Gal(Meo/Fy), Qp/Z,),

where M, is the maximal extension of Fl, unramified outside p and oo, is precisely the
Pontrjagin dual of the Galois group X, appearing in Iwasawa’s main conjecture for an
abelian F.

Let F be a global field with characteristic not equal to p, and let S be a finite set of
primes of F' containing all primes above p and all archimedean primes of F. We let Grg
denote the Galois group Gal(Fg/F') of the maximal unramified outside S extension Fg
of F inside a fixed separable closure of F. In its usual formulation, Poitou-Tate duality
relates the kernels of the localization maps on the G g-cohomology of a module and the
Tate twist of its Pontrjagin dual. In fact, it can be given a cleaner formulation using
compactly supported cohomology groups. For simplicity, we assume that p is odd if F’
has any real places.

The nth compactly supported G, s-cohomology group H( (G F,s, M) with coefficients
in a topological G g-module M is defined as the nth cohomology group of the complex

Cone Céts(GF,S’ = @ cte GFu’M) [_1]7

UESf

where G, is the absolute Galois group of the completion of F' at v, and resg is the sum
of restriction maps on the continuous cochain complexes. It therefore fits in a long exact
sequence

n+1
+— HZ o (Grs, M) = Ha(Grs, M) — @D Hi (Gr,, M) — HA(Grs, M) —
veS

We now let R denote a commutative complete Noetherian local ring with finite residue
field of characteristic p. Then we have the following formulation of Poitou-Tate duality
due to Nekovéf [Ne, Prop. 5.4.3(i)].

Theorem (Poitou-Tate duality). Let T be a finitely generated R-module with a contin-
uous (R-linear) Gps-action. Then there are isomorphisms

chts(GFSa ) — chthl(GF',SvTV(l))v
ccts(GFSa ) - Hgtsn(GF,S’TV(l))v

of R-modules for all n, where TV = Home(T, Qp/Zy).
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We now recall some notations from the language of derived categories. We denote
by D(Modg) the derived category of R-modules which is obtained from the category
Ch(Modg) of chain complexes of R-modules by inverting the quasi-isomorphisms, i.e.,
the maps of complexes that induce isomorphisms on cohomology. We have the de-
rived functors RHomp(—, —), Rlets(Grs, —) and Rl ts(GFs, —) that are obtained from
Homp(—, —), Cets(Grs, —) and C,cts(Grs, —). Then the Poitou-Tate duality can be re-
formulated as the following isomorphisms

RIs(Grs,T) — RHomg, (RFc,cts(GF,Sa TV(1)),Qy/Z, ) [-3)
RTcs(Grs, T) = RHomz, (Rlas(Grs, T"(1)), Qp/Z, ) 3]

in D(Modg).

Nekovar gave a formulation of an analogue of Poitou-Tate duality with a duality of
Grothendieck replacing Pontrjagin duality, as we now describe. There exists a bounded
complex wr of R-modules of finite type, known as a dualizing complex, with the property
that for every complex M of modules of finite type, the dual RHompg(M,wgr) € D(Modg)
is quasi-isomorphic to a complex of R-modules of finite type, and moreover, the canonical
morphism .
M — RHomR(RHomR(M,wR),wR)

is an isomorphism in D(Modg). We remark that when R is regular (or Gorenstein), the
dualizing complex can be taken to be R.

Now suppose T is a bounded complex of R[Gpg|-modules that are finitely generated
over R. Then there exists a complex 7™ of modules of the same form that represents
RHompg(T,wg) in an appropriate derived category of R[Grgs]-modules. In this case, we
have the following isomorphisms of Nekovar (see [Ne, Prop. 5.4.3(ii)]).

Theorem (Nekovér). We have the following isomorphisms
RTws(Grys, T) = RHomp (RTeis(Grs, T*(1), wr) (3]
RPccs(Grs, T) = RHomp(RIo(Grs, T*(1), wr) 3]
in D(Modg).

In this thesis, we study generalizations of the above duality of Poitou-Tate and
Grothendieck duality of Nekovar in the context of noncommutative Iwasawa theory. Sup-
pose that F, is a p-adic Lie extension of F' contained in Fis. We denote by I' the Galois
group of the extension F,,/F, and we let A = R[['] denote the resulting Iwasawa algebra
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over R. Let T be a finitely generated R-module with a continuous (R-linear) G g-action,
and let A be a cofinitely generated R-module with a continuous (R-linear) G g-action.
The A-modules of interest are the following direct and inverse limits of cohomology groups
(and their counterparts with compact support)

lim A7, (Gal(Fs/Fa), A) and lim H,(Gal(Fs/F.), T),
Fy Fu

where the limits are taken over all finite Galois extensions F, of F' which are contained
in F,. By an application of Shapiro’s lemma, one can show that they are respectively
isomorphic to

Hi(Grs, Fr(4)) and H (Grs, #r(T)),
where the A-modules Fr-(A) and % (T') are defined by

lim Homp(R[Gal(Fu/F)], A) and lim R[Gal(Fu/F)] ®r T
Fa Fa

respectively. Therefore, we can reduce the question of finding dualities on the Iwasawa
modules of interest to that of obtaining dualities over Gg g, but with R replaced by A.

In his monograph [Ne], Nekovar considers the above situation over a commutative
p-adic Lie extension (e.g., a Z;-extension) and develops extensions of Poitou-Tate global
duality and the duality of Grothendieck for the above cohomology groups. In view of the
noncommutative main conjecture, one would like to extend the work of Nekovar to the
noncommutative setting.

In order to prove duality theorems over noncommutative p-adic Lie extensions, we
must first understand the structure of the noncommutative Iwasawa algebras and their
topological modules. In particular, we shall prove that the Iwasawa algebra A is Noethe-
rian (cf. Theorem 3.4.1), generalizing a result of Lazard from the case that R = Z,,.

Theorem. Let R be a commutative complete Noetherian local ring with finite residue field
of characteristic p, and let G be a compact p-adic Lie group. Then R[G] is a Noetherian
Ting.

Together with the module theory, we carefully develop the theory of continuous group
cohomology in our setting. From there, we are able to state and prove our duality theorems
(cf. Theorems 5.3.1 and 5.4.1).

Theorem. Let T be a bounded complex of ind-admissible R|GF s]-modules which are



finitely generated over R. Then we have the following isomorphisms

RIls(Grs, #r(T)) — RHomg, (RFc,cts(GF,s, Fr(TY)(1)), Qp/Zp) [—3]
RFcts(GF,Sa aofr(T)) — RHomA" (ch.cts (GF,57 yF(T*)(l)) ) A ®I}§ wR) [_3]

in the derived category of A-modules.

In Nekovéi’s setting, the group I' may be taken to be an abelian pro-p p-adic Lie
group, and so A is a commutative Noetherian complete local ring with finite residue field
of characteristic p. Moreover, Nekovar shows that its dualizing complex is isomorphic
to A ®% wp in the derived category of A-modules. Therefore, the commutative theory
described above applies to A, and Nekovar is able to deduce his dualities from this.
In our thesis, since we are working with noncommutative p-adic Lie extensions, we do
not know the existence of a (sufficiently nice) dualizing complex that is compatible with
continuous Galois cohomology, and so the proof of the second duality takes another route.

We now give a brief description of the contents of each chapter of the thesis. In Chapter
1, we introduce notations and results from homological algebra required for the thesis. In
particular, we will introduce the language of derived categories. We also develop certain
derived functors for bimodules over algebras that are central and flat over a commutative
ring. These will be applied in the later parts of the thesis. Chapter 2 is about the
discussion of adic rings and their topological modules. We also introduce continuous
cohomology groups with coefficients in compact modules and discrete modules. In the
latter part of Chapter 2, we shall see that the notion of ind-admissible modules (see [Ne,
3.3]) can be carried over to the setting of Noetherian adic rings. We will then describe the
category of ind-admissible modules in terms of compact modules and discrete modules.

In Chapter 3, we will investigate the ring-theoretic properties of the completed group
algebra of a finitely generated pro-p group. Our study will lead to a generalization of a
result of Lazard which essentially says that the Iwasawa algebras in which we are interested
are Noetherian. In Chapter 4, we will apply Shapiro’s lemma to see that the direct limits
and inverse limits of cohomology groups over every intermediate field F, can be viewed as
cohomology groups of certain A-modules. We shall also establish certain finiteness results
of the cohomology groups in Section 4.2. In that section, we make heavy use of the fact
that the Iwasawa algebra of a p-adic Lie extension is Noetherian.

Finally, we will prove the duality theorems in Chapter 5. We will prove an extension
of the Tate’s local duality and Poitou-Tate duality for a finitely presented module (with a
continuous Galois action) over an adic ring, with no restrictions on p. We will then prove
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the duality theorems of Grothendieck for local fields and global fields over a p-adic Lie
extension, with the restriction that p is odd in the number field case if the field has any
real places.



Chapter 1

Preliminaries

We begin by reviewing certain objects and notations which will be used in this write-up.
Most of the material presented in Section 1.1 and Section 1.2 can be found in [Hart, Ne,
Wei|. In Section 1.3, we introduce some derived functors over the derived category of
certain bimodules over algebras that are central and flat over a commutative ring. The
approach used here is inspired by the paper [Ye] which dealt with algebras that are central
and flat over a field. As we shall see in Section 4.1, the Iwasawa algebras we are interested
in are central and flat over their coefficient rings.
Throughout the thesis, every ring is associative and has a unit.

1.1 Complexes

Fix an abelian category € and denote the category of (cochain) complexes of objects in
¢ by Ch(€). We also denote the category of bounded below complexes, bounded above
complexes and bounded complexes by Ch*(€), Ch=(€) and Ch®(€) respectively. For each
n € Z, the translation by n of a complex X is given by

X[TL]I = Xn+z" dg([n] o= (_1)ndr)1{+i'

If f: X — Y is a morphism of complexes, then f[n] : X[n] — Y[n] is given by
sl = .

A covariant additive functor F' : € — € induces a functor F' : Ch(€) — Ch(¢') with

»x = F(d%). The identity morphisms in each degree define a canonical isomorphism of

complexes
F(X[n]) — F(X)[n].



A contravariant additive functor F : €2 — ¢ induces a functor F : Ch(€)° — Ch(¢’)
with diy = (=1)"*1F(d3x"™"). Suppose G : (€)° — €” is another contravariant functor.
Then, for each i, we have

gy = (“D)™'Gdrx ") = (-)™'G((-1)'Fdi) = —G(F(dy))-

On the other hand, we note that G o F' is a covariant functor. Therefore, taking the sign
conventions into consideration, we have an isomorphism

G(F(X)) = (Go F)(X)

of complexes which is given by (—1) times the identity morphism in degree i.
If X is a complex, we have the following truncations of X:

o X =[—X"7? 55X X —0—0— -]

X =[+— X2 — X"l —ker(dy) —0—0— -]
osiX=[+—0—0—0 X' — X — X2 — ...]

75X = [+ — 0 — 0 — coker(dy!) — X+ — X*2 — ...].

The cone of a morphism f : X — Y is defined by Cone(f) = Y& X|[1] with differential

_ dg, fitl
dlcone(f) = ( 0 _dz;-l

There is an exact sequence of complexes

) . Yi ® XH-I — Yi+1 sy Xi+2.

0 — Y L Cone(f) = X[1] — 0,

where j and p are the canonical inclusion and projection respectively. The corresponding
boundary map

§: H'(X[1])) = HY(X) — H'MY(Y)
is induced by fi*1.

A homotopy a between two morphisms of complexes f,g : X — Y is defined by a
collection of maps a' : X**' — Y such that g — f = da + ad. We shall denote this
bya:f~g Ifu:X — X (resp. v:Y’ — Y) is a morphism of complexes, then
axu = (a'out: (X')*! — Y?) (resp. vxa = (vioa’: X**! — (Y”))) is a homotopy
axu: fu~> gu (resp. vxa:vf ~ vg).

A second order homotopy « between two homotopies a,b : f ~~ g is defined by a
collection of maps a' : X**? — Y such that ad — da = b — a. We denote this by
a:a~b.


http:coker(~.X1

Let try(€) be the category defined as follows: the objects are morphisms of complexes
f:X — Y in €. Supposing f': X’ — Y is another object, a morphism from f to f’
is given by ~
(9:0,0) : (f : X —¥) — (f: X' —Y)

where g : X — X’ and h: Y — Y’ are morphisms of complexes and a : f'g ~ hf. We
denote this by the following diagram.

The composition
(g:hsa) ¢ o i n (@Ra) 1"
(f: X —Y) = (X —=Y)"—="(f"' X"—Y")

is defined to be (¢'g, 'h,a’ x g + h' x a).
A morphism (g,h,a) : (f : X — Y) — (f' : X’ — Y”) induces a morphism of
complexes Cone(g, h,a) : Cone(f) — Cone(f’) given by

| B g - o
Cone(g, h,a)' = ( 5 g?+1 ) Yo X — (Y e (X)L

Hence, we have a functor Cone : tr;(€) — Ch(€).
A homotopy (b, ¥, ) : (g, h,a) ~ (¢',h,a’) in tr;(€) consists of homotopies b : g ~ ¢’
and b’ : h ~ A’ and a second order homotopy

a:f'xb+ad ~bx*f+a.

One can then check that this induces a homotopy (in the usual sense)

( % 5 ) + long(g, 0] — Qonely’, 'yt ).



Suppose we have the following cubic diagram of complexes

whose faces are commutative up to homotopy. Suppose further that the boundary of the
cube is trivialized by a 2-homotopy H = (H' : Ai** — (B})Y), i.e.,

H:vxki+mxfi+Baxh~ koxu+h'xay + fy*l.
Then the triple (ki, ko, H) defines a homotopy

(kv ko, H) = (ff, f3, /) © (an, a2,1) = (fiau, fran, B x on + fr % 1) ~
(lglflv/g2f21m*fl +62*h‘) = (613:627771) o (flvf?vh)v

i.e., the following diagram

) (fl :vah) Cone(v)

l (B1,82,m)

Cone(u

((11 ,az,l) l

I’ / ,hl
Cone(u) Hidah) Cone(v')

is commutative up to homotopy.

Define K(€) to be the category of complexes of objects in Ch(€) where the morphisms
are given by homotopy classes of homomorphisms of complexes. We write K*(€), K~ (<)
and K®(€) for the subcategories of K(€) with objects in Ch*(€), Ch™(€) and Ch®(€)
respectively. Given a morphism f: X — Y in Ch(C), we say that the following

X L v % Cone(f) =2 X[1]

is a strict exact triangle. Suppose we are given objects A, B and C' in K(€) and morphisms
u:A— B,v:B— C and w: C — A[l] in K(€). We then say that

A5 B0 Al

10



is an exact triangle if there exists a strict exact triangle
X ~is ¥ Ly Cone(f) =2 X[1]
such that we have the following diagram

A = B Cc e A

T

s Y ~——2Zs Cone(f) —2— X[1]

which commutes in K(€) (i.e., commutes up to homotopy) with the vertical morphisms
being isomorphisms in K(€) (i.e., homotopy equivalences). We may sometimes write an
exact triangle as A — B — C instead of A — B — C' — A[l].

We say that a morphism in Ch(€) or K(€) is a quasi-isomorphism if it induces iso-
morphisms on the cohomology of the complexes. The derived category D(€) is obtained
by inverting the quasi-isomorphisms in K(€) (see [Wei, Chap. 10]). One has similar def-
initions for D*(¢), D~(€) and D%(€). We remark that we may not always be able to
perform such constructions due to certain set-theoretic considerations (loc. cit. 10.3), al-
though when € is the category of modules over some ring, the derived category exists
(loc. cit. Prop. 10.4.4). However in general, one may have to work with categories other
than the category of modules. One way to get around this is to make use of the following
proposition (cf. [Wei, Prop. 10.4.8]).

Proposition 1.1.1. Suppose that € has enough injectives. Then DT (C) exists and is
equivalent to the full subcategory K¥(Z) of KT(€) whose objects are bounded below com-
plezes of injectives.

If € has enough projectives. Then D~ (C) exists and is equivalent to the full subcategory
K~ (P) of K*(€) whose objects are bounded above complexes of projectives. O

Remark. In the case that D~ (€) exists, then D®(€) also exists, and is a subcategory of
D~ (€). A similar statement holds in the case that D*(C) exists.

We shall describe the above equivalence of the categories briefly and refer readers to
[Wei] for the details. Suppose € has enough injectives. Let A be an object in K* ().
Then one has the Cartan-Eilenberg resolution of A which is a double complex of injectives
whose total complex is a bounded below complex and is quasi-isomorphic to A (loc. cit.
Ex. 5.7.1). Since any two of such resolutions are homotopic (loc. cit. Ex. 5.7.3), this
gives a unique representation of A in K*(Z). We have a similar construction when € has
enough projectives.
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1.2 Some sign conventions

In this section, we will introduce some sign conventions to which we will adhere throughout
the thesis. If X is a complex and z € X', we write Z = 7 for the degree.

Let A, S and T be rings. Let M (resp., N) be a A-S-bimodule (resp., a A-T-bimodule).
Then Homy (M, N) is taken to be the S-T-bimodule of all left A-module homomorphisms
from M to N, where the left S-action is given by (s- f)(m) = f(ms) and the right T-action
is given by (f - t)(m) = f(m)t for f € Hompy(M,N),m € M,s € Sandte T. If M* is
a complex of A-S-bimodules and N* a complex of A-T-bimodules, we define a complex
Hom{ (M*, N*) of S-T-bimodules by

Hom} (M*, N*) = [ [ Homs(M', N**™)
1€EZ

with differentials defined as follows: for f € Homy (M, N**"), we have
df = dif™o f + (=1)"f o di?.

If M* = M is a complex concentrated in degree zero, then Homy (M, —) is a covariant
functor and the sign convention for the differentials coincides with that in Section 1.1.
Similarly if N* = N is a complex concentrated in degree zero, then Homa(—,N) is
a contravariant functor with sign convention for the differentials coinciding with that
defined in Section 1.1.

In the case when S = T', we have a similar definition for the complexes Homj _¢(M*®, N*)
of abelian groups, where Homy_g(M, N) is the group of all A-S-bimodule homomor-
phisms from M to N. It follows immediately from the definition that for an element
f € Hom{_g(M*®,N*), we have f € Homcpa-s)(M*, N*) if and only if df = 0. Here
Ch(A — S) denotes the category of complexes of A-S-bimodules.

Suppose that M* is a complex of A-S-bimodules and L® a complex of S-T-bimodules.
We define the complex M*® ®@g L® of A-T-bimodules by

(Mo ®S Lo)n 2 @Ml ®S Ln—i
i€EZ )

with differentials
dmel)=dm®l+(-1)"m®dl.
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Lemma 1.2.1. The following formulas define isomorphisms of complezes:

Homj (M*®, N*)[n] = Hom} (M*, N°*[n])
Fesf
(M°[n]) ®s L* = (M* ®s L*)[n]
mel—mel _
M* ®s (L°[n]) & (M* ®s L*)[n]
mel— (-1)""m®Il.

Proof: This follows from a straightforward verification of the definition of translation and
the sign conventions. O

Lemma 1.2.2. The adjunction morphisms define morphisms

Hom}_,(M*® ®s L*, N*) — Hom}_g(M*®,Hom}.(L*, N*))
fro(me (= f(mel))
Homj}_1(M*® ®g L*, N*) — Homg_r(L*, Hom} (M*, N*))
fe (l — (m— (—I)T_"lf(m® l)))

of complexes and morphisms

HOI’HCh(A_T)(M. ®s L*, N.) — HomCh(A_S) (M', HOIH%O(L., N.))
HomCh(A_T)(M' ®s L°, N') —— HOIllCh(S_T) (L., HOHIR(]M', N.))

of abelian groups. All of these maps are monomorphisms; they are isomorphisms if M*®
and L* are bounded above and N*® is bounded below. O

1.3 Some derived functors

Given a ring A, we shall denote the category of left A-modules by Mod,. Let K(Mod,)
denote the category of complexes of left A-modules where the morphisms are given by
homotopy classes of homomorphisms of complexes. The derived category of A-modules is
then denoted by D(Mody ). _

For a ring A, -the opposite ring A° is defined to be the ring with underlying additive
group A and multiplication given by A; -, Ao = A2 Aq for A;, As € A. One can identify the
category of right A-modules with the category of left A°>~-modules. From now on, unless
otherwise stated, a A-module is always taken to be a left A-module.

Let R be a fixed commutative ring. For the remainder of this chapter, every ring is
taken to be a central R-algebra. In other words, there is a ring homomorphism R — A
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whose image is contained in the center of A. For two such rings A and S, we are interested
in a subclass of the class of A-S-bimodules, namely, the class of A-S-bimodules with the
extra property that the left R-action coincides with the right R-action. We can (and shall)
identify the category of such A-S-bimodules with the category of A ®z S°-modules, and
there are natural exact functors resy : Modpagrse — Mody and resge : Modpgse —
Mods., which extend to exact functors on the derived categories. By abuse of notation,
we also denote the exact. restriction from any category of modules over a central R-
algebra to the category of R-modules by resg. One observes that Modag,re = Mody
and Modpg,se = Modgo. In the case when A = S, we shall write A® = A @g A°.

Lemma 1.3.1. (1) If S is a projective (resp., flat) R-algebra, then res, preserves projec-
tive (resp., flat) modules.

(2) If A is a projective (resp., flat) R-algebra, then ress. preserves projective (resp.,
flat) modules.

(3) Suppose A = S is a flat R-algebra. Then resy and respo preserve injectives.

Proof: (1) Suppose that S is a projective R-algebra. Since projective modules are exactly
the summands of free modules, it suffices to show that A ®z S° is a projective A-module.
Since S is a central R-algebra, we have S = S° as R-modules. Therefore, we have
S°@ P = L for some projective R-module P and free R-module L. Then A ®pz 59 is
a direct summand of A ®g L, which is a free A-module. Hence A ® g S° is a projective
A-module.

Now suppose that S is flat over R. Since flat modules are direct limits of finitely
generated free modules (see [Lam, Thm. 4.34]) and tensor products preserve direct limits,
it suffices to show that A ® S° is a flat A-algebra. Since S is flat over R, we have that S
is a direct limit of finitely generated free R-modules, which implies that A ® S° is a direct
limit of finitely generated free A-modules.

(2) This follows from a similar argument as in (1).

(3) We shall prove this for resy, the case of resjo being analogous. The functor from
Moda to Modye sending M to A® ®, M is exact by our assumption and is left adjoint to
the functor res,. The conclusion then follows from [Wei, Prop. 2.3.10]. O

Let A, B and S be rings. We now introduce some derived functors which will be
used for the rest of this thesis. Let M (resp., N) be a left A-module (resp., a A-S-
bimodule). Recall that Hom (M, N) is a right S-module, where the right S-action is
given by (f - s)(m) = f(m)s.

Now let G be a group. If M is a A[G]-B-bimodule, we then define a G-action on
Homy (M, N) by (g- f)(m) = f(g~'m) for f € Homy(M,N),g € G and m € M. We also
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have a left B-action on Homy (M, N) given by (b- f)(m) = f(mb) for f € Homx(M, N),
b € B and m € M. Therefore, we have that Homy (M, N) is a B[G]-S-bimodule. Thus,
we have a bifunctor

HOIIIA(—, —) ; (MOdA[G]®RBa)o X MOdA®RS° == MOdB[(;]@RSO'

Now, if M* is a complex of A[G]-B-bimodules and N* a complex of A-S-bimodules,
we define a complex Hom§} (M*®, N*) of B[G]-S-bimodules by

Homj (M*, N*) = [ [ Homy (M, N**)
i€Z
with differentials as in Section 1.2. By abuse of notation, we shall also denote this by
Homy (M, N). By a standard argument (see [Wei, Chap. 10]), we have bifunctors

RHOHIA(——, —) : D_(]Wod/\[(;]@RBa)o X D(MOdA@RSc) b D(A'IOdB[G}@)RSo),

where RHomy (M, N) can be represented by Homu (M, N) if M is a bounded above com-
plex of projective A[G] ® g B°-modules, and

RHomy (=, —) : D(Modjgjggpe)’ X DT (Modaggrse) — D(Modpiciezse)

where RHom, (M, N) can be represented by Homy (M, N) if N is a bounded below com-
plex of injective A ® g S°-modules. These two bifunctors coincide on D~ (Moda(g)gB°)° X
D*(Modpgs-). We shall write RHomy (M, N) = Homy (M, N) if RHom (M, N) is rep-
resented by Homy (M, N).

Now set B = R. Then we have Modgggrse = Modgeig. The underlying functor
U : Modyjg) — Mod, is exact and induces a functor (which we still denote as U, from
D(Modyc)) to D(Mody)). These functors fit into the following commutative diagram.

Hompy (—,—
K(Modpe)® x K(Modagpse) A L K(Modgeg)
UAXidl 1[;’50
K(Mody)® x K(Modpg s0) ——t"2) | K (Mods.)

Since a projective A[G]-module is also projective as a A-module, we have the following
commutative diagram.

RHomj (—,—)

D—(MOdA[G])O X D(]V[OdA®RSc) D(Mfodgo[G])
UAXidl lUSO
- N RHomj (—,—)
D (MOd/\) X D(MOdA®Hsa) D(M()dsa)
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Proposition 1.3.2. Suppose that M is a bounded above compler of A[G]-modules that
are projective A-modules. Then we have

RHomu (M, N) = Homy (M, N).

Proof : Choose a bounded above complex P of projective A[G]-modules such that there
is a quasi-isomorphism f : P —s M. Then Homu(P, N) represents RHomy (M, N).
Since a projective A[G]-module is also a projective A-module, we have Homy (U, (P), N)
representing RHoma (U (M), N). Since M is a bounded above complex of projective A-
modules, we also have Homy (Ux (M), N) representing RHomy (Ux (M), N). This implies
that

Homy (U (M), N) L5 Homy (Ux(P), N)

is a quasi-isomorphism of complexes of projective S°-modules. Since f* is a morphism of
complexes of S°[G]-modules, we have a quasi-isomorphism

Homy (M, N) 5 Homy (P, N)

of complexes of S°[G]-modules. This implies that RHomy (M, N) = Homy(M,N), as
required. O

Now we set A = 5. We have the following commutative diagram.

Homp (—,—)

K(MOdA[G])O X K(MOdAe) K(]\/deAo[G])
Ua XTesAl l"'esR

K(Mody)° x K(Mody) —2"7 | g (Modpy)

By Lemma 1.3.1, this induces the following commutative diagram.

RHomp (—,—)

D_(MOdAlG])O X D+(MOdAe) D(MOdAa[G])
UAxresAl lresn

D~(Mody)® x D*(Mody) ——2220) | D (Modpg)

Proposition 1.3.3. Let M be a complez of A[G]-modules. If A is a flat R-algebra, then
for a bounded below complex N of A®-modules which are injective A-modules, we have
RHOH]A(M, N) = HOIIlA(M, N)
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Proof : Let I be a bounded below complex of injective A®~-modules such that there is a
quasi-isomorphism I — N. Then RHom, (M, N) is represented by Homy(M,I). By
Lemma 1.3.1(3), it follows that RHom, (M, N) is represented by Homy (M, resy(I)). It
follows from our assumption on N that RHomy(M,resy(N)) is represented by
Homp (M, resy(N)).  This implies that Homp(M,resy(N)) is quasi-isomorphic to
Homp (M, resp(I)), which in turn implies that Homa (M, N) is quasi-isomorphic to
Homy (M, I). Hence it follows that RHomu (M, N) can be represented by Homu (M, N).
a

Now if we set A =S = B and G = 1, we obtain bifunctors
HOIIlA(—, —‘) i (MOdAe)o X MOdAe e MOdAe

and
RHomy (—, —) : D™ (Modye) x DT (Modye) — D(Modye).

By similar arguments as above, we have the following proposition.

Proposition 1.3.4. If A is a projective R-algebra, and if M is a bounded above complex of
A¢-modules which are projective A-modules, then we have RHomy (M, N) = Homp (M, N).

If A is a flat R-algebra, and if N is a bounded below complex of A®-modules which are
injective A-modules, then we have RHoma (M, N) = Homy (M, N). O

Recall that a complex N € Ch™(Mod,) is said to have finite injective dimension over
A if there exists an integer ng such that Ext} (M, N) = 0 for all n > ny and all A-modules
M. This is equivalent to N being quasi-isomorphic to a bounded complex of injective
A-modules (see [Hart, Chap. I, Prop. 7.6]). The following result is a variant of this (see
also [Ye, Prop. 2.4]).

Proposition 1.3.5. Let A be a flat R-algebra. Then the following are equivalent for any
complez N € Ch*(Mode).

(1) N is quasi-isomorphic to a bounded complex of A®-modules which are injective
A-modules and injective A°-modules.

(2) N has finite injective dimension over both A and A°.

Proof: Clearly (1) implies (2). Suppose (2) holds and choose ny such that Ext} (M, N) =0
and Ext}{,(M, N) = 0 for all n > ng and every A-module M and A°-module M’. Let I be a
bounded below complex of injective A®-modules that is quasi-isomorphic to N. By Lemma
1.3.1(3), this is also a complex of injective A-modules and injective A°-modules. By the
hypothesis, the ny term of ,<,,/ is an injective A-module and an injective A°-module,
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and the complex <,/ is quasi-isomorphic to / via the natural map / — ;<,,/. Thus,
we have that NV is quasi-isomorphic to ;<n,/ which is a bounded complex of A*-modules
that are injective A-modules and injective A°-modules. O

For an S-A-bimodule L and a A[G]-module M, we endow L ®, M with the structure
of a S[G]-module by setting g(n ® m) =n® gm for g € G,n € N and m € M.

If M* is a complex of A[G]-modules and L* is a complex of S-A-bimodules, we define
the complex L®* @, M* of S[G]-modules by

(Lo R A{.)n - @L’L ®n Mt
i€Z
with differentials defined as in Section 1.2. As in the case of Hom, we shall abuse notation

and denote this by L ®, M. By a similar argument to those in Proposition 1.3.2 and
Proposition 1.3.3, we have the following result.

Proposition 1.3.6. The tensor product induces a bifunctor
— ®% — : D™ (Modsgae) x D™ (Modyg) — D(Modgg)).

If M is a bounded above complex of A|G]-modules which are projective A-modules, then
we have N @ M = N @, M.

If S is a flat R-algebra and N is a bounded above complex of S ® g A°-modules which
are flat A°-modules, then N @Y M = N ®, M. O

We detail a relationship between the above defined derived functors in the following
proposition.

Proposition 1.3.7. Let A be a central flat R-algebra. For any M € D™ (Modyig), N €
D®(Mody) and I € D*(Mody.), we have an isomorphism

RHomy (N ®% M, I) = RHomy (M, RHom, (N, 1))
mn D(MOdAo[G]).

Proof : Replacing M by a bounded above complex of projective A[G]-modules, we may
assume that M is itself a bounded above complex of projective A[G]-modules. Similarly,
we may assume that / is a bounded below complex of A®-modules which are injective as
A-modules. Then by Proposition 1.3.6 and Proposition 1.3.3, we have

RHomy (N ®% M, I) = Homy(N ®, M, )

18



and
RHomA(M, Hom, (N, I)) = Hom, (M, Hom, (N, I)),

where one observes that Homa (N, I) is bounded below. Therefore, we are reduced to
showing that there is an isomorphism

Homy (N ®x M, I) — Homy (M, Homy (N, I))

of complexes, and this follows from Lemma 1.2.2. O

Now if M is a A[G]-module and N is a A°[G]-module, we define a G-action on M @ N
by g(m ® n) = gm ® gn. This gives M ®g N the structure of a A[G]-A-bimodule. Thus,
we have the following bifunctor -

— Q@R — i MOdA[G] X MOdAo[G] — MOdA[G]®RAa.

Lemma 1.3.8. Given a A[G]-module M, a A°[G]-module N and a A[G]-A-bimodule P
with trivial G-action, we have isomorphisms

adj : Homp(gg zae(M ®r N, P) — Hoon[G](N, Homy (M, P))
d HomA[G]®HAo(M ®r N,P) — HomA[G](M, Homy. (N, P))

of abelian groups.

Proof : We shall only prove the first isomorphism, the second being analogous. We first
show that adj(f) lies in Hompeig) (N, Homy (M, P)). Let f € Homygigpae(M ®g N, P).
Then we have the following :

(adj(f)(nA))(m) = f(m@nA) = f(m @n)A

= (adj(f)(n))(m)A = ((adj(f)(n)) - A)(m);
(adj(f)(gn))(m) = f(m® gn) = f(g~'m®n)

= (adj(f)(n))(g~'m) = (g - (adj(f)(n)))(m).

The homomorphism adj is clearly injective, so it remains to show that it is surjective.
Let h € Hompo(g (N, Homp (M, P)). We define f : M@ N — P by f(m®n) = h(n)(m).
It suffices to show that f € Homygjgrae(M ®z, N, P). The following records the routine
checking:

f(m @n) = h(n}(Am) = A(h(n)(m)) = Af(m @ n)
f(m ®@nA) = h(nA)(m) = (h(n)A)(m) = (h(n)(m))A = f(m @n)A
flgm ® gn) = h(gn)(gm) = (g7" - h(gn))(m) = h(n)(m) = f(m @ n).
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We end this section with a few technical results.

Lemma 1.3.9. Let M be a finitely generated A-module, and let {N,} be a direct system

of A®g S°-modules. Write N = lim N,. Then we have a canonical monomorphism
3

limy Homy (M, N,) — Homy (M, N)

«

of S°-modules. Moreover, if all of the canonical maps i : N, — N are injective, then the
map is an isomorphism.

Proof : Say M is generated by my,...,m,. Suppose (fs) € lim Homa(M, Ny) and f =
li_n}fQ = 0. Then for each j = 1, ..., 7, there exists a; such that f, ,(m;) =0in N,,. Since

t}o{ere are only finitely many of these, by the directed set property, we can find an «aq such
that fa,(m;) = 0 for all j. Hence (f,) = 0.

For the second assertion, let f € Homy (M, N). Then, for each j = 1. ..., 7, there exists
a; such that f(m;) = iq;(na,) for some n,; € N,,. Since there are only finitely many of
these, by the directed set property, we can find an o such that f(m;) = iq,(n;) for some
n; € Ny, for all j. Thus 3! f € Homy (M, N,,), and we have established surjectivity. O

Lemma 1.3.10. Let R be a commutative ring, and let A be an R-algebra. Then for any
R-modules M and N, the following map '

01A®RHOIHR(M,N) —)HOIHA(A®RM,A®RN)
AR fr— (p®z— pul® f(z))

is a homomorphism of A°-modules. Moreover, if M is a finitely presented R-module and
A is a flat R-algebra, this is an isomorphism.

Proof : Let A\, u,e € A. Then we have
0(Ae® f)(p®x) = pAe ® f(2) = (LA® f(z))e = O0(A® f)(u®2)e = (0(A® f) - €) (L ® ).

This shows that 6 preserves the A°-action. Now if M is a finitely presented R-module,
we have an exact sequence R" — R® — M — 0. This in turn induces the following
commutative diagram with exact rows

A ®r HOIIlR(RS, N)

|

0 — Homp (A ®g M,A ®r N) — Homy (A ®r R*, A ®r N) — Homp (A ®p R",A®g N)

0——A®p HomR(M,N)

A®gr HOII’IR(RT, N)
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since A is a flat R-algebra. Since the two maps on the right are clearly isomorphisms, so
is the one on the left. O

Lemma 1.3.11. Let R be a commutative ring, and let A be a flat R-algebra. Suppose M
s a bounded above complex of finitely presented R-modules and N is a bounded complex
of R-modules. Then the following map '

01A®RHOI’IIR(M,N) —*HOII]A(A®RM,A®RN)
AR fr (u®z > pur ® f())

s an isomorphism of chain complezes.

Proof : Since N is bounded, we have

@ Hompg(M*, N*™*™) = H Hompg(M*, N**™),

and so the term in degree n for the complex on the left is

P A @ Homp(M*, N**™).

We note that A ®g N is also bounded, and so the term in degree n for the complex on
the right is
@ HomA(A ®R Mi, A ®R Ni+n).

It follows from a direct verification that the map defined in the lemma is a chain map.
Since the map is an isomorphism in each degree by the preceding lemma, it follows that
the chain map is an isomorphism. O

Lemma 1.3.12. Given a A-module A, a A ®r S°-module B and an S ®g (A')°-module
C, we have a homomorphism

7 : Homp (4, B) ®s C — Homy (A, B ®5 C)
f®cr (ar fla)®c)

of (N')°-modules. This is an isomorphism if either of the two following cases holds.
(1) A is a finitely generated projective A-module.
(2) A is a finitely presented A-module and C' is a flat S-module.

Proof : See [Ish, Lemma 1.1]. O

We extend the above lemma to the derived setting (see also [Ven, Prop. 6.1]).
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Lemma 1.3.13. Let A be a complex of A-modules, B be a bounded complex of A @ S°-
modules and C' be a complex of S®r(A')°-modules. We assume that A’ is a flat R-algebra.
Suppose A is quasi-isomorphic to a bounded below complex of finitely generated projective
A-modules, and suppose C' is quasi-isomorphic to a bounded complex of S®pg(A")°-modules
which are flat S-modules. Then we have an isomorphism

RHomy (4, B) ®% C =5 RHom, (4, B ®% 0)
m D(Mod(/\l)o).

Proof : Without loss of generality, we may assume that A is a bounded below complex of
finitely generated projective A-modules and C is a bounded complex of S®g(A’)°-modules
which are flat S-modules. Then it suffices to show that there is an isomorphism

Homy (A, B) ®s C — Homy (A, B®5 C)

of complexes of (A’)>-modules. Since B and C are bounded, the terms in degree n for
both complexes are
&P Hom(4', B+) @5 C™
irj
and
GB Hom(A*, B @g C™)
%,J

with differentials given respectively by
d(f®c)=dof®c+(-1)Y'fod®c+ (-1 f®dc
for f € Hom(A?, B*J) and ¢ € C"7J, and
dg=dog+(-1)""go(d®id) + (—1)"*" g0 (id ® d)

for g € Hom(A*, B @5 C"7). Let (i,4,n) be a triple of indices with values in Z such
that the following relations hold:

(1) (<1)009 = 1,

(2) (~1)6+19m) = (—1)Gm),

(3) (~1)69+7) = (—1)=3(—1)6m),

(4) (_1)(i,j,n+1) = (_1)i+n—1(_1)(i,j,n)'
Then we define a morphism

Homy (A, B) ®s C — Homy (A, B®g C)
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by the following assignment: f ® ¢ € Homy (A%, B*+) ®s C"™ is mapped to (a —
((=1)@3™) f(a) ® c)). This gives a morphism of complexes by our construction of (i, j,n).
By the preceding lemma, each of the individual maps is an isomorphism, and so the chain
map is also an isomorphism. O
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Chapter 2
Adic rings

Completed group algebras of certain finitely generated profinite groups arise naturally in
the study of Iwasawa theory. In particular, an important class of such completed algebras
comes in the form of Z,[I'] where I' is a compact p-adic Lie group. These rings belong
to a class of rings known as adic rings. In this chapter, we shall study the properties of
such rings and their (topological) modules. We will also develop a cohomological theory
over such rings. This chapter will provide the background knowledge and necessary tools
for Chapter 4 and Chapter 5.

Let A be an associative (not necessarily commutative) unital ring, and denote by 91
the Jacobson radical of A which is the intersection of its left maximal ideals. Then there
is a canonical ring homomorphism

A — limA/90"
n

with kernel (), 91". We say that the ring A is an adic ring if A/9" is finite for all n > 1
and the above ring homomorphism is an isomorphism. We remark that this definition
mimics that in [FK], where in their definition, A/9" is taken to be finite of order a power
of a prime p. Although, in the context of Iwasawa theory, we usually work with adic rings
where each A/9M™ is finite of order a power of a prime p, we shall adopt this (slightly)
more general definition in the development of the general theory, since there are no extra
difficulties involved. In fact, one will see that most of the material presented here parallels
that in [NSW, Chap. V §2].
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2.1 Finitely presented A-modules

From now on, we shall endow an adic ring A with the 9-adic topology. It is immediate
from the definition of an adic ring that A is compact under the 9M-adic topology. Since
IM" is a two-sided ideal, it follows that A is an adic ring if and only if A° is. In this
section, we will show that there is a natural way to endow finitely presented A-modules
with the 9M-adic topology.

Recall that for a topological abelian group M, the Pontryagin dual MV of M is defined
by Homgs(M,R/Z). When M is profinite (resp., pro-p), we have MY = Homs(M, Q/Z)
(resp., Home(M,Qp/Zy)). If M is discrete (resp., discrete p-torsion), we then have
MY = Homz(M,Q/Z) (resp., Homz,(M,Q,/Z,)). With these descriptions in hand, we
are now able to prove the following proposition.

Proposition 2.1.1. Let M be o finitely presented left A-module. Then we have the
following:
(a) M = lim M/MM"M.

(b) HomA(?\/l, AV)Y = MY as A°-modules (where M is endowed with the profinite topol-
ogy tnduced by the isomorphism in (a)). ’

(¢) If M is a A-S-bimodule, the isomorphism in (b) is an isomorphism of S-A-
bimodules. _

(d) If M is a left A[G)-module for some group G, the isomorphism in (b) is an iso-
morphism of A°|G]-modules.

Proof : Since M is ﬁnitely presented, we have an exact sequence A" — A°* - M — 0 for
some integers r and s. Applying A/9™ @, —, we obtain an exact sequence

A/ — (A/I™)° — M/IMM — 0.
Since each term in the sequence is finite, taking inverse limits yields an exact sequence
(lim A/9™)" — (lim A/9")* — lim M/9M"M — 0

which fits into the following commutative diagram

AT A® M 0

l | |

(tim A/ — (lim A/9")° — lim M/D0"M —— ¢
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with exact rows. Since the two maps on the left are isomorphisms, so is the one on the
right, and this proves (a). For (b), we first note that

Homs(M, Q/Z) = lim Homgz (M/9M" M, Q/Z)

and observe that
Homy (M, AY) = Homy (M, lim Homz(A/9M", Q/Z))
= lim Homy (M, Homz(A/9M", Q/Z)) (by Lemma 1.3.9)
= lim Homz(M/M"M,Q/Z) = M".

It follows from a straightforward calculation that the above isomorphism is given by
sending f € Homp(M,AY) to (m — f(m)(1)) € MV. Denote this isomorphism by .
Then for A\ € A and m € M,

alf - N)(m) = (f- N(m)(1) = f(Am)(1) = a(f)(Am) = (a(f) - A) (m).

This shows that the isomorphism preserves the A%-action and we have (b). Part (c¢) and
(d) can be dealt with similarly. O

We have the following corollary. See also [Ne, 2.9.1] for the case when A is commutative
local adic.

Corollary 2.1.2. If A is left Noetherian, then AV is an injective left A-module.

Proof : For every left ideal 2 of A, we have a map Homy (A, AY) — Hom, (2, AY) induced
by the inclusion 2 <— A. By hypothesis, the ideal 2 is Noetherian and hence finitely
presented. Thus we may apply the previous proposition and the exactness of Pontryagin
dual to obtain the surjectivity of this map. By Baer’s Criterion (see [Wei, 2.3.1]), we have
the required conclusion. O

Corollary 2.1.3. Suppose A’ is another adic ring with Jacobson radical 9. Let M be
a finitely presented A-module and N be a A" @ g A°-module which is a finitely presented
A -module. Then N @, M is a finitely presented A'-module and .

N Ry M= &n(N/ﬁﬁ’"N) ®r M.

n
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Proof : We have an exact sequence A" — A®* — M — 0. Applying N ®, —, we obtain

an exact sequence
N — N° — N @y M — 0.

Therefore, N ®, M is a finitely presented A’-module. By Proposition 2.1.1, we have
N@yM= Ln((N ®p M)/M™(N @4 M)).

Now observe that
M™(N @4 M) = im((IM™N) @ M — N @, M),
and so the conclusion follows by the right exactness of the tensor product. O

Proposition 2.1.4. Let M be a A-module such that M = li_r’nMa, where each M, is a
finite A-module. Then Homp(M,AY) = Homgz(M,Q/Z). In the case where M is given
the discrete topology, we can replace the last term by MY. Furthermore, if M and the M,
are A-S-bimodules, the isomorphism in (b) is an isomorphism of S-A-bimodules. And if
M and the M, are A[G]-modules for some group G, the isomorphism is an isomorphism
of A°[G]-modules.

Proof : Since each M, is a finite A-module, it follows that the A-submodules 9" M,
stabilize for big enough n. By Nakayama’s lemma [Iss, Thm. 13.11], this implies that
M M, = 0 for some large enough n,. Then for each «, we have

Homp(Ma, AY) = Homy (Ma, lim Homgz (A /900", Q/Z))

1%

li_r)nHomA(]Wa, Homgz (A/9M", Q/Z)) (by Lemma 1.3.9)

[12

lim Homz (M, /90" My, Q/Z)
= Homg(M,, Q/Z)
The conclusion follows by taking inverse limit over a. O
Corollary 2.1.5. Let M be a finitely presented A-module. Then we have an isomorphism
M = Homy. (Homy (M, AY), AY)

of A-modules. Moreover if M is a A-A-bimodule, then the above isomorphism is of A-A-
bimodules.
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Proof : As seen in the proof of Proposition 2.1.1(b), we have M"Y = lim(M/9M"M)".

am
Since (M/9MM"M)Y is a finite A°-module for each n, it follows that

Homye (Homy (M, AY), AY) Hompo (MY, AY) (by Proposition 2.1.1)
(MVY)Y (by Proposition 2.1.4)

=~ M (by Pontryagin duality). O

111

2.2 Topological A-modules

In this section, we will study topological modules over an adic ring. These are Hausdorft
topological abelian groups with a continuous A-action, where as before, A is given the 91-
adic topology. In particular, we are interested in the following two classes of topological
A-modules.

Definition 2.2.1. We say that a topological A-module M is a compact (resp., discrete)
A-module if its underlying topology is compact (resp., discrete). The category of compact
A-modules (resp., discrete A-modules) is denoted by Cy (resp., Dy).

We now describe the structures of compact A-modules and discrete A-modules.

Proposition 2.2.2. (i) Every compact A-module is a projective limit of finite modules
and has a fundamental system of neighborhoods of zero consisting of open submodules. In
particular, it is an abelian profinite group.

(i1) Every discrete A-module is the direct limit of finite A-modules. In particular, it is
an abelian torsion group.

(7i1) Pontryagin duality induces a duality between the category Cpn of compact A-
modules and the category Do of discrete A°-modules.

(iv) The category Cp is abelian and has enough projectives and exact inverse limits.
The category Dy is abelian and has enough injectives and exact direct limits.

Proof : Suppose N is a discrete A-module, and let z € N. Then Anny(z) is an open ideal
of A. Therefore, Anns(z) contains 9" for some r. Thus A - z is an A/9"-module and
so is finite. This shows (ii). Now let M be a compact A-module. Then the abstract A°-
module MV is a discrete topological group. For this module to be a discrete A>-module,
we need the A%action to be continuous, and this is guaranteed by [F, Prop. 3(b)] (since
A is compact). By (ii), we have that MV is a direct limit of finite A°~-modules. Taking
the Pontryagin dual, we have that M = (MV)" is an inverse limit of finite A-modules.
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Part (iii) is immediate from what we have shown so far. Part (iv) follows from [RZ, Prop.
5.4.2, Prop. 5.4.4]. O

We give another description of discrete A-modules in terms of “D-torsion”. If M is a

A-module, we define
MO ={z e M| M" C Ann(z)}.

With this, we have the following lemma.

Lemma 2.2.3. Let M be an abstract A-module. Then M is a discrete A-module (i.e.,
the A-action is continuous with respect to the discrete topology on M) if and only if

M= M),
n=1
Proof : Suppose that M is a discrete A-module. Let z € M. Then by the continuity of
the A-action, there exists a positive integer r such that 9" - z = 0. This implies that
z € M[9).
Conversely, suppose that
M = | M.
n=1
We shall show that the action
0:AxM— M

is continuous, where M is given the discrete topology. In other words, for each x € M,
we need to show that 6~'(z) is open in A x M. Let (\,y) € 6~ '(z). Then y € M[IMN"]
for some n. Therefore, we have (\,y) € (A+9") x {y}, and the latter set is an open set
contained in 6~ !(z). O -

Corollary 2.2.4. A finite abstract A-module is a discrete A-module.

Proof : Let M be a finite abstract module. Then 91" M stabilizes, and it follows from
Nakayama’s lemma [Iss, Thm. 13.11] that we have 9" M = 0 for big enough n. By
Lemma 2.2.3, this implies that M is a discrete A-module. O

When working with topological A-modules, one will have to consider continuous ho-
momorphisms between the modules. In general, an abstract homomorphism of modules
may not be continuous. However, the next lemma will give a few situations where every
abstract homomorphism is continuous.
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Lemma 2.2.5. Let M and N be two topological A-modules. Suppose one of the following
cases holds. '

(1) Both M and N have the 9M-adic topology.

(2) Both M and N have the discrete topology.

(3) M has the M-adic topology and is finitely generated as a A-module, and N is a
discrete A-module.

(4) M has the M-adic topology and is finitely generated as a A-module, and N is a
compact A-module.

Then every abstract A-homomorphism is continuous. In other words, we have

)

Hompy, cts(M, N) = Homp (M, N).

Proof : (1) This follows from the observation that for every abstract A-homomorphism
f:M — N, one has f(9M"M) C IM"N.

(2) This is obvious.

(3) Let f: M — N be an abstract A-homomorphism. Since M is finitely generated,
there exists a big enough n such that f(M) C N[9M"] by Lemma 2.2.3. This in turn
implies that "M C ker f.

(4) Let f : M — N be an abstract homomorphism of A-modules. By Proposi-
tion 2.2.2(i), we may choose a system {N,} of neighborhoods of zero consisting of open
submodules of N. Since N/N, is the quotient of a compact A-module by an open A-
submodule, it follows that N/N, is a finite discrete abelian group. By the preceding
corollary, it is a discrete A-module. Therefore, if we denote by m, : N — N/N, the
canonical quotient homomorphism, the following homomorphism

ML N I N/N,

of A-modules is continuous by Lemma 2.2.5(1). Therefore, by the universal property of
the inverse limits, the induced map

f:M — lim N/N, = N

[e3
is continuous and coincides with f. O

Now that we have good descriptions of compact A-modules and discrete A-modules, we
shall give some examples of such modules. It turns out that finitely presented A-modules
(resp., their Pontryagin duals) give a nice class of compact A-modules (resp., discrete
A°-modules).
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Lemma 2.2.6. A finitely presented A-module endowed with the 9M-adic topology is a
compact A-module.

Proof : Tt follows from Proposition 2.1.1 that M is a compact abelian group. It remains
to show that the action
0:AxM— M

is continuous. Suppose §(\,z) € y + 9" M. Then one has that Az) e (A+IM") x (z+
9" M) which can be easily verified to be an open set contained in 6~!(y + 9" M). O

Corollary 2.2.7. If M is a finitely presented A-module, then MV is a discrete A°-module.
Proof : This follows from Proposition 2.2.2 and Lemma 2.2.6. O

Corollary 2.2.8. Let M be a finitely presented A-module, endowed with the 9M-adic

topology. We have
Hom/\,cts(M7 Av) -~ HOl’l’lA(M, AV)

Furthermore, if we endow Homy (M, AY) with the compact-open topology via the above
equality, the isomorphism in Proposition 2.1.1(b) is a homeomorphism of discrete A°-
modules. :

Proof : The first assertion follows from Lemma 2.2.5(3) and Lemma 2.2.6. The second
assertion follows from the general fact that if M is a compact A-module and N is a discrete
A-module, then Homy os(M, N) is discrete under the compact-open topology. O

In view of Lemma 2.2.6, one may ask the following two questions. The first is if one
can say anything about the 9)t-adic topology on an abstract A-module M. In general, it
is not even clear whether this topology is Hausdorff. The second question that one may
ask is if there are other ways to endow a finitely presented A-module with a topology such
that it becomes a compact A-module. In response to these two questions, we have the
following proposition. In fact, as we shall see, if M is already a compact A-module, the
M-adic topology is Hausdorff, and it is the only one with which one can endow a finitely
presented A-module in order to make it into a compact A-module. One may compare the
following proposition with [NSW, Prop. 5.2.17].

Proposition 2.2.9. Let M be a compact A-module. Then the IM-adic topology is finer
than the original topology of M, and the canonical homomorphism

a: M — lim M/M

1
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of A-modules is injective. Furthermore, if M is a finitely generated A-module, then the
topologies coincide, and the above homomorphism is a continuous isomorphism of A-
modules.

Proof : Let N be an open submodule of M. Then by continuity, for each z € M,
there exists a neighborhood V, of z and a natural number n, such that 9"V, C N.
Since M is compact, it is covered by finitely many such sets, say V., Va,, ..., Vz,. Setting
n = max{ng,, ..., Nz, }, we have M"M C N. This shows the first assertion. Since M is
Hausdorff under its original topology, it follows that M is Hausdorff under the 91-adic
topology and so

(M = 0.
t=1
Now if M is finitely generated, we have a surjection
A™ — (M with 9—adic topology),

which is continuous by Lemma 2.2.5(1). This implies that M with the 9t-adic topology
is compact. By the first assertion, the identity map

(M with 9M—adic topology) — M

is continuous. This in turn gives a continuous bijection between compact spaces and is
therefore a homeomorphism. If M is given the 9M-adic topology, then the image of « is
dense in lim M /9 M, and so is surjective since M is compact. O

1

The following statement is a corollary of 2.2.9.

Corollary 2.2.10. Let M be a compact A-module. Then every finitely generated abstract
A-submodule of M is a closed subset of M. In particular, every finitely generated (left)
ideal of A is closed in A.

Proof : Let N be a A-submodule of M generated by zy,...,z,. Then the following A-
homomorphism

¢: P, A — (M with M—adic topology) XM

is continuous by Lemma 2.2.5(1) and Proposition 2.2.9. Therefore, we have that NV is an
image of a compact A-module under a continuous map. In particular, this implies that
N is closed. O

32



We have the following version of Nakayama’s lemma for compact A-modules (see also
[NSW, Prop. 5.2.18]).

Proposition 2.2.11. Let M be a compact A-module. Then the following hold.

(2) If MM = M, then M = 0.

(i) The A-module M is generated by z1,...,z, if and only if z1 + MM, ..., z, + MM
generate M /MM over A/IN.

Proof : By Propbsition 2.2.9, we have

M =[()MM =0.
i=0
This proves (i). For (ii), we shall prove the nontrivial implication. Suppose we have
Z1,...,x, € M such that z; + MM, ..., z, + MM generate M /MM over A/9M. Let N be
the A-submodule of M generated by z1, ..., z,. It follows from Corollary 2.2.10 that N is
a closed A-submodule of M. As a quotient of a compact module by a closed submodule,

we have that M/N is a compact A-module. By the construction of N, we have that
IM(M/N) = M/N. By (i), this implies that M = N. O

Proposition 2.2.12. Suppose M is an abstract A-module such that M = Lil_nM/Ma,
where {M,} is a direct system of A-submodules of finite index. Then M is a compact

A-module, where the topology on M is given by the inverse limit. Furthermore, for such
a module M, it is finitely generated over A if and only if M/IMM is finite.

Proof : The second assertion follows immediately from the first assertion and Lemma
2.2.11(ii). Thus, it remains to show that the A-action

0:AxM—M

is continuous with respect to the topology given by the inverse limit. By Corollary 2.2.4,
the assertion holds if M is a finite A-module. For a general M, let (\,z) € 8~ (y+ M,) for
A € Aand z,y € M. This is equivalent to A(z + M,) = y+ M, in M/M,. Since M /M, is
finite, it follows from the above that there is an n such that (A+ ") (z+ M,) C y+ M.
This shows the continuity of §. O

We now restate what we have done so far in a categorical language.
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Proposition 2.2.13. The underlying functor from the category of topological A-modules
to the category of abstract A-modules induces the following equivalences of categories.

with continuous M =, M[9N"] with abstract

{Dz’screte A—modules} { Abstract A-modules such that }
—
A-homomorphisms A-homomorphisms

Finitely presented Finitely presented
compact A-modules -~ abstract A-modules
with continuous with abstract
A-homomorphisms A-homomorphisms
Compact and Finite
discrete A-modules R abstract A-modules
with continuous with abstract
A-homomorphisms A-homomorphisms

Proof : This follows from Lemma 2.2.3, Corollary 2.2.4, Lemma 2.2.5 and Proposition
229. 0

We conclude with a description of projective‘ objects in C, which are finitely generated
over A.

Proposition 2.2.14. Let P be a projective object in Cp that is finitely generated over
A. Then P is a projective A-module. Conversely, let P be a finitely generated projective
A-module. Then P, endowed with the 9M-adic topology, is a compact A-module and is a
projective object in Cy.

Proof : Let P be a projective object in C, that is finitely generated over A. Then there
is a surjection f : A" — P of A-modules. By Proposition 2.2.9, the topology on P is
precisely the 9-adic topology, and it follows from Lemma 2.2.5(1) that f is a continuous
homomorphism of compact A-modules. Now since P is a projective object in Cy, the
map f has a continuous A-linear section. In particular, this implies that we have an
isomorphism A" = P & (ker f) of A-modules. Hence P is a projective A-module.
Conversely, suppose that P is a finitely generated projective A-module. Then there
exists a finitely generated projective A-module @ such that P & @ is a free A-module of
finite rank. We then have a surjection 7 : A" — @), and this gives a finite presentation

A"—>POQ— P —0

of P where the first map sends an element = of A" to (0, 7(z)) and the second map is the
canonical projection. Hence by Proposition 2.2.6, we have that P is a compact A-module
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under the 91-adic topology. Now suppose we are given the following diagram

P

la

M—»>N

of compact A-modules and continuous A-homomorphisms. Since P is a projective A-
module, there is an abstract A-homomorphism 3 : P — M such that ¢ = a. On the
other hand, it follows from Lemma 2.2.5(3) that 3 is also continuous. Therefore, we have
shown that P is a projective object of Cx. O

2.3 Noetherian adic rings

Most of the adic rings that we work with in this thesis are Noetherian. This leads us to
examine (left) Noetherian adic rings in more detail. We shall see that such rings share
certain properties with commutative Noetherian rings.

Throughout this section, unless otherwise stated, all adic rings are assumed to be left
Noetherian. As a start, we have the following result, which follows immediately from
Proposition 2.2.13, since finitely generated modules over a Noetherian ring are finitely
presented.

Proposition 2.3.1. The forgetful functor

Noetherian Noetherian
compact A-modules _~, ) abstract A-modules

with continuous with abstract
A-homomorphisms A-homomorphisms

s an equivalence of categories. O

Recall from [Wei, Def. 4.1.1] that the projective dimension of an abstract A-module M
is the minimum integer n (if it exists) such that there is a resolution of M by projective
A-modules

0 == B == sus =3 Pj = == M ~= .

The topological projective dimension (see [NSW, Def. 5.2.10]) of a compact A-module is
defined similarly, replacing projective A-modules by projective objects in Cy. By Propo-
sition 2.3.1, the two notions coincide. In particular, the global dimension of A, which is
the supremum of the projective dimensions of all abstract A-modules M, coincides with
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the projective dimension of A, which is the supremum of the projective dimensions of all
compact A-modules M. We denote this common value by pd A. Also, for a Noetherian
A-module M, we denote its projective dimension (there is no ambiguity by the above
discussion) by pd, (M).

Denote by M odﬁ‘f * the category of Noetherian abstract A-modules. Since this cate-
gory has enough projectives, it follows from Proposition 2.2.14 and Proposition 2.3.1 that
the category of Noetherian compact A-modules (denoted by C,/\\_f *) also has enough pro-
jectives. Therefore, it makes sense to talk about the derived categories D~ (Mody ") and
D‘(Cf\\"ft). Denote by Dj_(Mody) the full subcategory of D~(Mod,) where the ob-
jects are bounded above complexes X of A-modules such that all the cohomology groups
H*(X) are Noetherian A-modules.

Lemma 2.3.2. We have the following equivalences
D~ (Cy™/") =5 D™ (Mody ') =5 D3_;,(Mody)

of categories, where the first equivalence is induced by the forgetful functor and the second
equivalence is induced by the inclusion Mody 7" < Mod,.

Proof: The first equivalence is immediate from Proposition 2.3.1 and the above discussion.
The second equivalence follows from a similar argument to that in [Ne, 3.2.6-8]. O

We now make the following definition.

Definition 2.3.3. A two sided ideal J of a ring S is said to have the (left) Artin-Rees
property if for every (left) ideal 2 and every s, there exists n = n(s) such that 3" N2A C
J%2(. We shall abbreviate “Artin-Rees property” to “AR property”.

When A is commutative Noetherian, it follows from the Artin-Rees lemma (see [Mat,
Thm. 8.5]) that every ideal satisfies the Artin-Rees property. In the general case of a
left Noetherian adic ring (not necessarily commutative), we shall see that the Jacobson
radical of the ring has this property. We record the following lemma which extends that
in [N]. We do not assume that A is Noetherian in the lemma.

Lemma 2.3.4. Let M be a topological A-module whose topology is the 9-adic topology,
and let N be a finitely generated A-submodule of M such that 9M*N is closed in M. Then
there exists n such that 9M"M NN C 9°N.

Proof : Since N is finitely generated over A, it follows that N/9°N is finitely generated
over A/9°, and so N/9N is finite. Thus, the image of MM NN — N/IM°N is
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constant for big enough r. On the other hand, since 9°*N is closed in M, we have
Ny (VM +IMN) = MM°N. Therefore, we have

M@V M AN +MN) = N [)OUM +3°N) = NN = N,
r>0 r2>0

where the first equality follows from the modular law (see the next lemma). Hence there
exists n such that 9M"M NN COM*N. O

Lemma 2.3.5. Let M be a A-module with éubmodules A, B,C, and suppose that C C B.
Then
C+(BNA) =Bn(C+A).

Proof : This is straightforward. O
Proposition 2.3.6. If A is left Noetherian adic, then 9 has the left AR property.

Proof : By assumption, every left ideal of A is finitely generated and is therefore closed
by Corollary 2.2.10. Let 2 be a left ideal of A. Then for each s, we have that 2% is
closed in A and the conclusion follows from Lemma 2.3.4. O

In general, the knowledge that a two sided ideal of a Noetherian ring (not necessary
adic) satisfies the AR property will yield certain homological relations (see [Bo, NJ]). In
this thesis, we will be interested in the following result.

Proposition 2.3.7. Suppose A is left Noetherian adic. Then the left global dimension of
A is equal to the projective dimension of A/9M as a A-module.

Proof : This follows from Proposition 2.3.6 and the last corollary in [Bo]. O

When A has finite global dimension, we can refine the above proposition. In prepara-
tion for this, we have the following lemma.

Lemma 2.3.8. If M is a Noetherian A-module with finite projective dimension, then
pdy (M) = max{i | Ext} (M, A) # 0}.

Proof : See [Ven, Rmk. 6.4]. O

Hence, combining the above two results, we obtain the following.

Proposition 2.3.9. If A is left Noetherian adic, then we have

pd A = max{i | Ext} (A/9,A) # 0}. O
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2.4 Continuous cochains

Throughout this section, G' denotes a profinite group, and we will be looking at topological
A-modules with a continuous A-linear G-action. In particular, we will be interested in
the continuous cochain complex (and its cohomology) of G with coefficients in this class
of topological A-modules.

Definition 2.4.1. Let M be a topological A-module with a continuous A-linear G-action.
The (inhomogeneous) continuous cochains Ci (G, M) of degree i > 0 on G with values
in M are defined to be the left A-module of continuous maps G* — M with the usual
differential

() (g1, -wes Gir1) = g1¢(g2, +vrs i) +Z(—1)j0(917 s G341, o i) + (= 1) (g1, o0, 60),
j=1

which maps C (G, M,) to C5-1(G, M,,). Tt then follows that

cts

1
’ 2 Ccts

G, M) 2 citvG, My — -

cts

is a complex of A-modules and its ith cohomology groups are denoted by H: (G,M).
The following lemma is a standard result.

Lemma 2.4.2. Let

0— M -2M-L M —0
be a short exact sequence of topological A-modules with a continuous A-linear G-action
such that the topology of M' is induced by that of M and such that 3 has a continuous
(not necessarily A-linear) section. Then

@G,M

cts

0 — Cee(G, M') = C

(G,M") =0
is an exact sequence of compleres of A-modules.

Proof : See [NSW, Lemma 2.3.2]. O

We are particularly interested in the case when M is a compact A-module or a discrete
A-module.

Definition 2.4.3. We define C5 ¢ to be the category where the objects are compact
A-modules with a continuous A-linear G-action and the morphisms are continuous A[G]-
homomorphisms. Similarly, we define Dy ¢ to be the category where the objects are
discrete A-modules with a continuous A-linear G-action and the morphisms are continuous
A[G]-homomorphisms.
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Proposition 2.4.4. (i) The category Ca  is abelian, has enough projectives and exact
inverse limits.

(27) The category D ¢ is abelian, has enough injectives and exact direct limits.

(¢91) The Pontryagin duality induces a contravariant equivalence between Cp ¢ and
Dpo (resp. Croc and Dp ).

Proof : We shall prove (iii) first. By Proposition 2.2.2, it suffices to show that if M (resp.
N) is an object of Cp ¢ (resp. Dpog), then MY (resp. NV) is an object of Dyo g (resp.
Crc). We define a G-action on MY by o - f(m) = f(o™'m) for f € MY,0 € G and
m € M. This is clearly A°linear, and since G is profinite, we may apply [F, Prop. 3] to
conclude that the G-action is continuous. The same argument works for N. Hence we
have proven (iii). It remains to prove (ii), since (i) will follow from (ii) and (iii).

To prove (ii), we note that it is clear that D, ¢ is abelian and has exact direct limits.
[t remains to show that it has enough injectives. By the lemma to follow, we see that the
functor

A[H+LJLJ M™))Y : Modyg — Dac
n=1 U

is right adjoint to an exact functor, and so preserves injectives by [Wei, Prop. 2.3.10].
Since Mody(g) has enough injectives, it follows that D, ¢ also has enough injectives. O

Lemma 2.4.5. An abstract A[G]-module N is an object in Dy ¢ if and only if
= JU (vim))©
n=1 U
where U runs through all the open subgroups of G. Moreover, if M is an abstract A[G]-

module, then
UUMm"

s an object of Dy ¢, and there is a canomcal isomorphism
Hom/\ [G] cts( U U M[mn] ) = HomA[G](N, ]V[)

n=1 U

for every N € Dy ¢.

Proof : Suppose N is an object in Dy . Then, in particular, it is a discrete A-module.
By Lemma 2.2.3, we have N = J,—, N[9"]. Let z € N[9M"]. Then by continuity of the
G-action, there exists an open subgroup U of G such that U -z = z.

39



Conversely, suppose that

N =JJWvm)©
n=1 U
Clearly this implies that N = [J°2; N[91"], and so N is a discrete A-module. It remains
to show that the G-action
0:GxN—N

is continuous. Let € N, and let (0,y) € 6~*(z). Then y € N9}V for some n and open
subgroup U. In particular, we have (0,y) € oU x {y} C 6~!(z). Therefore, this proves
the first assertion. The second assertion is an immediate consequence of the first. O

Lemma 2.4.6. Let M be an object of Cy . Then M has a fundamental system of neigh-
borhoods of zero consisting of open A[G]-submodules.

Proof : Let N be an open A-submodule of M. Then for each g € G, there exists an open
A-submodule N, of M and an open subgroup U, of G such that gU, - N, € N. Since
G is compact, it is covered by a finite number of such cosets, say ¢1U,,, ..., g-U,.. Set
Ny = Ni_N,,. This is an open A-submodule of M. Then A[G] - Ny is a A[G]-submodule
of M which contains Ny and is contained in N. O

For the remainder of this section, we let € denote either Cy ¢ or Dp . Let M*® be a
complex of objects in € with differentials denoted by d,. We define C%(G, M*) by
Cn

cts

(G, M*) = @ Cl(G, M),

i+j=n

Its differential 62}? is determined as follows: restriction of 5”3 to C2 (G, M) is the sum
of

(d?}w)* E CgtS(G’ Ml) _ Cgts(G’ MH_l)

and
( 1) 5] i cts(G Ml) — Cg':s-l(G Ml)

We denote its ith cohomology group by H'. (G, M*®).

«

Proposition 2.4.7. Let 0 — M' = M L, M" — 0 be an ezact sequence of objects in €.
Then
G.m) 5 e

cts

0—C:

cts

(G, M) C?

cts

(G,M") =0

is an exact sequence of complexes of A-modules. The statement also holds true if we
replace M', M, M" by complexes of objects in €.
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Proof : By Lemma 2.4.2, it suffices to show that § has a continuous section. If € = D,,
this is obvious. In the case when € = C,, since every compact A-module is profinite by
Proposition 2.2.2, every continuous surjection has a continuous section. O

Let M* be a complex of objects in €. The filtration 7<;M* induces a filtration
TSJC

cts

(G, M*) =C"

cts

(G, T<;M*)
on the cochain groups which fit into the following exact sequence of complexes

00— C?

cts

(G, 7<;M°®) — C3u(G, T<j1M®) — 1< 11C5(G, M®) [7<;Co (G, M*) —>

by Proposition 2.4.7. This filtration gives rise to the following hypercohomology spectral
sequence

cts(G HJ (M.)) =2 H(Z:t-gJ(Ga M.)7
which is convergent if M* is cohomologically bounded below.

Lemma 2.4.8. Let f : M* — N*® be a quasi-isomorphism of cohomologically bounded
below complexes of objects in €. Then the induced map

fo 1 GG

cts

(G,M*) — Cg,

as(G V)
is also a quasi-isomorphism.

Proof : The map f induces isomorphisms

(G, H'(M*)) = Hi

cts

(G, HI(V").

cts

By convergence of the above spectral sequence, this implies that the induced maps
Ho(G, M*) — HW(G,N*)
are isomorphisms. O
Hence we can conclude the following.
Proposition 2.4.9. The functor
Cs.(G,—) : Ch*(€) — Ch™(Mod,)

preserves homotopy, exact sequences and quasi-isomorphisms, hence induces the following
exact derived functors :

RIs(G, —) : D*(Cp¢) — D*(Mod,)
chts( ) D+(DA,G) —— D+(M0d/\).
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Proof : This proposition follows from what we have done so far. The only subtlety lies
in the fact that Cy ¢ does not necessarily have enough injectives and therefore we do not
know if D¥(Cy ) exists. However, we know that Cs ¢ has enough projectives. Therefore,
D~ (Cy) exists, and we may apply Lemma 2.4.8 to D(Cy ¢). O

We now discuss cohomology and limits.

Proposition 2.4.10. Let N = 1iI_I_)1Na be an object of Dy, where N, € Dy . Then we
have an isomorphism ’

i
Ccts

(G, N) = 1im Gy (G, Na)
a
of continuous cochain groups which induces an isomorphism

Hgo (G, N) = lim H (G, Na)

of cohomology groups.

Proof : The first isomorphism is immediate and the second follows from the first since the
direct limit is exact. O

Proposition 2.4.11. Let M be an object in Cp ¢ which is a finitely generated A-module.
Then we have an exact sequence

cts cts
n n

0 — lim' H NG, M/ M) — H (G, M) — lim H}, (G, M/9IM" M) — 0.
Suppose further that G has the property that HT.(G, N) is finite for all finite discrete

A-modules N with a continuous commuting G-action and for all m > 0. Then

Ho(G, M) = lim Hy, (G, M/D"M).

Proof : By Proposition 2.2.9, the topology on M is precisely the 9-adic topology. Since
9" M are also A[G]-submodules, it follows that the isomorphism

M = lim M /9" M

n

in Proposition 2.1.1(a) is an isomorphism of objects in Cy ¢. Therefore, we have

i
Cct:s

(G, M/M"M).

cts

(G, M) = limC;
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http:discre.te

The first assertion now follows by a similar argument as in [NSW, Thm. 2.3.4]. The
additional assumption implies that the system {HZ (G, M /9" M)} satisfies the Mittag-
Leffler property (see [Wei, Def. 3.5.6]), and so we have hm H? (G, M/9" M) = 0 by [Wei,

cts
n

Prop. 3.5.7]. O

Proposition 2.4.12. Suppose that G has the property that HY. (G, N) is finite for all
finite discrete A-modules N with a continuous commuting G-action and for all m > 0.
Let M be an object in Cp ¢, and let {M,} be an inverse system of objects in Cy ¢ which are

also finitely generated A-modules. Suppose that lim M, = M. Then we have the following
isomorphism !

H. (G,M) = hmH

cts

(G, My)

of cohomology groups for n > 0.

Proof : Note that we have the following isomorphism

Cue(G, M) = hm Cets(G, My,) = lim Coys(G, My, /9% M,)

Faisa
n,k

of complexes of A-modules. This induces the following spectral sequence

lim' 7, (G, M, /T M,,) = H (G, M).

cts
n, k

Since the inverse is over a countable system, lim' 'H?, (G, M, /9MkM,,) = 0 for i > 1. By
n, k:

the assumption on GG, we have lim H. (G, M, /9MkM,,) = 0. Hence, the spectral sequence
n,k
degenerates and gives the following isomorphism

Hi(G, M) = lim H}, (G, My, /90 M,,).
nk

On the other hand, the latter is isomorphic to

lim lim HZ (G, M, /M M,,) 2 lim H?, (G, M.,)

n k n

by the preceding proposition. O
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Proposition 2.4.13. Suppose that G has the property that HIL(G,N) is finite for all
finite discrete A-modules N with a continuous commuting G-action and for all m > 0.
Let M* be a bounded complex of objects in Caq, and let {M2} be an inverse system of
bounded complexes of objects in Cp which are finitely generated A-modules such that
lim My = M* as complezes. Then we have the following isomorphism

n

H: (G, M*) = hm H:

cts

(G, My)

of cohomology groups for n > 0.

Proof : The canonical chain map M* — My — M} /9" M; induces the following
morphism of (convergent) spectral sequences

cts(G HJ(M.)) Hé:z_a](G? M.)

l

Hyy (G, HI (M /M My)) = Hel (G, My /9" My,)

which is compatible with n. By hypothesis, the bottom spectral sequence is a spectral
sequence of finite A-modules. Therefore, the inverse limit is compatible with the inverse
system of the spectral sequences, and we have the following morphism

cts(G HJ(M.)) H;;J(G M.)

|

lim H}, (G, H (My/M"My)) = hm HH (G, M2 /o M?)

cts
n

of (convergent) spectral sequences. By the preceding proposition and the fact that the
inverse limit is exact for compact A-modules, we have the following isomorphism

lim HY,, (G, HY (My /90" My)) = Hiy, (G, lim O (My /90" My)) = iy, (G, HI(M")).

cts cts

n

Hence, by the convergence of the spectral sequences; we obtain the required isomorphism.
O
2.5 Completed tensor products

Let R be a commutative adic ring, and let A be a central R-algebra which is also an adic
ring (not necessarily commutative). In particular, the ring homomorphism R — A is
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continuous. We will introduce certain completed tensor products with which we will work
in the thesis.

Let M be a compact A°-module and N be a compact A-module. We define the
completed tensor product to be the compact R-module

M®@\N = lim M/U ®x N/V,
A%

where U (resp. V') runs through the open A°-submodules of M (resp. open A- submodules
of N). Note that if we let Byy denote the R-submodule

mU Q@ N — M@y N)+im(M @V — M@, N)

of M ®, N, we have (M ®, N)/Byy = M/U ®r N/V. In other words, M@, N is the
profinite completion of M ®, N with respect to the collection of R-submodules By y.

The completed tensor product satisfies the following universal property (see [Wil,
Lemma 7.7.1] and comments before it): For any compact R-module L and any continuous
bilinear map f : M x N — L such that f(m)\ n) = f(m, An) for every m € M,n € N
and A € A, there is a unique continuous map f M®\N — L such that ft f, where
t:MxN — M&yN is the canonical map. It follows from the universal property that in
defining the completed tensor product, it suffices to run through a basis of neighborhoods
of zero consisting of open A°-submodules of M and a basis of neighborhoods of zero
consisting of open A-submodules of V.

Lemma 2.5.1. (1) There are canonical isomorphisms M&yA = M and A@yN = N.
(2) Suppose M = lim M; and N = lim N;, where each M; (resp., Nj) is a compact

i j
A°-module (resp., compact A-module). Then there is an isomorphism

M®yN @M@,\Nj.
2‘—7
(3) We have M@&\N = M ®, N if either M is a finitely presented A°-module or N is

a finitely presented A-module.
(4) Given a compact A°-module M, the functor

M®A— : CA — CR
s right exact. The analogous assertion holds for a compact A-module N.

Proof : See [RZ, 5.5] or [Wil, 7.7]. O

Since Cpo and Cp have enough projectives, we have the following result.
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Proposition 2.5.2. The completed tensor product induces the following derived bifunctor
~&x— : D™ (Cpo) x D™(Ca) — D~(Cr). O

Recall that from the discussion before Lemma 2.3.2 that if A is Noetherian, then C,’\\: —ft
and C/’\\_f * have enough projectives. By Lemma 2.5.1(3), we may identify the completed
tensor products with the tensor products. Therefore, we have the following result.

Proposition 2.5.3. If A is Noetherian, then we have the following derived bifunctor
— gk = D ) x D) — D (Cr). D

Now let G be a profinite group. Let M be an object in Cy ¢, and let N be an object
in Cr . In this case, the completed tensor product is taken to be

M@&gN = lim M/U ®g N/V,
uyv

where U (resp., V') runs through the open A[G]-submodules of M (resp., open R[G]-
submodules of N).

Lemma 2.5.4. The above-defined object is an object of Cp .

Proof : Tt follows from [Wil, Lemma 7.7.2] that M®gN is a compact A-module. By a
similar argument to that used in the proof of that lemma, we have that the G-action is
continuous. O

As in the case of Lemma 2.5.1, we can show that the completed tensor product defined
here is right exact, preserves inverse limits and coincides with the usual tensor product if
N is a finitely presented R-module. Recall that by Proposition 2.4.4(i), the categories Cy ¢
and Cg ¢ have enough projective objects. Therefore, we have the following conclusion.

Proposition 2.5.5. The completed tensor product induces the following derived bifunctor

—®I§— :D7(Cag) x D™ (Cre) — D™ (Cag)- O

Finally, let L be an object in Cyo and M be an object in Cp . In this case, the
completed tensor product is taken to be

L&\M = lim L/W ®5 M/U,
w,u

where W (resp. U) runs through the open A°-submodules of L (resp. open A[G]-submodules
of M). By a similar argument to the above, we have the following.
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Lemma 2.5.6. The above-defined object is in Crg. O

Proposition 2.5.7. There is a derived bifunctor

—®% —:D7(Cr. ") x D™(Cag) — D™ (Cre). O

2.6 Ind-admissible modules

The notion of ind-admissible modules was introduced in [Ne, 3.3] for commutative Noethe-
rian local rings. In this section, we shall see that the theory can be developed for Noethe-
rian adic rings and that many of the arguments used in [Ne| carry over. We will also
describe the category of ind-admissible modules in terms of Cy ¢ and Dy . Throughout
this section, we shall assume that our adic ring A is Noetherian.

Definition 2.6.1. Let M be an abstract A[G]-module. Denote by S(M) the set of A[G]-
submodules M, € M such that

(a) M, is a Noetherian A-module, and

(b) the action Ay, : G x M, — M, is continuous, where M, is given the 9M-adic
topology.

Remark. Note that by Proposition 2.2.9, we have that M, € S(M) is a compact A-
module under the 9-adic topology.

Lemma 2.6.2. (1) If M, € S(M), then N € S(M) for every A[G]-submodule N of M,.
(2) If My € S(M) and N is a A-submodule of M,, then A[G]- N € S(M).
(3) If My, Ms € S(M), then M, & My € S(M & M).
4) If f : M — N is a homomorphism of A[G]-modules and M, € S(M), then
f(Ma) € S(N).
(5) If My, Mg € S(M), then M, + Mg € S(M).

Proof : Part (1) is straightforward. Part (2) follows immediately from (1). For (3), it
suffices to check condition (b) of the preceding definition. This follows by observing that
the composite

Axidmg xMg AMa XAMg

GxMyxMg — "GXGEXMyxMg=GxMyxGxMg — " Myx Mg

is continuous.
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To see that (4) holds, we note that f: M, — f(M,) is a quotient map with compact
kernel. Hence id x f : G x M, — G x f(M,) is a quotient map and so induces a continuous
map G X f(M,) — f(M,). Hence we have the required conclusion.

Assertion (5) follows from (3) and (4) since M, + Mp is the image of M, & Mj €
S(M & M) under the sum map M @ M — M. O

Corollary 2.6.3. (1) Let M be a A[G]-module. Then

i = U M
Ma€S(M
is a A[G]-submodule of M and j(j(M)) = j(M).
(2) Let f: M — N be a homomorphism of A[G]-modules. Then we have f(j(M)) C
j(N). O

Definition 2.6.4. A A[G]-module M is ind-admissible if M = j(M).

Proposition 2.6.5. (a) The collection of ind-admissible A|G]-modules forms a full abelian
subcategory (M od}\"[‘é] oy of (M oda(g)), stable under subobjects, quotients and colimits.

(b) The embedding functor i : (Modj(‘[’é?‘d) — (Modyg)) is exzact and is left adjoint to
J: (Modig) — (Modj(l[g“d . '

(¢) The functor j is left exact and preserves injectives. Thus (M odi\"[‘é] “) has enough
injectives.

(d) Let M be an ind-admissible A[G]-module, and let N be a Noetherian A-submodule
of M. Then A[G]- N is an ind-admissible A[G]-module which is a Noetherian A-module.

(e) Let M be a A[G]-module. Then M € S(M) if and only if M is an ind-admissible
A[G]-module which is a Noetherian A-module.

Proof : For (a)-(c), apply similar arguments as in [Ne, Prop. 3.3.5]. The “only if” direction
of (e) is obvious. For (d), since N is Noetherian, we can find a finite subcollection of S(M),
say Ma,,...., My, , such that

NCMy+:+M,,.

The assertion then follows from Lemma 2.6.2(5) and the “only if” direction of (e). It
remains to show the “if” direction of (e). But this follows from (d), since M = A[G] - M.
a

From now on, for any category € whose objects have an underlying A-module structure,
we denote by €A~/ the category of objects in € which are Noetherian A-modules. For
instance, M odLA"['é]ad'A”f * will denote the category of ind-admissible A[G]-modules which
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are Noetherian A-modules. For a category €, the category Ind(C) is defined as follows:
An object is a functor F': J — €, where J is a small filtered category. The morphisms

sets are given by
Hompuge(F, F') = limlim Home(F(5), F'(5')).

— —
J J

We are now able to describe the category (M odf(l[‘a“d) in terms of C,/\\‘af e
Proposition 2.6.6. Modf\"[‘é?ld = Ind(C,Qfot).
Proof : By a similar argument to that-in [Ne, Prop. 3.3.5(viii)], we have
ind—ad __ ind—ad,A— ft
Modyjcy* = Ind(Moa”A[G] )

Therefore, it remains to show that M od‘)ﬁ‘é}“dA_f b= I’taf *. But this follows from Propo-

sition 2.6.5(e) and Proposition 2.3.1.

Definition 2.6.7. The category (M odj(‘[g“d)m is defined to be the full subcategory of
(M odm‘gad) consisting of objects M such that M = J,,, M[9N"].

We now give a description of the above category.
Proposition 2.6.8. (Modﬁ\"[‘iGT“d)m ="Dj g

Proof : Suppose M is an object of (M odf\"[‘é?’d)gn. We want to show that M is also an
object of Dy . By Lemma 2.4.5, it suffices to show that for each z € M, we can find some
open subgroup U of G and a positive integer n such that z € M[9N"]V. Let M, € S(M).
Since M, is finitely generated, we can find a big enough r such that M, = M,[9n"]. It
follows that M, is a finitely generated A/9"-module and so is finite. Also, it is discrete
under the 9t-adic topology, since MMM, = 0 for s > r. Thus, M, is a finite discrete
G-module. Now for each x € M, we have z € M, for some M, € S(M). It follows from
the above argument that ker(G — Aut(M,)) is an open subgroup of G. Since this is
contained in the stabilizer group of z, it follows that the stabilizer group is open and we
have x € M[9"|%, where G, denotes the stabilizer subgroup of z.

Conversely, suppose M is an object of Dy ¢. Let € M. By Lemma 2.4.5, we have
z € M[9"]Y for some open subgroup U and positive integer r. Then A[G] - z is a A[G]-
submodule of M. On the other hand, by the choice of z, the A[G]-action on A[G]-z factors
through A/9"[G/V] for an open normal subgroup V of G, where V is the intersection of
all conjugates of U. It then follows that A[G] - z is a finite A[G]-submodule of M. Note
that the 9M-adic topology on A[G] - x is discrete. Thus, we are reduced to showing that
the G-action on A[G] - z is continuous, and this follows from the fact that M is an object
of DA,G- a
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Definition 2.6.9. Let M be an ind-admissible A[G]-module. The (inhomogeneous) con-
tinuous cochains of degree i > 0 on G with values in M are defined as
Ci

cts

(G,M):= lim Ct
—

cts(G’ MG)’
MaeS(M)

where C" (G, M,) is defined to be the left A-module of continuous maps G* — M, where

M, is endowed with the 97-adic topology. In particular, this implies that for each «,
C-i

cts

(G, My /M™M,),

(G, My) = lim Cg

n
where the right side is equal to the usual cochain group for profinite groups with finite
coefficients. Here, the differential is defined as follows. For each «, we have the usual
differential

i
(631 €) (g1, s Gix1) = G16(92, s Gix1)+ D _(=1)€(g1, s GjGj41s - Gig1)+(=1) (g1, s 65,
j=1

which maps C"

cts

G, M,) to C1(G, M,). Then we define 6%, = lim &%, , and it follows
M = 1moy,

that o
(G,M) =5 CH (G, M) — -+

1
i C. cts

cts

is a complex of A-modules.

Lemma 2.6.10. Let M be an ind-admissible A[G]-module. Suppose T is a cofinal subset

of S(M) and M = U Mpg. Then we have a canonical isomorphism
MgeT

Ccts(G> M) = l_lL)n Ccts(G» MB)

MgeT
Proof : This is obvious. O

Proposition 2.6.11. If M is an object of (Modfﬁ‘é?“d)m, then the continuous cochain
groups defined viewing M as an ind-admissible A[G)-module coincide with the continuous
cochain groups defined viewing it as an object in Dy . Similarly, if M is an object in
(M oa"x[‘gad”\_f 9 = C’,’\\‘Ef b the continuous cochain groups also agree in both settings.

Proof: The first assertion follows from Proposition 2.4.10, Proposition 2.6.8 and the above
lemma. The second assertion follows from Proposition 2.6.5(e), Proposition 2.6.6 and the
above lemma. O
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Let M* be a complex of ind-admissible A[G]-modules with differentials denoted by
diy;. We define C2 (G, M*) by

cts

Cis(G, M*) = P CL(G, M),
i+j=n

(G, M) is the sum

Its differential 65}/ is determined as follows: restriction of &t to O,

of

(dig)e : CIy(G, MY — Ci (G, M)

and

(=1)'6} : Cha(G, M') — CLIH(G, MY).

Proposition 2.6.12. Let 0 — M’ = M 2, M" = 0 be an ezact sequence of A[G]-modules
with M ind-admissible. Then M', M" are also ind-admissible and

G, M) % e, M) 5

cts

0—=C;

cts

(G,M") -0

~is an exact sequence of complezes of A-modules. The statement also holds true if we
replace M', M and M" by complexes of A[G]-modules.

Proof : The first part follows from Proposition 2.6.5. Since the direct limit is exact, we
may assume that M is Noetherian as a A-module. Therefore, we are reduced to the case
where the exact sequence is an exact sequence in Cp . The conclusion now follows from
Proposition 2.4.7. O

Definition 2.6.13. The continuous cohomology of G with values in M (resp. M?*) is
defined as
Hi

cts

(resp. H

cts

(G, M) = H'(C,(G, M))
(G’ M.) == Hi(Cc.ts(Gv M.))) .

*s(G,—) maps bounded below complezes of ind-
admissible A[G]-modules to bounded below complezes of A-modules and preserves homo-

Proposition 2.6.14. The functor C¢

topy, exact sequences and quasi-isomorphisms, hence induces an exact derived functor
RFCtS(G, —) : D+(M0df{1[(é-]'ad) — D+(M0dA)_

Proof : The argument is similar to that in [Ne, 3.5.2-3.5.6]. O

We shall also give the analogous definition for ind-admissible A[G]-A-bimodules.
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Definition 2.6.15. Let M be an abstract A[G]-A-bimodule. Denote by 7 (M) the set of
A[G]-A-submodules M, C M such that

(a) M, is a Noetherian A-module and a Noetherian A°-module (by Proposition 2.2.9,
the left 9t-adic topology coincides with the right 9t-adic topology), and

(b) the action Ay, : G X M, — M, is continuous.
We say that M is an ind-admissible A[G]-A-bimodule if

M= | M.
Ma€T (M)

In this case, we can define the continuous cochain complex

i
Ccts

(G, M) := h_r,n Céts(G’ Ma).
Ma€T(M)

We also have the analogous definition for complexes of ind-admissible A[G]-A-bimodules.

Many of the results shown for an ind-admissible A[G]-module also hold for an ind-
admissible A[G]-A-bimodule. We shall not dwell on this subject, but instead just mention
two of them which we will require.

Lemma 2.6.16. (1) If M, € T(M), then N € T(M) for every A[G]-A-submodule N of
M,.
(2) If My, Mg € T(M), then M, + Mg € T(M).

Proof : This follows from a similar argument to that of Lemma 2.6.2. O

For ease of notation, we will drop the ‘e’ for complexes. We also drop the notation
‘cts’. Therefore we write C(G, M) as the complex of continuous cochains and RI'(G, M)
for its derived functor. Its ith cohomology group is then written as H'(G, M).

2.7 Total cup products

We first review the definition of cup-products for topological G-modules (in other words,
abelian Hausdorff topological groups with a continuous G-action).

Definition 2.7.1. (Cup products) Let A, B and C be topological G-modules. Suppose

(,):AxB—C
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is a continuous map satisfying o(a,b) = (ca,ob) for a € A,b € B and ¢ € G. Then we
define the cup product on the cochain groups

C{(G, A) x C¥(G, B) — C**(G, C)
as follows: for a € C(G, A), 3 € C/(G, B) and 0y, ...,0:+; € G, we have

(@UB) (o1, ..., 0i4j) = <a(01, ey 03), 01 OB (Cip1y ooy a,-+j)>.
The cup product satisfies the following relation
dc(aUB) = (6aa) U B+ (=1)'aU (650)
and induces a pairing
H'(G,A) x H (G, B) — H"™(G,C)
on the cohomology groups.

In this thesis, we will mainly work with cup products over an adic ring. For the
remainder of the thesis, we shall assume our adic ring A has the property that A/9" is
finite of order a power of a prime p for all n > 1. Let M and N be objects in Cj ¢ and
Dpo ¢ respectively, and let A be a topological G-module. Suppose there is a continuous
pairing

(,):NxM— A

such that
(1) o(y,z) = (oy,0z) for x € M,y € N and o € G, and
(2) (yA,z) = (y,Az) for x € M,y € N and X € A.
As before, condition (1) will give rise to the cup product

C'(G,N) x C?(G, M) — C"(G, A),
which is A-balanced by condition (2). The cup product induces a group homomorphism
C'(G,N)®, C?(G, M) — C*(G, A)
which gives rise to the following morphism
C(G,N)®rC(G,M) — C(G,A)
of complexes of abelian groups. Taking the adjoint, we have a morphism
C(G,M) — Homg, (C(G,N),C(G, A))

of complexes of A-modules.
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Lemma 2.7.2. Suppose we are given another continuous pairing
(,):N'xM — A

such that (1) o(y',2') = (oy',02') forz' € M',y' € N' and 0 € G;

(2) WA 2) =W, ') fora' e M',y' € N and XA € A, and

(3) there are morphisms f : N' — N in Dyog and g : M — M’ in Cp such that
the following diagram

N @y M—2_ . N, M
f®idl l( )
N@yM— A

commutes. Then we have the following commutative diagram

C(G, M) — Homg, (C(G, N),C(G, A))

g,i |

C(G, M') — Homg, (C(G,N'"),C(G, A))
of complexes of A-modules.

Proof : Tt follows from a direct calculation that the following diagram

C(G, N") &4 C(G, M) —=2%_, C(G, N) ®, C(G, M)

f®idl lw )
C(G, N) ®, C(G, M) — C(G, A)

is commutative, where U |y and U |y are the cup products induced by the pairings ( , )
and (, ) respectively. By taking the adjoint and another straightforward calculation, we
have the commutative diagram in the lemma. O

Now let M and N be bounded complexes of objects in Cp ¢ and Dyo ¢ respectively,
and let A be a bounded complex of topological G-modules. Suppose there is a collection
of continuous pairings

(, )a,b - N® x Mb e Aa+b

where each pairing satisfies conditions (1) and (2), and the following hold:
(a) (d%Y, T)at1 = d?b((y,x)a,b) for y € N and x € M?, and
(b) (—=1)*(y, d5sz)apr1 = d5™((y, T)ap) for y € N® and z € M".
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For each pair (a,b), we have a morphism
U : CY(G,N*) ®x C7(G, M*) — C*(G, A**?)
of abelian groups induced by the cup product. Then the total cup product
U:C(G,N)®rC(G,M) — C(G, A)

is a morphism of complexes of Z,-modules given by the collection U = ((=1)* U5} ). The
definition given for the total cup products follows that in [Ne 3.4.5.2]. We also have an
analogous result to Lemma 2.7.2 for complexes.

We describe another form of (total) cup product with which we will work. Let R be
a commutative complete Noetherian local ring with finite residue field of characteristic p,
and let A be (on top of being an adic ring) a Noetherian central R-algebra. Let M be
an object in Cﬁy‘cf “ and N be an object in C,Q:’E;f ‘. Let W be an ind-admissible A[G]-A-
bimodule. Suppose there is a continuous pairing

(,):MxN—W

for which the following hold:
(i) (rz,y) = (z,yr),

(i) o(z,y) = (o2, 00),
(iil) AM(z,y) = (Az,y), and

(iv) (@, y)A = (z,yA)
forxe M,ye N,oc € G,r € Rand )\ € A.
Then, by a similar argument as above, we have a homomorphism

C(G,M)®g C?(G,N) — C™ (G, W)
of A-A-bimodules which gives rise to the following morphism
C(G, M) ®r C(G,N) — C(G, W)

of complexes of A-A-bimodules.

Suppose M is a bounded complex in C,Q_Gf t, N is a bounded complex in C,’\\: _Gf ‘L and W
is a bounded complex of ind-admissible A[G] A-bimodules such that there is a collection
of continuous pairings

() Yap: M® x N® — Wott,

where each pairing satisfies the above conditions and the following relations:
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(a) (d%,Y)ar1p = 5 ((z, Y)ap), and

(b) (=1)*(z, dyy)apsr = A ((@,y)as)
for x € M® and y € N°,
Then, as above, we can construct a total cup product

U: C(G, M) ®r C(G,N) — C(G, W)

under the same sign conventions. Note that this is a morphism of complexes of A-A-
bimodules. There is also a variant of Lemma 2.7.2 in this context.

2.8 Tate cohomology groups

In this section, G is a finite group. We now recall the construction of the Tate cohomology
groups of a G-module M from [NSW, Chap. I §2]. The complete cochain groups C*(G, M)
are defined by
22 Ci(G,M if i > 0,
G, ={C M iz
C1(G,M) ifi< -1,

where C*(G, M) is the usual (inhomogeneous) cochain complex and the differentials are
defined for ¢ > 0 by

(0°C) (g1, ++s Gi+1) = G1€(G2; -+-s Git1 +Z (g1, - ,gjgj+1,-~-,9i+1)+(“1)i_10(91,---,gi),

and for i > 2 by

(071 ) (g1 o0 9im1) ZZ(TC/(T_I,QM-- gi-1) = ¢ (7,77 g1, o0y Gic1)
+Z(—1)rcl(glv"'1(gl”'gr—l)——lTyT_lgl"'g’r‘y"'sgi—l))v

where ¢ € C{(G, M), € C~"{(G, M), g1, ..., gi-1 € G, and

((5—20”) — Z (TC”(T_l) . C”(T))

T€G

for ¢’ € C"Z(G, M), and

(67'm) = (Z T)m

T€EG
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form € C~Y(G, M) = M. The ith cohomology group of C(G, M) is denoted by H'(G, M).
Clearly, there is a canonical inclusion of complexes

C(G, M) — C(G, M)

and H{(G, M) = H{(G, M) for i > 0.

Following [Ne, 5.7.2], we may extend the above definition to a complex M*® of G-
modules by setting

"G, M*) = P C'G, M)
i+j=n

with differential defined using the sign conventions of the previous sections. As before,
for ease of notation, we will drop the ‘e’ for complexes. The usual cup product for Tate
cohomology groups [NSW, Prop. 1.4.6] extends to a total cup product with the same sign
convention as in the preceding section.
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Chapter 3

Completed Group Algebras

In this chapter, we shall investigate the completed group algebra of a finitely generated
pro-p group I'. In particular, we are interested in the case that I' is uniform (see below
for the definition). As we will see soon, the completed group algebra of a uniform group
is the completion of the group algebra under a certain norm. This leads us to the study
of group algebras of a uniform group. We will show that every element in the group
algebra and its completion has a natural series representation which is unique once we
fix a minimal set of topological generators for I'. This will then be applied to prove a
generalization of a result of Lazard which says that the completed group algebra Z,[I']
of a compact p-adic Lie group is a Noetherian ring (see [Laz]). Namely, we will show that
the same conclusion holds if one replaces Z, by any commutative complete Noetherian
local ring with finite residue field of characteristic p. Our argument follows the approach
given in [DSMS], aside from some modifications.

We list certain notations to which we will adhere throughout this chapter. We let p
denote a fixed prime. We shall then let R be a commutative complete Noetherian local
ring with maximal ideal m and finite residue field I, of order ¢, where ¢ is a power of p.
We also denote N to be the set of natural numbers including 0 (i.e N ={0,1,2,...}).

3.1 Review

We now review some facts, most of which can be found in the book [DSMS]. For a group
G, we write G = (gP| g € G), that is, the group generated by the p-powers of elements
in G. A pro-p group G is said to be powerful if G/GP is abelian for odd p, or if G/G* is
abelian for p = 2. We also recall the lower p-series.
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Definition 3.1.1. (Lower p-series) Let G be a pro-p group. Then define P,(G) = G, and
fori>1

Pi1(G) = B(G)PIR(G), G-

Proposition 3.1.2. If G is a finitely generated pro-p group, then P;(G) is open in G for
each i, and the set {P;(G)| i > 1} is a base for the neighborhoods of 1 in G. It follows
that

Fin1(G) = R(G)’[R(G), G].

Moreover, if G is powerful, we have GP = GP = Py(G).
Proof : See [DSMS, Prop. 1.16(iii), Cor. 1.20, Lemma 3.4]. O

Theorem 3.1.3. Let G = (ay,...,aq) be a finitely generated powerful pro-p group, and
put G; = Pi(G) for each i. We have the following statements.

() Gi=G"" ={a#""|z€G} = @, ..d0)
(it) G = (a1) - - (aa)

Proof : See [DSMS, Thm. 3.6]. O

A finitely generated powerful pro-p group G is said to be uniform if the p-power map
induces isomorphisms

Pi(G)/P:s1(G) % Piy1(G)/Piy2(G),i > 1.

For any topological group, we denote the minimal cardinality of a generating set of G
by d = d(G). If G is a finitely generated pro-p group, we have d = dimg, (G/P»(G)).

Normed rings

As we will be dealing with a certain norm on the (completed) group algebra in our study,
we shall review some facts on such norms.

Definition 3.1.4. A (non-Archimedean) norm on a (not necessarily commutative) ring
A is a function || - || : A — R such that for all a,b € A

(i) |la|| > 0; ||la]| = 0 if and only if a = 0;

(i) 1] = 1 and ||ab]| < [|al| [|b]| and

(iif) [la £ bf| < max{]|all, [|b]}-
If these hold, then (A, || - ||) is said to be a normed ring.
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A sequence (A,) of elements in a normed ring A is a Cauchy sequence if for every € > 0,
there exists an integer N (depending on ¢) such that ||\, — A || < € whenever n,m > N.
We say that the normed ring is complete if every Cauchy sequence in A converges to an
element in A.

Definition 3.1.5. A normed ring A is called a completion of A if
(a) A is a dense subring of A and the norm on A extends the norm on A, and
(b) A is complete.

Proposition 3.1.6. Given a normed ring A, there exists a completion A of A which is
ungive up to isomorphism. '

. Proof : See [DSMS, Prop. 6.3]. O
Lemma 3.1.7. Let A be a ring and
A=A 2A 2 D2AD-

a chain of ideals such that

(i) ﬂizo Ai =0;
(Z’L) fO’l" all i,j, AiAj g Ai+j'
Fiz a real number ¢ > 1 and define || - || : A — R by

0l = 0; llall = ™ if a € A\ Agsr.

Then (A, || - ||) is a normed ring. Furthermore, the completion of A under this norm is
isomorphic to lim A/A;. :

Proof : See [DSMS, Lemma 6.5]. O

As we will be dealing with multiple series, we will introduce the following rather general
notion of convergence.

Definition 3.1.8. Let A be a normed ring. Let 7" be a countably infinite set, and let
t — A be a map of T into A. Let A\, s € A.
(a) The family (A¢)ier is said to converge to \, written as

lim )\t — )\,
teT

if for every € > 0, there exists a finite subset 7" of 7" such that |[|A — ;|| < & for all
teT\T.
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(b) The series ), A¢ is said to converge to s, written as

Z/\t:-S,

teT

if for each € > 0, there exists a finite subset 7" of T such that for all finite sets 7" for
which T C T" C T, we have ||s — > ,cn Xl < €.

Proposition 3.1.9. Retaining the notations of the preceding definition, and supposing
that i — t(i) is a bijection from N to T, the following statements hold.
(@) limeer Ae = A if and only if lim;_.c M) = A.

(b) Yorer A = s if and only if Y720 Meii) = s.
(¢) If 3 ier Ae converges, then limer Ay = 0.
(d) If A is complete and limyer Ay = 0, then ), Ay converges.

Proof : See [DSMS, Prop. 6.9]. O

Associated graded rings

Let x be a commutative and associative binary operation on N with the properties that
1x0=1
ixj=0%k=>7=k
I3 k=ixi>ixk
for all 7,7 and k. Let A be a ring with a descending chain of ideals {A;} satisfying the
conditions in Lemma 3.1.7 and the following relation

My © Ay
for all 7 and j in N. Note that
AiAjiq + Aia Ay € A

for all 7 and j in N, and one can check easily that i x j > i+ j. Set E; = A;/A;4; for each
i > 0. The associated graded ring (with respect to ) is then

oo
v =Br.
i=0
where the multiplication is induced by the product
Ei X E]' = Ei*j-

We then have the following proposition.
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Proposition 3.1.10. Let A be a ring with a descending chain of ideals {A;} as above.
Suppose A is complete under the norm endowed by the chain of ideals as in Lemma 3.1.7.
(a) If A* is left (or right) Noetherian, so is A.
(b) If A* has no zero divisors, then A has no zero divisors.

Proof : See [DSMS, Prop. 7.27]. O

3.2 Group algebras
In this section, G will always be a finitely generated pro-p group. Write Gy = P(G) and
Iy = (Gk — 1)R[G] = ker(R[G] — R[G/G}]).

Denote the maximal ideal of R[G] by J = I, + mR[G]|. We shall use these notations
throughout the section.

Lemma 3.2.1. We have the following relations.
(i) J* 2 I + m*R[G].
(i) I + w7 R[G] D JIIC/Cxl,

Proof : (i) We prove this by induction on k. When k = 1, this is true by definition. Let
k > 1, and suppose that J*~1 D I, _; + mF~1R[G]. Clearly m*R[G] C J*. Thus it remains
to show that Iy C J*. By the definition of the lower p-series, Gy, is generated by elements
of the form z?, [z,y] for * € Gy_1,y € G. Writeu =2 — 1 and v =y — 1. Then

u? + puw for some w € R[G], if p does not divide char R,

P-1=(@u+1f-1=
u? if p divides char R

and

[z,y] = 1= (zy — yr)z Yyt = (uwv — vu)z Y

Since p € mR[G] C J,v € I; C J and u € J*~! (by induction), it follows that 7 — 1 and
[z,y] — 1 lie in J*. Therefore I} = (Gx — 1)R[G] C J*.

(i) Write n = |G/Gg|. Then G /Gy is a finite p-group acting on the F,-vector space
F,[G/Gy| which has dimension n. It follows from [DSMS, 0.8] that (z;—1)--- (z,—1) =0
in Fo[G/Gy] for any 4, ...,z, € G/G. This implies that (g —1) -+ (g, —1) € I +mR[G]
for all gy, ..., 9, € G. It follows that J" C I; + mR|[G] and hence Jo" C I, + m/R[G]. O
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Corollary 3.2.2. We have
() J2=0.
n=1
Proof : Let ¢ = Y - ryz;, where the z;’s are distinct elements of G' and the r;’s are all

non-zero. Choose k big enough such that x,-x;l ¢ Gy, for all i # j and r; ¢ m* for all 7.
Consider the canonical map

¢ : R[G] — R/m*[G/Gy).

Then by our choice of k, the ¢(z;)’s are distinct elements of G/Gy and ¢(r;) # 0 for all 7.
This implies that ¢ ¢ ker ¢ = I + m*R[G]. By part (ii) of the preceding lemma, we have
that ¢ ¢ J™ for some m. O

Therefore, the collection {J*} of ideals satisfies the hypotheses of Lemma 3.1.7, and
so we can make the following definition.

Definition 3.2.3. The norm on R[G] is defined by
ol =05 flell = ¢7* if c€ J*\ I,

It follows from Lemma 3.2.1 that the topology on R[G] given by the norm induces on
G its original topology. For if x € Gy, then ||z — 1|| < ¢7*, and conversely, if z € G and
z— 1€ I, + mR[G], then z € Gy. Also, since R1g N J*¥ = m*, this norm induces a norm
on R which coincides with the m-adic norm. The more important observation that one
makes is the following.

Proposition 3.2.4. The completion of R[G] under the above norm is topologically iso-
morphic to R[G].

Proof : By Lemma 3.1.7, the completion of R[G] under the given norm is lim R[G]/ JE.
k
By Lemma 3.2.1, the two chains of ideals {J*¥} and {I; + m*R[G]} are cofinal. Therefore,

the completion is isomorphic to lim R[G]/(Ix + m*R[G)).
k

On the other hand, since the collection {G}} of subgroups is a system of neighborhoods
of 1 in G (see [DSMS, Prop. 1.16]), we have

R[G] = lim R[G/G] = lim R/m/(G/Gy).
k

m
==
k,j

Since R is complete, this last term is isomorphic to lim R[G]/(I; + m*R[G]). O
k
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From now on, unless otherwise stated, G is a finitely generated pro-p group with a
minimal set of topological generators ai,as,...,a;. Write b; = a; — 1 for each . For
a=(a,...,aq) € N and any d-tuple v = (vy, ...,v4) € R[G]?, we write

(6) = a1+ + 0y V@ =00,
We are now able to state the following theorem.

Theorem. Let G be a uniform pro-p group. Then every element of R[G] is equal to the
sum of a uniquely determined convergent series

(e}
Febs
a€ Nd

where o, € R for each a € N¢. Conversely, every such series converges in R[G].

This theorem is a generalization of the well-known case of Z,[I'], where I' = Z,.
In this situation, the theorem is usually expressed as an isomorphism Z,[I'] = Z[T] of
topological rings given by the assignment v — 1 — T for a topological generator v of I.
We will prove this theorem in the next section. In this section, we shall state and prove
a variant of the above statement for R[G] which will be required for the proof of the
theorem.

Theorem 3.2.5. (i) If G is powerful, then each element of R[G| is equal to the sum of a

convergent series
E o™

acNd

with ro € R for each .
(1) If G is uniform, then the series is uniquely determined by its sum.

When G is uniform, we also have the following result for the norm.

Theorem 3.2.6. If G is uniform and c = ) .yaTab® € R[G], where ro € R for each o,
then
llell = sup g~ Irq]l-
acNd
For the remainder of the section, we will be working towards the proofs of Theorem
3.2.5 and Theorem 3.2.6. As a start, we record a useful lemma.
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Lemma 3.2.7. Let uy,...,u, € G, and write v; = u; — 1. Then, for § € N", we have

w-g(a)-(a)

a€eN"

Vi =3 (—1)@-@ < gi ) ( gr )u“.

a€NT

Proof : See [DSMS, Lemma 7.8]. O

We now examine the structure of R[G] as an R-module. For k£ > 1, we define
Ty ={a € N¢ | i < pFlfori=1, o d}.

Lemma 3.2.8. Let k > 1, and recall that we write b® = b{* - - - b* for each .
(i) If G is powerful, then
R[G] = I+ ) _ Rb"
a€Ty

(i) If G is uniform, then
R[G] = I, & € Rb".

a€Ty,

Proof : (i) Note that I is the kernel of the canonical map ¢ : R[G] — R[G/Gi]. By
Theorem 3.1.3, every element of G/G) can written as af* - - - aj*Gy with a; < p*~1. Hence
{9(a®)| a € T} generates R[G /Gy as an R-module. By the preceding lemma, this implies
that {¢(b*)| o € Ti} also generates R[G/G}] and so ¢(R[G]) = 6(3_,cr, BD).

(ii) Since G is uniform, we have |G/Gy| = p*~14 and so ¢(R[G]) is a free R-module
of rank p*~Y4, On the other hand, we also have |Tj| = p*~V¢, Therefore the generating
set {¢(b*)| o € T} is actually a free basis for this module. O

We are in the position to give a proof of Theorem 3.2.5(ii).

Proof of Theorem 3.2.5(ii) : It suffices to show that if )~ r,b® = 0, then r, = 0 for all
a. This is reduced to showing that for every j, we have r, € m’ for all a. We will prove
this by induction on j. The case j = 0 is immediate by assumption. Now suppose that
j > 1and r, € m’~! for all . We want to show that 7, € m’ for all . Let k be an
arbitrary positive integer and set m = |G/Gx|. By the hypothesis that ) r,b* =0, we
have || > cgab?|| < ¢77™ for some finite set S 2 T}. Therefore

Y wgh® =Y reb®— Y rubf,

a€Ty a€S aeS\Tx

65



Now if o ¢ Ty, then a; > p*~! for some i and so b$* € I + mR[G]. Together with our
induction hypothesis, we have r,b® € I + mR[G] for o € S\ Ty. On the other hand,
the first series on the right is in J'™ C Iy + m’ R[G]. Hence we have

> rab® € I + W R[G].
a€Ty

This implies that rob® lies in the kernel of the composition

R[G] % R[G/Gy] = R/mi[G/Gy]

of the two canonical quotient maps. As seen in the proof of Lemma 3.2.8(ii), the set
{¢p(b%)| @ € Ty} is actually a free basis for R[G/Gx]. Therefore, we have that

> rag(b®)

a€Ty,

lies in the kernel-of 7 if and only if r, € m’ for all a € T. Since k is arbitrary large, we
have r, € m? for all . O

To prove Theorem 3.2.5(i) and Theorem 3.2.6, we need the two following lemmas
which give certain ideal relations in a group algebra of a powerful pro-p group. For k > 1,

we define
Jk,l =mJk! s JEH

Lemma 3.2.9. If G is powerful, then ux — zu € Jx411 for everyu € J*, z € G.
Proof : Let x,y € G. Then

vz — 2y = ([y,2] - Dy = (8 — Dy

for some z € G, since G is powerful (by Proposition 3.1.2). By an argument as in part
(i) of Lemma 3.2.1, we have 2 — 1 € J? + mJ. If p > 3, this is contained in J5;. If
p =2, G/Gj is abelian and so [y,z] — 1 € I3 C J® by Lemma 3.2.1. In either case, we
have yz — zy € Jo1. Since every element of R[G] is a R-linear combination of elements
in G, we have uz — zu € Jo; for every u € R[G],z € G. In particular, this implies the
case k = 1 of the lemma.

Now suppose k > 1 and vy —yv € Ji; forall v € J*~! and y € G. As J* is additively
spanned by elements of the form vw with v € J¥~! and w € J, it suffices to show that for
any such v and w, we have vwz — zvw € Ji41,1. This follows by observing that

vwz — zvw = v(wz — zw) + (v — zv)w € Jk'l.fg,l + Ji1d = Tt

by the first paragraph and the inductive hypothesis. O
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Lemma 3.2.10. Assume that G is powerful. Let k > 1. Then

Jk::Jk:+1+ Z mk—(a>ba.
()< k

Proof : Write Wy =3 < & m*~(@be. Since m C J and b; € J for each i, it follows that
mr—{alpe C J* and so W, + J**1 C J*.
The reverse inclusion is proved by induction on k. By Lemma 3.2.8,

RGl=1+ Y Rb*=J*+ Y Rb®+Rlg,

a€eT, (a)=1

where the second equality follows from the facts that I, C J? and b® € J? when (a) > 2.
It follows by Lemma 2.3.5 that

J=J%+>" Rb*+(JNRIg) =J>+ Wy,
(a)=1

since J N Rlg = mlg = mb?. This establishes the case k = 1.
Now suppose k > 1 and that J' = J"*! + W, for all [ < k. Then

JE = J*1T = (JF + W) (J2 + W) C TR+ W WL

Since we already have W, + J**! C J* from the first part, it remains to show that
Wie—iW1 C Wi + J*1. As W, =mlg + Z;j:l Rb; and mW,._; C W,, it suffices to show
that for every A € mkF—1=(®) where i =1, ...,d and (a) < k — 1, the element Ab®}; lies in
JE + Wy

Write u = b* - -+ b;*1" and v = bJ*b1 1" -+ - b3¢. Then

b%b; = uvb; = ub;v +u(vb; — b;v)
= b? + uw,

where w = vb;—b;v and 3; = 1+, B; = a; for j #i. Now v € J" where n = a;+- - -+ag.
‘Thus w € J,411 by Lemma 3.2.9. As u € J" it follows that

uw € J(a)—an+l,l = J(a)+1,1 — mJ(a) =t J(a)+2.

Thus .
Ab%b; € mF~1=(@pf 4 mb=(e) jl@ | mk=1=(@) jla)+2

67



Clearly, the last term on the right is contained in J**1. Since (3) = (a) +1, the first term
lies in Wj. Since (o) < k — 1, it follows from the induction hypothesis that the middle

term lies in
mk—(a)J(a)+1 +mk—(a)w(a) C Jk+1 & Wk~

Hence the conclusion follows. O
We now finish up the section with the promised proofs.

Proof of Theorem 5.2.5(i) and Theorem 3.2.6 : Suppose ||c|| = ¢~*. Then ¢ € J* and by
Lemma 3.2.10, we can write

c= E Sa,kb* + cr41

(a)<k

where s, ; € m*~(@) and ck+i € J*1. Repeating this process, we obtain a sequence (c;) >k
such that ¢; € J7 and

E : a
Ci —Cjiy1 = Sa,jb

(<)
for some so; € M. Set w; = 37, < 8a,;b* Then we have

c— (wg+ -+ +wy,) € J
In other words,
n
lle=> will < g
j=k
Hence

00
c= E Wj.
=k

Now set T = {(a, )| j > k, (a) < j}. Since mi~(@b® C J7 we have [|s,;b%|| < ¢77
for each j. This implies that
lim s4;b% =0.
(a,j)eT
By Proposition 3.1.9(d), the series }, .7 Sa,jb* converges in the complete ring R[G].
Define

Sa= D, Saj
j=max{kv<a)}
We then have .
)IERED P S
aeNd (a,7)ET j=k
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thus proving Theorem 3.2.5(i).
By Theorem 3.2.5(ii), we have

T = Sa = E Sa,j

j=max{k,()}
for each . Note that s;; € mI~(@ C mF=(@ since j > max{k, (@)} > k. Hence

sup ¢~ ||ra|| < g~ ¥g7FH) = g7F = |||
aeNd

Conversely, we have ||r,b%|| < ||7a]|[|b%|| € ¢=¥||r4]| for each a. Hence

llell < sup [|rab®|| < sup g~ ||ra]].
« «

This proves Theorem 3.2.6. O

3.3 Completed group algebras

In this section, G is taken to be a uniform pro-p group. As before, R is a commutative
complete Noetherian local ring with maximal ideal m and a finite residue field F,, where ¢
is a power of p. In particular, we have that R is a compact ring under the m-adic topology.
We shall now prove the following theorem which was stated in the previous section.

Theorem 3.3.1. Fach element of R[G] is equal to the sum of a uniquely determined

convergent series
E rob%,

ac Nd

where ro € R for each a € N¢. Conversely, every such series converges in R[G].

Proof : Convergence follows from the fact that ||b,|| < ¢~(@ for each o € N?. Uniqueness
follows from Theorem 3.2.5(ii).

Now let S denote the subset of R[G] consisting of all elements that are equal to the
sum of a series as in the theorem. Then S contains R[G]| by Theorem 3.2.5(i). Thus S is
dense in R[G]. It remains to prove that S is closed. Write X = RN and define a map
Y:X — S by

Y ((ra)aex) = Z Tab®.

aeNd
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Clearly 1 is surjective and X is compact. We shall show that 1 is continuous. Let
A =1 ((ra)acx) and € > 0. Choose n such that ¢™" < ¢, and set

U ={(sa) € X| 8¢ —To € m" for all a with (a) < n}.

Then U is an open set of X containing (r,) and for each (s,) € U,

Z (8a — Ta)b®*

aeNd

[¥((sa)) = 7ll =

£ ¢g"<e

Thus we have shown that S is the image of a compact set under a continuous map.
Therefore, S is compact, in particular closed. O

We also have the following statement on the norm in this case.

Theorem 3.3.2. If c =) naTab® € R[G], where ro € R, then

“@lrall.

llell = sup ¢~
aeNd
Proof : Suppose ||c|| = ¢7*. Let r = Z(a)fk rob®. Then we have ||c — r|| < ¢7*~!. Thus

llel = [Irll = sup ¢~ |rall
(a) <k

by Theorem 3.2.6. For (a) > k, we have
Dol < g7* =lc||.
Hence the conclusion follows. O

Define Ay, = {c € R[G] | |l¢] £ ¢7*}. One can easily check that 4y = R[G],
Aps1 C Ay for each k, and Ay is a two sided ideal of R[G]. By the norm property, we
have A;A; C A;4; for each 7 and j. Now define

Agm =m"Ag_m + Agyq for £ > m.
Then one can check that
Ap = Ak 2 Ak 2 -+ 2 Ak 2 Akkt1 = Aky;

Ai,mAj;n c Ai+j,m+n .
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Now for £ > 0 and 0 < m < k, we set Ey,, = Agm/Arm+1 and define the associated
graded ring of R[G] to be

RIGT" = B P Eim.

k=0 m=0
with multiplication given by

(@+ Aims1) (b + Ajns1) = @b+ Aitjmint
for a € Ai,m, be Aj,'n.-

Theorem 3.3.3. Let {c1,...c;} be a set of generators for m. Write t; = ¢;1¢+ A12 € E1;
fori=1,..,1 and x; = b; + A1 € Eyg for j = 1,...,d. Then we have a surjective
F,-algebra homomorphism

®:F,[1,... T, X1, ..., Xa)| — R[G]*
Ti v g Xy 7> &3

Proof : .Clearly mE,, = 0 for all k,m and so R[G]* is an algebra over R/m = F,.
Clearly the t; commute among themselves and with the z;. Now we shall show that the
z; commute among themselves. By Lemma 3.2.9, we have

b,'bj — bjbi emJ + Ve CmA; + Az = Ag,l.

This implies that z;r; — z;z; = b;b; — b;b; + A2 1 = 0. Hence, the assignments T; +— t; and
X; + z; give a well-defined F,-algebra homomorphism.
To prove the surjectivity of @, it suffices to show that the monomials

g = £t 2

with (a) = m and (8) = k — m generate Ej,, over F,. For each n > 0, set B, =
Z(ﬁ):n RbP. Then as seen in the proof of Theorem 3.3.2, we have

k—n

A=Y mF "By + App.

n=0

It follows that

Ak,m = mmAk—m = Ak,m—H = Z RCaBk—m + Ak,m+l == Z Rcabﬁ + Ak.m+1-

(@)=m (a)=m

(B8)=k-m
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This implies that
Ek,m = Ak,m/Ak,m+1 = Z quwayg. O

(a)=m

(B)=k-m

Corollary 3.3.4. The ring R[G] 1s left and right Noetherian.

Proof : Set A;, to be the (n 4+ 1)th term in the sequence
R[G] = Aop 2 A1p2 2 Ak0 2 Ak1 2+ 2 Ak D Agr102 -+

Thus, A}, = Agn, where
1
n=n(k,m)= §k(k +1)+m.

Note that for a given n, the above equation determines k and m under the constraint
0 <m < k. For n =n(k,m) and n’ = n(k',m’), we define

n*xn' =n(k+k',m+m).

It is straightforward to verify that the descending chain of ideals {A; } satisfies the con-
ditions of Proposition 3.1.10. Since {A,} is a refinement of {A,}, the norms defined by
{AL} and {A,} are equivalent. Hence R[G] is also complete with respect to the norm

defined by {A’}, and we can apply Proposition 3.1.10 to obtain the required conclusion.
O

In Theorem 3.3.3, we prove that the map & is surjective for a general R. In the case
when R = Z,, it is proven in [DSMS, Thm. 7.22] that we can choose generators to make ®
an isomorphism. We shall show that this can be achieved if we impose an extra condition
on R and make a careful choice of generators for m.

Theorem 3.3.5. Let R be a commutative Noetherian complete local ring with mazimal
ideal m and finite residue field of characteristic p. We also assume that @, m"/m"*?! is
an integral domain. Choose a set of generators {c1,...c;} for m such that G Em \ m? and
the images of the ¢; in m/m? form an [F,-basis for m/m?. As before, let G be a uniform
pro-p group. Write t; = cilg + Aip € B fori=1,..,l and z; = b; + A1y € E1 for
Jj=1,...,d. Then we have an Fq-algebra isomorphism given by

®:F,Ty,...Th, X1, ..., Xg) — R[C]"*
’I; = ti; Xj = Ij.
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Proof : By the same argument as in Theorem 3.3.3, the above assignment is a well-defined
surjective F,-algebra homomorphism. It remains to show that the map is injective. To
show this, it suffices to show that the monomials

Wop = 1" --tf“xlﬁ‘ . -xgd

with (@) = m and () = k — m are linearly independent over F,. This is equivalent to
showing that if we have 7, 5 € R such that

Z Ta,ﬁc(a>b(ﬂ) € Akm+1,
(a)=m

(B)=k—m

then 7, 5 € m. Since Agme1 =M™ Ay + Apn C ™ R[G] + Agy1, we have

Z ra,gc«’)b(ﬂ) = Z ugbw) -+ Z ’Ugb(ﬁ)
B B

(a)=m

(B)=k-m

m+1

where ug € m and

” Zvﬁb(ﬁ)” < q-(k+1)_
B

It follows from Theorem 3.3.2 that we have |lvg]| < ¢~ ™V for (3) = k — m. This
implies that ug + v3 € m™*!. On the other hand, it follows from Theorem 3.3.1 that
we have 7, 5¢'® = ug + vg. This implies that r, sc(® € m™*+!. Since the graded ring
@D,,-o m"/m"*! is an integral domain and each ¢; + m? is a nonzero element in the graded
ring: it follows that c/® + m™*! is nonzero in the graded ring. By what we have shown,
we have

(ra,p + m)(c® +m™H) = 0.

Since ¢/ + m™*! is nonzero, it follows that 7,5 + m is zero. This implies that r, 5 € m,
as required. O

Corollary 3.3.6. Let R be a commutative Noetherian complete local ring with finite
residue field of characteristic p, and assume that the graded ring ®n3_>0 m*/m"* is an
integral domain. Then for any uniform pro-p group G, the ring R[G] has no zero divisors.

Proof :As seen in Corollary 3.3.4, the ring R[G] is complete with respect to the norm
induced by the chain of ideals {A]}. Therefore, we may apply Proposition 3.1.10 and
Theorem 3.3.5 to obtain the required conclusion. O
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3.4 Compact p-adic Lie groups

We shall see that most of the results obtained in the previous section can be carried over
to the case of compact p-adic Lie groups. We now recall the following characterization of
compact p-adic Lie groups due to Lazard [Laz]. A topological group G is a compact p-adic
Lie group if and only if G contains a normal open uniform pro-p subgroup of finite index
(see [DSMS, Cor. 8.34]). We will use this characterization and refer readers to [DSMS,
Def. 8.14] for the definition of a p-adic Lie group. As a start, we shall use this to deduce
the main result of this chapter.

Theorem 3.4.1. Let R be a commutative complete noetherian local ring with finite residue
field of characteristic p, and let G be a compact p-adic Lie group. Then R[G] is a
Noetherian ring. :

Proof : Let U be an open normal uniform pro-p subgroup of G. By Corollary 3.3.4, we
have that R[U] is left and right Noetherian. Since U is open in G, it is a subgroup with
finite index. Therefore, R[G] is a finitely generated R[U]-algebra, and so is also left and
right Noetherian. O

The next result is an extension of Corollary 3.3.6.

Proposition 3.4.2. Suppose R is a commutative complete reqular local ring of charac-
teristic # p with finite residue field of characteristic p and G is a torsion-free pro-p p-adic
Lie group. Then R[G] has no zero divisors.

Proof : The proof follows the ideas in [N], which basically reduces to checking the hy-
pothesis of a theorem of Walker (see loc. cit.). O
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Chapter 4

Iwasawa modules

In this chapter, we will introduce certain modules over an Iwasawa algebra. The next
paragraph will introduce some notations which will be adhered to throughout this chapter.

Fix a prime p. Let R be a commutative complete Noetherian local ring with maximal
ideal m and residue field k, where k is finite of characteristic p. There exists an object wp €
D‘,’?_ft(ModR) (see [Hart, Ch. V]) with the property that for every M € D(Modh /"), we
have RHompg(M,wgr) € Dg_f(Modg), and the canonical morphism

M — RHomp (RHomR(M, WR), wR)

is an isomorphism in D(Modpg). One refers to wg as the dualizing complex of R.

Let G and I' be two profinite groups such that there is a continuous homomorphism
7 : G — T of profinite groups. Set A = R[I']. We have a map ¢ : A — A which is defined
by sending v to y~! for v € I'. Note that this is only a homomorphism of R-modules. It
is a ring homomorphism if and only if I is abelian. Denote by

p=pr:G-—TCA*

the tautological one-dimensional representation of G' over A.

4.1 Induced modules

We begin with a lemma which tells us that A is a central flat R-algebra. Let % be the
collection of open normal subgroups of T

Lemma 4.1.1. The ring A is a central flat R-algebra.
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Proof : By [Wei, Prop. 3.2.4(4)], it suffices to show that for any ideal A of R, the map
A®gr A — A induced by the inclusion A < R is injective. For each U € %, the induced
map

R[I'/U|®r A — R[I'/U]
is injective, since R[['/U] is a free R-module. Since the inverse limit is left exact, the

following map
lim(R[[/U]®@r A) — A
U

is injective. Since R is Noetherian, we may view R[['/U] and A as compact R-modules
by Proposition 2.3.1. Therefore, we have

—

hrn(R[F/U] ®r A) = m(R[F/U]@RA) = A®RA =AR®grA,
U U

and the conclusion follows. O

Now if M is a A-module, we define a A°>-module M* by the formula m -, A := ¢«(A\)m
for A € A,m € M. Similarly, if N is a A°-module, we define a A-module, which is also
denoted as N*, by A -, m = mu(A).

We have the following lemma.

Lemma 4.1.2. (a) If M is a A[G]-module, then M* is a A°[G]-module.
(b) If M is a A[G]-A-module (not necessarily balanced), then M* is a A°|G]-A-module
(not necessarily balanced).

Proof : (a) Let g € G,A € A and m € M*. Then we have
(gm) . A = «(A)gm = g(L(A\)m) = g(m -, A).

(b) Similar argument as above. O

For a given U € % and a given R[G]-module M, we define two A[G]-A-modules as

follows:
UM — HOI’IIR(R[F/U], M)

My = R[l'/U* ®r M,
where G acts on R[I'/U] via pr;y and A acts on R[['/U]| via the canonical projection
A — R[I'/U]. Note that the A[G]-A-modules defined above are balanced as A-A-modules.
They are balanced as A[G]-A-modules if I'/U is abelian.
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Let V € % with U C V. Then there is a canonical surjection pr : R[I'/U] - R[['/V]
and a map Tr : R[['/V] — R[['/U] given by ‘

gU — Z guU.
veV/U

These in turn induce the following maps.

pr: vM — yM
pr, : My — My
Tr* - UM s—p vM
Tr, : My, — My
Denote by é5 : G/U — Z the Kronecker delta-function
ne )1 iEB8=4,
dp(0') = . ,
0 fB#p4.

Lemma 4.1.3. We have the following isomorphism of R[G]-modules

My =5 yM

> B@zs— Y z0s

BeG/U BeG/U

which is functorial in M. Moreover, if V is another open normal subgroup of G such that
U C V, then the isomorphism fits into the following commutative diagrams.

My —uyM My —yM
pr.l l’l‘r‘ "D:.l lpr‘
My —>yM My —>yM

Proof : This follows from a straightforward calculation. O
Lemma 4.1.4. We have the following equalities of A°|G]-modules:

(yM)* = Hompg(R[T/U}", M),
(My)* = R[L/U] ®r M.

Proof : This is straightforward, noting Lemma 4.1.3. O
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Let M be a R[G]-module. We define two A[G]-A-modules as follows:

FF(M) = ]'_i_r_)n UMa
Uew
yF(M) = lllll MUa
Uew
where the transition maps are induced by the surjections R[I'/U] — R[['/V] for U C V.
Note that the A[G]-A-modules defined above are balanced as A-A-modules. They are
balanced as A[G]-A-modules if and only if I" is abelian. One easily sees from Lemma 4.1.3

that
Fr(M) = lim Homg(R['/U]*, M) and

Ue
Fr(M)" = lim (R[[/U] ®@r M).
vew

We now describe another topology on A (see [NSW, Chap. V, §2]). Consider the
following family of two-sided ideals :

m'A+IU),n>0, Ue%.

Here I(U) denotes the kernel of the map A — R[['/U]. By taking these ideals as a
fundamental system of neighborhoods of 0, we call this topology the (m, I')-topology.

Lemma 4.1.5. Suppose I' is a finitely generated profinite group that contains a pro-p
subgroup of finite index. Then the (m,I)-topology concides with the M-adic topology, and
so A is an adic ring. Moreover, if M is a finitely presented A-module, we can endow M
with the (m, I)-topology by taking the collection {m™M + I(U)M} of A-submodules as a
fundamental system of neighborhoods of 0, and this coincides with the 9M-adic topology.

Proof : This follows from [NSW, Prop. 5.2.16]. O

From now on, I will always be a finitely generated profinite group containing a pro-p
subgroup of finite index. The next few results will tell us more about these modules under
this assumption.

Lemma 4.1.6. If T is an object of Crg, then Fr(T) is isomorphic to A'@rT and
Fr(T)* is isomorphic to AQrT. Moreover, if T is a Noetherian R-module, then Fr(T)
is finitely presented as a left A-module (and as a right A-module).

Proof : By the preceding lemma, we have an isomorphism

lim A /9 2 lim R/m"[['/U] 2 lim R[T'/U]
i Un U
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of compact rings. Therefore, the results in Section 2.5 will yield

Zr(T) = lim(R[T/U) @& T) = lim (R[[/U)*'®xT) = (lim R[[/U]")&rT = A'@gT. O
U U U '

Lemma 4.1.7. If A is an objeci of Dr, then Fr(A) is an object of D¢ and

Fr(A) 2 lim Homp(R/m" [T /U], A).
Un

Similarly, we have
Fr(A) = lim Homp(R/m"([['/U]", A),
Un

a direct limit of finite A°[G]-modules.

Proof : Let U € %, and let My denote the Jacobson radical of R[I'/U]. It is clear
that R[I'/U] is a compact R-module with the 9y-adic topology. Since R[I'/U] is finitely
geenrated over R, it follows from Proposition 2.2.9 that the m-adic topology coincides
with the 9My-adic topology. Therefore, we may apply Lemma 2.2.5(4) to conclude that

Hompg(R[['/U], A) = Homps(R[['/U], A) = lim Homp(R/m"[['/U], A).

Since A has the discrete topology, it follows that Homg(R[['/U], A) is a discrete R["/U]-
module under the compact-open topology and hence a discrete A-module via the contin-
uous surjection A — R[I'/U]. O

Denote the category of R[G]-modules which are Noetherian as R-modules by M odg{”cf]t.

This is an abelian subcategory of Modp.

Proposition 4.1.8. (a) A ®g — is an ezact functor from Modg to Modg,ne-

(b) Zr(—) is an exact functor from Modg[_cﬁt to Modaig). In particular, if A is Noethe-
rian, then Fr(—) is an ezact functor from Modg[‘cﬁt to Modﬁ["c’;t.

(c) Fr(—) is an ezact functor from Modpgig) to Modyg).

Proof : Assertions (a) and (b) follow from Lemma 4.1.6 and Lemma 4.1.1. Assertion (c)
follows from the definition and the facts that R[['/U] is a free R-module and the direct
~ limit is exact. O

For the remainder of this section, we will try to establish duality relations between
the modules defined above. But before we can say something about dualities, we need to
have objects serving the roles of the dualizing module and complex as in the case of R.
We shall first consider the dualizing module. Motivated by the case of R, we make the
following definition.
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Definition 4.1.9. We set Iy = Homgs(A,Q,/Z,), where the actions of G on A and
Qp/ Z, are trivial.

The next result relates Iy with I, where Ir denotes the Pontryagin dual of R.

Lemma 4.1.10. We have an isomorphism I = h_n)l Hompg(R[T'/U], Ir) of A-A-bimodules,
Ue
where G acts on R[['/U] and Ig trivially.

Proof : Recall that the 9t-adic topology on A is equivalent to the (m, I)-topology. There-
fore, we have

Iy & li_r)nHomZp(R/m"R[I‘/U], Q,/Z,)

Un

lim Homp (R[F/U], Homgz,(R/m"R, Q,,/Z,,))
Un

lim Homp (R[F/U], lim Homgz, (R/m"R, QP/ZP))
U n

[12

[12

12

lim Homg(R[T'/U], Ig). O
U

Before proving the next proposition, we introduce the following notations:

Dpg(-) := Homg(—, IRr),
DA(—) = HOl’l’lA(—, IA),
DX(—) = HOIIle(—,IA).

Recall that for T € Cjy /", we have Dp(T) 22 T by Proposition 2.1.1.
Proposition 4.1.11. Let T be an object ofcgyz;ft. Then we have continuous isomorphisms
Da(Zr(T)) = Fr(T)" = Fr(Dg(T))'
in Dpo . Similarly, we have continuous isomorphisms
Di(Fr(T)") = (Fr(T)")" = Fr(Dr(T))
i Dpg.

Proof : The first isomorphism follows from Proposition 2.1.1(b) and Lemma 4.1.6. Since
the (m, I)-topology and 9M-adic topology on #r(T') coincide by Lemma 4.1.5, we have a
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topological isomorphism #r(T") & lim(R[['/U]*®gT/m"T) of (compact) A-modules. The
Umn
second isomorphism now follows by the following calculations:

Homew(Fr(T), Qp/Z,) = lim Homg, (R[T/UJ* ®r T/m"T, Qy/Z,)
o l(ij_i)?lHomR (R[L/U)", Homg, (T/m"T, Q,/Z,))
= llij_;);HomR(R[F/U]‘,TV)
> lim Homp (RIT/U}', Da(T)) = Fr(Da(T))-. O
U

Corollary 4.1.12. Let T be an object of ng;ft. Then Dy(Fr(Dgr(T))) =2 Zr(T)* as
A°[G]-modules (resp. Dpo(Fr(Dg(T))") = Zr(T) as A[G]-modules).

Proof : Applying Dy to the second composite isomorphism in Proposition 4.1.11, we see
that the conclusion follows from Corollary 2.1.5. O

In the case that I' is a finitely generated abelian pro-p group, the ring A is a com-
mutative complete Noetherian local ring, and its dualizing complex w, is shown in [Ne,
Lemma 8.4.5.6] to be quasi-isomorphic to A ®% wg. Inspired by this result, we shall work
with the complex A ®% wg. Note that this is an object in D*(Modagzae).

Lemma 4.1.13. Let M and N be objects in ng;f‘_ Then the following map (defined via
Lemma 4.1.6)
¢ : Fr(M)®r Fr(N)* — A®r (M ®r N)
A@MAuAn— 1 (Ap®@maen

is a homomorphism of A[G]-A-bimodules, where G acts trivially on A.

Proof : Let A\, u,v € A,m € M,g € G and n € N. We shall check that ¢ preserves the
A[G]-A-actions:

Py (A®@Mmuen)) M) @MmMOun) =1(A)p@men
Y(Ap®m@n) =vp(A@m @ u®n),
(

A@mMAuy®n) =t(A)py@men

p((A®@meu®dn)-v) =4¢
Ap®men)y=¢A@m®uen)y,
o(p(9)A ® gm ® p(g)pn ® gn) = L(A)u ® gm ® gn
g-d6(A®m@u®en). O

Il

d(gA®m®u®n))
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Corollary 4.1.14. Let M and N be bounded complezes of objects in Cﬁ‘cft. Then the
following map (defined via Lemma 4.1.6)

¢: Fr(M)®r Fr(N) — A®r (M ®g N)
A@MAuAn—1(A)p@maen

is a morphism of chain complexes, where G acts trivially on A.

Proof : This follows from a direct verification. O

Now let X and Y be bounded complexes of R[G]-modules which are finitely gener-
ated R-modules, and let J be a bounded complex of R[G]-modules with trivial G-action.
Suppose that 7 : X ® g Y — J is a morphism of complexes of R[G]-modules. Then we
have a morphism of complexes of A[G]-A-bimodules

T Fo(X)Qr Fr(Y) -2 A@r (X ®rY) S5 A®R J,

which induces the following morphisms of complexes of A°[G]-modules and A[G]-modules

respectively:
ad](f) : yp(Y)L — Hom,\(ﬂp(X), A ®R J)
adj' (%) : ZFr(X) — Hompo(Fr(Y)", A ®p J)

On the other hand, as complexes of A°-modules, we also have the following commu-
tative diagram

adj(7)

gr(Y)L:A®RY HomA(AL Qr X, A ®r J)

id®adj(7) A

A ® g Hompg(X, J) —> Homp (A ®r X, A Qg J)

where 6 is the morphism defined in Lemma 1.3.11, and this morphism is an isomorphism of
complexes of A°-modules since X is a bounded above complex of Noetherian R-modules
and A is a flat R-algebra. Hence it follows from the above diagram that if adj(n) is
a quasi-isomorphism, so is adj(7). By a similar argument, we have that if adj(w) is a
quasi-isomorphism, so is adj' (7). A

We now prove the following result. The point of the result is that even though we do
not know the existence of a dualizing complex for A in general, the complex A ®% wp, still
serve as a “dualizing complex” for the type of induced modules we are interested in.
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Proposition 4.1.15. Let T and T* be two bounded complezes of ind-admissible R[G]-
modules of finite type over R, and let J be a bounded complez of R[G]-modules with
trivial G-action. Suppose that there is a morphism 7 : T Qg T* — J of complezes of
R|[G]-modules such that adj(m). induces an isomorphism

T* — RHomg(T, J)
in D(Modg)). Then we have an isomorphism A
adj(7) : Zr(T*)" — RHomy(Fr(T), A @% J)
in D(Modpoig). We have a similar statement for adj'(r).

Proof : To show this isomorphism, we may disregard the G-action. Let P be a bounded
above complex of finitely generated projective R-modules such that P — T is a quasi-
isomorphism. Since A is flat over R, the chain map Z#r(P) — Zr(7) is also a quasi-
isomorphism. Consider the map

i PRrT* — TQrT" - J.
Then by a similar argument as above, we obtain the following commutative diagram
Fo(T*) ——— A @ T* — ), Homy(A* @ P,A ® J)
id@adj(r’) | - o

A ®r Hompg(P, J) D, Homp (A ®r P,A®g J)

of complexes of A°-modules. Now adj(7’) is a quasi-isomorphism by assumption. Hence

it follows that adj(7’) is a quasi-isomorphism. Now since A* ® P is a bounded complex
of projective A-modules, we have Homy (A'®p P,A®g J) = RHom (F(T), A®% J) and
hence the conclusion follows. O

Proposition 4.1.16. Suppose T is a bounded complezx of R|G|-modules which are free of
finite rank over R. Then we have isomorphisms

Fr(T) — RHompo(Zr(Homg(T, R)), A)

and
ﬁp(HomR(T, R))L — RHomA(ﬁzp(T), A)

in D(A[G]) and D(A°[G]) respectively.
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Proof : The pairing
T ®R HomR(T, R) —_— R

satisfies the hypothesis in the preceding proposition. Therefore, we may apply the propo-
sition to obtain our conclusion. O

Though we shall not use it later, we feel it wothwhile to mention the following “local
duality” type result. Before that, we have a lemma.

Lemma 4.1.17. Suppose I is a finitely generated profinite group and contains a pro-p
subgroup of finite index, and A is (left and right) Noetherian. Then we have an isomor-
phism

A ®ﬁ wr — RHomy (RHoon(A ®I§ wr, Ip), IA)
mn D(MOdA_A).
Proof : Since wg is an object of D*(M odﬁ‘f "), we may choose a bounded complex
of Noetherian R-modules, which represents wg. Since A is Noetherian, it follows from

Corollary 2.1.2 (and its dual statement) that I, is an injective A-module and an injective
A°-module. By Proposition 1.3.4 and Proposition 1.3.6, we are reduced to showing that

ARRrQ — HomA(Hoon(A Qg 9, IA),IA)

is an isomorphism of complexes. The assumptions on I' enable us to work with the 91-
adic topology, and so it follows from Corollary 2.1.5 that we have the isomorphism in the
case when () is a single module concentrated at 0. For a general bounded complex of
Noetherian R-modules, the term in degree n on the right is

HOIIIA (HOon(Q", IA), IA),
and the required isomorphism is given by

A®RQ — HomA(Hoon_(A Rr Q,]A),IA)
AQz = (f = (-1 f(A®1))),

where the sign conventions make this into a morphism of complexes. O

Theorem 4.1.18. (Local duality) Suppose I' is a finitely generated profinite group and
contains a pro-p subgroup of finite index, and A is (left) Noetherian. Let X be a bounded
complex of modules in M odﬁ[‘Gf]t. Then we have the following isomorphism

RHom (RHompo (A ®F wr, In) ®% X, 1) — RHom, (X, A ®% wr)
m D(MOdAo[G])‘
Proof : This follows from Proposition 1.3.7 and Lemma 4.1.17. O
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4.2 Finite generation of cohomology groups

In this section, we shall show that the cohomology groups of the induced modules are
finitely generated under certain finiteness assumptions. These are the groups which we
are interested in, and the knowledge that they are finitely generated will help in proving
a duality between these groups. ,

Throughout this section, we assume that I' is a compact p-adic Lie group. By Theorem
3.4.1, this implies that A = R[I'] is a Noetherian adic ring. We then have the following
two lemmas.

Lemma 4.2.1. Assume that T is pro-p, and let M be a compact A-module. Then M is
finitely generated over A if and only if Mr is finitely generated over R.

Proof: Since I is pro-p, we have 9t = mA + I and this implies that M /MMM = Mr/mMr.
Applying Nakayama's lemma (Proposition 2.2.11) for compact A-modules, we have that
M is finitely generated over A if and only if M/9M is finite. On the other hand, applying
the same proposition for compact R-modules, we have that Mr is finitely generated over
R if and only if M/9M is finite. Thus, the conclusion follows. O

Lemma 4.2.2. If M is a finitely generated A-module, then Torf(R, M) is finitely gener-
ated over R.

Proof : To see this, we first note that since M is finitely generated over A and A is
Noetherian, we can find a resolution P of M consisting of finitely generated projective
A-modules. Then R ®, P is a complex of finitely generated R-modules. Therefore, its
homology groups Tor®(R, M) are finitely generated over R. O

The next lemma will relate two complexes of modules and give a sufficient condition
for them to be cohomologically bounded. We will utilize this to derive a relationship
between cohomology groups. '

Lemma 4.2.3. Let T be a bounded complex in C}}{aﬁ, and let N € Cg ', Then N
can viewed as a compact A°-module via the augmentation map A — R, and we have an
isomorphism ‘

N (A@rT) = NQLT
in D~(Crg), where the functor — @% — on the left is over D~(CA, ") x D™(Cr¢) and
the one on the right is over D”(Cg_ft) x D~ (Cre) (see Proposition 2.5.7). Moreover, if
pdg(N) is finite, then N®% (A*®@RT) is an object in D*(Cr ), and the above isomorphism
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is an an isomorphism in D*(Crg). In particular, if N is a free R-module, we have an
isomorphism
NRY(A'QrT)XN®RT

m Db(CR,G) .

Proof : Let P be a resolution of N consisting of finitely generated projective A°-modules,
and let Q be a resolution of N consisting of finitely generated projective R-modules.
We may view @ as a resolution of A°-modules via the augmentation map A — R. By
comparison (see [Wei, Thm. 2.3.6]), there is a morphism f : P — @ of complexes of A°-
modules which is a quasi-isomorphism and lifts the identity map N — N. This induces
a quasi-isomorphism

[ i POAAN — Qa A =Q

(since A is flat by Lemma 4.1.1) and a morphism
fis 1 POAN®RT — QAN ®rT =QQrT
of complexes in Cr . Since Q ®x T represents N ®% T by Proposition 2.2.14, it remains

to show that f.. is a quasi-isomorphism. Now if A — B — C — A[l] is an exact

triangle in Db(Cg,_Gf *), we then have a morphism

N @ (A ®p A) — N ®% (A* ® B) —> N ®% (A ®p C) —= N ®F (A* @ A)][1]

| B B s

N@EA N Q®% B N@LC N ®% A[l]

of exact triangles. Therefore, if any of the two morphisms f4, fg and f¢ are isomorphisms,

so is the third. For a bounded complex 7" in Cﬁaf ¢ we have the following exact triangle

Tt T == 76T — HYT) 4] ~—»(rasa T[1]:

Therefore, by induction, we are reduced to showing that f,, is a quasi-isomorphism in
the case when T is a single module. To show this, it suffices to show that f., is a quasi-
isomorphism of complexes of R-modules. The map f induces the following morphism

Tor] (HI (P ®x A*),T) = H* (P @, A ®r T)

|

Tor®(H(Q ®4 AY),T) = H*(Q &\ A* @& T)
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of convergent spectral sequences of R-modules, where the two spectral sequences come
from [Wei, Thm. 5.6.4]. Since f, is a quasi-isomorphism, we have

HI(P®a AY) 2 H(Q®a A,
which in turn induces the isomorphisms
TorlR(Hj(P ®a AY), T) o Torf(Hj(Q ®a AY), T).
By convergence of the spectral sequences, this implies that
H(PRyAN®rT) X H(Q®r AN ®rT),
as required. The second and third assertions follow immediately from the first. O

Proposition 4.2.4. Let T' be a bounded complez in Cﬁy‘cﬂ, and let N € CE7" with
pdr(N) < co. Viewing N as a compact A°-module via the augmentation map A — R, we
have an isomorphism

N®YRI(G,A*®rT) 2 RI'(G,N ®% T)
in D(Modg). In particular, we have the following isomorphism
R®YRI(G,A*®rT) ¥ RI(G,T)
in D(Modg).

Proof : As before, we let P be a bounded above complex of finitely generated projective
A°-modules quasi-isomorphic to N. Then

N ®YRI(G,A*®rT) = P®, C(G,A*®r T).
It is easy to see that there is an isomorphism
P@yC(G, A" ®rT)2C(G,P®s (A'®rT))

of complexes via a similar argument to that of [Ne, Prop. 3.4.4]. As seen in the proof
of Lemma 4.2.3, we have that P ®, (A* ® g T') is cohomologically bounded and is quasi-
isomorphic to N®RT in D¥(Crg). The conclusion now follows from Lemma 2.4.8. O

87



Remark. The second assertion of the preceding proposition was proved in [Ne, Prop.
8.4.8.1] for the case I' & Z7. We also mention that in the case when 7' is an object of
Cg’_cf * that is projective as an abstract R-module, and assuming that cd,(G) < oo, and
that H{(G, M) is finite for every finite discrete G-module M, the same assertion is a
special case of [FK, Prop. 1.6.5(3)].

We recall from [Ne, Prop. 4.2.3] that if G is a profinite group such that H'(G, M) is
finite for every finite G-module M, then for every T € Cﬁ&f !, we have that H'(G,T) is a
Noetherian R-module for every ¢ > 0. In the case when I is abelian pro-p, the ring A is
commutative Noetherian local adic, and so [Ne, Prop. 4.2.3] can be applied. For the case
of a noncommutative I', we have a weaker result in this direction.

Proposition 4.2.5. Suppose I' is a pro-p p-adic Lie group and G is a profinite group
satisfying the following properties:

(1) cdp(G) = n.

(2) HY(G, M) 1s finite for all finite G-modules M and for all i > 0.
Let T € CﬁfGﬂ. Then the cohomology groups H'(G,A* @ T) are finitely generated over A
for all 1 > 0.

Proof : Since A* ®z T is a Noetherian A-module, so is H(G,A* ®g T). Also, since
cd,(G) = n, we have H(G,A* g T) = 0 for ¢ > n. Thus, it remains to show that
Hi(G,A\* ® T) is finitely generated over A for 1 < ¢ < n. We shall prove this by
induction downward on i. We apply Proposition 4.2.4 (taking N = R) to obtain an
isomorphism

R®YRI(G,A"®rT) 2 RI(G,T)

in D(Modg) which induces the following bounded convergent spectral sequence
Ef,s = Tor®(R, H*(G,A\*®r T)) = H"%(G,T).
By hypothesis (1), this gives an isomorphism
H"(G,A'*'®rT)r =2 H"(G,T).

As seen above, hypothesis (2) allows us to apply [Ne, Prop. 4.2.3] to conclude that
H"(G,T) is a Noetherian R-module. It follows from the above isomorphism that
H™"(G,A\* ®g T))r is also a Noetherian R-module. By Lemma 4.2.1, this implies that
H"(G,A\* ®r T) is a Noetherian A-module. Let i < n and suppose H’(G,A* ®r T) is a
Noetherian A-module for j > i. Since the spectral sequence is bounded, it follows that
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ET (see [Wei, Def. 5.2.1] for the definition) must stabilize for large enough m, and this
stable value is denoted by EXS. In particular, we have that E§° ; is a quotient of Egv_j.
By loc. cit. 5.2.5, we have that E§° ; is a subquotient of HI(G,T), and so is a Noetherian
R-module since H/(G,T) is a Noetherian R-module by [Ne, Prop. 4.2.3]. On the other
hand, it follows from the definition of E§° ; that the kernel of the map Ef _; - Eg° ; is
isomorphic to a subquotient of
D £
i=j4+1,—-i°

j<i<n
By our induction hypothesis and Lemma 4:2.2, the above module is a Noetherian R-
module. Hence, it now follows that Eg,_j‘ = HI(G,A\* ®g T)r is a Noetherian R-module.
Applying Lemma 4.2.1, we have that H/(G,A* ® T') is a Noetherian A-module. O

Corollary 4.2.6. Suppose I' is a pro-p p-adic Lie group and G is a profinite group sat-
isfying the following properties:

(1) cdp(G) = n. :

(2) H(G, M) is finite for all finite G-module M for all i > 0.
Then for every bounded complex T of objects in Cﬁy&ft, the object RI'(G,A* ®g T') is in
Df’\_ft(ModA). O '

Proof : Recall from the discussion before Lemma 2.4.8 that for a bounded complex 7" of
objects in Cg,—cf * we have the following convergent spectral sequence

H(G,H'(A* ®r T)) = H™ (G, A* @& T).

It follows from Proposition 4.2.5 that H*(G, H?(A* ®z T))) is a Noetherian A-module for
all 7, j. It follows from [Wei, 5.2.5] that H™ (G, A ®pg T) has a finite filtration consisting of
subquotients of H'(G, H'(A* ®gT)) for i + j = n. Hence it follows that H"(G,A' ®5 T)
is also a Noetherian A-module. O

4.3 Shapiro’s lemma

As before, let R be a commutative complete noetherian local ring with maximal ideal m
and finite residue field k of characteristic p. Let G be a profinite group, and let H be a
closed subgroup of G such that I' = G/H is a compact p-adic Lie group. We take our
continuous homomorphism 7 : G — I to be the canonical quotient map. It also follows
from our assumption on I' that A = R[I'] is Noetherian. We identify % as the collection
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of open normal subgroups of G' containing H. Therefore, in this context, for each U € %,
and an ind-admissible A[G]-module M, we have

UM = HOIIIR(R[G/U], M),
MU = R[G/U]L ®R M

We will apply Shapiro’s lemma to see that the direct limits and inverse limits of coho-
mology groups over every intermediate field F,, can be viewed as cohomology groups of
certain A-modules. The results in this section can be found in [Ne, 8.2.2, 8.3.3-5, 8.4.4.2].

Lemma 4.3.1. Let U be an open normal subgroup of G and N be a bounded below complex
of objects of Dr. Then we have a quasi-isomorphism

C(G,yN) = C(U,N)
of complezxes of A-modules.

Proof : We first prove the lemma in the case that /N is an object of Dg . Then we may
write N = lim V,,, where N, is a finite R[G]-module endowed with the discrete topology.

The usual Shapiro’s lemma holds for such modules. Also, we note that ;N = ll_I’)Il v(Na).

«
Hence, we have

C(G, yN) = C(G, lim U(NQ)) 2 lim C(G, y(Na)) < lim C(U, N,) = C(U, N)
which gives the required conclusion for the case that /V is an object of Dp . For the case
that NV is a bounded below complex of objects of Dg ¢, one can prove this by the spectral
sequence argument as used in Lemma 2.4.8. O

Recall that if A is a complex in Dg g, then Fy(A) = h_n)l vA is a complex in Dy ¢ by

Uew
Lemma 4.1.7. We then have the following proposition.

Proposition 4.3.2. Let A be a bounded below complex of objects of Dr. Then the
composite morphism
C(G, Fr(A4)) = 1_1_1_)n C(G, vA) N 11_@ C(U,A) Foic C(H,A)
Uew Uew

s a quasi-isomorphism of complexes of A-modules. In other words, we have an isomor-
phism
RF(G’, FF(A)) — RI'(H, A)

in D(Mody). O
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We would also like to have a Shapiro-type relation for cohomology groups of objects
in Cr. But since inverse limits are not necessarily exact, we cannot always do a limit
argument on the Shapiro maps as in Lemma 4.3.1. However, we can still say something
if we restrict ourselves to objects in Cg&f A
Lemma 4.3.3. Let U be an open normal subgroup of G. Then for any bounded complex

M in Cg’"cf t we have a quasi-isomorphism
of complezxes of A-modules.

Proof : By the same argument as that in Lemma 4.3.1, it suffices to consider the case
when M is an object of Crg. Note that M = liLnM/m"M as objects in Cr¢ and

My = lim(M/m"M)y. Then we have morphisms g

n

C(G, My) = lim C(G, (M/m"M)y) =5 lim C(U, M/m"M) = C(U, M)

which induces a morphism
LiLniHj(G, (M/m™"M)y) = H™(G, My)
IimiHj(U, M/m"M) = H™* (U, M)
—

n

of convergent spectral sequences. Since M/m"M is finite, the usual Shapiro’s lemma
implies that
Hj(G, (M/m"M)U) = Hj(U, M/m"M)

is an isomorphism. This in turn implies that

lim' H' (G, (M/m"M)y) = lim'H (U, M /m"M).

By the convergence of the spectral sequences, we have isomorphisms
H'(G, My) & H(U, M),
as required. O

To obtain the analogous result to Proposition 4.3.2 for Cﬁy‘cf !, we require more extra
assumptions.

91



Proposition 4.3.4. Let M be an ind-admissible R[G|-module which is Noetherian over
R. Then we have the following isomorphism
U
of complezes of A-modules. Furthermore, if H™(G,N) is finite for all finite discrete
A-modules N with a A-linear continuous G-action and all m > 0, we have
HY (G, Zr(M)) = lim H(U,M).

Uew
Proof : Since I' is a compact p-adic Lie group, the (m, I)-topology and 9-adic topology
on F#r(M) coincide. This implies that we have a continuous isomorphism

Fr(M) 2 lim My,

U
and thus an identification of the continuous cochain groups. The second assertion now
follows from Proposition 2.4.12 (note that A is Noetherian and so each My, is a Noetherian
A-module) and Lemma 4.3.3. O

4.4 The semilocal case

We now describe Shapiro’s lemma in the semilocal case and refer readers to [Ne, Sect.
8.1.7] for the proofs and verifications. We will require the results in this section in the
next chapter.

Let a : G — G be a continuous homomorphism of profinite groups, and let U be an
open normal subgroup of G. Then U = a~!(U) is an open normal subgroup of G and «
factors through G /U to give an injection G/U — G /U, which we also denote by a.

Fix coset representatives o; € G of

G/U = ol G/U) = | Ja(G/T);
and set a; = Ad(o;) o . Here Ad(o;) is the conjugation map on the group G sending g
to 0,90, '. By abuse of notation, we denote the conjugation map on G/U by Ad(c;).

For a G-module X, the G-module o*X is defined as follows: as an abelian group,
o@*X = X, and g € G acts on a*X as a(g) on X. The G-module X is defined similarly.
Note that the action of o; defines an isomorphism

g;:a*X — o} X
T — 0;°
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of G-modules. Now suppose X is a discrete R[G]-module. Then we have the following
decomposition of G-modules

aXU—@a a(G/0)o;") ®r X) .
Denote the projection on the 7th factor by m;. One then can check that following maps
o ((Rle(G/U)lo7") ®r X) — i (R[os(G/U)] ®r X)
a(gU)o; ' @ z — 0ia(glU)o; ' @ o

o (R[e:(G/U) ®r X) — (e} X)g
a(GgU)@z—gUu @z
are isomorphisms of G-modules. Composing the two isomorphisms with ;, we obtain a

homomorphism
w; o' Xy — (o X)g

of G-modules. Putting all w; together, we obtain a G-isomorphism

w=(w;): oa* Xy — @(a;‘X)U

Then the following diagram of complexes (see [Ne, 8.1.7.2])

C(G, Xv) @:C(G, (a1 X))

J -

C(U, X) ®,C(U,a

is commutative up to homotopy and induces a quasi-isomorphism (functorial in X)

Cone(a*) — Cone((a;])).

Assume V C U is another open normal subgroup of G. Set V = a~ (V). Fix coset
representatives 7; € G of

GV = UTja(@/V) = Ua(a/V)Tj’l.
Then

G =JV7a@) = JUea(G)



and for each j, we have Ut;ja(G) = Uog;a(G) for a unique i = i(j). Le., 7 = uyoia(g;;)
for some u;; € U,3;; € G. Tt is easy to check that the action of 7; defines an isomorphism
it X = G X
T —'TiT

of G-modules. Set 3; : G —— G A% G and define a morphism of complexes (functorial

in X)
r= (rij) . ®ZC(U, an) — @JC(Vv 6;X)

by

_ AT o (1)
s e

rii : C(U, a2 X) ‘23 O(U, o X) CT,a*X) == C(V,a*X) 25 C(V, 81 X).

Then we have the following cubic diagram

C(G, Xy) e ®:C(C, (0} X)p)

Tr C(U, X) &:C(U,a: X)
wvo’I&'owal
C(G, Xv) s 6,0, (8 X)7) '
res Sh
sh
C(V,X) o ®;C(V,B; X)

whose faces commute up to homotopy, and the boundary of the cube is trivialized by a
2-homotopy (see [Ne, 8.1.7.4.2, Lemma 8.1.7.4.3]). By [Ne, Cor. 8.1.7.4.4], the following

diagram

Cone(sh,sh,h)
Cone(wy o a*)

Cone((a}))
Cone('IY,wvoTrowL_,l,O)l Cone(res,r,m)
Cone(wy o a*)m Cone((5;7))
is commutative up to homotopy, where h = ((aj o sh) % hy,); and m = ((3; o res) x hy,;);.
Here h, denotes a fixed homotopy from the identity map to Ad(o) (see [Ne, 3.6.1.4, 4.5.5]).
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There is a similar construction for the corestriction (see [Ne, 8.1.7.5])
c: ®;C(V,B8;X) — &CU,q; X),
which yields the following commutative (up to homotopy) square.

Cone(sh,sh,h’
———s

. Cone((87))

lCone(cor,c,m)

Cone((a;))

Cone(wy o a*)

Cone(pr,wy oprou);1 ,0) l

Cone(sh,sh,h)
Cone(wy o o*) ———

Since the above constructions are functorial, and the cochains (as seen in Definition
2.6.9) are compatible with limits, we can extend them to ind-admissible R[G]-modules. By
functoriality again, we can extend the above constructions to complexes of ind-admissible
R[G]-modules. We will apply the constructions in this section in the next chapter.
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Chapter 5

Duality for Galois Cohomology

We have come to the final chapter of the thesis. In this chapter, we will formulate our
duality theorems. We begin by formulating and proving Tate’s local duality over adic
rings in Section 5.1. We also introduce the cohomology groups with compact support and
prove the Poitou-Tate duality over adic rings. In Section 5.2, we will apply the results
developed in Chapter 4 to the setting of p-adic Lie extensions. This will allow us to
formulate the Grothendieck duality of cohomology groups in Section 5.3 and Section 5.4.
In Section 5.5, we shall apply the duality theorems to obtain a generalization of a spectral
sequence that first appeared in [Ja]. Finally as a complement, we develop the duality
theorems over p-adic Lie extensions of a local field in Section 5.6.

5.1 Duality theorems over adic rings

Let p be a fixed prime. From now on, our adic rings A will always have the property that
A/9M™ is finite of order a power of p for all n > 1.

Let F' be a global field with characteristic not equal to p, and let S be a finite set
of primes of F' containing all primes above p and all archimedean primes of F' (if F' is a
number field). Let Sy (resp., Sg) denote the collection of non-archimedean primes (resp.,
real primes) of F in S.

Fix a separable closure F*%® of F. Set Gps = Gal(Fs/F), where Fg is the maxi-
mal subextension of F**?/F unramified outside S. For each v € Sy, we fix a separable
closure F;°? of F, and an embedding F*%® — F3°. This induces a continuous group
homomorphism G, := Gal(F;*®?/F,) — Gpg. If v is a real prime, we also write G, for
Gal(C/R).
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Lemma 5.1.1. For each v € S, we have

) Z 19 =2,
HY(Gyy Qp/Z,(1)) {f”/ 4 ’;j s

Suppose that A is Noetherian. Then for a A[G,]-module N with trivial G,-action, we have

| N ifj=2,
HJ(Gv,Nu»%{O ;fj>2

In the case where T is a R-module with trivial G,-action, we have an isomorphism
H*(Gy, A®rT(1)) 2 A®rT of A-A-bimodules.
If v € Sg, then we have

Z/2Z ifp=2,
0 if p # 2.

Proof: For j > 2, the conclusion follows from the fact that G, has p-cohomological dimen-
sion 2 (see [NSW, Thm. 7.1.8(i)]). By [NSW, Thm. 7.1.8(ii)], we have H*(G,,Z/p"(1)) =
Z/p". Therefore, the first assertion follows from taking direct limits. For a A[G,]-module
N with trivial G,-action, we have N (1) = lim N,(1), where N, is a Noetherian A-module.

H*(Gy, Qp/Zy(1)) {

It is easy to verify that the G,-action on ]?/a(l) is continuous, where N, (1) is given the
M-adic topology. Then we have
N = lim lim N, /901" N,,.
(o3 n

Recall that cohomology commutes with direct limits by definition. By [NSW, Thm.
7.1.8(iii)] and Proposition 2.4.11, cohomology commutes with inverse limits. Therefore,
it suffices to show the assertion for N, /9" N,, which is a finite discrete abelian p-group.
Since cohomology commutes with direct sums, we are reduced to the case of Z/p", which
follows from the above discussion.

It is easy to see that for any R-module T', the module A ® T is an ind-admissible
A[G,]-A-bimodule. The conclusion in this case follows by a similar argument as above.

The last assertion follows from [NSW, Thm. 7.2.17] and the fact that G, is a finite
group of order 2. O

Suppose v € S;. Let N be a complex of ind-admissible A[G,]-modules. For each
n € Z, we define 71, C(G,, N) to be the total complex of

(i k= TZnC(Gvi NZ))

97



We shall also use a similar notation for the above total complex when N is a complex
of ind-admissible A[G,]-A-modules. Note that if N is concentrated in degree zero, then
I C(Gy, N) = 75,C(Gy, N). By the above lemma, the canonical map of complexes of

A-modules N[-2] ) 745C(Gy, N(1)) is a quasi-isomorphism. We also have a quasi-
isomorphism Q,/Z,[—2] s 752C (G, Qp/Zy(1)) of complexes of Z,-modules. Since
Qp/Z, is an injective Z,-module, the map 4, has a homotopy inverse. We shall fix one
such map

Ty - TZ2C(Gva Qp/Zp(l)) T QP/ZP[_Z]

This gives a morphism
0y : C(Go, Qp/Zyp(1)) — T>2C(Gv_va/Zp(1)) — Qp/Zy[-2]

of complexes of Z,-modules.

Let M be a bounded complex of objects in Cy ¢, which are finitely presented over A.
Then we have an isomorphism M = lim M/9"M of complexes in C g, which induces an

n
isomorphism of complexes

C(Gy, M) = lim C(G,, M/9M" M)

of A-modules. Also, we have an isomorphism MY = lim(M/MM"M)" of complexes in
n
Dpe ,. For each n, we have the following commutative diagram

(M/M M)V (1) @4 M —E™ . (M/M" M)V (1) @ M/ M

e ®idl l

MY(1) @y M Qp/Z,(1)

where the pairings are the obvious ones and 7, : M — M /9" M is the canonical quotient.
Applying cochains and 6,,, we obtain the following commutative diagram

C (G, (M/IM M)V (1)) ®4 C(Gy, M) —2ET > C(G,, (M/IM"M)¥ (1)) @4 C(Gy, M/ M)

7r,\f®id1 l

C(Gv, MY(1)) ®4 C(Gy, M) Qp/Zy[-2]
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By Lemma 2.7.2, we obtain the following commutative diagram

C(Gy, M) 3 Homy, (C(GU,MV(I)) Q,/Z, )[ )

| |

O(Gy, M/ M) —— Homz, (C/(Go, (M/D"M)" (1)), Qu/2, ) -2

of complexes of A-modules. By a similar argument, one can check that this is functorial
in n and hence we have the following commutative diagram

C(Gy, M) 2 Homg, (C(Gu, M¥(1)), Qy/Z, ) [-2]

, lim av,, lv
@ C(Gy, M/ M) lln Homz, (C(GU, (M/SR"M)V(I)) d QP/ZP) (—2]

n n

of complexes of A-modules. We are now able to prove the following formulation of Tate’s
local duality. '

Theorem 5.1.2. Let v € Sy, and let M be a bounded complex of objects in Cp g, which
are finitely generated over A. Then we have the following isomorphism

RI(G,, M) — RHomg, (RT(Gy, MY (1)), Q/Z, ) 2]
in D(Mod,).

Proof : We shall show that « (in the above diagram) is a quasi-isomorphism. By consid-
ering the exact triangle

0gi-itM — oM — M'[—i] — (0<i-1M)[1]

and by a similar argument to that of Lemma 4.2.3, we are reduced to the case when M is
a single module. By Proposition 2.4.10 and Proposition 2.4.11, we have that v and v in
the above diagram are 1somorphlsms of complexes, and the vertical maps in the following
commutative diagram

Hi(G,, M) i Homg, (HH (G, MY(1)), Q,,/Z,,)

‘ lim(ay,). _
lim H (G, M/9M" M) —— lim Homg, (HH (G, (M/IU"M)¥ (1)), Q,,/Z,,)

n n
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are isomorphisms. Since each «, is a quasi-isomorphism by Tate local duality [NSW,
Thm. 7.2.6], we have the required conclusion. O

If M is a complex in (M odﬁ\”[‘é:‘:] ), then we can also view M as a complex in (M odj'\”[‘ézi’d)

via the continuous homomorphism G, — Gpgg. Therefore, the cochain complexes
C(Grs, M) and C(G,, M) can be defined. Recall that for v € Sy, we have the restriction
map

res, : C(Grs, M) — C(G,, M)

induced by the group homomorphism G, — Gpg. For a real prime v, we have the
following
res, : C(Grs, M) — C(Gy, M) — C(G,, M).

We now make the following definition.

Definition 5.1.3. Let M be a complex of ind-admissible A[G g s]-modules. The complex
of continuous cochains of M with compact support is defined as

Ce(Grs, M) = Cone | C(Grs, M) =5 @ C(G,, M) & @ C(G.,, M) | [-1] ,

veESy vESR

where the elements of
Ci(Grs, M) = C(Gps, M) & | P C7(G., M) & ) C1(Go, M)
vESy VESR

have the form (a,as) with a € C/(Grs, M), as = (@v)ves;usgs @ € CY(G,, M) ifv € Sy,
and a, € C"71(G,, M) if v € Sg, and the differential is given by

d(a,as) = (da, —resf(a) — dag).
The ith cohomology group of C.(Grs, M) is denoted by HY(Grs, M).

Remark. If F is a function field in one variable over a finite field or F' is a totally
imaginary number field, then Sg is empty, and the cone is given by

Cone C(prs, M) Rt @ C(Gva M) [_1]'

’UES}

Now suppose that p is odd and F is a number field with at least one real prime. Let

v € Sg. Then H(G,, M) = 0 for every M € (A{odf\"[‘é‘pag]) and for all ¢ since G, is a finite
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group of order 2 and M is a direct limit of pro-p-groups. Therefore, it follows that the
canonical map

Cone | C(Grs, M) =5 @ C(Gy, M) | [-1] — C(Grs, M)

vESy

is a quasi-isomorphism. Therefore, we may take the above cone as a definition of the
complex of continuous cochains with compact support in this case.

Proposition 5.1.4. The functor
Ce(Grs, =) : Ch* (Mod(& *) — Ch(Mody)

preserves homotopy, exact sequences and quasi-isomorphisms, hence induces the following
exact derived functors

RI(Gr,s,—) : D*(Modyit; ) — D(Mod,)

such that we have the following exact triangle for M € DT (M odj\"[‘é;“:])

RI.(Grs, M) — RI(Grs, M) — @) RI(G,, M)

UESf

in D(A) and the following long exact sequence

. — H{(Grg, M) — H(Grs, M)

— P H(Go, M) & @ H(Go, M) — HIP (G, M) —> - .

vESy vESR
Proof : This is immediate from the definition of the cone. O

The next proposition is the analogous statement to Proposition 2.4.11 for cohomology
groups with compact support. We note that by [NSW, Thm. 7.1.8(iii), Thm. 8.3.19],
Proposition 2.4.11 can be applied to Grg and G,, where v € Sy. For v € S, G, is a
finite group of order 2, and so the finiteness hypothesis in Proposition 2.4.11 is satisfied.
Therefore, the conclusion also holds in this case.

Proposition 5.1.5. The functor C.(Grgs,—) preserves direct limits in (Modﬁ\"[‘é;":]).
Moreover, if M is an object in Ci g, s which is a finitely generated A-module, we have the

following isomorphism

Ce(Grs, M) = lim C(Grs, M/ M)

n
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of complexes and isomorphisms

Hi(Grs, M) = lim H{(GF,s, M/90"M)

of cohomology groups.

Proof : The isomorphism of complexes is immediate from the definition of C.(Gpg, —) as
a cone. The second isomorphism now follows from the long exact sequence of cohomology
groups in the preceding proposition and the above discussion. O

We also state the following two propositions which are variants of Proposition 2.4.12
and Proposition 2.4.13. The proofs are similar to those used in the two propositions.

Proposition 5.1.6. Let M be an object in Cp g, ¢, and let {M,} be an inverse system of
objects in Cp g, s which are also finitely geenrated A-modules. Suppose that lim M, = M.

n

Then we have the following isomorphism

H}(Gps, M) = lim H}(GFs, M,)

form>0. O

Proposition 5.1.7. Let M* be a bounded complex of objects in Cpg, ¢, and let {M}}
be an inverse system of bounded complezes of objects in Cy q, s which are finitely gener-
ated A-modules. Suppose that lim My = M*® as complezes. Then we have the following

1somorphism !
H(Grps,M*) = lim H}(Gps, M)

forn>0. O
Lemma 5.1.8. We have

Qp/Zp lfj =3,

HI(Grs, Qp/Zy(1)) = {O ifj >3

Suppose A is Noetherian. If M is a A-module endowed with a trivial Ggs-action, then

) M if 7 =3,
H) (G, (1) 2= { M
0 ifj>3.

In the case where T' is a R-module with a trivial Ggs-action, we have an isomorphism
H3}(Grs,A®rT(1)) 2 A®rT of A-A-bimodules.
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Proof : By the long exact sequence of Poitou-Tate [NSW, 8.6.13], we have the following
exact sequence

H*(Grs, Z/p"Z(1) — P H*(Gw, Z/p"Z(1)) & €D H*(G., Z/p"Z(1)) — Z/p"Z — 0

vESy vESR

and an isomorphism

H%Grs, Z/p"Z(1)) = @) B*(G., Z/p"Z(1)).
vESR

By the definition of continuous cochains with compact support and the fact that cd,(G,) =
2 for v € Sy, we have H3(Grs,Z/p"Z(1)) = Z/p"Z. The remainder of the lemma will
then follow from a similar argument to that in Lemma 5.1.1. O

Let M be a bounded complex of objects in Cp g, ¢ which are finitely presented over
A. We define two morphisms

U Ce(Grs, MY(1)) ® C(Grs, M) — C.(Grs,Qp/Zy(1))
Ue : C(Grs, MY(1)) ®4 Co(Grs, M) — C(Gr.s5, Qp/Zp(1))

of complexes of abelian groups which are given by the following respective formulas (see
[Ne, 5.3.3.2, 5.3.3.3])

(a,as)cUb= (aUb,as Uress, (b))
a U, (b7 bS) = ((l U b) (_l)dreSSI(a) U bS)

where U is the total cup product
C(prs, Mv(l)) SIN C(Gp,s, M) — C(Gp,s, Qp/ZP(l))

of Section 2.7.

By Lemma 5.1.8, we have a quasi-isomorphism Q,/Z,[—3] 4 T>3C:(GFrs, Qp/Zy(1))
of complexes of Z,-modules. Since Q,/Z, is an injective Z,-module, the map 7 has a
homotopy inverse. We shall fix one such map

e 7'23Cc(GF.Ss Qp/Zp(l)) =i QP/ZP[_?’]v

and this induces the following morphism

Ce(Grs, Qp/Zy(1)) — 723C(Gr.s, Qp/Zy(1)) — Qp/Zy[-3]

103



of complexes of Z,-modules. Combining this with the total cup products, we obtain the
following morphisms

Ce(Grs, MY(1)) @4 C(GEs, M) — Qp/Z,[—3]
C(Grs, MY(1)) ®r Ce(GEs, M) — Qp/Zy[-3]

of complexes of Z,-modules. We can now state the following theorem.

Theorem 5.1.9. Let M be a bounded complex of objects in Cp g, which are finitely
generated over A. Then we have the following isomorphisms

RF(GF,S,M)—>RHomz,,(RFc(Gp,s, ¥(1)), Qp/Zy ) 3]
RI.(Grs, M) — RHomz, (R (Grs, M¥(1)), Qp/Zy) (3]

in D(Mody,).

Proof : By a similar limiting argument (using Lemma 5.1.5 for the compact support
cohomology) to that of Theorem 5.1.2, we can reduce to the case that M is finite. The
conclusion then follows from the usual Poitou-Tate duality [NSW, 8.6.13]. O

Remark. Theorem 5.1.2 and Theorem 5.1.9 are stated in [FK] for the case that M is a
finitely generated projective A-module.

5.2 Iwasawa setting

We retain the notations introduced in the previous section. Assume further that if p = 2
and F' is a number field, then F' has no real primes. By remarks after Definition 5.1.3, we
may (and will) take

Cone | C(Gfs, — ress@c o= | =1}

LESf

to be our complex of continuous cochains with compact support which we denote by
C.(GFs,—) by abuse of notation.

Let F be a p-adic Lie extension of F' which is contained in Fg. In other words, Fi
is a Galois extension of F' whose Galois group I' is a (compact) p-adic Lie group. Write
H = Gal(Fs/F), and let % denote the collection of open normal subgroups of Gpg
containing H. For each U € %, we let F; = (Fs)V and define Sy to be the set of primes

104



in Fy above S. Note that this is a finite Galois extension of F. Let (Sy); denote the
collection of non-archimedean primes of Fy; in Sy. As before, we write A = R[I'], which
is a Noetherian ring.

We begin describing how Section 4.4 may be applied here. Let v € Sy, and fix an
embedding F*P — F3P which induces a continuous group monomorphism

a=a,: G, — Gp,

where Gp = Gal(F*P/F). Let X be an ind-admissible R[Gr]-module. For a finite Galois
extension F' of F', write U = Gal(F*?/F’) and Xy = R[Gr/U] ®g X. The embedding
F*%P «— [P determines a prime v’ of F” above v such that F), is a finite Galois extension
of F, and G, := Gal(FP/F!) = a~}(U).

Fix coset representatives o; € G of

Gr/U = Uaia(Gv/GU,).
Then the set of distinct primes in F” above v is given by the (finite) collection {o;(v’)}, and

we may identify Gy, () with the subgroup a;(G.) of Gal(F*?/F), where a; = Ad(o;) o .
We then have the following isomorphisms

Oy K) —- C{Giry 0 X) 2 O Gy 0 X)

of complexes, where the first isomorphism is induced by the pair

—1
(e 7 g
Oy —2>Guowy X Tsorx,

and the second is induced by the pair
Gy By Goiv) ot X —2 o X .

Recall that in Section 4.4, we have the following decomposition

w=(w;): a* Xy — @(QZX)GU,

of G,-modules. This induces the following isomorphism

C(Gy, Xy) = QB C(Go, (0} X)g,,).
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Suppose that X is of finite type over R or cofinite type over R. Then each summand in
the last complex is quasi-isomorphic to C(G,,X) by Lemma 4.3.1 and Lemma 4.3.3.
Combining this with the above, we obtain a quasi-isomorphism

C(Gy, Xy) = @ C(Goyw), X)

and isomorphisms

vaXU @Hn oi(v')s

of cohomology groups for n > 0. We shall apply the above discussion to ind-admissible
R|GFpg]-modules, which we view as R[Gfg]-modules via the canonical quotient map
Gr —» Gpgs.

Lemma 5.2.1. Let T' be an ind-admissible R[GF s]-module of finite type over R, and let A
be an ind-admissible R[GFs|-module of cofinite type over R. Then we have the following
isomorphisms

Hj(Gps,yr( )) £ llmH](GFS Tu) = hmH](GpU SU7

Hj(GF‘S,F[‘(A)) = llmH](Gps, UA) = hmH (GFU SU,A) HJ(Gal Fs/F ) )
U
Hi(G,y, Zr(T)) = lim H (GU,TU = lim P H/ (G, T),

—
U wlp

U
H(G,, Fr(A)) = lim H(G,, vA) = lim @) H (G, A).

—
U U wlv

Proof : All the isomorphisms follow immediately from Section 4.3, Section 4.4 and the
above discussion. O

We would like to derive an analogue of Shapiro’s lemma for compactly supported
cohomology. Let F’ be a finite Galois extension of F which is contained in Fs. Denote
the set of primes of F’ above S by S’. Let X be an ind-admissible R[GF s]-module. We
write U = Gal(Fs/F') and Xy = R[GFrs/U] ®g X. By the discussion in Section 4.4 and
above, we have the following diagram

C(Grs, Xv) Does, C(Gv, Xv) Does, Dupp C(Gu, R[Gy/Gr] ®r X)

sh lsh

C(GF’,S’»X) ®’U'€S} C(GUI,X)
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which commutes up to homotopy. This in turn induces a quasi-isomorphism (functorial
in X)
Shc : CC(GF,Sy XU) = CC(GF’,S’a X)
which fits into the following commutative (up to homotopy) diagram with exact rows.
D.es, C(Guv, Xv)[-1] Ce(Grs, Xy) — C(GFs, Xu) —0
2

0 = @UESI @v’h} C(GU’R[G'U/GU,] ®R X)[_l] _)CC(GF,SiXU) = C(GF,S7XU) B 0

Sh[—lll Shcl shl

Bues, C(Gu, X)[-1] CAGp 5, X) —= C (G5, X) — 0

Suppose that F” C Fg is another finite Galois extension of F' containing F’, and write
S" for the set of primes of F” above S and V' = Gal(Fs/F"). Again from Section 4.4, we
have the following morphisms
res. : CC(GF’,S’a X) =¥, CC(GF”,S”a X)
cor, : Ce(Glrn 1, X) — C G, X),

which are functorial in X and fit in the following diagrams, which are commutative up to

0

0

homotopy:
0—— ®U’ES}C(GU’7 X)[_l] s CC(GF/,SI, X) —_— C(GF/,S/, AX) — ()

lres[—l] lresc lres

0 O -08 ®U”€S}/C(GU”’ X)['—].] —_— Cc(GF”,S”? X) . C(GF'/I‘SH, )L’) v 0

0 —> Bures;C(Gur, X)[~1] — Co(Grr 1, X) — C(Gpn 50, X) —0

lcor[— 1] lcorc lcor

0 —> Bues,C(Gu, X)[~1] — Co(Grv,57, X) — C(Cr,51, X) — 0

ClCrs, Xp) =2+ Ol G 59, X) CulGrg, Xv) 25 Ol Gpu g, X )

Tt l resc l Pr. l J core

she

C.(Grs, Xv) —> Ce(Gpr g, X) C.(Grs, Xv) ey Ce(Gprsr, X)

Since all the morphisms constructed above are functorial, they can be extended to
complexes of ind-admissible modules. Hence, we may conclude the following.
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Proposition 5.2.2. (a) For a bounded below complex A of ind-admissible R|G r,s]-modules
which are cofinite type over R, the canonical morphism of complexes
Ce(Grs: Fr(A)) — lim C.(Grgs, vA)
U,Tr
is an isomorphism.
(b) Let T be an object of Crps. Then the canonical morphism of compleres

Ce(Grs, Fr(T)) — lim Ce(Grs, Tv)
U

is an isomorphism and induces isomorphisms

HI(Grs, #r(T)) = lim HI(Grs, Ty) = lim H(Gry.50,T)
U,pr U,core

of cohomology groups for 7 > 0. O

In the next proposition, we shall show that if 7" is an object of C;g‘_aj: ¢» the coho-

mology groups H’(Grs, #r(T)), H (G, #r(T)) and H!(GFrs, #r(T)) are Noetherian A-
modules.

Proposition 5.2.3. If T is an object of Cr,g, s which is a Noetherian R-module, then the
cohomology groups H¥(Grs, Zr(T)), H (G,, Zr(T)) and Hi(Grs, #r(T)) are Noethe-
rian A-modules for 7 > 0.

Proof : We first assume that I' is pro-p. By Proposition 4.2.5, the cohomology groups
H)(Grs, Zr(T)) and HY(G,, Zr(T)) are Noetherian A-modules. It then follows from
Proposition 5.1.4 that H(Grs, #r(T)) is a Noetherian A-module.

Now suppose that I' is a general compact p-adic Lie group. Let I be an open normal
(uniform) pro-p subgroup of I'. Write L = (F4 )" and denote the set of primes in L above
S by S’. Denote by ¥ the collection of open normal subgroups of G ¢ containing H.
Since this is a cofinal subset of %, we have isomorphisms

Hj(GF,S’yI‘(T)) = hr_n Hj(GFUYSwT) = lﬂ,n Hj(GLV,Sv’T) = Hj(GL,S’ny'(T))

Uvew vey _
Hg(GF,S,ﬂF(T)) = ](El HZ(GFu,SuaT) = l_ll.n Hg(GLv,Sv>T) = Hg(GL,S’ayI"(T))
Ue« Vey

of R[I"]-modules. Since I is pro-p, we have that these cohomology groups are finitely gen-
erated over R[I"], and hence over A. By Proposition 5.1.4, we have that H’(G,, #r(T))
is a Noetherian A-module. O

Corollary 5.2.4. If T is a bounded complex of objects ofc,’j,gfpfs, then RI'(Ggs, #r(T)),
RI(G,, Zr(T)) and RL(Gps, Zr(T)) are objects in D*(Mody ™). O
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5.3 Duality over p-adic Lie extensions I
We retain the notations from the previous two sections and state the following variant of
Tate local duality and Poitou-Tate duality for p-adic Lie extensions.

Theorem 5.3.1. Let T' be a bounded complex of objects in Crgys which are finitely
generated over R. Then we have the following isomorphism

RI(G,, Zr(T)) — RHomZp(RF(GU,Fp(TV) (1)), Qp/Z, )[ ]
RI(Grs, Zr(T)) — RHomg, (RFC(GFS,FF V1)), Qp/Zp ) [~
RT.(Grs, #r(T)) — RHomg, (RI‘(GFS,FF(TV (1)), Qp/Z,

in D(Mody).

Proof : It follows from Lemma 4.1.6 that #p(T) is a bounded complex of Noetherian
(and hence finitely presented) A-modules. Therefore, we may apply Theorem 5.1.2 and
Theorem 5.1.9 to #r(T"). The conclusion will now follow from Proposition 4.1.11. O

Let T be a bounded complex of ind-admissible R[G,]-modules which are finitely gen-
erated over R. Choose a bounded complex Q of injective R-modules which represents wp
in D(Modg). Then Hompg(7, Q) is a bounded complex of ind-admissible R|[G,]-modules
with cohomology groups which are finitely generated over R (see [Ne, 4.3.2]). By loc. cit.
Prop. 3.3.9, there is a subcomplex 7™ of Hompg(7, ﬁ) which is a complex of ind-admissible
R[G,]-modules that are finitely generated over R and is quasi-isomorphic to Hompg(T, §~2)
via the inclusion map. Therefore, we have the following morphism

m:TQrT* — T ®g Hompg(T, Q) — 0

of complexes of R[G,]-modules, where the first morphism is induced by the inclusion and
the second is the usual evaluation map. Then we have the following morphism

7 Fr(T) @r Fr(T*)(1) = A@r T @r T*(1) 225 A @5 (1)

of complexes of A[G,]-A-bimodules, where ¢ is defined as in Corollary 4.1.14. By what
we have done in Section 2.7, we have a morphism

C(Gu, Fr(T)) ®r C(Go, Fr(T7)(1)) — C(Guy A®R (1)) — TL4C (G, A ®1 Y1)

of complexes of A-A-bimodules. Taking the adjoint, we have the following map of com-
plexes of A-modules

C(Gy, Zr(T)) — Homye (C(Gv,9F(T*)‘(1)),Té§C(GU, A®r 6(1))).
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By Lemma 5.1.1, we have a chain map
v:AQr N — TéIZC(Gv, A ®pg ﬁ(l))
which is a quasi-isomorphism. Combining everything, we obtain a morphism
RI(G,, #r(T)) — RHome (RI‘(GU, Fr(T*)(1)),A ®% wﬁ) [~2]

in D(Mody). In fact, we claim that this morphism is an isomorphism.

Theorem 5.3.2. Let T' be a bounded complex in ng,‘gfut. Then there is an isomorphism
RI(G,, #r(T)) — RHomye (RF(G,,, Fr(T*)(1)),A ®% wH> [~2]

in D(Mody) and an isomorphism
RI(Gy, Fr(T)") — RHomy (RT(Gy, r(T%)(1)), A 0k wor ) -2

in D(Modp.), where T* is defined as above.

Remark. The second morphism in Theorem 5.3.2 is constructed in a similar manner
as the first. The remainder of the section will be devoted to showing that the above
morphisms are isomorphisms. In fact, we shall only show that the first morphism is an
isomorphism, the second being analogous.

Let B be a A ® A°-module, and let A be a A ® g A°-submodule of B. Suppose that
these modules are endowed with topologies making them both compact A-modules and
compact A°-modules, and that the topology on A coincides with the subspace topology
induced from B. Then for any bounded complex T" of objects in Cg&f * we define

QB/A(T) = [A — B] ®A y]‘(T),
where A and B are in degree -1 and 0 respectively.

Lemma 5.3.3. Let (A, B) and (A’, B') be two pairs of A @ g A°-submodules with A C B
and A" C B'. Suppose that these modules are endowed with topologies making them
both compact A-modules and compact A°-modules, and that the topology on A (resp., A’)
coincides with the subspace topology induced from B (resp., B'). Suppose f : B — B’
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is a continuous A ®pr A°-homomorphism with f(A) C A’. Then we have the following
commutative diagram

RT(Gy, Fp/4(T)) —> RHomyo (RF(GV, Zr(T*)(1)),[A — B] &% wR) ~2]

| |

RI(G,, Zp:4(T)) —> RHom o (RI‘(GU, Fr(T*)(1)),[A' — B &% wR> [~2]

Proof : 1t is easy to see that the following diagram

[A — B] @ Fr(T) ®r Fr(T*) (1) ——2— (A — B] @5 (1)

f®idi lf@icl
[A' — B @4 Fo(T) ®r Fr(T*)(1) —=2 >[4 — B @r (1)

is commutative. Applying the total cup products of continuous cochain groups to this
diagram and using the results of Section 2.7, we obtain the required conclusion. O

Let I = Ir denote the augmentation ideal of A. Recall that if G is a profinite group,
its maximal pro-p quotient is denoted by G(p). We then have the following lemma.

Lemma 5.3.4. Let n be an arbitrary positive integer. Then we have the following state-
ments. (1) The module I" is a flat R-module.

(2) The module I"/I™! is finitely generated over R.

(3) The module A/I™ is finitely generated over R.

Proof : (1) We first consider the case when R = Z, and I is finite. Then I" is a Z,-
submodule of Z,[I'|. Since Z,[I'] is free over Z,, so is I". For a general R, I" is the
tensor product of R with the nth power of the augmentation ideal in Z,[I'] and so is free
over R. Now if I' = lim I'/U is profinite, we then have that I" is the inverse limit of the
nth powers of the augmentation ideals of R[I'/U]. The conclusion follows from a similar
argument to that used in Lemma 4.1.1.

(2) Let J denote the augmentation ideal in Z,[I']. In this case, we have that J"/J"+!
is a quotient of I'**(p)®" which is finitely generated over Z,. Finally, one observes that

In/[n+1 ~ PR ®Zp (Jn/Jn+1)’

and hence the conclusion follows.

111



(3) The case n = 1 is immediate. The general case follows from (2) and induction
using the following exact sequence

0 — I"/I™ — A/ — AT — 0.

We are now able to state the following proposition which will be an important ingre-
dient in our proof of Theorem 5.3.2.

Proposition 5.3.5. Let T' be a bounded complex of objects in Cg,_G{t. Then we have the
following morphism of exact triangles.

RI(Gy, F1o/101(T)) —> RHomps (RI (G, Fr(T)(1)), I*/ 1" 2k wr ) [-2]

|

RI(G,, Fp/ st (T)) — RHompo (RF(G,,, Fr(T)(1)), A/ @k wR> =)

l

RHomjo (RP (G, Fr(T*)(1)), A/I" &Y wR) [~2]

RI(Gy, (7))

Proof : By Proposition 1.3.6, Lemma 4.1.1 and Lemma 5.3.4(1), we see that I" /"' ®%wr
and A/I" ®% wg are represented by [I™! — 1" @5 Q and [I* — A] ®r Q respectively.
Therefore, the commutativity of the diagram in the proposition follows from Lemma 5.3.3.
Clearly, the column on the right is an exact triangle. It will follow from the next lemma
that the column on the left is also an exact triangle. O

Lemma 5.3.6. Let T be a bounded complex of objects in Cg,_ci . Then we have a quasi-

isomorphism
Cone(Fpm/mn (T) — Fayrenr(T)) > Fpyr(T)

of objects in Crg.
Proof : Tt suffices to show that there is a quasi-isomorphism
Cone([I"*! — I"] — [I"™! — A]) = [I" — A
Note that Cone([I"*! — "] — [I™*! — A]) is precisely the following complex

In+1 _f_) 1’TL+1 @ [n _g_) A

)
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where f(z) = (z,—z) and g(z,y) =z +y for z € I"*! and y € I". One can now easily
check that the following diagram

et g e A
0 i A

commutes, where v is given by v(z,y) = z + y for z € I"*! and y € I", and the vertical
maps induce isomorphisms on cohomology. O

We now describe the idea of the proof of Theorem 5.3.2. We shall first prove that the
following morphism

RI(Gy, Zx/1»(T)) —> RHomye (RF(GU, Fr(T*)(1)), A/I" @k wR> [~2]

is an isomorphism for all n. Then, Theorem 5.3.2 will follow from this by a limit argument.
To show that the above morphism is an isomorphism, we will utilize Proposition 5.3.5.
Note that if any two of the morphisms in Proposition 5.3.5 are quasi-isomorphisms, so is
the third one. Therefore, by an inductive argument, we are reduced to showing that the
following morphism

RI(Gy, Zyn v (T)) —> RHom o (RF(GU, Fo(T*) (1)), I/ I+ @% wR) [~2]

is an isomorphism for all n > 0. Note that T" acts trivially on I"/I"*!. Therefore, one
may view I"/I"*! as a A°-module via the augmentation map A —» R. We now have the
following lemma.

Lemma 5.3.7. Let T be a bounded complex of objects in ng_vat. Then we have the
following isomorphisms

Fpnjpnnr(T) & I/ I Q% Fr(T) = M/ T QE T
in D*(Crg,). Therefore, it follows that we have an isomorphism
RI(Gy, Fpnynni(T)) — RI(G,, I"/I™! % T).

Proof : Let P be a resolution of I™/I™*! consisting of finitely generated projective A°-
modules. Since [I"*! — I"] is also a resolution of I"/I™*! of A°-modules, there is a
quasi-isomorphism

a: P — [[" — "]
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of complexes of compact A°~-modules which lifts the identity map on I™/I"*!. This induces
the following quasi-isomorphism

a : POAAN — " — ]"+1] R A
and a morphism
Qyx - PRAN QprT — [In — In+1] QAN R T.

The fact that a., is a quasi-isomorphism now follows from a spectral sequence argument
similar to that used in Lemma 4.2.3, thus proving the first isomorphism. The second
isomorphism is immediate from the second assertion of Lemma 4.2.3. O

Lemma 5.3.8. For each n, there is a commutative diagram

I"/I"*! g% RT(G,, T)

I"/1"+*' @% RHomp (RF(GU, T+(1)), wa) 2]
2 !

RI(G,, I"/I"*' @4 T) RHomp (RI‘(GU, T*(1)), I/ 1"+ @% wR> [~2]

14
z RHomp (RI‘(Gv, Fr(T*) (1)) ®L R, I"/I"*! @% wR> [~2]

l

RI(G,, Fpn /1o (T)) RHomjo (RF(GU, Fr(T*) (1)), I/ I+ @% wR) [~2]

where the vertical morphisms are isomorphisms.

Proof : Let @ be a resolution of I"/I™*! consisting of finitely generated projective R-
modules. Note that such a resolution @ exists because of Lemma 5.3.4(2). Then we have
an isomorphism

a:Q®rC(G,T) — C(G,,Q®rT)
TR0 +— ((gl, ,g]) —rQ® 0(917 79]))
of complexes by [Ne, Prop. 3.4.4]. This fits into the following commutative diagram

Q ®g C(Gy, T) ®r C(Go, T*(1)) —> Q @ C(Go, (1))

a®idi la’

C(Gu, Q@ ®rT) ®r C(Gy, T*(1)) — C(G,, Q ®r (1))
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where o is defined as above and is an isomorphism by [Ne, Prop. 3.4.4]. On the other
hand, we also have the following commutative diagram.

Q ®r C(Gu, A1) — Q ®r T4C(G,, Q1)) =— Q ®r (-2

A | |

C(Gy, Q ®r (1)) —> T C(Gy, Q ®r Q1)) =— Q @& (-2

Combining this with the above diagram and taking adjoints, we see that the top square in
the lemma is commutative with the vertical morphism on the left being an isomorphism.
The vertical morphism on the right is an isomorphism by Lemma 1.3.13.

Let P be a resolution of I™/I™*! consisting of finitely generated projective A°-modules.
Then as in Lemma 4.2.3, we view @ as a resolution of A°~-modules via the augmentation
map A — R, and there is a morphism

FiPONFr(T)=POANORT — QAZNNRrT=Q®rT

of complexes of objects in Cg ¢, which is a quasi-isomorphism. Let L be a resolution of
R consisting of finitely generated projective A-modules. Then by Lemma 4.2.3 and a A°
version of Proposition 4.2.4, we have a morphism

9:C(Gy, Zr(T*)'(1)) @ L — C(G,, T*(1))

of complexes of R-modules which is a quasi-isomorphism. Then we have the following
commutative diagram

C(Go, P ®r Fr(T)) ®r C(Go, Fr(T*)(1)) @4 L —> C(Gy, P @4 A ® (1)) @4 L
f~®gl 15
C(Gr, @ ®r T) ®r C(G, T*(1)) C(Gw,Q ®r Q1))

where ¢ is induced by the augmentation L — R. Taking adjoints, we obtain the following
commutative diagram.

C(G,,Q®r T) HomR(C(GU,T*(l)),C(Gu,Q®R 6(1)))

|

Homp (C(GU, Fr(T*)(1)) ® L,C(G., Q ®r 5(1)))

l

C(Go, P @1 Fr(T)) —> Homae (C/(Go, Fr(T*)(1)), Homp (L, C(Gy, Q @ (1))

C(Gy, P @ Fr(T))
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Combining the above diagram with the morphism
C(G, Q ®r (1)) — 44C(Cr, Q@R (1)) — Q ®r O[-2),

we obtain the bottom commutative square in the derived category. The vertical mor-
phisms in this part of the diagram are isomorphisms by Proposition 4.2.4, Lemma 5.3.7
and Proposition 1.3.7. O

Lemma 5.3.9. For n > 0, the morphism
RF(GU,ﬂln/InH(T)) -———>RHOon (RF(GU,(?F(T*)L(I)),In/1n+1 ®I}‘3 U.)R> [—2]

s an isomorphism.
Proof : The morphism
RI(G,, T) — RHompz(RI(Gy, T*(1)),wr ) [-2)

is an isomorphism by [Ne, Prop. 5.2.4(ii)], and so the top morphism of the diagram in
Lemma 5.3.8 is an isomorphism. Since all the vertical morphisms in the diagram are
isomorphisms, it follows that the bottom morphism is also an isomorphism, as required.
O

Proposition 5.3.10. We have an isomorphism
RI(Gu, Fa/1+(T)) —> RHomge (R (Go, Fr(T)(1)), A/I" @ wr) (2]

for alln > 1.

Proof : As seen in the above discussion, the preceding lemma allows us to perform an
inductive argument using the morphism of exact triangles in Proposition 5.3.5 to obtain
the required conclusion. O

We now finish up the proof of Theorem 5.3.2.

Proof of Theorem 5.3.2: Let @ be a bounded above complex of finitely generated projec-
tive A°-modules which represents RI'(G,, #r(T7)“(1)). Such a complex exists by Corol-
lary 4.2.6. Since Q has cohomology groups which are finitely generated over R, we may
find (and fix) a subcomplex 2 of Q such that Q is a complex of finitely generated R-
modules and the inclusion i : Q < Q is a quasi-isomorphism. Write C, = [I* — A].
Then Hompo(Q, C,, ®r ) represents

RHom,o (RI‘(GU, Fr(T*)(1)), A/I" ®% wR),
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and Homp.(Q, A ®p 2) represents
RHom,. <RF(GU, Fr(T)(1)), A ®% wR),

since (), is a complex of flat R-modules by Lemma 5.3.4(1). Now for each n, we have the
following commutative diagram

RI(G,, Zr(T)) RHom, (RF(GU, Fr(T*)(1)), A ®% wR) [~2]
R (Gy, Za/1m(T)) — RHomge (RT(Gy, () (1)), A/I" & wr ) (2]
which induces the following commutative diagram

HI (G, Fr(T)) — HI (Homyo(Q, A ®5 Q)

l |

HI (Gv, ?A/In (T)) — HJ (HOon(Q, C, ®r Q))

of cohomology groups. Since this diagram is compatible with n, we obtain the following
commutative diagram.

HI(G,, r(T)) HY (Hompe(Q, A ®5 Q)

lim H' (G, Zp/m(T)) — lim H’ (Hom(Q, Cr, ®r Q)
It remains to show that the top map is an isomorphism. By Proposition 5.3.10, the

bottom map is an isomorphism. Since () is a bounded above complex of finitely generated
A-modules, we have an isomorphism

liLnHOon(Q, C,®r Q) = HomAa(Q, l&nCn ®r Q) = HOon(Q, A ®g Q)
n n

of complexes of finitely generated A-modules. Since inverse limits are exact for finitely
generated A-modules (for they are finitely generated compact A-modules and the inverse
limit is exact for compact A-modules), we have isomorphisms

@r_nHi(Hoon(Q, C,.®r Q)) = Hi(HomAa(Q,A Qr Q))

n
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of cohomology groups, thus showing that the vertical map on the right is an isomorphism.
On the other hand, we also have an isomorphism

lim(C, ® Fr(T)) = Fr(T)

n

of complexes of objects in Cf\\afv * and hence an isomorphism

lim C (G, Cr ®p Fr(T)) = C(Gy, Fr(T)).

n

By Proposition 2.4.13, we have @Hj (Gv, C, ®x fr(T)) ~ HI (Gu,ﬂp(T)). Therefore,

n
the vertical map on the left is also an isomorphism. Hence the top map is an isomorphism,
as required. O

5.4 Duality over p-adic Lie extensions I1

We now describe the global analog of Theorem 5.3.2. Let T be a bounded complex of
objects in Cg&f:’ .- In other words, T' is a bounded complex of ind-admissible R[GF,s]-
modules which are finitely generated over R. As before, we fix a bounded complex Q
of injective R-modules representing wr in D(Modg). Then Hompg(T, f)) is a bounded
complex of ind-admissible R[Grs]-modules with cohomology groups which are finitely
generated over R (see [Ne, 4.3.2]). By loc. cit. Prop. 3.3.9, there is a subcomplex T* of
Hompg(T, ) which is a complex of ind-admissible R[GFs]-modules that are finitely gen-
erated over R, and is quasi-isomorphic to Hompg(7, (~2) via the inclusion map. Therefore,
we have the following morphism

7r:T®RT*—>T®RHomR(T,§) —3 )

of complexes of R[GFs|-modules, where the first morphism is induced by the inclusion
and the second is the usual evaluation map. Then we have the following morphism

71 Fr(T) ®r Fr(T)(1) -5 AR T ®r T %5 A @ Q(1)

of complexes of A[G,g]-A-bimodules, where ¢ is defined as in Corollary 4.1.14.
We define two morphisms of complexes of A-A-bimodules

M : Ce(Grs, Fr(T)) ®r C(Grs, Fr(T*) (1)) — Ce(Grs, A®r (1))
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Ue : C(Grs, Zr(T)) ®r Ce(Grs, Fr(T*) (1)) — Ce(Grs, A ®r (1))

which are given by the following respective formulas

(a,as5). Ub= (aUb,as Us ress, (b))
alUe (bv bS) = (a U ba (_1)&reSSf(a) Us bS)»

where U is the total cup product
C(Grs, #r(T)) ®r C(Grs, #r(T*) (1)) — C(Grs, A ®r 6(1)),

and Ug is the sum of the local cup products.
By Lemma 5.1.8, we have a chain map

v: A®gQ[-3] — A®r Q[-3] — 7LC.(Crs, A ®r Q(1)),

where the first morphism is induced by the inclusion i : Q — Q. Since A is flat, the
first morphism is a quasi-isomorphism and hence v is a quasi-isomorphism. Combining
everything, we obtain the following morphisms

RI(Grs, Zr(T)) — RHomye (RFC(GF,S, Fr(T*) (1)), A @% wr )[-3]
RT.(Grs, #r(T)) — RHomjo (RF(GRS, Fr(T*)4(1)), A ®% wg ) [-3]

in D(Mod,). In fact, these two morphisms are isomorphisms.

Theorem 5.4.1. Let T be a bounded complexr of objects in Crgs which are finitely
generated R-modules. Then we have the following isomorphisms

RI(Grs, Zr(T)) — RHomjo (RPC(GF,S,%(T*)LQ)),A ®% wr ) [~3]
RI.(Grs, #r(T)) — RHomy (RD(Grs, Zr(T)(1), A @k wr) (3]

in D(Mody).

Proof : The proof follows a similar argument as that used in Theorem 5.3.2. The limit
argument for C.(Ggg, —) follows from Proposition 5.1.7. O

5.5 Some spectral sequences

Let T be a bounded complex of ind-admissible R[Gfs]-modules and finitely generated
R-modules. Let T* be a bounded complex of ind-admissible R[G rs]-modules which are
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finitely generated R-modules that represents RHompg(7, wg). Write A = (7*)". Combin-
ing Theorem 5.4.1 and Theorem 5.3.1, we have an isomorphism

RT(Grs, #r(T)) = RHoms (RHomz, (RI(Grs, Fr(4)), Qp/Zy), A ®% wr),
which gives rise to a cohomological spectral sequence of A-modules
Ext’,, (Hj (Grs, Fr(A))", A ®r Q) = H'"(Gpg, Fr(T)),
where (2 is some complex of R-modules representing wg in D(Modp).

Remark. As mentioned in the introduction, when R is regular (or Gorenstein), the
dualizing complex wp can be represented by R. Therefore, the above spectral sequence
can be rewritten as

EXtﬁ\o (H] (prs, FF(A))V, A) = HitI (GF,Sa yr(T)) )
This spectral sequence was first constructed in an unpublished note of Jannsen [Ja].

By a similar argument using the appropriate dualites, we can obtain analogous quasi-
isomorphisms and spectral sequences for the local and compact support cases. In fact, all
of these combine to give the following isomorphism of exact triangles.

Theorem 5.5.1. Let T and A be defined as above. Then we have an isomorphism of
ezact triangles.

P RI (G, Zr(T))[-1] = €D RHomye (RHomg, (RT(Gy, Fr(A)), Qp/Z,), A ®F wr)[—1]

vESy vESy

l |

RI.(Grs, Zr(T)) —=— RHomy. (RHomgz, (RT:(GF,s, Fr(A)), Qu/Z,), A ®% wp)

| l

RI(Grgs, Zr(T)) & RHomy. (RHomgz, (RI(GEs, Fr(A)), Q/Zy), A ®% wr)

5.6 Iwasawa theory over local fields

We shall say something about the situation over local fields. Let F be a local field of
characteristic not equal to p with finite residue field. Let F,/F be a p-adic Lie extension
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with Galois group I'. Write Gg = Gal(F*P/F) for every Galois extension E/F. Recall
that by [NSW, Thm. 7.1.8(i)], we have c¢d,(GFr) = 2.

Let T be a bounded complex of ind-admissible R[Gr]-modules which are finitely gen-
erated R-modules, and let A be a bounded complex of ind-admissible R[G g}-modules
which are cofinitely generated R-modules. By Proposition 4.3.2 and Proposition 4.3.4, we
have

C(Gr, Fr(A)) = lim C(Gr,, A)
H(Gp, Fr(A)) = l_i{_I_)lHi(GFa,A) HY(Gr,,A)
C(Gr, Fr(T)) = 1}_rx_10(GFm T)
H'(Gp, #r(T)) 2 lim H'(GE,,T),

where F,, runs through all finite Galois extension of F.,/F. By a similar argument to
that in Theorem 5.3.1 and Theorem 5.3.2, we have the following.

Theorem 5.6.1. Let T' be a bounded complex of ind-admissible R|G r|-modules which are
finitely generated R-modules, and let T* be a bounded complex, that represents
RHompg(T,wg), of ind-admissible R|G r]-modules which are finitely generated R-modules.
Then we have the following isomorphisms

RI(Gr, #r(T)) — RHomg, (RT(Gr, Fr(T")(1), Q/Z, ) (-2
RT(Gr, #1(T)) — RHomyo (RT(Gp, Fr(T)(1)), A & wa ) [-2)

in D(Mod,). O
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