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Abstract 

In his monograph [Ne], ekovaf studies cohomological invariants of big Galois represen
tations and looks at the variations of Selmer groups attached to intermediate number 
fields in a commutative p-adic Lie extension. In vieV{ of the formulation of the "main 
conjecture" for noncommutative extensions, it seems natural to extend the theory to a 
noncommutative p-adic Lie extension. This thesis will serve as a first step in an extension 
of this theory, namely, we will develop duality theorems over a noncommutative p-adic 
Lie extension which are extensions of Tate local duality, Poitou-Tate global duality and 
Grothendieck duality. 
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Introduction 

Iwasawa theory, as does much of number theory, revolves around the study of the rela
t ionship between algebraic objects and analytic objects that are naturally attached to 
number fields, ellipt ic curves, and even objects as general as motives. In Iwasawa the
ory, one studies the behavior of algebraic objects, most often Selmer groups, in a tower 
of number fields, and the analytic objects of comparison are the p-adic £-functions. A 
precise formulation of t his relationship is usually called a "main conjecture" , which is 
known in certain cases but conjectural in general. There are two parts to the conjecture, 
namely the existence of an appropriate p-adic £-function and the statement of a precise 
relationship between t he algebraic object in question and the p-adic £-function. 

It was observed by Iwasawa that a limit up a tower of algebraic objects that are p

torsion groups for a fixed p~ime p is a module over the completed Zp-group ring Zp[r] 
of the Galois group r of the tower. In the sett ing of Iwasawa's main conjecture, r was 
isomorphic to Zp , and the ring Zp[r] was t hen simply isomorphic to a power series ring in 
one-variable over Zp (an observation of Serre). The main conjecture stated that a so-called 
characteristic power series of an eigenspace of the 9 alois group Xoo of t he maximal abelian 
pro-p unramified outside p and oo extension of the cyclotomic Zp-extension of an abelian 
field agrees up to unit wit h a power series interpolating t he values of a Kubota-Leopoldt 
p-adic £-function. 

Of course, it is natural to consider towers with Galois group other than Zp, and the 
class of such towers t hat has come under the greatest consideration is t hat of the p-adic Lie 
extensions, i.e., for which the Galois group of the tower is a compact p-adic Lie group , and 
so isomorphic to a closed subgroup of GLn(Zp) for some n 2: 1. Such Galois groups arise 
naturally in number theory: for instance , one obtains a GL2 (Zp)-extension by adjoining to 
Q the coordinates of all p-power division points of a non-CM ellipt ic curve E defined over 
Q. In the past decade, a great deal of activity in the study of Iwasawa theory has been 
focused on noncommutative generalizations of the main conjecture [CFKSV, FK, RW]. 

In this thesis, we are interested in exploring duality theorems in Galois cohomology 
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in the context of noncommutative Iwasawa theory. To see why this might be of interest , 
we observe that in the situation of the cyclotomic Zp-extension F00 = Un Fn of a number 
field F , the direct limit of cohomology groups 

fu!; H 1 (Gal(Moo/Fn), Qp/ Zp), 
n 

where Moo is the maximal extension of F00 unramified outside p and oo, is precisely the 
Pont rj agin dual of t he Galois group x00 appearing in Iwasawa's main conjecture for an 
abelian F . 

Let F be a global field with characteristic not equal to p, and let S be a finite set of 
primes of F containing all primes above p and all archimedean primes of F . We let GF,s 
denote t he Galois group Gal(Fs/F ) of t he maximal unramified outside S extension Fs 
of F inside a fixed separable closure of F. In its usual formulation, Poitou-Tate duality 
relates the kernels of the localization maps on the GF,s -cohomology of a module and the 
Tate twist of its Pontrj agin dual. In fact, it can be given a cleaner formulation using 
compactly supported cohomology groups. For simplicity, we assume that p is odd if F 
has any real places. 

The n th compactly supported Gp,s-cohomology group H;cts(GF,s , M) wit h coefficients 
in a topological GF,s-module M is defined as t he nth cohomology group of the complex 

Cone (c~ts(GF,s , M) ~ EB c~ts(Gpv, M )) [-1], 
vESJ 

where GFv is t he absolute Galois group of the completion ofF at v, and ress is the sum 
of restriction maps on the continuous cochain complexes . It t herefore fi ts in a long exact 
sequence 

· · · -t H;cts (G F,S, M) -t H~s (GF,S , M) -t EB H~s (G Fv , M) -t H;"tt! (G F,S, M) -t · · · · 

v ES 

We now let R denote a commutative complete Noetherian local ring with fini te residue 
field of characteristic p. Then we have the following formulation of Poitou-Tate duality 
due to Nekovaf [Ne, Prop. 5.4.3(i)]. 

Theorem (Poitou-Tate duality) . Let T be a finitely generated R-module with a contin
uous (R-linear) Gp,s -action. Then there are isomorphisms 

H~s(GF,s, T ) ~ H:.~t~(GF,s, Tv(l )) v 
H; cts(GF,s , T ) ~ H:t;n(GF,s, Tv(l)t 

of R-modules for all n, where y v = Homcts(T , Qpj Zp)· 
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We now recall some notations from the language of derived categories. We denote 
by D (ModR) the derived category of R-modules which is obtained from the category 
Ch(ModR) of chain complexes of R~modules by inverting the quasi-isomorphisms, i.e., 
the maps of complexes that induce isomorphisms on cohomology. We have the de
rived functors R HomR( - , - ), R f cts(GF,s,-) and R f c,cts(GF,s, -) that are obtained from 
HomR (- , - ), Ccts(GF,s, - )and Cc,cts(GF,s, - ). Then the Poitou-Tate duality can be re
formulated as the following isomorphisms 

R f cts(GF,s,T) . ~~ RH~mzp (Rrc,cts(GF,s , T: (l)) , ~p/Zpl[-3] 

R f c,cts(GF,s, T)-----+ R HomzP (R r cts(GF,s, T (1)), ~p/Zp [- 3] 


in D (ModR)· 
Nekovaf gave a formulation of an analogue of Poitou-Tate duality with a duality of 

Grothendieck replacing Pontrjagin duality, as we now describe. There exists a bounded 
complex WR of R-modules of finite type, known as a dualizing complex, with the property 
that for every complex M of modules of finite type, the dual R HomR (M, wR) E D (ModR) 
is quasi-isomorphic to a complex of R-modules of finite type, and moreover , the canonical 
morphism 

M-----+ R HomR(R HomR(M,wR),wR) 

is an isomorphism in D (ModR) · We remark that when R is regular (or Gorenstein) , the 
dualizing complex can be taken to be R. 

Now suppose Tis a bounded complex of R[GF,s]-modules that are finitely generated 
over R. Then there exists a complex T * of modules of the same form that represents 
R HomR (T, wR) in an appropriate derived category of R[GF,s]-modules. In this case, we 
have the following isomorphisms of Nekovaf (see [Ne, Prop. 5.4.3(ii)]). 

Theorem ( ekovaf) . We have the following isomorphisms 

R f cts(GF,S, T) ~ R HomR (R f c,cts(GF,S, T *( l )), WR ) [-3] 

R f c,cts(GF,s, T ) ~ R HomR( R f c(GF,s , T*(l)) ,wR ) [-3] 

in D (ModR)· 

In this thesis, we study generalizations of the above duality of Poitou-Tate and 
Grothendieck duality of ekovar in the context of noncommutative Iwasawa theory. Sup
pose that F00 is a p-adic Lie extension ofF contained in F8 . We denote by r the Galois 
group of the extension Foe/ F , and we let A = R[f] denote the resulting Iwasawa algebra 
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over R. LetT be a finitely generated R-module with a continuous (R-linear) GF,s-action, 
and let A be a cofinitely generated R-module with a continuous (R-linear) GF,s-action. 
The A-modules of interest are the following direct and inverse limits of cohomology groups 
(and their counterparts with compact support) 

lim H':ts(Gal(Fs/ Fa), A) and lim H':ts(Gal(Fs / Fa), T ),
----t f--

where the limits are taken over all finite Galois extensions Fa of F which are contained 
in F00 • By an application of Shapiro's lemma, one can show t hat they are respectively 
isomorphic to 

B~s(GF,s, Fr (A)) and H~s(GF,s, §r(T)), 

where the A-modules Fr(A) and §r(T) are defined by 

lliQ HomR(R[Gal(Fa/ F)], A) and ~ R[Gal(Fa / F)] ®R T 
Fa Fa 

respectively. Therefore, we can reduce the question of finding dualities on the Iwasawa 
modules of interest to that of obtaining dualities over G F,s, but with R replaced by A. 

In his monograph [Ne], ekovaf considers the above situation over a commutative 
p-adic Lie extension (e.g., a :?!:~-extension) and develops extensions of Poitou-Tate global 
duality and the duality of Grothendieck for the above cohomology groups. In view of the 
noncommutative main conjecture, one would like to extend the work of Nekovar to the 
noncommutative setting. 

In order to prove duality theorems over noncommutative p-adic Lie extensions, we 
must first understand the structure of the noncommutative Iwasawa algebras and their 
topological modules. In particular , we shall prove that the Iwasawa algebra A is Noethe
rian (cf. Theorem 3.4.1) , generalizing a result of Lazard from the case t hat R = Zp. 

Theorem. Let R be a commutative complete Noetherian local ring with finite residue field 

of characteristic p, and let G be a compact p-adic Lie group. Then R[G] is a Noetherian 
rmg. 

Together with the module theory, we carefully develop the theory of continuous group 
cohomology in our setting. From there, we are able to state and prove our duality theorems 
(cf. Theorems 5.3.1 and 5.4.1). 

Theorem. LetT be a bounded complex of ind-admissible R[GF,s]-modules which are 
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finitely generated over R. Then we have the following isomorphisms 

R rcts(GF,s , ffr(T)) -t R HomzP ( R r c,cts(GF,s , Fr(Tv)(l)) , Qp/Zr) [-3] 


R r cts(GF,s, ffr(T)) -t R HomAo ( R rc,cts( GF,s, ffr(T*)(l)) , A ®~ wn) [-3] 


in the derived category of A -modules. 

In Nekovar 's setting, the group r may be taken to be an abelian pro-p p-adic Lie 

group , and so A is a commutative oetherian complete local ring with finite residue field 

of characteristic p. Moreover, Nekovaf shows that its dualizing complex is isomorphic 
to A ®~ wn in the derived category of A-modules. Therefore, the commutative theory 
described above applies to A, and Nekovar is able to deduce his dualities from this. 

In our thesis , since we are working with noncommutative p-adic Lie extensions, we do 
not know the existence of a (sufficiently nice) dualizing complex that is compatible with 

continuous Galois cohomology, and so the proof of the second duality t akes another route. 
We now give a brief description of the contents of each chapter of the thesis. In Chapter 

1, we introduce notations and results from homological algebra required for the thesis. In 

particular , we will introduce the language of derived categories. We also develop certain 
derived functors for bimodules over algebras that are central and fiat over a commutative 
ring. These will be applied in the later parts of the thesis. Chapter 2 is about the 
discussion of adic rings and their topological modules . We also introduce continuous 

cohomology groups with coefficients in compact modules and discrete modules. In the 

latter part of Chapter 2, we shall see that the notion of ind-admissible modules (see [ e, 
3.3]) can be carried over to the setting of Noetherian adic rings. We will then describe the 
category of ind-admissible modules in terms of compact modules and discrete modules. 

In Chapter 3, we will investigate the ring-theoretic properties of the completed group 
algebra of a finitely generated pro-p group. Our study will lead to a generalization of a 
result of Lazard which essentially says that the Iwasawa algebras in w ich we are interested 
are Noetherian. In Chapter 4, we will apply Shapiro's lemma to see that the direct limits 
and inverse limits of cohomology groups over every intermediate field Fa can be viewed as 

cohomology groups of certain A~modules. We shall also establish certain finiteness results 

of the cohomology groups in Section 4.2. In that section, we make heavy use of the fact 
that the Iwasawa algebra of a p-adic Lie extension is Noetherian. 

Finally, we will prove the duality theorems in Chapter 5. We will prove an extension 
of the Tate's local duality and Poitou-Tate duality for a finitely presented module (with a 
continuous Galois action) over an adic ring, with no restrictions on p . We will then prove 
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the duality theorems of Grothendieck for local fields and global fields over a p-adic Lie 
extension, with the restriction that p is odd in the number field case if the field has any 
real places. 
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Chapter 1 

Preliminaries 

We begin by reviewing certain objects and notations which will be used in this write-up. 

Most of t he material presented in Section 1.1 and Section 1.2 can be found in [Hart, Ne, 
Wei]. In Section 1.3 , we int roduce some derived functors over the derived category of 

certain bimodules over algebras t hat are cent ral and flat over a commutative ring. The 
approach used here is inspired by the paper [Ye] which dealt with algebras that are central 

and flat over a field. As we shall see in Section 4. 1, the I wasawa algebras we are interested 
in are central and flat over their coefficient rings . 

Throughout the thesis, every ring is associative and has a unit . 

1.1 Complexes 

Fix an abelian category <t and denote t he category of (cochain) complexes of objects in 
<t by Ch(<t). We also denote the category of bounded below complexes, bounded above 

complexes and bounded complexes by Ch+ (<t), Ch- (<t) and Chb (<t) respectively. For each 

n E Z , the translation by n of a complex X is given by 

X [n]i = x n+i d; = ( - 1)ndn+i 
. ' X[n] X · 

If f : X ---t Y is a morphism of complexes, then f [n] : X[n] - • Y[n] is given by 
f[n]i = r+i. 

A covariant addit ive functor F : <t <!:'induces a functor F: Ch(1t) ---t Ch(<t' ) with ----7 

d}x = F(d~ ). The ident ity morphisms in each degree define a canonical isomorphism of 
complexes 

F (X [n]) ~ F (X)[n]. 
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A contravariant additive functor F : Q:O --t <!:' induces a functor F : Ch( <!:)0 
--t Ch(<!:') 

with d~x = (-l)i+1F(d_xi-1). Suppose G: (<!:' )0 
--t <!:"is another contravariant functor. 

Then, for each i, we have 

On the other hand , we note that Go F is a covariant functor. Therefore , taking the sign 
conventions into consideration , we have an isomorphism 

G(F(X)) ~ (Go F)(X) 

of complexes which is given by ( -l)i times the identity morphism in degree i. 
If X is a complex, we have the following truncations of X: 

(J~ ix = [· .. --t xi-2 --t xi-1 --t xi --to--to--t . . · ] 


T~iX = [· · · --t Xi-2 
--t X i- 1 

--t ker(d~) --t 0 --t 0 --t · · ·] 


!J?:_ix = [· · · --to--to--t xi --t Xi+1 --t xi+2 --t .. ·J 

T?:. i X = [· · · --t 0 --t 0 --t coker(~.X 1 ) --t Xi+1 

--t Xi+2 
--t .. ·]. 


The cone of a morphism f: X --t Y is defined by Cone(!) = YEBX[l] with differential 

. ( dty. Ji+1 )
rf, : yi EB Xi+1 --t yi+1 EB Xi+2. 

Cone(!) = 0 _ diJ"1 

There is an exact sequence of complexes 

0 --t Y ___.!__,Cone(!) ~ X[l] --t 0, 

where j and pare the canonical inclusion and projection respectively. The corresponding 
boundary map 

is induced by Ji+ 1 . 

A homotopy a between two morphisms of complexes j , g : X --t Y is defined by a 
collection of maps ai : xi+1 

--t Yi such that g - f = da + ad. We shall denote this 
by a : f .._...., g. If u : X' --t X (resp . v : Y' --t Y) is a morphism of complexes, then 
a* u = (ai o ui+1 

: (X')i+1 
--t Yi) (resp. v *a = (vi o ai : Xi+1 --t (Y')i)) is a homotopy 

a * u : f u .._...., gu (resp. v * a : v f .._...., v g). 

A second order homotopy a between two homotopies a, b : f .._...., g is defined by a 
collection of maps ai : Xi+2 

--t y i such that ad - da = b - a. We denote this by 
a: a.._...., b. 
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Let t r1 (Q:) be the category defined as follows: the objects are morphisms of complexes 

f : X ---r Y in Q: . Supposing f' : X' ---r Y' is another object, a morphism from f to f' 
is given by 

(g, h, a) : (J : X ---r Y) ---r (!' : X' ---r Y') 

where g : X ---r X' and h : Y ---r Y' are morphisms of complexes and a : f'g -v-> hf. We 
denote this by the following diagram. 

The composition 

(J : X ____, Y) C~l (!' : X' ---r Y' ) (g~') (!" : X" ---r Y") 

is defined to be (g'g, h'h, a'* g + h' *a). 
A morphism (g, h, a) : (! : X ---r Y) ---r (!' : X' ---r Y') induces a morphism of 

complexes Cone(g , h, a) : Cone(!) ---r Cone(!') given by 

Hence, we have a functor Cone : tr1(Q:) ---r Ch(ct). 
A homotopy (b, b' ,o:) : (g, h, a) -v-> (g', h' , a') in tr1 ( ct) consists of homotopies b : g -v-> g' 

and b' : h -v-> h' , and a second order homotopy 

o: : !' * b + a' -v-> b' * f + a. 

One can then check that this induces a homotopy (in the usual sense) 

( ~ ~b ) : Cone(g, h, a) ---r Cone(g', h' , a'). 
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Suppose we have the following cubic diagram of complexes 

h 

u'
A~ ----+-.::..__--* 

f{ 

whose faces are commutative up to homotopy. Suppose further that the boundary of t he 

cube is trivialized by a 2-homotopy H = (Hi : Ai+2 -+ (B~)i), i.e. , 

H : v' * k1 + m * !I + !32 * h ovo-t k2 * u + h' * a 1 + f~ * l . 

Then t he triple ( k1 , k2 , H ) defines a homotopy 

(k1, k2 , H ) : (!{, f~ , h' ) o (al> a2, l) = (J{a1 , j~a2, h' * a1 + f~ * l ) ovo-t 

(/3d1 , /32!2 ,m *!I + /32 * h) = (!31, /32, m) o (!1 , h , h), 

i .e., the following diagram 

( ) (h,h,h) c ( ) Cone u one v 

(a t ,a2,l) l l(f3tJhm) 

Cone(u') UU2.h'l Cone(v ') 

is commutative up to homotopy. 
Define K (Q:) to be the category of complexes of objects in Ch(Q:) where the morphisms 

are given by homotopy classes of homomorphisms of complexes. We write K +(Q:), K- (Q:) 
and K b(Q:) for t he subcategories of K (Q:) with objects in Ch+(Q:) , Ch-(Q:) and Chb(Q:) 

respectively. Given a morphism f : X -----+ Y in Ch( Q:) , we say that the following 

X ~ Y ___!____. Cone(!) ~ X [1] 

is a strict exact triangle. Suppose we are given objects A , Band C in K (Q:) and morphisms 

u : A-----+ B , v : B -----+ C and w : C-----+ A[l ] in K (Q:). We then say that 

A~B~C~A[l] 
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is an exact triangle if there exists a strict exact triangle 

X~ Y ~Cone(!) ~ X[1] 

such t hat we have the following diagram 

A -----'u'-----* B ----'v'--~ C _ _ .:c:.__~ A [1] w

ol (31 ) Io[l ] 

1X y j Con:(!) -p x11] 

which commutes in K (Q:) (i.e., commutes up to homotopy) with the vertical morphisms 
being isomorphisms in K (Q:) (i.e., homotopy equivalences). We may sometimes write an 

exact triangle as A ------+ B ----> C instead of A ------+ B ------+ C ------+ A [1]. 
We say that a morphism in Ch(Q:) or K (Q:) is a quasi-isomorphism if it induces iso

morphisms on the cohomology of the complexes. The derived category D (Q:) is obtained 
by inverting the quasi-isomorphisms in K (Q:) (see [Wei, Chap. 10]). One has similar def
i~itions for o +(Q:), n -(Q:) and D b( Q:) . We remark that we may not always be able to 

perform such constructions due to certain set-theoretic considerations (loc. cit . 10.3), al
though when Q: is t he category of modules over some ring, the derived category exists 
(loc. cit . Prop. 10.4.4). However in general , one may have to work with categories other 
than the category of modules. One way to get around this is to make use of the following 

proposition ( cf. [Wei, Prop . 10.4.8]) . 

P roposit ion 1.1.1. Suppose that Q: has enough injectives. Then o + (Q:) exists and is 

equivalent to the full subcategory K + (I ) of K + (Q:) whose objects are bounded below com

plexes of injectives. 

If Q: has enough projectives. Then D - (Q:) exists and is equivalent to the full subcategory 

K - (P) of K + (Q:) whose objects are bounded above complexes of projectives . D 

R emark. In the case that o - (Q:) exists, then D b(Q:) also exists, and is a subcategory of 
o- (Q:) . A similar statement holds in the case that o+ (Q:) exists. 

We shall describe the above equivalence of the categories briefly and refer readers to 
[Wei] for the details. Suppose Q: has enough injectives. Let A be an object in K +( Q:). 
Then one has t he Cartan-Eilenberg resolution of A which is a double complex of injectives 
whose total complex is a bounded below complex and is quasi-isomorphic to A (loc. cit. 
Ex. 5.7.1). Since any two of such resolutions are homotopic (loc. cit. Ex. 5.7.3), this 
gives a unique representation of A in K +(I ). We have a similar construction when Q: has 
enough projectives. 
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1. 2 Some sign conventions 

In this section, we will introduce some sign conventions to which we will adhere throughout 
t he thesis. If X is a complex and x E Xi, we write x = i for the degree. 

Let A, SandT be rings. Let M (resp., N) be a A-S-bimodule (resp., a A-T-bimodule). 
Then HomA(M, N) is taken to be the S-T-bimodule of all left A-module homomorphisms 
from M toN, where the leftS-action is given by (s·J)(m) = f(ms) and the right T-action 
is given by (J · t)(m) = f(m)t for f E HomA(M, N), mE M, s E Sandt E T. If M • is 
a complex of A-S-bimodules and N • a complex of A-T-bimodules, we define a complex 
Homi, (M• , N •) of S-T-bimodules by 

Hom~(M• , N •) = IJ HomA(Mi , Ni+n) 
iEZ 

with differentials defined as follows: for f E HomA(Mi, N i+n), we have 

If M • = M is a complex concentrated in degree zero, then HomA(M,-) is a covariant 
functor and the sign convention for the differentials coincides with that in Section 1.1. 
Similarly if N • = N is a complex concentrated in degree zero, then HomA( - , N) is 
a contravariant functor with sign convention for the differentials coinciding with that 
defined in Section 1.1. 

In the case when S = T, we have a similar definition for the complexes Homi,_ 5 (M•, N•) 
of abelian groups, where HomA-s(M, N) is the group of all A-S-bimodule homomor
phisms from M to N. It follows immediately from the definition that for an element 
f E HomL 5 (M•,N• ), we have f E Homch(A-s)(M•,N•) if and only if df = 0. Here 
Ch(A- S) denotes the category of complexes of A-S-bimodules. 

Suppose that M • is a complex of A-S-bimodules and U a complex of S-T-bimodules. 
We define the complex M • ®s U of A-T-bimodules by 

(M• ®s L• )n = EB Mi ®s Ln-i 
iEZ 

with differentials 

d(m ® l) = dm ® l + (- 1)mm ® dl. 
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Le mma 1.2 .1. The following formulas define isomorphisms of complexes: 

Hom~(M• , N•)[n] ~ Hom~(M• , N • [n]) 

f~--tj 


(M• ~) ®s V ~(M• ®s V)~ 


m ® l~--tm ® l 


M • ®s (L•[n]) ~ (M• ®s V )[n] 

m ® l ~-t (-1)nmm®l. 


Proof : This follows from a straightforward verification of the definition of translation and 
the sign conventions . 0 

Lemma 1.2.2 . The adjunction morphisms define morphisms 

Hom~_r(M• ®s L• , N •) ----t Hom~_5 (M• , Homro(V , N •)) 

f ~-t (m ~-t (l ~-t f(m ® l))) 


Hom~_r(M• ®s V , N •) ----7 Homs-r(V , Hom~ (M• , N •)) 

f ~-t (l ~-t ( m ~-t ( -1 )m.ff (m ® l))) 


of complexes and morphisms 

Homch(A-T)(M• ®s V , N •) ----t Homch(A-S} (M• , Homro(L• , N •)) 

Homch(A-T}(M • ®s V , N •) ----t Homch(S-T ) (V , Hom~(.AJ- , N•)) 


of abelian groups. All of these maps are monomorphisms; they are isomorphisms if M • 

and V are bounded above and N • is bounded below. 0 

1.3 Some derived functors 

Given a ring A, we shall denote the category of left A-modules by Modi\. Let K (MadA) 
denote the category of complexes of left A-modules where the morphisms are given by 

homotopy classes of homomorphisms of complexes. The derived category of A-modules is 
then denoted by D (Modi\). 

For a ring A, ·the opposite ring A0 is defined to be the ring with underlying additive 
group A and multiplication given by AI ·0 A2 = A2 AI for AI , A2 EA. One can identify the 

category of right A-modules with the category of left A0 -modules. From now on, unless 
otherwise stated, a A-module is always taken to be a left A-module. 

Let R be a fixed commutative ring. For the remainder of this chapter, every ring is 
taken to be a central R-algebra. In other words, there is a ring homomorphism R ----t A 
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whose image is contained in the center of A. For two such rings A and S, we are interested 
in a subclass of the class of A-S-bimodules, namely, the class of A-S-bimodules with the 
extra property that the left R-action coincides with the right R-action. We can (and shall) 
identify the category of such A-S-bimodules with the category of A 0 R S0 -modules, and 
there are natural exact functors res A : M odA0 Rso --+ M adA and res so : M odA0 Rso --+ 

M od8 o , which extend to exact functors on the derived categories. By abuse of n'otation, 
we also denote the exact restriction from any category of modules over a central R
algebra to the category of R-modules by resR. One observes that M odM RRo = M odA 
and ModR0 Rso ,; Modso. In the case when A= S , we shall write N =A 0 R A0 

. 

Lemma 1.3.1. (1) If S is a projective (resp .1 fiat) R -algebra1 then resA preserves projec
tive (resp. 1 fiat) modules. 

(2) If A is a projective (resp. 1 fiat) R-algebra1 then resso preserves projective (resp. 1 

fiat) modules. 
(3) Suppose A = S is a fiat R -algebra. Then resA and resAo preserve injectives. 

Proof: (1) Suppose that Sis a projective R-algebra . .Since projective modules are exactly 
the summands of free modules, it suffices to show that A 0 R so is a projective A-module. 
Since S is a central R-algebra, we have S ~ so as R-modules . Therefore, we have 
so EB P ~ L for some projective R-module P and free R-module L . Then A 0 R so is 
a direct summand of A 0 R L, which is a free A-module. Hence A 0 R so is a projective 
A-module. 

Now suppose that S is flat over R. Since flat modules are direct limits of fin itely 
generated free modules (see [Lam, Thm. 4.34]) and tensor products preserve direct limits, 
it suffices to show that A 0 so is a flat A-algebra. Since S is flat over R, we have that S 
is a direct limit of finitely generated free R-modules, which implies that A 0 so is a direct 
limit of finitely generated free A-modules. 

(2) This follows from a similar argument as in (1). 
(3) We shall prove this for resA , the case of resAo being analogous. The functor from 

M odA to M odA• sending M to N 0 A M is exact by our assumption and is left adjoint to 
the functor resA. The conclusion then follows from [Wei, Prop. 2.3 .10]. D 

Let A, B and S be rings. We now introduce some derived functors which will be 
used for the rest of this thesis. Let M (resp., N) be a left A-module (resp., a A-S

bimodule). Recall that HomA(M, N) is a right S-module, where the right S-action is 
given by (! · s)(m) = f(m)s. 

Now let G be a group. If M is a A[G]-B-bimodule, we then define a G-action on 
HomA(M, N) by (g · f)(m) = f(g- 1m) for f E HomA(M, N) , g E G and mE M. We also 
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have a left B-action on Homi\(M, N) given by (b · J)(m) = J(mb) for f E Homi\ (M, N) , 
bE B and m E M. Therefore, we have that Homi\(M, N) is a B[G]-S-bimodule. Thus , 
we have a bifunctor 

Homi\(-,-): (Modi\[G]®RBot X Modi\®Rso ----+ Mods[G]®Rso . 

Now, if M • is a complex of A[G]-B-bimodules and N • a complex of A-S-bimodules , 
we define a complex Homi, (M•, N •) of B[G]-S-bimodules by 

Hom~(M• , N•) = IJ Homi\(Mi, Ni+n) 
iEZ 

with differentials as in Section 1.2. By abuse of notation, we shall also denote this by 
Homi\(M, N). By a standard argument (see [Wei , Chap. 10]) , we have bifunctors 

RHomi\(-, -): n -(Modi\[G]®RBot X D (Modi\®Rso) ---t D (Mods[G]®Rso), 

where RHomi\(M, N) can be represented by Homi\(M, N) if M is a bounded above com
plex of projective A[G] ®R B0 -modules , and 

RHomi\(-, -): D (Modi\[G]®RBo) 0 
X n +(Modi\®Rso) ---t D (Mods[G]®Rso), 

where RHomi\(M, N) can be represented by Homi\(M, N) if N is a bounded below com
plex of injective A®RS0 -modules. These two bifunctors coincide on D-(Modi\[G]®RBo) 0 x 
D+(Modi\®Rso). We shall write RHomi\(M, N) = Homi\ (M, N) if RHomi\(M, N) is rep
resented by Homi\(M, N). 

Now set B = R. Then we have ModR[G]®Rso = Modso[GJ· The underlying functor 
Ui\ : M odi\[GJ ----+ Modi\ is exact and induces a functor (which we still denote as Ui\ from 
D (Modi\[GJ) to D (Modi\)). These functors fit into the following commutative diagram. 

Since a projective A[G]-module is also projective as a A-module, we have the following 
commutative diagram. 
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Proposition 1.3.2. Suppose that M is a bounded above complex of A[G]-modules that 

are projective A-modules. Then we have 

RHomA(M, N) = HomA (M, N). 

Proof: Choose a bounded above complex P of projective A[G]-mod les such that there 
is a quasi-isomorphism f : P ~ M. Then HomA(P, N) represe ts RHomA(M, N). 
Since a projective A[G]-module is also a projective A-module, we have HomA(UA(P ), N) 
representing RHomA(UA(M),N). Since M is a bounded above complex of projective A
modules, we also have HomA (UA(M), N) representing RHomA(UA(M) , N). This implies 
that 

is a quasi-isomorphism of complexes of projective S0 -modules. Since J* is a morphism of 
complexes of S0 [G]-modules, we have a quasi-isomorphism 

of complexes of S0 [G]-modules. This implies that RHomA(M, N) HomA(M, N), as 
required. D 

Now we set A= S. We have the following commutative diagram. 

By Lemma 1.3.1, this induces the following commutative diagram. 

Proposition 1.3.3. Let M be a c~mplex of A[G]-modules. If A is a fiat R-algebm, then 

fo r a bounded below complex N of Ae-modules which are injective A -modules, we have 

RHomA(M, N) = HomA(M,N) . 
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Proof: Let I be a bounded below complex of injective N -modules such that there is a 

quasi-isomorphism I ~ N. Then R Homi\(M, N) is represented by Homi\(M, I). By 
Lemma 1.3.1(3) , it follows that R Homi\(M, N) is represented by Homi\(M, res!\ (I)). It 
follows from our assumption on N that R Homi\(M,resi\(N)) is represented by 
Homi\( M ,resi\(N)). This implies that Homi\(M,resi\(N)) is quasi-isomorphic to 
Homi\(M, res!\ (I)) , which in turn implies that Homi\(M, N ) is quasi-isomorphic to 
Homi\(M, I). Hence it follows that R Homi\(M, N) can be represented by Homi\ (M, N). 
0 

ow if we set A= S =Band G = 1, we obtain bifunctors 

and 

By similar arguments as above, we have the following proposition. 

Proposition 1.3.4 . If A is a projective R-algebra, and if M is a bounded above complex of 
Ae-modules which are projective A-modules, then we have R Homi\(M, N) = Homi\(M, N). 

If A is a fiat R-algebra, and if N is a bounded below complex of Ae-modules which are 
injective A-modules, then we have R Homi\(M, N) = Homi\(M, N). 0 

Recall that a complex N E Ch+(Modi\) is said to have finite injective dimension over 
A if there exists an integer n0 such tliat !Ext~ (M, N) = 0 for all n 2: n0 and all A-modules 
M. This is equivalent to N being quasi-isomorphic to a bounded complex of injective 
A-modules (see [Hart , Chap. I, Prop. 7.6]). The following result is a variant of this (see 
also [Ye, Prop. 2.4]). 

P roposit ion 1.3.5. Let A be a fiat R-algebra. Then the following are equivalent for any 
complex N E Ch+(Modi\e). 

(1) N is quasi-isomorphic to a bounded complex of N-modules which are injective 
A-modules and injective AD-modules. 

(2) N has finite injective dimension over both A and AD . 

Proof: Clearly (1) implies (2). Suppose (2) holds and choose n0 such that !Ext~ (M, N) = 0 
and !Ext~o(M, N) = 0 for all n 2: no and every A-module M and AD-module M'. Let I be a 
bounded below complex of injective A e-modules that is quasi-isomorphic toN. By Lemma 
1.3.1(3), this is also a complex of injective A-modules and injective AD-modules. By the 
hypothesis, the n0 term of T$noi is an injective A-module and an injective AD-module , 
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and the complex T$no i is quasi-isomorphic to I via the natural map I -----4 7 5,n0I . Thus , 
we have that N is quasi-isomorphic to T$no i which is a bounded complex of Ae-modules 
that are injective A-modules and injective AD-modules. 0 

For an S-A-bimodule Land a A[G]-module M, we endow L ®AM with the structure 

of a S[G]-module by setting g(n ® m) = n ® gm forgE G , n EN and mE M. 
If M • is a complex of A[G]-modules and L• is a complex of S-A-bimodules, we define 

the complex L• ®A M • of S[G]-modules by 

(L• ®i\ M•)n = EB Li ®A Mn-i 
iEZ 

with differentials defined as in Section 1.2. As in the case of Hom, we shall abuse notation 
and denote this by L ®A M. By a similar argument to those in Proposition 1.3 .2 and 

Proposition 1.3.3 , we have the following result. 

Proposition 1.3.6. The tensor product induces a bifunctor 

If M is a bounded above complex of A[G] -modules which are projective A-modules, then 

we haveN ®X M = N ®AM. 

If S is a fiat R-algebra and N is a bounded above complex of S ®R AD -modules which 

are fiat AD-modules, then N ®X M = N ®AM. 0 

We detail a relationship between the above defined derived functors in the following 
proposition. 

Proposition 1.3.7. Let A be a central fiat R-algebra. For any ME n- (ModA[GJ) , N E 

D b(ModA• ) and IE D +(ModA• ), we have an isomorphism 

Proof: Replacing M by a bounded above complex of projective A[G]-modules, we may 
assume that M is itself a bounded above complex of projective A[G]-modules . Similarly, 

we may assume that I is a bounded below complex of N -modules which are inj ective as 
A-modules. Then by Proposition 1.3.6 and Proposition 1.3.3 , we have 
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and 

RHomA (M, HomA ( N,J)) = HomA ( M, Hom A ( N,J)), 

where one observes that HomA ( N, I ) is bounded below. Therefore, we are reduced to 

showing that there is an isomorphism 

HomA(N 0 A M, I) ----7 HomA(M, HomA(N, I)) 

of complexes, and this follows from Lemma 1.2.2. 0 

Now if M is a A[G]-module and N is a A0 [G]-module, we define a G-action on M 0RN 
by g(m 0 n) = gm 0 gn. This gives M 0R N the structure of a A[G]-A-bimodule. Thus, 

we have the following bifunctor 

- 0 R-: ModA[G) x ModAo[GJ ----7 ModA[G)®RAo· 

Lemma 1.3.8. Given a A[G]-module M, a A0 [G] -module N and a A[G]-A-bimodule P 
with trivial G-action, we have isomorphisms 

adj : HomA[G)®RAo(M 0 R N , P ) ----7 HomAo[cJ(N, HomA (M, P)) 

f f-t (n f-t (m f-t f(m 0 n))) 


adj' : HomA[G)®RAo(M 0R N, P) ----7 HomA[GJ(M, HomAo(N, P)) 

f f-t (m f-t (n f-t f(m 0 n))) 


of abelian groups. 

Proof: We shall only prove t he first isomorphism, the second being analogous . We first 

show that adj(f) lies in HomAo[cJ(N, HomA(M, P)). Let f E HomA[G)®RAo(M 0R N , P). 
Then we have the following : 

(adj(f)(n>- ))(m) = f(m 0 n>-) = f(m 0 n)>
= (adj(f) (n))(m) >- = ((adj(f)(n)) · >- )(m); 

(adj(f) (gn))(m) = f (m 0 gn) = f(g- 1m 0 n) 
= (adj(f)(n))(g-1m) = (g · (adj(f)(n)))(m). 

The homomorphism adj is clearly injective, so it remains to show that it is surjective. 

LethE HomAo[GJ(N, HomA(M,P)). We define f: M0RN-+ P by f(m 0 n) = h(n)(m). 
It suffices to show that f E HomA[G)®RAo(M 0 zv N, P). The following records the routine 
checking: 

f(>-m 0 n) = h(n}(>-m) = >-(h(n)(m)) = >-f(m 0 n) 

f(m 0 n>-) = h(n>-)(m) = (h(n)>-)(m) = (h(n)(m))>- = f (m 0 n)>


f(gm 0 gn) = h(gn)(gm) = (g- 1 · h(gn))(m) = h(n)(m) = f(m 0 n) . 
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0 

We end this section with a few technical results. 

Lemma 1. 3.9. Let M be a finitely generated A-module, and let {Na} be a direct system 

of A ®R S 0 -modules. Write N =limN"'. Then we have a canonical monomorphism 
---t 

"' 

"' 
of S 0 -modules. Moreover, if all of the canonical maps ia : N"'--+ N are injective, then the 
map is an isomorphism. 

Proof : Say M is generated by m 1 , .. . , mr. Suppose (fa) E lim Homt.. (M , Na) and f = 
---t 

"' lli!} f a = 0. Then for each j = 1, ... , r, there exists a1 such that f "'i (m1) = 0 in N"'i . Since 

"' there are only finitely many of these, by the directed set property, we can find an a0 such 
that /a0 (mj) = 0 for all j. Hence (fa)= 0. 

For the second assertion , let f E Homt.. (M, N). Then, for each j = 1, ... , r, t here exists 

aj such that J(mj) = iaj(naJ for some n"'i E N"'i' Since there are only finitely many of 
these, by the directed set property, we can find an ao such that f (mi) == ia0 ( n1) for some 
nj E Na0 for all j . Thus i-:,},J E Homt.. (M,Na0 ), and we have established surj ectivity. 0 

Lemma 1.3 .10. Let R be a commutative ring, and let A be an R -algebra. Then for any 
R-modules M and N, the following map · 

B: A ®RHomR(M, N) ~ Homt..(A ®RM,A ®RN) 

A ® f f---7 (f.L ® x f---7 f.LA ® f(x)) 


is a homomorphism of A0 -modules. Moreover, if M is a finitely presented R-module and 
A is a fiat R-algebra, this is an isomorphism. 

Proof : Let A, f.L , c; E A. Then we have 

This shows that e preserves the A0 -action. Now if M is a fini tely presented R-module, 
R 8we have an exact sequence Rr --+ --+ M --+ 0. This in turn indu es the following 

commutat ive diagram with exact rows 

0-----+- A ®R HomR(M, N) __.,.A ®R HomR (R 8 
, N) __.,.A ®R HomR (Rr, N) 

l l l 
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since A is a fiat R-algebra. Since the two maps on the right are clearly isomorphisms, so 
is the one on the left . 0 

Lemma 1.3.11. Let R be a commutative ring, and let A be a fiat R-algebra. Suppose M 

is a bounded above complex of finitely presented R-modules and N is a bounded complex 

of R-modules. Then the following map 

() :A ®R HomR(M, N) ---t HomA (A ®R M, A ®R N ) 
).. ® f 1--7 (1-L ® X t--7 {LA ® f (x)) 

is an isomorphism of chain complexes. 

Proof: Since N is bounded, we have 

Efj HomR(Mi, Ni+n) = IJ HomR(Mi, Ni+n), 

and so t he term in degree n for the complex on the left is 

We note that A ®R N is also bounded, and so the term in degree n for the complex on 
the right is 

It follows from a direct verification that the map defined in the lemma is a chain map. 
Since the map is an isomorphism in each degree by the preceding lemma, it follows t hat 
the chain map is an isomorphism. 0 

Lemma 1.3.12. Given a A-module A , a A ®R S 0 -module B and an S ®R (A' )0 -module 

C , we have a homomorphism 

T: HomA(A, B ) ®s C ---t HomA(A, B ®s C) 
f ® c 1--7 (a 1--7 f (a) ®c) 

of (A')0 -modules. This is an isomorphism if either of the two following cases holds. 

(1) A is a finitely generated projective A -module. 

(2) A is a finitely presented A-module and C is a fiat S -module. 

Proof : See [Ish , Lemma 1.1]. 0 

We extend t he above lemma to the derived setting (see also [Yen , Prop. 6.1]) . 

21 




Lemma 1.3.13. Let A be a complex of A -modules, B be a bounded complex of A 0R Sa 

modules and C be a complex of S 0 R(A') 0 -modules. We assume that A' is a fiat R-algebra. 

Suppose A is quasi-isomorphic to a bounded below complex of finitely generated projective 

A-modules, and suppose Cis quasi-isomorphic to a bounded complex ofS0R(A') 0 -modules 

which are fiat S -modules. Then we have an isomorphism 

RHomA(A, B) 0~ C ~ RHomA(A, B 0~ C) 

in D (M od(i\')o). 

Proof: Without loss of generality, we may assume that A is a bounded below complex of 
finitely generated projective A-modules and Cis a bounded complex of S'0 R(A') 0 -modules 
which are flat S-modules. Then it suffices to show t hat there is an isomorphism 

of complexes of (A') 0 -modules. Since B and C are bounded, the terms in degree n for 
both complexes are 

EB Hom(Ai' B i+1) 0 s cn-j 
i,j 

and 

i,j 

with differentials given respectively by 

d(f 0 c) =do f 0 c + ( -1)1- 1 f o d 0 c + ( -1)1f 0 de 

for f E Hom(Ai, B i+1) and c E cn-1 , and 

dg = d 0 g + ( -1t-1g o (d 0 id) + ( - 1)i+j+n-lg 0 (id 0 d) 

forgE Hom(Ai , Bi+1 0 s c n-1) . Let (i,j,n) be a triple of indices with values in Z such 
that the following relations hold: 

(1) (__.:.1) (0,0,0) = 1, 
(2) (-l) (i+l ,j,n) = (-1)(i,j,n) 

1 

(3) (-l) (i,j+l ,n) = (-l)n-j(-l )(i,j,n) 
1 

(4) (-l)(i,j,n+l) = (-l)i+n-1(-l) (i,j,n). 

Then we define a morphism 
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by the following assignment: f ® c E HomA(Ai, Bi+j) ®s cn-j is mapped to (a f---t 

( ( -1) (i,j,n) f (a) ®c)). This gives a morphism of complexes by our construction of ( i, j , n). 
By the preceding lemma, each of the individual maps is an isomorphism, and so. the chain 

map is also an isomorphism . 0 
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Chapter 2 

Adic rings 

Completed group. algebras of certain finitely generated profinite groups arise naturally in 
the study of lwasawa theory. In particular, an important class of such completed algebras 
comes in the form of Zp[q where r is a compact p-adic Lie group. These rings belong 
to a class of rings known as adic rings. In this chapter, we shall study the properties of 
such rings and their (topological) modules . We will also develop a cohomological theory 
over such rings. This chapter will provide the background knowledge and necessary tools 
for Chapter 4 and Chapter 5. 

Let i\ be an associative (not necessarily commutative) unital ring, and denote by 9J1 
the Jacobson radical of i\ which is the intersection of its left maximal ideals. Then there 
is a canonical ring homomorphism 

i\ ---t lim A/9J1n
f--

n 

with kernel nn mn. We say that the ring i\ is an adic ring if A/9J1n is finite for all n 2: 1 
and the above ring homomorphism is an isomorphism. We remark that this definition 
mimics that in [FK], where in their definition, i\ j mn is taken to be finite of order a power 
of a prime p. Although, in the context of lwasawa theory, we usually work with adic rings 
where each i\ j mn is finite of order a power of a prime p, we shall adopt this (slightly) 
more general definition in the development of the general theory, since there are no extra 
difficulties involved. In fact , one will see that most of the material presented here parallels 
that in [NSW, Chap. V §2]. 
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2.1 Finitely presented A-modules 

From now on, we shall endow an adic ring ~ with the m-adic topology. It is immediate 
from the definition of an adic ring that A is compact under the m-adic topology. Since 
!)J11t is a two-sided ideal, it follows that A is an adic ring if and only if A0 is. In this 
section, we will show that there is a natural way to endow finitely presented A-modules 
with the m-adic topology. 

Recall that for a topological abelian group M, the Pontryagin dual Mv of M is defined 
by Homcts(M, IR/Z). When M is profinite (resp., pro-p), we have Mv = Homcts(M, Q/Z) 
(resp., Homcts(M, Qp/Zp)). If M is discrete (resp., discrete p-torsion), we then have 
Mv = Homz(M, Q/Z) (resp., Homzp(M, Qp/Zp)). With these descriptions in hand, we 
are now able to prove the following proposition. 

Proposition 2.1.1. Let M be a finitely presented left A-module. Then we have the 

following: 

(a) M ~ ~MjmnM. 
n 

(b) HomA(M, Av) ~ Mv as A0 -modules (where M is endowed with the profinite topol

ogy induced by the isomorphism in (a)). 
(c) If M is a A-S-bimodule, the isomorphism in (b) is an isomorphism of S-A

bimodules. 

(d) If M is a left A[G]-module for some group G, the isomorphism in (b) is an iso

morphism of A0 [G]-modules. 

Proof: Since M is finitely presented, we have an exact sequence Ar ---+ As ---+ M ---+ 0 for 
some integers r and s. Applying Aj!))11t 0A -, we obtain an exact sequence 

Since each term in the sequence is finite, taking inverse limits yields an exact sequence 

which fits into the following commutative diagram 

Ar -----~ N -----~ M ------.0 

t t 1 
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1 

with exact rows. Since the two maps on the left are isomorphisms, so is the one on the 
right, and this proves (a). For (b), we first note that 

and observe that 

HomA(M, A v) = HomA(M, lim Homz(A/9J1n, ~/Z))
---? 

n 

~ ~ HomA(M, Homz(A/ 9J1n, ~/Z)) (by Lemma 1.3.9) 
n 

~ ~Homz(Mj9J1nM,~/Z) = Mv . 
n 

It follows from a straightforward calculation that the above isomorphism is given by 
sending f E HomA(M,Av) to (m f(m)(l)) E M v. Denote this isomorphism by a . f---7 

Then for >- E A and m E M, 

a(!· ?-)(m) = (! · >-)(m)(l) = f(?-m)(l) = a(f)(?-m) =(a(!)· >-)(m). 

This shows that the isomorphism preserves the A0 -action and we have (b). Part (c) and 
(d) can be dealt with similarly. 0 

We have the following corollary. See also [ e, 2.9.1] for the case when A is commutative 
local adic. 

Corollary· 2.1.2. If A is left Noetherian, then Av is an injective left A -module. 

Proof: For every left ideal Q{ of A, we have a map HomA(A, Av) ____, HomA(Q{, Av) induced 
by the inclusion Q{ <---t A. By hypothesis, the ideal Q{ is Noetherian and hence finitely 
presented. Thus we may apply the previous proposition and the exactness of Pontryagin 
dual to obtain the surjectivity of this map. By Baer's Criterion (see [Wei , 2.~i.l]) , we have 
the required conclusion. 0 

Corollary 2.1.3. Suppose N is another adic ring with Jacobson radical fJJ '- Let M be 

a finitely presented A-module and N be a N ®R A0 -f!l-odule which is a finitely presented 

N -module. Then N ®A M is a finitely presented N -module and 

N ®AM~~ (Nj 9J1tnN) ®AM. 
n 
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Proof: We have an exact sequence Ar--> N--> M--> 0. Applying N®!l. -,we obtain 

an exact sequence 
Nr --. Ns --. N ®!1. M --. 0. 

Therefore, N ®!1. M is a finitely presented A'-module. By Proposition 2.1.1, we have 

n 

Now observe that 

and so the conclusion follows by the right exactness of the tensor product. 0 

P rop osition 2. 1.4 . Let M be a A-module such that M = lim M0 , where each Mo: is a 
---+ 

finite A -module. Then HomA(M, Av) ~ Homz(M, Q/Z). In the case where M is given 

the discrete topology, we can replace the last term by M v. FurthermoTe, if M and the Mo: 
are A-S-bimodules, the isomorphism in (b) is an isomorphism of S-A-bimodules . And if 

M and the Mo: are A[G]-modules for some group G, the isomorphism is an isomorphism 

of A0 [GJ -modules . 

Proof : Since each Mo: is a finite A-module, it follows that the A-submodules rynn Mo: 
stabilize for big enough n. By Nakayama's lemma [Iss, Thm. 13.11], this implies that 

9J111aMo: = 0 for some large enough n 0 . Then for each a, we have 

HomA (M0 , Av) = Hom/\ ( M0 , ~ Homz(A/ Wln, Q/Z)) 
n 

c,; ~HomA(Ma,Homz(A/Wln,Q/Z)) (by Lemma 1.3.9) 
n 

c,; ~ Homz(Mo:/mln M0 , Q/Z) 
n 

Homz (Mo:, Q/Z) 

The conclusion follows by taking inverse limit over a. 0 

Corollary 2 .1. 5. Let M be a finitely presented A-module. Then we have an isomorphism 

of A-modules. Moreover if M is a A-A-bimodule, then the above isomorphism is of A-A

bimodules. 
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Proof: As seen in the proof of Proposition 2.1.1(b), we have Mv ~~ lim(Mj 9J1nMt. 
---t 

n 
Since (M/>JJr"M)v is a fini te A0 -module for each n, it follows that 

HomAo(HomA(M,Av),Av) 	 ~ HomAo(Mv,Av) (by Proposition 2.1.1) 
~ (Mv)v (by Proposition 2. 1.4) 

~ M (by Pontryagin duality). CJ 

2.2 Topological 	A-modules 

In this section, we will study topological modules over an adic ring. These are Hausdorff 
topological abelian groups with a continuous A-action, where as before , A is given the 9J1
adic topology. In particular, we are interested in the following two classes of topological 
A-modules. 

D efinit ion 2 .2 .1. We say that a topological A-module M is a compact (resp., discrete) 
A-module if its underlying topology is compact (resp., discrete). The category of compact 
A-modules (resp. , discrete A-modules) is denoted by CA (resp., DA)· 

We now describe the structures of compact A-modules and discrete A-modules. 

Proposition 2 .2 .2 . (i) Every compact A-module is a projective limit of finite modules 

and has a fundamental system of neighborhoods of zero consisting of open submodules. In 

particular, it is an abelian profinite group. 

(ii) Every discrete A -module is the direct limit of finite A-modules. In particular, it is 

an abelian torsion group. 
(iii) Pontryagin duality induces a duality between the category CA of compact A

modules and the category Di\o of discrete A0 -modules . 

(iv) The category CA is abelian and has enough projectives and exact inverse limits. 

The category DA is abelian and has enough injectives and exact direct limits. 

Proof: Suppose N is a discrete A-module, and let x E N . Then Ann 11 (x) is an open ideal 
of A. Therefore, AnnA(x) contains 9J1r for some r. Thus A· x is an A/9.J1T-module and 
so is finite. This shows (ii) . Now let M be a compact A-module. Then the abstract A0 



module M v is a discrete topological group. For this module to be a discrete A0 -module, 
we need the A0 -action to be continuous, and this is guaranteed by [F, Prop. 3(b)J (since 
A is compact). By (ii) , we have that M v is a direct limit of finite AD-modules . Taking 
the Pontryagin dual, we have that M = (Mv)v is an inverse limit of finite A-modules. 
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Part (iii) is immediate from what we have shown so far. Part (iv) follows from [RZ, Prop. 
5.4.2, Prop. 5.4.4]. 0 

We give another description of discrete A-modules in terms of "9Jl. torsion". If M is a 
A-module, we define 

With this, we have the following lemma. 

Lemma 2.2 .3 . Let M be an abstract A-module. Then M is a discrete A-module (i.e., 
the A-action is continuous with respect to the discrete topology on M) if and only if 

00 

Proof: Suppose that M is a discrete A-module. Let x E M. Then by the continuity of 
the A-action, there exists a positive integer r such that 9Jr · x = 0. This implies that 
x E M[9Jrj. 

Conversely, suppose that 
00 

We shall show that the action 
B:AxM---tM 

is continuous, where M is given the discrete topology. In other words, for each x E M, 
we need to show that e- 1(x) is open in A x M. Let (>., y) E e- 1(x) . Then y E M[9Jr'] 
for some n. Therefore, we have ( >. ,y) E (>. + 9Jr1) x {y}, and the latter set is an open set 
contained in e-l (X). 0 

Corollary 2 .2 .4 . A finite abstract A-module is a discrete A-module. 

Proof: Let M be a finite abstract module. Then 9J11t M stabilizes, and it follows from 
Nakayama's lemma [Iss, Thm. 13.11] that we have 9J11tM = 0 for big enough n. By 
Lemma 2.2 .3, this implies that M is a discrete A-module. 0 

When working with topological A-modules, one will have to consider continuous ho
momorphisms between the modules. In general, an abstract homomorphism of modules 
may not be continuous. However, the next lemma will give a few situations where every 
abstract homomorphism is continuous. 
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Lemma 2 .2.5 . Let M and N be two topological A-modules. Suppose one of the following 

cases holds. 

(1) Both M and N have the Wl -adic topology. 

(2) Both M and N have the discrete topology. 

(3) M has the Wl- adic topology and is finitely generated as a A -module, and N is a 

discrete A-module. 

(4) M has the Wl -adic topology and is finitely generated as a A-module, and N is a 
compact A-module. 

Then every abstract A-homomorphism is continuous. In other words, we have 

HomA,cts(M, N) = HomA(M, N). 

Proof: (1) This follows from the observation that for every abstract A-homomorphism 
f: M --t N, one has f(wtnM) <;;; wtnN. 

(2) This is obvious. 
(3) Let f : M ----. N be an abstract A-homomorphism . Since M is finitely generated, 

there exists a big enough n such that f(M) <;;; N[wtn] by Lemma 2.2.3. This in turn 
implies that rynnM <;;; kerf. 

(4) Let f : M ----. N be an abstract homomorphism of A-modules. By Proposi
tion 2.2.2(i), we may choose a system {No} of neighborhoods of zero consisting of open 
submodules of N. Since N / N0 is the quotient of a compact A-module by an open A
submodule, it follows that N / N 0 is a finite discrete abelian group. By the preceding 
corollary, it is a discrete A-module. Therefore, if we denote by 1f0 : N ----. N jN0 the 
canonical quotient homomorphism, the following homomorphism 

of A-modules is continuous by Lemma 2.2.5(1). Therefore, by the universal property of 
the inverse limits , the induced map 

j: M --.limN/No~ N 
t-

o 

is continuous and coincides with f . D 

A

Now that we have good descriptions of compact A-modules and discrete A-modules, we 
shall give some examples of such modules. It turns out that finitely presented A-modules 
(resp ., their Pontryagin duals) give a nice class of compact A-modules (resp. , discrete 

0 -modules). 
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Lemma 2.2.6. A finitely presented A-module endowed with the !JR-adic topology is a 

compact A-module. 

Proof: It follows from Proposition 2.1.1 that M is a compact abelian group . it remains 
to show that the action 

B:AxM---tM 

is continuous. Suppose B(>. ,x) E y + 9Jr'M. Then one has t hat (>-. ,x) E (>-. + 9Jr') x (x + 
9Jr'M) which can be easily verified to be an open set contained in e-1(y + 9Jr'M). 0 

Corollary 2.2.7. If M is a finit ely presented A-module, then M v is a discrete AD-module. 

Proof: This follows from Proposition 2.2.2 and Lemma 2.2.6 . 0 

Corollary 2.2.8. Let M be a finit ely presented A-module, endowed with the !JR-adic 

topology. We have 

HomA,cts(M, A v) = HomA(M, A v). 

Furthermore, if we endow HomA (M, Av) with the compact-open topology via the above 

equality, the isomorphism in Proposition 2.1.1(b) is a homeomorphism of discrete AD

modules. 

Proof: The first assertion follows from Lemma 2.2.5(3) and Lemma 2.2.6. The second 
assertion follows from the general fact that if M is a compact A-module and N is a discret e 
A-module, then HomA,cts(M, N) is discrete under the compact-open topology. 0 

In view of Lemma 2.2.6 , one may ask the following two questions. The first is if one 
can say anything about the WL-adic topology on an abstract A-module M . In general , it 
is not even clear whether this topology is Hausdorff. The second question that one may 
ask is if there are other ways to endow a finitely presented A-module with a topology such 
that it becomes a compact A-module. In response to these two questions, we have the 
following proposition. In fact, as we shall see, if M is already a compact A-module, t he 
!JR-adic topology is Hausdorff, and it is the only one with which one can endow a finitely 
presented A-module in order to make it into a compact A-module . One may compare the 
following proposition with [NSW, Prop. 5.2 .17] . 

Proposition 2.2.9. Let M be a compact A-module. Then the !JR- adic topology is finer , 

than the original topology of M , and the canonical homomorphism 

a: M ---tlimMj !JRiM.__ 
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of A-modules is injective. Furthermore, if M is a finitely generated A--module, then the 

topologies coincide, and the above homomorphism is a continuous isomorphism of A
modules. 

Proof : Let N be an open submodule of M. Then by continuity, for each x E M, 

there exists a neighborhood Vx of x and a natural number nx such that 9".J11lxVx ~ N. 
Since M is compact, it is covered by finitely many such sets, say Vx)! Vx 2 , •.• , Vxr · Setting 
n = max{nx)! ... ,nxr}, we have 9".J17lM ~ N. This shows the first assertion. Since M is 
Hausdorff under its original topology, it follows that M is Hausdorff under the 9J1-adic 
topology and so 

00 

i= l 

Now if M is finitely generated, we have a surjection 

Am-» (M with 9J1-adic topology), 

which is continuous by Lemma 2.2.5(1). This implies that M with the ~-adic topology 
is compact. By the first assertion, the identity map 

·(M with 9J1-adic topology) ----> M 

is continuous. This in turn gives a continuous bijection between compact spaces and is 
therefore a homeomorphism . If M is given the 9J1-adic topology, then the image of a is 
dense in limM/ 9J1iM, and so is surjective since M is compact. 0 

• t-

The following statement is a corollary of 2.2.9. 

Corollary 2.2.10. Let M be a compact A-module. Then every finitely generated abstract 

A-submodule of M is a closed subset of M . In particular, every finitely generated (left) 

ideal of A is closed in A. 

Proof : Let N be a A-submodule of M generated by x1, ... , Xr· Then the following A
homomorphism 

¢ : EB~= l A ----> (M with 9J1-adic topology) ~ M 

is continuous by Lemma 2.2.5(1) and Proposition 2.2.9. Therefore, we have that N is an 
image of a compact A-module under a continuous map. In particular , this implies that 
N is closed. o 
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We have the following version of Nakayama's lemma for compact A-modules (see also 
SW, Prop. 5.2 .18]). 

Proposition 2.2.11. Let M be a compact A-module. Then the following hold. 
(i) If fJRM = M, then M = 0. 
(ii) The A-module M is generated by x1, .. . , Xr if and only if x 1 + f.JJtM , ... , Xr + fJR M 

generate M j fJR M over Aj fJJt. 

Proof: By Proposition 2.2.9, we have 

00 

M = 	nfJniM = 0. 
i=O 

This proves (i). For (ii ), we shall prove the nontrivial implication. Suppose we have 
X 1, ... , Xr E M such that x1 + fJR M, ... , Xr + fJR M generate M j fJR M_ over A/ fJn. Let N be 
the A-submodule of M generated by x1 , .. . ,Xr . It follows from Corollary 2.2.10 that N is 
a closed A-submodule of M. As a quotient of a compact module by a closed submodule, 
we have that M / N is a compact A-module. By the construction of N , we have that 
fJJt (M/N) = M jN. By (i), this implies that M = N . o 

Proposition 2.2.12. Suppose M is an abstract A-module such that M = lim,._..... M/Mw 
where {Ma} is a direct system of A-submodules of finite index. Then M is a compact 
A-module, where the topology on M is given by the inverse limit. Furthermore, for such 
a module M, it is finitely generated over A if and only if M j fJR M is finite . 

Proof : The second assert ion follows immediately from the first as ertion and Lemma 
2.2 .11 (ii). Thus, it remains to show that the A-action 

B:AxM--+M 

is continuous with respect to the topology given by the inverse limit. By Corollary 2.2.4, 
the assertion holds if M is a finite A-module. For a general M, let(\ x) E e-1 (y+Ma) for 
~ E A and x, y EM. This is equivalent to .A(x+Ma) = y+Ma in M/Ma. Since M / Ma is 
finite, it follows from the above that t here is an n such t hat (.A+fJ.J't'l) · (x+Ma) <;;; y+Ma . 
This shows the continuity of e. o 

We now restate what we have done so far in a categorical language. 
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Proposition 2.2 .13. The underlying functor from the category of topological A-modules 

to the category of abstract A-modules induces the following equivalences of categories. 

Discrete A-modules } ~ { Abstract A-modules such that } 
with continuous ----t M = U:=l M[9Jr'] with abstract 

{ 
A-homomorphisms A-homomorphisms 

Finitely presented } { Finitely presented } 
compact A-modules ~ abstract A-modules 

with continuous -----+ with abstract { 
A-homomorphisms A-homomorphisms 

dis~:e:p~~~~~~les } ~ { abstra:i~~t~odules }
wzth contznuous wzth abstract { 

A-homomorphisms A-homomorphisms 

Proof : This follows from Lemma 2.2.3, Corollary 2.2.4 , Lemma 2.2.5 and Proposition 
2.2.9 . 0 

We conclude with a description of projective objects in ell. which are finitely generated 
over A. 

Proposition 2.2 .14 . Let P be a projective object in e~~. that is finitely generated over 

A. Then P is a projective A-module. Conversely, let P be a finitely generated projective 

A -module. Then P , endowed with the IJR -adic topology, is a compact A -module and is a 

projective object in ell.. 

Proof: Let P be a projective object in e~~. that is finitely generated over A. Then there 
is a surjection f : N --++ P of A-modules. By Proposition 2.2.9, the topology on P is 
precisely the IJR-adic topology, and it follows from Lemma 2.2.5(1) that f is a continuous 
homomorphism of compact A-modules. ow since P is a projective object in e~~. , the 
map f has a continuous A-linear section. In particular, this implies that we have an 
isomorphism N ~ P EB (kerf) of A-modules. Hence Pis a projective A-module. 

Convers_ely, suppose that P is a finitely generated projective A-mod le. Then there 
exists a finitely generated projective A-module Q such that P EB Q is a free A-module of 
finite rank. We then have a surjection 1r: An--++ Q, and this gives a finite presentation 

An -----+ P EB Q -----+ P -----+ 0 

of P where the first map sends an element x of An to (O ,n(x)) and the second map is the 
canonical projection. Hence by Proposition 2.2.6 , we have that Pis a compact A-module 
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under the 9J1-adic topology. Now suppose we are given the following diagram 

of compact A-modules and continuous A-homomorphisms. Since P is a projective A
module, there is an abstract A-homomorphism {3 : P ---+ M such that c{3 = a. On the 
other hand, it follows from Lemma 2.2.5(3) that {3 is also continuous. Therefore, we have 
shown that P is a projective object of CA. D 

2.3 Noetherian adic rings 

Most of the adic rings that we work with in this thesis are Noetheria . This leads us to 
examine (left) Noetherian adic rings in more detail. We shall see that such rings share 
certain properties with commutative Noetherian rings. 

Throughout this section, unless otherwise stated, all adic rings are assumed to be left 
Noetherian. As a start, we have the following result, which follows immediately from 
Proposition 2.2.13, since finitely generated modules over a Noetherian ring are finitely 
presented. 

Proposition 2.3.1. The forgetful functor 

Noetherian } { Noetherian } 
compact A-modules ~ abstr~ct A-modules 

wzth contznuous wzth abstract { 
A-homomorphisms A-homomorphisms 

is an equivalence of categories. D 

Recall from [Wei, Def. 4.1.1] that the projective dimension of an abstract A-module M 
is the minimum integer n (if it exists) such that there is a resolution of M by projective 
A-modules 

0 ---t Pn ---t · · · ---t P1 ---t Po ---t M ---t 0. 

The topological projective dimension (see [ SW, Def. 5.2.10]) of a compact A-module is 
defined similarly, replacing projective A-modules by projective objects in CA. By Propo
sition 2.3.1 , the two notions coincide. In particular, the global dimension of A, which is 
the supremum of the projective dimensions of all abstract A-modules M, coincides with 
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the projective dimension of A, which is the supremum of the projective dimensions of all 
compact A-modules M. We denote this common value by pd A. Also, for a Noetherian 
A-module M, we denote its projective dimension (there is no ambiguity by the above 
discussion) by pdA(M). 

Denote by Mod~- ft the category of Noetherian abstract A-module . Since this cate
gory has enough projectives, it follows from Proposition 2.2.14 and Proposition 2.3.1 that 
the category of Noetherian compact A-modules (denoted by c~-ft) also has enough pro
jectives. Therefore, it makes sense to talk about the derived categories n-(Mod~-ft) and 
n-(c~-ft ) . Denote by D A-ft(ModA) the full subcategory of n -(ModA) where the ob
jects are bounded above complexes X of A-modules such that all the cohomology groups 
Hi(X ) are Noetherian A-modules. 

Lemma 2 .3 .2 . We have the following equivalences 

of categories, where the first equivalence is induced by the forg etful functor and the second 

equivalence is induced by the inclusion Mod~- ft '-....+ M odA. 

Proof: The first equivalence is immediate from Proposition 2.3.1 and the above discussion. 
The second equivalence follows from a similar argument to that in [ e, 3.2.6-8]. D 

We now make the following definition. 

Definit ion 2 .3.3. A two sided ideal J of a ring S is said to have the (left) Artin-Rees 
property if for every (left) ideal Ql. and every s, there exists n = n(s) such that Jn n Ql. <;: 
J 5 Ql.. We shall abbreviate "Artin-Rees property" to "AR property" . 

When A is commutative Noetherian, it follows from the Artin-Rees lemma (see [Mat, 
Thm. 8.5]) that every ideal satisfies the Artin-Rees property. In the general case of a 
left Noetherian adic ring (not necessarily commutative), we shall see that the Jacobson 
radical of the ring has this property. We record the following lemma which extends that 
in [N]. We do not assume that A is Noetherian in the lemma. 

Lemma 2.3.4. Let M be a topological A-module whose topology is the 5JJt-adic topology, 

and let N be a finitely generated A-submodule of M such that 5JJl5 N is closed in M. Then 

there exists n such that ~M n N <;: Wls N. 

Proof: Since N is finitely generated over A, it follows that N / Wls N is finitely generated 
over A/ Wl5 

, and so N j 5JJl5 N is finite. Thus , the image of 9:W M n N -~ N j 5JJl5 N is 
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constant for big enough r . On the other hand, since 9J18 N is closed in M , we have 

nr~o (9)1T M + 9J18 N) = 9J18 N . Therefore, we have 

n (9JtM n N + 9J18 N) = N n n (9J1rM + 9]1
8 N) = N n 9)1

8 N = 9]1
8 N, 

r~O 

where the first equality follows from the modular law (see the next leni.ma). Hence there 

exists n such that ~M n N ~ 9J18 N. o 

Lemma 2.3. 5 . Let M be a A -module with submodules A , B , C, and suppose that C ~B. 

Then 

C + (B n A)= B n (C +A). 

Proof: This is straightforward. 0 

Proposition 2.3.6. If A is left Noetherian adic, then 9J1 has the left AR property. 

Proof : By assumption, every left ideal of A is finitely generated and is therefore closed 

by Corollary 2.2 .10. Let 2( be a left ideal of A. Then for each s , we have t hat 9J18 2t is 

closed in A and the conclusion follows from Lemma 2.3.4. o 

In general , the knowledge that a two sided ideal of a Noetherian ring (not necessary 

adic) satisfies the AR property will yield certain homological relatio s (see [Bo , ]). In 

· this thesis , we will be interested in the following result . 

P roposition 2 .3. 7. Suppose A is left Noetherian adic. Then the left global dimension of 

A is equal to the projective dimension of A/ 9J1 as a A-module. 

Proof : This follows from Proposit ion 2.3 .6 and the last corollary in [Bo]. 0 

When A has finite global dimension , we can refine the above proposition. In prepara

tion for t his , we have the following lemma. 

Lemma 2.3 .8. If M is a Noetherian A-module with finite projective dim ension, then 

pdA(M) = max{i I Ext~(M, A)-:/= 0}. 

Proof: See [Yen , Rrnk. 6.4]. 0 

Hence, combining the above two results , we obtain the following. 

Proposit ion 2 .3 .9. If A is left Noetherian adic, then we have 

pdA = max{i I Ext~(A/9J1 , A)-:/= 0}. 0 
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2.4 Continuous cochains 

Throughout this section, G denotes a profinite group , and we will be looking at topological 
A-modules with a continuous A-linear G-action. In particular, we will be interested in 

t he continuous cochain complex (and its cohomology) of G with coefficients in this class 
of topological A-modules. 

D efinit ion 2.4.1. Let M be a topological A-module with a continuous A-linear G-action. 

The (inhomogeneous) continuous cochains C~ts(G, M) of degree i 2 0 on G with values 

in M are defined to be the left A-module of continuous maps Gi ---+ M with the usual 
differential 

( 5ic) (gi , ... , gi+I) = g1c(g2, : .. , 9i+I) + 2::) -l)jc(gi , ... , 9j9j+I , ... , gi+I) + ( -l)i- 1c(gi , ... , 9i), 
j=l 

which maps C~ts(G, Mo) to C~"t;, 1 (G , M01 ). It then follows that 

i 0k i+I 
· · · ----> Ccts(G , M) ---->Gets (G, M) ----> · · · 

is a complex of A-modules and its ith cohomology groups are denoted by H~ts(G, M) . 
The following lemma is a standard result. 

Lemma 2.4.2. Let 
0 ----> M' ~ M __!!__. M" ----> 0 

be a short exact sequence of topological A-modules with a continuous A-linear G -action 

such that the topology of M' is induced by that of M and such that {3 has a continuous 

(not necessarily A-linear) section. Then 

0---+ c;ts(G , M') ~ c ;ts(G , M) ~ c ;ts(G, M")---+ 0 

is an exact sequence of complexes of A-modules. 

Proof: See [NSW, Lemma 2.3.2]. D 

We are particularly interested in the case when M is a compact A-module or a discrete 
A-module. 

D efinit ion 2.4.3. We define CA ,G to be the category where the objects are compact 
A-modules with a continuous A-linear G-action and the morphisms are cont inuous A[G]
homomorphisms . Similarly, we define 'DA,G to be the category where the objects are 

discrete A-modules with a continuous A-linear G-action and the morphisms are continuous 
A [ G]-homomorphisms. 
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Proposition 2 .4 .4. ( i) The category CA ,G is abelian, has enough projectives and exact 

inverse limits. 

(ii) The category D A,G is abelian, has enough injectives and exact direct limits. 

(iii) The Pontryagin duality induces a contravariant equivalence between CA ,G and 

DAa,c (resp . CA a,c and DA,G). 

Proof: We shall prove (iii) first. By Proposition 2.2 .2, it suffices to show that if M (resp. 

N) is an object of CA ,G (resp. DAa,c), then M v (resp. Nv) is an object of DAa,c (resp. 

CA,c). We define a G-action on M v by a· f(m ) = f(a- 1m) for f E M v, a E G and 

mE M. This is clearly .t\0 -linear , and since G is profinite, we may apply [F, Prop. 3] to 

.conclude t hat the G-action is continuous. The same argument works for N. Hence we 

have proven (iii ). It remains to prove (ii ), since (i) will follow from (ii ) and (iii ). 

To prove (ii), we note that it is clear that DA ,G is abelian and has exact direct limits . 

It remains to show that it has enough injectives. By the lemma to follow, we see that the 

functor 
00 

M r---t U U (M[9IlnJt: ModA[G]--+ DA ,G 
n=l U 

is right adjoint to an exact functor, and so preserves injectives by [Wei, Prop. 2.3.10]. 

Since M odA[GJ has enough inject ives, it follows that DA,G also has enough injectives. D 

Lem m a 2 .4.5 . An abstract .1\[G] -module N is an object in D A,G if and only if 

00 

N = uu(N[9J1nl)u, 
n=l U 

where U runs through all the open subgroups of G . Moreover, if M is an abstract .1\[G]
module, then 

n=l U 

is an object of DA ,c, and there is a canonical isomorphism 

00 

HomA [GJ,cts (N, U U (M[9IlnJt ) ~ HomA[GJ(N, M) 
n=l U 

for every N E DA,G. 

Proof : Suppose N is an object in D A,G· Then , in particular , it is a discrete A-module. 

By Lemma 2.2 .3, we haveN= U~=l N[~] . Let x E N[~]. Then by cont inuity of the 
G-action , t here exists an open subgroup U of G such that U · x = x . 
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Conversely, suppose that 
00 

N = 	uu(N[9nnl)u. 
n=l U 

Clearly this implies that N = U~=1 N[~], and so N is a discrete A-module. It remains 
to show that the G-action 

B:GxN----+N 

is continuous . Let x E N, and let (0', y) E e- 1(x). Then y E N[9nn]u for some nand open 
subgroup u . In particular, we have (0', y) E O'U X {y} ~ e-1(x). Therefore, this proves 
the first assertion. The second assertion is an immediate consequence of the first. 0 

Lemma 2.4.6. Let M be an object ofCA,G· Then M has a fundamental system of neigh
borhoods of zero consisting of open A[G]-submodules. 

Proof: Let N be an open A-submodule of M. Then for each g E G, there exists an open 
A-submodule N9 of M and an open subgroup U9 of G such that gU9 · ~ N. SinceN9 

G is compact, it is covered by a finite number of such cosets, say g1U91 , ... , grUgr· Set 
No= n';,=1 Ng;· This is an open A-submodule of M. Then A[G] · N0 is a A[G]-submodule 
of M which contains N 0 and is contained inN. 0 

For the remainder of this section, we let Q: denote either C11. ,G or V 11. ,G · Let M• be a 
complex of objects in <!:with differentials denoted by d~. We define c;ts(G, M •) by 

C':ts(G, M •) = EB c~ts(G, M i). 
i+j=n 

Its differential o~! is determined as follows: restriction of o~! to C~ts(G , Mi) is the sum 
of 

and 
( l ) i d · C1 (G Mi) CJ+1 (G Mi)- uMi · cts > ----+ cts > • 

We denote its ith cohomology group by H~ts(G, M • ). 

Proposition 2.4. 7. Let 0 ---+ M' ~ M .! M" ---+ 0 be an exact sequence of objects in Q: . 

Then 
0---+ c;ts(G, M') ~ c;ts(G, M) ~ c;ts(G, M") ___, 0 

is an exact sequence of complexes of A-modules. The statement also holds true if we 
replace M', M, M" by complexes of objects in Q:. 
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Proof: By Lemma 2.4.2, it suffices to show that (3 has a continuous section. If ct = V I\, 

this is obvious. In the case when ct = C/\, since every compact A-module is profinite by 
Proposition 2.2.2, every continuous surjection has a continuous section. D 

Let M• be a complex of objects in ct. The filtration Ts,1M• induces a filtration 

Ts,jc;ts(G , M . ) = c;ts(G, Ts,jM. ) 

on the cochain groups which fit into the following exact sequence of complexes 

by Proposition 2.4. 7. This filtrat ion gives rise to the following hyperc homology spectral 
sequence 

H~ts(G, H1 (M• )) ==} H~ts1 (G,M• ), 

which is convergent if M • is cohomologically bounded below. 

Lemma 2.4 .8. Let f : M • ---+ N • be a quasi-isomorphism of cohomologically bounded 

below complexes of objects in ct . Then the induced map 

is also a quasi-isomorphism. 


Proof: The map f induces isomorphisms 


By convergence of the above spectral sequence, this implies that the induced maps 

H~ts(G, M•) ---+ H~ts(G, N •) 

are isomorphisms. D 

Hence we can conclude the following. 

P roposition 2 .4. 9. The functor 

preserves homotopy, exact sequences and quasi-isomorphisms, hence induces the following 

exact derived functors 

R fcts(G, - ): Db(CA,c)---+ D+(ModA) 

R fcts(G, -): D+(VA,c)---+ D+(Modf\). 
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Proof: This proposition follows from what we have done so far. The only subtlety lies 
in the fact that CA,G does not necessarily have enough injectives and therefore we do not 
know if n +(CA,G) exists. However, we know that CA,G has enough projectives. Therefore, 
n -(cA,c) exists , and we may apply Lemma 2.4.8 to Db(CA,c). 0 

We now discuss cohomology and limits . 

Proposit ion 2 .4.10. Let N = lli!} Na be an object of DA,c, where Na E DA,G· Then we 

have an isomorphism 

of continuous cochain groups which induces an isomorphism 

H~ts(G, N) ~ lli!} H~ts(G, Na) 
Q 

of cohomology groups. 

Proof : The first isomorphism is immediate and the second follows from the first since the 
direct limit is exact. 0 

P roposit ion 2.4. 11. Let M be an object in CA,G which is a finit ely generated A-module. 

Then we have an exact sequence 

n n 

Suppose further that G has the property that H~ (G, N) is fin ite fo r all finite discre.te 

A-modules N with a continuous commuting G-action and for all m 2:: 0. Then 

H~ts(G,M) ~ lj!EH~ts(G,M/fmnM). 
n 

Proof: By Proposition 2.2.9, the topology on M is precisely the fm-adic topology. Since 
mnM are also A[G]-submodules, it follows that the isomorphism 

M ~ limM/ fmnM 
f-

n 

in Proposition 2.l.l (a) is an isomorphism of objects in CA,G· Therefore , we have 

C~ts (G , M) = lj!EC~ts (G , MjfmnM). 
n 
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The first assertion now follows by a similar argument as in [ SW, Thm. 2.3.4]. The 
additional assumption implies that the system {H~ts(G, MjfJJt"M)} atisfies the Mittag
Leffler property (see [Wei, Def. 3.5.6]) , and so we have lim1H~ts(G, Mj~mnM) = 0 by [Wei, 

+-
n 

Prop. 3.5.7]. 0 

Proposition 2.4.12. Suppose that G has the property that H-;:
5
(G, N) is finite for all 

finite discrete A-modules N with a continuous commuting G-action and for all m 2:: 0. 
Let M be an object in CA,G, and let {Mn} be an inverse system of objects in CA,G which are 
also finitely generated A-modules. Suppose that lim Mn ~ M. Then we have the following

+--
n 

isomorphism 

n 

of cohomology groups for n 2:: 0. 


Proof: ote that we have t he following isomorphism 


n n,k 

of complexes of A-modules . This induces the following spectral seque ce 

lj!!/H~ts(G , Mnfm kMn) =? H~~i(G, M). 
n,k 

Since the inverse is over a countable system, lj!!/H~ts (G, Mn j m k Mn) = 0 for i > 1. By 
n,k 

the assumption on G, we have lim1H~ts(G, Mn fm k Mn) = 0. Hence, t he spectral sequence 
+-n,k 

degenerates and gives the following isomorphism 

H~ts(G , M) ~ 	~H~ts(G , Mnfm kMn)· 
n,k 

On the other hand, the latter is isomorphic to 

~~H~ts(G, Mnfm kMn) ~ ~H~ts(G,Mn) 
n k 	 n 

by the preceding proposition. 0 
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P roposit io n 2 .4.13 . Suppose that G has the property that H -;;:
5 
(G, N) is finite for all 

finite discrete A-modules N with a continuous commuting G-action and for all m 2: 0. 
Let M • be a bounded complex of objects in C11. ,G, and let {M~} be an inverse system of 

bounded complexes of objects in C11. ,G which are finitely generated A -modules such that 

~M~ ~ M • as complexes. Then we have the following isomorphism 
n 

n 

of cohomology groups for n 2: 0. 

Proof : The canonical chain map M • ----t M~ ----t M~ /'iJJL" M~ induces the following 
morphism of (convergent) spectral sequences 

H~ts(G, HJ(M• )) =? H~~j (G , M• ) 

l 

H~ts (G , HJ(M~/'iJJL"M~ )) =* H~~j(G , M~j<;JJtnM~) 

which is compatible with n. By hypothesis , the bottom spectral sequence is a spectral 
sequence of finite A-modules . Therefore, the inverse limit is compatible with the inverse 
system of the spectral sequences , and we have the following morphism 

n n 

of (convergent) spectral sequences. By the preceding proposition and the fact that the 
inverse limit is exact for compact A-modules, we have the following isomorphism 

n n 

Hence, by the convergence of the spectral sequences, we obtain the required isomorphism. 
D 

2.5 Completed tensor products 

Let R be a commutative adic ring, and let A be a central R-algebra which is also an adic 
ring (not necessarily commutative). In particular , the ring homomorphism R ----t A is 
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continuous. We will introduce certain completed tensor products with which we will work 
in the thesis. 

Let M be a compact i\0 -module and N be a compact A-module. We define the 
completed tensor product to be the compact R-module 

where U (resp. V) runs through the open A0 -submodules of M (resp. open A-submodules 

of N). ote that if we let Bu,v denote the R-submodule 

im(U ®AN------* M ®AN)+ im(M ®A V------* M ®AN) 

of M ®AN, we have (M ®AN) / Bu,v = M/U ®R NjV. In other words, M®AN is the 
profinite completion of M ®AN with respect to the collection of R-submodules Buy. 

The completed tensor product satisfies the following universal property (see [Wil , 
Lemma 7.7.1] and comments before it): For any compact R-module Land any continuous 
bilinear map f : M x N ------* L such that f(m:A, n) = f(m , :An) for every m E M , n E N 

and ).. E A, there is a unique continuous map j: M ®AN------* L such that ]t = f , where 
t : M x N ------* M ®AN is the canonical map. It fo llows from the universal property that in 
defining the completed tensor product, it suffices to run through a basis of neighborhoods 
of zero consisting of open i\0 -submodules of M and a basis of neighborhoods of zero 
consisting of open A-submodules of N. 

Lemma 2.5.1. (1) There are canonical isomorphisms M ®AA ~ M and A®AN ~ N. 

(2) Suppose M = ll!!!Mi and N = ll!.!!Nj , where each Mi (resp ., Nj) is a compact 
j 

i\0 -module (resp. , compact A-module). Then there is an isomorphism 

M (/9 AN ~ li!!! Mi (/9ANj. 
i,j 

(3) We have M ®AN = M 0 A N if either M is a finitely presented A0 -module or N is 

a finitely presented A-module. 

(4) Given a compact A0 -module M, the functor 

M ®A·- : CA ----t CR 

is right exact. The analogous assertion holds for a compact A-module N. 

Proof: See [RZ , 5.5] or [Wil , 7.7]. D 

Since CAo and CA have enough projectives , we have the following result . 
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Proposition 2.5.2. The completed tensor product induces the following derived bifunctor 

-0~-: n -(cAo) x n -(cA) ~ n -(cn). o 

Recall that from the discussion before Lemma 2.3 .2 that if A is Noetherian, then c~:-ft 
and c~-ft have enough projectives. By Lemma 2.5.1(3), we may identify the completed 
tensor products with the tensor products. Therefore, we have the following result. 

Proposition 2.5.3. If A is Noetherian, then we have the following derived bifunctor 

ow let G be a profinite group. Let M be an object in CA,G, and let N be an object 
in Cn,c· In this case, the completed tensor product is taken to be 

where U (resp., V) runs through the open A[G]-submodules of M (resp ., open R[G] 
submodules of N). 

Lemma 2.5.4. The above-defined object is an object of CA,G· 

Proof: It follows from [Wil, Lemma 7.7.2] that M 0 nN is a compact A-module. By a 
similar argument to that used in t he proof of that lemma, we have that the G-action is 
continuous. 0 

As in the case of Lemma 2.5.1 , we can show that the completed tensor product defined 
here is right exact , preserves inverse limits and coincides with the usual tensor product if 

. N is a finitely presented R-module. Recall that by Proposition 2.4.4(i), the categories CA,G 
and Cn,c have enough projective objects. Therefore, we have the following conclusion. 

Proposition 2.5.5. The completed tensor product induces the following derived bifunctor 

-0~-: n -(cA,c) x n -(cn,c) ~ n -(cA,c). o 

Finally, let L be an object in CAo and M be an object in CA,G· In this case, the 
completed tensor product is taken to be 

L0 AM =lim L/W ®A M/U,
+-
W,U 

where W (resp. U) runs through the open A0 -submodules of L (resp. open A[G]-submodules 
of M). By a similar argument to the above , we have the following. 
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Lemma 2.5.6. The above-defined object is in CR,G· 0 

Proposition 2.5.7. There is a derived bifunctor 

2.6 Ind-admissible modules 

The notion of ind-admissible modules was introduced in [ re, 3.3] for commutative Noethe
rian local rings. In this section, we shall see that the theory can be developed for Noethe
rian adic rings and that many of the arguments used in [Ne] carry over. We will also 
describe the category of ind-admissible modules in terms of CA,G and V A,G'· Throughout 
this section, we shall assume that our adic ring A is Noetherian. 

Definition 2.6.1. Let M be an abstract A[G]-module. Denote by S(M) the set of A[G]
submodules M 0 <:;:; M such that 

(a) M 0 is a Ioetherian A-module, and 
(b) the action >w"' : G x M 01 ----t M 01 is continuous, where M 0 is given the 9J1-adic 

topology. 

Remark. Note that by Proposition 2.2.9 , we have that M0 E S(M) is a compact A
module under the 9J1-adic topology. 

Lemma 2.6.2. (1) If MaE S (M), then N E S(M) for every A[G]-submodule N of M 01 • 

(2) If Ma E S(M) and N is a A-submodule of M 0 , then A[G] · N E S(M). 
(3) If M0 , M f3 E S (M), then Ma tB Mf3 E S(M tB M). 
(4) If f : M -t N is a homomorphism of A[G]-modules and Ma E S(M), then 

j(Ma) E S(N). 

(5) If Ma, M f3 E S(M), then Ma + M f3 E S(M) . 

Proof: Part (1) is straightforward. Part (2) follows immediately from (1). For (3), it 
suffices to check condition (b) of t he preceding definition. This follows by observing that 
the composite 

is continuous. 
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To see that (4) holds, we note that f: M01 ----* J(M01 ) is a quot ient map with compact 
kernel. Hence id x f : G x M01 ----* G x J(M01 ) is a quotient map and so induces a continuous 
map G x J (M01 ) ----* J (M01 ). Hence we have the required conclusion. 

Assertion (5) follows from (3) and (4) since M01 + M13 is the image of M01 EB M13 E 
S (M EB M) under the sum map M EB M----* M. 0 

Corollary 2.6.3. (1) Let M be a A[G]-module. Then 

j(M) := U Mo 
M o ES(M) 

is a A[G]-submodule of M and j(j(M)) = j(M). 
(2) Let f : M----* N be a homomorphism of A[G]-modules. Then we have f (j(M)) ~ 

j(N) . o 

D efinit ion 2.6 .4 . A A[G]-module M is ind-admissible if M = j(M) . 

P roposit ion 2 .6 .5. (a) The collection of ind-admissible A[G]-modules forms a full abelian 
subcategory (M od~~ad) of (M odi\[GJ) , stable under subobjects, quotients ana colimits . 

(b) The embedding fun ctor i : ( M od~[~td) ~ (M odA[GJ) is exact and is left adjoint to 

j: (ModA[GJ)----* (Mocf:r~!ad) . · 
(c) The functor j is left exact and preserves injectives. Thus (Mod~~~td) has enough 

injectives. 
(d) Let M be an ind-admissible A [G] -module, and let N be a Noetherian A-submodule 

of M. Then A[G] · N is an ind-admissible A[G] -module which is a Noetherian A-module. 
(e) Let M be a A[G] -module. Then ME S (M) if and only if M is an ind-admissible 

A[G]-module which is a Noetherian A-module. 

say M

Proof: For (a)-( c), apply similar arguments as in [ e, Prop. 3.3.5]. The "only if' direction 
of (e) is obvious . For (d), since N is Noetherian, we can find a finite subcollection of S( M) , 

011 , •••• , M 01n, such t hat 

N ~ Mo1 + · · · + Man. 

The assertion then follows from Lemma 2.6.2(5) and the "only if' direction of (e) . It 
remains to show the "if' direction of (e). But this follows from (d) , since M = A[G] · M. 

From now on, for any category <!: whose objects have an underlying A-module structure, 
we denote by Q:A- ft the category of objects in <!: which are Noetherian A-modules. For 
instance,. M od~~td,i\- ft will denote the category of ind-admissible A[G]-modules which 
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are Noetherian A-modules. For a category Q: , t he category Ind(Q:) is defined as follows: 
An object is a functor F : J ---+ Q:, where J is a small filtered category. The morphisms 
sets are given by 

Homrnd<!:(F, F' ) = U!E ~ Hom<!:(F(j), F'(j' )). 
J J' 0 

We are now able to describe the category ( M ocfA[~td) in terms of C~,cP . 

. 't' 2 6 6 M dind-ad I d(CA-/t) P ropOSl lOll . . . 0 A[G] = n A,G . 

Proof: By a similar argument to that ·in [ e, Prop . 3.3.5(viii)], we have 

dind-ad _ I d(M dind-ad,A-ft)M 0 A[G] - n 0 A[GJ . 

Therefore, it remains to show that M oJ:r~lad,A- ft = C~,(jt. But this fo llows from Propo
sition 2.6.5(e) and Proposition 2.3.1. 

D efinition 2.6. 7. The category (M od~~td)9Jl is defined to be the full subcategory of 

(Mod~[~td) consisting of objects M such that M = U n:?:l M[mr']. 

We now give a description of the above category. 

Proposition 2.6.8. (Mod~~Jad)9Jl = V A,G· 

Proof : Suppose M is an object of (Mocr:r~ad)9Jl. We want to show that M is also an 
object of VA,G· By Lemma 2.4.5, it suffices to show that for each x E M , we can find some 
open subgroup U of G and a positive integer n such that x E M[9Jt]u. Let Ma. E S (M). 
Since Ma. is finitely generated, we can find a big enough r such that Ma. = M0 [9Jr]. It 
follows that Ma. is a finitely generated A/9Jr-module and so is finite. Also, it is discrete 
under the 9J1-adic topology, since 9J15 Ma. = 0 for s ~ r. Thus, Ma. is a finite discrete 
G-module. ow for each x E M, we have x E Ma. for some Ma. E S (M). It follows from 
the above argument that ker(G ---+ Aut(Ma.)) is an open subgroup of G . Since this is 
contained in the stabilizer group of x , it follows that the stabilizer group is open and we 
have x E M[9Jr] 0 "', where Gx denotes the stabilizer subgroup of x. 

Conversely, suppose M is an object of V A,G· Let x E M. By Lemma 2.4.5 , we have 
x E M[9Jr]u for some open subgroup U and positive integer r. Then A[G] · x is a A[G]
submodule of M. On the other hand, by the choice of x, the A[G] -action on A[G]·x factors 
through A/ 9Jr[G / V] for an open normal subgroup V of G, where V is the intersection of 
all conjugates of U. It then follows that A[G] · x is a finite A[G]-submodule of M. ote 
that the 9J1-adic topology on A[G] · x is discrete. Thus, we are reduced to showing that 
the G-action on A[G] · x is continuous, and this follows from the fact that M is an object 

of V A,G· D 
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D efinition 2.6.9 . Let M be an ind-admissible A[G]-module. T he (inhomogeneous) con
tinuous cochains of degree i 2 0 on G with values in M are defined as 

C~ts(G, M) := !i!!} C~ts(G, Ma), 

Ma ES(M ) 


where C~ts (G, Ma) is defined to be the left A-module of continuous maps Gi----> Ma, where 
Ma is endowed with the 9J1-adic topology. In particular, this implies that for each a , 

C~ts(G , Ma) = ~ C~ts(G , Ma/9J1nMa), 
n 

where the right side is equal to the usual cochain group for profinite groups with finite 
coefficients . Here, the differential is defined as follows. For each a, we have the usual 
differential 

(8~" c) .(gl , ... , gi+l) = g1c(g2 , ... , gi+l)+ 2.:) -1)1c(gl, ... , gigi+l , ... , gi+l)+(-l)i-lc(gl , ... , gi) , 
j=l 

which maps C~ts(G , Ma ) to C~~1 (G,Ma ) · Then we define 8:W = !i!!}b"~" ' and it follows 
a 

t hat 
. 0~ '+l 

· · · --t C' (G M) --t C' (G M) --t · · ·cts ' cts > 

is a complex of A-modules. 

Lemma 2.6 .10. Let M be an ind-admissible A[G]-module. Suppose T is a cofinal subset 

of S (M) and M = U M f3 . Then we have a canonical isomorphism 
M13 ET 

Proof: This is obvious. D 

Proposition 2.6.11. If M is an object of (Mod~~td)m, then the continuous cochain 

groups defined viewing M as an ind-admissible A[G] -module coincide with the continuous 

cochain groups defined viewing it as an object in 1JA,G. Similarly, if M is an object in 

(Mo~::r~"td,A-ft) = C~,(jL , the continuous cochain groups also agree in both settings. 

Proof: The first assertion follows from Proposition 2.4. 10, Proposition 2.6.8 and the above 
lemma. The second assertion follows from Proposition 2.6 .5(e), Proposition 2.6.6 and the 
above lemma. D 
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Let M • be a complex of ind-admissible A[G]-modules with differentials denoted by 
dk. We define c;ts(G, M •) by 

c~s(G, M . ) = EB c~ts(G, Mi) . 
i+j=n 

Its differential 6~! is determined as follows: restriction of 6~! to C~ts (G, Mi) is the sum 
of 

and 
( l) i d · C1 (G Mi) c 1+1 (G Mi)- uMi · cts ' ---t cts ' · 

Proposition 2.6.12. Let 0 -t M' ~ M ~ M" -t 0 be an exact sequence of A[G]-modules 
with M ind-admissible. Then M', M" are also ind-admissible and 

zs an exact sequence of complexes of A-modules. The statement also holds true if we 
replace M', M and M" by complexes of A[G] -modules. 

Proof: The first part follows from Proposition 2.6.5. Since the direct limit is exact, we 
may assume that M is oetherian as a A-module. Therefore, we are reduced to the case 
where the exact sequence is an exact sequence in CA,G· The conclusion now follows from 
Proposition 2.4.7. 0 

D efinition 2.6.13. The continuous cohomology of G with values in M (resp. M •) is 
defined as 

H~ts(G , M) = H i(C;ts(G, M)) 

(resp. H~ts(G , M •) = H i(C;ts(G, M•))). 

Proposition 2.6.14. The functor c;ts(G,-) maps bounded below complexes of ind
admissible A[G] -modules to bounded below complexes of A-modules and pTeserves homo
topy, exact sequences and quasi-isomorphisms, hence induces an exact derived functor 

Rrcts(G, -) : D+(Mod~'[~td) -t D+(ModA)· 

Proof: The argument is similar to that in [Ne, 3.5.2-3.5.6]. 0 

We shall also give the analogous definition for ind-admissible A[G]-A-bimodules. 
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Definition 2.6.15. Let M be an abstract A[G]-A-bimodule. Denote by T(M) the set of 
A[G]-A-submodules Mo. t;;; M such that 

(a) Mo. is a Noetherian A-module and a oetherian A0 -module (by Proposition 2.2 .9, 
the left 9J1-adic topology coincides with the right 9J1-adic topology) , and 

(b) the action AM"' : G x Mo. _____. Mo. is continuous. 
We say that M is an ind-admissible A[G]-A-bimodule if 

In this case, we can define the continuous cochain complex 

C~ts(G, M) := lli!} C~ts(G, Mo.) . 
MaE T (M) 

We also have the analogous definition for complexes of ind-admissible A[G]-A-bimodules. 

Many of the results shown for an ind-admissible A[G]-module also hold for an ind
admissible A[G]-A-bimodule. We shall not dwell on this subject, but instead just mention 
two of them which we will require. 

Lemma 2.6.16. (1) If Mo. E T (M), then N E T (M) for every A[G] -A-submodule N of 

Mo.· 
(2) If Mo., Mf3 E T (M), then Mo.+ Mf3 E T (M) . 

Proof: This follows from a similar argument to that of Lemma 2.6.2. D 

For ease of notation , we will drop the '• ' for complexes. We also drop the notation 
'cts'. Therefore we write C(G, M) as the complex of continuous cochains and Rf(G, M) 
for its derived functor. Its ith cohomology group is then written as Hi(G, M). 

2. 7 Total cup products 

We first review the definition of cup-products for topological G-modules (in other words , 
abelian Hausdorff topological groups with a continuous G-action). 

D efinition 2. 7.1. (Cup products) Let A, B and C be topological G-m dules. Suppose 

( , ):AxB----c 
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is a continuous map satisfying a (a, b) = (aa , ab) for a E A, b E B and a E G. Then we 

define the cup product on the cochain groups 

as follows: for a E Ci(G, A), (J E CJ(G, B ) and a 1, ... , CJi+j E G, we have 

(aU (J)(a1 , .. . , ai+j) = ( a(a1, ... , a i), a1 · · · ai(J(ai+l , .. . , CJi+j) J· 
The cup product satisfies the following relation 

and induces a pairing 

on the cohomology groups. 

In this thesis, we will mainly work with cup products over an adic ring. For the 
remainder of the t hesis , we shall assume our adic ring A has the property that A/ 9Jr' is 
finite of order a power of a prime p for all n 2: 1. Let M and N be objects in CA,G and 
V Ao,c respectively, and let A be a topological G-module. Suppose there is a continuous 
pairing 

(, ) :NxM-----tA 

such that 

(1) a (y, x) = (ay , ax) for x E M, y E N and a E G, and 
(2) (y>.. ,x) = (y, >..x) for x E M,y EN and>.. EA. 

As before, condition (1) will give rise to the cup product 


which is A-balanced by condition (2) . The cup product induces a group homomorphism 

which gives rise to the following morphism 

C(G, N) ®A C(G, M) -----t C(G, A) 

of complexes of abelian groups. Taking the adjoint, we have a morphism 

C(G, M) -----t Homzp (C(G, N), C(G, A)) 

of complexes of A-modules . 
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Lemma 2 .7.2. Suppose we are given another continuous pairing 

( ) ) : N' X M' ---t A 

such that (1) a(y' , x') = (ay', ax') for x' E M' , y' EN' and a E G; 
(2) (y' A, x') = (y' , Ax') for x' E M' , y' E N' and A E A, and 
(3) there are morphisms f : N' ---t N in 'Dr.o ,c and g : M ---t M' in Cr. ,c such that 

the jolt-owing diagram 

commutes. Then we have the following commutative diagram 

C (G, M)--. Homzp(C(G, N ), C (G, A)) 

g.l k 
C(G , M' ) ~Homzp(C(G , N') , C(G,A)) 

of complexes of A-modules. 

Proof : It follows from a direct calculation that the following diagram 

9C (G, N') ®r. C(G, M) _ id_®"----~ C(G, N)' ®r. C(G, M' ) 

f ® id l luc , > 

C (G, N) ®r. C(G, M) u<' > C(G, A) 

is commutative, where U ( , ) and U ( , ) are the cup products induced by the pairings ( , 
and ( , ) respectively. By taking the adjoint and another straightforward calculation , we 
have the commutative diagram in the lemma. D 

Now let M and N be bounded .complexes of objects in Cr. ,c and 'Dr.o,c respectively, 
and let A be a bounded complex of topological G-modules. Suppose there is a collection 
of continuous pairings 

( ' )a,b : Na X Mb ---t Aa+b 

where each pairing satisfies conditions (1) and (2) , and the following hold: 
(a) (dcrv y , x)a+ l,b = d~+b ((y, x)a,b) for y E N a and x E Mb , and 
(b) ( -l )a(y , d~x)a,b+ l = d~+b( (y , x)a,b) for y E Na and X E Mb . 
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For each pair (a ,b), we have a morphism 

of abelian groups induced by t he cup product . Then the total cup product 

U: C(G, N) i8lAC(G, M) -t C(G, A) 

is a morphism of complexes of Zp-modules given by the collection U = ( ( -l)ib Uff). T he 
defini t ion given for the total cup products follows that in [ e, 3.4.5.2]. We also have an 
analogous result to Lemma 2.7.2 for complexes. 

We describe another form of (total) cup product with which we will work. Let R be 
a commutative complete Noetherian local ring wit h finite residue field of characteristic p , 

and let A be (on top of being an adic ring) a Noetherian central R-algebra. Let M be 
an object in C~,(jt and N be an object in c~:,(jt . Let W be an ind-admissible A[G]-A
bimodule. Suppose there is a cont inuous pairing 

(, ) :MxN-tW 

for which the fo llowing hold: 
(i) (rx ,y) = (x, yr ), 
(ii ) a(x , y) = (ax , ay), 
(iii) >. (x,y) = (>.x ,y), and 
(iv) (x, y)>. = (x, y>. ) 

for x E M , y E N, a E G , r E R and ).. E A. 
Then, by a similar argument as above, we have a homomorphism 

of A-A-bimodules which gives rise to the following morphism 

C(G, M) i8l R C(G, N) -t C(G, W) 

of complexes of A-A-bimodules. 
Suppose M is a bounded complex in C~,(jt, N is a bounded complex in c~:,(jt , and W 

is a bounded complex of ind-admissible A[G]-A-bimodules such that th re is a collection 
of cont inuous pairings 

where each pairing satisfies the above conditions and the following relations : 
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(a) 	(dMx, Y)a+1 ,b = d~b( (x, Y)a,b), and 
(b) (-l)a(x, d~y)a ,b+1 = d~b( (x, Y)a,b) 

for 	x E Ma and y E Nb. 

Then, as above, we can construct a total cup product 

· u: C(G, M) ®R C(G, N) ~ C(G, W) 

under the same sign conventions. Note that this is a morphism of complexes of A-A

bimodules. There is also a variant of Lemma 2.7.2 in this context. 

2.8 Tate cohomology groups 

In this section, G is a finite group. We now recall the construction of the Tate cohomology 
groups of a G-module M from [NSW, Chap. I §2] . The complete cochain groups (Ji (G , M) 
are defined by 

Ci(G, M) = { Ci(G, M) if i 2 0, 
c-1-'(G, M) if i::::; -1, 

where Ci(G, M) is the usual (inhomogeneous) cochain complex, and the differentials are 
defined for i 2 0 by 

i 

(b'ic)(91 , ··· , 9i+1) = 91c(92, ... ,9i+1)+ l:)-1)Jc(91 , ... ,9)9)+1, ... , 9i+1)+(--l)i- 1c(91 , ... , 9i ), 
j=1 

and for i > 2 by 

(b'-1-ic') (91 , .. ., 9i-d = 

+ 

L (TC'(T-1 , 91 , ... ,9i
TEG 

i 

L ( -lrc' (91 , .. . , (91 · · 
r=2 

d- c'(T,T- 1g1 , ... ,9i-d 

· 9r-1)-1
T , T

191 · · · 9r , ... , 9i-1)) , 

A , A , 
where c E C'(G,M) ,c' E c-1-•(G, M), 91, ... , 9i-1 E G, and 

(<5-2c") = L (TC11 (T-1)- c"(T)) 
TEG 

for c" E 6-2 (G, M) , and 

(b'-1m) = CL:>)m 
TEG 
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formE c-1(G, M ) = M. The ith cohomology group of C(G, M) is denoted by ifi(G, M). 
Clearly, there is a canonical inclusion of complexes 

C(G, M) <-t C(G, M) 

and ifi(G, M) = Hi(G, M) fori~ 0. 
Following [Ne, 5.7.2], we may extend the above definition to a complex M • of G

modules by setting 
cn(c,M•) = EB Ci(G, Mj) 

i+j=n 

with differential defined using the sign conventions of the previous sections. As before, 
for ease of notation, we will drop the '• ' for complexes. The usual cup product for Tate 
cohomology groups [NSW, Prop. 1.4.6] extends to a total cup product with the same sign 
convention as in the preceding section. 
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Chapter 3 

Completed Group Algebras 

In this chapter , we shall invest igate t he completed group algebra of a finitely generated 
pro-p group r . In particular, we are interested in the case t hat r is uniform (see below 
for t he defini tion). As we will see soon, the completed group algebra of a uniform group 
is the completion of the group algebra under a certain norm. This leads us to the study 
of group algebras of a uniform group. We will show that every element in the group 
algebra and its completion has a natural series representation which is unique once we 
fix a minimal set of topological generators for r . This will t hen be applied to prove a 
generalization of a result of Lazard which says that the completed group algebra Zp[f ] 
of a compact p-adic Lie group is a Noetherian ring (see [Laz]). Namely, we will show that 
the same conclusion holds if one replaces Zp by any commutative complete oetherian 
local ring with finite residue field of characteristic p. Our argument follows the approach 
given in [DSMS] , aside from some modifications. 

We list certain notations to which we will adhere throughout this chapter. We let p 

denote a fixed prime. We shall then let R be a commutative complete Noetherian local 
ring with maximal ideal m and fini te residue field lFq of order q, where q is a power of p. 
We also denote N to be the set of natural numbers including 0 (i.e N = {0, 1, 2, ... }). 

3.1 Review 

We now review some facts, most of which can be found in the book [DSMS]. For a group 
G , we write GP = (gPI g e G), that is, the group generated by the p-powers of elements 
in G. A pro-p group G is said to be powerful if GIGP is abelian for odd p, or if GIG4 is 
abelian for p = 2. We also recall the lower p-series. 
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D efinition 3.1.1. (Lower p-series) Let G be a pro-p group . Then define P1 (G) = G , and 

fori ~ 1 

Proposition 3.1.2. If G is a finit ely generated pro-p group, then P;(G) is openinG for 

each i, and the set {P; (G) I i ~ 1} is a base for the neighborhoods of 1 in G . It follows 

that 
Pi+1 (G) = P;(G)P[P;(G) , GJ . 

Moreover, if G is powerful, we have GP = GP = P2 (G) . 

Proof: See [DSMS, Prop. 1.16(iii ), Cor. 1.20, Lemma 3.4]. 0 

Theorem 3.1.3. Let G = (a1, ... , ad) be a finit ely generated powerful pro-p group, and 

put G; = P;(G) for each i. We have the following statements. 

( ') G· - GPi-1- { pi-ll G}- (pi I pi I)2 , - - X X E - , ... , ada1 
(ii) G = (a1) · · · (ad) 

Proof : See [DSMS , Thm. 3.6]. o 

A finitely generated powerful pro-p group G is said to be uniform if the p-power map 
induces isomorphisms 

For any topological group, we denote the minimal cardinality of a generating set of G 
by d = d(G). If G is a finitely generated pro-p group, we have d = dimiF'p(G/P2(G)). 

N ormed rings 

As we will be dealing with a certain norm on the (completed) group algebra in our study, 
we shall review some facts on such norms. 

D efinition 3.1.4. A (non-Archimedean) norm on a (not necessarily commutative) ring 
A is a function II · II : A ---+ IR: such that for all a, b E A 

(i) llall ~ 0; llall = 0 if and only if a = 0; 

(ii) IIlii = 1 and llabll :S lla llll bll and 
(iii) lla ± bll :S max{ llall, llbll}. 

If these hold , then (A, II · II) is said to be a normed ring . 
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A sequence (>-n) of elements in a normed ring A is a Cauchy sequence if for every c: > 0, 

there exists an integer N (depending on c:) such that 11>-n- >-mil < c: whenever n ,m ~ N. 
We say that the normed ring is complete if every Cauchy sequence in A converges to an 

element in A. 

D efinition 3 .1. 5. A normed ring A is called a completion of A if 

(a) A is a dense subring of A and the norm on A extends the norm on A, and 
(b) A is complete. 

P roposit ion 3.1.6 . Given a normed ring A, there exists a completion A of A which is 
unqiue up to isomorphism. 

Proof: See [DSMS, Prop. 6.3]. 0 

Lemma 3 .1.7. Let A be a ring and 

a chain of ideals such that 

(iJ ni~O Ai = o; 
{ii) for all i, j, AiAj <;::; Ai+j . 

Fix a real number c > 1 and define II · II : A -----) lR by 

110 11= 0; llall = c-k if a E Ak \ Ak+l· 

Then (A , II · II) is a normed ring. Furthermore, the completion of A under this norm is 
isomorphic to lim A/ Ai . 

f-

Proof: See [DSMS, Lemma 6.5]. 0 

As we will be dealing with multiple series, we will introduce the following rather general 
notion of convergence. 

D efinition 3. 1.8 . Let A be a normed ring. Let T be a countably infinite set , and let 

t f-t At be a map ofT into A. Let >., s E A. 

(a) The family (>-t)tET is said to converge to >. , written as 

lim>.t = >. ,
tET 

if for every c: > 0, there exists a finite subset T' of T such that II >. - At II < c: for all 
tET \ T' . 
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(b) The series LtET At is said to converge to s , written as 

'L >-t = s, 
tET 

if for each c > 0, there exists a finite subset T' of T such that for all finite sets T" for 

which T' <;;; T" <;;; T, we have lis- LtET" >-til < E:. 

Proposition 3 .1.9 . Retaining the notations of the preceding definition, and supposing 

that i f---7 t(i) is a bijection from N to T , the following statements hold. 

(a) limtET At =A if and only iflimi_,oo At(i} = A. 

(b) L tET At= s if and only if .z::=:o At(i) = s. 

(c) If L tET At converges, then limtET At = 0. 

(d) If A is complete and limtET At = 0, then L tET At converges. 

Proof : See [DSMS , Prop. 6.9]. o 

Associated graded rings 

Let * be a commutative and associative binary operation on N with the properties that 

i * 0 = i 
i*j=i*k=?j=k 

j>k=?i*j>i*k 

for all i,j and k. Let A be a ring with a descending chain of ideals {Ai} satisfying the 
conditions in Lemma 3.1.7 and the following relation 

for all i and j in N. Note that 

for all i and j inN, and one can check easily that i * j 2: i + j. Set Ei = Ad i\.i+l for each 
i 2: 0. The associated graded ring (with respect to*) is then 

00 

A*= EB Ei, 
i=O 

where the multiplication is induced by the product 

We then have the following proposition. 
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P roposit ion 3.1. 10. Let A be a ring with a descending chain of ideals {Ai} as above. 

Suppose A is complete under the norm endowed by the chain of ideals as in Lemma 3.1. 1. 

(a) If A* is left (or right) Noetherian, so is A. 
(b) If A* has no zero divisors, then A has no zero divisors . 

Proof: See [DSMS , Prop. 7.27]. D 

3.2 Group algebras 

In this section, G will always be a finitely generated pro-p group. Write Gk = Pk(G) and 

h = (Gk- 1)R[G] = ker(R[G] ~ R[G/Gk]). 

Denote the maximal ideal of R[G] by J = h + mR[G]. We shall use these notations 
throughout the section. 

Lemma 3.2.1. We have the following relations. 

(i} Jk J h + mkR[G]. 
(ii) h + mJ R[G] J ]JIG/Gkl. 

Proof: (i) We prove this by induction on k. When k = 1, this is true by definition . Let 
k > 1, and suppose that Jk-I J h-I + mk-IR[G]. Clearly mkR[G] ~ Jk. Thus it remains 
to show that h ~ Jk. By the definition of the lov:er p-series, Gk is generated by elements 
of the form xP, [x,y] for x E Gk-I,Y E G. Write u = x -1 and v = y -1. Then 

uP+ puw for some w E R[G], if p does not divide char R, 
xP - 1 = (u + 1 )P- 1 = 

{ uP if p divides char R 

and 
[x, y]- 1 = (xy- yx)x - Iy-I = (uv- vu)x-Iy-I. 

Since p E mR[G] ~ J , v E II ~ J and u E Jk-I (by induction), it follows that xP - 1 and 
[x ,y]-1lie in Jk. Therefore h = (Gk- 1)R[G] ~ Jk. 

(ii) Write n = IG/Gkl· Then G/Gk is a finite p-group acting on the lFq-vector space 
lFq[G/Gk] which has dimension n. It follows from [DSMS, 0.8] that (xi -1) · · · (xn -1) = 0 
in lFq[G / Gk] for any XI, ... , Xn E G/Gk. This implies that (gi -1) · · · (gn --1) E h + mR[G] 
for all 9I , ... ,9n E G. It follows that ;n ~ h + mR[G] and hence pn ~ h + mJ R[G]. D 
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Corollary 3.2.2. We have 
00 

Proof: Let c = :z=:,1 rixi, where the x/s are distinct elements of G and the r/s are all 

non-zero. Choose k big enough such that xixj1 tt Gk for all i ::/ j and 1\ tt mk for all i. 

Consider the canonical map 

Then by our choice of k, the ¢(xi)'s are distinct elements of G/ Gk and ¢(ri) ::/ 0 for all i. 
This implies that c tt ker ¢ = Ik + mkR[G]. By part (ii) of the preceding lemma, we have 
that c tt ;m for some m. 0 

Therefore , the collection {Jk} of ideals satisfies the hypotheses of Lemma 3.1. 7, and 
so we can make the following definition. 

Oefinition 3.2.3. The norm on R[G] is defined by 

11 011= 0; llcll = q- k if c E Jk \ J k+ 1 
. 

It follows from Lemma 3.2.1 t hat the topology on R[G] given by t he norm induces on 

G its original topology. For if x E Gk , then llx- 111 ::; q-k, and conversely, if x E G and 

x- 1 E h + mR[G], then x E Gk· Also, since R 1c n Jk = mk, this norm induces a norm 
on R which coincides with the m-adic norm. The more important observation that one 
makes is the following . 

Proposition 3.2.4. The completion of R[G] under the above norm is topologically iso

morphic to R[G]. 

Proof: By Lemma 3. 1.7, t he completion of R[G] under the given norm is ~R[G]j Jk. 
k 

By Lemma 3.2.1 , the two chains of ideals {Jk} and {h + mkR[G]} are cofinal. Therefore, 

the completion is isomorphic to~ R[G]/(h + mkR[G]). 
k 

On the other hand , since the collection {Gk} of subgroups is a system of neighborhoods 
of 1 in G (see [DSMS, Prop. 1. 16]) , we have 

R[G] ~ ~R[G/Gk] ~ ~Rjmi[G/Gk]· 
k kj 

Since R is complete, this last term is isomorphic to ~R[G]/(h + mkR[G]). 0 
k 
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From now on, unless otherwise stated, G is a fin itely generated pro-p group with a 
minimal set of topological generators a 1, a2 , ... ,ad . Write bi = ai - 1 for each i . For 
a= (a1, . .. , ad) ENd and any d-tuple v = (v1, ... ,vd) E R[G]d, we write 

We are now able to state the fo llowing theorem. 

Theorem. Let G be a uniform pro-p group. Then every element of R[G'] is equal to the 

sum of a uniquely determined convergent series 

where raE R for each a ENd. Conversely, every such series converges in R[G]. 

This theorem is a generalization of the well-known case of Zp[r], where r ~ Zp. 
In this situation,· the theorem is usually expressed as an isomorphism Zp[r] ~ Z[T] of 
topological rings given by the assignment r - 1 ~ T for a topological generator r of r. 
We will prove this theorem in the next section. In this section, we shall state and prove 
a variant of the above statement for R[G] which will be required for the proof of the 
theorem. 

Theorem 3.2.5. (i) If G is powerful, then each element of R[G] is equal, to the sum of a 

convergent series 

with ra E R for each a . 
· ( ii) If G is uniform, then the series is uniquely determined by its sum. 

When G is uniform, we also have the following result for the norm. 

Theorem 3 .2 .6. If G is uniform and c = L o.Ef\ld raba E R[G], where raE R for each a , 
then 

llcll =sup q-(o.)l lrall 
o.E f\ld 

For the remainder of the section, we will be working towards the proofs of Theorem 
3.2.5 and Theorem 3.2.6. As a start, we record a useful lemma. 
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Lemma 3.2. 7. Let u1 , ... , Ur E G, and write v; = u; - 1. Then, fo r (J E J">r, we have 

Proof: See [DSMS , Lemma 7.8]. D 

We now examine the structure of R[G] as an R-module. For k 2: 1, we define 

Tk = {a E Nd I a; < pk-1 for i = 1, ... , d} . 

Lemma 3.2.8. Let k 2: 1, and recall that we write b"' = bf 1 
• • • b~d fo r each a. 

{i) If G is powerful, then 

R[G] = h + L Rb"'. 
oETk 

{ii) If G is uniform , then 

R [G] = h E9 EB Rb"'. 
<>ETk 

Proof : (i) Note that h is the kernel of the canonical map ¢ : R [G] ·-+ R [G / Gk]· By 
Theorem 3.1.3, every element of G/Gk can written as af1 

• • • a~d Gk with a;< pk-1 
. Hence 

{¢(a"')l a E Tk} generates R[G/Gk] as an R-module. By the preceding lemma, th is implies 
that {¢(b"')l a ETk} also generates R[G/Gk] and so ¢(R [G]) = ¢("£oETk Rb"'). 

(ii) Since G is uniform, we have IG/ Gkl = p(k- 1)d, and so ¢(R[G]) is a freeR-module 
of rank p(k-l )d . On the other hand , we also have ITkl = p (k-1ld . Therefore the generating 
set { ¢(b"') I a E Tk} is actually a free basis for this module. D 

We are in the position to give a proof of Theorem 3.2.5 (ii). 

Proof of Theorem 3.2.5{ii) : It suffices to show that if "£
0 

r 0 b"' = 0, then 7'0 = 0 for all 
a . This is reduced to showing that for every j, we have r 0 E mi for all a . We will prove 
this by induction on j . The case j = 0 is immediate by assumption. Now suppose that 
j 2: 1 and 7'0 E mi-l for all a. We want to show that r 0 E mi for all a. Let k be an 

arbitrary positive integer and set m = IG/ Gkl · By the hypothesis that "£
0 

r 0 b "' = 0, we 
have II "£oESrob"'ll ~ q-im for some finite setS 2 Tk· Therefore 

L 'ro b"' = L 'rob"'- L 'rob"'. 
<>ETk <>ES <>ES\Tk 
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Now if a ~ Tk, then o:i 2 pk- 1 for some i and so bfi E h + mR[G] . Together with our 
induction hypothesis, we have r 0 b "' E h + mi R[G] for a E S \ Tk . On the other hand , 
the first series on the right is in Jim <;;; h + mi R[G]. Hence we have 

L Tab "' E h + mi R[G]. 
aETk 

This implies t hat L aETk ra b "' lies in the kernel of t he composition 

of t he two canonical quotient maps. As seen in the proof of Lemma 3.2.8(ii ), the set 
{¢(b"')l a E Tk} is actually a free basis for R[G/ Gk ]· Therefore, we have that 

L ra¢(b"') 
aETk 

lies in the kernel-of n if and only if r "' E mi for all a E Tk. Since k is arbit rary large, we 
have r 0 E mi for all a . 0 

To prove Theorem 3.2.5 (i) and Theorem 3.2.6, we need the two following lemmas 
which give certain ideal relations in a group algebra of a powerful pro-p group . Fork 2 1, 
we define 

Jk,1 = m Jk-1 + J k+1. 

Lemma 3.2.9. If G is powerful, then ux - xu E J k+1,1 fo r ev~ry u E J k, x E G. 

Proof: Let x , y E G. Then 

yx - xy = ([y, x]- 1)xy = (zP - 1)xy 

for some z E G, since G is powerful (by Proposition 3.1.2). By an argument as in part 
(i) of Lemma 3.2.1, we have zP - 1 E JP + mJ. If p 2 3, t his is contained in 12,1 . If 

J 3p = 2, G/ G3 is abelian and so [y,x] - 1 E h <;;; by Lemma 3.2. 1. In either case , we 
have yx - xy E h 1 . Since every element of R [G] is a R-linear combination of elements 
in G , we have ux - xu E h 1 for every u E R[G], x E G. In part icular , this implies the 
case k = 1 of t he lemma. 

Now suppose k > 1 and vy- yv E Jk,1 for all v E J k- 1 and y E G. As J k is addit ively 
spanned by elements of the form vw wit h v E Y-1 and w E J , it suffices to show that for 
any such v and w , we have vwx - xvw E J k+1,1. This follows by observing that 

vwx- xvw = v(wx- xw) + (vx - xv)w E J k- 1
J 2,1 + Jk,1J = Jk+1 ,1 

by the first paragraph and the inductive hypothesis. 0 
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Lemma 3.2.10 . Assume that G is powerful. Let k 2 1. Then 

1k = 1k+l + 2.:::: m k-(a)b <>. 

(a ) ~ k 

Proof: Write Wk = L(a)~ k m k-(a) b <> . Since m ~ J and bi E J for each i , it follows that 
m Jc.-- (a ) b <> ~ J k and so wk + Jk+l ~ J k. 

The reverse inclusion is proved by induction on k . By Lemma 3.2.8, 

R[G] = h + L Rba = 12 + L Rba +Ric, 
aET2 (a )=l 

where the second equality follows from the facts that 12 ~ J2 and b<> E J2 when (a) 2 2. 

It follows by Lemma 2.3.5 that 

1 2J = + L Rba + (J n Ric)= 1 2 + W1 , 
(a )=l 

since J n Ric = mic = mb0 . This establishes the case k = 1. 

Now suppose k > I and that J1 = J 1+1 + W1 for alll < k. Then 

Since we already have Wk + Jk+l ~ Jk from the first part , it remains to show that 

wk-l wl ~ wk + J k+1. As w1 = mic + L~=1 Rbi and mWk-1 ~ wk, it suffices to show 
that for every >. E m k- 1- (a ) , where i = I , ... , d and (a) :::; k - I , the element >.b<>bi lies in 
Jk+1 +Wk. 

Write u = bf1 
• • • b~..:.1 1 and v = bfi b~~r · · · b~d. Then 

ubiv + u (vbi - biv ) 
b,B + uw, 

where w = v bi-biv and /3i = I+ai, /31 = aj for j-=/:- i. Now v E r where n = ai+ · ··+ad. 
"Thus wE ln+l ,1 by Lemma 3.2.9 . As u E J (<>)-n, it follows that 

uw E j(<>)-n l n+1,1 = l (a )+l ,1 = mJ(<>) + J (<>)+ 2 . 

Thus 
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------

Clearly, the last term on t he right is contained in J k+1 . Since (/3) = (a)+ 1, t he first term 

lies in Wk. Since (a) :::::; k - 1, it follows from the induction hypothesis that the middle 
term lies in 

mk-(a) J (<>)+ l + mk-(a)w(<>) ~ f+1 +Wk. 

Hence the conclusion follows. 0 

We now finish up the sect ion with the promised proofs. 

Proof of Theorem 3.2.5(i) and Theorem 3.2.6: Suppose llcll = q-k. ThencE Jk and by 

Lemma 3.2.10, we can write 

C = L Sa,k b "' + Ck+l 

(<>)::Ok 

where sa,k E mk- (a) and ck+~ E Jk+ 1 . Repeating this process, we obtain a sequence ( Cj )r?_k 

such that Cj E jJ and 

Cj - Cj+l = L Sa ,j b "' 
(<>)~j 

for some sa,j E mj- (<>) . Set Wj = I: (a) ::Oj sa,j b "'. Then we have 

C- (Wk + · · · + Wn) E r+l. 

In other words, 
n 

lie- L Wjll :S: q-n- l_ 
j=k 

Hence 
00 

c = L Wj

j=k 

Now set T = {(a,j)l j 2: k , (a):::::; j}. Since mJ- (<>)b "' ~ P , we have llsa,j b "'ll:::::; q-j 

for each j. This implies that 

By Proposition 3.1.9(d), the series I:(a,j)ET sa,j b "' converges in the complete ring R[GJ . 
Define 

00 

j=max{k, (a:) } 

We then have 
00 

L Sab "' = L Sa ,j b "' = L Wj = c, 
a:Ef\ld (a,j)ET j=k 
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thus proving Theorem 3.2.5(i) . 
By Theorem 3.2.5(ii), we have 

ra =Sa = L
00 . 

Sa,j 
j=max{k,(o)} 

for each a . Note that sa,j E mj-(a) s;;; mk- (a) since j ~ max{ k, (a) } ~ k. Hence 

sup q- (o)llrall ::; q- (a)q-k+(a) = q-k = llcll· 
a ENd 

llcll :S sup llrab 0 
11 :S supq-(o)llra ll· 

Q Q 

This proves Theorem 3.2.6. 0 

3.3 . Completed group algebras 

In this section, G is taken to be a uniform pro-p group. As before, R is a commutative 
complete oetherian local ring with maximal ideal m and a finite residue field IFq , where q 
is a power of p. In particular , we have that R is a compact ring under the m-adic topology. 
We shall now prove the following theorem which was stated in the previous section. 

Theorem 3.3.1. Each element of R[G] is equal to the sum of a uniquely determined 
convergent series 

where r a E R for each a E Nd . Conversely,· every such series converges in R[G]. 

Proof: Convergence follows from the fact that llball::; q- (a) for each a E:: Nd . Uniqueness 
follows from Theorem 3.2.5(ii). 

ow let S denote the subset of R [G] consist ing of all elements t hat are equal to the 
sum of a series as in the theorem. Then S contains R [G] by Theorem 3.2.5(i). Thus Sis 
dense in R[G]. It remains to prove that S is closed. Write X = R Nd and define a map 
'ljJ : X___, S by 

'1/J ((ra)aEX) = L rab0 
. 

a ENd 
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Clearly 7/J is surj ective and X is compact. We shall show that 7/J is ont inuous. Let 
A= 7/J ((rn)nEX) and c > 0. Choose n such that q-n < E: , and set 

U = { (sn) E XI Sa - r"' E mn for all a with (a) < n}. 

Then U is an open set of X containing (rn) and for each (sa) E U, 

117/J ((sn))- rll = L (sa- ra) b"' ~ q-n <c. 
<>ENd 

Thus we have shown that S is t he image of a compact set under a cont inuous map. 
Therefore, S is compact , in part icular closed. 0 

We also have t he following statement on the norm in this case. 

Theorem 3.3 .2. If c = L nENd rab"' E R[G~, where r"' E R , then 

llcll = sup q-(<>)llrnl l· 
nENd 

Proof : Suppose llcll = q-k. Let r = L (n)$k rab"' . Then we have lie - r ll ~ q-k- 1
. Thus 

llcll = ll r ll = sup q- (<>)llrn ll 
(n)$k 

by Theorem 3. 2.6. For (a) > k , we have 

Hence the conclusion follows. 0 

Define Ak = {c E R[G~ I llcll ~ q-k } . One can easily check that Ao = R[G~ , 
A k+l ~ Ak for each k, and Ak is a two sided ideal of R [G]. By the norm property, we 
have AiAj ~ Ai+j for each i and j . ow define 

Then one can check that 
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Now for k ~ 0 and 0 ::::; m ::::; k, we set Ek,m = Ak,m/Ak,m+l and define the associated 
graded ring of R[G] to be 

00 k 

R[G] * = EB EB Ek,m· 
k=O m=O 

with multiplication given by 

Theorem 3.3.3. Let {c1, ...cz} be a set of generators form. Write ti = ci 1c +A1,2 E E1,1 
for i = 1, ... , l and Xj = bj + A1,1 E E1,o for j = 1, ... ,d. Then we have a surjective 
IFq -algebra homomorphism 

<I> : IFq[T1, ... , ~ , X1 , .. . , Xd] __.. R[G] * 
r;_ r-t ti; x j r-t xj · 

Proof : Clearly mEk,m = 0 for all k, m and so R[G]* is an algebra over R/ m = IFq. 
Clearly the ti commute among themselves and with the Xj· Now we shall show that the 
Xj commute among themselves. By Lemma 3.2.9, we have 

b·b t 1 - b b t E mJ + J3 C m- A1 + A3 = A21·.1 , 

This implies that xixj - XjXi = bibj - bjbi + A2,1 = 0. Hence, the assignments Ti r-+ ti and 
X j r-t Xj give a well-defined JF'q-algebra homomorphism. 

To prove the surjectivity of <I> , it suffices to show that the monomials 

with (a) = m and (/3) = k - m generate Ek,m over IFq. For each n > 0, set Bn 
L (.B) =n Rb.B . Then as seen in the proof of Theorem 3.3.2, we have 

k-n 
Ak = L mk-n En + Ak+l· 

n=O 

It follows that 

Ak,m = mm Ak-m + Ak,m+ l = L Rc(Ji Bk- m + Ak,m+l = L RcOi b .B + Ak,m+l · 
(01)=m (01) =m 

(.B) =k-m 
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This implies that 

Ek,m = Ak,m/Ak,m+l = L 1FqWa,,6· D 
(a)=m 

(,6)=k-m 

Corollary 3.3.4. The ring R[G] is left and right Noetherian. 

Proof: Set A~ to be the (n + 1)th term in the sequence 

R[G] = Ao,o 2 A1,o 2 · · · 2 Ak,o 2 Ak,l 2 · · · 2 Ak,k 2 Ak+l,O 2 · · · . 

Thus, A~= Ak,m, where 
1 

n = n(k, m) = 2k(k + 1) + m. 

Note that for a given n, the above equation determines k and m under the constraint 
0 ~ m ~ k. For n = n(k, m) and n' = n(k', m'), we define 

n * n' = n(k + k', m + m'). 

It is straightforward to verify that the descending chain of ideals {A~} satisfies the con
ditions of Proposition 3.1.10. Since {A~} is a refinement of {An}, the norms defined by 
{A~} and {An} are equivalent. Hence R[G] is also complete with respect to the norm 
defined by {A~}, and we can apply Proposition 3.1.10 to obtain the required conclusion. 
D 

In Theorem 3.3.3, we prove that the map ci> is surjective for a general R. In the case 
when R = Zp, it is proven in [DSMS, Thm. 7.22] that we can choose generators to make ci> 
an isomorphism. We shall show that this can be achieved if we impose an extra condition 
on R and make a careful choice of generators for m. 

Theorem 3.3.5. Let R be a commutative Noetherian complete local ring with maximal 

ideal m and finite residue field of characteristic p. We also assume that ffin>O mn jmn+1 is 
an integral domain. Choose a set of generators {c1 , ...c1} form such that~-Em\ m2 and 

the images of the~ in m/m2 form an lFq-basis for mjm2 . As before, let G be a uniform 

pro-p group. Write ti = cilc + A1,2 E E1,1 fori = 1, ... , l and Xj = bj + A1,1 E E 1,o for 
j = 1, ... ,d. Then we have an lFq-algebra isomorphism given by 

ci>: lF9 [T1, ... ,Tz, X1, ... ,Xd] --+ R[G]* 
T; f--+ ti; xj f--+ xj. 
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Proof: By the same argument as in Theorem 3.3.3, the above assignment is a well-defined 
surjective IFq-algebra homomorphism. It remains to show that the map is injective. To 

show this, it suffices to show that the monomials 

with (a) = m and (/3) = k - m are linearly independent over !Fq. This is equivalent to 
showing that if we have r a.,/3 E R such that 

L ra.,f3C(a.) b (,B) E Ak,m+l, 

(a.) =m 
(f3)=k-m 

then ra. ,/3 Em. Since Ak,m+l = mm+l Ak-m -1 + Ak+l ~ mm+l R[G] + Ak+ l, we have 

L ra.,f3 C(a. ) b (f3) = L Uf3 b (f3) + L vf3 b (f3) 

(a.)=m f3 f3 
(f3)=k-m 

where Uf3 E mm+l and 

II L Vf3 b (f3) II :S q-(k+l). 

f3 

It foliows from Theorem 3.3.2 that we have llvf3 11 :S q- (m+l) for (/3) = k - m . This 

implies that U f3 + Vf3 E mm+l. On the other hand , it follows from Theorem 3.3 .1 that 
we have r a. ,f3 C(a.) = U f3 + Vf3· This implies that r a.,f3C(a.) E mm+l. Since the graded ring 
EBn>o mn / mn+l is an integral domain and each Ci + m2 is a nonzero element in the graded 
ring~ it follows that c (a.) + mm+l is nonzero in the graded ring. By what we have shown, 

we have 
(ra. ,/3 + m )(c (a.) + mm+l) = 0. 

Since c (a.) + mm+l is nonzero, it follows that r a.,/3 + m is zero. This implies that r a. ,/3 E m , 

as required. o 

Corollary 3.3.6. Let R be a commutative Noetherian complete local ring with finit e 

residue field of characteristic p, and assume that the graded ring EBn2:0 mn j mn+l is an 

integral domain. Then for any uniform pro-p group G , the ring R[G] has no zero divisors. 

Proof :As seen in Corollary 3.3.4, the ring R[G] is complete wit h respect to the norm 
induced by the chain of ideals {A~}. Therefore, we may apply Proposition 3.1.10 and 
Theorem 3.3 .5 to obtain the required conclusion. 0 
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3.4 Compact p-adic Lie groups 

We shall see that most of the results obtained in t he previous section ca be carried over 
to the case of compact p-adic Lie groups. We now recall the following characterization of 
compact p-adic Lie groups due to Lazard [Laz]. A topological group G is a compact p-adic 

Lie gmup if and only if G contains a normal open uniform pro-p subgroup of finite index 
(see [DSMS , Cor. 8.34]). We will use this characterization and refer readers to [DSMS , 
Def. 8.14] for the definition of a p-adic Lie group. As a start, we shall use this to deduce 
the main result of this chapter . 

Theorem 3.4.1. Let R be a commutative complete noetherian local ring with finite residue 

field of characteristic p, and let G be a compact p-adic Lie group. Then R[G] is a· 

Noetherian ring. 

Pmof: Let U be an open normal uniform pro-p subgroup of G. By Corollary 3.3.4, we 
have that R[U] is left and right Noetherian. Since U is open, in G, it is a subgroup with 
finite index . Therefore, R[G] is a finitely generated R[Ulalgebra, and so is also left and 
right Noetherian. 0 

The next result is an extension of Corollary 3.3 .6. 

Proposition 3.4.2. Suppose R is a commutative complete regular local ring of charac

teristic =f. p with finite residue field of characteristic p and G is a torsion-free pro-p p-adic 
Lie gmup. Then R[G] has no zero divisors. 

Proof : The proof follows the ideas in [N] , which basically reduces to checking the hy
pothesis of a theorem of Walker (see loc. cit.). 0 
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Chapter 4 

lwasawa modules 

In t his chapter , we will introduce certain modules over an Iwasawa algebra. The next 
paragraph will introduce some notations which will be adhered to throughout this chapter. 

Fix a prime p. Let R be a commutative complete Noetherian local ring with maximal 
ideal m and residue field k , where k is finite of characteristic p. There exists an object wn E 

D~-ft(Modn) (see [Hart , Ch. V]) with the property that for every ME D(Mod~-ft) , we 
· have R Homn(M,wn) E Dn-Jt(Modn) , and the canonical morphism 

is an isomorphism in D (Modn). One refers town as the dualizing complex of R. 
Let G and r be two profinite groups such that there is a continuous homomorphism 

1r : G --t r of profinite groups. Set A= R[r]. We have a map L : A---+ A which is defined 
by sending 1 to , - 1 for 1 E r. ote that this is only a homomorphism of R-modules. It 
is a ring homomorphism if and only if r is abelian. Denote by 

p = Pr : G ___!!__,. r <;;: AX 

the tautological one-dimensional representation of G over A. 

4.1 Induced modules 

We begin with a lemma which tells us that A is a central flat R-algebra. Let %' be the 
collection of open normal subgroups of r. 

Lemma 4.1.1. The ring A is a central fiat R-algebra. 
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Proof: By [Wei, Prop. 3.2.4(4)], it suffices to show that for any ideal A of R, the map 
A®R A --t A induced by the inclusion A~ R is injective. For each U E: %' , the induced 
map 

R[f/U] ®RA--t R [f /U] 

is injective, since R[r/ U] is a free R-module: Since the inverse limit is left exact, the 
following map 

~(R[f/U] ®R A) --t A 
u 

is injective. Since R is oetherian, we may view R[r/U] and A as compact R-modules 
by Proposit ion 2.3. 1. Therefore, we have 

~(R[f/U] ®R A)= ~(R[f/U]®RA) ~ A®RA = A ®R A , 
u u 

and the conclusion follows. 0 

Now if M is a A-module, we define a A0 -module M" by t he formula m ··A := L-(A)m 
for A E A, m E M. Similarly, if N is a A0 -module , we define a A-module, which is also 
denoted as N" , by A ·· m := m&(A). 

We have the following lemma. 

Lemma 4 .1.2. (a) If M is a A[G] -module, then M" is a A0 [G]-module. 
(b) If M is a A[G]-A-module (not necessarily balanced); then M" is a A0 [G]-A-module 

(not necessarily balanced). 

Proof : (a) Let g E G, A E A and mE M". Then we have 

(gm) ·· A= &(A )gm = g(&(A)m) = g(m ·· A) . 

(b) Similar argument as above. 0 

For a given U E %' and a given R [G]-module M, we define two A[G]-A-modules as 
follows: 

uM = HomR(R[f/U], M) 
Mu = R[f/ U]" ®R M , 

where G acts on R [r / U] via Pr;u and A acts on R[r/ U] via the canonical projection 
A ......., R[r/U] . Note t hat t he A[G] -A-modules defined above are balanced as A-A-modules. 
They are balanced as A[G]-A-modules if r /U is abelian. 
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Let V E %' with U ~ V. Then there is a canonical surjection pr : R [r /U] _..., R[f/ V] 
and a map Tr : R [r / V] --t R[f / U] given by ' 

gU f-? L gvU. 
vEV/U 

These in turn induce the following maps. 

pr* : vM --t uM 

pr* : Mu --t Mv 
Tr* : uM --t vM 
Tr* : Mv --t Mu 

Denote by 6{3 : G / U ---+ Z the Kronecker delta-function 

{3
1 

I { 1 if {3 = l
6{3({3) ~ 0 if {3 i= f3'. 

Lemma 4.1.3. W e have the following isomorphism of R[G]-modules 

M u __:::__, uM 

L {3 ® X[J f-? L Xf36[3 

[JEG/U [J EG/ U 

which is functorial in M. Moreover, if V is another open normal subgro·up of G such that 

U ~ V , then the isomorphism fits into the following commutative diagrams. 

Mu~uM Mv~vM 

pr.l 1Th* Th.l lpr• 
Mv~vM Mu~uM 

Proof: This follows from a straightforward calculation. 0 

Lemma 4.1.4. We have the following equalities of A0 [G]-modules: 

(uM)" = HomR(R[f/U]<, M), 
(Mu)" = R[f/U] ® R M. 

Proof: This is straightforward, noting Lemma 4.1.3. 0 
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Let M be a R[G] -module. We define two A[G]-A-modules as follows: 

Fr(M) = lim uM,
--7 

UE%' 

§r(M) = lim Mu,
r-

UE%' 

where the transition maps are induced by the surjections R[f/U] --++ R[r/ V] for U ~ V. 
Note that the A[G]-A-modules defined above are balanced as A-A-modules. They are 
balanced as A[G]-A-modules if and only if r is abelian . One easily sees from Lemma 4.1.3 
that 

Fr(M)' = lli!; HomR(R[f / U]' , M) and 
UE%' 

§r(M)' = ~ (R[f/U]0R M). 
UE%' 

We now describe another topology on A (see [NSW, Chap. V, §2]). Consider t he 
following family of two-sided ideals : 

mnA + I (U), n ~ 0, U E %' . 

Here I (U) denotes the kernel of the map A --++ R[r/ U]. By taking these ideals as a 
fundamental system of neighborhoods of 0, we call this topology the (m, I)-topology. 

Lemma 4.1.5. Suppose r is a finitely generated profinite group that contains a pro-p 

subgroup of finite index. Then the (m, I) -topology concides with the 911 -adic topology, and 

so A is an adic ring. Moreover, if M is a finite ly presented A -module, we can endow M 

with the (m ,I)-topology by taking the collection {mnM + I (U)M} of A -submodules as a 

fundamental system of neighborhoods of 0, and this coincides with the 9Ji -adic topology. 

Proof: This follows from [ SW, Prop. 5.2.16]. 0 

From now on, r will always be a finitely generated profinite group containing a pro-p 
subgroup of fin ite index. The next few results will tell us more about these modules under 
this assumption. 

Lemma 4 .1.6. If T is an object of CR,c, then §r(T) is isomorphic to N ®RT and 

§r(T)' is isomorphic to A®RT. Moreover, if T is a Noetherian R -mod-ule, then §r(T) 

is finitely presented as a left A-module (and as a right A-module). 

Proof: By the preceding lemma, we have an isomorphism 

~A/911i ~ ~R/mn[f/U] ~ ~R[f/U] 
i U,n U 
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of compact rings . Therefore, the results in Section 2.5 will yield 

§r(T) = ~(R[I'/UJ• ®RT) = ~ (R[I' jU j•@RT) ~ (~R[I'/ UJ•) ®RT ~ N @RT. D 
u u u 

. . 

Lemma 4 .1.7. If A is an object of 'DR,G, then Fr(A) is an object of 'D!I.,G and 

Fr(A) ~ ~ HomR(Rjmn[r jU], A). 
U,n 

Similarly, we have 

U,n 

a direct limit of finite A0 [G]-modules. 

Proof: Let U E %', and let 9Jlu denote the Jacobson radical of R[I' /U]. It is clear 
that R [I' /U] is a compact R-module with the 9Jlu-adic topology. Since R[I' / U] is finitely 
geenrated over R, it follows from Proposition 2.2.9 that the m-adic topology coincides 
with the 9Jlu-adic topology. Therefore , we may apply Lemma 2.2.5(4) to conclude that 

HomR (R[I' /U], A) ~ HomR,cts(R[I' jU], A)~~ HomR(Rj mn[r jU], A ). 
n 

Since A has the discrete topology, it follows that HomR(R[I' jU], A) is a discrete R[I' /U]
module under the compact-open topology and hence a discrete A-module via the contin
uous surjection A -» R[I' / U]. D 

Denote the category of R[G]-modules which are Noetherian as R-modules by M od~~t. 
This is an abelian subcategory of M odR. 

Proposition 4 .1. 8 . (a) A ®R- is an exact functor from ModR to Modii.®Rfl.o . 
(b) §r(-) is an exact fun ctor from M od~~t to M od!I.[GJ. In particular, if A is Noethe

rian, then §r(-) is an exact functor from M od~~t to M od~~t. 
(c) Fr(- ) is an exact functor from ModR[G] to Mod!I. [G] · 

Proof : Assertions (a) and (b) follow from Lemma 4.1.6 and Lemma 4.1. 1. Assertion (c) 
follows from the definition and the facts that R[I' /U] is a free R-module and the direct 
limit is exact . D 

For the remainder of this section, we will try to establish duality relat ions between 
the modules defined above . But before we can say something about dualit ies, we need to 
have objects serving the roles of the dualizing module and complex as in the case of R. 
We shall first consider the dualizing module. Motivated by the case of R, we make the 
following definition. 
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Definition 4.1.9. We set ft.. Homcts(A, {).p/Zp), where the actions of G on A and 
{).p/ZP are trivial. 

The next result relates ft.. with IR, where h denotes t he Pontryagin dual of R. 

Lemma 4.1.10. We have an isomorphism ft...~ ~ HomR (R[r /U], IR) of A -A-bimodules, 
UE%' 

where G acts on R[r / U] and IR trivially. 

Proof : Recall that the 9J1-adic topology on A is equivalent to the ( m, I)- topology. There
fore, we have 

ft..~ 

~ 

~Homzv(R/mntl[f/U], {).p/Zp) 
U,n 

~ HomR (R[r/U], Homzv(R/ mn R , {).p / Zp)) 
U,n 

~ ~HomR ( R[f/UJ,~Homz,(R/m"R,Q,/Z,)) 
~ ~HomR(R[f/U],JR)· 0 

u 

Before proving the next proposition, we introduce the following notations: 

DR(-) := HomR( -,IR) , 
Dfl.(-) := Hom/1.( - ,Ifl.), 
D'J..( - ) := Homfl.o( -,Ifl.). 

Recall that forTE c~,c!t, we have DR(T) ~ y v by Proposition 2.1.1. 

Proposition 4.1.11. LetT be an object ofC;,(jt. Then we have continuous isomorphisms 

in V /\o,c . Similarly, we have continuous isomorphisms 

in V /\ ,G· 

Proof: The first isomorphism follows from Proposition 2.l.l(b) and Lemma 4.1.6. Since 
the (m, I)-topology and 9J1-adic topology on ffr(T) coincide by Lemma 4.1.5, we have a 
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topological isomorphism .#r(T) So! ~(R[f/ U]" ®RT/mnT) of (compact) A-modules. T he 
U,n 

second isomorphism now follows by the following calculations: 

Homcts(.#r (T ), O.p j Zp) So! U!!}HomzP(R[f/UJ" ®R TjmnT , O.p/Zp) 
U,n 

0< U!!} HomR (R[f/U]", Homzp(T j mnT, {~pjZp) ) 
U,n 

0< U!!} HomR(R[f jUJ<, T v) 
u 

0< U!!} HomR (R [f jUJ<, DR(T )) = Fr (DR(T))" . 0 
u 

A
Corollary 4 .1.12. Let T be an object of c~.cft. Then DA (Fr (DR(T))) So! .#r(T Y as 

0 [G]-modules (resp. DAo(Fr (DR(T )Y) So! .#r(T) as A[GJ-modules). 

Proof: Applying DA to the second composite isomorphism in Proposition 4.1.11 , we see 

that the conclusion follows from Corollary 2.1.5. 0 

In the case that r is a finitely generated abelian pro-p group, t he ring A is a com

mutative complete oetherian local ring, and its dualizing complex wl\ is shown in [Ne, 

Lemma 8.4.5.6] to be quasi-isomorphic to A ®~ WR· Inspired by this result , we shall work 

with the complex A ®~ WR · Note that this is an object in Db(M odM!iRAo ). 

Lemma 4 .1.13. Let M and N be objects in C~.(jt . Then the follo wing map (defined via 
Lemma 4.1.6) 

¢: .#r(M) ®R .#r(N)" -----. A ®R (M ®R N) 
).. ® m ® J..L ® n t---t L(A)J..L ® m ® n 

is a homomorphism of A[G] -A-bimodules, where G acts trivially on A. 

Proof: Let A, J..L ,1 E A, m E M , g E G and n E N. We shall check that ¢ preserves the 

A[GJ-A-actions: 

¢(1 · (,\ ® m ® f..L ® n)) = ¢( ,\L(t) ® m ® J..L ® n) = /L( A)J..L ® m ® n 
= !(L( A)J..L ® m ® n) = 1¢(,\ ® m ® f..L ® n), 

¢((,\ ® m ® J..L ® n) · 1) = ¢(,\ ® m ® J..LI ® n) = L(A)J..L! ® m ® n 
= (L(A)J..L ® m ® n)t = ¢(,\ ® m ® J..L ®n)t, 

¢(g( ,\ ® m ® J..L ® n)) = ¢(p(g) ,\ ® gm ® p(g) J..L ® gn) = L(A)J..L ® gm ® gn 
=g· ¢( ,\ ® m®J..L ® n). 0 
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Corollary 4.1.14. Let M and N be bounded complexes of objects in C~,(jt. Then the 

following map (defined via Lemma 4.1. 6) 

¢: .ffr(M) Q9R .ffr(NY-----> A Q9R (M Q9R N) 
.A 0 m Q9 f.L Q9 n f--7 ~(.A.)f.L Q9 m Q9 n 

is a morphism of chain complexes, where G acts trivially on A. 

Proof: This follows from a direct verification. 0 

Now let X and Y be bounded complexes of R[G]-modules which are finitely gener
ated R-modules , and let J be a bounded complex of R[G]-modules with trivial G-action. 
Suppose that 1r : X Q?) R Y -----> J is a morphism of complexes of R[G]-modules. Then we 
have a morphism of complexes of A[G]-A-bimodules 

which induces the fo llowing morphisms of complexes of N[G] -modules and A[G]-modules 
respectively: 

adj(n) : .ffr(YY -----> HomA(.ffr(X) , A Q9 R J) 
adj' (n) : .ffr(X) -----> HomAo(.ffr(Yy , A Q?) R J) 

On the other hand, as complexes of A0 -modules, we also have the following commu
tative diagram 

where() is the morphism defined in Lemma 1.3.11 , and this morphism is an isomorphism of 
complexes of AD-modules since X is a bounded above complex of oetherian R-modules 
and A is a fiat R-algebra. Hence it follows from the above diagram t at if adj ( 1r) is 
a quasi-isomorphism, so is adj(n). By a similar argument , we have that if adj(n) is a 
quasi-isomorphism, so is adj'(n). . 

We now prove the following result. The point of the result is that even though we do 
not know the existence of a dualizing complex for A in general, the complex A Qi)~ wR still 
serve as a "dualizing complex" for the type of induced modules we are interested in . 
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Proposition 4 .1.15 . LetT and T* be two bounded complexes of ind-admissible R[G]
modules of finite type over R , and let J be a bounded complex of R[G]-modules with 

trivial G-action. Suppose that there is a morphism 1r : T 0 R T* ---+ J of complexes of 

R[G]-modules such that adj ( 1r) . induces an isomorphism 

T* ---+ R HomR(T, J) 

in D (ModR[GJ)· Then we have an isomorphism 

adj (7r) : §r(T*)"---+ R HomA(§r(T), A 0~ J) 

in D (ModAo[cJ) · We have a similar statement for adj ' (1r). 

Proof: To show this isomorphism, we may disregard the G-action . Let P be a bounded 
above complex of finitely generated projective R-modules such that P ~ T is a quasi
isomorphism. Since A is flat over R , the chain map §r(P) ---+ §r(T) is also a quasi
isomorphism. Consider the map 

Then by a similar argument as above, we obtain the following commutative diagram 

of complexes of A0 -modules . Now adj(1r' ) is a quasi-isomorphism by assumption. Hence 
it follows that adj(1r') is a quasi-isomorphism. ow since N 0 R Pis a bounded complex 
of projective A-modules , we have HomA(N 0 RP, A 0 RJ) = RHomA(§r(T) , A 0~1) and 
hence the conclusion follows. 0 

Proposition 4.1.16. Suppose Tis a bounded complex of R[G] -modules which are free of 

finite rank over R. Then we have isomorphisms 

and 

§r( HomR(T, R))" ---+ R HomA(§r(T) , A) 

in D (A[G]) and D (A0 [G]) respectively. 
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Proof: The pairing 
T ®R Homn (T, R)-----+ R 

satisfies the hypothesis in the preceding proposition. Therefore, we may apply the propo
sition to obtain our conclusion. 0 

Though we shall not use it later, we feel it wothwhile to mention the following "local 
duality" type result. Before that, we have a lemma. 

Lemma 4 .1.17. Suppose r is a finitely generated profinite group and contains a pro-p 

subgroup of finit e index, and A is {left and right) Noetherian. Then we have an isomor

phism 

A

in D (ModA-A)· 

Proof: Since wn is an object of Db(Mod~-ft) , we may choose a bounded complex n 
of Noetherian R-modules, which represents WR. Since A is oetherian , it follows from 
Corollary 2.1.2 (and its dual statement) that his an injective A-module and an injective 

0 -module. By Proposition 1.3.4 and Proposition 1.3.6, we are reduced to showing that 

A ®n Sl-----+ HomA (HomAo(A ®n Sl, h), h) 

is an isomorphism of complexes. The assumptions on r enable us to work with the 9J1
adic topology, and so it follows from Corollary 2.1.5 that we have the isomorphism in the 
case when n is a single module concentrated at 0. For a general bounded complex of 
Noetherian R-modules , the term in degree non the right is 

HomA (HomAo(On, h) , h) , 

and the required isomorphism is given by 

A ®nSl-----+ HomA(HomAo(A ®RSl ,h) ,h) 
A @ Xf--7 (ff--7 ((-l)lxf(-\ ®x ))) , 

where the sign conventions make t his into a morphism of complexes. 0 

·Theorem 4.1.18. (Local duality) Suppose r is a finitely generated profinite group and 

contains a pro-p subgroup of finite index, and A is (left) Noetherian. Let X be a bounded 

complex of modules in M od~IC!Jt. Then we have the following isomorphism 

RHomA(RHomAo(J\ ®~ WR , h) ®~ X, h) ~ RHomA(X, A ®~ WR) 

in D (ModAo[GJ) . 

Proof: This follows from Proposition 1.3.7 and Lemma 4.1. 17. 0 
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4.2 Finite generation of cohomology groups 

In this section, we shall show that the cohomology groups of the induced modules are 
finitely generated under certain finiteness assumptions. These are the groups which we 
are interested in, and the knowledge that they are finitely generated will help in proving 
a duality between these groups. 

Throughout this section, we assume that r is a compact p-adic Lie group. By Theorem 
3.4.1, this implies that A = R[r] is a Noetherian adic ring. We then have the following 
two lemmas. 

Lemma 4.2.1. Assume that r is pro-p, and let M be a compact A-module. Then M is 
finitely generated over A if and only if Mr is finitely generated over R. 

Proof: Since r is pro-p, we have VJ1 = mA+Ir and this implies that MjVJtM = Mr/mMr. 
Applying Nakayama's lemma (Proposition 2.2.11) for compact A-modules, we have that 
M is finitely generated over A if and only if M jVJtM is finite. On the other hand, applying 
the same proposition for compact R-modules, we have that Mr is finitely generated over 
R if and only if M jVJtM is finite. Thus, the conclusion follows. D 

Lemma 4.2.2. If M is a finitely generated A-module, then TorNR, M) is finitely gener
ated over R. 

Proof : To see this, we first note that since M is finitely generated over A and A is 
Noetherian, we can find a resolution P of M consisting of finitely generated projective 
A-modules. Then R i8lA P is a complex of finitely generated R-modules. Therefore, its 
homology groups Tor~(R, M) are finitely generated over R. D 

The next lemma will relate two complexes of modules and give a sufficient condition 
for them to be cohomologically bounded. We will utilize this to derive a relationship 
between cohomology groups. 

Lemma 4.2.3. Let T be a bounded complex in c~:cft, and let N E c~-ft. Then N 

can viewed as a compact A0 -module via the augmentation map A _.., R, and we have an 
isomorphism 

N 18lX (N Q9 R T) ~ N Q9~ T 

in n-(cR,G), where the functor- 18lX- on the left is over n-(c~:-ft) X n-(cA,G) and 

the one on the right is over n-(c~-ft) X n-(cR,G) (see Proposition 2.5. 7). Moreover, if 

pdR (N) is finite, then N 18lX (A' Q9 R T) is an object in Db (CR,G), and. the above isomorphism 
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is an an isomorphism in Db(CR,c). In particular, if N is a free R -module, we have an 

isomorphism 

Proof: Let P be a resolution of N consisting of finitely generated projective A0 -modules, 
and let Q be a resolution of N consisting of finitely generated projective R-modules . 
We may view Q as a resolution of f\0 -modules via the augmentation map A --++ R. By 
comparison (see [Wei , Thm. 2.3.6]), there is a morphism f: P------) Q of complexes of A0 



modules which is a quasi-isomorphism and lifts the identity map N ___, N. This induces · 
a quasi-isomorphism 

f. : p ®A N ------) Q ®A N ~ Q 

(since A is fiat by Lemma 4.1.1) and, a morphism 

of complexes in CR,G· Since Q ®R T represents N ®~ T by Proposition 2.2.14, it remains 
to show that f** is a quasi-isomorphism. Now if A ------) B ------) C ------) A[1] is an exact 
triangle in Db(C~.c/t), we then have a morphism 

N ®X (N ®R A)-----. N ®X (N ®R B)-----. N ®X (N ®R C)-----. N ®X (N ®R A)[l] 

!!A !fa !Jc !!A[l] 
N ®~A N ®~B N ®~C N ®~A[1] 

of exact triangles. Therefore , if any of the two morphisms fA , f 8 and f c are isomorphisms, 
so is the third. For a bounded complex T in C~c/t , we have the following exact triangle 

' 

Therefore, by induction , we are reduced to showing that f •• is a quasi-isomorphism in 
the case when T is a single module. To show this, it suffices to show that f •• is a quasi
isomorphism of complexes of R-modules. The map f induces the following morphism 

Torf(HJ(P ®AN) ,T) =? 1fi+J(P ®A N ®R T) 

! 

Torf(HJ(Q ®AN) ,T) =? Hi+](Q ®AN ®R T) 
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of convergent spectral sequences of R-modules, where the two spectral sequences come 
from [Wei, Thm. 5.6 .4]. Since f . is a quasi-isomorphism, we have 

which in turn induces the isomorphisms 

By convergence of the spectral sequences, this implies t hat 

as required . The second and t hird assertions follow immediately from t he first. 0 

Proposition 4.2.4. Let T be a bounded complex in C~.(t , and let N E c~-ft with 

pdn (N) < oo. Viewing N as a compact A0 -module via the augmentation map A---* R , we 

have an isomorphism 

N 0~ Rf(G,N 0 n T) ~ Rf(G, N 0~ T) 

A

in D ( M odn). In particular, we have the following isomorphism 

R 0~ Rf(G, N 0 n T ) ~ R r(G, T ) 

in D (Modn). 

Proof: As before, we let P be a bounded above complex of fin itely generated projective 
0 -modules quasi-isomorphic toN. Then 

N 0~ R f (G, N 0n T) = P 0A C(G, N 0 n T). 

It is easy to see that there is an isomorphism 

of complexes via a similar argument to that of [Ne, Prop. 3.4.4]. As seen in the proof 
of Lemma 4.2.3, we have that P 0 A (N 0 n T) is cohomologically bounded and is quasi
isomorphic to N®~T in Db(CR,c). The conclusion now follows from Lemma 2.4.8. 0 
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Remark. The second assertion of the preceding proposition was proved in [Ne, Prop. 
8.4.8. 1] for the case r ~ Z~. We also mention that in the case when T is an object of 
c~:cJL that is projective as an abstract R-module, and assuming that cdp(G) < oo, and 
that Hi(G, M) is finite for every finite discrete G-module M , the same assert ion is a 
special case of [FK, Prop. 1.6.5(3)]. 

We recall from [Ne, Prop. 4.2.3] that if G is a profin ite group such that Hi(G, M) is 
finite for every finite G-module M, then for every T E C~,(jt, we have that Hi(G, T ) is a 
Noetherian R-module for every i ~ 0. In t he case when r is abelian pro-p, the ring A is 
commutative oetherian local adic, and so [Ne, Prop. 4.2.3] can be applied. For the case 
of a noncommutative r , we have a weaker result in this direction. 

Proposit ion 4 .2.5. Suppose r is a pro-p p-adic Lie group and G is a profinite group 
satisfying the following properties: 

(1) cdp(G) = n. 
(2) Hi(G, M) is finite fo r all finite G-modules M and fo r all i 2 0. 

Let T E C~,(jt. Then the cohomology groups Hi (G, A•0 R T ) are finitely generated over A 
for all i 2 0. 

Proof : Since N ®R T is a Noetherian A-module, so is H 0 (G, N 0 R T ). Also, since 
cdp(G) = n, we have Hi(G, N ®R T) = 0 for i > n . Thus, it remains to show that 
Hi(G, N ®R T) is fini tely generated over A for 1 :S i :S n . We shall prove this by 
induction downward on i. We apply Proposition 4.2.4 (taking N = R) to obtain an 
isomorphism 

R ®X R f (G, N ®R T) ~ R f (G, T) 

in D (M odR) which induces the following bounded convergent spectral sequence 

By hypothesis (1), this gives an isomorphism 

As seen above, hypothesis (2) allows us to apply [Ne, Prop. 4.2 .3] to conclude that 
Hn(G, T ) is a oetherian R-module. It follows from the above isomorphism that 
Hn(G, N ®R T )r is also a Noetherian R-module. By Lemma 4.2. 1, this implies that 
Hn(G, N 0 R T ) is a Noetherian A-module. Let i :S nand suppose H1(G, N 0 R T ) is a 
Noetherian A-module for j > i. Since the spectral sequence is bounded, it follows t hat 
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E:::S (see [Wei , Def. 5.2.1] for the definition) must stabilize for large enough m, and this 

stable value is denoted by E~. In particular, we have that EQ,_1 is a quotient of E6.-j· 
By loc. cit. 5.2.5, we have that EQ,_1 is a subquotient of H1(G, T), and so is a Noetherian 

R-module since H1(G, T) is a Noetherian R-module by [Ne, Prop . 4.2.3]. On the other 

hand, it follows from the definition of EQ,_1 that the kernel of the map E6,-j --» EQ,_1 is 
isomorphic to a subquotient of 

E9 Ef_j+l ,-i· 
j<i~n 

By our induction hypothesis and Lemma 4:2.2, the above module is a Noetherian R
module. Hence, it now follows that E6,-f = H1(G, N ®R T)r is a Noetherian R-module. 
Applying Lemma 4.2.1, we have that H1 (G, N ®R T) is a Noetherian A-module. 0 

Corollary 4.2.6. Suppose r is a pro-p p-adic Lie group and·G is a profinite group sat
isfying the following properties: 

(1) cdp(G) = n. 

(2) Hi(G , M) is finite for all finite G-module M for all i ~ 0. 
Then for every bounded complex T of objects inc;,-;/, the object Rf(G , N ®R T) zs zn 

DL1t(ModJ\). 0 

Proof: Recall from the discussion before Lemma 2.4.8 that for a bounded complex T of 

objects in c;,(jt, we have the following convergent spectral sequence 

It follows from Proposition 4.2.5 that Hi(G,H1(N ®RT)) is a NoetherianA-module for 

all i, j. It follows from [Wei , 5. 2.5] that Hn (G, N ®R T) has a finite filtration consisting of 

subquotients of Hi ( G, H1(N ®R T)) fori+ j = n. Hence it follows that Hn( G, N ®R T) 
is also a Noetherian A-module. 0 

4.3 Shapiro's lemma 

As before, let R be a commutative complete noetherian local ring with maximal ideal m 

and finite residue field k of characteristic p. Let G be a profinite group , and let H be a 

closed subgroup of G such that r = G jH is a compact p-adic Lie group. We take our 
continuous homomorphism n : G ---t r to be the canonical quotient map. It also follows 

from our assumption on r that A= R[r] is Noetherian. We identify%' as the collection 
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of open normal subgroups of G containing H. Therefore, in this context, for each U E %', 
and an ind-admissible A[G] -module M , we have 

uM = HomR(R[Gj U], M), 
Mu = R[GjU]• ®R M. 

We will apply Shapiro's lemma to see that the direct limits and inverse limits of coho
mology groups over every intermediate field Fa. can be viewed as cohomology groups of 
certain A-modules. The results in this section can be found in [Ne, 8.2.2 , 8.3.3-5, 8.4.4.2]. 

Lemma 4 .3.1. Let U be an open normal subgroup of G and N be a bounded below complex 

of objects of 1JR,G. Then we have a quasi- isomorphism 

C(G, uN) ~ C(U, N) 

of complexes of A-modules. 

Proof: We first prove the lemma in the case that N is an object of 'DR,G· Then we may 
write N = lli!} N0 , where No is a finite R[G]-module endowed with the discrete topology. 

0 

The usual Shapiro's lemma holds for such modules. Also, we note that uN ~lim u(N0 ).--. 
0 

Hence, we have 

C(G, uN) = c(G,lli!} u(Na.)) ~ lli!}C(G, u(Na.)) ~ lli!}C(U,Na.) = C(U,N) 
0 0 0 

which gives the required conclusion for the case that N is an object of 'DR,G· For the case 
that N is a bounded below complex of objects of 'DR,G, one can prove this by the spectral 
sequence argument as used in Lemma 2.4.8. 0 

Recall that if A is a complex in 'DR,G, then Fr(A) = lli!} uA is a complex in 'DA ,G by 
UE"l/ 

Lemma 4.1.7. We then have the following proposition. 

Proposition 4 .3.2 . Let A be a bounded below complex of objects of 1JR,G· Then the 

composite morphism 

C(G, Fr(A)) ~ lim C(G, uA) ~ lim C(U, A) ~ C(H, A) --. --. 
UE~ UE~ 

is a quasi-isomorphism of complexes of A-modules. In other words, we have an isomor

phism 

R f(G,Fr(A)) ~ R f(H,A) 

in D (ModA)· 0 
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We would also like to have a Shapiro-type relation for cohomology groups of objects 
in CR,G· But since inverse limits are not necessarily exact, we cannot always do a limit 
argument on t he Shapiro maps as in Lemma 4.3. 1. However , we can still say something 
if we restrict ourselves to objects in C~,(jL. 

Lemma 4.3 .3 . Let U be an open normal subgroup of G. Then for any bounded complex 

M in c~,cP' we have a quasi- isomorphism 

C(G , Mu) ~ C(U,M) 

of complexes of A-modules. 

Proof : By the same argument as that in Lemma 4.3.1 , it suffices to consider the case 
when M is an object of CR,G· Note that M ~ ~M/mnM as objects in CR,G and 

n 
Mu ~ ~(MjmnM)u. Then we have morphism~ 

n 

C(G, Mu) ~ ~C(G, (M/ mnM)u) 
n 

~ ~C(U,M/mnM) ~ C(U, M) 
n 

which induces a morphism 

n 

l 

~iH1 (U,M/mnM) => Hi+1(U,M) 

n 

of convergent spectral sequences. Since M / mn M is finite, the usual Shapiro's lemma 
implies that 

is an isomorphism. This in turn implies that 

n n 

By the convergence of the spectral sequences, we have isomorphisms 

as required. 0 

To obtain the analogous result to Proposit ion 4.3.2 for C~,7/ , we require more extra 
assumptions . 
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Proposition 4.3.4. Let M be an ind-admissible R[G]-module which is Noetherian over 

R . Then we have the following isomorphism 

C(G,§r(M)) ~ ~C(G, Mu) 
u 

of complexes of A -modules. Furthermore, if Hm(G , N) is finit e for all finite discrete 

A -modules N with a A-linear continuous G-action and all m ~ 0, we have 

HJ(G, §r(M)) ~ lim H J(U, M). 
UE
~ 

"l£ 

Proof: Since r is a compact p-adic Lie group, the (m, I)-topology and 9J1-adic topology 
on §r(M) coincide. This implies that we have a continuous isomorphism 

§r(M) ~ limMu, 
~ 

u 

and thus an identification of the continuous cochain groups. The second assertion now 
follows from Proposition 2.4.12 (note that A is oetherian and so each Mu is a Noetherian 
A-module) and Lemma 4.3.3. D 

4.4 The semilocal case 

We now describe Shapiro's lemma in the semilocal case and refer readers to [Ne, Sect. 
8.1.7] for the proofs and verifications. We will require the results in this section in the 
next chapter . 

Let a : G --t G be a continuous homomorphism of profinite groups, and let U be an 
open normal subgroup of G. Then U = a-1(U) is an open normal subgroup of G and a 
factors through G/U to give an injection G/U--> GjU, which we also denote by a. 

Fix coset representatives· CJi E G of 

and set ai = Ad(c;i) o a . Here Ad(c;i) is the conjugation map on the group G sending g 

to CJigc;;
1

. By abuse of notation , we denote the conjugation map on G / U by Ad( c;i) . 
For a G-module X , the G-module a* X is defined as follows: as an abelian group , 

a* X = X, and g E G acts on a* X as a(g) on X. The G-module aiX is defined similarly. 
Note that the action of CJi defines an isomorphism 

CJi: a*X~ aiX 
X f-t CJiX 
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of G-modules. Now suppose X is a discrete R[G] -module. Then we have the following 
decomposition of G-modules 

Denote the projection on the ith factor by n; . One then can check that following maps 

a* ((R[a(GjU)] a;- 1
) " ®R X) --+ ai (R[a;(GjU)]0R X) 

a(gU)a;-1 0 x ~ a;a(gU)ai 1 0 a;x 

a:(R[a;(GjU)] ®R X) --+ (aiX)u 
a; (gU) 0 x ~ gU 0 x 

are isomorphisms of G-modules. Composing the two isomorphisms with n;, we obtain a 
homomorphism 

w;: a*Xu ___, (a; x)u 

of G-modules. Putting all w; together , we obtain a G-isomorphism 

Then the following diagram of complexes (see [Ne, 8.1.7.2]) 

C(G, Xu) ----=w--=:_ ~ EBiC(G, (ai X)u)oa• 

lsh lsh 
C(U, X) <>i EB;C(U, aiX) 

is commutative up to homotopy and induces a quasi-isomorphism (functorial in X) 

Cone(a*) --+ Cone((a;)). 

Assume V ~ U is another open normal subgroup of G. Set V = (:y --1 (V). Fix coset 
representatives Tj E G of 

j j 

Then 

G = U VTja(G) = U Ua;a(G), 
j 
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and for each j, we have UTja(G) = Uaia(G) for a unique i = i(j). I. e., Tj = Uijaia(gij) 
for some Uij E U, gij E G. It is easy to check that the action of Ti defines an isomorphism 

T. . ,.,• X ~ {J~X
'l. 'l.,..(, J 

- - a Ad(rj) . .
of G-modules. Set {Jj : G --+ G --+ G and define a morph1sm of complexes (functonal 
in X) 

by 

ri j : C(U,a;X) (~. C(U,a*X) A5
1 

l C(U,a*X) ~ C(V,a*X) (rj~ C(V ,{JjX). 

Then we have the following cubic diagram 

wvoTrowiJ 1 

wvoa*
C(G, Xv) -----11----~ EBjC(G, ({JjX)v) 

~ res ~sh 
~~ ~ 


C(V, X) (f3i) EtljC(V , {JjX) 

whose faces commute up to homotopy, and the boundary of the cube is trivialized by a 
2-homotopy (see [Ne, 8.1.7.4.2, Lemma 8. 1.7.4.3]). By [Ne, Cor. 8.1.7.4.4], the following 
diagram 

) Cone(sh,sh,h) C (( ))Cone(wu o a* one a; 

Cone(Tr,wvoTrowiJ\0)1 !Cone(res ,r ,m) 

Cone(Wv o a*) Cone(sh,sh,h') Cone( ({Jj)) 

is commutative up to homotopy, where h = ((a; o sh) * haJi and m = (({Jj ores)* hu;i)J. 
Here ha denotes a fixed homotopy from the identity map to Ad(a) (see [Ne, 3.6 .1.1, 4.5.5]). 
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There is a similar construction for the corestriction (see [Ne, 8.1.7.5]) 

which yields t he following commutative (up to homotopy) square . . 

Cone( wv o a*) c_o_ne--'-(s_h,_sh_,h_')* Cone( ({3j)) 

Cone(pr ,wuoprow;;; 1 ,0) 1 1Cone(cor,c,m) 

Cone( wu o a*) Cone(sh,sh,h) Cone( ( ai)) 

Since the above constructions are functorial, and the cochains (as seen in Defini t ion 
2.6.9) are compatible with limits, we can extend them to ind-admissible R[G]-modules. By 
functoriality again , we can extend the above constructions to complexes of ind-admissible 
R [G]-modules. We will apply the constructions in this section in t he next chapter. 
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Chapter 5 

Duality for Galois Cohomology 

We have come to the final chapter of the thesis. In this chapter, we will formulate our 
duality theorems. We begin by formulating and proving Tate's local duality over adic 
rings in Section 5. 1. We also introduce the cohomology groups with compact support and 
prove the Poitou-Tate duality over adic rings. In Section 5.2, we will apply the results 
developed in Chapter 4 to the setting of p-adic Lie extensions. This will allow us to 
formulate the Grot hendieck duality of cohomology groups in Section 5.3 and Section 5.4. 
In Section 5.5, we shall apply the duality theorems to obtain a generalization of a spectral 
sequence that first appeared in [Ja]. Finally as a complement, we develop the duality 
theorems over p-adic Lie extensions of a local field in Section 5.6. 

5.1 Duality theorems over adie rings 

Let p be a fixed prime. From now on, our adic rings A will always have the property that 
AI 9Jr' is finite of order a power of p for all n 2 1. 

Let F be a global field with characteristic not equal to p, and let S be a finite set 
of primes ofF containing all primes above p and all archimedean primes ofF (ifF is a 
number field). Let Sf (resp. , SIR) denote the collection of non-archimedean primes ( resp., 
real primes) of F in S . 

Fix a separable closure F sep of F. Set GF,S = Gal(Fsl F) , where Fs is the maxi
mal subextension of psep IF unramified outside S. For each v E Sf, we fix a separable 
closure F~ep of Fv and an embedding F sep ~ F~ep. This induces a continuous group 
homomorphism Gv := Gal(F~epIFv) G F,S· If v is a real prime, we also write Gv for--t 

Gal(CIIR). 

96 




Lemma 5.1.1. For each v E Sf, we have 

Suppose that A is Noetherian . Then for a A[Gv]-module N with trivial Gv-action, we have 

HJ(Gv, N(l)) ~ { N if j = 2, 
0 if j > 2. 

In the case where T is a R-module with trivial Gv-action, we have an isomorphism 

H 2 (Gv, A0 R T(l)) ~A 0 R T of A-A-bimodules. 

If v E S IR , then we have 

,....., {Z/2Z ifp = 2,
H 2 (Gv, Qp/Zp(l)) = O 

if p # 2. 

Proof: For j > 2, the conclusion follows from the fact that Gv has p-cohomological dimen
sion 2 (see [NSW, Thm. 7.1.8(i)]). By [NSW, Thm. 7.1.8(ii)], we have H 2(Gv, Z/ pr(l)) ~ 
Z/pr. Therefore, the first assertion follows from taking direct limits. For a A[Gv]-module 
N with trivial Gv-action, we have N(l) =lim N0 (l) , where Na is a Noetherian A-module. 

---) 

Q 

It is easy to verify that the Gv-action on Na(l) is continuous , where Nn(l) is given the 
9J1-adic topology. Then we have 

N =lim lim N 0 / 9J1nN 0 . 
---) f-

Q n 

Recall that cohomology commutes with direct limits by definition. By [NSW, Thm. 
7.1.8(iii)] and Proposition 2.4.11, cohomology commutes with inverse limits. Therefore, 
it suffices to show the assertion for Na/~N0 , which is a finite discrete abelian p-group. 
Since cohomology commutes with direct sums, we are reduced to the case of Z / pr , which 
follows from the above discussion. 

It is easy to see that for any R-module T , the mo~ule A 0 R T is an ind-admissible 
A[Gv]-A-bimodule. The conclusion in this case follows by a similar argument as above. 

The last assertion follows from [NSW, Thm. 7.2.17] and the fact that Gv is a finite 
group of order 2. D 

Suppose v E Sf. Let N be a complex of ind-admissible A[Gv]-modules. For each 
n E Z , we define T~~C(Gv, N) to be the total complex of 

( i f-t T?_nC( Gv, Ni)). 
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We shall also use a similar notation for t he above total complex when N is a complex 
of ind-admissible A[Gv]-A-modules. Note that if N is concentrated in degree zero, then 
T~~C(Gv, N) = T?_nC(Gv, N) . By the above lemma, the canonical map of complexes of 

A-modules N[-2] i~ T~~C(Gv, N( l )) is a quasi-isomorphism. We also have a quasi

isomorphism Qp/ Zp[-2] ~ T?. 2C(Gv, Qp/ Zp(l)) of complexes of Zp-modules. Since 
Qp/ ZP is an injective Zp-module , t he map iv has a homotopy inverse. We shall fix one 
such map 

This gives a morphism 

of complexes of Zp-modules. 

Let M be a bounded complex of objects in CA,Gv which are finitely presented over A. 
Then we have an isomorphism M = ~ M / fJJt.n M of complexes in CA,Gv which induces an 

n 
isomorphism of complexes 

C(Gv, M) ~lim C(Gv, M/wtn M) 
t-

n 

of A-modules. Also, we have an isomorphism M v = lli!}(M/ fJJt.nM)v of complexes in 
n 

VAo,Gv. For each n, we have the following commutative diagram 

(M j wtnMt (l ) 0 A M _i®1rn --+- (M/wtnM)v(l ) ®A M jwtnM 

7r~®id l 
d__

l 
M v(l ) ®AM Qp / Zp(l) 

where the pairings are the obvious ones and 1rn : M ---"* M jwtn M is t he canonical quotient. 
Applying cochains and Bv, we obtain the following commutative diagram 

C(Gv, (M/wtnM) v(l)) ®A C(Gv, M) id®7rn C(Gv, (MjwtnM) v(l )) ®A C(Gv, MjwtnM) 

~~l 1 
C(Gv, M V(l )) ®A C(Gv , M) __.:....______-+Qp/Zp [-- 2] 
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By Lemma 2.7.2 , we obtain the fo llowing commutative diagram 


C(Gv, M) --- "'- - -*Homzp ( C(Gv, M v(1)) , f). pj z p) [-2] 


l 1 
C(Gv, Mj >JJLnM) an Homzp (C(Gv, (M/~M) v(1)) , f). p/Zp) [-2] 

of complexes of A-modules. By a similar argument , one can check that this is functorial 
in n and hence we have the following commutative diagram 

C(Gv, M) - - --="'::...__---+ Homzp (C (Gv, M v(1)) , f).p/ZP) [-2] 

·l l·lim a" 
~ C(Gv, M j >JJLnM) ,____ ~ Homzp (C ( Gv, (M/ >JJlnM )v(1)) , f). p/ Zp) [-2] 

n n 

of complexes of A-modules . We are now able to prove the following formulation of Tate's 
local duality. 

Theorem 5 .1.2. Let v E S1, and let M be a bounded complex of objects in Ct. ,Gv which 

are finitely generated over A. Then we have the following isomorphism 

Rf(Gv, M ) --t R Homzp ( R r(Gv, M v (1)) , f). p/Zp) [-2] 

in D (Mod p.. ). 

Proof: We shall show that a (in the above diagram) is a quasi-isomorphism. By consid
ering the exact t riangle 

a~i-IM --t a~iM --t M i[-i] --t (a~i-IM)t 1 ] 

and by a similar argument to that of Lemma 4.2.3 , we are reduced tot e case when M is 
a single module. By Proposit ion 2.4 .10 and Proposit ion 2.4.11 , we have that u and v in 
the above diagram are isomorphisms of complexes, and the vertical maps in the following 
commutative diagram 
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are isomorphisms. Since each an is a quasi-isomorphism by Tate local duality [NSW, 
Thm. 7.2.6], we have the required conclusion. 0 

If M is a complex in ( M od':J.t~:l), then we can also view M as a complex in ( M od':J.~~jd) 
via the continuous homomorphism Gv ----7 GF,S· Therefore, the cochain complexes 
C(GF,s , M) and C(Gv, M) can be defined. Recall that for v E Sf , we have the restriction 
map . 

resv: C(GF,s, M) ~ C(Gv, M) 

induced by the group homomorphism Gv ----? GF,S· For a real prime v, we have the 
following 

resv : C(GF,s, M) ----7 C(Gv, M) <--t C(Gv, M ). 

We now make the following definition. 

D efinition 5.1.3. Let M be a complex of ind-admissible A[GF,s]-modules. The complex 
of continuous cochains of M with compact support is defined as 

Cc(GF,s, M ) =Cone ( c(GF,s, M) ~	E9 C(Gv, M) EB E9 C(Gv, M)) [-1] , 
vESt vE SJR 

where the elements of 

C~(GF,S , M) = Ci(GF,s , M) E9 (EB ci-l(Gv, M) EB EB (ji-l(Gv, M) ) 
vESt vE$a 

have the form (a, as) with a E Ci(GF,s, M), as = (av)vEStusR, avE Ci- l(Gv, M) if v ESt, 
and av E (ji -l (Gv, M) if v E SIR, and the differential is given by 

d(a, as) = (da , -rest(a)- das ). 

The ith cohomology group of Cc(GF,s , M) is denoted by H~(GF,s, M) . 

Remark. If F is a function field in one variable over a finite field or F is a totally 
imaginary number field, then SIR is empty, and the cone is given by 

Cone ( c(GF,s, M.) ~	E9 C(Gv, M) ) [-1]. 
vESt 

Now suppose that p is odd and F is a number field with at least one real prime. Let 
v E SIR . Then fl i(Gv, M) = 0 for every ME (Mod~~~-ad ) and for all i since Gv is a fin ite 

F,S 1 
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group of order 2 and M is a direct limit of pro-p-groups. Therefore, it follows that the 
canonical map 

Cone ( c(GF,s , M) ~ E9 C(Gv, M)) [- 1] -+ Cc(GF,s , M) 
vESJ 

is a quasi-isomorphism. Therefore, we may take the above cone as a definition of the 
complex of continuous cochains with compact support in this case. 

Proposition 5.1.4. The functor 

Cc(GF,s, -): Ch+(Moct:rt~:J)-+ Ch(ModA) 

preserves homotopy, exact sequences and quasi-isomorphisms, hence indttces the following 

exact derived functors 

Rfc(GF,s, - ): D+(Mod~t~:J) -+ D (ModA) 

such that we have the following exact triangle for M E n+ (M ocfAn[~-adJ)
F ,S 

Rfc(GF,s, M)-+ Rf(GF,s , M)-+ E9 Rf(Gv, M) 
vESJ 

in D (A) and the following long exact sequence 

· · · -+ H~(GF,s , M)-+ Hi(GF,s , M) 

Proof: This is immediate from the definition of the cone. 0 

The next proposition is the analogous statement to Proposition 2.4.11 for cohomology 
groups with compact support. We note that by [NSW, Thm. 7.1.8(iii) , Thm. 8.3. 19], 
Proposition 2.4 .11 can be applied to GF,S and Gv, where v E St . For v E SIR , Gv is a 
finite group of order 2, and so the finiteness hypothesis in Proposition 2.4.11 is satisfied . 
Therefore, the conclusion also holds in this case. 

Proposition 5.1.5. The functor Cc(GF,s , -) preserves direct limits in ( Mod~n~~-ad ). 
. F ,S 1 

Moreover, if M is an object in CA,GF,s which is a finitely generated A-module, we have the 
following isomorphism 

Cc(GF,s, M) ~ ~Cc(GF,s, M j 9J1nM) 
n 
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of complexes and isomorphisms 

n 

of cohomology groups. 

Proof : The isomorphism of complexes is immediate from the definition of Cc(G F,s,-) as 
a cone. The second isomorphism now follows from the long exact sequence of cohomology 
groups in the preceding proposition and the above discussion. 0 

We also state the following two propositions which are variants of Proposition 2.4.12 
and Proposition 2.4.13. The proofs are similar to those used in the two propositions. 

P roposit ion 5 .1.6 . Let M be an object in CII ,GF.s ' and let {Mn} be an ·inverse system of 

objects in C11 ,G F,s which are also finitely geenrated A-modules. Suppose that lli!! Mn ~ M. 
n 

Then we have the following isomorphism 

H~(GF,s,M) ~ lli!!H~(GF,s,Mn) 
n 

for n ~ 0. 0 

Proposit ion 5. 1.7. Let M • be a bounded complex of objects in C11 ,cF,s' and let {M~} 

be an inverse system of bounded complexes of objects in C11 ,cF,s which are finitely gener

ated A-modules. Suppose that lli!! M~ ~ M • as complexes. Then we have the following 
n 

isomorphism 

H~(GF,s, M • ) ~ lli!! H~(GF,s, M~) 
n 

for n ~ 0. 0 

Lemma 5 .1.8. We have 

if j = 3, 

if j > 3. 

Suppose A is Noetherian . If M is a A-module endowed with a trivial Gp,8 -action, then 

if j = 3,. {M H~(GF,s , M(1)) ~ O 
if j > 3. 

In the case where T is a R-module with a trivial G F,s-action, we have an isomorphism 

H~(GF,s , A 0 R T(1)) ~A 0 R T of A-A-bimodules. 
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Proof: By the long exact sequence of Poitou-Tate [NSW, 8.6.13], we have the following 
exact sequence 

and an isomorphism 

H 3 (GF,S, Z jpnZ(l)) ~ EB H3 (Gv, Z jpnZ(l)). 
vESR 

By the definition of continuous cochains with compact support and the fact that cdp(Gv) = 

2 for v E Sf , we have H~(GF,s, Z jpnZ (l )) ~ Z jpn z. The remainder of the lemma will 
then follow from a similar argument to that in Lemma 5.1.1. 0 

Let M be a bounded complex of objects in CA ,GF,s which are finitely presented over 
A. We define two morphisms 

cU : Cc(GF,s, M v(l )) ® A C(GF,s, M) ----t Cc(GF,s, Qp/ Zp( l)) 
Uc : C(GF,s, M v(l)) ®A Cc(GF,s, M) ----t Cc(GF,s , Qp/ Zp( l)) 

of complexes of abelian groups which are given by the following respective formul as (see 
[Ne, 5.3.3.2, 5.3.3 .3]) 

(a, as)c U b = (aU b, as U ress1 (b)) 
a Uc (b, bs ) = (aU b, (-l )iiress1 (a) U bs) 

where U is the total cup product 

of Section 2. 7. 

By Lemma 5.1.8, we have a quasi-isomorphism Qp/ Zp[-3] ~ r?.3C,JGF,s, Qp/ Zp(l)) 
of complexes of Zp-modules. Since QpjZp is an injective Zp-module, the map i has a 
homotopy inverse. We shall fix one such map 

and this induces the fo llowing morphism 
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of complexes of Zp-modules . Combining this with the total cup products , we obtain the 
following morphisms 

Cc(GF,s, M v(1)) Q!) l\ C(GF,s, M) -t Qp/Zp[- 3] 
C(GF,s, M v(1)) Q!)l\ Cc(GF,s, M) -t Qp/ Zp[-3] 

of complexes of Zp-modules. We can now state the following theorem. 

Theorem 5 .1.9 . Let M be a bounded complex of objects in CI\ ,GF,s which are finit ely 

generated over II... Then we have the following isomorphisms 

R f (GF,s, M) -t R Homz" ( R r c(GF,s , M v(1)), Qp/ZP) [--3] 


Rfc(GF,s, M) -t R Homz" ( R r(GF,s, M v(1)) , Qp jz p) [--3] 


in D (Modf\). 

Proof: By a similar limiting argument (using Lemma 5.1.5 for the compact support 
cohomology) to that of Theorem 5.1.2, we can reduce to the case that M is finite. The 
conclusion then follows from the usual Poitou-Tate duality [NSW, 8.6.13]. 0 

R em ark. Theorem 5.1.2 and Theorem 5.1.9 are stated in [FK] for the case that M is a 
finitely generated projective A-module. 

5.2 lwasawa setting 

We retain the notations introduced in the previous section. Assume further that if p = 2 
and F is a number field , then F has no real primes. By remarks after Definition 5.1.3 , we 
may (and will) take 

Cone ( c(GF,s, -) ~ E9 C(Gv, -)) [-1] 
v ESJ 

to be our complex of continuous cochains with compact support which we denote by 
Cc( GF,s, -) by abuse of notation. 

Let F00 be a p-adic Lie extension ofF which is contained in Fs. In other words, F00 

is a Galois extension ofF whose Galois group r is a (compact) p-adic Lie group. Write 
H = Gal(Fs/ F00 ), and let 1"2/ denote the collection of open normals bgroups of GF,s 
containing H. For each U E 1"2/, we let Fu = (Fs)u and define Su to be the set of primes 
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in Fu above S. Note that this is a finite Galois extension of F. Let (Su) 1 denote the 
collection of non-archimedean primes of Fu in Su. As before, we write A= R[q , which 
is a Noetherian ring. 

We begin describing how Section 4.4 may be applied here. Let v E: Sf, and fix an 
embedding F sep '----7 F~ep, which induces a continuous group monomorphism 

where GF = Gal(PeP/F). Let X be an ind-admissible R[GF] -module. For a finite Galois 
extension F' ofF, write U =Gal( Pep/ F') and Xu= R[GF/U] ®R X . The embedding 
Fsep '----7 F~ep determines a prime v' ofF' above v such that F~, is a finite Galois extension 
of Fv and Gv' := Gal(F~ep/F~,) = a- 1 (U). 

Fix coset representatives CJi E GF of 

Then the set of distinct primes in F' above v is given by the (finite) collection { CJi ( v')}, and 
we may identify Ga;(v') with the subgroup ai(Gv') of Gal(PeP/F), where ai = Ad(CJi) oa. 
We then have the following isomorphisms 

of complexes, where the first isomorphism is induced by the pair 

-1 a . 
aiX~a*X, 

and the second is induced by the pair 

a*X~aiX. 

Recall that in Section 4.4, we have the following decomposition 

of Gv-modules. This induces the following isomorphism 
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Suppose that X is of finite type over R or cofinite type over R. Then each summand in 
the last complex is quasi-isomorphic to C(Gv,,a; X) by Lemma 4.3 .1 and Lemma 4.3.3. 
Combining this with the above, we obtain a quasi-isomorphism 

and isomorphisms 

of cohomology groups for n ~ 0. We shall apply the above discussion to ind-admissible 
R[GF,s]-modules, which we view as R[Gp]-modules via the canonical quotient map 

Gp-# GF,S· 

Lemma 5.2.1. LetT be an ind-admissible R[G F,s]-module of finite type over R , and let A 
be an ind-admissible R[GF,s] -module of cofinite type over R. Then we have the following 
isomorphisms 

Hl(GF,s ,§r(T)) ~ ~Hl(GF,s, Tu) ~ ~Hl(GFu,Su, T ), 
u u 

Hl(GF,s,Fr(A)) ~ lli!}Hl(GF,s, uA) ~ lli!}HJ(GFu,su, A) ~ Hl(Gal(Fs/Foo) , A), 
u u 

Hl (Gv, §r(T)) ~lim H1(Gv, Tu) ~lim ffi H1(Gw, T) , 
t--- t--- Q7 

U U wJv 

Hl(Gv, Fr(A)) ~lim Hl(Gv, uA) ~lim ffi Hl(Gw, A). 
--t --t Q7 
U U w~ 

Proof: All the isomorphisms follow immediately from Section 4.3, Section 4.4 and the 
above discussion. D 

We would like to derive an analogue of Shapiro's lemma for compactly supported 
cohomology. Let F' be a finite Galois extension ofF which is contained in F8 . Denote 
the set of primes ofF' above S by S'. Let X be an ind-admissible R[GF,s]-module. We 
write U = Gal(Fs/ F') and X u = R[GF,s/U] ®R X. By the discussion in Section 4.4 and 
above, we have the following diagram 

C(GF,s,Xu) --~ffivESJ C(Gv, X u) --~ffivESJ ffi v'lv C(Gv, R [Gv/Gv'] ®R X) 

!sh lsh 
C(GF' ,S',X) ffi v'ESj C(Gv',X) 
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which commutes up to homotopy. This in turn induces a quasi-isomorphism (functorial 
in X) 

she: Ce(GF,s,Xu) ----t Ce(GF',S', X ) 

which fits into the following commutative (up to homotopy) diagram with exact rows. 

0---~ ffivEs1 C(Gv,Xu)[-1]---~Ce(GF,s,Xu) ~ C(GF,s, X u) ~o 

I! II II 

0~ ffi vESJ ffi v'lv C(Gv , R[Gv/Gv, ]®R X)[-1] ~ Ce(GF,s,Xu) ~ C(GF,s , Xu) ~ 0 

sh[-1]! she l sh l 
0---~ ffiv'ES/ C(Gv,X)[-1]---~Cc(GF',S' , X) ~C(GF',S',X) ~o 

Suppose that F" s;; Fs is another finite Galois extension ofF containing F', and write 
S" for the set of primes of F" above S and V = Gal(Fs / F" ). Again from Section 4.4, we 
have the following morphisms 

rese : Cc( GF' ,S', X) ----t Ce( GF" ,S", X) 
core: Cc(GF11 ,S11 ,X ) ---7 Cc(GF',S' , X ), 

which are functorial in X and fit in the following diagrams , which are commutative up to 
homotopy: 

0- EBv'ES/C(Gv', X)[-1] ---. Ce(GF',S', X ) ---- C(GF' ,S', X ) - 0 

! res[- 1] lrese lres 

0 ~ EBv"ES'j C(Gv", X )[- 1] ~ Cc(GF",S", X)~ C(GF'' ,S", X)~ 0 

0 ~ EBv"ES'jC(Gv", X )[-1] ~ Cc(GF",S", X)~ C(GF" ,S", X)~ 0 

! eor[- 1] lcore lcor 

0- EBv'ES/C(Gv', X)[-1]---. Cc(GF' ,S', X)---- C(GF' ,S', X ) - 0 

Ce(GF,s,Xu) ~ Ce(GF' ,S' , X) Ce(GF,s, X v) ~ Ce (GF", S", X ) 

Th. ! rese! pr.! ! core 

Ce(GF,s, X v) ~ Ce(GF" ,S", X ) Ce(GF,s,Xu) ~ Ce(GF',s', X ) 

Since all the morphisms const ructed above are functorial, they can be extended to 
complexes of ind-admissible modules. Hence, we may conclude the following. 
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Proposition 5.2.2. (a) For a bounded below complex A of ind-admissible R[G F,s]-modules 
which are cofinite type over R, the canonical morphism of complexes 

Cc(GF,s, Fr(A)) ~ ~ Cc(GF,s, uA) 
U,Tr 

is an isomorphism. 
(b) LetT be an object ofCR,Gp,s· Then the canonical morphism of complexes 

Cc(GF,s,ffr(T)) ~ ~Cc(GF,s,Tu) 
u 

is an isomorphism and induces isomorphisms 

H~ (GF,s , ffr(T)) ~ ~ Ht (GF,s , Tu ) ~ ~ HnGFu,Su, T) 
U,pr U,corc 

of cohomology groups for j 2: 0. 0 

In the next proposition, we shall show that if T is an object of C~.c/:.s, the coho
mology groups HJ(GF,s,ffr(T)) , HJ(Gv,ffr(T)) and Hg(GF,s,ffr(T)) are oetherian A
modules . 

Proposition 5.2.3. IfT is an object ofCR,GF,s which is a Noetherian R-module, then the 
cohomology groups HJ(GF,s , ffr(T)), HJ(Gv,ffr(T)) and Hg(GF,s,ffr(T)) are Noethe
rian A-modules for j 2: 0. 

Proof: We first assume that r is pro-p. By Proposition 4.2.5 , the cohomology groups 
HJ(GF,s , ffr(T)) and HJ(Gv,ffr(T)) are oetherian A-modules. It then follows from 
Proposition 5.1.4 that Hg(GF,s ,ffr(T)) is a Noetherian A-module. 

ow suppose that r is a general compact p-adic Lie group. Let f' be an open normal 
(uniform) pro-p subgroup of r. Write L = (Fool' and denote the set of primes in Labove 
S by S'. Denote by "f/ the collection of open normal subgroups of GL,s containing H. 
Since this is a cofinal subset of %', we have isomorphisms 

HJ(GF,s , ffr(T)) ~ ~ H1(GFu,su, T) ~ ~ H1(GLv ,Sv , T) ~ H1(GL ,S', ffr'(T)) 
UE~ VE~ 

Hg(GF,s , ffr(T)) ~ ~ Ht(GFu,Su, T) ~ ~ Ht(GLv ,Sv, T) ~ Ht(GL,S' , fff'(T)) 
UE~ VE~ 

of R[f']-modules. Since f' is pro-p, we have that these cohomology groups are finitely gen
erated over R[f'], and hence over A. By Proposition 5.1.4, we have that HJ(Gv,ffr(T)) 
is a Noetherian A-module. 0 

Corollary 5.2.4. IfT is a bounded complex of objects ofC~.c/: 5 , then Rr'(GF,s, ffr(T)), 

R r(Gv , ffr(T)) and R fc(GF,s,ffr(T)) are objects in Db(Mod~-ft). 0 
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5.3 Duality over p-adic Lie extensions I 

We retain the notations from the previous two sections and state the fo llowing variant of 
Tate local duality and Poitou-Tate duality for p-adic Lie extensions . 

Theorem 5.3.1. Let T be a bounded complex of objects in Cn,cF,s which are finit ely 

generated over R . Then we have the following isomorphism 

R r(Gv, 5"r(T)) ~ R Homzp (Rr(Gv, Fr(Tvy(1)) , QP/ Zp) [-2] 


R f(GF,s, 5"r(T)) ~ RHomzp ( R f c( GF,s, Fr(Tv)"( 1)) , Qp/ Zpl [-3] 


Rfc(GF,s,5"r(T )) ~ R Homzp (R r(GF,s,Fr(Tvy(1)) , Qp/ ZP [-3] 


in D (Mod~~.). 

Proof: It follows from Lemma 4.1.6 that 5"r(T) is a bounded complex of Noetherian 
(and hence finitely presented) A-modules. Therefore , we may apply Theorem 5. 1.2 and 
Theorem 5.1.9 to 5"r(T). The conclusion will now follow from Proposit ion 4. 1. 11. D 

Let T be a bounded complex of ind-ad~ssible R [Gv]-modules which are finitely gen
erated over R. Choose a bounded complex D of injective R-modules which represents wn 

in D (Modn). Then Homn(T, D) is a bounded complex of ind-admissible R [Gv]-modules 
with cohomology groups which are finitely generated over R (see [Ne, 4.3.2]). By loc. cit. 
Prop. 3.3.9, there is a subcomplex T* of Homn(T, D) which is a complex of ind-admissible 
R [Gv]-modules that are finitely generated over R and is quasi-isomorphic to Homn(T , D) 
via the inclusion map. Therefore, we have the following morphism 

1r: T ® nT* ~ T ® n Homn(T,D) ~ D 

of complexes of R[Gv] -modules, where the first morphism is induced by the inclusion and 
the second is the usual evaluation map. Then we have the following morphism 

of complexes of A[Gv]-A-bimodules, where¢ is defined as in Corollary 4.1.14. By what 
we have done in Section 2. 7, we have a morphism 

of complexes of A-A-bimodules. Taking the adjoint, we have the following map of com
plexes of A-modules 

C(Gv, 5"r(T )) ~ Hom11.o( C(Gv, 5"r(T*)"(1)) , T~~C(Gv, A ® n D(1))). 
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By Lemma 5.1.1, we have a chain map 

which is a quasi- isomorphism. Combining everything, we obtain a morphism 

in D (M odt.)· In fact , we claim that this morphism is an isomorphism. 

Theorem 5.3.2. LetT be a bounded complex in c;,(/,t. Then there is an isomorphism 

in D (Modt.) and an isomorphism 

in D (Modt.o), where T* is defined as above. 

Remark. The second morphism in Theorem 5.3.2 is constructed in a similar manner 
as the first. The remainder of the section will be devoted to showing; that the above 
morphisms are isomorphisms. In fact, we shall only show that the first morphism is an 
isomorphism, the second being analogous. 

Let B be a A 0 R A0 -module, and let A be a A 0 R A0 -submodule of B. Suppose that 
these modules are endowed with topologies making them both compact A-modules and 
compact A0 -modules , and that the topology on A coincides with the subspace topology 
induced from B. Then for any bounded complex T of objects in c;,(p,we define 

§B/A(T) =[A---+ B]0t. §r(T), 

where A and B are in degree -1 and 0 respectively. 

Lemma 5 .3.3. Let (A, B) and (A', B') be two pairs of A 0 R A0 -submodules with A~ B 

and A' ~ B'. Suppose that these modules are endowed with topolog1:es making them 

both compact A-modules and compact A0 -modules, and that the topology on A (resp. , A') 

coincides with the subspace topology induced from B (resp., B ' ). Suppose f : B ---+ B' 
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is a continuous A ® R A0 -homomorphism with f(A) c;:;; A'. Then we have the following 
commutative diagram 

Rf(Gv,3?B;A(T) ) ---.RHomAa(Rr(Gv, 3?r(T*)"(l)),[A ~ B] ®~wR)[-2] 

1 ! 
Rf(Gv, §B' /A'(T)) ~ RHomAo (Rr(Gv, 3?r(T*)"(1)), [A'~ B'] ®~ WR) [-2] 

Proof: It is easy to see that the following diagram 

id®t/>
[A~ Bj ®A 3?r(T) ® R 3?r(T*)"(1) --~[A~ B] ® R 0(1) 

/ ®id I !/®id 

t id®t/>
[A'~ B'] ®A 3?r(T) ®R 3?r(T*)"(l) [A'~ B'J ®R 0(1) 

is commutative. Applying the total cup products of continuous cochain groups to this 
diagram and using the results of Section 2.7, we obtain the required conclusion. D 

Let I= Ir denote the augmentation ideal of A. Recall that if G is a profinite group, 
its maximal pro-p quotient is denoted by G(p). We then have the following lemma. 

Lemma 5.3.4. Let n be an arbitrary positive integer. Then we have the following state

ments. (1) The module r is a fiat R-module. 
(2) The module I n Ir+l is finitely generated over R. 
(3) The module A/ I n is finitely generated over R. 

Proof: (1) We first consider the case when R = ZP and r is finite. Then r is a Zp
submodule of Zp[r]. Since Zp[f] is free over Zp, so is I n. For a general R , In is the 
tensor product of R with t he nth power of the augmentation ideal in Zp[f] and so is free 
over R. ow if r = ~ r / U is profinite, we then have that In is the inverse limit of the 
nth powers of the augmentation ideals of R[f/ U]. The conclusion follows from a similar 
argument to that used in Lemma 4.1.1. 

(2) Let J denote the augmentation ideal in Zp[f]. In this case, we have that r j Jn+l 
is a quotient of rab(p )0 n which is finitely generated over Zp. Finally, one observes that 

and hence the conclusion follows. 
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0 

(3) The case n = 1 is immediate. The general case follows from (2) and induction 
using the following exact sequence 

We are now able to state the following proposition which will be an important ingre
dient in our proof of Theorem 5.3.2. 

Proposition 5.3.5. Let T be a bounded complex of objects in C~,dvt. Then we have the 

following morphism of exact triangles. 

Rf(Gv,§JnjJn+I(T)) ~RHomAo (Rr(Gv, $r(T*)•(1)), r;r+l ~~ WR) [-2] 

1 1 
Rf(Gv, §A/In+I(T))- RHomAo (Rr(Gv,$r(T*)<(1)), A/ In+l C9~ wR) [-2] 

l l 
Rr(Gv, §AjJn(T)) RHomAo (Rr(Gv, $r(T*)•(1)), A/In (9~ WR) [-2] 

Proof: By Proposition 1.3.6, Lemma 4.1.1 and Lemma 5.3.4(1), we see that r;In+le9~wR 
and A/r ($)~ WR are represented by [r+l ~In] C9R nand [r ~A] C9R n respectively. 
Therefore, the commutativity of the diagram in the proposition follows from Lemma 5.3.3. 
Clearly, the column on the right is an exact triangle. It will follow from the next lemma 
that the column on the left is also an exact triangle. 0 

Lemma 5.3.6. Let T be a bounded complex of objects in C~,dvt. Then we have a quasi-

isomorphism 

of objects in CR,G· 

Proof: It suffices to show that there is a quasi-isomorphism 

Note that Cone([r+1 ~ r] ~ [In+l ~A]) is precisely the following complex 
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where f(x) = (x, -x) and g(x , y) = x + y for x E I n+l andy E I n. One can now easily 

check that the following diagram 

commutes, where v is given by v(x, y) = x + y for x E r+ 1 and y E I n, and the vert ical 
maps induce isomorphisms on cohomology. 0 

We now describe the idea of the proof of Theorem 5.3.2. We shall first prove that the 
following morphism 

is an isomorphism for all n. Then, Theorem 5.3.2 will follow from this by a limit argument. 
To show t hat the above morphism is an isomorphism, we will utilize Proposition 5.3.5 . 

Note that if any two of the morphisms in Proposition 5.3.5 are quasi-isomorphisms, so is 
the third one. Therefore, by an inductive argument, we are reduced to showing that the 
following morphism 

is an isomorphism for all n 2:: 0. ote that r acts trivially on In I I n+l . Therefore, one 

may view I n I Jrl+l as a i\0 -module via t he augmentation map i\----+> R. We now have the 
following lemma. 

Lemma 5.3. 7. Let T be a bounded complex of objects in C~,cfvt . Then we have the 

follo wing isomorphisms 

ffJnjJn+ I(T) ~ fTI I Jrl+ 1 ®~ ffr(T) ~ fTI I Jrl+1 ®~ T 

in Db(CR,cJ. Therefore, it follows that we have an isomorphism 

Proof : Let P be a resolution of I n Ir +1 consisting of finitely generated projective N
modules. Since [Jrl+ 1 -------> I n] is also a resolution of fTl I I n+l of i\0 -modules, there is a 
quasi- isomorphism 
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of complexes of compact A0 -modules which lifts the identity map on r j I n+l. This induces 
the following quasi-isomorphism 

and a morphism 

The fact that a** is a quasi-isomorphism now follows from a spectral sequence argument 
similar to that used in Lemma 4.2.3, thus proving t he first isomorphism. The second 
isomorphism is immediate from the second assert ion of Lemma 4.2.3. D 

Lemma 5 .3 .8 . For each n, there is a commutative diagram 

In/ I n+l 0~ R r(Gv,T ) ---?-In/ In+l 0~ R HomR(R r(Gv, T* (1)) ,wR) [- 2] 

II !I 
R r(Gv, r ;I n+l 0~ T ) R HomR(Rr(Gv, T*(1)) , I nI I n+l 0~ WR )[-2] 

!I 
R HomR(R r(Gv, ffr(T*Y(1)) 0XR, In/In+ 1 0~ wR) [ - 2] 

il 
R f(Gv, § Jn!Jn+I (T )) -~RHomAo (R r(Gv, ffr(T*)"(1)) , In/In+l 0~ WR )[-2] 

where the vertical morphisms are isomorphisms. 

Proof : Let Q be a resolution of I njr +l consisting of fini tely generated projective R

modules . Note that such a resolut ion Q exists because of Lemma 5.3.4(2). T hen we have 
an isomorphism 

a : Q 0 R C(Gv, T )--+ C(Gv,Q 0 R T ) 

X 0 () f--+ ( (91 , ···,9j) f--+ X 0 () (91, ···,9j) ) 

of complexes by [ e, Prop. 3.4.4]. This fi ts into the following commutative diagram 

Q 0 R C(Gv,T ) 0 R C(Gv, T*(1)) ---+- Q 0 R C(Gv, 0 (1)) 

a®~! !d 
C(Gv ,Q 0 R T ) 0 R C(Gv, T*(1)) ---+- C(Gv, Q 0 R 0 (1)) 
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where o/ is defined as above and is an isomorphism by [Ne, Prop. 3.4.4]. On the other 
hand, we also have the following commutative diagram. 

Q ® R C(Gv, 0(1)) ~ Q®R T~~C(Gv, 0(1) ) +------ Q ®R 0 [-2] 

la' 1 II 
C(Gv, Q ®R 0(1)) ~T~~C(Gv , Q ®R 0(1)) +------ Q ®R ft[-2] 

Combining this with the above diagram and taking adjoints, we see that the top square in 
the lemma is commutative with the vertical morphism on the left being an isomorphism. 
The vertical morphism on the right is an isomorphism by Lemma 1.3.13. 

Let P be a resolution of 111 
/ Jn+l consisting of finitely generated proj ctive i\0 -modules. 

Then as in Lemma 4.2.3, we view Q as a resolution of i\0 -modules via the augmentation 

map i\ --++ R, and there is a morphism 

of complexes of objects in CR,Gv which is a quasi-isomorphism. Let L be a resolut ion of 
R consisting of finitely generated projective A-modules . Then by Lemma 4.2.3 and a i\0 

version of Proposition 4.2.4 , we have a morphism 

of complexes of R-modules which is a quasi-isomorphism. Then we have the following 
commutative diagram 

C(Gv, P ® A ffr(T)) ® R C(Gv, ffr(T*) "(1)) 0 A L ~ C(Gv, P ® A i\ 0 R 0(1)) 0 A L 

j.®gl 1E 

C(Gv, Q 0 R T ) 0 R C(Gv, T*(1)) C(Gv, Q 0 R 0(1)) 

where c: is induced by the augmentation L ---t R. Taking adjoints , we obtain the following 
commutative diagram. 

C(Gv, Q 0 R T) HomR(C(Gv, T*(1)) ,C(Gv, Q 0 R 0(1))) 

1 1 
C(Gv, P ® A ffr(T)) HomR ( C ( Gv, ffr(T* )"(1)) 0 A L , C ( Gv, Q 0 R 0(1))) 

II 1 
C(Gv, P 0 A ffr(T)) ~ HomAo ( C(Gv, ffr(T*)"( 1)) , HomR(L , C(Gv, Q 0 R 0(1)))) 

115 




Combining the above diagram with the morphism 

we obtain the bottom commutative square in the derived category. The vertical mor
phisms in this part of the diagram are isomorphisms by Proposition 4.2.4, Lemma 5.3.7 

and Proposition 1.3.7. 0 

Lemma 5.3.9 . For n 2 0, the morphism 

is an isomorphism. 

Proof : The morphism 

R f(Gv, T) ----+ R HomR(Rf(Gv, T*(l )) , wR)[-2] 

is an isomorphism by [Ne, Prop. 5.2.4(ii)], and so the top morphism of the diagram in 
Lemma 5.3.8 is an isomorphism. Since all the vertical morphisms in the diagram are 
isomorphisms, it follows that the bottom morphism is also an isomorphism, as required. 
0 

Proposition 5.3. 10. We have an isomorphism 

Rr(Gv, §A/Jn(T))-----+ R HomAo ( Rr(Gv, §r(T*)"(l))) A/ rn ®~ WR) [- 2] 

for all n 2 1. 

Proof : As seen in the above discussion , the preceding lemma allows us to perform an 
inductive argument using the morphism of exact triangles in Proposition 5.3.5 to obtain 
the required conclusion. 0 

We now finish up the proof of Theorem 5.3.2. 

Proof of Theorem 5.3.2 : Let Q be a bounded above complex of finitely generated projec
tive N -modules which represents R f(Gv,§r(T *)"( l)) . Such a complex exists by Corol

lary 4.2.6. Since Dhas cohomology groups which are finitely generated over R, we may 
find (and fix) a subcomplex n of D such that n is a complex of finitely generated R
modules and the inclusion i : n '-----+ D is a quasi-isomorphism. Write Cn = [rn ----+ A]. 
Then HomAo(Q, Cn ®R D) represents 

R HomAo ( Rr(Gv, §r(T*)"(l))) A/ rn ®~ WR) ) 
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and HomAo(Q, A 0 R D) represents 


R HomAo ( R r(Gv, ffr(T*)'(1)), A 0~ WR), 


since Cn is a complex of flat R-modules by Lemma 5.3.4(1). Now for each n , we have the 

following commutative diagram 

R f(Gv, ffr(T)) R HomAo ( R f(Gv, ffr(T*)'(1)), A 0~ LvR)[- 2] 

l l 
R f(Gv, §A;rn(T )) ~ R HomAo ( R f(Gv, ffr(T*)'(1)) ,A/ In 0 Ji WR )[-2] 

which induces the following commutative diagram 

H ) (Gv , ffr(T))-----+ H ) (HomAo(Q , A 0 R D)) 

l l 

H) (Gv, § A/Jn(T )) ~H) (HomAo(Q , Cn 0 R D)) 

of cohomology groups. Since this diagram is compatible with n, we obtain the following 

commutative diagram. 

HJ(Gv, ffr(T )) ---H J(HomAo(Q , A 0 R D)) 

l l 

~HJ(Gv,ffA;rn (T)) ~~HJ(HomAo (Q , Cn 0 R D)) 

n n 

It remains to show that the top map is an isomorphism. By Proposit ion 5.3.10, the 

bottom map is an isomorphism. Since Q is a bounded above complex of finitely generated 

A-modules, we have an isomorphism 

n n 

of complexes of finitely generated A-modules. Since inverse limits are exact for finitely 

generated A-modules (for they are finitely generated compact A-modules and the inverse 

limit is exact for compact A-modules) , we have isomorphisms 

n 
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of cohomology groups, t hus showing t hat t he vertical map on the right is an isomorphism. 
On the other hand , we also have an isomorphism 

~(Cn 0 /\ ffr(T)) ~ ffr(T) 
n 

of complexes of objects in c~.clt and hence an isomorphism 

~C(Gv,Cn 0Affr(T)) ~ C(Gv,ffr(T)). 
n 

By Proposition 2.4.13, we have ~Hi(Gv, Cn 0 1\ ffr(T)) ~ Hi (Gv,ffr(T )). Therefore, 
n 

the vertical map on the left is also an isomorphism. Hence the top map is an isomorphism, 
as required. 0 

5.4 Duality over p-adic Lie extensions II 

We now describe the global analog of Theorem 5.3.2. Let T be a bounded complex of 

objects in C~.cJ:,s . In other words, T is a bounded complex of ind-admissible R[GF,st 
modules which are finitely generated over R. As before, we fix a bounded complex S1 

of inj ective R-modules representing wn in D(Modn). Then Homn (T, ?~) is a bounded 

complex of ind-admissible R[GF,s] -modules with cohomology groups which are finitely 

generated over R (see [Ne , 4.3 .2]). By loc. cit. Prop. 3.3.9, there is a subcomplex T* of 

Homn(T,D) which is a complex of ind-admissible R[GF,s]-modules that are finitely gen

erated over R, and is quasi-isomorphic to Homn (T, D) via t he inclusion map. Therefore, 
we have the following morphism 

of complexes of R [G F,s]-modules, where the first morphism is induced by the inclusion 

and the second is the usual evaluation map. Then we have the following morphism 

7f: ffr(T) 0 n ffr(T *Y( 1) __:!__.A 0 n T 0 n T* ~A 0 n D(1 ) 

of complexes of A[GF,s]-A-bimodules, where ¢ is defined as in Corollary 4. 1.14. 

We define two morphisms of complexes of A-A-bimodules 
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which are given by the following respective formulas 

(a , as)c U b =(aU b, as Us ress1 (b)) 
a Uc (b, bs) =(aU b, (-l)"ress1 (a) Us bs), 

where U is the total cup product 

and Us is t he sum of the local cup products. 
By Lemma 5.1.8, we have a chain map 

where t he first morphism is induced by the inclusion i : D <--t n. Since A is flat , the 
first morphism is a quasi-isomorphism and hence v is a quasi-isomorphism. Combining 
everything, we obtain the following morphisms 

Rf(Gp,s, ffr(T)) ---. R HomAo ( R f c( GF,s, ffr(T *)"( l )), A ®~ wn)[-3] 

R fc(GF,s , ffr(T)) ---> R HomAo (Rf(Gp,s, ffr(T *)"( l )) , A ®~ lvn)[-3] 

in D (ModA) . In fact , these two morphisms are isomorphisms. 

T heorem 5.4.1. Let T be a bounded complex of objects in Cn,cF.s which are finitely 
generated R -modules. Then we have the following isomorphisms 

R f(GF,s, ffr(T)) ---> R HomAo ( R f c( Gp,s, ffr(T*)"( l )) , A ®~ uJn) [-3] 

R f c( G F,s, ffr (T)) ---> R HomAo ( R f ( G F,s, ffr(T*) "(l )) , A ®~ uJn) [-3] 

in D (ModA)· 

Proof : The proof follows a similar argument as that used in Theorem 5.3.2. The limit 
argument for Cc(GF,s,-) follows from Proposition 5.1.7. 0 

5.5 Some spectral sequences 

Let T be a bounded complex of ind-admissible R[GF,s] -modules and finitely generated 
R-modules. Let T* be a bounded complex of ind-admissible R[GF,s]-modules which are 
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finitely generated R-modules that represents R HomR(T,wR)· Write A== (T*t. Combin
ing Theorem 5.4.1 and Theorem 5.3.1, we have an isomorphism 

which gives rise to a cohomological spectral sequence of A-modules 

lExt~o ( Hj (GF,S, Fr(A)) v, A ® R S1) =? H i+j (GF,S, ffr(T)) , 

where S1 is some complex of R-modules representing WR in D (ModR) · 

R em ark. As mentioned in the introduction , when R is regular (or Gorenstein), the 
dualizing complex WR can be represented by R. Therefore, the above spectral sequence 
can be rewritten as 

Ext~o ( H J (G F,s, Fr(A)) v, A) =? H i+j (GF,s , ffr(T)). 

This spectral sequence was first constructed in an unpublished note of Jannsen [Ja] . 

By a similar argument using the appropriate dualites, we can obtain analogous quasi
isomorphisms and spectral sequences for the local and compact support cases. In fact , all 
of these combine to give the following isomorphism of exact triangles. 

Theorem 5 .5 .1. Let T and A be defined as above. Then we have an isomorphism of 

exact triangles. 

t t 
R f c(GF,s , ffr(T)) ---+ R HomAo(R Homzp(R f c(GF,s, Fr(A)), Qp/Zp) , A ®~ wR) 

l l 
R f(GF,s, ffr(T)) R HomAo(R Homzp(R r(GF,s, Fr(A)) , Qp j Zp) ,A ®~ wR) 

D 

5. 6 Iwasawa theory over local fields 

We shall say something about the situation over local fields. Let F be a local field of 
characteristic not equal top with finite residue field. Let Foo/F be a p-aclic Lie extension 
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with Galois group r. Write Ge = Gal(FsepIE) for every Galois extension E/F. Recall 
that by [NSW, Thm. 7.1.8(i)], we have cdp(Gp) = 2. 

LetT be a bounded complex of ind-admissible R[Gp]-modules which are finitely gen
erated R-modules, and let A be a bounded complex of ind-admissible R[Gp]-modules 
which are cofinitely generated R-modules. By Proposition 4.3.2 and Proposition 4.3.4, we 
have 

C(Gp,Fr(A)) ~ ~C(Gp0 ,A) 
Hi(Gp,Fr(A)) ~ ~Hi(Gp",A) ~ Hi(Gp

00 
,A) 

C(Gp,§r(T)) ~ ~C(Gp",T) 
Hi(Gp, §r(T)) ~ ~Hi(GF"' T), 

where Fa. runs through all finite Galois extension of FoolF. By a similar argument to 
that in Theorem 5.3.1 and Theorem 5.3.2, we have the following. 

Theorem 5.6.1. LetT be a bounded complex of ind-admissible R[Gp]-modules which are 

finitely generated R-modules, and let T* be a bounded complex, that represents 

RHomR(T, wR), of ind-admissible R[Gp]-modules which are finitely generated R-modules. 

Then we have the following isomorphisms 

Rf(Gp, $r(T)) ~ RHomzp (Rr(Gp, Fr(Tv)"(1)), Qp/ZP) [-2] 


Rf(Gp, $r(T)) ~ RHomAo(Rr(Gp, $r(T*)"(1)), A 0~ wR) [-2] 


in D(ModA)· D 
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