
A COMPUTATIONAL APPROACH TO CUSTOM DATA

REPRESENTATION FOR HARDWARE ACCELERATORS

A COMPUTATIONAL APPROACH TO CUSTOM DATA

REPRESENTATION FOR HARDWARE ACCELERATORS

BY

ADAM B. KINSMAN, B.Eng., M.A.Sc.

APRIL2010

A THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE

DOCTOR OF PHILOSOPHY

McMaster University

© Copyright 2010 by Adam B. Kinsman

All Rights Reserved

DOCTOR OF PHILOSOPHY (2010) MCMASTER UNIVERSITY

(Electrical and Computer Engineering) Hamilton, Ontario, Canada

TITLE: A Computational Approach to Custom Data Representation

for Hardware Accelerators

AUTHOR: Adam B. Kinsman, B.Eng. Engineering Physics,

M.A.Sc. Electrical and Computer Engineering,

McMaster University, Canada

SUPERVISOR: Dr. Nicola Nicolici

NUMBER OF PAGES: xiv, 150

11

Abstract

This thesis details the application of computational methods to the problem of determin

ing custom data representations when building hardware accelerators for numerical com

putations. A majority of scientific applications which require hardware acceleration are

implemented in IEEE-754 double precision. However, in many cases the error tolerance

requirements of the application are much less than the accuracy which IEEE-754 double

precision provides. By leveraging custom data representations, a more resource efficient

hardware implementation arises thereby enabling greater parallelism and thus higher per

formance of the accelerator.

The existing custom representation methods are unable to guarantee robust represen

tations while at the same time adequately supporting ill-conditioned operators. Support

for both of these scenarios is necessary for accelerating scientific calculations. To address

this, we propose the use of a computational method based on Satisfiability-Modulo The

ory (SMT). By capturing a calculation as a set of constraints, an SMT instance can be

formulated which provides meaningful bounds even in the presence of ill-conditioned op

erators. At the same time, the analytical nature of SMT satisfies the need for robustness.

Utilizing block vector arithmetic, our SMT approach is extended to provide scalability to

large instances involving vector calculus which arise in scientific calculations. Atop this

foundation, a unified error model is proposed which deals simultaneously with absolute

and relative error, thereby providing the means of supporting both fixed-point and custom

floating-point data types. Iterative algorithm analysis is leveraged to derive constraints for

the SMT method. The application of the method to several scientific algorithms is dis

cussed by way of case studies.

iii

Acknowledgements

As in any significant endeavour, to try to list all the people who in some way have impacted

my life during the course of this undertaking would require far too many pages and surely

still leave people out. At the same time, doubtless there are those whose effect in my life

was un-mistakable, and they deserve special mention here.

I would like to express my thanks to the the administrative and technical staff of the ECE

department at McMaster, who work hard to keep things running smoothly at a practical

level, maintaining an environment which enables research to be done. I am appreciative

also to the many faculty who influenced me during my time at McMaster in both personal

and academic ways - in particular, Dr. Alex Jeremic and Dr. Shahin Sirouspour have given

generously of themselves in serving on my supervisory committee, and have helped in

identifying and defining the motivation for this work.

For sharing in both the joys and sorrows of this adventure, I am thankful to friends,

both personal and professional. Special mention is surely deserved by former and current

students in the Computer Aided Design and Test Research group of McMaster - Bai Hong

Fang, Qiang Xu, David Lemstra, David Leung, Ehab Anis, Kaveh Elizeh, Mark Jobes,

Roomi Sahi, Zahra Lak and Jason Thong- who have shared in countless hours of stimu

lating discussion, proofreading papers and coffee-break philosophizing. Among this group

are also Henry Ko and Phil Kinsman, with whom the history goes back so far that I can

say we've grown up together. I am also deeply indebted to my supervisor Dr. Nicola

Nicolici for his unswerving commitment, inspiring vision and patient mentorship which

have shaped me in a profound and lasting way. I cannot imagine this thesis being possible

without his tireless efforts.

IV

To my brothers Josh, Matt and Phil and my sisters-in-law Jenn, Beth, Alex and Amanda,

I am thankful for constant emotional support and for many time-outs to relax and reconnect

with the world. My father and mother in-law Bruce and Jane, and my dad and mom Bruce

and Jan have also provided much support, and I am deeply grateful for their wisdom in

helping me make tough decisions. To my wife Pamela for her patience, dedication, love

and support I owe more than all the rest put together - I could not have done this without

her. She has sustained me, and only through the joy that she and our children bring to my

life, has my sanity been maintained.

Above all I praise God for placing in my life so many supportive people, for providing

for me and for upholding me. Through Him, I have come to understand myself much better,

for I am weak but He is strong.

v

cc

List of Abbreviations

AA

ASIC

CAD

CG

CPU

DFP

DSP

EDA

ESD

FF

FFT

FLOPS

FPGA

GIA

GPGPU

GPU

HDL

lA

ILP

IP

LTI

LUT

Affine Arithmetic,

Application Specific Integrated Circuit,

Computer-Aided Design,

Clock Cycle,

Conjugate Gradient,

Central Processing Unit,

Davidon-Fletcher-Powell,

Digital Signal Processing,

Electronic Design Automation,

Energy Spectral Density,

Flip-flop,

Fast Fourier Transform,

Floating-point Operations Per Second,

Field Programmable Gate Array,

Generalized Interval Arithmetic,

General-Purpose computation on GPUs,

Graphics Processing Unit,

Hardware Description Language,

Interval Arithmetic,

Integer-Linear Programming,

Intellectual Property,

Linear Time-Invariant,

Look-Up Table,

Vl

NOC

NRE

OS

PC

RTL
SAT

SMT

SVD

VHDL

VLSI

Network-On-Chip,

Non-Recurrent Engineering,

Operating System,

Personal Computer,

Register Transfer Level,

Boolean satisfiability problem,

Satisfiability-Modulo Theory,

Singular-Value Decomposition,

Very-high-speed-integrated-circuit HDL,

Very Large Scale Integration,

Vll

Contents

Abstract iii

Acknowledgements iv

List of Abbreviations vii

1 Introduction 1

1.1 Computation to solve problems . 1

1.1.1 Computational effort and cost 2

1.2 The case for acceleration 3

1.3 The need for custom representations 6

1.3.1 Symbolic vs. numerical computing 6

1.3.2 Representation of real numbers .. 7

1.3.3 Standardization of floating-point support 10

1.3.4 Custom precision floating-point 11

1.4 Cost reduction and performance gain . 13

1.5 Problem statement 16

1.5 .1 Robustness requirement 16

1.5.2 Ill-conditioned operator requirement . 16

1.5.3 Iterative method requirement ... 17

1.5.4 Hardware efficiency requirement . 17

1.5.5 CAD methodology requirement 18

1.6 Thesis organization 18

viii

2 Background and prior work 20

2.1 Acceleration through parallelism 20

2.1.1 Parallelism via cluster computing 21

2.1.2 Parallelism via multicore . 23

2.1.3 Parallelism via ASICs 26

2.1.4 Parallelism via FPGAs 28

2.2 CAD support for FPGAs .. 29

2.2.1 Problem aspects .. 30

2.2.2 Existing approaches 32

2.3 Summary 42

3 Satisfiability-Modulo Theories for the range problem 43

3.1 Motivation 43

3.2 Fundamentals of SAT-Modulo Theories 44

3.2.1 Boolean SAT refresher . . 44

3.2.2 Extending to other logics . 46

3.2.3 Solver operation ... 46

3.3 Range refinement using SMT . 53

3.3.1 Dealing with division . 55

3.3.2 Consideration of run-time 56

3.4 Case studies and results 57

3.4.1 Energy spectral density . 58

3.4.2 Doppler effect ... 59

3.4.3 Analytic center . . . 61

3.4.4 Euclidian projection 62

3.4.5 A rational function 64

3.4.6 Newton's method . 66

3.4.7 Key points of case studies 67

3.4.8 Run-time/accuracy tradeoff. 68

3.5 Summary 68

IX

4 Scalability through block-vector formulations 70

4.1 Bit-width allocation in vector calculus 70

4.1.1 Uniform vector bit-width ... 71

4.1.2 Representation of complex numbers 71

4.1.3 Vector magnitudes 73

4.1.4 Directionality via block vectors 75

4.1.5 Partition selection . 79

4.2 Case studies 82

4.2.1 Analytic center 82

4.2.2 Euclidian projection 84

4.2.3 Davidon-Fletcher-Powell formula 85

4.2.4 Conjugate Gradient method 88

4.2.5 FFT based correlation 90

4.3 Summary 90

5 Custom floating-point for scientific calculations 93

5.1 Method 93

5.1.1 Fixed/floating-point error model 94

5.1.2 Forming precision constraints 96

5.1.3 Iterative calculation partitioning . 101

5.1.4 Analysis for iterative calculations . 103

5.1.5 Direct calculation precision . 106

5.2 Case studies 107

5.2.1 Two operand addition . . 109

5.2.2 Newton-Raphson division 110

5.2.3 Newton's method root finding 113

5.3 Conjugate Gradient case study 115

5.3.1 Summary of the application . 115

5.3.2 Formal analysis and robust representations 117

5.3.3 Perspective on formal and empirical findings 124

5.4 Summary 126

X

6 Concluding remarks 127

6.1 Future work 128

6.1.1 SMT solver efficiency . . 128

6.1.2 Links to the application . . 129

6.1.3 Links to the implementation . 131

6.2 Final remarks . 131

Bibliography 133

xi

List of Tables

1.1 Comparing area/performance for floating vs. fixed-point [77]. 14

3.1 Motivational example. 44

3.2 Affine vs. SAT-Modulo for energy spectral density. 58

3.3 Affine vs. SAT-Modulo for Doppler. 60

3.4 Affine vs. SAT-Modulo for analytic center. 62

3.5 Affine vs. SAT-Modulo for Euclidian projection. 63

3.6 Affine vs. SAT-Modulo for a rational function .. 65

3.7 Affine vs. SAT-Modulo for Newton's method. 66

4.1 Magnitude bounding operations. 74

4.2 Affine vs. SAT-Modulo for vector and scalar analytic center. 83

4.3 Affine vs. SAT-Modulo for vector and scalar Euclidian projection. 85

4.4 Affine vs. SAT-Modulo for vector and scalar Davidon-Fletcher-Powell. . 87

4.5 Affine vs. SAT-Modulo for vector and scalar Conjugate Gradient. . . 89

4.6 Affine vs. SAT-Modulo for vector and scalar FFT-based correlation. 91

5.1 Precision expression counterparts for common operators. 98

5.2 Converting ranges to bit-widths for fixed and custom floating types. 107

5.3 Required bit-widths for Algorithm 5.1 as determined by [82] . 117

5.4 Bitwidths required for fixed-point intermediate variables. . . . 122

5.5 Bitwidths required for floating-point intermediate variables. . . 123

Xll

List of Figures

1.1 	 Computational thresholds for applications. 4

1.2 	 Computational capacity/requirements and development time for state of the

art platforms/applications. 6

1.3 	 Fixed and floating-point arithmetic operations. 12

1.4 	 Contrasting standardized double vs. custom precision floating-point . . 15

2.1 	 Parallelism via supercomputers and grid/cluster based computers. 22

2.2 	 Parallelism via multicore devices. 24

2.3 	 Parallelism via customized ASICs. 25

2.4 	 Reduced design effort through better tool support. 29

2.5 	 Summary of aspects which existing works address. 31

2.6 	 Overview of approaches to bit-width allocation. 32

2.7 	 Example of interval arithmetic (lA) operation. 35

2.8 	 Example of affine arithmetic (AA) operation. 37

3.1 	 Inferring intervals of variables for the addition operator .. 47

3.2 	 Inferring intervals in a full dataflow. 48

3.3 	 SMT solver example. 51

3.4 	 SAT/SMT range refinement of var. . 54

3.5 	 Data dependencies for Doppler effect case study. 59

3.6 	 Data dependencies for rational function case study. 64

3.7 	 Effect of timeout on range/bit-width 69

4.1 	 Example bounding constraints put on complex numbers. 72

X111

4.2 	 Goal of block vector representations. 75

4.3 	 Vector matrix multiplication example: scalar vs. vector magnitude. 77

4.4 	 Effect of partitioning on range overestimation. 79

5.1 	 Unified fixed/floating-point error model characterizing data type by knee

and slope 95

5.2 	 Error region for a custom floating-point number. . 99

5.3 	 Partial error regions and their associated constraints. . 100

5.4 	 A generalized view of the flow of data within an iterative calculation. . 102

5.5 	 Conceptual flow for solving the bit-width allocation problem for iterative

numerical calculations. 104

5.6 	 Iterative analysis by iteration unrolling. 105

5.7 	 Iterative analysis using information from theoretical analysis. 105

xiv

Chapter 1

Introduction

Since the early days of the transistor roughly 60 years ago, exponential scaling has driven

an increase in integration levels to enable modern circuits with billions of transistors in a

single device, and operating frequencies in the low gigahertz (GHz) range [13]. To deal

with the inherent complexity of designing such circuits, an entire ecosystem of computer

aided design (CAD) tools and design intellectual property (IP) has evolved.

Over the same period, computers have been in a symbiotic relationship with applica

tions growing similarly in complexity, enabling problems of growing difficulty and scale

to be tackled by computers. In this chapter, discussion begins with a general description of

how computers are employed for solving problems, eventually leading to the justification

for this work in Section 1.5.

1.1 Computation to solve problems

One of the primary ways in which computers have improved our problem solving capacity

is their ability to carry out with speed and precision tasks which human beings may find too

repetitive, tedious, error prone or which involve overwhelming amounts of data. A straight

forward example of this is the use of computers to sort, search and filter databases involving

Terabytes (TB, = 1012 bytes) of information [17]. Going beyond mere record keeping, in

general terms computers are used to solve problems by manipulating data according to a

set of rules. In the physical sciences and engineering in particular, where analysis based

1

Ph.D. Thesis - Adam B. Kinsman McMaster University- Electrical & Computer Engineering

on mathematical theory has seen a great deal of success, computers have been extensively

employed.

One explanation of the success of computers in science and engineering is the emphasis

placed by those fields on creating models of the systems which they study. A reliable model

of a system will enable one to reason about the system and make predictions about its be

haviour. In this way, a model enables transference of some of the physical experimentation

required to draw conclusions into the domain of abstract reasoning. The role of computers

is to carry out in an automated way the reasoning related to the model, and once set up a

computer can often be reused to perform many virtual experiments, providing more infor

mation at reduced cost compared to physical experimentation. Physical experimentation

however will always be required to verify the conclusions drawn from the model and to

inform/refine the model itself.

A poignant example of this virtualization of experimentation is the use of electronic

analog computers for solving differential equations [72], a technique which was employed

before programmable digital computers became ubiquitous. The equations which gov

ern the behaviour of electronic circuit elements such as inductors, capacitors and resistors

bear striking resemblance to equations which govern many physical phenomena e.g., mass

spring systems or fluid-flow systems. The similarity in the underlying mathematics enables

a compact, inexpensive electronic system which models a bulky, costly physical system to

replace it.

While virtual experiments can provide more information with less cost than physical

ones, they do not come for free - there is a cost associated with creating a computer to

reason about a given model, and the conclusions drawn are only as reliable as the mod

els themselves. In general, more complex phenomena require more sophisticated models,

which in general require more computational effort and/or setup cost. The next subsection

examines these issues of computational effort and setup cost.

1.1.1 Computational effort and cost

The inherent tradeoff between flexibility and cost exists in many avenues of life, and elec

tronic systems are not excluded. When a dedicated electronic system is constructed to serve

2

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

a solitary purpose, assumptions can be made about its task and environment leading to a

simpler, more efficient implementation. Making a system more flexible often involves sup

porting scenarios which violate some assumptions, and as such any efficiency gains coming

from those assumptions are lost. On the other hand what is gained from increased flexi

bility is reuse which impacts cost. While a dedicated system can be more efficient than a

general purpose system at a particular task, usually it can do nothing but that task. A more

flexible system will be less efficient for the same particular task but will be able to perform

a number of tasks at similar efficiency.

In light of this tradeoff, the last few decades of evolution in electronics reveals a steady

stream of applications implemented at first in dedicated electronic systems moving to ever

more general and programmable platforms such as general purpose processors [64]- even

as they are followed by applications of increasing complexity [31]. Seen from another point

of view, applications emerge which seek electronic implementation, and the technology ad

vancements arising during the course of that implementation have the two pronged effect

of 1) enabling the same application to be solved on a more general platform and 2) extend

ing the reach of dedicated systems to reach previously unsolvable problems. It is primarily

through the first effect that cost is reduced, by moving to a general platform, the develop

ment and manufacturing costs of that platform are shared among all the applications which

use that platform, and thus are lower than for a dedicated platform.

This pattern is exemplified particularly clearly in the transitioning of multimedia from

analog to digital. Early electronic audio processing using dedicated analog systems gradu

ally migrated to using dedicated digital signal processing circuitry, then to programmable

digital systems as the capabilities of digital circuitry expanded thanks to Moore's law [90].

Today, audio processing in software is almost trivial even on commodity general purpose

hardware. Similarly (but lagging by a number of years) was the transition for video, origi

nally managed using analog circuitry, now processed on mainstream personal computers.

1.2 The case for acceleration

In addition to the migration from dedicated to general purpose platforms discussed in the

previous section, what has also become clear over these few decades is the existence of

3

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

General Custom

Purpose Dedicated

1990

2000

2010

Figure 1.1: Computational thresholds for applications.

computational thresholds, i.e., barriers of complexity imposing limits on what problems

are feasible with a certain capacity to carry out computations, commonly referred to as

"compute power" (as distinct from power as it relates to energy consumption). These com

pute power thresholds are the reason for the lag in time between digitization of audio and of

video, the computational threshold for video is higher than for audio. Figure 1.1 depicts in

very general terms the evolution of compute power across the spectrum of platforms (from

general purpose to dedicated), as well as computational requirements for some applications.

It is worth noting that the tasks in the upper-most computational capacity ranges (100

GFLOPS and TFLOPS), while being recognized today as important problems may not have

even been conceived of in a similar graph from a decade ago. This carries the important

point alluded to above that technology advancement with a specific application in mind has

implications in other unanticipated applications. Furthermore, while Figure 1.1 focusses on

the case where the higher efficiency of dedicated platforms is leveraged for the sole purpose

of increased compute capacity, the efficiency may improve other aspects of performance.

4

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

Having established that more computational capacity can always be made use of, we

must find ways of making this greater computational power available. Historically for

general purpose computing, increased compute power came from two sources. On one

hand, individual devices were capable of more operations per second through advancement

in process technology (bringing higher clock rates), and architectural innovation (reducing

execution overhead). On the other hand was parallelism, integrating many microprocessor

devices into a much larger, more powerful supercomputer. While in the past the former has

been the primary focus for increasing computational capacity, there has been a recent shift

to relying on the latter to provide the compute power for the ever increasing complexity of

applications [4].

The concept of parallelism for creating more powerful computers, and the means of im

plementing it will be discussed in more depth in Chapter 2, but are summarized here. Cur

rently, there are three main directions: multi-core central processing units (CPUs), graph

ics processing units (GPUs) and field-programmable gate array (FPGA)-based hardware

accelerators. In terms of integration levels, there are tens of processing engines in each

multi-core CPU; hundreds of them in a GPU and thousands in each FPGA, as of today.

The differences between these three platforms lie in the amount ofdesign effort required

to map an application to each platform, and also the maximum achievable performance. Us

ing the existing design methods and tools, implementing an application in FPGAs requires

about three times more implementation effort than multi-core CPUs and about two times

more effort than GPUs [92]. Figure 1.2 shows how FPGA-based acceleration can make a

difference. Although in the audio/video processing fields, CPUs are sufficient today, there

is a growing adoption of GPUs in the fields of computer graphics and quantitative finance,

for example. There are however, fields such as biomedical sciences (medical equipment

for remote surgery [81] or gene sequencing [50]) and environmental sciences (oil/gas ex

ploration [34] or weather simulation [31]) where the added compute power brought by

high-end FPGAs facilitates the much-needed acceleration.

In order to make this much-needed acceleration accessible, what is required is sophis

ticated computer-aided design (CAD) tool support. One problem which contributes to the

higher design effort for FPGAs and as such needs to be addressed is the choice of a suitable

numerical representation format as discussed in the next section.

5

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Computational power
(GFLOPS)

Environmental sciences

Drug discovery, genetics

Medical devices

Quantitative finance

Computer graphics

Video processing

Audio processing

Implementation cost
(man hours for skilled designers)

Figure 1.2: Computational capacity/requirements and development time for state of the art
platforms/applications.

1.3 The need for custom representations

While the previous sections have established the role of computers in problem solving

and provided motivation for using accelerators to increase the problem solving capacity of

computers, they have focussed primarily on the operational aspect of computer operation.

This section examines another, equally important aspect of how the data on which the

computer operates is represented.

1.3.1 Symbolic vs. numerical computing

The representation of the data which computers are used to process generally exists under

two main paradigms: symbolic and numerical computing. In symbolic computing, the data

which is processed and rules by which it is processed are both abstract, and are derived

6

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

from the theory governing the problem which the computer is working to solve. Numerical

computing on the other hand, uses rules based on arithmetic to manipulate data which are

quantities representing aspects of the problem under consideration.

To understand the difference between symbolic and numerical computing, consider a

geometric series r.;_:~-l arj. In symbolic computing the data would be the expression and

its variables while the rules would be derived from algebra, application of which should

lead eventually to the expression a \-=.r:. In numerical computing however, the rules are

derived from arithmetic, but the problem has no clear meaning without explicit numeri

cal values for a, r and n. Once specified, application of the rules means performing the

exponentiation, multiplication and summation over all j to produce the final result.

Due to key advantages (i.e., completeness, compactness, exactness) in some scenarios,

symbolic computation packages have been developed such as computer algebra systems,

e.g., Maple [85], Mathematica [128], and Maxima [97]. However, the majority of sci

ence/engineering problems today are solved using numerical techniques for two primary

reasons. First, the precision of the input parameters to a problem as well as the required

accuracy of the solution are typically limited. This is especially true in science and engi

neering which involve inexact measurements, and any uncertainty could frustrate the ex

actness, or complicate the analysis, of a symbolic solution. Second, although not the case

in the geometric series example above, numerical representations may be more compact

(efficient) for problems of current-day complexity, leading to reduced computation times

especially in light of the tolerance created by inexactness.

1.3.2 Representation of real numbers

Upon deciding to perform calculations numerically, the next decision is what format to use

to describe numerical quantities. Since digital computers are discrete in nature, represen

tation of discrete sets such as the integers is natural. The set of real numbers on the other

hand is continuous and infinite, requiring approximation to be represented using the dis

crete, finite resources of the computer. A number of schemes have been devised to manage

the error arising from this approximation as discussed next.

7

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Continued fractions

One approach to approximating the real numbers within the finite, discrete scope of digital

computers is the use of continued fractions [124]. A continued fraction representation for

a number x is a sequence of integers ai such that:

1
x=ao+----

1
a1+--

a2+ · ..

where the sequence ai is finite for rational numbers and infinite for irrational numbers.

While some of its mathematical properties (e.g. truncation yields best rational approxi

mation) make it a favourable choice in theory, practical implementations encounter some

difficulties. For one, human beings are not used to these representations so any user interac

tion with computers involves translation, at relatively high cost due to numerous divisions.

Also, arithmetic operations on continued fractions are complex [124], and the varying rep

resentation length of different values can cause storage and manipulation complications.

Rational representation

Rational representations can be thought of as a simplified version of continued fraction,

instead of a sequence with nested fractions, there is instead a pair of numbers (numera

tor and denominator) and a single fraction [87]. This solves some of the practical issues

raised above, i.e., only a single division is required to convert to a human-readable for

mat, and the size is more uniform over all representable numbers. However, manipulation

can still cause problems in that straightforward operations could cause the numerator and

denominator to grow without bound, but finding the best approximation with numerator

and denominator within a certain range is by no means trivial (continued fractions provide

such a means). At the same time this method has seen adoption, particularly in situations

where the application can lend some insight to the ranges involved, and where values are

primarily rational.

8

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

Fixed-point

Pushing the rational representation one step further, we can fix the denominator and con

sider only the numerator giving rise to a fixed-point representation [131]. In digital sys

tems specifically, the choice of denominator is typically restricted to a power of 2, mak

ing conversion from one denominator to another (on a binary platform) the straightfor

ward operation of shifting left or right. Consider the rational number 19/3, using de

nominator of 8 = 23. This reduces to representing the integer nearest 19/3 x 23, which

is 51 = (1)25 + (1)24 + (0)23 + (0)22 + (1)21 + (1)2° so the fixed-point representation

would be 110011. Since the implicit denominator of 23 produces a shift so that 19/3 ~

(1)22 + (1)21 + (0)2° + (0)2- 1 + (1)2-2 + (1)2-3, a "binary point" can be placed between

the 3rd and 4th bits from the right with the number 110.011 resulting. This divides the

representation into I integer bits on the left representing the part of the number (in absolute

value) 2:: 1, and F fraction bits on the right representing the part of the number (in absolute

value) < 1. In essence, I limits the range of representable numbers and F limits the resolu

tion. To extend the representation to negative numbers, 2's complement is used where -x
1is represented as 21 - x, and the range of representable numbers is -21- 1 to 21- - 2-F.

To summarize then, for a 16 bit fixed-point number with 5 integer bits and 11 fraction bits,

the resolution is 2- 11 ~ 4.88 x 10-4, the range is -16 to 15.9995, and 19/3 would be

represented 00110.01010101011, while -17/7 would be 11101.10010010010.

This format provides a bound on absolute error incurred at each operation, and as such

is very attractive in terms of precision however, the dynamic range is severely limited. As a

result, this method has received a great deal of attention in applications with well bounded

numerical ranges (for example digital signal processing) and will be discussed in more

depth in Chapter 2

Floating-point

While fixed-point representations are compelling in terms of precision, careful manage

ment of the implicit denominators is required to address the dynamic range limitations.

Unfortunately, this can limit the flexibility and reuse of any platform which uses it. This

accounts for its success in dedicated systems with well understood numerical patterns, and

9

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

its shortcomings in more general purpose platforms. Expanding the dynamic range has in

volved the observation that bounding relative error rather than absolute error in calculations

will often suffice, the reason for the emergence of scientific notation when doing calcula

tions by hand. In this format a number x is commonly represented (or approximated) as

significant digits x baseexponent. The case of scientific notation uses 10 as the base, comput

ers in general use base 2. The scaling by baseexponent is analogous to moving the "point" of

fixed-point giving rise to the name floating-point [41].

In the specific case of base 2, the significant digits (also called significand or mantissa)

are scaled to between 1.0 inclusive and 2.0 exclusive, i.e. [1.0 ..2.0). For example, 19/3 as

above can be represented as 1.583 ... x 22. If the exponent is represented on 4 bits we have

0010, and the mantissa on 11 bits we have (1.)10010101011, where the (1.) is implicit

(not stored). Extension to negative numbers is done through a sign bit indicating positive

or negative, and for the case above of 1 sign, 4 exponent and 11 mantissa bits enables rep

resentation of numbers within the range~ ±[2.94 x 10-39 ,6.80 x 1038] to within relative

error of::::::; 4.89 x 10-4.

The bounded relative error behaviour of floating-point numbers makes it particularly

suitable for use as a representation format, especially for scientific applications. The con

venience of relative error for measurement and control in the physical sciences and engi

neering also makes floating-point a natural choice. Moreover, the nature of many scientific

applications provides contained output error for bounded input error. Finally, the dynamic

range issue is addressed as resources for floating- vs. fixed-point to provide the same dy

namic range are O(log(log(range))) vs. O(log(range)). These advantages have enabled

floating-point arithmetic to be successfully deployed in computing machines.

1.3.3 Standardization of floating-point support

As a result of the advantages of floating-point representation discussed above, it has been

favoured for numerical computing applications, based primarily on software libraries (e.g.,

[36, 95]). In response, computer hardware makers (seeking competitive advantage) pro

vided dedicated hardware supporting floating-point arithmetic to improve performance for

numerical tasks. Independent hardware makers frequently adopted different choices for not

10

http:10-39,6.80

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

only size of exponent and mantissa fields, but even the base. In order to foster portability

of software across hardware platforms, as well as consistency and reproducibility of results

obtained from numerical programs, the need for a standard floating-point representation

became clear [59].

The culmination of this need for a standard was the IEEE-754 [56] standard for floating

point representations, describing single precision (on 32 bits: 1 sign + 8 exponent + 23

mantissa) and double precision (on 64 bits: 1 sign + 11 exponent + 52 mantissa) formats.

One important aspect arising from this standardization is the handling of comer cases, i.e.

values or operations resulting in values outside or very nearly outside the set of numbers

properly represented by the format. As [59] points out, this matter was largely ignored prior

to standardization, with each hardware manufacturer making their own decisions. As also

pointed out by [59], comer case control is imperative for maintaining portability of software

and reliability of results obtained from software. For this reason, the standard provides

options for a number of scenarios which are under programmer control (having defaults

also assigned by the standard), so that a programmer with knowledge of the application

may dictate the appropriate behaviour for a given comer case scenario.

1.3.4 Custom precision floating-point

The previous section has shown that the capacity to manage a broad set of comer cases

and the programmability to dictate behaviour are very important for general purpose hard

ware meant to execute a plethora of numerical programs requiring myriad features and be

haviours. By contrast, an application-specific hardware solution needs only be concerned

with the comer case behaviour relevant to the particular numerical task it implements. This

important difference provides room for custom precision floating-point representations.

Most obviously, if an application of interest does not require the full dynamic range

provided by IEEE-754, a custom representation may use smaller widths for the exponent

and mantissa fields. More importantly however, support for the many modes dictated IEEE

754 take a significant toll when implemented in hardware, both in performance (maximum

clock rate) and area, especially because of the programmability requirement. Simply freez

ing the comer case behaviour (removing the programmability requirement) would already

11

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Operands Operands

Operand

Alignment

Arithmetic

Operation

Arithmetic

Operation

Result

Normalization

Result Result

(a) A fixed-point arithmetic operation. (b) A floating-point arithmetic operation.

Figure 1.3: Fixed and floating-point arithmetic operations.

bring implementation cost reduction. Even more than this however is that for custom repre

sentations the boundaries marking regions of comer case behaviour are themselves flexible.

For example, adding a single bit to the exponent field effectively squares the range of rep

resentable numbers to eliminate the need for any overflow handling whatsoever.

Leveraging this added degree of freedom, units tailored to the representation require

ments of a given application can be designed to be smaller than fully standard compliant

IEEE-754 arithmetic units. By tailoring representation requirements not only to the appli

cation as a whole, but even the specific stage of calculation, meaningful implementation

cost and performance savings can be attained as discussed in the next section.

12

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

1.4 Cost reduction and performance gain

In order to understand how implementation cost and performance gain are affected by

choice of representation, consider Figure 1.3 which shows in a very general sense arith

metic operations on fixed and floating-point operands. Since fixed-point numbers are essen

tially unencoded (they do not contain control information), arithmetic operations on them

such as addition or multiplication are relatively direct (Figure 1.3(a)). For floating-point op

erations however, the exponents of the operands must be decoded, the two operands prop

erly aligned, the operation performed, and the number re-encoded into a proper floating

point representation (Figure 1.3(b)).

The difference in terms of performance can be see more quantitatively in Table 1.1,

based on data drawn from [77]. The table compares field-programmable gate-array (FPGA)

implementations of multiplication and addition for 32-bit floating- and fixed-point operands

(8 bits exponent and 23 bits mantissa for the floating-point). The comparison is made in

terms of latency in clock cycles (CCs) and implementation cost in flip-flops (FFs) and

lookup tables (LUTs) the basic implementation units which make up an FPGA. What dif

fers between the two data types is that while fixed-point calculations use the data directly as

operands, floating-point operations require the operands to be scaled before the operation

can be performed, and the result must be normalized.

Observing the table, the impact of these differences can be seen. For multiplication, the

variation between fixed- and floating-point is minimal. The mantissa of the result comes

from the multiplication of the operand mantissas, and the exponent is essentially the sum

of the operand exponents, with the smaller multiplication (23 vs 32 bits) balancing out the

addition for the exponents. In light of Figure 1.3, the alignment and normalization units

from 1.3(b) are relatively small compared to other operations, and are offset by how much

smaller the operation unit is compared to 1.3(a) because of the 23 bit mantissa instead of

the 32 bit fixed-point value.

For addition on the other hand, the differences are significant. In this case, the floating

point operation requires checking conditions on operand overlap, and a shift of anywhere

between 0 and 22 positions may be required to align the operands. In contrast, for fixed

point nothing more than a simple adder is required. In terms of latency, the case is similar.

13

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 1.1: Comparing area/performance for floating vs. fixed-point [77].

Operation
Area-LUTs Area-FFs Performance-CCs

Floating Fixed Floating Fixed Floating Fixed

Multiplication ~750 ~750 ~ 1000 ~750 ~30 ~30

Addition >600 <40 >600 <40 > 10 =1

For multiplication, the clock cycles required are essentially the same, while for addition

more clock cycles are required for pipelining the large barrel shifters required to align the

numbers before performing the addition. Referring again to Figure 1.3, in this case the

alignment and normalization units are more costly to implement than for multiplication.

What is clear from this example is that representation can have a significant impact on

area and performance of individual calculation units. This impact is amplified by as many

calculation units as are employed together to achieve parallelism. In simple terms, if a

calculation unit is smaller, more can be fit onto an acceleration platform (like an FPGA)

thereby increasing the parallelism, and if it is faster the overall throughput is further in

creased. With this in mind, Figure 1.4 depicts in general terms the potential gains of mov

ing away from the IEEE-754 double precision standard. By fully leveraging any slack in

precision requirements, resource cost of arithmetic units can be reduced, leading in the end

to greater parallelism and with it increased computational capacity.

What is also the case regarding representation impact on area and latency is that for a

fixed choice of architecture and implementation technology, a direct relationship between

representation and cost/latency can be identified. For example, the choice of a combina

tional multiplier vs. a sequential one for a given FPGA device family will yield a certain

(complex) tradeoff between maximum clock frequency, number of clock cycles latency to

the result and number of LUTs required. These choices are influenced by many factors

which are independent from the representation choice, and can vary significantly from one

application to another. Furthermore, they are usually settled (or very nearly) when custom

14

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Tolerance

Input to

Calculation

Performing a computation
with reduced (from IEEE
754 double) precision can
produce a smaller hardware
implementation while still
meeting precision
requirements of the result.

ired)

Tolerance
(Double)

True Result
of Calculation

Custom
Format

Calculation
Unit

IEEE 754
Double Precision
Calculation Unit

Tolerance
(

Figure 1.4: Contrasting standardized double vs. custom precision floating-point .

representations are derived. For this reason, cross platform and cross architecture applica

bility of a custom representation method must provide flexibility to deal with a wide array

of design scenarios.

Support for these varying scenarios can be provided by making abstraction of the under

lying implementation platform by use of models relating performance and cost to custom

representation (bit-width). A simple example is a combinational multiplier with operands

of size n bits exhibiting an approximate n2 area cost. Similarly, a ripple carry adder has a

roughly linear relationship between operand size and delay. In a specific implementation

technology, these numbers can be more precisely quantified. Aggregate cost models for

full architectures can be formed by combining models for the functional units they contain,

and greater accuracy of the model can be attained by adding more detail to the model.

Abstracting the implementation in this way brings flexibility to the custom representa

tion approach, allowing the same methodology to be targeted toward different architectures

15

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

and platforms. In this way, the improved performance which is the goal of custom repre

sentations transcends the implementation platform. Through this abstraction, custom rep

resentations are identified solely by architecture matched bit-widths, obtained with respect

to architecture and platform specific cost models. That is, with a set of bit-widths relating

to a defined architecture and platform, the hardware implementation follows directly. It is

the burden of determining these parameters (bit-widths) that is focus of this thesis.

1.5 Problem statement

In this chapter, we have established the motivation for accelerating scientific application

and identified the key role to this played by custom data representations. In this section,

the necessary features for deriving custom numerical representations for applications in

the scientific computing domain are described and the organization of the remainder of the

thesis is summarized.

1.5.1 Robustness requirement

A fundamental requirement of any representation which is to be used for scientific com

puting is robustness - how far the correctness of the results can be trusted. Evidence for

the need for this feature can be seen in the lengths which IEEE-7 54 goes to in providing

support for indicating when a numerical problem arises (e.g. division by zero) and to cor

rect for such problems if possible. While in some application domains even catastrophic

numerical errors have little impact in terms of real repercussions, this cannot be taken for

granted in scientific applications. For example, a multimedia decoding system having non

robust numerical support may lead to a corrupted media stream which, although potentially

diminishing overall user experience, is of far less consequence than a virtual surgery system

where numerical mistakes may translate to loss of human life.

1.5.2 Ill-conditioned operator requirement

The second feature which must be supported is the ability to deal with potentially ill

conditioned operators and/or singularities during numerical processing. As will be detailed

16

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

in Chapter 2, many existing approaches to custom representation deal only with linear,

time-invariant (LTI) systems having favourable numerical properties. When such methods

are applied to scientific applications involving division (even potentially by zero) for ex

ample, the representations determined are likely to not bring any resource savings at all,

if a representation can even be conclusively derived. Given that singularities arising from

calculations such as division and trigonometric functions, ill-conditioned operators are a

reality in many scientific computing, support for such situations must be present.

1.5.3 Iterative method requirement

Many scientific applications - especially in the state of the art - rely on iterative proce

dures such as Newton's method [12] for root finding to reach a result. In particular, a

large class of applications which solve discretized partial differential equations create large

sparse linear systems, which are commonly solved iteratively using the Conjugate Gradi

ent algorithm [113]. Examples of domains and applications include: in medicine for virtual

surgery simulation with haptic feedback [81], in aerospace for non-destructive testing us

ing computational fluid dynamics [46] and in nuclear physics for fusion reactors [22]. As

Chapter 2 will discuss, many existing works like those mentioned above deal only with

non-iterative applications. Because iterative procedures may involve a large and varied

number of iterations, scalable support must be provided to draw conclusions about their

numerical representation requirements.

1.5.4 Hardware efficiency requirement

Addressing the above requirements would not be of much use if the performance gains

sought in developing custom representations are lost due to poor pairing with the imple

mentation technology which is utilized. The impact on overall system performance that

choice of custom representation will have is tightly coupled to architecture and implemen

tation technology, and these factors will vary significantly between applications. Influenc

ing factors can include types and constraints for memory and dedicated processing units

(e.g. embedded multipliers in FPGAs), as well as choice of sequential or combinational

implementation of calculation units. The result is that custom representations which are

17

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

favourable to one architecture/implementation technology may be inefficient under another.

As such, an effective custom representation methodology should be sufficiently modu

lar that it can make abstraction of these details. It should support external feedback on the

performance vs. area cost vs. representation choice tradeoff and user definable objectives

related to performance, area and error tolerance.

1.5.5 CAD methodology requirement

Even while supporting all the above requirements, a methodology for determining custom

data representations is of little use if it cannot be effectively accessed by designers as a part

of a larger CAD tool flow. In light of this, some CAD methodology requirements arise.

In order to facilitate seamless integration, designer intervention should be minimized. In

the ideal case, the entire process which the designer would undertake manually to derive

custom representations should be automated.

To accomplish this, plug-and-play interfaces for all interactions with the rest of the tool

flow are necessary. Specifically, a front end which supports languages in wide use for sci

entific computing software (e.g., MATLAB, C) is needed. A back end which generates

automatically hardware descriptions for the custom calculation units in a variety of hard

ware description language (HDL) formats (e.g., Verilog, VHDL) would also be needed to

maintain implementation technology independence. Further required to abstract from im

plementation technology is an interface for integrating hardware cost models (as discussed

in Section 1.5.4).

1.6 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 provides a survey of the

existing methods for automated data representation in light of the requirements discussed

above. Following this, Chapter 3 deals with Satisfiability-Modulo Theories (SMT), the

underlying computational framework we use to address the data representation problem.

The concepts needed to comprehend SMT solvers are introduced, and a range refinement

18

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

algorithm [65, 68] is proposed to address the range aspect of bit-width allocation. Improve

ments over existing techniques are demonstrated through application of the method to case

studies characteristic to scientific computing.

With this computational technique in place, Chapter 4 builds upon it, adding support for

dealing with large abstract data types (e.g., vectors and matrices) to provide scalability to

large problems [66]. Vectors are initially represented in terms of their magnitude accompa

nied by a loss of directional correlation information. This loss of information is addressed

through the use of block vectors which enable a smoother tradeoff between problem com

plexity and bounds quality. An algorithm is proposed for navigating this tradeoff, and the

method is applied to the computational method of Chapter 3 as well as existing techniques

and demonstrated on a set of case studies.

Built atop this scalable computational framework, Chapter 5 describes the full applica

tion of the method for determining custom representation for an iterative scientific applica

tion [67]. After dealing with formation of constraints for precision expressions (as opposed

to just range in Chapters 3 and 4), an analysis methodology for iterative algorithms is pre

sented. The proposed analysis techniques are applied to iterative case studies with scientific

calculation characteristics. Finally, Chapter 6 provides concluding remarks and avenues of

future work.

19

Chapter 2

Background and prior work

In this chapter, the various approaches to delivering acceleration as discussed in Section

1.2 will be discussed, leading eventually to the adoption of field-programmable gate array

(FPGA) based accelerators. Building on this, existing CAD support for FPGAs is discussed

with a particular focus on numerical representation and in light of the requirements set up

in Section 1.5.

2.1 Acceleration through parallelism

As mentioned in Section 1.2, a direct means of extending the problem-solving reach of

computers is to perform more computations at a time (instead of just reducing the time

per computation) by coordinating a number of individual computers so they work together.

In such a setup, connections between individual processors allow them to share data and

results, and a small piece of the overall compute task is tackled by each processor which

works in parallel with all other processors giving rise to the term parallelism. Overall

performance depends in general upon the processing power of the individual processors

vs. complexity of the individual subtasks, as well as the communication capacity of the

interconnections vs. the amount of data which must be passed between processors [30].

As it turns out, aside from a relatively small class of problems known as "embarrass

ingly parallel", partitioning a large problem so as to attain the best performance on a given

20

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

supercomputer is far from trivial [30]. This arises from data dependencies within applica

tions, causing one step in the computation to block others. While much research has been

done on automatic parallelization, results obtained manually which leverage an understand

ing of the data dependencies specific to an application are almost universally superior [3].

2.1.1 Parallelism via cluster computing

The obvious approach to parallelism of simply connecting numerous individual computer

devices together is probably one of the earliest ways in which supercomputers were con

structed. Beginning with early dedicated supercomputers, for example IBM 7030 Stretch

[55] and Cray-1 [70], management of resources was typically under a single application

instance paradigm, using a centralized interface as depicted in Figure 2.l(a). With Moore's

law [90] driving evolution in process technology, personal desktop machine compute power

rose accordingly, typically providing equivalent computing power to decade earlier super

computers. Adoption of each generation of personal desktop machine brings cost reduction

through economies of scale, reducing desktop computer power to a commodity.

This commoditization of desktop computing power, along with advancement and stan

dardization of computer network technology and protocols, has led to the more modem

variant of distributed computing in grids (Beowulf cluster [40], IBM Roadrunner [6]). In

such a setup, many individual standalone machines (called nodes), each running an oper

ating system instance, are networked (usually densely) together, enabling all the machines

to collaborate on one or many problems at once, a scenario shown in Figure 2.1 (b). One

advantage of this type of platform comes through abstraction of the node hardware. Since

each node's OS instance can take care of local system tasks, a virtualization layer can be

created for the application, which can handle issues such as heterogeneity of the nodes

or fault tolerance/load balancing. Node hardware can range from server machines (IBM

Roadrunner [6]) to low cost personal computer (PC) hardware running Linux (Beowulf

cluster [40]) to even gaming consoles [76, 78] or personal computers of volunteers con

nected through the Internet such as in the SETI@Home [123] and Folding@Home [117]

projects.

21

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

cust~m . ~_..__.._1~1._..f~;~l_..__.._~
commun1cat1on ~~l_=_j.........,.....l_=_j

network - r- :1 * * *
Single _EJ-B-8-Bapplication

interface

:~lc~l._~~~~~* * * * Custom --rr~~~l_=_j
processors

Supercomputer running
single OS instance

(a) Supercomputer (custom processors and network, single operating system instance and
application interface).

Standard
network

(e.g. Ethernet)

Virtual
application
interface

Commodity
machine

Virtualization layer coordinating many running OS
applications on many machines

(b) Cluster computer (virtualization software on commodity machines with separate oper
ating system instances).

Figure 2.1: Parallelism via supercomputers and grid/cluster based computers.

22

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Despite the benefits and past successes of cluster/grid computing, it does suffer some

shortcomings. One drawback of escalating concern is cooling requirements and power

consumption for large clusters made up of hundreds of thousands of nodes, which easily

reach into the range of tens to hundreds of kilowatts. Size and setup cost for such a system

are prohibitive for small organizations having only occasional needs for extensive compute

power, and leasing time on supercomputers can also be expensive and unacceptably non

deterministic. Such organizations are also unlikely to benefit from volunteered compute

power such as in SETI@ Home or Folding@ Home, both because of lack of participant

goodwill and because of sensitivity of data.

Combined with the drawbacks above, the desire to bring greater amounts of compute

power in-field (e.g., arctic seismic analysis [71]) leaves cluster/grid computing at a loss.

Likewise, applications with form-factor (real-time, energy, weight, size) constraints such

as deployed/embedded systems pose similar challenges with examples being real-time sig

nal capture and processing for communications (e.g. mobile phones [127]) and diagnos

tics/visualization (e.g., medicine [121]). One answer to this problem follows the histori

cally successful strategy of further integration as discussed next.

2.1.2 Parallelism via multicore

The cluster based approach to parallelism has played out relatively successfully over the

last decade or so largely by riding Moore's law, whereby each new generation of commod

ity processor was able to operate at a faster clock speed, as well more memory could be

integrated per device and network speeds were increasing. As such, clusters with more,

faster nodes could be built, bringing higher computational throughput. Recently however,

the escalating capabilities of single processors have begun to wane because of diminishing

returns on three fronts: memory, instruction level parallelism and power [4]. In answer,

microprocessor vendors have for the last 5 years (at least) pursued multicore processors.

Figure 2.2 illustrates the multicore concept, note the resemblance to Figure 2.1(a) if

the custom processors are replaced with general processor cores, the custom communica

tion network is replaced by an on-chip communication network, and the entire system is

integrated onto a single device as opposed to being built out of individual components. In

23

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

Flexible
on-chip
network

Operating
system
instance

Generic
processor

core Single integrated device containing
multiple processor cores

Figure 2.2: Parallelism via multicore devices.

addition, the role of the single (OS) instance of Figure 2.1(a) can in theory be filled by

a traditional OS ported to run on such a multicore architecture. The network carries data

and directives between the processors thereby enabling them to collaborate and choices

range from dedicated custom bus architectures [69] to general network-on-a-chip (NOC)

[39]. The processors themselves carry out tasks on the data, and can be special purpose or

general, even on the same chip as for the Cell Broadband Engine [44].

What is attractive about this model of computation is the resemblance it bears to both

the supercomputer model and at the same time traditional single processor machines, but

with the advantages of power, latency and physical space savings brought by the integra

tion. However, what does not carry over is the performance gains which traditionally came

for free due to higher clock rates in each new processor generation. Challenges which

face multicore integrated devices are presented in [4], with the central ones being related

to power, memory and instruction level parallelism. In terms of power, the number of de

vices which can now be integrated into a single device coupled with the high switching

24

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Custom
communication

fabric

Application
runs in

hardware

Dedicated
processor

core Custom cores perform hardwired
execution patterns in parallel

Figure 2.3: Parallelism via customized ASICs.

frequency results in difficulties both in getting sufficient power on to the chip, as well dis

sipating heat out of the chip. In terms of memory, with limited bandwidth for moving data

on/off of chip keeping a growing number of increasingly more powerful processing units

busy presents challenges [130]. Finally in terms of instruction level (fine-grained) paral

lelism, the majority has been exploited already through the evolution of microprocessor

architectural innovations (e.g. branch prediction, out-of-order execution, speculation) [51].

New avenues of instruction level parallelism come with diminishing returns, and coarse

grained parallelism in applications must now be found and exploited. This important shift

in the source ofperformance gain has reopened interest in customization of the engines

which are placed in parallel, a topic highlighted in the next section.

25

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

2.1.3 Parallelism via ASICs

Alongside the evolution in general purpose processors based systems from custom plat

forms to grids to multicore, some isolated application domains have pursued greater com

putational power by custom-designing individual processor hardware. Such custom-designed

hardware is implemented as application specific integrated circuits (ASICs). Taking this

approach, the speedup comes from crafting the processor to be particularly efficient for the

(usually narrow) set of execution patterns specific to that application domain.

This strategy has been particularly successful in the graphics processing application

domain, largely as a result of two factors. First, the highly data-intensive nature of graph

ics processing relieves some of the hardware design complexity thus lending feasibility to

the prospect of building dedicated accelerators. Second, the significant non-recurrent engi

neering (NRE) costs were financed relatively early on by consumers with high-end gaming

interest who were willing to pay a premium for performance, catalyzing the cycle of in

creasing adoption and reducing cost. The culmination of this cycle over the last couple

decades is the relegation of graphics processing units (GPUs) to the realm of commodity

hardware.

A similar phenomenon has occurred in the digital signal processing (DSP) domain

which, on the design side, shares the data-intensive nature of graphics processing. The

economic motivation however came primarily from the embedded systems domain, specif

ically mobile multimedia where power efficiency was the important objective. Reducing

computational effort wasted on execution overhead provides greater energy efficiency and

thus longer battery life. Similarly to GPUs, consumer adoption led to large manufacturing

volumes driving device cost down.

Aside from the decades old graphics and digital signal processing domains, this strat

egy is still in use today. A notable example is the development of a molecular dynamics

supercomputer known as Anton [112]. This platform consists of dedicated chips specifi

cally designed to be efficient for performing molecular dynamics calculations, joined by a

custom connection infrastructure designed to be most efficient for the data traffic patterns

exhibited in molecular dynamics calculations.

While the potential of application specific supercomputers stands well above anything

26

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

achievable with general purpose supercomputing platforms, the obvious drawback is the

significant cost to develop such a machine. While custom processor design improves per

formance, it reduces flexibility which narrows the scope of applicability, and eliminates

the opportunity to amortize the design cost over many applications. As technology ad

vancements allow new generations of general purpose platforms to match older generation

dedicated hardware, custom platforms representing significant investments can be obso

leted perhaps before even recovering their NRE costs.

It is on this point that the importance of the recent shift to performance through paral

lelism over performance through clock speed mentioned in the previous section hinges.

In the past, the performance gains from adopting a new generation processor came so

cheaply that the enormous (by contrast) development costs of dedicated hardware could

not be justified despite substantially better performance. The increased design effort re

quired for software on multicore vs. traditional CPUs has closed the development cost

gap between general purpose software and dedicated hardware platforms, making custom

hardware worth considering in light of the potential performance benefit.

On a related note, there has been recent interest in repurposing GPU s as a multicore

platform, in order to leverage the maturity of the hardware, a movement known as "general

purpose computing on GPUs" (GPGPU) [84]. The maturity of the technology has pro

duced current day GPU s with hundreds of cores capable of performing IEEE-7 54 compliant

floating-point operations at high rates (GHz) and, while lacking the sophisticated control

features of modern day microprocessors, can often deliver higher performance by virtue of

the parallelism. Recognizing that many scientific computations can be broken down into

calculations which GPUs can handle very quickly, significant effort has been invested both

to 1) directly map applications to GPUs ([18, 20, 79]) and 2) develop tools/compilers to

assist/automate the mapping process ([29, 57]).

Despite this interest in reusing GPUs, the fact remains that GPUs are domain specific

and while they perform excellently for calculations which can be made to resemble graphics

processing, they cannot compete (performance wise) in domains where the calculations

look very different. In such domains, application specific hardware will tend to provide

better performance (in terms of both computational throughput and power efficiency, e.g.

[45]), but with higher development cost which has been some of the motivation for using

27

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

GPUs. The next section looks at a trend which significantly closes the development cost

gap, significantly raising the viability of application specific hardware processors.

2.1.4 Parallelism via FPGAs

It has been shown in the previous sections that a paradigm shift has occurred where perfor

mance gains are now derived from increased parallelism rather than from increased clock

speed. Furthermore we have seen that dedicated hardware systems deliver higher per

formance than reconfigurable software platforms but at increased cost. While the shift

from clock speed to parallelism driven performance gains has closed the gap in develop

ment cost between multicore software and dedicated hardware. At the same time, in the

last decade field-programmable gate-array (FPGA) technology advancements have signif

icantly reduced the performance gap to ASICs. The reduction of this gap on both sides

has created an opportunity for research into recon.figurable computing platforms [122]

particularly those based on FPGAs.

The attraction of FPGA-based reconfigurable computing platforms is their ability to

provide "not-much-less-than" ASIC performance for "not-much-mare-than" multicore de

velopment effort. While FPGAs have higher logic delays and lower integration capacities

than ASICs (accounting for the lower performance), the physical platform can be reconfig

ured and therefore used over many applications better amortizing the already lower NRE

costs. At the same time, while architecture design requires more effort than software de

sign as for GPUs and multicore, maturity of FPGA tool support makes the development

cost gap smaller than for ASICs.

While the superior performance potential of FPGA-based platforms has been recog

nized, so too has the fact that development cost remains a roadblock to adoption [45]. To

address this, much investigation has been done as of late into improving tool support to fur

ther reduce development effort. Figure 2.4 (an extension of Figure 1.2) illustrates the aim

of such research, to bring the higher performance gains associated with FPGAs at the lower

development cost associated with GPUs. It is this broad category to which this thesis be

longs, providing automation support for reducing the design effort of mapping applications

onto FPGAs, and the next section looks more in depth at existing tool support.

28

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

Computational power
(GFLOPS)

Drug discovery,

Medical devices

Quantitative finance

Computer graph

Audio process

Implementation cost
(man hours for skilled designers)

Figure 2.4: Reduced design effort through better tool support.

2.2 CAD support for FPGAs

The previous section has discussed the acceleration benefits of dedicated hardware which

are made cost feasible through FPGA platforms. In order to leverage this acceleration while

not suffering an inordinate increase in development cost (also discussed in the previous sec

tion), substantial research has been done in providing CAD support to lower development

complexity for said platforms. In particular, a fair amount of effort has surrounded raising

the abstraction of design entry, through so called behavioural synthesis [115]. Direct syn

thesis of hardware from a behavioural model in C or System Verilog relegates the difficult

control intensive state machine design tasks to the CAD tool, thereby improving designer

productivity. However, state of the art behavioural synthesis tools are still unable to pro

duce designs as efficient as those created by a skilled designer implementing a design at

the register transfer level (RTL) [9, 110].

29

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Behavioural synthesis tools have found greatest acceptance in application domains and

environments where design is feature driven rather than performance driven, such as mul

timedia. In feature driven design, competitive advantage comes from feature set and quick

time to market, with efficiency being a secondary concern. On the other hand, in perfor

mance driven design, efficiency is the primary concern, for example in many embedded

systems, which have form factor constraints. In this case, tool support still exists but the

focus is different, with the tool being operated by a skilled designer working at the RTL.

As identified in Chapter 1, choice of numerical representation is a problem of signifi

cance for more efficiently using resources for better performance. Manual solution to this

problem has been estimated to account for 25-50% of the design time in some scenarios

[88]. Thus, to improve productivity tool support is necessary, forming the motivation for

this thesis. In this section an overview of the problem is provided, as well as existing

approaches which have been applied to address this problem.

2.2.1 Problem aspects

Before discussing specific approaches to solving the bit-width allocation problem, this sec

tion summarizes the aspects of the problem which various approaches seek to address. The

first aspect involves the fact that discovering the minimum number of bits necessary to ac

curately represent an intermediate variable from a calculation is a two part problem. Both

the range and precision required must be determined, from which can be inferred the re

quired number of exponent and mantissa bits in floating-point, or integer and fraction bits

in fixed-point.

The second aspect deals with cost models for both error and hardware. The goal of

works in this category is to provide easily calculable yet reasonably accurate estimates of

impact on numerical quality and resource requirements for a given choice of representation

scheme. Put another way, such approaches provide the means to make a statement such

as: for a choice of representations for the intermediate variables in a dataflow, here is the

numerical deviation from infinite precision (true value) and the hardware resources required

to implement the dataflow. The need for reasonable accuracy and easy calculation involves

the third aspect described in the next paragraph.

30

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Hardware

Cost Model

Automated Data
Representation

Precision

(error /convergence)

Cost Model

Hardware/Precision

Search Procedure

Figure 2.5: Summary of aspects which existing works address.

The final aspect involves search procedures and metrics for navigating the solution

space of possible representation choices across all intermediate variables. Using the models

from the previous paragraph at the core of the search, these procedures will propose a

representation scheme, evaluate the error/hardware cost (through the models) and update

the representation scheme in order to improve a metric which reflects the overall goal of

the search (i.e. error optimization, hardware optimization or a hybrid).

While the first aspect is independent of the latter two (meaning that models and searches

can apply to range and/or precision), the latter two are related, but essentially orthogonal

(meaning that an improved cost model brings benefit to essentially any search procedure).

Many works contribute to one or multiple of these aspects, which are summarized in Fig

ure 2.5. Apart from the aspects of the problem however, there are also requirements which

solutions must satisfy to be useful in the context of scientific computing. Existing ap

proaches to solving the problem in light of these requirements (identified in Section 1.5)

are discussed next.

31

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Smart
Computational

Naive
Computational

Affine
Arithmetic

- Interval
Arithmetic

Under-allocated Optimal Over-allocated
Bit-width Bit-width Bit-width

(Optimistic) (Desired) (Pessimistic)

Figure 2.6: Overview of approaches to bit-width allocation.

2.2.2 Existing approaches

In Section 1.5, the primary requirements which must be met by a design method in order

that it will produce representations viable for scientific computing were presented. The

first of these requirements is robustness and aligns well with the categorization of existing

methods between analytical (formal) which can guarantee robustness and simulation based

(empirical) which cannot. Figure 2.6 summarizes the landscape of approaches which will

be discussed in more detail below. Two important points can be seen, first that empirical

methods on the left produce tight but non-robust representations, and investing greater

simulation effort enables getting nearer to the optimal. Second is that formal approaches

produce pessimistic yet robust bit-widths, but existing methods reach a limit where no

further improvement is possible despite extra compute power. The computation methods

proposed in this thesis however enable a tradeoff between bit-width and computational

t::

ffi
"i c
0
;::
J!!
:::1 c.
E
0
0

Empirical Formal

Smart

Simulation

Naive

Simulation

32

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

effort like for simulation, but while still maintaining robustness.

Simulation based approaches rely on a representative input data set and work by com

paring the outcome of simulation of the reduced precision system to that of the "infinite"

precision system, "infinite" being approximated by "very high" - e.g., double precision

floating-point on a general purpose machine. The statistics which arise from the simula

tion provide insight on the precision and range of the intermediate variables and a number

of techniques have been proposed along these lines, which are mostly differentiated by

1) search algorithms and metrics which are relatively independent from the error bounds

estimation, or 2) how information is extracted from the simulation.

In terms of search algorithms and metrics, the error estimation as discussed below is

leveraged to decide how to update a target precision scheme. Because the search and error

bounding facets are strongly decoupled, while many of the approaches mentioned here

were proposed within a simulation error bounding framework, analytical error is used by

some and may potentially be used by all of them. For example, integer linear programming

(ILP) and mixed-ILP are used by [28] and [26, 27] respectively. Also, genetic algorithm

based searches are used by [48, 125], with many variations existing [15, 16, 19, 25, 47,

73, 75, 120]. What is common to all these is that while essentially independent from

the error estimation, there are tight links between the hardware cost models and the search

procedures, and both of these can be strongly influenced by the implementation technology.

Also in contrast to the independence from the specific method of error estimation, good

error feedback from the estimation procedure is essential to effectively guide the search.

Impact of choice of error estimation on estimate quality is discussed next.

While the search decides how to update a potential choice of representation based on

feedback from the error estimator, the error methods deal with deriving error bounds from

a potential representation scheme posited by the search. Some of the error methods above

operate by replacing the standard data types in an implementation language with augmented

ones designed to carry more information. A class for C++ is provided by [14], similarly

for C by [21, 74] and MATLAB [86]. In addition to replacing data types, function and

library replacements can also be used, a particular example being automatic differentiation

which augments the standard operators so that the derivative is calculated on execution as

well. This method is used in simulation by [37] and [38] to collect sensitivity as well as

33

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

range data during simulation. Simulation environments have also been proposed, such as

[126] modification of source code for simulation, Fixify [7] and FRIDGE [63] and some

perform automated conversion from a high level dataflow into custom representations like

[83] from SystemC and [5, 93] from MATLAB. A similar conversion from MATLAB is

done by [114], but targets the simulation more directly at error behaviour by creating a

difference system between the full and reduced precision systems. In this way, much less

data and simulation time are required as the simulation effort is not diluted in extracting

system statistics instead of error behaviour statistics.

Simulation based methods have found significant adoption in the digital signal pro

cessing (DSP) application domain, as well as some embedded systems applications, due

to some common properties. For example, many DSP systems can be characterized very

well (in terms of both their input and output) using statistics such as expected input dis

tribution, input correlation, signal to noise ratio and bit error rate. This enables efficient

stimuli modelling providing a framework for simulation, especially if error (noise) is al

ready a consideration in the system (as is often the case for DSP [101]). Also, given the

real-time nature of many DSP/embedded systems applications, the potential input space

may be restricted enough to permit very good coverage during simulation.

In contrast to the above, for general scientific computing stimuli characterization is of

ten not as extensive as for DSP, and there is often minimal error consideration provided.

Furthermore, robustness which is generally not necessary for DSP applications, is neces

sary for scientific computing. At the same time, statistical methods can easily miss minute

yet important regions of the simulation space entirely [60]. As a result, situations not cov

ered by the simulation stimuli can lead to overflow or error excitation conditions which

ultimately can lead to incorrect and/or unreliable calculation results. Because of these

differences between general scientific computing applications and the DSP/embedded sys

tems application domain, simulation based methods cannot be relied upon for scientific

computing. On the other hand, despite the fact that they tend to produce less compact data

representations, analytical approaches deliver provable limits for range and precision re

quirements from which robust representations can be derived. The most straightforward

analytical method is known as range or interval arithmetic and is described next.

34

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[-0.3001 ..0.5001]

Range Precision
.....
'I"" 'I""

.....
0
~

.....
0
t'!

.....
0
~

0

c:!
'I""

0

c:!
'I""

.....
0
N

0
N

I.....
c:i
'I""

I.....
c:i
N

I.....
0
c:i

I.....
0
c:i
.!.

c:i
'I""

I.....

~7

f

[-400..600]

Figure 2.7: Example of interval arithmetic (lA) operation.

Interval Arithmetic

Interval arithmetic (lA), first proposed by Moore [91] is the most straightforward approach

to the problem of determining bounds on values within a calculation. It operates by es

tablishing worst case bounds at each step of the calculation. Each variable is replaced by

an interval e.g. x --+ { xlxL :::; x :::; xn} and interval analogues of the basic operations are

defined. For example, the + operation on intervals { xlxL :::; x :::; xn} + {yiYL :::; y :::; YH}

produces the interval { zl (xL +yL) :::; z :::; (xn +YH)}. Intervals are then propagated through

an entire calculation, producing reliable bounds at each stage including the output.

With a means of calculating reliable bounds in hand, limits for the range aspect of

the data representation problem can be obtained directly from the application of lA. To

adapt lA for obtaining limits for the precision aspect, each variable is supplemented with

a perturbation variable which is propagated through the operation of interest to obtain a

precision analogue of the calculation. For example, the multiplication z = xy would be

35

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

transformed:

(z+&) (x+&)(y+Lly)

xy+& xy + y& + xdy + dxdy

& y&+xlly+&Lly

yielding an uncertainty variable & for the variable z. Following this procedure, an un

certainty expression can be derived for each intermediate variable in an entire calculation,

similar to the way traditional uncertainty analysis has been performed in the physical sci

ences [111]. Under this model, input uncertainties of any form (including quantization

noise) can be propagated through the data path. Furthermore, quantization occurring at any

point throughout the calculation is addressed by simply injecting the resultant quantization

noise into the appropriate perturbation variable. The application of lA provides an error

model, as per the representation problem aspects discussed in Section 2.2.1.

Figure 2.7 illustrates the process for simple multiplication z = xy, for -20:::; x:::; 30

and -10 :::; y :::; 20. The left half of the figure shows application of lA directly to the

multiplication yielding a range for z of -400 :::; z :::; 600. On the right hand side of the

figure is the precision calculation, under the assumption of uncertainties of ±0.01 for both

x andy, yielding uncertainty in z of +0.5001, -0.3001.

With the lA evaluation of the multiplication mapping intervals to intervals, clearly com

plex calculations can be tackled by simply performing lA for each operation, feeding inter

vals obtained in one stage of the calculation into the next. This however is where lA begins

to experience difficulty. While it so happens that the ranges obtained in Figure 2.7 are in

fact tight, this is only due to the lack of interdependencies between intennediates in the

calculation. lA is incapable of retaining any correlation information between variables and

as a result overestimates the range when correlations are involved, a phenomenon known

as range inflation. To make matters worse, each subsequent stage of the calculation further

compounds the overestimation, exacerbating the range inflation effect. Some attempts to

mitigate this have been undertaken by recognizing that the degree of overestimation is cor

related to the size of the interval, giving rise to so called multi-interval analysis [8]. This

approach separates each input variable into a number of intervals instead of just one and

independent lA is performed on each sub-interval and the results across all sub-intervals

36

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

-1 :S '-? :S 1
[·20 .. 30] -+ 5 + 25£1
[-10 .. 20]-+ 5 + 15£2

Rana Precision
.... w- rS w .s

tn tn tn .3 J tn
N N

0 q+ + + c) +.., .., .., 0 ..,

25+12~+7~

+ 375£8

[-550 .. 600] vs. [-400..600] 0.05~ + 0.05£4 +
+ 0.25£5 + 0.15£a

+ 0.0001£7

[-0.5001 .. 0.5001] vs. (-0.3001 ..0.5001]

Figure 2.8: Example of affine arithmetic (AA) operation.

are merged. While over inflation is reduced, the method does not scale to the point of elim

inating it. To address this, a means of keeping track of correlations is required, and such a

method is detailed next.

Affine Arithmetic

Keeping track of correlations between variables enables those correlations to cancel when

recombined at later points in a calculation, thus mitigating range inflation. One approach

to this which retains first order approximations is known as affine arithmetic (AA) [119]. In

AA, a fixed interval is replaced by an affine expression in a variable (e.g., e) over the range

37

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

[-1 .. 1], and affine expressions are propagated and compounded throughout the calculation

([80] provides a good summary of affine approximations for common operations). This

enables dependencies which operate in opposing directions to cancel each other out when

combined, thereby reducing overestimation of the resultant range.

Figure 2.8 illustrates the concept using the same example calculation from Figure 2.7.

The ranges of {xi- 20:::; x:::; 30} and {yl-10:::; y:::; 20} are mapped to affine expressions

x = 5 +25el andy = 5 + 15e2, where -1 :::; £1,£2 :::; 1. As before, the left half of the figure

shows the range aspect, and the expression for z is obtained as:

Due to the cross term however, this expression is not itself affine and as such could not be

propagated as is under the AA paradigm. This can be dealt with in a number of ways, one

of which is to note that £1 x e2 can itself take on values [-1 .. 1], and so to assign a new

epsilon term - specifically es in the figure.

Having now an affine expression instead of a simple interval for each intermediate, the

limits on any intermediate can be obtained by pushing the affine expression to its maximum

and minimum e.g., for the lower limit set each £? in the expression with a negative coeffi

cient to +1 and each a positive one with -1, and vice-versa for the upper limit. The left

half of the figure demonstrates the limits obtained in this way to be [-550.. 600]. Examin

ing the right side of the figure, the same process as before has been employed to derive the

precision expressions, and the affine expressions for the inputs are propagated through just

as for the range, along with the numerical limits.

It is important to note that while the numerical bounds on z and & produce larger

ranges than those obtained by lA, what differs is in the corresponding expression. With

AA, dependency information relating to x and y is retained, leaving the chance for them to

cancel at a later point. Many approaches to the data representation problem use AA at their

core, and they are differentiated primarily in how they deal with non-affine terms which

arise due to non-affine operations, as well as how to recast complex affine expressions to

simpler ones when they become unwieldy.

While AA has been proven to generate tighter ranges than lA, and therefore more com

pact data representations [98, 100, 106], retention of correlations is still limited to the first

38

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

order (linear correlations). As a result, whenever strongly non-affine operations (i.e., with

high curvature) occur, AA is not able to keep up with the degree of the correlations and

as a result can severely overestimate ranges. A particular case of this is division, which

also causes problems due to range inversion - the property of division that large numbers in

the denominator are mapped to larger numbers in the quotient and vice-versa. Yet another

problem with division is if range overestimation extends the range of the denominator to

include zero. Consider the following example:

a E [0.01, 100] a+-- 50.005 +49.995e1 lA vs.AA

1/a +-- 50.005-0.0049995£1 +

1/a E [0.01, 100] [0.01, 100] vs. [-49.98, 149.99]

99.980001 ez
(a)(1/a) ~ 2500.4+ 2499.8el +

(a)(1/a) = 1 [10-4, 104] vs. [-9998, 14998]
4999.5e2 - 0.125e3 +4998.5e4

where affine approximations for 1/a and (a)(1/a) from [80] are used. The range for the

reciprocal 1/a is not overestimated too badly at about twice the width of the true interval.

When this reciprocal is multiplied by the original a, the result should be 1, but the AA

expression yields a much larger range, worse even than lA. While the examples earlier ex

cused slight overestimation of wider ranges produced by AA over lA in favour of retaining

the correlations, this case does not experience any of that benefit. Notice that the only e

from the (a)(l/a) expression actually correlated to a is e1with coefficient 2499.8 or about

20% of the resultant range. The problems actually arise as soon as the calculation of the re

ciprocal, where it is clear that the resultant range is dominated by the newly introduced ez,
uncorrelated to e1. What makes this overestimation more serious is that a strictly positive

interval (recognized even by lA) is now approximated as one containing zero, meaning no

subsequent division may use this variable as the denominator. While the dominant appli

cation domains for AA tend to use division seldom [33] - accounting partly for the success

of AA in said applications - the division operation is a staple of scientific computing and as

such must be addressed in a satisfactory way, and such is a goal of this thesis.

39

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

Symbolic and polynomial techniques

While the goal of lA and AA has been to retain correlations between variables to a greater

degree, some symbolic methods have been proposed as well to address this shortcoming. In

[24] error expressions are generated through perturbation and linearized for simplification.

Symbolic differentiation is compared to AA as well as AA with scalar coefficients replaced

by intervals, known as general interval analysis (GIA) in [23] and partial derivatives are

used by [125] while symbolic noise models are used by [1, 129]. While in many cases

these approaches can outperform lA and AA, when the dataflow becomes complex, scala

bility can suffer badly and a tradeoff between error bound tightness and run-time must be

reached, such as made possible by the linearization in [24]. However, in some cases tech

niques which pertain specifically to a given class of calculations may be useful, such is the

case with [116] which deals with polynomials. Because of their importance and ubiquity,

polynomials are the target of many approaches as detailed below.

In addition to lA and AA, as well as the symbolic methods above, which are meant

to be applicable to any operation (no matter how poorly performing), there is a set of ap

proaches which focus directly on polynomials and use their properties derive more suitable

implementations in high level synthesis. Leveraging the properties of fixed-point represen

tations in this context (which resemble finite fields), more efficient representations can be

derived. Approaches are diverse and include arithmetic transform [102, 107, 108], vanish

ing polynomials [43] and factorization with multivariate Grobner basis [104] and common

subexpression elimination [53, 54].

All these methods operate by replacing a polynomial with another which is equivalent

(within desired accuracy bounds) over the limited region of interest in the inputs. They

have been applied to fixed-point data types only, and extensions beyond polynomials are

made through Taylor series (which is itself polynomial). Although Taylor series approx

imations for large, complex dataflows may not be feasible over desired dynamic range in

some scientific applications, these methods do offer robustness. Furthermore, Taylor series

approximation of functions (e.g. a small block) occurs frequently in scientific computing,

and the methods above can explore the extra dimension of error in the function approxi

mation and thereby perhaps achieve smaller bit-widths. As a result, they can be used in a

40

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

complementary way with automated data representation for scientific applications. A sim

ple example is to use such methods to obtain a functional unit for a trigonometric function

with clearly defined error behaviour which can be used as a black-box unit for applications

analyzed under the approach described in this thesis.

Support for iterative methods

While the above formal methods have been applied extensively in the digital signal pro

cessing (DSP) domain, it has been emphasized that adoption has been limited in scientific

computing. Ill-conditioned operators such as division near zero are essentially untreated,

and only strictly linear iterative methods in the context of DSP have had even a cursory

treatment (e.g. infinite impulse response filters [33, 80]). Lack of support for these two

key characteristics of scientific calculations has significantly hindered the use of analytical

methods for custom representations in this domain.

As a result, empirical methods have historically been used to obtain custom representa

tions for numerical methods. The simulation based nature of empirical methods allows

them to support virtually any application, since the range and precision information is

derived directly from its execution. For example, a recent application of real-time finite

element method modelling for haptic feedback [81] used this approach to obtain custom

representations. These custom representations were required to achieve a high enough de

gree of parallelism to satisfy the real-time constraint.

At the same time however, the need for robust representations has been shown, and sim

ulation based methods are unable to support this robustness. Furthermore, when iterative

methods are used to replace exact solutions to difficult problems, the run-time can be very

long [113]. In this case, the already extensive times required by simulation based methods

are amplified due to the execution of each case requiring a longer time. On top of this, more

cases are required to achieve good coverage of calculation scenarios, because variables in

each iteration should be considered unique - scaling the complexity of the calculation with

the number of iterations until termination.

41

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

2.3 Summary

In this chapter different approaches to accelerating computational tasks have been pre

sented. Among these, custom and reconfigurable hardware accelerators based on FPGAs

have been identified as providing a favourable performance/cost tradeoff. The implemen

tation effort for porting applications to these FPGA-based accelerators is eased by CAD

support, and one key step in the design process to enable higher performance is the assign

ment of custom data representations.

Existing work on this custom representation step has been on one of two fronts. On

one front are simulation based methods which require extensive execution times and do

not guarantee robustness. On the other front are existing analytical techniques which focus

primarily on linear time invariant (LTI) systems such as in DSP, and do not provide support

or ill-conditioned operators or iterative methods.

Since all three of these properties (robustness requirements, ill-conditioned operators

and iterative methods) are characteristic of general scientific computing applications, the

existing approaches cannot provide support for deriving custom representations when port

ing scientific applications to FPGA-based hardware accelerators. The rest of this thesis

details the method proposed to satisfy these criteria.

42

Chapter 3

Satisfiability-Modulo Theories for the

range problem

This chapter begins with a motivational example highlighting the shortcomings of existing

approaches to solving the range determination aspect of the automated representation prob

lem. Thereafter, the computational framework of Satisfiability-Modulo Theories (SMT)

is introduced, including solver operation. Building on this foundation, SMT is applied at

the core of the range refinement method [65, 68] targeted at the range aspect of automated

representation. Application of the method is demonstrated on a number of case studies.

3.1 Motivation

Let d and r be vectors E IR4, where for both vectors, each component lies in the range

[-100, 100]. Suppose we have:

Zl d· r z - - - -___,..,...----,=
- Z2 - 1+lid- rll 2

and we want to determine the range of z for integer bit-width allocation (i.e., solve the

range problem). Table 3.1 shows the ranges obtained from simulation, affine arithmetic

and the proposed method. Notice that simulation underestimates the range by 2 bits after

540 seconds,~ 5x the execution time of the proposed method (98 seconds). This happens

because only a very small but still important fraction of the input space where d and r

43

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 3.1: Motivational example.

Var.
Empirical Formal
Simulation Affine Proposed

Range Bits Range Bits Range Bits
Zl [-3.7e4,3.7e4] 17 [-4e4,4e4] 17 [-4e4,4e4] 17

Z2 [1, 1.4e5] 18 [-8e4, 1.6e5] 18 [0,1.6e5] 18
z [0,1e4] 14 00 - [-864,4e4] 16

are identical (to reduce zz) and large (to increase zt) will maximize z. In contrast, the

formal methods always give hard bounds but because the affine estimation of the range of

the denominator contains zero, affine arithmetic cannot provide a range for the quotient

z. It will be shown that this scenario is handled correctly by the method proposed in this

chapter which maintains all the benefits of analytical (formal) methods while at the same

time visibly tightening the range of the operands. The key to this is the application of the

recent developments in SAT-Modulo Theory and details of its operation are discussed next.

3.2 Fundamentals of SAT-Modulo Theories

Since the SAT-Modulo theory is an extension of the concept of Boolean SAT, this section

begins with a refresher of the Boolean satisfiability problem. Building on this, extensions to

other logic systems are described in Section 3.2.2, and basic solver principles are explained

in Section 3.2.3.

3.2.1 Boolean SAT refresher

Boolean satisfiability (SAT) is a well known problem which seeks to answer whether for

a given set of clauses (disjunctions) in a set of literals (boolean variables and their com

plements), there exists an assignment of those variables such that all the clauses are (their

conjunction is) true. The variant of SAT where all clauses contain 3 literals (3SAT) is

44

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

known to be NP-complete [103]. As an example of a SAT instance, take Boolean variables

x, y and z and clauses

{x,y}, {y,z}, {x,z}, {x,y,z}, {x,y,z}, {x,Y,z}

which comprise an unsatisfiable instance because no assignment produces at least one true

literal in each clause. To prove this consider that if we assign x = 1, propagating yields a

reduced instance:

{y }, {y,z}, {z}

since each clause containing x is true regardless of the other literals, and the value of the

clauses containing x depends only on the other literals in those clauses. However the first

and third of these remaining clauses necessitate y = 1 and z = 0 for satisfiability, but these

assignments invalidate the second clause. From this we can infer that no satisfying assign

ment exists having x = 1. Considering now x = 0, the same reasoning as above can be used

to reduce the instance to:

{y,z}, {y,z}, {y,z}, {y,z}.

Now, assigning either y = 0 or y = 1 yields { z,}, {z} which is a contradiction and thus

unsatisfiable since y must be either 0 or 1 and neither is satisfiable, we can conclude that

no satisfying assignment exists having x = 0. Repeated application of this reasoning on x

indicates the entire instance is unsatisfiable.

Many Boolean SAT solver implementations (e.g. zChaff [105] and MiniSat [32]) oper

ate along the same lines as the above example, applying two step recursion: a Decision step

where a variable is selected upon which to branch, and a Propagation step which applies

the result of the decision step to all affected clauses, inferring values (using the rules of

Boolean logic) for other variables as appropriate. When a contradiction arises (a clause

with all literals decidedly untrue), the solver backtracks and reverses an assignment. At

any point where all variables are decided (or inferred) and there is no contradiction, the

problem is solved and the satisfying assignment is precisely the sequence of decisions (or

inferences) on the variables. Ifon the other hand, the entire assignment space has been cov

ered, leading to a contradiction in each case, the instance is concluded to be unsatisfiable.

In this case, the cover of the assignment space serves as a proof of unsatisfiability.

45

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

3.2.2 Extending to other logics

By extending the Boolean SAT concepts of the previous section to other first-order logic

systems, SAT-Modulo theories (SMT) arise. Under the theory of real numbers, Boolean

variables are replaced with real variables and clauses are replaced with constraints. This

gives rise to instances such as: does there exist an assignment ofx,y,z E 1R for whichx > 10,

y > 25, z < 30 and z =x +y. For this example there is not i.e., this instance is unsatis.fiable.

As the above example reflects, instances are given in terms of variables with accompa

nying ranges and constraints. As in the case of Boolean SAT, the solver attempts to find an

assignment on the input variables (inside the ranges) for which all the constraints are satis

fied. Also like Boolean SAT, most implementations follow a 2-step model in which: 1) the

Decision step selects a variable, splits its range into two, and temporarily discards one of

the sub-ranges then 2) the Propagation step infers ranges of other variables from the newly

split range. Unsatisfiability of a subcase is proven when the range for any variable becomes

empty which leads to backtracking (evaluation of a previously discarded portion of a split).

Again, akin to Boolean SAT, the solver proceeds in this way until it has either found a

satisfying assignment or unsatisfiability has been proven over the entire specified domain.

The next section provides more detailed insight into SMT solver operation, particularly as

it pertains to the problem of range refinement.

3.2.3 Solver operation

As the previous section has highlighted, the operation of SMT solvers is closely analogous

to that of Boolean SAT solvers. Where the SMT solver operation does differ significantly

from Boolean SAT is in how the range inferences for variables are made. Variable values

are no longer restricted to 0 or 1 as in Boolean SAT, and any reasoning system rooted in

the logic over which the solver operates (e.g., the real numbers) may be used. Due to its

simplicity which enables very fast inferences (which is crucial for fast solver operations),

interval arithmetic (lA, as detailed in Section 2.2.2) has been adopted for some state-of

the-art solvers for variable range inference.

Figure 3.1 shows how range inference based on lA proceeds for the addition operator.

Note that unlike basic lA which only supports forward propagation (inferring c' from a, b),

46

I
+

+
[a'L..a'H]

[cL..cH]

+
[c'L..c'HJ

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[aL..aH] [bL..bH] [cl..cH] = [aL..aH] + [bL..bH]

+ +
[b'L..b'H] [c'l..c'H] = [a'L..a'H] + [b'L..b'H)t a ~ a'L = max(al, cL- bH):0

;ii~ a'H = mln(aH, cH- bl)~
:0

I
0 ~~ b'L = max(bl, cL- aH)

b'H = mln(bH, cH - aL)

c'L = max(cl, aL + bl)
c'H = mln(cH, aH + bH)

Figure 3.1: Inferring intervals of variables for the addition operator.

reverse propagation (inferring a' from b,c and b' from a, c) is also supported here. This

allows information from deeper in the datapath (e.g., if there were a constraint on c) to

provide information on values earlier in the datapath (e.g. a and b).

When dealing with an entire instance (dataflows + constraints, as opposed to a single

operation as in Figure 3.1), the inference is performed iteratively. Figure 3.2 illustrates the

concept for a simple instance:

- 100 ::; X ::; 100 -100 ::; y ::; 1 00

z xy
T+Y2 z>0.6.

In the figure, each node labeled (a) to (m) is either a variable, a constant (interval) or an

operation - each corresponding to a part of the instance above. For example, node (f) near

the middle of the figure corresponds to the addition in the denominator of the expression

for z above, and node (m) on the right hand side of the figure corresponds to the constant

0.6 in the constraint z > 0.6 above.

Associated with each node is a sequence of intervals numbered (1) to (7). These indicate

how the interval associated with that node evolves through each iteration of inference (1-7

for this example). Nodes for constants and input variables have their ranges known before

entering the first iteration (they are defined as part of the instance), and all the rest are

47

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

- FORWARD __.
~

(1) [·100,100]
(2) [-100, 100]
(3) [-100,100)
(4)
(5)
(6)

(1) [-inf,inf]
(2) [0,1e4]
(3) [0, 1e4]
(4) [0,1e4]
(5) "
(6)
(7) [0,1e4]

(1) [-inf,inf]
(2) "
(3) [0,2e4]
(4) [0,2e4]
(5) "
(6) [0, 1.67e4]
(7) [0, 1.67e4]

" - Unprocessed Interval
[?, ?) - Processed Interval
[?,?]-Updated Interval
(a-m) - Node Name
(1-7) -Iteration Number

... REVERSE
(7) [-100,100)

(1) [-inf,inf]
(2) [·1e4,1e4]
(3) [-1e4,1e4]
(4) "
(5)
(6) [0,1e4]
(7) [0,1e4] ~

[0.6,0.6](1)
[0.6,0.6) (2)
[0.6,0.6) (3)

" (4)
(5)
(6)
(7)

(1) [·100,100]
(2) [-100, 100]
(3) [-100,100)
(4) "
(5)
(6)
(7) [-100,100]

(1) [-inf,inf]
(2) [0,1e4]
(3) [0,1e4)
(4) [0,1e4]
(5)
(6)

~
(h)

(1) [-inf,inf]
(2)
(3)

(1) [-inf,inf]
(2) [0.6,inf]
(3) [0.6,inf]

(7) [0,1e4) (4) [0.6,inf] (4) [0.6,inf]
(5) [0.6,inf] (5) "

Note: Whenever an interval is updated, (6) [0.6,inf] (6)
all its neighbours are processed in the

(7) (7)
subsequent iteration

Figure 3.2: Inferring intervals in a full dataflow.

48

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

assigned [-oo,oo] ([-inf,inf] in the figure). In each iteration, not all nodes are processed as

any node whose neighbours have not changed will not change. These unprocessed nodes

are indicated in the figure by a quotation mark (") in place of the interval to show no actual

processing. For nodes that are actually processed (at least one neighbour changed in the

last iteration), processing may lead to the same range, or the range may be reduced, which

is indicated in the figure by bold-face intervals.

The inference of intervals for an entire instance is then the culmination of the iterations

(of which there are seven for this example). At the onset, all intervals are set to [-oo,oo],

and then known intervals from input variables and constants are applied (x, y, 0.6) and those

nodes are "marked" to indicate their ranges have contracted. This is shown in the figure in

the set of intervals with label (1) over all the nodes. In the next iteration, we can see that

nodes (f), (g), (h) and (j) are not updated (as indicated by the ") none of their neighbours

are "marked" (contain a bold interval) so there is nothing to drive a change for them.

All the other nodes- i.e., (a), (b), (c), (d), (e) and (k) -are processed due to having a

marked neighbour. The node processing is just interval inference for a single operation,

the process illustrated in Figure 3.1 for addition. To reiterate that process: each operand's

interval is the intersection of its current interval with its inferred interval assuming the

intervals for the other operands. If any of the intervals contracts (as it does for (c), (d), (e)

and (k) in iteration 2), the node is marked so that the interval changes can be propagated to

the neighbours in the next iteration.

The above procedure of iterative forward and backward interval inference on an en

tire instance will eventually terminate (the intervals either contract or remain the same,

and a machine-epsilon can be used to avoid infinitesimal advances) yielding one of two

outcomes. If an empty interval can be established at any node, we can immediately infer

emptiness of every interval and thus the instance is unsatis.fiable. The alternative result is a

set of intervals (one for each node) which bound the space (most likely loosely) in which

all the constraints are satisfied, providing a (most likely overestimated) interval for each

intermediate. The latter is the case for our example, at the end of the seventh iteration none

of the nodes are marked, so the remaining intervals bound the set of (x,y,z) triplets which

satisfy the constraints. All iterations from first assignment to stabilization (1 to 7 in our

example) forms one inference referred to in the context of a solver as the propagation step.

49

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Decision step

We have now established above the necessary machinery to carry over what is simple bi

nary logic reasoning in the Boolean domain into the domain of extended logics (where

SMT resides) in forming the propagation step. To see the need for the other kind of step

(decision step), consider that in the specific case of Figure 3.2, we have termination with

a set of intervals at iteration 7. At the same time however, for this example we can derive

analytically the range of z through the substitutions x = rcos(B) andy= rsin(B) yielding:

xy ?cos(B)sin(B) . 1.
z = = . z = cos(e) sin(e) z = - sin (2 e)2 2 2 2 2 2

X +Y r COS ((J) + r Sin ((J) 2

which is limited in range to -0.5 :::; z:::; 0.5 and thus based on this fact, the instance is

clearly unsatisfiable ([0.6, oo] n [-0.5 ..0.5] = 0). The disparity between this true interval

of [-0.5 ..0.5] and the interval reported by the propagation arises from data dependencies

which the lA based inference cannot retain beyond one operation. Through the decision

step, the solver more closely examines smaller partitions of the assignment space to search

for inconsistencies which are masked by the lack of dependence retention exhibited by lA.

Because the central contribution to automated data representation of this thesis is built

upon SMT, in order to concretize the concepts of SMT instances and solver operation an

example is provided in Figure 3.3. Building on the same instance used earlier of z = ::f!-::r,
X +y

Figure 3.2 becomes one Propagation step from Figure 3.3, and the large boxes indicate

computed intervals for (an important subset of) nodes within the calculation instance.

These ranges are computed at each node of the decision graph at the centre of the figure

illustrating the sequence of Decision steps for a search where the branching and backtrack

ing protocols are taken for granted for the sake of the example. In practice, both branching

and backtracking decisions are complex, with a number of options having varying impacts

on search efficiency. Due to their complexity, they have been abstracted so as not to distract

from the main purpose of the example which is to show how decision and propagation steps

are employed to decide an instance.

Each node in Figure 3.3 represents a subspace of assignments over all intermediate

nodes of Figure 3.2, and a decision splits the interval of one of those intermediates into a

number of sub-intervals - one per child node - the union of which is the original interval. An

50

••••

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

0 1-100 . 100 1 01 o . 1e4 I
(a) 	 I •, • I (c) • 10.06, 1e4l

I ' . ' I I ' . ' I
f.:'\1-100. 1001 nl o.1 ,1.87ooiJ

(bl\!..111 •• ·.·.II (1)\VII •• ·.·.II

r.::-J o . 184 I 1 o.6 . int 1
<"lGI •• · ·.I (g)0! o.6 . 1o5 1

1 · I I 0.6 ,8.3584]
r::;::-.1 o 1e4 I f:\1 0.6 . inf I

(e) \..V I • • I Ql \V I 0.6 . 1o5 I
I ' . ' I I o.6 ,8.3584J

1-100 . 100 1 01 0.06 . 1e4 I
(a) [-91.4 , 91.4 1 (c) • [0.06 ,8.35e3)

0 I ' . ' I I ' . ' I

8 1-100 . 100 1 81 0.1 ,8.3&o3J
(b) l-91.4 . 91.4 I <~ + I • . • I

I ' . ' I I ' . ' I

e! o . 1e4 I 1 o.6 . 1o5 I
(d) [0 '8.35e3) (g) 0 [0.6 '8.35e4j

I ' · ' I I ' . ' I
r::;::-.1 o . 1e4 I f:\1 0.6 . 1o5 I

(e)\..V 1 o, -~-3~ UJ \V ([0.~ ,8.35,e41
1 1 1

:::~:~er :~~::~ ::~::~i -~-~~

\!..1[-,-1 \:./[-.-1
r::;::-.1 0 ,8.35e3) 0[0.6 ,8.35e4j

(d) \..V I 0 ,6.97e3) (g) 1 [0.6 ,4. 18&41
I- · -I I- . -I

r::;::-.1 o .s.35e3J f:\1 o.6 . s.3584J

0 1-91.4. 91.41 81 0.1 .s.35e3)
(b) I ' . ' I <~ + I ' . ' I

I - . - I I - . - I D-5a (c) : D-5b (c) :

<dl~:~~::.... .:~11 <gl~:~~~ ::~~~••••---·~P.0-1ea3,9.5e3] hP.5e·b3, 1e4]

(e)~.._VII :_ ·. :_II Ql\VII :_ ·. :_II

1-100 . -50.1 I o!i.01e3, 0.6e3l
(a) [' , ' I (c) • [' , ' I

0 I- . -I I- . -I

0 1-1oo . -50.1 1 8J8.35e3. 1.67e4J
(b) I • . • I <~ + J8.35e3, 1.58e4J

I- . -I I- . -I
r;:;::-.~-51e3. 184 I 1 o.6 . 1.2 1

(dl~.._VI '. 'I (g)0[o.6 .1.1411 - · -I I- . -I

e[2.51o3. 1e4 1 01 0.6 . 1.2 I
(e) I · . · I OJ z I o.6 . 1.14 I

I- . -I I- . -I

5 0
'::::1 5

--	 o~ro:
·-------.•• _ [0. 1, 1.67e4]

D-2

~
P = Propagation~~~..................................

D =Decision

D-2a(f): Dl -1oo . 100 1 01 o.06 . 1e4 I
(a) I...:/ [I ••.. •• II (c) ' ~-01,e3,. 1~ 1[0.1,8.35e3J Split (f) 1
Dl -1oo . 100 1 nf'.3&e3, U7ooiJ

(b)\!..111 •• ·.·.II (1)\VI! •• ·. •• JJ·s~~c(j}f' .,~,";;..1 o , 184 J C) 0.6 . 1o5 1
(d) 1 • , • J (g) 1 o.6 . 1.2 J0
e

[2.51e3. 1e4 J I ' . ' l
l 0 ' 1e4 J 0[0.6 ' 1o5 J

(e) [• . • J Ul z [0.6 , 1.2 JD-3a (c) : D-3b (c) :
[2.51e3, 1e4 J [• ' • J

--~~~~~
[&a • 100 l 015.01e3, 184 I

(a) [50.1 , 100 I (c) • [- , - I---~oe::::..,~_~-4_8.1::_~8.35e4] B
0 I- . -I I- . -I
Dl -1oo . 100 1 r->.J8.35e3, 1.67e4J

1D-4c (a) : (b) \!..I 1150_2 .. ~ 11 (1) \V 11 :_ . , :_ 11

···· 	 (50,100] r::;::-.1 o . 184 I 01 o.6 1.2 I

Incoming range to the
propagation stage

Range after propagation
but before decision

" : same as incoming
--- : empty, unsatisfiable

Cumulative range
returned from children

Constraint e1 	 n : same as after propagation
(f)> 0.1 --- : empty, unsatisfiable

-··· D 4a (a) ·
(e)~.._VI[':_ -~·9:.e3)l Ol\V[[O~ ,~.1~~---·········/ - . I · -I I -ID-4b (a) ·. (dli...V J2.S1e3. 184 1 (gl 1 1 • • 1

0[·91.4' 91.4 I 0(4.18e3,8.3&ooiJ D-5 011

-

100

.

501 (50 50] r::;::-.1 o . 1e4 I f:\1 0.6 . 1.2 I6 P-4C <•l~.._V J2.51e3. 1e4 1 m\V 1 • . • I

(a)
1
1 :_ ·. :_

1
1 (c) ,

1
1 :_ ·. :_

1
1 Split (c) P-S .· ··•·•... o--------..._________ ~(::a)::0::::[::1~::[_:::~:::_=__·:::~::~::]1=:::(c::)0::·::::~::,:::~::::-':::_1e4=~=~=,:~

0 1·100 . 100 1

8

[8.35e3. 1.67e4J
(b) I - . - I <~ + I - . - I

I- . -I I- . -I
r::;::-.1 o . 1e4 I

0

1 o.6 , 1.2 1
(d)~.._V[- • - I (g) I [- . - I

I- . -I I- . -I

@I o . 184 I 01 0.6 . 1.2 I
(e) 1-.-IOlZI-.-1

I- . -I I- . -I

r--J-100' ~ l ~.01e3, 1e4 J
<•l~...:JI·100. -50.1J <clQI • . • 1

[• ' • J [5.01e3' 9.5e3]
Dl -1oo . 1oo 1 nJ8.35e3, 1.s1e4J

(bl\!..11·100. -50.1] (1)\V! • . • I
[• ' • J [8.35e3' 1.58e4)

r::;::-.1 0 ' 184 J 0[0.6 ' 1.2 J
(d)I.._V ~.51e3. 1e4 J (g) I • . ' J

I ' . ' I I o.6 . 1.14 J
d 0 ' 1e4 J '-"[0.6 ' 1.2 J

(e)G[2.51e3, 1e4] 0)\V[• , •]
I • . • J 1 o.6 , 1.14 I

Figure 3.3: SMT solver example.

0 1-100 . -50.1 1 o[I.So3 , 1o4 l
(a) 1-.-l(c)'[-.-1

I- . -I I- . -I

0 1-1oo . -50.1 1 8J8.35e3. 1.67e4J
(b) [-.-1(~+1-.-1

I- . -I I- . -I
r;:;::-.J2.51e3, 1e4 I

0
1 0.6 . 1.2 1

(dJ~.._VI- · -I (g) I I- . -I
I- . -I I- . -I

~.51e3. 	 1e4 I 01 o.6 . 1.2 I
(e) I - . - I Ol z I - . - Ie I- . -I I- . -I

51

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

exception to this occurs when additional constraints are provided via the solver, in which

case the union of sub-intervals is the interval of interest. Taking for granted decisions in

Figure 3.3 for the sake of the example, decision 1 illustrates the above mentioned constraint

type of decision. In this case, we only care about solutions with (f) 2:: 0.1 At each node,

the edge along which the node is entered contains a search sub-interval for a particular

intermediate of the instance (the one on which branching has occurred), and upon entering

the node the following is done:

1. 	 Assign intervals of the parent to each intermediate, except the one indicated by the

incoming edge, use the search sub-interval there. These intervals are captured for

each search node in the first of the triplet associated with each intermediate ((a)-(j)).

2. Propagate the search sub-interval through the calculation using the procedure out

lined in Figure 3.2. The resulting intervals are captured for each search node in the

second of the triplet associated with each intermediate ((a)-(j)).

3. 	Ifnot branching further (this is a leaf), return interval resulting from the propagation

for each intermediate. Further branching is guaranteed not to occur if the propagation

of the previous step returns empty intervals (i.e. unsatisfiable).

4. 	Ifbranching further, decide upon a new intermediate and how to split it, form a child

for each sub-interval and recurse to each child.

5. Once all children have been visited, return for each intermediate the union of the

intervals returned for that intermediate over the traversals to all the children.

Traversal of the entire tree (returning from the root node) when every single leaf node has

empty intervals will yield the union of empty intervals and therefore unsatisfiability of the

instance. Otherwise, the instance is declared satisfiable and delivers (potentially reduced)

intervals for each intermediate within which a satisfying assignment will lie.

Each of these steps above is reflected in the figure. Steps 1 and 2 can be seen in each

box, where the intervals in the first of each triplet are copied from the second triplet for the

same intermediate of the parent, except the search sub-interval (indicated in bold for each

box) informed by the incoming edge, and the second of each triplet is obtained through

52

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

propagation. Step 3 is shown in the boxes for nodes labeled as Propagation 3a, 3b, 5a,

5b, 4b and 4c - with 4b and 5b unsatisfiable. While no explicit branching mechanism

is described, Step 4 is embodied in all the edges in the search graph - in particular note

that Decision 4 splits (a) into 3 parts covering (a) instead of two parts like all other splits.

Finally, Step 5 can be seen in all boxes (except the leaf nodes) as well, but is most clearly

seen in the lower bounds for third triplets of (d) and (e) of the Propagation 4 node. Of the

three children of this node, two resulted in lower limits of 2.5le3 for (d) and (e), and one

resulted in unsatisfiable, so 2.51e3 is passed up the tree as the new lower limit.

Having now described the fundamentals necessary to understand the operation of SMT

solvers, two points stand to be made before turning to their role in automated data rep

resentation. First, as mentioned above, there are many schemes which may be employed

for deciding whether to branch or backtrack, and when branching where to split and how.

Research into this topic belongs to the field of SMT solver design and is beyond the scope

of this thesis. In fact, in order to focus on the automated representation problem, as proof

of concept we invoke an off-the-shelf solver [35, 96] for the work in this chapter, as well

as Chapter 2. In Chapter 5, both this off-the-shelf solver as well as a custom, in-house

developed solver are used.

The second important point is that when a set of constraints defining a dataflow is

augmented with a constraint such as z > 0.6 (nodes (j),(k),(m) in Figures 3.2 and 3.3), the

result of the decision problem indicates reliability of the constant as a bound (upper bound

of 0.6 on z in this case). Thus SMT can be used as a bounds checking engine, which is

exactly its role in the automated data representation problem, the topic to which we turn in

the next section.

3.3 Range refinement using SMT

Building on the framework of the previous section, an SMT engine can be used to prove

or disprove validity of a bound on a given expression by checking for satisfiability. This

section details how such bounds proving is accomplished and how it can be used as the

core of a procedure addressing the range determination problem.

53

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Start Obtain range

NO

[L, UJ tor var by
interval analysis

Figure 3.4: SAT/SMT range refinement of var.

Figure 3.4 illustrates the binary search method employed for range analysis on an in

termediate variable: var. Note that each SMT instance evaluated contains the inserted con

straint (var <limit or var >limit), like nodes G),(k) and (m) of Figures 3.2 and 3.3. The

loop on the left of the figure (between "limit= (Xl +X2)/2" and "X2- Xl <thresh?")

narrows in on the lower bound L, maintaining X 1 less than or equal to the true (and as yet

unknown) lower bound. Each time satisfiability is proven (SAT path), X2 is updated while

Xl is updated in cases of unsatisfiability (UNSAT path), until the gap between Xl and X2

is less than a user specified threshold (the role of the TIME path and the values IL and IU

will be discussed below in Section 3.3.2). Subsequently, the loop on the right performs the

same search on the upper bound U, maintaining X2 greater than or equal to the true upper

54

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

bound. Since the SMT solver works on the full calculation, all interdependencies among

variables are taken into account (via the SMT constraints) so the new bounds successively

remove over-estimation in the original bounds resulting from the use of interval arithmetic.

Algorithm 3.1 RangeRefine

1: BaseSMTFormulation =CreateSMTinstance(CalculationSteps)
2: for (each var in InputVarList) do
3: Copy range of var from InputVarRanges into BaseSMT Formulation
4: end for
5: for (each var in IntermediateVarList) do
6: Refine range of var (Figure 3.4)
7: update IntermediateVarRanges for var
8: update BaseSMT Formulation with new range of var
9: end for

10: return lntermediateVarRanges

The overall range refinement process, Algorithm 3.1 operates on the dataflow named

CalculationSteps (with input variables in InputVarList having ranges InputVarRanges)

to produce refined ranges IntermediateVarRanges of the the intermediate variables in

IntermediateVarList. It is worth noting that while currently lntermediateVarList is or

dered according to first use in the dataflow, the ordering can impact SMT solver runtime

- a problem left for future exploration. The process uses the steps of the calculation and

the ranges of the input variables as constraints to set up the base SMT formulation (lines 1

and 2), like Figure 3.2 without nodes (j),(k) and (m). It is this base formulation into which

Insert constraint: from Figure 3.4 inserts, and the form of the constraint is like nodes (j),

(k) and (m) from Figure 3.2 (with> for upper and< for lower bounds). It iterates through

the intermediate variables (line 5) applying Figure 3.4 (line 6) to obtain a refined range for

that variable. Once all variables have been processed the algorithm returns ranges for the

intermediate variables (line 10).

3.3.1 Dealing with division

As discussed in Section 2.2, non-affine functions with high curvature cause problems for

AA, and while these are rare in the context of DSP (as confirmed by [33]) they occur

55

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

frequently in scientific computing and is particularly problematic due to range inversion

(quotient increases as divisor decreases). While AA tends to give reasonable (but still

overestimated) ranges for compounded multiplication since product terms and the corre

sponding affine expression grow in the same direction, this is not the case for division.

Furthermore, both lA and AA are unequipped to deal with divisors having a range that

includes zero.

Use of SMT mitigates these problems. Even for SMT solvers which do not support di

visions directly, divisions can be re-written as multiplication constraints, another advantage

of the constraint centric formulation. Furthermore, an additional constraint can be included

which restricts the divisor from coming near zero (like Decision 1 from Figure 3.3). Since

singularities such as division by zero result from the underlying math (i.e., are not a result

of the implementation) their effects do not belong to range/precision analysis and SMT

provides convenient circumvention during analysis. This technique is equally applicable

to other kinds of singularities such as those arising from logarithms or trigonometric func

tions. In such cases, the restriction constraints define the operating conditions over which

robustness is guaranteed.

3.3.2 Consideration of run-time

While leveraging the mathematical structure of the calculation enables SMT to provide

much better run-times than using Boolean SAT (where the entire data-path and numerical

constraints are modelled by clauses obfuscating the mathematical structure), run-time may

still become unacceptable as complexity of the calculation under analysis grows. To ad

dress this, a timeout is used to cancel the inquiry if it does not return before timeout expiry.

This is the meaning of the "TIME" path in Figure 3.4. Once timeout occurs, the bounds

obtained for that variable will not necessarily be tight however, because the timeout path

feeds into the satisfiability path, robustness will still be maintained- i.e., to assume satisfi

able gives pessimistic bounds. The purpose of the IL and IU values are to keep track of the

proven inside bounds- [L,U] must contain [IL,IU].

It should be noted that for lA and AA, once the range of an intermediate variable is

overestimated all subsequent variables which depend on it will also have overestimated

56

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

ranges due to the use of forward propagation only. A clear advantage of using SMT is

that this is no longer the case, the SMT solver views the entire calculation as a single

instance. As a result, information inferred about the range of a particular variable can

be used to refine the range of a variable that precedes it in the data-path, an effect which

can be observed in Figure 3.3. Finally, by using a variable timeout, the tradeoff between

run-time and the tightness of the variables' bounds can be user controlled, as informed by

the [IL,IU] range. If this range is much smaller than [L,U], it is worthwhile to search in

more depth for that variable (by increasing the timeout) and furthermore, the work done to

determine [L, U] using a particular timeout can be reused for a larger timeout by starting

(for example) with a search range for L of [L,IL] instead of [L, U] (similarly for U).

3.4 Case studies and results

Given that the target application domain for this method is hardware acceleration for sci

entific computing, we seek to address specifically the problem of division which is known

both to be common in scientific calculations and to cause problems for existing methods.

For this reason, in this section we detail a few case studies involving division, as well as one

non-affine example from DSP, and we compare the results of basic AA and the proposed

SMT approach applied to these case studies.

The experiments in this section were carried out on 1.5 GHz Pentium 4 with 512 MB of

RAM running Gentoo Linux, using the freely available HySAT implementation [35, 96] as

the core SMT solver. Ranges were obtained using (unless otherwise specified) a timeout of

2 seconds, resulting in run-times for all cases on the order of 100 seconds. It is worth noting

that the same time that although the affine experiments are in some cases faster, speed does

not matter when support for the calculation is not provided by AA. In all cases the number

of bits needed for range [L, U] has been taken as flog2(U- L)l to facilitate evaluation of

the actual span of the numbers, taking into account also how they are centred. In almost all

cases however, the result is identical to taking flog2(max(ILI, IUI))l +a, where a is 0 if L

and U have the same sign, and 1 otherwise.

57

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 3.2: Affine vs. SAT-Modulo for energy spectral density.

Output
Affine SAT-Modulo

Range Bits Range Bits
0 [-1835008 '2097152] 22 [-1 '2097153] 22
1 ~2373666,2635814] 23 [-1 ' 1984106] 21
2 [-2269321 '2531463] 23 [-1 ' 1790022] 21
3 [-2373666' 2635814] 23 [-1 ' 2052757] 21
4 [-1835008 '2097152] 22 [-1 '2097153] 22
5 [-2373666' 2635814] 23 [-1 ' 1957096] 21
6 [-2269321 '2531463] 23 [-1' 1790023] 21
7 [-2373666' 2635814] 23 [-1 ' 2029555] 21

3.4.1 Energy spectral density

One application involving non-linearity which appears frequently in DSP is the calculation

of energy spectral density (ESD) for a signal [11]. ESD can be obtained as:

1
<I>(co) = nF (co)F* (co)

2

where F (co) indicates the Fourier Transform of the signal of interest, or the Fast Fourier

Transform (FFT) for discrete signals. Since the FFT itself is affine, AA provides exact

bounds on all intermediate variables however, the ESD involves magnitude of a complex

number (non-affine) leading to range overestimation.

In this experiment an 8-point FFT has been used, with each of the 8 inputs a complex

number in [-128, 128] + [-128, 128]i. While both AA and SMT provide exact bounds on

all intermediate variables in the FFT calculation, AA overestimates the magnitude (non

affine). Table 3.2 shows the ranges obtained from both AA and SMT when applied to each

of the 8 outputs of the ESD calculation (to obtain these ranges a solver timeout of 5 seconds

was used). Note that AA ranges are centered close to zero while SMT ranges start near zero

which is correct as only positive values would be expected.

Clearly for this calculation, AA provides good estimates of the ranges and thus the bit

widths, since only one level of non-affine calculations occurs. In light of the inclusion of

58

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[-30..50]

Figure 3.5: Data dependencies for Doppler effect case study.

a large range of numbers below zero, subsequent calculations relying on the ESD can be

expected to already begin experiencing range inflation, especially as more variable inter

dependencies arise. Consider also that division does not occur, as it does in the following

examples.

3.4.2 Doppler effect

The Doppler effect is the apparent change in frequency observed when a sound source

is in motion with respect to an observer [111]. For a given emitted frequency v and a

relative speed of u between the source and observer, the perceived frequency will be v' =
cv--;- (c +u) where c is the speed of sound in the medium. If the medium is air and we wish

to know how the rate of frequency change with respect to the relative speed u depends on

59

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

Table 3.3: Affine vs. SAT-Modulo for Doppler.

Output
Affine SAT-Modulo

Range Bits Range Bits
ql [313, 362] 6 [313, 362] 6
q2 [-473252, 7228000] 23 [6267, 7228000] 23
q3 [213, 462] 8 [213, 462] 8
q4 [25363 , 212890] 18 [45539, 212890] 18
z [-80,229] 9 [0, 138] 8

temperature, we have:
dv' -(331.4 +0.6T)vz- - - _....:...._______:~

- du - (331.4+0.6T+u)2

using the approximation for the speed of sound in air c ~ 331.4 + 0.6T, T in degrees

Celsius.

The overall calculation for this case study was broken into intermediate calculations as

follows:

q1 = 331.4+0.6T q2 = q1 v

q3 = ql +u q4 = q~ z = qz/q4

and the parameters that were used were:

• temperature: -30°C::; T::; 50°C,

• audible frequencies: 20Hz ::; v ::; 20000Hz,

• relative speed: -lOOm/s::; u::; lOOm/s.

This breakdown results in a fairly deep data-path as illustrated in Figure 3.5. Since AA

will tend to overestimate ranges of non-affine operations at each point, deep data-paths can

result in accumulated overestimations eventually becoming significant.

Observing Table 3.3, note that AA and SMT provide comparable ranges for all variables

except for z where the division occurs and where the bit-width is overestimated by 1 bit.

60

http:331.4+0.6T

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

Despite the fact that this calculation has fewer levels of intermediate variables than the

aforementioned ESD, and the fact that all upper bounds from AA were exact, the resultant

range was still overestimated, a prime example of the result of range inversion mentioned

in Section 3.3.1.

3.4.3 Analytic center

The analytic center of a set of inequality constraints is the point which maximizes the

distance (as defined by some distance metric) from all the constraint boundaries, and it

has applications in convex optimization. In particular (following an example from [10])

solving for the analytic center when using a distance metric based on a logarithmic penalty

function will give rise to calculations such as:

. 1
z[i] = d[i]a[i]· (C- P) d [l] = ---:-:------:--:--

b[i]- a[i]· C

where Cis the analytic center of the inequality constraints defined by a[i],b[i], and z[i]

reflects a penalty with respect to a[i],b[i] if C were moved toP.

Taking the specific case of 3 inequality constraints in JR2, we can expand these vector

equations into scalar ones:

. 1
q2[l] = -[.]ql l

fori E {1,2,3}. Under ranges of Cx,Cy,Px,Py E [-100, 100], and all ax[i],ay[i],b[i] E

[-10, 10], bit-widths obtained by using AA and SMT are compared in Table 3.4.

Notice in the table that AA is unable to determine a range for q2[i], and as a result

any intermediate variables that depend on q2 [i]. The reason for this is in the division of

which q2 [i] is the result, the range of the denominator contains 0 resulting in an infinite

range for the result. While the same issue in principle can occur for SMT, SMT provides

a convenient mechanism for ignoring this scenario while in the case of AA, adding such

constraints is inconvenient (when possible) and destroys the affine correlations, leading to

range explosion as happens in lA.

61

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

Table 3.4: Affine vs. SAT-Modulo for analytic center.

Output
Affine SAT-Modulo

Range Bits Range Bits
ql [i] [-2010' 2010] 12 [-2010' 2010] 12
q2[i] 00 - [-101 ' 101] 8
z[i] 00 - [-300557, 301544] 20

Disregarding this region around the singularity is permitted since the singularity occurs

also in double and even infinite precision, and thus is not relevant in determining the pre

cision required for representing the "well behaved" parts of the calculation. It is up to the

algorithm implementer to set the limits on how close (based on the application precision

requirements) to the singularity should be considered as part of the normal calculation; in

this case study we have used the constraint qf [i] ~ 0.0001.

Note finally for this case study that if we substitute the range obtained for q2[i] by

SMT into the affine formulation as a free variable, although we get a larger range of

[-400400,400400] for z[i], the number of bits required is the same. At the same time,

propagation of this larger range can lead to range overestimation deeper in the calculation

as it does in the next case study.

3.4.4 Euclidian projection

Another case study having applications in convex optimization/analysis is Euclidian pro

jection of a point or set of points onto a hyperplane, for instance to reduce the dimension

of a problem [1 0]. Given a hyperplane defined by a· x +b = 0, the projection of a point xO

is given by:

b-a·xO
P(xO) = xO+ a

a·a

62

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

Table 3.5: Affine vs. SAT-Modulo for Euclidian projection.

Output
Affine SAT-Modulo

Range Bits Range Bits

q1 [-3001 '3001] 13 [-3001 '3001] 13
qz [-3011 '3011] 13 [-3011 '3011] 13
q3 [0 '300] 9 [0' 301] 9
q4 00 - [-3033 '3019] 13
z 00 - [-465 '489] 10

If we choose the values for this case study to belong to JR3, the vector equations can be

expanded into scalar equations in a similar way as in Section 3.4.3:

q1 QjXi +ajXj +akXk

qz a~+a~+a~I }

q3 b-q1

q4
q3

qz
Zi Xi +q4ai

Zj Xj+q4aj

Zk xk+q4ak

using x in place ofxO, with ranges Xi,Xj,Xk E [-100, 100] and ai,aj,aklb E [-10, 10].

Note how in Table 3.5, AA starts off strong giving tight ranges for q1,qz and q3. How

ever, as in Section 3.4.3, the inclusion of 0 in the range for the denominator of a division

causes an indeterminate range for q4 and subsequent variables from AA. By applying the

same constraint as in that case, SMT is again able to provide meaningful ranges. What dif

fers however from the case study of Section 3.4.3 is that when the range for q4 as obtained

through SMT is substituted into the affine model as an input, AA returns the range of z[i]

as [-30424, 30424] requiring 16 bits for representation instead of 10. This confirms the

assertion that the main tool AA employs to determine tighter ranges is the propagation of

63

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

[-100..100]

Figure 3.6: Data dependencies for rational function case study.

first order variable dependencies, and when those dependencies do not survive the division,

ranges of subsequent variables are naturally overestimated.

3.4.5 A rational function

This case study employs a rational function such as those which arise when fitting curves

to experimental data [118]. Consider the following function and its derivative:

25t2 + 125 dzt -200t
Zl =

t2 + 1 Z2 = dt = (t2 + 1)2

over the range -100::; t ::; 100. It is worth noting that in addition to being common in

scientific computing, such calculations may also arise in an embedded system, e.g., as a

part of the model used for prediction/control.

64

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 3.6: Affine vs. SAT-Modulo for a rational function.

Output
Affine SAT-Modulo

Range Bits Range Bits
ql [125 '250125] 18 [124 ' 250126] 18

q2 [1 ' 10001] 14 [0' 10002] 14

q3 [-20000' 20000] 16 [-20001 '20001] 16

q4 [-24999999' 100020001] 27 [0 ' 1 00020008] 27

ZI [-250' 369] 10 [24' 126] 7

Z2 00 - [-67' 67] 8

This case study utilizes only one free variable, -100 ~ t ~ 100 leading to strong cor

relations between all intermediates:

q1 25t2 + 125

q2 t
2+ 1

ZI qtfq2

q3 -200t

q4 q~

Z2 q3jq4

illustrated in the multiple fanouts I reconvergences in the data-path of Figure 3.6. Table

3.6 shows the evolving ranges; as before ZI suffers because of the division. Notice as well

that AA cannot provide bounds for Z2 because the range of the divisor (q4) includes zero,

according to the affine approximation. The problem here however is not an underlying sin

gularity which has to be excluded as in the previous 2 case studies, instead this inclusion of

zero arises from accumulated successive overestimation. Even using SMT lower bound of

q4 ~ 1, the resultant range will be Z2 E [-20000,20000] requiring 16 bits, 8 more than allo

cated using the SAT-Modulo approach. Finally, in many places when AA bounds are tight,

SAT-Modulo differs from AA by 1. The real difference gets inflated to 1 by application of

the floor(ceiling) function converting the obtained lower(upper) bound into an integer.

65

Ph.D. Thesis - Adam B. Kinsman McMaster University -Electrical & Computer Engineering

Table 3.7: Mfine vs. SAT-Modulo for Newton's method.

Output
Affine SAT-Modulo

Range Bits Range Bits

Zl [-1205360 ' 1170360] 22 [-1205361 ' 1135361] 22

Z2 [-5753 ' 35769] 16 [1 '35769] 16

Z3 00 - [-39' 38] 7
z 00 - [-69' 72] 8

3.4.6 Newton's method

The final case deals with root-finding using Newton's method [12] applied to a polynomial.

Given a polynomial

roots can be obtained by using Newton's method:

f(xn)
Xn+l =Xn- J'(xnf

If we consider a single iteration, this results in:

Zl
3 2

c3x +c2x +c1x+co

Z2 3c3~ + 2c2x + c1
Zl

Z3
Z2

z X-Z3

For the sake of readability, the fully expanded intermediates have been omitted. The

numerator and denominator polynomials (ZI and z2 respectively) above were expanded in

intermediate steps using Horner's method [12] to reflect a potential hardware implementa

tion. The range of x used was [-100,100] and the coefficient ranges were:

co E [-10, 10] c1 E [7.5, 8.5] c2 E [-3.75, -3.25] C3 E [0.833, 1.167]

Table 3.7 shows the results for the major intermediates (the ones which have been omitted

had identical bit-widths), where as before the quotient Z3 cannot be calculated due to the

66

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

inclusion of zero within the range of the divisor Z2· Just as in the case of Section 3.4.5,

no actual singularity exists, and thus the SMT method does not require any additional

constraint. If as before we use the bound from SMT (1.83 which has been floored to 1 in

the table), we end up with Z3 E [-658668,620416] and z E [-658768,620516] requiring

21 integer bits each, at least 13 more than necessary per signal. This reinforces the fact that

even when measures are taken with AA to avoid the singularity, the correlations are lost.

3.4.7 Key points of case studies

The previous sections have presented 6 case studies taken from a variety of topics within

the large field of scientific computing, which have been presented in this way to emphasize

a few key points about the range determination problem within bit-width allocation.

Summarized below are the main points highlighted by each case study:

• 	 Section 3 .4.1: Insertion of a single non-affine calculation into a data-path plants a

seed of overestimation which other calculations will augment;

• 	 Section 3.4.2: Division is particularly detrimental as an affine approximation result

ing from range inversion whereby small numbers map to large ones and vice-versa;

• 	 Section 3.4.3: When the true ranges of an intermediate contain zero, SMT provides

a convenient mechanism for excluding singularity points from consideration during

range determination;

• 	 Section 3.4.4: In addition to merely excluding singularities, meaningful ranges taking

the exclusion into account must be determined otherwise range overestimation is

inevitable;

• 	 Section 3.4.5: Tight non-affine interdependencies caused by diverging/reconverging

paths in the overall data-path will eventually outpace first-order approximations;

• 	 Section 3.4.6: Serious range overestimation can lead to inclusion of 0 in the range

for a variable where it does not actually belong, which will result in complete range

indeterminacy if such variables become the denominator of a division.

67

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

In light of the results presented in the previous sections and the high occurrence of

these scenarios in general scientific computing, computational range refinement based on

SMT provides a reliable, practical method as the basis for automated bit-width allocation,

especially for scientific computing applications. Now, in the next section, we briefly discuss

the tradeoff between SMT timeout and accuracy of bounds.

3.4.8 Run-time/accuracy tradeoff

Figure 3.7 shows how the range and number of bits for the 8 ESD outputs from the case

study of Section 3.4.1 vary as timeout increases. In Figure 3.7(a), the ranges for the outputs

are shown in no particular order, although it can be clearly inferred from the results of

Table 3.2 that outputs 0 and 4 must be in the top line of the figure (since they both require

22 bits). At the same time, Figure 3.7(b) shows the bits required for each output, again in

no particular order. While it may be difficult to discern between the graphs, the following

is important to note: between 1 and 2 second timeout at least one bit-width is reduced;

between 2 and 5 second timeout, at least one additional bit-width is reduced; after 5 second

timeout, no more bit-widths are reduced.

Note first that the bounds are always hard (robust), and thus decrease as the SMT solver

is allowed to run for longer. The SMT assumes satisfiability when terminated, and for short

timeouts, extra bit-width ends up being allocated. Notice also however that as the timeout

is increased the range comes down very slowly (Figure 3.7(a)), while the number of bits is

met with much less effort (Figure 3.7(b)). This is natural considering that the number of

bits required scales logarithmically with the range which must be represented. As a result,

the range must be halved in order to reduce a single bit. The main point however is that

while determining the precise range of a variable can take a large amount of time, getting

into the right power of 2 range will generally occur much earlier.

3.5 Summary

This chapter has highlighted the problem of bit-width allocation as important to the success

of hardware acceleration, and illustrated the shortcomings of state-of-the-art methods in the

68

--

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

2.15
~ ~.... 2.1

c

~ 2.05 ---...~ g 2 ----~
"g """'""-.......... :--.....
§ 1.95
0
Ill 1.9 "'-'" &. 1.85
Q. ~"
::I .~1.8
"S .e- 1.75
:I
0 1s 2s Ss 10s 20s 50s

SMTtlmeout

(a) ESD Output Ranges.

23

.!! 22
iii
"S .e
:I
0 21

20

~~ -

1s 2s 5s 10s 20s 50s
SMTtimeout

(b) ESD Output Bit-widths.

Figure 3.7: Effect of timeout on range/bit-width.

scientific computing application domain. By formulating range determination as a decision

problem, computational methods can be applied - specifically SAT-Modulo theory - to the

solution of this problem. Through six case studies the effectiveness of this approach has

been demonstrated in dealing with the difficulties presented by scientific numerical algo

rithms to obtain 1) robust bit-widths necessary for scientific applications which simulation

is unable to provide, 2) tighter bounds than those obtained through the use of affine arith

metic, and meaningful bit-widths even in cases where the affine result is indeterminate

(division by 0). The next chapter builds on top of this foundation, providing a means of

scaling the approach to larger instances.

69

Chapter 4

Scalability through block-vector

formulations

In the previous chapter, computational methods based on SAT-Modulo Theory have been

introduced and applied to the range determination aspect of the automated representation

problem. While the use of computational methods was shown to provide robust and tight

bounds for ranges, it was also observed that run-times could easily escalate as instance size

grows as evidenced by the need to introduce a timeout path into the range search. The

sharp rise in SMT solver runtime which accompanies an increased number of variables

could render this method infeasible for many scientific calculations of practical relevance

which may involve vectors and matrices of hundreds or even thousands of elements. To

address this issue, a means of enabling scalability to large problem instances is described

in this chapter based on block vector formulations [66].

4.1 Bit-width allocation in vector calculus

Before moving into the details of this algorithmic approach to bit-width allocation for oper

ations in complex vector calculus, a discussion on using uniform bit-width within a vector

is presented first. After this, representation of complex numbers is treated, followed by

presentation of the vector magnitude and block vector magnitude models.

70

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

4.1.1 Uniform vector bit-width

In order to leverage the vector structure of the calculation under analysis and thereby reduce

the complexity of the bit-width problem to the point of being tractable, the underlying

principle of this work involves sacrificing the independence (in terms of range/bit-width)

of the vector components as scalars. At the same time, hardware implementations of vector

based calculations typically exhibit the following characteristics:

• 	 Vectors are typically stored in memories already having the same number of data bits

at each address;

• 	Datapath calculation units used in vector calculations must be allocated to accom

modate the full extent of bit-widths which arise across the elements of the vectors to

which they apply;

Based on these two key observations, the same number of bits already tend to be used

implicitly for all elements within a vector simply as a side effect of common hardware

design choices. This fact is exploited by the bit-width allocation problem to reduce its

complexity, thus leading in some cases to tighter bit-widths (as will be confirmed in Section

4.2). As a result, the techniques laid out in this section impose uniform bit-widths within

a vector, i.e., all the elements within a vector will use the same representation. However,

each distinct vector will still have a uniquely determined bit-width.

4.1.2 Representation of complex numbers

Since the vector calculus we wish to support permits the vector elements to be complex

numbers, it is necessary to discuss different representations for complex numbers which

may be adopted, noting that all formats considered reduce in the end to a pair of binary

numbers for each complex number.

Figure 4.1 shows different ways in which the possible values a complex number may

take on can be restricted. In Figure 4.l(a) the imaginary part of the number is clearly more

tightly bounded than the real part. Figures 4.1(b) and 4.1(c) show polar bounding of the

angle and magnitude respectively. As will become clear throughout this chapter, the key as

pect on which the effectiveness of these techniques hinges is the degree of interdependence

71

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

lm lm lm

(a) Rectangular. (b) Angular. (c) Magnitude.

Figure 4.1: Example bounding constraints put on complex numbers.

between different elements within a vector, or so called directional correlations. This re

lationship stands also for the real and imaginary components of complex numbers and can

be used to inform the decision of how to represent the complex numbers.

Note that in any situation where polar representation of complex numbers is used (e.g.

Figures 4.1(b) and 4.1(c)), almost certainly we will want to have different bit-widths for

the magnitude and angle components, since angle is bounded between 0 and 2n whereas

magnitude may be arbitrarily large. Even in the case of rectangular representation, situa

tions such as in Figure 4.1 (a) would warrant the use of independent representations for the

real and complex values since (in this specific case) the range of the imaginary part is much

smaller and would therefore require fewer bits.

The remaining case of rectangular representations where the real and imaginary parts

have similar ranges may be good candidates for using uniform bit-width across real and

imaginary part by merging the vector of real components with the vector of imaginary

components (i.e. represent the complex vector as a single real vector of double the size).

Consider for example a complex matrix multiplication y = Ax. If x has Xr and Xi as vectors

of all the real and imaginary parts of x respectively (i.e. Xr = Re(x) and Xi = Im(x) and

x = Xr + ixi) then we can form a new vector x by interleaving elements from Xr and Xi,

which is the same as replacing every elementxk ofx with the two elements [Re(xk),Im(xk)].

Applying the same process to y to form y', and replacing each element Ai,j in A with the

72

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

2x2 matrix:
Re(Ai,j) -Jm(Ai,j) l

[Im(A-1,]·) Re(A-1,]·)

to create A' yields a purely real matrix multiplication y' = A'x on vectors twice the size

which can replace the complex one. The form of the 2x2 matrix results from the fact that

Re(Ax) = Re(A)Re(x)- Im(A)Im(x) and Im(Ax) = Im(A)Re(x) +Re(A)Im(x). It is worth

noting that specific structure of the vector is not important to the method, the choice of

whether to interleave real and imaginary parts of the vector can be made in accordance

with whichever representation produces the most suitable hardware architecture. In other

words, for uniform bit-width between real and imaginary parts, it is fair to consider the

merged vector as interleaved real/imaginary or concatenated real/imaginary, so long as

there is consistency in all places where the vector is used (e.g. the form of the matrix is

different between the two).

The advantage of doing this replacement would be to reduce the complexity of the

model since the complex matrix multiplication would remain a single statement involving

two vectors and a matrix instead of two statements involving two matrices and four vectors,

but at the cost of reduced directional information. As the next section shows, this also arises

in applying the proposed model, and Section 4.1.4 shows how to recover some directional

information, since operations such as pointwise complex multiplication can exhibit strong

directional correlation.

4.1.3 Vector magnitudes

Whether complex or real, the approach to dealing with problems specified in terms of vec

tors centres around the fact that no element of a vector can have absolute value (magnitude)

greater than the vector magnitude i.e., for a vector X E Cn:

llxll = JX*i

lxil ::; llxll , 0::; i::; n- 1

where* denotes taking the complex-conjugate transpose. Starting from this fact, we can

create from the input calculation a vector-magnitude model which can be used to obtain

73

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 4.1: Magnitude bounding operations.

Name
Vector

Operation
Magnitude

Model
Dot Product X·y llxiiiiYII cos(Bxy)

Outer Product xyl llxiiiiYII
Addition x+y vllxll 2 + IIYW +2x. y

vllxll 2 + IIYII 2
- 2x·ySubtraction x-y

Matrix
Multiplication Ax

ajjxll
laAimin ~ 0" ~ laAimax

Pointwise
Product xoy

ellxiiiiYII
0~£~1

bounds on the magnitude of each vector. These bounds can then be adopted as element

bounds and from them the required uniform bit-width for that vector can be inferred.

Creating the vector-magnitude model involves replacing elementary vector operations

with equivalent operations bounding vector magnitude, Table 4.1 contains the specific op

erations used in this chapter. When these substitutions are made, the number of variables

for which bit-widths must be determined can be significantly reduced as well as the number

of expressions, especially for large vectors.

The entries of Table 4.1 arise either as basic identities within, or derivations from,

vector arithmetic. The first entry is simply one of the definitions of the standard inner

product, and the outer product expression comes from the identity (E;Ix;I2)(Lj 1Yi1 2) =
Lij (lxd IYj I)2 . The addition and subtraction entries are resultant from the parallelogram

law [2]. The matrix multiplication entry is based on knowing the singular values O"; of the

matrix (further description below), and the pointwise product comes from: Li jx;I 2 1Yil 2 ~

(Li lxii2)(Li IYil 2).

When dealing with complex matrix multiplication, the values of a;in and ar relate

to the singular value decomposition (SVD) ofA = U.EV*and can be obtained by examining

A* A and AA*. These matrices are guaranteed to be normal and hence to have a diagonal

ization producing eigenvalues. If the eigenvalues are arranged according to absolute value,

74

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Scalar
Expansion

Vector
Magnitude

Block vector expansions

Limited search due Faster runtimes
to computational

complexity
Better search via

reduced complexity
More exploration in

computational search

Full accounting of
interdependencies

Tighter ranges via
directional information

Loss of directional
correlations

Figure 4.2: Goal of block vector representations.

la;inl is the square root ofthe eigenvalue with the smallest value, and lcrAimax is the square

root of the eigenvalue with the largest absolute value. These values give limits on how the

matrix will scale a vector during matrix multiplication.

While significantly reducing the complexity of the range determination problem, the

drawback to using this method is that directional correlations between vectors are virtu

ally unaccounted for. For example, vectors x and Ax are treated as having independent

directions, while in fact the true range of vector x +Ax may be restricted due to the inter

dependence. In light of this drawback, the next section proposes a means of restoring some

directional information without reverting entirely to the scalar expansion based formula

tion. Incidentally, the method below can also recover directional information which may

be lost during replacement of complex vectors with real ones as described in Section 4.1.2.

4.1.4 Directionality via block vectors

As discussed in the previous section, bounds on the magnitude of a vector can be used as

bounds on the elements, with the advantage of significantly reduced computational com

plexity. In essence, the vector structure of the calculation (which would be obfuscated

by expansion to scalars) is leveraged to speed up range exploration. These two methods of

vector-magnitude and scalar expansion form the two extremes of a spectrum of approaches,

as illustrated in Figure 4.2. At the scalar side, there is full description of interdependencies,

but much higher computational complexity which limits how thoroughly one can search

for the range limits. At the vector-magnitude side directional interdependencies are almost

75

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

completely lost but computational effort is significantly reduced enabling more efficient use

of range search effort. A tradeoff between these two extremes is made accessible through

the use of block vectors, which this section details.

Simply put, expanding the vector-magnitude model to include some directional infor

mation amounts to expanding from the use of one variable per vector (recording magnitude)

to multiple variables per vector, but still fewer than the number of elements per vector. Two

natural questions arise: what information to store in those variables and, if multiple options

of similar compute complexity exist, then how to choose the option that can lead to tighter

bounds.

Consider as an example a simple 3x3 matrix multiplication y = Ax, where x, y E IR.3

and x = [xo,xl ,x1V. Figure 4.3(a) shows an example matrix A (with 9.9 :::; CiA :::; 50.1)

as well as constraints on the component ranges of x (upper part of the figure). If the

transformation which the matrix multiplication represents is applied, the result will be a

scaled/skewed/rotated version of the original cuboid into a parallelepiped. While not de

picted exactly, the resultant parallelepiped is fully and tightly contained by the box shown

in the lower half of the figure. This indicates that the largest magnitude element is~ 146,

and under the assumption of uniform bit-widths each element in the vector would require 9

range bits. Since these calculations were carried out exactly on the full scalar model, they

are absolute minimum bounds, thus at least 9 bits are definitely required, and are in fact

sufficient.

Moving beyond the direct calculation method of Figure 4.3(a) is Figure 4.3(b) wherein

the vector-magnitude approach is applied: llxll is bounded by V22 +22 + 102 = 10.4, and

the bound on IIYII is obtained as crAIIxll which for this example is 50.1 x 10.4 ~ 521.

The vector-magnitude estimate of~ 521 can be seen to be relatively poor over the true

component bounds for matrix multiplication calculated to be ~ 146. The inflation results

from dismissal of correlations between components in the vector. To address this loss of

correlation, block vector partitioning is proposed which is discussed next. The same vector

magnitude model is applied, but to multiple partial vectors formed by breaking the original

vector.

Figure 4.4(a) shows one possible partitioning scenario, where partitioning is performed

around the component with the largest range, i.e. xo = [xo,xi]T,x1 = x1. The input range

76

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

x2 x2

lx01 < 2
lx1l < 2 Xo llxll < 10.4 Xo
lx2l < 10

["' 3.96 396]
y:Ax A= 3.96 10.9 -D.l IIY/1 =sA //XI/ 9.9 <SA <50.1

J 3.96 -{).1 10.9 J

Max element +1-146

(a) Scalar model. (b) Vector magnitude model.

Figure 4.3: Vector matrix multiplication example: scalar vs. vector magnitude.

bounds now translate into a circle (bounded magnitude) in the [xo,xl]-plane and a range on

the xz-axis. The corresponding partitioning of the matrix is:

Aoo A01 l Yo l [Ao1 l [xo]Aoo
A= [Aw Au [Yt - Aw Au Xt

where 10.4::; CTA00 ::; 49.7 and 0::; CTA
01

, CTA 10 ::; 3.97 and simply Au =au = 10.9. Using

block vector arithmetic [42], which bears a large degree of resemblance to standard vector

77

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

arithmetic, it can be shown that

Yo= AooXo +Ao1x1

Yt =Awxo +Aux1.

Expanding each of these equations using vector-magnitude in accordance with the opera

tions from Table 4.1, we obtain:

2
IIYoW = (O'Aoo 11Xoll) + (O'AOlllxtll)2 + 20'A00 0'A01 IIXollllxtll

IIYtW = (O'Awllxoll)2 + (O'Allllxtll)2 + 20"A 10 0'Allllxollllxtll

As Figure 4.4(a) shows, applying the vector-magnitude calculation to the partitions

individually amounts to expanding the circle in the [xo,xl]-plane, as well as expanding

the xz range, after which these two magnitudes can be recombined by taking the norm of

[Yo, YtV to obtain the overall magnitude IIYII = JIIYoll 2 + 11Ytll2. By applying the vector

magnitude calculation to the partitions individually, the directional information about the

component with the largest range is taken into account. This yields IIYoll :::;~ 183 and

IIYtll :::;~ 154, thus producing the bound IIYII :::;~ 240.

Next to Figure 4.4(a), Figure 4.4(b) shows an alternative way of partitioning the vector,

this time with respect to the basis vectors of the matrix A. Decomposition of the matrix

used in this example reveals the direction associated with the largest aA to be very close

to the xo axis. Partitioning in this way (i.e., xo = xo, Xt = [x1 ,xzJT) results in the same

equations as above for partitioning aroundxz, but with different values for the sub-matrices:

Aoo = aoo = 49.2 and 0:::; O'Aop O'A 10 :::; 5.61 and 10.8:::; O'All :::; 11.0. As the figure shows,

we now have range on the xo-axis and a circle in the [x1 ,xz]-plane which expand according

the same rules (with different numbers) as before yielding this time: IIYoll :::;~ 137 and

IIYtll :::;~ 124producingatighteroverallmagnitudebound IIYII :::;~ 185.

Given the larger circle resulting from this choice of expansion, it may seem surprising

the bounds obtained are tighter in this case. However, consider that in the x0 direction

(very close to the direction of the largest aA), the bound is overestimated by 2.9/2 ~ 1.5 in

the partitioning from Figure 4.4(a), while it is exact in the partitioning from Figure 4.4(b).

Contrast this to the overestimation of the magnitude in the [xi,xz]-plane of only about 2%

in which case it makes sense that this partitioning provides the tighter bound. On the

other hand, different basis vectors for A could reverse the situation leading to better bounds

78

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

(a) Partitioning on xz. (b) Partitioning on X().

Figure 4.4: Effect of partitioning on range overestimation.

from the other partitioning. Clearly the decision of how to partition a vector can have

significant impact on the quality of the bounds. Consequently, the next section discusses

an algorithmic solution for making this decision.

4.1.5 Partition selection

Recall that in the cases from Figures 4.4(a) and 4.4(b), the magnitude inflation is reduced,

but for two different reasons. Considering this fact from another angle, it can be restated

79

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

that the initial range inflation (which we are reducing by moving to block vectors) arises as

a result of two different phenomena; 1) inferring larger ranges for individual components as

a result of one or a few components with large ranges as in the middle case or 2) allowing

any vector in the span defined by the magnitude to be scaled by the maximum <1A even

though this only really occurs along the direction of the corresponding basis vector ofA.

In the case of magnitude overestimation resulting from one or a few large components,

the impact can be quantified using range inflation: fvec(x) = llxll/llill. where i is xwith

the largest component removed. Intuitively, if all the components have relatively similar

ranges, this expression will evaluate to near unity. On the other hand, removing a solitary

large component range will produce a value larger than (and farther from) the value 1, as

in the example from Figure 4.4(a) of 10.4/2.9 = 3.6

Turning to the second source of inflation based on <1A, we can similarly quantify the

penalty of using <1A over the entire input span by evaluating the impact of removing a

component associated with the largest <1A. If we define a as the absolute value of the

largest component of the basis vector corresponding to aA, and A as the block matrix

obtained by removing that same component's corresponding row and column from A, we

can define: fmat(A) = aaA;a;zx, where a;zx is the maximum across the amax of each

sub-matrix of A. The a factor is required to weight the impact of that basis vector as it

relates to an actual component of the vector which A multiplies. When aA is greater

than the other <1A, !mat will increase (Figure 4.4(b)) to 0.99 x 49.2/11.0 = 4.4. Also note

that the partition with the greater value (4.4 2:: 3.6) produces the tighter magnitude bound

(185 < 240). Finally, it is worth mentioning that if the full singular-value decomposition

(SVD) is available, the partitioning is much more straightforward- these metrics are used

primarily to provide partitioning guidance when the SVD is unavailable.

Algorithm 4.1 shows the steps involved in extracting magnitude bounds (from which

bit-widths can be derived) of a vector based calculation. It takes as input the specifi

cation in terms of the calculation steps (VectorCalculation), input variables and their

ranges (lnputVarList and InputVarRanges respectively) as well as intermediate variables

(IntermediateVarList). From this input, VectorMagnitudeModel on Line 1 creates the base

vector-magnitude model as in Section 4.1.3. The algorithm then proceeds by successively

80

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Algorithm 4.1 VectorMagnitude

1: 	 VecMagModel = VectorMagnitudeModel(VectorCalculation, InputVarList,
InputVarRanges, IntermediateVarList)

2: 	 UpdatedMagnitudes=DetermineRanges(VecM agM odel)
3: 	 Flag=TRUE
4: 	 while (Flag) do
5: VecMagModel =Partition(VecMagModel)
6: lntermediateMagnitudes =U pdatedMagnitudes
7: UpdatedMagnitudes=DetermineRanges(VecMagModel)
8: Gain= max(U pdatedMagnitudes, IntermediateMagnitudes)
9: if (Gain< GainThresh) then

10: Flag=FALSE
11: end if
12: if (size(VecMagModel) > SizeThresh) then
13: Flag=FALSE
14: end if
15: end while
16: return IntermediateMagnitudes

partitioning the model (Line 5) and updating the magnitudes (Line 7) until either no signif

icant tightening of the magnitude bounds occurs (as defined by GainThresh on Line 9) or

until the model grows to become too complex (as defined by SizeThresh on Line 12). Note

that the DetermineRanges function on Lines 2 and 7 is based upon existing range analysis

techniques. Even interval or affine arithmetic could be used here, however we employ the

computational method from Chapter 3. The Partition function (Line 5) utilizes the impact

functions !vee and f mat to determine a good candidate for partitioning. Computing the !vee
function for each input vector is inexpensive, while the !mat function involves two largest

singular(eigen) value calculations for each matrix. It is worth noting however that a par

tition will not change the entire Model, and thus many of the !vee and !mat values can be

reused across multiple calls of Partition.

With a means in hand of obtaining a block vector partitioning that provides a balance

between SMT instance complexity and magnitude overestimation, the next section applies

this method to a few case studies which demonstrate its operation.

81

Ph.D. Thesis - Adam B. Kinsman McMaster University- Electrical & Computer Engineering

4.2 Case studies

This section details 5 case studies which demonstrate application of the vector based meth

ods discussed in Section 4.1. Two of these case studies are extended from Chapter 3 (Sec

tions 4.2.1 and 4.2.2) where originally they used scalar equations only. Results for the case

studies compare affine arithmetic operating on the vector model and the scalar expansion

to the computation method of from Chapter 3 built on top of HySAT [35], again applied

to both the vector model and scalar expansion. Experiments were carried out on the same

platform as before, a 1.5 GHz Pentium 4 with 512MB of RAM running Gentoo Linux.

In all experiments, run-times for the experiments were on the order of 10's of minutes for

the computational (SMT) scalar expansions, minutes for the vector and block vector model

based on SMT and seconds for all affine arithmetic based experiments. Conversion of

ranges [L, U] to bits was done according to the formula: bits = pog2 (max(ILl, IU I) + 1)l +a

where a= 0 if it is a scalar range (not vector magnitude) and Land U have the same sign,

otherwise a = 1.

4.2.1 Analytic center

As we have seen in Section 3.4.3, the analytic center of a set of inequality constraints

maximizes a distance metric from all constraint boundaries. Using the same as before from

convex optimization, when using a distance metric based on a logarithmic penalty function;

solving for the analytic center will give rise to calculations such as those below [10].

z[i] = d[i]a[i]· (C- P) d[i] = 1/(b[i]- a[i]· C)

The inequality constraints are defined by a[i], b[i] and C is the analytic center. The values

z[i] reflect a penalty of moving C toP with respect to a[i],b[i]. For the specific case of

5 inequality constraints in JR.3 , the vector equations can be expanded into scalar equations

(i E {1,2,3,4,5}):

82

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 4.2: Affine vs. SAT-Modulo for vector and scalar analytic center.

Output
Scalar Affine Scalar SAT-Modulo
Range Bits Range Bits

ql [i] [-3010' 3010] 13 [-3011 '3011] 13
q2[i] 00 - [-101 ' 101] 8
z[i] 00 - [-3.6e5 , 3.6e5] 20

Output
Vector Affine Vector SAT-Modulo
Range Bits Range Bits

ql [i] [-3010' 3010] 13 [-3011 '3011] 13
q2[i] 00 - [-101 ' 101] 8
q3[i] 00 - [-347 '347] 10
z[i] 00 - [-6.1e5, 6.0e5] 21

Consider ranges of Cx,Cy,Cz,Px,Py,Pz E [-100, 100], and ax[i],ay[i],az[i],b[i] E [-10, 10].

The equivalent vector-magnitude model is as follows:

q3[i] = viiCW+IIPW-2IICIIIIPIIcos(ecp)

z[i] = q2[i]llallq3[i]cos(8aq3)

foro::; II all::; 17.4 and o::; IICII, IIPII::; 173.3.

Table 4.2 shows ranges and equivalent bit-widths for the analytic center calculation

when using affine arithmetic and the SAT-Modulo Theory (SMT) approach. Because in

this and in the next case study no matrix multiplications exist, the block vectors are not

required (only the vector-magnitude results are shown). Up to q2, the vector-magnitude

model gives identical results to the scalar expansion, but overestimates z, a result of losing

the correlations. Note also that the singularity is circumvented by adding the constraint

qi ~ 0.0001, which is convenient in the SMT approach, but for which no mechanism exists

in affine arithmetic.

83

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

4.2.2 Euclidian projection

A second convex optimization/analysis based case study coming again from Chapter 3 is

Euclidian projection of a point/points onto a hyperplane. In Section 3.4.4 we saw that for a

hyperplane a· x + b = 0, a point xO will have a projection:

b-a·xO
P(xO) = xO+ a

a·a

If we consider for the case study x substituted for xO and a, x E ~5 , once again the vector

equations can be expanded into scalar equations:

qr = E1=oa;x;; q2 = Eb:oaf

q3 =b-qr; q4 =q3jq2

Zi =x;+q4a;, i E {0, 1,2,3,4}

where -100-::; x; -:5: 100 and -10 -:5: a; -:5: 10 fori E {0, 1 ,2,3,4} and -10 -:5: b -:5: 10. The

vector-magnitude model can also be formulated:

qr = JlaJJIJxJJcos(Bax); q2 = JlaW

q3 = b-qr; q4 = q3jq2

with 0-:5: llxll -:5:223.7 and 1 -:5: llall -:5:22.4.

Table 4.3 shows ranges and equivalent bit-widths for Euclidian projection under the

conditions described above. Similarly to analytic center, the vector model keeps up well

with the scalar model for the first intermediates and in fact, as of q4, the vector model

actually surpasses the scalar model to provide better results, since it can be more thor

oughly searched due to lower computational complexity. Note also that singularity avoid

ance is unnecessary due to the llaJJ 2: 1 constraint in the specification. Nonetheless, since

no mechanism exists in affine arithmetic for capturing such a constraint, it cannot handle

the division.

84

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 4.3: Mfine vs. SAT-Modulo for vector and scalar Euclidian projection.

Output
Scalar Affine Scalar SAT-Modulo
Range Bits Range Bits

ql [-5000 , 5000] 14 [-5001 , 5001] 14

q2 [0, 500] 9 [0, 501] 9
q3 [-5010, 5010] 14 [-5011 , 5011] 14

q4 00 - [-348, 348] 10
Z; 00 - [-646, 630] 11

Output
Vector Affine Vector SAT-Modulo
Range Bits Range Bits

ql [-5003 , 5003] 14 [-5003 , 5003] 14
q2 [-114, 501] 9 [0, 501] 9
q3 [-5013, 5013] 14 [-5013 , 5013] 14
q4 00 - [-235, 235] 9
Zi 00 - [-270, 271] 10

4.2.3 Davidon-Fietcher-Powell formula

Moving out of the realm of convex optimization, a formula that has been applied in the

quasi-Newton method as a multidimensional generalization of the secant method for non

linear optimization is the Davidon-Fletcher-Powell (DFP) formula [94]. The method main

tains at each step of optimization a local estimate of the Hessian of the objective function,

and proceeds by successively updating this estimate. The DFP formula solves the secant

equation with the least modification to the current Hessian estimate, while maintaining

symmetry and positive definiteness of the Hessian.

Calculations such as this one can arise in embedded systems which must make decisions

based on very complex models. For this case study we have focussed on the update equation

for the inverse Hessian:

_ H HkYkYkT Hk + sksrHk+l- k- --
YkTHkYk YkTSk

which takes as input the current (for iteration k) estimate of the inverse Hessian matrix Hb

85

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

the step vector sk, and the change in the gradient of the objective across the step Yk (avec

tor). Since the true ranges of these values depend so heavily on the context, we have picked

up arbitrary element ranges of [-100 .. 100] for elements of Hk which has eigenvalues in the

range [0 .. 100], and [-10 .. 10] for sk and Yk, for a problem of dimension 3. These values

suffice to highlight the difference between the range determination methods in question,

which is our goal, rather than to explicitly solve the range problem in a specific context.

The vector calculations for DFP are as follows:

ql =HkYk q4=ykTql q? = YkTSk

q2T =ykTHk Q5 = Q3jq4 Q8 = Q6jq7

Q3 = qlq2T Q6 =SkSkT

Hk+l =Hk-Q5+Q8

Note that Q3 and Q6 are both outer products yielding matrices while q4 and q7 are both

inner products yielding scalars.

Ranges and equivalent bit-widths for the intermediate variables of this calculation are

shown in Table 4.4 for scalar expansion and the vector magnitude model, where [];j has

been used to indicate element bounds. Notice first that as before, affine arithmetic is unable

to resolve the division, however insertion of constraints like before (q42 2: 0.0001, q72 2:
0.0001) enable SMT to still provide meaningful ranges. Note that while scalar affine cannot

actually proceed any further than [Q5];j, if we borrow the missing ranges for the divisions

(q4, q7) from the scalar SMT results, the other intermediate ranges given by affine are the

same as the scalar SMT.

Turning to the vector results, notice that, as above, the affine and SMT results track

together until the division. If the ranges are borrowed, as before, the ranges continue to

track until Hk+l, where affine arithmetic grossly overestimates the range. This happens

because in this case the vector magnitude model is more sensitive to the correlations, which

are lost when borrowing the ranges from the SMT vector results.

Finally for this case study, note the difference between the SMT scalar and SMT vector

results. For Q6 and Q8, the range for SMT scalar is slightly tighter than for SMT vector, but

for all other variables SMT vector gives the same or tighter ranges. Unlike in the case study

from Section 4.2.2, this is not a result of the SMT vector being able to more thoroughly

86

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 4.4: Affine vs. SAT-Modulo for vector and scalar Davidon-Fletcher-Powell.

Output
Scalar Affine Scalar SAT-Modulo
Range Bits Range Bits

[ql]; [-3e3, 3e3] 13 [-3e3, 3e3] 13
[q2]; [-3e3, 3e3] 13 [-3e3, 3e3] 13

[Q3]ij [-9e6, 9e6] 25 [-4.0le6, 9.01e6] 25
q4 [0, 9e4] 17 [0, 9e4] 17

[Q5)u 00 - [-9.01e9, 9.0le9] 35
[Q6]ij [-100' 100] 8 [-101 ' 101] 8

q7 [-300' 300] 10 [-301 '301] 10
[Q8]ij 00 - [-1.01e4, 1.01e4] 15

[Hk+I]ij [-9.1e8, 9.1e8] 31 [-9.1e8, 9.1e8] 31

Output
Vector Affine Vector SAT-Modulo
Range Bits Range Bits

llqlll [0' 1740] 12 [0, 1741] 12
llq211 [0' 1740] 12 [0,1740] 12
IIQ311 [0, 3.03e6] 23 [0, 3.03e6] 23

q4 [-3.03e4, 3.03e4] 16 [-3.03e4, 3.03e4] 16
IIQ5II 00 - [0, 3.03e8] 30
IIQ611 [0' 303] 10 [0' 303] 10

q7 [-303 '303] 10 [-303 '303] 10

IIQSII 00 - [0, 3.03e4] 16

IIHk+lll [0, 9.17e16] 58 [0, 4.29e8] 30

search the solution space. Rather, the results from SMT scalar are in fact tight based on the

specification, but the scalar specification is unable to capture the eigenvalue constraint on

Hk. This illustrates another very useful feature of the vector magnitude model, the ability to

capture some specification aspects rooted in the vector structure of the calculation, which

are awkward or impossible to represent in the scalar expansion.

87

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

4.2.4 Conjugate Gradient method

The fourth case study is based on a single iteration of the Conjugate Gradient method for

solving linear systems of equations [113]. This method has many applications, examples

include finite element method analysis and solutions to partial differential equations. A

single (in fact the first) iteration can be formulated as follows. Given a matrix A, and a

vector b with an initial guess for x (which solves Ax= b) of xo then let:

5.665 2.630 1.088]
A = 2.630 9.624 2.647

[1.088 2.647 6.329

r=b d=xo
r' = r- aq

d' = r' +/3d

and r', d' feed into the next iteration.

Taking constraints on the inputs as 0.1 ::; Xo ::; 104 and 0.1 ::; b ::; 260, Table 4.5 shows

the ranges of the intermediates obtained through affine arithmetic and SMT. In this case,

due to the increased complexity of the scalar formulation caused by the matrix multipli

cation, the scalar method over-estimates the ranges (this is because of the timeouts due to

the problem size). While there is no guarantee that the ranges obtained through the vector

method are optimal, they are significantly better than the scalar ones once again because

the reduced complexity of the formulation enables more thorough search of the solution.

The significant reduction in bit-width from the vector method in this case study arises

largely because the eigenvalues of the matrix are fairly uniformly distributed, and the input

ranges of the vectors are uniform over the elements. This algorithm also has inherently

weak directional interdependencies between intermediate variables, they are more strongly

correlated in terms of magnitude, which further accounts for the success of the vector

magnitude approach. Because of this however, no significant gains are made by applying

the block-vector approach, unlike the next study.

88

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 4.5: Affine vs. SAT-Modulo for vector and scalar Conjugate Gradient.

Output
Scalar Affine Scalar SAT-Modulo
Range Bits Range Bits

[d); [-104' 104] 8 [-104' 104] 8
[r]; [-260' 260] 10 [-260' 260] 10
[q]; [-1550' 1550] 12 [-1075' 1075] 12
rTr [0, 2.03e5] 19 [0, 7.74e4] 17
dTq [-1.38e5, 3.72] 20 [0, 1.44e5] 18
a 00 - [0, 7.78e8] 30

[r']; [-1.21e12, 1.21e12] 42 [-1.02ell , 9.40e10] 38
r'Tr' [-2.06e24, 2.70e24] 83 [0 , 2.08e22] 75

f3 00 - [0, 2.23e17] 58
[d']; [-2.32e19, 2.32e19] 66 [-8.24e18, 7.33e18] 64

Output
Vector Affine Vector SAT-Modulo
Range Bits Range Bits

lldll [0.1 '104] 8 [0.1' 104] 8

llrll [0.1 '260] 10 [0.1 '260] 10

llqll [0.42 ' 1300] 12 [0.42 ' 1300] 12
r1 r [0, 6.77e4] 18 [0, 6.77e4] 18
dlq [0, 1.36e5] 19 [0, 1.36e5] 19
a 00 - [0, 1.60e6] 22

llr'll 00 - [0, 2.01e6] 22
r'lr' 00 - [0, 4.04e12] 43

f3 00 - [0, 5.97e7] 27

lid' II 00 - [0, 4.18e7] 27

89

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

4.2.5 FFT based correlation

The final case study is based on a fast method for computing correlation via sum-of-square

differences for 2-dimensional (2D) data, as applied to object tracking. An application and

its dataflow are detailed in [49], which has been reproduced below. The inputs J,g are 2D

arrays of data values, referred to by [49] as the search and reference window respectively

and the final correlation result ssd is:

ssd = $-1{ (sinco $ {f of})- 2(${!} o${g}*)}

where recall from Table 4.1 that o is the element-wise product of arrays, sine is the 2D sine

function of appropriate size, and $ is computed using the Fast Fourier Transform (FFT).

Two points are of primary interest in Table 4.6. First, note that the vector method

overestimates the range for $ {ssd}, this is due to the strong directional correlation of the

pointwise matrix produce. However, the range for ssd is actually smaller, due to the same

phenomenon of the previous case study, i.e., the scalar instance becomes too complex that

it cannot be feasibly searched and thus overestimates the bit-width. In the bottom portion

of the table, block vectors have been implemented leading to tightening of the range of the

range for $ {ssd}, while the range of ssd is unaffected due to the directional independence

of the FFT in the final step.

4.3 Summary

This chapter has shown how to deal with vectors when allocating bit-widths for hardware

accelerators, which ultimately will impact both area and performance of the accelerator.

Formal approaches are required for scientific algorithms to guarantee robustness and thus

correctness, however runtimes of formal methods can scale unacceptably. We have intro

duced two primary techniques to manage the runtime of our formal approach without com

promising the quality of the solution: the vector-magnitude model and the block-vector

model. Both of these can deal with abstract data types, including real and complex valued.

The raised level of abstraction this method provides also opens the door to analyzing and

leveraging vector specific representations such as [52]. There are far-reaching benefits to

90

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 4.6: Affine vs. SAT-Modulo for vector and scalar FFf-based correlation.

Output
Scalar Affine Scalar SAT-Modulo
Range Bits Range Bits

fof [0, 6.56e4] 17 [0, 6.56e4] 17
F=§{j} [-512, 1024] 12 [-512, 1024] 12
§{fof} [-1.64e5 , 2.63e5] 20 [-1.32e5 , 2.63e5] 20

FoG* [-2.63e5 , 1.05e6] 22 [-2.63e5 , 1.05e6] 22
§{ssd} [-1.93e6, 1.05e6] 22 [-1.99e6, 5.25e5] 22

ssd [-1.06e8, 9.23e7] 28 [-1.01e8, 8.01e7] 28

Output
Vector Affine Vector SAT-Modulo
Range Bits Range Bits

fof [0, 4.20e6] 24 [0, 4.20e6] 24
F=§{j} [0, 2.05e3] 13 [0, 2.05e3] 13
§{fof} [0, 4.20e6] 24 [0, 4.20e6] 24

FoG* [0, 4.20e6] 24 [0, 4.20e6] 24
§{ssd} [0, 7.55e7] 28 [0, 7.55e7] 28

ssd [0, 7.55e7] 28 [0, 7.55e7] 28

Output
Block Vector Affine Block Vector SAT-Modulo

Range Bits Range Bits
fof [0, 4.20e6] 24 [0, 4.20e6] 24

F=§{j} [0, 2.05e3] 13 [0, 2.05e3] 13
§{fof} [0, 4.20e6] 24 [0, 4.20e6] 24

FoG* [0, 2.10e6] 23 [0, 2.10e6] 23
§{ssd} [0, 3.78e7] 27 [0, 3.78e7] 27

ssd [0, 7.55e7] 28 [0, 7.55e7] 28

91

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

the implementation flow, because this is a key step before RTL synthesis which has tra

ditionally lacked automation for robust solutions, which are required to migrate scientific

applications to hardware.

92

Chapter 5

Custom floating-point for scientific

calculations

In the previous two chapters, computational methods based on SMT have been employed to

establish bounds on intermediate variables within a calculation, and data abstractions have

been employed to reduce SMT solver instance complexity. Both of these have focused on

the range aspect of the problem to facilitate explanations and to not detract from the point

of each chapter through the greater level of detail required to consider the precision aspect.

Now that a scalable computational bounding framework has been developed, this chapter

builds on top of it to address the issue of precision for scientific computing calculations

[67], including iterative methods.

5.1 Method

This section as a whole details the approach to solving the custom-representation bit-width

allocation problem for general scientific calculations. An error model to unify fixed and

floating-point representations is given in Section 5.1.1 and Section 5.1.2 shows how a cal

culation is mapped under this model into SMT constraints. Following this, Section 5.1.3

discusses how to break the problem for iterative calculations down using an iterative anal

ysis phase (described in Section 5.1.4) into a sequence of analyses on direct calculations

(described in Section 5.1.5).

93

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

5.1.1 Fixed/floating-point error model

Fixed- and floating-point representations are typically treated separately for quantization

error analysis, given that they represent different modes of uncertainty: absolute and rela

tive respectively. Absolute error analysis applied to fixed-point numbers is exact however,

relative error analysis does not fully represent floating-point quantization despite being

relied on solely in many situations. The failure to exactly represent floating-point quanti

zation arises from the finite exponent field which limits the smallest magnitude, non-zero

number which can be represented. In order to maintain true relative error for values in

finitesimally close to zero, the quantization step size between representable values in the

region around zero would have to be zero itself. Zero step would of course not be possible

since neighbouring representable values would be the same. Therefore, real floating-point

representations have quantization error which behaves in an absolute way (like fixed-point

representations) in the region of this smallest representable number. For this reason, when

dealing with floating-point error tolerances, consideration must be given to the smallest

representable number, as illustrated in the following example.

Relative Error Example. Consider the addition of two floating-point numbers: a+ b = c

with a, bE [10, 100], each having a 7 bit mantissa yielding relative error bounded by~ 1%.

The value ofc ranges over [20, 200], and straightforward relative error analysis for c gives

relative error of 1%, and in this case the result is reliable.

Consider now different input ranges: a, b E [-100, 100], but still the same tolerances

(7 bits ~ 1%). Simplistic relative error analysis should still give the same result of 1% for

c however, the true relative error is unbounded. This results from the inability to represent

infinitesimally small numbers, i.e. the relative error in a,b is not actually bounded by 1%

for all values in the range. A finite number ofexponent bits limits the smallest representable

number, which then becomes the step size at zero, leading to unbounded relative error for

any value between this step size and zero.

Unbounded relative error near zero is not a problem for the operands only, but also for

the result c. In the specific case ofa= 100± 1,b = -99±0.99 both operands have clearly

bounded relative error however, we obtain c = 1± 1.99 which has nearly 200% relative

94

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

log2(1errorl)

-1022 -126 log2(1valuel)

Figure 5.1: Unified fixed/floating-point error model characterizing data type by knee and
slope.

error. This phenomenon is known as catastrophic cancelation [41] and (like in the previous

paragraph) grows without bound as the result c is brought closer to zero.

In both cases within the given example, the problems could be dealt with by utilizing

absolute error analysis however, this may produce wasteful representations having much

tighter tolerances than necessary for large numbers. For instance, absolute error of 0.01 for

a, b (7 fraction bits) leads to absolute error of0.02 for c, which translates into a relative error

bound of 0.01% for c = 200 (which could be unnecessarily tight) and 100% for c = 0.02

(which may be unacceptably loose). This impasse arising from the tension between relative

error near zero and absolute error far away from zero forms the motivation for a hybrid error

model.

Figure 5.1 shows a unified absolute/relative error model which can simultaneously

model fixed- and floating-point numbers by providing a means of restricting when absolute

or relative error applies. Error in this model is quantified in terms of two numbers (knee

and slope as described below) instead of just one (as in the case of absolute and relative

error analysis). Put very simply, the knee point divides the range of the value of a variable

into absolute and relative error regions, and the slope indicates the relative error bound in

95

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

the relative region (above and to the right of the knee point). Below and to the left of the

knee point the absolute error is bounded by the value knee, the absolute error at the knee

point (which sits at the value knee I slope). We thus define:

• 	 knee : absolute error bound below the knee-point

• 	 knee point =knee I slope : value at which error behaviour transitions from absolute

to relative

• 	 slope : fraction of value which bounds the relative error in the region above the knee

point.

As shown in Figure 5.1, the model can embody the error behaviour of both fixed-point and

floating-point types such as IEEE-754 single and double precision. Of more significance

than just being able to capture the error behaviour of existing representations however, is

the ability to provide error constraints to the bit-width allocation process which are more

more descriptive than basic absolute or relative error bounds. Through this model, a de

signer can specify explicitly the desired error behaviour of the system, potentially opening

the door to greater optimization than is possible considering only absolute or relative er

ror alone (both of which are subsumed by this model). Also, under this model bit-width

allocation is no longer fragmented between fixed- and floating-point procedures. Instead,

custom representations are derived from knee and slope values obtained subject to appli

cation constraints/optimization objectives. How to construct precision constraints for an

SMT formulation will be discussed in Section 5.1.2, while translation of the aforemen

tioned application objectives into such constraints is the subject of the subsequent Sections

5.1.3 and 5.1.4.

5.1.2 Forming precision constraints

The role of precision constraints is to capture the precision behaviour of intermediate vari

ables, supporting (in our context) the hybrid error model discussed above in Section 5.1.1.

The concept of a precision expression was introduced briefly in Chapter 2, in Section 2.2.2

for the sake of facilitating discussion of previous work. Here more detail is provided on

96

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

expressions, as well as how constraints are formed for the SMT instance. We define four

symbols relating to an intermediate (e.g., x):

1. the unaltered variable x stands for the ideal abstract value in infinite precision,

2. x stands for the finite precision value of the variable,

3. dx stands for accumulated error due to finite precision representation, so x= x +dx,

4. 8x stands for the part of dx which is introduced during quantization of x.

By using these variables we can use the SMT instance to keep track symbolically of the

finite precision effects, and place constraints where they are needed to satisfy objectives

from the calculation specification. In order to keep the size of the precision (e.g., &) terms

from growing explosively, atomic precision expressions can be derived at the operator level.

Consider for example division and replace the infinite precision expression z = xjy with:

xjy

zy

(z+~)(y+~y) x+dx"

zy+z~y+y~+~y~ x+dx"

y~+~y~ 	 dx"-z~y

dx"-z~y
~

y+~y.

What is shown above describes the operand induced error component of ~. measuring the

reliability of z given that there is uncertainty in its operands. Ifnext z were cast into a finite

precision data type, this quantization results in~= ~~~Y + 8z, where 8z captures the

effect of the quantization. The type of quantization (its behaviour) can be specified by what

kind of constraints are placed on 8z, which is discussed in more detail below.

This same process shown above for division can be applied to many different opera

tors, scalar and vector alike. Table 5.1 shows expressions and accompanying constraints

for common operators. In particular the precision expression for square root as shown

in the table highlights a principal strength of the computational approach, that constraints

rather than assignments are used. If only forward assignments were allowed, the precision

97

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 5.1: Precision expression counterparts for common operators.

Infinite Precision Finite Precision
Operator (Expression) (Constraint)

Addition z=x+y &=~+.1y+8z
Subtraction z=x-y &=~-.1y+8z

Multiplication z=xy & = x.1y+y~+~.1y+ Sz
Division z=x/y &=~+Sz

Square root z=vx (&)2 + 2(z- Sz)& = ~- (8z)2 + 2z8z
Vector inner product z=x'~"y .1z = x'~"(.1y) + (.1x)Ty+ (.1x)T(.1y) + Sz

Matrix-vector product z=Ax .1z =A(.1x) + (M)x+ (M)(.1x) + Sz

expression would be more complicated, involving use of the quadratic formula. Because

of this feature of SMT instances however, constraints such as this one for square root are

permissible.

Beyond the operators of Table 5.1, constraints for other operators can be derived under

the same process shown for division, or operators can be compounded to produce more

complex calculations. As an example, consider the quadratic form z = xTAx, for which

error constraints can be obtained by explicit derivation (starting from z = xT Ax) or by

compounding an inner product with a matrix multiplication xT(Ax). Furthermore, con

straints of other types can be added, for instance to capture the discrete nature of constant

coefficients for exploitation similarly to the way they are exploited in [108].

When capturing an entire dataflow into constraints for an SMT formulation, careful

consideration needs to be given to the 8 terms. In each place they are used they must

capture error behaviour for the entire part of the calculation to which they apply. For

example, a matrix multiplication which is implemented using multiply accumulate units

at the matrix/vector element level may quantize the sum throughout the accumulation of

a single element of the result vector. In this case it is not sufficient for the Sz for matrix

multiplication from Table 5.1 to simply capture the final quantization of the result vector

into a memory location, but the internal quantization effects throughout the operation of the

98

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

Figure 5.2: Error region for a custom floating-point number.

matrix multiply unit. What is useful about this setup is that it allows off-the-shelf hardware

units (such as matrix multiply) to be modelled directly within the tool, so long as there is a

clear description of the error behaviour.

The final point of importance regarding oterms is how they are constrained to encode

quantization behaviour. In the case of quantization into a fixed-point data type, the range

is simply bounded by the rightmost fraction bit. For example, if a fixed-point data type

with 32 fraction bits is used and quantization is done by truncation (floor), the constraint

would be -2-32 < ox ::; 0. Similarly for rounded and ceiling, the constraints would be

-2-33 ::; ox ::; 2-33 and 0 ::; ox< 2-32 respectively. These constraints are loose (and

therefore robust) in the sense that they assume no correlation between quantization error

and value, when in reality correlation does exist. If the nature of the correlation is known, it

can be captured into constraints with an accompanying increase in solver complexity. The

tradeoff between tighter error bounds and increased solver complexity has to be evaluated

on an application by application basis. What is important here is that the SMT framework

provides the descriptive power necessary to capture the correlation if it is known.

In contrast to fixed-point quantization, constraints for floating-point numbers are more

complex because error cannot anymore be divorced from value. Figure 5.2 shows the error

region of a custom floating-point representation. The use of L\ indicates either potential

99

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

ax :'S s[opex X X ax :'S -s[opex X X ax< -kneex

(a) Cl : Ax::; slopex x x. (b) C2 : Ax::; -slopex x x. (c) C3 : Ax> kneex C4 Ax<
-kneex.

Figure 5.3: Partial error regions and their associated constraints.

input error or tolerable output error of a representation. In the discussion which follows

the conclusions drawn apply equally to quantization if ~ is replaced with 8. Possibly the

simplest constraint to describe this region indicated in Figure 5.2 would be:

abs(th):::; max(slopex x abs(x),kneex)

provided that the abs() and max() functions are supported by the SMT solver. In the event

that they are not supported, and noting that another strength of the SMT framework is

the capacity to handle both numerical and Boolean constraints, a varying set of potential

constraints exists to represent this region.

Figure 5.3 shows numerical constraints which generate Boolean values and the accom

panying region of the error space in which they are true. From this, a number of constraints

can be formed which isolate the region of interest. For example, note that the unshaded

region of Figure 5 .2, where the constraint should be false, is described by:

{(C1ANDC2ANDC3) OR (C1ANDC2ANDC4)}

noting that Cl refers to Boolean complementation and not finite precision as used elsewhere

in this chapter and that AND and OR refer to the Boolean relations. The complement of

100

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

this produces a pair of constraints which define the region in which we are interested (note

that C3 and C4 are never simultaneously true):

{C1 OR C2 OR C4} {C1 OR C2 OR C3}

(tu > slopex x x) OR (tu:::; slopex x x) OR

(!u > -slopex x x) OR (tu:::; -slopex x x) OR{ }{ }

(tu ~ - kneex) (tu:::; kneex)

While the one (custom, in house developed) solver used for our experiments does not

support the abs() and max() functions, the other (off-the-shelf solver, HySAT- [35, 96]),

does provide this support. Even in this case however, the above Boolean constraints can be

helpful alongside the strictly numerical ones. Because proof of unsatisfiability is what is

required to give robustness (as shown in Chapter 3), providing extra constraints can help to

speed the search by leading to a shorter proof. It also should be noted that when different

solvers are used, any information known about the solver's search algorithm can be lever

aged to set up the constraints in such a way to maximize search efficiency. Finally, while

the above discussion relates specifically to our error model, it is by no means restricted

to it - any desired error behaviour which can be captured into constraints is permissible.

This further highlights the flexibility gained by using the computational approach. The

next subsection now deals with partitioning an iterative calculation into pieces which can

be analyzed by the framework which is now in place.

5.1.3 Iterative calculation partitioning

Numerical schemes for solving scientific problems can in general be divided into two main

categories: 1) direct where a finite number of operations leads to the exact result and 2)

iterative where the application of one iteration refines an estimate of the final result which

is converged upon by repeated iteration. Figure 5.4 shows one way how an iterative calcu

lation may be broken into sub-calculations which are direct, as well as the data dependency

101

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Setup
Inputs

Calculation

Core
Iteration

Auxilliary
Iteration

Takedown
Outputs

Calculation

Figure 5.4: A generalized view of the flow of data within an iterative calculation.

relationships between the different sub-calculations. In particular, the Setup, Core, Aux

illiary and Takedown blocks of Figure 5.4 represent direct calculations, and Done? may

also involve some computation but produces (directly) an affirmative/negative answer. The

Setup calculations provide (based on the inputs) initial iterates, which are updated by Core

and Auxiliary until the termination criterion encapsulated by Done is met, at which point

post-processing to obtain the final result is completed by Takedown, which may take in

formation from Core, Auxiliary and Setup. What distinguishes the Core iteration from

Auxilliary is that Core contains only the intermediate calculations required to decide con

vergence. That is, the iterative procedure will still operate and terminate the same way

for the same set of inputs if the Auxiliiary calculations are removed. The reason for this

distinction is twofold: 1) convergence analysis for Core can be handled in more depth by

the solver when calculations that are spurious (with respect to convergence) are removed,

and 2) error requirements of the two parts may be different, thus needing different error

analysis with the potential of leading to higher quality solutions.

102

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Under the partitioning scheme of Figure 5.4, the top level flow for determining repre

sentations is shown in Figure 5.5. The left half of the figure depicts the partitioning and

iterative analysis phases of the overall process, while the portion on the right shows bounds

estimation and representation search applied to direct analysis. The intuition behind Figure

5.5 is as follows:

• 	 At the onset, precision of inputs and precision requirements of outputs are known

• 	Direct analysis on the Setup stage with known input precision provides precision of

inputs to the iterative stage

• 	 Direct analysis on the Takedown stage with known output precision requirements

provides output precision requirements of the iterative stage

• 	 Between the above, and iterative analysis leveraging convergence information, for

ward propagation of input errors and the backward propagation of output error con

straints provide the conditions for direct analysis of the Core and Auxilliary iterations.

Building on the robust computational foundation of SMT that has been established during

Chapters 3 and 4, Figure 5.5 shows how SMT is leveraged through formation of the SMT

constraints for bounds estimation. Also shown is the representation search which selects

and evaluates candidate representations based on feedback from the hardware cost model

and the bounds estimator. The reason for the bidirectional relationship between iterative

and direct analysis is to retain the forward/backward propagation which marks the SMT

method and thus to retain closure between the range/precision details of the algorithm in

puts and the error tolerance limits imposed on the algorithm output. Over the next two

sections, these iterative and direct analysis blocks will be elaborated in more detail.

5.1.4 Analysis for iterative calculations

As outlined above, the role of the iterative analysis part of the overall flow is to close

the gap between forward propagation of input error, backward propagation of output error

constraints and convergence constraints over the iterations. Even while the plethora of

techniques which have been developed throughout the history of numerical analysis to

103

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Instance Formulation
(Constraint generation)

Base constraints
Iterative Analysis

(Setup, Core, Auxilliary, Takedown)

Quantization Error
-Derived dataflow -Error info Search Algorithm
-Input ranges -Cost info

Hardware-Precision -Convergence
cost model

requirements info

Direct Analysis
(Range and precision models)

Figure 5.5: Conceptual flow for solving the bit-width allocation problem for iterative nu
merical calculations.

provide detailed convergence information on iterative algorithms give a testament to the

complexity of this problem and the lack of a one-size-fits all solution, we are not completely

without recourse. In particular, one of the best aides that can be provided in our context of

bit-width allocation is a means of extracting constraints which encode information specific

to the convergence/error properties of the algorithm under analysis.

A simplistic approach to analysis of the iterative portion would be to merely "unroll"

the iteration, as shown in Figure 5.6. A set of independent solver variables and dataflow

constraints are created for the intermediates of each iteration with the output variables of

one iteration fed into the input of the next. While this approach is attractive in terms of both

automation (replication of iteration dataflow is easy) and of capturing the data correlations

across iterations, the resulting instance is very large. As a result, solver run-times can

104

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

X

ToFrom ...Iteration 2 Iteration n Iteration 1
TakedownSetup

Ax!

Figure 5.6: Iterative analysis by iteration unrolling.

Iteration

Dataflow

Figure 5.7: Iterative analysis using information from theoretical analysis.

explode, providing in reality very little meaningful feedback due to solver timeouts (Sec

tion 3.3.2). Furthermore, termination may be conditional leading to a variable number of

iterations. This can resist being captured into constraints and increase instance complexity.

For the reasons above, it is preferred to have an instance for the iterative part based

on the dataflow of a single iteration, augmented with some extra constraints as shown in

Figure 5.7. The challenge then becomes determining those constraints which will ensure

desired behaviour over the entire iterative phase of the numerical calculation. Note also

that very large instances of direct calculations could be partitioned into more manageable

sub-calculations under a similar procedure. As alluded to earlier, a rich source of infor

mation for such constraints is the theoretical analysis of the algorithm of interest. While

some general facts surrounding iterative methods do exist (e.g., Banach fixed point theorem

105

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[58]), the guidance provided by such facts to the SMT search is limited by their generality.

In addition, even these general facts may tie in algorithm specific details (e.g., the definition

of the metric of the space for the Banach fixed point theorem). Finally, the algorithm de

signer/analyst ought (in general) to have greater insight into the subtleties of the algorithm

than the algorithm user, including assumptions under which it operates correctly.

To summarize the iterative analysis process, consider that application of SMT is es

sentially done to automate and accelerate reasoning about the algorithm. If any reasoning

done offline by a person with deeper intuition about the algorithm can be captured into

constraints, it will save the solver from trying to derive that reasoning independently (if

even it could). In light of the application specific nature of this analysis process, it is best

illustrated through example as done in Section 5.2. Before that however, direct analysis is

described, since it is at the core of the method with Setup, Takedown and the result of the

iterative analysis phase all being managed through direct analysis.

5.1.5 Direct calculation precision

Having shown that an iterative algorithm can be broken down into separate pieces to be

analyzed which are direct calculations, here we discuss in more detail this direct analysis

which is depicted in the right half of Figure 5.5, which consists of three main stages. The

constraints for the base formulation come from the dataflow and its precision counterpart

involving 8 terms, formed as discussed in Section 5.1.2. This base formulation includes

constraints for known bounds on input error and requirements on output error. This feeds

into the core of the analysis which is the error search across the 8 terms (discussed im

mediately below), which produces in the end range limits (as in Chapter 3) for each in

termediate, as well as for each 8 term indicating quantization points within the dataflow

which map directly onto custom representations. Table 5.2 shows robust conversions from

ranges to bit-widths, with/, E, F, M and s representing integer, exponent, fraction, man

tissa and sign respectively. In each case, the sign bit is 0 if XL and XH have the same

sign, 1 otherwise. Note that vector-magnitude bounds must first be converted to element

wise bounds before applying the rules in the table, using llx/12 <X--+ -X< [x]i <X, and

ll8xll2 <X--+ -X/VN < [8x]i < X/VN for vectors withN elements.

106

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 5.2: Converting ranges to bit-widths for fixed and custom floating types.

Type Constraints Bits Required Total
Fixed XL <x<XH

DxL < Dx < DXH
I= lfog2 [ma.x(ixLI, lxHI) + 1]1
F = -Llog2 [min(IDxLI, IDxHI)lJ

s +I+ F

Float XL <x<XH

Dx < max (slopexlxl')
- kneex

M = llog2 (slopex)J
EH = flog2 [ma.x(ixLI, lxHI)]l

EL = llog2kneexJ +M- 1
E = flog2(EH- EL + 1)l

s+M+E

With the base constraints set up as discussed above forming an instance for the solver,

execution of the solver becomes the means of evaluating a chosen quantization scheme.

The error search that forms the core of the direct analysis utilizes this error bound engine

by plugging into the knee and slope values for each Dconstraint. Selections for knee and

slope are made based on feedback from both the hardware cost model and the error bounds

obtained from the solver. In this way, the quantization choices made as the search runs

are meant to evolve toward a quantization scheme which satisfies the desired end error/cost

tradeoff. With the machinery now in place to move from specification to custom data types,

application of the method to some case studies is presented next.

5.2 Case studies

As a means both of further illustrating the method as well as evaluating its effectiveness,

a few scenarios have been explored: the two-operand scalar addition from the relative

error example of Section 5 .1.1, an iterative Newton-Raphson division scheme and Newton's

method root finding scheme, with comparative analysis having shown throughout the thesis

that existing techniques cannot support division. Mter these, in Section 5.3, a case study

based on the Conjugate Gradient method is presented. The platform for the experiments

used the same SMT solver implementation as in the previous two chapters (HySAT [35,

96]), supplemented with a custom developed solver. The machine used was a dual core

107

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

3.00GHz Intel Pentium IV with 1GB of RAM running Ubuntu Linux 9.10. Execution

times ranged up to low lO's of minutes except for the Conjugate Gradient example where

execution times were in the lO's of hours.

As per discussion in Section 2.2.1, the hardware cost model and search procedure are

treated as aspects which are separate from error bounding, the focus of this thesis. Regard

less, in order to evaluate the method a search method must be in place. As such, we have

employed a simple metric where cost is directly proportional to number of bits. Based on

this metric, a greedy search proceeds as follows:

1. 	For each quantized intermediate x, set slopex = 0, kneex = KTESTx and set slope

and knee to zero for all other intermediates. Using KTESTx = 0 as a starting point,

adjust KTESTx until the output error requirements for the calculation are just met.

This establishes inner (minimum resource) bounds on the knee for each intermediate.

2. Repeat the above step, but for kneex = 0 and slopex = STESTx which will establish

inner bounds on the slope for each intermediate.

3. Using for each variable knee= KTEST and slope= STEST determined in the last

two steps as a starting point, check if the output error is within the tolerance afforded

by the specification, if so terminate.

4. Check for each variable the effect on output error of reducing knee by a factor of 2

and of reducing slope by a factor of 2. Adopt the choice which reduces the error the

most and go to the previous step.

The inner bounds established through steps 1, and 2 above are actually upper bounds

on the respective knee and slope values, which produce minimum resources, and knee can

also be used as the minimum number of fraction bits required for fixed-point representa

tions. The intuition behind the greedy search is to try to find the shortest path to bring the

output error inside of the tolerance requirements of the specification. Furthermore, if error

tolerance violation is occurring solely because of a variable's error behaviour in the region

below the knee point (absolute error behaviour), adjusting slope should not affect it. The

reverse is also true. In addition, if error from one variable is so large that it overwhelms

error from other variables, more precision will be allocated to that variable.

108

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

It should be noted the overall hardware result depends heavily on the suitability of the

hardware cost models and associated search procedure, and how well coupled they are. As

discussed in Chapter 2, one of the motivations of the abstraction between these aspects

and the estimation of error bounds is how much they vary based on the implementation

technology. It has been stressed that regardless of the choice of cost model and search,

they cannot be effective without error bounds which are tight enough to be informative,

such has been the motivation of this thesis. In light of this, the main purpose of the above

(potentially inefficient) search and metric is to provide the support necessary to highlight

the capacity of SMT based error bounding to deal with scientific calculations. With that in

mind, we turn to the case studies.

5.2.1 Two operand addition

The first and simplest case study is two operand addition with a relative error constraint,

following the setup from the relative error example of Section 5.1.1. The calculation is

direct: a +b = c between two floating-point numbers a, b E [10, 1 00], and quantization is

applied to the inputs a, bas well as the result c. For output error constraints of slopec::; 1%

and kneec::; 0.1 the tool returns s[opea = s[opeb = 1.25 X 10-3,kneea = kneeb = 1.25 X

10-2 and s[opec = 2.5 X 10-3, kneec = 5.0 X 10-2. These translate into S = 1 sign+ m = 10

mantissa+ e = 4 exponent bits for a and b, and s = 1 sign+ m = 9 mantissa+ e = 4 exponent

bits for c. Because the resulting range of c E [20, 200] does not include kneec, relative error

limits are guaranteed over the entire range.

Note that the example from Section 5.1.1 upon which this case is based provides (for

the sake of clarity in the example) only forward relative error analysis without considering

quantization effects. Since quantization injects additional error into the calculation, the

accumulation of those errors must amount in the end to less than the tolerance. This is the

reason for 10 mantissa bits for a and b and 9 for c which give slope less than the 1% required

by the specification. Furthermore, because no rounding mode is specified, no assumption

is made in the tool to retain robustness and as a result, slopes from output error tolerance

specifications and those reported back from quantization points are adjusted down by a

factor of 2, to ensure that any quantization mode that might be chosen supports the error

109

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

tolerance requirements.

Moving to the second part of the experiment where the input ranges are changed to

a, b E [-100, 100] the effect of the catastrophic cancellation highlighted in Section 5 .1.1

can be seen immediately. The slope values returned by the tool indicate smaller errors at

the extremes of the ranges than the knee values, which themselves depend on the knee value

constraint imposed externally on c. In essence, the only error which can be guaranteed in

this case (since values could cancel to zero) is absolute error, which is controlled by the

knee value. For a constraint of kneec::::; 0.1 (regardless of the slopec constraint) the tool

indicates a fixed-point representation with 7 fraction bits for a, b and 6 fraction bits for c.

If the kneec constraint is reduced four-fold, 2 more bits are required on each of a,b and c.

The selection of fixed-point by the tool for this scenario indicates that it is aware (through

the formalism of the SMT instance) of the catastrophic cancelation effect and is indeed

generating robust bit-widths, as that is the only way to ensure the required precision on the

output over the entire range.

5.2.2 Newton-Raphson division

The previous example serves to clearly demonstrate the robustness of this bit-width alloca

tion method, as well as the concepts of slope and knee, and the necessary transition from

floating to fixed-point under increasingly tight error tolerances, while being simple enough

to evaluate intuitively. However, for this same reason it is of little practical significance. In

this section, the effectiveness of the method as applied to iterative calculations is illustrated

through a case study based on Newton-Raphson division.

Newton-Raphson division enables the calculation of a quotient Q= N / D, where N, Q E

JR, D E JR, D =I= 0. The quotient is calculated iteratively without using a division explic

itly, instead only subtraction and multiplication. It is useful for hardware implementations

where it is undesirable to allocate resources for a standalone divider.

In actuality, the problem is broken into 2eN x (1/2eD) where Newton's method is used

to obtain the reciprocal of 2eD and e E][is selected so that 1 < 2eD ::::; 2 where convergence

of Newton's method can be effectively predicted. The function f(X) = 1/X- 2eD having

a root at 1/(2eD) is selected for the iteration, and applying Newton's method gives the

110

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

iteration Xk+l = Xk(2- DXk)· To summarize the procedure:

1. Shift D,N bye so that 1 < 2eD $. 2

2. Starting from Xo = 0.5,

4. Obtain Q = NXk+l

where e is roughly the desired relative error of the result. As will be elaborated below, this

example also serves as useful for illustrating the different components of the iterative flow

from Figure 5.4.

Steps 1 and 2 above constitute the Setup calculation calculation portion of the iterative

method (from Figure 5.4), while the first half of step 3 is the Core iteration and step 4 is the

Takedown calculation. The second half of step 3 is the termination or Done condition, and

there is no Auxiliary Iteration as the entire iteration is required to decide convergence. In

terms ofarchitecture, a potential hardware implementation would involve a priority encoder

structure for step 1, and one or two multipliers would be required for step 3 depending

on whether sharing is permitted, for DXk and the subtraction result multiplied by Xk. A

subtractor would also be required in step 3 (for 2 - DXk), and the convergence test also

requires a subtractor (which can be dedicated or shared with step 3) plus comparison with a

constant. Finally step 4 requires a multiplier which can be dedicated, or again shared with

the one from step 3.

The iterative analysis phase for the algorithm is in essence done implicitly, subtly in

dicated by the statement of 1 < 2eD $. 2 where convergence of Newton's method can be

effectively predicted. Theoretical analysis of Newton's method using f(X) = 1/X-D hav

ing a root at X = D yields the following facts:

• f has unique root at X = D,

• f has non-zero derivative at X = D,

• f is continuously differentiable around, X= D,

• f has a second derivative at X =D.

111

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

The above conditions are sufficient to guarantee quadratic convergence by which we ap

proximate the error after k iterations as 2-2k. Furthermore, the sequence of iterations will

converge monotonically to the result. With these parts of the iterative analysis in place, we

can setup and perform the direct analyses.

Let the inputs Nand D to the algorithm have range [1 x 10-3,1 x 103], with no error

inN and D. Also let there be a tolerance constraint of slopet,.Q ::; 1 x 10-3 and kneet,.Q ::;

1 x 1 o-6 . Note that this kneet.Q constraint shifts the knee point out of the range of Q; thus

the error is controlled by relative error over the entire range of Q.

The setup calculation is trivial since Xo is fixed, D is assumed to be without error and is

shifted to between 1.0 and 2.0. The Takedown Calculation however is a little more involved

and is used to backward propagate the output error constraint. The Takedown Calculation

constraints are as follows.

Q=NX

0.5::; X< 1

1 x 10-3 ::; N ::; 1 x 103

~Q = (m)X + N(M) + (m)(M) + 8Q

m=o
abs(M)::; max(slopexabs(X),kneex)

abs(~Q)::; max((1 X 10-3)abs(Q), 1 X 10-6)

abs(oQ)::; max(slope~Qabs(Q),knee~Q)

The multiplication implies to X the relative error constraint of Q (plus a couple extra bits

due to rounding mode robustness as in the addition case study), but we know that the range

of X is limited to 0.5::; X < 1 so that the relative error constraint can be replaced with the

same absolute error giving !!.X::; 1.25 x 10-4 (13 fraction bits).

Based on the iterative analysis above, the convergence is stronger than the error require

ment for the final iteration as derived above. As the iterations proceed, we can consider that

Xk is assigned Xk-1, and because there is only a single iterated variable, no divergence be

tween iterated variables occurs. As a result, we can assume !!.X = 0 in our instance and due

to the quadratic error convergence we know that e = 6.10 x 10-5, and M' < 6.10 x 10-5

112

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

meets the error criteria. The constraints are below:

Y=2-DX

X'=XY

0.5:::; X< 1

0.5:::; X'< 1

L\Y = -(m)X- D(M)- (m)(M) +oY

M' = -(M)Y +X(M)+(M)(~Y)+oX'

M=O

M' < 6.10 x w-5

Fixed-point data types result due to the limited dynamic range of the variables involved.

One way of thinking of this is that the exponent for shifting the floating-point type which

would guarantee relative error containment is implicitly encoded in the shift which happens

before entering the iterative phase, to bring D into the range [1.0,2.0].

5.2.3 Newton's method root finding

While the last two examples have been sufficiently small to argue that exhaustive simulation

or existing analytical methods are equal to the task, this example again based on Newton's

method defies both methods. It is in fact the same example taken from Chapter 3, in Section

3.4.6 - where it was addressed only for the range problem across a single iteration. Here

on the other hand, the full method is employed to determine the root of a polynomial:

f(x) = a3.x3 +a2x2+a1x+ao. The Newton iteration:

f(xn)
Xn+l = Xn- f'(xn)

yields the iteration:

z1n a3~ + a2~ + a1Xn + ao
Xn+ 1 = Xn - Zn, Zn = - = 2

z2n 3a3Xn + 2a2Xn + a1

Such calculations can arise in embedded systems for control when some characteristic of

the system is modelled regressively using a 3rd degree polynomial. Ranges which are used

113

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

in Section 3.4.6 are given below:

xo E [-100, 100] ao E [-10, 10]

a1 E [1i, 1]] az E [-JS, -p] a3 E [~, ~]

It has been emphasized that in the context of scientific computing, robust representations

are required, and this may be an important criterion for many embedded systems applica

tions which have a scientific motivation. For a problem even of modest size such as this

one, if the range of each variable is split into 100 parts, the input space for simulation

based methods would be 1005 = 1010• This immense simulation may have to be performed

multiple times to evaluate error ramifications of each quantization choice. On top of this,

a simulation of this magnitude is still not truly exhaustive and thus cannot substantiate ro

bustness. Together these facts clearly invalidate the use of simulation based methods. As

we have also seen in Section 3.4.6, existing formal methods based on interval arithmetic

and affine arithmetic also fail to produce usable results due to the inclusion of 0 in the

denominator of Zn whereas the computational technique provides tighter ranges.

This example bears some similarity to the previous one in that it is iterative, relying

on Newton's method. However, while the previous example did not require any divisions

as a part of the dataflow (in fact its purpose was to implement division without using a

divider), this method exemplifies some of the core challenges which scientific calculations

invoke - potential singularities and ill-conditioning, which are the stumbling blocks for

existing analytical bit-width allocation methods [33, 80, 99, 106] when applied to numerical

methods (see Section 2.2.2).

The setup for this experiment in terms of input variable ranges is given above, and

perfect representation of the inputs is assumed (i.e., Axo = !laj = 0). Furthermore, there is

no Setup, Takedown or Auxiliary Iteration, only the Core Iteration. Setting the tolerance

limits for iteration outputxn+l as 0.01 for the slope and 0.001 for the knee, the tool returned

fixed-point bit-widths for the intermediates in the numerator and denominator on 16 to 20

bits fractional part, but floating-point types for z1 and z2 themselves. This is interesting

because the dynamic range of these variables is larger due to the 3rd degree polynomials,

while the division between them (for which relative error representation is convenient)

is contracting, bringing the dynamic range back down to a span suitable for fixed-point

114

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

implementation. The ability of the computational based SMT to provide meaningful bit

widths for this iterative numerical algorithm demonstrates the potential SMT has to enable

robust data representations for iterative scientific algorithms.

5.3 Conjugate Gradient case study

As a final example to tie together concepts from throughout this thesis, this example ana

lyzes the Conjugate Gradient method [113] for solving linear systems of equations. While

as in the previous example the Conjugate Gradient method was treated earlier, it was again

only for ranges over a single iteration, and for only a 3 x 3 matrix in Section 4.2.4. In this

section however, its (Jacobi) pre-conditioned extension is addressed in an environment of

much greater practical significance and complexity - an application for haptic interaction

with deformable bodies as presented in [81, 82].

5.3.1 Summary of the application

In order to provide the context of the application and to properly understand the formal re

sults presented here, the work in [82] is briefly overviewed. In the application, a deformable

body is modelled using the finite element method (FEM), and a large linear system can be

derived from localized force-distance equations over this FEM model, which the Conjugate

Gradient method is in tum applied to solve. In order to provide a sufficiently true-to-reality

simulation with their setup, the FEM mesh consists of 1000's of nodes, generating vectors

with length on the order of 103 to 104 . The corresponding matrix is sparse and the haptic

feedback system imposes a time constraint requiring solution of this large sparse system

within 1-2ms.

To address this significant computational demand imposed by the above conditions,

a hardware accelerator using a custom-floating-point numerical representations called dy

namically scaled fixed-point was developed by the authors of [82]. This was done using an

empirical approach wherein adequate limits on the precision requirements were estimated

using Monte Carlo simulations. A reproduction of the algorithm and required bit-widths

from [82] using their notation are provided in Algorithm 5.1 and Table 5.3 respectively.

115

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

Algorithm 5.1 Preconditioned Conjugate Gradient from [82]

1: u = init;
2: r=b-Ku;
3: z = p-1r·

'
4: d=z;
5: cntr = 1;
6: zr = zTr;
7: while (cntr < #m) do
8: a= zr/(dTKd);
9: u=u+ad;

10: rn =r- aKd;
11: zn = p-1rn;
12: zrn = znTrn;
13: f3 = zrn/zr;
14: d = zn+ f3d;
15: r=rn;
16: z=zn;
17: zr = zrn;
18: cntr = cntr+ 1;
19: end while
20: return u;

116

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

Table 5.3: Required bit-widths for Algorithm 5.1 as determined by [82]

Vectors Matrix Scalars
b,r,u,Kd d P-1,Z, [K]iJ =/= 0 d'fKd,r'fr a, f3

36-bit 18-bit 18-bit 64-bit 18-bit

Case 2 of the Monte Carlo experiment from [82] (Section III-B) involved a mesh with

1144 points, creating a matrix K of 3432 x 3432 with condition number (K' = 'Amax/'Amin)

8899. The experiment consisted of simulation of 50 random initial points (init) with a

deviation of 10% from the actual solution, as justified by the haptic environment. Over

the 50 simulations the normalized error of the solution vector was recorded, which was

calculated as:
llu- Utruell erru = ~-:-------:-:-'-'

llutruell
where Utrue is obtained using double precision solution to the system of equations. For

each of the 50 simulations, 25 Conjugate Gradient iterations were applied and the resultant

value of err0 was on average~ 0.004 and in the worst case~ 0.009, with standard devi

ation ~ 0.002. In addition, deviation from the result obtained from an IEEE-754 double

precision floating-point implementation was negligible over the simulations. Due to these

errors falling well within acceptable tolerances for maintaining the reality of the applica

tion, as well as the convenience of fixed latency calculation in a real-time system, [82]

indicates the number of iterations #m from Algorithm 5.1 can be fixed at 20. While this

analysis has provided relatively compelling motivation for the choice of bit-widths used in

the functioning prototype system, the next section provides a formal analysis, revealing the

non-robustness of the empirical approaches.

5.3.2 Formal analysis and robust representations

Applying the methodology presented thus and shown in Figure 5.5, and restricting our

analysis to linear system based on a constant matrix K (as in [82]), the algorithm can

117

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

be partitioned into Setup, Takedown, Core Iteration and Auxiliary Iteration of Figure 5.4

(Section 5.1.3). While the Takedown Calculation is empty (given that the iteration directly

produces the solution vector u), lines 1 to 6 constitute the setup phase. For the iterative part,

we will depart from the fixed number of iterations used by [82] to use convergence criteria

from [113] of zrn < £ 2zro, where zro is zr at line 6. Under this condition, line 9 becomes

the Auxiliary Iteration (because it is not needed to decide convergence) and all other lines

from 7 to 19 constitute the Core Iteration, which will be the focus of the discussion for the

remainder of this section.

Direct dataflow

Before setting up a direct calculation instance for analyzing the Core Iteration, we must

determine constraints for its operation. The simplest first step is to write value and precision

constraints based on Algorithm 5.1 as well as the discussion on precision expressions from

Section 5.1 .2 for the iterative part of the dataflow as follows:

q=Kd L\q = K(L\d) + 8q

dKd=dTq L\dKd = (L\d)T q + dT (L\q) + (L\d)T (L\q) + 8dKd
zr _ (L\zr)- a (L\dKd)

8a= dKd L\a- dKd + (L\dKd) + a

un=u +ad L\un = L\u + (L\a)d + a(L\d) + (L\a)(L\d) + 8un

rn = r- aq L\rn = L\r- (L\a)q - a(L\q)- (L\a)(L\q) + 8rn

zn = p - 1rn L\zn = p-l (L\rn) + 8zn

zrn = znTrn L\zrn = (L\zn?rn + znT (L\rn) + (L\zn? (L\rn) + 8zrn

f3 = zrn L\{3 = (L\zrn)- f3 (L\zr) +8f3
zr zr+ (L\zr)

dn = zn+f3d L\dn = L\zn+ (L\f3)d+ f3 (L\d) + (L\f3)(L\d) + 8dn

This dataflow represents one iteration on the iterated variables zr, d , r , u and their accom

panying finite precision errors L\zr,L\d ,L\r,L\u, under the assumption (as in [82]) that the

matrices K and P are exactly represented in their finite precision forms (which we have

adopted directly). In order to ensure that upon algorithm completion, the result is correct

(within the tolerances prescribed by the problem specification), conditions are required. It

118

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

would also be beneficial to solver instance complexity if the scope of these conditions was

limited to a single iteration. Such constraints arise from theoretical iterative analysis and

are added to those above.

Iterative analysis

Along these lines, we can set up a target number of iterations based on convergence analy

sis. Under the setup of [82] the deviation in u (i.e. error term e(o)) at the onset is (rightly)

considered safely bounded by 10% of the entire space of u, and suppose we want to ensure

that an execution of the algorithm will reduce it by 100 x to 0.1% of the space. Using the

same matrix from [82] (case 2 of Section III-B) with condition number 1C = 8.873e3, and

using the convergence analysis provided by [113] we can have:

which can be solved numerically to obtain i ~ 250.

With a target iteration count in hand we can establish necessary conditions on a single

iteration to limit loss of precision across algorithm iterations during its operation. The

derivation of the Conjugate Gradient method proceeds under the assumption that in any

iteration (i), the residual is an exact image of the current solution vector over the transform

defined by the matrix i.e.,

which is an invariant across the iterations, and is in fact what guarantees that when the

algorithm terminates, the u which results is indeed the solution to the problem. In finite

precision however, this relationship is not guaranteed to hold but instead we have:

and to examine one iteration we can derive:

II (b- Kll(i) - f (i))- (b- Kll(i+ l) - f (i+ l)) II < C(i)

llb-.KU(i)-r(i) -b+.KU(i+ l) +ru+ t)ll < C(i)

IIKTI(i+I) - .KU(i) + r u+ t) - r (i) II < C(i)

119

Ph.D. Thesis - Adam B. Kinsman McMaster University- Electrical & Computer Engineering

and substituting the quantized variables with precision expressions:

II(K +M) [(u(i+l) +~u(i+l))- (u (i) +~u(i))] + (r(i+l) +~r(i+I))- (r(i) +~r(i)) l l < £(i)

II(K + M) [(u(i+l) - u (i)) + (~u(i+l) - ~u(i))] + (r(i+l)- r (i)) + (~r(i+l) - ~r(i)) ll < £(i)

Proceeding under the assumption that the representation for matrix K is exact (as in [82]),

LV(= 0. Examining the expression inside the norm on the left hand side and making

substitutions from the precision dataflow:

K [(un- u) + (~un - ~u)] + (rn- r) + (~rn- ~r)

K[((u+ ad)- u) + (~un- ~u)] + ((r-aq)-r)+(~rn-~r)

Kad+K(~a)d+Ka(~d)) + (-aq- (~a)q- a(~q))

(+K(~a)(~d) +K8un -(~a)(~q) + 8rn

Kad+K(~a)d+Ka(~d)) + (-aKd- (~a)Kd- a(~q))
(+K(~a)(~d) +K8un -(~a)(~q) + 8rn

Ka(~d)) + (-a(K(~d) + 8q))
(+K(~a)(~d) +K8un -(~a)(K(~d) + 8q) + 8rn

Recombining with the right hand side now,

IIK8un-a8q-(~a)8q+8rnll < £(i)

IIK8un- (a+~a)8q+8rnll < £(i)

IlK8un- a8q + 8rnll < £(i)

Examining this expression in the context of Conjugate Gradient, notice that the quantiza

tion choice for only the solution vector (un) and the residual (rn) as well as the matrix

multiplication (q) affect the invariant. Intuitively this makes sense because d and a define

a search direction and step size, and regardless of the choice of them, so long as both u and

r are updated in a way consistent with each other, the invariant will hold.

Since some violation of the invariant will occur for finite precision, we seek to bound

it using the target iterations determined above. Transforming the derived expression into

space of the solution vector gives II Bun- aK- 18q + K- 18rnll :::::; £0 which gives a con

straint on how far the invariant can be broken as seen from u's point of view. If we consider

120

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

that after the targeted 250 iterations we desire magnitude of deviation (absolute) between u

and r of less than 0.01 , then £0 ::;; 0.01 / 250 = 4e-5 will meet this objective. Therefore the

constraint which we add to our formulation to guarantee desired coherence between u and

r at the end of the algorithm is:

IIK8un- a8q + 8rnl l ::;; 4 x10-5
.

This expression has been fixed for a given number of iterations to ease the complexity of

the instance and thereby not overburden the solver. In actuality, given a powerful enough

solver the above could be skipped, leaving the target number of iterations as a free variable

to be explored by the solver, constrained by the convergence formula from [113]. By doing

this analysis symbolically offline, we save the solver having to independently learn this

constraint (if it can) , or in the worst case work it out from scratch each time it would be of

use. It is worth noting also that this constraint is not unique, in that other constraints may

equally satisfy the accuracy requirements imposed on u. What matters from the robustness

point of view however is that they do in fact guarantee the desired error conditions for u.

In addition to ensuring that the u and r variables remain consistent, we need a condi

tion which keeps the search from getting off track and negatively impacting convergence.

Without more detail surrounding the necessary conditions for proper operation of the al

gorithm in the context of its application, it is difficult to form a clear constraint. As d, dn

are implemented by [82] using dynamic scaling, the are essentially custom floating-point

in that application, and as a result we adopt a bound on relative error introduced in each

iteration. This bound is the same as the bound on quantization which can be guaranteed by

the use of 18 bits mantissa as in [82] , llddnll < (2.2 x 10- 4)l ldnll · In this case we ignore

the absolute error region since no behaviour is specified for it by the application.

Robust representations

Augmenting the dataflow constraints with the two constraints above of IlK8un - a8q +
8rnll ::;; 4 x 10- 5 and llddnll < (2.2 x 10- 4) lldnll provides the instance for direct analysis

of the iterative part of the calculation. When full ranges based on quantizations from [82]:

ll initll E [0 ,5.25 X 105] llbll E [0,6.88 X 1010] AK E [22.7 ,2.02 X 105]

121

http:22.7,2.02

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 5.4: Bitwidths required for fixed-point intermediate variables.

I Variable I Integer I Fraction I Sign I Total I

I ; I ~ I ~~ I ~ I !~ I

I : I ~ I ;~ I : I ~~ I

with the corresponding error inputs set to 0 (since these values are accepted in their quan

tized form) are used, the resulting bit-widths are extremely large, going into the hundreds

of bits. Section 5.3.3 will discuss in detail the reasons behind this, which have to do in part

with the behaviour of the calculation in some comers of the solution space. By constraining

the input space more tightly, the required bit-widths can be reduced.

To constrain the input space, consider that the purpose of the Setup step is to use the

initialization vector init to reduce the residual as much as possible before beginning. There

fore, instead of allowing init and b to occupy the entire space of possibilities then constrain

the deviation from the true solution, init, we can symbolically remove the starting point,

effectively solving K(u- init) = (bnew- bcurrent), and constrain Ilul l· Using a more re

stricted range of motion within one haptic frame than above, the update to u is bounded by

llnll < w-4 . In this space, the residual will be bounded by llrll < 3.2 X 101. Under the

assumption that the algorithm reduces the residual in each iteration [113] and that the u in

the problem is now the error, we can also write llrnll < llrll, and llunl l < I lull· For the

same reason we can consider that the updates do not go outside this space marked off by

the constraints so the updates are also contained with it: II aqll < llrll and II ad II < Ilul l·
In essence the above changes transform the problem to the origin of the u space which

significantly reduces the dynamic range of the variables involved. This works in this setup

since ideally in each haptic frame the solution to Ku = b should be known and linearity al

lows easy solution to a new system, very nearby due to the short timescale. Transformation

back to the initial system involves only an addition. While in infinite precision arithmetic

these two problems are identical, in finite precision the smaller dynamic ranges can affect

bit-widths significantly. The bit-widths obtained for the intermediate variables under these

122

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Table 5.5: Bitwidths required for floating-point intermediate variables.

I Variable I Exponent I Mantissa I Sign I Total I
zr 7 22 0 29
d 5 20 1 26
q 6 44 1 51

dKd 6 39 0 45
a 8 41 0 49
zn 6 25 1 32

f3 3 22 0 25

zrn 7 22 0 29
dn 5 20 1 26

conditions are given in Tables 5.4 (fixed-point) and 5.5 (floating-point) .

These assignments should guarantee numerically correct results over the operation of

the datapath under the constraints which have been imposed, over the region of the input

space which has been selected. Interestingly, the selection of fixed-point for u , un and

r, rn makes sense for maintaining consistency between the solution and the residual as was

discussed in Section 5.3.2. Also, the relative size of the mantissas for the other variables

shows the rough degree of dependency which the output dn experiences on the respective

quantization error. For instance, 22 bits for f3 indicates a weaker (or less amplified) impact

on the error for dn than 44 bits for q. Another interesting fact about this strong dependence

on q is that it influences dn through a subtraction in rn which comes through zn and f3.
While the results make sense in terms of how they relate to the expected influence

of intermediate variables upon the output error, they represent hardware requirements of

nearly single precision floating-point in some cases, and between single and double preci

sion floating-point for others. It is only fair to note that at the same time, these requirements

are derived for a significantly restricted region of the input space where intuitively it would

be expected to be feasible with significantly narrower bit-widths, and indeed [82] provides

smaller bit-widths. The next section examines this issue in more depth and provides some

perspective on these seemingly inflated bit-widths.

123

Ph.D. Thesis - Adam B. Kinsman McMaster University- Electrical & Computer Engineering

5.3.3 Perspective on formal and empirical findings

While the results presented in the previous section represent significantly higher resource

requirements than those presented in [82], even at the same time as they address operation

over a significantly smaller region of the input space than in [82] , the primary difference

between the two comes down to robustness.

To highlight this, recall that in Section 5.3.1 the empirical results were summarized to

be erru ~ 0.004 on average and ~ 0.009 with standard deviation ~ 0.002 when 25 iter

ations were performed, using an init vector differing from the solution by less than 10%

of its space. However, based on the theoretical analysis of the algorithm utilized for the

iterative analysis phase, it is known that convergence is slowed when the vector b takes on

a direction having equal weights of the eigenvectors of K. Taking a 10% deviation along a

direction in u which produces such a b creates a scenario where the normalized error mag

nitude erru = 0.083 after the same 25 iterations. Note that this represents ~35 standard

deviations from the worst case, and ~40 from the average, under the statistics generated

from simulation. In excess of 100 iterations are required to bring the normalized residual

magnitude to the same range identified through simulation. As the number of iterations

increases, the residual obtained using custom representation deviates from that obtained

using double precision floating-point so that after 225 iterations, the custom representa

tion normalized residual magnitude is ~ 1.73 x 105 and the double precision normalized

residual magnitude is~ 2.71 X 10-8.

Taking this case a step further, the effect can be exacerbated by observing that floating

point types can lose accuracy due to cancelation, when large numbers are subtracted. The

principle extends to vectors so a large init vector which must be reduced down to the so

lution u will experience the most cancellation. In this case, after simulating 225 iterations,

the custom representation erru is 5.55 x 104, marking a significant departure from the dou

ble precision erru which is 29.2. The reason for this is the increased absolute error due to

cancellation of relative error (custom floating) variables, which accumulates over a number

of iterations.

What may be even more surprising is that double precision too is not immune to the

effect. Using the same K matrix, using the same direction considered above of an evenly

124

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

weighted sum of eigenvectors represented by v, we can set up b = 10- 10v and init = 1010v

giving an initial residuall.21 x 1016 . After 350 iterations, the residual as calculated by the

iterations is ~ 1.09 x 10- 1 while the true residual as calculated using the resulting u vector

(i.e. Ku- b) is 7.96. Despite the fact that all variables stay well within the representable

ranges of double precision numbers over the course of the entire simulation, the algorithm

deviates significantly from the true solution. This brings to light the important fact that

while serving the general needs of numerical computation well, double precision itself is

not a substitute for infinite precision, and there remains a need for error analysis even using

this ample representation [61, 62] .

The above representational counter examples serve as important reminders of the lack

of robustness which simulation, as well as assumed high precision data types provide. It

is worth noting that the sample size used in [82] already required significant simulation

time on state of the art platforms, and even if the size were increased 10-fold, there would

be no guarantee of detecting the corner cases discussed here which invalidate a potential

choice of representation. Furthermore, even the very modest feasible region of the input

which is under consideration in Section 5.3.2 consists of somewhere on the order of 23000

points, clearly infeasible to be handled through simulation. At the same time however,

no counter example such as the ones above can be brought for lower precision types than

the ones indicated in Tables 5.4 and 5.5 within this restricted input space. Furthermore,

double precision has been used extensively and reliably in scientific applications for quite

some time, and a functioning system has been prototyped for [82] which has demonstrated

correct operation. The natural question arises, how can balance be brought to this situation?

The key to resolving these seemingly disparate circumstances is twofold: it involves

being more precise about robustness from both the side of the tool and the side of the ap

plication. On the tool side, overestimation of ranges arises from abstraction of vector types

and timeouts due to an inability to terminate the SMT search for large problem instances.

On the problem side, extra precision may be allocated to support corners of the solution

space which may be of little or no consequence.

The solution to the second problem identified above requires increased understanding

of the application, and support for transforming such knowledge into constraints to exempt

corners of the SMT search space from consideration. In a very small way, the constraints

125

http:residuall.21

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

used in some Chapter 3 case studies for restricting the denominator of a division away

from zero present an example. Support for behaviour exactly at zero should not need to

be provided, and indeed support near zero may not be necessary. At the same time, un

derstanding how a calculation gets into the vicinity of a zero denominator (as an example)

may lend insight into undesirable behaviour of the calculation. This ties into the solution

of the first problem identified above, which requires greater solver sophistication and ca

pacity, and would assist in solving both the problems identified above. Improving solver

support will not only enable tighter bounds for large instances, but at the same time will

give more detailed and informative feedback on potential regions for corner cases, where

deeper investigation may be required. In general, by using the appropriate constraints the

solver can be made to identify regions which stress a representation to its extremes, and

that information can be used either to substantiate the need for a given representation (if

the region is important to the application), or as guidance to set up constraints exempting

that region (if it is unimportant to the application).

5.4 Summary

This chapter has built upon the SMT framework established over the last two chapters, to

include support for precision, and iterative methods. An error model for unified custom

floating/fixed-point representation has been provided, which deals with absolute and rela

tive error over their respective ranges instead of over the entire regions as it has been the

case in the past. Proof of concept has been established through small iterative case studies

characteristic to scientific calculations. Challenges in dealing with practical problem setups

have been identified and support for tackling these challenges is close at hand. Once over

come, scalable automated representation can be leveraged to accelerate existing scientific

applications, improving their performance. Even beyond what exists however, custom data

representations can facilitate emergence of new applications through increased parallelism

on reconfigurable platforms.

126

Chapter 6

Concluding remarks

There is a steady shift in the computing industry toward deploying more parallelism per

device, while using lower operating frequencies. In terms of parallelism provided by the

number of arithmetic units, the FPGAs are outperforming their competing technologies,

such as multi-core processors or graphics processing engines, especially for high-end sci

entific applications; however this comes at an increased implementation effort. The key to

addressing this bottleneck is to improve the design methods for rapidly prototyping custom

computing architectures in FPGAs, because there is a lack of tools and methods that can

help reduce the size of the hardware (and hence boost the speed-up) while at the same time

provide robust data representations.

The massive parallelism is dependent on the capacity to deal with potentially ill con

ditioned calculations, representation of abstract data types, and support for iterative meth

ods. An essential challenge lies in understanding how to automatically scale the operands

within the algorithmic dataflow to guarantee precision requirements are met while not over

allocating resources and therefore compromising on parallelism.

To this end, this thesis proposes what is to best of our knowledge the first application

of computational methods to the bit-width allocation problem. Through this computa

tional approach based on Satisfiability-Modulo Theories (SMT), as well as the proposed

extensions to support large abstract data types and iterative methods, we have developed a

framework that can help designers with building custom yet robust data representations for

mapping iterative scientific calculations onto hardware.

127

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

6.1 Future work

While the adoption of computational methods marks a significant departure from the gen

eral wisdom surrounding the solution of this problem, a new beginning holds many exciting

opportunities for exploration. With the role of CAD tool support as an enabling technology

to improve designer productivity, the usefulness of a tool is influenced beyond how well it

operates by how tightly it is integrated to the rest of the tools in the design flow of which it

is a part. With this in mind, there are three main avenues along which this thesis could be

built upon in the future:

• Improving efficiency of the SMT solver,

• Strengthening links to the application,

• Strengthening links to the implementation,

and each of these points is elaborated below.

6.1.1 SMT solver efficiency

Given the central dependence of the entire bit-width allocation process on the quality of

the bounds which are produced by the SMT solver, an obvious direct means of improving

the quality of the bit-widths which are obtained is to improve solver efficiency. Based on

Section 3.2.3, the solver operation has been shown to consist of two main facets: decisions

and propagations.

On the propagation side, interval arithmetic is currently employed due to its simplicity

and fast calculation which is important in the context of a solver to enable fast evaluation

at solver search branches, facilitating deep searches. At the same time, the quality of the

bounds which it produces at each propagation step can degrade badly when the intervals

are large. As a result, the solver may have to traverse deeper (make more levels of deci

sions) than if tighter bounds could be established at each propagation. Furthermore, vectors

evaluated by this interval arithmetic through the methods proposed in Chapter 4 experience

amplification of any overestimation which interval arithmetic produces.

128

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

A starting point to solving this problem is to explore both better bounding methods

within the solver as well as tighter integration between all the levels where bounding occurs.

Specifically, the block vector methods of Chapter 4 could be far more effective if they were

placed within the solver itself- thereby allowing the solver to break the vector into blocks in

a different way in each region that the search explores. In addition, alternatives to interval

arithmetic could be explored for bounding during propagation, an example being ellipsoid

calculus [109]. On top of all this, simulation based methods could be coupled to the solver

to explore very quickly "inner bounds" indicating optimistic bit-widths which can be used

as a starting point to be refined using the computational techniques herein.

On the search side, the use of internal search algorithms at the solver's core which

are designed for general purpose SMT solving could be made more efficient by targeting

directly common patterns emerging from bit-width allocation specific searches. Knowing

that a particular kind of bounding happens commonly, extra support could be provided to

reduce the amount of branching which must be done to obtain these bounds. Also, the way

in which an interval is split when branching could be tailored to bit-width allocation, an

example being ranges for floating-point numbers, which could be divided logarithmically.

Furthermore, links between a variable and its associated precision expression could be

established so that when examining a particular error expression, branching on the variables

which influence it most strongly could lead to tight bounds more quickly.

6.1.2 Links to the application

When providing CAD tool support for a design problem, it is also important that the tool

is well integrated to the rest of the flow. As such, a tool requiring a great deal of effort in

order to leverage its benefits has a reduced impact on designer productivity. Directions of

exploration on this front relate primarily to Chapter 5.

Significant productivity gains could be made by improving support for the iterative

analysis component which extracts instances for direct analysis, primarily based on a the

oretical analysis of the algorithm. While this process has been exclusively manual for

this thesis, some automation could conceivably be provided, with great potential benefit

to designer productivity. Beginning with domain specific analyses, a framework could be

129

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

provided which leverages specific knowledge in that domain to automatically create con

straints to augment the iterative part of the dataflow.

With such frameworks in place for several domains, application links could be further

strengthened by providing infrastructure for automatic code analysis. Providing the capa

bility of analyzing existing software source code would enable reuse of existing code bases

for porting to acceleration platforms. At the same time it would shorten the turnaround

for new applications to be accelerated by enabling design and verification to be done at a

higher level of abstraction. In addition, verification itself would be more tightly coupled

and by making feedback on robustness of the representation more accessible, it could begin

to play a role in the design process itself.

As Chapter 5 has shown, even double precision floating-point is not immune to the ef

fects of finite precision. Having feedback on where the precision limits are most stressed

could provide the designer the opportunity to evaluate whether the effect results from insuf

ficient precision and/or poor choice of algorithm. On the other hand, conditions which are

indicated as stressing the precision may be artificial so that they will never be encountered

in practice. This feedback can also be useful to the designer, as would support for automat

ically generating constraints to exclude such the discovered scenario from consideration.

Lastly, these input space corners can be an excellent starting point for validation because

they will explore design corners.

Along the same lines, constraint support is currently only for hard constraints i.e., all

constraints must be satisfied at all times. While this environment is suitable for scientific

calculations and indeed necessary in some cases, it may be overly restrictive in other cases.

In DSP, error tolerance criteria may be more descriptive when given in terms of statistics

across a multitude of samples (e.g. signal to noise ratio) as opposed to hard error bounds

on the calculation of any given sample. Such a characterization of error can be useful in

scientific computing as well (e.g., based on [129]), for example applications based on the

Monte Carlo method [89]. Clearly defining and providing solver support for these types of

constraints can loosen the restriction of hard constraints, adding a degree of freedom to be

exploited in searching for representations.

130

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

6.1.3 Links to the implementation

In addition to the CAD side, links to the implementation are important. It has been shown

that the bit-width allocation problem can be abstracted from the implementation through the

use of appropriate hardware/error tradeoff cost models, which are integrated into the flow

in Chapter 5. The end result of this flow is then a set of acceptable quantization behaviours

which, when applied, will still satisfy the specified error tolerance requirements. This

set of quantization behaviours maps directly onto a choice of custom representations. The

natural extension is to directly generate hardware descriptions for the custom representation

calculation units.

While the map between the quantization behaviour and the representation is clear, hav

ing such support in place opens many interesting avenues for further pursuit. For example,

being able to automatically generate hardware can be augmented with generation of the

simulation and verification support (i.e. testbenches) which would be informed by what the

corner cases are in terms of precision. At the same time, automatic generation of hardware

assertions for constraints used in the dataflow would also be useful for verification, as they

could monitor for unsupported arithmetic behaviour during operation. With automatic links

to hardware, the bit-width allocation process could also be more tightly integrated with ar

chitectural synthesis. As an alternative to the current methodology where an architecture

is decided and then the representation needs are established, choice of precision could be

made a part of the architecture search.

6.2 Final remarks

When considering the above suggestions for improvement, it is humbling to realize the

immensity and complexity of the problem of bit-width allocation, and at the same time

how it is just one of many parts of the overall design flow of digital integrated systems.

Throughout the tenure of the research in this thesis we have learned many lessons. We trust

that by sharing them here, they may be of benefit to more people from the research and

development communities.

131

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

Three years ago this research was born out of our involvement in porting a couple of

scientific applications onto hardware accelerators. Through those experiences we realized

the importance of custom representations to enable high compute throughput. When the

project began, there were no computational approaches to the custom data representation

problem for iterative algorithms. Over these three years we have:

• 	 attained a robust understanding of the range aspect of the problem

• 	 attained a robust understanding of dealing with vector calculus for large problem

instances

• 	 attained a robust understanding on how to abstract the implementation, thus enabling

platform independence

• 	 attained the fundamental understanding about how to formulate the precision aspect

of the problem

• 	 gained valuable experience in breaking down iterative algorithms for analysis

• 	 recognized the need to expand on both the scientific and implementation fronts to

enable automatic scalability to large scientific applications.

With these lessons learned and the future directions highlighted, we consider this thesis

as an important step toward the faster implementation and hence adoption of large-scale

custom compute platforms. We hope eventually to see these platforms achieve unprece

dented compute throughput with low energy requirements in a small form-factor. We an

ticipate such platforms to not only enable new systems and technologies to be created, but

also to push the frontiers of scientific discovery.

132

Bibliography

[1] 	A. Ahmadi and M. Zwolinski. Symbolic noise analysis approach to computational

hardware optimization. In Proceedings of the IEEE/ACM Design Automation Con

ference, pages 391 -396, June 2008.

[2] 	 G. Arfken. Mathematical Methods for Physicists, 3rd Edition. Orlando, FL: Aca

demic Press, 1985.

[3] 	 B. Armstrong and R. Eigenmann. Application of automatic parallelization to modem

challenges of scientific computing industries. In Proceedings of the International

Conference on Parallel Processing, pages 279-286, September 2008.

[4] 	 K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A.

Patterson, W.L. Plishker, J. Shalf, S.W. Williams, and K.A. Yelick. The land

scape of parallel computing research: A view from Berkeley. Technical Report

UCBIEECS-2006-183, EECS Department, University of California, Berkeley, De

cember 2006. URL http: I /TiiWVI. eecs. berkeley. edu/Pubs/TechRpts/2006/

EECS-2006-183.html.

[5] 	 P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, S. Pal,

N. Tripathi, D. Zaretsky, R. Anderson, and J.R. Uribe. Overview of a compiler for

synthesizing MATLAB programs onto FPGAs. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 12(3):312-324, March 2004.

[6] 	 K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, and J.C. San

cho. Entering the petaflop era: The architecture and performance of Roadrunner.

133

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

In Proceedings of the International Conference for High Peiformance Computing,

Networking, Storage and Analysis, pages 1-11, November 2008.

[7] 	 P. Belanovic and M. Rupp. Automated floating-point to fixed-point conversion with

the Fixify environment. In Proceedings of the International Workshop on Rapid

System Prototyping, pages 172-178, 2005.

[8] 	 A. Benedetti and P. Perona. Bit-width optimization for configurable DSP's by multi

interval analysis. In Proceedings of the Asilomar Conference on Signals, Systems

and Computers, volume 1, pages 355 -359 vol.1, 2000.

[9] 	 R. Bergamaschi, L. Benini, K. Flautner, W. Kruijtzer, A. Sangiovanni-Vincentelli,

and K. Wakabayashi. The state of ESL design [roundtable]. IEEE Design Test of

Computers, 25(6):510 -519, November-December 2008.

[10] 	 S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004.

[11] R.N. Bracewell. The Fourier Transform and its Applications, 3rd Edition. McGraw

Hill, 1999.

[12] R.L. Burden and J.D. Faires. Numerical Analysis, 7th Edition. Brooks Cole, 2000.

[13] D. Burger and J.R. Goodman. Billion-transistor architectures: there and back again.

Computer, 37(3):22- 28, March 2004.

[14] 	W. Cammack and M. Paley. Fixpt: a C++ method for development of fixed point

digital signal processing algorithms. In Proceedings of the Hawaii International

Conference on System Sciences, volume 1, pages 87-95, January 1994.

[15] M.-A. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie. An automatic word length

determination method. In Proceedings of the IEEE International Symposium on

Circuits and Systems, volume 5, pages 53 -56 vol. 5, 2001.

[16] M.-A. Cantin, Y. Savaria, and P. Lavoie. A comparison of automatic word length

optimization procedures. In Proceedings of the IEEE International Symposium on

Circuits and Systems, volume 2, pages 11-612-11-615 vol.2, 2002.

134

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[17] J.M.C. Carvajal, R. Schwemmer, J.-C. Garnier, and N. Neufeld. A high-performance

storage system for the LHCb experiment. In Proceedings of the IEEE-NPSS Real

Time Conference, pages 426-430, May 2009.

[18] G. Chen, G. Li, S. Pei, and B. Wu. 	 GPGPU supported cooperative acceleration in

molecular dynamics. In Proceedings of the International Conference on Computer

Supported Cooperative Work in Design, pages 113-118, April 2009.

[19] 	J.-11 Choi, H.-S. Jun, and S.-Y. Hwang. Efficient hardware optimisation algorithm

for fixed point digital signal processing ASIC design. Electronics Letters, 32(11):

992 -994, May 1996.

[20] 	T.F. Clayton, A.F. Murray, and I. Lindsay. GP-GPU: Bridging the gap between

modelling and experimentation. In Proceedings of the NASA/ESA Conference on

Adaptive Hardware and Systems, pages 453-459,29 2009-Aug. 1 2009.

[21] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens. A methodology

and design environment for DSP ASIC fixed point refinement. In Proceedings ofthe

IEEEIACM Design, Automation and Test in Europe, pages 271-276, 1999.

[22] 	V. Cocilovo, G. Calabro, A. Cucchiaro, A. Pizzuto, G. Ramogida, and C. Rita.

Toroidal field coil thermal analysis for fast tokamak. In Proceedings of the

IEEEINPSS Symposium on Fusion Engineering, pages 1-4, June 2009.

[23] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou, andY. Zou. Evaluation of

static analysis techniques for fixed-point precision optimization. In Proceedings of

the IEEE Symposium on Field-Programmable Custom Computing Machines, pages

231-234, April2009. doi: 10.1109/FCCM.2009.35.

[24] G.A. Constantinides. 	 Perturbation analysis for word-length optimization. In Pro

ceedings of the IEEE Symposium on Field-Programmable Custom Computing Ma

chines, pages 81-90, Apri12003.

[25] G.A. Constantinides, 	 P.Y.K. Cheung, and W. Luk. The multiple wordlength

paradigm. In Proceedings of the IEEE Symposium on Field-Programmable Custom

Computing Machines, pages 51-60,2001.

135

http:10.1109/FCCM.2009.35

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[26] G.A. Constantinides, P.Y.K. Cheung, and W. Luk. Optimum wordlength allocation.

In Proceedings ofthe IEEE Symposium on Field-Programmable Custom Computing

Machines, pages 219-228,2002.

[27] 	 G.A. Constantinides, P.Y.K. Cheung, and W. Luk. Wordlength optimization for lin

ear digital signal processing. IEEE Transactions on Computer-Aided Design of In

tegrated Circuits and Systems, 22(10):1432- 1442, October 2003.

[28] 	 G.A. Constantinides, P.Y.K. Cheung, and W. Luk. Optimum and heuristic synthe

sis of multiple word-length architectures. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 13(1):39- 57, January 2005.

[29] 	 B.R. Coutinho, G.L.M. Teodoro, R.S. Oliveira, D.O.G. Neto, and R.A.C. Ferreira.

Profiling general purpose GPU applications. In Proceedings of the International

Symposium on Computer Architecture and High Performance Computing, pages 11

18, October 2009.

[30] 	 D.E. Culler and A. Singh, J.P. with Gupta. Parallel Computer Architecture, A Hard

ware/Software Approach. Morgan Kafmann, 1999.

[31] 	 S.M. Easterbrook and T.C. Johns. Engineering the software for understanding

climate change. Computing in Science Engineering, 11(6):65 -74, November

December 2009.

[32] 	 N. En and N. Srensson. MiniSat page. Online. URL http: I /minisat. se/Main.

html.

[33] 	 C.F. Fang, R.A. Rutenbar, and T. Chen. Fast, accurate static analysis for fixed-point

finite-precision effects in DSP designs. In Proceedings of the IEEEIACM Interna

tional Conference on Computer-Aided Design, pages 275-282, 2003.

[34] 	 M. Flynn, R. Dimond, 0. Mencer, and 0. Pell. Finding speedup in parallel proces

sors. In Proceedings of the International Symposium on Parallel and Distributed

Computing, pages 3-7, July 2008.

136

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[35] M. Franzle and C. Herde. HySAT: An efficient proof engine for bounded model

checking of hybrid systems. Formal Methods in System Design, 30(3):178-198,

June 2007.

[36] Free Software Foundation (FSF). GSL-GNU scientific library - GNU project. On

line. URL http: I /www. gnu. org/software/gsl/.

[37] A.A. Gaffar, 	0. Mencer, W. Luk, P.Y.K. Cheung, and N. Shirazi. Floating-point

bitwidth analysis via automatic differentiation. In Proceedings ofthe IEEE Interna

tional Conference on Field-Programmable Technology, pages 158- 165, December

2002.

[38] A.A. Gaffar, 0. Mencer, and W. Luk. Unifying Bit-width Optimisation for Fixed

point and Floating-point Designs. In Proceedings of the IEEE Symposium on Field

Programmable Custom Computing Machines, pages 79-88, 2004.

[39] D. Geer. Networks on processors improve on-chip communications. 	Computer, 42

(3):17 -20, March 2009.

[40] M.K. Gobbert. Configuration and performance of a Beowulf cluster for large-scale

scientific simulations. Computing in Science and Engineering, 7(2):14-26, March

April2005.

[41] D. Goldberg. What every computer scientist should know about floating point arith

metic. ACM Computing Surveys, 23(1):5-48, 1991.

[42] 	 G.H. Golub and C.F. Van Loan. Matrix Computations, 3rd Edition. John Hopkins

University Press, 1996.

[43] 	 S. Gopalakrishnan, P. Kalla, and F. Enescu. Optimization of arithmetic datapaths

with finite word-length operands. In Proceedings of the IEEEIACM Asia and South

Pacific Design Automation Conference, pages 511 -516, January 2007.

[44] M. Gschwind, H.P. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe, and T. Yamazaki.

Synergistic processing in Cell's multicore architecture. IEEE Micro, 26(2): 10 -24,

March-April 2006.

137

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[45] 	T. Hamada, K. Benkrid, K. Nitadori, and M. Taiji. A comparative study on ASIC,

FPGAs, GPUs and general purpose processors in the O(N2) gravitational n-body

simulation. In Proceedings of the NASA/ESA Conference on Adaptive Hardware

and Systems, pages 447-452, August 2009.

[46] M.S. Hameed and I.A. Manarvi. Using FEM and CFD to locate cracks in compres

sor blades for non destructive inspections. In Proceedings of the IEEE Aerospace

Conference, pages 1-11, March 2009.

[47] 	 K. Han and B.L. Evans. Wordlength optimization with complexity-and-distortion

measure and its application to broadband wireless demodulator design. In Pro

ceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 5, pages V- 37-40 vol.5, May 2004.

[48] 	K. Han, A.G. Olson, and L. Evans. Automatic floating-point to fixed-point trans

formations. In Proceedings of the Asilomar Conference on Signals, Systems and

Computers, pages 79 -83, November 2006.

[49] 	R.-Y. Han. Fast fourier transform correlation tracking algorithm with background

correction. US Patent number: 6970577, November 2005. Lockheed Martin Corpo

ration.

[50] L. Hasan, Z. Al-Ars, and S. Vassiliadis. Hardware acceleration of sequence align

ment algorithms - an overview. In Proceedings of the International Conference on

Design Technology of Integrated Systems in Nanoscale Era, pages 92-97, Septem

ber 2007.

[51] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach, 4th

edition. Morgan Kauffman, San Francisco, 2007.

[52] L.C. Higbie. Vector floating-point data format. 	 IEEE Transactions on Computers,

C-25(1):25 -32, January 1976.

[53] A. Hosangadi, F. Fallah, and R. Kastner. Factoring and eliminating common subex

pressions in polynomial expressions. In Proceedings ofthe IEEEIACM International

Conference on Computer Aided Design, pages 169-174, November 2004.

138

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[54] 	A. Hosangadi, R. Kastner, and F. Fallah. Energy efficient hardware synthesis of

polynomial expressions. In Proceedings of the International Conference on VLSI

Design, pages 653 - 658, January 2005.

[55] 	 C.C. Hurd. Early computers at IBM. IEEE Annals of the History of Computing, 3

(2):163 -182, April-June 1981.

[56] IEEE. IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1-58,

29 2008. doi: 10.1109/IEEESTD.2008.4610935.

[57] 	T. Ikeda, F. Ino, and K. Hagihara. A code motion technique for accelerating general

purpose computation on the GPU. In Proceedings of the International Parallel and

Distributed Processing Symposium, pages 1-10, April2006.

[58] 	V.I. Istratescu. Fixed Point Theory: An Introduction. Springer, 1981.

[59] 	W. Kahan. Why do we need a floating-point arithmetic standard? Technical report,

EECS Department, University of California, Berkeley, 1981. URL http: I IWTiTW.
eecs.berkeley.edul-wkahanlieee754statuslwhy-ieee.pdf.

[60] 	W. Kahan. The improbability of probabilistic error analyses for numerical computa

tions. Technical report, EECS Department, University of California, Berkeley, 1998.

URL http: I IWTiTW. eecs. berkeley. edul-wkahanlimprober. pdf.

[61] 	W. Kahan. On the cost of floating-point computation without extra-precise arith

metic. Technical report, EECS Department, University of California, Berkeley,

2004. URL http: I IWTiTW. eecs. berkeley. edul-wkahaniQdrtcs. pdf.

[62] 	W. Kahan. How futile are mindless assessments of roundoff in floating-point com

putation? Technical report, EECS Department, University of California, Berkeley,

2006. URL http: I IWTiTW. eecs. berkeley. edul-wkahaniMindless. pdf.

[63] 	H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A fixed-point design and

simulation environment. In Proceedings ofthe IEEE/ACM Design, Automation and

Test in Europe, pages 429-435, 1998.

139

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[64] C.N. Keltcher, K.J. McGrath, A. Ahmed, and P. Conway. The AMD Opteron pro

cessor for multiprocessor servers. IEEE Micro, 23(2):66 -76, March-April2003.

[65] 	 A.B. Kinsman and N. Nicolici. Finite precision bit-width allocation using SAT

modulo theory. In Proceedings of the IEEE/ACM Design, Automation and Test in

Europe, pages 1106-1111,2009.

[66] A.B. Kinsman and N. Nicolici. Computational bit-width allocation for operations in

vector calculus. In Proceedings of the IEEE International Conference on Computer

Design, pages 433-438, 2009.

[67] A.B. Kinsman and N. Nicolici. Robust design methods for hardware accelerators

for iterative algorithms in scientific computing. In Proceedings of the IEEEIACM

Design Automation Conference, June 2010. To appear.

[68] A.B. Kinsman and N. Nicolici. Bit-width allocation for hardware accelerators for

scientific computing using SAT-modulo theory. IEEE Transactions on Computer

Aided Design ofIntegrated Circuits and Systems, 29(3):405 -413, March 2010.

[69] 	M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication network:

Built for speed. IEEE Micro, 26(3): 10 -23, May-June 2006.

[70] 	 J. Kolodzey. CRAY-1 computer technology. IEEE Transactions on Components,

Hybrids, and Manufacturing Technology, 4(2):181- 186, June 1981.

[71] 	 J. Krikke. Near real-time tsunami computer simulations within reach. IEEE Com

puter Graphics and Applications, 25(5):16- 21, September-October 2005.

[72] 	 G. Kron. Numerical solution of ordinary and partial differential equations by means

of equivalent circuits. Journal ofApplied Physics, 16(3):172 -186, March 1945.

[73] 	 K.-11 Kum and W. Sung. Word-length optimization for high-level synthesis of dig

ital signal processing systems. In Proceedings of the IEEE Workshop on Signal

Processing Systems, pages 569-578, October 1998.

140

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[74] 	K.-11 Kum, J. Kang, and W. Sung. AUTOSCALER for C: an optimizing floating

point to integer C program converter for fixed-point digital signal processors. IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47

(9):840 -848, September 2000.

[75] 	 K.-11 Kum and W. Sung. Combined word-length optimization and high-level syn

thesis of digital signal processing systems. IEEE Transactions on Computer-Aided

Design ofIntegrated Circuits and Systems, 20(8):921 -930, August 2001.

[76] J. Kurzak, 	A. Buttari, P. Luszczek, and J. Dongarra. The PlayStation 3 for high

performance scientific computing. Computing in Science Engineering, 10(3):84 -87,

May-June 2008.

[77] W.B. Ligon, S. III McMillan, G. Monn, K. Schoonover, F. Stivers, and K.D. Under

wood. A re-evaluation of the practicality of floating-point operations on FPGAs. In

Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines,

pages 206-215, April1998.

[78] 	K. Lillywhite, D.-J. Lee, S. Antani, D. Zhang, and R. Long. Lessons learned in

developing a low-cost high performance medical imaging cluster. In Proceedings

of the IEEE International Symposium on Computer-Based Medical Systems, pages

1-6, August 2009.

[79] 	 Y. Liu, S. Jiao, W. Wu, and S. De. GPU accelerated fast FEM deformation simula

tion. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems,

pages 606-609, December 2008.

[80] J.A. Lopez, 	C. Carreras, and 0. Nieto-Taladriz. Improved interval-based charac

terization of fixed-point LTI systems with feedback loops. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 26(11):1923 -1933,

November 2007.

[81] R. Mafi, S. Sirouspour, B. Moody, B. Mahdavikhah, K. Elizeh, A.B. Kinsman,

N. Nicolici, M. Fotoohi, and D. Madill. Hardware-based parallel computing for

141

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

real-time haptic rendering of deformable objects. In Proceedings ofthe IEEE Inter

national Conference on Intelligent Robots and Systems, pages 4187-4187, 2008.

[82] 	R. Mafi, S. Sirouspour, B. Mahdavikhah, B. Moody, K. Elizeh, A.B. Kinsman, and

N. Nicolici. A parallel computing platform for real-time haptic interaction with

deformable bodies. IEEE Transactions on Haptics, 2009. doi: 10.11 09ff0H.2009.

50.

[83] 	 A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. Low-power optimization by smart

bit-width allocation in a SystemC-based ASIC design environment. IEEE Transac

tions on Computer-Aided Design ofIntegrated Circuits and Systems, 26(3):447-455,

March 2007.

[84] 	 D. Manocha. General-purpose computations using graphics processors. Computer,

38(8):85-88, August 2005.

[85] 	Maplesoft. Math software for engineers, educators and students. Online. URL

http://www.maplesoft.com/.

[86] 	 The Math Works. Fixed-point toolbox - MATLAB. Online. URL http: I /www.

mathworks.com/products/fixed/.

[87] 	 D.W. Matula and P. Kornerup. Finite precision rational arithmetic: Slash number

systems. IEEE Transactions on Computers, C-34(1):3-18, January 1985.

[88] 	D. Menard, R. Rocher, and 0. Sentieys. Analytical fixed-point accuracy evalua

tion in linear time-invariant systems. IEEE Transactions on Circuits and Systems I:

Regular Papers, 55(10):3197 -3208, November 2008.

[89] 	 N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American

Statistical Association, 44(247):335341, September 1949. doi: 10.2307/2280232.

[90] 	 E. Mollick. Establishing Moore's law. IEEE Annals ofthe History ofComputing, 28

(3):62 -75, July-September 2006.

[91] R.E. Moore. Interval Analysis. Prentice Hall, 1966.

142

http:http://www.maplesoft.com

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[92] 	 V. Natoli. HPCwire: Heterogeneous processing: Trite or trend? On

line, June 2009. UFUL http://www.hpcwire.com/topic/processors/

Heterogeneous-Processing-Trite-or-Trend-49029591.html?viewAll=y.

Stone Ridge Technology.

[93] 	A. Nayak, M. Haldar, A. Chaudhary, and P. Banerjee. Precision and error analysis

of MATLAB applications during automated hardware synthesis for FPGAs. In Pro

ceedings ofthe IEEEIACM Design, Automation and Test in Europe, pages 722-728,

2001.

[94] 	 J. Nocedal and S.J. Wright. Numerical Optimization. Springer-Verlag, 1999.

[95] Numerical Algorithms Group. Online. UFUL http: I /www. nag. co. uk/.

[96] University 	of Oldenburg. Hysat download. Online. UFUL http: I /hysat.

informatik.uni-oldenburg.de/26273.html.

[97] Massachusetts Institute ofTechnology. Maxima, a computer algebra system. Online.

UFUL http: I /maxima. sourceforge.net/.

[98] W.G. Osborne, R.C.C. Cheung, J.G.F. Coutinho, W. Luk, and 0. Mencer. Automatic

accuracy-guaranteed bit-width optimization for fixed and floating-point systems. In

Proceedings ofthe International Conference on Field-Programmable Logic and Ap

plications, pages 617-620,2007.

[99] W.G. Osborne, R.C.C. Cheung, J.G.F. Coutinho, W. Luk, and 0. Mencer. Automatic

accuracy-guaranteed bit-width optimization for fixed and floating-point systems. In

Proceedings ofthe International Conference on Field-Programmable Logic and Ap

plications, pages 617 -620, August 2007.

[100] W.G. Osborne, J.G.F. Coutinho, R.C.C. Cheung, W. Luk, and 0. Mencer. Instru

mented multi-stage word-length optimization. In Proceedings of the International

Conference on Field-Programmable Technology, pages 89 -96, December 2007.

143

http:sourceforge.net
http://www.hpcwire.com/topic/processors

Ph.D. Thesis- Adam B. Kinsman McMaster University- Electrical & Computer Engineering

[101] 	Y. Pang and K. Radecka. Optimizing imprecise fixed-point arithmetic circuits speci

fied by Taylor series through arithmetic transform. In Proceedings ofthe IEEEIACM

Design Automation Conference, pages 397-402,2008.

[102] 	Y. Pang, K. Radecka, and Z. Zilic. Arithmetic transforms of imprecise datapaths by

Taylor series conversion. In Proceedings of the IEEE International Conference on

Electronics, Circuits and Systems, pages 696-699, December 2006.

[103] C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.

[104] 	A. Peymandoust and G. De Micheli. Application of symbolic computer algebra in

high-level data-flow synthesis. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 22(9):1154- 1165, September 2003.

[105] Princeton University. 	 Boolean satisfiability research group at princeton. Online.

URL http: I /www .princeton. edu/-chaff/zchaff .html.

[106] 	Y. Pu andY. Ha. An automated, efficient and static bit-width optimization method

ology towards maximum bit-width-to-error tradeoff with affine arithmetic model. In

Proceedings of the IEEE/ACM Asia and South Pacific Design Automation Confer

ence, page 6 pp., January 2006.

[107] 	K. Radecka and Z. Zilic. Specifying and verifying imprecise sequential datapaths by

arithmetic transforms. In Proceedings of the IEEEIACM International Conference

on Computer Aided Design, pages 128-131, November 2002.

[108] 	K. Radecka and Z. Zilic. Arithmetic transforms for compositions of sequential and

imprecise datapaths. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 25(7):1382 -1391, July 2006.

[109] 	L. Ros, A. Sabater, and F. Thomas. An ellipsoidal calculus based on propagation and

fusion. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

32(4):430 -442, August 2002.

144

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering

[110] 	S. Sarkar, S. Dabral, P.K. Tiwari, and R.S. Mitra. Lessons and experiences with

high-level synthesis. IEEE Design Test of Computers, 26(4):34 -45, July-August

2009.

[111] R.A. Serway, R.J. Beichner, and J.W. Jewett. 	Physics for Scientists and Engineers,

Volume II, 5th Edition. Harcourt, 1999.

[112] D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon,

C. Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo,

J.P. Grossman, C.R. Ho, D.J. Ierardi, I. Kolossvry, J.L. Klepeis, T. Layman,

C. McLeavey, M.A. Moraes, R. Mueller, E.C. Priest, Y. Shan, J. Spengler,

M. Theobald, B. Towles, and S.C. Wang. Anton: A special-purpose machine for

molecular dynamics simulation. In Proceedings of the International Symposium on

Computer Architecture, pages 1-12, 2007.

[113] J.R. Shewchuk. 	 An introduction to the conjugate gradient method without the

agomzmg pain. Technical report, EECS Department, University of Califor

nia, Berkeley, August 1994. URL http: I /WTNW. cs. emu. edu/ -quake-papers/

painless-conjugate-gradient.pdf.

[114] 	C. Shi and R.W. Brodersen. An automated floating-point to fixed-point conversion

methodology. In Proceedings ofthe International Conference on Acoustics, Speech,

and Signal Processing, pages 529-532, 2003.

[115] S.G. Shiva. Automatic hardware synthesis. Proceedings ofthe IEEE, 71(1):76- 87,

January 1983.

[116] J. Smith and G. De Micheli. Polynomial methods for allocating complex compo

nents. In Proceedings of the IEEEIACM Design, Automation and Test in Europe,

pages 217-222, 1999.

[117] Stanford University. Folding@home distributed computing. 	 Online. URL http:

//folding.stanford.edu/.

[118] 	 J. Stewart. Calculus: Early Transcendentals, 6th Edition. Brooks Cole, 2007.

145

http:folding.stanford.edu

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[119] 	J. Stolfi and L.H. de Figueiredo. Self-Validated Numerical Methods and Applica

tions. Brazilian Mathematics Colloquim Monographs. IMPA/CNPq, Rio de Janeiro,

Brazil, 1997.

[120] 	W. Sung and K.-11 Kum. Simulation-based word-length optimization method for

fixed-point digital signal processing systems. IEEE Transactions on Signal Process

ing, 43(12):3087 -3090, December 1995.

[121] M.R. Titchener. Towards real-time measurement of information in a scientific set

ting. In Proceedings of the International Symposium on Communication Systems,

Networks and Digital Signal Processing, pages 316-320, July 2008.

[122] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, 	0. Mencer, W. Luk, and P.Y.K.

Cheung. Reconfigurable computing: Architectures and design methods. lEE Pro

ceedings- Computers and Digital Techniques, 152(2):193-207, March 2005.

[123] University 	of California, Berkeley. SETI@home. Online. URL http: I I
setiathome.berkeley.edu/.

[124] J.E. Vuillemin. 	 Exact real computer arithmetic with continued fractions. IEEE

Transactions on Computers, 39(8):1087-1105, August 1990.

[125] S.A. Wadekar and A.C. Parker. Accuracy sensitive word-length selection for algo

rithm optimization. In Proceedings of the International Conference on Computer

Design: VLSI in Computers and Processors, pages 54 -61, October 1998.

[126] M. Willems, V. Bursgens, H. Keding, T. Grotker, and H. Meyr. System level fixed

point design based on an interpolative approach. In Proceedings of the IEEE/ACM

Design Automation Conference, pages 293 -298, June 1997.

[127] M. Woh, S. Mahlke, T. Mudge, and C. Chakrabarti. Mobile supercomputers for the

next-generation cell phone. Computer, 43(1):81 -85, January 2010.

[128] Wolfram. Wolfram Research: Mathematica, technical and scientific software. On

line. URL http: I /WWVl. wolfram. com/.

146

http:setiathome.berkeley.edu

Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering

[129] 	B. Wu, J. Zhu, and F.N. Najm. Dynamic-range estimation. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 25(9):1618 -1636,

September 2006.

[130] W.A. Wulf and S.A. McKee. Hitting the memory wall: Implications of the obvious.

Computer Architecture News, 23(1):2024, March 1995.

[131] 	R. Yates. Fixed-point arithmetic: An introduction. Technical report, Digital Signal

Labs, July 2009. URL http: I /'WTNVI. digitalsignallabs. com/fp. pdf.

147

Index

absolute error, 9, 10, 94-96, 108, 110, 112,

121, 124

acceleration, iii, 5, 14, 20, 29, 57, 68, 130

affine arithmetic (AA), 37-40, 43, 44, 55

58, 60, 61, 63, 65, 67, 69, 81-84,

86, 88, 114

analytic center, 61, 82-84

Anton, 26

application specific integrated circuit (ASIC),

26, 28

arithmetic transform, 40

auxiliary calculation, 111, 114, 118

bit-width, 15, 19, 30, 32, 43, 60, 67, 68, 70,

71, 73, 74,88,90,93,96, 104,110,

114, 127-129, 131

block vector, iii, 19, 70, 76, 77, 80-83, 90,

129

Boolean satisfiability (SAT), 44-46, 54, 56

branching, 50, 52, 53,129

central processing unit (CPU), 5, 27

clause, 45

cluster, 21

complex numbers, 58, 70,71

computer-aided design (CAD), 1, 5, 18, 20,

29,42, 128,129,131

conjugate gradient (CG), 17, 88, 106-108,

115-117, 119, 120

conjunction, 44

continued fraction, 5, 8

core calculation, 5, 31, 38, 43, 53, 57, 102,

106-108, 111, 114, 118, 127, 129

custom data representation, iii, 16, 18, 42,

126, 132

custom floating-point, iii, 93, 99, 121

Davidon-Fletcher-Powell (DFP), 85, 86

decision step, 45, 50

digital signal processing (DSP), 3, 9, 26, 34,

41

direct analysis, 103, 106, 107, 121, 129

Doppler effect, 59

dynamicrange,9-11,40, 113,114,122

empirical approaches, 117

energy spectral density (ESD), 58, 59, 61,

68

error constraint, 96, 98, 103, 109, 112

error model, iii, 36, 93, 95, 96, 101, 126

error region, 99

Euclidian projection, 62, 84

148

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

exponent, 10-13,94,106,109,113

fast Fourier transform (FFT), 58, 90

field programmable gate array (FPGA), 5,

13, 14, 17,20,28,29,42, 127

fixed-point, iii, 9, 10, 13, 30, 40, 94, 96, 99,

108, 110, 113-115, 123, 126

flip-flop (FF), 13

floating-point, 10, 11, 13, 27, 30, 33, 93-96,

99, 109, 113-115, 117, 123, 124,

129, 130

iterative analysis, 93, 103, 106, 111, 112,

119, 124, 129

iterative calculation, iii, 17, 19, 41, 42, 49,

93,101-107,110,111,113-115,118,

119, 121, 126, 127, 130, 132

knee,95,96, 107,108,110,112,114

linear correlation, 39

linear time-invariant (LTI), 17, 42

look-up table (LUT), 13, 14

floating-point operations per second (FLOPS), MATLAB, 18, 33, 34

4

generalized interval arithmetic (GIA), 40

graphics processing unit (GPU), 5, 26--28

Grobner basis, 40

hardware accelerator, iii, 5, 42, 90, 115, 132

hardware description language (HDL), 18

Hessian, 85

high curvature, 39, 55

HySAT, 82, 101, 107

IEEE-754, iii, 11, 12, 14, 16, 27, 33, 96,

117, 123-125, 130

ill-conditioned, iii, 16, 17, 41, 42, 114, 127

integer bits, 9, 67

integer-linear program (ILP), 33

intellectual property (IP), 1

interval arithmetic (lA), 35, 36, 38-40, 46,

50,56,61

Monte-Carlo technique, 115, 117, 130

Moore's law, 3

multicore, 20, 26--28

multiplication, 7, 13, 14, 35, 36, 56, 73-76,

88,98, 110,112,120

naive simulation, 33

Newton's method, 17, 66, 107, 110, 111,

113, 114

Newton-Raphson division, 107, 110

non-recurrent engineering (NRE), 26--28

NP-complete, 45

numerical algorithm, 115

parallelism, iii, 5, 14, 21, 27, 28, 41, 126,

127

performance gap, 28

precision constraint, 96, 118

precision problem, 93

propagation step, 128

149

Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering

quantization error, 94, 99, 123

range explosion, 61

range inversion, 56, 61, 67

range problem, 43

range refinement, 19, 43, 46, 53, 55, 68

rational function, 64

rational representation, 8, 9

register transfer level (RTL), 29, 30, 92

relative error, iii, 10, 94-96, 107, 109, 111

114, 121, 124, 126

robustness, iii, 16, 32-34, 40-42, 56, 90,

101, 109, 110, 112, 114, 117, 121,

124, 125, 130

satisfiability, 45, 53, 54, 56, 68

satisfiability-modulo theory (SMT), iii, 18,

43, 46, 50, 53-58, 60-63, 65, 67,

68, 70, 81-83, 86-88, 93, 96-100,

103, 106, 107, 109, 110, 115, 125

129

scalar expansion, 75, 82, 83, 86, 87

scientific application, 16, 19

setup calculation, 2, 20, 99, 102, 109, 111,

112, 114, 115, 118, 119, 122

significant digits, 10

singular-value decomposition (SVD), 74, 80

smart simulation, 33

supercomputer, 5, 21, 26

symbolic computing, 6, 7

takedown calculation, 111, 112, 118

Taylor series, 40

unsatisfiability, 45, 46, 52, 54, 101

vector directionality, 75

vector magnitude, 70, 73, 74, 76, 82, 86, 87

vector partitioning, 81

Verilog HDL, 18,29

VHDL, 18

150

	Structure Bookmarks
	Contents
	.!! 22 iii

