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Abstract 


This thesis details the application of computational methods to the problem of determin

ing custom data representations when building hardware accelerators for numerical com

putations. A majority of scientific applications which require hardware acceleration are 

implemented in IEEE-754 double precision. However, in many cases the error tolerance 

requirements of the application are much less than the accuracy which IEEE-754 double 

precision provides. By leveraging custom data representations, a more resource efficient 

hardware implementation arises thereby enabling greater parallelism and thus higher per

formance of the accelerator. 

The existing custom representation methods are unable to guarantee robust represen

tations while at the same time adequately supporting ill-conditioned operators. Support 

for both of these scenarios is necessary for accelerating scientific calculations. To address 

this, we propose the use of a computational method based on Satisfiability-Modulo The

ory (SMT). By capturing a calculation as a set of constraints, an SMT instance can be 

formulated which provides meaningful bounds even in the presence of ill-conditioned op

erators. At the same time, the analytical nature of SMT satisfies the need for robustness. 

Utilizing block vector arithmetic, our SMT approach is extended to provide scalability to 

large instances involving vector calculus which arise in scientific calculations. Atop this 

foundation, a unified error model is proposed which deals simultaneously with absolute 

and relative error, thereby providing the means of supporting both fixed-point and custom 

floating-point data types. Iterative algorithm analysis is leveraged to derive constraints for 

the SMT method. The application of the method to several scientific algorithms is dis

cussed by way of case studies. 
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Chapter 1 

Introduction 

Since the early days of the transistor roughly 60 years ago, exponential scaling has driven 

an increase in integration levels to enable modern circuits with billions of transistors in a 

single device, and operating frequencies in the low gigahertz (GHz) range [13]. To deal 

with the inherent complexity of designing such circuits, an entire ecosystem of computer

aided design (CAD) tools and design intellectual property (IP) has evolved. 

Over the same period, computers have been in a symbiotic relationship with applica

tions growing similarly in complexity, enabling problems of growing difficulty and scale 

to be tackled by computers. In this chapter, discussion begins with a general description of 

how computers are employed for solving problems, eventually leading to the justification 

for this work in Section 1.5. 

1.1 Computation to solve problems 

One of the primary ways in which computers have improved our problem solving capacity 

is their ability to carry out with speed and precision tasks which human beings may find too 

repetitive, tedious, error prone or which involve overwhelming amounts of data. A straight

forward example of this is the use of computers to sort, search and filter databases involving 

Terabytes (TB, = 1012 bytes) of information [17]. Going beyond mere record keeping, in 

general terms computers are used to solve problems by manipulating data according to a 

set of rules. In the physical sciences and engineering in particular, where analysis based 
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on mathematical theory has seen a great deal of success, computers have been extensively 

employed. 

One explanation of the success of computers in science and engineering is the emphasis 

placed by those fields on creating models of the systems which they study. A reliable model 

of a system will enable one to reason about the system and make predictions about its be

haviour. In this way, a model enables transference of some of the physical experimentation 

required to draw conclusions into the domain of abstract reasoning. The role of computers 

is to carry out in an automated way the reasoning related to the model, and once set up a 

computer can often be reused to perform many virtual experiments, providing more infor

mation at reduced cost compared to physical experimentation. Physical experimentation 

however will always be required to verify the conclusions drawn from the model and to 

inform/refine the model itself. 

A poignant example of this virtualization of experimentation is the use of electronic 

analog computers for solving differential equations [72], a technique which was employed 

before programmable digital computers became ubiquitous. The equations which gov

ern the behaviour of electronic circuit elements such as inductors, capacitors and resistors 

bear striking resemblance to equations which govern many physical phenomena e.g., mass

spring systems or fluid-flow systems. The similarity in the underlying mathematics enables 

a compact, inexpensive electronic system which models a bulky, costly physical system to 

replace it. 

While virtual experiments can provide more information with less cost than physical 

ones, they do not come for free - there is a cost associated with creating a computer to 

reason about a given model, and the conclusions drawn are only as reliable as the mod

els themselves. In general, more complex phenomena require more sophisticated models, 

which in general require more computational effort and/or setup cost. The next subsection 

examines these issues of computational effort and setup cost. 

1.1.1 Computational effort and cost 

The inherent tradeoff between flexibility and cost exists in many avenues of life, and elec

tronic systems are not excluded. When a dedicated electronic system is constructed to serve 
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a solitary purpose, assumptions can be made about its task and environment leading to a 

simpler, more efficient implementation. Making a system more flexible often involves sup

porting scenarios which violate some assumptions, and as such any efficiency gains coming 

from those assumptions are lost. On the other hand what is gained from increased flexi

bility is reuse which impacts cost. While a dedicated system can be more efficient than a 

general purpose system at a particular task, usually it can do nothing but that task. A more 

flexible system will be less efficient for the same particular task but will be able to perform 

a number of tasks at similar efficiency. 

In light of this tradeoff, the last few decades of evolution in electronics reveals a steady 

stream of applications implemented at first in dedicated electronic systems moving to ever 

more general and programmable platforms such as general purpose processors [64]- even 

as they are followed by applications of increasing complexity [31]. Seen from another point 

of view, applications emerge which seek electronic implementation, and the technology ad

vancements arising during the course of that implementation have the two pronged effect 

of 1) enabling the same application to be solved on a more general platform and 2) extend

ing the reach of dedicated systems to reach previously unsolvable problems. It is primarily 

through the first effect that cost is reduced, by moving to a general platform, the develop

ment and manufacturing costs of that platform are shared among all the applications which 

use that platform, and thus are lower than for a dedicated platform. 

This pattern is exemplified particularly clearly in the transitioning of multimedia from 

analog to digital. Early electronic audio processing using dedicated analog systems gradu

ally migrated to using dedicated digital signal processing circuitry, then to programmable 

digital systems as the capabilities of digital circuitry expanded thanks to Moore's law [90]. 

Today, audio processing in software is almost trivial even on commodity general purpose 

hardware. Similarly (but lagging by a number of years) was the transition for video, origi

nally managed using analog circuitry, now processed on mainstream personal computers. 

1.2 The case for acceleration 

In addition to the migration from dedicated to general purpose platforms discussed in the 

previous section, what has also become clear over these few decades is the existence of 
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General Custom 

Purpose Dedicated 


1990 

2000 

2010 

Figure 1.1: Computational thresholds for applications. 

computational thresholds, i.e., barriers of complexity imposing limits on what problems 

are feasible with a certain capacity to carry out computations, commonly referred to as 

"compute power" (as distinct from power as it relates to energy consumption). These com

pute power thresholds are the reason for the lag in time between digitization of audio and of 

video, the computational threshold for video is higher than for audio. Figure 1.1 depicts in 

very general terms the evolution of compute power across the spectrum of platforms (from 

general purpose to dedicated), as well as computational requirements for some applications. 

It is worth noting that the tasks in the upper-most computational capacity ranges (100 

GFLOPS and TFLOPS), while being recognized today as important problems may not have 

even been conceived of in a similar graph from a decade ago. This carries the important 

point alluded to above that technology advancement with a specific application in mind has 

implications in other unanticipated applications. Furthermore, while Figure 1.1 focusses on 

the case where the higher efficiency of dedicated platforms is leveraged for the sole purpose 

of increased compute capacity, the efficiency may improve other aspects of performance. 
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Having established that more computational capacity can always be made use of, we 

must find ways of making this greater computational power available. Historically for 

general purpose computing, increased compute power came from two sources. On one 

hand, individual devices were capable of more operations per second through advancement 

in process technology (bringing higher clock rates), and architectural innovation (reducing 

execution overhead). On the other hand was parallelism, integrating many microprocessor 

devices into a much larger, more powerful supercomputer. While in the past the former has 

been the primary focus for increasing computational capacity, there has been a recent shift 

to relying on the latter to provide the compute power for the ever increasing complexity of 

applications [ 4]. 

The concept of parallelism for creating more powerful computers, and the means of im

plementing it will be discussed in more depth in Chapter 2, but are summarized here. Cur

rently, there are three main directions: multi-core central processing units (CPUs), graph

ics processing units (GPUs) and field-programmable gate array (FPGA)-based hardware 

accelerators. In terms of integration levels, there are tens of processing engines in each 

multi-core CPU; hundreds of them in a GPU and thousands in each FPGA, as of today. 

The differences between these three platforms lie in the amount ofdesign effort required 

to map an application to each platform, and also the maximum achievable performance. Us

ing the existing design methods and tools, implementing an application in FPGAs requires 

about three times more implementation effort than multi-core CPUs and about two times 

more effort than GPUs [92]. Figure 1.2 shows how FPGA-based acceleration can make a 

difference. Although in the audio/video processing fields, CPUs are sufficient today, there 

is a growing adoption of GPUs in the fields of computer graphics and quantitative finance, 

for example. There are however, fields such as biomedical sciences (medical equipment 

for remote surgery [81] or gene sequencing [50]) and environmental sciences (oil/gas ex

ploration [34] or weather simulation [31]) where the added compute power brought by 

high-end FPGAs facilitates the much-needed acceleration. 

In order to make this much-needed acceleration accessible, what is required is sophis

ticated computer-aided design (CAD) tool support. One problem which contributes to the 

higher design effort for FPGAs and as such needs to be addressed is the choice of a suitable 

numerical representation format as discussed in the next section. 
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Computational power 
(GFLOPS) 

Environmental sciences 

Drug discovery, genetics 

Medical devices 

Quantitative finance 

Computer graphics 

Video processing 

Audio processing 

Implementation cost 
(man hours for skilled designers) 

Figure 1.2: Computational capacity/requirements and development time for state of the art 
platforms/applications. 

1.3 The need for custom representations 

While the previous sections have established the role of computers in problem solving 

and provided motivation for using accelerators to increase the problem solving capacity of 

computers, they have focussed primarily on the operational aspect of computer operation. 

This section examines another, equally important aspect of how the data on which the 

computer operates is represented. 

1.3.1 Symbolic vs. numerical computing 

The representation of the data which computers are used to process generally exists under 

two main paradigms: symbolic and numerical computing. In symbolic computing, the data 

which is processed and rules by which it is processed are both abstract, and are derived 
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from the theory governing the problem which the computer is working to solve. Numerical 

computing on the other hand, uses rules based on arithmetic to manipulate data which are 

quantities representing aspects of the problem under consideration. 

To understand the difference between symbolic and numerical computing, consider a 

geometric series r.;_:~-l arj. In symbolic computing the data would be the expression and 

its variables while the rules would be derived from algebra, application of which should 

lead eventually to the expression a \-=.r:. In numerical computing however, the rules are 

derived from arithmetic, but the problem has no clear meaning without explicit numeri

cal values for a, r and n. Once specified, application of the rules means performing the 

exponentiation, multiplication and summation over all j to produce the final result. 

Due to key advantages (i.e., completeness, compactness, exactness) in some scenarios, 

symbolic computation packages have been developed such as computer algebra systems, 

e.g., Maple [85], Mathematica [128], and Maxima [97]. However, the majority of sci

ence/engineering problems today are solved using numerical techniques for two primary 

reasons. First, the precision of the input parameters to a problem as well as the required 

accuracy of the solution are typically limited. This is especially true in science and engi

neering which involve inexact measurements, and any uncertainty could frustrate the ex

actness, or complicate the analysis, of a symbolic solution. Second, although not the case 

in the geometric series example above, numerical representations may be more compact 

(efficient) for problems of current-day complexity, leading to reduced computation times 

especially in light of the tolerance created by inexactness. 

1.3.2 Representation of real numbers 

Upon deciding to perform calculations numerically, the next decision is what format to use 

to describe numerical quantities. Since digital computers are discrete in nature, represen

tation of discrete sets such as the integers is natural. The set of real numbers on the other 

hand is continuous and infinite, requiring approximation to be represented using the dis

crete, finite resources of the computer. A number of schemes have been devised to manage 

the error arising from this approximation as discussed next. 
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Continued fractions 

One approach to approximating the real numbers within the finite, discrete scope of digital 

computers is the use of continued fractions [ 124]. A continued fraction representation for 

a number x is a sequence of integers ai such that: 

1 
x=ao+----

1 
a1+--

a2+ · .. 

where the sequence ai is finite for rational numbers and infinite for irrational numbers. 

While some of its mathematical properties (e.g. truncation yields best rational approxi

mation) make it a favourable choice in theory, practical implementations encounter some 

difficulties. For one, human beings are not used to these representations so any user interac

tion with computers involves translation, at relatively high cost due to numerous divisions. 

Also, arithmetic operations on continued fractions are complex [124], and the varying rep

resentation length of different values can cause storage and manipulation complications. 

Rational representation 

Rational representations can be thought of as a simplified version of continued fraction, 

instead of a sequence with nested fractions, there is instead a pair of numbers (numera

tor and denominator) and a single fraction [87]. This solves some of the practical issues 

raised above, i.e., only a single division is required to convert to a human-readable for

mat, and the size is more uniform over all representable numbers. However, manipulation 

can still cause problems in that straightforward operations could cause the numerator and 

denominator to grow without bound, but finding the best approximation with numerator 

and denominator within a certain range is by no means trivial (continued fractions provide 

such a means). At the same time this method has seen adoption, particularly in situations 

where the application can lend some insight to the ranges involved, and where values are 

primarily rational. 

8 




Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering 

Fixed-point 

Pushing the rational representation one step further, we can fix the denominator and con

sider only the numerator giving rise to a fixed-point representation [ 131]. In digital sys

tems specifically, the choice of denominator is typically restricted to a power of 2, mak

ing conversion from one denominator to another (on a binary platform) the straightfor

ward operation of shifting left or right. Consider the rational number 19/3, using de

nominator of 8 = 23. This reduces to representing the integer nearest 19/3 x 23, which 

is 51 = (1)25 + (1)24 + (0)23 + (0)22 + (1)21 + (1)2° so the fixed-point representation 

would be 110011. Since the implicit denominator of 23 produces a shift so that 19/3 ~ 

(1 )22 + (1 )21 + (0)2° + (0)2- 1 + (1 )2-2 + (1)2-3, a "binary point" can be placed between 

the 3rd and 4th bits from the right with the number 110.011 resulting. This divides the 

representation into I integer bits on the left representing the part of the number (in absolute 

value) 2:: 1, and F fraction bits on the right representing the part of the number (in absolute 

value) < 1. In essence, I limits the range of representable numbers and F limits the resolu

tion. To extend the representation to negative numbers, 2's complement is used where -x 
1is represented as 21 - x, and the range of representable numbers is -21- 1 to 21- - 2-F. 

To summarize then, for a 16 bit fixed-point number with 5 integer bits and 11 fraction bits, 

the resolution is 2- 11 ~ 4.88 x 10-4, the range is -16 to 15.9995, and 19/3 would be 

represented 00110.01010101011, while -17/7 would be 11101.10010010010. 

This format provides a bound on absolute error incurred at each operation, and as such 

is very attractive in terms of precision however, the dynamic range is severely limited. As a 

result, this method has received a great deal of attention in applications with well bounded 

numerical ranges (for example digital signal processing) and will be discussed in more 

depth in Chapter 2 

Floating-point 

While fixed-point representations are compelling in terms of precision, careful manage

ment of the implicit denominators is required to address the dynamic range limitations. 

Unfortunately, this can limit the flexibility and reuse of any platform which uses it. This 

accounts for its success in dedicated systems with well understood numerical patterns, and 
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its shortcomings in more general purpose platforms. Expanding the dynamic range has in

volved the observation that bounding relative error rather than absolute error in calculations 

will often suffice, the reason for the emergence of scientific notation when doing calcula

tions by hand. In this format a number x is commonly represented (or approximated) as 

significant digits x baseexponent. The case of scientific notation uses 10 as the base, comput

ers in general use base 2. The scaling by baseexponent is analogous to moving the "point" of 

fixed-point giving rise to the name floating-point [41]. 

In the specific case of base 2, the significant digits (also called significand or mantissa) 

are scaled to between 1.0 inclusive and 2.0 exclusive, i.e. [1.0 ..2.0). For example, 19/3 as 

above can be represented as 1.583 ... x 22. If the exponent is represented on 4 bits we have 

0010, and the mantissa on 11 bits we have (1.)10010101011, where the (1.) is implicit 

(not stored). Extension to negative numbers is done through a sign bit indicating positive 

or negative, and for the case above of 1 sign, 4 exponent and 11 mantissa bits enables rep

resentation of numbers within the range~ ±[2.94 x 10-39 ,6.80 x 1038] to within relative 

error of::::::; 4.89 x 10-4. 

The bounded relative error behaviour of floating-point numbers makes it particularly 

suitable for use as a representation format, especially for scientific applications. The con

venience of relative error for measurement and control in the physical sciences and engi

neering also makes floating-point a natural choice. Moreover, the nature of many scientific 

applications provides contained output error for bounded input error. Finally, the dynamic 

range issue is addressed as resources for floating- vs. fixed-point to provide the same dy

namic range are O(log(log(range))) vs. O(log(range)). These advantages have enabled 

floating-point arithmetic to be successfully deployed in computing machines. 

1.3.3 Standardization of floating-point support 

As a result of the advantages of floating-point representation discussed above, it has been 

favoured for numerical computing applications, based primarily on software libraries (e.g., 

[36, 95]). In response, computer hardware makers (seeking competitive advantage) pro

vided dedicated hardware supporting floating-point arithmetic to improve performance for 

numerical tasks. Independent hardware makers frequently adopted different choices for not 
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only size of exponent and mantissa fields, but even the base. In order to foster portability 

of software across hardware platforms, as well as consistency and reproducibility of results 

obtained from numerical programs, the need for a standard floating-point representation 

became clear [59]. 

The culmination of this need for a standard was the IEEE-754 [56] standard for floating

point representations, describing single precision (on 32 bits: 1 sign + 8 exponent + 23 

mantissa) and double precision (on 64 bits: 1 sign + 11 exponent + 52 mantissa) formats. 

One important aspect arising from this standardization is the handling of comer cases, i.e. 

values or operations resulting in values outside or very nearly outside the set of numbers 

properly represented by the format. As [59] points out, this matter was largely ignored prior 

to standardization, with each hardware manufacturer making their own decisions. As also 

pointed out by [59], comer case control is imperative for maintaining portability of software 

and reliability of results obtained from software. For this reason, the standard provides 

options for a number of scenarios which are under programmer control (having defaults 

also assigned by the standard), so that a programmer with knowledge of the application 

may dictate the appropriate behaviour for a given comer case scenario. 

1.3.4 Custom precision floating-point 

The previous section has shown that the capacity to manage a broad set of comer cases 

and the programmability to dictate behaviour are very important for general purpose hard

ware meant to execute a plethora of numerical programs requiring myriad features and be

haviours. By contrast, an application-specific hardware solution needs only be concerned 

with the comer case behaviour relevant to the particular numerical task it implements. This 

important difference provides room for custom precision floating-point representations. 

Most obviously, if an application of interest does not require the full dynamic range 

provided by IEEE-754, a custom representation may use smaller widths for the exponent 

and mantissa fields. More importantly however, support for the many modes dictated IEEE

754 take a significant toll when implemented in hardware, both in performance (maximum 

clock rate) and area, especially because of the programmability requirement. Simply freez

ing the comer case behaviour (removing the programmability requirement) would already 
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(a) A fixed-point arithmetic operation. (b) A floating-point arithmetic operation. 

Figure 1.3: Fixed and floating-point arithmetic operations. 

bring implementation cost reduction. Even more than this however is that for custom repre

sentations the boundaries marking regions of comer case behaviour are themselves flexible. 

For example, adding a single bit to the exponent field effectively squares the range of rep

resentable numbers to eliminate the need for any overflow handling whatsoever. 

Leveraging this added degree of freedom, units tailored to the representation require

ments of a given application can be designed to be smaller than fully standard compliant 

IEEE-754 arithmetic units. By tailoring representation requirements not only to the appli

cation as a whole, but even the specific stage of calculation, meaningful implementation 

cost and performance savings can be attained as discussed in the next section. 
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1.4 Cost reduction and performance gain 

In order to understand how implementation cost and performance gain are affected by 

choice of representation, consider Figure 1.3 which shows in a very general sense arith

metic operations on fixed and floating-point operands. Since fixed-point numbers are essen

tially unencoded (they do not contain control information), arithmetic operations on them 

such as addition or multiplication are relatively direct (Figure 1.3(a)). For floating-point op

erations however, the exponents of the operands must be decoded, the two operands prop

erly aligned, the operation performed, and the number re-encoded into a proper floating

point representation (Figure 1.3(b)). 

The difference in terms of performance can be see more quantitatively in Table 1.1, 

based on data drawn from [77]. The table compares field-programmable gate-array (FPGA) 

implementations of multiplication and addition for 32-bit floating- and fixed-point operands 

(8 bits exponent and 23 bits mantissa for the floating-point). The comparison is made in 

terms of latency in clock cycles (CCs) and implementation cost in flip-flops (FFs) and 

lookup tables (LUTs) the basic implementation units which make up an FPGA. What dif

fers between the two data types is that while fixed-point calculations use the data directly as 

operands, floating-point operations require the operands to be scaled before the operation 

can be performed, and the result must be normalized. 

Observing the table, the impact of these differences can be seen. For multiplication, the 

variation between fixed- and floating-point is minimal. The mantissa of the result comes 

from the multiplication of the operand mantissas, and the exponent is essentially the sum 

of the operand exponents, with the smaller multiplication (23 vs 32 bits) balancing out the 

addition for the exponents. In light of Figure 1.3, the alignment and normalization units 

from 1.3(b) are relatively small compared to other operations, and are offset by how much 

smaller the operation unit is compared to 1.3(a) because of the 23 bit mantissa instead of 

the 32 bit fixed-point value. 

For addition on the other hand, the differences are significant. In this case, the floating

point operation requires checking conditions on operand overlap, and a shift of anywhere 

between 0 and 22 positions may be required to align the operands. In contrast, for fixed

point nothing more than a simple adder is required. In terms of latency, the case is similar. 
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Table 1.1: Comparing area/performance for floating vs. fixed-point [77]. 

Operation 
Area-LUTs Area-FFs Performance-CCs 

Floating Fixed Floating Fixed Floating Fixed 

Multiplication ~750 ~750 ~ 1000 ~750 ~30 ~30 

Addition >600 <40 >600 <40 > 10 =1 

For multiplication, the clock cycles required are essentially the same, while for addition 

more clock cycles are required for pipelining the large barrel shifters required to align the 

numbers before performing the addition. Referring again to Figure 1.3, in this case the 

alignment and normalization units are more costly to implement than for multiplication. 

What is clear from this example is that representation can have a significant impact on 

area and performance of individual calculation units. This impact is amplified by as many 

calculation units as are employed together to achieve parallelism. In simple terms, if a 

calculation unit is smaller, more can be fit onto an acceleration platform (like an FPGA) 

thereby increasing the parallelism, and if it is faster the overall throughput is further in

creased. With this in mind, Figure 1.4 depicts in general terms the potential gains of mov

ing away from the IEEE-754 double precision standard. By fully leveraging any slack in 

precision requirements, resource cost of arithmetic units can be reduced, leading in the end 

to greater parallelism and with it increased computational capacity. 

What is also the case regarding representation impact on area and latency is that for a 

fixed choice of architecture and implementation technology, a direct relationship between 

representation and cost/latency can be identified. For example, the choice of a combina

tional multiplier vs. a sequential one for a given FPGA device family will yield a certain 

(complex) tradeoff between maximum clock frequency, number of clock cycles latency to 

the result and number of LUTs required. These choices are influenced by many factors 

which are independent from the representation choice, and can vary significantly from one 

application to another. Furthermore, they are usually settled (or very nearly) when custom 

14 




Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

Tolerance 

Input to 

Calculation 


Performing a computation 
with reduced (from IEEE 
754 double) precision can 
produce a smaller hardware 
implementation while still 
meeting precision 
requirements of the result. 

ired) 

Tolerance 
(Double) 

True Result 
of Calculation 

Custom 
Format 

Calculation 
Unit 

IEEE 754 
Double Precision 
Calculation Unit 

Tolerance 
( 

Figure 1.4: Contrasting standardized double vs. custom precision floating-point . 

representations are derived. For this reason, cross platform and cross architecture applica

bility of a custom representation method must provide flexibility to deal with a wide array 

of design scenarios. 

Support for these varying scenarios can be provided by making abstraction of the under

lying implementation platform by use of models relating performance and cost to custom 

representation (bit-width). A simple example is a combinational multiplier with operands 

of size n bits exhibiting an approximate n2 area cost. Similarly, a ripple carry adder has a 

roughly linear relationship between operand size and delay. In a specific implementation 

technology, these numbers can be more precisely quantified. Aggregate cost models for 

full architectures can be formed by combining models for the functional units they contain, 

and greater accuracy of the model can be attained by adding more detail to the model. 

Abstracting the implementation in this way brings flexibility to the custom representa

tion approach, allowing the same methodology to be targeted toward different architectures 

15 




Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

and platforms. In this way, the improved performance which is the goal of custom repre

sentations transcends the implementation platform. Through this abstraction, custom rep

resentations are identified solely by architecture matched bit-widths, obtained with respect 

to architecture and platform specific cost models. That is, with a set of bit-widths relating 

to a defined architecture and platform, the hardware implementation follows directly. It is 

the burden of determining these parameters (bit-widths) that is focus of this thesis. 

1.5 Problem statement 

In this chapter, we have established the motivation for accelerating scientific application 

and identified the key role to this played by custom data representations. In this section, 

the necessary features for deriving custom numerical representations for applications in 

the scientific computing domain are described and the organization of the remainder of the 

thesis is summarized. 

1.5.1 Robustness requirement 

A fundamental requirement of any representation which is to be used for scientific com

puting is robustness - how far the correctness of the results can be trusted. Evidence for 

the need for this feature can be seen in the lengths which IEEE-7 54 goes to in providing 

support for indicating when a numerical problem arises (e.g. division by zero) and to cor

rect for such problems if possible. While in some application domains even catastrophic 

numerical errors have little impact in terms of real repercussions, this cannot be taken for 

granted in scientific applications. For example, a multimedia decoding system having non

robust numerical support may lead to a corrupted media stream which, although potentially 

diminishing overall user experience, is of far less consequence than a virtual surgery system 

where numerical mistakes may translate to loss of human life. 

1.5.2 Ill-conditioned operator requirement 

The second feature which must be supported is the ability to deal with potentially ill

conditioned operators and/or singularities during numerical processing. As will be detailed 
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in Chapter 2, many existing approaches to custom representation deal only with linear, 

time-invariant (LTI) systems having favourable numerical properties. When such methods 

are applied to scientific applications involving division (even potentially by zero) for ex

ample, the representations determined are likely to not bring any resource savings at all, 

if a representation can even be conclusively derived. Given that singularities arising from 

calculations such as division and trigonometric functions, ill-conditioned operators are a 

reality in many scientific computing, support for such situations must be present. 

1.5.3 Iterative method requirement 

Many scientific applications - especially in the state of the art - rely on iterative proce

dures such as Newton's method [12] for root finding to reach a result. In particular, a 

large class of applications which solve discretized partial differential equations create large 

sparse linear systems, which are commonly solved iteratively using the Conjugate Gradi

ent algorithm [113]. Examples of domains and applications include: in medicine for virtual 

surgery simulation with haptic feedback [81], in aerospace for non-destructive testing us

ing computational fluid dynamics [46] and in nuclear physics for fusion reactors [22]. As 

Chapter 2 will discuss, many existing works like those mentioned above deal only with 

non-iterative applications. Because iterative procedures may involve a large and varied 

number of iterations, scalable support must be provided to draw conclusions about their 

numerical representation requirements. 

1.5.4 Hardware efficiency requirement 

Addressing the above requirements would not be of much use if the performance gains 

sought in developing custom representations are lost due to poor pairing with the imple

mentation technology which is utilized. The impact on overall system performance that 

choice of custom representation will have is tightly coupled to architecture and implemen

tation technology, and these factors will vary significantly between applications. Influenc

ing factors can include types and constraints for memory and dedicated processing units 

(e.g. embedded multipliers in FPGAs), as well as choice of sequential or combinational 

implementation of calculation units. The result is that custom representations which are 
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favourable to one architecture/implementation technology may be inefficient under another. 

As such, an effective custom representation methodology should be sufficiently modu

lar that it can make abstraction of these details. It should support external feedback on the 

performance vs. area cost vs. representation choice tradeoff and user definable objectives 

related to performance, area and error tolerance. 

1.5.5 CAD methodology requirement 

Even while supporting all the above requirements, a methodology for determining custom 

data representations is of little use if it cannot be effectively accessed by designers as a part 

of a larger CAD tool flow. In light of this, some CAD methodology requirements arise. 

In order to facilitate seamless integration, designer intervention should be minimized. In 

the ideal case, the entire process which the designer would undertake manually to derive 

custom representations should be automated. 

To accomplish this, plug-and-play interfaces for all interactions with the rest of the tool 

flow are necessary. Specifically, a front end which supports languages in wide use for sci

entific computing software (e.g., MATLAB, C) is needed. A back end which generates 

automatically hardware descriptions for the custom calculation units in a variety of hard

ware description language (HDL) formats (e.g., Verilog, VHDL) would also be needed to 

maintain implementation technology independence. Further required to abstract from im

plementation technology is an interface for integrating hardware cost models (as discussed 

in Section 1.5.4). 

1.6 Thesis organization 

The remainder of the thesis is organized as follows. Chapter 2 provides a survey of the 

existing methods for automated data representation in light of the requirements discussed 

above. Following this, Chapter 3 deals with Satisfiability-Modulo Theories (SMT), the 

underlying computational framework we use to address the data representation problem. 

The concepts needed to comprehend SMT solvers are introduced, and a range refinement 
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algorithm [65, 68] is proposed to address the range aspect of bit-width allocation. Improve

ments over existing techniques are demonstrated through application of the method to case 

studies characteristic to scientific computing. 

With this computational technique in place, Chapter 4 builds upon it, adding support for 

dealing with large abstract data types (e.g., vectors and matrices) to provide scalability to 

large problems [ 66]. Vectors are initially represented in terms of their magnitude accompa

nied by a loss of directional correlation information. This loss of information is addressed 

through the use of block vectors which enable a smoother tradeoff between problem com

plexity and bounds quality. An algorithm is proposed for navigating this tradeoff, and the 

method is applied to the computational method of Chapter 3 as well as existing techniques 

and demonstrated on a set of case studies. 

Built atop this scalable computational framework, Chapter 5 describes the full applica

tion of the method for determining custom representation for an iterative scientific applica

tion [67]. After dealing with formation of constraints for precision expressions (as opposed 

to just range in Chapters 3 and 4), an analysis methodology for iterative algorithms is pre

sented. The proposed analysis techniques are applied to iterative case studies with scientific 

calculation characteristics. Finally, Chapter 6 provides concluding remarks and avenues of 

future work. 
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Chapter 2 

Background and prior work 

In this chapter, the various approaches to delivering acceleration as discussed in Section 

1.2 will be discussed, leading eventually to the adoption of field-programmable gate array 

(FPGA) based accelerators. Building on this, existing CAD support for FPGAs is discussed 

with a particular focus on numerical representation and in light of the requirements set up 

in Section 1.5. 

2.1 Acceleration through parallelism 

As mentioned in Section 1.2, a direct means of extending the problem-solving reach of 

computers is to perform more computations at a time (instead of just reducing the time 

per computation) by coordinating a number of individual computers so they work together. 

In such a setup, connections between individual processors allow them to share data and 

results, and a small piece of the overall compute task is tackled by each processor which 

works in parallel with all other processors giving rise to the term parallelism. Overall 

performance depends in general upon the processing power of the individual processors 

vs. complexity of the individual subtasks, as well as the communication capacity of the 

interconnections vs. the amount of data which must be passed between processors [30]. 

As it turns out, aside from a relatively small class of problems known as "embarrass

ingly parallel", partitioning a large problem so as to attain the best performance on a given 
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supercomputer is far from trivial [30]. This arises from data dependencies within applica

tions, causing one step in the computation to block others. While much research has been 

done on automatic parallelization, results obtained manually which leverage an understand

ing of the data dependencies specific to an application are almost universally superior [3]. 

2.1.1 Parallelism via cluster computing 

The obvious approach to parallelism of simply connecting numerous individual computer 

devices together is probably one of the earliest ways in which supercomputers were con

structed. Beginning with early dedicated supercomputers, for example IBM 7030 Stretch 

[55] and Cray-1 [70], management of resources was typically under a single application 

instance paradigm, using a centralized interface as depicted in Figure 2.l(a). With Moore's 

law [90] driving evolution in process technology, personal desktop machine compute power 

rose accordingly, typically providing equivalent computing power to decade earlier super

computers. Adoption of each generation of personal desktop machine brings cost reduction 

through economies of scale, reducing desktop computer power to a commodity. 

This commoditization of desktop computing power, along with advancement and stan

dardization of computer network technology and protocols, has led to the more modem 

variant of distributed computing in grids (Beowulf cluster [40], IBM Roadrunner [6]). In 

such a setup, many individual standalone machines (called nodes), each running an oper

ating system instance, are networked (usually densely) together, enabling all the machines 

to collaborate on one or many problems at once, a scenario shown in Figure 2.1 (b). One 

advantage of this type of platform comes through abstraction of the node hardware. Since 

each node's OS instance can take care of local system tasks, a virtualization layer can be 

created for the application, which can handle issues such as heterogeneity of the nodes 

or fault tolerance/load balancing. Node hardware can range from server machines (IBM 

Roadrunner [ 6]) to low cost personal computer (PC) hardware running Linux (Beowulf 

cluster [ 40]) to even gaming consoles [76, 78] or personal computers of volunteers con

nected through the Internet such as in the SETI@Home [123] and Folding@Home [117] 

projects. 
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(b) Cluster computer (virtualization software on commodity machines with separate oper
ating system instances). 

Figure 2.1: Parallelism via supercomputers and grid/cluster based computers. 
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Despite the benefits and past successes of cluster/grid computing, it does suffer some 

shortcomings. One drawback of escalating concern is cooling requirements and power 

consumption for large clusters made up of hundreds of thousands of nodes, which easily 

reach into the range of tens to hundreds of kilowatts. Size and setup cost for such a system 

are prohibitive for small organizations having only occasional needs for extensive compute 

power, and leasing time on supercomputers can also be expensive and unacceptably non

deterministic. Such organizations are also unlikely to benefit from volunteered compute 

power such as in SETI@ Home or Folding@ Home, both because of lack of participant 

goodwill and because of sensitivity of data. 

Combined with the drawbacks above, the desire to bring greater amounts of compute 

power in-field (e.g., arctic seismic analysis [71]) leaves cluster/grid computing at a loss. 

Likewise, applications with form-factor (real-time, energy, weight, size) constraints such 

as deployed/embedded systems pose similar challenges with examples being real-time sig

nal capture and processing for communications (e.g. mobile phones [127]) and diagnos

tics/visualization (e.g., medicine [121]). One answer to this problem follows the histori

cally successful strategy of further integration as discussed next. 

2.1.2 Parallelism via multicore 

The cluster based approach to parallelism has played out relatively successfully over the 

last decade or so largely by riding Moore's law, whereby each new generation of commod

ity processor was able to operate at a faster clock speed, as well more memory could be 

integrated per device and network speeds were increasing. As such, clusters with more, 

faster nodes could be built, bringing higher computational throughput. Recently however, 

the escalating capabilities of single processors have begun to wane because of diminishing 

returns on three fronts: memory, instruction level parallelism and power [4]. In answer, 

microprocessor vendors have for the last 5 years (at least) pursued multicore processors. 

Figure 2.2 illustrates the multicore concept, note the resemblance to Figure 2.1(a) if 

the custom processors are replaced with general processor cores, the custom communica

tion network is replaced by an on-chip communication network, and the entire system is 

integrated onto a single device as opposed to being built out of individual components. In 
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Figure 2.2: Parallelism via multicore devices. 

addition, the role of the single (OS) instance of Figure 2.1(a) can in theory be filled by 

a traditional OS ported to run on such a multicore architecture. The network carries data 

and directives between the processors thereby enabling them to collaborate and choices 

range from dedicated custom bus architectures [69] to general network-on-a-chip (NOC) 

[39]. The processors themselves carry out tasks on the data, and can be special purpose or 

general, even on the same chip as for the Cell Broadband Engine [44]. 

What is attractive about this model of computation is the resemblance it bears to both 

the supercomputer model and at the same time traditional single processor machines, but 

with the advantages of power, latency and physical space savings brought by the integra

tion. However, what does not carry over is the performance gains which traditionally came 

for free due to higher clock rates in each new processor generation. Challenges which 

face multicore integrated devices are presented in [4], with the central ones being related 

to power, memory and instruction level parallelism. In terms of power, the number of de

vices which can now be integrated into a single device coupled with the high switching 
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Figure 2.3: Parallelism via customized ASICs. 

frequency results in difficulties both in getting sufficient power on to the chip, as well dis

sipating heat out of the chip. In terms of memory, with limited bandwidth for moving data 

on/off of chip keeping a growing number of increasingly more powerful processing units 

busy presents challenges [130]. Finally in terms of instruction level (fine-grained) paral

lelism, the majority has been exploited already through the evolution of microprocessor 

architectural innovations (e.g. branch prediction, out-of-order execution, speculation) [51]. 

New avenues of instruction level parallelism come with diminishing returns, and coarse

grained parallelism in applications must now be found and exploited. This important shift 

in the source ofperformance gain has reopened interest in customization of the engines 

which are placed in parallel, a topic highlighted in the next section. 

25 




Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

2.1.3 Parallelism via ASICs 


Alongside the evolution in general purpose processors based systems from custom plat

forms to grids to multicore, some isolated application domains have pursued greater com

putational power by custom-designing individual processor hardware. Such custom-designed 

hardware is implemented as application specific integrated circuits (ASICs). Taking this 

approach, the speedup comes from crafting the processor to be particularly efficient for the 

(usually narrow) set of execution patterns specific to that application domain. 

This strategy has been particularly successful in the graphics processing application 

domain, largely as a result of two factors. First, the highly data-intensive nature of graph

ics processing relieves some of the hardware design complexity thus lending feasibility to 

the prospect of building dedicated accelerators. Second, the significant non-recurrent engi

neering (NRE) costs were financed relatively early on by consumers with high-end gaming 

interest who were willing to pay a premium for performance, catalyzing the cycle of in

creasing adoption and reducing cost. The culmination of this cycle over the last couple 

decades is the relegation of graphics processing units (GPUs) to the realm of commodity 

hardware. 

A similar phenomenon has occurred in the digital signal processing (DSP) domain 

which, on the design side, shares the data-intensive nature of graphics processing. The 

economic motivation however came primarily from the embedded systems domain, specif

ically mobile multimedia where power efficiency was the important objective. Reducing 

computational effort wasted on execution overhead provides greater energy efficiency and 

thus longer battery life. Similarly to GPUs, consumer adoption led to large manufacturing 

volumes driving device cost down. 

Aside from the decades old graphics and digital signal processing domains, this strat

egy is still in use today. A notable example is the development of a molecular dynamics 

supercomputer known as Anton [112]. This platform consists of dedicated chips specifi

cally designed to be efficient for performing molecular dynamics calculations, joined by a 

custom connection infrastructure designed to be most efficient for the data traffic patterns 

exhibited in molecular dynamics calculations. 

While the potential of application specific supercomputers stands well above anything 
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achievable with general purpose supercomputing platforms, the obvious drawback is the 

significant cost to develop such a machine. While custom processor design improves per

formance, it reduces flexibility which narrows the scope of applicability, and eliminates 

the opportunity to amortize the design cost over many applications. As technology ad

vancements allow new generations of general purpose platforms to match older generation 

dedicated hardware, custom platforms representing significant investments can be obso

leted perhaps before even recovering their NRE costs. 

It is on this point that the importance of the recent shift to performance through paral

lelism over performance through clock speed mentioned in the previous section hinges. 

In the past, the performance gains from adopting a new generation processor came so 

cheaply that the enormous (by contrast) development costs of dedicated hardware could 

not be justified despite substantially better performance. The increased design effort re

quired for software on multicore vs. traditional CPUs has closed the development cost 

gap between general purpose software and dedicated hardware platforms, making custom 

hardware worth considering in light of the potential performance benefit. 

On a related note, there has been recent interest in repurposing GPU s as a multicore 

platform, in order to leverage the maturity of the hardware, a movement known as "general 

purpose computing on GPUs" (GPGPU) [84]. The maturity of the technology has pro

duced current day GPU s with hundreds of cores capable of performing IEEE-7 54 compliant 

floating-point operations at high rates (GHz) and, while lacking the sophisticated control 

features of modern day microprocessors, can often deliver higher performance by virtue of 

the parallelism. Recognizing that many scientific computations can be broken down into 

calculations which GPUs can handle very quickly, significant effort has been invested both 

to 1) directly map applications to GPUs ([18, 20, 79]) and 2) develop tools/compilers to 

assist/automate the mapping process ([29, 57]). 

Despite this interest in reusing GPUs, the fact remains that GPUs are domain specific 

and while they perform excellently for calculations which can be made to resemble graphics 

processing, they cannot compete (performance wise) in domains where the calculations 

look very different. In such domains, application specific hardware will tend to provide 

better performance (in terms of both computational throughput and power efficiency, e.g. 

[ 45]), but with higher development cost which has been some of the motivation for using 

27 




Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

GPUs. The next section looks at a trend which significantly closes the development cost 

gap, significantly raising the viability of application specific hardware processors. 

2.1.4 Parallelism via FPGAs 

It has been shown in the previous sections that a paradigm shift has occurred where perfor

mance gains are now derived from increased parallelism rather than from increased clock 

speed. Furthermore we have seen that dedicated hardware systems deliver higher per

formance than reconfigurable software platforms but at increased cost. While the shift 

from clock speed to parallelism driven performance gains has closed the gap in develop

ment cost between multicore software and dedicated hardware. At the same time, in the 

last decade field-programmable gate-array (FPGA) technology advancements have signif

icantly reduced the performance gap to ASICs. The reduction of this gap on both sides 

has created an opportunity for research into recon.figurable computing platforms [122] 

particularly those based on FPGAs. 

The attraction of FPGA-based reconfigurable computing platforms is their ability to 

provide "not-much-less-than" ASIC performance for "not-much-mare-than" multicore de

velopment effort. While FPGAs have higher logic delays and lower integration capacities 

than ASICs (accounting for the lower performance), the physical platform can be reconfig

ured and therefore used over many applications better amortizing the already lower NRE 

costs. At the same time, while architecture design requires more effort than software de

sign as for GPUs and multicore, maturity of FPGA tool support makes the development 

cost gap smaller than for ASICs. 

While the superior performance potential of FPGA-based platforms has been recog

nized, so too has the fact that development cost remains a roadblock to adoption [45]. To 

address this, much investigation has been done as of late into improving tool support to fur

ther reduce development effort. Figure 2.4 (an extension of Figure 1.2) illustrates the aim 

of such research, to bring the higher performance gains associated with FPGAs at the lower 

development cost associated with GPUs. It is this broad category to which this thesis be

longs, providing automation support for reducing the design effort of mapping applications 

onto FPGAs, and the next section looks more in depth at existing tool support. 
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Figure 2.4: Reduced design effort through better tool support. 

2.2 CAD support for FPGAs 

The previous section has discussed the acceleration benefits of dedicated hardware which 

are made cost feasible through FPGA platforms. In order to leverage this acceleration while 

not suffering an inordinate increase in development cost (also discussed in the previous sec

tion), substantial research has been done in providing CAD support to lower development 

complexity for said platforms. In particular, a fair amount of effort has surrounded raising 

the abstraction of design entry, through so called behavioural synthesis [115]. Direct syn

thesis of hardware from a behavioural model in C or System Verilog relegates the difficult 

control intensive state machine design tasks to the CAD tool, thereby improving designer 

productivity. However, state of the art behavioural synthesis tools are still unable to pro

duce designs as efficient as those created by a skilled designer implementing a design at 

the register transfer level (RTL) [9, 110]. 
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Behavioural synthesis tools have found greatest acceptance in application domains and 

environments where design is feature driven rather than performance driven, such as mul

timedia. In feature driven design, competitive advantage comes from feature set and quick 

time to market, with efficiency being a secondary concern. On the other hand, in perfor

mance driven design, efficiency is the primary concern, for example in many embedded 

systems, which have form factor constraints. In this case, tool support still exists but the 

focus is different, with the tool being operated by a skilled designer working at the RTL. 

As identified in Chapter 1, choice of numerical representation is a problem of signifi

cance for more efficiently using resources for better performance. Manual solution to this 

problem has been estimated to account for 25-50% of the design time in some scenarios 

[88]. Thus, to improve productivity tool support is necessary, forming the motivation for 

this thesis. In this section an overview of the problem is provided, as well as existing 

approaches which have been applied to address this problem. 

2.2.1 Problem aspects 

Before discussing specific approaches to solving the bit-width allocation problem, this sec

tion summarizes the aspects of the problem which various approaches seek to address. The 

first aspect involves the fact that discovering the minimum number of bits necessary to ac

curately represent an intermediate variable from a calculation is a two part problem. Both 

the range and precision required must be determined, from which can be inferred the re

quired number of exponent and mantissa bits in floating-point, or integer and fraction bits 

in fixed-point. 

The second aspect deals with cost models for both error and hardware. The goal of 

works in this category is to provide easily calculable yet reasonably accurate estimates of 

impact on numerical quality and resource requirements for a given choice of representation 

scheme. Put another way, such approaches provide the means to make a statement such 

as: for a choice of representations for the intermediate variables in a dataflow, here is the 

numerical deviation from infinite precision (true value) and the hardware resources required 

to implement the dataflow. The need for reasonable accuracy and easy calculation involves 

the third aspect described in the next paragraph. 
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Figure 2.5: Summary of aspects which existing works address. 

The final aspect involves search procedures and metrics for navigating the solution 

space of possible representation choices across all intermediate variables. Using the models 

from the previous paragraph at the core of the search, these procedures will propose a 

representation scheme, evaluate the error/hardware cost (through the models) and update 

the representation scheme in order to improve a metric which reflects the overall goal of 

the search (i.e. error optimization, hardware optimization or a hybrid). 

While the first aspect is independent of the latter two (meaning that models and searches 

can apply to range and/or precision), the latter two are related, but essentially orthogonal 

(meaning that an improved cost model brings benefit to essentially any search procedure). 

Many works contribute to one or multiple of these aspects, which are summarized in Fig

ure 2.5. Apart from the aspects of the problem however, there are also requirements which 

solutions must satisfy to be useful in the context of scientific computing. Existing ap

proaches to solving the problem in light of these requirements (identified in Section 1.5) 

are discussed next. 
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Figure 2.6: Overview of approaches to bit-width allocation. 

2.2.2 Existing approaches 

In Section 1.5, the primary requirements which must be met by a design method in order 

that it will produce representations viable for scientific computing were presented. The 

first of these requirements is robustness and aligns well with the categorization of existing 

methods between analytical (formal) which can guarantee robustness and simulation based 

(empirical) which cannot. Figure 2.6 summarizes the landscape of approaches which will 

be discussed in more detail below. Two important points can be seen, first that empirical 

methods on the left produce tight but non-robust representations, and investing greater 

simulation effort enables getting nearer to the optimal. Second is that formal approaches 

produce pessimistic yet robust bit-widths, but existing methods reach a limit where no 

further improvement is possible despite extra compute power. The computation methods 

proposed in this thesis however enable a tradeoff between bit-width and computational 
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effort like for simulation, but while still maintaining robustness. 

Simulation based approaches rely on a representative input data set and work by com

paring the outcome of simulation of the reduced precision system to that of the "infinite" 

precision system, "infinite" being approximated by "very high" - e.g., double precision 

floating-point on a general purpose machine. The statistics which arise from the simula

tion provide insight on the precision and range of the intermediate variables and a number 

of techniques have been proposed along these lines, which are mostly differentiated by 

1) search algorithms and metrics which are relatively independent from the error bounds 

estimation, or 2) how information is extracted from the simulation. 

In terms of search algorithms and metrics, the error estimation as discussed below is 

leveraged to decide how to update a target precision scheme. Because the search and error 

bounding facets are strongly decoupled, while many of the approaches mentioned here 

were proposed within a simulation error bounding framework, analytical error is used by 

some and may potentially be used by all of them. For example, integer linear programming 

(ILP) and mixed-ILP are used by [28] and [26, 27] respectively. Also, genetic algorithm 

based searches are used by [48, 125], with many variations existing [15, 16, 19, 25, 47, 

73, 75, 120]. What is common to all these is that while essentially independent from 

the error estimation, there are tight links between the hardware cost models and the search 

procedures, and both of these can be strongly influenced by the implementation technology. 

Also in contrast to the independence from the specific method of error estimation, good 

error feedback from the estimation procedure is essential to effectively guide the search. 

Impact of choice of error estimation on estimate quality is discussed next. 

While the search decides how to update a potential choice of representation based on 

feedback from the error estimator, the error methods deal with deriving error bounds from 

a potential representation scheme posited by the search. Some of the error methods above 

operate by replacing the standard data types in an implementation language with augmented 

ones designed to carry more information. A class for C++ is provided by [14], similarly 

for C by [21, 74] and MATLAB [86]. In addition to replacing data types, function and 

library replacements can also be used, a particular example being automatic differentiation 

which augments the standard operators so that the derivative is calculated on execution as 

well. This method is used in simulation by [37] and [38] to collect sensitivity as well as 
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range data during simulation. Simulation environments have also been proposed, such as 

[126] modification of source code for simulation, Fixify [7] and FRIDGE [63] and some 

perform automated conversion from a high level dataflow into custom representations like 

[83] from SystemC and [5, 93] from MATLAB. A similar conversion from MATLAB is 

done by [114], but targets the simulation more directly at error behaviour by creating a 

difference system between the full and reduced precision systems. In this way, much less 

data and simulation time are required as the simulation effort is not diluted in extracting 

system statistics instead of error behaviour statistics. 

Simulation based methods have found significant adoption in the digital signal pro

cessing (DSP) application domain, as well as some embedded systems applications, due 

to some common properties. For example, many DSP systems can be characterized very 

well (in terms of both their input and output) using statistics such as expected input dis

tribution, input correlation, signal to noise ratio and bit error rate. This enables efficient 

stimuli modelling providing a framework for simulation, especially if error (noise) is al

ready a consideration in the system (as is often the case for DSP [101]). Also, given the 

real-time nature of many DSP/embedded systems applications, the potential input space 

may be restricted enough to permit very good coverage during simulation. 

In contrast to the above, for general scientific computing stimuli characterization is of

ten not as extensive as for DSP, and there is often minimal error consideration provided. 

Furthermore, robustness which is generally not necessary for DSP applications, is neces

sary for scientific computing. At the same time, statistical methods can easily miss minute 

yet important regions of the simulation space entirely [60]. As a result, situations not cov

ered by the simulation stimuli can lead to overflow or error excitation conditions which 

ultimately can lead to incorrect and/or unreliable calculation results. Because of these 

differences between general scientific computing applications and the DSP/embedded sys

tems application domain, simulation based methods cannot be relied upon for scientific 

computing. On the other hand, despite the fact that they tend to produce less compact data 

representations, analytical approaches deliver provable limits for range and precision re

quirements from which robust representations can be derived. The most straightforward 

analytical method is known as range or interval arithmetic and is described next. 
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Figure 2.7: Example of interval arithmetic (lA) operation. 

Interval Arithmetic 

Interval arithmetic (lA), first proposed by Moore [91] is the most straightforward approach 

to the problem of determining bounds on values within a calculation. It operates by es

tablishing worst case bounds at each step of the calculation. Each variable is replaced by 

an interval e.g. x --+ { xlxL :::; x :::; xn} and interval analogues of the basic operations are 

defined. For example, the + operation on intervals { xlxL :::; x :::; xn} + {yiYL :::; y :::; YH} 

produces the interval { zl (xL +yL) :::; z :::; (xn +YH)}. Intervals are then propagated through 

an entire calculation, producing reliable bounds at each stage including the output. 

With a means of calculating reliable bounds in hand, limits for the range aspect of 

the data representation problem can be obtained directly from the application of lA. To 

adapt lA for obtaining limits for the precision aspect, each variable is supplemented with 

a perturbation variable which is propagated through the operation of interest to obtain a 

precision analogue of the calculation. For example, the multiplication z = xy would be 
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transformed: 

(z+&) (x+&)(y+Lly) 

xy+& xy + y& + xdy + dxdy 

& y&+xlly+&Lly 

yielding an uncertainty variable & for the variable z. Following this procedure, an un

certainty expression can be derived for each intermediate variable in an entire calculation, 

similar to the way traditional uncertainty analysis has been performed in the physical sci

ences [111]. Under this model, input uncertainties of any form (including quantization 

noise) can be propagated through the data path. Furthermore, quantization occurring at any 

point throughout the calculation is addressed by simply injecting the resultant quantization 

noise into the appropriate perturbation variable. The application of lA provides an error 

model, as per the representation problem aspects discussed in Section 2.2.1. 

Figure 2.7 illustrates the process for simple multiplication z = xy, for -20:::; x:::; 30 

and -10 :::; y :::; 20. The left half of the figure shows application of lA directly to the 

multiplication yielding a range for z of -400 :::; z :::; 600. On the right hand side of the 

figure is the precision calculation, under the assumption of uncertainties of ±0.01 for both 

x andy, yielding uncertainty in z of +0.5001, -0.3001. 

With the lA evaluation of the multiplication mapping intervals to intervals, clearly com

plex calculations can be tackled by simply performing lA for each operation, feeding inter

vals obtained in one stage of the calculation into the next. This however is where lA begins 

to experience difficulty. While it so happens that the ranges obtained in Figure 2.7 are in 

fact tight, this is only due to the lack of interdependencies between intennediates in the 

calculation. lA is incapable of retaining any correlation information between variables and 

as a result overestimates the range when correlations are involved, a phenomenon known 

as range inflation. To make matters worse, each subsequent stage of the calculation further 

compounds the overestimation, exacerbating the range inflation effect. Some attempts to 

mitigate this have been undertaken by recognizing that the degree of overestimation is cor

related to the size of the interval, giving rise to so called multi-interval analysis [8]. This 

approach separates each input variable into a number of intervals instead of just one and 

independent lA is performed on each sub-interval and the results across all sub-intervals 
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Figure 2.8: Example of affine arithmetic (AA) operation. 

are merged. While over inflation is reduced, the method does not scale to the point of elim

inating it. To address this, a means of keeping track of correlations is required, and such a 

method is detailed next. 

Affine Arithmetic 

Keeping track of correlations between variables enables those correlations to cancel when 

recombined at later points in a calculation, thus mitigating range inflation. One approach 

to this which retains first order approximations is known as affine arithmetic (AA) [119]. In 

AA, a fixed interval is replaced by an affine expression in a variable (e.g., e) over the range 
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[-1 .. 1], and affine expressions are propagated and compounded throughout the calculation 

([80] provides a good summary of affine approximations for common operations). This 

enables dependencies which operate in opposing directions to cancel each other out when 

combined, thereby reducing overestimation of the resultant range. 

Figure 2.8 illustrates the concept using the same example calculation from Figure 2.7. 

The ranges of {xi- 20:::; x:::; 30} and {yl-10:::; y:::; 20} are mapped to affine expressions 

x = 5 +25el andy = 5 + 15e2, where -1 :::; £1,£2 :::; 1. As before, the left half of the figure 

shows the range aspect, and the expression for z is obtained as: 

Due to the cross term however, this expression is not itself affine and as such could not be 

propagated as is under the AA paradigm. This can be dealt with in a number of ways, one 

of which is to note that £1 x e2 can itself take on values [ -1 .. 1], and so to assign a new 

epsilon term - specifically es in the figure. 

Having now an affine expression instead of a simple interval for each intermediate, the 

limits on any intermediate can be obtained by pushing the affine expression to its maximum 

and minimum e.g., for the lower limit set each £? in the expression with a negative coeffi

cient to +1 and each a positive one with -1, and vice-versa for the upper limit. The left 

half of the figure demonstrates the limits obtained in this way to be [-550.. 600]. Examin

ing the right side of the figure, the same process as before has been employed to derive the 

precision expressions, and the affine expressions for the inputs are propagated through just 

as for the range, along with the numerical limits. 

It is important to note that while the numerical bounds on z and & produce larger 

ranges than those obtained by lA, what differs is in the corresponding expression. With 

AA, dependency information relating to x and y is retained, leaving the chance for them to 

cancel at a later point. Many approaches to the data representation problem use AA at their 

core, and they are differentiated primarily in how they deal with non-affine terms which 

arise due to non-affine operations, as well as how to recast complex affine expressions to 

simpler ones when they become unwieldy. 

While AA has been proven to generate tighter ranges than lA, and therefore more com

pact data representations [98, 100, 106], retention of correlations is still limited to the first 
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order (linear correlations). As a result, whenever strongly non-affine operations (i.e., with 

high curvature) occur, AA is not able to keep up with the degree of the correlations and 

as a result can severely overestimate ranges. A particular case of this is division, which 

also causes problems due to range inversion - the property of division that large numbers in 

the denominator are mapped to larger numbers in the quotient and vice-versa. Yet another 

problem with division is if range overestimation extends the range of the denominator to 

include zero. Consider the following example: 

a E [0.01, 100] a+-- 50.005 +49.995e1 lA vs.AA 


1/a +-- 50.005-0.0049995£1 + 

1/a E [0.01, 100] [0.01, 100] vs. [-49.98, 149.99] 

99.980001 ez 
(a)(1/a) ~ 2500.4+ 2499.8el + 

(a)(1/a) = 1 [10-4, 104] vs. [-9998, 14998]
4999.5e2 - 0.125e3 +4998.5e4 

where affine approximations for 1/a and (a)(1/a) from [80] are used. The range for the 

reciprocal 1/a is not overestimated too badly at about twice the width of the true interval. 

When this reciprocal is multiplied by the original a, the result should be 1, but the AA 

expression yields a much larger range, worse even than lA. While the examples earlier ex

cused slight overestimation of wider ranges produced by AA over lA in favour of retaining 

the correlations, this case does not experience any of that benefit. Notice that the only e 

from the (a)(l/a) expression actually correlated to a is e1with coefficient 2499.8 or about 

20% of the resultant range. The problems actually arise as soon as the calculation of the re

ciprocal, where it is clear that the resultant range is dominated by the newly introduced ez, 
uncorrelated to e1. What makes this overestimation more serious is that a strictly positive 

interval (recognized even by lA) is now approximated as one containing zero, meaning no 

subsequent division may use this variable as the denominator. While the dominant appli

cation domains for AA tend to use division seldom [33] - accounting partly for the success 

of AA in said applications - the division operation is a staple of scientific computing and as 

such must be addressed in a satisfactory way, and such is a goal of this thesis. 
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Symbolic and polynomial techniques 

While the goal of lA and AA has been to retain correlations between variables to a greater 

degree, some symbolic methods have been proposed as well to address this shortcoming. In 

[24] error expressions are generated through perturbation and linearized for simplification. 

Symbolic differentiation is compared to AA as well as AA with scalar coefficients replaced 

by intervals, known as general interval analysis (GIA) in [23] and partial derivatives are 

used by [125] while symbolic noise models are used by [1, 129]. While in many cases 

these approaches can outperform lA and AA, when the dataflow becomes complex, scala

bility can suffer badly and a tradeoff between error bound tightness and run-time must be 

reached, such as made possible by the linearization in [24]. However, in some cases tech

niques which pertain specifically to a given class of calculations may be useful, such is the 

case with [116] which deals with polynomials. Because of their importance and ubiquity, 

polynomials are the target of many approaches as detailed below. 

In addition to lA and AA, as well as the symbolic methods above, which are meant 

to be applicable to any operation (no matter how poorly performing), there is a set of ap

proaches which focus directly on polynomials and use their properties derive more suitable 

implementations in high level synthesis. Leveraging the properties of fixed-point represen

tations in this context (which resemble finite fields), more efficient representations can be 

derived. Approaches are diverse and include arithmetic transform [102, 107, 108], vanish

ing polynomials [43] and factorization with multivariate Grobner basis [104] and common 

subexpression elimination [53, 54]. 

All these methods operate by replacing a polynomial with another which is equivalent 

(within desired accuracy bounds) over the limited region of interest in the inputs. They 

have been applied to fixed-point data types only, and extensions beyond polynomials are 

made through Taylor series (which is itself polynomial). Although Taylor series approx

imations for large, complex dataflows may not be feasible over desired dynamic range in 

some scientific applications, these methods do offer robustness. Furthermore, Taylor series 

approximation of functions (e.g. a small block) occurs frequently in scientific computing, 

and the methods above can explore the extra dimension of error in the function approxi

mation and thereby perhaps achieve smaller bit-widths. As a result, they can be used in a 
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complementary way with automated data representation for scientific applications. A sim

ple example is to use such methods to obtain a functional unit for a trigonometric function 

with clearly defined error behaviour which can be used as a black-box unit for applications 

analyzed under the approach described in this thesis. 

Support for iterative methods 

While the above formal methods have been applied extensively in the digital signal pro

cessing (DSP) domain, it has been emphasized that adoption has been limited in scientific 

computing. Ill-conditioned operators such as division near zero are essentially untreated, 

and only strictly linear iterative methods in the context of DSP have had even a cursory 

treatment (e.g. infinite impulse response filters [33, 80]). Lack of support for these two 

key characteristics of scientific calculations has significantly hindered the use of analytical 

methods for custom representations in this domain. 

As a result, empirical methods have historically been used to obtain custom representa

tions for numerical methods. The simulation based nature of empirical methods allows 

them to support virtually any application, since the range and precision information is 

derived directly from its execution. For example, a recent application of real-time finite 

element method modelling for haptic feedback [81] used this approach to obtain custom 

representations. These custom representations were required to achieve a high enough de

gree of parallelism to satisfy the real-time constraint. 

At the same time however, the need for robust representations has been shown, and sim

ulation based methods are unable to support this robustness. Furthermore, when iterative 

methods are used to replace exact solutions to difficult problems, the run-time can be very 

long [113]. In this case, the already extensive times required by simulation based methods 

are amplified due to the execution of each case requiring a longer time. On top of this, more 

cases are required to achieve good coverage of calculation scenarios, because variables in 

each iteration should be considered unique - scaling the complexity of the calculation with 

the number of iterations until termination. 
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2.3 Summary 

In this chapter different approaches to accelerating computational tasks have been pre

sented. Among these, custom and reconfigurable hardware accelerators based on FPGAs 

have been identified as providing a favourable performance/cost tradeoff. The implemen

tation effort for porting applications to these FPGA-based accelerators is eased by CAD 

support, and one key step in the design process to enable higher performance is the assign

ment of custom data representations. 

Existing work on this custom representation step has been on one of two fronts. On 

one front are simulation based methods which require extensive execution times and do 

not guarantee robustness. On the other front are existing analytical techniques which focus 

primarily on linear time invariant (LTI) systems such as in DSP, and do not provide support 

or ill-conditioned operators or iterative methods. 

Since all three of these properties (robustness requirements, ill-conditioned operators 

and iterative methods) are characteristic of general scientific computing applications, the 

existing approaches cannot provide support for deriving custom representations when port

ing scientific applications to FPGA-based hardware accelerators. The rest of this thesis 

details the method proposed to satisfy these criteria. 
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Chapter 3 

Satisfiability-Modulo Theories for the 

range problem 

This chapter begins with a motivational example highlighting the shortcomings of existing 

approaches to solving the range determination aspect of the automated representation prob

lem. Thereafter, the computational framework of Satisfiability-Modulo Theories (SMT) 

is introduced, including solver operation. Building on this foundation, SMT is applied at 

the core of the range refinement method [65, 68] targeted at the range aspect of automated 

representation. Application of the method is demonstrated on a number of case studies. 

3.1 Motivation 

Let d and r be vectors E IR4, where for both vectors, each component lies in the range 

[-100, 100]. Suppose we have: 

Zl d· r z - - - -___,..,...----,= 
- Z2 - 1+lid- rll 2 

and we want to determine the range of z for integer bit-width allocation (i.e., solve the 

range problem). Table 3.1 shows the ranges obtained from simulation, affine arithmetic 

and the proposed method. Notice that simulation underestimates the range by 2 bits after 

540 seconds,~ 5x the execution time of the proposed method (98 seconds). This happens 

because only a very small but still important fraction of the input space where d and r 

43 




Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

Table 3.1: Motivational example. 

Var. 
Empirical Formal 
Simulation Affine Proposed 

Range Bits Range Bits Range Bits 
Zl [-3.7e4,3.7e4] 17 [-4e4,4e4] 17 [-4e4,4e4] 17 

Z2 [1, 1.4e5] 18 [ -8e4, 1.6e5] 18 [0,1.6e5] 18 
z [0,1e4] 14 00 - [-864,4e4] 16 

are identical (to reduce zz) and large (to increase zt) will maximize z. In contrast, the 

formal methods always give hard bounds but because the affine estimation of the range of 

the denominator contains zero, affine arithmetic cannot provide a range for the quotient 

z. It will be shown that this scenario is handled correctly by the method proposed in this 

chapter which maintains all the benefits of analytical (formal) methods while at the same 

time visibly tightening the range of the operands. The key to this is the application of the 

recent developments in SAT-Modulo Theory and details of its operation are discussed next. 

3.2 Fundamentals of SAT-Modulo Theories 

Since the SAT-Modulo theory is an extension of the concept of Boolean SAT, this section 

begins with a refresher of the Boolean satisfiability problem. Building on this, extensions to 

other logic systems are described in Section 3.2.2, and basic solver principles are explained 

in Section 3.2.3. 

3.2.1 Boolean SAT refresher 

Boolean satisfiability (SAT) is a well known problem which seeks to answer whether for 

a given set of clauses (disjunctions) in a set of literals (boolean variables and their com

plements), there exists an assignment of those variables such that all the clauses are (their 

conjunction is) true. The variant of SAT where all clauses contain 3 literals (3SAT) is 
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known to be NP-complete [103]. As an example of a SAT instance, take Boolean variables 

x, y and z and clauses 

{x,y}, {y,z}, {x,z}, {x,y,z}, {x,y,z}, {x,Y,z} 

which comprise an unsatisfiable instance because no assignment produces at least one true 

literal in each clause. To prove this consider that if we assign x = 1, propagating yields a 

reduced instance: 

{y }, {y,z}, {z} 

since each clause containing x is true regardless of the other literals, and the value of the 

clauses containing x depends only on the other literals in those clauses. However the first 

and third of these remaining clauses necessitate y = 1 and z = 0 for satisfiability, but these 

assignments invalidate the second clause. From this we can infer that no satisfying assign

ment exists having x = 1. Considering now x = 0, the same reasoning as above can be used 

to reduce the instance to: 

{y,z}, {y,z}, {y,z}, {y,z}. 

Now, assigning either y = 0 or y = 1 yields { z,}, {z} which is a contradiction and thus 

unsatisfiable since y must be either 0 or 1 and neither is satisfiable, we can conclude that 

no satisfying assignment exists having x = 0. Repeated application of this reasoning on x 

indicates the entire instance is unsatisfiable. 

Many Boolean SAT solver implementations (e.g. zChaff [105] and MiniSat [32]) oper

ate along the same lines as the above example, applying two step recursion: a Decision step 

where a variable is selected upon which to branch, and a Propagation step which applies 

the result of the decision step to all affected clauses, inferring values (using the rules of 

Boolean logic) for other variables as appropriate. When a contradiction arises (a clause 

with all literals decidedly untrue), the solver backtracks and reverses an assignment. At 

any point where all variables are decided (or inferred) and there is no contradiction, the 

problem is solved and the satisfying assignment is precisely the sequence of decisions (or 

inferences) on the variables. Ifon the other hand, the entire assignment space has been cov

ered, leading to a contradiction in each case, the instance is concluded to be unsatisfiable. 

In this case, the cover of the assignment space serves as a proof of unsatisfiability. 
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3.2.2 Extending to other logics 

By extending the Boolean SAT concepts of the previous section to other first-order logic 

systems, SAT-Modulo theories (SMT) arise. Under the theory of real numbers, Boolean 

variables are replaced with real variables and clauses are replaced with constraints. This 

gives rise to instances such as: does there exist an assignment ofx,y,z E 1R for whichx > 10, 

y > 25, z < 30 and z =x +y. For this example there is not i.e., this instance is unsatis.fiable. 

As the above example reflects, instances are given in terms of variables with accompa

nying ranges and constraints. As in the case of Boolean SAT, the solver attempts to find an 

assignment on the input variables (inside the ranges) for which all the constraints are satis

fied. Also like Boolean SAT, most implementations follow a 2-step model in which: 1) the 

Decision step selects a variable, splits its range into two, and temporarily discards one of 

the sub-ranges then 2) the Propagation step infers ranges of other variables from the newly 

split range. Unsatisfiability of a subcase is proven when the range for any variable becomes 

empty which leads to backtracking (evaluation of a previously discarded portion of a split). 

Again, akin to Boolean SAT, the solver proceeds in this way until it has either found a 

satisfying assignment or unsatisfiability has been proven over the entire specified domain. 

The next section provides more detailed insight into SMT solver operation, particularly as 

it pertains to the problem of range refinement. 

3.2.3 Solver operation 

As the previous section has highlighted, the operation of SMT solvers is closely analogous 

to that of Boolean SAT solvers. Where the SMT solver operation does differ significantly 

from Boolean SAT is in how the range inferences for variables are made. Variable values 

are no longer restricted to 0 or 1 as in Boolean SAT, and any reasoning system rooted in 

the logic over which the solver operates (e.g., the real numbers) may be used. Due to its 

simplicity which enables very fast inferences (which is crucial for fast solver operations), 

interval arithmetic (lA, as detailed in Section 2.2.2) has been adopted for some state-of

the-art solvers for variable range inference. 

Figure 3.1 shows how range inference based on lA proceeds for the addition operator. 

Note that unlike basic lA which only supports forward propagation (inferring c' from a, b), 
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[aL..aH] [bL..bH] [cl..cH] = [aL..aH] + [bL..bH] 

+ + 
[b'L..b'H] [c'l..c'H] = [a'L..a'H] + [b'L..b'H)t a ~ a'L = max(al, cL- bH):0 

;ii~ a'H = mln(aH, cH- bl)~ 
:0 

I 
0 ~~ b'L = max(bl, cL- aH) 

b'H = mln(bH, cH - aL) 

c'L = max(cl, aL + bl) 
c'H = mln(cH, aH + bH) 

Figure 3.1: Inferring intervals of variables for the addition operator. 

reverse propagation (inferring a' from b,c and b' from a, c) is also supported here. This 

allows information from deeper in the datapath (e.g., if there were a constraint on c) to 

provide information on values earlier in the datapath (e.g. a and b). 

When dealing with an entire instance ( dataflows + constraints, as opposed to a single 

operation as in Figure 3.1), the inference is performed iteratively. Figure 3.2 illustrates the 

concept for a simple instance: 

- 100 ::; X ::; 100 -100 ::; y ::; 1 00 

z xy
T+Y2 z>0.6. 

In the figure, each node labeled (a) to (m) is either a variable, a constant (interval) or an 

operation - each corresponding to a part of the instance above. For example, node (f) near 

the middle of the figure corresponds to the addition in the denominator of the expression 

for z above, and node (m) on the right hand side of the figure corresponds to the constant 

0.6 in the constraint z > 0.6 above. 

Associated with each node is a sequence of intervals numbered ( 1) to (7). These indicate 

how the interval associated with that node evolves through each iteration of inference ( 1-7 

for this example). Nodes for constants and input variables have their ranges known before 

entering the first iteration (they are defined as part of the instance), and all the rest are 
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- FORWARD __. 
~ 

(1) [·100,100] 
(2) [-100, 100] 
(3) [-100,100) 
(4) 
(5) 
(6) 

(1) [-inf,inf] 
(2) [0,1e4] 
(3) [0, 1e4] 
(4) [0,1e4] 
(5) " 
(6) 
(7) [0,1e4] 

(1) [-inf,inf] 
(2) " 
(3) [0,2e4] 
(4) [0,2e4] 
(5) " 
(6) [0, 1.67e4] 
(7) [0, 1.67e4] 

" - Unprocessed Interval 
[?, ?) - Processed Interval 
[?,?]-Updated Interval 
(a-m) - Node Name 
(1-7) -Iteration Number 

... REVERSE
(7) [-100,100) 

(1) [-inf,inf] 
(2) [·1e4,1e4] 
(3) [-1e4,1e4] 
(4) " 
(5) 
(6) [0,1e4] 
(7) [0,1e4] ~ 

[0.6,0.6](1) 
[0.6,0.6) (2) 
[0.6,0.6) (3) 

" (4) 
(5) 
(6) 
(7) 

(1) [·100,100] 
(2) [-100, 100] 
(3) [-100,100) 
(4) " 
(5) 
(6) 
(7) [-100,100] 

(1) [-inf,inf] 
(2) [0,1e4] 
(3) [0,1e4) 
(4) [0,1e4] 
(5) 
(6) 

~ 
(h) 

(1) [-inf,inf] 
(2) 
(3) 

(1) [-inf,inf] 
(2) [0.6,inf] 
(3) [0.6,inf] 

(7) [0,1e4) (4) [0.6,inf] (4) [0.6,inf] 
(5) [0.6,inf] (5) " 

Note: Whenever an interval is updated, (6) [0.6,inf] (6)
all its neighbours are processed in the 

(7) (7)
subsequent iteration 

Figure 3.2: Inferring intervals in a full dataflow. 
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assigned [-oo,oo] ([-inf,inf] in the figure). In each iteration, not all nodes are processed as 

any node whose neighbours have not changed will not change. These unprocessed nodes 

are indicated in the figure by a quotation mark (") in place of the interval to show no actual 

processing. For nodes that are actually processed (at least one neighbour changed in the 

last iteration), processing may lead to the same range, or the range may be reduced, which 

is indicated in the figure by bold-face intervals. 

The inference of intervals for an entire instance is then the culmination of the iterations 

(of which there are seven for this example). At the onset, all intervals are set to [-oo,oo], 

and then known intervals from input variables and constants are applied (x, y, 0.6) and those 

nodes are "marked" to indicate their ranges have contracted. This is shown in the figure in 

the set of intervals with label (1) over all the nodes. In the next iteration, we can see that 

nodes (f), (g), (h) and (j) are not updated (as indicated by the ") none of their neighbours 

are "marked" (contain a bold interval) so there is nothing to drive a change for them. 

All the other nodes- i.e., (a), (b), (c), (d), (e) and (k) -are processed due to having a 

marked neighbour. The node processing is just interval inference for a single operation, 

the process illustrated in Figure 3.1 for addition. To reiterate that process: each operand's 

interval is the intersection of its current interval with its inferred interval assuming the 

intervals for the other operands. If any of the intervals contracts (as it does for (c), (d), (e) 

and (k) in iteration 2), the node is marked so that the interval changes can be propagated to 

the neighbours in the next iteration. 

The above procedure of iterative forward and backward interval inference on an en

tire instance will eventually terminate (the intervals either contract or remain the same, 

and a machine-epsilon can be used to avoid infinitesimal advances) yielding one of two 

outcomes. If an empty interval can be established at any node, we can immediately infer 

emptiness of every interval and thus the instance is unsatis.fiable. The alternative result is a 

set of intervals (one for each node) which bound the space (most likely loosely) in which 

all the constraints are satisfied, providing a (most likely overestimated) interval for each 

intermediate. The latter is the case for our example, at the end of the seventh iteration none 

of the nodes are marked, so the remaining intervals bound the set of (x,y,z) triplets which 

satisfy the constraints. All iterations from first assignment to stabilization ( 1 to 7 in our 

example) forms one inference referred to in the context of a solver as the propagation step. 
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Decision step 

We have now established above the necessary machinery to carry over what is simple bi

nary logic reasoning in the Boolean domain into the domain of extended logics (where 

SMT resides) in forming the propagation step. To see the need for the other kind of step 

(decision step), consider that in the specific case of Figure 3.2, we have termination with 

a set of intervals at iteration 7. At the same time however, for this example we can derive 

analytically the range of z through the substitutions x = rcos( B) andy= rsin( B) yielding: 

xy ?cos(B)sin(B) . 1. 
z = = . z = cos(e) sin(e) z = - sin ( 2 e)2 2 2 2 2 2

X +Y r COS ( (J) + r Sin ( (J) 2 

which is limited in range to -0.5 :::; z:::; 0.5 and thus based on this fact, the instance is 

clearly unsatisfiable ([0.6, oo] n [-0.5 ..0.5] = 0). The disparity between this true interval 

of [-0.5 ..0.5] and the interval reported by the propagation arises from data dependencies 

which the lA based inference cannot retain beyond one operation. Through the decision 

step, the solver more closely examines smaller partitions of the assignment space to search 

for inconsistencies which are masked by the lack of dependence retention exhibited by lA. 

Because the central contribution to automated data representation of this thesis is built 

upon SMT, in order to concretize the concepts of SMT instances and solver operation an 

example is provided in Figure 3.3. Building on the same instance used earlier of z = ::f!-::r,
X +y 

Figure 3.2 becomes one Propagation step from Figure 3.3, and the large boxes indicate 

computed intervals for (an important subset of) nodes within the calculation instance. 

These ranges are computed at each node of the decision graph at the centre of the figure 

illustrating the sequence of Decision steps for a search where the branching and backtrack

ing protocols are taken for granted for the sake of the example. In practice, both branching 

and backtracking decisions are complex, with a number of options having varying impacts 

on search efficiency. Due to their complexity, they have been abstracted so as not to distract 

from the main purpose of the example which is to show how decision and propagation steps 

are employed to decide an instance. 

Each node in Figure 3.3 represents a subspace of assignments over all intermediate 

nodes of Figure 3.2, and a decision splits the interval of one of those intermediates into a 

number of sub-intervals - one per child node - the union of which is the original interval. An 
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exception to this occurs when additional constraints are provided via the solver, in which 

case the union of sub-intervals is the interval of interest. Taking for granted decisions in 

Figure 3.3 for the sake of the example, decision 1 illustrates the above mentioned constraint 

type of decision. In this case, we only care about solutions with (f) 2:: 0.1 At each node, 

the edge along which the node is entered contains a search sub-interval for a particular 

intermediate of the instance (the one on which branching has occurred), and upon entering 

the node the following is done: 

1. 	 Assign intervals of the parent to each intermediate, except the one indicated by the 

incoming edge, use the search sub-interval there. These intervals are captured for 

each search node in the first of the triplet associated with each intermediate ((a)-(j)). 

2. Propagate the search sub-interval through the calculation using the procedure out

lined in Figure 3.2. The resulting intervals are captured for each search node in the 

second of the triplet associated with each intermediate ((a)-(j)). 

3. 	Ifnot branching further (this is a leaf), return interval resulting from the propagation 

for each intermediate. Further branching is guaranteed not to occur if the propagation 

of the previous step returns empty intervals (i.e. unsatisfiable). 

4. 	Ifbranching further, decide upon a new intermediate and how to split it, form a child 

for each sub-interval and recurse to each child. 

5. Once all children have been visited, return for each intermediate the union of the 

intervals returned for that intermediate over the traversals to all the children. 

Traversal of the entire tree (returning from the root node) when every single leaf node has 

empty intervals will yield the union of empty intervals and therefore unsatisfiability of the 

instance. Otherwise, the instance is declared satisfiable and delivers (potentially reduced) 

intervals for each intermediate within which a satisfying assignment will lie. 

Each of these steps above is reflected in the figure. Steps 1 and 2 can be seen in each 

box, where the intervals in the first of each triplet are copied from the second triplet for the 

same intermediate of the parent, except the search sub-interval (indicated in bold for each 

box) informed by the incoming edge, and the second of each triplet is obtained through 
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propagation. Step 3 is shown in the boxes for nodes labeled as Propagation 3a, 3b, 5a, 

5b, 4b and 4c - with 4b and 5b unsatisfiable. While no explicit branching mechanism 

is described, Step 4 is embodied in all the edges in the search graph - in particular note 

that Decision 4 splits (a) into 3 parts covering (a) instead of two parts like all other splits. 

Finally, Step 5 can be seen in all boxes (except the leaf nodes) as well, but is most clearly 

seen in the lower bounds for third triplets of (d) and (e) of the Propagation 4 node. Of the 

three children of this node, two resulted in lower limits of 2.5le3 for (d) and (e), and one 

resulted in unsatisfiable, so 2.51e3 is passed up the tree as the new lower limit. 

Having now described the fundamentals necessary to understand the operation of SMT 

solvers, two points stand to be made before turning to their role in automated data rep

resentation. First, as mentioned above, there are many schemes which may be employed 

for deciding whether to branch or backtrack, and when branching where to split and how. 

Research into this topic belongs to the field of SMT solver design and is beyond the scope 

of this thesis. In fact, in order to focus on the automated representation problem, as proof 

of concept we invoke an off-the-shelf solver [35, 96] for the work in this chapter, as well 

as Chapter 2. In Chapter 5, both this off-the-shelf solver as well as a custom, in-house 

developed solver are used. 

The second important point is that when a set of constraints defining a dataflow is 

augmented with a constraint such as z > 0.6 (nodes (j),(k),(m) in Figures 3.2 and 3.3), the 

result of the decision problem indicates reliability of the constant as a bound (upper bound 

of 0.6 on z in this case). Thus SMT can be used as a bounds checking engine, which is 

exactly its role in the automated data representation problem, the topic to which we turn in 

the next section. 

3.3 Range refinement using SMT 

Building on the framework of the previous section, an SMT engine can be used to prove 

or disprove validity of a bound on a given expression by checking for satisfiability. This 

section details how such bounds proving is accomplished and how it can be used as the 

core of a procedure addressing the range determination problem. 
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NO 

[L, UJ tor var by 
interval analysis 

Figure 3.4: SAT/SMT range refinement of var. 

Figure 3.4 illustrates the binary search method employed for range analysis on an in

termediate variable: var. Note that each SMT instance evaluated contains the inserted con

straint (var <limit or var >limit), like nodes G),(k) and (m) of Figures 3.2 and 3.3. The 

loop on the left of the figure (between "limit= (Xl +X2)/2" and "X2- Xl <thresh?") 

narrows in on the lower bound L, maintaining X 1 less than or equal to the true (and as yet 

unknown) lower bound. Each time satisfiability is proven (SAT path), X2 is updated while 

Xl is updated in cases of unsatisfiability (UNSAT path), until the gap between Xl and X2 

is less than a user specified threshold (the role of the TIME path and the values IL and IU 

will be discussed below in Section 3.3.2). Subsequently, the loop on the right performs the 

same search on the upper bound U, maintaining X2 greater than or equal to the true upper 
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bound. Since the SMT solver works on the full calculation, all interdependencies among 

variables are taken into account (via the SMT constraints) so the new bounds successively 

remove over-estimation in the original bounds resulting from the use of interval arithmetic. 

Algorithm 3.1 RangeRefine 

1: BaseSMTFormulation =CreateSMTinstance(CalculationSteps) 
2: for (each var in InputVarList) do 
3: Copy range of var from InputVarRanges into BaseSMT Formulation 
4: end for 
5: for (each var in IntermediateVarList) do 
6: Refine range of var (Figure 3.4) 
7: update IntermediateVarRanges for var 
8: update BaseSMT Formulation with new range of var 
9: end for 

10: return lntermediateVarRanges 

The overall range refinement process, Algorithm 3.1 operates on the dataflow named 

CalculationSteps (with input variables in InputVarList having ranges InputVarRanges) 

to produce refined ranges IntermediateVarRanges of the the intermediate variables in 

IntermediateVarList. It is worth noting that while currently lntermediateVarList is or

dered according to first use in the dataflow, the ordering can impact SMT solver runtime 

- a problem left for future exploration. The process uses the steps of the calculation and 

the ranges of the input variables as constraints to set up the base SMT formulation (lines 1 

and 2), like Figure 3.2 without nodes (j),(k) and (m). It is this base formulation into which 

Insert constraint: from Figure 3.4 inserts, and the form of the constraint is like nodes (j), 

(k) and (m) from Figure 3.2 (with> for upper and< for lower bounds). It iterates through 

the intermediate variables (line 5) applying Figure 3.4 (line 6) to obtain a refined range for 

that variable. Once all variables have been processed the algorithm returns ranges for the 

intermediate variables (line 10). 

3.3.1 Dealing with division 

As discussed in Section 2.2, non-affine functions with high curvature cause problems for 

AA, and while these are rare in the context of DSP (as confirmed by [33]) they occur 
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frequently in scientific computing and is particularly problematic due to range inversion 

(quotient increases as divisor decreases). While AA tends to give reasonable (but still 

overestimated) ranges for compounded multiplication since product terms and the corre

sponding affine expression grow in the same direction, this is not the case for division. 

Furthermore, both lA and AA are unequipped to deal with divisors having a range that 

includes zero. 

Use of SMT mitigates these problems. Even for SMT solvers which do not support di

visions directly, divisions can be re-written as multiplication constraints, another advantage 

of the constraint centric formulation. Furthermore, an additional constraint can be included 

which restricts the divisor from coming near zero (like Decision 1 from Figure 3.3). Since 

singularities such as division by zero result from the underlying math (i.e., are not a result 

of the implementation) their effects do not belong to range/precision analysis and SMT 

provides convenient circumvention during analysis. This technique is equally applicable 

to other kinds of singularities such as those arising from logarithms or trigonometric func

tions. In such cases, the restriction constraints define the operating conditions over which 

robustness is guaranteed. 

3.3.2 Consideration of run-time 

While leveraging the mathematical structure of the calculation enables SMT to provide 

much better run-times than using Boolean SAT (where the entire data-path and numerical 

constraints are modelled by clauses obfuscating the mathematical structure), run-time may 

still become unacceptable as complexity of the calculation under analysis grows. To ad

dress this, a timeout is used to cancel the inquiry if it does not return before timeout expiry. 

This is the meaning of the "TIME" path in Figure 3.4. Once timeout occurs, the bounds 

obtained for that variable will not necessarily be tight however, because the timeout path 

feeds into the satisfiability path, robustness will still be maintained- i.e., to assume satisfi

able gives pessimistic bounds. The purpose of the IL and IU values are to keep track of the 

proven inside bounds- [L,U] must contain [IL,IU]. 

It should be noted that for lA and AA, once the range of an intermediate variable is 

overestimated all subsequent variables which depend on it will also have overestimated 
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ranges due to the use of forward propagation only. A clear advantage of using SMT is 

that this is no longer the case, the SMT solver views the entire calculation as a single 

instance. As a result, information inferred about the range of a particular variable can 

be used to refine the range of a variable that precedes it in the data-path, an effect which 

can be observed in Figure 3.3. Finally, by using a variable timeout, the tradeoff between 

run-time and the tightness of the variables' bounds can be user controlled, as informed by 

the [IL,IU] range. If this range is much smaller than [L,U], it is worthwhile to search in 

more depth for that variable (by increasing the timeout) and furthermore, the work done to 

determine [L, U] using a particular timeout can be reused for a larger timeout by starting 

(for example) with a search range for L of [L,IL] instead of [L, U] (similarly for U). 

3.4 Case studies and results 

Given that the target application domain for this method is hardware acceleration for sci

entific computing, we seek to address specifically the problem of division which is known 

both to be common in scientific calculations and to cause problems for existing methods. 

For this reason, in this section we detail a few case studies involving division, as well as one 

non-affine example from DSP, and we compare the results of basic AA and the proposed 

SMT approach applied to these case studies. 

The experiments in this section were carried out on 1.5 GHz Pentium 4 with 512 MB of 

RAM running Gentoo Linux, using the freely available HySAT implementation [35, 96] as 

the core SMT solver. Ranges were obtained using (unless otherwise specified) a timeout of 

2 seconds, resulting in run-times for all cases on the order of 100 seconds. It is worth noting 

that the same time that although the affine experiments are in some cases faster, speed does 

not matter when support for the calculation is not provided by AA. In all cases the number 

of bits needed for range [L, U] has been taken as flog2(U- L)l to facilitate evaluation of 

the actual span of the numbers, taking into account also how they are centred. In almost all 

cases however, the result is identical to taking flog2(max(ILI, IUI))l +a, where a is 0 if L 

and U have the same sign, and 1 otherwise. 
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Table 3.2: Affine vs. SAT-Modulo for energy spectral density. 

Output 
Affine SAT-Modulo 

Range Bits Range Bits 
0 [-1835008 '2097152] 22 [-1 '2097153] 22 
1 ~2373666,2635814] 23 [-1 ' 1984106] 21 
2 [-2269321 '2531463] 23 [-1 ' 1790022] 21 
3 [-2373666' 2635814] 23 [-1 ' 2052757] 21 
4 [-1835008 '2097152] 22 [-1 '2097153] 22 
5 [-2373666' 2635814] 23 [-1 ' 1957096] 21 
6 [-2269321 '2531463] 23 [-1' 1790023] 21 
7 [-2373666' 2635814] 23 [-1 ' 2029555] 21 

3.4.1 Energy spectral density 

One application involving non-linearity which appears frequently in DSP is the calculation 

of energy spectral density (ESD) for a signal [11]. ESD can be obtained as: 

1
<I>( co) = nF (co )F* (co)

2

where F (co) indicates the Fourier Transform of the signal of interest, or the Fast Fourier 

Transform (FFT) for discrete signals. Since the FFT itself is affine, AA provides exact 

bounds on all intermediate variables however, the ESD involves magnitude of a complex 

number (non-affine) leading to range overestimation. 

In this experiment an 8-point FFT has been used, with each of the 8 inputs a complex 

number in [-128, 128] + [-128, 128]i. While both AA and SMT provide exact bounds on 

all intermediate variables in the FFT calculation, AA overestimates the magnitude (non

affine). Table 3.2 shows the ranges obtained from both AA and SMT when applied to each 

of the 8 outputs of the ESD calculation (to obtain these ranges a solver timeout of 5 seconds 

was used). Note that AA ranges are centered close to zero while SMT ranges start near zero 

which is correct as only positive values would be expected. 

Clearly for this calculation, AA provides good estimates of the ranges and thus the bit

widths, since only one level of non-affine calculations occurs. In light of the inclusion of 
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[-30..50] 

Figure 3.5: Data dependencies for Doppler effect case study. 

a large range of numbers below zero, subsequent calculations relying on the ESD can be 

expected to already begin experiencing range inflation, especially as more variable inter

dependencies arise. Consider also that division does not occur, as it does in the following 

examples. 

3.4.2 Doppler effect 

The Doppler effect is the apparent change in frequency observed when a sound source 

is in motion with respect to an observer [111]. For a given emitted frequency v and a 

relative speed of u between the source and observer, the perceived frequency will be v' = 
cv--;- (c +u) where c is the speed of sound in the medium. If the medium is air and we wish 

to know how the rate of frequency change with respect to the relative speed u depends on 
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Table 3.3: Affine vs. SAT-Modulo for Doppler. 

Output 
Affine SAT-Modulo 

Range Bits Range Bits 
ql [313, 362] 6 [313, 362] 6 
q2 [-473252, 7228000] 23 [6267, 7228000] 23 
q3 [213, 462] 8 [213, 462] 8 
q4 [25363 , 212890] 18 [45539, 212890] 18 
z [-80,229] 9 [0, 138] 8 

temperature, we have: 
dv' -(331.4 +0.6T)vz- - - _....:...._______:~ 

- du - (331.4+0.6T+u)2 

using the approximation for the speed of sound in air c ~ 331.4 + 0.6T, T in degrees 

Celsius. 

The overall calculation for this case study was broken into intermediate calculations as 

follows: 

q1 = 331.4+0.6T q2 = q1 v 

q3 = ql +u q4 = q~ z = qz/q4 

and the parameters that were used were: 

• temperature: -30°C::; T::; 50°C, 

• audible frequencies: 20Hz ::; v ::; 20000Hz, 

• relative speed: -lOOm/s::; u::; lOOm/s. 

This breakdown results in a fairly deep data-path as illustrated in Figure 3.5. Since AA 

will tend to overestimate ranges of non-affine operations at each point, deep data-paths can 

result in accumulated overestimations eventually becoming significant. 

Observing Table 3.3, note that AA and SMT provide comparable ranges for all variables 

except for z where the division occurs and where the bit-width is overestimated by 1 bit. 
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Despite the fact that this calculation has fewer levels of intermediate variables than the 

aforementioned ESD, and the fact that all upper bounds from AA were exact, the resultant 

range was still overestimated, a prime example of the result of range inversion mentioned 

in Section 3.3.1. 

3.4.3 Analytic center 

The analytic center of a set of inequality constraints is the point which maximizes the 

distance (as defined by some distance metric) from all the constraint boundaries, and it 

has applications in convex optimization. In particular (following an example from [10]) 

solving for the analytic center when using a distance metric based on a logarithmic penalty 

function will give rise to calculations such as: 

. 1
z[i] = d[i]a[i]· (C- P) d [l] = ---:-:------:--:--

b[i]- a[i]· C 

where Cis the analytic center of the inequality constraints defined by a[i],b[i], and z[i] 

reflects a penalty with respect to a[i],b[i] if C were moved toP. 

Taking the specific case of 3 inequality constraints in JR2, we can expand these vector 

equations into scalar ones: 

. 1 
q2[l] = -[.]ql l 

fori E {1,2,3}. Under ranges of Cx,Cy,Px,Py E [-100, 100], and all ax[i],ay[i],b[i] E 

[-10, 10], bit-widths obtained by using AA and SMT are compared in Table 3.4. 

Notice in the table that AA is unable to determine a range for q2[i], and as a result 

any intermediate variables that depend on q2 [i]. The reason for this is in the division of 

which q2 [i] is the result, the range of the denominator contains 0 resulting in an infinite 

range for the result. While the same issue in principle can occur for SMT, SMT provides 

a convenient mechanism for ignoring this scenario while in the case of AA, adding such 

constraints is inconvenient (when possible) and destroys the affine correlations, leading to 

range explosion as happens in lA. 
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Table 3.4: Affine vs. SAT-Modulo for analytic center. 

Output 
Affine SAT-Modulo 

Range Bits Range Bits 
ql [i] [-2010' 2010] 12 [-2010' 2010] 12 
q2[i] 00 - [-101 ' 101] 8 
z[i] 00 - [-300557, 301544] 20 

Disregarding this region around the singularity is permitted since the singularity occurs 

also in double and even infinite precision, and thus is not relevant in determining the pre

cision required for representing the "well behaved" parts of the calculation. It is up to the 

algorithm implementer to set the limits on how close (based on the application precision 

requirements) to the singularity should be considered as part of the normal calculation; in 

this case study we have used the constraint qf [i] ~ 0.0001. 

Note finally for this case study that if we substitute the range obtained for q2[i] by 

SMT into the affine formulation as a free variable, although we get a larger range of 

[-400400,400400] for z[i], the number of bits required is the same. At the same time, 

propagation of this larger range can lead to range overestimation deeper in the calculation 

as it does in the next case study. 

3.4.4 Euclidian projection 

Another case study having applications in convex optimization/analysis is Euclidian pro

jection of a point or set of points onto a hyperplane, for instance to reduce the dimension 

of a problem [ 1 0]. Given a hyperplane defined by a· x +b = 0, the projection of a point xO 

is given by: 

b-a·xO
P(xO) = xO+ a 

a·a 
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Table 3.5: Affine vs. SAT-Modulo for Euclidian projection. 

Output 
Affine SAT-Modulo 

Range Bits Range Bits 

q1 [-3001 '3001] 13 [-3001 '3001] 13 
qz [-3011 '3011] 13 [-3011 '3011] 13 
q3 [0 '300] 9 [0' 301] 9 
q4 00 - [-3033 '3019] 13 
z 00 - [-465 '489] 10 

If we choose the values for this case study to belong to JR3, the vector equations can be 

expanded into scalar equations in a similar way as in Section 3.4.3: 

q1 QjXi +ajXj +akXk 

qz a~+a~+a~I } 

q3 b-q1 

q4 
q3 

qz 
Zi Xi +q4ai 

Zj Xj+q4aj 

Zk xk+q4ak 

using x in place ofxO, with ranges Xi,Xj,Xk E [-100, 100] and ai,aj,aklb E [-10, 10]. 

Note how in Table 3.5, AA starts off strong giving tight ranges for q1,qz and q3. How

ever, as in Section 3.4.3, the inclusion of 0 in the range for the denominator of a division 

causes an indeterminate range for q4 and subsequent variables from AA. By applying the 

same constraint as in that case, SMT is again able to provide meaningful ranges. What dif

fers however from the case study of Section 3.4.3 is that when the range for q4 as obtained 

through SMT is substituted into the affine model as an input, AA returns the range of z[i] 

as [ -30424, 30424] requiring 16 bits for representation instead of 10. This confirms the 

assertion that the main tool AA employs to determine tighter ranges is the propagation of 
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[-100..100] 

Figure 3.6: Data dependencies for rational function case study. 

first order variable dependencies, and when those dependencies do not survive the division, 

ranges of subsequent variables are naturally overestimated. 

3.4.5 A rational function 

This case study employs a rational function such as those which arise when fitting curves 

to experimental data [ 118]. Consider the following function and its derivative: 

25t2 + 125 dzt -200t 
Zl = 

t2 + 1 Z2 = dt = (t2 + 1)2 

over the range -100::; t ::; 100. It is worth noting that in addition to being common in 

scientific computing, such calculations may also arise in an embedded system, e.g., as a 

part of the model used for prediction/control. 

64 




Ph.D. Thesis - Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

Table 3.6: Affine vs. SAT-Modulo for a rational function. 

Output 
Affine SAT-Modulo 

Range Bits Range Bits 
ql [125 '250125] 18 [124 ' 250126] 18 

q2 [1 ' 10001] 14 [0' 10002] 14 

q3 [-20000' 20000] 16 [-20001 '20001] 16 

q4 [-24999999' 100020001] 27 [0 ' 1 00020008] 27 

ZI [-250' 369] 10 [24' 126] 7 

Z2 00 - [-67' 67] 8 

This case study utilizes only one free variable, -100 ~ t ~ 100 leading to strong cor

relations between all intermediates: 

q1 25t2 + 125 

q2 t 
2+ 1 

ZI qtfq2 

q3 -200t 

q4 q~ 

Z2 q3jq4 

illustrated in the multiple fanouts I reconvergences in the data-path of Figure 3.6. Table 

3.6 shows the evolving ranges; as before ZI suffers because of the division. Notice as well 

that AA cannot provide bounds for Z2 because the range of the divisor (q4) includes zero, 

according to the affine approximation. The problem here however is not an underlying sin

gularity which has to be excluded as in the previous 2 case studies, instead this inclusion of 

zero arises from accumulated successive overestimation. Even using SMT lower bound of 

q4 ~ 1, the resultant range will be Z2 E [-20000,20000] requiring 16 bits, 8 more than allo

cated using the SAT-Modulo approach. Finally, in many places when AA bounds are tight, 

SAT-Modulo differs from AA by 1. The real difference gets inflated to 1 by application of 

the floor( ceiling) function converting the obtained lower(upper) bound into an integer. 
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Table 3.7: Mfine vs. SAT-Modulo for Newton's method. 

Output 
Affine SAT-Modulo 

Range Bits Range Bits 

Zl [ -1205360 ' 1170360] 22 [-1205361 ' 1135361] 22 

Z2 [ -5753 ' 35769] 16 [1 '35769] 16 

Z3 00 - [-39' 38] 7 
z 00 - [-69' 72] 8 

3.4.6 Newton's method 

The final case deals with root-finding using Newton's method [12] applied to a polynomial. 

Given a polynomial 

roots can be obtained by using Newton's method: 

f(xn) 
Xn+l =Xn- J'(xnf 

If we consider a single iteration, this results in: 

Zl 
3 2

c3x +c2x +c1x+co 

Z2 3c3~ + 2c2x + c1 
Zl 

Z3 
Z2 

z X-Z3 

For the sake of readability, the fully expanded intermediates have been omitted. The 

numerator and denominator polynomials (ZI and z2 respectively) above were expanded in 

intermediate steps using Horner's method [12] to reflect a potential hardware implementa

tion. The range of x used was [-100,100] and the coefficient ranges were: 

co E [-10, 10] c1 E [7.5, 8.5] c2 E [-3.75, -3.25] C3 E [0.833, 1.167] 

Table 3.7 shows the results for the major intermediates (the ones which have been omitted 

had identical bit-widths), where as before the quotient Z3 cannot be calculated due to the 
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inclusion of zero within the range of the divisor Z2· Just as in the case of Section 3.4.5, 

no actual singularity exists, and thus the SMT method does not require any additional 

constraint. If as before we use the bound from SMT ( 1.83 which has been floored to 1 in 

the table), we end up with Z3 E [-658668,620416] and z E [-658768,620516] requiring 

21 integer bits each, at least 13 more than necessary per signal. This reinforces the fact that 

even when measures are taken with AA to avoid the singularity, the correlations are lost. 

3.4.7 Key points of case studies 

The previous sections have presented 6 case studies taken from a variety of topics within 

the large field of scientific computing, which have been presented in this way to emphasize 

a few key points about the range determination problem within bit-width allocation. 

Summarized below are the main points highlighted by each case study: 

• 	 Section 3 .4.1: Insertion of a single non-affine calculation into a data-path plants a 

seed of overestimation which other calculations will augment; 

• 	 Section 3.4.2: Division is particularly detrimental as an affine approximation result

ing from range inversion whereby small numbers map to large ones and vice-versa; 

• 	 Section 3.4.3: When the true ranges of an intermediate contain zero, SMT provides 

a convenient mechanism for excluding singularity points from consideration during 

range determination; 

• 	 Section 3.4.4: In addition to merely excluding singularities, meaningful ranges taking 

the exclusion into account must be determined otherwise range overestimation is 

inevitable; 

• 	 Section 3.4.5: Tight non-affine interdependencies caused by diverging/reconverging 

paths in the overall data-path will eventually outpace first-order approximations; 

• 	 Section 3.4.6: Serious range overestimation can lead to inclusion of 0 in the range 

for a variable where it does not actually belong, which will result in complete range 

indeterminacy if such variables become the denominator of a division. 
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In light of the results presented in the previous sections and the high occurrence of 

these scenarios in general scientific computing, computational range refinement based on 

SMT provides a reliable, practical method as the basis for automated bit-width allocation, 

especially for scientific computing applications. Now, in the next section, we briefly discuss 

the tradeoff between SMT timeout and accuracy of bounds. 

3.4.8 Run-time/accuracy tradeoff 

Figure 3.7 shows how the range and number of bits for the 8 ESD outputs from the case 

study of Section 3.4.1 vary as timeout increases. In Figure 3.7(a), the ranges for the outputs 

are shown in no particular order, although it can be clearly inferred from the results of 

Table 3.2 that outputs 0 and 4 must be in the top line of the figure (since they both require 

22 bits). At the same time, Figure 3.7(b) shows the bits required for each output, again in 

no particular order. While it may be difficult to discern between the graphs, the following 

is important to note: between 1 and 2 second timeout at least one bit-width is reduced; 

between 2 and 5 second timeout, at least one additional bit-width is reduced; after 5 second 

timeout, no more bit-widths are reduced. 

Note first that the bounds are always hard (robust), and thus decrease as the SMT solver 

is allowed to run for longer. The SMT assumes satisfiability when terminated, and for short 

timeouts, extra bit-width ends up being allocated. Notice also however that as the timeout 

is increased the range comes down very slowly (Figure 3.7(a)), while the number of bits is 

met with much less effort (Figure 3.7(b)). This is natural considering that the number of 

bits required scales logarithmically with the range which must be represented. As a result, 

the range must be halved in order to reduce a single bit. The main point however is that 

while determining the precise range of a variable can take a large amount of time, getting 

into the right power of 2 range will generally occur much earlier. 

3.5 Summary 

This chapter has highlighted the problem of bit-width allocation as important to the success 

of hardware acceleration, and illustrated the shortcomings of state-of-the-art methods in the 

68 




-----
--

Ph.D. Thesis- Adam B. Kinsman McMaster University -Electrical & Computer Engineering 

2.15 
~ ~.... 2.1 

c .......... 

~ 2.05 ---...~ g 2 ----~ 
"g """'""-.......... :--.....
§ 1.95 
0 
Ill 1.9 "'-'" &. 1.85 
Q. ~" 
::I .~1.8
"S .e- 1.75 
:I 
0 1s 2s Ss 10s 20s 50s 

SMTtlmeout 

(a) ESD Output Ranges. 

23 

.!! 22 
iii 
"S .e
:I 
0 21 

20 

~~ -

1s 2s 5s 10s 20s 50s 
SMTtimeout 

(b) ESD Output Bit-widths. 

Figure 3.7: Effect of timeout on range/bit-width. 

scientific computing application domain. By formulating range determination as a decision 

problem, computational methods can be applied - specifically SAT-Modulo theory - to the 

solution of this problem. Through six case studies the effectiveness of this approach has 

been demonstrated in dealing with the difficulties presented by scientific numerical algo

rithms to obtain 1) robust bit-widths necessary for scientific applications which simulation 

is unable to provide, 2) tighter bounds than those obtained through the use of affine arith

metic, and meaningful bit-widths even in cases where the affine result is indeterminate 

(division by 0). The next chapter builds on top of this foundation, providing a means of 

scaling the approach to larger instances. 
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Chapter 4 

Scalability through block-vector 

formulations 

In the previous chapter, computational methods based on SAT-Modulo Theory have been 

introduced and applied to the range determination aspect of the automated representation 

problem. While the use of computational methods was shown to provide robust and tight 

bounds for ranges, it was also observed that run-times could easily escalate as instance size 

grows as evidenced by the need to introduce a timeout path into the range search. The 

sharp rise in SMT solver runtime which accompanies an increased number of variables 

could render this method infeasible for many scientific calculations of practical relevance 

which may involve vectors and matrices of hundreds or even thousands of elements. To 

address this issue, a means of enabling scalability to large problem instances is described 

in this chapter based on block vector formulations [ 66]. 

4.1 Bit-width allocation in vector calculus 

Before moving into the details of this algorithmic approach to bit-width allocation for oper

ations in complex vector calculus, a discussion on using uniform bit-width within a vector 

is presented first. After this, representation of complex numbers is treated, followed by 

presentation of the vector magnitude and block vector magnitude models. 
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4.1.1 Uniform vector bit-width 


In order to leverage the vector structure of the calculation under analysis and thereby reduce 

the complexity of the bit-width problem to the point of being tractable, the underlying 

principle of this work involves sacrificing the independence (in terms of range/bit-width) 

of the vector components as scalars. At the same time, hardware implementations of vector 

based calculations typically exhibit the following characteristics: 

• 	 Vectors are typically stored in memories already having the same number of data bits 

at each address; 

• 	Datapath calculation units used in vector calculations must be allocated to accom

modate the full extent of bit-widths which arise across the elements of the vectors to 

which they apply; 

Based on these two key observations, the same number of bits already tend to be used 

implicitly for all elements within a vector simply as a side effect of common hardware 

design choices. This fact is exploited by the bit-width allocation problem to reduce its 

complexity, thus leading in some cases to tighter bit-widths (as will be confirmed in Section 

4.2). As a result, the techniques laid out in this section impose uniform bit-widths within 

a vector, i.e., all the elements within a vector will use the same representation. However, 

each distinct vector will still have a uniquely determined bit-width. 

4.1.2 Representation of complex numbers 

Since the vector calculus we wish to support permits the vector elements to be complex 

numbers, it is necessary to discuss different representations for complex numbers which 

may be adopted, noting that all formats considered reduce in the end to a pair of binary 

numbers for each complex number. 

Figure 4.1 shows different ways in which the possible values a complex number may 

take on can be restricted. In Figure 4.l(a) the imaginary part of the number is clearly more 

tightly bounded than the real part. Figures 4.1(b) and 4.1(c) show polar bounding of the 

angle and magnitude respectively. As will become clear throughout this chapter, the key as

pect on which the effectiveness of these techniques hinges is the degree of interdependence 
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lm lm lm 

(a) Rectangular. (b) Angular. (c) Magnitude. 


Figure 4.1: Example bounding constraints put on complex numbers. 


between different elements within a vector, or so called directional correlations. This re

lationship stands also for the real and imaginary components of complex numbers and can 

be used to inform the decision of how to represent the complex numbers. 

Note that in any situation where polar representation of complex numbers is used (e.g. 

Figures 4.1(b) and 4.1(c)), almost certainly we will want to have different bit-widths for 

the magnitude and angle components, since angle is bounded between 0 and 2n whereas 

magnitude may be arbitrarily large. Even in the case of rectangular representation, situa

tions such as in Figure 4.1 (a) would warrant the use of independent representations for the 

real and complex values since (in this specific case) the range of the imaginary part is much 

smaller and would therefore require fewer bits. 

The remaining case of rectangular representations where the real and imaginary parts 

have similar ranges may be good candidates for using uniform bit-width across real and 

imaginary part by merging the vector of real components with the vector of imaginary 

components (i.e. represent the complex vector as a single real vector of double the size). 

Consider for example a complex matrix multiplication y = Ax. If x has Xr and Xi as vectors 

of all the real and imaginary parts of x respectively (i.e. Xr = Re(x) and Xi = Im(x) and 

x = Xr + ixi) then we can form a new vector x by interleaving elements from Xr and Xi, 

which is the same as replacing every elementxk ofx with the two elements [Re(xk),Im(xk)]. 

Applying the same process to y to form y', and replacing each element Ai,j in A with the 
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2x2 matrix: 
Re(Ai,j) -Jm(Ai,j) l 

[ Im(A-1,]·) Re(A-1,]·) 

to create A' yields a purely real matrix multiplication y' = A'x on vectors twice the size 

which can replace the complex one. The form of the 2x2 matrix results from the fact that 

Re(Ax) = Re(A)Re(x)- Im(A)Im(x) and Im(Ax) = Im(A)Re(x) +Re(A)Im(x). It is worth 

noting that specific structure of the vector is not important to the method, the choice of 

whether to interleave real and imaginary parts of the vector can be made in accordance 

with whichever representation produces the most suitable hardware architecture. In other 

words, for uniform bit-width between real and imaginary parts, it is fair to consider the 

merged vector as interleaved real/imaginary or concatenated real/imaginary, so long as 

there is consistency in all places where the vector is used (e.g. the form of the matrix is 

different between the two). 

The advantage of doing this replacement would be to reduce the complexity of the 

model since the complex matrix multiplication would remain a single statement involving 

two vectors and a matrix instead of two statements involving two matrices and four vectors, 

but at the cost of reduced directional information. As the next section shows, this also arises 

in applying the proposed model, and Section 4.1.4 shows how to recover some directional 

information, since operations such as pointwise complex multiplication can exhibit strong 

directional correlation. 

4.1.3 Vector magnitudes 

Whether complex or real, the approach to dealing with problems specified in terms of vec

tors centres around the fact that no element of a vector can have absolute value (magnitude) 

greater than the vector magnitude i.e., for a vector X E Cn: 

llxll = JX*i 

lxil ::; llxll , 0::; i::; n- 1 


where* denotes taking the complex-conjugate transpose. Starting from this fact, we can 

create from the input calculation a vector-magnitude model which can be used to obtain 
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Table 4.1: Magnitude bounding operations. 

Name 
Vector 

Operation 
Magnitude 

Model 
Dot Product X·y llxiiiiYII cos( Bxy) 

Outer Product xyl llxiiiiYII 
Addition x+y vllxll 2 + IIYW +2x. y 

vllxll 2 + IIYII 2 
- 2x·ySubtraction x-y 

Matrix 
Multiplication Ax 

ajjxll
laAimin ~ 0" ~ laAimax 

Pointwise 
Product xoy 

ellxiiiiYII 
0~£~1 

bounds on the magnitude of each vector. These bounds can then be adopted as element 

bounds and from them the required uniform bit-width for that vector can be inferred. 

Creating the vector-magnitude model involves replacing elementary vector operations 

with equivalent operations bounding vector magnitude, Table 4.1 contains the specific op

erations used in this chapter. When these substitutions are made, the number of variables 

for which bit-widths must be determined can be significantly reduced as well as the number 

of expressions, especially for large vectors. 

The entries of Table 4.1 arise either as basic identities within, or derivations from, 

vector arithmetic. The first entry is simply one of the definitions of the standard inner 

product, and the outer product expression comes from the identity (E;Ix;I2)(Lj 1Yi1 2 ) = 
Lij (lxd IYj I )2 . The addition and subtraction entries are resultant from the parallelogram 

law [2]. The matrix multiplication entry is based on knowing the singular values O"; of the 

matrix (further description below), and the pointwise product comes from: Li jx;I 2 1Yil 2 ~ 

(Li lxii2)(Li IYil 2). 

When dealing with complex matrix multiplication, the values of a;in and ar relate 

to the singular value decomposition (SVD) ofA = U.EV*and can be obtained by examining 

A* A and AA*. These matrices are guaranteed to be normal and hence to have a diagonal

ization producing eigenvalues. If the eigenvalues are arranged according to absolute value, 
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Scalar 
Expansion 

Vector 
Magnitude 

Block vector expansions 

Limited search due Faster runtimes 
to computational 

complexity 
Better search via 

reduced complexity 
More exploration in 

computational search 

Full accounting of 
interdependencies 

Tighter ranges via 
directional information 

Loss of directional 
correlations 

Figure 4.2: Goal of block vector representations. 

la;inl is the square root ofthe eigenvalue with the smallest value, and lcrAimax is the square 

root of the eigenvalue with the largest absolute value. These values give limits on how the 

matrix will scale a vector during matrix multiplication. 

While significantly reducing the complexity of the range determination problem, the 

drawback to using this method is that directional correlations between vectors are virtu

ally unaccounted for. For example, vectors x and Ax are treated as having independent 

directions, while in fact the true range of vector x +Ax may be restricted due to the inter

dependence. In light of this drawback, the next section proposes a means of restoring some 

directional information without reverting entirely to the scalar expansion based formula

tion. Incidentally, the method below can also recover directional information which may 

be lost during replacement of complex vectors with real ones as described in Section 4.1.2. 

4.1.4 Directionality via block vectors 

As discussed in the previous section, bounds on the magnitude of a vector can be used as 

bounds on the elements, with the advantage of significantly reduced computational com

plexity. In essence, the vector structure of the calculation (which would be obfuscated 

by expansion to scalars) is leveraged to speed up range exploration. These two methods of 

vector-magnitude and scalar expansion form the two extremes of a spectrum of approaches, 

as illustrated in Figure 4.2. At the scalar side, there is full description of interdependencies, 

but much higher computational complexity which limits how thoroughly one can search 

for the range limits. At the vector-magnitude side directional interdependencies are almost 
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completely lost but computational effort is significantly reduced enabling more efficient use 

of range search effort. A tradeoff between these two extremes is made accessible through 

the use of block vectors, which this section details. 

Simply put, expanding the vector-magnitude model to include some directional infor

mation amounts to expanding from the use of one variable per vector (recording magnitude) 

to multiple variables per vector, but still fewer than the number of elements per vector. Two 

natural questions arise: what information to store in those variables and, if multiple options 

of similar compute complexity exist, then how to choose the option that can lead to tighter 

bounds. 

Consider as an example a simple 3x3 matrix multiplication y = Ax, where x, y E IR.3 

and x = [xo,xl ,x1V. Figure 4.3(a) shows an example matrix A (with 9.9 :::; CiA :::; 50.1) 

as well as constraints on the component ranges of x (upper part of the figure). If the 

transformation which the matrix multiplication represents is applied, the result will be a 

scaled/skewed/rotated version of the original cuboid into a parallelepiped. While not de

picted exactly, the resultant parallelepiped is fully and tightly contained by the box shown 

in the lower half of the figure. This indicates that the largest magnitude element is~ 146, 

and under the assumption of uniform bit-widths each element in the vector would require 9 

range bits. Since these calculations were carried out exactly on the full scalar model, they 

are absolute minimum bounds, thus at least 9 bits are definitely required, and are in fact 

sufficient. 

Moving beyond the direct calculation method of Figure 4.3(a) is Figure 4.3(b) wherein 

the vector-magnitude approach is applied: llxll is bounded by V22 +22 + 102 = 10.4, and 

the bound on IIYII is obtained as crAIIxll which for this example is 50.1 x 10.4 ~ 521. 

The vector-magnitude estimate of~ 521 can be seen to be relatively poor over the true 

component bounds for matrix multiplication calculated to be ~ 146. The inflation results 

from dismissal of correlations between components in the vector. To address this loss of 

correlation, block vector partitioning is proposed which is discussed next. The same vector 

magnitude model is applied, but to multiple partial vectors formed by breaking the original 

vector. 

Figure 4.4(a) shows one possible partitioning scenario, where partitioning is performed 

around the component with the largest range, i.e. xo = [xo,xi]T,x1 = x1. The input range 
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x2 x2 

lx01 < 2 
lx1l < 2 Xo llxll < 10.4 Xo
lx2l < 10 

["' 3.96 396]
y:Ax A= 3.96 10.9 -D.l IIY/1 =sA //XI/ 9.9 <SA <50.1 

J 3.96 -{).1 10.9 J 

Max element +1-146 

(a) Scalar model. (b) Vector magnitude model. 

Figure 4.3: Vector matrix multiplication example: scalar vs. vector magnitude. 

bounds now translate into a circle (bounded magnitude) in the [xo,xl]-plane and a range on 

the xz-axis. The corresponding partitioning of the matrix is: 

Aoo A01 l Yo l [ Ao1 l [ xo ]Aoo 
A= [ Aw Au [ Yt - Aw Au Xt 

where 10.4::; CTA00 ::; 49.7 and 0::; CTA
01 

, CTA 10 ::; 3.97 and simply Au =au = 10.9. Using 

block vector arithmetic [42], which bears a large degree of resemblance to standard vector 
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arithmetic, it can be shown that 

Yo= AooXo +Ao1x1 

Yt =Awxo +Aux1. 

Expanding each of these equations using vector-magnitude in accordance with the opera

tions from Table 4.1, we obtain: 

2
IIYoW = (O'Aoo 11Xoll) + ( O'AOlllxtll)2 + 20'A00 0'A01 IIXollllxtll 


IIYtW = (O'Awllxoll)2 + ( O'Allllxtll)2 + 20"A 10 0'Allllxollllxtll 


As Figure 4.4(a) shows, applying the vector-magnitude calculation to the partitions 

individually amounts to expanding the circle in the [xo,xl]-plane, as well as expanding 

the xz range, after which these two magnitudes can be recombined by taking the norm of 

[Yo, YtV to obtain the overall magnitude IIYII = JIIYoll 2 + 11Ytll2. By applying the vector

magnitude calculation to the partitions individually, the directional information about the 

component with the largest range is taken into account. This yields IIYoll :::;~ 183 and 

IIYtll :::;~ 154, thus producing the bound IIYII :::;~ 240. 

Next to Figure 4.4(a), Figure 4.4(b) shows an alternative way of partitioning the vector, 

this time with respect to the basis vectors of the matrix A. Decomposition of the matrix 

used in this example reveals the direction associated with the largest aA to be very close 

to the xo axis. Partitioning in this way (i.e., xo = xo, Xt = [x1 ,xzJT) results in the same 

equations as above for partitioning aroundxz, but with different values for the sub-matrices: 

Aoo = aoo = 49.2 and 0:::; O'Aop O'A 10 :::; 5.61 and 10.8:::; O'All :::; 11.0. As the figure shows, 

we now have range on the xo-axis and a circle in the [x1 ,xz]-plane which expand according 

the same rules (with different numbers) as before yielding this time: IIYoll :::;~ 137 and 

IIYtll :::;~ 124producingatighteroverallmagnitudebound IIYII :::;~ 185. 

Given the larger circle resulting from this choice of expansion, it may seem surprising 

the bounds obtained are tighter in this case. However, consider that in the x0 direction 

(very close to the direction of the largest aA), the bound is overestimated by 2.9/2 ~ 1.5 in 

the partitioning from Figure 4.4(a), while it is exact in the partitioning from Figure 4.4(b). 

Contrast this to the overestimation of the magnitude in the [xi,xz]-plane of only about 2% 

in which case it makes sense that this partitioning provides the tighter bound. On the 

other hand, different basis vectors for A could reverse the situation leading to better bounds 
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(a) Partitioning on xz. (b) Partitioning on X(). 

Figure 4.4: Effect of partitioning on range overestimation. 

from the other partitioning. Clearly the decision of how to partition a vector can have 

significant impact on the quality of the bounds. Consequently, the next section discusses 

an algorithmic solution for making this decision. 

4.1.5 Partition selection 

Recall that in the cases from Figures 4.4(a) and 4.4(b), the magnitude inflation is reduced, 

but for two different reasons. Considering this fact from another angle, it can be restated 
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that the initial range inflation (which we are reducing by moving to block vectors) arises as 

a result of two different phenomena; 1) inferring larger ranges for individual components as 

a result of one or a few components with large ranges as in the middle case or 2) allowing 

any vector in the span defined by the magnitude to be scaled by the maximum <1A even 

though this only really occurs along the direction of the corresponding basis vector ofA. 

In the case of magnitude overestimation resulting from one or a few large components, 

the impact can be quantified using range inflation: fvec(x) = llxll/llill. where i is xwith 

the largest component removed. Intuitively, if all the components have relatively similar 

ranges, this expression will evaluate to near unity. On the other hand, removing a solitary 

large component range will produce a value larger than (and farther from) the value 1, as 

in the example from Figure 4.4(a) of 10.4/2.9 = 3.6 

Turning to the second source of inflation based on <1A, we can similarly quantify the 

penalty of using <1A over the entire input span by evaluating the impact of removing a 

component associated with the largest <1A. If we define a as the absolute value of the 

largest component of the basis vector corresponding to aA, and A as the block matrix 

obtained by removing that same component's corresponding row and column from A, we 

can define: fmat(A) = aaA;a;zx, where a;zx is the maximum across the amax of each 

sub-matrix of A. The a factor is required to weight the impact of that basis vector as it 

relates to an actual component of the vector which A multiplies. When aA is greater 

than the other <1A, !mat will increase (Figure 4.4(b)) to 0.99 x 49.2/11.0 = 4.4. Also note 

that the partition with the greater value (4.4 2:: 3.6) produces the tighter magnitude bound 

(185 < 240). Finally, it is worth mentioning that if the full singular-value decomposition 

(SVD) is available, the partitioning is much more straightforward- these metrics are used 

primarily to provide partitioning guidance when the SVD is unavailable. 

Algorithm 4.1 shows the steps involved in extracting magnitude bounds (from which 

bit-widths can be derived) of a vector based calculation. It takes as input the specifi

cation in terms of the calculation steps (VectorCalculation), input variables and their 

ranges (lnputVarList and InputVarRanges respectively) as well as intermediate variables 

(IntermediateVarList). From this input, VectorMagnitudeModel on Line 1 creates the base 

vector-magnitude model as in Section 4.1.3. The algorithm then proceeds by successively 
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Algorithm 4.1 VectorMagnitude 

1: 	 VecMagModel = VectorMagnitudeModel(VectorCalculation, InputVarList, 
InputVarRanges, IntermediateVarList) 

2: 	 UpdatedMagnitudes=DetermineRanges(VecM agM odel) 
3: 	 Flag=TRUE 
4: 	 while (Flag) do 
5: VecMagModel =Partition(VecMagModel) 
6: lntermediateMagnitudes =U pdatedMagnitudes 
7: UpdatedMagnitudes=DetermineRanges(VecMagModel) 
8: Gain= max(U pdatedMagnitudes, IntermediateMagnitudes) 
9: if (Gain< GainThresh) then 

10: Flag=FALSE 
11: end if 
12: if (size(VecMagModel) > SizeThresh) then 
13: Flag=FALSE 
14: end if 
15: end while 
16: return IntermediateMagnitudes 

partitioning the model (Line 5) and updating the magnitudes (Line 7) until either no signif

icant tightening of the magnitude bounds occurs (as defined by GainThresh on Line 9) or 

until the model grows to become too complex (as defined by SizeThresh on Line 12). Note 

that the DetermineRanges function on Lines 2 and 7 is based upon existing range analysis 

techniques. Even interval or affine arithmetic could be used here, however we employ the 

computational method from Chapter 3. The Partition function (Line 5) utilizes the impact 

functions !vee and f mat to determine a good candidate for partitioning. Computing the !vee 
function for each input vector is inexpensive, while the !mat function involves two largest 

singular(eigen) value calculations for each matrix. It is worth noting however that a par

tition will not change the entire Model, and thus many of the !vee and !mat values can be 

reused across multiple calls of Partition. 

With a means in hand of obtaining a block vector partitioning that provides a balance 

between SMT instance complexity and magnitude overestimation, the next section applies 

this method to a few case studies which demonstrate its operation. 
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4.2 Case studies 

This section details 5 case studies which demonstrate application of the vector based meth

ods discussed in Section 4.1. Two of these case studies are extended from Chapter 3 (Sec

tions 4.2.1 and 4.2.2) where originally they used scalar equations only. Results for the case 

studies compare affine arithmetic operating on the vector model and the scalar expansion 

to the computation method of from Chapter 3 built on top of HySAT [35], again applied 

to both the vector model and scalar expansion. Experiments were carried out on the same 

platform as before, a 1.5 GHz Pentium 4 with 512MB of RAM running Gentoo Linux. 

In all experiments, run-times for the experiments were on the order of 10's of minutes for 

the computational (SMT) scalar expansions, minutes for the vector and block vector model 

based on SMT and seconds for all affine arithmetic based experiments. Conversion of 

ranges [L, U] to bits was done according to the formula: bits = pog2 (max( ILl, IU I) + 1)l +a 

where a= 0 if it is a scalar range (not vector magnitude) and Land U have the same sign, 

otherwise a = 1. 

4.2.1 Analytic center 

As we have seen in Section 3.4.3, the analytic center of a set of inequality constraints 

maximizes a distance metric from all constraint boundaries. Using the same as before from 

convex optimization, when using a distance metric based on a logarithmic penalty function; 

solving for the analytic center will give rise to calculations such as those below [10]. 

z[i] = d[i]a[i]· (C- P) d[i] = 1/(b[i]- a[i]· C) 

The inequality constraints are defined by a[i], b[i] and C is the analytic center. The values 

z[i] reflect a penalty of moving C toP with respect to a[i],b[i]. For the specific case of 

5 inequality constraints in JR.3 , the vector equations can be expanded into scalar equations 

(i E {1,2,3,4,5}): 
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Table 4.2: Affine vs. SAT-Modulo for vector and scalar analytic center. 

Output 
Scalar Affine Scalar SAT-Modulo 
Range Bits Range Bits 

ql [i] [-3010' 3010] 13 [-3011 '3011] 13 
q2[i] 00 - [-101 ' 101] 8 
z[i] 00 - [ -3.6e5 , 3.6e5] 20 

Output 
Vector Affine Vector SAT-Modulo 
Range Bits Range Bits 

ql [i] [-3010' 3010] 13 [-3011 '3011] 13 
q2[i] 00 - [-101 ' 101] 8 
q3[i] 00 - [-347 '347] 10 
z[i] 00 - [-6.1e5, 6.0e5] 21 

Consider ranges of Cx,Cy,Cz,Px,Py,Pz E [-100, 100], and ax[i],ay[i],az[i],b[i] E [-10, 10]. 

The equivalent vector-magnitude model is as follows: 

q3[i] = viiCW+IIPW-2IICIIIIPIIcos(ecp) 

z[i] = q2[i]llallq3[i]cos(8aq3 ) 

foro::; II all::; 17.4 and o::; IICII, IIPII::; 173.3. 

Table 4.2 shows ranges and equivalent bit-widths for the analytic center calculation 

when using affine arithmetic and the SAT-Modulo Theory (SMT) approach. Because in 

this and in the next case study no matrix multiplications exist, the block vectors are not 

required (only the vector-magnitude results are shown). Up to q2, the vector-magnitude 

model gives identical results to the scalar expansion, but overestimates z, a result of losing 

the correlations. Note also that the singularity is circumvented by adding the constraint 

qi ~ 0.0001, which is convenient in the SMT approach, but for which no mechanism exists 

in affine arithmetic. 
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4.2.2 Euclidian projection 

A second convex optimization/analysis based case study coming again from Chapter 3 is 

Euclidian projection of a point/points onto a hyperplane. In Section 3.4.4 we saw that for a 

hyperplane a· x + b = 0, a point xO will have a projection: 

b-a·xO 
P(xO) = xO+ a 

a·a 

If we consider for the case study x substituted for xO and a, x E ~5 , once again the vector 

equations can be expanded into scalar equations: 

qr = E1=oa;x;; q2 = Eb:oaf 


q3 =b-qr; q4 =q3jq2 


Zi =x;+q4a;, i E {0, 1,2,3,4} 


where -100-::; x; -:5: 100 and -10 -:5: a; -:5: 10 fori E {0, 1 ,2,3,4} and -10 -:5: b -:5: 10. The 

vector-magnitude model can also be formulated: 

qr = JlaJJIJxJJcos(Bax); q2 = JlaW 

q3 = b-qr; q4 = q3jq2 

with 0-:5: llxll -:5:223.7 and 1 -:5: llall -:5:22.4. 

Table 4.3 shows ranges and equivalent bit-widths for Euclidian projection under the 

conditions described above. Similarly to analytic center, the vector model keeps up well 

with the scalar model for the first intermediates and in fact, as of q4, the vector model 

actually surpasses the scalar model to provide better results, since it can be more thor

oughly searched due to lower computational complexity. Note also that singularity avoid

ance is unnecessary due to the llaJJ 2: 1 constraint in the specification. Nonetheless, since 

no mechanism exists in affine arithmetic for capturing such a constraint, it cannot handle 

the division. 
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Table 4.3: Mfine vs. SAT-Modulo for vector and scalar Euclidian projection. 

Output 
Scalar Affine Scalar SAT-Modulo 
Range Bits Range Bits 

ql [ -5000 , 5000] 14 [-5001 , 5001] 14 

q2 [0, 500] 9 [0, 501] 9 
q3 [-5010, 5010] 14 [-5011 , 5011] 14 

q4 00 - [-348, 348] 10 
Z; 00 - [-646, 630] 11 

Output 
Vector Affine Vector SAT-Modulo 
Range Bits Range Bits 

ql [ -5003 , 5003] 14 [ -5003 , 5003] 14 
q2 [-114, 501] 9 [0, 501] 9 
q3 [-5013, 5013] 14 [-5013 , 5013] 14 
q4 00 - [-235, 235] 9 
Zi 00 - [-270, 271] 10 

4.2.3 Davidon-Fietcher-Powell formula 

Moving out of the realm of convex optimization, a formula that has been applied in the 

quasi-Newton method as a multidimensional generalization of the secant method for non

linear optimization is the Davidon-Fletcher-Powell (DFP) formula [94]. The method main

tains at each step of optimization a local estimate of the Hessian of the objective function, 

and proceeds by successively updating this estimate. The DFP formula solves the secant 

equation with the least modification to the current Hessian estimate, while maintaining 

symmetry and positive definiteness of the Hessian. 

Calculations such as this one can arise in embedded systems which must make decisions 

based on very complex models. For this case study we have focussed on the update equation 

for the inverse Hessian: 

_ H HkYkYkT Hk + sksrHk+l- k- --
YkTHkYk YkTSk 

which takes as input the current (for iteration k) estimate of the inverse Hessian matrix Hb 
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the step vector sk, and the change in the gradient of the objective across the step Yk (avec

tor). Since the true ranges of these values depend so heavily on the context, we have picked 

up arbitrary element ranges of [ -100 .. 100] for elements of Hk which has eigenvalues in the 

range [0 .. 100], and [-10 .. 10] for sk and Yk, for a problem of dimension 3. These values 

suffice to highlight the difference between the range determination methods in question, 

which is our goal, rather than to explicitly solve the range problem in a specific context. 

The vector calculations for DFP are as follows: 

ql =HkYk q4=ykTql q? = YkTSk 

q2T =ykTHk Q5 = Q3jq4 Q8 = Q6jq7 

Q3 = qlq2T Q6 =SkSkT 

Hk+l =Hk-Q5+Q8 

Note that Q3 and Q6 are both outer products yielding matrices while q4 and q7 are both 

inner products yielding scalars. 

Ranges and equivalent bit-widths for the intermediate variables of this calculation are 

shown in Table 4.4 for scalar expansion and the vector magnitude model, where [];j has 

been used to indicate element bounds. Notice first that as before, affine arithmetic is unable 

to resolve the division, however insertion of constraints like before (q42 2: 0.0001, q72 2: 
0.0001) enable SMT to still provide meaningful ranges. Note that while scalar affine cannot 

actually proceed any further than [Q5];j, if we borrow the missing ranges for the divisions 

(q4, q7) from the scalar SMT results, the other intermediate ranges given by affine are the 

same as the scalar SMT. 

Turning to the vector results, notice that, as above, the affine and SMT results track 

together until the division. If the ranges are borrowed, as before, the ranges continue to 

track until Hk+l, where affine arithmetic grossly overestimates the range. This happens 

because in this case the vector magnitude model is more sensitive to the correlations, which 

are lost when borrowing the ranges from the SMT vector results. 

Finally for this case study, note the difference between the SMT scalar and SMT vector 

results. For Q6 and Q8, the range for SMT scalar is slightly tighter than for SMT vector, but 

for all other variables SMT vector gives the same or tighter ranges. Unlike in the case study 

from Section 4.2.2, this is not a result of the SMT vector being able to more thoroughly 
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Table 4.4: Affine vs. SAT-Modulo for vector and scalar Davidon-Fletcher-Powell. 

Output 
Scalar Affine Scalar SAT-Modulo 
Range Bits Range Bits 

[ql]; [-3e3, 3e3] 13 [-3e3, 3e3] 13 
[q2]; [-3e3, 3e3] 13 [-3e3, 3e3] 13 

[Q3]ij [-9e6, 9e6] 25 [-4.0le6, 9.01e6] 25 
q4 [0, 9e4] 17 [0, 9e4] 17 

[Q5)u 00 - [-9.01e9, 9.0le9] 35 
[Q6]ij [-100' 100] 8 [-101 ' 101] 8 

q7 [-300' 300] 10 [-301 '301] 10 
[Q8]ij 00 - [-1.01e4, 1.01e4] 15 

[Hk+I]ij [-9.1e8, 9.1e8] 31 [-9.1e8, 9.1e8] 31 

Output 
Vector Affine Vector SAT-Modulo 
Range Bits Range Bits 

llqlll [0' 1740] 12 [0, 1741] 12 
llq211 [0' 1740] 12 [0,1740] 12 
IIQ311 [0, 3.03e6] 23 [0, 3.03e6] 23 

q4 [-3.03e4, 3.03e4] 16 [-3.03e4, 3.03e4] 16 
IIQ5II 00 - [0, 3.03e8] 30 
IIQ611 [0' 303] 10 [0' 303] 10 

q7 [-303 '303] 10 [-303 '303] 10 

IIQSII 00 - [0, 3.03e4] 16 

IIHk+lll [0, 9.17e16] 58 [0, 4.29e8] 30 

search the solution space. Rather, the results from SMT scalar are in fact tight based on the 

specification, but the scalar specification is unable to capture the eigenvalue constraint on 

Hk. This illustrates another very useful feature of the vector magnitude model, the ability to 

capture some specification aspects rooted in the vector structure of the calculation, which 

are awkward or impossible to represent in the scalar expansion. 
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4.2.4 Conjugate Gradient method 

The fourth case study is based on a single iteration of the Conjugate Gradient method for 

solving linear systems of equations [113]. This method has many applications, examples 

include finite element method analysis and solutions to partial differential equations. A 

single (in fact the first) iteration can be formulated as follows. Given a matrix A, and a 

vector b with an initial guess for x (which solves Ax= b) of xo then let: 

5.665 2.630 1.088] 
A = 2.630 9.624 2.647 

[ 1.088 2.647 6.329 

r=b d=xo 
r' = r- aq 

d' = r' +/3d 

and r', d' feed into the next iteration. 

Taking constraints on the inputs as 0.1 ::; Xo ::; 104 and 0.1 ::; b ::; 260, Table 4.5 shows 

the ranges of the intermediates obtained through affine arithmetic and SMT. In this case, 

due to the increased complexity of the scalar formulation caused by the matrix multipli

cation, the scalar method over-estimates the ranges (this is because of the timeouts due to 

the problem size). While there is no guarantee that the ranges obtained through the vector 

method are optimal, they are significantly better than the scalar ones once again because 

the reduced complexity of the formulation enables more thorough search of the solution. 

The significant reduction in bit-width from the vector method in this case study arises 

largely because the eigenvalues of the matrix are fairly uniformly distributed, and the input 

ranges of the vectors are uniform over the elements. This algorithm also has inherently 

weak directional interdependencies between intermediate variables, they are more strongly 

correlated in terms of magnitude, which further accounts for the success of the vector

magnitude approach. Because of this however, no significant gains are made by applying 

the block-vector approach, unlike the next study. 
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Table 4.5: Affine vs. SAT-Modulo for vector and scalar Conjugate Gradient. 

Output 
Scalar Affine Scalar SAT-Modulo 
Range Bits Range Bits 

[d); [-104' 104] 8 [-104' 104] 8 
[r]; [-260' 260] 10 [-260' 260] 10 
[q]; [-1550' 1550] 12 [-1075' 1075] 12 
rTr [0, 2.03e5] 19 [0, 7.74e4] 17 
dTq [-1.38e5, 3.72] 20 [0, 1.44e5] 18 
a 00 - [0, 7.78e8] 30 

[r']; [-1.21e12, 1.21e12] 42 [-1.02ell , 9.40e10] 38 
r'Tr' [-2.06e24, 2.70e24] 83 [0 , 2.08e22] 75 

f3 00 - [0, 2.23e17] 58 
[d']; [-2.32e19, 2.32e19] 66 [-8.24e18, 7.33e18] 64 

Output 
Vector Affine Vector SAT-Modulo 
Range Bits Range Bits 

lldll [0.1 '104] 8 [0.1' 104] 8 

llrll [0.1 '260] 10 [0.1 '260] 10 

llqll [0.42 ' 1300] 12 [0.42 ' 1300] 12 
r1 r [0, 6.77e4] 18 [0, 6.77e4] 18 
dlq [0, 1.36e5] 19 [0, 1.36e5] 19 
a 00 - [0, 1.60e6] 22 

llr'll 00 - [0, 2.01e6] 22 
r'lr' 00 - [0, 4.04e12] 43 

f3 00 - [0, 5.97e7] 27 

lid' II 00 - [0, 4.18e7] 27 
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4.2.5 FFT based correlation 


The final case study is based on a fast method for computing correlation via sum-of-square

differences for 2-dimensional (2D) data, as applied to object tracking. An application and 

its dataflow are detailed in [49], which has been reproduced below. The inputs J,g are 2D 

arrays of data values, referred to by [ 49] as the search and reference window respectively 

and the final correlation result ssd is: 

ssd = $-1{ (sinco $ {f of})- 2(${!} o${g}*)} 

where recall from Table 4.1 that o is the element-wise product of arrays, sine is the 2D sine 

function of appropriate size, and $ is computed using the Fast Fourier Transform (FFT). 

Two points are of primary interest in Table 4.6. First, note that the vector method 

overestimates the range for $ {ssd}, this is due to the strong directional correlation of the 

pointwise matrix produce. However, the range for ssd is actually smaller, due to the same 

phenomenon of the previous case study, i.e., the scalar instance becomes too complex that 

it cannot be feasibly searched and thus overestimates the bit-width. In the bottom portion 

of the table, block vectors have been implemented leading to tightening of the range of the 

range for $ {ssd}, while the range of ssd is unaffected due to the directional independence 

of the FFT in the final step. 

4.3 Summary 

This chapter has shown how to deal with vectors when allocating bit-widths for hardware 

accelerators, which ultimately will impact both area and performance of the accelerator. 

Formal approaches are required for scientific algorithms to guarantee robustness and thus 

correctness, however runtimes of formal methods can scale unacceptably. We have intro

duced two primary techniques to manage the runtime of our formal approach without com

promising the quality of the solution: the vector-magnitude model and the block-vector 

model. Both of these can deal with abstract data types, including real and complex valued. 

The raised level of abstraction this method provides also opens the door to analyzing and 

leveraging vector specific representations such as [52]. There are far-reaching benefits to 

90 




Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

Table 4.6: Affine vs. SAT-Modulo for vector and scalar FFf-based correlation. 

Output 
Scalar Affine Scalar SAT-Modulo 
Range Bits Range Bits 

fof [0, 6.56e4] 17 [0, 6.56e4] 17 
F=§{j} [-512, 1024] 12 [-512, 1024] 12 
§{fof} [ -1.64e5 , 2.63e5] 20 [ -1.32e5 , 2.63e5] 20 

FoG* [ -2.63e5 , 1.05e6] 22 [ -2.63e5 , 1.05e6] 22 
§{ssd} [-1.93e6, 1.05e6] 22 [-1.99e6, 5.25e5] 22 

ssd [-1.06e8, 9.23e7] 28 [-1.01e8, 8.01e7] 28 

Output 
Vector Affine Vector SAT-Modulo 
Range Bits Range Bits 

fof [0, 4.20e6] 24 [0, 4.20e6] 24 
F=§{j} [0, 2.05e3] 13 [0, 2.05e3] 13 
§{fof} [0, 4.20e6] 24 [0, 4.20e6] 24 

FoG* [0, 4.20e6] 24 [0, 4.20e6] 24 
§{ssd} [0, 7.55e7] 28 [0, 7.55e7] 28 

ssd [0, 7.55e7] 28 [0, 7.55e7] 28 

Output 
Block Vector Affine Block Vector SAT-Modulo 

Range Bits Range Bits 
fof [0, 4.20e6] 24 [0, 4.20e6] 24 

F=§{j} [0, 2.05e3] 13 [0, 2.05e3] 13 
§{fof} [0, 4.20e6] 24 [0, 4.20e6] 24 

FoG* [0, 2.10e6] 23 [0, 2.10e6] 23 
§{ssd} [0, 3.78e7] 27 [0, 3.78e7] 27 

ssd [0, 7.55e7] 28 [0, 7.55e7] 28 
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the implementation flow, because this is a key step before RTL synthesis which has tra

ditionally lacked automation for robust solutions, which are required to migrate scientific 

applications to hardware. 
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Chapter 5 

Custom floating-point for scientific 

calculations 

In the previous two chapters, computational methods based on SMT have been employed to 

establish bounds on intermediate variables within a calculation, and data abstractions have 

been employed to reduce SMT solver instance complexity. Both of these have focused on 

the range aspect of the problem to facilitate explanations and to not detract from the point 

of each chapter through the greater level of detail required to consider the precision aspect. 

Now that a scalable computational bounding framework has been developed, this chapter 

builds on top of it to address the issue of precision for scientific computing calculations 

[67], including iterative methods. 

5.1 Method 

This section as a whole details the approach to solving the custom-representation bit-width 

allocation problem for general scientific calculations. An error model to unify fixed and 

floating-point representations is given in Section 5.1.1 and Section 5.1.2 shows how a cal

culation is mapped under this model into SMT constraints. Following this, Section 5.1.3 

discusses how to break the problem for iterative calculations down using an iterative anal

ysis phase (described in Section 5.1.4) into a sequence of analyses on direct calculations 

(described in Section 5.1.5). 
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5.1.1 Fixed/floating-point error model 

Fixed- and floating-point representations are typically treated separately for quantization 

error analysis, given that they represent different modes of uncertainty: absolute and rela

tive respectively. Absolute error analysis applied to fixed-point numbers is exact however, 

relative error analysis does not fully represent floating-point quantization despite being 

relied on solely in many situations. The failure to exactly represent floating-point quanti

zation arises from the finite exponent field which limits the smallest magnitude, non-zero 

number which can be represented. In order to maintain true relative error for values in

finitesimally close to zero, the quantization step size between representable values in the 

region around zero would have to be zero itself. Zero step would of course not be possible 

since neighbouring representable values would be the same. Therefore, real floating-point 

representations have quantization error which behaves in an absolute way (like fixed-point 

representations) in the region of this smallest representable number. For this reason, when 

dealing with floating-point error tolerances, consideration must be given to the smallest 

representable number, as illustrated in the following example. 

Relative Error Example. Consider the addition of two floating-point numbers: a+ b = c 

with a, bE [10, 100], each having a 7 bit mantissa yielding relative error bounded by~ 1%. 

The value ofc ranges over [20, 200], and straightforward relative error analysis for c gives 

relative error of 1%, and in this case the result is reliable. 

Consider now different input ranges: a, b E [ -100, 100], but still the same tolerances 

(7 bits ~ 1%). Simplistic relative error analysis should still give the same result of 1% for 

c however, the true relative error is unbounded. This results from the inability to represent 

infinitesimally small numbers, i.e. the relative error in a,b is not actually bounded by 1% 

for all values in the range. A finite number ofexponent bits limits the smallest representable 

number, which then becomes the step size at zero, leading to unbounded relative error for 

any value between this step size and zero. 

Unbounded relative error near zero is not a problem for the operands only, but also for 

the result c. In the specific case ofa= 100± 1,b = -99±0.99 both operands have clearly 

bounded relative error however, we obtain c = 1± 1.99 which has nearly 200% relative 
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log2(1errorl) 

-1022 -126 log2(1valuel) 

Figure 5.1: Unified fixed/floating-point error model characterizing data type by knee and 
slope. 

error. This phenomenon is known as catastrophic cancelation [41] and (like in the previous 

paragraph) grows without bound as the result c is brought closer to zero. 

In both cases within the given example, the problems could be dealt with by utilizing 

absolute error analysis however, this may produce wasteful representations having much 

tighter tolerances than necessary for large numbers. For instance, absolute error of 0.01 for 

a, b (7 fraction bits) leads to absolute error of0.02 for c, which translates into a relative error 

bound of 0.01% for c = 200 (which could be unnecessarily tight) and 100% for c = 0.02 

(which may be unacceptably loose). This impasse arising from the tension between relative 

error near zero and absolute error far away from zero forms the motivation for a hybrid error 

model. 

Figure 5.1 shows a unified absolute/relative error model which can simultaneously 

model fixed- and floating-point numbers by providing a means of restricting when absolute 

or relative error applies. Error in this model is quantified in terms of two numbers (knee 

and slope as described below) instead of just one (as in the case of absolute and relative 

error analysis). Put very simply, the knee point divides the range of the value of a variable 

into absolute and relative error regions, and the slope indicates the relative error bound in 
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the relative region (above and to the right of the knee point). Below and to the left of the 

knee point the absolute error is bounded by the value knee, the absolute error at the knee 

point (which sits at the value knee I slope). We thus define: 

• 	 knee : absolute error bound below the knee-point 

• 	 knee point =knee I slope : value at which error behaviour transitions from absolute 

to relative 

• 	 slope : fraction of value which bounds the relative error in the region above the knee 

point. 

As shown in Figure 5.1, the model can embody the error behaviour of both fixed-point and 

floating-point types such as IEEE-754 single and double precision. Of more significance 

than just being able to capture the error behaviour of existing representations however, is 

the ability to provide error constraints to the bit-width allocation process which are more 

more descriptive than basic absolute or relative error bounds. Through this model, a de

signer can specify explicitly the desired error behaviour of the system, potentially opening 

the door to greater optimization than is possible considering only absolute or relative er

ror alone (both of which are subsumed by this model). Also, under this model bit-width 

allocation is no longer fragmented between fixed- and floating-point procedures. Instead, 

custom representations are derived from knee and slope values obtained subject to appli

cation constraints/optimization objectives. How to construct precision constraints for an 

SMT formulation will be discussed in Section 5.1.2, while translation of the aforemen

tioned application objectives into such constraints is the subject of the subsequent Sections 

5.1.3 and 5.1.4. 

5.1.2 Forming precision constraints 

The role of precision constraints is to capture the precision behaviour of intermediate vari

ables, supporting (in our context) the hybrid error model discussed above in Section 5.1.1. 

The concept of a precision expression was introduced briefly in Chapter 2, in Section 2.2.2 

for the sake of facilitating discussion of previous work. Here more detail is provided on 

96 




Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

expressions, as well as how constraints are formed for the SMT instance. We define four 

symbols relating to an intermediate (e.g., x): 

1. the unaltered variable x stands for the ideal abstract value in infinite precision, 

2. x stands for the finite precision value of the variable, 

3. dx stands for accumulated error due to finite precision representation, so x= x +dx, 

4. 8x stands for the part of dx which is introduced during quantization of x. 

By using these variables we can use the SMT instance to keep track symbolically of the 

finite precision effects, and place constraints where they are needed to satisfy objectives 

from the calculation specification. In order to keep the size of the precision (e.g., &) terms 

from growing explosively, atomic precision expressions can be derived at the operator level. 

Consider for example division and replace the infinite precision expression z = xjy with: 

xjy 

zy 

(z+~)(y+~y) x+dx" 

zy+z~y+y~+~y~ x+dx" 

y~+~y~ 	 dx"-z~y 

dx"-z~y 
~ 

y+~y. 

What is shown above describes the operand induced error component of ~. measuring the 

reliability of z given that there is uncertainty in its operands. Ifnext z were cast into a finite 

precision data type, this quantization results in~= ~~~Y + 8z, where 8z captures the 

effect of the quantization. The type of quantization (its behaviour) can be specified by what 

kind of constraints are placed on 8z, which is discussed in more detail below. 

This same process shown above for division can be applied to many different opera

tors, scalar and vector alike. Table 5.1 shows expressions and accompanying constraints 

for common operators. In particular the precision expression for square root as shown 

in the table highlights a principal strength of the computational approach, that constraints 

rather than assignments are used. If only forward assignments were allowed, the precision 
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Table 5.1: Precision expression counterparts for common operators. 

Infinite Precision Finite Precision 
Operator (Expression) (Constraint) 

Addition z=x+y &=~+.1y+8z 
Subtraction z=x-y &=~-.1y+8z 

Multiplication z=xy & = x.1y+y~+~.1y+ Sz 
Division z=x/y &=~+Sz 

Square root z=vx (&)2 + 2(z- Sz)& = ~- (8z)2 + 2z8z 
Vector inner product z=x'~"y .1z = x'~"(.1y) + (.1x)Ty+ (.1x)T(.1y) + Sz 

Matrix-vector product z=Ax .1z =A(.1x) + (M)x+ (M)(.1x) + Sz 

expression would be more complicated, involving use of the quadratic formula. Because 

of this feature of SMT instances however, constraints such as this one for square root are 

permissible. 

Beyond the operators of Table 5.1, constraints for other operators can be derived under 

the same process shown for division, or operators can be compounded to produce more 

complex calculations. As an example, consider the quadratic form z = xTAx, for which 

error constraints can be obtained by explicit derivation (starting from z = xT Ax) or by 

compounding an inner product with a matrix multiplication xT(Ax). Furthermore, con

straints of other types can be added, for instance to capture the discrete nature of constant 

coefficients for exploitation similarly to the way they are exploited in [ 108]. 

When capturing an entire dataflow into constraints for an SMT formulation, careful 

consideration needs to be given to the 8 terms. In each place they are used they must 

capture error behaviour for the entire part of the calculation to which they apply. For 

example, a matrix multiplication which is implemented using multiply accumulate units 

at the matrix/vector element level may quantize the sum throughout the accumulation of 

a single element of the result vector. In this case it is not sufficient for the Sz for matrix 

multiplication from Table 5.1 to simply capture the final quantization of the result vector 

into a memory location, but the internal quantization effects throughout the operation of the 
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Figure 5.2: Error region for a custom floating-point number. 

matrix multiply unit. What is useful about this setup is that it allows off-the-shelf hardware 

units (such as matrix multiply) to be modelled directly within the tool, so long as there is a 

clear description of the error behaviour. 

The final point of importance regarding oterms is how they are constrained to encode 

quantization behaviour. In the case of quantization into a fixed-point data type, the range 

is simply bounded by the rightmost fraction bit. For example, if a fixed-point data type 

with 32 fraction bits is used and quantization is done by truncation (floor), the constraint 

would be -2-32 < ox ::; 0. Similarly for rounded and ceiling, the constraints would be 

-2-33 ::; ox ::; 2-33 and 0 ::; ox< 2-32 respectively. These constraints are loose (and 

therefore robust) in the sense that they assume no correlation between quantization error 

and value, when in reality correlation does exist. If the nature of the correlation is known, it 

can be captured into constraints with an accompanying increase in solver complexity. The 

tradeoff between tighter error bounds and increased solver complexity has to be evaluated 

on an application by application basis. What is important here is that the SMT framework 

provides the descriptive power necessary to capture the correlation if it is known. 

In contrast to fixed-point quantization, constraints for floating-point numbers are more 

complex because error cannot anymore be divorced from value. Figure 5.2 shows the error 

region of a custom floating-point representation. The use of L\ indicates either potential 
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ax :'S s[opex X X ax :'S -s[opex X X ax< -kneex 

(a) Cl : Ax::; slopex x x. (b) C2 : Ax::; -slopex x x. (c) C3 : Ax> kneex C4 Ax< 
-kneex. 

Figure 5.3: Partial error regions and their associated constraints. 

input error or tolerable output error of a representation. In the discussion which follows 

the conclusions drawn apply equally to quantization if ~ is replaced with 8. Possibly the 

simplest constraint to describe this region indicated in Figure 5.2 would be: 

abs(th):::; max(slopex x abs(x),kneex) 

provided that the abs() and max() functions are supported by the SMT solver. In the event 

that they are not supported, and noting that another strength of the SMT framework is 

the capacity to handle both numerical and Boolean constraints, a varying set of potential 

constraints exists to represent this region. 

Figure 5.3 shows numerical constraints which generate Boolean values and the accom

panying region of the error space in which they are true. From this, a number of constraints 

can be formed which isolate the region of interest. For example, note that the unshaded 

region of Figure 5 .2, where the constraint should be false, is described by: 

{(C1ANDC2ANDC3) OR (C1ANDC2ANDC4)} 

noting that Cl refers to Boolean complementation and not finite precision as used elsewhere 

in this chapter and that AND and OR refer to the Boolean relations. The complement of 
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this produces a pair of constraints which define the region in which we are interested (note 

that C3 and C4 are never simultaneously true): 

{C1 OR C2 OR C4} {C1 OR C2 OR C3} 

(tu > slopex x x) OR (tu:::; slopex x x) OR 

(!u > -slopex x x) OR (tu:::; -slopex x x) OR{ }{ }

(tu ~ - kneex) (tu:::; kneex) 

While the one (custom, in house developed) solver used for our experiments does not 

support the abs() and max() functions, the other (off-the-shelf solver, HySAT- [35, 96]), 

does provide this support. Even in this case however, the above Boolean constraints can be 

helpful alongside the strictly numerical ones. Because proof of unsatisfiability is what is 

required to give robustness (as shown in Chapter 3), providing extra constraints can help to 

speed the search by leading to a shorter proof. It also should be noted that when different 

solvers are used, any information known about the solver's search algorithm can be lever

aged to set up the constraints in such a way to maximize search efficiency. Finally, while 

the above discussion relates specifically to our error model, it is by no means restricted 

to it - any desired error behaviour which can be captured into constraints is permissible. 

This further highlights the flexibility gained by using the computational approach. The 

next subsection now deals with partitioning an iterative calculation into pieces which can 

be analyzed by the framework which is now in place. 

5.1.3 Iterative calculation partitioning 

Numerical schemes for solving scientific problems can in general be divided into two main 

categories: 1) direct where a finite number of operations leads to the exact result and 2) 

iterative where the application of one iteration refines an estimate of the final result which 

is converged upon by repeated iteration. Figure 5.4 shows one way how an iterative calcu

lation may be broken into sub-calculations which are direct, as well as the data dependency 
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Setup
Inputs 

Calculation 

Core 
Iteration 

Auxilliary 
Iteration 

Takedown 
Outputs

Calculation 

Figure 5.4: A generalized view of the flow of data within an iterative calculation. 

relationships between the different sub-calculations. In particular, the Setup, Core, Aux

illiary and Takedown blocks of Figure 5.4 represent direct calculations, and Done? may 

also involve some computation but produces (directly) an affirmative/negative answer. The 

Setup calculations provide (based on the inputs) initial iterates, which are updated by Core 

and Auxiliary until the termination criterion encapsulated by Done is met, at which point 

post-processing to obtain the final result is completed by Takedown, which may take in

formation from Core, Auxiliary and Setup. What distinguishes the Core iteration from 

Auxilliary is that Core contains only the intermediate calculations required to decide con

vergence. That is, the iterative procedure will still operate and terminate the same way 

for the same set of inputs if the Auxiliiary calculations are removed. The reason for this 

distinction is twofold: 1) convergence analysis for Core can be handled in more depth by 

the solver when calculations that are spurious (with respect to convergence) are removed, 

and 2) error requirements of the two parts may be different, thus needing different error 

analysis with the potential of leading to higher quality solutions. 
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Under the partitioning scheme of Figure 5.4, the top level flow for determining repre

sentations is shown in Figure 5.5. The left half of the figure depicts the partitioning and 

iterative analysis phases of the overall process, while the portion on the right shows bounds 

estimation and representation search applied to direct analysis. The intuition behind Figure 

5.5 is as follows: 

• 	 At the onset, precision of inputs and precision requirements of outputs are known 

• 	Direct analysis on the Setup stage with known input precision provides precision of 

inputs to the iterative stage 

• 	 Direct analysis on the Takedown stage with known output precision requirements 

provides output precision requirements of the iterative stage 

• 	 Between the above, and iterative analysis leveraging convergence information, for

ward propagation of input errors and the backward propagation of output error con

straints provide the conditions for direct analysis of the Core and Auxilliary iterations. 

Building on the robust computational foundation of SMT that has been established during 

Chapters 3 and 4, Figure 5.5 shows how SMT is leveraged through formation of the SMT 

constraints for bounds estimation. Also shown is the representation search which selects 

and evaluates candidate representations based on feedback from the hardware cost model 

and the bounds estimator. The reason for the bidirectional relationship between iterative 

and direct analysis is to retain the forward/backward propagation which marks the SMT 

method and thus to retain closure between the range/precision details of the algorithm in

puts and the error tolerance limits imposed on the algorithm output. Over the next two 

sections, these iterative and direct analysis blocks will be elaborated in more detail. 

5.1.4 Analysis for iterative calculations 

As outlined above, the role of the iterative analysis part of the overall flow is to close 

the gap between forward propagation of input error, backward propagation of output error 

constraints and convergence constraints over the iterations. Even while the plethora of 

techniques which have been developed throughout the history of numerical analysis to 
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Figure 5.5: Conceptual flow for solving the bit-width allocation problem for iterative nu
merical calculations. 

provide detailed convergence information on iterative algorithms give a testament to the 

complexity of this problem and the lack of a one-size-fits all solution, we are not completely 

without recourse. In particular, one of the best aides that can be provided in our context of 

bit-width allocation is a means of extracting constraints which encode information specific 

to the convergence/error properties of the algorithm under analysis. 

A simplistic approach to analysis of the iterative portion would be to merely "unroll" 

the iteration, as shown in Figure 5.6. A set of independent solver variables and dataflow 

constraints are created for the intermediates of each iteration with the output variables of 

one iteration fed into the input of the next. While this approach is attractive in terms of both 

automation (replication of iteration dataflow is easy) and of capturing the data correlations 

across iterations, the resulting instance is very large. As a result, solver run-times can 
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Figure 5.6: Iterative analysis by iteration unrolling. 
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Figure 5.7: Iterative analysis using information from theoretical analysis. 

explode, providing in reality very little meaningful feedback due to solver timeouts (Sec

tion 3.3.2). Furthermore, termination may be conditional leading to a variable number of 

iterations. This can resist being captured into constraints and increase instance complexity. 

For the reasons above, it is preferred to have an instance for the iterative part based 

on the dataflow of a single iteration, augmented with some extra constraints as shown in 

Figure 5.7. The challenge then becomes determining those constraints which will ensure 

desired behaviour over the entire iterative phase of the numerical calculation. Note also 

that very large instances of direct calculations could be partitioned into more manageable 

sub-calculations under a similar procedure. As alluded to earlier, a rich source of infor

mation for such constraints is the theoretical analysis of the algorithm of interest. While 

some general facts surrounding iterative methods do exist (e.g., Banach fixed point theorem 
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[58]), the guidance provided by such facts to the SMT search is limited by their generality. 

In addition, even these general facts may tie in algorithm specific details (e.g., the definition 

of the metric of the space for the Banach fixed point theorem). Finally, the algorithm de

signer/analyst ought (in general) to have greater insight into the subtleties of the algorithm 

than the algorithm user, including assumptions under which it operates correctly. 

To summarize the iterative analysis process, consider that application of SMT is es

sentially done to automate and accelerate reasoning about the algorithm. If any reasoning 

done offline by a person with deeper intuition about the algorithm can be captured into 

constraints, it will save the solver from trying to derive that reasoning independently (if 

even it could). In light of the application specific nature of this analysis process, it is best 

illustrated through example as done in Section 5.2. Before that however, direct analysis is 

described, since it is at the core of the method with Setup, Takedown and the result of the 

iterative analysis phase all being managed through direct analysis. 

5.1.5 Direct calculation precision 

Having shown that an iterative algorithm can be broken down into separate pieces to be 

analyzed which are direct calculations, here we discuss in more detail this direct analysis 

which is depicted in the right half of Figure 5.5, which consists of three main stages. The 

constraints for the base formulation come from the dataflow and its precision counterpart 

involving 8 terms, formed as discussed in Section 5.1.2. This base formulation includes 

constraints for known bounds on input error and requirements on output error. This feeds 

into the core of the analysis which is the error search across the 8 terms (discussed im

mediately below), which produces in the end range limits (as in Chapter 3) for each in

termediate, as well as for each 8 term indicating quantization points within the dataflow 

which map directly onto custom representations. Table 5.2 shows robust conversions from 

ranges to bit-widths, with/, E, F, M and s representing integer, exponent, fraction, man

tissa and sign respectively. In each case, the sign bit is 0 if XL and XH have the same 

sign, 1 otherwise. Note that vector-magnitude bounds must first be converted to element

wise bounds before applying the rules in the table, using llx/12 <X--+ -X< [x]i <X, and 

ll8xll2 <X--+ -X/VN < [8x]i < X/VN for vectors withN elements. 
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Table 5.2: Converting ranges to bit-widths for fixed and custom floating types. 

Type Constraints Bits Required Total 
Fixed XL <x<XH 

DxL < Dx < DXH 
I= lfog2 [ma.x(ixLI, lxHI) + 1]1 
F = -Llog2 [min(IDxLI, IDxHI)lJ 

s +I+ F 

Float XL <x<XH 

Dx < max ( slopexlxl' ) 
- kneex 

M = llog2 (slopex)J 
EH = flog2 [ma.x(ixLI, lxHI)]l 

EL = llog2kneexJ +M- 1 
E = flog2(EH- EL + 1)l 

s+M+E 

With the base constraints set up as discussed above forming an instance for the solver, 

execution of the solver becomes the means of evaluating a chosen quantization scheme. 

The error search that forms the core of the direct analysis utilizes this error bound engine 

by plugging into the knee and slope values for each Dconstraint. Selections for knee and 

slope are made based on feedback from both the hardware cost model and the error bounds 

obtained from the solver. In this way, the quantization choices made as the search runs 

are meant to evolve toward a quantization scheme which satisfies the desired end error/cost 

tradeoff. With the machinery now in place to move from specification to custom data types, 

application of the method to some case studies is presented next. 

5.2 Case studies 

As a means both of further illustrating the method as well as evaluating its effectiveness, 

a few scenarios have been explored: the two-operand scalar addition from the relative 

error example of Section 5 .1.1, an iterative Newton-Raphson division scheme and Newton's 

method root finding scheme, with comparative analysis having shown throughout the thesis 

that existing techniques cannot support division. Mter these, in Section 5.3, a case study 

based on the Conjugate Gradient method is presented. The platform for the experiments 

used the same SMT solver implementation as in the previous two chapters (HySAT [35, 

96]), supplemented with a custom developed solver. The machine used was a dual core 
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3.00GHz Intel Pentium IV with 1GB of RAM running Ubuntu Linux 9.10. Execution 

times ranged up to low lO's of minutes except for the Conjugate Gradient example where 

execution times were in the lO's of hours. 

As per discussion in Section 2.2.1, the hardware cost model and search procedure are 

treated as aspects which are separate from error bounding, the focus of this thesis. Regard

less, in order to evaluate the method a search method must be in place. As such, we have 

employed a simple metric where cost is directly proportional to number of bits. Based on 

this metric, a greedy search proceeds as follows: 

1. 	For each quantized intermediate x, set slopex = 0, kneex = KTESTx and set slope 

and knee to zero for all other intermediates. Using KTESTx = 0 as a starting point, 

adjust KTESTx until the output error requirements for the calculation are just met. 

This establishes inner (minimum resource) bounds on the knee for each intermediate. 

2. Repeat the above step, but for kneex = 0 and slopex = STESTx which will establish 

inner bounds on the slope for each intermediate. 

3. Using for each variable knee= KTEST and slope= STEST determined in the last 

two steps as a starting point, check if the output error is within the tolerance afforded 

by the specification, if so terminate. 

4. Check for each variable the effect on output error of reducing knee by a factor of 2 

and of reducing slope by a factor of 2. Adopt the choice which reduces the error the 

most and go to the previous step. 

The inner bounds established through steps 1, and 2 above are actually upper bounds 

on the respective knee and slope values, which produce minimum resources, and knee can 

also be used as the minimum number of fraction bits required for fixed-point representa

tions. The intuition behind the greedy search is to try to find the shortest path to bring the 

output error inside of the tolerance requirements of the specification. Furthermore, if error 

tolerance violation is occurring solely because of a variable's error behaviour in the region 

below the knee point (absolute error behaviour), adjusting slope should not affect it. The 

reverse is also true. In addition, if error from one variable is so large that it overwhelms 

error from other variables, more precision will be allocated to that variable. 
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It should be noted the overall hardware result depends heavily on the suitability of the 

hardware cost models and associated search procedure, and how well coupled they are. As 

discussed in Chapter 2, one of the motivations of the abstraction between these aspects 

and the estimation of error bounds is how much they vary based on the implementation 

technology. It has been stressed that regardless of the choice of cost model and search, 

they cannot be effective without error bounds which are tight enough to be informative, 

such has been the motivation of this thesis. In light of this, the main purpose of the above 

(potentially inefficient) search and metric is to provide the support necessary to highlight 

the capacity of SMT based error bounding to deal with scientific calculations. With that in 

mind, we turn to the case studies. 

5.2.1 Two operand addition 

The first and simplest case study is two operand addition with a relative error constraint, 

following the setup from the relative error example of Section 5.1.1. The calculation is 

direct: a +b = c between two floating-point numbers a, b E [ 10, 1 00], and quantization is 

applied to the inputs a, bas well as the result c. For output error constraints of slopec::; 1% 

and kneec::; 0.1 the tool returns s[opea = s[opeb = 1.25 X 10-3,kneea = kneeb = 1.25 X 

10-2 and s[opec = 2.5 X 10-3, kneec = 5.0 X 10-2. These translate into S = 1 sign+ m = 10 

mantissa+ e = 4 exponent bits for a and b, and s = 1 sign+ m = 9 mantissa+ e = 4 exponent 

bits for c. Because the resulting range of c E [20, 200] does not include kneec, relative error 

limits are guaranteed over the entire range. 

Note that the example from Section 5.1.1 upon which this case is based provides (for 

the sake of clarity in the example) only forward relative error analysis without considering 

quantization effects. Since quantization injects additional error into the calculation, the 

accumulation of those errors must amount in the end to less than the tolerance. This is the 

reason for 10 mantissa bits for a and b and 9 for c which give slope less than the 1% required 

by the specification. Furthermore, because no rounding mode is specified, no assumption 

is made in the tool to retain robustness and as a result, slopes from output error tolerance 

specifications and those reported back from quantization points are adjusted down by a 

factor of 2, to ensure that any quantization mode that might be chosen supports the error 
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tolerance requirements. 

Moving to the second part of the experiment where the input ranges are changed to 

a, b E [ -100, 100] the effect of the catastrophic cancellation highlighted in Section 5 .1.1 

can be seen immediately. The slope values returned by the tool indicate smaller errors at 

the extremes of the ranges than the knee values, which themselves depend on the knee value 

constraint imposed externally on c. In essence, the only error which can be guaranteed in 

this case (since values could cancel to zero) is absolute error, which is controlled by the 

knee value. For a constraint of kneec::::; 0.1 (regardless of the slopec constraint) the tool 

indicates a fixed-point representation with 7 fraction bits for a, b and 6 fraction bits for c. 

If the kneec constraint is reduced four-fold, 2 more bits are required on each of a,b and c. 

The selection of fixed-point by the tool for this scenario indicates that it is aware (through 

the formalism of the SMT instance) of the catastrophic cancelation effect and is indeed 

generating robust bit-widths, as that is the only way to ensure the required precision on the 

output over the entire range. 

5.2.2 Newton-Raphson division 

The previous example serves to clearly demonstrate the robustness of this bit-width alloca

tion method, as well as the concepts of slope and knee, and the necessary transition from 

floating to fixed-point under increasingly tight error tolerances, while being simple enough 

to evaluate intuitively. However, for this same reason it is of little practical significance. In 

this section, the effectiveness of the method as applied to iterative calculations is illustrated 

through a case study based on Newton-Raphson division. 

Newton-Raphson division enables the calculation of a quotient Q= N / D, where N, Q E 

JR, D E JR, D =I= 0. The quotient is calculated iteratively without using a division explic

itly, instead only subtraction and multiplication. It is useful for hardware implementations 

where it is undesirable to allocate resources for a standalone divider. 

In actuality, the problem is broken into 2eN x (1/2eD) where Newton's method is used 

to obtain the reciprocal of 2eD and e E ][ is selected so that 1 < 2eD ::::; 2 where convergence 

of Newton's method can be effectively predicted. The function f(X) = 1/X- 2eD having 

a root at 1/(2eD) is selected for the iteration, and applying Newton's method gives the 

110 




Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

iteration Xk+l = Xk(2- DXk)· To summarize the procedure: 

1. Shift D,N bye so that 1 < 2eD $. 2 

2. Starting from Xo = 0.5, 

4. Obtain Q = NXk+l 

where e is roughly the desired relative error of the result. As will be elaborated below, this 

example also serves as useful for illustrating the different components of the iterative flow 

from Figure 5.4. 

Steps 1 and 2 above constitute the Setup calculation calculation portion of the iterative 

method (from Figure 5.4), while the first half of step 3 is the Core iteration and step 4 is the 

Takedown calculation. The second half of step 3 is the termination or Done condition, and 

there is no Auxiliary Iteration as the entire iteration is required to decide convergence. In 

terms ofarchitecture, a potential hardware implementation would involve a priority encoder 

structure for step 1, and one or two multipliers would be required for step 3 depending 

on whether sharing is permitted, for DXk and the subtraction result multiplied by Xk. A 

subtractor would also be required in step 3 (for 2 - DXk), and the convergence test also 

requires a subtractor (which can be dedicated or shared with step 3) plus comparison with a 

constant. Finally step 4 requires a multiplier which can be dedicated, or again shared with 

the one from step 3. 

The iterative analysis phase for the algorithm is in essence done implicitly, subtly in

dicated by the statement of 1 < 2eD $. 2 where convergence of Newton's method can be 

effectively predicted. Theoretical analysis of Newton's method using f(X) = 1/X-D hav

ing a root at X = D yields the following facts: 

• f has unique root at X = D, 

• f has non-zero derivative at X = D, 

• f is continuously differentiable around, X= D, 

• f has a second derivative at X =D. 
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The above conditions are sufficient to guarantee quadratic convergence by which we ap

proximate the error after k iterations as 2-2k. Furthermore, the sequence of iterations will 

converge monotonically to the result. With these parts of the iterative analysis in place, we 

can setup and perform the direct analyses. 

Let the inputs Nand D to the algorithm have range [1 x 10-3,1 x 103], with no error 

inN and D. Also let there be a tolerance constraint of slopet,.Q ::; 1 x 10-3 and kneet,.Q ::; 

1 x 1 o-6 . Note that this kneet.Q constraint shifts the knee point out of the range of Q; thus 

the error is controlled by relative error over the entire range of Q. 

The setup calculation is trivial since Xo is fixed, D is assumed to be without error and is 

shifted to between 1.0 and 2.0. The Takedown Calculation however is a little more involved 

and is used to backward propagate the output error constraint. The Takedown Calculation 

constraints are as follows. 

Q=NX 


0.5::; X< 1 


1 x 10-3 ::; N ::; 1 x 103 


~Q = (m)X + N(M) + (m)(M) + 8Q 


m=o 
abs(M)::; max(slopexabs(X),kneex) 

abs(~Q)::; max((1 X 10-3 )abs(Q), 1 X 10-6) 

abs( oQ)::; max(slope~Qabs(Q),knee~Q) 

The multiplication implies to X the relative error constraint of Q (plus a couple extra bits 

due to rounding mode robustness as in the addition case study), but we know that the range 

of X is limited to 0.5::; X < 1 so that the relative error constraint can be replaced with the 

same absolute error giving !!.X::; 1.25 x 10-4 (13 fraction bits). 

Based on the iterative analysis above, the convergence is stronger than the error require

ment for the final iteration as derived above. As the iterations proceed, we can consider that 

Xk is assigned Xk-1, and because there is only a single iterated variable, no divergence be

tween iterated variables occurs. As a result, we can assume !!.X = 0 in our instance and due 

to the quadratic error convergence we know that e = 6.10 x 10-5, and M' < 6.10 x 10-5 
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meets the error criteria. The constraints are below: 

Y=2-DX 

X'=XY 

0.5:::; X< 1 

0.5:::; X'< 1 

L\Y = -(m)X- D(M)- (m)(M) +oY 


M' = -(M)Y +X(M)+(M)(~Y)+oX' 


M=O 


M' < 6.10 x w-5 


Fixed-point data types result due to the limited dynamic range of the variables involved. 

One way of thinking of this is that the exponent for shifting the floating-point type which 

would guarantee relative error containment is implicitly encoded in the shift which happens 

before entering the iterative phase, to bring D into the range [1.0,2.0]. 

5.2.3 Newton's method root finding 

While the last two examples have been sufficiently small to argue that exhaustive simulation 

or existing analytical methods are equal to the task, this example again based on Newton's 

method defies both methods. It is in fact the same example taken from Chapter 3, in Section 

3.4.6 - where it was addressed only for the range problem across a single iteration. Here 

on the other hand, the full method is employed to determine the root of a polynomial: 

f(x) = a3.x3 +a2x2+a1x+ao. The Newton iteration: 

f(xn) 
Xn+l = Xn- f'(xn) 

yields the iteration: 

z1n a3~ + a2~ + a1Xn + ao
Xn+ 1 = Xn - Zn, Zn = - = 2

z2n 3a3Xn + 2a2Xn + a1 

Such calculations can arise in embedded systems for control when some characteristic of 

the system is modelled regressively using a 3rd degree polynomial. Ranges which are used 
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in Section 3.4.6 are given below: 

xo E [-100, 100] ao E [-10, 10] 

a1 E [1i, 1]] az E [-JS, -p] a3 E [~, ~] 

It has been emphasized that in the context of scientific computing, robust representations 

are required, and this may be an important criterion for many embedded systems applica

tions which have a scientific motivation. For a problem even of modest size such as this 

one, if the range of each variable is split into 100 parts, the input space for simulation 

based methods would be 1005 = 1010• This immense simulation may have to be performed 

multiple times to evaluate error ramifications of each quantization choice. On top of this, 

a simulation of this magnitude is still not truly exhaustive and thus cannot substantiate ro

bustness. Together these facts clearly invalidate the use of simulation based methods. As 

we have also seen in Section 3.4.6, existing formal methods based on interval arithmetic 

and affine arithmetic also fail to produce usable results due to the inclusion of 0 in the 

denominator of Zn whereas the computational technique provides tighter ranges. 

This example bears some similarity to the previous one in that it is iterative, relying 

on Newton's method. However, while the previous example did not require any divisions 

as a part of the dataflow (in fact its purpose was to implement division without using a 

divider), this method exemplifies some of the core challenges which scientific calculations 

invoke - potential singularities and ill-conditioning, which are the stumbling blocks for 

existing analytical bit-width allocation methods [33, 80, 99, 106] when applied to numerical 

methods (see Section 2.2.2). 

The setup for this experiment in terms of input variable ranges is given above, and 

perfect representation of the inputs is assumed (i.e., Axo = !laj = 0). Furthermore, there is 

no Setup, Takedown or Auxiliary Iteration, only the Core Iteration. Setting the tolerance 

limits for iteration outputxn+l as 0.01 for the slope and 0.001 for the knee, the tool returned 

fixed-point bit-widths for the intermediates in the numerator and denominator on 16 to 20 

bits fractional part, but floating-point types for z1 and z2 themselves. This is interesting 

because the dynamic range of these variables is larger due to the 3rd degree polynomials, 

while the division between them (for which relative error representation is convenient) 

is contracting, bringing the dynamic range back down to a span suitable for fixed-point 
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implementation. The ability of the computational based SMT to provide meaningful bit

widths for this iterative numerical algorithm demonstrates the potential SMT has to enable 

robust data representations for iterative scientific algorithms. 

5.3 Conjugate Gradient case study 

As a final example to tie together concepts from throughout this thesis, this example ana

lyzes the Conjugate Gradient method [113] for solving linear systems of equations. While 

as in the previous example the Conjugate Gradient method was treated earlier, it was again 

only for ranges over a single iteration, and for only a 3 x 3 matrix in Section 4.2.4. In this 

section however, its (Jacobi) pre-conditioned extension is addressed in an environment of 

much greater practical significance and complexity - an application for haptic interaction 

with deformable bodies as presented in [81, 82]. 

5.3.1 Summary of the application 

In order to provide the context of the application and to properly understand the formal re

sults presented here, the work in [82] is briefly overviewed. In the application, a deformable 

body is modelled using the finite element method (FEM), and a large linear system can be 

derived from localized force-distance equations over this FEM model, which the Conjugate 

Gradient method is in tum applied to solve. In order to provide a sufficiently true-to-reality 

simulation with their setup, the FEM mesh consists of 1000's of nodes, generating vectors 

with length on the order of 103 to 104 . The corresponding matrix is sparse and the haptic 

feedback system imposes a time constraint requiring solution of this large sparse system 

within 1-2ms. 

To address this significant computational demand imposed by the above conditions, 

a hardware accelerator using a custom-floating-point numerical representations called dy

namically scaled fixed-point was developed by the authors of [82]. This was done using an 

empirical approach wherein adequate limits on the precision requirements were estimated 

using Monte Carlo simulations. A reproduction of the algorithm and required bit-widths 

from [82] using their notation are provided in Algorithm 5.1 and Table 5.3 respectively. 
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Algorithm 5.1 Preconditioned Conjugate Gradient from [82] 

1: u = init; 
2: r=b-Ku; 
3: z = p-1r·

' 
4: d=z; 
5: cntr = 1; 
6: zr = zTr; 
7: while (cntr < #m) do 
8: a= zr/(dTKd); 
9: u=u+ad; 

10: rn =r- aKd; 
11: zn = p-1rn; 
12: zrn = znTrn; 
13: f3 = zrn/zr; 
14: d = zn+ f3d; 
15: r=rn; 
16: z=zn; 
17: zr = zrn; 
18: cntr = cntr+ 1; 
19: end while 
20: return u; 
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Table 5.3: Required bit-widths for Algorithm 5.1 as determined by [82] 

Vectors Matrix Scalars 
b,r,u,Kd d P-1,Z, [K]iJ =/= 0 d'fKd,r'fr a, f3 

36-bit 18-bit 18-bit 64-bit 18-bit 

Case 2 of the Monte Carlo experiment from [82] (Section III-B) involved a mesh with 

1144 points, creating a matrix K of 3432 x 3432 with condition number (K' = 'Amax/'Amin) 

8899. The experiment consisted of simulation of 50 random initial points (init) with a 

deviation of 10% from the actual solution, as justified by the haptic environment. Over 

the 50 simulations the normalized error of the solution vector was recorded, which was 

calculated as: 
llu- Utruell erru = ~-:-------:-:-'-'

llutruell 
where Utrue is obtained using double precision solution to the system of equations. For 

each of the 50 simulations, 25 Conjugate Gradient iterations were applied and the resultant 

value of err0 was on average~ 0.004 and in the worst case~ 0.009, with standard devi

ation ~ 0.002. In addition, deviation from the result obtained from an IEEE-754 double 

precision floating-point implementation was negligible over the simulations. Due to these 

errors falling well within acceptable tolerances for maintaining the reality of the applica

tion, as well as the convenience of fixed latency calculation in a real-time system, [82] 

indicates the number of iterations #m from Algorithm 5.1 can be fixed at 20. While this 

analysis has provided relatively compelling motivation for the choice of bit-widths used in 

the functioning prototype system, the next section provides a formal analysis, revealing the 

non-robustness of the empirical approaches. 

5.3.2 Formal analysis and robust representations 

Applying the methodology presented thus and shown in Figure 5.5, and restricting our 

analysis to linear system based on a constant matrix K (as in [82]), the algorithm can 
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be partitioned into Setup, Takedown, Core Iteration and Auxiliary Iteration of Figure 5.4 

(Section 5.1.3). While the Takedown Calculation is empty (given that the iteration directly 

produces the solution vector u), lines 1 to 6 constitute the setup phase. For the iterative part, 

we will depart from the fixed number of iterations used by [82] to use convergence criteria 

from [113] of zrn < £ 2zro, where zro is zr at line 6. Under this condition, line 9 becomes 

the Auxiliary Iteration (because it is not needed to decide convergence) and all other lines 

from 7 to 19 constitute the Core Iteration, which will be the focus of the discussion for the 

remainder of this section. 

Direct dataflow 

Before setting up a direct calculation instance for analyzing the Core Iteration, we must 

determine constraints for its operation. The simplest first step is to write value and precision 

constraints based on Algorithm 5.1 as well as the discussion on precision expressions from 

Section 5.1 .2 for the iterative part of the dataflow as follows: 

q=Kd L\q = K(L\d) + 8q 

dKd=dTq L\dKd = (L\d)T q + dT (L\q) + (L\d)T (L\q) + 8dKd 
zr _ (L\zr)- a (L\dKd) 

8a= dKd L\a- dKd + (L\dKd) + a 

un=u +ad L\un = L\u + (L\a)d + a(L\d) + (L\a)(L\d) + 8un 

rn = r- aq L\rn = L\r- (L\a)q - a(L\q)- (L\a)(L\q) + 8rn 

zn = p - 1rn L\zn = p-l (L\rn) + 8zn 

zrn = znTrn L\zrn = (L\zn?rn + znT (L\rn) + (L\zn? (L\rn) + 8zrn 

f3 = zrn L\{3 = (L\zrn)- f3 (L\zr) +8f3 
zr zr+ (L\zr) 

dn = zn+f3d L\dn = L\zn+ (L\f3 )d+ f3 (L\d) + (L\f3 )(L\d) + 8dn 

This dataflow represents one iteration on the iterated variables zr, d , r , u and their accom

panying finite precision errors L\zr,L\d ,L\r,L\u, under the assumption (as in [82]) that the 

matrices K and P are exactly represented in their finite precision forms (which we have 

adopted directly). In order to ensure that upon algorithm completion, the result is correct 

(within the tolerances prescribed by the problem specification), conditions are required. It 
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would also be beneficial to solver instance complexity if the scope of these conditions was 

limited to a single iteration. Such constraints arise from theoretical iterative analysis and 

are added to those above. 

Iterative analysis 

Along these lines, we can set up a target number of iterations based on convergence analy

sis. Under the setup of [82] the deviation in u (i.e. error term e(o)) at the onset is (rightly) 

considered safely bounded by 10% of the entire space of u, and suppose we want to ensure 

that an execution of the algorithm will reduce it by 100 x to 0.1% of the space. Using the 

same matrix from [82] (case 2 of Section III-B) with condition number 1C = 8.873e3, and 

using the convergence analysis provided by [113] we can have: 

which can be solved numerically to obtain i ~ 250. 

With a target iteration count in hand we can establish necessary conditions on a single 

iteration to limit loss of precision across algorithm iterations during its operation. The 

derivation of the Conjugate Gradient method proceeds under the assumption that in any 

iteration (i), the residual is an exact image of the current solution vector over the transform 

defined by the matrix i.e., 

which is an invariant across the iterations, and is in fact what guarantees that when the 

algorithm terminates, the u which results is indeed the solution to the problem. In finite 

precision however, this relationship is not guaranteed to hold but instead we have: 

and to examine one iteration we can derive: 

II (b- Kll(i) - f (i))- (b- Kll(i+ l ) - f (i+ l ) ) II < C(i) 

llb-.KU(i)-r(i) -b+.KU(i+ l ) +ru+ t)ll < C(i) 

IIKTI(i+I ) - .KU(i) + r u+ t) - r (i) II < C(i) 
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and substituting the quantized variables with precision expressions: 

II(K +M) [(u(i+l) +~u(i+l))- (u (i) +~u(i))] + (r(i+l) +~r(i+I))- (r(i) +~r(i) ) l l < £(i) 

II(K + M) [(u(i+l) - u (i) ) + (~u(i+l ) - ~u( i) )] + (r(i+l)- r (i)) + (~r(i+l ) - ~r( i) ) ll < £(i) 

Proceeding under the assumption that the representation for matrix K is exact (as in [82]), 

LV(= 0. Examining the expression inside the norm on the left hand side and making 

substitutions from the precision dataflow: 

K [ ( un- u) + ( ~un - ~u)] + (rn- r) + ( ~rn- ~r) 


K[((u+ ad)- u) + (~un- ~u)] + ((r-aq)-r)+(~rn-~r) 


Kad+K(~a)d+Ka(~d) ) + ( -aq- (~a)q- a(~q) ) 

( +K(~a)(~d) +K8un -(~a)(~q) + 8rn 

Kad+K(~a)d+Ka(~d) ) + ( -aKd- (~a)Kd- a(~q) ) 
( +K(~a)(~d) +K8un -(~a)(~q) + 8rn 

Ka(~d) ) + ( -a(K(~d) + 8q) ) 
( +K(~a)(~d) +K8un -(~a)(K(~d) + 8q) + 8rn 

Recombining with the right hand side now, 

IIK8un-a8q-(~a)8q+8rnll < £(i) 

IIK8un- (a+~a)8q+8rnll < £(i) 

IlK8un- a8q + 8rnll < £(i) 

Examining this expression in the context of Conjugate Gradient, notice that the quantiza

tion choice for only the solution vector (un) and the residual (rn) as well as the matrix 

multiplication (q) affect the invariant. Intuitively this makes sense because d and a define 

a search direction and step size, and regardless of the choice of them, so long as both u and 

r are updated in a way consistent with each other, the invariant will hold. 

Since some violation of the invariant will occur for finite precision, we seek to bound 

it using the target iterations determined above. Transforming the derived expression into 

space of the solution vector gives II Bun- aK- 18q + K- 18rnll :::::; £0 which gives a con

straint on how far the invariant can be broken as seen from u's point of view. If we consider 

120 




Ph.D. Thesis- Adam B. Kinsman McMaster University - Electrical & Computer Engineering 

that after the targeted 250 iterations we desire magnitude of deviation (absolute) between u 

and r of less than 0.01 , then £0 ::;; 0.01 / 250 = 4e-5 will meet this objective. Therefore the 

constraint which we add to our formulation to guarantee desired coherence between u and 

r at the end of the algorithm is: 

IIK8un- a8q + 8rnl l ::;; 4 x10-5 
. 

This expression has been fixed for a given number of iterations to ease the complexity of 

the instance and thereby not overburden the solver. In actuality, given a powerful enough 

solver the above could be skipped, leaving the target number of iterations as a free variable 

to be explored by the solver, constrained by the convergence formula from [113]. By doing 

this analysis symbolically offline, we save the solver having to independently learn this 

constraint (if it can) , or in the worst case work it out from scratch each time it would be of 

use. It is worth noting also that this constraint is not unique, in that other constraints may 

equally satisfy the accuracy requirements imposed on u. What matters from the robustness 

point of view however is that they do in fact guarantee the desired error conditions for u. 

In addition to ensuring that the u and r variables remain consistent, we need a condi

tion which keeps the search from getting off track and negatively impacting convergence. 

Without more detail surrounding the necessary conditions for proper operation of the al

gorithm in the context of its application, it is difficult to form a clear constraint. As d, dn 

are implemented by [82] using dynamic scaling, the are essentially custom floating-point 

in that application, and as a result we adopt a bound on relative error introduced in each 

iteration. This bound is the same as the bound on quantization which can be guaranteed by 

the use of 18 bits mantissa as in [82] , llddnll < (2.2 x 10- 4)l ldnll · In this case we ignore 

the absolute error region since no behaviour is specified for it by the application. 

Robust representations 

Augmenting the dataflow constraints with the two constraints above of IlK8un - a8q + 
8rnll ::;; 4 x 10- 5 and llddnll < (2.2 x 10- 4 ) lldnll provides the instance for direct analysis 

of the iterative part of the calculation. When full ranges based on quantizations from [82]: 

ll initll E [0 ,5.25 X 105] llbll E [0,6.88 X 1010] AK E [22.7 ,2.02 X 105] 
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Table 5.4: Bitwidths required for fixed-point intermediate variables. 

I Variable I Integer I Fraction I Sign I Total I 

I ; I ~ I ~~ I ~ I !~ I 

I : I ~ I ;~ I : I ~~ I 

with the corresponding error inputs set to 0 (since these values are accepted in their quan

tized form) are used, the resulting bit-widths are extremely large, going into the hundreds 

of bits. Section 5.3.3 will discuss in detail the reasons behind this, which have to do in part 

with the behaviour of the calculation in some comers of the solution space. By constraining 

the input space more tightly, the required bit-widths can be reduced. 

To constrain the input space, consider that the purpose of the Setup step is to use the 

initialization vector init to reduce the residual as much as possible before beginning. There

fore, instead of allowing init and b to occupy the entire space of possibilities then constrain 

the deviation from the true solution, init, we can symbolically remove the starting point, 

effectively solving K(u- init) = (bnew- bcurrent), and constrain Ilul l· Using a more re

stricted range of motion within one haptic frame than above, the update to u is bounded by 

llnll < w-4 . In this space, the residual will be bounded by llrll < 3.2 X 101. Under the 

assumption that the algorithm reduces the residual in each iteration [113] and that the u in 

the problem is now the error, we can also write llrnll < llrll, and llunl l < I lull· For the 

same reason we can consider that the updates do not go outside this space marked off by 

the constraints so the updates are also contained with it: II aqll < llrll and II ad II < Ilul l· 
In essence the above changes transform the problem to the origin of the u space which 

significantly reduces the dynamic range of the variables involved. This works in this setup 

since ideally in each haptic frame the solution to Ku = b should be known and linearity al

lows easy solution to a new system, very nearby due to the short timescale. Transformation 

back to the initial system involves only an addition. While in infinite precision arithmetic 

these two problems are identical, in finite precision the smaller dynamic ranges can affect 

bit-widths significantly. The bit-widths obtained for the intermediate variables under these 
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Table 5.5: Bitwidths required for floating-point intermediate variables. 

I Variable I Exponent I Mantissa I Sign I Total I 
zr 7 22 0 29 
d 5 20 1 26 
q 6 44 1 51 

dKd 6 39 0 45 
a 8 41 0 49 
zn 6 25 1 32 

f3 3 22 0 25 

zrn 7 22 0 29 
dn 5 20 1 26 

conditions are given in Tables 5.4 (fixed-point) and 5.5 (floating-point) . 

These assignments should guarantee numerically correct results over the operation of 

the datapath under the constraints which have been imposed, over the region of the input 

space which has been selected. Interestingly, the selection of fixed-point for u , un and 

r, rn makes sense for maintaining consistency between the solution and the residual as was 

discussed in Section 5.3.2. Also, the relative size of the mantissas for the other variables 

shows the rough degree of dependency which the output dn experiences on the respective 

quantization error. For instance, 22 bits for f3 indicates a weaker (or less amplified) impact 

on the error for dn than 44 bits for q. Another interesting fact about this strong dependence 

on q is that it influences dn through a subtraction in rn which comes through zn and f3. 
While the results make sense in terms of how they relate to the expected influence 

of intermediate variables upon the output error, they represent hardware requirements of 

nearly single precision floating-point in some cases, and between single and double preci

sion floating-point for others. It is only fair to note that at the same time, these requirements 

are derived for a significantly restricted region of the input space where intuitively it would 

be expected to be feasible with significantly narrower bit-widths, and indeed [82] provides 

smaller bit-widths. The next section examines this issue in more depth and provides some 

perspective on these seemingly inflated bit-widths. 
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5.3.3 Perspective on formal and empirical findings 

While the results presented in the previous section represent significantly higher resource 

requirements than those presented in [82], even at the same time as they address operation 

over a significantly smaller region of the input space than in [82] , the primary difference 

between the two comes down to robustness. 

To highlight this, recall that in Section 5.3.1 the empirical results were summarized to 

be erru ~ 0.004 on average and ~ 0.009 with standard deviation ~ 0.002 when 25 iter

ations were performed, using an init vector differing from the solution by less than 10% 

of its space. However, based on the theoretical analysis of the algorithm utilized for the 

iterative analysis phase, it is known that convergence is slowed when the vector b takes on 

a direction having equal weights of the eigenvectors of K. Taking a 10% deviation along a 

direction in u which produces such a b creates a scenario where the normalized error mag

nitude erru = 0.083 after the same 25 iterations. Note that this represents ~35 standard 

deviations from the worst case, and ~40 from the average, under the statistics generated 

from simulation. In excess of 100 iterations are required to bring the normalized residual 

magnitude to the same range identified through simulation. As the number of iterations 

increases, the residual obtained using custom representation deviates from that obtained 

using double precision floating-point so that after 225 iterations, the custom representa

tion normalized residual magnitude is ~ 1.73 x 105 and the double precision normalized 

residual magnitude is~ 2.71 X 10-8. 

Taking this case a step further, the effect can be exacerbated by observing that floating

point types can lose accuracy due to cancelation, when large numbers are subtracted. The 

principle extends to vectors so a large init vector which must be reduced down to the so

lution u will experience the most cancellation. In this case, after simulating 225 iterations, 

the custom representation erru is 5.55 x 104, marking a significant departure from the dou

ble precision erru which is 29.2. The reason for this is the increased absolute error due to 

cancellation of relative error (custom floating) variables, which accumulates over a number 

of iterations. 

What may be even more surprising is that double precision too is not immune to the 

effect. Using the same K matrix, using the same direction considered above of an evenly 
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weighted sum of eigenvectors represented by v, we can set up b = 10- 10v and init = 1010v 

giving an initial residuall.21 x 1016 . After 350 iterations, the residual as calculated by the 

iterations is ~ 1.09 x 10- 1 while the true residual as calculated using the resulting u vector 

(i.e. Ku- b) is 7.96. Despite the fact that all variables stay well within the representable 

ranges of double precision numbers over the course of the entire simulation, the algorithm 

deviates significantly from the true solution. This brings to light the important fact that 

while serving the general needs of numerical computation well, double precision itself is 

not a substitute for infinite precision, and there remains a need for error analysis even using 

this ample representation [61, 62] . 

The above representational counter examples serve as important reminders of the lack 

of robustness which simulation, as well as assumed high precision data types provide. It 

is worth noting that the sample size used in [82] already required significant simulation 

time on state of the art platforms, and even if the size were increased 10-fold, there would 

be no guarantee of detecting the corner cases discussed here which invalidate a potential 

choice of representation. Furthermore, even the very modest feasible region of the input 

which is under consideration in Section 5.3.2 consists of somewhere on the order of 23000 

points, clearly infeasible to be handled through simulation. At the same time however, 

no counter example such as the ones above can be brought for lower precision types than 

the ones indicated in Tables 5.4 and 5.5 within this restricted input space. Furthermore, 

double precision has been used extensively and reliably in scientific applications for quite 

some time, and a functioning system has been prototyped for [82] which has demonstrated 

correct operation. The natural question arises, how can balance be brought to this situation? 

The key to resolving these seemingly disparate circumstances is twofold: it involves 

being more precise about robustness from both the side of the tool and the side of the ap

plication. On the tool side, overestimation of ranges arises from abstraction of vector types 

and timeouts due to an inability to terminate the SMT search for large problem instances. 

On the problem side, extra precision may be allocated to support corners of the solution 

space which may be of little or no consequence. 

The solution to the second problem identified above requires increased understanding 

of the application, and support for transforming such knowledge into constraints to exempt 

corners of the SMT search space from consideration. In a very small way, the constraints 
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used in some Chapter 3 case studies for restricting the denominator of a division away 

from zero present an example. Support for behaviour exactly at zero should not need to 

be provided, and indeed support near zero may not be necessary. At the same time, un

derstanding how a calculation gets into the vicinity of a zero denominator (as an example) 

may lend insight into undesirable behaviour of the calculation. This ties into the solution 

of the first problem identified above, which requires greater solver sophistication and ca

pacity, and would assist in solving both the problems identified above. Improving solver 

support will not only enable tighter bounds for large instances, but at the same time will 

give more detailed and informative feedback on potential regions for corner cases, where 

deeper investigation may be required. In general, by using the appropriate constraints the 

solver can be made to identify regions which stress a representation to its extremes, and 

that information can be used either to substantiate the need for a given representation (if 

the region is important to the application), or as guidance to set up constraints exempting 

that region (if it is unimportant to the application). 

5.4 Summary 

This chapter has built upon the SMT framework established over the last two chapters, to 

include support for precision, and iterative methods. An error model for unified custom 

floating/fixed-point representation has been provided, which deals with absolute and rela

tive error over their respective ranges instead of over the entire regions as it has been the 

case in the past. Proof of concept has been established through small iterative case studies 

characteristic to scientific calculations. Challenges in dealing with practical problem setups 

have been identified and support for tackling these challenges is close at hand. Once over

come, scalable automated representation can be leveraged to accelerate existing scientific 

applications, improving their performance. Even beyond what exists however, custom data 

representations can facilitate emergence of new applications through increased parallelism 

on reconfigurable platforms. 
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Chapter 6 

Concluding remarks 

There is a steady shift in the computing industry toward deploying more parallelism per 

device, while using lower operating frequencies. In terms of parallelism provided by the 

number of arithmetic units, the FPGAs are outperforming their competing technologies, 

such as multi-core processors or graphics processing engines, especially for high-end sci

entific applications; however this comes at an increased implementation effort. The key to 

addressing this bottleneck is to improve the design methods for rapidly prototyping custom 

computing architectures in FPGAs, because there is a lack of tools and methods that can 

help reduce the size of the hardware (and hence boost the speed-up) while at the same time 

provide robust data representations. 

The massive parallelism is dependent on the capacity to deal with potentially ill con

ditioned calculations, representation of abstract data types, and support for iterative meth

ods. An essential challenge lies in understanding how to automatically scale the operands 

within the algorithmic dataflow to guarantee precision requirements are met while not over

allocating resources and therefore compromising on parallelism. 

To this end, this thesis proposes what is to best of our knowledge the first application 

of computational methods to the bit-width allocation problem. Through this computa

tional approach based on Satisfiability-Modulo Theories (SMT), as well as the proposed 

extensions to support large abstract data types and iterative methods, we have developed a 

framework that can help designers with building custom yet robust data representations for 

mapping iterative scientific calculations onto hardware. 
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6.1 Future work 

While the adoption of computational methods marks a significant departure from the gen

eral wisdom surrounding the solution of this problem, a new beginning holds many exciting 

opportunities for exploration. With the role of CAD tool support as an enabling technology 

to improve designer productivity, the usefulness of a tool is influenced beyond how well it 

operates by how tightly it is integrated to the rest of the tools in the design flow of which it 

is a part. With this in mind, there are three main avenues along which this thesis could be 

built upon in the future: 

• Improving efficiency of the SMT solver, 

• Strengthening links to the application, 

• Strengthening links to the implementation, 

and each of these points is elaborated below. 

6.1.1 SMT solver efficiency 

Given the central dependence of the entire bit-width allocation process on the quality of 

the bounds which are produced by the SMT solver, an obvious direct means of improving 

the quality of the bit-widths which are obtained is to improve solver efficiency. Based on 

Section 3.2.3, the solver operation has been shown to consist of two main facets: decisions 

and propagations. 

On the propagation side, interval arithmetic is currently employed due to its simplicity 

and fast calculation which is important in the context of a solver to enable fast evaluation 

at solver search branches, facilitating deep searches. At the same time, the quality of the 

bounds which it produces at each propagation step can degrade badly when the intervals 

are large. As a result, the solver may have to traverse deeper (make more levels of deci

sions) than if tighter bounds could be established at each propagation. Furthermore, vectors 

evaluated by this interval arithmetic through the methods proposed in Chapter 4 experience 

amplification of any overestimation which interval arithmetic produces. 
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A starting point to solving this problem is to explore both better bounding methods 

within the solver as well as tighter integration between all the levels where bounding occurs. 

Specifically, the block vector methods of Chapter 4 could be far more effective if they were 

placed within the solver itself- thereby allowing the solver to break the vector into blocks in 

a different way in each region that the search explores. In addition, alternatives to interval 

arithmetic could be explored for bounding during propagation, an example being ellipsoid 

calculus [109]. On top of all this, simulation based methods could be coupled to the solver 

to explore very quickly "inner bounds" indicating optimistic bit-widths which can be used 

as a starting point to be refined using the computational techniques herein. 

On the search side, the use of internal search algorithms at the solver's core which 

are designed for general purpose SMT solving could be made more efficient by targeting 

directly common patterns emerging from bit-width allocation specific searches. Knowing 

that a particular kind of bounding happens commonly, extra support could be provided to 

reduce the amount of branching which must be done to obtain these bounds. Also, the way 

in which an interval is split when branching could be tailored to bit-width allocation, an 

example being ranges for floating-point numbers, which could be divided logarithmically. 

Furthermore, links between a variable and its associated precision expression could be 

established so that when examining a particular error expression, branching on the variables 

which influence it most strongly could lead to tight bounds more quickly. 

6.1.2 Links to the application 

When providing CAD tool support for a design problem, it is also important that the tool 

is well integrated to the rest of the flow. As such, a tool requiring a great deal of effort in 

order to leverage its benefits has a reduced impact on designer productivity. Directions of 

exploration on this front relate primarily to Chapter 5. 

Significant productivity gains could be made by improving support for the iterative 

analysis component which extracts instances for direct analysis, primarily based on a the

oretical analysis of the algorithm. While this process has been exclusively manual for 

this thesis, some automation could conceivably be provided, with great potential benefit 

to designer productivity. Beginning with domain specific analyses, a framework could be 
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provided which leverages specific knowledge in that domain to automatically create con

straints to augment the iterative part of the dataflow. 

With such frameworks in place for several domains, application links could be further 

strengthened by providing infrastructure for automatic code analysis. Providing the capa

bility of analyzing existing software source code would enable reuse of existing code bases 

for porting to acceleration platforms. At the same time it would shorten the turnaround 

for new applications to be accelerated by enabling design and verification to be done at a 

higher level of abstraction. In addition, verification itself would be more tightly coupled 

and by making feedback on robustness of the representation more accessible, it could begin 

to play a role in the design process itself. 

As Chapter 5 has shown, even double precision floating-point is not immune to the ef

fects of finite precision. Having feedback on where the precision limits are most stressed 

could provide the designer the opportunity to evaluate whether the effect results from insuf

ficient precision and/or poor choice of algorithm. On the other hand, conditions which are 

indicated as stressing the precision may be artificial so that they will never be encountered 

in practice. This feedback can also be useful to the designer, as would support for automat

ically generating constraints to exclude such the discovered scenario from consideration. 

Lastly, these input space corners can be an excellent starting point for validation because 

they will explore design corners. 

Along the same lines, constraint support is currently only for hard constraints i.e., all 

constraints must be satisfied at all times. While this environment is suitable for scientific 

calculations and indeed necessary in some cases, it may be overly restrictive in other cases. 

In DSP, error tolerance criteria may be more descriptive when given in terms of statistics 

across a multitude of samples (e.g. signal to noise ratio) as opposed to hard error bounds 

on the calculation of any given sample. Such a characterization of error can be useful in 

scientific computing as well (e.g., based on [129]), for example applications based on the 

Monte Carlo method [89]. Clearly defining and providing solver support for these types of 

constraints can loosen the restriction of hard constraints, adding a degree of freedom to be 

exploited in searching for representations. 
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6.1.3 Links to the implementation 


In addition to the CAD side, links to the implementation are important. It has been shown 

that the bit-width allocation problem can be abstracted from the implementation through the 

use of appropriate hardware/error tradeoff cost models, which are integrated into the flow 

in Chapter 5. The end result of this flow is then a set of acceptable quantization behaviours 

which, when applied, will still satisfy the specified error tolerance requirements. This 

set of quantization behaviours maps directly onto a choice of custom representations. The 

natural extension is to directly generate hardware descriptions for the custom representation 

calculation units. 

While the map between the quantization behaviour and the representation is clear, hav

ing such support in place opens many interesting avenues for further pursuit. For example, 

being able to automatically generate hardware can be augmented with generation of the 

simulation and verification support (i.e. testbenches) which would be informed by what the 

corner cases are in terms of precision. At the same time, automatic generation of hardware 

assertions for constraints used in the dataflow would also be useful for verification, as they 

could monitor for unsupported arithmetic behaviour during operation. With automatic links 

to hardware, the bit-width allocation process could also be more tightly integrated with ar

chitectural synthesis. As an alternative to the current methodology where an architecture 

is decided and then the representation needs are established, choice of precision could be 

made a part of the architecture search. 

6.2 Final remarks 

When considering the above suggestions for improvement, it is humbling to realize the 

immensity and complexity of the problem of bit-width allocation, and at the same time 

how it is just one of many parts of the overall design flow of digital integrated systems. 

Throughout the tenure of the research in this thesis we have learned many lessons. We trust 

that by sharing them here, they may be of benefit to more people from the research and 

development communities. 
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Three years ago this research was born out of our involvement in porting a couple of 

scientific applications onto hardware accelerators. Through those experiences we realized 

the importance of custom representations to enable high compute throughput. When the 

project began, there were no computational approaches to the custom data representation 

problem for iterative algorithms. Over these three years we have: 

• 	 attained a robust understanding of the range aspect of the problem 

• 	 attained a robust understanding of dealing with vector calculus for large problem 

instances 

• 	 attained a robust understanding on how to abstract the implementation, thus enabling 

platform independence 

• 	 attained the fundamental understanding about how to formulate the precision aspect 

of the problem 

• 	 gained valuable experience in breaking down iterative algorithms for analysis 

• 	 recognized the need to expand on both the scientific and implementation fronts to 

enable automatic scalability to large scientific applications. 

With these lessons learned and the future directions highlighted, we consider this thesis 

as an important step toward the faster implementation and hence adoption of large-scale 

custom compute platforms. We hope eventually to see these platforms achieve unprece

dented compute throughput with low energy requirements in a small form-factor. We an

ticipate such platforms to not only enable new systems and technologies to be created, but 

also to push the frontiers of scientific discovery. 
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