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Abstract 

This dissertation examines the facility location problems in the presence of 

barrier regions and consists basically of four essays exploring new problems. Despite 

the fact that the facility location problems considering barriers to travel are more 

realistic than their unrestricted counterparts, research in the area is relatively limited. 

This is due to the computational complexity associated with them. 

The first essay analyzes the problem of locating a facility in a region in the 

presence of a probabilistic line barrier. The objective is to locate the facility such 

that the sum of the volume times distances between the facility and demand points is 

minimized. Some convexity results are presented and a solution algorithm is proposed. 

Another interrelated problem is locating a facility in a region where a fixed line 

barrier such as a borderline divides the region into two. The regions communicate 

with each other through a number of passage points located on the line barrier. A 

version of this problem with minisum objective has been studied in the literature 

where the locations of the passage points are known. The second essay considers a 

number of extensions to this problem and proposes an efficient solution methodology 

based on the Outer Approximation algorithm. 

The third essay discusses the problem of locating a rectangular barrier facility 

m an area where interactions among existing facilities are present. The problem 

has two objectives. The first objective is to minimize the interference of the barrier 

facility to the interactions among the existing facilities. The second objective is to 

find a center (minimax) location for the barrier facility. The problem is formulated 

as a bi-objective problem and a mixed integer program is proposed as a solution 

methodology. A Simulated Annealing algorithm is presented for an extension of the 

problem where expropriation of existing facilities is also possible. 

Finally, the last essay suggests a practical analog approach for facility location 

problems in the presence of barriers. The use of the analog for certain problems is 

justified through some analytical results and a number of problems that appeared in 

the literature are solved efficiently. 
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Chapter 1 

Introduction 

Suppose that there is demand at some location and there is a need to locate a facility 

to satisfy this demand. The best location for the server could be at the same place as 

the demand if reducing distance travelled is the dominant criterion. However, when 

demand emerges from different geographical locations in a defined region and there 

are fewer servers than demand points, there comes a question of optimally locating a 

number of servers throughout the region. Facility location decisions, in the context 

of operations research, are strategic decisions which aim to determine the optimal 

number of servers as well as the best location(s) for these servers. Because of the fact 

that the facility location decision can be present in a real life problem as a subproblem, 

facility location is interdisciplinary in nature. Therefore, many researchers in variety 

of disciplines including but not limited to economics, engineering, geography and 

management have studied location problems. Choices for the best location(s) differ 

for various types of objectives. For example for a company that wants to build a 

warehouse for its retailers, it may be important to find a location that minimizes 

the sum of the distances from the warehouse to the retailers. But for the location 

of an emergency facility such as a fire station, the most suitable objective could be 

to minimize the maximum distance from the facility to the demand points in order 

for the fire station to respond quick enough to the farthest point. Another example 
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might be the location of a waste incinerator for a local municipality. Residents might 

want that the facility be located as far as possible from residential areas~ while the 

municipality wants it to be close enough to transport the waste. In that case an 

objective that maximizes the minimum distance of the facility from the residential 

areas would be more appropriate. 

Research in this area has been highly correlated with the development of com­

puter technology as this technology provides means for serving the underlying math­

ematical models. Advancements in the operations resarch literature opened some 

avenues that were not accessible before. There are two basic types of models, with 

different solution methodologies, that have dominated this area. These involve con­

tinuous facility location and discrete facility location. Continuous facility location 

models, which consider locating a facility anywhere on the plane, are highly depen­

dent on the distance functions that are used in the models. On the other hand, 

discrete facility location models, which are mainly graph theoretic models, in which 

possible locations of the new facilities are already known, do not use distance func­

tions at all. Solution methodologies for continuous and discrete models are generally 

different from each other; the former predominantly uses calculus techniques, while 

the latter is highly dependent on combinatorial optimization methods. The solution 

methodology that is common to both problem types is mathematical programming 

where the model considered may appear as a linear program, nonlinear program, 

integer program or a mixed version of these three. 

In this study, we contribute to the continuous side of facility location litera­

ture. Therefore, we will first discuss the fundamentals of continuous facility location 

literature. We begin with the introduction of the various distance functions that are 

commonly used in continuous facility location problems in Section 1.1. Section 1.2 is 

an overview of the major facility location objectives used in continuous location. 

2 
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1.1 Distance Measures 

Facility location models require information on how far two objects are away from 

each other. To measure this proximity, we require a distance function (metric) induced 

by a norm ll•llt· For three points X1, X2, X3 in ~n, the distance function l should 

satisfy the following fundamental properties: 

• Non-negativity : l (Xi, X2 ) ~ 0 

There are many different types of distance measures used in the facility location 

literature. We will start with the most commonly used one which is the family of p­

norm distance measures. We will also discuss basic properties of some other important 

distance measures. Without loss of generality, our discussion for distance measures 

will be in R2
. 

1.1.1 p-Norm Distances 

The p-norm distance (lp distance function) between points X 1 = (xi, y1 ) and X 2 = 

(x2, Y2) is defined as : 

Figure 1.1 is a representation of the implicit function lp (X1 , 0) = 1 (unit ball) for 

various values of p. p-norm distance is a convex function for values 1 ~ p ~ oo. A large 

number of distance measures can be represented by this distance function through 

varying the parameter p. Among the commonly used values for the parameter pare 

p = 1, p = 2 and p = oo. Different values of p are also used in the literature (see 

Love et al. (1988)) to find the best fit for actual road distances in different regions. 

3 
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Figure 1.1: Contour lines for p-norm distance for different values of p 

For p = 1, the p-norm distance is called the rectilinear distance and is also 

known as rectangular distance, taxicab distance, Manhattan distance and li distance. 

The rectilinear distance is given as: 

which is the sum of the absolute differences of the coordinates of two points and is a 

linear convex function (Love et al. (1988)). Because of its linearity, it has been used 

widely as an approximation to some other distance measures. 

For p = 2 the p-norm distance is called the Euclidean distance. Euclidean 

· distance is the straight line distance between two points, and the distance that is 

commonly used in daily life. It is defined as: 

Another distance measure that is depicted from the p-norm distance is the 

oo-norm distance which is also known as the Tchebychev distance or the maximum 

4 
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distance. The reason why it is called the maximum distance is because, when p goes 

to infinity, the distance between points X 1 and X 2 can be written as: 

The maximum distance function can be represented in another convenient form, which 

makes it easy to use in linear programming models (Ward and Wendell (1985) ): 

max{lx1 - x2I, IY1 -y2I} = 21 
(lx1 +Y1 - X2 -y2I + lx1 -y1 - x2 +Y2I). 

The oo-norm distance is used in cases where simultaneous x direction and y direction 

movements occur. For example in the context of warehouse automation, the travel 

time for an automated robotic arm to reach its destination on a shelf, is the maximum 

of its horizontal and vertical movement times. 

The oo-norm distance has a close relation with the rectilinear distance func­

tion. It becomes equivalent to the rectilinear distance in R2 when its axes are rotated 

by an angle of 1f / 4 and scaled up (See Figure 1.1). This can be done by simple linear 

transformation. This is an important property because, in general, facility location 

models in R2 which use the oo-norm distance can be converted into a rectilinear 

distance model by this axes orientation trick. 

1.1.2 Block Norm Distances 

A norm is called a block norm, if its corresponding unit ball in R2 is a convex symmet­

ric polygon (Klamroth (2002)). A polygon is a finite closed set of a number of linear 

line segments in a two dimensional plane. Figure 1.2 displays a number of polygons. 

Block norms were introduced to the facility location literature by Ward and 

Wendell, (1980). For a block norm BN, each extreme point (vertex) of the polytope 

indicates a 'fundamental direction' . Let the set of extreme points be (b9 : g = ±1, ±2, ... , ±r) 

where (-b9 = b_9 ) since BN is symmetric about the origin. Note that these extreme 

points also define a unit travel length in their direction. The distance between two 

points under a block norm measure is the shortest distance that follows combinations 

5 
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Figure 1.2: Examples of Polygons 

of these fundamental directions (See Theorem 1.1.1). It is proven by Hamacher and 

Klamroth (2000) that for any given block norm, at most two fundamental directions 

are adequate .to determine this distance. 

Theorem 1.1.1 (Ward and Wendell, 1980) A block norm II.II has a characteri­

zation as: 

llvll =min{~ l/3gl: v =~/1gbg}, 
where I/)9 I is the distance travelled parallel to b9 . 

Note here that, having a symmetric polytope unit ball, the rectilinear distance 

and the maximum distance also become block norm distances with two fundamental 

directions ( r = 2). All block norm distances can be represented as linear functions 

which makes their underlying models relatively easy to solve. There is an infinite 

number of possibilities for block norm distances. One of them is the weighted one­

infinity norm, suggested by Ward and Wendell (1980), which is a linear combination of 

the rectilinear distance norm and the maximum distance norm (See Figure 1.3). With 

the appropriate selection of the weighting parameters, the weighted one-infinity norm 

provides a good approximation to Euclidean distance as the percentage difference can 

be reduced to less than 4% (Ward and Wendell (1980)). 

1.1.3 Polyhedral Gauges 

When the symmetry property is no longer required, a block norm is called a polyhedral 

gauge. Because of this asymmetry, polyhedral gauges represent a larger class of 

6 
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slope =-(1 + .J2.) 

Figure 1.3: One-Infinity Norm (A Block Norm with r = 4) 

Figure 1.4: A Polyhedral Gauge with r = 6 

distance functions than block norms, which leads to more general models that are 

applicable to real life problems. Polyhedral gauges can also be represented as linear 

functions. A practical example for a polyhedral gauge can be given as the travel time 

in a big city. For certain time periods, the travel time to some directions might be 

different. Figure 1.4 is a polyhedral gauge with r = 6 fundamental directions. 

1.1.4 Closest Distances 

To the best of our knowledge, the term 'closest distance' has first been used by Brim­

berg and Wesolowsky (2000) in the facility location literature to define the distance 

7 
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Figure 1.5: Closest Euclidean distance between polygons A and B 

between two areas where the distance is measured from the closest point on the 

boundary of one area to that of the other. The authors also proved that when the 

areas are convex regions (i.e. polygons), the closest distance between them becomes 

a convex function. Let A(X1), X 1 = (x1 , y1) be the closest point on area A to area 

B and B(X2 ), X2 = (x2 , y2 ) be the closest point on area B to area A . Then we can 

write the closest p-norm distance between A and B as: 

Figure 1.5 shows the closest Euclidean distance between polygons A and B 

which happened to be the same as the closest rectangular distance. 

1.1.5 Spherical Distances 

Suppose two points X 1 and X2 are located on a unit sphere. Location of point X 1 

is determined by (x1 , y1 ) where x 1 and y1 are the latitude and longitude coordinates. 

Because the points are on the sphere, we can draw a circle, known as the 'great circle' 

through these two points (the largest possible circle on the sphere). The spherical 

distance then will be the shorter of the two arcs that connects these two points. The 

spherical distance on a sphere with unit radius is defined as follows: 

8 
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Figure 1.6: Spherical distance between points X 1 and X 2 

Drezner and Wesolowsky (1978) proved that the spherical distance is a convex func­

tion of X, provided that it is contained in a spherical disk with radius 7r/2. Figure 

1.6 is an illustration of the spherical distance between points X 1 and X 2 . 

1.1.6 We~ghted Distances 

For a given distance, when positive weights are used as a scaling factor that represents 

the factors that slow down the movement in each direction, then the distance becomes 

a weighted distance. The weighted p-norm distance between two points X 1 and X 2 

can be defined as follows: 

A similar structure can be given for other distance norms. Figure 1.7 is an 

illustration for the weighted Euclidean distance with k1 = 1 and k2 = 2. We can 

observe that this distance is the same as Euclidean or rectilinear distance if we travel 

only in its x direction, but it will take more time to travel through they direction. 

9 
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0.5 

-1 1 x 

-0.5 
1 (x ,o) =12,1,2 

Figure 1.7: Weighted Euclidean distance unit ball with k1 = 1 and k2 = 2 

1.1.7 Barrier Distances 

Consider a polygonal area on the plane, inside which the distance is a weighted p­

norm distance with k1 = k2 = oo. If we travel from one point to another on the plane, 

and if our path requires us to cross this polygonal area to reach our destination, we 

would avoid crossing through the polygonal area, because if we do, we would never 

reach to our destination. In facility location literature, we simply call these areas 

barriers. Barriers are the regions where neither facility location nor crossing through 

is permitted. Mountains, lakes, military zones, existing facilities with finite sizes, etc. , 

can be given as examples of barriers. For a special type of barriers such as railroads, 

highways, borders, etc., crossing through may be possible at some passage points. 

Knowing that we can not cross a barrier region while travelling to our destination, 

we have to minimize its effect on our travel path. This idea brings another way of 

looking at the problem which requires the concept of visibility. 

Let B be a union of a finite number of barrier regions on the plane. The 

barrier distance z:(Xi, X 2), between the points X 1 and X 2 is then defined as the 

infimum of the lengths of all permitted paths (shortest path) between X 1 and X 2 . 

10 
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Figure 1.8: The barrier distance between X 1 and X 2 under Euclidean distance norm 

For p-norm distances, two points (x1 , y1), (x2 , y2 ) are called p-visible from each other 

if l: (X1 , X 2 ) = lp(X1 , X 2) (there is no barrier region on our path) and p-shadow if 

l:(Xi, X 2 ) > lp(X1 , X2 ) (there is at least one barrier region on our path). If the 

points are not p-visible from each other, then the distance between them becomes a 

barrier distance. Figure 1.8 illustrates points X 1 and X 2 that are not 2-visible due to 

the triangular shaped barrier region on the plane. Actually, all the points in the grey 

region are not visible to point X 1 . In our example, the shortest path between these 

two points will be from vertex A of the barrier region only in this particular case. 

No matter what the underlying distance function is, the barrier distances are 

nonconvex in general, since they require finding the shortest path to reach the desti­

nation; in other words, determining the boundary or the vertex of a barrier region to 

pass through. When the barrier regions have polygonal shapes, there is an important 

property called 'Barrier Touching Property' proved by Klamroth (2002) and given by 

the following lemma. 

Lemma 1.1.1 (Klamroth, (2002)) Let B1 , . .. ,En be a finite set of pairwise dis­

joint, closed, polyhedral barrier sets with a finite set of extreme points P(B). Assume 

that X 1 is not p-visible from X 2 . Then there exists a p-shortest permitted path con­

necting X 1 and X 2 with the following property: 'The shortest path is a piecewise linear 

path with breaking points only at extreme points of barriers '. 

11 
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Figure 1.9: A visibility graph for three points and two barriers 

The lemma acknowledges that the barriers' effect on the travel from X 1 to X 2 

should be minimized. We can think of an example where the distance is represented 

by a piece of string that connects two points. If a barrier region is present on the 

path, to obtain the shortest string length, the string has to touch or go along the 

boundary of the barrier region. 

This fundamental property leads to the use of visibility graphs to determine 

shortest paths between points when barriers are present. For Euclidean distances, 

visibility graphs can be generated in O(N2
) where N is the number of barrier extreme 

points (vertices), by drawing lines from the starting point and ending point to all 

visible vertices of the barriers and drawing lines from every vertex of every barrier to 

the other vertices that are visible (Klamroth (2002)). The shortest path between any 

two points can be found in a polynomial time, by using graph theoretical algorithms, 

such as 'Dijkstra's Algoritm' (Dijkstra, 1959). Figure 1.9 shows a visibility graph for 

three points X 1 , X2 and X 3 in the presence of two polygonal barrier regions. The 

shortest path between points X 1 and X2 is also illustrated. 

12 
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1.2 Overview of some Facility Location Objectives 

1.2.1 The Minisum Objective 

Definition 1.2.1 Given n points (Xi = (xi, Yi), i = 1, 2, ... , n} on the plane, each with 

a positive weight wi, the minisum objective finds a point X = (x, y) that minimizes 

the sum of weighted distances from X to the given points. 

The problem that considers the minisum objective function is called the We­

ber problem. The Weber problem entails locating a facility on the plane under the 

minisum objective to serve a finite set of existing demand points with the same or 

different demand levels. It has been of interest to many researchers since as early 

as the 17th century, but its practical usage was identified by Weber in 1909. The 

simplest version of the problem is believed to be originated by Fermat (1601-1665) 

who issued a challenge by asking 'let he who does not approve of my method attempt 

the solution of the following problem: Given three points in the plane, find a fourth 

point such that the sum of its distances to the three given points is a minimum'. 

Mathematically, under the p-norm distances, the problem can be defined as: 

mjn L wilp(X, Xi) 
i 

Solution methods and difficulty of getting a solution differ with the distance 

function being used. For rectilinear distances, the objective function is separable into 

x and y directions, which leads to a simple solution technique that is described by 

Love et al. (1988). But for Euclidean distances, even though the objective function 

is convex, there is no closed form solution. Weiszfeld (1937) suggested a numerical 

analysis based algorithm for the problem which has been a common approach to get 

a close to optimal solution. There are a number of drawbacks of this algorithm. 

Firstly, the algorithm will fail if one of the locations generated during the algorithmic 

process coincides with a fixed point. This is from the fact that the derivatives don't 

exist at that point. To prevent this from occuring, some researchers suggested using 
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a hyperbolic approximation, which prevents discontinuity in derivatives. Secondly, 

for some problems, the convergence rate of the Weiszfeld algorithm is reported to be 

very slow. Another way of solving the problems with a minisum objective is by using 

off-the-shelf nonlinear solvers. Because the minisum objective function is known to 

be convex, these solvers will usually provide a local optimal solution which will also 

be the global optimum. 

1.2.2 The Minimax Objective 

Definition 1.2.2 Given n points (Xi= (xi, Yi), i = 1, 2, ... , n) on the plane, each with 

a positive weight wi, the minimax objective finds a point X = (x, y) that minimizes 

the maximum weighted distance from X to the given points. 

Minimax facility location problems have been extensively studied by a large 

number of researchers because of their importance in locating emergency service facil­

ities. The objective is to locate a new facility to minimize the maximum distance to 

these existing facilities. The objective function utilizes the fact that even the farthest 

and/or the weakest facility should get an adequate attention. Network representa­

tions of minimax facility location problems are more suitable for practical cases but 

planar models can also be used for general theoretical models or understanding the 

situation. The simplest version of the problem on the plane can be solved by finding 

a circle of the smallest radius (the minimum covering circle (MCC)) which encloses 

a given set of points that have equal weights. The centre of such a circle will be 

the minimax point. This follows from the fact that the centre of the circle will have 

the smallest possible distance (radius) to the farthest point. The MCC problem was 

initially proposed by Sylvester (1857) in a geometrical context. 

Solution methodologies for the problem differ with the underlying model's 

complexity. For Euclidean distances, Elzinga and Hearn (1972) suggested an algo­

rithm for the unweighted case which finds the minimal covering circle, hence the 

minimax point, in polynomial number of steps (O(N2)), where N is the number of 
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* 

Figure 1.10: The minimum covering circle for four points with equal weights 

demand points. The minimal covering circle will sit on a convex hull of the demand 

points, satisfying the following property. 

Property 1.2.1 (Love et al. (1988)) The minimum covering circle of a convex 

hull will pass through two or more of its corner points, and all such corner points can 

not be located on less than half the perimeter of the circle. 

Figure 1.10 shows a minimum covering circle. 0 bserve that the points inside 

the convex hull do not have any effect on the minimum covering circle. 

A practical way of solving the weighted case is to use the compass. Consider 

a number of demand points on the plane with different weights. If we draw small 

circles around these demand points with radii inversely proportional to their weights; 

and slowly enlarge these circles, the first point that is the intersection of all of the 

circles will be the optimal point. Figure 1.11 illustrates the idea. Similar approaches 

can be adopted for other distance functions. 

1.2.3 The Maximin Objective 

Definition 1.2.3 Given n points (Xi = (xi, Yi), i = 1, 2, ... , n) on the plane, each with 

a positive weight wi , the maximin objective finds a point X = (x, y) that maximizes 

the minimum weighted distance from X to the given points. 
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Figure 1.11: Finding the minimax point for three points with different weights 

The maximin objective is appropriate for models that deal with locating an 

'obnoxious' facility. This type of facility needs to be as far away as possible from 

existing points, ideally an infinite distance. But if there are mandatory closeness 

constraints which identify a region that the facility has to stay in, then the maximin 

objective creates a non-trivial problem. A graphical approach similar to the one used 

in the minimax objective can be adopted by drawing circles around demand points 

with radii inversely proportional to their weights, and then slowly enlarging these 

circles. The last possible remaining point in the region that is outside the coverage 

of the circles will satisfy the maximin objective. 

1.2.4 Covering Objectives 

Definition 1.2.4 Given n points (Xi= (xi, Yi), i = 1, 2, ... , n} on the plane, each with 

a positive weight wi, the covering objective finds a location X = (x, y) for a circle with 

a fixed radius that covers the most or least demand weights possible, depending upon 

the covering objective function. 

If the objective is to cover the most demand weights possible, when there are 

insufficient resources to cover all demand weights, then we call this objective the max­

imal covering objective. Insufficient resources are represented by putting a limitation 
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on the coverage distance. Any facility within the coverage distance is covered but 

outside of the coverage distance is not covered. Mehrez and Stulman (1982) showed 

that the potential optimal locations for the maximal covering problem is a finite set of 

points which are the intersection points of circles with the radius of coverage distance 

drawn around demand points. The idea of identifying candidate points can be gener­

alized for all types of distance norms. For a given distance norm, the corresponding 

unit ball blown up with a constant factor can be drawn around demand points to 

identify candidate points as intersection points. The maximal covering objective has 

been applied to various problems including use of different distance norms and prob­

abilistic demand weights. This objective becomes the minimax objective if the radius 

is not fixed but the smallest radius is required. 

When the objective is to cover the least possible demand weights for a given 

radius, the objective is called the minimal covering objective. If there is a region that 

the facility has to stay in, and if the facility has a fixed radius, then the minimal cover­

ing objective finds a location within the region that covers the least possible weights. 

As with the relation between the maximal covering objective and the minimax ob­

jective, this objective is related to the maximin objective. Allowing the radius to be 

as small as possible (i.e. a point) and letting the facility be as far away as possible 

from demand points reduces this objective to the maximin objective. 
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Chapter 2 

Background 

2.1 Introduction 

The facility location literature can be divided into two research areas: Facility loca­

tion problems and facility layout problems. In facility location problems, facilities 

are considered small relative to their location space. Layout problems on the other 

hand, assume that facilities are large relative to their space. Both facility location 

problems and layout problems can be discrete or continuous and can be modeled in 

a cl-dimensional real space or on networks. For a detailed review of the facility loca- . 

tion literature, the reader is referred to ReVelle and Eiselt (2005). Figure 2.1 is an 

overview of the facility location literature. 

In this dissertation work, we deal with planar facility location problems under 

uncertainty and/or in the presence of barrier regions. Therefore, in Section 2.2 we 

review some of the literature on planar facility location problems under uncertainty. 

For a general state-of-the-art literature review of facility location problems under 

uncertainty, the user is referred to Snyder (2006) . Section 2.3 deals with the literature 

review of planar facility location problems in the presence of barrier regions. In 

Section 2.4, we specify the gaps in the literature, provide the dissertation objectives, 

and give the outline of the thesis. 
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Figure 2.1: Facility Location Literature: An Overview 
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2.2 Planar Facility Location Problems Under Uncertainty 

Planar facility location problems under uncertainty have been studied under two 

categories. The first category deals with problems that contain random parameters 

which follow certain probabilistic distributions. For example the weights attached to 

demand points could be associated with a known probability distribution. Various 

objective functions are considered. Facility layout problems with random parameters 

are also included in this area although the research on this topic is limited. The sec­

ond category, on the other hand, deals with so called robust facility location problems 

where distributions of the random parameters are unknown. This type of parameters 

are either represented by interval values or by parameter estimators. In Table 2.1 

we provide the cited research on planar facility location problems under uncertainty, 

classified by their main characteristics. For an alternative review for addressing facil­

ity location uncertainty in continuous space siting, the reader is referred to Murray 

(2003). 

Wesolowsky (1977a) was one of the earliest papers that considered a facility 

location problem under uncertainty. The author considered a problem of locating a 

facility on a line in the presence of n demand points. The demand points have proba­

bilistic weights that follow the multivariate normal distribution. The Weber objective 

was considered. Because the problem is one-dimensional, the solution method is the 

same for both rectangular and Euclidean distances. The probability of a facility be­

ing located on any point on the line is found. As in the result of the Hakimi (1965) 

property for the p-median problems, it is shown that only the locations at demand 

points have a nonzero probabilities for the optimal location of the facility. The author 

also determined the EVPI (Expected Value of Perfect Information) for the problem. 

EVPI is defined as the expected difference in costs between the best location for any 

outcome of weights and the location is found by using the expected values of the 

weights. Later, Drezner and Wesolowsky (1981) extended the work of Wesolowsky 

(1977a) by considering a similar problem on the plane with p-norm distances. The 
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Table 2.1: Planar Facility Location Problems under Uncertainty 

Uncertain Parameter I Underlying Distribution I Objective Function I Distance Norm I Space 

Demand weights 

Location of demand points 

Location of demand points 

Demand weights 

Location of demand points 

Location of demand points 

Demand weights 

Existence of demand points 

Demand weights 

Location of demand points 

Product mix and product demand 

Demand weights 

Demand weights and locations 

Demand weights 

Multivariate Normal 

Bivariate Normal 

Standard Normal 

Multivariate Normal 

Bivariate Uniform 

Arbitrary 

Triangular Fuzzy 

Binomial 

Uniform 

Uniform 

Discrete 

Unknown 

Unknown 

Arbitrary 

Expected Minisum 

Expected Minisum 

Min Expected Maximum 

Expected Minisum 

Max Expected Minimum 

Min Expected Maximum 

Maximin Aspiration Level 

Min Expected Maximum 

Minimax probability with threshold 

Expected Minimax 

Expected Minisum 

Minimax Regret (Robust) 

Minimax Regret (Robust) 

Minimax probability with threshold 

Rectilinear 

Rectilinear 

Rectilinear 

p-norm 

Rectilinear 

Arbitrary 

Euclidean 

Euclidean 

Euclidean 

Euclidean 

Euclidean 

Rectilinear 

Rectilinear 

Arbitrary 

One dimensional 

Planar 

Planar 

Planar 

One dimensional 

Planar 

Planar 

Planar 

Planar 

Planar 

Planar Layout 

Planar 

Planar 

Planar 

I'...:> 
........... 


Study 
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Wesolowsky (1977b) 


Carbone and Mehrez (1980) 


Drezner and Wesolowsky (1981) 


Mehrez et al. (1983) 


Mehrez and Stulman (1984) 


Bhattacharya (1994) 


Berman et al. (2003a) 


Berman et al. (2003b) 


Foul (2006) 
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property found in Wesolowsky (1977a) is no longer valid for this general case. This 

means that any point on the plane may have nonzero probability of a facility being 

located there. 

In another study, Wesolowsky (1977b) proposed a solution to the single facility 

location problem with rectangular distances in which the locations of demand points 

have random coordinates that follow a bivariate normal distribution. It is shown that 

the objective function, which is the expected sum of the weighted rectilinear distances 

in x and y coordinates, is separable, and is thus not affected by correlation of demand 

point coordinates. Because the objective function is unimodal along each axis, the 

author proposed a rather easy method in which one can take the derivative of the 

objective function for each axis and apply an interval bisection method to find the 

values of coordinates that make the derivative zero. 

There is a number of facility location papers that use the minimax crite­

rion. Carbone and Mehrez (1980) was the first that studied the problem of minimiz­

ing the expected maximum distances where the coordinates of the demand points 

(x1, x2, ... , Xn, yi, y2, ... , Yn) are identical, pairwise independent, and normally dis­

tributed random variables with mean 0 and variance 1. The authors showed that 

in this problem, the optimal location of the single facility is at the (0, 0) point. Later, 

for the same problem, (Mehrez and Stulman, 1984) proposed a general statement 

that if the distance distribution between any demand point and a facility placed at 

coordinate (x, y) dominates the distribution of the distance between the same point 

and the facility placed at any other feasible coordinate, then (x, y) will be the dom­

inating point and hence provides an optimal solution to the problem. A necessary 

and sufficient condition for the distribution F (x) to dominate distribution G (x) is 

that F(x) ~ G(x) for all x. Only certain types of problems can be solved using this 

method under stringent assumptions, and actual values of objective functions may 

require extensive calculations. Berman et al. (2003a) approached the same expected 

maximum objective from a different perspective. In their model, the problem is de­

signed to minimize the expected maximum distances where for each demand point, 
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there is a probability associated with its existence. In their words, the discussed model 

aims at minimizing expected 'undesirability' . The model also separates itself from the 

minimax model by using expectation to balance 'damage equity' (using information 

from all demand points in the optimum solution) . 

Berman et al. (2003b) studied extensively a probabilistic version of the weighted 

minimax location problem on the plane where the weights of the demand points are 

uniformly distributed. The objective of their problem is to minimize the probability 

that the maximum distance to all demand points is greater than or equal to some 

pre-specified threshold value T. The authors proved that the problem is convex for 

certain parameters of the uniform distributions and therefore can be solved using 

standard optimization methods. 

Foul (2006) studied a similar problem where the demand points have proba­

bilistic locations that follow a bivariate uniform distribution. The best location for 

a facility is determined under the objective of minimizing the maximum expected 

weighted distance to all probabilistic demand points. 

Recently, Pelegrin et al. (2008) argued that the 1-center problem on the plane 

with probabilistic weights has only been studied for a number of specific probability 

distributions and distance measures. The authors proposed a general framework 

where weights are associated with arbitrary probability distributions and distances 

are measured by any distance norm. Two objective functions were studied. The first 

maximizes the covering probability for all demand points within a given threshold, 

while the second satisfies a minimum allowed coverage probability. Two algorithms 

that provide global optimal solutions were tested with different values of parameters 

and both were found to be highly efficient. 

Mehrez et al. (1983) analyzed the problem of locating a facility on a line, in 

the presence of n hazardous points that have probabilistic locations. The objective 

is to maximize the expected minimum distance from these hazardous points. The 

authors showed that even for n = 2, acquiring an analytical result is cumbersome, 

and therefore suggested a simulation model for solving the problem. 
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As a different approach to handle uncertainty, Bhattacharya (1994) presented 

a cost minimization model to locate multiple facilities on the plane where the cost per 

unit distances are not known precisely. Uncertainty in the cost is handled through the 

use of fuzzy numbers. The fuzzy model is tranformed into a crisp model by generating 

some aspiration levels (goals) by using different levels of the fuzzy numbers. A solution 

is determined through finding a compromise solution which maximizes the minimum 

aspiration level. 

When it comes to the probabilistic facility layout problems, the research is 

very limited. One of the important papers published in this area is Benjaafar and 

Sheikhzadeh (2000). The authors proposed a model for the design of plant layouts 

under uncertainty. It is discussed in the paper that in manufacturing environments 

where product variety is high, the general practise is to use functional layouts where 

same type of resources share the same location. This approach is known to cause 

inefficiency and is also not a good fit for probabilistic environment. Thus there is 

a need for alternative customized layout plans that make the underlying process 

more flexible and more efficient. The authors presented a probabilistic layout model 

for the design of plant layouts which considers random product mix and product 

demand. Demand for each product is represented by a finite discrete distribution 

where demands can be correlated or independent from each other. It is also considered 

that there might be a duplicate or duplicates of the same department in the same 

facility. A set of scenarios involving combinations of different products and demands 

with a specified probability of occurrence is considered. The authors used a heuristic 

approach first to find a minimum cost flow allocation between departments in a fixed 

layout, then to find a minimum cost layout with fixed flow allocation. 

Robust models are used when uncertainty can not be defined by known prob­

ability distributions. Robust facility location problems differ from probabilistic lo­

cation problems where the latter have uncertainty associated with some distribution 

functions with known parameters, but the former have uncertainty associated with 

no known distribution functions and hence no known parameters. Because decisions 
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are made in the presence of unknown parameters, and estimation of parameters needs 

to be used, researchers, in general, aim to find a minimax regret location in order 

to minimize the maximum loss. Research in the area is recent and mostly on the 

discrete facility location problems. 

Carrizosa and Nickel (2003) considered the robust planar facility location prob­

lem when uncertainty in demand weights is high and only estimates of the weights 

are provided. The authors defined the robustness of the new facility location as the 

minimum deviation in the weights with respect to their estimates needed to exceed 

a given threshold on the total cost. The objective is then to find a location that 

maximizes the robustness which essentially finds the location where the weights can 

largely differ from their estimates with a minimum violation on the total cost . 

Finally, Averbakh and Bereg (2005) recently investigated the case of rectilinear 

distances and uncertain weights and coordinates of demand points. The authors 

considered both median and centre objectives and proposed polynomial algorithms 

for 1-median and 1-centre problems. 

2.3 	 Planar Facility Location Problems in the Presence of 

Barriers 

Although facility location problems in the presence of barriers have more practical rel­

evance than general facility location problems, they haven't been given much attention 

until lately, due to the computational complexities associated with these problems. 

Klamroth (2002) is an excellent book on the subject which discusses various aspects 

of the single facility location problems with barriers. Table 2.2 is an overview and 

classification of facility location problems in the presence of barrier regions studied 

in the literature. Note that our classification of the literature only accounts for the 

planar problems as we treat the barriers as obstacles on the plane that may have 

an affect on distance functions. However, network based models can also account 

for barriers as both untravellable or unlocatable regions can be defined in a network 
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model. 

Research in the area started with Katz and Cooper (1981) which was the first 

paper in this area that considered the Weber problem with Euclidean distances and 

barrier regions. The authors discussed the problem with one circular barrier and 

showed that the problem had a nonconvex objective function. A heuristic based so­

lution approach is proposed with no guarantee of finding the global optimum. Some 

properties of the problem were later analyzed by Klamroth (2004). Klamroth de­

veloped some structural results that led to a model which handles the problem by 

dividing the feasible region into convex regions where the objective function is convex 

in each region. The number of such convex regions is bounded by O(N2
) where N 

is the number of demand points. When N increases, construction of these convex 

regions becomes cumbersome. To deal with this difficulty, Bischoff and Klamroth 

(2007) proposed a genetic algorithm based solution to the problem. The algorithm 

proposed by the authors works only with polyhedral barriers and therefore the circular 

barrier was approximated by a 128-sided equilateral polygon. 

Aneja and Parlar (1994) considered the Weber problem with Euclidean dis­

tances and convex or non-convex polyhedral barriers. The solution procedure pro­

posed by the authors generates some candidate locations using simulated annealing 

and, for each candidate location, a visibility graph is constructed to find the shortest 

path network. The shortest path between any candidate location and existing facility 

location is found using Dijkstra's algorithm, which finds shortest paths on networks 

in polynomial time. 

Butt and Cavalier (1996) developed an algorithm that finds local optima to 

the Euclidean distance Weber problem in the presence of some polyhedral barriers. 

The authors proposed a decomposition of the feasible region into subregions in which 

shortest barrier distance between two points remains constant throughout the region. 

The problem with this approach is that the boundaries of the subregions are gener­

ally nonlinear. To overcome this difficulty, Klamroth (2001a) suggested a different 

decomposition approach by applying visibility grids to the same problem. 
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A modified version of the Big Square Small Square (BSSS) method was pro­

posed by McGarvey and Cavalier (2003) for Euclidean distance Weber problems with 

barriers. The BSSS method is a Branch and Bound (B&B) technique that divides 

the feasible region into square subregions and produces either a global optimal solu­

tion or a solution within a very small tolerance of the global optimum. The method 

was originally proposed by Hansen et al. (1981) for locating obnoxious facilities. In 

this method nonconvex polygonal barrier regions can also be considered. Butt (1994) 

showed that if no existing facility is located within this nonconvex forbidden region's 

convex hull, then the optimal location for a new facility can never be within this 

convex hull. 

Larson and Sadiq (1983) is a seminal work that first considered using rectilinear 

distances for facility location problems in the presence of barrier regions. The authors 

examined the rectilinear distance p-median problem on the plane with polyhedral 

barrier regions and defined a special structured grid that contains nodes and edges. 

They discovered that this set of nodes provides a finite dominating set of solution 

points for the problem. 

These fundamental results motivated some researchers who continued working 

on the same problem to provide some extensions. First, Batta et al. (1989) extended 

the work by considering both convex forbidden regions and arbitrarily shaped barri­

ers. Second, findings in the PhD thesis by Segars (2000), and their extensions were 

published by Dearing and Segars (2002a) and Dearing and Segars (2002b). In the 

first paper, using the visibility idea, the authors showed that the barriers can be 

modified without affecting the objective value, thus allowing some nonconvex barrier 

shapes to be equivalent to convex ones. Also, the feasible region can be reduced by 

this modification, and it can be decomposed into rectangular cells. These rectangular 

cells can be partitioned into convex domains where the distance functions are convex 

and methods from convex optimization can be used to solve the problem. The sec­

ond paper discusses this solution methodology and provides an example which gives 

an optimal solution on the nodes as in Larson and Sadiq (1983), also in a convex 
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cell. This is important because one does not have to restrict oneself to nodes of the 

network to get an optimal value. These equivalence results are promising, but the au­

thors should have taken into account the modification costs. If barriers are enlarged, 

they occupy some 'free to build' areas, which should incur some cost. Also, if barriers 

are reduced, this action may not be 'free of charge'. 

Similar results, based on smart ways of decomposition of the planar feasible 

region, are provided by Dearing et al. (2002) for rectilinear center location problems 

with polyhedral barriers. They proposed an algorithm for the problem by considering 

a finite number of candidate sets, called dominating sets, to find the optimal location. 

Later, these results were extended by Dearing et al. (2005) using block norm distances 

in place of rectilinear distances. This work is also an extension to Hamacher and 

Klamroth (2000) who first considered block norm distances for the Weber problem 

with barriers. 

There is also another body of research extending the studies of Larson and 

Sadiq (1983) and Batta et al. (1989). The first study is by Savas et al. (2002), who 

proposed a model for the finite size facility placement problem in the presence of some 

barriers and under the rectilinear distance norm. Interaction between a facility and 

demand points is handled through the facility's server point which is located on the 

facility's boundary. The demand points also interact with each other. The finite size 

facility, which has a fixed size and an arbitrary shape, acts as a barrier against the 

flow among the demand points. The authors provided objective function concavity 

results for facility location with a fixed orientation of the facility and also for facility 

orientation with a fixed location of the facility. Possible heuristics are suggested for 

simultaneous location and orientation decisions. 

A special case of this problem in which the supply facility and the demand 

facilities have rectangular shapes was discussed by Wang et al. (2002) in a layout 

context. The objective was to determine optimal location of the new facility as well as 

optimal locations of input/output points on the demand facilities, in order to minimize 

total transportation costs. A similar problem with congested regions in which facility 
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location is not allowed but where through-travel is possible at an additional cost per 

unit distance (weighted rectilinear) was discussed by Sarkar et al. (2005). 

Another extension to Savas et al. (2002) is provided by Kelachankuttu et al. 

(2007), who also considered rectangular shaped facilities and barriers. The paper is 

devoted to the construction of contour lines, which are lines of equal objective value. 

Such contour lines provide alternatives for placement of the new facility. 

Nandikonda et al. (2003) analyzed a similar problem with a minimax objective 

and point facility placement. Their work is extended by Sarkar et al. (2007) who 

addressed the finite size facility placement problem with only user-facility interactions. 

In addition to the existing literature on Weber problems with polyhedral or 

circular barriers, a line barrier was introduced by Klamroth (2001b). The author 

considered a linear line barrier with a given number of passages, that divides the plane 

into two subplanes. Travelling from one subplane to the other has to be through one 

of these passages. The problem becomes a combinatorial problem when the number 

of passages is ~ 2. Complexity of the problem grows exponentially with increasing 

number of passages but remains polynomial for a fixed number of passages. 

From a different perspective, FrieB et al. (2005) conducted an experimental 

and simulation based study in which the authors used a wavefront approach for the 

minimax location problem with barriers. A physical experiment was conducted in a 

lab environment for the Euclidean distance case and based on the results from the 

experiment, a simulation model was developed using both Euclidean and Manhattan 

distances. 
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Table 2.2: Facility Location in the Presence of Barriers Literature Overview 

Distance Objective Interaction I Facility Shape I Barrier Shape Barrier Type 

Larson and Sadiq (1983) 


Batta et al. (1989) 


Aneja and Parlar (1994) 


Butt and Cavalier (1996) 


Butt and Cavalier (1997) 


Hamacher and Klamroth (2000) 


Klamroth (2001a) 


Klamroth (2001b) 


Dearing et al. (2002) 


Dearing and Segars (2002a) 


Dearing and Segars (2002b)
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0 Klamroth and Wiecek (2002) 
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McGarvey and Cavalier (2003) 

Nandikonda et al. (2003) 

Klamroth (2004) 

Dearing et al. (2005) 

FricB ct al. (2005) 

Sarkar et al. (2005) 

Bischoff and Klamroth (2007) 

Kelachankuttu et al. (2007) 

Sarkar et al. (2007) 
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2.4 Dissertation Objectives and Outline 

This dissertation research consists basically of four essays exploring new facility lo­

cation problems in the presence of barrier regions. Table 2.2 classifies and reviews 

the existing literature on the subject, and will be used to place these contributions 

in context. 

The first essay, given in Chapter 3, deals with facility location problems in the 

presence of a probabilistic line barrier. To the best of our knowledge, there are no 

probabilistic models for facility location problems with barriers in the literature. We 

observe the fact that, in the real life, there might be a barrier to travel whose location 

may occur by chance and its' coordinates may follow some probability distribution. 

An example to such a barrier can be a road block, a natural disaster, an explosion, etc. 

The solution methodologies for Weber problems with barriers that have deterministic 

locations are already complicated. Therefore, for example, we expect the location 

problem with a polyhedral barrier that can occur randomly anywhere on the plane 

to be quite difficult. We therefore start with a very special type of barrier whose 

location can occur by chance and assume uniformity of time frames that it is located 

at any place. Our problem is to optimally locate a new facility in the presence of 

a rectangular or line barrier that occurs randomly on a given route on the plane. 

We analyze this problem in terms of the minisum objective and suggest a solution 

methodology. 

In Chapter 4 we propose an extension of a problem proposed by Klamroth 

(2001b). Our contribution is threefold. First, in Section 4.3, we formulate the same 

minisum version of the problem as in Klamroth (2001b) as a Mixed Integer Nonlinear 

Programming (MINLP) model and provide an optimal solution methodology based 

on an Outer Approximation (OA) algorithm. Second, we discuss the minimax version 

of this problem for locating an emergency facility in Section 4.4 and use the same 

solution methodology as in Section 4.3 to solve the problem. We provide simple 

example problems and extensive computational results for both problems. In Section 
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4.5, we analyze an extension to a minimax version of the problem where locations of 

the passage points are also unknown. We also propose a one-infinity approximation 

approach for the same problem which yields a linear model. 

The interrelated problems explored in Chapter 5 have also been of interest 

to some other researchers including Savas et al. (2002), Sarkar et al. (2005), and 

Kelachankuttu et al. (2007). The aforementioned studies investigate similar problems 

as described in the literature review but use a solution methodology that is different 

from ours. Their solution methodologies, in fact, are extensions to Larson and Sadiq 

(1983) and Batta et al. (1989). Our work is different from these studies in many 

aspects. In Section 5.2 we start with a simpler version of the problem given in Savas et 

al. (2002) by locating a barrier facility with a fixed orientation on a rectangular plane 

to minimize its interference to user-user interaction. In Section 5.3, we incorporate 

another objective into the problem such that the maximum of the closest distances 

from the demand points to the barrier is minimized. To the best of our knowledge, 

user-user and user-facility interactions under a minimax objective have never been 

explored. Also the 'closest distance family' has never been used for this type of 

problem. We provide a mixed integer programming formulation for the problem. In 

Section 5.4 we develop a Simulated Annealing (SA) heuristic for an extension of the 

problem where expropriation of existing facilities with some cost is also possible. 

Finally, in Chapter 6, we present a new analog approach to the Weber problem 

in the presence of barriers by using a variant of the Varignon frame. We show through 

analysis that the same analog can also be used for certain Weber problems in the 

presence of barriers. We believe that the analog approach introduced in this study 

presents an easy way of solving such problems. We describe the problem, justify its 

usage through some analytical results and explain the analog process for the problem. 

Some examples from the literature are revisited through analog analysis and solutions 

are compared. 

Chapter 7 is the conclusion and discussion for further research directions. 
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Chapter 3 

The Planar Weber Problelll -with a 

Probabilistic Line Barrier 

3.1 Introduction 

Consider locating a facility on the plane to serve a finite set of existing demand 

points with different demand levels. One objective would be to find a location such 

that the sum of the distances from the facility to the demand points is minimum. 

Difficulties in solution methodologies occur when there are restrictions on location 

as well as restrictions on shortest travel paths. In the facility location literature, 

these restrictions take the form of barrier regions. Mountains, lakes, military zones, 

finite size existing facilities, railroads, highways etc. can be given as examples of 

barrier regions where neither travel through these regions nor placement in a region 

is possible. Despite the fact that facility location problems with barriers are more 

realistic, they have received relatively less attention from facility location researchers. 

In this chapter, we address the problem of locating a single facility on the plane 

in the presence of a line barrier that occurs randomly on a given horizontal route on 

the plane. Note that we assume uniformity in time frames so that the barrier is 

located at any location. The existence of uncertainty in time can be incorporated 
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into the model as a different probability distribution function but it may increase the 

underlying problem's complexity. This type of barrier generally occurs in some facility 

layouts where wagons on grooved rails are used for in-plant transportation. A wagon 

with negligible width compared to its length, can be anywhere on its route at anytime, 

and can interfere with the flow of material. Also accidents on transportation routes 

may cause sections of routes to be closed and these sections may not be transversable. 

Another interesting example can be given in the Robotics context as robots need to 

be designed to avoid collision with random obstacles while being in a least cost path. 

These lead to the question of where to optimally locate a new facility, in the presence 

of such a barrier. One objective might be to locate a new facility such that the sum 

of the expected rectilinear distances from the facility to the demand points in the 

presence of this probabilistic barrier is minimized. We analyze this problem. 

Section 3.2 includes the definition of the problem and provides details on the 

formulation. A solution algorithm along with an example are given in Section 3.3. We 

discuss some possible extensions to the problem in Section 3.4 including a rectangular 

barrier case and a more general case where the barrier takes place on a non-horizontal 

linear route. Finally Section 3.5 summarizes the chapter with conclusions and further 

research directions. 

3.2 Problem Definition and Formulation 

Consider n demand points on the plane. Also consider a horizontal line barrier Bz 

with length l. Assume that the barrier has a fixed y coordinate at band a probabilistic 

X s coordinate (starting point of the line) where X s is a continuous random variable 

with known parameters. Then the ending point of the line, Xe, will be Xs + l. The 

problem is to locate a facility on the plane so that the sum of the expected weighted 

rectilinear distances from the facility to the demand points is minimized: 

n n 

i=l i=l 
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(x,y) 

• 

I 
-------------~~~~~~~----------y=b 

Figure 3.1: A Probabilistic Line Barrier on the Plane 

The problem is illustrated in Figure 3.1. Without loss of generality and for 

notational convenience, we assume that the existing facilities are numbered such that 

their y-coordinate values are in increasing order: 

Y1 :::; Y2 :::; ·· · :::; Yn· 

For the barrier to have relevance, there will be some facilities that have smaller 

y-coordinate values than band some others that have larger values: 

where Yi =bis not allowed and j is the index such that Yi < b < Yi+i· Now we 

consider two different cases. Case 1 is where the optimal location of the new facility 

is at (x*, y*) where y* > band Case 2 is where the optimal location of the new facility 

is at (x*, y*) where y* < b. We will work only on Case 1, since the procedure is almost 

identical for Case 2. 

Property 3.2.1 Only the x-distance from the optimal facility location to the existing 

facilities is affected by the location of the barrier. That is1 no matter where the 
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barrier is located, the shortest y-path will remain the same as in the regular rectilinear 

distance. 

Proof. Assume that the width of the line barrier is negligible. The optimal facility 

location will either be 1-visible from an existing facility or invisible. If it is visible, 

then the distance will be the rectangular distance. If it is not visible, then the shortest 

path will be through one of the line barrier ends, which only affects the x-distance. 

Since the line barrier has a fixed y-coordinate, the y-distance will remain the same, 

no matter where the barrier is located on its route. • 

This property also shows that the objective function is separable as in the tra­

ditional rectilinear distance Weber problem. Now we can write the objective function 

as: 
n 

min L wiE [lf (x, xi)+ lf (y, Yi)] 
i=l 

j n 

=min L wiE [lf (x, xi)+ lf (y, Yi)] + L wiE [Ix - xii+ IY - Yil] 
i=l i=j+l 

j n 

=min L wiE [lf (x, xi)+ lf (y, Yi)] + L wi (Ix - xii+ IY - Yil). 
i=l i=j+l 

We expand the first part of the formulation as: 

j j j

L wiE [lf (x, xi)+ lf (y, Yi)] = L wiE [lf (x, xi)] + L wi (IY - Yil) 
i=l i=l i=l 

so that the objective function becomes: 

j n n 

min L wiE [lf (x, xi)] + L wi (Ix - xii)+ L wi (IY - Yil). 
i=l i=j+l i=l 

The following lemma defines the conditions where the shortest path between x 

and xi becomes a barrier distance. In other words, under which conditions are x and 

Xi invisible from each other. It also gives a formula for the shortest barrier distance. 
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Lemma 3.2.1 Consider an existing facility i, where i = 1, ... ,j. If the barrier is in 

effect, that is if facility x is not 1-visible from facility Xi, then 0 ~ x - Xs ~ l and 

0 ~ Xi - Xs ~ l. Furthermore, the shortest x-path between x and Xi is; 

Proof. See Figure 3.2. Shaded areas represent the points that are not 1-visible 

from the new facility. It is clear that in order for the distance between x and xi to 

become barrier distance, x and xi have to be somewhere in between Xs and Xs + l. 
Conditions 0:::;; x - Xs :::;; l and 0:::;; xi - Xs ~ l together satisfy this requirement. In 

the first illustration x is less than X 8 • Thus, the distance between these two points is 

rectangular. Indeed, there is no 1-shadow point for the existing facility in this case. 

In the second illustration, Xi is less than Xs which fails the barrier conditions. In the 

last illustration, both x and xi are in between Xs and Xs + l satisfying the barrier 

conditions. In this case the existing facility will be 1-shadow from the new facility; 

then the shortest li path will follow the shortest route through one of the end points 

of the barrier: 

• 
We can see that the barrier goes into effect only under the conditions given in 

Lemma 3.2.1. We can also give these conditions as: 

Lemma 3.2.2 The barrier conditions 0 :::;; x - Xs < l , 0 :::;; Xi - Xs < l can be 

represented in the following form: 

max{x - l,xi - l}:::;; Xs:::;; min{x,xi} 
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(x,y) 

L 
(x,y) 

r• 
I. 

- - _Jt\0-!S___ 

~~ 
/;;:.::<~i ,;y; :~:. 
'<;:: , ;~/, 

'>'>:::::::,~<;:;:: 

Figure 3.2: Visibility Conditions 

Proof. From the barrier conditions, we know that Xs ~ x - l, Xs ~ Xi - l and 

Xs :=:; x, Xs :=:;Xi· Therefore max {x - l, Xi - l} :=:; Xs :=:;min {x, xi}· • 

The difficulty is that the shortest barrier distance is a random variable. De­

pending upon the underlying probability distribution of Xs and its parameters, the 

shortest barrier distance function will be different. For the sake of tractibility of the 

analysis, we assume that Xs is a uniformly distributed random variable with param­

eters U(u1 , u2 ) where 'Ui :::; max {x - l, xi - l} and u2 ~min {x, xi}· The probability 

density function of Xs is given as: 

;u1 :=:; Xs :=:; U2 
h (Xs) = { ~2 ~ui 

; otherwise 

The following theorem will help us in understanding the distribution function 

of the shortest barrier distance. 

Theorem 3.2.1 For given values of x and xi, the distance function lf (x, xi) is sym­

metric, piece-wise linear concave in Xs when X 8 E 'JI : 0 :=:; x-X8 :=:; l , 0 :=:; Xi-Xs :=:; l 

where 'JI is the set of Xs that satisfy these barrier conditions. 

Proof. First consider the case where x >Xi· Then x-xi < land Xs E (x - l, xi)· In 

this case, the distance function is linearly increasing when Xs E (x - l, (x +xi - l)/2], 

and it is linearly decreasing when Xs E [(x +Xi - l)/2, xi)· 
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Now consider the case where x <Xi· Then Xi - x <land Xs E (xi - l, x). In 

this case, the distance function is linearly increasing when Xs E (xi - l, (x +xi - l)/2], 

and it is linearly decreasing when Xs E [(x +Xi - l)/2, x) . • 

Lemma 3.2.3 The expected value of the barrier distance when X 8 E 'JI is: 

E[lf (x, Xi)IXs E i[Jj = l + lx - x;I.
2 

Proof. See Figure 3.3 for illustration. The expected values of the barrier distance 

functions can easily be seen from the sub figures. Alternatively, one can calculate the 

expected value for x >xi; 

(x+xi-l)/2 x 

(2x8 + 2l - X - Xi) h(xs)dxs + Ji (x +Xi - 2xs) h( )d _Xs Xs ­J P(x - l :::; Xs :::; xi) P(x - l :::; Xs :::; Xi ) 
x-l (x+xi-l)/2 

(x+xi-l)/2 Xi 

2x + 2l - x - x ·) (x + xi - 2xs) dx s = s i dxs +J (
Xi - X + l 

j 
Xi - X + l 

x-l (x+xi-l)/2 

X - Xi+ l 
2 

Calculations will be similar for x < Xi. • 

Let the probability that the barrier is in effect be 

P(max{x - l,xi - l}:::; Xs:::; min{x,xi}) = o:(x), 

where o:(x) is a function of x. Then the expected distance between x and xi for a 

given x will be; 

(lx-x·l+l)
E [lf (x, xi)] = o:(x) 2 + (1 - o:(x)) (Ix - xii)

2 
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X-X; 

x-l x+xi -l x+xi -l x 

2 2 

Figure 3.3: The distance function in the presence of the probabilistic line barrier 

We know that when Ix - xii ~ l , a(x) = 0, thus the barrier will not have any 

affect on the rectilinear distance between x and xi. 

When Ix - xii < l, first consider the case where x :S xi : 

Then a(x) can be given as; 

[+ X - Xi 
Q ( X) = ,r = U2 - U1 

r 


The~ consider the case where x > xi : 


Then a(x) becomes; 


In general, 

Theorem 3.2.2 Expected distance E [lf (x, xi)J is a convex function of x for every 

existing location Xi where i E {1, 2, ... ,j} or i E {j + 1,j + 2, ... , n}. 
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Proof. Obviously, expected distance is a convex function of x when Ix - xii > 
because it is a rectilinear distance. We now look for the case when Ix - xi I < l. 

(Ix - x ·I + l)
E[lf(x,xi)] =a(x) +(1-a(x))(lx-xil)

2
i 

= (l - Ix - xil)2 +Ix - xii = (x - xi)2 + (1 - ~) 1.7: - xii+~. 
2r 2r r 2r 

The first part of the expression is a convex function. Since l < r by definition, second 

part of the expression is also a convex function. The last part is a constant term. 

Therefore the whole function is convex . 

• 
In general, we can write the expected distance of x from xi as; 

B( ·)] - { (l-lx2~xil)2 +Ix - xii ; Ix - xii < l }
E [l1 x, Xi ­

Ix - xii ; Ix - xii 2:: l 

Given that the optimal location of the new facility will be in the rectilinear 

hull of demand points as being outside of this rectilinear hull will only increase the ob­

jective function, x-coordinate of the expected value function will have values between 

min {xk} and max {xk}. We can rewrite the expected distance as; 
l~k~n l~k~n 

-x +xi 

(l+X-Xi)
2 

_ X + X. ; Xi - l < X <Xi2r i 

(l-x+xi) 2 + 
2r X - Xi ; Xi ::; X < Xi + l 

; x 2:: xi+ l::; max {xk} 
l~k~n 

This is a piecewise convex function of x and it reaches its global minimum at 

x = xi· Figure 3.4 is an illustration of this function with given values of l = 5,r = 

10,xi = 10, and in the range of [O, 20]. 
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0 5 10 15 20 
xi -I xi+/ 

Figure 3.4: Expected distance function with given values 

Since sum of the convex functions is also a convex function, it follows that the 

sum of the expected distances will be a convex function as well. We need to find the 

optimal value that minimizes the sum of these expected distances. 

3.3 Solution Methodology 

Let f (X~P) be the objective value function of the problem when y* > b (Case 1) and 

f (Xdown) be the objective value of the problem when y* < b (Case 2). Then we can 

represent the problem in two subproblems. Algorithm 1 outlines the solution proce­

dure for the problem. The procedure starts with sorting existing facilities by their 

y-coordinate in an increasing order. Since the barrier has no effect on the optimal 

y-coordinate, y*, we find this value at the beginning. If y* is above the barrier route, 

then the sum of the expected distances that belong to the existing facilities whose 

y-coordinates are smaller than b might be affected by the barrier (Case 1). Other­

wise, the sum of the expected distances that belong to the existing facilities whose 

y-coordinates are larger than b might be affected by the barrier (Case 2). Further­

more, we also need to take into consideration that if more demand points are affected 
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by the presence of the barrier in the opposite side of y*, then it may be better to 

place the facility infinitesimally close (denote this distance as a very small number E) 

to the barrier line in the opposite side, since locating the facility on the barrier route 

is not allowed. We define f (X~~) as the optimal objective function when the facility 

is located just below the barrier line and define f (Xd~wn) as the optimal objective 

function when the facility is located just above the barrier line. Finally, if y* E [t1, t2] 

where t1 < b < t 2 then for Case 1, we need to have y* E [t1, b) and for Case 2, we need 

to have y* E (b, t2]. The minimum of the two objective values will be the optimal 

objective value. 

Algorithm 1: 

Inputs: 

- Demand points (xi, Yi), i = 1, ... , n where Y1 S Y2 S ... S Yn 

- A line barrier, defined by its random x-coordinate (starting point) Xs 

U(u 1 , u2), y-coordinate band fixed length l. 

y* = argmin { t w; (IY - Yil)} 

1. If y* > b then; 
j n n 

f (x:P) =min L wiE [lf (x , xi)] + L wi(lx - xii)+ L wi(ly* - Yil) 
i=l i=j+l i=l 
n j n 

f (x:~) =min L wa~7 [lf (x, Xi)] + L Wi (Ix - Xii)+ L wi(lb - E - Yil) 
i=j+l i=l i=l 

f (X*) =min{! (x:P), f (x:~)} 

If f (X*) = f (x:~) => y* = (b - E) 

x* = argmin {f (X*)} 

2. If y* < b then; 
n j n 

f (X~own) =min L wiE [lf (x, xi)] + L Wi (Ix - xii)+ L Wi (ly* - Yil) 
i=j+l i=l i=l 
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j 	 n n 

f (Xd~wn) =min :LwiE [zf (x, xi)] + :L wi (Ix - xii)+ :Lwi (lb+ E - Yil) 
i=l 	 i=j+l i=l 

J (X*) =min {J (Xdown), f (Xd~wn)} 

Ifj (X*) = J (Xd~n) =? y* = (b + E) 

x* = arg min {f (X*)}. 

f (X*) =min {f (x:P) ,f (Xdown)} 

x* = arg min {f (X*)} . 

The initial value of y* can easily be determined by using the technique proposed 

in (Love et al. (1988)). Because the objective function is convex as is proven in 

Theorem 2, we can determine the value of x* by employing a one dimensional search 

technique or by using a nonlinear mixed integer programming (MINLP) solver. We 

' 	 can also construct some ranges for x* in which the problem reduces to a pure convex 

linear or nonlinear program. Consider the case where y* > b. The objective function 

for x-coordinate will be: 

j 	 n 

f (x*) = J (x~P) =min :LwiE [lf (x, xi)] + :L wi (Ix - xii)= 
i=l 	 i=j+l 

Let all existing facilities be shown at their projection points on x-axis. The 

break points for the objective function will be either at demand points xi, i = 1, ... , n, 

or at the points xi - l, Xi+ l where i = 1, ... ,j. Between break points, the ranges 

determine where the objective function becomes a pure linear or nonlinear convex 

problem. 
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3.3.1 Example 

Consider eight demand points and a line barrier on the plane. The line barrier has a 

probabilistic x-coordinate with parameters U (0, 12) and a fixed y-coordinate at b = 6. 

Figure 3.5 illustrates the example and provides the data for the example. 

y 

~ 

co 

<D 

...,. 

N 

0 

i X; Yi W; 

I 4 2 I 

2 12 2 I 

3 5 4 I 

4 10 4.5 I 

5 7 8 I 

6 4 9 l 

7 12 9.5 I 

8 7 II I 

0 2 4 6 8 10 12 14 x 

Figure 3.5: Example 1 

The optimal value of y can be determined easily. From Figure 3.5 we can see 

that its value is rather a range, y* E [4.5, 8]\6. We used the Excel Solver to identify 

the optimal value of x*. Table 3.1 contains the results. Figure 3.6 is a surface plot 

for the objective function. 

Table 3.1: Results for the example problem 

7 (6,8] 46.25 7 [4.5,6) 47.375 
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Figure 3.6: Surface Plot of the Objective Function 
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X* = argmin {f (X~P' X~own)} = argmin {(46.25, 47.375)} = (7, (6, 8]). 

We also calculated the optimal value of the objective function (See Table 3.2), 

when there is no barrier f (nb), and when the barrier is at its expected location J(fb), 

(Xs = 6). Observe that the barrier has no effect on the objective value when it stays 

at its expected location. However this may not be the case in general. 

Table 3.2: Results for f (nb) and f (fb) 

x~b Y~b f (X~b) xjb Yjb f (Xjb) 

7 [4.5,8] 46 7 [4.5,8] 46 

To find the value of x* over some ranges, in which the problem is a pure linear 

or nonlinear convex function, we need to determine the break points as suggested 

before. Consider the case where y* E ( 6, 8] in the above example. The break points in 

increasing order will be { x1, x6} , x 3, x4-l, {x 5 , xs} , { x2 - l, x1 + l} , x3+l, X4, { x2, X7}. 

As an illustration, Table 3.3 shows the ranges, points affected by the barrier in each 

range, and relative location of x* in each range for f (X~P). 
We find the objective values for all the ranges, then we identify the optimal 

value as x* = 7 which has the lowest objective value of 46.25 for the above subplane 

(Case 1). Note that we do not need to calculate the objective function for range [O, 4) 

as it falls out of the rectangular hull of the demand points. 

3.4 Possible Extensions 

One of the objectives of this study is to provide preliminary results and suggest av­

enues for future research. We have made simplifying assumptio,ns to facilitate our 

analysis. One of the assumptions is the uniform distribution of the line barrier loca­

tion. The first extension can be consideration of other probability distributions such 
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Table 3.3: Ranges for Optimal Facility Location for Case 1 

Range Points in the Barrier Range Relative Location of x* f (X~P) 
1 [4, 5) X1, X3 X1, X5 ::; x* ::; X3 51.43 

2 [5, 6) X1,X3 X3 ::; x* ::; X5, Xs 48.78 

3 [6, 7) X1, X3 , X4 X3 ::; x* ::; X5, Xs 46.46 

4 [7, 8) X1, X3, X4 X5 , Xs ::; x* ::; X4 46.25 

5 [8, 9) X2, X3, X4 X5' Xs ::; x* ::; X4 48.21 

6 [9, 10) X2, X4 X5 , Xs ::; x* ::; X4 50.42 

7 [10, 11) X2, X4 X4 ::; x* ::; X2, X7 52.83 

8 [11, 12] X2,X4 X4 ::; x* ::; X2, X7 56.75 

as the normal distribution. Also, we have considered a single probabilistic barrier, 

whereas in the real life, there might be more than one probabilistic barrier, or a 

mix of probabilistic and fixed barriers present on the plane. Other possible exten­

sions, namely a probabilistic rectangular barrier, and a probabilistic line barrier on a 

non-horizontal linear route are explored in detail in the subsections. 

3.4.1 Rectangular Barrier Case 

If we thicken the line barrier (rectangular shape), the problem will hold the same 

properties (See Figure 3.7) but there is one exception: If there is any demand point 

located on the route of this rectangular barrier, we should take into consideration 

the probability that this demand point might be swallowed by the barrier, which 

makes the demand point unreachable by the new facility. However, in practice, such 

a situation will not exist, because the new facility can not be located on the route of 

the barrier. 
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(x,y) 

* 

•(x;,yJ 

Figure 3.7: Probabilistic Rectangular Barrier on a Horizontal Route 

3.4.2 Line barrier on a Linear Route 

Assume now that the line barrier is on a linear route where Ys = pX8 + b. In 

this case, Ys as well becomes a random variable. Moreover, the minisum objective 

function is no longer separable, because location of the barrier can also affect the 

distance in they direction. One of the tricks that can be used to simplify the problem 

is to perform a linear transformation in such a way that Y; = b. In this case, the 

distance function being used will not be the rectilinear distance anymore with respect 

to the original axes; instead, it will be a block norm distance function with four 

fundamental directions. Before advancing on the problem, we provide two lemmas 

given by Klamroth (2002), that have relevance. 

Lemma 3.4.1 (Klamroth,(2002)) Let llhll be a block norm with four fundamental 

vectors namely bi, b2 , b3 = -bi and b4 = -b2 . Let T be the linear transformation 
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such that T(b1 ) = Tb 1 and T(b2 ) = Tb2 . T can be written as, 

Then for any two points X , X 1 E ~, 

h (X, X1) = li (T(X) , T(X1)) 

Lemma 3.4.2 (Klamroth,(2002)) Let h be a block norm with four fundamental 

vectors and let the linear transformation T be defined as in Lemma 3.4.1 . Then for 

points X, X 1 E F, 

h8 (X, X1) = z'['(B) (T(X), T(X1)) 

The lemmas state that whether there are barriers present on the plane or not, 

the distance between any two points before and after linear transformation will be 

the same but the underlying distance function will be different . 

Let us now consider a special case where a probabilistic line barrier with length 

located on a linear route represented by Ys = X 8 , in the presence of n existing 

points. We want to find a point , say X, that minimizes the sum of the rectilinear 

barrier distances to the existing points. 

~1 
Consider the following linear transformation: T = ( ~ ) . 

For given two points X = ( x , y) and X 1 = (x1,y1), the rectilinear barrier dis­

tance between these points will be equal to the Tchebychev barrier distance between 

the transformed locations of X and X1 given as T(X) and T(X1) respectively because 

of the lemmas provided above. Observe that this particular linear transformation es­

sentially involves in rotating the axes by -7f / 4°, and scaling up the planar area by 

v'2 as can be seen in Figure 3.8. This acknowledges that both minisum problems 

before and after the linear transformation will provide the same objective value. 
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Rectilinear Distance Tchebychev Distance 

Linear 

Transformation 


Unit Ball for Rectilinear Distance Unit Ball for Tchebychev Distance 

: 1 ' 

-1 1 

; -1 

Figure 3.8: Change in the distance function after a linear transformation 

We call this equivalent new problem as 'Finding the optimal minisum point 

in the presence of a probabilistic line barrier under the Tchebychev distance norm'. 

For this problem, the are affected by the presence of the barrier, hence the barrier 

conditions depend on both x and y coordinates of the new facility. Figure 3.9 shows 

shadow regions for points X 1 = (x1 , y1) and point X 2 = (x 2 , y2 ). As future research, 

we would like to see if the convexity property holds under the Tchebychev distance 

norm or in general under block norms. 
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Figure 3.9: oo-shadow regions for X 1 and X 2 

3.5 Summary 

In this chapter we investigated the problem of finding a minisum point for a facility 

in the presence of a line barrier whose coordinates are random. Despite the fact 

that the facility location problems with barriers are more realistic, they have received 

little attention from facility location researchers. Also, so far no one has considered 

the case where the location of a barrier is random. It is important to investigate 

these problems. Examples of these type of barriers can be transportation wagons in 

manufacturing facilities in a smaller scale and accidents or road constructions inside 

segments of transportation corridors in a bigger scale. We observed some properties 

of the problem and suggested a solution algorithm. 

As future research we discussed some possible extensions of the model under 

the Weber objective. Some of these extensions will be investigated in detail. Another 

extension to the problem may be to use maximum 'regret' as an objective. The idea 

is to choose a location for the facility while observing the worst location of the barrier 

(i.e., the location of the barrier that maximizes the minimum distance). 
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Chapter 4 

Optimal Location of a Facility and 

Passage Points in the Presence of a 

Line Barrier 

4.1 Introduction 

In Chapter 3 we introduced a Weber problem in the presence of a probabilistic line 

barrier with a given length. As discussed in Chapter 2, the concept of a line barrier 

was first introduced by Klamroth (1996) in a different context. A fixed linear line 

barrier that divides the planar region into two half-planes is considered. Crossing 

the line barrier is only allowed through a finite set of passage points located on 

the line barrier. The author proposed a solution algorithm which requires solving 

a number of convex optimization problems and selecting the best one among them. 
1The time complexity of the proposed algorithm is given as O(N(MiogM) + ( M; ~; ) T) 

where N is the number of passages, Mis the number of demand points and Tis the 

time complexity of the Weber problem. The complexity grows exponentially with an 

increasing number of passages but remains polynomial for a fixed number of passages. 

Although the suggested algorithm reduces the problem size significantly compared to 
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a complete enumeration, it has a number of drawbacks. First of all, for N > 2, 

the algorithm requires finding a permutation that satisfies ordering of demand points 

based on their distance differences to the passage points. Second, the formulation 

is problem specific and it may not be suitable for some possible extensions such 

as considering different facility location objectives, including additional constraints, 

or an extension where locations of the passage points on the line barrier are also 

decision variables. Therefore, an alternative solution methodology that provides faster 

solutions and allows these extensions would be beneficial. 

After providing brief preliminaries in Section 4.2, we consider the same min­

isum version of this problem as in Klamroth (2002) in Section 4.3 for locating a supply 

facility and propose a different solution methodology based on a Mixed Integer Non­

linear Programming (MINLP) model. We transform the initial MINLP formulation 

which contains the products of binary variables and the functions of continuous vari­

ables (Euclidean distances in this case) into a new formulation in which the binary 

variables are linearly associated with the continuous variables. To do that, we use a 

trick suggested by Glover (1975). We then successfully apply the Outer Approxima­

tion (OA) algorithm structure developed by Duran and Grossmann (1986) to the new 

formulation in GAMS (Rosenthal (1988)). Because of the convexity of the Euclidean 

distances, we show that the OA algorithm is guaranteed to find the optimal solution 

to the problem in a finite number of steps. In Section 4.4, we discuss the minimax 

version of this problem for locating an emergency facility and use the same solution 

methodology as in Section 4.3 to solve the problem. We provide simple example 

problems and extensive computational results for both problems. 

In Section 4.5, we argue that using a MINLP formulation makes it possible to 

consider various extensions of these problems. One possible extension is to assume 

that the locations of the passage points on the line barrier are also decision variables. 

This problem finds itself a basis in a real life situation where bridges over highways 

or rivers need to be built simultaneously with a facility. Some other constraints can 

also be added to the formulation such as minimum distance requirements between 
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passage points and capacity constraints on passage points. We briefly discuss the 

minimax version of this problem and provide a modified OA algorithm as a solution 

methodology. Finally, in Section 4.6, we approximate the Euclidean distance by one­

infinity norm distance, which leads to a linear Mixed Integer Programming model. 

We believe that the new model may provide faster approximate solutions for larger 

problem instances. 

4.2 Preliminaries 

Definition 4.2.1 (Klamroth, (1996)) Let L := {(x , y) E R2 ly =ax+ b} be a line 

and let {P1 = (Pxj ,Py1) E Jlj E J := {1, ... ,J}} be a set of points on L. Then BL:= 

L {Pi, ... , PJ} is called a line barrier with passages. 

The feasible region 0 is defined as the union of the two closed half planes 0 1 

and 0 2 above and below BL, respectively. We have a set of existing demand points 

each with a positive weight Wi with locations xi = (xi, Yi), i E I given in 0. 

We want to locate a facility in 0 under a given objective. To do that, first of 

all, we need to make an assumption that the location of the facility is in one of the 

subplanes. Any demand point that is not in the same subplane as the new facility 

will reach the new facility through one of the passage points on the line barrier. The 

other demand points, that are in the same subplane, are not affected by the presence 

of the line barrier. 

Obviously, we can solve two subproblems by assigning the new facility to 

each subplane and take the minimum of these two solutions as the global optimum 

solution. Without loss of generality, in our formulations, we assume that the new 

facility is assigned to 0 2 . The solution methodology will be similar for the other case. 
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4.3 	 Optimal Location of a Supply Facility in the Presence of 

a Line Barrier 

4.3.1 Problem Definition and Formulation 

In this section we consider a supply facility location problem. The objective is to find 

a location X E 0 2 for a new facility in the presence of the line barrier such that the 

sum of the weighted Euclidean distances between the new facility and the existing 

facilities is minimized. 

The initial formulation for this problem will be (Formulation 4.1): 

subject to 


L Uij = 1, Vi E D1 (4.2) 

jEJ 

(4.3) 


where Uij is defined as, 

.. _ { 1 if passage j is assigned to demand point i } 
UiJ - . (4.4) 

0 otherwise 

The objective function ( 4.1) aims to minimize the sum of the weighted Eu­

clidean distances between the new facility and the demand points. Assuming that the 

optimal facility location is in 0 2 , the facility communicates with the demand points 

in 0 2 directly. But for the demand points in 0 1 , the distances involve in finding 

the possible optimal assignments of demand points to the passage points. Constraint 

(4.2) is the assignment constraint to make sure each demand point in 0 1 is served 

by one passage point. Constraint ( 4.3) imposes a binary restriction on the decision 

variable Uij. 

The difficulty with Formulation 4.1 is that it contains products of binary vari­

ables Uij and continuous variables (Euclidean distance functions) in the objective 
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function. To overcome this difficulty, using the linearization technique suggested by 

Glover (1975) and then modified by Torres (1991) for problems with nonlinearities in 

the objective functions, we can replace Formulation 4.1 with the following equivalent 

formulation (Formulation 4.2): 

subject to 

Yij 2 wil2 (X, Pj) - Miij(l - Uij), Vi E 01, Vj E J (4.6) 

Y ij 2 0, V'i E 01, Vj E J 

L uij = 1, Vi E n1 
jEJ 

(4.7) 

(4.8) 

Uij E {0,1},Vi E Oi,Vj E J (4.9) 

where Yij is a continuous variable that replaces the product of uij and wil2(X, Pj) 

and Miij is a bounding parameter that is larger than wil2 (X, Pj) for any feasible 

location of X E 02. 

Lemma 4.3.1 Formulation 4.1 is equivalent to Formulation 4.2 

Proof. For a given pair of i and j, when Uij = 1, the model will force Yij to be equal 

to wil2 (X, Pj). When uij = 0, the model will force Yij to be equal to 0. In both cases, 

the formulation becomes equivalent to Formulation 4.1. Note that, the determination 

of Uij is also affected by the last term in the objective function which does not depend 

on X but depends only on a known constant term which is the Euclidean distance 

between passage point j and demand point i. • 

Property 4.3.1 determines the supremum upper bound values of the bounding 

parameter Miij. These values have to be as close as possible to their correspond­

ing wil2 (X, Pj) values. Using unnecessarily large values typically leads to very bad 

branch-and-bound trees in the solution process in terms of quality as it allows for 

many fractional values in the linear relaxation and causes to larger linear feasible 

regions (Bosch and Trick (2005) ). 
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Property 4.3.1 M~j > l2 (Xe, Pj) where xe E 0 2 is defined as the farthest extreme 

point of the convex hull of the demand points and the passage points in 0 2 to Pj. 

Proof. We know that by definition M~j > wil2 (X, Pj)· Then the farthest possible 

location of the new facility will be at the farthest extreme point of the convex hull 

of the demand points and the passage points. This is because of the fact that the 

new facility location will be in the convex hull of the demand points and the extreme 

points of the barrier regions (Klamroth (2002)). Therefore, M~j > wil2 (Xe, Pj)· • 

Transforming Formulation 4.1 into Formulation 4.2 gives us an advantage of 

solving this problem with an QA algorithm. In order to solve MINLP problems using 

an QA algorithm, one needs to satisfy two conditions: First, the model should have 

the convexity property with respect to the continuous variables. And second, the 

model should be linear in the binary or integer variables. In models that are suitable 

for the QA algorithm, the continuous space is formed by a finite number of convex 

regions where each region is defined by a different discrete parameter combination. 

The OA algorithm solves a finite sequence of MILP master programs and NLP sub­

problems. Solutions of the MILP master programs are lower bounds for the original 

problem, while solutions of the NLP subproblems are upper bounds for the original 

problem. The algorithm converges when these two bounds cross. For MILP mas­

ter programs, linearity in the convex nonlinear continuous variables is introduced by 

outer approximation of their convex sets. For NLP subproblems, pure nonlinearity is 

obtained by fixing the discrete variables in the original problem. The algorithm can 

be considered a cutting plane method, where after each iteration, a combination of the 

discrete variables, and hence a convex region from the continous space, is eliminated 

through the introduction of integer cuts. Therefore, the algorithm is guaranteed to 

terminate in a finite number of steps. The worst case of the algorithm is the total 

enumeration of the discrete variables which is exponential. 
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4.3.2 	 An Outer Approximation Algorithm Approach for the 

Supply Facility Location Problem in the Presence of a 

Line Barrier 

Let (MasterSk) be the kth iteration of the master program with an objective function 

defined as J(k). Let (SubSk) be the kth iteration of ufj parameterized NLP sub 

program with an objective function defined as f(ufj). 

START 

Step 0: 

For a given facility location Xk, the master program (MasterSk) is shown as 

the following mixed integer linear programming (MILP) model: 

subject to 

X ~ L 	wil2 (Xk, Xi)+ L wiVl2 (Xk, Xi) ( x =x: ) 
iEn2 iEn2 	 Y Y 

lij ~ 0, \Ii E 01, \fj E J 

L uij = 1, Vi E n1 
jEJ 

(4.11) 


f(k) < f* (4.12) 

Uij E { 0, 1} , \Ii E 01 , \Ij E J 
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x is a positive variable which becomes the largest linear approximation (first 

order linear Taylor series approximation) to 2:: wil2 (X, Xi) in the optimal solution 
iED2 

to Formulation 4.2 . 

Similarly, constraint (4.10) contains the first order linear Taylor series approx­

imation to nonlinear distance function l2 (X, Pj) in constraint (4.6). 

Constraint ( 4.11) tightens the lower bound after every iteration and acts as a 

weak cut to get a faster solution (Duran and Grossmann (1986)). 

The E term, which is a very small positive number is added into the denomina­

tor of the gradients to prevent the possibility of dividing by zero during the algorithmic 

process if any potential optimal location coincides with one of the demand points or 

the passage points. It can be taken as zero initially, and if the algorithm terminates 

due to a 'division by zero error', a very small value of E such as E = 10-5 can be used. 

Step 1 : 

Let the objective function be denoted as f. Set lower bound of the objective 

function J(o) = -oo , upper bound of the objective function f* = +oo and k = 1. 

Make an arbitrary initial feasible selection of binary variables u:j. These variables 

are initially selected as each demand point will use the closest passage to itself. 

Step 2: 

Solve the u:j parameterized NLP sub problem SubSk: 
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subject to 


Yij ~ wil2 (X , Pj) - 1\II{ij(l - ut) ,Vi E 0 1 , Vj E J 


Yij ~ 0, Vi E 01, Vj E J 


Yij E R,Vi E Oi,Vj E J 


If problem SubSk has a finite optimal solution, update the current upper 

bound; 

Estimate: f* =min {f*, f(ufj)} and if f* = f(ufj) set u;j = ufj, X* = Xk; 

Add an integer cut to M asterSk by introducing the following constraint to 

the model to eliminate previously used integer combinations ut from further consid­

eration: 

ijECut~ ijECut~ 

where Cut~= {(i,j) lut = 1} and Cut~= { (i,j) lut = 0} and ICut~I is the cardi­


nality of Cut~. 


Step 3: 


Solve the MILP master program 1\11aster Sk, adding the integer cuts as con­

straints from Step 2. 

If program M asterSk doesn't have a mixed integer feasible solution STOP. The 

optimal solution is ( u;j ,X*). This is because of the fact that lack of a feasible solution 

suggests the violation of constraint ( 4.12) in the master program. The algorithm 

converges when the master problem has no solution, which indicates the crossing of 

the lower and upper bounds. 

If program MasterSk has an optimal mixed integer solution, set u:/1 = uij, 

k = k + 1 and return to Step 2. 

END 
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The proof of the convergence of a general OA algorithm is given in Duran and 

Grossmann (1986) and is applicable to the algorithm given above since our model 

has the convexity property with respect to the Euclidean distance functions and it 

became linear in the binary assignment variables which are the two requirements of 

the convergence as we have discussed before. Convergence is proved based on two 

independent criteria. The first one is based on the bounding properties of the algo­

rithm. The lack of a feasible solution due to constraint ( 4.12) implies the infeasibility 

for all of the remaining solutions because of a monotone nondecreasing sequence of 

lower bounds on the optimal value of the original problem as proven by the authors. 

The second one depends on the finiteness of the set of discrete variables as each set 

is generated only once. Figure 4.1 is a flowchart of the algorithmic process. 

4.3.3 Example [Klamroth, (2002)] 

We consider the example given in Klamroth (2002) to illustrate our OA approach. 

Let BL be a line barrier defined by the following parameters: 

BL := {X = (x, y) E ~2 IY = 5} / {P1=(4,5), P2 = (9, 5)}, 

BL divides the planar feasible region into two subplanes (fh and 0 2 ). Three existing 

facilities are located on each subplane. These are listed in Table 4.1 along with their 

corresponding weights and the subplanes that they belong to. We want to locate a 

supply facility on the plane to minimize the sum of the Euclidean distances to these 

demand points in the presence of the line barrier defined above. 

We need to apply the OA algorithm two times, each time assuming the location 

of the supply facility to be in one of the subplanes. First, we assume that the facility 

is located on the upper subplane (01). In this case OA algorithm converges to the 

optimal solution of 50.405 for this subplane in 0.187 seconds and in four iterations on 

a PC Pentium 4 2.4 Ghz with 1 GB RAM. Then, we assume that the facility is located 

on the lower subplane (02 ). The OA algorithm converges to the optimal solution of 

48.4623 for this subplane in 6.654 seconds and in three iterations. Figure 4.2 is an 
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Assign arbitrary passage points to the demand 
points 

Find a solution to the NLP Sub program: 

Upper Bound to the original problem 


Find a solution to the MILP Master program : 

Lower Bound to the original problem 


STOP 

Figure 4.1: Outer Approximation Algorithm Flowchart 
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i Xi Yi w·i n. 
J 

1 5 7 1 n1 
2 4.5 9 2 n1 
3 10.0 7.5 2 n1 
4 3.0 3.0 2 n2 
5 6.0 1.0 3 n2 
6 8.5 4 2 n2 

Table 4.1: Parameter Values for the Existing Facilities 

illustration of the convergence. Therefore, we can identify the optimal objective value 

for the whole plane as 48.4623 with the facility located at (5.676, 3.434). This result is 

also confirmed by solving the example using a general nonlinear global solver named 

BARON (Sahinidis (1996)) which gives the solution in 19.170 seconds. Klamroth 

(2002) reports her optimal objective function as 48.47 with the facility located at 

(5. 72, 3.43). 

4.3.4 Further Computations 

To test the performance of the proposed OA algorithm and validate its usage for 

possible extensions of the problem, we evaluated two different MINLP solvers namely 

DICOPT (Kocis and Grossmann (1989)) and BARON using Formulation 4.2. We 

compared their results with the proposed OA algorithm. DICOPT is a general MINLP 

solver which is also based on the OA method. BARON is a global branch and re­

duce optimizer, developed also at the same university, which can solve non convex 

optimization problems to global optimality. Our implementation of the OA algo­

rithm uses XPRESSMP1 to solve its MILP master program and MINOS (Murtagh 

and Saunders (1997)) to solve the relaxed MINLP sub program. We incorporated 

the bounding parameters discussed in the formulation phase for the OA algorithm 

1http://www.dashoptimization.com 
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Figure 4.2: Convergence of the OA Algorithm for Example 4.3.3 

and limited the search area to the convex hull of the demand points and the passage 

points for all models. Computations were performed on a PC Pentium 4 2.4 Ghz 

with 1 GB RAM. A time limit of 1000 seconds is defined for MINLP solvers whereas 

an iteration limit of 20 is defined for the OA algorithm. If a solver does not find an 

optimal solution within the defined time limit, we terminate the process and report 

the best integer solution, if there is one. 

Test problems are formulated according to the following parameters listed in 

Table 4.2. Throughout the process, without loss of generality, we assume that the 

facility is located on the lower subplane (D2) . Problems can also be run in the other 

case as described earlier. Performance of the forementioned general MINLP solvers 
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Line Barrier Formula y=5 

x-coordinates of the Demand Points in 0 1 Uniform(O, 10) 

x-coordinates of the Demand Points in 0 2 Uniform(O, 10) 

y-coordinates of the Demand Points in 0 1 Uniform(6, 10) 

y-coordinates of the Demand Points in 0 2 Uniform(O, 4) 

Weights of the Demand Points in 0 1 Uniform(l, 3) 

Weights of the Demand Points in 0 2 Uniform(2, 5) 

Table 4.2: Fixed and Random Parameters for the Test Problems 

and the proposed AO algorithm and their solution times are reported in Table 4.3. 

The OA algorithm theoretically should give the optimal result if master and 

sub problems give optimal results in every iteration. However, in our runs, the solver 

that we use to solve the master problem (XPRESSMP) sometimes resulted in the 

best integer solution due to the iteration limit. Therefore we can not guarantee 

global optimality although we have the best results compared to the other solvers. 

We can observe this from the computational results. As we have used the same set of 

demand points for the runs with 2 and 5 passages, and the locations of two passage 

points are the subset of the locations of five passage points, the objective values for 

the runs with 5 passage points should be at least as good as the runs with 2 passage 

points. However, we can see that the OA algorithm runs with 20 and 60 demand 

points for 5 passages have higher objective values. One remedy for this issue can be 

using the objective value of the lesser number of passage points as the upper bound. 

One can also try different MIP solvers. When we tried CPLEX for these two instances 

we were able to get lower objective values. But the solution time became longer. 

The OA algorithm performs better compared to DICOPT and BARON in 

terms of running times and solution quality. DICOPT is faster than BARON but its 

solution quality is not as good as BARON's. Although DICOPT is using the same 

solvers as the OA algorithm for its subproblems, it gets stuck at a local optimum 

and is not able to find the global optimal solution for almost all of the runs. The 
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reason for this may be its additional stopping criterion that terminates the algorithm 

when the NLP solution is worsening. For all but one run, BARON exceeded the 

time limit. We believe that if the time limit was higher, BARON would find better 

solutions. Overall, the OA algorithm finds the best solutions for all of the runs within 

reasonable computation times with the highest running time of 32 CPU seconds and 

an average running time of 14.1 CPU seconds. These computational results suggest 

that the OA algorithm can be an effective tool in solving the problem described in 

this section. 
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4.4 	 Optimal Location of an Emergency Facility in the Pres­

ence of a Line Barrier 

4.4.1 Problem Definition and Formulation 

In this section, the objective is to find a location X for a new facility such that the 

maximum of the weighted distances between the new facility and the existing facilities 

is minimized. This objective is suitable for locating emergency facilities as the most 

possible attention is given to the weakest (and/or farthest) facilities. 

The formulation for this problem when X E 0 2 will be (Formulation 4.3): 

Min z (4.10) 

subject to 

z ~ Wi L Uij (l2 (X, Pj) + l2 (Pj, Xi))' Vi E 01 (4.11) 
jEJ 

z ~ wil2 (X, Xi) , Vi E 02 ( 4.12) 

L Uij = 1, Vi E 01 (4.13) 
jEJ 

uij E { 0, 1} ,Vi E 01, Vj E J. (4.14) 

where 	z is a continuous variable. 

The objective tries to minimize z while satisfying the constraints that z needs 

to be greater than or equal to all the weighted distances. This known trick finds the 

minimax objective function. Because z needs to be minimized, the binary variables 

Uij will naturally be chosen such that the shortest path through one of the passage 

points will be selected. However, the solver may make an arbitrary allocation if 

constraint (4.12) becomes nonbinding due to the tightness of constraint (4.13). 

As in Section 4.3, we need to manipulate the products of binary and continuous 

variables in the constraints of Formulation 4.3 according to Glover (1975). 

Let ~ij be a continuous variable which represents the multiplication of as­

signment variable uij with the distance from the facility to a demand point via a 
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passage point. Also define bounding parameters, M:j;j >sup {l2 (X, Pj) + l2 (Pj, Xi)} 
x 

and M:;ij <inf {l2 (X, Pj) + l2 (Pj, Xi)} for all feasible locations of the new facility in 
x 

02. Then we can replace Formulation 4.3 with the following equivalent formulation 

(Formulation 4.4): 

Minimize z 

subject to 

z ~ wiLfo,Vi E 0 1 ( 4.15) 
jEJ 

fo ~ l2 (X, Pj) + l2 (Pj, Xi) -1\!l:j;j(l - uij), Vi E 01, Vj E J ( 4.16) 

fo :S; M:j;juij, Vi E 01, Vj E J ( 4.17) 

fo :S; l2 (X, Pj) + l2 (Pj, Xi) - Miij(l - uij), Vi E 01, Vj E J (4.18) 

fo ~ Miijuij, Vi E 01, Vj E J (4.19) 

z ~ wil2 (X, Xi) ,Vi E 02 ( 4.20) 

L Uij = 1, Vi E 01 ( 4.21) 
jEJ 

Uij E { 0, 1} ,Vi E 01, Vj E J fo E ~+,Vi E 01,Vj E J 

( 4.22) 

Lemma 4.4.1 Formulation 4.3 is equivalent to Formulation 4.4 

Proof. For a given pair of i and j, when Uij = 1, constraint sets ( 4.16) and ( 4.18) will 

force fo to be at least as large as l2 (X, Pj) + l2 (Pj, Xi) which is the barrier distance 

through a passage point. When Uij = 0, constraint sets (4.17) and (4.19) will force 'ij 

to be equal to 0. In both cases, the formulation becomes equivalent to Formulation 

4.3.• 

Property 4.4.1 determines the minimum upper bound value and the maximum 

lower bound value of the multiplier parameters M:j;j and Miij. 


Property 4.4.1 Jv!iij < l2 (Xi, Pj) and M:j;j > l2 (Xe, Pj)+l2 (Xi, Pj) where xe E 0 1 


is defined as the farthest extreme point of the convex hull of the demand points and 


extreme passage points in 0 1 to Pj. 
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Proof. We know that by definition M;j < i~f {l2 (X, Pj) + l2 (Xi, Pj)}. Then the 

closest possible location of the new facility to Pj will be at Pj. Therefore M;j < 

l2 (Xi, Pj) . Also we know that by definition Mi,ij > sup {l2 (X, Pj) + l2 (Xi, Pj)} . 
x 

Then the farthest possible location of the new facility will be at the farthest extreme 

point of the convex hull of the demand points and the extreme passage points in f22 . 

Therefore, M~j > l2 (Xe, Pj) + l2 (Xi, Pj)· • 

4.4.2 An Outer Approximation Algorithm Approach 

The outer approximation algorithm to solve the emergency facility location problem 

with a line barrier and passages is as follows. 

Let (MasterCk) be the kth iteration of the master program with an objective 

function defined as g(k). Let (SubCk) be the kth iteration of u~j parameterized NLP 

sub program with an objective function defined as g(u~j). 

START 

Step 0: 

For a given facility locat ion X\ the master program (MasterCk) is shown 

as the following mixed integer linear programming (MILP) model: 

g(k) =Min z 

subject to 

z ~ wi"L.:fo,V'i E 01 
j 
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~ij ~ M 2ijuij, Vi E 01, Vj E J 

z::: w, (12 (xk, x,) + '\ll2 (xk, x,t ( : =:: ) ) , Vi E!!2 

Luij = 1,Vi E 0 1 

j 

g(k-1) ~ z 

g(k) ~ g* 

Uij E {0,1},Vi E 01,Vj E J 

fo E ?R+, Vi E 01, Vj E J 

where, 

g* =min {g*, g(ufj)}. 

Step 1 : 

Set lower bound of the objective function g0 = -oo , upper bound of the 

objective function g* = +oo and k = 1. Make an arbitrary initial feasible selection 

of binary variables ut by assigning the closest passage to each demand point. 

Step 2: 
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Solve the u~j parameterized NLP sub problem SubCk: 

g(u7j) =Min zk 


subject to 


zk ~ wi L fo, Vi E 01 

j 

fo ~ l2 (X, Pj) + l2 (Pj, Xi) - Mi;j(l - u7j), Vi E Oi, Vj E J 

fo S Mi;ju7j, \Ii E 01, \/j E J 

fo S l2 (X, Pj) + l2 (Pj, Xi) - Miij(l - ut), Vi E 01, Vj E J 

~ij ~ Miiju7j, \Ii E 01, Vj E J 

zk ~ wil2 (X, Xi), Vi E 02 

fo E R+, \l'i E 01, Vj E J 

If problem SubCk has a finite optimal solution, update the current upper 

bound; 

Estimate: g* = min { g*, g(u~j)} and if g* = g(u~j) set u;j = u~j, X* = Xk; 

Add integer cut constraints to M asterCk to eliminate u~j from further con­

sideration: 

ijECut~ ijECut~ 

where Cut~= { (i,j) Jut= 1} and Cut~= { (i,j) Ju~j = 0} and JCut~J is the cardi­

nality of Cut~. 

Step 3: 

Solve the MILP master program M asterCk, adding the integer cuts as con­

straints from Step 2. 

If program M asterCk doesn't have a mixed integer feasible solution STOP. 

The optimal solution is ( u;j, X*). As in Section 4.3, the algorithm converges when 

the master problem doesn't have a feasible solution. This indicates the crossing of 

the lower and upper bounds. 
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If program M asterCk has an optimal mixed integer solution, set ut+l = ufj, 
k = k + 1 and return to Step 2. 

END 

4.4.3 Example 

Consider a line barrier defined by: 

BL:= {X = (x, y) E ~2 IY = 5} / {P1=(3,5), P2 = (4.5, 5), P3 = (6, 5)}, 

which divides the planar feasible region into two subplanes (01 and 0 2 ). Five existing 

facilities are located on each subplane. These are listed in Table 4.4 along with their 

corresponding weights and the subplanes that they belong to. We would like to 

locate an emergency facility on the plane minimax to these demand points and in the 

presence of the line barrier defined above. 

'l Xi Yi Wi nj 

1 8.9 9.6 1 n1 

2 2.2 8.9 2 n1 

3 6.0 8.2 3 n1 

4 2.5 6.3 1 n1 

5 1.4 4.4 1 n1 

6 7.5 3.6 1 n2 

7 2.9 3.4 2 n2 

8 1.3 2.6 1 n2 

9 8.6 1.4 1 n2 

10 3.8 1.0 2 n2 


Table 4.4: Parameter Values for the Existing Facilities 


We need to apply the OA algorithm two times, each time assuming the location 

of the emergency facility to be in one of the subplanes. First we assume that the 
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facility is located on the upper subplane (01). In this case OA algorithm converges 

to the optimal solution of 9.114 for this subplane in three iterations. Figure 4.3 

illustrates the convergence. This result is also confirmed by solving Formulation 4.3 

using BARON. The optimal value for the lower subplane (01) is also found as 10.632 

whereas BARON finds 10.602. The small difference in the objective value is due to 

the E term. When we checked the passage point for optimality, we found the exact 

value as BARON did. Overall, the global optimal value for the whole plane is 9.114 

and an optimal location for the new emergency facility will be on the upper subplane 

(01 ) at coordinates ( 4. 710, 5.449). 

- Upper Bound (SubC) 
1O.,~---··.;..;··..;.,;··;.,;.··:..;..·;_:·. .:..:,··.:_:··~··_:,:·-~··~·~-.~··~·-~··~··~·~-·1·. . . . . . . . . . __.,.._ Lower Bound (MasterC) 

10 ................................................•.... 

9.5 ................................................•............................. 

<I> 
~ 8.5 ............................................................................................... . 
> 
<I>> 8 ............................................... ·~............. . ... .... .. ... . . . . ............... .
:u 

<I>g 7.5 . ..... .. ............. ....... .................................................................. . 

7 ............................................... ·~............ . ................................ . 

6.5 ................................................................... . ........................... . 

5'--~~~~~~~~~~~~--L~~~~~~~~~~~~~-' 

1 2 

Iterations 


Figure 4.3: Convergence of the OA Algorithm for Example 4.4.3 
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Line Barrier Formula y=5 

x-coordinates of the Demand Points in 0 1 Uniform(O, 10) 

x-coordinates of the Demand Points in 0 2 Uniform(O, 10) 

y-coordinates of the Demand Points in 0 1 Uniform(6, 10) 

y-coordinates of the Demand Points in 0 2 Uniform(O, 4) 

Weights of the Demand Points in 0 1 Uniform(2, 5) 

Weights of the Demand Points in 0 2 Uniform(5, 8) 

Table 4.5: Fixed and Random Parameters for the Test Problems 

4.4.4 Further Computations 

We have conducted a similar computational study to that in Section 4.3 to test 

the performance of the proposed OA algorithm for the emergency facility location 

problem in the presence of a line barrier and passages. We evaluated the general 

MINLP solvers DICOPT and BARON using Formulation 4.4 and compared their 

results with the proposed OA algorithm. The other settings remained the same as 

in Section 4.3. Test problems are formulated according to the following parameters 

listed in Table 4.5 and performance of the solvers and the proposed algorithm and 

solution results are reported in Table 4.6. 

As can be seen from the results, the OA algorithm and BARON performs bet­

ter than DICOPT in terms of finding the optimal solution for this problem. DICOPT 

is the fastest in this case as well, but it again gets stuck at a local optimum and is not 

able to find the global optimal solution for more than half of the runs. We can clearly 

see that it has suboptimal results for the 5 passages case, as these values should have 

been at least as good as the 2 passages case. BARON finds the global optima for 

all in reasonable running times, but its computation time is significantly higher than 

the proposed OA algorithm. Overall, the OA algorithm finds optimal solutions for 

all of the runs within reasonable computation times with the highest running time of 

24.23 CPU seconds and an average running time of 4.8 CPU seconds. These compu­

76 




~ 

DICOPT BARON OA Algorithm (Xpress + Minos) 

P"' 
t:) 

# of Passages 

2 

Pxj = 3, 7 

#of Points 

20 

40 

Run.Time (sec) 

0.92 

1.01 

Obj. Val. 

17.48 

20.89 

Run.Time (sec) 

0.44 

1.38 

Obj. Val. 

17.48 

19.45 

Run.Time 

0.84 

1.19 

Obj. Val. 

17.48 

19.45 

~ 
~ 
(t) 
C/:Ju;· 
I 

~ 
60 2.35 21.98 4.31 21.98 1.01 21.98 w 
80 0.96 21.83 5.36 21.83 1.13 21.83 () 

3 

Pxj = 3, 6, 9 

100 

20 

40 

1.24 

0.98 

0.94 

23.47 

18.58 

21.21 

7.73 

0.62 

9.19 

21.42 

16.53 

19.04 

1.91 

1.08 

2.26 

21.42 

16.53 

19.04 

~ 
~ er 
0 
>---' 
~ 
M­

60 0.95 24.06 4.31 21.98 1.71 21.98 

80 0.67 24.36 12.56 21.83 2.56 21.83 

--l 
--l 

4 

100 

20 

0.89 

1.23 

23.47 

16.53 

19.72 

1.19 

21.06 

16.53 

4.41 

1.61 

21.06 

16.53 

Pxj = 2,4,6,8 40 1.03 20.71 2.84 19.04 2.88 19.04 

60 0.88 22.02 46.94 21.99 5.28 21.99 
~ 

80 0.96 22.54 34.16 21.95 7.05 21.95 
(j 

~ 

5 

Pxj = 1,3,5, 7,9 

100 

20 

40 

1.12 

1.19 

1.30 

21.72 

17.48 

19.38 

19.52 

1.16 

12.27 

21.06 

16.56 

19.24 

10.81 

3.08 

6.34 

21.06 

16.56 

19.24 

~ 
C/:J
M­
(t) 
t-; 

I 

~ 
60 1.23 22.59 27.03 21.98 6.78 21.98 ~ 

~ 

80 

100 

1.28 

1.48 

22.69 

21.08 

13.83 

120.38 

21.83 

21.08 

10.03 

24.23 

21.83 

21.08 

~ aq 
(t) 

s 
(t) 

~ 
Table 4.6: Computational Results lw 

(t)' 
~ 
(j 
(t) 



Ph.D. Thesis - M. S. Canbolat 	 McMaster - Management Science 

tational results suggest that the OA algorithm can be an effective tool in solving the 

emergency facility location problem in the presence of a line barrier with passages. 

4.5 	 Simultaneous Location of an Emergency Facility and Pas­

sage Points 

4.5.1 Problem Definition and Formulation 

Consider a case where locations of one or more passage points PJ = (PxJ, PyJ) , j E J 

on barrier BL and an emergency facility X = (x , y) in n are determined under the 

objective of minimizing the maximum of the weighted distances from the facility to the 

demand points. As in the previous cases, we can solve two subproblems .by assigning 

the new facility to the subplanes and take the minimum of these two solutions as the 

global optimum solution. Without loss of generality, we assume that the new facility 

is located in 0 2• The problem has to be solved for the location of the emergency 

facility in 0 1 in order to find the global optimum. Formulation for the problem will 

be the same as Formulation 4.3 and Formulation 4.4, with the addition that Pxj, j E J 

is a decision variable. 

We can apply the OA algorithm in a similar way to that in Section 4.4.2. 

However, we now have PxJ , j E J as variables in our formulations, therefore, we 

should redefine the master problem to reflect the changes. Let (New Master) be the 

master problem for this problem. For a given facility location Xk, and set of initial 

locations for passage points pjk,j E J define the kth master problem (NewMasterk) 

as: 
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f(k) =Minimize z 

subject to 

z ~ wiLfo 
j 

fo S d,i(X)k + '\i'dii(X)k 
( 

x - xk 

y ~ ykk 

PxJ Pxj 

) 

- M 2ii(l ­ U;j) 

fo ~ M;;ijuij 

z ;:>: w; (z2 (Xk,Xi) + V'l2 (Xk,Xi)T ( :=::)),Vi E f!2 

f (k) ::;; f* 

L ui1 = 1, Vi E n1 
j 

uij E {0, l} 

fo E ~+ , 

The rest of the OA algorithm including the sub problem will be the same. 
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One-infinityEuclidean 
DistanceDistance 

x 	 x 

Figure 4.4: Euclidean and One-infinity norm distances in the presence of a line barrier 

4.5.2 	 An Approximation Approach using Weighted One-Infinity 

Norms 

Recall that in Formulation 4.3, we have the Euclidean distance terms bring nonlin­

earity into the problem. We know that an alternative distance function that we have 

discussed in Chapter 1 (pg. 7), called the weighted one-infinity norm distance, can 

provide a good approximation to the Euclidean distance norm. Ward and Wendell 

(1980) proposed this distance measure as 'a new norm which yields linear location 

problems'. The only problem with this distance function is that it is a weighted com­

bination of rectilinear and maximum distances and it requires the determination of 

two parameters that controls the proportional usage of these two distance functions. 

Nevertheless, using this distance measure in place of the Euclidean distance terms 

in Formulation 4.3 will allow us to come up with a new mixed integer programming 

formulation that may provide a good approximation to Formulation 4.3. 

Figure 4.4 is a representation of Euclidean and One-infinity norm distances 

between points X and Xi through passage point Pj. Let dij(X) be this distance. 
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We can write it as; 

dij(X) = 	 1/J1 (Ix - P1xl + IY - P1yl) + 1/J2V2°max{!x - P1xl, IY - P1yl} + 

1/J1 (IP1x - xii+ IPjy - Yi!)+ 1/J2V2° max {IP1x - xii, IPjy - Yi!} 

where 'lj;1 and 'lj;2 are weighting parameters for rectilinear and maximum distance 

functions respectively whose sum add up to 2v'2- 2. In this study, we take 'lj;1 = 1/J2. 

Which means, we assume that half of the travel from one point to another will be in 

diagonal directions (maximum distance), and the other half would be in rectilinear 

directions (rectilinear distance). 

Similarly, we also approximate l2 (X, Xi) with the following one-infinity norm 

distance; 

Then, we can write the following formulation (Formulation 4.5): 

Minimize z 


subject to 


z ~ Wi L~ij, Vi E 01 

jEJ 

fo ~ di1(X) - M~1 (1- Uij), Vi E 01, Vj E J 

fo ~ lvl~1uij, Vi E Oi, Vj E J 

fo ~ di1(X) - Mii1(1- Uij), Vi E 01, Vj E J 

~ij ~ Mii1uij, Vi E 01, Vj E J 

z ~ wil1-oo (X, Xi), Vi E 02 

L Uij = 1, Vi E 01 
jEJ 

Uij E {0,1},Vi E 01,Vj E J 

fo, Vi E 01, Vj E J E R 
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To keep the formulation mixed integer linear, first, we need to transform the 

maximum functions in di1(X), and li-oo (X, Xi)· Using the idea that max {lal, lbl} = 

1/2 (la+ bl +la - bl) as suggested by Ward and Wendell (1980), we can rewrite 

dij(X), and li-oo (X, Xi) as, 

'l/J1 (Ix - Pjxl + IY - Pjyl) + 'l/J2 /2
1 

(Ix - Pjx + Y - Pjyl +Ix - Pjx - Y + Pjyl) + 
1

'l/J1 (IP1x - xii + IPjy - Yil) + 'l/J2 v'2 (IPjx - Xi+ Pjy - Yil + IPjx - Xi - Pjy + Yil) 

and 

Some commercial modeling languages such as Lindo, can handle the absolute 

value terms in linear models during preprocessing stage. But GAMS, the modeling 

language that we use, does not have that capability. Therefore, we need to transform 

the absolute value terms in these equations. Let rt1, rki1, k = 1, ... , 8; i E 0 1 ; j E J 

and st, s-,;i, k = 1, ... , 4; i E 0 2 be continuous positive variables. Then in Formulation 

4.5, we replace dij(X) and li-oo (X, Xi) by, 

1 
Zi-oo (X, Xi) = 'l/J1 (st + sli + s~ + s;J + 'l/J2 v'2 (st+ sJi + s;ti + s4i) , 

and add the following system of linear equations as a constraint set ( ConstSet4.1) 
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into the formulation: 

x - Pjx - rtj + r!ij = 0 (ConstSet4.1) 

y - Pjy - r~j + r"iij = 0 

x - Pjx + Y - Pjy - r tj + r 3ij = 0 

+ - 0X - Pjx + Y - Pjy - r 4ij + r 4ij = 

+ + - 0Pjx - Xi - r5ij r5ij = 

+ + - 0Pjy - Yi - r6ij r6ij = 

+ - 0Pjx - Xi+ Pjy - Yi - r7ij + r7ij = 

+ + - 0Pjx - Xi + Pjy - Yi - r8ij r8ij = 

X - Xi - st + S!i = 0 

Y - Yi - sii + sii = 0 

X - Xi + y - Yi - st+ S3i = 0 

X - Xi - y +Yi - st+ s,U = 0 

The solution quality of the one-infinity approximation approach may differ 

with the selection of the weighting parameters 'ljJ1 and 'l/J2 . There have been a num­

ber of successful attempts (Ward and Wendell (1985), Love and Walker (1994)) to 

determine the best fitting parameter values using linear regression techniques. The 

resulting empirical models provided good approximations to the real life distances 

bei'ng considered. Therefore, in the case of a real life location problem in the presence 

of a line barrier and passages, it would be beneficial to conduct preliminary empirical 

study to determine the best fitting parameters. 
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Chapter 5 

Locating a Finite Size Barrier on A 

Rectangular Plane 

5.1 Introduction 

Consider locating an area facility in a place where the size of the facility is not 

negligible with respect to the area of the place where it is to be located. An example 

for such a facility may be a new department in a factory layout. Various objectives can 

be considered. Recently, this problem family has been of interest to other researchers 

including Savas et al. (2002), Sarkar et al. (2005, 2007), and Kelachankuttu et al. 

(2007), who studied their corresponding problems in facility layout settings. Detailed 

descriptions of these studies and their contributions are discussed in Chapter 2, in 

the literature review. In this chapter we study a number of interrelated problems. 

In Section 5.2 we start with a simpler version of the problem given in Savas et al. 

(2002) by locating a finite size barrier facility with a fixed orientation on an isolated 

rectangular region. The goal is to minimize its interference to interaction among 

demand points under the minisum criterion. A solution algorithm is proposed. The 

restriction of demand points being in the region where the barrier facility is located is 

then relaxed and it is shown that the same algorithm can be used by partitioning the 
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planar area into rectangular cells and running the algorithm in each cell. In Section 

5.3, we incorporate another objective into the problem. The maximum of the closest 

rectilinear distances from the demand points to the barrier is minimized. To the 

best of our knowledge, interaction among demand points and between demand points 

and a facility under a centre objective have never been explored. Also, the 'closest 

distance family' has never been used for this type of problem. A practical example 

for such a bi-objective problem can be given in a city planning context. If a new city 

park is going to be opened in the city's downtown core, it has to be close enough to 

the farthest demand point that uses the park (centre objective) and its interference 

to the existing flows between demand points should be minimum. Since these two 

objectives may conflict with each other, a pareto optimal solution is sought. Finally, 

in Section 5.4 we develop a Simulated Annealing (SA) heuristic for an extension of 

the problem where expropriation of existing facilities with some cost is also possible. 

5.2 	 Locating a Barrier Facility on the Plane to Minimize its 

Interference to Demand Point Interactions 

5.2.1 Problem Definition and Formulation 

In this section we consider the problem of locating a finite sized rectangularly shaped 

barrier on the plane to minimize the sum of the weighted distances of interactions 

among demand points. We call this problem the 'minimum rectangular interference 

problem'. To start with the simplest case we assume that the barrier is to be located 

in an isolated region where there is no demand point present in that region. For an 

illustration of the problem see Figure 5.1. We ·start with the following notation: 

I: Set of existing demand points, 

Xi= (xi, Yi): coordinates of demand point i EI, 

Vi{ volume shipped between demand point i E I and demand point j E I, 
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i > j, 

RB: a user determined rectangular feasible region in which barrier B will be 


located, 


(u1x, u1y): lower left coordinates of RB, 


(u2x, U2y): upper right coordinates of RB, 


fh, k = 1, ... , 8: rectangular regions surrounding region RB, 


X = (x, y): coordinates of the lower-left corner of barrier B, 


a: length of barrier B, 

b: width of barrier B, 

R: the feasible region where (x, y) is located, R c RB, 


lf (X, xi, Xj) = lf (x, Xi, Xj) + lf (y, Yi, Yj): the barrier distance between xi 


and xj. 

Let f (X) =LL Vijlf (X, Xi, Xj)· Our problem is to find (x*, y*) that min­
iEJ jEJ 

imize f (X). The variables x and y become present in lf (X, Xi, Xj) when Xi and 

Xj are 1-invisible to each other due to the barrier facility. Therefore we need to 

determine the conditions in which this distance becomes a barrier distance. In this 

problem, we observe properties similar to those in Chapter 3; therefore, the reader 

will be referred to Chapter 3 whenever necessary. The following separability property 

is helpful in finding the optimal values of ( x*, y*). 

Property 5.2.1 Letfx(x) = LLVijlf (x,xi,xj) andfy(y) = LLVijlf (y,yi,Yj)· 
iEljEJ iEljEJ 

Then f (X) = fx (x) + fy (y). 
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Figure 5.1 : Illustration of the Problem 

Proof. Assume that the barrier has a fixed x coordinate. In that case, a change in 

its y coordinate will not increase or decrease fx (x). Similarly, if the barrier has a 

fixed y coordinate, a change in its x coordinate will not increase or decrease f y (y). 

This proves that f (X) is separable in x and y. • 

The solution procedure for finding an optimal x* that minimizes fx (x) and 

finding an optimal y* that minimizes f y (y) will be similar. When the barrier has 

no effect on the distance between two demand points , the barrier distance becomes 

a rectilinear distance which is a constant value. Therefore we can exclude the pair 

of demand points from the problem where the barrier can have no effect on their 

interaction. We can observe from Figure 5.1 that to find optimal x, it is sufficient to 

consider pairs of demand points from n1 and ns and similarly, to find optimal y, it is 

sufficient to consider pairs of demand points from f23 and n7 . Property 5.2.2 provides 

closed form barrier distance functions for these pairs. 

Property 5.2.2 (Barrier Conditions) For each pair (i , j) where i E f2 1 , j E f25 : 
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If 0 <Xi - x <a , 0 <xi - x <a and lxi - xii <a, then 

(5.1) 

else 

(5.2) 


For each pair (i , j) where i E n3, j E n1: 

If 0 <Yi - y < b , 0 <Yi - y < b and IYi - Yil < b, then 

lf (y, Yi ,Yi)= min {Yi+ Yi - 2y, 2y + 2b - Yi - Yi} (5.3) 

else 

(5.4) 


Proof. The proof is omitted as it is similar to the one of Lemma 3.2.1 • 

Remark 5.2.1 When the barrier is in effect, the distance function lf (x , xi , xi) will 

be piecewise symmetric linear concave and reaches its maximum at (xi+ xi - a)/2 

where the maximum value is a and the distance function lf (y ,Yi, Yi) will also be 

piecewise symmetric linear concave and reaches its maximum at (Yi+ Yi - b) /2 where 

the maximum value is b . 

. For a proof of Remark 5.2.1 the reader is referred to Theorem 3. 2 .1. As an 

example, the barrier distance function of x is illustrated in Figure 5.2. 

We can now propose a solution algorithm for this problem which runs m 

0(n log n) time where n is the number of demand points. The algorithm finds all 

pairs of demand points whose x distances can potentially be affected by the pres­

ence of the barrier, and defines the barrier distance function between them. It then 

generates ranges for all these pairs such that the distance functions remain constant 

throughout any range. The smallest and the largest values of these ranges are then 

sorted and checked for optimality in x. Using the fact that the sum of the distance 
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Figure 5.2: The Barrier Distance Function 

functions in any given range will be a linear function and nonincreasing or nonde­

creasing function of x or a constant value, it will be sufficient to check starting and 

ending points of these ranges for the optimal barrier location as suggested by the 

following algorithm. 

5.2.2 Solution Algorithm 5.1 

Step 1. Find all pairs (i,j), i E ni,j Ens, where !xi - Xjl <a 

Step 2. For each successful pair (i, j): 

If Xi~ Xj 

Determine Xj - a, Xi and (xi+ Xj - a)/2 

else 

Determine Xi - a, Xj and (xi+ Xj - a)/2 

Step 3. Sort all these points in increasing order. 

Step 4. Check each point for optimality in x. 

Step 5. Find all pairs (i , j), i E n3 , j E n1, where !Yi - Yjl < b 

Step 6. For each eligible pair ('i, j): 

If Yi ~ Yj 

Determine Yj - b, Yi and (Yi+ Yj - b)/2 

else 
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Determine Yi - a, Yj and (Yi + Y) - b) /2 


Step 7. Sort all these points in increasing order. 


Step 8. Check each point for optimality in y. 


Theorem 5.2.1 explains the idea. This process is then repeated for y distances. 


Theorem 5.2.1 (Reduction Result) Algorithm 5.1 yields optimal values of x and 

y for Problem 5. 2. 

Proof. Consider minfx (x) = I: I: lf (x, xi, Xj)· For each pair of demand points 
x iE01jE05 

(i , j), and in each range, the weighted barrier distance Vijlf (x,xi,xj) will be one of 

the followings: 

• v·· Ix ·- x·I '/,) '/, J 

• Vij (2x + 2a - Xi - Xj) 

Therefore fx (x) will be a mixed sum of these terms. We can easily observe 

that coefficient of x infx (x) will have either a negative value, a positive value or zero. 

Therefore, because f x ( x) is either a linear nonincreasing or nondecreasing function 

of x or is a constant value, it will be sufficient to check starting and ending points of 

each range for an optimal x*. Similar reasoning apply for finding an optimal y*. • 

Theorem 5.2.1 also suggests that if more than one point in a sequence results 

in the minimum objective value, then they are joined by a horizontal line segment, 

which implies that the whole range between these points is optimal. 

5.2.3 Example Problem 

Consider 20 demand points at fixed locations and a rectangular barrier on the plane. 

The length and width of the barrier is given as a = 8 and b = 5, respectively. 

All demand points have interactions between each other with equal volumes ( Vij = 
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Figure 5.3: Example Problem 

1, Vi, j, 'i < j). We want to locate the barrier in a given rectangular area such that we 

minimize its interference to these interactions. Figure 5.3 illustrates the example. 

We solved the problem using Algorithm 5.1. The optimal location for the 

facility's lower left corner is found as x* = 4 and y* = 8. Figures 5.4 and 5.5 are the 

objective function plots for x and y coordinates respectively. From Figure 5.4 we can 

see that the optimal x* is a range between [4, 4.5]. If there were no barrier, the sum 

of the volume times distances would be a constant value of 102.5. But because of the 

presence of the barrier, our optimal objective value, which is the lowest possible sum 

of the volumes times distances, is found to be 123.5 in this problem. 

Until now we considered the simplest version of the rectangular barrier location 

problem where the barrier is located inside an isolated region. What happens when 

we want to locate a barrier facility in a region where demand points are also present? 

Clearly, if there were no boundaries, we could locate the barrier facility far away 

from the demand points, thus not affecting their interaction. But assume that the 

barrier facility needs to be located inside the rectangular convex hull of the demand 

points. In that case, we are still able to use Algorithm 5.2.1 to determine the optimal 
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Figure 5.4: x-Distance Objective Figure 5.5: y-Distance Objective 

barrier facility location. Consider the example presented in Figure 5.6. We want to 

locate a barrier facility in a region (RB) where six demand points are present (Figure 

5.6a). Location of the facility is defined by its lower left coordinate ((x, y) E R). We 

assume that the edges or corners of the barrier facility can be located at a demand 

point. We can see that it is impossible to locate the barrier facility in the shaded 

areas (Figure 5.6b) without expropriating some demand points. Therefore, we need 

to remove these areas from further consideration. The rest of the region in RB will be 

feasible for (x, y). We can divide this remaining region into some rectangular feasible 

regions for the barrier's corner point as R1 , R2 , R3 and R4 (Figure 5.6c). For each 

region, a new barrier area RB and its surrounding regions (Ok, k = 1, ... , 8) can be 

determined and Algorithm 5.2.1 can be run to find the optimal solution. A global 

optimal solution can be found by selecting the minimum of all optimal solutions. 

5.2.4 	 Mixed Integer Linear Programming (MIP) Formula­

tion for Problem 5.2 

To provide a basis for more complex formulations, we propose a MIP formulation 

(Formulation 5.2.1) for this problem as an alternative to Algorithm 5.2.1. It uses 
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Figure 5.6: Partitioning the Region 
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the barrier conditions to determine the distance between demand points and runs 

separately for x and y and in each partitioned sub region described earlier. Although 

we only consider the x distance in Formulation 5.2.1, the same approach can be 

followed to find the optimal value of y. Because of the separability property of x and 

y, the two models can be combined together or run separately. 

Formulation 5.2.1: For all pairs (i E 0 1, j E Os) which satisfy lxi - xii < a, 

Min LL Vijlf (x, xi, xi) 
iE01 jErl.5 

subject to 


lf (xi, xi) ~ lxi - xii, Vi E Oi, Vj E Os (5.5) 


lf (xi, xi) ~Xi+ Xj - 2x - M(¢ij + oij + 7rij), Vi E 01, Vj E Os (5.6) 


lf (xi, Xj) ~ 2x + 2a - Xi - Xj - M(l - [¢0 + oij + 7rij]), Vi E 01, Vj E ns (5.7) 


Xi+ Xj - 2.r::; 2x + 2a - Xi - xi+ M ¢fi, Vi E 01, Vj E Os (5.8) 


2x + 2a - Xi - Xj ::; Xi+ Xj - 2x + M(l - ¢ij), Vi E n1, Vj Ens (5.9) 


x::; max {xi - a, xi - a}+ M(l - oij), Vi E Oi, Vj E Os (5.10) 


x ~min {xi, xi} - M(l - 7rij), Vi E 01, Vj E Os (5.11) 


x ER (5.12) 


The objective function aims for minimizing the sum of the weighted recti­

linear distances for pairs of (xi,Xj) which satisfy the condition lxi - xii< a and 

Vi E 0 1, Vj E Os. As it was mentioned, this is due to the fact that the barrier 

has no effect on the distance when the distance between two points is larger than the 

barrier size and only the points in n1 and ns are affected by the barrier's presence. 

We introduce three binary variables ¢fj, oij, 7rfj for each eligible pair of i and j: 

0 · x · + x · - 2x < 2x + 2a - x· - x · 
¢~· = ' i J - i J 

ZJ { 1 h •;ot erw1se 
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0 · x > max {x · - a x · - a}
' i ' Joij = { 

1 ;otherwise 

and 

0 ; x < min {Xi, x j}~x = {iJ 
1 ;otherwise 

The binary variables work jointly to make sure that if the barrier conditions 

are satisfied, the shortest path is through one of the end points of the barrier. If the 

barrier conditions are not satisfied, the rectilinear path is selected by constraint (5.5) 

as the shortest path. 

The binary variables work as follows: Constraints (5.10) and (5.11) check 

if the barrier conditions are satisfied. We observe that ofj = 1 in (5.10) forces x ~ 

max {xi - a, Xj - a} while nfj = 1 in ( 5.11) forces x ~ min {Xi, Xj}. If both conditions 

(the barrier conditions) are satisfied, both ofj and nfj must be equal to 0. 

Constraints (5.8) and (5.9) jointly determine the shorter path around the bar­

rier when the barrier is in effect. If xi+ Xj - 2x < 2x + 2a - xi - Xj, then (i>fJ = 0 , 

in which case constraint (5.9) becomes inactive. Otherwise constraint (5.8) becomes 

inactive. 

Since lf (x, .xi, Xj) is minimized, when the barrier is in effect, constraint (5.6) 

will become active and determines the barrier distance using ofj = 1 or nfj = 1 and 

(5.7) will become active and determines the barrier distance using oij = nfj = 0. 

Finally, constraint (5.12) makes sure that xis in the partitioned sub region R. 

Constraint (5.13) is the binary conditions. 
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5.3 	 Centre Location of a Rectangular Barrier Region: A Bi­

objective Problem (Problem 5.3) 

5.3.1 Problem Definition and Formulation 

Consider a rectangular shaped barrier region on the plane that needs to be located 

optimally among a set of given demand points. Two conflicting objectives are consid­

ered. The first objective is to place the barrier shape in such a way that its interference 

to interactions among demand points is to be minimized as in Section 5.2. The sec­

ond objective is to locate the barrier shape minimax to the demand points where the 

distance between a demand point and the barrier shape will be taken as the closest 

distance. Because of the conflicting natures of the objective functions, we generate a 

bi-objective model and define a weighting parameter a on the objectives to give the 

decision maker flexibility. Municipalities often encounter this type of problem. A fire 

station or a park needs to be located in a city, its location has to be minimax to the 

demand points but its presence might affect interaction among the demand points. 

The term 'closest distance' was first introduced to the facility location literature by 

Brimberg and Wesolowsky (2000) who discussed the minisum problem, and followed 

by Brimberg and Wesolowsky (2002) in the context of the centre problem. The au­

thors analyzed the problems and proved that for any given distance norm, the closest 

distance between a point and a convex polyhedron is a convex function of x and y 

coordinates. Furthermore, they examined the special case where the distance consid­

ered is the rectangular distance and the customers are given as rectangular demand 

areas and found a closed form relation for the closest distance, which simplifies the 

so~ution procedure dramatically. We provide this special case below as we are going 

to use it in our formulation . Consider Figure 5.7. It shows the functional forms of the 

closest distances depending upon the location of barrier B relative to demand point 

k E K where K is the set of all demand points. 

We can now write the closed form rectilinear distance function from a point 

to the rectangular barrier as; 
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Figure 5.7: Closest Rectangular Distances to the Barrier 

l1
c 

(X, Xk) = 21 
(lxk - xi+ lxk - (x + a)I + IYk - YI+ IYk - (y + b)I - (a+ b)) 

(5.14) 

where x is x-coordinate of the lower left corner of the barrier facility and y is 

y-coordinate of the lower left corner of the barrier facility. This closed form function 

is given in Brimberg and Wesolowsky (2000) in the context of the closest distance 

from a point to a rectangular shape. 

To locate the barrier minimax to the demand points, we need to find x and y 

that satisfy, 

Min z (Formulation 5.3.1) 

subject to 

z ~ wklf(X, Xk), Vk E K (5.15) 

To solve this problem as an LP problem, we need to linearize the absolute value 

terms present in lf (X, Xk) as suggested by Brimberg and Wesolowsky (2002). To do 

that, for all k E K we need to replace constraint (5.15) by the system of eight linear 
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constraints given below. The constraints correspond to the eight zones surrounding 

the barrier facility. 

2z 
- +(a+ b) 2 -(xk - x) - (xk - (x +a))+ (Yk - y) + (Yk - (y + b)) (ConstSet5.l)
Wk 
2z - + (a + b) ~ (x k - x) - (x k - (x + a)) + (Yk - y) + (Yk - (y + b))
Wk 
2z 
- +(a+ b) 2 (xk - x) + (xk - (x +a))+ (Yk - y) + (Yk - (y + b))
Wk 
2z 
- +(a+ b) 2 (xk - x) + (xk - (x +a))+ (Yk - y) - (Yk - (y + b))
Wk 

-2z + (a + b) 2 (x k - x) + ( x k - (x + a)) - (Yk - y) - (Yk - (y + b))
Wk 
2z - + (a + b) 2 (x k - x) - (x k - (x + a)) - (Yk - y) - (Yk - (y + b))
Wk 

2z 
- +(a+ b) 2 -(xk - x) - (xk - (x +a)) - (Yk - y) - (Yk - (y + b))
Wk 
2z 
- +(a+ b) 2 -(xk - x) - (xk - (x +a))+ (Yk - y) - (Yk - (y + b))
Wk 

We can now combine Formulation 5.2.1 and Formulation 5.3.1 and generate a new 

bi-objective formulation. Formulation 5.2.1 is used for both x and y distances. There­

fore we introduce three more binary variables ¢f1, of1, 7rfi for calculating y distances. 

The new formulation, called Formulation 5.3.2, uses a user defined parameter o:, to 

determine the relative weights of each objective function. When o: is equal to zero, 

the problem reduces to a closest minimax rectangle problem and when o: is equal to 

one, the problem reduces to a minimum rectangular interference problem. 

Formulation 5.3.2: For all pairs (i E 0 1 , j E 0 5) which satisfy lxi - x11 < a, and for 

all pairs (i E 03, j E 07) which satisfy !Yi - Y1I < b, 
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Min a { L L Vij {lf(x,xi , Xj) llxi - Xjl <a}+ Z::: Z::: Vij {lf(y,yi,Yj) llYi -Yjl < b }} + 
iED1 jED5 iED3 jED7 

(1 - a)z 

subject to 

lf (xi, Xj) 2: !xi - Xjl 'Vi E Oi, Vj E 05 

lf (xi, Xj) 2: Xi+ Xj - 2x - M(</>ij + oij + 7rij), Vi E 01, Vj E 05 

lf (xi, Xj) 2: 2x + 2a - Xi - Xj - M(l - [</>fj + oij + 7rij]), Vi E Oi, Vj E 05 

Xi+ Xj - 2x::; 2x + 2a - Xi - Xj + M <Pij ,Vi E 01, Vj E 05 

2x + 2a - Xi - Xj ::; Xi+ Xj - 2x + M(l - <l>ij), Vi E 01, Vj E 05 

x :S max{xi - a, xj - a}+ M(l - oij) , Vi E Oi,Vj E Os 

x 2: min {xi, Xj} - M(l - 7rij), Vi E 01, Vj E 05 

lf (yi , Yj) 2: !Yi - Yjl, Vi E 03 , Vj E 07 

lf (yi , Yj) 2: Yi+ Yj - 2y - M(</>fj + ofj + 7rfJ), Vi E 03, Vj E 07 

lf (yi, Yj) 2: 2y + 2b - Yi - Yj - M(l - [</>fj + ofj + 7rfJ]), Vi E 03, Vj E 07 

Yi + Yj - 2y :S 2y + 2b - Yi - Yj + M </>fj, Vi E 03, \fj E 07 

2y + 2b - Yi - Yj :S Yi+ Yj - 2y + M(l - </>f), Vi E 03, Vj E 07 

y :S max{yi - b,yj - b} + M(l - ofj), Vi E 03, Vj E 07 

y 2: min {Yi, Yj} - M(l - 7rfJ), Vi E 03, Vj E 07 

</>ij, oij, 7rij E {O, 1}, Vi E 01, Vj E Os 

</>fj, ofj, 7rfj E {O, 1}, Vi E 03, Vj E 07 

x,y ER 

+ ConstSet5.l 
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Figure 5.8: Example Problem 

5.3.2 An Example Problem 

Consider the example problem illustrated in Figure 5.8. We want to locate a rect­

angular facility (barrier) with dimensions a = 8 and b = 5 in a region where user to 

user interaction with equal unit weights among the existing facilities is present . Our 

objective is to minimize the closest distance between the rectangular facility and the 

existing points with minimum interference to their interaction. The feasible regions 

for the rectangular facility's corner point (x, y) are illustrated in the figure. The re­

gions R1, R2 , R3 and R4 have rectangular shapes whereas R5 and R6 are lines. For 

each region, we first solved the problem using one objective function at a time to 

determine the weighting parameter a values. These a values are normalized such 

that the lower objective value gets a higher weight. We, then, solved the problem for 

each region with normalized a values hoping that the magnitude of each objective 
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function in the bi-objective problem is roughly equal to each other. Note that this 

procedure is not required as the decision maker can freely choose the a values based 

on the importance given to each objective function. Results are presented in Table 

5.1 and the solution is illustrated in Figure 5.9. 

Closest Centre 0 b j. Min. Inter. Obj. Normalized Bi-Obj. 

Ri 11.5 32.0 17.6 

R2 17.0 23.0 22.4 

R3 17.0 32.0 22.6 

R4 16.0 30.0 21.2 

Rs 14.5 30.0 19.5 

R6 10.0 33.0 15.8 

Opt. Loe. (8.5,7) E R6 (15,15) E R2 (8.5,7) E R6 

Table 5.1: Solution Results for Example 5.3.2 

5.4 	 Simulated Annealing (SA) Heuristic for the Centre Lo­

cation Problem of a Rectangular Barrier Region with 

Expropriation 

In this section, we develop an SA heuristic for the problem given in Section 5.3. 

Although the SA heuristic may not guarantee the optimum solution, it has a number 

of advantages over the MIP formulation. First, the MIP formulation may not be 

efficient for larger problem instances. Second, using the SA heuristic, we do not 

need to determine the rectangular feasible regions in which we locate the facility. We 

designed the SA heuristic to work on the plane taking into account the expropriation 

costs of the demand points. When we are not allowed to expropriate the demand 

points, we simply assign very high expropriation costs to the demand points, therefore, 

the heuristic finds a location that does not expropriate any demand points. Reducing 

the expropriation costs of the demand points may allow the heuristic to choose a 

location with expropriation. 

101 




• • 
• • 

• • 

• • • 

Ph.D. Thesis - M. S. Canbolat McMaster - Management Science 

0 
N 

~ 

~ • 
~ 

~ 
•• 

~ • 
~ • 
~ 

~ 

~ • 
~ l/j• 
°' • 

II • 
~ 

•t­ • • a=8 •(8.5,7) 
"' • 
'=I" • 
<') 

• 
0....._-+--+--+----+--+--+---+--+---+--+--+--+----4~---1--+--+-+--+---+--+--+--+--+-~~-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Figure 5.9: Optimal Bi-Objective Location of the Facility 

The SA heuristic was proposed by Kirkpatrick et al., (1983) as an adaptation 

of the Metropolis-Hastings algorithm (Metropolis et al., 1953). The heuristic takes its 

name from the physical process of annealing in metallurgy. Annealing is a technique 

requiring heating and slow cooling of materials in order to achieve a minimum energy 

crystalline structure. The SA algorithm mimics this process with the aim of finding 

a good solution while providing the opportunity to escape from local optima. The 

opportunities to jump from local optima are greater early in the process when the 

'temperature' is higher. The temperature 'cools' down after every iteration with a 

phase defined by the decision maker. As the process 'cools', the focus is on finding 

an optimal solution in the neighborhood, and the probability of a jump to a new 
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neighborhood is reduced. 

Previous research by Bennage and Dhingra (1995) has shown that SA has great 

potential for problems with mixed discrete and continuous variables. More recently, 

Arostegui et al. (2007) empirically evaluated several different heuristics in different 

location problems. While tabu search was better for some types of location problems, 

SA was slightly better statistically for some others. Given this context, we choose to 

explore the possibility of efficiently finding good solutions to this problem using an 

SA approach. 

We used the following parameters in our SA process which are similar to those 

used in previous SA literature: 

F0 (Initial Objective Value) 

T0 (Initial temperature) = 100; 

N (The number of iterations remaining) = 500; 

1 (The proportion by which the temperature reduced after each iteration) = 

1 - (5/N) ; 

The SA algorithm for this problem is as follows: 

The process starts with a parameter T0 that represents a high temperature, 

which is reduced after each iteration. After an initial solution is generated, a random 

search is conducted to move from the current solution to a neighborhood solution. 

The selection of a neighborhood range is at the discretion of the user. Specifying the 

neighborhood range N(Z) effectively is a key to the successful implementation of an 

SA algorithm which is mostly specific to the underlying problem. Initial trials have 

been made with a number of different neighbourhood sizes and the best one is kept 

for the example problem. 

A new solution with a better objective value will always be accepted. There 

is also an opportunity to accept an inferior solution based on a probability p which is 

given by p =exp(-~), where ~ is the difference between the new solution and the 

current solution, and T is the current temperature. 

When the temperature is high, the probability of accepting a worse solution is 
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input : T =To, --y, N = Nmax, Fo 

output: Best heuristic solution 

1 while N :S; Nmax do 

2 randomly choose Z E N (Z); 

3 if F(Z) :=:;; F(Z) then 

4 I z~z·' 
5 else 

6 ~ = F(Z) ­ F(Z) ; 

7 p = exp(-~/T) ; 

8 Z ~ Z with probability p; 

9 end 

10 T~T1; 

11 end 

Algorithm 1: The Simulated Annealing Algorithm 

higher, so that in the initial steps, it is easier to escape from a local optimum. When 

the temperature decreases gradually, the probability will also decrease, so that it will 

be harder to move from the current solution. The algorithm terminates when the 

process 'cools' down. 

At first, to find a solution for Example 5.3.2, expropriation costs are kept 

relatively high in order to find a location that does not overlap with any demand 

points. Figure 5.10 is the illustration of the solution iterations in which the algorithm 

converged to the optimal solution. 

As we have stated before, the SA algorithm can find a good location for the 

rectangular facility by expropriating a number of demand points. Assume now that 

each demand point has a unit cost of expropriation. In that case the SA algorithm 

expropriates a demand point and finds a location that results with a lower objective 

value of 14.63 which is a 7.5% savings compared to the original solution. Figure 5.11 

shows the new facility location with expropriation. 
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Figure 5.10: The SA Heuristic Solution Iterations 
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Figure 5.11: A New Location for the Facility with Expropriation 
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Chapter 6 

On the Use of the Varignon Frame 

for Single Facility Weber Problems 

in the Presence of Barriers 

6.1 Introduction 

The Weber problem entails locating a facility on the plane to serve a finite set of 

existing demand points with different demand levels. It has been of interest to many 

researchers since as early as the 17th century, but its practical usage was identified by 

Weber in 1909. Its objective is to find a location such that the sum of the weighted 

distances from the facility to the demand points is minimized. One of the most 

interesting solution methodologies for the problem is based on using a mechanical 

device, called the 'Varignon Frame'. The Varignon frame is a mechanical system 

which consists of strings, weights and a board with holes drilled in it representing 

the locations of existing facilities. Weights, corresponding to the demands for the 

existing facilities, are attached to the strings that pass through the holes. The ends 

of the strings are all tied together in a knot on top of the board. Figure 6.1 is an 

illustration of a Varignon frame with 4 demand points. 
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Figure 6.1: A Varignon frame with four demand points 

Because of the equilibrium of forces, under the assumption of the absence of 

friction, the knot is going to have a final position at the optimal point. This result 

derives from the fact that the first order optimality conditions (partial derivatives) 

for the minisum function, which is known to be a convex function, are equivalent 

to a balance of force components at the optimal point in the x and y directions 

respectively. The only exception for this equivalency emerges when the location of an 

optimal point coincides with that of an existing point. The partial derivatives at the 

optimal point will not exist. The knot will stay on top of that hole, or go down into 

the hole. The condition for the knot to disappear down the hole is that the weight at 

that hole has to be larger than the sum of the other weights. However, an existing 

point does not have to satisfy this condition in order to be at an optimal location. 

It is necessary and sufficient if the net force exerted by the other points' weights is 

less than or equal to its own weight . The existing point will then be at an optimal 

location even if it has a very small weight (Drezner and Hamacher (2001)). 

In this chapter we apply the same analog approach to the Weber problem in the 

presence of barriers. We will show through analysis that the analog can also be used 

for certain problems. We note that this is not a comprehensive and complete solution 
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approach. The introduction of barriers into the Weber problem, results in non-convex 

distance functions which makes the problem more complicated. We believe that the 

analog approach introduced in this study presents a fast and easy way of exploring 

such problems and providing an intuitive basis for the analysis. From a practitioner's 

point of view, this approach has a number of advantages in conducting experimental 

what-if analysis. If a barrier happens to move from one location to another over 

time, the response of the optimal location of the facility can be investigated by a 

visual approach. Also, if there are some preferred facility location zones that have 

been occupied by the barrier, preliminary investigations for relocation or resizing of 

the barriers can be conducted. Further, depending upon the optimal location of the 

facility, identical solutions with a different set of barrier regions can be acquired. 

Section 6.2 describes example problems and provides required preliminaries. 

In Section 6.3, we justify the usage of the Varignon frame for some problem types 

through analytical results and explain the analog solution process. Some further 

experimental examples are provided in Section 6.4. Section 6.5 is the conclusion and 

final remarks. 

6.2 Background 

Consider n demand points each with a nonnegative weight wi, i = 1, ... , n and a finite 

set of convex, closed polyhedral and pairwise disjoint barriers Bi, ... , BP present in the 

plane. Let B be a union of barrier sets in R2 and F = R2\int (B) be the feasible region 

in R2 
. The barrier distance z:(x, Xi), between the points X and Xi is then defined 

as the infimum of the lengths of all permitted paths (the shortest path) between X 

and Xi. Two points X = (x, y), Xi = (xi, Yi) E F are called p-visible from each 

other if z:(x, Xi) = lp(X, Xi) and p-shadow if z:(x, Xi) > lp(X, Xi)· If the points 

are not p-visible from each other, then the distance between them becomes a barrier 

distance. In this chapter we consider the Euclidean distance case where p = 2, since 

the Varignon frame can only be used under this distance norm. For more information 
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Figure 6.2: Partitioning with Respect to X 1 

on visibility in the facility location literature, the user is referred to Chapter 1, Section 

1.1.7. 

Let P(B) where IP(B)I = K be the finite set of barrier extreme points. In 

the case where the points are not p-visible, there is an important and useful property 

called the Barrier Touching Property proven by Klamroth (2001) which states that 

there exists a shortest feasible path P that consists of line segments with breaking 

points only at extreme points of barriers. The barrier distance in this case will be 

through some intermediate points 11 , j = 1, ... , K, which are the extreme points of the 

barriers. The difficulty is to determine the assignment of these intermediate points 

to the demand points. Butt and Cavalier (1996) suggested a remedy which is based 

on the idea of partitioning the plane by demarcation lines. 

Figure 6.2 shows an example with three demand points (X1 , X 2 , and X3 ) and 

one line barrier. This results in demarcation lines which partition the plane into three 

regions Di, D2 and D3 with respect to X 1 . The demarcation lines that go from the end 

points of the line barrier are as the same as the visibility lines. The function for the 
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demarcation line that splits f2 1 from f2 2 can be found using the following equation: 

The distance function from demand point X 1 to a point in any given cell is convex. 

That is, a facility located anywhere in this cell communicates with each demand point 

either directly, or through a constant extreme point of the barrier. For example, for 

any point in f2 1 (i.e. X 2 ), the shortest path to X 1 is through intermediate point ! 1 , 

whereas, for any point in f22 (i.e. X 3), the intermediate point is ! 2 . All points in 0 3 

communicate with X 1 directly. 

The advantage of this approach is that once the plane is partitioned by the 

demarcation lines, the intermediate points to be used for each region become known. 

The disadvantage of the approach is that intersections of these lines form a cell struc­

ture which is mostly nonconvex with nonlinear boundaries. Also, the number of 

cells increases rapidly with the number of demand points and the number of barrier 

extreme points. 

6.3 Solution Methodology 

6.3.1 The Varignon Frame with a Line Barrier 

In order to initiate the discussion, we first consider a Varignon frame with a line 

barrier (e.g. a stick). The following cases are studied: optimality of a demand point, 

optimality of a barrier extreme point (end point) and optimality of a general point. 

Case 1: Optimality of a Demand Point To provide the conditions for the opti­

mality of a demand point, we are going to follow a similar procedure to Drezner and 

Hamacher (2001, pg. 11) given for the unrestricted Varignon frame and start with a 

simple example. Consider the Varignon frame with a line barrier illustrated in Figure 

6.3a. 
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Figure 6.3: Optimality of a Demand Point 

There are two demand points with equal w weights located on each side of the 

barrier. The weights are attached to the strings through the holes and ends of the 

strings are tied together in a knot on top of the board. There is a line barrier on the 

board with a given length and orientation and the strings pass through the upper end 

point of the barrier (11). Assume that the shortest distance between demand point 

locations X 1 and X 2 are through 11 . At equilibrium, the knot will stay at any point 

since the resultant force on the knot would be zero everywhere including I 1. Also any 

point on the route of the strings would be optimal for the Weber problem because 

the sum of the distances is constant. 

However, if we drill a hole on the board at X 3 and attach a very small weight 

(e.g. 0.1w) through it (Figure 6.3b), then the optimal location for the Weber problem 

will be at X 3 even though the partial derivatives of the minisum function for the 
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location will not exist. We can also describe the problem in terms of the equilibrium 

of forces. When the knot is at X 3 , the weight forces for X 1 and X 2 will cancel each 

other out and the knot will try to go down the hole of the small weight because there 

is no other force has an effect on it other than the small weight itself. But when it 

'just passes ' through the hole, if there is no friction, the forces of the two weights for 

X 1 and X 2 will be upwards and their combined force of 2w will move the knot up 

again. The conclusion is that, for a demand point to be optimal under this setting, it 

does not have to outweigh the sum of the other weights. If it does, then the knot will 

disappear down the hole of that weight. The conditions of optimality of a demand 

point in a more general linear barrier case can be given by the following property: 

Property 6.3.1 Let R be a set which is the union of the demand points visible from 

demand point Xr and the end points of the line barrier that are on the shortest paths 

to the points that are invisible from Xr. Xr is optimal if and only if: 

Proof. The proof is omitted as a similar one is given in Love et al. (1988, pg. 32) . 

• 
The proof depends on the fact that if the force exerted by the weight at Xr 

is at least as much as the net combined forces in the x and y direction of the other 

demand points at Xr, then Xr will be optimal. For a demand point that is invisible 

from X r , the force gets a new direction from one of the end points of the barrier. 

Therefore, if that end point is on the shortest path from Xr to the corresponding 

demand point, it is valid to consider that end point as the location of the demand 

point for practical purposes. 
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For our example illlustrated in Figure 6.3b, optimality of X 3 can be given as; 

Therefore, even a very tiny weight will make X 3 optimal. 

Case 2: Optimality of a Line Barrier Extreme (End) Point 

Assume that when we let the knot free, it settles at an end point of the line barrier 

where the forces generated by the weights are in equilibrium. The first case would 

be that the end point of the line barrier is an 'unconstraining point', i.e. removing 

the line barrier wouldn't change the location of the knot. In that case the problem 

reduces to the unrestricted Weber problem. If, however, there is a reaction force at 

the end point of the barrier, i.e. removing the line barrier would change the location 

of the knot, the situation will be different. Consider the following example illustrated 

in Figure 6.4. 

I, I, w, 
x, x, x, 

I 
+ 
w, 

Xi 
II I 

....++ 
w, w, w, 

I, I, I, 

a) b) c) 

Figure 6.4: Illustration for the Optimality of Ii 

We know that if w1 = w2 +w3 the knot will stay at the end point (Figure 6.4a). 
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If we move the knot towards X 1, the knot will remain at the place where we move it 

(Figure 6.4b), because the forces will be equal to each other in opposite directions in 

the absence of friction. But if we move the knot towards X 2 and X 3 (Figure 6.4c), 

the knot will come back to the end point of the line barrier since the combined force 

of w 2 and w3 in the opposite direction of w1 will be less than w1 . Furthermore, we 

do not need the condition w1 = w2 + w3 in order to keep the knot at the ·end point of 

the line barrier. This is explained by the following property. 

Property 6.3.2 11 will be the equilibrium point if­

1122Proof. The term ( ( w2 cos a 2 + w3 cos a 3 )
2 + ( w2 sin a 2 + w3 sin a 3) ) given in the 

property is the net force of w2 and w3 just to the right of 11 . If the net force is less 

than or equal to w1 , then it will not be able to pull the knot from 11 towards w 2 and 

w3 . Also, because of the condition w1 < w 2 + w3 , w1 will not be able to pull the knot 

towards itself. Therefore the knot will stay at l 1 . • 

If the assignment of the line barrier end points to the corresponding demand 

points is optimal, then the solution of the Weber problem will also give this end point 

as the global optimal point. Because all of the demand points will be visible from the 

end point of the barrier, the distances from the end point to the demand points will 

be Euclidean. Any movement of the knot from the end point will not decrease the 

objective function because of the triangle inequality. 

Case 3: Optimality of a Point not on the .Barrier 

In this part we consider the optimality of a point that is not on the barrier. When 

we let the knot free, it may settle at any point on the board where the forces of the 

demand points reach equilibrium. If we can prove the local optimality of this point 

under the Weber objective, then we can justify the use of the Varignon frame for the 

Weber problems with a line barrier. 

Consider the example illustrated in Figure 6.5. There are four demand points 

located on the plane which has a line barrier. Assume that when the knot is freed, it 
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settles at point X* = (x*, y*) , which is an equilibrium point of the weight forces on 

the strings and it is not on the barrier. 

Figure 6.5: Optimality of a General Point 

Let F be the net force on the knot and Fx* be the horizontal component of 

the net force , Fy* be the vertical component of the net force . We can write Fx* and 

Fy* as; 

and 

Fy* = w1 sin(a1) - w2 sin(a2) - W3 sin(a3) + W4 sin(a4) = 0. 

Now for a point X on the right hand side of the barrier, the Weber Problem can be 

written as the following MINLP program (Formulation 6.1): 
2 2 4 

f(X) =Min LLuijwi (l2 (X, Ii)+ l2 (Ij, Xi))+ L wil2 (X, Xi) 
i=l j=l i=3 

subject to 
2 

Luij = l,Vi 
j=l 

Uij E {O, 1} ' Vi,j 
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where Uij is defined as, 

. . _ { 1 if barrier end point j is assigned to demand point i } 
UiJ - . 

0 otherwise 

Assume that the planar area is partitioned in regions according to Butt and 

Cavalier (1996) as discussed in Section 6.2 and that the global optimal solution to 

the Weber problem in the presence of this line barrier is in the same region as X*. 

Let this region be defined by n and let the optimal location for the Weber problem 

be defined by X**. Figure 6.6 is the illustration of the partitioning in the convex 

hull of the demand points and the barrier end points. We restrict the location of the 

facility to the convex hull of the demand points and the barrier end points, due to 

the fact that the optimal facility location must lie within this convex hull (Butt and 

Cavalier (1996)). The demand points in Figure 6.6 have unit weights and are located 

at X 1 = (-5.5, 2.5), X 2 = (-4, -3.5), X 3 = (10, -3.5),X4 = (9, 3) and the barrier 

end points are located at 11 = (0, 4.5) and 12 = (0, -4.5). 

Figure 6.6: Partitioning the Region 

For region n, barrier end point 11 will be the optimal assignment to X 1 and 

barrier end point 12 will be the optimal assignment for X 2 . 
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The Weber problem will reduce to: 

where k1 = l2 (J1 , X 1) and k2 = l2 (J2 , X 2 ) are constant terms. 

This problem has the exact same minimizer as the unrestricted Weber prob­

lem, with the demand points located at 11 , 12 , X 3 and X 4 , since k1 and k2 are constant 

values. Partial derivatives of f (X**) are equal to the force components at X*. There­

fore, we can conclude that X** = X* is a global minimum inn. 

The optimum minisum location for the facility inn will be at X** = (5.51, 0.092) 

with the objective value of 34.497. 

We should note that if the assignment of demand points to the barrier end 

points was not correct, then X** would be a local minimum for the complete problem. 

For example, if we mistakenly assign 12 to X 1 , then the resulting minisum objective 

value will be 37.549 with the facility located at (5.5, 0) which will be a local minimum 

for the complete problem. 

6.3.2 The Varignon Frame with a Polyhedral Barrier 

In this section we consider the Varignon frame with a convex polyhedral barrier. A 

convex polyhedral shape acting as a barrier has a set of extreme points (vertices) 

denoted as P(B) and a set of facets (edges) denoted as P(F) where IP(B)I, IP(F)I ~ 

3 and P(B) c P(F). The extreme points on each end of the facet are called the 

end points of the facet. Figure 6.7 shows a convex octagonal barrier. As we know 

from the barrier touching property, for any convex polyhedral shape, if one of the 

existing faciliti~s is not visible from the new facility location, the shortest path to 

that existing facility, (in this case the length of the string), will pass through extreme 

points or facets of the barrier. The extreme points on this shortest path are called 

the intermediate points. 
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an extreme point 

Figure 6.7: An Octagonal Barrier 

Optimality of Barrier Facets (Edges) 

Assume that the knot settles at some point on the barrier with a convex polyhedral 

shape. What can we say about optimality of this point and the optimality of the 

facet that the knot stays on? Consider the following example illustrated in Figure 

6.8. There is an octagonal barrier with three demand points. The knot settles on the 

facet between 11 and 12• We provide the following propositions. 

Proposition 6.3.1 If the knot stays on a facet, then there can not be a weight in the 

half plane opposite the facet. 

Proof. If a knot position on the interior of the facet is stable then the opposing forces 

parallel to the facet are balanced. There can be no force component perpendicular 

to the facet because then the knot would be pulled off the facet up to a certain point 

at which equilibrium is reached. Thus there can not be a weight in the half plane 

opposite the facet. More generally, there can be no string bounding in that half plane. 

This means that the knot can be moved to any point on the facet including the end 

points because the forces will be balanced everywhere on the facet. • 
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Figure 6.8: Optimality of a Barrier Facet 
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Proposition 6.3.2 If the knot settles on a facet where there is no demand point 

present, then all the points on that facet including the end points are optimal for the 

Weber objective function. 

Proof. See Figure 6.8. If there is no demand point on the facet then any movement 

over the facet will generate a linear change in the competing forces w1 + w2 and 

w 3 . Since these forces should be equal to each other because of their collinearity 

in opposite directions, any point on the barrier facet will provide the same objective 

value. Therefore if a settle point is optimal, then all the points on that facet including 

the end points will be optimal. • 

However, if there is a demand point present on the facet, then any movement 

of the knot towards the demand point will decrease the objective value. Consequently, 

the optimal location will be a single point, which is the demand point location. 

Optimality of a Point on the Board 

Finding the optimal solution of a point located anywhere on the board for the Weber 

problem in the presence of convex polygonal barriers is difficult analytically. There 

are two known solution methodologies. The first one suggested by Butt and Cavalier 

(1996) requires the partitioning of the region by demarcation lines and solving a 

number of problems with convex objective function and possibly noncovex constraints. 

The second one suggested by Klamroth (2002) requires the partitioning of the region 

by visibility grids and determining which barrier intermediate points are to be used. 

The Varignon frame approach may overcome these difficulties. We explain the idea 

on Figure 6.8. To reach X 2 from the knot, the decision maker only needs to determine 

if upper or lower side of the barrier is to be used. If the string goes through the upper 

side of the barrier as in the figure, then weight w2 will automatically force the string 

to follow the shortest path which passes through intermediate points 12 , 13 and 14 . If 

we move the string towards the lower side of the barrier, then to reach X 2 , the string 

will pass naturally through 11 ,18 ,17 and h. As we can see, the intermediate points do 

not have to be determined explicitly. 
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Once the knot settles at a point, then we can treat the first intermediate 

point that is visible from the knot as the corresponding demand point location. If 

the assignment of the barrier directions to the demand points is correct, then as in 

the line barrier case, the location of the knot will be the global optimal location for 

the Weber objective. Otherwise, the location of the knot will at least be the local 

mm1mum. 

6.4 Examples 

To provide outputs for our analysis of the analog approach, we conducted some ex­

periments using two examples from the literature. The first example is from Butt 

and Cavalier (1996). The second example is from Katz and Cooper (1981), which is 

also used by Bischoff and Klamroth (2007). We did not attempt to achieve precision 

in our experiments. They were meant to be illustrative only. However, we did take 

measures to minimize friction. We used satin strings and the sides of the foam bar­

riers were covered with plastic adhesive tape. The holes on the plywood board were 

lubricated. 

6.4.1 Example 1: (Butt and Cavalier (1996)) 

In this example, we considered four existing facilities with equal weights, located at 

the coordinates given in Table 6.1. 

i 1 2 3 4 

Xi 1 15 9 3 

Yi 12 0 9 4 

Table 6.1: Parameters for Demand Points in Example 1 

We also considered two polygonal barriers, with the following extreme points 

given in clockwise order: 
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B 1 : ((0, 7), (3, 10), (6, 10), (6, 5)) and, B 2 : ((8, 1), (9, 4), (13, 14), (14, 4), (14, 2)). 

When we let the knot free, it settled at a point very close to point (6.857, 6.143) 

which was declared by Butt and Cavalier (1996) as optimal. Figure 6.9 is a picture 

from the experiment that shows the final location of the knot. 

Figure 6.9: Example 1 

122 




Ph.D. Thesis - M. S. Canbolat McMaster - Management Science 

6.4.2 Example 2: (Katz and Cooper, 1981) 

In this second example we considered 10 demand points with equal weights, located 

at the coordinates given in Table 6.2. There is also a circular barrier with a centre 

at (0, 0) and radius 3. This circular barrier is approximated by a 14-sided equilateral 

polygon from the outside. 

g'/, 1 2 3 4 5 6 7 8 10 

Xi 8 5 6 -3 -6 -3 -5 -8 5 8 


Yi 8 7 4 5 6 -4 -6 -8 -5 -8 


Table 6.2: Example 2 

In this experiment, the knot settled around Xz* = (-3.5, -0.4) (See Figure 

6.10), when we let the knot free from the left side of the barrier, and x; = (3.4, 0.2) 

(See Figure 6.11), when we let the knot free from the right side of the barrier. The 

objective function for x; is found as 88.4841 which is very close to the objective func­

tion reported by Bischoff and Klamroth (2007) (88.4689) for their best location when 

they approximated the circle from the outside with a 16-sided equilateral polygon. 

Figure 6.10: Example 2, Picture 1 
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Figure 6.11: Example 2, Picture 2 

6.5 Conclusions 

We have shown that a modified Varignon frame can be used to find an approximate 

local optimal solution for some Weber problems in the presence of barriers. The 

underlying mathematical functions for these types of problems are in general non­

convex and nonlinear, and it is difficult to find an optimal location. The method 

presented in this paper is an easy and traditional way of finding a 'good' solution in 

some circumstance. It is also a good way to illustrate the problem to lay persons. 

Practical application is limited by factors such as friction, hole size, number 

of demand points, etc. Intervention such as selection of the intermediate points is an­

other problem. If there is a limited number of intermediate points, these intermediate 

points can be selected through eye observation to find the shortest possible paths for 

a 'good' solution. Nevertheless, this approach can provide close to optimal solutions 

for problems involving barriers with a variety of convex polygonal shapes, which are 

normally an obstacle to providing analytical results. 

Even though we have not discussed the use of the frame for problems with 

circular barriers, we may still be able to use the frame for these problems as circular 

shapes can be easily approximated by polygonal shapes. The frame is a valuable 
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aid to visualization and could have applications in education and presentations. As a 

future research project, a computer program with a visual interface that uses the idea 

of equilibrium of force vectors could be developed. This would provide more accuracy 

and flexibility in applications. 
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Chapter 7 

Conclusions and Future Research 

This chapter summarizes the research performed in this thesis and suggests a number 

of research directions related to the problems explored. 

7.1 Conclusions 

This research examines four interrelated problems in the domain of restricted planar 

facility location and proposes new formulations and solution approaches. 

Chapter 1 provides a brief introduction to planar facility location theory, and 

presents various distance and objective functions that are commonly used in the 

literature. 

Chapter 2 presents literature reviews and classifications for planar facility loca­

tion problems under uncertainty and planar facility location problems in the presence 

of barrier regions. The classification in the literature gives us a clear picture of the 

literature and allows us to identify the gaps in the literature for possible research 

directions. 

Chapter 3 considers the problem of locating a facility on the plane and in the 

presence of a probabilistic line barrier whose location occurs by chance on a given 

horizontal route. The objective is to locate the facility such that the sum of the 

weighted expected distances between the facility and demand points is minimized 
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m the presence of this barrier. We prove that, when the underlying probability 

distribution is Uniform, the objective function is a convex function of the new facility 

location. A solution algorithm is presented and possible extensions are discussed. The 

findings of this chapter have been published in the European Journal of Operational 

Research (Canbolat and Wesolowsky (2010)). 

In Chapter 4, we start with the problem of locating a facility in a region where 

a fixed line barrier such as a borderline or a river divides the region into two. The 

sub-regions communicate with each other through a number of passage points located 

on the line barrier. First, we provide a new solution methodology to the previously 

studied minisum version of the problem. The problem is formulated as a mixed 

integer nonlinear programming (MINLP) program and an Outer Approximation (OA) 

algorithm is proposed. We show the efficiency of the algorithm on an example problem 

in the literature and through extensive computational work. We then apply the 

modified version of the OA algorithm to the minimax version of the problem and 

solve a number of randomly generated problems. We show that the OA algorithmic 

approach for both problem types is better than some general MINLP solvers, namely 

BARON and DICOPT. However, we also note that during the algorithmic process, 

we use a number of nonlinear programming (NLP) and mixed integer programming 

(MIP) solvers. Therefore, larger problem instances may still be difficult to solve. 

Lastly, we propose using one-infinity distance norms instead of the Euclidean 

distance for a version of the problem where the locations of the passage points are also 

unknown. One-infinity distance norms approximate the original Euclidean distance 

problem and yield a linear model. We are planning to send the findings of this chapter 

to the journal of Computers and Operations Research. 

In Chapter 5 we address the finite size barrier facility placement problem. Until 

recently, in facility location literature, barriers were thought of as static shapes that 

do not move. The robotics literature however has some research on planning the paths 

in the presence of moving obstacles (Latombe (1991)). But as far as we know, most of 

this research is dedicated to algorithmic approaches that aim for collision avoidance 
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and there is no direct relation to facility location research. The finite size facility 

(acting as a barrier) placement problem has been of interest to some facility layout 

researchers including Savas et al. (2002), Sarkar et al. (2005), and Kelachankuttu et 

al. (2007). Our work is different from these studies in many aspects as outlined in 

the literature review. 

In Section 5.2 we start with a simpler version of the problem given in Savas 

et al. (2002) by locating a barrier facility with a fixed orientation on a rectangular 

plane to minimize its interference to user-user interaction. We propose a solution 

algorithm that works in O(nlogn) time where n is the number of existing facilities. 

In Section 5.3, we incorporate another objective into the problem. The maximum of 

the closest rectilinear distances from the demand points to the barrier is minimized. 

To the best of our knowledge, user-user and user-facility interactions under a minimax 

objective have not been explored. Also the 'closest distance family' has never been 

used for this type of problems despite its relative importance. We provide a mixed 

integer programming formulation for this new bi-objective problem. In Section 5.4 we 

develop a Simulated Annealing (SA) heuristic for an extension of the problem where 

expropriation of existing facilities with some cost is also possible. 

The finite size facility placement problem has a practical importance in the 

urban planning context. Creation of public spaces in an existing downtown layout is 

a strategic decision that most municipalities may face. Locating such a public space 

inside an already filled up city layout may require expropriating some existing zones 

in exchange of finding a better place for the new public space. The resulting multiple 

criteria problem may produce bad decisions if not properly handled. For example, 

rezoning plans for downtown Brooklyn ignited a lot of controversy in 2004 where local 

residents and civic groups found the plans unacceptable in terms of the impacts of 

the plan on the surrounding residential areas, transportation, lack of open space, and 

displacement of existing residents and businesses' 1. This clearly shows the practical 

importance of the problem. We aim to publish the findings of this chapter in the 

1http://www.gothamgazette.com/article/landuse/20040119/12/841 
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Journal of Regional Science. 

Finally, in Chapter 6, we present a new analog approach to the Weber problem 

in the presence of barriers by using a variant of the Varignon frame. We show through 

analysis that the same analog can also be used for Weber problems in the presence 

of convex polygonal barriers. The analog may have practical uses in education and 

presentations. It provides rapid solutions, allows for flexibility, enables one to visualize 

the problem and helps in conducting experimental what-if analysis. The approach 

also has some shortcomings. First, it is easily affected by physical conditions such as 

friction , hole size, etc. Also the decision of selecting the barrier intermediate points 

through which the string pass is sometimes cumbersome. When the number of barriers 

increases, this decision may not be made easily by eye observation. Nevertheless, this 

approach can provide close to optimal solutions in a short time and can allow the 

decision maker to conduct post-optimality analysis. We are hoping to publish these 

findings. 

7.2 Future Research 

Although the problems studied in this thesis are all in the same domain, they are not 

directly related to each other. Therefore we would like to discuss the possible future 

research directions for each chapter. 

Chapter 3 is the first attempt to formulate a facility location problem in the 

presence of a probabilistic barrier. Therefore, we have made simplifying assumptions 

to facilitate our analysis. The first extension to the problem can be the consideration 

of other probability distributions for the location of the line barrier. The convexity 

of the objective function under a general probability distribution needs to be inves­

tigated in order to come up with a general statement about the convexity of the 

objective function. The probabilistic barrier can also be free of any restrictions, e.g. 

a barrier with a given shape and orientation can take place anywhere on the plane. 

These more advanced models will better represent real life problems but we presume 
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that analytical solution methodologies for these models will be hard to develop. One 

way of tackling these advanced models is to use a simulation-optimization approach. 

There are commercial stochastic optimizers such as MS Excel add-in Risk Optimizer2 
. 

Risk Optimizer has been developed by the Palisade Decision Tools company to per­

form stochastic optimizations. It has been used to solve a variety of optimization 

problems. The tool combines Monte Carlo simulation techniques with a genetic algo­

rithm heuristics for approximate optimization of mathematical models with random 

variables. 

In Chapter 4 we discuss the problem of locating a facility in the presence of 

a line barrier with a number of passages. We discuss the problem with passages 

being on the line but the passages may not be arranged on the line in real life. A 

practical example for this problem involves border crossing points in Southern On­

tario. International trade between the U.S. and Canada surpasses nearly 1.1 billion 

in goods alone that cross our border every day. In this context, logistics companies 

make strategic decisions such as on which side and where to build a transshipment 

point or a warehouse, as well as operational decisions such as which crossing point 

should be used given that each crossing point is a server with queuing issues. Fur­

thermore, given the financial crises in the automotive industry, the companies may 

have to make simultaneous decisions of opening and closing of facilities. Opening and 

closing of facilities have been considered by Wang et al. (2003) for a facility location 

problem with budget constraints only. 

For the problem family discussed in Chapter 5, we only consider the rectilinear 

distance norm. Depending upon the city road network, some other distance functions 

may better fit to the underlying problem. Therefore, for real life problems, it would 

be beneficial to conduct preliminary empirical study to determine the best fitting 

distance function to the problem. This brings the need for more studies on the 

problem using different distance functions . As it may be difficult to solve these new 

problems if the distance function is nonlinear, the BSSS algorithm can be investigated 

2 http://www.palisade.com/RISKoptimizer/ 
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as an alternative solution methodology. 

The analog approach suggested in Chapter 6 also requires further research. 

First, applicability of the frame to the facility location problems in the presence of 

circular and/or nonconvex barrier shapes needs to be explored. Second, as the analog 

approach can easily be affected by physical conditions, a computer program with a 

visual interface that uses the idea of equilibrium of force vectors could be developed 

in order to provide more accuracy and flexibility in applications. 
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