
BEHAVIOURAL FOUNDATIONS OF FEATURE

MODELING

BEHAVIOURAL FOUNDATIONS OF FEATURE MODELING

BY

ALIAKBAR SAFILIAN, M.Sc.

A THESIS

submitted to the school of graduate studies in partial fulfilment of

the requirements for the degree of

DOCTOR of PHILOSOPHY

McMaster University

c© Copyright by Aliakbar Safilian, 2016

Doctor of Philosophy Department of Computing & Software

Computer Science McMaster University

2016 Hamilton, Ontario, Canada

TITLE: BEHAVIOURAL FOUNDATIONS OF FEATURE

MODELING

AUTHOR: Aliakbar Safilian

SUPERVISOR: Dr. Tom Maibaum

Dr. Zinovy Diskin

NUMBER OF PAGES: xi, 223

ii

To my Mother, wife, and daughter

(Azizeh, Mahsa, and Sophia)

Abstract

Software product line engineering is a common method for designing complex software

systems. Feature modeling is the most common approach to specify product lines. A

feature model is a feature diagram (a special tree of features) plus some crosscutting

constraints. Feature modeling languages are grouped into basic and cardinality-based

models. The common understanding of the semantics of feature models is a Boolean

semantics. We discuss a major deficiency of this semantics and fix it by applying, in

turn, modal logic, the theory of multisets, and formal language theory. In order to

adequately represent the semantics of basic models, we propose a Kripke semantics

and show that basic feature modeling needs a modal rather than Boolean logic. We

propose two multiset based theories for cardinality-based feature diagrams, called

flat and hierarchical semantics. We show that the hierarchical semantics of a given

cardinality-based diagram captures all information in the diagram. We also charac-

terize sets of multisets, which can provide a hierarchical semantics of some diagrams.

We provide three different reduction processes going from a cardinality-based diagram

to an appropriate regular expression. As for crosscutting constraints, we propose a

formal language interpretation of them. We also characterize some existing analysis

operations over feature models in terms of operations on the corresponding languages

and discuss the relevant decidability problems.

iv

Acknowledgements

I am immensely grateful to my thesis advisors, Tom Maibaum and Zinovy Diskin, for

the advice, support and encouragement they have patiently provided to me. Their

advice on both research as well as on my career have been priceless.

I would like to thank the other members of my thesis examining committee, Don

Batory, William M. Farmer, and Jacques Carette for their review and helpful com-

ments.

My sincere thanks also go to Shoham Ben-David, Krzysztof Czarnecki and Ridha

Khedri for several valuable discussions.

Last but not the least, I would like to thank my family. My wife has been a

constant source of support and encouragement during the challenges of my PhD and

life. I am truly thankful for having her in my life. Words cannot express how grateful

I am to my mother for all of the sacrifices that she has made on my behalf. I would

not be who I am today without the love and support of my late father.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Product Line Engineering and Feature Models 1

1.2 Research Questions . 5

1.3 Contributions . 8

1.4 Organization . 11

2 Background 13

2.1 Feature Modeling Languages . 13

2.2 Formal Languages . 18

3 Modal Logic Theory of Basic Feature Models 25

3.1 Basic Feature Models: A Formal Framework 28

3.2 Partial Product Lines: Motivation . 30

3.2.1 Products as Processes . 30

3.2.2 PPLs: From lattices to transition systems 32

vi

3.3 Partial Product Lines: Formally . 37

3.3.1 Full and Partial Products . 38

3.3.2 PPLs as Transition Systems 42

3.4 Partial Product Kripke Structures and Their Logic 44

3.5 ppCTL theory of a Feature Model . 47

3.5.1 Structure of the component family 48

3.5.2 The Content of Component Theories 50

3.6 Other Applications of the Modal Logic View 53

3.6.1 Automated Analysis of FMs 53

3.6.2 PL-builder vs. PL-client View 55

3.6.3 Reverse Engineering of FMs 56

4 Multiset Theory of Cardinality-Based Feature Diagrams 58

4.1 Cardinality-Based Feature Diagrams and their Flat Semantics 60

4.2 Hierarchical Semantics . 67

4.3 Characterization of Hierarchical Products 75

4.4 Characterization of Hierarchical Semantics 82

4.5 Other Applications . 90

5 The Semantics of Cardinality-Based Feature Models via Formal Lan-

guages 93

5.1 Cardinality-Based Feature Diagram: Syntax 95

5.2 The CRE Transformation . 98

5.2.1 CRE-EML . 100

5.2.2 CRE-EGL . 102

vii

5.2.3 CRE-DR . 105

5.2.4 CRE-Shrinking Step and CRE 107

5.3 The ORE Transformation . 108

5.3.1 ORE-EML . 110

5.3.2 ORE-EGL . 111

5.3.3 ORE-DR . 114

5.3.4 ORE-Shrinking Step and ORE 115

5.4 The HRE Transformation . 116

5.5 Discussion on Transformations . 122

5.6 A Computational Hierarchy of CFMs 127

5.7 Analysis Operations over CFMs . 131

6 Related Work 135

6.1 Feature vs. Event Modeling . 135

6.2 Grammars-based Semantics . 138

6.3 Algebraic Approaches . 141

6.4 Feature Transition Systems . 144

6.5 Staged Configurations . 145

6.6 Other Formal Semantics . 147

7 Conclusion and Future Work 149

7.1 Conclusion . 149

7.2 Open Problems . 153

A Proofs of Chapter 3 161

viii

B Proofs of Chapter 4 168

C Proofs of Chapter 5 187

Bibliography 201

List of Notations and Abbreviations 213

ix

List of Figures

1.1 A tree of features for the vehicle product line 3

1.2 Feature constraints on features trees of vehicle product line 4

2.1 An FM of a car system . 14

2.2 A CFM of a car system . 17

2.3 Transition graphs: example . 21

2.4 A containment hierarchy of formal languages 22

3.1 Two FMs with the same Boolean semantics 26

3.2 From FMs to PPLs: simple cases . 31

3.3 An FM: a fragment of Figure 2.1 . 33

3.4 A fragment of the PPL of Figure 3.3 34

3.5 Exclusion of an edge due to I2C . 36

3.6 An FM of an Engine Frame (a), and its PPL (b) 55

4.1 A CFD: running example . 61

4.2 Two different CFDs with the same flat semantics 68

4.3 Diagram induced by a node: an example 68

4.4 The representation of Figure 4.1 in terms of induced diagrams 69

4.5 Trees associated with tree-like multisets: example 80

4.6 Representative CFDs of single tree-like multisets: example 82

x

4.7 Representative CFDs of mergeable tree-like multisets: example 83

4.8 Representative CFDs of mergeable tree-like multisets: example 84

4.9 Megeable trees and their representative trees: an example 85

4.10 Minimal representative CFDs of U and U◦ 88

4.11 Minimal representative CFDs of U1 and U1
◦ 88

5.1 A CFD: running example for transformations 96

5.2 CRD to RE: shrinking procedure on Figure 4.1. 100

5.3 Difference between ORE and CRE: example 123

5.4 Faithfulness in CRE and HRE: example 125

5.5 A Computational Hierarchy of CFMs 130

6.1 An FM adopted from [dJV02] . 138

6.2 Two FDs with the same grammar in the de Jong and Visser approach 140

6.3 An FM adopted from [HKM11a] . 142

6.4 PPLs vs Staged configuration: a staged configuration 146

6.5 PPLs vs Stage configuration: A PPL 146

B.1 D2: The diagram induced by depth 2 of D1 169

C.2 Substitution of a Leaf Node with a CFD: An example 189

C.3 Cutting of CFD by nodes: an example 190

xi

Chapter 1

Introduction

This thesis provides several theoretical frameworks to address some challenging is-

sues in feature modeling – a common approach for modeling software product lines.

We invoke modal logic, multiset theory, and formal language theory to provide some

appropriate semantics capturing the behavioural semantics of feature modeling.

1.1 Product Line Engineering and Feature Models

Product line engineering [PBVDL05] is a very well-known industrial approach to soft-

ware/hardware design. There are many successful industrial stories applying product

line engineering, e.g., “Mega-Scale Product Line Engineering at General Motors”

[FKC12], “HomeAway case study” [KCB08], “LG Industrial Systems” [PBVDL05],

“Lufthansa Systems” [CDMM11], and “Nokia Mobile Phones, Browsers, and Net-

works” [MR02, JRvdL00, Jaa02].

A product line is a set of products that share some commonalities along with

1

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

variabilities, where commonalities and variabilities are usually captured using en-

tities called feautres. There are several definitions for a feature in the literature,

e.g., “a system property that is relevant to some stakeholders” [CHE05a], “a logical

unit of behavior specified by a set of functional and non-functional requirements”

[Bos00], “a software or hardware artifact such as requirements, architectural prop-

erties, components, or code” [HKM11a]. Some other definitions can be found in

[PBVDL05, SK01, JGJ97, KLD02]. An interested reader may find in [BLR+15] a

good study on features. We consider a feature as a system property that a product

of the system may have.

We describe the motivation for product line engineering using a vehicle system.

Consider a vehicle factory producing several different vehicle models. All models

have many common features, e.g., engine, gear, body, brake, wheel, window, door, etc.

They may also have some variable (a.k.a. optional) features: different engine types

(e.g., gas or electric), different gear types (e.g., automatic or manual), they may be

optionally equipped with an anti-skidding (abs) brake system, etc.

The idea of product line engineering is that, instead of producing products in-

dividually, the common core of a product line is produced, leaving a much smaller

task to be completed, namely the adaptation of the core to a concrete application

requirement. This results in a significant reduction in development time and cost

[PBVDL05]. Other advantages are reusability [Bos01], reduced product risks [QC11],

increased product quality [Jen07], etc.

There exist several approaches for modeling product lines, including orthogonal

variability modeling [PBVDL05], decision modeling [SRG11], and feature modeling

2

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

2"

The$Idea$of$Feature$Modeling$

body �engine�axle�

wheel �

gear �brake � door �

window �

vehicle�

Automatic �Manual�abs� electric �gas �

FM'15"

Figure 1.1: A tree of features for the vehicle product line

[KCH+90]. Feature modeling is the most common approach for modeling the com-

monalities and variabilities of a product line. Feature modeling was first introduced

by Kang et al. in 1990 [KCH+90] and has been one of the main topics of research

in software product line engineering and variability modeling ever since. Below, we

describe the idea of feature modeling for modeling product lines.

A feature in a product line may be a subfeature of another feature. In our vehicle

product line, the features wheel, abs, gas/electric, automatic/manual, and window could

be seen as subfeatures of axle, brake, engine, gear, and door, respectively. By adding

the product name (vehicle) as a feature, we get a tree of features. Figure 1.1 represents

a tree of features for our vehicle product line.

There may also be some feature constraints on this tree. For example, some fea-

tures may be mandatory subfeatures of their parents, e.g., brake, engine, gear, and

body are mandatory subfeatures of vehicle. Some others may be optional subfeatures

of their parents, e.g., abs and window are optional subfeatures of brake and door,

respectively. Let black filled and unfilled circles on nodes denote mandatory and

optional features, respectively (see Figure 1.2). We may also have some group con-

straints (a.k.a. decomposition operations). For example, gas and electric are in an

3

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

3"

The$Idea$of$Feature$Modeling$

body �engine�axles�

wheels�

gear �brake � doors �

windows�

vehicle�

Automatic �Manual�abs� electric �gas �

(2,4)"

FM'15"

Mandatory�

Optional�
OR �

XOR �

Multiplicity�
(2,*)"

(2,2)"

Figure 1.2: Feature constraints on features trees of vehicle product line

OR relationship, meaning that an engine can be either gas or electric or both, and

automatic and manual are in an XOR relationship, meaning that a gear can be either

automatic or manual but not both. We represent OR and XOR groups by filled and

unfilled angles, respectively (see Figure 1.2). We may also want to deal with the

number of occurrences (called multiplicities) of features in products. For example,

let the number of occurrences of door in a vehicle be at least two and at most four.

The pair (2, 4) on door in Figure 1.2 represents this constraint. We already see the

idea of feature diagrams: A feature diagram is a tree of features equipped with some

annotations on features or edges showing the relationships between features.

We may also want to add some constraints involving incomparable features. (Two

features of a given feature diagram are called incomparable if neither of them is a

descendant of the other in the feature diagram.) Such constraints are called cross-

cutting constraints (a.k.a. crosstree constraints). For an example, let “gas includes

abs” be a crosscutting constraint over the feature diagram in Figure 1.2. It states

that a gasoline engine vehicle must have an ABS brake. A feature diagram with some

possible crosscutting constraints is called a feature model.

Feature models are grouped into basic and cardinality-based feature models. Basic

4

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

feature models represent product variability and commonality in terms of Boolean

constraints: optional/mandatory features, and OR/XOR decomposition operations.

In cardinality-based feature models, multiplicities are used in place of traditional

Boolean annotations. A more detailed background on basic and cardinality-based

feature models will be given in Chapter 2.

Analysis of feature models is about extracting practically useful information from

them [BBRC06]. For example, we may want to extract the following information from

a given feature model: the valid products; the subfeatures of a given feature; the core

features; the least common ancestor of a given set of features. Some other analyses

involve two feature models and address some questions about their relationships, e.g.,

decide whether two given feature models represent the same products or not.

1.2 Research Questions

Industrial feature models may include thousands of features with many constraints be-

tween them, e.g., the linux kernel product line has more than 8000 features [STE+10].

Therefore, we may have a very large number of possible configurations for an indus-

trial system, e.g., 28000 possible configurations1 in the linux kernel. It becomes worse

when we deal with cardinality-based feature models, as product families in cardinality-

based feature models may be infinite (e.g., consider a feature in a cardinality-based

feature model with no upper bound on its number of occurrences). Hence, we need

to support automated analysis of feature models [BBRC06].

To support automated analysis of feature models, we first need to provide a formal

1The estimated total number of atoms in the observable Universe is between 2259 to 2273[Loe14].

5

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

semantics for feature models. This would remove any ambiguities from the semantics

of feature models and makes them processable by tools.

The common understanding of the semantics of a feature model in the literature

is its product family [SHTB07], where a product family of a given feature model is a

set of valid flat configurations of features. A flat configuration of a basic (cardinality-

based, respectively) feature model is a flat set (multiset, respectively) of features

satisfying the constraints of the feature model. This semantics does not capture all

essential and practically important information of feature models. This is mainly

because a feature model also provides a hierarchical structure for features, which is

forgotten in its product family [SLB+11]. For a very simple example, consider two

feature models M1 (a is the root and b is the only mandatory child of a) and M2 (b

is the root and a is the only mandatory child of b). M1 and M2 represent the same

product family consisting of the only product {a, b}, but their hierarchical structures

are different. Capturing hierarchical structures of feature models is important for

several analysis operations over feature models. Indeed, any analysis operation relying

on the hierarchical structure of a given feature model cannot be addressed using its

product family semantics. Such analysis operations, including least common ancestor

of a given set of features, root feature of a given feature model, subfeatures of a given

feature, were explicitly characterized in the literature as necessarily relying on this

information [BSRC10]. There are some other important analysis problems, in which

the use of the product family semantics can be error-prone. For example, it is often

important to know if one feature model M1 is a refactoring of another feature model

M2, or a specialization of M2, or neither [TBK09]. Relying on a poor semantics

like the product family semantics to define refactoring and specialization makes the

6

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

definitions inadequate for their goals. Some concrete examples will be provided in

Chapter 3. Another deficiency of the product family semantics is relevant to reverse

engineering of feature models. Indeed, the main reason making the current state of

the art approaches [SLB+11, LHLG+15] a heuristic one is mainly caused by using

such a poor abstract view of feature models.

Based on the above discussion, we define a faithful semantics for a given feature

model as a semantics capturing all essential and practically important information

about the feature model, i.e., the product family and the hierarchical structure of the

feature model.

Several formal semantics have been proposed for feature modeling, including a

propositional logic encoding of basic feature models [Man02], Z-based (first order

logic) semantics for basic feature models [SZFW05], algebraic based semantics for ba-

sic feature models [HKM11b], context-free grammar encoding of basic feature mod-

els [dJV02], and context-free based semantics for cardinality-based feature models

[CHE05a]. However, none of them provides a faithful semantics for feature models

(See Chapter 6 for a more comprehensive discussion.).

The most common methods for doing automated analysis on basic feature models

are propositional logic [Bat05, MWC09, Seg08] and constraint programming based

[BSTRC06b, WSB+08]. In these methods, a given feature model is translated into

propositional logic formulas or a constraint programming language and then off-the-

shelf tools such as Boolean Satisfaction Problem (SAT) or Constraint Satisfaction

Problem (CSP) solvers are used for reasoning about the feature model. However,

these encodings capture only the product family of feature models and, hence, can-

not address the analysis operations relying on the hierarchy within feature models.

7

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Automated analysis over cardinality-based feature models is much more challenging

than over basic ones. As far as we know, automated analysis of cardinality-based

feature models is an open problem (it has not been even partially addressed).

The above discussion lead to our main research question(s) in this thesis:

• What is a formal and faithful semantics for feature modeling captur-

ing more interesting and useful aspects of models?

• Any proposed semantics should provide (or lead us) to a framework

to do automated analysis over feature models.

1.3 Contributions

In this section, we give a summary of the main contributions made in the thesis. The

contributions are grouped into the categories (i) “Modal Logic theory of basic Feature

Models”, (ii) “Multiset theory of Cardinalty-based Feature Diagrams”, (iii) “Formal

Language Theory of Cardinality-based Feature Models”.

(i) Modal Logic theory of basic Feature Models. The main goal of this

work is to show that Kripke structures and modal logic provide an adequate logical

basis for basic feature modeling. Our main observation is that the semantics of a

basic feature model should be considered as an instantiation process rather than its

final results (products). We call intermediate states of this process partial products,

and argue that what a feature model M really specifies is a partially ordered set of

partial products, which we call a partial product line generated by M. The commonly

considered products of M would be a subset of M’s partial product line. We then

show that any partial product line can be viewed as an instance of a special type

8

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

of Kripke structure, which we axiomatically define and call a partial product Kripke

structure. The latter are specifiable by a suitable version of modal logic, which we

call partial product CTL, as it is basically a fragment of CTL enriched with a constant

(unary) modality that only holds in states representing full products. We show that

any basic feature model M can be represented by a partial product CTL theory

Φ(M) accurately specifying M’s intended semantics: the main result states that for

any partial product Kripke structure K, K |= Φ(M) iff K is equal to M’s partial

product line, and hence Φ(M) is a sound and complete representation of the feature

model. In other words, Φ(M) provides a faithful logical theory of M.

(ii) Multiset Theory of Cardinalty-based Feature Diagrams. A natural

way to formalize the semantics of cardinality-based feature models should use a mul-

tiset theory. We propose two multiset theories for cardinality-based feature diagrams,

called flat and hierarchical semantics.

Flat products are defined analogously to full (flat) products in basic feature mod-

eling, i.e., a flat product of a given cardinality-based feature diagram is a multiset of

features satisfying the subfeature relationships and multiplicity constraints. The set

of all such multisets is called the flat semantics of the diagram. The flat semantics of

a cardinality-based feature diagram provides a useful abstract view of the diagram,

as it can address a large number of analysis questions about the diagram. However,

it is a poor abstract view, as it does not capture some useful information about the

diagram, such as the hierarchical structure.

We propose another semantics called hierarchical products providing a faithful se-

mantics for cardinality-based feature diagrams. To this end, we first define a hierarchy

of multisets built over features. A hierarchical product of a cardinality-based feature

9

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

diagram is a multiset (in the corresponding multisets hierarchy) such that the rank

of the multiset corresponds to the depth of the diagram. The set of all hierarchical

products is called the hierarchical semantics of the diagram. We then prove that

the hierarchical semantics of a given cardinality-based feature diagram captures all

information about the diagram so that one can get back to the diagram from its

hierarchical semantics. We also characterize sets of multisets, which can be used as

the hierarchical semantics of some cardinality-based feature diagrams.

(iii) Formal Language Theory of Cardinality-based Feature Models. We

invoke formal language theory [Lin11] to build some faithful semantics for cardinality-

based feature modeling. This way, we can approach feature modeling problems by

translating them into formal language theory problems that could be managed by

well-elaborated formal language theory methods and tools. To this end, we transform

cardinality-based feature diagrams to regular expressions and further propose a formal

language interpretation of crosscutting constraints.

We have provided three types of reduction processes going from cardinality-based

feature diagrams to regular expressions. Each of these transformations has its own

usage and advantages. Although these transformations are different, they share some

common important properties regarding the computational properties of regular lan-

guages. These properties make of the proposed frameworks good bases for addressing

automated analysis over cardinality-based feature models.

Giving formal language interpretations of crosscutting constraints allows us to

integrate the formal semantics of cardinality-based feature diagrams and constraints.

Accordingly, we propose a computational hierarchy of cardinality-based feature

models which guides us in how feature models can be constructively analyzed. We

10

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

also characterize some existing analysis operations over feature models in terms of

languages and discuss the corresponding decidability problems.

1.4 Organization

Chapter 2 provides some background: We discuss basic and cardinality-based feature

modeling using a toy example. We also provide a concise background to formal

language theory and introduce some new definitions and uncommon notations for the

theory used throughout the thesis.

In Chapter 3, we describe our modal logic treatment of basic feature modeling:

We first argue why the Boolean semantics of feature models is a poor abstract view of

models. We introduce our formal definition of the syntax of basic feature models in

Section 3.1. Section 3.2 motivates the idea of partial product lines. In Section 3.3, we

formally show how to get the partial product line for a given feature model. Partial

product Kripke structures and CTL are introduced in Section 3.4. We present the

main theoretical results in Section 3.5. Section 3.6 concludes the chapter with several

other interesting applications of the modal logic view of feature modeling. The proofs

of the selected theorems and propositions are given in Appendix A.

Chapter 4 discusses the multiset theories of cardinality-based feature diagrams:

We first give a formal definition of the syntax of cardinality-based feature diagrams

in Section 4.1. This section informally and formally discusses the flat semantics.

Section 4.2 discusses and formalizes the idea of hierarchical semantics for cardinality-

based feature diagrams. To this end, a hierarchy of finite multisets over a given set is

proposed. The characterizations of hierarchical products and semantics are given in

Sections 4.3 and 4.4, respectively. Several theorems are presented gradually leading us

11

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

to show that the hierarchical semantics of a given cardinality-based feature diagram

faithfully represents the diagram. Proofs of selected theorems are given in Appendix

B.

We propose three different transformation procedures of cardinality-based feature

diagrams to regular expressions in Chapter 5: We introduce the first transformation

in Section 5.2 and show that it provides a faithful semantics for cardinality-based

feature diagrams. Section 5.3 discusses the second transformation and show that it

captures the flat semantics of cardinality-based feature diagrams. In Section 5.4, we

propose the third transformation and show that it provides a faithful semantics for

cardinality-based feature diagrams. The properties, advantages, and disadvantages

of each transformation are discussed in Section 5.5. In Section 5.6, we start with

a language interpretation of crosscutting constraints over cardinality-based feature

diagrams. Then, a computational hierarchy of feature models are described. Section

5.7 discusses analysis operations over cardinality-based feature models in terms of

languages and investigate their decidability properties. Proofs of selected theorems

are given in Appendix C.

Related work and conclusions/future work are discussed in Chapter 6 and Chapter

7, respectively.

This thesis contains more than 30 lemmas and theorems. Only the main theorems

are stated in the main part of the thesis. Others can be found in appendices. The

reason for this is to make the thesis more readable and understandable.

A list of notations and abbreviations used in the thesis can be found on page 212.

12

Chapter 2

Background

In this chapter, we provide some essential background to make the later chapters

readable. Section 2.1 discusses two different types of feature modeling languages, basic

and cardinality-based. We describe them on a vehicle system as an example. Section

2.2 provides a concise background on some materials in the formal language theory,

which are used in the thesis. Some further concepts on the theory are introduced

where they are used. Along with some common concepts and notations, we will

introduce some new definitions/uncommon notations which are used throughout the

corresponding chapters.

2.1 Feature Modeling Languages

Feature modeling was introduced by Kang et al. in 1990 [KCH+90]. They proposed

a language for feature modeling called FODA. Afterwards, many feature modeling

languages with different notations have been proposed, including FORM [KKL+98],

FeatuRSEB [GFd98], GP [CE00], and PLUSS [EBB05]. Schobbens et al. [SHTB07]

13

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

vehicle �

engine� brake �

abs�electric �gas �

gear �

automatic � oil�manual �
✕! ✕!

wheel �

axle�

Figure 2.1: An FM of a car system

showed that all the above languages have the same expressiveness. These languages

are known as basic feature modeling languages. Czarnecki et al in [CHE04] proposed

another language called cardinality-based feature modeling, which provides the most

expressive feature modeling language amongst the existing ones. We describe basic

and cardinality-based feature models using a small part of a vehicle system as an

example.

Figure 2.1 is a basic feature model (FM)1 of the system. The main part of an FM,

called a basic feature diagram (FD), is a tree of features equipped with some special

annotations on the tree’s elements to exhibit the relationships between features.

An edge with a black circle (•) shows a mandatory feature: every vehicle must

include engine, gear, axle, and brake; a gear must include oil. An edge with a hollow

circle (◦) shows an optional feature: a brake can be optionally equipped with abs.

These two types of edges (mandatory and optional) are called solitary.

Other edges are grouped into two groups: OR (denoted by black angles N) and

1 We abbreviate basic feature models (diagrams, respect.) to FM (FD, respect.), while we will
use CFM (CFD, respect.) to abbreviate cardinality-based feature models (diagrams, respect.).

14

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

XOR (denoted by hollow angles M). The OR group {gas, electric} indicates that

an engine can be either gasoline or electric, or both. The XOR group {automatic,

manual} shows that a gear can be either automatic or manual, but not both.

A crosscutting constraint (CC) on an FD can be any Boolean logic formula over

the set of incomparable features [Bat05]. Let us have the following two formulas as

the CCs on our example:

– cc1 : automatic −→ abs

– cc2 : electric ∧manual −→ ⊥

cc1 and cc2 state that “a vehicle with an automatic gear must be equipped with an

abs brake” and “an electric vehicle cannot have a manual gear”, respectively (we

have shown these two CCs by an x-ended arc and a dashed arrow in Figure 2.1,

respectively.)2. cc1 and cc2 are called an inclusive and an exclusive CC, respectively.

A product of an FM is usually considered to be a set of features satisfying the

constraints of the FM. The set C = {vehicle, engine, gear, axle, wheel, brake, oil}

represents the set of the common features in all products of the example. This FM

represents the following 8 valid products:

– C ∪ {gas, automatic},

– C ∪ {gas, automatic, abs},

– C ∪ {gas,manual},

– C ∪ {gas,manual, abs},

– C ∪ {electric, automatic},

– C ∪ {electric, automatic, abs},

– C ∪ {gas, electric, automatic},

2 Note that it is not possible to visually show all CCs in this way, as a CC may involve more
than two features.

15

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

– C ∪ {gas, electric, automatic, abs}.

As some examples for invalid products, consider the following sets.

– C ∪ {gas,manual, automatic},

– C ∪ {electric,manual},

– C ∪ {electric, abs, automatic}.

They violate the constraints XOR on {automatic, manual}, cc2 , and cc1, respectively.

The set of all products of a given FM M is called the product family of the FM.

Now, suppose that we need to specify some requirements regarding the number

of feature occurrences. For example, consider the following requirements:

(i) the number of axles in a vehicle cannot be one or six and there is no upper

bound on it;

(ii) for each axle in a vehicle, there exists exactly two wheels.

Clearly, basic feature models like in Figure 2.1 cannot model such requirements, as

they do not manage the number of occurrences of features.

To address such system requirements, Czarnecki et al. proposed cardinality-based

feature models (CFMs) [CBUE02, CHE05a, CK05], where multiplicity constraints

on features and groups of features, are used in place of traditional edge types (op-

tional/mandatory features, and XOR/OR groups). Naturally, there are two types

of multiplicity constraints: feature and group multiplicity constraints. A multiplicity

constraint is usually expressed as a sequence of pairs (l, u), where l is a natural num-

ber, u is either a number or ∗ (representing an unbounded multiplicity) and l ≤ u.

Henceforth, we call a multiplicity constraint on a node or group a multiplicity domain.

Figure 2.2 provides a cardinality-based feature diagram (CFD) for the vehicle sys-

tem including the requirements (i) and (ii). To model the OR group {gas, electric} in

16

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

vehicle�

engine� brake �

abs�electric �gas �

gear �

automatic � oil�manual � wheel �

axle�

(1,2) �

(2,5) �

(2,2) �(0,1) �
(1,1) �

(7,*) �

D�

Figure 2.2: A CFM of a car system

terms of multiplicity constraints, we use the multiplicity domain (1, 2) on the group.

The XOR group {automatic, manual} is modeled using the multiplicity domain (1, 1).

The feature multiplicity domain (0, 1) on abs models its optional presence in a brake.

The feature multiplicity domain (2, 5)(7, ∗) on axle and (2, 2) on wheel satisfy the

requirements (i) and (ii), respectively. As a convention in the thesis, the multiplicity

domain (1, 1) is assumed if no constraint domain is shown on a feature: the mul-

tiplicity domains on engine, brake, gear, gas, electric, automatic, oil, and manual are

(1, 1).

CCs in a cardinality-based feature model (CFM) can refer to feature occurrences.

Take, for example, the constraint: cc3: “if the the engine type is electric, then the

number of axles must be greater than 3”. A product of a CFM is usually considered as

a multiset of features satisfying the constraints. For example, the following multisets

are valid products of our example, where C = d vehicle, engine, brake, gear, oil e.3

– C] d gas, automatic, abs, axle2,wheel4 e,

3 We use brackets ‘d’, ‘e’ as multiset identifiers.

17

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

– C] d electric, automatic, abs, axle4,wheel8 e,

– C] d gas, abs,manual, axle3,wheel6 e.

The following multisets are not valid products of the example:

– C] d electric, automatic, axle2,wheel4 e,

– C] d electric, automatic,manual, axle4,wheel8 e

They violate the constraints cc3 and the group multiplicity (1, 1) on {automatic,

manual}, respectively. Note that the set of valid products of this CFM is an infi-

nite set.

Remark 2.1. Cardinality-based feature models are much more expressive than basic

ones, as any Boolean constraint can be expressed in terms of multiplicities: a manda-

tory feature and an optional feature can be expressed by the multiplicity domains

(1, 1) and (0, 1), respectively; the multiplicity domains (1, n) and (1, 1) model an OR

and an XOR group with n elements, respectively.

2.2 Formal Languages

In this section, we provide a concise background on some materials in formal language

theory, which are used in the thesis. For a more complete background, we refer the

interested reader to some standard textbooks like [Lin11, Dav94, Koz97, Hop07,

Coo03].

Let us, first, fix the alphabet (set of symbols) and denote it by Σ. Σ∗ denotes the

set of all finite words (sequences of occurrencess of symbols) built over Σ. Any subset

of Σ∗ is called a language.

The languages are grouped based on their computational properties. The most

18

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

well-known are regular, context-free, context-sensitive, recursive, and recursively enu-

merable languages. It is worth mentioning that, according to the Turing-Church thesis

[Cop02], we consider algorithms and Turing machines equivalent.

Recursively Enumerable Languages. A language L is called a recursively

enumerable language4 if there exists an algorithm (Turing machine) accepting the

language. In other words, there is an algorithm such that it halts (terminates) for

any given element (word) in L and outputs a symbol indicating that the input is in

L. Note that there is no guarantee that the algorithm halts for any other given words

(the words that are not in the language).

Recursive Languages. A language L is called recursive (a.k.a. computable,

decidable) if there exists a Turing machine such that it halts for any given word and

decides whether the input is in the language or not. Obviously, the class of recursively

enumerable languages is a subclass of the recursive languages class.

Context-Sensitive Languages. A language is called context-sensitive if there

exists an algorithm written in a monotonic grammar. A grammar is monotonic if all

of its production rules, a.k.a., productions, are in the form of Γ→ Θ, where Γ and Θ

are strings generated over terminals and non-terminals and Θ is not shorter than Γ.

Any context-sensitive language is a recursive language.

Context-free Languages. A language is called context-free if it can be generated

by some context-free grammar. A grammar is context-free if all of its productions

are in the form of V → Θ, where V is a non-terminal symbol and Θ is a string of

terminals and/or non-terminals.5 Therefore, the class of context-free languages is a

4 a.k.a. semi-computable, semidecidable, computably enumerable, and Turing-recognizable

5 We could define context-free languages using push-down automata [Lin11]. Since we do not use
push-down automata in this thesis, we do not discuss them at all.

19

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

subclass of context-sensitive languages.

Regular Languages. A language is regular if and only if it can be expressed

by some regular expression, regular grammar, or finite state automaton. Any regular

language is a context-free language.

Regular expressions are defined according to the following BNF expressions (N

denotes the set of natural numbers):

R ::= ∅ | ε | σ (for any σ ∈ Σ) | R+R | R.R | R∗ | (R).

The expressions ∅, ε, σ (for any σ ∈ Σ) are often called primitive regular expressions.

The semantics of a regular expression is commonly considered as the language

associated with the expression. The language associated with a regular expression R

is denoted by L(R) and defined in an inductive way as follows:

L(∅) = ∅,

L(ε) = {ε},

L(σ) = {σ}, for any σ ∈ Σ,

L(R1 +R2) = L(R1) ∪ L(R2),

L(R∗) = (L(R))∗,

L((R)) = L(R),

L(R1.R2) = L(R1).L(R2).

We extend regular expressions by a definable operation n (for n ∈ N) on regular

expressions, called iteration: Rn = R . . .R︸ ︷︷ ︸
n

. This will help us to give much more

concise regular expressions for cardinality-based feature diagrams (see Chapter 5).

A (non-deterministic) finite state automaton (FSA) is a tuple (S, T, F, I) where S

20

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

b

a
a

A

C

Figure 2.3: Transition graphs: example

is a finite set of states, T : S × (Σ ∪ {ε}) → 2S is a transition function, F ⊆ S is a

set of final states, and I ⊆ S is a set of initial states. The transition relation can be

extended to T ∗ : S × Σ∗ → 2S to deal with strings rather than a single symbol. The

meaning of T ∗(s, w) = S ′ is that S ′ is the set of all possible states that the FSA may

be in by starting at the state s and processing the word w.

Like regular expressions, the semantics of an FSA is often given via formal lan-

guages. Let A = (S, T, F, I) be an FSA. The language associated with A is denoted

by L(A) and is equal to {w ∈ Σ∗ : ∃i ∈ I, T ∗(i, w) ∩ F 6= ∅}.

Transition graphs are sometimes used to visually represent finite state automata.

Figure 2.3 represents an FSA for the language {w ∈ {a, b}∗ : the number of occur-

rencess of a is even}. The initial state is identified by an incoming unlabelled arrow

not originating at any state. The final states are drawn with double circles.

A regular grammar is either a right or left regular grammar. The productions

of a right (left, respectively) regular grammar must be in one of the following forms:

V → ε (the same, respectively), V → σ (the same, respectively), V → σV ′ (V → V ′σ,

respectively), where σ is a terminal (symbol) and V, V ′ are non-terminals (symbols).

We also need to know the notion of bounded regular languages. We say a regular

language L is a bounded regular language, if there are n words w1, . . . , wn ∈ Σ∗ such

21

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer ScienceHierarchy)(FL))

Recursively Enumerable

Recursive

Context-sensitive

Context-free

Regular

Figure 2.4: A containment hierarchy of formal languages

that L ⊆ w∗1 . . . w∗n.

Figure 2.4 presents a containment hierarchy of formal languages: Regular ⊂

Context-free ⊂ Context-sensitive ⊂ Recursive ⊂ Recursively enumerable (r.e.)

The following properties of formal languages are used throughout the thesis:

Closure Properties. The class of regular languages is closed under the set

operations union, intersection, complement, relative complement. It is also closed

under the language operations Kleene star, concatenation, and reversal.

The class of context-free languages is closed under the set operation union, but is

not closed under other set operations. It is also closed under Kleene star, reversal, and

concatenation. This class is also closed under intersection with any regular languages.

The class of context-sensitive languages is closed under union, intersection, com-

plement, relative complement, Kleene star, concatenation, and reversal. This class is

also closed under intersection with any regular languages.

Decidability. All recursive languages (including regular, context-free, and context-

sensitive languages) are decidable. Below, we state some other decidability results

that are used throughout the thesis.

For a given language L, the emptiness problem is to decide whether L = ∅ or

22

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

not. The problem is decidable in both classes of regular and context-free languages.

However, it is not decidable in the class of context-sensitive languages.

Given two languages L and L′, the equality problem is to decide whether L = L′

or not. The equality problem is decidable in the class of regular languages, but

undecidable in other classes of formal languages [KN12]. However, if one of the

given languages is a bounded regular and the other is context-free, then the equality

problem would still be decidable [Hop69].

Given two languages L and L′, the inclusion problem is to decide whether L ⊂ L′

or not. The problem is decidable in the class of regular languages, but it is undecidable

in other classes of formal languages. However, if L is context-free and L′ is regular,

then the above problem would be decidable.

Parikh Images and Theorem. Let Σ = {σ1, . . . , σn}. The Parikh image

(a.k.a. Parikh vector) [Par61] of a given word w ∈ Σ∗ is the vector (o1, . . . , on) where

oi denotes the number of occurrences of σi in w. Clearly, the Parikh image of a word

can be seen as a multiset over the alphabet. Thus, we recast the original definition

in the following way: The Parikh image of w is the multiset [σo1
1 , . . . , σ

on
n], where oi

denotes the number of occurrences of σi in w.

Parikh in [Par66] proved that the Parikh image of any context-free language, i.e.,

the set of Parikh images of its words, would be equal to the Parikh image of a regular

language.

In the following, we introduce some other notations that are used in the later

chapters. Let Σ be an alphabet.

• For any σ ∈ Σ, let σn denote the word σ . . . σ︸ ︷︷ ︸
n

.

• RE(Σ) denotes the class of all regular expressions built over Σ.

23

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

• We use R+ to denote RR∗ for any regular expression R.

• The Parikh image of a word w (a formal language L, respectively) is denoted

by Par(w) (Par(L), respectively).

• Uw denotes the set of alphabet symbols included in a word w.

• #w(σ) denotes the number of occurrences of σ in a word w.

We will also need the following definition in Chapter 5:

Definition 2.1. For a given word w, we consider a partial order vw ⊆ Uw × Uw

defined as follows: ∀σ, σ′ ∈ Uw, σ vw σ
′ iff any occurrences of σ′ is preceded by some

occurrencess of σ in w.

Definition 2.2. We consider a relation ≤seq: Σ∗ × Σ∗ defined as w ≤seq w
′ iff w is a

subsequence of w′.

24

Chapter 3

Modal Logic Theory of Basic

Feature Models

As already discussed in the Introduction (Section 1.2), the commonly considered

semantics for a basic feature models (FM) is a Boolean semantics, that is, the set of

flat products represented by the FM. For formal analysis, FMs are usually encoded

by propositional theories with Boolean semantics. In this chapter, we discuss a major

deficiency of this semantics, and show that it can be fixed by considering that a

product is an instantiation process rather than its final result.

The FM M1 in Figure 3.1 says that a car must have an engine and brake, and brake

can be optionally equipped with an anti-skidding system (abs). The model specifies a

product line consisting of two products: P = {car, engine, brake} and P ′ = P∪{abs}.

As FMs of industrial size can be big and complex, they require tools for their manage-

ment and analysis, and thus should be represented by formal objects processable by

tools. A common approach is to consider features as atomic propositions, and view

an FM as a theory in Boolean propositional logic (BL), whose valid valuations are to

25

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

car �

engine� brake �

abs�

engine �

car � brake � abs�

M1 �
M2 �

Figure 3.1: Two FMs with the same Boolean semantics

be exactly the valid products defined by the FM [Bat05]. For example, model M1

represents the BL theory Φ(M1) = {engine→ car, brake→ car, abs→ brake}∪{car→

engine, car → brake} ∪ {car}: the first three implications encode subfeature depen-

dencies (a feature can appear in a product only if its parent is in the product), and

the next two implications encode the mandatory dependencies between features. The

root feature must be always included in the product.

Now, consider the FM M2 in Figure 3.1. This model is essentially different from

M1, but has the same set of products, {P, P ′} determined by an equivalent BL theory

Φ(M2) = {car → engine, brake → engine, abs → engine}∪{engine → car, engine →

brake} ∪ {engine}: only grouping of implications has changed, but it is immaterial

for BL. The core of the problem is that two semantically different dependencies (the

parent feature and a mandatory subfeature) are both encoded by implication and

hence are not distinguished.

We are not the first to have noticed this drawback, e.g., it is mentioned in [SLB+11]

(where FMs’ semantics not captured by BL is called ontological), and probably many

researchers and practitioners in the field are aware of the situation. Nevertheless, as

far as we know, no alternative to the Boolean semantics of feature modeling (FM) has

26

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

been proposed in the literature,1 which we think is theoretically unsatisfactory. Even

more importantly, inadequate logical foundations for FM hinder practical analyses:

as important information contained in FMs (hierarchical structure) is not captured

by their traditional BL-encoding, this information is either missing from analyses,

or treated informally, or hacked in an ad hoc way. In a sense, this is yet another

instance of the known software engineering problem, when semantics is hidden in the

application code rather than explicated in the specification, with all its negative con-

sequences for software testing, debugging, maintenance, and communication between

the stakeholders.

Our main observation is that the key notion of FM—a product built from features—

should be considered as an instantiation process rather than its final result. We call

intermediate states of this process partial products, and argue that what an FM M

really specifies is a partially ordered set of partial products, which we call a partial

product line generated by M. The commonly considered products of M (we call them

full) only form a subset of M’s partial product line. We then show that any partial

product line can be viewed as an instance of a special type of Kripke structures, which

we axiomatically define and call a partial product Kripke structure (ppKS). The latter

are specifiable by a suitable version of modal logic, which we call partial product CTL

(ppCTL), as it is basically a fragment of CTL enriched with a constant modality that

only holds in states representing full products. We show that any FM M can be rep-

resented by a ppCTL theory ΦML(M) accurately specifying M’s intended semantics:

the main theoretical result of the chapter states that for any ppKS K, K |= ΦML(M)

1Along with propositional logic, there have been proposed some other logical approaches for
treatment of FMs such as first-order logic (see Section 6.6). However, they also suffer the same
problem: they take into account only the set of valid products of FMs.

27

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

iff K is equal to M’s partial product line, and hence ΦML(M) is a sound and complete

representation of the FM. Then we can replace FMs by the respective ppCTL-theories,

which are highly amenable to formal analysis and automated processing.

The organization of this chapter is as follows: Section 3.1 gives our formal frame-

work for the syntax of FMs. Section 3.2 motivates the formal framework developed in

the chapter: we show how the deficiency of the traditional Boolean semantics can be

fixed by introducing partial products and transitions between them. In Section 3.3,

the notion of partial product lines generated for given FMs is formalized. In Section

3.4, we introduce the notion of partial product Kripke structures as immediate ab-

stractions of partial product lines, and ppCTL as a language to specify partial product

Kripke structures’ properties. We show, step-by-step, how to translate an FM into a

ppCTL-theory, and prove our main results in Section 3.5. In Section 3.6, we discuss

some other interesting practical applications of the modal logic view of FMs.

3.1 Basic Feature Models: A Formal Framework

A unified formal approach to basic feature models and their Boolean semantics is

developed in [SHT06]. Our variant of the formalization of the basic feature models

is designed to support our work: the structure of our modal theories will follow the

structure of feature models as defined below. Typical FMs are trees of features with

some extra structures, like in Figure 2.1. In our framework, mandatory features and

XOR-groups are derived constructs. A mandatory feature can be seen as a singleton

OR-group. An XOR-group can be expressed by an OR-group with some additional

exclusive constraints between its elements.

28

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Definition 3.1 (Feature Diagrams). A feature diagram (FD) is a pair TOR =

(T,OR) of the following components.

(i) T = (F, r, ↑) is a tree whose nodes are features: F denotes the set of all features,

r ∈ F is the root, and function ↑ maps each non-root feature f ∈ F−r
def
= F \ {r} to

its parent f ↑. The inverse function that assigns to each feature the set of its children

(called subfeatures) is denoted by f↓; this set is empty for leaves. It is easy to see

that the set of f ’s siblings is the set (f ↑)↓ \ {f}. The set of all ancestors and all

descendants of a feature f are denoted by f ↑↑ and f↓↓, respectively.

Features f, g are called incomparable, f#g, if neither of them is a descendant of

the other. We write #2F for the set {G ⊂ F : G 6= ∅ and f#g for all f, g ∈ G} ⊂ 2F .

(ii) OR is a function that assigns to each feature f ∈ F a set OR(f) ⊂ 2f↓

(possibly empty) of disjoint subsets of f ’s children called OR-groups. If a group

G ∈ OR(f) is a singleton {f ′} for some f ′ ∈ f↓, we say that f ′ is a mandatory

subfeature of f . For example, in Figure 2.1, OR(gear) = {{manual, automatic}, {oil}},

and oil is a mandatory subfeature of gear.

Elements in set O(f)
def
= f↓ \

⋃
OR(f) are called optional subfeatures of f . For

example, in Figure 2.1, OR(brake) = ∅, and abs is an optional subfeature of brake.

A feature model is a feature diagram plus some possible exclusive and/or inclusive

crosscutting constraints:

Definition 3.2 (Feature Models). A feature model (FM) is a triple M = (TOR, EX ,

IN) with TOR a feature diagram as defined in Definition 3.1, and two additional

components defined below:

(i) EX ⊆ #2F is a set of exclusive dependencies between features. For example, in

Figure 2.1, EX = {{electric,manual}, {manual, automatic}}.

29

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(ii) IN ⊂ #2F×#2F is a set of inclusive dependencies between features. A member of

this set is interpreted (and written) as an implication (f1∧ . . .∧fm)→ (g1∨ . . .∨gn).

For example, feature model in Figure 2.1 has IN = {automatic→ abs}.

Exclusive and inclusive dependencies are also called cross-cutting constraints (CCs).

Thus, an FM is a tree of features T endowed with three extra structures OR,

EX , and IN . We will sometimes write it as a quadruple M = (T,OR, EX , IN). If

needed, we will subscript M’s components with index M, e.g., write FM for the set

of features F . Note that an FM is a purely syntactic object contrary to the common

usage of term ‘model’ in logic.

The class of all feature models over the same feature set F is denoted byM(F).

3.2 Partial Product Lines: Motivation

This section aims to motivate the formal framework we develop in this chapter. In

Section 3.2.1, we introduce partial products and partial product lines (PPLs). We

begin with PPLs generated by simple FMs, which can be readily explained in lattice-

theoretic terms. Then, in Section 3.2.2, we show that PPLs generated by complex

FMs are more naturally, and even necessarily, considered as transition systems.

3.2.1 Products as Processes

What is lost in the traditional Boolean encoding is the dynamic nature of the no-

tion of products. An FM defines not just a set of valid products but the very way

30

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

{c}�

{c,e}� {c,b}�

 {c,b,a}�{c,e,b}�

{c,e,b,a}�

{e}�

{e,c}� {e,a}� {e,b}�

{e,c,b}� {e,a,b}�{e,a,c}�

{e,a,b,c}�

brakes �

M1 �

car �

eng �

abs�
eng �

car � brakes � abs�

M2 � PPL(M1) � PPL(M2) �
(a) � (b1) �

twoFMs-PLvsPPL�

(b2) �

Figure 3.2: From FMs to PPLs: simple cases

these products are to be (dis)assembled step by step from constituent features. Cor-

respondingly, a product line appears as a transition system initialized at the root

feature (say, car for M1 in Figure 3.2 a) and gradually progressing towards fuller

products (say, {car} → {car, engine} → {car, engine, brake} or {car} → {car, brake} →

{car, brake, abs} → {car, brake, abs, engine}); we will call such sequences instantiation

paths. The graph in Figure 3.2(b1) specifies all possible instantiation paths for M1

(c, e, b, a stand for car, engine, brake, abs, respectively, to make the figure compact).

Nodes in the graph denote partial products, i.e., valid products with, perhaps,

some mandatory features missing: for example, product {c,e} is missing feature brake,

and product {c,b} is missing feature engine. In contrast, products {e} and {c,a} are

invalid as they contain a feature without its parent; such products do not occur in

the graph. As a rule, we call partial products just products.

Product {c,e,b} is full (complete) as it has all mandatory subfeatures of its member-

features; nodes denoting full products are framed. (Note that product {c,e,b} is full

31

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

but not terminal, whereas the bottom product is both full and terminal.)

Edges in the graph denote inclusions between products. Each edge encodes adding

a single feature to the product at the source of the edge; in text, we will often denote

such edges by an arrow and write, e.g., {c} −→e {c, e}, where the subscript denotes

the added feature.

We call the instantiation graph described above the PPL determined by FM

M1, and write PPL(M1) or PPL1. In a similar way, the PPL of the second FM,

PPL(M2), is built in Figure 3.2(b2). We see that although both FMs have the same

set of full products (i.e., are Boolean semantics equivalent), their PPLs are essentially

different both structurally (6 nodes and 7 edges in PPL1 versus 8 nodes and 12 edges

in PPL2), and in the content of products (e.g., products {c} and {c,b} present in

PPL1 but absent in PPL2, whereas {e} and {e,a} are present in PPL2 but absent

from PPL1) too. This essential difference between PPLs properly reflects the essen-

tial difference between the FMs. Note that capturing the difference between the two

FMs M1 and M2 is important, as they represent two different product lines: The first

model (M1) represents a product line for cars, while the second one (M2) represents

a product line for engines2.

3.2.2 PPLs: From lattices to transition systems

Generating partial product lines PPL1,2 of FMs M1,2 in Figure 3.2 can be readily

explained in lattice-theoretic terms. Let us first forget about mandatory bullets, and

consider all features as optional. Then both FMs are just trees, and hence are posets,

2If we just ignore that M2 is pathological, as the feature car cannot be a subfeature of the feature
engine in the reality.

32

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

car �

engine�

electric �gas �

gear �

automatic �manual �
✕! ✕!

M3 �

Figure 3.3: An FM: a fragment of Figure 2.1

even join semi-lattices (joins go up in feature trees). Valid products of an FM Mi are

upward-closed sets of features (filters), and form a lattice (consider Figure 3.2(b1,b2)

as Hasse diagrams), whose join is set union, and meet is intersection. If we freely add

meets (go down) to posets M1,2 (engine∧ brake etc.), and thus freely generate lattices

L(Mi), i = 1, 2, over the respective posets, then lattices L(Mi) and PPLi will be

dually isomorphic (Birkhoff duality).

The forgotten mandatoriness of some features appears as incompleteness of some

objects; we call them proper partial products. Partial products closed under manda-

toriness are full. Thus, PPLs of simple FMs such as in Figure 3.2(a) are their filter

lattices with distinguished subsets of full products. In the next section, we will argue

that this lattice-theoretic view does not work for more complex FMs.

Figure 3.3 shows a fragment of the FM in Figure 2.1, in which, for uniformity, we

have presented the XOR-group as an OR-group with a new crosscutting constraint

added to the tree (note the ×-ended arc between manual and automatic3). To build

3Recall that an ×-ended arc between two incomparable features denotes an exclusive crosscutting
constraint between them.

33

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

c,en �

c,en,gas �

c,en,gas,ele�

c,en,ele�

c, ge�

c,ge,mnl � c,ge,atm �

c �

c,en,ge �

c,ge,mnl,en �c,en,ele,ge�

c,en,ge,ele,mnl�c,en,ge,gas,ele�

c,ge,mnl,atm�

PPL3 �
(a fragment) �

c,en,gas,ge �

c,en,gas,ge,mnl �

Figure 3.4: A fragment of the PPL of Figure 3.3

the PPL, we follow the idea described above, and first consider M3 as a pure tree-

based poset with all the extra-structure (denoted by black bullets and black triangles)

removed. Figure 3.4 describes a part of the filter lattice as a Hasse diagram (ignore the

difference between solid and dashed edges for a while); to ease reading, the number of

letters in the acronym for a feature corresponds to its level in the tree, e.g., c stands

for car, en for engine etc.

Now let us consider how the additional structure embodied in the feature influences

the PPL. Two exclusive crosscutting constraints force us to exclude the bottom central

and right products from the PPL; they are shown in brown-red and the respective

edges are dashed. To specify this lattice-theoretically, we add to the lattice of features

a universal bottom element ⊥ (a feature to be a subfeature of any feature), and write

34

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

two defining equations: (ele ∧ manual = ⊥) and (manual ∧ automatic = ⊥). Then,

in the filter lattice, the formal down-join of products {c,en,ele,ge} and {c,ge,mnl,en}

“blow up” and become equal to the set of all features (“False implies everything”).

The same happens with the other pair of conflicting products.

Next we consider the mandatoriness structure of FM M3 (given by black bullets

and triangles). This structure determines a subset of the PPL consisting of full

products (e.g., {c,en, gas, ge, mnl} in Figure 3.4) as we discussed above. In addition,

mandatoriness affects the set of valid partial products as well.

Consider the product P = {c, en, ge} at the center of the diagram (Figure 3.4).

The left instantiation path, i.e., {c} −→en {c, en} −→ge P , leading to this product

is not good because gear was added to engine before the latter is fully assembled

(a mandatory choice between being electric or gasoline, or both, has still not been

made). Jumping to another branch from inside of the branch being processed is a poor

design practice that should be prohibited, and the corresponding transition is declared

invalid. Similarly, transition {c, ge} −→en P is also not valid, as engine is added before

gear’s instantiation is completed. Hence, product P becomes unreachable, and should

be removed from the PPL. (In the diagram, invalid edges are dashed (red with a color

display), and the products at the ends of such edges are invalid too).

Thus, a reasonable requirement for the instantiation process is that processing a

new branch of the feature tree should only begin after processing of the current branch

has reached a full product. We call this requirement instantiate-to-completion (I2C)

by analogy with the run-to-completion transaction mechanism in behavior modeling

(indeed, instantiating a branch of a feature tree can be seen as a transaction). Note

that this principle substantially reduces the complexity of the PPL for a given FM

35

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

car �

eng � gear �

oil�

c

c,en � c,ge�

c,ge,oil �c,en,ge �
M4 �

PPL4 �

c,en,ge,oil �

Figure 3.5: Exclusion of an edge due to I2C

without loss of any information of the FM.

Importantly, I2C prohibits transitions rather than products, and it is possible

to have a product with some instantiation paths into it being legal (and hence the

product is legal as well), but some paths to the product being illegal. Figure 3.5 shows

a simple example with FM M4 and its PPL. In the latter, the “diagonal” transition

{c, ge}−→{c, en, ge} violates I2C and must be removed. However, its target product

is still reachable from {c, en} as the latter is a fully instantiated product. Hence, the

only element excluded by I2C is the diagonal dashed transition.

It follows from this observation that a PPL can be richer than its lattice of partial

products (transition exclusion cannot be explained lattice-theoretically), and some-

thing else (transition systems/Kripke structures and modal logic are) needed. More-

over, even if all inclusions are transitions, Boolean logic is still poor to express impor-

tant semantic properties embodied in PPLs. For example, we may want to say that

every product can be completed to a full product, and every full product is a result of

such a completion. Or, we may want to say that if a product P has some feature f ,

then in some of its partial completions P ′, a feature g should appear. Or, if a product

36

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

P has a feature f , then any full product completing P must have a feature g, and so

on.

Also, since modal logic is more expressive than propositional Boolean logic, it

provides a more expressive language for crosscutting constraints over FMs. Later in

Section 3.6, we will provide an example in which some crosscutting constraints cannot

be expressed by propositional Boolean logic, but can be in our modal logic.

Thus, the transition relation is an important (and independent) component of the

general PPL structure. As soon as transitions become first-class citizens, it makes

sense to distinguish full products by supplying them, and only them, with identity

loops. That is, each framed product in our figures describing PPLs, should be assumed

to have a loop transition to itself. Such loops do not add (nor remove) any feature

from the product, and have a clear semantic meaning: the instantiation process can

stay in a full product state indefinitely. This way, the transition relation in a PPL

would be left-total, as any partial product eventually evolves into a full product. This

also makes PPLs standard Kripke structures used for the semantics of CTL in which

transition relations must be left-total.4

In the next two sections, we make the constructs discussed above formal.

3.3 Partial Product Lines: Formally

In this section, we are going to formalize the notion of PPLs and formally show how to

get a PPL for a given FM. As already discussed, both partial products and transitions

are first class citizens in PPLs. In Section 3.3.1, we define a BL encoding of an FM,

4A relation R ⊆ A×B is left-total if ∀a ∈ A,∃b ∈ B : (a, b) ∈ R.

37

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

and the corresponding notions of full and partial products. In Section 3.3.2, an FM’s

PPL is formally defined as a transition system.

3.3.1 Full and Partial Products

A common approach to formalizing the product line (of full products) for a given

FM is to use Boolean propositional logic [Bat05]. Features are considered as atomic

propositions, and dependencies between features are specified by logical formulas. For

example, if a feature f ′ is a subfeature of feature f , we have an implication f ′ → f (if

a product has feature f ′, it must have feature f as well). If {g1, g2} is an OR-group

of f ’s subfeatures, we write f → (g1∨g2); if, in addition, features g1, g2 are mutually

exclusive, we write g1∧g2 → ⊥. In this way, given an FM M = (T,OR, EX , IN),

each of its four components gives rise to a respective propositional theory as shown

in the upper four rows of Table 3.1: later we will discuss the four theories in detail

and explain the !-superscripts; the subscript BL is needed because later we will also

consider modal theories encoded by FMs.5 Together these theories constitute theory

Φ!
BL(M), and a set of features P is a legal full product for M iff P |= Φ!

BL(M).

Since publishing the seminal paper [Man02], this propositional view of basic feature

modeling became common and has been used in both theoretical and practice-oriented

work [Bat05, CW07, SLB+11].

Below we revise the propositional encoding of FMs: we introduce two propositional

theories for, respectively, partial and full products (subsection A) and show how the

I2C-principle can be propositionally encoded (subsection B).

5
∨
G and

∧
G represent conjunction and disjunction of all formulas in a set of formulas G.

38

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Table 3.1: Boolean theories extracted from an FM M = (TOR, EX , IN)

(1) ΦBL(T) = {> → r} ∪ {f ′ → f : f ∈ F, f ′ ∈ f↓}

(2) ΦBL(EX) = {
∧
G→ ⊥ : G ∈ EX}

(3!) Φ!
BL(OR) = {f →

∨
G : f ∈ F,G ∈ OR(f)}

(4!) Φ!
BL(IN) = {

∧
G→

∨
G′ : (G,G′) ∈ IN}

(all!) Φ!
BL(M) = ΦBL(T) ∪ ΦBL(EX) ∪ Φ!

BL(OR) ∪ Φ!
BL(IN)

(3) ΦI2C
BL (TOR) =

{
f ∧ g → (

∧
Φ!

BL(T f
OR)) ∨ (

∧
Φ!

BL(T g
OR)) : f, g ∈ F, f ↑ = g↑

}
(all) ΦBL(M) = ΦBL(BL)T ∪ ΦBL(EX) ∪ ΦI2C

BL (TOR)

A: Enabling vs. Causality.

The encoding above has a drawback that we discussed in the introduction: two differ-

ent relationships between features (being a subfeature, f ′ → f , and being a mandatory

subfeature, f → f ′) are similarly encoded. This implies f ↔ f ′ for any mandatory

subfeature f ′ of f , and leads to misrepresentation of the hierarchical structure of

an FM. With a more refined approach, the two relationships should be represented

differently.

The subfeature relationship is fundamental, and any product having a subfeature

f ′ but missing its superfeature f should be considered ill-formed; we can say that

superfeature f enables its subfeature f ′ and all reasonable products must respect

enabling. In contrast, if f ′ is a mandatory subfeature of f , a product having f but

missing f ′ is just incomplete rather than ill-formed. We can say that feature f causes

39

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

f ′ so that partial products violating causality are possible, and only full products

must respect it. 6

Thus, we have two Boolean theories for the same FM M. One is the theory of

partial products and another is the theory of full products. The theory of partial

products is denoted by ΦBL(M) (for now without the bang superscript) that encodes

the basic structural dependencies a well-formed partial product must satisfy, and thus

defines all partial products. This theory consists of three components as specified in

row (all) in the Table: ΦBL(T) is the BL-encoding of subfeature dependencies (row

(1)), ΦBL(EX) is the BL-encoding of exclusive dependencies (row (2)), and in section

B we will consider yet another ingredient—the Boolean encoding of the I2C-condition,

ΦI2C
BL (TOR). The other propositional theory, M’s full product theory Φ!

BL(M), consists

of four components: ΦBL(T) and ΦBL(EX) as above, plus the BL-encoding Φ!
BL(OR)

of the mandatoriness dependencies embodied in the OR-structure (row (3!)), plus the

Boolean logic encoding Φ!
BL(IN) of the inclusive crosscutting constraints (row(4!)),

which we treat as mandatory for only full products rather than affecting instantiation

(i.e., as causal rather than enabling). With a more refined approach to feature mod-

eling, a crosscutting constraint should be labeled as either causal or enabling, but

with the current feature modeling practice, crosscutting constraints are not labeled

and we thus consider them as causal, i.e., constraining full products only.

Definition 3.3 (Full Products). A full product over an FM M = (TOR, EX , IN)

is a set of features P ⊆ F satisfying theory Φ!
BL(M) defined in Table 3.1.

The set of all full products is called M’s full product set and denoted by FPM .

6Our choice of terms ’enabling’ and ’causal’ for the two types of structural dependencies is
somewhat arbitrary, and was partly motivated by similarities between feature and event modeling
discussed later in Section 6.1.

40

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Thus, FPM = {P ⊆ F : P |= Φ!
BL(M)}.

The definition above is equivalent to the standard one, except that we use the

term full product rather than product. To introduce partial products, we need to

define one more ingredient of the instantiation theory.

B: Instantiate to Completion via Propositional Logic.

Consider once again PPL3 in Figure 3.4, from which product {c, en, ge} is excluded as

violating the I2C principle. Note that in order to specify this exclusion propositionally,

we cannot declare that features en and ge are mutually exclusive and write {en∧ge→

⊥} because further down the lattice they are combined in product {c, en, ele, ge}

below {c, en}, and in product {c, ge,mnl, en} below {c, ge} as well. In other words,

the conflict between features en and ge is transient rather than permanent, and its

propositional specification is not trivial. We solve this problem by introducing the

notion of a feature subtree induced by a feature in Definition 3.4, and then specifying

theory ΦI2C
BL (TOR) shown in row (3) in Table 3.1. The theory formalizes the following

idea: if a valid product contains two incomparable features, then at least one of these

features must be fully instantiated within the product.

Definition 3.4 (Induced Subtrees). Let TOR = (T,OR) be a feature diagram

over a set of features F , and f ∈ F . A feature subtree induced by f is a pair T f
OR =

(T f ,ORf) with T f being the tree under f , i.e., T f def
= (f↓↓ ∪ {f}, f, ↑), and mapping

ORf is inherited from OR, i.e., for any g ∈ f↓↓, ORf (g) = OR(g).

Now we can specify theory ΦI2C
BL (TOR) as shown in row (3) in Table 3.1. The theory

formalizes the idea that if a valid product contains two incomparable features, then

at least one of these features must be fully instantiated within the product.

41

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Definition 3.5 (Partial Products). A partial product over FM M = (TOR, EX , IN)

is a set of features P ⊆ F satisfying the instantiation theory ΦBL(M) specified

in row (all) in Table 3.1. (Recall that a full product is a set of features satisfy-

ing theory Φ!
BL(M).) We denote the set of all partial products by PPM. Thus,

PPM = {P ⊆ F : P |= ΦBL(M)}.

Proposition 3.1. For any FM M, Φ!
BL(M) |= ΦBL(M). Hence, full products as

defined in Definition 3.3 form a subset of partial products, FP(M) ⊆ PP(M).

Note that transition exclusion discussed in Section 3.2.2 cannot be explained with

Boolean logic and needs a modal logic; we will give a suitable logic and show how it

works in Section 3.5.

3.3.2 PPLs as Transition Systems

In this section, we consider how products are related. The problem we address is

when a valid product P can be augmented with a feature f /∈ P so that product

P ′ = P∪{f} is valid as well. We then write P −→ P ′ and call the pair (P, P ′) a valid

(elementary or step) transition.

Two necessary conditions are obvious: the parent f ↑ must be in P , and f should

not be in conflict with features in P , that is, P ′ |=
(
ΦBL(T)∪ΦBL(EX)

)
. Compatibility

with I2C is more complicated: we would need to formalize relative completeness of P

in its branch, as follows.

Definition 3.6 (Relative fullness). Given a product P and a feature f /∈ P , the

following theory (continuing the list in Table 3.1) is defined:

(3)P,f ΦI2C
BL (P, f)

def
=
⋃
{Φ!

BL(T g
OR) : g ∈ P ∩ (f ↑)↓}

42

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

where T g
OR denotes the subtree induced by feature g as described in Definition 3.4.

(Note that set P ∩ (f ↑)↓ may be empty, and then theory ΦI2C
BL (P, f) is also empty.)

We say P is fully instantiated wrt. f if P |= ΦI2C
BL (P, f).

For example, it is easy to check that for FM M4 in Figure 3.5, for product

P1={car, engine} and feature f1 = gear, we have P1 |= ΦI2C
BL (P1, f1) while for P2={car, gear}

and f2 = engine, P2 2 ΦI2C
BL (P2, f2) because Φ!

BL(T gear
OR) = {gear → oil} and P2 2

{gear→ oil}.

Now, we are at the point where we can give a formal definition for valid transitions:

Definition 3.7 (Valid Transitions). Let P be a product. Pair (P, P ′) is a valid

transition, we write P −→ P ′, iff one of the following two possibilities (a), (b) holds.

(a) P ′ = P] {f} for some feature f /∈ P such that the following three conditions

hold: (a1) P ′ |= ΦBL(T), (a2) P ′ |= ΦBL(EX), and (a3) P |= ΦI2C
BL (P, f).

(b) P ′ = P and P is a full product.

That is, P −→ P ′ iff
(
(a1) ∧ (a2) ∧ (a3)

)
∨ (b)

The following result is important.

Theorem 3.1. If P is a valid partial product and P −→ P ′, then P ′ is a valid partial

product.

Finally, we formalize partial product lines as follows:

Definition 3.8 (Partial Product Lines). Let M = (TOR, EX , IN) be an FM. The

partial product line (PPL) determined by M is a triple P(M) = (PPM,−→M, IM)

with the set PPM of partial products given by Definition 3.5, transition relations

−→M given by Definition 3.7 (so that full products, and only them, are equipped

with self-loops), and the initial product IM = {r} consisting of the root feature.

43

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

3.4 Partial Product Kripke Structures and Their

Logic

In this section, we introduce partial product Kripke structures, which are an immediate

abstraction of partial product lines generated by FMs. Then we introduce a modal

logic called partial product CTL, which is tailored for specifying partial product Kripke

structures’ properties.

By Kripke structures, we understand a family of mathematical structures of the

following format. We first fix a set A of atomic propositions, and then consider a

tuple K = (W,R,L) with W a set of (possible) worlds or states. R a binary transition

relation over W , and L a labelling function W → 2A, which maps a world to the set

of propositions true in this world. Partial product lines motivate a specialization of

the notion, in which worlds (called partial products) are identified with sets of atomic

propositions (features), and hence labelling is not needed. Full products of partial

products are identified by loops on corresponding states. These structures also satisfy

some special properties defined in the following definition.

Definition 3.9 (partial product Kripke Structure). Let F be a finite set (of fea-

tures). A partial product Kripke structure (ppKS) over F is a triple K = (PP ,−→, I)

with PP ⊂ 2F a set of non-empty (partial) products, I ∈ PP the initial singleton

product (i.e., I = {r} for some r ∈ F), and −→⊆ PP × PP a binary left-total

transition relation7. In addition, the following three conditions hold (−→+ denotes

the transitive closure of −→):

(Singletonicity) For all P, P ′ ∈ PP , if P −→ P ′ and P 6= P ′, then P ′=P]{f} for

7 A binary relation R over a set A is called left-total if ∀a ∈ A,∃b ∈ A : R(a, b).

44

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

some f /∈ P .

(Reachability) For all P ∈ PP , I −→+ P , i.e., P is reachable from I.

(Self-Loops Only) For all P, P ′ ∈ PP , if (P −→+ P ′ −→+ P), then P = P ′, i.e.,

every loop is a self-loop.

A product P with P −→ P is called full. The set of full products is denoted by

FP .

The components of an ppKS K are subscripted with K if needed, e.g., PPK. We

denote the class of all ppKSs built over a set of features F by K(F). Note that any

partial product in a ppKS eventually evolves into a full product because F is finite,

−→ is left-total, and all loops are self-loops. Hence, a ppKS enjoys the following

property, called Finality : For all P ∈ PP , there exists a full product P ′ such that

P −→∗ P ′, where −→∗ denotes the reflexive transitive closure of −→. This property

is proven in the following proposition.

Proposition 3.2. For all P ∈ PP , there exists a full product P ′ such that P −→∗

P ′.

We will also need the notion of a sub-ppKS of a ppKS.

Definition 3.10 (Sub-ppKS). Let K, K′ be two ppKSs. We say K is a sub-ppKS of

K′, denoted by K v K′, iff IK = IK′ , PPK ⊆ PPK′ , and −→K⊆−→K′ .

The following proposition is an obvious corollary of Definition 3.8.

Proposition 3.3. Let M ∈ M(F) be an FM. Its partial product line is an ppKS,

i.e., P(M) ∈ K(F).

The proposition above is not very interesting: there is a rich structure in P(M)

that is not captured by the fact that P(M) is a ppKS—the class K(F) is too big.

45

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

We want to characterize P(M) in a more precise way by defining as small as possible

a class of ppKSs to which P(M) would provably belong. Hence, we need a logic for

defining classes of ppKSs by specifying a ppKS’s properties.

We define partial product Computation Tree Logic (ppCTL), which is a fragment

of CTL enriched with a constant (zero-ary) modality ! to capture full products.

Definition 3.11 (partial product CTL). Partial product CTL (ppCTL) formulas

are defined using a finite set of propositional letters F , an ordinary signature of propo-

sitional connectives: constant (zero-ary) > (truth), unary ¬ (negation) and binary

∨ (disjunction) connectives, and a modal signature consisting of modal operators:

constant (zero-ary) modality !, and three CTL unary modalities AX, AF, and AG.

The well-formed ppCTL-formulas φ are given by the following grammar:

φ ::= f | > | ¬φ | φ ∨ φ | AXφ | AFφ | AGφ | ! , where f ∈ F.

Other propositional and modal connectives are defined dually via negation as usual:

⊥, ∧, EX, EF, EG are the duals of >, ∨, AX, AG, AF, respectively. Also, we define a

unary modality �!φ as a shorthand for AG(! → φ). Let ppCTL(F) denote the set of

all ppCTL-formulas over F .

The semantics of ppCTL-formulas is given using the class K(F) of ppKSs built over

the same set of features F . Let K ∈ K(F) be a ppKS (PP ,−→, I). We first define a

satisfaction relation |= between a product P ∈ PP and a formula φ ∈ ppCTL(F) by

structural induction on φ. This is done in Table 3.2.

46

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Table 3.2: Rules of satisfiability

P |= f ⇐⇒ f ∈ P (for f ∈ F)

P |= > always holds

P |= ¬φ ⇐⇒ P 6|= φ
P |= φ ∨ ψ ⇐⇒ (P |= φ) or (P |= ψ)

P |= AXφ ⇐⇒ ∀〈P −→ P ′〉. P ′ |= φ

P |= AFφ ⇐⇒ ∀〈P=P1 −→ P2 −→ . . .〉 ∃i ≥ 1. Pi |= φ

P |= AGφ ⇐⇒ ∀〈P=P1 −→ P2 −→ . . .〉 ∀i ≥ 1. Pi |= φ

P |= ! ⇐⇒ P −→ P

3.5 ppCTL theory of a Feature Model

In this section, we exhibit and prove our main results. Given an FM M over a finite

set of features F , we build two ppCTL theories from M’s data, ΦML⊆(M) and ΦML(M)

(index ML refers to Modal Logic), such that the former theory is a subset of the latter,

and the following holds for any ppKS K ∈ K(F):

Theorem 3.2 (Soundness). P(M) |= ΦML(M).

Theorem 3.3 (Semi-completeness). K |= ΦML⊆(M) implies K v P(M).

Theorem 3.4 (Completeness). K |= ΦML(M) iff K = P(M).

Completeness allows us to replace FMs by the respective ppCTL-theories, which

are highly amenable to formal analysis and automated processing. Semi-completeness

is useful (as an auxiliary intermediate step to completeness, but also) for some im-

portant practical problems in feature modeling such as specialization [TBK09] (M

is a specialization of another FM M′ if the latter subsume the former in a semantic

47

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

sense), and some other analysis operations [BSRC10] over FMs. These operations are

normally considered for full product lines only, but can be redefined for PPLs as well

(see Section 3.6.1).

We will build theories ΦML⊆(M) and ΦML(M) from small component theories,

which specify the respective properties of M’s PPL in terms of ppCTL. Before we

proceed to defining these theories and giving proofs, in order to provide some guidance

through the proofs, we discuss, in Section 3.5.1, the structure of the entire component

family, and explain how the compound theories, ΦML⊆(M), ΦML(M), and ΦML+(M)
def
=

ΦML(M) \ ΦML⊆(M) are built from them. Then, in Section 3.5.2, we zoom into

component theories and explain how they are built. The proofs can be found in

Appendix A.

3.5.1 Structure of the component family

All component theories we need are referenced in Table 3.3. Its bottom row consists of

the three compound theories mentioned above; the last (rightmost) column theory is

the union of the theories in its row—this is a general rule for the entire table. Another

general rule is that each theory in the bottom row is the union of all components above

it in its column(s) (and ΦML⊆(M) is the union of all components in two columns). For

further references, we call theories in the bottom row and the last column external;

all other theories are internal.

Rows of the table are indexed by structural concerns to be logically encoded;

columns are named by the goals of these encodings: to provide semi-completeness

wrt. full product line and PPL (split into Boolean and modal components), and to

provide completeness wrt. full product line and PPL: a theory in the last column is

48

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Table 3.3: Component and Compound Theories

M
Semi-completeness

To Ensure Completeness Completeness

BL ML

T ΦBL(T) ∅ Φ↓ML+(T) ΦML(T)

EX ΦBL(EX) ∅ ∅ ΦML(EX)

OR ∅ Φ!
ML⊆(OR) ∅ Φ!

ML(OR)

IN ∅ Φ!
ML⊆(IN) ∅ Φ!

ML(IN)

I2C ΦI2C
BL (TOR) ΦI2C9

ML⊆ (TOR) ∅ ΦI2C
ML(TOR)

FPM ∅ Φ!
ML⊆(M) Φ!

ML+(M) Φ!
ML(M)

PPM ΦBL(M) ∅ Φ↓ML+(T) ∪ Φ↔ML+(TOR, EX) Φ◦ML(M)

P(M) ΦML⊆(M) ΦML+(M) ΦML(M)

49

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

the union of all theories in its row, and thus ensures completeness wrt. the concern

corresponding to the row. Each internal theory is an encoding of the corresponding

concern for the corresponding goal. For example, theory Φ!
ML⊆(OR) modally specifies

the OR structure to provide semi-completeness wrt. full product line (note the !

superindex). For another example, ΦI2C
BL (TOR) is a Boolean encoding of the I2C-

principle, and its neighbor on the right is the additional modal constraint for the

same concern—it is needed to ensure semi-completeness. The empty neighbor on the

right means that nothing should be added (for this concern) to ensure completeness.

We do not intend to make the table strictly logical: its goal is to reference component

theories and explain their intentions.

3.5.2 The Content of Component Theories

Now we specify the internal theories, and explain their meaning. Boolean theories are

specified in Table 3.1. Modal theories are defined in Table 3.4 based on the following

motivation.

The theory Φ↓ML+(T) states that if a feature f is visited in a current state (partial

product) without visiting any of its children, say g, then there must be another state

immediately accessible from the current state visiting g. The union of this theory

and ΦBL(T) generates a complete theory ΦML(T). A ppKS K satisfying ΦML(T) is

guaranteed to capture the tree structure T .

Since exclusive constraints in an FM talk only about semi-completeness of partial

products, the corresponding ML+ theory is empty. Thus, ΦML(EX) = ΦBL(EX).

The theories corresponding to OR deal with full products (states with self-loop

transitions). The theory Φ!
ML⊆(OR) is the modal version of the Boolean theory

50

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Table 3.4: Definitions of (basic) ppCTL theories

Φ↓ML+(T) =
{
f ∧ ¬

∨
f↓ → EXg : f, g ∈ F, g↑ = f

}
Φ!

ML⊆(OR) = {f → �!
∨
G : f ∈ F,G ∈ OR(f)}

Φ!
ML⊆(IN) = {

∧
G→ �!

∨
G′ : (G,G′) ∈ IN}

Φ!
ML⊆(M) = {!→

∧
Φ!

BL(M)}

Φ!
ML+(M) = {

∧
Φ!

BL(M)→ !}

ΦI2C9
ML⊆ (TOR) =

{
f ∧ ¬

∧
Φ!

BL(T f
OR)→ ¬EXg : f, g ∈ F, f 6= g, f ↑ = g↑

}
Φ↔ML+(TOR, EX) =

{∧
ΦI2C

BL (f) ∧ ¬f ∧ ¬
∨

ΦEXBL (f))→ EXf : f ∈ F
}

, where

ΦI2C
BL (f) = {g → ΦBL(T g

OR) : g, f ∈ F, g↑ = f ↑, g 6= f}

ΦEXBL (f) =
{∧

(G \ {f}) : G ∈ EX , f ∈ G
}

Φ!
BL(OR) (Table 3.1). Consider an OR group G. The theory Φ!

ML⊆(OR) states that

if G’s parent is visited in a current state, then at least one of the elements involved

in G must be visited in any final products accessible from the current state (note the

finality property proven in Proposition 3.2).

The nature of the theory corresponding to IN is like OR’s: it also deals only

with full products. The theory Φ!
ML⊆(IN) is the modal version of the Boolean theory

Φ!
BL(IN). Let (G,G′) be an inclusive constraint. The theory Φ!

ML⊆(IN) states that

if all the elements involved in G are visited in a current state, then at least one of the

elements in G′ must be visited in any final products accessible from the current state

(note again the finality property in PPLs).

51

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Obviously, the two theories Φ!
ML⊆(OR) and Φ!

ML⊆(IN) are derivable from the

theory Φ!
ML⊆(M). Φ!

ML⊆(M) holding in a ppKS guarantees that any full product in

the ppKS is a full product of M. On the other hand, any ppKS satisfying the theory

Φ!
ML(M) (= Φ!

ML⊆(M)∪Φ!
ML+(M)) must include all full products of M and only them.

Recall that the theory ΦI2C
BL (TOR) (Table 3.1) guarantees that the partial products

of the PPL respect the I2C principle. However, as discussed in Section 3.2.2, transi-

tions also have to respect this principle. The modal theory ΦI2C9
ML⊆ (TOR) excludes the

invalid transitions due to the I2C principle (see Table 3.4). This theory states that if a

feature is visited in a current state without being completely instantiated, then there

must not be any states immediately accessible from the current state including one

of the feature’s siblings. Then, the completeness theory relating to I2C, ΦI2C
ML(TOR),

would be the union of ΦI2C
BL (TOR) and ΦI2C9

ML⊆ (TOR).

Recall that, according to Definition 3.5, a set of features is a valid partial product

iff it satisfies the Boolean theory ΦBL(M). However, any ppKS satisfying this theory

does not necessarily include all valid partial products. To ensure that the ppKS

includes all partial products, we add modal theories Φ↓ML+(T) and Φ↔ML+(TOR, EX).

Consider a state P and a feature f such that f 6∈ P . The theory Φ↔ML+(TOR, EX)

states that if adding f to P does not violate the exclusive constraints and the I2C

principle, then there must be an immediately accessible state from P including f . The

corresponding completeness theory is denoted by ΦML+(M) and is equal to ΦBL(M)∪

Φ↓ML+(T) ∪ Φ↔ML+(TOR, EX).

Any ppKS satisfying the semi-completeness theory ΦML⊆(M) would be a substruc-

ture of P(M). On the other hand, the theory ΦML(M), which is the union of ΦML⊆(M)

and ΦML+(M), guarantees completeness, i.e., any ppKS K satisfying ΦML(M) is equal

52

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

to the PPL of M.

3.6 Other Applications of the Modal Logic View

In this section, we discuss some other concrete tasks in feature modeling, which would

be improved by the use of a modal logic view of FMs. These tasks are grouped into

(a) FM analysis, (b) product line-builder vs. product line-client view, and (c) reverse

engineering of FMs.

3.6.1 Automated Analysis of FMs

Analysis of FMs is an important practical issue, and as industrial FMs can contain

thousands of features, the analysis should be automated [BSRC10]. A big group of

analysis problems over FMs rely on the Boolean semantics of FMs. For example,

given an FM M, we may be interested in checking whether PL(M) is not empty

[TC09], or whether a given set of features G is a valid full product, i.e., G ∈ PL(M)

[KCH+90]. We may also be interested in finding the set of common (core) features

among all full products,
⋂
PL(M) [TC09], or checking whether f is a core feature,

i.e., f ∈
⋂
PL(M). Specifically, an important problem is to find so called dead

features, which do not occur in any product [KCH+90]. A typical practical approach

to these analysis problems is to encode the FM by a Boolean theory, and then use

off-the-shelf tools like SAT-solvers [Bat05].

However, there are some other important analysis problems, in which the use of

the Boolean semantics can be error-prone. For example, it is often important to

know if one FM M1 is a refactoring of another FM M2, or a specialization of M2,

53

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

or neither [TBK09]. Standard definitions of refactoring and specialization are based

on semantics, which in the Boolean case gives rise to defining refactoring M1 '

M2 as PL(M1) = PL(M2) and specialization M1 � M2 as PL(M1) ⊆ PL(M2).

However, as we have seen above, the Boolean semantics is too poor and makes the

definitions above inadequate for their goals (see the example in the introduction).

Hence, in practice, to investigate refactoring and specialization, engineers should work

with pairs (PL(M),M), whose second component represents the feature hierarchical

structure not captured by the first component. Working with such pairs brings two

issues. First, it leads to obvious maintenance problems: if one of the components

changes, the user must remember to propagate the changes to the other component.

Second, having a syntactical “non-Boolean” object of analysis does not allow us to

use SAT (or SMT) solvers. However, the PPL semantics allows the management of

both issues. As our completeness theorem shows, PPL(M) adequately captures the

feature hierarchy, and hence we can analyze a single object, PPL(M) or, equivalently,

the modal theory ΦML(M).

Finally, there are analysis problems only addressing the hierarchy, e.g., finding the

Lowest Common Ancestor (LCA) of a set of features in the feature tree [MWCC08].

The PPL semantics allows us to analyze such a problem by using a model checker:

given a set of features G and a candidate common ancestor feature c, we need to check

whether the Kripke structure PPL(M) satisfies
∧
G → c. This way, we could get

the set of common ancestors of G. Let us denote it by C. Now, to check whether an

element l ∈ C is the LCA of G, we just need to check if PPL(M) satisfies l →
∧
C.

Other syntactical analysis problems can be approached in the same way: an FM M is

represented by a Kripke structure PPL(M), the problem to be analyzed is encoded by

54

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

15#

c#

c,#e" c,#f"

c,f,#f1" c,f,f2"c,e,e1" c,e,e2"

c,e,e1,f"
c,e,e2,f" c,f,f1,e" c,f,f2,e"

c,e,f,#
e1,f1"

c,e,f,#
e1,f2"

c,e,f,#
e2,f1"

c,e,f,##
e2,f2"

(b)##

figures/groupExample#

chassis#

engine# frame#

e1# e2# f1# f2#

(a)##

✕ ✕ ✕ ✕

PPL(M)"M"

Figure 3.6: An FM of an Engine Frame (a), and its PPL (b)

a ppCTL-formula φ, and a model checker tool is used for checking if PPL(M) |= φ.

3.6.2 PL-builder vs. PL-client View

Modal properties of product lines may not be so important for the user, for whom an

FM is just a structure of check-boxes to guide his choices. However, modal properties

can be important for the vendor, who should plan and provide a reasonable production

of all products in the product line. For example, consider the following scenario.

Suppose we want to design a chassis with two mandatory components: an engine

and a frame. An engine is of type e1 xor e2, and a frame is of type f1 xor f2, as

specified in the Figure 3.6. In general, engine ei better fits in frame fi, i = 1, 2, but

the frame supplier can modify the frame for an extra cost. Thus, we have four full

products P0 ∪ Pij with P0 = {c, e, f} and Pij = {ei, fj}, i, j = 1, 2 (c, e, and f stand

for chassis, engine, and frame, resp.).

55

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

There are two ways for assembling the chassis. If we first decide on the engine

type, then, for engine ei, we may choose either to order frame fi, or frame fj, j 6= i,

with a suitable modification, depending on what is cheaper (we assume that each

frame type has its own supplier). Thus, from each product P0 ∪ {ei}, i = 1, 2 there

are two transitions as shown in Figure 3.6. However, if we first decide on the frame

type, then only the engine of the respective type can be mounted on the frame, and

transitions from P0 ∪ {fi} to P0 ∪ {fi, ej} j 6= i are illegal (shown dashed/red in

Figure 3.6). To exclude the illegal transitions from the ppl, we need to add to the

FM the following two modal CCs: (fi ∧ e ∧ ¬ei)→ AX¬ej for i, j ∈ {1, 2} and i 6= j.

Such constraints cannot be expressed in BL as they do not change the set of partial

products, and only transition are affected.

3.6.3 Reverse Engineering of FMs

Reverse engineering of FMs is an active research area in feature modeling. The prob-

lem statement is as follows: given a product line, we want to build an appropriate FM

representing the product line. Depending on the representation of the given prod-

uct line, the current approaches are grouped into two kinds: reverse engineering of

FMs from Boolean logic formulas [CW07], reverse engineering of FMs from textual

descriptions of features [ASB+08, NE08]. She et al. in [SLB+11] argue that none of

these approaches are complete. Indeed, the main challenge of this task is to determine

an appropriate hierarchical structure of features. The Boolean logic approach is in-

complete, since, as already discussed, the Boolean logic semantics cannot capture the

hierarchical structure of the features. The textual approach is also not desirable for

two reasons: it is an informal approach, and also “it suggests only a single hierarchy

56

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

that is unlikely the desired one” [SLB+11]. To relieve the deficiencies of these ap-

proaches, the current stat-of-the-art approach [SLB+11] proposes a heuristics based

approach in which both types of inputs are given as input. However, if we take the

given input to be the ppCTL theory of the product line (in other words, its PPL),

reverse engineering of FMs becomes simpler and more manageable. This is because

the given ppCTL theory contains everything needed to build a corresponding FM.

Also, our careful decomposition of an FM’s structure and theories into small blocks

is because it would allow better tuning of the reverse engineering process.

57

Chapter 4

Multiset Theory of

Cardinality-Based Feature

Diagrams

Basic feature modeling deals with feature “types”, while we deal with feature “re-

sources” (occurrences) in cardinality-based feature modeling. Thus, the relation be-

tween cardinality-based and basic feature modeling is roughly the relation between

resources on one hand and their types on the other hand. We have already discussed

two semantics for basic feature modeling, Boolean and Kripke-based, which are both

“set-theoretic” (type-conscious). Moving from basic to cardinality-based feature mod-

eling is, indeed, moving from set theory to “multiset theory” (resource-conscious). In

the present chapter, we propose two multiset theories, called flat and hierarchical, for

cardinality-based feature diagrams (CFDs).

The flat semantics of a CFD is the set of multisets over features satisfying the

multiplicity constraints. This semantics provides a useful abstract view of the CFD,

58

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

as it can address a large number of analysis questions about the CFD. However, it

does not capture some other useful information such as the hierarchy of the CFD.

The hierarchical semantics of a CFD provides a faithful semantics for the CFD.

This semantics is defined based on a hierarchy of multisets built over features. The

hierarchical semantics of the CFD would be then a subset of this hierarchy. We show

that the hierarchical semantics captures all information of the CFD so that one can

retrieve the CFD from its hierarchical semantics.

The plan of this chapter is as follows. Section 4.1 gives our formal framework for

the syntax of CFDs. This section also discusses the idea of flat semantics. Section

4.2 will discuss and formalize the idea of hierarchical semantics for cardinality-based

feature diagrams. To this end, we propose a hierarchy of finite multistes, as a fun-

damental basis for formalizing hierarchical semantics. We show that the hierarchical

semantics of a CFD captures all information of the CFD. Section 4.3 characterizes

multisets representing hierarchical products of some CFDs. To this end, we introduce

the notion of tree-like multisets. It is proven that a multiset is a hierarchical product

of a given CFD iff it is a tree-like multiset. Section 4.4 characterizes sets of tree-like

multisets representing hierarchical semantics of CFDs, namely, we show what sets of

tree-like multisets are the hierarchical semantics of some CFDs. To this end, the no-

tion of mergeable and complete mergeable tree-like multisets are introduced. We will

discuss the practical application of flat and hierarchical semantics more in Section

4.5. Some examples will be provided following the formal definitions to clarify the

definitions.

59

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

4.1 Cardinality-Based Feature Diagrams and their

Flat Semantics

To make this section self-contained, we first provide an informal description of CFDs

(see Section 2.1 for more explanation). A CFD is a tree of features in which some

subsets of non-root nodes are grouped and other nodes are called solitary. In addition,

non-root nodes and groups are equipped with some multiplicity constaints. In our

framework, solitary nodes are derived constructs. A multiplicity constraint is usually

expressed as a sequence of pairs (l, u), where l is a natural number, u is either a number

or ∗ (representing an unbounded multiplicity) and l ≤ u. We call a multiplicity

constraint on a node or group a multiplicity domain. As an example, consider the

CFD in Figure 4.1. It is a CFD over features f, f1−6. G denotes a group consisting

of the features f4, f5, and f6, and any feature in F \ G is a solitary feature. The

multiplicity domains are as follows: (2, 3) on G, (1, 2)(4, ∗) on f1, (0, 2) on f2, (3, 5) on

f3, and (1, 2) on f6. The multiplicity domains on the features f4,5 are both (1, 1). We

will use this CFD as an example to illustrate the notions discussed in this chapter.

A multiplicity domain, a sequence of intervals on natural numbers, can be ex-

pressed as a subset of natural numbers, e.g., the multiplicity domains (1,2)(4,*) and

(2,3) on the feature f1 and the group G are the sets N\{3} and {2, 3}, respectively. In

this chapter, we consider a multiplicity domain as a subset of natural numbers. This

definition of multiplicity domains makes some further formalizations in the chapter

easier to read. Note that considering any subset of natural numbers as a valid multi-

plicity domain makes CFDs more expressive than traditional CFDs, as not all subsets

60

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

f︎

f1 ︎

f3 ︎

f2 ︎

f4 ︎ f5 ︎ f6 ︎

G ︎

(0,2)︎(1,2)(4,*) ︎

(3,5)︎ (1,2)︎

(2,3)︎

D︎

Figure 4.1: A CFD: running example

of natural numbers can be expressed as a finite sequence of intervals.1 The following

definition formalizes the syntax of CFDs.

Definition 4.1 (Cardinality-based Feature Diagrams). A cardinality-based fea-

ture diagram (CFD) is a 5-tuple D = (F, r, ↑,G, C) consisting of the following com-

ponents.

(i) T = (F, r, ↑) is a tree with set F of nodes (called features), r ∈ F is the root,

and function ↑ maps each non-root node f ∈ F−r
def
= F \ {r} to its parent f ↑. The

inverse function that assigns to each node f the set of its children is denoted by f↓.

The set of all descendants of f is denoted by f↓↓.

(ii) G ⊆ 2F−r is a set of grouped nodes. For all G ∈ G, |G| > 1, and all nodes in

G have the same parent, denoted by G↑. All groups in G are disjoint, i.e., ∀G,G′ ∈

G : (G = G′) ∨ (G ∩ G′ = ∅). The nodes that are not in a group are called solitary

nodes. Let S denote the solitary nodes, i.e., S = F−r \
⋃

G∈G G.

1 In the next chapter, where we will propose formal language based semantics for CFMs, we will
get back to the traditional definition of multiplicity domains.

61

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(iii) C : (F−r∪G)→ 2N is a total function called the multiplicity function. For any

feature or group e ∈ F−r ∪ G, C(e) represents the multiplicity constraint of e, where

C(e) 6= {0} and C(e) 6= ∅. In addition, for all G ∈ G, C(G) is a finite subset of N and

its greatest member is less than or equal |G| (the number of G’s members).

The class of all CFDs and all CFDs over the same set of features F are denoted

by D and D(F), respectively.

If needed, we will subscript D’s components with index D, e.g., write GD.

Remark 4.1. The original definition of CFDs in [CHE05a] has two restrictions on

group multiplicities: (i) the multiplicity domain of a grouped node is always {1} and

(ii) the multiplicity domain assigned to a group is a singleton. However, we generalized

CFDs in the above definition without essentially complicating the framework and

enabling useful generalizations in feature modeling.

To proceed, we first need a definition of multisets:

Definition 4.2 (Multisets). A multiset over a set A is a total function m : A→ N,

which maps an element of A to a natural number. For any a ∈ A, m(a) is called the

multiplicity of a in m. The set {a ∈ A : m(a) > 0} is called domain of m, denoted by

dom(m). A multiset m is called finite if dom(m) is finite.

We need the additive union operation, denoted by], on multisets: (m]m′)(f) =

m(f) + m′(f). We write m = dan1
1 , a

n2
2 , . . .e to explicitly show the elements of a

multiset m, where ni = m(ai) for any ai ∈ dom(m). The empty multiset is denoted

by ∅.

An instance of a given CFD is commonly considered as a multiset2 of features

2 See the formal definition of multisets in Definition 4.2.

62

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

satisfying the constraints of the CFD [CHE05a, MSDLM11]. We call such multisets

flat products of the CFD. The flat products of a given CFD is formalized in [CHE05a]

via context-free grammars (see Section 6.2). However, as far as we know, it never

gained a direct definition. This is an important issue, as verification of a proposed

formulation of products without having a formal definition of them is impossible. We

will formalize flat products later in this section. A flat product of a CFD is a multiset

of features satisfying the following constraints.

(a) The root is always included in the multiset with multiplicity 1: the multiplicity

of the feature f in any valid flat product of the CFD in Figure 4.1 is always 1.

(b) If a non-root feature is included in the multiset then its parent must be included

too, e.g., the presence of the node f3 in a flat product of the CFD in Figure 4.1 implies

the presence of the node f2.

(c) A valid multiplicity of a non-root feature is given based on its multiplicity

domain and the multiplicity of its parent feature in the flat product, e.g., if the

multiplicity of f2 in a flat product of the CFD in Figure 4.1 is 2 then f3’s multiplicity

must be at least 6 and at most 10 in the flat product. In general, for non-root features

f included in the flat product, there must be a multiplicity c in f ’s multiplicity domain

such that its multiplicity in the flat product is equal to the product of its parent’s

(f ↑) multiplicity and c.

(d) If the parent of a mandatory feature (a solitary feature with lower bound

multiplicity greater than 0) is included in a flat product then it must be included too,

e.g., the presence of f2 in a flat product implies the presence of f3 in the flat product.

(e) If a parent of a grouped set of features is included in a flat product then

the presence of the grouped features must satisfy the associated group multiplicity

63

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

constraint, e.g., the presence of the feature f2 in a flat product implies the presence

of 2 or 3 of the features f4, f5, and f6 in the flat product.

In our running example (Figure 4.1), the following multisets are valid flat products

of the CFD:

— m1 = df, f15e (We consider 1 as the default multiplicity of an element in a

multiset. This is why the multiplicity of f is not written.): the number of occurrences

of f1 is 5, which does not violate the multiplicity constraint (C(f1) = N \ {3}) on

the feature. The presence of f2 in a flat product is optional (the lower bound of

the multiplicity domain of f2 is 0). In this example, f2 is excluded and so are all its

children.

— m2 = df, f15, f2, f3
3, f4, f5e: unlike m1, f2 is included in the product with 1

occurrence. The multiplicity domain on f3 says that the number of its occurrences

must be 3, 4, or 5 for each occurrence of f2 (its parent). The multiplicity of f3 is 3,

which satisfies the constraint. The group multiplicity on G indicates that 2 or 3 of the

features f4, f5, and f6 must be included in the product: the two features f4 and f5 are

included in m2, each with one occurrence, which satisfy the multiplicity constraints

on the features.

— m3 = df, f15, f2
2, f3

6, f4
2, f5

2e: the difference between m3 and m2 comes from their

multiplicities for f2. The multiplicity of f2 in this example is twice its multiplicity in

m2. This is why the multiplicity of the features f3, f4, and f5 have been multiplied by

2.

We call the set of flat products of a given CFD the flat semantics of the CFD.

Note that the flat semantics of our running example is an infinite set. The following

definition formalizes the notion of flat products.

64

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Definition 4.3 (Flat Products). Let D = (F, r, ↑,G, C) be a CFD. A multiset m

over F is called a flat product of D if the following conditions hold:

(i) m(r) = 1,

(ii) ∀f ∈ F−r : f ∈ dom(m) =⇒ (∃c ∈ C(f) : m(f) = c×m(f ↑)),

(iii) ∀f ∈ S : 0 6∈ C(f) ∧m(f ↑) > 0 =⇒ m(f) > 0,

(iv) ∀G ∈ G : (m(G↑) > 0) =⇒ (|dom(m) ∩G| ∈ C(G)).

The set of flat products of D, denoted by Pflat(D), is called the flat semantics of D.

Let us see how the above definition formalizes the description of flat products

(see page 63). The condition “a” (the root is always included in the multiset with

multiplicity 1) is directly formalized in Definition 4.3(i). Definition 4.3(ii) satisfies the

conditions “b” (if a non-root feature is included in the multiset then its parent must

be included too): suppose that a non-root feature f is included in a flat product m

without its parent. This implies that m(f ↑) = 0 and m(f) > 0, which violates Defi-

nition 4.3(ii). Definition 4.3(ii) also formalizes the condition “c” (a valid multiplicity

of a non-root feature is given based on its multiplicity domain and the multiplicity of

its parent feature in the flat produc). Indeed, “b” is a consequence of “c”. Definition

4.3(iii) formalizes the condition “d” (if the parent of a mandatory feature is included

in a flat product then it must be included too). Note that 0 6∈ C(f) for a feature f

means that f is a mandatory subfeature of its parent. Definition 4.3(iv) formalizes

the condition “e” (if a parent of a group is included in a flat product then the presence

of the grouped features must satisfy the associated group multiplicity constraint).

We also provide a recursive definition of flat products in Lemma 4.1. To this end,

we first need the following notion.

65

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Definition 4.4 (Grouped Flat Products). Let D = (F, r, ↑,G, C) be a CFD and

G = {f1, f2, . . . , fk} ∈ G for k ∈ N. A multiset m over F is a grouped flat product

associated with G if there exist c ∈ C(G), ci ∈ C(fi), gi ∈ {0, 1}, and mi ∈ Pflat(Dfi)

for any 1 ≤ i ≤ k such that

m =
⊎

1≤i≤k

mci×gi
i , and

∑
1≤i≤k

gi = c

The set of all grouped flat products associated with G is denoted by Pflat(D, G).

Consider the group G = {f4, f5, f6} in our running example (Figure 4.1). Pflat(D,G)

consists of the following elements:

— g1 = df4, f5, f6e: All elements of the group are picked, which satisfies the group’s

multiplicity domain {2, 3}. The multiplicity of f6 is 1, which is in its multiplicity

domain {1, 2}. Note that the multiplicities of both features f4 and f5 are always 1, if

included.

— g2 = df4, f5, f62e: This is the same as g1 except that 2 is chosen from f6’s

multiplicity domain.

— g3 = df4, f5e: The two features f4 and f5 have been chosen, which satisfies the

group multiplicity domain.

— g4 = df4, f6e: This is the same as g3 except that f5 is replaced by f6 with 1

occurrence.

— g5 = df4, f62e: This is the same as g4 except that 2 is chosen from f6’s multiplicity

domain.

— g6 = df5, f6e: This is the same as g4 except that f4 is replaced by f5.

— g7 = df5, f62e: This is the same as g5 except that f4 is replaced by f5.

66

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

The following theorem provides a recursive presentation of flat semantics.

Lemma 4.1. Given a CFD D = (F, r, ↑,G, C), for any multiset m over F : m ∈

Pflat(D) iff m satisfies the following conditions:

(i) m(r) = 1,

(ii) ∀f ∈ S ∩ r↓, ∃c ∈ C(f), ∃n ∈ Pflat(Df), ∀e ∈ dom(n) : m(e) = c× n(e).

(iii) ∀G ∈ G ∩ 2r↓ , ∃n ∈ Pflat(D, G), ∀e ∈ dom(n) : m(e) = n(e).

The following statement is a corollary of the above lemma.

Corollary 4.1. Given a CFD D = (F, r, ↑,G, C), a flat product m ∈ Pflat(D) satisfies

the following conditions:

(i) ∀f ∈ S, ∃c ∈ C(f), ∃n ∈ Pflat(Df), ∀e ∈ dom(n) : m(e) = n(e)× c×m(f ↑).

(ii) ∀G ∈ G, ∃n ∈ Pflat(D, G), ∀e ∈ dom(n) : m(e) = n(e)×m(G↑).

The flat semantics of a CFD provides a useful abstract view of the CFD, as it

can address a large number of analysis questions about the diagram. However, it is

a poor abstract view, as it does not capture some other useful information about the

diagram, such as the hierarchical structure. For an example, consider two different

CFDs D1 and D2 in Figure 4.2. They are equivalent in the flat semantics, since they

represent the same flat semantics {df, f2, f3e, df, f22, f3
2e}.

4.2 Hierarchical Semantics

Two types of information are lost in the flat semantics of a CFD: the tree structure,

and the feature’s types (grouped or solitary). For an example, given a CFD, we

cannot address the following questions via the CFD’s flat semantics: What are the

67

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

f2 ︎ {1,2} ︎

f︎

f3 ︎

f3 ︎ {1,2} ︎

f︎

f2 ︎

D1 ︎ D2 ︎

Figure 4.2: Two different CFDs with the same flat semantics

f3 ︎

f2 ︎

f4 ︎ f5 ︎ f6 ︎

G ︎

{3,4,5}︎ {1,2} ︎

{2,3} ︎Df2︎

{1} ︎ {1} ︎

Figure 4.3: Diagram induced by a node: an example

subfeatures of a given feature? Decide whether a given feature is solitary or not?

In this section, we address this problem with another semantics for CFDs, called

hierarchical semantics.

We need the notion of induced diagrams defined in Definition 4.5 to continue this

discussion. For a relation R ⊆ B×C and a set A, the notation R
∣∣
A

is used to denote

the restriction of R to A.

Definition 4.5 (Diagram Induced by Nodes). Let D = (F, r, ↑,G, C) be a CFD

and f ∈ F . The CFD induced by f is a CFD Df = (F ′, f, ↑
∣∣
F ′
,G ′, C ′), where

F ′ = f↓↓ ∪ {f}, G ′ = G ∩ 2F ′ , and C ′ = C|F ′∪G′ , i.e., its tree is the tree under f in D’s

tree and all other components are inherited from D.

68

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

f︎

Df1$ Df2$

{0,1,2}︎N\{3}︎

D︎

G ︎{3,4,5}︎ {1,2} ︎

{2,3} ︎
f2 ︎

Df3$

Df2$

Df4$ Df5$ Df6$

Figure 4.4: The representation of Figure 4.1 in terms of induced diagrams

For an example, Df2 in Figure 4.3 is the diagram induced by f2 of the CFD D in

Figure 4.1.

In the hierarchical semantics of a given CFD, the multiplicity domain of a soli-

tary feature is considered as a multiplicity constraint on its corresponding induced

diagram. Looking at Figure 4.4 (left), which represents the CFD D in Figure 4.1

in terms of induced diagrams: The root feature f has two children labeled by Df1

(diagram induced by f1) and Df2 (diagram induced by f2) with multiplicity domains

N \ {3} and {0, 1, 2}, respectively. In this way, a hierarchical product of D is consid-

ered as a multiset df, hc11 , hc22 e, where h1 and h2 are a hierarchical product of Df1 and

a hierarchical product of Df2 , respectively, and c1 ∈ N \ {3} (the multiplicity domain

of f1), c2 ∈ {0, 1, 2} (the multiplicity domain of f2). Since Df1 is a singleton tree, h1

is always equal to df1e.

Now, consider Df2 (the diagram induced by f2) shown in Figure 4.4 (right). The

feature f2 has four subfeatures f3−6, where f3 is a solitary feature and the others are

grouped all together under G. Thus, f2 has two subelements: a solitary feature f3

and a group G. To distinguish between groups and solitary features, we introduce

a notion, called grouped hierarchical products. This way, a hierarchical product of

Df2 would be a multiset df2, hc33 , hGe, where h3 and hG are a hierarchical product of

69

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Df3 and a grouped hierarchical product of G, respectively, and c3 ∈ {3, 4, 5} (the

multiplicity domain of f3). Since Df3 is a singleton CFD, h3 is always equal to df3e.

We describe how to get a grouped hierarchical product for G in the following.

Suppose that we choose f4 and f5 from the group G in our configuration. The

corresponding grouped hierarchical product would be a multiset dh4, h5e, where h4

and h5 are, respectively, a hierarchical product of Df4 and a hierarchical product of

Df5 . The multiplicities of h4 and h5 are both 1, as the multiplicity domains of f4 and

f5 are both {1}. Since Df4 and Df5 are singleton trees, h4 and h5 would be always

df4e and df5e, respectively. Now, let us replace f5 by f6 in our group. Then, a grouped

hierarchical product would be a multiset dh4, h
c6
6 e, where h6 is a hierarchical product

of Df6 and c6 ∈ {1, 2} (the multiplicity domain of f6). h6 would always be equal to

df6e, as f6 is a leaf. This way, we “explicitly” distinguish between grouped and solitary

features.

According to discussion above, a hierarchical product of the CFD in Figure 4.1

would be a multiset df, df1ec1 , df2, df3ec3 , ddf4ec4×g1 , df5ec5×g2 , df6ec6×g3eec2e, where

c1−6 are valid multiplicities of f1−6, respectively, and g1−3 ∈ {0, 1} such that 2 ≤

g1 + g2 + g3 ≤ 3. The condition 2 ≤ g1 + g2 + g3 ≤ 3 ensures that the group

multiplicity {2, 3} is satisfied. Note that an element in a multiset with multiplic-

ity 0 means that the element does not belong to the domain of the multiset, e.g.,

df, df1ec1 , df2, df3ec3 , ddf4e0, df5ec5 , df6ec6eec2e = df, df1ec1 , df2, df3ec3 , ddf5ec5 , df6ec6eec2e.

In our running example (Figure 4.1), the following multisets are valid hierarchical

products of the CFD:

— h1 = df, df1e5e: We chose the multiplicity 5 from the multiplicity domain of

f1. Since f1 is a leaf node, Df1 represents a single hierarchical product df1e. Since the

70

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

lower bound of the multiplicity domain of f2 is 0, it is completely safe not to include

its corresponding hierarchical product, as done in h1.

— h2 = df, df1e5, df2, df3e3, ddf4e, df5eeee: Unlike h1, a hierarchical product of Df2

is included: n = df2, df3e3, ddf4e, df5eee. Df2 has a group G and a solitary node f3. The

multiplicity 3 is chosen from the multiplicity domain of f3, i.e., df3e is an element of n

with multiplicity 3. The multiplicity 2 is chosen from the group’s multiplicity domain.

The two elements f4 and f5 each with 1 occurrence are included in the corresponding

grouped hierarchical product ddf4e, df5ee.

— h3 = df, df1e5, df2, df3e3, ddf4e, df5eee2e: This multiset and h2 differ in the f2’s

multiplicities. The multiplicity of f2 in this example is two times greater than its

multiplicity in h2. This is why we have two occurrences of df2, df3e3, ddf4e, df5eee (a

hierarchical product of Df2).

Consider again the CFDs D1 and D2 in Figure 4.2. Unlike their flat seman-

tics, their hierarchical semantics capture the differences: D1 contains the two hierar-

chical products df, df2, df3eee and df, df2, df3ee2e, while D2 contains df, df3, df2eee and

df, df3, df2ee2e as its hierarchical products.

We define a hierarchy of multisets over a set of urelements,3 which will be a

fundamental basis for formalizing the hierarchical semantics of CFDs. Since the set

of features in a CFD is a finite set, we will always deal with finite multisets. Let

MS(A) denote the class of all finite multisets over A.

Definition 4.6 (A Hierarchy of finite Multisets). For every nonempty set of

3 An urlement is an object, which may be an element of a set, but it is not a set.

71

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

urelements A, we define a hierarchy H(A) of multisets as follows:

H1(A) =MS(A), . . . Hn+1 =MS(A ∪
⋃

0≤i≤n

Hi),

H(A) =
⋃
i≥1

Hi(A)

The rank of a multiset m ∈ H(A), denoted by rank(m), is equal to the least

number n such that m ∈ Hn(A). Any multiset with rank 1 is called a flat multiset

over A.

As an example, consider the multisets m1 = da3, b3e, m2 = da2, da2, b3e, dbe4e, and

m3 = da10, da2, b3e3, dbe4, ddaeee in H({a, b}). We then would have: rank(m1) = 1,

rank(m2) = 2, and rank(m3) = 3 and m1]m2 = da5, b3, da2, b3e, dbe4e.

Now, we are at the point where we can formalize hierarchical products of CFDs.

Consider a CFD D = (F, r, ↑,G, C) ∈ D(F). Suppose that r has n solitary subfea-

tures s1, . . . , sn and k groups G1, . . . , Gk. According to our informal description of

hierarchical products, any multiset m ∈ H(F) is a hierarchical product of D if its

domain consists of (i) r with 1 occurrence, (ii) a hierarchical product of Dsi (diagram

induced by si) with a multiplicity ci ∈ C(si) for any 1 ≤ i ≤ n, (iii) a grouped hierar-

chical product of Gj with multiplicity 1 for any 1 ≤ j ≤ k. Hierarchical products and

grouped hierarchical products are formalized in Definitions 4.7 and 4.8, respectively.

Definition 4.7 (Hierarchical Products). Given a CFD D = (F, r, ↑,G, C), the set

of D’s hierarchical products, denoted by P(D), is defined as follows: For any multiset

m ∈ H(F), m ∈ P(D) iff it satisfies the following conditions:

(i) m(r) = 1.

(ii) ∀f ∈ S ∩ r↓,∃c ∈ C(f),∃n ∈ P(Df) : m(n) = c.

72

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(iii) ∀G ∈ G ∩ 2r↓ ,∃n ∈ P(D, G) : m(n) = 1.

(see Definition 4.8 for the definition of P(D, G))

P(D) is called the hierarchical semantics of D.

Definition 4.8 provides a definition for grouped hierarchical products. Consider a

group with n elements {f1, . . . , fn} whose group multiplicity domain is denoted by

C (note that ∀c ∈ C : 1 ≤ c ≤ n). A hierarchical product of this group would

be a multiset df c1×g1
1 , . . . , f cn×gn

n e, where ci is a valid multiplicity for feature fi and

gi ∈ {0, 1} (∀1 ≤ i ≤ n) such that g1 + . . .+ gn ∈ C.

Definition 4.8 (Grouped Hierarchical Products). Let D = (F, r, ↑,G, C) be

a CFD and G = {f1, f2, . . . , fk} ∈ G for some k. A grouped hierarchical product

corresponding to G is a multiset m ∈ H(F) such that for all 1 ≤ i ≤ k, there exist

c ∈ C(G), ci ∈ C(fi), gi ∈ {0, 1}, mi ∈ P(Dfi), and

(i) dom(m) = {mi : gi = 1},

(ii) ∀1 ≤ i ≤ k : m(mi) = ci × gi,

(iii) g1 + . . .+ gk = c.

The set of grouped hierarchical products associated with G is denoted by P(D, G).

The following theorem is important, as it shows that hierarchical semantics pro-

vides a faithful semantics for CFDs. In Section 4.4, we will characterize hierarchical

semantics of CFDs.

Theorem 4.1. Given two CFDs D and D′, (P(D) = P(D′))⇐⇒ (D = D′).

The above theorem shows that, unlike the flat semantics, the hierarchical seman-

tics of a given CFD captures all information of the CFD. However, the cardinalities of

73

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

the hierarchical semantics and flat semantics of a given CFD are the same, i.e., there

is a bijection between the set of hierarchical products and the set of flat products for

a fixed CFD. This is shown in Theorem 4.2. Before getting to this formally, we first

need the following notions.

The domain of a multiset with rank greater than 1 includes some multisets. For

example consider the multiset m = da, b, dc, dd, eeee ∈ H3({a, b, c, d, e}). The domain

of this multiset includes the multiset i1 = dc, dd, eee. The domain of i1 itself includes

the multiset i2 = dd, ee whose domain is a set urelements. We call i1 and i2 the

multiset ingredients of m.

Definition 4.9 (Multiset Ingredients of Multisets). Given a multiset m ∈ H(A)

for some A, MultIng(m) is the smallest set of multisets in H(A) such that

(i) {n ∈ dom(m) : rank(n) ≥ 1} ⊂ MultIng(m),

(ii) ∀n ∈ MultIng(m) : MultIng(n) ⊂ MultIng(m).

The multiplicity of a multiset n ∈ MultIng(m) in m is denoted by #m(n).

The following definition formalizes a notion called the flat multiplicity of an ure-

lement in a multiset. An illustrating example follows the definition.

Definition 4.10 (Flat Multiplicities and Flattening). Let m ∈ H(A) for a

set A of urelements. The flat multiplicity of an element is defined by a function

#m,A : A→ N as #m,A(a) = m(a) +
∑

e∈MultIng(m) #m,A(e).

We define a function flatA : H(A) → H1(A), which maps a given multiset m ∈

H(A) to a flat multiset as follows. For any m ∈ H(A) : flatA(m)(a) = #m,A(a). We

say that flatA(m) flattens m.

Consider again the multiset m = da2, b2, da, be4, da8, dae7, da5, b3e3ee. The flat

multiplicities of a and b are 36 and 15, respectively. Thus, flat{a,b}(m) = da36, b15e.

74

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

The following theorem (Theorem 4.2) shows that the restriction of the flatten-

ing function to the domain of the hierarchical semantics of a given CFD provides a

bijection between the hierarchical semantics and the flat semantics of the CFD. Con-

sider the hierarchical products h1 = df, df1e5e, h2 = df, df1e5, df2, df3e3, ddf4e, df5eeee,

and h3 = df, df1e5, df2, df3e3, ddf4e, df5eee2e of the CFD in Figure 4.1 (see page 70).

Flattening them, we obtain m1 = df, f15e, m2 = df, f15, f2, f3
3, f4, f5e, and m3 =

df, f15, f2
2, f3

6, f4
2, f5

2e, respectively, which are flat products of the CFD (see page

64).

Theorem 4.2. For any CFD D ∈ D(F), the function flatF
∣∣
P(D)

, i.e., the restriction

of flatF to the subdomain P(D), provides a bijection from P(D) to Pflat(D).

4.3 Characterization of Hierarchical Products

In this section, we characterize the domain of multisets that can be hierarchical

products of some CFDs. To this end, we define a notion called tree-like multisets.

Definition 4.11 (Tree-like Multisets). Given a set of urelements A, the set of

tree-like multisets over A, denoted by T H(A), is inductively defined as follows:

(i) dae ∈ T H(A), ∀a ∈ A.

(ii) t1] dtn2e ∈ T H(A), ∀t1, t2 ∈ T H(A),∀n ∈ N, if

dom(flatA(t1)) ∩ dom(flatA(t2)) = ∅.

(iii) t] dd tn1
1 , . . . , t

nk
k ee ∈ T H(A), ∀t, t1, . . . tk ∈ T H(A), ∀n1, . . . , nk ∈ N, if

∀1 ≤ i ≤ k : dom(flatA(t)) ∩ dom(flatA(ti)) = ∅, and

∀1 ≤ i, j ≤ k : (i 6= j) =⇒ (dom(flatA(ti)) ∩ dom(flatA(tj)) = ∅).

For example, the following multisets in H({a, b, c}) are tree-like multisets:

75

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

– t1 = dae, t2 = dbe, and t3 = dce,

– t4 = t1] dt62e = da, dbe6e, t5 = t3] dt4e = dc, da, dbee6e,

– t6 = t1] ddt22, t3ee = da, ddbe2, dceee.

The following multisets are not valid tree-like multisets:

– n1 = da, be,

– n2 = da3, dbe6e,

– n3 = da, ddb, ce2ee.

Definition 4.12 (Groups of Tree-like Multisets). Given a set A of urelements,

t1, . . . tk ∈ T H(A), n1, . . . , nk ∈ N, the multiset ddtn1
1 , . . . , t

nk
k ee ∈ H(A) is called a

group of tree-like multiset over A if

∀1 ≤ i, j ≤ k : (i 6= j) =⇒ (dom(flatA(ti)) ∩ dom(flatA(tj)) = ∅).

Any element of the domain of a group tree-like multiset is called a grouped tree-like

multiset.

The multiset ddbe2, dc, [a]3ee is an example of a group of tree-like multiset over

{a, b, c}. As noticed, the domain of a tree-like multiset includes a unique urelement

with multiplicity 1. We call this element the root of the tree-like multiset, formalized

in the following definition.

Definition 4.13 (Roots of Tree-like Multisets). Given a set A, we define a

function root : T H(A)→ A, as follows:

(i) root(dae) = a, for any a ∈ A.

(ii) root(t1] dtn2e) = root(t1) for any t1, t2 ∈ T H(A), n ∈ N satisfying the condi-

tions in Definition 4.11(ii).

(iii) root(t] d tn1
1 , . . . , t

nk
k e) = root(t) for any t, t1, . . . tk ∈ T H(A) and n1, . . . , nk ∈

N satisfying the conditions in Definition 4.11(iii)

76

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Note that any multiset ingredient of a tree-like multiset is either a tree-like multiset

or a group of tree-like multisets. As an example, the multiset t = da, dbe5, dc, dde3, ddee,

dfeee2e is a tree-like multiset over the set {a, b, c, d, e, f}: root(t) = a; the ele-

ments t1 = dbe, t2 = dc, dde3, ddee, dfeee ∈ dom(t) are both tree-like multisets with

root(t1) = b and root(t2) = c, respectively; the element ddee, dfee ∈ dom(t2) is a

group of tree-like multisets.

Restriction of H(A) to tree-like multisets results in a hierarchy of tree-like mul-

tisets. Let us denote this hierarchy and its classes by T H(A) and T Hi(A) (i ≥ 1),

respectively. According to Definition 4.11, T H1(A) = {dae : a ∈ A} and T H(A) =⋃
i T Hi(A). Note that T H(A) is not closed under additive union and multiset minus.

The following theorem shows that a hierarchical product of a CFD is always a

tree-like multiset.

Theorem 4.3. Any hierarchical product of a given CFD over a set of features F is

a tree-like multiset over F .

For example, consider again the three hierarchical products of our running ex-

ample in Figure 4.1: h1 = df, df1e5e, h2 = df, df1e5, df2, df3e3, ddf4e, df5eeee, and

h3 = df, df1e5, df2, df3e3, ddf4e, df5eee2e. It is easy to see that h1−3 are all tree-like

multisets.

The rest of the section is devoted to showing that any tree-like multiset is a

hierarchical product of some CFDs. We show how to extract a CFD from a given tree-

like multiset. This is done step by step through the following definitions. Definition

4.16, Definition 4.17, and Definition 4.18 show, respectively, how to extract the tree,

groups, and multiplcities from a given tree-like multiset.

We first define the notion of a tree-like multisest induced by an element:

77

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Definition 4.14 (Tree-like Multiset Induced by Elements). For a given tree-

like multiset t over a set A, the tree-like multiset induced by a, denoted by ta, is the

multiset ingredient of t whose root is a.

Remark 4.2. According to Definition 4.11, the following statement follows: Let

t ∈ T H(A) for a set A of urelements. For any a ∈ dom(flatA(t)), there is a unique

multiset ingredient of t whose root is a. This uniqueness makes Definition 4.14 well-

formed.

For an example, consider the tree-like multiset t = da, dbe5, dc, dde3, ddee, dfeee2e

over the set {a, b, c, d, e, f}. Then, we would have: ta = t, tb = dbe, tc =

dc, dde3, ddee, dfeee, td = dde, te = dee, and tf = dfe.

The following definition introduces the notion of parents in tree-like multisets.

Definition 4.15 (Parents of Elements in Tree-like Multisets). For a given

tree-like multiset t over a set A and a ∈ dom(flatA(t)) \ {root(t)}, the parent of a,

denoted by a↑t , is an element in dom(flatA(t)) such that

(i) if ta is a grouped tree-like multiset under a group multiset g, then g is in the

domain of the tree-like multiset induced by a↑t , i.e., g ∈ dom(ta
↑t).

(ii) if ta is a tree-like multiset, then it is in the domain of the tree-like multiset

induced by a↑t , i.e., ta ∈ dom(ta
↑t).

Remark 4.3. According to Definition 4.11, the following statement follows obviously:

Consider a tree-like multiset t ∈ T H(A) for a set A. For any a ∈ dom(flatA(t)) \

{root(t)}, there exists a unique element in dom(flatA(t)) satisfying (i) and (ii) in

Definition 4.15. This makes Definition 4.15 well-formed. Therefore, ↑t is indeed a

function from dom(flatA(t)) \ {root(t)} to dom(flatA(t)).

78

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

For an example, consider again the tree-like multiset t = da, dbe5, dc, dde3, ddee, dfeee2e

over the set {a, b, c, d, e, f}. We would have: b↑t = c↑t = a and d↑t = e↑t = f ↑t = c.

Now we can see that any tree-like multiset represents a unique tree of the elements

of its corresponding flat multiset. This tree is extracted using the parents of elements.

The following definition shows how to do so.

Definition 4.16 (Trees Associated with Tree-like Multisets). Let t be a tree-

like multiset over a set A; the tree associated with t, denoted by Tt, is defined as

follows: Tt = (Nt, rt,
↑t), where Nt = dom(flatA(t)), rt = root(t), and ↑t : Nt\{rt} →

Nt is a function defined in Definition 4.15.

For an example, consider the tree-like multiset t = da, dbe5, dc, dde3, ddee, dfeee2e

∈ T H({a, b, c, d, e, f}). Its tree is represented in Figure 4.5: The root of t, i.e., a, is

the root of the tree. There are two elements, b and c, whose parents are a. b is a leaf in

the tree, as there is no element whose parent is b. There are three elements d, e, and f

whose parents are c (e and f are grouped tree-like multisets and their corresponding

group ddee, dfeee is an element in the domain of tc = dc, dde3, dde], dfeee.). All the

elements d, e, and f are leaves, as there is no element whose parent is either d, e, or

f .

The following definition shows how to extract groups from tree-like multisets.

Groups are extracted via group multiset ingredients.

Definition 4.17 (Groups Associated with Tree-like Multisets). Let t be a tree-

like multiset over a set A. A set G ⊂ dom(flatA(t)) is called a group if there exists a

group tree-like multiset g ∈ MultIng(t) such that G = {root(x) : x ∈ dom(g)}. We

79

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a�

b �

d �

c �

e� f�
Figure 4.5: Trees associated with tree-like multisets: example

define G↑t
def
= e↑t for an element e ∈ G and call it the parent of G.4

The set of all groups of t is denoted by Gt. Let G(a) denote the set of all groups

G whose parent is a, i.e., G(a) = {G ∈ Gt : G↑t = a}.

For an example, consider the multiset t = da, d[be, dc, dde4ee5, de, dfe3, ddge, dheee2e.

There are two group tree-like multisets g1 = ddbe, dc, dde4ee, g2 = ddge, dhee.

According to Definition 4.17, the groups corresponding to g1 and g2 would be, re-

spectively, equal to the sets G1 = { root(dbe), root(dc, dde4e) } = {b, c} and

G2 = { root(dge), root(dhe) } = {g, h}.

We have already shown how to extract the corresponding tree and groups from a

given tree-like multiset. All we need to do now is to know how to extract multiplicities

from tree-like multisets. The following definition shows how to do so.

Definition 4.18 (Multiplicities Associated with Tree-like Multisets). For a

given tree-like multiset t ∈ T H(A) over a setA, we define a function Ct :
(
dom(flatA(t))\

4Note that ∀e, e′ ∈ G : e↑t = e′↑t .

80

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

{root(t)}
)
∪ Gt → N as follows:

Ct(e) =


|e| if e ∈ Gt

#t(t
e) otherwise

Recall that te and #t(t
e) denote the tree-like multiset induced by e and the multiplicity

of te (see Definition 4.9), respectively.

As an example, consider again the tree-like multiset t = da, db]5, dc, dde3, ddee, dfeee2].

It has only one associated groupG = {e, f}. According to Definition 4.18, Ct is defined

on {a, b, c, d, e, f,G} as follows:

Ct(b) = #t(t
b) = #t(dbe) = 5.

Ct(c) = #t(t
c) = #t(dc, dde3, ddee, dfeee) = 2.

Ct(d) = #t(t
d)} = #t(dde) = 3.

Ct(e) = #t(t
e)} = #t(dee) = 1.

Ct(f) = #t(t
f)} = #t(dfe) = 1.

Ct(G) = #t(t
G) = |G| = 2.

Now we are at the point where we can prove that any tree-like multiset is a hierarchical

product of some CFD.

Theorem 4.4. For any tree-like multiset t, there is a CFD D such that t ∈ P(D)

For an example, consider the tree-like multisets t = da, dbe5, dc, dde3, ddee, dfeee2e

and t′ = da, dc, ddeeee, dge3e. The CFDs Dt and Dt′ in Figure 4.6 represents two

CFDs whose hierarchical semantics include t and t′, respectively.

81

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Dt︎

a︎

g ︎c ︎

e︎ f︎

{1} ︎

{3} ︎{1} ︎

{1} ︎

Dt’︎

{1} ︎

a︎

b ︎

d ︎

c ︎

e︎ f︎

{2} ︎

{3} ︎

{5} ︎ {2} ︎

{1} ︎ {1} ︎

Figure 4.6: Representative CFDs of single tree-like multisets: example

4.4 Characterization of Hierarchical Semantics

In the previous section, we showed that a multiset is a hierarchical product of some

CFDs if and only if it is a tree-like multiset. In this section, we are going to charac-

terize hierarchical semantics of CFDs. That is, we want to see what sets of tree-like

multisets can be the hierarchical semantics of a CFD. We first define the notions

mergeable tree-like and completely mergeable tree-like multisets. A set of tree-like

multisets is mergeable if it represents a subset of the hierarchical semantics of some

CFDs. It is called completely mergeable if it is equal to the hierarchical semantics of

a CFD.

Definition 4.19 (Mergeable Tree-like Multisets). We say that the elements of

a (possibly infinite) set of tree-like multisets U are

(i) mergeable if there exists a CFD D such that U ⊆ P(D). We then call D a

representative CFD of U .

82

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a︎

b ︎ c ︎

{1,2}︎{0,5}︎

D︎

d ︎
{3}︎

e︎ f︎

{1,2}︎

{1}︎ {1}︎

g︎

{0,3}︎

Figure 4.7: Representative CFDs of mergeable tree-like multisets: example

(ii) completely mergeable if there is a CFD D such that U = P(D).

According to Theorem 4.4, any singleton set of tree-like multisets is mergeable.

Consider the tree-like multisets t = da, dbe5, dc, dde3, ddee, dfeee2e and t′ = da, dc, ddeeee

, dge3e. Figure 4.7 represents a CFD whose hierarchical semantics includes t and t′.

Therefore, they are mergeable. However, t and t′ are not completely mergeable.

As a simple example of non-mergeable tree-like multisets, consider n = da, dbe3e

and n′ = db, dae2e. They are not mergeable, as their roots are different.

There is no unique CFD representing a given set of tree-like multisets. For ex-

ample, replacing the multiplicity domain of node b in D (Figure 4.7) by any other

multiplicity domains including 0 and 5 (e.g., N), the CFD would still represent t and

t′. Another example: adding an optional subfeature5 to the node b, the CFD is still

a representative of t and t′. Indeed, for a given set of mergeable tree-like multisets,

there is an infinite number of representative CFDs. Therefore, a notion of minimality

for representative CFDs can be useful.

5multiplicity domain with lower bound 0

83

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a︎

c ︎

{1,2}︎

D︎

d ︎
{0,3}︎

e︎ f︎

{1}︎

{1}︎ {1}︎

g︎
{0,3}︎

Figure 4.8: Representative CFDs of mergeable tree-like multisets: example

Definition 4.20 (Minimal Representative CFDs). A CFD D is called a minimal

representative CFD of a given set of mergeable tree-like multisets U if

(i) it is a representative CFD of U , and

(ii) for any other representative CFD D′ of U , |P(D)| ≤ |P(D′)|.

Let DUmerge denote the family of minimal representative CFDs of U .

The CFD D in Figure 4.7 represents a minimal representative CFD of the tree-

like multisets t = da, dbe5, dc, dde3, ddee, dfeee2e and t′ = da, dc, ddeeee, dge3e. For

these two tree-like multisets, there is, indeed, only one minimal representative CFD.

Now, consider another tree-like multiset t′′ = da, dc, dde3, ddeeee2e. A minimal rep-

resentative CFD of t′′ and t′ is represented in Figure 4.8. However, this is not the

only minimal CFD representing these two tree-like multisets: replacing f by another

feature, say x, we obtain another minimal representative CFD of t′′ and t′.

Remark 4.4. Note that, according to Theorem 4.1, there is a single minimal repre-

sentative CFD of a given set of completely mergeable tree-like multisets.

84

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a�

b � c �

T1 �

d � e� f�

a�

 g �c �

e�

T2 �

a�

b � c �

T�

d � e� f�

g�

Figure 4.9: Megeable trees and their representative trees: an example

In the rest of this section, we are going to characterize mergeable tree-like multi-

sets. To this end, we first introduce the notion of mergeable trees.

Remark 4.5. Note that a mergeable set of tree-like multisets may be infinite. How-

ever, it is always enumerable, as the hierarchical semantics of a CFD is always enu-

merable. This simple fact is used in the following definitions and theorems.

Definition 4.21 (Mergeable Trees). Consider an enumerable set of trees T = {Ti :

i ∈ I}, where I enumerates its elements. Let Ti = (Ni, ri,
↑i), ∀i ∈ I. We say that

the trees in T are mergeable if

(i) ∀i, j ∈ I : ri = rj.

(ii) ∀i, j ∈ I,∀n ∈ (Ni ∩Nj) \ {r1} : n↑i = n↑j .

Then the tuple (N, r, ↑), where N =
⋃

i∈I Ni, r = r1, and ↑ =
⋃

i∈I
↑i is a tree. We

use the notation T merge to denote this tree and call it the representative tree of T .

As an example, consider the megeable trees T1, T2 and their representative tree T

in Figure 4.9. Taking advantage of this notion, we characterize mergeable tree-like

multisets in the following theorem.

85

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Theorem 4.5. Consider an enumerable set of tree-like multisets U = {ti : i ∈ I} ⊂

T H(A) over a set A, where I enumerates its elements. Let Ti = (Ni, ri,
↑i) and Gi

(∀i ∈ I) denote the ti’s associated tree and groups, respectively (see Definitions 4.16

and 4.17, respectively). The tree-like multisets in U are mergeable iff:

(i) ∀i, j ∈ I : Ti, Tj are mergeable.

(ii) ∀i, j ∈ I,∀n ∈ Ni ∩Nj : (∃G ∈ Gi : n ∈ G) =⇒ (∃G ∈ Gj : n ∈ G).

The above theorem characterized mergeable tree-like multisets. However, it does

not lead us to a pragmatic approach when a given set of tree-like multisets is infinite.

We need to address this problem. Note that what makes the hierarchical semantics

of a CFD infinite is due to some infinite multiplicity domains of some nodes, e.g.,

the multiplicity domain N \ {3} on f1 in the CFD in Figure 4.1. However, as we saw

in Theorem 4.5, multiplicities on elements in tree-like multisets have no influence in

making them mergeable or not. We will use this clue to address the problem. We

first introduce the notion of relaxed multisets. A relaxed version of a given multiset is

obtained by changing all multiplicities of its ingredients to 1. For an example, the re-

laxed multiset of da, dbe5, dc, dde3, ddee, dfeee2e would be da, dbe, dc, dde, ddee, dfeeee.

Definition 4.22 (Relaxed Multisets). Given a multiset m ∈ H(A) over a set A,

its relaxed multiset, denoted by m◦, is defined as follows:

dom(flatA(m◦)) = dom(flatA(m)),

MultIng(m◦) = MultIng(m),

∀e ∈ dom(m◦) : m◦(e) = 1,

∀n ∈ MultIng(m◦),∀e ∈ dom(n) : n(e) = 1.

For a given set of multisets U , let U◦ denote the set {m◦ : m ∈ U}.

The following proposition follows easily.

86

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Proposition 4.1. Let Tt = (Nt, rt,
↑t),Gt, Ct denote tree, groups, and multiplicities

associated with a given tree-like multiset t ∈ T H(A) (see Definitions 4.16, 4.17, and

4.18.). The tree and groups associated with t◦ are equal to Tt◦ = Tt and Gt◦ = Gt,

respectively. The multiplicities associated with t◦, i.e., Ct◦ , is defined as follows:

Ct◦(e) =


{1} if e ∈ (Nt \ {rt})

Ct(e) if G ∈ G

To specify whether a given set of tree-like multisets is mergeable or not, we just

need to deal with its relaxed version (see Theorem 4.6(i)). More interestingly (and

practically useful), the relaxed version of a set of mergeable tree-like multisets is finite

(see Theorem 4.6(ii)).

Theorem 4.6. Consider an enumerable set of tree-like multisets U ⊂ T H(A) over a

set A.

(i) U is mergeable iff U◦ is.

(ii) U is mergeable implies that U◦ is finite.

Now, we want to characterize completely mergeable tree-like multisets. This is

done in Theorem 4.7. Before getting to the theorem, let us see some examples.

Consider the set U = {t1, t2, t3, t4} of tree-like multisets, where t1−4 are as follows:

t1 = da, dbe5, ddceee,

t2 = da, dbe5, ddde3ee,

t3 = da, dbe2, ddceee,

t4 = da, dbe2, ddde3ee.

87

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

D︎

b ︎

a︎

c ︎ d ︎

{1} ︎

{2,5}︎ {1} ︎ {3} ︎

D°︎

b ︎

a︎

c ︎ d ︎

{1} ︎

Figure 4.10: Minimal representative CFDs of U and U◦

D1 ︎

b ︎

a︎

c ︎ x ︎

{1} ︎

{5}︎ {1} ︎ {1} ︎

D1°︎

b ︎

a︎

c ︎ x ︎

{1} ︎

Figure 4.11: Minimal representative CFDs of U1 and U1
◦

Their relaxed multisets are represented in the following (as usual, we denote the set

of the following tree-like multisets by U◦):

t1
◦ = t3

◦ = da, dbe, ddceee,

t2
◦ = t4

◦ = da, dbe, dddeee.

Two minimal representative CFDs of U and U◦ are represented in Figure 4.10 as

D and D◦, respectively.6 Since P(D) = U and P(D◦) = U◦, both U and U◦ are

completely mergeable.

6Since U is completely mergeable, there is only one minimal representative CFD of U .

88

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Now, consider U1 = U \ {t2, t4}. Clearly, U1 is not completely mergeable. A

minimal representative CFD D1 of U1 is represented in Figure 4.11, where x can be

any feature not equal to a, b, or c. A representative CFD D1
◦ of U1

◦ is also represented

in Figure 4.11. Note that U1
◦ is not completely mergeable either.

What we saw in the above examples is indeed a general rule: For any completely

mergeable tree-like multisets U , U◦ would be completely mergeable too. However,

we cannot characterize completely mergeable multisets relying on just their relaxed

multisets. Indeed, there are sets of tree-like multisets which are not completely merge-

able, but their relaxed multisets are. As an example, consider the set of multisets

U2 = U \ {t3}. Clearly, U2 is not completely mergeable. The CFD D in Figure 4.10

is a minimal representative CFD of U2 (recall that it is also a representative CFD of

U). Since U2
◦ = U◦, U2

◦ is completely mergeable (as U◦ is).

The above discussion shows that characterization of completely mergeable tree-

like multisets goes via their relaxed tree-like multisets and multiplicities. We will

need the following notion.

Definition 4.23 (Overall Multiplicities). Given a set of tree-like multisets U ⊂

T H(A), we define a function CU : A→ 2N as follows: CU(a) =
⋃

t∈U{#t(t
a)}.7

Theorem 4.7. Consider an enumerable set of tree-like multisets U ⊂ T H(A) over a

set A. U is completely mergeable iff

(i) U◦ is completely mergeable, and

(ii) ∀t ∈ U◦,∀a ∈ dom(flatA(t)),∀c ∈ CU(a),∃t′ ∈ U : (t′◦ = t) ∧ (#t′(t
′a) = c).

In Theorem 4.1, we showed that two CFDs are equal iff their hierarchical semantics

7Recall that ta and #t(t
a) denote the multiset induced by a and the multiplicity of ta in t, resp.

89

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

are equal. This implies that there is a unique minimal representative CFD of given

completely mergeable tree-like multisets. Thus, we get to the following statement,

which is a corollary of Theorems 4.7 and 4.1.

Corollary 4.2. There is a bijection between the domains of CFDs and completely

mergeable tree-like multisets.

4.5 Other Applications

As mentioned in Section 4.1, the flat semantics is commonly considered as the seman-

tics of CFDs in the literature. The most well-known formulation of flat semantics is

given via context-free grammars, that is, a given CFD is transformed to a context-free

grammar and then the Parikh image of its language is considered as the set of flat

products of the CFD [CHE05a]. However, as far as we know, flat semantics never

achieved a direct definition. This is an important issue, as verification of a proposed

formulation of products without having a formal definition of them is impossible. We

provided a direct definition of flat products in Definition 4.1. In Chapter 5, where

we propose transformation of CFDs to regular expressions, we will take advantage of

this definition to verify the proposed methods. Deciding whether a given multiset is

a valid flat product for a given CFD or not is algorithmic. This is easy to see via

Lemma 4.1, where a recursive terminating definition of flat products is provided. The

flat semantics of a given CFD can address some analysis questions about the CFD, in-

cluding “deciding whether a given multiset is a valid product of a given CFD or not”,

“deciding whether a given integer is a valid multiplicity of a given feature or not”, etc.

Therefore, this semantics provides a useful abstract view of CFDs. However, the flat

semantics of a given CFD does not capture all useful information about the CFD. To

90

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

overcome this problem, we have proposed another multisets-based semantics called

the hierarchical semantics.

The hierarchical semantics of a given CFD captures all information about the

CFD (see Theorem 4.1). This means that one can address any question about the

CFD based on its hierarchical semantics. It is easy to see that deciding whether a

given multiset is a hierarchical product of a given CFD or not is algorithmic (see

the recursive definition of hierarchical products in Definition 4.7). One of the three

transformations of CFDs to regular expressions discussed in Chapter 5 is based on

the hierarchical semantics, which ensures that the transformation is a faithful one

(see Section 5.4 and Section 5.5).

The hierarchical semantics could also be used in the reverse engineering of CFDs

(an important problem in feature modeling), as the hierarchical semantics of a given

CFD captures all information about the CFD. In Section 4.3 and Section 4.4, we

characterized the hierarchical products and semantics of a given CFD, respectively.

The proofs given for corresponding theorems are all constructive: Theorem 4.4 con-

structively shows that there is a CFD representing a given tree-like multiset; Theorem

4.6, whose proof is constructive, characterizes mergeable tree-like multisets; Theorem

4.7, whose proof constructively shows how to retrieve the CFD from its hierarchical

semantics, characterizes completely mergeable multisets.

Another important application of the hierarchical semantics of CFDs regards fea-

ture model management, which is an active area in feature modeling. By feature

model management, we mean feature model composition via some operations like

merging, intersection, and union, etc [SBRCT08, ACLF10a, ACC+13]. Character-

ization of the hierarchical semantics come in handy here. As an example, suppose

91

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

that we want to obtain the merge of two CFDs D1 and D2. We need to address the

two following questions: Are D1 and D2 mergeable? What would be the result of

their merge, if they are mergeable? To address these questions, we first obtain their

hierarchical semantics P(D1) and P(D2), respectively. We then decide whether their

union is mergeable or not. To this end, we take advantage of Theorem 4.6. This

would address the first question. If they are mergeable, then we obtain a representa-

tive CFD of P(D1) ∪ P(D2). The proof of Theorem 4.6 constructively shows how to

obtain a representative CFD of a set of mergeable tree-like multisets. As for the in-

tersection (union, respectively) of D1 and D2, we first obtain the intersection (union,

respectively) of their hierarchical semantics and then decide whether the obtained set

of tree-like multisets is completely mergeable or not. To this end, we would apply

Theorem 4.7.

92

Chapter 5

The Semantics of

Cardinality-Based Feature Models

via Formal Languages

In this chapter, we build semantics for CFMs via formal languages. We propose three

different transformations going from CFDs to regular expressions. This provides a

semantics for CFDs by using regular languages as the semantic domain. Regular

languages have some nice computational properties. These properties, such as the

decidability of the emptiness, inclusion, and equality problems, help us to propose

algorithmic solutions for analysis operations over CFDs. In addition, the complexity

class of all regular languages is SPACE(O(1)), i.e., the decision problems can be

solved in constant space. Therefore, we can claim that regular expressions provide

a good computational framework for reasoning about CFDs. Also, there are several

off-the-shelf tools dealing with the class of regular languages. This enables us to

93

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

address automated analysis over CFDs, which is a challenging issue in cardinality-

based feature modeling.

The first transformation is discussed in Section 5.2. We first define a generaliza-

tion of CFDs called Cardinality-based Regular-expression Diagrams (CRDs) in which

labelling of nodes can be any regular expression built over an alphabet. Subsequently,

we give a procedure to translate a given CRD to a regular expression, called CRDs to

Regular Expressions (CRE). We also prove that the CRE regular expression generated

for a given CFD captures both the flat semantics and the hierarchy of the CFD; and

hence it provides a faithful semantics for the CFD.

The second transformation is discussed in Section 5.3. We first define Ordered

siblings CFDs (osCFDs) and Ordered siblings CRDs (osCRDs) which are CFDs and

CRDs, respectively, enriched with a partial order on nodes, called sibling ordering.

We then provide a procedure to translate a given osCRD to a regular expression,

called osCRDs to Regular expressions (ORE). We show that the ORE regular expres-

sion generated for a given osCFD captures the flat semantics of its underlying CFD.

However, it may not capture the hierarchy of the CFD. Thus, this transformation does

not provide a faithful semantics for CFDs. However, it is a cheap transformation and

yet useful for many analysis questions about CFDs.

The third transformation, called Hierarchical semantics to Regular Expressions

(HRE) is discussed in Section 5.4. This transformation is based on the hierarchical

semantics discussed in Chapter 4. Thus, it provides a faithful semantics for the

underlying CFD of a given osCFD. The HRE regular expression for a given osCFD is

built on the set of features plus two extra symbols (d and e). This differentiates HRE

from ORE and CRE. The transformations will be further discussed in Section 5.5.

94

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

As for crosscutting constraints over CFDs, we propose a formal language interpre-

tation of them (see Section 5.6). In this way, we can integrate the formal semantics

of CFDs and crosscutting constraints over them. Thus, three different kinds of for-

mal languages are associated with a given CFM, i.e., CRE, ORE, and HRE languages

of the CFM. Formal language encoding of CFMs allows us to group CFMs based

on their computational properties, say regular, context-free, and context-sensitive

CFMs. As a result, we give a computational hierarchy of CFMs, which guides us in

how to constructively analyze them. We also investigate the decidability problems

of some analysis operations over CFMs. Interestingly, we noticed that not all of the

investigated analysis operations are decidable in all classes of CFMs.

5.1 Cardinality-Based Feature Diagram: Syntax

A CFD is a tree of features in which some subsets of non-root nodes are grouped and

other nodes are called solitary. In addition, non-root nodes and groups are equipped

with some multiplicity constaints. A multiplicity constraint is usually expressed as

a sequence of pairs (l, u), where l is a natural number, u is either a number or ∗

(representing an unbounded multiplicity) and l ≤ u. We call a multiplicity constraint

on a node or group a multiplicity domain. As an example, consider the CFD in Figure

5.1. It is a CFD over features f, f1−6. G denotes a group consisting of the features

f4, f5, and f6, and any feature in F \ G is a solitary feature. The multiplicity domains

are as follows: (2, 3) on G, (1, 2)(4, ∗) on f1, (0, 2) on f2, (3, 5) on f3, and (1, 2) on f6.

The multiplicity domains on the features f4,5 are both (1, 1). We will use this CFD

as an example to illustrate the transformation procedures in the chapter.

In Chapter 4, where two multiset theories were proposed for CFDs, we formalized

95

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

f︎

f1 ︎

f3 ︎

f2 ︎

f4 ︎ f5 ︎ f6 ︎

G ︎

(0,2)︎(1,2)(4,*) ︎

(3,5)︎ (1,2)︎

(2,3)︎

D︎

Figure 5.1: A CFD: running example for transformations

a multiplicity domain as a subset of natural numbers to make the formalizations in

the chapter easier to read.1 In this chapter, we get back to the common practical

multiplicity constraints, as not all subsets of natural numbers are computable. To

this end, we first need to formalize the notion of multiplicities over nodes and groups.

Definition 5.1. We define a structure (N∗,≤∗) as N∗ = N ∪ {∗} the universe, and

≤∗⊂ N∗ × N∗ a reflexive transitive relation defined by ∀u, l ∈ N∗ : (l ≤∗ u)⇔ (l, u ∈

N ∧ l ≤ u) ∨ (u = ∗).2 For any u, l ∈ N∗, we use the notation l <∗ u to denote

(l ≤∗ u) ∧ (l 6= u).

Definition 5.2 (Multiplicities).

(i) The multiplicity-set is the set C = {(l, u) ∈ N × N∗ : (l ≤∗ u) ∧ (u 6= 0)}.

An element c = (l, u) ∈ C is called a multiplicity. We call l and u the lower-bound,

denoted by low(c), and upper-bound, denoted by up(c), of c, respectively.

1 This definition of constraint domains provides us with a more expressive language of CFDs,
since not any subset of natural numbers can be expressed as a finite sequence of intervals of numbers.

2Another equivalent definition could be ∀l, u ∈ N : (l ≤∗ u⇐⇒ l ≤ u) ∧ (l ≤∗ ∗)

96

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(iii) A subset C ⊆ C is called a multiplicity domain if there exists a finite set

I = {1, . . . , n} ⊂ N such that C = {(li, ui) : i ∈ I} in which ui <∗ li+1, for all

i, i+1 ∈ I. We call l1 and un the lower-bound, denoted by low(C), and upper-bound,

denoted by up(C), of C, respectively.

Definition 5.3 (Cardinality-based Feature Diagrams). A cardinality-based fea-

ture diagram (CFD) is a 3-tuple D = (T,G, C) consisting of the following components.

(i) T = (F, r, ↑) is a tree with set F of nodes (called features), r ∈ F is the root,

and function ↑ maps each non-root node f ∈ F−r
def
= F \ {r} to its parent f ↑. The

inverse function that assigns to each node f the set of its children is denoted by f↓.

The set of all descendants of f is denoted by f↓↓.

(ii) G ⊆ 2F−r is a set of grouped nodes. For all G ∈ G, |G| > 1, and all nodes in

G have the same parent, denoted by G↑. All groups in G are disjoint, i.e., ∀G,G′ ∈

G. (G 6= G′) ⇒ (G ∩ G′ = ∅). The nodes that are not in a group are called solitary

nodes. Let S denote the solitary nodes, i.e., S = F−r \
⋃

G∈G G.

(iii) C ⊆ (F−r ∪ G)× C is a left-total relation called the multiplicity relation. For

any element e ∈ F−r∪G, C(e) represents a multiplicity domain (see Definition 5.2(iii)).

In addition, for all G ∈ G, up(C(G)) ≤ |G|.

The class of all CFDs and all CFDs over the same set of features F are denoted

by D and D(F), respectively.

We will sometimes write a CFD D as a 5-tuple D = (F, r, ↑,G, C). If needed, we

will subscript D’s components with index D, e.g., write GD.

Let D = (T,G, C) be a CFD with T = (F, r, ↑) and f ∈ F . We will need the

following notations in later sections:

97

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

– depth(D) denotes T ’s depth and depth(f) denotes the f ’s depth in T . In our

example in Figure 5.1, depth(f) = 1, depth(f1) = 3, and depth(D) = 3.

– lev(D) denotes the set of leaf nodes, i.e., lev(D) = {f ∈ F : f↓ = ∅}. In Figure

5.1, lev(D) = {f1, f3, f4, f5, f6}.

– glev(D) denotes the set of grouped leaves, i.e., glev(D) = {G ∈ G : ∀n ∈

G. n↓ = ∅}. In Figure 5.1, glev(D) = {{f4, f5, f6}}.

5.2 The CRE Transformation

In this section, we discuss the CRDs to Regular Expressions (CRE) transformation.

We first need to define a notion called cardinality-based regular-expression diagrams

(CRDs). CRDs are generalization of CFDs in which labelling of nodes can be any

regular expression built over an alphabet.

Definition 5.4 (Cardinality-based Regular-expression Diagrams). A cardinality-

based regular-expression diagram (CRD) over an alphabet Σ is a 3-tuple RD =

(LTre,G, C) of the following components:

(i) LTre = (N, r, ↑,Σ, lre) is a labeled tree where N , r, ↑, are as defined in Defini-

tion 5.3(i) (see page 97), Σ is a finite set (the alphabet), and lre : N → RE(Σ) is a

function that labels each node with a regular expression built over Σ.

(ii) G ⊆ 2N−r is a set of grouped nodes, as defined in Definition 5.3(ii) (page 97).

(iii) C ⊆ (N−r ∪ G)× C is called the multiplicity relation, as defined in Definition

5.3(iii) (page 97).

The class of all CRDs over the same alphabet Σ will be denoted by RD(Σ).

If needed, we will subscript RD’s components with index RD, e.g., write GRD.

98

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Remark 5.1. A CFD would be a CRD, since an atomic feature could be considered

as a primitive regular expression built over the set of features (as an alphabet).

All the operations used on CFDs also work for CRDs. These notations include

depth(RD), lev(RD), glev(RD), cplev(RD). Please see page 97 for their meanings.

We will also need the following operations.

— plev(RD) denotes the set of non-leaf nodes all of whose children are leaves,

i.e., plev(RD) = {n ∈ N : n↓ ⊆ lev(RD)}, where N denotes the set of nodes of RD.

– cplev(RD) denotes the leaves all of whose siblings are leaves, i.e., cplev(RD) =

{n ∈ N : (n↑)↓ ⊆ lev(RD)}, where N denotes the set of nodes of RD.

The CRE procedure is a bottom-up procedure and includes a finite number of

steps (equal to the depth of the CRD’s tree) called CRE-shrinking steps. Each CRE-

shrinking step takes a CRD and returns another CRD such that the depth of the

output’s tree is less than that of the input. The output of the last step is a CRD

with the singleton tree 3 whose root is labeled with a regular expression. This regular

expression is called the CRE expression of the CRD.

A shrinking step includes three stages: (1) eliminating multiplicities from leaves

(CRE-EML), (2) eliminating grouped leaves (CRE-EGL), and (3) depth reduction (CRE-

DR). We will use the CFD in Figure 5.1 as a running example to illustrate the

translation procedure.

3A tree consisting of a single isolated node.

99

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

f�

r1 � f2 �

r3 � r6 �r4 � r5 �

(0,2) �

(2,3) �
G �

f �

r1 � f2 �

r3 � rG �

(0,2) �

f�

r1 � r2 �

(0,2) �

(a) � (b) �

(c) �

Figure 5.2: CRD to RE: shrinking procedure on Figure 4.1.

5.2.1 CRE-EML

At this stage, regular expressions corresponding to leaf nodes are computed and their

multiplicity domains change to the singleton domain {(1, 1)}. For an example, the

regular expression corresponding to the node f1 (Figure 5.1) would be

f1 + f1
2 + f1

4f1
∗.

This regular expression represents the multiplicity constraint on this node properly,

as it says that the number of occurrences of the feature f1 on this node must be one

or two or more than three. Then, the label of the leaves are replaced by their regular

expressions, computed in the above way, and their associated multiplicities change

to {(1, 1)}. Figure 5.2(a)4 represents the result of this stage applied to the CFD in

Figure 5.1, where

4Recall that our convention is to consider a multiplicity domain (1, 1) as the default multiplicity
of a node and this is why there is no need to show such multiplicities in the figure.

100

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

r1 = f1 + f1
2 + f1

4f1
∗,

r3 = f3
3 + f3

4 + f3
5,

r4 = f2,

r5 = f4,

r6 = f1 + f1
2.

The CRE-EML stage (stage 1) is formalized via the following definitions.

Definition 5.5 (Expressions Associated to Leaves). Given a CRD RD =

(LTre,G, C) with LTre = (N, r, ↑,Σ, lre), we define a total function lexRD : lev(RD)→

RE(Σ) which maps a leaf node in RD to a regular expression built over Σ. For a

given node n ∈ lev(RD) with C(n) = {(li, ui)}1≤i≤j (for some j ∈ N), lexRD(n) is

defined as folllows:

lexRD(n) = r1 + . . .+ rj, where

ri =


lre(n)li + . . .+ lre(n)ui if ui 6= ∗

lre(n)li
(
lre(n)

)∗
otherwise

Definition 5.6 (CRE-EML Stage). 5 We define a function melCRE : RD(Σ) →

RD(Σ), called CRE-EML function, as follows. For a given CRD RD = (LTre,G, C)

5 We use the superscript CRE for an operation in this section to distinguish it from the operation
with similar functionality in the next section. We will use the superscript ORE for the operations in
the following sections, e.g., melORE.

101

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

with LTre = (N, r, ↑,Σ, lre),

melCRE(RD) = (LT ′re,G, C ′), where

LT ′re = (N, r, ↑,Σ, l′re)

C ′(e) =


{(1, 1)} if e ∈ lev(RD)

C(e) otherwise

l′re(n) =


lexRD(n) if n ∈ lev(RD)

lre(n) otherwise

5.2.2 CRE-EGL

At this stage, grouped leaf nodes are replaced by new nodes with proper regular

expressions. The input of this stage is the output of the first stage. For an example,

consider the grouped leaves G = {f4, f5, f6} in Figure 5.1. The group multiplicity (2, 3)

says that at least two and at most three of the nodes involved in the group (i.e., the

nodes f4, f5, and f6) must be included in a valid product for each instance of their

parent (i.e., the node f2) in the product. The following regular expressions r2−G and

r3−G model the lower and upper bounds of the multiplicity, respectively.

r2−G = r4r5 + r5r4 + r5r6 + r6r5 + r4r6 + r6r4

r3−G = r4r5r6 + r4r6r5 + r5r4r6 + r5r6r4 + r6r4r5 + r6r5r4

102

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Thus, the regular expression corresponding to the group would be

rG = r2−G + r3−G.

Then, each grouped leaf is replaced by a new node with the default multiplicity

domain {(1, 1)} and is labeled with the computed regular expression. Figure 5.2(b)

represents the result of applying this stage on Figure 5.2(a).

To formalize this stage, we first need to introduce the following notation. Let

Per(l,u)(X) denote the set of all concatenation permutations S of X (a set of reg-

ular expressions) with length between l and u (l ≤ |S| ≤ u). For an example,

Per(1,2)({r1, r2, r3}) would be the following set of expressions: {r1, r2, r3} ∪ {r1r2,

r2r1, r1r3, r2r3, r3r2}. We consider Per(l,u)(∅) = ε for any l and u. By Perk(X) (for

any k ∈ N), we mean Per(k,k)(X).

We will need the following definitions to formalize the stage CRE-EGL.

Definition 5.7 (Grouped Leaves CRE-Expressions). Given a CRD RD = (LTre,G,

C) with LTre = (N, r, ↑,Σ, lre), we define a total function gexCRE
RD : glev(RD) →

RE(Σ) which maps a grouped set of leaves in RD to a regular expression built over

Σ. For a given group G ∈ glev(RD) with C(G) = {(li, ui)}1≤i≤j (for some j ∈ N),

gexCRE
RD (G) is defined as follows.

gexCRE
RD (G) = r1 + . . .+ rj, where for all 1 ≤ i ≤ j:

ri = + Xi,

Xi = Per(li,ui)({lre(n) : n ∈ G}).

103

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

We assign a node identifier to each group all of whose elements are leaves.

Definition 5.8 (Node Identifiers for Leaf Groups). Let RD = (LTre,G, C) be

a CRD with LTre = (N, r, ↑,Σ, lre). For each group G ∈ glev(RD), a node identifier

nG is assigned. Let NG denote the set of these node identifiers. In other words, we

have a bijection gid : NG → glev(RD) which assigns each grouped node in glev(RD)

to a unique node identifier in NG.

Definition 5.9 (CRE-EGL Stage). gleCRE : RD(Σ) → RD(Σ) is a total func-

tion called CRE-EGL function. For a given CRD RD = (LTre,G, C) with LTre =

(N, r, ↑,Σ, lre), gleCRE(RD) is defined as follows:

gleCRE(RD) = (LT ′re,G ′, C ′), where

LT ′re = (N ′, r, ↑
′
,Σ, l′re),

N ′ = (N − glev(RD))]NG

G ′ = G − glev(RD)

C ′(e) =


{(1, 1)} if e ∈ NG

C(e) otherwise

n↑
′
=


gid(n)↑ if n ∈ NG

n↑ otherwise

104

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

l′re(n) =


gexCRE

RD (gid(n)), if n ∈ NG

lre(n) otherwise

Remark 5.2. To compute the CRE-regular expression corresponding to a leaf group,

we consider all valid permutations of its elements’ regular expressions. This is the

way how the CRE transformation preserves the given CFD’s hierarchy.

5.2.3 CRE-DR

This stage takes the output of the second stage and returns a CRD whose depth is

less than that of the input. To this end, the regular expressions corresponding to the

nodes all of whose children are leaves are computed. Then, the label of such nodes

are replaced by the corresponding computed regular expressions and their child nodes

are eliminated from the given CRD. Let us see what the result of this stage applied

to the CRD in Figure 5.2(b) would be. There is only one node, labeled by f2, whose

children are all leaves. Figure 5.2(c) shows the result, where

r2 = f2(r3rG + rGr3).

We formalize this stage via the following definitions.

Definition 5.10 (CRE-Expressions for Parents of Leaves). Given a CRD RD =

(LTre,G, C) with LTre = (N, r, ↑,Σ, lre), we define a total function pexCRE
RD : plev(RD)

→ RE(Σ), which maps a parent all of whose child nodes are leaves to a regular

105

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

expression. For a given node n ∈ plev(RD), pexCRE
RD (n) is defined as follows:

pexCRE
RD (n) = lre(n)(+ Per|n↓|(E)), where

E = {lre(n′) : n′ ∈ n↓}.

Remark 5.3. Note that, to compute the CRE-regular expression corresponding to

a node n ∈ plev(RD), we consider all valid permutations of its subfeatures’ regular

expressions. Indeed, this is the way how the CRE transformation preserves the given

CFD’s hierarchy.

Definition 5.11 (CRE-DR Stage). The function dreCRE : RD(Σ) → RD(Σ) is

called CRE-DR function. For a given CRD RD = (LTre,G, C) with LTre = (N, r, ↑,Σ, lre),

dreCRE(RD) is defined as follows:

dreCRE(RD) = (LT ′re,G, C ′)

LT ′re = (N ′, r, ↑
′
,Σ, l′re)

N ′ = N − cplev(RD)

↑′ = ↑|N ′

C ′ = C|N ′∪G

l′re(n) =


pexCRE

RD (n) if n ∈ plev(RD)

lre(n) otherwise

106

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

5.2.4 CRE-Shrinking Step and CRE

The CRE shrinking step is formalized as the composition of melCRE (CRE-EML stage),

gleCRE (CRE-EGL stage), and dreCRE (CRE-DR stage).

Definition 5.12 (CRE-Shrinking Step). The function shrCRE : RD(Σ) → RD(Σ)

is called CRE-shrinking function and is defined as shrCRE = dreCRE ◦ gleCRE ◦melCRE.6

We keep doing the shrinking steps until we get a singleton CRD. In the running

example, we need to do the shrinking step once more. The final result would be the

expression

r = f(r1r
′
2 + r′2r1), where

r′2 = ε+ r2 + r2
2.

The notation RCRE(RD) is used to denote the CRE regular expression generated

for a given CRD RD.

Now we are at the point where we can prove that the CRE regular expression

interpretation of a given CFD D provides a faithful semantics for D.

Theorem 5.1. For a given CFD D, Par(L(RCRE(D))) = Pflat(D).

Definition 5.13 (Preserving the Hierarchy). Consider a CFD D = (T,G, C) with

T = (F, r, ↑) and let L be a language built over F . We say L preserves the hierarchical

6◦ denotes composition.

107

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

structure of D if ∀f, f ′ ∈ F : (f ′ ∈ f↓↓)⇐⇒
(
∀w ∈ L : (f ′ ∈ Uw)⇒ (f vw f

′)
)

7.

Theorem 5.2. For a given CFD D, L(RCRE(D)) preserves D’s hierarchy.

5.3 The ORE Transformation

In this section, we discuss the Ordered sibling CFDs to Regular Expressions (ORE)

transformation. We first define ordered siblings CFDs (osCFDs) and ordered siblings

CRDs (osCRDs), which are CFDs and CRDs, respectively, enriched with a partial

order on nodes, called sibling ordering. We use the notations inf(R) and sup(R) to

denote the infimum and supremum of a total ordering R, respectively.

Definition 5.14 (Ordered Siblings CFDs). An ordered siblings CFD (osCFD) is

a tuple OD = (T,G, C,≤sib) of the following components:

(i) T = (F, r, ↑) is a tree, as defined in Definition 3.1.

(ii) (T,G, C) is a CFD, as defined in Definition 5.3. We call it the OD’s underlying

CFD and denote it by ODcfd.

(iii) ≤sib is a partial order on F , called sibling ordering, satisfying the following

conditions:

(iii-i) ∀f, f ′ ∈ F : f ≤sib f
′ =⇒ f ↑ = f ′↑.

(iii-ii) ∀S ∈ Sib : ≤sib

∣∣
S

(the restriction of ≤sib on S) is a total ordering, where

Sib = {f↓ ⊂ F : f ∈ F}.

(iii-iii) ∀S ∈ Sib,∀G ⊂ S,∀f ∈ S \G : G ∈ G =⇒

(f ≤sib inf(≤sib

∣∣
G

)) ∨ (sup(≤sib

∣∣
G

) ≤sib f).

The class of all osCFDs over the same set of features F will be denoted by OD(F).

7See page 24 for the definition of vw.

108

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

If needed, we will subscript OD’s components with index OD, e.g., write ≤sibOD.

An example could be an osCFD OD whose underlying CFD is the CFD D in Fig-

ure 5.1 and its sibling ordering ≤sib is the transitive closure of {(f1, f2), (f3, f4), (f4, f5),

(f5, f6)}.8 We will use this osCFD as a running example to illustrate the transforma-

tion procedure.

Let OD(D) denote the set of all osCFDs whose underlying CFDs are the same

CFD D.

Definition 5.15 (Ordered Siblings CRDs). An ordered siblings CRD (osCRD) is

a 4-tuple ORD = (LTre,G, C,≤sib) of the following components:

(i) LTre = (N, r, ↑,Σ, lre) is a regular expression labeled tree as defined in Defini-

tion 5.4(i).

(ii) (LTre,G, C) is a CRD, as defined in Definition 5.4. It is called the ORD’s

underlying CRD, denoted by ORDcrd.

(iii) ≤sib is a sibling ordering on N (see Definition 5.14(iii)).

The class of all osCRDs over the same alphabet Σ will be denoted by ORD(Σ).

If needed, we will subscript ORD’s components with index ORD, e.g., write

≤sibORD.

Obviously, osCRDs subsume osCFDs. Any notation used for CFDs and CRDs also

works for osCFDs and osCRDs, respectively. These notations include depth(ORD),

lev(ORD), glev(ORD), plev(ORD), cplev(ORD). Please see page 97 for their

meanings.

8As visual imaginary, one could consider a left to right ordering on siblings in Figure 5.1.

109

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

ORE is a procedure transforming a given osCRD to a regular expression. The

procedure is similar to the CRE procedure. Like CRE, it is a bottom-up procedure

including a finite number of steps called ORE-shrinking steps. Each step takes an

osCRD and returns another osCRD such that the depth of the output’s tree is less

than that of the input. The last step returns a singleton osCRD. Each step includes

three stages: (1) eliminating multiplicities from leaves (ORE-EML), (2) eliminating

grouped leaves (ORE-EGL), and (3) depth reduction (ORE-DR).

5.3.1 ORE-EML

ORE-EML is like CRE-EML described in the previous section. It transforms a given

osCRD to an osCRD whose underlying CRD is obtained by applying CRE-EML on

the given osCRD’s underlying CRD and the sibling ordering remains unchanged.9

Definition 5.16 (ORE-EML Stage). We define a function melORE : ORD(Σ) →

ORD(Σ), called ORE-EML function. For a given osCRD ORD, melORE(ORD) is

an osCRD ORD′ where ORD′
crd

= melCRE(ORDcrd) and ≤sibORD′ = ≤sibORD (see

Definition 5.6 for the definition of melCRE).

Applying ORE-EML on our running example would result in an osCRD whose

underlying CRD is shown in Figure 5.2(a) and sibling ordering is still a left-to-right

ordering on siblings.

9Recall that CRE-EML does not change the tree structure of a given CRD. It just changes the
labelling of the leaves.

110

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

5.3.2 ORE-EGL

Recall that for computing a regular expression corresponding to a set of grouped leaves

in CRE-EGL, we consider all valid permutation of their regular expressions. In ORE-

EGL, instead of considering all valid permutations, we consider the sibling ordering on

the nodes to compute the corresponding regular expression. For an example, consider

the grouped leaves G = {r4, r5, r6} in Figure 5.2(a). Its corresponding ORE regular

expression would be equal to rG = r′G + r′′G where

r′G = r4r5 + r5r6 + r4r6,

r′′G = r4r5r6.

r′G and r′′G model the lower bound and upper bound of the G’s multiplicity, respec-

tively. Note that all choices in both r′G and r′′G observe the sibling ordering: r4 must

precedes r5 and r5 must precedes r6 (r4 ≤sib r5 ≤sib r6). Compare r′G and r′′G with

their CRE versions r4r5 + r5r4 + r5r6 + r6r5 + r4r6 + r6r4 and r4r5r6 + r4r6r5 + r5r4r6 +

r5r6r4 + r6r4r5 + r6r5r4, respectively (page 102), in which we consider all permuta-

tions of r4, r5, r6 with length 2 and 3, respectively. The number of choices for rG is

reduced from 12 in CRE to 4 in ORE. This reduction makes ORE computationally

much cheaper than CRE. We will get back to this in Section 5.5.

Like CRE-EGL, G is replaced by a new node with a multiplicity {(1, 1)} and is

labeled with rG. Figure 5.2(b) represents the result’s underlying CFD. In ORE-EGL,

we may need a new sibling ordering, as some nodes may be removed and some new

nodes may be added. In our example, the grouped nodes labeled with r4, r5, and r6

are removed and a node labeled with rG is added. The new sibling ordering would be

111

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

{(r1, f2), (r3, rG)}.

Let Per
(l,u)
≤ (X) denote the set of all concatenation permutations S of X (a set of

regular expressions) with length between l and u (l ≤ |S| ≤ u) considering a total

ordering ≤ on X. For an example, Per
(2,3)
≤ ({a, b, c}) with a ≤ b ≤ c would be the

following set of expressions: {ab, ac, bc} ∪ {abc}. We consider Per
(l,u)
∅ (∅) = ε for

any l and u.10 By Perk≤(X) (for any k ∈ N), we mean Per
(k,k)
≤ (X).

Definition 5.17 (Grouped Leaves ORE-Expressions). Given an ocCRD ORD =

(LTre,G, C,≤sib) with LTre≤ = (N, r, ↑,Σ, lre), we define a total function gexORE
ORD :

glev(ORD)→ RE(Σ), which maps a grouped set of leaves in ORD to a regular ex-

pression built over Σ. For a given group G ∈ glev(ORD) with C(G) = {(li, ui)}1≤i≤j

(for some j ∈ N), gexORE
ORD(G) is defined as follows.

gexORE
ORD(G) = r1 + . . .+ rj, where for all 1 ≤ i ≤ j :

ri = + Xi,

Xi = Per
(li,ui)
≤sib

({lre(n) : n ∈ G}).

We use the function gid defined in Definition 5.8 to assign a node identifier to

each group all of whose elements are leaves.

Definition 5.18 (ORE-EGL Stage). gleORE : ORD(Σ) → ORD(Σ) is a total

function called ORE-EGL function. For a given osCRD ORD = (LTre,G, C,≤sib)

10Clearly, ≤ would be also ∅ when its domain is empty.

112

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

with LTre≤ = (N, r, ↑,Σ, lre), gleORE(ORD) is defined as follows:

gleORE(ORD) = (LT ′re,G ′, C ′,≤′sib), where

LT ′re = (N ′, r, ↑
′
,Σ, l′re)

N ′ = (N − glev(ORD))]NG

G ′ = G − glev(ORD)

C ′(e) =


{(1, 1)} if e ∈ NG

C(e) otherwise

n↑
′
=


gid(n)↑ if n ∈ NG

n↑ otherwise

l′re(n) =


gexORE

ORD(gid(n)) if n ∈ NG

lre(n) otherwise

≤′sib= ≤sib

∣∣
N ′−NG

∪R ∪ L

R = {(a, n) ∈ (N ′ −NG)×NG : a ≤sib b for some b ∈ gid(n)}

L = {(n, a) ∈ NG × (N ′ −NG) : b ≤sib a for some b ∈ gid(n)}

113

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

5.3.3 ORE-DR

In this stage, we reduce the depth of a given osCRD by computing some regular

expressions corresponding to the nodes all of whose child nodes are leaves. Recall that

in CRE-DR, we consider all permutations of their associated regular expressions in the

computation (see Definition 5.10). In ORE, instead of considering all permutations,

we consider the sibling ordering on the nodes to compute the corresponding regular

expressions. For an example, consider the osCRD whose underlying CRD in shown

in Figure 5.2(b) with a left to right sibling ordering, i.e., r1 ≤sib f2 and r3 ≤sib rG.

The node labeled with f2 is the only node whose all children are leaves. Figure 5.2(c)

shows the result, where r2 = f2(r3rG). Consider r2’s CRE version f2(r3rG + rGr3) on

page 105. The number of choices for r2 is reduced from 2 in CRE to 1 in ORE.

Definition 5.19 (ORE-Expressions for Parents of Leaves). Given an osCRD

ORD = (LTre,G, C,≤sib) with LTre≤ = (N, r, ↑,Σ, lre), we define a total function

pexORE
ORD : plev(ORD) → RE(Σ), which maps a parent whose child nodes are leaves

to a regular expression. For a given node n ∈ plev(ORD), pexORE
ORD(n) is defined as

follows:

pexORE
ORD(n) = lre(n)(+ Per

|n↓|
≤sib

(E)), where

E = {lre(n′) : n′ ∈ n↓}.

Definition 5.20 (ORE-DR Stage). We define a function dreORE : ORD(Σ) →

ORD(Σ), called ORE-DR function, as follows: For a given osCRD ORD = (LTre,G, C,

114

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

≤sib) with LTre≤ = (N, r, ↑,Σ, lre), dreORE(ORD) is defined as follows:

dreORE(ORD) = (LT ′re,G, C ′,≤′sib)

LT ′re = (N ′, r, ↑
′
,Σ, l′re)

N ′ = N − cplev(ORD)

↑′ = ↑|N ′

≤′sib= ≤sib

∣∣
N ′

C ′ = C|N ′∪G

l′re(n) =


pexORE

ORD(n) if n ∈ plev(ORD)

lre(n) otherwise

5.3.4 ORE-Shrinking Step and ORE

The ORE shrinking step is formalized as the composition of melORE (ORE-EML stage),

gleORE (ORE-EGL stage), and dreORE (ORE-DR stage).

Definition 5.21 (ORE-Shrinking Step). The function shrORE : ORD(Σ)→ RD(Σ)

is called ORE-shrinking function and is defined as shrORE = dreORE ◦ gleORE ◦melORE.

We keep doing the shrinking steps until we get a singleton osCRD labeled with

a regular expression. In the running example, we need to do the shrinking step once

115

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

more. The final result would be the expression

r = f(r1r
′
2), where

r′2 = ε+ r2 + r2
2.

The notationRORE(ORD) is used to denote the ORE regular expression generated

for a given osCRD ORD.

The following theorem shows the relationship between CRE and ORE. The lan-

guage of the ORE regular expression for a given CFD would be a subset of the lan-

guage of the CFD’s CRE regular expression. Also, the Parikh image of both regular

expressions would be the same.

Theorem 5.3. For any given osCFD OD:

(i) L(RORE(OD)) ⊆ L(RCRE(ODcfd))

(ii) Par(L(RORE(OD))) = Par(L(RCRE(ODcfd)))

The following statement is the corollary of Theorem 5.3 and Theorem 5.1. It shows

that the Parikh image of the ORE regular expression for a given osCFD captures the

flat semantics of its underlying CFD.

Corollary 5.1. For a given osCFD OD, Par(L(RORE(OD))) = Pflat(ODcfd).

5.4 The HRE Transformation

HRE transforms a given osCFD to a regular expression such that the output regular

expression provides a faithful semantics for the osCFD’s underlying CFD. The regular

expression is built on the set of features plus two extra symbols ‘d’ and ‘e’. This

116

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

differentiates HRE from ORE and CRE, as ORE and CRE regular expressions are built

over features. The HRE transformation is based on the hierarchical semantics given

in Chapter 4. The HRE procedure transforms, indeed, the hierarchical semantics of a

given osCFD’s underlying CFD to a regular expression. Thus, it provides a faithful

semantics for CFDs, as hierarchical semantics of CFDs does so. Before getting to

formal definitions and results, we informally describe the procedure on our running

example D in Figure 5.1 considering a sibling ordering f1 ≤sib f2, f3 ≤sib f4 ≤sib f5 ≤sib

f6. Let OD denote this osCFD.

Consider the hierarchical product h1 = df, df1e5e of D (see page 70). Considering

the subfeature ordering, this tree-like multiset can be seen as a sequence of sym-

bols w1 = dfdf1edf1edf1edf1edf1ee. Another example: consider the hierarchical prod-

uct h2 = df, df1e5, df2, df3e3, ddf4e, df5eeee. Considering the sibling ordering, its cor-

responding sequence would be w2 = dfdf1edf1edf1edf1edf1edf2df3edf3edf3eddf4edf5eeee.

HRE transforms the osCFD to a regular expression whose language is the set of all

such sequences of symbols. We call this expression the OD’s HRE regular expression,

denoted by RHRE(OD).

The HRE transformation is a top-down procedure. This is another difference

between this approach and the others, CRE and ORE. We define a regular expression

for each group and each node. The expressions defined for nodes and groups are

called HRE node and group expressions, respectively. We use the notation RHRE(f)

and RHRE(G) to denote the regular expression associated with a node n and a group

G, respectively. The regular expression RHRE(r) = RHRE(OD), where r denotes the

root, would be our desirable expression for the whole osCFD. In our running example,

we would have the following node expressions: RHRE(f), RHRE(f1), RHRE(f2), RHRE(f3),

117

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

RHRE(f4), RHRE(f5), RHRE(f6). We also have a group expression RHRE(G).

Each HRE node expression is defined based on its multiplicity domain, and the

expressions corresponding to its sub nodes and groups. In the running example, we

would have

RHRE(OD) = d f RHRE(f1) RHRE(f2)e,

where RHRE(f1) and RHRE(f2) denote the HRE regular expressions corresponding to

the f’s subfeatures f1 and f2, respectively. Note that f precedesRHRE(f1) andRHRE(f2).

Indeed, this is a general rule: to model subfeature relationship between features, the

expression corresponding to a feature must precede any other expressions correspond-

ing to its subfeatures.11 Also, due to f1 ≤sib f2, RHRE(f1) precedes RHRE(f2).

RHRE(f1) = RHRE(ODf1) + (RHRE(ODf1))
2

+ (RHRE(ODf1))
4

(RHRE(ODf1))
∗

RHRE(ODf1) denotes the HRE regular expression of the osCFD induced by f1, which

is equal to d f1 e. The choices in RHRE(f1) together model the multiplicity domain

(1, 2)(4, ∗) on the node f1.
12

RHRE(f2) = ε+RHRE(ODf2) + (RHRE(ODf2))2

11This general rule is observed in ORE and CRE too.

12Note that ‘(’ and ‘)’ are not in our alphabet. They are used to group expressions in regular
expressions, while ‘[’ and ‘]’ are symbols of the alphabet.

118

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

RHRE(ODf2) denotes the HRE regular expression corresponding to the diagram in-

duced by f2. RHRE(f2) models the multiplicity domain (0, 2) on f2 properly.13

RHRE(ODf2) = d f2 RHRE(f3) RHRE(G) e

In the above expression, RHRE(f3) and RHRE(G) denote the HRE regular expression

corresponding to f3 and the group G = {f4, f5, f6}, respectively. Since f2 is the root

feature of ODf2 (the diagram induced by f2), it must precede any other expressions

corresponding to its subfeatures. Note that RHRE(f3) precedes RHRE(G) due to the

sibling ordering.14 RHRE(f3) and RHRE(G) are defined in the following:

RHRE(f3) = (RHRE(ODf3))3 + (RHRE(ODf3))4 + (RHRE(ODf3))5

RHRE(ODf3) denotes the HRE expression corresponding to the diagram induced by

f3, which is equal to d f3 e. Note that the choices between different iterations of

RHRE(ODf3) together model the multiplicity domain (3, 5) on f3.

RHRE(G) = d(G2 +G3)e

The multiplicity domain (2, 3) on the group G says that two or three elements of the

group must be included in the group’s expression RHRE(G). These two multiplicities

13(RHRE(ODf2))0 = ε.

14 f3 ≤sib inf(G).

119

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

are modelled, respectively, by the expressions G2 and G3:

G2 = RHRE(f4) RHRE(f5) +RHRE(f4) RHRE(f6) +RHRE(f5) RHRE(f6)

RHRE(f4) = RHRE(ODf4)

RHRE(f5) = RHRE(ODf5)

RHRE(f6) = RHRE(ODf6) + (RHRE(ODf6))2

There are three choices for the group multiplicity 2: choosing either “f4, f5”, “f4, f6”,

or “f5, f6”. In the building of the expression G2, we also consider the ordering f4 ≤sib

f5 ≤sib f6. Due to the multiplicity domain (1, 2) on the feature f6, there are two

different choices RHRE(ODf6) and (RHRE(ODf6))2 for the f6’s HRE regular expression.

RHRE(ODf4), RHRE(ODf5), and RHRE(ODf6) are, respectively, equal to d f4 e, d f5 e,

and d f6 e, as they are all leaves.

G3 = RHRE(f4) RHRE(f5) RHRE(f6)

As for the group multiplicity 3, we must include all the group elements f4, f5, and f6.

Considering the sibling ordering, we would get the above expression for G3.

It is easy to see that w1 = df df1e5e and w2 = df df1e5df2 df3e3 d df4e df5eeee (see

page 117) are in the language of RHRE(OD).

To formalize the procedure, we first define an ordering on the solitary sub features

and groups of a given feature in an osCFD.

Definition 5.22. Let OD = (T,G, C,≤sib) be an osCFD with T = (F, r, ↑) and f ∈

F . We define a total order≤f
sib⊆ Ing(f↓)×Ing(f↓), where Ing(f↓)

def
= (S∩f↓)∪(G∩2f↓),

120

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

as the smallest transitive relation satisfying the following conditions:

(i) ∀e1, e2 ∈ S ∩ f↓ : (e1 ≤f
sib e2)⇐⇒ (e1 ≤sib e2).

(ii) ∀e ∈ S ∩ f↓,∀G ∈ G ∩ 2f↓ : (e ≤f
sib G)⇐⇒ (e ≤sib inf(G)).

(ii) ∀e ∈ S ∩ f↓,∀G ∈ G ∩ 2f↓ : (G ≤f
sib e)⇐⇒ (sup(G) ≤sib e).

In our running example, we would have f1 ≤f
sib f2, f3 ≤f2

sib G.

Definition 5.23 and Definition 5.24 show how to get HRE node and group regular

expressions, respectively.

Definition 5.23 (HRE Node Expressions). Let OD = (T,G, C,≤sib) be an osCFD

with T = (F, r, ↑). For a given node f ∈ F with C(n) = {(li, ui)}1≤i≤j (for some

j ∈ N), its HRE regular expression, denoted by RHRE(f), is defined as follows:

RHRE(f) = r1 + . . .+ rj, where ∀1 ≤ i ≤ j :

ri =


(RHRE(ODf))li + . . .+ (RHRE(ODf))ui if ui 6= ∗

(RHRE(ODf))li
(
RHRE(ODf)

)∗
otherwise

See Definition 5.25 for RHRE(ODf).

Definition 5.24 (HRE Group Expressions). Let OD = (T,G, C,≤sib) be an os-

CFD with T = (F, r, ↑). For a given group G ∈ G with C(G) = {(li, ui)}1≤i≤j (for

some j ∈ N), its HRE regular expression, denoted by RHRE(G), is defined as follows:

RHRE(G) = d(r1 + . . .+ rj)e, where for all 1 ≤ i ≤ j :

ri = + Xi

Xi = Per
(li,ui)
≤sib

(E) with E = {RHRE(n) : n ∈ G}

121

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

See Definition 5.23 for RHRE(n) for a node n.

The following definition shows how to get the HRE regular expression for a given

osCFD.

Definition 5.25 (HRE Expressions for osCFDs). Let OD = (T,G, C,≤sib) be an

osCFD with T = (F, r, ↑). Its HRE expression, denoted by RHRE(OD), is defined as

follows:

RHRE(OD) = d r Per|E|≤r
sib

(E) e, where E = {RHRE(e) : e ∈ Ing(r↓)}

See Definition 5.22 for ≤r
sib and Ing(r↓).

Remark 5.4. Note that if the tree of a given osCFD is singleton, then E in the

above expression would be empty. In this case, Per
|E|
≤r

sib
(E) would be ε, which implies

RHRE(OD) = dre.

5.5 Discussion on Transformations

In this section, we discuss advantages and disadvantages of the different transforma-

tions discussed in the previous sections. We will discuss them in terms of faithfulness,

reverse engineering, computational complexity, and automated analysis.

(i) Faithfulness. Recall that we call a semantics of a given CFD faithful if it

captures both the flat semantics and the hierarchy of the CFD.

The CRE regular expression for a given CFD provides a faithful semantics for the

CFD. Indeed, it captures both the flat semantics and the hierarchy of the CFD. These

have been proven in Theorems 5.1 and 5.2, respectively.

122

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a�

b � c �

(1,*) �(1,1) �

D1 �
D2 �

a�

b �

c �
(1,*) �

(1,1) �

Figure 5.3: Difference between ORE and CRE: example

The ORE regular expression for a given CFD may not provide a faithful semantics

for the CFD. However, as shown in Corollary 5.1, it captures the flat semantics of

the CFD. Consider the two CFDs D1 and D2 in Figure 5.3. Their flat semantics are

the same. However, their hierarchical structures are different. There are two osCFDs

having D1 as their underlying CFD. Let us pick the one in which the sibling ordering

is b ≤sib c and denote it by OD1. There is only one osCFD whose underlying CFD is

D2 (The sibling ordering in this osCFD would be empty.). Let us denote this osCFD

by OD2. According to the procedures described for ORE and CRE, we would have:

RCRE(D1) = a(bc+ + c+b)

RCRE(D2) = RORE(OD1) = RORE(OD2) = abc+

As we see above, the CRE expressions of D1 and D2 distinguish between them,

as expected. However, the ORE expressions of OD1 and OD2 are the same, which

shows that ORE does not provide a faithful semantics for osCFDs’ underlying CFDs.

However, considering all osCFDs whose underlying CFDs are the same as a given

CFD, we can get a faithful semantics for the given CFD via ORE. This is shown in

123

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

the following proposition.

Proposition 5.1. For any given CFD D: +OD∈OD(D) RORE(OD) = RCRE(D).

As an example, consider again the CFD D1 in Figure 5.3. As already mentioned,

OD(D1) includes two osCFDs: OD1 with the sibling ordering b ≤sib c and OD′1 with

the sibling ordering c ≤sib b. Composing RORE(OD′1) = ac+b and RORE(OD1) =

abc+ via the choice operation +, we get to RCRE(D1) = a(bc+ + c+b).

The HRE regular expression for a given CFD provides a faithful semantics for

the CFD, as it captures the hierarchical semantics of the CFD. However, there is

subtle difference between faithfulness of the CRE and HRE regular expressions of a

given CFD. The HRE regular expression explicitly distinguishes between grouped and

solitary features, while the CRE one does not. As an example, consider the CFD

D1 in Figure 5.4 (consider all the multiplicity domains as the default one (1, 1)).

The language of its CRE and HRE regular expressions would be the following sets,

respectively:

L(RCRE(D1)) = { ab, ac },

L(RHRE(D1)) = { da ddbeee, da ddceee }.

We see that one can recognize the feature b (c, respectively) from the element da, ddbeee

(da, ddceee, respectively) of the HRE language as a grouped feature, while this is not

the case in the CRE language. This is because, as mentioned already, the HRE trans-

formation explicitly models groups using the extra symbols, the brackets. Hence, the

HRE transformation is the only transformation explicitly capturing the syntax of a

given CFD.

(ii) Reverse Engineering. Since HRE explicitly captures the syntax of CFDs,

124

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a�

b � c �

D1 � D2 �

a�

b � c �✕! ✕!

Figure 5.4: Faithfulness in CRE and HRE: example

it would be the best candidate for reverse engineering of CFMs. As a simple example,

consider the CFDs D1 and D2 in Figure 5.4 (ignore the exclusive constraint between

b and c in D2 for a while). D2’s HRE and CRE languages are as follows (let us suppose

a left-to-right ordering on siblings as the sibling ordering on D2):

L(RCRE(D2)) = { abc, acb },

L(RHRE(D2)) = { da dbe dcee }.

We see that both the CRE and HRE languages distinguish between D1 and D2.

Now, consider an exclusive constraint between b and c on D2, as shown in Figure

5.4. Let M denote this CFM. M’s CRE and HRE languages are as follows: (Let

LCRE(M) and LHRE(M) denote their corresponding languages, respectively.)15

LCRE(M) = { ab, ac },

LHRE(M) = { da dbee, da dcee }.

15In Section 5.6, we will discuss how to give a language interpretation of CCs and how to integrate
the languages of CCs and CFMs.

125

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

As we see, LCRE(M) = L(RCRE(D1)), while LHRE(M) 6= L(RHRE(D1)). Therefore,

HRE does capture the difference between M and D1, while CRE does not.

In summary, both CRE and HRE transformations provide faithful semantics for

CFDs. However, HRE models the syntax of a given CFD explicitly, while CRE does

not. Considering CCs on CFDs and turning to CFMs, CRE languages may not work

very well, but HRE languages do. This shows that HRE could be the best candidate

for reverse engineering of CFMs.

(iii) Computational Complexity.16 Recall that in stage 2 (stage 3, respec-

tively) of the CRE transformation procedure, we consider all valid permutations of a

given group (a node, respectively) all of whose elements (children, respectively) are

leaves. Clearly, the ORE transformation does consider only one of the corresponding

valid permutations in both stages 2 and 3. (Recall that ORE is given an osCFD in-

stead of a CFD and hence consider the sibling ordering to compute the corresponding

regular expressions.) Thus, the time complexity of CRE would be much more than

ORE for a given CFD. The time complexity class of HRE would be the same as ORE’s.

This is because HRE, like ORE, works on osCFDs instead of CFDs.

According to the above informal discussion, we could say that the CRE transfor-

mation is computationally expensive, while the ORE and HRE transformations are

cheap.

(iv) Automated Analysis. The CRE and ORE languages of a given CFD are

built over the set of features, while the HRE’s language is built over the set of features

plus two extra symbols. To do analysis operations using the HRE interpretation, we

will also need to manage and consider the extra symbols, as they have some semantical

16We are not going to provide a detailed and formal computational complexity analysis of the
transformations. What we aim to do is to provide an intuition as to their complexity.

126

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

meanings.

Some analysis operations over an CFD rely on the flat semantics of the CFD (see

Section 5.7). In such cases, we would prefer to work on the ORE regular expression,

as it captures the flat semantics of the CFD and is cheaper than CRE. As for analysis

operations regarding to the hierarchy of the CFD, we should choose either CRE or

HRE.

5.6 A Computational Hierarchy of CFMs

Crosscutting Constraints (CCs) only make sense with respect to a given CFD. In the

previous sections, we formalized the semantics of CFDs using formal languages (more

precisely, regular languages). Hence, it makes sense to use the same framework, i.e.,

formal languages, to express CCs. This will allow us to integrate the semantics of

CCs and CFDs. In this sense, a CC over a CFD can be any formal language built

over the alphabet of the CFD. A set of CCs can be seen as the intersection of the

languages expressing them.

In this way, a CFM would be basically a tuple of formal languages (LD,Lcc) with

LD and Lcc denoting the formal languages of the CFD (D) and CCs (cc), respectively.

The formal language associated with the whole model, denoted by LM, is then equal

to LD ∩Lcc. The alphabet on which the CCs are expressed depends on the alphabet

the language of the CFD is built on. In the following, we show how to translate the

most common types of CCs using formal languages.

Consider a CFD D with a set of features F including three features f1, f2, and

f3. Several interesting CCs applied to the CFD are as follows:

(cc1) f1 requires f2.

127

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(in other words: If the number of occurrences of f1 in a product is greater than 0,

then the number of occurrences of f2 in the product must be greater than 0).

(cc2) f1 excludes f2.

(in other words: If the number of occurrences of f1 in a product is greater than 0,

then the number of occurrences of f2 in the product must be 0).

(cc3) If the number of occurrences of f1 in a product is even, then the number of

occurrences of f2 in the product must be odd.

(cc4) The number of occurrences of f1 and f2 in any product are equal.

(cc5) The number of occurrences of f1, f2, and f3 in any product are equal.

The first two CCs are traditional inclusive and exclusive CCs. However, they can

be expressed in terms of feature occurrences, as we see in the parenthetical remarks

above.

As already mentioned, the alphabet for defining CCs over a CFD is given by the

alphabet over which the language of the CFD is built. Let Σ denote the underlying

alphabet. Recall that Σ = F for both CRE and ORE, while Σ = F ∪ {d, e} for HRE.

In the following, we see the formal language interpretation of the above CCs. The

formal language of a given CC cc is denoted by L(cc). Recall that #a(w) denotes the

number of occurrences of a letter a in a word w.

L(cc1) =
{
w ∈ Σ∗ :

(
#f1(w) > 0

)
⇒
(
#f2(w) > 0

)}
.

L(cc2) =
{
w ∈ Σ∗ :

(
#f1(w) > 0

)
⇒
(
#f2(w) = 0

)}
.

128

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

L(cc3) =
{
w ∈ Σ∗ : (∃n ∈ N.#f1(w) = 2n)⇒ (∃n ∈ N.#f1(w) = 2n+ 1)

}
.

L(cc4) =
{
w ∈ Σ∗ : #f1(w) = #f2(w)

}
.

L(cc5) =
{
w ∈ Σ∗ : #f1(w) = #f2(w) = #f3(w)

}
.

Theorem 5.4. L(cc1), L(cc2), and L(cc3) are regular, L(cc4) is context-free, and

L(cc5) is context-sensitive.

Remark 5.5. What we need in cc4 is counting the number of occurrences of f1 and

f2. If the order of the symbols is ignored, then, according to Parikh’s theorem [Par66],

L(cc4) as a context-free language is not distinguishable from a regular language. This

fact can be used in doing automated analysis of CFMs, as most of the language tools

work for regular languages.

LD (the language of a CFD D) can be obtained via three different transformations

discussed in Chapter 5, i.e., it can be either the language of CRE, ORE, or HRE regular

expressions of D. As already discussed, depending on what we need to do and how, we

choose one of these transformations (see Section 5.5). Thus, we define three different

language-based semantics for CFMs:

Definition 5.26 (Language-based Semantics of CFMs). Given a CFM M =

(D, cc), where D is a CFD and cc is a set of CCs over D, we define the following

three language-based semantics for M:

LCRE(M)
def
= L(RCRE(D)) ∩ Lcc

LORE(M)
def
= L(RORE(D)) ∩ Lcc

129

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

31#

A"Computa*onal"Hierarchy"of"CFMs"

Formal Languages�

Context-free�
Context-sensitive�

Regular �

Recursive�

Context-free�
Context-sensitive�

Regular �

Recursive�

Reflec*on"

transforma*on"

Feature Models�

FM'15#

Figure 5.5: A Computational Hierarchy of CFMs

LHRE(M)
def
= L(RHRE(D)) ∩ Lcc

They are called, respectively, the CRE, ORE, and HRE-language semantics of M.

The CRE and ORE languages for a given model M are built over the set of features,

while the HRE language is over the set of features plus two extra symbols ‘d’ and ‘e’.

Recall that the ORE language of M can only capture the flat products of the CFM,

while the CRE and HRE languages capture both the flat products and the hierarchy.

Regardless of what transformation we choose, the language of the CFD (LD) is al-

ways regular, sinceRCRE(D), RORE(D), andRHRE(D) are all regular expressions. It is

a well-known fact in formal language theory that any class of languages is closed under

intersection with regular languages [Dav94]. For instance, the intersection of a non-

regular context-free (non-context-free context-sensitive, respectively) language with

a regular language is a non-regular context-free language (non-context-free context-

sensitive language, respectively). Due to this fact, the type of LM for a given CFM

M = (D, cc) is given by the type of Lcc, as LD is always regular.

Now, consider a computational hierarchy of the classes of formal languages (one is

130

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

shown in the right-hand side of Figure 5.5). Reflecting of the language hierarchy into

the domain of feature models provides a computational hierarchy of feature models

(see the left-hand side of Figure 5.5). This hierarchy is important because it guides

us in how feature models can be constructively analyzed. See Section 5.7 where we

discuss the decidability problems of analysis operations over CFMs.

Remark 5.6. The class of all basic feature models is a subclass of regular feature

models, since the product family of a basic feature model is always finite.

Remark 5.7. It is worth mentioning that one can theoretically define even a non-

recursive recursively enumerable (r.e.) CFM. For example, consider a CFM over a set

of features F and f ∈ F . Let cc be a CC defined as follows: the set of valid numbers

of occurrences of f is equal to the very well-known non-recursive r.e. set K [Coo03].

However, it is unlikely to find such a CC in practice.

5.7 Analysis Operations over CFMs

In this section, we discuss decidability problems corresponding to the analysis oper-

ations over CFMs.

Some analysis operations take only one CFM (along with another potential input

that is not a CFM) as input and perform some analysis on the CFM. Below is a

sample list of such operations:

Valid Configuration: The Valid Configuration operation takes a CFM and a

flat multiset of features as inputs and decides whether it is a valid flat product of the

CFM or not.

Partial Configuration: This operation takes a CFM and a flat multiset over

131

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

features as inputs and decides whether it is a valid partial product of the CFM or

not. A multiset m is a partial product of the CFM if there exists a flat product m′

of the CFM such that ∀a ∈ dom(m) : m(a) = m′(a).

Core Features: The Core Features operation takes a CFM and returns the set

of features that are included in all products of the CFM.

Valid feature Multiplicity: The operation takes a CFM, a feature, and a

natural number as inputs and decides whether the number is in the multiplicity

domain of the feature or not.

Void Feature Model: This operation takes a CFM as input and decides whether

its product line is empty or not.

Dead Feature: The Dead Feature operation takes a CFM and a feature and

decides whether the feature is dead in the CFM or not. A feature f in a CFM M is

called dead if @m ∈ Pflat(M) such that f ∈ dom(m).

Common Ancestors: The Common Ancestor operation takes a CFD and a set

of features and returns their common ancestor features.

Least Common Ancestor: This operation takes a CFD and a set of features

and returns their lowest common ancestor feature.

Some other operations deal with two CFMs. Such operations answer some ques-

tions about the relationships between the CFMs. The most well-known of such oper-

ations are refactoring and specialization.

Refactoring: The Refactoring operation takes two CFMs and decides whether

their product line are equal or not.

Dynamic Refactoring: This operation takes two CFMs and decides whether

their languages are equal or not.

132

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Specialization: The specialization operation takes two CFMs M1 and M2 as

inputs and decides whether the product line of M1 is a subset of the product line of

M2 or not.

Dynamic Specialization: The operation takes two CFMs M1 and M2 as inputs

and decides whether the language of M1 is a subset of the M2’s or not.

Remark 5.8. Most of the above analysis operations were originally defined and

used on basic feature models. We have modified their definitions to be applicable

to CFMs. As far as we know, some of the above operations are not defined in the

literature. These operations include dynamic refactoring, dynamic specialization, and

valid multiplicity.

Now, we address the decidability problems corresponding to the above operations.

We consider the computational hierarchy of CFMs represented in Figure 5.5, i.e., the

containment hierarchy Regular ⊂ Context-free ⊂ Context-sensitive ⊂ Recursive.

Theorem 5.5. Given a recursive CFM, the operations Valid Product, Common An-

cestors, and Least Common Ancestor are decidable.

Theorem 5.6. Given a context-free CFM M, the operations Partial Configuration,

Core Features, Valid feature Multiplicity, Void Feature Model, and Dead Feature

are decidable. However, none of them is decidable in the class of context-sensitive

CFMs.

Theorem 5.7. Given two CFMs M1 and M2, the following statements hold:

(i) If both are regular, then the (Dynamic) Refactoring problem between them is

decidable.

(ii) If M1 and M2 are regular and context-free, respectively, then the (Dynamic)

Refactoring problem is decidable iff M1 is bounded regular.

133

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Remark 5.9. In general, the equality problem in the class of context-free languages

is undecidable. Therefore, the Refactoring problem is not decidable in the class of

context-free CFMs.

Theorem 5.8. Given two CFMs M1 and M2, the following statements hold:

(i) If both are regular, the (Dynamic) Specialization problem between them is

decidable.

(ii) If M1 and M2 are regular and context-free, respectively, then the problem “is

M2 a (dynamic) specialization of M1?” is decidable.

134

Chapter 6

Related Work

6.1 Feature vs. Event Modeling

In this section, we summarize similarities and differences between feature modeling

and event-based concurrency modeling. We also point to several possibilities of fruit-

ful interactions between the two disciplines.

Following the survey in [vGP95], we distinguish three approaches in event model-

ing. The first is based on a topological notion of a configuration structure (E, C) with

E a (possibly infinite) set of events, and C⊂2E a family of subsets (usually finite) of

events, which satisfy some closure conditions (e.g., under intersection and directed

union). Sets from C are called configurations and understood as states of the system:

X ∈ C is a state in which all events from X already occurred.

In the second approach, valid configurations are specified indirectly by some struc-

tureDDD of dependencies between events, which make some configurations invalid. For-

mally, some notion of validity of a set X ⊂ E wrt. DDD is specified so that an event

structure (E,DDD) determines a configuration structure {X ⊂ E : X is valid wrt. DDD}.

135

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Table 6.1: Event vs. feature modeling

Approach Event Model
Feature Model

Boolean logic Modal logic

Topological (E, C) (F,PP ,FP) (F,PP ,→, I)

Structural (E,DDD) (F,M)

Logical (E,Φ) (F,ΦBL,Φ
!
BL) (F,ΦML)

Typical representatives of this approach are Winskel’s prime and general event struc-

tures [Win82], and Pratt’s event spaces [Pra91].

The third approach, originating in [GP93], is an ordinary encoding of sets of propo-

sitions by Boolean logical formulas. Then an event model is just a Boolean theory,

i.e., a pair (E,Φ) with Φ a set of propositional formulas over set E of propositions.

The left half of Table 6.1 summarizes this rough mini-survey.

Importantly, transitions between states are typically considered a derived notion:

in [GP93], any set inclusion is a transition, and in [vGP95], special conditions are to

hold in order for a set inclusion to be a valid transition. A notable exclusion is event

automata in [PP95], i.e., tuples (E, C,→, I) with → a given transition relation over

configurations (states), and I ∈ C an initial state.

Feature modeling is directly related to event modeling, and actually can be seen

as a special interpretation of event modeling. Indeed, features can be considered as

events, (partial) products as configurations, and FMs as special event-structures: An

FM M = (TOR, EX , IN) can be seen as a special encoding of a set of dependencies

analogous toDDD (the middle row of the table). An important distinction of the Boolean

feature modeling is the presence of a special subset of final states (products), so that

feature modeling’s topological and logical counterparts are triples rather than pairs

136

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(see the Boolean column in the table). Pinna and Poigné in [PP95] mention final

states (they call them quiescent) but do not actually use them, whereas for feature

modeling, final products are a crucial ingredient.

The last column of the table describes feature modeling’s basic topological and

logical structures in the modal logic view: the upper row is our notion of ppKS,

and the bottom one is the theory specified in Section 3.5. Our ppKS is exactly an

event automaton with quiescent states, which, additionally, satisfies the conditions of

Left-totality of the transition relations and Self-loops only, but Pinna and Poigné do

not apply modal logic for specifying event automata’s properties (and do not even

mention it); they also do not consider the I2C-principle.

The comparison above shows enough similarities and differences to hope for a fruit-

ful interaction between the two fields. We are currently investigating what feature

modeling can usefully bring to event modeling; and can mention several simple find-

ings. The presence of two separate Boolean theories allows us to formally distinguish

between enabling and causality [GP93]. Also, we are not aware of propositional spec-

ifications of transient conflicts (discussed on page 41) such as our Boolean and modal

encoding of I2C. These encodings are nothing but a compact formal specification of

a transaction mechanism, which is usually considered to be non-trivial.

Remarkably, only recently similar generalizations were proposed for event model-

ing in the formalism of DCR-Graphs [HM11]. The latter also employ two relations

between events, condition and response, that correspond to our subfeature and manda-

toriness relations, and their markings roughly correspond to our partial products.

DCR-Graphs also use two additional relations include/exclude, which allow them

to model several important constructs in concurrent distributed workflow, including

137

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Renova'onFactory-

SourceLang- ImplLang-

cobol- sdl- sql- asf- java- traversal-

Figure 6.1: An FM adopted from [dJV02]

transient conflicts.

These observations show that a simple feature model formalism is capable of en-

coding complex modal theories specifying non-trivial concurrent phenomena. Specif-

ically, a detailed comparative analysis of FMs and DCR-Graphs should be an inter-

esting and we believe useful research task.

6.2 Grammars-based Semantics

In this section, we survey the literature relevant to the connection between feature

modeling and formal languages. Indeed, it is directly related to what we have dis-

cussed in Chapter 5.

Batory and O’Malley were the first connecting software product lines to grammars

[BO92]. In this work, the authors proposed a model called GenVoca, in which systems

are defined by some functions that add features to programs. As shown in the paper,

a set of such functions can be expressed as a grammar.

de Jong and Visser [dJV02] connected basic feature diagrams (FDs) and context-

free grammars. They use textual representations of FDs written in a domain-specific

138

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

car$

eng$ trans$

mnl$ atmgas elec$

f

g$ h$ g h$

f

g h$

f

f

h$ g$

car$

eng$ trans$

mnl$ atmgas elec$

f

g$ h$ g h$

f

g h$

f

car$

eng$ trans$

mnl$ atmgas elec$

f

g$ h$ g h$

f

g h$

f

car$

eng$ trans$

mnl$ atmgas elec$

f

g$ h$ g h$

f

g h$

f

f→ h[g] f→ [g]h f→ g | h f → t+
t → g | h

Table 6.2: Translating FDs to iterative tree grammars

language called feature description language [VDK02]. The corresponding textual

representation of a given FD is similar to a context-free grammar. The grammar

generated for the FD in Figure 6.1, according to [dJV02], is as follows (nonterminals

and terminals start with upper case and lower case symbols, respectively.):

RenovationFactory −→ SourceLang ImplLang

SourceLang −→ cobol | sdl | sql | cobol sdl | cobol sql | sdl sql | cobol sdl sql

ImplLang −→ asf | java | asf traversal | java traversal

Batory, in [Bat05], shows the connection between FDs and iterative tree grammars

[KRT08]. His and [dJV02]’s translation procedures are essentially the same. Table

6.2 gives some basic examples showing how Batory’s encoding works. Terminals are

denoted by italic symbols and optional features are surrounded by brackets.

In [dJV02] and [Bat05], the set of atomic features (features that appear in leaf

nodes) is considered as terminals and other features as nonterminals. Thus, a word

accepted in the above grammar generated for Figure 6.1 is a subset of {cobol, sdl, sql,

asf, java, traversal}. Therefore, the language of the grammar does not represent the

product line of the model. In other words, the corresponding generative grammar for

139

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

car ︎

engine︎ brake ︎

car ︎

engine︎

brake ︎

D1 ︎ D2 ︎

Figure 6.2: Two FDs with the same grammar in the de Jong and Visser approach

a given FD does not captures the product line semantics.

Another property of the above procedures is that they give a left-to-right ordering

on siblings (the nodes with the same parent). To illustrate why this is a problem,

note the left-most column in Table 6.2: the left-most feature, h, precedes the right-

most feature, g. Such an ordering forces two syntactically equivalent FDs to have

different semantics: the grammars of the two FDs in the first and the second columns

in Table 6.2 have different associated languages. In addition, such an ordering on

siblings results in the generative grammars not capturing the hierarchy of FDs, as

both siblings and also subfeature relationships are ordered with the same operation

(concatenation): In this sense, a feature precedes any of its subfeatures and also any

of its siblings positioned after the feature (in a left-to-right ordering). As an example,

consider the FDs in Figure 6.2. Their corresponding grammars in this approach would

be the following grammars, respectively.

D1 :

car −→ engine brake

D2 :

car −→ engine

engine −→ brake

140

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Czarnecki et al, in [CHE05a], formalize the semantics of CFDs using context-free

grammars. Unlike [Bat05] and [dJV02], this work considers the set of all features

for a given CFD as the set of terminals. The generative grammar for a given CFD

captures the flat semantics of the CFD. However, it gives a left-to-right ordering on

siblings. Thus, this method does not capture the hierarchical structures of the CFD.

All the above approaches may result in ambiguous grammars, which makes them

bad candidates for the semantics of feature modeling. However, there is a constructive

way [Lin11] to fix this problem, since the languages of generated grammars are not

inherently ambiguous. A context-free language is inherently ambiguous if there is no

unambiguous grammar for it [Gin66].

Moreover, we consider any formal language built over the set of features as a CC

over the given feature diagram. This is another difference between our approach and

the above approaches. This provides the most expressive language for formally ex-

pressing CCs over cardinality-based feature diagrams. Also, this allows us to integrate

the semantics of feature diagrams and crosscutting constraints.

6.3 Algebraic Approaches

Product Algebra. Höfner et al. developed an algebra, called product family algebra,

for product lines whose basis is the structure of idempotent semirings [HKM11a]. A

product family algebra over a set of features F is a 5-tuple A = (A,+,∅,×, {∅})

where A = 22F (power set of power set of features), ∅ represents the empty product

line, {∅} is a dummy/pseudo product line with only one product: nothing, and +,×

are defined as follows: for all P, P ′ ∈ A : P × P ′ = {p ∪ p′ : p ∈ P, p′ ∈ P ′}

and P + P ′ = P ∪ P ′. In this way, + and × can be seen as a choice between

141

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

product lines and their mandatory presence, respectively. It is proven that A forms

a semiring where (A,+, 0) and (A,×, 1) are the commutative monoid and monoid

parts, respectively, such that + is idempotent and × is commutative. Therefore, a

product line is considered as a term generated in this algebra.

The product line of a given FM M is encoded as a term in the product family

algebra generated over the prime features of M; the latter are leaves in M’s FD. This

is an important (meta)feature in the approach, which is in contrast to a common

feature modeling practice. As an example, consider the FD in Figure 6.3, which is

adopted from [HKM11a]. The encoded term corresponding to this feature model is

as follows: car = (manual + automatic)× horsepower × (1 + aircondition).

car �

transmission � horsepower �

manual � automated �

aircondition �

Figure 6.3: An FM adopted from [HKM11a]

To find a precise relation to semirings, we need to algebraicize our modal logic

approach along the usual lines of algebraic logic — we leave this for future work. Some

important distinctions can be stated immediately: For Höfner et al., a full product

is a set of leaves in the feature tree, while non-leaf features are derived terms; in

contrast, we follow a common feature modeling practice and consider all features in

the tree to be basic. Also, their approach does not capture all semantics of FMs, as

it is based on only the Boolean semantics of product lines. We believe that using

Kripke structures and modal logic is simpler and easier for a product line engineer

142

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

than dealing with abstract semiring algebra.

PL-CCS. Amongst algebraic models for product lines, the closest to ours is the

PL-CCS calculus developed in [LT12, GLS08]. It is a process algebra, which extends

the classical CCS by an operator ⊕ to model variability. ⊕ is a kind of choice

applied at well-defined variation points. Each ⊕ occurence in a PL-CCS expression

is equipped with a unique index, and runtime occurrences with the same index must

make the same choice. This differentiates ⊕’s behaviour from the classical non-

deterministic choice in CCS. In PL-CCS, processes are interpreted as products. The

behaviour of a product line is given by a set of process definitions whose semantics is

given by multi-valued Kripke structures.

There are interesting similarities and differences between PL-CCS and our ppKS.

In PL-CCS, a product line’s behaviour is reconstructed from an immediate product

line specification. In contrast, we extract the behaviour from the feature model,

which we have shown can be seen as an indirect product lines’ specification providing

everything needed to reconstruct the behavior. We might say that in PL-CCS, the

expressive power of feature models is underestimated as they are seen in the Boolean

perspective.

Importantly, PL-CCS allows for recursive definitions of processes, which makes

it more expressive than our ppCTL. However, allowing recursive product definitions

leads us beyond the boundaries of the tree-based feature models and our goals in the

present paper. Iterative definitions are possible in cardinality-based feature models,

and we built a dynamic semantics for them in Chapter 5. On the other hand, cross-

cutting constraints cannot be expressed in PL-CCS, but are readily specified in our

approach (we even allow for modal CCs).

143

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

6.4 Feature Transition Systems

In a series of papers summarized in [CCH+12, CCH+14, CCS+13, CHSL11, CHS+10],

Classen et al proposed an elegant and effective solution to checking a given product

line of transition systems in a single run of a model checker rather than checking

each of the transition systems separately. In their setting, the entire product line

is encoded as a feature transition system (FTS), in which transitions are labeled by

both actions and Boolean expressions over features as Boolean variables. A truth

assignment to the feature variables defines the behaviour of a single product, and the

FTS as a whole represents the entire product line. They also defined a logic fCTL

to allow CTL properties to refer to specific products in the line (those that include

given features), and extended the model checking procedures to support checking

FTSs against fCTL properties. Their tools are capable of reporting, in a single model

checking run, all products for which a property holds, as well as those for which it

fails to hold. In [CHL+14], Cordy et al extend a common model checking framework

known as CEGAR, to support FTSs as well. Thus, FTS and our ppKS are orthogonal

ideas: for the former, a product is a TS, while for us a product is a set of features

without any functional properties. These two ideas can be combined in a single

formalism, but we leave it for future work.

In contrast to the results cited above, our work is not concerned with the func-

tional behaviour of the products. Rather, we concentrate on the semantics of the

product line and the relationship between products and partial products in the line.

In [CCH+14, CHSL11] the authors define fCTL, to allow CTL properties to refer

to specific products in the line – those which include given features. This language

differs both in intention and in structure from our ppCTL that uses a special symbol

144

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

to identify final products.

6.5 Staged Configurations

Czarnecki et al introduced and developed the concept of (multi-level) staged con-

figuration in [CHE04, CHE05b]: given an FM M, its full products are instantiated

via consecutive specializations (called stages) of M by either discarding an optional

feature or accepting it and hence making it mandatory for the stage at hand and all

consecutive stages. This process is continued until a fully specialized FM (represent-

ing only one configuration) is reached.

The idea was further developed by Hubaux et al [HCH09], who proposed to map

feature models to tasks and conditions of workflows. Their approach supports parallel

execution of stages and choice between them, and iterative configurations.

Figure 6.4 presents an example of staged configuration for an FM M: In the first

stage, a decision has been made between manual and automatic and manual is chosen.

Note the right-hand FD in stage 1, where manual is now mandatory and automatic

has disappeared. In the second stage, the optional feature pow has been discarded.

The final result has been shown in the right-hand FD in stage 2.

Although both PPLs and configuration stages show how to instantiate full prod-

ucts, they are essentially different. Configuration paths are sequences of feature mod-

els with decreasing variability, whereas instantiation paths in PPLs are sequences of

products with increasing commonality. Figure 6.5 shows the PPL of M in Figure 6.4.

Also, in staged configuration, one can make choices irrespective of any conditions

other than exclusive constraints, while an instantiation path shows how to reach a

full product by including the features step by step in a top-down fashion observing

145

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

car �

eng � pow �

mnl � atm �
✕ � ✕ �

car �

eng � pow �

mnl �

Stage&1&

car �

eng �

car �

eng � pow �

mnl �

Stage&2&

M�

Figure 6.4: PPLs vs Staged configuration: a staged configuration

car$

eng$ pow$

mnl$ atm$
✕$ ✕$M"

c,e$

c,p$

c$

c,p,m$ c,p,a$

c,p,m,e$

c,p,a,e$

c,p,e$

Figure 6.5: PPLs vs Stage configuration: A PPL

146

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

the constraints and the I2C-principle. For example, consider again Figure 6.4: in the

first stage, we make choices between manual and automatic before making the decision

whether the car is equipped with a power locker or not. Such a decision is not allowed

in PPLs: a feature cannot be included in a partial product without its parent.

Thus, the two frameworks aim at different goals and are somewhat orthogonal

(but, of course, PPLs cover variability too as full products are included into PPLs).

6.6 Other Formal Semantics

We have already discussed some formal semantics for feature modeling: propositional

logic (Chapter 3), grammar-based (Section 6.2) and algebraic approaches (Section

6.3). There are some other approaches formalizing the semantics of basic feature

modeling, including first-order logic, constraint programming, and description logic.

We briefly discuss them in this section.

First Order Logic. Sun et al. propose a formal semantics for basic feature mod-

els using first-order logic (FOL) in Z [SZFW05]. They also proposed using the Alloy

analyzer to reason about the consistency of a given feature model and its configura-

tions. However, their FOL encoding of basic feature models captures only product

lines (i.e., it does not capture their hierarchies.). Some other works like [GMB06]

have applied an Alloy analyzer to give a theory for and reason about basic feature

models.

Constraint Programming. Benavides et al. [BTC05] were the first using con-

straint programming to formalize basic feature models: A given FM is encoded as a

constraint satisfaction problem (CSP) [Tsa93]. A CSP consists of a set of variables, a

set of finite universes associated with variables, and a set of constraints on variables.

147

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Optional Mandatory OR group XOR group

f"

x1" x2"

f"

f’" f’’"f'"

f" f"

e1" e2"
✕" ✕"

FD"Nota/ons"Intro."

f'"

f"

f'"

f" f"

x1" x2"

f"

f’" f’’"f'"

f" f"

e1" e2"
✕" ✕"

FD"Nota/ons"Intro."

f'"

f"

f'"

f" f"

x1" x2"

f"

f’" f’’"f'"

f" f"

e1" e2"
✕" ✕"

FD"Nota/ons"Intro."

f'"

f"

f'"

f" f"

f'" f’’"

f"

r1" r2"o"

f" f"

e1" e2"
✕" ✕"

FD"Nota/ons"Intro."

m"

f"

f'"

f"

if (f = 0) f = f ′ if (f > 0) if (f > 0)
f ′ = 0 Sum(f ′, f ′′) in {1..2} Sum(f ′, f ′′) in {1..1}

else f ′ = 0, f ′′ = 0 else f ′ = 0, f ′′ = 0

Table 6.3: Translating FDs to CSP

CSP solvers are used to determine whether there exists a solution for a given CSP or

not. To encode a given FM into a CSP, the set of variables is considered as the set

of features, the domains for each variable would be the set {0,1}, and the constraints

between features are encoded into a constraint in CSP. Table 6.3 shows how to do this.

Finally, the constraint r == 1 is added for the root feature r. As for CCs, inclusive

and exclusive constraints would be in the form of (f1 > 0 ∧ . . . ∧ fn > 0) → (f > 0)

and (f1 > 0 ∧ . . . ∧ fn > 0)→ (f = 0), respectively.

Like the BL approach, the CSP-based approach for a given FM takes into account

only the product line of the FM. Some empirical results show that CSP-based and

BL-based automated analysis provide similar performance [BSTRC06a].

Description Logic. Utilizing description logic to encode the product line of a

given basic feature model was proposed by Wang et al. in [WLS+05]. They showed

how to translate an FM into OWL-DL ontologies [MVH+04], a decidable fragment of

OWL. Some other works giving a description logic semantics for basic feature models

are [FZ06] and [NEB+11].

148

Chapter 7

Conclusion and Future Work

7.1 Conclusion

(i) Modal Logic view of Basic Feature Modeling. We have presented a novel

behavioural view of basic feature models, in which a product is an instantiation pro-

cess rather than its final result. We called the states of these transition systems partial

products, and showed that the set of partial products together with a set of (carefully

defined) valid transitions between them can be considered as a special Kripke struc-

ture, whose properties are specifiable by a special fragment of CTL enriched with a

constant modality. We called the logic ppCTL.

Our main result shows that a basic feature model can be considered as a compact

representation of a rather complex ppCTL-theory. Thus, the logic of basic feature

modeling is modal rather than Boolean.

We have also discussed several concrete tasks in basic feature modeling, which

would be improved by the use of the modal logic view of feature models. These tasks

include analysis of feature models, reverse engineering of feature models, and the

149

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

developer vs. client view.

(ii) Multiset Theories of Cardinality-based Feature Diagrams. We have

proposed two levels of generalization for cardinality-based feature diagrams. In the

first generalization (Chapter 4), we have relaxed some constraints on group multi-

plicities. We believe that this simple generalization provides a more succinct and

expressive tool for system modeling. The second generalization, called CRDs, has

been proposed in Chapter 5 (see (iii) below.).

We have proposed two multiset theories for CFDs, called flat and hierarchical.

A flat product of a given CFD is a multiset of features satisfying the multiplicity

and subfeature constraints of the CFD. The set of all such multisets is called the flat

semantics of the CFD. The flat semantics of a given CFD does not capture the CFD’s

hierarchy.

To define hierarchical products, we first defined a hierarchy of multisets over a

finite set whose first class is the set finite multisets of features and other classes are

defined as the set of all finite multisets built over the union of the previous classes. A

hierarchical product of a CFD is defined as a multiset (in the corresponding multisets

hierarchy) such that the rank of the multiset is given by the depth of the CFD and the

multiplicities satisfy the multiplicity constraints of the CFD. The set of all hierarchical

products is called the hierarchical semantics of the CFD. The hierarchical semantics

of a given CFD provides a faithful semantics for the CFD.

We have proven that there is a bijection between flat and hierarchical semantics

of a given CFD, i.e., a hierarchical product is a hierarchical version of a flat product.

To characterize a multiset being a hierarchical product of a CFD, we proposed

the notion of tree-like multisets: We have proven that a multiset can be a hierarchical

150

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

product of some CFDs iff it is a tree-like multiset. Also, we have characterized a set

of tree-like multisets being the hierarchical semantics of a CFD.

We have proven that the hierarchical semantics of a CFD provides the most faithful

semantics. Indeed, one can get back to the CFD from its hierarchical semantics. We

have also discussed several possible practical applications of the mutliset theories of

CFDs.

(iii) Formal Language Theories of Cardinality-based Feature Models.

We have proposed a generalization of CFDs (which emerged in the CRE regular ex-

pression translation procedure) called CRDs, in which the labels of nodes can be any

regular expressions built over the set of features. We believe that CRDs provide us

with a way of modeling much more complicated systems, in which we need to deal

with structural (non-atomic) features, e.g., programming codes, etc. It also provides

us with a tool to treat multi product line engineering (see Section 7.2).

We have provided three types of reduction processes, which allow us to go from a

CFD to a regular expression. These procedures are denoted by CRE, ORE, and HRE.

CRE works for CRDs. The CRE expression for a given CFD is built over the set

of features and has two main properties: it captures the hierarchical structure of the

CFD; it also captures the flat semantics of the CFD. These properties enable us to

confidently claim that this translation faithfully captures the semantics of CFDs.

The second procedure, ORE, works for osCRDs (ordered siblings CRDs).1 An

osCRD is a CRD enriched with a partial order on its siblings. The ORE regular

expression for a given osCFD (ordered sibling CFD) is built over the set of features

such that it captures the flat semantics of the osCRD’s underlying CFD.

1This kind of models are defined to formalize the ORE transformation.

151

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

HRE takes an osCFD and outputs a regular expression built over the set of features

plus two extra symbols: opening and closing square brackets. The HRE procedure

transforms, indeed, the hierarchical semantics of a given osCFD’s underlying CFD to

a regular expression. Thus, it provides a faithful semantics for CFDs.

We have also discussed the advantages of each of the above transformations in

Chapter 5. Some advantages of these three transformations are common between

them: Regular languages have some nice computational properties. These properties,

such as the decidability of the emptiness, inclusion, and equality problems, help us

to propose algorithmic solutions for analysis operations over CFDs. In addition, the

complexity class of all regular languages is SPACE(O(1)), i.e., the decision problems

can be solved in constant space. Due to these nice computational properties, we can

also claim that regular expressions provide a nice computable framework for reasoning

about CFDs.

As for CCs, we have proposed a formal language interpretation of them. In this

way, we could integrate the formal semantics of CFDs and CCs. Also, it allows us

to group CFMs based on their semantics, which guides us in how to constructively

analyze them.

We have characterized some existing analysis operations over CFMs in terms of

on the language frameworks. This allows us to use some off-the-shelf language tools

to do analysis of CFMs. Note that automated support for analysis over CFMs were

always considered a challenging issue. We have also investigated the decidability

problems of the introduced analysis operations over CFMs. We noted that some

analysis operations are not decidable in all classes of CFMs.

152

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

7.2 Open Problems

In this section, we describe several problems that we believe are mathematically

interesting and whose solutions would be practically useful.

(i) Complete Axiomatic System for ppCTL. Finding a sound and complete

axiomatic system for ppCTL is theoretically interesting. It would be also important

in practice to do automated analysis over basic feature models (see (ii) below). As

we know, ppCTL is a fragment of CTL plus a constant modality !. Several sound and

complete axiomatic systems have been proposed for CTL, including [EH88], [BF97],

and [LS01]. We can take advantage of these axiomatic systems to approach a sound

and complete axiomatic system for ppCTL.

(ii) Automated Analysis of basic Feature Models. To implement analysis

operations over a given feature model M, one could apply either a model checker or

theorem prover. To apply a model checker, we would need to transform M to its

PPL P(M) and characterize given analysis problems in terms of ppCTL formulas. We

plan to implement the analysis operations over some realistic examples using existing

model checking tools. To take advantage of theorem provers, we first need to have a

complete axiomatic system for our logic. There exist some theorem provers such as

BDDCTL [Mar05], CTL-RP [ZHD09], and MLSolver [FL10], which can be used for

reasoning about the CTL formulas.

(iii) The Class of ppKSs Produced by the Class of basic Feature Models.

One of the questions that have been left open in the thesis, is to axiomatically define

the class of ppKSs produced by the class of feature models. We plan to address this

problem.

(iv) Process Algebras for ppKSs and basic Feature Models. Industrial

153

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

systems are often very complex. Therefore, software companies usually design their

systems by utilizing smaller systems, which themselves are produced by other com-

panies [ACLF10b]. Therefore, their corresponding feature models could be seen as a

compound of several smaller feature models. In this sense, proper process algebras

for defining complex feature models and their corresponding ppKSs become funda-

mental and essential. This would be also important in the area of multi product line

engineering (see viii, below).

(v) Strong version of I2C. Recall that the current version of the I2C principle

says that two incomparable features can be included together in a partial product if

at least “one” of them has been already completely instantiated. The current version

of this principle is unavoidable, if we would like to realize a step-by-step computation.

Note that this is why ppKSs are enforced to satisfy the singletonicity condition (see

Definition 3.9). However, in some contexts like concurrent systems, it also makes sense

to consider a stronger version of the I2C principle: two incomparable features can be

included together in a partial product if “both” of them have been already completely

instantiated. We plan to specify such a stronger version of the I2C-principle, in which

a full product instantiation is always a transaction (which corresponds to replacing

disjunction by conjunction in the definition of theory ΦI2C
BL (TOR), row (3) in Table

3.1). To address this problem, we would first need to modify the definition of ppKSs,

as the singletonicity condition would not hold anymore. The logic would be the same.

However, the ppCTL theory of a given basic feature model satisfying the strong I2C

principle would change (this would be the most challenging issue in this problem.).

(vi) A New Modal Logic view of Event-based Modeling. We have dis-

cussed the intriguing similarities between event modeling and feature modeling in

154

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Section 6.1. We are considering investigating a new modal logic view of event-based

models as one of our future tasks. We believe that ppKSs provide a good tool to

model the behaviour of event-based concurrent systems. Indeed, we believe that

ppKSs can address several challenging issues in the area including distinguishing be-

tween causality and enabling, interleaving and true concurrency, choice and conflict,

modeling dynamic conflicts, and transactions. In this sense, ppCTL (or an enriched

version of the logic2) could be considered as a logical specification language for con-

current systems.

(vii) Linear Logic Theory of Cardinality-based Feature Models. Girard

in 1987 developed linear logic in [Gir87], which is a substructural logic3. The logic

is interesting from a logical point of view and for computer science. The logic is

sometimes called a “resource-conscious” logic [Tro92], as a logical formula in linear

logic represents certain types of resources and, unlike classical logics, resources cannot

be used as often as one likes. Although linear logic is a substructural logic, both

classical and intuitionistic logic can be faithfully embedded into linear logic. This is

because the logic also supports finitely many uses of resources of the same type by

two modality-like operators (! and ?) called exponentials. This ability differentiates

linear logic from all other substructural logics.

Conjunction and disjunction operators in all well-known logics other than linear

logic are idempotent. This fact becomes clear via their set-theoretic semantics: For-

mulas, conjunction and disjunction are, interpreted as sets, intersection, and union,

2Probably, ppCTL will need to be enriched with some past-time modalities to express the con-
current phenomena in a simple and natural way.

3A substructural logic is a logic lacking one of the structural rules such as weakening and con-
traction.

155

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

respectively. To get a reasonable logical treatment of CFMs, we needed to move from

sets to multisets (see Chapter 4). This means that we need a logic in which con-

junction and/or disjunction are not idempotent. Clearly, the best existing candidate

would be linear logic. We plan to give a linear logic theory of multiset semantics of

CFDs, discussed in Chapter 4. In this sense, we can also give a logical formulation of

CCs: a CC over an CFD can be any linear logic formula built over the set of features.

(viii) Multi Product Line Engineering via Formal Languages. Multi

product line engineering is an active area in feature modeling. A multi product line

is a product line of product lines [ACLF10b]. We are going to give a formal language

treatment for multi product line engineering. This could be done via CRDs and their

CRE formal language-based semantics discussed in Chapter 5.

Recall that a CRD is a labelled CFD, where labels can be any regular expressions

built over an alphabet. We showed that a CFD (and hence a basic FM — note that

any propositional logic formula can be easily transformed into a regular expression) is

a regular expression built over features. Thus, a CRD can be interpreted as a feature

diagram of feature models modeling a multi product line.

(ix) Feature Model Management. Feature model management is an active

area in feature modeling. By feature model management, we mean feature model

composition via some operators like merging, intersection, and union, etc [SBRCT08,

ACLF10a, ACC+13].

Based on the closure properties of regular languages, say closure under intersec-

tion, union, complement, etc., we believe that our formal language framework is a

very good candidate for managing feature models. We also plan to treat feature

model management categorically.

156

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(x) Computational Complexity of Analysis Operations. The computa-

tional complexity problem of analysis operations would be a crucial issue in imple-

menting them for CFMs, and this needs to be investigated.

(xi) OCL Definable Languages. In the literature, the object-constraint lan-

guage (OCL) has been proposed for expressing CCs in CFMs [CK05]. Our next

mission is to discover the OCL-definable languages. It can be also fruitful for the

model driven engineering (MDE) area (see xii, below), since the MDE community

uses mainly OCL to express constraints. This way, we can investigate the expres-

siveness of OCL in terms of languages. Our conjecture is that there should be some

practical CCs that cannot be expressed in OCL. Bellow, we provide some hints to

support our conjectures.

It is a well-known conjecture that, theoretically, OCL is first order logic (FOL)

plus transitivity and counting. FOL-definability leads to the class of star-free regular

languages [DG08]. Considering transitivity, the class of OCL-definable languages

would be equal to the class of regular languages. Considering the counting operation

and equality, some context-free and sensitive languages are also covered. However,

not all context-free languages can be expressed using only counting and equality. All

the above conjectures need to be investigated theoretically.

(xii) Metamodeling vs. Grammars. The subject of transformation between

metamodels and grammars (generally, formal languages) is an interesting practical

subject in model driven engineering (MDE). As an example of its practical use-

fulness, one can consider bridging the gap between program codes (usually repre-

sented as grammars) and metamodels. Several relevant results have been published

[AP+04, WK06, Sch06, Kun08, BW13]. However, none of them perfectly addresses

157

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

the problem and the problem is still a challenging and an open one.

CFMs can be interpreted as UML class models [CK05]. Indeed, UML class mod-

els could be considered as a generalization of CFMs. We believe that the research

reported in the chapters 5 and 4 can be generalized to address the connection between

metamodels and formal languages.

(xiii) Automated Analysis of CFMs. The theorems 5.5 to 5.8 (Chapter 5) are

very important, as they state that “what operations would be decidable (algorithmic)

in what classes of CFMs”. Now a reasonable and important expectation is to address

automated analysis of CFMs, which is a challenging and open issue in cardinality-

based feature modeling [BSRC10, QRD13]. We believe that our formal language

framework provides a nice computable framework for reasoning about CFMs.

There are several off-the-shelf language tools, including HKC [BP13], LIBVATA

[LŠV12], RABIT [ACC+11], ALASKA [DWDMR08], GOAL [TCT+08], FSA6 [vN02],

FAT [Hil09], JFLAP [RF06], and [GNS+15], which can be used to support automated

analysis over CFMs based on our language-based semantics. We plan to implement

the analysis operations over some realistic examples using formal language tools.

As a starting point, we briefly discuss how to use off-the-shelf tools to address

automated analysis over regular CFMs. As discussed in Section 5.7, the class of

regular CFMs is the only class over which all the analysis operations are decidable.

Most of the existing tools take finite state automata (FSA) as inputs, we first need

to translate a given regular expression to an FSA. Some tools such as FSA6 [vN02]

can be used to address this problem. Since CFDs and their CCs are translated to

two different languages, we would also need to calculate their intersection. FAT and

FSA6 are appropriate for implementing the intersection operation for two FSAs.

158

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

The Valid Configuration problem on a CFM is reduced to the membership prob-

lem on the CFM’s language interpretations. FAT, JFLAP, and FSA6 address this

problem.

The Void Feature Model problem is reduced to the emptiness problem on lan-

guages. The emptiness problem for a given language L can be seen as the equality

problem between L and the empty language. The equality problem over FSA is

supported by HKC.

The Dead Feature problem for a given CFM M and a feature f , can be reduced to

the decision problem L(M) ∩ L(F ∗fF ∗) = ∅. Thus, the problem is the composition

of intersection and emptiness problems, which are supported by FSA6 and HKC,

respectively.

The refactoring (specialization, respectively) problem between two CFMs is simply

reduced to the equality (inclusion, respectively) problem between their languages.

The equality (inclusion, respectively) problem between FSA is supported by HKC.

(xiv) Behavioural Feature Models. By a behavioural feature model, we mean

a feature model all of whose features possess a behaviour. Some specific feature

interaction may be considered: (i) the behaviour of a feature may be affected by a

selection of another feature in a product; (ii) the behaviour of a feature in a product

may be affected by the behaviour of a selected feature in a valid product. Some

papers relevant to this area are [BAS15, SA14] in which the behaviour of a feature

(modelled by a finite state automaton) may be affected by a selection of another

feature (the case (i), above). One of the challenging questions in this subject is to

integrate the behaviours of features to get a single behaviour model for the whole

feature model. We believe that CRDs provide a tool to address this problem in

159

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

the systems where behaviours are expressed using finite state automata.4 Note that

in our transformation of CRDs to regular expressions (CRE), we do not consider

the feature interaction. To be general, we would also need to consider interactions

between features.

In a broader context, we would like to address a much more general problem

in which behaviours of features are not restricted to finite state automata. In this

context, we should apply a categorical approach.

4Finite state automata, left/right linear grammars, and regular expressions are three different
tools for expressing regular languages. It has been proven that they all define the same class of
formal languages [Lin11].

160

Appendix A

Proofs of Chapter 3

Theorem 3.1. If P is a valid partial product and P −→ P ′, then P ′ is also a valid

partial product.

Proof of Theorem 3.1. If P ′ = P , the proposition is obvious. Consider now the

case of P ′ = P] {f} with P ′ |= ΦBL(T)∪ΦBL(EX) and P |= ΦI2C
BL (P, f). We need to

prove that P ′ |= ΦI2C
BL (TOR).

Let g ∈ P be an arbitrary feature with g↑=f ↑, i.e., g ∈ P ∩ (f ↑)↓. By definition of

relative fullness, if P |= ΦI2C
BL (P, f), then definitely P |= Φ!

BL(T g
OR) (one of the union’s

components). This implies P ′ |= Φ!
BL(T g

OR), and hence P ′ |=
⋃{

Φ!
BL(T g

OR): g ∈

P, g↑=f ↑)
}

. The above statement, along with P |= ΦI2C
BL (TOR), implies that P ′ |={

f∧g → (
∧

Φ!
BL(T f

OR))∨(
∧

Φ!
BL(T g

OR))

Proposition 3.2. For all P ∈ PP , there exists a full product P ′ such that P −→∗ P ′,

where −→∗ is the reflexive transitive closure of of −→.

Proof of Proposition 3.2. This is because a ppKS has a finite number of states, but

161

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

infinite paths (as its transition relation is left-total). As all loops are self loops, a non-

self-looped product must always get to a self-looped one through the transitions.

Theorem 3.2 (Soundness). P(M) |= ΦML(M).

Proof of Theorem 3.2. To prove this theorem, we need to show that P(M) satisfies

any components of the theory ΦML(M).

(a) P(M) |= ΦBL(M) is obvious by to Definition 3.5. Thus, all the Boolean theories

from Table 3.3 are satisfied by P(M).

(b) P(M) |= Φ↓ML+(T):

Let P ∈ PPM and P |= f ∧ ¬
∨
f↓ and g ∈ f↓. We want to show that P |= EXg.

Let P ′ = P ∪ {g}. According to (a), P |= ΦBL(T) ∪ ΦBL(EX). Since the g’s par-

ent is already in P ′, adding g to P does not violate ΦBL(T). Since exclusive con-

straints are defined on incomparable features, adding g to P also does not violate

ΦBL(EX). Therefore, P ′ |= ΦBL(T) ∪ ΦBL(EX). Since all subfeatures of f are ab-

sent in P , ΦI2C
BL (P, f) = ∅ (note Definition 3.6) and hence P |= ΦI2C

BL (P, f). Since

P ′ |= ΦBL(T) ∪ ΦBL(EX) and P |= ΦI2C
BL (P, f), according to Definition 3.7, there is a

transition P −→M P ′. Therefore, P |= EXg.

(c) P(M) |= Φ!
ML(M) follows obviously, since the set of states with self-loops in

P(M) is equal to the set of all full products of M. Note that this also implies that

P(M) satisfies both theories Φ!
ML⊆(OR) and Φ!

ML⊆(IN), since these two theories are

derivable from the theory Φ!
ML⊆(M).

(d) P(M) |= ΦI2C9
ML⊆ (TOR) follows obviously. Indeed, this theory guarantees that

there would not be an invalid transition due to I2C principle.

(e) P(M) |= Φ↔ML+(TOR, EX):

162

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Let f and P be a feature and a partial product of M, respectively, such that

f 6∈ P , P |= ΦI2C
BL (f), and P 6|=

∨
ΦEXBL (f). Thus, according to Definition 3.7, there

exists a transition P −→M P ∪ {f}, which implies P |= EX f . This results in

P(M) |= Φ↔ML+(TOR, EX).

Note that any other theory is the union of some of the above theories. The theorem

is proven.

Theorem 3.3 (Semi-completeness). K |= ΦML⊆(M) implies K v P(M).

Proof of Theorem 3.3. Let K |= ΦML⊆(M). IK = IM, since, due to K |= ΦBL(T),

K |= r (r is the root feature of M).

Since K |= ΦBL(M), according to Definition 3.5, PPK ⊆ PPM.

Now, we are going to show that −→K⊆−→M.

Due to K |= Φ!
ML⊆(M) and PPK ⊆ PPM, any self-loop transitions P −→K P in

K is a self-loop transition P −→M P in P(M).

Consider a transition P −→K P ′, where P ′ = P ∪ {f} for a feature f /∈ P .

We want to show that there is a transition P −→M P ′ in P(M). Again, note that

any state in K is a partial product of M. To prove this statement, according to

Definition 3.7, we need to show that (a1) P ′ |= ΦBL(T), (a2) P ′ |= ΦBL(EX), and

(a3) P |= ΦI2C
BL (P, f). (a1) and (a2) is an immediate corollary of K |= ΦBL(M). To

prove (a3), we need to show that for any siblings g with g ∈ P , P |= Φ!
BL(T g

OR) (see

Definition 3.6). Assume by a way of contradiction that P 6|= Φ!
BL(T g

OR), i.e., g is not

completely instantiated in P . Since K |= ΦI2C9
ML⊆ (TOR), g ∈ P , and P 6|= Φ!

BL(T g
OR),

there must not be a transition P −→K P ′. This leads us to a contradiction. Thus,

(a3) holds.

163

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Based on the above reasonings, −→K⊆−→M.

To prove Theorem 3.4 (the completeness theorem), we will first need the following

lemmas A.1 and A.2.

Lemma A.1. K |= Φ◦ML(M) implies PPK = PPM.

Proof of Lemma A.1. Let K |= Φ◦ML(M). By Theorem 3.3, PPK ⊆ PPM. Now

we need to show that PPM ⊆ PPK:

Let P ∈ PPM and r be the root feature of T . The features included in P

represent a subtree of T , denoted by TP , whose root is r. For an example, consider the

partial product {car, engine, gear,manual, oil} in the FM in Figure 2.1. We do have the

following formulas corresponding to Φ(T): engine→ car, gear → car, manual→ gear,

and oil → gear, which clearly represent the subtree (engine) → car ← (manual →

gear← oil).

We do a pre-order depth-first traversal of TP of a special kind complying I2C-

priniciple: in each level of the tree, all the nodes that are completely instantiated

must be visited before the other nodes. In the running example, gear must be visited

before engine, since it is completely disassembled in {car, engine, gear,manual, oil}. In

this example, the traversal would result in the sequence 〈car, gear,manual, oil, engine〉.

Let SP = 〈f1, . . . , fn〉 with f1 = r be the traversal of TP .

The following condition (R) holds:

(R): for all i < n either

(R-1) fi = f ↑i+1 or

(R-2) ∃〈j < i〉 : fj = f ↑i+1 & ∀g ∈ {f1, . . . , fi} :
(
g↑ = f ↑i+1

)
⇒
(
{f1, . . . , fi} |=

Φ!
BL(T g

OR)
)
, i.e., g is completely instantiated in {f1, . . . , fi}.

164

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

We prove that any prefix subsequence of SP is a partial product of K and so P

itself. To this end, we use the following inductive reasoning:

(base case): K |= r implies that IK = {r} = {f1}.

(hypothesis): Assume that, for some 1 ≤ i < n, any prefix of the sequence

〈f1, . . . , fi〉 is a state in K and there exists a path {f1} −→K · · · −→K {f1, . . . , fi}.

Let P ′ = {f1, . . . , fi}.

(inductive step): We want to prove that any prefix of the sequence 〈f1, . . . fi, fi+1〉

is a state in K and there exists the path {f1} −→K · · · −→K P ′ −→K P ′ ∪ {fi+1}.

To this end, we need to show that P ′ ∪ {fi+1} ∈ PPK and there exists a transition

P ′ −→K P ′ ∪ {fi+1}. We will prove this for both cases (R-1) and (R-2) introduced

above:

(R-1). As fi is freshly added to state P ′, and fi+1 is a subfeature of fi (f ↑i+1 =

fi) due to K |= Φ↓ML+(T), there is a transition P ′ −→K P ′ ∪ {fi+1}. Hence,

{f1, . . . , fi+1} ∈ PPK.

(R-2). As ∀g ∈ P ′ : (g↑ = f ↑i+1) ⇒ (P ′ |= Φ!
BL(T g

OR)) (note (R-2) above),

P ′ |= ΦI2C(fi+1).

P |= ΦBL(TEX) implies that any subset of P satisfies ΦBL(TEX). Since P ′∪{fi+1} ⊆

P , P ′ ∪ {fi+1} |= ΦBL(TEX), which means P ′ 6|=
∨

ΦEX (fi+1).

Since P ′ |= ΦI2C
BL (fi+1)∧¬

∨
ΦEXBL (fi+1)∧¬fi+1, and K |= Φ↔ML+(TOR, EX), there is

a state {f1, . . . , fi+1} ∈ PPK such that P ′ −→K P ′ ∪ {fi+1}. Hence, P ∈ PPK.

Lemma A.2. K |= ΦML(M) implies −→K= −→M.

165

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Proof of Lemma A.2. Let K |= ΦML(M). There are two types of transitions in

a ppKS: self-loop transitions and others. Note that self-loop transitions denote full

products. We show that (1) full products of both P(M) and K are the same, i.e., the

set of their self-loops are the same, (2) Non-loop transitions in K and P(M) are the

same. (1) is obvious, since K |= Φ!
ML(M) (note Table 3.1). In the following we also

show that the statement (2) holds.

According to Theorem 3.3, −→K⊆−→M. Now what we need is to prove that

any non-loop transition in P(M) is also a transition in K. Note that, according to

Lemma A.1, PPK = PPM. Consider a transition P −→M P ′, where P ′ = P ∪ {f}

for a feature f /∈ P . We want to show that there is a transition P −→K P ′ in K.

According to Definition 3.7, P ′ |= ΦBL(T) ∪ ΦBL(EX), and P |= ΦI2C
BL (P, f). Thus,

there are two choices:

(i) ΦI2C
BL (P, f) = ∅

(ii) ΦI2C
BL (P, f) 6= ∅

(i): This implies that the parent of f is freshly added through a transition ingoing to

P . Hence, due to K |= Φ↓ML+(T), there exists a transition P −→K P ′.

(ii): Since P ′ |= ΦBL(EX), P |= ¬
∨

ΦEXBL (f). Also, P |= ΦI2C
BL (P, f) implies that

P |= Φ!
BL(T g

OR) for any g ∈ P ∩ (f ↑)↓, which means P |= ΦI2C
BL (f). Hence, due to

Φ↔ML+(TOR, EX), there exists a transition P −→K P ′.

(i) and (ii) implies that any non-loop transition in P(M) is also a transition in K.

Hence, −→M⊆−→K.

Theorem 3.4 (Completeness). K |= ΦML(M) iff K = P(M).

Proof. Lemma A.1 shows that K |= Φ◦ML(M) implies PPK = PPM. Lemma A.2

166

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

proves that K |= ΦML(M) implies −→K= −→M. Hence, K |= ΦML(M) implies K =

P(M). Considering the soundness theorem (Theorem 3.2), the completeness theorem

is proven.

167

Appendix B

Proofs of Chapter 4

We first introduce some notations and complementary definitions used in the proofs.

Consider a multiset m ∈ H(A) for a set A. Let x ∈ dom(m) ∪MultIng(m). The

notation m[x/y] is used to denote a multiset generated by replacing any occurrence

of x in m by an element y ∈ H(A). Formally,

m[x/y](e) =


m(x) +m(y) if e = y

0 if e = x

m(e) otherwise

As an example, consider the multisets m = da3, b3e. According to the above definition,

m[a/dbe] = ddbe3, b3e.

The following definition will be used in the proof of Lemma 4.1, Lemma ??, and

Lemma C.1.

Definition B.1 (Upper Diagram Induced by Depth). Let D = (F, r, ↑,G, C)

be a CFD and 1 ≤ k ≤ depth(D). The upper diagram induced by k is a CFD

168

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a�

b � c �

d �

g �

f� g �

(3,5) �(5,*) �

(10,*) �

D1 �

D2 �
e�

(1,3) �

h � i�

(2,2) �

a�

b � c �

(3,5) �(5,*) �

Figure B.1: D2: The diagram induced by depth 2 of D1

D−k = (F ′, r, ↑|F ′ ,G ′, C ′), where F ′ = {f ∈ F : depth(n) ≤ k}, G ′ = G ∩ 2F ′ , and

C ′ = C|F ′]G′ , i.e., its tree is a subtree of D’s tree where the nodes are in depth less

than or equal to k; all other components are inherited from D.

For example, D2 is the upper diagram induced by depth 3 of D1 in Figure B.1.

Lemma 4.1. Given a CFD D = (F, r, ↑,G, C), for any multiset m over F : m ∈

Pflat(D) iff m satisfies the following conditions:

(i) m(r) = 1,

(ii) ∀f ∈ S ∩ r↓, ∃c ∈ C(f), ∃n ∈ Pflat(Df), ∀e ∈ dom(n) : m(e) = c× n(e).

(iii) ∀G ∈ G ∩ 2r↓ , ∃n ∈ Pflat(D, G), ∀e ∈ dom(n) : m(e) = n(e).

Proof of Lemma 4.1. For any CFD D and any flat multisets m over F , we show

that both the following statements hold:

169

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(1) m ∈ Pflat(D) =⇒ m satisfies Th-(i), (ii), and (iii).1

(2) m satisfies Th-(i), (ii), (iii) =⇒ m ∈ Pflat(D).

Proof of (1):

We prove (1) by the following inductive reasoning on the depth of CFDs.

(base case): Consider a CFD D with depth(D) = 1 and r as its root, i.e., FD = {r}

and any other components are empty. The only flat product is m = dre. Holding

each of the conditions Th-(i), (ii), and (iii) follows obviously, as m(r) = 1, S∩r↓ = ∅,

and G ∩ 2r↓ = ∅.

(hypothesis): Assume that for any CFD D with depth(D) < k (for some k), any

m ∈ Pflat(D) satisfies the conditions Th-(i), (ii), and (iii).

(inductive step): We show that for any CFD D with depth(D) = k, any m ∈

Pflat(D) satisfies the conditions Th-(i), (ii), and (iii).

Let D = (F, r, ↑,G, C) be a CFD with depth(D) = k and m ∈ Pflat(D). Holding

Th-(i) is clear. Let D′ = D−k (the upper induced diagram of D by depth k, see

Definition B.1) and E = {f ∈ F : depth(f) = k}. Let also S denote the set of

solitary features in D, i.e., S = SD.

Th-(ii):

(S-1): There exists m′ ∈ Pflat(D′) such that ∀f ∈ F \ E : m(f) = m′(f).

Since depth(D′) = k − 1, due to the hypothesis,

∀f ∈ S ∩ r↓ \ E,∃c ∈ C(f),∃n′ ∈ Pflat(D′f), ∀e ∈ dom(n′) : m′(e) = c× n′(e).

Due to S-1 and the fact that (F, r, ↑) is a tree of features,

(S-2): ∀f ∈ S∩r↓\E,∃c ∈ C(f),∃n′ ∈ Pflat(D′f), ∀e ∈ dom(n′) : m(e) = c×n′(e).

Consider an arbitrary feature f ∈ S ∩ r↓ \ E. There are unique c ∈ C(f) and

1Th-(i), (ii), and (iii) are abbreviations for Theorem 4.1(i), (ii), and (iii), respectively.

170

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

n′ ∈ Pflat(D′f) satisfying (S-2).2

We define a multiset n′′ as follows: n′′ = n′]dei : (e ∈ E∩S)∧(e↑ ∈ dom(n′))∧(i =

m(e)/c)e. According to (S-2), ∀e ∈ dom(n′′) : m(e) = c× n′′(e).

According to Def-(ii) and (iii)3 and the assumption that n′ is a flat product of

D′f , there exists n ∈ Df such that ∀e ∈ (F \ E) ∪ (E ∩ S) : n′′(e) = n(e).

Therefore, according to above and (S-2),

∀f ∈ S ∩ r↓,∃c ∈ C(f),∃n ∈ Pflat(Df), ∀e ∈ dom(n) : m(e) = c× n(e).

Thus, Th-(ii) holds.

Th-(iii):

Let G ∈ G ∩ 2r↓ . We show that ∃n ∈ Pflat(D, G), ∀e ∈ dom(n) : m(e) = n(e).

There are the two following cases:

(a) k = depth(D) > 2,

(b) k = depth(D) = 2.

In the former case, G ∈ GD′ ∩ 2r↓ . According to S-1, there exists m′ ∈ Pflat(D′)

such that ∀f ∈ F \ E : m(f) = m′(f).

Since depth(D′) = k − 1, due to the hypothesis,

∃n′ ∈ Pflat(D′, G),∀e ∈ dom(n′) : n′(e) = m′(e).

Let n =
(⊎

f∈Xdfm(f)e
)
] n′, where X = E ∩ dom(m) ∩ {f↓↓ : f ∈ G}.

Clearly, n ∈ Pflat(D, G).

Since dom(n′) ∩ E = ∅ and ∀f ∈ F \ E : m(f) = m′(f), we get to

∀e ∈ dom(n) : n(e) = m(e). Thus, Th-(iii) holds in case (a).

2 n′ and c in (S-2) are unique multiset and multiplicity, respectively, for a given f ∈ S ∩ r↓ \ E
satisfying the statement.

3Def-(i), (ii), and (iii) stand for Definition 4.3(i), (ii), and (iii), respectively.

171

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Now, consider the case (b), where depth(D) = 2. In this case, G ⊆ E.

Let dom(m) ∩G = {f1, . . . , fj} for some j.

Let n =
⊎

1≤i≤jdf
m(fi)
i e.

Due to Def-(iii), ∀1 ≤ i ≤ j : m(f) ∈ C(f): (1)

Since fi is a leaf node in D for any 1 ≤ i ≤ j, dfie ∈ Pflat(Dfi): (2)

Due to Def-(iv), j = |dom(m) ∩G| ∈ C(G): (3)

(1), (2), and (3) together imply that n ∈ Pflat(D, G). Since ∀e ∈ dom(n) : m(e) =

n(e), Th-(iii) holds in case (b) too.

Proof of (2):

Assume that a multiset m over the set of features satisfies Th-(i), (ii), (iii). We show

that it also satisfies Def (ii), (iii), and (iv).

Def-(ii): Recall that Def-(ii) says that ∀f ∈ F−r : f ∈ dom(m) =⇒ (∃c ∈ C(f) :

m(f) = c×m(f ↑)).

Let f ∈ F−r and f ∈ dom(m). Then, either f ∈ S or ∃G ∈ G : f ∈ G.

Let us first consider the case f ∈ S: Th-(ii) implies that there exists c ∈ C(f) and

n ∈ Pflat(Df) such that ∀e ∈ dom(n) : m(e) = c×m(f ↑)× n(e). Since T = (F, r, ↑)

is a tree of features, m(f) = n(f)× c×m(f ↑). Note that f is the root feature of Df ,

which means that, according to Definition 4.3, n(f) = 1. Thus, m(f) = c ×m(f ↑)

and Def-(ii) holds.

Now, let us consider the latter case, i.e., ∃G ∈ G : f ∈ G. Consider such a G and

let G = {f1, f2, . . . , fk} for some k such that f1 = f .

Th-(iii) and Th-(ii) together imply that there exists n ∈ Pflat(D, G) such that

nm(f↑) ⊆ m.

According to Definition 4.4, there exist c ∈ C(G), ci ∈ C(fi), gi ∈ {0, 1}, and

172

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

mi ∈ Pflat(Dfi) such that n =
⊎

1≤i≤km
ci×gi
i , and

∑
i gi = c.

Since f ∈ dom(m), g1 must be 1. (Note that D is an unlabelled tree of features.)

Thus, n(f) = m1(f)× c1.

Since f is the root feature of Df1 and m1 ∈ Pflat(Df1), m1(f) = 1. Therefore,

n(f) = c1.

Since T is an unlabelled tree, m(f) = n(f)×m(f ↑). Therefore, m(f) = c1×m(f ↑)

and Def-(ii) holds.

Def-(iii): Recall that Def-(iii) says that ∀f ∈ S : 0 6∈ C(f) ∧ m(f ↑) > 0 =⇒

m(f) > 0.

Let f be a solitary mandatory feature (i.e., 0 6∈ C(f)) and its parent is in m (i.e.,

m(f ↑) > 0). We want to show that f is in m too.

The conditions Th-(ii) and (iii) imply that there exists c ∈ C(f) and n ∈ Pflat(Df)

such that ∀e ∈ dom(n) : m(e) = c×m(f ↑)×n(e). Therefore, m(f) = n(f)×c×m(f ↑),

as f ∈ dom(n).

Since f is the root feature of Df , n(f) = 1 and m(f) = c×m(f ↑).

Since 0 6∈ C(f) and so m(f ↑) > 0, m(f) > 0. Def-(iii) holds.

Def-(iv): Recall that Def-(iv) says that ∀G ∈ G : (m(G↑) > 0) =⇒ (|dom(m) ∩

G| ∈ C(G)).

Consider an arbitrary group G = {f1, f2, . . . , fk} with m(G↑) > 0.

The conditions Th-(ii) and (iii) imply that there exists n ∈ Pflat(D, G) such that

∀e ∈ dom(n) : m(e) = m(G↑)× n(e).

According to Definition 4.4, there exist c ∈ C(G), ci ∈ C(fi), gi ∈ {0, 1}, and

mi ∈ Pflat(Dfi) such that n =
⊎

1≤i≤km
ci×gi
i , and

∑
i gi = c.

The condition
∑

i gi = c implies that |dom(m)∩G| ∈ C(G). Hence, Def-(iv) holds.

173

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Theorem 4.1. Given two CFDs D and D′, P(D) = P(D′) =⇒ D = D′.

Proof of Theorem 4.1. Let D = (F, r, ↑,G, C) and D′ = (F ′, r′, ↑
′
,G ′, C ′) be two

CFDs such that P(D) = P(D′).

Obviously,
⋃

m∈P(D) dom(flatF (m)) = F and
⋃

m′∈P(D′) dom(flatF ′(m
′)) = F ′.

Since P(D) = P(D′), F = F ′. (S-1)

We give an inductive reasoning based on depth(D) (the depth of D) to show that

D = D′.

(base case): Let D = 1, i.e., F = {r}, and ↑ = G = C = ∅. According to (S-1),

F ′ = {r}, which implies that r′ = r, ↑
′
= G ′ = C ′ = ∅. Therefore, D = D′.

(hypothesis): Assume that for some n ∈ N and for any depth(D) < n: P(D) =

P(D′) =⇒ D = D′.

(inductive step): We want to show that if depth(D) = n, then D = D′.

Let us suppose that r in D (r′ in D′, respectively) has k (x, respectively) soli-

tary subfeatures f1, . . . , fk (f ′1, . . . , f
′
x, respectively) and t (y, respectively) groups

{G1, . . . , Gt} ({G′1, . . . , G′y}, respecively). According to Definition 4.7,

P(D) = {dr,mc1
1 , . . . ,m

ck
k , g1, . . . , gte, where

∀1 ≤ i ≤ k,∀1 ≤ j ≤ t :

mi ∈ P(Dfi), ci ∈ C(fi), gj ∈ P(D, Gj)} (C)

P(D′) = {dr′,mc1
1 , . . . ,m

cx
x , g1, . . . , gye, where

174

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

∀1 ≤ i ≤ x,∀1 ≤ j ≤ y :

mi ∈ P(D′f
′
i), ci ∈ C ′(f ′i), gj ∈ P(D′, G′j)}. (C’)

Consider an arbitrary hierarchical product m = dr,mc1
1 , . . . ,m

ck
k , g1, . . . , gte, where

mi (1 ≤ i ≤ k) and gj (1 ≤ j ≤ t) satisfy the conditions in (C). Since for any

1 ≤ i ≤ k and 1 ≤ j ≤ t : rank(mi) ∈ H(F) ∧ rank(gj) ∈ H(F), r is the only

urelement in the domain of m, i.e., m ∈ P(D′) : dom(m′) ∩ F ′ = {r′}. Likewise, for

any m ∈ P(D′) : dom(m′) ∩ F ′ = {r′}. Since P(D) = P(D′), r = r′.

For any CFD, the domain of any hierarchical product of an induced diagram by a

node f includes f with multiplicity 1 and its all other elements are multisets. Also,

the domain of a grouped hierarchical product of a CFD is a set of multisets, i.e., it

does not include any urelement. This implies the following statements:

(i) k = x and t = y,

(ii) ∀1 ≤ i ≤ k,∃1 ≤ j ≤ k : P(Dfi) = P(D′f
′
j) ∧ C(fi) = C ′(f ′j),

(iii) ∀1 ≤ i ≤ t,∃1 ≤ i′ ≤ t : P(D, Gi) = P(D′, G′j).

(ii) implies that the sets of r’s solitary subfeatures in both D and D′ are the

same. Without loss of generality, suppose that ∀1 ≤ i ≤ k : fi = f ′i . Since

∀1 ≤ i ≤ k : P(Dfi) = P(D′f
′
i) and depth(Dfi) < n, due to the hypothesis,

Dfi = D′fi .

(iii) implies that the set of groups of r in D and D′ are the same. Without loss

of generality, we suppose that ∀1 ≤ i ≤ t : Gi = G′i. Consider an 1 ≤ i ≤ t and let

Gi = G′i = {q1, . . . , qz}. According to Definition 4.8,

175

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

P(D, Gi) = {dmc1×l1
1 , . . . ,mcz×lz

z e : ∀1 ≤ j ≤ z. mj ∈ P(Dgj), cj ∈ C(gj), lj ∈

{0, 1}, and l1 + . . .+ lz ∈ C(Gi)}.

P(D′, Gi) = {dmc1×l1
1 , . . . ,mcz×lz

z e : ∀1 ≤ j ≤ z. mj ∈ P(D′gj), cj ∈ C ′(gj), li ∈

{0, 1}, and l1 + . . .+ lz ∈ C ′(Gi)}.

P(D, Gi) = P(D′, Gi) implies that ∀1 ≤ j ≤ z : P(Dgj) = P(D′gj) and C(gj) =

C ′(gj), C(Gi) = C ′(Gi). Since depth(Dgi) < n, due to the hypothesis, Dgi = D′gi .

According to above, since r in both D and D′ have the same set of solitary

subfeatures and groups whose corresponding induced diagrams are the same with the

same multiplicities, D = D′.

Theorem 4.2. For any CFD D ∈ D(F), the function flatF
∣∣
P(D)

, i.e., the restriction

of flatF to the subdomain P(D), provides a bijection between P(D) and Pflat(D).

Proof. We use an inductive reasoning based on the depth of CFDs to show this.

(base case): The statement obviously holds for any CFD with singleton tree, i.e.,

a CFD with depth 1.

(hypothesis): Assume that the statement holds for any CFD D with 1 ≤ depth(D) <

d for some d ∈ N.

(inductive step): We show that flatF
∣∣
P(D)

provides a bijection from P(D) to

Pflat(D) for any CFD D with depth(D) = d.

Let D = (F, r, ↑,G, C) be a CFD with depth(D) = d and S ⊆ F−r denote the set

of its solitary features. Suppose that S ∩ r↓ = {f1, . . . , fi} (solitary subfeatures of the

176

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

root) and G ∩ 2r↓ = {G1, . . . , Gj} (groups subelements of the root) for some i, j ∈ N.

Consider a hierarchical product h ∈ P(D). According to Definition 4.7, h is a

multiset dr, hc11 , . . . , h
ci
i , g1, . . . , gje, where hk ∈ P(Dfk), ck ∈ C(fk) (1 ≤ k ≤ i), and

gt ∈ P(D, Gt) (1 ≤ t ≤ j).

According to Definition 4.10, flatF (h) = dre]
⊎

1≤k≤i(flatF (hk))ck]
⊎

1≤t≤j flatF (gt).

Since hk ∈ P(Dfk) and depth(Dfk) < d for 1 ≤ k ≤ i, due to the hypothesis,

flatF (hk) is a flat product of the diagram induced by fk, i.e., flatF (hk) ∈ Pflat(Dfk).

Let Gt = {g1, . . . , gl} for 1 ≤ t ≤ j.

According to Definition 4.8, gt = dmc′1×t1
1 , . . . ,m

c′n×tl
l e, where mk ∈ P(Dgk), c′k ∈

C(gk), tk ∈ {0, 1}, and t1 + . . . + tl ∈ C(Gt) (1 ≤ k ≤ l). According to Definition

4.10, flatF (gt) = flatF (m1)c
′
1×t1] . . .] flatF (ml)

c′n×tn . Since depth(Dgk) < d for any

1 ≤ k ≤ l, due the hypothesis, flatF (mk) ∈ Pflat(Dgk). This implies that, according

to Definition 4.4, flatF (gt) ∈ Pflat(D, Gt).

According to above, flatF (h) = dre]
⊎

1≤k≤im
ck
k]

⊎
1≤t≤j nt, where mk = flatF (hk)

(1 ≤ k ≤ i) is a flat product of the diagram induced by fk, i.e., mk ∈ Pflat(Dfk) and

nt (1 ≤ t ≤ j) is a flat grouped product of Gt, i.e., nt = flatF (gt) ∈ Pflat(D, Gt).

Due to Lemma 4.1, flatF (h) ∈ Pflat(D). Therefore, flatF
∣∣
P(D)

maps each hierarchical

product of D to a flat product of D. In the following, we show that flatF
∣∣
P(D)

is an

injective function.

Consider two different hierarchical products h, h′ ∈ P(D) such that flatF (h) =

flatF (h′). According to Definition 4.10 and Definition 4.7,

flatF (h) = dre]
⊎

1≤k≤i flatF (hk)ck]
⊎

1≤t≤j flatF (gt), and

flatF (h′) = dre]
⊎

1≤k≤i flatF (h′k)c
′
k]
⊎

1≤t≤j flatF (g′t), where

∀1 ≤ k ≤ i,∀1 ≤ t ≤ j: hk, h
′
k ∈ P(Dfk), ck, c

′
k ∈ C(fk), and g′t, gt ∈ P(D, Gt).

177

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Note that for any two distinct subelements (solitary and/or group subelements) of

the root, their hierarchical and flat products are built on disjoint subsets of features

(a CFD is a special tree of features). Therefore, flatF (h) = flatF (h′) implies that for

any 1 ≤ k ≤ i, 1 ≤ t ≤ j: flatF (hk) = flatF (h′k), ck = c′k, and flatF (gt) = flatF (g′t).

Due to hypothesis, this implies that for any 1 ≤ k ≤ i, 1 ≤ t ≤ j: hk = h′k, ck = c′k,

and gt = g′t. Therefore, h = h′, which implies that the restriction of the function

flatF
∣∣
P(D)

is an injective function from P(D) to Pflat(D).

According to Definition 4.7 and Lemma 4.1, |P(D)| = |Pflat(D)| (recursive defini-

tions of hierarchical and flat products of D) for any CFD D, i.e., the cardinalities of

the sets of flat and hierarchical products of D are the same. Therefore, the restriction

of the flattening function to the hierarchical semantics of D is a surjective function,

as it is injective and the cardinalities of the domain and codomain are the same.

According to above, flatF
∣∣
P(D)

: P(D)→ Pflat(D) is a bijection.

Theorem 4.3. Any hierarchical product of a given CFD over a set of features F is

a tree-like multiset over F .

Proof of Theorem 4.3. We use an inductive reasoning based on the depth of CFDs

to deal with this theorem.

(base case): Obviously, the statement holds for any CFD D with depth(D) = 1.

(hypothesis): We assume that for any CFD D with 1 ≤ depth(D) < n, the

statement holds.

(inductive step): Let D = (F, r, ↑,G, C) be a CFD and depth(D) = n. We show

that any hierarchical product m ∈ P(D) is a tree-like multiset.

178

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Consider the CFD D′
def
= D−n (upper diagram Induced by depth n). Due to

Definition 4.7, for any hierarchical product m ∈ P(D), there exists m′ ∈ P(D′) such

that m is obtained by replacing any feature f ∈ {f ∈ F : depth(f) = n − 1} in m′

with an x ∈ P(Df).

Due to the hypothesis, any x ∈ P(Df) is a tree-like multiset. Thus, according to

Definition 4.11, m would be a tree-like multiset.

Theorem 4.4. For any tree-like multiset t, there is a CFD D such that t ∈ P(D).

Proof of Theorem 4.4. Let t be a tree-like multiset. We want to show that there

is a CFD whose hierarchical semantics includes t.

Let T = (N, r, ↑) and G denote the tree and groups associated with t, respectively:

N = Nt, r = rt,
↑ = ↑t , and G = Gt.4 We also define a function C : (N \{r}∪G)→ 2N

as follows. ∀e ∈ (N \ {r} ∪ G) : C(e) = {Ct(e)}, where Ct : (N \ {r}) ∪ G is defined in

Definition 4.18.

The tuple D = (T,G, C) would be a CFD except that there may be some singleton

groups (note that singleton groups are not allowed in CFDs–see Definition 4.1(ii)).

Let us call a CFD in which singleton groups are allowed a CFD plus (CFD+). The

semantics of CFD+s can be defined via hierarchical semantics of CFDs. Note that the

definition of hierarchical semantics for CFDs (Definition 4.7) can be directly used on

CFD+s. In this sense, the tuple (T,G, C) represents a singleton hierarchical semantics,

as all multiplicities are singleton. It is easy to see that its singleton hierarchical

product is t.

4 See Definitions 4.16 and 4.17, respectively.

179

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Thus, D is a CFD plus representing t as its single hierarchical product. We

show that this tuple is a substructure of some CFDs. Indeed, to get a CFD whose

hierarchical semantics includes the single hierarchical product of the tuple, we just

need to add one (or more than one) feature(s) to singleton groups. We formally show

how this works in the following.

Let G1 = {G ∈ G : |G| = 1} and N ′ be a set of symbols (features) with N ′∩N = ∅

and |N ′| = |G1|. Consider a bijection l : G1 → N ′. We build a CFD D′ = (N ′ ∪

N, r, ↑
′
,G ′, C ′) as follows.

∀n ∈ N ∪N ′ :↑′ (n) =


l−1(n)↑ if n ∈ N ′

n↑ otherwise

G ′ = (G \ G1) ∪ {G ∪ {l(G)} : G ∈ G1}

C ′ : ((N ′ \ {r}) ∪ G ′)→ 2N is defined as follows.

∀e ∈ (N ′ \ {r}) ∪ G ′) : C ′(e) =


C(e) if e ∈ N ∨ e ∈ G \ G1

{1} otherwise

Clearly, D′ is a CFD and D is a substructure of D′. Thus, t ∈ P(D′). The theorem

is proven!

Theorem 4.5. Consider an enumerable set of tree-like multisets U = {ti : i ∈ I} ⊂

T H(A) over a set A, where I enumerates its elements. Let Ti = (Ni, ri,
↑i) and Gi

(∀i ∈ I) denote the ti’s associated tree and groups, respectively (see Definitions 4.16

and 4.17, respectively). The tree-like multisets in U are mergeable iff:

180

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(i) ∀i, j ∈ I : Ti, Tj are mergeable.

(ii) ∀i, j ∈ I,∀n ∈ Ni ∩Nj : (∃G ∈ Gi : n ∈ G) =⇒ (∃G ∈ Gj : n ∈ G).

Proof of Theorem 4.5. We prove the statement for I = {1, 2}. The proof can be

easily extended to any enumerating set I ⊆ N. Let U = {t1, t2}. We need to show

that the following statements hold:

(1) t1 and t2 are mergeable =⇒ (i) and (ii) hold.

(2) (i) and (ii) hold =⇒ t1 and t2 are mergeable.

Proof of (1):

Suppose that t1 and t2 are megeable. According to Definition 4.19, there exists

a CFD D = (T,G, C) with T = (F, r, ↑) such that t1, t2 ∈ P(D). This implies the

following statements:

(S-1) T1 and T2 are subtrees of T such that their roots are equal to the root of T .

Formally, N1 ∪N2 ⊆ F , r1 = r2 = r, and ∀n ∈ N1 ∩N2 \ {r} : n↑1 = n↑2 = n↑. Thus

(i) holds.

(S-2) For any urelement a ∈ A, if its corresponding induced tree in t1 (i.e., t1
a) or

t2 (i.e., t2
a) is a grouped tree-like multiset, then a must be a grouped feature in D.

Formally, ∀a ∈ A : (∃G ∈ G1 : a ∈ G) ∨ (∃G ∈ G2 : a ∈ G) =⇒ (∃G ∈ G : a ∈ G).

Clearly, this implies that ∀n ∈ N1 ∩N2 : (∃G1 ∈ G1 : n ∈ G1) =⇒ (∃G2 ∈ G2 : n ∈

G2). Therefore, (ii) holds.

Due to (S-1) and (S-2), (1) is proven.

Proof of (2):

Suppose that (i) and (ii) hold. We show that t1 and t2 are mergeable. To this

end, we construct a CFD whose hierarchical semantics includes both t1 and t2.

Let N ′ = N1 ∪N2, r′ = r1 (note that r1 = r2), and ↑′ : N ′ \ {r′} → N ′ defined as

181

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

↑′ = ↑1 ∪ ↑2 . Note that (N ′, r′, ↑
′
) = {T1, T2}merge (see Definition 4.21).

Let G ′ = Gu
⋃
Gt, where

Gu = {G1 ∪G2 : (G1 ∈ G1) ∧ (G2 ∈ G2) ∧ (G1 ∩G2 6= ∅)},

Gt = {G ∈ G1 ∪ G2 : (∀G′ ∈ Gu : G′ ∩G = ∅)},

To merge two CFDs, we also need to merge their groups. According to Definition

5.3, two different groups in a CFD must share no elements. Thus, we have to merge

all groups in G1 and G2 that share some elements. Gu does so. Any other groups in

either G1 and G2 must have to be considered as a group in the merged CFD. Such

groups are obtained via Gt. There may be some singleton elements in G. Note that,

according to Definition 5.3, singleton groups are not allowed in a CFD. Below, we

address this problem.

Let G ′′ = {G ∈ G : |G| = 1} and N ′′ be a set of symbols (features) with N ′′∩N ′ =

∅ and |N ′′| = |G ′′|. Consider a bijection l : G ′′ → N ′′.

We define a tuple D = (N, r, ↑,G, C), where:

N = N ′′ ∪N ′,

r = r′,

G = (G ′ \ G ′′) ∪ {G ∪ {l(G)} : G ∈ G ′′},
↑ : N \ {r} → N , defined as:

∀n ∈ N : n↑ =


l−1(n)

↑′
if n ∈ N ′′

n↑
′

otherwise

182

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

∀e ∈ N ∪ G : C(e) =



{0} ∪ C1(e) if (e ∈ N1 \N2) ∨ (e ∈ Gt ∩ G1)

{0} ∪ C2(e) if (e ∈ N2 \N1) ∨ (e ∈ Gt ∩ G2)

C1(e) ∪ C2(e) if (e ∈ N1 ∩N2) ∨ (e ∈ Gu)

{1} otherwise

where C1 and C2 denote the multiplicities associated with t1 and t2, respectively (see

Definition 4.18).

It is easy to see that the tuple D = (N, r, ↑,G, C) is a CFD. It is obvious that t1

and t2 are two hierarchical products of D. Thus, t1 and t2 are two mergeable tree-like

multisets.

The proof is easily extendable to any enumerating set I ⊆ N, as a set of tree-like

multisets are mergeable iff each pairs of tree-like multisets are mergeable.

Theorem 4.6. Consider an emeumrable set of tree-like multisets U ⊂ T H(A) over

a set A of urelements.

(i) U is mergeable iff U◦ is.

(ii) U is mergeable implies that U◦ is finite.

Proof of Theorem 4.6. Let U = {ti : i ∈ I} ⊂ T H(A), where I ⊆ N enumerates

the elements of U . Let Ti = (Ni, ri,
↑i), Gi, and Ci, for any i ∈ I, represent the ti’s

associated tree, groups, and multiplicities , respectively – see Definitions 4.16, 4.17,

and 4.18.

Proof of (i):

183

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

For any i ∈ I, let Ti
◦ and Gi◦ denote the tree and groups associated with ti

◦ (the

relaxed multiset of ti). According to Proposition 4.1, ∀i ∈ I : Gi◦ = Gi and Ti
◦ = Ti.

According to Theorem 4.5,

U is mergeable

⇐⇒

– ∀i, j ∈ I : Ti, Tj are mergeable.

– ∀i, j ∈ I,∀n ∈ Ni ∩Nj : (∃G ∈ Gi : n ∈ G) =⇒ (∃G ∈ Gj : n ∈ G).

⇐⇒

– ∀i, j ∈ I : Ti
◦, Tj

◦ are mergeable.

– ∀i, j ∈ I,∀n ∈ Ni ∩Nj : (∃G ∈ Gi◦ : n ∈ G) =⇒ (∃G ∈ Gj◦ : n ∈ G).

⇐⇒

According to Theorem 4.5, U◦ is meageable.

Proof of (ii):

Suppose that the elements of U are megeable. Let D ∈ DUmerge , i.e., D is a

minimal representative CFD of U . Let D = (T,G, C) with T = (N, r, ↑).

According to (i), the elements of U◦ are megeable. Recall that the only difference

between a tree-like multiset and its relaxed multiset is in their multiplicities, i.e., their

trees and groups would be the same. We build a representative CFD D◦ of U◦, as

follows:

D◦ = (T,G, C◦) where

∀e ∈ (N \ {r}) ∪ G : C◦(e) =


C(e) if e ∈ G

{0, 1} otherwise

Clearly, D◦ is a representative CFD of U◦, since D is a minimal representative CFD

184

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

of U and all feature multiplicities in D◦ are {0, 1}. Since there is no feature in D◦

with an infinite multiplicity domain, P(D◦) would be finite. Thus, U◦ is finite, since

U ⊆ P(D◦).

Theorem 4.7. Consider an emeumerable set of tree-like multisets U ⊂ T H(A) over

a set A of urelements. U is completely mergeable iff

(i) U◦ is completely mergeable, and

(ii) ∀t ∈ U◦,∀a ∈ dom(flatA(t)),∀c ∈ CU(a),∃t′ ∈ U : (t′◦ = t) ∧ (#t′(t
′a) = c).

Proof. Suppose that U is completely mergeable, which means that there is some CFD

D = (T,G, C) with (F, r, ↑) representing U . We want to show that the statements (i)

and (ii) hold.

We build a CFD D◦ = (T,G, C◦), where C◦ : (F \ {r}) ∪ G → 2N is defined as

follows:

∀e ∈ (F \ {r}) ∪ G : C◦(e) =


C(e) if e ∈ G

{0, 1} if (e 6∈ G) ∧ (0 6∈ C(e))

{1} if (e 6∈ G) ∧ (0 6∈ C(e))

It follows obviously that P(D◦) = U◦. Therefore, U◦ is completely mergeable.

Now, consider a tree-like multiset t ∈ U◦, a ∈ dom(flatA(t)), and c ∈ CU(a). We

want to show that there exists t′ ∈ U such that t′◦ = t and #t′(t
a) = c.

t ∈ U◦ implies that t ∈ P(D◦). a is a feature in D◦ involved in t and c is a

valid multiplicity of the feature a in D (see the definition of overall multiplicities in

Definition 4.23).

185

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Since t ∈ U◦, there is some t′′ ∈ U such that t′′◦ = t. If #t′′(t
′′a) = c, then the

statement (ii) is proven. Suppose that #t′′(t
′′a) 6= c. t′′ is a hierarchical product of

D. Thus, for any f ∈ dom(flatA(t)) (including a), #t′′(t
′′f) ∈ C(f). According to

Definition 4.7, replacing #t′′(t
′′f) by any other valid multiplicity in the multiplicity

domain of f would give us another valid hierarchical product of D. Let us define t′

by replacing #t′′(t
′′a) by c. t′ ∈ P(D) and thus t ∈ U . The statement (ii) is proven.

Proving that U is completely mergeable if the statements (i) and (ii) hold is very

straightforward: Suppose that (i) and (ii) hold. Therefore, there exists a CFD D◦

such that P(D◦) = U◦. Note that the multiplicity domain of any feature in D◦ is

either {0, 1} or {1}. Now, we define a CFD D by replacing the multiplicity of any

feature a in D◦ by CU(a) (overall multiplicity og a, see Definition 4.23). Clearly,

according to (ii), P(D) = U . Therefore, U is completely mergeable.

186

Appendix C

Proofs of Chapter 5

We will need the following notations in the proofs.

For any regular expressions R (languages L, respectively). Σ(R) (Σ(L), respec-

tively) denotes the alphabet which R (L, respectively) is built on.

We will also need the following definitions.

Definition C.1 (Substitution of an Element). Let F and F ′ be two finite sets

and m ∈ H1(F),m′ ∈ H1(F ′). For a given f ∈ F , the substitution of f with m′ in

m is a multiset in H1(F ∪ F ′), denoted by m[f 7→P m′], specified as follows: each

occurrence of f in m is substituted by m′.

As an example, let F = {f1, f2, f3}, F ′ = {f ′1, f ′2}, m = [[f1
2, f2], [f1, f2

3]], and

m′ = [[f ′1
3]]. Then, m[f1 7→P m

′] = [[f ′1
6, f2], [f ′1

3, f2
3]].

Let F ′′ = {f1, . . . , fk} ⊆ F and sub be a function, which maps each element

fi of F ′′ to a multiset mi. We usually write m[f 7→P sub(f) : ∀f ∈ F ′′] to mean

m[f1 7→P m1] . . . [fk 7→P mk].

Definition C.2 (Substitution of a Letter with a Language). Let L and L′

187

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

be two languages and σ ∈ Σ(L). The Substitution of σ in L with L′ is a language,

denoted by L[σ 7→L L′], equal to: L[σ 7→L L′] = {w ∈ L : σ 6∈ w}
⋃
{ww′w′′ :

(wσw′′ ∈ L) ∧ (w′ ∈ L′)}.

For an example, consider Σ = {a, b, c} and the two languages L = {anbn : n ∈ N}

and L′ = {cn : n ∈ N}: L[b 7→L L′] = {ancm : m is divisible by n}.

Let Σ′ = {σ1, . . . , σk} be a subset of Σ and sub be a function, which maps each

letter σi of Σ′ to a language Li. We write L[σ 7→L sub(σ) : ∀σ ∈ Σ′] to mean

L[σ1 7→L L1] . . . [σk 7→L Lk].

Definition C.3 (Substitution of a Letter with an Expression). Let R and R′

be two regular expressions and σ ∈ Σ(R). The Substitution of σ with R′ is a regular

expression denoted by R[σ 7→E R′] and specified as follows: any instance of σ in R

is replaced by R′.

For example, consider an alphabet Σ = {a, b, c} and the two regular expressions

R = (a+ bc)∗ and R′ = c∗: R[a 7→E R′] = (c∗ + bc)∗1

Let Σ′ = {σ1, . . . , σk} be a subset of Σ(R) and sub be a function, which maps

each letter σi of Σ′ to a regular expression Ri. We write R[σ 7→E sub(σ) : ∀σ ∈ Σ′]

to mean R[σ1 7→E R1] . . . [σk 7→E Rk].

Definition C.4 (Substitution of a Leaf Node with a CFD). Consider two CFDs

D = (F, r, ↑,G, C) and D′ = (F ′, f, ↑
′
,G ′, C ′) and let f ∈ lev(D) (f is a leaf node

in D) such that F ∩ F ′ = {f}. The substitution of f with D′ is a CFD, denoted by

D[f 7→D D′], equal to (F ∪ F ′, r, ↑ ∪ ↑′ , G ∪ G ′, C ∪ C ′).

1This regular expression would be semantically equal to (c + b)∗.

188

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a�

b � c �

d � g �e� f�

(0,2) �

(2,3) �

b
 �

h �
i�

(1,1) �

(1,2)
(4,*) �

(3,5) � (1,2) �

a�

b � c �

d � g �e� f�

(0,2) �

(2,3) �

(1,2) (4,*) �

(3,5) �
(1,2) �

h � i�

(1,1) �

D1 �

D2 �

D3 �

Figure C.2: Substitution of a Leaf Node with a CFD: An example

As an example, consider the CFDs D1 and D2 in Figure C.2. The substitution of

the leaf node b in D1 with D2 would be D3 represented in Figure C.2.

Let D be a CFD over a set of features F and F ′ = {f1, . . . , fk} a subset of its

set of leaf nodes, i.e., F ′ ⊆ lev(F). Consider CFDs D1, . . . ,Dk over set of features

F1, . . . , Fk, respectively, such that for all i the root of Di is fi and for all distinct

indices 1 ≤ i, j ≤ k: F ∩ Fi = {fi} and Fi ∩ Fj = ∅. Let sub be a function,

which maps each element fi in F ′ to the CFD Di. For succinctness, we usually write

D[f 7→D sub(f) : ∀f ∈ F ′] to mean D[f1 7→D D1] . . . [fk 7→D Dk].

Definition C.5 (CFDs Cut by Nodes). Let D = (F, r, ↑,G, C) be a CFD and

f ∈ F . The CFD cut by f is a CFD D−f = (F ′, r, ↑|F ′ ,G ′, C
∣∣
G′]N ′), where F ′ = F \f↓↓

and G ′ = G ∩ 2F ′ , i.e., its tree is the tree of D in which the tree under f is excluded;

all other components are inherited from D.

As an example, D2 in Figure C.3 is the CFD cut by c in D1 in Figure C.3. The

following propositions and lemmas come in handy in the proofs of the main theorems.

Proposition C.1 follows obviously.

189

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

a�

b � c �

d � g �e� f�

(0,2) �

(2,3) �

(1,2) (4,*) �

(3,5) � (1,2) �

a�

b � c �

(0,2) �(1,2) (4,*) �

D1 �

D2 �

Figure C.3: Cutting of CFD by nodes: an example

Proposition C.1. Let D = (F, r, ↑,G, C) be a CFD and f ∈ F . Then, the following

statements hold:

(i) D = D−f [f 7→D Df].

(ii) Pflat(D) = Pflat(D−f)[f 7→P Pflat(Df)].

(iii) RCRE(D) = RCRE(D−f)[f 7→E RCRE(Df)].

(iv) RORE(D) = RORE(D−f)[f 7→E RORE(Df)].

Lemma C.1. Let D = (F, r, ↑,G, C) be a CFD and 1 ≤ d ≤ depth(D). Then,

D = D−d[f 7→D Df : ∀f ∈ F ′], where F ′ = {f ∈ F : depth(f) = d}, i.e., the nodes

with depth d. 2

Proof of Lemma C.1. Let F ′ = {f1, . . . , fi}. We define a set of CFDs {D0,D1,

. . . ,Di} recursively as follows: D0 = D and for any 1 ≤ j ≤ i: Dj = (Dj−1)−fj .

Note that D−d = Di. Due to Proposition C.1(i), Dj = Dj−1[fj 7→D Dfj], for any

1 ≤ j ≤ i. Therefore, D = D0 = D−d[f1 7→D D1] . . . [fi 7→D Di], which is equal to

D−d[f 7→D Df : ∀f ∈ F ′].

2D−d denotes the upper diagram induced by depth d in D – see Definition B.1.

190

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Lemma C.2. Let D = (F, r, ↑,G, C) be a CFD and 0 ≤ d ≤ depth(D). Then,

Pflat(D) = Pflat(D−d)[f 7→P Pflat(Df) : ∀f ∈ F ′], where F ′ = {f ∈ F : depth(f) =

d}, i.e., the nodes with depth d.

Proof of Lemma C.2. Let F ′ = {f1, . . . , fi}. We define a set of CFDs {D0,D1,

. . . ,Di} recursively as follows: D0 = D and for any 1 ≤ j ≤ i: Dj = (Dj−1)−fj .

Note that D−d = Di. Due to Proposition C.1(ii), Pflat(Dj−1) = Pflat(Dj)[fj 7→P

Pflat(Dfj)]. Therefore, Pflat(D) = Pflat(D0) = Pflat(D−d)[f1 7→P Pflat(D1)] . . . [fi 7→P

Pflat(Di)], which is equal to Pflat(D−d)[f 7→P Pflat(Df) : ∀f ∈ F ′].

Lemma C.3. For any CFD D = (F, r, ↑,G, C) and 0 ≤ d ≤ depth(D): RCRE(D) =

RCRE(D−d)[f 7→E RCRE(Df) : ∀f ∈ F ′], where F ′ = {f ∈ F : depth(f) = d}, i.e., the

nodes with depth d.

Proof of Lemma C.3. Let F ′ = {f1, . . . , fi}. We define a set of CFDs {D0,D1,

. . . ,Di}, recursively, as follows: D0 = D and for any 1 ≤ j ≤ i: Dj = (Dj−1)−fj .

Note that D−d = Di. Due to Proposition C.1(iii), RCRE(Dj−1) = RCRE(Dj)[fj 7→E

RCRE(Dfj)]. Therefore, RCRE(D) = RCRE(D0) = RCRE(D−d)[f1 7→E RCRE(D1)] . . .

[fi 7→E RCRE(Di)], which is equal to RCRE(D−d)[f 7→E RCRE(Df) : ∀f ∈ F ′].

The proofs for the main theorems of Chapter 5 are given in the following.

Theorem 5.1. For a given CFD D, Par(L(RCRE(D))) = Pflat(D).

Proof of Theorem 5.1. We use an inductive reasoning based on the depth of CFDs

to prove this theorem.

(basic step): Obviously, the statement Par(L(RCRE(D))) = Pflat(D) holds for any

CFD D with depth(D) = 1.

191

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(hypothesis): Assume that Par(L(RCRE(D))) = Pflat(D) for any CFD D with

1 ≤ depth(D) ≤ d for some d ∈ N.

(inductive step): We want to prove that for any CFD D with depth(D) = d + 1

the statement holds, i.e., Par(L(RCRE(D))) = Pflat(D).

Let D = (F, r, ↑,G, C) be a CFD with depth(D) = d+ 1.

Due to Lemma C.1, D = D−d[f 7→D Df : ∀f ∈ F ′], where F ′ = {f ∈ F :

depth(f) = d}, i.e., the nodes with depth d.

Due to Lemma C.3, RCRE(D) = RCRE(D−d)[f 7→E RCRE(Df) : ∀f ∈ F ′].

Therefore, L(RCRE(D)) = L(RCRE(D−d))[f 7→L L(RCRE(Df)) : ∀f ∈ F ′].

Obviously, Par(L(RCRE(D))) = Par(L(RCRE(D−d)))[f 7→P Par(L(RCRE(Df))) :

∀f ∈ F ′].

Since depth(D−d) = d, according to the hypothesis, Par(L(RCRE(D−d))) = Pflat(D−d).

Since for any f ∈ F ′: depth(Df) < d, according to the hypothesis, Par(L(RCRE(Df)))

= Pflat(Df).

Therefore, Par(L(RCRE(D))) = Pflat(D−d)[f 7→P Pflat(Df) : ∀f ∈ F ′].

Due to Lemma C.2, since Pflat(D) = Pflat(D−d)[f 7→P Pflat(Df) : ∀f ∈ F ′],

Par(L(RCRE(D))) = Pflat(D). The theorem is proven.

Theorem 5.2. For a given CFD D, L(RCRE(D)) preserves D’s hierarchy.

Proof of Theorem 5.2. Consider a CFD D = (F, r, ↑,G, C). We need to prove the

following statements for any f, f ′ ∈ F :

(1) (f ′ ∈ f↓)⇒
(
∀w ∈ L(RCRE(D)) : (f ′ ∈ Uw)⇒ (f vw f

′)
)
.

(2)
(
∀w ∈ L(RCRE(D)) : (f ′ ∈ Uw)⇒ (f vw f

′)
)
⇒ (f ′ ∈ f↓↓).

Note that (1) implies (f ′ ∈ f↓↓)⇒
(
∀w ∈ L(RCRE(D)) : (f ′ ∈ w)⇒ (f vw f

′)
)
.

192

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Proof of (1):

Since D is an unlabelled tree of features, for any i ≤ depth(D), (shrCRE)
i
(D) is a

CRD where the labels of two different nodes are two different regular expressions built

over two disjoint alphabets. Let us call such CRDs disjoint labeled CRDs (DL-CRD).

It is obvious that for any DL-CRD RD and i ≤ depth(RD), (shrCRE)
i
(RD) is

also a DL-CRD. To prove (1), we prove a more general statement stated as follows:

“Consider a DL-CRD RD = (LTre,G, C) with LTre = (N, r, ↑,Σ, lre). Let n′, n′′ ∈ N

with lre(n
′) = R′ and lre(n

′′) = R′′ such that n′′ ∈ n′↑. Then,

∀w ∈ L(RCRE(RD)),∀w′′ ∈ L(R′′) : (w′′ ≤seq w)⇒ [∃w′ ∈ L(R′) : w′.w′′ ≤seq w].”

Let w ∈ L(RCRE(RD)) and w′′ ∈ L(R′′) such that w′′ ≤seq w. We need to show

that ∃w′ ∈ L(R′) : w′.w′′ ≤seq w.

Since RD and (shrCRE)
i
(RD) for any i ≤ depth(RD) are DL-CRDs, RCRE(RD) =

R.(R′.(R′′.R(3) +R(4))+R(5)) for some regular expresisons R,R(3), R(4), R(5) (note the

definition dreCRE in Definition 5.11 and Definition 5.10) such that the regular expres-

sions R,R′, R′, R′′, R(3), R(4), R(5) are built over disjoint alphabets. Since w′′ ≤seq w,

w ∈ L(R.R′.R′′.R(3)). The statement is proven, since R′ precedes R′′ in R.R′.R′′.R(3),

i.e., ∃w′ ∈ L(R′) : w′.w′′ ≤seq w.

Proof of (2):

We show ¬(f ′ ∈ f↓↓)⇒ ¬
(
∀w ∈ L(RCRE(D)) : (f ′ ∈ Uw)⇒ (f vw f

′)
)
, which is

equivalent to (2).

Suppose that f ′ 6∈ f↓↓. Let k be the minimum of depth(f) and depth(f ′). Let

d = depth(D) and (shrCRE)
d−k

(D) = RD′.

193

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

There are two leaves ` and `′ in RD′ with labels R and R′ in RD′ such that

f ∈ Σ(R) and f ′ ∈ Σ(R′). Since RD′ is an DL-CRD, Σ(R′) ∩ Σ(R) = ∅.

Note that by applying the shrinking step on D d−k times (where k = min(depth(f),

depth(f ′))) the parents of both ` and `′ would be the same and equal to the least

common ancestor of f and f ′, i.e., ` and ` are siblings in RD′. Let p = `↑ = `′↑.

There are the following choices for ` and `′:

(i) Both are solitary nodes.

(ii) One of them, say `, is in a group and another one, `′, is a solitary node.

(iii) Both are in a same group G.

(iv) One of them, say `, is in a group G and another, `′, is in another group G′.

Let RD′1 = gleCRE◦melCRE(RD′) (applying the first and second stages of shrinking

steps on RD′). There are two leaves `1 and `′1 with labels R1 and R′1 in RD′1 such

that f ∈ Σ(R1) and f ′ ∈ Σ(R′1). Note that Σ(R1)∩Σ(R′1) = ∅ and all leaves in RD′1

are solitary with multiplicities (1, 1).

Now let us apply the function dreCRE on RD′1 to get (shrCRE)
d−k+1

(D). Since

the function dreCRE considers all valid permutations of the p’s child nodes, there is a

leaf node `′′ in (shrCRE)
d−k+1

(D) labeled with a regular expression R`′′ in the form of

R`′′ = R(2) +R1.R
′
1.R

(3) +R′1.R1.R
(4).

Since Σ(R1)∩Σ(R′1) = ∅, there are two words w1, w2 ∈ L(R`′′) such that f vw1 f
′

and f ′ vw2 f . Thus, keeping doing the shrinking steps until getting shrCRE(D), there

would be a word w ∈ L(RCRE(D)) such that f ′ ∈ w but ¬(f vw f
′). The statement

(2) is proven.

194

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Theorem 5.3. For any given osCFD OD:

(i) L(RORE(OD)) ⊆ L(RCRE(ODcfd)).

(ii) Par(L(RORE(OD))) = Par(L(RCRE(ODcfd))).

Proof of Theorem 5.3. CRE and ORE differ in two stages, stages 2 and 3:

(1) In calculating the expressions corresponding to a group of leaves in their second

stages (see ORE-EGL and CRE-EGL).

(2) In calculating the expressions in stage 3 in which an expression is computed

for a given node all of whose children are leaves (see ORE-DR and CRE-DR).

The difference is that we consider all valid permutations of the corresponding

elements (in (1): elements of a group; in (2): the children of a node) in CRE while,

in ORE, we consider a subset of these permutations conforming the sibling ordering.

According to above, any word in L(RORE(OD)) belongs also to L(RCRE(ODcfd)),

which implies that L(RORE(OD)) ⊆ L(RCRE(ODcfd)). The statement (i) is proven.

(i) implies that Par(L(RORE(OD))) ⊆ Par(L(RCRE(ODcfd))). Therefore, for any

word w ∈ L(RCRE(ODcfd)), there is a word w′ ∈ L(RORE(OD)) such that their Parikh

image are the same, i.e., Par(w) = Par(w′). To get w′ from w, consider a permutation

of w satisfying the sibling ordering. Thus, (ii) is proven, i.e., Par(L(RORE(OD))) =

Par(L(RCRE(ODcfd))).

Theorem 5.4. L(cc1), L(cc2), and L(cc3) are regular, L(cc4) is context-free, and

L(cc5) is context-sensitive.

Proof of Theorem 5.4. A language is regular iff it can be expressed by some regular

expressions, regular grammars, or finite state automata (FSA). Let F = {f1, . . . , fn}

for some n ≥ 3.

195

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

L(cc1) can be expressed by the following regular expression, where r = (f1 + . . .+

fn)∗:

f ∗2 + rf1rf2r + rf2rf1r.

L(cc2) can be expressed by the following regular expression:

(f2 + . . .+ fn)∗ + (f1 + f3 + . . .+ fn)∗ + (f3 + . . .+ fn)∗.

The following FSA accepts L(cc3). The initial state is identified by an incoming

unlabelled arrow not originating at any state. The final states are drawn with double

circles.

f2 f2

f3, … , fn

f1

f1

f1
f1

f2 f2

A

B

D

C

L(cc4) and L(cc5) are very well-known context-free and context-sensitive lan-

guages, respectively [Lin11].

Theorem 5.5. Given a recursive CFM, the operations Valid Product, Common

Ancestors, and Least Common Ancestor are decidable.

Proof of Theorem 5.5. Let M be a CFM over a set of features F .

196

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

Recall that Valid Configuration operation is reduced to a membership problem in

the context of formal languages (see page ??). Since membership problem is decidable

in the class of recursive languages, the problem would be decidable in the class of

recursive CFMs.

Recall that we reduced the Common Ancestors problem to the following problem:

Given a set of features F ′, a feature f ∈ F is a common ancestor of the features in

F ′ iff ∀w ∈ LORE(M),∀f ′ ∈ F ′ : f vw f ′. This problem is decidable in no classes of

CFMs when LORE(M) is infinite. However, we can reduce it to the following smart

problem:

The problem deals with only the underlying CFD. Let D denote the CFD of M.

Since the problem has nothing to do with multiplicities, it is sufficient to work with

D◦, i.e., the relaxed CFD of D. Thus, the above problem is reduced to “f is a

common ancestor of the features in F ′ iff ∀w ∈ LORE(D◦),∀f ′ ∈ F ′ : f vw f
′”. Since

LORE(D◦) and F ′ are finite, the common ancestors problem is decidable in all classes

of CFMs. We can follow the same way to show that the Least Common Ancestor

problem in decidable in all classes of CFMs.

Theorem 5.6. Given a context-free FM M, the operations Partial Configuration,

Core Features, Valid feature Multiplicity, Void Feature Model, and Dead Feature are

decidable. However, none of them is decidable in the class of context-sensitive CFMs.

Proof of Theorem 5.6. Let F be the set of features of M.

Partial Configuration: Let L denote the set of all prefixes of the words of LCRE(M).

L is a context-free language. To prove this, we take the grammar of LCRE(M) in

Chomsky Normal Form and for every production A → BC, add productions Aε →

197

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

BCε and Aε → Bε. Also, for every production A → f (for some terminals f), we

consider the production Aε → f . Finally, we change the starting variable S to Sε

and add the production Sε → ε. The context-free grammar generated in this way

represents the language L. Thus, L is decidable. The set of partial configurations

would be equal to the bag interpretation of L. Thus, the Partial Configuration

problem is decidable.

Core Features: Consider a subset C ⊆ F . We want to determine whether C

is included in all products or not. Let C = {f1, . . . , fn} for some n ∈ N, L =

L(F ∗f ∗1F
∗ . . . f ∗nF

∗). The problem is reduced to determining whether LCRE(M) ⊆ L

or not. In other words, the problem is reduced to determining whether LCRE(M)∩Lc =

∅ or not (Lc denotes the complement of L). Note that L is a regular language and

so is Lc. Hence, the language LCRE(M) ∩ Lc is context-free. Since the emptiness

problem in the class of context-free languages is decidable, the original problem, i.e.,

determining if C is included in all products, is decidable. Since the number of subsets

of F is finite, the problem of finding the set of Core Features is also decidable.

Valid feature Multiplicity: Recall that the Valid feature Multiplicity problem is

reduced to an emptiness problem: Given a feature f and n ∈ N, n can be a valid

multiplicity of f iff L ∩ LCRE(M) 6= ∅, where L = L((F \ {f})∗fn(F \ {f})∗). Since

the emptiness problem is decidable in the class of context-free languages, the Valid

feature Multiplicity problem would be decidable in the class of context-free CFMs.

Void Feature Model: Since the emptiness problem is decidable in the class of

context-free languages, the Void Feature Model problem would be decidable.

Dead Feature: Let L = L(F ∗fF ∗). The problem of determining whether the

feature f is a dead feature of M or not is, indeed, to determine whether L∩LCRE(M) =

198

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

∅ or not. Note that L is regular. Hence, L ∩ LCRE(M) is context-free. Since the

emptiness problem of context-free languages is decidable, the Dead Feature problem

is decidable too.

In the class of Context-Sensitive CFMs: Note that the above analysis operations

are not decidable in other classes of CFMs. Recall that all the above operations

are reduced to emptiness problem in the formal language theory. Since emptiness

problem is not decidable in the class of non-context-free context-sensitive languages

[Dav94], the above operations would not be decidable in the class of context-sensitive

CFMs.

Theorem 5.7. Given two CFMs M1 and M2, the following statements hold:

(i) If both are regular, then the (Dynamic) Refactoring problem between them is

decidable.

(ii) If M1 and M2 are regular and context-free, respectively, then the (Dynamic)

Refactoring problem is decidable iff M1 is bounded regular.

Proof of Theorem 5.7.

(i) The equality problem between regular languages is decidable [Lin11].

(ii) Hopcroft in [Hop69] showed that for two given context-free languages L1 and

L2, if one of them, say L1, is a bounded regular language, then the equality problem

between these two languages is decidable.

Theorem 5.8. Given two CFMs M1 and M2, the following statements hold:

(i) If both are regular, the (Dynamic) Specialization problem between them is

decidable.

199

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

(ii) If M1 and M2 are regular and context-free, respectively, then the problem “is

M2 a (dynamic) specialization of M1?” is decidable.

Proof of Theorem 5.8.

(i) The inclusion problem in the class of regular languages is decidable [MS72].

Thus, the Specialization problem is decidable in the class of regular languages.

(ii) The problem “M2 is a specialization of M1” is reducible to the problem

LCRE(M2) ⊆ LCRE(M1). In other words, it is equivalent to the problem of determin-

ing whether LCRE(M2) ∩LCRE(M1)c = ∅ or not. Since the class of regular languages

is closed under complement, LCRE(M1)c is regular. Thus, LCRE(M2) ∩ LCRE(M1)c is

context-free. Since the emptiness problem in the class of context-free languages is

decidable, the Specialization problem in this case would be decidable.

200

Bibliography

[ACC+11] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Hoĺık,
Chih-Duo Hong, Richard Mayr, and Tomáš Vojnar. Advanced
ramsey-based büchi automata inclusion testing. In CONCUR 2011–
Concurrency Theory, pages 187–202. Springer, 2011.

[ACC+13] Mathieu Acher, Benoit Combemale, Philippe Collet, Olivier Barais,
Philippe Lahire, and Robert B France. Composing your compositions
of variability models. In Model-Driven Engineering Languages and Sys-
tems, pages 352–369. Springer, 2013.

[ACLF10a] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France.
Composing feature models. In Software Language Engineering, pages
62–81. Springer, 2010.

[ACLF10b] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert
France. Managing multiple software product lines using merging
techniques. France: UniversityofNiceSophiaAntipolis. TechnicalReport,
ISRN I3S/RR, 6, 2010.

[AP+04] Marcus Alanen, Ivan Porres, et al. A relation between context-free gram-
mars and meta object facility metamodels. Turku Centre for Computer
Science, 2004.

[ASB+08] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer,
P. Rayson, C. Pohl, and A. Rummler. An exploratory study of in-
formation retrieval techniques in domain analysis. In SPLC’08., 2008.

[BAS15] Sandy Beidu, Joanne M Atlee, and Pourya Shaker. Incremental and
commutative composition of state-machine models of features. In Mod-
eling in Software Engineering (MiSE), 2015 IEEE/ACM 7th Interna-
tional Workshop on, pages 13–18. IEEE, 2015.

[Bat05] Don Batory. Feature models, grammars, and propositional formulas.
Springer, 2005.

201

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[BBRC06] Don Batory, David Benavides, and Antonio Ruiz-Cortes. Automated
analysis of feature models: challenges ahead. Communications of the
ACM, 49(12):45–47, 2006.

[BF97] Alexander Bolotov and Michael Fisher. A resolution method for ctl
branching-time temporal logic. In Temporal Representation and Rea-
soning, 1997.(TIME’97), Proceedings., Fourth International Workshop
on, pages 20–27. IEEE, 1997.

[BLR+15] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Ade-
line Silva, Martin Becker, Marsha Chechik, and Krzysztof Czarnecki.
What is a feature?: a qualitative study of features in industrial software
product lines. In Proceedings of the 19th International Conference on
Software Product Line, pages 16–25. ACM, 2015.

[BO92] Don Batory and Sean O’malley. The design and implementation of
hierarchical software systems with reusable components. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 1(4):355–
398, 1992.

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 2000.

[Bos01] Jan Bosch. Software product lines: organizational alternatives. In Pro-
ceedings of the 23rd International Conference on Software Engineering,
pages 91–100. IEEE Computer Society, 2001.

[BP13] Filippo Bonchi and Damien Pous. Checking nfa equivalence with bisim-
ulations up to congruence. ACM SIGPLAN Notices, 48(1):457–468,
2013.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review. Informa-
tion Systems, 35(6):615–636, 2010.

[BSTRC06a] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-
Cortés. A first step towards a framework for the automated analysis of
feature models. Proc. Managing Variability for Software Product Lines:
Working With Variability Mechanisms, pages 39–47, 2006.

[BSTRC06b] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-
Cortés. Using java csp solvers in the automated analyses of feature

202

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

models. In Generative and Transformational Techniques in Software
Engineering, pages 399–408. Springer, 2006.

[BTC05] David Benavides, Pablo Trinidad, and Antonio Ruiz Cortés. Using
constraint programming to reason on feature models. In SEKE, pages
677–682, 2005.

[BW13] Alexander Bergmayr and Manuel Wimmer. Generating metamodels
from grammars by chaining translational and by-example techniques.
In MDEBE@ MoDELS, pages 22–31, 2013.

[CBUE02] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich Eise-
necker. Generative programming for embedded software: An industrial
experience report. In Generative Programming and Component Engi-
neering, pages 156–172. Springer, 2002.

[CCH+12] A. Classen, M. Cordy, P. Heymans, A. Legay, and P. Schobbens. Model
checking software product lines with SNIP. In STTT, 14(5):589–612,
2012.

[CCH+14] A. Classen, M. Cordy, P. Heymans, A. Legay, and P. Schobbens. Formal
semantics, modular specification, and symbolic verification of product-
line behaviour. Sci. Comput. Program., 80:416–439, 2014.

[CCS+13] A. Classen, M. Cordy, P. Schobbens, P. Heymans, A. Legay, and
J. Raskin. Featured transition systems: Foundations for verifying
variability-intensive systems and their application to LTL model check-
ing. In IEEE Transactions on Software Engineering, 39(8):1069–1089,
2013.

[CDMM11] Gary Chastek, Patrick Donohoe, John D McGregor, and Dirk Muthig.
Engineering a production method for a software product line. In Soft-
ware Product Line Conference (SPLC), 2011 15th International, pages
277–286. IEEE, 2011.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative program-
ming: methods, tools, and applications. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged con-
figuration using feature models. In Software Product Lines, pages 266–
283. Springer, 2004.

203

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[CHE05a] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formaliz-
ing cardinality-based feature models and their specialization. Software
Process: Improvement and Practice, 10(1):7–29, 2005.

[CHE05b] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged con-
figuration through specialization and multilevel configuration of feature
models. Software Process: Improvement and Practice, 10(2):143–169,
2005.

[CHL+14] M. Cordy, P. Heymans, A. Legay, P. Schobbens, B. Dawagne, and
M. Leucker. Counterexample guided abstraction refinement of product-
line behavioural models. In FSE, pages 190–201, 2014.

[CHS+10] A. Classen, P. Heymans, P. Schobbens, A. Legay, and J. Raskin. Model
checking lots of systems: efficient verification of temporal properties in
software product lines. In ICSE, pages 335–344, 2010.

[CHSL11] A. Classen, P. Heymans, P. Schobbens, and A. Legay. Symbolic model
checking of software product lines. In ICSE, pages 321–330. ACM,
2011.

[CK05] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based
feature modeling and constraints: A progress report. In International
Workshop on Software Factories, pages 16–20, 2005.

[Coo03] S Barry Cooper. Computability theory. CRC Press, 2003.

[Cop02] B Jack Copeland. The church-turing thesis. Stanford encyclopedia of
philosophy, 2002.

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and
logics: There and back again. In Software Product Line Conference,
2007. SPLC 2007. 11th International, pages 23–34. IEEE, 2007.

[Dav94] Martin Davis. Computability, complexity, and languages: fundamentals
of theoretical computer science. Academic Press, 1994.

[DG08] Volker Diekert and Paul Gastin. First-order definable languages. Logic
and Automata: History and Perspectives, 2:261, 2008.

[dJV02] Merijn de Jonge and Joost Visser. Grammars as feature diagrams. In
ICSR7 Workshop on Generative Programming, pages 23–24. Citeseer,
2002.

204

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[DWDMR08] Martin De Wulf, Laurent Doyen, Nicolas Maquet, and Jean-François
Raskin. Alaska. In Automated Technology for Verification and Analysis,
pages 240–245. Springer, 2008.

[EBB05] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. The pluss approach:
domain modeling with features, use cases and use case realizations. In
SPLC 2005, SPLC’05, pages 33–44, Berlin, Heidelberg, 2005. Springer-
Verlag.

[EH88] E Allen Emerson and Joseph Y Halpern. Decision procedures and
expressiveness in the temporal logic of branching time. Computer and
System Science, 30:1–24, 1988.

[FKC12] Rick Flores, Charles Krueger, and Paul Clements. Mega-scale product
line engineering at general motors. In Proceedings of the 16th Inter-
national Software Product Line Conference-Volume 1, pages 259–268.
ACM, 2012.

[FL10] Oliver Friedmann and Martin Lange. A solver for modal fixpoint logics.
Electronic Notes in Theoretical Computer Science, 262:99–111, 2010.

[FZ06] Shaofeng Fan and Naixiao Zhang. Feature model based on description
logics. In Knowledge-Based Intelligent Information and Engineering
Systems, pages 1144–1151. Springer, 2006.

[GFd98] Martin L Griss, John Favaro, and Massimo d’Alessandro. Integrating
feature modeling with the rseb. In Software Reuse, 1998. Proceedings.
Fifth International Conference on, pages 76–85. IEEE, 1998.

[Gin66] Seymour Ginsburg. The Mathematical Theory of Context Free Lan-
guages.[Mit Fig.]. McGraw-Hill Book Company, 1966.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[GLS08] A. Gruler, M. Leucker, and K. Scheidemann. Modeling and model
checking software product lines. In Formal Methods for Open Object-
Based Distributed Systems, pages 113–131. Springer, 2008.

[GMB06] Rohit Gheyi, Tiago Massoni, and Paulo Borba. A theory for feature
models in alloy. In First alloy workshop, pages 71–80, 2006.

205

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[GNS+15] Graeme Gange, Jorge A Navas, Peter Schachte, Harald Søndergaard,
and Peter J Stuckey. A tool for intersecting context-free grammars and
its applications. In NASA Formal Methods, pages 422–428. Springer,
2015.

[GP93] Vineet Gupta and Vaughan R. Pratt. Gages accept concurrent behav-
ior. In FOCS, pages 62–71, 1993.

[HCH09] Arnaud Hubaux, Andreas Classen, and Patrick Heymans. Formal mod-
elling of feature configuration workflows. In Proceedings of the 13th In-
ternational Software Product Line Conference, pages 221–230. Carnegie
Mellon University, 2009.

[Hil09] Sandra Hilber. Finite automata tool, http://cl-
informatik.uibk.ac.at/software/fat/. 2009.

[HKM11a] Peter Höfner, Ridha Khédri, and Bernhard Möller. An algebra of prod-
uct families. Software and System Modeling, 10(2):161–182, 2011.

[HKM11b] Peter Höfner, Ridha Khédri, and Bernhard Möller. Supplementing
product families with behaviour. Int. J. Software and Informatics,
5(1-2):245–266, 2011.

[HM11] T. Hildebrandt and R. Mukkamala. Declarative event-based work-
flow as distributed dynamic condition response graphs. arXiv preprint
arXiv:1110.4161, 2011.

[Hop69] John E. Hopcroft. On the equivalence and containment problems for
context-free languages. Mathematical systems theory, 3(2):119–124,
1969.

[Hop07] John E Hopcroft. Introduction to automata theory, languages, and
computation. Pearson Addison Wesley, 2007.

[Jaa02] Ari Jaaksi. Developing mobile browsers in a product line. IEEE soft-
ware, (4):73–80, 2002.

[Jen07] Paul Jensen. Experiences with product line development of multi-
discipline analysis software at overwatch textron systems. In Software
Product Line Conference, 2007. SPLC 2007. 11th International, pages
35–43. IEEE, 2007.

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse:
Architecture, Process and Organization for Business Success. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1997.

206

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[JRvdL00] Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software
Architecture for Product Families: Principles and Practice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[KCB08] Charles W Krueger, Dale Churchett, and Ross Buhrdorf. Homeaway’s
transition to software product line practice: Engineering and busi-
ness results in 60 days. In Software Product Line Conference, 2008.
SPLC’08. 12th International, pages 297–306. IEEE, 2008.

[KCH+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, DTIC Document, 1990.

[KKL+98] Kyo C Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin,
and Moonhang Huh. Form a feature oriented reuse method with
domain-specific reference architectures. Annals of Software Engineer-
ing, 5(1):143–168, 1998.

[KLD02] Kyo C Kang, Jaejoon Lee, and Patrick Donohoe. Feature-oriented
product line engineering. IEEE software, (4):58–65, 2002.

[KN12] Bakhadyr Khoussainov and Anil Nerode. Automata theory and its
applications, volume 21. Springer Science & Business Media, 2012.

[Koz97] Dexter Kozen. Automata and computability. Springer, 1997.

[KRT08] Alexander Koller, Michaela Regneri, and Stefan Thater. Regular tree
grammars as a formalism for scope underspecification. In ACL, pages
218–226. Citeseer, 2008.

[Kun08] Andreas Kunert. Semi-automatic generation of metamodels and models
from grammars and programs. Electronic Notes in Theoretical Com-
puter Science, 211:111–119, 2008.

[LHLG+15] Roberto E Lopez-Herrejon, Lukas Linsbauer, José A Galindo, José A
Parejo, David Benavides, Sergio Segura, and Alexander Egyed. An
assessment of search-based techniques for reverse engineering feature
models. Journal of Systems and Software, 103:353–369, 2015.

[Lin11] Peter Linz. An introduction to formal languages and automata. Jones
& Bartlett Publishers, 2011.

[Loe14] Abraham Loeb. The habitable epoch of the early universe. Interna-
tional Journal of Astrobiology, 13(04):337–339, 2014.

207

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[LS01] Martin Lange and Colin Stirling. Focus games for satisfiability and
completeness of temporal logic. In Logic in Computer Science, 2001.
Proceedings. 16th Annual IEEE Symposium on, pages 357–365. IEEE,
2001.

[LŠV12] Ondřej Lengál, Jǐŕı Šimáček, and Tomáš Vojnar. Vata: A library for
efficient manipulation of non-deterministic tree automata. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 79–94.
Springer, 2012.

[LT12] M. Leucker and D. Thoma. A formal approach to software product
families. In ISoLA, pages 131–145. Springer, 2012.

[Man02] Mike Mannion. Using first-order logic for product line model validation.
In Software Product Lines, pages 176–187. Springer, 2002.

[Mar05] Will Marrero. Using bdds to decide ctl. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 222–236. Springer, 2005.

[MR02] Alessandro Maccari and Claudio Riva. Architectural evolution of legacy
product families. In Software Product-Family Engineering, pages 64–
69. Springer, 2002.

[MS72] Albert R Meyer and Larry J Stockmeyer. The equivalence problem
for regular expressions with squaring requires exponential space. In
Switching and Automata Theory, 1972., IEEE Conference Record of
13th Annual Symposium on, pages 125–129. IEEE, 1972.

[MSDLM11] Raúl Mazo, Camille Salinesi, Daniel Diaz, and Alberto Lora-Michiels.
Transforming attribute and clone-enabled feature models into con-
straint programs over finite domains. In 6th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE),
2011.

[MVH+04] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview. W3C recommendation, 10(2004-03):10, 2004.

[MWC09] Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki. Sat-
based analysis of feature models is easy. In Proceedings of the 13th In-
ternational Software Product Line Conference, pages 231–240. Carnegie
Mellon University, 2009.

208

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[MWCC08] Marcilio Mendonca, Andrzej Wasowski, Krzysztof Czarnecki, and Don-
ald Cowan. Efficient compilation techniques for large scale feature
models. In Proceedings of the 7th international conference on Gen-
erative PROGRAMMING and component engineering, pages 13–22.
ACM, 2008.

[NE08] N. Niu and S. Easterbrook. On-demand cluster analysis for product
line functional requirements. In SPLC, 2008.

[NEB+11] Mahdi Noorian, Alireza Ensan, Ebrahim Bagheri, Harold Boley, and
Yevgen Biletskiy. Feature model debugging based on description logic
reasoning. In DMS, volume 11, pages 158–164, 2011.

[Par61] Rohit J Parikh. Language generating devices. Quarterly Progress Re-
port, 60:199–212, 1961.

[Par66] Rohit J Parikh. On context-free languages. Journal of the ACM
(JACM), 13(4):570–581, 1966.

[PBVDL05] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software prod-
uct line engineering: foundations, principles, and techniques. Springer,
2005.

[PP95] G. Michele Pinna and Axel Poigné. On the nature of events: Another
perspective in concurrency. Theor. Comput. Sci., 138(2):425–454, 1995.

[Pra91] Vaughan R. Pratt. Event spaces and their linear logic. In AMAST,
pages 3–25, 1991.

[QC11] Gerard Quilty and MO Cinneide. Experiences with software prod-
uct line development in risk management software. In Software Prod-
uct Line Conference (SPLC), 2011 15th International, pages 251–260.
IEEE, 2011.

[QRD13] Clément Quinton, Daniel Romero, and Laurence Duchien. Cardinality-
based feature models with constraints: a pragmatic approach. In Pro-
ceedings of the 17th International Software Product Line Conference,
pages 162–166. ACM, 2013.

[RF06] Susan H Rodger and Thomas W Finley. JFLAP: an interactive formal
languages and automata package. Jones & Bartlett Learning, 2006.

[SA14] Pourya Shaker and Joanne M Atlee. Behaviour interactions among
product-line features. In Proceedings of the 18th International Software
Product Line Conference-Volume 1, pages 242–246. ACM, 2014.

209

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[SBRCT08] Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo
Trinidad. Automated merging of feature models using graph transfor-
mations. In Generative and Transformational Techniques in Software
Engineering II, pages 489–505. Springer, 2008.

[Sch06] Markus Scheidgen. Cmof-model semantics and language mapping for
mof 2.0 implementations. In Model-Based Development of Computer-
Based Systems and Model-Based Methodologies for Pervasive and Em-
bedded Software, 2006. MBD/MOMPES 2006. Fourth and Third Inter-
national Workshop on, pages 10–pp. IEEE, 2006.

[Seg08] Sergio Segura. Automated analysis of feature models using atomic sets.
In SPLC (2), pages 201–207, 2008.

[SHT06] P-Y Schobbens, Patrick Heymans, and J-C Trigaux. Feature diagrams:
A survey and a formal semantics. In Requirements Engineering, 14th
IEEE international conference, pages 139–148. IEEE, 2006.

[SHTB07] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux,
and Yves Bontemps. Generic semantics of feature diagrams. Computer
Networks, 51(2):456–479, 2007.

[SK01] Juha Savolainen and Juha Kuusela. Violatility analysis framework for
product lines. In ACM SIGSOFT Software Engineering Notes, vol-
ume 26, pages 133–141. ACM, 2001.

[SLB+11] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and
Krzysztof Czarnecki. Reverse engineering feature models. In ICSE
2011, pages 461–470. IEEE, 2011.

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A comparison of
decision modeling approaches in product lines. In Proceedings of the
5th Workshop on Variability Modeling of Software-Intensive Systems,
pages 119–126. ACM, 2011.

[STE+10] Julio Sincero, Reinhard Tartler, Christoph Egger, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. Facing the linux 8000 feature night-
mare. In Proceedings of ACM European Conference on Computer Sys-
tems (EuroSys 2010), Best Posters and Demos Session, 2010.

[SZFW05] Jing Sun, Hongyu Zhang, Yuan Fang, and Li Hai Wang. Formal seman-
tics and verification for feature modeling. In Engineering of Complex
Computer Systems, 2005. ICECCS 2005. Proceedings. 10th IEEE In-
ternational Conference on, pages 303–312. IEEE, 2005.

210

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[TBK09] T. Thum, D. Batory, and C. Kastner. Reasoning about edits to fea-
ture models. In Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on, pages 254–264. IEEE, 2009.

[TC09] Pablo Trinidad and Antonio Ruiz Cortés. Abductive reasoning and au-
tomated analysis of feature models: How are they connected?. VaMoS,
9:145–153, 2009.

[TCT+08] Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Wen-Chin Chan, and
Chi-Jian Luo. Goal extended: Towards a research tool for omega au-
tomata and temporal logic. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 346–350. Springer, 2008.

[Tro92] Anne Sjerp Troelstra. Lectures on Linear Logic. CSLI Leacture Notes
No 29, Center for the Study of Language and Information, Stanford
University, 1992.

[Tsa93] Edward Tsang. Foundations of constraint satisfaction, volume 289.
Academic press London, 1993.

[VDK02] Arie Van Deursen and Paul Klint. Domain-specific language design
requires feature descriptions. Journal of Computing and Information
Technology, 10(1):1–17, 2002.

[vGP95] Rob J. van Glabbeek and Gordon D. Plotkin. Configuration structures.
In LICS, pages 199–209, 1995.

[vN02] Gertjan van Noord. Fsa6. 2xx: Finite state automata utilities.
http://odur. let. rug. nl/vannoord/Fsa/fsa. html, accessed, 3(10):2003,
2002.

[Win82] Glynn Winskel. Event structure semantics for CCS and related lan-
guages. Springer, 1982.

[WK06] Manuel Wimmer and Gerhard Kramler. Bridging grammarware and
modelware. In Satellite Events at the MoDELS 2005 Conference, pages
159–168. Springer, 2006.

[WLS+05] Hai Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff Pan. A se-
mantic web approach to feature modeling and verification. In Workshop
on Semantic Web Enabled Software Engineering (SWESE’05), 2005.

211

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

[WSB+08] Jules White, Douglas C Schmidt, David Benavides, Pablo Trinidad,
and Antonio Ruiz-Cortés. Automated diagnosis of product-line config-
uration errors in feature models. In Software Product Line Conference,
2008. SPLC’08. 12th International, pages 225–234. IEEE, 2008.

[ZHD09] Lan Zhang, Ullrich Hustadt, and Clare Dixon. A refined resolution
calculus for ctl. In Automated Deduction–CADE-22, pages 245–260.
Springer, 2009.

212

List of Notations and

Abbreviations

A list of mathematical notations and abbreviations used throughout the thesis can

be found here. The page on which a notation is used for the first time is appended

to the entry.

+ Choice operation on regular expression (pp 20)

#2F Incomparable nodes in a tree with F as the nodes (pp 29)

#m(n) Multiplicity of an ingredient n in a multiset m (pp 73)

Ct Multiplicities associated with a tee-like multiset t (pp 80)

CU Overall multiplicities of a set of multisets of U (pp 88)

FPM Full products of M (pp 40)

AF Future modality (pp 46)

AG Global modality (pp 46)

Gt Groups associated with a tee-like multiset t (pp 79)

213

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

AX Next modality (pp 46)

PPM Partial products of M (pp 41)

P(M) Partial Product Line of an FM M (pp 43)

LPar The Parikh image of a language L (pp 24)

wPar The Parikh image of a word w (pp 24)

ΦI2C
BL (TOR) Boolean theory of I2C (pp 39)

ΦI2C
BL (P, f) Boolean Theory of fully instantiated P wrt. f (pp 42)

ΦBL(M) Boolean theory of partial products (pp 39)

ΦBL(EX) Boolean theory of exclusive constraints (pp 39)

ΦBL(T) Boolean theory of a tree (pp 39)

⊥ Logical false (pp 15)

∩ Intersection operation on sets (pp 21)

C The multiplicity set (pp 96)

D(F) The family of CFDs over F (pp 61)

D(F) The family of CFDs over F (pp 96)

f↓ Children of a node f in a tree (pp 29)

≤∗ An ordering relation on N∗ (pp 95)

cplev(RD) Leaves all of whose siblings are leaves in a CFD D (pp 98)

214

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

∪ Union operation on sets (pp 15)

D−f Cutting of a CFD D by a node f (pp 189)

depth(D) Depth of a CFD D (pp 97)

dom(m) Domain of a multiset m (pp 61)

dreCRE CRE-DR function (pp 105)

dreORE ORE-DR function (pp 114)

∃ Existence quantifier (pp 21)

F d↔ Nodes with depth d in a CFD (pp 172)

ppKS(F) Set of all ppCTL-formulas over F (pp 46)

K(F) Class of ppKSs over F (pp 45)

L(R) Language of a regular expression R (pp 20)

LD Language of a CFD D (pp 126)

LM Language of a CFM M (pp 126)

Lcc Language of a CCs cc (pp 126)

LCRE(M) CRE Language of a CFM M (pp 128)

LHRE(M) HRE Language of a CFM M (pp 128)

LORE(M) ORE Language of a CFM M (pp 128)

M(F) The class of all FMs over F (pp 30)

215

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

ΦML+(M) ΦML(M) \ ΦML⊆(M) (pp 48)

ΦML⊆(M) Soundness ML theory of M (pp 46)

ΦML(M) Completeness ML theory of M (pp 46)

∀ Universal quantifier (pp 46)

f↓↓ Grandchildren of a node f in a tree (pp 29)

Gdeg(C) Degree of depth of groups (pp 172)

Gdep(D) Set of depth of groups (pp 172)

gexCRE
RD Mapping of grouped leaves to regular expressions in a CFD D (pp 102)

gexORE
ORD Mapping of grouped leaves to ORE regular expressions in a CFD D (pp

111)

gleCRE CRE-EGL function (pp 103)

gleORE ORE-EGL function (pp 112)

f ↑↑ Grandparents of a node f in a tree (pp 29)

glev(D) Grouped leaves of a CFD D (pp 97)

D−k Induced CFD by depth k (pp 167)

ta Induced tree-like multiset by a in t (pp 77)

inf(R) Infimum of a total order R (pp 107)

≤ Usual ordering on natural numbers (pp 95)

216

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

lev(D) Set of leaves of a CFD D (pp 97)

lexRD Mapping of leaves to regular expressions in a CFD D (pp 100)

low(C) Lower bound of a multiplicity domain C (pp 96)

low(c) Lower bound of a multiplicity c (pp 96)

−→ Logical implication (pp 15)

−→∗ Reflexive transitive closure of transition relation −→ (pp 45)

−→+ Transitive closure of transition relation −→ (pp 44)

max
a∈A

(a) Maximum element of a set A (pp 172)

melCRE CRE-EML function (pp 101)

melORE ORE Multiplicity eliminator function (pp 109)

DUmerge family of minimal representative CFDs of U (pp 83)

T merge Merged tree of trees T (pp 84)

|= Logical satisfaction relation (pp 9)

H(A) Hierarchy of finite multisets over A (pp 71)

MultIng(m) Multiset ingredients of m (pp 73)

MS(A) Class of finite multisets over A (pp 70)

N The set of natural numbers (pp 20)

N∗ N ∪ {∗} (pp 95)

217

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

¬ Logical negation (pp 46)

#w(σ) The number of occurrences of σ in a word w (pp 24)

ORD(Σ) Class of osCRDs over Σ (pp 108)

OD(FD) Set of all osCFDs all of whose underlying CFDs are D (pp 108)

OD(F) Class of osCFDs over F (pp 108)

Perk≤(X) Per
(k,k)
≤ (X) (pp 111)

Perk(X) Per(k,k)(X) (pp 102)

Per
(l,u)
≤ (X) Concatenation permutations with length between l and u of X consid-

ering a total ordering on X (pp 111)

Per(l,u)(X) Concatenation permutations with length between l and u of X (pp 102)

pexCRE
RD Mapping of parents of leaves to CRE-Expressions (pp 105)

pexORE
ORD Mapping of parents of leaves to ORE regular expressions (pp 113)

Pflat(D) Flat semantics of a CFD D (pp 64)

Pflat(D, G) Grouped flat products of G in D (pp 65)

� Specialization relation on FMs (pp 53)

plev(RD) Non-leaf nodes all of whose children are leaves in a CFD D (pp 98)

a↑ Parent of a in a tee-like multiset (pp 77)

f ↑ Parent of a node f in a tree (pp 29)

218

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

P(D) Hierarchical semantics of a CFD D (pp 72)

P(D, G) Grouped hierarchical products of G in D (pp 72)

rank(m) Rank of a multiset m (pp 71)

RD(Σ) The class of all CRDs over the same alphabet Σ (pp 97)

RE(Σ) The class regular expressions built over Σ (pp 23)

R+ RR∗ for a regular expression R (pp 24)

RCRE(RD) CRE regular expression of a CFD D (pp 106)

RHRE(OD) HRE regular expression of an osCFD OD (pp 116)

RHRE(OD) HRE regular expression of an osCFD OD (pp 121)

RHRE(f) HRE node expression of a node f in an osCFD (pp 120)

RHRE(G) HRE group expression of a group G in an osCFD (pp 120)

m◦ Relaxed multiset of m (pp 85)

U◦ Set of relaxed multisets of U (pp 85)

m[x/y] Replacement of an element with another element in a multiset (pp 166)

f
∣∣
A

Restriction of a function f to a subdomain A (pp 67)

R
∣∣
A

restriction of R on A (pp 108)

RORE(ORD) ORE regular expression generated for an osCRD ORD (pp 115)

root(t) Root of a tree-like multiset t (pp 75)

219

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

vw A partial order on the domain of a word w (pp 24)

\ Setminus operation (pp 29)

Cset Set interpretation of a multiplicity domain C (pp 96)

shrCRE CRE-Shrinking function (pp 106)

shrORE ORE-shrinking function (pp 114)

Σ(L) The alphabet which L is built on (pp 187)

Σ(R) The alphabet which R is built on (pp 187)

' Refactoring relation on FMs (pp 53)

≤seq Subsequence relation on words (pp 24)

⊆ Sub-ppKS relation (pp 45)

⊆ Subset relation on sets (pp 21)

7→D Substitution of a leaf node with a CFD (pp 188)

7→E Substitution of a letter in a regular expression with another expres-

sion (pp 188)

7→L Substitution of a letter in a language with another language (pp 188)

7→P Substitution of an element in a flat product with another flat prod-

uct (pp 187)

sup(R) Supremum of a total order R (pp 107)

220

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

> Logical truth (pp 46)

T H(A) Hierarchy of tree-like multisets over A (pp 74)

T f
OR Induced subfeature tree by f (pp 41)

ODcfd Underlying CFD of an osCFD OD (pp 107)

ORDcrd Underlying CRD of an osCRD ORD (pp 108)

up(C) Upper bound of a multiplicity domain C (pp 96)

up(c) Upper bound of a multiplicity c (pp 96)

] Additive union operator on multisets (pp 17)

ε Empty string (pp 20)

∅ Empty regular expression (pp 20)

∨ Logical OR (pp 30)

∧ Logical conjunction (pp 15)

∗ Kleene star (pp 20)

F−r For a set F and r ∈ F (pp 29)

flatA Flattening function over A (pp 73)

P −→ P ′ Transition from P to P ′ (pp 43)

Tt Tree associated with a tree-like multiset t (pp 78)

Uw The domain of a word w (pp 24)

221

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

BL Boolean Propositional Logic (pp 25)

ppCTL partial product CTL (pp 46)

CRE CRDs to Regular Expressions (pp 93)

ppKS partial product Kripke Structure (pp 44)

HRE Hierarchical semantics to Regular Expressions (pp 93)

I2C Instantiate to Completion (pp 35)

ML Modal Logic (pp 46)

ORE osCFDs to Regular Expressions (pp 93)

CC Crosscutting Constraint (pp 15)

CFD Cardinality-based Feature Diagram (pp 16)

CFM Cardinality-based Feature Model (pp 17)

CRD Cardinality-based Regular expression Diagaram (pp 93)

FD basic Feature Diagram (pp 14)

FM basic Feature Model (pp 14)

FSA Finite State Automaton (pp 21)

osCFD Ordered siblings CFD (pp 93)

osCRD Ordered sibling CRD (pp 93)

PPL Partial Product Line (pp 30)

222

Ph.D. Thesis - Aliakbar Safilian McMaster - Computer Science

r.e. Recursively enumerable (pp 22)

223

