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ABSTRACT 

Solving the electronic Schrodinger equation for the molecular 
wavefunction is the central problem in theoretical chemistry. From these 
wavefunctions (possibly with relativistic corrections), one may completely 
characterise the chemical reactivity and physical properties of atoms, molecules, 
and materials. Unfortunately, there are very few systematic approaches for 
obtaining highly-accurate molecular wavefunctions. The approaches that do exist 
suffer from the so-called curse of dimensionality: their computational cost grows 
exponentially as the number of particles increases. Furthermore, even after 
obtaining an accurate wavefunction, partitioning the molecule into atoms is not 
straightforward. This is because the kinetic energy operator is a differential 
operator in spatial coordinates. This is a source of ambiguity in the definition of 
an atom-in-a-molecule and the associated atomic properties. Even after selecting 
an appropriate definition of an atom and obtaining the atoms from the 
wavefunction, the atom's intrinsic reactivity cannot be completely characterised 
without considering every possible reaction partner. This is because each set of 
two molecules produces a new wavefunction that is more complicated than the 
products of the wavefunctions of the separate molecules. 

This thesis presents methods for addressing the three challenges raised in 
the previous paragraph: computing atomic properties (e.g. chemical reactivity), 
partitioning molecules into atoms, and computing accurate molecular 
wavefunctions. The first challenge is addressed by developing a general-purpose 
reactivity indicator to quantify the reactivity of an atom within a molecule. This 
indicator quantifies the reactivity of any point of the molecule using only the 
electrostatic potential and Fukui potential at that point. The key idea is to include 
only a vague description of an incoming molecule and compute an approximate 
interaction with the incoming object; this ensures that the general-purpose 
reactivity indicator is simple enough to be useful. Practically, this indicator is 
most useful when it is used to compute the reactivity of the atomic sites in the 
molecule of interest. 

Partitioning a molecule into atoms is not straightforward because of the 
inherent nonlocality of quantum mechanics. In the context of molecular 
electronic structure, this nonlocality arises from the nature of the kinetic energy 
operator. The quantum theory of atoms in molecules (QTAIM) is a popular 
method that partitions molecules into atoms. QT AIM resolves the problem of 
ambiguity for all permissible forms of the kinetic energy operator. In this thesis 
the characterisation of an atom provided by QT AIM is extended to include 
relativistic contributions in the zero-order regular approximation (ZORA). The 
intrinsic ambiguity arising from the kinetic energy operator is also examined in 
detail. 
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Computing atomic or molecular properties (including computing the 
general-purpose reactivity indicator) almost always requires a wavefunction. For 
this reason, obtaining accurate wavefunctions is the central hurdle of quantum 
chemistry. This thesis proposes algorithms for finding high-accuracy molecular 
wavefunctions without exponentially exploding computational cost. To do this, 
tools for exploiting the smoothness of electronic wavefunctions are crafted. 
Computational methods that use these tools can break the curse of exponential 
scaling without sacrificing accuracy. Specifically, the computation cost of these 
new methods grows only as some polynomial of the electron number. The 
wavefunctions obtained from these methods are much simpler than those from 
conventional approaches of similar accuracy, and are therefore ideal for 
computing the electron density and atomic properties. 
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PREFACE 

This thesis contains some of the papers that emerged from the topics I 
investigated during my time at McMaster. Given the nature of modem science, 
few projects are completed individually. In this section my specific contributions 
to each chapter of this thesis is explained. The reader will notice that though my 
interests are broad, (and there are a half-dozen papers that did not seem to fit in 
this thesis) the underlying theme of my research is "using mathematics to explain 
chemical phenomena." Indeed, when I began graduate school I was of the very 
rigid opinion that mathematics was the only way to explain chemistry. I have 
softened this opinion considerably and have come to see the value of physical and 
chemical intuition. Still, I think that mathematics is interesting, enjoyable and can 
provide much insight for explaining and predicting chemistry. Furthermore, even 
at this point in the history of chemistry, I feel that the usefulness of mathematics 
within chemistry has not been completely exploited, and I look forward to seeing 
and contributing to the further development of mathematical chemistry. 

My thesis consists of an introduction, eight journal articles, and 
conclusions. The introduction, Chapter I, provides background details so that the 
thesis is self-contained. Chapters II-IX of this thesis include reprints of articles 
that are published or in preparation for submission for publication. The first 
section in each of these chapters is an additional statement of the problem, placing 
the journal article in the broader context of this thesis. Chapter X provides 
conclusions and suggests some future directions for research. 

Chapter II is a reprint of the article "Perturbative perspectives on the 
chemical reaction prediction problem", published in International Journal of 
Quantum Chemistry. (P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti Int. J. 
Quantum Chem. 2005, JOI, 520-534.) I am the second author of this article and 
provided computational assistance. The section on leaving groups is primarily my 
work. My coauthors are Paul W. Ayers and Libero J. Bartolotti. Paul Ayers 
wrote the first draft of this review article, I revised this to form the second draft, 
then he and I exchanged drafts until we were both satisfied. 

Chapter III is a reprint of the article "Conceptual density-functional theory 
for general chemical reactions, including those that are neither charge- nor 
frontier-orbital-controlled. 1. Theory and derivation of a general-purpose 
reactivity indicator", published in Journal of Chemical Theory and Computation. 
(J. S. M. Anderson, J. Melin, P. W. Ayers J. Chem. Th. Comp. 2007, 3, 358-374.) 
I identified the research problem that is addressed in this paper, had the key 
insight that lead to the general-purpose reactivity indicator, and wrote the first 
draft. My preceptor, Paul Ayers, provided mathematical details and historical 
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perspective. I am the first author of this article. My coauthors are Junia Melin 
and Paul W. Ayers. 

Chapter IV is a reprint of the article "Conceptual density-functional theory 
for general chemical reactions, including those that are neither charge- nor 
frontier-orbital-controlled. 2. Application to molecules where frontier molecular 
orbital theory fails", published in Journal of Chemical Theory and Computation. 
(J. S. M. Anderson, J. Melin, P. W. Ayers J. Chem. Th. Comp. 2007, 3, 375-389.) 
I performed all of the computations in this paper, did most of the data analysis, 
and wrote the initial draft. I am the first author of this paper. My coauthors are 
Junia Melin and Paul W. Ayers. 

Chapter V is a reprint of the article "Predicting the reactivity of 
ambidentate nucleophiles and electrophiles using a single, general-purpose, 
reactivity indicator", published in Physical Chemistry Chemical Physics. (J. S. 
M. Anderson, P. W. Ayers Phys. Chem. Chem. Phys. 2007, 9, 2371-2378.) I 
selected the molecules to be studied, performed the calculations, analyzed the 
data, and wrote the first draft. I am the first author of this paper. My coauthor is 
Paul W. Ayers. 

Chapter VI is a reprint of the article "Quantum Theory of Atoms in 
Molecules, SR-ZORA treatment", in preparation to be submitted for publication 
in a special issue of Journal of Chemical Physics. I started this project, entirely 
independently, as part of a graduate course I was taking. I performed the 
mathematical derivations in this paper and wrote the first draft. I am the first 
author of this article. My coauthor is Paul W. Ayers. 

Chapter VII is a reprint of the article "How ambiguous is the local kinetic 
energy?'', published in Journal ofPhysical Chemistry A. (J. S. M. Anderson, P. 
W. Ayers, J. I. Rodriguez Hernandez J. Phys. Chem. A 2010, 114, 8884-8895.) 
This project grew out of my comprehensive examination, so all of the key results 
were derived by me, entirely independently. I wrote the initial draft. My 
coauthors are Paul W. Ayers, and Juan I. Rodriguez-Hernandez. 

Chapter VIII is a reprint of the article "Breaking the curse of dimension 
for the electronic Schrodinger equation with functional analysis", in preparation to 
be submitted for publication in The Journal of Chemical Physics. This article 
emerged from a set of research notes that I prepared for Hiroshi Nakatsuji on 
sparse grids and information-based complexity. I am the first author of this article. 
My coauthor is Paul W. Ayers. 

Chapter IX is a reprint of the article "Approaching the theoretical limits of 
computational efficiency with the local Schrodinger equation", in preparation to 

xvii 



I 

be submitted for publication in The Journal of Chemical Physics. This article 
emerged from the aforementioned set of research notes written for Hiroshi 
Nakatsuji. I prepared the numerical integration grids and directed this project. 
am the first author of this article. My coauthors include Paul W. Ayers, Hiroyuki 
Nakashima, and Hiroshi Nakatsuji. 

The author of this thesis did the majority of the work in these articles 
notwithstanding the inclusion of coauthors. The author performed all 
computations, provided key insight, and performed most of the derivations. With 
the exception of chapter II, I wrote the first draft of all of the included papers. 
Chapters II-IX were principally guided by Paul W. Ayers. 
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I.I. Introduction 

When one thinks of chemistry, the first thing that springs to mind is 
mixing chemicals in beakers. One rarely thinks of mathematics. In fact, one 
might think that mathematics in chemistry is anathema. This belief stubbornly 
persists, even among some chemists. However, with the advent of quantitative 
thermodynamics in the 1870' s and dawn of quantum mechanics in the 1920's, the 
mathematical equations for describing chemistry emerged. By solving these 
equations one can predict chemical phenomena to, and even beyond, experimental 
accuracy! 

Sound too good to be true? In many ways it is. First, solving the 
equations provides numbers, not chemical intuition. Merely manipulating the 
equations is applied mathematics; it need not lead to chemical insight. In addition, 
the equations can only be solved exactly for the simplest systems. As Dirac put 
it: I 

"The underlying physical laws necessary for the mathematical 
theory of a large part of physics and the whole of chemistry are 
thus completely known, and the difficulty is only that the exact 
application of these laws leads to equations much too complicated 
to be soluble." 

The very first part of this statement encourages mathematical approaches to 
chemistry: all the mathematical tools needed for chemistry are available. 
Specifically, the framework for computing molecular properties is provided by 
quantum mechanics. However, Dirac concludes by stating that the framework is 
practically useless. This seems discouraging, but Dirac follows this statement 
with: 

" It therefore becomes desirable that approximate practical methods 
of applying quantum mechanics should be developed, which can 
lead to an explanation of the main features of complex atomic 
systems without too much computation." 

This is the goal of this thesis. 

Although people usually quote only Dirac's first sentence, it is the 
redemptive second sentence that has guided the research of a large part of the 
theoretical physics and the whole of the theoretical chemistry. Theoretical 
chemists use quantum mechanics by solving the electronic Schrodinger equation 
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in an approximate way, obtaining an approximate wavefunction. Using this 
wavefunction, molecular properties are described, and the mathematical 
underpinnings of qualitative chemical concepts are revealed. 

I.II. Postulates of Quantum Mechanics 

The following postulates provide the mathematical framework of quantum 
mechanics.2

'
3 For the purposes of chemistry, they provide the prescription for 

computing the properties of molecules, molecular aggregates, and materials. 

Postulate 1. The state of a quantum mechanical system is 
completely specified by its wavefunction, 
'I' ( ~, sP Fz, s2,... ,rN, sN, t) . The wavefunction depends on the 

coordinates of the particle(s), their spin, and the 
time. 'I'*(~ ,Sp Fz ,S2 , ••• , YN,SN•t) 'I'(~ ,Sp Fz ,S2 , ••• ,rN,SN• t )dfdt is 

the probability that, in the time interval dt, the particle(s) are in the 
volume element df located at ~, s1, Fz, s2 , ••• , rN, s N at time t. Since 

probability distribution functions are normalised, the wavefunction 
is normalised according to

f'1'* (~,SI, Fz,s2, ... , YN, S N't) 'I'(~ ,SI, Fz,s2,... ,YN ,S N't )df =1. (1) 

Postulate 2. To every observable from classical mechanics there 
corresponds a linear, Hermitian, operator in quantum mechanics. 
Because the operator is Hermitian, computing the observable 
always gives a real number. 

Postulate 3. When measuring the observable associated with the 

Hermitian operator A, the only values that will ever be observed 
in a precise observation are the eigenvalues a of the operator. 
The eigenvalues satisfy the equation 

A'I' =a'I' (2) 

The third postulate of quantum mechanics reveals the possible results of 
experimental measurements. Because most Hermitian operators have an infinite 
number of distinct eigenvalues, most experiments have an infinite number of 
possible outcomes. Finding all these outcomes is impossible. Fortunately one 
usually only wants to know the average value of the property. 

3 
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Postulate 4. If a system is in a state described by a normalised 
wavefunction '¥ , then the expected value of the observable 

corresponding to the operator Q is given by 

Q=L ff ··f'¥* (Fi , sl' ~ , s2 , . . . ,rN,sN )Q'I'(Fi , si' ~ ,s2 , ... ,rN,sN)mi · ·· arN (3) 
S; 

The fourth postulate of quantum mechanics tells how to use Hermitian operators 
to compute the average (mean) values of molecular properties. 

Postulate 5. The wavefunction of a system evolves m time 
according to the time-dependent Schrodinger equation4 

A \TJ (- - - ) •r.. a \T/ (- - - )H r 1J ,S1,r2,s2, ... , rN, sN, t = ln- r 1J ,Sl' r2,s2, ... ,rN,sN,t (4)at 

The Schrodinger equation is the equation that must be solved to determine the 
wavefunction. Once the wavefunction is known, the previous postulates provide a 
way to model chemical phenomena. 

Postulate 6. The total wavefunction must be antisymmetric with 
respect to the interchange of all coordinates (space and spin) of one 
fermion with those of another. Electronic spin must be included in 
this set of coordinates. 

Quantum chemistry is mainly concerned with the interactions between electrons 
with each other and with atomic nuclei. One of the simplest ways to ensure that 
postulate 6 is satisfied is to use a Slater determinant (described later) to 
approximate the wavefunction. 5 

I.III. The Schrodinger Equation 

The Schrodinger equation is the fundamental equation of quantum 
mechanics. It is usually expressed as 

HA\TJ( - - - ) •r.. a \TJ( - - - )
T 1J ,Sl' r2, s2, ... , rN,sN,t =ln- T 1J ,Sl' r2,s2, ... ,rN, SN,t . (5)

at 
where H is the quantum mechanical Hamiltonian operator, i =~ , tz is 
Planck' s constant divided by 2;r , and tis the time. 'I'(Fi,s,, ~ ,s2 ,. .. ,rN, sN,t) is 
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the N-particle wavefunction, the solution to the Schrodinger equation. The 
position and spin ofthe/h particle are denoted~ and sj, respectively. 

If the Hamiltonian does not depend on time then Schrodinger equation 
simplifies to 

H'I' (Fi ,sl ,i~,s2 ,... , rN,sN) =E'I' (Fi ,Sp Yi,s2, ... ,rN,sN) (6) 

where E is the energy. The energy is an eigenvalue of the Hamiltonian. The first 
postulate of quantum mechanics indicates that the solutions to this equation 
provide all of the information required to completely describe the microscopic 

system specified by the choice of fl. Equation (6) is called the time-independent 
Schrodinger equation. 

In chemistry, one is primarily interested in obtaining information about 
atoms and molecules. The general molecular Hamiltonian for N electrons and P 
nuclei, in atomic units, is 

} N } P V2 N P Z N-1 N } P-1 P Z Z
H=--Iv:--I-a+II_- '.: +I I-=-=-+ I I a p (7) 

2 i=l 2 a=I Ma i=I a=I l'i -Ra I i=l j=l+i Ir; - rj I a=] P=a+I IRa - Rp I 
where { v;}: is the Laplacian acting on the electronic coordinates, { V!} := is the 

1 1 

Laplacian acting on the nuclear coordinates, Ma and Za are the mass and atomic 

number (charge) of the ath nucleus, {Ra} :=I are the nuclear coordinates, 

specifying the positions of the atomic nuclei, and { F;}: are the electronic 
1 

coordinates, specifying the positions of the electrons. The first term in Eq. (7) is 
the kinetic energy for the N electrons in the molecule; the second term is the 
kinetic energy for the P nuclei in the molecule. The third term is the potential 
energy operator for the nuclear-electron attraction; the fourth term is the potential 
energy operator for the electron-electron repulsion; the last term is the potential 
energy operator for the nuclear-nuclear repulsion. 

The full molecular Hamiltonian in Eq. (7) is seldom used. Atomic nuclei 
are much more massive than electrons. (The lightest nucleus, the nucleus of the 
hydrogen atom, is already 1832 times more massive than an electron.) Because 
the nuclei are much more massive that the electrons, they move much more 
slowly. Hence, neglecting the motion of the nuclei should not affect our ability to 
model the motion of the electrons. To this end, Born and Oppenheimer proposed 
neglecting the coupling between electronic and nuclear motion. Within the Bom­
Oppenheimer approximation, the molecular Hamiltonian becomes 

5 
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1 N N P Z N-1 N 1 P- 1 P Z Z 
H=--L:V7+LL -- '.: +L:L:~+LL _ a ~. (8) 

2 i =I i = I a = I h-R a I i =I j =l+i Ir; - r j I a = I P=a+I !Ra - R p I 
This is known as the electronic Hamiltonian. The corresponding Schrodinger 
equation is referred to as the electronic Schrodinger equation. The nuclear­
nuclear repulsion term in the electronic Hamiltonian is constant for a given 
molecular geometry and is often omitted. 

The solutions to the electronic Schrodinger equation are the electronic 
wavefunctions. They provide key information about thermochemistry, molecular 
properties, spectroscopy, as well as every other chemically relevant observable. 
Because this thesis is primarily concerned with the electronic Hamiltonian and the 
electronic Schrodinger equation in this thesis, the word "electronic" will be 
omitted whenever the context is clear. 

I.IV. 	 Approximate Wavefunctions and the 
Variational Principle 

As mentioned previously, Dirac indicated that making quantum mechanics 
useful for chemistry requires approximations. Approximating the molecular 
Hamiltonian as the electronic Hamiltonian results in a second-order partial 
differential equation that still depends on 3N spatial and N spin variables. 
Making a practical theory requires either making further simplifications to the 
Hamiltonian (giving rise to semi empirical quantum mechanics methods )6 or 
approximating the wavefunction. 

From mathematics it is known that any well-behaved function can be 
expanded in a complete basis,7

•
8 that is 

i = I 

(9) 


where (/J; is a basis function and c; is the projection of the wavefunction, 'I', onto 

this basis function. The basis functions are assumed to be orthogonal. There are 
many reasons to represent a wavefunction as a basis set expansion. For example, 
one representation is sometimes more convenient for illustrating formal properties. 
In addition, while the analytic form of 'I' is typically unknown, one can write an 
explicit formula for (/J; . Finally, one can use an incomplete set of (/J; to 

approximate the wavefunction. In other words, one can approximate the 
wavefunction as 

6 
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i=) 

(10) 


If the (/J; 's form a complete basis (K ~ oo ), then the wavefunction is recovered 

exactly. Otherwise the wavefunction is recovered only approximately (excluding 
some trivial exceptions). 

The most common method for approximating the wavefunction with a 
basis set is the variational principle. Recall that the ground-state energy is the 
lowest eigenvalue of the Schrodinger equation, 

lJ'J' gs =Egs'¥gs· (11) 

'¥gs is the ground state wavefunction of the Hamiltonian fI . The variational 

principle indicates that approximate wavefunctions always have higher energy 
than the exact ground state wavefunction, 

(±C;(/J; IiII±C;(/J;) ('¥ IiI I'¥ )
i=l 1=1 ~ £ = gs gs (12)(t C;(/J; ItC;(/J;) gs ('¥gs I'¥gs J 

The equality holds if '¥gs lies within the space spanned by the basis set, { (/J;}: 1; 
otherwise the inequality holds. Generally, the equality only holds only if the basis 
is complete ( K ~ oo ). The variational principle indicates that given two 
approximate wavefunctions, the one with the lower energy is more accurate. This 
motivates the Rayleigh-Ritz method: the best ground state energy for a given set 
of (/J; 's is obtained by minimizing the left-hand-side of (12) with respect to the 

coefficients. At the minimum, one has an approximation to the ground-state 
wavefunction as a linear combination of the (/J; 's. 

Postulate 6 indicates that the wavefunction must be antisymmetric with 
respect to exchange between pairs of electronic coordinates. This suggests that 
one should choose the (/J; 's as Slater determinants of one-electron wavefunctions, 

¢k(r),s 

1 
(13)(/);=JN! rA (~)a(l) rA (~)fi(l) ¢N12(~)fi(l) 

rA (Yi)a(2) rA (Yi)fi(2) ¢N12 (Yi )fi(2) 

r/Ji(rN)a(N) r/Ji(rN)fi(N) ¢N12(rN)fi(N) 
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The one-electron wavefunctions, <A (r) , are called orbitals; they are normalised 

and orthogonal to each other. a(j) and fJ(i) denote the two choices (up-spin 

and down-spin) for the spin of electron}. The prefactor ensures the wavefunction 
is normalised. Because a determinant of a matrix changes sign when two rows are 
interchanged and is zero when two rows are the same, the Slater determinant 
wavefunction is antisymmetric with respect to interchange of electrons and is zero 
when two electrons with the same spin are at the same location. This implies the 
Pauli exclusion principle: the probability of observing two electrons with the same 
spin and the same location is zero. Applying the Rayleigh-Ritz method to a single 
Slater determinant (K = 1 in Eq. (12)), then minimizing the energy with respect to 
the form of the orbitals, defines the Hartree-Fock method. 

I.V. Hartree-Fock Method 

Hartree-Fock theory is one of the most fundamental methods in quantum 
chemistry. It is an approximate wavefunction method based on utilising the 
variational principle to find the lowest-energy Slater determinant. The Hartree­
Fock method is a mean-field method because each electron feels an average 
potential from the remaining electrons. Because the electrons only feel the 
average potential of the other electrons, the electrons move quasi-independently, 
each with its own individual wavefunction. The concept of orbitals emerges from 
this model because in this model electrons dwell within independent 
wavefunctions. 

The Hartree-Fock equations are derived by applying the Rayleigh-Ritz 
method to a single Slater determinant. This gives a set of N/2 coupled integro­
differential equations, 

2-~v' - f _ '- j + j(r) +k(F)\ip) = ei¢J(F); j =I, ... , N I 2 (14)[ 2 A=I r-RA j
1 

where J(r) is the Coulomb operator defined as 

)(r)¢1 (r)=2(~ f¢;* (l!~~'f)ar'J¢1 (r) (15) 
'"'J r r 

and k (r) is the exchange operator defined as 

N / 2 d.*(- ')d. (- ')ar'J
K(r)¢/r) = 

( 
~ f"; r l _r~ : I r ¢;(r). (16) 
'"'J r r 
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Solving the Hartree-Fock equations exactly would give the exact Hartree-Fock 
orbitals, </J/Y), and their corresponding orbital energies ej. If the Hartree-Fock 

wavefunction were the exact solution to the Schrodinger equation, then the orbital 
energies would be exactly equal to the molecule's electron-removal energies 
(ionization potentials) and electron-attachment energies (electron affinities). Even 
though the Hartree-Fock wavefunction is only approximate, the first N/2 orbital 
energies are useful approximations to the ionization potentials. 

The Hartree-Fock equations are coupled by j(r) and K(r), which model 

the average electron repulsion that an electron in orbital </Jj ( r) feels from the 

other electrons. Because determining j(r) and K(r) requires knowledge of the 

orbitals, but Eq. (14) can only be solved for the orbitals when j(r) and K(r) are 
known, these equations must be solved self-consistently. That is, starting from an 

initial guess for the Hartree-Fock orbitals, </J/Y), the potentials j(r) and K(r) 

are computed. Then Eqs. (14) are solved, generating a new set of orbitals. If 
these new orbitals are close enough to the input orbitals, then the equations are 
considered solved. Otherwise, new orbitals are guessed. Typically, these orbitals 
are guessed from some combination of previously guessed orbitals and the output 
orbitals. (The simplest guess is to take the previous output orbitals, but this may 

not always converge.) The new guess orbitals are used to compute j(r) and 

K(r) and Eqs. (14) are solved again. This process repeats until the orbitals that 

were used to construct j(r) and K(r) are close enough to the orbitals obtained 
from solving Eqs. (14). At that point the orbitals in the Hartree-Fock equations are 
"self-consistent" and the equations are considered solved. 

Hartree-Fock is generally easily solved within a basis set ( O(N4 
) 

computational scaling),9 and typically provides reliable results for equilibrium 
positions of atomic nuclei and, with appropriate scaling corrections, vibrational 
spectra. 10

•
12 Unfortunately, Hartree-Fock is not generally reliable for describing 

chemical processes in which chemical bonds are broken or formed. However, 
because of error cancellation, Hartree-Fock is often accurate for isodesmic 
reactions, where the number and type of chemical bonds present before and after a 
chemical reaction are the same. 

The difference between the true ground state energy Egs and the Hartree­

F ock energy, EHF, defines the correlation energy, 

(17) 
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Despite this correlation error, the Hartree-Fock method is still very instructive. 
Much of the current understanding of chemistry is based on the "molecular orbital 
theory" built from the Hartree-Fock orbitals. 13 

Correcting the electron correlation error remedies the inherent errors in the 
Hartree-Fock approach and allows chemical phenomena to be accurately 
predicted. The most straightforward approach is to apply the variational principle 
to a linear combination of the Hartree-Fock wavefunctions. (I.e., the (/); in Eq. 

(10) come from the ground state Hartree-Fock Slater determinant and its excited 
states). This approach is known as configuration interaction. Other approaches 
include using perturbation theory, cumulants, and a combination of these two 
starting from a Hartree-Fock ansatz. These methods have computational scalings 
ranging from O(N5

) to O(N !) ; they are referred to as post-Hartree-Fock 
14 15 methods. 11

' ' The fastest post-Hartree Fock method is only applicable to 
molecules with up to about 100 atoms. 

I.VI. Configuration Interaction Method 

Consider a wavefunction that is a linear combination of the Hartree-Fock 
ground state wavefunction and various excited-state Hartree-Fock wavefunctions. 
Minimizing the expansion coefficients of this wavefunction, as prescribed by the 
Rayleigh-Ritz principle, defines the configuration interaction method. If the basis 
set includes the ground state Slater determinant and all of its singly-excited 
electron configurations, the method is referred to as configuration interaction 
singles (CIS). If the basis set includes the ground state and all of its doubly­
excited configurations, the method is referred to as configuration interaction 
doubles (CID). Obviously one can combine these two approaches, including both 
singly- and doubly-excited electron configurations to obtain configuration 
interaction singles and doubles (CISD). Most generally, the configuration 
interaction method has the expansion 

N K N K 

'I'::::: Co<l>o +L L C:<D~ + L L c;b<l> ~b 
No~ons ~ i>j=la>b=N+I 

Hartree-Fock s· I E ·tat" (S)Ground State mg e xc1 ions Double Excitations (D) (18)
N K N K 
~ ~ abc rt-. abc ~ ~ abcd rt-. abcd + ~ ~ ciJk -w iJk + ~ ~ c iJkl -w iJkl + ... 

i> j>k =I a>b>c=N+I i> j>k>i=I a>b>c>d=N+ I 

Triple Excitations (T) Quadruple Excitations (Q) 

where the <I> 's are the solutions to the Hartree-Fock equations. <l>0 is the ground 

state Hartee-Fock wavefunction. <I> ~ is the singly excited Hartee-Fock 

wavefunction obtained by exciting an electron from the /h occupied spin-orbital to 
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the dh unoccupied spin-orbital of the ground-state Hartree-Fock wavefunction, 
<1>0 • <l>~b is the doubly-excited Hartee-Fock wavefunction obtained by exciting 

.c h -th d -th . d . b" 1 h th d bth . de ectrons 1rom t 1 e 1 an J occup1e spm-or ita s to t e a an unoccup1e 
spin-orbitals. Configuration interaction singles and doubles (CISD) stops at this 
point, and does not include terms from the second line of Eq. (18). Including 
further terms gives better results, but the computational scaling for including up to 
m1

h excitations is O(N2
(m+

1>), so highly-excited CI calculations are rare. 

Because the energy is invariant under unitary transformations of the 
Hartree-Fock orbitals, CIS provides no correction to the Hartree-Fock ground 
state energy in a complete orbital basis set. Even in practical incomplete basis set 
calculations, CIS provides only a very small correction. By contrast, the doubly 
excited determinants almost always account for more than half of the correlation 
energy, and provide the largest correction of all the terms in Eq. (18). 

If Eq. (18) is not truncated, and all possible excited-state Slater 
determinants are included, the exact solution, for a given orbital basis set, is 
obtained. This is known as full configuration interaction (FCI). This is both the 
most accurate and most computational costly method for a given orbital basis. 
The computational scaling of FCI is O(N!), so it is rarely used except for 
benchmarking other methods. FCI is only reliable for larger basis sets and it is 
limited to molecules with 10 or fewer electrons. Often CISD with a large orbital 
basis set can produce more accurate energies, more quickly, than FCI with a small 
orbital basis set. 

I.VII. 	 Computational Complexity of the 
Schrodinger Equation 

The computational cost of solving the Schrodinger equation can be studied 
using the language and mathematical formalism of information-based complexity 

18theory. 16
- In complexity theory, the computational cost is equal to the number of 

floating-point operations (additions and multiplications) that are required obtain a 
given accuracy, E. The prohibitive O(N!) scaling ofFCI is expressed as 

costFCI - &-N (19) 

This means that if one wishes to double the accuracy of our calculation ( & ---+ t & 

in Eq. (19)), then the cost of the calculation increases exponentially with 
increasing numbers of electrons, ( cost---+ cost· 2N ). Computational methods 
whose cost rises exponentially with increasing problem size are said to suffer 
from the curse of dimension. Such methods are called intractable. A 
computational method is tractable if its cost does not grow exponentially with 

11 
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electron number. (I.e., cost tracrabic - f (N) & -x , where x does not depend on the 

number of electrons.) A method is strongly tractable if its cost is independent of 
the number of electrons. 

The notation cost ( & ) - f (& ) indicates that the computational cost is 

proportional to f (& ) in the high-accuracy ( & ~ 0 ) limit. There are usually 

higher-order terms in Eq. (19) and computational prefactors; these subtleties can 
have practical significance for small calculations at the relatively low level of 
accuracy that is often required in chemical applications. One could include these 
factors, and replace Eq. (19) with 

N 

costFcI =L:a1& -J , (20) 
j =O 

but the resulting expression is too complicated to be very useful. 

Information-based complexity theory provides a useful mathematical 
framework for comparing the cost of existing numerical algorithms and 
developing new ones. It is used to develop new computational methods for 
solving the Schrodinger equation in chapters VIII and IX of this thesis. 

Chapters VIII and IX of this thesis address the fundamental question: Is 
there a way to recover the accuracy of FCI with a computational method that is 
more efficient? In particular, can we formulate a strongly tractable method for 
solving the Schrodinger equation? 

For general Hamiltonians, one can show that FCI is the most efficient 
possible method. However, the molecular electronic structure problem is special, 
because the potential-energy operator is smooth except for simple poles when two 
particles (either an electron and an atomic nucleus or two electrons) are at the 
same position. The mathematically "nice" nature of the Hamiltonian reveals itself 
in the mathematical "niceness" of the electronic wavefunctions for molecules. 19

-
21 

In particular, molecular wavefunctions have bounded mixed derivatives.22 That is, 
there exists a number, t > 0, for which 

t\ ' ) 1\.' ) / ~I ) t\ 2) /i 2) / ~2) t\N) 1~N) l~N) ( 
0 008 8 8 - 8 8 8 - · ··8 8 · 8 - 'I' X p YpZpSpX2,y2 , Z2 ,Sp · · · •XN ,yN ,zN ,SN 

) 

(21) 
1(1) ,(I) ,I') ,!') / (2 ) ,!') ,IN) ,I N) (N) < OO1axl x 0'1)' azl ' ax2 ' 0'2 )' az2 ' ... ax ' cy )' az ' 

1as long as all of the indices, { t~J),1; ), t~J ) } ~= ' , are less than or equal to t. This is a 

much stronger result that merely requiring that the lh derivatives of 'P exist 
because it requires that certain very-high-order derivatives exist. For example, the 
t3N-th derivative 
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'¥ (X1,Y1 ,Z1,s,; X2,Y2, Zz,S1 ;. · · ;xN,yN,z N ,SN)

1--------'--------------1< 00 (22)
8x 1.?t.· 18z t ···8x1

vy.?t..'8z1 
I vyl I 

exists. In fact, Eq. (21) requires that ( t +1)3N derivatives exist. Because the 

electronic wavefunctions are "exponentially differentiable," information-based 
complexity tells us that there exist methods for solving the molecular Schrodinger 
equation that do not have exponential cost. In particular, for a wavefunction with 
t bounded mixed derivatives, 

cost - &-y,. 	 (23) 
Strongly tractable methods for solving the electronic Schrodinger equation exist. 
It is important to emphasize that this result is specific to molecular Hamiltonians: 
for general Hamiltonians FCI is, in some sense, optimal. 

Equation (23) says that efficient computational methods for solving the 
molecular Schrodinger equation exist. It does not provide insight into how to 
construct such methods. Chapters VIII and IX propose two approaches. 

The first approach, in Chapter VIII, is based on truncation of the 
configuration-interaction expansion in Eq. (18). In particular, the method 
proposed there breaks through the O(N!) computational scaling of the FCI method. 
The new method has a complicated computational scaling, but one can show that 
the scaling is bound by a polynomial, O(N").23

•
24 Despite its much more 

favourable computational scaling, the proposed method is, theoretically, just as 
accurate as FCI. Even more surprisingly, it seems that in many cases the 
proposed method may be even more computationally efficient than popular 
approximations to FCI methods like coupled-cluster singles and doubles (CCSD) 
and coupled-cluster singles, doubles, and triples (CCSDT). 

I.VIII. 	 Sparse Grids for the Electronic 
Schrodinger Equation 

To this point, every approach we have mentioned for approximating the 
wavefunction has been based on expanding the wavefunction in one (Hartree­
F ock) or more (configuration interaction) Slater determinants. It is difficult to 
break the curse of dimension and achieve the optimal computational cost in Eq. 
(23) with such methods. In Chapter IX, we explore whether computational 
methods that are not based on Slater determinants might be preferable. 

Much of the mathematical development of information-based complexity 
theory has been focussed on the problem of many-dimensional numerical 
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integration. By contrast, the problem that is directly relevant for solving the 
Schrodinger equation-solving many-dimensional partial differential equations­
has been much less studied.25

-
30 This motivated us to explore whether we could 

develop an algorithm for solving the many-electron Schrodinger equation that 
requires only numerical integration. 

The problem of developing efficient numerical integration techniques for 
electronic structure problems was something I worked on a great deal during the 
early part of my graduate studies. 31

'
32 The resulting papers are not included in this 

thesis, so I will summarise the main results here. 

Our approach for many-electron integrals is based on the Smolyak 
approach to multi-dimensional quadrature.33 The basic idea is to construct 
multidimensional quadratures from Cartesian products of one-dimensional 
quadrature grids. 

Suppose that one is given a sequence of nested one-dimensional 
quadrature grids for the unit interval, 

n(q) 

£J(x)dx~ :Lw}q) f(x fq) ) q=l,2,. . .. (24) 
i= l 

The number q is called the effort of the grid; the number of points, n(q), in the 
quadrature formula is a nondecreasing function of the effort. The points (or 

nodes) in the quadrature formula are denoted { x}q) r~~) . The integration weights 

are denoted { w}q) r~~). The basic form in Eq. (24) can be applied to any linear 

operator on fix) (not just integration) by using the appropriate weights. 
The most computationally efficient method for numerical integration m one 
dimension is Gaussian quadrature, which has computational cost 

cost - f;-x (25) 
for functions with bounded /h derivatives. In higher dimensions, Gaussian 
quadrature formulas need not exist and, in general, the computational scaling of 
methods for finding optimal quadrature formulae grows as the factorial of the 
number of dimensions.34 For functions with t bounded mixed derivatives, 
however, there exist multidimensional integration methods with the same 
asymptotic computational cost as one-dimensional integration, Eq. (25).35 

-
39 

Although the optimal d-dimensional numerical integration formulae are 
not known, and arguably not knowable, there are practical methods for numerical 

26 33 40 41integration that achieve the computational cost scaling in Eq. (25).23
• • • • 

These methods are less efficient than multidimensional Gaussian quadrature, but 
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the difference is only in the computational prefactor. In general, these numerical 
integration methods contain several times more points than the optimal quadrature 
formula. Even so, these practical methods are efficient enough to break the curse 
of dimension. 

To construct many-electron quadrature methods, we first construct the 
one-dimensional difference grids, 

n(q) n(q-1) n(q) 
8(q)f(x)= Iw~q)f(x~q))- L w~q-l)f(x~q-I))= IvJ(x~q)). (26) 

i=I i=I i=I 

The q = 0 grid has zero points. We then construct multidimension grids as a 
direct (i.e., Cartesian) product of lower-dimensional grids. For example, for two 
dimensions, 

n(q,) n(q,) 
8~q,)®8~q,)f(x,y)= ~ ~ v;(q,)v)q')f(x~q,),y)q,)). (27) 

In the general d-dimensional case 
d 

1®8~q;) f (xpx2 , •• • ,xd) =8~q ) ®8~q,) ®···®8~qd)f (xpx
2 

, ••• ,xd) 
1=1 I J 2 d 

n(qi) n(q,) n(qd) ( d )=" " ... " Tiv(q,) f(x(q1) x(q,) ... x(qN))
L...J L...J L...J 1k 11 ' 12 ' ' 1N 
i1=I i2 =I id =I k=I 

The efficient multidimensional grids that fulfill the optimal asymptotic cost 
condition, Eq. (25), all have the general form 

d

L ®8~q;)f(xpx2 , ••• ,xd) (29)
1=1 I 

{iJIT(iJ,d),;;Q} 

The sum includes all q= [ qp q2' ... qd r that satisfy a specified condition on the 

efforts, I (q, d) ::; Q . Q is the effort of the multidimensional integration. The 

simplest restriction on the one-dimensional efforts is simply 

~ (q;)::;Q. (30) 
i=l,2,...d 

This is the full direct-product grid; it corresponds to grid-based FCI and it does 
not achieve the favourable computational cost in Eq. (25). Grids based on Eq. 
(29) that include fewer points than this direct-product grid are said to be sparse. 

The first, and simplest, efficient multidimensional integration grid was 
proposed by Smolyak,33 
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d 

I(q,d) =l-d +L/i; . (31) 
i = l 

Except for a logarithmic factor, Smolyak integration achieves the optimal 
computation cost from Eq. (25).35

'
38 The logarithmic deficiency of the Smolyak 

method is eliminated if one uses Petras's delayed one-dimensional quadrature 
formulae.40 

It turns out that molecular wavefunctions not only have bounded mixed 
. h h 11 d d . .denvatlves; t ey . ave a property ca e ommatmg. m1xed smoothness. 22 23 42 43 · · · 

Using this property, one can choose an index set that is even more respective than 
the one prescribed by Smolyak, namely, 

d 

l-dLq;-T ~ (q;) 
I (ij ,d) =__ i =_I,2___i=_l__ ...d - oo< T < l (32)

l-T 
The appropriate value of T depends on the differentiability of the function being 
integrated. T =0 recovers the Smolyak choice (Eq. (31 )). T ~ - oo gives the full 
direct-product grid (Eq. (30)). For molecular wavefunctions, it is appropriate to 
choose 0 < T < - 1 . The index set in Eq. (32) was proposed by Griebel and 
Knapek.23 For T > 0, the Griebel-Knapek construction removes the logarithmic 
deficiency of the Smolyak grids and fulfills the optimal cost condition in Eq. (25). 
Many other definitions for sparse integration grids can be proposed. For example, 
Bungartz and Griebel derived a choice in which the error in the integration 
formula was measured not with the normal Il.} norm, but with the Sobolev 
(energy) norm.26

'
44 Because this formula is designed to minimize the error in the 

energy, it might be especially useful for quantum mechanical applications. The 
final formula cannot be written in the same simple form as the previous ones: 
instead of I ( ij ,d)::::: Q one has the intimidating expression 

d 1 (d ) 1frq;- log fr 4q; ::::: Q- log ( 4Q-d+i +4d-4) . (33)
5 2 5 2 

The Bungartz-Griebel sparse grid also satisfies the optimal cost condition in Eq. 
(25) . 

Our approach for constructing numerical integration grids for N-electron 
integrals is based on Eq. (29). We have tried many different formulae for the one­
dimensional integration formulae; Gauss-Chebyshev and Clenshaw-Curtis 
formulas work particularly well. Using these one dimensional formulae and Eq. 
(29) with d = 3, we obtain a three-dimensional grid on the unit cube, [0,1]3. The 
resulting integration formula is 

16 


http:Knapek.23
http:formulae.40


Ph.D. Thesis -J.S.M Anderson McMaster University - Chemistry Department 

n(Q,3)
£ £ £1(e"e2,e3)de,d02de3 = .L wfQ)1(e,,i,e2,i'e3.;)· (34) 

i=l 

This formula is inappropriate for one-electron molecular integrals. This is 
because integrals lie in real space. To adapt Eq. (34) to molecular integrals, we 
use a transformation of coordinates, 

L [ (p(X,Y,Z)dXdYdZ
e(x)-------­

1 - [ L (p(X,Y,Z)dXdYdZ 

[ (p(x,Y,Z)dYdZ
E>2(x,y)=------ (35) 

[ (p(x,Y,Z)dYdZ 

[,p(x,y,Z)dZ
0 3 (x,y,z)=----­

(p(x,y,Z)dZ 

The Jacobian determinant of this transformation is 

8(01'02,03) 
( )a x,y,z 

- ( )- p x,y,z , (36) 

so, Eq. (34) can be rewritten as 
n(Q,3) 

( [, [J(x,y,z)p(x,y,z)dxdydz = L wfQ)f(x;,y;,z;) (37) 
i=l 

Equation (37) will be especially useful for one-electron integrals that can 
be written as p(x,y,z) times a slowly-varying function. This suggests that we set 
p(x,y,z) equal to the probability of observing an electron at a point in space, 
p ( x, y, z) . Since the probability of observing an electron at a given point in 

space is known only after we have solved the Schrodinger equation, we 
approximate it with the sum of the atomic probabilities,45 

p 

p(x,y,z) =LP~ (x-Xa,y-Ya,z-Za) (38) 
a=I 

This is called the promolecular density. The quantities p~ (r - Ra) are just the 

ground-state electron densities of the isolated atoms, centred at the points 

{( Xa, Ya,Za )}:=, · 

Evaluating the transformation of coordinates requires performing the 
indefinite integrals in Eq. (35). This is computationally feasible only if these 
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integrals can be performed analytically. We therefore approximate the atomic 
densities as 

k m 

p~ (r) =~:C;e-a/ + L 2 c; 2 ~ p~ (r) . (39) 
i= l i= k+I (r +a;) 

The last term in Eq. (39)-the squared Lorentzian function-is required to 
enforce the boundary conditions on the Schrodinger equation. The integrands of 

interest in quantum chemistry fall off exponentially faster than cr-4 (but 
2 

exponentially slower than e-ar . Including at least one squared Lorentzian term 

(i.e., m > kin Eq. (39)) is essential, because otherwise the function f (r) in Eq. 

(3 7) has essential singularities as r ---+ oo . 

After performing the transformation of coordinates in Eq. (35), we have a 
set of nested grids for one-electron molecular integrals, cf. Eq. (37). Applying the 
sparse-grid generating expression again (cf. Eq. (29)) gives a formula for N­
electron integrals, 

[ [ [ ··· [ [ 	[! (xl'y1,zw· .,xN,yN, zN )(TI p(xk,yk,zk ) ) dx1dy 1dz1 •• • dxNdyNdzN ( 0)
4

n(Q,3N) 

= L W;(Q) f (x,.;, Y1 ,;. z,.;,. · · ' xN,; •YN,i • zN,; ) 
i = I 

The method to be discussed in chapter IX is based on our ability to efficiently 
perform many-electron integrals. 

I.IX. 	 Boys' Collocation Method for the Scaled 
Schrodinger Equation 

Consider expanding the wavefunction in an arbitrary basis set, as in Eq. 
(10). Inserting this expression into the Schrodinger equation gives the equation, 

K 

(b-E(n) )lJ'(f)=O~(H-E(n ) )L c}n) 'P; (f) (41) 
i= I 

Here E(n)denotes the energy of the n1
h excited state. There is generally no way to 

choose the expansion coefficients, { c}nl} : , to solve this equation exactly unless 
1 

the basis set is complete. In the local Schrodinger equation approach, instead of 

choosing the c}n)'s to minimize the energy, we choose them to minimize the error 

in Eq. (41).46 To achieve this, multiply both sides the equation by a set of test 
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functions, {If/; (f)} ;~ , and integrate. This gives a secular equation to solve for 1 
the dn)'s: 

For very good basis functions like the free iterative complement functions of 
Nakatsuji et al.,46 the integrals in Eq. (42) cannot be performed analytically. 
Using a numerical integration method gives, 

K n(Q,3N) 

0 =L L c}n)WkQ)lf/; (f}Q) )(H- E(n)) 'P; (f}Q)) (43) 
i=l k=l 

Equation (43) is the Boys collocation method.47 It casts the Schrodinger equation 
as a numerical integration problem. As such, it provides a way to exploit the 
near-optimal many-electron integration grids we have developed. 

Unfortunately, many-electron integration grids obtained from the sparse­
direct-product formula, Eq. (29), contain points where .two electrons are at the 
same position, f; ='0 . The electron-electron repulsion potential diverges at these 

points, so there can be grid points where the integrand diverges. To remove this 
problem, multiply both sides ofEq. (41) by 

U(f)-= l (44) 
vne(f)+~e(f) 

Here Vne (f) and Vee (f) are the nuclear-electron and electron-electron potentials, 

respectively. Applying the same derivation as in Eqs. (41)-(43) to this scaled 
Schrodinger equation, 

0 =L L c}nlwiQ)lf/; (t}Q) )[u(H-E(n))]'Pi (t}Q)). 

u(H-E(n) )t.p(n) ( f) =0 (45) 

gives 
K n(Q,3N) 

(46) 
i=l k=l 

This equation is also due to Boys.47 Chapter IX is based on solving Eq. ( 46) by 
combining the numerical integration grids develoEed in my earlier research31

'
32 

with the free iterative complement basis functions 6
'
48 I studied during a summer 

fellowship sponsored by Japan's Society for the Promotion of Science. 

I.X. Density-Functional Theory 

Instead of the electronic wavefunction, the electron density can be used as 
the fundamental descriptor of the system. The electron density, p(r), is the 
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probability of finding an electron at point r . The electron density can be directly 
computed from the wavefunction through: 

p(r,s) =NL ff·· J\f* (r, s, Fz ,s2 , • • • ,rN,sN) \f (r,s ,Fz ,s2 , • • • ,rN,sNYri ···arN.(47) 
S; 

Formulating quantum mechanics in terms of the electron density has the 
advantage that the electron density is measurable and only depends on three space 
coordinates. In contrast, the wavefunction is unphysical and depends on every 
electronic coordinate. The electron density is simpler, both conceptually and 
mathematically, than the wavefunction.49 

The mathematical foundations of density-functional theory were 
propounded in two theorems by Hohen berg and Kohn. 50 

1st Theorem. The ground state ' s electron density determines all 
the properties of an electronic system. In particular, the ground 
state energy is a functional of the electron density, E =E[p]. 

This establishes that the electron density encapsulates all the information from the 
ground-state electronic wavefunction. (Later authors proved this explicitly, by 
reconstructing the ground state wavefunction from the electron density.51 

) 

Practical applications of the 1st Hohenberg Kohn theorem, however, require 
methods for determining the ground state ' s electron density directly, without 
passing through the wavefunction. (One does not wish to use Eq. (47).) The 2nd 

Hohenberg-Kohn theorem provides a variational principle for finding the ground 
state density. 50 

2nd Theorem. The N-electron ground state energy, Egs , and 

ground state density, Pgs (r) , are obtained by minimizing the 

energy with respect to all N-electron densities, 

Egs =E[pgs ]=~E[p] (48) 
p 

This is the analogue of the Rayleigh-Ritz variational principle for the 
wavefunction. Just as the Rayleigh-Ritz principle leads to the most popular 
computational approaches for the ground state wavefunction, the 2nd Hohenberg­
Kohn theorem leads to the most popular approaches for the ground-state density. 
The ground-state energy and other chemical properties then follow. Because the 
electron density only depends on three coordinates, the domain of the functions 
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used to solve the electronic structure problem has been reduced from a space of 
3N dimensions (plus spin) to a space of only 3 dimensions. 

Sound too good to be true? The first Hohenberg-Kohn theorem is merely 
an existence theorem: it states that the electron density can be used to determine 
molecular properties; it doesn't say how to do this. In fact, it is usually much 
easier to extract the values of molecular properties from the wavefunction than 
from the electron density. 

Using the variational principle requires writing the energy as a functional 
of the electron density. Hohenberg and Kohn demonstrated that the energy 
functional can be written as a sum of two terms: 

E[p] =F[p] + fp(r)vex1 (r)df . (49) 

The first term is unknown, and is often referred to as the Hohenberg-Kohn density 
functional. The second term represents the interaction potential that binds the 
electrons to the system. This is typically the nuclear-electron attraction potential, 

ext(-) ~ ZA (50) 
v r =-L..JJ- -1·

A=I r -RA 

The Hohenberg-Kohn density functional represents the electronic contributions 
(kinetic energy, electron-electron potential energy) to the energy. It is 
"universal;" it does not depend on the types or positions of the atomic nuclei, so 
the same functional can be used for every molecule. In density-functional theory, 
the problem of approximating JN-dimensional wavefunctions is replaced by the 
(equally difficult) problem ofapproximating F[p] . 

Although density-functional theory is exact in principle, there can be no 
equation for determining the exact electron density that is not at least as difficult 
as solving the Schrodinger equation directly.52 Fortunately there exist methods, 
most of which are based on the Kohn-Sham formulation of density-functional 
theory,53 which lends themselves to approximation.54 

I.XI. The Kohn-Sham Equations 

Most modem density-functional theory calculations use the decomposition 
of F[p] that was proposed by Kohn and Sham in 1965.53 They wrote the 
Hohenberg-Kohn functional as a sum of three terms, 

F[p] =T,[p]+J[p]+ExJP]. (51) 
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T, [P) is the kinetic energy of a system of independent, noninteracting, electrons 

with same electron density, p(r), as the system of interest. J[p] is the classical 
electrostatic self-repulsion of the electron density, 

J[ 1=!ffp(r)p(r ')arar · 
P 2 [r-r'[ (52) 

The exchange-correlation energy functional, ExJP] , contains everything else. In 

particular, ExJP] includes the reduction of the electron-electron repulsion 

potential energy between electrons of the same spin because of the Pauli principle 
(exchange energy), the reduction in the electron-electron repulsion energy due to 
the correlated mutually-avoiding motions of the electrons (correlation energy), 
and the increase in kinetic energy from electron correlation (correlation-kinetic 
energy). The correlation-potential energy is negative and the correlation-kinetic 
energy is positive because when electrons swerve to avoid each other, their 
potential energy of interaction is lowered, but their kinetic energy increases. In 
the Kohn-Sham-density-functional theory approach, only the exchange­
correlation energy functional, Exe [p] , has to be approximated. 

The Kohn-Sham approximation reformulates density-functional theory as 
an independent electron problem, similar to Hartree-Fock. The derivation of the 
Kohn-Sham equations starts from the expression for the density of a system with 
N independent fermions, 

N 2 

p(r) =l:J¢/nl . (53) 
j = I 

Thte ¢j (r) are one-electron spin-orbitals. Inserting the Kohn-Sham expression 

for F[p] into the Hohenberg-Kohn variational principle and taking the functional 

derivative leads to the Kohn-Sham equations, 

(_!V2 +vex/(r) + J[p,r] + v xc [p; r] ) ¢ (r) =& .¢ (r) (54)2 J J J 

The Coulomb potential, 

J[p,r]¢j (r) = fp(r ')ar 'J "'·(r)- -·1 'f'1r-rI
t1¢;Cr')[2c1r·i - , (55) 

f [r - r'[ ¢j (r) 

is almost the same as in the Hartree-Fock method (Eq. (15)) but there is an 
important difference. In the Hartree-Fock method no orbital feels repulsion from 
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itself, but this is not true in Eq. (55). The difficulty of correcting this self­
57interaction-error is a major source of error in density-functional theory.55

- The 
exchange-correlation potential, which includes effects of both exchange and 
correlation, is the functional derivative of the exchange-correlation energy, 

vxc[p(r);r] = 
8~(~] (56) 

If the exact ExJP] were used in the Kohn-Sham equations, then Kohn-Sham 

density-functional theory would give the exact ground state energy and density. 

Kohn and Sham expressed the exchange-correlation energy in terms of 
exchange-correlation energy density, per electron, at the point r, exJp,r]: 

ExJP] = Jp(r)exJp,F]dr (57) 

They simplified this expression by assuming that exJpJ] is a function of p(r), 

exJp(r)) instead of a functional. This is referred to as the local density 

approximation.53 Finally, they approximated exc(p(r)) with the exchange energy 

density, per electron, of the uniform electron gas with density p(r). Local 
density approximations like this one are the simplest possible density functional, 
but they do not give good results. More modem exchange-correlation functions 
depend on the gradients of the electron density, or even on the Kohn-Sham 

66orbitals from Eq. (54).58
­

Although Kohn-Sham is similar to Hartree-Fock, it is usually better. This 
is mostly because the Kohn-Sham approach includes electron correlation. 
Moreover, it is easier to solve the Kohn-Sham equations than the Hartree-Fock 
equations because the Coulomb and exchange-( correlation) terms in Kohn-Sham 
are multiplicative operators, while in Hartree-Fock they are non-local integral 
operators. Traditional Kohn-Sham density-functional theory methods scale as 
O(N3), while Hartree-Fock scales as O(N4). Because density-functional 
approximations are usually more accurate than Hartree-Fock, when density­
functional theory fails for a particular application one usually attempts to use a 
post-Hartree Fock method. This is not always possible: density-functional 

67 69calculations can be performed with systems with thousands of atoms, - while 
post-Hartree Fock methods are limited to systems with about 100 atoms. 

Occasionally, the Hartree-Fock method is more reliable than Kohn-Sham 
density-functional theory. Even when Hartree-Fock is inaccurate, at least it 
always provides an upper bound to the ground-state energy. Though the Kohn­
Sham method is based on the Hohenberg-Kohn variational principle, it only 
provides an upper bound to the ground-state energy if the exact exchange­
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correlation functional is used. With approximate functionals, the energy is often 
below the true ground state energy. 

Kohn-Sham density functional approximations are the most popular 
methods in modem computational chemistry: they have relatively low 
computational cost and they achieve reasonable accuracy for many chemical 
applications. 

I.XII. Conceptual Density-Functional Theory 

While the detailed mathematical and computational procedures may be 
daunting, computing molecular properties is conceptually simple: derive an 
approximation to the Schrodinger equation, then solve it. Extracting chemical 
insight from quantum mechanics is arguably more challenging. In particular, the 
quest to find quantum mechanical approaches to classical chemical concepts like 
atoms within molecules, electrophilicity, and electronegativity has proved 
extremely challenging. Chapters II-VII of my thesis represent some (but not all 7°­

72) of my important contributions to this quest. All of my work in this regard has 
been focussed on methods that are based on the electron density. Chapters II-V 
are related to conceptual density-functional theory, and are primarily focussed on 
chemical reactivity. Chapters VI and VII present my work on some mathematical 
issues related to the definition of an atom within a molecule. 

Although the wavefunction contains all the information required to 
compute molecular properties, it is not physically interpretable and it is difficult to 
compute accurately. On the other hand, the electron density contains all of the 
same information as the wavefunction, but it is experimentally measurable, 
physically interpretable, much simpler mathematically, and readily approximated 
computationally. The electron density is also highly transferable. For example, 
the electron density near an atomic nucleus changes little regardless of the other 
nuclei that are present. 

Conceptual density-functional theory provides qualitative tools for 
interpreting and predicting chemical phenomena based on the electron density.73

­

75 The guiding principles of conceptual density-functional theory are that the 
descriptors of chemical phenomena should be (1) experimentally measurable 
observables (ergo, real physical quantities), (2) universal quantities, not quantities 
that arise as artefacts of a particular computational approach, and (3) 
mathematically rigorous, with firm theoretical underpinnings. 
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Consider the effect an approaching reagent, B, has on another molecule, A. 
The reagent may donate electrons to, or accept electrons from, A. So the number 
of electrons in A might change ( dN ). In addition, the electrons in molecule A 
will feel attracted to the nuclei, and repelled by the electrons, of the approaching 
reagent. So the electrons in A feel an effective external potential from reagent B, 
wf (r) . The change in the energy of A due to reagent B can then be computed 

using the functional Taylor series expansion of the energy with respect to the 
76 78number of electrons Nand the external potential v(r) , ­

E[VA (r)+ wf (r);NA +l!N] =E[VA (r);NA] 

2 

+[llN·(aE[v;N]) + (1!N) ·(82E(v~N]) + ... J 
8N ~:t;Ar) 2 8N ~:tA(r) 

M8E[v; N]) w•ff (r )dr 

Jl 8v(r) v(r)=v,(r) B 
 (58)

N=NA+ 2 

1 ff eff(-')( 8 E[v;N] ) eff(-) ·,r.:•+- W 8 r (-) (-') W8 r arur + ... 
2 8v r 8v r v(r)=vA(r) 

N=NA 

+[l!N ct &JE~v;N]) wf (r)ar +...JJl 8v(r )8N ~:t;A(r) 
The energetic response of A to this perturbation determines whether the 
interaction with Bis favourable (ergo, possibly reactive) or not. 
The coefficients of llN and wf (r) in Eq. (58) are identified as reactivity 

indicators. Probably the most popular reactivi~ indicator is the Fukui function, 
which is listed on the last line of Eq. (58).7 

-
81 The Fukui function can be 

equivalently written as a functional derivative of the electronegativity, x,82 or as a 
partial derivative of the electron density, 

J(r)=-[ ,,~fnl =[a~~lL· <59l 

The Fukui function captures information about the propensity of a molecule to 
accept/donate electrons at the point r . As such, the Fukui function indicates 
where a nucleophile or an electrophile is most likely to bind to a reagent. The 
Fukui function is particularly effective for reagents that are very good electron 
donors or acceptors: if the reagent behaves similarly to an ideal electron donor or 
acceptor, then the other terms in Eq. (58) are usually negligible. 
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While the Fukui function is arguably the most popular reactivity indicator of 
conceptual density-functional theory, there are many others. For example, 
conceptual density-functional theory provides qualitative indicators for the 

84 87chemical hardness,83
• electronegativity,82 polarisability,85 electrophilicity,86

• 

nucleofugality, 70 
•
72 etc. 

For a more detailed introduction to conceptual density-functional theory, 
the reader is referred to Chapter II. Chapters III-V introduce and test a new 
reactivity indicator called the general-purpose indicator.88

-
90 The general-purpose 

reactivity indicator was designed to work in cases where the Fukui function gives 
incorrect predictions for molecules ' reactivity. Unlike all previous reactivity 
indicators, the general-purpose reactivity indicator is derived by starting from the 
rigorous and exact Eq. (58), and then introducing pragmatic, but controlled, 
approximations. 

I.XIII. Atomic Partitioning 

This chapter began with a quote of Paul Dirac, who stated that the 
pathway to progress in theoretical chemistry is to find approximate methods that 
"can lead to an explanation of the main features of complex atomic systems 
without too much computation." Or, in the words of Charles Coulson, we wish to 
find "primitive patterns of understanding:" simple models that capture the main 
features of molecular phenomena. 91 There is no feature of molecular systems so 
fundamental, or so ubiquitous, as this : there exist within molecules atoms, and 
these atoms have distinct and assignable properties. This is why the periodic table 
is central to chemistry. Exploring the features of atoms within molecules is the 
topic of chapters VI and VII of the thesis. 

Resolving molecules into atoms requires part1t1oning the molecular 
wavefunction; one can then compute the features of the atoms in a prescribed 
fashion. The prescription one uses depends on the still controversial definition of 
an atom in a molecule. 92

'
93 

One reason why the periodic table is so important is that the properties of 
atoms, and certain characteristic "functional groups" of atoms, are highly 
transferable. A carboxyl group, -COOH, is acidic in any chemical setting. The 
essential character of the group does not change; the only change is one of 
degrees. Transferability is the raison d'etre of atoms in molecules. 

Among the many approaches to atoms in molecules, the one that makes 
the closest contact with the key concept of transferability is the quantum theory of 
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atoms in molecules (QTAIM).94
-
97 The AIM theory is based on partitioning the 

molecular electron density into atomic parts. Atoms are transferable because the 
atom-in-molecule electron densities are transferable. 

In QTAIM, the molecules are divided into atomic regions along zero-flux 
surfaces of the electron density, 

Vp(r)·n(r)=o (60) 

where ii (r) is the normal to the atomic surface at the point r . The value of a 

property for an atom is then computed by integrating a local property-density over 
an atomic region. For example, the kinetic energy of an atom can be computed as 
the integral of the the kinetic-energy density over an atomic region, 

Ta= _b/(r)ar; (61) 

Eq. (60) is satisfied over the boundary of the atomic region, ana. The value of a 

physical property for an entire system is obtained by adding together the values of 
the atomic properties. For example, the total kinetic energy is 

(62) 

aemolecule 

This feature is the key to transferability, because it allows one to capture 
empirical property-additivity schemes: similar atoms make similar contributions 
to molecular properties. 

QT AIM is derived from nonrelativistic quantum mechanics by 
formulating a Lagrangian, then postulating that there exists a stationary action 
principle for open quantum subsystems. Atoms-within-molecules separated by 

98 101zero-flux surfaces satisfy this postulate.95
• ­

Chapter VI presents a generalization of QT AIM to relativistic quantum 
mechanics, in the context of the scalar-relativistic zero-order regular 

103approximation (SR-ZORA). 102
• Somewhat surprisingly, the zero-flux condition 

(Eq. (60)) emerges again, even though the relativistic Lagrangian is different. 
QTAIM is clearly a very robust theory. 

Computing properties whose classical counterparts depend on the 
momentum may be problematic, however. The Heisenberg uncertainty principle 
indicates that it is impossible to specify both the momentum and position of a 
particle at a particular point in space. It is not possible, then, to uniquely define a 
property density, p(f), for a momentum-based property, because one cannot say 

precisely what the momentum is at the point r . Chapter VII focuses on the 
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momentum-based property that is most important to QTAIM: the local kinetic 
energy density. 

Because the quantum mechanical momentum operator is non-local, the 
kinetic energy can be written in many equivalent forms. Each form defines a 
different kinetic energy density (the function t(r) in Eq. (61)). The total 

molecular kinetic energy is the same for all of these forms, but the atomic kinetic 
energies in Eq. (61) could give different answers for different definitions of t(r). 
One motivation of QT AIM is that the two most common forms for t (f) give the 

same atomic kinetic energies for the zero-flux partitioning of atoms (Eq. (60)); 
this is clearly not true for arbitrary methods of partitioning molecules into atoms. 
Chapter VII goes further, showing that all obvious forms for t ( f), and many not-

at-all-obvious forms, also give the same atomic kinetic energies, but only if 
molecules are partitioned using zero-flux surfaces. 

The entire family of kinetic enerjg densities that are consistent with 
quantum mechanics was derived by Cohen, o4,ios 

-~(¢; (r)V2
r/Jp (r)-v¢" (r)· v rfJP (r))+c.c.

8m P 

1 1'ii•.')(')= t,·, -C~Jffe-;' '-' ( ,~ 1,, (•)I')[v;1(iUlL auae (63) 

-(2~)3 Jfe-iii·(r-ii)[Vrf(BJ)l=o ·i]p(ii)diidO 

Some of these very kinetic energy densities are very unusual, even if they are 
mathematically permissible by the postulates of quantum mechanics. Chapter VII 
explores the possible kinetic energy densities in detail, trying to understand 
whether there are physical requirements that one may impose to ensure that the 
atomic kinetic energy is the same for all "physically reasonable" kinetic energy 
densities. 

I.XIV. Summary of Ph.D. Work 

Chapter II contains a review of conceptual density-functional theory, 
emphasising the fundamental mathematical structure of the theory. It illustrates 
the utility of the perturbative perspective for describing chemical phenomena and 
discusses the importance of qualitative chemical concepts in theoretical chemistry. 

28 




Ph.D. Thesis - J.S.M Anderson McMaster University - Chemistry Department 

Chapter III contains a detailed derivation of the general-purpose reactivity 
indicator. This indicator provides information about which location or atom site 
in a molecule is most reactive. The key idea is to use the vaguest possible 
description of an incoming reagent. This both simplifies the mathematics and 
expands the scope of the resulting equations. 

Chapters IV and V present applications of the general-purpose reactivity 
indicator. Chaper IV shows how the general-purpose reactivity indicator can be 
used to predict the reactivity of a molecule in some cases where frontier molecular 
orbital theory (and the closely related Fukui function) fails. With most reactivity 
indicators, one locates the most reactive site in a molecule by finding where that 
reactivity indicator has its largest value. Such indicators can identify at most one 
reactive site; they fail for ambidentate molecules: molecules that have two 
different reactive sites, one which reacts with hard reagents and one which reacts 
with soft reagents. Chapter V shows that the general-purpose reactivity indicator 
works for ambidentate molecules. 

During my Ph.D. I wrote three other papers on conceptual DFT that are 
not included in this thesis. One of them explored the mathematical relationships 
between third-order reactivity indicators; these are the higher-order terms that 
were not explicitly shown in Eq. (58).71 These reactivity indicators are even more 
complicated than the general-purpose reactivity indicator derived in Chapter III. 
The other two papers were concerned with developing reactivity indicators for 

72predicting the quality of molecular leaving groups.70
•

The quantum theory of atoms in molecules (QTAIM) partitions molecules 
into atoms using the molecular electron density. As such, QTAIM can be 
considered to be the natural companion theory to conceptual density-functional 
theory. Conceptual density-functional theory uses the electron density to elucidate 
molecules' reactivity. QTAIM uses the electron density to elucidate molecules' 
electronic structure. 

Chapter VI presents a relativistic generalisation of QTAIM based on the 
scalar-relativistic zero-order regular approximation (SR-ZORA). The zero-flux 
surfaces dividing molecules into atoms are recovered. This suggests that atoms in 
molecules can be defined in exactly the same way in both relativistic and 
nonrelativistic quantum mechanics. 

Chapter VII presents a detailed investigation of the full family of possible 
kinetic energy densities that are consistent with the postulates of quantum 
mechanics (cf. Eq. (63)). This study has implications for QTAIM and shows, 
among other things, that the kinetic energy of atoms in molecules is invariant to 
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the choice of kinetic energy density as long as one restricts oneself to the most 
reasonable, simple, and explicit formulae for the kinetic energy density. 

All of the previously mentioned chapters use density-based or 
wavefunction-based approaches to quantum mechanics for developing qualitative 
tools for understanding chemistry. In the following two chapters of my thesis, I 
explore whether there are better ways to solve the Schrodinger equation. In 
particular, I explore whether there are ways to solve the Schrodinger equation that 
achieve the optimal asymptotic computational complexity. Chapter VIII presents 
one approach, based on truncating the configuration interaction expansion. 
Chapter IX builds upon my work on many-electron integration grids (not included 
in the thesis31 

•
32

) to develop a new approach based on Boys' collocation method 
and the scaled Schrodinger equation. 
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Chapter II 


Perturbative Perspectives on the 


Chemical Reaction Prediction 


Problem* 


•The content of this chapter has been published: P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti 
"Perturbative Perspectives on the Chemical Reaction Prediction Problem"; Int. J. Quantum 
Chem. 2005, IOI, 520-534. 
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II.I. Statement of the Problem 

This chapter is a self-contained review of conceptual density-functional 
theory (DFT). Unlike previous reviews, this work presents conceptual density­
functional theory from a "perturbative perspective". The perturbative perspective 
allows one to treat indices associated with conceptual DFT in a unified way. 
Largely because of this review, the perturbative perspective has become the most 
common approach to conceptual DFT. Emphasis is placed on the implications of 
the perturbative perspective for describing regioselectivity and certain global 
properties of molecules, specifically their electrophilicity, nucleofugality, and 
electrofugality. This chapter will provide the necessary background for chapters 
II, IV and V. 

II.II. Introduction 

Since the dawn of quantum mechanics, there has been an interest in how 
the mathematical formalism and physical concepts of quantum mechanics can be 
used to describe chemical phenomena. For example, one may cite the Lewis-dot 
structures (which follows from old quantum mechanics), 1 orbital hybridization 
and resonance,2 and a plethora of results derived from molecular orbital theory.3 

These tools and the associated concepts (among them the octet rule, promotion 
energy, ligand field splitting,4 electronegativity, the Woodward-Hoffmann rules,5

­

9 and HOMO/LUMO based descriptors for electrophilic/nucleophilic attack10
-
15

) 

now pervade the language of chemistry. Unfortunately, the most useful models 
for qualitative studies are often very approximate in a quantitative sense. Thus, 
while valence-bond theory is in principle exact, the most useful qualitative 
descriptions use only a few resonance structures, while thousands of resonance 
structures are required for quantitative accuracy. Similarly, qualitative 
applications of molecular-orbital theory are usually based on single-determinant 
wave functions, so the simplest MO-based arguments are suspect when a system's 
wave function has significant multi-determinantal character. One can achieve 
quantitative accuracy by including configuration interaction, but thousands of 
determinants are needed to achieve quantitative agreement with experimental 
results. One wishes to have a method that, while exact in principle, is also 
qualitatively useful-that is, a method that combines quantitative accuracy and 
qualitative utility. One possibility is the use of the Dyson orbitals, which are 
deduced from accurate wave functions and, due to their direct relationship to 
electron loss and gain, are conceptually relevant. 16

-
19 The use of Dyson orbitals 

has yet to achieve popular acceptance, however, perhaps because the idea of non­
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orthogonal orbitals is anathema to chemists familiar with molecular-orbital 
methods based on single determinants. 

One may also use density-functional theory.20
;
21 Not only is density­

functional theory exact in princigl.e,22
-
25 density-functional theory lends itself to 

26 28qualitative chemical descriptors. 0
• - Among the successes are the chemical 

potentiai29 (counterpart to the electronegativity) and the Fukui functions30
-
32 

(counterpart to the frontier orbitals), as well as other concepts that had not been 
successfully defined in a valence-bond or molecular-orbital theory context (e.g., 
the chemical hardness33 and electrophilicity34

). This paper is concerned with the 
physical interpretation of these indices and, in particular, adopts what may be 
termed a perturbative perspective: each reactivity index in density-functional 
theory may be viewed as representing the response of a system to a certain 
"model" perturbation, where the "model" is chosen to encapsulate the essence of 
the attacking reagent. In section III the chemical motivation behind this 
perspective is sketched; section IV presents the requisite background information, 
and two theoretical applications (based on two specific choices for the model 
perturbation) are explored in sections V and VI. 

II.III. Motivation 

The perturbative perspective is motivated by the presence of systematic 
trends in chemistry. For example, one can organize acids and bases in order of 
their strength and infer, for example, that in almost any reaction environment, a 
Bronstead-Lowry base will accept a proton from a protonated weaker base, and 
can then be induced to forfeit the proton if a still-stronger base is added to the 
mixture. As a specific example, one finds that protonated pyrrole (pKa = 0.4) will 
donate a proton to pyridine (pKa = 5.25), which will donate a proton to ammonia 
(pKa = 9.26). One can, from this sequence of events, infer that the pyrrolium ion 
is a stronger acid than the ammonium ion and so, if one adds ammonia to a 
solution with protonated pyrrole, proton transfer from pyrrole to ammonia will 
occur. 

Many chemical syntheses can, in fact, be regarded as a sequence of Lewis 
acid/base reactions: over the course of a reaction or sequence of reactions, 
electrons move from good donors (strong Lewis bases) to good acceptors (strong 
Lewis acids). One is led to the conclusion that a reagent's inherent 
acidity/basicity can be expressed in terms of the properties of the isolated 
molecule, for otherwise we would expect solvent effects and the identity of the 
chemical reaction partner to exert significant-rather than subsidiary-effects. 
Moreover, the fact that a molecule reacts in a qualitatively similar ways to any 
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stronger base suggests that there is something inherently similar about how a 
strong base interacts with-or perturbs-a weak base, and vice versa. That is, the 
fact that a specific molecule will interact in similar ways with a wide range of 
reagents that are, on the surface, dissimilar suggests that the essence of the 
interaction might be captured by a simple "model perturbation," which captures 
the essential similarity of the range of reagents of interest. 

Despite what at first glance appears to be intimidating complexity, 
underlying simplicity is also found in studies of regioselectivity. For example, 
nitrogen bases almost always interact with acids through the nitrogen atom, and 
boron acids almost always interact with bases through the boron atom. Similarly, 
there are a large number of ortho-meta-para rules for electrophilic (and, much less 
frequently, nucleophilic) attack on aromatic compounds. The underlying 
principle is that a reagent tends to be susceptible to nucleophilic attack at one or, 
at most, a few sites and similarly tends to be susceptible to electrophilic attack at 
one or possibly a few sites. These sites are largely independent of the nature of 
the electrophile/nucleophile, the presence of a solvent, or the particular reaction 
conditions. That is, regioselectivity preferences are properties of the isolated 
molecule and, presumably, there is some essential essence that is common to 
nucleophilic and electrophilic reagents and which, viewed as a perturbation, can 
describe the susceptibility of a reagent to nucleophilic and electrophilic attack. 

The mathematical ideas behind the perturbative perspective are already 
contained in the early work of Nalewajski and Parr,35 with subsequent significant 

38 40elaboration by Liu and Parr,36
- Senet,39

; and others. At least with respect to 
density-functional theory, the specific perspective adopted in the previous 
paragraphs seems to have been first employed by Parr, von Szentpaly, and Liu,41 

who employed the idea of a "perfect nucleophile" as a model system. Subsequent 
developments have stressed the use of the concept in regioselectivity.42

-
45 

II.IV. Theoretical Development 

As explained in the previous section, the essence of the perturbative 
perspective on chemical reactivity is to describe the effect of an attacking reagent, 
B, on a given molecule, A. There are two possible effects. First of all, the 
presence of B changes the external potential felt by the electrons in A-that is, 
electrons in A are now subject not only to the external potential due to the nuclei 
in A, vA ( r) , but also to an external potential due to the electrons and nuclei in B, 

w'f (r) . Various approximations for w'f (r) have been considered.46 The 
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simplest approximation for wjf (r) is just the additive inverse of the electrostatic 

potential from the nuclei and electrons ofB,47 

wjf (r) ~ v8 ( r) + JI;~::? dr' 	 (1) 

where p 8 ( r) denotes the electron density ofB. Use of Eq. (1) neglects exchange 

and correlation effects that couple electrons in A and B, but this can be corrected 
for. A method for finding the exact effective external potential from B has been 
proposed.48 

Second, electrons may flow from A to B, or vice versa. Thus, the number 
of electrons in A may change from the number in the isolated molecule, NA , to 

NA +M. Regarding these changes as perturbations on the isolated molecule A, 


we employ a functional Taylor series to model the changes, thus 


E[vA (r)+ wf (r );NA +MJ= 

2J [oE[v;N]) (M) [o

2
E[v;N])E [vA ( )r .,NA +M · +--· 2 + ... 

oN v(r)=v,(r) 2 oN v(r)=v,(r) 
N=N, N=N, 

+MoE[v;N]) wf (r)dr+_!_ Jfwf (r')[ o2E[v;N] ) wf (r)drdr' + ... 
(2) 

Jl ov(r) v(r)=v,(r) 2 ov(r)ov(r') v(r)=v,(r) 

I[ &JE[ v;;/f) ff ( ) 	 N=N,
+fuV 	 ( ) w; r dr+ ... 

ov r oN 	 v(r)=v,(r) 

N=N, 


The first term in the Taylor series is identified as the electronic chemical potential 
ofA, µA, which is related to the electronegativity, xA, by29 

_ -(aE[v;N]J-xA-µA= 	 · (3) 
8N v(r)=vh) 

N=N, 

Equation (3) is the first, and quite possibly the most important, result in 
conceptual density-functional theory. Many important results, most notably with 
regard to electronegativity equalization,49

-
51 immediately follow. 

The second term in the Taylor expansion was identified with the chemical 
hardness, 

-(a
2 

E [v; N] J
l]A = 2 (4) 

8N v(r)=v,(r) 
N=N, 

by Parr and Pearson. 33 (The present definition differs from the initial definition 
by a factor of 2, but is usually considered preferable and has been adopted by 
many researchers, including Parr and Pearson, in subsequent work.) Important 
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52related results include the maximum hardness principle45
; -

56 and the theory of 
57hard and soft acids and bases54

; -
59 (HSAB theory). 

The next two terms address the effect of a change in external potential in 
the absence of any electron transfer. This is often a good approximation when the 
product molecule, AB , is essentially ionic in character, with little charfie transfer 
between the substituents. From the Hellmann-Feynman theorem,60

; 
1 the first 

term is seen to be just the electron density, 

( )-[8E[v;N]J -( Al~ ( )I A) (5)PA r = () - 'Pa L.8 r;-r 'Pa 
8v r v(r)=vA(r) i=l 

N=NA 

while the second is the linear response of the electron density to a change in 
external potential and is often termed the polarizability kernel, 

')-[ 8 
2

E[v;N] J -[8pA(r)JPA (r,r = ­
8v(r')8v(r) v(r)=vA(r) 8v(r') v(r)=vA(r) 

~ f ('!':It.a(r;N~:,)1'!':)('1'1 It.;(:,'_,,)I'!':)+ c.c. (6) 

L. EaA -E,Ai=l 

where '¥1 and E/ are the wave function and energy of the i'h excited state ofA. 

The final term in the Taylor series, (2), represents the coupling between changes 
in the number of electrons and changes in external potential; it is termed the Fukui 
function 30;3 J;62 

' 
( )-[~E[v;N]J -(ap[v;N,r]J -[8µ[v;N]J (?) 

jA r = £5v(r) 8N v(r)=vA(r) - 8N v(r)=vA(r) - £5v(f) v(r)=vA(r) 
N=NA N=NA N=NA 

Many other indices have been proposed in the context of conceptual DFT, 
but most important of them are simply related to the preceding quantities. (The 
exceptions are related to higher-order derivatives in Eq. (2).) 

One commonly truncates the perturbation series at second order, yielding 

E[vA (r)+ wif (r );NA+ !1NJ 
=E[vA(r);NA]+!iN·µA+(~)

2 

•1JA+ fPA(r)wif(r)dr (8) 

+!iN f!A (r)wif (r)dr+k Jfwif (r')PA (r,r')wf (r)drdr'. 
This is a good approximation when the perturbations are small and presupposes 
that the course of a chemical reaction is determined when the reacting molecules 
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are still far apart-that is, the transition state lies early along the reaction path. In 
practice, it seems that this approximation is much more robust. (This is related to 
the empirical success of hill-climbing methods for predicting the products of 
chemical reactions; one can often locate the transition state of a chemical reaction 
by proceeding, step by step, from the reactant configuration in the least-steep 
direction (lowest frequency normal mode).) It should be emphasized that the 
second-order truncation is not mandatory: for example, Taylor-series with 
remainder forms (see the appendix) can be used to obtain higher accuracy. 
Alternatively, one can include third and higher order terms, in which case issues 
related to the convergence of the Taylor expansion become increasingly 
important. The convergence of the Taylor series is considered in the appendix. 

In Eq. (2), derivatives with respect to the number of electrons are used. 
This implies that one can define what it means for a system to have a non-integer 
number of electrons. Several approaches have been proposed, including using the 
zero-temperature grand canonical ensemble63

;
64 and Fock space constructions.65 

An alternative to these is to make P duplicates of one's system and arrange these 
on the surface of a sphere of radius R. Next, add M < P electrons to the system, 
and then take the limit as R approaches infinity. Using the most symmetric wave 
function for the system, each subsystem has NA+ J, electrons. If, then, we use 

size consistency arguments, we deduce that the properties of a system with 
NA+ J, electrons are given by the appropriate linear combination between the 

NA - and NA+ I-electron systems:66 

Q[VA (r );NA+ J,] =(1- J,)Q[vA (r );NA]+ J, Q[VA (r );NA+ 1J. (9) 

The zero-temperature grand canonical ensemble and Fock-space formulations 
give the same results. 

Note that ~IN=NA does not exist. Rather, there are different derivatives for 

"number increasing" and "number decreasing" variations. What is more, the 
linearity of Eq. (9) means that all terms in the Taylor series with a quadratic or 
higher-order dependence on tlN are identically zero. Thus, the truncated Taylor 
series, Eq. (8), can be rewritten as 

E[vA (r )+wt' (r);NA +tlNJ 
=E[vA(r);NA]+tlN·µ~+ fPA(r)w1(r)dr (10) 

+tlN f!A± (r)w1 (r)dr+~ Jfw1 (r')PA (r,r')w1 (r)drdr'. 

Here a superscript "+" indicates differentiation from above and a superscript "-" 
indicates differentiation from below. From Eq. (9), the Fukui functions are given 
by 

41 


http:constructions.65


Ph.D. Thesis - JS.M Anderson McMaster University- Chemistry Department 

(11) 


and the chemical potentials from above and below are related to the electron 
affinity, A, and the ionization potential, I, by 

µ;=-AA (12)
µ~=-IA. 

In solution, a molecule occurs in many different solvation environments, and so 
the "isolated molecule" construction for fractional numbers of electrons is 
suspect. In practice, it is found that a quadratic interpolation, with 
aQ[v,NJI

8N V=VA
N=No (13) 

= No-(~r')(Q[vA,NA +1]-Q[vA;NA])+ NA+~-No (Q[vA,NA]-Q[vA;NA-1]) 

is often effective. This is gives the well-known Mulliken electronegativity,67 

(Mulliken) _ (quadratic) _ IA+AA {14)XA --µA --2­

and the Parr-Pearson definition of the hardness,33 

(PP) -J A (15)lJA = A- A· 
The success of the quadratic model is difficult to rationalize. The use of "smooth 
curves" rather than curves with discontinuous derivatives may be rationalized 
since molecules in solutions occur in many different solvation environments, and 
thus exist in many different states. The average state of a molecule in solution, 
then, is a weighting of many states-not just the anion, cation, and neutral states 
of the isolated molecule, but many "perturbed" variants thereof. To be sure, the 
zero-temperature ensemble average fails to capture the richness of this 
phenomenon, but why the primitive quadratic model (which contains even less 
"physics" than Eq. (13)) captures this richness is not at all understood. The 
quadratic model is practically useful and mathematically simple, however; an 
example of its utility is given in section V. 

With this background we can restate the "perturbative perspective" in a 
mathematical form. Note that each of the "coefficients" in the Taylor series (Eq. 
(8) or Eq. (10)) is a property of the isolated molecule; the only effect of changing 

the attacking reagent, B, is to change the appropriate value of l1N and wf {r) . 
One might suppose that chemically similar reagents contribute similar values for 
l1N (for example, l1N is always positive for nucleophilic attack and negative for 

electrophilic attack) and wf ( r) (for example, nucleophiles tend to negatively 

charged and electrophiles tend to be positively charged). Thus, a molecule's 
reactivity with respect to a certain class of reagents-throughout which the main 
features of l1N and wf (r) are conserved--can be expressed in terms of the 

properties of the isolated molecule and, in particular, the coefficients of terms in 
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the Taylor series expansion of the energy. The coefficients of terms in the Taylor 
series, then, are readily identified as reactivity indicators. 

One can discern the particular relationship between the reactivity of a 
molecule, A, and its Taylor-series coefficients by introducing a model 
perturbation. The essential idea is that since it has been empirically observed that 
a molecule reacts with chemically similar reagents in similar ways, one need not 
consider the detailed values of !:J.N and wif (r) for each reagent. In particular, 

the values of !:J.N and wif (r) for a simple "model reagent" will serve to indicate 

the reactivity of other chemically similar reagents. That is, a molecule's reactivity 
can be revealed by measuring the response of a molecule to a model 
perturbation-a simple choice for !:J.N and wif (r) that nonetheless encapsulates 

the essential chemical information about the attacking reagent. 

11.V. Regioselectivity 

As a first example of the utility of the "perturbative perspective," we 
consider the problem of predicting where a molecule undergoes electrophilic or 
nucleophilic attack. To obtain a simple model perturbation, consider that the 
"active site" of a nucleophile is generally negative, while the active site of an 
electrophile is usually positive. As a simple model, then, we can approximate the 
change in external potential due to electrophilic (nucleophilic) attack by a positive 
(negative) point charge. Substituting this into the Taylor series (Eq. (10)), 

E[v, (r)-lr~xl ;N, +t:.N]-E[v, (r);N,J 

= /),.JV •µ! - q fp A ( r)dr (16)
Ir-xi 

-q!:J.N f!A± (r)dr +i_ ff PA {r, r') drdr' 
Ir-xi 2 lr-xllr'-xl · 

Equation ( 16) models the change in electronic energy; the change in total energy 
requires that one include the attraction/repulsion of the molecular nuclei for the 
point charge, thus 

YA[q,l:!N,x]=E[vA(r)+-1l;NA+w]-E[vA(r);NA]+:LI za~ I~ 
r x a Ra x (17) 

2 
_ ± ( ) f!A±(r) q JJ PA(r,r') ,
=l:lN·µA+q<l>A x -q!:J.N I ldr+- I II' ldrdr.r-x 2 r-x r -x 
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where Ra and Za denotes the position and atomic number of the a 1h nucleus in 

molecule A. Here, 

(18) 


denotes the electrostatic potential. The quantities YA (1, 0, x) and YA (-1, 0, x) 
have been used as indicators of the Bronsted-Lowry acidity and basicity,68 and our 
notation (Y is the Greek "Upsilon," and not the Roman letter Y) is designed to 
reflect this relationship. 

From Eq. (17), it is clear that the electrostatic potential can be used to 
describe regioselectivity69 when the change in the number of electrons is small, so 
that MV :::; 0 . This amount of charge transfer can be approximated using the 
chemical potentials and hardnesses of the molecules, giving33 

IMVI JµA -µBJ (19) 
TIA +T/a 

Thus, for hard reagents we expect the effects of charge transfer to be relatively 
unimportant (the bond between the molecule and the attacking reagent tends to 
have a large amount of ionic character). The electrostatic potential, Eq. (18), is 
useful for describing such reactions, which are often said to be "charge 
controlled" or "electrostatically controlled."70 

As an example of a charge-controlled reaction, we consider molecule a 
(see Table 1), which is a ferrocene molecule in which one of the cyclopentadienyl 
rings is replaced by · benzene. Recalling that reactivity indicators are only 
rigorously valid when the conformational preference is apparent early on the 
reaction path, we plot the electrostatic potential on the van der Waals surface of 
the molecule in Figure 1.71 Electrophilic attack is clearly indicated on the 
cyclopentadienyl ring. This correct result is consistent with intuition: the 
cyclopentadiene ring is negatively charged because the metal center tends to 
donate an electron to the cyclopentadiene ring since the cyclopentadiene anion has 
4(1) + 2 electrons and is thus aromatic.72 Donation of an electron from the 

cyclopentadiene to an attacking electrophile would result in the loss of aromaticity 
and consequent destabilization, so relatively little electron transfer occurs and the 
reaction is "charge controlled." From an alternative perspective, the aromaticity 
of the cyclopentadienyl ring corresponds to a large hardness,73

;
74 which reduces 

the amount of electron transfer. 
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Table 1. Structures and orientations of the molecules in fi ures 1-4. 
Structure Label Structure 
A 

B 
Cl 

D Ncs­

45 




Ph.D. Thesis - J.S.M Anderson McMaster University - Chemistry Department 

Figure 1. The electrostatic potential of a, plotted on the van der Waals surface of 
the molecule. Electrophilic attack occurs on the cyclopentadienyl ring. 
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When the charge of a reagent is small and the molecules being considered 
are soft, one expects that the dominant term in Eq. (17) is associated with the 
Fukui function and, more specifically, the Fukui potential, 75 

v~ (r) =f{ (rldr. (20) 
r-x 

The Fukui potential tends to be largest where the Fukui function is largest, and so 
the Fukui function provides a good indication of the susceptibility of a molecule 
to nucleophilic ( f+ (r)) and electrophilic ( 1- (r)) attack.30

;
76 (The appropriate 

choice of Fukui function is clear from the sign of t!.N ; t!.N > 0 for nucleophilic 
attack and t!.N < 0 for electrophilic attack.) The Fukui function is the density­
functional analogue to the frontier molecular orbitals,31 and so when the dominant 
factors in determining regioselectivity are associated with the Fukui function a 
reaction is said to be "frontier controlled."70 

As an example of a situation where the Fukui function is an appropriate 
measure, consider the lithiation of 3,5-dichloro-N,N-diethyl carboamide (entry b 
in Table 1).77 The lithium atom is nominally neutral (though it is expected to 
have a slight positive charge) and is a soft reagent. We expect, then, that the 
lithiation will be accompanied by substantial charge transfer to b and that 
lithiation will occur at the site that is most able to accommodate additional 
electron density; in short, lithiation is expected to occur where f+ (r) is the 

largest. Figure 2 plots f+ (r) for b on the van der Waals surface of the molecule. 

The observed reactivity preference for the para position is somewhat surprising 
because carboxamides are powerful ortho directors. Lithiation at the para 
position, however, is experimentally observed. The present study reveals that the 
reactivity of bis in fact governed by electronic effects, rather than steric,77 effects. 
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Figure 2. The Fukui function from above, f + (r) , of b, plotted on the van der 

Waals surface of the molecule. Nucleophilic attack occurs para to the 
carboxamide group. 
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In many cases it is unclear whether the Fukui function or electrostatic 
potential terms in Eq. (17) will be dominant. Sometimes the result is surprising. 
Since the proton is the prototypical hard acid, one expects that protonation sites 
will usually be predicted by the electrostatic potential. The electrostatic potential 
for aminoethanol is plotted in Figure 3a. Based on the electrostatic potential, one 
cannot tell whether protonation of the alcohol (OH) or the amine (NH2) will be 
preferred. (See Figure 3a.) The Fukui function from below, f- (r), (shown in 

Figure 3b) is also appropriate in this case (since protonation should be 
accompanied by charge transfer from aminoethanol to the proton). Referring to 
Figure 3b, the Fukui function shows a clear preference for the protonation of the 
amine, which is consistent with experimental observations.78 In this case, then, 
the Fukui function serves as "tie-breaker." 
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(a) (b) 

Figure 3. (a) The electrostatic potential and (b) the Fukui function from below, 


f - (r), of the aminoethanol molecule (molecule c in Table 1 ). Protonation of 


aminoethanol occurs at the nitrogen atom. The color scheme is a spectral scheme 

where darker blue indicates more positive values and light red value indicate more 

negative values. 
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Matters are more subtle when the electrostatic potential and Fukui 
function predict different regioselectivities, as occurs for the thiocyanate anion 
(compound d in Table 1 ). In this case the electrostatic potential would predict 
that electrophilic attack occurs at the nitrogen atom (figure 4a) while 1- (r) is 

largest at the sulfur center (figure 4b ). Similar results are observed for many other 
ambidentate ligands. Based on the preceding analysis, we would predict that in 
"ionic" complexes binding occurs through the nitrogen atom, while in complexes 
with greater covalent character binding occurs through the sulfur atom. This is in 
fact observed. When the electrophile is a very hard Lewis acid (for example, the 
proton or Fe+3 

), llN is relative small and so the term containing the Fukui 
function in Eq. (17) is relatively small. Consequently, SCN- binds to hard Lewis 
acids through the nitrogen center. (Such compounds are called isothiocyanates.) 
Otherwise binding occurs through the sulfur center, forming the more common 
thiocyanate compounds. However, while binding is preferred at either the 
nitrogen or sulfur, in any reasonably large sample one is likely to find both 
isothiocyanates and thiocyanates present. Even for the proton (the prototypical 
hard Lewis acid) some binding through the sulfur occurs, though it is clear from 

the ratio of the acid dissociation constants ( K~:: =660) that binding through the 
Ka 

nitrogen is strongly preferred. 
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(a) (b) 
Figure 4. (a) The electrostatic potential and (b) the Fukui function from below, 

f - (r), of thiocyanate (molecule d in Table 1 ). Reaction with very hard acids 

(e.g. H +, Fe+3
) occurs at the nitrogen atom to form an isothiocyanate compound. 

Softer Lewis acids attack at the sulfur atom. The color scheme is a spectral 
scheme where darker blue indicates more positive values and light red value 
indicate more negative values. 
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II.VI. 	 Electrophilicity and the Quality of 
Leaving Groups 

Often one is most interested in whether a reaction occurs, and not the 
specific product that is formed. In this case global reactivity indicators, which 
quantify the overall reactivity of a molecule, are of greater interest than the site 
reactivity indicators considered in the previous section. The two most important 
global reactivity indicators for predicting the susceptibility to and the type of 
reactions a reagent undergoes are probably the electronic chemical potential 
(electronegativity)29 and the chemical hardness.33 As a rule, a reagent with high 
electronic chemical potential, µ , is a good electron donor, while a reagent with a 
small µ is a good electron acceptor. The chemical hardness, 17, is correlated to 

45 54the stability of a reagent: ; the high reactivity of the alkali metals may be 
attributed to their small chemical hardness. 

The chemical potential and hardness are generally considered intrinsic 
properties of a molecule. This allows one to "order" molecules by their hardness, 
for example, obtaining useful guides for predicting products of chemical 
reactions. Thus, when we quantify the chemical potential and hardness of a 
molecule, we should do so in terms of the properties of the isolated molecule. 
Using the quadratic model for this purpose leads to the definitions in Eqs. (14) 
and (15). 

The chemical potential and chemical hardness are key indicators of the 
overall reactivity of the molecule, in general. When we wish to quantify a 
molecule's susceptibility to a specific type of reaction, other indicators are 
appropriate. Since µ and 17 are the most fundamental descriptors of charge 
transfer in molecular reactivity, it is unsurprising that such indicators can usually 
be written as functions of µ and 17 . 

For example, suppose one wishes to quantify the electrophilicity-the 
ability to accept electrons-of a reagent. (Such a quantity would be useful in 
describing, for example, the propensity of a reagent for attacking nucleophiles.) 
The chemical potential will not do as a measure of electrophilicity: while a 
molecule with low chemical potential is a good electrophile, an extremely hard 
molecule has reduced ability to accept electrons. Consequently, a measure of 
molecular electrophilicity will depend on both the chemical potential and the 
chemical hardness. 
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In keeping with the idea that intrinsic properties of a reagent should be 
defined using properties of the isolated molecule and in the spirit of the preceding 
section, we can model the electrophilicity with a model perturbation. For 
example, the electrophilicity of a molecule should be related to its ability to 
accept electrons from a "model" nucleophile, and the "perfect" nucleophile (that 
is, a reservoir of electrons with zero chemical potential and zero hardness) is the 
obvious (and perhaps the only non-arbitrary) choice. Defining the electrophilicity 
as the change in energy that occurs when a reagent is placed in contact with the 
perfect nucleophile (equivalently, the perfect electron donor) yields 

2 

(JJ = .!:!_ (21 )2TJ • 

This measure of electrophilicity was originally proposed by Maynard, Huang, 
Rice, and Covell79 and justified, using the preceding argument, by Parr, Von 
Szentpaly, and Liu. 80 Note that a molecule that is a good electrophile is a 
molecule with a low (large negative) chemical potential and a small hardness, in 
accord with intuition. The nucleophilicity has been defined as v =-;!;-. 81 

Another property of a chemical reagent is its ability to serve as a leaving 
group in solvolysis or, equivalently, the first stage of an SNl or SEl reaction. For 

example, a good nucleofuge-a molecule with a high nucleofugality82-will 
readily accept an electron from a system, leaving behind a nucleophile. 
Conversely, a good electrofuge-a molecule with a high electrofugality-will 
simultaneously dissociate from a substrate and donate an electron, leaving behind 
an electrophile. One might expect that the electrophilicity is a measure of the 
nucleofugality. However, a nucleofuge must take an entire electron with it upon 
dissociation, while an electrophile has the option of accepting only "a piece of an 
electron" from the reservoir. This suggests that the destabilization that occurs by 
forcing a molecule to accept an entire electron will be related to the 
nucleofugality. Thus, the difference in energy between the product (the anion) 
and the reactant (which we take to be reagent's state in the presence of a perfect 
nucleophile ), 

l1E - ( )((TJ+µ)2)
nucleofuge = sgn T/ + µ 2;;- ' (22) 

is a sort of "activation energy" for the reaction, and a small value of this 
"activation energy" will be associated with a high nucleofugality. This suggests 
that the nucleofugality can be described using the Boltzmann-type form, 

(23) 


where, in order to obtain a scale that readily differentiates nucleofuges of widely 
varying quality, we have defined /JN so that the nucleofugality of the hydride ion 
. I 
IS lo. 
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Insofar as we have indices based on the difference in energy between the neutral 
reagent and the reagent in contact with a perfect nucleophile (electrophilicity) and 
the difference in energy between the anionic reagent and the reagent in contact 
with a perfect nucleophile (nucleofugality), we should complete this family of 
reactivity indicators by defining an index based on the difference in energy 
between the cation and the reagent in the presence of a perfect nucleophile, 

!1E - (µ-,,)' (24)electrofuge - ----z;;- · 
Since !1Eelecrrofuge measures the relative stability of the cation, a small value of 

!1Eelecrrofuge should be associated with high electrofugality. This suggests that one 

define the electrofugality in analogy to Eq. (23), yielding 

(25) 


where PE is chosen so that the electrofugality of the proton is ~. This discussion 1
of the electrofugality and nucleofugality is based on that of Ayers, Anderson, and 
Jawed.83 Figure 5 summarizes the relationship between the electrophilicity, 

!1Enucleofuge' and !1Eelectrofuge • 

55 


http:Jawed.83


1 

Ph.D. Thesis - J.S.M Anderson McMaster University - Chemistry Department 

----1 

0 -1 

electrophilicity 

electrofuge's 
leaving energy 

nucleofuge's 
leaving energy 

~ 
C>.... 
Cl) 
c 
w 

Charge of Molecule 

Figure 5. The quadratic model for the dependence of energy on the molecular 
charge (or, equivalently, the number of electrons), showing the relationship 
between the electrophilicity, Mnuc1eofage, and Meiectrofuge. 
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The appropriateness of the reaction with the "perfect nucleophile" as a 
model for the electrofugality is somewhat suspect, since an electrofuge leaves 
behind a good electrophile, and not a nucleophile. However, the energy of the 
reaction with a perfect electrophile (with µ = -oo and zero hardness) is nominally 
infinite, so this is not a convenient choice of reference. Rather than make an 
arbitrary choice for the chemical potential of the reference electrophile, we opt to 
complete the family of indicators based on the reaction with a perfect nucleophile. 
The definition of the electrofugality is reasonable, however: the electrofugality is 
greatest when the ionization potential ( µ -17 =31 - A :::; 31) is small and the 

hardness is large. Table 2 compares A,E for several alkyl-mercury compounds 

(which may be used as leaving groups to generate carbanions).84 The 
reproduction of the experimentally observed trend in electrofugality confirms the 
practical utility of A,E •85 The electrofugality could be used as an alternative 

measure of nucleophilicity. 
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Table 2. The electrofu ~ali!Y_of alkyl-mer~ com_Q_ounds. 86 

Compound Me1ec1rofage ( eV) electrofugality 
H 15.60 0.10 
H_g_Cl 11.51 0.18 
H_g_Me 8.03 0.31 
H_g_Et 7.63 0.32 
Hg_-iPr 7.39 0.34 
H_g_-tBu 7.29 0.34 
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Support for the present definition of the nucleofugality may be obtained by 
comparing the nucleofugality to experimental measurements of the rate of 
solvolysis of halogenated 1-phenylethyl esters in 80% aqueous ethanol at 
75°C.87 If we assume that rate of solvolysis can be approximated with an 

Plotting this data (cf. Figure 6) yields a line with R =.96, 

Arrhenius-type expression, 
k oc e-PEadivat1on 

so/volysis ' (26) 

then plotting log ( ksolvolysis) versus log (AN) will give a straight line if 
2 

Eactivation oc Mnucieofuge. 


which can be taken as experimental support of the hypothesized relationship 

between the activation energy and Mnucieofuge . Even stronger support comes from 


the slope of the line, which-if Mnucieofuge is equal to the activation energy-­


should equal ~ . Using the slope of the line to approximate the temperature, we 


estimate that the experimental measurements were performed at 344 K, in 

remarkable agreement with the actual value of 348 K. Though the accuracy of 

this prediction should be considered fortuitous, this result testifies to the validity 

of the logic by which we derived the expression, Eq. (23), for the nucleofugality. 


59 




Ph.D. Thesis - J.S.M Anderson McMaster University - Chemistry Department 

Rate of Solvolysis vs. Nucleofugality for Halogens 
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Figure 6. Comparison between the nucleofugality of the halides and rate of 
solvolysis of halogenated 1-phenylethyl esters in 80% aqueous ethanol at 75 
C.87 The value of correlation coefficient ( R 2 =.96) is reasonable, especially 
since the empirical rates span seven orders of magnitude. 

60 




Ph.D. Thesis -J.S.M Anderson McMaster University - Chemistry Department 

II.VII. Conclusion 

It is a known chemical truth that molecules tend to have a set reactivity: a 
molecule has a given acidity or basicity and is subject to nucleophilic attack at 
certain sites and electrophilic attack at certain other sites; it is a good (or a bad) 
leaving group. These properties of the molecule-which are preserved (with rare 
exception) in a variety of reaction environments and with a large number of 
reaction partners-are described and predicted by the perturbative perspective: A 
given molecule tends to have a "universal" response to the approach of a 
positively (or negatively) charged electrophile (or nucleophile), regardless of the 
specific reagent containing the approaching reactive site. A given molecule tends 
to have a "universal" response in response to an electron donor or acceptor, 
regardless of the specific structure of that acceptor donor. Thus, by introducing 
model perturbations that capture the essence of an attacking species, we can 
predict the chemical reactivity of the molecule. 

As particular examples, we have considered the electrostatic potential and 
Fukui function (which are relevant for regioselectivity) and the electrophilicity, 
nucleofugality, and electrofugality (relevant for describing the propensity of a 
substrate towards specific types of reaction). These specific examples show that 
the perturbative perspective is a powerful intuitive tool and, because of its direct 
contact with the important quantities from density-functional theory, represents a 
single theory that describes-both qualitatively and quantitatively-the reactivity 
of molecules. 
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II.VIII. Appendix 

We devote this appendix to a detailed exposition on the functional analytic 
Taylor series, concentrating on the zero-temperature result (Eq. (10)). Equation 
(10) models changes with respect to electron number exactly unless N passes an 
integer value not equal to NA. (Mathematically, the radius of convergence is 

expressed in terms of the floor and ceiling functions, specifically the series 
converges if 

NA ~s not. an integer . ) (27)
NA is an mteger 
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Equation (27) follows from the fact that the energy is a piecewise linear function 
of NA with discontinuities at the integers. For changes in particle number that are 

larger than this, one may proceed by analytic continuation. First use (10) until N 
reaches the next integer past NA ; compute till± for this change. Compute the 

coefficients in the Taylor series for this "intermediate" state; then, calculate the 
effect of further changes in the number of electrons in like manner. Such a 
procedure is exact. 

When a system's properties, Q, are modeled using the grand canonical 
ensemble with positive temperatures, 

Q[v,µ(NA )] =ffQk [VA,N]e-fJ(EdvA,N]-µN) (28) 
N=O k=O 

the energy and its functional derivatives with respect to the external potential are 
analytic functions for 0 ~NA < oo. This follows directly from Eq. (28), where 

Qk [vA, N] denotes the value of the property, Q , for the k 1h-excited state of the N­

electron system with external potential vA, p =k;T, and the chemical potential is 

chosen to reproduce the desired number of electrons. Even at NA= 0, the 

derivatives with respect to N of the energy, density, polarizability kernel, etc. are 
all defined (provided we evaluate the derivatives from the electron-abundant 
side). This means that analytic continuation to negative electron number is 
technically possible, so that the Taylor expansion with respect to NA converges 

for any choice of llN. (Of course it is only for -NA ~ llN < oo that this 

expansion is physically relevant.) 

The more subtle convergence with respect to changes in the external 
potential is best understood by referring to the perturbation series for the 
Hamiltonian 

No 

H(J.) = H[vA (r);NA]+J.L wf (r). (29) 
i=l 

The perturbation series for such operators have been explored mathematically, 
and most of the key results are reviewed in Kato's monograph on the subject.88 

Using analytic continuation, one can evaluate the change in energy at any desired 
value of J. . Computing when a specific series ceases to converge and one must 
reevaluate the coefficients is more difficult, and the most powerful tools require 

information about the resolvent, (H(J. )- E ( , that is frequently difficult to 

obtain. However, a general and helpful rule of thumb is that the series does not 
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converge to A= i if there at some point in the interval A, E (-i,i) there is a 

catastrophic change in either the character of the eigenstate (as from a bound state 
to a state embedded in the continuous spectrum) or if the perturbation is strong 
enough to cause "level crossing" so that the character of the ground state 
fundamentally changes. 89 The most intuitive and physically important case occurs 
when, for some A , the state becomes unbound. In most other cases, the Taylor 
series converges, but may converge to an excited state if level crossing is not 
explicitly accounted for. Just as before, one can find the true change in the 
ground state energy using analytic continuation methods: exploit the power series 
up to its radius of convergence; reevaluate the functional derivatives in the Taylor 
series at the radius of convergence; then, resume progress toward the target 
system. One should note that, in general, at the radius of convergence there 
several states with the same energy, so degenerate perturbation theory must be 
used to evaluate the coefficients. 

There are two problems with the preceding approach. The first is 
pragmatic: the coefficients of cubic and higher order terms in wf (r) are 

difficult to evaluate computationally. These higher order terms are the "kernels" 
that measure the nonlinear respons of a reagent to its environment and such 
"hyperpolarizabilities" are difficult to compute. (For example, evaluating the first 

hyperpolarizability kernel, ov(;.)~:(r'), with perturbation theory requires an accurate 

second-order correction to the wave function.) For describing most molecules, 
the hyperpolarizability is much less important than polarizability, and higher­
order coefficients are important only when the molecule is exposed to very strong 
electric fields. Unfortunately, due to the short distances involved, the electric 
fields to which reagents are exposed during molecule creation are very strong 
(electric fields are on the order of 1011 ~ !), and the hyperpolarizabilities can be 

important. If one truncates the Taylor series after quadratic terms in wf (r), one 

is essentially hoping that the hyperpolarizability does not affect the qualitative 
predictions of the model. Based on the observed utility of the quadratic 
truncation, this seems to be a good assumption. It is also in keeping with a 
general philosophical point: it is undesirable for a method that yields only 
qualitative information to require the same intense computational effort associated 
with highly-accurate quantitative predictions. 

Apart from the problem of computing hyperpolarizability corrections, 
accurately estimating the radius of convergence of the series in the external 
potential is very difficult. The alternative is to use one of the functional analytic 
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analogues to "Taylor's theorem with remainder" for the series in -~uestion. 
9Analogous to the integral form of the remainder is the exact expression90

•

E[vA (r)+wf (r);NA +Ml] 
I (30) 

=E [v A (r); NA J+ J{Ml· µ 1 +fp1 ( r )wt (r) dr} dt ' 
0 

where quantities with a subscript "t" are to be evaluated for the system with 

NA +tMl electrons confined in the external potential v
1 

( r) =v A (r) + twf (r) . 
(At zero temperature one needs to use the appropriate one-sided chemical 
potentials, cf. Eq. (12).) 

While Eq. (30) is useful for computational work, it is often instructive to 
manipulate the more intuitive forms, 

E[vA (r )+wt (r );NA +MlJ=E[vA (r );NA J+711 ·Ml+ fp 1 (r )wt (r )dr (31) 

where the "overbar" indicates that the coefficient is averaged over the change in 
the variable, e.g. 

Pr (r) = .( p 1 ( r) dt . (32) 

When computing the polarizability kernel is unproblematic, it is advanta~eous to 
include the second order term in the Taylor series. The associated form is o;92 

E[vA (r)+ wt (r);NA +MlJ=E[vA (r);NA]+ µ~Ml+ fPA (r)wfdr 
(33) 

1 2f [171 Ml + 2 f.I/ (r) Mlwf (r) dr ] 
+ (l-t) +JfP, (r,r')wt (r )wt (r')drdr' dt 

0 

This result can also be expressed as an average over the "range of perturbation," 
yielding 

E[vA (r)+wt (r);NA +MlJ= E[vA (r);NA]+ µ~Ml+ fPA (r)wtdr 


+Ml2 :rfr +2MI ffr± (r)wf (r)dr+ JfP, (r,r')wf (r)wt (r')drdr' (34) 


-Ml ( t171MI)- 2MI fJ;± (r) twt (r)dr- JJwt (r') P, (r, r') twf (r )drdr'. 


Equations (33) and (34) have been written in a form that suggests both the zero­
temperature generalization (set 17

1 
=0) and the finite-temperature result (in which 

case the ± signs on the chemical potential and the Fukui function are 
unnecessary). 
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Equations (30)-(34) provide elegant methods for avoiding the truncation of 
perturbative expansions, but because they require integration over the entire range 
of the perturbative parameter, the cost of evaluating these expressions is 
dramatically (in principle, infinitely) more than would be required to evaluate the 
truncated Taylor series. In practice, the integrals overt will be approximated by 
efficient numerical quadratures, but a sequence of several quantum chemistry 
computations is still required. Since direct computation of change in energy 
requires only two calculations (one for the reactant and one for the product), one 
may well inquire whether there are any benefits to the perturbative ansatz 
introduced above. The primary benefits are conceptual. Each term in the Taylor 
series corresponds to a particular "response" of the system to a perturbation, the 
Taylor series represents not only the magnitude of the change in energy associated 
with a particular chemical reaction but, more importantly, reveals why the energy 
changes as it does. 

Furthermore, if the change in the number of electrons is small enough, 
only the last three coefficients in the Taylor series in Eq. (33) depend upon the 
specific reaction. The leading coefficients in the perturbative treatment are 
independent of the nature of the reagent with which the molecule interacts, and 
thus are generally characteristic of the reactivity of the molecule in question, 
entirely independent of the specifics of any particular reaction. In this sense, the 
coefficients in the Taylor series are reactivity indicators of the "generic" reactivity 
of a molecular species. Furthermore, using the trapezoidal rule to approximate 
the integrals in Eq. (33), the dependence of the second order terms on the "target" 
of the perturbation series is removed and one recovers the truncated Taylor series, 
Eq. (8). 
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Chapter III 


Conceptual Density-Functional 


Theory for General Chemical 


Reactions, Including Those That Are 


Neither Charge Nor Frontier-Orbital 


Controlled 


I. Theory and Derivation of a 


General-Purpose Reactivity 


•
Indicator* 

* The content of this chapter has been published: J. S. M. Anderson, J. Melin, P. W. Ayers 
"Conceptual density-functional theory for general chemical reactions, including those that are 
neither charge nor frontier-orbital controlled I. Theory and derivation of a general-purpose 
reactivity indicator"; J. Chem. Th. Comp. 2007, 3, 358-374. 
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III.I. Statement of the Problem 

This chapter formulates a new general-purpose reactivity indicator that 
interpolates between the charge-controlled electron-transfer-controlled reactivity 
paradigms. The new indicator is designed to predict which sites in the molecule 
are the most reactive when the reaction is charge controlled, charge-transfer 
controlled, and any combination. To move between these two extremes the 
indicator has two parameters. These parameters are varied by the user based on 
the charge of an incoming reagent and the extent of electron transfer. The 
mathematical underpinnings of the general-purpose reactivity indicator allow us 
to solve some outstanding problems relate to the Hard/Soft Acid/Base principle. 
A side-effect of this analysis is the first rigorous explanation of the 
counterintuitive "minimum Fukui function" rule. In addition, a similarly 
counterintuitive "minimum electrostatic potential" rule is derived and explained. 

III.II. Introduction 

Many qualitative and semi-quantitative methods have been developed for 
predicting how and whether a reaction will take place. Perhaps the most popular 
method of prediction is frontier molecular orbital theory (FM0). 1 This method 
uses the shapes and symmetries of the highest occupied molecular orbital 
(HOMO) and the lowest unoccupied molecular orbital (LUMO) to indicate 
whether a reaction will occur. If the HOMO of the electron donor and the LUMO 
of the electron acceptor have the same shape and phase, then electron transfer 
from the HOMO of the first molecule to the LUMO of the second can occur, often 
forming a bond between the reagents. Kenichi Fukui and Roald Hoffmann shared 
the 1981 Nobel Prize in chemistry for precisely this: showing that the shape2

-
5 

(Fukui) and phase6
-
10 (Hoffmann) of the HOMO and LUMO orbitals is indicative 

of chemical reactivity. 

A primary limitation of the frontier molecular orbital theory approach is 
that it presupposes the validity of the orbital model and thus fails to incorporate 
the effects of electron correlation or orbital relaxation. This motivated the 
definition of a "Fukui function" in the context of density-functional theory (DFT), 
a function that encapsulates the essence of FM011

-
14 but, in principle, includes 

both electron correlation11
;
15 and orbital relaxation. 12

;
16 The Fukui function from 

below, 1- (r), is defined as the change in density that one observes when one 

goes from N to N -1 electrons (with the nuclear positions fixed); in simple 
molecular orbital theory this would give precisely the density of the HOMO 
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orbital. A similar function, I+ (r), can be defined as the difference between the 

electron densities of the N +1 and N electron systems; this is analogous to the 
LUMO orbital density. 

The Fukui function is labeled according to whether the system is acting as 
an electron acceptor or an electron donor. I+ (r) says where an electron (received 

from a perfect electron donor) will add to the molecule. 1- (r) says where an 

electron given to an electron acceptor (a perfect one, if you like) will come from. 
Electron donors tend to attack the molecule where I+ (r) is large because this is 

where the molecule "wants electrons." Electron acceptors tend to attack the 
molecule where 1- (r) is large because this is where the molecule has electrons 

that it is "willing to give up." 11 
;
17 This reasoning, of course, is only valid when the 

transition state lies early enough on the reaction path for the reacting fragments to 
still resemble the isolated reagents. 18 The fact that conceptual DFT tends to work 
even when the transition state is not especially early may be attributed to the 
empirically observed utility of "hill-climbing" methods for locating transition 
states. 19

;
20 

In 1989, Dewar21 listed several nucleophiles where FMO failed to describe 
electrophilic aromatic substitution, including isoquinoline, 1O-hydroxy-10,9­
borazarophenanthrene, and 1O-methyl-10,9-borazarophenanthrene. We attempted 
to explain the reactivity of these molecules using the tools of conceptual DFT but 
it does not seem possible to describe the reactivity of these molecules without 
considering both electron-transfer effects and electrostatic interactions. This 
spurred us to develop a new reactivity indicator that combines the Fukui function 
and the electrostatic potential. The indicator we developed provides a general­
purpose model for chemical reactivity. The purpose of this paper is to derive and 
discuss this reactivity indicator. The second paper in this series will discuss the 
application of the indicator to Dewar's problematic molecules.22 

Before deriving the general-purpose reactivity indicator, we present a brief 
overview of FMO and conceptual DFT in section III. The new reactivity indicator 
is then derived, step-by-step, in section IV. Our model provides a unified picture 
of chemical reactivity and elucidates, among other things, the "minimum Fukui 

. 1 ,,23-24 s . v . fi d"funct1on ru e. ' ect10n summanzes our m mgs. 
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III.III. Theoretical Background 

A. Overview of Frontier Molecular Orbital Theory 

Frontier Molecular Orbital theory (FMO) arises as a simplification of the 
treatment proposed by Coulson and Longuet-Higgins,25

-
28 who used second order 

perturbation theory to describe the interactions between the filled molecular 
orbitals of one reactant and the empty molecular orbitals of the other. The 
interaction energy between the fragments is then 

2 

FMO - [ 1(¢iA) lhAsl¢~B)l 1(¢JB) lhAsl¢~A) )1 J 
EAB - 2 L L (A) (B) + L L (B) (A) . (1) 

ieOAbeV8 Bi -E:b je08 aeVA Bj -80 

Here, {¢;(A)} and { ¢j8 l} are the molecular orbitals of fragments A and B; {ciA)} 

and {c)8 l} are their respective orbital energies, 0 A and 0 8 are the sets of 

occupied molecular orbitals and U A and U 8 are the sets of unoccupied (virtual) 

orbitals in fragments A and B, respectively. hAB denotes the one-electron 

Hamiltonian for the "supermolecule" (A+B) (e.g., the Fock operator in Hartree­
Fock or the Kohn-Sham Hamiltonian in DFT). The numerators in Eq. (1) are 
analogous to resonance integrals in Ruckel theory. 

In general, the most important terms in Eq. (1) are those with the smallest 
denominator. This suggests ignoring terms that do not depend on the frontier 
molecular orbitals, so that 

2 

FMO - [1(¢12Mo lhABl¢lVMo )1 1(¢i:JMO lhABl¢l~MOl J 
(2)EAB - 2 (A) (B) + (B) (A) . 

&HOMO -E:LUMO 8 HOMO -E:LUMO 

IfA (the Lewis acid) is the electron acceptor and B (the Lewis base) is the electron 

donor, then we expect that ciVMo is small and c}:JMo is large. By this argument, 

the second term in Eq. (2) should be larger than the first term. Neglecting the first 
term gives 

(3) 
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This equation is the essential basis for the frontier molecular orbital theory. It is 
only valid when the neglected terms in Eq. (1) (and especially the neglected first 
term in Eq. (2)) are negligible.21 The numerator of Eq. (3) is a sort of"generalized 
resonance integral," and so one can infer, by the usual arguments (e.g., from the 
justification of the Wolfsberg-Helmolz approximation29

), that a large overlap 
between electron-donating and electron-accepting orbitals is favorable. This result 
can also be inferred from a Holder inequality: 

2 2 2 

I
A/ (Bl I A I (A) )1 II 11 II (B) (A) 11\</>HOMO hAB <f>wMo ~ hAB </JHoMo<f>wMo 

2 (4) 

=llhAB 11

2 

( ~(<Pl:JMo (r) )° <PiVMo (r )I dr) 

B. The Fukui Function 

As mentioned before, since the Fukui function contains similar 
information to the frontier molecular orbitals, it can be used to provide a DFT­
based alternative to the standard rationalization of FMO theory. The Fukui 

12 30function, f (r) , is defined as 11
; ; 

(5)1 (r) = [ o~(r)1= [ a~t)1 
Here µ is the electronic chemical potential (equal to minus the electronegativity), 

v( r) is the "external" potential due to the atomic nuclei, p (r) is the electron 

density, and N is the number of electrons. The equality between the functional 
derivative of the chemical potential and the ordinary derivative of the electron 
density arises as a "Maxwell relation."31 

The slope of p (r) as a function of N has discontinuities32
-
34 and thus the 

derivative must be evaluated from above and below (and averaged if necessary). 
This results in a Fukui function appropriate for describing nucleophilic attack, 11 

/+(r)=[ap(r)]+ (6) 
aN v(r) 

and a Fukui function appropriate for describing electrophilic attack, 

1-(r)=[ap(r)]- . (7)
aN v(r) 
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If one writes the electron density as a function of the Kohn-Sham orbitals, 'A (r), 
and orbital occupation numbers, n; , 

p (r) =L
00 

n; I~· (r)I 2 	

(8) 
i=I 

i~HOMO 
n; = {~ 	 (9)

i~LUMO 

then, from Eqs. (6) and (7), one has 12-35' 

f+ (r) =l~UMO (r)1 2 
+ H~O( a1¢~~JI' J+ (10) 

v(r) 

f-(r)=l~0Mo(r)l2 
+ H~o[Ol¢~~)1'J- (11) 

v(r) 

The link to frontier molecular orbital theory is obtained by neglecting the orbital 
relaxation terms, so that 

f+ (r) ~ l~UMo (r )12 	 (12) 

f- (r) ~ l~oMo (r)1
2 

• 	 (13) 

C. 	 Theoretical Description of Electrostatic and Electron­
Transfer Effects 

We have not yet provided a mathematical reason, comparable to Eq. (3), 
for interpreting the Fukui function as a reactivity indicator. To do this, consider 
how the energy of a molecule changes in response to an attacking electrophile. 
The attacking electrophile will take electrons from the molecule (/!JNmolecule < 0 ). 

Additionally, the electrons that remain in the molecule will be perturbed by the 
presence of the reagent: that is, the electrons in the nucleophile will feel an 
additional external potential due to the electrons and nuclei of the electrophile. 
Combining these two effects, the change in the total energy of the molecule 
undergoing attack is 

t.u~ (V,,([)]t.v(r)dr+( 8E)- M 
ov r 8N vrr) 

-	 (14)
t5Ev[v;N] 	 a t5Ev[v;N] 

+~ 	5v(r) l t.v(r)dr+ {ON( 5v(r) )l/v(r)dr}w+.. 
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Here we are using U to denote the potential energy surface for the atomic nuclei. 
Within the Born-Oppenheimer approximation, U =E + Vnn ; that is, U is sum of 

the electronic energy and the nuclear-nuclear repulsion energy. 

The terms in Eq. (14) represent (a) the change in nuclear-nuclear repulsion 
energy, (b) the change in electronic energy due to electron transfer, (c) the change 
in electronic energy due to the change in external potential, and ( d) the cross term 
linking electron transfer to changes in external potential. We will work within an 
exact formulation for the isolated system (e.g., the zero-temperature grand 
canonical ensemble32

), so second and higher-order derivatives with respect to the 
number of electrons vanish.32

;
36 We are neglecting terms including higher-order 

responses to the external potential even though the first term (which models the 
polarization of the system by the approaching electrophile) might be important. 
Polarization effects are commonly neglected in the DFT-based approach to 
chemical reactivity. This is mostly because it is difficult to compute the 
polarizability kernel;37 the success of DFT-based reactivity methods even when 
the polarization term is neglected suggests that the approximation in Eq. (14) is 
often sufficient for qualitative considerations. This success may be rationalized by 
noting that the dominant contribution to polarization arises from induced dipoles 
on the atomic centers, and the resulting interaction is short-ranged and weak38 

compared to the interaction from atomic charges. As such, the polarization 
contribution will ordinarily be an order of magnitude smaller than the energetic 
contributions from the molecular electrostatic potential, so it is often negligible 
for qualitative and semiquantitative purposes. Further evidence for this assertion 
comes from the broad (but not universal!) success of classical molecular dynamics 
that do not include polarization. 

Subject to the approximations inherent in Eq. (14), the change in the 
energy of the nucleophile due to the approaching electrophile is 

~Unucleophile 

= ( - Jnucleophile ) ~ (15) 

- ~ L (Za8 (r - Ra))- Pnucleophile ( r )- ~ln~cleophile ( r )J ~v(r) dr 
Jl aenucleophile 

Here Jnucieophiie is the vertical ionization potential of the molecule, {Za} and {Ra} 

denote the nuclear charges and their positions, and the summation is over all the 
atomic nuclei in the nucleophile. Since the first term in Eq. (15) depends only on 
~ and not on the position of the electrophile, the second term controls the 
regioselectivity of the reaction. 
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There is an exact model for ~v (r) but it is not useful for computational 
39 purposes. ;

4°For reactants that are far apart, exchange and correlation between 
electrons on different subsystems should be negligible, and so we can 
approximate ~v (r) with minus the electrostatic potential of the attacking 

40 41reagent. ; The resulting model for the change in external potential at the point 
rp IS 

L z""(r- R/J )-(Pelectrophile ( r) +(-Ml) f.~ctrophile ( r)) 
~v( rp) ~ - J"Eelectrophile I I dr 

r-rP (16) 

<I> ( ) Ml Jf.~ctrophile ( r) d =- electrophile rp - I I r 
r-rP 

The first term in the second line is the electrostatic potential of the isolated 
electrophile and the second term is the correction to the electrostatic potential 
from electron transfer to the electrophile. In our model, Ml < 0 is the change in 
the number of electrons on the nucleophilic substrate, so the change in electron 
number for the electrophilic reagent is -Ml, which is greater than zero. This sign 
convention anticipates the second paper of this series, 42 where we will use these 
results to describe where nucleophiles are most susceptible to electrophilic attack. 

Just as the energy of the nucleophile is changed by the approaching 
electrophile, the energy of the electrophile is changed by the presence of the 
nucleophile. In analogy to Eq. (15), one has 

~Uelectrophile =( - Aelectrophile ) ( -M/) 

- { L z""(r - R/J )- Pclectrophile ( r )-(-Ml) f.7ectrophile ( r)J ~v(r) dr (l 7)
Jl /JEelectrophile 

Here the change in external potential is due to the electrons and nuclei in the 
nucleophile. Again, we approximate the change in external potential with the 
negative electrostatic potential of the nucleophile as corrected for electron 
transfer, 

L Zat5( r-Ra )-(Pnucleophile ( r) + M/fn~cleophile (r)) 
~v( rp) ~ - JaEnucleophile I I dr 

r-rP (18) 

AT J.fn~cleophile ( f) d<I> A 

nucleophile ( rp ) + LJJ.V I I= - r r-r 
p 

The replacement of Ml in Eqs. (15) and (16) with -Ml in Eqs. (17) and (18) is 
dictated by charge conservation: electrons are transferred from the nucleophile to 
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the electrophile. Equations ( 16) and (18) lead to the identification of the 
electrostatic potential, 

(19) 

and the Fukui potential 

vl(r )= Jf(r) dr (20) 
P jr-rPj 

as key reactivity indicators. Clearly the Fukui potential is only relevant in cases 
where electron transfer is important. The Fukui potential also plays a key role in 
the reactivity model proposed by Berkowitz.43 

Combining Eqs. (15) and ( 17) and correcting for the double-counting of 
interactions gives a model for the interaction energy between the nucleophilic 
substrate and the electrophilic reagent: 

Uint = ( Ae1ec1rophi1e - I nuc1eophi1e ) l1N 

+ r( L Zao (r - Ra)- Pnucleophile ( r )J <I> electrophile ( r) dr 
Jl aEnucleophile (21) 

+!1N J ( feTectrophile ( r) <I> nucleophile ( r) - fo~cleophile ( r) <I> electrophile ( r))dr 
-(11N)2 ff fn~cleophile ( r) feTectrophile ( r') drdr' 

lr-r'I 
The first term in this equation is a constant, and does not affect site selectivity. 
The next term reflects the electrostatic interactions between electrophiles and 
nucleophiles: because the active sites of electrophiles are usually positively 
charged while the reactive sites of nucleophiles are usually negatively charged, 
this term is usually negative. That is, electrostatic effects are usually attractive. 
This is in marked contrast to the terms in the third line of Eq. (21). Because 

!1N < 0, if fe7ecirophiie ( r) > 0 at the reactive site of the electrophile and the reactive 

site of the nucleophile is negatively charged (so that <I> nucieophile ( r) < 0 ), then the 

first term in the third line of Eq. (21) is usually positive. Similarly, the second 

term in the third line of Eq. (21) is usually positive because fo~c1eophiie ( r) > 0 at the 

active site of the nucleophile and the active site of the electrophile is usually 
positively charged (so that <I> eiectrophile { r) > 0 ). The third line of Eq. (21 ), then, 

reflects the fact that charge transfer from the nucleophile to the electrophile helps 
to equalize the charges of the reagents, which reduces the electrostatic attraction 
between them. The fourth line of Eq. (21) will generally be negative. The 
expression in the fourth line plays a key role in the theory of electron transfer 
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proposed by Berkowitz.44 Of all the terms in Eq. (21), this is the term that most 
closely resembles the results from frontier molecular orbital theory. In fact, an 
expression very similar to Eq. (4) can be derived: 

JJ!n~cleophilc ( r) feTectrophile ( r') d dr' < _1_ IJi,- ( ) r(+) ( ) drl
'I r - I 'I nucleophile r J electrophile rr-r r-rI 

1 ~ (B) 121 (A) 12~ lr-r'I Jl¢HoMo(r) ¢wMo(r) dr 
(22) 

:5 Ir ~r'I If(¢J~MO (r)r¢)~MO (rJar[' 
:5 Ir ~r'I (~(¢)~MO (r)r¢)~MO (ri[ar)' 

Reactants will approach each other in a way that minimizes the interaction energy. 
That is, the more negative the interaction energy, the stronger the attraction 
between reagents and the greater their susceptibility to reaction. Coulson and 
Longuet-Higgins used perturbation theory and molecular orbital theory to derive a 
formula for the interaction energy between two separated reagents; this led them 
to Eq. (1). Equation (21) is a just a density-functional theory inspired 
reformulation of perturbation theory about the separated reagent limit. Reactivity 
indicators based on these formulae might be unreliable when the transition state 
occurs late in the reaction, because in those cases the molecular geometry in the 
transition state may not resemble the isolated reagents. 

Some readers may find it surprising that the electrostatic potential enters 
into Eq. (21) in such a natural way. Traditionally, the electrostatic potential has 
not been considered a reactivity index associated with conceptual DFT.45 

However, it is evident from the preceding analysis that whenever the change in 
the potential energy surface due to the electrostatic potential is addressed,46 

J r5U 
-(-)r5v(r)dr, (23)
r5v r 

the electrostatic potential enters into conceptual DFT in a very natural way. 
Evaluating expressions like Eq. (23) requires evaluating the functional derivative 
of the nuclear-nuclear repulsion energy with respect to changes in external 
potential. Evaluating that functional derivative is a nontrivial mathematical 
exercise; details can be found in Appendix A. This analysis helps provide a 
theoretical foundation for recent work relating "conventional" DPT-based 
reactivity indicators to the electrostatic potential.47

;
48 
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III.IV. 	 A General-Purpose Model for Chemical 
Reactivity 

A. The Reactive Site Interaction Model 

In general, the regioselective preferences of a nucleophile undergoing 
electrophilic attack are preserved across a broad range of electrophilic partners. 
Since the specific identity of the electror,hile is not critical, we can replace the 

49 5electrophile by a "model perturbation." 4
; ; o Presuming that the reactivity is 

dominated by the properties at the active site, we will represent the electrostatic 
potential of the electrophile as the electrostatic potential due to the charge on the 
reactive site 

(0) 
<I> ( ) qelectrophile (24)

electrophile r ~ I - R I 
r electrophile 

and, similarly, replace the Fukui function with its "condensed" value,51
;
52 

.r.,;ectrophi1e ( r) ~ .r.,\;l1rophi1et5 ( r - Re1ec1rophi1e) 

=(q~~c1rophi1e - q~~trophiie ) o(r - Re1ectrophi1e ) 

(25) 

(O) d (+) d h ffi . h th . . fHere, 	qeiectrophile an qeiectrophiie enote t e e ective c arges on e reactive site o 

the electrophile and the electrophile with an additional electron. If the Fukui 
function is approximated by Eq. (25), then the equation for the Fukui potential 
becomes: 

+(+) (0) (+) 
r ( ) - J electrophile - qelectrophile - qelectrophile (26) 

velectrophile r -1 -R I - I R I 
r electrophile r - electrophile 

Models based on Eqs. (24)-(26) should be accurate for atomic cations (where 

q~~trophiie =!.,\~1rophiie =+1 ) and reasonable for molecular electrophiles, though in 

that case it will be important that the "effective charge" and "effective condensed 
Fukui function" on the reactive site might not equal the atomic quantities, but 
might instead represent a partial sum over several atoms in the vicinity of the 
reactive site. With that caveat, this model should be reasonably realistic whenever 
the reagents are very far apart, so that the overlaps between their electron 
distributions and Fukui functions are negligible. Using these approximations, the 
interaction energy between a nucleophile and a model electrophile whose reactive 

site is (a) located at the point rP, (b) has charge q~~l1rophile' and (c) has condensed 

Fukui function .r.,\;l1rophiie becomes 
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Uint ( rP ) ~ ( Ae1ec1rophi1e - I nuc1eophi1e ) l1N 
(o) r+(+) ) ( )+( qelectrophile + /'t.N.J electrophile <I> nucleophile rp (27) 

(o) r+(+) ) r ( )
-/'t;.N ( qelectrophile + /'t.N.J electrophile vnucleophile rp • 

This "single reactive site interaction model" is easily generalized to cases where 
multiple reactive sites need to be considered: simply sum over the effective 
charges and effective condensed Fukui functions51 on all the relevant sites, 

Uint ~ ( Ae1ec1rophile - I nuc1eophi1e ) l1N 
( q~o) + MfJ+) )qi0) 

+ :L :L 	 (28) 
fiEelectrophile aEnucleophile Ra ­I 	 R p I 

( q~O) + Mf)+))1;-) 
-/'t.N :L :L 

fiEelectrophile aEnucleophile IRa - Rp I 
Again, smaller (more negative) Uint represents greater attraction between reagents 

and indicates greater reactivity. 

Insofar as we are modeling the attacking reagent with a point charge, these 

expressions for Uint ( rP) are similar to the indicator of Brnnsted-Lowry acidity 

introduced in reference 53
, though the Taylor series expansion in that work 

includes higher-order terms in the external potential and does not include the 
electron transfer contribution. The present model is not restricted to charges of 
unit magnitude, and in that sense is more like the single-interaction site point 
charge model that recently was used to elucidate the Hard/Soft Acid/Base 
principle.54 More generally, models resembling this one are commonly 
encountered when the so-called f:erturbative perspective on conceptual density­

37 5 52 55 56functional theory is utilized.1 
; ; 0; ; ; This sort of analysis, with its 

fundamental link to the Taylor series expansion to the energy and the use of 
"model perturbations" to define reactivity indicators, grew out of the work of De 

57 61Proft, Liu, Nalewajski, Parr and Senet, among others.31
; ­

B. 	 Deriving A General-Purpose Reactivity Indicator for 
Nucleophiles 

Equation (27) provides the basis for a general purpose reactivity indicator 
for nucleophiles. Note, first of all, that the key parameter, 

- - (o) r+(+) 
K = qelectrophile + /'t.N.J electrophile ' 	 (29) 
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modulates the electrostatic and Fukui function contributions to the interaction 
energy. Insert the definition of K into Eq. (27), and note that the first term in Eq. 
(27) does not depend on the position, rP . One obtains 

3~$0 (rp) = i<( <I> nucleophile ( rp )-M'vt:cleophile ( rp))' (30) 

which is a regioselectivity indicator for electrophilic attack. A nucleophile will be 

most reactive in places where 3~so (rP) is small (most negative) because 

electrophilic attack at those sites is energetically favorable. 

Equation (30) uses the reaction site interaction model to provide simple 
approximations to the complicated integral expressions in Eq. (21). But this is too 
simple. In particular, the reactive site interaction model is more accurate for some 
integrals than it is for others. The model typically underestimates the integrals 
because interactions between the asymptotic tails of the electron densities and the 
Fukui functions are neglected. Moreover, this error is largest for the integrals 
containing Fukui functions (which are concentrated on the periphery of the 
reagents). This implies that the reactive site interaction model is better at 
describing the interaction of the electrophile with the electrostatic potential 
(which contains the potential due to the electron density) than it is at describing 
the interaction of the electrophile with the Fukui potential. If we correct Eq. (30) 
for the errors associated with the reaction site interaction model, then we obtain 
an expression of the form, 

3~$0 (rp) =(K+ Gp )<I>nucleophile ( rp )-(K+ 81 )M'v!.,~leophile ( rp). (31) 

Here sP corrects for the errors incurred by the reactive-site approximation for the 

electron density and &1 corrects for the error incurred by the reactive-site 

approximation for the Fukui function. According to the preceding arguments, 
&1 <&P. (32) 

Usually both s1 and &P are negative. Appendix B provides a full accounting of 

the error terms. 

We cannot evaluate these error terms within the context of the reactive site 
interaction model. It is certainly true that the errors are small when the molecules 
are far apart and that the error "correction" terms dominate when the molecules 
are close together. When the molecules are in van-der-Waals contact, one suspects 
that the error terms make significant corrections to K . 

Our goal is to derive a qualitative indicator of chemical reactivity. Note that 
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- - (o) A 11.rr(+) h · f 1 · h b h• 	 K = qelectrophile + LJ..lVJ electrophile as units 0 e ectnc c arge ecause t e 

charge and the condensed Fukui function of the electrophile's 
reactive site both have units of electric charge. 

• 	 K is of order unity if one measures it in terms of the magnitude of 
charge on the electron, e. This is because e is the natural unit for 
expressing the charge and the condensed Fukui function of the 
electrophile's reactive site. 

• 	 We can eliminate the unknown error terms by introducing a new 
scale of electric charge, with the new unit of charge defined by 

(33) 


We then define 
K=K+t:p-1. (34) 

This definition "sets the zero" of a scale for K. Specifically, K =0 
occurs when electrostatic and electron-transfer effects are perfectly 
balanced. 

Using these relations, we can eliminate the unknown error terms from Eq. (31). 
This results in a general-purpose regioselectivity indicator for nucleophiles: 

3~$0 ( rp) = (K +1)<I>nucleophile ( rp )-(K-l) Mv~u~leophile ( rp). (35) 

There is another way to think derive Eq. (35): starting with Eq. (31 ), choose the 
unit of energy and the zero of energy so that the unknown error terms are 
eliminated. (Notice, however, that energy scale one defines depends what 
position, rP, in the molecule is being considered.) 

Equation (35) is our general-purpose reactivity indicator. Because 

3~,,0 ( rP) is a qualitative measure of the interaction energy of the nucleophile 

with an electrophile at the point rP, the nucleophile will be most reactive where 

3~,,0 ( rP) is most negative. 

Equation (35) is the most conceptually transparent form for our indicator. 
However, for computational applications, we find it convenient to compute the 

indicator from the electrostatic potential of the nucleophile, <l>~~cleophile ( r), and the 

electrostatic potential of the nucleophile with one electron removed, <l>~~leophile ( r) : 

3~,,0 ( rp) = (1 + K+ illY(K-l))<I>~~cleophile (rp )-illY(K-l)<l>~~leophile (rp). (36) 

Using this expression, our reactivity indicator can be evaluated using any popular 

quantum chemistry package. Remember that 3~,,0 ( rP) models the interaction 
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energy, so the nucleophile is most reactive where 3~,,0 ( rP) has the smallest 

(most negative) values. 

The key to deriving Eq. (36) is to note that the Fukui potential (and the 
Fukui function) can be computed from the electrostatic potentials of the 

nucleophile, <I>~~cieophiie ( r) and the electrostatic potential of the nucleophile with 

one electron removed, <I>~~Ieophiie ( r). Specifically, 

r ( ) = Jf.,~cleophile ( r) dr - fp~~~leophile ( r)- p~=~leophile ( r) d 
vnucleophile r - I I - I I rr-rP r-rP 

- (-) ( ) (0) ( )
- <I> nucleophile r p - <I> nucleophile r p (37) 

f.,~cleophile ( r) = 4~ V2 
( <I>~~leophile ( r )- <I>~~~leophile ( r)) 

Equation (35) or, equivalently, Eq. (36), is our general-purpose reactivity model 
for nucleophiles. Because of the way we have accommodated the error terms in 
Eq. (31), this is only a qualitative model for reactivity. One could derive other 
models with qualitatively similar behavior but somewhat different functional 
forms. We selected this form because it has an appealing symmetry and because it 
is easy to interpret (using Eq. (35)) and apply (using Eq. (36)). 

3~,,0 ( rP) depends on two parameters, l1N (measuring the extent of electron 

donation) and K (measuring the relative importance of electrostatic effects and 
electron-transfer effects). K =1 corresponds to pure electrostatic control; K =-1 
corresponds to pure electron-transfer (or Fukui-function) control. K =0 
corresponds to a perfect balance between electrostatic and electron-transfer 
control. 

The change of units that accompanies the elimination of the error terms 
means that K -:t:- i(. However, if the error terms are not too big, K will be 

approximately proportional to i(. We denote this Koci(. This insight gives us a 

working approximation for K (cf. Eq. (29)), namely, 

oc (0) !J.N.+(+)
K _ qelectrophile + 'J electrophile • (38) 

When the charge on the electrophile is very large, we still expect to see 
electrostatically controlled reactivity. Similarly, when the charge on the 
electrophile's reactive site is small compared with the extent of electron transfer 

to the reactive site ( q~~trophiie s; lml J;,\~1rophile ), the reaction is electron-transfer 

controlled. 

83 




Ph.D. Thesis - J.S.M Anderson McMaster University - Chemistry Department 

Like K, K has units of electric charge and order of magnitude unity. 
Equation (38) is an approximate proportionality and it is useful for elucidating 
how a nucleophile' s reactivity depends on the charge and condensed Fukui 
function of an electrophile's reactive site. However, Eq. (38) is not a quantitative 
formula for K . Determining the value of K that is most appropriate for a given 
reaction is sensitive to (a) the inherent errors in the reactive site interaction model 
and (b) molecular polarization and other effects that are neglected in this analysis. 
However, Eq. (38) should be sufficient to indicate whether K is "large and 
positive", "small and positive", "almost zero'', "small and negative, or "large and 
negative." Section III.F. contains a detailed discussion of each of these cases. 

C. 	 A General-Purpose Reactivity Indicator for 
Electrophiles 

There is clearly an analogous indicator for electrophiles. Specifically, one has 

3~;o,o (rp):: -(K +1) <l> electrophile ( rp) + ~ (K-1) vfi:ctrophile ( rp)' (39) 

where the Fukui potential for the electrophile is given by 

r ( ) = Jt.,;ectrophile ( r) d _ JP!~1roophi1e ( r )- P!~ctroophile ( r) dr 
velectrophile r - I I r - I Ir-rP 	 r-rP 

=<I> ~~:ctrophile ( rp )- <I> ~;}ctrophile ( rp ) 	 ( 40) 
2 

fe7ectrophile ( r) = 4~ v (<I> ~;}ctrophile ( r) - <I> ~~}ctrophile ( r)) 
The appropriate values of K are the same as before: K 2 1 (electrostatic control); 
K :::;; -1 (electron-transfer control), and -1 < K < 1 (intermediate). Corresponding 
to Eq. (38), we can say that K is approximately proportional to 

(o) A r..rrH H (o) · h h h · · f h-qnucleophile - LJ.l VJ nucleophile • ere qnucleophile lS t e C arge On t e reactive Slte 0 t e 

nucleophile, and is typically negative. .fnSjeophile is the condensed Fukui function 

from below at the reactive site of the nucleophile. It would be shocking to observe 
· l ti rH 52;62-66a negative va ue or J nucleophile • 

D. The Condensed General-Purpose Reactivity Indices 

Because local reactivity indicators vary on a point-by-point basis, it is often 
convenient to "condense" their values to atomic sites.51

;
52 A condensed indicator 

related to 3~ ( rP) follows directly from the fitting of the electrostatic potential to 

atomic charges. Specifically, the electrostatic potential can be expanded in an 
asymptotic series of atomic multipoles. Truncating the multipole expansion after 
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the monopoles yields an expression for the electrostatic potential in terms of 
atomic charges, 

(0) 
<I>(O) 	 ( ) ~ qnucleophile,a 

nucleophile r - ~ I R I 
aenucleophile r - a (41)(-) 

<I>(-) ( )- ~ qnucleophile,a 
nucleophile r ~ I R I 

aenucleophile r - a 

These expressions are not very accurate close to the molecule. For example, these 
expressions do not reproduce the correct singularity at the atomic nuclei. 
However, the relevant values of a local reactivity indicator occur far from the 
molecule, on a "reactivity surface" that represents how closely two reagents can 
approach each other and still retain their separate identities. Not only do 
expressions like Eq. (41) suffice for this purpose, condensed expressions are 
actually preferable because they "average over" the irrelevant fine structure of the 
spatially varying indicators. 52 

"Condensed" expressions for the Fukui potential are easily constructed 
from Eqs. (37), (40), and (41), 

r ( ) - ~ f,,~cleophile,a 
vnucleophile r ~ I R I (42)aenucleophile r - a 

I'- - (-) (0) 
J nucleophile.a - qnucleophile,a - qnucleophile,a 

r ( ) ~ .r.;ectrophile,a 
velectrophile r - ~ I R I 

aeelectrophile r - a (43) 
f+ - (0) (+) 

J electrophile,a - qelectrophile,a - qelectrophile,a

J: are called the condensed Fukui functions. 51 We can now write asymptotic 

expressions for the reactivity indicators proposed in this paper. For nucleophiles, 

s~,,o ( rp )- I 
~K 

l!:.,w,,o.al 

aenuc1eophite r - Ra 

3~,:;o,a = ( K +1) q~~~leophile,a - Mf (K-1) fo~cleophile,a ( 44) 

= ( 1+ K +Mf (K-1)) q~~~leophile,a - Mf (K -1) q~:~leophile,a · 
For electrophiles, 

s~,,o ( rp )- I ls~,,o.al 
aeetectrophite r - Ra 

3~;,o,a =-(K +1) q~~ctrophile,a +Mf (K-1) .r.;ectrophile,a ( 45) 
=(Mi (K -1)- K -1) q!~ctrophile,a - Ml (K -1) q!~trophite,a • 
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Nucleophiles will be susceptible to electrophilic attack at the atomic sites where 
3~,,o,a is small, and ideally negative. Electrophiles will be susceptible to 

nucleophilic attack at the atomic sites where 3~~o.a is small. 

E. 	 Single-Parameter Variants of the General-Purpose 
Reactivity Indicator 

Because our general-purpose reactivity indicator, 3~ (r), depends on two 

parameters ( K and l1N ), it is sometimes difficult to visualize the wealth of 
information it contains. In some contexts, then, it would be convenient to use a 
variant of 3~ (r) that depended only on the amount of electron transfer, since 

that is easily computed using electronegativity equalization schemes. Since the 
appropriate value of K varies depending on the amount of electron transfer, one 
could introduce a one-parameter model by setting 

(46)K-D~;~~~ 
This model correctly predicts electrostatic control when l1N ~ 0 and electron­
transfer control when l1N ~ ±1. Using Eq. (46), one obtains one-parameter 
models for the reactivity of nucleophiles 

231:;~ (rp) =2 [ ( 1+11N) <I> nuclcophile ( rp )-(11N) v!:cleophile ( rp)J ( 47) 

and electrophiles 

3~~ (rp) = 2 [ (MY -1) <I> e1ectrophne ( rp )-(!1N)
2 

vfi:c1rophi1e ( rp)] · (48) 

While these single-parameter models are simpler than their two-parameter 
counterparts, our preliminary investigations indicate that in molecules with 
multiple reactive sites, the single parameter models sometimes fail to identify one 
or more reactive sites. For this reason, we will focus on the more general two­
parameter models. 

F. General-Purpose Reactivity Indicators: Discussion 

We now discuss the interpretation of the general-purpose reactivity indicators for 
nucleophiles, 

3~,;;o (r) := ( K +1) <I> nucleophile ( r)- /1N (K-1) v!:i~Ieophile ( r)' (49) 

and electrophiles, 

3~~0 (r) := -(K +1) <I> electrophile ( r) + /1N (K-1) vfi:ctrophile ( r) · (50) 
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These indicators are designed to reproduce the qualitative features of the 
molecular interaction energy expression that we derived in section II.C., namely, 

Vint = ( Aelectrophile - Jnucleophile ) /1N 

+ r( L Za 0 {r - Ra ) - Pnucleophile { r )J <I> electrophile {r) dr 
Jl aenucleophile (51) 

+!1N f(f.Tectrophile (r) <1> nucleophile (r) - f..~c1eophile (r) <1> electrophile (r))dr 

-(11N)2 ff ln~cleophile (r) f.Tectrophile (r') drdr' 
lr-r'I 

Negative values of the interaction energy, Vint, are associated with favorable 

interactions between the electrophile and the nucleophile. Similarly, molecules 

will be most highly reactive where 2~ (r) is the smallest. 

In accord with a suggestion by Langenaeker, De Proft, and Geerlings,67 

each of our reactivity indicators is a linear combination of an appropriate 
reactivity index for hard-hard interactions (the electrostatic potential) and an 
appropriate reactivity index for soft-soft interactions (the Fukui function). The 
relative importance of these two contributions is controlled by the extent of 
charge transfer and the charge on the reactive site of the attacking reagent, as it 

should be. These are the key ingredients that make 2~ (rP) a true general-

purpose reactivity indicator: it can model the extreme cases of electrostatic and 
electron-transfer control, but it can also model the "in between" cases. We will 
now explore each of these cases in more detail. In the interest of specificity and 
brevity, the following discussion is focused on the reactivity of nucleophiles. The 
results for electrophiles are broadly similar. 

Case 1: Electrostatically Controlled Reactions; K;::: 1 
Electrostatically controlled (also called charge controlled) reactions are 

typified by: 

(a) The reagents have large charges (so q~~trophile » 0, <I> nucleophile ( rp) « 0 ). 

(b) Reactivity does not necessarily occur in places where the Fukui 

functions are large. ( J.~:11rophile may not be very big.) 

(c) Charge transfer between reagents is minimal ( !1N ~ 0 ). 
Under these conditions, K is greater than, or approximately equal to, one. We call 
the case K =1 "pure electrostatic control" and the case K > 1 "strong electrostatic 
control." 

Case lA: Pure Electrostatic Control; K =1 . 

When K=l, 
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2:;',,o (rp) = 2<1> nucleophile ( rp) (52) 

Thus, for purely electrostatically controlled reactions, the appropriate reactivity 
indicator is the electrostatic potential. Furthermore, using the condensed version 
of the indicator, 

";;"K=l - 2 (0) (53)
~!'.N,;;O,a - qnucleophile,a 

we infer that in the limit of pure electrostatic control, nucleophiles react at the 
most negatively charged atomic site. (For electrophiles, the most reactive sites are 
those where the electrostatic potential/atomic charge is most positive.) 

Case lB: Strong Electrostatic Control; K > 1 . 
When K > 1, the second term in Eq. ( 49) is usually very small because 
K -1 < K +1 and because the extent of electron transfer is very small ( M ~ 0 ). 
For this reason, there can be no doubt that the most appropriate reactivity 
indicator for electrostatically controlled reactions is the electrostatic potential. 24

;
68 

What happens if there are two sites that are equivalent from an electrostatic 
perspective? Because -M{K-1) > 0 whenever K > 1, 3~1,,0 will be smallest in 

those places where the Fukui potential is the smallest. Insofar as the Fukui 
potential is smallest in places where the Fukui function is also small, this suggests 
that: for reactions that are strongly electrostatically controlled, if there are two 
reactive sites with the same electrostatic favorability, then the site with minimum 
Fukui .function is the most favorable. This rule can also be derived from the 
condensed version of our indicator. In that case: For electrophilic attack 
occurring under conditions associated with strong electrostatic control of 
chemical reactivity, a nucleophile possessing two sites with equal negative charge 
will be most reactive at the site with smallest condensed Fukui function. These 
rules might be called "Minimum Fukui Function Tie-Breaking Rules" because 
they indicate that if a reaction is strongly electrostatically controlled and there are 
two sites with equivalent electrostatic properties (and also other properties, 
notably including polarizability), then minimizing the Fukui function serves as a 
"tie-breaker" between the two equivalent sites. 

In 1995, Li and Evans proposed that hard-hard interactions occur where 
the Fukui function is small.23 This counterintuitive result started a debate in the 

69 71literature.24
; - Our analysis establishes that it is true that sometimes having a 

small value for the Fukui function is favorable for reactivity, but the conditions 
under which this rule is valid are rather limited. There might be cases where the 
minimum Fukui function tie-breaker is decisive in determining the reactivity. 
However, the second term in Eq. (49) is usually much smaller than the first term, 
so the minimum Fukui function tie-breaker will only be operative when two hard 
reagents interact (so that M ~ 0 ), the electrophile is highly charged (so that 
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q~~trophiie, and thus K, is large), and the nucleophile has two reactive sites with 

very similar electrostatic profiles. Unless the possible reaction sites are very 
similar electrostatically, the weak dependence of 3~1,,0 on the Fukui function will 

not be decisive. 

Even when it appears that the tie-breaking rule should apply, it may not. 
Because the dependence on the Fukui function is so weak, some of the 
interactions that were neglected in our model might be more important for 
determining the nucleophile's reactivity. The most important of these neglected 
interactions is probably the .polarizability. Consider the Berkowitz-Parr formula 
for the polarizability kernel, 3 ;n 

( c5v(rf!v(r'il ~ ( c5v(rf!v(r')], +(~:L /(r)/(r'), <54l 

or the approximate formula for the polarizability kernel based on the Kohn-Sham 
. . c. 37·73nomnteractmg re1erence system · 

( 8 ( ~: ( ')] ~Z:~n1=n;¢;*(r)¢1(r)¢;(r')¢;(r')
v r v r N , J*' s1 &; 

~ -¢~OMO (r )¢wMO (r )¢;UMO (r')¢HOMO (r') (55) 

&HOMO - &LUMO 
¢;uMO (r) ¢HOMO (r) ¢~OMO (r')¢wMo (r') 

&HOMO -&LUMO 
From these formulae, it is clear that a molecule tends to be most polarizable where 
the Fukui function (Eq. (54)) and the frontier orbitals (Eq. (55)) have a large 
amplitude. Given that strong electrostatic control will only occur for highly 
charged electrophiles, the second order response to the change in external 
potential might not be especially small. Consequently, polarization effects may 
well cancel out, or even reverse, the predictions that would be obtained by naively 
applying the minimum Fukui function tie-breaker. 

The idea that the minimum Fukui function might correspond to the most 
reactive site goes against conventional wisdom, but it can be simply explained 
using the fundamental equation for the interaction energy, (51). Note that 

• 	 The first line of this equation is a constant, and does not influence 
regioselectivity. 

• 	 The second line of Eq. (51) models the electrostatic attraction between the 
electrophile and the nucleophile. If we are in a "tie-breaking" situation, 
this term is the same for electrophilic attack at both reactive sites. Thus, 
although the electrostatic interaction in the second line of this equation 
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makes the biggest contribution to the interaction energy, it doesn't 
determine the regioselectivity. 

• 	 Recall from our discussion of Eq. (51) that both terms on the third line are 
positive. 

• 	 The first term on the third line of ( 51) does not distinguish between 
electrostatically equivalent sites on the nucleophile. 

• 	 The term on the fourth line of Eq. (51) is negligible. Ifwe are in a strongly 
electrostatically controlled regime the extent of electron transfer is small 

and so the ( !:l.N)2 term is entirely negligible. (The fourth term might be 

important if a "second tie-breaker" was needed, though.) 
The remaining term in Eq. (51) must determine the regioselectivity. This term­
the second term on the third line ofEq. (51)---can be rewritten as 

-/:l.N Jfn~cleophile ( r) <I> electrophile ( r)dr (56) 

Eq. (56) models how electron transfer quenches the electrostatic attraction 
between the nucleophile and the electrophile. The quenching arises because after 
the nucleophile donates electrons to the electrophile, the electron density on the 
nucleophile decreases by !:l.Nfn~cleophile ( r) . Because the reactive sites of the 

nucleophile are less negatively charged after the electron transfer, the electrostatic 
attraction between the nucleophile and the electrophile is weaker after electron 
transfer than it was before. If electron transfer quenches the electrostatic attraction 

at one interaction site more than the other, ( fn~cleophile ( r1) > fn~cleophile ( r2 ) ), then the 

second interaction site-the one with "minimum Fukui function"-will be the 
most favorable reactive site. 

It should be stressed, again, that the minimum Fukui function rule is a "tie­
breaking" rule; it is not a general purpose reactivity rule. The minimum Fukui 
function rule applies only when: 

1. 	 The reaction is strongly electrostatically controlled reactions. (The fourth 
term in Eq. (51) must be negligible!) 

2. 	 Multiple reactive sites are equivalent electrostatically. (The first term in 
Eq. (51) and the first term on the third line in Eq. (51) must fail to 
distinguish between the reactive sites.) 

3. 	 The Fukui-function term (the second term on the third line in Eq. (51)) is 
more important than the effects, like polarization, that are neglected by our 
model. 
A minimum Fukui function tie-breaker is also operative in strongly 

electrostatically controlled nucleophilic attacks on electrophiles. In that case, it is 
the first term on the third line in Eq. (51) that determines the regioselectivity. 
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Case 2: Electron-transfer Controlled Reactions; K::;; -1 
Electron-transfer controlled (also called Fukui-function controlled and 

frontier-orbital controlled) reactions are typified by: 

(a) The reactive sites have small charges. (So q(o) - 0 andelectrophile ­

<l> nucleophile ( rp ) ~ 0 . ) 

(b) Reactivity occurs where the Fukui functions are large ( f.~~trophiie » 0 ). 

(c) Electron transfer between reagents is significant (MY~ -1 ). 
Under these conditions, K is less than, or approximately equal to, minus one. We 
call the case K = -1 "pure electron-transfer control" and the case K < -1 "strong 
electron-transfer control." 

Case 2A: Pure Electron-Transfer Control; K =-1 
When K=-1, 

3~~~ { rP) = 2MYv:U~Ieophiie { rP) (57) 

Thus, for pure electron-transfer controlled reactions, the appropriate reactivity 
indicator is the Fukui function's potential. Because MY< 0, the preferred reactive 
site is the location where the Fukui potential is the largest. Because the Fukui 
potential is usually large in the same places that the Fukui function is large, 
electron-transfer controlled reactions tend to occur where Fukui function is large. 

For the condensed version of the general-purpose reactivity indicator, 

3~~~.a = 2MYfo~cleophile,a • (58) 

Based on this, we infer that for pure electron transfer control, the atomic site with 
the largest condensed Fukui function is the most reactive. The situation for 
electrophiles is essentially the same, but in that case it is the Fukui function from 

above, f.;ectrophiie,a , that is relevant. 

Case 2B: Strong Electron-Transfer Control; K < -1 
When K < -1, the magnitude of the first term in Eq. ( 49) is usually much 

smaller than the second term because IK - II > IK + 11 and the nucleophile is not 

highly charged in electron-transfer controlled reactions ( q~~~Ieophiie,a ~ 0 ). For this 

reason, there can be no doubt that the most appropriate reactivity indicator for 
electron-transfer controlled reactions is the Fukui potential or, alternatively, the 

68Fukui function. 24
; 

What happens if there are two sites that have equivalent values of the 
Fukui potential? Because K +1< 0 whenever K < -1, 2:,~'o will be smallest in 

91 




Ph.D. Thesis -J.S.M Anderson McMaster University - Chemistry Department 

those places where the electrostatic potential, <I> nuc1eophiie ( rP) , is the largest. That 

is, reactivity will be favored at the more positive (or less negative) reactive sites. 
This counterintuitive electrostatic potential tie-breaker is the analogue of the 
mm1mum fukui function tie-breaker for strongly electron-transfer controlled 
reactions. 

For nucleophiles, the "Electrostatic Potential Tie-Breaking Rule" states 
that: if an electrophilic attack reaction on a nucleophile is strongly electron­
transfer controlled and if there are two reactive sites with the same Fukui 
potential, then the site with the greatest electrostatic potential is the most 
favorable. This principle can be restated in terms of condensed reactivity 
indicators: for electrophilic attack occurring under conditions associated with 
strong electron-transfer control of chemical reactivity, a nucleophile possessing 
two sites with equal condensed Fukui function will be most reactive at the site 
with greatest charge. 

The analogous tie-breaking rule for electrophiles is: If a nucleophilic 
attack reaction on a electrophile is strongly electron-transfer controlled and if 
there are two reactive sites with the same Fukui potential, then the site with the 
smallest electrostatic potential is the most favorable. The condensed version of 
this rule is: for nucleophilic attack occurring under conditions associated with 
strong electron-transfer control ofchemical reactivity, an electrophile possessing 
two sites with equal condensed Fukui function will be most reactive at the site 
with least charge. 

Just as we did for the mm1mum Fukui function tie-breaker, we can 
elucidate the origins of the electrostatic potential tie-breaker by studying the 
fundamental equation for the interaction energy, (51 ). Note that 

• 	 The first line of this equation is a constant and does not influence 
regioselectivity. 

• 	 The fourth line of this equation models electron transfer from the 
nucleophile to the electrophile. Although this term usually dominates the 
regioselectivity, when we are in a "tie-breaking" situation, the Fukui 
potential of the nucleophile is the same at both reactive sites. 
Consequently, this term does not determine the regioselectivity. 

• 	 Because the nucleophile's Fukui potential is similar at the two reactive 
sites, the second term on the third line does not contribute to the 
regioselectivity preference. 

• 	 Because we are in the strong electron-transfer control limit, neither the 
electrophile nor the nucleophile are highly charged. The second line of Eq. 
(51) models electrostatic effects, but if magnitudes of the atomic charges 
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on the electrophile and the atomic charges on the nucleophile are both 
small, the mutual attraction between these charges 

qnucleophile,aq electrophile,p £_electrostatic ::::::: 
mt 

aEnucleophile fiEelectrophile IRa -RPI (59) 

should be very small. 
The remaining term in Eq. (51), 

t!,N Jfe~ectrophile ( r) <I> nucleophile ( r )dr ' (60) 

must determine the regioselectivity. As electrons move from the nucleophile to 
the electrophile, the electron density on the electrophile increases by 
-Mfe~ctrophile ( r) • This causes the atomic charges on the electrophile to become 

less positive (or more negative) and decreases the electrostatic attraction between 
the nucleophile and the electrophile. (Since the electrophile was not highly 
charged to begin with, it is even conceivable that, after electron transfer, some key 
sites on the electrophile might be negatively charged. This corresponds to the 
extreme case where the electron transfer is so dramatic that the polarity of the 
nucleophile-electrophile bond is reversed.) Given a choice between two reactive 

sites with <I> nucleophile ( rl) > <I> nucleophile ( r2)' the most favorable site will be the first 

site, since this site is associated with a more favorable (or at least a less 
unfavorable) electrostatic interaction with the electrophile. 

Case 3: Joint Electrostatic and Electron-Transfer Control, 
-l<K<l 

When K is between minus one and plus one, a nucleophile will be most 
reactive at places where the electrostatic potential is negative and/or the Fukui 
potential is big. When K is close to plus one or the extent of electron transfer is 
small ( t!.N ~ 0 ), reactivity preferences are predominately determined by the 
electrostatic potential. However, when two sites have similar electrostatic 
potentials, the most reactive site will be the site with the largest value of the 
Fukui potential. This should be contrasted with the extreme case of strong 
electrostatic control ( K > 1), where the site with the smallest value of the Fukui 
potential was the most favorable. 

When K is close to minus one and the extent of electron transfer is large 
( t!.N ~ -1 ), reactivity preferences are predominately determined by the Fukui 
function. However, when two sites have similar Fukui functions, the site with the 
minimum electrostatic potential will be favored. This should be contrasted with 
the extreme case of strong electron-transfer control ( K < -1 ), where the site with 
maximum electrostatic potential would be favored. 
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In the intermediate regime, where K ~ 0 , the importance of electrostatic 
effects and electron-transfer effects are nearly balanced. In such cases, a reactive 
site that is negatively charged and has a reasonably positive value for the Fukui 
function might be favored over an uncharged site with a larger Fukui function. 
Similarly, such a site might be favored over an even more negatively charged site 
if that site was associated with a negligible value for the Fukui function. 

Joint electrostatic and electron transfer control seems to be one of the most 
common situations in chemical reactivity. For example, one might expect that the 
protonation of aminoethanol, (H2N)H2CCH20H would be strongly 
electrostatically controlled: the proton is the prototypical hard acid74 and 
aminoethanol is not an especially soft base. It is observed that the electrostatic 
potential around the oxygen atom and the nitrogen atom are about the same. 50 

Assuming strong electrostatic control, one would then infer that protonation 
occurs on the Oxygen atom, since this is the site with minimum Fukui function. 
This is not the case; protonation occurs on the Nitrogen atom, where the Fukui 
function is the largest.50 Thus, even in cases where strong electrostatic control 
might be expected, one frequently observes joint electrostatic and electron­
transfer control. 

It is interesting to notice what happens if one neglects the error-correction 
terms in Eq. (31) and returns to the oversimplified reactivity indicator in Eq. (30). 
In that model ii > 0 corresponds to strong electrostatic control and ii < 0 
corresponds to strong electron-transfer control of reactivity. This shows that in a 
single reactive site interaction model, the possibility of joint electrostatic and 
electron-transfer control of reactive arises because the point-charge representation 
of the electrophile provides a more accurate approximation to the electrostatic 
effects (involving the electrostatic potential of the nucleophile) than it does to the 
electron-transfer effects (involving the Fukui potential of the nucleophile ). If this 
was not the case, then Eq. (32) would not be valid. If this equation was not valid, 
then every reaction would be either strongly electrostatically controlled or 

strongly electron-transfer controlled and a simple indicator like E~so (rP) (cf. Eq. 

(31)) would be qualitatively correct. However, joint electrostatic and electron­
transfer control is commonly observed, while situations that require the minimum­
Fukui function and electrostatic potential tie-breaker rules are uncommon. This 
observation provides experimental evidence for the validity of Eq. (32) and 
strongly supports the error analysis in section Appendix B. 
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G. Implications for the Local HSAB Principle 

Our analysis f rovides a measure of support for the local Hard/Soft 
Acid/Base principle.7 

-
7s The local Hard/Soft Acid/Base principle indicates that 

ambidentate ligands react with soft reagents in locations where the local softness 
is large and hard reagents in places where the local softness is small. (The local 
softness is just the global softness, S, times the Fukui function, s ( r) =Sf (r) . ) 
Our analysis indicates that soft reagents ( K ~ -1 ) should react with the molecule 
in the places where the Fukui function (and thus the local softness) is the largest. 
For hard reagents, the Fukui function is not an important indicator, and reactions 
could occur where the Fukui function is small. Hard reagents might also react 
with the molecule in places where the Fukui function is large, however, because 
large values of the Fukui function are neither favorable nor unfavorable in 
electrostatically controlled reactions. The (probably extremely rare) exception is 
strongly electrostatic controlled ( K > 1) reactions of molecules that have multiple 
electrostatically favorable sites. In that case, a small value of the Fukui function 
(and thus the local softness) would be preferred over a large value. 

The overall picture is entirely consistent with the work of Klopman:68 

electrostatic effects (<I> ( rP) is the appropriate reactivity indicator) are typically 

dominant in reactions between hard reagents (where charge transfer is minimal); 

electron transfer effects ( 1- (rP ) is the appropriate reactive indicator) are 

typically dominant in reactions between soft reagents (where substantial charge 
transfer occurs). For the intermediate cases, both effects are important. 

111.V. Recapitulation 

It seems desirable to review what we have accomplished. Starting from the 
Taylor expansion for the potential energy surface of interacting electrophiles and 
nucleophiles (Eq. (21)), we developed a "reactive site interaction model" based on 
the assumption that the interaction between the electrophile and the nucleophile is 
dominated by the interaction between their active sites. This led to a simplified 
indicator for the regioselectivity of the nucleophile (27). This model was then 
subjected to a detailed error analysis and parameterized to obtain our final 
indicators: Eq. (35) (for the regioselectivity of nucleophiles) and Eq. (39) (for the 
regioselectivity of electrophiles). These expressions could then be condensed into 
indicators for the reactivity of different atoms in the molecule, giving Eq. (44) (for 
nucleophiles) and Eq. (45) (for electrophiles). 
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All of our reactivity indicators represent models for the interaction 
energies between the electrophile and the nucleophile; because of this, highly 
reactive sites are associated with negative values of the reactivity indicator, which 
we denote 3~ . This model interaction energy clearly depends on two 

parameters. The first parameter, !!:,N, is the amount of electron transfer. !!:,N 

could be computed from the chemical potential and the hardnesses of the 
reagents79 or, alternatively, based on a quantum mechanical calculation of the 
product state (when the product of the chemical reaction is known). The second 
parameter, K, quantifies whether the reaction is electrostatically controlled 
( K ~ 1), electron-transfer controlled ( K ~ -1 ), or somewhere in between 
( -1 < K < 1). The relative values of K for different reagents can be compared 
using the approximate proportionalities 

oc (0) + !),NTJ.(+)
K Ml ,;o _ qe!ectrophile electrophile (61) 

oc -( (0) !),NTJ.(-) )
KMl?:O _ qnucleophile + nucleophile (62) 

For highly charged electrophiles and small amounts of electron transfer, K:::::; 1 
(electrostatic control). For weakly charged nucleophiles and significant electron 
transfer, K:::::; -1. 

In most cases, the K :::::; 1; 11!:,.NI :::::; 1 case (electrostatic control and large 

amounts of electron transfer) is chemically irrelevant unless electrostatic effects 
are very, very strong. (This case could be important, for example, when the 
electrophile being reduced is a metal cation in a high oxidation state.) Similarly, 
the K:::::; -1; !!:,N:::::; 0 case (electron-transfer control and negligible amounts of 
electron transfer) is chemically irrelevant unless electrostatic effects are weak. 
The K :::::; 1; l!:,N :::::; 0 and K :::::; -1; 11!:,.NI :::::; 1 cases are very important limiting cases; 

they are associated with "classic" electrostatic and electron-transfer control, 
respectively. Most chemical reactions fall between those extremes; in these 
"jointly electrostatically and electron-transfer controlled" reactions the present 
indicator is preferable to existing approaches. 

Using this reactivity indicator, we were able to gain some insight into 
appropriate indicators for different types of reactions. In the strong electrostatic 
control limit, K > 1 , it is observed that given two sites with similar electrostatic 
potential, the reactive site with the smallest Fukui function is favored. Similarly, 
in the strong electron-transfer control limit, K < 1 , it is observed that given two 
sites with similar Fukui potential, the reactive site with the greatest electrostatic 
potential (if the molecule is a nucleophile) or the least electrostatic potential (if 
the molecule is an electrophile) is most reactive. Both of these results are 
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counterintuitive, and it is reassuring that the cases of greatest chemical relevance, 
the electrostatic potential is the dominant indicator for electrostatically controlled 
reactions and the condensed Fukui function is the dominant indicator for electron­
transfer controlled reactions. When the reactivity is between these two extremes, 
the most reactive site will be determined by a balance between the most favorable 
electrostatic potential and the most favorable Fukui potential, as one would 
expect. 

When applying this model, it is important to the key assumptions that were 
made during its derivation: 

• 	 Reactive site interaction model. We assumed that the attacking reagent can 
be modeled as a point charge with a specified condensed Fukui function. 

• 	 Neglect of polarization and other terms from higher-order derivatives with 
respect to the external potential. 

The first assumption is required for any reactivity indicator. Because we 
are seeking a qualitative reactivity indicator, it is imperative that our model 
depend only on the coarsest details of the attacking reagent. This is in keeping 
with experimental evidence: most molecules react at only one or two places, 
regardless of the choice of reagent. The "details" of the reagents cannot be very 
important for determining the reactivity of the molecule that is attacked. 50 

The second assumption is merely pragmatic. We hope to incorporate 
polarization effects in our future work, but it is difficult to concoct a simple atom­
condensed reactivity indicator that depends on a two-point quantity like the 
polarizability kernel. In addition, we believe that the most useful reactivity 
indicators are those that are easily evaluated using the output of standard quantum 
chemistry programs. The present reactivity indicator is easily computed from the 
atomic charges, which is a standard feature in quantum chemistry codes. By 
contrast, we do not know any simple way to extract a condensed polarizability 
kernel from the output file of a quantum chemistry program. 
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III.VI. 	 Appendix A. Derivation of the 
Electrostatic Potential Contribution 

The key formula is the expression for the nuclear-nuclear repulsion energy in 

v [v + t5v]- v [v] = ­ Ir - r I 

reference 80 

[ ] 
__l JJ(v;v(r))(v;.v(r')) , 

V,,n V - 2 J J drdr .
32JZ" r;tr' r - r' 

(63) 

We can derive ";:(!)] by finding the coefficient of t5v(r) in the express10n 

vnn [v + t5v]- vnn [v] . 

1 ff 
v; ( v(r)+ t5v(r))v;. (v(r')+ t5v(r')) 

, drdr' 
,,,,. 

nn nn 32JZ"2 v2v(r)v2.v(r')- ff 	 drdr'r r 

'"" lr-r'I
ff v;t5v(r)v;.v(r') drdr' 

= 1 ri<r' Jr - r'J (64)
32JZ"2 + JJv;v(r)v;.t5v(r') drdr' 

Ir r'Jr~r' 

+ _l_
2 

ff v;t5v(r) v;.t5v( r') drdr'] 

32JZ" '"" Jr - r'J 


The first term (in curvy braces) represents the electrostatic interaction between the 
change in the external potential and the preexisting charge density. The second 
term (in square brackets) represents the self-repulsion energy of the perturbation. 
In an application such as ours, this term is neglected because it is already included 
in the energy expression for the attacking reagent. (If we included this term we 
would make a "double counting" error.) In any event, the term in square brackets 
is second order in the perturbing potential, and will not contribute to the first 
functional derivative. Neglecting this term and noting that the two integrals in the 
curvy brace have identical values, Eq. (64) simplifies to 

1 [JJv;t5v(r)v;.v(r') ']V,,n [v + t5v] - vnn [v] = - 2 J 'J drdr . (65)
l 6JZ" ri<r' 	 r - r 

This equation is simplified by writing the functional variation as a nested integral 

[ ] 1 f 2 ( ')[fv;t5v(r) J , "v V,,n,t5v = - 2 v,.v r J I dr dr (66)16JZ" r-r' 

and then simplifying the inner integral using Green's theorem 
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n( r~r'l}v;sv(rJ)t1r ~ H(v; lr~r, Jsv(rJdr1 1
 
+ Jflr~r'I (vr8v(r))·nda (67) 

-Jfsv(ri[V, lr~r'l}nda 
Our system is defined over all space, and so we choose the surface to be a sphere 
infinitely far from the origin. We assume that the change in charge density 
associated with the change in external potential, 8q(r) =4.! v;sv(r), is relatively 

localized, so that we can use the asymptotic form 8v(r )- (~q) . With this 

assumption, the surface integral gives 

fuB JJ-1-,(v8v(r ))·nr2d0. =fu!![_!_~((Sq)JJ( 4JZ"r 2 =o) 
r-->oo r - r r-->oo r Br r 

1 1 (68) 

fuB JJsv(r)[vr - ~ , J·nda =fu!!((Sq) ~(_!_)]( 4JZ"r 2 
) =O 

r-->oo r r r-->oo r Br r 
1 1 

Equation (68) shows that the surface terms vanish if 8v(r) falls off to zero at 

infinity at least as fast as r-1
• We simplify the volume integral in Eq. (67) using 

Poisson's equation for a point charge, obtaining 

ff(v; lr~r'IJsv(r)dr ~ HJ(-4a8(r-r'))sv(r)dr (69) 

= -4JZ"8v(r') 
Substitute Eqs. (68) and (69) into Eq. (67); then substitute that result into Eq. (65) 
to obtain 

Vnn[v+8v]-Vnn[v]= ~~(Jsv(r')v;.v(r')dr'). (70) 

The functional derivative is then 

_8V_nn~[v~] =--1V2v(r)
8v(r) 4JZ" r (71) 

=-Pnuc (r) 
where -Pnuc (r) = - La Za8(r-Ra) is minus one times the nuclear charge 

density. 
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It is now easy to see how the electrostatic potential arises as a reactivity 
indicator in density-functional theory. Consider the change in total energy due to 
adding a small point charge, q, at the point rP: 

'1(E+VM)~ ([o~f.il +~~lJlr~r/r 
p(r)- LZa5(r-Ra) 

=q f I I dr (72)r-rP 

=-q<I> ( rP ). 

III.VII. 	 Appendix B. Error Analysis for the 
Reactive Site Interaction Model 

This appendix performs an error analysis for the single reactive site 
interaction approximation to Eq. (21). The errors incurred by replacing the 
integrals in Eq. (21) with the point charge representations in Eq. (27) are 
conveniently summarized using the following expressions, 

( )-{ L 	 (Zp£5(r-Rp)-Pe1ectrophile(r)J )
-£(i)<I>nucleophiJe rp = 	 fiEelectrophiJe <I>nucleophiJe r dr (73) 

-q(o) <5(r-r )
electrophile 	 p 

&(ii) <I> nucleophile ( rp) =f( .fe7ectrophile ( r )- 1e\:l1rophile5 ( r- rp)) <I> nucleophile ( r) dr (74) 

r ( )-{ L Zp5(r-Rp)-Pe1ectrophile(r)J r ( ) (75)-&(iii)vnucleophile rp = 	 PEelectrophile vnucleophile r dr 
-q~~ctrophile5 ( r-rp) 

&(iv) vtu~leophile ( rp) = f( .fe7ectrophile ( r )- J;,\~trophile5 ( r- rp)) vtu~leophile ( r) dr (76) 

We now rationalize these forms. It is important to recognize that each of these 
integrals is really a Coulomb integral associated with the attractive forces that 
electrons feel toward nuclei and the repulsive forces they feel towards other 
electrons. For example, Eq. (74) could be rewritten as 

.fe7ectrophile ( r) J[ L Za5(r' -Ra )J 
( _J;(+) 5 (r _ r ) aEnucleophiJe 

electrophile p -Pnucleophile ( r') d I( ) ff&(ii)<I>nucleophile rp = 	 ir-r'I rdr. c11) 

100 




Ph.D. Thesis - J.S.M Anderson McMaster University- Chemistry Department 

In an expression like this, it seems reasonable to assume that the largest error is 
associated with the approximation to the electron-electron repulsion-type term, 

_JI J.:ctrophiie ( r) Pnuc1eophi1e ( r') drdr' 
jr-r'j 

(78) 
~ _ JJf.7ectropm1e8(r-rP) Pnuc1eophi1e ( r') drdr' 

jr-r'j 

instead ofwith the approximation to the electron-nuclear attraction-type term, 

f.7ectrophile (r)( L Za8(r' - Ra )J 
aenucleophile drdr'ff 	 lr-r'j (79) 

f.7ectrophile8( r-rp )( L Za8(r' -Ra )J 
~ ff aenucleophile drdr'. 

jr-r'j 
Because the integrands in Eq. (78) are very large when r and r' are close 
together, the point charge approximation does not provide a good representation 

for the interaction between the asymptotic tails of Pnucieophiie ( r) and f.7ectrophiie ( r) . 
This suggests that: (J) the left hand side of Eq. (78) is less than the right hand side 
and (2) the error in Eq. (78) is significantly bigger than the error in Eq. (79). 
Extending this argument to the other integrals in Eq. (73)-(76) 

(a) 	 In general, the left hand side in Eqs. (73) and (76) should be positive. 
This implies that, in general, B(i) > 0 and B(iv) > 0. 

(b) 	 In general, the left hand side in Eq. (74) and (75) should be negative. 
This implies that, in general, &(ii) > 0 and B(i;;) > 0 . 

The sign convention in Eqs. (73)-(76) is based on these observations. Recall that 
the electrostatic potential of a nucleophile is usually negative near a reactive site 

(<I> nuc1eophiie ( rp ) < 0) while the potential due to the Fukui function is usually 

positive near a reactive site ( v~~Ieophiie ( rP) > 0 ). Referring back to (a) and (b), it is 

apparent that the sign convention in Eqs. (73)-(76) implies that B(i) - B(iv) are 

usually positive constants. We will now characterize the size of these constants. 

Examining Eqs. (73) and (74), it seems clear that the size of the error 

should be related to the magnitude of <I> nucieophiie ( r) in the region where the 

electrophile is attacking. Similarly, in Eqs. (75) and (76), the error incurred by the 

point charge approximation should be small when vfu~ieophiie ( r) is small in the 
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region where the electrophile is attacking. On the other hand, if vf:c1eophiie ( r) is 

large at the reactive site, this suggests that fn~c1eophiie ( r) is also large near the 

reactive site, which suggests that the point charge approximation to the integrals 
in Eq. (75) will be poor. Hence: 

(c) 	 The error in the left-hand sides of Eqs. (73) and (74) is roughly 
proportional to the magnitude of the electrostatic potential at the 

position where the electrophile attacks, <I> nucleophile ( rp) . 
(d) 	 The error in the left-hand sides of Eqs. (75) and (76) is roughly 

proportional to the magnitude of the Fukui potential at the position 

where the electrophile attacks, v~~Ieophiie ( rP). 
By including an appropriate dependence on <I> nuc1eophile ( rp) or vf:cieophile ( rP) in the 

right-hand side of the defining equations, (73)-(76), we ensure that s(i) - £(iv) 

depend only weakly on the relative magnitude of the electrostatic and Fukui 
potentials at the reactive sites. Our choice of definition, then, ensures that s(i) ­

£(iv) measure the intrinsic error in the point charge approximations. 

In the discussion surrounding Eq. (78), we pointed out that the primary 
error in the single reactive site approximation was associated with the interaction 
between the tails of electronic distributions centered on the electrophile and the 
nucleophile. This error is expected to be most severe in Eq. (76), because the 
Fukui functions (J) have slow asymptotic decays and (2) are concentrated on the 
"frontiers" of the reagents. 

(e) 	 We expect s(iv) to be relatively large. The error due to the point charge 

approximation can be rather large in this case because the interaction 
between the asymptotic tails of the Fukui functions might be 
significantly underestimated by the result from the point charge 
representation. 

By contrast, the error in Eq. (73) might be relatively small, since the electron 
density is concentrated near the atomic nuclei. 

(t) 	 We expect s(i) to be the relatively small, because the interaction 

between the asymptotic tails of the electron densities should be only a 
small part of the total interaction between the electronic distributions. 

The errors in Eqs. (74) and (75) should be intermediate. 
(g) 	 We expect s(ii) and &(iii) to be relatively large compared to s(i) 

because the Fukui function in these integrals is concentrated on the 
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frontiers of the molecule. However, we expect &(ii) and &(iii) to be 

smaller than &(iv), because point charge approximation is least accurate 

in Eq. (76), where both the Fukui functions are involved. 
Using results from (a), (b), (e), (t), and (g), we have the following ordering of 
relative errors. 

0 < E(i) < &(ii) >::: &(iii) < &(iv) (80) 

It should be stressed that the preceding analysis is strictly qualitative. Exceptions 
to the ordering in Eq. (80) will occur. Henceforth, we will never rely upon the 
details of this analysis; the approximate ordering of errors in Eq. (80) is sufficient 
to establish our results. 

As discussed in section III.A and III.B, the key parameters in the reactivity 
model are the number of electrons donated by the nucleophile to the electrophile, 
~~ 0 , and the quantity 

- - (O) fj,N,1'(+) (81)
K - qelectrophile + 'J electrophile 

Inserting the expression for iC into Eq. (27) gave the oversimplistic 
regioselectivity indicator in Eq. (30). 

iC measures the relative importance of electrostatic and electron-transfer 
effects. When iC is significantly positive, the electrophile is highly charged and 
electron transfer is minimal; such reactions are expected to be electrostatically 
controlled. When iC is significantly negative, then electron transfer to the 
electrophilic site is important, but the electrophile is not especially highly 
charged; such reactions are expected to be electron-transfer controlled. 
As long as iC is very different from zero, it is reasonable to neglect the errors due 
to the point-charge approximations to the integrals, because they should be small 
compared to iC. To address the case where iC >::: 0, insert the expressions for &(i), 

&(ii), and &(iii), and &(iv) into Eq. (21). This gives an "error corrected" version of 

the reactive-site interaction model in Eq. (30), namely, 

E~~~u·i (rp) = (iC + (-c(il + c(ii)~)) <I> nuc1eophi1e ( rp) 

-~(K+ (-&(iii)+ &(iv)~))v~:cleophile ( rP) 
(82) 

Because &(i) < &(iii) , &(u) < &(iv) , and ~~ 0, 

-&(iii)+ &(iv)~< -&(i) +&(ii)~• (83) 

Comparing Eqs. (31) and (82) allows us to make the identification 

EP =-&(i) +&(ii)~ (84) 
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e1 = -e(;u) + e(iv)MV 	 (85) 

Equation (83) then establishes that eP > e1 , as stated in Eq. (32). The general 

purpose reactivity indicator then follows from the analysis in section 111.B. In 
particular, because 

K- e(i) + e(ii}MV > K- e(iii) +e(iv}MV, (86) 

the qualitative structure of the interaction energy model in Eq. (82) is recaptured 
by the simple expression 

3~~0 (rp) = ( K +1) <I> nucleophile ( rp )- MY (K-1) V~~leophile ( rp) (87) 

The new parameter, K, is linearly related to the more fundamental K via the 
equation 

iC-e(.) +e( ..)MV JK=2 	 -1 (88)I 	 II 

( e(iii) -e(i) +(e(ii) -eiv )MV 

The approximate proportionality reported in Eq. (38) is clearly accurate whenever 
iC is large compared to the error terms. The motivation for this transformation of 
variables is that it gives a simple appealing qualitative picture, with K =+1 and 
K = -1 corresponding to pure electrostatic control and pure electron-transfer 
control, respectively. 
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Chapter IV 


Conceptual Density-Functional 


Theory for General Chemical 


Reactions, Including Those That Are 


Neither Charge Nor Frontier-Orbital 


Controlled 


II. Application to Molecules Where 


Frontier Molecular Orbital Theory 


Fails* 


*The content of this chapter has been published: J. S. M. Anderson, J. Melin, P. W. Ayers 

"Conceptual density-functional theory for general chemical reactions, including those that 
are neither charge nor frontier-orbital controlled II. Application to molecules where 
frontier molecular orbital theory fails"; J. Chem. Th. Comp. 2007, 3, 375-389. 
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IV.I. Statement of the Problem 

This chapter presents the first chemical applications of the general-purpose 
reactivity indicator developed in the previous chapter. Particularly pernicious 
examples are chosen to illustrate the validity of the indicator. In particular, we 
focus on the so-called Dewar molecules, where the popular frontier-molecular 
theory approach gives incorrect results. A compact representation of the data that 
result from the two parameter general-purpose reactivity model called "reactivity 
transition tables" is introduced. 

IV.II. Introduction 

In the first paper in this series, 1 the authors derived a general-purpose 
reactivity indicator that is capable of describing not only electrostatically (or 
charge) controlled reactions and electron-transfer (or frontier-orbital) controlled 
reactions,2 but also reactions that lie between these two extremes. This paper will 
apply this reactivity indicator to a particularly challenging set of molecules, where 
ordinary reactivity predictors have been observed to fail. 

Before applying the reactivity indicator, we briefly summarize the results 
from the first paper in this series. The goal of the first paper was to derive a 
reactivity indicator that could truly be called a "general-purpose" reactivity 
indicator. That is, we sought a reactivity indicator that describes the full spectrum 
of chemical reactivity, from strong electrostatic control (minimum Fukui function 
is good), to joint electrostatic and electron-transfer control (maximum Fukui 
function is good), to strong electron-transfer control (maximum Fukui function is 
good, but maximum (for nucleophiles) or minimum (for electrophiles) 
electrostatic potential is also good). To achieve this goal, we used a perturbative 
expansion about the separated reagent limit to derive an expression for the 
interaction energy between an electrophile and a nucleophile. (See Eq. (21) in 
paper I.) 

In order to derive a reactivity indicator, we introduced a single reactive­
site interaction model for electrophiles and nucleophiles. In this model, the 
reactive site of the attacking electrophile/nucleophile is modeled with a point 
charge and a condensed Fukui function. Inserting this model into the expression 
for the interaction energy and performing a careful error analysis led to the 
desired indicators. One of our indicators is appropriate for predicting where an 
electrophile will attack a nucleophile, 

3~~o ( r) =(K +1) <I> nucleophile ( r) - MV (K -1) v~:c1eophile ( r) · (1) 
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The other indicator is appropriate for predicting where a nucleophile will attack 
an electrophile, 

2~N~O ( r) =-(K +1) <D electrophile ( r) + LW (K- l) vfi:trophile ( r) (2) 

Because these indicators model the interaction energy of the molecule, the 
molecule is most reactive in the places where 2~ (r) is most negative. 

By simply varying the value of K, the entire spectrum of chemical 
reactivity can be described, ranging from strong electrostatic control ( K > 1 ), to 
pure electrostatic control ( K =1 ), to joint control by electrostatics and electron­
transfer effects ( -1 < K < 1 ), to pure electron-transfer control ( K =-1 ), to strong 
electron transfer control ( K < -1 ). The value of K that is appropriate for a 
particular reaction can be estimated using the approximate proportionalities: 

oc (0) 11N,I'(+)
K _ qelectrophile + 'J electrophile for nucleophiles 

(3) 
ex_ (o) -MrH for electrophiles K _ qnucleophile 'J nucleophile 

The constant of proportionality is positive and, based on our experience, has order 
of magnitude one. 

The reactivity indicators in Eq. ( 1) and (2) also depend on the extent of 
electron transfer. The amount of electron transfer could be computed by 
minimizing the expression for the interaction energy directly, but the simple 
formula proposed by Parr and Pearson should be adequate for qualitative 
purposes, 

LW . ~ µnucleophile - µelectrophile 

electroph1le 


17nucleophile + 17electrophile 

(4)

(Jnucleophile - Jelectrophile ) + ( ~ucleophile - Aelectrophile ) 

~ 2 ( Jnucleophile + Jelectrophile - ~ucleophile - Aelectrophile ) 

In this equation, µ denotes the electronic chemical potential4 and T/ denotes the 
chemical hardness. 3 The second line of this equation approximates the chemical 
potential and chemical hardness using the vertical ionization potential (/) and 
vertical electron affinity (A) of the reagents. Because nucleophiles transfer 
electrons to electrophiles, we have chosen a sign convention where LW :::; 0 for 
nucleophiles and LW ;::: 0 for electrophiles. The molecules we are studying in this 
paper are nucleophiles, so it is the LW :::; 0 case that is ofgreatest interest here. 

The general-purpose reactivity indicators are seen to have a dependence on 

the Fukui potential, v1• ( r) and the molecular electrostatic potential, <D (r) . The 
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electrostatic potential is essential for describing reactions that are electrostatically 
controlled ( K =1 ); the Fukui potential is essential for describing reactions that are 
electron-transfer controlled ( K =-1 ). In all other cases, both the electrostatic 
potential and the Fukui potential play a role in determining a molecule's 
regioselectivity preferences. 

It is useful to approximate the electrostatic potential and the Fukui 
potentials using atomic charges, 5;

6 

(0) 
<l>(o)(r)- L qa (5) 

a /r-Ra/ 

vr (r)- L fa-

a /r-Ra/ 

vr (r)- L fa+ 

(6) 

a /r-Ra/ 

where q~o) denotes the atomic charges on the reagent. fa+ and fa- are the 

condensed Fukui functions. Using these results, one can derive a condensed 
version of the indicators in Eqs. (1) and (2) 

3~$0 ( rP )- L /3~$0,a/ 
(7)aEnucleophile r - Ra 

~IC -( + 1) (0) !J.N( 1) /'­i:!/';N$0,a - K qnucleophile,a - K- Jnucleophile,a 

";;IC ( ) - " 3~?_0,a
~t..N?.0 rp L... I I 

aEelectrophile r - Ra (8) 

3~?.0,a =-(K + 1) q~~ctrophile,a + /1N ( K -1) feTectrophile,a 

For special cases, this reactivity indicator recovers the reactivity patterns 
that would be predicted based on the Fukui function ( K =-1 ) or the electrostatic 
potential ( K =1 ) alone. The new indicator has no value, then, unless it supersedes 
the description of chemical reactivity that is possible using these reactivity 
indicators in isolation. This suggests that the new indicator might be useful for 
studying molecules where frontier molecular orbital theory (FMO) would be 
expected to work but has been observed to fail. The regioselectivity of 
electrophilic aromatic substitution reactions is usually well-described using both 
FMO and density-functional theory analogues to frontier molecular orbital theory 
like the Fukui function.7

-
9 This is not always true, however: Dewar showed that 

FMO fails to describe electrophilic aromatic substitution in isoquinoline, 1O­
hydroxy-10,9-borazarophenanthrene, and 1O-methyl-10,9-borazarophenanthrene. 
The question arises: does the Fukui function, 10

-
12 which extends the frontier 

molecular orbital theory but is nonetheless motivated by FMO ideas, fail in the 

112 




Ph.D. Thesis - J.S.M Anderson McMaster University - Chemistry Department 

same way? In section V, it is observed that while the Fukui function does seem to 
work better than FMO for these molecules, it still fails to adequately describe 
their reactivity. (That is, the Fukui function fails "in the same way" as FMO, but 
not as badly.) 

The Fukui function is intimately linked to the idea of electron transfer, so 
it is an appropriate indicator for "electron-transfer controlled" (also called 
frontier-orbital controlled and Fukui-function controlled) reactions. When hard 
reagents interact, electron transfer is either limited or occurs late in the chemical 
reaction profile; such reactions are usually called "electrostatically controlled" or 
"charge controlled. "2 The electrostatic potential is a more appropriate indicator 
than the Fukui function in these cases. 13 Since the Fukui function fails to 
adequately describe the reactivity of these molecules, perhaps the electrostatic 
potential will suffice. The results in section V show that the electrostatic potential 
does not describe the reactivity of these molecules either. 

These results suggest that the electrophilic substitution on 
borazarophenanthrenes represent a difficult, but otherwise suitable, test for the 
general-purpose reactivity indicator, 3~!>o,a, that we derived and discussed in the 

first paper of this series. Indeed, the theoretical developments in the first paper 
were motivated by our inability to describe these molecules using ordinary 
reactivity indicators. Section V contains the main results; we observe that 3~!>o,a 

does an excellent job of describing a variety of electrophilic aromatic substitution 
reactions on borazarophenanthrenes. Before presenting our results, however, we 
need to state our computational methods. 

IV.III. Computational Methods 

To demonstrate the power of these indicators, we decided to analyze 
molecules where Dewar found contradictions to frontier molecular orbital 
effects. 14 In what follows, all calculations were conducted using Gaussian03 15 and 
the B3LYP16

-
18 functional with the 6-3l++G* basis set.19 Figures were generated 

using GaussView 3.0. The atomic charges used to compute condensed reactivity 
indicators were obtained from four different methods: the Mulliken population 
analysis20

-
23 and natural population analysis (NPA/4

-
26 approaches to partitioning 

the density matrix and the Merz-Singh-Kollman27
;
28 (MSK) and CHelpG29 (CHG) 

methods for fitting the electrostatic potential. 
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IV.IV. Results and Discussion 

A. Overview 

We will explore three of the molecules (isoquinoline, 1O-hydroxy-10,9­
bozazarophenanthrene, and 1O-methyl-10,9-bozazarophenanthrene) Dewar gave 
as examples where frontier molecular orbital theory (FMO) fails to adequately 
describe regioselectivity. 14 (Dewar gave a fourth example, nitrobenzene. This 
molecule has been extensively studied using reactivity indicators associated with 
conceptual DFT and will not be revisited here. More information on nitrobenzene 
can be found, for example, in the paper ofLangenaeker, Demel, and Geerlings.7

) 

For each molecule, we will first present the experimentally observed 
reactivity preferences. Then we will present the reactivity preferences predicted 
by FMO (which predicts that electrophilic attack occurs where the magnitude of 
the highest occupied molecular orbital is largest), electrostatic considerations 
(which predicts that electrophilic attack occurs where the electrostatic potential is 
most negative), and the Fukui function (which predicts that electrophilic attack 
occurs where f- (r) is the largest). When no single method can predict the 

observed reactivity, we will examine the more general index, S:V,,o,a, which 

combines information from the electrostatic potential and the Fukui function. 

B. Isoquinoline 

Experimental studies on Isoquinoline,30 


6/5~4a........A~3 


11 I I 
7""'~aa........_ -?-N 2
1

have shown that the most reactive site of this molecule is carbon 5, with 
secondary reactivity at carbon 8. Products from electrophilic substitution on 
carbon 4 were not found so this site is believed to be unreactive. Figure la reports 

the value of the highest occupied molecular orbital density, l¢noMo (r )! 2 
on the van 

der Waals surface of the molecule. We model the van der Waals surface with the 
p (r) =.0004 isodensity surface; this models the reactive surface of the molecule 
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32 33and is an appropriate indicator of site selectivity.31
; ; In accord with Dewar's 

FMO analysis, an electrophilic attack is predicted to occur on the double bonds 
between carbon 3 and 4, then carbon 7 and 8, and finally carbon 5 and 6. This 
reactivity order is the opposite of the experimental products: carbon 5 is the 
primary reaction site; carbon 8 is the secondary reaction site, and carbon 4 is 
unreactive. 
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(a) (b) 

Figure 1 (a) The square magnitude of the HOMO orbital, l¢HoMo (r )! 2 
, (b) the 

Fukui function from below, f - (r), are plotted on the 0.0004 au isodensity 

surface of the isoquinoline molecule. The molecule should be most reactive where 
these functions are the largest. The numbers denote the experimentally observed 
reactivity preferences.30 The color scheme is a spectral scheme where darker blue 
indicates more positive values and light red value indicate more negative values. 
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Sometimes orbital relaxation effects are important for describing chemical 
reactivity, and so the Fukui function (which includes orbital relaxation effects)11 

sometimes performs better than l¢HoMo ( r )12 for predicting sites of electrophilic 

attack. Orbital relaxation effects have been shown to be important in electrophilic 
aromatic substitution7 and electrophilic attack on double bonds (in organic 
molecules)31 and multiple bonds (in inorganic complexes with metal-metal 
bonds).32 It seems plausible, then, that the Fukui function will locate the 
appropriate sites for electrophilic attack on isoquinoline. To investigate this 
possibility, we plotted the value of the Fukui function on the molecular van der 

Waals surface (see Figure 1 b ). While the Fukui function and l¢HoMo (r )1 
2 

are 

quantitatively different, they are qualitatively similar: the Fukui function at carbon 
4 is slightly larger than that at carbon 8, which is significantly larger than the 
Fukui function at the dominant reaction site (carbon 5). It is interesting that this 
trend is altered somewhat if condensed Fukui functions are used. With condensed 
Fukui functions and ChelpG charges, we have fc5 =0.229, fc 4 =0.193 , and 

fc. =0.165. While carbon 4 is still predicted to be reactive, at least the first­

choice reaction site is now identified correctly. To the best of our knowledge, this 
is the first molecule where condensed Fukui functions perform decisively better 
than Fukui functions plotted on a reactive surface. In this case, the Fukui function 
on carbon 5 is concentrated near the nucleus and thus, while the Fukui potential 
(which depends on the total size of the Fukui function in the vicinity of the atom) 
will be large in the region of carbon 5, the amplitude of the Fukui function (which 
decays exponentially, rather than as -!; ) has decreased almost to zero on the 
reactive surface. Thus chastened, we will henceforth focus on condensed 
reactivity indicators. 

For reactions between hard molecules, the appropriate indicator of site 
selectivity is the electrostatic potential. This is clear already from the work of 
Klopman and Berkowitz,2

;
34 but is also a topic of recent emphasis in the 

conceptual DFT literature. 13
;
35

;
36 It follows very clearly from our analysis also, 

since the extent of electron transfer 

/1N _ µelectrophile - µnucleophile 
(9)nucleophile ­

17electrophile + 17nucleophile 

will be small when the hardness of the reagents is large. When 111NI is small, the 

dominant contribution to both 2~,,0 ( rP) and 2~~0 ( rP) is from the molecular 

electrostatic potential. While isoquinoline is not especially hard, insofar as the 
Fukui function has failed to successfully describe its reactivity, it seems desirable 
to explore the electrostatic potential. This is done by computing the atomic 
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charges, which represent the "condensed" electrostatic potential (cf. Eq. (5)).37 

The charges from several different population analysis schemes are plotted in 
Figure 2a. The Mulliken charges are manifestly unreliable, as is to be expected for 
a basis set including diffuse functions. Henceforth we will not report the results 
from Mulliken population analysis. The other charge schemes reported in Figure 
2a are more reasonable, with the two methods of electrostatic potential fitting 
(Merz-Singh-Kollmann (MSK) and CHelpG (CHG)) giving similar results. The 
natural population analysis (NPA) scheme is less similar, which may also be due 
to this method's stronger dependence on the basis set or due to the fact that NP A, 
unlike MSK and CHG, is based on a population analysis of the density matrix, 
and not on fitting the electrostatic potential. 
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Figure 2 The atomic charges (condensed electrostatic potential) of isoquinoline. 
(a) The atomic charges on the indicated atoms. (b) The atomic charges on the 
indicated atoms plus the charges of hydrogen atoms bonded to those atoms. The 
atomic numbering scheme is included as an inset. Experimentally, C5 is most 
reactive, followed by C8. C4 is unreactive. 
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Recall that the reactive site of strong electrophiles is usually positively 
charged. Electrophilic attack thus tends to occur at the most negatively charged 
sites of the nucleophile. Looking at Figure 2a, it is clear that the most negative 
sites in the molecule are the nitrogen atom and carbon 4. Carbon 4, however, is 
unreactive. The charges on carbon 5 (the most reactive position) and carbon 8 (the 
second most reactive position) are not especially small. 

Sometimes one argues that one should add the charges of hydrogen atoms 
into the charges of the atoms they are bonded to. This seems especially useful in 
electrostatic fitting procedures: because the carbon-hydrogen bond is short, it can 
be difficult to determine how to partition a reactive carbon's charge between the 
carbon atom and the adjacent hydrogen. More generally, the regioselectivity of a 
molecule is usually determined by interactions that occur when the molecular 
substrate and the attacking reagent are in van-der-Waals contact. Because the 
separation between the molecules is much larger than the length of a carbon­
hydrogen bond, from the perspective of the attacking reagent, -CHn groups appear 
as a single point charge. Based on this reasoning, it is preferable to consider 
"functional group" charges that are computed by adding the charges of hydrogen 
atoms to the charges of the adjacent "heavy" atom. This data is reported in Figure 
2b. Unfortunately, this does not alter the fact that carbon 4 is predicted to be 
reactive, while the molecular sites that actually are reactive are predicted to be 
relatively unreactive. 

Further thought about the chemistry of isoquinoline rectifies these 
unsuccessful predictions. Isoquinoline is relatively basic, pKb = 8.6. 
Unsurprisingly, this is similar to the pKb of pyridine, which is 8.7. 
Experimentally, it is difficult to perform an electrophilic substitution reaction on 
pyridine: electrophiles are Lewis acids, and so the solutions used for electrophilic 
aromatic substitutions are also acidic.38 The experimental studies of Dewar were 
carried out in a mixture of nitric and sulfuric acids! 30 Even when less extreme 
conditions are used, the pH of those solutions is almost always less than 5.3, and 
in that environment pyridine is protonated. Clearly, performing an electrophilic 
attack on a protonated molecule will be difficult! Isoquinoline, which is 
marginally less basic than pyridine, is also expected to be in its protonated state 
when it undergoes electrophilic aromatic substitution. Based on this logic, we 
performed calculations on protonated isoquinoline.39 The atomic charges are 
reported in Figures 3a (raw charges) and 3b (summed with adjacent hydrogens). 
The condensed Fukui functions are reported in figures 4a (computed from atomic 
charges) and 4b (computed from atomic charges summed with adjacent 
hydrogens). Based on the charges, we would predict that the reaction occurs at 
carbon 5, with carbon 8 and carbon 4 having similar reactivity. Based on the 
Fukui function, we would predict that carbon 5 and carbon 8 are both highly 
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reactive (carbon 5 perhaps slightly more so), and that carbon 4 is not very 
reactive. This agrees with experiment: the substantial negative charge on carbon 
5, coupled with its significant Fukui function, makes this site highly susceptible to 
electrophilic attack. carbon 8 is also favorable electrostatically and based on its 
Fukui function, but its less negative charge is associated with slightly diminished 
reactivity. Carbon 4 is not significantly reactive compared to carbon 5 or carbon 
8. 

121 




• • 

• • 

Ph.D. Thesis - J.S.M Anderson McMaster University - Chemistry Department 

• MSKr6/5~4a_......A~3~8a). 
• 

& & NPAII I I+ 
7"-.-:;:::/8a ~N'-..,_ • • CHG8 "-1 2 H •I 

-0.1 ~ & 

Q) 
• 

& 
C> &5-0.2 1 • • • • • 
0 

•• 
-~ -0.3 ~ • 
<­

-0.4 1 

-o.s L • 
C1 N C3 C4 C4a C5 C6 C7 CB CBa 

(b) 
"iii 0.3 
c 
Cl) 

C'I 

0.... 

"C 0.2 
>­::c 
c -
Cl) 

'J 
(J 
cu 

~ 
"i 
J:­
Cl) 
C'I.... • 
cu 
J: 
u -01 j
(J 

E 
0 -0.2<( 

& 

• 
 • 
i 

6/5~4a/~3
II I I+ 
7'-.... -;:;/Ba ~N'-..,_ 

8 ""-1 2 H 

C1 N C3 C4 C4a C5 C6 C7 

MSK• 
& NPA 

• CHG 

• 

• 


• 
• 

CB CBa 

Figure 3 The atomic charges (condensed electrostatic potential) of protonated 
isoquinoline. 
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Figure 4 The condensed Fukui function of protonated isoquinoline. In (a), we 
compute the Fukui function from the difference of atomic charges. In (b), we add 
to each indicated atom the condensed Fukui functions of the hydrogen atoms 
bonded to it. The atomic numbering scheme is included as an inset. 
Experimentally, CS is most reactive, followed by C8. C4 is unreactive. 
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Perhaps protonating isoquinoline is too strong an assumption. One could, 
after all, carry out an electrophilic substitution in an aprotic solvent. To explore 
this possibility, we considered the complex of pyridine with the sodium cation, 
which is an extremely weak Lewis acid. (See figure 5.) In this case, carbon 4 
remains the most negatively charged reactive site. However, the Fukui function is 
highly concentrated on carbon 5 and, to a lesser extent, carbon 8. Since 
isoquinoline is not especially hard, it seems reasonable to infer that under any 
reasonable set of experimental conditions, the "ion paired isoquinoline" that is 
subject to chemical reaction will react first at carbon 5, with a secondary product 
associated with reaction at carbon 8. 
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Figure 5 The (a) atomic charges and (b) condensed Fukui functions of 
isoquinoline with a sodium "spectator cation." Qualitatively, the plot with 
hydrogens summed into adjacent carbons is very similar. 
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We could apply our general-purpose reactivity indicator to isoquinoline, 
but the picture that emerges is quite boring since the electrostatically favored and 
electron-transfer favored sites on protonated isoquinoline are the same. Instead, 
we will apply our reactivity indicator to a much more challenging problem: 
electrophilic aromatic substitution on 10,9-borazarophenanthrenes. 

C. 10-R-10,9-borazarophenanthrene 

1. Summary of Experimental Observations 

In addition to isoquinoline, Dewar also pointed out two, more challenging, 
molecules where experimental results were not in accord with frontier molecular 
orbital theory. Experimental studies of 10-R-10,9-borazarophenanthrene (R=OH 
or R=CH3), 

7 
6/~8 
11 I 
5......_ .....:::Ba +..,......H

'°"'4 b:/"" ........_ N 9 


I Il­
..,......4a /B, 

4' ~10a 10 "R 

II I 

3"~1 

2 

indicate that carbon 8 and carbon 6 are both susceptible to electrophilic attack.4042 

Chlorination of 1 O-methyl-10,9-borazarophenanthrene favors carbon 8 over 
carbon 6,42 while chlorination of 1 O-hydroxy-10,9-borazarophenanthrene gives 
the disubstituted product corresponding to reaction at both carbon 6 and carbon 
8.41 Nitration produces a mixture of the products associated with reaction at 
carbon 6 and carbon 8.42 It seems reasonable to infer that carbon 6 and carbon 8 
are the most reactive positions, with carbon 8 being slightly more reactive, at least 
for some electrophiles. If one increases the temperature and the amount of 
reagent, then one can add another chlorine to 1O-hydroxy-10,9­
borazarophenanthrene; forming the 2,6,8 trisubstituted product.41 Carbon 2 is 
essentially unreactive with respect to nitration and bromination, however.41

;
42 We 

infer, then, that the experimental reactivity profile can be summarized as 
C8 .<: C6 » C2. (10) 
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Theoretical electronic-structure treatments suggest that carbon 4 and carbon 2 
should have similar reactivity. It is known, however, that steric congestion 
significantly reduces the rate ofreaction at carbon 4.43 

One might expect that, like isoquinoline, 10-R-10,9-borazarophenanthrene 
would be protonated. This is not the case. First of all, note that the nitrogen atom 
in 10,9-bozazarophenanthrene already has four bonds, which reduces its 
susceptibility to protonation. Second, the presence of the adjacent boron atom 
(which accepts electrons from the p orbital of the sp2 hybridized nitrogen atom) 
reduces the basicity of the nitrogen. Protonation does occur, but only when the 
compound is heated in concentrated sulfuric acid.40

;
44 (Upon protonation in that 

environment, the central ring breaks and boron is lost.) Under any reasonable set 
of experimental conditions, then, 10-R- l 0,9-bozazarophenanthrene is not 
protonated. 

2. 	 Frontier Molecular Orbitals, Condensed Fukui Functions, 
and Atomic Charges 

Frontier molecular orbital theory does not predict the reactivity in these 
molecules. According to FMO, carbon 2 is slightly more reactive than carbon 4, 
which is slightly more reactive than the bond between carbon 6 and carbon 7. 14 

(Both carbon 6 and carbon 7 have substantial contributions from the HOMO 
orbital.) There is very little frontier molecular orbital density on carbon 8. 

The condensed Fukui functions for 1O-hydroxy-10,9­
bozaroarphenanthrene (R=OH) are reported in Figures 6b and 7b. The condensed 
Fukui function gives results that are more in line with experiment than frontier 
molecular orbital theory. In particular, the Fukui function predicts that carbon 6 is 
the most reactive position in the molecule. Carbon 2 and carbon 4b are the next 
most reactive positions, followed by carbon 4. The Fukui function predicts that 
carbon 8 is essentially unreactive. The predicted reactivity at carbon 4b 
demonstrates a recurrent feature in electrophilic polyaromatic substitution 
reactions. Qualitative reactivity indicators often predict ipso addition of 
electrophiles to polyaromatic compounds but, in many cases, ipso addition is a 
mechanistic dead end: although it is sometimes the most favorable orientation for 
the reactants, the barrier separating the ipso reactive intermediate from stable 
product molecules is very high. For example, because there are no hydrogen 
atoms at carbon 4b, electrophilic aromatic substitution cannot occur. 
Consequently, addition at carbon 4b requires a loss of aromaticity. 
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Figure 6 The (a) atomic charges and (b) condensed Fukui functions of 10­
hydroxy-10,9-bozaroarphenanthrene. The atomic numbering scheme is included 
as an inset. Experimentally, C8 is most reactive, followed by C6 and then C2. 
Other sites are unreactive. 
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The atomic charges are reported in Figures 6a and 7a. Though carbon lOa, 
nitrogen, and oxygen are all negatively charged, these sites are not susceptible to 
electrophilic aromatic substitution. While a positively charged electrophile might 
form an "ion pair" association complex with one of these sites, no further reaction 
at these sites is possible under ordinary conditions. For carbon lOa, there is no 
hydrogen atom to serve as a leaving group. While there is a hydrogen bound to 
the nitrogen atom, bonds between hydrogen and electron-deficient sp2 hybridized 
nitrogen atoms are very strong, so this hydrogen atom is a poor leaving group.45 

Oxygen-hydrogen bonds are generally stronger than carbon-hydrogen bonds, so 
the hydrogen atom bonded to oxygen is also a poor leaving group. Consequently, 
we expect the chemistry at C 1 Oa, nitrogen, and oxygen is limited to the formation 
and dissociation ofweak "ion pairing" type interactions. 

Among sites that are susceptible to electrophilic aromatic substitution, 
carbon 8 is the most negatively charged, with carbon 6 and carbon 4 having 
somewhat smaller, but still substantial, negative charges. Carbon 2 is also 
negatively charged. 

We predict, then, that carbon 8 and carbon 6 are the most highly reactive 
sites based on electrostatic effects and electron-transfer effects, respectively. 
Carbon 2 and carbon 4 represent trade-offs: these molecular sites have reasonably 
large Fukui functions and reasonably negative charges. If the reactivity of 1O­
hydroxy-10,9-bozaroarphenanthrene were strongly electrostatically controlled, 
then carbon 6 should be less reactive because large values for the Fukui function 
are unfavorable in that situation. Similarly, if the reactivity were strongly 
electron-transfer controlled, then carbon 8 should be less reactive because small 
values of the electrostatic potential are unfavorable in that situation. Both carbon 
8 and carbon 6 are observed to be reactive, so the reactivity must be jointly 
controlled by electrostatic and electron-transfer effects. 

Because Merz-Singh-Kollman (MSK) and ChelpG (CHG) charges are 
both designed to reproduce the electrostatic potential, these two choices of 
charges should resemble one another and, hopefully, also the charges derived 
from natural population analysis (NPA). Examining Figure 7, it seems that the 
agreement between the different population analysis schemes is slightly better if 
the charges on the heavy atoms are combined with the charges on their adjacent 
hydrogen atoms. We will base the rest of our analysis on the plots with the 
hydrogen atoms summed in; due to the similarity between the results in Figures 6 
and 7, this will not affect our results very much. Indeed, the main trends in the 
values of the charges and the condensed Fukui functions seem to be reproduced 
no matter which population analysis scheme is being employed. This is 
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reassuring, because there is no a priori reason to assert the superiority of any one 
of the population analysis schemes.46 
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Figure 7 The (a) "hydrogen summed" atomic charges and (b) "hydrogen 
summed" condensed Fukui functions of 1O-hydroxy-10,9-bozaroarphenanthrene. 
Unlike Figure 6, the reactivity indicators for hydrogen atoms have been added to 
the reactivity indicators of the heavy atoms to which they are bonded. 
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3. 	 Application of the Condensed General-Purpose Reactivity 
Indicator 

Because 10-hydroxy-10,9-bozazarophenanthrene is a case of joint 
electrostatic and electron-transfer control, it seems to be a suitable test for the 
general-purpose reactivity indicator developed in the previous paper. 1 It is 
difficult to distill the immense amount of information in this indicator, 

~1( - ( +1) (o) M( 1) I'-	 (11).!:. /1.N SO,a - K qnucleophile,a - K - J nucleophile,a 

into 	 an easily digestible form, however. Recall that 3~.a depends on two 

parameters: K (which measures the relative importance of electrostatic control 
( K ~ 1 ) and electron-transfer control (K ~ -1)) and !lN, which measures the 

amount of electron transfer. 3~ ,a is a bivariate function for every atom in the 

system! What we really want to know is which site is most reactive, and how (and 
whether) the choice ofreaction site changes due to changing electrophilic reagents 
and reaction conditions. We have found that the key information about the 
reactivity of the molecule can be summarized using what we term "reactivity 
transition tables." (See Tables 1-4.) To make a reactivity transition table, one 
starts by computing the value of 3~so,a for every atom in the molecule and for 

the entire chemically relevant range of choices for the amount of electron transfer 
( -1 ~ !lN ~ 0) and the extent of electrostatic/electron-transfer control ( K ). As 
established in the previous section, electrophilic attack on 10-hydroxy-l 0,9­
bozaroarphenanthrene is jointly controlled by electrostatic and electron-transfer 
effects, so we consider only -1 ~ K ~ 1 . In constructing the reactivity transition 
tables, we restrict ourselves to carbons that are susceptible to electrophilic 
aromatic substitution. 

One determines which atom is most reactive by locating the atom with the 
smallest value of 3~<o a. We insert this value in the "first choice" reactivity 

transition table and then color-code the cell so that it is clear which carbon is 
reacting. The second most reactive atom is the one with the second smallest value 
for 3~<0 a. We insert this value in the "second choice" reactivity transition table 

and color-code the cells to indicate the second most reactive carbon. If the 
difference between the values of 3~so,a for the first and second choices is 

relatively small, then, one expects that both possible product molecules will form. 
If the difference between the "first choice" and "second choice" values of 3~so,a 

is relatively large, vigorous reaction conditions may be required to form the 
secondary product. 
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Reactivity transition tables contain both qualitative and quantitative data 
on reactivity. At a quantitative level, the "first choice" and "second choice" 
reactivity transition tables give information about the relative favorability of the 
primary and secondary product. At a qualitative level, the reactivity transition 
table can be read as a "phase diagram" for chemical reactivity. Examine Table 1 a. 
When the nucleophile reacts with a very hard electrophile (so that the reaction is 
mostly electrostatically controlled and K ~ 1 ), reactions occur at carbon 8. As the 
electrophile becomes softer and the extent of electron transfer increases, carbon 6 
becomes the preferred site for reactivity. In the ''transition region" between carbon 
8 and carbon 6, one would expect a mixture of products. In this way, a reactivity 
transition table contains information about how to choose the electrophile so that 
a desired product is formed. 

Reactivity transition tables for different types of population analyses are 
provided in Table 1 (NP A), Table 2 (MSK), and Table 3 (CHelpG). In each case, 
carbon 8 is the most favorable site when electrostatic effects are dominant ( K ~ 1 , 
!!.N ~ 0) and carbon 6 is the most favorable site when electron-transfer effects are 
dominant ( K ~ -1 , !!.N ~ -1 ). Experimental results indicate that chlorination and 
nitration of 1O-hydroxy-10,9-bozaroarphenanthrene occurs on carbon 8 and 
carbon 6, with a small preference for carbon 8. In these reactions, the electrophile 
is reasonably hard, and so the reaction is probably more electrostatically 
controlled than it is electron-transfer controlled ( 0 < K < 1). Electron transfer to 
the electrophile will be important, but incomplete ( !!.N ~ -.5 ). In Table 2a and 3a 
(based on CHelpG and MSK population analysis, with the hydrogenic 
contributions summed into the adjacent heavy atoms), these experimental 
conditions place one near the transition region between carbon 8 and carbon 6, but 
in regions where carbon 8 would be predicted to be slightly more reactive. In 
Table la, (based on natural population analysis), this places one in the region 
where carbon 6 is most favorable, though one is still reasonably close to the 
region where carbon 8 would be favored. 
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Table 1 Reactivity Transition Tables for 1O-hydroxy-10,9-bozaroarphenanthrene 
using natural population analysis for the charges and Fukui functions on 
hydrogens summed into the adjacent heavy atoms. (a) First-Choice: the minimum 

values of S:V,,0 denotes where the molecule is most reactive. (b) Second-Choice: 

the second smallest values for S:V,,0 , denoting the second most reactive carbon. 

(a) 

t1N 1.0 
-1.0 -0.072 

-0.9 -0.072 

-0.8 -0.072 

-0.7 -0.072 

-0.6 -0.072 

-0.5 -0.072 

-0.4 -0.072 

-0.3 -0.072 

-0.2 -0.072 

-0.1 -0.072 

0.0 -0.072 

Carbon 2 

(b) K 

0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 
-0.117 -0.139 -0.161 -0.184 -0.206 -0.228 

-0.106 -0.125 -0.145 -0.165 -0.185 -0.205 

-0.094 -0.112 -0.129 -0.147 -0.165 -0.182 

-0.083 -0.098 -0.113 -0.129 -0.144 -0.160 

-0.098 -0.111 -0.124 -0.137 

-0.082 -0.092 -0.103 -0.114 

-0.066 -0.074 -0.083 -0.091 

-0.056 -0.062 -0.068 

-0.042 
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Table 2 Reactivity Transition Tables for 1O-hydroxy-10,9-bozaroarphenanthrene 
using CHelpG population analysis with the charges and Fukui functions on 
hydrogens summed into the adjacent heavy atoms. (a) First-Choice: the minimum 
values of B:Vso denotes where the molecule is most reactive. (b) Second-Choice: 

the second smallest values for B:Vso , denoting the second most reactive carbon. 

(a) 

/'J.N 1.0 0.8 0.6 0.4 
-1.0 -0.312 -0.289 -0.267 

-0.9 -0.312 -0.289 -0.265 

-0.8 -0.312 -0.288 -0.263 -0.239 

-0.7 -0.312 -0.287 -0.262 -0.236 

-0.6 -0.312 -0.286 -0.260 -0.234 

-0.5 -0.312 -0.285 -0.258 -0.231 

-0.4 -0.312 -0.284 -0.257 -0.229 -0.201 

-0.3 -0.312 -0.284 -0.255 -0.226 -0.197 -0.169 

-0.2 -0.312 -0.283 -0.253 -0.224 -0.194 -0.165 

-0.1 -0.312 -0.282 -0.251 -0.221 -0.191 -0.160 

0.0 -0.312 -0.281 

Carbon 2 

(b) 

-0.6 -0.8 
-0.264 

-0.237 

-0.185 

-0.132 

-1.0 
-0.294 

-0.264 

-0.235 

-0.206 

-0.176 

-0.147 

-0.117 

-0.088 

-0.059 
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Table 3 Reactivity Transition Tables for 1O-hydroxy-10,9-bozaroarphenanthrene 
using Merz-Singh-Kollman population analysis with the charges and Fukui 
functions on hydrogens summed into the adjacent heavy atoms. (a) First-Choice: 

the minimum values of 3~,,0 denotes where the molecule is most reactive. (b) 

Second-Choice: the second smallest values for 3~,,0 , denoting the second most 

reactive carbon. 

(a) 

MY 1.0 0.8 
-0.631-0.697 

-0.9 
-1.0 

-0.697 -0.631 

-0.8 -0.630 

-0.7 
-0.697 

-0.697 -0.630 

-0.6 -0.697 -0.630 

-0.5 -0.697 -0.629 

-0.4 -0.697 -0.629 

-0.3 -0.697 -0.629 

-0.2 -0.697 -0.628 

-0.1 -0.628-0.697 

-0.627 

Carbon 2 

-0.6970.0 

0.6 
-0.565 

-0.564 

-0.563 

-0.563 

-0.562 

-0.561 

-0.561 

-0.560 

-0.559 

-0.558 

-0.496 

-0.494 

-0.493 

-0.492 -0.424 

-0.491 -0.423 

-0.490 -0.421 

-0.489 -0.420 
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Examining the second-choice reactivity transition diagrams in Tables 1 b 
(NPA), 2b (ChelpG), and 3b (MSK), one finds that carbon 4 and carbon 2 are also 
predicted to be reactive. Carbon 4 would be predicted to be more reactive than 
carbon 2 except when electron-transfer effects are dominant ( K ::::: -1 ). 
Experimentally, carbon 4 is much less reactive than one would expect based on 
electronic-structure considerations alone. Dewar noted this effect as early as 1956, 
and suggested that the abnormally low reactivity of carbon 4 is due to steric 
effects, rather than electronic structure considerations.43 Our indicator does not 
include any information about steric hindrance, so it is not surprising that it also 
overestimates the reactivity of carbon 4. Examining the values of 3:.V,,o.a where 

carbon 4 emerges as the "second choice" reactivity site, we observe that there is a 
large gap between the predicted reactivity of carbon 4 and the reactivity of the 
most reactive site.47 This indicates that whenever carbon 4 is the "second choice" 
reactive site, the "first choice" reactive site is much more reactive. When the 
second-choice reactive site is much less favorable than the first-choice reactive 
site, one expects that the secondary product will be a very small percentage of the 
total yield, and thus difficult to isolate and characterize. 

The overall picture that emerges is fairly convincing: carbon 6 and carbon 
8 are most reactive, with the population analysis schemes based on electrostatic 
fitting successfully predicting that carbon 8 should be slightly more reactive. 
carbon 2 is predicted to be much less reactive, which agrees with the experimental 
observation that reactions at carbon 2 only occur under very special conditions: 
chlorination at high temperatures with excess chlorine.41 

Our analysis also indicates that under the appropriate conditions, carbon 6 
should be more reactive than carbon 8. Indeed, Friedel-Crafts acetylation of 1O­
hydroxy-10,9-bozazarophenanthrene occurs predominately at carbon 6, with the 
diacetylated product corresponding to reaction at both carbon 6 and carbon 8 as a 
secondary product.44 The monoacetylated product corresponding to reaction at 
carbon 8 is not observed. Dewar explained this by hypothesizing that the nitrogen 
atom is comfilexed by the AlCh catalyst, which might make carbon 8 sterically 
inaccessible. '48 Our analysis suggests another possibility, however. The 
mechanism of Friedel-Crafts acetylation involves the addition of the resonance­
stabilized acetyl carbocation (CH3CO+) to the aromatic ring. Because this is a 
carbocation, we expect that !!.N ::::: -1. Moreover, this carbocation is resonance 
stabilized and, additionally, might be somewhat stabilized by complexation of the 
catalyst. As such, the charge on the electrophilic carbon atom is relatively small 
and, moreover, we expect that the acetyl carbocation is relatively soft. 
Accordingly, we expect that the reaction will be mostly electron-transfer 
controlled, -1 < K < 0 . Referring to Tables 1 a through 3a, one finds that under 
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these conditions, carbon 6 is much more reactive than any of the other molecular 
sites. 

To this point we have focused on hydroxylated 10,9­
bozazarophenanthrene, (R=OH) rather than on the methylated compound. For the 
hydroxylated compound, the various population analysis schemes gave 
qualitatively similar results. This was not true for R=CH3, and summing the 
charges of the hydrogen atoms into the adjacent heavy atoms did not substantially 
improve the agreement between the various population analysis schemes. Indeed, 
even though the MSK and CHelpG charges are both based on fitting the 
electrostatic potential, the results from these population analysis schemes were 
significantly different for R=CH3• This can be contrasted with the favorable 
results in Figure 7a, where the different electrostatic potential fitting methods 
gave substantially similar results. Given the unreliability of our charges when 
R=CH3, we have chosen to focus our discussion on the hydroxylated compound. 
Nonetheless, the main results for R=CH3 are broadly similar: carbon 6 and carbon 
8 are ordinarily most reactive, with carbon 4 and carbon 2 being less reactive. In 
many cases, carbon 4 is more reactive than carbon 2, and steric effects need to be 
invoked to describe the lack of reactivity at this site.43 An exception occurs for the 
natural population analysis scheme, which is reported in Tables 4a and 4b. In that 
case, carbon 8, carbon 6, and carbon 2 are all reasonably reactive, though carbon 8 
and carbon 6 are likely to be the most reactive sites for chlorination and 
nitration.49 
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Table 4 Reactivity Transition Tables for 1O-methyl-10,9-bozaroarphenanthrene 
using natural population analysis with the charges and Fukui functions on 
hydrogens summed into the adjacent heavy atoms. (a) First-Choice: the minimum 
values of c:V,,0 denotes where the molecule is most reactive. (b) Second-Choice: 

the second smallest values for 2:V,,0 , denoting the second most reactive carbon. 

(a) K 

t;..N 1.0 0.8 -0.2 -0.4 -0.6 -0.8 
-1.0 -0.067 -0.066 -0.159 -0.183 -0.207 -0.232 

-0.9 -0.067 -0.066 -0.165 -0.187 -0.209 

-0.8 -0.067 -0.065 -0.166 -0.186 

-0.7 -0.067 -0.064 -0.146 -0.163 

-0.6 -0.067 -0.064 -0.125 -0.140 

-0.5 -0.067 -0.063 -0.105 -0.117 

-0.4 -0.067 -0.063 -0.084 -0.093 

-0.3 -0.067 -0.062 -0.057 -0.070 

-0.2 -0.067 -0.061 -0.056 

-0.1 -0.067 -0.061 -0.055 

0.0 -0.067 -0.060 

Carbon 2 

-1.0 
-0.256 

-0.231 

-0.205 

-0.179 

-0.154 

-0.128 

-0.102 

-0.077 

-0.051 

(b) 

0.6 0.4 0.2 0 
111 B-0.065 -0.110 I-0.086 I --- K·------­

-0.078 -0.100 IDJ Dmll 1 

-0.089I l!mllilml llilm 
-0.079llll 11m11 1am-,­

-0.057 -0.069 -0.083DI DBI llmil 
-0.059 -0.070 

-0.050 -0.057llimlliliill!iDI - I· ·­
-0.0451111 am am am am 

DI llmllilmllimllml 
l!lll mmam 

ml 
Carbon 2 Carbon 8 
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IV.V. Summary 

To explore the validity of our methods, we studied three molecules where 
frontier molecular orbital theory fails to predict the correct reactivity. This 
analysis underscores, among other things, the importance of chemical reasoning 
when applying reactivity indicators. For example, while our results for 
isoquinoline were in stark disagreement with experiment, isoquinoline is 
protonated under the experimental conditions. Adding a proton to isoquinoline 
brought our predictions into agreement with the experimental results. Similarly, 
when exploring electrophilic aromatic substitution on 10-R-10,9­
borazarophenanthrenes, it was important to remember that "ipso" attack-attack 
on carbon atoms that do not have any adjacent hydrogen atoms-is a mechanistic 
dead end since there is no leaving group that the electrophile can "substitute" for. 

The complex reactivity of 10-R-10,9-borazarophenanthrenes provided an 
ideal situation for testing the general-purpose reactivity indicator derived in the 
first paper of this series. Experimentally, chlorination, bromination, and nitration 
of 10-R-10,9-bozazarophenanthrenes occurs primarily on carbons 6 and 8 (with 
carbon 8 slightly favored). At higher temperatures, chlorination of 1 O-hydroxy­
10,9-bozazarophenanthrene also gives some of the trichlorinated product, with the 
additional reaction occurring at carbon 2. Friedel-Crafts acetylation of 1O-R-10,9­
bozazarophenanthrenes occurs primarily on carbon 6. Using the condensed 
version of our general-purpose reactivity indicator, E:V,,o,a, we were able to 

explain these results: carbon 6 and carbon 8 are the most reactive sites, with 
carbon 8 favored for hard electrophiles; carbon 2 is significantly less reactive than 
carbon 6 and carbon 8, but is predicted more reactive than any other site except 
the sterically hindered carbon 4; because the acetyl carbocation is resonance­
stabilized and a very good electron acceptor, the most reactive site should be 
carbon 6. To obtain these results, we used reactivity transition tables, which list 
the value of E:V<o a at the most reactive (Tables la, 2a, 3a, and 4a) and second 

most-reactive (Tables 1 b, 2b, 3b, and 4b) sites. The entries in the table are then 
color-coded according to identity of the most reactive site. For molecules with 
multiple reactive sites, reactivity transition tables provide a useful way of 
predicting how the regioselectivity of the molecule depends on the characteristics 
of the attacking reagent. 

We are encouraged by these results. The new indicator, E:V, coincides 

with conventional conceptual DFT reactivity indicators whenever they work, but 
also provides theoretical insight and computational results that can be used to 
clarify situations where conventional reactivity indicators fail. Our future efforts 
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in this area will focus on extending these results to other types of chemical 
reactions and refining the present indicator to account for the polarization of 
reactive sites. 
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predicted to be rather reactive, but electrophilic substitution at this carbon 
can not occur because of the absence of the electrofuge. In the text and in 
the tables, we focus our treatment on the ring carbons that are subject to 
substitution, carbons 1-8. 
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ChapterV 


Predicting the Reactivity of 


Ambidentate Nucleophiles and 


Electrophiles Using a Single, 


General-Purpose, Reactivity 


•Indicator* 

*The content of this chapter has been published: J. S. M. Anderson, P. W. Ayers "Predicting the 
reactivity of ambidentate nucleophiles and electrophiles using a single, general purpose, 
reactivity indicator"; Phys. Chem. Chem. Phys. 2007, 9, 2371-2378. 
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V .I. Statement of the Problem 

Chapter III derived a new general-purpose reactivity indicator and chapter 
IV applied the indicator to some difficult cases. In this chapter a larger number of 
molecules are presented. These molecules are particularly well-suited for 
illustrating the validity of the general-purpose reactivity indicator because they 
have multiple reactive sites, with different reactive sites preferring to bond to 
different substrates. Such molecules are said to be ambidentate. The molecules 
treated here have one site that prefers to react with hard reagents and another that 
prefers to react with soft reagents. Normal reactivity indicators will predict that 
one of the active sites is always preferred, but the general purpose reactivity 
indicator was specifically designed to discern between these two types of 
reactivity. It succeeds. 

V.11. Background 

Electronic structure theory is the art of transforming molecular structure 
information into information about chemistry and, especially, chemical reactivity. 
The last few decades have seen immense improvements in this quest, especially 
when one considers the improvements in quantitative accuracy for modeling 
chemical reactions. 1

;
2 In contrast, conceptual advances have lagged somewhat, 

mostly because the most accurate ab initio techniques for achieving quantitative 
accuracy are not amenable to direct interpretation. An exception is density­
functional theory (DFT). DFT is exact in principle but, as stressed by Parr and his 
proselytes, it provides a simple and direct qualitative picture of what drives 
chemical reactions. 3 -s Importantly, the picture does not change as the quality of 
the underlying density-functional method improves from inaccurate local 
functionals, to more accurate hybrid functionals, to extremely accurate approaches 
inspired by "wavefunction based" ab initio methods.9

-
14 Unlike simple molecular 

orbital models, density-functional reactivity theory includes electron correlation 
and orbital relaxation effects, both of which can be significant. 15 Density­
functional reactivity theory has proved very successful for describing known 
principles of chemical reactivity (e.g., electronegativity equalization16 and the 
Hard/Soft Acid/Base Principle17

-
22

) and also for the development of new 
principles (e.g., the maximum hardness principle23

-
25

). 

Recently, the authors proposed new reactivity indicators, one appropriate 
for predicting reactivity of nucleophiles and one appropriate for predicting the 
reactivity of electrophiles, that were designed to not only model conventional 
"charge controlled" reactions (where electrostatic interactions are dominant) and 
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"frontier controlled" reactions (where electron-transfer is dominant),20
;
26 but also 

intermediate cases. 27 Our first papers considered only a few simple, but 
problematic, molecules.28 Based on the encouraging results, it occurred to us that 
we should test the indicators more thoroughly. To do this, we decided to explore 
ambidentate molecules: molecules with multiple reactive sites where it is known 
that reactivity "switches" from one site to another based on the properties of the 
attacking reagent. Very commonly one reactive site is associated with highly 
charged (or "hard") reagents while the other site is associated with highly 
polarizable (or "soft") reagents. (In fact, one of the key innovations in ref. 27 was 
the ability to rigorously explain the local Hard/Soft Acid/Base phenomenon that 

21 22Pearson proposed long ago. 17
; ; ') 

The "general-purpose reactivity indicator," 3, that we proposed is based 
on what is termed the "perturbative perspective on chemical reactivity."7

;
25

;
29 The 

basic idea is that most molecules are only reactive in one or two sites. For 
example, nitrogen-containing bases tend to react on the lone pair of the nitrogen 
regardless of the structure of the remainder of the molecule and regardless of the 
detailed nature of the acidic reagent that is being considered. This tells us that one 
can obtain a qualitative description of chemical reactivity by formulating a 
simplified model for the reagent and then studying how this model perturbs the 
molecule of interest. If the perturbation lowers the energy of the molecule (or at 
least does not increase the energy very much) then the reaction is favorable. 
Otherwise the reaction is unfavorable. 

The reagent perturbs the molecule under scrutiny in two ways: it changes 
the number of electrons in the molecule (1!:.N) and it changes the external 

potential felt by the electrons in the molecule ( ~v(r)). The change in energy can 

then be computed using density-functional perturbation theory, 

t-.U ~ f'w"( [}] t-.v(r) dr + ( aE )­ l!:.N 
'5v r 8N v(r) 

( 
'5E [v; N)J ( ) (1)+ ( ) ~v r dr

'5v r 

+[( 8~ ( 
8~~~~flJLi t-.v(r)dr]m+ . 

Here U represents the total energy of the molecule within the Born-Oppenheimer 
approximation, i.e. U is the sum of the total electronic energy and nuclear­
nuclear repulsion energy, U =E + Vnn. It is, of course, impossible to consider the 

entire expansion and so the expansion needs to be truncated or, alternatively, 
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treated using the functional-analytic generalization of Taylor's theorem with 
remainder.7

;
30 The general-purpose reactivity indicator is one of the simplest 

conceivable reactivity indicators based on Eq. (1): it is derived by truncating the 
expansion after the first-order terms in the external potential. (Higher order 
contributions from tiN are identically zero in exact ab initio quantum 

31 33 34mechanics.9
; - ' ) As such, only the terms that are explicitly shown in Eq. (1) are 

considered. The reactive site of the attacking reagent is then modeled using a 
21condensed reactive-site only model,20

; ;
27 where the reactive site is modeled as a 

point charge with a given condensed Fukui function. 35
-
39 After some rather 

lengthy analysis,27 one arrives at indicators for the reactivity of each site in the 
molecule with respect to electrophilic attack on a nucleophile ( tiN :::;; 0) 

3~o>O,a = ( K + 1) q~~~leophile,a - f1N ( K -1) .fn~cleophile,a (2) 

and nucleophilic attack on an electrophile ( tiN ~ 0) : 

3~~0,a =-(K +1) q~~ctrophile,a + f1N (K-1) fe;ectrophile,a (3) 

Here q~ denotes the atomic charges on the nucleophile/electrophile that is under 

study and 
,- + 0 (4)J nucleophile,a =qnucleophile,a - qnucleophile,a 

and 
f+ 0 ­ (5)J electrophile,a =qelectrophile,a - qelectrophile,a 

denote the condensed Fukui functions for electron removal from the nucleophile 

and electron addition to the electrophile.38
;
39 

q;ucleophile,a denotes the atomic 

charges on the nucleophile with one electron removed (which is typically a cation, 
and typically choosing vertical ionization). q:iectrophile,a denotes the atomic charges 

on the electrophile with one electron added (which is typically an anion, and 
typically choosing vertical electron attachment).40 The general-purpose reactivity 
indicator, 3~ , is a two-parameter model, that depends on the amount of electron 

transfer tiN and the parameter K . The parameter K encapsulates the key 
information about the electronic structure of the attacking reagent. When one goes 
through the mathematics, one discovers that the qualitative preferences of an 
electrophilic reagent for a particular site in a nucleophile ( tiN :::;; 0) are modulated 

by a quantity that is approximately proportional to the sum of the charge on the 
reactive site electrophile and the amount of electron transfer to the electrophile's 
reactive site: 

K - q~~ctrophile + tiN.fe\:ltrophile • (6) 
Similarly, the reactivity of a nucleophilic reagent attacking an electrophile 
( tiN ~ 0) is modulated by 
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- - (o) -l'lN.Tf.(-) (7)
K qnucleophile nucleophile • 

In most (but not all) cases, K is between one and minus one. When K ~ 1 , the 
charge on the reactive site of the attacking reagent is much larger than the extent 
of electron transfer to/from the attacking reagent, and the reaction is 
electrostatically controlled, hard reaction. When K ~ -1 , the charge on the 
reactive site of the attacking reagent is much smaller than the extent of electron 
transfer, and the reaction is electron-transfer (or Fukui-function) controlled, soft 
reaction. Many reactions are somewhere between these two extremes. 27

;
28 

The .S:V reactivity indicator is preferable to other indicators whenever (a) 

a reaction is neither electron-transfer nor electrostatically controlled and (b) when 
different types of reagents react with the molecule at different reactive sites. The 
latter phenomenon is associated with ambidentate reactivity, wherein a molecule 
can react at either of two reactive sites, and which site is most reactive depends on 
the nature of the attacking reagent. Our hypothesis is that the .S:V will elucidate 

the reactivity of ambidentate molecules. The goal of this paper is to demonstrate 
that this hypothesis is correct. 

V.111. Computational Methodology 

All of the calculations presented were performed using Gaussian 03 using 
the B3L YP exchange-correlation energy functional41

;
42 using the 6-31 ++G* basis 

set.43 The calculations on SeCN- were also compared with the LanL2DZ basis set, 
which treats the core electrons with an effective core potential. The 
pseudopotential calculation gave similar results to the 6-31 ++G* basis set, 
indicating that relativistic considerations were not determinative for the reactivity 
of this molecule. 

For each molecule, the geometry was first optimized for the molecular 
substrate and the geometry was then held fixed when the charges of the ( N + 1 )­

electron system (for electrophilic molecules) and the ( N -1 )-electron system (for 

nucleophilic molecules) was computed. The calculations on the nucleophiles 
(including the geometry optimization) included a solvent model, the PCM 
model.44 (The solvent model is especially important for stabilizing the anions.) 
The electrophiles considered are neutral molecules so solvent is inessential. As 
such, no solvent model was used for the electrophiles. The condensed general­
purpose reactivity indicator is derived with electrostatics in mind and as such a 
population scheme that uses electrostatic fitting is likely most appropriate. In our 
study we presented a detailed analysis including the Mulliken (MPA), Mertz­
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Singh-Kollman (MSK), natural (NPA), and cHelpG (CHG) schemes. We did the 
same studies here but, for brevity, we will only present the CHG results (the other 
schemes give qualitatively similar results). CHG has the reputation for being a 
reliable population scheme,45 and it gave good results in our previous calculations 
using this reactivity indicator.28 Also, when applicable, the charges on the 
hydrogen atoms were summed into the heavy atoms they are bonded to, this is 
often done since distinguishing how much charge is on the hydrogen atom and 
how much is on the adjacent heavy atom is often not clear due to the short XH 
bond length. For qualitative arguments including the hydrogens bounded to the 
reactive atom in the reactive site is permissible since one can interpret the value of 
2~,a assigned to heavy atoms as representing the reactivity of XH0 functional 

groups (X =heavy atom, n=0,1,2, ...). 

We will present our data using the "reactivity transition tables" introduced 
in our previous paper. Reactivity transition tables are a concise and visually 
appealing way to represent the most reactive site in a molecule organized by (1) 
the extent of electron transfer to the molecule being studied ( f..N) and (2) the 
reactivity preferences of the attacking reagent (i.e. hard or soft, with K =1 
representing charge control (hard reagents) and K =-1 indicating electron­
transfer control (soft reagents)). For each reasonable choice of K and f..N, the 
value of 2~.a was computed for each non-hydrogen atom (or XH0 functional 

group) and the most reactive atom is identified. The value of 3~ a at the most 

reactive atom is recorded in the appropriate cell of the reactivity transition table 
and identity of the atom is indicated by color-coding the cell of the table. In this 
work, we have introduced the convention that, if known, the product that 
experiments predict for electrostatically (i.e. charge) controlled reactions will be 
colored "dark red" and the product that experiments predict for electron-transfer 
(i.e. frontier) controlled reactions will be colored "sky blue."46 If there is a third 
reactive site associated with "intermediate" conditions this would be assigned a 
"violet" color. Reactive sites that are theoretically predicted but not 
experimentally observed will be assigned different colors. A "legend" for the 
colors is presented at the bottom of the table. One advantage of this "standardized 
color scheme" is that it allows one to, at a glance, identify to what extent a 
reactivity transition table agrees with the experimentally predicted results. 

We remind the reader that since 2~.a is based on a model for the 

interaction energy between the molecule and an approaching reagent, the most 
reactive atoms/functional groups are those with the smallest (most negative or 
least positive) values of the s~.a. 
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V .IV. Results 

A. Ambidentate Nucleophiles 

The nucleophiles studied illustrate the efficacy of the condensed general­
purpose reactivity indicator. In all four cases presented, the cases of SCN-, SeCN-, 
N02-, and S03

2
-, reactivity transition tables 1-4, the condensed indicator correctly 

indicated the hard (electrostatic controlled or charge controlled) and soft (charge 
transfer or Fukui controlled) sites of the molecule. 

t. scN-

The condensed general-purpose reactivity indicator correctly predicts the 
sulfur atom to be the soft site and the nitrogen atom to be the hard site. (See Table 
1.) Moreover, if one then looks at the second choice (not shown) (i.e. the atom 
with the second smallest value of 3~,a ), the carbon atom is never predicted as 

the reactive site. (This agrees with the experimental result (the carbon atom is 
unreactive) but disagrees with some of the prior results in the chemical reactivity 
literature, which would have predicted that carbon (and not nitrogen) would have 
been the reactive site for a hard reagent, because the carbon atom has the smallest 
value of the Fukui function. 47 More information about the (rather limited) utility 
of the minimum Fukui function rule can be found in the work of Melin and her 

48collaborators.27 
; ) 
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2 :V,;o, for electrophilic 

MV \ K -0.2 -0.4 -0.6 -0.8 -1 
-I -1.48841 -1.SOS81 -1.S2322 -1.S4063 ·l.SS803 
-0.9 -1.39493 -1.3967S ·l.398S8 -1.4004 -1.40223 
-0.8 -1.30144 -1.28769 -1.27394 -1.26018 -1.24643 
-0.7 -1.20796 -1.17863 -1.14929 -1.11996 -1.09062 
-0.6 -1.11448 - l.069S6 -1.0246S -0.97974 -0.93482 
-0.S -0.90001 -0.839SI -0.11902 
-0.4 -0.77S36 -0.69929 -0.62321 
-0.3 -0.6S072 -O.SS907 -0.46741 
-0.2 -O.S2608 -0.41884 -0.31161 
-0.1 -0.40144 -0.27862 -O.ISS8 
0 
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2. SeCN-

Similar to SCN- the condensed general-purpose reactivity indicator 
correctly predicts that the selenium atom is site where soft acids react and the 
nitrogen atom is the site where hard acids react. (See Table 2.) Just as in the SCN­
case, carbon is always predicted to be the least reactive atom, in accord with 
experimental facts. Notice how similar the reactivity transition table for this 
molecule is to the reactivity transition table for SCN-. 
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Table 2 Condensed general-purpose reactivity indicator, 

attack on SeCN- usin cHel G char 

-0.4 
-1 -0.77478 
-0.9 -0.7394 
-0.8 -0.70401 
-0.7 -0.66863 
-0.6 -0.63324 
-0.5 -0.59786 
-0.4 -0.56247 
-0.3 -0.52709 
-0.2 -0.4917 
-0.1 -0.45632 

for electrophilic 

-0.6 -0.8 -1 
-0.68502 -0.'9526 -0.5055 
-0.64458 -0.54977 -0.45495 
-0.60414 -0.50427 -0.4044 
-0.5637 -0.45878 -0.35385 
-0.52326 -0.41328 -0.3033 
-0.48282 -0.36779 -0.25275 
-0.44238 -0.32229 -0.2022 
-0.40194 -0.2768 -0.15165 
-0.3615 -0.2313 -0.1011 
-0.32106 -0.1858 -0.05055 
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The condensed general-purpose reactivity indicator correctly identifies 
nitrogen to be the soft site and oxygen to be the hard site of the nitrite anion. (See 
Table 3.) Based on Table 3, it seems unlikely that the nitrogen atom will be 
reactive except for extremely soft acids. Certainly the overall trend is correct, 
since protonation (the proton is the prototypical hard acid) of N02- occurs on an 
oxygen atom. 
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3~,,0 , for electrophilic 

/:iN \ K -I 
-I .o.10m 
-0.9 -0.63159 
--0.8 -0.56141 
--0.7 -0.49124 
--0.6 -0.42106 
--0.5 -0.35088 
-0.4 -0.28071 
-0.3 -0.2 1053 
-0.2 -0.14035 
-0.1 -0. 
0 
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The condensed general-purpose react1v1ty indicator correctly identifies 
sulfur to be the soft site and oxygen to be the hard site of the sulfite anion, see 
Table 4. Notice that the similarity in the reactivity transition tables of sulfite and 
nitrite reflect their chemical similarity. 
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B:V,.,0 , for electrophilic 

/),N \ K -1 
-1 .0.87237 
-0.9 .0.7851 3 
-0.8 .0.6979 
-0.7 .0.61066 
-0.6 .O.S2342 
-0.5 -0.43619 
-0.4 .0.34895 
-0.3 -0.26171 
-0.2 .0.1 7447 
-0.1 -0.08724 
0 
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B. Ambidentate Electrophiles 

Relatively few ambidentate electrophiles are known and even the simplest 
ambidentate electrophiles are relatively large and complex molecules. Because of 
this, it is often difficult to discern whether the "switch" in reactivity of 
ambidentate electrophiles is due to switching between electrostatic and electron­
transfer control or due to steric interactions with soft nucleophiles (because soft 
nucleophiles tend to be larger than hard nucleophiles). Even though our general­
purpose reactivity indicator does not model steric effects, it seems to be 
reasonably effective for predicting the reactivity of ambidentate electrophiles. The 
electrophiles examined include dimethyl carbonate,49 N-methyl-N-nitrosotoluene­
p-sulfonamide (MNTS),50 and 1-chloro-2,4,6-trinitrobenzene (CNB).51 

1. Dimethyl Carbonate 

The case of dimethyl carbonate, I, shows the greatest efficacy of this 
indicator. The results clearly show that the condensed general-purpose reactivity 
indicator correctly predicts the methyl groups to be the soft sites and the carbonyl 
carbon to be the hard site. (See Table 5.) 
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3~~0 , for nucleophilic 

attack on dimeth 1 carbonate usin 

0.1 
O.l 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
·o.9 

- I 

·0.02419 
--0.04837 
--0.07256 
--0.09674 
--0.12093 
--0.14511 

--0.20669 --0.1693 
--0.22846 --0.19348 
--0.25023 --0.21767 
--0.27199 --0.24185 
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2. N-methyl-N-nitrosotoluene-p-sulfonamide (MNTS) 

Dimethyl carbonate is an ideal test of the 3~ indicator because it is a 

relatively small molecule and steric effects are rather negligible. This is not true 
of N-methyl-N-nitrosotoluene-p-sulfonamide (MNTS), II, but the reactivity 
indicator still correctl6' assigns the sulfur atom to be the hard site. The 
experimental evidence5 indicates most of the reactivity is seen at the sulfur atom. 
This observation is consistent with our results since the reactivity transition table 
is dominated by the sulfur. Notice that the general-purpose reactivity indicator 
correctly predicts that the sulfur atom can react as a soft-base (e.g., thiocyanate, 
II.A.1) or as a hard acid (e.g., MNTS). In MNTS, the sulfur atom has a formal 

21 52charge of +4; atoms in high oxidation states are hard acids.20
; ; 

-0-
~ /N=O 

H3C S-N\ 

g CH3 

The indicator also successfully predicts that the nitroso group, NO, is the 
soft site. However, the indicator fails to discern that it is the nitrogen atom, and 
not the oxygen atom, of the nitroso group that is most reactive. (Instead, it 
predicts that both atoms are somewhat reactive towards soft reagents, with the 
oxygen atom being the most reactive atom and nitrogen either the second (NP A 
population analysis) or third (CHG) most reactive atom.53

) This could indicate 
that a nucleophile attacks the oxygen atom directly and then migrates to the 
nitrogen atom or indicate that the oxygen attack is a "mechanistic dead end."54

) 

This could also be due to the difficulty of partitioning the electron density 
between the nitrogen and oxygen atoms (since the NO bond is rather short). 
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Table 6 Condensed general-purpose reactivity indicator, 3~~0 , for nucleophilic 

attack on MNTS usin cHel G char es. 
~ 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

I : I I I I I : -1 
I ':-.i,11 I 1.1;1 I ll!l(I' 1-l.l:\ II -J.',1,<1 " 1-l_'')I'" " '""'·' " 	 "~' ':-.;..;-. 1-l-'!'1 I 1111 ,,,,; 

" "\r.11.j " II""'" •11--11 " ltd'" -0.03538 ' 
I I '-1!1.\'I I 1111 "' ,..., 11!·1111·1'1 " Ji..'-l.' " ''-l;_J " f;..r•.'I• -0.07076 i ~ '" I " 
I I ,.,, ..., I 

,, 
I 11_'i"r· II ;..\t..'<J '\llf• 111·11'1-- 11.J'•J_':-.. " Ll\i.I " '11··H ·0.10614 

I ; I ..,,. lr•_'l-l 
"' 

I 11_'-11" II \'h'I.' 
" ,._-,,,, IJ!•'•)_j " j•Jt.l-J ;,,:,, 

" "It•' ·0.14152 " 	 " ,,, .,,I '· '.Jr~ I "J\ll I ,,;t>ll ''-l"l 111>_j;,(> ''"I ;111 " ;,_'Ir· II ~" I ·0.1769 
I ;IHI'_' 	 I I ''II\ I •l-1'!>-l 11'•1,_' " ·,r, 11 h""- \I 11·,_''I' 11.1111-1; " 

,- '<J<j ·0,21228 
I -l'V)f ;11"'' 	 I I f"J I 11'<11' ll'•.'l\\ " 'Ji, " l.'11 11 _'•!JI> ·0.24766 '''"tI I \•11 I \11~ ;4 	 I l\i I ll''dl'i 11•Jd-J- 11\.l••'l II h'.'' 11'1•;,, I I .) ~ ' / • J - " l.11.;, .Q.28304 

I l\1"'' I 111,,;• II 'l_j_j' 1111. I) °'"-1141• !I -1->.i_''- " 
;;,,t)\ ·0.31842 II ,_,_,,q 

I ' "'If I \illlh '.' ·0.3538 I ill] ,, I 11···•,.;. 	 11'1'-'--l 11 :-, qq l - :hi ; 11 ''/ II 4 '"\'.' " 
;.;,q. I 

I ' '"'f 
'" 	 " 
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3. 1-chloro-2,4,6-trinitrobenzene (CNB). 

The third electrophile considered, CNB, III, was suggested by Boga and 
coworkers51 to be an ambidentate molecule, but they only observed reactivity at 
the carbon bonded to chlorine and no reactivity at the meta carbons. They further 
suggested that the meta carbons were likely the kinetic product of the reaction but 
were unstable. The general-purpose reactivity indicator when comparing only the 
meta carbons and the carbon bonded to the chlorine (with the hydrogens summed 
into the meta carbons) one observes the meta carbons are the most reactive site. 
(See Table 7.) This confirms our suspicion that the general-purpose reactivity 
indicator-like other reactivity indicators based on perturbation theory about the 
isolated reagents-provide predictions for the "kinetic products" of a reaction and 
not the "thermodynamic products." Notice that in this case the experimental 
reactivity predictions were not easily classified as "electrostatic" or "electron­
transfer" control (this is why this table does not use the red/purple/blue color 
scheme), yet the general-purpose reactivity indicator is still consistent with the 
interpretation of the experimentalists. 

0 Cl 0 
I+ II+ 

....-:N N......._ ­0/ 0 

+ 
_,...N~

0 0 
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Table 7 Condensed general-purpose reactivity indicator, 3~;:,o , for nucleophilic 

attack on CNB using cHelpG charges. Only the meta carbon and the carbon 
bonded to chlorine are included in this table. 

/1N \ K I 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 
0 
0.1 

-0.02975 
-0.02975 

-0.02678 
·0.02823 

-0.0238 
-0.02672 

-0.02083 
-0.0252 

-0.0 1785 
-0.02368 

-0.01488 
-0.02216 

-0.0119 
-0.02064 

-0.00893 
-0.019 12 

-0.00595 
-0.01761 

-0.00298 
-0.0161 -0.01461 

0.2 -0.02975 -0.02969 -0.02963 -0.02957 -0.0295 I -0.02944 -0.02938 ·0.02932 ·0.02928 -0.02925 -0.02923 
0.3 -0.02975 -0.03115 ·0.03254 -0.03394 -0.03533 -0.03673 -0.03812 -0.03953 -0.04097 -0.0424 -0.04384 
0.4 -0.02975 -0.0326 -0.03546 -0.0383 1 -0.04116 -0.0440 1 -0.04687 -0.04976 -0.05266 -0.05556 -0.05846 
0.5 -0.02975 -0.03406 -0.03837 -0.04268 -0.04699 -0.05 13 -0.05563 -0.05999 -0.06435 -0.06871 -0.07307 
0.6 -0.02975 -0.03552 -0.041 28 -0.04705 -0 .05282 -0.05858 -0.0644 -0.07022 -0.07604 -0.08 186 -0.08769 
0.7 -0.02975 -0.03697 -0.0442 -0.05142 -0.05864 -0.06588 -0.073 17 -0.08045 -0.08773 -0.09502 -0.1023 
0.8 -0.02975 -0.03843 -0.04711 -0.05579 -0.06447 -0.0731 9 -0.08 193 -0.09068 -0.09942 -0.108 17 -0.11691 
0.9 -0.02975 -0.03989 -0.05003 -0.060 16 -0.0703 -0.0805 -0.0907 -0.1009 1 -0.11112 -0.12132 -0.13153 
I -0.02975 -0.04135 -0.05294 -0.06453 -0.076 14 -0.0878 -0.09947 -0.11114 -0.1228 1 -0. 1344 7 -0. 14614 
Meta 
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If one included the ortho and para carbons in the analysis also, one obtains 
Table 8. This would indicate that the electrostatically controlled reaction site is 
the para carbon, which is the most positively charged carbon. While nucleophilic 
attack on the para site can occur, attack at this site does not lead to product 
(because the hydride anion is a very poor leaving group). This is an example of a 
"mechanistic dead end": sometimes the most favorable "first step" for a reaction 
(which is what DFT-based reactivity indicators identify) cannot lead to a product 
because reaction barrier for the second step (here, the leaving of the hydride 
group) is too large. This is a seemingly universal characteristic of simple 
reactivity indicators that are based on the isolated reagents and it is commonly 
observed in electrophilic aromatic substitution also, because electrophilic attack at 
an ipso site is often favorable, but the reaction barrier to ipso substitution is very 
large and so the ipso product is rarely observed. 
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Table 8 Condensed general-purpose reactivity indicator, 3~"0 , for nucleophilic 

attack on CNB using cHelpG charges. All of the carbon atoms are included in this 
table. 

MV\K 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

-0.8 -1 
·0.02785 
-0.02804 -0.01461 
-0.02925 -0.02923 
-0.0424 -0.04384 
-0.05556 -0.05846 
-0.06871 -0.07307 
-0.08186 ·0.08769 
-0.09502 -0.1023 
-0.108 17 -0.11691 
-0. 12132 -0.13 153 
-0. 13447 -0.14614 
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In some electrophilic and nucleophilic substitution reactions, whether a 
given site of attack leads to product can be ascertained by evaluating the quality 
of the leaving group using, for example, any of the several recently proposed 

55 57reactivity indicators for leaving group ability.7
; ­

v.v. Discussion 

In collaboration with Junia Melin, we recently proposed a general-purpose 
reactivity indicator that is capable of describing both charge controlled (hard-hard 
interactions) and electron-transfer controlled (soft-soft interactions) reactions, as 
well as intermediate cases.27

;
28 The purpose of this paper is to test whether the 

general-purpose reactivity indicator can successfully predict the reactivity of 
ambidentate electrophiles and nucleophiles. The first part of this paper (§II.A) 
establishes that the reactivity indicator works very well at predicting where 
electrophiles attack ambidentate nucleophiles. This result is somewhat 
unsurprising, since in our previous (albeit very limited) tests, the indicator seemed 
to successfully predict electrophilic attack on aromatic compounds. 28 The second 
part of this paper (§II.B) marks the first applications of the general-purpose 
reactivity indicator to nucleophilic attack. It is reassuring that the reactivity 
indicator also works well at predicting where nucleophiles attack ambidentate 
electrophiles. 

It is interesting to observe that this reactivity indicator successfully models 
Hard/Soft-Acid/Base (HSAB) behavior without using the Parr-Pearson value for 
the hardness ( T/ = I - A). The hardnesses, T/ + and T/-, are zero in exact ab initio 
theory, so it is reassuring that we are able to recover the types of results one 
associates with the HSAB principle using a model based on T/+ =T/- =0. 

Based on our previous computational study of this reactivity indicator,28 

the mathematical formalism underlying the indicator,27 and this paper, we can 
issue some guidance for subsequent applications of this reactivity tool. 

• 	 This reactivity indicator does not contain information about steric 
hindrance. Sterically congested sites may not be as reactive as the 
indicator would lead one to expect. 

• 	 This reactivity indicator shows the most favorable site for initial attack. 
Sometimes this site might be a mechanistic dead end (i.e., the second step 
in the reaction might be unfavorable); sometimes the reagent might attack 
at one site and then migrate to another site. Also, the site predicted by the 
reactivity indicator will usually correspond to the kinetic product; the 
thermodynamic product will sometimes be different. 
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• 	 This reactivity indicator is most effective for small, simple molecules, 
where the electronic structure of the reagent is dominant over steric 
effects, molecular rearrangements, and other "molecule geometry" factors. 

• 	 It is recommended to consider several different population analysis 
schemes; in cases where several different (but reasonable) population 
analysis schemes give different results, one must be very cautious when 
drawing conclusions from the data. 

Overall, we believe that the general-purpose reactivity indicator is an effective 
reactivity tool, which should be added to the toolbox of chemists working in the 
theory of chemical reactivity. It is far from the ultimate goal of the qualitative 
density functional theory of chemical reactivity-it is an interpretative, rather than 
a predictive, tool-but among reactivity indicators that capture the key physics of 
chemical reactivity, the proposed general-purpose reactivity indicator is one of the 
simplest and most easily computable formulae that has been conceived. It is 
hoped that further studies will lead to greater insight into the physical foundations 
of this indicator, greater understanding of its range of chemical applicability, and 
further improvements to its accuracy and utility. 
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Chapter VI 


Relativistic Quantum Theory of 


Atoms in Molecules: Results for the 


ZORA Hamiltonian* 


*The content of this chapter is in preparation to be submitted: J. S. M. Anderson, P. W. Ayers 
"Relativistic Quantum Theory of Atoms in Molecules: Results for the ZORA Hamiltonian"; 
special issue of J. Chem. Phys. for the REHE conference 2010 
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VI.I. Statement of the Problem 

This chapter extends the quantum theory of atoms in molecules 
(QTAIM) to include relativistic corrections. Specifically, this chapter uses the 
quantum mechanical Hamiltonian at the scalar-relativisitic zeroth-order regular 
approximation (ZORA) level theory. This level of theory is approximate, but it is 
usually adequate for chemical accuracy. The only change from non-relativisitic 
QT AIM is the kinetic energy term. The quantum theory of atoms in molecules 
can be extended to include relativity at this level of theory. Interestingly, this is 
possible despite the fact atomic partitioning of molecules is sensitive to the form 
of the kinetic energy. Moreover, the mathematical form of the atoms is preserved 
in this theory. This is the first successful relativistic generalisation of QT AIM. 

VI.II. Introduction 

Predicting how a molecule changes in response to the insertion, deletion, 
or substitution of atoms or functional groups is of the utmost importance to 
chemists, theoretical and experimental alike. Such predictions are critical to 
chemists who want to design molecules with particular properties. It is a 
fundamental precept of chemistry that atoms and functional groups have 
transferable behaviour, and one theoretical approach that explains this observation 
is the quantum theory of atoms in molecules (QTAIM).1

-
6 In QTAIM the value of 

a physical property of an entire system (usually a molecule) is obtained by adding 
the value of that property for all the atoms in the system. Under the assumption of 
perfect transferability, this allows one to---via a simple process of addition and 
subtraction-see how changes in atoms and functional groups affect molecular 
properties. (Perfect transferability is impossible,7

-
11 however atoms and 

functional groups are commonly highly transferable. 7) 

When considering molecules that include heavy atoms, relativistic effects 
cannot be ignored. The most common way to address relativistic effects is to 
modify the nonrelativistic Hamiltonian in a way that approximately models the 
effects of relativity. This is the approach of the popular Zeroth-Order Regular 
Approximation (ZORA). 12

-
19 (Although more sophisticated two-component and 

four-component methods are becoming increasingly prevalent,20
-
29 addressing 

those models requires an altogether different mathematical treatment, which we 
shall not pursue here.) The goal of this paper is to explore the structure of 
QTAIM when the normal non-relativistic Hamiltonian is replaced by a 
Hamiltonian with relativistic corrections. Here we will focus on the ZORA 
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Hamiltonian in its scalar-relativistic form. The addition of spin-orbit effects is 
more complicated and will be deferred to a later paper. 

As espoused by Bader and his coworkers, QT AIM is motivated by and 
mathematically developed from a generalisation of the quantum mechanical 
principle of stationary action to a subsystem.1

•
4

-
6 This mathematical development 

has recently been the subject of some controversy,30
-
37 but we will overlook that 

controversy here. Our main goal is to extend the usual argumentation of QT AIM 
to the ZORA Hamiltonian; doing so establishes the relativistic AIM which is most 
nearly analogous to the ordinary, nonrelativistic AIM. (In this paper, we will use 
AIM to refer to the atom in a molecule that is associated with QTAIM and its 
relativistic generalisations and evade the deeper epistemological issues.7

•
38-4°) 

We are aware of only one previous attempt to mathematically generalise 
QT AIM to relativistic considerations. Cioslowski has considered relativistic 
QTAIM using a four-component relativistic formulation. 41 In that work, a certain 
arbitrariness in the definition of the relativistic Lagrangian is noted. As noted by 
several workers and emphasized by Cohen, the arbitrariness in the Lagrangian 
arises even in the nonrelativistic formulation. Although this arbitrariness does not 
cause any problems for entire systems, it means that local (and subsystem) 
properties cannot be uniquely defined.42-47 Cioslowski explored the implications 
of this arbitrariness in the context of Hamilton's action principle (and not the 
principle of stationary action that subsumes it) and the a,rbitrariness makes it 
difficult to unambiguously identify an atom in a molecule. Our goal is more 
pragmatic than Cioslowski's (most calculations of molecules containing heavy 
atoms are performed using ZORA and Kohn-Sham density-functional theory) and 
less ambitious (since ZORA is only an approximation to the fully relativistic four­
component form). One advantage of focussing on the ZORA Hamiltonian is that 
it is easy to identify the Lagrangians that are most nearly analogous to the 
nonrelativistic Lagrangians commonly employed in QT AIM. 

The construction of the relativistic AIM is performed by constructing 
relativistic Lagrangians appropriate to the ZORA Hamiltonians and then applying 
the same subsystem least-action principle used for nonrelativistic QTAIM. 1•

4
-
6 

The subsequent mathematical simplifications will be treated meticulously in 
subsequent work; this paper provides only the level of mathematical detail that is 
conventional in QTAIM. Our treatment supersedes the ordinary QTAIM 
argumentation, which can be recovered in the nonrelativistic (c---+ oo) limit of our 
equations. In the nonrelativistic QTAIM, the zero-flux atomic surfaces arise 
naturally from the second derivative terms in the kinetic energy operator and the 
observation that the potential energy operator is multiplicative. (The electron­
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electron repulsion and electron-nuclear attraction do not depend on the electronic 
momentum.) We find it surprising, then, that when one modifies the kinetic­
energy operator using the scalar-relativistic ZORA Hamiltonian in Kohn-Sham 
density-functional theory, the surfaces binding the atoms are still zero-flux 
surfaces of the electron density. 

In the next section, we present background information on QT AIM and 
the ZORA Hamiltonian. In section V, we present the QTAIM analysis for the 
scalar-relativistic ZORA Hamiltonian (SR-ZORA). Section VI contains 
concluding remarks. Most of the mathematical justifications are deferred to the 
appendix. 

VI.III. Background 

A. The Atom in a Molecule 

Matter is composed of atoms. The nature of chemistry, as embodied in the 
periodic table, is that molecules can be described in terms of their atomic 
constituents. Individual atoms are not anonymous constituents of molecules. 
Instead, each atom in a molecule contributes to the molecule's overall 
spectroscopic, thermodynamic, and kinetic properties in a well-defined, 
transferable way. An atomic leaving group is a simple example of this: when 
taught SN 1 reactions we learn that chlorine, bromine and iodine are exceptional 
leaving groups. Functional groups are simply characteristic arrangements of 
atoms that produce distinctive molecular properties. (For example, tosylate 
groups are excellent leaving groups.) These two observations motivate the 
postulate that within molecules there exist atoms (functional groups), and that 
these atoms (functional groups) have distinct and assignable properties. 
Furthermore, summing the properties of all the atoms in a molecule furnishes the 
properties of the entire molecule. 

The quantum theory of atoms in molecules (QTAIM) is a theoretical 
formulation that captures these chemical principles. The mathematical 

6foundations of QTAIM can be found in the literature1
- '

48 and will not be repeated 
here. As was already noted by Cioslowski,41 if one attempts to build an AIM that 
encompasses relativistic quantum mechanics that is in the spirit of Bader's prior 

4work,1
• -

6 then the treatment must revert to the standard, nonrelativistic, version of 
QT AIM in the limit as c ~ oo . Just as in the nonrelativistic version of QT AIM, 
the relativistic quantum theory of atoms in molecules (R-QTAIM) hinges on 
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generalising the principle of stationary action for the total system to an open 
quantum subsystem. This defines the relativistic atom in a molecule (RAIM). 

One advantage of QTAIM is that it is essentially axiomatic: one starts by 
requiring certain criteria that one wishes atoms in molecules to meet and then one 
derives the definition of an atom in a molecule using those criteria. While the 
underlying criteria can be debated, once they are adopted there is limited freedom 
to "customise" the atom. We believe the criteria proposed by Bader and Nguyen­
Dang are reasonable, and so we will adopt them here:4 

• 	 The definition of an atom must define all of its average properties. 
Moreover, these definitions must reduce to the quantum mechanical 
definition of the properties of the isolated atom. This very pragmatic 
requirement is essential for chemistry. The first statement indicates 
merely that the atom is fully defined; if some of the properties of atoms 
were not defined, then QT AIM would not be very useful! The second 
statement ensures that QT AIM can describe the dissociation of molecules 
and the properties (e.g., atomisation energies) associated with that process. 

• 	 Atomic properties must be additive. When the values of each atomic 
property are summed over all constituent atoms, they should give the 
average property for the molecule. This requirement is necessary if one is 
to reproduce the experimentally observed transferability of atomic 
properties.7 While there is no a priori reason not to allow "bond" 
contributions (based on two atoms) to molecular properties (and even 3­
atom, 4-atom, etc. contributions could also be considered), certainly the 
exhaustive atomic-level partitioning of molecular properties is the 
simplest. 

• 	 The definition of an atom should be time-dependent. Time-dependent 
phenomena are important to chemistry and an ideal theory of atoms in 
molecules will be able to address them. At present, however, truly time­
dependent studies (e.g., analysis of molecular wavepacket propagation) 
using QTAIM are rarely (if ever) performed. 

• 	 An atom should be defined as a region in real space. 49 Manr population 
analysis schemes are based on Hilbert-space partitioning,50

-
5 but insofar 

as matter exists in real space, it seems more concrete (and, arguably, more 
desirable) to define atoms in real space also. While one can define 
"fuzzy" overlapping atoms in real space, 59

•
60 it is simpler to define atoms 

as regions in space. When atoms are associated with regions in space, 
atomic properties can be constructed using projection operators on the 
wave function, which makes a link to the Hilbert-space altemative.61 

These precepts are the motivation for Bader's approach to defining a quantum 
theory of atom in a molecule. 1-

6
'
48 Provided some technical mathematical 
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assumptions (notably the choice of Lagrangian and certain "Occam's razor" 
simplifications) are made, this approach leads inexorably to the zero-flux surfaces 
that are ubiquitous in QT AIM. 

VI.IV. The ZORA Hamiltonian 

The zeroth-order regular approximation (ZORA) is widely used in 
relativistic molecular electronic structure calculations, especially in the context of 
Kohn-Sham density-functional theory. 13

'
19 The ZORA approach captures most of 

the relativistic effects and, in particular, provides a reasonably accurate 
description of both valence and sub-valence electrons in atomic and molecular 
calculations.13 

ZORA was first proposed by Chang et al, 12 and by Heully et al. 14 It 
follows from the Foldy-Wouthuysen18 transformation of the Dirac equation. Van 
Lenthe15

'
16 showed that ZORA is variationally stable and demonstrated that it 

contains similar relativistic corrections to the Pauli Hamiltonian. The ZORA 
Hamiltonian has also been shown to contain every term in the Breit-Pauli 
Hamiltonian to second order. 13

'
62 However, ZORA does not have the problematic 

delta-function singularities at the nuclei that the Breit-Pauli Hamiltonian does. 15 

These advantages make this ZORA tractable, and applications of ZORA to a 
broad range of chemical phenomena illustrate its accuracy.15 

The ZORA equation is 

[(a.p) ( 0-·p) + v] '¥ = in o'I'c22 (1)
2mc -V ot 

where .a . is the Pauli spin vector, p is the three dimensional momentum 
operator, m is the electron mass, c is the speed of light, Vis the potential energy, 
'¥ is the wave function, and t is time. Applying the identity 

(a·A){O-·B)=A·B+iO-·(Ax.8) (2) 

to Eq. (1) allows one to divide the Hamiltonian into two parts, a spin orbit part 

iO-·[fi x c: pJ (3)
2mc -V 

and what is termed the scalar-relativistic (SR) contribution 

- c2 ­
(4)p·2 2 v p.me ­

This gives the physically intuitive form of the ZORA equations: 
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P·2m::_v p, 'I' =ih a'!' 
[+iii·(fi x fiJ +v at

2mc
c2 -V 

P·2m::_v p 'I'" =-ih a'I'" (SJ 

[+iii·(fi x fiJ + vc22 at 
2mc -V 

Neglecting the spin-orbit term results in the SR-ZORA equation, 

- c2 - v] UJ ·t. a\f (6)p• z p + T =lrt - .[ 2mc -V at 

The SR-ZORA equation can be rewritten in a more explicit form 

2 - c
2 

- a\f 
-n V· V+V \f=in­

2mc2 -V at 
2 (7) 

-tz2v. c v+v \f* =-in a\f· . 
2mc2 -V at 

Turning the time-dependent Schrodinger equation into the SR-ZORA equation 
simply entails modifying the kinetic energy operator. From Eqs. (7), we identify 
the SR-ZORA Hamiltonian as 

2 

if_SR =-h2\f*V. c V\f +V\f*\f (8)22mc -vKs 

64ZORA is used almost exclusively within the Kohn-Sham DFT.63
• The 

potential-energy term in the denominator of the ZORA Hamiltonian causes 
difficulties for traditional, wave function based, ab initio methods. (Ab initio 

68schemes for implementing the ZORA equations do exist, however.65
- ) 

Henceforth we will assume that the potential in the denominator of the ZORA 
equation is a local one-electron potential (e.g., the Kohn-Sham potential, vKs (r) ). 

VI.V. The SR-ZORA Extension of QTAIM 

Extending the QTAIM to the SR-ZORA Hamiltonian closely follows the 
analysis in nonrelativistic QTAIM. The detailed motivation is presented in the 
appendices, but the main concepts will be sketched here. A detailed treatment of 
applying the Schwinger principle of stationary action is deferred to a following 
paper. Based on Eq. (8), a suitable Lagrangian, £ sR, is defined through 
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(9) 

Using identities from vector calculus and the time-dependent SR-ZORA 
equations, Eq. (5), the Lagrangian simplifies to 

£!R = _!!__V·[ ~2 v ( '¥*'¥ )] . 
2 2mc -vKs 

(10) 

Upon integration over all but one electron, this Lagrangian resembles the 
Laplacian of the electron density, hence we will call this the SR-ZORA Laplacian. 
Notice that in the limit as c ~ oo, this becomes 

f52TAIM (11)=-:: v2('J'*'J'), 
which is the nonrelativistic Lagrangian used to derive QTAIM. This indicates 
that the choice of Lagrangian in Eq. (10) is an appropriate choice for the SR­
ZORA analogue to the standard nonrelativistic QTAIM. 

Just as in nonrelativistic QTAIM, the atom is defined by requiring the 
variation of the total Lagrangian over the atomic regions to be zero: 

o=b'[_bar fdf-tz 
2 

v-[ ~
1 

v('¥''¥)]J (12)
2 2mc -VKS 

or, applying the divergence theorem, 

0=8(-li2 

<ff ~
1 

v('¥''¥)J (13)dS· fdf 
2 an 2mc -vKs 

Here we are denoting integration over the N-l electrons not operated upon by the 

Lagrangian operator by Jdf ; integration over these coordinates gives the local 

Lagrangian density, 

£!R(r)= fdf-tz
2
v-[ ~

1 

v('¥''¥)]. (14)
2 2mc -vKs 

The outer integral in Eq. (12), denotes the integration of the local Lagrangian 

density over the atomic region, _b ar£!R (r). In equation (13) the surface integral 

is denoted in the obvious way, with cf.fan dS· =cf.fan dan· and n the outward unit 

normal to the surface. 
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It follows from Eq. (13) that a sufficient (but not necessary!) condition for 
stationary action is that 

(15)0=[ 
2 

(-)]vp(r)•n2 c
2mc -vKs r 

on the atomic surface. Experience shows that for neutral atoms and molecules, the 
Kohn-Sham potential is always negative. (Regardless, it seems very unlikely that 
the Kohn-Sham potential would ever be greater than 2mc2 =37558 Hartree and 
the assumption that 2mc2 -vKs (r) > 0 is inherent in the derivation of the ZORA.) 

Since the coefficient Vp(r)•n is always positive, the surface bounding the atoms 

in SR-ZORA is exactly the same as the one that defines the AIM the in the 
original nonrelativistic QT AIM formulation. 

To obtain the final expression of the stationary action principle in its most 
convenient form for, e.g., evaluating atomic properties, one takes the total 
variation of the action, 8W~~2 ['¥,n], and simplifies, obtaining 

8W~~2 ['¥,n]= ~ {' dt{~ ([H8R,i])0+cc}, (16) 

This is (except for the difference in Hamiltonian), exactly the same as the result in 
4the nonrelativistic case. 1• -

6 The derivation of Eq. (16) is subtle and lengthy, but it 
works precisely the same way as in normal QTAIM (cf. ref. 1

), except for the 
replacement of the classical Hamiltonian and classical Laplacian by their ZORA 
counterparts. 

VI.VI. Conclusion 

Replacing the kinetic-energy operator in the nonrelativistic Hamiltonian 
with the scalar-relativistic ZORA kinetic-energy operator (1) does not change the 
definition of an atom in a molecule and (2) does not change the formulation of the 
quantum theory of atoms in molecules (QTAIM) espoused by Bader in any 
significant way. This result is perhaps surprising, since the derivations associated 
with QTAIM critically depend on the form of the kinetic energy operator. 

This result provides evidence for the general utility of density-based 
partitioning schemes in general, and QT AIM in particular, across the periodic 
table. This is a reassuring result for chemists who wish to use the powerful 
conceptual tools in QT AIM to clarify structure and bonding in molecules and 
materials containing heavy atoms. The tools are not only extensible to those 
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substances with heavy atoms but, at least at the level of SR-ZORA, they go 
through unchanged. 

Motivated by this favourable result, we have recently studied the effects of 
the spin-orbit term and the more general ZORA (cf. Eq. (1)). The results in those 
cases will be published separately,69 but it may be mentioned that QTAIM carries 
over intact to those more general forms, albeit sometimes with (slight) 
modifications to the surfaces bounding the atoms. How (and whether) QTAIM 
can be extended to two-component or four-component relativistic equations 
without encountering the problems previously identified by Cioslowski is a more 
daunting question, and one for which presently we have no decisive answer. 
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VI.VII. Appendices 

A. Defining the SR-ZORA Lagrangian 

The purpose of this appendix is to show that the chosen form of the 
Lagrangian (Eq. (9)) is reasonable. 

In order to derive a relativistic QTAIM, one must first propose an 
appropriate form for the quantum-mechanical Lagrangian. Because our goal is to 
derive the relativistic counterpart of QTAIM, we choose a Lagrangian that is 
directly analogous to the one used by Bader and his coworkers, specifically 

£!R = iJi ('¥* a'!' _ '¥ a'I'* J 
2 at at 

1 (17)-[n2 
[ ~ ]v'I'· ·V'I' + v'I'·'I'J · 

2mc -vKs 

(Equation (17) is directly relevant to the special case of a one-electron molecule. 
The general N-electron case is encompassed by considering '¥ and '¥* as field 
operators. One could show the multi-electron character explicitly by summing the 
kinetic energy term over all electrons, but we will not do this since it complicates 
the notation.) 
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We now want to show the link between the form of the kinetic energy in 
Eq. (17) and the form that arises in the SR-ZORA Hamiltonian (cf. Eq. (8)), 

;,2 _ c2 _
--'P*V• 

2 
V'P +cc. (18)

2 2mc -VKS 
To this end, we apply the product rule for the divergence, 

AV·B =V·{ AB)-VA·B, (19) 

to expression (18) (using A='¥* andB = c
2 

V'P ). This gives 
2mc2 -V 

;,2 _ c2 _
--'P*V• V'P +cc= 

2 2mc2 -VKS 

[-~v-( ~
2 

'P*v'PJ (20)
2 2mc -VKS 

+~[ ~
2 

Jv'P··v'P]+cc
2 2mc -VKS 

The kinetic energy term in our proposed Lagrangian, ( 17), appears when we 
explicitly show the terms from the complex conjugate, 

;,2 _ c2 _
--'P*V• V'P +cc= 

2 2mc2 -VKS 

[- ;,z v·( ~
2 J( 'P*V'P + 'PV'P*) (21)

2 2mc -vKs 

+n2
[ ~

2 

Jv'P-v'P·].
2mc -VKS 

Just as in nonrelativistic QTAIM, I,4-
6 however, there is an additional "non-kinetic 

energy" term (the first term in Eq. (21)). The additional term is simplified by 
using the product rule for the gradient, 

V(AB)=BVA+AVB (22) 

to obtain 
;,2 _ c2 _

--'P*V• V'P +cc= 
2 2mc2 -vKs 

[-~v-[ ~
2 

v('P*'P)J. (23)
2 2mc -vKS 

+ ;,2 [ ~2 lV'P·V'P*]
2mc -vKs 
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2 1
As c ~ oo, c ~ - -. Substituting this result into Eq. (23) recovers 

2mc2 -V 2m 
the analogous non-relativistic formula, namely 

_!t__v2(\f*\f)+ n2 V\f*•V\f. (24)
4m 2m 

As expected, Eq. (24) is simply the sum of a Laplacian term and the 
nonrelativistic kinetic-energy contribution to the Lagrangian. The analogy 
between Eqs. (23) and (24) motivates us to identify 

2 

v-[ ~ v(\f*\f )] (25) 
2mc -vKs 

as the SR-ZORA Laplacian. The reasonability of our choice for the SR-ZORA 
Lagrangian is confirmed by the recovery of the analogous nonrelativistic 
expressions in the appropriate c ~ oo limit. 

Identity (23) relates the kinetic-energy term in the Lagrangian to the 
kinetic-energy term that enters the time-dependent SR-ZORA equations (cf. 
Eq.(7)). Inserting identity (23) and the time-dependent SR-ZORA equations, into 
the SR-ZORA Lagrangian (cf. Eq. (17)) gives: 

£"' ~ iii ( '!'• 8'1' - cc)-~V { c' V ( '!'•'!')] 
+ [2Ii' '¥.;'. ~' 2V'I' :::J'~ ~:.'!' (26)

2 2mc -VKS 
2 

=_!!:_ v·[ ~ v ( \}'*\}' )]
2 2mc -vKs 

So the SR-ZORA Lagrangian reduces to the SR-ZORA Laplacian. This is directly 
analogous to the relativistic case because54 

lim.CsR =_!!__ v2(\f*\f). (27) 
c--.oo 4m 

B. Motivating the Zero-Flux Condition 

The purpose of this appendix is to show that the zero-flux condition is a 
reasonable choice for the bounding surfaces of atoms. This argument is based on 
the absence of any "best" choice for the atomic Lagrangian, which suggests that 
AIM should be defined so that several "reasonable" choices for the Lagrangian 
give identical results. 
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Bader and Nguyen-Dang4 define the atomic Lagrangian by integrating 
total Lagrangian (Eq. (17)) over an atomic region. For the electron on which the 
kinetic/potential energy operators apply, this entails integration over the atomic 
volume, Q; the other N- l electrons over all of space, 

~['¥,t]= iarfdf£5
R. (28) 

Bader et al. also define an alternative, Hamiltonian-based, formulation of the 
atomic Lagrangian, 

i;\" ['P,1] ~ J, di' fdf { j;('P' °.: -'¥ a;,· J 
(29) 

-~( 'l'*HsR'I' + 'l'HsR'I'• )} 

It is difficult to argue for the superiority of one of these Lagrangians over the 
other, so it seems reasonable to require that the two Lagrangians give identical 
formulations of atoms in molecules. Referring back to identity (23), it is clear that 
as 

4iR['¥,t]=ft5n'¥,1]-!C terr fdiil·( ~
2 

v('l'*'l')J
2 2mc -VKS 

(30) 
The two formulations for the atomic Lagrangian are identical when 

2 2
tz _ ( c _ J (31)O=--Larv· 2 _ vp(r)
2 2mc -vKs (r) 

According to the divergence theorem, a sufficient (but not necessary) condition 
for this to be achieved is that 

(32) 


which leads to the "zero flux" condition that the gradient of the electron density is 
orthogonal to the normal to the atomic surface. 
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Chapter VII 


How Ambiguous Is the Local Kinetic 


Energy?* 


*The content of this chapter has been published: J. S. M. Anderson, P. W. Ayers, J. I. Rodriguez 
Hernandez "How Ambiguous is the Local Kinetic Energy?"; J. Phys. Chem. A 2010, 114, 
8884-8895 (invited issue in honour of Klaus Ruedenberg Festschrift). 
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VII.I. Statement of the Problem 

As demonstrated in Chapter VI, the changing the form of the quantum­
mechanical kinetic energy operator need not change the underlying quantum 
theory of atoms in molecules (QTAIM). This chapter shows that this is not 
always true. To do this, all forms of the kinetic energy that are consistent with the 
quantum-classical correspondence principle are considered. While many of these 
forms seem obvious to those experienced with quantum mechanics, some of the 
forms are very surprising. All the obvious forms of the kinetic energy give the 
same value when evaluated over the atoms defined in QT AIM. An infinite 
number of nonobvious forms give consistent atomic kinetic energies as well. 
However, there are also an infinite number of exotic forms for the kinetic energy 
that give different values of the atomic kinetic energies in QT AIM. One can 
define different proper open quantum subsystems based on these exotic forms of 
the kinetic energy operator, but those subsystems generally do not represent atoms 
in molecules. 

VII.II. Introduction 

Upon formation of a chemical bond, electrons from the bonding atoms 
delocalize, reducing the kinetic energy and stabilizing the system. The critical role 
of the kinetic energy in chemical bonding may be attributed to Hellmann, 1 but the 
quantitative and thorough justification of this perspective is usually attributed to 
Ruedenberg's classic 1962 paper "The Physical Nature of the Chemical Bond."2 

(A decade later, Goddard and Wilson elaborated upon this work3
•
4 and Kutzelnigg 

wrote a classic paper from the same viewpoint entitled "The Physical Mechanism 
of the Chemical Bond"5

) Of course, no interpretation of chemical bonding based 
on energy decomposition analysis is unassailable,6 but Ruedenberg's perspective 
is considered to be reasonable and elucidating not only by the majority of 
theoretical chemists, but by undergraduate physical chemistry students. 

Early on, it was realized that local changes in the kinetic energy would be 
similarly useful in interpreting chemical bonding. In follow-up ~apers to ref. 2

, 

Feinberg, Ruedenberg, and Mehler utilize the local kinetic energy, -9 

-(~ ( )V}l'*{r"r2 , ••• rN)·Y';'l'{r"r2 , ••• rN))
t+ (r ) - L.Jo r; -r , (1) 

i=I 2 

noting that because this quantity "contains only positive contributions from all 
volume elements, it is particularly well suited to elucidate the relationship 
between wavefunction rearrangements and the kinetic energy."8 They recognize, 
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however, that the alternative "Schrodinger form" 

Isch (r) = ( '¥* (r1,r2 , •• • rN) t(-to( r; -r)v; )'¥ (r1,r2 , •• • rN)) (2) 

is also acceptable.9 So is any appropriate linear combination between the two, 

ta(r)=at+(r)+(l-a)tsch(r), (3) 

with the choice a= Yi being the preferred definition of several authors. 10
-
12 Does 

Eq. (3) capture the full generality of permissible local kinetic energies? In section 
IV we argue that it does not. 13 It seems, however, that all of the explicit 
definitions of the local kinetic energy that have been proposed in the literature fit 

10 14 24into the form of Eq. (3).6
' ' ­

The key role of the kinetic energy in the formation of the covalent bond 
has been recognized and used repeatedly since the mid-1970s, and it is impossible 
to summarize more than a tiny segment of the literature. The utility of plotting the 
local kinetic energy (in this case, t+(r)) is clearly demonstrated in the recent paper 
of Ruedenberg and Schmidt;25 these authors also give a survey of the literature. 
Tachibana and his coworkers have also considered the role of the local kinetic 
energy (using tsch(r)) in chemical bonding.26

'
27 Because the regions, far from an 

atom or molecule, where t&h(r) is negative can be labeled "classically forbidden," 
Tachibana et al. associate chemical bonding with the elimination of classically 
forbidden barriers between reagents. As the two reagents approach the volumes 
surrounded by their zero-contours of tsch(r) eventually unite, indicating that 
sharing of electrons between the two reagents is classically allowed. This is 
considered a signature of covalent bonding. The picture is very similar to that of 
Ruedenberg and coworkers: it is the ability of electrons to delocalize between 
fragments (lowering the kinetic energy relative to a hypothetical reference system 
in which electrons are not allowed to be delocalized) that causes the formation of 

28 31a covalent bond to be energetically favorable. 25
• - More recently, Nalewajski, 

emphasizing the link between kinetic energy and information, 32 has stressed the 
role of the kinetic energy as the driving force of chemical bonding. 33 

Many other researchers have used some variant of the local kinetic energy 
to elucidate bonding. For example, the key ingredient in the electron localization 
function is the difference between t+(r) and the equivalent expression for 
noninteracting bosons; this quantity is then divided by a "reference" to render it 
d. . 1 34-37 v . 1 1 . 1 1 11mens10n ess. anous oca covanance measures are extreme y c ose y 
related to the electron localization function and the local kinetic energy.38 The 
localized orbital locator39 of Schmider and Becke is precisely t+(r).4043 The local 
temperature/nighness measure associated with Parr and his coworkers is 
proportional to t(r)/p(r), where 
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p(r) ~ ( 'f'• (r,, ... ,rN l(tO(r, -r))'f' (r., .. ,rN)) (4) 

is the electron density and t(r) is usually taken to be either t+(r) or ta=Y:z(r) (from 
Eq. (3)). 10

•
19

•
44 The kinetic energy density is the second momentum moment, and 

other researchers have based their investigations more directly on the momentum 
density or a local momentum density (based, for example, on the Wigner 
distribution45

'
46

). Pioneering work along these lines was performed by Rozendaal 
and Baerends;47 the parity function of Schmider and Becke is closely related.39

•
48 

Another local momentum density model has been recently explored by Bohorquez 
and Boyd.49 

The ambiguity in the local kinetic energy can be considered to be inherited 
from the ambiguity in the local electronic stress tensor, 50

-
52 

t(r)=-tTr[a(r)]. (5) 

Equation (5) is the typical definition of the electronic stress tensor in the 
chemistry literature; the physics literature sometimes uses a slightly different 
definition, differing by multiplicative factors and additional terms associated with 
external fields. Ifone defines the one-electron reduced density matrix in the usual 
way using either explicit integration or field operators, 

r(r,r') = N ff .. f'1'* (r',r2····rN )'I'(r,r2,···rN )dr2 ... drN 

=('1' lr;Y (r')v/( r )i '1') (6) 

then an infinite family of stress tensors, with elements given by 
2 2 

a[8 y(r,r') + 8 y(r,r')J 
ar;ar; 8r;' 8rj 

[aa,p(r)J. =-_!_ -(l-a)[82y(r,r') + 82y~r,~')J (7) 
lj 2 8r;8rj ar; 8rj 

+sijpv 2 p(r) 

r'=r 

can be proposed. Here r1 = x, r2 = y, r3 = z is shorthand for the Cartesian 
coordinates, o!i is the Kronecker delta function, a and~ are real numbers, and p(r) 
= y(r,r) is the electron density. All of the stress tensors in common use in the 
literature belong to this family, 52

-
57 including the popular Schrodinger-Pauli­

50 52Epstein form 51/2.0 ( r) . - The stress tensor in Eq. (7) is defined so that it is 

consistent with the local kinetic energy in Eq. (3), 

ta(r)=-tTr[aa,o(r)J (8) 
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More generally, 

ta+3p (r) =-tTr[ifa,p (r)] (9) 

The idea of using the stress tensor to elucidate chemical bonding 
originates in the work of Epstein52 and was popularized through the work of 

58Bader, Deb, and Parr.54
• -

65 Within the chemistry community, most of the recent 
27 66 73work has arisen from the groups of Tachibana and Jenkins.26
' • - Physicists 

56 74have recently explored the concept also.55
• • -

82 For the chemist, however, it is 
the work of Tachibana and Jenkins, who have stressed how the eigenvalues and 
eigenvectors of the stress tensor can be used to understand the strength, 
directionality, and deformability of chemical bonding patterns, whose work is the 
most elucidating. Tachibana's group, in particular, has stressed the characteristic 
"spindle structure" that the stress tensor takes in covalent chemical bonds. 66

•
67 The 

importance of this characteristic "spindle structure" appears in the recent analysis, 
by Ichikawa and Tachibana, of the prototypical covalent chemical bond (the 
hydrogen molecule-ion H/).69 (It is worth noting that the physicists had studied 
the stress tensor ofH/ even earlier.79

) 

The form of the local kinetic energy also Elays a key role in Bader's 
8quantum theory of atoms in molecules (QTAIM).20

• '
84 The particular form of the 

atom in QTAIM may be justified by two different approaches. The simplest 
approach is to require that the expectation value of the kinetic energy in an AIM is 
well-defined, so that the virial theorem can be used to infer the energy of the 

21 85AIM.20
• • •

86 In Bader's formulation, the AIM are bounded by zero-flux surfaces 
of the electron density, that is, the normal vector to the surface is orthogonal to the 
gradient of the electron density. With this definition, the integral of the Laplacian 
of the electron density over an atomic region is zero 

Jv2 p(r)dr =<fjvp(r)·nda =O. (10) 
Q 

It is worth noting that the members of the family of local kinetic energies defined 
by Eq. (3) differ by just such a term, and therefore give precisely the same 
expectation value of the kinetic energy for AIM bound by zero-flux surfaces. In 
particular, we may rewrite Eq. (3) as 

(1-a)ta (r) = t+ (r)- - - V 2p(r). (11)
4 

The alternative method for deriving the ~uantum theory of atoms in 
20 81molecules is based on a stationary-action argument. 6

• • -
90 In that approach, one 

must define a quantum mechanical Lagrangian, which in tum requires making a 
choice for the kinetic energy operator. Typically one uses the forms implied by 
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either Eq. (1) or Eq. (2), but, as recently shown by Nasertayoob and Shahbazian, 
there is much larger family of quantum mechanical Lagrangians that lead back to 
the conventional QTAIM definition of the atom.90 However, if one chose a 
different form for the local kinetic energy, then one might obtain a different 
criterion for defining the proper open quantum subsytems.91 The definition of the 
AIM, once again, is entangled with the unfortunate arbitrariness of the local 
kinetic energy in quantum mechanics. 

At this stage we hope that the reader is convinced that the local kinetic 
energy, the stress tensor, and related quantities are useful-and perhaps even 
essential-for studying the origins, properties, and presence of the covalent bonds 
between atoms in chemical systems. But what should be made of the inherent 
ambiguity in the definition of the local kinetic energy and, similarly, the local 
stress tensor? It seems dangerous to base one's understanding of chemical 
bonding on such shaky ground. The goal of this paper is to characterize the 
ambiguity in the local kinetic energy in a more precise way than has heretofore 
appeared in the literature. Since the ambiguity in the local kinetic energy can be 
deduced from the ambiguity in the local stress tensor (cf. Eq. (5)), we will first 
summarize the literature on ambiguity in the stress tensor. In particular, we will 
show that Eq. (7) encapsulates the family of stress tensors that arises in the work 
of Godfrey77 and Rogers and Rappe.81 Based on these considerations, the local 
kinetic energy is ambiguous by at most an additive multiple of the Laplacian of 
the electron density. However, a more general formulation, based on 
quasiprobability distribution functions, is also consistent with classical reasoning. 
This extends the family of allowed local kinetic energies beyond the "Laplacian 
family" in Eq. (11 ). This approach is presented in section IV, where some 
examples of these "strange" local kinetic energies are presented. Other "strange" 
forms of the local kinetic energy arise naturally from the virial theorem in density­
functional theory (DFT). The DPT-based approach is sketched in section V. 
Section VI concludes our analysis and discusses the implications of our findings. 
Readers who do not wish to scrutinize the mathematical details may safely skip to 
the last subsections in III, IV, and V, where a capsule-summary of the 
mathematical analysis, along with a discussion of practical implications, is 
provided. 
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VII.III. 	 Local Kinetic Energy from the Local 
Electronic Stress Tensor 

A. Forms of the Local Electronic Stress Tensor 

Within the physics literature, what chemists call the local electronic stress 
tensor is usually called the momentum flux density. The ambiguity in the 
momentum flux density is well-known, and it is usually analyzed by first 
proposing an explicit general form for the flux density, and then deriving 
constraints on that form using physical arguments. Probably the most lucid 
discussion of the key issue is by Godfrey.77 Adding a divergence-free quantity to 
the stress tensor does not change any of the physical properties of the system. 
Therefore, the following alteration of the stress tensor may be made without any 
real effect, 

a(r)~a(r)+G(r) 	 (12) 

O=V·G(r) 	 (13) 

The arbitrariness of G ( r) is analogous to the freedom to choose a convenient 

gauge in classical electrodynamics. 

The divergence criterion is not very restrictive, of course, so Godfrey 

assumes that the "reasonable" choices for G ( r) will contain the second, and only 

the second, derivatives of the wavefunction. As he notes,77 "the classical quantity 
is a real sum of single-particle dynamical variables, and aij (r) should reflect this 

by being a Hermitian single-particle operator, involving only the field operators 
and their spatial derivatives." This leads Godfrey to the form 

82 82 82 82 

A --+-- +B --+-­
( 8r;8r1 8r/ar; J (ar;ar; ar;ar; J I 

JJ (14)G(r)= 
3 82 3 	 ( 82 82 r(r' r )

+oij 
[ 
cL--+DL - 2 + 2 

hi 8rkar; k=I 8rk 8(r;) 
r'=r 

where A, B, C, and D are arbitrary real constants. The requirement that the 
divergence vanish (Eq. (13)) reveals that, in effect, only one of these quantities 
may be varied independently. Ensuring that the stress tensor responds sensibly 
upon Galilean transformations of the wavefunction, '¥ (T) ~ '¥ (T) eiP·T further 

specifies that A be real. Godfrey then obtains the form 77 
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a2 [ 3 a2 JJG(r)=A [--Jij :L-2 r(r,r) (15)
ar;arj k=I ark 

This can be rewritten in terms of the electron density, p(r) =y(r,r), as 
2 

_ [ a [ 3 a2 JJG(r)=A --Jii :L-2 p(r). (16)
ar;arj k=I ark 

Godrey proposes that Eq. (15) can be added to the Schrodinger-Pauli-Epstein 
stress-tensor form, ifl/2,0 ( r) , from Eq. (7) to obtain a family of "reasonable" 

electronic stress tensors, 

a2y(r,r') 
ar;'ar; 

(17) 

r'=r 

Rogers and Rappe obtain a similar conclusion by a more complicated 
argument. The idea behind their analysis is that the stress tensor should behave 
appropriately in the limit of a flat, generally Euclidean, space.81 To analyze this 
limit, they assume that all "reasonable" stress tensors in a general curved space 
can be written in the form: 

(18) 

Here giJ denotes an elements of the metric tensor, lgl is the determinant of g , and 

[g:-1 ]ii is an element of the inverse of the metric tensor. R is the scalar curvature 

of the space and R is the Ricci curvature. It may be argued that a is zero because 
otherwise the stress tensor of the vacuum is nonzero. The constant c is set to zero 
because otherwise the field theory would not be renormalizable. Finally they work 
through the math and obtain, for the Euclidean metric, a form of the ambiguity 
that coincides with Godfrey's,81 

a2 [ 3 a2 JJ (19)-b --8. :L-2 p(r)[ ar;arj k=I arklJ 

Rogers and Rappe propose adding this to the "positive-definite" stress tensor, 
ifl,O ( r) , obtaining all infinite family Of StreSS tensors With the form: 
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The Rogers-Rappe and Godfrey families do not have any common 
members, but they are both members of the two-parameter superfamily defined by 

Eq. (7). For example, the "positive definite" stress tensor ( if~RR) ( r) =8 0,0 ( r)) is 

not a member of the Godfrey family. Conversely, the Schrodinger-Pauli-Epstein 

stress tensor (if~a) ( r) =Bl/2,0 ( r) ) is not a member of the Rogers-Rappe family. 

To clarify these differences, use the expansion of the one-electron reduced 
density matrix in terms of natural orbitals, 

00 

r(r,r')= Inp¢;(r')¢p(r), (21) 
p~I 

to derive 

(22) 

Using this identity, the Godfrey and Rogers-Rappe families can then be 
rewritten as 

-(a)( )--1u r -­
A 2 

and 

(1-- 2A)(8
2
y(r,r') + 8

2
y(r,r')J 

2 
a'iar; 8fi'8rj 

( 1 )( 8
2
y(r,r') 8

2
y(r,r')J+ -+2A ---­

(23) 

+8!i (2A)V2p(r) 

2 8fi8r1 8fi'iJr; 

r'=r 
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r'=r 

= al+2b,-2b ( r) 
respectively. They arise as special cases of Eq. (7), which leads us to conclude 
that any stress tensor with the general form ofEq. (7) is reasonable. 

B. Implications for the Ambiguity in the Local Kinetic Energy 

By first assuming a general form for the local stress tensor, a(r), and 

then requiring, based on physical arguments, that a(r) be invariant to various 

coordinate transformations, Godfrey77 and Rogers and Rappe81 derived two 
distinct families of stress tensors, Eqs. (17) and (20), respectively. It does not 
seem to have been appreciated that even though Godfrey and Rogers-Rappe 
characterize the essential ambiguity within the stress tensor in the same way (cf. 
Eqs. (16) and (19)), the families of stress tensors they define do not have any 
common members. Nor does it seem to be appreciated that the Rogers-Rappe 
family does not include the popular Schrodinger-Pauli-Epstein form that is, by far, 
the most commonly used form in the literature. Both the Godfrey and Rogers­
Rappe families of electronic stress tensors are elements of the extended family of 
stress tensors we defined in Eq. (7) (cf. Eqs. (23) and (24)). 

The local kinetic energy arises is simply minus one-half the trace of the 
electronic stress tensor, Eqs. (5). It is important to notice that even though the 
Godfrey and Rogers-Rappe families of stress tensors are different, the family of 
possible local kinetic energies they define are exactly the same, 

t~a) (r) =-tTr[B~a) (r)] = t+ (r)+(A-t)V 2p(r) 
(25) 

=ti+4A(r) 

t~RR) (r) 
2:-tTria~RR) (r)J= t+ (r )-bV2p(r) 
- t1-4b ( r). 

(26) 

That is, either the Godfrey or the Rogers-Rappe forms of the stress tensor suffice 
to generate the Laplacian family of local kinetic energies, Eq. (11). The extended 
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family of stress tensors we defined, Eq. (7), also generates the Laplacian family of 
local kinetic energies, Eq. (9). 

Based on the analysis of the local electronic stress tensor in the physics 
literature, then, we might suppose that every reasonable definition for the local 
kinetic energy is an element of the Laplacian family, ta(r). In the next section, 
however, we will argue that there are other forms for the local kinetic energy that 
are also consistent with physical intuition. 

VII.IV. 	 Local Kinetic Energy from the 
Quasiprobability Distributions 

A. Forms of the Quasiprobability Distribution Function 

The motivation for defining a local kinetic energy is that it allows us to 
extend our classical understanding to quantum systems. In a classical system, it is 
possible to observe both the momentum and the position of a particle, so the local 
kinetic energy has the simple expression, 

(Cl) ( ) _ ff 	 r(~ ( )p; .p; J ( . )t r - ··· Jl~o r; -r m; F rw .. ,rN,PP···PN dr1dp1 ••• drNdpN (27)
2

where F(r1, ... ,rN;p1, .. ·PN) is the phase-space probability distribution function 
representing the probability of observing the particles at the specified positions 
with the specified momenta. Any quantum-mechanical definition of the local 
kinetic energy that is consistent with the classical limit ( n4 0 ) may be 
considered reasonable. Unfortunately, this specification is not very restrictive. 

As first noted by Wigner, it is possible to use the wavefunction to derive a 
quasiprobability distribution function, F(r 1, •.• ,rN;p1,...PN). This quasiprobability 
distribution function obviously must be normalized, 

1=ff-· fF(rw .. ,rN;P"···PN )dr1dp1 ••• drNdpN (28) 

and must reduce to the position-space and momentum-space distribution functions 
that are implied by the underlying wavefunction, 

l\f (rw··rN )12 =ff-· fF(rw .. ,rN;p" ... ,pN )dp, ... dpN (29) 

l<I>(P"···PN )1 
2 =ff-· fF(rw .. ,rN;p" ... ,pN )dr, ...drN (30) 

Of course, since the wavefunction depends on only 3N variables, but the 
quasiprobability distribution function depends on 6N variables, there are infinitely 
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many quasiprobability distribution functions that are consistent with constraints 
(28)-(30). 

It is an exercise in Fourier analysis to demonstrate that the complete 
family of quasiprobability distributions that are consistent with Eqs. (28)-(30) is 
characterized by the formula92 

F(r" ... , rN;p" ... ,pN) = 
6 

( _l ) N JJ!(frexp(-iTn·Pn )exp(-ien · [ rn -UnD)
2tr n=I (31) 

X j (el' ... , e N; Ti' .. . , T N) \fl *~U 1 - 1 Ti' ... ,UN - 1 T N) 

x\f' ( u l + 1 Ti' ... ,UN + 1 T N)jduldeldTI . .. du Nde NdT N 

with 

(32) 

f* (el' ... ' e N; Tl,. .. , T N)= f (-el' ... , -eN; -Ti' .. .,-TN) (33) 

The last requirement ensures that the quasiprobability distribution function is real­
valued. Every different choice off defines a classical-quantum correspondence 
that is mathematically acceptable.93 For example, the Wigner-Wey! 
correspondence is obtained by choosing45 

•
94 

f (el' .. . ,e N; Tp ... ,T N)= 1 (34) 

and the Margenau-Hill correspondence arises from95 

f (el' ... , e N; Ti' ... ,T N)= f COS(~en · Tn) . (35) 
n=I 2 

There are innumerably many alternatives, with no obvious way to establish a 
preference between the various different specific realizations of the quantum­
classical correspondence principle. 

Using Eq. (31 ), we can derive all of the forms for the local kinetic energy 
that are consistent with classical reasoning. However, there are certain additional 
restrictions that we might reasonably impose. For example, because the classical 
local kinetic energy can be determined from the momentum of a single particle, it 
is reasonable to require the quantum-mechanical kinetic energy to be a one­
particle property. This means that/ cannot couple the O's and T' s associated with 
different electrons together, suggesting the form 

N 

f(e P ... ,eN; Tw .. ,TN)= Lfi(en, Tn)· (36) 
n=I 
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This assumption severely culls the family of permissible quasiprobability 
distributions. This is also very convenient because it allows us to treat the one­
electron reduced quasiprobability distribution function, which we can obtain from 
the one-electron reduced density matrix as, 

F; (r,p) =( ~ )
6 

fffe-iT·pe-iO·(r-u)J; (0, T)y(U+f T, U-f T)dud0dT (37)2
For convenience, we often use the natural orbital expansion for the density matrix 
(cf. Eq. (21)), so that Eq. (37) can be written in a form that resembles the one­
electron problem, 

F;(r,p)= 
1 

6fnP[(- ) fJJe-iT·pe-;e.(r-u)J;(0,T)¢;(u-fT)¢P(u+fT)dud0dT]· (38
) 

p=I 	 21' 

Because we will not use the N-electron quasiprobability distributions in the 
remainder of the paper, henceforth we will drop the subscripts on F 1(r,p) and 
Ji(O,T). 

B. 	 Local Kinetic Energy from Quasiprobability Distribution 
Functions 

Using Eq. (3 8), the local kinetic energy has the form: 

00 

tf(9,T) ( r) =~>p 
p=I 

-~(¢; (r )V2¢P (r)-V¢; (r)· V ¢P (r)}+c.c.
8m 

(39)-(2~JJfe-;e-(r-u) ( z~ l¢P (u)i2}[V!f (0, T )l=o dude 

1 
3 

-(-) JJe-iB·(r-u) [vT/ (0, T )] ·i j (u)dud0
2Jr 	 T=O p 

where 

jp (r) =-h .(¢; (r)v¢p (r )-¢p (r)v¢; (r)} (40)
2mz 

is the orbital current density and c.c. denotes the complex conjugate. In this paper 
we restrict ourselves to stationary states, where the current density is zero. 

Using Eq. (3), 


tf(9,T) (r) = 

(41)'·-i (r)+t,n, [-(;,,.JJfe•{•-•)(,~l?,(u)I')[V!/(0, T)L, dud0] 
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Because the classical local kinetic energy is the sum of the kinetic energies in the 
component directions, tC!(r) = (p}(r) + p/(r) + p/(r))/2m, it is reasonable to 
assume that./{O;t) (a) does not couple the different Cartesian directions and (b) 
treats all three Cartesian directions equivalently. I.e., 

f (0, T) =g( (}x' Tx )+ g( (}Y' Ty)+ g( (}z' Tz) (42) 

Furthermore, to preserve the inherent symmetry between the momentum-space 
and the position-space description, it is reasonable to assume that 

g(Ox,Tx)=g(rx,(}x). (43) 

Finally, we will assume that./{0,T) is a normal function, and not a functional of the 
wavefunction (or natural orbital). This means that the quasiprobability distribution 
function will not always be nonnegative, complicating its classical interpretation. 
(As shown by Wigner46

'
96 and Cohen and Zaparovanny (via constructive 

proof),97
•
98 the quasiprobability distribution function can be forced to be 

nonnegative only when ./{r,p) is wavefunction-dependent.) The (very 
complicated) analysis that is required when these assumptions are relaxed will be 
considered in a future paper. Some results pertaining to the use of nonnegative 
quasiprobability distribution functions to evaluate the local kinetic energy99 and 
local operators in general100 can be found in the work of Cohen. 

With the assumption in Eq. ( 42), the local kinetic energy can be 
reexpressed as 

tg(B,r)(r)= 

ta=1 (r) +I nP [-±(-1)3 Jfe-iB·(r-u) ( 2~ l¢P (u)i2)[82g( (}~, Tk )] dud0] (44) 
p=I k=I 2tr ark T=O 

The second term vanishes in the special case where g is a constant or a linear 
function oft. 

Even with the assumptions we have made to obtain the simplified form in 
Eq. (44), there are a vast range of different forms for the local kinetic energy. 
Suppose, for simplicity, that the function g is analytic in 0, so that it can be 
represented by a Taylor series with the form 

1 1
g(O,r)=-+ fh1 (ir)(i8) (45)

3N i=I 

with 

hi (0) =0 l =1, 2,. . . (46) 

The dependence on i = '1-1 in this expression is suggested by condition (33). The 
constant term in Eq. ( 45) and the constraint in Eq. ( 46) are required by the "initial 
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condition" in Eq. (32). Using the relationship between the Fourier transform and 
derivatives, 

( ~) Je-;e-(r-u) (iBY dB= (-lY g(i) (r-u) (47)2
and the formula for the derivatives of the Dirac delta function, 

d 1G(r)
fG(u)o<l)(r-u)du = dr1 (48) 

gives 

(49) 

Obviously this family of local kinetic energy functionals is much larger 
that the "Laplacian family" from Eq. (11). The Laplacian family is regained if 
h1"( 0) =0 for all l op 2. Otherwise this form is more general than the Laplacian 

family. 

Still, there are very many choices for g(9;r) that are associated with the 
Laplacian family of local kinetic energies. For example, consider the 
multiplicative form where g is any sufficiently integrable function depending only 
on the product 9h('r) 

g(B,r)=g(Bh(r)), (50) 

where h('r) is an analytic function of the form101 

00 

h(r)= 2:a/ (51) 
/=0 

Using the chain rule for second derivatives, 

82g(Bh(r))l 

[ a,2 


2

r=O (52)
2 

= 82 [8 g(Bh(r)) (ah( r)J2 

] + e[ag(Bh(r)) a h(r )] 
8r

2
8(Bh(r))2 8r 8(Bh(r))r=O r=o 

The second term vanishes because ofEq. (51), and so we may conclude that any g 
with the form given by Eqs. (50)-(51) belongs to the Laplacian family. Note that 
if one requires that g be symmetric in eand -r (Eq. (43)), then the only choice for h 
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is h(T) = T. That the general form g(9T) recovers the Laplacian family is a key 
result from Cohen's work on the local kinetic energy; this is a particularly 
important observation because all of the commonly used quasiprobability 
distributions are of this form. 22 

The requirement that g be symmetric in eand T is not enough, however, to 
ensure that the local kinetic energy belongs to the Laplacian family. Suppose that 
g is well-behaved enough to be expanded in a Taylor series. Then all of the 
requirements (Eqs. (32), (33), and (43)) can be fulfilled by any g whose expansion 
looks like 

00 k 

g(B, r) =1+ L~>k+lak, (Bkrl + rkBI) (53) 
k=l 1=1 

The form of the local kinetic energy is then determined by the derivative 

82g(B,r)] =~~2t+1a (o Bk +8 01) (54)[ a 2 L.JL.J kl 12 k2 
T r=O k=l l=l 

It is only the case k=./ that gives the Laplacian family. That is, the only analytic 
functions, g(9;r), that generate a quasiprobability distribution functions that (i) 
satisfy the constraints (32) and (33), (ii) are consistent with the assumptions (36), 
(42), and (43), and (iii) always give a local kinetic energy with the Laplacian form 
have the special multiplicative form considered by Cohen, g(9T). Ifg(9,T) i= g(9T), 
yet the key assumptions and constraints are still satisfied, then the local kinetic 
energy will not have the Laplacian form because, if any of the k i= l terms do not 
vanish, then there will be a contribution to the local kinetic energy from a term of 
the form 2t+2ak2Bk, with k i= 2. This produces a non-Laplacian term in the local 

kinetic energy expression. 

Probably the simplest example of a "reasonable" non-Laplacian local 
kinetic energy arises from choosing 

g(B,r)=l+i3 (B2r+r2B) (55) 

gives 

t(ss) ( r) = ta=1(r) + m 
1 

(1 · V p (r)) (56) 

where 1 is the constant vector containing one's. A more general, but related, 
example is: 

(57) 


which gives: 
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1 1 1 1= () ((-1t
1
-812)( ·[a1

- p(r) a- p(r) a-1p(r)]J (SS)( ) t(57) r ta=-! r + m v ax/-1 ' ay/-1 ' az/-1 

This is a non-Laplacian form of the local kinetic energy except when /=2. 

There are many, more complicated, examples. One that is particular 
interesting is 

g ( (}, r) =1+ (cos ( aB) -1) (cos ( ar) -1) , (5 9) 

which causes finite-difference approximations to V' 2 p(r) to enter into the local 

kinetic energy, 

p(x+a,y,z)-2p(x,y,z)+ p(x-a,y,z) 
a2 

- ( 	)-~ p(x,y+a,z)-2p(x,y,z)+p(x,y-a,z) 
(60)( ) 

2
t(59) r 	 - t =i r + 	 2 a 4m a 

p(x,y,z +a)-2p(x,y,z) + p(x,y,z-a) 
+ 	 2 

a 

C. 	 Generalizations: The Multiplicative Alternative and the 
Electronic Stress Tensor 

Instead of the additive forms in Eqs. (36) and ( 42), one can use the 
multiplicative form, 

N 
f (91 .. .9N; Tl ...TN)= IT g(Bn,x• rn,x )g(Bn,y• rn,y )g(Bn,z• rn,z) (61) 

n=I 

or a sum of terms with this form. Because of the conditions on g(S,i), however, 
g (0, 1) = g (1, 0) = 1 

(62)
g • ( (}, T) =g (-B, -T) 

the analysis in the previous section still holds, and the same restrictions on g(S;r) 
apply. 

Although we have not discussed the stress tensor in any detail, it is worth 
noting that the same considerations apply there. Only the form of the classical 
operator changes, giving (instead of Eq. (27)), 

a(ci) (r) 
fJ nN ) 	 • (63)= - J. ··· Jlfr5(r; -r)[p; ®p;] F(rP ... ,rN;pp···PN )dr1dp1 •• • drNdpN 
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D. Implications for the Ambiguity in the Local Kinetic Energy 

To the extent that the purpose of the local kinetic energy in quantum 
mechanics is to facilitate the use of "classical" intuition to understand quantum 
phenomenon, then any form of the local kinetic energy that arises from a 
quasiprobability distribution function is acceptable. Even so, in the preceding 
analysis, we opted to make additional assumptions ((36), (42), and (43)) so that 
the forms of the local kinetic energy that we derived would have a simpler, more 
intuitive form. This led (cf. Eq. (49)) to the following family of local kinetic 
energies, 

1 1 _ ( ) ~ (o'p (r) 0 p (r) 0 p (r) J 
ta,{ai} ( ) r -ta r + L.JQJ I + I + I (64) 

l=l ox oy oz 
/,~2 

Every quasiprobability distribution function that arises from an analytic function, 
.f(01,. • .,0N;T1,. • .,TN) (cf. Eq. (31)), and satisfies assumptions (33), (36), (42), and 
(43) leads to a local kinetic energy of this form. However, when 

f (el ... e N; T 1 ... TN ) = L
N 

(g (on,x' 'n,x) + g (on,y' 'n,y ) +g (Bn,z' 'n,z ) ) ( 65) 
n=l 

or 
N 

f (81 .. .eN; Tl ... TN)= ITg(on,x' 'n,x )g(on,y' 'n,y )g(on,z' 'n,z) (66) 
n=l 

and g(S;t) has the multiplicative form g(Sh(t)), then the summation in Eq. (64) 
vanishes and the Laplacian family of kinetic energies is retained. This slightly 
extends a result of Cohen, who showed that the Laplacian family arises when 
g(0,t) = g(St). We showed that the converse is also true: subject to our restrictions 
on the form of g, every analytic function g that gives rise to a local kinetic energy 
in the Laplacian family has the simple multiplicative form g(St). Other forms of g 
(e.g., Eqs. (55), (57), and (59)) give non-Laplacian forms for the local kinetic 
energy. 

There are other interesting forms of the local kinetic energy. For example, 
if one replaces Eq. (65) or Eq. (66) with the more general forms102 

N 

f (el ... e N; T 1 ... TN) = L J; (en' T n) (67) 
n=l 

or 
N 

f (81 ...SN; Tl ... TN)= fIJ; (en, Tn ), (68) 
n=l 

then one can derive quasiprobability distributions corresponding to the following 
family of local kinetic energies, 
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00 00 

ta,(bi}.(cm}(r)=ta(r)+ ~)1 {l·V){V·VY p(r)+ ~::Cm(V·Vr p(r) (69) 
1=0 m=2 

Based on our analysis of quasiprobability distributions, the non-Laplacian 
forms of the local kinetic energy density cannot be excluded. Such forms are 
clearly consistent with classical reasoning (as they originate from a permissible 
quasiprobability distribution function). While one may argue that the Laplacian 
forms of the local kinetic energy are somehow "simpler" than the others, this 
relies upon the seemingly arbitrary decision that the /=2 terms in Eq. ( 49) are 
"simpler" than the /=1 terms. One may argue that the second-derivative terms are 
preferable because second derivatives already appear in t 112(r) or because g has a 
particular simple form in this case, but these are at best "Occam's razor" 
arguments (although they are appealing). There does not seem to be a physical or 
intuitive justification for excluding a non-Laplacian local kinetic energy like the 
one in Eqs. (60). 

The reader might suppose, at this point, that every "reasonable" definition 
for the local kinetic energy is an element of the family, Eq. (64), (or alternatively 
Eq. (69)) that can be derived from the simple classes of quasiprobability 
distributions we have considered here. However, there is another family of local 
kinetic energies, commonly used in the density-functional theory, that is not 
derived from any simple quasiprobability distribution function. 

VII.V. Analysis from Virial Theorems for Density 
Functionals 

A. Local Kinetic Energy from DFT Virial Theorems 

In density-functional theory, one may evaluate the non-interacting kinetic 
energy (i.e., the kinetic energy of the Kohn-Sham determinant) using the virial 

105theorem,103
­

T,[p]=~ Jp(r)r·Vvs(r)dr, (70) 

where Vs(r) denotes the Kohn-Sham potential. 106 Even though Eq. (70) is often 
used in both formal and practical studies of DFT,107

-
114 the form 

ts(r)=tp(r)r·Vvs(r) (71) 
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can be rejected as a permissible form for the local kinetic energy because it is not 
invariant to translation of the origin of the coordinate system. Integration by parts 
in Eq. (70) leads to the alternative form, 

ts (r) = -t(vs (r )r ·V'p(r) + 3vs (r) p(r)) (72) 

but this form is not translationally invariant either. 

To preserve translational invariance, Sim et al. use a standard trick, 115 and 
derive a property density that has the same integral as the problematic term when 
integrated over all space. 116 I.e., define a local noninteracting kinetic energy 
function, ts(r) such that 

Jts(r)dr=k Jr·p(r)Vvs(r)dr. (73) 

Integration by parts reveals that 

JJfts (x,y,z )dxdydz 

=_!_[ffx ats (x,y,z) dydz +ffy ats (x,y,z) dxdz + JJz ats (x,y,z) dxdy]oo (74) 
3 ax ay az 

l(fI~ ats(x,y,z) ats(x,y,z) ats(x,y,z)Jdx J- - x +y + z dydz --00 

3 ax ay az 

Assuming that ts(r) decays rapidly asymptotically, this expression simplifies to 

fJJts(x,y,z)dxdydz= Jr·31 Vts(r)dr (75) 

This allows us to write 

!p(r)Vvs(r)= 31 V'ts(r)+Vxa(r), (76) 

where a(r) is an arbitrary vector because 

Jr· V' x a ( r) dr = - Ja ( r) ·V' x rdr = JOdr = 0 . (77) 

Now we need to determine ts(r). To do this, take the divergence of both sides, 116 

! V' ·p(r) Vvs (r) = -:} V' ·Vts (r) + V' ·V' x a(r) 
= 31 v\ (r) (78) 

which gives a Poisson equation for ts(r) with the solution 

3 JV'· p(r')V'vs (r') ,
t (r ) =- dr (79) 
s 8JZ" Ir - r'I 

Significantly, the same expression for the local noninteracting kinetic energy is 
obtained if one removes the translational dependence starting from Eq. (72), 
instead of Eq. (71). 
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There are several ways to extend this analysis to the total noninteracting 
kinetic ener~y. One can use one of the virial formulae for the correlation-kinetic 
energy,104,11'7 

T;, =-f[p(r)r·Vvxc(r)+cxc(r)]dr (80) 

I;,= J[-cxc(r)+3p(r)vxc(r)+vxc(r){r·Vp(r))dr], (81) 

where Vxc(r) and Exc(r) are the exchange-correlation potential and the exchange­
correlation energy density, respectively. Although Eq. (81) has been used for 
computing the correlation-kinetic energy over subspaces, it is not translationally 
invariant either. 118 This can be fixed using the same method as before, giving the 
form 

V' ( ')V'( I (r') (r'))
t (r)=2-J ·pr -zvs -vxc dr'-& (r) (82) 

•xc 41r Ir - r'I xc 

Since there is also an ambiguity in the exchange-correlation energy density, 
however 115

,
119 it is more appealing to instead use the coordinate-scaling

identitie~115
' 
120 

1 vxc [a3 p(ax,ay,az);~, Y ,!_] 
vxc(r)= f a a a da (83) 

o a 

I;, =-Jp(r)r·V{vxc(r)-vxc(r))dr (84) 

to obtain 

_2_ JV'· p(r')V'{tvs (r')+vxc (r')-vxc (r')) , 
t0 FT ( ) I I dr . (85) r ­

41r r-r' 

B. Implications for the Ambiguity in the Local Kinetic Energy 

Some of the most powerful tools for computing, and analyzing, the kinetic 
energy in density-functional theory are the virial expressions, (70), (80), (81), and 
(84), which allow us to compute the kinetic energy by integrating over the various 
potentials that appear in DFT. These expressions are not suitable for deriving a 
local kinetic energy because the resulting forms are not translationally invariant 
(cf. Eqs. (71) and (72)). Sim et al. showed how to remove this ambiguity, 
expressing the local noninteracting kinetic energy as the solution to a Poisson 
Equation (Eq. (78))116 which we then (trivially) solved, giving an explicit 
expression for the local noninteracting kinetic energy, Eq. (79). The same 
argument allows us to obtain explicit expressions for the total local kinetic energy, 
either Eq. (82) or (better, but more difficult) Eq. (85). 
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From the viewpoint of DFT, the local noninteracting kinetic energy 
expression (Eq. (79)) and the local total kinetic energy expressions (Eqs. (82) and 
(85)) are very reasonable expressions for the local kinetic energy. However, ts(r) 
is definitely not of the Laplacian form (Eq. (11 )), and it is readily apparent that, 
for approximate exchange-correlation functionals, the local total kinetic energy 
expressions are not of the Laplacian form either.121 Moreover, the DFT-based t(r) 
correspond to local kinetic energies might not arise quasiprobability distributions 
either. Based on the special cases derived by Sim et al., if there is a 
quasiprobability distribution associated with DFT-based t(r), then it corresponds 
to a wavefunction-dependent form of .f{01, ... ,ON;T1,... ,TN). Certainly the DFT­
based local kinetic energies do not arise from the simple quasiprobability 
distributions that arise from Eqs. (65) and (66). However, although the authors 
cannot prove it, they postulate that the DFT-based t(r) are consistent with a 
quasiprobability distribution function formulation, albeit an exceedingly 
complicated one in which .f\Oi, ... ,ON;T1, ... ,TN) is an extremely complicated 
functional of the wavefunction. 22 

VII.VI. Discussion 

How ambiguous is the local kinetic energy? On the one hand, it is very 
ambiguous: even the most restrictive forms that we derived (based on invariance 
properties of the electronic stress tensor, section III) gives rise to an infinite 
family of local kinetic energies, namely those with the Laplacian form, 

ta(r)=t+(r)+ (-a-1) (86)- V 2p(r),
4 

where t+(r) is the positive-definite local kinetic energy (Eq. (1 )) preferred by 
many authors.8

•
19 One may argue, however, that any local kinetic energy that 

arises from a quasiprobability distribution function is physically reasonable 
because it entirely consistent with classical intuition. But even with additional 
assumptions (Eqs. (33), (36), (42), and (43)), the family of local kinetic energies 
that arises from quasiprobability distributions is much larger than the Laplacian 
family, cf. Eq. (64). However, there are eminently reasonable expressions for the 
local kinetic energy that arise in density-functional theory (section V) that do not 
belong to this family of local kinetic energies, and which might not be derivable at 
all from a quasiprobability distribution. 

The authors cannot think of any physical, or intuitive justification for 
excluding local kinetic energies from outside the Laplacian family although one 
may, following Godfrey,77 simply assume that the local kinetic energy should 
contain only second derivatives of the wavefunction, and then discard all other 
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forms, including most of those derived from quasiprobability distributions and all 
of those derived from DFT. This Occam's razor argument is appealing at a 
practical level: the conceptual utility of various members of the Laplacian family 
(especially the Schrodinger form, tsch(r) = to(r), the positive-definite form, t+(r) = 

920 25 26 39 43 55 83t1(r), and the average between them, t112(r)) is well-established.8· · • · · - · · 
The general utility of the Laplacian family of local kinetic energies for chemical 
interpretation may be attributed to the fact that t+(r) and V2 p(r) both contain, by 

themselves, information about electron pairing and chemical bonding. For 
example, t+(r) is the key ingredient in the localized orbital locator39 and the 
nighness19. The Laplacian of the electron density is a commonly used identifier of 
electron shells in the quantum theory of atoms in molecules (QTAIM), and its 
utility in valence-electron-pair-repulsion theory (VSEPR) is well­
established.20·58·83·123-132 It is unsurprising, then, that linear combinations of t+(r) 

and V2 p(r) are useful for interpreting chemical bonding patterns. By contrast, 

the conceptual utility of more general forms of the local kinetic energy is at best 
unproven, and at worst exceedingly unlikely. (Consider, for example, how 
uninformative the local kinetic energy in Eq. (60) will be when the parameter a is 
large.) 

At an intuitive or physical level, there is nothing that requires that t(r) 
should be conceptually useful, and so the more general forms that arise from 
quasiprobability distributions or DFT-based arguments cannot be immediately 
discarded. While we recommend using Eq. (86) and the associated family of local 
electronic stress tensors, Eq. (7), for conceptual work, it must be kept in mind that 
the selection of these forms· is based on ad hoc assumptions about the form of the 
electronic stress tensor (section III) or the quasiprobability distribution function 
(section IV). 

The wealth of local kinetic energy forms proves particularly problematic 
in QTAIM. One derivation of QTAIM is based on the precept that the kinetic 
energy of an atom in a molecule (AIM) should be the same, no matter what form 

21•85of local kinetic energy one uses.20· ·86 By choosing AIM to be bounded by 
"zero-flux" surfaces of the electron density, the kinetic energy of an AIM is the 
same for every local kinetic energy of the Laplacian form (cf. Eq. (10)). In 
general, however, different AIM kinetic energies are obtained if one uses the local 
kinetic energy derived from a more general quasiprobability distribution (e.g., 
Eqs. (56), (58), or (60)) function or the local kinetic energy derived based on the 
virial theorem in DFT. If one chose a different family of local kinetic energies 
(based, for example, on a different subclass of the local kinetic energies defined in 
Eq. (64)), one would require a different definition of molecular subsystems in 
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order to maintain the property that the subsystem kinetic energy is the same for 
every density in the subclass. For example, the small family of local kinetic 
energies defined by 

give rise to subsystems that are bounded by surfaces for which 

O=n·[a1-1p(r) a1-1p(r) a1-1p(r)] (88) 
ax/-1 ' a_y.1-1 ' az/-1 

where n denotes the normal vector to the surface. (I = 2 is the conventional case.) 
Similarly, using a different family of local kinetic energies (this one based on Eq. 
(69)), 

t~ml(r)=t+(r)+c(V·Vr p(r) (89) 

gives rise to subsystems that are bounded by surfaces for which 

O=n·V(V·Vr-l p(r) (90) 

In the m = 2 case, this gives rise to subsystems that are bounded by zero-flux 
surfaces of the Laplacian of the electron density. Regardless of how one partitions 
the system, it seems that the kinetic energy of an atom in a molecule is not 
uniquely defined in quantum mechanics: for any choice of subsystem 
partitioning, one can always find two quasiprobability distribution functions that 
give different values for the regional kinetic energy. 

An alternative pathway to deriving form of the open 2uantum subsystems 
2 81 90in QTAIM relies upon the principle of stationary action. 16
• • - This approach 

has been often criticized on subtle mathematical grounds, 133
-
135 but the proof can 

be considered valid at a level of mathematical rigor that most chemists will find 
136reasonable.90

• -
14° From the present perspective, the problem is that the 

ambiguity in the local kinetic energy induces a corresponding arbitrariness in the 
form of the Lagrangian.91 Different forms for the Lagrangian give rise to different 
forms for the quantum subsystems. (Indeed, even after one chooses a form for the 
Lagrangian, one can still choose different quantum subsystems by enforcing only 

" fl " d" . 16 141 142 143 144) 0 "f . h hthe net zero ux con 1tion. ' · · ' ne can argue, 1 one w1s es, t at 
choosing a Lagrangian like the following (based on Eq. (56)) 

.c = in ('¥· a'!' - 'I' a'!'· J-(!!__(v'I'· .v'I' +1. v'I'·'I') + v'I'·'I'J 
2 at at 2m 

(91) 
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is "unfair," but this Lagrangian is physically and intuitively reasonable insofar as 
it corresponds to a quasiprobability distribution function, and thus is consistent 
with the classical-quantum correspondence principle. 

One implication of this analysis is that there are an infinite number of 
different QT AIMs, each with different appropriate conditions for the boundaries 
of the quantum subsystems, associated with different choices of the local kinetic 
energy. Most of these alternatives to the "conventional QTAIM" are probably not 
useful because they will not give atom-like regions, but some choices also define 
atomic subsystems. For example, if the value of the coefficients { a1} in Eqs. ( 64) 
are sufficiently small, the proper open quantum subsystems will differ only 
slightly from the conventional QTAIM regions. The more general kinetic energy 
formulation here also provides a way to extend the mathematics of QT AIM to 
non-atomic subsystems. A particularly interesting example is the the m=2 case in 
Eq. (89), which provides a justification for treating the topological basins of the 
Laplacian as quantum open systems. 
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Chapter VIII 


Breaking the Curse of Dimension for 


the 


Electronic Schrodinger Equation 


with Functional Analysis* 


'The content of this chapter in preparation to be submitted: J. S. M. Anderson, P. W. Ayers 
"Breaking the curse of dimension for the electronic SchrOdinger equation with functional 
analysis"; J. Chem. Phys. 
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VIII.I. Statement of the Problem 

This chapter addresses the computational intractability of the full­
configuration interaction (FCI) method. Specifically, this chapter reformulates 
FCI to break the curse of dimensionality using recent work in mathematics and 
computer science, specifically the theory of information-based complexity. By 
exploiting the differentiability of molecular wavefunctions, one can design 
methods that achieve the same accuracy as full-configuration interaction, but with 
polynomial cost. One practical algorithm for achieving this is derived here; it is a 
selected-CI algorithm that is motivated by my previous work on many-electron 
numerical integration grids. A detailed prescription for identifying the most 
relevant Slater determinants in a CI calculation is provided. 

VIII.II. 	 Limited Configuration Interaction 
Calculations 

The primary goal of computational quantum chemistry is to solve the 
Schrodinger equation accurately enough. When moderate accuracy of a few 
kcal/mol is needed, established methods based on mean-field methods like 
density-functional theory or Hartree-Fock, and corrections to them, suffice. When 
higher accuracy is required, or when a single Slater determinant is a very bad 
model for the exact wavefunction, the computational complexity of existing 
methods explodes. The computational cost of benchmark methods like released­
node quantum Monte Carlo '2 and full configuration interaction (FCI) grows as 
the factorial of the number of electrons; such approaches are practical only for 
small molecules. 

There has been sustained interest in restricting the space of Slater 
determinants, thereby breaking through the factorial scaling of FCI. Existing 
approaches can be broadly characterized according to whether Slater determinants 
are selected by the user based on chemical insight, selected automatically by an 
algorithm, or selected by some combination of these two strategies. For example, 
in restricted active-space methods (including MRCISD, RASSCF, and related 
methods),3

-
9 the set of Slater determinants is pruned in a problem-specific way 

based on chemical insight and practical experience about which Slater 
determinants are most important for the problem. In the hands of an expert, such 
methods give excellent accuracy with reasonable computational cost. 
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In algorithm-based selection methods, additional Slater determinants, 
including higher and higher excitations, are sequentially added accordin~ to some 

11procedural rules. The iterative CI method is one approach of this type, 1 
' where 

one includes more-and-more highly excited Slater determinants in an iterative 
fashion. Other examples include the "deadwood elimination" configuration 

14interaction method of Ivanic and Ruedenberg,12
- the full configuration 

interaction Monte Carlo (FCI-MC) method of Thom and Alavi, 15
-
18 and the 

configuration interaction by perturbative iterative selection (CIPIS) approach and 
related perturbative-selection methods. 19

-
22 Although they are not usually thought 

of in this way, computational approaches based on Shepard's linear combination 
26of graphically contracted functions (LCGCF),23

- White's density matrix 
renormalization group (DMRG),27

-
37 and Changlani et al. 's correlator product 

states (CPS) are also of this type. LCGCF, DMRG, and CPS are similar to 
iterative CI because they use a very compact representation of a wavefunction that 
lies, however, within the space of Slater determinants that is spanned in a FCI 
calculation.33

'
38 Methods like iterative CI, LCGCF, DMRG, and CPS are probably 

the best ways to formulate CI for general systems. 

Even algorithm-based selection techniques require some chemical insight, 
however, because obtaining good results requires an intelligent choice for the 
input parameters and, in most cases, also for the orbital active space. While the 
cost of computing the energy with these methods does not grow as a factorial of 
the number of one-electron states, the number of iterations required to find the 
ground-state energy might not be polynomial. In the context of DMRG, this is 
known as the problem of "certifying" that the DMRG algorithm converges to the 
electronic ground state.39 More generally, this problem affiicts all methods that 
optimize the orbital basis (e.g., RASSCF), because their associated energy 

41hypersurface has many local minima.40
' Moreover, the number of local minima 

may grow at a non-polynomial rate, so obtaining a good solution with polynomial 
computational scaling requires that the starting guess lies in the vicinity of a 
"good" local minimum. The "tricks" chemists use to ensure successful 
convergence in these cases are usually based on chemical insight, not 
mathematical rules. 

VIII.III. Motivation: 	 Balancing Errors in 
Configuration Interaction 

Like most of the aforementioned methods, the method proposed here is 
algorithmic: we will prune the basis set for the N-electron wavefunction based on 
rules, not chemical information. Unlike the preceding approaches however, the 
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Slater determinants are selected based on the functional-analytic properties of the 
N-electron wavefunction; this means that the important Slater determinants can be 
selected at the very beginning of the algorithm, and so there is no iterative 
selection of determinants. The resulting method is a very particular flavor of 
limited-CI, where the configurations are selected based on functional-analytic 
principles. The basic mathematical tools that we are using have been previously 

44 45employed, to good effect, in the context of density-functional theory,42
- • the 

few-electron Schrodinger equation,46
-
48 and the nuclear Schrodinger equation.49 

The motivation for this idea is the recognition that every FCI calculation 
has an error due to basis set incompleteness. I.e., there are Slater determinants that 
are not included in the FCI calculation because of basis set truncation (e.g., the 
determinant represented later in Fig. le) that make a larger contribution to the 
ground-state wavefunction than other determinants (e.g., the determinant 
represented later in the chapter by Fig. 1b) that are included in the FCI expansion 
of the wavefunction. 

The ideal CI method would include only those Slater determinants that 
have a larger overlap with the wavefunction than the most highly overlapping 
determinant that would be included in the FCI were the orbital basis set extended. 
To make the ideal-CI concept more concrete, imagine extending the orbital basis 
set to the complete basis set limit. The only determinants included in the ideal-CI 
method are those that overlap more with the exact wavefunction than the first 
neglected determinant. Therefore, the decision on whether to include a Slater 
determinant from the limited-basis-set FCI calculation, <l>i E FCI, is based on the 

criterion 

<l>i E ideal-CIC FCI ~ l(<I>i I'¥exact)!>~ l(<I>; I'¥exact)! (1) 
<I>i~FCI 

Because ofthe high differentiability ofthe electronic wave/unction, the number of 
Slater determinants that satisfy the criterion in Eq. (1) grows only as a 
polynomial, and not as a factorial, of the number of electrons. Notice that the 
ideal-CI method, 

_ . ('¥ideal-CI (Ci )IHI '¥ideal-CI (Ci)) 
EidealCI =mm ( I \ 

- ~ '}J ideal-CI (Ci ) '¥ideal-CI (Ci ) / (2) 

'¥ideal CI (cJ = L ci<l>i 
ieideal-CI 

is not manifestly size extensive. The size-extensivity error does not compromise 
the calculation, however, because it is less than or equal to the basis-set-truncation 
error. Ideal-CI can be formulated in a way that is size consistent, however, 
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because the energy of a set of dissociated fragments will be equal to the sum of 
fragment energies if the basis set is built from fragment-localized orbitals. 

The ideal-CI method described in Eqs. (1) and (2) requires knowledge of 
the exact wavefunction; it also requires considering all possible determinants in 
the complete basis set limit. This is not practicable. Fortunately, by analyzing the 
functional-analytic properties of the wavefunction, we can propose a method that 
converges to ideal-CI in the high-accuracy limit. Before delving into the details, 
however, it is useful to define some notation and foreshadow the key results. 

We will use the K spatial orbitals that are obtained by diagonalizing a 
mean-field Hamiltonian for the system as a basis set. List these orbitals in order of 
increasing orbital energy, 

<A (r),rf>z (r), ... rA (r) (3) 

&1~&2~···~&K (4) 

We denote an N-electron Slater determinant as 

5<l>; =I . a . a ··· . a . </>ip,2p • • • </>ip,Nppl ( )</>1a,I r/J,a,2 </>1a,Na </>,p,1 /J 
1<. . . < K fJ (6)- l,,.1 < l,,.2 < · · · < l,,.Nu - Cf= a, 

To make this notation clear, the indices for the Slater determinants depicted in 
Figure 1 are given as follows: 

iFig. la = [ 1 2 3 1 2 3r 
iFig.lb=[(K-2) (K-1) K (K-2) (K-1) Kr (?) 

iFig. le = [ 1 2 (K +1) 1 2 (K +1)r 
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(a) (b) (c) 
Figure I.Representation of Slater determinants used in a configuration interaction 
wavefunction. (a) The reference Slater determinant from, e.g., Hartree-Fock, in 
the truncated basis set. (b) A highly excited Slater determinant that is included in 
a full configuration interaction (FCI) calculation in the truncated basis set. ( c) A 
Slater determinant included in FCI on an extended basis set that makes a larger 
contribution to the wavefunction than the Slater determinant in (b ). 
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The FCI wavefunction can be written as: 

'I' Fc1 = L ci<l>i (8) 
llilloo~K 

Recall that the r'-norm of a vector is equal to the largest absolute value of a 
component in the vector, 

(9) 


The proposed form for selected CI also depends on the £' norm of a vector, which 
lS 

\\i\\1 = L L 
N 

lia,n I= ia,1 + ia,2 + · · · + ia,Na +ip,1 + ip,2 + · · · + ip,Np' (10) 
a=a,p n=l 

and has the general form, 

'I'0Kc1 = L ci<l>i' (11) 
f.,,,,(i,T=· )<Qarr·(K ,T,,,,,) 

where 

faa (i, T) = l'lia 
1 
+Taa l'lia 

00 

fpp(i,T)= llip 1+Tpp llip oo (12) 

fap (i,T) =\\lli\\1 +Tap \\11it =ll11ia Iii +\\11ip \\1+Tap· max(llll;a IL ,\\11ip IL) 
(13) 


The components of the vector 

are the number of nodes in the respective orbitals. For example, if the thirteenth 
spatial orbital is an atomic 3p orbital, then ri 13 = 2. The number of nodes in the k1

h 

spatial orbital can be approximated by solving the following equation for Y/k 

k = r(1h +3) (15) 
6r(77k +1) · 

r(x) is the Gamma Function. 

This method reduces to FCI in the limit as T ~ +oo . As T ~ -1 , fewer 
and fewer configurations are used, and configurations in which the level of 
excitation is small, but the electrons are excited into high-lying orbitals, are 
preferred over configurations where the level of excitation is high, but the 
electrons are in low-lying orbitals. For T = 0, all Slater determinants in which the 
sum of the total number of orbital nodes is less than or equal to Qare included. As 

lli =[
,,ia,I 

(14) 
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pointed out by Avila and Carrington,49 this choices oflimited CI has been proven 
to be efficient for solving the vibrational problem;50

-
52 in that context it is closely 

related to imposing an energy-cutoff on the product basis set. 

We have used the general form in Eq. (12) for many-electron numerical 
quadrature grids, and our results in that context suggest that it is best to consider T 
a user-defined parameter and tune it to balance accuracy with computational 
cost.53 On mathematical and practical grounds, it is optimal to choose T< 0. 

Increasing Q increases the number of Slater determinants that are included 
in the method; small values of Q give very limited (and very fast) selected CI 
methods. Large values of Q give large and, for sufficiently large Q, exhaustive 
lists of Slater determinants. We recommend 

N,, 

Q,a (K, Taa) =LlJ; - ~ lJ; + (1 +Taa )IJK+l 
i=l 15.i5.N,, 

Q,,,(K)= .~Jtq,-~q,+q,,,J (16) 

+T., ~(t,q, -,~q, +q,.,J 
We believe that these are the largest values for Q that can be used before 
truncation of the orbital basis set introduces a larger error than the truncation of 
the CI expansion. When it is difficult to determine the number of nodes in the 
orbitals, one can approximate these formulae with 

N,,-1 

Qaa (K,Taa) = L lJ; +(1 +T= )lJK+l 
(17) 

Q,,,(K)= i(~'q, +q,., )+r.,~(~'q, +q,,,) 
where T)k is approximated by solving Eq. (15). 

We refer to this method as Griebel-Knapek CI by degrees (GK-CI), 
because it was Griebel and Knapek who first analyzed the cost function on which 
Eq. (12) is based54

•
55 and Eq. (12) is based on the idea that the number of nodes in 

an orbital can be used as an "effective polynomial degree." The Griebel-Knapek 
cost function has been used by Griebel, Hamaekers, and Garcke in the context of 
the electronic Schrodinger equation, with promising results.46

•
56 The T = 0 case of 

this cost function was proposed by Smolyak, 57 and has proved useful for 
44applications to density-functional theory42

- and the nuclear Schrodinger 
• 49equat10n. 
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In the next two sections, the essential mathematical background for 
understanding the GK-CI method will be presented. The motivation for this 
particular selected CI method will then be presented in detail in section VI, and 
analyzed in section VI. 

VIII.IV. Background: Complexity Theory 

A distinctive feature of the present approach is that it is based on the 
formalism of information-based computational complexity and tractability58

-
60 

using the real-number model.61 
-
63 In this context, one writes the cost of the 

calculation as a function of the accuracy that is desired, 
cost=/(8). (18) 

Because one is using the real-number model, the "cost" is equal to the number of 
simple arithmetic operators, which we assume can be performed with infinite 
precision. In variational quantum Monte Carlo and grid-based methods, the cost is 
usually proportional to the number of integration/sampling points, Mpoints· Thus, 
the usual Monte Carlo expression for the accuracy, 

-ri 
8 =(Mpoints) (19) 

can be rewritten as 
costMc - 8-2 (20) 

The notation in Eq. (20) means that the cost of a Monte Carlo calculation with 
accuracy Eis asymptotically proportional to lh:2

. This is only an asymptotic result 
for the high-accuracy (E-0) limit; computational prefactors and terms of higher 
order in llE are not included. Equation (20) says that doubling the accuracy of a 
Monte-Carlo calculation quadruples the computational cost. 

Equation (20) is the best possible result for general wavefunctions. For 
continuous wavefunctions, quasi-Monte Carlo sampling is theoretically more 
efficient,64

-
68 and can achieve 

COStquasi-MC - 8-I (21) 

For wavefunctions that are not only continuous but also have bounded sth_order 
mixed derivatives, the best possible result is69

-
72 

cost - 8 -rs . (22) 
The results in Eqs. (21) and (22) are actually stronger than the Monte Carlo result 
because they pertain to the "worst case error," while the error in Monte Carlo 
methods is the "average case error" (i.e., the expectation value of the error). 
Methods that are based on Eqs. (21) or (22) can certify the quality of result with 
mathematical rigor, not just provide probabilistic error bounds. 
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All of these results are purely mathematical, and they are only valid in the 
asymptotic limit s ~ 0. Additionally, computational prefactors have great 
practical implications, but they are not captured by these formulae. Thus, while 
quasi-Monte Carlo methods are superior to random Monte Carlo sampling in the 
limit of high accuracy (small E limit), quasi-Monte Carlo methods might not be 
more efficient for the modest accuracy required in typical quantum chemistry 
applications. The goal of this paper is to chase the theoretical limits of 
computational efficiency by proposing a method that approaches optimal cost per 
unit accuracy, as expressed in in Eq. (22). 

Established deterministic methods for solving the electronic Schrodinger 
equation are much less efficient than any of the results presented above. Consider, 
for example, the computational cost of straightforward numerical integration of 
the N-electron Schrodinger equation on a direct product grid with m points per 
dimension, cost oc Mpoints =m3

N • If one uses the best possible one-dimensional 

integration formulae (many-dimensional Gaussian quadrature), the error is 
proportional to m-s, presuming that the wavefunction has bounded derivatives of 
s1

h order. One then has, for a direct product grid, 
-3o/, 

costdirect prod. grid oc s s • (23) 

or 

log (cost direct prod. grid) N 
. oc-. (24)

-logs s 

One may similarly argue that the cost of FCI in a K-orbital basis, with K » N , is 
log ( costFci) N 
----oc - (25)

-logs s 
For such methods, the computational cost required to achieve a given accuracy, E, 

grows exponentially with increasing dimension. Methods that suffer from this 
"curse of dimension" are said to be computationally intractable. By contrast, 
methods whose computational complexity does not grow with dimension (cf. Eqs. 
(20)-(22)) are said to be strongly tractable. Classical Monte Carlo methods are 
appealing because their cost/accuracy ratio does not depend on the dimensionality 
of the problem. The exploding computational cost of FCI with increasing electron 
number is captured in Eq. (25): the cost per unit accuracy ratio of FCI vanishes 
exponentially with increasing electron number. 
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VIII.V. 	 Background: Convergence Rate of Basis 
Set Expansions 

Consider a one-dimensional wavefunction, 'l'(x). By choosing a suitable 
set of w-orthogonal polynomials, 

oij =rP;(x)~ (x)w(x)dx (26) 

we can define an appropriate orthonormal basis set 

X; (x) =P;(x)~w(x) (27) 

for expanding the wavefunction, 

(28) 

k=O 

The k1 
h orthogonal polynomial, Pk(x) , has degree k and k nodes. Therefore, the 

basis function x.k(x) also has k nodes, and it is reasonable to say that x.k(x) has 
"effective polynomial degree" k. 

If 'l'(x) is s times differentiable, that is, if 


d 8 1/f ( X) 

<oo, 	 (29)dxs 

then the asymptotic rate of decay of the expansion coefficients in Eq. (28) is 
74proportional to73

' 

1 
lak 1- 11 (3o) 

Based on this, the error that is introduced by truncating the basis set is 

llvt(x)- ~a,;r,(x}ll- {K:l)'- ~' (31) 

JL
Because this is an asymptotic result, it is only useful for sufficiently large K. The 

00 (IR) norm used in Eq. (29) is the essential supremum of the function's 

magnitude, 

II!(x )!loo= ess sup If(x)I (32) 

For continuous functions, the essential supremum is just the least upper bound. 

There are similar results for higher dimensions. One can expand the 
wavefunction in a basis set, 

00 00 00 

\}' (x"x2,. ·.,xd) =LL··· L ak,k,.··kdXk, (X1 )Xk2 ( x2)· · · Xkd (xd) · (33) 
k1=0 k2 =0 kd=O 
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If the wavefunction is antisymmetric with respect to interchange between its 
arguments, one can combine terms in Eq. (33) that differ only by permutation of 
the k/s and rewrite the expression as a linear combination of Slater determinants, 

'¥ (xi' X2' . .. 'xd) = L 
00 

ck I (34) 
o,;k1<k2<··-<kd Xk1 

In order to truncate the basis set expansion, one needs to study how the 
coefficients of the expansion, ck, decay. By analogy to Eq. (29), it is reasonable to 
analyze the case where the wavefunction has bounded sth derivatives, 

8" 8'2 ••• 8'd '¥ (x) 
< 00 

8x" 8x'2 ••• 8x'd
I 2 d 00 

In this case, 

lckl-(-1JS=( 1 JS (36)
llklioo max1,,;,;d ( k;) 

The guiding principle behind the ideal-CI method proposed in section III is that if 
we truncate the basis set at order K, then we should leave out all terms in the basis 
set expansion, Eq. (34), that contribute less to the expansion than the first 
neglected term. In the case described by Eqs. (35) and (36), this error-consistent 
truncation scheme reduces to FCI, 

(37)'¥ (xpX2, ... ,xd) = L ck I 
llklioo"Q xk1 xk2 

This is the ideal-CI expansion in the large K limit. If the wavefunction has only 
bounded s1

h derivatives, and no additional smoothness, FCI is the asymptotically 
optimal basis-set expansion algorithm. In such cases, the only computationally 
tractable approach is Monte Carlo. 

Fortunately, the molecular wavefunction has additional smoothness, called 
bounded mixed derivatives. A function has bounded mixed derivatives of s 1h order 
ifyou can differentiate the function s times with respect to any coordinate, 

8" 8'2 
••• 8'd '¥ (x) 

< oo s ~ llrlloo =max1,,;,;d 1j (38)
8x" 8x'2 

• • • 8x'dI 2 d 00 

This implies that (s +1t derivatives exist; this exponential amount of 

differentiability can be exploited to break the curse of dimension. Notice that 
some of the derivatives in E~. (38) are of very high order. For example, the 
following derivative of orders exists: 
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asas ... as'I'(x) 
< oo s ~\Ir!!~ =max1s;sd r; (39)axsaxs ... axs ­

I 2 d 00 

In this case, the asymptotic decay of the CI coefficients is 

lc,1-(ll~llJ ~ [ k, +k, ~--·+kJ (40) 

and the ideal-CI expansion, in the large basis-set limit, has the form 

'¥ (x1'x2, ... ,xd) = L ck I 
llkll11 sQ Xk, Xk, · · · 

I 
Xkd 

(41) 

This is identical to the T=O case ofEq. (11). Compared to Eq. (37), there are many 
fewer terms in Eq. (41). For large K, the number of Slater determinants included 
in the FCI expansion (Eq. (37)) is proportional to the volume of a cube with side 
K, with a correction for antisymmetry. The number of Slater determinants 
included in Eq. ( 41) is proportional to the volume of the standard d-simplex with 
vertices at the origin, (K,0,0, .. .,0), (O,K,O, ... ,0), and (0,0, ... ,O,K), again with a 
correction for antisymmetry. There are thus O(d!) fewer Slater determinants in 
Eq. (41) than in Eq. (37); the exploding computational cost of FCI is thus 
mitigated. In the context of the nuclear Schrodinger equation, the key result in Eq. 
(40) has been exploited by Avila and Carrington.49 

As a final example, we consider an even higher degree of differentiability 
called dominating mixed smoothness.54

•
55 This combines Eq. (35) and (39), so that 

ari+q,ar,+q, ... ard+qd'I' (x) 
< 00 (42)mr, +q1 axrz +qz ••• axrd +qd 

I 2 d 00 s ~ llrlL =max1s;sd r; 
t ~ llqt =qi +q2 +···+qd 

The corresponding asymptotic decay rate for the CI expansion coefficients looks 
like 

(43)lc,1-(M, +~M.r 
The optimal value of T, with -1 < T < oo, is determined by the specific values of s 
and tin Eq. (42). The ideal-CI expansion, in the large basis set limit, has the form 

'¥(x1'x2, ... ,xd)= L ckl I (44) 
/(k,T)SQ Xk, Xk, . . . Xkd 

where 

f (k, T) =llkll1 +T llkt (45) 

-l<T<oo (46) 
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Y serente showed that, for the electronic Schrodinger equation, one can choose s = 
Y2 and t = 1 in Eq. (42).75 If all electrons have the same spin, then the electron­
electron cusp is mitigated and an even stronger result holds, withs= t = 1.75 The 
fact that s has different values for same-spin and opposite-spin electrons indicates 
that the optimal value of T will be different for same-spin and opposite-spin 
electrons. This is the motivation for the spin-resolved formulation in section III. 

Because s > 0 and t > 0 in Eq. ( 42), we are justified in choosing T < 0, so 
the CI expansion in Eq. (44) has even fewer Slater determinants than the 
expansion in Eq. (41). This result has been exploited by Hamaekers and Griebel in 
the context of the electronic Schrodinger equation, but they based their 
approximation on the Galerkin approach, rather than the traditional CI 

• 'expans10n.4647 

The results in this section are presented without mathematical justification 
and many nuances, especially related to Eqs. ( 42)-( 46), have been glossed over. 
The interested reader is referred to the original literature for details. Equation ( 40) 

69 72 76is based on the work of Smolyak;57
' ' ' Eq. ( 45) is motivated by the work of 

Griebel and Knapek (who use a different sign convention for T). 54
•
55 The link to 

expansions in orthogonal polynomials is most clearly explained by Novak and 
Ritter.71 

The results in this section can be justified, however, on an intuitive level: 
remember that £1 and r are dual to each other. If the order of bounded 
derivatives is given by the £1 norm (Eq. (35)), then the order of convergence in 
the series expansion is given by the r norm (Eq. (36)), and vice versa (Eqs. (38) 
and (40)). Similarly, ifthe order of bounded derivatives is given by a combination 
of the £1 and r norms (Eq. (42)), then so is the order of convergence of the 
series (Eq. (43)). 

From the results in this section, the motivation for the algorithm proposed 
in section III should be clear. 

VIII.VI. Algorithm Details: Griebel-Knapek CI by 
Degrees 

The problem with directly translating the method in section V to CI 
calculations is the choice of basis. The key results in section V use a basis of one­
dimensional orthogonal polynomials. Such a basis set can be used for atoms, but it 
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is not a popular approach in modem electronic structure theory.77
-
86 For many­

electron molecules, using products of orthogonal polynomials as a basis set is not 
efficient. Fortunately, most of the key results that we cited for orthogonal 
polynomials can be extended to other basis sets of normalized, orthogonal 
functions. 74 The authors will not attempt to prove, mathematically, that the results 
presented in section V can still be applied when using the popular orbital basis 
sets in quantum chemistry (say, the Hartree-Fock orbitals expanded in some 
Gaussian basis set). However, plausibility can be established. Consider 

diagonalizing a one-electron Hamiltonian, j (r), using the Lanczos procedure. In 

the Lanczos procedure, one establishes a three-term recursion relation relative to 
the inner product, 

(47) 


where the lowest eigenvalue of the one-electron Hamiltonian and p > 0 have been 
introduced to ensure that the bracketed operator is positive definite. This 
procedure is directly analogous to results in the theory of orthogonal 
polynomials.87

•
88 In addition, for one-electron Hamiltonians with a local potential 

(e.g., the Kohn-Sham Hamiltonian), Wintner's nodal theorem indicates that the 
nodes of the canonical orbitals are interlaced in the same pattern as the nodes of 
multidimensional orthogonal polynomials.89 Specifically, Wintner showed that if 

~Hr) and ¢m (r) are eigenfunctions of J(r) = ·;i-v2 
( r) +vs (r) with E1 <Em, 

then in any nodal region of ¢1 ( r), ¢m (r) must change sign. (A nodal region is a 

region of space bounded by a nodal surface, where ¢, (r) =0 . )90 Since the nodal 

structure of the orbitals is the same as the nodal structure of multidimensional 
orthogonal polynomials, one expects that one can map the orbital basis set onto 
orthogonal polynomials by making a suitable transformation of coordinates. 
Special cases of this transformation are known, e.g., the relationship between the 
Laguerre and the Hermite orthogonal polynomials. 

Thus motivated, we propose to use the number of nodes in the canonical 
Hartree-Fock or Kohn-Sham orbitals as a replacement for the degree of 
orthogonal polynomials. For atoms and linear molecules, the number of nodes in 
an orbital is easily established using Wintner's theorem and the angular symmetry 
of the orbitals (for atoms: s,p,d,...; for linear molecules: cr,n,D, ... ). Given two 
orbitals with the same angular symmetry, the one with higher-energy has more 
nodes. 

When there is no angular symmetry, deciphering the number of nodes in 
an orbital is more challenging. However, Wintner's theorem assures us that the 
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number of nodes generally increases with increasing energy. If we order the 
orbital basis set with increasing energy, 

&1 ~&2 ~···~&K (48) 

then this closely (but not perfectly) corresponds to ordering the orbitals by 
increasing numbers of nodes.91 Dimensional arguments indicate that, barring 
special symmetries, the number of D-dimensional orbitals with Y/ or fewer nodes 

92is ( 17 ~D); the number of orbitals with precisely Y/ nodes is ( 17 ~D)(1- : D) . 
17 

Combining this result with Wintner's theorem allows us to estimate that the 
number of nodes in the kth spatial-orbital by solving the following equation for Y/k: 

k = !(17k +D+l). (49) 
D!f'(17k +1) 

This equation reduces to Eq. (15) in the common three-dimensional case, D = 3. 
An alternative to Eq. (49) is 

k = (17k +1)(17k +2)···(17k +D) 
(50)

D! 
For D :S 4, this equation can be solved analytically. 

Using the number of nodes in rA (r) as a proxy for the degree of the 

orthogonal polynomial, we can now exploit the results from section V to truncate 
the CI expansion. We use the most general, Griebel-Knapek, construction. First 
construct all possible Slater determinants containing only a-spin electrons that 
satisfy the criterion, 

faa(ia,T)=ll11;J +Taall11;J
00 

<Qaa(K,Taa)· (51) 

Then form a similar set of Slater determinants containing only ~-spin electrons. At 
this point we have a basis set of orthogonal functions for the a-spin and ~-spin 
subspaces. The effective polynomial degree of a Slater determinant in the a-spin 
subspace is, 

II,,. II =n. +n. +···+n. (52)
1u } •t 1a,l ' 11a,2 '/1u,Na 

The final N-electron basis function is an (antisymmetric) product of the a-spin and 
~-spin Slater determinants,93 

'¥ = 

L C-1'¢,.a¢,. a···¢,. a 1/\1¢,. f3 ¢, f3 ··· ¢,. f3I (53) 
fap( 'l;a •'lip )so,,p(K ,Tap) 1a,i la,2 1a.Na 1p,i lp,2 Ip.Np 

The sum includes all of the spin-Slater determinants that satisfy the Griebel­
Knapek condition, 
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fap (i, Tap) =(llllia 111 +llllip Ill)+ Tap ~ (llllia Ill 'llllip Ill) < Qap (K' Tap) (54) 
rr=a,p 

With these choices, the truncated CI takes the form given in Eqs. (11)-(14). 
Because we are defining an analogue of the degree of a polynomial by counting 
the nodes in the orbital basis functions, we call this method for building up the 
configuration space of Slater determinants "Griebel-Knapek CI by degrees" (GK­
CI). The advantage of the spin-resolved formulation used here is that one can 
optionally exploit the greater degree of differentiability that arises when one 
considers only same-spin electrons. Based on this, it seems that most interesting 
and useful choices for the Griebel-Knapek Tparameters will be characterized by 

-1 < Taa =Tpp ~Tap ~ 0. (55) 

In the spirit of the ideal-CI method presented in section III, we want to 
truncate the CI expansion at the maximum value of 

fr;r;' (11, Tr;r;') = 1111111 + Tr;r;• ll11IL, (56) 
that can be attained with our basis set. Equivalently, we should evaluate 
frrrr' (11, T(j(j.) for the most important Slater determinant that is not included in the 

basis set, and use the value of frrrr' (llexciuded, Trrrr') to define a threshold for 

truncating the CI expansion. It is impossible to know precisely what is the most 
important Slater determinant, but a good candidate is the Slater determinant 
rendered in figure 1 c, with electrons excited from the highest-occupied a-spin and 
~-spin molecular orbitals to the lowest-energy orbital that is not included in the 
basis set. Using the number of nodes as proxy for the degree, and assuming that 
the spatial orbitals are sorted in increasing order of nodes, 

1J1 ~ T/2 ~ " .. ~ lJK (57) 

then the type of Slater determinant depicted in Figure le is indexed by 

iexcluded = [ ) Jr. (58)
1 ··· (Na-1) (K+l) 1 ··· (Np-I (K+l) 

This gives 
N"-1 

Qr;r; (K' Tr;r;) = frrr; ( jexcluded" 'Tr;cr) = L T/; + ( 1+T<T<T) lJK+I 

i=l (N -1 J (N -1 J(59) 
Qap (K) = fap ( jexcluded' Tap)= r;~p t T/; + lJK+I +Tap~ t T/; + lJK+I 

When the precise number of nodes are known, the formula in Eq. (16) allows one 
to compute Q(j(j. without sorting the orbitals into nodal order (as in Eq. (57)). 

Ultimately one wants to know the full-CI energy in the limit of infinite 
basis set. We can extrapolate the energy obtained from a GK-CI calculation to the 
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K - oo limit using the result in Eq. (43). Because the energy is stationary with 
respect to infinitesimal variations of the wavefunction, the error in the energy is 
square of the error in the wavefunction, so the asymptotic convergence of the 
energy can be fit to the form 

(60)Ex- -EK~[Q,,,(i,r"'Jf, 
where u characerizes the asymptotic decay rate of the CI coefficients. From Eq. 
(43), u = (s + t). In practice, we would use u as a fit parameter. Depending on the 

94 95value of T and the spin-multiplicity, one expects 1 :Su :S 2.75
' ' '

96 The value of u 
is limited by nondifferentiability at the electron-electron cusp, and if this feature is 
handled analytically using explicitly correlated basis functions (e.g., a Slater­
Jastrow form), then the value of u, ergo the rate of convergence to the basis-set 
limit, will increase. 

VIII.VII. Discussion 

To clarify this approach, Table 1 lists the electron configurations that 
would be included in a doubly-occupied configuration interaction (DOCI) 
calculation on Beryllium and Neon, in a double-s basis set, with Taa = TPP = 0 and 

Tap~ oo. Table 2 lists the electron configurations for DOCI in a triple-s basis 

set.97 For T= < 0, fewer multiple excitations would be allowed. For T= > 0, 

higher-order excitations would be permitted. 
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Table 1 The electron configurations included in a doubly-occupied configuration 
interaction (DOCI) calculation on Beryllium and Neon, in a double-~ basis set 
(3s,2p,ld), with Taa =Tpp =0; Tap -+oo. The value offcr0 is computed using Eq. 

(51). The final line of the table lists one of the most important electron 
configurations that is neglected because of basis-set truncation error. 

Be Ne00 00 

1s 2s 1 1s 2s 2p 4 

ls22p2 1 ls22p63s2 5 

ls23s2 2 ls22p63p2 5 

ls23p2 2 ls22p63d2 5 

ls23d2 2 ls22s22p43s2 5 

2s22p2 2 ls22s22p43p2 5 

2 4 2 1s22s22 43d2 5 


ls 4s 3 ls 2s 2p 4s 6 
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Table 2 The electron configurations included in a doubly-occupied configuration 
interaction (DOCI) calculation on Beryllium and Neon, in a triple-~ basis set 
(4s,3p,2d,lj), with Taa =Tpp =0; Tap~ oo. 

Be cm 

ls 2s 1 
ls22p2 1 
ls23s2 2 
ls23p2 2 
ls23d2 2 
2s22p2 2 
2p4 2 
ls24s2 3 
1 s24p2 3 
1 s24d2 3 
ls24f 3 
2s23s2 3 
2s23p2 3 
2s23d2 3 
2p23s2 3 
2p23p2 3 
2p23d2 3 

Ne (JO" 

ls 2s 2p 4 
ls22p63s2 5 
ls22p63p2 5 
ls22p63d2 5 
1s22s22p43 s2 5 
1s22s22p43p2 5 
ls22s22p43d2 5 
ls22p64s2 6 
ls22p64p2 6 
ls22p64d2 6 
ls22p64f 6 
1s22s22p44s2 6 
1s22s22p44p2 6 
1 s22s22p44d2 6 
ls22s22p44f 6 
2s22p63s2 6 
2s22p63p2 6 
2s22p63d2 6 
1s22s22p23s23p2 6 
1 s22s22p23s23d2 6 
1s22s22p23p4 6 
1 s22s22p23d4 6 
1 s22p43s23p2 6 
ls22p43s23d2 6 
ls22p43p4 6 
ls22 43d4 6 

ls 5s 4 ls 2s 2p45s2 7 
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Several interesting features emerge. The near-degeneracy correlation of 
the Beryllium atom is accounted for automatically because the 2p and 2s orbitals 
have the same number of nodes. Therefore, whenever a Slater determinant with a 
2s-orbital is included in the expansion, corresponding Slater determinants with 2p 
orbitals will also be included. Second, the expansion is severely truncated. This is 
most clear in the case of Neon in the double-s basis: because the ls22s22p44s2 

Slater determinant is not available, only single, double, and triple excitations are 
included when Taa ~ 0. Similarly, with a triple-s basis: because the ls22s22p45s2 

determinant is not available, no excitations beyond fifth order are included for 
Taa ~O. 

We wrote a computer program to explicitly generate the allowed 
electronic configurations for GK-CI calculations. Figure 2 plots the number of 
Slater determinants for GK-CI calculation on an N-electron singlet state, for 
various sizes of the orbital basis and various choices for Taa, with Tap ~ oo . For 

comparison, the scaling behavior of the analogous coupled-cluster (specifically, 
CCSD and CCSDT) and FCI calculations is shown.9 Because the maximum 
number of nodes in the basis set grows very slowly as the basis set increases 

(7h - efk ), the number of determinants is relatively insensitive to Taa in the range 

-1 < Taa ~ 0 . The benefit of using T= < 0 most apparent when the basis set is 

large; the benefits decrease as the level-of-filling increases. Figure 2 also 
demonstrates that, for Taa > 0 , the curse of dimension is not removed by the 

Griebel-Knapek construction, and the number of Slater determinants explodes 
55exponentially.54

'
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Figure 2 The number of Slater determinants in various types of Griebel-Knapek 
CI by degrees, for singlet states with various numbers of electrons, N, and sizes of 
the spatial-orbital basis, K. Different values of Taa =Tpp =T are used; Tap ~ oo . 

2The values of o v4 and o3v5 are also given; these numbers characterize the scaling 
of coupled-cluster singles and doubles (CCSD) and coupled-cluster singles, 
doubles, and triples (CCSDT), respectively. (a = Na is the number of occupied 
states and v = (K-Na) is the number of virtual states.) (a) 30 spatial orbitals; (b) 50 
spatial orbitals; (c) 100 spatial orbitals; (d) 200 spatial orbitals. 
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The number of Slater determinants is even less sensitive to changes in Tap , 

at least as long as one is sensibly choosing Tap > Tau. Indeed, as shown in the 

appendix, for any Taa =TPP ~ 0, all Tap~ T= give the same results. This is why 

we chose Tap ~ oo in Figure 2. Only the Tau =1 curve, though, would have 

changed had we used Tap =0 instead. 

Notice that the number of Slater determinants included in a GK-CI 
calculation has a type of shell-structure. As discussed before in the context of the 
Beryllium atom, the determinants included in GK-CI include all possible ways of 
arranging electrons from orbitals with the maximum number of nodes in the 
reference determinant into orbitals with the same number of nodes. This 
"complete active space" family of determinants is largest when the last shell is 
half-filled, and smallest when the last shell is nearly empty. This gives a sizeable 
dip in the number of determinants when there are only two electrons outside a 
"closed shell" of orbitals with fewer nodes. As there are (11+ 1)(11+2)(11+3)/3 3­
dimensional orbitals with 17 or fewer nodes, "closed shells" occur at K = 
2,8,20,40,70 .... The peaks and valleys in the number of GK-CI determinants 
reveal these shells. 

Ultimately, no CI-type expansion based on explicit expansion in Slater 
determinants can compete with the very compact implicit representations for the 
wavefunction that are constructed using methods like the linear combination of 
graphically contracted functions (LCGCF)26

, the density matrix renormalization 
28group (DMRG),27
• , or correlator product states (CPS).99 DMRG, in particular, 

1. d . h . d. . 1. 34 ioo-102 H h"lhas been app 1e to systems wit massive 1mens10na 1ty. ' owever, w 1 e 
DMRG tends to behave as a polynomial-cost algorithm, it is still a exponential­

103cost algorithm from a mathematical standpoint.39
• •

104 The analysis in this paper 
suggests that there might be ways, based on functional-analytic considerations and 
the Griebel-Knapek cost function, to reduce the dimensionality of the matrices 
that are multiplied together to form the matrices in DMRG or the correlators in 
CPS. Such a wavefunction might dramatically decrease the cost ofDMRG and/or 
CPS and allow the inclusion of dynamical electron correlation, all without 
sacrificing accuracy. Approaches like this would be more efficient than explicit 
GK-CI. 
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VIII.VIII. Summary 

While the mathematics is complicated, the key idea behind the Griebel­
Knapek CI by degrees approach is very simple. The target is the ideal-CI method 
proposed in section III: in ideal-CI, the basis-set truncation error and the CI­
expansion truncation error are matched. No effort is wasted on determinants that 
contribute less to the final wavefunction than the highest-contributing determinant 
that would be added were the basis set extended. The basic idea is clear from 
Figure 1: because the electron configuration in Figure 1 b contributes much less to 
the wavefunction than the electron configuration in Figure 1 c, the absence of 
Slater determinants like the one picture in Figure 1 c will dominate the error in a 
FCI calculation. Ideal-CI can be formulated to be size-consistent. We do not 
believe that ideal-CI is size-extensive, but the deviation from size-extensivity is 
comparable to the error from basis-set truncation. 

The ideal-CI method is merely formal. However, based on functional­
analytic properties of the wavefunction, one can model the asymptotic decay of 
the CI-coefficients using the approach of sections V and VI. The key idea is to 
consider the number of nodes in the spatial orbitals to be a proxy for the 
polynomial degree, then use established results for the convergence rate of 
orthogonal-polynomial expansions. This defines the Griebel-Knapek CI by 
degrees method. In the basis-set limit, where these asymptotic formulae for the CI 
coefficients are exact, this method is equivalent to ideal-CI. 

For an arbitrary N-particle Schrodinger equation, where the eigenfunctions 
are r-fold differentiable, ideal-CI and full CI are the same. This agrees with the 
fact that the general N-electron Schrodinger equation is computationally 
intractable.105 However, the molecular electronic structure problem is special, and 
the eigenfunctions of the electronic Hamiltonian are not only differentiable, but 
they have bounded mixed derivatives (cf. Eq. (38)) and even dominating mixed 
smoothness (cf. Eq. (42)).75 We do not need FCI in quantum chemistry: the fact 
that the electronic wavefunctions are mathematically "nice" allows us to 
dramatically truncate the CI expansion. 106 The parameter, Taa', can be used to 

adjust the assumptions about the differentiability of the wavefunction. With 
Taa' < 0, the number of determinants in the GK-CI expansion is relatively small, 

and does not increase as a factorial of the number of electrons. 
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VIII.IX. Appendix 

For any T= =Taa =Tpp ~ 0, all values of Tap;::: Taa produce the same set 

of Slater determinants. To see this, recall that 

Qaa =llllexclude<La 111 + Taa llllexcluded,a t (61) 

Qap =llllexc1uded,a 111+ ll11exc1uded,p 111+Tap max (llllexc1uded,a t ,llllexciuded,p t) (62) 

Suppose that {Tia, Tip} are the vectors containing the nodal numbers of two spin­

Slater determinants. Then, 

1117a111 + Taa \\17aL, < llexcluded,a 1+ Taa llexclude<La 
00 (63) 

1117PII, + T= 1117Pt < llexclude<LP 1+T= llexclude<LP 00 

Add together the two inequalities and rearrange them as, 

00-Taa ( llexcluded,a -ll17a LJ < (llllexciuded,a 111 + llllexcluded,p 111 J (64) 
llexcluded,p -1117PL, -\\17a111 -1117P11100 

The Slater determinant that is obtained when we combine the two spin-Slater 
determinants will be accepted if and only if 

\Illa 111 + llllp 111 J (llTJexcluded,a 111 + llllexciuded,p 111 J (65) 
( +Tap max (\Illa t ,llllp t) < +Tap max (llllexclude<La t 'llllexcluded,p t) 

or, equivalently, 

-Tap (max (llllexclude<La t 'llllexclude<LP t )J < (llllexclude<La 11+ lllexciude<LP 111J (66) 
-max(\\llalioo ,1111pt) -\\lla l\1 -I llpl 1 

If the left-hand-side of inequality (64) is greater than or equal to the left-hand-side 

of equation (66), then the {Tia, llp} pair will always be accepted as a Slater 

determinant. Thus, we need to analyze when: 

-Taa ( llexclude<La =\\77aLJ;::: -Tap [max(llllexclude<Lat ,11llexc1uded,pt)J (6?)00 

llexcluded,p 1111Pt --max (\\lla t 'llllp t)00 

The precise criterion is that 

T [ llTJexcluded,a t - \\77a IL + llllexcluded,p t -1117Pt ]< T (68) 

aa max (llllexcluded,a t 'llllexcluded,p t )-max (\\lla lloo 'llllp t) - ap 
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The term in brackets is greater than or equal to two. This allows us to state that 
all values of Tap that satisfy Eq. (68) give the same set of Slater determinants and 

this set is simply the Cartesian product of the set of a-spin Slater determinants and 
the set of f3-spin Slater determinants, which is the same result that one obtains in 
the Tap ~ oo limit. In the special case where Taa ::; 0 , then we can furthermore 

say that all Tap ~ 2Taa give the Cartesian product of the spin-Slater determinant 

sets. Since sensible choices for the parameters are Tap ~ Taa and T= ::; 0 , the 

Cartesian-product set is arguably the only sensible choice. This is why we used 
Tap ~ oo in Figure 2. 
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Chapter IX 


Approaching the Theoretical Limits 


of 


Computational Efficiency with the 


Local Schrodinger Equation * 


•The content of this chapter is in preparation to be submitted: J . S. M. Anderson, H. Nakashima, 
P. W. Ayers, H. Nakatsuji "Approaching the theoretical limits of computational 
efficiency with the local Schrodinger equation"; J. Chem. Phys. 
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IX.I. Statement of the Problem 

This chapter illustrates how to increase the efficiency of Nakatsuji's local 
Schrodinger equation (LSE) method. This key insight comes from an old theorem 
of Boys', which shows that using multidimensional quadrature grids not only 
increases the accuracy of the approach, but provides an explicit error estimate. 
The error estimate leads to a strategy for increasing the accuracy of the LSE. 
Boys' theorem suggests that using sparse grids in the LSE will produce a method 
that approaches the theoretical limits of computational efficiency for solving the 
molecular electronic structure problem. Combining sparse grids with this method 
might be the most effective method for exploiting the functional-analytic structure 
of the molecular wavefunction. 

IX.II. Motivation 

Describing how electrons "bind" atomic nuclei together to form 
molecules, predicting molecular properties and chemical reactivity, and 
quantifying the relative thermodynamic and kinetic stability of different 
molecules: these tasks, and many others at the heart of chemistry, are 
fundamentally problems in molecular electronic structure theory. Unfortunately, 
constructing accurate models for a molecule's electronic structure is difficult, with 
the biggest obstacle being the accurate description of electron correlation, which 
requires going beyond the usual orbital models (e.g. Hartree-Fock and 
approximate Kohn-Sham density- functional theory). Many approximate models 
for describing electron correlation exist, ranging from quantum Monte-Carlo to 

3the configuration-interaction and coupled-cluster hierarchies. 1- Using these 
algorithms, the computational cost required to ensure that the error in the energy 
is less than E typically grows exponentially with the number of electrons, N 
(cost - &-pN, with p;::: 1), which is prohibitive.4 However, atomic and molecular 
systems are special, and possess certain simplifying features. 5-

7 This suggests that 
the most popular computational methods are less than optimal for the specific 
problem of determining molecules' electronic structure. In particular, 
conventional computational methods can be used for any electronic Hamiltonian, 
including model Hamiltonians (e.g., spin-Hamiltonians) that are known to be 
much more difficult to solve than the actual molecular Hamiltonian. 8 Exploiting 
the special characteristics of molecular systems to develop more efficient methods 
for computational quantum chemistry is the chief goal of this research. 
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In order to design an algorithm for the electronic structure problem that 
has only polynomial scaling (cost - &-k , ideally k « 1 ), we must exploit the fact 

7that the molecular wavefunction has a high degree of differentiability.5
- Since 

differentiability is a real-space property, it is most natural to treat electrons in real 
space, as this will facilitate using the specific properties of the molecular 
Hamiltonian, 

~ N[ 1 2 i-1 1 J (1)H( T) =~ -2V; +v(r;)+ ~Ir; -rjl 
The approach we use in this work will be based on the Local Schrodinger 
equation,9

-
11 which is essentially a collocation method for the Schrodinger 

equation. A similar approach has been used by Avila and Carrington for the 
nuclear Schrodinger equation.12 Alternative methods for exploiting the 
differentiability of the wavefunction have been proposed by Garcke, Hamaeker, 
and Griebel, 13

-
15 as well as the present authors.4 

The Schrodinger equation can be written as 

(H{'T )-En)'¥n{'T) =0 (2) 

This equation must hold at all points in the 3N-dimensional coordinate space of 
electrons. Let us pick some set of G points; these could be points from an 
integration grid. This gives a set of G simultaneous equations, 

{(H-En)'I'n('Tg)=o};=, (4) 

These equations are necessary conditions for the underlying Schrodinger 

equation, (2). Because H('T) is a linear operator, it can be approximated as, 

H'I' ('TI) ~ L
G 

H Jg'¥ ('Tg) (5) 
g=I 

and Eq. (4) can be rewritten as 

(6){t.(Hk -O,.E.)'1'.(T / )~{, 
Computing the action of the Hamiltonian on a wavefunction implicitly requires 
numerical differentiation on the grid, and our previous studies suggests that the 
grids used for quantum chemical calculations are much more accurate for 
numerical integration than numerical differentiation.16 Direct implementation of 
Eq. (6) is likely to be problematic. 
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IX.III. Boys' Collocation for the Local Schrodinger 
Equation 

We can avoid the need to resolve the Hamiltonian operator on the grid by 
expanding the wavefunctions in a basis set containing B properly antisymmetric 
basis functions, 

B 

\JI n ( T) = :~::cbn(bb (T) · (7) 
b=I 

Inserting Eq. (7) into Eq. (4) gives 

{t,(H-E")¢,(-r,)c.. ={, (8) 

Because the number of basis functions is usually much smaller than the number of 
grid points, this equation can only be solved in the least-squares sense. 
Symbolically, we can write Eq. (8) as 

(A- EnF)(GxB) c~Bxl) =o(Gxl) (9) 

where we have explicitly indicated the dimensionality of the matrices and defined 

A=H¢b(Tk) (10)
F=(bb(Tk) 

If the action of the Hamiltonian on the basis functions can be computed 
analytically, this formulation avoids the problem of numerical differentiation on 
the grid. 

To solve Eq. (9), we need to multiply the equation on the left by a Bx G 
matrix. The matrix must be chosen carefully to avoid introducing spurious 
solutions to the equations. The most obvious choice is to exploit the analogy to 
least squares, and define a weighted-least-squares system, 

[ ( A-EnF)t JBxG) w(GxG) ( A-EnF)(GxB) c~Bxl) = [ ( A-EnF)t JBxG) w(GxG)o(Gxl) (11) 

which simplifies to 

[ ( A-EnF)t JBxG) w(GxG) (A- EnF)(GxB) c~Bxl) =o(Bxl) (12) 

W can be any positive definite matrix. 17 Suppose W is diagonal, W =o
1
k wk . Then 

Eq. (9) can be rewritten as 
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{t.~t,¢.h }(Ii-E. )w,o,. (Ii-E. )¢, (<, )c,. ={, 
{t.t,¢. (T, }(fi-E. }w, (fi-E. }M'. )c,. =0L(13) 

If the wg are proportional to the quadrature weights for numerical integration on 

the grid, then this equation is the grid representation of the fI -squared condition 
for the solutions of the Schrodinger equation, 

t(¢a l(fI -En f1¢b )cbn =0=(¢a l(fI -En r1qtn) · (14) 

Equation (13) is a standard "trick" in numerical analysis. The recent work of 
Boutry et al. 18 provides a good algorithm for this problem, which was recently 
applied in the work ofManzhos et al. to the nuclear Schrodinger equation. 19

•
20 

Recall that we can multiply Eq. (9) on the left by any Bx G matrix. A 
different choice, which dates back to Boys,21 is to multiply on the left by 

Ft =¢; (T g) or, more generally, Ftw, where W is positive definite. With this 

choice, one has 

[Ft JBxG) w(GxG) ( A-EnF)(GxB) c~Bxl) =o(Bxl). (15) 

If we assume the W matrix is diagonal, then this equation has the simple and 
explicit form, 

{t.t,¢. (T,) w, (Ji -E. )¢, ( ', )c-. ={, (16) 

If the Wg are proportional to the quadrature weights for numerical integration on 
the grid, then this can be rewritten as 

B

L(¢alfJ-Enl¢b)cbn =0=(¢alH-Enlqt) (17) 
b=I 

which is just what one obtains if one multiplies Eq. (2) by some "test functions," 

{¢b (T)}:=1and integrates. Equation ( 16) is a type of collocation method for the 

Schrodinger equation. 

The general idea of applying collocation to the Schrodinger equation was 
popularized by Yang and Peet (for the nuclear Schrodinger equation)22

-
26

, but it 
dates back to the work of Boys, who noted the link to numerical integration. It 
was applied, in the context of density-functional theory, by McCormack et al..27 

More recently, this "local Schrodinger equation" approach has been used by 
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Nakatsuji et al. to obtain highly accurate solutions to the electronic Schrodinger 
equation for atoms and molecules. 11 It is this work that is most relevant to the 
present paper. 

Any positive-definite W matrix can be used. However, the error in the 
solutions to Eq. (16) will decrease if one makes a good choice for W. A theorem 
of Boys is useful in this regard. He showed that the error in the energy 
eigenvalues from Eq. (16) can be written as 

C:n -(µn +µ~)µn' (18) 

where c:n is the error in the energy in Eq. (17), µ~ is the largest fractional error in 

the numerical quadrature, and µn is the error in the approximate wavefunction, 
B 

'¥ n(T) ~ 2>bn¢b (T) ' (19) 
b=I 

due to basis-set truncation. To make the numerical integrations in Eq. (17) as 
accurate as possible, one should choose the collocation points from a numerical 
integration grid and the associated weights, Wg, should be proportional to the 
quadrature weights. Note that the method will converge to the right solution in 
the basis-set limit even if a very poor integration grid is used. However, 
convergence will be much faster if an accurate quadrature grid is used, ideally one 
with an error comparable to the error from basis-set truncation. 

Boys' result is actually more general. He developed his collocation 
method in the context of the transcorrelated Hamiltonian, which is a non­
Hermitian similarity-transformed Hamiltonian.28 The transcorrelated Schrodinger 
equation can be rewritten as a special case of the scaled Schrodinger equation,29 

U(T)(H(T)-En)'I'n(T)=O (20) 

Though the transcorrelated Hamiltonian is still an active area of research,30
-
34 the 

primary goal of the transcorrelated approach-removing the Coulomb 
divergences from the Hamiltonian-may be achieved more simply by choosing 

U(T) = ( V,,e (T) + V.e (T)r , U (T) = ( Vne (T)r+ ( V.e (T)r , Or Something 

similar. Here vne (T) and V.e (T) are the electron-nuclear and electron-electron 

potentials, respectively.29 With the scaled Schrodinger equation, Eq. (16) 
becomes 

(21) 
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If the Wk represent integration weights, then this can be written as a local scaled­
Schrodinger equation, 

(22) 

Equation (22) may be cast in the form of a secular equation, 
(H-EnS)(BxB) C~Bxl) =0 (23) 

by defining, 

(24) 

S=[sab] 
G 	 (25) 

S ab =L W/Pa (T g)U ( T g) 'A (T g) ~ (</>a JUJ rA) 
g=l 

The error in the energy eigenvalues from the secular equation is 

s~ -(µ: + µnµn (26) 

where µn and µ: are the errors in expanding the nth right-hand-side and left­

hand-side eigenvectors of the scaled Schrodinger equation. The conventional 
collocation approach to the Schrodinger equation is regained by setting U (T) =l 

in Eqs. (24) and (25). Notice that from the standpoint of Eq. (15), the scaled 
Schrodinger equation is just a very special choice of the weight matrix, with 

W=[w1g]=wgU(TJ81g. (27) 

The disadvantage of the scaled Schrodinger equation is that, because UH 
is not Hermitian, the H matrix is not Hermitian. Determining the H matrix 
therefore requires B2 numerical integrations, as opposed to only B(B+1 )/2 when U 
= 1. So there are 50% more numerical integrations in the scaled Schrodinger 
equation case. This is compensated for by the fact that the integrands are now 
nonsingular, and so it will take many fewer points to achieve a given integration 
accuracy, 	µQ. 

IX.IV. Algorithm: 	 Sparse Numerical Integration 
Grids 

Setting up the secular equation in Eq. (23) requires performing integrals 
over the basis functions, 
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hab = J¢;(T)U(T)H(T)qjb(T)dT (28) 

Sab = JqJ0 ( T) U (T) qJb (T) dT (29) 

These are 3N dimensional integrals, where N is the number of electrons. 
Numerical integration in many dimensions is a challenging problem. One might 
try to extend the established numerical integration techniques from, for example, 
density-functional theory.35

-
39 These grids contain between 103 and 104 points per 

atom. Simply taking a direct product of these 3-dimensional grids to form a 3N­
dimensional grid would then involve on the order of 104

N points; this approach 
can be used for at most three electrons. This example illustrates that most 
methods for numerical integration in many dimensions and, in particular, all 
methods that use the direct products of lower-dimensional grids, suffer from the 
curse of dimension: the number of points required to obtain a given quadrature 
accuracy grows exponentially with increasing electron number, 

(30) 


The best-known way to overcome the curse of dimension is to use Monte 

Carlo integration, where the integration points, { T g};=, are weighted equally and 

randomly distributed according to some statistical distribution function. The 
resulting cost 

(31) 


is optimal for the integration of general functions. Equation (31) indicates that 
doubling the accuracy of the numerical integrations requires quadrupling the 
number of integration points. 

The only way to improve upon this scaling is to use the scaled Schrodinger 
equation; with the scaled Schrodinger equation one can choose U (T) so that the 

integrands in Eq. (28) are continuous. For functions that are continuous but not 
differentiable, the optimal integration method is quasi-Monte Carlo, with 

Gquasi-MC - (µQr' (32) 

Doubling the integration accuracy now requires only doubling the grid size. 

In quantum chemistry, however the integrands are usually not just 
continuous; they are actually differentiable. In particular, the integrands have 
bounded mixed derivatives. 7 A function, f (T) is said to have a bounded mixed 

derivative of lh order if 
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<oo (33) 

for all derivatives for which 

ll 0 IL, = ~ (max(nu,niy,niz )) (34) 
{gi:<;N} 

Notice that the existence of a bounded mixed derivative implies that some 
derivatives of very high orders exist. For example, it implies that the 3Nt-th 
derivative is essentially bounded, 

8
1
8

1 1 1
···8 8 t(x"y1,z" ... ,xN,yN,zN) 

< 00 (35) 
ax:ay:az: ... 8x~8y~8z~ 

00 

00Recall that the IT... ( IR3N) norm of a function, llt(T )!loo is the essential supremum 

of It(T )I· For continuous functions, the essential supremum is the least-upper­

bound on It(T )I· 
If the lh bounded mixed derivatives exist, then there are ( t+ 1)3

N bounded 
derivatives in Eq. (33). Because the function has an exponential amount of 
differentiability, one can design formulas for integrating the function with 
exponentially fewer points than there are in a direct product grid. The optimal 
grid is the multidimensional Gaussian quadrature grid and the number of grid 
points that is needed is 

Q -x 
GGaussian - (µ ) · (36) 

For highly differentiable functions, Gaussian quadrature is immensely better than 
Monte-Carlo-type methods. 

Unfortunately, multidimensional Gaussian quadrature grids do not always 
exist and, even when they do, the difficulty of finding them grows exponentially 
with the number of dimensions.4°Fortunately there are methods that are "almost 
as good as" Gaussian quadrature methods, in the sense that they deviate from Eq. 
(36) by at most a logarithmic factor of N.4143 The first method of this type, and 
the prototype for all future methods, was designed by Smolyak.44 The simple 
Smolyak-type formulas have been extended by the groups of Griebel, Petras, and 
others.4548 

Our approach to Smolyak-type integration has been described in detail 
49 51elsewhere, and will only be briefly sketched here. 16
' - The starting point is a 

one-dimensional integration grid for integration functions on [O, 1] 
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m(q)
L wJ(x;) ~ {f(x)dx. (37) 
i=l 

Here {X;} :~q) are the integration points; {w;}:~q) are the integration weights, 

m (q) is the total number of points in the grid, and q= 1,2, ... label the grids. The 

kth grid must have polynomial degree of at least 2k-1. It is possible, and indeed 

wise, to reuse the same grid; i.e., one can have m (k) =m (k +1) . 

The one-dimensional formulas are then combined to form a 3-dimensional 
grid on the unit cube using a Smolyak-like formula. The key is to define the 
"difference" grids, 

i=l i=l i=l 

the q = 0 grid obviously has zero points, m (0) =0. Eq. (38) corrects for the error 

in the integration grid of effort q - 1. The last equality is true only if one has 
nested grids, but we only use nested grids because non-nested grids are not nearly 
as efficient. 

The three dimensional grids are then formed as 
M(Q)

L !i~qx)®!i~qv)®!i~q,)J= L w f(xpy ,Z ) (39)
1 1 1 

~~~~ H 

The specific index set, which controls which formulas appear in the integration 
grid, is chosen based on the smoothness of the function. The more differentiable 
the function is, the fewer integration points one needs. The simplest (and most 
expensive) case is the original Smolyak formula.44 In that case, one uses 

J(qx,qy,qz)=qx+qy+qz-3 (40) 

or more generally, ford dimensions, 
d 

i(q1'q2,. .. ,qd) =Lq; -d. (41) 
i=l 

From Eq. (39) we have a grid on the unit cube, but we would like to 
integrate over real space. We perform a coordinate transformation using the same 
importance sampling trick that is used to map random numbers on [O, 1]d to those 
generated by a certain probability distribution in Monte Carlo theory,52 
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L( (p(X,Y,Z)dZdYdXe ( x)-~~-"----------
1 - ( ( (p(X,Y,Z)dZdRYdX 

L [p(x,Y,Z)dZdY
e2(x,y)=....:..._;;;;_.:.._::._'---- (42) 

( (p(x,Y,Z)dZdY 

LP(x,y,Z)dZ
0 3(x,y,z)=....::.....;;.:____ 

(p(x,y,Z)dZ 

where ( 0 1, 0 2 , 0 3 ) E [ 0, 1]3 is a point in the unit cube and p(x,y,z) is a probability 

distribution function that approximates the integrand. The quadrature formula 
becomes 

M(Q)Jf (r)p(r)dr ~ L w1f (r1); (43) 
/=I 

49 50This is most accurate when /(r) is slowly varying.16
' • We use the 

promolecular electron density53 or the valence electron density for p(x,y,z). 

We call Eq. (43) a one-electron grid; it is analogous to the one-electron 
grids in density-functional theory but, unlike those grids, it has a well-defined 
polynomial degree. Because the one-electron grids have a defined polynomial 
degree, we can apply the Smolyak formula in its general form (cf Eq. (41)) to 
form a 3N-dimensional grid, 

M(Q)
L ~~~)®~~;»@···®~~~N)f= L w1.f(r1I,rn, ... ,rNI) (44) 

!(Qi ,Q,,. ·.QN ):SQ I =l 

In making this grid, one generates many points that are symmetry-equivalent. We 
generate only one permutation of the grid points by (a) forcing Q1 ~ Q2 ~ • • • ~ QN 

0 

and Q1 ~ ~ • • • ~ QN in Eq. (44), (b) using the indices for each one-electron Q2 p 

difference grid, choosing only the points with I <J <···<! andl - 2 - - N 
0 

~ ~ • • • ~ IN , and ( c) respecting the symmetry with respect to exchange of a­11 12 P 

spin and ~-spin electrons in singlet states. Each symmetry-unique grid point is 
then reweighted by a factor that captures the number of possible permutations of 
the coordinates. Our approach to treating the antisymmetry of the electronic 
coordinates and treats all electrons equally. An unpleasant consequence of this 
approach is that points where electrons are at the same point in space appear in the 
grids. (I.e., because of point (b) above, the grids contain • Because the r1 =r1k+Ik 
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electron-electron potential diverges at these points, Smolyak-style grids can be 
applied only to the scaled Schrodinger equation. 

IX.V. 	 Algorithm: Free Iterative Complement 
Basis Functions 

Boys' collocation method frees the calculation from the hegemony of 
Gaussian basis sets: the integrals do not have to be done analytically. One can 
envision using many different types of basis functions, e.g., Slater-Jastrow 
functions. Recall that the numerical integration error will be smallest when the 
integrands are highly differentiable (cf. Eq. (36)). This means that we should 
choose basis functions that accommodate the electron-electron and electron­
nuclear cusps that arise from the Coulomb singularities in the Hamiltonian. The 
free iterative complement functions are one way to do this. 11 

Imagine solving the scaled Schrodinger equation by a Krylov subspace 

method. One starts with an initial basis function, p(o) ( T) , and applies the scaled­

Schrodinger operator to it iteratively. This generates a Krylov subspace for the 
right-side eigenvectors, 

- (o) ( ) 	 A (0) ( ) ( A )2 - (0) }-

{ '¥ -r ,UH'¥ -r , UH '¥ (-r), ... , (45) 

and for the left-side eigenvectors 
- (0) (0) ( A )2 - (0) }A ­

{'¥ (-r),HU'¥ (-r), HU '¥ (-r), ... , (46) 

In addition, there is a Krylov subspace for U (f), which plays the role of a metric 

in this theory, 

{'f(o) ('T ),U'f(O) ('T),(U)2 'f(o) ('T ), ... ,} (47) 

The iterative complement method is a method, with a short recursive length, for 
solving the Schrodinger equation in these subspaces. The free iterative 
complement method recognizes that because the wavefunction, 'f(o) (T), is 

generally a sum of terms (e.g., a sum of several Slater determinants) and the 

Hamiltonian is also a sum of terms, flu'f(o) is also a sum of terms. One way to 
expand the iterative subspace, then, is to treat every term with a new analytic 
structure as a basis function. Suppose the initial guess wavefunction was a sum of 
} 

0
) terms, 
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(48) 

Applying UH to this function generates a new sum, 
J(l.right) 

uH'i'(oJ(T)= L k)1·rightJ¢}1'rightJ(T) (49) 
j=I 

The number of terms in Eq. ( 49) is significantly greater than the number of terms 
in Eq. (48). Similarly, for the left-hand eigenspace, one has: 

J(l.left}
HU'i'(o) (T) = L k)1'1ett)¢}1'1ett) ( T). (50) 

j=I 

and for U(f) one has 

(51) 
j=I 

Iterating in this manner, one has 
J(n,right)

(UHrql(O) ( T) = L k)n,right)¢}n,right) (T) (52) 
j=I 

J(n,left)
(HUrql(O) ( T) = L k)n,left)¢}n,left) ( T). (53) 

J=I 

J(n,U) 

(Uf ql(O) ( T) = L kJn,U)¢Jn,U) (T) (54) 
j=I 

At n1
h order, an appropriate basis set of free iterative complement functions for 

Eq. (21) is 

J="(n,right) ={{¢(0) }J(o) LJ {¢(!,right) }J(l,right) LJ • • • LJ {¢(n,right) }J(n,right)} 
1 1 1j=I }=I j=I 

u{{¢(0)}J(O) u {¢(1,U)}J(l.U) u • • • u {¢(n,U) }i•.U)} (55) 
J J=I J 1=1 J J=I 

= {,6right ,6right ,6right} 
'!'! ' 'r2 ' · .. ' 'YB 

;:-(n,left) ={{¢(0) }J(o) LJ {¢(1,left)}J(l,left) LJ ... LJ {¢(n,left) }J(n,loft)} 
J J=I J J=I J J=I 

u{{¢(0)}j0) U{¢(1,U)}J(l;J) U···U{¢(n,U)}J(n;J)} (56) 
J J=l J J=I J J=I 

= {,6left ,6left ,6left}
'!'! ' 'r2 ' · .. ' 'YB 

These basis sets are much larger than the union of the Krylov subspaces in Eq. 
( 45). The number of basis functions grows geometrically with n, but the growth is 
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mitigated by the fact that many forms appear repeatedly. Because the free iterative 
complement basis set is defined as a union of analytic forms, any time a function 
reappears, it need not be used for future iterations. The free iterative complement 
basis is likely to be complete for the space of eigenfunctions that have the same 
symmetry as the initial seed, t}J(o). 

Equation (21) can now be written explicitly in terms of the free­
complement basis, 

(57){t.t.~:"(T, )w, [u(H -E" )¢."'" (T' lh ={, 

Notice that one needs to use the appropriate (right- or left-side basis functions, 
respectively) in Eq. (57). However, because the error in the energy is more 
sensitive to the error in the right-hand-side basis set than it is to the error in the 
left-hand-side basis set (cf. Eq. (26)), it is possible to use either a smaller basis, or 
a basis set of lower quality, on the left. Because the left-hand-side basis functions 
may diverge when two electrons are at the same position, using the right-hand 

11free iterative complement functions as left-side basis functions is suggested.9
­

Alternatively, one can could use only the subset of F(n,left) that does not diverge. 

IX.VI. Summary 

According to conventional wisdom, determining the wave functions and 
energies of molecular systems' stationary states is, even with the non-relativistic 
and Born-Oppenheimer approximations, intractable: the computational effort 
required to achieve a given level of accuracy grows exponentially with the 
number of electrons in the system. The present method challenges this paradigm. 
First of all, the free complement functions are an explicitly correlated superset of 
the Krylov subspace basis and, as such, provide a very compact representation for 
the wavefunction, without the factorial number of terms in ordinary wavefunction 
expansions. The free complement functions, however, are not analytically 
integrable. One way to overcome this problem is to use the local Schrodinger 
equation, or Boys' collocation method. Obtaining good results with Boys' 
collocation requires that one be able to accurately perform the integrals in Eqs. 
(28) and (29). This is problematic because the free-complement functions are not 
analytically integrable functions. This problem is circumvented using Smolyak­
inspired methods for multidimensional numerical integration. In Smolyak 
integration, the number of grid points does not grow exponentially with increasing 
electron number. The combination of these two techniques: expansion of the 
wavefunction in a nearly-optimal basis set and numerical integration with a 
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nearly-optimal grid, approaches the theoretical limits of computational efficiency 
for solving the electronic Schrodinger equation. 
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X.I. Conclusions 

This dissertation presents new approaches to three of the fundamental 
problems facing quantum chemistry: predicting molecular reactivity, partitioning 
molecules into atoms, and computing accurate wavefunctions. For each of these 
topics, the mathematical groundwork is established. For the work on predicting 
molecular reactivity, illustrative applications were used to prove the utility of the 
approaches. The efficacy of these approaches is not in doubt, but each topic is a 
beginning, not an end: each topic developed here can, and should, be developed 
further. 

Chapters III-V illustrate how to compute the relative reactivity of the 
atoms within a molecule using the general-purpose reactivity indicator. In 
Chapter III this indicator was derived from and by the fundamental equation of 
conceptual density-functional theory. In Chapter IV the indicator was shown to 
successfully predict the order of molecular reactivity for several pernicious 
examples: molecules where simple frontier orbital theory and the more general 
Fukui function both fail to predict reactivity correctly. Chapter V illustrates the 
most important feature of this indicator, the ability to distinguish between sites 
that react with hard reagents and those that react with soft reagents. This indicator 
is easily computed from any quantum chemistry software package that computes 
the electrostatic potential or atomic populations. I am currently preparing a paper 
that will explore some additional "pernicious examples;" with this paper I will 
also release my software for computing the general-purpose reactivity indicator. 

The functional Taylor series that governs intermolecular interactions and 
chemical reactivity has an infinite number of terms. Up until the general-purpose 
reactivity indicator, these terms were treated only one-by-one. The resulting 
reactivity indicators are effective in most cases, but they fail in others. There is 
no reason to expect that there may not be several important terms in the Taylor 
series, which work together to control the reactivity. The general-purpose 
reactivity indicator is the first reactivity indicator to do this. Its method for 
achieving this-introducing a simplified "probe perturbation, then evaluating the 
full Taylor series for that perturbation-is innovative in its own right, and is now 
being used by many other research groups. 

To truly understand the reactivity of molecules, one must understand the 
molecules' structure. For example, we usually consider a coarse-grained atomic­
level description of the general purpose reactivity indicator. Decomposing 
molecular properties into atomic and functional-group properties is the key to 
chemistry. But how should we define these atoms in a molecule? 
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Chapters VI and VII explore how different forms for the kinetic energy 
impact the partitioning of molecular properties into atomic contributions. 
Surprisingly and importantly, it is found that the atoms from the quantum theory 
of atoms in molecules (QTAIM) emerge for a plethora of wildly different forms 
of the kinetic energy. Chapter VI considers kinetic energy operators that include 
relativistic corrections. The atomic surfaces have the same "zero flux" form in 
this case. Chapter VII discusses how different forms of the kinetic energy 
operator can result in different values for the atomic kinetic energies if a molecule 
is partitioned arbitrarily. However, the partitioning from QTAIM generally does 
not suffer from this nonuniqueness: the same value of the atomic kinetic energy 
emerges from many forms. This is true for all of the conventional and intuitive 
forms of the kinetic energy. However, there are forms for the kinetic energy that 
are mathematically permissible by the postulates of quantum mechanics that give 
different atomic kinetic energies. This flexibility could be exploited to define new 
ways to partition molecules into open quantum subsystems, but these subsystems 
would not generally be acceptable representations of atoms in molecules. 

All of the work in Chapters II-VII assumes that sufficiently accurate 
solutions to the molecular electronic structure problem can be obtained. This is 
not always the case. Chapters VIII and IX develop new approaches to solving the 
electronic Schrodinger equation for molecules using mathematical techniques 
from information-based complexity theory. These methods are designed to 
approach the theoretical limits of efficiency for solving the electronic Schrodinger 
equation. They do this by breaking the "curse of dimension' that plagues full­
configuration interaction and released-node Monte Carlo approaches. 

Chapter VIII presents a new selected configuration interaction method that 
has the same accuracy as full configuration interaction, but with only a 
polynomial (rather than a factorial) number of Slater determinants. The method in 
chapter VIII still follows Gaussian basis-set paradigm of modem quantum 
chemistry. The method in chapter IX breaks the hegemony of Gaussian basis sets 
by using the efficient integration methods I developed during my time at 
McMaster. (These contributions are not reproduced in the thesis, but are 
reviewed in the introductory chapter). These numerical integration grids can be 
applied to the local Schrodinger equation method of Nakatsuji and others. 
Though Nakatsuji's initial implementation used randomly distributed, equally 
weighted points, it may be shown, via a theorem due to Boys, how the points 
should be located and how they should be weighted. It turns out that the points 
and weights from my many-electron quadrature grids are ideal for this purpose. 
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X.11. Prospects for Future Work on Reactivity 

The general-purpose reactivity indicator is very simple because one of the 
design principles was that it should be easy to compute each atomic site's 
reactivity using only a very limited amount of information about its reaction 
partner. This lead to an indicator that requires only the atomic charges of the 
molecule of interest and two parameters. The indicator is based on a model for 
the interaction energy between the molecule and its reaction partner, where the 
reaction partner is approximated. The model for the interaction energy, however, 
is very simple. In particular, it neglects polarizability. Including polarizability to 
define a more- general-purpose reactivity indicator would generally require two 
additional parameters. It might be interesting to approximate the polarizability 
with only one parameter or to express the polarizability contribution as a 
nonlinear function of the two parameters already in the model. Including 
polarizability would certainly increase the accuracy and applicability of the 
model. The interaction energy model also does not include steric hindrance. This 
was already a problem in the initial applications: reactivity indicators often 
predict sterically hindered sites as the most reactive. This means that the results 
of these indicators cannot be used without chemical intuition. Adding an 
approximate model for the steric hindrance to the model based, for example, on 
the Pauli repulsion energy, would give an even-more-general-purpose reactivity 
indicator. Such a reactivity indicator might come close to the "black box" tool for 
predicting molecular reactivity that chemists have been seeking for the last eighty 
years. 

X.111. Prospects for Future Work on Kinetic 
Energy for Partitioning Atoms 

In Chapter VII, I extended QTAIM by including scalar-relativistic 
corrections to the kinetic energy operator in the quantum mechanical 
Lagrangian/Hamiltonian. This had no effect on the zero-flux rule used to partition 
atoms. The next logical step is to include spin-orbit interactions, and to consider 
extending the method to an exact two component method such as X2C. One 
advantage of X2C is that there is no "picture change" error in this model. It will 
be interesting to see how this affects the definition of the atom in a molecule. 
postulate that it will not change the definition much, if at all. 

Chapter VIII considered exotic forms for the kinetic-energy operator in the 
non-relativistic context. Some of these forms, though they result in the correct 
value when evaluated over a molecule, may not be meaningful when evaluated 
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over an atom. For example, many kinetic energy densities take negative values. 
It seems absurd for the kinetic energy density to be negative. Cohen found a 
subset of the family I explored that always gives positive kinetic energy densities, 
and therefore always gives positive atomic kinetic energies. Investigating how 
this subset behaves within the quantum theory of atoms in molecules would be 
very interesting. The Cohen forms are nonlinear, wavefunction dependent, local 
kinetic energies; that form of local kinetic energy has never been considered 
previously. 

X.IV. Prospects 	 for Future Work on Grid 
Techniques 

Chapter VIII can be considered a complete piece of work. There is much 
more potential for further development in Chapter IX. In particular, it is 
important to optimise the numerical integration grids specifically for the local 
Schrodinger equation. There are numerous parameters that can be changed, and it 
would be advantageous to explore and discover which combination of parameters 
produces the best grids for the local Schrodinger equation method. These 
parameters include (a) the kind of one-dimensional grid, (b) the Griebel-Knapek T 
value, and (c) the delay sequence (is Petras's ideal, or is something less aggressive 
better?). A detailed investigation of these parameters for three-dimensional 
integrals is almost finished. That will hopefully provide some insights that will be 
useful for the more daunting task of optimising many-electron grids. 
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