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Abstract 

In this thesis we develop and evaluate automated "expert systems" for 
two applications: (i) gas/oil pipeline inspection using magnetic flux leakage 
information, (ii) treatment efficacy prediction and medical diagnosis using elec­
troencephalograph (EEG) and clinical information. Both applications share 
the same methodology and procedure as they employ machine learning meth­
ods which learn their decision models using the training data ( or past examples 
in real life/environment). 

The magnetic flux leakage (MFL) technique is commonly used for non­
destructive testing (NDT) of oil and gas pipelines which are mostly buried 
underground. This testing involves the detection of metal defects and anoma­
lies in the pipe wall, and the evaluation of the severity of these defects. The 
difficulty with the MFL method is the extent and complexity of the analysis 
of the MFL images. In this thesis we show how modern machine learning 
techniques can be used to considerable advantage in this respect. 

The problem of identifying in advance the most effective treatment agent 
for various psychiatric conditions remains an elusive goal. To address this chal­
lenge, an automated medical expert system is designed and then evaluated. 
The system is capable of predicting the treatment response for each individual 
patient at the outset of a therapy (i.e., using pre-treatment information) thus 
improving therapeutic efficiency and reducing personal and economic costs. 
Our experiments are focused on treatment planning and diagnosis of mood 
disorders and psychiatric illnesses. Through different experiments, we have 
shown that it is possible to predict treatment efficacy of a 'selective sero­
tonin reuptake inhibitor' (SSRI) antidepressant and 'repetitive transcranial 
magnetic stimulation' (rTMS) therapies for patients with treatment-resistant 
major depressive disorder (MDD) or major depression. The predictions are 
based on pre-treatment quantitative EEG measurements. Also, prediction of 
post-treatment schizophrenia symptomatic scores, using pre-treatment EEG 
data, showed significant performance in patients treated with the drug cloza­
pine. Clozapine is an antipsychotic medication of superior effectiveness in 
treating Schizophrenia but has several potentially severe side effects. 
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Medical diagnosis is the second problem we consider in the neuroscience 
aspects of this thesis. In this research, an automated digital medical diagnosis 
methodology is developed to estimate/detect the type of a disease or illness 
that a patient is suffering. This intelligent diagnostic system can assist the 
physician/ clinician by offering a second opinion on diagnosis. Several complex 
psychiatric illnesses may have many common symptoms and accurate diagnosis 
can, at times, be very difficult. Efficient diagnosis helps by avoiding prescrip­
tion of wrong therapy /treatment to a patient. In our limited experiments, 
EEG data is used to make a diagnosis for distinguishing between various psy­
chiatric illnesses including MDD, schizophrenia, and the depressed phase of 
bipolar affective disorder (BAD). 

In all problems considered in this thesis, specifically the neuroscience prob­
lem, a large number of candidate features are extracted from measurement data 
but most candidate features are found to be irrelevant and have little or no dis­
criminative power. Finding a few most discriminating features that guarantee 
numerical efficiency and obtain a smooth and generalizable decision function, 
is a major challenge in this research. In this thesis, feature selection methods 
based on mutual information or Kullback-Leibler (KL) distance is employed to 
find the most statistically relevant features. For the multi-class diagnosis prob­
lem, to improve performance, a feature selection procedure denoted as feature 
combination feature selection is used which first finds discriminating features 
in all binary classification combinations, and then combines them into a larger 
feature subset to make a final multi-class decision. The two-dimensional (2D) 
representation of the feature data is also found to be useful for clustering 
analysis. The overall method was evaluated using a nested cross-validation 
procedure for which over 80% average prediction performance is obtained in 
all experiments. The results indicate that machine learning methods hold con­
siderable promise in solving the challenging problems encountered in the two 
applications of concern. 
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Chapter 1 

Introduction 

The modern version of machine learning1 , which is alternatively denoted 
by pattern recognition, artificial intelligence or data mining, was introduced 
after 1955. See e.g. [2]. From the beginning, the two major research topics of 
the field were: (i) artificial neural network methods (such as multilayer percep­
tron neural network with back error propagation learning) and (ii) statistical 
pattern recognition methods ( such as Bayesian classifiers). One of main ap­
proaches was to model the mechanisms of human learning. Therefore, the 
starting point was to understand the brain, the neural system and how the 
neurons interact with each other, then to build similar computational models 
using electronic computers. Physicians, neuroscientists and psychologists like 
Donald 0. Hebb (a Canadian psychologist) played important roles in this line 
of research. See [3] for a review. The development of mathematical analysis 
of learning and inference processes, and the empirical learning theories further 
focused on solving the practical problems using computational models and 
algorithms which might not be directly related to observations in biological 
neural systems, see e.g., [4-8]. A further research topic in this field is develop­
ing expert systems (or knowledge-based and intelligent systems) that extract 
the information hidden in the measured data and perform automatic processes 
in complex real-life applications. 

The focus of this thesis is developing machine learning and intelligent in­
ference methods to solve two problems: 

1. Gas/Oil pipeline inspection, in which the problem is to use magnetic flux 
leakage (MFL) data to detect metal-losses and cracks in pipelines. 

2. Cognitive medical expert (CME) system, in which the problem is to 

1 By the term modern, we mean what is implemented using electronic computers. The 
invention of computers allowed the implementation of machine learning theories. 
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develop a system to properly use the clinical and laboratory information 
(measured pre-treatment) to diagnose psychiatric illness, and then to 
predict whether or not a set of candidate treatments might be effective 
for the patient. 

In the following we discuss each problem introduced above, and review the 
previous literature related to each topic. 

1.1 Overview of Machine Learning Procedure 

We now present a brief overview of the machine learning process used to 
solve the problems of concern in this thesis. Details will be discussed in Chap­
ter 2. A necessary component of this process is the collection of a training 
set. The machine learning process learns the knowledge from the information 
hidden in the training set. The training set consists of Mt input or measured 
data samples. The training set also includes the set of output or target vari­
ables Yi, i = 1, ... , Mt corresponding to each input feature sample xi, to be 
explained later. In the automatic pipeline inspection system, the input data 
is the measured magnetic flux leakage (MFL) image data in addition to some 
other measurements from the pipeline, and the output variable is metal defect 
class associated with the MFL image, for example. In the cognitive medical ex­
pert system, the input data is the clinical information from the subject (which 
includes the electroencephalography (EEG) information, for example).For the 
medical diagnosis problem, the output variable is the class of psychiatric illness 
that the subject is suffering. For treatment-response prediction problem, the 
output variable is the indicator of response ( or no response) to the treatment 
administered to the subject. The response to treatment is measured by an 
expert clinician after the subject completes a course of treatment. Machine 
learning can also be used to construct models that do regression or interpola­
tion, where the target or output variable is continuous. 

There are three phases in a machine learning procedure. These are the 
design, operational and evaluation phases. In the following, we briefly describe 
each phase. The details will be further described in Chapter 2. 

The design phase, alternatively denoted by learning phase, which consists 
of the feature extraction, feature selection and classification components, is 
now described. The first step is to extract numerical candidate features or 
quantitative attributes from measured data. These features include statisti­
cal attributes, spatial and temporal data model attributes, time-series model 
attributes, dynamic process model attributes, etc., of the input data. The 
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number Ne of such candidate features can be quite large. The feature extrac­
tion process is applied over all input data in the training set. The result of the 
feature extraction process is a set of vectors Xi E ~Ne, i = 1, ... , Mt, where 
Mt is the number of training samples. After extracting candidate features, the 
second step in the design phase is 'dimensionality reduction' in which a small 
set of the most relevant features are calculated and stored for further pro­
cessing. Feature selection is one kind of dimensionality reduction in which we 
select the most discriminative and relevant features from several candidates. 
Typically, only a relatively small number of the extracted candidate features 
bear any significant statistical relationship with the output or target variable. 
We therefore identify those features which share the strongest statistical de­
pendencies with the target variable. The result of the feature selection process 
is to reduce the number Ne of candidate features to a much smaller number Nr 
of most relevant features. The output of the feature selection process is a set 
of indices that identify which of the Ne candidate features are to be included 
in the set of Nr most relevant features. The feature selection process yields a 
set of vectors, Xi E ~Nr, i = 1, ... , Mt. Each of these vectors correspond to a 
point in an Nr-dimensional feature space. The selection of "good" features; 
i.e., features with greater statistical dependence on the outcome variable, re­
sults in improved performance. 

The next step in the design phase of the prediction process is the specifica­
tion of the classifier or regressor. The specification (i.e., the "learning") of the 
classifier or regressor involves determining a function f : JRNr t--+ JR which 
inputs a reduced feature vector x and outputs the corresponding target value 
y. 

The Operational Phase is where the designed model is tested. Once the 
machine learning process is designed, it may be applied e.g., in an operational 
mode in solving real life problems. Here, the input data is collected from the 
test samples, and the set of reduced features identified in the design phase 
are computed from the measured data, to give a sequence of feature vectors. 
These feature vectors are fed into the classifier or regression function which is 
specified from the classifier parameters determined in the design phase. The 
classifier outputs the predicted target variables associated with the input data. 

In the current situation however, we are interested in evaluating the per­
formance of the machine learning procedure resulting from the design phase, 
using the available data. This is the Evaluation Phase. One of the popular 
methods in this respect, using the whole available training set, is the leave­
n-out cross-validation procedure, where n samples at a time are sequentially 
removed from the available training set. The feature selection and classifier 
design processes are then executed using all remaining Mt - n data samples. 
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The resulting machine learning structure is then tested using the omitted sam­
ples. The classifier output is then compared to the known target values of the 
omitted n samples, and a performance tally is recorded. The process repeats, 
each time omitting a different set of n samples, until all samples have been 
omitted once. The overall performance figure for the prediction process is 
then the aggregate performance over all iterations ( or folds) of the leave-n­
out cross-validation process. With this method, we test over all available data 
and in each trial we use the largest possible training set. Further, the method 
is "fair" , since the tested data is not part of the training set used in the design 
phase. The other alternative when we have a large training set is to divide 
the available training set into two independent and non-overlapping subsets: a 
single training subset and a test subset. The machine learning system is then 
designed using the training subset and then tested on the independent test 
subset. 

1.2 Using MFL Data for Pipeline Inspection 

Due to the adverse effect of environmental damage that could result from 
a pipeline leak or catastrophic failure, pipelines must be routinely evaluated 
for integrity. The logistics and cost of shutting down a pipeline for inspection 
is prohibitive, so inspection devices, referred to as pipeline inspection gauges 
(PIGs) in the trade, are designed for autonomous operation in the pipeline, 
and are propelled along the pipe by normal transport flow. PIGs are also 
referred to as in-line-inspection (ILI) tools. 

The ILI tool magnetizes the pipe wall as it travels down the pipe. Hall effect 
or coil sensors measure the localized magnetic flux leakage intensity along the 
pipe wall. Defects in the pipe wall cause irregularities in the magnetic field, 
that are detected by an array of these sensors, placed at regular intervals 
around the circumference of the inside of the pipe wall. Thus, magnetic flux 
leakage (MFL) testing is based on detecting the magnetic field that leaks from 
a pipe's wall in the vicinity of surface and subsurface flaws. See [9-12] for 
reviews of history, problems and concerns. 

The stored magnetic image data is then analyzed off-line. Of special inter­
est to pipeline operators is the extent and location of various defects that can 
adversely affect the integrity of the pipeline and its operation. Some of these 
defects include corrosion2 , deformations, fatigue, hairline cracks, dents, buck­
les, de-laminations, and faulty welds. The results are used to determine repair 

2Corrosion turns steel into non-ferromagnetic iron oxide that locally reduces permeability. 
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and replacement priorities for a pipeline operator. Typically, the image analy­
sis portion of the inspection procedure is done exclusively by human operators 
referred to as non-destructive testing (NDT) technicians. As a result of the 
manual nature of the inspection process, it is inherently slow and error-prone. 
Thus there is a strong motivation in the industry to automate the inspection 
process using methods such as machine learning as we propose. 

Once defects have been identified, an equally important problem is the 
assessment of the size or severity of the defect (sizing). Estimated defect 
depths are used to determine the safety of the pipe, and to calculate accurate 
maximum allowable operating pressure (MAOP) of the oil/gas flowing through 
the line. In this work, we propose machine learning techniques for defect 
detection and sizing using real MFL images recovered from actual pipeline 
inspections. 

There have been several previous works in defect detection and sizing using 
the MFL technique. Machine learning has been used previously in this context 
in [13] which evaluates the use of multilayer Perceptrons (MLP) for pattern 
recognition of MFL signals in weld joints of pipelines. Inverse modelling ap­
proaches are used in [14] for defect-shape construction. In [15], an iterative 
inversion method is proposed, using a multi-resolution wavelet transform and 
a radial basis function neural network (RBFN), for the prediction of 3-D defect 
geometry from MFL measurements. 

The inversion procedure in [16] employs the 'space mapping' (SM) method­
ology. Space mapping shifts the optimization burden from a computationally 
expensive accurate or fine model like a finite-element method (FEM) simula­
tion, to a less accurate or coarse but fast model, like analytical formulas. 

The works of [17, 18] present a modified wavelet transform domain adaptive 
finite impulse response (FIR) filtering algorithm for removing seamless pipe 
noise (SPN) in the MFL data. Papers [19, 20] give wavelet based approaches 
to this problem for both de-noising and classification. In [21], an adaptive 
method for channel equalization (to compensate the mismatch between sen­
sors) in MFL inspection is presented using the finite impulse response filter. 
Reference [22] presents a model based probability of detection (POD) evalua­
tion technique for MFL inspection of natural gas transmission pipelines. 

Comparison of the MFL method to ultrasonic methods is given in [23]. See 
also [24-26] for some other related topics. 

The work of [27] presented a fast direct method that provides estimation of 
the crack parameters ( orientation, length, and depth) in rectangular surface­
breaking cracks, based on measurements of one tangential component of the 
magnetic field. The difficulty with this and other defect depth estimation 
methods is that the technique is limited to regular rectangular cracks. Real 
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defects occurring naturally in pipelines virtually never exhibit this simple form 
of geometry. 

A traditional approach for crack depth estimation is to use 'calibration 
curves or surfaces'. For example, [27] constructed a calibration surface that 
shows MFL signal strength versus two parameters of crack- depth and crack­
length. In [28], three two-dimensional curves are drawn to show MFL signal 
sensitivity, in which each curve shows the effect of a specific test parameter on 
the magnitude of the MFL signal. In a different approach, [29] presented an 
analytic method for depth estimation in rectangular slots. In general, calibra­
tion curves/ surfaces are 20 ( or 30) plots showing the effect of one measured 
parameter (or at most 2 parameters/features) on the magnitude of the mea­
sured MFL signal, or on the defect depth. However, the problem in real life is 
that cracks (and metal-losses) exhibit irregular and complex geometries and 
therefore cannot be characterized with just a few simple parameters. There­
fore methods which assume a specific geometry or require representation in 
terms of a a few parameters will not perform well with real defects. 

In this thesis, we extend the above works to develop high performance ma­
chine learning methods (as discussed in Chapter 2) for both defect detection 
and sizing of MFL images. We show that these methods, if properly executed, 
can give very satisfactory performance for both defect detection and depth es­
timation for real defects with irregular ( or arbitrary) geometric configurations. 
The details of pipeline inspection and experimental results will be described 
in Chapter 3. 

1.3· Treatment Efficacy Prediction and Treat­
ment Planning 

The problem in treating complex psychiatric illnesses like major depression 
or schizophrenia is that although patients may appear to have similar clinical 
characteristics, a treatment that works for one patient, may not work well 
for others. This suggests that current medical diagnostic systems and testing 
procedures may not be sufficiently sensitive to detect subtle but highly relevant 
differences between patients presenting with similar complaints. 

The wide array of psychological, physical, hematological, radiological and 
other laboratory tests and assessments generate a very large information set 
that the busy clinician may find challenging to compile and process. The vast 
amounts of data that may be generated are typically viewed in isolation or 
as part of simple syndromatic clusterings. It is possible that a great deal of 
salience with respect to diagnosis and treatment that is embedded in these 
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data may not be extracted using these basic analytic methods. The abun­
dance and complexity of this information requires a new approach to data 
management and analysis methods to assist the physician/ clinician to make 
diagnosis and treatment decisions with greater accuracy and efficiency. For 
example, mental and neurological illnesses such as mood disorders, depression 
and schizophrenia are common and debilitating conditions for which current 
treatment algorithms lack precision. The process for assessing an effective 
therapy (specifically, medication therapy) is poorly defined at best. In short, 
the basic procedure in the treatment of such complex illnesses is to prescribe 
various therapies on a trial and error basis until one is found that is effective. 

Furthermore patients must often wait lengthy periods of time before seeing 
the clinical experts who possess the skill to effectively treat these conditions, 
particularly in rural areas where such specialists are few in number. As a 
result family physicians often initiate treatment themselves without the ben­
efit of the extensive experience and knowledge possessed by psychiatrists and 
neurologists. Even among the clinical experts it is acknowledged that patients 
meeting the diagnostic criteria for most psychiatric and neurological conditions 
are not uniformly responsive to the same treatment. Some patients respond 
well to a given treatment while others, with very similar clinical features, do 
not. 

Treatment failure may be a function of extraneous factors such as treat­
ment adequacy (in terms of medication dose and duration of treatment), poor 
absorption of oral medication, unusual medication metabolism or inadequate 
patient adherence to prescribed treatment. However, individual patients often 
fail to respond to a particular treatment whose efficacy has been demonstrated 
in large clinical trials. This suggests that biological subtypes may exist within 
a given syndrome or diagnostic category. Patients afflicted with a particu­
lar biological subtype of a condition or diagnosis may respond preferentially 
to only some of the many medication treatments available to treat that con­
dition or diagnosis. Often, even expert clinicians cannot readily distinguish 
these illness subtypes using current methodology. This suggests that current 
diagnostic systems and testing procedures may not be efficiently exploring the 
information to detect subtle but highly relevant differences between patients 
presenting with similar complaints. 

1.3.1 'freatment Planning for Major Depressive Disor­
der 

Major depressive disorder (MDD) or major depression is a serious mental 
disorder and is now the third largest cause of workplace disability. By the 
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year 2020, depression is expected to account for about 15% of total global 
disease burden, second only to ischemic heart disease [30, 31 J. In industrialized 
countries mental illnesses may account for about 16% of total health care 
costs [32] and for about 30% of disability claims [33]. 

Despite the prevalence of MDD, objective procedures for selecting opti­
mal treatments are lacking. The choice of antidepressant therapy is currently 
based on personal preference, weighted by clinical factors such as family his­
tory, symptom clustering and previous medication history. An effective al­
gorithm for selecting the optimal antidepressant treatment on the basis of 
symptomatic presentation and other clinical data has proven to be an elusive 
objective [34,35], probably because the same collection of depressive symptoms 
may be produced by several different neurobiological pathologies as discussed 
previously. Typically, 60 to 70% of subjects do not remit after the first antide­
pressant medication trial [36]. Although 67% of those treated for MDD will 
eventually reach remission, up to 4 different antidepressant treatment trials 
may be required, each taking 6 weeks or longer [37, 38]. The personal and 
economic cost of delayed or ineffective therapy is substantial [38]. Clearly, 
choosing an effective treatment during the initial trial would be of immense 
clinical and economic value. 

In this research, we tackled this problem by proposing a machine learn­
ing procedure which uses the pre-treatment clinical information to predict 
whether or not a particular therapy for MDD will be effective. In our clinical 
experiments, we considered two therapies for MDD: 

1. Medications, in the form of selective serotonin reuptake inhibitors (SS­
Ris) 

2. Repetitive transcranial magnetic stimulation (rTMS), (The details of 
this form of therapy are discussed later in Chapter 4). 

The clinical data used in the experiments are electroencephalography (EEG) 
data collected prior to administering the SSRI or rTMS treatment to the pa­
tient; however, the approach is general and other clinical and laboratory data 
can be used. These experiments are discussed in Chapter 4. 

1.3.2 Treatment Planning for Schizophrenia 

Schizophrenia is a chronic, disabling brain disorder that occurs in about 
0.5% of the population. It is a psychiatric diagnosis that describes a mental 
illness characterized by impairments in the perception or expression of reality, 
most commonly manifesting as auditory hallucinations, paranoid or bizarre 
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delusions or disorganized speech and thinking in the context of significant 
social or occupational dysfunction. 

For schizophrenia and schizoaffective disorder, the principle treatment is 
pharmacological, with drugs from the antipsychotic class, though mood stabi­
lizers and antidepressant medications can also be used when mood symptoms 
are prominent. 

The atypical antipsychotic medication clozapine is particularly effective 
in patients with schizophrenia, schizoaffective disorder and bipolar disorder, 
even after failed trials of other anti psychotic medications. However, clozap­
ine is expensive and may produce life threatening side-effects such as bone 
marrow suppression in some who take it [39]. Also, a considerable number 
of patients treated with clozapine are still nonresponsive or only partially re­
sponsive. Though it would be highly advantageous to determine, in advance, 
whether a given patient would benefit from this dangerous medication there 
is currently no accepted method of determining potential response to cloza­
pine short of an actual clinical trial. In this thesis, the proposed machine 
learning methodology shows significant promise in predicting the response of 
schizophrenic patients to this drug using only the EEG data collected from the 
patient before the onset of treatment. The results are discussed in Chapter 4. 

1.3.3 What is the EEG? 

Electroencephalography (EEG), or quantitative EEG (QEEG) is the mea­
surement of electrical activity generated by the brain and recorded from elec­
trodes placed on the scalp. See [40-42] and references therein for a more 
extensive review. "EEG signals recorded on the scalp surface arise from large 
dendritic currents generated by the quasi-synchronous firing of a large number 
of neurons. At a finer spatial scale, these same currents are also responsible 
for local field potentials recorded extracellularly in-vivo in both humans and 
animals. The local field potential is generated by extracellular currents that 
pass through the extracellular space in a closed loop. These currents induce 
voltage changes (in the micro- Volts range) that are smaller than action poten­
tials but that last longer and extend over a larger area of neural tissue. The 
local field potential reflects the linear sum of overlapping sources (current flows 
from the intracellular to the extracellular space} and sinks (current flows from 
the extracellular to the intracellular space). Scalp EEG arises from the pas­
sive conduction of currents produced by the summation of local field potentials 
over large neuronal aggregates. The columnar structure of the neocortex facil­
itates the summation of electrical activity distributed among multiple neuronal 
groups. EEG activity recorded on a scalp electrode corresponds to the sum of 
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activity from regions near the electrode, but large signals originating from more 
distal cortical sites can make a significant contribution to the activity observed 
at a given point on the scalp" [40]. Most popular uses of EEG signals are in 
epilepsy, seizure, sleep-related disorders, and cortical mapping. 

The EEG is a commonly used method for collecting electrical activity of 
the brain that can help in diagnosis and selection of treatment in psychiatric 
disorders. See [42-44] for excellent reviews. 

1.4 Medical Diagnosis 

Diagnosis is defined as the recognition of a disease or condition by its out­
ward signs and symptoms3 . Currently, most clinicians make a diagnosis of 
psychiatric illness based upon a standard set of diagnostic criteria such as the 
Diagnostic and Statistical Manual of Mental Disorders of the American Psy­
chiatric Association (DSM) [45] or the International Statistical Classification 
of Diseases and Related Health Problems (ICD) of World Health Organiza­
tion [46]. The symptoms and signs of a neuro-psychiatric disease or condition 
are ordinarily reviewed and the critical information is discovered as follows: 
the clinician hears the presenting complaint, elicits subjective symptoms and, 
in some cases, conducts a physical examination of the patient. Based upon the 
information available at the time, a range of diagnostic possibilities is consid­
ered. The most likely diagnosis is designated the "preferred diagnosis". The 
other diagnostic possibilities are then listed in decreasing order of probability 
to form a "differential diagnosis". The preferred and differential diagnoses 
then suggest further analysis, including using laboratory and other clinical 
tests that will help to rule in or rule out the various entities in the diagnostic 
list. The idea in this thesis is to make this diagnosis procedure 'automatic' 
through use of a cognitive system that processes the data and extracts the 
critical information from clinical and laboratory measurements using machine 
learning methodologies. 

The first step in obtaining an efficient treatment for a mental illness or 
disorder is obtaining a correct diagnosis. This can be a more difficult task 
than it might seem. Though the diagnostic criteria of different conditions are 
designed to differentiate patients with this condition from those with other 
conditions requiring other forms of treatment, often specific symptoms can 
appear in more than one diagnostic category and diagnostic criteria can overlap 
to the point where confident differentiation is impossible. Furthermore, current 

3Diagnosis is also alternatively defined as the analysis of the underlying physiologi­
cal/biochemical cause{s) of a disease or condition. 
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diagnostic systems are imperfect; i.e., all patients meeting diagnostic criteria 
for an illness such as major depressive disorder (MDD) do not all respond to the 
same treatment; e.g., antidepressant medication. This observation provides 
compelling clinical evidence for very substantial biological heterogeneity within 
a single diagnostic category. 

In our clinical experiments to be discussed in Chapter 5, EEG data is used 
to suggest a diagnosis for psychiatric and neurological disorders and illnesses 
including MDD, schizophrenia, and bipolar affective disorder (BAD) or bipolar 
depression (BD). 

Although the physician's estimated diagnosis (when available) can be used 
as prior knowledge, findings suggestive of an alternate diagnosis to the one 
pref erred by the physician can be identified and this information conveyed to 
the physician. Also, while a medical diagnostic system proposed in this the­
sis may be useful to the family practitioner as well as the expert specialist 
physician, it will be of particular utility in circumstances where expert spe­
cialists or family physicians may not be readily available, and care must be 
administered by other clinically trained personnel such as nurse practitioners 
or other health-care providers. Therefore as part of this research, a patent ap­
plication [47] is prepared and filed in which a cognitive medical expert (CME) 
system is proposed to solve this problem. 

The design of the cognitive medical expert (CME) was a main outcome of 
this research. The proposed system and methodology is capable of predicting 
the treatment response for each individual patient at the outset of a therapy 
(i.e., using pre-treatment information) thus improving therapeutic efficiency 
and reducing personal and economic costs. Our experiments however, are 
focused on treatment planning and diagnosis of mood disorders and psychiatric 
illnesses. 

1.5 Contributions 

The contributions in this thesis are as follows: 

• An automated method and procedure for gas/oil pipeline inspection us­
ing MFL data is developed. 

• An automated method and procedure for treatment efficacy prediction or 
treatment planning based on the pre-treatment clinical data is proposed. 
The experimental results are obtained using pre-treatment clinical data 
for two psychiatric disorders: major depressive disorder and schizophre­
nia; however, the proposed methodology is more general and can be used 
for other illnesses. 
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• An automated method and procedure for medical diagnosis is proposed. 
This medical diagnosis can be used as a second opinion reported to the 
physician. Statistical methods using mixture of factor analyzers showed 
a promising performance in this application. 

• A regularized feature selection based on Kullback-Leibler (KL) distance, 
is proposed. 

1.6 Publications 

The main material from this thesis has already been published, submitted, 
or in preparation to be submitted to journals and conferences, as reflected 
in papers [48-56]. The solution to the neuroscience application (treatment­
response prediction as well as medical diagnosis) is also published as a PCT 
international patent application [47] as a medical expert system. The PCT is 
filed after filing a US provisional patent application [57]. The corresponding 
patent is to be filed in the national phases in US, Europe and Canada. 

1.6.1 Journal Papers 

1). The paper titled: "Machine learning techniques for the analysis of mag­
netic flux leakage images in pipeline inspection," published in IEEE Transac­
tions on Magnetics, vol. 45, no. 8, pp. 3073-3084, Aug. 2009: 
This paper describes automatic gas/oil pipeline inspection using real MFL 
data provided by the Intratech Inline Inspection company, (Mississauga, ON). 
Detection of metal defects as well as estimation of crack depth are investigated 
using machine learning procedure. 

2). The paper titled: "A pilot study to determine whether machine learn­
ing methodologies using pre-treatment electroencephalography can predict the 
symptomatic response to clozapine therapy," Clinical Neurophysiology, 2010, 
DOI:10.1016/j.clinph.2010.05.009: 
In this paper, the treatment-response prediction for the antipsychotic clozap­
ine for treating schizophrenia is studied using machine learning methods. 

3) The paper titled: "A Machine Learning Approach for Distinguishing 
Age of Infants Using Audio Evoked Potentials," which is submitted to: IEEE 
Transactions on Information Technology in Biomedicine, 2010: 
This paper proposes using the auditory evoked potential data in response to 
a 4-note melody, for classifying the infants based on their age. 
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1.6.2 Conference Papers 

1). The paper titled "Using pre-treatment EEG data to predict response to 
SSRI treatment for MDD", accepted at the 32nd Annual International Con­
ference of the IEEE Engineering in Medicine and Biology Society (EMBS), 
2010. 
In this paper, the prediction of response to SSRI antidepressant for major de­
pression is studied. A regularized feature selection based on Kullback-Leibler 
(KL) distance is also described in this paper. 

2). The paper titled "Diagnosis of psychiatric disorders using EEG data 
and employing a statistical decision model", accepted at the 32nd Annual 
International Conference of the IEEE Engineering in Medicine and Biology 
Society (EMBS), 2010. 
In this paper, the medical diagnosis using EEG data and employing a maxi­
mum likelihood decision approach is studied. The mixture of factor analysis 
(MFA) model is used to build a probabilistic generative data model. The 
proposed system can perform diagnosis among four classes: major depression, 
schizophrenia, bipolar depression and normals. 

1.6.3 Papers in Preparation 

1). The paper titled: "A Machine Learning Approach Using EEG Data to 
Predict Response to SSRI Treatment for Major Depressive Disorder," which is 
to be submitted to: IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, 2010: 
This paper describes a machine learning process (including automatic identi­
fication of discriminating features, classification and performance evaluation). 
The problem is to use the EEG data to find whether or not an antidepressant 
drug will be beneficial to a patient suffering major depressive disorder(MDD). 
Data clustering performance is also studied. 

2). The paper titled: "A statistical decision model for the diagnosis of 
psychiatric disorders," which is to be submitted to: IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, 2010: 
This paper describes solving the medical diagnosis problem using EEG data 
and applying a statistical decision model implemented using mixture of factor 
analyzers. The experiments described recognizing MDD from schizophrenia 
and from bipolar disorder. A 'multi-binary' feature selection and multi-class 
classification model is presented to improve performance. Data clustering per­
formance is also studied. 

3). The paper titled: "Analyzing pre-treatment EEG to predict the re­
sponse to repetitive transcranial magnetic stimulation therapy in patients with 
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treatment-resistant MDD," which is in preparation and to be submitted to: 
Journal of Psychiatric Research, 2010: 
This paper describes whether or not the EEG data has discriminating value 
in predicting the response to rTMS therapy for depression. 

1.6.4 Patent Applications 

1). The patent application was filed with the title: "Expert system for 
determining patient treatment response," as an International Patent Applica­
tion in WIPO, PCT/CA2009/000195, Feb. 2009: 
This PCT describes the system and methodology for a complete medical data 
analysis system which provides medical diagnosis as well as treatment planning 
and treatment response prediction. The cognitive medical expert system is like 
a digital clinician/physician which explores the data available from variety of 
sources. 

2). Before the above PCT, a US provisional patent application was filed 
with the title: "Digital expert and neuro-psycho-biological signal processing 
as a predictor of response to treatment," as US Provincial Patent Application 
61/064177, Feb. 2008: 
This is a preliminary, short version of PCT described above. 
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Chapter 2 

Methods 

In this chapter, the signal processing and machine learning methods em­
ployed in this research are explained. These methods are commonly used in 
both pipeline inspection and neuroscience applications which both use similar 
mathematical methods through which we predict or estimate a target variable 
corresponding to a measured data sample, based on the information in the 
training set. 

The outline of this chapter is as follows. First, the problem and notation 
will be defined in Section 2.1. The machine learning process starts with feature 
extraction. Features are a set of quantitative measurements taken from the 
object under test that allow us to discriminate which class the object belongs 
to. In Section 2.2, the supervised dimensionality reduction methods will be 
described. These methods select relevant features out of the all candidate 
features extracted from the measured data in the first step. These features are 
then used to build classification or regression models which will be described 
in Section 2.3. Finally in Section 2.4, the methods to measure the prediction 
performance and to find the design parameters of the classification/regression 
models will be described. 

2.1 Problem Definition 

The data analysis procedure and the corresponding variables and notations 
are described here. First, input data ( a.k.a measured attributes), denoted by 
Ei and the corresponding target or output variable Yi, i = 1, ... , Mt where Mt 
is the number of training samples are collected. 

In the pipeline inspection problem, for example, the magnetic flux leakage 
(MFL) image segment is the input data, measured by the inline inspection 
tool traveling through pipeline, and the corresponding class or defect type 
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( e.g. metal defect, weld, benign noise, etc.) is the target variable or output 
data. 

In the neuroscience application, pre-treatment resting or spontaneous EEG 
signals after being divided into epochs ( or segments), are collected from M 
available subjects who suffer from a psychiatric disorder. Here, Mt is the 
number of training epochs. Note that the parameter Mt is not the number of 
subjects in this case since we have typically 12 or more EEG epochs from each 
subject (to be discussed later in Chapter 4). In the treatment response pre­
diction problem, the corresponding response outcome Yi of the patient to the 
treatment, after a suitable period, is the target variable. The possible values 
for the Yi are either "R" (responder), or "NR" (non-responder). In the med­
ical diagnosis problem, Yi denotes the diagnostic class (MDD, schizophrenia, 
BAD, normal, etc.) and the input data is the resting EEG data. 

The set of input data and the corresponding target variables is referred to 
as a training set, denoted by V as follows 

(2.1) 

These measured input data for each sample are pre-processed to extract a large 
number Ne of candidate features xi E JRNc that might be relevant for predic­
tion of the target variable. By feature extraction process, the measured data 
is transformed into a high-dimensional space. The set of possibly effective 
candidate features depend greatly on the underlying problem, but typically 
they include an assortment of various attributes characterizing the statistical 
( e.g. first and second-order statistics on the observed data, histograms, coef­
ficients of Fourier transform, etc.), geometric, temporal and dynamic model 
properties of the measured data. Examples of typical features used for the 
prediction problem will be discussed in detail later for each application. These 
set of candidate features are then reduced to a set of most relevant features 
xi E ]RNr, where Nr « Ne, to extract those features which are most indicative 
of the target variable. These reduced-dimensionality features are then fed into 
a classifier or regressor which outputs the corresponding value Yi· 

Most of this thesis is about classification, which is a discrete process, in 
which the target variable Yi corresponds to class of the input data Xi. The 
number of patterns or classes are denoted by NP. The number of training sam­

ples corresponding to class j is shown with M/, and we have Mt = "£f!:,_1 M/ 
and j = 1, ... , NP. 

In the sequel, the following notations are used. The matrices X E JRMtxNr 

and XE JRMtxNc are defined whose ith rows are xf and xf, respectively, where 
superscript T denotes the transpose operation. The column vectors Xj, j = 
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1, ... , Nr and Xt, £ = 1, ... , Ne denote columns of X and X respectively. 
These vectors contain all values of the jth (£th) feature over the entire training 
set. 

2.2 Supervised Dimensionality Reduction and 
Feature Selection 

The extraction and selection of features is a critical issue to obtain opti­
mum performance in most machine learning application. We are considering 
supervised1 dimensionality reduction ( or supervised feature selection) in this 
thesis. Given a training set 'D, the goal in feature selection is to reduce the 
candidate set containing Ne features into a reduced subset containing only Nr 
most relevant features which are most indicative of the target variable. It 
is desirable to reduce the redundancy in the feature set xi to the maximum 
extent possible, yet choose Nr large enough so that the set remains highly 
predictive of the Yi. 

A simple approach for feature selection is ranking the features based on 
their correlation with the target variable (or the label) y. See [58] and ref­
erences therein. In this method, the square of 'cross-correlation coefficient' 
(which is a positive number between O and 1) is used as the feature-ranking 
measure. 

There are other alternative methods called 'feature-subset selection', in 
which instead of ranking the features one-by-one, subsets of features are ranked 
based on their predictive power. See [58] and references therein. In other 
words, the selected subset of features is the subset which is most useful for the 
estimator/predictor method. This criterion combines feature selection with 
the classification/prediction method and the goal is to generate the best final 
result with the greatest possible efficiency. This includes using wrapper and 
variable subset selection methods, nested subset selection, direct objective 
optimization, sequential feature selection, or similar methods or combinations 
of methods that achieve this goal. See [4, 58-65] for a review of feature selection 
methods. 

An optimal method for feature reduction is to find the subset of Nr discrim­
inating features from the available set of Ne features which results in the best 

1 In contrast, in unsupervised dimensionality reduction methods, the target variable is 
not used in the process. An example of unsupervised feature selection is the principal com­
ponent analysis method where the major principal vectors are used as the low-dimensional 
representation of the input data. 
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overall classification/prediction performance over the training data. Unfortu­
nately, this method has combinatorial complexity and hence is intractable. We 
therefore must resort to sub-optimal methods. 

2.2.1 Feature Selection Using Maximum Mutual Infor­
mation 

A prominent approach to feature reduction involves the use of mutual in­
formation. The mutual information of two discrete random variables U and V 
whose samples are ui and vi respectively, is defined as follows 

'°''°' p(u,v) 
9Jt(U; V) = ~ ~p(u, v) log (u) (v) 

uEU vEV p p 
(2.2) 

where p( u, v) is the joint probability distribution function of U and V, and 
p( u) and p( v) are the marginal probability distribution functions of U and 
V, respectively. When at least one of the variables is continuous, mutual 
information is conveniently evaluated using e.g., Parzen windows. For details, 
see [66]. 

Intuitively, mutual information measures the information that U and V 
share: it measures how much knowing one of these variables reduces our un­
certainty about the other. Mutual information quantifies the distance between 
the joint distribution of U and V and what the joint distribution would be if 
U and V were independent. It is a measure of dependence in the following 
sense: 9Jt(U; V) = 0 iff U and V are independent random variables. Moreover, 
mutual information is nonnegative (i.e. 9Jt(U; V) ~ 0) and symmetric (i.e. 
9Jt(U; V) = 9Jt(V;U)). 

For feature selection, one can find the Nr indices (out of Ne), whose cor­
responding features yield the maximum mutual information with the target 
variable y. A better method which considers the relation between features 
is to find a subset of discriminating features of size Nr so that the mutual 
information between the joint feature variables in a ·selected subset and the 
response variable y is maximum. Unfortunately, this is a sub-optimal method 
considering the fact that the overall classification performance is not taken 
into account when selecting features, yet it has combinatorial complexity and 
hence is intractable. 
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2.2.2 Feature Selection Using Maximum Kullback-Leibler 
Distance 

A further information theoretic criterion of value in this application is the 
Kullback-Leibler (KL) divergence [67]. This is a means of measuring "dis­
tance" or separation between two probability density functions (pdf's). The 
KL divergence between two random variables with probability distributions 
p(u), u EU and p(v), v E Vis defined as follows, assuming that the random 
variables have discrete values indexed by i: 

(2.3) 

Mutual information can also be written in the form of a Kullback-Leibler 
divergence, as follows 

9:Jt(U; V) = AKL (p(u, v)\\p(u)p(v)). (2.4) 

KL divergence is not a symmetric measure; i.e., AKL(U\\V) i AKL(V\\U). 
For this reason we consider KL distance, which is a symmetric quantity, and 
is defined as 

(2.5) 

The KL distance is strictly a function of the distributions of the variables; 
however, in this thesis, for notational convenience, the KL distance is defined 
in terms of the variables themselves. 

2.2.3 Regularized Feature Selection 

One sub-optimal (greedy) method as discussed in previous subsections is 
to evaluate each 9:Jt(y, Xt), £ = 1, ... Ne for each candidate feature individually 
and choose the reduced features as those corresponding to the largest Nr such 
values. Another alternative is to find features with maximum KL distance 
between R and NR groups as described in previous subsection. The diffi­
culty with these approaches is that the selected features are likely to have rich 
redundancy, with the result that the number of features could be reduced with­
out degrading performance. To address this problem, [68] proposes a greedy 
algorithm, which at the jth step, j = 1, ... , Nr, selects that feature which 
corresponds to an optimal weighted combination of ( 1) maximum mutual in­
formation with the response vector y, and (2) minimum mutual information 
with the set of features already chosen in previous steps. 
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Here, a novel sub-optimal approach will be proposed which is a modifi­
cation of the method of [59, 68]. This approach to feature selection considers 
the pdf of the £th candidate feature given that the subject is a responder, and 
the pdf of the £th feature given that the subject is a non-responder. "Good" 
features are those for which the KL distance between these distributions is 
large, yet the redundancy between selected features is minimum. To form 
these distributions, the column vector Xt E ~Mt, £ = 1, ... , Ne is divided 

into two subsets u}R) and u}N) ( using the known response Yi correspond­
ing to each element). These subsets contain the values of respective feature 
over the responder and non-responder groups, respectively. Approximations 
to the pdf's of these subsets can be evaluated using histograms or Parzen 
windows. The idea of the proposed method is to choose the feature at the 
jth step, j = 1, ... , Nr so that the selected feature is a combination of max­
imum relevance (i.e., the KL distance between ujR) and u}N) is maximum), 
and minimum redundancy (i.e., the combined KL distances between the dis­
tributions of the proposed feature at the current step and the corresponding 
distributions of features already chosen at previous steps is also maximum). 

More precisely, the first column of X is the vector whose corresponding 
feature has maximum KL distance between responders and non-responders. 
Then, at the jth step, we already have X(j - 1) E ~MtxU-1), the matrix 
corresponding to the previously selected most relevant features. Let us define 
sets £ = { £ I £ = 1, ... , Ne}, J 1 = { nq I q = 1, ... , j - 1} ( the set of indexes 
already chosen in previous steps) and .J = { £ - J 1}, the set of remaining 
indexes. The task is to select the jth feature vector whose index is nj E .J 
(i.e., the jth column x(nj) of X(j)). In a manner similar to [68], this can 
be done by solving the following "regularized" optimization problem which 
implements a tradeoff between maximum relevance and minimum redundancy. 
The index nopt corresponding to the optimal feature is then given by 

nopt = arg~E,{ DKL (u~Ri11u~N)) 

+ e i 0~5
1 
I: DKL ( u~R) II u~~)) + DKL ( u~N) II u~~)) } . (2.6) 

nqE.:T1 

In the above, e > 0 is a regularization parameter2 which controls the relative 
weighting between the relevance (first term) and the redundancy (second term) 
of each feature. The sets u~·) (indexed by n) represent the Rand NR subsets 

2The default value for the regularization parameter is e = 1, which is used in all experi­
ments in this thesis. 
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formed from the feature column x(n), n E .J under test, and subsets U~j 
(indexed by nq E J 1) are the Rand NR subsets corresponding to the features 
already chosen in previous iterations. The resulting column x(nopt) from 
(2.6) is appended to X(j -1), j is incremented, and the process repeats until 
all Nr features are found. This procedure is denoted as the 'maxKLD' method 
and is the technique of choice for the experimental results in this thesis. 

It is worthy of note that compared to Eq. (2.6), the method of Peng et 
al. [68] selects n 0 pt according to 

where again, r, > 0 is a regularization parameter, ( with the default value of 
r, = 1, as used in our experiments). This criterion3 uses mutual information 
as a criterion of relevance and redundancy, rather than the KL distance, as in 
(2.6). 

The feature selection method of [68], as described in Eq. (2.7), was the main 
method of choice in the pipeline inspection as well as neuroscience applications 
to be discussed in Chapters 3-5. The proposed feature selection method based 
on KL distance, as described in Eq. (2.6), as well as its simplified version to 
be described next, were used as alternative procedures. 

2.2.4 Simplified Models for Supervised Feature Selec­
tion 

An advantage of the proposed method for feature reduction based on KL 
distance is that it enables considerable simplification with little or no apparent 
performance degradation in our applications, by imposing the assumption that 

the two sets Ul(R) and ujN) are each univariate Gaussian distributed, with 
means µR, µN and variances r,k, r,'fv respectively. With this assumption the KL 
distances in (2.6) can be evaluated using the following closed form expression 
(see [4], for example) 

! ( (Jk + r,'fv - 2) 
4 r,2 r,2 N R 

1 2(1 1) + -(µR-µN) -+- · 4 r,2 r,2 R N 
(2.8) 

3The method in [68] is also referred to as the "minimum-redundancy maximal relevance" 
(mRMR) feature selection method. 
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The means and variances required above are estimated from the respective 
subsets at each iteration. This procedure circumvents the evaluation of his­
tograms or Parzen windows and the numerical evaluation of KL distances as 
required by (2.6). 

Additionally, based on the above assumption, the relative contributions of 
the two terms above can be controlled by introducing a weighting factor, as 
follows: 

(2.9) 

where O :S 6 < 1 is a weighting parameter. By using a 6 value close to 1, 
more significance will be given to the difference in the mean values of the R 
and NR pdf s. Then, assuming the variances are not too different, the most 
individually discriminating features can be found. 

Using multivariate Gaussian assumptions for the Rand NR groups with 
corresponding Nr-dimensional pdfs N(µR; QR) and N(µN; QN ), the KL dis­
tance for the h-th subset ( of size Nr selected from total of Ne candidate fea­
tures) is 

DKL ( uiR)11uiN)) l{ trace (QR-1QN + QN-1QR) - 2Nr} 

+ l{ (µR - µNf (QR-l + QN-l) (µR - µN)} 

(2.10) 

where trace(·) denotes the trace function of a square matrix, which is equal to 
sum of the diagonal elements of the matrix. The superscript - 1 denotes the 
inverse of the matrix. Note that here, µ R and µ N are vectors of size Nr, and 
QR and QN are both matrices of size Nr x Nr. As a further simplification, 

assuming QR= QN = I, Eq. (2.10) reduces to DKL (uiR)IJUhN)) = !llµR­

µNll2, where I denotes the identity matrix and II · II denotes the Euclidean 
norm. In a manner similar to Eq. (2.9), by weighting the contribution of each 
term in the above definition, one can use the following criterion instead for 
feature selection 

DKL ( uiR)IJUiN)) (1 - 6)}{ trace (QR- 1QN + QN-1QR) - 2Nr} 

+ 6}{(µR-µNf (QR-1+QN-1)(µR-µN)} 

(2.11) 
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2.2.5 Multiclass Feature Selection 

First, a simple multiclass feature selection procedure using the maximum 
KL distance criterion is discussed. Assuming an Np-class classification prob­
lem, and considering values of feature l, l = 1, ... , Ne, in all Mt samples in the 
training set, let us denote the subset of l-th feature value for class j by u/1). 
Then, for feature selection, we find the indices of Nr features which yield the 
maximum average KL distance between feature values in all class pairs, that 
is defined as follows 

Np-1 Np 

lJKL(l) = L L DKL (u?l11u?l) (2.12) 
j=l h=j+l 

where in the above, DKL(l) is the multiclass average KL distance for the feature 
indexed by l. 

We also propose an alternative multiclass feature selection procedure. As­
sume that we have NP classes. All possible binary feature selections are per­
formed in which each binary feature selection is done independently for the 
corresponding binary classification problem. The total number of binary clas­
sifiers are Np(Np - 1)/2. The solution is to concatenate the relevant feature 
lists from the all possible binary feature selection processes into a single list, 
and then construct a single multi-class classifier using the overall collection of 
distinct relevant features as the input. This is referred to as the feature index 
collection or the 'feature combination' method. 

2.3 Techniques for Classification and Regres-. 
SI On 

Even though classification and regression are often seen as two separate 
entities in the machine learning literature, in fact regression can be readily 
modified to perform classification tasks. This is accomplished in the regression 
case simply by quantization, i.e., fitting the regression output, denoted by 
f(x), to a discrete-valued function, rather than a continuously-valued one as 
suggested previously. Because the algorithms used for regression are found 
to give better performance than classification algorithms in our applications, 
most of the classification results in this thesis are obtained using regression 
methods. 

The specification of the classifier is equivalent to determining a function 
f : JRNr f--t C, where C is the the set of classes, e.g., C = 1, 2, ... , Np 
for an NP classification problem. In the regression case, f takes the form 
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f : ffi.Nr ~ R Thus we have y = J(x; 8), where the variable 8 represents 
the parameters of the model function f which are to be determined. There 
are many methods of determining the function f. In this section, a summary 
of various classification and regression methods will be given that were found 
to give good performance in the two applications under consideration (i.e., 
pipeline inspection and neuroscience). 

First a brief discussion on the kernelization technique will be given. Three 
methods including support vector machine regression (SVR), regularized least 
squares (RLS) regression, and the partial least squares (PLS) regression method 
will be discussed. SVR and RLS methods [3-5,69] are based on solving a reg­
ularization problem using the general principle of minimizing the expected 
discrepancy between the target value y and f(x; 8) for a given input vector 
x, by their specific loss functional .C(y, f(x; 8)), to be described later. The 
PLS regression method [70] is a modelling procedure based on dimensionality 
reduction and is related to the idea of principal component analysis (PCA). 
Finally, statistical classification methods based on a maximum likelihood de­
cision approach or on a minimum Bayesian decision risk approach will be 
described. 

Both SVR and PLSR regression methods were used as the main methods 
of choice in all pipeline inspection as well as treatment-response prediction 
applications to be discussed in Chapters 3, 4. The RLS method was also 
used as an alternative procedure. For the medical diagnosis application to be 
discussed in Chapter 5, the statistical classification procedure to be described 
in Subsection 2.3.6 was used as the classification method of choice. 

2.3.1 Kernelization 

Kernelization is an efficient method for improving performance by intro­
ducing nonlinearity into the feature space. Many techniques (such as the basic 
support vector machine below) result in linear decision boundaries and require 
only inner-product operations on the input data. It is possible to produce 
nonlinear decision boundaries in the feature space by transforming a feature 
vector x E ffi.Nr into another space U by defining a new vector U = cf>(x) 
for some nonlinear function cf>(·). However, in the case at hand, a more effi­
cient method of introducing nonlinearity is to compute inner products of the 
form cf>(uf cf>(v), where u and v are input feature vectors in ffi.Nr using kernel 
representations [71], as follows 

cf>(uf cf>(v) = JC(u, v). (2.13) 
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This procedure allows us to compute the value of the inner product in U with­
out explicitly carrying out the transformation ¢( ·). Examples of commonly 
used kernels are the dth--order polynomial, the Gaussian and the sigmoid func­
tions, given respectively as 

JC1(u, V) = (')'uTV + l)d = ( ')' I:!1 UiVi + 1 r 
1C2(u, v) = exp (-ll~~2v112) 

JC3(u, v) = tanh (r;,uTv + c5) 

(2.14) 

(2.15) 

(2.16) 

where')', d, a,"' and c5 are design parameters, and determine some sort of input 
scaling in the corresponding kernel functions. The linear kernel is defined as 
JC0 (u, v) = uTv. The relationship between the kernels above and their corre­
sponding function </J is not always straightforward to determine. Nevertheless, 
for some kernels satisfying relatively benign conditions such as the Mercer con­
dition [69, 71], a unique </J can be found. Some examples are given in [5, 71]. 
The dimension of the transformed space U can be much larger than Nr, which 
can result in better dimensionality reduction and better classification perfor­
mance. 

The (Euclidean) distance between examples Xi and Xj in the feature space 
of the kernel is, by definition 

rij = dist(</J(xi), </J(xj)) = V(ll</J(xi) - </J(xj)ll2) 

Distances can be computed directly from kernel values, as follows 

rij = J Kii - 2Kij + Kjj 

where Kij = JC(xi, xj) is the (i, j)-th element of the kernel matrix K. 

2.3.2 Regularized Least-Squares Regression 

(2.17) 

(2.18) 

In the specific case of least-squares regression, the loss functional assumes 
the form .C(yi, f(xi; 8)) = IIYi - f(xi; 8)11~, where 8 denotes the set of design 
parameters of the regression function, to be discussed later. In any machine 
learning problem, there is always a tradeoff between model complexity on 
the one hand ( which can lead to over-fitting) and model accuracy, which is 
essential for prediction, on the other. Regularization theory is a means of 
regulating this tradeoff. The goal is to minimize the following regularized risk 
functional 

l Mt 

R(f) = M L .C(yi, f(xi; 8)) + /3 IIJII~ 
t i=l 

(2.19) 
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where the second term, IIJIIL is a stabilizer to penalize model complexity of 
the function f, and the positive constant /3 > 0 is called the regularization 
parameter, which represents the relative importance of the model complexity 
with respect to the performance measure, ( or model accuracy). The function 
llfllk is a norm in a 'reproducing kernel Hilbert space' (RKHS) 1{ defined by 
the positive definite function K [72]. Instead of IIJIIL other stabilizer functions 
like IID(f)ll 2 can be used in (2.19), where Dis a linear differential operator [3]. 
This makes the function smooth, thereby satisfying the property of continuity. 

Under some general conditions, the function J(-) in (2.19) in an RKHS is 
assumed to be of the form 

Mt 
J(x; 8) = L viK(xi, x) (2.20) 

i=l 

where the coefficients Vi are to be determined. In this thesis, for the regularized 
least-squares (RLS) regression method, the Gaussian kernel is used, as defined 
in Eq. (2.15). 

The solution v* minimizing (2.19) where J(-) assumes the form of (2.20) 
and llfllk = vTKv, satisfies 

(K + /31) v = y (2.21) 

where I denotes the Mt x Mt identity matrix, y = [Y1, Y2, ... , YMtf, v = 
[v1 , v2, ... , VMtf, and 

K= 
[ 

K,(x1, X1) 

K(x~n x1) 

K(x1,XMt) l 
K(xM:, XMt) . 

(2.22) 

In summary, for the RLS method described above, the kernel matrix K 
is calculated from all the training data, and the coefficient vector v is then 
obtained from (2.21) for some specified values of design parameters 8 = {/3, a}. 
The RLS method is alternatively referred to as the kernel ridge regression, e.g. 
in [4]. 

2.3.3 Support Vector Machine for Regression 

The original support vector machine (SVM) was proposed by Vapnik [5] 
for use as a classifier. As an extension to SVM, the support vector machine 
regression (SVR) method [5, 69] uses the so-called £-insensitive loss function 
defined as follows 

.C ( f(x· 8 )) = { 0, if IY - f(x; 8)/ :SE 
O Y, ' /y - f(x; 8)1 - E, otherwise 

(2.23) 
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where E > 0. 
First the linear regression case will be described where f is modelled as 

the linear function f(x) = wTx + b, where w E RNr is a weight vector and 
b E R is a bias term. 

The SVR problem with a linear kernel and given constants C and E can be 
formulated as the following optimization problem 

min {cf)~i + C) + -2
1 

llwll 2
} 

{w,U*,b} i=l 
subject to 

Yi - WT Xi - b ::; E + ~i, ~i 2: 0 
WT Xi + b - Yi ::; E + ~;, C 2: 0 

(2.24) 

(2.25) 

Deviations larger than E are measured by the variables ~ and ~*. The term 
llwll 2 measures the flatness of f. Therefore, the constant C > 0 controls a 
trade-off between the flatness of f and the amount up to which deviations 
larger than E are tolerated. If C is chosen too large, then it will fit the training 
data well, but may suffer from "over-training"; i.e., inability to generalize to 
new observations. On the other hand, if it is chosen too small, it will likely 
generalize, but may suffer from a lack of accuracy. It is straightforward to 
show that the problem defined by (2.24) and (2.25) is convex; therefore there 
is a unique minimum for the parameters defining f. 

To extend f to the nonlinear case, the kernel function K(Xi, x) is employed. 
Here, f assumes the form 

Mt 

J(x) = I)ai - a;)K(xi, x) + b (2.26) 
i=l 

where a and a* are the dual Lagrange variables [69]. They are the solution to 
the following Lagrangian dual optimization problem 

max 
a,a* 

l Mt 

- 2 }::)ai - a;)(aj - aJ) K(Xi, Xj) 
i,j=l 

Mt Mt 

-E I)ai +a:)+ LYi(ai - a;) 
i=l 

subject to 
Mt 

i=l 

I::(ai - a;)= 0, ai, a; E [O, CJ 
i=l 

27 

(2.27) 

(2.28) 



Ph.D. Thesis - Ahmad Khodayari-Rostamabad McMaster - Electrical & Computer Engineering 

One method to solve the above optimization problem, is to use the Platt's 
'sequential minimal optimization' (SMO) method which decomposes the main 
problem into subproblems of size 2, and then solves for the two analytically. 
So, in the SMO method, the whole problem is solved analytically without 
using numerical convex optimization routines, [69]. 

2.3.3.1 Multi-class SVM Classification 

Some of the applications of interest in this thesis are multi-class problems, 
but the SVM classification is in principle based on binary classification. There 
are some methods for generalization of the SVM classifier to multiple class 
pattern recognition, (see [1, 73, 74], for example). However, efficient extension 
of the SVM to multi-class classification is still a challenge. 

Assume that the number of classes is NP. A method to generalize to the 
multi-class case is to train a separate binary SVM for each class, ( each time 
considering all others as the second class). So, a total of NP decision functions 
are constructed that separate each distinct class from the ensemble of the 
remaining classes. This is also referred to as the "one-versus-rest" classification 
technique. Then in the test phase, the winning class is the one with the largest 
margin. 

Another alternative is the "one-versus-one" classification technique, in which 
SVM training is applied to all possible pairs of classes. Having NP classes, a 
total of Ms = Np(~p-l) decision functions are constructed. The "one-versus­
one" can be implemented in two ways: The hierarchical tree approach uses 
a tree structure to recognize the test data x through Ms binary classifica­
tion possibilities, as shown in Fig. 2.1. Based on this decision graph, in the 
test phase, NP - 1 decision nodes will be evaluated to derive the final answer. 
This is also referred to as DAG-SVM, where DAG stands for 'directed acyclic 
graph'. The "one-versus-one" parallel approach is based on running all Ms 
binary classifiers in parallel, and then using a scoring ( or decision averaging 
rule) to find the winning class. For example, let us denote the binary SVM 
discriminant function between classes ni and nJ, by AJ(x), and their corre­
sponding class labels by Yi,J E {+1,-1}, and i,j = 1, ... ,Np, also ii j. In 
this approach, the decision is made according to 

(2.29) 

where D* denotes the final winning class label. 
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Figure 2.1: An example of DAG-SVM: One-versus-one multiclass classification 
based on the use of multiple binary classifiers to construct a four-class decision 
platform [1]. 

2.3.4 Partial Least Squares Regression 

Partial least squares (PLS) is an extension of the principal component 
analysis (PCA) technique, and is an efficient method for reduced dimensional 
regression. The following is a summary of this method and its extensions 
borrowed from [70]. The feature vectors are arranged into a matrix X E 
JRMtXNr, where each row is a set of features (i.e., xT E JRNr) extracted from 
one training sample. Also the Yi is similarly arranged into a vector y E JRMt. 

The goal in PLS is to predict4 Y E JRMtxNo using components from X. 
The dependent variables y are referred to as response variables, and the input 
variables x are the predictors. It is assumed that Nr > N 0 • The prediction 
is done by extracting a set of orthogonal factors called latent variables (not 
directly observed or measured) which have the best predictive power of Y. 
PLS regression (PLSR) is particularly useful when the columns of X and Y 
are highly correlated, and X and Y exhibit strong cross-correlations. The 
objective criterion for constructing components in PLS is to sequentially max­
imize the covariance between the response variable and a linear combination 
of the predictors [70], [75]. 

4In the general PLS formulation, the response variables Y can have multiple columns 
and thus is represented as an Mt x N 0 matrix rather than a vector, as it is in this application. 
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PLS regression searches for a set of components that perform a simulta­
neous decomposition of X and Y with the constraint that these components 
explain as much of the covariance between X and Y as possible. It is this 
step which generalizes PCA. PLS is followed by a regression step where the 
decomposition of X is used to predict Y. 

More specifically, X is decomposed as 

such that sTs = I. (2.30) 

The matrix s E JRMtXNr is referred to as the 'score matrix', while p E JRNrXNr 

is the 'loading matrix' (in PLS regression the loadings are not orthogonal). 
Likewise, the prediction Y of Y is given as 

~ T 
Y=SBC =XBPLs (2.31) 

where B is a diagonal matrix with the regression weights as diagonal elements 
and C is the weight matrix of the dependent variables. Their elements will be 
defined later. The columns of S are the latent vectors. The matrix BPLs = 
(PT)+ BCT where (PT)+ denotes the pseudo-inverse of pT_ 

In order to achieve dimensionality reduction, only m ~ Nr major latent 
vectors are used to build the PLS regressor. In that case, S is an Mt x m 
matrix, Pis a Nr x m matrix, BPLs is an Nr x N 0 matrix, Bis an m x m 
matrix, and C is a N 0 x m matrix. 

Because PLS (or kernel PLS) can predict y, PLS can be used directly as a 
regressor or a classifier. In this case, f = XBPLs, from (2.31). Thus, given a 
set of test feature vectors X t, the corresponding y-values can be determined 
using BPLs, which is calculated using the training set. 

Any set of orthonormal vectors spanning the column space of X could 
be used to play the role of S. In order to uniquely specify S, additional 
constraints are required. For PLS regression this amounts to finding two sets 
of weights w and c in order to create (respectively) a linear combination of 
the columns of X and Y such that their covariance is maximum. Specifically, 
at the ith iteration, the goal is to obtain the ith pair of vectors si = X wi and 
ui = Y ci, where Ci is the ith column of C, with the constraints that wf wi = 1, 

s; Si = I and bi = sf ui is maximal. The matrix Si ~ [ s1, ... , sJ In each 
iteration, wi is calculated by wi = XT ui-i/(uf-1 ui_1). Then the vector wi is 
normalized to unity norm. After calculating si, the vector Ci = yT sd ( sf Si), 
is normalized to unity norm, before calculating ui. After getting convergence 
in calculating Si (by repeating the above calculation loop), the scalar bi = sf ui 
which constructs the ith diagonal element of B, is calculated. 

After the extraction of the score vectors Si and ui, the matrices X and Y 
at the ith iteration are deflated by subtracting the rank-one approximations 
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based on si and ui. The matrix Ui ~ [u1, ... , ui] is not explicitly used in the 
PLS procedure. Other forms of deflation are discussed in [70]. The process 
repeats until X becomes a null matrix. 

Alternatively, it can be shown that the ith weight vector wi is the ith 
right singular vector of the matrix xry. Similarly, the ith weight vector Ci 

is the ith left singular vector of xry. The same argument shows that the 
ith vectors si and ui are the ith eigenvectors of X xryyr and yyT X xr, 
respectively. 

PLS can also be kernelized. Kernel-based PLS [70] is an extension of PLS 
and employs kernels to model nonlinear data relations. In the kernel PLS 
regression (also denoted by kernel PLSR, as well as KPLSR) method that 
is used in the experiments in this thesis, a linear PLS regression model in a 
nonlinear feature space U is considered. First an output kernel Gram matrix, 
K 0 E JR.MtxMt is defined as 

(2.32) 

Also an input kernel Gram matrix KE JR.MtxMt is defined, with elements Kij = 
K(X;, x1) where K(·, ·) is a selected kernel function. Using these definitions, 
the estimates of si and ui in U can be obtained by reformulating the problem 
into a nonlinear kernel variant form as 

Ai Si 

Ui KO Si' i = 1, ... ' Mt. 

(2.33) 

(2.34) 

In a manner similar to the ordinary PLS method, a zero-mean nonlinear ker­
nel PLS model is assumed. At each step, after the extraction of the new 
score vectors Si and ui, the matrices K and K O are deflated by subtracting 
their rank-one approximations based on the estimated si and ui. The process 
continues until the desired number m of latent variables is extracted. As in 
the linear PLS case, the effectiveness of the method results from the fact that 
the score variables {si}~1 are good predictors of Y. See [70, 76, 77] for further 
details. 

2.3.5 Statistical Classification Methods 

In the statistical machine learning approach, using the information in the 
training set, the goal is to assign each pattern ( or feature vector) to one of NP 
categories or classes {01, ... , nNp} denoted by discrete status or target variable 
y, so that a statistical criterion of optimality ( such as obtaining maximum 
probability of correct classification, minimum probability of error, etc.) is 
met. In the Bayesian classification approach, this is implemented based on the 

31 



Ph.D. Thesis - Ahmad Khodayari-Rostamabad McMaster - Electrical & Computer Engineering 

Bayes decision criterion, to be described later. In this thesis, we alternatively 
use the the event nj to denote the class with value y = j. 

Assume that we estimated the probability models for all classes, 

(2.35) 

where 9Ul denotes the estimated parameters for the probabilistic generative 
model of class y = j corresponding the probabilistic event nj. Based on the 
'maximum a-posteriori' (MAP) classification rule5

, given a test data x, the 
decision is 

arg max p(Ojlx, 8) 
J 

(2.36) 

argmax p(xlf2j,8Ul)p(Oj) 
J 

where p(Oj) = p(y = j) is the a-priori probability of classy= j, andp(Oj Jx, 8) 
~enote~ theJ:>osterior pdf. The set of all estimated parameters is denoted by 
8 = {8(J)}j~l · If we have some a-priori information (i.e., in the form of initial 
guess, or primary estimate) about the type/class of the test pattern, then the 
MAP decision rule is the statistically optimal decision criterion to be used. 
Otherwise, we can assume that classes are equiprobable, i.e., p(Oj) = ~ for 

p 

all j, and therefore can use the maximum likelihood (ML) classification rule 
instead, 

fJ = argmax p(xJnj, 9(j)) 
J 

(2.37) 

In a more general and more statistically efficient Bayesian classification or 
identification approach, when relative cost values for various decision alterna­
tives are given, the goal is to minimize the average decision cost ( or average 
decision risk) C, defined as follows 

Np Np 

C = LLCi,j p(decidef21lf2j)p(Oj) (2.38) 
l=l j=l 

where C1,j 2:: 0 is the decision cost associated with deciding ( or choosing, or 
reporting) class y = l when y = j is the true class (or actual class), and the 
corresponding probability is denoted by p( decide Ozl nj) p( nj). 

5 Alternatively this is referred to as the MAP detection or identification rule in the 
literature. 
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Rearranging, and after some simple mathematical operations, the decision 
function based on the above Bayesian detection approach is 

Np 

f1(x) ~ L C1,1 p(xl01, 9Ul) p(01) 

j=l 

and the decision rule is 

f; = argmin f1(x), 
l 

l = 1, ... , NP 

(2.39) 

(2.40) 

In other words, the statistical classification rule is: report the class of feature 
vector x as Ok when for \:/l = 1, ... , Np, l -/= k, we have fk(x) < f1(x). Also 
since f 1(x) 2: 0, and log(·) is a monotonic function, we can compare log fi(x) 
for all indices l, instead. This is the test/operational phase of the statistical 
decision method. An efficient method for learning the probability model using 
the training data set will be described next. 

There are also more specific methods in probabilistic data modeling in­
cluding the naive-Bayesian method, and the Gaussian mixture model (GMM). 
See [4, 7, 78-81], for example. 

2.3.6 Statistical Data Modeling by Mixture of Factor 
Analysis Models 

Factor analysis (FA) is a method for modeling correlations in high-dimensional 
data, by correlations in a lower-dimensional, oriented subspace, [78,82,83]. In 
the following, we summarize the discussion from [82]. For the training data set 
of each class indexed by j, the model assumes that each Nr-dimensional data 
vector x;1l was generated by first linearly transforming a m < Nr dimensional 
vector of unobserved independent zero-mean unit-variance Gaussian sources 
(factors) z~j) = [zi1, ... , Ziml, translating by a fixed amount µU) in the data 
space, followed by adding Nr-dimensional zero-mean Gaussian noise, ni, with 
diagonal covariance matrix wUl. This means that the data model is 

x~j) = A (j) zl1l + µ(j) + ni, i = 1, ... , M/ (2.41) 

where z~j) ,...., N(O; I), ni,...., N(O; wUl). The matrix A(j) with size of Nr x m, is 
the linear transformation known as the 'factor loading matrix', and µUl is the 
mean vector of the analyzer. The symbol N ( · ; ·) denotes the multidimensional 
Gaussian probability distribution in which the first argument is its average or 
mean vector and the second argument is its covariance matrix. The symbol I 
denotes the identity matrix. Statistically, we have 

p(x?) lzlj), A (j), µ(j), wUl) = N(x~j) IA (j) z?) + µU); wUl). (2.42) 
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Note that because of the fact that m < Nr, in comparison with the unknown 
Nr x Nr covariance matrices associated with the traditional Gaussian mixture 
model ( G MM) model, the factor analysis model can be considered as a more 
compact method with a smaller unknown parameter size [78]. 

Let us denote the data model for the j-th class by the corresponding pa­
rameter set e(j) = { A Ul, µ(j), \[!Ul}, where the superscript (j) refers to class 
j. Integrating out z~j), it is simple to show that the marginal density of x~j) 

will be Gaussian about the displacement µU), 

J p(x?) lz?l, A (j), µUl, \[!Ul) p(z?l) dz~j) 

N(x?llµ(jl;A(j)A(j)T +'11(jl), (2.43) 

and assuming independence of the training samples, the joint probability of 
an i.i.d. data set X(j) (i.e., the training data set for class j) is given by 

M{ 
p(X(jll01,A(jl,µUl, \[!Ul) = Ilp(x?ll01,A(j),µUl, \[!Ul). (2.44) 

i=l 

Given a training data set belonging to class j which has covariance ma­
trix ~* and mean µ*, factor analysis finds the A (j), µU) and \[JU) for which 
the covariance of xU) optimally fits ~* in the maximum likelihood sense. 
The diagonal entries of the matrix \[f(J) concentrate on fitting the axis-aligned 
(measurement) noise in the data, leaving the factor loadings in A (j) to model 
the remaining (assumed-interesting) covariance structure. 

A problem in FA is determining the dimensionality of the latent space, m. 
If too low a value of m is chosen, then the model has to discard some of the 
covariance in the data as noise, and if m is given too high a value this causes 
the model to fit spurious correlations in the data. An upper bound on proper 
values for m can be obtained by comparing the number of degrees of freedom 
in the covariance specification of the data set and the degrees of freedom that 
the FA parameterisation has in its parameters. The approximate bound is [84] 

(2.45) 

For example, for Nr = 30, we have mmax = 22. 
In factor analysis, each factor dictates the amount of each linear trans­

formation on the data set. However, with factor analysis we are restricted 
to linear transformations, and so any one analyzer can only explain well a 
small region of the manifold in which it is locally linear, even though the data 
manifold maybe globally non-linear. 
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One way to overcome this is to use mixture models to tile the data manifold. 
A mixture of factor analyzers (MFA) models the density for a data point xi 
as a weighted average of factor analyzer densities, as follows 

K 

p(x~jJIOj,8Ul) = La~) p (x?lls~l,A(j,kJ,µU,kJ, wUl), (2.46) 
k=l 

where K is the number of mixture components in the model, at= p(s~llaUl) 

is the mixing proportion6 , s~) E {1, 2, ... , K} represents a discrete random 
variable indicating the component from which xi has been generated, aUl = 
[aij), ... , a~lf such that 'Ef=1 at) = 1 and at) > 0. The factor loading 
matrix for analyzer s~) is denoted by A (j,k), and µU,k) are the corresponding 
analyzer means. The last term in the above probability is just the single 
analyzer density, given in Eq. (2.43). Based on the MFA model, the parameter 
set corresponding to the j-th class of data is 

eUJ = { { A (j,kJ' µU,kJ }f=1, aUl' wUl} . (2.47) 

In a MFA model, each Gaussian cluster has intrinsic dimensionality m, or 
ms if the dimensions are allowed to vary across mixture components. Conse­
quently, the mixture of factor analyzers simultaneously addresses the problems 
of clustering and local dimensionality reduction. 

A 'maximum likelihood' (ML) procedure for fitting MFA model to the 
training data can be derived from the expectation-maximization (EM) algo­
rithm. There are a few options in how to implement the EM algorithm. 
See [78, 82-86] for more details on implementation of the conventional EM 
algorithm, the 'variational EM' method, as well as the 'expectation condi­
tional maximization' algorithm. In the experiments of this thesis, the learning 
method in [82] is used. 

In learning the MFA model, the number of mixture components (K) and 
number of factors ( m) is assumed the same in the pdf models of all classes. 
However, the best numbers for K and m ( denoted as the design parame­
ters) are found using a cross-validation procedure in which we perform a 
two-dimensional grid search and pick the best values (from a set of candi­
dates) which result in best classification performance. However, if one uses 
the variational EM algorithm [83] instead, only a maximum value for the fac­
tor dimensionality m needs to be determined. 

6The value of p(s~) lo:(jl) is considered as a prior probability distribution on the mixture 
components, defined by vector o:<1). 
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2.3.6.1 Inference by the MFA model 

After the MFA model is learned, then during the inference or operational 
phase, the likelihood that a test data vector x belongs to class j is given by 

K 

p(xlnj, 9U)) = L &~) N ( xlft(j,k); A (j,k) A (j,k)T + i(j)) (2.48) 
k=l 

Given the prior probability values {p(f21)};;1, the posterior probability of 
belonging to class j is 

(2.49) 

and as previously described, the class of x can then be estimated based on 
MAP or ML criteria. 

One of the advantages of using the MFA method is that the posterior 
probability of a test data sample belonging to a particular class is one of the 
output variables of the MFA model. This can assist the user of the system 
in determining the certainty of the diagnosis, for example. These estimated 
class-conditional likelihood values can be used as an additional outcome of the 
diagnosis model that helps the user of the system. In using this kind of result, 
the user may want to put a detection threshold on the estimated likelihoods 
and then infer his/her own decision in a more controlled way. 

2.3. 7 Low-dimensional Representation 

Apart from the supervised feature selection methods discussed in Section 
2.2, another interesting approach for dimensionality reduction is feature trans­
formation in which high-dimensional feature data is mapped into a new low­
dimensional feature space. The resultant features may have a nonlinear rela­
tionship with the original features. A traditional method for such dimension­
ality reduction is principal component analysis (PCA) mapping. This can be 
used for clustering analysis as well. In doing so, we generate a two-dimensional 
representation (2D) of input data, and investigate how the data points cluster 
in this space. Kernelized PCA [71] is an efficient method for achieving this 
goal, and is used in Chapters 3-5 for such analysis. 

Kernel PCA (also denoted as KPCA) introduces a nonlinear mapping into 
the feature subspace, as described in Sect. 2.3.l. Kernel PCA first maps 
the data into some feature space U via a ( usually nonlinear) function <p, and 
then performs linear PCA on the mapped data. Since PCA is a linear algebra 
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construct, it involves only inner product evaluations, and thus it is possible to 
perform kernel PCA without explicitly evaluating the transformation ¢, [71]. 

First we make the assumption that we are dealing with centered data, i.e., 

1 k 

k L¢(xi) = o (2.50) 
i=l 

where k is the total number of data samples. Then the covariance matrix in 
U is 

(2.51) 

Covariance matrix C can be diagonalized by eigenvalue decomposition 

Cv=.\v (2.52) 

We have the fact that each eigenvector with .\ -=I= 0 can be expressed as 

k 

v = Lai ¢(xi) (2.53) 
i=l 

i.e., each eigenvector lies in the span of ~-images of the data set. Substituting 
Eq. (2.51) and (2.53) in (2.52), and defining the k x k kernel matrix K with 
elements KiJ = JC(Xi,XJ) = </J(xif </J(xJ), and by some manipulations, results 
in the following eigenvalue decomposition problem 

Ko:= k.\o: (2.54) 

where o: = [a1, ... , ak]T. 

Normalizing the solution VJ in U (i.e., vJ VJ = 1), translates into 

(2.55) 

To extract nonlinear principal components, we compute the projection of 
the <!>-image of a data point xi onto the j-th eigenvector in the feature space 
by 

(2.56) 

where aJ(h) denotes the h-th element of vector O:J. 
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The low-dimensional representation of a data vector ~ is computed as 
follows: First, calculate the kernel matrix using all data set. Second, compute 
m largest eigenvalues (in decreasing order) of kernel matrix K, and normalize 
them using (2.55). Third, compute the projection of ¢(xi) onto corresponding 
eigenvectors. Finally 

Zi = [,6il, · · · , ,6imf (2.57) 

where ,6iJ are defined by Eq. (2.56). The projection of x onto the first m 
principal components in U can be written as follows 

m 

Pr{cp(x)} = L,6J"J· (2.58) 
j=l 

Note that if m is large enough to take into account all directions belonging to 
eigenvectors with non-zero eigenvalues, we will have Pr{ ¢(x)} = cp(x). 

In general, we cannot use the assumption in Eq. (2.50). By relaxing this 
assumption, we need to use 

(2.59) 

instead of ¢(xi)· After calculating the kernel matrix K from the data set, the 
modified version kiJ = K(xi,xJ) = 4J(xif 4J(xJ) is used in Eq. (2.54) and 
(2.56): 

(2.60) 

where Di = I::~=l KiJ. Alternatively, one can use the following equation, 

(2.61) 

where (lk)i,J §:. t for all i and j. 

2.4 Performance Analysis 

This section discusses issues relating to over-fitting and performance eval­
uation. 
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2.4.1 The Over-fitting Issue 

A problem that may arise during the machine learning process is over­
.fitting or over-training7. In theory, if we use a complex and sufficiently large 
model for classification or regression which over-fits the training set with a 
relatively small size, then we could achieve high training performance. This 
means that if we input an already seen data sample from the same training 
subset to the model, there is a high probability that the classification or re­
gression result will be correct. However, if we test this complex model with 
a new and unseen data sample, the fitting error will be large and the predic­
tive performance will drop significantly. In other words, fitting and modeling 
may not generalize well to independent test data samples. This is because 
the relatively small training subset does not sufficiently represent all possible 
samples, and therefore random noise and fluctuations in the training data are 
unnecessarily taken into account. 

One way to partly avoid this issue, is to employ a smooth data model for 
classification/regression which employs a relatively small number of unknown 
parameters. This is usually implemented by using a regularization or trade-off 
between model complexity and modeling error, as is done with the RLS and 
SVR models, as discussed in Sections 2.3.2 and 2.3.3. Using smoother and 
simpler models usually translates to better generalization capability, meaning 
that it is less sensitive to small random fluctuations in the input data. However, 
since the criterion of simplicity and smoothness is not well defined, we still need 
to measure the test performance of the model. An overly simple model on the 
other hand usually under-fits the data, a phenomenon which is as undesirable 
as over-fitting. 

A popular and well-established method that avoids the over-fitting ( or over­
training) issue is to use independent training and test data samples, meaning 
that the test samples should not be used in the training process, and then 
to measure only the test performance as the predictive performance of the 
classification/regression model. What ultimately matters is the test perfor­
mance. The cross-validation procedure to be discussed later in this section 
is a structured method which uses all the available training data samples in 
a way that this criterion is met, yet the final performance reflects the infor­
mation in all available data samples. Using cross-validation is the method of 
choice for performance evaluation when the number of available data samples 
is small. 

7This issue can be easily seen when the number of training cycles are excessively large 
when training a multi-layer perceptron (a popular artificial neural neural network model), 
see e.g., [3]. 
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2.4.2 Quantification of Performance and Optimization 
of Design Parameters 

All classification methods discussed in this chapter have some form of de­
sign parameters that need to be determined. In this subsection, we discuss 
two issues: First, an optimality criterion for finding the design parameters 
and second, how a performance evaluation index is determined. The problem 
addressed here is how we measure the performance of a classification model, 
using the estimated target values (i.e., the output of classification model) and 
the corresponding true ( or actual) target values. 

We denote the set of design parameters associated with the regression or 
classification procedures by 8. This set includes various parameters associated 
with the regression and kernelization procedures as previously described, i.e., 
parameters of the particular kernel function in use, such as er in Gaussian kernel 
of Eq. (2.15), and hyper-parameters of regression or classification method 
such as C and E parameters in Eq. (2.24). The proposed prediction process 
is evaluated with the available training set using the well established leave­
n-out (LnO) testing procedure (see e.g. [87]), to be described in Sect. 2.4.3. 
The accuracy of the classifier is then conveniently represented by constructing 
an NP x NP classification table (see e.g. [4]), (also known as a "contingency 
matrix" or "confusion matrix") T(8), where NP is the number of classes or 
patterns. Rows are indexed according to the true class of the test object, and 
columns are indexed by the class estimated by the machine learning procedure. 
We denote8 Pilj as the probability of deciding class i when class j is true. 
This probability may be estimated as Pilj = tjdtj where tji is the (j, i)th 
entry of the contingency matrix (i.e., the entry in row j and column i), and 
tj = I:~1 tji is the j-th row sum. The quantity tj is equal to the total number 
of subjects in class j, and the number of subjects M = I:f;1 tj. The question 
is then how to convert this NP x NP table T(8) into a single performance index 
µ( 8) which is indicative of overall performance. 

For this study, optimal values of 8 are determined using an optimization 
procedure, such as a simple grid search, in conjunction with this performance 
index as an objective function. The performance index is also useful on its 
own as a means of quantifying the performance of our proposed classifica­
tion/ prediction procedure. 

We now briefly discuss three methods for selecting such an index [88]. One 
such technique is to minimize the Bayesian decision cost µB(8). The goal is 
to select 8 such that the average Bayes decision cost, defined as follows, is 

8 Notational dependence on e is suppressed. 
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minimized 

Np Np 

µB(G) = L L Ci,j ?;11(8) Pj (2.62) 
i=l j#i,j=l 

where Ci,j is the decision cost associated with deciding class i when j is the 
true class. The Pj are the prior probabilities of the classes, which in this work 
are assigned according to a uniform distribution, i.e., Pj = JP, j = 1, ... , NP" 

It is often desirable to favour one form of miss-classification result over an­
other. For example, in the treatment-response prediction problem, it may be 
less desirable to miss-classify an actual responder as a non-responder, rather 
than vice-versa, so that the actual responder is more likely to receive beneficial 
treatment, assuming there is less cost involved in prescribing a non-effective 
treatment to a non-responder. A benefit of using the Bayesian decision cost 
as an optimization criterion is that such considerations may be realized by 
appropriate choice of the cost parameters Ci,j. Even though some methods 
of interest in this thesis like the RLS, SVR and PLSR models do not inher­
ently incorporate a Bayesian decision cost assignment, they may acquire this 
property through the use of µB(G) as an objective function in their respective 
training process, when finding design parameters. 

The second method is to maximize the average correct decision probability 
µ H ( 8), defined as follows 

(2.63) 

where 'Yi > 0 is a "balancing" factor to weigh the relative importance of each 
class. The default value is 'Yi = 1, i = 1, ... , NP" 

When dealing with multi-class classification and/ or with an imbalanced 
classification problem (i.e., when the number of samples in each class are not 
of the same order of magnitude), then it is worthy of note that µH(G) is a 
more fair performance measure than the total classification accuracy (TCA) 
which is defined as the number of correct decisions divided by the total number 
of data samples 9 . Note that the TCA measure is insensitive to transposing 
the contingency matrix. The Cohen's kappa measure which is used in some 
clinical literature has the same undesirable property as TCA, (see [88]). 

Another assessment is based on the KL divergence between the prior prob­
ability value Pi, and the estimated correct decision probability Pi1/8)Pi. The 

9TCA performance measure is defined as: µTcA(8) = if °2:~1 tii· 
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following measure is defined as a function of 8 whose exponent is the negative 
KL divergence value between these distributions 

(2.64) 

where Pi= ~ is the uniform prior, but one can use~= tdM instead. Note 
p 

that with this definition, we have O ~ µKL(8) ~ 1, with the value of one 
corresponding to the ideal model where the contingency matrix is diagonal. 

For the experiments of interest in this thesis, a simple multi-dimensional 
grid search to find the optimal value of 8 was found to yield adequate results. 
It would indeed be possible to use a more sophisticated procedure such as a 
Newton-based method (see e.g., [89]) for accelerated convergence behaviour. 

Note that for the pipeline inspection application, instead of multiple epochs 
for each subject as in the psychiatric examples, we have only one data vector 
for each data sample, and therefore Mt is equal to the total number of training 
samples. Considering this simple difference, the same performance evaluation 
methods can be easily used in both applications considered in this thesis. 

2.4.3 The LnO Nested Cross-Validation Procedure 

The performance of the machine learning process was evaluated using a 
"leave-n-out" (LnO) nested cross-validation procedure10 described as follows 
(see e.g. [4, 87]). 

In the neuroscience application (including treatment-response prediction 
or medical diagnosis), we have multiple epochs for each subject, and therefore 
in that case, Mt refers to total number of epochs in the training samples 
belonging to M participating subjects. Since the main work of this thesis 
was the neuroscience application, in the following the "leave-n-patients-out" 
procedure for this application will be described in detail. The use of the 
procedure in the pipeline inspection application is straightforward, where we 
have M = Mt samples and there is no averaging on the classification results. 

Before the LnO procedure is executed, a set of Ne candidate features Xi E 
JRNc is extracted from each available training samples Ei, i = 1, ... , Mt. Here, 
assume that available training data set after feature extraction is denoted by 
'D = { (xi, Yi), i E I}, where I= {1, ... , Mt} denotes indexes of all epochs 
belonging to M participating subjects. 

10For n = 1, the 'leave-one-out cross-validation' procedure is denoted by the acronyms 
LOO or LOOCV in some of the literature. For clinical experiments, the LnO procedure can 
be alternatively denoted by the 'leav~-patients-out" cross-validation method. 
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Then, the M subjects are divided into P = 1 M /n l contiguous subsets 
of size n subjects (except possibly the last subset), where f·l denotes the 
ceiling operator11 • In other words, P is the number of folds or iterations of 
the cross-validation procedure. Then, in the p-th fold, p = 1 ... P, the indexes 
of all epochs corresponding to the p-th group of subjects form a subset IP" 
The remaining indexes are denoted by IP. We form a test subset v;est = 
{(xi,Yi), i E Ip}, which is omitted from the training process, and a modified 
training subset v;rain = { (xi, Yi), i E fP} consisting of all epochs from the 
remaining M - n subjects. We have 

I 

v 
Ip u Ip 
vtest u vtrain 

p p 

(2.65) 

(2.66) 

where the operator U denotes union of two sets. Then, the feature selection 
process and the classifier design procedure are undertaken using only v;rain as 
described further below. The resulting classifier structure is then tested using 
the test subset v;est which includes the group of n omitted subjects. As we 
mostly used regression models to do classification, the test is done by averaging 
the continuously-varying regression outputs over all epochs corresponding to 
each subject in the set v;est, and then quantizing this average into the appro­
priate predicted response value "R" or "NR". If we use a classification model 
( with discrete target value outputs) instead, then the final target value for 
each subject is the majority vote among the classification results for all asso­
ciated epochs. For statistical methods (when using MFA model, for example), 
for all epochs associated with a subject, the posterior probability values for 
each class is averaged. Then, for example, in the maximum likelihood decision 
framework, the class with maximum probability will be selected as the final 
output. 

To measure the average test error, a contingency table T(O) is then con­
structed from these P trials, by comparing the estimated responses to the 
true responses Yi, from which the overall performance may be estimated and 

11 The subjects are reordered before starting the performance evaluation so that we have 
an approximately balanced number of each class throughout the list. This is similar to 
the method referred to as stratified cross-validation in [87]. Another possible method is 

to exhaustively process all possible ( tf ) combinations. The difficulty with the second 
approach is that, even when M has the rather modest value of 22 subjects, for example, the 
computational requirements become enormous when n is a reasonable fraction of M. We 
therefore use the stratified cross-validation scheme which is much more reasonable in terms 
of computational requirements. In this thesis, when the number of subjects is small, using 
the LlO cross-validation (i.e., with n = 1) is preferred since there is only one fair way of 
selecting the test subjects. 
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an objective function value µ( 8) may be evaluated, according to one of the 
methods described in Subsection 2.4.2. iJ denotes the set of best design pa­
rameter values selected from a multi-dimensional grid of candidate values as 
explained later. 

In the p-th fold of the outer LnO procedure, an inner LmO loop is executed 
for feature selection and estimation of the parameters 8 (see [58] and [90]). In 
each fold (indexed by q) of the inner LmO loop the training subset corre­
sponding to each fold of the outer LnO loop is further divided into contiguous 
subsets of size of m subjects. This is done by dividing the set of training 
subjects contained in v;rain into Q = 1 M~nl contiguous subsets, each of equal 
cardinality, except possibly one subset. Therefore in the q-th trial of the inner 
cross-validation loop, m subjects from the training subset constitute the val­
idation subset ( denoted by £;,~idate = { ( Xj, YJ), j E Jq,p} and the remaining 
samples ( denoted by £J~;in = { ( Xj, YJ), j E Jq,p}) are used for building the 
classifier/regressor. For each q = 1, ... , Q, we have 

Jq,p u Jq,p 
£validate U £train q,p q,p 

(2.67) 

(2.68) 

In this thesis, the optimal parameter vector iJ is selected using a simple 
grid search using the nested cross-validation procedure. Let the set of possible 
candidate values/vectors of 8 be denoted as 8A ={Bala= 1, ... , A}, where A 
is the total number of candidate values/vectors. The optimal design parameter 
set iJ corresponds to the value of a that results in the best average validation 
performance. The vector iJ is then used to build the classifier /regressor with 
v;rain. The classifier is then tested on v;est. 

The feature selection process can be sensitive to which data samples ( and 
which subjects) are included in the training set v;rain_ Furthermore, it is 
possible that the regularized feature selection method ( described in Section 
2.2) automatically picks some redundant or non-significant features. We wish 
to obtain a set of statistically persistent discriminating features that is a robust 
representation of all elements of the training subset. We have adopted the 
following alternative scheme in this respect. At the pth fold of the outer LnO 
cross-validation procedure and before building the classifier using £J~;in, we 
perform a nested LmO procedure similar to the one described in Table 2.1 for 
parameter selection. We divide the set of subjects contained in v;rain into Q 
contiguous subsets of equal cardinality of m subjects. Then feature selection 
is repeated Q times, where in each iteration, the epochs corresponding to one 
subset in turn is selected for omission, whereupon the feature selection process 
is performed using the remaining subsets. In each round, a list of kNr, k > 1 
most relevant feature indexes are selected. Then, the reduced feature set for 
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the pth iteration is selected as the set of Nr most commonly occurring feature 
indexes amongst the Q available lists. This is referred to as a feature polling 
procedure, in which discriminating feature indices which have a 'maximum 
vote' among the Q subsets are chosen. The specific details relating to feature 
selection procedure are shown in Table 2.2, whereas the overall performance 
evaluation procedure is outlined in Table 2.1. 

Also, as shown in Table 2.1, the evaluation process can be improved by 
repeating the whole nested cross-validation process H times, each time ran­
domly permuting the order of the elements in 'D beforehand (i.e., two separate 
permutations: (i) permuting feature indices and (ii) permuting subject order). 
This can compensate for any problem that may occur from a non-uniform dis­
tribution of the Rand NR subjects in the training and test subsets as well as 
any sensitivity that the feature selection may have on the order of features in 
the feature vector xi· The contingency matrix resulting from the h-th iteration 
of the LnO procedure is denoted by Th(8), h = 1, ... , H. Then, µ(8) is eval­
uated from the final contingency matrix T( 8) which is taken as the average of 
{Th(8)}, i.e. 

H 

T(8) = ! LTh(8) (2.69) 
h=l 

For example, in one of our experiments, i.e. treatment-response prediction 
in SSRI therapy, where there are M = 22 available subjects and Mt = 262 
epochs, P = 11, Q = 10 and m = n = 2 is used. Based on our experiments, 
we recommend H = 50 number of random permutations to limit the overall 
performance evaluation time. 

Throughout all experiments in this thesis, the value of n in the LnO cross­
validation procedure is varied with the number of training samples in the 
respective experiment, so that the number of folds remains constant at a value 
of approximately 10 iterations. Using something between 10-fold and 20-fold 
cross-validation is popular in machine learning applications and [87] suggests 
this procedure in order to obtain a balance between bias and variance of the 
performance estimate. 

As discussed in Section 2.3. 7, for all applications studied in this thesis, we 
also study the clustering performance by looking at two-dimensional represen­
tation of the input feature space. The leave-n-out testing procedure introduces 
a minor complication with regard to each of these clustering experiments. Re­
call that at each iteration of the LnO cross-validation procedure, n subjects 
(or n samples in the pipeline inspection case) are omitted and the feature se­
lection and model-training steps are performed on the remaining data points. 
The resulting classifier/model is then tested on the omitted subjects/samples. 
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Table 2.1: A description of the nested LnO cross-validation procedure for 
performance evaluation in the neuroscience applications. 

• The M subjects are divided into P = IM /n l contiguous subsets of size n. 

• Iterate over P LnO trials: for p = 1, ... , P 

1. Select the indexes of all epochs corresponding to the p-th group of subjects to 
form a subset Ip, The test subset V1est = {(xi,Yi), i E Ip}, which is omitted 
from the training process. The training subset V1rain = { (Xi, y;), i E Ip}, 
consists of all epochs from the remaining M - n subjects. 

2. Identify a set of Nr discriminating features over the set vtrain based on the 
method described in Table 2.2. Indexes of Nr discriminating features are de­
noted by set Fp. The reduced dimensional vector obtained from Xi is denoted 
by X;, i E Ip. 

3. Optimize fJ: Iterate over the multi-dimensional grid of candidate parameters 
denoted by the set {Oa, a= 1, ... , A}, where the subscript a denotes the a-th 
node of the grid: 

ca) Divide M - n subjects in v1rain into Q = r M ,;t 1 contiguous subsets of 
size of m subjects. 

(b) Iterate over Q LmO trials: for q = 1, ... , Q 
i. Select the indexes of all epochs corresponding to the q-th group of 

subjects to form a subset Jq,p c Ip. The validation subset at q-th 
iteration is denoted by t:;~idate = {(x1,Y1), j E Jq,p}· The remain­
ing indexes in Ip are denoted by Jq,p and corresponds to the subset 
EJ~;in = {(x1,Y1), j E Jq,p}· Ip= Jq,p U Jq,p· 

ii. Design the classifier (realized as a regression process) using the set of 
Nr discriminating features, the data set t:J~tn and parameter Oa. 

iii. Test the design by feeding x1, the input variables of the validation sub­
set t:;~idate to the regression function, obtaining f)j,j E Jq,p· Average 
the regression outputs over all epochs for each subject and quantize 
into the estimated target values. 

( c) Construct the contingency matrix T( Oa) from the Q trials using the true 
target values and the corresponding estimated values over all M - n sub­
jects. Then evaluate µ( (J a). 

(d) Select the best parameter set, 9p, which yields the best classifica­
tion/ regression performance. 

4. Design the classifier using the set of Nr discriminating features, the data set 
vtrain and 9p. 

5. Construct the reduced dimensionality input test vectors Xi from x;, i E Ip, 
using the set of discriminating feature indexes Fp. 

6. Test the design by feeding x;, the input variables of the test subset V1est, to 
the regression function, obtaining iii, i E Iw Average these over all epochs for 
each subject and quantize into the estimated target values. 

• Construct the contingency matrix T( 9) from the P trials using the true target values 
and the corresponding estimated values over all M subjects. Then evaluate µ(9). 

46 

http:Jq,p}.Ip


Ph.D. Thesis - Ahmad Khodayari-Rostamabad McMaster - Electrical & Computer Engineering 

Table 2.2: A description of the feature polling procedure to find a persistent 
list of most discriminating feature indices in the inner loop of the nested cross­
validation procedure outlined in Table 2.1. 

1. Divide M -n subjects in 'D~rain into Q contiguous subsets of roughly equal cardinality 
of m subjects. 

2. Repeat Q times: Sequentially select a subset for omission. From the remaining 
subsets, identify a list of kNr, k ::::: 1 most relevant features. 

3. From the Q lists of kNr most relevant features obtained in the step above, choose 
the Nr indexes which occur most frequently. 

The issue is that at each iteration, a slightly different set of most relevant 
features may be selected. To remedy this problem, we choose gNr features at 
each iteration, where g is a constant greater than unity, typically g 2: 2. The 
final set of Nr features used for low-dimensional representation consists of the 
Nr most commonly selected features chosen over all the iterations. 
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Chapter 3 

Application to Pipeline 
Inspection 

This chapter addresses the problem of automated non-destructive testing 
of installed oil and natural gas pipelines using inline magnetic flux leakage 
(MFL) inspection techniques. The MFL technique provides a high-resolution 
image of the interior of the pipe wall from which defects and other anomalies 
can be detected and duly reported. 

3.1 The Magnetic Flux Leakage Imaging Method 

A simplified generic in-line-inspection (ILi) tool is depicted in Fig. 3.1. 
Permanent magnets magnetize the pipe to saturation or near saturation flux 
density, typically in the axial direction. Flux excitation in the circumferential 
direction is also possible. As shown, the magnetic leakage fields from the pipe 
wall are detected using uniformly-spaced Hall1 or coil sensors. The sensor 
is placed at the center of the poles in the magnetic circuit to ensure that 
it is located in the most uniform part of the field. Systems with standard 
resolution measure the leakage flux in one direction of excitation, whereas 
high-resolution MFL systems employ a large number of such sensors that can 
record anomalies and changes in the magnetic field in one or two directions 
with sufficient density to recognize ~ven very small pipeline metal defects. The 
signals from the sensors are sampled as the ILI moves through the pipe. These 
samples are then recorded on-board the ILL Once the ILI is retrieved at the 

1 An example of Hall effect sensor which was used in our experiments is built as a solid­
state sensor using quad Hall sensing elements. The detection area of the sensor is less than 
2mm by 3mm. The output voltage varies in linear proportion to the strength of magnetic 
field. 

48 



Ph.D. T hesis - Ahmad Khodayari-Rostamabad McMaster - E lectri cal & Computer Engineering 

Figure 3.1: Simplified schematic of the magnetic circuit of a typical ILI tool, 
showing the scattering of the magnetic field due to an external crack. OD 
stands for 'outer diameter '. 

end of the inspection run , the stored signals are then processed and displayed 
section- by- section on a computer monitor, to render a magnetically- derived 
2D or 3D image of the pipe wall. 

The magnetic flux from powerful magnetizers is coupled to t he pipe wall 
through steel brushes ( or steel protectors). The magnetic sensors are placed in 
close proximity with the inside surface of the pipe wall for optimum sensitivity 
to flux variations. The ILI tool body, magnets, steel couplers, and the pipe 
wall then create a magnetic circuit. A volumetric wall loss in the pipeline wall 
acts as a region of high magnetic reluctance causing an increased magnetic 
leakage field. For example, if the wall 's thickness is reduced by the presence 
of a defect (as depicted in the figure) , a higher fraction of the magnetic flux 
leaks from the wall into the space inside and outside the pipe, allowing the 
defect to be detected by the presence of a corresponding increase in leakage 
magnetic flux density. 

In general, the information that is stored on- board the ILI tool includes 
measurements of distance, tool speed, temperature, pressure, along with the 
2D or 3D samples of the magnetic field through the Hall effect sensors. Other 
information such as wall- thickness, diameter , properties of the fluid or gas 
being transported by the pipe, geometry of the pipe, material of the pipe, 
properties of magnetizers and magnetic sensor arrays are also available to the 
NDT technician. 

The functionality of the ILI tools is divided up into separate modules that 
are inter- connected by articulating joints. This configuration allows the tool 
to negotiate elbows and sharp turns that may be encountered in the pipeline. 
Fig. 3.2 shows two examples of these devices, with each module being identified 
as 1) the tow section, 2) the main sensor array, and 3) the electronics body. 
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Other modules (not shown) include battery vessels, odometer modules, sen­
sor arrays for interior/exterior discrimination, and calipers to detect physical 
damage or protruding artifacts in the pipeline. 

ILi tools come in different sizes to fit various pipeline diameters. Outer 
diameters of pipes used in our experiments are 8.625, 10. 75 and 12. 75 inches 
(referred to as 8, 10, and 12 in. pipes in the chapter), with corresponding wall 
thicknesses equal to 4.77mm, 5.16mm, and 5.6mm, respectively. 

A sample of a real MFL image of a metal loss defect in an 8 in. pipe is 
shown in Fig. 3.3, and its smoothed and de-noised version is shown in Fig. 3.4. 
The deep blue regions represent a girth weld in the pipe. Fig. 3.5 shows 
the corresponding contour plot. The de-noising and smoothing method used 
in our experiments is discussed in Sect. 3.2. The depth of the metal-loss 
as determined by independent measurement is approximately 60% of wall­
thickness, where the wall-thickness is 4. 77mm. A single recognizable "bump" 
corresponding to the defect is apparent in the image. The physical shape of 
the outer surface of this metal-loss defect, as recorded off-line by an NDT 
technician is shown in Fig. 3.6. 

As may be seen, the MFL image shown in Fig. 3.3 is not well represented 
by a simple geometric configuration, such as a rectangle. Other real defects 
may be even more complex. For example, this may happen when the metal­
defect is close to or inside a 'long-seam weld' or a 'girth weld'. This justifies 
our assertion that methods which fit simple geometric models, or characterize 
defects using a simple low-dimensional parameter estimation methods will not 
perform well with real measurements. Therefore the benefit of using machine 
learning in MFL data analysis becomes apparent when we work with real MFL 
data. In such cases, the machine learning method will automatically find an 
estimate of the detection/estimation model. However, a drawback of machine 
learning methods is that they require an adequate and often large quantity 
of training samples to perform properly. The generation of training data is 
discussed in Sect. 3.2. 

3.2 Experimental Results 

In this section, we examine the performance of the machine learning algo­
rithms we have discussed in the analysis of real MFL images. We first inves­
tigate the binary detection problem of classifying anomalous image segments 
into one of two classes: the first class consists of injurious or non-benign defects 
such as various crack-like anomalies and metal-losses in girth welds, long-seam 
welds, or in the pipe wall itself, which if left untreated, could lead to pipeline 
rupture. The second class consists of non-injurious or benign objects such 
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Figure 3.2: Images of frontal parts of two 'in-line inspection tools' or PIGs by 
Intratech. Printed with permission from Intratech Inline Inspection Services 
Ltd. , Mississauga, ON, Canada. 
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Figure 3.3: A sample real MFL image dat a for a metal-loss defect in a pipe 
wall. Printed with permission from Intratech Inline Inspection Services Ltd., 
Mississauga, ON, Canada. The Z-axis has been scaled . 
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Figure 3.4: De-noised and smoothed version of the sample real MFL image 
data shown in Fig. 3.3. The Z-axis has been scaled. 
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Figure 3.5: Contour plot of de-noised MFL image data of Fig. 3.4. 

Figure 3.6: Physical shape of the outer surface of the metal-loss defect corre­
sponding Fig. 3.3-3.5. The image is rotated and scaled relative to the images 
of Figs. 3.3-3.5. 
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as noise events, safe and non-harmful pipeline deformations, manufacturing 
irregularities, etc. 

The second problem we consider in this thesis is estimation of the sever­
ity of defects. In all experiments, we use real MFL data derived from actual 
pipeline inspection runs provided by Intratech Inline Inspection Services Ltd., 
Mississauga, ON, Canada. With real data, it is sometimes difficult to guaran­
tee that we have correct labeling for all our training data. For our classification 
experiments, some target values Yi corresponding to each Xi may not indicate 
the true class in some training samples. The reason is that the metal defects 
are not easily accessible and verifiable; secondly, the labeling of data is done 
through manual inspection by an NDT expert. Thus, the reference training 
data are subject to some technical errors and it is likely that we have, for ex­
ample, some small or complex metal-loss samples mislabeled as non-injurious, 
and vice-versa. So, in our particular numerical analysis, we do not expect to 
get 100% performance. 

Pipelines used in the experiments are of the 'electric resistance welded' 
(ERW) long-seam type. The pipe material is standard carbon steel which 
is used throughout North America for oil and natural gas pipelines, including 
X42 and X52 pipes as specified in 'API specifications 51', or the corresponding 
290 and 359 grades as specified in 'CSA Z245.l'. 

Hall effect sensors are used to measure the circumferential or transverse 
(By) component of magnetic field, where the excitation flux is in the same (y) 
direction. The output sensitivity of the sensors is 2.5 m V per Gauss. Sensor 
spacing is 3.32mm in the y direction. Since the sampling rate is time-based 
and the ILI tool varies in speed due to the variation of transport flow, the 
sample spacing in the x direction can vary, but is generally in the range of 
2mm to 3mm. Due to its compressibility, the flow speed of natural gas varies 
more than that of crude oil or other liquids. 

We now briefly describe the processing steps involved in the following ex­
periments. Initially, the received MFL image is segmented to isolate regions 
which may contain an object of interest such as some form of metal-defect 
or injurious event, or some form of benign event. Then we used a two-stage 
de-noising and smoothing process: First, the level of MFL measurement noise 
( also referred to as 'seamless pipe noise' or SPN) is reduced, and the MFL 
image smoothed, by using a pixel-wise 2D adaptive Wiener filtering method 
based on statistics estimated from a local neighborhood of each pixel [91]. 
Then to further remove the noise, we used a 2D discrete stationary wavelet 
transform (with Daubechies wavelets) with soft-thresholding to de-noise the 
result [92]. 

Once the image segments have been de-noised, we use one of the feature 
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reduction methods of Sect. 2.2 to automatically pick the Nr most discrim­
inating features. However, the selected set is not unique as some features 
are statistically dependent. The designer can choose any of these dependent 
features with only a slight change in performance. 

As described above, the initial list of simple candidate features can be 
large, since at the beginning we do not know which properties of the MFL 
image are relevant in solving the problem. In the first and second experiments 
that are explained in this section, a total of Ne= 81 simple candidate features 
are extracted. In the third and fourth experiments, the number of simple 
candidate features of the MFL images are Ne = 406, in which Nr = 24, or 
Nr = 36 selected features are used. 

The initial set of Ne candidate features consists of quantities commonly 
used in image classification problems, as explained in [4, 91]. Space does 
not permit the listing of all specific feature items used for our experiments. 
However, features of interest include such quantities as statistical properties 
of average background image information, magnitude, size and scale of the 
metal defect, orientation, maximum to average ratio of the segment, statisti­
cal measurements of the segment, such as means, variances, covariances and 
coefficients of 2D autocorrelation, aspect ratios, absolute peak values, major 
principal components of the 2D discrete cosine transform (DCT) of the MFL 
image segment, various parameters such as skewness relating to the histogram 
of the segment, various statistical moments (central), normalized integrated 
optical density, coefficients of the wavelet transform, etc. 

In the experiments of this section, we consider a wide range of possible 
defects that are commonly encountered in practical MFL inspection. These 
include external corrosion pits, linear crack-like indications for which many 
are associated with the ERW long seam, and various types of local metal­
losses and crack-like defects. Since the defects we wish to process are both 
internal and external to the pipe wall, the training data sets we employ in the 
experiments must also include both internal and external defect samples. 

For feature selection, the regularized feature selection based on mutual 
information [68], as discussed in Section 2.2.3, Eq. (2.7), is used. 

The following procedures were followed for the implementation of the clas­
sification and regression models. For each of the regression (or classification) 
methods considered in this thesis, the associated design parameter values are 
determined using a grid search and a cross-validation procedure as described 
in Section 2.4.3. 
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3.2.1 Detection of Injurious Defects 

Here, we show results for a binary detection case. In this set of experi­
ments, suspicious image segments are classified either into a injurious class 
(including metal loss defects and crack-like anomalies), and a non-injurious 
object class. Then, given that a particular image segment is determined to be 
an 'injurious' defect, the second step is to estimate the depth of the defect, 
so that the urgency of repair can be established. This step is discussed in the 
next subsection. 

In the following experiments, we wish to determine the percentage accuracy 
of our machine learning inspection procedures for classifying defects into their 
respective classes as described above. Thus, the class of all image segments 
used in these experiments must be determined in advance. This is done by an 
NDT technician who examined all the measured MFL image samples consid­
ered in this experiment on a computer screen, and based on their experience, 
manually assigned a classification label (i.e., injurious or non-injurious) to 
each image segment. Some of these data samples are then randomly selected 
as training data for the classifier, while the remaining samples are tested by 
the classifier. This process may be repeated many times, each time drawing 
a different sample of training samples. The accuracy of our method is then 
established by comparing the decision made by the classifier to the correspond­
ing value determined by the analyst, for each test case. The actual number of 
image segments available depend on the experiment and is given later. 

In the detection or classification problem, the two classes are 

1. The injurious class, including metal loss on a girth weld (labelled as 
ML-GW), metal loss on a 'long seam weld' (ML-LSW), metal loss on 
the plain pipe-wall (ML-PW), manufacturing metal-loss samples on a 
long seam weld (MML-LSW), and a crack-like anomaly on a long seam 
weld (CL-LSW). The MML-LSW label denotes metal-losses associated 
with the manufacturing process or any pipeline installation material loss. 
The corresponding target value is assigned to be y = 1. 

2. The non-injurious or benign class including measurement noise and be­
nign pipeline manufacturing anomalies (such as dents) and MFL image 
irregularities that may be confused with metal-loss, but are not harmful 
to pipeline operation. In general, non-injurious class anomalies do not 
require replacement or repair of the pipe, and are considered as safe. 
The corresponding target value is y = 2. 

In the first experiment, MFL data from an 8-inch pipeline is used. We have 

56 



Ph.D. Thesis - Ahmad Khodayari-Rostamabacl McMaster - Electrical & Computer Engineering 

a total of Mt = 1529 image segments, consisting of 656 injurious, and 873 non­
injurious samples. The data in the injurious class include 197 ML-PW, 132 
ML-LSW, 58 ML-GW, 116 MML-LSW and 153 CL-LSW samples. A 10-fold 
cross-validation method is used, as described in Section 2.4.3. After applying 
a random permutation on the available data set, in each fold of the cross­
validation procedure, 90% of the available data samples are used for training, 
while the remaining 10% are used for testing. 

A comparison amongst the different identification techniques is shown in 
Table 3.3. The parameters for each method were estimated by optimizing the 
performance using a grid search and cross-validation procedure using the train­
ing data, as described in Chapter 2. The linear discriminant analysis (LDA) 
method shown in the table is a well-known classification technique used as a 
reference in our comparison [4]. In a manner similar to [13], we also used a 
multilayer Perceptron network (MLPN) ( with 18 hidden neurons, and employ­
ing a conjugate gradient method for training). We also evaluate performance 
using a radial-basis function network (RBFN), [3, 4]. As can be seen, RLS, 
SVR and kernel PLSR methods with a Gaussian kernel are all powerful meth­
ods and have approximately similar performance in this experiment, but are all 
better than the LDA, MLPN [13] and RBFN methods. For the SVR method, 
the identification results with Nr = 36 corresponds to the following number of 
misclassifications in each class: 19 misclassification cases in the injurious class 
(including 12 ML-PW errors, 3 ML-GW, and 4 CL-LSW), and 13 misclassi­
fication cases in the non-injurious or benign class. The result by the kernel 
PLSR method corresponds to using 9 major latent vectors. By experimenting 
with various scenarios (not discussed in this chapter) we also noticed that the 
SVR method, compared to others, can provide good detection performance 
even with relatively small number of training samples. 

Performance was also evaluated for the Nr = 24 case; however, as can be 
seen in the lower part of the Table 3.3, the results for the SVR and kernel 
PLSR methods did not vary significantly from the Nr = 36 case. This is in 
contrast to the LDA method which showed a significant drop in performance 
for the Nr = 24 case. 

Fig. 3. 7 shows regression results using the kernel PLSR method ( with a 
Gaussian kernel). Here, the data are sorted so that the first 656 samples 
correspond to class 1 defects (i.e., injurious class), and the remaining 873 are 
non-injurious anomalies. In this case, the function f is a step function, with 
its discontinuity between values 656 and 657. The figure shows how the kernel 
PLSR method performs in fitting the data. A classification error results when 
a data sample with index in [1, 656] is above the value 1.5, and is below 1.5 
when its index is in the [657, 1529] range. From Table 3.3, we see that this 
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Table 3.3: 8-inch pipeline: Comparison of performance among different inju­
rious metal defect identification methods. A target value y = 1 corresponds 
to an injurious data sample, while a target value of y = 2 corresponds to 
a non-injurious class. Gaussian kernels are used with the SVR and PLSR 
methods 

sensitivity, specificity, % average 
method p(y= lfy= 1) p(i) = 2fy = 2) performance 

LDA, Nr = 36 0.9 0.94 92% 
Multilayer Perceptron, Nr = 36 0.931 0.976 95.37% 

RBFN, Nr = 36 0.942 0.951 94.64% 
RLS, Nr = 36 0.976 0.978 97.69% 
SVR, Nr = 36 0.971 0.985 97.81% 

kernel PLSR, Nr = 36 0.951 0.99 97.05% 
LDA, Nr = 24 0.878 0.915 89.64% 
SVR, Nr = 24 0.97 0.979 97.44% 

kernel PLSR, Nr = 24 0.959 0.977 96.79% 

method correctly classifies the MFL samples 97% of the time. 
We now show how dimensionality reduction of the feature space as dis­

cussed in Chapter 2 can aid in the visualization of the classifier. This can 
be readily accomplished using the kernelized PCA procedure. In this case, a 
Gaussian kernel was used. Fig. 3.8 shows the corresponding two-dimensional 
scatter plot for the same data set. Even though this two-dimensional repre­
sentation is not sufficient for the most separable view of the two classes, it 
allows visualization on a sheet of paper. It is clear that this low-dimensional 
representation indeed shows reasonable geometric separation and clustering of 
subjects into injurious (shown by yellow rectangles with black edges) and non­
injurious (shown by blue circles) classes. There are of course, a few overlapping 
points and these would lead to classification errors, but performance would be 
improved by an increase of dimensionality. Fig. 3.8 corresponds to the pro­
jection of the data samples onto the first and second major latent variables, 
which are selected through the maximum mutual information method. 

We now show a second example of how dimensionality reduction can assist 
in visualization. Here we consider only the injurious group of data. We used 
kernel PCA (KPCA), with a Gaussian kernel, to show how different types of 
metal-losses cluster geometrically in a two-dimensional space. 

The input into the KPCA algorithm were feature vectors of dimension Nr = 
36. Fig. 3.9 shows the relative magnitude of the first several major principal 
components (eigenvalues) of the MFL data kernel matrix. The eigenvalues 
are sorted in descending order, and are scaled so that the first eigenvalue with 
biggest magnitude corresponds to 100 in the y-axis. It is clear that the first two 
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Figure 3.7: 8-inch pipeline: Estimated (circles) and true (solid-line) target 
values using the Kernel PLS regression method with a Gaussian kernel. The 
data samples are sorted. y = 1 denotes injurious class and y = 2 denotes 
non-injurious class. Nr = 36. 
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Figure 3.8: 8-inch pipeline: Scatter plot of the projection of MFL data samples 
into the first and second major latent variables using the KPCA method with a 
Gaussian kernel. 'I' denotes injurious (metal-loss) samples (including ML-GW 
and ML-PW classes), and 'NI' denotes non-injurious samples. 
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Figure 3.9: 8-inch pipeline: Plot of the relative magnitude of a few major 
principal components (PCs or eigenvalues) of the MFL data kernel matrix 
using the Kernel PCA method with a Gaussian kernel. 

or three components dominate. This suggests that only a few latent variables 
with the highest PC magnitude could be enough to represent the data with 
small error. Fig. 3.10 shows the projection of the feature vectors onto the first 
and third major latent variables. These particular latent variables were again 
chosen using the maximum mutual information criterion. As can be seen, there 
are some overlapping samples in the figure, because the dimensionality of two is 
too low to adequately cluster the data. Nevertheless, only two dimensions were 
able to capture the data clustering and show the behaviour of the classifier. 

As an example of the usefulness of this approach, a new test MFL data 
sample can be projected into this 2D space and the user/operator can then 
infer or visualize approximately the class of test sample based on how closely 
it is to the clusters for each class. 

For clustering analysis through low-dimensional representation, in addition 
to using the KPCA method ( as reported above), we further studied the results 
by the 'isometric embedding' (ISOMAP) [93], the 'locally linear embedding' 
(LLE) [94], and the Graph Laplacian [95] methods. The 2D and 3D graphs 
obtained by these methods had approximately similar clustering performance, 
however, the shape of the graphs were different in each method. These further 
results are not reported in this thesis due to space limitation. Nevertheless, 
these this satisfactory clustering performance confirms the automatic pipeline 
inspection methodology developed in this thesis. 

In the second experiment, inspection data for a 10-inch pipeline is used for 
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Figure 3. 10: 8-inch pipeline: Scatter plot of the projection of MFL data sam­
ples into the first and t hird major latent variables using the KPCA method 
with a Gaussian kernel. For clarification, green dots correspond to ML-LSW, 
and cyan dots correspond to MML-LSW ('manufacturing metal-loss samples 
on long-seam weld '). 

performance evaluation. The performance numbers are shown in Table 3.4. 
Here, there are a total of Mt = 1919 samples, 909 of which correspond to 
injurious events and 1010 are non- injurious or benign anomalies. The data in 
the injurious class include 403 ML-PW, 120 ML-LSW, 109 ML-GW, 137 MML­
LSW and 140 CL-LSW samples. The methodology used in this case is similar 
to that used in the first experiment. The injurious samples mis-classified with 
the SVR method comprise 11 ML-PW errors, 2 ML-LSW errors, 10 ML-GW 
errors, 1 MML-LSW, and 1 CL-LSW error. As can be seen , the kernel PLSR 
method outperforms the linear PLS regression method. 

3.2 .2 Metal-Loss/Crack Depth Estimation 

In this case, we are given an image segment which corresponds to a injurious 
(including non- benign metal loss and crack-like defects), and we wish to assess 
its severity, or depth, relative to the pipe wall t hickness. The MFL image data 
set used in the following experiments is distinct from those used in previous 
subsection, and corresponds to several 8, 10 and 12 in. pipes. 

We use two approaches for this problem. In the first approach, we quantize 
the metal-loss/ crack depth into two levels: 
y = 1, 'less-severe loss': metal-loss/crack depth is less than a threshold b. 
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Table 3.4: MFL data for a 10-inch pipeline: Comparison of performance among 
different metal-loss identification methods. y = 1 corresponds to an injurious 
metal defect, and y = 2 corresponds to a non-injurious or benign class. Gaus­
sian kernels are used in kernelized PLSR and SVR 

sensitivity, specificity, % average 
method p(y = lJy = 1) p(y = 2Jy = 2) performance 

LDA, Nr = 36 0.879 0.863 87.12% 
RLS, Nr = 36 0.968 0.966 96.72% 
SVR, Nr = 36 0.973 0.969 97.09% 

kernel PLSR, Nr = 36 0.946 0.977 96.17% 
PLSR, Nr = 36 0.88 0.862 87.12% 

y = 2, 'severe loss': metal-loss/crack depth is greater than or equal to the 
threshold 8. 

In the second approach, we treat the depth as a continuous variable and 
use regression methods to estimate the depth. The defect depth refers to the 
maximum depth of the defect. 

The dimensions of the metal defect anomalies used in this subsection are 
measured by a NDT technician at an actual dig-site, using various techniques. 

In the following two experiments, a total of 58 samples of various metal loss 
and crack-like defects are used as our training/test data. Defect depths vary 
in the range of 10% to 61 % of wall-thickness, where they reasonably uniformly 
cover a full range of values in the above depth range. Most of the crack-like 
defects are adjacent to or on the 'long-seam weld'. The data set contains both 
internal and external defects. The data set comprises 33 metal losses, 4 metal 
losses on a 'long seam weld' (LSW), 20 cracks and crack-like events on an 
LSW, and 1 crack-like event adjacent LSW. 

In our third experiment, we show results from the quantized depth estima­
tion approach. In this case, we use 8 = 30% of pipeline wall-thickness as our 
severity threshold. Performance results are shown in Table 3.5. There are 29 
data samples in each class. It is seen that the SVR method with a polynomial 
kernel ( of degree 7) performs better than the other methods. The nearest 
neighbor method shown in the table is a well-known classification technique 
used as a reference in our comparisons [4]. 

The fourth experiment shows results for the continuous-valued depth es­
timation approach. The data set is the same as that used in the third ex­
periment. Fig. 3.11 shows the metal-defect depth estimation results using the 
SVR method with a polynomial kernel of degree 9. With reference to Eqs. 
(2.14) and E-insensitive loss function of SVR, the parameters are E = 0.05, 'Y = 
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Table 3.5: Comparison of performance among different metal-loss severity 
identification methods. y = 1 corresponds to 'less-severe loss' or shallow loss­
depth, and y = 2 corresponds to 'severe loss' or deep loss-depth. Nr = 36. 
The severity threshold is 8 = 30% of pipeline wall-thickness. 

sensitivity, specificity, % average 
method p(y = lJy = 1) p(y = 2Jy = 2) performance 

Nearest Neighbor 0.621 0.828 72.41% 
RLS 0.931 0.897 91.38% 

SVR with linear kernel 0.931 0.931 93.1% 
SVR with Gaussian kernel 0.966 0.931 94.83% 

SVR with polynomial kernel 1 0.966 98.28% 
PLSR with Gaussian kernel 0.966 0.897 93.1% 

0.001, d = 9. The dashed line corresponds to the output of the regression 
function f using the SVR method, whereas the solid line ( with sample points 
marked by circles) shows the true relative depth of the corresponding data 
samples. With this figure, the exact true distribution and range of defect 
depths can be seen. The mean-squared error for depth-estimation in this ex­
periment is 7.73% (of pipeline wall-thickness). Given the simple set of features 
used, this figure is of sufficient accuracy, especially considering the complexity 
in the shape and structure of various actual metal defects used in this case, 
to determine repair schedules for the pipeline. In comparison, in a separate 
experiment (not shown), conducted using the radial basis function network 
(RFBN), therms error was determined to be 9.94%. 

An example, further to that of Fig. 3.4, of a defect that was included in 
the above experiment, is shown in Fig. 3.12. This shows a two-dimensional 
plot of the de-noised MFL signal amplitude of an actual metal-loss on an LSW 
for an 8-inch pipe. In contrast, Fig. 3.4 shows an MFL response of an actual 
metal loss on plain pipeline wall. In this case, the running speed of the ILI 
tool was 0.778 m/s. The rectangular area sampled by the Hall effect sensors 
before denoising was 58 x 115 sample points. The depth estimated using the 
SVR method discussed above is 45. 7%, which corresponds to an error of 3.3% 
relative to the value obtained by field measurement. The signal amplitude and 
axis values in the figure have been scaled. It may be seen from this figure that 
the defect shape is very irregular. The fact that the proposed machine learning 
technique is capable of producing an accurate result shows the effectiveness of 
these methods over previous traditional methods which assume a very limited 
class of defect geometries, e.g. [27]. 
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Figure 3.11: Metal-loss/crack-depth estimation: Sorted estimated (dotted­
line) and true (solid-line) depth values using SVR with a polynomial kernel. 
Nr = 24. 
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Figure 3.12: 2D view of an example MFL image (after de-noising) showing a 
metal-loss on LSW. 
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3.3 Discussion 

Testing of oil and gas pipelines using MFL technique involves the detection 
of defects and anomalies in the pipe wall, and the evaluation of the severity of 
these defects. The difficulty with the MFL method is the extent and complex­
ity of the analysis of the MFL images. In this thesis we showed how modern 
machine learning techniques can be used to considerable advantage in this 
respect. 

In conclusion, in this part of thesis, a complete machine learning procedure 
for the inspection of MFL images from pipelines is presented and the test re­
sults using real data is studied. Mainly the detection of major metal-defects 
in a pipeline is studied, but two techniques for determining the depth and 
severity of the defect is also included. The average detection performance in 
recognizing major metal-defects versus benign or noise defects was over 95%. 
The root-mean square error in defect depth estimation was less than 8%. Fur­
thermore, the kernel PCA method provided a low-dimensional representation 
of the MFL data and was presented as an effective visualization tool. 

Several experiments were performed to verify these results are not due to 
over-fitting. Firstly, the performance figures indicated were obtained using 
a cross-validation procedure, and as such the reported performance results 
are an aggregate over many permutations of the data. Thus, relatively high 
performance must be obtained in each fold, which implies the feature selection 
and classification/regression processes are not over-fitting to the data. 

Further, the clustering performance shown in Figs. 3.8 and 3.10 show 
that a simple nonlinear transform exists which is capable of relatively cleanly 
separating the clusters with a very simple boundary. The simplicity of the 
transformation in combination with the boundary, show that the classifier is 
not over-adapting to the data. 

As a further indication of the integrity of the processor, we calculate the 
probability of these results happening by chance alone. With reference to 
results by SVR method with Nr = 36 reflected in Table 3.3, there are 656 
injurious and 873 non-injurious samples, so the probability p = p(x) of an 
injurious defect may be taken as 656/1529 = 0.429. Assuming all subjects 
are independent, the probability of a prediction error is governed by a bino­
mial distribution, which is parameterized by N, the number of samples, and 
p, in this case the probability of an injurious defect. Therefore, the proba­
bility of this level of performance (637 classifications as injurious and 19 as 
non-injurious out of N=656 actually injurious defects) occurring due to chance 
alone is evaluated from the binomial distribution as 3.9582 x 10-203 . Similarly, 
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the value of p for the non-injurious case is 0.571, so the probability of esti­
mating 860 non-injurious and 13 injurious out of 873 actually non-injurious 
samples due to chance alone is 2.0146 x 10-186 . Similar analysis can be done 
for results in Tables 3.4 and 3.5. 
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Chapter 4 

Application to Neuroscience: 
Prediction of 
Treatment-Efficacy in 
Psychiatric Disorders 

Here, several experiments are investigated in which pre-treatment clinical 
information is used to predict the treatment response for each individual pa­
tient suffering from major depressive disorder (MDD) or from schizophrenia, at 
the outset of therapy, thus improving therapeutic efficiency. Three treatments 
are studied: (i). Selective serotonin reuptake inhibitors (SSRI), an antide­
pressant for MDD, (ii). 'repetitive transcranial magnetic stimulation' (rTMS) 
therapy for MDD, and (iii). Clozapine therapy for schizophrenic patients. 

When administering a particular therapy for a particular subject with 
MDD, a significant problem is to predict whether or not the therapy will be 
effective for the subject. In the larger view, a major problem in the treatment 
of MDD is that there are no objective procedures for selecting optimal treat­
ments. In the following, we describe the application of machine learning meth­
ods, based primarily on the pre-treatment electroencephalography (EEG), for 
predicting the response of therapy to MDD. The SSRI and rTMS therapies 
are first studied. Then we will investigate the same problem using the same 
tools for prediction of response to clozapine therapy for schizophrenia. 

All clinical studies, including the rTMS, SSRI, clozapine as well as al medi­
cal diagnosis studies discussed in this thesis (in the current and next chapters) 
were all approved by the Research Ethics Board of St. Joseph's Health Care, 
Hamilton, ON, Canada. 
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4.1 Clinical Data Analysis Procedure 

The data analysis used in all clinical studies including the SSRI, rTMS, 
clozapine as well as medical diagnosis studies (to be discussed in next chapter), 
share the following procedure. 

As described in Chapter 2, Mt epochs of pre-treatment resting or spon­
taneous EEG signals, are collected from M subjects who participated in the 
study. They were then prescribed the assigned therapy. The corresponding 
response outcome y of the patient to the treatment, after completion of a full 
treatment plan, is recorded. The possible values for the y are either "R" (re­
sponder), or "NR" (non-responder). The set of pre-treatment EEG recordings 
and the corresponding outcomes is referred to as a training set. These EEG 
signals from each subject are pre-processed to extract a large number Ne of 
candidate features that might be relevant for prediction of response. The regu­
larized feature selection method explained in Section 2.2.3 is then used to find 
the indices of Nr discriminating features from the set of Ne candidate features 
using the training set to extract those features which are most indicative of the 
response outcome. These reduced-dimensionality features are then fed into a 
classifier which outputs the predicted response to the treatment. 

We are interested in using regression methods (like SVR and PLSR) for 
classification. As explained in Section 2.4.3 and particularly in Table 2.1, in 
the operational phase, when predicting the response to a therapy, or making 
a diagnosis recommendation, the regression function is applied to each epoch 
in the test set. Then the regression outputs for all epochs belonging to each 
subject are averaged. This average value is then quantized to the nearest value 
(e.g., responder or non-responder class) and then this final decision value is 
reported as the estimated target value for the subject. When one wants to use 
a discrete classification method (like NN) instead, the final decision for each 
subject is the majority vote among the classification results for all associated 
epochs. For statistical methods (like MFA), for all epochs associated with a 
subject, the posterior probability values for each class is averaged. Then, for 
example, in the maximum likelihood decision method ( as described in Section 
2.3.5), the class with maximum probability will be selected as the final output. 

We use the LnO nested cross-validation procedure explained in Section 
2.4.3. Based on the recommendation in [87], we try to use a P-fold cross­
validation procedure for performance analysis in most of our experiments, 
with 10 :::; P :::; 20. 
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4.1.1 Details of EEG Data Recording 

The EEG signals were collected under the auspices of Drs. Gary Rasey 
and Duncan MacCrimmon, Dept. of Psychiatry and Behavioral Neurosciences, 
Faculty of Health Sciences, McMaster University. Dr. Rasey is also with Mood 
Disorders Program, and Dr. MacCrimmon with the Schizophrenia Program at 
the St. Joseph Hospital, Hamilton, ON. All the clinical studies in this thesis 
are partly supported by the Canadian Psychiatric Research Foundation, the 
Ontario Mental Health Foundation and the Stanley Foundation. 

The EEG recording procedure for the following experiments is described 
as follows. Twenty channels of EEG (standard 10-20 system referenced to 
linked ears) were recorded at a sampling frequency of 205 Hz, after approxi­
mately 10 days of medication withdrawal and before a 6-week trial of antide­
pressant treatment was administered. For the clozapine study however, the 
pre-treatment EEG data were collected without change to the patient's cur­
rent medication regimen. A QSI-9500 EEG system is used, which filters the 
signals between [0.5Hz-80Hz] band and applies a notch filter at 60 Hz. Dur­
ing recording of the resting EEG data, the patient was in a semi-recumbent 
position in a sound attenuated, electrically shielded room. The process was 
administered by an experienced technician who prompted patients on signs 
of drowsiness. Sessions were arranged in the mornings and patients were re­
quested to avoid coffee, drugs, alcohol and smoking immediately prior to the 
recording. For each patient, a maximum of 6 EEG data files each of 3.5 min­
utes duration were collected, 3 under eyes open (EO), and 3 under eyes closed 
(EC) conditions. 

For de-artifacting, the data were partitioned into segments of 1 second du­
ration. If the input signal on any electrode saturated the acquisition hardware 
at any time throughout the segment, the entire segment was rejected. The 
signals were then digitally bandpass filtered after recording between 3Hz and 
38 Hz to partially mitigate the effects of eye movement and muscle artifacts. 

For each EEG file, 60 seconds of the 3.5 minutes of data which are not 
contaminated by artifacts are selected. The selected data are divided into 2 
epochs of 40 sec. duration with 50% overlap. Each epoch is further divided into 
1 sec. windows with 50% overlap to calculate the statistical quantities which 
become the candidate features as described below. A 1 sec. window length 
enables analysis of frequencies above approximately 3 Hz. These settings result 
in a total of a nominal MP= 12 epochs per subject1

. 

The EEG data from 16 EEG electrodes of Fpl, Fp2, F7, F8, F3, F4, T3, T4, 

1Some of the EEG recording sessions were missing and therefore some subjects only have 
8 or 10 epochs available. 
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C3, C4, T5, T6, P3, P4, 01, 02 are used (excluding data in midline electrodes 
FZ, CZ, PZ and OZ). It was observed that most of the reduced (most relevant 
or most discriminating) features used for the prediction process are bilateral 
variables indicating e.g., power ratios, coherences, etc. from electrodes on 
opposite sides of the central parasagittal boundary. Also, we were interested 
in using an smaller number of EEG electrodes to reduce data acquisition time, 
as well as data processing time and memory usage. In another arrangement 
of our setup, we observed that using the 16 electrodes above exhibited similar 
performance compared to the case where all 20 electrodes are used. Therefore, 
the 16 electrodes mentioned above were used in our main experiments, but we 
also did some experiments with an even smaller number of EEG electrodes, as 
discussed later. 

4.1.2 Candidate Numerical Features Extracted from EEG 

The candidate features extracted from each data epoch include statistical 
quantities such as the spectral coherence between all electrode/channel pairs at 
various frequencies2 , the mutual information between electrode pairs, absolute 
and relative power spectral density (PSD) levels at various frequencies3 , the log 
ratio of left-to-right hemisphere powers, and anterior/posterior power ratios at 
various frequencies and between various electrode pairs. The use of 2nd-order 
statistics as candidate features can be justified by considering that a complete 
set of statistical moments fully describes a multi-variate random process. In 
our study, the statistical quantities that are selected as candidate features are a 
subset of the complete set of moments, and therefore offer a partial description 
of the process generating the EEG observations. Such quantities have been 
used in previous related studies; e.g., PSD values are used in [96-101]; left­
to-right hemisphere powers are used in [98, 99]; and anterior/posterior power 
ratios are used in [99]. The work of [102] and [98, 99] used coherence between 
electrode pairs to assess the effect of the anti-psychotic drug clozapine and 
characterize depression, respectively. Also [100, 101, 103, 104] have used inter 
and intra-hemispheric power ratios as numerical indicators or predictors of 
treatment response. Mutual information was used in [105] to analyze EEG 
data abnormalities in 10 schizophrenic subjects as compared to 10 normals. 
Further, statistical quantities such as these have also proven useful in related 

2The magnitude squared coherence estimate was calculated using the Welch aver­
aged periodogram method by the MathWorks MATLAB software, ver. 7.1. See 
www. math works. com. 

3Welchs' averaged modified periodogram method was used with MATLAB to calculate 
PSD estimates. 
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previous EEG classification problems [106, 107]. With the frequency resolu­
tion and the number of EEG electrodes considered in these experiments, the 
number of candidate features Ne = 6988. 

4.1.3 Feature Normalization 

Clinical feature values are normalized before feature selection and classi­
fication to improve performance. A convenient means for accomplishing this 
purpose is the z-score. Using EEG data from 91 normal subjects, the means 
µt and standard deviations CJt, £ = 1, ... , Nc of each candidate feature are cal­
culated. The £th feature value Xt from a feature vector x is then replaced by 
its z-score value xrµc. An alternative method studied in our experiments is 

<7£ 

to normalize each feature to have a maximum absolute magnitude of unity 
so that each feature is in the interval [-1, 1 J. In this thesis, this method is 
referred to as the Max1Mag method. In our various experiments, we observed 
approximately similar average prediction performance with both of these nor­
malization methods (i.e., with both z-score and Max1Mag methods). However 
the list of Nr discriminating features was slightly different for the two methods. 
The z-score normalization method is preferably used in this thesis. 

4.2 SSRI Therapy for MDD 

'Selective serotonin reuptake inhibitors' (SSRis), are a class of antidepres­
sants widely prescribed in the treatment of depression, as well as in the treat­
ment of some other psychiatric disorders. SSRis affect the level of a neuro­
transmitter serotonin that neurons in the brain use to send messages to one 
another. Messages are passed between two connecting nerve cells (neurons) 
across the synapse, . a small gap between the cells using chemical mechanisms. 
For a signal to be propagated along a chain of neurons, neurotransmitters such 
as serotonin are released into the synaptic cleft by a proximal or presynaptic 
neuron then diffuse across the synaptic space to bind to receptors on the sur­
face of the recipient or post-synaptic neuron. This binding initiates a series of 
events in the post-synaptic neuron which results in changes to the electrical 
activity ( depolarization or hyperpolarization) of the post synaptic neuron. If 
the neuron is depolarized this signal is propagated across another synaptic 
cleft to the next neuron in that circuit. After binding to a synaptic recep­
tor, neurotransmitters eventually uncouple from the receptor and are again 
released into the synaptic cleft where they remain active by again binding to 
a synaptic receptor or are deactivated by being taken up by the presynaptic 
neuron using an active transport system. This process is termed 'reuptake'. 
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As depression may be the result of insufficient binding of the neurotransmitter 
serotonin to post synaptic receptors, SSRis may work by inhibiting the reup­
take of serotonin, an action which allows more serotonin to be available for 
binding with post synaptic receptors [108]. 

Some most commonly prescribed SSRis are paroxetine (with brandname 
or trade-name 'Paxil'), fluoxetine (with brandname 'Prozac') and sertraline 
(with brand name 'Zoloft'). 

As described previously in Chapter 1, a methodology that can employ pre­
treatment measures to predict the response to an SSRI treatment, such as 
the one proposed in this thesis, would eliminate the inefficient trial-and-error 
process that often characterizes the management of MDD. 

4.2.1 A Review of Previous Studies 

Over the years, strategies have been developed to employ resting EEG, or 
quantitative EEG (QEEG) data, especially of the prefrontal area, as a method 
for understanding the biological heterogeneity of psychiatric syndromes and 
predicting treatment outcome in depressed subjects [96, 97, 107, 109-117]. In 
our earlier (not yet published) studies examining pre-treatment QEEG spectra 
we observed superior antidepressant response to a new physical treatment for 
depression, repetitive transcranial magnetic stimulation (rTMS), in subjects 
whose pre-treatment QEEG showed frontal alpha power asymmetry with rel­
atively greater alpha power in the right compared to left frontal cortex. These 
findings together with those of others who reported that pre-treatment right­
hemisphere delta and theta absolute powers were increased in drug-free de­
pressed subjects, compared to controls, [100] suggest that the inter-hemispheric 
balance may play an important role in the pathophysiology of MDD. This is 
further supported by the observations of Bruder et al [101] who, employing 
EEG together with dichotic listening, found that greater alpha power in the 
right compared with the left hemisphere was associated with favorable response 
to the anti-depressant drug fluoxetine. The opposite hemispheric asymmetry 
predicted poor response. 

With respect to the application of more sophisticated mathematical ap­
proaches to treatment response prediction in MDD, a quantitative approach 
using artificial neural networks (ANN) employing clinical and demographic, 
but not EEG, features has been developed [35]. However this approach offered 
no better results than using traditional techniques. 

There have been other machine learning approaches for classification of 
EEG signals for prediction of response to treatment for MDD [118, 119]. How­
ever, these methods have resorted to ad hoc methods for feature reduction 
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and classification, in that no explicit criterion of optimality is used for these 
processes. The method of Greenwald et al. [119] classifies a multi-variate set 
of features by performing a sequential one-dimensional decision rule on each 
individual variable. In contrast, the method developed in this study applies 
the machine learning principles that directly employ information theoretic, 
least-squares or other optimality criteria as discussed in Chapter 2. 

Quantitative EEG measures such as 'cordance' [96] among others have 
shown potential value in predicting treatment outcomes. Cordance is a quan­
titative measure calculated from fast Fourier transformed EEG data, processed 
to obtain absolute and relative power in 4 frequency bands ( delta: 0.5-4 Hz, 
theta-I: 4-8 Hz, theta-II: 8-12 Hz, and Beta: 12-20 Hz), localized to regions of 
the scalp. Cordance has been shown to be correlated with cortical perfusion in 
the region beneath each electrode. Medication responders reportedly show de­
creases ( compared to pretreatment cordance) in prefrontal cordance measured 
after 48 hours and 1 week of treatment [96, 112]. In this study, pretreatment 
cordance by itself is not predictive of treatment response. 

Loud sounds activate serotonergic mechanisms in the frontal cortex and 
hypothalamus in rats and it has been suggested that the 'loudness dependent 
auditory evoked potentials' (LDAEP) may reflect central serotoninergic activ­
ity. In humans enhancement of serotonin function with the SSRI citalopram 
decreases the LDAEP [114]. A 'strong' LDAEP in a patient with MDD may 
therefore reflect serotoninergic underactivity, this in turn indicating potential 
response to drugs which enhance serotoninergic activity such as the SSRis. A 
'weak' LDAEP may indicate the need for a medication that affects other neu­
rotransmitters [115]. In this thesis, LDAEP data were not available therefore 
we used only the resting EEG. 

Sleep polysomnography is another method of obtaining measurements and 
analysis of EEG data during various phases of sleep. Sleep polysomnography 
(delayed 'rapid eye movement'(REM) onset, increased delta sleep ratio) to 
predict antidepressant response were not particularly successful, [116]. While 
response to antidepressant may be correlated with changes in REM sleep [120], 
this involves measurements taken after the antidepressant has been started. 
Furthermore nocturnal EEG collection is lengthy and logistically complicated. 
During the acute state of depression, sleep continuity measures were associated 
with the number of previous depressive episodes, but did not correlate with 
the prospective course. However decreased slow wave sleep and increased 
rapid eye movement density were predictive of recurrences [121]. Patients 
with abnormal sleep EEG profiles are reported to have significantly poorer 
clinical response to short-term interpersonal psychotherapy than the patients 
with more normal sleep profiles. This suggests that underlying neurobiology as 
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indicated by an abnormal sleep EEG may reflect a more marked disturbance of 
'central nervous system' (CNS) arousal that warrants pharmacotherapy, [122]. 
However, as sleep EEG recording is logistically complex, expensive and very 
time consuming, methods of estimating clinical response to antidepressant 
treatments that employ standard waking EEG signal are preferred. 

There are some other works related to neuroimaging ( and particularly func­
tional magnetic resonance imaging) in MDD. See [123] for a review. The most 
widely reported functional imaging abnormality in patients with MDD are 
prefrontal cortical hypoactivity [124], and hyperactivity of the subgenual cin­
gulate [125] and the anterior cingulate cortex (ACC) [126]. Subjects with 
higher metabolic rates in these regions of the cingulate cortex reportedly re­
spond better to sleep deprivation as well as to the antidepressant medications 
paroxetine, sertraline or venlafaxine [127-129]. These findings have been repli­
cated with a low resolution EEG tomographic analysis (LORETA) of resting 
EEG-data, with increased current source density in the anterior cingulate cor­
tex in responders to nortriptyline in the theta-frequency range [107]. 

These results, for the most part, have been observed during the resting 
state. It has been suggested that activation or challenge paradigms, and 
particularly those which use mood induction paradigms "may prove to be 
a more productive direction to take than resting state studies in depressive 
illness." [124]. One such paradigm involves pictures of faces showing sad or 
happy expressions to induce mood changes. When comparing activation pat­
terns during happy and sad stimuli directly, greater activation has been demon­
strated in the ventrolateral prefrontal cortex, the anterior cingulate cortex, the 
transverse temporal gyrus, and the superior temporal gyrus in healthy sub­
jects [130] and in the prefrontal and anterior cingulate cortices in depressed 
volunteers [123, 131]. The intensity of self-rated sadness is reported to cor­
relate with left sided amygdala activation [132]. Brain imaging methods are 
highly promising as potential response predictors, however, as with sleep EEG 
techniques, they are very complex, expensive and not readily available to the 
average clinician. 

In this study, the above works have been used as a potential guide to 
neuroanatomical regions of interest with respect to predicting response to an­
tidepressant treatment. However, we endeavored to develop a method that 
employs the inexpensive and readily available EEG. Our strategy was to fully 
exploit any neuropsychiatric salience that might be embedded in the EEG 
signal by using high performance machine learning methods of analyzing pre­
treatment EEG to predict response to SSRI treatment in subjects with MDD. 
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4.2.2 Experimental Details 

Twenty two subjects (9 males, 13 females, age 20.6 to 62.6, mean 48.9 
years) diagnosed with MDD using the internationally recognized Diagnostic 
and Statistical Manual - IV diagnostic criteria were treated with a 6 week 
course of an SSRI (particularly, the drug Sertraline hydrochloride, with the 
trade name Zoloft). Training data consisting of each subject's pre-treatment 
EEG and their ultimate response to the therapy were collected. 

Often in studies using EEG, it is necessary to distinguish between the EO 
and EC cases. Most studies involving EEG use only EC data to avoid artifact. 
However, at least one study found greater pre-treatment alpha power asym­
metry in responders to an SSRI vs non-responders for EO EEG [101]. In this 
study, it was also found that even though the selected features corresponding 
to the EO, EC, and EO- and EC-combined cases were different, the overall 
final performance did not vary significantly. Therefore in my study, combined 
EO and EC EEG measurements are used in the following experiments to make 
maximal use of the available data. 

The definition of a responder to the SSRI medication in this case was taken 
to be at least a 25% improvement between the pre--- and post-treatment Hamil­
ton depression rating scales. This is a 17 item clinical procedure undertaken 
by psychiatric interview with the patient and yields a quantitative indication 
of the severity of depression. Although "response" is often defined as at least 
50% improvement of depression rating scales, a recent review of the threshold 
for clinically significant improvement [133] concluded that this value is overly 
conservative as subjects considered to be "improved" by their own clinician 
showed only 23 to 42% improvement in scores using standardized symptom 
rating scales, such as the Hamilton Depression rating scale. Furthermore a 
25% improvement in depression rating scale scores in the first few weeks of 
treatment has been shown to be indicative of more extensive improvement 
several weeks later [134]. Finally, only 50% of those patients who go on to 
reach full remission do so in the first 6 weeks [135]. For these reasons it is be­
lieved that an improvement of 25% in Hamilton depression rating scale scores 
is clinically significant. 

In the SSRI experiments, the novel regularized feature selection method 
of 'maxKLD' which is based on maximum KL distance, as explained by Eq. 
(2.6) is used. 

4.2.3 Results 

Based on the EEG recording procedure described in Sect. 4.1.1 we nom­
inally have 12 epochs for each subject. However, in the SSRI study, for one 
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subject, only 10 epochs are available. Therefore, the total number of available 
epochs is Mt= (12 epochs/subject x 22 subjects - 2) = 262. See Section 4.1 
for details of the data analysis process. 

The performance of the proposed methodology for prediction of response 
to SSRI medication is documented in Table 4.6 for the case Nr = 8, where Nr 
is the number of discriminating features selected from Ne candidate features, 
as described in Section 2.2 and in Section 4.1. An 120 nested cross-validation 
procedure was used. As explained in Section 2.4.3, in the SSRI experiment, us­
ing 120 is equivalent to an 11-fold cross-validation procedure, as recommended 
by [87]. As may be seen, t~e performance is µH(8) = 86.6% prediction rate 
(which corresponds to µs(8) = 0.165, and µKL(O) = 0.866). The SVR and 
KP1SR methods yielded approximately equal performance. The number of 
major latent vectors which worked best for the KP1SR method is three. The 
parameter values used to calculate the performance measures in Sect. 2.4.2 are 
C112 = 1.5, C211 = 1, Pi = A = 0.5. It was found that the kernel-based predic­
tion methods employed in this thesis are not very sensitive to the design param­
eter Nr, in that the performance results generated for Nr = 5, 10, 12, 14, 16, 20 
were not significantly different compared to the Nr = 8 case, which means 
that they can tolerate some redundancy in the input data. Also, this means 
that there are several sets of discriminating features that have similar pre­
dictive power. The discriminating power of selected features is confirmed by 
observing that the "nearest-neighbor" (NN) classification method (see e.g. [4]) 
which is the traditional classifier that has no design parameter, results in an 
average performance reflected by µH( 8) = 83.04% (specificity=Pi11 =0. 786, 

sensitivity=A12=0.875), µs(8) = 0.2 and µKL(8) = 0.829. 
We also tested with 110, 130 and 150 cross-validation procedures (in­

stead of 120) and found no significant change in the average prediction per­
formance. This shows that the overall performance is not strongly dependent 
on the value of n in the 1n0 testing procedure, provided n is less than approx­
imately 7, considering the fact that data for only 22 subjects are available in 
the SSRI study. Thus, we see that performance is not strongly dependent on 
the training set, provided the relative number of training samples is not too 
small. For n ~ 7 in 1n0, it is observed that the average performance drops, 
as expected. 

EEG recordings were also taken 7 days after onset of treatment for 21 out of 
the 22 subjects used in the study. As a third test of performance, the proposed 
prediction model was trained using all pre-treatment data from the 22 subjects 
using Nr = 8. This prediction model was then tested using all available post-
7-days data. We observed that the average response prediction performance in 
this case is 88.5% (specificity=O. 769, sensitivity = 1), as reflected in Table 4. 7. 
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Table 4.6: The contingency table from the 120 nested cross-validation proce­
dure, for predicting response to SSRI therapy for subjects with MDD. Nr = 8. 

predicted predicted 
NR R % correct 

actual NR 12 2 85.7% 

actual R 1 7 87.5% 

Table 4.7: Contingency table obtained by testing the treatment-response pre­
dictor on the post-7-days EEG data, when the predictor is trained using all 
available pre-treatment data. Nr = 8. 

actual NR 
actual R 

predicted 
NR 
10 

0 

predicted 
R 
3 

8 

% correct 

76.9% 

100% 

Even though background EEG signals are nonstationary random processes, 
these results suggest that the underlying statistical behaviour of the EEG 
that allows us to discriminate responders from non-responders is persistent 
for the significant duration of about 7 days. Thus, there is evidence that the 
proposed prediction method will give persistent results, i.e., results that will 
not vary over an extended period of time. This also indicates that 1 week of 
antidepressant medications do not appear to alter those aspects of the EEG 
signal most relevant to prediction of treatment response. 

Finally for this post-7-days test data, it is interesting to observe that the 
'linear discriminant analysis' (LDA) which is a standard classification tech­
nique, and has no design parameter to estimate, (see e.g., [4]), provides a 
prediction performance of 82.2% (specificity=O. 769, sensitivity= 0.875). Com­
pare this to Table 4.7. The LDA classifier incorporates a linear boundary, and 
no kernelization procedure was used in this experiment. The result is a very 
simple mathematical structure with no design parameter, for discrimination of 
the classes. The satisfactory performance level of 82.2% indicates that the clus­
ters are well separated in the feature space. The experiment of Table 4. 7 used 
a Gaussian kernel ( with one design parameter) and a PLSR classifier ( also with 
one design parameter), resulting in a mathematical structure with only slightly 
higher complexity than the LDA case. Thus, with well-separated clusters, a 
simple mathematical structure, and a relatively large number of training sam­
ples (in comparison to the number of parameters), the performance obtained 
in Table 4. 7 is very unlikely to be a consequence of over-fitting. 
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We now show how low-dimensional representations based on nonlinear prin­
cipal components, as discussed in Sect. 2.3.7, can be used to visualize the clus­
tering behaviour associated with this problem. Fig. 4.1 shows a scatter plot 
of the Mt = 262 available training samples projected onto only the first two 
major nonlinear principal components. This figure was generated using the 
KPCA method with a Gaussian kernel using Nr = 8 common discriminating 
features among folds of a 110 procedure when applied to all 22 subjects. The 
patient index is written beside each data sample. Averaging the locations of 
the projected data samples belonging to each subject results in Fig. 4.2, in 
which each subject is shown with only a single point. These two figures show 
a noticeable clustering of the subjects into two classes, although the clustering 
is not perfect. This example further illustrates the fundamental integrity of 
the proposed prediction method, and shows that it is possible to select a set of 
reduced features from the background EEG which are indicative of response. 

4.2.4 A List of Discriminating Features for SSRI Ther­
apy 

A list of the most relevant discriminating features is shown in Table 4.8. 
The features are sorted based on the frequency (in Hz) of the corresponding 
statistic. Columns 3 and 4 reflect the means and standard deviations of non­
responder (NR) and responder (R) groups. These values however depend on 
the pre-processing and feature extraction procedure. All features in this table 
are intra-hemispheric coherence, mutual information and anterior to posterior 
log power ratios ( or front-to-back PSD ratio denoted by 'F /B' in the table). 
A feature is listed in this table if it is used at least once throughout the LnO 
procedure. 

The average value of all the intra-hemispheric coherence and mutual in­
formation features listed in Table 4.8 are lower for responder subjects than 
for non-responders. As well, the average values of the anterior to posterior 
log PSD ratios in this table (features 14 and 16) are close to zero for re­
sponders, indicating a more uniform distribution of 14 Hz EEG power levels. 
Non-responders on the other hand, had lower anterior to posterior EEG power 
ratios. Finally it should be noted that all identified frequencies are in the 
alpha or low beta bands. 

From the statistics shown in Table 4.8, we see that the individual fea­
tures are not significantly different between the R and NR groups, and thus 
single features on their own are incapable of discrimination. An important 
point is that the clusters corresponding to the prediction categories become 
distinct only when the features are jointly mapped into the Nr-dimension 

78 



Ph .D . T hesis - Ahmad Khodayari-Rostama bad Mcl\ll aster - E lect rical & Computer Engineeri ng 

0.4 

0.2 

0 

-o.6~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-0.6 - 0.4 -0.2 0 0.2 0.4 0.6 0.8 
axis 1, (PC1) 

Figure 4.1: Scatter plot of the projection of the Nr = 8- dimensional feature 
vectors from all M 1 = 262 available training epochs ( approx. 12 epochs per 
subject ) onto the first 2 major principal components, which are obtained using 
the KPCA method with a Gaussian kernel. The numbers identify epochs 
belonging to each subject. 
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Figure 4.2: Same as Fig. 4.1 , except that all points corresponding to each 
subject have been averaged. The clustering behaviour between the R and NR 
groups is clearly evident. 

feature space. 
An additional interpretation of the features is given in Fig. 4.3 which 

presents a graphical depiction of the most-relevant features listed in Table 4.8. 
A connection between two electrode sites in the figure corresponds to a se­
lected feature which involves those two locations. Connections are shown by 
solid thick lines. This roughly indicates relations between EEG sensors that 
convey relevant information for our response-prediction task. 

4 .2 .5 U sing a Smaller Number of EEG Electrodes 

Based on the EEG electrodes selected in the list of relevant features in 
Table 4.8 , in another experiment , pre-treatment measurements from only 7 
EEG electrodes consisting of Fpl , F3, F7, C3, T3, P3, T5, were used for 
the prediction study. The data from the remaining electrodes were discarded. 
These electrodes are all on the left side of the scalp. In this experiment, t he 
set of Ne = 950 EEG-driven candidate features extracted from each epoch 
include the magnitude-squared spectral coherence between all electrode pairs 
as a function of frequency (from 4Hz to 20Hz with lHz resolution). 

With the above design, the treatment-response prediction performance be­
came approximately 82%. This indicates that this cheaper and more readily 
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Table 4.8: A list of the most discriminating features, showing the mean and 
standard deviation of each feature ( after z-score normalization) over the non­
responder (µN, CTN) and responder groups (µR, CTR) to SSRI therapy. The 
EEG channel designations shown are in accordance with the standard 10-20 
system. 
# Selected Feature µN,(±uN) µR, (± <7R) 
1 Mutual Information between T3 & P3 0.769 (± 0.874) -0.066 (± 0.637) 
2 Mutual Information between T3 & T5 0.79 (± 0.901) -0.306 (± 0.824) 
3 Mutual Information between F4 & T4 0.93 (± 1.091) 0.004 (± 0.736) 
4 Coherence at f=9Hz between T3 & T5 0.564 (± 0.867) -0.566 (± 0.99) 
5 Coherence at f=lOHz between T3 & T5 0.59 (± 0.973) -0.688 (± 0.959) 
6 Coherence at f= lOHz between T3 & P3 0.488 (± 0.888) -0.456 (± 0.688) 
7 Coherence at f=lOHz between C3 & T5 -0.241 (± 0.972) -0.96 (± 0. 796) 
8 Coherence at f=lOHz between F7 & C3 0.041 (± 0.969) -0.624 (± 0.932) 
9 Coherence at f=llHz between T3 & T5 0.773 (± 1.035) -0.575 (± 0.99) 
10 Coherence at f= 12Hz between T3 & T5 0.846 (± 0.921) -0.501 (± 1.019) 
11 Coherence at f=12Hz between T3 & 01 0.82 (± 1.272) -0.28 (± 0.739) 
12 Coherence at f=13Hz between T3 & T5 0.826 (± 0.865) -0.468 (± 1.011) 
13 Coherence at f=14Hz between T3 & T5 0.775 (± 0.823) -0.497 (± 0.98) 
14 F /B PSD-ratio at f=14Hz, Fpl/F3 -0.24 (± 0.669) 0.575 (± 0.738) 
15 Coherence at f=14Hz between C3 & T5 -0.0618(± 1.021) -1.203 (± 0.86) 
16 F/B PSD-ratio at f=14Hz, Fpl/C3 -0.709 (± 0.911) 0.369 (± 0.85) 
17 Coherence at f=15Hz between T5 & P3 -0.472 (± 0.887) -1.726 (± 1.072) 
18 Coherence at f= 15Hz between T3 & T5 0.746 (± 0.809) -0.476 (± 0.921) 
19 Coherence at f=15Hz between C3 & T5 -0.21 (± 0.875) -1.243 (± 0.786) 
20 Coherence at f=16Hz between T3 & T5 0.717 (± 0.831) -0.373 (± 0.998) 
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Figure 4.3: In SSRI case, a rough schematic drawing showing the most relevant 
features by connections between corresponding EEG electrodes, as reflected in 
Table 4.8. Electrodes Al and A2 denote the linked ear reference. 

applied configuration of electrodes may suffice when this proposed method is 
adapted for use in the clinic. It is to be noted that we experimented with 
several other configurations of EEG electrodes (e.g., some with 3 electrodes 
only), but the results are not discussed here to save space. 

4.2.6 A Comparison of Feature Selection M ethods 

We now discuss a comparison of the following two feature selection methods 
described in Section 2.2: 

• FSl. The novel 'maxKLD ' feature selection method , as described by Eq. 
(2.6) using t he weighted Gaussian pdf assumption of Eq. (2.9) . 

• FS2. The Feature selection method of Peng. et al. [68], which is based 
on mutual information, as described by Eq. (2.7). 

The performance index used in the comparison was the average correct predic­
t ion performance, µH (G) , as defined by Eq. (2 .63), measuring the final efficacy 
of the selected features in each method using a cross-validation procedure. 

One advantage of the proposed 'maxKLD ' criterion is that it admit a sim­
plification based on a Gaussian approximation of the feature variables, as 
in (2 .8) and (2.9). Note however, that the method of [68] is inherently not 
amenable to a closed-form Gaussian approximation for mutual information, 
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due to the fact that the target variable y is discrete with only two values. 
Unfortunately however, the computation of the mutual information quantities 
is very fast when the y-variables is binary. This fact counter-acts the poten­
tial computational advantage of the Gaussian approximation of the maxKLD 
method. The net result is that the two methods require approximately the 
same execution time in this application. 

Furthermore, the overall prediction performance of the two methods was 
evaluated for the SSRI case. The best performance index values were 86.6% 
for both methods. Thus, we observe there is no apparent advantage in perfor­
mance of the proposed method. Nevertheless, an exposition of the method is 
included in this thesis, due to the scientific interest it may generate. 

4.2. 7 Discussion 

Our findings are consistent with the results of Cook et al [96], who found 
that absolute and relative power, as well as cordance, in all four EEG bands 
recorded pre-treatment over the regions implicated in mood disorders; i.e., 
prefrontal Fpl-Fp2-Fpz FC1-FC2-Cz, left temporal T3-T5; and right temporal 
T 4-T6 are not significant predictors of response. 

Several research groups have only used alpha power, considering an in­
crease indicative of less cognitive neural activity, and that depressed patients 
had greater inter-hemispheric alpha asymmetries. They only considered inter­
hemispheric asymmetries and found significantly greater overall pre-treatment 
alpha asymmetry with the right hemisphere more active in non-responders 
to the SSRI fluoxetine than responders [101] and responders had significantly 
greater alpha in the occipital regions than non-responders and controls, and 
also greater right over left alpha asymmetry with non-responders having the 
opposite asymmetry [104]. 

Considering Table 4.8, the list of most discriminating features are in the 
alpha or low beta frequency band. However, unlike other studies, e.g., [104], 
inter-hemispheric power asymmetries are not among the most discriminating 
features found by our method. Instead, our results show that responders 
have more uniform alpha and low beta power anterior to posterior in the 
left hemisphere than non-responders who showed relatively greater posterior 
power. 

Fourteen of the 20 features identified by our method are coherence between 
the EEG signals from two left hemispheric electrodes for alpha and very low 
beta frequencies. Coherence has not generally been a common feature selected 
for EEG analysis, especially in the field of psychiatric disorders. However, 
it has been used to discriminate subjects affiicted with MDD from normals 
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[98, 99], and in the study of the effect of clozapine therapy in schizophrenia 
[102]. 

As coherence and mutual information between several electrode pairs ap­
pear to be among the most highly predictive features ( especially in the T3-T5 
region), we might speculate that neural interaction or connectivity between 
the regions corresponding to the respective channels is highly relevant to SSRI 
response. In our study, responders had less coherence in the identified regions 
than non-responders, indicating less synchronism in the left prefrontal and 
temporal areas. 

4.3 rTMS Therapy for MDD 

Here, repetitive transcranial magnetic stimulation (rTMS, or TMS) ther­
apy for MDD is investigated. rTMS therapy, approved in Canada and the 
USA for use in patients with MDD, employs strong pulsed magnetic fields 
administered through a magnetic coil placed near the head of the subject, to 
induce electrical currents in the brain to change the activity of neuron popu­
lations. Typically, a period of 2 to 6 weeks of application of rTMS is required 
before the patient experiences relief from depression. rTMS therapy can be 
considered as a non-invasive version of electroconvulsive therapy (ECT). As 
with ECT, rTMS is typically reserved for use when antidepressant medications 
prove ineffective. For an overview of rTMS therapy, its effectiveness and its 
various clinical applications, see, e.g. [136-142]. In general only 40% to 50% 
of depressed persons treated with rTMS respond to treatment. A means of 
determining, in advance, whether rTMS will be effective would be of great 
value. 

The objective of this portion of the thesis is to evaluate the efficacy of an 
automatic data analysis procedure/model using pre-treatment EEG data, in 
which advanced machine learning methods are employed to predict whether 
or not an individual subject will be responsive or non-responsive to the rTMS 
therapy. 

4.3.1 Clinical Details of the rTMS Therapy 

In our study, a 2-week course of rTMS therapy was administered over 
the left4 or right dorsolateral prefrontal cortex, or both. Two different TMS 
magnetic stimulator devices are used: (i) Dantec Magpro and (ii) Magstim 

4The location is 5 cm anterior to the motor spot that elicited motor-evoked potentials in 
either the abductor pollicis brevis or the first interosseous dorsalis muscle of the right hand. 
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Superrapid. The magnetic power of the coils is up to 2 Tesla. The subjects 
are randomly assigned to receive any of the following: 

1. Right low frequency TMS (plus left sham high frequency TMS) 

2. Left high frequency TMS (plus right sham low frequency TMS) 

3. Right low frequency AND left high frequency TMS 

In all these, the high frequency value was lOHz and the low frequency value 
was 1 Hz. 

• Sham TMS: coil held with one wing touching the scalp and held at 90 
degrees to a tangent at the scalp site. The device output setting for 
Sham TMS intensity was set at 30 units. 

• High Frequency TMS: 20 trains at 10 Hz at 110% of motor threshold, 
train duration of 8 seconds, inter-train interval of 52 seconds using a 
figure 8 coil (total 16,000 pulses). 

• Low frequency TMS: = 2 trains at 1 Hz, train duration of 60 seconds, 
inter-train interval of 3 minutes using a round coil ( total 120 pulses). 
LF was administered immediately after HF TMS was completed. 

On the day of the first rTMS treatment, subjects received either 50 mg of 
sertraline or 10 mg of citalopram ( choice based on previous treatment history). 
The dose was doubled after 1 week. Further dose increments were made each 
week if the HamD improvement was less than 25% of the previous week's score 
(sertraline: 50 mg increments to a maximum of 200 mg/day; citalopram: 10 
mg increments to a maximum of 60 mg/ day). 

After 2 weeks of active rTMS therapy, as outlined above, all subjects con­
tinued to receive the medication (sertraline or citalopram, as described above) 
for 4 more weeks. Then at the end of 6 weeks of treatment, the clinical response 
(to be described later) is measured and is compared to the pre-treatment con­
dition. 

4.3.2 A Review of Previous Studies 

There are several studies which investigated using various clinical rating 
attributes and biographical parameters as predictors of treatment-response in 
rTMS therapy. Padberg et al. [143] found that improvement of depression 
after partial sleep deprivation was inversely correlated with improvement after 
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rTMS therapy. However this data analysis is done within 2 weeks with 10 ses­
sions of rTMS therapy administered 5 days after sleep deprivation. Fitzgerald 
et al. [137] employed linear regression models and used the improvement in 
Montgomery-Asberg depression rating scale (MADRS) as the treatment re­
sponse variable. They analyzed the baseline clinical and demographic data of 
40 subjects receiving rTMS and found that a greater degree of agitation in a 
baseline rating of psychomotor disturbance [144] was associated with better 
response. Fregni et al. [145] studied the relevance of demographic, depression 
and treatment characteristics, psychiatric and drug history to predict the re­
sponse to rTMS applied on left dorsolateral prefrontal cortex. They concluded 
that rTMS results in better outcome in younger and less treatment-resistant 
patients. Brakemeier et al. [146] found that a high level of sleep disturbances 
was a significant response predictor. Also, a low score of treatment resistance 
and a short duration of episode were positive predictors. As in the above two 
studies (i.e., [145, 146]), most patients also received concomitant antidepres­
sant medication, the response patterns may rather refer to combined treatment 
than rTMS alone. Brakemeier et al. [147] stressed this point and studied the 
clinical predictors in 79 drug-free subjects and found that the two formerly 
mentioned studies above (i.e., [145, 146]) could not be validated. However 
they found a confirmative result that a high level of therapy resistance (prior 
to starting the therapy) is associated with poor outcome. Lisanby et al. [148] 
studied the clinical predictors of acute outcome of active or sham TMS, in 
which changes in MADRS after 4 weeks was used as the response variable. 
They found that the number of prior treatment failures was the strongest pre­
dictor for positive response to acute treatment with TMS. They also claimed 
that shorter duration of current illness and lack of anxiety comorbidity may 
also correspond to an increased likelihood of response. 

Langguth et al. [149] studied baseline alterations of regional cerebral blood 
flow measured by single photon emission computed tomography (SPECT) 
imaging as well as baseline clinical characteristics as predictors of response 
to rTMS. In a data population of 24 subjects and using a multivariate re­
gression model, they found that high pretreatment anterior cingulate activity 
and low treatment-resistance to pharmacologic therapy were positive predic­
tors. Schiffer et al. [150] studied an alternative technique in which baseline 
lateral visual field stimulation is used to predict the clinical outcome of 10-day 
course of rTMS, and found that there was a significant correlation between 
the percent improvement in response to rTMS and their lateralized affective 
responses to lateral visual field stimulation. 

The short-term (less than a few minutes, or immediate) effect ofrTMS on 
EEG signals have been studied in a few papers including [151-155]. rTMS 
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appears to alter intrahemispheric directed coherence, and increase alpha and 
delta frequency power. In this thesis we examined pretreatment EEG as a 
predictor of the long-term response to a standard course (6-weeks) of rTMS 
therapy to treat MDD in treatment resistant subjects. 

As discussed in Sect. 4.2, there are significant research activities to em­
ploy resting EEG as a method for predicting treatment outcome in depressed 
subjects, however, there are only a few studies for prediction of response to 
rTMS therapy using EEG data, to be discussed as follows. 

In our earlier work examining pre-treatment EEG spectra, a superior re­
sponse to rTMS in subjects who showed frontal alpha power asymmetry with 
relatively greater alpha power in the right compared to left frontal cortex was 
observed. Price et al. [156] studied correlations between EEG features in­
cluding individual alpha power, alpha frequency as well as asymmetry indexes 
(using 9 EEG electrodes including F3, F4, F7, F8, T3, T4, Fz, Cz, Pz) and 
clinical response in 39 subjects with treatment-resistant depression, and found 
that there is weak evidence of predicted correlation between these features 
and clinical rating change. They concluded that the use of these features for 
clinical assessment is not supported by their results. Funk and George [157] 
describe a recent multisite study in which EEG data from 2 electrodes (Fpl 
and F3) will be measured in 240 subjects with MDD, with the aim of inves­
tigating whether or not the changes in prefrontal EEG power or asymmetry 
are associated with response to rTMS. However, in this publication, data on 
only 4 subjects were presented as a case series and no definitive conclusions 
are possible. Spronk et al. [158] studied the rTMS effect on 8 subjects and 
found that pre-treatment QEEG did not show treatment specific effects. 

4.3.3 Participants 

Subjects were recruited into an rTMS study approved by the Research 
Ethics Board of St. Joseph's Health Care, Hamilton, ON, Canada. In this 
study, 41 subjects diagnosed with unipolar MDD were treated with active/true 
rTMS. The exclusion criterion included failure to at least two courses of antide­
pressant. The other exclusion criteria for the rTMS study (as well as for the 
SSRI study discussed in Section 4.2) were: active suicidality, substance abuse, 
uncontrolled medical illness, personal or 1st degree family history of epilepsy, 
cardiac pacemaker, or any intracranial metal object. All subjects also received 
concurrent treatment with SSRI antidepressant medications (mostly 'Sertra­
line hydrochloride', with the trade name Zoloft). All subjects gave informed 
consent. Available socio-demographic and clinical information for participants 
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Table 4.9: Demographic information of 41 subjects with major depressive 
disorder who participated in the study. See text for definition of items marked 
by*. 

Information 
Age at start of treatment [years] 
Gender 
Handedness* 
Pre-treatment HamD score* 
rTMS type administered*: 

True left, Sham right 
True left, True right 
Sham left, True right 

Range 
Average=45.9, std=l0.3, min=20.3, max=65.8 
Female: 28 (68.3%), Male: 13 (31.7%) 
Average= 0.768, std=0.55, min= -1, max=l 
Average=21.3, std=3.7, min=15, max=29 

20 subjects 
9 subjects 
12 subjects 

are shown in Table 4.9. HamD denotes the 17-item Hamilton depression rat­
ing score. Left rTMS (true or sham) include high frequency pulses,but right 
rTMS (true or sham) include low frequency pulses administered to dorsolat­
eral prefrontal cortex. Handedness ranking was as follows. 1:Right-handed 
(30 subjects), -1: Left-handed (3 subjects), 0.75: Mostly right-handed, but 
some left (6 subjects), 0.25: some right, some left, but right is used more than 
left (1 subjects), -0.25: some left, some right, but left-hand is used more than 
right (1 subjects). 

4.3.4 Definition of Response 

Two response criteria are considered. In the first criterion, subjects were 
classified as "responders" if at least a /3 = 25% improvement in their 'Hamilton 
depression rating' (HamD) score after a period of six weeks of treatment is 
observed. This is a clinical procedure undertaken by psychiatric interview with 
the patient and yields a quantitative indication of the severity of depression. 
See Section 4.2.2 about relevance of a 25% improvement in six weeks. In the 
second criterion, a /3 = 50% or greater improvement in HamD is used as the 
response criterion. Therefore, for our purposes, the HamD percentage change 
value is discretized into two values ( or classes), corresponding to responder 
(R) when it is larger than or equal to /3, and non-responder (NR) otherwise. 
A non-responder is denoted by response indicator y = 1, and responder by 
y = 2. 

4.3.5 Analysis of Prediction Performance 

In the rTMS experiment, the training set consists of Mp = 12 EEG epochs 
from each of NP= 41 subjects, for a total of Mt= 492 epochs altogether. See 
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Table 4.10: Performance results for predicting the response to rTMS therapy 
for subjects with MDD, with an 140 test procedure (which is equivalent to 
11-fold cross-validation) and when /3 = 25% response threshold is used. Both 
EO & EC data are used 

predicted predicted '1o correct 
NR R 

actual NR 17 5 77.27% = specificity 
actual R 3 16 84.21% = sensitivity 

average= 80.74% 

Table 4.11: rTMS therapy: Prediction performance results when at least /3 = 
50% improvement in pre-post Ham-D score is used as the response criterion. 
Both EO & EC data are used 

predicted predicted % correct 
NR R 

actual NR 25 5 83.33% = specificity 
actual R 2 9 81.82% = sensitivity 

average = 82.58% 

Section 4.1 for data analysis process. The regularized feature selection method 
in Eq. (2. 7) is used. 

Table 4.10 shows the prediction performance for rTMS therapy for the 41 
subjects available for this study (consisting of 22 NR and 19 R subjects) when 
using all available EO and EC EEG data, and /3 = 25 % ( as the response 
threshold) is used. The average correct prediction rate is 80.74%. The 140 
cross-validation procedure with Nr = 8 discriminating features are used. Note 
that with 41 subjects, this is equivalent to an 11-fold cross-validation. This is 
the result obtained by the best SVR model; however, the results obtained by 
the MFA, RLS and kernel PLSR methods are not significantly different. 

If we use at least a /3 = 50% improvement instead of a /3 = 25% improve­
ment in the HamD rating score as the response criterion, we will have 11 R 
and 30 NR subjects in our data set. For this scenario, with an 140 cross­
validation test, the average performance rate as shown in Table 4.11 is 82.6% 
using the MFA prediction model with two mixtures and 1 factor (i.e., the best 
model parameters are found to be K = 2, m = 1 as defined in the MFA model 
in Section 2.3.6). Nr = 8 discriminating features are used in each step of the 
140 test. 

It is noticed that the regularized 'maximum relevance and minimum redun­
dancy' feature selection criterion by Peng et al. [68] based on mutual infor­
mation, gave approximately similar performance as compared to our 'maxKL' 
feature selection method where KL distance is employed in a regularization 
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framework (as described in Section 2.2.3). 
Further, the use of 'only-EO' data5 or 'only-EC' data is studied in alter­

native experiments. It is found that the average prediction performance is 
approximately similar to the previous case where all EO and EC data were 
used together. Note that in theory, it is expected to have a lower level of 
variations in statistical properties of the measured data in each of these al­
ternative experiment when only one type of EEG data is used (i.e., either 
EO or EC, not both). However, on the other hand, the high performance of 
the combined EO & EC case shows that both EC and EO data convey some 
common discriminating statistical information. It is also observed that the list 
of Nr discriminating features are different in each experiment, showing that 
each of the EO and EC conditions conveys some possibly different kind of 
discriminating information. Note that for example, for the EO case, the num­
ber of available data samples (Mt) is smaller, which is a disadvantage from 
machine learning point of view; however the data has lower variance which 
compensates the lower data size. For example, using Nr = 8 and employing 
the 'nearest-neighbor (NN)' classification method (which has no design pa­
rameter), the average prediction performance was 78.47% when only EO data 
( corresponding to Mt = 246 in our study) is used in both the training and test 
phases. Compare this figure with the one shown in Table 4.10 for the EO&EC 
case. 

With regard to data clustering performance, Fig. 4.4 shows a subject­
wise scatter plot of pre-treatment data of the 41 subjects who received rTMS 
therapy, projected onto only the first and second major nonlinear principal 
components. The objective in this figure is to check the clustering behaviour 
of the two classes (R versus NR group of subjects) for this 2-dimensional 
representation, which is useful only for the purpose of visualization. Again, 
the MaxlMag normalization and the KPCA method with a Gaussian kernel 
are used to generate the figure. Each subject is shown with only one point 
which is the average location of projected pre-treatment data samples/epochs 
belonging to the subject. The subjects are given an arbitrary ID number 
before starting the experiment (blind to treatment response), and this number 
corresponding to each individual is written beside each point in the figure. 
R subjects are shown with blue circles and NR subjects with red squares. 
The clustering result in this figure further justifies the discriminating power of 
simple quantitative features extracted from pre-treatment EEG data. 

When a /3 = 50% response threshold is used, employing all EO & EC EEG 

5Using 'only-EO' data means using only EO EEG files for training the predictor model, 
and then the model is tested on only the EO data available for each subject. This means 
that no EC data is involved in training or test. 
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Figure 4.4: For rTMS therapy, subject-wise scatter plot of projected pre­
treatment EEG data, with (3 = 25% improvement as the response threshold. 
This shows a clustering of responsive (R) and non-responsive (NR) group of 
subjects. 

data, the clustering performance by the KPCA method is shown in Fig. 4.5 
with Nr = 14 features. Compare this figure to Fig. 4.4. The two clusters 
associated with the R and NR group of subjects in Fig. 4.4 are more closely­
spaced (compared to the clusters in Fig. 4.5) , which confirms the slightly lower 
prediction performance obtained in the (3 = 25% case versus the (3 = 50% 
case. Note that the list of discriminating features is different compared to the 
case when a (3 = 25% response threshold is used . There are a few overlapping 
points which correspond to a mis-classification (or mis-prediction) , as reflected 
in Table 4.11. 

Comparing the prediction performance between rTMS and SSRI therapies, 
it can be seen that the treatment-efficacy prediction performance is lower for 
rTMS therapy compared to SSRI therapy. The reason might be the fact that 
there are several factors that could affect the efficacy of rTMS therapy. One of 
them is the exact scalp area where the TMS magnetic stimulations are applied 
in each subject. Variations in head size (relative to normal) could result in an 
inefficient TMS location, which might reduce rTMS efficacy and complicate the 
treatment process. The other factor to make the problem more complex is that 
some of the subjects got TMS treatments over the left dorsolateral prefrontal 
cortex, and some were treated over right side, or both sides. Subjects may 
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Figure 4.5: For rTMS therapy, subject-wise scatter plot of projected pre­
treatment data, when /3 = 50% improvement threshold is used. 

respond differentially to these different types of rTMS or these types of rTMS 
may not have equivalent efficacy. Therefore, the rTMS study needs to be 
investigated more carefully. 

4.3.6 A List of Discriminating Features 

A list of discriminating features for prediction of response to rTMS ther­
apy when the response is considered to be at least a /3 = 50% improvement 
based on pre-versus-post HamD change is shown in Table 4.12. The features 
are sorted based on the frequency in Hz associated with the corresponding 
statistic. The frequency values shown have approximately lHz resolution, and 
therefore one might consider the neighboring frequencies as well , expecting 
only a slight change in performance. Similarly, since our spatial resolution 
is limited, one might consider similar features derived from neighboring EEG 
electrodes, (particularly if one is experimenting with an EEG system that has 
a higher number of electrodes than the standard 10- 20 system that was used 
here). The list of relevant features derived using the regularized feature selec­
tion method depends on various factors including the EEG feature extraction 
and pre-processing procedure. The words 'F / B' and 'R/L' stand for the 'front­
to-back ' and 'right-to-left ' power spectral density (PSD) ratios (calculated as 
log difference of PSD values), respectively. Note that some of the features 
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A1 A2 

Figure 4.6: In rT MS case and for /3 = 50% response threshold: A rough 
schematic drawing which shows a list of some relevant features by connections, 
as reflected in Table 4.12. 

listed in Table 4.12 are related and therefore the list has some redundancy. 
It is found that no individual feature listed in Table 4.12 has significant 

discriminating ability on its own. It is t he joint informat ion in t he collection 
of all N,. features (i. e. , in the form of multivariate or multi-dimensional feature 
vector of size N,.) that results in t he performance numbers list ed in Table 4.11. 
Note t hat as an extension to this work, one might use a combination of t he 
simple features we used to obtain improved discrimination performance. 

As an alternative explanation of the features, Fig. 4.6 presents a graphical 
depiction of the most-relevant features listed in Table 4.12. A connection 
between two electrode sites in t he figure corresponds to a selected feature 
which involves t hose two locations. Connections are shown by solid t hick lines. 
This roughly indicates relations between EEG sensors t hat convey relevant 
information for our response-prediction task. Like in the previous SSRI case, 
t he features listed in t his figure and Table 4.12 may give some clues about 
the locality and interconnection of neurological mechanisms associated with a 
positive response to rTMS therapy. 

4 .4 Clozapine Therapy for Schizophrenia 

Compared with other antipsychotic medications, the atypical ant ipsychotic 
medication clozapine is recognized to have superior t herapeutic effectiveness in 

93 



Ph.D. Thesis - Ahmad Khodayari-Rostamabad McMaster - Electrical & Computer Engineering 

Table 4.12: A list of discriminating features/attributes for prediction of re­
sponse to rTMS antidepressant therapy with /3 = 50% improvement response 
threshold and using all EO & EC EEG data. 

# EEG-driven Numerical Feature 
1 Mutual Information between T5 & 01 
2 Correlation between T5 & 01 
3 Coherence at f=4Hz between F2 & F4 
4 Coherence at f=5Hz between F2 & F4 
5 Coherence at f=5Hz between F3 & C3 
6 Coherence at f=6Hz between F3 & C3 
7 Coherence at f=7Hz between F3 & C3 
8 Coherence at f=7Hz between P4 & 02 
9 Coherence at f=7Hz between F3 & F4 
10 Coherence at f=8Hz between F3 & C3 
11 Coherence at f=8Hz between P4 & 02 
12 F /B PSD-ratio at f=8Hz, F4/02 
13 R/L PSD-ratio at f=lOHz, 02/01 
14 R/L PSD-ratio at f=llHz, 02/01 
15 R/L PSD-ratio at f=12Hz, 02/01 
16 F /B PSD-ratio at f=12Hz, T4/T6 
17 Coherence at f=16Hz between T5 & 01 
18 R/L PSD-ratio at f=l 7Hz, 02/01 
19 R/L PSD-ratio at f=18Hz, 02/01 
20 Coherence at f=18Hz between T5 & P3 
21 Coherence at f=18Hz between T5 & 01 
22 Coherence at f=20Hz between T5 & 01 
23 F /B PSD-ratio at f=23Hz, Fl/F3 
24 R/L PSD-ratio at f=28Hz, F8/F7 
25 R/L PSD-ratio at f=36Hz, F8/F7 
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the treatment of chronic medication-resistant schizophrenia, e.g., [159]. How­
ever, clozapine may produce serious side effect such as seizures, cardiac ar­
rhythmias or bone marrow suppression with neutropenia [39]. According to 
a recent Cochrane review, about 34% of treatment-resistant patients respond 
to clozapine while 3.2% develop blood problems [159]. As the hematological 
side effects can be life threatening, blood samples to monitor the white blood 
cell count must be collected as frequently as weekly. The logistic difficulties 
for the patient and the treatment team are substantial. A method that could 
reliably determine, before the onset of therapy, whether a given patient will or 
will not respond to clozapine would greatly assist the clinician in determining 
whether the risks and logistic complexity of clozapine are outweighed by the 
potential benefits. 

QEEG or EEG may offer some promise in this regard. EEG abnormalities 
in schizophrenic subjects and EEG changes due to clozapine therapy have been 
the focus of a number of clinical studies, [43, 44, 102, 160-169]. 

Based on findings in 17 schizophrenic subjects, Knott et al. [170] found 
that the clozapine-induced improvement of psychopathology symptom ratings 
using the Positive and Negative Syndrome Scale (PANSS) was correlated with 
pretreatment QEEG inter and intra-hemispheric spectral power asymmetry. 
Greater pretreatment anterior to posterior asymmetry in the delta frequency 
range was associated with greater improvement in negative symptoms while 
greater pretreatment anterior to posterior theta asymmetry predicted improve­
ment of positive symptoms and global improvement. Larger inter-hemispheric 
asymmetry in the theta and beta frequencies in the central and anterior tem­
poral regions were, respectively, predictive of greater improvement in positive 
and negative symptoms. Gross et al. [171] also found that changes in the 
theta frequency in QEEG with clozapine treatment, particularly in the middle 
electrodes over the fronto-central scalp area, were a more sensitive indicator 
for the evaluation of clozapine treatment efficacy than the serum clozapine 
level. Though these methods reveal important relationships between QEEG 
variables and clinical outcome, a series of simple correlational analyses do not 
readily yield a "responder" or "non-responder" dichotomous categorization for 
an individual patient. 

The above analyses employed standard simple statistical methods. Ma­
chine learning techniques are finding increasing application in psychiatry, par­
ticularly when multi-dimensional, noisy, highly complex data or multi-modal 
data sets are analyzed together, see e.g., [172]. For example, the support 
vector machine (SVM) techniques to select spectro-temporal patterns from 
multichannel magnetoencephalogram (MEG) data collected during a verbal 
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working memory task have been used to distinguish schizophrenic from con­
trol subjects [173]. Machine learning algorithms using structural brain mag­
netic resonance (MRI) images [174], functional MRI (fMRI) data [175, 176] 
and combined genomic and clinical data [1 77] have been employed to separate 
schizophrenic, bipolar and healthy control subjects. 

Machine learning approaches to prediction of clozapine treatment-efficacy 
have also been employed. Lin et al. [178] describes a study in which a feed­
forward multilayer perceptron network (with a back-propagation error training 
technique) is employed using clinical and pharmacogenetic data to predict 
clozapine response in schizophrenic subjects. Five pharmacogenetic variables 
and five clinical variables (including gender, age, height, baseline body weight, 
and baseline body mass index) were collated from 93 schizophrenic subjects 
taking clozapine, including 26 responders. Using this method, they obtained 
an overall prediction accuracy rate of 83.3%. 

Guo et al. [175] describes a Bayesian hierarchical model using pretreatment 
fMRI and positron emission tomography (PET) information coupled with pa­
tient characteristics ( e.g. medical or family history and genotype) as training 
data to predict changes in brain activity in 16 schizophrenic subjects follow­
ing treatment with two atypical antipsychotics (risperidone or olanzapine). 
The authors postulated that predicting drug-induced changes in brain activity 
would assist the clinician in determining optimal drug choice. 

However, the clinical utility of these mathematical approaches is negatively 
impacted by the expense and unavailability of complex techniques such as 
fMRI, PET, genetic screening and MEG. In contrast, electroencephalography 
(EEG) is an inexpensive, non-invasive technique widely available in smaller 
hospitals and in community laboratories. Therefore, predictive algorithms de­
pendent on EEG measurements are more practical. Furthermore, since the 
required EEG data is obtained during the resting state, only minimal cooper­
ation is required from the patient. Thus, an EEG based method of predicting 
treatment response would have many advantages over imaging methods such 
as MRI, PET or MEG. 

The goal of the present study is to examine the utility of machine learning 
methods for processing EEG signals to predict the response of schizophrenic 
subjects to clozapine. 

4.4.1 Description of Subjects and the Clinical Assess­
ment Procedures 

Subjects, comprising both in-patients and out-patients, were recruited from 
the Schizophrenia Program at St Joseph's Hospital, Centre for Mountain 
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Health Services, Hamilton, Ontario. All subjects met both Diagnostic and Sta­
tistical Manual of Mental Disorders of the American Psychiatric Association, 
4th Edition (DSM-IV) [45] for schizophrenia and the Kane et al. [179] criteria 
for treatment resistance. Patients meeting these criteria may be considered to 
be "severely symptomatic", i.e., as suffering acutely from schizophrenia. All 
subjects gave informed consent. 

Data from two groups of schizophrenic subjects were used in this retro­
spective study. The first group (Group A) consists of 23 subjects. Group B 
is an independent sample of 14 subjects. Available socio-demographic and 
clinical information for Groups A and B are shown in Tables 4.13 and 4.14. 
Symptom severity after clozapine treatment is measured in Group A using 
the positive and negative syndrome scale (PANSS) score [180]. As PANSS 
scores were not available for Group A subjects prior to clozapine treatment, 
pre-treatment symptom severity was assessed through a quantitative clinical 
assessment (QCA) conducted by review of the clinical record guided by the 
structure of the PANSS. The QCA procedure is outlined at the end of this 
subsection. All QCA raters were blind to the machine learning outcome pre­
dictions. QCA was used to assess psychopathology both pre and post clozapine 
treatment in Group B. PANSS evaluations are not available for Group B sub­
jects. In Tables 4.13 and 4.14, the education level rating is done as follows: 1: 
grade 6 or less, 2: grade 7 to 12 without graduating, 3: graduated high school, 
4: part college, 5: graduate 2 years college, 6: graduate 4 years college, 7: part 
graduated/professional school, 8: completed graduated professional school. 

We now discuss how we determine whether a patient is a responder (R) 
or non-responder (NR). In this retrospective pilot study quantifying clinical 
response is complicated by the absence of pre-treatment PANSS scores. We 
were therefore obliged to define response on the basis of a single post treatment 
PANSS score. To do this we created post-treatment PANSS score6 thresholds 
81 to assess response: first we rank-ordered all subjects by post treatment 
PANSS score then chose a value of 81 (88.5) such that our 23 subjects were 
divided into responder (R) and non-responder (NR) classes with roughly equal 
number of subjects (R=12, NR=ll). 

Having R and NR groups of similar size has advantages with respect to 
the machine learning process; however, this assumes that clinically significant 
improvement is seen in about 50% of those treated with clozapine. Others 
have reported that, on average, only 34% of treatment-resistant schizophrenic 

6Using the PANSS data, the 'total rank' (TR) score is used as the clinical assessment 
in our experiments. TR is the sum of three scales in PANSS: 1. general rank, (GR), 2. 
positive (or productive) symptoms scale, (PSS), 3. negative (or deficit) symptoms scale, 
(NSS). This means that TR=GR+PSS+NSS. 
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Table 4.13: Demographic information of the 23 subjects (denoted Group A) 
who participated in the clozapine study. The lower 4 items in the table are 
scales related to the PANSS clinical rating score. The item with* is described 
in the text. Avg denotes 'average', and std denotes 'standard deviation'. 

Information Range 
Age at start of treatment [years] Avg=41.2, std=8.4, min= 28.8, max=57 
Gender Female: 11 (48%), Male: 12 (52%) 
Educational Level* Avg=3.1, std=l.4, min=2, max=7 
Age at symptom onset [years] Avg=21.2, std=5, min=14, max=32 
Total# of Hospitalizations (Pre-clozapine) Avg=9.7, std=13, min=O, max=63 
Duration total of Hospitalization 

(Pre-clozapine) [days] 
Chlorpromazine Equivalents (Pre-clozapine) [mg] 
Clozapine dose [mg/day] 
Post-treatment Positive Symptoms Scale 
Post-treatment Negative Symptoms Scale 
Post-treatment General Symptoms Rank (GR) 
Post-treatment Total Rank (PSS+NSS+GR) 

Avg=615.7, std=928, min=O, max=3789 
A vg=726.6, std=636, min=40, max=2485 
Avg=344.6, std=l57, min=50, max=600 
Avg=l 7.8, std=3.4, min=l 1, max=24 
Avg=23, std=3.9, min=12, max=32 
Avg=46.3, std=5.7, min=32, max=56 
Avg=87.2, std=l0.9, min=58, max=lOl 

Table 4.14: Available demographic information of the 14 schizophrenic sub­
jects denoted by Group B. 

Information 
Age at start of treatment [years] 
Gender 
Educational Level* 
Age at symptom onset [years] 
Total # of Hospitalizations (Pre-clozapine) 
Duration total of Hospitalization 

(Pre-clozapine) [days] 
Chlorpromazine Equivalents (Pre-clozapine) [mg] 
Clozapine dose [mg/day] 
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Range 
Avg=35.7, std=lO, min= 22, max=55.5 
Female: 6 (43%), Male: 8 (57%) 
Avg=3.3, std=l.64, min=2, max=7 
Avg=21.3, std=5.28, min=15, max=31 
Avg=6.43, std=6.9, min=O, max=18 

Avg=470.8, std=627, min=O, max=1879 
Avg=628, std=404, min=40, max=1169 
Avg=396.4, std=lOl, min=200, max=500 
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patients will respond to clozapine. For this reason we also reanalyzed our data 
using a value 61 = 83.5 which yields a 30% response rate (i.e. with 7 R and 
16 NR subjects in group A). 

We must confirm that the pre-treatment QCA means of the R and NR 
subgroups of group A subjects are not significantly different, so that the post­
treatment PANSS rating alone accurately indicates the effect of the treatment 
on the subject. To this end, we conducted a hypothesis test on the means, 
assuming the QCA data points are independent and normally distributed, and 
that the variances of the Rand NR groups are identical. It is straightforward 
to show that the respective likelihood ratio is F-distributed. In this case, 
df=lO, 11 for the numerator and denominator, respectively, with F=l.1056 
and p=0.43. Thus, there is no evidence to suggest the pre-treatment QCA 
means of the two groups are significantly different. 

Group B subjects are defined as responders to clozapine therapy if there 
is an improvement of at least 25% between the pre- and post-QCA scores. 
This level of relative change represents a clinically significant improvement in 
symptom severity considering the fact that all the subjects in our study were 
in the treatment-resistant population [181]. See e.g., Kane et al. [179] who 
used a 20% relative change as response indicator. 

4.4.1.1 The QCA Clinical Rating Procedure 

The QCA clinical rating procedure was devised in the context of an un­
related earlier naturalistic retrospective un-published clinical study of treat­
ment resistant schizophrenic patients being considered for clozapine treatment. 
The subjects in the present study were included in this previous study. An 
experienced clinician reviewed all the available clinical descriptive informa­
tion of the patient's symptomatology prior to beginning a course of clozapine. 
Reported symptoms, corresponding to those described in the PANSS, were 
rated as: present, moderate or severe on a one to six point scale. Only explic­
itly described symptoms were scored and the clinical rater was instructed not 
to infer the presence of potential symptoms. The same rating was repeated, 
based on case records describing current symptoms at the time ( usually after 
approximately six months) when the decision was made to either discontinue 
or continue with on-going maintenance clozapine therapy. 

4.4.2 Results 

The training set consists of a nominal Mp EEG epochs from each of NP 
subjects, for a total of Mt epochs altogether. In the clozapine experiment, 
NP= 23 and Mp= 12. However for two subjects in this study a total of 8 and 
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10 epochs (instead of 12) are available. Therefore the total number of epochs 
is Mt= 270. 

See Chapter 2 as well as Section 4.1 for details of the feature extraction, 
regression/classification and evaluation methods used, and see Sect. 4.1.1 for 
details of the EEG recording process for this study. The regularized feature 
selection as illustrated by Eq. (2. 7) is used. For responders, the values y = 1 
and for non-responders y = 2 are arbitrarily assigned. As discussed in Section 
4.1, the regression/ classsification function is applied to each epoch. In the test 
phase, all the regression outputs are averaged for all epochs associated with 
each subject. The quantization is done by comparing the average of regression 
function for all epochs corresponding to each subject to the threshold 1.5, 
which means that an average of less than 1.5 is determined as being an R 
subject, otherwise it is reported as an NR subject. 

4.4.2.1 Treatment-Efficacy Prediction Performance 

The first set of results uses data from group A which consists of 23 subjects. 
The set of candidate features were extracted from the pre-treatment EEG data 
and then reduced into a set of Nr = 8 most relevant features. SVR and kernel 
P1SR models/classifiers were then trained. The prediction performance was 
then evaluated using the leave-two-out (120) testing procedure (i.e., a 12-fold 
cross-validation) as discussed in Section 2.4.3. However, similar performance 
is obtained with the 110 procedure. The number of latent variables in kernel 
P1SR model as well as other design parameters in both P1SR and SVR models 
are found using the nested cross-validation parameter optimization method 
described in Sect. 2.4.3. 

The performance evaluation results using the combined EO and EC EEG 
data sets together for the 23 subjects, for a value 61 = 88.5 and Nr = 8 
are summarized in Table 4.15(i), where it is seen that the overall prediction 
performance is 87.12%. When 61 is reduced to 83.5 corresponding to a 30% 
responder rate, the overall performance becomes 89. 7% as reflected in Table 
4.15(ii). For this experiment, the performances of both the SVR and kernel 
P1SR regression methods were identical. In the kernel P1SR method, two 
major latent vectors are used. These results indicate that it is indeed possible 
to predict the response to clozapine therapy using the proposed methods. 
Further experiments were performed using a range of 61 from 83.5 to 92.5; 
prediction performance was above 85% in all cases. 

The results using data from both subject groups A and B are now pre­
sented. For this second experiment, we train the classifiers using group A as 
training data, and then test the prediction performance over group B (with 14 
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Table 4.15: Performance results predicting the response to clozapine therapy 
in Group A subjects using combined EC and EO EEG data, and Nr = 8. 
Subjects with a post-treatment PANSS score (total-rank) of less than 81 are 
considered responsive (R). 

(i) 81 = 88.5 predicted predicted % correct 
R NR 

actual R 10 2 83.33% = sensitivity 
actual NR 1 10 90.91 % = specificity 

average= 87.12% 

(ii) 81 = 83.5 predicted predicted % correct 
R NR 

actual R 6 1 85. 7% = sensitivity 
actual NR 1 15 93.75% = specificity 

average= 89.7% 

Table 4.16: Independent test performance using subjects in group A as training 
data (with 81 = 88.5), and group B as test subjects. Response to clozapine 
therapy is defined as a more than a 25% improvement in the QCA score. 

(i) 81 = 88.5 predicted predicted % correct 
R NR 

actual R 6 1 85.7% = sensitivity 
actual NR 1 6 85.7% = specificity 

average = 85. 7% 

subjects). A group B responder in this case is defined as a subject having an 
improvement of at least 25% between the pre- and post-QCA scores. The av­
erage treatment efficacy prediction performance for this experiment was 85. 7% 
as reflected in Table 4.16. This shows a satisfactory prediction performance 
under different conditions when the classifier is trained on one set, and then 
tested on another independent set. 

We now show an example where a view of Nr-dimensional feature space is 
represented on a surface. In this case, the Nr-dimensional feature space is com­
pressed into 2 dimensions using the low-dimensional representation technique 
described in Sect. 2.4. Fig. 4. 7 shows a scatter plot of 270 points correspond­
ing to the 270 available epochs of EEG data from the group A subjects. This 
figure was generated using the kernel PCA method with a Gaussian kernel. 
Filled circles correspond to responders and squares to non-responders. The 
number written beside each data sample is the corresponding subject index, 
assigned arbitrarily. Averaging the location of all data samples belonging to 
each subject results in Fig. 4.8, in which each subject is shown with one point. 
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Table 4.17: A list of discriminating features for clozapine treatment-efficacy 
prediction using pre-treatment EEG information. <51 = 88.5. The mean and 
standard deviation of each feature over the responder (µR, O'R) and non­
responder groups (µN, O'N) are shown. 

Selected EEG-driven Feature µR, (± aR) µN, (±aN) 
Mutual Information between T3 & P3 1.056 (± 0.868) 0.109 (± 0.571) 
Mutual Information between T3 & 01 1.498 (± 2.382) -0.169 (± 0.734) 
Mutual Information between C3 & P3 -0.169 (± 0.997) -1.154 (± 0.608) 
Correlation between F8 & T4 1.072 (± 0.596) 0.56 (± 1.105) 
Coherence at f=4Hz between T3 & P3 0.725 (± 0.865) -0.356 (± 0.885) 
Coherence at f=5Hz between T3 & P3 0.838 (± 0.853) -0.178 (± 0.753) 
Coherence at f= 6Hz between T3 & 01 0.713 (± 1.411) -0.375 (± 0.864) 
Coherence at f=6Hz between T3 & P3 0.718 (± 1.007) -0.241 (± 0.812) 
Coherence at f=6Hz between C3 & 01 -0.518 (± 1.007) -1.169 (± 0.871) 

10 Coherence at f= 9Hz between T3 & 01 0.816 (± 1.194) -0.199 (± 1.011) 
11 Coherence at f=lOHz between T3 & T5 0.532 (± 0.844) -0.254 (± 1.088) 
12 Coherence at f= lOHz between T3 & P3 0.774 (± 0.765) -0.044 (± 0.913) 
13 Coherence at f=lOHz between C3 & P3 0.007 (± 0.736) -1.072 (± 1.3) 
14 Coherence at f=llHz between C3 & P3 0.008 (± 0.78618) -0.804 (± 1.039) 
15 Coherence at f=llHz between T3 & P3 0.869 (± 0.728) 0.065 (± 0.815) 
16 Coherence at f=12Hz between T3 & P3 1.06 (± 0.771) 0.092 (± 0.881) 
17 Left to right PSD-ratio at f=12Hz, T5/T6 0.11 (± 0.828) 0.894 (± 1.348) 
18 Coherence at f=12Hz between T3 & T5 0.688 (± 0.789) -0.183 (± 0.928) 
19 Coherence at f=13Hz between F7 & F3 0.418 (± 0.812) -0.165 (± 1.221) 
20 Left to right PSD-ratio at f=16Hz, T5/T6 -0.069 (± 0. 793) 1.01 (± 1.274) 
21 Left to right PSD-ratio at f=29Hz, T5/T6 -0.26 (± 0.983) 0.537 (± 0.866) 

The clustering between the R and NR groups is clearly evident in this figure. 
Thus, this two-dimensional representation demonstrates that 1) a set of dis­
criminating features exists that is sufficient for distinguishing responders and 
non-responders, and 2) the proposed machine learning techniques are indeed 
capable of predicting the long-term outcome of schizophrenic subjects being 
treated with clozapine. The clustering performance shown in this figure is in­
dicative that the nonlinear transformation imposed using our Gaussian kernel 
in conjunction with a linear classifier or regression technique will perform well. 

4.4.2.2 A List of Discriminating Features 

Even though we have selected the value of Nr to be eight in our experi­
ments, we show a list of the 21 most relevant EEG features of interest in Table 
4.17. The features are sorted based on frequency (in Hz) of the corresponding 
statistic. Each of the features listed in the table is selected at least once over 
all 120 iterations in the cross-validation procedure. 
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Figure 4.7: The clozapine study: a demonstration of the clustering behaviour 
of the selected discriminating features. The Nr = 8 dimensional feature space 
compressed into 2 dimensions using the KPCA method. There are nominally 
12 data points corresponding to multiple EEG epochs from each subject . The 
subject index corresponding to each point is indicated on the plot . The clus­
tering behaviour between the R and NR groups is clearly evident . 
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Figure 4.8: Same as Fig. 4.7, except that all data points belonging to each 
subject in Fig. 4.7 are averaged to provide one point per subject. 
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Figure 4.9: In clozapine case, a rough schematic drawing showing a list of 
some relevant features by connections, as reflected in Table 4.17. Connections 
are shown by solid thick lines. Electrodes Al and A2 represent the linked ears 
reference. 
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As an example graphic explanation, Figure 4.9 is a depiction of the most­
relevant features selected in Table 4.17. A connection between two electrode 
sites in the figure corresponds to a selected feature which involves those two 
locations. It roughly indicates any relations between EEG sensors that convey 
relevant information for our prediction problem. 

4.4.3 Discussion 

We can provide some further evidence of the validity of the proposed re­
sponse prediction method for the clozapine therapy, as follows. Note that 
similar argument can be made based on the specific results obtained for each 
of the SSRI and rTMS therapies. First, the clustering behaviour shown in 
Figure 4.8 shows clean separation of the clusters, which is a strong indication 
that the reduced features can indeed discriminate long-term response. Also, 
with the LnO cross-validation procedure, different test and training samples 
are used in each iteration, and yet overall, a reasonable performance level is 
attained. This suggests the proposed machine learning procedure is consis­
tent across variations of the input data. Particularly in the clozapine case, a 
final argument to suggest validity of the proposed method is with regard to 
the results of Table 4.16. Here, the prediction procedure is trained on Group 
A data and tested on a completely independent set of Group B data. Even 
though performance degrades somewhat, the resulting performance of 85. 7% 
is still quite satisfactory. We can further examine the integrity of the proposed 
prediction procedure by evaluating the probability that our demonstrated pre­
diction performance would have been due to chance alone. With reference to 
Table 4.15(i), there are 12 responders and 11 non-responders, so the probabil­
ity p of a responder may be taken as 12/23 = 0.5212. Assuming all subjects 
are independent, the probability of a prediction error is governed by a bino­
mial distribution, which is parameterized by N, the number of samples, and 
p, in this case the probability of a responder. Therefore, the probability of 
this level of performance (10 classifications as Rand 2 as NR out of N = 12 
true responders) occurring due to chance alone is evaluated from the bino­
mial distribution as 0.0226. Similarly, the value of p for the non-responder 
case is 0.4 783, so the probability of estimating 10 NR and 1 R out of 11 
non-responders due to chance alone is 0.0036. Similarly, for the case of Table 
4.15(ii), the corresponding figures are 0.0039 and 0.0211 for the R and NR 
groups, respectively. Thus we see that these figures are negligibly small and 
we can conclude the prediction results are almost certainly a consequence of 
the distinguishing characteristics of the EEG measurements obtained from the 
two groups. 
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By employing more advanced analytical models, the present study was 
designed to extend and improve upon the utility of EEG in predicting the 
responsiveness to clozapine as investigated in other studies. Although Gross 
et al. [171] found that changes in EEG features correlated with outcome, post 
treatment EEG data was required. Our methodology is more potentially use­
ful to the clinician as prediction is possible using EEG data collected before 
this potentially toxic treatment is initiated. Knott et al. [170] found that 
pre-treatment QEEG asymmetry was predictive of response. We observed 
that QEEG inter and intra hemispheric asymmetry were a useful features, 
but we were able to extend the findings by [170] to develop a method that 
automatically categorizes subjects into responder and non-responder groups. 
Both [171] and [170] looked at a limited set of quantitative EEG features as 
treatment-response indicators. 

The goal of this study was to propose a new clinical data analysis method 
and derive an empirical set of EEG features predictive of response to cloza­
pine, not to derive neurological information regarding the pathophysiology of 
schizophrenia. Nevertheless the clustering of relevant EEG features in the 
temporo-parietal area of the dominant hemisphere, as seen in Table 4.17 and 
in Fig. 4.9, may be of some interest to those studying regional brain activity 
patterns in patients with schizophrenia. Others have described bilateral re­
duced grey matter volume in the temporal lobes (e.g., Okugawa et al., [182]) 
and electrophysiological abnormalities in the left temporo-parietal region on 
EEG (e.g., Faux et al., [183]) in schizophrenic patients. 

In this study, as in the study of prediction of response to SSRI medication, 
coherence variables were prominent among the features selected as predictive 
of treatment response. In contrast to the results associated with good response 
in the SSRI treated sample, coherences are in every case higher in the respon­
der than in the non-responder group. Coherence in the temporo-parietal area 
seemed particularly important in that 7 of the 21 listed features involve either 
coherence or mutual information between the T3 and P3 electrodes. The neu­
rophysiological meaning of this is obscure at this time. However, GABAergic 
inhibitory networks have been implicated in the pathophysiology of schizophre­
nia and in the response to clozapine [184], and these appear to be involved in 
regulating EEG coherence between the temporal and parietal areas [185]. One 
might speculate that patients with higher coherence in this area are afflicted 
with a subtype of illness that is more likely to respond to clozapine. 

This retrospective study suffers from some weaknesses. Most notably our 
QCA clinical rating is based on chart review and therefore likely to be less 
accurate than a standardized PANSS. However, our raters were clinicians ex­
pert in the treatment of schizophrenia and familiar with the subjects being 
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evaluated. The QCA would therefore have reasonable clinical validity. The 
high predictive accuracy of our algorithm in both group A and group B sub­
jects even in the face of this source of outcome variance may speak to the 
robustness of this methodology. As QCA and PANSS ratings were completed 
years before this project they could not have been influenced by the machine 
learning assignment into responder and non-responder groups. 

4.5 Concluding Discussion on Response Pre­
diction 

The performance of the proposed method suggests that suitably-selected 
features extracted from the EEG cluster according to how the patient responds 
to the treatment under consideration. Thus, the pretreatment EEG appears 
to contain information regarding brain functioning that is relevant to, and pre­
dictive of, the therapeutic effect of SSRI or rTMS antidepressant medications, 
or of the antipsychotic clozapine. 

Most studies, have used a small preselected set of features and sometimes 
even a limited set of electrodes to determine whether it is possible to predict 
response to one or several antidepressant drugs. Our proposed feature selection 
process is novel in this respect, in that we have considered a large number of 
features including those, or similar ones, already cited in the literature, and 
reduced them into a much smaller set that is most statistically related to the 
response variable. In this way, rather than hypothesizing beforehand whether a 
particular feature is indicative of response and then verifying the hypothesis as 
required by previous approaches, the proposed method automatically identifies 
relevant features without the need for costly experimental verification. Thus 
our method can identify salient features that could be missed with previous 
methods. 

Our experiments with SSRI and clozapine response prediction led to two 
important practical observations that may be relevant to deployment of this 
methodology in the clinical setting. First the predictive algorithms appear to 
work very well whether the test subject is taking medications at the time of the 
EEG sampling or not. This is relevant as taking a patient off medications not 
only delays initiation of new treatment but also can be associated with clinical 
worsening due to withdrawal symptoms. Secondly, effective response predic­
tion using a reduced number of EEG electrodes is possible. This translates as 
less complex, less time consuming and less expensive EEG methodology. 

What is particularly encouraging to us is that our feature selection process 
which reduces numerous EEG candidate features into an optimized reduced 
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feature set has resulted in a feature set that includes frequencies at sites in the 
brain previously identified by other researchers as relevant to depression and its 
treatment. This confirms the validity of the proposed feature selection method 
and further suggests that the selected features have physiological/ anatomical 
and clinical relevance. 

Because some of the features have strong statistical dependencies, the set 
of selected features (e.g., in Table 4.8) is not unique. Some of the features 
may be replaced with others, with small penalty in performance. However, 
because of the inter-dependence of these features, a replaced feature set could 
be indicative of the same neurological information as the original and therefore 
likely correspond to closely related spatial locations and frequencies. 

In our experiments, only non-significant differences between nonlinear SVR 
and kernel PLSR classifier models were observed. However, it was noticed that 
the SVR method provides good prediction performance even with a relatively 
small number of training samples. An additional benefit of the kernel PLSR 
model on the other hand is that it inherently provides a low-dimensional repre­
sentation of the data. A larger dataset is needed for more robust comparisons. 
From various experiments done in this research, it is observed that the advan­
tage of using Gaussian and polynomial kernels is apparent when the value of 
Nr is small. When Nr is larger, a linear kernel may give better results. This 
could be due to the fact that it is harder to find optimum design parameters 
for a more complex kernel. Despite this, the best overall test performance is 
obtained using a small number of relevant features and nonlinear kernels. 

Note that most of the selected features listed in Tables 4.8, 4.12 and 4.17 
are coherence or mutual information measures between a given pair of elec­
trodes. These quantities are indications of synchrony between the respective 
regions. The fact that our proposed machine learning procedure has iden­
tified these synchronies as being predictive of response may provide valuable 
clues to the psycho-neuro-science community towards the understanding of the 
pharmacological mechanisms of SSRI, rTMS and clozapine therapies. Further 
exploration of this idea remains an exciting topic for further investigation, yet 
its development is beyond the scope of this thesis. 

Looking further into Tables 4.8, 4.12 and 4.17 and Figures 4.3, 4.6 and 4.9, 
the difference between the relevant features in the SSRI, rTMS and clozpaine 
cases are in agreement with our goal of finding exclusive treatment-efficacy 
prediction models for each therapy, thus allowing the user to determine which 
therapy suits the subject under test. It can also be seen that there are several 
common features that have predictive value in both SSRI and clozapine ther­
apies, however, these two cases share little common features with the rTMS 
therapy. The other observation is that several features in the frequency band 
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greater than 17Hz (i.e., in the beta range) are found to be among the most 
relevant features for the rTMS therapy, but this is not the case for the SSRI 
case. A few of the relevant features in rTMS case are right-to-left PSD ratios, 
but in contrast, these kind of features were not among most relevant ones in 
the SSRI case. 

It must be noted that the results for the SSRI, rTMS and clozapine studies 
are derived using a relatively small quantity of data. Our findings must be 
replicated with a much larger sample of training and test subjects before they 
can be accepted with confidence. 
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Chapter 5 

Application to Neuroscience: 
Medical Diagnosis 

5 .1 Background 

Psychiatric disorders are among major global diseases affecting a significant 
portion of the population [33], and in industrialized countries mental illnesses 
may account for about 16% of total health care costs [32]. In this chapter 
we propose an automatic diagnosis methodology which can further be used in 
treatment-planning, and towards better understanding of such disorders. 

Currently, most psychiatric clinicians make a diagnosis based upon a stan­
dard set of diagnostic criteria such as the 'Diagnostic and Statistical Manual of 
Mental Disorders of the American Psychiatric Association' (DSM) [45] or the 
'International Statistical Classification of Diseases and Related Health Prob­
lems' (ICD) [46]. The symptoms and signs of a neuro-psychiatric disease or 
condition are ordinarily reviewed and the critical information is discovered as 
follows: the clinician hears the presenting complaint, elicits subjective symp­
toms and, in some cases, conducts a physical examination of the patient. Based 
upon the information available at the time, a range of diagnostic possibilities 
is considered. The most likely diagnosis is designated the "preferred diagno­
sis". The other diagnostic possibilities are then listed in decreasing order of 
probability to form a "differential diagnosis". The preferred and differential 
diagnoses then suggest further analysis, including using laboratory and other 
clinical tests that will help to rule in or rule out the various entities in the 
diagnostic list. 

The first step in an efficient treatment for a mental illness or disorder is 
a correct diagnosis. This can be a more difficult task than it might seem. 
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Though the diagnostic criteria of different conditions are designed to differen­
tiate subjects with this condition from those with other conditions requiring 
other forms of treatment, often specific symptoms can appear in more than 
one diagnostic category and diagnostic criteria can overlap to the point where 
confident differentiation is impossible. Even the psychiatric expert can have 
difficulty distinguishing certain psychiatric conditions, e.g. psychotic depres­
sion from schizophrenia or, most notably, differentiating major depressive dis­
order (MDD) from bipolar depression (BD) (or the depressed phase of bipolar 
affective disorder- BAD). This distinction is highly relevant as the antidepres­
sant medications that would be quite appropriate for MD D may, in the patient 
with BD, induce mania, or rapid cycling between depression and mania thus 
making the condition considerably worse [186]. Furthermore, current clinical 
diagnostic procedures are imperfect, i.e. all subjects meeting diagnostic crite­
ria for an illness such as major depressive disorder (MDD) do not all respond 
to the same treatment e.g. antidepressant medication. This observation pro­
vides compelling clinical evidence for very substantial biological heterogeneity 
within a single diagnostic category. Automatic diagnosis tools such as the one 
based in this chapter, may help to improve the decision confidence and can 
further provide a finer classification of psychiatric illnesses or mood disorders. 

There are various studies based on classic statistical analysis1 which investi­
gated employing data obtained from QEEG or EEG, biological measurements, 
other laboratory instruments, and various clinical markers in the diagnosis of 
psychiatric illnesses and mental conditions. Various biochemical markers, ge­
netic markers, and brain imaging studies have been used to differentiate sub­
jects with particular mental conditions from healthy volunteers and/ or from 
subjects with other mental conditions. 

The study in [187] (based on a sample of 11 subjects with a history of 
depression and 11 normal control subjects) reported that frontal brain asym­
metry (FBA) is a potential marker for depression. It was found that subjects 
with current or previous incidence of depressive disorders tend to have an FBA 
ratio that lies towards the extremities of the distribution. In [188], the EEG 
data is analyzed to compare normal subjects with subjects suffering various 
mental disorders, and found that a decrease in low frequency band power (in­
cluding delta band: 0.5-3.5Hz, and/or theta band: 4-7.5Hz) of the QEEG 
can be regarded as a specific sign of brain dysfunction, and is correlated with 
cortical atrophy as seen in brain magnetic resonance imaging (MRI). EEG 
abnormality during sleep is also investigated for diagnosis. For example, [189] 
used the EEG to study whether sleep rhythms differ between schizophrenic 

1 By classic statistical analysis, we mean using methods based on standard statistical 
tests. 
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subjects (N=18), healthy individuals (N=17), and a psychiatric control group 
with a history of depression (N=15). They reported that the schizophrenic 
group had a significant reduction in centroparietal EEG power, from 13.75 to 
15 Hz, in relation to both the healthy and depression groups. Also they re­
ported a decrease in sleep spindle number, amplitude, duration, and integrated 
spindle activity in schizophrenic subjects. 

Use of the 'mutual entropy' between sensors of EEG (as a more advanced 
statistical feature) is discussed in [190] to diagnose Alzheimer's disease (AD) 
patients from normal subjects. Further, the work of [191] used spectral entropy 
and sample entropy measures (of each of 19 scalp electrodes) to study the 
difference between AD subjects (N=ll) and healthy subjects (N=ll). 

As a more automatic numerical analysis approach, machine leaning meth­
ods have also been employed in many studies related to diagnosis. Machine 
learning or pattern recognition methods are used to learn the identification, 
classification or regression models based on the information in the training data 
set. The trained model is then used during the test phase. For example, the 
SVM technique to select spectro-temporal patterns from multichannel mag­
netoencephalogram (MEG) data collected during a verbal working memory 
task have been used to distinguish schizophrenic (N=15) from control subjects 
(N=23) [173], and they obtained 91.8% average diagnosis performance. Ma­
chine learning algorithms using structural brain MRI images [174], functional 
MRI (fMRI) data [176] and combined genomic and clinical data [177] have 
been employed to separate schizophrenic, bipolar disorder and healthy control 
subjects. Imaging techniques such as positron emission tomography (PET), 
magnetic resonance imaging (MRI) or MEG provide brain images with high 
neuroanatomical spatial resolution; however, it will be difficult to develop these 
technologies as clinically-proven diagnostic aids in psychiatric disorders [192]. 
In addition they are very expensive, and not readily available outside major 
medical centers. In contrast, the EEG is non-invasive, inexpensive and read­
ily available in most community laboratories and hospitals. These attributes 
would potentially make the EEG a very practical tool as a diagnostic aid, 
particularly when combined with modern signal processing techniques. 

As for EEG signal processing, the study [193] used EEG data and employed 
an 'artificial neural network' (ANN) method to differentiate subjects suffering 
from schizophrenia, depression and normal healthy persons. In a population 
with 10 subjects in each of the three classes mentioned above, the correct pre­
diction performance rates they obtained with a multi-layer perceptron neural 
network (trained with the back-propagation technique) was 60%, 60%, and 
80%, for each respective class. 

A very basic form of classifier with a restricted structure was proposed 
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in [119]. The method of [119] classifies a multi-variate set of features by per­
forming a sequential one-dimensional decision on each individual variable. In 
contrast, the present work incorporates a joint multi-variate classification pro­
cedure which is based on a single multi-variate decision function. The present 
work uses a much more flexible and efficient classifier structure. Furthermore, 
the described method allows the classifier decision boundaries to be defined in 
an arbitrary/ complex manner. 

The study in [194] used the 'multiple discriminant analysis' method applied 
on EEG data to separate primary degenerative dementia from major depressive 
disorder, and obtained 91.1% average diagnosis performance. [195] employed 
principal component analysis (PCA) for feature enhancement and then the 
cosine 'radial basis function neural network' (RBFNN) model and the wavelet­
chaos-neural network method are used for detection of epilepsy and seizure. 
The study in [74] used the SVM method for signal classification in epileptic 
subjects. 

Brain computer interface (BCI) using EEG data is another closely-related 
problem. For example, [196] employed the 'Gaussian mixture model' (GMM) 
in the BCI. See e.g. [117, 197-199] for other related studies. 

The objective of this study is to help make the medical/clinical diagno­
sis procedure 'automatic' through the use of a cognitive/intelligent procedure 
that extracts critical quantitative information from EEG data and uses a pow­
erful statistical machine learning methodology. These efficient mathematical 
methods permit the extraction of more useful information from the EEG than 
was ever possible using simple spectrum analysis, simple classical statistical 
analysis or visual inspection. The diagnosis result provided by the proposed 
method can assist the physician to make a better final decision and improve 
the overall diagnosis performance in clinical practice. 

5.2 · Participants 

Our study sample consists of a total of 207 adult subjects, including 64 sub­
jects with MDD or unipolar depression, 40 subjects with chronic schizophrenia, 
12 subjects with bipolar depression (BD), also known as the bipolar affective 
disorder (BAD) and 91 healthy subjects. All psychiatric subjects were re­
cruited from the case load of the St Josephs Hospital, Center for Mountain 
Health Services, Hamilton, Ontario. They were carefully diagnosed using the 
appropriate DSM criteria by experienced psychiatrists specializing in the man­
agement of either mood disorders or schizophrenia. In most subjects with 
MDD the diagnosis was confirmed using the Structured Clinical Interview for 
DSM (SCID). Also all subjects with schizophrenia (comprising both in-patients 
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Table 5.18: Some demographic and clinical information for 23 schizophrenic 
subjects. 

Information 
Age at start of treatment [years] 
Gender: 
Educational Level 
Age at symptom onset [years] 
Clozapine dose [mg/day] 
Total Hospitalizations (Pre-Clozapine) 
Duration total of Hospitalization 

(Pre-Clozapine) [days] 
Chlorpromazine Equivalent dose [mg] 

Range 
Average=41.2, min=28.8, max=57 
Female:11 (47.8%), Male:12 (52.2%) 
Average=3.1, min=2, max=7 
Average=21.2, min=14, max=32 
Average=344.6, min=50, max=600 
Average=9.7, min=O, max=63 

Average=615.7, min=O, max=3789 
A verage=726.6, min=40, max=2485 

Table 5.19: Some demographic and clinical information of 64 patients with 
major depressive disorder (MDD, or major depression). 

Information Range 
Age at start of treatment [years] Average=46.7, min=20.3, max=65.8 
Gender: Female:42 (65.6%), Male:22 (34.4%) 
No. of patient in SSRI therapy 22 (including 13 female, 9 male) 
Pre-treatment Ham-Dl 7 in SSRI Average=23.3, min=18, max=40 
No. of patient in rTMS therapy 42 (including 29 female, 13 male) 
Pre-treatment Ham-D17 in rTMS Average=21.3, min=15, max=29 

and out-patients) met both the DSM-IV criterion for schizophrenia [45] and 
the Kane et.al [179] criterion for treatment resistance. Patients meeting these 
criteria may be considered to be suffering acutely from schizophrenia. In sum­
mary, the clinical diagnosis ( used as our reference value) is done with high 
accuracy. All subjects gave informed consent to participate in the study. 

Table 5.18 shows some sociodemographic and clinical information of the 
schizophrenic patients who participated in the study, and Table 5.19 shows 
some information for patients with major depressive disorder. 

5.3 Data Analysis 

In subjects with major depression (unipolar or bipolar), resting EEG sig­
nals are measured after 10 days of medication withdrawal and before com­
mencement of treatment. In subjects with schizophrenia, again the EEG data 
correspond to the pre-treatment stage; however, for clinical reasons, they do 
not have a complete 'drug washout' before recording the EEG. 

The EEG measurements and feature extraction procedures were the same 
as those in Chapter 4. For details of the EEG data recording, see Section 
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4.1.1. For details of the candidate numerical features extracted from EEG, 
see Section 4.1.2. For details of data analysis procedure, see Section 4.1. For 
multi-class feature selection, we use the feature index collection or the feature 
combination method described in Section 2.2.5. 

We used a statistical decision/identification approach which provides a 
high-performance diagnosis tool with three relevant benefits: (i). The class­
conditioned diagnosis likelihoods for various diagnosis possibilities are esti­
mated directly, (ii). It allows the incorporation of prior information (if avail­
able), (iii). Various decision costs in the multi-class diagnosis problem can 
be optimally incorporated. To estimate the probability density functions, we 
specifically used a mixture of factor analysis (MFA) model and the expectation­
maximization method [82] for estimation of model parameters, as discussed in 
Section 2.3.6. 

In learning the statistical diagnosis model, for simplicity, the maximum 
likelihood classification rule is used. This uses the most uncertain but fair prior 
information (i.e., using equiprobable assumption) and using default decision 
cost values (i.e., taking Ci,j = 1 for i =I- j and Ci,i = 0, for all i and j). 

In the following experiments, all recorded eyes-open and eyes-closed EEG 
data are used collectively. Our final diagnosis result for each patient is based 
on averaging the likelihood values for all corresponding data epochs before a 
final decision is made, in a manner similar to the way the results from multiple 
epochs were combined in Chapter 4. 

In measuring the diagnosis performance, "actual" or "reference" diagnosis, 
is what the expert physician diagnosed in the clinic, and "estimated" diagnosis 
is what our cognitive diagnosis model generated using only EEG data with 
machine learning methodologies. 

5.4 Diagnosis Performance Results 

We studied several diagnosis experiments to evaluate the performance of 
the proposed method from various perspectives using the cross-validation pro­
cedure discussed in Section 2.4.3. 

In experiment 1, we studied a two-class diagnosis scenario using the pre­
treatment EEG to differentiate normal (healthy) subjects from subjects who 
suffer from either schizophrenia or MDD. Table 5.20 reflects the diagnosis per­
formance using Nr = 14 selected EEG features. The cognitive diagnosis system 
made 9 errors out of a total of 195 subjects, and the average performance is 
95.2%. Also we noticed that from the group of subjects with a mental disorder 
( either MD D or schizophrenia), all 3 misdiagnosed by the cognitive system are 
among those clinically diagnosed by physician as schizophrenic. 
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Table 5.20: Experiment 1: Diagnosis performance results for differentiat­
ing healthy subjects from subjects with mental disorders (who have either 
schizophrenia or MDD), using pre-treatment EEG information. 

Estimated as MDD Estimated Total 
or Schizophrenic as normal No. 

Clinically diagnosed 101 3 104 
as MDD or (97.1%) 
or Schizophrenic 
Normal 6 85 91 
(or healthy) (93.4%) 

µH(8)= 95.2% 195 

Table 5.21: Experiment 2: Diagnosis performance results for recognizing sub­
jects with MDD from subjects with schizophrenia. 

Estimated to Estimated to be Total 
have MDD Schizophrenic No. 

Clinically diagnosed 57 7 64 
asMDD (89%) 
Clinically diagnosed 5 35 40 
as Schizophrenic (87.5%) 

µH(8)= 88.3% 104 

In experiment 2, we investigated a two-class diagnosis problem to differ­
entiate subjects with MDD from schizophrenic subjects. Table 5.21 reflects 
the diagnosis performance using 14 selected discriminating features selected 
among all candidate quantitative features described previously. The number 
of misdiagnosed cases is 12. This may be justifiable due to the fact that there 
are many common symptoms between these two types of mental disorders ( e.g. 
the "negative symptoms" of schizophrenia [180] are very similar to depressive 
symptoms) and it is reported that this kind of confusion happens in routine 
clinical practice in a small but noticeable percentage of cases. 

Experiment 3 is an additional binary classification example, this time be­
tween MDD and BAD subjects. These two conditions are very difficult to 
distinguish, and even in the absence of a past history of an episode of mania 
or hypomania, often impossible to differentiate in a clinical setting. Due to the 
imbalance in the number of training samples in the BAD and MDD groups (12 
BAD and 64 MDD subjects respectively), the classification procedure becomes 
biased toward the majority population, reducing the level of performance. To 
avoid this difficulty we used the following procedure. We divided the 64 MDD 
subjects into 4 subsets each of size 16 subjects. Then 4 separate diagnosis 
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Table 5.22: Experiment 3: Diagnosis performance results for recognizing sub­
jects with BAD from subjects with MDD, using pre-treatment EEG informa­
tion. Nr = 8 and 120 procedure is used. 

Estimated to Estimated to Total 
have MDD have BAD No. 

Clinically diagnosed 60 4 64 
asMDD (93.8%) 
Clinically diagnosed 4 44 12 x 4 
as BAD (91.7%) 

µH(8)= 92.7% 76 

experiments are performed where in each experiment each of the MDD sub­
sets are sequentially tested against the 12 subjects with BAD. The overall 
contingency table is then constructed by adding the respective entries from 
the individual tables obtained from each experiment, as shown in Table 5.22. 
Again, the combined performance level of approximately 92% offers promising 
potential for the proposed method. In experiments 2 and 3, the values for K 
and m of the MFA model were determined in each fold of the cross-validation 
procedure from the candidate sets [1, ... , 5] and [1, ... , 4], respectively. A list 
of discriminating features found in this experiment are reflected in Table 5.23. 
The features are sorted based on frequency of the corresponding statistic. 

Furthermore, in experiment 3, a comparison among different diagnosis or 
classification models is shown in Table 5.24. Using a grid search and the cross­
validation procedure (using the training data), the best design parameters for 
each method is found, and Table 5.24 reflects the best performance attain­
able with each technique. It shows that the MFA model outperforms other 
methods. RBFN stands for 'radial basis function neural network'. The 'linear 
discriminant analysis' (LDA) is a standard classification technique used as a 
reference in our comparison [4]. See [5, 69] for details of the support vector 
machine (SVM) method. 

In experiment 4, a three-class diagnosis problem is studied. Table 5.25 
shows the result when Nr = 42 relevant features are used to construct the 
diagnosis model. The diagnosis performance is above 85% in all cases. For 
feature selection, the 'feature combination' method as described in Subsection 
2.2.5 is used to generate the results as reflected in Table 5.25. 

5.4.1 Clustering Performance 

Here we investigate the (unsupervised) clustering performance, using a two­
dimensional (2D) representation of the feature space, to gain insight into how 
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Table 5.23: A list of the most discriminating features in Experiment 3, diag­
nosis of MDD versus BAD. 

=;;#,==-,=~S~e7le~c-te~d~E=E=a=--d~n~.v-en--=Fi~e-at_u_re~~~~~-

1 F /B PSD-ratio at f=5 Hz between T3/T5 
2 Coherence at f=5 Hz between T6 & P4 
3 Coherence at f=12 Hz between T6 & 02 
4 Coherence at f=12 Hz between T6 & P4 
5 F /B PSD-ratio at f=15 Hz, F1F7F3/T3C3 
6 Coherence at f=l 7 Hz between 01 & 02 
7 Coherence at f=l 7 Hz between T5 & 02 
8 Coherence at f=18 Hz between T5 & 02 
9 Coherence at f=21 Hz between 01 & 02 
10 Coherence at f=22Hz between 01 & 02 
11 F /B PSD-ratio at f=22 Hz, C4/02 
12 F /B PSD-ratio at f=34 Hz, Fl/F3 

Table 5.24: In Ex. 3, Comparison of diagnosis performance among different 
methods in recognizing subjects with BAD from subjects with MDD. Nr = 8. 
y = 1 corresponds to the decision that that the patient is suffering from MDD, 
and y = 2 corresponds to BAD. 

method specificity, sensitivity, % average 
p(y = lly = 1) p(y = 2ly = 2) performance 

NN 0.859 0.771 81.5% 
RBFN 0.875 0.813 84.4% 

LDA 0.859 0.833 84.6% 
SVM 0.906 0.833 87% 

kernel PLSR 0.906 0.854 88% 
RLS 0.922 0.875 89.8% 

MFA 0.938 0.917 92.7% 

Table 5.25: Experiment 4: Three-class diagnosis performance results for de­
tecting the type of psychiatric disorder: MDD vs. schizophrenia vs. healthy. 

Estimated Estimated Estimated Total 
MDD Schizophrenic Normal No. 

Diagnosed 55 6 3 64 
as MDD (85.9%) 
Diagnosed 3 35 2 40 
as Schizophrenic (87.5%) 
Normal 4 7 80 91 
( or healthy) (87.9%) 

µH(8)= 87.1% 195 
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Figure 5. 1: For Ex. 3: Scatter plot of the projection of pre-treatment data 
samples onto t he first 2 major principal components using the KPCA method. 
Clustering of the BAD versus MDD epochs is described . N,. = 14. 
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Figure 5. 2: For Ex. 3: Subject-wise scatter plot of projected pre-treatment 
data for diagnosis between BAD versus MDD subjects , using t he KPCA 
method. See Fig. 5.1. 

well the small set of selected features ( of size Nr) discriminate the diagnostic 
classes . 

The two-dimensional scatter plot s for clustering analysis, were generated 
using two principal vectors of the KPCA method wit h a Gaussian kernel, as 
discussed in Section 2.3. 7. 

We performed a clustering analysis for diagnosis experiments 1 to 3 dis­
cussed previously. In experiment 3, which considers diagnosis between BAD 
versus MDD subjects, Fig. 5.1 shows a scatter plot of 352 points corresponding 
to 352 distinct epochs of data. The points represent a collection of EO and 
EC sessions of pre-t reatment EEG recording of 33 subjects (33 = 21 MDD + 
12 BAD), projected onto only t he first two major nonlinear principal compo­
nents. Fig. 5.1 shows 223 MDD plus 129 BAD distinct epochs. The number 
of distinct epochs for each patient varies. The subject index is written beside 
each point. It shows a noticeable clustering of the subjects into the MDD and 
BAD groups . However, t here are some overlaps as expected , due to t he fact 
t hat this 2D representation is a limited one, and that better separation can be 
obtained in the higher N,.- dimensional feature space. Nevertheless t his figure 
shows the diagnostic power of just two KPCA latent variables . 

Averaging t he location of projected epochs belonging t o each subject results 
in Fig. 5.2, in which each subject is shown with only one point. 

Fig. 5.3 shows a subject-wise scatter plot for Experiment 2 which considers 
diagnosis between MDD versus schizophrenia using Nr = 14 selected features 
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Figure 5.3: For Ex. 2: diagnosis between MDD versus schizophrenia: Subject­
wise scatter plot of projected pre-t reatment data, using the KPCA method. 

projected onto two nonlinear principal eigenvectors. Before averaging the 2D 
location of data epochs belonging to each subject, we had 1723 epochs (which 
included 1066 MDD samples and 657 schizophrenic samples) . The subject 
index is shown beside each point in the graph. The first and third principal 
components of KPCA are chosen for this 2D plot. 

Fig. 5.4 shows a subject-wise scat ter plot for Experiment 1, i.e., diagno­
sis between normal (healt hy) subjects versus either MDD or schizophrenia. 
Before averaging t he 2D location of epochs belonging to each subject, we had 
3111 distinct data samples/epochs (which included 1640 samples with MDD or 
schizophrenia, and 1471 normal samples) . Subject indices 1 to 64 are MDD , 
subjects 65 to 104 are schizophrenic, and indices 105 up to 195 are normal 
subject s. 

It is to be noted t hat for clustering analysis, in addit ion to using KPCA 
method (as reported here) , we further studied the results by 'isometric em­
bedding' (ISOMAP) [93], t he 'locally linear embedding' (LLE) [94], and t he 
Graph Laplacian [95] methods and we obtained approximately similar cluster­
ing performance; however, t he shape of t he graphs (i.e., t he spatial distribution 
of clusters) were different in each method. These further results are not re­
ported in this t hesis due to space limitations. evertheless, t his satisfactory 
clustering performance confirms the proposed diagnosis method developed in 
this t hesis. 
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Figure 5.4: For Ex. 1: diagnosis between normal (healt hy) subjects versus 
psychiatric subjects with either MDD or schizophrenia: Subject-wise scatter 
plot of projected pre-treatment data, using the KPCA method. Nr = 14. 
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By the data analysis methods used in this thesis, the 4-class diagnosis per­
formance is found to be low. The following two reasons could explain this 
limitation: (i) Each of the feature selection methods illustrated in Sections 
2.2.2, 2.2.3 and 2.2.5 does not give good performance for the multi-class di­
agnosis case when the number of classes is more than 3. (ii). The number of 
subjects for the BAD class is only 12 which is very small compared to MDD, 
schizophrenia and normal classes. Therefore, the data available for a 4-class 
diagnosis study is imbalanced which lowers the performance of both feature 
selection and classification processes. 

5.5 Discussion 

In our experiments, we first tested the diagnosis performance using only 
EO data, or using only EC data2

, and obtained similar diagnosis performance 
numbers as compared to the results in Section 5.4. In either of these experi­
ments, the number of data epochs is less than the case when all available EO 
and EC are used together. Despite the fact that the EEG data has different 
characteristics in the EO versus EC case, our diagnosis models were able to 
find common discriminative features from the two EEG recording conditions. 

In conclusion, the proposed EEG-based methodology, consisting of the fea­
ture selection method and the MFA classification procedure [82] is found to 
be very efficient for diagnosis of psychiatric disorders. The superior perfor­
mance of the MFA method for this application, in comparison to other forms 
of classifier, is very likely due to its ability to model a low-dimensional non­
linear manifold using a combination of linear components. Furthermore, the 
proposed method outputs a soft decision in the form of a likelihood statistic 
for each of the classes, as opposed to a hard decision as in the case of other 
common forms of classifier. This provides the clinician with the likelihood of 
occurrence of each of the illnesses, for a given patient. This can be of value 
e.g., in prescribing treatment in the case of a co-morbid illness. 

The clustering results in Figures 5.1- 5.4 show that the respective classes 
are separable using a simply-described kernel function ( a Gaussian kernel with 
only a single parameter) and a linear boundary. The fact that satisfactory 
results can be obtained with such a simple model is an indication that over­
fitting is not a dominant issue. 

Findings such as these suggest that machine learning may find an impor­
tant place in the tool chest of the medical practitioner, particularly when 

2Using only EC data means training classifiers using only EC data and then testing on 
only EC samples of EEG data. 
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experienced psychiatric personnel are not readily available. Confirmation of 
diagnosis may permit the clinician to initiate appropriate treatment while 
awaiting expert psychiatric assessment, which even in urban areas may not be 
available for weeks or months. 
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Chapter 6 

Conclusions and Future work 

6.1 Conclusions 

Automated machine learning processes for (i) pipeline inspection, (ii) treatment­
response prediction and medical diagnosis applications are developed. The 
promising performance indicated by our experiments shows the potential for 
these methods to be further exploited for commercial use. 

For pipeline inspection, in this thesis we showed that modern machine 
learning methodology can be efficiently employed for detection and sizing of 
metal defects using MFL images. All the data used in our experiments were 
real data. Two metal-loss detection (i.e., recognizing major metal-defects ver­
sus benign defects or noise) experiments were studied: The first one include 
1529 MFL image segments collected from an 8-inch pipeline. The second ex­
periment include 1919 MFL image samples collected from a 10-inch pipeline. 
Several cross-validation tests are investigated. In addition, we studied low­
dimensional representation or clustering of the input data using the KPCA 
method. The average detection performance in all metal-loss detection exper­
iments was found to be over 95%. The relatively distinct clustering of various 
metal-defects in 2-dimensional space further confirms that it is possible to 
differentiate metal-defects by a machine and obtain high performance. Af­
ter detecting serious or injurious metal-losses, the second step devised in this 
thesis was depth estimation. Estimation of defect depth using 58 real data 
samples was found to be efficient and the root-mean square estimation error 
was less than 8%. In practice, the developed automated detection and esti­
mation system shows the potential to assist the technician who examines long 
records of MFL images of a gas/oil pipeline for defects. The automated ma­
chine can replace or, if used in combination, facilitate the slow and error-prone 
inspection process currently done by human operators. 
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Though the findings with respect to detection of pipeline defect are im­
portant, the results from the neuroscience application was the main accom­
plishment of this PhD work. For prediction of treatment-efficacy, three sepa­
rate clinical studies are analyzed: (i). SSRI antidepressant therapy, M = 22 
subjects, (ii). repetitive transcranial magnetic stimulation (rTMS) therapy, 
M = 41 subjects, (iii). the antipsychotic drug clozapine, M = 23 subjects. 
The performance of the proposed machine learning methodology suggests that 
suitably selected features extracted from the EEG cluster according to how the 
patient responds to the treatment under consideration. Thus, the pretreatment 
EEG appears to contain information regarding brain functioning that is rele­
vant to, and predictive of, the therapeutic effect of the SSRI, rTMS, or clozap­
ine treatments. In the pilot studies considered in this thesis, machine learning 
methods were found to be capable of employing pretreatment EEG data to 
accurately predict (with over 85% performance) whether a given patient will 
or will not respond to treatment with SSRI, clozapine or rTMS. We stud­
ied the results by cross-validation tests, several experiments with independent 
training and test sets, as well as clustering analysis. The list of discriminating 
features found through the feature selection procedure, also showed potential 
neuropathological relevance based on previous literature. By analyzing the av­
erage and standard deviation values for responder and non-responder groups, 
we found that each single relevant feature has some predictive value. This can 
be considered as another confirmatory result. While each single feature on 
its own is not sufficient for obtaining high prediction performance, the joint 
combination of the features does offer adequate performance. 

Most related clinical studies for treatment-response prediction, including 
those cited in this study, have used a small preselected set of features to deter­
mine whether it is possible to predict response to one or several antidepressant 
drugs. Our proposed feature selection process is novel in this respect, in that 
we have considered a large number of features including those, or similar ones, 
already cited in the literature, and reduced them into a much smaller set that 
is most statistically related to the response variable. In this way, rather than 
hypothesizing beforehand whether a particular feature is indicative of response 
and then verifying the hypothesis as required by previous approaches, the pro­
posed method automatically identifies relevant features without the need for 
costly experimental verification. The proposed method may identify features 
that could be missed by previous methods. 

For diagnosis, in a training set of 207 subjects, including 64 subjects with 
major depressive disorder (MDD), 40 subjects with chronic schizophrenia, 12 
subjects with bipolar depression and 91 normal or healthy subjects, the av­
erage correct diagnosis rate attained using the proposed method is over 85%, 
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as determined by various cross-validation experiments. The promise is that, 
with further development, the proposed methodology could serve as a valuable 
adjunctive tool for the medical practitioner 

As serious mood disorders like major depression (or MDD) are common 
conditions, the economic and clinical benefits of this work are substantial, if 
validated in a larger data sample. The proposed methodology if validated, 
could benefit patients, physicians, as well as public and private health-care 
and disability insurers. For expert clinicians, for example, the treatment­
response prediction as well as diagnosis reports generated by the proposed 
methods could be considered an adjunctive tool permitting more confident 
diagnosis by the attending clinician. Further, the methodology if implemented 
as a remotely accessible web-based system, could help in providing healthcare 
service to remote areas which do not have access to expert physicians. 

The machine learning process in all of the above applications was the same: 
Feature extraction, dimensionality reduction and then classification/regression. 
For feature extraction, from the measured data, we calculated a large set of 
candidate quantitative features which were already used in the related liter­
ature. Since we don't know which features are actually discriminative, the 
feature selection procedure is used to find those items that are statistically 
discriminative. The regularized feature selection based on maximizing the 
mutual information or maximizing the Kullback-Leibler distance was found to 
be efficient when the final classification performance based on the selected fea­
tures are considered. After this stage, the reduced-dimensionality features are 
fed to the classification or regression model which generated the final target 
variable. For classification/regression we used RLS, SVR and PLS methods 
as well as a statistical decision method based on MFA model. These meth­
ods are all found to be efficient with small differences in average prediction 
performance. 

The most concerning issue with respect to this work is that of overfitting 
i.e. developing a predictive algorithm that performs very well in the training 
sample, but much less so when tested in a new set of subjects. To some extent 
this concern was mitigated by use of the nested cross-validation procedure. 
Using cross-validation with independent training and test datasets diminishes 
the likelihood of the over-fitting issue. Nonetheless the small data sample size, 
and the reanalysis of the same subject's data multiple times during our itera­
tive cross-validation procedure could still result in some degree of overfitting. 
The most convincing test of the general accuracy of any machine learning al­
gorithm is testing in an entirely new and independent test sample, as was done 
during our clozapine experiment. Our group will focus on this validation step 
in future studies. 
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There are other machine learning and clinical data analysis issues which 
remain to be solved. In the next section, the suggested further work is de­
scribed. 

6.2 Future Works and Recommendations 

The following are various topics for future research: 

6.2.1 Further Study in the Neuroscience Application 

Some further study topics for treatment-response prediction as well as di­
agnosis applications are: 

1). The data used in the neuroscience aspect of this thesis are the result 
of pilot studies. A much larger quantity of data must be acquired for the 
development of an expanded training set before the proposed methods can be 
employed in clinical context. Therefore first validating the results in a larger 
independent test data sample and then combining these new data with our 
existing database to create a larger training set are future research topics. 

2). In the neuroscience application, the data analysis procedure and method­
ology described in this thesis could be extended to construct models that pre­
dict the response to various other treatments available for patients with MDD, 
BAD or schizophrenia. Furthermore, it may be possible also to incorporate 
information from other sources (such as symptom rating scales, scores from 
personality inventories and other psychiatric evaluations, the levels of vari­
ous hormones etc. in the blood, demographic and socioeconomic information, 
etc.) to improve the performance and to further reduce the decision ambi­
guities. The same machine learning methodology for treatment-response pre­
diction and diagnosis can be used for various other therapies and psychiatric 
disorders that are not experimented in this thesis. 

The author is currently involved in a study partially funded by Magstim 
Co. Ltd., Carmarthenshire, Wales, UK. The objective of this Magstim-funded 
(REB approved) program includes collecting pre-treatment clinical data for 
the purpose of prediction of response to the following treatments for major de­
pressive disorder (MDD): cognitive behaviour therapy (CBT), Escitalopram, 
Venlafaxine and Bupropion. The plan is to recruit 120 subjects with major 
depressive disorder (MDD) over the next 18-24 months. For each subject, we 
collect a pre-treatment EEG and various clinical assessments such as person­
ality inventories, quality of life indicators, etc. Non-responders are switched to 
another form of treatment after a six-week period. There is also an additional 
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REE-approved related study in progress in our research group, on response­
prediction to electro-convulsive therapy (ECT) for subjects with MDD. Data 
is also currently being collected for this study. 

3). In the neuroscience application, a large number of EEG sensors (16 elec­
trodes in the standard 10-20 system) is used, and a relatively good prediction 
performance is obtained. Therefore a topic worthy of further investigation is 
using a minimum configuration of EEG electrodes that will be sufficient to ob­
tain adequate prediction and diagnosis performance. Using a smaller number 
of EEG electrodes is useful from many aspects: cost, EEG electrode assembly 
time and therefore total data acquisition time, and convenience for the patient. 

4). In the experiments for the neuroscience application, a collection of 
previously described candidate numerical features are used. These features are 
an indication of an associated neurological function, e.g. coherence indicates 
synchrony between respective brain regions. A topic of future investigation is 
the use of more mathematically complex features or the use of combinations 
of these simple features as input to the classifiers/regressors. For example, a 
candidate conjunction feature to use is KPCA nonlinear principal components 
extracted from current features (i.e., features described in Section 4.1.2). 

5). Based on the results in the neuroscience application (such as Tables 4.8 
and 4.17 and Figures 4.3 and 4.9), the list of discriminating features that were 
found to be predictive of treatment-response in conjunction with the location 
of the respective EEG electrodes, require further investigation. Such tables 
and figures may give some clues about the locality and interconnection of neu­
rological mechanisms associated with a positive response to the corresponding 
treatments and to the possible understanding of the psycho-pathology of vari­
ous psychiatric disorders. Further investigation of this matter with the help of 
psychiatric experts and clinicians remains a promising topic for future work. 

6.2.2 Further Study in the Pipeline Inspection Appli­
cation 

A critical part of the automatic pipeline inspection is the collection of large 
samples of real data from various pipelines and various operating conditions: 
various pipeline usages (Gas, Oil at various pressure levels), various pipeline 
diameters, various materials, etc. Therefore, an area of future work is extend­
ing the result to a larger dataset and validating the findings. 

Another area of further work is incorporating machine learning techniques 
as a coarse but fast model for 'space mapping' methods (see e.g. [16]), which 
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employ finite-element modeling of magnetic fields in the pipeline. Also, an­
other use of machine learning methods is preliminary detection of metal de­
fects, and then using inversion methods or space mapping methods to further 
analyze the sector of MFL data where a defect is found. 

The following sections present further ideas that may lead to improved 
performance in both pipeline inspection and neuroscience applications. 

6.2.3 Improving Efficiency of Feature Selection Process 

The computational cost and efficiency of the regularized feature selection 
method based on maximum KL distance (i.e., the max:KLD method), as ex­
plained in Section 2.2.3 and Eq. (2.6), needs to be further improved. An area 
for future work is an efficient design of the optimization problem to incorpo­
rate minimization of the redundancy among selected features. One way to do 
this could be to use a revised second term that more efficiently quantifies the 
statistical dependence, or normalizing the second term so that the difference 
between pdf of two separate features is properly addressed. 

Another topic of future work is using a multi-dimensional feature selection 
or a feature subset selection method instead of selecting the discriminating fea­
tures one by one. A further work could also be measuring the feature selection 
performance based on the classification performance rather than doing feature 
selection and classification processes separately. 

6.2.4 Multi-class Feature Selection 

For the multi-class medical diagnosis problem, as an extension to the feature 
index collection method (as previously discussed in Section 2.2.5), a multi-class 
feature selection procedure based on the one-versus-one multi-class classifica­
tion procedure might improve the feature selection performance. The proposed 
procedure is as follows. Multiple two-class classifiers (similar to [1, 73, 74] but 
incorporating a novel multi-class feature selection strategy) are combined to 
perform the final multiclass classification task. Assume that we have NP classes 
of illness/disorder. All possible binary classifiers are built separately and the 
feature selection is done independently for the corresponding binary diagnosis 
problem. The total number of binary classifiers are Nv(Nv - 1)/2, and only 
binary feature selection is used in building each binary classifier. Finally the 
overall diagnosis result can be the majority vote among the results of all binary 
classifiers, or a similar structure. We denote this as the multi-binary feature 
selection and diagnosis method. 
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6.2.5 Concatenated Dimensionality Reduction 

Here, based on the methods in Sect. 2.2 and 2.3. 7 a concatenated method 
for dimensionality reduction will be described. This is a two-stage process as 
described below. 

1. Select a relatively large list of Nb most-relevant features using the KL 
distance or 'mutual information' criterion, or using a regularized feature 
selection method as described in Sect. 2.2. Here, Nb~ lONr· 

2. Then use manifold learning1, or a low-dimensional representation method, 
as discussed in Section 2.3. 7, project the data into a much lower-dimensional 
manifold ( with dimensionality Nr). After this process, we will have Nr 
transformed or projected features. For example, in our neuroscience ap­
plication, where initial number of candidate features (Ne) are in the few 
thousands range, we could extract Nb ~ 110 most relevant features out 
of the Ne available, and then determine the final features with dimen­
sionality Nr = 5 (using manifold learning methods), that are then fed to 
the classification and regression models. 

By performing the above two-step dimensionality reduction procedure, we 
will get a more compact representation of the measured information. Note 
that each of the Nr features calculated as above is a linear or non-linear com­
bination of the Nb features, while in feature selection methods like the one 
described in Section 2.2, Nr features are selected and the remaining informa­
tion in Ne - Nr features are discarded, which might result in loss of some 
significant information. 

6.2.6 Using Bayesian Network Models 

A topic of interest for future work is building a classification/ decision model 
based on a Bayesian network structure. A Bayesian network (BN) is a statis­
tical graphical model that represents a set of variables and their probabilistic 
independencies. Bayesian networks are directed acyclic graphs whose nodes 
represent variables and whose arcs encode conditional independencies between 
the variables [78, 200, 201]. BNs are a useful representation for hierarchical 
Bayesian models. In such a model, parameters are treated like any other ran­
dom variable, and become nodes in the graph. "Fundamental to the idea of a 

1 By manifold learning methods, we mean methods like KPCA [71], Graph Laplacian [95] 
that explore nonlinear data structures. 
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graphical model is the notion of modularity - a complex system is built by 
combining simpler parts", [202]. 

The flexibility of a BN structure allows combining various data types. The 
other benefit is providing likelihood values that will help make a better deci­
sion. 

6.2. 7 Semi-supervised Learning and Inference 

The existence of similar structures across a set, or family, of patterns is 
often recognized as a low-dimensional manifold embedded in high dimensional 
space. One of the general assumptions in order to have an efficient semi­
supervised learning is 'smoothness': If two points x 1 and x 2 are close in a 
high-density region in the measurement space (i.e., they belong to the same 
cluster), then the corresponding outputs ( or labels) y1 and y2 are also close. 

In semi-supervised learning, in addition to labeled data where the target 
value, class/category is associated with the measured data, we have many un­
labeled data points available. Using the information inherent in the available 
unidentified ( or unlabeled) data samples, the goal is to improve the classifi­
cation/regression/ clustering performance. See [203] for a review of popular 
methods. 

1. Using geometric properties of data in high-dimensional observation space 
(i.e., using graph-based and manifold learning methods), [204-206]. 

2. Building statistically generative data model 

In problems where the geometric distribution of sample points is such that 
graph-based methods will not help, then using 'statistical generative models' 
is an alternative. Generative models assume a model p(x, y) = p(y)p(xJy) 
where p(xJy) is an identifiable mixture probability distribution, for example 
Gaussian mixture models. With a large amount of unlabeled data, the mixture 
components can be estimated; then the labeled examples ( at least one labeled 
example per mixture component) will be used to fully determine the mixture 
distribution. The expectation-maximization (EM) method [207], for example, 
can be used to train the generative mixture model. However, the EM procedure 
is prone to local maxima. If a local maximum is far from the global maximum, 
unlabeled data may hurt learning. If the mixture model assumption is correct, 
unlabeled data could improve accuracy. 

The idea of semi-supervised learning can be used in dimensionality reduc­
tion process as well. Similar to the proposed 'concatenated dimensionality 
reduction' procedure described in Section 6.2.5, a semi-supervised variation of 
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this method is also proposed that uses unlabeled test data in re-projecting the 
entire available data (including the training plus test data) and re-training the 
classifiers in the re-projected space. However, in the first stage, the feature 
selection is done using only the training data. The proposed process is as 
follows: 

1. Using the training set (which has known class labels for all samples) 
select a relatively large list of most-relevant features using the KL dis­
tance or 'mutual information' criterion, or a regularized feature selection 
method described in Sect. 2.2. The result is Nb discriminating or rele­
vant features. 

2. Using the list of Nb feature indices found in the previous step (i.e., using 
the labeled training set), determine the Nb-dimensional test ( or unla­
beled) set. 

3. Using the collection of all Nb-dimensional labeled and unlabeled data 
(i.e., the combination of training and test sets) use manifold learning, 
or low-dimensional representation methods, such as KPCA discussed in 
Section 2.3.7, to project the data into a much lower-dimensional space 
( with dimensionality Nr). After this process, we will have Nr trans­
formed or projected features. Then use the projected features of only 
the training set to design or learn the classification function. Then test 
the classifier on the projected features of the test set. 

By the above method, since now a larger collection of data ( as compared 
with the training and labeled set alone) is used to build the manifold and 
then the low-dimensional projection process (from Nb-dimensional space into 
Nr-dimensional space), this semi-supervised concatenated dimensionality re­
duction method might result in a better performance. Note that a major 
problem in manifold learning is the sampling problem, meaning that there are 
not enough data samples in the high-dimensional space to sufficiently and 
smoothly represent the shape of the manifold. Using the test data might help 
in this regard by providing a somewhat more smoothed manifold with a more 
dense distribution of data samples. 

6.2.8 Data Fusion 

Data fusion (see e.g. [208-210]) occurs at two main levels. The first level is 
'feature-level data fusion' or 'signal fusion' in which the data and information 
from a variety of sources of information and features are combined in an effi­
cient way. In the neuroscience application, for example, feature fusion means 
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combining information from a variety of clinical and laboratory assessments 
and tests. The second level is 'processor data fusion', which is alternatively 
called 'algorithm fusion', 'decision fusion', or 'classifier fusion'. The param­
eters and structure of data fusion and processor fusion are determined using 
training data. 

In the neuroscience application, for example, the clinical and laboratory 
data that are measured for a patient may come from different sources of infor­
mation (such as clinical ratings, EEG, MRI, radiology, laboratory assessment, 
pharmacogenetic data, medical history, etc.). Data from each source has dif­
ferent properties and require proper information preprocessing, the output of 
which can be referred to as "raw feature data". The raw feature data goes 
through a feature extraction, feature ranking and discriminative feature selec­
tion procedure. 

Also, a collection of preliminary or low-level classification/prediction mod­
els ( or processors) are employed. Each method uses discriminative features to 
calculate preliminary estimation, decision and prediction results. In our re­
search, each preliminary processor uses the feature data from all available data 
sources. Each preliminary processing model has its own numerical properties, 
and special processors/models are superior in particular cases. The idea of 
data fusion is to combine these results in an optimal way for more accurate 
and more robust performance in treatment planning and optionally in medi­
cal diagnosis. Data fusion can be regarded as a data-reduction mapping from 
multiple inputs of information into a smaller number of outputs. Another less 
optimal option to perform data fusion is to run the complete course of pro­
cessing/ analysis for each source of information separately, and then combine 
these high-level results afterwards. 

There is cross-correlation, statistical dependency and shared information 
among estimates/decisions/outcomes reported by preliminary processors/models. 
An adaptive learning procedure can be used to determine the best implemen­
tation of a data fusion model, using the training set based on a determined 
optimality criterion. Ultimately the goal is to correct the error of each pro­
cessor/ model by the other processors/models. The basic assumption is that 
errors among processors/models are not the same for the same input data. 
Another simple 'processor fusion' method is to use a voting/ranking proce­
dure, where each processor/model generates a decision variable instead of a 
continuous score. There are several voting and weighted averaging techniques, 
including a majority vote. See [208, 209, 211] for example, for a survey of such 
methods. 

Statistical ( or probabilistic) data fusion is another option to implement 
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processor fusion. This fusion method is based on estimating statistical prop­
erties of processors and then combining them to satisfy a statistical optimality 
criterion (such as obtaining maximum likelihood, obtaining minimum prob­
ability of error, or minimizing the decision cost based on Bayesian decision 
risk). See [212], for example. 
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