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ABSTRACT

Many interesting behaviours in the animal and human world involve cooperation among
individuals. Yet, cooperating individuals are often susceptible to exploitation by cheaters.
Because cheaters do better than the cooperators they exploit, the evolution and persistence
of cooperation has been a challenging topic of study in biology, sociology and economics.

Studies often abstract from real cooperative interactions, and construct simple games
in which players can choose either cooperation with other players, or defection, e.g., the
well known prisoner’s dilemma and the snowdrift game. In these games and other social
dilemmas, mutual cooperation yields greater payoffs than mutual defection, but individuals
are still tempted to defect (because of the possibility that if they cooperate, the other player
will defect).

Similar dilemmas also arise in situations where multiple individuals may be affected by
the actions of one (such as volunteering for community service or evading taxes), and the
main theme of this thesis is cooperation in groups. In chapter 2, we analyze pre-emptive
vaccination for an outbreak of smallpox (following a bioterrorist attack or accidental re-
lease), from the public health (i.e., group) and individual perspectives. Chapters 3 and 4
deal with an extension of the snowdrift game to n interacting players and continuous strat-
egy sets (where individuals decide on their degree of cooperation): in chapter 3, we analyze
global evolutionary stability of cooperative strategies in a large class of n-player snowdrift
games in infinite populations; chapter 4 analyzes general continuous n-person snowdrift
games in finite populations, and compares the evolutionary dynamics with their infinite
population analogues. In chapter 5, we present a general framework to model selection
processes in finite populations, necessary for the analysis in chapter 4.
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Chapter 1

Introduction

Cooperation is defined as “to associate with another or others for mutual benefit” [1], and
encompasses some of the most interesting behaviours in the living world. For example,
humans have comensal relationships with their skin and gut microbiomes [2, 3]; they co-
operate with their spouses [4, 5], neighbours [6] and even their foes [7]; and nations coop-
erate in defense, economic and environmental agreements [8, 9, 10]. Thus, even restricting
attention to interactions involving humans, one can still observe the vast range of scales
throughout which examples of cooperation are found.

Yet, in many instances of cooperation, cooperating individuals may be exploited by
cheaters who benefit from the cooperation of others [11, 12, 13, 14], without cooperating
themselves. This leads to a fundamental problem: it has been said that “[n]othing in biology
makes sense except in the light of evolution” [15]. Evolution by natural selection is one
of the fundamental tenets of the modern evolutionary synthesis [16, 17], and is succinctly
expressed as “[a]ll life evolves by the differential survival of replicating entities” [18]. Thus,
because cheaters do better than the cooperators they exploit, Richard Dawkins wrote: “Be
warned that if you wish, as I do, to build a society in which individuals cooperate generously
and unselfishly towards a common good, you can expect little help from biological nature”
[18]. Hence, biologists, sociologists, economists, political scientists and mathematicians
have gone to great lengths to explain how cooperation can evolve and persist [19, 20, 21,
22, 23, 24, 25].

Theoretical and empirical studies often abstract the salient components of specific inter-
actions among independent individuals in natural situations and construct idealized games
in which players can choose whether or not to cooperate with other players, and sometimes
also to what degree they wish to cooperate. Perhaps the most well-known of these games is
the “prisoner’s dilemma” [19, 26, 27], a symmetric two-player game with two strategies,
cooperate or defect, represented by the payoff matrix in table 1.1.

It is assumed that T > R > P > S where the variables T ,R , P, and S denote the

1



Ph.D. thesis – Chai Molina; McMaster University – Mathematics & Statistics

strategy Cooperate Defect
Cooperate R S
Defect T P

Table 1.1: The payoff matrix for the Prisoner’s Dilemma (T > R > P > S).

temptation to defect, the reward for cooperation, the punishment for mutual defection, and
the “sucker’s payoff” received for cooperating while the other player defects, respectively.
The meaning of these conditions is as follows:

• T > R: If the opponent cooperates, the temptation to defect is larger than the reward
for cooperation.

• P > S: If the opponent defects, the sucker’s payoff is smaller than the punishment
for mutual defection, so defecting is preferable to cooperation.

• R > P : The reward for mutual cooperation is larger than the punishment for mutual
defection.

The first two conditions imply that regardless of its opponent’s strategy, the focal player
obtains a higher payoff by defecting than by cooperating (defection dominates cooperation)
— and thus a rational player would always choose defection. The last condition ensures
that if both players defect, they gain less than if they had both cooperated, which is the
source of the “dilemma”.

Note that in the iterated prisoner’s dilemma (that is, when the game is played repeatedly
between two opponents), the condition

2R > T + S , (1.1)

is added in order to prevent two players who alternate between cooperation and defection
asynchronously (so that at any iteration, one cooperates and the other defects) from obtain-
ing a higher payoff than players who simply cooperate with one another.

Another common game that arises in studies of cooperation is the “snowdrift game”
(also known as chicken, or the hawk-dove game)[28]. The snowdrift game is also described
by a payoff matrix identical to table 1.1, except that the sucker’s payoff is taken to be larger
than the punishment for mutual defection (S > P ), which facilitates the persistence of
cooperation because defection no longer dominates cooperation [29, 30].

The condition that mutual cooperation yields greater payoffs than mutual defection is
common to both the prisoner’s dilemma and the snowdrift game, and is a fundamental
aspect of social dilemmas [31]: if only everyone cooperated, they would be better off than
when they all defect. In fact, from the perspective of the population condition (1.1) also
implies that the average payoff is largest when everyone cooperates.

2



Ph.D. thesis – Chai Molina; McMaster University – Mathematics & Statistics

In the models of cooperation mentioned thus far (the prisoner’s dilemma and the snow-
drift game), individuals interact in pairs. However, there are many examples where it is
more appropriate to model interactions among groups of individuals or at the population
level, such as volunteering for community service [6], group vigilance behaviour [32, 33],
and microbes secreting beneficial compounds which are then accessible to others [34, 35].

The main theme of this thesis is cooperation in groups. Chapter 2 concerns a spe-
cific example of population-level cooperation in humans: the vaccination game. The next
two chapters deal with an extension of the snowdrift game to n interacting players and
continuous strategy sets: in chapter 3, we analyze a large class of biologically sensible
n-player snowdrift games in infinite populations (a mathematically convenient assumption
often made in the literature); in chapter 4, we then analyze general continuous n-person
snowdrift games in finite populations, and compare the resulting dynamics to those ob-
tained in infinite populations. Lastly, chapter 5 concerns general selection processes in
finite populations. While chapter 5 does not directly concern cooperation, its results are
used in chapter 4. The four chapters and their main results are introduced in more detail
below.

1.1 The vaccination game

One important example of population-level cooperative interaction is the “vaccination game”
[36, 37, 38]. Individuals choose whether or not to vaccinate based on real or perceived costs
of vaccination. When the vaccine coverage is high enough, those individuals who are still
susceptible benefit from a significantly lower probability of contracting the disease as a
result of the vaccinators’ immunity [39]. Society relies on this effect, called “herd im-
munity” [40], to protect individuals who cannot be vaccinated [40, 41] (e.g., infants, the
elderly and immuno-compromised individuals), as well as those who the vaccine has not
rendered immune (vaccines are rarely 100% effective [42, 43]). However, herd immunity
is also susceptible to abuse by “freeriders”, who choose to forgo vaccination for selfish
reasons[44, 45].

Since the proportion of people who choose to vaccinate is typically smaller than the
vaccine coverage that is best from the group perspective [36, 37], this leads to a question
quite distinct from those regarding the evolution and persistence of cooperation: what is the
cost (e.g., in terms of increased mortality) incurred by the group due to freeriders causing a
deviation from the group-optimal vaccine coverage? This was the main question studied by
Bauch et al. [37]. In the scenario they analyzed, there is a certain probability of an outbreak
of smallpox (caused by either accidental release or bioterrorism). Individuals can choose to
vaccinate pre-emptively (“vaccinators”), delay and attempt to vaccinate after an outbreak
has begun (“delayers”), or vaccinate preemptively with a probability p that is not 0 or 1
(“mixed strategists”). In the event of an outbreak, vaccination of susceptible individuals

3
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was assumed to begin after 14 days, and then proceed at a constant rate of 10% of the total
population per day, until no susceptible individuals remain.

The standard smallpox vaccination procedure amounts to infection with vaccinia, a
virus related to variola (which causes smallpox). Vaccination with vaccinia carries rel-
atively high risks of morbidity and mortality compared with vaccines commonly in use
today [46] (which are still far lower than those of a smallpox infection). Thus, vaccinators
risk morbidity and mortality associated with the vaccine, while delayers expose themselves
to these risks only if an outbreak occurs, at the cost of the additional risk of contracting
smallpox.

Bauch et al. [37] showed that this vaccination game has a convergently stable Nash
equilibrium pi: if the entire population plays the strategy pi, an individual cannot obtain a
higher survival probability than the remainder of the population by (unilaterally) changing
their strategy. This individual equilibrium results in a vaccination coverage that is sub-
optimal from the group perspective, in that overall mortality is not minimized.

Chapter 2 expands on the analysis of Bauch et al. [37] by considering, beyond the
constant-rate vaccination originally studied, four additional post-outbreak scenarios. Three
of these scenarios take into account changes in the delayers’ willingness to vaccinate based
on media reports regarding the progression of the epidemic. A fourth model of instanta-
neous vaccination of a proportion of the population is also considered, because experts have
suggested that vaccination of the entire US population is achievable in 3 days [47], which
is much shorter than the latent period of smallpox, estimated to be 15 days [48]. In contrast
to the constant-rate vaccination scenario of Bauch et al. [37], we were able to obtain some
analytical results—including the individual equilibrium and final sizes—for most of these
models.

Similar to the vaccination rate in the original model of Bauch et al. [37], the post-
outbreak vaccination models we consider contain a numerical parameter, which we call
vaccination effort, with which the vaccination rate increases (for any given proportions
of remaining susceptible and infective individuals). For a large class of biologically sen-
sible models of post-outbreak vaccination (including, but not limited to, the five described
above), we identified a mortality plateau, that is, conditions under which increasing the
vaccination effort does not reduce mortality, and explained the underlying cause for the
plateau’s existence. Any lag between the beginning of an outbreak and the initiation of
the post-outbreak vaccination response extends the mortality plateau to higher vaccination
efforts, thus making it harder to decrease mortality by increasing the vaccination effort.
Moreover, because in reality there will be a maximal feasible vaccination effort (dependent
on the capabilities of the public health authorities), when the lag between the beginning
of the outbreak and the initiation of the vaccination response is large enough, it will be
practically impossible to reduce mortality by increasing the vaccination effort. The ef-
fective critical lag, beyond which mortality is constant for all feasible vaccination efforts,
depends on the post-outbreak vaccination model used. These results highlight both the
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need for a quick post-outbreak response, and the importance of efforts to determine likely
post-outbreak vaccination scenarios.

1.2 Evolutionary stability in nonlinear public goods games

A public good is a resource from which it is impossible to exclude others, and such that
consumption by one individual does not reduce the amount available for another’s con-
sumption (although the latter property is sometimes relaxed). The theory of public goods
offers insights into many problems in biology, from the formation of bacterial biofilms [49]
and cancer [50, 51] to major evolutionary transitions [52] and even the evolution of life on
earth [53] (see [54] for a review).

One classic public goods game is the continuous n-player snowdrift game [55], a natural
extension of the 2-player version described earlier: players individually choose their level
of contribution to a public good. Each player pays a cost associated with its contribution,
but its payoff is a function of the combined contributions of all n interacting players.

Typically, evolutionary stability in public goods games is analyzed using frameworks
that assume an infinite population (e.g., adaptive dynamics [56, 57, 58, 59]). In an infinite
population, a single invading mutant does not affect the mean fitness of individuals playing
the resident strategy. However, there are a number of biologically sensible scenarios under
which invading mutants might affect the residents’ fitness. In small finite populations, a
single invader’s effect on the resident population is not necessarily negligible. Even in large
populations, genetic drift, migration and environmental variability can all allow invading
mutants to become a large enough proportion of the entire population so as to significantly
affect the resident strategy’s payoffs.

In chapter 3, we analyze a large, biologically interesting sub-class of n-player snowdrift
games in infinite populations and find necessary and sufficient conditions for the existence
of a cooperative globally evolutionarily stable strategy (ESS). We also show that the co-
operative global ESS that we identify is locally evolutionarily and convergently stable in a
much more general sense: when invaded by mutants comprising any proportion of invaders
0 < ε < 1, if the mutant strategy is close enough to the cooperative ESS, mutants will be
selected against. Moreover, if a population playing a strategy sufficiently close to the coop-
erative ESS is invaded by a proportion of mutants 0 < ε < 1 playing a strategy between the
resident strategy and the ESS, the mutants will be selected for.
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1.3 Evolutionarily stability in continuous public goods games
in finite populations

In chapter 4, we analyze evolutionary stability in general n-player snowdrift games in fi-
nite, well-mixed populations. We show that populations playing strategies expected to be
evolutionarily stable based on infinite-population analyses can always be invaded and re-
placed by sufficiently close, less cooperative strategies. We then find conditions for local
evolutionary and convergent stability in finite populations, and identify the reason for the
discrepancy between ESSs in infinite and finite populations: on average, in an infinite pop-
ulation, mutants interact with more mutants and residents interact with fewer mutants than
they would in a finite population.

We compare the evolutionary outcomes expected in finite and infinite populations in
the sub-class of n-player snowdrift games analyzed in chapter 3. We find a sub-set of this
class of n-player snowdrift games that—despite having a cooperative ESS when played in
an infinite population—have no cooperative ESS when played in some finite populations.
Importantly, we identify conditions under which no cooperative ESS exists (i) only for suf-
ficiently small population sizes, (ii) for any sufficiently large population size, or (iii) for any
finite population size. Thus, the qualitative difference in evolutionary outcomes between
finite and infinite populations does not necessarily disappear as population size is increased.

1.4 On general models of selection in finite populations

In population genetics, one is typically interested in the dynamics of gene frequencies in a
population over time [60, 61, 62]. In finite, well-mixed populations, the canonical choices
for describing these dynamics are the Moran [63] and Wright-Fisher [64, 65] (WF) pro-
cesses. However, these models are not applicable to all biological situations [66, 67, 68],
and alternative models have been shown to exhibit very different qualitative behaviours
[67, 68, 69, 70, 71, 72, 73, 74, 75], which motivated research on a class of generalized
Wright-Fisher (GWF) processes [68, 75].

When analyzing the evolution of strategies in a population of agents playing games, one
must decide how to translate payoffs into differential reproductive success, which is closely
tied with the population-genetic problem described above. Almost all theoretical results in
evolutionary game theory relate to either the Moran or WF process, but evidence that the
underlying selection process can drastically affect evolutionary dynamics [76] has recently
motivated the study of more general processes [77, 78, 79].

In chapter 5, we use the theories of Markov chains and martingales [80] to define and
analyze a general class of mutationless selection processes in finite populations. These are
discrete-time stochastic processes describing changes in the frequencies of two traits in a

6



Ph.D. thesis – Chai Molina; McMaster University – Mathematics & Statistics

population over time, with homogeneous populations (in which all individuals have the
same trait) being absorbing (i.e., if one type becomes extinct, it can never re-invade). A
neutral drift process is then defined as a selection process that is additionally a martingale
(that is, the mean trait frequencies do not change from one time-step to the next).

Being concerned with applications to evolutionary game theory in finite populations (in
which we typically only require bounds on fixation probabilities, rather than fixation times
and continuum limits) allows us to analyze a larger class than the GWF models. Beyond
presenting a general framework in which to think about selection and neutral drift, our main
result, lemma 5.5.4, extends a known theorem concerning the WF process [81, Theorem 1]
to general selection processes: if one type is always as fit as the other (regardless of the
population composition) and is strictly fitter at some population composition that can be
reached from the initial one, then its fixation probability is higher than that expected in
a neutral drift process. While simple and intuitive, this result is crucial to the analysis
conducted in chapter 4.

7



Ph.D. thesis – Chai Molina; McMaster University – Mathematics & Statistics

Chapter 2

Game theory of pre-emptive vaccination
before bioterrorism or accidental release
of smallpox

Molina, C. and Earn, D. J. D. (2015). Journal of The Royal Society Interface, 12(107):2041387.
DOI: 10.1098/rsif.2014.1387

2.1 Abstract

Smallpox was eradicated in the 1970s, but new outbreaks could be seeded by bioterrorism or
accidental release. Substantial vaccine-induced morbidity and mortality make pre-emptive
mass vaccination controversial, and if vaccination is voluntary then there is a conflict be-
tween self- and group-interests. This conflict can be framed as a tragedy of the commons,
in which herd immunity plays the role of the commons, and free-riding (i.e., not vaccinat-
ing pre-emptively) is analogous to exploiting the commons. This game has been analyzed
previously for a particular post-outbreak vaccination scenario. We consider several post-
outbreak vaccination scenarios and compare the expected increase in mortality that results
from voluntary vs. imposed vaccination. Below a threshold level of post-outbreak vaccina-
tion effort, expected mortality is independent of the level of response effort. A lag between
an outbreak starting and a response being initiated increases the post-outbreak vaccination
effort necessary to reduce mortality. For some post-outbreak vaccination scenarios, even
modest response lags make it impractical to reduce mortality by increasing post-outbreak
vaccination effort. In such situations, if decreasing the response lag is impossible, the only
practical way to reduce mortality is to make the vaccine safer (greater post-outbreak vacci-
nation effort leads only to fewer people vaccinating pre-emptively).
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2.2 Introduction

The number of annual cases of smallpox in the early 1950’s, just prior to the WHO global
eradication program, is estimated at 50 million [46]. The eradication campaign was suc-
cessful [46], but samples of the variola virus are still kept in at least two known laboratories
in Russia and the United states [82]. In a worrying incident in July 2014, previously for-
gotten vials containing samples of smallpox, some of which were viable, were found in a
lab at the National Institute of Health campus in Bethesda, MD [83]. Thus, the threat of the
reintroduction of smallpox, whether inadvertently or in a bioterrorist attack, is still present.

Consequently, some countries—notably the United States—are interested in measures
to protect their populations from potential smallpox infection. Prophylactic vaccination for
smallpox carries a high cost (relative to other vaccines in use today), as the probability of
death following vaccination—or “risk from being vaccinated”—is rv ' 10−6 and serious
side-effects occur with probability ∼ 10−3 [46]. Of course, infection with smallpox carries
a much greater risk, since the case fatality proportion—the “risk from infection”—is ri '
0.3 [46]. (See table 2.1 for a summary of parameter estimates.)

The substantial vaccine-induced morbidity and mortality associated with smallpox vac-
cination make pre-emptive mass vaccination controversial. If vaccination is voluntary, there
is a conflict between self- and group-interests. This conflict can be framed as a tragedy of
the commons, in which herd immunity plays the role of the commons, and free-riding
(i.e., not vaccinating pre-emptively) is analogous to exploiting the commons. A previous
game-theoretical study by Bauch and co-workers [37] examined this conflict of interest,
and focused on the trade-off between prophylactic vaccination and post-outbreak mass vac-
cination (which has been shown to outperform contact-traced vaccination in a bioterrorism
setting [84]). In particular, they showed that if the decision regarding pre-emptive vac-
cination is left to the individual, the vaccine coverage achieved will be sub-optimal from
the group perspective. Bauch et al. [37] assumed that once a post-outbreak vaccination
campaign begins, individuals will be vaccinated at a constant rate determined by existing
infrastructure.

Various mechanisms might drive the rate of vaccination. Vaccination at a constant rate
might be achieved if vaccination centres are flooded by individuals seeking the vaccine, and
are operating at peak capacity. However, public responsiveness to such a campaign is hard
to predict. If demand for the vaccine does not exceed the maximal rate of distribution by
public health services, the post-outbreak dynamics might play out differently, depending
on the public’s reaction patterns. For example, media reports on the number of new cases
might influence individuals to obtain the vaccine, in which case it is reasonable to model
the vaccination rate as proportional to smallpox incidence.

In this paper, we return to the problem posed by Bauch et al. [37], but compare a
variety of possible post-outbreak vaccination scenarios (described intuitively in § 2.3 and
in precise mathematical terms in § 2.6). Whereas the scenario considered in [37] could
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only be analyzed numerically, several of the vaccination scenarios that we consider here
can be addressed analytically to obtain exact results. To this end, in § 2.4 we make some
adjustments to the game-theoretical framework of Bauch and Earn [36] so that it can be
applied to the scenarios we investigate here.

Throughout this paper we use smallpox as an illustrative example. However, our anal-
yses can be applied to any vaccine-preventable infectious disease that could be used for
bioterrorism or released accidentally, and for which the Susceptible-Infectious-Removed
(SIR) or Susceptible-Exposed-Infectious-Removed (SEIR) models are applicable (see §2.6).
Our qualitative results appear to be robust to which post-outbreak vaccination scenario is
considered and the specific parameter values (we prove this in some cases), but the precise
numerical values will vary.

We calculate the vaccination coverage obtained by voluntary pre-emptive vaccination
and assess the costs of this policy as compared to mandatory vaccination. The group-
optimal pre-emptive vaccine coverage is discussed in §2.5. We discuss parameter estimates
and the procedure used to compare the the various models fairly in §2.7. We compare the
predictions of the various models, and emphasize important considerations for public health
in §4.4. Notation and definitions are summarized in Tables 2.1, 2.2 and 2.3.

2.3 Vaccination scenarios

In this section, we give a brief description of the various post-outbreak vaccination scenarios
considered in this paper.

Media coverage of a smallpox outbreak is likely to influence individual decisions con-
cerning vaccination. Measures of severity of the outbreak that are likely to appear in the
media include:

• Death rates, as in “300 people died of smallpox today”,

• Total number of people currently infected (prevalence), as in “There are now 30,000
people sick with smallpox”,

• New cases (incidence), as in “200 new cases of smallpox were confirmed today”.

We consider separately how each of these types of information could affect smallpox vac-
cine uptake; in each case, we assume that the vaccination rate is proportional to the relevant
quantity (e.g., prevalence). Note that in standard epidemiological models [85], death rate is
proportional to prevalence, so the first and second cases above are mathematically identical.

As a type of “null model” for media-induced vaccination, we also consider the situation
in which
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• vaccination rate is simply proportional to the size of the remaining susceptible pop-
ulation; this corresponds to a constant per capita vaccination rate for susceptible
individuals (see appendix 2.B.1). This can be regarded as a “null model” to compare
with models for the scenarios above in the following sense: Individuals’ proclivity
to vaccinate is constant over time, and does not depend on the state of the epidemic
(i.e., on prevalence or incidence, which are likely to be reported by the media), while
the vaccination rate falls as the number of susceptibles decreases over time, meaning
that fewer individuals per unit time are inclined to vaccinate.

We also consider two scenarios in which vaccine uptake is not influenced by the media,
but is constrained by the capabilities of public health authorities:

• If an outbreak occurs, immediately vaccinate a proportion of the susceptible popu-
lation. The proportion might describe the efficacy of a post-outbreak campaign in
convincing those who have thus-far avoided vaccination. Individuals who remain un-
vaccinated after this post-outbreak campaign would be persons holding particularly
radical anti-vaccine opinions.

• Susceptible individuals are vaccinated at a constant rate until there are no more sus-
ceptibles remaining.

Finally, for each of the above scenarios, we investigate the effect of a lag between the
start of an outbreak and the initiation of the post-outbreak vaccination response (allowing
for public health authorities to organize a response to the outbreak). Bauch et al. [37]
assumed such a response lag in their model, which is otherwise identical to the final scenario
described above.

The epidemic models associated with each of the above five scenarios are described in
detail in §2.6.

2.4 Game-theoretical formulation

In this section, we adapt the game-theoretical framework of Bauch and Earn [36] to our
current problem. We assume that all individuals have full knowledge and are rational (in
the game-theoretical sense; see [86]).

We denote the proportion of the population vaccinated pre-emptively as p. Because a
proportion rv of those vaccinated will die, the pre-outbreak vaccine coverage (the propor-
tion of the population that is immune prior to the outbreak) is peff = p 1−rv

1−prv
[37], which is

slightly smaller than p. But, since none of the mathematical analysis and conclusions which
follow are affected by this, and because the difference between p and peff is negligible, we
refer to p as the pre-outbreak vaccine coverage level for simplicity (as in [37]).

Let a ∈ [0, 1] be the probability of an outbreak (‘a’ for ‘bioterrorist attack probability’
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or ‘accidental release probability’) per lifetime (or whatever time period is under consid-
eration). Consider two pure strategies: vaccinate and delay. The former vaccinates pre-
emptively, before the beginning of an outbreak, and so receives (expected) payoff −rv; the
latter delays vaccination until after an outbreak (at which point s/he may still be vaccinated
during the public health post-outbreak vaccination campaign), and receives payoff

− a[riπp + ψprv] , (2.1)

where πp and ψp are the probabilities of a delayer being infected, or vaccinated, respectively,
after an outbreak (the delayer infection and vaccination probabilities are discussed in more
detail in §2.6). A mixed strategy is specified by the probability P that an individual will
choose to vaccinate pre-emptively. We also assume rv < ari because if it were not so,
even if all delayers were infected in an outbreak, the risk of dying in an outbreak would be
smaller than the risk of dying from the side-effects of the vaccine, hence there would be no
reason to vaccinate.

The payoff to an individual playing a mixed strategy (vaccinating with probability P )
in a population in which the coverage level is p, is given by

E(P, p) = −Prv − (1− P )a(πpri + ψprv) . (2.2)

Equivalently, defining the relative risk of vaccination compared with infection as

r =
rv

ri
, (2.3)

we have E(P, p) = −ri[rP +(1−P )a(πp+ψpr)]. Since the parameter ri simply scales the
game payoff by a constant, it does not change the dynamics. We therefore use the rescaled
payoff function

E(P, p) = −[rP + (1− P )a(πp + ψpr)] . (2.4)

Suppose that a proportion ε of the population vaccinate with probability P and 1 − ε
vaccinate with probability Q. Following [36], we assume 100% vaccine efficacy, which
implies coverage level p = εP + (1− ε)Q. (Note that in a homogeneous population where
all individuals play the same strategy P , i.e., ε = 1, the coverage is p = P .) The payoffs to
individuals playing P and Q in such a population are then

EP (P,Q, ε) = E(P, εP + (1− ε)Q) (2.5a)
EQ(P,Q, ε) = E(Q, εP + (1− ε)Q) , (2.5b)

respectively, and the payoff gain to an individual playing P rather thanQ in this population
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is

∆E = EP (P,Q, ε)− EQ(P,Q, ε)

= −[rP + (1− P )a(πp + ψpr)] + [rQ+ (1−Q)a(πp + ψpr)]

=
(
πp + rψp −

r

a

)
a(P −Q) , where p = εP + (1− ε)Q. (2.6)

A strategy P ∗ is a Nash equilibrium (NE) if and only if (iff ) in a population in which
all individuals are playing P ∗, no player employing a different strategy can achieve a higher
payoff. Mathematically, this means that for any other strategy Q ∈ [0, 1] if the proportion
playing Q is small enough (i.e., 1− ε is sufficiently small), then the payoff gain to strategy
P ∗ is non-negative, i.e., ∆E(P ∗, Q, ε) ≥ 0. When such a NE exists, we refer to this strategy
as the individual equilibrium and denote it by pi. This equilibrium is “individual” in the
sense that it is determined by individuals attempting to maximize their payoffs (unlike the
group optimum discussed in § 2.5 below). Note, however, that this is a population game
[28, 36] so the payoff to individuals depends on the frequencies of strategies in the entire
population.

Additionally, consider a scenario whereby strategy P invades a population playing strat-
egy Q. If in this scenario, strategies P that are closer to the NE P ∗ than the prevalent strat-
egy Q, obtain a higher payoff than the prevalent strategy, then P ∗ is called a convergently
stable Nash equilibrium (CSNE). Mathematically, this is equivalent to demanding that if
ε� 1 then

P ∗ < P < Q ≤ 1 =⇒ ∆E(P,Q, ε) ≥ 0

and
0 ≤ Q < P < P ∗ =⇒ ∆E(P,Q, ε) ≥ 0.

In order to proceed with the analysis, it is necessary to derive the probabilities πp and
ψp from an epidemiological model, either numerically or analytically (see appendix 2.E).
Proofs of existence and uniqueness of a CSNE are given for several cases in appendix 2.G.
These proofs depend on πp being a decreasing function of p. We have shown this to be
true when post-outbreak vaccination is instantaneous or proportional to incidence, and also
when vaccination is proportional to prevalence and αφprev > γ(1−α). Based on biological
intuition corroborated with simulations, we have assumed that πp decreases with p for all
the models considered here. This has also recently been proved for other post-outbreak
vaccination models not considered here [F. Bai and F. Brauer, pers. comm.].
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2.5 Group optimum

From the perspective of a public health official (i.e., group interest), it is desirable to attain
the vaccine coverage that minimizes mortality. From this group perspective, a strategy
is specified by the proportion p of the population that is pre-emptively vaccinated. The
currency with which we compare strategies is the mortality cost C(p), i.e., the proportion
of the population that is expected to die (either from smallpox infection or vaccination),

C(p) = rp+ (1− p)a(πp + ψpr) , p ∈ [0, 1], (2.7)

where we have ignored a factor of ri as in equation (2.4). The minimum mortality cost
yields the group optimum coverage level, which we denote pg. The minimum of C(p) on
[0, 1] may be attained either at a local minimum in (0, 1), or at one of the endpoints,

C(0) = a(π0 + ψ0r) , (2.8a)
C(1) = r . (2.8b)

To completely specify the cost C(p), we need the probabilities πp and ψp, derived from the
epidemiological model (see §2.6 and appendix 2.E), just as for the individual equilibrium.
We have found an exact analytical expression for pg in one sub-case (see appendix 2.H) and
calculated it numerically in the other cases.

2.6 Epidemiological models

In order to find the group optimum (pg) and individual equilibrium (pi), two key quanti-
ties are calculated from the epidemic models: the delayer infection probability πp (the
probability of a delayer being infected after an outbreak), and the delayer vaccination
probability ψp (the probability that a delayer is eventually vaccinated, given an outbreak).

Both πp and ψp depend on the disease dynamics and the post-outbreak vaccination
scenario. In the following, we assume that in the absence of post-outbreak vaccination, the
standard susceptible-infected-removed (SIR) model is adequate to represent the disease
dynamics [87, §4]. The models do not include vital dynamics (births and deaths from all
natural causes other than the disease), since the mean serial interval (also called the disease
generation time, tser = 22 days [48, p. 141]) is much smaller than the mean lifetime (∼ 80
years in the US [88]). Note that for diseases for which the outbreak time-scale is similar
to the mean lifetime, vital dynamics can easily be included in the analysis (e.g., as in [36],
where much longer term dynamics were considered).

Let S(t), I(t), R(t) and V (t) be the proportions of susceptible, infected, removed (re-
covered or dead from smallpox infection) and vaccinated individuals (immune or dead from
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vaccination), respectively, at time t. Our basic framework is the SIRV model, described
by the differential equations

Ṡ = −βSI − V̇ , (2.9a)

İ = βSI − γI , (2.9b)

Ṙ = γI , (2.9c)

V̇ ≥ 0 , (2.9d)

where V̇ must be non-negative as indicated and is defined differently for each of the distinct
scenarios of post-outbreak vaccination described in §2.3.

We assume no one has natural immunity or retains immunity from vaccination decades
earlier. This is an approximation, since many living individuals were vaccinated before
smallpox was declared eradicated in 1979 [46] and many of those vaccinated individuals
are probably still immune (vaccine-derived immunity seems to wane quite slowly and life-
long immunity is common [89]). However, smallpox is considered to have been eliminated
in the United States as early as 1950, and while routine vaccination continued in some
states well after that [46], the proportion of US residents younger than 60 who have been
vaccinated is likely very small.

Thus, we assume that the coverage level prior to an outbreak is p, the proportion pre-
emptively vaccinated. Consequently, prior to the outbreak, a proportion 1 − p of the pop-
ulation is susceptible. When a bioterrorist attack or accidental release takes place (at time
t = 0), an initial attack proportion α of the susceptible population is infected. Thus,

S(0) = (1− p)(1− α) , (2.10a)
I(0) = (1− p)α , (2.10b)
R(0) = 0 , (2.10c)
V (0) = p . (2.10d)

After an outbreak, the epidemic is over when no one remains infective (I = 0). In ap-
pendix 2.C, we show rigorously that this is guaranteed to occur, either in finite time or in
the limit as t → ∞. In either case we use the subscript ∞ to refer to the time at which
the epidemic ends. Thus, S∞, I∞, R∞ and V∞ refer to the proportions of the population
in the susceptible, infective, removed and vaccinated compartments at the end of the epi-
demic. With this notation, the probabilities of infection and vaccination for delayers are,
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respectively,

πp =
R∞ −R(0)

S0 + I0

=
R∞

1− p , (2.11a)

ψp =
V∞ − V0

S0 + I0

=
V∞ − p
1− p = 1− 1− V∞

1− p
= 1− S∞ + I∞ +R∞

1− p = 1− πp −
S∞

1− p . (2.11b)

We emphasize that R is the proportion of the population that has been infected (and con-
sequently is either immune or has died), hence R(0) = 0 because anyone who is immune
at time t = 0 is immune from vaccination. Intuitively, there is no endemic equilibrium in
these models, because the combination of vaccination and natural spread of disease must
eventually cause susceptibles to be so rare that the disease cannot spread (recall that these
models neglect vital dynamics).

Lastly, note that πp is undefined at p = 1 (i.e., if everyone pre-emptively vaccinates), as
there are no delayers for whom to calculate the probability of being infected. We define π1

as the limit of the delayer infection probability,

π1 = lim
p→1−

πp (2.12)

i.e., π1 is the limit of πp as pre-emptive vaccination approaches full coverage. In ap-
pendix 2.D, we show that this limit is equal to the proportion of susceptibles initially in-
fected in an outbreak, i.e., π1 = α for all models considered.

Below we describe (and interpret mechanistically) the various models that we com-
pare, and present some analytical results. In all models, the vaccination rate depends on a
vaccination effort parameter, φ〈model〉 , the exact interpretation of which is model-dependent.

2.6.1 Vaccination rate ∝ disease prevalence

In this model, vaccination occurs at a rate proportional to disease prevalence (I). A plau-
sible scenario to which such a model would apply is if people respond to media reports on
disease prevalence. As a result of increasing disease prevalence, the public might perceive
the risk of being infected as higher, and be moved to vaccinate. Consequently,

V̇ = φprev sign(S)I , (2.13)
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where

sign(x) =





−1 if x < 0,

0 if x = 0,

1 if x > 0.

This model could also represent the case where vaccination rate is proportional to death rate,
i.e., people vaccinate in response to media reports on new disease-induced deaths. Since the
death rate is proportional to the rate at which the removed compartment, R, grows, which
is proportional to I , vaccination rate would be proportional to I as well.

In appendix 2.E.1 we find the final size relations [90, 91, 92] for the model defined
by equation (2.13). These are given by

S∞ =

{
0 if p < p0 or 1 ≤ pm,

S1
∞ if p0 ≤ p ≤ 1 .

(2.14a)

R∞ =





1− p− φprev

β
ln
(

β
φprev

S(0) + 1
)

if p < p0 or 1 ≤ pm,
γ

γ+φprev
(1− p− S1

∞) if p0 ≤ p ≤ 1 .
(2.14b)

V∞ =




p+

φprev

β
ln
(

β
φprev

S(0) + 1
)

if p < p0 or 1 ≤ pm,

1
γ+φprev

(φprev(1− S1
∞) + γp) if p0 ≤ p ≤ 1 .

(2.14c)

with

S1
∞ = − 1

β

(
φprev + (γ + φprev)W 0

(
−βS(0) + φprev

γ + φprev
e
−β(1−p)+φprev

γ+φprev

))
, (2.15)

pm = 1 +
αφprev − γ(1− α)

β(1− α)
, (2.16)

p0 = 1 +
φprev

β(1− α)
+
γ + φprev

β
W k

(
− φprev

(1− α)(γ + φprev)
e
− φprev

(1−α)(γ+φprev)

)
, (2.17)

where k = 0 if pm < 1 and k = −1 if pm ≥ 1. W 0 is the principal branch of Lambert’s
W function [93, 94], and W −1 is its other real branch (see appendix 2.A). pm is the unique
maximum of the function S1

∞. S1
∞ has two roots, one at p = 1, and the other at p0, which

need not lie in the interval [0, 1] (p0 is a formal root and need not correspond to a meaningful
probability). Note that if pm > 1 then p0 > pm, and if pm < 1 then p0 < pm.

If pm > 1 then no delayers will remain susceptible at the end of the epidemic (i.e., all
delayers will either be vaccinated or infected), regardless of the initial vaccine coverage
level p. Moreover, if pm < 1, but p0 < 0, there are always some delayers who remain
susceptible at the end of the epidemic, regardless of the initial coverage level p. If 0 < p0 <
pm < 1, then for p ∈ [0, p0] there will be no susceptibles left at the end of the epidemic,
and for p ∈ (p0, 1) there will be some remaining susceptibles. Thus, there is a wide range
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of parameter values for which some susceptibles remain at the end of the epidemic; in
such cases, πp + ψp < 1. Numerical evidence and biological intuition suggest that πp is a
decreasing function of p, and we assume that this is the case from here on (this is proven
for pm ≥ 1 in appendix 2.E.1).

Finally, since the mean infectious period (7 days, see table 2.2 and §2.7.1) is longer than
the time required to complete the vaccination program (possibly as short as 3 days [47]), it
is interesting to take the limit γ → 0 (corresponding to an infinite infectious period) while
keeping R0 = β/γ fixed. In this limit, pm → ∞ so S∞ = 0 (equation (2.14a)), which
is in accordance with the assumption—made in [37]—that individuals are ultimately either
removed or vaccinated.

We show in appendix 2.G.1 that there is always a unique CSNE, that is, a “best strat-
egy” from the individual perspective. Moreover, an analytical expression for this individual
equilibrium can be found if

either φprev ≥ γ(1− α)/α, (2.18a)
or 0 ≤ p0 < pm ≤ 1, π0 > ρ1 > πp0 and πp0 < ρ2. (2.18b)

In addition, we find an analytical formula for the group optimum when φprev ≥ γ(1−α)/α
(see appendix 2.H for details).

2.6.2 Vaccination rate ∝ incidence

A vaccination rate proportional to incidence again reflects media-induced vaccination. How-
ever, in this model the public reacts to reports of new cases, rather than reports of the total
number of sick individuals. Thus,

V̇ = φincSI . (2.19)

In appendix 2.E.2, we show that

S∞ = −γ
β
W 0

(
−β(1− p)(1− α)

γ
e−

β+φincα
γ

(1−p)
)
, (2.20a)

V∞ = p+
φinc

β + φinc

(
(1− p)(1− α)− S∞

)
, (2.20b)

R∞ = 1− p− φinc(1− p)(1− α) + βS∞
β + φinc

. (2.20c)

Again, since there are susceptible individuals left at the end of the epidemic, πp 6=
1 − ψp. We show that ∂pπp < 0 (in appendix 2.E.2) and find that there is a unique CSNE,
pi, for which an exact formula is derived in appendix 2.G.2.
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2.6.3 Vaccination rate ∝ proportion still susceptible

In this scenario, susceptible individuals vaccinate at a rate

V̇ = φsuscS . (2.21)

This is a null model, in the sense that susceptible individuals have a constant probability
per unit time of being vaccinated, φsusc, independent of the state of the outbreak, as shown
in appendix 2.B.1.

We were able to obtain analytical final size relations for this model (see appendix 2.E),
but we found the formulae too cumbersome to be useful. Thus, the remainder of our anal-
ysis of this model was performed by integrating the differential equations numerically. In
our numerical simulations we always find that πp decreases with p (in appendix 2.G.3, our
proof of the existence of a CSNE depends on this being true).

2.6.4 Instantaneous vaccination of a proportion φinst of the population

Some experts believe that the entire United States could be vaccinated in three days [47],
which is less than the latent period of smallpox. Consequently, instantaneous vaccination
of a proportion φinst of the population remaining susceptible after the outbreak is also a
realistic scenario to model. In this case, once vaccination has occurred, the disease simply
spreads according to the standard SIR model,

Ṡ = −βSI (2.22a)

İ = (βS − γ)I (2.22b)

Ṙ = γI , (2.22c)

with initial conditions given by

S(0) = (1− p)(1− α)(1− φinst)

I(0) = (1− p)α
R(0) = 0

V (0) = p+ φinst(1− p)(1− α) .

Note that in this scenario we deviate from the convention we use for all the other models, in
which S(0) is the initial density of susceptibles prior to the beginning of the post-outbreak
vaccination response. Here, S(0) is the density of susceptibles after the post-outbreak
vaccination response has taken place.
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For this scenario, we find (in appendix 2.E.4)

S∞ = −γ
β
W 0

(
−β
γ
S(0)e−

β
γ

(1−V (0))

)
, (2.23a)

R∞ =
γ

β
ln
S(0)

S∞
. (2.23b)

We also show that πp is a decreasing function of p, ψp is constant and πp + ψp 6= 1 (see ap-
pendix 2.E.4). In addition, we have proved that for this model, there is always a unique
CSNE, for which we derive an exact formula in appendix 2.G.4.

2.6.5 Constant rate vaccination

This is the model of Bauch et al. [37], in which vaccination occurs at a constant rate φconst .
Note that in [37] vaccination begins after a response lag tlag, which is the public health
services’ response time. This lag is taken to be tlag = 0 except in §2.8.5.

For consistency with [37], we included an exposed (but not infective) stage (E), in
this model, making it an SEIRV model. This contrasts all the other scenarios, which we
have modelled using a simpler SIRV formulation. Our choice of the SIRV framework
for the new scenarios is motivated by mathematical tractability and by work subsequent to
[37] indicating that SEIR dynamics are captured by an appropriately parameterized SIR
model (§2.7.1 below, but see §2.8.5 for an exception).

The model equations for the constant rate vaccination scenario are

Ṡ = −βSI − V̇ (2.24a)

Ė = βSI − σE (2.24b)

İ = σE − γI (2.24c)

Ṙ = γI (2.24d)

V̇ =

{
φconst if tlag < t and S > 0,

0 if t ≤ tlag or S ≤ 0 .
(2.24e)

We have not found a final size relation for this model.

Under the biologically plausible assumption that πp decreases with p (verified by simu-
lation), [37] have shown the existence of a unique CSNE for this model.
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2.7 Parameter estimates, Fair Comparisons of Models and
numerical procedures

Because one of the models we investigate includes an exposed class, and the vaccination
effort parameter φ〈model〉 has a different meaning in each scenario we examine, fair compar-
isons of model results is not completely straightforward. In this section, we consider how
the various models can be compared.

2.7.1 SIR vs SEIR

It is well known that similar dynamics are obtained with the standard SIR and SEIR models
with identical basic reproductive number, R0, if the mean infectious period in the SIR
model is set equal to the sum of the mean latent and infectious periods in the SEIR model
[85, p. 668]. More generally, models can be fairly compared if they have the same mean
serial interval [87, §4].

Estimates of the basic reproductive ratioR0 of smallpox vary in the range 3 ≤ R0 ≤ 10
[85, 95, 96]. Following [37], we take R0 = 5. We take the mean serial interval to be
tser = 22 days, as in [48, p. 141] (but note that [37] used tser = 14 days, and [97] estimated
tser = 17.7 days).

In the constant rate vaccination model, we take the mean latent period to be 1/σ =
15 days [48, p. 141] (based on summing the incubation and prodrom periods, which typ-
ically last 12 and 3 days, respectively; see [46, p. 188]). In an SEIR model, the mean
serial interval is the sum of the mean latent and infectious periods [87, 98], hence, 1/γ =
22− 15 = 7 days and β = γR0 = 5

7
/day. In the SIRV models we take 1/γ = tser, while β

is modified so thatR0 = 5 (that is, β = γR0 = 5
22
/day).

2.7.2 Vaccination effort parameter φ〈model〉

Public health policy changes will affect the vaccination effort parameter φ〈model〉 , where
〈model〉refers to any of “prev”, “inc”, “susc”, “inst” or “const”. In order to compare the
outcomes of the various vaccination scenarios, for each vaccination model, we find the fair
comparison value of φ〈model〉 , that is, the value of φ〈model〉 that yields a maximal vaccination
rate that is equal to the fixed rate in the constant rate vaccination model of Bauch et al [37],
V̇ = 0.1/day (see description under φconst below). This allows us to identify, for each sce-
nario, ranges of φ〈model〉 that can feasibly be attained in reality (i.e., φ〈model〉 between 0 and the
fair comparison value). Our aim is then to compare the different vaccination strategies in
terms of vaccine doses used and total expected mortality (we will be interested in the values
of these observables at both the individual equilibrium and the group optimum). The fair
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comparison values are summarised in table 2.4.

φprev In the prevalence model, V̇ = φprevI , the vaccination rate is proportional to the preva-
lence, I , and the vaccination effort parameter φprev is the rate of vaccination per in-
fected individual. In appendix 2.F.1, we calculate the maximal vaccination rate as a
function of the model parameters, α, β, γ and φprev and p. We find that the maximal
vaccination rate for a given initial coverage, p, decreases with the vaccination effort,
φprev. We also find that when α, β, and γ are as in Tables 2.1 and 2.2, a maximal
vaccination rate of 0.1/day is obtained when φprev ≈ 1582/day.

φinc In the incidence model, V̇ = φincSI , the vaccination effort parameter φinc is the vacci-
nation rate per infective per susceptible. In appendix 2.F.2 we calculate the maximal
vaccination rate, as a function of the model parameters, α, β, γ and φinc. We show
that the maximal vaccination rate, max{V̇ : t ≥ 0, p ∈ [0, 1]}, is an increasing
function of φinc, and that in order to obtain a maximal vaccination rate of 0.1/day or
lower, with α, β, and γ as in Tables 2.1 and 2.2, one needs φinc ≈ 5190/day.

φsusc With V̇ = φsuscS, the vaccination effort parameter φsusc is the vaccination rate per
susceptible individual (alternatively, φsusc can be interpreted as the probability per
unit time of a delayer being vaccinated; see appendix 2.B.1). In this model, the
vaccination rate V̇ is always decreasing, since S can only decrease, so max{V̇ } =
φsuscS(0) = φsusc(1−α)(1−p) (cf. equation (2.10a)). Since the maximal vaccination
rate decreases with increasing initial coverage, p, maximal vaccination rate is attained
with no pre-emptive vaccination (p = 0). Since S(0) = 1− α, the maximal vaccina-
tion rate is max{V̇ } = (1− α)φsusc, and a vaccination rate of 0.1/day is attained for
φsusc = 0.1

1−α ≈ 0.1/day (because α� 1).

φinst For instantaneous vaccination, the vaccination effort parameter φinst is the proportion
of susceptibles instantaneously vaccinated when an outbreak occurs. Thus, φinst ∈
[0, 1]. The vaccination rate is either 0 (if φinst = 0) or effectively infinite (if 0 <
φinst ≤ 1, because vaccination occurs all at once). We thus consider the entire range
0 ≤ φinst ≤ 1, since there is no value of φinst that results in a vaccination rate of
0.1/day.

φconst With V̇ = φconst , the vaccination rate is constant, so φconst is simply the proportion of
the total population that can be vaccinated per unit time. Bauch et al. [37] estimated
φconst for New York City to be

φconst = (5000 vaccinators)×
(

200 people/day
vaccinator

)
× 1

107 people
=

0.1

day
. (2.25)

A rate of φconst = 0.1/day means the entire population can be vaccinated in ten days.

22



Ph.D. thesis – Chai Molina; McMaster University – Mathematics & Statistics

2.7.3 Numerical procedures

When generating figures 2.1 to 2.4, calculations of the following quantities were necessary:
the mortality cost, C(p) (equation (2.7)), the group optimum, pg (§2.5) and the individual
equilibrium, pi (§2.4).

To find pg, C(p) was numerically minimized using the optimize function in R [99].
pi was found by implementing the procedures described in appendix 2.G for the various
models, using R’s uniroot function.

The calculations of both pg and pi depend on πp and ψp, the probabilities of a delayer
being infected or vaccinated, respectively (equation (2.11)). For the models in which the
vaccination rate is proportional to prevalence or incidence, we used the final size relations
reported in §§2.6.1 and 2.6.2, respectively, to calculate πp and ψp. For the remaining mod-
els, πp and ψp were obtained by numerically integrating the differential equations using the
deSolve package [100] in R [99].

When generating figure 2.5, for all the models πp and ψp were calculated by numerical
integration of the differential equations.

2.8 Results and Discussion

2.8.1 Group optimum vs. individual equilibrium

Figure 2.1 shows the group optimum pg (red) and individual equilibrium pi (black), as the
vaccination effort parameter φ〈model〉 is varied, for the different models. As expected, the
group-optimal coverage is never smaller than the individual equilibrium, and both decrease
as φ〈model〉 is increased. The difference, pi − pg, tends to grow initially with φ〈model〉 , but
eventually decreases to 0 because the coverage at both the group optimum and individual
equilibrium always drops to 0 if the vaccination rate parameter φ〈model〉 is increased suffi-
ciently. It is also evident that the difference between the group-optimal coverage and the
individual equilibrium depends strongly on the vaccination model used. In general, this
difference is much smaller for the instantaneous and constant rate vaccination models than
it is for the other models in which vaccination is affected by the state of the outbreak.

2.8.2 Mortality cost vs. vaccination cost

Figure 2.2 shows the mortality cost (proportion of the population that dies, left panel) and
the vaccination cost (proportion of the population that is vaccinated by the end of the out-
break, right panel) as functions of the vaccination effort parameter, φ〈model〉 , for the various
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Figure 2.1: Variation of the group optimum pg (red) and the individual equilibrium pi

(black) with φ〈model〉 (each panel presents results for a different vaccination model). Note
the different ranges of φ〈model〉 (on the abscissa) for different models.
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post-outbreak response scenarios.

Mortality plateau

The most striking feature of figure 2.2 is the plateau in mortality cost at the individual
equilibrium for low values of φ〈model〉 . This plateau can be explained using the Bishop-
Cannings theorem [28, 101], which implies that if the individual equilibrium is a mixed
strategy then the payoff for vaccinating and delaying must be the same. For low values of
φ〈model〉 , the individual equilibrium is mixed (0 < pi < 1) so the mortality cost associated
with vaccinating is the same as for delaying, which is therefore the same as the overall
mortality cost. Since the mortality cost for vaccinating is equal to the risk from vaccination
(rv, or r in normalized units; cf. equation (2.3), Tables 2.1 and 2.2), the overall mortality cost
is constant at rv (or r in normalized units) as long as the individual equilibrium is mixed.
As φ〈model〉 is increased, the individual equilibrium pi is decreased (see § 2.8.1). When pi

reaches 0, there is a pure strategy equilibrium (i.e., always delay) so the Bishop-Cannings
theorem no longer applies; then the overall mortality is the mortality of delayers, which is
−a[riπp + ψprv] (see equation (2.1)) and this decreases as φ〈model〉 is increased (because the
epidemic is extinguished faster).

Public health strategy implications of the mortality plateau

There is an important implication of the plateau in mortality that occurs for small φ〈model〉 if
vaccination is voluntary: in order to achieve any reduction in overall mortality, the post-
outbreak vaccination response must be so strong that no individual would choose to vacci-
nate pre-emptively (pi = 0, i.e., the equilibrium is for everyone to delay). Only if the the
post-outbreak vaccination response is already sufficiently efficient (φ〈model〉 is already suf-
ficiently large; figure 2.1) can outbreak size (and hence overall mortality) be reduced by
further enhancing the post-outbreak vaccination response (i.e., by increasing φ〈model〉).

Note that for every model examined here, the right (high effort) edge of the mortal-
ity plateau in figure 2.1 occurs for a value of vaccination effort φ〈model〉 lower than the fair
comparison value (see table 2.4). Thus, at the fair comparison values of φ〈model〉 , the individ-
ual equilibrium is always to delay vaccination, and mortality can be reduced by increasing
vaccination effort, φ〈model〉 .

However, in § 2.8.5, we show that any lag between the start of an outbreak and the
beginning of post-outbreak vaccination extends the mortality plateau to higher vaccination
efforts, φ〈model〉 , and a long enough lag makes reducing mortality by increasing vaccination
effort impossible. We discuss the implications of this for public health strategies further
in §2.8.5.
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Figure 2.2: Variation of the mortality cost (proportion of the population that dies) and
vaccine dose cost (proportion of the population that is vaccinated by the end of the outbreak)
as functions of the vaccination effort parameter φ〈model〉 , for different vaccination models.
Each row depicts the mortality costs (left panel) and vaccine dose costs (right panel), at the
group optimum (red) and individual equilibrium (black) for one model. Note the different
ranges of φ〈model〉 for different models.

26



Ph.D. thesis – Chai Molina; McMaster University – Mathematics & Statistics

Generality of the mortality plateau.

It is important to note that the mortality plateau described earlier is a general phenomenon
that applies not only to the post-outbreak vaccination scenarios examined here, but to any
reasonable post-outbreak vaccination scenario. More precisely, suppose public health agen-
cies have some measure of control over a vaccination effort parameter, φ . Suppose also
that φ = 0 corresponds to no possibility of obtaining vaccine post-outbreak, and that the
probabilities of a delayer being infected or vaccinated after an outbreak (πp and ψp, respec-
tively) are continuous functions of p and φ (for 0 ≤ p < 1 and φ ≥ 0). As in §2.4, the costs
for delaying and vaccinating individuals are then a(riπp + rvψp) and rv, respectively. Now
suppose the following additionally:

1. If there is no possibility of being vaccinated post-outbreak (φ = 0), and no one is
vaccinated pre-emptively (p = 0), then individuals are at greater risk than if they had
vaccinated pre-emptively (i.e., a(riπp + rvψp)|p=0,φ=0 > rv).

2. As the initial coverage approaches 100% (p → 1), the disease does not spread any
further than the initial infected cohort (πp → α). Note that as shown in appendix 2.D,
this assumption holds for all of the models considered in this paper, and the mathe-
matical argument used to show this is quite general.

3. The risk that a delayer is infected in the initial infection event and then dies, is smaller
than the risk of mortality from the vaccine alone (αri < rv).

The vaccination game with this post-outbreak vaccination scenario is a population game,
and thus must have at least one Nash equilibrium [102, Theorem 2.1.1, p.24]. For low
enough vaccination effort φ, if coverage p is low, it is more costly to delay than to vac-
cinate (from the first assumption above). Conversely, if coverage p is high enough, the
third assumption above implies that delaying is preferable to vaccinating pre-emptively. It
follows that any individual equilibrium that results from the vaccination game is a mixed
Nash equilibrium (0 < pi < 1). The preceding argument presented in § 2.8.2 (using the
Bishop-Cannings theorem) now implies the existence of a plateau in mortality.

Vaccination cost plateau

The right panels of figure 2.2 also show a plateau for sufficiently large vaccination efforts
(except for the constant rate vaccination model). Unlike the mortality plateau, this vacci-
nation cost plateau is not rigorously a constant (it changes very slightly as a function of
φ〈model〉), but it is certainly a plateau for all intents and purposes. This plateau occurs because
overall vaccination rises with the vaccination effort, φ〈model〉 , and cannot exceed V∞ = 1, so
vaccination costs must eventually taper off.
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Perceived vs. real risks

The general public is likely to overestimate vaccine-induced mortality [103, 104, 105],
which would tend to decrease the pre-outbreak vaccine coverage under voluntary vaccina-
tion. The game-theoretical framework we employ assumes individuals behave rationally
and possess perfect information on which to base their decisions, but it is possible to re-
lax the assumption of perfect information while maintaining that of rationality. Thus, to
account for misinformation regarding the dangers of vaccination (possibly as a result of
vaccine scares), we can interpret ri and rv as the perceived risks of infection and vaccina-
tion (rather than the actual risks) to predict the effective level of vaccine coverage prior to
an outbreak (note that perceived risks are to be used to predict the individual equilibrium,
pi, but not when predicting the group optimum pg, nor when predicting the mortality and
vaccination costs at either of these coverages). Consequently, public health agencies can
potentially reduce mortality by attempting to influence the public’s estimate of r (the risk
of vaccination relative to infection). For example, risk perception might be influenced by
a media campaign aiming to increase the accuracy of the public’s perception of vaccine
safety and promote pre-emeptive vaccination.

2.8.3 Comparison of relative costs

In figure 2.3 (left panel) we look at the relative mortality cost difference, that is, in units
of the cost of optimal mandatory vaccination. Explicitly, we examine how C(pi)−C(pg)

C(pg)

varies with φ〈model〉 for each model. Similarly, we plot the relative difference in vaccination
V∞(pi)−V∞(pg)

V∞(pg)
(figure 2.3, right panel), which is the relative vaccine dose cost difference

between voluntary and mandatory vaccination.

Large variation in relative mortality cost. Observe that in figure 2.3 (left panel), the
relative mortality cost difference is always non-negative (as expected from the definition of
the group optimum as the pre-outbreak coverage for which expected mortality cost is min-
imal). There is substantial variability among the models in the dependence of the relative
mortality cost differences on the vaccination parameter φ〈model〉 . In particular, if vaccination
rate is proportional to incidence or prevalence, variation in relative mortality cost is an order
of magnitude smaller than if vaccination is instantaneous or at a constant rate. The vacci-
nation scenario that exhibits the largest variation in relative mortality costs is instantaneous
vaccination. In this scenario, a voluntary vaccination policy could result in over 150% more
deaths than if vaccination were mandatory.

Modest variation in relative vaccine dose cost. There is also substantial variability in
the pattern of variation of relative vaccine dose cost as a function of φ〈model〉 among the dif-
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Figure 2.3: Variation of relative difference in mortality and vaccine dose costs with φ〈model〉 ,
for different vaccination models. Each row depicts the relative mortality cost difference
(left panel) and relative vaccine dose cost difference (right panel) for one model. Note the
different ranges of φ〈model〉 for different models.
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ferent models. However, for all the models, variation in relative vaccine dose cost as a func-
tion of φ〈model〉 is much less than the corresponding variation in relative mortality cost. The
maximum variation in relative vaccine dose cost reaches ∼ 16% for the models in which
vaccination is proportional to prevalence or incidence. This relatively large variation can be
attributed to low pre-outbreak vaccination coverage (at the individual equilibrium) causing
high disease prevalence and incidence; consequently, since vaccination rate is proportional
to prevalence or incidence, there is correspondingly high post-outbreak vaccination, which
overshoots that which would be required to minimize group mortality. In these two situa-
tions, the vaccine dose cost at the individual equilibrium can be greater than at the group
optimum. In any case, the relatively small difference in overall vaccine dose costs, both as
a function of vaccination effort (φ〈model〉) and among vaccination scenarios (see right panel
of figure 2.2), suggests that vaccine dose cost should likely not be a factor in public health
policy decisions.

2.8.4 Vaccine dose cost as a function of mortality cost

Figures 2.2 and 2.3 present mortality costs and vaccine dose costs as functions of vaccina-
tion effort for the various models. Because the meaning of the vaccination effort parameter
φ〈model〉 differs among models, it is not straightforward to make meaningful comparisons
among the various models (which is why we calculated “fair comparison” values in §2.7).
In this section, we display results for the various models, factoring out the vaccination effort
parameter. For each model, figure 2.4 shows the vaccine dose cost as a function of mortality
cost. In health economics terms, this can be considered a cost effectiveness analysis[106].

In figure 2.4, the squares indicate the point in the mortality-cost–vaccination-cost plane
where the vaccination effort (φ〈model〉) is the lowest that we considered. Increasing vacci-
nation effort (while remaining at the individual equilibrium or the group optimum) corre-
sponds to moving away from the square along the plotted curves.

The graphs in figure 2.4 allow us to answer practical questions such as “If we want to
ensure that no more than one in every 10 million citizens dies, how many vaccine doses
are required in each scenario?” or “If we have a stockpile of vaccine doses sufficient for
30% of the population, what percentage of the population can be expected to die if there
is an outbreak in each scenario?” Of course, by construction the graphs do not indicate
how much effort (φ〈model〉) is required to achieve the desired results. We emphasize that—as
shown in the previous section—vaccine dose cost at the individual equilibrium or group
optimum hardly varies as a function of vaccination effort (φ〈model〉), so the “practical” ques-
tions are not necessarily well-posed (e.g., if we have sufficient vaccine doses for only 30%
of the population then neither the individual equilibrium nor the group optimum can ever
be achieved). This is true for all the models with parameters appropriate for smallpox; for
another disease graphs like figure 2.4 could have genuine practical value for public health
policy analysis (for example, setting R0 = 1.25 and keeping all other model parameters as
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in Tables 2.1 and 2.2 causes the vaccination cost to vary between 25% and 99.999%).

In figure 2.4, when the vaccination rate is proportional to either prevalence or incidence,
note that as the vaccination effort, φ〈model〉 , increases, two phases of behaviour are apparent
for the costs at both pi and pg: first, vaccine dose cost rises but no change in mortality cost
is observed (this is caused by the plateau in mortality described in §2.8.2). Then, for all but
the instantaneous vaccination model, vaccine dose cost remains virtually constant (note the
differences in the scales of the vertical axes among the various panels), but mortality costs
decrease.

It is interesting to note that the dependence of vaccine costs on mortality costs at the
group optimum varies among the models. For example, when vaccination is proportional
to remaining susceptibles, and for the constant rate vaccination model, we see in figure 2.4
that at the group optimum, as mortality cost is decreased, vaccine dose cost decreases at
first, but then increases. Thus, in these situations, one can lower both the mortality and the
vaccine dose cost at the same time by increasing vaccination effort (in health economics
terms, the decision to use higher vaccination effort has negative marginal cost in vaccine
doses per life saved). This contrasts the models in which vaccination is instantaneous,
or proportional to incidence or prevalence, in which we observe that as mortality cost is
decreased, the vaccine dose cost at the group optimum, remains constant and then increases
sharply.

Finally, for the instantaneous vaccination model, there is a range of vaccination efforts
for which one can reduce mortality without increasing vaccine dose costs at the group
optimum. In this parameter range, the increase in vaccine dose cost necessary to decrease
mortality at the individual equilibrium is small at first, but grows larger as mortality is
decreased.

2.8.5 Effect of vaccination response lag tlag

We have implicitly assumed that in any of the scenarios we have considered the vaccination
response will begin as soon as an outbreak is seeded by a bioterrorist attack or accidental
release. In contrast, Bauch and co-workers [37] assumed a lag of two weeks between the
seeding of an outbreak and the initiation of a vaccination response. In this section, we
investigate the effect of a response lag of tlag days between an outbreak being seeded and
the post-outbreak vaccination campaign beginning (so far, we have assumed tlag = 0 days;
in [37], tlag = 14 days was assumed).

Intuitively, adding a lag between the beginning of an outbreak and the vaccination re-
sponse allows the disease to spread unhindered for some time, which increases the prob-
ability of delayers being infected, thus decreasing the payoff for delaying. As a result,
the individual equilibrium pi increases, which consequently extends the mortality plateau
(§2.8.2) to higher values of φ〈model〉 .
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The critical lag, t∗lag

For a disease such as smallpox with R0 ∼ 5, the expected final size of an uncontrolled
epidemic is greater than 99.9% of the population. If no one is pre-emptively vaccinated,
and the response lag after an outbreak is seeded is sufficiently long, almost everyone will
have been infected before the response begins, i.e., if tlag is sufficiently long then delayers
will almost certainly be infected before they can be vaccinated. Consequently, unless the
probability of an outbreak (a) is negligible, delaying will be riskier than vaccinating pre-
emptively so the individual equilibrium will not be for everyone to delay: we will certainly
have pi > 0. It follows that for response lags longer than some critical lag, t∗lag, mortality
cannot be reduced no matter much how much effort is applied in the post-outbreak vaccina-
tion response (i.e., the mortality plateau described in §2.8.2 continues for arbitrarily large
values of φ〈model〉).

A more precise argument allows us to estimate t∗lag. Suppose the initial coverage is p = 0
(no pre-emptive vaccination). If the risk of becoming infected and dying is larger than the
risk from vaccinating, i.e., ariπ0 > rv (or, equivalently, π0 > r/a), then delaying will not
be the individual equilibrium. For any vaccination scenario, the delayers’ probability of
being infected by the end of the outbreak (equation (2.11a)) is greater than or equal to their
probability of being infected before the vaccination response begins (at time tlag),

π0 ≥
(
I(tlag) +R(tlag)

)∣∣∣
p=0

. (2.26)

Therefore, if (
I(tlag) +R(tlag)

)∣∣∣
p=0

>
r

a
, (2.27)

then π0 > r/a and delaying is guaranteed not to be the individual equilibrium. But for
any post-outbreak vaccination scenario that includes a response lag, when t < tlag the
removed proportion of the population, R(t), follows the standard SIR model solution (with
no vaccination). For the SIR model with no vaccination (p = 0; a, α andR0 as in table 2.1),
numerical simulation shows that equation (2.27) is satisfied for tlag & 15.1 days. Hence, if
the public health response lag is 16 days or longer, it is guaranteed that (regardless of the
vaccination scenario or corresponding vaccination effort φ〈model〉), delaying will not be the
individual equilibrium.

We emphasize that our estimate of 16 days as an upper bound for t∗lag depends on a
number of factors, including:

• The probability of an outbreak (a).

• The proportion of susceptibles infected in the initial outbreak (α).

• The epidemiological model: the estimate is obtained using the SIR model, but adding
an exposed class (SEIR) with parameters as in table 2.1 increases the critical lag. Re-
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peating the calculation for the SEIR model yielded the upper bound t∗lag ≤ 26.3 days.
The reason for this difference in critical lags is that when the outbreak is seeded,
all individuals initially infected begin their latent period simultaneously, and take on
average 15 days to become infectious.

Thus, t∗lag < 16 days should be regarded as a rough estimate at best. Nonetheless, the
existence of a critical lag, beyond which it is impossible to reduce mortality by increasing
vaccination effort, is an important consideration for public health agencies, in devising
contingency plans for post-outbreak vaccination against diseases.

Note, however, that in the case of a bioterrorist attack, an outbreak will probably not be
discovered until individuals show symptoms, i.e., until someone’s latent period has passed
(12 days at a minimum). Taking this delayed detection into account, it follows that in order
to avoid extending the mortality plateau to all feasible values of vaccination effort, φ〈model〉 ,
the response lag from discovery of the epidemic to the beginning of the post-outbreak vac-
cination response must, in practice, be substantially shorter than 26 days. This is in contrast
to an accidental release, where public health authorities might know of the outbreak well
before anyone has shown symptoms. In this latter case, because it is more likely that the
critical lag has not been exceeded, it is especially important to begin the vaccination re-
sponse as early as possible in order to reduce mortality.

Lastly, it is important to note that the effect of a response lag on the mortality plateau
presupposes that both the vaccination effort and the response lag are known to the public
in advance. This limits the applicability of this effect, because in the case of a bioterrorist
attack, the response lag likely depends on when an infective first shows symptoms (which
introduces a stochastic effect). Further analysis would be needed to determine the effects
of a stochastic response lag on individual behaviour, and thus on mortality.

The effective critical lag, t̃∗lag

We have seen that if the response lag is longer than the critical lag (tlag > t∗lag), then no
matter how large the vaccination effort (φ〈model〉), it is impossible to reduce mortality. Of
course, in practice, the vaccination effort cannot be arbitrarily large and will be constrained
by public health resources. Given a maximum feasible vaccination effort, it would be help-
ful to know how long the response lag can be before the mortality plateau extends to all
feasible levels of vaccination effort.

To address this issue, we define the effective critical lag, t̃∗lag, to be the minimal re-
sponse lag, such that the individual equilibrium is no longer to delay (i.e., pi > 0) given a
maximum feasible vaccination effort φ〈model〉 . Thus, the critical lag t∗lag is the limit of t̃∗lag as
the maximum feasible vaccination effort becomes arbitrarily large.

In figure 2.5 we plot the effective critical lag t̃∗lag, against the vaccination effort φ〈model〉 ,
for the various models examined in this paper. For the models for which fair comparison
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values of φ〈model〉 are well-defined (see §2.7.2), we used these as estimates for feasible vac-
cination efforts. However, because the fair comparison level of vaccination effort is a crude
estimate for the range of feasible vaccination efforts, in the top panel of figure 2.5 we plot
the effective critical lag at values of φ〈model〉 ranging from 50% to 150% of the fair compar-
ison levels of vaccination efforts for the various models, in increments of 10% of the fair
comparison level of φ〈model〉 .

The instantaneous vaccination model was the only model for which a fair comparison
value of vaccination effort φinst could not be defined (see §2.7.2). For this model, we show
the effective critical lag t̃∗lag for φinst ranging from 0.8 to 1 (if φinst < 0.8 then t̃∗lag < 1 day)
in the bottom panel of figure 2.5.

We see in figure 2.5 that for some vaccination scenarios, minimizing the response lag
tlag is essential: even a short lag extends the mortality plateau to all feasible vaccination
effort levels, making it impossible to reduce mortality by increasing effort after the lag. We
also note that for some scenarios, a good estimate of the attainable vaccination effort is nec-
essary, because the critical effective lag is very sensitive to the vaccination effort. These two
facts further underline the importance of accurately modelling post-outbreak vaccination to
inform public health decisions relating to post-outbreak contingency plans. When the re-
sponse lag is longer than the effective critical lag (tlag ≥ t̃∗lag), the only plausible way for
public health officials to decrease mortality (while allowing individuals to choose whether
or not to vaccinate) is to reduce the relative mortality risk (by decreasing the probability of
dying from vaccination, i.e., developing a safer vaccine).

The response lag should be minimized

Based on §§2.8.5 and 2.8.5, reducing the response lag lowers expected mortality and makes
it easier to decrease mortality further:

• For vaccination efforts higher than the end of the mortality plateau, everyone will
choose to delay vaccination (§2.8.2). From the discussion leading up to equation (2.26),
it follows that even in the best-case scenario where the epidemic is stopped immedi-
ately at t = tlag, mortality will be no less than

ri

(
I(tlag) +R(tlag)

)∣∣∣
p=0

, (2.28)

which increases with the response time tlag. Thus, increasing the response lag in-
creases the lowest attainable mortality (even if vaccination effort can be increased
without bound).

• Increasing the response lag increases the vaccination effort at the end of the mortal-
ity plateau (i.e., the minimal vaccination effort beyond which increasing vaccination
effort decreases mortality). Thus, longer response lags make it harder to achieve a
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Figure 2.5: Variation of the effective critical lag t̃∗lag (§2.8.5) with vaccination effort φ〈model〉 .
Top: effective critical lag versus percentage of the fair comparison vaccination effort when
the fair comparison vaccination effort is defined. Bottom: effective critical lag versus vac-
cination effort φinst when vaccination is instantaneous.
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decrease in mortality.

However, note that if a response time lower than the effective critical lag (tlag < t̃∗lag) cannot
be achieved, neither increasing the vaccination effort φ〈model〉 , nor decreasing the response
time tlag, can decrease mortality.

2.9 Conclusions

We have analyzed five distinct scenarios (§ 2.3) associated with a potential smallpox out-
break triggered by a bioterrorist attack or accidental release. The scenarios differ in the
factors that influence individuals’ perception of risk and how a post-outbreak vaccination
response plays out. We examined these scenarios both with and without an assumed lag
between an outbreak starting and a public health response being initiated. Our work gener-
alizes the analysis of Bauch and co-workers [37] who investigated a single scenario with a
response lag of 14 days.

As in [37], we considered separately group interest (optimal strategies for minimizing
overall mortality) and self-interest (stable strategies for individual choices with respect to
pre-emptive vaccination). From each perspective, we obtained the (imposed or expected)
pre-emptive vaccination coverage (p) for each scenario (the group optimum pg in the case
of group interest and the individual equilibrium pi in the case of self-interest) (figure 2.1).

Our principal conclusions are the following.

1. For a given level of post-outbreak vaccination effort, the group optimum pre-emptive
coverage is always greater than the individual equilibrium (pg > pi; figure 2.1) and
the expected total mortality is always less if public health authorities impose the
group optimum rather than letting individuals make their own vaccination decisions
(figure 2.2, left column). If no outbreak occurs, then some people will die unnecessar-
ily from pre-emptive vaccination. Given the difficulty of estimating the probability of
an attack or accidental release, it would be hard for governments to justify an imposed
pre-emptive vaccination policy for a disease like smallpox for which the vaccine can
cause death.

2. The number of vaccine doses required at the group optimum and individual equi-
librium does not vary substantially as a function of vaccination effort (e.g., speed
of vaccine distribution post-outbreak) for any of the scenarios (figure 2.2, right col-
umn). Consequently, the economic cost of vaccine production is not likely to play a
significant role in policy decisions.

3. Total expected mortality as a function of vaccination effort depends strongly on which
scenario is considered (figure 2.2, left column). Some vaccination scenarios are af-
fected by the public reaction to media reports on the epidemic’s progress, while some
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(the instantaneous and constant rate vaccination scenarios) are under direct control
of public health authorities. To assist public health authorities preparing for poten-
tial outbreaks, further research is needed to determine which factors have the great-
est influence on individuals’ perception of risk and which post-outbreak vaccination
strategies are most feasible.

4. For any realistic vaccination scenario, there is a range of vaccination effort levels in
which increasing vaccination effort does not reduce overall mortality. In this mortal-
ity plateau, increasing vaccination effort leads only to fewer people vaccinating pre-
emptively, until the individual equilibrium becomes to delay vaccination (at which
point it is possible to reduce mortality by increasing the vaccination effort). Thus,
under voluntary vaccination, in order for public health authorities to expect to reduce
mortality by increasing vaccination effort post-outbreak, their planned post-outbreak
vaccination response must be so efficient that no-one would choose to vaccinate pre-
emptively (pi = 0).

5. Any lag between the beginning of an outbreak and the post-outbreak vaccination re-
sponse makes it harder for higher vaccination effort levels to make a difference to
overall mortality, and a large enough lag will make it impossible to reduce mortality
regardless of the level of vaccination effort. Given a maximum feasible vaccination
effort level, there is an effective critical lag, beyond which it is impossible to reduce
mortality by increasing vaccination effort. The dependence on the post-outbreak vac-
cination scenario, of both the effective critical lag at feasible levels of vaccination
effort, and the effect of changes in vaccination effort on the effective critical lag,
further highlights the importance of researching realistic post-outbreak vaccination
responses.

It is not possible to know with certainty how governments and health agencies will
react, or how individuals will behave, in the event of an outbreak. However, the above
conclusions are based on our analysis of five distinct post-outbreak scenarios (and some
model features that are much more generic), so it seems likely that our conclusions would
remain valid if further plausible scenarios were considered.
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Tables

Estimated Parameters

Quantity Interpretation Value Source
rv Mortality risk from vaccina-

tion (probability)
10−6 [37]

ri Mortality risk from infection
(probability)

0.3 [37]

R0 Basic reproductive ratio 5 [85, 95, 96]
tser Mean serial interval 22 days [48, p. 141]
1/σ Mean latent period (SEIRV) 15 days [46, p. 188], [37]
φ〈model〉 Vaccination effort parameter

(exact interpretation depends
on model)

See table 2.4

tlag Response lag before initiation
of post-outbreak vaccination

0 days, except
in §2.8.5.

a Probability of attack or acci-
dental release per lifetime

0.01 [37]

α Proportion of susceptibles
initially infected in an
outbreak

5000
290×106

' 1.72× 10−5 [37]

Table 2.1: Summary of the fundamental (i.e., not derived) numerical parameters in our
analysis, together with estimated values. Note that in [37] the probability of an outbreak
was denoted r rather than a. Here, we use r for the relative risk, as in [36]. The proportion of
the population infected initially by a bioterrorist attack or accidental release, α, corresponds
to infection of 5000 individuals in a population of 290 million (after [37]).
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Derived Parameters

Quantity Interpretation Value
r = rv/ri Relative risk (from being vac-

cinated compared with natu-
ral infection)

10−6/0.3 ' 3.33×10−6

1/γ Mean time infectious (SIRV) tser = 22 days
1/γ Mean time infectious

(SEIRV)
tser − (1/σ) = 7 days

β Transmission rate γR0

πp Probability that an un-
vaccinated individual will
eventually be infected if the
vaccine coverage level in the
population is p

Derived from epidemic
model in §2.6

ψp Probability of an individual
un-vaccinated at the begin-
ning of the epidemic becom-
ing vaccinated, given vaccine
coverage level p

Derived from epidemic
model in §2.6

Table 2.2: Summary of derived parameters.
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Other Notation

Quantity Interpretation
P Probability that an individual chooses to vaccinate pre-emptively (this

defines the individual’s strategy)
p Pre-outbreak vaccine coverage (proportion of the population vaccinated

pre-emptively)
pg The group optimum, i.e., the proportion of the population vaccinated

pre-emptively which minimizes mortality
pi The individual equilibrium, i.e., the level of pre-outbreak vaccine cov-

erage which is the unique Nash Equilibrium, as described in §2.4
C(p) The mortality cost, i.e., the proportion of the population that is expected

to die, given pre-emptive vaccine coverage p
t∗lag The critical lag, i.e., the response lag beyond which mortaliy is inde-

pendent of vaccination effort (see §2.8.5)
t̃∗lag The effective critical lag, i.e., the response lag beyond which mortaliy

is identical for all feasible values of vaccination effort (see §2.8.5)

Table 2.3: Summary of other notation.

Vaccination Effort, φ〈model〉

Model “Fair Comparison” value Value at end of mortality plateau
φprev 1582/day 571/day
φinc 5190/day 1137/day
φsusc 0.1/day 0.08/day
φinst — 0.82/day
φconst 0.1/day 0.015/day

Table 2.4: Summary of notable levels of the vaccination effort parameter, φ〈model〉 , for the
different models. The first column contains “Fair Comparison” values for the vaccination
effort parameters of the various models, as calculated in § 2.7.2. In our simulations, we
allowed φ〈model〉 to range between 0 and values generally above the “Fair Comparison” val-
ues (except for φinst, for which we used the entire possible range of [0, 1]). The second
column contains the minimal values of the vaccination effort parameter (φ〈model〉) for which
the individual equilibrium is to delay (that is, φ〈model〉 at the end of the mortality plateau,
see §2.8.2).
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Appendix

2.A Lambert W function

The standard final size relation, which can be derived from the SIR model [90] and many
other epidemic models [91], is

Z = 1− e−R0Z . (2.29)

Here, Z is the final size (Z = 1− S∞) and R0 is the basic reproduction number. Z can be
expressed explicitly as a function ofR0 [91, 92],

Z(R0) = 1 +
1

R0

W [−R0 e
−R0 ] , (2.30)

where the Lambert W function [93, 94] is the inverse function of

f(W ) = W eW . (2.31)

Use of the Lambert W function is critical for our derivations of final size formulae for
models we consider here. W (x) is real for x ≥ −1/e ' −0.368 and is two-valued for
−1/e < x < 0. The upper “principal” branch, for which W (x) ≥ −1, is denoted W 0 and
the lower branch is denoted W −1. See figure 2.A.1.
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Figure 2.A.1: The Lambert W function, showing the principal branch W 0 and the sec-
ondary branch W −1.
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2.B Interpretation of vaccination effort parameters

The vaccination effort parameters are explained § 2.6. “Fair comparison” values for these
parameters are derived in §2.7.2 and listed in table 2.4.

2.B.1 φsusc

In § 2.7.2, we commented that φsusc can be considered to be the probability per unit time
of a delayer being vaccinated. To see this, note that the probability (pvacc) of a susceptible
delayer being vaccinated in the time interval [t, t + ∆t] is the ratio of the number of sus-
ceptibles vaccinated in that time interval, V (t+ ∆t)− V (t), to the number of susceptibles
present at the beginning of that time interval, S(t). Thus,

pvacc =
V (t+ ∆t)− V (t)

S(t)
=
V (t+ ∆t)− V (t)

∆t

1

S(t)
∆t .

Since lim∆t→0
V (t+∆t)−V (t)

∆t
= V̇ = φsuscS, for small ∆t, we have pvacc ≈ φsusc∆t. Thus,

φsusc is the (constant) probability per unit time of a delayer being vaccinated.

2.C Convergence to disease–free equilibrium

In this appendix, we show that for all models considered, the epidemic must eventually die
out (i.e., the system converges to a disease-free equilibrium).

Consider the SIRV model given by the differential equations

Ṡ = −βSI − V̇ , (2.32a)

İ = βSI − γI , (2.32b)

Ṙ = γI , (2.32c)

V̇ = f(t, S, I, R, V ) , (2.32d)

where f is continuously differentiable and satisfies f(t, S, I, R, V ) ≥ 0, f(t, 0, I, R, V ) =
0 whenever t ≥ 0, S ≥ 0, I ≥ 0,R ≥ 0, V ≥ 0. From the fundamental existence
and uniqueness theorem [107], there is a unique solution to equation (2.32) for any non-
negative initial conditions S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 and V (0) ≥ 0. Suppose also that
S(0) + I(0) +R(0) + V (0) = 1.

First, note that S(t) ≥ 0 for all t ≥ 0. To see this, suppose in order to derive a
contradiction that S(T ) < 0 for some T > 0. Then, since S(t) is continuous, there must be
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some time 0 ≤ τ < T such that S(τ) = 0. But because Ṡ|S=0= 0 it follows that S(t) = 0
for all t ≥ τ , which contradicts S(T ) < 0.

Similarly, it follows that I(t) ≥ 0. Consequently, R(t) is nondecreasing in t, and in
particular, R(t) ≥ 0. Lastly, V̇ ≥ 0 so V (t) ≥ 0 as well.

Now, d
dt

(
S(t) + I(t) +R(t) + V (t)

)
= 0 for all t, so S(0) + I(0) +R(0) + V (0) = 1

implies S(t) + I(t) + R(t) + V (t) = 1 for all t. Consequently, S(t), I(t), R(t) and V (t)
each lie in the interval [0, 1] for all time.

In addition to being bounded, S(t), R(t) and V (t) are monotonic (their time derivatives
are non-positive) and therefore have a limit as t → ∞. It follows that I(t) also has such
a limit (I = 1 − S − V − R). To see that this limit is 0, suppose instead that I∞ =
limt→∞ I(t) > 0. Then, limt→∞ Ṙ = γI∞. Thus, there exists a time t∗ such that Ṙ(t) >
γI∞/2 for all t∗ < t. This implies that the proportion in the recovered class increases at
least linearly , and must eventually hit R = 1 (no later than at time t∗ + 2/(γI∞)) and
be greater than 1 thereafter. However, this contradicts the fact that the proportion of the
population in any class cannot exceed 1. Thus I∞ = limt→∞ I(t) = 0.

A similar argument can be applied to the constant rate SEIRV model by noting that

1. If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 and V (0) ≥ 0, then S, E, I , R and V
remain non-negative for all time.

2. If S(0) +E(0) + I(0) +R(0) +V (0) = 1, then S+E+ I +R+V = 1 for all time.

3. S(t) → 0 in finite time in this model. To see this, suppose in order to derive a
contradiction, that S(t) > 0 for all time t ≥ 0. Then, for all t > tlag, Ṡ = φconst ,
and thus S(t) ≥ φconst(t − tlag). Consequently, S(t) > 1 for all t > tlag + 1/φconst ,
contradicting the fact that S(t) ≤ 1 for all t.

4. Since S(t) → 0 in finite time in this model, it follows that after a finite time Ė =
−σE, implying that limt→∞E = 0. Since R and V are monotonic and thus have a
limit as t → ∞, it follows that limt→∞ I = limt→∞ 1 − S − E − R − V exists as
well, and one can continue as before.

Lastly, a corollary of this convergence to the disease-free equilibrium is that S∞ = limt→∞ S(t)
is well defined and

S∞ <
γ

β
=

1

R0

. (2.33)

To see this, observe that since S is monotonic and bounded, it must converge to some
finite limit within [0, 1], so S∞ is well defined. Next, note that I(0) = α(1 − p) > 0 and
limt→∞ I(t) = I∞ = 0, so there is some time t∗ at which İ(t∗) < 0 and so S(t∗) < γ/β.
But Ṡ ≤ 0 and so for any t∗ < t, we have S(t) < γ/β. Thus, equation (2.33) follows
because of the monotonicity of S.
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2.D Calculation of π1

In § 2.6, we stated that as pre-emptive vaccination approaches full coverage (p → 1), the
probability of a delayer being infected (πp) approaches the proportion of susceptibles ini-
tially infected in an outbreak (α). Recalling the definition of π1 in equation (2.12), the claim
is that for all the models considered

π1 = lim
p→1−

πp = α . (2.34)

To verify equation (2.34), first consider the SIRV models defined in equation (2.9).
The proportion of individuals who are eventually removed (R∞) must be greater than the
number initially infected (equation (2.10b)), so

R∞ ≥ I(0) = α(1− p) . (2.35)

Thus from equation (2.11a), we have πp ≥ α for any p ∈ [0, 1). It follows that π1 ≥ α if
the limit exists.

We now show that π1 ≤ α. The basic reproduction number is R0 = β/γ and the
effective reproduction number when the outbreak begins is (equation (2.10a))

Reff(0) = R0S(0) = R0(1− p)(1− α) . (2.36)

Thus, if p > 1− 1/R0 thenReff(0) < 1, and

lim
p→1−

Reff(0) = 0 . (2.37)

To prove that π1 ≤ α, we will show that

πp ≤
α

1−Reff(0)
, for all p > 1− 1

R0

. (2.38)

Equations (2.9b) and (2.32c) imply that Ṙ = γI = βSI − İ . Hence,

R∞ =

∫ ∞

0

Ṙ dt =

∫ ∞

0

(
βSI − İ

)
dt .

But S(t) decreases monotonically with t, and I∞ = 0 (appendix 2.C), so

R∞ ≤ βS(0)

∫ ∞

0

I dt+I(0) = Reff(0)

∫ ∞

0

γI dt+I(0) = Reff(0)R∞+α(1−p) . (2.39)

Thus, (
1−Reff(0)

)
R∞ ≤ α(1− p) , (2.40)
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and consequently, for any p > 1− 1/R0,

πp =
R∞

1− p ≤
α

1−Reff(0)
. (2.41)

In the limit p→ 1−, equation (2.37) implies π1 ≤ α, as required.

To see that π1 = α for the constant rate vaccination (SEIRV) model (equation (2.24)),
we need only note that in this case,

R∞ =

∫ ∞

0

γI dt =

∫ ∞

0

(βSI − İ − Ė) dt ≤ R0S(0)

∫ ∞

0

γI dt+ E(0) , (2.42)

where E(0) = α(1 − p). Thus, Inequality (2.39) holds for the SEIRV model as well, and
the remainder of the proof that π1 = α is identical to the argument for SIRV models.

2.E Final size relations, πp and ψp

2.E.1 Vaccination rate ∝ disease prevalence

Final size relations

A naı̈ve model in which vaccination is proportional to prevalence is

Ṡ = −βSI − φprevI (2.43a)

İ = βSI − γI (2.43b)

Ṙ = γI (2.43c)

V̇ = φprevI . (2.43d)

However, equation (2.43a) is not biologically sensible, since if S = 0 and I > 0 it follows
that Ṡ < 0 and so S attains negative values. Thus, a more realistic model is obtained
by replacing the vaccination rate φprevI with φprevf(S)I , where f is a nondecreasing and
smooth “cutoff function” such that f(S) = 1 except for 0 ≤ S < δ, and f(0) = 0.
Thus, equation (2.43a) is replaced by

Ṡ = −βSI − φprevf(S)I . (2.43a′)

For convenience, we also choose f to be an odd function, i.e., f(−S) = −f(S) (how-
ever, since negative values of S are not biologically feasible and are unattainable by this
model if S(0) ≥ 0, this has no effect on the dynamics of the model for biologically sensible
initial conditions).
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As δ → 0, V̇ approaches φprev sign(S)I and equation (2.43a′) approaches

Ṡ = −βSI − φprev sign(S)I ,

where

sign(x) =





−1 if x < 0,

0 if x = 0,

1 if x > 0.

Thus, a more biologically sensible model where vaccination is proportional to prevalence
is:

Ṡ = −βSI − φprev sign(S)I (2.44a)

İ = βSI − γI (2.44b)

Ṙ = γI (2.44c)

V̇ = φprev sign(S)I . (2.44d)

In the interior of the biologically meaningful domain,

∆ = {(S, I, R, V )|S ≥ 0 , I ≥ 0 , R ≥ 0 , V = 1− S + I +R} , (2.45)

the phase portrait for this model is similar to that of the original model and the dynam-
ics change only as the hyper-plane S = 0 is reached. For this reason, we analyze the
original model (equations (2.43)) and make the necessary corrections to account for equa-
tion (2.44d) afterwards. We denote state-variable solutions to the original model (equa-
tions (2.43)) with a superscript 1, as in S1, etc.

From appendix 2.C, we know that solutions of equations (2.43) converge to a disease-
free equilibrium. Thus, we wish to obtain final size relations for this model. We proceed as
follows:

From
dR1

dS1
= − γ

βS1 + φprev
, (2.46)

we have

R1
∞ =

γ

β
ln
(βS(0) + φprev

βS1
∞ + φprev

)
, (2.47)

where a subscript∞ indicates the value of that variable at the end of the epidemic (recall
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that S(0) also depends on p). S1
∞ is obtained by a similar trick.

dI1

dS1
= − βS1 − γ

βS1 + φprev
= −1 +

φprev + γ

βS1 + φprev
(2.48)

I(t)− I(0) = S(0)− S1(t) +
φprev + γ

β
ln
(βS1(t) + φprev

βS(0) + φprev

)
. (2.49)

As t→∞, we have

I∞ − I(0) = S(0)− S1
∞ +

φprev + γ

β
ln
( βS1

∞ + φprev

βS(0) + φprev

)
. (2.50)

Since I1
∞ = 0 and S(0) + I(0) = 1− V (0) = 1− p,

S1
∞ = (1− p) +

φprev + γ

β
ln

(
βS1
∞ + φprev

βS(0) + φprev

)
= (1− p)− φprev + γ

γ
R1
∞ . (2.51)

Let

w(x) = (1− p) +
φprev + γ

β
ln

(
βx+ φprev

β(1− p)(1− α) + φprev

)
. (2.52)

We seek solutions to S1
∞ = w(S1

∞) in the range S1
∞ ∈ [0, 1]. We note that no solutions

of equation (2.43) cross the S-nullcline, S = −φprev/β, and so solutions to equation (2.51)
are in the range [−φprev/β, 1].

It is possible to use equation (2.51) to find which initial coverage causes solutions
of equation (2.43) to hit the S = 0 hyper-plane, as they will be those for which S1

∞ ≤ 0.
As long as this does not occur, equations (2.47), (2.50) and (2.51) are valid also for the
modified system (equations (2.44)).

From equation (2.51), we have

S1
∞ = − 1

β

(
φprev + (γ + φprev)W i

(
−βS(0) + φprev

γ + φprev
e
−β(1−p)+φprev

γ+φprev

))
,

where i = 0 or −1 specifies the branch of the Lambert W function. To determine which
branch of W gives the correct final size, observe that S1

∞ < γ/β for any initial condition
(in the biologically meaningful domain). This follows from the following argument: If
S(0) ≤ γ/β, since S is non-increasing and Ṡ < 0 at time t = 0 (since also I(0) > 0),
we are done. If S(0) > γ/β, we note that I is increasing for any S such that S > γ/β.
But we have seen that I∞ = 0. Thus, at some point in time, S < γ/β, and since S is non-
increasing, we have S1

∞ < γ/β. From this we see that it is necessary to use the principal
branch, W 0 (rather than W −1, which satisfies W −1(x) ≤ −1 for all x in its domain of
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definition, that is (−1/e, 0)). Thus,

S1
∞ = − 1

β

(
φprev + (γ + φprev)W 0

(
−βS(0) + φprev

γ + φprev
e
−β(1−p)+φprev

γ+φprev

))
. (2.53)

For convenience, we rewrite equations (2.47), (2.50) and (2.51) to give:

ln

(
βS(0) + φprev

βS1
∞ + φprev

)
=

β

φprev + γ

(
1− p− S1

∞
)
, (2.54)

and

R1
∞ =

γ

β
ln

(
βS(0) + φprev

βS1
∞ + φprev

)
=

γ

φprev + γ

(
1− p− S1

∞
)
. (2.55)

Thus,

V 1
∞ = 1−R1

∞ − S1
∞

= 1− γ

φprev + γ

(
1− p− S1

∞
)
− S1

∞

=
φprev

γ + φprev
(1− S1

∞) +
γ

γ + φprev
p . (2.56)

To see when we can use S∞ = S1
∞, R∞ = R1

∞ and V∞ = V 1
∞, it is necessary to find

when equation (2.53) yields a negative S1
∞. First, we evaluate how S∞ changes with p. To

find ∂pS1
∞, apply ∂p := ∂

∂p
to equation (2.51), to get (recall that S(0) = (1− α)(1− p), so

∂pS(0) = −(1− α))

∂pS
1
∞ =

γ + φprev

β

[
β(1− α)

βS(0) + φprev
+

β∂pS
1
∞

βS1
∞ + φprev

]
− 1 (2.57)

(
1− γ + φprev

βS1
∞ + φprev

)
∂pS

1
∞ =

(γ + φprev)(1− α)

βS(0) + φprev
− 1 (2.58)

∂pS
1
∞ =

(
(γ + φprev)(1− α)

βS(0) + φprev
− 1

)
/

(
1− γ + φprev

βS1
∞ + φprev

)
(2.59)

Since S1
∞ < γ/β, it follows that 1− (γ + φprev)/(βS

1
∞ + φprev) < 0. Thus,

sign(∂pS
1
∞) = sign [βS(0) + φprev − (γ + φprev)(1− α)] , (2.60)

and since S(0) = (1− p)(1− α), we have:

sign ∂pS
1
∞ =





1 if pm > p

0 if pm = p,

−1 if pm < p ,

(2.61)
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where the local maximum is attained at

p = pm := 1 +
φprev − (γ + φprev)(1− α)

β(1− α)
= 1 +

αφprev − γ(1− α)

β(1− α)
. (2.62)

Observe that pm ∈ [0, 1] ⇐⇒ αφprev ≤ γ(1− α) and αφprev ≥ (γ − β)(1− α). However,
the second condition, which is necessary to ensure pm ≥ 0, is trivially satisfied whenever
β/γ = R0 ≥ 1. Thus, ifR0 ≥ 1, then pm ∈ [0, 1] iff

αφprev ≤ γ(1− α) . (2.63)

The maximum value of S1
∞ is thus:

max
p∈[0,1]

S1
∞ = − 1

β

(
φprev + (γ + φprev)W 0

(
−βS(0) + φprev

γ + φprev
e
− φprev−γ(1−α)

(γ+φprev)(1−α)

))
. (2.64)

Now solving for S1
∞ = 0 using equation (2.53), we have

p0(i) = 1 +
φprev

β(1− α)
+
γ + φprev

β
W i

(
− φprev

(1− α)(γ + φprev)
e
− φprev

(1−α)(γ+φprev)

)
(2.65)

for i = 0 or −1. Note that for φprev > 0, equation (2.65) gives two values for p0; we cannot
simply cancel out the operation of W with xex, since in this case x = − φprev

(1−α)(φprev+γ)
< 0

and W is not univalued for negative arguments. Instead, we have two possibilities for

W

(
φprev

(α−1)(γ+φprev)
e

φprev
(α−1)(γ+φprev)

)
corresponding to the two branches, W 0 and W −1.

If αφprev < (1−α)γ, then W 0

(
− φprev

(1−α)(γ+φprev)
e
− φprev

(1−α)(γ+φprev)

)
= − φprev

(1−α)(γ+φprev)
, which

gives p0(0) = 1. If αφprev ≥ (1−α)γ then similarly p0(−1) = 1. This is in agreement with
the fact that if p = 1, S(0) = 0, and so S1

∞ = 0.

There are now three cases, which we express as two main cases, the second of which
has two subcases:

• if pm ≥ 1 (which happens iff αφprev ≥ (1 − α)γ ), then S1
∞ ≤ 0 ∀p ∈ [0, 1].

This follows since if pm ≥ 1 then p0(−1) = 1 ≤ pm ≤ p0(0). Thus because S1
∞ is

increasing for p < pm, so for p ∈ [0, 1], S1
∞ ≤ S1

∞|p=1= 0. In this case, S∞ is not
given by S1

∞, but is simply S∞ = 0.

• If pm ∈ (0, 1) then S1
∞|pm> S1

∞|p=1= 0 and p0(−1) < pm.
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– If 0 ≤ p0(−1) (and p0(−1) < pm < 1) then

S∞ =

{
0 if p < p0(−1),

S1
∞ if p0(−1) ≤ p .

(2.66)

– If p0(−1) ≤ 0 then S1
∞ ≥ 0 ∀p ∈ [0, 1] and so S∞ = S1

∞ for any p ∈ [0, 1].

In all but the very last sub-case, it is also necessary to adjust our formulae for the final
sizes of the removed and vaccinated compartments, R∞ and V∞, for the values of p for
which S∞ = 0. Qualitatively, this adjustment is necessary because, when δ → 0+, if a
solution reaches S = 0 in finite time, S remains 0, while I decays exponentially to 0.
However, the solutions of equations (2.43) are only identical to those of equations (2.44) so
long as S > 0. Moreover, once S = 0, V remains constant and all the infectives move into
the recovered compartment, which is not the case for solutions of equations (2.43).

To find formulas for R∞ and V∞, fix p ∈ [0, 1) and let t0 be the first time at which no
susceptibles remain (S(t0) = S1(t0) = 0). Then equations (2.43) are valid for any t < t0.
We now have

R(t) =
γ

β
ln

(
βS(0) + φprev

βS(t) + φprev

)

I(t) = I(0) + S(0)− S(t) +
φprev + γ

β
ln

(
βS(t) + φprev

βS(0) + φprev

)
,

in a manner analogous to equation (2.47) and equation (2.50). These equations depend on
S = S(t) in a way that is continuous at S = 0, and so taking t→ t0 is equivalent to taking
S → 0:

R(t0) =
γ

β
ln

(
βS(0) + φprev

φprev

)
(2.67)

I(t0) = I(0) + S(0) +
φprev + γ

β
ln

(
φprev

βS(0) + φprev

)
. (2.68)

When S = 0, I decays exponentially to 0, until all the infectives present at t0 transition into
the removed class, R. Thus, we have

R∞ = R(t0) + I(t0) = 1− p− φprev

β
ln

(
β

φprev
S(0) + 1

)
. (2.69)

Next, we know that once S = 0, V does not change either, since there are no more
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susceptibles to be vaccinated. Thus,

V∞ = V (t0) = 1−R(t0)− I(t0) = 1−R∞ = p+
φprev

β
ln

(
β

φprev
S(0) + 1

)
(2.70)

To summarize our results so far,

S∞ =

{
0 if p < p0 or 1 ≤ pm,

S1
∞ if p0 ≤ p ≤ 1 ,

(2.71a)

R∞ =





1− p− φprev

β
ln
(

β
φprev

S(0) + 1
)

if p < p0 or 1 ≤ pm,
γ

γ+φprev
(1− p− S1

∞) if p0 ≤ p ≤ 1 ,
(2.71b)

V∞ =




p+

φprev

β
ln
(

β
φprev

S(0) + 1
)

if p < p0 or 1 ≤ pm,

1
γ+φprev

(φprev(1− S1
∞) + γp) if p0 ≤ p ≤ 1 ,

(2.71c)

where S1
∞ is given by equation (2.53).

Qualitative behaviour of S1
∞ for high vaccine coverage

Qualitatively, observe that for high values of p, S1
∞ ≈ (1 − α)(1 − p) (see figure 2.E.1).

This is because when p > pd := 1− γ
β(1−α)

then S(0) < γ/β, in which case I decays to 0
monotonically (the subscript “d” denotes decay of I). Now in this case, S decreases at least
as fast as it does in the vaccination-less SIR model, and so I decreases at least as fast as in
the vaccination-less case too. Because S is monotonically decreasing, I decays faster than
I(0)e(βS(0)−γ)t. Because I decays at least exponentially, S hardly changes over the course of
the epidemic, and so we see an approximately linear decay in S1

∞ ≈ S(0) = (1−α)(1− p)
to 0 as we increase p. This last phenomenon is related to the herd immunity effect in the
standard SIR model: when the entire population is susceptible, in the absence of post-
outbreak vaccination (φprev = 0), the critical vaccine coverage which stops the epidemic
from taking off is p = 1 − 1

Reff
= 1 − γ

β(1−α)
. But note, moreover, that the maximal value

of S1
∞ is not attained at pd. Rather, we see that

pm − pd =
α(φprev + γ)

β(1− α)
> 0 . (2.72)

This is because even when p > pd and I immediately decays to 0 (starting at t = 0), there
are still some susceptibles converted into vaccinated individuals, due to I > 0. This number
of susceptibles lost to vaccination decreases as p is increased, since this decreases I(0) as
well. Thus, for p > pd, initially S∞ increases with p. Only when p > pm does the decrease
in S∞ due to more susceptibles being vaccinated pre-emptively take over.
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Figure 2.E.1: The proportion of individuals remaining susceptible at the end of the epi-
demic, S∞, as a function of the proportion of the population vaccinated pre-emptively, p,
for the model in which vaccination rate is proportional to prevalence. The line y(p) =
(1− α)(1− p) is overlaid in red. We take the proportion of susceptibles initially infected,
α, to be the estimated value in the left panel (α = 1.72× 10−5) and a much larger value for
comparison in the right panel (α = 0.1); the remaining model parameters are as in table 2.1.
See §2.E.1.
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πp decreases and ψp increases with p when pm ≥ 1

Consider the first case above: if pm ≥ 1 (see equation (2.71)), then S∞ = 0 and we have

V∞ = p+
φprev

β
ln

(
β

φprev
S(0) + 1

)

ψp =
φprev

β(1− p) ln

(
β

φprev
S(0) + 1

)
.

Note that since S∞ = 0, πp = 1− ψp. Letting x = β
φprev

S(0) = β(1−α)
φprev

(1− p),

ψ(x) = ψp(x) = (1− α)
ln (x+ 1)

x
,

so

∂pψp = −β(1− α)

φprev

∂ψ(x)

∂x
= −β(1− α)

φprev

x− (1 + x) ln(1 + x)

x2(x+ 1)

= −β(1− α)

φprev

β
φprev

S(0)− ( β
φprev

S(0) + 1) ln( β
φprev

S(0) + 1)
(

β
φprev

S(0)
)2

( β
φprev

S(0) + 1)

= −φprev(1− α)

β

βS(0)− (βS(0) + φprev) ln( β
φprev

S(0) + 1)

(S(0))2 (βS(0) + φprev)
. (2.73)

Since x < (x + 1) ln(1 + x) ∀x > −1, it follows that for p ∈ [0, 1), ∂pψp > 0 and
consequently, ∂pπp < 0.

Behaviour of p0(−1) as φprev → 0+

Using equation (2.65), one can show that limφprev→0+ p0(−1) = −∞. This follows because
limφprev→0−W −1 (x) = −∞. But because p0(−1) → 1 as φprev → γ(1−α

α
, it follows that

there is some value of φprev for which p0(−1) = 0. This φprev can be found from equa-
tion (2.65), but the formula is not needed here.

However, we also note that φprev <
γ(1−α
α

(along with R0 > 1) implies pm ∈ (0, 1),
so for small φprev, we have pm ∈ (0, 1) and p0(−1) < 0 (in fact, as φprev → 0+, pm →
1 − 1/R0). Thus, for φprev → 0+ (small enough such that p0(−1) < 0), S1

∞ > 0 for
p ∈ [0, 1).
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2.E.2 Vaccination rate ∝ incidence

The model equations are

Ṡ = −βSI − φincSI (2.74a)

İ = βSI − γI (2.74b)

Ṙ = γI (2.74c)

V̇ = φincSI . (2.74d)

Finding the final sizes for this model is somewhat similar to when vaccination is pro-
portional to prevalence:

dI

dS
= − βSI − γI

(β + φinc)SI
=

γ

β + φinc

1

S
− β

β + φinc
(2.75)

I(t)− I(0) =
γ

β + φinc
ln

(
S(t)

S(0)

)
− β

β + φinc
(S(t)− S(0)) (2.76)

−(1− p)α =
γ

β + φinc
ln

(
S∞

(1− p)(1− α)

)
− β

β + φinc
(S∞ − (1− p)(1− α)) (2.77)

S∞ =
γ

β
ln
( S∞

(1− p)(1− α)

)
+
(

1 +
φinc

β
α
)

(1− p) , (2.78)

where equation (2.77) is obtained by taking t → ∞ in equation (2.76). The solution
of equation (2.78) is given explicitly by

S∞ = −γ
β
W 0

(
−β(1− p)(1− α)

γ
e−

β+φincα
γ

(1−p)
)
, (2.79)

where we take the principle branch of the Lambert function, W 0, because solutions are in
the range S∞ ∈ [0, γ/β] (see equation (2.33) in appendix 2.C). Note also that S∞ > 0 iff
S(0) > 0 (that is, p < 1 and α < 1). Thus, S = 0 is not attainable in scenarios of interest
here.

To find V∞, we proceed similarly:

V̇ = − φinc

β + φinc
Ṡ (2.80)

V∞ − V (0) = − φinc

β + φinc
(S∞ − S(0)) (2.81)

V∞ − p =
φinc

β + φinc

(
(1− p)(1− α)− S∞

)
. (2.82)
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At the end of the epidemic, 1 = R∞ + S∞ + V∞, hence,

R∞ = 1− p+
φinc

β + φinc
(S∞ − (1− p)(1− α))− S∞

= 1− p− φinc(1− p)(1− α) + βS∞
β + φinc

. (2.83)

Thus,

πp =
R∞

1− p = 1− φinc

β + φinc
(1− α)− βS∞

(β + φinc)(1− p)
(2.84a)

ψp =
V∞ − p
1− p =

φinc

β + φinc

(
(1− α)− S∞

1− p

)
. (2.84b)

Note that whenever S(0) > 0, there are susceptible individuals left at the end of the epi-
demic, and so πp 6= 1− ψp.

Using ∂p
(
S∞
1−p

)
= (1−p)∂pS∞+S∞

(1−p)2 we have

∂pS∞ =
γ

β

(
∂pS∞
S∞

+
1

1− p

)
−
(

1 +
φinc

β
α

)

βS∞ − γ
βS∞

∂pS∞ =
γ

β(1− p) − 1− φinc

β
α

∂pS∞ =
γ

1− p
S∞

βS∞ − γ
− (φincα + β)

S∞
βS∞ − γ

=
γ − (φincα + β)(1− p)

(1− p)
S∞

βS∞ − γ

(1− p)∂pS∞ + S∞ =
(βS∞ − (1− p)(β + φincα))S∞

βS∞ − γ

∂p

(
S∞

1− p

)
=

(βS∞ − (1− p)(β + φincα))S∞
βS∞ − γ

1

(1− p)2
. (2.85)

From equation (2.78)

βS∞ − (1− p)(β + φincα) = γ ln
( S∞
S(0)

)
< 0 (2.86)

because S∞ < S(0) (unless S(0) or I(0) is 0, in which case an outbreak cannot take place).
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Thus ∂p
(
S∞
1−p

)
> 0 and so

∂pπp < 0 (2.87)
∂pψp < 0 . (2.88)

Note also that S∞ attains a local maximum (in p) at

pm = 1− γ/(φincα + β) . (2.89)

pm < 0 for γ > φincα+β, in which case S∞ decreases with p on the interval [0, 1]. This can
only happen when γ > β, that is when R0 < 1, implying that for any disease which can
spread in the population (with no vaccination), pre-emptive vaccination initially raises, then
lowers the proportion of susceptibles remaining at the end of the epidemic. The maximum
level of remaining susceptibles is

S∞|p=pm= −γ
β
W 0

(
− β(1− α)

(φincα + β)e

)
. (2.90)

However,R∞ is more informative, since susceptibles can be depleted by either infection
or vaccination, and so fewer remaining susceptibles does not necessarily imply a larger
epidemic, nor does it imply that more individuals were vaccinated. However,

∂pR∞ = ∂p ((1− p)πp) = −πp + (1− p)∂pπp < 0 , (2.91)

which shows that increasing pre-emptive vaccine coverage decreases the size of the epi-
demic, as expected.

2.E.3 Vaccination rate ∝ proportion still susceptible

The model equations are

Ṡ = −βSI − φsuscS (2.92a)

İ = βSI − γI (2.92b)

Ṙ = γI (2.92c)

V̇ = φsuscS . (2.92d)

In this case, a similar strategy to the one we employed for the case where vaccination is
proportional to prevalence doesn’t quite work. Calculating S∞(I(0)) is not enough, since
we do not know how the remainder of the population is partitioned between the removed
and vaccinated classes at the end of the epidemic. The following calculations are also
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helpful but insufficient:

İ

I
= βS − γ =

β

φsusc
V̇ − γ (2.93)

Ṡ

S
= −βI − φsusc = −β

γ
Ṙ− φsusc , (2.94)

so

ln
( I(t)

I(0)

)
=

β

φsusc
(V (t)− V (0))− γt (2.95)

ln
(S(t)

S(0)

)
= −β

γ
(R(t)−R(0))− φsusct . (2.96)

However, it is not possible to extract V∞ and R∞ from here because phase-portrait argu-
ments show that I and S tend to 0 as t → ∞ (this is also implied by equations (2.95) and
(2.96)), thus both sides of these equations diverge as t→∞.

Nonetheless, a similar method to the one employed in appendix 2.E.2 yields a relation
between S(t) and I(t) from which, using the previous relations, a relation between R(t)
and V (t) can be obtained. These will not diverge as t → ∞ (they are bounded), so any
divergent components must cancel out.

dS

dI
= −(βI + φsusc)S

(βS − γ)I
(2.97)

(βS − γ)

S
dS = −(βI + φsusc)

I
dI (2.98)

(β − γ

S
)dS = −(β +

φsusc

I
)dI (2.99)

β(S(t)− S(0))− γ ln
(S(t)

S(0)

)
= −β(I(t)− I(0))− φsusc ln

( I(t)

I(0)

)
(2.100)

from which we get:

S(t) = −γ
β
W

(
−β
γ
e
β
γ

(I(t)−I(0)−S(0))(
I(t)

I(0)
)
φsusc
γ S(0)

)
. (2.101)

By taking the limit t → ∞ in equation (2.101), we see that S∞ = 0, and conseqently,
ψp = 1− πp.

We now determine under which conditions each of the two branches of the Lambert W
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function is used in equation (2.101). First, note that

S(I) = −γ
β
W (z(p))

z(I) = −β
γ
e
β
γ

(I(t)−I(0)−S(0))

(
I(t)

I(0)

)φsusc
γ

S(0)

z(I(0)) = −β
γ
S(0)e−

β
γ
S(0) .

For I = I(0), we expect to get W (−β
γ
S(0)) = −β

γ
S(0) so that S(I = I(0)) = S(t = 0).

We know that S(0) > γ
β

which implies that for t = 0, we must use W 1. Because S(t)
monotonically decreases to 0 as t→ 0, we know that the branch W 1 is used until the peak
prevalence is attained (at which time S = γ/β), and then the principal branch W 0 is used.
Now,

dR

dI
=

γI

βSI − γI
=

γ

βS − γ
=

−1

W
(
−β
γ
e
β
γ

(I−I(0)−S(0))( I
I(0)

)
φsusc
γ S(0)

)
+ 1

. (2.102)

This can be integrated, to give

R∞ = R(0) +

∫ I∞

I(0)

γ

βS − γ dI (2.103)

= R(0) +

∫ I∞

I(0)

−1

W i

(
−β
γ
e
β
γ

(I−I(0)−S(0))( I
I(0)

)
φsusc
γ S(0)

)
+ 1

dI

=

∫ I(0)

0

1

W i

(
−β
γ
e
β
γ

(I−I(0)−S(0))( I
I(0)

)
φsusc
γ S(0)

)
+ 1

dI , (2.104)

where the appropriate branch of W i is determined as above, as the integration varible I is
varied. Note, however, that the integral in equation (2.103) is improper, because the integral
diverges at the peak prevalence (when S = γ/β).
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2.E.4 Instantaneous vaccination of a proportion φinst of the population

In this case, the disease progresses according to the standard SIR model,

Ṡ = −βSI , (2.105a)

İ = (βS − γ)I , (2.105b)

Ṙ = γI , (2.105c)

with initial conditions given by

S(0) = (1− p)(1− α)(1− φinst)

I(0) = (1− p)α
R(0) = 0

V (0) = p+ φinst(1− p)(1− α) .

Note that for this model, S(0) is the density of susceptibles after the post-outbreak vacci-
nation response has taken place.

Equation (2.105a) implies that

− γ

β

d

dt
ln (S) = Ṙ , (2.106)

thus S∞ satisfies the equation

γ

β
ln

(
S(0)

S∞

)
= R∞ = 1− V (0)− S∞ , (2.107)

or

S∞ = −γ
β
W 0

(
−β
γ
S(0)e−

β
γ

(1−V (0))

)
. (2.108)

We use the principle branch of the Lambert function in order to obtain solutions satisfy-
ing S∞ ≤ S(0). Since −β

γ
S(0)e−

β
γ

(1−V (0)) > −β
γ
S(0)e−

β
γ
S(0), and W 1 is monotonically

decreasing, − γ
β
W 1

(
−β
γ
S(0)e−

β
γ

(1−V (0))
)
> S(0), which does not correspond to biologi-

cally feasible solutions. In addition, we have R∞ = γ
β

ln S(0)
S∞

.

Since there is no vaccination except during the initial (immediate) response to the out-
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break, V∞ = V (0) = p+ φinst(1− p)(1− α), and so

ψp =
V∞ − p
1− p = φinst(1− α) (2.109a)

πp = 1− ψp −
S∞

1− p . (2.109b)

Using equation (2.107), we also have

πp = − γ

β(1− p) ln

(
1− πp − φinst(1− α)

(1− α)(1− φinst)

)
(2.110)

It follows from equation (2.109b) that πp is a decreasing function of p: from equation (2.107)
we have

γ

β

(
− 1

1− p −
∂pS∞
S∞

)
= −1 + φinst(1− α)− ∂pS∞ (2.111)

and so

∂pS∞ =

(
−1 + φinst(1− α) +

γ

β

1

1− p

)(
βS∞

βS∞ − γ

)
. (2.112)

This gives

(1− p)∂pS∞ + S∞ =
βS∞

βS∞ − γ
((1− p) (−1 + φinst(1− α)) + S∞)

=
βS∞

γ − βS∞
(1− V∞ − S∞) , (2.113)

which is positive so long as R∞ > 0 (this happens when S(0) > S∞, which is true when-
ever S(0) and I(0) are not 0). It now follows that ∂pπp = − (1−p)∂pS∞+S∞

(1−p)2 < 0. Note that
the probability of a delayer being vaccinated post-outbreak (ψp) is constant.

Lastly, note that

(1− p)∂pS∞ =

(
1− V∞ −

γ

β

)(
βS∞

γ − βS∞

)
, (2.114)

which implies that S∞ increases with p iff (1− p)(1− φinst(1− α))β > γ, or equivalently,
I(0) + S(0) = 1− V∞ > γ

β
. Compare this to the more stringent condition S(0) > γ

β
which

ensures that the epidemic takes off (I ′(0) > 0).
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2.F Maximal vaccination rate for fair comparison of mod-
els

In this section, we find the fair comparison values of the vaccination efforts φinc and φprev

(see §2.7.2). These are defined as the levels of vaccination effort φinc and φprev that result in
maximal vaccination rates equal to 0.1/day (that is, comparable to [37]).

2.F.1 Maximal Vaccination rate when V̇ = φprevI

We begin by finding what the maximal vaccination is when V̇ = φprevI . Because the
vaccination rate, V̇ , is maximal when prevalence, I , is maximal, we aim to find the maximal
prevalence. Now observe that since İ = (βS − γ) I , incidence is maximal when S = γ/β.
Thus, the peak prevalence is found by substituting S = γ/β, into equation (2.49) to obtain

Ipeak = 1− p− γ/β +
γ + φprev

β
ln
( γ + φprev

βS(0) + φprev

)
(2.115)

(recall that I(0) + S(0) = 1 − p). We now wish to find at which value of p the maximal
vaccination rate (over time) is largest. Observe that

∂

∂p
Ipeak = −1 +

(γ + φprev)(1− α)

βS(0) + φprev
, (2.116)

∂2

∂p2
Ipeak =

β(γ + φprev)(1− α)2

(βS(0) + φprev)2
> 0 , (2.117)

which implies that the peak prevalence (and thus the maximal vaccination rate) has a
minium in p when

pcrit =
(β − γ)(1− α) + φprevα

β(1− α)
> 0 (2.118)

(β > γ becauseR0 > 1).

There are now two possibilities:

• If pcrit ≥ 1 (which happens iff φprevα ≤ γ(1− α)) then the maximal vaccination rate
is attained when p = 0.

• If pcrit < 1 (which happens iff φprevα > γ(1− α)) then, the maximal vaccination rate
must be attained either when p = 0 or when p = 1.
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Noting that

Ipeak|p=0 = 1− γ/β +
γ + φprev

β
ln
( γ + φprev

β(1− α) + φprev

)

Ipeak|p=1 = −γ/β +
γ + φprev

β
ln
(γ + φprev

φprev

)
, (2.119)

it follows that

V̇max = −φprev
γ

β
+ φprev max

{
1 +

γ + φprev

β
ln
( γ + φprev

β(1− α) + φprev

)
,

γ + φprev

β
ln
(γ + φprev

φprev

)}
. (2.120)

We also note that

∂

∂φprev
Ipeak =

1

β
ln
( γ + φprev

βS(0) + φprev

)
+

1

β

(
1− γ + φprev

βS(0) + φprev

)
. (2.121)

Because 1 − x + ln(x) < 0 for any 0 < x 6= 1, it follows that the peak prevalence Ipeak,
and thus the peak vaccination rate, decreases with increasing vaccination effort, φprev (for
any initial coverage, p). Also, as φprev →∞, we have

Ipeak|p=0 → α ,

Ipeak|p=1 → 0 .

Setting V̇max = 0.1/day in equation (2.120) we can numerically solve for φprev, with α,
β, γ, as in Tables 2.1 and 2.2 to obtain φprev ≈ 1582/day.

2.F.2 Maximal Vaccination rate when V̇ = φincSI

First, we will derrive a formula for the maximal vaccination rate as it depends on the model
parameters, α, β, γ, φinc. We then use this formula to calculate the appropriate range for
φinc, given the estimates of the other parameters cited in Tables 2.1 and 2.2.

Differentiating equation (2.74d), we have

V̈ = φinc
(
ṠI + Sİ

)
= φincSI

(
βS − γ − (β + φinc)I

)
.

Thus, critical points of V̇ (excluding those for which V̇ = 0) occur when βS − γ =
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(β + φinc)I . Using equation (2.76) and simplifying, this is equivalent to

2βS = γ lnS + φinc(1− p)α + β(1− p) + γ
(

1− ln
(
(1− p)(1− α)

))
,

which has two formal solutions,

Ŝk = − γ

2β
W k

(
−2

β

γ
(1− p)(1− α)e−

β+φincα
γ

(1−p)−1

)
,

with k = 0 or −1.

However, it is impossible for Ŝ0 to be attained by S(t), for all t ≥ 0. To see this,
suppose, in order to derive a contradiction, that there is some time t̂0 ≥ 0 such that S(t̂0) =
Ŝ0. Note that −1 ≤ W 0 < 0 on the interval [−1/e, 0), so 0 < Ŝ0 < γ/β. Because
Ŝ0 < γ/β, we have İ(t̂0) < 0. Since Ṡ < 0 (for all time t), it follows that V̈ < 0 when
t = t̂0, in contradiction to the fact that by definition of Ŝ0, V̈ (t̂0) = 0. Thus, S(t) > Ŝ0

is proven1. It follows that if there is a biologically relevant value of S at which V̈ changes
signs, it must be

Ŝ−1 = − γ

2β
W −1

(
−2

β

γe
(1− p)(1− α)e−

β+φincα
γ

(1−p)
)
. (2.122)

Note that Ŝ−1 >
γ
2β

because W −1(x) < −1 ∀x ∈ [−1/e, 0] (but it is also possible that
Ŝ−1 > S(0) = (1−p)(1−α), which would make this critical point biologically unfeasible).

Because S decreases with time, we see that V̈ can change signs at most once for all
t ≥ 0. Observe that since 0 < S∞ < γ/β, and V̇ decreases when S ∈ (0, γ/β], it follows
that V̇ eventually (i.e., for large enough t) decreases with time. Hence, if V̈ (0) ≤ 0, then
t = 0 is a maximum of V̇ for t ≥ 0, and if V̈ (0) > 0 then V̇ attains its maximum when
S(t) = Ŝ−1. The sign of V̈ (0) is identical to the sign of βS(0)− γ − (β + φinc)I(0), so the
maximal vaccination rate is attained at t = 0 if (1− p)

(
(1− 2α)β − αφinc

)
≤ γ, and when

S(t) = Ŝ−1 otherwise. Thus,

ν(p) = max
t≥0

V̇ =

{
φinc(1− p)2(1− α)α if (1− p)((1− 2α)β − αφinc) ≤ γ ,
φinc

φinc+β
(βŜ−1 − γ)Ŝ−1 if (1− p)((1− 2α)β − αφinc) > γ ,

(2.123)

(where, for the second case, we used the fact that I = βŜ−1−γ
φinc+β

when S = Ŝ−1).

To maximize ν over all p ∈ [0, 1) (with α, β, γ and φinc fixed), we consider the following
3 cases:

1Consequently, S∞ ≥ Ŝ0, which is equivalent to a statement about the Lambert W function:
W 0(2x/e) ≥ 2W 0(x), for −1/e < x < 0.
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• First, if 0 < γ < (1− 2α)β − αφinc, then (1 − p)((1 − 2α)β − αφinc) ≤ γ is
equivalent to p̂ = 1 − γ

(1−2α)β−αφinc
≤ p, and p̂ ∈ (0, 1). Hence, for p ∈ [p̂, 1),

ν(p) = φinc(1− p)2(1− α)α is a decreasing function of p, and so maxp∈[p̂,1) ν(p) =

φinc

(
γ

(1−2α)β−αφinc

)2

(1− α)α, and is attained when p = p̂.

When 0 ≤ p < p̂, we note that because (βx − γ)x is parabolic with a minimum at
x = γ/2β, and Ŝ−1 ≥ γ

2β
, it follows that

ν(p) =
φinc

φinc + β
(βŜ−1 − γ)Ŝ−1 (2.124)

is increasing in Ŝ−1, so maxp∈[0,p̂] ν(p) is attained on this interval when Ŝ−1 is maxi-
mized. Because− γ

2β
W −1(x) is monotonically increasing, it follows that maxp∈[0,p̂] ν(p)

is maximal when
−2

β

γe
(1− p)(1− α)e−

β+φincα
γ

(1−p)

is maximal. Consequently, we need to maximize −axe−x (with a > 0), with x(p) =
β+φincα

γ
(1− p), over the interval 0 ≤ p ≤ p̂. This corresponds to maximizing−axe−x

over [β+φincα
γ

, β+φincα
(1−2α)β−αφinc

] ⊂ [1,∞). Observe that −axe−x has a unique global
minimum at x = 1, and in particular, it is increasing when x ≥ 1. This implies that
in the relevant range of x, Ŝ−1 increases with x, and thus decreases in p. It follows
that Ŝ−1 is maximal when p = 0, and its value is

Ŝ−1|p=0= − γ

2β
W −1

(
−2

β

γe
(1− α)e−

β+φincα
γ

)
. (2.125)

Thus, maxp∈[0,1) ν(p) = ν(0), and is attained when p = 0 (note also that ν(p) is
continuous at p = p̂).

• When 0 < (1− 2α)β − αφinc ≤ γ, (1− p)((1− 2α)β − αφinc) ≤ γ is equivalent to
p̂ = 1− γ

(1−2α)β−αφinc
≤ p, which is satisfied for all p ∈ [0, 1), since p̂ ≤ 0. Thus, ν(p)

is a decreasing function of p for all p ∈ [0, 1), and thus maxp∈[0,1) ν(p) = φinc(1−α)α
is attained at p = 0.

• When αφinc ≥ (1− 2α)β, then (1 − p)((1 − 2α)β − αφinc) ≤ γ is always satisfied
(since the left hand side is never positive, and γ > 0). Thus, ν(p) = φinc(1− p)2(1−
α)α, which decreases with p, so maxp∈[0,1) ν(p) = φinc(1 − α)α, and is attained at
p = 0.

Rearranging the conclusions of the preceeding discussion, we see that

max
p∈[0,1),t≥0

V̇ =

{
φinc

φinc+β
(βŜ−1 − γ)Ŝ−1|p=0 if 0 ≤ αφinc < (1− 2α)β − γ ,

αφinc(1− α) if (1− 2α)β − γ ≤ φincα .
(2.126)
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When 0 ≤ αφinc < (1 − 2α)β − γ, then maxp∈[0,1),t≥0 V̇ = φinc
φinc+β

(βŜ−1 − γ)Ŝ−1|p=0,
which increases as S−1|p=0 increases, as stated earlier. Since −W −1(x) increases with

x, and −2 β
γe

(1 − α)e−
β+φincα

γ is an increasing function of φinc, we conclude that in this
range, maxp∈[0,1),t≥0 V̇ increases with φinc. When (1 − 2α)β − γ ≤ φincα, maxp∈[0,1) ν(p)

manifestly increases linearly with φinc. In all, maxp∈[0,1),t≥0 V̇ is a monotonically increasing
function of φinc.

Note that at the point separating the two regimes, φinc = (1−2α)β−γ
α

= 16570.71/day,
maxp∈[0,1),t≥0 V̇ =

(
(1− 2α)β − γ

)
(1− α) = 0.29/day (with parameters as in table 2.1).

Finally, to obtain a value of φinc that yields a maximal vaccination rate of Φ = 0.1/day
(as was estimated in [37]), we solve

φinc

φinc + β
(βŜ−1 − γ)Ŝ−1|p=0= Φ , (2.127)

which gives Ŝ−1|p=0=
γ±
√
γ2+4βΦ(1+β/φinc)

2β
. We take the solution corresponding to the pos-

itive sign (the other one gives negative Ŝ−1, which is biologically absurd). Thus,

W −1

(
−2

β

γe
(1− α)e−

β+φincα
γ

)
= −1−

√
1 + 4

β

γ2
Φ(1 + β/φinc) , (2.128)

which is equivalent to

2β(1− α)

γ
(
1 +

√
1 + 4 β

γ2
Φ(1 + β/φinc)

) = exp
(β + φincα

γ
−
√

1 + 4
β

γ2
Φ(1 + β/φinc)

)
,

which we solve numerically for φinc, with parameters as in Tables 2.1 and 2.2, to get φinc ≈
5190/day.

2.G The individual equilibrium

In this section, we show that for each of the five models defined in §2.6, the game defined
in § 2.4 always has a unique convergently stable Nash equilibrium (defined in § 2.4 and
abbreviated CSNE). The proofs given here are constructive, i.e., they also provide a method
for numerically finding the individual equilbrium (pi).
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2.G.1 Vaccination rate ∝ disease prevalence

In this scenario we have 3 cases to examine:

1. pm ≥ 1 (⇐⇒ αφprev ≥ γ(1− α))

2. pm ≤ 1 and p0 ≤ 0

3. pm ≤ 1 and p0 ∈ (0, 1)

Recall that in the first case, we have proven (in appendix 2.E.1) that πp decreases with p.
As stated in §2.6.1, we assume that πp decreases with p for the other two cases as well.

pm ≥ 1

In this case, we have a unique convergently stable Nash equilibrium (CSNE). To see this,
note that ψp + πp = 1 and ∂pπp < 0. Thus,

∆E = [πp + (1− πp)r − r/a]a(P −Q)

= [πpa(1− r)− r(1− a)](P −Q)

= a(1− r)
[
πp −

r(1− a)

a(1− r)

]
(P −Q) . (2.129)

It is convenient to define

ρ1 =
r(1− a)

a(1− r) =
r

1− r

/
a

1− a , (2.130)

which we can interpret as an odds ratio, namely the odds of a bad outcome from vaccina-
tion (compared with infection) relative to the odds of an outbreak occuring. The odds ratio
is well-defined and strictly positive (ρ1 > 0) because 0 < r < 1 and 0 < a < 1. Since πp
decreases monotonically with p, there are three cases:

• If π0 ≤ ρ1 then πp < ρ1 ∀p > 0. It follows that ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6=
P ⇐⇒ P = 0. Hence pi = 0 is the unique Nash equilibrium. Let 0 ≤ P < Q and
fix ε ∈ [0, 1). It follows that p > 0, and so πp − ρ1 < 0. Thus ∆E > 0 and pi is
convergently stable.

• If α = π1 ≥ ρ1, then πp > ρ1 ∀p < 1. It follows that ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6=
P ⇐⇒ P = 1. Hence pi = 1 is the unique Nash equilibrium. The condition
translates to r(1 − a) < αa(1 − r), or rv < ariα + arv(1 − α). Recall that if an
outbreak occurs, at the end of the epidemic individuals have either been vaccinated
or have contracted the disease. Thus the right hand side is the risk to a vaccinator,
and the left hand side is the minimal possible risk to a delayer (assuming no-one
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is infected after the initial outbreak; if there are secondary infections, then because
rv < ri, the delayer’s risk can only be increased). Let 1 ≥ P > Q and fix ε ∈ [0, 1).
It follows that p < 1, and so πp−ρ1 > 0. Thus ∆E > 0 and pi is convergently stable.

• If π0 > ρ1 > π1 = α then there is a unique p̃ ∈ (0, 1) such that πp − ρ1 > 0 if p < p̃,
πp̃ = ρ1 and πp − ρ1 < 0 if p > p̃. Now since for any ε ∈ [0, 1), Q < P =⇒ p < P
and Q > P =⇒ p > P , we have ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P ⇐⇒ P = p̃
(for other P take Q between P and p̃). Thus, the unique Nash equilibrium pi is the
unique solution to πpi = ρ1. Fix ε ∈ [0, 1). If Q < P ≤ pi, Q ≤ p < P ≤ pi. Thus
πp − ρ1 > 0 =⇒ ∆E > 0. Similarly, If Q > P ≥ pi, Q ≥ p > P ≥ pi. Thus
πp − ρ1 < 0 =⇒ ∆E > 0. Hence pi is convergently stable.

Now, to find p̃: recall that 1− πp =
φprev

β(1−p) ln
(

β
φprev

(1− α)(1− p) + 1
)

and thus

p̃ = 1 + φprev

(1− ρ1) + (1− α)W
(
−1−ρ1

1−α e
− 1−ρ1

1−α

)

(1− α)β(1− ρ1)
. (2.131)

Again, W is applied to a negative argument, and it is necessary to determine which
branch of W to use. The principal branch gives p̃ = 1, and πp → α as p → 1, and
ρ1 > α by assumption, and so by elimination we must use W −1. Interestingly, p̃
depends linearly on φprev. Recall that W −1 ≤ −1, and so ∂p̃

∂φprev
< 0.

Thus, in all three cases there exists a unique CNSE.

pm ≤ 1 and p0 ≤ 0

In the 2nd case, recall that ψp =
φprev

γ
πp, and let

ρ2 =
r

a(1 + rφprev/γ)
, (2.132)

to obtain

∆E = [πp +
φprev

γ
πpr − r/a]a(P −Q)

= [πpa(1 +
φprev

γ
r)− r](P −Q)

= a(1 +
φprev

γ
r)[πp −

γr

a(rφprev + γ)
](P −Q)

= a(1 +
φprev

γ
r)[πp − ρ2](P −Q) . (2.133)
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Now recall that πp decreases with p. So, an identical argument to the one in ap-
pendix 2.G.1 also applies here:

• If π0 ≤ ρ2 then πp < ρ2 ∀p > 0. Thus, ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P ⇐⇒
P = 0. Hence pi = 0 is the unique Nash equilibrium. Let 0 ≤ Q < P < 1 and
fix ε ∈ [0, 1). It follows that p > 0, and so πp − ρ2 < 0. Thus ∆E > 0 and pi is
convergently stable.

• If α = π1 ≥ ρ2 ≥ 0, then πp > ρ2 ∀p < 1. It follows that ∀ε ∈ [0, 1) ∆E >
0 ∀Q 6= P ⇐⇒ P = 1. Hence pi = 1 is the unique Nash equilibrium. Let
1 ≥ P > Q and fix ε ∈ [0, 1). It follows that p < 1, and so πp − ρ2 > 0. Thus
∆E > 0 and pi is convergently stable.

• If π0 > ρ2 > π1 = α then there is a unique p̃ ∈ (0, 1) such that πp − ρ2 > 0 if p < p̃,
πp̃ = ρ2 and πp − ρ2 < 0 if p > p̃. Now since for any ε ∈ [0, 1), Q < P =⇒ p < P
and Q > P =⇒ p > P , we have ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P ⇐⇒ P = p̃.
Thus, the unique Nash equilibrium pi is the unique solution to πpi = ρ2. Fix ε ∈ [0, 1).
If Q < P ≤ pi, Q ≤ p < P ≤ pi. Thus πp − ρ2 > 0 =⇒ ∆E > 0. Similarly,
If Q > P ≥ pi, Q ≥ p > P ≥ pi. Thus πp − ρ2 < 0 =⇒ ∆E > 0. Hence pi is
convergently stable.

To find p̃, recall that R1
∞ = (1− p)πp. Furthermore, from equation (2.55), we have

R1
∞ =

γ

β
ln

(
βS(0) + φprev

βS1
∞ + φprev

)

S1
∞ = 1− p− φprev + γ

γ
R1
∞

⇓

R1
∞ =

γ

β
ln

(
βS(0) + φprev

β(1− p− φprev+γ

γ
R1
∞) + φprev

)

⇓

(1− p)πp =
γ

β
ln


 βS(0) + φprev

β(1− p)
(

1− φprev+γ

γ
πp

)
+ φprev


 .

Substituting p = p̃, and using πp̃ = ρ2 = γr
a(rφprev+γ)

, we obtain after minor rearrange-
ment

β(1− p̃)r
a(rφprev + γ)

= ln

(
a(β(1− p̃)(1− α) + φprev)(rφprev + γ)

β(1− p̃)(γ(a− r)− (1− a)rφprev) + φpreva(rφprev + γ)

)
.

(2.134)

However, we have not succeeded in obtaining an analytical solution for the individual
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equilibrium from this equation.

Thus, in all three cases there exists a unique CSNE.

pm ≤ 1 and p0 ∈ (0, 1)

Since πp decreases with p, the argument above shows that there is a unique CSNE in each
of the the two intervals [0, p0] and [p0, 1], denoted PI,1 and PI,2, respectively. These are
the only candidates for Nash equilibria in the interval [0, 1]: Adding the two sub-intervals
together amounts to adding more strategies to the game. Thus, a strategy which was a Nash
equilibrium in one of the sub-intervals may not be a Nash equilibrium for the larger strategy
set (because players now have a larger strategy set to choose from). However, a strategy
which is a Nash equilibrium for [0, 1] must be a Nash equilibrium in any sub-interval of
[0, 1] which contains it. The situation for convergent stability is a bit more subtle, and is
considered below.

Note that when p 6= p0,

sign(∆E) = sign
(
(πp − ρ(p))(P −Q)

)
(2.135)

where

ρ(p) =

{
ρ1 if p < p0,

ρ2 if p ≥ p0 .
(2.136)

Note also that

πp0 = ρ1 ⇐⇒ r =
γa

φprev(1− a) + γ
⇐⇒ πp0 = ρ2 . (2.137)

This may seem slightly perplexing at first, but recall that πp0 = γ
φprev+γ

. Thus, if it so
happens that πp0 = ρ1 or πp0 = ρ2, r and a must be related so that in fact ρ1 = ρ2.

We must now check a number of cases:

1. π0 ≤ ρ1 and πp0 < ρ2: In this case, πp < ρ(p) ∀p ∈ (0, 1], and PI,1 = 0 and
PI,2 = p0. But if P = p0 and Q ∈ [0, p0), ∆E < 0 and so P = p0 cannot be a Nash
equilibrium. However, if P = 0, then ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P , and so P = 0
is a Nash equilibrium. This is trivial for Q ≤ p0. For p0 < Q, we have πp− ρ(p) < 0
and P − Q < 0, so ∆E > 0 as required. For convergent stability, we only need to
check that if 0 < P < p0 < Q ≤ 1, then for any ε ∈ [0, 1) we have ∆E > 0. In this
case, p ∈ [P,Q], and P − Q < 0. Furthermore, πp − ρ1 < 0 for any p ≤ p0, and
πp − ρ2 < 0 for any p ≥ p0. But since πp0 − ρ2 < 0, πp0 − ρ1 = 0 is impossible
and from continuity, πp − ρ1 < 0. Thus, ∆E(P,Q, ε) > 0 as required for convergent
stability.
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2. π0 ≤ ρ1 and πp0 > ρ2 > π1 = α: In this case, PI,1 = 0 and PI,2 ∈ (p0, 1).
Since PI,1 = 0 is a CSNE in [0, p0], we know that for any ε ∈ [0, 1) and 0 <
P < Q ≤ p0, ∆E > 0. In particular, for ε = 0, and 0 < P < Q = p0 we get
[πp0 + ψp0r − r/a] = ∆E

(P−Q)
< 0. But, from PI,2 ∈ (p0, 1) we can similarly get (for

ε = 0, p0 = Q < P < PI,2) [πp0 + ψp0r − r/a]a = ∆E
(P−Q)

> 0, a contradiction.

3. π0 ≤ ρ1 and α = π1 ≥ ρ2 > 0: Here, PI,1 = 0 and PI,2 = 1. Since PI,1 = 0 is
a CSNE in [0, p0], ∀ε ∈ [0, 1) and 0 ≤ P < Q ≤ p0, ∆E > 0. In particular, for
ε = 0, and 0 < P < Q = p0 we get [πp0 + ψp0r − r/a] = ∆E

(P−Q)
< 0. Similarly,

since PI,2 = 1 is a CSNE in [p0, 1], ∀ε ∈ [0, 1) and p0 ≤ Q < P ≤ 1, ∆E > 0. In
particular, for ε = 0, and p0 = Q < P ≤ 1 we get [πp0 + ψp0r − r/a] = ∆E

(P−Q)
> 0,

which is a contradiction.

4. ρ2 ≥ πp0 ≥ ρ1: In this case, simple algebra gives ρ1 = ρ2 = πp0 and PI,1 = p0 and
PI,2 = p0. Thus, it follows that p0 is the unique CSNE in the interval [0, 1].

5. πp0 > ρ1 and α = π1 ≥ ρ2: In a manner analogous to the first case, here, pi = 1 is
the unique CSNE.

6. πp0 > ρ1 and πp0 > ρ2 > π1 = α : , PI,1 = p0 and PI,2 ∈ (p0, 1). PI,1 = p0

cannot be a Nash equilibrium since for p0 < Q < PI,2, and any ε ∈ [0, 1), ∆E < 0
since PI,2 is the unique CSNE in [p0, 1]. To show that PI,2 is a Nash equilibrium,
fix ε ∈ [0, 1) and P = PI,2 and let Q < PI,2. Note that πp > ρ1 ∀p ∈ [0, p0]
and that because πp is decreasing and πPI,2 = ρ2 , πp > ρ2 ∀p < PI,2. Thus
πp > ρ(p) ∀p < PI,2 and so in particular, ∆E > 0 and PI,2 is the unique Nash
equilibrium. To see that PI,2 is also convergently stable, we must only show that for
any P and Q, 0 ≥ Q < p0 < P < PI,2 and ε ∈ [0, 1), we have ∆E > 0. But
under these conditions, p < PI,2 and so again πp > ρ(p), which implies ∆E > 0, as
required.

7. π0 > ρ1 > πp0 and πp0 < ρ2: Now, PI,1 ∈ (0, p0) and PI,2 = p0. Similar to the above
case, this implies that PI,1 is the unique CSNE (given by equation (2.131)).

8. π0 > ρ1 > πp0 and α = π1 ≥ ρ2: Simple algebra shows that this case is impossible:

ρ1 > πp0 =
γ

γ + φprev

r(1− a)(γ + φprev) > a(1− r)γ
r((1− a)φprev + γ) > aγ
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but

ρ2 ≤ π1 < πp0 =
γ

γ + φprev

r(γ + φprev) < a(φprevr + γ)

r((1− a)φprev + γ) < aγ .

9. π0 > ρ1 > πp0 and πp0 > ρ2 > π1: The reasoning applied to show that the case above
is impossible also rules this case out.

We conclude that in all cases there is a unique CSNE, which we denote by pi.

2.G.2 Vaccination rate ∝ incidence

Since ∂pψp < 0 and ∂pπp < 0, ∂p (πp + rψp) < 0. Thus, an identical argument to the one
given in appendix 2.G.3 allows us to show that there is always a CSNE for this model. In
particular, there are three possibilities:

• If π0 + rψ0 ≤ r/a then pi = 0 is a unique CSNE.

• If α = π1 + rψ1 ≥ r/a, then pi = 1 is a unique CSNE.

• If π0 + rψ0 > r/a > π1 + rψ1 = α then there is a unique CSNE, pi ∈ (0, 1) such that
πpi + rψpi = r/a. To simplify this last condition, we use equations (2.84) to obtain

0 = πpi + ψpir −
r

a
=
a (β + r(1− α)φinc)− r(β + φinc)

a(β + φinc)
− β + rφinc

β + φinc

S∞
1− pi

which is equivalent to

S∞
1− pi

=
a (β + αφinc + r(1− α)φinc)− r(β + φinc)

a(β + rφinc)
. (2.138)

Plugging equation (2.138) into equation (2.78) and rearranging gives the individual
equilibrium,

pi = 1 +
aγ(β + rφinc)

r(β + φinc)(β + aαφinc)

× ln

(
a (β + αφinc + r(1− α)φinc)− r(β + φinc)

a(1− α)(β + rφinc)

)
. (2.139)
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2.G.3 Vaccination rate ∝ proportion still susceptible

Recall that for this model, ψp = 1−πp (see appendix 2.E.3) and that we assume πp decreases
with p (as stated in § 2.6.3). Thus, ∂p (πp + rψp) = ∂p ((1− r)πp) < 0, and we can infer
that:

• If π0 + rψ0 ≤ r/a then πp + rψp < r/a ∀p > 0. Hence pi = 0 is the unique Nash
equilibrium. From reasoning similar to that given in appendix 2.G.1, pi is conver-
gently stable.

• If α = π1 + rψ1 ≥ r/a, then πp + rψp > r/a ∀p < 1. It follows that pi = 1 is the
unique Nash equilibrum and that it is convergently stable. The condition is equivalent
to aαri ≥ rv, which is quite intuitive: aαri is a lower bound on the cost for a delayer
(attained when there are no new cases after the initial outbreak). If even this lower
bound is higher than the cost of vaccinating, then clearly everyone should vaccinate.

• If π0 + rψ0 > r/a > π1 + rψ1 = α then there is a unique CSNE, pi ∈ (0, 1) such
that πpi + rψpi = r/a.

Thus, there is always a CSNE for this model.

2.G.4 Instantaneous vaccination of a proportion φinst of the population

In this case, ψp = φinst(1− α) and πp = 1− ψp − S∞
1−p . Thus,

∆E = [πp + φinst(1− α)r − r/a]a(P −Q) . (2.140)

Letting ρ = r/a − rφinst(1 − α), since πp decreases monotonically with p, we can use an
argument similar to those used for the models considered above to show that:

• if π0 ≤ ρ the pi = 0 is the unique CSNE.

• if π1 ≥ ρ then πp > ρ for any p ∈ [0, 1) and so pi = 1 is the unique CSNE.
Rearranging the condition π1 ≥ ρ gives aα + raφinst(1 − α) ≥ r. This admits a
simple biological interpretation: aα + raφinst(1 − α) is the relative risk of delaying
when the epidemic does not successfully spread (that is, one can only be infected
during the initial outbreak). Thus, if the risks of delaying are greater than vaccinating
even if the disease does not spread beyond the cohort initially infected in the outbreak,
then it is worthwhile for individuals to vaccinate pre-emptively.

• if π0 > ρ > 0 then there is a unique CSNE, pi ∈ (0, 1) such that πpi = ρ. In order to
find pi explicitly, we use equation (2.110) and substitute πpi = r/a− rφinst(1− α):

r/a− rφinst(1− α) = − γ

β(1− pi)
ln

(
1− r/a− (1− r)φinst(1− α)

(1− α)(1− φinst)

)
,
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and consequently,

pi = 1 +
aγ

rβ(1− aφinst(1− α))
ln

(
a (1− (1− r)φinst(1− α))− r

a(1− α)(1− φinst)

)
. (2.141)

2.G.5 constant rate vaccination

As in [37], we assume πp is a decreasing function of p. The analysis (performed originally
in [37]) is then identical to appendix 2.G.1, implying the existence of a unique CSNE,
which we denote by pi. Using the definition of ρ1 given in equation (2.130), we have

• if π1 ≥ ρ1 then pi = 1.

• if π1 < ρ1 < π0 then pi is the unique solution of πpi = ρ1

• if ρ1 ≥ π0 then pi = 0.

2.H The group optimum

We have obtained an analytical formula for the group optimum (defined in § 2.5), for one
sub-case of one of our models. The calculation is given below.
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2.H.1 Vaccination rate ∝ disease prevalence

We consider the case when pm ≥ 1. Recall that if pm ≥ 1, then S∞ = 0, ψp =
φprev

β(1−p) ln
(

β
φprev

S(0) + 1
)

, and πp = 1− ψp (see appendix 2.E.1). Thus,

C(p) = rp+ (1− p)a(1− (1− r)ψp)

= rp+ (1− p)a
(

1− (1− r) φprev

β(1− p) ln

(
β

φprev
S(0) + 1

))

= rp+ a

(
(1− p)− (1− r)φprev

β
ln

(
β

φprev
S(0) + 1

))

C(0) = a(1− (1− r)φprev

β
ln

(
β

φprev
(1− α) + 1

)

C(1) = r

C ′(p) = r + a

(
−1− (1− r)φprev

β

(
− β

φprev
(1− α)

)
1

β
φprev

S(0) + 1

)

= r + a

(
φprev(1− α)(1− r)
βS(0) + φprev

− 1

)
(2.142)

Note that C ′(p) increases with p since S(0) decreases with p and critical points of C(p) are
minima. Thus, if there is a critical point within [0, 1], then it is the global minimum; other-
wise, the global minimum is at C(0). To find critical points, set C ′(p) = 0 or equivalently,

r

a
= 1− φprev(1− α)(1− r)

βS(0) + φprev
(2.143)

which can only happen if r < a (since α < 1 and r < 1), that is, the relative risk (of
vaccination versus infection) is less than the probability of an outbreak. If r ≥ a then
C ′(p) ≥ 0 throughout [0, 1] and the minimal group cost C(p) is attained at pg = 0. This is
easily explained: If rv ≥ ari then the mortality risks from vaccination are no less than those
of dying in an outbreak. In this case, vaccinating is not worthwhile for either the individual
or the group. We now solve equation (2.143) for the initial coverage p at the critical point
of the group cost, C(p), assuming r < a:

βS(0) =
φprev(1− α)a(1− r)

a− r − φprev

1− p =
φprev

β(1− α)

(
(1− α)a(1− r)

a− r − 1

)

p = 1− φprev

β(1− α)

(
(1− a)r − (1− r)αa

a− r

)
(2.144)
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The critical point is attained at p ≥ 1 if and only if (1 − a)r ≤ (1 − r)αa, which is
equivalent to

rv ≤ a(riα + rv(1− α)) , (2.145)

and in this case the group optimum is vaccinating the entire population (pg = 1). Biologi-
cally, equation (2.145) means that more people are expected to die if, in case of an outbreak,
all individuals not infected initially are vaccinated (discounted by the outbreak probability,
a), than the number of people expected to die if the entire population is vaccinated pre-
emptively. To see this, note the probability of death due to vaccinating is rv (the left hand
side of equation (2.145)). To interpret the right hand side of equation (2.145), consider an
individual who is not vaccinated pre-emptively. If there is an outbreak (represented by the
factor a), the first term in brackets (riα) represents the probability of being in the initially
infected cohort (α), and then dying due to the disease. The second term (rv(1 − α)), rep-
resents the probability of not being in the initially infected cohort, and dying due to the
vaccine side effects. Note that because in this scenario S∞ = 0, no delayers remain suscep-
tible (they are either infected or vaccinated). Thus, any individual who is not pre-emptively
vaccinated, and who is not in the initially infected cohort (1 − α) has either a probability
rv of dying due to vaccine side effects, or a probability ri of dying due to the disease. But
since rv < ri, the term rv(1−α) is a lower bound on the probability of death for an individ-
ual who is susceptible immediately after the outbreak is seeded (that is, not pre-emptively
vaccinated, or in the cohort initially infected at the beginning of the outbreak).

Note that not vaccinating anyone pre-emptively is the group optimum (pg ≤ 0) iff

β(1− α)(a− r) ≤ φprev ((1− a)r − (1− r)αa) , (2.146)

(but this condition is difficult to interpret biologically).

Lastly, if φprev ≤ β (a−r)(1−α)
r(1−a(1−α))−aα and (1 − a)r > (1 − r)αa, then pg ∈ [0, 1) and is

given by equation (2.144). It is thus interesting to note that pg depends piece-wise linearly
on φprev.
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Chapter 3

Evolutionary stability in continuous
nonlinear public goods games

Chai Molina and David J. D. Earn

3.1 Abstract

We investigate a type of public goods games played in groups of individuals who choose
how much to contribute towards the production of a common good, at a cost to themselves.
In these games, the common good is produced based on the sum of contributions from
all group members, then equally distributed among them. In applications, the dependence
of the common good on the total contribution is often nonlinear (e.g., exhibiting synergy
or diminishing returns). To date, most theoretical and experimental studies have addressed
scenarios in which the set of possible contributions is discrete. However, in many real-world
situations, contributions are continuous (e.g., individuals volunteering their time). The “n-
player snowdrift games” that we analyze involve continuously varying contributions. We
establish under what conditions populations of contributing (or “cooperating”) individuals
can evolve and persist. Previous work on snowdrift games, using adaptive dynamics, has
found that what we term an “equally cooperative” strategy is locally convergently and evo-
lutionarily stable. Using static evolutionary game theory, we find conditions under which
this strategy is actually globally evolutionarily stable. All these results refer to stability to
invasion by a single mutant. We broaden the scope of existing stability results by showing
that the equally cooperative strategy is locally stable to potentially large population pertur-
bations, i.e., allowing for the possibility that mutants make up a non-negligible proportion
of the population (due, for example, to genetic drift, environmental variability or dispersal).
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3.2 Introduction

Public goods games [54, 108] arise in a wide variety of biological and social contexts,
ranging from microbial evolution [34, 109], tumor growth [110], the evolution of virulence
[111] and host manipulation by parasites [112], to cooperative nesting and brood care [113,
114, 115, 116], the evolution of eusociality [117], fisheries management [118] and family
economics [119]. These are games played among groups of individuals, who may choose to
cooperate and contribute towards the production or attainment of a common good at a cost
to themselves, or to defect and contribute nothing. The common good is then distributed
among all members of the group (regardless of whether or not they contributed) [120].
This situation is analogous to Hardin’s “Tragedy of the Commons” [121], in which the
cost of using a common resource is distributed among group members, but the benefit is
personal (e.g., intrabrood competition for parental investment [116]). In both cases, those
who act selfishly (by refraining from contribution or by overexploitation), do better than
group members who cooperate (either by contributing or by refraining from over-exploiting
the common resource). Because cooperative ventures are ubiquitous in nature [122, 123],
much research has been devoted to understanding how cooperation can evolve and persist
[20, 21, 22, 124]; see recent reviews by Gavrilets [125] and Gokhale and Traulsen [126].

In experimental economics studies of human behaviour, public goods games are typ-
ically set up with a linear relationship between the total cost incurred by group members
and the benefit they receive [23, 120, 127]. However, in many biological scenarios, the
benefit is a nonlinear function of the total cost [21, 54, 112, 128], as there may be a thresh-
old [129, 130], a synergistic effect of contributions [131, 132, 133], diminishing returns
[20, 134, 135], or both synergy and diminishing returns [112, 131, 132, 133]. Furthermore,
in both theoretical and experimental studies of public goods games, contribution levels are
typically taken to be discrete: contribution may be an “all or nothing” affair, whereby a
group member can either contribute a fixed, nonzero amount of a resource to the public
good, or contribute nothing [20, 128, 129, 131] (usually in studies of the n-player pris-
oner’s dilemma), or, more typically in the economics literature, players are endowed with
a number of tokens and decide how many they wish to contribute [23, 120]. In many real
situations, however, individuals can vary their degree of cooperation, often continuously
[55, 136, 137, 138, 139, 140, 141]. Further realism is often added to models by imple-
menting population structure, [142, 143, 144], but we will avoid this further complication
here.

The differences in evolutionary dynamics between 2- and n- player snowdrift games
have been studied in games with binary strategies [129, 145]. In public goods games with
a continuum of possible contributions, played in unstructured population, studies have in-
vestigated how the process by which individual contributions are aggregated affects the
possibility of polymorphism [146, 147]. Others have investigated how variability in group
size [148] and population dynamics [149] affect the evolutionary outcomes.
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Recently, interest in the influence of the functional form of the benefit of contribution
on evolutionary dynamics of the snowdrift and other public goods games has increased.
Most often, the effect of how the benefit depends on collective investment is investigated in
the context of binary strategies (cooperate or defect) [20, 132, 145], sometimes with the ad-
dition of population structure (e.g., [150]). However, Deng and Chu [151] have investigated
how evolutionary dynamics in continuous public goods games are influenced by nonlinear-
ities in how collective investment is translated to the public good, using specific functional
forms (linear, step function or sigmoid). While most other studies investigate stability of a
homogeneous population against mutations that are close to the resident strategy, Deng and
Chu were interested in stability against invasion by any strategy (in line with the original
definition of evolutionary stability [152]). They further considered invasion of populations
by non-negligible proportions of invaders, using numerical simulations. Chen et al. [153]
have used simulations to study a similar game played on a spatial lattice using linear cost
and two types of sigmoid benefit functions. They found that contributions to the public
good are maximized at intermediate values of the steepness and threshold parameters of the
sigmoid functions they used.

In this paper, we analyze a class of nonlinear public goods games with continuously
varying contributions in unstructured populations and establish under what conditions pop-
ulations of contributing (or cooperating) individuals can evolve and persist. Examples of
public goods games to which our results apply include any in which the dependence of the
benefits on the total cost is decelerating or sigmoidal (initially accelerating but eventually
decelerating). Most of the specific public goods games considered in the literature fall in
this class. Identifying general conditions for the evolution of cooperative strategies and
their resistance to invasion is important, because it sheds light on what features of particu-
lar biological systems might be responsible for observed evolutionary outcomes. Moreover,
since “all models are wrong” [154] (in the sense that no model can take all aspects of real-
ity into account), general results on cooperation lend credibility to the broader application
of qualitative conclusions obtained from highly specialized models of particular biologi-
cal systems. Lastly, general results such as those obtained here can be useful in situations
where exact analytical solution of a mathematical model is difficult or impossible.

In most previous studies on nonlinear public goods games with continuous contribu-
tions (e.g., [55, 138, 155]), the framework of adaptive dynamics [56, 57, 58, 59] has typi-
cally been used to analyze and determine evolutionary outcomes. The adaptive dynamics
framework assumes an infinite population of a particular phenotype (that is, contribution
level) and investigates evolutionary stability by considering a single mutant of a different
type and determining whether it can invade the resident population. Because the population
of residents is infinite, the effect of the mutant on the average fitness of the resident strategy
is negligible.

Here, we compare the predictions of adaptive dynamics with those of static evolution-
ary game theory [28, 59, 156] applied to a general class of nonlinear public goods games
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with continuous contributions. Our analysis still considers the limit of an infinite popu-
lation, but allows mutants to comprise a finite proportion of the population; consequently,
mutants can affect the average fitness of the resident population (and of other mutants). Our
new analysis extends the predictions of adaptive dynamics on evolutionary and convergent
stability (§ 3.4) of a cooperative strategy to biologically plausible scenarios in which ge-
netic drift, migration, and/or environmental variability allow a mutant strategy to make up
a significant part of the population (even if it is not selected for when initially rare). Our
analysis also generalizes the results of [151] (who used Darwinian Dynamics [141]).

In § 3.3, we motivate and construct the class of nonlinear public goods games that we
analyze. §3.4 briefly reviews the two frameworks that we use to analyze these games. We
present our results in §4.3 and proofs in §§3.6, 3.7 and 3.8. Finally, in §3.9, we discuss our
results and suggest directions for further developments.

3.3 Class of public goods games

Consider an infinite, well-mixed population of asexual agents. Assume that reproductive
fitness is determined by playing a nonlinear public goods game in randomly-assembled
groups of n > 1 agents. Let h ≥ 0 be the focal agent’s contribution to the public good, and
let H denote the mean contribution by the other n− 1 agents in the focal agent’s group.

Denote the fitness cost and fitness benefit to the focal agent by c(h,H) and b(h,H),
respectively. The fitness of the focal agent is then

W (h,H) = b(h,H)− c(h,H) , (3.1)

where b(h,H) and c(h,H) are non-negative functions of their arguments.

If the cost of contributing is independent of the other group members’ contributions, the
focal agent’s contribution h can be measured in units of the fitness cost of contribution to
the public good. Thus, we henceforth assume (with some abuse of notation)

c(h,H) = c(h) = h . (3.2)

The total good contributed by all members of the group is

η(h,H) = h+ (n− 1)H . (3.3)

We assume that the resulting benefit to the focal agent is a continuous function of the total
good (i.e., the sum of the individual fitness costs),

b (h,H) = f
(
η(h,H)

)
. (3.4)
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We assume that the resulting benefit to the focal agent is a continuous function of the total
good, b(h,H) = f(η(h,H)). Hence, the focal agent’s fitness (3.1) is

W (h,H) = f
(
η(h,H)

)
− h , (3.5)

which is a continuous function of h and H . Equations (3.3) and (3.5) define a large class of
public goods games, namely, continuous n-player snowdrift (or hawk-dove) games [28, 55],
in which the public good is fitness (see appendix 3.C). A particular public goods game in
this class is specified by choosing the function f(η); see figure 3.1.

Biological intuition suggests that there may be a total contribution threshold, ηmin > 0,
below which the marginal benefit of contribution does not outweigh its marginal cost. In
that case, W (h,H) decreases for all h < ηmin − (n − 1)H . If we define ηmin = 0 in
the absence of a range of h over which W (h,H) decreases, then no generality is lost by
assuming the existence of a threshold ηmin ≥ 0. Below we will see that in the situations
we consider the focal agent’s fitness has a local minimum if η = ηmin; we therefore refer to
ηmin as the minimizing total good.

We restrict the class of games we consider slightly by making the biologically sensible
assumption that for any level of mean contribution (H) from the non-focal agents, there is
a level of focal agent’s contribution (h) beyond which its fitness decreases with its contri-
bution; simply put, the marginal cost of an increase in contribution eventually outweighs
its benefit. In appendix 3.A, we show that this is equivalent to the existence of ηmax > 0
such that f(η)−η decreases for η ≥ ηmax. Consequently, the focal agent’s fitness W (h,H)
decreases with its contribution h when η(h,H) > ηmax. In the situations we consider the
focal agent’s fitness has a local maximum if η = ηmax; consequently, we refer to ηmax as
the maximizing total good.

For convenience, we define

hmin(H) = ηmin − (n− 1)H , (3.6a)
hmax(H) = ηmax − (n− 1)H . (3.6b)

For a given mean contribution H by the non-focal agents, hmin and hmax are the levels of
contribution required by the focal agent so that the total good is ηmin = η(hmin(H), H)
and ηmax = η(hmax(H), H), respectively. Note that hmin and hmax are always well-defined
mathematically but they can be negative and hence not biologically meaningful: if the
nonfocal group members contribute (n−1)H > ηmin then hmin(H) < 0 and if (n−1)H >
ηmax then hmax(H) < 0.

If for any mean non-focal agents’ contribution H and focal agent’s contribution, h,
the marginal costs of contributing outweigh the marginal benefits, then W (h,H) decreases
with h regardless of H . Consequently, the unique evolutionarily stable strategy is not to
contribute (h = H = 0), and it is convergently stable (§3.4). In order to avoid this trivial
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Figure 3.1: Sigmoidal benefit to the focal agent, and its corresponding fitness. Top panel:
sigmoidal benefit f(η) = a

(
β + exp(κ − bη)

)−1 − a
(
β + exp(κ)

)−1, with a = 100,
b = 0.2, β = 2, κ = 10, based on an example from [138] (ηmin and ηmax indicated by
dashed lines). Bottom panel: The focal agent’s fitness W (h,H) (corresponding to the
benefit function f(η) above) as a function of its contribution h, for fixed mean non-focal
agents’ contributionH = 3 and group size n = 6 (hmin and hmax indicated by dashed lines).
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outcome, we assume further that
ηmin < ηmax . (3.7)

It then follows that fitness W (h,H) decreases with h if the total good η(h,H) < ηmin, i.e.,
for 0 ≤ h < max{0, hmin(H)}. Equivalently, f(η) − η decreases for 0 ≤ η < ηmin. Note
that the intervals [0,max{0, hmin(H)}) and [0, ηmin) are degenerate if the right endpoint is
0.

For simplicity, we assume that a focal agent’s fitness W (h,H) increases as a function
of its contribution h if the total good η(h,H) is between ηmin and ηmax,

ηmin < η(h,H) < ηmax , (3.8)

or, equivalently, if its contribution h lies in the interval

max{0, hmin(H)} < h < max{0, hmax(H)} . (3.9)

Because the fitness benefit f(η(h,H)) and fitness cost c(h) = h are both increasing func-
tions of h, assuming W (h,H) increases with h means that the benefit of contributing more
increases faster than the cost over interval (3.9); equivalently, f(η) − η is an increasing
function of η for ηmin < η < ηmax.

We can now justify our terminology for ηmin and ηmax. Our assumptions,

A1 fitness is specified by equations (3.3) and (3.5),

A2 f(η) is a continuous function defined for η ≥ 0,

A3 ηmax > 0 exists,

A4 if ηmin exists (which can be assumed without loss of generality) then 0 ≤ ηmin <
ηmax,

A5 f(η)− η increases with η when ηmin < η < ηmax, and decreases otherwise,

ensure that for a fixed H ≤ ηmax/(n − 1), the focal agent’s fitness W (h,H) has a local
maximum when the total good η(h,H) = ηmax (i.e., h = hmax(H) ≥ 0) and a local
minimum when the total good η(h,H) = ηmin.

Thus, our assumptions describe an n-player snowdrift game with cost c(h) = h, and
continuous benefit f(η(h,H)), such that f(η) increases faster than linearly in η on a bounded
interval, (ηmin, ηmax), and nowhere else.
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3.4 Analysis frameworks

Two frameworks commonly used in analyzing models such as those in the class described
in §3.3 are static evolutionary game theory[28, 59, 156] and adaptive dynamics [56, 57, 58,
59]. Below, we recall some of the main concepts from these frameworks, as they apply to
our analysis. For a general treatment, see the references cited above.

3.4.1 Static evolutionary game theory

Definition 3.4.1 (Evolutionary stability). A contribution level Ĥ ≥ 0 is (globally) evolu-
tionarily stable (ES) iff a single agent that plays a different strategy cannot invade the
population (all strategies different from Ĥ are selected against)[152].

As different levels of contributions constitute strategies in this game, we also use the
term evolutionarily stable strategy (ESS), when referring to a level of contribution that is
ES.

Since evolution by natural selection typically involves mutations that have a small phe-
notypic effect, the following definition is also biologically relevant:

Definition 3.4.2 (Local Evolutionary stability). A contribution level Ĥ ≥ 0 is locally evo-
lutionarily stable (locally ES) if a single agent playing a mutant strategy h different from,
but sufficiently close to Ĥ cannot invade the population (h is selected against if |Ĥ − h| is
sufficiently small) [59, 157].

Definition 3.4.3 (Local convergent stability). A contribution level Ĥ ≥ 0 is locally con-
vergently stable (locally CS) if, when the resident strategy H is close enough to Ĥ , a
mutant playing a strategy between H and Ĥ can invade the population (h is selected for if
H < h ≤ Ĥ or Ĥ ≤ h < H) [158].

3.4.2 Adaptive dynamics

Adaptive dynamics [56, 57, 58] can also be used to gain insight into similar evolution-
ary problems. In particular, Doebeli et al. [55] use the adaptive dynamics framework to
completely characterize the evolutionary dynamics of the continuous snowdrift game with
smooth payoffs. Since the class of models defined in § 3.3 is a large subclass of realistic
snowdrift games, it is interesting to compare the predictions of [55] to our predictions based
on static evolutionary game theory. We therefore briefly outline concepts from adaptive dy-
namics necessary for this comparison.

Following [55, 57], the growth rate of a rare mutant strategy h in a resident population
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Property Characterization

Local evolutionary stability ∂2s
H

(h)

∂h2

∣∣∣
h=H

< 0

Convergence stability ∂2s
H

(h)

∂H2 − ∂2s
H

(h)

∂h2

∣∣∣
h=H

> 0

Singular strategy can spread in populations
playing sufficiently similar strategy

∂2s
H

(h)

∂H2

∣∣∣
h=H

> 0

Mutually-invasible strategies exist near singular point ∂2s
H

(h)

∂H2 +
∂2s

H
(h)

∂h2

∣∣∣
h=H

> 0

Table 3.1: Local properties of singular strategies in adaptive dynamics, as in [57, Table 1].

playing H is
s
H

(h) = W (h,H)−W (H,H) , (3.10)

where W (x, y) is the fitness of a mutant playing x in a population playing y. The local
fitness gradient is then

D(H) =
∂s

H
(h)

∂h

∣∣∣∣
h=H

, (3.11)

and the adaptive dynamics of H are given by

Ḣ = D(H) . (3.12)

An equilibrium of equation (4.32), that is, Ĥ satisfying D(Ĥ) = 0, is called a singular
strategy. A singular strategy that is an attractor of equation (4.32) is convergently stable
in the sense of definition 4.A.3. A singular strategy H can also be locally evolutionarily
stable as in definition 4.A.2. The mathematical conditions for these and other possible
characteristics of singular strategies are listed in table 4.A.1, following [57].

3.5 Results

Below, we summarize our results on the behaviour of the class of models outlined in §3.3,
using static evolutionary game theory and adaptive dynamics. These results are proved in
§§3.6, 3.7 and 3.8.

Theorem 3.5.1 (Evolutionary and convergent stability in static theory). Consider an evolv-
ing, infinite, well-mixed population in which fitness is determined by the payoff from a
non-linear public goods game played in randomly chosen groups of n > 1 agents. Suppose
that if the total public good contributed is η ≥ 0, and the benefit to any group member
is f(η). Thus, if h is a focal agent’s contribution and H is the mean non-focal agents’
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contribution to the public good, the focal agent’s fitness is

W (h,H) = f
(
h+ (n− 1)H

)
− h , (3.13)

assuming the cost of the focal agent’s contribution is independent of the other member’s
contributions and contribution is measured in units of its fitness cost. Suppose further that
the benefit function f has the following properties:

H1 f is continuous on η ≥ 0.

H2 There exist ηmin ≥ 0 and ηmax > ηmin such that f(η) − η increases for ηmin < η <
ηmax and decreases for η < ηmin and η > ηmax.

Then, writing H∗ = ηmax/n,

• If f (ηmax) ≥ ηmax then the unique ES contribution is H∗.

• If f (ηmax) < ηmax then

f
(
nH∗

)
− f

(
(n− 1)H∗

) > H∗ =⇒ two ESSs: H = 0 and H = H∗,
≤ H∗ =⇒ unique ESS: H = 0.

(3.14)

Moreover, all existing ESSs are convergently stable.

Remark 3.5.2. As shown in the proof of theorem 3.5.1, the focal agent’s optimal response
hopt(H) (see §3.6.1) is a piecewise-linear function of the mean contribution of the non-focal
agents (this can also be seen graphically in figure 3.1).

Note that if f(ηmax) ≥ ηmax then it is worthwhile for the focal agent to contribute the
maximizing total good, even if it must do so single-handedly (see figure 3.1, first and sec-
ond panels). The existence of a nonzero ES level of contribution is not surprising in this
case. Condition (3.14) says that in the non-trivial situation that f(ηmax) < ηmax, contribut-
ing H∗ (i.e., an equal share of the maximizing total good ηmax) is an ESS iff , when all
nonfocal agents contribute H∗, the cost of contributing H∗ (rather than defecting and con-
tributing nothing) is smaller than the increase in the focal agent’s benefit resulting from this
contribution.1

The corresponding analysis based on adaptive dynamics yields:

Theorem 3.5.3 (Local evolutionary and convergent stability in adaptive dynamics). If the
hypotheses of theorem 3.5.1 are satisfied and, in addition,

H3 f is twice-differentiable on η ≥ 0,

1Condition (3.14) compares the incremental benefit of contributing H∗ to its cost.
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then the adaptive dynamics of H are given by

Ḣ = f ′(nH)− 1 (3.15)

and there are two singular points, H = ηmin/n and H∗ = ηmax/n. H = ηmin/n is a
repellor and H∗ is an attractor (i.e., convergently stable) and a local ESS.

Figure 3.1 gives the pairwise invasibility plot [57, 58] corresponding to the particular
choice of f used in figure 3.1 (see captions for details).

Theorems 3.5.1 and 3.5.3 rely on the assumption of an infinite population to assert that
when a mutant arises, the mean fitness of the resident strategy is unaffected by mutant’s be-
haviour [58, 155, 159]. In other words, the average resident does not interact with a mutant.
Similarly, it is assumed that the average mutant does not interact with other mutants, so the
mean mutant fitness is unaffected by the presence of other mutants (if other mutants exist).

Because real populations are finite, the presence of an invader may well affect the res-
ident’s mean fitness, even if the population size is large. For example, in the case of our
public goods game, even if there is only one mutant, there are n− 1 residents in its group,
whose fitness is W (H, h+(n−2)H

n−1
), rather thanW (H,H). Thus, in a finite population of size

N , even a single invader comprises a nonzero proportion ε = 1/N > 0 of the population.

In theorem 3.5.4 below, we relax the assumption that mutants do not affect the resident
(or mutant) fitnesses. We retain the assumption of an infinite population, but when con-
sidering invasion scenarios, we allow individuals playing the mutant strategy to make up a
finite proportion, ε, of the population. This new analysis is biologically relevant for at least
three reasons:

(i) A mutation might not be selected for when present in a single individual, but spread
nevertheless by genetic drift [61]. Once present in a non-negligible proportion of the
population, the mutation could be selected for. Thus, we use phenotypic theory to
address the question of whether an initially non-adaptive mutation that drifts in to
become present in a non-negligible proportion of the population can then be selected
for.

(ii) A “bud” consisting of multiple mutants can invade a resident population in a dis-
persal or migration event (e.g., [160, 161, 162, 163, 164] and references therein), in
which case the invading mutants may comprise a non-negligible proportion of the
population.

(iii) A mutant may under normal conditions be selected against when rare, but due to
an environmental disturbance (either anthropogenic or natural), conditions may tem-
porarily change to allow the mutant to spread (similarly to disturbances of ecological
communities, [165, 166]). When the environmental conditions return to normal, the
proportion of mutants in the population may have already become non-negligible. In
such cases, the invasion analysis must account for more than a single mutant.
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Figure 3.1: Pairwise invasibility plot for sigmoidal benefit f(η) with parameters as in fig-
ure 3.1: Areas where a single mutant contributing h (vertical axis) can invade an infi-
nite population of agents contributing H (horizontal axis) are shaded. The singular points
H = ηmin/n and H = H∗ are marked. The predictions of theorems 3.5.1 and 3.5.3 for
this choice of benefit function are that H = 0 and H = H∗ are the only ESSs and are con-
vergently stable (because f (ηmax) < ηmax and f

(
nH∗

)
− f

(
(n − 1)H∗

)
> H∗), and that

ηmin/n is a repellor. The vertical lines at H = H∗ and H = 0 are unshaded, implying that
these are ESS contributions (because no mutant can invade). Near H∗, resident strategies
H 6= H∗ can be invaded by mutants playing strategies h that are closer to H∗, so H∗ is con-
vergently stable, and similarly, so is H = 0 . ηmin/n is a repellor, since resident strategies
H near ηmin/n can be invaded by mutants playing h that is farther away from ηmin/n than
H . 89
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For simplicity, we state theorem 3.5.4 with the restriction that f(ηmax) < ηmax. As noted
above, the existence of a nonzero ESS level of contribution when f(ηmax) ≥ ηmax is trivial.
Theorem 3.5.4 then extends the results of theorem 3.5.1 on evolutionary and convergent
stability to scenarios where the invading mutants comprise a proportion ε > 0 of the pop-
ulation. The result we obtain is weaker, however, in that H∗ is no longer guaranteed to be
globally ES; it is resistant to invasion by nearby strategies only.

Theorem 3.5.4 (Local evolutionary and convergent stability in static theory with a finite
proportion of mutants). Suppose the hypotheses of theorem 3.5.1 are satisfied and write
H∗ = ηmax/n. If f(ηmax) < ηmax then:

R1 (Local ES) If h 6= H∗ and a proportion ε of mutants playing h arises in a population
playing H∗ then, if h is sufficiently close to H∗, the mean fitness of a mutant Wm(h)
is smaller than the mean fitness of a resident Wr(h), for any proportion ε > 0 (i.e.,
the mutants are selected against).

R2 (Local CS) If H is sufficiently close to H∗, h is between H and H∗, and a proportion
ε of mutants playing h arises in a population playing H , then the mean fitness of a
mutantWm(h) is greater than the mean fitness of a residentWr(h), for any proportion
ε > 0 (i.e., the mutants are selected for).

3.6 Proof of theorem 3.5.1

Without loss of generality, we can assume that

f(0) = 0 . (3.16)

To see this, note that the dynamics of the game are not changed by adding a constant to
the fitness function W (h,H). If f(0) 6= 0 then we would analyze f̃(η) = f(η)− f(0) (so
f̃(0) = 0) and W̃ (h,H) = W (h,H)− f(0) = f̃(η(h,H))− h.

The structure of our proof of theorem 3.5.1 is as follows: In §3.6.1, we find the optimal
response for the focal agent as a function of the non-focal agents’ mean contribution, H .
Then, in § 3.6.2, we use the focal agent’s optimal response to show that the only possible
ESSs are either not contributing (H = 0), or contributing an equal share of the maximiz-
ing total good, H∗ = ηmax/n > 0. Lastly, in § 3.6.3, we show that these ESSs are also
convergently stable.

3.6.1 Optimal response for focal agent

For a given mean contribution from the non-focal agents, H , what must the focal agent
contribute in order to maximize its fitness? This is the focal agent’s optimal response toH ,
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which we denote hopt(H). The optimal response in the class of games we are considering
is given in lemma 3.6.1 and plotted in figure 3.1.

Lemma 3.6.1 (Best response lemma). Under the conditions of theorem 3.5.1

• if f(ηmax) > ηmax, then

hopt(H) = max
{

0, hmax(H)
}

=

{
hmax(H) 0 ≤ H < ηmax

n−1
,

0 ηmax

n−1
≤ H ,

(3.17a)

where hmax(H) is defined in equation (3.6b). Note that the interval [0, ηmax/ (n− 1))
is never empty, because ηmax > 0.

• if f(ηmax) ≤ ηmax, then,

hopt(H) =





0 0 ≤ H < H0 ,

0 or hmax(H0) H = H0

hmax(H) H0 < H < ηmax

n−1
,

0 ηmax

n−1
≤ H ,

(3.17b)

where H0 is the unique solution of

f
(
(n− 1)H

)
− (n− 1)H = f(ηmax)− ηmax (3.18)

such that 0 ≤ H0 < ηmin

n−1
.

In equation (3.17b), note that the first interval (0 ≤ H < H0) is empty if H0 = 0, and that
for H = H0, hopt(H) is 2-valued.

Proof. Observe that depending on the mean non-focal agents’ contribution H , W (h,H)
behaves in one of the following ways:

1. If the non-focal agents’ contribution is no less than the maximizing total good ((n−
1)H ≥ ηmax), then the focal agent’s fitness W (h,H) decreases with its contribution,
h. The optimal contribution for the focal agent is then hopt(H) = 0.

2. If the non-focal agents’ contribution is greater than or equal to the minimizing total
good and smaller than the maximizing total good (ηmin ≤ (n − 1)H < ηmax), then
the focal agent’s fitness W (h,H) increases for 0 ≤ h ≤ hmax(H) and decreases for
h > hmax(H), so the focal agent’s optimal contribution is hopt(H) = ηmax−(n−1)H .

3. If the non-focal agents’ contribution is lower than the minimizing total good ((n −
1)H < ηmin), fitness decreases for 0 ≤ h ≤ hmin(H), increases for max{0, hmin(H)} <
h ≤ hmax(H) and decreases again for h > hmax(H).

Thus, two levels of contribution locally maximize the focal agent’s fitness: h =
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ηmax − (n − 1)H and h = 0, for which the focal agent’s fitness is W (ηmax − (n −
1)H,H) = f(ηmax)− ηmax + (n− 1)H and W (0, H) = f((n− 1)H), respectively.
These two local fitness maxima are the candidates for the global fitness maximum,
that is, the focal agent’s optimal response hopt(H). Let

∆W (H) = W (ηmax − (n− 1)H,H)−W (0, H)

= f(ηmax)− ηmax − [f((n− 1)H)− (n− 1)H] (3.19)

be the difference between the focal agent’s two local fitness maxima. Note that since
f(η) − η decreases with η on [0, ηmin], ∆W (H) is an increasing function of H on[
0, ηmin

n−1

)
.

Because f(η)− η increases with η on [ηmin, ηmax], it follows that

∆W

(
ηmin

n− 1

)
= f(ηmax)− ηmax − [f(ηmin)− ηmin] > 0 . (3.20)

Thus, since ∆W (H) is continuous, it follows that for large enough values of H <
ηmin/(n − 1), ∆W (H) > 0, implying that the focal agent maximizes fitness by
contributing hopt(H) = hmax(H) > 0.

At the other extreme end of the interval 0 ≤ H < ηmin/(n− 1), we have:

∆W (0) = f(ηmax)− ηmax . (3.21)

There are three possible cases:

(i) If ∆W (0) > 0, then for all 0 ≤ H < ηmin/(n − 1), the focal agent’s optimal
response is hopt(H) = hmax(H) > 0.

The condition ∆W (0) > 0 has a simple biological interpretation: If ∆W (0) >
0, then the benefit to the focal agent when the total good is equal to the total
maximizing good (η = ηmax) is so large that—even if the non-focal group mem-
bers contribute nothing—the focal agent gains by single-handedly contributing
the total maximizing good (h = ηmax). It is then sensible that if the nonfo-
cal agents have collectively contributed less than the minimizing total good
(n−1)H < ηmin (or indeed, less than the maximizing total good, ηmax), then the
focal agent still does best by ensuring that the total maximizing good is attained
(η = ηmax) (in fact, if the non-focal agents contribute 0 < (n−1)H < ηmax, the
focal agent’s fitness must be higher than when H = 0, since it is now required
to contribute less to obtain the same benefit).

(ii) If ∆W (0) < 0, then because ∆W (H) is continuous, increasing, and ∆W
(
ηmin

n−1

)
>
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0, it follows that there is a unique solution to

∆W (H0) = 0, 0 < H0 <
ηmin

n− 1
. (3.22)

Moreover, ∆W (H) < 0 for H < H0 and ∆W (H) > 0 for H > H0.

Thus, the optimal response for the focal agent is hopt(H) = 0 if H < H0, and
hopt(H) = hmax(H) > 0 if H0 < H < ηmin

n−1
. If H = H0, the focal agent can

maximize its fitness by contributing either h = 0 or h = ηmax− (n− 1)H0 > 0
(because W (0, H0) = W (ηmax − (n− 1)H0, H0)).

H0 is the mean non-focal agents’ contribution for which the focal agent obtains
the same fitness either by contributing nothing (h = 0), or by completing the
difference between the maximizing total contribution and the collective contri-
bution of the non-focal agents (so that η = ηmax).

(iii) If ∆W (0) = 0, then ∆W (H) > 0 for all H > 0, and hopt(H) = hmax(H) > 0
for 0 < H < ηmin. For H = 0, the focal agent can maximize its fitness by
contributing either h = 0 or h = ηmax > 0 (again, W (0, 0) = W (ηmax, 0)).

3.6.2 Evolutionarily stable contribution levels

To interpret definition 5.6.1 for evolutionary stability mathematically, suppose that the en-
tire population consists of agents playing H . The focal agent’s fitness is given by equa-
tion (3.5) where h can be an alternative strategy h 6= H . The fitness of the n− 1 non-focal
individuals in the focal agent’s group is

W

(
H,

h+ (n− 2)H

n− 1

)
= f

(
η(h,H)

)
−H . (3.23)

Thus, the focal agent’s fitness is larger than that of the non-focal individuals in its group
iff h < H . However, since the population is infinitely large, an infinite number of non-
focal individuals are in homogeneous groups in which everyone contributes H , so their
fitness is W (H,H). Thus, the mean fitness of a non-focal individual remains W (H,H).
Then, H = H∗ is an ESS iff when all non-focal agents play H∗, if the focal agent plays
an alternative strategy h 6= H∗, its fitness is lower than the resident strategy H∗, or:
W (h,H∗) < W (H∗, H∗) for all h 6= H∗.

Thus, H∗ ≥ 0 is an ESS if and only if it is the unique optimal response to itself.
Explicitly, H∗ must solve

hopt(H
∗) = H∗ , (3.24)
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and hopt(H
∗) must be univalued. H for which hopt(H) is not univalued cannot be an ESS

even if one of the values of hopt(H) is H , because when the non-focal agents play H , the
focal agent can play an alternative strategy (one of the other values of hopt(H) without
decreasing its fitness). Geometrically, solutions of equation (3.24) are intersections (in the
H–h plane) of the curve h = hopt(H) with the line h = H .

Note that while solutions of equation (3.24) at which hopt is not univalued are not ESSs,
they are still technically Nash Equilibria [86].

We separate the discussion into the following cases:

1. f(ηmax) > ηmax:

In this case, hopt(H) is given by equation (3.17a) (see figure 3.1, top panel). Solving
equation (3.24) yields a unique ESS,

H∗ =
ηmax

n
. (3.25)

Note that when f(ηmax) > ηmax, it is beneficial for the focal agent to ensure the
maximizing total good is attained even if it must do so single-handedly (so there is
no “tragedy of the commons” in this scenario). Thus, it is biologically sensible that
at the ESS all group members contribute equally towards the maximizing total good.

2. f(ηmax) = ηmax:

In this case, hopt(H) is given by equation (3.17b) with H0 = 0, that is,

hopt(H) =





0 or ηmax H = 0 ,

hmax(H) 0 < H < ηmax

n−1
,

0 H ≥ ηmax

n−1
.

(3.26)

Thus, H = 0 is not an ESS, because if the non-focal agents contribute H = 0, the
focal agent’s fitness if it contributes h = ηmax > 0 is identical to its fitness if it does
not contribute (h = 0).

If H ≥ ηmax

n−1
, then hopt(H) = 0 < H and so H cannot be an ESS. Lastly, if 0 < H <

ηmax

n−1
then solving equation (3.24) again yields a unique ESS given by equation (3.25)

(see Figure 3.1, second panel).

The biological interpretation of the ESS H∗ = ηmax/n is similar to the previous case
(f(ηmax) > ηmax). The only change is that now, H = 0 (no contribution) is a NE
(where it was not when f(ηmax) > ηmax), because when the non-focal agents do not
contribute, the focal agent’s fitness can be maximized either by contributing ηmax

or not contributing. By contrast, H∗ = ηmax/n is still ES, because when all group
members contribute H∗, then the focal agent’s fitness will decrease if it contributes
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Figure 3.1: ESSs (red dots) are solutions of H = hopt(H) [equation (3.24)] at which
hopt(H) is univalued. H = hopt(H) implies h = H is a best responses to itself, and hopt(H)
being univalued ensures that no other invading strategy matches the resident’s fitness. The
four panels (top to bottom), depict the intersections of h = H (dashed black line) and
h = hopt(H) (solid black line) in the h-H plane in the four possible cases: f(ηmax) > ηmax,
f(ηmax) = ηmax, H0 ≥ ηmax/n, and H0 < ηmax/n. For values of H (the mean nonfocal
agents’ help) where the focal agent’s best response hopt(H) is two-valued, its values are
indicated by black dots.
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h 6= H∗.

3. f(ηmax) < ηmax: In this case, hopt is given by equation (3.17b), so H = 0 is ES.

For 0 < H < H0 and H ≥ ηmax

n−1
, hopt(H) = 0 < H , so Equation (3.24) is not

satisfied, and H cannot be ES. Likewise, H = H0 cannot be an ESS, since hopt(H
0)

is not univalued.

However, depending on the relationship between ηmax, n and H0, there may or may
not be another ESS in the range H0 < H < ηmax

n−1
:

(a) H0 ≥ ηmax/n: When H0 ≥ ηmax/n, there is no additional (nonzero) ESS in the
range H0 < H < ηmax

n−1
, because

hopt(H) < ηmax − (n− 1)H0 <
ηmax

n
< H , (3.27)

(recall that hopt(H) decreases linearly withH in this range; see Figure 3.1, third
panel). Thus, for this sub-case, H∗ = 0 is the unique ESS.

The condition H0 ≥ ηmax/n is equivalent to ∆W (ηmax/n) ≤ 0, or

W
(ηmax

n
,
ηmax

n

)
= f (ηmax)− ηmax

n

≤ f

(
n− 1

n
ηmax

)
= W

(
0,
ηmax

n

)
. (3.28)

Condition (3.28) simply states that if all agents contribute equally towards achiev-
ing the maximizing total good, the focal agent does no worse by withdrawing
its contribution (i.e., switching to h = 0).

(b) H0 < ηmax/n:

To see that in this case, there is a second (nonzero) ES level of contribution H ,
we seek a solution of Equation (3.24) in the range H0 < H < ηmax

n−1
. In this

range, hopt(H) = ηmax − (n − 1)H , so H∗ = ηmax/n solves equation (3.24)
(H0 < H∗ = ηmax/n by our assumption for this sub-case, and H∗ = ηmax/n <
ηmax/(n− 1) trivially, so H∗ ∈

(
H0, ηmax

n−1

)
as required).

Thus, there are in this case two ESS contribution levels: H = 0 and H = ηmax

n

(see figure 3.1, bottom panel).

To understand why there is an additional (non-zero) ES level of contribution
when H0 < ηmax/n, note that by definition, H0 < ηmin

n−1
(see equation (3.22)),

so there are two possibilities:

(i) If ηmax/n < ηmin/(n − 1) then H0 < ηmax/n iff ∆W
(
ηmax

n

)
> 0, or
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equivalently,

f(ηmax)− f(
n− 1

n
ηmax) >

ηmax

n
, (3.29)

which is the converse of condition (3.28).

The biological intuition for this case is that if ηmax/n < ηmin/(n− 1), then
when all non-focal agents contribute H∗ = ηmax/n, their total contribution
is less than the minimizing total good ((n − 1)H∗ < ηmin). Consequently,
W (h,H∗) decreases for 0 ≤ h ≤ ηmin − (n − 1)H∗, then increases for
ηmin − (n − 1)H∗ < h < ηmax − (n − 1)H∗ and decreases again for
h ≥ ηmax − (n− 1)H∗. Thus, the two candidates for the best response for
the focal agent are h = 0 and h = ηmax − (n − 1)H∗ = H∗, and H∗ is an
ESS iff W (H∗, H∗) > W (0, H∗) (that is, ∆W (H∗) > 0).

Note that condition (3.29) stipulates that the mean slope of f on the interval[
n−1
n
ηmax, ηmax

]
is larger than 1.

(ii) If ηmin/(n − 1) ≤ ηmax/n, then H0 < ηmax/n is satisfied (because H0 <
ηmin/n). This is because if ηmin/(n− 1) ≤ ηmax/n, then when H = H∗ =
ηmax/n, the total non-focal agents’ contribution exceeds the minimizing
total good ((n − 1)H > ηmin), so W (h,H∗) is unimodal and has a unique
global maximum (i.e., in the range h ≥ 0) at

h = ηmax − (n− 1)H∗ =
ηmax

n
= H∗ . (3.30)

While the condition ηmin/(n − 1) ≤ ηmax/n seems weaker than condi-
tion (3.29), note that W (0, H∗) < W (H∗, H∗), so condition (3.29) must
hold in this case as well.

We conclude that if f(ηmax) < ηmax, then H = 0 is an ESS, and additionally,
H∗ = ηmax/n is an ESS iff condition (3.29) holds.

Also, note that for a fixed benefit function, f(η), for sufficiently large group size
n, ηmin/(n − 1) ≤ ηmax/n must hold. Thus, all else being equal, larger groups
are more likely to have a nonzero ESS contribution.

3.6.3 Convergent stability of the ESSs

§3.6.2 showed that unless both f(ηmax) < ηmax and f(ηmax) ≤ f(n−1
n
ηmax) + ηmax/n, the

contribution level H∗ = ηmax/n is ES. We now show that when H∗ = ηmax/n is an ESS, it
is also convergently stable, that is:

Suppose that all members of the population contribute H , and that a mutant playing
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h 6= H enters the population. Recalling that we assume an infinite population, the mean
resident fitness is unaffected by the mutant, and is simply W (H,H). Thus, we wish to
show that if H is sufficiently close to H∗, then for any invading strategy h that is between
H and H∗, W (h,H) > W (H,H).

Suppose that the resident strategy is H = H∗ − µ, where µ > 0, and that the mutant
strategy satisfies H∗ − µ = H < h < H∗. If µ < (ηmax − ηmin) /n then ηmin < nH <
h+ (n− 1)Hηmax, so

W (h,H)−W (H,H) = [f (h+ (n− 1)H)− h]− [f (nH))−H]

= [f (h+ (n− 1)H)− (h+ (n− 1)H)]

− [f (nH))− nH] > 0 (3.31)

because f(η)− η is increasing on [ηmin, ηmax].

Now suppose that the resident strategy is H = H∗ + µ, where µ > 0. Because ηmax <
h+ (n− 1)H < nH and f(η)− η decreases for η > ηmax, we have

W (h,H)−W (H,H) = [f (h+ (n− 1)H)− (h+ (n− 1)H)]

− [f (nH))− nH] > 0 , (3.32)

for any µ > 0.

It follows that if all members of the group use a strategy H sufficiently near the non-
zero equilibrium, H∗, then the fitness of a mutant strategy between H and H∗ is larger than
the mean resident fitness, so H∗ is convergently stable.

We also saw in §3.6.2, that if f(ηmax) < ηmax then H = 0 is ES. To see that it is also
convergently stable, note that if 0 < H < ηmin/n, then η(h,H) ≤ η(H,H) < ηmin for all
for 0 < h ≤ H . Since f(η)− η decreases with η for η < ηmin, and η(h,H) increases with
h, it follows that W (h,H) = f(η(h,H)) − η(h,H) + (n − 1)H decreases with h, which
implies H = 0 is convergently stable.

3.7 Proof of theorem 3.5.3

Following [55, 57], the growth rate of a rare mutant strategy h in a resident population
playing H is

s
H

(h) = W (h,H)−W (H,H) = f(h+ (n− 1)H)− f(nH) +H − h . (3.33)
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The local fitness gradient is then

D(H) =
∂s

H
(h)

∂h

∣∣∣∣
h=H

= f ′(nH)− 1 , (3.34)

and the adaptive dynamics of H are given by

Ḣ = D(H) = f ′(nH)− 1 . (3.35)

Singular strategies satisfy f ′(nH) = 1. Since by our assumptions, f(η)−η increases when
ηmin < η < ηmax and decreases otherwise, the two singular strategies are H = ηmin/n
and H = ηmax/n = H∗. Because d

dH
D(H) = nf ′′(nH), f ′′(ηmin) > 0, it follows that

H = ηmin/n is a repellor.

As for the singular strategy H = H∗, using table 4.A.1 (adapted from [57]) and letting

a =
∂2s

H
(h)

∂2H

∣∣∣∣
h=H=H∗

= (n− 1)2f ′′(nH∗)− n2f ′′(nH∗)

= (1− 2n)f ′′(ηmax) > 0 , (3.36)

b =
∂2s

H
(h)

∂2h

∣∣∣∣
h=H=H∗

= f ′′(nH∗) = f ′′(ηmax) < 0 , (3.37)

(since f ′′(ηmax) < 0 and n ≥ 1) we see that H∗ is a convergently stable local-ESS (because
b < 0 and a > b). Though these are the only properties necessary for theorem 3.5.3, for
completeness, we also note that since a > 0, H∗ can invade a homogeneous population
playing a nearby strategy H 6= H∗. Lastly, if n > 1, then mutually-invasible strategies
exist near H∗ since a + b > 0 (however, dimorphic populations will tend to disappear as
the population converges towards the ESS H∗, see [57, p.42]).

3.8 Proof of theorem 3.5.4

3.8.1 Local ES

Proof of R1 (Local ES). Consider an infinite population playing H∗ invaded by a propor-
tion ε > 0 of mutants playing h 6= H∗. We wish to compare the mean fitnesses of a resident
playing H∗ and a mutant playing h.

To obtain the mean mutant fitness, first note that the payoff to a mutant in a group with
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a total of k mutants is

Wm,k(h) = W

(
h,

(k − 1)h+ (n− k)H∗

n− 1

)
. (3.38)

We now calculate the proportion of mutants that are in a group containing k mutants.
Choose an agent at random from the population by first choosing a group at random and
then choosing an agent at random from within that group. Let I be an indicator for whether
the chosen agent is a mutant (I = 1 if the chosen agent is a mutant, and I = 0 otherwise).
Let M be the number of mutants in the chosen group. We use Bayes’ Theorem [167] to
find P (M = k|I = 1), that is, the probability that a chosen mutant is in a group containing
k mutants:

P (M = k|I = 1) =
P (M = k)P (I = 1|M = k)

P (I = 1)
. (3.39)

Because the population is assumed infinite, the probability that a randomly chosen
group contains k mutants is binomially distributed with parameters n and ε,

P (M = k) =

(
n

k

)
εk(1− ε)n−k . (3.40)

The probability of drawing a mutant at random from a group containing k mutants is
P (I = 1|M = k) = k/n. The probability that an individual chosen at random from the
whole population is a mutant is P (I = 1) = ε. Thus,

P (M = k|I = 1) =

(
n
k

)
εk(1− ε)n−kk/n

ε

=

(
n− 1

k − 1

)
εk−1(1− ε)n−k . (3.41)

that is, the remaining number of mutants in the group is distributed binomially with param-
eters n− 1 and ε.

It follows that the mean payoff for a mutant is:

Wm(h) =
n∑

k=1

P (M = k|I = 1)Wm,k(h)

=
n∑

k=1

(
n− 1

k − 1

)
εk−1(1− ε)n−kWm,k(h)

=
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−kWm,k+1(h)
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Similarly, the probability that a randomly chosen resident’s group contains k mutants is

P (M = k|I = 0) =

(
n− 1

k

)
εk(1− ε)n−1−k , (3.42)

and the payoff to a resident in a group containing k mutants is (equation (3.5))

Wr,k = W

(
H∗,

kh+ (n− 1− k)H∗

n− 1

)
= f (kh+ (n− k)H∗)−H∗ . (3.43)

So, the mean payoff to an agent playing the resident strategy H∗ is

Wr(h) =
n−1∑

k=0

P (M = k|I = 0)Wr,k(h)

=
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−kWr,k(h) .

The difference between the mean fitnesses of the mutant and resident strategies is then

δW (h) = Wm(h)−Wr(h)

=
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−k

[
Wm,k+1(h)−Wr,k(h)

]
. (3.44)

Denoting the total contribution in a group containing k mutants and n− k residents by

ηk = kh+ (n− k)H∗ , (3.45)

and noting that ηk+1 − ηk = h−H∗, we have

Wm,k+1(h)−Wr,k(h) =
[
f(ηk+1)− h

]
−
[
f(ηk)−H∗

]

=
[
f(ηk+1)− ηk+1

]
−
[
f(ηk)− ηk+1

]
. (3.46)

If ηmin

n
< h < H∗ then, for all 0 ≤ k ≤ n− 1,

ηmin < nh = ηn ≤ ηk+1 < ηk ≤ η0 = nH∗ = ηmax , (3.47)

so because f(η)− η is increasing for ηmin < η < ηmax,

Wm,k+1(h)−Wr,k(h) =
[
f(ηk+1)− ηk+1

]
−
[
f(ηk)− ηk+1

]
< 0 , (3.48)

that is, each term in the sum (3.44) above is negative, implying δW (h) < 0.
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Similarly, if h > H∗ then, for all 0 ≤ k ≤ n− 1,

ηmax = nH∗ < ηk < ηk+1 , (3.49)

and since f(η) − η is decreasing for η > ηmax, inequality (3.48) holds again, implying
δW (h) < 0.

Thus, a mutant strategy sufficiently close to the equilibrium H∗ cannot invade, regard-
less of its initial proportion in the population, ε.

3.8.2 Local CS

Proof of R2 (Local CS). Similar to the derivation of equation (3.44) in § 3.8.1, the mean
fitness difference between a mutant contributing h and a resident contributing H is

δW (h) =
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−k

[
W

(
h,
kh+ (n− 1− k)H

n− 1

)

−W
(
H,

kh+ (n− 1− k)H

n− 1

)]

=
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−k

{[
f
(
(k + 1)h+ (n− 1− k)H

)
− h
]

−
[
f
(
kh+ (n− k)H

)
−H

]}

=
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−k×

{[
f
(
(k + 1)h+ (n− 1− k)H

)
−
(
(k + 1)h+ (n− 1− k)H

)]

−
[
f
(
kh+ (n− k)H

)
−
(
kh+ (n− k)H

)]}
. (3.50)

If ηmin/n < H < h < H∗, then ηmin < kh + (n − k)H < ηmax for all 0 ≤ k ≤ n,
and because f(η) − η is increasing on [ηmin, ηmax], each term in the sum in the last line of
equation (3.50) is positive, so δW (h) > 0. Conversely, if H∗ < h < H , then because
ηmax < kh + (n − k)H for all 0 ≤ k ≤ n and f(η) − η decreases for η > ηmax, again,
δW (h) > 0. Thus, the ESS H∗ is convergently stable.
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3.9 Discussion

We have analyzed the general class of public goods games described in § 3.3 (continuous
n-player snowdrift games [28, 55]) using the two frameworks summarized in § 3.4 (static
evolutionary game theory [28, 59, 156] and adaptive dynamics [56, 57, 58, 59]). Our results
are expressed in three theorems stated in §4.3 and proved in §§3.6, 3.7 and 3.8.

With the standard static theory, we identified two candidate evolutionarily stable strate-
gies (ESSs): either contributing nothing (H = 0, “defection”) or contributing an equal
share of the maximizing total good (H = H∗ = ηmax/n, “cooperation”). Defection is an
ESS unless the benefit of contributing to the public good is so large that it is worth doing
so even if no-one else contributes. Cooperation is an ESS unless the cost of contributing
the maximizing total good single-handedly outweighs its benefit and the incremental cost
of contributing an equal share also exceeds its benefit (condition (3.14)). When they exist,
each ESS is resistant to invasion by a mutant that contributes any other amount (globally
evolutionary stable) and is selected for in populations of individuals contributing nearly the
ESS level (locally convergently stable).

Our conclusions do not depend on the form of the benefit function f(h) beyond the
biologically sensible hypotheses H1 and H2, and are hence applicable to a wide range of
biological, social and economic problems. Moreover, the conditions we find under which
cooperation is inherently evolutionarily stable are independent of any external mechanism
such as population structure [117, 160, 168], kin selection [138, 160, 163, 169], reciprocity
[139, 170, 171] or partner selection [172].

With the adaptive dynamics framework, we found only one possible ESS, which is to
“cooperate” by contributing an equal share of the maximizing total good, as in the static
theory. Unlike the static theory, the standard formulation of adaptive dynamics requires a
smooth fitness function (hypothesis H3) and the typical definition of evolutionary stability
in the adaptive dynamics literature is local (e.g., [57]), so the conditions for stability can be
weaker, which is what our analysis revealed for the public goods games that we considered:
cooperation is locally evolutionary and convergently stable no matter what. Note also that
the notion of global ES is more relevant than the local ES in cases when the deviation of
mutant strategies from the resident one are not small, e.g., in the case of flexible decision-
making (rather than genetically predetermined behaviour) [146].

The reason that our adaptive dynamics analysis did not detect contributing nothing (“de-
fection”) as an ESS is an artifact of the analysis method’s focus on evolutionarily singular
points (see appendix 3.B). Numerical simulations based on adaptive dynamics (e.g., those
done in [55, 155]) are not subject to this constraint.

Compared with the static theory, the adaptive dynamics framework has the advantage
of being able to describe evolutionary dynamics, even far from ESSs. However, studying
the dynamics is possible only if a particular fitness function is adopted. In this paper, we
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focused on a general setting, without restricting attention to a particular benefit function
f(η), so that the inferences we make are as broad as possible.

With the adaptive dynamics framework, it is possible to describe and investigate the
evolution of a dimorphic population (as opposed to a single mutant in an otherwise uniform
resident population) but, again, only if a specific fitness function is chosen. Our third the-
orem (theorem 3.5.4), based on static theory, successfully considers manifestly dimorphic
populations in order to broaden the scope of the stability results to include potential ef-
fects of invasion by a significant proportion of mutants (which is applicable to a number of
biological situations). We find that cooperation is locally evolutionarily and convergently
stable in a much stronger sense than typically considered: when it is stable to invasion by a
single mutant,H∗ is actually selected for no matter how large a proportion of the population
is playing the mutant strategy.

Throughout this paper, we have retained the standard assumption that the underlying
population is infinite. An infinite population size is often justified in the adaptive dynamics
literature on the grounds that small populations are unlikely to persist due to demographic
stochasticity [58, §2.1]. Of course, evolutionary stability predictions might differ in finite
populations [156], a possibility that we will explore in further work.

Other possible complications that are not accounted for in our present analyses are the
effects of a structured (i.e., not well-mixed) population [22, 173], relatedness among some
or all agents in the population [138, 169], assymetry or variability among individuals, due
to differences in age, sex, resources, abilities or costs [21, 114, 174, 175], as well as inter-
and intra-group competition affecting the division of resources [117, 168]. Furthermore, in
the class of games we have studied, individual agents choose their level of contribution in-
dependently and without knowledge of other agents’ contributions. However, it is possible
that agents choose their contributions in sequence, or negotiate their levels of contributions
[175, 176, 177].
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Appendix

3.A Appendix: Motivation for assumption A3 (existence
of ηmax)

In this appendix, we motivate assumption A3 by showing that if the focal agent’s fitness is
defined by equation (3.5) and f is continuous, the following two statements are equivalent:

S1 For any fixed non-focal agent’s mean contribution H there exists h†(H) ≥ 0 such that
the focal agent’s fitnessW (h,H) decreases with its contribution h for all h > h†(H).

S2 There exists ηmax ≥ 0 such that f(η)− η decreases with η for all η > ηmax.

To gain some intuition, we first suppose f is a differentiable function of η (in §3.A.1), and
then give the general proof (in §3.A.2)

3.A.1 If f is differentiable

Suppose that f is differentiable. Then, by the chain rule and equation (3.3), S1 implies that

∂W

∂h
=

(
f ′(η)

∂η

∂h

)∣∣∣∣
η=η(h,H)

− 1 = f ′(η)|η=η(h,H) − 1

=
d

dη

(
f(η)− η

)∣∣∣∣
η=η(h,H)

. (3.51)

Consequently, if W (h,H) decreases with h for h > h†(H) then f(η)− η decreases with η
for all η > η(h†(H), H). Letting

ηmax = min
H≥0

η(h†(H), H) , (3.52)

f(η)− η decreases for η > ηmax. Thus, S1 implies S2.

Conversely, if there exists ηmax ≥ 0 such that f(η) − η decreases for η > ηmax, then
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letting h†(H) = ηmax − (n − 1)H , we see that η(h,H) > ηmax iff h > h†(H). It then
follows from equation (3.51) that W (h,H) decreases with h for h > h†(H), so S2 implies
S1.

3.A.2 General case

Suppose S1 holds. Noting that

h > h†(H) ⇐⇒ h+ (n− 1)H > h†(H) + (n− 1)H

⇐⇒ η(h,H) > η†(H) , (3.53)

where
η†(H) = η

(
h†(H), H

)
, (3.54)

and rewriting equation (3.5) as

W (h,H) = f
(
h+ (n− 1)H

)
− h

= f
(
η (h,H)

)
−
[
η
(
h,H

)
− (n− 1)H

]

= f(η)− η + (n− 1)H , (3.55)

we see that S1 is equivalent to the assumption that for fixed H there exists η†(H) ≥ 0
such that f(η)− η decreases for η > η†(H). We define ηmax to be the minimal such (non-
negative) total good. Because η can vary independently of H , it follows that f(η) − η
decreases for all η > ηmax, so S1 implies S2.

Conversely, if S2 is true, then equations (3.55) and (3.53) imply thatW (h,H) decreases
for all h > h†(H) = ηmax − (n− 1)H . Thus, S2 implies S1.

3.B Appendix: Boundary ESSs need not be singular strate-
gies

In adaptive dynamics, evolutionarily singular points are singled out as candidate ESSs (e.g.,
[55, 57]). These are points at which there is no directional selection, since the fitness
gradient D(H) vanishes.

However, when the evolving variable H is restricted to an interval (in our case H ≥ 0),
it is not necessary for the fitness gradient to vanish at an endpoint of this interval in order
for it to be ES: as we have seen in theorem 3.5.1, for the class of models defined in §3.3, the
endpoint H = 0 is globally evolutionarily stable whenever f(ηmax) < ηmax, but the fitness
gradient is negative in a right-hand neighbourhood of the endpoint H = 0 (including at
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H = 0). In fact, it is D(H) being negative near H = 0 that ensures that H = 0 is both
locally convergently and evolutionarily stable.

The source of this issue is that the restriction to the biologically meaningful interval
H ≥ 0 is not built into the dynamical model equation (4.32), in that solutions of equa-
tion (4.32) do not necessarily remain in this interval (because the fitness gradient at the left
endpoint H = 0 points outside the interval, into H < 0).

Note also that this cannot be easily fixed by artificially setting D(0) = 0, because doing
so will insert a discontinuity into the fitness gradient, and adaptive dynamics assumes that
the fitness gradient is at least continuous, in order to ensure the existence of solutions of
equation (4.32) (see [178]) and in order to perform the local analysis leading to table 4.A.1.

We conclude that when using adaptive dynamics to model a trait that is restricted to an
interval (for biological reasons), points on the boundary of this interval may be ES, despite
not being singular points. More care is thus required to examine the dynamics of such
models near boundary points.

3.C Appendix: The assumption that contribution is mea-
sured in units of fitness cost, c(h) = h

In this appendix, we comment on the biological interpretation of our assumption that the
contribution of the focal agent is measured in units of the fitness cost it incurs, c (h,H) = h
(equation (3.2)).

Suppose, as before, that the population is engaged in an n-player public goods game,
and let h1 , . . . , hn be the contributions of all the members of the focal agent’s group, in-
cluding the focal agent (for example, if the index of the focal agent is i = 1, then h = h1).

Thus, substituting

η(h,H) =
n∑

i=1

hi (3.56)

in equation (3.4), we have

b (h,H) = f
(
η(h,H)

)
= f

(
n∑

i=1

hi

)
. (3.57)

However, we relax our assumption in equation (3.2) and instead only assume that

c(h,H) = c(h) , (3.58)

so that the fitness cost incurred by the focal agent is independent of the contributions of the
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other members in its group.

The focal agent’s fitness is then

W (h,H) = f

(
n∑

i=1

hi

)
− c(h) . (3.59)

For 1 ≤ i ≤ n, let Ci = c(hi), and C = c(h) be the costs incurred by the n members of
the focal agent’s group, and the focal agent (respectively). Suppose that the cost function
is one-to-one, so that there exists a left-inverse function k(·) satisfying k

(
c(h)

)
= h and

k
(
c(hi)

)
= hi for all 1 ≤ i ≤ n. Then, equation (3.59) becomes

W (h,H) = f

(
n∑

i=1

k(Ci)

)
− C . (3.60)

The benefit to the focal agent, f (
∑n

i=1 k(Ci)) is then generally not a function of the sum
of the group members’ fitness costs,

∑n
i=1Ci.

By assuming that contributions to the public good are expressed in units of fitness cost
(i.e., c(h) = h, as in equation (3.2)), we implicitly assumed that fitness itself is the public
good. Expressed in more biological terms, we are assuming that reproductive costs are
effectively transferable: each individual in a group obtains a fitness benefit f(η) regardless
of how the associated costs (which sum to η) are distributed among the group members; for
example, the fitness benefit is the same if the focal agent contributes the entire cost (h = η),
or if the cost is distributed equally among group members (hi = η/n for each i).
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Chapter 4

Evolutionarily stability in continuous
public goods games in finite populations

Chai Molina and David J. D. Earn

4.1 Abstract

The evolution of cooperation is frequently investigated using public goods games. A classic
example is the n-player snowdrift game, in which each player incurs a cost from contribut-
ing to a common good but benefits from the pooled contributions of all group members.
Such games arise in many biological contexts, from bacterial communities to human soci-
eties. With a continuum of contribution strategies (e.g., time devoted to a task benefiting
the community), analyses to date have typically assumed—for mathematical convenience—
that groups are drawn from an infinite population. Here, we rigorously analyze the contin-
uous n-player snowdrift game in finite populations and compare the evolutionary outcomes
with those in infinite populations. We show that evolutionarily stable strategies (ESSs) in
infinite populations are always unstable when played in finite populations: selection favours
invasion and fixation by less cooperative mutants. We demonstrate that in a large class of
snowdrift games that always have a cooperative ESS in infinite populations, there may be no
cooperative ESS in a finite population, even for arbitrarily large population size. We show
that in such cases, not contributing is a globally convergently stable finite-population ESS,
implying that apparent evolution of cooperation in such games is an artifact of the infinite
population approximation. In addition, we find that in finite-population snowdrift games
in which cooperation can evolve, a large population size is often required. Our results are
robust to the underlying selection process.
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Statement of significance

The ubiquity of cooperation in the living world contrasts with our understanding of evolu-
tion by natural selection, which favours traits promoting individual reproductive success.
Theoretical studies of cooperation are often based on an idealized “public goods game” in
which individuals contribute to a resource that is shared by all members of their group.
For mathematical convenience, it is usually assumed that the population in which groups
reside is infinite. We show that conclusions drawn from such infinite population models
can be misleading. In particular, the possibility of cooperation evolving may require a large
population size. Moreover, there are situations in which cooperation would persist if the
population were infinite but cannot persist in any finite population.

4.2 Introduction

Self-interest is a fundamental component of the theory of evolution by natural selection
[18, 179, 180]. The ubiquity of cooperative behaviour in the living world [122, 123, 181]
is surprising to biologists and has motivated much theoretical work aiming to demystify its
evolution [19, 20, 21, 22, 23].

Of particular interest in the study of cooperation are public goods games [54, 55, 108].
Public goods are commodities that are non-rival1 (i.e., the amount of good available for
consumption by an individual is independent of others’ consumption) and non-excludable
(i.e., it is impossible to exclude others from sharing in the resulting benefit) [182]. Thus,
the cost of contribution to the public good is personal, but the benefit is shared. Many
biological and social phenomena involve public goods: microbial evolution [34, 35], tu-
mor growth [110], the evolution of virulence [111], host manipulation by parasites, [112],
rhizobia-legume mutualism [140], cooperative nesting and brood care [113, 114, 115, 116],
the evolution of eusociality [117], fisheries management [118], family economics [119],
voluntary organizations (e.g., neighbourhood watch [183]) and vaccination ([36, 37] and
chapter 2), to name a few. See references [125, 126] for recent reviews.

Many evolutionary games assume—for mathematical convenience—that populations
are infinitely large (e.g., [55, 57, 141, 148, 151, 184, 185]). This assumption is some-
times justified on the grounds that “[p]opulations which stay numerically small quickly
go extinct by chance fluctuations” [58, §2.1]. Of course, all real populations are finite,
and important differences in evolutionary dynamics between finite and infinite popula-
tions have been demonstrated [81, 129, 186, 187, 188, 189, 190]. In spite of the techni-
cal challenges of working with finite populations, some exact analytical results have been
obtained for two-player games with discrete strategy sets [81, 129, 186, 189, 191]. How-

1Some biological and social examples involve rival goods, of which consumption by one individual di-
minishes the amount available to others, e.g., [34, 116].
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ever, most existing finite-population results rely on approximation methods and simulations
[129, 153, 188, 192, 193, 194, 195]. Notably, almost all finite-population results involve
discrete strategy sets (such as when individuals must choose between making a fixed pos-
itive contribution to a public good, or nothing at all). Yet, evolutionary games involving
continuous strategy sets (e.g., allocating time or effort to a communal task) are both widely
applicable and extensively studied [136]. Moreover, to our knowledge, all existing results
for finite populations depend on a choice of selection process (e.g., Moran or Wright-Fisher
[61, 62]).

Here, we focus on the continuous n-player snowdrift game [55], previously studied in
infinite populations [55, 146, 147, 151, 172] and finite populations (the latter using approx-
imations and individual-based simulations) [153, 188, 196, 197]. In this game, groups of n
self-interested agents select their contribution to a public good shared among the group. A
focal agent contributing h incurs a cost C(h) that depends only on its contribution, whereas
its benefit f(η) depends on the total good contributed by the group, η. The focal agent’s
payoff is then f(η)− C(h).

We show that strategies predicted to be evolutionarily stable (ES; see appendix 4.A.1)
in infinite populations (and in fact all singular strategies; see appendix 4.A.2) are not ES in
finite populations: selection always favours both invasion and replacement of a monomor-
phic population playing such a strategy by a slightly less cooperative one. Consequently,
we propose an extension of the concept of evolutionarily singular strategies to finite popula-
tions. We then find exact analytical conditions for selection opposing invasion, convergent
stability [158] (see appendix 4.A.1) and evolutionary branching in finite populations. These
conditions are different from the corresponding ones obtained for infinite populations, but
approach them as the population size is increased (while keeping the size of interacting
groups small relative to the population size). These results apply generally to any snow-
drift game played in (haploid) finite populations, for any selection process (e.g., Moran or
Wright-Fisher [61, 62]). The extension of singular points to finite populations, as well as
our approach in qualitatively characterizing these points can easily be applied to many other
multi-player games.

The quantitative difference in singular strategies between finite and infinite populations
seems to have been largely overlooked [188, 193, 194] , possibly because the discrepancy
is often small. However, applying our results to a class of snowdrift games previously
analyzed in infinite populations in chapter 3, we find conditions under which there is no
cooperative strategy at which selection opposes invasion in finite populations, despite there
being a cooperative ES strategy if the population is infinite. This qualitative difference
between finite and infinite populations can persist for arbitrarily large population sizes, and
is independent of the selection process (e.g., the Moran or Wright-Fisher processes [61]).
To our knowledge, there are no other examples in the literature for a qualitative difference in
invasion dynamics between finite and infinite populations that persists for arbitrarily large
populations, or for any selection process; all other such differences demonstrated concern
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fixation of strategies, and are restricted to a particular selection process (most often the
Moran process).

Our results are summarized in § 4.3 and proved in § 4.6. The discrepancy between
evolutionary outcomes in finite and infinite populations, and the reasons for it, are discussed
in §4.4. As an example, these differences are precisely identified for a subclass of snowdrift
games in §4.4.2, where we find conditions under which qualitative differences exist between
evolutionary outcomes in finite and infinite populations.

4.3 Results

We wish to analyze the continuous n-player snowdrift game in a finite population of con-
stant size N . To do so, first recall that the definition of evolutionary stability in finite
populations (ESSN) must account for the fact that selection can favour fixation of a mutant
strategy, even if selection opposes its invasion [186] (which is not the case in infinite pop-
ulations). Thus, the standard definition of evolutionary stability in a finite population (see
definition 5.6.3) requires that selection opposes both invasion by mutants, and fixation of
mutant strategies.

The fixation probabilities of mutant strategies depend on the stochastic process that
specifies how the variability in the game payoff generates changes in the frequencies of
strategies in the population, which we call the selection process (see chapter 5). The Moran
or Wright-Fisher processes [61, 62], or their frequency-dependent analogues [81, 186] are
common choices for this process. However, in order to maintain generality, we avoid spec-
ifying a population-genetic process throughout this article.

In analyses of the continuous n-player snowdrift game in infinite populations (based
either on adaptive dynamics [55] or “static” evolutionary game theory, as in chapter 3),
ESSs must be evolutionarily singular strategies (see appendix 4.A.2). Theorems 4.3.1 and
4.3.2 (below) are concerned with the evolutionary instability of these strategies in a finite
population: Roughly speaking, theorem 4.3.1 shows that strategies that are evolutionarily
singular in an infinite population cannot be ESSNs (in particular, a single mutant can invade
if the population is finite). Theorem 4.3.2 shows that when strategies that are evolutionarily
singular in infinite populations are played by any number of residents in a finite population,
they are selected to be ousted (that is, replaced entirely) by sufficiently similar strategies
that are less cooperative. Theorem 4.3.2 is not simply a stronger version of theorem 4.3.1.
The two results have distinct hypotheses and distinct conclusions. Theorem 4.3.1 is easier
to connect with the results available for infinite populations, while theorem 4.3.2 provides
more information about games in finite populations.

Theorem 4.3.1 (Strategies that are singular in infinite populations are not ESSNs). Consider
an evolving, finite population of N agents, composed of G groups of size n > 1 (so N =
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Gn). Suppose fitness is determined by the payoff from a public goods game played in
each group. Denote a focal agent’s contribution to the total public good by h, the mean
contribution of the n − 1 other agents in the focal agent’s group by H , and the total good
contributed in the focal agent’s group by

η(h,H) = h+ (n− 1)H . (4.1)

Let C(h) be the cost incurred by the focal agent for its contribution h, and suppose that the
benefit it obtains is a function of the total good contributed in its group, f

(
η(h,H)

)
. Thus,

the focal agent’s fitness is

W (h,H) = f
(
h+ (n− 1)H

)
− C(h) . (4.2)

Let Hs be an evolutionarily singular strategy in the infinite population analogue of the
game above, and ηs = nHs be the total good when all group members play Hs.

Assume that the cost and benefit functions f(η) and C(h) are continuously differen-
tiable in some neighbourhoods of η = ηs and h = Hs, respectively, and that C ′(Hs) 6= 0.
Suppose that a population of agents playing Hs is invaded by a mutant strategy h 6= Hs,
and that groups playing the public goods game can contain at most one mutant.

• if C ′(Hs) > 0, then, if h < Hs is sufficiently close to Hs, mutants (playing h) obtain
a higher fitness than residents (playing Hs).

• if C ′(Hs) < 0, then, if h > Hs is sufficiently close to Hs, mutants (playing h) obtain
a higher fitness than residents (playing Hs).

Consequently, Hs is not evolutionarily stable. Moreover, these conclusions apply in the
infinite population limit as well, in the following sense: if an infinite population playing a
singular strategy Hs is invaded by a finite proportion ε > 0 of mutants, and groups playing
the game contain at most one mutant, then if C ′(Hs) > 0 (C ′(Hs) < 0) mutants playing a
strategy h < Hs (respectively, h > Hs) sufficiently close to H obtain a higher fitness than
the residents.

The reason that theorem 4.3.1 can be applied to both finite and infinite populations is
that its proof is independent of whether groups are formed by sampling from the popula-
tion with or without replacement. By contrast, theorem 4.3.2 below applies only to finite
populations, and its results depend on individuals being sampled from the population with-
out replacement when a group is formed. The role of the group sampling procedure in
determining evolutionary stability is discussed further in §4.4.1.

Theorem 4.3.2 (Selection favours replacement of strategies that are singular in infinite
populations). Suppose that the hypotheses of theorem 4.3.1 are satisfied, except that groups
are randomly sampled from the population and can therefore contain 0 ≤ k ≤ n mutants
(rather than at most one). Then, for any K such that 1 ≤ K < N , if K agents are mutants

114



Ph.D. thesis – Chai Molina; McMaster University – Mathematics & Statistics

playing h 6= Hs, N −K agents are residents playing Hs,

• if C ′(Hs) > 0 and h < Hs is sufficiently close to Hs, then the mean fitness of mutants
playing h is greater than the mean fitness of residents playing Hs.

• if C ′(Hs) < 0 and h > Hs is sufficiently close to Hs, then the mean fitness of mutants
playing h is greater than the mean fitness of residents playing Hs.

Without specifying a particular selection process, it is impossible to calculate the proba-
bility at which a mutant strategy fixes. Yet, biological intuition suggests that if the mutant’s
fitness is higher than the residents’ for any number of mutants 1 ≤ K < N , then selection
does indeed favour fixation of the mutant strategy. Theorem 4.3.2 and corollary 5.6.5 imply
that this intuition is, in fact, correct for any selection process:

Corollary 4.3.3. Suppose that the hypotheses of theorem 4.3.2 are satisfied. If C ′(Hs) > 0
(C ′(Hs) < 0), then for any selection process, selection favours fixation of mutant strategies
h < Hs (respectively, h > Hs) sufficiently close to the resident singular strategy Hs.

Since selection favours invasion of strategies that are evolutionarily singular in infinite
populations (according to the standard definition given in appendix 4.A.2), a different no-
tion of singular strategy must be appropriate in finite populations. Recall that in infinite
populations, directional selection vanishes near singular strategies [55, 57]. In contrast, in a
finite population playing an infinite-population singular strategy, directional selection does
not vanish, as a result of the presence of a single invader affecting the mean resident fit-
ness (see equation (4.19) below). We therefore take the qualitative condition of directional
selection vanishing as the definition of a singular strategy, which applies to both finite and
infinite populations. To make this precise, we first introduce notation for the mean fitness
difference between mutants and residents.

Definition 4.3.4 (Mean fitness difference). Consider a finite or infinite population playing
the public goods game described in theorem 4.3.1. Suppose there are two strategies in the
population, a resident strategy H and a mutant strategy h. We denote the mean fitness
difference between mutants and residents by

δW (h,H) = Wm(h,H)−Wr(h,H) . (4.3)

Note that the mean fitness difference depends on the number or proportion playing the
mutant strategy.

Definition 4.3.5 (Singular strategy). We say that H is an evolutionarily singular strategy
if, when a single mutant playing h invades a population of residents playing H , directional
selection vanishes as the mutant strategy h approaches H , that is,

∂hδW (h,H)|h=H = 0 . (4.4)
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Remark 4.3.6. Note that while equation (4.4) was derived in references [197, 198], their
derivations employ classical adaptive dynamics [57, 58] and, as such, assume infinite pop-
ulations. Thus, while obtaining the correct condition for a strategy being singular, these
derivations were flawed, because the N →∞ limit was taken inconsistently.

We now apply this definition to the continuous n-player snowdrift game, to obtain a
characterization of singular strategies:

Lemma 4.3.7 (Selection opposes invasion). Suppose that a population of size N is playing
the public goods game described in theorem 4.3.1.Then, selection opposes invasion of a
population playing H = Ĥ by sufficiently similar mutant strategies h 6= Ĥ iff h = Ĥ is a
local maximum of the mean fitness difference δW (h, Ĥ).

As an immediate corollary of lemma 4.3.7, we obtain

Corollary 4.3.8 (Cooperative strategies at which selection opposes invasion are singular).
Suppose that a population of size N is playing the public goods game described in the-
orem 4.3.1. If selection opposes invasion of a population playing a cooperative strategy
H = Ĥ > 0 by mutant strategies h 6= Ĥ , and the cost and benefit functions C(h) and
f(η) are differentiable in a neighbourhood of Ĥ and nĤ , respectively, then Ĥ is a singular
strategy (according to definition 4.3.5).

Sufficient conditions for selection opposing invasion and convergent stability in a finite
population are given in the following theorem:

Theorem 4.3.9 (Conditions for selection opposing invasion and convergent stability). Sup-
pose that a population of size N is playing the public goods game described in theo-
rem 4.3.1, with twice-differentiable cost and benefit functions, C(h) and f(η).

If Ĥ > 0: Selection opposes invasion of a population playingH = Ĥ by a sufficiently sim-
ilar mutant strategy h 6= Ĥ if the mean fitness difference δW satisfies two conditions:

(i) ∂hδW (h, Ĥ)|h=Ĥ =
N − n
N − 1

f ′
(
nĤ
)
− C ′(Ĥ) = 0 , (4.5)

(ii) ∂2
hδW (h, Ĥ)|h=Ĥ =

N − n
N − 1

f ′′
(
nĤ
)
− C ′′(Ĥ) < 0 . (4.6)

Condition (i) ensures that Ĥ is a singular strategy according to definition 4.3.5, while
condition (ii) ensures that h = Ĥ is a local maximum point of δW (h, Ĥ).
Ĥ is convergently stable if condition (i) holds, together with

n
N − n
N − 1

f ′′
(
nĤ
)
− C ′′(Ĥ) < 0 . (4.7)
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If Ĥ = 0: Selection opposes invasion if the mean fitness difference δW satisfies condi-
tions (4.5) and (4.6), or if

∂hδW (h, 0)|h=0 =
N − n
N − 1

f ′
(
0
)
− C ′(0) < 0 . (4.8)

Ĥ = 0 is convergently stable if, for sufficiently small H > 0,

N − n
N − 1

f ′
(
nH
)
− C ′(H) < 0 . (4.9)

Remark 4.3.10. In the infinite population limit (N →∞), if the group size becomes negli-
gible compared to the population size (n/N → 0), then conditions (4.5) and (4.6) approach
the ESS conditions derived from classical adaptive dynamics [55]. A recent extension of
adaptive dynamics can also be used to construct a dynamical system to analyze the public
goods game described in theorem 4.3.1 played in structured populations [79]. When the
“updating rule” is either the Moran or Wright-Fisher process and the population is well-
mixed, conditions (4.5) and (4.6) also characterize attractors of this dynamical system.

In appendix 4.D, we give a sufficient condition for evolutionary stability (ESSN) in finite
population n-player snowdrift games, that is independent of the selection process.

As in the infinite population case, a finite-population singular strategy Ĥ will be an evo-
lutionary branching point [55] if it is convergently stable, but selection favours invasion
by sufficiently similar strategies; the latter occurs if h = Ĥ is a local minimum of the mean
fitness difference δW (h, Ĥ). A sufficient condition for a singular stragtegy h = Ĥ to be
a local minimum of δW (h, Ĥ) is obtained by reversing condition (4.6), which combined
with convergent stability (condition (4.7)) gives

N − n
N − 1

f ′′
(
nĤ
)
< C(Ĥ) < n

N − n
N − 1

f ′′
(
nĤ
)
. (4.10)

Remark 4.3.11. Note that all of our results remain true also if fitness is an increasing affine
function (i.e., of the form φ(x) = w · x + k, with w > 0) of the game payoff, as this would
simply add a positive scaling factor to all of our conditions, which involve only derivatives
of the fitness. In particular, these results are independent of the slope of this affine function
(w above), which is typically referred to as the intensity of selection [156] (and taken to be
0 ≤ w ≤ 1).

Remark 4.3.12. Observe that if the n-player snowdrift game described above is played
repeatedly between reproductive events, and the agents’ fitnesses are calculated using their
mean payoffs, the expected fitnesses for residents and mutants are unchanged, and hence,
all of our results above remain true. In this scenario, the stipulation that the population is
divided into G groups of n agents is unnecessary.
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4.4 Discussion

Comparing theorems 4.3.1, 4.3.2 and 4.3.9 shows that public goods games yield different
outcomes when played in finite vs. infinite populations. Inferences made from analyses
employing an infinite population approximation should be interpreted carefully and cau-
tiously:

• Theorem 4.3.9 gives conditions for selection opposing invasion that are different from
those obtained for infinite populations ([55] and chapter 3).

• Theorems 4.3.1 and 4.3.2 show that strategies expected to be ESSs based on infinite-
population models cannot be evolutionarily stable (ES) in finite populations and are,
in fact, selected to be replaced by sufficiently similar strategies.

The contrast between the predicted evolutionary outcomes in finite and infinite popula-
tions becomes even more striking when focusing on a slightly less general version of the
n-player snowdrift game, introduced in chapter 3, which assumes the following:

(a) The cost to the focal agent of a contribution h is measured in units of its impact on
this agent’s fitness, that is, C(h) = h.

(b) The benefit to group members in which the total group contribution is η ≥ 0 is a
continuous function f(η).

(c) There exist ηmin ≥ 0 and ηmax > ηmin such that f(η) − η increases for ηmin < η <
ηmax and decreases for η < ηmin and η > ηmax.

(d) f(ηmax) < ηmax and

f(ηmax)− f
(n− 1

n
ηmax

)
>
ηmax

n
. (4.11)

In order to use theorem 4.3.9 and to facilitate comparison with the results from adaptive
dynamics [55], we also assume f is twice-differentiable in a neighbourhood of ηmax.

When played in an infinite population, assumptions (a)-(d) ensure the existence of a co-
operative global ESS, H∗∞ = ηmax/n, where ηmax is the point at which f(η)− η is maximal
(theorem 3.5.1)2 3. As seen in Theorem 3.5.3, if the benefit function f is differentiable at

2Note that the case f(ηmax) ≥ ηmax is excluded despite it also implying the existence of a cooperative
ESS; this case is uninteresting as a public goods game, since then, the focal agent benefits from contributing
a nonzero amount (h = ηmax), even if no-one else contributes.

3In terms of the ESS, H∗∞, condition (4.11) can be rewritten as

f
(
nH∗∞

)
− f

(
(n− 1)H∗∞

)
> H∗∞ , (4.12)

which can be interpreted as: when all nonfocal agents contribute H∗∞, the incremental benefit to the focal
agent of also contributing H∗∞ exceeds its cost.
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ηmax, then H∗∞ must be an evolutionarily singular strategy, that is, the fitness gradient must
vanish there (D(H∗∞) = f ′(nH∗∞) − 1 = 0, where the fitness gradient D(H) is defined
as in appendix 4.A.2). However, when the game defined in chapter 3 is played in a finite
population, by theorem 4.3.1, H∗∞ is not an ESS, for any finite population size, N .

Moreover, in an infinite population playing the ESS H∗∞, if a proportion ε of mutants
invade and play a different strategy h 6= H∗∞ that is sufficiently close to H∗∞, then h is
selected against (i.e., the mutants’ fitness is lower than the residents’), regardless of ε (the-
orem 3.5.4). Yet, in a finite population, theorem 4.3.2 extends theorem 4.3.1 to any number
of mutants arising in the population and to how many mutants can be in a group: if in a
population of N agents, N − K play H∗∞ and K play an alternative strategy h, then for
any K, strategies h < H∗∞ sufficiently close to H∗∞ yield a higher fitness than H∗∞. More-
over, corollary 4.3.3 states that strategies h < H∗∞ sufficiently close to H∗∞ are selected to
entirely replace the resident strategy H∗∞.

These differences motivate us to explore how evolutionary outcomes of continuous
snowdrift games differ between finite and infinite populations, both qualitatively and quan-
titatively, and to understand the underlying reasons for these different outcomes. We ad-
dress these issues in §§4.4.1 and 4.4.2.

4.4.1 Why evolutionary stability in infinite populations does not imply
resistance to invasion in finite populations

Table 4.1 summarizes the differences between theorems 3.5.1 and 3.5.4, and theorems 4.3.1
and 4.3.2 of this paper, applied to the infinite-population ESS H∗∞. In this section, we
explain how these differences arise.

Theorem 3.5.1 states that when an infinite population playingH∗∞ is invaded by a single
mutant playing a different strategy, h 6= H∗∞, the mean resident fitness (which is unaffected
by the mutant) is higher than the mean mutant fitness and H∗∞ is ES. By contrast, when
interacting groups contain at most one mutant, theorem 4.3.1 shows that an infinite popu-
lation playing H∗∞ is susceptible to invasion by a proportion 0 < ε < 1 of less cooperative
mutants. This is because resident–mutant interactions decrease the mean resident fitness,
but the mean mutant fitness is unchanged (because mutants interact only with residents).
Hence, infinitely diluting of the mutants on the residents is essential to the stability of the
infinite population ESS H∗∞.

Now consider the invasion of infinite and finite populations (respectively) by a non-
negligible number of mutants, when groups are sampled randomly from the population. If
an infinite population of residents playing H∗∞ is invaded by a non-negligible proportion
0 < ε < 1 of mutants playing a strategy h 6= H∗∞ sufficiently close to H∗∞, the mean
resident fitness is still higher than the mean mutant fitness (Theorem 3.5.4). Yet, in a finite
population, theorem 4.3.2 shows that a slightly less cooperative mutant strategy h < H∗∞
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yields a higher mean fitness than the resident strategy H∗∞ (for any number of the mutants
in the population 1 ≤ K ≤ N − 1). It appears that another process must be at work that
causes the infinite-population ESS to be unstable when played in a finite population (in
addition to the infinite dilution of the effects of mutants on other agents).

To identify this additional process destabilizing the infinite-population ESS H∗∞, we
make two more comparisions of scenarios in which populations playing H∗∞ are invaded by
a proportion 0 < ε < 1 of mutants playing a sufficiently similar, less cooperative strategy
h < H∗∞ (see table 4.1:

• Theorem 3.5.4 vs. theorem 4.3.1: mutants cannot invade when groups are randomly
sampled from the population vs. mutants can invade when groups contain at most one
mutant (and thus mutants do not interact). Consequently, mutant–mutant interactions
adversely affect the mean mutant fitness.

• Theorem 3.5.4 vs. theorem 4.3.2: mutants cannot invade an infinite population vs. can
invade a finite population. The difference arises because when a finite group is sam-
pled from a population, if the population is infinite then the relative frequencies of the
mutants and residents are not changed, whereas they are changed if the population
is finite. Consequently, in an infinite population, on average, residents interact with
fewer mutants and mutants interact with more mutants, compared to a finite popu-
lation with the same proportion of mutants (see appendix 4.G). Thus when mutants
are less cooperative than residents, mutants are better off in a finite population, and
residents are better off in an infinite one (because the focal agent’s fitness decreases
with the number of mutants in its group).

Approximating large populations by infinite ones may generate misleading conclusions,
by neglecting or incorrectly estimating the effects of mutants on the agents interacting with
them; this can be caused either by “infinitely diluting” the effects of a finite number of
mutants, or by the difference in the mean number of nonfocal mutants in a group between
finite and infinite populations (which is in turn caused by “diluting” the effect of sampling
on the population composition).

4.4.2 Qualitative and quantitative differences between finite and infi-
nite populations

We have seen that the evolutionary dynamics of the level of contribution in continuous
snowdrift games in a finite population differ from those predicted by models based on an in-
finite population. Since all real populations are finite, we wish to evaluate how conclusions
based on an infinite-population analysis of the n-player snowdrift game (e.g., [55, 138] and
chapter 3) might be affected.

In appendix 4.B, we address this issue by analyzing the slightly more restricted snow-
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Theorem Population
size

Residents
interact with
mutants?

Mutants inter-
act with mu-
tants?

Mutants’
mean fitness
higher than
residents’?

Theorem 3.5.1 ∞ No No No

Theorem 4.3.1 N or∞ Yes No Yes

Theorem 3.5.4 ∞ Yes Yes No

Theorem 4.3.2 N Yes Yes Yes

Table 4.1: Comparison of stability results for the infinite population ESS, H∗∞, in finite and
infinite populations (note that theorems 4.3.1 and 4.3.2 apply to any strategy that is singular
in an infinite population, but are here applied to ESSs).

drift game from chapter 3 described above. We show that if there is a cooperative ESSN

when the game is played in a finite population, then the infinite-population cooperative ESS
is always larger than the finite population ESSN. For a large enough number of groups there
is always a cooperative ESSN, H∗N > 0. When the cooperative ESSN, H∗N , exists, it quickly
approaches H∗∞ (see figure 4.1, top panel).

More importantly, we show that in contrast to the prediction of the infinite-population
analysis (whereby there is always a cooperative ESS), if

max
ηmin<η<ηmax

f ′(η) < 1 +
n− 1

N − n , (4.13)

then there is no cooperative ESSN; in this case, defection (i.e., H = 0) is a globally conver-
gently stable ESSN.

This qualitative difference between the outcomes in finite and infinite populations can
occur either for small or large population sizes, or indeed for any population size (see
figure 4.1, bottom panel):

• If maxηmin<η<ηmax f
′(η) < 2, then for small enough population size (e.g., N = 2n)

there is no cooperative ESSN.

• If, for a fixed number of groups G,

1 +
1

2(G− 1)
< max

ηmin<η<ηmax

f ′(η) < 1 +
1

G− 1
, (4.14)

then for low group sizes there is a cooperative ESSN, but as group size n (and conse-
quently population size N ) is increased, there is a group size beyond which there is
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no longer a cooperative ESSN (even for arbitrarily large group and population sizes).

• If, for a fixed number of groups G,

max
ηmin<η<ηmax

f ′(η) < 1 +
1

2(G− 1)
, (4.15)

then there is no cooperative ESSN, for any population size N .

These results contrast earlier work, which found general agreement between adaptive dy-
namics and stochastic simulations of finite populations [199] and specific agreement be-
tween the finite- and infinite-population evolutionary dynamics of the n-player snowdrift
game with discrete strategies [129]4. It is worth emphasizing, moreover, that the existence
or lack of a cooperative ESSN in the snowdrift game considered here is entirely independent
of the selection process.

Because of the discrepancy between the conditions for evolutionary branching in a finite
population (equation (4.3)) and in an infinite population [55], there may in principle also
be situations in which evolutionary branching is predicted in one, but not the other. We
plan to investigate this additional potential qualitative difference between finite and infinite
populations in future work.

4.5 Conclusion

We analyzed general continuous n-player snowdrift games in finite populations and showed
that cooperative strategies that are evolutionarily stable in infinite populations are unstable
in finite populations and are selected to be replaced by less cooperative strategies. These
results motivated a revised definition of evolutionarily singular points. We obtained condi-
tions for selection opposing invasion by sufficiently similar mutants, convergent stability,
and evolutionary branching, at a singular point, as well as a sufficient condition for evo-
lutionary stability. These conditions differ from their infinite-population analogues, but
approach them as population size is increased. The rapid convergence of the conditions
defining and classifying singular points in a finite population, to the corresponding infinite-
population conditions, may explain why this difference between finite and infinite pop-
ulations has been overlooked in recent studies that relied on adaptive dynamics to study
continuous traits evolving in finite populations [188, 194].

We applied our finite-population analysis to a class of continuous n-player snowdrift
games, which have a cooperative ESS when played in infinite populations (see § 4.4.2
and appendix 4.B). For games in this class, if there is a cooperative ESSN for the finite-
population game, it is always less cooperative than the infinite-population ESS. Further-

4Note, however, that [129] also found that defectors prevail when the group size approaches the population
size, even in situations where cooperators and defectors can coexist in an infinite population.
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Figure 4.1: The finite-population ESSN, H∗N , as population size N is increased, for linear
costC(h) = h and sigmoidal benefit f(η) = a

(
β+exp(κ−bη)

)−1−a
(
β+exp(κ)

)−1, with
a = 100, b = 0.2, β = 4.76, κ = 10 (based on an example from [138]). Top panel: H∗N
is plotted against the number of groups, G, for three group sizes n. For each group size, a
dashed line indicates the corresponding infinite-population ESS (H∗∞). Bottom panel: H∗N
is plotted against the group size n for three different numbers of groups, G . The black
curve is H∗∞ = ηmax/n. When no cooperative ESSN exists, a point is plotted at the bottom
of the figure beneath the horizontal axis (6 ∃).
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more, we identified conditions under which there is no cooperative ESSN for such games
when played in a finite population. Under these conditions, defection is a globally con-
vergently stable ESSN. Moreover, we found conditions under which no cooperative ESSN

exists for small population sizes, arbitrarily large population sizes, or any population size.
Thus, the qualitative difference between the predictions of finite- and infinite-population
models does not necessarily disappear as population size is increased. These results are
independent of the selection process (e.g., the Moran or Wright-Fisher processes).

In a broader context, our results indicate that conclusions drawn from models involv-
ing infinite populations may not extend to finite populations, despite previous work jus-
tifying the approximation of large populations by infinite ones (e.g., [56]). In particular,
adaptive dynamics has been extensively used in the study of evolutionary dynamics (e.g.,
[55, 138, 155], as well as [200] and references therein), and relies on such an approxima-
tion [58]. Since all real populations are finite, our results indicate that some conclusions
based on adaptive dynamics may not apply to realistic scenarios. This highlights the need to
reevaluate the theoretical justification for approximating large populations by infinite ones,
and to derive clear conditions for when such approximations are useful. We conjecture that
in order to ensure that results based on infinite-population models apply qualitatively to
their finite-population analogues, it is necessary that the size of an interacting group must
be small compared to the population size (n� N ).

4.6 Proofs of theorems

4.6.1 Proof of theorem 4.3.1

Consider a population ofN agents playingHs = ηs/n invaded by a proportion ε = K/N >
0 of mutants playing h 6= Hs, where interacting groups contain at most one mutant. This
can happen if there is only one mutant in the population (ε = 1/N ) or because there are
fewer mutants than there are interacting groups (K < N/n = G) and mutants can recognize
and avoid one another. In this scenario, approximating group formation as sampling with
replacement (using the binomial distribution, as done in theorem 3.5.4) is not appropriate.

There are K groups containing n − 1 residents (that is, K(n − 1) residents in groups
with one mutant) and G −K groups containing n residents (that is, N −Kn residents in
groups with residents only). Then, the mean fitness of a resident is

Wr(h) =
K(n− 1)

N −K W (Hs,
h+ (n− 2)Hs

n− 1
) +

N −Kn
N −K W (Hs, Hs)

=
1

1− ε

(
ε(n− 1)W (Hs,

h+ (n− 2)Hs

n− 1
) + (1− εn)W (Hs, Hs)

)
, (4.16)
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with ε = K/N , and the fitness of a mutant is W (h,H).

The mean difference between the fitnesses of a mutant and a resident is then

δW (h,Hs) = W (h,Hs)−Wr(h)

=
[
f
(
η(h,Hs)

)
− C(h)

]
− ε(n− 1)

1− ε
[
f
(
η(h,Hs)

)
− C(Hs)

]

− 1− nε
1− ε [f(ηs)− C(Hs)]

=
1− nε
1− ε

(
f
(
η(h,Hs)

)
− f(ηs)

)
+ C(Hs)− C(h) . (4.17)

Noting that δW (h,Hs)→ 0 as h→ Hs,

d

dh
δW (h,Hs)|h=Hs = lim

h→Hs

δW (h,Hs)− 0

h−Hs

= lim
h→Hs

1− nε
1− ε

f(η(h,Hs))− f(ηs)

η(h,Hs)− ηs

− C(Hs)− C(h)

Hs − h
=

1− nε
1− ε f

′(ηs)− C ′(Hs)

=
1− nε
1− ε

(
f ′(ηs)− C ′(Hs)

)
− (n− 1)ε

1− ε C ′(Hs) . (4.18)

Because Hs is an evolutionarily singular strategy, f ′(nHs) − C ′(Hs) = 0. If C ′(Hs) > 0,
then

d

dh
δW (h,Hs)|h=Hs= −

(n− 1)ε

1− ε C ′(Hs) < 0 . (4.19)

It follows that δW (h,Hs) decreases to 0 with h in a left-neighbourhood of h = Hs. Hence,
mutants playing h < Hs have a fitness advantage over the resident strategy. Similarly, if
C ′(Hs) < 0, mutants playing h > Hs have a fitness advantage over the resident strategy.
Consequently, if C ′(Hs) 6= 0, then Hs is not an evolutionarily stable strategy (ESSN).

The population size does not appear in equation (4.17). Thus, the argument above also
shows that in an infinite population containing a proportion ε of mutants, when groups
contain at most one mutant, then for h close enough to Hs, the cumulative effect of the
mutants on the residents’ fitness causes the mean resident fitness to be smaller than the
mutant fitness. Consequently, in this case, Hs is also not ES. �

4.6.2 Proof of theorem 4.3.2

We will use the following lemma, proved in appendix 4.C:
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Lemma 4.6.1 (Directional selection). Suppose that the hypotheses of theorem 4.3.2 hold,
and that a population of residents playing H is invaded by K mutants playing h.

• If ∂hδW (h,H)|h=H = N−n
N−1

f ′
(
nH
)
− C ′(H) < 0 then less cooperative mutants

playing h < H sufficiently close to H will obtain a higher fitness (δW (h,H) > 0)
regardless of how many mutants 1 ≤ K ≤ N − 1 are in the population.

• If ∂hδW (h,H)|h=H = N−n
N−1

f ′
(
nH
)
− C ′(H) > 0 then more cooperative mutants

playing h > H sufficiently close to H will obtain a higher fitness (δW (h,H) > 0)
regardless of how many mutants 1 ≤ K ≤ N − 1 are in the population.

Now recall that if Hs = ηs/n is an evolutionarily singular strategy in the infinite-
population game, the fitness gradientD(H) = f ′(nH)−C ′(H) vanishes atHs, so f ′(ηs) =
f ′(nHs) = C ′(Hs), and consequently,

∂hδW (h,Hs)|h=Hs =
N − n
N − 1

f ′
(
nHs

)
− C ′(Hs) = − n− 1

N − 1
C ′(Hs) . (4.20)

Thus, if C ′(Hs) > 0, then N−n
N−1

f ′
(
nHs

)
− C ′(Hs) < 0, and it follows from lemma 4.6.1

that mutants playing h < Hs sufficiently close to Hs obtain a higher fitness than residents
and can thus invade. Similarly, if C ′(Hs) < 0 then mutants playing h > Hs sufficiently
close to Hs can invade.

Interestingly, irrespective of the proportion of mutants in the population, K/N , there
are always levels of contribution h sufficiently close to Hs which yield a higher payoff than
the resident strategy Hs. �

4.6.3 Proof of lemma 4.3.7

Consider a population of residents playing H invaded by one mutant playing h. There is
then one group which contains n− 1 residents and a single mutant (in which the total good
contributed is η(h,H) = h+ (n− 1)H), and there are G− 1 = N/n− 1 groups containing
n residents (in which the total good contributed is η(H,H) = nH). Thus, the mean fitness
of agents playing the resident strategy is

Wr(h,H) =
n− 1

N − 1
W (H,

h+ (n− 2)H

n− 1
) +

N − n
N − 1

W (H,H) , (4.21)

and the mutant’s fitness is W (h,H).
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The mean difference between the fitness of a mutant and that of a resident is then

δW (h,H) = W (h,H)−Wr(h,H)

=
[
f
(
η(h,H)

)
− C(h)

]
− n− 1

N − 1

[
f
(
η(h,H)

)
− C(H)

]
− N − n
N − 1

[f(nH)− C(H)]

=
N − n
N − 1

(
f
(
h+ (n− 1)H

)
− f(nH)

)
+ C(H)− C(h) . (4.22)

It follows that δW (H,H) = 0, and a mutant is selected against if δW (h,H) < 0. Thus,
mutations near Ĥ > 0 are selected against if h = Ĥ is a strict local maximum of δW (h, Ĥ)
(for fixed H = Ĥ). �

4.6.4 Proof of theorem 4.3.9

If δW (h,H) is differentiable in h and ∂hδW (h, Ĥ)|h=Ĥ = 0 and ∂2
hδW (h, Ĥ)|h=Ĥ < 0,

then δW (h, Ĥ) attains a local maximum at h = Ĥ . Thus, from lemma 4.3.7, we have the
following condition for selection opposing invasion near H > 0:

∂hδW (h, Ĥ)|h=Ĥ =
N − n
N − 1

f ′
(
nĤ
)
− C ′(Ĥ) = 0 , (4.23a)

∂2
hδW (h, Ĥ)|h=Ĥ =

N − n
N − 1

f ′′
(
nĤ
)
− C ′′(Ĥ) < 0 . (4.23b)

The above conditions for selection opposing invasion must be modified when the res-
ident strategy is H = 0: Selection opposes invasion of H = 0 by sufficiently similar
strategies if δW (h,H) < 0 only for all h > 0 sufficiently close to h = 0 (because mutants
h < H = 0 are biologically meaningless). This is satisfied if either condition (4.23) holds
for Ĥ = 0, or if

∂hδW (h, 0)|h=0 =
N − n
N − 1

f ′
(
0
)
− C ′(0) < 0 . (4.24)

To compare condition (4.23) with the conditions derived from adaptive dynamics, note
that as N → ∞, equation (4.23a) approaches f ′(nĤ) − C ′(Ĥ) = 0, in which case Ĥ
is an evolutionarily signular point (that is, D(Ĥ) = f ′(nĤ) − C ′(H) = 0). Similarly,
as N → ∞, equation (4.23b) approaches f ′′

(
nĤ
)
− C ′′(Ĥ) < 0, which is the adaptive

dynamics condition for selection opposing invasion at a singular strategy (and thus for
evolutionary stability).

We now examine the convergent stability of a strategy Ĥ > 0. If

∂hδW (h,H)|h=H > 0 , (4.25)
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then mutants contributing slightly more than the residents (h > H) obtain a higher fitness,
whereas if ∂hW (h,H)|h=H < 0, mutants contributing slightly less than the residents (h <
H) obtain a higher fitness than the residents. Thus, if Ĥ , ∂hδW (h,H)|h=H > 0 for H < Ĥ
and ∂hδW (h,H)|h=H < 0 for H > Ĥ when H is sufficiently close to Ĥ , then Ĥ is locally
convergently stable. Hence, a sufficient condition for local convergent stability is

∂H
[
∂hδW (h,H)|h=H

]
H=Ĥ

< 0 , (4.26)

or equivalently [
∂2
hδW (h,H) + ∂h∂HδW (h,H)

]
h=H=Ĥ

< 0 . (4.27)

Using equation (4.22), condition (4.27) becomes

n
N − n
N − 1

f ′′
(
nĤ
)
− C ′′(Ĥ) < 0 . (4.28)

Note that equation (4.28) implies that whenH is sufficiently close to Ĥ , ∂hδW (h,H)|h=H >
0 for H < Ĥ and ∂hδW (h,H)|h=H < 0 for H > Ĥ . Thus, by lemma 4.6.1, if a mutant
strategy h between H and Ĥ is sufficiently close to H , then the mutants’ fitness is larger
than the residents’, regardless of the number of mutants in the population 1 ≤ K ≤ N − 1,
which implies that selection favours fixation of the mutant strategy (by corollary 5.6.5).

Ĥ = 0 is convergently stable if for sufficiently small H > 0 = Ĥ , mutants contributing
slightly less than the resident, h < H obtain a higher fitness than the residents. Thus, if
∂hW (h,H)|h=H < 0 for sufficiently small H > 0, then Ĥ = 0 is convergently stable.
Using equation (4.22), we conclude that Ĥ = 0 is convergently stable if for sufficiently
small H > 0,

N − n
N − 1

f ′
(
nH
)
− C ′(H) < 0 . (4.29)

As for the case Ĥ > 0, this implies that for h sufficiently close to H , selection favours
fixation of h. �
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Appendix

4.A Analysis frameworks

Two frameworks commonly used in analyzing evolutionary games with continuous strategy
sets in infinite populations are static evolutionary game theory[28, 59, 152, 156, 158] and
adaptive dynamics [56, 57, 58, 59]. Below, we recall some of the main concepts from these
frameworks, as they apply to our analysis. For a general treatment, see the references cited
above. We conclude by addressing considerations arising when analyzing games in finite
populations.

4.A.1 Static evolutionary game theory in infinite populations

Definition 4.A.1 (Evolutionary stability). A contribution level Ĥ ≥ 0 is evolutionarily
stable (ES) iff a single agent that plays a different strategy cannot invade the population
(all strategies different from Ĥ are selected against).

As different levels of contributions constitute strategies in this game, we also use the
term evolutionarily stable strategy (ESS), when referring to a level of contribution that is
ES.

Since evolution by natural selection typically involves mutations that have a small phe-
notypic effect, the following definition is also biologically relevant:

Definition 4.A.2 (Local Evolutionary stability). A contribution level Ĥ ≥ 0 is locally
evolutionarily stable (locally ES) if a single agent playing a mutant strategy h different
from, but sufficiently close to Ĥ cannot invade the population (h is selected against if |Ĥ−h|
is sufficiently small) [59, 157].

Definition 4.A.3 (Local convergent stability). A contribution level Ĥ ≥ 0 is locally conver-
gently stable (locally CS) if, when the resident strategy H is close enough to Ĥ , a mutant
playing a strategy between H and Ĥ and sufficiently close to H can invade the population
(h is selected for if H < h ≤ Ĥ or Ĥ < h < H and h is sufficiently close to H).
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Property Characterization

Local evolutionary stability ∂2s
H

(h)

∂h2

∣∣∣
h=H

< 0

Convergence stability ∂2s
H

(h)

∂H2 − ∂2s
H

(h)

∂h2

∣∣∣
h=H

> 0

Singular strategy can spread in populations
playing sufficiently similar strategy

∂2s
H

(h)

∂H2

∣∣∣
h=H

> 0

Mutually-invasible strategies exist near singular point ∂2s
H

(h)

∂H2 +
∂2s

H
(h)

∂h2

∣∣∣
h=H

> 0

Table 4.A.1: Local properties of singular strategies in adaptive dynamics, as in [57, Table
1].

4.A.2 Adaptive dynamics

Adaptive dynamics [56, 57, 58] can also be used to gain insight into the evolution of con-
tinuous traits in an infinite population. In particular, Doebeli et al. [55] use the adaptive
dynamics framework to completely characterize the evolutionary dynamics of the continu-
ous snowdrift game with smooth payoffs. Here, we briefly outline concepts from adaptive
dynamics.

Following [55, 57], the growth rate of a rare mutant strategy h in a resident population
playing H is

s
H

(h) = W (h,H)−W (H,H) , (4.30)

where W (x, y) is the fitness of a mutant playing x in a population playing y. The local
fitness gradient is then

D(H) =
∂s

H
(h)

∂h

∣∣∣∣
h=H

, (4.31)

and the adaptive dynamics of H are given by

Ḣ = D(H) . (4.32)

An equilibrium of equation (4.32), that is, Ĥ satisfying D(Ĥ) = 0, is called a singular
strategy. A singular strategy that is an attractor of equation (4.32) is convergently stable
in the sense of definition 4.A.3. A singular strategy H can also be locally evolutionarily
stable as in definition 4.A.2. The mathematical conditions for these and other possible
characteristics of singular strategies are listed in table 4.A.1, following [57].
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4.A.3 Finite populations

Genetic drift [61] is a significant force that shapes evolution in finite populations. In an
asexual population of constant size N , a neutral mutation fixes (that is, takes over the pop-
ulation) with probability 1/N (the probabilities of any one agent being the ancestor of the
entire population at some future point in time are identical). Furthermore, the fixation
probability of a mutation that is selected against when rare can be larger than 1/N , if it
is selected for when common enough [186]. Motivated by this, Nowak et al. [186] have
refined the definition of evolutionary stability of a strategy in a finite population so that se-
lection opposes both invasion and fixation of mutant strategies. We apply their approach in
the context of continuous strategy sets to obtain the following refinement of the definitions
of evolutionary stability given in appendix 4.A.1:

Definition 4.A.4 (Evolutionary stability in a finite population). A strategy Ĥ is locally
evolutionarily stable (local ESSN) in a population of size N iff, when a single mutant
playing h 6= Ĥ sufficiently close to Ĥ arises in a population playing Ĥ ,

• the mutant’s fitness is lower than the residents’ (selection opposes invasion),

• the mutant’s fixation probability is less than 1/N (selection opposes fixation).

If the above holds for any mutant strategy h 6= Ĥ , then Ĥ is said to be globally evolution-
arily stable (global ESSN).

Remark 4.A.5. In the adaptive dynamics framework, if a homogeneous population playing
H near a singular strategy Ĥ can be invaded by a mutant between H and Ĥ , then the mu-
tant will fix [201, Proposition 1]. However, in principle, when the scenario just described
is played out in a finite population, selection favouring invasion of h does not necessarily
imply that selection favours its fixation. Thus, the definition of convergent stability (defini-
tion 4.A.3) might also need to be modified for finite populations (to our knowledge, this issue
has not been rigorously addressed in the literature ). However, in the n-player snowdrift
game, this potential issue is a moot point: lemma 4.6.1 implies that if a finite population
of agents playing a non-singular strategy H can be invaded by a single mutant playing h,
then if h is sufficiently close to H , mutants will have a higher fitness than residents for
any number of mutants 1 ≤ K ≤ N − 1, so by corollary 5.6.5 selection must also favour
fixation of h. Thus, we will not have occasion to seek a redefinition of convergent stability
for finite populations here.
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4.B Application of finite population theorems to subclass
of snowdrift games

Theorems 4.3.1 and 4.3.2 show that the evolutionary dynamics of snowdrift games in finite
populations differ from those predicted by infinite-population models. In this appendix,
we evaluate the extent of these differences by finding finite-population evolutionarily stable
strategies (ESSN) for a sub-class of snowdrift games, the assumptions of which are outlined
in §4.4. When a game from this class is played in an infinite population, there is always a
cooperative ESS (theorem 3.5.1), which we denote by H∗∞ .

To use theorem 4.3.9, we also assume f is twice-differentiable in a neighbourhood of
ηmax. This, in conjunction with assumption (c) in §4.4 implies f ′′(ηmax) < 0. Also, observe
that if ηmin = 0, then f(ηmax) ≥ ηmax, so our assumption f(ηmax) < ηmax implies ηmin > 0.

First, because f(η) − η decreases for 0 ≤ η < ηmin, it follows from condition (4.24)
that selection opposes invasion of H = 0 (defection) by sufficiently similar strategies, and
since condition (4.9) is satisfied for sufficiently smallH > 0,H = 0 is locally convergently
stable.

In fact, if there are 1 ≤ K ≤ N − 1 mutants playing h and N − K mutants playing
H = 0, then using equations (4.61) and (4.63), we have

∂hδW (h, 0)|h=0 = −C ′(Hs) +
N − n
N − 1

f ′(0) =
N − n
N − 1

f ′(0)− 1 . (4.33)

Because ηmin > 0, we have f ′(0) < 1 < N−1
N−n = 1 + n−1

N−n , and thus ∂hδW (h, 0)|h=0 < 0,
so mutant strategies sufficiently close to H = 0 are selected against (for any number of
mutants 1 ≤ K ≤ N − 1). Thus, corollary 5.6.5 implies that H = 0 is a local ESSN.

Next, observe that for this model, the condition for H > 0 being a singular strategy,
equation (4.23a), simplifies into

f ′(nH) =
N − 1

N − n = 1 +
n− 1

N − n > 1 . (4.34)

Because f ′(nH) > 1 only in the range ηmin/n < H < ηmax/n, if a cooperative ESSN

exists, it can only occur in this range. Note that in an infinite population, H∗∞ = ηmax/n is
the unique cooperative ESS, so if there is an ESS in the finite-population game, the infinite-
population analysis overestimates the ESSN contribution in the finite population.

However, for a fixed population size N and group size n, if

max
ηmin<η<ηmax

f ′(η) < 1 +
n− 1

N − n , (4.35)
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then equation (4.23a) has no solution and the game has no cooperative ESSN. In such
cases, finite population dynamics are qualitatively different from those predicted by infinite-
population models (in which a cooperative ESS exists), regardless of the selection process
(that is, the population-genetic process which determines how individual fitnesses affect
strategy frequencies in the population over time, e.g., the Moran or Wright-Fisher pro-
cesses).

It is interesting to examine whether or not the qualitative discrepancy between the pre-
dictions of finite and infinite population models disappears for large population sizes. To
that end, we consider increasing group size N either by increasing the number of groups G
(while the group size n either varies or remains constant), or by increasing the group size n
while keeping the number of groups G constant.

Rewriteing equation (4.34) as

f ′(nH) = 1 +
1− 1/n

G− 1
, (4.36)

we obtain the following:

• If the population size N is increased by increasing the number of groups G, then
because our assumptions imply maxηmin<η<ηmax f

′(η) > 1, then for large enough
population sizesN , there is a cooperative singular strategy at which selection opposes
invasion (that is, a candidate for an ESSN). To see this, observe that as η → η−max,
f ′(η) → f ′(ηmax) = 1 and f ′′(ηmax) < 0, so for sufficiently small 0 < δ < ηmax −
ηmin, f ′(η) decreases to f ′(ηmax) = 1 and f ′′(η) < 0 for ηmax−δ < η < ηmax. Thus,
for large enough N (that is, when the number of groups G is large enough), because
1 + 1−1/n

G−1
→ 1 as G→∞, there is a solution to

f(η) = 1 +
1− 1/n

G− 1
, (4.37)

in (ηmax − δ, ηmax), which we denote by ηN . Thus,

H∗N = ηN/n (4.38)

solves equation (4.34) and hence is a singular strategy. Because f ′′(η) < 0 in (ηmax−
δ, ηmax). Thus f ′′

(
nH∗N

)
< 0 and C ′′(H) = 0, so equations (4.67) are satisfied at

H∗N , and theorem 4.D.1 implies that H∗N is a local ESSN and is convergently stable.

However, because N > n and n−1
N−n decreases with N , the largest possible value for

the right hand side of equation (4.34) is 1 + 2n−1
n

= 3 − 1/n ≥ 2, achieved when
N = 2n (recall that n divides N ). Thus, if

max
ηmin<η<ηmax

f ′(η) < 2 , (4.39)
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then for sufficiently small population size (in particular, N = 2n) there is no cooper-
ative singular strategy, and thus no ESSN.

• Now suppose that the population size N and group size n are increased while the
number of groups G = N/n remains constant. If

max
ηmin<η<ηmax

f ′(η) < 1 +
1− 1/n

G− 1
, (4.40)

for some n0 > 1, then because 1 + 1−1/n
G−1

increases with n, equation (4.36) has no
solution for any n > n0. Thus, if group size is increased along with population size
while the number of groups is constant, it is possible (if condition (4.40) is satisfied)
that for arbitrarily large N , there will be no cooperative singular strategy, and thus no
ESSN.

In fact, if

1 +
1

2(G− 1)
= 1 +

1− 1/n

G− 1

∣∣∣∣
n=2

< max
ηmin<η<ηmax

f ′(η) < 1 +
1

G− 1
, (4.41)

then when the number of groups G is fixed, for low group sizes there is a cooperative
ESS singular strategy, but as group size n (and consequently population size N ) is
increased, there is a group size beyond which maxηmin<η<ηmax f

′(η) < 1−1/n
G−1

, and so
there is no cooperative ESSN (even for arbitrarily large group and population sizes).
If, for a fixed number of groups G,

max
ηmin<η<ηmax

f ′(η) < 1 +
1

2(G− 1)
, (4.42)

there is no cooperative ESSN for any population size.

To determine the evolutionary outcome when there is no cooperative ESSN, that is, when
f ′(η) < N−1

N−n for all ηmin < η < ηmax, recall first that H = 0 is a local ESSN. We now
substitute C(h) = h in equation (4.22) and differentiate to obtain

δW (h,H) =
N − n
N − 1

(
f
(
h+ (n− 1)H

)
− f(nH)

)
+H − h (4.43a)

∂hδW (h,H) =
N − n
N − 1

f ′
(
h+ (n− 1)H

)
− 1 . (4.43b)

Because f(η) − η decreases for 0 < η < ηmin and η > ηmax, f ′(η) ≤ 1 for 0 < η ≤ ηmin

and η ≥ ηmax. It now follows from equations (4.43) that δW (h,H) decreases with h for
any H . Thus defection (H = 0) is a globally convergently stable ESSN.
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4.C Proof of lemma 4.6.1

We begin by calculating the proportion of mutants in the population that are in a group
containing k mutants. Choose an agent at random from the population by first choosing a
group at random and then choosing an agent at random from within that group. Let I be an
indicator for whether the chosen agent is a mutant (I = 1 if the chosen agent is a mutant,
and I = 0 otherwise). LetM be the number of mutants in the chosen group. We use Bayes’
Theorem [167] to find Pr(M = k|I = 1), that is, the probability that a chosen mutant is in
a group containing k mutants:

Pr(M = k|I = 1) =
Pr(M = k) Pr(I = 1|M = k)

Pr(I = 1)
, (4.44a)

Pr(M = k|I = 0) =
Pr(M = k) Pr(I = 0|M = k)

Pr(I = 0)
. (4.44b)

If a group of n agents is randomly drawn (without replacement) from a population of N
agents consisting ofK mutants andN−K residents, the number of mutants in the sampled
group is hypergeometrically distributed with parameters N , K and n [167]. That is, the
probability of k mutants occurring in a random sample of n agents is:

Pr(M = k) =

(
N−K
n−k

)(
K
k

)
(
N
n

) . (4.45)

Using equation (4.44), we have

Pr(M = k|I = 1) =
k/n

K/N

(
N−K
n−k

)(
K
k

)
(
N
n

) =

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) , (4.46)

Pr(M = k|I = 0) =
(n− k)/n

(N −K)/N

(
N−K
n−k

)(
K
k

)
(
N
n

) =

(
N−K−1
n−k−1

)(
K
k

)
(
N−1
n−1

) . (4.47)

If mutants play h and residents play H , the payoffs to mutants and residents in groups
containing k mutants are (respectively)

Wm,k(h) = W

(
h,

(k − 1)h+ (n− k)H

n− 1

)
= f

(
kh+ (n− k)H

)
− C(h) , (4.48)
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and

Wr,k(h) = W

(
H,

kh+ (n− 1− k)H

n− 1

)
= f

(
kh+ (n− k)H

)
− C(H) . (4.49)

The mean mutant fitness is then

Wm(h) =
n∑

k=1

Pr
(
M = k|I = 1

)
Wm,k(h) =

n∑

k=1

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) Wm,k(h) , (4.50)

and the mean resident fitness is

Wr(h) =
n−1∑

k=0

Pr
(
M = k|I = 0

)
Wr,k(h) =

n−1∑

k=0

(
N−K−1
n−k−1

)(
K
k

)
(
N−1
n−1

) Wr,k(h) . (4.51)

Note that
n∑

k=1

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) =
n−1∑

k=0

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

) = 1 (4.52)

(because the sum of the probabilities of all the possible number of mutants occurring in a
group of size n− 1 is one). So using

(
K − 1

k − 1

)
=

(K − 1)!

(k − 1)!(K − k)!
=

k

K

K!

k!(K − k)!
=

k

K

(
K

k

)
, (4.53)

as well as equations (4.52) and (4.48), the mean mutant payoff (equation (4.50)) can also
be written as:

Wm(h) =
n∑

k=1

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) Wm,k(h)

=
n∑

k=1

{(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) f
(
kh+ (n− k)H

)
− C(h)

}
(4.54)

=
n∑

k=1

{(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) f
(
kh+ (n− k)H

)
}
− C(h)

=
n∑

k=1

{
k

K

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) f
(
kh+ (n− k)H

)
}
− C(h) .

Similarly, using
n−1∑

k=0

(
N−K−1
n−k−1

)(
K
k

)
(
N−1
n−1

) = 1 (4.55)
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and
(
N −K − 1

n− k − 1

)
=

(N −K − 1)!

(n− k − 1)!
(
N −K − (n− k)

)
!

=
n− k
N −K ×

(N −K)!

(n− k)!
(
N −K − (n− k)

)
!

=
n− k
N −K

(
N −K
n− k

)
,

(4.56)

equation (4.49) becomes

Wr(h) =
n−1∑

k=0

{(
N−K−1
n−k−1

)(
K
k

)
(
N−1
n−1

) f
(
kh+ (n− 1)H

)
}
− C(H)

=
n−1∑

k=0

{
n− k
N −K

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) f
(
kh+ (n− 1)H

)
}
− C(H) . (4.57)

Thus, the mean difference between the mutant and resident fitnesses is

δW (h,H) =

(
K−1
n−1

)
(
N−1
n−1

)f(nh)−
(
N−K−1
n−1

)
(
N−1
n−1

) f(η) + C(H)− C(h)

+
n−1∑

k=1

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

)
(
k

K
− n− k
N −K

)
f
(
kh+ (n− k)H

)

=

(
K−1
n−1

)
(
N−1
n−1

)f(nh)−
(
N−K−1
n−1

)
(
N−1
n−1

) f(η) + C(H)− C(h)

+
n−1∑

k=1

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

f
(
kh+ (n− k)H

)
. (4.58)

Noting that
(
K−1
n−1

)
(
N−1
n−1

)f(nh) =

(
N−K
n−n

)(
K
n

)
(
N−1
n−1

) nN −Kn
K(N −K)

f
(
nh+ (n− n)H

)
, (4.59)

−
(
N−K−1
n−1

)
(
N−1
n−1

) f(η) =

(
N−K
n−0

)(
K
0

)
(
N−1
n−1

) 0N −Kn
K(N −K)

f
(
0h+ (n− 0)H

)
, (4.60)

we have

δW (h,H) = C(H)− C(h) +
n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

f
(
kh+ (n− k)H

)
, (4.61)
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(note that when K = 1, equations (4.17) and (4.61) are identical). Thus,

∂hδW (h,H)|h=H = −C ′(H) + f ′(nH)
n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

k , (4.62)

It can be shown (see appendix 4.F) that

n∑

k=0

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) kN −Kn
(N −K)

=
N − n
N − 1

, (4.63)

so,

∂hδW (h,H)|h=H =
N − n
N − 1

f ′(H)− C ′(H) . (4.64)

Now, if
N − n
N − 1

f ′
(
nĤ
)
− C ′(Ĥ) < 0 , (4.65)

then for any population sizeN > 1 and group size n > 1, ∂hδW (h,H)|h=H < 0, regardless
of the number of mutants in the population, 1 ≤ K ≤ N − 1. Because δW (H,H) = 0,
it follows that mutants playing h < H sufficiently close to H obtain a higher fitness than
residents.

Similarly, if
N − n
N − 1

f ′
(
nĤ
)
− C ′(Ĥ) > 0 , (4.66)

then for any group size n > 1 and population size N > 1 and for any number of mutant
1 ≤ K ≤ N − 1 in the population, ∂hδW (h,H)|h=H > 0. Because δW (H,H) = 0, it
follows that mutants playing h > H sufficiently close to H obtain a higher fitness than
residents, which completes the proof.

4.D Sufficient condition for evolutionary stability in the
continuous snowdrift game in a finite population

Theorem 4.D.1. Suppose that a population of size N is playing the public goods game
described in theorem 4.3.1.

A singular strategy H > 0 satisfying

N − n
N − 1

f ′′
(
nH
)
< C ′′(H) , (4.67a)
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and
(2n− 1)

N − n
N − 1

f ′′
(
nH
)
< C ′′(H) , (4.67b)

is a convergently stable local ESSN, regardless of the selection process at work.

Proof. Consider the invasion of a population playing the singular strategy H by mutants
playing a strategy h 6= H .

Selection opposes invasion of H sufficiently close to H if equation (4.23b) holds, that
is,

N − n
N − 1

f ′′
(
nH
)
− C ′′(H) < 0 . (4.68)

We now wish to ensure that selection opposes fixation of mutants playing h 6= H suffi-
ciently close to H . Differentiating equation (4.61) again with respect to h, we have

∂2
hδW (h,H)|h=H = −C ′′(H) +

n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

k2f ′′
(
nH
)
. (4.69)

Recalling that

n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

k2 =
(N − n)

(
2(K − 1)(n− 1) +N − 2

)

(N − 1)(N − 2)
, (4.70)

(see appendix 4.F), we have

∂2
hδW (h,H)|h=H = −C ′′(H) +

(
2(K − 1)(n− 1)

N − 2
+ 1

)
N − n
N − 1

f ′′
(
nH
)
, (4.71)

so ∂2
hδW (h,H)|h=H < 0 iff

(
2(K − 1)(n− 1)

N − 2
+ 1

)
N − n
N − 1

f ′′
(
nH
)
< C ′′(H) . (4.72)

For a fixed number of mutants 1 ≤ K ≤ N − 1, if ∂2
hδW (h,H)|h=H < 0, then h = H

is a local maximum of δW (h,H) so mutants playing h sufficiently close to H are selected
against. Thus, if equation (4.71), holds for any number of mutants 1 ≤ K ≤ N−1, mutants
are selected against, regardless of their frequency in the population.

If N > 2 and 1 ≤ K < N , the coefficient 2(K−1)(n−1)
N−2

+ 1 increases with K from 1
to 2n − 1. Thus, the right hand side of equation (4.73a) is linear in K, and decreases if
f ′′(nH) < 0, increases if f ′′(nH) > 0, and is constant if f ′′(nH) = 0. Consequently,
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equation (4.73a) holds for all 1 ≤ K ≤ N − 1 iff it holds for K = 1 and K = N − 1, that
is, iff

N − n
N − 1

f ′′
(
nH
)
< C ′′(H) , (4.73a)

and
(2n− 1)

N − n
N − 1

f ′′
(
nH
)
< C ′′(H) . (4.73b)

Note that equation (4.73a) is identical to the condition for selection opposing invasion
by sufficiently similar mutant strategies (equation (4.23b)). Thus, mutants are selected
against regardless of their frequency in the population if equations (4.73a) and (4.73b) hold.
By corollary 5.6.5, the probability that the mutant fixes is less than 1/N , so selection also
opposes fixation of sufficiently similar mutants. Lastly, if equations (4.73a) and (4.73b)
hold, then condition (4.7) is also satisfied, so H is convergently stable.

4.E Consistency with infinite population limit

The predictions of theorems 4.3.1 and 4.3.2 for a finite population are diametrically op-
posed to what can be said when the population is infinite: when a continuous n-player
snowdrift game from the sub-class defined in chapter 3 is played in an infinite population,
theorems 3.5.1 and 3.5.4 predict the existence of a global ESS, H∗∞ > 0, which must be a
singular strategy in the infinite population. But theorem 4.3.1 implies that when the same
game is played in a finite population, strategies that are singular in an infinite population
can be invaded by sufficiently similar strategies, and so H∗∞ cannot be an ESSN. Moreover,
theorem 3.5.4 shows that in an infinite population, regardless of what proportion ε of the
population plays the mutant strategy (h), if h is sufficiently close to H∗∞, then the mutants’
mean fitness is lower than the residents’. But when the population is finite, it follows from
theorem 4.3.2 that whatever the proportion of mutants in the population (ε = K/N ), if the
mutant strategy h is sufficiently close to H∗∞, the mean mutant fitness is higher than the
mean resident fitness.

To understand this discrepancy, we make the additional assumptions defining the snow-
drift games analyzed in chapter 3, and outlined in § 4.4. Recall that when this game is
played in an infinite population, these assumptions ensure the existence of a cooperative
ESS, H∗∞ = ηmax/n. To compare with theorems 4.3.1 and 4.3.2, we also assume f is
twice-differentiable in a neighbourhood of ηmax. For benefit functions in the class analyzed
in chapter 3, this implies f ′′(ηmax) < 0.

§ 4.E.1 relates the mean fitness difference between a mutant and a resident in the fi-
nite and infinite population cases, and §§4.E.2 and 4.E.3 compare the conclusions of theo-
rems 4.3.1 and 4.3.2 with their analogues in an infinite population obtained in chapter 3.
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4.E.1 δW in the infinite population limit

Equation (3.44) gives the difference between the mean mutant and resident fitnesses, when
the residents play the (infinite population) ESS H∗∞. Here, we show that equation (3.44)
is obtained as the limit of this same fitness difference defined for a finite population,
δW (h,H∗∞) (see equation (4.58)), as the population size N →∞.

If the population is composed of K mutants playing h and N − K residents playing
H∗∞, using
(
N −K
n− 1− k

)
=

(N −K)!

(n− 1− k)!
(
N −K − (n− k) + 1

)
!

(4.74)

=
N −K

(N −K − (n− k) + 1)

(N −K − 1)!

(n− 1− k)!
(
N −K − (n− k)

)
!

(4.75)

=
N −K

(N −K − (n− k) + 1)

(
N −K − 1

n− k − 1

)
(4.76)

and (
K − 1

k

)
=

(K − 1)!

k!(K − k − 1)!
=
K − k
K

(
K

k

)
, (4.77)

we can rewrite equation (4.50) as

Wm(h) =
n∑

k=1

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) Wm,k(h)

=
n−1∑

k=0

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

) Wm,k+1(h)

=
n−1∑

k=0

(
N−K−1
n−k−1

)(
K
k

)
(
N−1
n−1

) K − k
K

× N −K
N −K − (n− k − 1)

Wm,k+1(h) , (4.78)

where Wm,k+1(h) is defined by equation (4.48). Taking the difference of equations (4.78)
and (4.51) gives the alternative expression for δW (h,H∗∞),

δW (h,H∗∞) = Wm(h)−Wr(h)

=
n−1∑

k=0

(
N−K−1
n−k−1

)(
K
k

)
(
N−1
n−1

)
[
K − k
K

× N −K
N −K − (n− k − 1)

Wm,k+1 −Wr,k

]
.

(4.79)
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Recall that in the limit N →∞, when k, n and ε = K/N are kept fixed, we have
(
N−1−K
n−1−k

)(
K
k

)
(
N−1
n−1

) →
(
n− 1

k

)
εk(1− ε)n−1−k , (4.80)

(see [167, p. 161]), and

K − k
K

× N −K
N −K − (n− k − 1)

→ 1× 1 = 1 (4.81)

Thus, in this limit, equation (4.79) becomes

δW (h,H∗∞) =
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−k

[
Wm,k+1 −Wr,k

]
, (4.82)

that is, equation (3.44) (where the notation δW (h) was used and H = H∗∞ was implicit).

4.E.2 Theorem 4.3.1 in the infinite population limit

The applicability of theorem 4.3.1 to an infinite population seems to contradict theorem 3.5.1,
in which it is shown that a single agent attempting to invade an infinite population playing
the ESS H∗∞ obtains a lower fitness than the residents. The discrepancy arises because
when the population is invaded by a proportion ε of mutants, the effect of these mutants
on the mean resident fitness is non-negligible. However, because in theorem 4.3.1, each
interacting group of n agents contains at most one mutant, the mutant’s fitness is unaffected
by the presence of other mutants (in contrast to theorem 3.5.4). In the limit of one invader
in an infinite population, ε→ 0, and

lim
ε→0

d

dh
δW (h,Hs)|h=Hs= 0 , (4.83)

so the conclusions of theorem 4.3.1 do not apply.

4.E.3 Theorem 4.3.2 in the infinite population limit

Consider a dimorphic population in which residents play the infinite-population ESS H =
H∗∞, and mutants play h. When the population is infinite, this scenario is analyzed in
theorem 3.5.4. When the population is finite, theorem 4.3.2 applies (because H∗∞ is a sin-
gular strategy). Here, we reexamine the proof of theorem 4.3.2 for the singular strategy
Hs = H∗∞. We identify why its conclusions do not hold in the infinite population limit
(N → ∞), and thus resolve the apparent contradiction between theorem 4.3.2 and theo-
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rem 3.5.4.

Analogously to δW (h,H∗∞), let δW∞(h,H∗∞) be the mean difference between the mu-
tant and resident fitnesses in an infinite population (calculated in § 3.8.1). Thus, if the
proportion of mutants in the population is ε,

δW∞(h,H∗∞) = Wm∞(h)−Wr∞(h) , (4.84)

where

Wm∞(h) =
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−kWm,k+1(h)

Wr∞(h) =
n−1∑

k=0

(
n− 1

k

)
εk(1− ε)n−1−kWr,k(h)

(4.85)

BecauseH∗∞ is an ESS in an infinite population, δW∞(h,H∗∞) attains a local maximum
when h = H∗∞, so

∂hδW∞(h,H∗∞)|h=H∗∞ = 0 . (4.86)

We see that this is consistent with taking N →∞ in equation (4.64):

lim
N→∞

∂hδW (h,H∗∞)|h=H∗∞ = lim
N→∞

1− n
N − 1

= 0 = ∂hδW∞(h,H∗∞)|h=H∗∞ , (4.87)

so the conclusions of theorem 4.3.2 do not apply in the limit N →∞.

Differentiating equation (4.61) twice at h = H∗∞, we get

∂2
hδW (h,H∗∞)|h=H∗∞ = f ′′(ηmax)

n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

k2 . (4.88)

In appendix 4.F, we show that

n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

k2 =
(N − n)

(
2(K − 1)(n− 1) +N − 2

)

(N − 1)(N − 2)
, (4.89)

which is positive if N > n ≥ 1 and K ≥ 1 (that is, the population consists of more than
one group of n ≥ 1 agents playing the public goods game, and there is at least one mutant
in the population). Hence, since f ′′(ηmax) < 0,

∂hδW (h,H∗∞)|h=H∗∞ = f ′′(ηmax)
(N − n)

(
2(K − 1)(n− 1) +N − 2

)

(N − 1)(N − 2)
< 0 , (4.90)
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if N > 2 and 1 ≤ K < N .

As the population size goes to N →∞, while K/N → ε, we have

lim
N→∞
K/N→ε

∂hδW (h,H∗∞)|h=H∗∞ = f ′′(ηmax) lim
N→∞
K/N→ε

(1− n
N

)
(
2(K

N
− 1

N
)(n− 1) + 1− 2

N

)

(1− 1
N

)(1− 2
N

)

= f ′′(ηmax)(1− ε)
(
2ε(n− 1) + 1

)
< 0 , (4.91)

which is again consistent with h = H∗∞ being a maximum of δW∞(h,H∗∞).

Because ∂hδW (h,H∗∞)|h=H∗∞ < 0 for any population size N (see equation (4.64)),
it follows that for h > H∗∞ sufficiently close to H∗∞, ∂hδW (h,H∗∞) < 0 and conse-
quently δW (h,H∗∞) < 0 = δW (H∗∞, H

∗
∞). However, for h < H∗∞ sufficiently close to

H∗∞, δW (h,H∗∞) > δW (H∗∞, H
∗
∞) = 0 for any population size N , despite the fact that

δW∞(h,H∗∞) < δW∞(H∗∞, H
∗
∞) = 0 in the infinite-population limit (N →∞).

4.F Proofs of equation (4.63) and equation (4.89)

In this appendix, we prove equation (4.63) and equation (4.89).

Let X be hypergeometrically distributed with parameters T , R and m. In the standard
interpretation, X describes the number of red balls obtained when m balls are sampled
randomly without replacement from an urn containing a total of T balls, R of which are red
and T −R are white. Then, the probability of drawing r red balls in a set of m is

Pr(X = r) =

(
R
r

)(
T−R
m−r

)
(
T
m

) . (4.92)

Because the sum of the probabilities of all possible outcomes is 1,

m∑

r=0

Pr(X = r) =
m∑

r=0

(
R
r

)(
T−R
m−r

)
(
T
m

) = 1 . (4.93)

The two first moments of X are then [167, p. 162]

E (X) =
m∑

r=0

rPr(X = r) =
m∑

r=0

r

(
R
r

)(
T−R
m−r

)
(
T
m

) = m
R

T
(4.94)

E
(
X2
)

=
m∑

r=0

r2 Pr(X = r) =
m∑

r=0

r2

(
R
r

)(
T−R
m−r

)
(
T
m

) = m
R

T

(
(m− 1)(R− 1)

T − 1
+ 1

)
.

(4.95)
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Observe that

n∑

k=0

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) kN −Kn
(N −K)

=
n∑

k=1

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) kN −Kn
(N −K)

=
n−1∑

k=0

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

) (k + 1)N −Kn
(N −K)

=
n−1∑

k=0

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

) Nk +N −Kn
(N −K)

,

equations (4.93) and (4.94) with T = N − 1, R = K − 1 and m = n− 1 give

n−1∑

r=0

(
K−1
r

)(
N−K
n−1−r

)
(
N−1
m

) = 1 , (4.96)

n−1∑

r=0

r

(
K−1
r

)(
N−K
n−1−r

)
(
N−1
n−1

) = (n− 1)
K − 1

N − 1
, (4.97)

respectively, so the left-hand side of equation (4.63) turns into

n∑

k=0

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) kN −Kn
(N −K)

=
N

(N −K)

n−1∑

k=0

k

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

) +
N −Kn
(N −K)

n−1∑

k=0

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

)

=
N

(N −K)
(n− 1)

K − 1

N − 1
+
N −Kn
(N −K)

(4.98)

=
N(n− 1)(K − 1) + (N −Kn)(N − 1)

(N −K)(N − 1)
(4.99)

=

(
KNn−Nn−NK +N

)
+
(
N2 −N −KNn+Kn

)

(N −K)(N − 1)
(4.100)

=
N2 −Nn−NK +Kn

(N −K)(N − 1)
=

(N −K)(N − n)

(N −K)(N − 1)
=
N − n
N − 1

,

(4.101)

thus proving equation (4.63).

We now turn to proving equation (4.89), namely:

n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

k2 =
(N − n)

(
2(K − 1)(n− 1) +N − 2

)

(N − 1)(N − 2)
. (4.102)
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Because
(
K
k

)
=
(
K−1
k−1

)
K
k

,

n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

k2 =
n∑

k=0

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) Nk2 −Knk
N −K

=
n∑

k=1

(
N−K
n−k

)(
K−1
k−1

)
(
N−1
n−1

) Nk2 −Knk
N −K

=
n−1∑

k=0

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

) N(k + 1)2 −Kn(k + 1)

N −K

=
n−1∑

k=0

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

) Nk2 + (2N −Kn)k +N −Kn
N −K .

(4.103)

Substituting T = N − 1, R = K − 1 and m = n− 1 into equation (4.95) gives

n−1∑

r=0

r2

(
K−1
r

)(
N−K
n−1−r

)
(
N−1
n−1

) = (n− 1)
K − 1

N − 1

(
(n− 2)(K − 2)

N − 2
+ 1

)
. (4.104)

Using equations (4.96), (4.97) and (4.104), equation (4.103) then becomes

n∑

k=0

(
N−K
n−k

)(
K
k

)
(
N−1
n−1

) kN −Kn
K(N −K)

k2 =
n−1∑

k=0

(
N−K
n−1−k

)(
K−1
k

)
(
N−1
n−1

) Nk2 + (2N −Kn)k +N −Kn
N −K

=
N

N −K × (n− 1)
K − 1

N − 1

(
(n− 2)(K − 2)

N − 2
+ 1

)

+
2N −Kn
N −K × (n− 1)

K − 1

N − 1

+
N −Kn
N −K × 1

=
(N − n)

(
2(K − 1)(n− 1) +N − 2

)

(N − 1)(N − 2)
, (4.105)

which completes the proof of equation (4.89).
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4.G The mean number of mutants in a mutant’s and resi-
dent’s group in infinite and finite populations

In a population of N −K residents and K mutants, the probability that of the n− 1 other
agents in a randomly chosen agent’s group, there are k mutants, given that the chosen agent
is a mutant, is given by equation (4.46), or equivalently,

Pr(M = k + 1|I = 1) =

(
(N−1)−(K−1)

(n−1)−k

)(
K−1
k

)
(
N−1
n−1

) , (4.106)

for 0 ≤ k ≤ n − 1. It follows that the number of other (i.e., nonfocal) mutants in a
randomly chosen mutant’s group is hypergeometrically distributed and has mean Mmut,N =
(n− 1)K−1

N−1
(see equation (4.94)).

Analogously, from equation (4.47), the probability that a randomly chosen resident’s
group contains k mutants is

Pr(M = k|I = 0) =

(
(N−1)−K
(n−1)−k

)(
K
k

)
(
N−1
n−1

) , (4.107)

for 0 ≤ k ≤ n − 1, so the number of mutants in a resident’s group is hypergeometrically
distributed and has mean Mres,N = (n− 1) K

N−1
.

However, in an infinite population in which the proportions of mutants and residents
are ε > 0 and 1− ε (respectively), the probability that k of the n− 1 agents in a randomly
chosen agent’s group are mutants, given that the chosen agent is a mutant or a resident, is
(respectively)

Pr(M = k + 1|I = 1) =

(
n− 1

k

)
εk(1− ε)(n−1)−k , (4.108)

Pr(M = k|I = 0) =

(
n− 1

k

)
εk(1− ε)(n−1)−k (4.109)

for 0 ≤ k ≤ n − 1 (see equations (3.41) and (3.42)). Thus, for a randomly chosen focal
agent, the number of nonfocal agents in its group who are mutants is binomially distributed
with mean Mnonfocal,∞ = (n − 1)ε, regardless of whether the focal agent is a resident or a
mutant.

For a given proportion of mutants, ε = K/N > 0, if ε < 1, then

Mmut,N = (n− 1)
K − 1

N − 1
< (n− 1)

K

N
= Mnonfocal,∞ , (4.110)
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and
Mres,N = (n− 1)

K

N − 1
> (n− 1)

K

N
= Mnonfocal,∞ , (4.111)

so on average, mutants interact with fewer mutants, and residents interact with more mu-
tants in a finite population than in an infinite one.

4.H Dependence of the ES contribution on the population
size

Let H∗N be a singular strategy in the game described in theorem 4.3.9. Thus, H∗N satis-
fies equation (4.23a). In order to study the dependence of H∗N on N , we multiply equa-
tion (4.23a) by N − 1 and take the derivative with respect to N , yielding

f ′
(
nH∗N

)
− C ′(H∗N) +

(
n(N − n)f ′′

(
nH∗N

)
− (N − 1)C ′′(H∗N)

)
∂NH

∗
N = 0 . (4.112)

Using equation (4.23a), this is equivalent to
(
n
N − n
N − 1

f ′′
(
nH∗N

)
− C ′′

(
H∗N
))

∂NH
∗
N = − n− 1

(N − 1)2
f ′
(
nH∗N

)
. (4.113)

The right hand side of equation (4.113) is negative, but the sign of the term

n
N − n
N − 1

f ′′
(
nH∗N

)
− C ′′(H∗N) (4.114)

may vary with N and n. Hence, in general, the sign of ∂NH∗N is thus unknown. How-
ever, if H∗N satisfies condition (4.7) for convergent stability or any population size N , then,
∂NH

∗
N > 0, so H∗N increases with the population size.
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Chapter 5

On selection in finite populations

Chai Molina and David J. D. Earn

5.1 Abstract

Two of the major forces shaping evolution are drift and selection. Although there are a va-
riety of models of neutral drift, only a few—mostly based on the Wright-Fisher and Moran
processes—extend to situations in which selection and drift act together on a finite popu-
lation. These models are not applicable to all biological populations, and even models of
neutral drift can display behaviour very different from that of the neutral Wright-Fisher and
Moran processes. Previous studies of a different class of models of selection made assump-
tions that are useful in obtaining continuum limits, fixation times and other quantities of
interest to population geneticists, but exclude the Wright-Fisher model except in the contin-
uum limit. In addition, analyses of evolutionary stability in finite populations depend only
on fixation probabilities, which can be evaluated under less restrictive assumptions than
those required to estimate fixation times or other more complex population-genetic quanti-
ties. We therefore make fewer assumptions and define a selection process more broadly to
be any member of a large class of finite-population, mutationless models of selection and
drift (which include the Wright-Fisher and Moran processes as special cases). We derive
an intuitive criterion for selection favouring fixation of one strategy over another for any
selection process. Applied to evolutionary games played in finite populations, this criterion
yields sufficient conditions for the evolutionary robustness and stability of a strategy under
any selection process.
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5.2 Introduction

Two key determinants of the distribution of traits in a population are drift (stochasticity in
the temporal evolution of trait frequencies in finite populations) and selection (the process
by which traits associated with higher fitness—i.e., greater expected lifetime reproductive
output—increase in frequency over time [60, 61, 62]). There are many mathematical mod-
els of neutral drift—when no variability in fitness is associated with the evolving traits
[63, 64, 65, 69, 202, 203, 204, 205]—but few that extend to traits involving variable fitness.
In fact, almost all models in the literature involving both selection and drift are variations of
the classical Moran [63] and Wright-Fisher [64, 65] (WF) processes (described in §§5.4.1
and 5.4.2 below).

Even in the case of neutral drift, other models can behave very differently from the
Moran and WF processes [67, 69, 70, 71, 72, 73, 74]. Motivated by this, and by the fact
that not all biological populations satisfy the assumptions of the Moran and WF models
relating to the mode of reproduction (e.g., Pacific Oysters [66, 67]), Der and co-workers
[68, 75] defined and analyzed Generalized Wright-Fisher (GWF) models (which include
the Eldon-Wakeley process [67, 206]). They showed that fixation probabilities, as well as
other population-genetic quantities of interest, can vary substantially if the assumptions of
the WF model are relaxed. Moreover, fitting alternative models of selection to empirical
data on the dynamics of allele frequencies in fruit flies suggests that the alternative models
have at least as much explanatory power as the WF model [68]. Greater understanding of
more general selection processes in finite populations would be valuable.

The Moran and WF models have also recently been used to develop evolutionary game
theory. In finite populations, strategies that yield lower mean payoffs (e.g., deleterious
mutations) can have positive fixation probabilities, so evolutionarily stable strategies (ESSs)
should be defined to be resistant to both invasion and fixation [186] (see definition 5.6.3).
Which strategies turn out to be ESSs may depend on the selection process: it has been
shown that different “updating rules” (i.e., the various processes by which variability in
fitness can influence the frequencies of strategies in the population) can yield different
evolutionary dynamics [76]. However, almost all results pertaining to evolutionary stability
in finite populations (and fixation probabilities in particular) obtained thus far have been
based on either the Moran [186, 193, 207, 208, 209] or WF [81, 193] processes. One
exception is the analysis of a Cannings exchangeable allele model (see [202]) modified to
include selection, which is, however, limited by the assumption of weak selection (as are
many other studies applying only to the Moran or WF models). A promising approach to
accommodating selection processes other than the WF and Moran models in evolutionary
game theory consists of a framework for analyzing games with discrete strategies, a positive
mutation rate (identical for all strategies), and an arbitrary updating rule, in the limit of
weak selection [77, 78]. This approach has been extended to continuous strategy sets with
small mutations and continuous time [79], in which case the assumption of weak selection
can be relaxed. While these studies supply a useful framework in which to work, they
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involve calculating parameters that depend on the updating scheme and population structure
(but independent of the game) in order to characterize when one strategy is favoured over
another. This drawback may make results that are robust to the choice of selection process
harder to obtain.

A general theory of the population-level processes of drift and selection will promote
progress in both population genetics and evolutionary game theory. Applications in evolu-
tionary game theory often involve fixation probabilities only. It is therefore useful to relax
some of the assumptions of the framework of GWF models, which facilitate analysis of
continuum-limits and more complex population-genetic quantities such as fixation times
[68, 75].

Here, we define a large class of biologically sensible models of selection in finite pop-
ulations (which contains the class of GWF models), and a subclass of models of neutral
drift. We study the probability of fixation of traits under these models and obtain an in-
tuitive result whereby traits yielding a higher fitness regardless of their frequency in the
population are more likely to fix than traits that do not confer a selective advantage. We
then apply this result in the context of evolutionary games in finite populations, in which
both the game payoffs and the fitnesses of individuals with a given payoff are stochastic. To
our knowledge, these are the first results in evolutionary game theory that apply to n-player
discrete-strategy games (for any n ≥ 2) and are robust to any of the particular details of
drift and selection (as well as entirely independent of the intensity of selection).

5.3 General selection processes

Consider an asexual population of N agents comprised of two phenotypes, A and B. Let
WA (i) and WB (i) be the mean fitnesses of agents of type A and B, respectively, when
there are i agents (1 ≤ i ≤ N − 1) of type A in the population1. For discrete times
t ∈ N = {0, 1, 2, . . .}, let X(t) be the number of agents of type A at time t. We refer
to X(t) as the state of the population at time t, and to X(0) as the initial state of the
population.

Suppose that the population size remains constant and equal to N and that the popu-
lation composition evolves according to a discrete-time Markov process with a stationary
transition matrix P : the probability of the population state at time t+ 1 being X(t+ 1) = j
is dependent only on the population state X(t) at time t (but not on the time t itself), and

Pi,j = Pr
(
X(t+ 1) = j|X(t) = i

)
. (5.1)

P = (Pi,j) is a stochastic matrix, that is, Pi,j ≥ 0 and
∑N

j=0 Pi,j = 1 for all i, 0 ≤ i ≤
1Fitnesses need not be defined for i = 0 or N , as in these extremes the population is homogeneous and

there is no variability in fitness.
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N . For example, the frequency dependent Moran and Wright-Fisher processes [61, 62]
specify how to construct the transition matrix Pi,j from the fitnesses WA (i) and WB (i)
(see §§5.4.1 and 5.4.2 below).

We assume that there are no mutations, which also implies that if the entire population
is composed of one type (A or B), then it will remain at that state forever (that is to say, the
states in which the population is monomorphic are absorbing). By a mixed-type state we
mean a population of As and Bs including at least one of each type.

Definition 5.3.1. We say that P defines a (mutationless) selection process with respect
to the mean fitnesses WA (i) and WB (i) (1 ≤ i ≤ N − 1) if it satisfies the following
biologically sensible properties:

H1 At any state X(t) = i, the fitness of individuals of one type is higher than that of
the other, if and only if (iff) the expected number of individuals of the type having
higher fitness in the next time step (t + 1) is higher than their number at time t.
Mathematically, for 1 ≤ i ≤ N − 1,

WA (i) > WB (i) ⇐⇒ E
(
X(t+ 1)|X(t) = i

)
=

N∑

j=0

jPi,j > i = X(t) ,

(5.2a)
and

WB (i) > WA (i) ⇐⇒ E
(
X(t+ 1)|X(t) = i

)
=

N∑

j=0

jPi,j < i = X(t) .

(5.2b)

H2 If at time τ , both types are present in the population (that is, the population is at
a mixed-type state), then there is a positive probability of the population becoming
monomorphic (i.e., reaching state 0 orN ) in finite time. That is, for all 1 ≤ i ≤ N−1,
there exists t > τ (possibly dependent on i) such that

Pr
(
X(t) = 0 or X(t) = N |X(τ) = i

)
> 0 . (5.3)

H3 The states 0 andN are absorbing, that is, once reached, the population remains there
forever: for all τ ≥ 0 and t ≥ τ ,

Pr
(
X(t) = 0|X(τ) = 0

)
= 1 , (5.4a)

Pr
(
X(t) = N |X(τ) = N

)
= 1 . (5.4b)

Remark 5.3.2. In this article, we analyze only selection processes without mutation; see
[77] for an analysis of selection processes that include mutation (at equal rates for all
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types, in the limit of weak selection).

We will find the following definition from the theory of Markov processes useful:

Definition 5.3.3. We say that state j is accessible from state i (or that state i leads to state
j) if, starting from state X(0) = i it is possible to arrive at state j in finite time, i.e., there
is a time τ ≥ 0 such that Pr

(
X(τ) = j|X(0) = i

)
> 0.

Remark 5.3.4. Equivalently, the state j is accessible from state i iff there exists n ≥ 1 such
that (P n)i,j > 0.

Some selection processes (e.g., the Moran and WF processes; see §§5.4.1 and 5.4.2)
have an additional property, which is not strictly necessary for the analysis that follows, but
is biologically sensible and simplifies some of the statements of our results:

Definition 5.3.5. We say that a selection process is mixed-irreducible if any two mixed-
type states are accessible from one another.

A process being mixed-irreducible does not imply that the transition matrix P is an
irreducible matrix. In fact, P cannot be irreducible because of the absorbing homogeneous
states. However, the submatrix corresponding to the non-homogeneous (mixed-type) states
(P̃ = (Pi,j)

N−1
i,j=1) must be irreducible. Equivalently, a selection process is mixed-irreducible

if and only if for any mixed-type states, 1 ≤ i ≤ N − 1 and 1 ≤ j ≤ N − 1, there is a time
τi,j > 0 such that

Pr
(
X(t+ τi,j) = j|X(t) = i

)
> 0 . (5.5)

Using definition 5.3.3, H2 can be restated as follows: any state 1 ≤ i ≤ N − 1 leads
to 0 or N . However, by a standard result in the theory of Markov processes, it is not only
possible, but certain, that the process reaches one of the absorbing states in finite time:

Proposition 5.3.6. A selection process reaches one of the absorbing states, 0 or N , in finite
time: for any 0 ≤ i ≤ N ,

Pr
(
∃t ∈ N such that X(t) ∈ {0, N}|X(0) = i

)
= 1. (5.6)

Proof. If X(0) = 0 or X(0) = 0, nothing remains to be shown.

Let C = {1, 2, . . . , N − 1} and consider i ∈ C. Suppose, in order to derive a contra-
diction, that the absorption probability starting from state i is

Pr
(
∃t ∈ N such that X(t) ∈ {0, N}|X(0) = i

)
< 1. (5.7)

Then,
Pr
(
X(t) ∈ C for all t ∈ N|X(0) = i

)
> 0. (5.8)

If X(t) takes values in C for all times t ≥ 0, then since C is finite, at least one index
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0 ≤ j ≤ N − 1 is visited infinitely often, that is, for some 1 ≤ j ≤ N − 1,

Pr
(
for any T ≥ 0, there exists t > T such that X(t) = j|X(0) = i

)
> 0 . (5.9)

Now note that H1 implies that C is a set of inessential, and therefore nonrecurrent states
(see appendix 5.A.2 and [210, theorem I.4.4]), which cannot be visited infinitely often [210,
theorem I.4.3] contradicting equation (5.9).

Hence we can define the following:

Definition 5.3.7 (Fixation time and probabilities). For any mutationless selection process,

1. the first time at which the process arrives at one of the absorbing states is the fixation
time, that is, Tfix = min{t|X(t) = 0 or N}.

2. for any 0 ≤ i ≤ N , pfix (i) is the probability of reaching the absorbing state N , i.e.,
fixation probability of A from the initial state i:

pfix (i) = Pr
(

lim
t→∞

X(t) = N |X(0) = i
)
. (5.10)

Because fixation is assured (proposition 5.3.6), the probability of fixation of B starting
from state i (defined similarly) is 1− pfix (i). Note that since the states X = N and X = 0
are absorbing, pfix (0) = 0 and pfix (N) = 1. Also, proposition 5.3.6 implies that the fixation
time Tfix is a non-negative random variable satisfying Pr(Tfix <∞) = 1.

Intuitively, under neutral drift (absense of selection), the expected number of individuals
of each type at time t + 1 should be equal to their numbers at time t, that is, if X(t) = i,
then E

(
X(t+ 1)

)
= i = X(t). This motivates the following:

Definition 5.3.8. We say that the transition matrix P defines a neutral drift process if
X(t) satisfies H2, H3 and

E
(
X(t+ 1)

)
= X(t) . (5.11)

Alternatively, we say that X(t) is a neutral drift process.

Remark 5.3.9. P defines a neutral drift process iff for any 0 ≤ i ≤ N ,
∑N

j=0 jPi,j = i.

Since X(t) is a bounded Markov process, if P defines a neutral drift process, equa-
tion (5.11) implies that X(t) is also a martingale (see definition 5.A.2).

5.4 Particular selection processes

In this section, we discuss three population processes from the literature and establish that
they are selection or neutral drift processes according to definitions 5.3.1 and 5.3.8. This
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amounts to verifying H2, H3 and either H1 or equation (5.11).

§§5.4.1 and 5.4.2 show that the frequency-dependent Moran and Wright-Fisher pro-
cesses are mixed-irreducible selection processes (definition 5.3.5). Moreover, when the
fitnesses of types A and B are equal, both are neutral drift processes. § 5.4.3 presents
another selection process from the literature.

5.4.1 The Moran process

If the population evolves according to the Moran process [61, 62, 63], then exactly one
individual is replaced at each time step. In detail, at each time step:

• an agent is chosen for death, with equal probability for all agents;

• an agent is chosen for reproduction, with probability proportional to its fitness2;

• the agent chosen for death is replaced with a clone of the agent chosen for reproduc-
tion.

Note that sampling of agents is done with replacement, so that an agent can be chosen for
both death and reproduction (in which case the population remains unchanged).

When the population consists of i mutants (individuals of type A) and N − i residents
(individuals of type B), the probabilities of choosing a mutant or a resident for death are
i/N and (N − i)/N , respectively. The probabilities of choosing a mutant or a resident for
reproduction are

iWA (i)

iWA (i) + (N − i)WB (i)
, (5.12a)

and
(N − i)WB (i)

iWA (i) + (N − i)WB (i)
. (5.12b)

Because the death and reproduction events are independent, the transition probabilities are
simply

Pi,i+1 =
iWA (i)

iWA (i) + (N − i)WB (i)
× N − i

N
> 0 , (5.13a)

Pi,i−1 =
(N − i)WB (i)

iWA (i) + (N − i)WB (i)
× i

N
> 0 , (5.13b)

2We assume here that the fitnesses WA (j) and WB (j) are positive for 1 ≤ j ≤ N − 1.
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and (since at each time step at most one individual is replaced)

Pi,i = 1− Pi,i+1 − Pi,i−1 =
i2WA (i) + (N − i)2WB (i)

N
(
iWA (i) + (N − i)WB (i)

) > 0 . (5.13c)

Lastly, P0,0 = PN,N = 1 and P0,i = PN,N−i = 0 for all 1 ≤ i ≤ N (the states where the
resident or mutant have fixed are absorbing, so H3 is trivially satisfied).

For any 1 ≤ i ≤ N − 1, if X(t) = i, we have

E
(
X(t+ 1)

)
−X(t) = −i+

N∑

j=0

jPi,j = −i+
[
(i− 1)Pi,i−1 + iPi,i + (i+ 1)Pi,i+1

]

= −i+
[
i+ Pi,i+1 − Pi,i−1

]
=

i(N − i)
(
WA (i)−WB (i)

)

N
(
iWA (i) + (N − i)WB (i)

) .

(5.14)

The expected number of individuals of type A (respectively B) in the next time-step is
larger than in the current time-step, if and only if WA (i) > WB (i) (respectively WB (i) >
WA (i)), so H1 is satisfied.

To see that H2 is satisfied, and moreover, that P defines a mixed-irreducible selection
process, consider i and j such that 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N and j 6= i, and observe that
there is a positive probability of changing from state i to state j in d = |j − i| steps: setting
σ = sign(j − i), we have

Pr
(
X(t+ d) = j|X(t) = i

)
=

d∏

k=1

P(i+σ(k−1)),(i+σk) > 0 (5.15a)

Pr
(
X(t+ 1) = i|X(t) = i

)
= Pi,i > 0 , (5.15b)

so all states can be reached from state X(t) = i in finite time, and in particular, the proba-
bility of B fixing at a future time t+ τ (τ ≥ 0) is positive.

If neither type has a selective advantage over the other, regardless of their frequencies
in the population, then for all 1 ≤ i ≤ N − 1, WA (i) = WB (i), so from equation (5.14),
E
(
X(t+ 1)

)
= X(t), and P defines a neutral drift process.

5.4.2 The Wright-Fisher process

If the population evolves according to the Wright-Fisher process [61, 62] then all individ-
uals are replaced at each time step (generations do not overlap). At each time step, the
entire population of N individuals is replaced by a new generation constructed using bi-
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nomial sampling: in each of the N Bernoulli trials, the probability of drawing any type
represented in the current generation is proportional to its present mean fitness and to the
present number of individuals of that type. Thus, the probability that an individual in the
next generation will be of type A is

iWA (i)

iWA (i) + (N − i)WB (i)
, (5.16)

and

Pi,j = Pr
(
X(t+ 1) = j|X(t) = i

)

=

(
N

j

)(
iWA (i)

iWA (i) + (N − i)WB (i)

)j(
(N − i)WB (i)

iWA (i) + (N − i)WB (i)

)N−j

, (5.17)

where P0,0 = PN,N = 1 (so the statesX = 0 andX = N are absorbing and H3 is satisfied).
Note that if A is not present at some time τ , B has fixed and the population remains at state
X(t) = 0 for all t ≥ τ , and similarly if B is not present at some time τ , then X(t) = N for
all t ≥ τ .

The mean of a binomial random variable defined by n trials with success probability p
is np, so for any 0 ≤ i ≤ N , we have

E
(
X(t+ 1|X(t) = i)

)
− i = N

iWA (i)

iWA (i) + (N − i)WB (i)
− i

= i(N − i) WA (i)−WB (i)

iWA (i) + (N − i)WB (i)
, (5.18)

so H1 is satisfied. H2 is trivially satisfied because for any 1 ≤ i ≤ N − 1, Pi,0 > 0.
Thus, P defines a selection process, which is, moreover, mixed-irreducible, because for
any 1 ≤ i ≤ N − 1, Pi,j > 0 also for any 1 ≤ j ≤ N − 1.

If neither type has a selective advantage over the other, WA (i) = WB (i) for all 1 ≤
i ≤ N − 1, and equation (5.18) becomes E

(
X(t+ 1|X(t) = i)

)
= i = X(t), so X(t) is a

neutral drift process.

5.4.3 The Eldon-Wakeley process with viability selection

The Eldon-Wakeley (EW) process [67, 206] is a variation on the neutral Moran process
that allows for a skewed (rather than uniform) offspring distribution. It has been used to
interpret genetic data from Pacific Oysters [67, 206].

The EW process describes neutral drift in a population of constant size N , consisting
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of two types, A and B. At each time step, a single agent is randomly drawn from the
population with uniform probability, and produces a random number of offspring U − 1.
The parent agent survives to the next generation and its U − 1 offspring replace U − 1
randomly chosen members of the remainder of the population. In the special case that
exactly one offspring is always produced, i.e., Pr(U = 2) = 1, the EW process is similar
(but not identical) to the classical Moran process [62, 63]: in both processes, the parent
always produces one offspring, which increases the number of individuals of the parent’s
type in the next generation iff the agent chosen to be replaced is not of the parent’s type. In
the EW process, the parent is guaranteed to survive, and one additional offspring replaces
another randomly chosen member of the population, so if there are i agents of type A, the
probability that the population state remains the same is

i

N

i− 1

N − 1
+
N − i
N

N − i− 1

N − 1
=
i2 + (N − i)2 −N

N(N − 1)
. (5.19)

By contrast, in the Moran process, this probability is given by i2+(N−i)2
N2 (see equation (5.13c)).

Thus, whenever the population is at a mixed-type state (i.e., 1 ≤ i ≤ N − 1), the proba-
bility that the population state remains unchanged is larger for the Moran model than for
the EW model. However, for both models, the probability of increase in type A is the same
as the probability of increase in type B (this probability does depend on the population
composition). Thus, in effect, the neutral (i.e., selectionless) EW process with U = 2 is a
slightly “sped up” version of the neutral Moran process, where only time steps in which the
population state is changed are counted.3

Letting X(t) = i be the number of individuals of type A at some time t ≥ 0, then
the probabilities that an agent of type A and B are chosen for reproduction are i/N and
(N − i)/N , respectively. If an agent of type A is chosen for reproduction and produces
U − 1 = u − 1 offspring, then the distribution of the number of B agents chosen for
replacement is hypergeometrically distributed with sample size N − 1, initial configuration
N − i and u − 1 draws [206], so the probability of k agents of type B (0 ≤ k ≤ u − 1)
being replaced by As is (

N−i
k

)(
i−1

u−1−k

)
(
N−1
u−1

) , (5.20)

which has mean (u−1)N−i
N−1

. Similarly, the mean number of agents of typeA to be replaced,
given that a B agent is chosen for reproduction and produces u − 1 offspring is (u −
1) i

N−1
. Thus, by the law of total expectation (theorem 5.A.1, conditioning on the type of

3In the original version of the EW process [67], the fitnesses of both types were equal, and the parent agent
was guaranteed to survive to the next generation. Der and coworkers [206] generalized the original model to
types with different fitnesses, but in their version of the EW process, it is possible for the parent to be chosen
for replacement. Here, we reformulate Der et al.’s extended model while retaining the original condition that
the reproducing agent cannot be chosen for replacement. In contrast to our version of the EW process, setting
U = 2 in Der et al.’s version yields the Moran process exactly.
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agent chosen for reproduction), the expected number of individuals of type A in the next
generation, given their present number, is:

E
(
X(t+ 1)|X(t) = i

)
=

i

N
E
(
i+ (U − 1)

N − i
N − 1

)
+
N − i
N

E
(
i− (U − 1)

i

N − 1

)

= i+
i

N

N − i
N − 1

E (U − 1)− N − i
N

i

N − 1
E (U − 1)

= i . (5.21)

Der et al. [206] have generalized the neutral EW process [67] by adding a determin-
istic “viability selection” step: for s ∈ R, given the population state X(t) at time t, an
intermediate, pre-selection offspring population state at time t + 1 is generated according
to the EW model without selection (described above). The population state X(t + 1) at
time t + 1 is then obtained by transforming the pre-selection offspring state according to
standard (deterministic) logistic growth:

i 7→ v (i) =

⌊
(1 + s/N)i

(1 + s/N)i+ (N − i)N
⌋

=

⌊
N + s

N + s(i/N)
i

⌋
, (5.22)

where bxc is the largest integer smaller than x. This corresponds to selection acting on the
offspring before reaching reproductive age (X(t) represents the state of the reproductively-
mature population).

Now observe that for any 1 ≤ i ≤ N − 1, if s > 0 then

v (i) ≥ i , (5.23)

if s < 0
v (i) ≤ i , (5.24)

and if s = 0, v (i) = i (so the original EW process is recovered). Note also that because
(1+s/N)i

(1+s/N)i+(N−i)N < N , fixation cannot occur in the selection step.

For any s, the selection step and neutral EW process above define a Markov process.
Equations (5.21) and (5.23) imply that H1 is satisfied for this Markov process.

To verify H2 for any s ≥ 0, choose any i (1 ≤ i ≤ N − 1) and u ≥ 2 such that
Pr(U = u) = pu > 0 (such u must exist because otherwise no offspring are ever created).
The probability of an individual of type A reproducing is i

N
. Using equations (5.20), the

probability of increasing the number ofAs in the population given that an individual of type
A reproduces and that U = u is

p+(i) = 1−
(
N−i

0

)(
i−1
u

)
(
N−1
u

) , (5.25)
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and p+(i) > 0 because i < N . Hence, the probability of increasing the number of agents
of type A in the population in the next generation is no less than

Pr
(
X(t+ 1) > i|X(t) = i

)
≥ i

N
pup+(i) > 0 , (5.26)

(recall that the selection step cannot decrease the number of As in the population; see
equation (5.23)). Now, starting from state i, if the number of agents of type A in the
population is increased at each step, fixation of A is attained in at most N − i steps. Since
the probability of increasing the number of A’s in the population is positive for 1 ≤ i < N ,
the probability of A fixing in i steps is positive,

Pr
(
X(t+ i) = N |X(t) = i

)
> 0 . (5.27)

Verifying H2 for s < 0 is similar.

As in §§5.4.1 and 5.4.2, H3 is satisfied because there is no mutation, and consequently
the EW process with viability selection defines a selection process.

Note that equation (5.21) implies that in the absence of selection, the EW process is a
neutral drift process. Moreover, a similar method to that used in §5.4.1 shows that the EW
process without selection is mixed-irreducible.

5.5 Bounds on fixation probabilities

We begin by calculating the fixation probabilities pfix (i) for a neutral drift process, gener-
alizing [68, Theorem 2]:

Proposition 5.5.1 (fixation under neutral drift). If X(t) is a neutral drift process, then for
any 0 ≤ i ≤ N , if X(0) = i, the fixation probability of A is pfix (i) = i/N .

Proof. Define the random variable TA = min{t|X(t) = N}, that is, the fixation time of
A (TA = ∞ if A never fixes). Similarly, let TB = min{t|X(t) = 0} be the fixation time
of B. Both TA and TB are stopping times (see definition 5.A.3), and hence the fixation
time Tfix = min{TA, TB} is also a stopping time [80, p.256]. Since either A or B must fix,
Pr(Tfix < ∞) = 1 (proposition 5.3.6). For any t, we have 0 ≤ X(t) ≤ N , so it follows
that for all t ≥ 0,

E
(

sup
t≥0

X(min{T, t}
))

<∞ . (5.28)

Thus, since X(t) is a martingale, the optional stopping theorem (theorem 5.A.5) implies
that

X(0) = E
(
X(0)

)
= E

(
X(Tfix)

)
= Pr

(
X(Tfix) = 0

)
·0+Pr

(
X(Tfix) = N

)
·N , (5.29)
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and

pfix (i) = Pr
(

lim
n→∞

X(t) = N |X(0) = i
)

= Pr
(
X(Tfix) = N |X(0) = i

)
= i/N .

(5.30)

Remark 5.5.2. For an intuitive explanation of proposition 5.5.1, consider that if the popu-
lation consists of N equally fit types (instead of two) a symmetry argument shows that all
types are equally likely to fix. If fixation is assured, then each type fixes with probability
1/N .

Now return to the scenario of only two segregating types. If initially (at time t = 0)
there are no individuals of type A then A cannot fix (because we assume no mutation), so
pfix (0) = 0; similarly, pfix (N) = 1.

If the initial number of individuals of type A is 1 ≤ X(0) = i ≤ N − 1, label these as
individuals 1, . . . , i, and label the individuals of typeB as i+1, . . . , N , so that all individu-
als are distinguishable. Define a heritable “supertype” as both the individual label, and the
previously defined trait, A orB (e.g., individual 1 is now of type (1, A), and individual i+1
is now of type (i + 1, B)). With this new definition, there are now N different supertypes
segregating in the population: for 1 ≤ j ≤ i, the descendants of an individual of supertype
(j, A) are also of type (j, A), and for i + 1 ≤ j ≤ N the descendants of an individual of
type (j, B) are of type (j, B). If neither type A or B has a selective advantage, then the
fixation probability of each supertype is 1/N . The fixation probability of type A is then the
sum of the fixation probabilities of supertypes (j, A) for 1 ≤ j ≤ i, that is i/N .

Proposition 5.5.1 shows that fixation probabilities are identical for all neutral drift pro-
cesses. Thus, fixation probabilities under neutral drift can be used as a baseline for compar-
ing fixation probabilities under selection, motivating the following definition of selection
favouring or opposing fixation of an invading mutant :

Definition 5.5.3. If there are i agents of type A and N − i agents of type B in a population
undergoing selection, we say that selection favours fixation of A if the probability of A
fixing is pfix (i) > i/N , and selection opposes fixation of A if pfix (i) < i/N .

Lemma 5.5.4 below gives intuitive sufficient conditions for selection opposing fixation:
if type A is never fitter than type B, and is less fit at some state that is accessible from the
initial one, then selection opposes fixation of A.

Lemma 5.5.4 (Sufficient conditions for selection opposing fixation). Consider a population
of constant sizeN in which there are two types,A andB, evolving under a selection process
P . LetWA (i) andWB (i) be the mean fitnesses of typesA andB (respectively) when there
are i individuals of type A in the population, and let Si be the set of mixed-type states that
are accessible from state i under P (so Si ⊂ {1, 2, . . . , N − 1}).

If X(0) = i denotes the initial state (0 ≤ i ≤ N), and an individual of type A is no
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fitter than an individual of type B at any population state j ∈ Si, i.e., if

WA (j) ≤ WB (j) , for each j ∈ Si , (5.31)

then the probabilities of A and B fixing satisfy pfix (i) ≤ i/N and 1−pfix (i) ≥ (N − i)/N ,
respectively.

If, in addition, there exists a state ı̂ ∈ Si at which type A is strictly less fit than type B,
i.e.,

WA (̂ı) < WB (̂ı) , for some ı̂ ∈ Si , (5.32)

then selection opposes fixation of A, i.e., the probability of A fixing is strictly less than
under neutral drift (pfix (i) < i/N) and the probability of B fixing is strictly greater than
under neutral drift (1− pfix (i) > (N − i)/N).

Proof. Observe that X(t) is a non-negative supermartingale (definition 5.A.2). Thus, for
any stopping time S, with Pr(S <∞) = 1, a version of the optional stopping theorem for
supermartingales (theorem 5.A.6) states that

E
(
X(S)

)
≤ E

(
X(0)

)
. (5.33)

Using a constant stopping time S = τ ≥ 0, equation (5.33) gives

E
(
X(τ)|X(0) = i

)
≤ X(0) = i . (5.34)

Letting Tfix be the fixation time for the system, by proposition 5.3.6 we can apply equa-
tion (5.33) to show that for any initial state X(0) = i for (0 ≤ i ≤ N ) the fixation proba-
bility of A satisfies

pfix (i)N = E
(
X(Tfix)|X(0) = i

)
≤ X(0) = i , (5.35)

so pfix (i) ≤ i/N , and the fixation probability of B is 1− pfix (i) ≤ (N − i)/N .

Similarly (using H1 as well)

pfix (̂ı)N = E
(
X(Tfix)|X(0) = ı̂

)
≤ E

(
X(1)|X(0) = ı̂

)
< ı̂ , (5.36)

so pfix (̂ı) < ı̂/N .

Denoting the probability of reaching state j at time τ ≥ 0 starting from state X(0) = i
by

P
(τ)
i,j = Pr

(
X(τ) = j|X(0) = i

)
, (5.37)

we have P (τ)
i,j = (P τ )i,j .

If i leads to ı̂, then for some time τ ≥ 0, the probability of reaching state ı̂ from state i
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is nonzero, P (τ)
i,̂ı > 0. Conditioning on the state arrived at in the τ -th time-step, we have

pfix (i) =

j=N∑

j=0

P
(τ)
i,j pfix (j) =

j=N∑

j=0
j 6=ı̂

P
(τ)
i,j pfix (j) + P

(τ)
i,̂ı pfix (̂ı) <

1

N

j=N∑

j=0

P
(τ)
i,j j

=
1

N
E
(
X(τ)|X(0) = i

)
. (5.38)

Using equation (5.34), we obtain

pfix (i) <
1

N
X(0) =

i

N
. (5.39)

and the probability of B fixing is 1− pfix (i) > N−i
N

.

Note that Refs. [211, 212] found (without defining a selection process) that the fixation
probability of a selectively advantageous mutation is no less than that of a neutral one.
For a general selection process, we have identified and rigorously established conditions
under which a selectively advantageous mutation fixes with probability strictly larger than
neutral.

Under the hypotheses of lemma 5.5.4, if the state ı̂ at which the A agents’ fitness is
lower than that of B agents is accessible from any other state (for the selection process in
question), then pfix (i) < i/N for all 1 ≤ i ≤ N − 1. It follows that:

Corollary 5.5.5. If the hypotheses of lemma 5.5.4 hold, and the selection process is mixed-
irreducible, then for any mixed-type initial state 1 ≤ i ≤ N − 1, pfix (i) < i/N so selection
opposes fixation of A.

Corollary 5.5.5 generalizes [81, Theorem 1], which applies only to the Wright-Fisher
process. While the proof given in [81] is easily extended to arbitrary mixed-irreducible
selection processes, the proof of lemma 5.5.4 given above is both more general, and ren-
ders the biological mechanism responsible for the reduced fixation probability compared to
neutral drift processes more transparent: Under neutral drift processes, the mean number of
individuals of each type does not change from one time step to the next. By contrast, under
the conditions of lemma 5.5.4, H1 implies only that the mean number of agents of type A
does not increase over time. Moreover, if the process is at the state ı̂ (at which A is less fit),
then the mean number of agents of type A decreases in the next generation. Because ı̂ is
accessible from the initial population state, this increases the probability that A decreases
in frequency over time (compared to neutral drift processes), which translates to a lower
fixation probability.

Lemma 5.5.6 below is a partial converse to lemma 5.5.4; together, lemmas 5.5.4 and
5.5.6 show that equations (5.41) and (5.42) characterize the situations in which selection
opposes fixation irrespective of the selection process.
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Lemma 5.5.6 (Necessary conditions for selection opposing fixation for any selection pro-
cess). Consider a population of constant size N in which there are two types, A and B. Let
WA (i) and WB (i) be the mean fitnesses of types A and B (respectively) when there are i
individuals of type A in the population.

Suppose that the population’s initial state is X(0) = i (0 ≤ i ≤ N) and, for any
selection process, selection opposes fixation of A, that is,

pfix (i) < i/N , for any selection process . (5.40)

Then:

• the mean fitness of an individual of type A is no larger than that of an individual of
type B at any mixed-type state, i.e.,

WA (j) ≤ WB (j) , for all j, 1 ≤ j ≤ N − 1 , (5.41)

• there exists a mixed-type state at which the mean fitness of typeA is smaller than type
B, i.e.,

WA (̂ı) < WB (̂ı) , for some ı̂, 1 ≤ ı̂ ≤ N − 1 . (5.42)

Proof. Suppose, in order to derive a contradiction, that equation (5.42) does not hold: for
all states 1 ≤ j ≤ N − 1

WA (j) ≥ WB (j) . (5.43)

Then for any selection process, from lemma 5.5.4 (with the roles of A and B reversed),
pfix (i) ≥ i/N , contradicting equation (5.40). Thus equation (5.42) holds.

Now suppose, in order to derive a contradiction, that equation (5.41) does not hold:
there exists a state ̂ for which

WA (̂) > WB (̂) . (5.44)

We will construct a transition matrix for a selection process P (consistent with the fitnesses
WA (j) and WB (j) 1 ≤ j ≤ N − 1) such that pfix (i) ≥ i/N , which contradicts equa-
tion (5.40) holding for all selection processes.

We restrict our attention to transition matrices such that for any 1 ≤ k ≤ N−1, Pj,k = 0
if and only if k < j − 1, k > j + 1 or j = k. Thus, at any time-step and population state
j, the number of individuals of type A can either increase or decrease by 1. P then defines
a “birth-death” process, for which the fixation probabilities starting from state X(0) = i
satisfy (see appendix 5.B):

pfix (i) =
1 +

∑i−1
k=1

∏k
j=1

Pj,j−1

Pj,j+1

1 +
∑N−1

k=1

∏k
j=1

Pj,j−1

Pj,j+1

. (5.45)
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Let A+, A− and A0 be the sets of states at which the mean fitness of individuals of type A
is higher than, lower than or equal to that of B individuals (respectively). Note that ̂ ∈ A+

and ı̂ ∈ A−. We then specify the ratios of the non-vanishing transition probabilities by

Pj,j−1

Pj,j+1

=





r+ j ∈ A+ ,

r− j ∈ A− ,
1 j ∈ A0 ,

(5.46)

with r− > 1 and ,1 > r+ > 0.

Observe that P is a mixed-irreducible selection process:

• If X(t) = j, then

E
(
X(t+ 1)

)
−X(t) = (j+ 1)Pj,j+1 + (j− 1)Pj,j−1− j = Pj,j+1−Pj,j−1 , (5.47)

so H1 is satisfied.

• As for the Moran process (see equation (5.15a)), for any j and k such that 1 ≤ j ≤
N − 1, 0 ≤ k ≤ N and j 6= k, there is a positive probability of transitioning from
state j to state k in d = |j − k| steps: setting σ = sign(k − j), we have

Pr
(
X(t+ d) = k|X(t) = j

)
=

d∏

m=1

P(j+σ(m−1)),(j+σm) > 0 (5.48a)

Pr
(
X(t+ 2) = j|X(t) = j

)
= Pj,j+1Pj+1,j + Pj,j−1Pj−1,j > 0 , (5.48b)

so all states can be reached from state X(t) = i in finite time. Thus, P is mixed
irreducible. Moreover, the probability of B fixing at a future time t + τ (τ ≥ 0) is
positive, satisfying H2.

• The states 0 and N are absorbing, so H3 is trivially satisfied.

For 1 ≤ j ≤ N−1, we define the number of states 1 ≤ k ≤ j at which the mean fitness
of A individuals is higher than that of B individuals,

α+(j) =
∣∣∣
{
k|1 ≤ k ≤ j and k ∈ A+

}∣∣∣ , (5.49)

and similarly,
α−(j) =

∣∣∣
{
k|1 ≤ k ≤ j and k ∈ A−

}∣∣∣ . (5.50)

Lastly, let 1 ≤ a+ be the smallest number of individuals of type A in the population at
which type A’s mean fitness is higher than type B’s, that is,

a+ = minA+ ≥ 1 . (5.51)
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Note that a+ ≤ ̂ < N , and that α+(j) = 0 for all j < a+.

From equation (5.5), the fixation probability pfix (i) is a rational function of r+ and r−,

pfix (i) =
1 +

∑i−1
k=1 r

α+(k)
+ r

α−(k)
−

1 +
∑N−1

k=1 r
α+(k)
+ r

α−(k)
−

(5.52)

and is continuous because the denominator is positive for any r−, r+ > 0.

If i ≥ a+, then pfix (i)→ 1 as r+ → 0. If i < a+, then

lim
r+→0

pfix (i) =
1 +

∑i−1
k=1 r

α−(k)
−

1 +
∑a+−1

k=1 r
α−(k)
−

−−−→
r−→1

i

a+

> i/N . (5.53)

It is thus possible to choose r− sufficiently close to 1 and r+ sufficiently close to 0 to ensure
that pfix (i) > i/N , which completes the proof.

5.6 Application to evolutionary game theory in finite pop-
ulations

Evolutionary game theory [28, 59] is concerned with a population of agents whose fecun-
dity (or fitness) is determined by their payoffs in interactions modelled as games. The
strategies in these games are heritable traits, and the payoffs are typically dependent on
which strategies other agents play. A key concept in evolutionary game theory is evolution-
ary stability [28, 156]. In an infinite population, the standard definition is

Definition 5.6.1 (Evolutionary stability). A strategy s is evolutionarily stable (ES) iff a
single agent that plays a different strategy cannot invade the population (all strategies dif-
ferent from the resident strategy s are selected against).

Typically, one says that selection opposes invasion of type B by type A if the mean
fitness of a single invader of type A in a population otherwise composed of agents of type
B is lower than the fitness of the agents of type B in this population (e.g., [186]). Because
of H1, it is possible to provide an equivalent definition in terms of the underlying selection
process:

Definition 5.6.2 (Selection Opposes Invasion). For a selection process P , we say that se-
lection opposes invasion of B by A if

E
(
X(t+ 1)|X(t) = 1

)
=

N∑

j=1

jP1,j < 1 , (5.54)
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and selection favours invasion if

E
(
X(t+ 1)|X(t) = 1

)
=

N∑

j=1

jP1,j > 1 . (5.55)

However, due to the inherent stochasticity of finite populations, determining whether
or not selection favours invasion of mutant strategies is no longer sufficient to determine
evolutionary stability in finite-population games: in a population of constant size N , if a
resident strategy is invaded by a single agent playing a different strategy that is equally
fit, proposition 5.5.1 implies that for any selection process, the invading strategy fixes with
probability 1/N . Moreover, the fixation probability of a strategy that is selected against
when rare can be larger than 1/N , if it is selected for when sufficiently common [186, 212].
Motivated by this, Nowak et al. have refined the definition of evolutionary stability of
a strategy in a finite population to take into account the possibility of fixation of mutant
strategies [186]. Their definition, though given in the context of a Moran process, applies
to general selection processes:

Definition 5.6.3 (Evolutionary stability in a finite population). A strategy A is evolution-
arily stable (ESSN) in a population of size N iff, when invaded by a single mutant playing
a different strategy B 6= A, selection opposes both invasion and fixation of B.

• the mutant’s fitness is lower than the residents’ (selection opposes invasion; defini-
tion 5.6.2),

• the mutant’s fixation probability is less than 1/N (selection opposes fixation; defini-
tion 5.5.3).

More recently, Stewart and Plotkin [213] refer to selection opposing invasion by a single
mutant as “evolutionary robustness”, on the grounds that the invasion dynamics are less
important than which strategy fixes:

Definition 5.6.4. A resident strategyA is evolutionarily robust against an invading mutant
strategy B if selection opposes fixation of B (i.e., B’s fixation probability is less than 1/N )
when a population playing A is invaded by a single mutant playing B.

If the payoff obtained from a game with heritable strategiesA andB contributes linearly
to individual fitness, Lemma 5.5.4 yields intuitive conditions for evolutionary robustness
and stability in finite populations: if

• the expected payoff for strategy B is no less than the expected payoff for A (at all
population states to which the population can evolve from the initial one); and

• there is at least one state (to which the population can evolve from the initial state)
where the expected payoff for A is less than for B;
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then B is evolutionarily robust to invasion by A. If, additionally, the expected fitness of a
mutant playing A in a resident population otherwise playing B is lower than the residents’
expected fitness, then B is evolutionarily stable (ESSN). We formalize these statements in
Corollary 5.6.5 and explain how the assumption of linearity can be relaxed in Remark 5.6.6.

Corollary 5.6.5. Consider a population of constant size N playing a game in which the
two available strategies, A and B, are heritable traits. For any mixed-type population state
i (1 ≤ i ≤ N − 1), let the fitness of an agent obtaining payoff π at state i be a random
variable, Wi (π), with mean

W i (π) = E
(
Wi (π) |π

)
. (5.56)

Let the payoffs to agents playing strategy s (s = A or B) be random variables, πs (i), with
mean πs (i). Denote the mean fitnesses of agents playing a strategy s at population state i
by

W s (i) = E
(
Wi (πs (i))

)
, (5.57)

the expectation being taken over all possible payoffs to an agent playing s in a population
at state i. Suppose that the following conditions hold:

(I) At any mixed-type population state, the mean payoff πs (i) and the mean fitness
W s (i), of an agent playing strategy s = A or B, are finite.

(II) The mean payoff of individuals of type A is never more than type B, regardless of the
number of individuals of type A in the population (πA (i) ≤ πB (i) for all 1 ≤ i ≤
N − 1).

(III) There exists a mixed-type population state ı̂ accessible from the state i = 1 at which
the mean payoff of an agent of type A is less than the mean payoff of an agent of type
B (πA (̂ı) < πB (̂ı)).

(IV) The fitness of an agent obtaining payoff π at a mixed-type state i is

Wi (π) = wiπ + V , (5.58)

where wi > 0 represents the strength of selection at state i and V is a real-valued
random variable with finite expectation E(V ) < ∞, representing the variability in
the fitness of an individual with a given payoff. We further assume that E(V ) is
independent of the payoff π, so that if an individual’s payoff π is randomly distributed,
its mean fitness is linear in its mean payoff,

E
(
Wi (π)

)
= wi E(π) + E(V ) , (5.59)

(although V itself need not be independent of π).
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Then strategy B is evolutionarily robust against invasion by A, for any selection process P
(with respect to the frequency-dependent fitnessWi (π), 1 ≤ i ≤ N−1). If assumption (III)
is satisfied for ı̂ = 1, then strategy B is also an ESSN.

Proof. From equations (5.57) and (5.59), we have

WA (i) = E
(
Wi (πA (i))

)
= wiπA (i) + E(V ) ,

and similarly,
WB (i) = wiπB (i) + E(V ) .

Thus,
WB (i)−WA (i) = wi

(
πB (i)− πA (i)

)
≥ 0 , (5.60)

with a strict inequality for i = ı̂. The conclusion that B is evolutionarily robust now
follows immediately from lemma 5.5.4. If πA (1) < πB (1), then from definition 5.6.3, B
is an ESSN.

Remark 5.6.6. If assumption (II) of corollary 5.6.5 is replaced by the stronger constraint
on the game payoff distributions (rather than just their means), that for any φ ≥ 0,

Pr(πB (i) ≥ φ) ≥ Pr(πA (i) ≥ φ) , (5.61)

then assumption (IV) can be weakened to the mean fitnessW i (π) being some non-decreasing
function of the payoff π. This follows because we have only used assumption (IV) in de-
ducing WB (i)−WA (i) ≥ 0 (in equation (5.60)). But if equation (5.61) holds, then since
W i (π) is increasing, then W i (πB (i)) −W i (πA (i)) ≥ 0, so WB (i) −WA (i) ≥ 0 still
holds, with a strict inequality for i = ı̂.

5.7 Conclusions

We have defined a large class of biologically sensible models of selection acting on two
traits in populations of N agents in the absence of mutation (definition 5.3.1), and a sub-
class of models of neutral drift (definition 5.3.8). Our main results are simple sufficient
conditions for selection favouring or opposing fixation of a trait (lemma 5.5.4) for any
selection process. From an entirely mathematical perspective, our analysis identifies con-
ditions under which the inequality in the optional stopping theorem for supermartingales
(theorem 5.A.6) can be made strict.

We used lemma 5.5.4 to obtain sufficient conditions for evolutionary robustness and
stability in a finite population (corollary 5.6.5). In fact, lemma 5.5.6 implies that the con-
ditions of corollary 5.6.5 characterize the games for which evolutionary robustness and
stability are independent of the selection process . The proof of corollary 5.6.5 is simple,
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but the result has important implications; in particular, it is a critical component used in
chapter 4 to arrive at a complete analysis of evolutionary stability in the continuous snow-
drift game for any selection process in a well-mixed population.

Focusing on fixation probabilities (as opposed to fixation times or properties of the
continuum limit) allows us to maintain more generality compared to the formulation of
Generalized Wright-Fisher (GWF) models [68, 75], both in removing the assumption on
the second moment of the drift process [68, eq. (5)], and expanding the class of non-drift
processes that are included. The importance of the latter generalization is highlighted by
the fact that, as noted in [75, p. 36], the classical Wright-Fisher process with selection is
not a GWF process, whereas (excluding mutation) it is a selection process according to
definition 5.3.1 (see §5.4.2).

Our treatment was limited to two-trait models for simplicity, but the framework can be
extended to a larger number of interacting strategies in the population (at the expense of
increasing the complexity of the analysis [78]). The presence of only two competing strate-
gies in the population at any time is a common assumption in many evolutionary models:
for instance, both the standard formulation of adaptive dynamics [58] and its extension to
structured populations [79], rely on the assumption of “trait substitution”. Under this as-
sumption, mutants arise and either vanish or fix before a new mutation occurs. In practice,
multiple mutant strategies may be present in a population at the same time if fixation rates
are slow compared to mutation rates. It would therefore be useful, on the one hand, to con-
struct a framework that relaxes the assumptions of trait substitution and, on the other hand,
to identify conditions under which models based on trait substitution are valid (by compar-
ing two-type and several-type populations subject to stronger assumptions on the selection
process that allow bounds on fixation times to be obtained, e.g., GWF models [68, 75]).

While we confined our analysis to asexual populations, extensions that allow for genetic
inheritance in sexual populations would be useful. Such extensions, however, might depend
on the particulars of the genetic system. For example, in diploid populations, the fitnesses
of the two homozygotes and the heterozygote may differ. Moreover, if the allele for trait A
is dominant over trait B, then populations with identical phenotypes may have vastly dif-
ferent genetic make-ups, which may have different transition probabilities to other states,
e.g., when the entire population displays the phenotype A, one cannot know how many in-
dividuals are heterozygotes. But if all individuals are homozygotic for A, then A has fixed
and the transition probability to any other state is 0, which is not the case if all individuals
are heterozygotes. Thus, for sexual diploid populations, the state space will likely contain
information on the different genetic types in the population, rather than just the phenotypic
types. Additional extensions of our framework that may prove fruitful include account-
ing for mutation between the two strategies, considering populations of variable size, and
evolution in continuous time.
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Appendix

5.A Definitions and theorems from probability theory

In this appendix, we collect definitions and theorems from probability theory necessary for
the proofs in the main text, but that are not necessary to follow the flow of the paper when
proofs are omitted. These are collected here to aid readers who are already sufficiently
familiar with probability theory so as to require only a brief reminder of the relevant con-
cepts. For a comprehensive exposition of the relevant theory, see the references cited for
each definition and theorem.

All random variables are assumed to be real-valued.

5.A.1 Total expectation

Theorem 5.A.1 (Law of total expectation [80, equation 1.14]). If X and Y are random
variables and g is a function such that E

(
g(X)

)
<∞, then

EX
(
g(X)

)
= EY

(
EX(g(X)|Y )

)
. (5.62)

5.A.2 Markov Chains

Let X(t) be a discrete-time Markov chain with stationary transition matrix P . We say
that the states i and j communicate if state i leads to state j, and vice-versa (see defini-
tion 5.3.3). A state that communicates with all the states it leads to is called essential;
otherwise, it is inessential. Lastly, a state i is called recurrent if, when starting from
X(0) = i the process is guaranteed to return to state i (at least once), that is

Pr
(
∃τ > 0 such that X(τ) = i|X(0) = i

)
= 1 . (5.63)

Comprehensive discussions of the classification of states of Markov chains can be found in
[210, 214].
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5.A.3 Martingale theory

Definition 5.A.2 (Martingales [80, chapter 6]). LetX(t) be a bounded, discrete-time Markov
process.

• X(t) is a martingale iff for all t ≥ 0,

E
(
X(t+ 1)

)
= X(t) . (5.64)

• X(t) is a supermartingale iff for all t ≥ 0,

E
(
X(t+ 1)

)
≤ X(t) . (5.65)

Definition 5.A.3 (Stopping time [80, chapter 6, definition 3.1]). Let X(t) be a discrete-
time Markov process. A random variable T taking values in {0, 1, 2, . . . ,∞} such that the
indicator function of the event T = n, IT=n, is a function of X(0), . . . , X(n), is called a
stopping time (with respect to X(t)).

Thus, a random variable T is a stopping time iff the event “stopped at time n” (T = n)
depends only on the states X(t) that have occurred up to time n. A stopping time can be
interpretted as a rule for deciding whether or not to stop a process, based only on events
that have alraedy occurred (not on any knowledge of the future).

Remark 5.A.4. Martingales, supermartingales and stopping times can be defined more
generally. We use these restricted definitions for simplicity.

The following is a version of the optional stopping theorem given in [80, chapter 6,
theorem 3.1]:

Theorem 5.A.5 (Optional stopping theorem). LetX be a martingale and T a stopping time
that is almost surely finite (Pr (T <∞) = 1) and

E
(

sup
t≥0

∣∣X(min{T, t}
)∣∣
)
<∞ . (5.66)

Then, E
(
X(T )

)
= E

(
X(0)

)
.

Condition (5.66) means that the expected supremum (least upper bound) of the magnitude
of the state before a stopping time is finite.

Theorem 5.A.6 (Optional stopping for supermartingales [80, chapter 6, theorem 4.2]). Let
X be a supermartingale and T a stopping time. Then, E

(
X(T )I{T<∞}

)
≤ E

(
X(0)

)
.
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5.B Fixation probabilities for birth-death processes

Suppose that individuals in a population of constant size N can possess one of two traits, A
and B. Let the state of the population (i.e., the number of individuals of type A) evolve ac-
cording to a discrete-time birth-death process in which a trait that has disappeared cannot
re-emerge. That is, the population state may change by at most one at any given time-step
(individuals change their type one at a time), and the states 0 and N are absorbing. In this
appendix, we find pfix (i), the fixation probability of the trait A, when there are initially
i individuals of type A in the population. We do this following the method presented in
[156].

Mathematically, the time evolution of the population composition follows a Markov
process with transition matrix P satisfying

Pk,k = 1− Pk,k+1 − Pk,k−1 , (5.67)

and Pk,j = 0 for all 0 ≤ j < k − 1 and k + 1 < j ≤ N , where Pk,k+1 and Pk,k−1 are
the transition probabilities from the state in which there are k individuals of type A, to the
ones in which the population contains k + 1 or k − 1 individuals of type A, respectively.
Note also that P0,0 = P1,1 = 1 and P0,k = PN,N−k = 0 for all 1 ≤ k ≤ N (the states
corresponding to homogeneous populations are absorbing).

Let pfix (i) be the probability of reaching state N (fixation of A) when starting from
state i. It follows that pfix (0) = 0, pfix (N) = 1 and for 1 ≤ i ≤ N − 1,

pfix (i) = Pi,i−1pfix (i− 1) + Pi,i+1pfix (i+ 1) + Pi,ipfix (i) . (5.68)

Consequently,

(Pi,i+1 + Pi,i−1)pfix (i) = (1− Pi,i)pfix (i) = Pi,i−1pfix (i− 1) + Pi,i+1pfix (i+ 1) ,

so
Pi,i−1(pfix (i)− pfix (i− 1)) = Pi,i+1(pfix (i+ 1)− pfix (i)) ,

or
yi+1 =

Pi,i−1

Pi,i+1

yi ,
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where yi = pfix (i)− pfix (i− 1) for 1 ≤ i ≤ N . Thus,

y1 = pfix (1)− pfix (0) = pfix (1) ,

y2 =
P1,0

P1,2

y1 =
P1,0

P1,2

pfix (1) ,

y3 =
P2,1

P2,3

y2 =
P2,1

P2,3

P1,0

P1,2

pfix (1) ,

...

yi+1 =
i∏

j=1

Pj,j−1

Pj,j+1

pfix (1) (5.69)

for 2 ≤ i ≤ N − 1.

Summing yk for 1 ≤ k ≤ i ≤ N gives

i∑

k=1

yk =
i∑

k=1

(
pfix (k)− pfix (k − 1)

)
= pfix (i)− pfix (0) = pfix (i) . (5.70)

From equations (5.69) and (5.70),

pfix (i) = y1 +
i−1∑

k=1

yk+1 = pfix (1)
(

1 +
i−1∑

k=1

k∏

j=1

Pj,j−1

Pj,j+1

)
. (5.71)

Since pfix (N) = 1, substituting i = N in equation (5.71) gives

pfix (1) =
1

1 +
∑N−1

k=1

∏k
j=1

Pj,j−1

Pj,j+1

. (5.72)

Thus, from equations (5.72) and (5.71), the fixation probability ofAwhen there are initially
i individuals of type A in the population is

pfix (i) =
1 +

∑i−1
k=1

∏k
j=1

Pj,j−1

Pj,j+1

1 +
∑N−1

k=1

∏k
j=1

Pj,j−1

Pj,j+1

. (5.73)
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Chapter 6

Conclusion

This thesis began with the analysis of a specific public goods game (chapter 2), then a
class of snowdrift games in infinite populations (chapter 3), general snowdrift games in
finite populations (chapter 4) and, finally, general selection processes in finite populations
(chapter 5). To conclude, we position this work in a broader context and comment on some
possible implications.

The main question in chapter 2 on the vaccination game is essentially “What is the cost
of individual free choice from the perspective of the group as a whole?” This cost stems
from the existence of freeriders, who benefit from herd immunity (the public good) while
avoiding the personal cost of vaccination. While we explored this issue in the context of
the vaccination game, free choice may yield a mean payoff that is sub-optimal from the
group perspective in other public goods games as well. Since public goods games arise
in many other contexts of human interaction (e.g., ozone depletion [215] or the manage-
ment of forests [216] or fisheries [118]), similar analyses of the cost of free choice (i.e.,
the lack of regulation) will likely be useful in other situations. Moreover, the existence of
the mortality plateau in a general class of vaccination games suggests the existence of an
analogous plateau in other instances where individual and societal interests are in conflict;
the conditions for the existence of such a plaeau would likely be: (i) individuals choose be-
tween cooperation and defection, (ii) cooperation carries a constant cost (similar to the cost
of vaccination in the vaccination game), and (iii) variability in the effort taken to mitigate
costs at the societal level effects variability in the cost to a defecting individual (similar to
the vaccination effort in the post-outbreak vaccination response).

Chapters 3 and 4 together show that in public goods games, differences in population
size can result in qualitatively different evolutionary dynamics; in particular, making the
approximation that a large population is actually infinite can lead to inferences that are
completely different in any finite population. As stated in chapter 4, because it is com-
mon to approximate finite populations with infinite ones, the results of this thesis stress
the importance of deriving clear conditions for when the infinite population approxima-
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tion is valid. It seems likely that comparing the size of the interacting group with the total
population size will yield a suitable criterion for the validity of the infinite population ap-
proximation, but this has yet to be shown rigorously. The predicted qualitative difference
in evolutionary outcomes between finite and infinite populations results from differences in
the mean number of defectors that cooperators and defectors interact with (the mean cost
defectors inflict on their group members is identical in finite and infinite populations). Con-
sequently, results will differ in populations that are not well-mixed (e.g., when the games
are played on a network, or when cooperators and/or defectors can identify one another).

Chapter 5 highlights the importance of martingale and Markov chain theory in analyzing
selection processes in finite populations, beyond the Moran and Wright-Fisher models. We
developed the theory necessary for our analysis of continuous public goods games in finite
well-mixed populations (chapter 4), but did not consider processes that include mutation,
which would be a natural next step. It is also worth mentioning that in the context of
the existing frameworks for modelling evolution in structured populations [77, 79], it is
possible to prove as a corollary of our work in chapters 4 and 5 that the structure coefficient
in a well-mixed population is σ = (N − 2)/N , for any updating rule (which in this case
corresponds to a particular selection process, as defined in chapter 5). Lastly, we point
out that our results on general selection processes may be applied even in populations that
are not well-mixed. In particular, observe that theorem 4.3.1 is a particular application of
the theory of general selection processes to populations that are not well-mixed. However,
deriving the transition matrix for a selection process in a population that is not well-mixed
is in general likely to be a computationally-intensive task (though it may be rendered more
tractable if the population structure contains some symmetries, e.g., a lattice structure).

Finally, we note that as seen in chapters 2, 3 and 4, the interesting phenomena ob-
served in public goods games stem from the possibility of defectors freeloading on others’
contributions. Much of the literature about the evolution of cooperation involves mecha-
nisms by which cooperation is enforced or encouraged via rewards (e.g., reciprocal altruism
[139, 170, 171, 217]) or punishment [23, 218, 219]. However, other interesting approaches
to encouraging cooperation have been suggested. In particular, extensive branches of the
economics and game theory literatures focus on mechanism design, especially in public
goods games [86, 220, 221, 222]. This field of study attempts to design rules for games, so
that the outcomes are desirable in some sense (e.g., socially equitable, or minimizing group
cost), despite agents acting strategically. In public goods games, such mechanisms may
be used to encourage cooperation by employing incentive taxes. Moreover, when agents’
preferences vary (e.g., as a result of variability in resources or needs), agents can in some
cases be encouraged to reveal their true preference. Thus, it is sometimes possible for a
central agency to obtain a socially-desirable outcome while maintaining a measure of free
choice (although, personal freedom is often impinged upon by the taxation employed), in a
sense resolving the group-individual conflict that was the focus of chapter 2.

While mechanism design is not without its limitations [221, §4.2.4], it would thus be
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interesting to attempt to apply its tools to the vaccination game. One study makes a step in
this direction [223], but assumes that the fraction of unvaccinated individuals who become
ill is linear in the vaccine coverage, which is often unrealistic (see [36] and chapter 2);
incorporating realistic epidemic models in order to calculate the probability that an unvac-
cinated individual contracts the disease may yield results that are more epidemiologically
sound.

Additionally, the theory of mechanism design could in principle be applied in the con-
text of evolutionary game theory, and specifically in relation to public goods in nature —
which, to the best of our knowledge, has never been attempted. One such possibility arises
in the context of eusocial insects, where it might be possible for a “queen” to act in a man-
ner similar to central government agencies in human societies, and manufacture conditions
under which workers have an incentive to cooperate (and in particular forgo reproduction).
Thus, it may be possible that selection operates on the structure of the evolutionary game
itself—in particular, on the costs and benefits of cooperating, as experienced by the hive
workers—incentivizing cooperation, which would be a fascinating topic for future work.
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[30] Kümmerli R, Colliard C, Fiechter N, Petitpierre B, Russier F, Keller L. Human co-
operation in social dilemmas: comparing the Snowdrift game with the Prisoner’s
Dilemma. Proceedings of the Royal Society of London B: Biological Sciences.
2007;274(1628):2965–2970.

[31] Dawes RM. Social dilemmas. Annual review of psychology. 1980;31(1):169–193.

[32] Bednekoff PA. Mutualism among safe, selfish sentinels: a dynamic game. The
American Naturalist. 1997;150(3):373–392.

[33] Clutton-Brock TH, O’Riain M, Brotherton P, Gaynor D, Kansky R, Griffin A, et al.
Selfish sentinels in cooperative mammals. Science. 1999;284(5420):1640–1644.

[34] Rainey PB, Rainey K. Evolution of cooperation and conflict in experimental bacterial
populations. Nature. 2003;425(6953):72–74.

[35] Cordero OX, Ventouras LA, DeLong EF, Polz MF. Public good dynamics drive evo-
lution of iron acquisition strategies in natural bacterioplankton populations. PNAS.
2012;109(49):20059–20064.

[36] Bauch CT, Earn DJD. Vaccination and the theory of games. PNAS.
2004;101(36):13391–13394.

[37] Bauch CT, Galvani AP, Earn DJD. Group interest versus self-interest in smallpox
vaccination policy. PNAS. 2003;100(18):10564–10567.

[38] Wang Z, Andrews MA, Wu ZX, Wang L, Bauch CT. Coupled disease–behavior
dynamics on complex networks: A review. Physics of life reviews. 2015;15:1–29.

[39] Merrill RM. Introduction to epidemiology. Jones & Bartlett Publishers; 2013.

[40] Fine P, Eames K, Heymann DL. Herd immunity: a rough guide. Clinical Infectious
Diseases. 2011;52(7):911–916.

[41] Kim TH, Johnstone J, Loeb M. Vaccine herd effect. Scandinavian Journal of Infec-
tious Diseases. 2011;43(9):683–689.

[42] Gross PA, Hermogenes AW, Sacks HS, Lau J, Levandowski RA. The efficacy of
influenza vaccine in elderly persons: a meta-analysis and review of the literature.
Annals of Internal Medicine. 1995;123(7):518–527.

[43] Hanlon P, Hanlon L, Marsh V, Byass P, Shenton F, Hassan-King M, et al. Trial of
an attenuated bovine rotavirus vaccine (RIT 4237) in Gambian infants. The Lancet.
1987;329(8546):1342–1345.

[44] Stiglitz JE. Economics of the public sector. WW Norton; 1988.

[45] Barrett S. Global Public Goods and International Development. In: Evans JW,
Davies R, editors. Too Global To Fail: The World Bank at the Intersection of National
and Global Public Policy in 2025. World Bank Publications; 2014. p. 13–18.

181



Ph.D. thesis – Chai Molina; McMaster University – Mathematics & Statistics

[46] Fenner F. Smallpox and its eradication. No. pts. 1-14 in History of international
public health. World Health Organization; 1988.

[47] McNeil DG Jr. Wary of Attack With Smallpox, U.S. Buys Up
a Costly Drug; 2013. Accessed: 2014-12-08. Available
from: http://www.nytimes.com/2013/03/13/health/
us-stockpiles-smallpox-drug-in-case-of-bioterror-attack.
html.

[48] Krylova O. Predicting epidemiological transitions in infectious disease dynamics:
Smallpox in historic London (1664-1930) [PhD]. McMaster University, Canada;
2011.

[49] Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the
public goods dilemma in bacterial biofilms. Current Biology. 2014;24(1):50–55.

[50] Pepper JW. Drugs that target pathogen public goods are robust against evolved drug
resistance. Evolutionary Applications. 2012;5(7):757–761.

[51] Axelrod R, Axelrod DE, Pienta KJ. Evolution of cooperation among tumor cells.
PNAS. 2006;103(36):13474–13479.

[52] Erwin D. A public goods approach to major evolutionary innovations. Geobiology.
2015;13(4):308–315.

[53] McInerney JO, Pisani D, Bapteste E, O’ Connell MJ. The public goods hypothesis
for the evolution of life on Earth. Biol Direct. 2011;6(41).

[54] Archetti M, Scheuring I. Review: Game theory of public goods in one-shot social
dilemmas without assortment. Journal of Theoretical Biology. 2012;299:9–20.

[55] Doebeli M, Hauert C, Killingback T. The evolutionary origin of cooperators and
defectors. Science. 2004;306(5697):859–862.

[56] Dieckmann U, Law R. The dynamical theory of coevolution: a derivation from
stochastic ecological processes. Journal of Mathematical Biology. 1996;34(5-
6):579–612.

[57] Geritz SA, Mesze G, Metz JA, et al. Evolutionarily singular strategies and the
adaptive growth and branching of the evolutionary tree. Evolutionary Ecology.
1998;12(1):35–57.
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