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Abstract

”Relationships are complicated, sometimes interesting and can often

appear unpredictable. This is just the type of situation that mathematics

can help you with.”

- John D. Barrow, 100 essential things you didn’t know you didn’t know

The proposed work focuses on articulating a mathematical framework to capture the

structure of an ontology and relate it to organised data sets. In the discussed frame-

work, the ontology structure captures the mereological relationships between con-

cepts. It also uses other relationships relevant to the considered domain of application.

The organized dataset component of the framework is represented using diagonal-free

cylindric algebra. The proposed framework, called the domain-information structure,

enables us to link concepts to data sets through a number of typed data operators.

The new framework enhances concurrent reasoning on data for knowledge generation,

which is essential for handling big data. We illustrate the advantage of the obtained

framework by using it in generating new knowledge from an ontology and a given

data set.
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Chapter 1

Introduction

In this chapter, we provide an introduction to knowledge generation from data sets

using formal ontologies, and discuss the motivation for the proposed research. In

Section 1.1, we present a short introduction into the field of knowledge discovery and

conjecture generation, and their importance in today’s world. In Section 1.2, we re-

view the specific context in which knowledge generation is currently used, focusing

on ontological representations. In Section 1.3, we give the motivation for a mathe-

matical framework for knowledge conjecturing from ontologies and structured data

sets. In Section 1.4, we state the proposed research problem, and in section 1.5 we

present its main contributions. The structure of the remainder of the thesis is given

in Section 1.6.

1.1 General Context

In today’s world, data is more available and abundant than ever. With easy access

of humans to computers, data is exponentially increasing in size every moment and
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information is recorded in various formats, with various grades of reliability. Original

data manipulation methods were developed with smaller size of data in mind, more

rigorous data validation, and less number of data types or formats. Therefore, there

is a gap between the current data availability and its processing methods. Knowledge

generation closes the gap by developing new, automated methods for discovering pat-

terns in datasets, and organizing them in smaller and more manageable information.

1.1.1 What is Knowledge Generation?

Scientific discovery is the process of finding new knowledge, such as a new law or

theory-exploration, or a new class of objects [DLT07]. Historically, discoveries have

been made by individuals: domain experts or novices, stumbling upon empirical ob-

servations, or logically deducing new theories from existing ones. In recent years,

the rise of modern computers and technologies has made room for new possibilities.

Researchers have focused on a specific question: can we use automated systems to do

the discoveries for us?

We find in [FPSS96b] that knowledge generation is ”the nontrivial process of iden-

tifying valid, novel, useful, and ultimately understandable patterns in data”. Thus,

knowledge generation can be viewed as the process of searching (usually large) sets

of structured or unstructured data to find patterns that allows further inferences to

be made.

In our research, we take the notion of knowledge generation further from the ’finding

new knowledge in an automated way’ definition. We aim to only generate useful

2
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knowledge within a domain. In this way, the focus shifts from simply finding new

patterns within data sets to the discovery of new and interesting information within

a specific application domain.

1.1.2 What is Knowledge Generation for?

Today, there is an unlimited number of possible applications for knowledge generation

in the field of science and engineering. In [Rah14], we find an example of knowledge

discovery in the medical field, using the electronic health records for the pharmaceu-

tical industry. By finding patterns and relationships between various diseases and the

medications used to treat them, new inferences can be made about how combining

two different drugs can increase or decrease certain symptoms, or even produce new

symptoms.

In [RV07], we find an example of using knowledge discovery in educational research.

From the collected data, a system can predict future learning behaviour, discover

new domain models, and discover learning patterns. This new information is used

to provide feedback for instructors and to assist with planning, scheduling, grouping

students and more.

In the field of astronomy, due to the sheer volume of data surveyed, and the com-

plexity of the data, the current challenge is finding new methods for image analysis,

classification, and cataloging of sky objects [FPSS96a]. Several examples of systems

developed for knowledge discovery and data mining in astronomy are SKICAT [Ski]

and AstroML [Ast].

3
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In manufacturing, knowledge discovery is now used to diagnose, predict and prevent

faults, or to support decision systems. Data is analyzed to identify and discover new

patterns in various manufacturing processes, such as: production, quality control,

maintenance, design, customer relationship management and more [HSSK06].

Knowledge discovery can be used in agriculture for classification, for using pesticides

optimally, or to predict and detect diseases. By recording weather-related properties,

such as temperature and rain volume, the systems can predict certain plant diseases.

In [UPCMA04], we find that by analyzing plant properties, such as sugar, acids, and

nitrogen sources, a system can predict how good the fermentation process will be in

a specific year. In [LD04], we learn about knowledge discovery tools that are used to

classify and grade produce, and to identify defects prior to shipping them. Another

example is the detection of disease and prevention of its spread in animals [AJH+04].

Another field where knowledge discovery is widely used is the business and financial

domain. In [SSTW01], we find an example of using knowledge discovery in market-

ing. Due to the advances made in information technology, businesses have access to

large volumes of information about their customers. The knowledge hidden in these

sets of data is critical; businesses can now use it in direct, targeted marketing for

analysing and predicting customer behaviour, to predict future sales trends, to make

basket and cohort analysis. In [PLSG05], we find an example of knowledge discovery

systems used in fraud detection, by identifying possible fraudulent information on

service application, or by detecting fraudulent or possible illegal activities. In the

4
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field of investment, the challenges are similar to the ones in other domains: vast

amounts of data are continuously collected. Various knowledge discovery methods

and techniques are now being used to analyze and forecast stock data, predict future

stock prices, as well as build decision support systems for the financial investment in-

dustry [LK08]. In the business performance field, the organizations’ ability to rapidly

analyze, predict, and improve their performance is vital to the well being of the com-

pany. The size of data and the need of 24x7 availability has created another problem

for businesses: the costs of storage capabilities are rising. Knowledge discovery in

business performance is used to analyse and better understand the organization, as

well as to reduce the size of stored data [TSD10].

The gaming industry is another example of an industry taking advantage of the mod-

ern techniques employed by knowledge discovery and data mining. There are many

ways knowledge discovery can be used, such as: improving game design, preventing

fraud, cutting production cost, predicting user preferences and usage trends, increas-

ing the customer renewal [Ken03]. In [SNA], we learn that as one of the most recent

techniques in modern sociology, social network analysis is now employed by a large

number of sciences, such as anthropology, biology, communication studies, economics,

geography, information science, organizational studies, social psychology, and soci-

olinguistics. There is a growing list of knowledge discovery tools and systems used in

social network analysis.

5
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1.1.3 How is Knowledge Generation needed?

While similar to pure information extraction, knowledge generation takes the process

a step further. It creates abstractions (high-level knowledge) of the low-level data.

Often the result of the knowledge generation process is fed back into the process of

discovery.

There are other processes concerned with information extraction, such as data min-

ing, pattern recognition and machine learning. Knowledge discovery combines all

these previous methods into one complex and complete process. Its focus is on the

process of knowledge generation: from preparing the data, to cleaning it, and using

data mining techniques to discover new patterns. It is concerned with the scalability

and efficiency of algorithms processing large data sets, as well as the result of the

data mining: performing visualization and interpretation of the resulting knowledge.

Besides the obvious need for analysing the raw data to discover knew information, a

new need has risen in the information systems domain, one related to the security of

information. Through knowledge discovery processes we can infer tacit (non-explicit)

links between knowledge fragments that put together could give unauthorized access

to private information. With the increasing capabilities of knowledge generation and

discovery, the information systems must start thinking about protecting themselves

against unauthorized and undesirable discovery of knowledge from existing and pre-

sumably very secured data [O’L91].

A more recent aspect of the analysis and discovery field is the size of the data. With

6
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the advance of technology in terms of storage capabilities and the relative low cost

associated with it, many organizations store record amounts of data. This data

eventually needs to be analyzed. In information intensive fields, such as medical,

financial, astronomy, and audio-visual, it is common to accumulate terabytes of raw

data on a regular basis, thus making storage itself a possible problem. The need to

intelligently compress data is becoming imperative. Knowledge generation could help

with compression, by recognizing valuable patterns in the raw data, and replacing

the actual raw information with specialized theories and relationships.

1.2 Specific Context

1.2.1 Ontologies and knowledge generation

In order to generate knowledge, we need to first define its representation. Albeit a

very familiar concept in the automated discovery domain, knowledge representation

has only recently been clearly defined. In [Dav93] the author argues there are five

aspects of knowledge representation, each with a distinctive role to play. The first

aspect describes knowledge representation as a surrogate for the knowledge itself,

used to reason about concepts and how they describe the world. The second way

to describe knowledge representation is as a set of ontological commitments, used to

answer the question In what terms should I think about the world? The third aspect

is a fragmentary theory of intelligent reasoning, used to express the knowledge as a

set of axioms, and, together with a reasoning engine, make new conjectures. The

fourth way to describe knowledge representation is as a medium for pragmatically

efficient computation, used in automating the process of reasoning, and achieved by

7
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organizing the existing knowledge. The fifth and last aspect is described as a medium

of human expression, used to understand (and later analyze) the natural language in

which the knowledge is expressed.

In our thesis, we use a combination of the second and third aspects, in that we view the

world through an ontological structure, further represented as a mathematical theory.

Ontologies, defined in [Gru95] as the explicit specifications of a conceptualization of

a domain, have been used as a mean to knowledge representation in many areas of

knowledge systems, such as knowledge acquisition, knowledge reuse and sharing, ver-

ification and validation of knowledge based system, as well as for knowledge discovery

paired with reasoning engines [BC98, Gru95, HSW97, PB01].

In this thesis the focus is on knowledge generation from structured data sets, with the

knowledge represented by an ontology. As with knowledge representation, there are

many definitions of what an ontology is, from the classical philosophical term intro-

duced by Aristotle, to the computer science terms in modern age. In [Sow00], Sowa

describes ontology as the study of all existence, of all kinds of entities - abstract and

concrete - that make up the world. He makes the separation between the structure of

the ontology (the part that provides knowledge about the world) and the reasoning

on the ontology (the part that makes sense of the structure through a framework

of abstractions). Throughout the rest of the thesis we use the term ontology in the

knowledge engineering sense, not in the philosophical sense.

8
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Ontologies have been generally developed as a mean to describe and use domain-

specific knowledge. They are viewed as content theories describing a specific domain

of knowledge: the concepts found in the domain, their properties, and relationships.

Today there are many such domains that make use of ontologies: physics, chemistry,

medicine, linguistic, music, etc.

The abstraction level of an ontology varies from general terms, that describe the world

across all domains, to domain specific terms, that are restricted to specific knowledge

domains [CJB99]. The general-descriptive terms are called the upper ontology, and are

defined as an ontology which deals with domain-independent concepts and relation-

ships. These ontologies are used as a template to engineer domain-specific ontologies.

Currently there are many upper-level ontologies, such as: the Basic Formal Ontol-

ogy [BFO], CYC [CYC], the Generalized Upper Model [GUM] and more. The Basic

Formal Ontology (BFO) consists of a number of sub-ontologies at different levels of

granularity. The CYC is a general knowledge base and common-sense reasoning en-

gine, a proprietary system under development since 1986. The Generalized Upper

Model (GUM) is a general task and domain independent linguistic ontology, intended

for organizing information for expression in natural language.

When we focus on ontologies as content theory, we realize that once a good content

theory of the domain is devised, it can be used with different mechanism theories

in order to implement effective systems [CJB99]. By clearly defining the knowledge

structure of a specific domain, the ontology becomes the foundation of its knowl-

edge representation. By defining both the vocabulary of the domain, as well as the

9
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relationships between its concepts, the ontology allows for natural and unified reason-

ing processes. Through their vocabulary and structure, ontologies enable knowledge

sharing, either within the same domain, or across domains.

Besides representing the world around us and sharing knowledge, ontologies are being

used in two areas rich in knowledge: natural language understanding and knowledge

generation. For the first purpose, natural language understanding, we generally need

both an upper-ontology and a domain-specific ontology (to focus on domain-specific

concepts and relationships). For the second purpose, currently most of the work has

been focused on domain-specific knowledge, and the discovery of new knowledge from

them.

1.2.2 Conjecture Generation

So far we have explored the relationship between knowledge generation and data min-

ing, in which data mining is an important part of the knowledge generation process.

When we focus on the domain of mathematics we can similarly review the relation-

ship between knowledge generation and conjecture generation. Conjecture generation

is making inferences about mathematical knowledge.

In the context of pure mathematics, the knowledge source is viewed as a set of values

along a collection of axioms (definitions, relations and constraints) [FT12]. Conjec-

ture generation is providing the tools to reason explicit new knowledge by finding

relations between the axioms and proving (or disproving) them.

10
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While knowledge is now routinely discovered in many science fields, the mathematics

field has been approached mainly from the theorem proving side, in which conjectures

are already known and only need proving or disproving. So far, most of the discovery

work in the mathematics field has been focused on the automated re-discovery of

known theories, and very little on the discovery of new theories. In [MBA07], Mc-

Casland states that it is possible to automate the discovery of inductive theorems.

Similarly, Johansson demonstrated it is possible to automatically generate conjectures

and produce most of the theorems already available in the Isabelle libraries [JDB11].

Other works have started to explore the automation of theory discovery, with the ex-

plicit goal of making novel discoveries. In his work with the HR system, Colton [CBW99]

uses an exhaustive heuristic search to make and prove new conjectures in the field

of finite algebras. In [PGS06], Puzis is using a more formal approach to generate

new conjectures from a set of axioms. Work has been done in other mathematical

domains, such as graph theory, with one example being the GT (Graph Theorist)

system [Eps88].

All conjecture generation processes start from a set of known knowledge about the

mathematical domain (defined as axioms) and use various strategies to generate new

statements that are either true from the start or need to be proved. For the latter,

conjecture generation tools are used in conjunction to Automatic Theorem Provers

(ATP) to prove or disprove the generated conjectures. Thus validity of new informa-

tion is ensured right after the generation of conjecture. In order to ensure the three

remaining properties of new discoveries (as defined in [FPSS96b]), a series of filters

11
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are employed during the process.

Automated discovery uses both data and theories: while knowledge discovery is more

geared towards using sets of data, conjecture generation uses existing theories to dis-

cover new theorems and theories. Each domain is represented by a set of objects, and

classes or categories. However, in order to become a theory, a set of concepts must

also contain a set of theorems and proofs [CBW99].

By formalizing an ontology and its structured data set into a mathematical structure,

we can use existing conjecture generation methods in order to infer on information

system and discover knew knowledge.

1.3 Motivation

Traditionally, knowledge and conjecture generation have been used solely for analysis

purposes. We see the possibility to use them in the domain of semantic data com-

pression, by recognizing valuable patterns in the raw data, and replacing the actual

raw information with specialized theories and relationships.

There seems to be a disconnect between organizing domain knowledge hierarchically,

through ontologies, and using the ontologies as the basis of automated reasoning en-

gines.

We see value in defining an ontology as a mathematical structure and the theory asso-

ciated with it, thus making it possible to use existing conjecture generation methods

12
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from theory as the reasoning engine on existing data. By separating the domain

representation from the reasoning engine, we can focus on describing an information

structure theory that can be reasoned upon using existing methods and algorithms.

By proposing a new mathematical framework to capture the structure of an ontology

and the link to a given organised set of data, we set a solid foundation that can be

later used by researchers to (1) engineer ontologies in a formal setting, or (2) employ

existing methods and algorithms to generate new knowledge through the reasoning

engine.

1.4 Problem Statement

The problem that we focus on in this thesis is the articulation of a mathematical

framework to formally describe the structure of an ontology, as well the information

system encompassing the data set and its structure and to illustrate the use of the

obtained structure for knowledge discovery.

Our first objective is to articulate a mathematical structure that captures an ontol-

ogy. We observe that several relationships within an ontology could lead to a lattice

of concepts. Others would only lead to a family of partial orders. Our aim is to

capture both into one mathematical structure that gives an abstract ontology.

The second objective is to put together the system that encompasses the ontology

structure and data set, on which the knowledge extraction is performed. The rela-

tional model of data has been accepted as a clear model for relational databases. We

13
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propose a new mathematical structure, based on Tarski’s cylindric algebra, to de-

scribe an algebraic data structure. We then link the two structures, using the typed

data operators, thus forming a new mathematical structure, which we call the domain

information structure. The proposed framework can be used further to reason on the

information system. Therefore, we need to identify the axioms governing the theory

of information structure, as well as identify and prove its theorems.

Our third objective is to illustrate the capturing of the details of the domain in order

to enable basic reasoning. We show how the ontology can be enhanced through its

specification, and how multiple interpretations can be applied on the same ontology

structure and same data set. This further enables the use of existing reasoning method

and algorithms to generate new knowledge.

1.5 Main Contributions

The main contributions of my thesis include:

(i) The mathematical formalization of the information system encompassing the

ontology structure and the oragnised data set; the new structure can be used to

automate knowledge extraction.

(ii) The separation of the information system from the reasoning engine; this allows

for applying different reasoning engines for different tasks, without having to

modify the information system.

(iii) The ability to concurrently interpret a large set of data through different theo-

ries, specific to various sectors and domains; the proposed framework allows for

14
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rapid analysis and knowledge generation.

1.6 Structure of the Research Thesis

The remainder of this research paper is organised as follows:

Chapter 2 introduces the required mathematical background.

Chapter 3 provides an examination of the existing literature on similar mathematical

approaches, discusses their limitations.

Chapter 4 introduces the new mathematical structures, along the domain informa-

tion structure theory.

Chapter 5 illustrates an example, and discusses the strengths and weaknesses of the

proposed research.

Chapter 6 draws conclusions and discusses possibilities for future work stemming

from the proposed research.

15



Chapter 2

Mathematical Background

In this chapter we provide the mathematical background needed to make this thesis

self-contained. In Section 2.1 we examine homogeneous relations and their repre-

sentations. In Section 2.2, we detail the needed background on partial orders. In

Section 2.3, we present lattices and their algebraic properties. In Section 2.4, we

present a variety of algebraic structures, such as: monoid, semigroup, and Boolean

algebra. In Section 2.5 we introduce Tarski’s Cylindric algebra. In Section2.6 we dis-

cuss mathematical structures, followed by the algebraic specifications in Section2.7.

2.1 Homogeneous Relations

The following definitions and results are borrowed from [SS91].

Relations indicate how two or more things connect or relate to each other. When the

elements that are connected are of the same set, we call the relation homogeneous.

In this work we only consider binary relations.
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Let C be a set. A (homogenous) relation R on C is defined as R ⊆ C × C.

Relations are sets of tuples, thus we can use all the set operations, such as intersec-

tion, union, complement, inclusion etc. For example, the relation greater than can

be defined on the set of natural numbers as R = {(x, y) | x, y ∈ N : x > y}.

Any homogeneous relation can be represented as a directed graph by interpreting the

elements of the underlying set as the vertices of the graph and the tuples of R as the

edges of the graph.

Definition 2.1.1. ([SS91])

A graph G =
(
C,R

)
consists of a set C of vertices and the associated transition

relation R ⊂ C × C. �

The empty relation ∅ ⊆ C ×C is denoted by O (or OC when it is not clear what the

underlying set is), and the univeral relation is L = C×C (or LC for clarity). Another

distinguished relation on C is the identity relation, I = {(x, x) | x ∈ C}.

Definition 2.1.2. ([SS91])

Let R, S ⊆ C × C be relations. Their product R ;S ⊆ C × C is given by:

R ;S = {(x, z) | ∃(y | y ∈ C : (x, y) ∈ R ∧ (y, z) ∈ S )}. �

We call a product of relations the composition of relations. The composition is also

written as R ;S or RS. We write R2, R3, . . . for the powers of R. The composition of

17
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relation is associative and I is its identity element.

Definition 2.1.3. ([SS91]) Let R be a binary relation on C.

• R is reflexive ⇐⇒ I ⊂ R ⇐⇒ R = R ∪ I ⇐⇒ ∀(x | x ∈ C : (x, x) ∈ R )

• R is symmetric ⇐⇒ ∀(x, y | x, y ∈ C : (x, y) ∈ R =⇒ (y, x) ∈ R )

• R is antisymmetric ⇐⇒ ∀(x, y | x, y ∈ C : ((x, y) ∈ R ∧ (y, x) ∈ R =⇒

x = y )

• R is transitive ⇐⇒ R2 ⊆ R ⇐⇒ ∀(x, y, z | x, y, z ∈ C : (x, y) ∈ R ∧

(y, z) ∈ R =⇒ (x, z) ∈ R ) �

Definition 2.1.4. ([SS91])

Let R ⊆ C × C be a relation. We define its transitive closure as

R+ def
= supi≥1R

i = inf{H | R ⊆ H ∧ H transitive}. �

We can say the following about relations and their transitive closures:

R transitive ⇐⇒ R+ ⊂ R ⇐⇒ R+ = R (2.1)

2.2 Posets

Order deals with various notions, such as: precedence, preference, progression. In

mathematical terms, an ordering on a set of objects is a binary relation that is tran-

sitive and antisymmetric. If we consider the order relation as non-strict, we can add
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reflexivity. The following definitions and results are borrowed from [DP90].

Definition 2.2.1 ([DP90], pg. 2). Let P be a set. An order (or partial order) on P

is a binary relation on P that is reflexive, antisymmetric, and transitive. �

A set P equipped with an order relation ≤ is called an ordered set (or a partial ordered

set, or a poset) and it is written as
(
P,≤

)
.

Definition 2.2.2 ([DP90], pg. 7). Let P be an ordered set and let x, y ∈ P . We say

x is covered by y (or y covers x), and write x ≺ y or y � x, if x < y ∧ ∀(z | z ∈

P : x ≤ z < y =⇒ z = x ). �

Given an ordered set P we can form a new ordered set P d (the dual of P) by defining

x ≤ y to hold in P d iff y ≤ x holds in P . Given a statement Φ about ordered sets

which is true in all ordered sets, then the dual statement Φd is true in all ordered

sets, and it is obtained by replacing all occurrences of ≤ by ≥ and vice versa.

Definition 2.2.3 ([DP90], pg. 14). Given an arbitrary set Q ⊆ P and x ∈ P we

define

• ↑Q = {y ∈ P | ∃(z | z ∈ Q : y ≥ z )}, and we call it up Q (dual: down Q)

• ↑x= {y ∈ P | y ≥ x} (dual: ↓x) �

Definition 2.2.4 ([DP90], pg. 15). Let P be a poset and Q ⊆ P . We call a ∈ Q a

maximal element iff ∀(x | x ∈ Q : a ≤ x =⇒ a = x ) (dual: minimal element ).
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We call a ∈ Q the greatest (or maximum) element iff ∀(x | x ∈ Q : x ≤ a ) or a is

a maximal element in Q, comparable to all elements in Q (dual: the least element).

If the greatest element of P exists, it is also called top element and it is written >

(dual: bottom element, ⊥). �

If P is the power set of a set X, with the ⊆ as the ordering relation, then

>(P(X)) = X and ⊥(P(X)) = ∅.

2.3 Lattices

Definition 2.3.1 ([DP90], pg. 27). Let P be a poset and let S ⊆ P . An element

x ∈ P is an upper bound of S if ∀(s | s ∈ S : s ≤ x ) (dual: lower bound). The set

of all upper bounds for S is denoted by Su (read ”S upper”) and it is written as

Su = {x ∈ P | ∀(s | s ∈ S : s ≤ x )} (dual: ”S lower”, Sl). �

If Su has a least element, x, then x is called the least upper bound or supremum of

S, sup(S ) (dual: greatest lower bound, infimum, inf (S )). When S = P , if > of P

exists, P u = {>} and sup(P) = >. Dually, if ⊥ of P exists, P l = {⊥} and inf (P) =

⊥. When S = ∅, ∅u = P and, if ⊥ of P exists, sup(∅) = ⊥. Dually, if > of P exists,

inf (∅) = >.

If sup{x, y} exists, we write it as x ∨ y or x join y. Dually, if inf {x, y} exists, we

write it as x ∧ y or x meet y. Similarly, we write
∨
S (the join of S) for sup(S ) and∧

S (the meet of S) for inf (S ), respectively.
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In a poset P , the least upper bound, x ∨ y of any two elements, {x, y} may fail to

exist because x and y have no common upper bound or they have no least upper

bound. For example, let P = {∅, {a}, {b}, {c}, {a, b}}, with ⊆ the ordering relation.

The partial order is represented in Figure 2.1. We see that {a} ∧ {b} = ∅, and simi-

larly, {a} ∧ {c} = ∅ and {b} ∧ {c} = ∅, respectively. Thus, any pair of 2 elements in

P has a meet. We see that {a} ∨ {b} = {a, b}, however, neither the {a, c} pair, nor

the {b, c} pair has a join; there is no set element in P that contains either of these

two pairs. Hence P is not a lattice, the meet and join do not exist for any pair of

elements of P .

{a, b}

{a} {b} {c}

∅

Figure 2.1: Poset

Definition 2.3.2 ([DP90], pg. 29). Let P be a non-empty poset. P is called a lattice

if ∀(x, y | x, y ∈ P : (x ∨ y) and (x ∧ y) exist ). P is called a complete lattice if

∀(S | S ⊆ P :
∨
S and

∧
S exist ). �

In the lattice definition, S = ∅ is allowed. Since
∨
∅ = ⊥ and

∧
∅ = >, any complete

21



M.A.Sc. Thesis - Alicia Marinache6 McMaster - Software Engineering

lattice is bounded, or it has bottom and top elements.

The following definitions and results are borrowed from [DP90].

Definition 2.3.3 ([DP90], pg. 131). Let L be a lattice. L is said to be distributive

if it satisfies the distributive law

∀(a, b, c | a, b, c ∈ L : a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ). �

Definition 2.3.4 ([DP90], pg. 143). Let L be a lattice with a top > and a bottom

⊥. For every a ∈ L, we say b ∈ L is a complement of a if a ∧ b =⊥ and a ∨ b = >.

If a has a unique complement, we denote this complement by a′. �

Definition 2.3.5 ([DP90], pg. 143). A lattice L is called a Boolean lattice if

i L is distributive

ii L has a top and a bottom

iii ∀(a | a ∈ L : !∃(a′ | a′ ∈ L : a′ is complement of a ) ) �

Definition 2.3.6 ([DP90], pg. 163). Let L be a lattice with bottom element ⊥. Then

a ∈ L is called an atom if ⊥≺ a. The set of all atoms in L is denoted by A(L). �

Corollary 2.3.1 ([DP90], pg. 164). Let L be a finite lattice. Then the following

statements are equivalent:

i L is a Boolean lattice

ii L is order-isomorphic to the powerset of its atoms

iii ∀(a | a ∈ L : !∃(a′ | a′ ∈ L : a′ is complement of a ) ) �
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{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Figure 2.2: Boolean lattice for P({a, b, c})

In Figure 2.3 we show an example of a Boolean lattice isomorphic to the powerset of

the set of atoms {a, b, c}.

2.4 Algebraic structures

The following definitions and results are borrowed from [BM41]. Let B be a set of

elements, and let there be a binary operation � on B. The operation � is said to be

idempotent iff ∀(x | x ∈ B : x�x = x ). The operation � is said to be commutative

iff ∀(x, y | x, y ∈ B : x � y = y � x ). The operation � is said to be associative iff

∀(x, y, z | x, y, z ∈ B : x � (y � z) = (x � y) � z ).

Two binary operations � and ? on B are said to satisfy the absorption law iff

∀(x, y | x, y ∈ B : x�(x?y) = x?(x�y) = x ). They are said to be mutually distribu-

tive iff ∀(x, y, z | x, y, z ∈ B : x�(y?z) = (x�y)?(x�z) ∧ x?(y�z) = (x?y)�(x?z) ).
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On a set B equipped with a binary operation � we call identity element a distin-

guished element, e ∈ B, such that ∀(x | x ∈ B : x � e = e � x = x ).

Definition 2.4.1. A semigroup is an algebraic structure,
(
B, �

)
, where B is a set of

elements and � is an associative binary operation. The semigroup is called commu-

tative if the operator � is commutative. �

Definition 2.4.2. A monoid is an algebraic structure
(
B, �, e

)
, where

(
B, �

)
is a

semigroup and e is the identity element over �. The monoid is called commutative if

� is commutative. �

Definition 2.4.3. A Boolean algebra is an algebraic structure

B =
(
B,+, ·,−, 0, 1

)
,

where + and · are binary operations on B, − is a unary operation on B, called

complement, 0 and 1 are distinguished elements of B, and the following postulates

are satisfied:

(B1)
(
B,+, 0

)
is a commutative monoid;

(B2)
(
B, ·, 1

)
is a commutative monoid;

(B3) + and · are mutually distributive;

(B4) ∀(x | x ∈ B : x+−x = 1 ∧ x · −x = 0 ). �

24



M.A.Sc. Thesis - Alicia Marinache9 McMaster - Software Engineering

Additionally, on a Boolean algebra, the two distinguished elements satisfy the follow-

ing two axioms, called the annihilator for + and ·, respectively:

• Annihilator for +: ∀(x | x ∈ B : x+ 1 = 1 )

• Annihilator for ·: ∀(x | x ∈ B : x · 0 = 0 )

On a Boolean algebra we can define the ordering relation, and the strict ordering

relation, as follows:

x ≤ y
def⇐⇒ x+ y = y

def⇐⇒ x · y = x (2.2)

2.5 Cylindric Algebras

The notion of cylindric algebra has first been presented by Alfred Tarski in [THM71],

following the development of Boolean algebra. While Boolean algebra developed alge-

braic theories to represent propositional calculus, a new theory was needed to model

quantification and equality. By adding the cylindrification operator for quantifica-

tion, and the diagonal element for equality, Tarski was able to build an algebraic

structure for representing first-order logic with equality. In doing so, he created an

algebraic theory accessible to mathematicians who do not have a detailed knowledge

of the logical apparatus.

In our work we are only interested in the cylindrification operator, hence we focus

our mathematical background on diagonal-free cylindric algebras.
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Definition 2.5.1 ([THM71]). A diagonal-free cylindric algebra of dimension α is an

algebraic structure

B =
(
B,+, ·,−, 0, 1, ck

)
k<α

,

where k, α ∈ N, +, · are binary operations on B, 0, 1 are distinguished elements of

B, −, ck are unary operations on B, and the following postulates are satisfied for any

x, y ∈ B, and any k, λ ∈ N with k, λ < α:

(C1) the structure
(
B,+, ·,−, 0, 1

)
is a Boolean algebra

(C2) ck0 = 0

(C3) x ≤ ckx

(C4) ck(x · cky) = ckx · cky

(C5) ckcλx = cλckx �

Axiom (C2) expresses the normality of the ck operator, and axiom (C3) expresses the

generalization aspect of the ck operator. Axiom (4) is a close analogy of the modular

law in lattices. Axiom (5) expresses the commutativity of the ck operators.

Cylindric algebras can be used to model an information system, by interpreting the

elements of B as pieces of information, the · operator as combination of information,

and the 0 as ”no information”. In this context, axiom (C2) ensures that the cylin-

drification of no information yields no information. Axiom (C3) shows that through

cylindrification the information is expanded, not restricted, thus the cylindrification

of any piece of data must contain that piece of data.
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Proposition 2.5.1 ([THM71]).

(1) ckx = 0 ⇐⇒ x = 0

(2) ck1 = 1

(3) ckcky = cky

(4) x · cky = 0 ⇐⇒ y · ckx = 0

(5) x ≤ y → ckx ≤ cky

(6) x ≤ cky ⇐⇒ ckx ≤ cky �

The proofs for the above results can be found in [THM71].

To better understand cylindric algebras, we give its geometrical interpretation as a

k-dimensional cylindric algebra that represents the universe of all k-dimensional ob-

jects (a set of k-dimensional points) on which the Boolean operators (intersection,

union, negation) create new solids [THM71]. The operation of cylindrification on the

i-th dimension can be understood as a projection of the solid on the k-1 space that

is being extended to the whole ”cylinder” along the removed dimension. Figure 2.3

shows the representation of a two-dimensional cylindric algebra. In Figure 2.4 we give

the geometrical interpretation of axiom (C4) in a two-dimensional cylindric algebra.

In [IL84], the authors show there exists a natural embedding of the relational algebra

described below and the diagonal-free cylindric set algebra. Since its introduction

in [Cod70], Codd’s relational model of data has been accepted as a clear and succinct

model for relational databases.

Let U be a fixed set of attributes, A1, A2, · · · , An. We call a set of attributes J ⊆ U a

type. With each attribute Ai ∈ U there is associated a non-empty attribute domain,

D(Ai). A relation of type J is a set of tuples R ⊆ ΠAi∈JD(Ai); an element t ∈ R is
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0

1

C0X

C1X

U

U

X

Figure 2.3: Cylindric algebra: geometrical representation [THM71]

called a tuple (of type J). For a tuple t in R, we write τ(R) = τ(t) = J , and we call

the τ operator the type of R (or t, respectively). We say that a tuple t of type J is a

mapping, associating a value t(Ai) ∈ D(Ai) with each attribute Ai ∈ J . A restriction

of the mapping to K ⊆ J is written as t[K].

In database theory, a relation of type J is generally assumed to be finite and it

is represented as a table with columns representing each attribute in J , and rows

corresponding to tuples. The following basic relational operators are defined:

• Projection (”vertical” decomposition): πK(R) = {t[K] | t ∈ R}, where K ⊆

τ(R)

• Selection (”horizontal” decomposition): σE(R) = {t ∈ R | E(t) ⇐⇒ true},

where E is the selection condition, usually defined as a logical formula where the

atomic conditions are of the form (Ai = a), a ∈ D(Ai) or (Ai = Aj), Ai, Aj ∈ U .

• Union (the usual set theory union): R ∪Q
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0

1

XY

C0X

C0Y

C0X ∩ C0Y = C0(X ∩ C0Y )

Figure 2.4: Cylindric algebra: geometrical representation of axiom (C4). [THM71]

• Join (natural join): R on Q = {t | τ(t) = J ∪K ∧ t[J ] ∈ R ∧ t[K] ∈ Q}

The following results are borrowed from [IL84].

Let R be any relation, let J = τ(R), and let us define 1 = ΠAi∈JD(Ai) (the universe

of tuples). The mapping

h(R) = {t ∈ 1 | t[J ] ∈ R}

is obtained by extending every tuple in R to the entire set of attributes in U (in all

possible ways). It is easy to observe that h(R) can be considered an element of a

diagonal-free cylindric set algebra of subsets of 1, with the cylindrification operator

corresponding to attributes in U .

On a cylindric algebra, we consider generalized cylindrification on a subset of multiple

dimensions. Let J = {k1, k2, · · · kn}, such that ∀(i, ki | i ∈ N, ki ∈ J : i ≤ n ∧ ki <
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α ).

c(J)x
def
= ck1ck2 · · · cknx

The mapping h defines a natural embedding of the relational algebra into the diagonal-

free cylindric set algebra of subsets of 1.

Theorem 2.5.2 ([IL84]).

(a) h(πK(R)) = c(U−K)h(R)

(b) h(σE(R)) = σE(h(R)) = h(R) ∩ σE(1)

(c) h(R ∪Q) = h(R) ∪ h(Q)(τ(R) = τ(Q))

(d) h(R on Q) = h(R) ∩ h(Q) �

The proof of the above results can be found in [IL84].

Part (a) of the theorem shows that we perform a projection not by shrinking the

relation (through removal of one or more attributes), but by expanding it with ev-

ery possible value of the removed attributes. In [GWW09], the authors observe this

method of projection bridges the gap between relational database and ontologies.

In traditional relational models, the absence of data is generally treated as negative

information, while in knowledge systems it is treated as absence of knowledge. For

example, in a database, two address rows (tuples) related to a person, Jane, can be

interpreted as ’Jane has exactly 2 homes’. In an ontology, the same information is be
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interpreted as ’Jane has at least 2 homes’. Thus, ontologies make no assumption about

facts that have not been explicitly described; this open-world behaviour is easily cap-

tured by the cylindrification operator, while the projection would have inaccurately

restrict the information. The removed attributes describe the part of knowledge we

do not explicitly possess, we may assume any value for those attributes.

2.6 Mathematical structures

In [Mar00], we find that a mathematical structure is a set equipped with a collection

of functions, relations, and distinguished elements. To describe such a structure we

use a language that has symbols for the operations (or functions), relations, and con-

stants (or distinguished elements). The language allows us to write statements and

interpret them.

Given a set S, we call f : Sn → S a function of arrity n, or an n-ary function on S.

Similarly, we call R ⊆ Sn an n-ary relation.

Definition 2.6.1. ([Mar00]) We call signature and we write

Σ =
(
F , R, C, {nf}f∈F , {nR}R∈R

)
, where F is a set of function symbols f with

positive integers nf the arrity of each f ∈ F , R is a set of relation symbols R with

positive integers nR the arrity for each R ∈ R, and C is a set of constant symbols. �

For example, the signature of rings is defined as Σr =
(
{+,−, ·}, ∅, {0, 1}, {2, 2, 2}, ∅

)
,

where +,−, · are binary function symbols and 0, 1 are constants.
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Definition 2.6.2 ([Mar00]). Let Σ be a signature and let M be a non-empty set,

called the universe or domain. We define the interpretations of the symbols f,R, c as

a set of functions fM : Mnf → M for each f ∈ F , a set of relations RM ⊂ MnR for

each R ∈ R, and a set of elements cM ∈M for each c ∈ C, respectively.

We call a Σ-structure and we write M =
(
M, {fM}f∈F , {RM}R∈R, {cM}c∈C

)
. �

The set of constants C is a special set of functions, as constants are nullary functions

(functions of arrity 0). Any of the sets F , R, C may be empty.

Definition 2.6.3. A mathematical structure is called an algebraic structure if R = ∅.

A mathematical structure is called a relational structure if F = ∅. �

In Section 2.1 and 2.4 we gave examples of relational and algebraic structures, re-

spectively.

2.7 Specifications

In Section 2.6 we have given the definition of a signature Σ and an Σ-structure. In

order to define a language, we need to describe both its syntax and the rules that show

how the language functions. In Section 2.7.1 we detail the syntax of a mathematical

language, while in Section 2.7.2 we describe its specification.
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2.7.1 Language Syntax

The following definitions and results are borrowed from [HH93, EM85].

Definition 2.7.1 ([HH93]). Let Σ =
(
F , R, C, {nf}f∈F , {nR}R∈R

)
be a signature

and let X be a set of variables.

We call TX(Σ) the set of X-terms of type Σ defined inductively as follows:

• X ∪ C ⊆ TX(Σ) (basic terms)

• ∀(t1, t2, . . . , tnf
, f | t1, t2, . . . , tn ∈ TX(Σ) ∧ f ∈ F : f(t1, t2, . . . , tnf

)) ∈

TX(Σ) (composite terms)

• There are no other terms in TX(Σ).

We call Φ(Σ) the set of formulas of type Σ and define it inductively as follows:

• ∀(t1, t2, . . . , tnR
, R | t1, t2, . . . , tnR

∈ TX(Σ) ∧ R ∈ R : R(t1, t2, . . . , tnR
) ∈

Φ(Σ) ) (atomic formulas)

• Let � ∈ {∧,∨,→,↔} be a logical operator and Q ∈ {∀, ∃} a quantifier.

∀(φ, ψ, x | φ, ψ ∈ Φ(Σ) ∧ x ∈ X : ¬φ ∈ Φ(Σ) ∧ φ � ψ ∈ Φ(Σ) ∧ Q(x | x ∈

X : φ(x) ) ∈ Φ(Σ) ) �

Given a signature Σ and a set of variables X, we call free variables in a term t ∈ TX(Σ)

the set FV (t) defined inductively by:

• ∀(x | x ∈ X : FV (x) = {x} )

• ∀(c | c ∈ C : FV (x) = ∅ )
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• ∀(t1, . . . , tnf
, f | t1, . . . , tnf

∈ TX(Σ) ∧ f ∈ F : FV (f(t1, . . . , tnf
)) =

⋃
(i |

1 ≤ 1 ≤ nf : FV (ti) ) )

A term with no free variables is called closed term.

In a formula, any variables that occur in a quantifier are called bound variables. In

a given formula φ any occurrence of a variable not bound by a quantifier is a free

variable in φ. A variable may have both free and bound occurrences in a formula

e.g., φ ≡ ((∀xp(x, y)) → q(x)). In this example x is bound in p, while it is free in q.

Variable y is free in p. A formula with no free variables is called closed formula.

2.7.2 Algebraic Specifications

Definition 2.7.2 ([EM85]). Given a Σ signature and a set of variables X, we call an

equation w.r.t. Σ the triple e = (X,L,R), where L,R ∈ TX(Σ). �

If L,R are ground (closed) terms, we call e a ground equation. On a ground equa-

tions, the set of variables X = ∅.

A specification consists of a signature Σ and a set E of equations w.r.t. Σ [EM85]. An

algebraic specification is an algebraic structure of type Σ which satisfies all equations

in E.

Extending this definition, we will consider a specification as the tuple SPEC =(
Σ, E, Fm

)
, where E is a set of equations and Φ a set of formulas w.r.t. signature

Σ. A Σ-structure M of specification SPEC must satisfy all equations in E and all

formulas in Φ.
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Chapter 3

Literature Survey

In this chapter, we survey the literature for similar mathematical approaches on the

formalization of ontology structure. In Section 3.1, we look at the existing repre-

sentations of knowledge, with a focus on ontologies. In Sections 3.2 and 3.3, we

examine two approaches to a formal definition for ontologies: as relational structures

and as algebraic structures. In Sections 3.2.1 and 3.2.2, we look at existing general,

domain-independent relationships in ontologies. In Section 3.3.1, we examine an ex-

isting information system, called information algebra. In Section 3.3.2, we examine

the ontologies as a model for category theory. In Section 3.5 we discuss a number of

other ontology formalisms.

3.1 Knowledge representation

3.1.1 Introduction

Before we start analysing and formalizing any new theories, we need to clearly un-

derstand and define the key concepts in this thesis. What is data, information, and
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knowledge? What are the differences between them? What is knowledge represen-

tation? Why do we need them? These are a few questions we need to answer in

order to proceed with the presentations of our proposed mathematical theory and its

applications.

In [Zin07] we find a comprehensive discussion on data vs information vs knowledge.

Data is facts, observations, unorganized and unstructured. Information is data in

context: structured, categorized, given meaning. Knowledge is information with un-

derstanding, information being evaluated, organized. For example, ”John”, ”1.75”,

”m” are all pieces of data. In the context of a medical record system, we categorize

”John” as a Name, ”1.75” as Height, and ”m” as Unit for height; these are now

information. In the context of defining ”Average Height” as between 1.65 m and

1.80 m, we can deduct that John is of Average Height; this is knowledge. In the

context of computer science, we see data as symbols, with no meaning; information

as structured, organized data, with explicit relationships between them; and knowl-

edge as implicit relationships that can be inductively or deductively generated from

existing information. If it is persisted in the system, knowledge becomes information.

Figure 3.1.1 illustrates this example.

Representation is a relationships between two domains, usually one being more ab-

stract and the other more concrete [BL04]. Knowledge representation is mainly a way

of using symbols to represent a collection of statements or concepts. In [Dav93] the

author describes five roles that knowledge representation can take; we have detailed

36



M.A.Sc. Thesis - Alicia Marinache2 McMaster - Software Engineering

”John” 1.75 ”m”

Data

Name Height Unit

John 1.75 m

Information

AverageHeight:= 1.60m ≤ Height ≤ 1.85m

Knowledge: John has AverageHeight

Figure 3.1: Data, Information, Knowledge

them in Section 1.2. The first role is being a surrogate for the concrete ’thing’ it rep-

resents, in order to enable reasoning about the knowledge, rather than acting only on

the information. Thus knowledge representation becomes a crucial step in reasoning

on data.

Knowledge can be shared, and researchers need a representation that enables easy

sharing and merging. For our thesis, knowledge is used to reason upon; the represen-

tation enables various methods and algorithms to be used to reason on existing data

and information. In the following sections we discuss a few approaches to knowledge

and information formal representation.

3.1.2 Knowledge representation through Ontology

The idea to represent knowledge in hierarchical structures, in order to enable auto-

mated reasoning on it, has been studied for over 35 years, with little results [GPL04].

The knowledge-base building domain has faced many challenges during its relatively

short history. First, researchers have been arguing on which aspect of knowledge-base
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engineering to be addressed first: representation or reasoning? Some application do-

mains, such as the medical field, focused on the engineering of a unified system and

succeeded (UMLS, the medical ontologies, etc.). Other fields have been less successful

in developing a formal knowledge representation and expert system.

From reviewing the literature, it seems that each field, each domain of application,

sometimes even each project, starts by engineering their own version of ontology,

instead of reusing or extending existing ones. Thus, the research on knowledge rep-

resentation through ontologies has shifted from engineering one formal system that

can be universally applied or extended, to merging, sharing, and aligning existing

ontologies. In other words, there is no common formal definition of what an ontology

is.

In [DJBF+08], the authors focus on the knowledge representation aspect, motivated

by the fact that the field is dynamic and knowledge is an evolving, living subject, thus

ontologies must be constantly be updated. In order to keep the updates as objective

as possible, little to no human interaction is desired, and the focus switches onto

building tools to automate the process of adding, deleting, and replacing knowledge.

In order to do that, an ontology is defined as a formal mathematical structure, used

to build neighbour sets, or concepts that are closely related. These sets are in turn

used to build equivalence classes for terms and concepts, and automatically update

the ontology from existing documents.

In the context of the semantic web, in order to automatically extract knowledge from
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a document, both the ontology and the knowledge base are formally defined [Add10].

With the new formal structures, the authors define a data language, used to automate

pattern extraction, and ultimately generate new knowledge.

3.2 Ontology as a Relational Structure

The philosophical definition of ontology is the study of that which is (from the Greek

onto- i.e. being and -logia i.e. study) [Gru95, Oxf]. Ontologies have been described

as catalogs of the ”things” that exist in a certain domain of interest, and the relation-

ships between the things [Spe06]. In the context of knowledge engineering, Gruber

is one of the first to formally describe an ontology as “an explicit specification of a

conceptualization” [Gru95]. With this definition, the things are called concepts and

their realization is known as entities or individuals. Between the concepts of any

domain there are relations, which themselves can be categorized using relation types.

In our research, we focus on the general, structural relationships between the concepts

of an ontology. These are domain-independent relationships, which can be found in

any type of ontology. The following is a short, non-exhaustive list of relationships

found in a variety of existing ontologies.

3.2.1 Taxonomical relationships

Taxonomically, ontologies are pure classification systems, thus having two types of re-

lationships: isA and hasA. The isA relationship itself comes in two flavours. The first

is supertype-subtype and is used to classify classes of concept; e.g., Dog isA Mammal ,
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where Dog and Mammal are both classes of concepts. The second flavour is type-

instance and is used to relate individuals to their type (or class, or concept); e.g.,

Max isA Dog , where Max is an entity, the instance of the concept Dog . In a similar

way, the hasA has two mereological aspects. The first is the component-integral object

type of relationship, also known as parthood; e.g., Car hasA Wheel , where both Car

and Wheel are concepts. The second aspect is the member-collection type of relation-

ship, that links a concept to a group of concepts; e.g., Team hasA Player .

In the domain of natural language, we find a variety of semantic relationships, such

as: synonyms, antonyms, morphological, subsumption, and mereological relations.

At the conceptual level, synonyms can be seen as the equivalence relationship, as

described in [Gil02]. The subsumption relation can be seen as the supertype-subtype

isA relationship [Hea92], [NKCN08], [Bra83]. Mereological relationships, or the rela-

tionships of parthood, are discussed below in more details. Antonyms are a strictly

semantical relationship, and as such they pose no interest to our thesis. Similarly,

morphological relationships, known as the transformation of words, are domain spe-

cific, not structural, and they are out of the scope of this work.

3.2.2 Mereological relationships

Mereology is the study of parthood relations, from the Greek µε%oς, ”part” [Var15].

Mereology has been studied since antiquity and by many scholars. We present details

found in [Var15], [GAM03], [WCH87]. In natural language, parthood relationship

can have multiple meanings, such as: composition, aggregation, or containment. The

composition and aggregation describe the relationship between a holonym (the whole)
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and a meronym (the part). The difference between the two is in the life cycle or

purpose of the meronym. In aggregation, the part exists individually outside the

relationship; in composition, the part cannot exist without the whole. For example,

Person partOf Company is an aggregation relationship; if the company ceases to ex-

ists, the people continue to have meaning or purpose. Account partOf Company is

a composition relationship; when the company does not exist, its accounts have no

more meaning. We observe that hasA and partOf describe the same relationship,

in opposite directions: hasA is directed from the whole or collection to the part or

member, while partOf is directed from the part to the whole. We say that hasA is

the inverse of partOf, and vice versa.

Intuitively, the isA relationship, as subsumption (not instantiation) is transitive:

(A isA B ∧ B isA C ) =⇒ A isA C . Similarly, partOf relationship is transitive:

(A partOf B ∧ B partOf C ) =⇒ A partOf C .

In [Var15], we find the parthood relationship expressed mathematically as a partial

order, written as ≤. Intuitively the parthood is reflexive, as everything is considered

part of itself. The parthood relationship is transitive; any part of a part of a whole

is itself a part of the whole. The parthood relationship is asymmetric as well, as

two distinct things cannot be part of each other. Other mereological concepts can

be expressed with parthood. For example, equality is written as =, and defined by

∀(x, y | x, y ∈ P : x = y
def⇐⇒ x ≤ y ∧ y ≤ x ). The proper parthood relationship

is defined by ∀(x, y |: x < y
def⇐⇒ x ≤ y ∧ ¬(x = y) ).
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There are many philosophical questions that arise regarding how mereological rela-

tionships change relative to time, space, etc. From the taxonomical and ontological

point of view, the relativity of mereological relationships to real life parameters can

be safely ignored. Our scope is to articulate the mathematical structure for an on-

tology, thus it suffices to describe the mereological axioms ’in void’. An exhaustive

discussion of various philosophical issues can be found in [Var15].

3.2.3 Other domain-independent relationships

In studying a variety of domain specific ontologies, as well as core ontologies, we

discovered a number of other domain-independent relationships [Gil02, LG05, Mar,

Dub, FOA, GO], etc. We discuss below each of these relationships.

The memberOf relationships is just a binary relation; it is not reflexive, anti-symmetric

or transitive. Formally, the memberOf is represented by set inclusion, A memberOf B

def⇐⇒ A ∈ B.

The linkedTo and associateTo relationships are both reflexive and transitive. Se-

mantically, they are being represented as a non-directional link between two concepts,

thus they are symmetric, A linkedTo B =⇒ B linkedTo A.

The dependentOn relationship is similar to the linkedTo and associateTo, in that it

is reflexive and transitive. A dependentOn B ∧ B dependentOn A =⇒ the relation

is cyclic, thus it is not anti-symmetric.
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The synonym relationship can be expressed as the equality relationship, which, in

turn, can be expressed using the partOf relation, as we have seen in Section 3.2.2.

In [LG05] the authors discuss a variety of spatial and temporal relationships. A few

of them are generic, domain independent, such as: before and after as temporal

relators, onTopOf and below etc. as spatial relators. The temporal relators are partial

orders, and so are the spatial relators (in a linear space). Other spatial relators, such

as locatedIn and coveredBy can be expressed as partOf.

3.3 Ontology as an Algebraic Structure

Ontology experts have been faced with the task of representing ontologies in a format

that can be fed into and understood by computers. Below we discuss some approaches

on formalizing an ontology using algebraic structures.

3.3.1 Information Algebra

The connection between different representations of information has been studied

previously by Kohlas and Stark [KS98]. They have proposed a new approach to

modeling semantic information, called information algebra, and showed that relational

databases are a model of this theory. The information algebra is comprised of a

mathematical structure, called the organized data set,
(
Φ, D

)
, where Φ is the set of

information and D is a lattice, together with a set of ten axioms.

In [KS98] the authors define the theoretical mathematical structure describing infor-

mation processing, called ’information algebra’. Information is considered as a set of

elements, or pieces of information. There are two main operations on information:
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composition (or combination) and focusing (or reduction). Composition of informa-

tion refers to getting two or more pieces of information combined into a new piece;

or seeing that an information may be composed from different elements. If Φ is the

set of pieces of information, the combination operator is denoted as multiplication:

· : Φ× Φ→ Φ. Intuitively, the combination operator is associative and commutative

(the order the information is combined doesn’t matter). Thus, the structure
(
Φ, ·
)

is

a commutative semigroup. Focusing of information describes the part of information

that answers a specific question (the frame or domain). A partial order is defined on

the set of frames, D with the meaning: if x and y are frames in D (representing two

questions), x ≤ y means that y is more precise than x, or x is coarser than y. D is

assumed to be a lattice, with x ∧ y being the infimum, the finest frame that is coarser

than both x and y (dual definition for supremum, x ∨ y).

Each information φ ∈ Φ concerns a certain domain d(φ) ∈ D, where d(φ) is called the

label or mark of φ. The combination operator satisfies the labeling axiom: d(φψ) =

d(φ) ∨ d(ψ).

Φ contains unit elements ex for each frame x ∈ D such that ∀(φ ∈ Φ | d(φ) = x →

φex = φ). The unit element ex represents the empty information over frame x.

If x ∈ D and φ ∈ Φ such that x ≤ d(φ), then φ↓x denotes the part of information in φ

which concerns frame (question) x. This operation is called focusing, ↓x : Φ×D → Φ,

and it satisfies a number of axioms, such as: transitivity, combination, idempotency,

and stability [KS98].

Information algebra is a generalization of relational algebra, thus a mathematical

framework to support any information system. The axioms defined in the information

algebra have a direct correspondence to properties of relational algebra. In particular,
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the combination and focusing operators solve some of the computational problems of

query processing.

3.3.2 Ontology as a graph in Category Theory

Category theory is a powerful mathematical branch that abstracts a mathematical

structure into a collection of its objects and morphisms between the objects. It also

provides rules for combining existing structures into new ones or decomposing a given

structure into more elementary ones.

Many properties of mathematical systems can be graphically represented in a simple

diagram, which depicts the objects of a collection, C, and how they relate in the

context C (the arrows between the objects). In figure 3.2 we show the representation

of a category with objects X, Y, Z, morphisms f, g, g ◦ f, and one of the identity

morphisms, 1X .

X Y

Z

f

g

g ◦ f

1X

Figure 3.2: Category theory: graphic representation

While in the ontological domain the experts usually represent ontologies as a graph

or tree, the need for a more formal approach rose, and the result was that category
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theory became a likely formalism for ontological structure representation. There are

many examples of such approaches in the literature and we discuss a few below.

In [JD01], we find such an example from e-commerce. The vertices of the diagram

represent the entities (types, or the objects of the domain), the arrows represent

various relationships between entities (the morphisms). By viewing ontologies as

trees or directed graphs, the edges on these structures represent relations that can be

composed. When considering real-life applications, the commuting diagrams usually

represent business rules. Applying the mathematical system of category theory to an

ontology enables the discovery of implicit pathways, and may represent new knowl-

edge for the domain expert.

In [KHES05] the authors are faced with the task of distributing and integrating on-

tologies. As with any type of information, ontologies may be shared and combined.

Consider that a relationship from ontology A to ontology B can be defined, repre-

senting a transformation or translation of concepts and relations in one ontology into

the terminology of the other. If we also can define a relationship from ontology B to

ontology C, the immediate question is: ”how can we transform A into C?”. It is a

very natural step to recognize the situation lends itself to category theory, where the

ontologies are now the objects and the relationships between them morphisms. By

representing the ontological aspects through category theory, we can use additional

results, such as ontology merging, that extends the product elements of category the-

ory. Future research can focus on applying the abstract and very general framework
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of category theory to the more concrete discipline of ontologies, to discover new al-

gorithms and representations, as well as to provide a formal, unified framework for

ontology engineering.

In [HC06], the category theory is proposed as a formal language for defining on-

tologies, by making the same observation: ontologies are collections of concepts at

different levels of abstraction and specialization, with relationships between the con-

cepts, where relationships are as important as the concepts themselves. Providing

this mathematical theory as a model for ontologies and knowledge representation al-

lows analysts and domain experts to have a common foundation for understanding

and sharing their systems, complete with functionality, components, and calculations.

The mathematical system enables one to prove or disprove that the system exhibits

certain properties and behaviours. Properties of the system can be engineered with

precision, they synthesize the system in a proper, logic manner.

3.4 Other Ontology Formalisms

Other ontology formalisms are: Frame Logic, Description Logic, and Formal Con-

cept Analysis. Frame Logic treats classes, entities, and their relationships as ob-

jects [dBH04]. For example, in Frame Logic we express ”John is a Person” as

John : Person and ”John is Mary’s Child” as Mary[has−Child → John]. John,

Mary, has-Child, and Person are all terms.

Description Logic is a Frame Logic extension in which classes are treated as unary

predicates, and their relationships are binary predicates. The entities are terms. In
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Description Logic, the two statements above are expressed as Person(John) and

hasChild(Mary, John), where only the entities John and Mary are terms, and Per-

son and hasChild are predicates. Description Logic is separated into two parts: the

T-box and A-Box. The T-box (or the terminological box) is the collection of defi-

nitions (or terminology) for the application domain, the predicates that relate only

classes (or concepts). The A-box (or the assertional box) is a collection of facts (or

assertions) about a specific interpretation of the domain, it contains the predicates

that relate entities to classes.

Formal Concept Analysis (FAC) is a mathematical theory of data analysis using

formal contexts and concept lattices. Data is presented in a very basic format, as a

lattice of concepts and their attributes, called formal context. Formal concepts are

built from concepts sharing the same attributes.

3.5 Discussion

Most of the existing algebraic formalisms define an ontology as a strictly hierarchical

structure. Information algebra and Formal Concept Analysis consider strictly rela-

tional datasets, where concepts are related by the isA or hasA relationships, and other

relations are ignored. A lattice of concept is formed, based on taxonomical relations.

As such, the meaning of the relationships is not formally described or understood.

Description Logic brings the other relations into the picture, however they do so in a

static, monolitic way, where the definition of the ontology contains both T-box and

A-box equations. The organised data sets are usually formalised through relational al-

gebras, not taking in account the need to capture the open world aspect of ontologies.
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As we have seen in the previous sections, there exists many approaches to formally

describing an ontology. However, most of the efforts deal with a single aspect of

ontologies, that of knowledge representation and management, by focusing on the

creation, sharing, and reuse of knowledge. Also, based on our review, we have not

found any formal approach to describing the link between an ontology and its data

structure. The literature contains examples of building an ontology from a data struc-

ture, or creating a data structure from an ontology, however no research on formally

mapping a data structure to an existing ontology.

We look at capturing the ontology structure by using the partOf relation instead of

the taxonomical ones. We also capture the other relationships in an ontology as a

family of graphs with certain properties, which will be discussed in the next chapter.

By building the lattice of concepts through the partOf relation we give the relation

a clear understanding, and we enable the link between the organised data sets and

the ontology structure (the concepts of the lattice are indices in the data structure).

Finally, by using Tarski’s cylindric algebra to capture the organised data set, we can

now describe the open world of ontologies.

In our research we aim to formalize both the ontology and a given organised set of

data in such a way that a mapping between the two is possible. The mathemati-

cal system obtained can be used with existing reasoning systems, or new reasoning

systems can be developed. Thus, the recently developed ontology-based data-access

technology [CGL+12] becomes a model for our theory.
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Most of the formalisms presented take a static approach, data is usually incorporated

in the ontology definition, and if something changes in either the structure or the data,

the entire definition of an ontology must be modified. We aim for a dynamic approach,

that allows a modular approach, in the sense that when the data changes, only the

domain information structure needs to be modified. In our research, we further

separate the DL into specific mathematic structures, making use of the separation of

concerns paradigm. In doing so, we open the door to allow multiple interpretations on

the same ontology definition, as well as using multiple data sources on one definition.
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Chapter 4

Domain Information Structure

In this chapter, we introduce the notion of a (domain) information structure based

on ontologies and we give its mathematical structure. We start by observing that

the information system can be separated into three distinct components. The first

component is the structure of information that it deals with, which is given in Sec-

tion 4.1 as an abstract ontology represented by a set of concepts and the relationships

between them. The second component, which is described in Section 4.2, is the data

stored in the information system, given by a set of values for the concepts, also called

realizations of concepts or entities. In Section 4.2, we propose a formal mathematical

theory that describes the domain information structure, by linking the two structures

together. In Section 4.3, we describe the third components, which is the algebraic

specification that gives more links between the two previous elements of the informa-

tion system.
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4.1 Abstract Ontology

As discussed in Section 1.2, ontologies are widely used today to classify and analyze

information. They capture the set of concepts in a domain, their attributes, and the

relationships between the concepts. The process of concept classification is known

as concept analysis. In our work we focus only on the general relationships between

concepts, such as the relations isA, memberOf, hasA. We call such an ontology the

abstract ontology, in the sense that it describes the most general, abstract view of an

application domain.

On an abstract ontology, let C be a set of its concepts. On C we define a binary op-

erator ×, which represents the combination of two concepts. Semantically, the order

of the concepts in a combination does not matter, a concept c = c1× c2 is isomorphic

to a concept c′ = c2 × c1. Thus, we require that × is commutative (strictly speak-

ing up to an isomorphism). In addition, we require that the operator × is idempotent.

Let 〈C,×, e
C
〉 be a commutative idempotent monoid of concepts. Intuitively, the e

C

concept is a kind of pseudo-concept that is neutral to the composition of concepts.

Definition 4.1.1. For every c1, c2 ∈ C, we say that c1 is a partOf c2, that we denote

by

c1 vC
c2

def⇐⇒ ∃(c | c ∈ C : c1 × c = c2 ) (4.1)

�
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As shown in Section 3.2.2, the partOf relation is a partial order, satisfying the three

axioms of posets. Considering the mereological relationship just a partial order is

a simplification, as the relation is much more than that (a full discussion on other

principles of mereological relationships is found in [Var15]). The poset properties are

its core properties and they allow us to build the structure of the ontology, as well as

to link it to organised data sets, as described below.

Starting from a main domain concept, we consider a subset L ⊆ C of concepts, on

which the partOf forms a Boolean lattice of concepts, L =
(
L,v

C

)
. The subset

L contains the main concept, along with all its parts and subparts until its atoms.

Therefore, e
C

is included in the subset L; the e
C

concept is the bottom concept: even

if two concepts are structurally unrelated, they do have one concept in common, the

pseudo-concept e
C

. The lattice represents the structure of the main domain concept,

which we call the top of the lattice, and we write it >L. If we consider the set of

all atoms in the lattice, A(L), we see that the lattice is isomorphic to the lattice

of P(A(L)), which is a Boolean lattice. Hence L is a Boolean lattice, as shown in

Section 2.3.

We start with a finite set of concepts, as the real life application domains contain

a finite set of concepts. The combination operator × is commutative (up to an iso-

morphism) and idempotent, and as such the lattice of concepts is finite. We show an

example of such a lattice in Figure 4.1. Note that the lattice can be large and not all

concepts have a meaning in the application domain, however they must be present in

the lattice, to ensure it is a Boolean lattice.
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Menu

v
C

Pizza Soup

Base Topping Ingredient Herb

eC

Figure 4.1: L =
(
L,v

C

)
, L ⊆ C

The concepts in the lattice L may be related to other concepts in C through one or

more relationships. We call the concept that belongs to the lattice the top element of

the relationship. We consider only subsets of concepts that can be connected to the

lattice: from any concept in the relational structure we can reach the top element, by

relation composition. The relationships can be represented as rooted graphs, where

the root is always part of the lattice.

Given a (possibly empty) family G = {Gi}i∈L of rooted graphs on subsets of C, with

each Gi we associate a relation Ri. The relations Ri do not need to be orders, but

they need to be connected to the top element. Given an element a ∈ C, we can use

its relational representation, Ra defined as {(x, x) | x = a}.

Definition 4.1.2 ([SS91]). Let Ci ⊆ C, and Ri a relation on Ci. We call a rooted

graph the graph Gi =
(
Ci, Ri

)
iff ∃!(ti | ti ∈ Ci : L ;Rti ⊂ Ri

∗ ). We denote a
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Menu

v
C

Pizza Soup

Base Topping Ingredient Herb

eC

Vegetarian

NonVeg

Cheesey

isA(Pizza)

Cheese Meat Vegetable
isA(Topping)

isA(Ingredient)

Figure 4.2: Family of rooted graphs

rooted graph as Gi =
(
Ci, Ri, ti

)
, and we call ti the root of Gi or its top element. �

The above can be written as follows

ti ∈ Ci is root iff ∀(c | c ∈ Ci : c = ti ∨ (c, ti) ∈ Ri
+ ) (4.2)

An example of a rooted graph is illustrated in Figure 4.2, where Pizza is the root of

the graph.

The carrier sets of two rooted graphs Gi, Gj ∈ G, for i 6= j, do not have to be disjoint

(i.e., a concept can be part of two relations). For example, the concept Vegetable is

part of the Topping rooted graph GTop =
(
CTop, RTop, T opping

)
, with a possible struc-

ture shown in Figure 4.2, where RTop is a hierarchical isA relation. The same concept

Vegetable is part of a Ingredient rooted graph GIng =
(
CIng, RIng, Ingredient

)
, where

RIng is another isA relation.
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We can now formally define the abstract ontology as a mathematical structure:

Definition 4.1.3. Let
(
C,×, e

C

)
be a commutative idempotent monoid. Let L =(

L,v
C

)
be a Boolean lattice, with L ⊆ C, such that e

C
∈ L. Let G = {Gti}ti∈L be a

family of rooted graphs at ti.

We call an abstract ontology the mathematical structure O =
(
C,L,G

)
. �

The definition indicates that each relation has a top element, which is the root of the

corresponding rooted graph, and that the root on any rooted graph in G ends up in

the lattice. It also ensures that all the concepts in each relation are connected to the

main lattice structure. If G =
(
{ti}, I, ti

)
, then ti must be part of the lattice.

The ontology structure also ensures that there are no disconnected concepts. A

concept is either part of the lattice or part of one of the rooted graphs that are rooted

in the lattice. With this understanding, we write

C = L ∪
⋃

(Gi | Gi ∈ G ∧ Gi =
(
Ci, Ri, ti

)
: Ci ).

Proposition 4.1.1. Let O =
(
C,L,G

)
be an abstract ontology.

∀(c1, c2 | c1, c2 ∈ C : c1 vC
c2 ⇐⇒ c1 × c2 = c2 )

Proof.

c1 vC
c2

⇐⇒ 〈 Definition 4.1.1 〉
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∃(c | c ∈ C : c× c1 = c2 )

=⇒ 〈 ∀(a, b, c | a, b, c ∈ C : a = b =⇒ a× c = b× c ) 〉

∃(c | c ∈ C : c1 × c× c1 = c1 × c2 )

⇐⇒ 〈 × is commutative 〉

∃(c | c ∈ C : c× c1 × c1 = c1 × c2 )

⇐⇒ 〈 × is idempotent, c1 × c1 = c1 〉

∃(c | c ∈ C : c× c1 = c1 × c2 )

⇐⇒ 〈 c× c1 = c2 〉

c2 = c1 × c2

The ⇐= part is immediate:

Proof.

c1 × c2 = c2

=⇒ 〈 Definition 4.1.1, ∃c = c2 〉

c1 vC
c2
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4.2 Domain Information Structure

In Section 2.5, we have discussed the link between relational algebras and cylindric

algebras, and the reason we use cylindric algebras to define the information system,

instead of the widely used relational algebras.

Using Codd’s relational data model, we consider a structured dataset with a collec-

tion of indices. An entity a ∈ A is written as a tuple of values for the given set of

indices, or an element of a Cartesian product. The partOf relation is defined in this

context, and viewed as a relationship between projections on a subset of index values

in the Cartesian product.

The structure of the data being described by the abstract ontology, the set of indices

is represented by the carrier set of the lattice of concepts: the top element and all its

parts and their subparts, down to atoms, including the pseudo-concept e
C

. We express

the data set structure through the cylindric algebra: A =
(
A,+, ·,−, 0, 1, ck

)
k∈L,

where ck is the cylindrification operator on all the subparts of concept k ∈ L, defined

as follows.

∀(k, ki | k, ki ∈ L ∧ k = ×(i | 1 ≤ i ≤ n : ki ) : ckx
def
= ck1ck2 · · · cknx ) (4.3)

What we ultimately need to do is to link the data to the ontology structure. We do

that by defining three functions, as follows.

Definition 4.2.1. Let O be an abstract ontology as defined in Definition 4.1.3 and
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let A =
(
A,+, ·,−, 0, 1, ck

)
k∈L be a cylindric algebra. We call associated concept the

operator τ ′ : A → C which associates an entity to the concept it instantiates. For

a given Gi =
(
Ci, Ri, ti

)
∈ G, and c ∈ Ci we call the associated type the operator

ρi : Ci → L defined as ρi(c) = R+
i (c) = ti. We can define ρ =

⋃
(Gi | Gi ∈ G : ρi ).

We call type the operator τ : A→ L defined as τ = ρ ◦ τ ′. �

Therefore, an entity can have multiple types depending on the relation considered for

its associated concept.

Example 4.2.1.

Consider the lattice of concepts for a restaurant menu, described in Figure 4.3. The

concepts Menu,Pizza, Soup,Base,Topping , Ingredient ,Herb, and e
C

form the lattice

of concepts. Concepts Cheese,Meat ,Vegetables are part of rooted graphs, one with

root Topping , and one with root Ingredient . Mozzarella,Parmesan,Ham, etc. are

entities.

Consider the entity ThinAndCrips , a realization of concept Base. The associated

concept for it is given by τ ′(ThinAndCrips) = Base. With Base being in the lattice,

the type of ThinAndCrisp is given by τ(ThinAndCrisp) = Base. In this case, the

associated concept of an entity and its type correspond to the same concept.

Consider the entity Tomato, a realization of concept Vegetable. Its associated type

is given by τ ′(Tomato) = V egetable. However, its type depends on the relationship

considered. If we consider Tomato as a soup ingredient, then its type is τ(Tomato) =

ρ(τ ′(Tomato)), where ρ represents the relationship in the rooted graph at Ingredient .

Thus, τ(Tomato) = Ingredient. If we consider Tomato as a pizza topping, its type
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is given by τ(Tomato) = Topping.

We can now link the two structures into one mathematical system.

Definition 4.2.2. We call domain information structure a mathematical structure

I =
(
O,A, τ

)
, where O =

(
C,L,G

)
is an abstract ontology as presented in Defini-

tion 4.1.3, A =
(
A,+, ·,−, 0, 1, ck

)
k∈L is a cylindric algebra, and τ = τ ′ ◦ρ is the type

operator, such that the following postulates are satisfied for all a, b ∈ L and every

c ∈ C:

(1) c ∈ Ci ∧ ρ(c) = ti ∨ c ∈ L ∧ ρ(c) = c

(2) τ(a · b) = τ(a)× τ(b)

(3) τ(0) = >L

(4) τ(1) = e
C

�

In the context of C being the set of concepts and A the set of entities, intuitively,

Axiom (1) expresses the fact that the type of an entity, or the concept it represents, is

part of the lattice L. In other words, a concept is expressed as a tuple of its subparts.

Axiom (1) describes the structure as a loosely typed structure, by ensuring that when

the associated concept of an entity is in a rooted graph, its type is represented by the

root of the graph. A loosely typed structure presents the advantage of generalization,

by treating all concepts in a given connected relation as the top element, from the

point of view of its type or structure. If complete structural details are required, then

strongly typed structure should be considered instead. In our structure all concepts
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are either part of the lattice, or part of a rooted graph, hence connected to the lattice.

As such, all entities will have an associated concept that is either part of the lattice

or, when the associated concept is part of the rooted graph, they can be represented

by the root through the given relation. Axiom (2) says that when we combine two

entities, the type of the resulting entity is the same as the combination of the types

each entity. Axioms (3) and (4) ensure the validity of Axiom (2).

For every a, b ∈ A:

τ(a · b) = τ(a)× τ(b)

=⇒ 〈 Substitute b with 0 〉

τ(a · 0) = τ(a)× τ(0)

⇐⇒ 〈 Annihilator for · 〉

τ(0) = τ(a)× τ(0)

This must be satisfied for every a ∈ A, thus it holds only for τ(0) = >L.

Similarly,

τ(a · b) = τ(a)× τ(b)

=⇒ 〈 Substitute b with 1 〉

τ(a · 1) = τ(a)× τ(1)

⇐⇒ 〈 Identity element over · 〉

τ(a) = τ(a)× τ(1)

This must be satisfied for every a ∈ A, thus it holds only for τ(1) = e
C

.
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The indices on an entity are concepts in the Boolean lattice. When we cylindrify an

entity a ∈ A on a concept k ∈ L, we might extend the type of a with the indices of

k. We have

∀(a, k | a ∈ A ∧ k ∈ L : τ(cka) = k × τ(a) ) (4.4)

For every ti, tj ∈ L, we denote by c(tj\ti) the operator ck such that:

c(tj\ti)
def
= ck, where k = ×(c | c ∈ A(L) ∧ c v

C
tj ∧ ¬(c v

C
ti) : c ) (4.5)

Example 4.2.2.

Consider the lattice of Order concept described in Figure 4.4, where Order has five

subparts, OID , Customer , Date and Address . Each of these concepts, except OID

has more subparts; the bottom of the lattice is the pseudoconcept e
C

. (Note: some

of the concepts in the Boolean lattice are not shown, to ensure readability.)

An entity a ∈ A is a tuple of values for its atomic subparts. For example, a =

(156,′Michael′,′ Smith′) is a possible instantiation of the Customer concept, and we

say a is of type Customer .

We write τ(c) = Customer and we can interpret it as {CID,F irstName, LastName}.

On A we define a new relator, (instance) partOf, and we write it as v:

a v b
def⇐⇒ b ≤ c(τ(b)\τ(a))a (4.6)
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This definition expresses the fact that the entity b must be contained in the cylin-

drification of its subpart a, with the cylindrification executed on the indices that are

found in b, and not found in the subpart a.

In Example 4.2.2, we have o = (a, 100456, p, 2015, 10, 20, 26, ”MainSt.”) and

a = (156,′Michael′,′ Smith′). Moreover, Customer v
C

Order , with τ(a) = Customer

and τ(o) = Order. The cylindrification of entity a on the concept that represents

parts that are in Order , but not in Customer is the set of all entities of type Order

that contain the subpart a, in other words the set of all the orders for customer a.

We write it as c(Order\Customer)a = {o | o ∈ A ∧ c v o}. We can now use all the

axioms of the information structure to reason on the ontology and organised data

sets, to generate new knowledge.

Proposition 4.2.1.

1. ∀(a, b | a, b ∈ A : τ(c(τ(b)\τ(a))b) = τ(b) )

2. ∀(a, b | a, b ∈ A : τ(c(τ(b)\τ(a))a) = τ(a)× τ(b) )

Proof. For any a, b ∈ A, let ca = ×(c | c ∈ A(L) ∧ c v
C
τ(a) ∧ ¬(c v

C
τ(b)) : c ),

cb = ×(c | c ∈ A(L) ∧ c v
C
τ(b) ∧ ¬(c v

C
τ(a)) : c ), and

cab = ×(c | c ∈ A(L) ∧ c v
C
τ(b) ∧ c v

C
τ(a) : c ). With these definitions,

τ(a) = ca × cab and τ(b) = cb × cab.

1. τ(c(τ(b)\τ(a))b)

= 〈 Definition 4.4, 4.5 & tj = τ(b) & ti = τ(a) 〉
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×(c | c ∈ A(L) ∧ c v
C
τ(b) ∧ ¬(c v

C
τ(a)) : c )× τ(b)

= 〈 Definition of cb above 〉

cb × τ(b)

= 〈 Proposition 4.1.1, Definition 4.6 &

τ(b) = cb × cab =⇒ cb vC
τ(b) 〉

τ(b)

2. τ(c(τ(b)\τ(a))a)

= 〈 Definition 4.4, 4.5 & tj = τ(b) & ti = τ(a) 〉

×(c | c ∈ A(L) ∧ c v
C
τ(b) ∧ ¬(c v

C
τ(a)) : c )× τ(a)

= 〈 Definition of cb above 〉

cb × τ(a)

= 〈 τ(a) = ca × cab, Definition above 〉

cb × ca × cab

= 〈 × is idempotent, cab = cab × cab 〉

cb × ca × cab × cab

= 〈 × is commutative 〉

(ca × cab)× (cb × cab)

= 〈 τ(b) = cb×ab & τ(a) = ca × cab, Definitions above 〉

τ(a)× τ(b)
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Proposition 4.2.2.

1. In a domain information structure, all the entities of a rooted graph Gi ∈ G

represent the same type

2. ∀(a, b | a, b ∈ A : a v b =⇒ τ(a) v
C
τ(b) )

Proof.

1. τ ′(a) = ca ∧ τ ′(b) = cb ∧ ca, cb ∈ Ci

=⇒ 〈 Definition 4.2.1 & τ = ρ ◦ τ ′ & x = y =⇒ f(x) = f(y) 〉

τ(a) = ρ(τ ′(a)) = ρ(ca) ∧ τ(b) = ρ(τ ′(b)) = ρ(b)

=⇒ 〈 Definiton 4.2.2, Axiom 1 〉

τ(a) = ti ∧ τ(b) = ti

=⇒ 〈 Transitivity of = 〉

τ(a) = τ(b)

2. a v b

⇐⇒ 〈 Definition 4.6, notation ck = c(τ(b)\τ(a)) 〉

b ≤ cka

⇐⇒ 〈 A is a Boolean algebra & Definition 2.2 〉
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b · cka = b

=⇒ 〈 x = y =⇒ ckx = cky 〉

ck(b · cka) = ckb

⇐⇒ 〈 Definition 2.5.1 (4) 〉

ckb · cka = ckb

=⇒ 〈 x = y =⇒ τ(x) = τ(y) 〉

τ(ckb · cka) = τ(ckb)

⇐⇒ 〈 Definition 4.2.2 (2) 〉

τ(ckb)× τ(cka) = τ(ckb)

⇐⇒ 〈 Proposition 4.2.1, with notation ck = c(τ(cj)\τ(ci)) :

τ(ckb) = τ(b) & τ(cka) = τ(a)× τ(b) 〉
τ(b)× τ(a)× τ(b) = τ(b)

⇐⇒ 〈 × is comutative 〉

τ(a)× τ(b)× τ(b) = τ(b)

⇐⇒ 〈 × is idempotent 〉

τ(a)× τ(b) = τ(b)

⇐⇒ 〈 Definition 4.1.1, ∃c = τ(b) 〉

τ(a) v
C
τ(b)
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4.2.1 Extending relationships

On the abstract ontology, the relationships Ri can be extended using the lattice struc-

ture, thus extending the ontology. From a relation Ri we can infer other relationships

between elements of Ci and elements of L.

Definition 4.2.3. LetO =
(
C,L,G

)
be an abstract ontology and letGi =

(
Ci, Ri, ti

)
∈

G be a rooted graph, with ti ∈ Ci its root.

We call the lattice extension of Ri, the relation Ri
↑ = Ri ∪R′i, where

R′i = {(c, t) | c ∈ Ci ∧ t ∈ L ∧ (c, ti) ∈ Ri ∧ ti vC
t}. �

Proposition 4.2.3. Let Gi =
(
Ci, Ri, ti

)
∈ G be a rooted graph, where Ri is transi-

tive. The lattice extension of Ri is given by R′i = {(c, t) | c ∈ Ci ∧ t ∈ L ∧ ti vC
t}.

Proof.

R′i

= 〈 Definition 4.2.3 〉

{(c, t) | c ∈ Ci ∧ t ∈ L ∧ (c, ti) ∈ Ri ∧ ti vC
t}

= 〈 Ri is transitive ⇐⇒ Ri = R+
i 〉

{(c, t) | c ∈ Ci ∧ t ∈ L ∧ (c, ti) ∈ Ri
+ ∧ ti vC

t}

= 〈 ti is root and Definition 4.2 〉

{(c, t) | c ∈ Ci ∧ t ∈ L ∧ true ∧ ti vC
t}

= 〈 Identity of ∧ 〉

{(c, t) | c ∈ Ci ∧ t ∈ L ∧ ti vC
t}
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Up until now, we have only considered one type of relations, the ones defined between

concepts. In order to complete the ontology specification, we need to also consider

relations between individuals (realizations of concepts) and a special type of hetero-

geneous relations between an individual and a concept that is not its type.

We can extend relationships on concepts to heterogeneous relationships on entities

and concepts. Considering the example in Figure 4.5 Giraffe eats Leaf is a relation

between two concepts: Giraffe and Leaf . Berta and Gabby are two individuals of

associated concept Giraffe, thus they carry all the properties of their class. We always

have Berta eats Leaf and Gabby eats Leaf .

Mathematically we express this by the following:

∀(a, c, c′, Gi | a ∈ A ∧ Gi ∈ G ∧ c, c′ ∈ Ci :

τ ′(a) = c ∧ (c, c′) ∈ Ri =⇒ ∃(R(A,Ci) | R(A,Ci) ⊆ A × Ci : (a, c′) ∈ R(A,Ci) ) ),

where R(A,Ci) is a heterogeneous relation corresponding to Ri.

In a similar manner we can extend the relationships on concepts to their correspond-

ing relationships on entities. Knowing that Giraffe eats Leaf , we can infer there

exists a realization of concept Leaf , the entity MyLeaf s.t. Gabby eats MyLeaf .

We say that for every rooted graph Gi ∈ G, its relationship Ri has a correspondent

relationship RiA s.t.
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∀(c, c′, Gi | Gi ∈ G ∧ c, c′ ∈ Ci : (c, c′) ∈ Ri =⇒

∃(a, a′, RiA | a, a′ ∈ A ∧ RiA ⊆ A× A : τ ′(a) = c ∧ τ ′(a′) = c′ ∧ (a, a′) ∈ RiA ) ).

4.3 Domain Non-Structural Specification

So far we have only discussed the axioms pertinent to the structural parts of the

information system: the ontology structure O and the data structure A. However,

there are other domain-specific knowledge that ought to be articulated. In this Sec-

tion we discuss an example of this knowledge and we argue for the need of additional

domain axioms. We will call this part of the specification of an ontology domain

non-structural specification.

In [Bec03], we find a reasoning example using an ontology, pictured in Figure 4.5.

In this example, concepts Leaf , Plant , e
C

are part of the lattice, with Leaf v
C

Plant

and e
C
v

C
Leaf. In the literature, both statements Giraffe eats Leaf and

Vegetarian eats Plant are treated as relationships.

We see that the first statement is a true relationship, while the second statement is

the definition of the abstract concept Vegetarian. Such a definition cannot be cap-

tured only within the information structure framework, thus we need to provide the

ontology specification to complement its structure.

As discussed in Section 2.7, given an information structure I, we define its specifica-

tion as the tuple SO =
(
I, E,Φ

)
, where E is a set of valid equations w.r.t. I and Φ

a set of axioms in I.
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Figure 4.5: Living things ontology
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We consider the example in Figure 4.5. From the relations Giraffe eats Leaf and

Leaf v
C
Plant, we infer that Giraffe eats↑ Plant (1).

Using the ontology specification, the vegetarian definition equation can be written as

Vegetarian = {c | c ∈ C ∧ c eats↑ Plant} (2).

From (1) and (2) we infer that Giraffe ∈ Vegetarian. This non-structural knowledge

about the domain is given by formulas on the language of the ontology O.

The ontology specification is given by the set of axioms defined in Sections 4.1 and

4.2, plus all the domain specific axioms, such as definitions of abstract concepts.
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Chapter 5

Discussion

In this chapter, we discuss various aspects of the Information System. In Section 5.1,

we discuss some possible application domains for which the use of the information

system presented in Chapter 4 is suitable. We also discuss the importance of such

techniques and applications. In Section 5.2, we assess the strengths and weaknesses

of the main contributions.

5.1 Discussion

Ontologies have generally been viewed as a hierarchical structure based on the isA

relation. We have seen in the literature survey that the isA relation can have many

interpretations and allows the creation of statements such as Girrafe isA Vegetarian

and Berta isA Giraffe. From the automation point of view, the two statements are

completely different, and trying to translate them into a language to be used by a

computer (for automated reasoning) is a daunting task. Our research aims to solve

this problem by clearly defining relationships and their domain and co-domain, in
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such a way that a translation from English (using an ontology) to a specification lan-

guage is an easy task. For this reason, our hierarchy is based not on the isA relation,

but on the strictly structural partOf relation. All other relationships in the ontology

are treated as a family, with certain properties.

We have based our work on the Description Logic idea, however, we have gone one

step further in applying the separation of concerns. In our research, we define the

ontological structure as one part of the T-box: the set of concepts and their relation-

ships. The second part of the T-box, the actual concept definitions, are contained in

the ontology specification. In DL, the A-box contains the entities and their relation-

ships to the associated concepts. With our data set structure we describe the theory

that governs data sets. By separating the information system into all these modules,

we allow for multiple interpretations (the ontology specification) to be applied on one

ontology definition (O). In a similar way, we allow for multiple data set structures (A)

to be linked to an ontology. Also, the reasoning engine is now completely separated

from the information system. Because we have expressed the information system as a

mathematical structure, any existing reasoners that deal with mathematical theories

can be used in order to discover or generate knowledge. We illustrate the differences

between the Information System and Description Logic with Figure 5.1.

The dynamic aspect of data is captured using our formal definition of ontology w.r.t.

the organised data set. Assume the ontology has been defined at a point in time where

a certain set of data existed. When a new set of data is acquired, the ontology can

be extended with new structural information or new relationships, based on the new
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O =
(
C,L,G

)

Domain non-structural
knowledge specifications

A =
(
A,+, ·,−, 0, 1, ck

)

τ(a): structural link
between O and A

Domain Information Structure

T-Box

A-Box

Description Logic

Figure 5.1: Information Structure vs Description Logic

data set. Based on the parthood of entities in the dataset, we can either extend the

lattice with new concepts, or new lattices could be constructed for new main concepts.

The concepts outside the lattice can themselves have parts on their own. When we

look at the ontology, we see a pattern formed by the lattice and its family of rooted

graphs. This pattern can be applied every time we consider a concept in the on-

tology to be the main concept (the top of the lattice). This allows us to ”slice”

the ontology and analyse this new view, based on which concept is considered to be

the main one. The data set is the one that drives the choice of the main concept, as

the ontological structure (the lattice) describes the structure of the organised data set.

Regarding the partOf relationship, they way we have simplified the parthood might
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not be enough in certain conditions. In our work we consider that two parts combine

into one unique concept. That might not be true in real life, when we can have same

parts making up different concepts, depending on the order of combination or other

considerations. For example, two different concepts might be made up of the exact

same parts; e.g., a table and a chair will both have legs and a top. Our work does

not deal with such situations.

We find very few examples of ontologies linked to data. Usually researchers either

start from a data set and build the ontology, or start with an ontology and crowd-

source the creation of data sets. Below we present a case study, mainly employing

the second method.

5.1.1 Restaurant Menu - Illustrative Example

We have started from the Pizza Ontology as defined in [Piz] and we have it modified

to a Restaurant Menu ontology, as shown in Figure 4.3.

The ontology structure, O is based on the set of concepts, given by

C = {Menu, P izza, Soup,Base, Topping, Ingredient, Broth,Herb, Cheese,Meat,

V egetable, V egetarian,NonV eg, Cheesey, e
C
}. The lattice L, is given by L ⊆ C,

L = {Menu, P izza, Soup,Base, Topping, Ingredient, Broth,Herb, e
C
}. The family

of rooted graphs, G is given by G = {G1, G2, G3}, where

G1 =
(
C1, R1, P izza

)
, C1 = {Pizza, V egetarian,NonV eg, Cheesey}, R1 = isA;

G2 =
(
C2, R2, T opping

)
, C2 = {Topping, Cheese,Meat, V egetable}, R2 = isA;

G3 =
(
C3, R3, Ingerdient

)
, C2 = {Ingerdient,Meat, V egetable}, R3 = isA.

For the A structure, we use the following (simplified) data:

77



M.A.Sc. Thesis - Alicia Marinache4 McMaster - Software Engineering

Category

ID Name PID ID Name PID

1 Pizza 7 Vegetarian 1

2 Soup 8 NonVeg 1

3 Base 1 9 Cheesey 1

4 Topping 1 10 Cheese 4

5 Ingredient 2 11 Meat 4, 5

6 Herb 2 12 Vegetable 4, 5

Basic

ID CategID Name Price

1 10 Mozzarella 7.95

2 10 Parmesan 15.95

3 11 Pepperoni 2.95

4 11 Chicken 10.95

5 12 Tomato 3.99

6 3 ThinAndCrisp 0.95

7 3 DeepPan 1.25

Menu Item

ID CategID Name Price

1 7 Mediteranean 12.95

2 8 Hawaiian 15.95

3 9 3Cheeses 12.95

4 2 Chicken Noodle 4.95

5 2 Minestrone 3.99

Besides the two structures, the information system defines the type functions:

τ ′ : A→ C

τ ′(Tomato) = V egetable

τ ′(Chicken) = Meat

The type of an entity is given either by associated concept, when the concept is in
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the lattice, or by a chosen relationship otherwise.

τ(DeepPan) = Base

τ(Tomato) = Topping

τ(Tomato) = Ingredient

The domain non-structural specification is given by a set of axioms, such as the recipe

formula:

Meat 6∈ V egetarian

Meat 6∈Minestrone

5.2 Assessment of the Contributions

In this section, we discuss the strengths and weaknesses of the main contributions

presented in this thesis. It is important to highlight both the strengths and weaknesses

of the theory developed so that we are able to further refine a solution to the problem

of structural reasoning on organised data sets using ontologies.

5.2.1 Strengths of the Contributions

By formalizing the information system encompassing both the ontology structure and

organised set of data, the new structure can be used to automate knowledge extrac-

tion. We have seen in Section 1.2.2 that there exists automated tools to generate

conjectures from mathematical theory. These tools can be now integrated with our

domain information system and used to generate conjectures and prove (or disprove)

them.
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By separating the information system from the reasoning engine, we can allow mul-

tiple reasoners to be applied for different tasks, with no modifications needed in the

information system. In a similar way, separating the ontology structure from its do-

main non-structural specification, we allow the application of different specifications

or interpretations on the same ontology definition. This is similar to the contextual-

ontologies [BAF+06]. For example, if we have the concept Vegetarian in the ontology,

in one specification we can define it as ”An animal who eats only non-animal prod-

ucts” while in another we can define it as ”A human who eats vegetables, fruits, and

fish”. The concept will stay the same, we do not need to change the ontology and

the existing relationships between concepts, we only change the axiomatic definition

of concepts in the domain non-structural specification.

The separation of concerns in the information system allows for concurrent interpre-

tation of large sets of data. By taking a set of data and applying different ontologies

and interpretations, we can generate knowledge specific to various sectors of domains,

without having to manipulate the entire data set. Only the concepts, entities, and

individuals specific to the domain will be looked at. This allows for rapid analysis

and knowledge generation.

5.2.2 Weaknesses of the Contributions

The proposed structure for a domain information system is formed by layers of math-

ematical structures that bring some structural complexity with it. It also brings a
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steep learning and usability curve with it. Moreover, at this stage of our work, we

only conjecture the usefulness of this structure without demonstrating it.

5.3 Conclusion

The framework presented aims to standardize a domain that has seen little formal-

ization so far. Aside from describing a new mathematical theory that can be used

by existing reasoning engines without any modifications done to the reasoners, our

research allows for multiple interpretations of the same set of data and ontology to

be applied in parallel. This enables analysis of large data sets in a more efficient way.
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Chapter 6

Conclusion and Future Work

In this thesis, we described a new approach to knowledge representation through

formal ontologies and structured data sets. We looked at existing formalizations for

knowledge representation, both through ontologies and through other mathematical

structures, and we have examined the literature for a link between ontologies and

data sets. Based on this survey we have presented a unified view on ontologies and

data structures and we have bridged the formal field of mathematics to that of the

ontological application domains. We have articulated a new mathematical structure

that captures an ontology for which we have shown that the relation partOf forms a

Boolean lattice on a subset of concepts, while other relations form a family of rooted

graphs, whose roots are in the lattice. We have also articulated a new mathematical

theory that governs the data, a theory based on Tarski’s cylindric algebra. We have

described the structural link between the two mathematical structures, using the

typed data operator, thus forming a new mathematical structure, which we call the

domain information structure. We have shown how the typed data operators enable

multiple interpretations of the same data set. We have also described the domain
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non-structural specification, which allows us to capture the application domain in

more detail. We have described a few ways to extend the ontological relationships

and show that they enable basic reasoning on the domain information structure.

6.1 Future Work

In this section we look at future work in the area of knowledge discovery through

ontologies and structured data sets. One aspect of knowledge discovery we have not

examined yet is the reasoning engine. In future work, we will investigate how we can

improve reasoning on a domain information structure, as well as build automated

tools for reasoning.

Another aspect to investigate is parallel reasoning: either by applying multiple datasets

on the same abstract ontology, or applying multiple domain ontologies to the same

data set. This way we will allow the analysis of the same domain through data sets

collected from various sources, as well as the analysis of the same data from multiple

points of view, from different domains.

We also see knowledge generation being used in semantic compression. By describing

the theory that governs the data in even more detail, we can replace large sets of data

by the theory associated to it.
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6.2 Closing Remarks

The quest to represent philosophical and natural language structures into a format

that could be fed to computers is one that humans have been struggled with for

decades. While the problem might never be fully eliminated, by bridging the formal

field of mathematics to the more informal field of ontologies, we hope to bring the

experts from the two fields together, and offer them a common structure they could

work with.
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