
Conto: A Prototype Tool for the Generation and

Utilization of a Configured Ontology

CONTO: A PROTOTYPE TOOL FOR THE GENERATION AND

UTILIZATION OF A CONFIGURED ONTOLOGY

BY

ANDREW LECLAIR1, B.Eng.

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Andrew LeClair2, December 2015

All Rights Reserved

Master of Applied Science (2015) McMaster University

(Software Engineering) Hamilton, Ontario, Canada

TITLE: Conto: A Prototype Tool for the Generation and Utiliza-

tion of a Configured Ontology

AUTHOR: Andrew LeClair3

B.Eng. (Software Engineering)

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Ridha Khedri

NUMBER OF PAGES: x, 132

ii

To my family and loved ones

Abstract

With the massive deluges of data that several domains of study experience, referred to

as Big Data, the need to efficiently process and analyze data has risen. Ontologies have

been employed to structure these domains with the ultimate purpose of generating

new knowledge about the respective domain. Currently, when creating or examining

an ontology, the concepts of the domain are limited to being statically defined in

relation to other concepts. This limitation on the concept’s definition affects the

reasoning process by omitting or not properly representing all information that may

exist in the domain such as how the constantly evolving environment changes how

the data can be understood.

The resulting tool of this research, Conto, allows for the interpretation of a concept

as an abstract data type. When coupled to knowledge generation process, these

interpretations allow the obtention of new knowledge that would traditionally be

unobtainable. The different types of knowledge that can be obtained via the multiple

interpretations are explored in this work using examples of ontologies.

Conto is a Protégé plugin that uses Ontograf to display the ontologies.

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Khedri for

the continuous support of my M. A. Sc. study and related research, for his patience,

motivation, and immense knowledge. His guidance helped me in all the time of

research and writing of this thesis.

I thank my fellow student, Alicia Marinache, for the stimulating discussions, the

constant revisions, and the seemingly endless picture ideas. It seems that we were

able to make it out of the forest afterall.

Last but not least, I would like to thank my family and loved ones: my parents and

to my brothers and sisters for supporting me throughout writing this thesis, and to

my loved for inspiring me to constantly look forward.

v

Contents

Abstract iv

Acknowledgements v

Contents viii

List of Figures ix

1 Introduction 1

1.1 Knowledge Discovery Using Ontologies 7

1.1.1 Introduction to Description Logic and Conjecturing 8

1.1.2 Concept Interpretation . 10

1.2 Motivation . 11

1.3 Problem Statement . 13

1.4 Main Contributions . 14

1.5 Structure of the Thesis . 14

2 Survey 16

2.1 Existing Ontological Research . 16

2.1.1 Ontology Examples . 23

vi

2.2 Existing Reasoning Techniques . 27

2.2.1 Motivation to Reasoning with Ontologies 27

2.2.2 Reasoning with Description Logic 30

2.2.3 Reasoning with non-DL Formalisms 33

2.3 Existing Ontological Tools . 35

2.3.1 Ontology Formalism and Representation Tools 35

2.3.2 Reasoning Tools . 38

2.4 Concept Interpretation and Ontological Configuration 41

2.4.1 Contextual Ontologies . 42

2.4.2 Upper Ontologies . 43

2.5 Conclusion . 45

3 The Design of Conto 46

3.1 Assumptions . 47

3.2 Requirements and Objectives . 48

3.3 The Design of Conto . 50

3.3.1 Architecture . 50

3.3.2 Design Choices . 56

3.4 Expected Benefits . 57

3.5 Conclusion . 58

4 Examples for the Usage of the Tool 60

4.1 Example 1 - Interpreting a Concept 61

4.2 Example 2 - Using Interpretation Functions 64

4.3 Example 3 - Creating New Concepts via Interpretation 67

vii

4.4 Conclusion . 72

5 Discussion 73

5.1 Discussion . 73

5.2 Assessment of the Contributions . 75

5.2.1 Strengths of the Contributions 75

5.2.2 Weaknesses of the Contributions 76

5.3 Conclusion . 78

6 Conclusion and Future Work 79

6.1 Future Work . 79

6.1.1 Reasoning Methods . 79

6.1.2 Applications . 80

6.1.3 Automation/Concurrency . 80

6.2 Closing Remarks . 81

A Detailed Class Diagram 83

Glossary 85

Acronyms 86

Bibliography 86

viii

List of Figures

2.1 A small set of the terms from the The Gene Ontology (GO) [Gen14]. 24

2.2 An example of using the MO [RASG07]. 26

3.1 The architecture that demonstrates how Conto interacts with Protégé 51

3.2 How Conto is a Broker between the repository and Protégé 53

3.3 The analysis class diagram of Conto 55

4.1 The simplified Travel Ontology . 61

4.2 The data that was collected for the concept “Beach” 62

4.3 The concept “Beach” interpreted as a Set 63

4.4 The information within the individual Blue Cove when Beach is inter-

preted as a Bag. 64

4.5 The specific portion of the ontology for Example 2. 65

4.6 The means of the two departments. 65

4.7 The minimum values of the two departments. 66

4.8 The Weather Ontology. 68

4.9 The result of intersecting the concepts January and February. 69

4.10 The maximum temperature that is shared between January and February. 69

4.11 The result of the union between January and February. 70

4.12 The average of the union between January and February. 71

ix

A.1 Detailed Class Diagram of Conto. 84

x

Chapter 1

Introduction

Within the last decade there has been an explosive surge in data being collected.This

deluge of data is commonly referred to as Big Data [Run13]. The diversity in domains

and vastness of data is demonstrated within the medical field with electronic health

records [MD13], in the astronomy field with cataloging interstellar bodies [FB12],

and in the business field with collecting and combining business records and statistics

[GSLG12]. The extreme amount of data that is being accumulated is only one of the

problems of Big Data, the other being the rate that this data is being accumulated. To

put the rate into perspective consider the following two existing scenarios: Feigelson et

al. [FB12] state that the Synoptic Survey Telescope will output between 5-10 terabytes

of data each night, and Gopalkrishnan et al. [GSLG12] estimate that enterprise servers

processed 9.57 zettabytes of data globally in 2008. All this data is stored within

billions or trillions of rows in databases, and all this data needs to be processed,

which is a task that is not possible for humans. Due to the volume and rate of data

being collected, it has been a significant area of research to be able to efficiently

organize and analyze it [HQX12, CJB99].

1

M.A.Sc. Thesis - Andrew LeClair1 McMaster - Software Engineering

To efficiently organize and analyze the data, researchers have begun to better un-

derstand and apply the philosophical ideas of ontology. An ontology is defined by

Gruber in [Gru93] as a formal representation of knowledge, where the knowledge is

represented as a hierarchy of concepts within a domain. Defining knowledge itself is

a philosophical task that is out of scope of this work. However, we will use the defini-

tion presented in [FPSS96], where they claim an interesting pattern to be a sufficient

embodiment of knowledge. Fayyad et al. further refine their definition of knowledge

by creating ways to distinguish the knowledge by measures of validity, novelty, use-

fulness, and simplicity. These qualities together compose a notion of interestingness

– an encompassing metric for acquired knowledge. Assessing the worth of knowledge

with a metric of interestingness is explained to be both subjective and objective:

qualities such as novelty are relative to the domain expert, but the simplicity can

be measured, such as via the size of its digital representation. The goal of creating

the ontology is to represent the knowledge of a domain in a compact, organized form

that is easily readable by computers. The domain itself that the ontology is being

created for can be of any granularity. For example, the domain that the GO was

created for is biological processes, functions, and cellular components [Gen14]. As

one can imagine, this is a very broad domain that is composed of numerous concepts.

This contrasts the more specific ontology of wines in [NM01]. In essence, an ontology

is designed to represent a domain through explicit conceptualizations and relations,

which correspond to the objects in the domain and how they relate [Gru93]. Depend-

ing on the scope chosen for the domain, the concepts that are created will relate to

this granularity. A more general and wide-scoped ontology such as GO will require

more concepts, and more general concepts than that of a specific one such as the

2

M.A.Sc. Thesis - Andrew LeClair2 McMaster - Software Engineering

wine ontology. This leads to the problem of multiple ontologies being created for the

same domains, attributing the variances to differences in scopes or interpretations of

the domain. To help illustrate the variances in scope granularity, we can compare

the GO [Gen14] and the The Music Ontology (MO) [RASG07] to the Ontology of

General Medical Science [fBO15] and the Drug Ontology [SWR+99]. The first two

ontologies, the GO and the MO are designed to conceptualize entire fields such as

the entire field of biology terms and processes in GO. In comparison, The Ontology

of General Medical Science and the Drug Ontology conceptualize domains which are

more specific and particular. Regardless of their domain, the ontologies are designed

to meet Gruber’s definition, and so are hierarchies of concepts that are connected

through relations.

Due to the fact that ontologies conform to this Gruberian definition, they all share

the qualities of being hierarchical and built off concepts and relations. Whether it

be the MO, or the wine ontology, the ontology is a hierarchy of concepts connected

through relations. A concept is any object within the domain. For example, within

the domain of animals, the concept of dog and cat may exist. The concept of dog

represents the physical notion of dog within the domain, and will contain specific

attributes that the concept embodies. The concepts of an ontology are connected

through binary relations. Multiple relations may exist within an ontology, a common

type being mereological relations. Mereology is defined by Leśniewski [EH95, oP15]

as the theory of parthood; the relations of part to whole and of part to part within

a whole. These mereological relations often form the hierarchical structure that is

a defining characteristic of ontologies. This is because the concepts become more

specialized and specific towards the bottom of the hierarchy. Expanding our example

3

M.A.Sc. Thesis - Andrew LeClair3 McMaster - Software Engineering

of the animal domain, the two concepts of dog and cat can be joined with a common

ancestral concept of mammal. We can see that the concept mammal is composed

of, and more general than dog or cat. Although mereological relations are what

often compose the hierarchical structure of the ontology, as was mentioned, other

relations often exist within the ontology which relate different concepts together.

Finally, the idea of an individual can be realized by instantiating a concept. For

example, by defining Fido as a dog, we are creating a specific instance of the concept

dog. An individual is different from a concept because where a concept embodies the

attributes that make up the thing in the domain, whereas the individual is the actual

instantiation.

The structural components that build an ontology are analogous to those found in

Object Oriented (OO) Design [CK94]. The goal of an ontology is to provide meaning

and definition of representations of the world, which is the same goal shared in OO

Design [GHJV94]. In [CK94], Chidamber et al. state that the ontological principles

laid out by philosophers such as Mario Bunge can be applied to objects defined in

OO design. Although Bunge did not state specific ontological definitions for objects,

researchers such as Chidamber have employed Bunge’s definitions for the OO do-

main. This application of Bunge’s generalized concepts to the OO domain has been

demonstrated in works such as [Wan89, WW90]. In an ontology, concepts are de-

fined independent of implementation and encompass the notions of encapsulation,

independence, and inheritance. Substantial concepts have properties, features that

are inherent to the individuals of said concept. Other OO Design paradigms, such

as minimizing coupling and maximizing cohesion, are defined ontologically by Bunge

[Bun12] through notions such as similarity. The notions of OO Design can be easily

4

M.A.Sc. Thesis - Andrew LeClair4 McMaster - Software Engineering

related to those of ontological ideas laid out by philosophers such as Bunge.

The languages and methods for the formalization and implementation of ontologies

is a wide-area of research, which can be seen in [Gru93, KCS13, LNST08, Gua95,

Stu03, WZGP04, WTLH05, NH97]. Several existing formalizations will be discussed

in Chapter 2, however, because of the hierarchical nature of ontologies, Description

Logic (DL) was the natural formalization of ontologies [Obi07], and so will be a focus

of the chapter. To formalize an ontology, the individual components each need to be

formalized: the concepts, the relations, and the individuals. DL does this through

its two components: the Terminological Box (TBox) which defines the concepts, and

the Assertional Box (ABox) which contains the individuals [KSH12]. The concepts of

dog, cat, mammal, and how they are mereologically related would be defined within

the TBox, and the declaration that Fido is a dog would be within the ABox.

The field of organizing the data is an important field of research, but as we have dis-

cussed earlier, it is only one part of the problem of Big Data. The other being the anal-

ysis and comprehension of the data. DL allows for basic reasoning, and several tech-

niques are explored within it [DCTK11, FT12, HQX12, PGS06, TSDM04, WD10].

In [BL04], reasoning is defined as “the formal manipulation of the symbols repre-

senting a collection of believed propositions to produce representations of new ones”.

There are two types of reasoning: deductive and inductive [Uni15, Orl85]. Deductive

reasoning takes existing knowledge and transforms it into new knowledge through

axiomatic definitions or other rules. This is contrasting to inductive reasoning which

takes existing knowledge and generates new knowledge through generalization and

broadening what the existing knowledge claims. In other words, deductive reasoning

is the act of supporting a hypothesis or theory with existing facts and knowledge,

5

M.A.Sc. Thesis - Andrew LeClair5 McMaster - Software Engineering

whereas inductive reasoning is observing patterns or trends in the existing knowledge

and creating a general conclusion based on them [Uni15, Orl85].

Often times, inductive reasoning is thought of as bottom-up, where a hypothesis – or

conjecture – is generated. A conjecture is defined by the Merriam Webster dictionary

as “an inference from defective or presumptive evidence”. The conjecture that is

generated is true to the universe within some confidence, meaning it may be proven

wrong when new data is added to the system. This contrasts the results of deductive

reasoning, which is that the result is always true in the universe, regardless of what

data is added to the system.

The focus of our work is to support future possibilities with inductive reasoning.

Inductive reasoning generates new hypotheses, and attempt to generalize data or find

patterns within the data. Inductive reasoning is ideal in scenarios that are filled

with ill-definedness, or gaps in knowledge, because it attempts to create hypotheses

[Art94]. For these reasons, the results of inductive reasoning are significantly more

novel and dynamic than those generated by deductive reasoning.

To illustrate a conjecture, we will use a system that contains the knowledge of the

temperatures for the days of the months in a year as an example. If we assume our

domain of knowledge to be the temperatures within Canada, it may be observed that

the month January has low temperatures recorded for the first twenty days. A re-

sulting conjecture could be that if the day of the year belongs to January, then it will

be a cold day. The two distinguishing features of a conjecture that separates it from

deductive reasoning shall be shown: future data can contradict the conjecture, and

the conjecture may only be true within the domain of origin. To show the first, we

can see that because the first twenty days of January are cold does not guarantee that

6

M.A.Sc. Thesis - Andrew LeClair6 McMaster - Software Engineering

the twenty-first day will also be cold. The possible future observation that any of the

final eleven days of January are warm would defy the conjecture of January being a

month of only cold days. To demonstrate that the conjecture may only be true in the

domain of origin, we can compare our conjecture to hypothetical knowledge outside

of the domain of Canadian climate. If we were to compare this conjecture to the

recorded data of a country in the southern hemisphere, we would likely observe the

opposite – that if the day of the year belongs to January, then it will be a warm day!

1.1 Knowledge Discovery Using Ontologies

Up to this point, we have discussed the two topics of ontologies and reasoning as

two disjoint topics, however, often times the two are discussed together. Knowledge

Discovery using ontologies is a popular and widely researched topic, as demonstrated

in papers such as [AIS93, BL04, FPSS96, FT12, KCS13, Stu03]. The goal of creating

the ontology is to organize the knowledge and data into a format that is machine

readable, so that a reasoner can be applied and new knowledge may be discovered

about the domain. Thus, the potential knowledge that can be discovered is entirely

dependent on the ontology. As was discussed, an ontology is composed of concepts

in a hierarchical structure that is connected through relations. The goal of this work

was to discover a way that allows us to expand how we understand a concept. We

wished to be able to imbue concepts with data types such that the result is a concept

that contains implicit functions associated with its imposed data type, which can

ultimately strengthen the conjectures we can generate.

To help illustrate the purpose of this research, in this Section we further explore the

7

M.A.Sc. Thesis - Andrew LeClair7 McMaster - Software Engineering

structure of ontologies and the mechanics behind inductive reasoning. It should be of

note that although a multitude of ontologies exist, the similarities in structure between

them allows us to generalize the notion of an ontology to that of the Gruberian

definition. The analysis of the structure helps illuminate us to the limitations that

currently exist, as well as how these limits propagate to the reasoning process.

Within an ontology, the concepts are organized so that each subconcept is a disjoint

decomposition of a common concept. As we have already discussed, the relations

which relate the subconcepts to superconcepts are based on mereology – the study of

parthood. These relations form that decomposition – and the hierarchical structure

of the ontology – by further decomposing each concept into its parts. For example,

the concepts of table and chair are disjoint decompositions of the concept furniture.

Neither a table is a chair, or a chair a table. Other relations may exist beyond the

mereological relations. For example, within the MO [RASG07], there exists the ‘com-

pose’ relation, which describes how a music artist may be related to a composition. It

is evident that the relation ‘compose’ is not mereological in nature, as a composition

is not ‘part of’ the music artist. Since the relation is not mereological, the guarantee

that the structure will remain a hierarchy is no longer there. We may end up with

a structure that is no longer ontological, such as the GO [Gen14], a structure which

shares more similarity to a controlled vocabulary than an ontology. For this reason,

we are limiting our scope of the research to mereological relations.

1.1.1 Introduction to Description Logic and Conjecturing

At the heart of the ontology are the relations and the concepts they relate. Together

they describe the domain; the concepts are the realization of each thing that may

8

M.A.Sc. Thesis - Andrew LeClair8 McMaster - Software Engineering

exist in the domain and the relations relate the things. To properly conceptualize a

domain, the concepts and relations require a formalization to be employed, a popular

choice being DL due to its correspondence of the TBox to concepts and the ABox

to individuals [FT12]. Within DL, a concept is defined by a terminological assertion

which states how the concept is defined within the domain. For example, the concept

Mother may be defined in the declaration:

Mother ≡ Woman u ∃hasChild.Person (1.1)

This states that a mother is someone that is a woman, and has a child that is an-

other person. As we can see, the concept Mother is defined by using other concepts

and relations to other concepts, in particular, the concept Woman and the relation

hasChild. These terminological assertions populate the TBox, which is the compo-

nent that several reasoners currently utilize. The knowledge that is acquired through

these reasoners varies depending on the algorithm employed, and the goal of the user.

For example, subsumption rules can be acquired using the tableau method, and the

knowledge acquired will help decide the satisfiability of the ontology [HS01].

Conjectures can also be acquired from the ontology in the form of association rules,

as demonstrated in [BFGR07, FT12]. An association rule is of the form of If-Then

rules, and are written as X =⇒ Y. The rules can be understood as “If X, then with

confidence c, Y ” where X and Y are individuals within the ontology, and c is the

proportion of cases where this rule is exhibited. In [BFGR07] and [FT12], association

rules are extracted from the information within an ontology. The data may initially

be structured as a database, as is the case of [BFGR07], and the ontology is created

with the desire to reason over it to discover rules that allow a better understanding

9

M.A.Sc. Thesis - Andrew LeClair9 McMaster - Software Engineering

how the data is related. For example, in our earlier example with the ontology of the

weather in Canada, we conjectured “If the day of the year belongs to January, then

it will be a cold day”. We notice it follows the syntax of the rule we just described,

and can be re-written as “Day in January =⇒ cold”. Since in our example all prior

twenty days exhibited this rule, our confidence would be 1. The extent of techniques

that exist for reasoning, and the varying well-established ontologies will be detailed

in Chapter 2.

1.1.2 Concept Interpretation

It can be seen that the ability to reason knowledge is dependent on the concepts and

the relations that connect them. In the current literature, knowledge is often formal-

ized with DL. This means that concepts are axiomatically defined in the TBox by

relating it to other concepts. In other words, the concept is a static conceptualization

of a thing in the domain, and the reasoning process can only utilize how it is related to

other concepts. For example, we may have the concept Temperature Reading which is

related to the concept Weather Forecast by the is-A relationship. Expanding how we

define concepts is the intended purpose of this research. We wish to imbue concepts

with interpretations of abstract data types and their accompanying theory. Contin-

uing the example, we could expand the concept of Temperature Reading in a way so

that it is not only a refinement of the Weather Forecast concept, but also a List. This

would change how the ontology and specifically the concept is understood. Temper-

ature Reading has not changed its relationship to Weather Forecast, but it does now

have the underlying structure of a List. This specific interpretation lends an ordering

to the individuals that populate Weather Forecast, as well as the functions of a List

10

M.A.Sc. Thesis - Andrew LeClair10 McMaster - Software Engineering

such as Head and Tail.

By interpreting Temperature Reading, we change what is available for the reasoner

during the reasoning process. The TBox of the ontology has been augmented with

the properties and operations of a list. Initially, the reasoner had the initial TBox

definitions: mereological relations between the concepts; that a Temperature Reading

is a refinement of a Weather Forecast. With our example interpretation, the reasoner

will have access to an augmented TBox: the mereological relations with the addition

list properties and operations. Alternatively, we can interpret the concept as a Set,

providing the operations that a Set offers, as well as the properties such as containing

individuals with cardinality of maximum one (i.e., no duplicate entries). The idea of

interpretations allows concepts to be imbued with varying theories and data types,

and arms the reasoner with more than just the DL concept definitions. However, the

idea of interpretations also extends how we think of an ontology. Each time we inter-

pret a concept, we create an ontology which is understood differently than before the

interpreting process by augmenting the TBox in different ways. This understanding

of the ontology is called the configuration. A configuration of an ontology is the set

of interpretations applied to the existing concepts.

1.2 Motivation

The ability to configure an ontology with interpretations is an extremely important

area of research for a multitude of reasons. Firstly, as mentioned when first discussing

ontologies, the current understanding of concepts in an ontology is static. In the cur-

rent literature, a concept is a thing that is defined by its relation to other concepts.

11

M.A.Sc. Thesis - Andrew LeClair11 McMaster - Software Engineering

This insufficient understanding extends into reasoning techniques allowing for only

simple conjectures and deductive results. Having the capability to interpret concepts

in different ways will allow a more in-depth reasoning process, generating novel and

significant conjectures. As it currently is, the reasoning methods process the data in a

single static way: the way they are defined in the terminological axioms. Interpreta-

tions of concepts allows reasoning methods to process the data in various ways, with

each interpretation allowing a specific set of functions available. Each configuration

can be imagined as a way of seeing and understanding the domain – a world. Cur-

rently, we are limited to a single static world which we can reason on. By creating a

configuration, we create a new way to understand the data – a new world – in which

we can interact with by reasoning over. It allows for data types and their respective

functions to be injected into the reasoning process over ontologies. In today’s age of

Big Data, the improved mechanisms for reasoning allows industries to condense and

utilize their data by taking advantage of the interpretations and functions that are

provided. For example, clusters of data that are interpreted as list data structures

and organized by the heads of their respective lists. The notion of configurations can

be applied to existing ontologies and datasets, enhancing their reasoning processes so

common issues can be addressed. Common issues existing in popular domains such

as marketing agencies using the existing data to learn new qualities and trends about

the market, and the medical field learning new interactions between medicines and

illnesses [AIS93, WTLH05]. Being able to make conjectures from this new data would

allow industries to effectively take advantage of their large deposits of data, as well

as allow efficient ways to store the vast amounts of data.

In [DCTK11] the popular reasoners of the Semantic Web are compared, and in [CP13]

12

M.A.Sc. Thesis - Andrew LeClair12 McMaster - Software Engineering

it is demonstrated that it is possible to inject collections that encompass set theory

into the Semantic Web language OWL2 DL. Knowing this, it is a matter of making a

tool for Protégé that allows the interpretation of concepts, where the interpretations

are modeled after the Collections Ontology defined in [CP13].

1.3 Problem Statement

The area of interpreting the concepts of an ontology as a data type is an open area

of research. The different interpretations that can be performed on the concepts give

rise to new configurations of the ontology which capture specific understandings of the

domain. Currently, when creating or examining an ontology, the concepts are limited

to being defined in relation to other concepts. When reasoned on, this limitation

on the concept’s definition affects the reasoning process by omitting or not properly

representing all information that may exist in the domain.

With the large volumes of data being accumulated, the need to efficiently acquire

as much useful knowledge has risen. The knowledge that could be derived from the

data is related to our understanding of the world from which the data is collected.

Therefore, each configuration of an ontology leads to a new set of knowledge that

might not be obtained from another configuration. By examining all configurations,

we can efficiently and effectively acquire the maximal amount of knowledge in the

domain.

The work done extends the Protégé tool to allow for the interpretation of concepts

within the ontology, and ultimately the configuration of an ontology, removing this

limitation on the concepts. The respective functions of the interpretation can then

13

M.A.Sc. Thesis - Andrew LeClair13 McMaster - Software Engineering

be applied to the interpreted concepts to learn new knowledge related to the concepts

and its individuals.

1.4 Main Contributions

The main contributions to the ontology field include:

(i) An extension to the Protégé editor that allows for the interpretation of concepts.

(ii) The ability to configure and load the ontology with the desired interpretations.

(iii) The ability to apply functions respective to the interpretation on the concept

(i.e., union of sets, maximum value of adjacent elements of a list, etc.)

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 provides a survey of the current literature related to ontologies and

reasoning.

Chapter 3 introduces Conto which is a result of our work and describes the ele-

ments of design that were put into it.

Chapter 4 is a series of examples that we study to examine the usefulness of Conto.

14

M.A.Sc. Thesis - Andrew LeClair14 McMaster - Software Engineering

Chapter 5 discusses the impact of Conto in expanding how we think of ontologies,

as well as critically evaluating the strengths and weaknesses.

Chapter 6 draws conclusions and suggests future work.

15

Chapter 2

Survey

In this section, we survey the literature of the current state of ontology formalisms,

conjecturing knowledge from ontologies, and tool assistance with these tasks. In

Section 2.1, we look at some existing ontologies that exist in the field of domain

knowledge. In Section 2.2, we explore why ontologies are used for reasoning, and

methods that can be used to conjecture new knowledge, and the domains they can

be applied on. In Section 2.3, we investigate the tool support for creating and editing

ontologies. Finally, in Section 2.4, we evaluate the current research into fields that

relate to the notions of interpretation and configuration.

2.1 Existing Ontological Research

We have stated that DL [KSH12] is a popular formalism for ontologies, and due to its

popularity and natural ability to represent ontologies, it is the focus of this research.

We have also mentioned the Semantic Web and the languages associated with it (such

as OIL+DAML [H+02]), which popular ontology tools such as Protégé [fBIR15] use.

In this section , we will explore research done with DL with respect to ontologies, as

16

M.A.Sc. Thesis - Andrew LeClair1 McMaster - Software Engineering

well as the languages used for implementation. We will explore topics such as the

Semantic Web, as well as reasons to why DL is so popular and ideal for our research.

In addition to this, we will touch on other formalisms outside of DL for the sake

of completeness and comparison. To end this section of the Literature Survey, we

will explore popular ontologies to examine the formalisms they employed and the

languages that implement them.

The Semantic Web

In [H+02], Horrocks describes the language that is known as OIL+DAML which is

intended to design the Semantic Web. The Semantic Web is an extension of the

Web, with goals of providing the framework which will allow the better reuse and

sharing of the information on the Web. In [H+02], many parallels are drawn between

OIL+DAML and DL, claiming that OIL+DAML corresponds to the SHIQ DL. This

means that it includes the following constructors: the basic ALC DL extended by the

transitive roles from the S, role hierarchies from the H, inverse properties from I,

and finally the qualified cardinality restrictions from the Q. Horrocks continues to

specify that OIL+DAML is similar to the TBox of DL. This similarity implies that

the structure of DL, as well as the already existing body of research in DL, could

be applied to the Semantic Web. OIL+DAML was one of the initial formalizations

of DL using RDF syntax, and it later involved into what is now the family of Web

Ontology Language (OWL) languages. This family includes OWL DL, OWL Lite,

and OWL Full.

OWL was the next iteration of the language that structured the Semantic Web, as

described in [Hor05]. The multiple varieties of OWL are built off the SH DL. For

17

M.A.Sc. Thesis - Andrew LeClair2 McMaster - Software Engineering

example, OWL DL is based on the SHOIN (D) DL, which extends OIL+DAML

with nominals (O), replaces qualified cardinality restrictions with just cardinality

restrictions (N), and adds data types ((D)). With this new DL that the Semantic Web

is built on, it became possible to better conceptualize a domain [Hor05, HPsaCAW].

The OWL family ultimately became an important formalization of DL and can be

seen in tools such as Protégé which is built off of OWL DL.

We have investigated the Semantic Web, which is a formalization of DL, but there

exists several other languages that are used for the creations of ontologies that we

will investigate. Each language we will examine has its own advantages and lim-

itations. These niche unique properties have resulted in the spawning of a wide

variety of languages, each built to meet a specific goal. Examples of these lan-

guage properties include the expressive power, the syntax and semantics, and the

inference engine. Determining which languages are the most widely-used is a diffi-

cult task due to the magnitude of existing languages, and opinions differ depending

on the researcher. For example, in [SI02], CycL [MCWD06], Ontolingua [FFR97],

FLogic [KL89], CML [SWA+94], and OCML [Mot98] are considered the most used

and studied traditional ontology languages, whereas in [CGP00], Ontolingua, OKBC

[CFF+98], OCML, FLogic, and LOOM [Cha07] are the most prevalent. Upon obser-

vation, overlap between the languages can be seen, such as FLogic, Ontolingua, and

OCML. Upon noticing this overlap, we will focus our attention on these languages

and formalisms.

18

M.A.Sc. Thesis - Andrew LeClair3 McMaster - Software Engineering

Frame Logic

Frame Logic (FLogic), mentioned in [KL89, CGP00], is a first-order predicate calculus

that integrates frame-based languages. In [KL89], it is mentioned that FLogic was first

conceived to allow object-orientated principles in a database language by supporting

object identity, and allows for properties such as inheritance. It should be noted that

as we have discussed earlier, OO Design principles are prevalent in ontology studies,

and this is a primary motivator behind FLogic. FLogic is composed of a set O of

basic objects, a set of object constructors F , an infinite set of variables V , and the

standard logic connectives and quantifiers. The way an object is thought of in FLogic

is that it is both an instance and a concept; there is always two interpretations. For

example, the object student can be thought of as the class of students, and it can

also be thought of as the instance of the class person. This is to embody the idea of

inheritance, where each class can be thought of as an instance of a superclass. Due

to this nature of inheritance, in FLogic, the concepts and individuals are organized

into a lattice structure. There exists a maximal concept, the meaningless object that

contains no instances, and the minimal element which is the biggest class, or the

unknown object. The lattice structure itself represents the transitive closure of the

IS-A relationship, a topic that is regarded to be controversial (as described earlier in

this paper). Within FLogic, the semantics are defined through what Kifer calls its

interpretation, I. In essence, the Interpretation is a mapping between the objects in

O* by the elements of U, where U is the universe of all objects that have a lattice

structure, and O* is the names of the objects. There exists the difference between

DL and FLogic by the definition of a class. In DL, a class is defined through its

relations to other concepts, which contrasts FLogic where the class is defined through

19

M.A.Sc. Thesis - Andrew LeClair4 McMaster - Software Engineering

its interpretation (or frame specification) [dBH08]. FLogic has proved to be one of

the more popular formalisms compared to DL, and prior Protégé version 4.0, FLogic

was accepted as one of the two types of ontology. The reasons to why DL is favored

over FLogic is discussed in [dBH08], and includes reasons such as that FLogic has a

Closed-World Assumption, and is undecidable. Both these qualities are in contrast

to DL, and inhibit the power of ontologies, where the information is dynamic and

constantly growing, and an important related field of research is reasoning which

requires decidability.

Ontolingua

Ontolingua is an interesting ontology formalism due to the fact that Ontolingua itself

is just a server, and hosts a repository full of ontologies that allow for collaboration

among domain experts. In [FFR97], Ontolingua is described as being designed to

“...support the design and specification of ontologies with clear logical semantics.”.

Ontolingua is built off of two ontology formalisms – Knowledge Interchange For-

mat (KIF) and Frame Ontology (FO) – to combine their abilities and cover their

limitations. KIF is a monotonic first-order logic that has a simple syntax to sup-

port reasoning about relations. KIF allows for the definition of objects, functions,

and relations, however, KIF is an interchange format, and so is tedious to make a

full specification of an ontology. FO, which is built on top of KIF, is a knowledge

representation ontology, and allows for the conceptualization of classes, instances,

subclass-of, and instance-of. However, FO does not natively allow for the expression

of axioms. The combination of KIF and FO allows for the creation of a graphical on-

tology that is powered by KIF-defined axioms. The ontologies themselves are stored

20

M.A.Sc. Thesis - Andrew LeClair5 McMaster - Software Engineering

on the Ontolingua repository allowing for all sorts of collaborators to add, refine, or

query the ontology. Despite the massive expressive power provided by KIF, there is

a lack of tool support for reasoning. In [FHVH+00], it is claimed that the lack of tool

support comes from that Ontolingua does not provide any way for the user to “con-

trol” the expressive power. For this reason, Ontolingua has proven to be useful for

purposes of querying data, but not to create an ontology with the ultimate purpose

of reasoning.

Formal Concept Analysis

Another formalism that is worth of note is Formal Concept Analysis (FCA). Wille

describes FCA in [Wil05] as a subfield of Applied Mathematics based on the math-

ematization of concepts and concept hierarchies. He describes the aim of FCA as

“... to support the rational communication of humans by mathematically developing

appropriate conceptual structures which can be logically activated.”. A core part of

FCA is answering what a concept is, and further, how they may be mathematically

defined. Wille defines a concept as “the basic units of thought formed in dynamic

processes within social and cultural environments.”. He further illustrates that there

are several characteristics behind concepts, such as being domain specific and inde-

pendent of language. A concept can be constituted by the extension – all objects

which belong to the object – and the intension – all attributes which apply to the

objects of the extension. This means that the subconcept-superconcept-relation plays

a heavy role within the formulation of FCA. A formal context can be defined as

K def
= (G,M, I), where G and M are sets and I is a binary relation between G and

M. Specfically, the elements of G and M are formal objects and formal attributes,

21

M.A.Sc. Thesis - Andrew LeClair6 McMaster - Software Engineering

respectively. A formal concept of a formal context is a pair (A,B), where A and

B are an element within G and M, respectively. Wille also defines the subconcept-

superconcept-relation, which is used to create a concept lattice. The concept lattice

is the visualization and ultimate representation of the formal concepts. Within the

concept lattice, each node may represent one or many formal concepts. The exten-

sion of a node consists of all the objects that can be reached by descending the path

from the node, whereas the intension consists of the attributes that can be reached

by ascending the path from the node. In this way, FCA can represent the binary

relations often found in databases in a way that can be reasoned on, and easily un-

derstood by humans. However, as [WVV+01] points out, the major drawback to FCA

is the limited expressiveness that can be compared with a simple database table. For

this reason, FCA is a representation that is ideal for simple binary relations between

concepts and attributes.

Several of the other languages, such as LOOM and OCML, are often rooted in one

of the previously mentioned formalisms (such as LOOM being based in DL, and

OCML being an extension of Ontolingua) [CGP00]. There exists a massive amount

of languages, many not listed in this paper, but they all seem to grow from one of the

formalisms described in this section. In the next subsection, we will explore some of

the ontologies that are used in the public domain. We will investigate the formalism

that has been employed, if one exists, and ultimately discuss if what is claimed to be

an ontology, is in fact an ontology.

22

M.A.Sc. Thesis - Andrew LeClair7 McMaster - Software Engineering

2.1.1 Ontology Examples

Even though there exists a large collection of ontologies available for public use, a

few have become the central focus for domains. In this subsection, we will quickly

evaluate some of these ontologies to demonstrate how they are used, and how they

have been formalized. We will also further discuss the question of what an ontology

is through examples, and if what is claimed to be an ontology is actually an ontology.

The ontologies we will look at is the GO and the MO.

The Gene Ontology

GO was formed when scientists began to notice and acknowledge that there is likely a

single limited universe of genes and proteins [ABB+00]. The goal of the GO was to be

this unification of biology, that allows for the interoperability of genomic data. The

GO is composed of three disjoint ontologies: the cellular component, the molecular

function, and the biological process ontology [Gen14]. As shown in Figure 2.1, the

structure of the GO is a graph, and is described in [Gen14] as “loosely hierarchical”.

Each child term is a specialization of the parent, but there may exist more than one

parent.

In Figure 2.1, the root nodes of the three disjoints can be seen of cellular component,

molecular function, and biological process. They are considered three disjoint ontolo-

gies because there does not exist a parent concept between the three of them, and

thus they are separate. To unify these three ontologies, an arbitrary parent concept

thing can be made that holds no significance other than providing a single top con-

cept. Also shown in the figure are the three types of relations that compose the GO:

is a, part of, and regulates. They are denoted on the graph by the letters I, P, and

23

M.A.Sc. Thesis - Andrew LeClair8 McMaster - Software Engineering

Figure 2.1: A small set of the terms from the GO [Gen14].

R, for is a, part of, and regulates, respectively. However, as we have discussed in the

previous section, an ontology should be formalized through some type of logic and

have defined axioms. When investigating the GO, such a formalization does not exist.

In [SWS03] this is further investigated, and ultimately discusses that although the

GO contains ontology in its title and is built from mostly mereological relations, it is

not an ontology according to the definition of an information scientist or philospher.

Instead, it is best considered a ‘controlled vocabulary’, as opposed to an ontology

which is composed of terminologies with axioms and definitions. As described in

[SWS03], the primary goal of the GO was not ontological either. The authors did not

focus on software expression nor the logical expression of the theory encompassing

the terms. Instead, the focus was directed toward providing a useful framework for

keeping track of the biological annotations that are applied to gene products.

24

M.A.Sc. Thesis - Andrew LeClair9 McMaster - Software Engineering

The Music Ontology

The MO is an ontology that is built on top of several ontologies, such as the Timeline

Ontology and the Event Ontology [RASG07]. The reason for building ontop of the

ontologies is to access information or knowledge that they wish to express when

dealing with music-related knowledge. For example, to provide the description of ‘this

performance happened the 9th of March, 1984’ requires temporal information. The

MO itself is built on RDF, and is specified using OWL, implying that the formalism

behind the MO is DL. This allows the reasoning processes already existing for DL

to be involved in anything made using the MO, such as checking for inconsistencies.

An example of a description of a music production flow using the MO is provided in

Figure 2.2.

One thing that can be observed in the MO is that it allows for relations that exist

beyond just mereological. For example, in Figure 2.2, relations such as produced work

and performance of exists. Allowing for relations that extend beyond just mereolog-

ical may result in an ontology that is not strictly hierarchical, which can be observed

in the MO. Despite the relations that exists within the MO, we can see that it is

based in DL, and moreso, uses OWL to implement the ontology. It can be combined

with other ontologies available on the Semantic Web to allow for the expression of

detailed musical ‘metadata’ which can be reasoned on using DL reasoners.

Remarks on GO and MO

From the examples that have been given, we examined the GO and the MO. Upon

investigation, we discovered that although the GO has the word ontology within its

name, it is not true to it. It has no real formalism, and is not implemented into

25

M.A.Sc. Thesis - Andrew LeClair10 McMaster - Software Engineering

Figure 2.2: An example of using the MO [RASG07].

software, nor do the researchers have the intention to do so in the future. The MO

however, is formalized using DL and is written using OWL so that it may interact with

other ontologies that exists on the Semantic Web, and utilize the currently existing

DL reasoners. We have also encountered the problem with the ontology field stated

earlier in this paper: although the GO and MO are both called ontologies, they have

stark differences that can be observed within their formalization and implementation.

Arguments could also be made to defend the title of ontology for the GO because it

better follows the Gruberian definition of an ontology. GO is a hierarchy that is de-

composed using mereological relations, whereas the MO has several non-mereological

relations. Depending on the specific definition for ontology used, a different verdict

26

M.A.Sc. Thesis - Andrew LeClair11 McMaster - Software Engineering

on the status of the GO and MO could be made.

2.2 Existing Reasoning Techniques

In the previous section we have evaluated several popular formalisms of ontologies,

such as DL and FLogic. In this section of the Literature Survey, we will first explore

literature to determine why researchers choose to use ontologies for reasoning. We

will investigate the strengths and weaknesses to ontologies. We will then explore

research with reasoning methods and techniques on the various ontology formalisms,

with an emphasis on DL due to its popularity in literature.

2.2.1 Motivation to Reasoning with Ontologies

In the previous section, we have seen that ontologies are used for structuring a domain

using concepts and the relationships between them. They provide a structure that

is easily understandable for humans, and is formalized in a way that allows software

to take advantage of the structure for reasoning purposes. The specific reasoning

processes will be explored shortly, but first we wish to understand the motivation for

using ontologies to reason.

In [FEAC02], Fonseca et al. create an architecture which can integrate geographic in-

formation from the numerous sensors on Earth seamlessly. They propose an ontology-

driven geographic information system, which allows users to view information about

the domain. Using ontologies, they are able to better define their domain with richer

concepts, such as the concept Lake. The concepts may not necessarily exist in the

databases the information is pulled from, but rather, created by experts. These ex-

perts may take the data in the databases, and use them as attributes in concepts,

27

M.A.Sc. Thesis - Andrew LeClair12 McMaster - Software Engineering

for example, attributes for a lake may be that it has a pH value, and a total volume

of water. With these concepts and attributes, Fonseca et al. discuss that users can

browse the ontology to retrieve information about specific areas (e.g., a specific lake),

as well as classify images. The image classification utilizes the knowledge base of the

ontology (as well as some assumptions provided by the domain expert) to drive the

image classification algorithm. From the work of Fonseca et al., we can see that the

ontology is an essential part of the research. The ontology provides a structure to the

massive amount of data they have, and the notion of concepts embodying these at-

tributes allows the relation between the data i.e., the data of fresh water and volume

of water can be related together through the concept of Lake.

Another example using ontologies is the work of Rubin et al. in [RDB+06]. In this

paper, Rubin et al. develop a methodology for determining injuries based on images

and ontologies. They utilize two ontologies for the reasoning. The first is a compre-

hensive ontology of anatomy which contains organ identities, adjacencies, and other

information for anatomic reasoning. They also use an ontology of regional perfusion

which contains formal definitions of arterial anatomy. The combination of the geo-

metric model (provided by the images) as well as the ontologies, the consequences

of the injury can be deduced. The results of Rubin’s research includes the ability to

determine which organs are injured given the trajectories of projectiles, whether vital

structures are injured, and the ability to predict the propagation of an injury. The

ontology provides a rigorous structure composed of the domain knowledge for the

reasoning process. Interestingly, whereas the ontology used in [FEAC02] by Fonseca

et al. which changes as information streams in from sensors, the ontologies used by

Rubin et al. does not change. The ontologies used by Rubin et al. act as an expert,

28

M.A.Sc. Thesis - Andrew LeClair13 McMaster - Software Engineering

which consults the image of the injury to deduce the extent of damage, whereas the

ontology used by Fonseca et al. is consulted by an expert for its ability to represent

the vast amount of data.

Jurisica et al. explore ontologies being used for knowledge management in [JMY99].

They discuss that although ontologies may be constructed for different purposes, a

common goal is to enable sharing and reuse among the information of the domain. To

achieve this goal, an ontological commitment must be made, which is an agreement to

consistently use a vocabulary. This means that the ontology must define the entities

and relationships in the domain – it must conceptualize them – and so the information

in the domain must be based on these conceptualizations.

Using the result of Jurisica et al., we can re-evaluate the two cases of Fonseca and

Rubin in terms of this ontological commitment. Fonseca et al. wished to unify the

data of all the sensors, to be able to share the data with the end-users for the ultimate

purpose of reasoning and image classification. This required the ontological commit-

ment to create concepts which used this data. Rubin et al. also made the ontological

commitment to the concepts so that they could reuse the data pertaining to organs

and be applicable to deduce the severity of injury based on the image.

We can see that regardless of the domain – whether it be geography or medical sciences

– ontologies are used for their ability to grant the reuse and sharing of the data. These

traits are provided by the ontological commitment of a consistent vocabulary, which

are utilized by the act of reasoning. Using the ontology for the act of reasoning takes

advantage of the structure which is present, and allows for the access of the vast

amount of data that has been classified.

29

M.A.Sc. Thesis - Andrew LeClair14 McMaster - Software Engineering

2.2.2 Reasoning with Description Logic

The first formalism that will be investigated with respect to its reasoning processes

is DL. This is because of the popularity of DL in the literature, and the wide-range

of research put into the field of reasoning with DL. When reasoning with DL, one

of the first features that must be checked is the type of DL that is being employed,

for example, the SHIQ DL that OIL uses. Each component of the DL provides

operations that can be used for reasoning, and may assist or hinder the process. In

[HS01], Horrocks et al. describes the SHIQ DL as insufficient for reasoning due to

the fact that it does not contain any concrete data types. Horrocks et al. suggested

the SHOQ(D) in [HS01] due to its abilities to extend individuals, provide concrete

data types, and it removed the inverse roles which proved to be cumbersome for

reasoners when combined with concrete data types or named individuals. With the

SHOQ(D) DL, he provided an example of reasoning using the tableau algorithm. A

tableau that is formed from the algorithm seeks out concept satisfiability, and works

with the TBox. However, in [HST00], Horrocks et al. demonstrate that reasoning

over the ABox in a DL Knowledge Base is possible. ABox reasoning is valuable

because typically in a reasoning process the ABox is assumed to be empty, when in

practice that is not the case. Instead, the TBox can be thought of as representing a

schema, and the ABox being the populating (and possibly incomplete) data. With

this thinking, it can also be imagined that the size of the ABox can be of almost

unlimited size, versus the limited size of the TBox, leading to tractability issues of

reasoners that utilize the ABox. Using the ABox is of interest due to it being able

to be used to decide the problem of conjunctive query containment with respect to a

schema – the problem of deciding if one query is contained another query with respect

30

M.A.Sc. Thesis - Andrew LeClair15 McMaster - Software Engineering

to the database – and with the algorithm proposed in [HST00], the tableau method

is extended to incorporate the ABox.

Ontology Classification

Another field of reasoning that is prevalent with relation to ontologies is ontology clas-

sification [GHMS10, GHM+12, KK13]. Ontology classification is defined by Glimm et

al. in [GHM+12] as the computation of subsumption hierarchies for classes and prop-

erties. In essence, ontology classification is the actual construction of an ontology

in the way that it ‘connects’ the axioms and assertions together to create the visual

structure humans are familiar with. As Glimm et al. mention, it is a core service that

is provided by OWL reasoners, and the resulting hierarchies are used in ontology

engineering, where errors can be identified, be used to explain the knowledge base, or

answer queries. The methods that are studied for ontology classification are devoted

to optimizing the subsumption tests for efficiency and decidability. However, the

difficulty comes from that many ontologies are extremely large in size, making even

even very efficient subsumption tests expensive. Glimm et al. challenge these issues

in [GHMS10, GHM+12] by proposing alternative algorithms, such as ‘KP’. Kazakov

et al. also discuss ontology classification in [KK13], but instead of researching how

to efficiently create the structure, they focus on how to efficiently update one. The

issue of frequent re-classification of ontologies is an area of research that is tackled by

incremental reasoning procedures. With incremental reasoning procedures in place,

the knowledge base will support the addition or deletion of axioms, and not require

deep modification to the base reasoning procedure.

31

M.A.Sc. Thesis - Andrew LeClair16 McMaster - Software Engineering

Defeasible Reasoning

The reasoning that has been explored by Horrocks et al. in [HS01, HST00] typically

produce subsumption rules through the tableau method. However, there is research

that tries to extend the types of reasoning that is performed on DL. For example, in

[MMS14], Moodley et al. explore defeasible reasoning for DL. In [MMS14], Moodley

et al. explore the relations called defeasible subsumption (C1
@∼ D1), which can be

compared to its classical counterpart (C1 v D1). The difference is exemplified by

how the axioms are read: in standard DL subsumption (C v D) is read as “all C’s

are D’s”, whereas the corresponding defeasible subsumption (C @∼ D) is read “the

most typical C’s are D’s”. When this relation is reasoned on, the knowledge that is

gained is defeasible, which means that it is not absolute like a deductive theorem. As

more knowledge is acquired, or existing knowledge is modified, contradictions may

arise between rules generated and the present data. Moodley et al. are not the only

researchers who are exploring defeasible reasoning with DL, [CMMV13, GGOP13]

are two other examples of researchers who are exploring knowledge reasoning that

does not have the assumption of certainty. Defeasible reasoning is of interest to us

because it produces arguments which are compelling, but not necessarily deductively

valid. It is a form of inductive reasoning, and thus a focus of this work.

The Addition of Temporal Operators

Beyond relations being created to improve the reasoning that can be performed, as

demonstrated through the nonmonotonic systems in [MMS14, CMMV13, GGOP13],

researchers Baader et al. extend ALC DL with Linear Temporal Logic (LTL) where

temporal operators can be applied to TBox axioms and ABox assertions [BGL12]. An

32

M.A.Sc. Thesis - Andrew LeClair17 McMaster - Software Engineering

example of time changing how the ontology is understood is through the postulated

case using the concept “Concussion with no loss of consciousness”, an existing concept

in the medical ontology SNOMED CT. The way the concept is currently understood

could be argued to be incorrect, when a correct representation of the concept would

be that after the concussion, the patient remained conscious until the examination.

This allows for reasoning to include time as a factor with the operations that LTL

introduces, such as the U operator which formalizes ‘Until’, meaning the duration of

one event until another event occurs.

We have examined several approaches to reasoning with DL in this subsection. We

have examined the most popular method, subsumption reasoning, and research that

has gone into optimizing it with papers such as [HST00, HS01]. We also investigated

the uses of subsumption reasoning, the vital ontology classification, and looked at

how researchers are improving it with papers such as [GHMS10, GHM+12]. Finally,

we explored differing types of reasoning, such as defeasible reasoning that is explored

by Moodley et al. in [MMS14], or temporally infused reasoning that is explored by

Baader et al. in [BGL12]. We can see that the reasoning field with DL is a field that

is constantly trying to adapt to the massive ontologies that have been created, as well

as new reasoning methods are being explored to try to learn knowledge that is not

found through conventional methods.

2.2.3 Reasoning with non-DL Formalisms

In [BL12], Baral et al. highlight that outside of DL, there does not exist much research

into knowledge representation or the reasoning thereof. They instead focus on frame

based representations, and try to discover better ways to reason knowledge from them,

33

M.A.Sc. Thesis - Andrew LeClair18 McMaster - Software Engineering

and what kind of questions this reasoned knowledge can answer. Baral et al. describe

a property acquiring process in hopes to answer the question What is X?, where X is

an object in the domain. The process that is described is composed of three steps:

Obtaining generalizations of the instance, obtaining what an instance clones from,

and the unification process. In the first step, all classes that belong to the object are

gathered, to determine all inheriting classes and classes that may be an instance of X.

The second step aims to determine the clones of object X from these instances found

– a class that is spawned by reusing the existing knowledge frames of the already

existing class with the purpose of avoiding repeating encodings of the same set of

knowledge entries. The final step, unification, aims to acquire the information now

that we know what the instance clones from (from the previous steps). With the

information that is found, questions such as “What is X?”, “What are the similarities

between X and Y?”, “What are the differences between X and Y?”, and “What is

the p of X?” (where p is some property) can be queried from the knowledge base.

The resulting knowledge that is reasoned parallels the DL subsumption reasoning,

which itself aims to better answer “What is X?” by determining the ordering relation

between the concepts within. With the frame based system, queries may be more

insightful due to the embedded frame properties that is not found in DL. However,

as it was mentioned, the research and development into this type of representation

(and other representations outside of DL) are lacking.

The overwhelming amount of research that is put into optimizing and extending the

reasoning process over DL absolutely overshadows research put into other formalisms’

reasoning techniques, as indicated in [BL12]. However, there does exist reasoning

techniques outside of those for DL, as evidenced by Baral et al. however, they seem

34

M.A.Sc. Thesis - Andrew LeClair19 McMaster - Software Engineering

to parallel reasoning techniques existing in DL, and they lack the plethora of tool

support that DL has.

2.3 Existing Ontological Tools

In the previous section, we discovered that there exists a dwarfing amount of research

into reasoning for DL compared to other formalisms for ontologies. In a continuation

of that topic, for this section of the Literature Survey, we will explore the tools that

perform the reasoning algorithms, restricting ourselves to the tools that are based in

DL. First we will discuss the tools that can be used for formalizing and representing

ontologies, followed by the tools that are used for reasoning so that we may discuss

the compatibility between the reasoners and the ontology tools.

2.3.1 Ontology Formalism and Representation Tools

Currently in the field of creating tools for the creation and modification of ontologies,

it can be found that there exist several ontology related plugins that are compat-

ible with the Protégé tool [fBIR15, KFNM04, Ala03, HCC+12]. The functionality

of the plugin varies, ranging from general functionality like ontology visualization

to a specific task like the optimization of the ontology creation. For example, in

[KFNM04], an OWL Plugin is introduced for Protégé. The plugin extends the func-

tionality of Protégé so that ontologies that are written in OWL can be edited and

used. In [Ala03], a plugin is introduced that is based on TouchGraph technology so

that ontologies can be visualized, and in [HCC+12], a suite of plugins is introduced

that implements crucial parts of the MIREOT (Minimum Information to Reference

an External Ontology Term) specification which improves the ontology creation and

35

M.A.Sc. Thesis - Andrew LeClair20 McMaster - Software Engineering

editing process by improving the capabilities of reusing artifacts. The point that the

number of plugins that exist for Protégé numerous and their uses are wide does not

need to belabored. Protégé is currently one of the most popularly used ontology

creation tools for DL ontologies – if not the most popular – and has the support and

research into developing new plugins that makes it appealing.

Among Protégé there exists other editors: NeOn Toolkit [HLS+08], SWOOP [KPS+06],

and OWLGrEd [LCS12].

NeOn Toolkit

The NeOn Toolkit is a project that is aimed at large-scale ontologies [HLS+08]. Like

Protégé, the NeOn Toolkit works with ontologies built from the Semantic Web, and

are open-sourced projects open to the community. The combination of being open-

sourced, and having a modular design has allowed for plugin development, much

like Protégé. The result is a repository of plugins for the tool, such as OntoModel,

a visual modeler for the ontology, Text2Onto, a plugin for ontology reasoning, and

RaDON, a plugin for ontology diagnosis and repair. The focus of NeOn differentiates

itself from Protégé by utilizing the NeOn Toolkit which is the core of the editor; the

NeOn Toolkit features methods and tools for managing knowledge that is distributed,

heterogeneous, contextualized, and developed collaboratively. The resulting editor is

one that specializes in heavy-weight projects, such as multi-modular ontologies, or

ontology integration, but proves to be cumbersome for smaller projects that involve

smaller ontologies.

36

M.A.Sc. Thesis - Andrew LeClair21 McMaster - Software Engineering

SWOOP

SWOOP [KPS+06] is an editor that is also built for OWL ontologies, and differen-

tiates itself from other editors by being an editor that is built for catering wholly

towards OWL. It natively contains a basic reasoner that evaluates the structure of

the ontology, as well as the reasoners RDFS-like and Pellet. SWOOP prides itself

in being designed in a way that is similar to the Web itself: it is open (with plugin

support), it is scalable, and it is distributed (collaborative annotation support via

Annotea) [KPS+06]. Overall, SWOOP is a niche editor that is ideal for OWL ontolo-

gies, and it built in a way that is very reminiscent to a web-based program. It is a

simple and intuitive tool that also provides reasoning functions through plugins such

as Pellet and RDFS-like. However, it is extremely specific in that it only handles

OWL ontologies, and due to this, does not boast the assortment of plugins that other

editors have.

OWLGrEd

The final editor we will discuss is OWLGrEd [LCS12]. OWLGrEd is an ontology

editor that allows graphical visualization of OWL 2.0 ontologies using UML class

diagram notation. The aspects of an OWL ontology are mapped to the UML coun-

terpart, such as OWL class to UML class, data property to class attribute, object

property to association, etc. The UML class diagrams were enriched with new exten-

sion notations, such as fields in classes for equivalent class, superclass, and disjoint

class. The resulting tool is one that can visualize an ontology as a UML class dia-

gram, garnering all the benefits of the OWL ontology relationships and knowledge

representation, and the UML class diagrams ability to illustrate the structural part of

37

M.A.Sc. Thesis - Andrew LeClair22 McMaster - Software Engineering

the system. However, this comes at the cost of losing the simple hierarchical visual-

ization of the ontology. OWLGrEd has tried to minimize this problem with ontology

fragment visualization: an algorithm that displays only a fragment of the ontology

that meets the users filtering criteria.

We have looked at several editors in this section, such as Protégé, NeOn, SWOOP,

and OWLGrEd. Each editor has its niche uses, and excels in one aspect or another,

whether it be Protégé’s popularity, and large plugin repertoire, NeOn’s specialization

in large ontologies, SWOOP’s optimization to OWL ontologies, or OWLGrEd’s ability

to visualize as UML class diagrams.

2.3.2 Reasoning Tools

Now that we have an understanding of the editors that exist for DL ontologies, we

will investigate the reasoning tools that these editors utilize. We will be specifically

investigating the reasoning algorithms the tools employ, and their operability with

the editors that have been mentioned.

The reasoners that are being investigated are BaseVISor [MBK06], FaCT++ [TH06],

Pellet [SPG+07], RacerPro [HHMW12], and HermiT [SMH08]. The listed reasoners

can be ported as a plugin to an OWL-based ontology editor.

BaseVISor

The reasoner BaseVISor is the response to the criticism of the limited construction

of composite properties in OWL [MBK06]. A composite property is informally de-

fined by Matheus et al. as “properties composed of other properties, related to the

notion of joins in relational databases”, and is demonstrated through the example

38

M.A.Sc. Thesis - Andrew LeClair23 McMaster - Software Engineering

that an “uncle” is composed of the properties “parent” and “brother”. BaseVISor

is a forward-chaining inference engine which translates RuleML rules and facts with

n-ary predicates to-and-from BaseVISor rules and facts with binary predicates. Ba-

seVISor uses an XML syntax to define facts, create rules, and issue queries. A fact

is a triple defined by subject, predicate, and object elements. In essence, BaseVISor

takes the facts given, and determines rules within the ontology that satisfy the If-

Then predicate, where the If is the facts given [MM08]. The resulting rules may be

of little significance, and require a human to filter the useful rules from the mundane,

but may also be incomprehensible for a human to decode due to the size of the rule.

Pellet

Pellet [SPG+07] was the first sound and complete OWL-DL reasoner with exten-

sive support for reasoning with individuals, user-defined datatypes, and debugging

support. Pellet was built to support the SHOIN (D) DL. The features of Pellet are

plenty and include conjunctive ABox querying, classification, data type reasoning, ax-

iom pinpointing and debugging, integration with rules formalism, multi-ontology rea-

soning using E-Connections, and non-monotonic reasoning. For example, in [Fen10],

the classification ability of Pellet is used: Pellet is used to classify the security on-

tology and determine a compliance status of each OWL individual representing a

resource. Despite Pellet being one of the initial reasoners, it has not fallen behind the

many reasoners that spawned after it such as HermiT or FaCT++. When evaluated

based on classification time and inferred axioms, it performed on par with HermiT,

and in some experiments, outperformed FacT++ and RacerPro [HLY08].

39

M.A.Sc. Thesis - Andrew LeClair24 McMaster - Software Engineering

RacerPro

The RacerPro [HHMW12] system is built off of a DL reasoner that is based on

the SHIQ DL, meaning it omits nominals. Much like its brethren reasoners Pellet,

HermiT, and FaCT++, it is based on the tableaux method. RacerPro, when evaluated

in [HLY08], often perform the classification and reasoning in slower time than the

compared reasoners, but as found in [LLBN09], often produces more correct results.

FaCT++

The FaCT++ [TH06] reasoner implements a tableaux decision procedure for the

SHOIQ DL. Through several iterations and improvements, the current incarnation

employs a wide range of performance enhancing optimizations such as absorption and

model merging. FaCT++ is both sound and complete, and is designed for experi-

menting with new tableaux algorithms and optimization techniques. When reasoning

over a knowledge base, FaCT++ proceeds in three stages: the first being prepro-

cessing. In this stage, the knowledge base is loaded into the reasoner where it is

normalize and transformed into an internal representation. Secondly, the reasoner

performed classification, where it computes and caches the subsumption partial or-

dering of named concepts. Finally, the knowledge base is checked for satisfiability,

to decide subsumption problems for given pairs of concepts. The third stage, the

satisfiability checker, is regarded as the core component of the system. When evalu-

ating the efficiency of FaCT++, in [HLY08] Huang et al. discovered that with large

knowledge bases, FaCT++ requires more time for classifying concepts and generating

the class hierarchy.

40

M.A.Sc. Thesis - Andrew LeClair25 McMaster - Software Engineering

HermiT

HermiT [SMH08] is an OWL reasoner that is based on a hyper-tableau calculus.

Whereas reasoners such as FaCT++, Pellet, RacerPro and other reasoners based on

the tableaux method, HermiT does not suffer from a performance problem due to

non-determinism and model size. The methods behind HermiT strongly emphasize

the performance priorities: there exists an “anywhere blocking” strategy which limits

the sizes of models that are constructed, and the hypertableau calculus which greatly

reduces the number of possible models which must be considered. The results of

the experiments show that HermiT is as fast as other DL reasoners when classifying

simple ontologies, and usually much faster when classifying more difficult ontologies

[SMH08, HLY08].

There exists several reasoners for DL, and we have only touched on some of the most

popular ones. Although all the reasoners appear to be similar – with a great many

employing the tableau method – they have niche uses. The minor intricacies innate

to each reasoner makes them more suitable for one task or another as demonstrated

through the experiments in [GBJR+13]. Depending on the metric that is most pri-

oritised, one reasoner may be more advantageous than another.

2.4 Concept Interpretation and Ontological Con-

figuration

In the previous sections we have evaluated the current state of ontology formalisms,

how we reason with DL, and tools that implement the reasoning methods and ontology

formalisms into software. In this final section of the Literature Survey, we will assess

the current state of interpreting concepts with data types and configuring ontologies

41

M.A.Sc. Thesis - Andrew LeClair26 McMaster - Software Engineering

by investigating related research.

2.4.1 Contextual Ontologies

Contextual Ontologies are first conceived by Benslimane et al. in [BAF+06]. A con-

textual ontology is an ontological idea where the ontology may have multiple in-

terpretations. In a traditional DL-based ontology, there exists the interpretation

I = (∆I , ·I). The interpretation maps the respective domain, ∆, to the concepts,

individuals, and relations defined through the interpretation function, ·. Contextual

ontologies extends this by allowing for a range of interpretations, such that the con-

textual interpretation is defined as I = (I0, I1, ..., It). Each interpretation within

this set is a non-contextual interpretation, which consists of the interpretation do-

main and function as stated earlier. What this contextual interpretation allows for is

the definition of concepts in multiple contexts. The example in Example 3.1 would

be impossible for a traditional DL-ontology, but is simple and straight-forward in

contextual ontologies.

Example 2.4.1. An employee can be defined in one context (s1) as anyone who has

an employee number, or in another context (s2) as anyone who works for a company.

The assertion for an employee in contextual ontologies would be:

Employee = (∃EmployeeNumber.Number)[s1] t (∃WorksFor.Company)[s2]

The notion of having contexts for the concepts within an ontology calls for a rethink-

ing of how we perceive ontologies. Traditionally, ontologies could be thought of as

contextual ontologies with one static context. Contextual ontologies abstracts this

by allowing for the ontology to be interpreted by several contexts. The critical idea

of contextual ontologies is the ability to define the same concept through multiple

42

M.A.Sc. Thesis - Andrew LeClair27 McMaster - Software Engineering

assertions. However, these assertions must all be written using DL, meaning that

despite being able to define a concept with different contexts, each interpretation is

still limited to the limitations of DL, and none will have data types in their definition.

A contextual ontology is a critical evaluation of how researchers critically evaluate

traditional ontological concepts. The idea behind contextual ontologies is to extend

how we think of a concept from being a single static interpretation to one that can

be one of many interpretations. This idea is being explored in other fields, such

as Distributed Description Logic [BS03], which aims to handle complex mappings

between domains, by unifying concepts between multiple ontologies. However, con-

textual ontologies and distributed description logic focus on the concept level of the

ontology.

2.4.2 Upper Ontologies

Contextual ontologies offers a way to understand concepts in more than one way,

and provides us a specific understanding through a single context. Another approach

to understanding ontologies in multiple ways is the notion of upper ontologies. As

described in [Hoe10], an upper ontology is designed to provide semantic interoperabil-

ity of domains across multiple domains. In essence, an upper ontology is a unifying

agent between multiple domain ontologies with the goals of allowing interoperability

between these ontologies. Upper ontologies provide these general concepts that are

common to all domains so that they may be used as foundation for the domain on-

tologies. Each domain ontology that pertains to the upper ontology it belongs to can

be thought of as a configuration of that upper ontology – it is a way of understanding

those general concepts.

43

M.A.Sc. Thesis - Andrew LeClair28 McMaster - Software Engineering

Although we have discussed the notions of what an upper ontology is, it is impor-

tant to investigate the types of upper ontologies that have been developed. First we

will investigate Suggest Upper Merged Ontology (SUMO), proposed by Niles et al.

as a unifying force between all the existing ontologies [NP01]. It would be a sin-

gle, comprehensive, and cohesive structure consisting of the ontologies available on

the Ontolingua server, Sowa’s upper ontology, various mereotopological theories, on-

tologies developed by ITBM-CNR, and other sources. SUMO is not the only upper

ontology – there exist several upper ontologies such as MASON [LSDS06], an upper

ontology for the manufacturing domain, or BIOTOP [BSSH08], an upper ontology

for the life sciences. To help better understand upper ontologies, we further inves-

tigate BIOTOP. As discussed in [BSSH08], BIOTOP has the purpose of providing

an ontologically sound layer for linking and integrating various specific domain on-

tologies from the life sciences domain. Alongside BIOTOP, there exist several other

Upper Ontologies in development, such as the Ontology of Biomedical Reality, which

attempts to integrate ontologies from anatomy, physiology, and pathology. BIOTOP

provides a hierarchy of biological processes, a hierarchy of biological functions, as

well as several qualities and roles. These concepts of BIOTOP hope to integrate the

existing domain ontologies by superseding the top concept of the respective domain

ontologies. For example, the top concept of the Cell Ontology – a Cell – matches

the Cell concept within BIOTOP, and so the Cell Ontology can be found within

BIOTOP. BIOTOP achieves this with various other ontologies of the domain, and

is thus a unifying ontology between these specific domain ontologies. In essence, an

upper ontology aims to describe very general concepts that are the same across all

44

M.A.Sc. Thesis - Andrew LeClair29 McMaster - Software Engineering

knowledge domains, as we have seen with BIOTOP. In this sense, an upper ontol-

ogy does not aim to describe and conceptualize one single domain, but rather, all of

them.

2.5 Conclusion

In this survey we have explored the current formalisations of ontologies, the tools that

formalise ontologies, reasoning methods, and techniques researchers have investigated

to perform interpretations to allow for multiple understandings of a single ontology.

Although DL are expressive and have a plethora of tools to assist in the creation

and edition of ontologies, they do not have a tool or current technique that allows

for the interpretation in the way we desire to ultimately allow for configurations of

ontologies. The research into contextual ontologies is the closest research to the notion

of configuring an ontology. Within a contextual ontology, a concept may be defined

using DL with multiple contexts, where each context is a separate interpretation

that may provides a different understanding of the concept. However, the contextual

ontologies do not have a tool to support their research, and although they call for

a new way of thinking about concepts in an ontology, they are still limited by the

DL. The concepts defined in a contextual ontology are still strictly defined through

relations to other concepts. There also is a lack of reasoning methods that would

utilize configurations in the reasoning process.

45

Chapter 3

The Design of Conto

In the previous chapter we investigated the tools in the current literature that are used

to create and edit ontologies in various ontology formalisms. Despite the number of

existing tools, and the versatility provided by each, the issue of being able to interpret

concepts with a data type remains unaddressed. To remedy this issue we introduce

Conto: an extension to the Ontograf plugin for the Protégé editor. Conto allows

the user to interpret a concept with different abstract data types, and ultimately

compile the configuration to produce the new configured ontology with the desired

interpretations.

In this chapter, we develop Conto. In Section 3.1, we list our assumptions in cre-

ating the tool. In Section 3.2, we list the requirements and objectives relating to

Conto. In Section 3.3, we formally introduce Conto, and detail the design and archi-

tecture choices we made to help achieve these requirements and objectives. Finally,

in Section 3.4, we provide the expected benefits Conto will bring to the community.

46

M.A.Sc. Thesis - Andrew LeClair1 McMaster - Software Engineering

3.1 Assumptions

When designing Conto, we make the following assumptions:

(i) The ontology has been formalized using the OWL or OWL2 languages.

(ii) Identical individuals within the ontology are denoted using the Protégé relation

“same individual as”.

(iii) An individual or concept belongs to at most one concept. The representation of

an individual belonging to multiple concepts is accomplished by having multiple

copies of the individual that are related to each other through the “same indi-

vidual as” relationship, and each copy belonging to one of the desired concepts.

The list of assumptions delineate the primary restrictions of Conto, but were put in

place for specific reasons. As we have mentioned, there exists numerous ways for an

ontology to be formalized, each potentially varying on drastic properties such as the

formalism used, such as FLogic or DL. From this, we had to restrict the formalism

that Conto operates on. Due to the fact that it is a plugin for Protégé and the

popularity of ontologies written in OWL or OWL2, the first assumption was drawn.

Within Protégé, relations can be made to fit a users need, and so it is possible to

detail that two individuals are identical in several ways. We created the second as-

sumption to create a built-in standard for this definition of identical individuals. The

final assumption was described to ensure the hierarchical structure of the ontology

that Conto operates on. If an individual (or by extension, a concept) belongs to mul-

tiple concepts, this contradicts our definition of sub-concepts being disjoint from one

another, and thus, does not meet our criteria of being an ontology. These assump-

tions and constraints were made to ensure that Conto operates as intended. Conto

47

M.A.Sc. Thesis - Andrew LeClair2 McMaster - Software Engineering

does not check if these assumptions were met due to the infeasibility of checking all

possible situations.

3.2 Requirements and Objectives

This section describes the requirements that assisted in forming the tool and its

functionality, as well as the objectives that the creation of the tool aims to accomplish.

The requirement goals for Conto are as follows:

(i) The tool must be an extension of the already existing Ontograf plugin for the

Protégé editor.

(ii) The tool must allow the user to be able to select a concept from the UI and

apply an interpretation to it.

(iii) The tool must contain a repository of interpretations that are readily available

to the user.

(iv) The tool must be designed such that adding new interpretations is simple and

stream-lined.

(v) The tool must be able to compile the interpretations the user has selected for

the concepts into a new ontology.

(vi) The tool must allow the user to upload an already-made ontology written in

OWL and interpret one of the existing concepts.

(vii) The tool shall only allow the user to interpret a concept in one way per config-

uration, i.e., it will be impossible to ‘stack’ interpretations on the same concept

within a single configuration.

48

M.A.Sc. Thesis - Andrew LeClair3 McMaster - Software Engineering

(viii) The tool must not allow the user to apply an interpretation to a concept that

is not compatible with the interpretation.

From the listed requirement goals we were able to determine the major objectives of

Conto. We desired a tool that was easy for the user to use by allowing for the inter-

action with the graphical representation of the ontology. Conto should also be simple

for developers to add new interpretation methods to the tool. This will allow for the

tool to continuously grow, and adapt for user’s needs – if they desire their concepts

to be interpreted a specific way that does not exist within the interpretation reposi-

tory, they should be able to develop and integrate the interpretation method with the

tool. Conto should therefore be a lightweight tool that allows for the interpretation

of concepts.

We also have the objective of starting the interpretation repository with a default

list of available interpretations including Set, Bag, and List. We chose these three

interpretations to be the beginning default interpretations because of their versatility

in being applicable to a large variety of domains, as well as their ability to impose an

abstract data type on the concepts. We also believe that the abstract data types we

have chosen to be the default have inherit functions to them which will be useful in a

wide range of domains. As we mentioned, since interpretations can be developed and

added to the repository, creating more specific interpretations that are applicable to

more specialized domains is a trivial matter.

The notions of a unique name assumption and consistency within the ontology were

evaluated and ultimately deemed to be out of the scope of Conto. With the ability to

interpret concepts, it is possible to create duplicate concepts which conceptualize the

same part of the domain (through a series of interpretations and operations), defying

49

M.A.Sc. Thesis - Andrew LeClair4 McMaster - Software Engineering

the unique name assumption. In addition to this, it is possible these two concepts

are not consistent with each other; the concepts may contradict each other by have

dissimilar instantiations. Although the concepts conceptualize identical parts of the

domain, one concept may have individuals that the other concept (which is supposed

to be identical) does not. It is left for future work to create a means of interpretation

that produces consistent ontology models.

3.3 The Design of Conto

This section provides a layout of the purpose and architecture of Conto. The de-

sign process will be discussed to relate it to the requirements and objectives for

Conto. Figures will be included which help explain the architecture and designs. In

Section 3.3.1, the architecture of Conto will be detailed, describing the components

that compose the tool and how they interact with the Protégé tool. Finally, in Sec-

tion 3.3.2, the justifications behind the design choices will be provided, as well as how

the requirements have been met by the architecture of Conto.

3.3.1 Architecture

Investigating a Component-Based Architecture

The architecture of Conto describes how the components interact with each other.

Conto is required to be an extension of the already existing plugin Ontograf for the

Protégé editor. Conto itself consists of two main components: the main body which

applies interpretations to the concepts and holds the configuration for compilation,

50

M.A.Sc. Thesis - Andrew LeClair5 McMaster - Software Engineering

and the repository which holds all the methods behind the interpretations. As de-

tailed in the requirements, the repository must be able to have a “plug-and-play”

interaction with the user. Meeting this requirement would allow the user to add any

new interpretations they have created or downloaded and include it into the reposi-

tory and immediately apply them to their ontology. This also means that the main

body of the tool must view the repository as a black box. Regardless of which inter-

pretations exist within the repository, they must all be applicable to the concepts, or

notify the user if the concept and interpretation are not compatible.

To meet all this requirement of the repository, the overarching architecture of the

tool is a Component-Based Architecture. Figure 3.1 illustrates how Conto behaves

like this architecture, and how Conto interacts with the Ontograf and Protégé envi-

ronments. The key ideas behind a Component-Based Architecture is that the system

is decomposed into reusable, cohesive, and encapsulated component units which can

be swapped with another unit if the new unit provides the same base functionality.

Figure 3.1: The architecture that demonstrates how Conto interacts with Protégé

51

M.A.Sc. Thesis - Andrew LeClair6 McMaster - Software Engineering

From the description of Conto, we can see that the system can be decomposed into the

following components: the abstract concept that consists of the Protégé environment

and Ontograf, the main body of Conto, and the repository of interpretations. The

Component-Based Architecture style allows for the repository to have that “plug-

and-play” interaction that we desire. The user is able to plug in a new interpretation

if they so desire, or they may replace one interpretation with an entirely new one that

meets their needs.

Refining as a Broker Architecture

The components that are described by the Component-Based Architecture are ab-

stract in nature: they do not lend themselves to describing what the internal classes

may be. The component that is Conto is too abstract; it neglects to describe what is

contained within that component. In essence, the abstract idea of Conto is a black

box that offers all functionality that we have discussed but does not contain the ac-

tual interpretation methods. By evaluating and understanding the role of Conto,

we can deduce that there exists a second architecture that exists within the Conto

component, and what that architecture is. Figure 3.2 demonstrates the behavior of

Conto, in particular, that the tool mediates communication between Ontograf and

the interpretation repository. If Ontograf and Protégé were to be viewed as a pseudo-

client and the repository of interpretations a server, then Conto can be though of

as a broker, resulting in a Broker Architecture. It handles information from Protégé

and Ontograf (e.g., a concept within the ontology and a desired interpretation to be

applied), and recovers said information about the interpretation within the reposi-

tory. From here, it applies the interpretation and returns the interpreted concept.

52

M.A.Sc. Thesis - Andrew LeClair7 McMaster - Software Engineering

Thinking of Ontograf and Protégé as a pseudo-client is not an incorrect assumption

because of the nature of the component-based architecture. The physical user will

be interacting with the Protégé client, but as described by the components, Protégé

then communicates with Ontograf, and ultimately Conto. If we reduce these steps

into one abstract boundary component, we result in the pseudo-client that is Protégé

and Ontograf.

Figure 3.2: How Conto is a Broker between the repository and Protégé

Identifying the Classes

Through the description of Conto, the classes can begin to be formulated. In Figure

3.3, we see the basic classes that compose Conto. The core classes that exist is the

53

M.A.Sc. Thesis - Andrew LeClair8 McMaster - Software Engineering

Interpreter, the Ontology Holder, the Uploader, and the Assembler. There also exists

the Repository which consists of the interpretations and interpretation functions. The

Interpreter and Uploader communicates with this repository as a sort-of boundary

class: the classes do not directly contact the interpretation functions, instead they

contact the boundary known simply as the Repository. It is how the two components

communicate with each other. When the user wishes to apply an interpretation to

a concept, the Interpreter class handles this by taking the concept and contacting

the Repository for the desired interpretation. This interpretation is placed into the

Ontology Holder. The Ontology Holder is an entity which stores the interpreted

concepts for compilation. When the user wishes to compile their ontology with the

configuration, the Assembler takes every interpretation that has been selected from

the Ontology Holder, and compiles the ontology to be displayed using the Ontograf

visualizer. If the user instead wishes to upload an OWL ontology, then the Uploader

is contacted, which processes the OWL file, and interprets the concept (if the user de-

sires an interpretation) using the interpretation function provided by the Repository.

The Repository itself consists of two classes, the interpretations and their respective

functions. The Interpretations entity contains the functions behind the actual inter-

pretation – how to interpret the concept. The Functions entity are the associated

functions with the interpretations, for example, the union and intersection functions

for the set interpretation.

With this structure, we can see that we have met our objectives and requirements. We

desired a light-weight tool that was an extension of the Ontograf plugin for Protégé, as

well as be built in a way to allow for new interpretation functions to be easily added.

We extend the Ontograf tool by using their graphical editor to display our configured

54

M.A.Sc. Thesis - Andrew LeClair9 McMaster - Software Engineering

Figure 3.3: The analysis class diagram of Conto

ontology, as well as providing Conto with a method of input. The interpretation,

compilation, and upload is done entirely within the tool, and thus is an extension of

Ontograf that can be removed if desired. Finally, the Repository that contains all

interpretation functions allows for the development of new functions with minimal

changes to the interpreter itself. By adding the interpretations and their associated

functions (if any) to the Repository, the Interpreter and Uploader would only need

to be updated with the names of the interpretations.

55

M.A.Sc. Thesis - Andrew LeClair10 McMaster - Software Engineering

3.3.2 Design Choices

In the earlier subsections we have described the architecture of Conto, as well as the

classes the compose it. We concluded that Conto is a Component Based Architecture

with an internal Broker Architecture. In this subsection, we will evaluate other ar-

chitectures that were considered, and why they were ultimately discarded. By doing

this we will resolve the choices that were made about the classes and architecture.

One of the first architecture styles that was considered when designing Conto was

the Layered Architecture. This architecture is often used when creating a tool that

is embedded within another greater tool. However, there is a slight nuance to why

Conto cannot be layered, and that is because of how the user interacts with Conto. In

a layered architecture, the user interacts with the greater encapsulating tool, which

in turn communicates with the lower layers (i.e., the user has no direct contact with

the lower layers). This contradicts one of our crucial desires: that the user directly

interacts with our tool to determine which interpretation they wish to use. In fact,

the user may have minimal contact with the actual Protégé functionality. The only

communication that Conto has with Protégé and Ontograf is to collect the concepts

that have been created, and to display said concepts.

Another popular architecture we considered is Model-View-Controller (MVC), which

is a popular architecture for interactive tools. Referring to Figure 3.2, we can see

a very close similarity to that of the MVC architecture. The pseudo-client, broker,

and server respectively parallel the view, controller, and model. However, in an MVC

architecture, the model is static. This means that although the information stored

within the model may change, the physical component of the model cannot. One of

the primary functional requirements we had was that Conto could accommodate the

56

M.A.Sc. Thesis - Andrew LeClair11 McMaster - Software Engineering

swapping and removal of interpretations. A strict MVC architecture does not allow

for this kind of dynamic behavior.

The final alternative architecture that we considered was the Service-Oriented Ar-

chitecture (SOA). In a SOA, services exist that have a well-defined functionality, are

self-contained, and they are independent from other services. These services are avail-

able for the users, and provide their respective functionality to the user. A service

directory also exists to assist the user in finding a service. Although the tools func-

tionality shares several similarities to that of a SOA, there are nuances that prevent it

from being truly SOA. For instance, if one were to understand the Interpreter as the

service directory and each of the interpretations the services offered, then we would

see the first problem: In a SOA, the user directly accesses and utilizes the service,

whereas with Conto, the user only ever interacts with the Interpreter. The Interpreter

is a middle-man for the user to see and use the available interpretations; they are not

actually interacting with the interpretation functions. Another conflict between SOA

and the design of Conto is that the functionalities of Conto are not independent of

each other – a requirement for the services within a SOA. For example, the upload

function depends on the interpretation and compile functions. Although the service

directory which is a core component for SOA shares many similarities with that of

the Interpreter, the nuances leads us to a structure that is more similar to the broker

than a directory.

3.4 Expected Benefits

The immediate benefits from Conto are best witnessed through the previous exam-

ple, however, the expected benefits with the current understanding of ontologies and

57

M.A.Sc. Thesis - Andrew LeClair12 McMaster - Software Engineering

respect to future research is there. The insight provided by interpreting concepts is

invaluable due to it allowing us to represent knowledge that was otherwise impossible.

This means that ontologies, which were traditionally thought of as only structures

which related concepts within a domain, can be instead thought of a device which

provides structure as well as understanding to the data. We can understand concepts

as abstract data types and can apply their respective functions. Adding this depth of

understanding an ontology as not only the structure of the concepts, but also what

the concepts are semantically, calls for a change in how we understand the domains

the ontologies conceptualize.

The trajectory of future research is also impacted by this understanding of inter-

preting concepts. The current reasoning processes do not account for interpreted

concepts, and their associated functions. Future research into reasoning must take

into account and utilize these interpreted concepts to maximize the knowledge ac-

quired. The interpretations that are created in this work are the first steps – several

more interpretations can be developed that provide different insights into a domain.

3.5 Conclusion

In this chapter, we introduced the prototype tool Conto. We provided the require-

ments and objectives which illustrated the first steps into the design of Conto, and

what we wanted to accomplish with the construction of the tool. We described and

detailed the architecture of the tool, justifying the decisions by contrasting our cho-

sen Component-Based Architecture hybridized with a Broker Architecture with other

popular architectures. By describing our architecture we also demonstrated how the

chosen architecture and design choices met the requirements we set out to achieve.

58

M.A.Sc. Thesis - Andrew LeClair13 McMaster - Software Engineering

We ended this chapter by providing expected benefits of this tool, emphasizing the

changes in how we understand ontologies, and the future research potential into rea-

soning engines.

59

Chapter 4

Examples for the Usage of the Tool

In this chapter, we use Conto to investigate different ontologies to demonstrate the

process of interpreting concepts and what knowledge can be learned. Through a

series of examples, we will see the versatility of configuring ontologies and the extent

of applicable domains. The interpretation methods that we will be discussing are the

default interpretations that were mentioned in Chapter 3: Set, Bag, and List. As

we earlier discussed, the reason for these interpretations being the default is due to

their versatility in being applicable to a large variety of domains, and their ability to

impose a data type on the concepts.

The three examples we will examine are as follows: the first will introduce the notion

of interpreting a concept, the second infers knowledge between concepts, and the final

demonstrates how new concepts can be made by interpretations. In these examples,

we will utilize all three of our interpretations: the Set, Bag, and List. We will also

utilize functions that the interpretations provide, such as the union and intersection

functions of a bag or set.

60

M.A.Sc. Thesis - Andrew LeClair2 McMaster - Software Engineering

4.1 Example 1 - Interpreting a Concept

For the first example, we will examine a simplified form of the Travel Ontology1

[CCC+09]. The travel ontology consists of concepts that pertain to travel destinations,

such as activities or accommodations. As Figure 4.1 shows, the ontology has been

simplified to fit our assumptions (i.e., strictly mereological relations) by the removal of

certain relations, as well as the removal of concepts to reduce the size of the ontology

for illustrative purposes.

Figure 4.1: The simplified Travel Ontology

1http://protege.cim3.net/file/pub/ontologies/travel/travel.owl

61

http://protege.cim3.net/file/pub/ontologies/travel/travel.owl

M.A.Sc. Thesis - Andrew LeClair3 McMaster - Software Engineering

As we can see from the ontology, we have conceptualized a domain that is populated

by data that pertains to tourist travel destinations. The ontology may be populated

by data that is input from local databases as well as domain experts (such as travel

agents or locals). Focusing on a single concept within the ontology, we can imagine

domain experts populating this concept with data, resulting in Figure 4.2.

Figure 4.2: The data that was collected for the concept “Beach”

As Figure 4.2 shows, the information that was collected pertains to the concept

“Beach”. There are four beaches known to the domain experts: Big Beach, Little

Beach, Round Beach, and Blue Cove. However, because the data was input by various

domain experts, we are worried that perhaps there is an overlap in information:

perhaps a travel agent who knows the area knows the beach as another name from

another travel agent or what is already recorded in the database. To investigate this,

we interpret the concept as a ‘Set’, resulting in Figure 4.3.

What we see here is that the number of individuals has been reduced to two: only

62

M.A.Sc. Thesis - Andrew LeClair4 McMaster - Software Engineering

Figure 4.3: The concept “Beach” interpreted as a Set

Blue Cove and Little Beach. By hovering our cursor over the individuals, we can

identify which were the duplicates. However, we wish to know how many duplicates

existed among the beaches, so we interpret the original concept as a ‘Bag’. Now when

hovering our cursor over the concept ‘Blue Cove’, we can see the cardinality as shown

in Figure 4.4. As we can see, the individual Blue Cove has been interpreted as a Bag,

and it has cardinality 3. Specifically, the other individuals that were identical to Blue

Cove were Big Beach and Round Beach.

By interpreting this concept of ‘Beach’ as a Set or Bag, we have discovered that there

were duplicate entries of data put in by the domain experts. The reason for duplicates

is unknown and may be accidental or due to error, but by the interpretation of the

concept, we have avoided accounting for 4 beaches when in fact there were only 2.

63

M.A.Sc. Thesis - Andrew LeClair5 McMaster - Software Engineering

Figure 4.4: The information within the individual Blue Cove when Beach is inter-
preted as a Bag.

4.2 Example 2 - Using Interpretation Functions

For the second example, we will investigate a specific part of an ontology made-up for

the purposes of this work which can be found in Figure 4.5. The theoretical ontology

conceptualizes a domain related to a company, and the portion given specifically

relates to two departments found within the company and the salaries of workers in

those departments.

As we can see in Figure 4.5, there exists two departments within the company: the

Color-Analysis department, and the Candy-Testing department. The department of

Color-Analysis has salaries of $40,000, $45,000, and $50,000, and the department of

Candy-Testing has salaries of $10,000, $60,000, and $90,000. With human investiga-

tion, it is obvious the variance of the Candy-Testing salaries is much higher than that

of the Color-Analysis department.

This example highlights the reasoning potential of interpretations: by interpreting

the two departments as numerical lists, we can attain the information in Figures 4.6

and 4.7 by using Conto. The matter of attaining the information is reduced to a

trivial process since Conto contains the functions respective to each interpretation.

64

M.A.Sc. Thesis - Andrew LeClair6 McMaster - Software Engineering

Figure 4.5: The specific portion of the ontology for Example 2.

By interpreting the knowledge, we are able to easily process them using the functions

that are inherent to the respective interpretation, and thus leverage the interpreted

concept for the information we desire – in this case, the mean or minimum salaries.

Figure 4.6: The means of the two departments.

We can inspect the information we have received from Conto by interpreting the con-

cepts as lists. Figure 4.6 tells us the mean salaries of each department ($53,333.34 and

65

M.A.Sc. Thesis - Andrew LeClair7 McMaster - Software Engineering

Figure 4.7: The minimum values of the two departments.

$45,000), and Figure 4.7 tells us the minimum salaries you can find of each depart-

ment. The minimums were discovered by taking advantage of the List interpretation

that was applied to the concepts – the minimum values are simply the head of the

list. The means are discovered by an additional function that Conto offers: a mean

function is provided for numerical lists by taking advantage of the numerical data. If

we were to compare just the mean salaries between the two departments, we would

conjecture that the salaries of each department would be similar. However, with the

additional information of the minimum salary, we learn this conjecture is not true.

In fact, although the means are similar, the deviation of the means are not. The

deviation of the Candy-Testing department is a staggering $43,333.34 compared to

the deviation of $5000 for the Color-Analysis department. The final conclusion may

imply that the Candy-Testing department has a greater variance among salaries than

the Color-Analysis department, or even perhaps the data was incorrectly entered,

resulting in the abnormally low minimum. With further inspection and utilization of

the interpretations, we could possibly produce even more telling conclusions.

The ontology, as it was originally, only provided a structure for the data – the two

departments could not be compared. However, with this introduction of interpreta-

tions, we not only could learn information specific to individual concepts, such as the

66

M.A.Sc. Thesis - Andrew LeClair8 McMaster - Software Engineering

mean and minimum values, but we could compare them to one another. This compar-

ison of the values allowed us to conjecture results that inferred about statistics such

as the variance of the data, or the correctness of the input data. Ultimately, these

conjectures were created by a domain expert as no reasoner has the ability to utilize

these interpretations or their functions, and thus be able to create these conjectures.

4.3 Example 3 - Creating New Concepts via Inter-

pretation

For our final example, we will observe an arbitrary weather ontology that conceptu-

alizes the months and populates them with daily temperature readings. The example

ontology is shown in Figure 4.8. We have created concepts for only the first three

months of the year, and only populated the first two months (January and February)

with data for illustrative purposes. Our goal is to determine the maximum tempera-

ture that both January and February experience, as well as the average temperature

between the two months. To ensure a deterministic result, two temperatures are con-

sidered identical if they round to the same integer using the round half up method,

which is q = bx + 0.5c. If for any two temperatures (x1 and x2), they have the same

q, then they are the same temperature.

To achieve the first goal of acquiring the maximum temperature both January and

February experience, we must first gather the temperatures that are in common

between the two months. This can be accomplished by determining the intersection.

To intersect the two months, we must first interpret them both as a Set (or Bag),

and apply the intersection function. By intersecting the two concepts, we create

67

M.A.Sc. Thesis - Andrew LeClair9 McMaster - Software Engineering

Figure 4.8: The Weather Ontology.

a new concept that is populated solely by the data that is shared among the two

concepts being intersected. By observing Figure 4.9, we can see that it is populated

by temperatures “−22.5” and “−27.2”. These values were determined by noticing

that the temperatures −22.4 and −22.5 are identical (they both round up to the

value of −22), and keeping the value from January (−22.5). Similarly, the February

temperature −27.0 is calculated to be identical to the value of −27.2 from January,

and so the −27.2 is kept. We can continue investigating the similarities of the months

by interpreting the resulting concept from the intersection as a list to determine the

maximum temperature, demonstrated in Figure 4.10.

As shown in Figure 4.10, we notice the maximum to be −22.5. Similar to how the

68

M.A.Sc. Thesis - Andrew LeClair10 McMaster - Software Engineering

Figure 4.9: The result of intersecting the concepts January and February.

minimum function is taking advantage of the head of the list, the maximum takes

advantage of repeatedly taking the tail of the list until the size of the tail is 1. What

this tells us is the highest temperature that both January and February experiences,

is −22.5. Likewise, we could also determine the minimum temperature both months

experience together.

Figure 4.10: The maximum temperature that is shared between January and Febru-
ary.

We have finished the first part of our task, which was discovering the maximum

69

M.A.Sc. Thesis - Andrew LeClair11 McMaster - Software Engineering

temperature that both January and February experiences. However, we must now

complete the second task: to find the average temperature between both months.

We take the original ontology (before the months were intersected), and instead take

the union of the two months. By taking the union of both months, we create a

new concept that is populated by data that is found in January or February. This

new concept, shown in Figure 4.11, shows that the concept is populated by every

individual that was in either of the two sub-concepts.

Figure 4.11: The result of the union between January and February.

We wish to find the average temperature that both months experience, so we interpret

this new concept as a list, and determine its mean value by taking advantage of the

70

M.A.Sc. Thesis - Andrew LeClair12 McMaster - Software Engineering

fact it has been interpreted as a numerical list. As shown in Figure 4.12, the mean

temperature between January and February is −22.7167.

Figure 4.12: The average of the union between January and February.

Without the notion of concept interpretation, the information that was discovered in

this example would be unreachable. In this example we demonstrated that we can

discover new concepts within the ontology that are populated by data that already

exists within the ontology. These new concepts represent the union or intersections of

concepts. The concept which is created by the union of two other concepts represents

the thing that contains individuals that are either of the concepts – it is a super-

concept. The result of an intersection is its dual, it is a thing that contains individuals

that are found in both concepts – it is a sub-concept. We used this understanding of

union and intersection to determine what we can learn about the data. Specifically,

we wished to know what we could learn about information pertaining to January

and February (the intersection), and about information pertaining to January or

February (the union). This information – the notion of these new concepts which are

populated from already existing data – is able to be discovered and utilized because

71

M.A.Sc. Thesis - Andrew LeClair13 McMaster - Software Engineering

of the interpretations.

4.4 Conclusion

In this Chapter, we have gone over three different examples. Example 1 was a simple

demonstration of what a simple interpretation can do. By interpreting a concept, we

discovered duplicate data. We then illustrated an example with Example 2 where

we compared concepts through metrics such as minimums or averages. This exam-

ple provides insight to reasoning potential – the comparing of concepts by methods

otherwise impossible. In the example, we discovered that although the averages of

the two departments were similar, the variances were much different. In the final

example, Example 3, we composed several interpretations and functions to acquire

new concepts. We ultimately ended up with knowledge of the maximum temperature

that January and February experience, as well as the average temperature between

both months. This knowledge was acquired solely because of the interpretations –

by interpreting the two months as Bags, we were able to intersect or union them,

which resulted in a new concept. This new concept could then be interpreted as a

list, which provided us with the maximum or average.

Although we illustrated several points with these examples, there exist other functions

that were not shown, such as the median of a list. As the number of interpretation

methods grows, the amount of knowledge that can be acquired from a domain in-

creases.

72

Chapter 5

Discussion

In this chapter, we discuss various aspects of the problem of Conto. In Section 5.1,

we discuss some possible application domains for which Conto technique presented

in Chapter 3 is suitable, and will be related to the Examples presented in Chapter 4.

We also discuss the importance of such techniques and applications. In Section 5.2,

we assess the strengths and weaknesses of the main contributions.

5.1 Discussion

As it was mentioned in Chapter 1, several fields of research already contain unimag-

inable amounts of data, and are acquiring more at an unimaginable rate. Examples

of these fields are astronomy [FB12] and businesses [GSLG12]. The information that

each respective domain acquires is respective to their own domain – whether it be

planetary data, or business transaction – formatted as entries in databases. With the

research of translating databases into ontologies, such as the DB2OWL tool [CGY07]

73

M.A.Sc. Thesis - Andrew LeClair1 McMaster - Software Engineering

which performs said task of translating, we arrive at a situation which Conto is de-

signed for: providing another way to understand an ontology so that we maximize

the knowledge that can be acquired.

Even though the domains used for illustrative purposes in the previous chapter were

narrow in scope and populated by minimal individuals, we could see valuable knowl-

edge was acquired. It is important to note that this knowledge was always present, it

was just unable to be accessed due to the incapability to interpret the concepts. We

did not add new data or manipulate the data itself. We changed how we understood

the concepts. Conto can thus be applied to the domains that are much larger in scope

and with magnitudes more individuals (such as the astronomy or business domain)

to provide these new insights, so long as the structure of their ontology is suitable for

the tool.

The prototype of Conto demonstrates the usefulness of the interpretation of concepts

by allowing us to access this new knowledge that was previously unreachable. If a

reasoning process were to be extended to include the interpretation of concepts, then

interesting formal structured rules could be found and isolated from the uninteresting

rules. Currently, Conto can only output the knowledge that is used for the generation

of a rule, and leaves it up to the domain expert to infer a rule from the knowledge.

Also, since Conto is utilized by a domain expert, the knowledge being discovered

is limited to the configuration the domain expert is focused on. However, Conto is

open to concurrent configuration, where it processes all possible configurations of the

ontology. By doing this concurrent configuration, all the knowledge that is discovered

from the ontology would truly be maximized.

74

M.A.Sc. Thesis - Andrew LeClair2 McMaster - Software Engineering

As it was discussed in Section 1.2, one of the primary dilemmas in the field of on-

tologies is the static representation of concepts. In current literature, concepts are

defined in relation to other concepts. With Conto, we believe we have helped conquer

this problem by allowing for the interpretation of concepts. We have tackled the

problems laid out in Section 1.3, and developed a tool that can configure an ontology

and produce novel results.

5.2 Assessment of the Contributions

In this section, we discuss the strengths and weaknesses of the main contributions

presented in this thesis. It is important to highlight both the strengths and weaknesses

of Conto so that we are able to further refine a solution to the problem of being able

to configure ontologies with interpreted concepts.

5.2.1 Strengths of the Contributions

The strengths of Conto lie in three key points: validating the creation of Conto, the

versatility of interpretations, and the usefulness of the interpretation functions.

Conto is a prototype to show that the interpretation of concepts is crucial to the

reasoning process. Conto excels at this, as the Examples have shown; information

is acquired – which can ultimately be understood as rules – that would otherwise

be impossible to acquire. The original problem statement stated that the current

limitation on concepts inhibits the reasoning process due to reasoners not being able

to access some knowledge. Conto effectively removes, or dampens, this limitation.

Conto is able to configure ontologies built using mereological relations between the

75

M.A.Sc. Thesis - Andrew LeClair3 McMaster - Software Engineering

concepts. Conto already contains three interpretations – Set, Bag, and List – which

are extremely useful in providing knowledge, as demonstrated with the Examples. It

also boasts a plug-and-play architecture, allowing new interpretations to be incorpo-

rated and utilized with ease. This allows a domain expert to specifically mine for

information they may seek using an interpretation unique to their domain, such as

a domain expert in the business domain interpreting a concept as fiscal, thus hav-

ing associated tax rates, inflation adjustments for different years, and conversions to

different currencies.

Conto not only includes these interpretations, but the functions alongside them, such

as Set Union or Intersection. This allows the user to create new concepts from old

ones that have been interpreted. Previously inaccessible knowledge can be accessed by

functions available from the interpretations. Thanks to the graphical interaction with

Ontograf, the user can also visually see how the concepts and individuals may relate

via unions or intersections. Much like how the plug-and-play architecture allowed

for new interpretations to be made, new functions can also be made (or old ones be

extended), such as adding the inverse function for Set.

What this means is that Conto has met the goals set out by this research, and helped

reduce this limitation on concepts during the reasoning process. Also, it has been

built in a way that allows it to continue to grow. More interpretations can be created

to increase the amount of knowledge that can be acquired from an ontology.

5.2.2 Weaknesses of the Contributions

Although Conto provides insight into the interpretation of concepts and the configu-

ration of an ontology, there are limitations and weaknesses to it.

76

M.A.Sc. Thesis - Andrew LeClair4 McMaster - Software Engineering

To properly utilize Conto and ensure correct results, the assumptions that were de-

tailed in Section 3.1 in Chapter 3 must be followed. In particular, the ontology that

is being investigated must be built off mereological relations. When studying Exam-

ple 1, it should be noticed we had to modify the Travel Ontology. This is due to

the ontology containing relations which resulted in an ontology that was not hierar-

chical. Conto cannot properly process these non-mereological relations that possibly

refer to ancestral concepts. Although this assumption critically hinders the num-

ber of ontologies that can be processed using Conto, it should be acknowledged that

this can be remedied by a domain expert including the definitions and behaviors of

non-mereological relations to Conto. The assumption was originally made due to the

impossibility of Conto being able to ‘understand’ all possible relations that may exist

within an ontology, and thus, we have left it to the domain expert to handle how

Conto handles these relations on a case-by-case basis.

The other assumptions, such as how identical individuals are defined or how individ-

uals are limited to being instantiations of one concept, may also limit the ontologies

that Conto can process. However, these were assumptions that were made during

the creation of Conto to avoid unforeseeable problems during the processing of such

ontologies. This means that with future updates of Conto, these assumptions will be

addressed and lifted.

Another crucial weakness is the lack of reasoning support. There does not exist

a reasoner in current literature that utilizes the interpretation of concepts in the

reasoning process. However, Conto does provide the knowledge that can ultimately

be used to generate rules that a reasoner would normally output. This means that in

the current incarnation of Conto, if the user is a sufficient expert within the domain

77

M.A.Sc. Thesis - Andrew LeClair5 McMaster - Software Engineering

they are studying, they can utilize Conto to acquire valuable knowledge they would

ordinarily not be able to. With the eventual introduction of a reasoner, it would add

the insurance that no knowledge would be ignored due to negligence or error on the

domain experts part, and we also add the ease for any user to acquire knowledge from

the domain.

5.3 Conclusion

As discussed in this Chapter, Conto has several immediate uses. Several domains al-

ready currently exist with such huge stores of data they can not be properly processed

without the use of ontologies. Conto allows for the configuration of ontologies, rem-

edying the current limitation of how concepts within an ontology are defined. With

the tool, we are able to interpret concepts so that more knowledge can be extracted

that would otherwise be inaccessible. Although the tool achieves all goals that were

set out in the beginning of this research, it has its own limitations. Several of the

weaknesses come from the assumptions that were made when creating Conto. These

assumptions limit the ontologies that can be processed using Conto. However, several

of these assumptions will be addressed as we move from a prototype to a commercial

tool, and in doing so, lift the limitations of Conto.

78

Chapter 6

Conclusion and Future Work

In this Chapter we conclude our work. In Section 6.1 we discuss future directions that

this research can take. We provide specific work with the purpose for their work, and

what they will contribute to the work. Finally, we conclude the work in Section 6.2

with Closing Remarks.

6.1 Future Work

As we have discussed, although Conto helps alleviate the limitation on concepts within

an ontology, there is still work to be done. In this section, we evaluate the main future

work for the research. The potential gains from completing the listed future work are

detailed, as well as how this work has created the potential for the future work.

6.1.1 Reasoning Methods

A critical aspect to knowledge discovery is the reasoning process that is used. The

type of knowledge that can be acquired depends on the ontology formalism and

79

M.A.Sc. Thesis - Andrew LeClair1 McMaster - Software Engineering

the reasoning process. As it currently stands, Conto does not have a reasoner that

utilizes the concept interpretations, thus limiting the knowledge that can be acquired.

Currently, the domain expert can only acquire knowledge by further processing the

output of Conto into rules.

With the creation or modification of a reasoner that utilizes Conto, we eliminate this

further processing that the domain expert is required to do, as well as we increase

the efficiency of the rule generation. Without a reasoner, the domain expert can only

configure an ontology one configuration at a time (then process that configuration).

With a reasoner, it could be possible to process multiple configurations concurrently.

6.1.2 Applications

In our work, we presented a few examples to demonstrate the utilization and purpose

of Conto. The ontologies that were used were either modified already-existing ontolo-

gies, or novel ontologies created for the sake of illustrative purposes. Future work into

applications would strengthen the argument for the necessity of the interpretation of

concepts. We wish to be able to take an existing ontology and process it using Conto

to demonstrate the new knowledge that is acquired.

6.1.3 Automation/Concurrency

In the current incarnation of Conto, the domain expert is required to input the

interpretations desired for each concept, and to configure the ontology. However, the

ability to upload an ontology and simultaneously interpret a concept indicates that

there is a possibility for concurrency in the future. The goal of being able to process

every configuration concurrently is a future goal. What this means is that it would

80

M.A.Sc. Thesis - Andrew LeClair2 McMaster - Software Engineering

be possible to learn everything of significance from a domain, in an efficient and total

way.

6.2 Closing Remarks

In this work we have developed Conto, a prototype tool that allows for the interpre-

tation of a concept with an abstract data type. From studying the current literature,

we learned that a severe limitation on the reasoning process is the static definition

of concepts, resulting in knowledge that is often shallow and non-interesting. By

introducing the configuration of an ontology, where a configuration is composed of

the interpretations applied to the concepts, we reduce this limitation. We provide

a way for a domain expert to understand their domain in multiple ways, and glean

knowledge from these understandings that would otherwise be inaccessible and thus

forgotten. With Conto, we extended the Ontograf plugin within the Protégé ontology

editor so that it is possible to configure an ontology. We detailed the architecture and

design of Conto, and highlight the plug-and-play design allows for the easy addition

of new interpretations, allowing for Conto to meet the needs of the domain expert.

Examples demonstrate the use of Conto over several different ontologies, and describe

the type of knowledge that can be acquired that normally is inaccessible. We finally

list the strengths and weaknesses of Conto, focusing on the strength of the plug-and-

play design and that several weaknesses are results of the assumptions made which

will be addressed in future versions.

In conclusion, Conto addresses a critical problem that we believe hinders the reasoning

process for ontologies. As it currently stands, the knowledge that is acquired is limited

due to how concepts are defined. Conto remedies this by allowing a domain expert

81

M.A.Sc. Thesis - Andrew LeClair3 McMaster - Software Engineering

to retain the original relations to other concepts, but also imbue the concept with

a structure that allows an understanding of its individuals that was not originally

there. This structure that has been incorporated into the concept can be used to

compare the concept to other concepts, or perhaps to investigate the individuals that

belong to the concept. With the creation of Conto, we aim at better understanding

the vast amounts of data so that new knowledge can be acquired that is otherwise

unobtainable. Although there exists weaknesses within Conto, such as its reliance

on the assumptions, we strongly believe Conto is the first steps in a new way of

understanding ontologies, that will ultimately be necessary to address the problems

with Big Data.

82

Appendix A

Detailed Class Diagram

This appendix contains the detailed class diagram of Conto in Figure A. This figure

goes into detail of the classes that were introduced in the analysis class diagram of

Figure 3.3.

The controller classes – Compiler, Interpreter, and Uploader – are detailed as such:

classes that have functions to perform their respective responsibilities. The Ontology

Holder stores the information and can be seen as such by the get and set functions.

The Interpretation and Interpretation Functions represent the repository, and can be

seen to store all information related to the interpretation methods and functions.

Of note is that the Interpretation class is an abstract class depicting the player-role.

The default interpretations of Set, Bag, and Ordered List are inherited classes of this

abstract class (denoted by the hollow pointed arrow).

83

M.A.Sc. Thesis - Andrew LeClair1 McMaster - Software Engineering

Figure A.1: Detailed Class Diagram of Conto.

84

Glossary

Conto Is the tool that has been made for the purposes of this research.

Protégé Is the Ontology editor that Conto plugs into.

85

Acronyms

ABox Assertional Box.

DL Description Logic.

FCA Formal Concept Analysis.

FLogic Frame Logic.

FO Frame Ontology.

GO The Gene Ontology.

KIF Knowledge Interchange Format.

LTL Linear Temporal Logic.

MO The Music Ontology.

OO Object Oriented.

OWL Web Ontology Language.

TBox Terminological Box.

86

Bibliography

[ABB+00] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein,

Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S

Dwight, Janan T Eppig, et al. Gene ontology: tool for the unification

of biology. Nature genetics, 25(1):25–29, 2000.

[AIS93] Rakesh Agrawal, Tomas Imielinski, and Arun Swami. Mining association

rules between sets of items in large databases. SIGMOD ’93 Proceedings

of the 1993 ACM SIGMOD Internation Conference on Management of

Data, 1993.

[Ala03] Harith Alani. Tgviztab: an ontology visualisation extension for protégé.

2003.

[Art94] W Brian Arthur. Inductive reasoning and bounded rationality. The

American economic review, pages 406–411, 1994.

[BAF+06] Djamal Benslimane, Ahmed Arara, Gilles Falquet, Zakaria Maamar,

Philippe Thiran, and Faiez Gargouri. Contextual ontologies. Springer,

2006.

[BFGR07] Andrea Bellandi, Barbara Furletti, Valerio Grossi, and Andrea Romei.

87

M.A.Sc. Thesis - Andrew LeClair2 McMaster - Software Engineering

Ontology-driven association rule extraction: A case study. Contexts and

Ontologies Representation and Reasoning, page 10, 2007.

[BGL12] Franz Baader, Silvio Ghilardi, and Carsten Lutz. Ltl over descrip-

tion logic axioms. ACM Transactions on Computational Logic (TOCL),

13(3):21, 2012.

[BL04] Ronald Brachman and Hector Levesque. Knowledge Representation and

Reasoning. Elsevier, 2004.

[BL12] Chitta Baral and Shanshan Liang. From knowledge represented in

frame-based languages to declarative representation and reasoning via

asp. In KR, 2012.

[BS03] Alex Borgida and Luciano Serafini. Distributed description logics: As-

similating information from peer sources. In Journal on Data Semantics

I, pages 153–184. Springer, 2003.

[BSSH08] Elena Beisswanger, Stefan Schulz, Holger Stenzhorn, and Udo Hahn.

Biotop: an upper domain ontology for the life sciences. Applied Ontology,

3(4):205–212, 2008.

[Bun12] Mario Bunge. Treatise on Basic Philosophy: Ethics: The Good and The

Right, volume 8. Springer Science & Business Media, 2012.

[CCC+09] Chang Choi, Miyoung Cho, Junho Choi, Myunggwon Hwang, Jongan

Park, and Pankoo Kim. Travel ontology for intelligent recommendation

system. In Modelling & Simulation, 2009. AMS’09. Third Asia Inter-

national Conference on, pages 637–642. IEEE, 2009.

88

M.A.Sc. Thesis - Andrew LeClair3 McMaster - Software Engineering

[CFF+98] Vinay K Chaudhri, Adam Farquhar, Richard Fikes, Peter D Karp, and

James P Rice. Okbc: A programmatic foundation for knowledge base

interoperability. In AAAI/IAAI, pages 600–607, 1998.

[CGP00] Oscar Corcho and Asunción Gómez-Pérez. A roadmap to ontology spec-

ification languages. In Knowledge Engineering and Knowledge Manage-

ment Methods, Models, and Tools, pages 80–96. Springer, 2000.

[CGY07] Nadine Cullot, Raji Ghawi, and Kokou Yétongnon. Db2owl: A tool

for automatic database-to-ontology mapping. In SEBD, pages 491–494,

2007.

[Cha07] Hans Chalupsky. Loom project home page. http://www.isi.edu/isd/

LOOM/, July 2007.

[CJB99] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins.

What are ontologies, and why do we need them? IEEE Intelligent

Systems, 1999.

[CK94] Shyam R Chidamber and Chris F Kemerer. A metrics suite for ob-

ject oriented design. Software Engineering, IEEE Transactions on,

20(6):476–493, 1994.

[CMMV13] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Ivan Varz-

inczak. Towards practical defeasible reasoning for description logics.

2013.

[CP13] Paolo Ciccarese and Silvio Peroni. The collections ontology: creating

89

http://www.isi.edu/isd/LOOM/
http://www.isi.edu/isd/LOOM/

M.A.Sc. Thesis - Andrew LeClair4 McMaster - Software Engineering

and handling collections in owl 2 dl frameworks. Semantic Web - Inter-

operability, Usability, Applicability, 2013.

[dBH08] Jos de Bruijn and Stijn Heymans. On the relationship between descrip-

tion logic-based and f-logic-based ontologies. Fundamenta Informaticae,

82(3):213–236, 2008.

[DCTK11] Kathrin Dentler, Ronald Cornet, Annette Ten Teije, and Nicolette De

Keizer. Comparison of reasoners for large ontologies in the owl 2 el

profile. Semantic Web, 2011.

[EH95] Carola Eschenbach and Wolfgang Heydrich. Classical mereology and

restricted domains. International Journal of Human-Computer Studies,

43(5):723–740, 1995.

[FB12] Eric D. Feigelson and G. Jogesh Babu. Big data in astronomy. Signifi-

cance, 2012.

[fBIR15] Stanford Center for Biomedical Informatics Research. Protégé. http:

//protege.stanford.edu/, 2015.

[fBO15] The National Center for Biomedical Ontology. Ontology for general med-

ical sciences. https://bioportal.bioontology.org/ontologies/

OGMS/?p=summary, August 2015.

[FEAC02] Frederico T Fonseca, Max J Egenhofer, Peggy Agouris, and Gilberto

Câmara. Using ontologies for integrated geographic information systems.

Transactions in GIS, 6(3):231–257, 2002.

90

http://protege.stanford.edu/
http://protege.stanford.edu/
https://bioportal.bioontology.org/ontologies/OGMS/?p=summary
https://bioportal.bioontology.org/ontologies/OGMS/?p=summary

M.A.Sc. Thesis - Andrew LeClair5 McMaster - Software Engineering

[Fen10] Stefan Fenz. Ontology-based generation of it-security metrics. In Pro-

ceedings of the 2010 ACM Symposium on Applied Computing, pages

1833–1839. ACM, 2010.

[FFR97] Adam Farquhar, Richard Fikes, and James Rice. The ontolingua server:

A tool for collaborative ontology construction. International journal of

human-computer studies, 46(6):707–727, 1997.

[FHVH+00] Dieter Fensel, Ian Horrocks, Frank Van Harmelen, Stefan Decker,

Michael Erdmann, and Michel Klein. Oil in a nutshell. In Knowledge

Engineering and Knowledge Management Methods, Models, and Tools,

pages 1–16. Springer, 2000.

[FPSS96] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From

data mining to knowledge discovery in databases. AI Magazine, 17(3),

1996.

[FT12] Barbara Furletti and Franco Turini. Knowledge discovery in ontologies.

Intelligent Data Analysis, 2012.

[GBJR+13] Rafael S Gonçalves, Samantha Bail, Ernesto Jimenez-Ruiz, Nicolas Ma-

tentzoglu, Bijan Parsia, Birte Glimm, and Yevgeny Kazakov. Owl rea-

soner evaluation (ore) workshop 2013 results: Short report. In ORE,

pages 1–18, 2013.

[Gen14] Gene ontology consortium. http://geneontology.org/, 2014.

91

http://geneontology.org/

M.A.Sc. Thesis - Andrew LeClair6 McMaster - Software Engineering

[GGOP13] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Poz-

zato. A non-monotonic description logic for reasoning about typicality.

Artificial Intelligence, 195:165–202, 2013.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign patterns: elements of reusable object-oriented software. Pearson

Education, 1994.

[GHM+12] Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos

Stoilos. A novel approach to ontology classification. Web Semantics:

Science, Services and Agents on the World Wide Web, 14:84–101, 2012.

[GHMS10] Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos. Optimis-

ing ontology classification. In The Semantic Web–ISWC 2010, pages

225–240. Springer, 2010.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology speci-

fications. Knowledge Acquisition, 5(2):199–220, 1993.

[GSLG12] Vivekanand Gopalkrishnan, David Steier, Harvey Lewis, and James

Guszcza. Big data, big business: Bridging the gap. BigMine ’12 Pro-

ceedings of the 1st International Workshop on Big Data, Streams and

Heterogeneous Source Mining: Algorithms, Systems, Programming Mod-

els and Applications, 2012.

[Gua95] Nicola Guarino. Formal ontology, conceptual analysis and knowledge

representation. International Journal of Human-Computer Studies,

43(5–6), 1995.

92

M.A.Sc. Thesis - Andrew LeClair7 McMaster - Software Engineering

[H+02] Ian Horrocks et al. Daml+oil: A description logic for the semantic web.

IEEE Data Eng. Bull., 25(1):4–9, 2002.

[HCC+12] Josh Hanna, Cheng Chen, W Alex Crow, Roger Hall, Jie Liu, Tejaswini

Pendurthi, Trent Schmidt, Steven F Jennings, Mathias Brochhausen,

and William Hogan. Simplifying mireot: a mireot protégé plugin. In 11th

International Semantic Web Conference ISWC 2012, page 25. Citeseer,

2012.

[HHMW12] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The

racerpro knowledge representation and reasoning system. Semantic Web,

3(3):267–277, 2012.

[HLS+08] Peter Haase, Holger Lewen, Rudi Studer, Duc Thanh Tran, Michael

Erdmann, Mathieu d’Aquin, and Enrico Motta. The neon ontology

engineering toolkit. WWW, 2008.

[HLY08] T Huang, W Li, and C Yang. Comparison of ontology reasoners: Racer,

pellet, fact++. In AGU Fall Meeting Abstracts, volume 1, page 1068,

2008.

[Hoe10] Robert Hoehndorf. What is an upper level ontology? http://

ontogenesis.knowledgeblog.org/740, 2010.

[Hor05] Ian Horrocks. Owl: A description logic based ontology language. In

Logic Programming, pages 1–4. Springer, 2005.

[HPsaCAW] Ian Horrocks, Peter F. Patel-schneider, and Deborah L. Mcguinness

93

http://ontogenesis.knowledgeblog.org/740
http://ontogenesis.knowledgeblog.org/740

M.A.Sc. Thesis - Andrew LeClair8 McMaster - Software Engineering

an Christopher A. Welty. Owl: A description logic based ontology lan-

guage for the semantic web.

[HQX12] Tianyong Hao, Yingying Qu, and Fang Xia. Domain knowledge acquisi-

tion by automatic semantic annotating and pattern mining. Information

Retrieval and Knowledge Management (CAMP), 2012.

[HS01] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the shoq (d)

description logic. In IJCAI, volume 1, pages 199–204, 2001.

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with in-

dividuals for the description logic\ mathcal {SHIQ}. In Automated

Deduction-CADE-17, pages 482–496. Springer, 2000.

[JMY99] Igor Jurisica, John Mylopoulos, and Eric Yu. Using ontologies for knowl-

edge management: An information systems perspective. In Proceedings

of the Annual Meeting-American Society For Information Science, vol-

ume 36, pages 482–496. Information Today; 1998, 1999.

[KCS13] Ridha Khedri, Fei Chiang, and Khair Eddin Sabri. An algebraic ap-

proach towards data cleaning. Procedia Computer Science, 21:50–59,

2013.

[KFNM04] Holger Knublauch, Ray W Fergerson, Natalya F Noy, and Mark A

Musen. The protégé owl plugin: An open development environment for

semantic web applications. In The Semantic Web–ISWC 2004, pages

229–243. Springer, 2004.

94

M.A.Sc. Thesis - Andrew LeClair9 McMaster - Software Engineering

[KK13] Yevgeny Kazakov and Pavel Klinov. Incremental reasoning in owl el

without bookkeeping. In The Semantic Web–ISWC 2013, pages 232–

247. Springer, 2013.

[KL89] Michael Kifer and Georg Lausen. F-logic: a higher-order language for

reasoning about objects, inheritance, and scheme. In ACM SIGMOD

Record, volume 18, pages 134–146. ACM, 1989.

[KPS+06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau,

and James Hendler. Swoop: A web ontology editing browser. Web

Semantics: Science, Services and Agents on the World Wide Web,

4(2):144–153, 2006.

[KSH12] Markus Krotzsch, Frantisek Simancik, and Ian Horrocks. A description

logic primer. Artificial Intelligence, 2012.

[LCS12] Renars Liepins, Karlis Cerans, and Arturs Sprogis. Visualizing and

editing ontology fragments with owlgred. I-SEMANTICS (Posters &

Demos), 932:22–25, 2012.

[LLBN09] Marko Luther, Thorsten Liebig, Sebastian Böhm, and Olaf Noppens.

Who the heck is the father of bob? In The Semantic Web: Research

and Applications, pages 66–80. Springer, 2009.

[LNST08] Jean Lieber, Amedeo Napoli, Laszlor Szathmary, and Yannick Tous-

saint. Concept Lattices and Their Applications. Springer Berlin Heidel-

berg, 2008.

95

M.A.Sc. Thesis - Andrew LeClair10 McMaster - Software Engineering

[LSDS06] Severin Lemaignan, Ali Siadat, Jean-Yves Dantan, and Anatoli Seme-

nenko. Mason: A proposal for an ontology of manufacturing domain.

In Distributed Intelligent Systems: Collective Intelligence and Its Ap-

plications, 2006. DIS 2006. IEEE Workshop on, pages 195–200. IEEE,

2006.

[MBK06] Christopher J Matheus, Ken Baclawski, and Mieczyslaw M Kokar. Ba-

sevisor: A triples-based inference engine outfitted to process ruleml and

r-entailment rules. In Rules and Rule Markup Languages for the Se-

mantic Web, Second International Conference on, pages 67–74. IEEE,

2006.

[MCWD06] Cynthia Matuszek, John Cabral, Michael J Witbrock, and John DeO-

liveira. An introduction to the syntax and content of cyc. In AAAI

Spring Symposium: Formalizing and Compiling Background Knowledge

and Its Applications to Knowledge Representation and Question An-

swering, pages 44–49. Citeseer, 2006.

[MD13] Travis B. Murdoch and Allan S. Detsky. The inevitable application of big

data to health care. The Journal of the American Medical Association,

2013.

[MM08] Jakub Moskal and Christopher J Matheus. Detection of suspicious ac-

tivity using different rule engines—comparison of basevisor, jena and

jess rule engines. In Rule Representation, Interchange and Reasoning

on the Web, pages 73–80. Springer, 2008.

96

M.A.Sc. Thesis - Andrew LeClair11 McMaster - Software Engineering

[MMS14] Kody Moodley, Thomas Meyer, and Uli Sattler. Practical defeasible

reasoning for description logics (stairs). 2014.

[Mot98] Enrico Motta. An overview of the ocml modelling language. In the 8th

Workshop on Methods and Languages. Citeseer, 1998.

[NH97] Natalya Fridman Noy and Carole D. Hafner. The state of the art in on-

tology design: A survey and comparative review. AI Magazine, 18(3):53–

74, 1997.

[NM01] Natalya F. Noy and Deborah L. McGuinness. Ontology devel-

opment 101: A guide to creating your first ontology. http:

//protege.stanford.edu/publications/ontology_development/

ontology101-noy-mcguinness.html, 2001.

[NP01] Ian Niles and Adam Pease. Towards a standard upper ontology. In

Proceedings of the international conference on Formal Ontology in In-

formation Systems-Volume 2001, pages 2–9. ACM, 2001.

[Obi07] Marek Obitko. Description logics. http://www.obitko.com/

tutorials/ontologies-semantic-web/description-logics.html,

2007.

[oP15] Stanford Encyclopedia of Philosophy. Mereology. http://plato.

stanford.edu/entries/mereology/, January 2015.

[Orl85] Ewa Orlowska. Semantic analysis of inductive reasoning. Science Direct,

1985.

97

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://www.obitko.com/tutorials/ontologies-semantic-web/description-logics.html
http://www.obitko.com/tutorials/ontologies-semantic-web/description-logics.html
http://plato.stanford.edu/entries/mereology/
http://plato.stanford.edu/entries/mereology/

M.A.Sc. Thesis - Andrew LeClair12 McMaster - Software Engineering

[PGS06] Yury Puzis, Yi Gao, and Geoff Sutcliffe. Automated generation of in-

teresting theorems. FLAIRS Conference, 2006.

[RASG07] Yves Raimond, Samer A Abdallah, Mark B Sandler, and Frederick Gi-

asson. The music ontology. In ISMIR, pages 417–422. Citeseer, 2007.

[RDB+06] Daniel L Rubin, Olivier Dameron, Yasser Bashir, David Grossman, Par-

vati Dev, and Mark A Musen. Using ontologies linked with geometric

models to reason about penetrating injuries. Artificial intelligence in

medicine, 37(3):167–176, 2006.

[Run13] B. Runciman. Where are we with big data? IT Now, 2013.

[SI02] Xiaomeng Su and Lars Ilebrekke. A comparative study of ontology

languages and tools. In Advanced Information Systems Engineering,

pages 761–765. Springer, 2002.

[SMH08] Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient

owl reasoner. In OWLED, volume 432, page 91, 2008.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A practical owl-dl reasoner. Web Semantics:

science, services and agents on the World Wide Web, 5(2):51–53, 2007.

[Stu03] Greg Stumme. Off to new shores: Conceptual knowledge discovery

and processing. International Journal of Human-Computer Studies,

59(3):287–325, 2003.

[SWA+94] Guus Schreiber, Bob Wielinga, Hans Akkermans, Walter Van de Velde,

and Anjo Anjewierden. Cml: The commonkads conceptual modelling

98

M.A.Sc. Thesis - Andrew LeClair13 McMaster - Software Engineering

language. In A future for Knowledge Acquisition, pages 1–25. Springer,

1994.

[SWR+99] WD Solomon, CJ Wroe, AL Rector, JE Rogers, JL Fistein, and P John-

son. A reference terminology for drugs. In Proceedings of the AMIA

Symposium, page 152. American Medical Informatics Association, 1999.

[SWS03] Barry Smith, Jennifer Williams, and Schulze-Kremer Steffen. The on-

tology of the gene ontology. In AMIA Annual Symposium Proceedings,

volume 2003, page 609. American Medical Informatics Association, 2003.

[TH06] Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner:

System description. In Automated reasoning, pages 292–297. Springer,

2006.

[TSDM04] Yue Tang, Jing Sun, Jin Song Dong, and Brendan Mahony. Reasoning

about semantic web in isabelle/hol. Asia-Pacific Software Engineering

Conference, 2004.

[Uni15] Royal Roads University. Types of reasoning (deduc-

tive vs. inductive). http://library.royalroads.ca/

writing-centre/writing/argumentation/building-argument/

types-reasoning-deductive-vs-inductive, 2015.

[Wan89] Yair Wand. A proposal for a formal model of objects. In Object-oriented

concepts, databases, and applications, pages 537–559. ACM, 1989.

[WD10] Daya C. Wimalasuriya and Dejing Dou. Ontology-based information

99

http://library.royalroads.ca/writing-centre/writing/argumentation/building-argument/types-reasoning-deductive-vs-inductive
http://library.royalroads.ca/writing-centre/writing/argumentation/building-argument/types-reasoning-deductive-vs-inductive
http://library.royalroads.ca/writing-centre/writing/argumentation/building-argument/types-reasoning-deductive-vs-inductive

M.A.Sc. Thesis - Andrew LeClair14 McMaster - Software Engineering

extraction: An introduction and a survey of current approaches. Journal

of Information Sciences, 36(3):306–323, 2010.

[Wil05] Rudolf Wille. Formal concept analysis as mathematical theory of con-

cepts and concept hierarchies. In Formal Concept Analysis, pages 1–33.

Springer, 2005.

[WTLH05] Sung-Shun Weng, Hsine-Jen Tsai, Shang-Chia Liu, and Cheng-Hsin

Hsu. Ontology construction for information classification. Expert Sys-

tems with Applications, 31(1):1–12, 2005.

[WVV+01] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-

mann, and S. Hubner. Ontology-based integration of information – a

survey of existing approaches. Proceedings of IJCAI-01 Workshop: On-

tologies and Information Sharing, 2001.

[WW90] Yair Wand and Ron Weber. An ontological model of an information sys-

tem. Software Engineering, IEEE Transactions on, 16(11):1282–1292,

1990.

[WZGP04] X.H. Wang, Da Qing Zhang, Tao Gu, and H.K. Pung. Ontology based

context modeling and reasoning using owl. Pervasive Computing and

Communications Workshops, 2004. Proceedings of the Second IEEE An-

nual Conference on, pages 18–22, 2004.

100

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Knowledge Discovery Using Ontologies
	Introduction to Description Logic and Conjecturing
	Concept Interpretation

	Motivation
	Problem Statement
	Main Contributions
	Structure of the Thesis

	Survey
	Existing Ontological Research
	Ontology Examples

	Existing Reasoning Techniques
	Motivation to Reasoning with Ontologies
	Reasoning with Description Logic
	Reasoning with non-DL Formalisms

	Existing Ontological Tools
	Ontology Formalism and Representation Tools
	Reasoning Tools

	Concept Interpretation and Ontological Configuration
	Contextual Ontologies
	Upper Ontologies

	Conclusion

	The Design of Conto
	Assumptions
	Requirements and Objectives
	The Design of conto
	Architecture
	Design Choices

	Expected Benefits
	Conclusion

	Examples for the Usage of the Tool
	Example 1 - Interpreting a Concept
	Example 2 - Using Interpretation Functions
	Example 3 - Creating New Concepts via Interpretation
	Conclusion

	Discussion
	Discussion
	Assessment of the Contributions
	Strengths of the Contributions
	Weaknesses of the Contributions

	Conclusion

	Conclusion and Future Work
	Future Work
	Reasoning Methods
	Applications
	Automation/Concurrency

	Closing Remarks

	Detailed Class Diagram
	Glossary
	Acronyms
	Bibliography

