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Abstract

We address the problem of valuation of life insurance risks of different nature,
market independent or equity-linked, under various assumptions regarding
policyholders’'mortality and the financial market. Given the incomplete na-
ture of life insurance markets, an indifference valuation approach tailored to
different models of the insurer’s liability is applied. To be more specific, we
propose three models for the insurer’s liability: a single life insurance model,
the individual risk model and the collective risk model. The last two mod-
els are generalizations of the aggregate loss models with the same name from
actuarial mathematics.

First, we investigate the pricing problem of market independent life
insurance risks under the assumption of random mortality, focussing on the
effects of this latter assumption on the premium. We find that random mortal-
ity is an essential assumption especially when pricing in aggregate loss models.
Then, we consider life insurance products with a more complex structure of
the benefit, as equity-linked term life insurances. We price them via utility
indifference in all liability models mentioned above, assuming deterministic
mortality and a Black-Scholes market model. Comparing the results obtained,
we observe that the collective risk model is computationally more efficient than

the others, but at the cost of higher premium. Finally, we conclude by extend-

il



ing our pricing results for equity-linked term life insurance to a one factor
stochastic volatility market model. We obtain that in a fast-mean-reverting
volatility regime, the indifference premium can be well approximated by ad-

justed constant volatility results, previously derived.
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Introduction

The complexity of the life insurance products that have appeared on the mar-
ket during these last decades have generated major pricing challenges to in-
surers. In this thesis, we address some of these challenges and try to answer
them. It is fair to say that the complexity of these life insurance products
arises from the risks embedded in their benefits, risks of different natures as
we discuss below.

Clearly, all life insurance products embed mortality and/or longevity
risk. Therefore, mortality models are essential for life insurance pricing and
management. Mortality modeling constitutes the object of the first chapter of
this thesis. Within this chapter, we do a survey of the development of mortality
modeling, highlighting stochastic mortality models that admit affine mortality
term structure.

Traditionally, life insurance was offering financial protection by means
of a fixed and guaranteed lump-sum payable contingent on death or survival of
the policyholder. The competition with other financial intermediaries, forced
life insurers to introduce more attractive products, such as equity—linked life
insurances that offer jointly mortality protection and equity investment op-
portunities. Accordingly, equity—linked life insurance products present both

mortality and financial risk. The financial risk embedded in the benefit of these
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products challenged actuaries, since their standard actuarial pricing methods
were not applicable. In chapter two, we present two financial methods for
the pricing of equity—linked life insurance. The first approach was proposed
by Brennan & Schwartz (1976) and Boyle & Schwartz (1977). The authors
assume that the mortality risk is diversifiable and then, left only with the finan-
cial risk, they view equity-linked life insurance contracts as financial options
and price them via Black-Scholes and Merton option pricing theory. An alter-
native approach for solving the pricing problem of equity-linked life insurance
is wutility indifference pricing. This approach requires solving two portfolio
investment problems: “the insurer investment problem with no claim”, the
so called Merton investment problem and “insurer investment problem in the
presence of insurance claim(s)”. The first problem was initially solved by Mer-
ton (1969) and we recall it as a first illustration of using dynamic programming
in solving portfolio investment problems. The second problem requires a spe-
cific model for the insurer loss and accordingly we proceed in introducing the
liability models employed in this thesis. Essentially, these models represent
generalizations of the individual and the collective risk models from actuarial
mathematics.

The object of the third chapter is the pricing of market independent
life insurance risks, specifically of pure endowments, term life insurances and
endowments under the assumption of random mortality. This chapter rep-
resents a generalization of Young & Zariphopoulou (2002) and Ludkovski &
Young (2008). We extend the results of Young & Zariphopoulou (2002) in
several directions: first, we assume random mortality as opposed to deter-

ministic mortality and then, we determine both the lump-sum and continuous
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premium for the contracts mentioned above, in all loss models. Clearly, our
work has certain points in common with Ludkovski & Young (2008). The
latter authors, consider the problem of calculating the lump-sum premium for
pure endowments and life annuities under stochastic mortality and interest
rates in a single life insurance model and in the individual risk model. How-
ever, the individual risk model proves to be not a feasible model to work with,
since as we will show in the second section of chapter three, the premium for &
life-insurance contracts require solving recursively k linear partial differential
equations. In contrast, the collective model, that we propose, is numerically
more efficient, since the premium for & life insurance contracts require solving
only one linear partial differential equation.

In chapter four, we employ the utility indifference approach for pricing
equity-linked term life insurances in a single life and in the individual and
collective risk model. For tractability, we assume deterministic mortality and
a Black-Scholes financial market model. The results obtained represent a gen-
eralization of Young (2003) to the aggregate liability models just mentioned.
Specifically, we obtain that in all models, the premium per risk satisfies a sec-
ond order partial differential equation similar to the Black-Scholes equation
while at the same time reflecting the mortality risk and the risk preferences of
the insurer.

Chapter five represents a natural extension of chapter four, to a stochas-
tic volatility financial market model. Given the numerical efficiency of the col-
lective risk model, in this chapter we choose to model from start the insurer’s
losses using this model. We find that the premium solves a nonlinear second

order partial differential equation. However, we do not pursue in calculating
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the premium numerically, but instead following the singular perturbation tech-
nique proposed by Sircar & Zariphopoulou (2004), we derive an asymptotic

approximation of the premium in a fast-mean-reverting volatility regime.



Chapter 1

Mortality modeling

Life insurance risks arise from the uncertain nature of human lifetime. Accord-
ingly, the random variable of time until death and the corresponding mortality
models became essential for life insurance pricing and management. In this
chapter we describe several aspects of the development of mortality modeling,
focusing on the important contributions in this field. We start by introducing
the most important life functions in a static setting and then continue with
life table models and law based mortality models. However, mortality changes
over time and we illustrate this assertion by analyzing the U.S. mortality expe-
rience. This leads naturally to dynamic mortality and the need for mortality
projections. Finally, we conclude the chapter with continuous time stochas-
tic mortality models, highlighting the models that admit an affine mortality

structure.
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1.1 Death and survival probabilities

Let us begin by considering an individual aged ag, generic for a cohort or
population of this age. From now on, we refer to this individual by (ag).
Further, let 7,, denote the time until death of {ag). Then, the cumulative

distribution function of 7,, is denoted and defined by

F

Tag

(t) = P74 < 1), (1.1)

that is I, (¢) represents the probability that (ag) will die within ¢ years.
Here, we assume that [,  is continuous and has a probability density function

denoted by fr,, .

In this thesis, we adopt the international actuarial community nota-
tions. Accordingly, we use the symbol ;q,, for the probability that (ag) will
die within ¢ years. Similarly, we use the symbol ;p,, for the probability that

(ap) will survive more then ¢ years. Naturally,
tPag = 1 — tGao- (1.2)
Also, we mention that it is implicitly assumed that
tli>Ig> tPae = 0 and opg, =1, (1.3)

that is (ap) will not live forever and respectively (ag) is alive at the current
time. Observe that the first condition is required for a correct definition of the
cumulative distribution function FTaO.

Then, we denote by sgs,++ and spg,4: the probabilities of death within
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s years and of survival more than s years respectively, conditional on survival
at age ap + t. We have

Frp(s+1) = Fr (1)

I FTaO (t) (14)

Sqao—H’ = P(t < TGO S s + tlTGO > t) =

and
1—Fr, (s+1)

T F 0 1)

sPag+t = P(Tao >t 4+ SlTao > t) =
A useful identity in terms of the survival probabilities is

1—-F, (s+1)

t+spa0:P(Tao >t+S): 1—F (t)
Tag \Y

(1 - F‘ra0 (t)) = tPagsPag+t- (16)

Next, let 44qq, be the probability that (ag) will survive ¢ years and die in the

following s years. Then
t)sdao = P(t < Tag <t =+ 5) = tPag — t+sPao- (1.7)

Using (1.6) we can further write

tjsdao = tPag — tPagsPag+t = tPagsao+t- (1.8)

For convenience, we follow the convention to omit the prefix in the survival
and death probabilities if it equals one. Accordingly, in this case we write
Pao > Gag» |s9a0-

At this point, we introduce a central life function for mortality model-

ing. This is the instantaneous death rate, referred to here as force of mortality.
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We define the force of mortality of (ag) at age ag + t by

. Pt <7y St 0t|1y, >t
/\(a0+t):51tl£n,0 (t<r 5: 720 ) (1.9)

We have

F

Tag

' (t+ t) = F, (t)
Aao 1) = iy = = 7 ()

1
= wﬂao (t)
d

= - log(1 - Fy, (t)).

Integrating both sides, after some straightforward calculations, we obtain
Pao = e—f(f /\(ao+s)ds. (110)

As can be observed from its definition, the force of mortality is posi-
tive on all its domain. Additionally, as a direct consequence of the fact that

limy o 1P, = 0, the force of mortality has to satisfy

/oo/\(ao—i—s)ds:oo. (1.11)

1.2 Life Tables

The first specification of the distribution of 7,, was done through a life table
by Sir Edmund Halley in 1693. A life table provides a discrete distribution of
the random variable 7,, by the specification of the death probabilities g,, for

ages ap = 0,1...w. Here, w denotes the limiting age of the life table and is


http:limt-.oo
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typically between 110 and 120. For the limiting age, the corresponding death
probability q,, is taken to equal 1. Besides the death probabilities g,,, a life
table might also contain tabulations of the life functions l,,, d4,, €4, defined
below and possibly other functions.

When constructing a life table, one starts with a group of newborns,
say lp = 100000. Essential to the construction of a life table are the death
probabilities q,, for ap = 0,1,...w — 1. Obtaining estimations of these proba-
bilities is a statistical problem belonging to the area of survival analysis. We
assume here that these death probabilities are known and refer the interested
reader to Gerber (1997), chapter 11, for a review of the various estimation
methods of these probabilities.

We denote by [, the expected number of survivors to age ay. Conse-

quently, we have

lag = loS(ao), (1.12)

where S(ag) = P(70 > ao) = 4po- The function S(ag) is called the survival
function.

Next, d,, denotes the expected number of deaths between ages a¢ and
ag + 1. The probability that a newborn dies between ages ag and ag + 1 is

S(ag) — S(ao + 1) and thus we can express d,, as follows

dao = lo (S(a()) - S(ao + 1)) = lao — lao+1' (113)

An important measure of the level of health of a population is the

complete expectation of life. The complete expectation of life of an age ag is
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denoted by e,, and it is defined as
€ao = E[Ta,]. (1.14)
Further, we can write

o= [t = [ tdl=ip) (1.15)

0

and using integration by parts we obtain

€ao = —ttpaolgo +A tpaodt :/O tpaodt‘ (116)

Notice that the life functions l,,, d,, and e,, can be all calculated recursively
for all ages using only the one year death probabilities ¢q,.

The central death rate is defined by

lay — la
Mgy = °—L—°“— (1.17)
ao

where L,, denotes the total expected number of years lived between ages a
and ag + 1 by survivors of the initial group of [y lives. L,, can be expressed as

follows

1 1
Lao = la0+1 -+ / tla0+t/\(a0 + t)dt = la0+1 — / tdla0+t (118)
0 0

1 1
- la0+1 - tla0+tl(1) + / la0+tdt - / la0+tdt (119)
0 0

At this point, we would like to remark that depending on the data used,

life tables can be classified as period or cohort life tables.

10
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A period life table is generated using the mortality experience of a pop-
ulation over a short period of time, typically 1 to 3 years. In this type of table,
the data for each age corresponds to different cohorts at a certain moment in
time, common for all ages. Consequently, a period life table can be regarded as
an excellent model for describing the mortality level of a population. However,
it does not accurately reflect any particular cohort mortality.

On the other hand, cohort life tables are generated by using the entire
experience of a generation. Since they require reliable data for a long period
of time, cohort life tables are rare. The most recent complete cohort life tables
are for generations born around 100 years ago. Cohort life tables are very
important since they are more appropriate than period life tables for insurance
pricing purposes. For example, if an insurance company has to calculate the
premium for a life insurance product to be sold to (ag) in the year y, then the
relevant life table is the cohort life table for the year y — ay.

We conclude by pointing out that a life table does not capture the
entire information about an individual mortality since for example, it omits
fractional age death rates and death rates for fractional durations. However,
life tables offer a rich collection of data about human mortality, augmented
periodically at census years. This fact together with the increasing reliability
of mortality data, makes a life table a very popular mortality model in life

insurance practice.

1.3 Trends in mortality

In what follows we present some of the most important tendencies of human

mortality over the last century. For our analysis, we use American male mor-

11
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tality data, from the U.S. Social Security Area life tables, Actuarial Study No.
120.
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Figure 1.1: Survival function l,, for American males from selected genera-
tions/periods.

Figure (1.1) shows that the survival function [,, increases with gener-
ation/period for all ages. Notice that when passing from a generation/period
to a successive one, the concentration of deaths at old ages increases. Con-
sequently, the shape of l,, becomes increasingly rectangular. At the same
time, observe the movement of l,, to very old ages. These two phenomena are
known in the actuarial literature as “rectangularization” and “expansion” of
the survival function.

In terms of the life function d,,, the features mentioned above are illus-
trated by the dispersion of the expected number of deaths around the mode
that reduces with each generation/period and by the movement of the mode
towards older ages.

An interesting fact that we would like to remark is the way that mor-
tality shocks are reflected in the curve of deaths d,,. Obviously, when using

period life tables for calculating d,,, the shocks in mortality are reflected by

12
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Figure 1.2: Curve of death d,, for American males from selected genera-
tions/periods.

the entire curve of deaths. On the other hand, when using cohort life ta-
bles they are reflected as jumps in the curve of deaths as illustrated by figure
(1.2). Here, the mortality shock is generated by the pandemic flu of 1918 and
concretely, the jump appears in the curve of deaths for Cohort 1900.

Next, we signal the general decline in the death probabilities g,, with
each generation/period. As figure (1.3) shows, the decline is uniform up to
age 90.

The general trend in human mortality can also be illustrated via the
complete expectation of life e,,. As can be observed from figure (1.4), both
life expectancies ey and egs improved during this century. Especially, notice
the huge decline in infant mortality.

As figure (1.4) shows, life expectancy exhibits more fluctuations from
year to year when based on period life tables. This happens because mortality
shocks affect the entire population for a period of one or two years but affect
just one or two vears of the mortality experience of the cohorts alive during

that period.

13
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Figure 1.3: Death probability g,, for American males from selected genera-
tions/periods.
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Figure 1.4: Life expectation at age 0 and at age 65 for American males, based
on cohort (left) and period (right) life tables.

1.4 Law based mortality models

Many fundamental concepts in science are expressed through a law and we
naturally question if there also exists a law for human mortality. Actually,
this was a subject of continuous interest in actuarial literature and probably

the first answer to our question was the one of Abraham De Moivre (1729),

14
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who proposed the following law for the force of mortality

1
)\(ao) = w—a07 0<agy<w (120)

where w is the limiting age.
A century later, Benjamin Gompertz observing mortality data, sug-
gested that a “law of geometric progression pervades” in mortality over a

certain age and proposed a force of mortality of the form

Aag) = aeP? (1.21)

where ¢, 3 > 0.

Gompertz’s mortality law generates death rates that fit well to the ac-
tual ones for adult and old ages. However, Gompertz’s law doesn’t accurately
capture the mortality at young and extremely old ages.

In 1860, William Makeham slightly generalized Gompertz’s law, by
adding a constant to better fit the mortality at extremely old ages. Specifically,

Makeham’s mortality law is

Mag) = v + ae® (1.22)

where o, 3 > 0 and v > 0.
Another important generalization of Gompertz’s law is the one pro-
posed by Thorvald Thiele in 1867. To capture the human mortality over the

whole life, Thiele postulated the mortality law

Mag) = agePr0 4 e Plao=m* L (o300 (1.23)

15



Ph.D. Thesis - E. Alexandru-Gajura — McMaster — Mathematics and Statistics

where a1, 31, o, B2, 1, a3 and [3 are positive constants. The first term in
(1.23) models the decreasing mortality at very young ages, the second one the
mortality hump at young-adult ages while the third one coincides with the
Gompertz’s law and as mentioned, captures the mortality at adult and old
ages.

A model similar to the one of Thiele, was proposed in 1980 by Heligman

and Pollard for the mortality odds, namely

dag _ plao+B)® | pe-Blinas-nF)* 4 ypyeo, (1.24)
Day

The significance of the three terms is the same as in Thiele’s mortality law.

Observe that the last two mortality laws are more complex and reflect
all age segments. However, they depend on many parameters that are highly
correlated and therefore they are hard to fit to experienced mortality.

A criticism of Gompertz’'s mortality and its generalizations relates to
the asymptotic behavior of the force of mortality. For all these models, it holds
that

lim A(ap) = oo. (1.25)

ag—o0

Naturally, this contradicts the empirical evidence. An interesting demographic
argument, regarding the asymptotic nature of the force of mortality is that it
is slowly increasing at extremely old ages, having a rather flat shape.

An essential feature of these models is that they are age continuous.
They represent an important step forward from the life table model, having the

advantage of being flexible, compact, highly interpretable and generalizable.
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1.5 Dynamic deterministic mortality

So far we have been regarding mortality as dependent on age only and ac-
cordingly the mortality models introduced were all static. However, analyzing
the mortality trends, we observed that human mortality changes not just from
one age to another but also it changes over time. This suggests that human
mortality has to be viewed as a function depending on both age and time and
thus, modeled dynamically.

Clearly, in this context, the time until death random variable and all
the life functions introduced in section 1.1 will be dependent on both age and
time. Next, we define the most important life functions in a dynamic context.

We consider an individual age ag at time t and define his force of mor-
tality at age ag + v and time ¢ + u as follows

. Plu< < ) >
Mag + u,t +u) = lim (U < Tags < U+ 0U|Tags > 1)

510 du (1.26)

Here u > 0 and 7,,; denotes the time until death of the individual under
consideration.

Therefore, we have

F, + 6u) — F,,
Aao + u,t +u) = lim e (U F 0U) 0 (1)

Su—0 (1 - F,, . (u)du

 fewd
— m = —Zi; log(l - FTaO,t (u))7

Tao,t

where F.

wpe and fr, . denote the cumulative distribution function and the

probability density function of the random variable 7, ;.
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Consequently,

F (u) =] — e‘.fou )\(ao-i—v,t-Hr)dv.

Tag.t

1.6 Stochastic mortality

Maybe the beauty of the future consists of its randomness. The future may
reserve unfortunate events such as wars, dangerous diseases, natural catas-
trophes but can also be better in some aspects; for example the continuous
developments in science may provide the necessary technology and cure for
many diseases, the lifestyle may improve around the world and past experi-
ence may help political leaders to be more wise in their decisions, avoiding
wars and use of nuclear weapons.

These are just a few of the factors that suggest a random future mortal-
ity. Thus, a realistic mortality model should be both dynamic and stochastic.
In what follows, we follow Cairns, Blake & Dowd (2008) and define the relevant
life functions within a stochastic and dynamic setting for mortality.

We have shown that under deterministic mortality, the probability that

an individual of age ag at time 0 will survive to age ag + ¢ at time ¢, is
P(Tag0 > t) = e Jo Maotss)ds (1.27)

Clearly, when assuming random mortality, the future evolution of mor-
tality intensity is unknown and one may argue that the survival probability
above should be expressed by an expected value. Indeed, the probability that

an individual age ag at the current time 0 will survive to age ag + ¢ at time ¢,
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can be expressed as follows
Pla0,0,1) = EllLny, i) = ElE[Lyy, il 7] (1.28)

Here F? captures all the information about the mortality up to and including
time ¢, for all ages. We assume that given F?, it is possible to estimate accu-
rately the mortality intensity up to time ¢. In reality, the mortality data is not
readily available and an insurer will not always have enough data for an ac-
curate estimation. However, for simplicity, we make this assumption. Accord-
ingly, E[1,, o>t|F] = P(7a,0 > t|F}) coincides with the survival probability

in a deterministic setting and as expected we have
plag,0,t) = Ele Jo daots.sds] (1.29)

in which Ay 4 denotes the mortality intensity of the individual under con-
sideration at age ag + s and time s.
Now, let us derive the survival probability that an individual age ag at

time 0O, still alive at current time ¢ will survive until time T. We have

plag:t,T) = Ells, o>7|Tag0 > t, 7
= E[E[lTao,o>T|Tao,0 > tvfi):]lft)‘]

= Ele” I >‘ao+s,sds|}‘tf\]
Further, observe that Jensen’s inequality implies

p(ao, 0,t) = Ele~ foraatnsds] > = Jo Bhagralds, (1.30)
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Consequently, if an insurer considers a deterministic estimate at time 0 of the
future mortality intensity (for example its first moment) instead of a stochastic
mortality intensity, then the survival probabilities obtained will be smaller
than the actual ones and this will generate premiums too low for life products

contingent on survival as pure endowments or annuities.

1.7 Mortality Projections

Mortality data for a population or cohort is readily available for past years and
naturally one may wonder if this data can be used to infer future mortality.
In mortality literature this subject is referred to as mortality projection.

One of the first projected mortality models was proposed by Blaschke

in 1923. First, a dynamic version of the Makeham'’s law was defined as follows

Aao,y) = v(y) + a(y)8(y)*, (1.31)

where y stands for calendar year.

The parameters a(y), 5(y) and y(y) are estimated by fitting the death
probabilities within one year corresponding to the calendar year y, gq,(y), to
the actual rates from the period life table for year y. Then, by extrapolation
the values of the parameters for future years y of interest are obtained. This
method is called “vertical” projection since the fitting of the theoretical death
rates is done using the columns of the matrix M, , = g4 (y).

Notice that this is a parametric mortality projection model and require
a relatively small number of parameters for estimation. Certainly, that is an

advantage. However, the model provides an extrapolative forecasting method
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but no one can be certain that the historical trend will continue in the fu-
ture. Moreover, the independent extrapolation of the parameters is not able
to capture the correlation that develops over time between them, leading to
unrealistic future death rates.

One year later, the Institute of Actuaries in London proposed a projec-
tion mortality model for which the probability of death within one year of an

age ag in year y, is given by

Gao (y) - Aao + Baocgo (132)

In this case, the model parameters are estimated by fitting the cor-
responding mortality profiles age by age. Since in this case the parameters
are estimated using the rows of the matrix M, ,, this method is referred to
as “horizontal” projection. Notice, that (1.32) is a non-parametric projection
model.

Also in this case, the projected mortality rates depend strongly on the
trend within the fitting period. Another disadvantage of the model is the large
number of parameters to be estimated, equal to the number of age groups times
the number of parameters in each formula.

These models are both deterministic and thus unable to reflect the
uncertain nature of future mortality. To overcome this disadvantage, L.Carter
and R.D.Lee proposed in 1992 a stochastic mortality model for projecting the
mortality in U.S. The model describes the central death rate of an individual

age ag at time t in the following way:

In(Mat) = Aag + bagkt + Eag.ts (1.33)
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where ag,, by, and k; are positive parameters and €,,; are the error terms.

The signification of the parameters is as follows: a,, represents an aver-
age log mortality rate over time at age ag, k; is a stochastic process, sometimes
referred to as mortality index measuring the general speed of mortality (im-
provement) over time, while b,, describes the way in which mortality varies
at age a,, as a reaction to changes in the mortality index. The error terms
€40+ describe the age-time uncertainty not captured by the model and their
statistical properties are estimated from the data.

Notice that the model (1.33) is invariant with respect to the transfor-

mations

1
{@ag+ bag, Kt} — {aq, Cbags Ekt} Ve e R — {0}

{@ag) bag, Kt} — {@aq — Cbags bags kit + ¢} Ve € R.

Consequently the model admits more than one parametrization. For a unique

parametrization, Lee and Carter impose the constraints

T
> bp=1 Y k=0 (1.34)
ag t=1

The constraint for the process k;, implies the least square estimator

T
. 1 .
Qgqq = ? tz:;ln(mao,t)a (135)

where 7, ¢ are estimations of central death rates at age ap and time ¢.
Lee and Carter estimate the parameters b,, and k; using the method of

Singular Value Decomposition (SVD) applied to the matrix B = In(14.¢) — G-
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Then, they perform a “second stage estimation” that re-estimates k; using the
existing estimation for a,, and b,,. This second stage estimation is such that
the total number of deaths for the year in observation is equal to that estimated
from the model.

After this second stage estimation, Lee and Carter observe for different
sets of mortality data that k; declines linearly over time and has relatively
constant variance. After testing several ARIMA specifications, Lee and Carter
conclude that a random walk with drift is the most appropriate model for their

data. Accordingly, they model k; as follows

kt = kt—l +u+ {t (136)

where u is a constant and & ~ N(0,0%). This variance of & shows the uncer-
tainty of forecasting k; over any time horizon.

Then, the Box-Jenkins approach is used to fit the ARIMA model to
the empirical k; data. Finally, the projected k; together with the estimations
for a,, and b,, are used to obtain forecasts of the central death rates and then
of other life functions.

Currently, the Lee-Carter model is used to forecast the population mor-
tality of many countries. The model has very appealing features: it is par-
simonious, the parameters are easily interpretable thereby allowing further
generalizations. Also, observe that the parameters are estimated together,
eliminating the scenario of having implausible future death rates. Finally, the
model is stochastic, generating stochastic projection intervals instead of point
estimates as in the case of deterministic models.

However, the model has some limitations:
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e Lee Carter model provides a extrapolative method for forecasting mor-
tality and thus produce good forecasts as long the historic mortality

trend continue in the future.

e Lee-Carter model gives a description of a population mortality consider-
ing a single mortality index, this meaning that the changes in mortality

for all ages are perfectly correlated.

e Many people argue that the forecasted intervals for the projected central
death rates are too narrow (Alho (1992))
e Observe that

d kt

dln(mgss) = 5

By = Bl (1.37)

Thus, the central death rates decline at their own exponential constant
rate. However, Horiuchi and Wilmoth (1995) show that now in some
countries mortality at older ages declines more rapidly than at lower
ages, reversing the historical pattern. This suggests that the coefficients

ba, change over time.

e As Cairns, Blake & Dowd (2008) illustrates, the model gives a poor fit

for countries with pronounced cohort effect.

Many authors have proposed extensions of the Lee-Carter model, try-
ing to answer to these criticisms. The possibility of imperfect correlations of
mortality improvements was considered by Renshaw & Haberman (2003) who
introduced a second time dependent factor to the model. Renshaw & Haber-
man (2006) propose an extension of the Lee-Carter model that incorporates a

cohort effect.
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1.8 Continuous time stochastic mortality mod-
els

One of the first continuous time mortality models was proposed by Milevky &

Promislow (2001). They model the mortality intensity as follows
A = X9V Ny, 9,0 > 0. (1.38)

Here, Y; is an Ornstein-Uhlenbeck process with dynamics

dY; = —bYidt + dB, (1.30)

Yy = 0.

where B; is standard Brownian motion.

Clearly, the model is an extension of Gompertz’s law that allows for
random future mortality. Given the mean reverting nature of the process Y,
the mortality model (1.38) it is referred to in literature as “mean reverting
Brownian Gompertz” (MRBG).

Observe that Y is mean reverting to a long run mean equal to 0 and
mean reverting speed equal to b. Solving the stochastic differential equation
(1.39), we obtain

Y, = / te—b“—s)st. (1.40)
0

Applying Dambis, Dubins-Schwartz Theorem, we obtain that there exists a

Brownian motion B, such that Y; = B[y’y](t) = BU%,, where

1— —2bt
ol = —72— (1.41)
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Accordingly, Y is a mean reverting process with variance smaller than that of

the Brownian motion B;. In particular, when b — 0, we have Y¥; = B; and
02
E[N] = Aoe¥ Mp, (0) = Mge? T 2! (1.42)

that is, the expected mortality intensity coincides with the Gompertz’s law.

Due to the mean-reverting nature of the process Y, when this takes
negative values, it has the tendency to go up to the long run mean, which is 0.
Accordingly, the mortality intensity has the tendency to go up to the Gompertz
curve. Similarly, when Y; > 0, then the process Y has the tendency to go
down to 0 and consequently, the mortality intensity will have the tendency
to go down to the Gompertz curve. Thus, A; randomly fluctuates around
the Gompertz curve and therefore the model captures mainly unsystematic
mortality risk. Systematic deviations may occur and they have to be captured
by a mortality model. With this in mind, Ballotta & Haberman (2006) extend
the Milevsky and Promislow model.

Ballotta & Haberman (2006) model the mortality intensity of an indi-

vidual age ag at time 0 by a reduction factor model of the form
/\a0+z’z = )\a0+z,0RF(CL0 + Z, Z) (143)

Here, the mortality for the age ag + z and for the base year (year 0) is given

_a0+z—70

0 for ag > 50. (1.44)

b1+bo R+b3(2R2—1
/\ao+z,0 :a1+a2R+e 1+b2 by ( ), R

Then, the factor RF(ap + z, z) describes the change in mortality from time
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0 to time z for an individual aged ag + z and it will be referred as reduction
factor. Concretely, Ballotta and Haberman take the reduction factor of the

form

RF(ag + z, 2) = el@thlaore))z+o¥s, (1.45)

where Y, is modeled by an Ornstein-Uhlenbeck process of the form (1.39).
Following the same arguments as in the Milevsky and Promislow mortality
model, one can argue that the model (1.43) captures unsystematic mortality
risk. Further, to capture systematic mortality risk, Haberman and Ballotta
add another component to the mortality model (1.43); specifically, they con-
sider the mortality intensity process Agyi:.H(ae) dependent not just on age
and time but also on a particular belief, hypothesis H(ag) regarding the fu-
ture mortality trend for individuals aged ag at time 0.

Next, following Dahl (2004) we introduce affine mortality models.

Definition 1.8.1. If for a fixed cohort age ag at time 0, the survival probabil-

ities p(ao, t,T) have the form

p(ao, ¢, T) — 6A(ao,t.,T)—B(ao,t.T)/\aoﬂﬂt (146)

for deterministic functions A(ag,t,T) and B(ag,t,T), then the model for the
mortality intensity of the given cohort is said to have an affine mortality struc-
ture. Moreover, if (1.46) holds for all admissible ages, the model is said to have

an affine mortality structure.

Observe that this definition is an analog in terms of mortality intensities
of the affine term structure from interest rate theory. In fact, the idea of

affine mortality models was motivated by the analogy between the survival
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probabilities p(ag,t,T) and zero-coupon bond prices. Taking advantage of
this analogy, one can use results from interest rate theory to calculate survival
probabilities.

The following proposition is an analogue of Proposition 17.2 (Affine

term structure) from Bjork (2004).

Proposition 1.8.1. If the mortality intensity of a given cohort aged ay at time

0 is given by
Aoyttt = ,u)‘(ao, 2 /\ao+t,t) + U’\((lo, L )\ao+t,t)th)\ (1.47)
where W is a standard Brownian motion and p* and o> have the form

/’L/\(GOa tv )\a0+t,t) = CY((];(), t))\ao+t,t + /B(a()v t)

U/\(a07 t, )\ao+t,t) = \/7(@07 t)/\ao+t,t + 5(0'07 t)

then the model admits an affine mortality term structure of the form (1.46),

where A and B satisfy the system of Ricatti equations

r Bi(ag, t,T) + ofag, t)B(ag, t,T) — %7((107 t)B%(ag,t,T) = —1
B(ao, T.T) = 0

\

r Ai(ao,t,T) = B(ag, t)B(ao,t,T) — $6(ao, t)B*(ao,t,T)

A((lo, T, T) =0

\
The proposition also acts as a necessary condition for an affine mortality
structure if x4* and ¢* are time independent.

One of the first affine mortality models is Dahl & Moller (2006). Con-
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cretely, Dahl & Moller (2006) propose a reduction factor mortality model sim-

ilar to Ballotta & Haberman (2006)

)‘ao+t,t = )\a0+t.0£ao+t.t (1-48)

Here, the reduction factor is modeled via a time-inhomogeneous CIR process
Auos = (v5(ao, t) — 6%(ag, t)€ag.e)dt + 0% (ag, t)y/Eag dWY. (1.49)
Applying Ito’s formula, it follows that A, 4+ has the dynamics
Ahagits = (YN ao+t, 1) =0 (ao+t, t) Aggaes )l +0™Nag+1t, 1)/ Aagre e dWE (1.50)
where 4*, 6 and ¢* are as follows

’7)\(a0a t) = 7€<a0a t))‘ao+t,0

A £ %/\ao—l—t,()
(a0, 1) = 0¥ (a0, 1) — L2040
ap+t.0

o*ao, t) = 0%(ag, t) v/ Mag+t.0

Observe that the model satisfies the conditions of the proposition (1.8.1).

Moreover, A4 +t+ is a CIR process, mean reverting to a long-run mean equal

,7/\

to 5—)\

The coefficients 7%, 6 and o¢ are assumed positive, bounded and sat-
isfying the condition (o¢(ag,t))? < 27%(ag,t) for all ag and ¢. This condition
assures that the mortality intensity is positive. The form of the model allows

flexibility when choosing the parameters of the reduction factor. Specifically,
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Dahl and Moller consider the following parameterizations

o %(ag,t) =0, ~ag,t)=de M, ot=¢

1
o 8(ag,t) =7, ~ag,t) = 507 o =5

A disadvantage of the model is its feature of mean reversion. However, cali-
brating the model to experienced mortality data, it is found that this feature
of mean reversion is weak.

Luciano & Vigna (2005) further investigate affine mortality models.
They calibrate different mean reverting affine models to historic mortality
data and compare their performances. They find that these types of models
are not able to capture essential features of the survival curve [,, such as
“rectangularization” and “expansion” and moreover they are not consistent
with historic mortality data. Intuitively, one would expect that mean reverting
models are not appropriate to model mortality intensity, since this will imply
that once mortality declines below the mean reverting level, it will have the
tendency to go up. However, empirical evidence contradicts this fact, since
for example if a progress in medicine generates a huge decline of mortality
then this progress persists and the corresponding treatments are not suddenly
forgot.

In Luciano & Vigna (2008), the mean reversion feature is dropped and
the mortality intensity is modeled via non-mean reverting processes such as
Ornstein-Uhlenbeck or Feller. It is found that the models fit well to different
generation life tables and capture the essential features of mortality. Moreover,
the models offer a simple and parsimonious description of mortality, are easy
to implement and produce survival probabilities in closed form. This later fact

greatly simplifies the valuation of mortality derivatives.
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Motivated by Luciano & Vigna (2008) results, we model the mortality
intensity of a cohort aged ay at time O by a non-mean reverting Ornstein-

Uhlenbeck process
Aagrts = pNa0) Aagarrdt + 0 (ag)dW, (1.51)

where p*(ag) > 0 and o*(ag) > 0.

Solving the stochastic differential equation (1.51), we obtain
A t A
Aagiti = Aago€ '+ ot / e W =g, (1.52)
0

By the Dambis, Dubins-Schwartz theorem, there exists a Brownian motion
W such that
i
/ e AW = W), (1.53)
0

1

where v(t) = Q—X(‘eQ“At —1). Accordingly, we can express the mortality inten-
U

sity as follows

>\ -~
Maottt = Aag0€” ' + 0 Wiy, (1.54)

that is the mortality intensity is a process having its deterministic part given
by the Gompertz’s mortality law.
Observe that the mortality intensity can take negative values with pos-

itive probability. Concretely, we have
o ATRZA )\ao,oemt
P(Magrtt 0) = P(Aggoe" " +0 Wi < 0)=¢ | ———— (1.55)

or/u(t)

where ¢ denotes the cumulative distribution function for the standard normal
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distribution. This is a major disadvantage of the model. However, in practical
applications the probability (1.55) turns out to be negligible.

Naturally, for a biologically reasonable mortality model the survival
probability p(ae, 0,t) has to be decreasing for all ¢. Unfortunately, the mortal-
ity model (1.51) implies that the survival probability is decreasing for ¢ < T*

and increasing for ¢ > T*, where

L1 (1) Xag0 2(c?)?
T —Eln':l—i_—(_O'T)Q—(l—i_ 1+m>}. (156)

However, once the model is calibrated, it turns out that T* is very large. In
other words, the model is not reasonable for ages that exceed usual human

survivorship.
Notice that the model admits an affine mortality term structure of the
form (1.46) where A(ao,¢,T) and Bfag, t,T) satisfy

R I R 157

B(CI,Q,j—’7 T) = O A(ao,T, T) = O

Solving the systems of equations above, we obtain

1 0')‘ 2 0')‘ 2 MT—¢ O"\ 2 QMA —t
A(ao,t, T) = 5 (/_?) (T - t) + Eu)\;3(1 — et T )) - zl((lu—)\))g(l — € (T ))
(1.58)
B(ag,t,T) = —%(1 — et NIy, (1.59)

Accordingly, the probability of survival from the current time 0 to time ¢, is
given by
plag,0,t) = P(Tay0 > t) = e4(a0:00=B@0.0.83ag.0. (1.60)
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where A(ag,0,t) and B(ay,0,t) are calculated using (1.58) and (1.59).

1.9 Mortality model calibration

In what follows, we calibrate the mortality model (1.51) to the U.S. cohort life
table for the Social Security Area, males, generation 1900. For determining
the model parameters, we use the mean least square method (MLS), that is
minimize the spread between the empirical survival probabilities ;p,, and their
theoretical counterparts calculated via (1.60). Specifically, for an American

male, aged 45, we obtain the following values for the model’s parameters
pr(45) = 0.07307,  o*(45) = 0.00061, A0 = 0.00778. (1.61)

Here, A5 is approximated by —In(gss). This is a consequence of considering
the mortality intensity constant over the base year.

As figure (1.5) illustrates, the fit using the estimates (1.61) is very good.

Empirical survival proabilities
— — Estimated survival probabilities
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Figure 1.5: The probability of survival within ¢ years, t=1:74, for an American
male born in 1900.
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Then, we calculate the probability that the force of mortality takes
negative values. We find that the probabilities (1.55) for t=1:75 take very
small values, their maximum value being of order 10~7, which is negligible for
practical applications.

As mentioned, the model generates increasing survival probabilities
plag, 0,t) for t > T*, with T* given by (1.56). Considering the estimates above,
we obtain that 7™ is approximately 74 years. However, extremely rarely an
individual age 45 survives for another 74 years, thus reaching age 119.

As a consequence, once the model calibrated, its theoretical disadvan-

tages are irrelevant and the model can be used for practical applications.
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Chapter 2

Financial Pricing Methods of

Life Insurance Products

Traditionally, the valuation of life insurance products was performed using ac-
tuarial methods. The competition with other financial intermediaries, forced
life insurers to introduce on the market new life insurance products, more
attractive by their equity growth potential and often incorporating payment
guarantees. The complex structure of these products, with the financial risk
embedded in their benefits, made their pricing a real challenge for actuaries.
Clearly, new pricing methods had to be applied. In what follows, we describe
two financial approaches proposed for pricing this type of life insurance prod-

ucts.

2.1 The risk-neutral approach

For a long period, finance and life insurance were regarded as two completely

separate fields. One reason for this view might be the different nature of fi-
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nancial and insurance risks. Secondly, the corresponding markets are totally
different. With regards to the financial sector, there are organized financial
markets trading standardized contracts. On the other hand, the markets for
life insurance consists of insurance and reinsurance companies and here the
contracts by their nature are unique, requiring individual assessment. More-
over, for a long time, life insurance and finance were offering products of
different type - where in the financial sector contracts with variable payoff
were common, in traditional life insurance, contracts with fixed benefit were
predominant.

Another fact that is worth underlining and that separated finance and
insurance sectors, was the way of investing, that is the distribution of the
assets. Historically, insurance companies had most of their assets invested
in bonds and mortgages and none or very low equity investments, given the
existing regulations. For example, in the United States, until 1951, life insurers
were not allowed to hold any equity investment; from 1951 equity investment
was authorized up to a limit of 3% (Briys & de Varenne (2001)); then gradually,
these restrictions became weaker.

From the late 1960s, given the changes on the financial markets and
the competition with other financial intermediaries, life insurers started re-
designing their product lines. They began to offer more attractive products
such as life insurances with benefit linked to the performance of some stocks
or stock market indices, the so called equity-linked life insurance. This allowed
policyholders to enjoy the benefits of mortality protection together with those
of equity investments. Moreover, to most of these contracts was attached a

guarantee as a downside protection against a poor equity performance. Popu-
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lar types of equity—linked life insurance contracts include segregated funds in
Canada, variable annuities and equity indexed annuities in the United States
and unit linked insurances in the United Kingdom.

However, traditional actuarial pricing methods were not able to solve
the problem of pricing of these new types of products launched on the market.
The first viable pricing method of equity-linked life insurance was proposed
by Brennan & Schwartz (1976) and Boyle & Schwartz (1977). Their approach
is a financial one and it is based on Black-Scholes and Merton option pricing
theory. Moreover, this approach also provides a risk management strategy for
the issuers of equity-linked life insurance. In what follows, we describe this
method for equity-linked life insurance with death or maturity benefits.

Let us start with a market model consisting of a stock and a money
market account with constant interest rate r > 0. We assume that the dis-

counted stock (index) price follows a geometric Brownian motion

dSs = Ss((u — r)ds + adWy)
S() = S

(2.1)

where p > r > 0, 0 > 0 and W, is a standard Brownian motion on a probability
space (Q, F, P). Here, the stock price is discounted for consistency with later
chapters, but could as well be the actual price.

We examine equity—linked life insurance contracts with benefits as fol-

lows

max(S;,g(7)) ifr<T 0 ifr<T

BELTL _ BELPEnd —

0 ifr>T, max(Sr, g(T)) ifr>T,
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[gELEN maX(ST>g(T)) ifr<T

max(Sy, g(T)) if 7> T.

where 7 is the policyholder’s death time and g¢(¢) is the discounted minimum
guaranteed amount (for example in our numerical experiments we consider
g(t) = Ge™™). We choose the notations BF7: BFLEnd and BELE gince, as it
can be observed, the first contract is an equity-linked term life insurance, the
second one is an equity-linked pure endowment insurance and the last one is

an equity-linked endowment insurance.

Remarks 2.1.1.

The benefits above are similar to guaranteed minimum death/maturity bene-
fits provided by segregated funds and variable annuities. In fact, a guaranteed
minimum death benefit and a guaranteed minimum maturity benefit are de-
fined respectively as B#*™* and B*""" where the risky underlying asset is the
fund value and where the actual guaranteed amount, in its simplest form, is a

certain proportion (typically between 75% — 100%) of the premium.

An essential assumption of Brennan & Schwartz (1976) and Boyle &
Schwartz (1977) is that the mortality risk is diversifiable. This implies that
an insurer who sells a sufficiently large number of equity-linked life contracts,
practically regards these contracts as carrying out just the financial risk. Ac-
cordingly, the equity—linked contracts given above can be viewed as financial
options with a random exercise time, that is: the policyholder’s death time, the
contract maturity and the policyholder’s death time or the contract maturity.

Now let us assume that the contracts defined above become active at

a certain time s. Then, their discounted benefit at time s, here generically

38



Ph.D. Thesis — E. Alexandru-Gajura ~ McMaster — Mathematics and Statistics

denoted by B, can be written in the following two alternative forms

Bs = g(s) + (S5 — g(s))" = 85 + (g(s) — S,)" (2.2)

that is, the benefit can be decomposed as the guaranteed amount plus the
payoft of an European call option on the stock with strike g(s) and maturity s
or alternatively the benefit is given by the stock price plus the payoff of a Eu-
ropean put option on the stock with strike g(s) and maturity s. Consequently,

the premium at time ¢ = 0 is given by

P(0, S, s,9(s)) = g(s) +¢(0,S,s.g9(s)) =S+ p(0,5,s,9(s)) (2.3)

where P(0,5,s,9(s)) denotes the premium at time ¢t = 0 for the claim (ei-
ther BP!T:, BFLPEM or BFEP™) maturing at time s, while ¢(0, 5, s, g(s)) and
p(0, S, s, g(s)) represent respectively the price at time ¢t = 0 of a European call
and put on the stock with strike price g(s) and maturity s. One can recog-
nize in (2.3) the put-call parity formula. Further, observe from (2.3) that the
amount p(0, S, s, g(s)) is the premium for providing the guarantee.

At this point, Brennan & Schwartz and Boyle & Schwartz appeal to
the Black-Scholes and Merton option price theory. Using the pricing formula

for a European call, they find

P(0,5,s,9(s)) = g(s) + SN(d1) — g(s)N(dz) (24)

where N denotes the cumulative distribution function for A (0, 1) and d; and
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do are given by

_ log —gf—s) + 30%s

1 g\/g N d2 = dl - U\/g. (25)

Additionally, from (2.3) and (2.4) the premium for the guarantee is
p(oa Sa Sag(s)) = 9(8) - SN(—dl) - g(s)N(dQ) (26)

The claim B**™ can become active at any time before maturity. Ac-
cordingly, assuming a discrete distribution of the time of death and considering
that if death takes place in a certain year s the premium is payed at the end

of the year, we have

T T
PELTL(()vS) = ZP<0757379(5))8—11%0 = Z P(0, S, 3’9(3))8—1paoqao+s—l
s=1

s=1
(2.7)
while if the time of death has a continuous distribution F,(s) = 1—e~ Jo Mao+u)du

we obtain

T
PP, S) = / P(0,S,s,9(s))Mag + $)spa,ds. (2.8)
0
Accordingly, the premium for the guarantee is
T
/ (0,5, s,9(s))A(ag + $)sPagds. (2.9)
0

Clearly, in (2.7), (2.8) and (2.9), P(0,5,s,9(s)) and p(0,S, s, g(s)) denote the
premium for the equity-linked term life insurance and the premium for the
guarantee, respectively, given that the policy matures at the known date s.

For the equity-linked pure endowment contract, the benefit is provided
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at maturity if the policyholder survives to that time. Thus, we have

pPErE(0,5) = P(0,5,T,9(T))1pa, (2.10)

while the premium for the guarantee is

p0. 5. T, g(T))1Pao- (2.11)

Again, here P(0,S5,T,g(T)) and p(0,S,T, g(T)) denote the premium for the
equity—linked pure endowment insurance and the premium for the guarantee,
respectively, given that the policy matures at time 7T'.

Finally, given the additivity of the Black-Scholes and Merton pricing
rule, the premium for the equity-linked endowment insurance is given by the
sum of the two premiums above.

Next, for finding the optimal investment hedging strategy that a seller
of equity—linked life insurance has to follow, Brennan & Schwartz and Boyle
& Schwartz apply the Black-Scholes and Merton hedging arguments. In what
follows, we employ these arguments for the hedging of the three contracts
considered above.

A seller of the claim B¥™, at a certain time s ( precisely at the be-
ginning of the year s), s =0,1...T — 1 (conditional on the contract being in
force at that time) is short gagts, 1/Gag+s - - - T—1-s|@ag+s European call options
with maturities s + 1, s + 2 ... T, respectively. Following the Black-Scholes

and Merton hedging arguments, the amount to be invested in the stock under
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the riskless investment strategy at time s, is

T-1-s
0
T = G, Z u,qaoﬂggc(s, Ss,u+s+1,9(u+s+1))
u=0

T—-1-s
=S Z wlGag+sV (di(s,u+ s+ 1))
u=0

log E‘(ii—)+%a2(u—s)

gvVU—§

where d;(s,u) =

On the other hand, a seller of the claim BZ'7# at a certain time s,
s=0,1...T—1 (conditional on the contract being in force at time s) is short
T—sDag+s European call options with maturity 7. Accordingly, applying the
Black-Scholes and Merton hedging arguments, the amount to be invested in

the stock at time s, under the riskless investment strategy, is

0
WfLPEM = Ss ES'—C(S’ S57 Ta g(T))Tvspaoﬁ—s = SSN (d1(37 T)) T—sPag+s- (212)

Finally, a seller of the claim B#**" at time s, s = 0,1...T — 1 is
short Gagtss 1)9ag+s - - - T—1-s{Gag+s Luropean call options with maturities s+ 1,
s+ 2 ... T respectively and 7_,p,,+s European call options with maturity 7.
Therefore, the riskless investment strategy requires to invest in the stock at
time s the amount w7t™ + FAreme,

Observe that here, for notational convenience, we assumed that the
insurer rebalances his portfolio yearly; obviously, if the insurer rebalances his
portfolio more frequently - for example monthly, the formulas above have

to be appropriately adjusted. Also, observe that here mortality is assumed

deterministic; clearly, we assume deterministic dynamic mortality but again,
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for notational convenience we chose to omit the time index in the life functions

notations.

Numerical experiments

We conclude this section by several numerical experiments that refer to an
American male policyholder, born in 1900 and having age ay = 45 years. We
assume that his mortality is given by the deterministic version of the non-mean

reverting Ornstein-Uhlenbeck process (1.51). Consequently,

A

Mag + 1) = Mag)e* ™ (2.13)

We approximate A(45) by — In pys and estimate p* using the mean least squares
method. In this way we obtain the values A(45) = 0.00778 and u* = 0.07204.
Then, we assume that ¢ = 0.2 and r = 0.06.

We calculate the premium for the claims BFLTE, BELPEnd gnd BELEM
assuming that g(t) = Ge™7, G = 10 and that S varies between 0 and 20.
Then, the time to maturity of the contracts is varied between 5 and 20 years.

Figures 2.1 and 2.2 show that for all contracts, the premium increases
as the spot price increases. This is expected, since the price of the call options
embedded in the benefits is an increasing function of the spot price. Also
observe that for very small values of S, premium increases very slowly, looking
almost flat. That is because in this situation, the guarantee will be active;
essentially this is a premium for providing the guarantee.

Notice that for the claims BF{"#" and BF'#¢ the premium is a de-
creasing function of maturity time. For the claim B®LPF* this is because the

value of the put options embedded in the premium, decreases as maturity in-
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Premium BELT
w

Figure 2.1: Premium for B#*™ as a function of time to maturity and spot
price.

Premium BELPEN

Figure 2.2: Premium for B#:"#* and B®*" as a function of time to maturity
and spot price.

creases and because of the survival effect. The same motivation also holds for
the claim Bf*®"? which here, is similar to Bf*"#"® gince the policyholder is a
young adult. On the other hand, for the claim B®*™ the premium increases
with maturity, since mortality increases over time and dominates the decrease
in the price of the put options embedded in the premium.

We conclude our analysis by discussing the validity of the assumptions

made by Brennan & Schwartz (1976) and Boyle & Schwartz (1977). The
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essential assumption of the approach described above is that the mortality
risk is diversifiable. Actually, this assumption is a consequence of the Law of
Large Numbers that works as long as the risks involved are independent and
identically distributed. The independence assumption regarding the mortal-
ity risks is valid conditional on knowing the individuals mortality. However,
when mortality is uncertain, these risks may become dependent over time.
Intuitively, the random nature of mortality can be explained by factors such
as medical breakthroughs, natural catastrophes, wars etc. and many or even
all policyholders will be effected by their affects, thus creating a dependency
between their mortality. Naturally, given this dependency, the Law of Large
Numbers can no longer be applied to prove that the standard deviation per
policy vanishes in the limit. In fact, Milevky, Promislow & Young (2006) show
that under uncertain mortality, the standard deviation per policy can be de-
composed into two components: one component accounting for unsystematic
or diversifiable mortality risk and one for the systematic mortality risk. As
the number of policies increases the first component decreases, reaching zero
for an infinite number of policies. In contrast, the second component does
not vanishes when the number of policies approaches infinity and may even
increase as the number of policies increases.

Another assumption of the Brennan & Schwartz (1976) and Boyle &
Schwartz (1977) approach is that the stock price volatility is constant. Clearly,
this is not a viable assumption, especially given the long term of the life in-
surance contracts.

Observe that if any one of the assumptions mentioned above is removed,

the Brennan & Schwartz and Boyle & Schwartz approach cannot be applied.
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That is because the market is incomplete and the Black-Scholes and Merton
theory cannot be used. Accordingly, we need a pricing and hedging approach
for incomplete markets and in what follows, we propose the utility indifference

pricing approach.

2.2 Utility indifference pricing of life insur-

ance claims

2.2.1 From expected utility theory to utility indiffer-
ence pricing

The concept of “utility” goes back to Daniel Bernoulli (1738) who argued that
often money cannot be appropriately measured by its monetary value and
a better measure would be its “moral value” or its usefulness. Accordingly,
he proposed that lotteries ! have to be compared not by their fair price (i.e.
expected value), which was commonly used, but instead by their expected
utilities.

Expected utility theory came to life again due to Neumann & Morgen-
stern (1944). They proved that under certain axioms, there exists a utility
function and a preference order between lotteries as suggested by Bernoulli,
given by the comparison of the corresponding expected utilities. For a detailed
exposure of this theory see also Follmer & Schied (2004).

With regards to the utility function, it is natural to assume that this is

strictly increasing and concave. The former feature is desirable since “rational”

ILotteries are probability distributions over a set of outcomes. The outcomes could be
of different nature: events, goods, money etc.
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decision makers prefer more to less, while the latter is because decision makers
are risk averse. The second feature is controversial since agents in certain
conditions switch from risk averse to risk seeker. From now on, we consider

the following definition for a utility function:

Definition 2.2.1. A function U : § — R is called a utility function if it is

strictly concave, strictly increasing and twice continuously differentiable on S.

Here the set S of monetary outcomes, can be either the whole real line
or just the positive real line.

Now, assume that the decision maker is an insurer with wealth xo and
utility function UU. Further, assume that the insurer has the possibility to
insure a risk B. Then, the insurer faces the following two scenarios: either he
is not taking the risk or he accepts the risk, charging a premium P. Essentially,
these two scenarios correspond to two lotteries and according to the preference

order mentioned above, P should be such that

E[U(xg+ P — B)] > U(xo) (2.14)

where the equality case

E[U(zo + P — B)] = Ulx) (2.15)

holds for the minimum premium to be asked. As can be observed from (2.15),
this premium is such that the insurer is indifferent between accepting or not
accepting the insurance risk. Equation (2.15) is called the principle of equiv-
alent utility and the premium that solves this equation is called indifference

premium.
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Let PEV denote the indifference premium for the insurance contract

considered. Observe that by Jensen’s inequality, we have

E[U(zo+ PEY — B)] < U(zy + PFY — E[B]). (2.16)

But PPV solves (2.15) and taking into account that U is strictly increasing,
we obtain that PPV > E[B].

We would like to underline the fact that any acceptable premium for
the insurance contract considered is a premium that corresponds to a partic-
ular insurer, with preferences towards risk and wealth specified by his utility
function. So, different insurers will charge different premiums for insuring the
risk B. A decision maker’s attitude towards risk can be described via the con-
cept of absolute risk aversion (Arrow (1970) and Pratt (1964)) that is defined

below.

Definition 2.2.2. The absolute risk aversion r(z) of the utility function U, at

a wealth x is given by
U”(.T
= - . 2.1
r(z) 0(2) (2.17)

~—

In the subsequent chapters, we will show that the more risk averse an
insurer is, the greater the premium to be charged. Further, we will see that
for a risk neutral insurer, the premium approaches the fair premium.

Essential to expected utility theory is the agent utility function. The
problem of determining an agent utility function is a delicate one that we do
not pose here. Popular examples of utility functions are: exponential utility
(U(z) = —ye™®, v > 0), power utility (U(z) = z° = >0, 0 < ¢ < 1),

logarithmic utility (U(z) = log(y+x), = > —v) and quadratic utility (U(z) =
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—(vy—2)*, <)
In this thesis, we assume that the agent’s utility function is exponential.

Concretely, we choose an exponential utility of the form
Ulz) =—e*, v >0. (2.18)

Observe, that in this case, the absolute risk aversion coefficient is constant and
has the value r(z) = 7.
Then, with this choice of utility function, the premium PV can be

readily calculated and is as follows
U _ 1 B
P* = ~log E[e""]. (2.19)
v

Thus, the premium PPV is wealth independent.

These two features of the exponential utility function - absolute risk
aversion coeflicient and indifference premium independent of wealth - might
suggest that this utility is not realistic. However, exponential utility has major
advantages such as mathematical tractability and intuitive premium formulas
that are nice to interpret. Moreover, there is a connection between the prob-
ability of ruin and the insurer risk aversion (see Gerber (1976), page 135).

More recently, the principle of equivalent utility was adapted for deriva-
tive pricing in incomplete markets. The resulting pricing approach is called
utility indifference pricing and it was introduced by Hodges & Neuberger
(1989) for valuing European calls subject to transaction costs. Since then,
utility indifference pricing has been applied in many areas: Musiela & Za-

riphopoulou (2003) examine the pricing of claims on a non-traded asset cor-
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related to a tradable one, Sircar & Zariphopoulou (2004) study the pricing
of European derivatives in financial markets with random volatility, Carmona
(2009a) considers applications to weather derivatives and energy contracts,
while Young & Zariphopoulou (2002), Young (2003) and Jaimungal & Young
(2005) apply the approach for pricing and hedging life insurance products.
These are just a few contributions to the field of utility indifference pricing.
A comprehensive review of the theory regarding utility indifference pricing
as well as of its further developments and applications is given in Carmona
(2009b).

In order to illustrate how the indifference pricing approach works, we
consider the following example. Assume that an insurer has the opportunity to
sell a life insurance contract with maturity 7 to one or more individuals. The
insurer has initial wealth zy and can trade between a risky stock and a money
market account. Further, let X7 be the wealth generated from the initial
wealth zo and corresponding to a self financing trading strategy (7m)o<i<r-

As in the static case presented earlier, when deriving the principle of
equivalent utility, the insurer faces two possible scenarios: either he does not
take any risk and receives no premium or he takes on the risk by accepting
to write one or more life insurance contracts and receives a certain premium
from each individual insured. In the former scenario, the insurer will invest,
aiming to maximize his expected utility of terminal wealth. That is, he will

have to solve the optimization problem
u’(zo) = sup E[U(X7)| X0 = 2] (2.20)

On the other hand, in the later scenario, the insurer aims to maximize his
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expected utility of terminal wealth, taking into account the benefit to be paid
when the insurance policies generate claims. Clearly, the insurer has to choose
a model for his liability and the models’s choice will play an essential role for
pricing and risk management purposes. We will refer to this issue in detail
at the end of this section. For now, let us assume that the insurer’s liability,
denoted by Ly is to be paid at the maturity of the life insurance contracts.

Then, the corresponding optimization problem is
u(zg) = sup E[U(Xr — L1)|Xo = o] (2.21)

Definition 2.2.3. The indifference premium of the insurer for the life insur-

ance contract(s) is the amount P such that
u®(z0) = u(xo + P). (2.22)

As can be observed, (2.22) represents a generalization of the principle
of equivalent utility to a dynamic market setting. The premium defined by
(2.22) it is called indifference premium and similarly, this is a generalization
of the indifference premium in a static market setting.

Indifference pricing and the prices generated by this approach have
several remarkable properties. First, in contrast to no-arbitrage pricing, in-
difference pricing is a nonlinear pricing rule; secondly, if the financial market
is complete, the indifference price of an option is unique and equals its risk-
neutral price. Not least, indifference prices are increasing functions of the risk
aversion coefficient and of the claim size. A detailed exposure regarding the

properties of the indifference prices is given by Becherer (2001).
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Finally, we would like to remark that in contrast to the static case, the
problem of calculating the indifference premium in a dynamic market setting is
a delicate one. For this, first it is necessary to solve the optimization problems
(2.20) and (2.21). This can be done using either dynamic programming or
martingale theory arguments. In this thesis, we will use the first approach,
also known as the primal approach. Below, we present a brief description of the
dynamic programming approach and then we apply it for solving the insurer
problem without the claim, referred to in financial literature as the Merton
investment problem. Then, since insurer’s liability models are essential for the
second optimization problem, we conclude this chapter with a description of

these models.

2.2.2 The dynamic programming approach

Dynamic programming is a powerful tool for solving optimal control problems
introduced by R. Bellman in early 1950s. In what follows, we describe this
approach for stochastic optimal control problems formulated on finite horizon.
Our main references are Yong & Zhou (1999), Pham (2009) and Fleming &
Soner (2006).

Let us assume that the state of a stochastic system is described by an
Ito process X with dynamics

dX, = dXT = a(t, X,, m)dt + b(t, X, m)dW, (2.23)

XO = Ty-

Here W; is a standard Brownian motion defined on a filtered probability space

(Q, F,F, P), where the filtration F = (F; )0 satisfies the usual conditions. In
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this context, we refer to X as the state process and to 7 as the control process.
Further, we assume that the control 7 = (m;) is F progressively measurable
with values in a subset C' of R. With regards to the coefficients a and b we
assume that they satisfy the uniform Lipschitz condition: there exists K > 0

such that for all t > 0, z,y ¢ Randu € C

la(t,z, z) — a(t,y,2)| + |b(t,z,z) — b(t,y, z)| < K|z — yl, (2.24)

where K is a constant independent of (¢, z,y, z).
Now, for a given time horizon T > 0, we introduce the performance or
gain function

J(xo,7) = E[U(XT)| X0 = z0) (2.25)

and consider the optimal control problem

sup E[U(X71)]|Xo = xo), (2.26)
7€ Al0.T)

where U is a given utility function. Here, the family of admissible controls
A[0, T) includes control processes 7 valued in C' that are F progressively mea-

surable and additionally satisfy

la(-,0,)] + |b(-,0,-)] € L*(0,T;R). (2.27)

It can be shown that for # € A[0, T], under the uniform Lipschitz condition
(2.24), the stochastic differential equation with random coefficients (2.23) has
a unique solution (for details see e.g. Pham (2009), Theorem 1.3.15). Conse-

quently, the performance function (2.25) is well defined.
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The basic idea of dynamic programming is to embed the original prob-
lem (2.26), in a large family of optimal control problems, with different initial
times and states, to establish a relationship between them, and finally to solve
them all at once.

Observe that when taking a certain time and state (¢,z), the state
X; = z is a random variable in the original probability space. However, at
time t, F; gives us all the relevant information about X;. So, basically, X; is a.s.
deterministic under the probability measure P(- |F;). Thus, essentially, when
using dynamic programming for solving stochastic optimal control problems,
one does not vary just the initial time and state as in the deterministic case,
but varies as well the probability spaces. Accordingly, the problem (2.29)
introduced below can be regarded as a weak formulation of the stochastic
optimal control, while problem (2.26) can be viewed as a strong formulation.

Now, let (t,z) € [0,7] x R and consider the state equation

dX, = a(s, X, ms)ds + b(t, X, ws)dWy
(2.28)

Xt=l'

The corresponding optimal control problem is

sup E[U(X7)|X: = z], (2.29)
wEAlt,T]

where the family of admissible controls Alt, T’ consists 5-tuples (2, F, P, W, x)

satisfying the following conditions

1. (Q,F,P) is a complete probability space. Here, F contains all the infor-

mation available starting with time ¢ while P is the original probability
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measure given the information up to time ¢.

2. (Wy)i<u<r is a one dimensional Brownian motion defined on (92, F, P)
with Wy = 0 a.s and Ff = 0 (W,,t < u < s) augmented by the P null

sets in F.
3. 7w [, T) x 2 — C is (F!)s>¢ progressively measurable and is such that

the following integrability condition holds

la(-,0,)] + [b(-,0,-)| € L*(t,T;R). (2.30)

4. U(Xr) € LM R).

Often, when clear from the context, for notational simplicity, we will write
simply 7 € A instead of (2, F, P, W, ) € A[t,T].

Now, we consider the performance or gain function

J(t,z;m) = E[U(X7)| X = 2] (2.31)

and define the value function, as follows

u(t,z) = sup J(t,x;m). (2.32)
weA[t,T)

When a control process © € A is adapted to the filtration generated by
the state process X, we will refer to it as feedback control. If m € A is of the
form 7y = f(s,X7), then this type of control will be called Markov control.
Clearly, any Markov control is a feedback control.

At this point, we can present a fundamental principle for the theory of
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stochastic control, known as Bellman’s principle of dynamic programming.

Theorem 2.2.1. Let (t,z) € [0,T) x R be given. Then, for every stopping

time T € [t,T), we have

u(t,z) = sup FElu(r, X;)| X, = z] (2.33)
wEA[t,T)

Thus, Bellman’s principle states that the value function is a super-
martingale for any admissible control 7 and it is a martingale if an optimal
control 7* exists.

When the value function is smooth, as the stopping time 7 approaches
t, Bellman’s principle together with stochastic calculus arguments generate
a second order partial differential equation that describes the local behavior
of the value function. This equation is called the Hamilton-Jacobi-Bellman
(HJB) equation. A formal derivation of the HJB equation is given below.

For 7 = t + h, Bellman’s principle of dynamic programming implies

that

ult,z) > Elu(t + h, X7, X = ], (2.34)

where 7 is an arbitrary control in Aft, T).

Assuming that u is smooth enough we can apply Ito’s lemma and obtain

t+h
1
u(t+h, X[\ ,) = ult, 3:)+/ (us +a(s, XTI, ms)u, + 562(5,)(:, 7rs)um> ds
t

t+h
+ / (s, XTYb(s, XT 70 )dW, (235)
t

Substituting (2.35) in (2.34) and assuming that the stochastic integral in (2.35)
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is a martingale, we obtain
t+h 1
Ei . [/ us + a(s, X, ms)ug + ébQ(s,X;",ﬂ's)umds <0.
t
Dividing by h and then taking the limit as h goes to 0, it follows that
w(t, ) + Lu(t, z) < 0.

1
Here m = m; and L7u(t, x) = a(t, z, m)u(t, z) + §b2(t, T, T)uge(t, ). Since 7
was arbitrary chosen, the inequality above holds for all 7 € ' and thus we

have

w(t, x) + sup LTu(t, z) < 0. (2.36)
meC

On the other hand, assuming the existence of an optimal control 7*,

following arguments as above we obtain that
uy(t,z) + L™ u(t, z) = 0. (2.37)
Combining (2.36) with (2.37), we obtain that

Ug + SUp e LTu =0
' & (2.38)

w(T,z) = U(x)
This is the so called HJB equation.
It is very difficult to show just from the definition of the value function
that this satisfies the regularity properties assumed above. Usually, we will
derive formally the HJB equation. Then, we will try to solve and prove the

existence of a smooth solution for the HJB equation. The next step is called
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Verification step. Throughout this thesis we will use a version of a verification

result by Duffie & Zariphopoulou (1993).

2.2.3 The Merton investment problem

In what follows, we apply the dynamic programming approach for solving
the Merton investment problem. We assume a market with two securities: a
money market account with interest rate r > 0 and a stock. We model the

discounted price of the stock by a geometric Brownian motion

dSt = St ((/,L - T)df + UdVVt)
So =5>0

(2.39)

where > r > 0, 0 > 0 and W, is a standard Brownian motion on the filtered
probability space (2, F,F, P).

Let 7w, denote the amount to be invested in the stock at time ¢. Then,
the discounted wealth process evolves as follows

dX; = ﬂdSt =m((p — r)dt + odW;)
St (2.40)

X() = Typ.

Recall that the Merton investment problem is
max F[U(Xr)|Xo = ). (2.41)

Remark that, in this case, X and 7 are the state and control process,
respectively. It is straightforward to show that the drift and volatility of the

state process satisfy the uniform Lipschitz condition (2.24).
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As mentioned when describing the dynamic programming approach,
we need to embed the original problem in a large family of problems, cor-
responding to different initial times, states and probability spaces. So, let

(t,z) € [0,T] x R and consider the state equation

dXs = mws((p — r)ds + odWy)

(2.42)
Xt = I.
The corresponding value function is
uw(z,t) = sup E[U(X7)|X;: = ). (2.43)

reAlt,T)

Notice that in this case the set of admissible controls A[t, T consists of controls
7 that are (F})s>¢ progressively measurable and that satisfy the integrability
condition F { ftT ﬂgds] < 00. Clearly, here we consider a filtered probability
space as described in the conditions 1 and 2. Then, observe that in this
case, the integrability condition just mentioned implies both existence and
uniqueness of a solution for equation (2.42).
In this case, the HJB equation for u° is as follows
u? + max, | (p— r)mul + —3-027r2u2m =0

(2.44)
w(z,T) =U(x).

Let us assume that the solution of the HJB equation is concave in wealth.
Then, the maximization term in (2.44) is also concave in wealth. Accordingly,

the maximum in equation (2.44) is well defined and by the first order necessary
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condition, we have
0
= (2.45)

2 0
ag Uqr

n—ru

™ (z,t) = —

Then, inserting 7*(z, t) in (2.44), leads to the following equation

a0 — L =) (ug)?® _
2 o ug, (2.46)

u(x,T) = Ulx).

Due to the assumption of exponential utility function, we consider an ansétz
of the form u’(x,t) = —e™ 7% f(¢). Substituting in (2.46), we obtain that f is a
solution of the ordinary differential equation

’ _ (:u — 7“)2 _
)= gy = 0 i

J() =0,

(u—r)?
Solving this equation, we obtain that f(t) = e~ %2 (T~ Therefore

2
w(x,t) = et (), (2.48)

Observe that
ma,t) = “7;27". (2.49)

Straightforward calculations imply that 7* € A. Notice that «° €
C12([0,T] x R) and additionally has the properties of concavity and exponen-
tial growth in x. The ansatz satisfies the conditions of the Verification theorem
and we conclude that the value function coincides with (2.48) and the optimal
control is given by (2.49).

We would like to point out that this analysis does not impose any

60



Ph.D. Thesis - E. Alexandru-Gajura — McMaster — Mathematics and Statistics

solvency condition on the insurer’s portfolio. That is, we not require that
X1 > 0. In fact, the solvency condition will not be imposed neither when
examining the insurer’s investment problem in the presence of life insurance
claims. In other words, we implicitly assume that the insurer can collect cash
to meet its liabilities, if necessary, though at the cost of taking a bit hit in

utility.

2.3 Liability modeling

By its nature, an insurance company is exposed to insurance losses and there-
fore, for pricing and risk management purposes, the company has to choose an
appropriate model for these losses. In this thesis, we assume that the insurer
can choose between a single life insurance model, the individual risk model and
the collective risk model. The last two are aggregate models with long history
in actuarial practice while the first one models the loss over a single policy
and can be seen as a particular case of the individual risk model. In what
follows, we introduce these loss models and then show that in certain circum-
stances, the collective risk model can be thought of as an approximation of

the individual risk model.

The individual risk model

Consider a portfolio of n insurance policies. Within the individual risk model,

the aggregate claim in a certain time interval is modeled as follows

LM =yl'4+Y24+. .. +Y", (2.50)
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where Y, i = 1...n denotes the payment on policy i in the time interval under
study.

Clearly, the use of the individual risk model needs to be tailored to
the specific nature of the portfolio of insurance contracts. For example, for
a portfolio of pure endowments all maturing at time 7', the insurer will be
interested in modeling his losses just at time 7T since only at this time he may
have losses. On the other hand, for a portfolio of term life insurances, the
insurer will be interested in modeling his losses over time intervals prior to
maturity.

In actuarial mathematics, see for example Bowers, Gerber, Hickman,
Jones & Nesbit (1997) or Gerber (1997), the random variables Y! i =1...n
are assumed to be independent. However, this assumption it is not valid in
certain situations and thus, imposing it will limit the use of the model. We
motivate this assertion by the following example: consider a portfolio of pure
endowments, each with benefit 1 if the policyholder survive to maturity T;
then, the loss at time 7" will be given by the sum of the payments Y7 = Ii7 51y,
where 7; denotes the time of death of the policyholder that owns the ith policy.
The assumption that Y7, ¢ = 1...n are independent is valid when the ran-
dom variables 7; are themselves independent, for example when policyholders’
mortalities evolve deterministically over time. However, if considering random

mortality, the assumption above is no longer valid.

Collective risk models

Whereas in the individual risk model, one first looks at the loss over each

individual policy and then by cumulating these losses obtains the total loss,
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in the collective model, one models the loss on the whole portfolio from the
beginning. As time evolves, at random points in time, the portfolio generates
claims. Then, the random sum of the claims generated in the time period
under study gives the aggregate claim on that time period.

Accordingly, in the collective risk model, the total claim amount in a

specified time interval, is modeled as follows

LU = Z) 4+ Zo+ ... + Zn, (2.51)

where N is a random variable counting the number of claims generated in
the time interval under study and Z;,i = 1,2... denote the severity of these
claims.

In actuarial mathematics, the random variables Z;,1 = 1,2 ... are as-
sumed independent and identically distributed and also independent of the
random variable V. In this thesis, we do not impose these assumptions since
again, this limits the use of the model.

Observe that no vanishing term appears in (2.51), since as mentioned,
in this case the aggregate loss incorporates just actual claims. In contrast,
in the individual risk model, many of the terms that determine the aggregate
claim are zero, corresponding to policies that remained in force during the
time period considered.

With regards to the distribution of the random variable NV, this depends
on the nature of the portfolio of insurance contracts. For example, in the case of
a portfolio of term life insurance contracts, N will count the number of deaths
(claims) over the time interval considered. If assuming deterministic mortality,

an appropriate model for the number of deaths process is an inhomogeneous
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Poisson process. Consequently, N will be Poisson distributed. On the other
hand, for random mortality, a suitable model for the the number of deaths is
a doubly stochastic Poisson process.

In certain circumstances the collective risk model can be thought of as
an approximation of the individual risk model. We illustrate this assertion
by considering a situation from life insurance. Concretely, assume a portfolio
of n term life insurance contracts, all written at time 0 and maturing at a
certain time 7. Also, assume that these contracts are sold to a cohort of
policyholders age ag at time 0 and that their mortality is deterministic. Within
the individual risk model, we model the insurer’s total loss over the time

interval [0,¢), 0 < ¢ < T as follows
LM =Y 4+ Y2+ .+ Y (2.52)

We assuine that

Y = Xil{nq}, (2.53)

where 7; denotes the time of death of the individual owning policy ¢ and
X' i = 1...n denotes the claim that results from policy i. Let us further
assume that X* ¢ = 1...n are independent and identically distributed random
variables and moreover have a time-independent distribution.

The indicator random variables 1< are Bernoulli(;g,,) distributed.

Accordingly, we have

M
LM =>"2 (2.54)
i=1

Here M; denotes the number of claims (deaths) by time ¢ in the individual risk

model and has a Binomial(n, +q,,) distribution. Then, Z; denotes the severity
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of the ith claim that occurs prior to time ¢t. In fact, Z;,;¢ = 1, ... are payments
X% i=1...n that correspond to actual claims. We assume that Z;,i =1,...
are independent of the number of claims (deaths) random variable.

Now, let us return to the collective risk model and consider an inhomo-
geneous Poisson process (N;)o<i<r counting the number of deaths (claims) by
time ¢. We want that this process matches as well as possible the correspond-
ing number of claims process from the individual risk model. Therefore, we
assume that (Ni)o<i<r is such that E[N;] = E[M,], V t € [0,T). This means
that Ny is Poisson (n;qq, ) distributed. For a large portfolio and small probabil-
ity of death q,,, by the virtue of the Poisson Approzimation to the Binomial
Theorem, the distribution of M; can be approximated by the distribution of
N;.

Further, we have

for n approaching oo and very small probability of death ;qq,.

Thus, if the size of the portfolio n and the probability of death are
sufficiently large and small respectively, we have that Lind L Lf"”. Here we
assumed that by time t the total claim in both models consists of at least one

claim. Otherwise, the approximation is trivial.
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At this point, notice that

E[L& = ZZ ZZU\Q = iEiZi]Nt = m]P(N; = m)
= =0 m=0 =0

=3 mE m) = E[Z]E[N],

m=0
where 7 is a random variable with the same distribution as Z;.
Similarly, it can be shown that E[Li"?] = E[Z]E[M,]. Accordingly,
BlLi) = E[L7).
On the other hand,

Var[LeY = E[Var[L{ N, + Var[E (LM N]

= E[N,Var|Z]] + Var[N,E[Z]] = E[N)Var|Z) + E[Z)?Var[N,].

But, Var[N,] > Var[M] and consequently we have Var[L&!] > Var[L{™].
Accordingly, the collective model is riskier than the individual model
given the greater variance of the total loss amount.
Now, given the assumption that N; and M; have the same mean, we

have

t
/ n(ao + w)du = nyqay. (2.56)
0

Consequently, the intensity of the Poisson process is given by
n(ag + t) = nypa,Aap + t). (2.57)

As can be observed from (2.55), a necessary condition for this approximation

of the individual risk model is that the number of deaths in the collective risk
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model approximates the one from the individual model. This happens if the
size of the portfolio n and the probability of death are large and small enough,
respectively. So, if the insurer wants to take advantage of this approximation,
he first needs to check if the size of his portfolio and the probability of death
have suitable values. Clearly, the insurer can try to increase the size of his
portfolio by insuring other policyholders; however he can not do anything
regarding the values of the probabilities of death of the policyholders.

Next, we consider a cohort n = 10000 policyholders and perform sev-
eral numerical experiments to investigate for which values of the insurance
contracts maturities the probabilities of death are sufficiently small to assure
the validity of the approximations mentioned above. We assume that the pol-
icyholders are aged 45 at time ¢ = 0, with force of mortality given by (2.13)
where A\(45) = 0.00778 and p* = 0.07204. Then, for t = 5 years, t = 10 years,
t = 15 years and ¢t = 20 years, we consider a number of 10000 realizations of
N; and M; and plot the corresponding histograms as well as the cumulative
distribution functions.

Figure 2.3, Figure 2.4, Figure 2.5 and Figure 2.6 show that the ap-
proximation is very good for insurance contracts with maturity up to 10 years
but after that the approximation is progressively less satisfactory. Moreover,
as expected, observe from these histograms that the standard deviation of
the number of deaths in the collective risk model is always greater than the

standard deviation of the number of deaths in the individual risk model.
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Figure 2.3: Histogram and c.d.f. of the number of deaths from time 0 to time
t = 5 years in the collective (right) and individual (left) risk model.
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Figure 2.4: Histogram and c.d.f. of the number of deaths from time 0 to time
t = 10 years in the collective (right) and individual (left) risk model.
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Figure 2.5: Histogram and c.d.f of the number of deaths from time 0 to time
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t = 15 years in the collective (right) and individual (left) risk model.
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Figure 2.6: Histogram and c.d.f. of the number of deaths from time 0 to time
t = 20 years in the collective (right) and individual (left) risk model.
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Chapter 3

Utility Indifference Pricing of
Market Independent Life

Insurance Risks

Let (©,G,G, P) denote a filtered probability space with the filtration G =
(Gt)o<t<T satisfying the usual conditions and containing all available infor-
mation. Specifically, we define G as the natural filtration generated by two
independent standard Brownian motions W and W* and a counting process
for the number of deaths. In addition to G, we consider the sub-filtrations [,
F* and H generated by W, W* and the number of deaths process, respectively.

Throughout this section, the financial market consists of a risky as-
set and a riskless money market account with constant interest rate r. The

discounted price of the risky asset follows the geometric Brownian motion

dS; = S((p — r)dt + cdWy) 3.0)

80:S>0,
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where > 7 >0 and o > 0.

Further, we assume an insurer that has the possibility of investing in
the financial market defined above and additionally has the opportunity to sell
life insurance contracts with discounted benefits of the form

B q(r) fr<T (32)

g(T) ifr>T,

where g, and go are deterministic functions of time and 7 is the policyholder’s
time of death. Observe that for g; = go # 0 the life insurance contract is an
endowment insurance, for g; = 0 and g» # 0 it is a pure endowment, while for
g2 = 0 and g; # 0 it is a term life insurance. In these particular situations we
denote the insurance contract discounted benefit respectively by Bfnd, BPEnd
and BTT.

Here, we model the mortality intensity of a policyholder age a¢ at a
certain reference time 0 by a stochastic process (Ag+t)t>0 With dynamics given

by

Ahag,, = P Aggrtdt + AW
0+ M o+t t (3'3>

Aag = A
where p* >0, ¢* > 0and A > 0.

In this chapter we apply the utility indifference valuation approach to
solve the pricing problem for the general claim B from the insurer point of
view, within a single life insurance model as well as in the individual and col-
lective risk model. Additionally, we are interested in investigating qualitative
and quantitative properties of the premium as: premium dependence on the

model parameters, super-additivity of the premium as a function of the num-
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ber of policies sold and comparison of the premiums in the three loss models

mentioned above.

3.1 Indifference premium in a single life insur-

ance model

3.1.1 Lump-sum premium

We consider an insurance model consisting of a single life, aged ag at time 0
and assume that the insurer accepts to sell to (ag) a life insurance contract
with discounted benefit B as defined by (3.2). In this case, we define the value

function of the insurer as follows

uB(z,\ 1) = SHB ElU(X1 — 92(T)1{r>1)| Xt = 2, Agge = A (3.4)
TE

Here, the insurer’s discounted wealth has the dynamics

dX; =n((p—r)ds+odWy), s#T

XT+ =X, — gl(T)a if 7<T

and the set of admissible controls A = A[t,T] consists of controls 7 that
are (F!)s>; progressively measurable and satisfy the integrability condition
E UtT wgds} < oc.

Applying Bellman’s principle of dynamic programming and It6’s lemma,

we obtain that the value function u®(x, X, t) satisfies the HJB equation
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1 1
up + maxy((p = r)mug + 5ot mtug] + ey + 5 (0%) )

Az = g1(8),t) —uP(x, A1) = 0

uB(z,\,T) = U(x — go(T)).
(3.6)

The last term of equation (3.6) appears due to a potential death of the

policyholder. In this case the wealth drops by g;(¢) and since there is no risk

B

left to the insurer, the value function u” switches to the value function in the

Merton investment problem.

Now, we assume that uZ, < 0. This implies that the maximum in

(3.6) is well defined. By the first order necessary condition, the maximum is

attained in
B
* ,u—rux(x,/\,t)
= — ) 3.7
i o2 uB (1M 1) (3.7)

Further, due the assumption of exponential utility, we consider an
ansiitz of the form u®(z,\,t) = u%(z,t)f(\, 1), where u® represents the value

function of the insurer in the Merton investment problem. Then, we have

— 0 -
=t ATT (3.8)

o ug, o
Substituting 7* and the ansétz above in (3.6), leads to

_ )2 1
(uf — (/1_2;27’_)”0)]( +ulfy + Ml fr 5(0’\)2U0fu + (e — f) =0

f(T) = er92(™),
(3.9)

Observe that the first bracket from (3.9) represents the HJB equation for u°.
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Since u? solves this equation, (3.9) reduces to the linear partial differential

equation

i+ ,u’\)\fA 4 %(O,A)Qf/\)\ + )\(6791(t) —f)=0 (3.10)

f(T) = e192(T),

Further, the Feynman-Ka¢ formula leads to

-

T
FOM) = B[00 Nagrds] 4 / e ) By 3 [Aggyse Nt oorudilds
t

T
= 6792(‘T)])(a0, t, T) + / evgl(s)dq(ao, t 5)

t

= Et,)\ [eVB].

Notice that the expectations from the preceding formula are all bounded since
(Aag+t) is bounded a.e.

For well behaved benefit functions g; and g, the anséatz proposed is
smooth. Additionally, since u®(z,t) has the properties of concavity and expo-
nential growth in x, the ansatz inherits these two properties. Consequently,
by the Verification Theorem the ansétz coincides with the value function. Ac-

cordingly, the value function is given by
uB(x, A\, t) = Oz, t) By [eB]. (3.11)

Also, the Verification Theorem implies that the optimal investment
policy can be specified by the first order condition, and is given by (3.8).
Observe that the optimal investment policy is the same as in the Merton
problem. This result agrees with our intuition since the insurance claims are

independent of the financial market and clearly, the insurer will not hedge
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them with instruments present in the financial market.
Now, let PP denote the indifference premium for the insurance contract

with discounted benefit B. P? satisfies the equation
W (x,t) = uB(x + PE A1) (3.12)

By (3.11) and using the properties of the solution of the Merton problem, the

indifference premium equation becomes
u(z,t) = u®(z 4+ PB ) E\[P] = WOz, e PP E 7P, (3.13)
Therefore,
1
PB(X\ t) = —In E;5[e7”]. (3.14)
~
In particular, for an endowment insurance the premium becomes

1 .
PEa() 1) = - In By, [

1 r s
= —In (e”gl (T)p(ao, t,T) —I—/ e”gl(s)Et’,\[/\se_ ke ’\“0+“'*“d“]ds>
Y t

while the premiums for a pure endowment and term life insurance are given

by

1 n
PPEnd()\,t) = ~ln Et,/\[e’yBPE d]

T
- l n <€792(T)p(a07 t7 T) + / Et’)‘[)\se‘ j: )\a0+u,udu}d5>
t

22

In (e“’gz(T)p(ao, t,T)+ q(ao,t,T))
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TL

]

1 g s
= —1In (p(ao’ t, T) + / e’)’gl(S)Et’)‘[)\se_ I )\a0+u.udu]ds> 7
v t

. 1
PTEO ) = ;m Ei e’

respectively.

At this point, we would like to emphasize that under a stochastic setting
for the force of mortality, the value of a pure endowment is greater than in a
deterministic setting. This is a direct consequence of the fact that the survival
probability, when assuming stochastic mortality, is greater than its counterpart

in a deterministic setting for mortality. Indeed,

PPEM() 1) = Z1n (1+ (79T — 1)p(ag, t,T))

2

R R

1 n
In(1 4 (€792 — 1)p_ipa, i) = ;m E[e"B 5™ = pPEnd(y)

where PPE™(t) denotes the premium for the pure endowment considering

deterministic mortality.

Remarks 3.1.1.

e For deterministic mortality intensity, the indifference premium is simply
the premium generated by the principle of equivalent utility in a static
market setting. This fact is expected, since the insurance risks that
we examine here are independent of the financial market and thus the
dynamic market setting considered cannot have any influence on the

premiums.

e On the other hand, the assumption of stochastic mortality is reflected in

the premiums of the insurance contracts analyzed.
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e The indifference premium is an increasing function of the risk aversion
parameter v. Indeed, taking 0 < ; < ¥, and applying Holder’s inequal-
ity, leads to

Eale"B) < (Ea[e»?]) % |
Thus,
In E[e"5] < f/—;m Ex[e™?]

which implies that PE(X ;1) < PB(\ & 72).

o Indifference valuation is generally a nonlinear pricing rule. Observe that

BEnd — BPEnd + BTL.
Then, we have

1 .
PEM(N ¢) = - In B, 5[e" P77 +B™)

1 . n
=5 <Et”\[GWBPE NEAT ] + Cov(e®™, eVBTL))

Y

but since the random variables BY¥"? and BT are negatively correlated,

it follows that the premiums satisfy the relation
PErA(N 1) < PPEMYN 1) + PTE(A ),

where the equality case corresponds to a risk neutral insurer.

e Note that BE"d > BPErd and also B > BTL. Therefore

]. na ]- n
Z1In Et,,\[e'YBE d] > —1In Et,,\[eVBPE d]
Y
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1

n 1
~In B, > > In Ea[e"®]
Y

Hence, we have
PEM(N 1) > PPEM(X 1) and PE™(\ t) > PTE(N ).

Accordingly, the indifference premium is an increasing function of the

claim size.

e As the risk aversion of the insurer approaches zero, the indifference pre-

mium reduces to the net premium, as proved below:

lim PB(\,t)
v—0

ln(e'Yg?(T)Et)\[e_ ltT ,\a0+st] + j;T Y9 (S)Et,x[)\ag_,_se’ /ts )‘00+udu]d8)

,Y
T ]

6792(T)g2(T)Et‘)\[e' ~’t }‘ao-i-sds] + f‘tT e’Ygl (5)gl(s)Et,)\[)\a0+se_ »/t )\a0+udU]d8

e192(T) Et,A[e_ jtT )\ao+sd$] + ftT e’ygl(s)Et,)\[/\ao-{-se_ I )\a0+udu]ds

= lim

= lim

-T

T
= go(T)Epple™ ft Aooreds] 4 / gl(S)Et,z\[)\aoJrse_"‘s Aaorudilds = Fy [ B]
t

We conclude our analysis by numerically illustrating the some of the
analytical results obtained so far. We implement the indifference premium
for endowment insurances, pure endowments and term life insurances, corre-
sponding to an American male policyholder, aged 45 years and born in 1900.
We model his force of mortality by the affine process (1.51), where the model’s
parameters are given by (1.61). Consequently, the survival probabilities can
be calculated directly via (1.60), avoiding the use of Monte-Carlo methods.
Also, this leads to an efficient computation of the premiums.

We consider endowment insurances, pure endowments and term life
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insurances, with discounted benefits as follows

Ge™™ r<T 0 fr<T
RBEnd _ BFEnd _ (3.15)
Ge ™ ifr>T Ge ™' ifr >T.
Ge ™ ifr<T
BTE = (3.16)
0 ifr>T.

In our first experiment, we illustrate the dependence of the premiums on the
time to maturity for several risk aversion parameters. We consider that G =
10, r = 0.06, T varies between 10 and 20 years and that the insurer’s risk

aversion takes the values v =0, vy =0.05 and v = 0.1.

Endowment Insurance Pure Endowment Insurance
Br——
=0
¥0.05
N 04
550 N\
N
N,
N
N .
e 5 N N
2 AN
£ AN N
O N o
45 N “ <
. \\\
~ .
™~ N
4 \ .
\‘\
35—
10 12 14 16 12 14 16 18 20
T T
2
=0
18 1=0.05
¥=0.1
16
E 14
=1
E
3
a 1.2 /
1 . P
0.8 /
10 12 14 16 18 20

Figure 3.1: Lump-sum premium for a constant benefit endowment insurance,
pure endowment and term life insurance, as a function of time to maturity, for
different risk aversion parameters.

80



Ph.D. Thesis — E. Alexandru-Gajura — McMaster — Mathematics and Statistics

Notice from Figure 3.1 that the premium for endowment insurances
and pure endowments decreases as the maturity time increases. For pure
endowment insurances, that is due to the fact that the survival probabilities
decrease as maturity increases. The same argument explains the behavior of
the premium for endowment insurances, since for young adults, as in our case,
the pure endowment component is dominant. On the other hand, for term life
insurances the premium increases as maturity increases and that is because the
probability of death increases with maturity. Then, as expected, observe that
as the insurer’s risk aversion increases, the premium for all contracts increases.

Recall that we proved that the indifference premium for endowment in-
surance is smaller than the sum of the indifference premiums for pure endow-
ment insurance and term life insurance. Below, we demonstrate numerically
this fact for an insurer with risk aversion parameter v = 0.05. All the other

parameters are the same as in the preceding numerical experiment.

Figure 3.2: Comparison between the lump-sum premium for a constant benefit
endowment insurance and the sum of the premiums for a constant benefit pure
endowment and term life insurance.
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3.1.2 Continuous premium

In what follows, we calculate the continuous premium rate for the insurance
contract with benefit B defined by (3.2) . We assume that this premium rate
is set when the insurance contract is signed and remains unchanged during the
life of the policy. In this case, we define the value function of the insurer with

the insurance risk as follows

uP(x, N\, t; hP) = sug ElU(X7r — g2(T)1grsy)| Xt = 2, Aaoue = A} (3.17)
e

where hZ()\ t) denotes the premium rate at time ¢. Here, the discounted

wealth process has the dynamics

dX, = ((u—1)ms + hPe™)ds + omdW, if t <s < T

dX, =7, —rids+odW,) if T<s<T
((n—r) ) (3.18)

Xt:l'

\ Xop=Xoo —qu(r) f 7 < T.

Applying Bellman’s principle of dynamic programming and Ité’s lemma, we

obtain that u? solves the HJB equation

1 1
uP + max,[(u — r)mul + 5027r2ufx} + prAuf + 5(0’\)2115/\ + hByBe-rt
+A (u0(z — qi(t), A, t) — uB(z, A1) =0

uB(z,\,T) = Ulx — go(T))
(3.19)

Following arguments similar to those applied in the lump-sum premium case,

we obtain that the value function is given by u®(z, A\, 1) = u®(z, t)I(\, t; RB),
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where [ satisfies the linear partial differential equation

1
’ ——"‘hBl —rt ,)‘ T AN 21 Y ~vg1(t) —N=0
ly — vhPle™™ + pu* Al + 2(0 V2o + Ae ) (3.20)

INT) = e92(T)

Therefore, | can be calculated via Feynman-Ka¢ formula, as follows

[\ £ hB) = e102(T)=1 [T hPerds 1= [ g
T s p B s
+/ (=TT g 1) e I Raorudu g g
t
T
= (D=1 WBeredspy T)+/ e 91 ()= [ hP e M du g g0t o)
t

— Bpale® ),

where H is a random variable denoting the total discounted premium paid

during the life of the policy. H is defined as follows
H = hB/ e "ds. (3.21)
t

1
Now, we introduce the function V() ¢; h?) = 5 Inl(\ t; hP). Let us
give an intuitive description of V. For this, following Bowers, Gerber, Hick-

man, Jones & Nesbit (1997), we define the concept of benefit reserve.

Definition 3.1.1. Suppose that an insurer assumes an insurance risk at a
certain time ¢. The benefit reserve at time s > ¢ is the amount V(s) that
makes the insurer indifferent between continuing with the risk while receiving

the premium and paying the amount V (s) to a reinsurer to assume the risk.
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In other words, the reserve at time s > ¢ is such that
ul(X, — V,5) = uP (X, Ay, 5 D). (3.22)

It is straightforward to verify that V(A 4s,s;h2) satisfies equation (3.22).
Therefore, from now on we refer to V(A4 45,5, hP) as the benefit reserve at
time s.

The indifference premium rate hZ(), ) is such that the insurer at time

t 1s indifferent between accepting or not accepting the insurance risk, that is
Wz, t) = uP(x, A t; hP). (3.23)

Accordingly, h® is given implicitly by the equation
It hE) =1 (3.24)

or in terms of the benefit reserve, the premium rate is such that V(\, ¢; k%) = 0.

So, the indifference premium rate is such that the benefit reserve has
zero value at the moment of writing the insurance contract. However, over
time, due to changes in the policyholder’s mortality, the premium rate might
not coincide with the prevailing indifference premium rate and consequently
the benefit reserve will no longer be zero.

In particular, for the claims BF"? BFFnd and BTL | the corresponding

hEnd hPEnd hTL
)

premium rates, denoted by and respectively, are such that

T
1 ln(e’Ym(T)—'th"d Ir Eirsdsp(a(), t, T) + / Y91 (s)—yhEnd [* e"“dudq(ao’ ¢ S)) =0
Y t
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]. nd f —rs T nd (S ,—Tu
5 ln(e,ygz(T)_,yhPE d"tTe dsp(ao7 t7 T) + / e_fyhPE d.lt e dudq(ao’ t, S)) =0
t

T
Ly (e AT ey, 1, T) + / S e T R )
Y t

Remarks 3.1.2.

e Multiplying (3.24) by —e™7*, leads to

U(z) = E\[U(z + H — B)] (3.25)

Notice that (3.25) is nothing more than the principle of equivalent util-
ity, modified in order to incorporate the continuous premium and the
stochastic mortality assumptions.
e Observe that
I\ t; hB) > eI S RN Eat
Taking into account that I(\,t;hP) = 1, after some calculations, we

obtain

T
1
(T —t)h® > h® / e "ds > ~log Ey5[e"?] (3.26)
t v
and now, we recognize in the right hand side of (3.26) the lump-sum
premium for the insurance contract with benefit B at time ¢.

Accordingly, if the insurance contract has one year maturity, the con-
tinuous premium rate is greater than the lump-sum premium. That is

expected because in the case of continuous premium, the insurer receives
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the premium for a random period of time, contrary to the case of lump
sum premium. Thus, the insurer in the former case takes more risk than

in the latter and this fact will be reflected by the premiums.

e We showed that
Epa[e"B-H] -1 =0, (3.27)

Dividing by + and taking the limit as 7 goes to 0 in (3.27), leads to
E\[B - H] =0. (3.28)
Therefore, we have

T T 8
E,\[B] - h® / e " plag, t,T) — / / rRPemdu dg(ag,t,s) = 0.
t t i
(3.29)

After some calculations, we obtain that for a risk neutral insurer, the

continuous premium rate is given by

Et’)\[B]
ftT e "p(ag, t, s)ds

hB = (3.30)
e We would like to point out that a similar analysis applies to a more
complex choice of the premium, such as a time dependent premium

h(s; A, t) = h%(s;t)h(\,t), where h(A,t) is the premium set at the initial

time ¢ and h°(s;t) is a “ramp-up” premium factor.

Next, we consider the same cohort of individuals as in the preceding
subsection and implement the indifference premium rate for endowment insur-

ances, pure endowments and term life insurances with benefits given by (3.15)
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and (3.16) respectively, when the time to maturity varies between 10 and 20

years, r = 0.06 and for three choices of the insurer’s risk aversion parameter

v=0,v=0.05and 7 =0.1.

Parallel to the results obtained in the lump sum premium case, observe

from Figure 3.3 that as the time to maturity increases, the premium rates for

endowment insurances and pure endowment insurances increase, while the pre-

mium rate for term life insurances decreases. Also, as expected, the premium

rate is an increasing function of the risk aversion parameter -.

Endowment Insurance

Pure Endowment Insurance

Premium rate
o
=]
Ve
/

. .
Premium rate

Premium rate
o
o

12 14 16 18

Figure 3.3: Indifference premium rate for a constant benefit endowment in-
surance, pure endowment and term life insurance for different risk aversion

parameters.
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3.2 Indifference premium in the individual risk
model

In this section, we examine the pricing of life insurance risks described by
(3.2) under the assumption that the insurer pools together a certain numbers
of such risks. Concretely, we consider a portfolio consisting of n policies cor-
responding to a cohort of individuals aged ag at time 0 and having their force
of mortality given by (3.3). Further, we model the losses on this portfolio
using an individual risk model. In this context, in what follows, we apply the
indifference valuation approach and calculate the lump-sum premium and the

continuous premium rate for the insurance contracts mentioned above.

3.2.1 Lump-sum premium

Assume that at time ¢ = 0, the insurer sells life insurance contracts with
discounted benefit given by (3.2) to a cohort of individuals and that at a
certain time ¢ € [0,7), k individuals from the initial cohort are still alive.
Then, the value function of the insurer is given by

u®(z, X, 1) = sup E[U(X7 — Cr)| Xy = 2, Mgt = Al (3.31)
€A

where the discounted wealth process satisfies the stochastic differential equa-

tion
dX, =75 ((u—r)ds +cdWy), s#m7

X'ri+ = Xﬂ-_ — CT{’ lf T3 < T
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Here 7;, ¢ = 1...k denote the times of death of the policyholders. We assume
that these times of death are not necessarily distinct. Consequently, we choose
to denote by C7, the total discounted claim at time 7; < T, and not just the
loss on the ith policy. Then, we denote by Cr the total discounted claim upon
survival at time 7.

Alternatively, the discounted wealth dynamics can be written as

dX, = g —ryds +odW,) — dL,
((p—r) ) (3.33)

Here Ly, s € (t,T) denotes the total loss on the insurer’s portfolio on the time

interval [t,s) and we model it as follows

k
Ls= Zgl(ﬂ')l{ms\n»}- (3.34)
1=1

Consequently, the total discounted claim at a certain time 7; < T can be

written as

Cr,

1

=L, — L. (3.35)

Then, we model the total discounted claim at maturity by

k
CT = QQ(T) Z 1{T¢>T|n>t}- (336)
i=1
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It follows that the HJB equation for v is

(

u® =
For £ >1
1 1
u$®) + maxpea(u — r)rul) + 2027r2u(}fc)] + Ml 4 2(0’\)2u&’§)

+hA (B D(x — g1 (1), A, ) —u®(z, A1) =0
uBNx, \,T) = U(xz — kgo(T)).

\

(3.37)
Assume that the solution of (3.37) is concave in wealth. Then, the maximum

n (3.37) is well defined and attained at

(k)

* /L—T'U;c

Inserting the the expression of 7} in the HJB equation for u®) we obtain

( u(o) frd uo
For k> 1
(k)\2
w1 =\ (u)? g 1 o
+kA (u® D (2 = g1 (t), A1) —u®(z,t)) =0
u® (2, N\, T) = Ulx — kgo(T)).

(3.39)

Due to the assumption of exponential utility, we consider an ansatz of the form

uB(z, A\ ) = ul(z, t) fR (N 1). (3.40)

Inserting the ansatz in (3.39), after some straightforward calculations, it fol-
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lows that f*) solves the linear partial differential equation

. . 1
(k) Ay plB) 2 a2 e(k) . (t) £(k=1) _ r(k)\ —
+ A+ (o + kX (e7B) f )y =0
t AT 5 )*fax ( ) (3.41)

fONT) = eYkg2(T)

with f(© = 1. Applying the Feynman-Ka¢ formula, we obtain that

f(‘f)()\7 t) = 67’k92(T)Et /\[e—k.f'tT /\a0+udu]

T
+k / e By Aeoruduy L FET (g ts, 8)]ds,
t

which implies that f*) can be calculated recursively.
Let P*) denote the indifference premium for k insurance contracts with

discounted benefit given by (3.2). P®*) solves the equation
w(z,t) = u®(z + P® X 1) (3.42)
It follows that P¥)(\, ¢) is given by
P®(Xt) = %m FE ). (3.43)

Notice that the premium can be found by solving k recursively defined linear
partial differential equations or alternatively by calculating the functions f®*)
via a Monte-Carlo method.

Next, we determine the premium corresponding to a risk neutral in-

surer. First, let us write the equation for the premium P®). This equation
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can be obtained from (3.41) and is as follows

k k 1 1
Pt( )+,U)\)\P)E )+ —(U’\)QP&) + _,Y(O.A)2<P§k))2

2 2
_,_% (ev’gl(t)ﬂP““”—wP“") — 1) =0

PE(N,T) = kgo(T).
(3.44)

As the insurer’s risk aversion 7 approaches zero, (3.44) becomes

) 1
B+ AP 1+ S (02 BY) + kA (ga(1) + PATD — PR =0 (3.45)

PR\, T) = kgo(T)

We expect that the solution of (3.45) is the net premium, that is
F; A[kB]. Next, we show that this is indeed the case.

First, observe that E, ,\[kB] = kP'(\,t) + kP?(\,t). Here, P! and P?
are the premiums corresponding to a risk neutral insurer for a pure endow-
ment insurance and a term life insurance with discounted benefits given by
BFPEnd and BTT respectively, as calculated in a single life insurance model.
Consequently, P! and P? satisfy the equations

)
1
P} + AP + 5(0’\)213,\1,\ — AP =0

PYAT) = go(T)

( 1
) PP 4 AP} + 5(0?) By 4+ Mgi(6) = P#) = 0

P2\, T) = 0.

\

Accordingly, P(A,t;k) := kPY(\, t) + kP?(),t) solves the partial differential
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equation

1
—(M)?Puw+ kX (g1(t) = P2 = PY) =0

Pit i?APy + 3

P2(\.T) = 0.

But, —P' — P2 = P(\ t;k — 1) — P(\ t; k). Thus, P®(\ t;y = 0) coincide
with P(\ t; k) = E, ,[kB] by uniqueness.

At this point, it is interesting to analyze the pricing of the life insurance
contracts considered above, assuming deterministic force of mortality. In this
situation, the value function u®) is given by (3.31) and (3.32) or (3.33) elim-
inating the dependence of the parameter A. In fact, given the deterministic
nature of the force of mortality, the lambda dependence of the value function,
here is built into the variable ¢. So the problem that we are going to analyze
below is different of the pricing problem under stochastic force of mortality
when the volatility parameter o approaches 0.

In this case, the corresponding HJB equation can be obtained from

(3.37), removing the A dependence. Accordingly, we have

uO(z,t) = u’(x, )
For k> 1
¢ ulk )+max,r[(u—7“)7ru§c)+ 20 m2ul ]
+kXao +t) (u*D(z — ¢i(t),t) — uPM(z,t)) =0

w2, T) = U(x — kgo(T)).

(3.46)

In this case, one can show that

u®(z, 1) = uO(x, t) fo(t)F, (3.47)
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where fj satisfies the equation

fo+Mao +1)(e790 — fo) =0

fo(T) = ev9=(T),

(3.48)

Solving (3.48), leads to

T
fo(t) — eW!Jz(T)e~ftT Aao+u)du + / e’ygl(s)/\<a0 + S)e-«/‘ts )‘(a0+u)dud5
{

T
= e”gQ(T)T_tpaoth + / g9 (S)A(ao + 5)s—tPag+tds = E[e”B]. (3.49)
¢

Therefore, under the assumption of deterministic mortality, the premium for
k life-insurance contracts with discounted benefit B, P*)(t) is given by
k) gy - F k 2B
P™(t) = ;lnfo(t) = —In E[e""], (3.50)
Y
while the premium per risk coincides with the premium corresponding to a

single life-insurance contract of benefit B, that is

1
%P(k)(t) =~ B[] (3.51)

Indifference pricing is generally a non-additive pricing rule but notice
that in the present case, P*) acts as an additive function of k. Consequently,
the premium per risk, <%P(’“))k> is a constant sequence. In contrast, these
two characteristics are not met B; the indifference premium when assuming
random mortality. Following Ludkovski & Young (2008) we show that in fact,
in this context, the premium per risk for the insurance contracts analyzed
)

above is an increasing sequence and the indifference price Pz(a' is a super-
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additive function of k. An important ingredient for proving this result is the
theorem 3.2.1 below. Essentially, this theorem acts as comparison principle
for parabolic PDEs on infinite domains and is a consequence of a more general
result from Walter (1970), chapter 28.

First, we consider the notations D = (0,00) x [0,7] and D = C(D) N
C>Y(D).

Theorem 3.2.1. Let L a differential operator on D defined by
Lu=uv+ %(a’\)2v>\,\ + H(\ t,v,0)) (3.52)
where H satisfies the conditions: for v > w
H(M\tv,y)— HA L w, 2) < c(A\t)(v—w)+d\ )|y — 2| (3.53)
with the functions ¢ and d such that

0<c(\t) < K(1L+M)

(A 1)) < K(1+ ) (3.54)

for some K > 0 and for all (\,t) € D.

Suppose that v,w € D satisfy the inequalities
v(At) < KN and w > el for large A.

If Lv > Lw on D and if v(A\, T) < w(A,T) for all A\ >0, then v < w on D.
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Proposition 3.2.1. Under stochastic force of mortality, the price per risk

( 1 (k)) _ . .
—Pg , 1S an increasing sequence.
k k>1

Proof. We have to show that

1 _ 1
Ep}; Yx ) < zP,_E;“)(A,t), for Vk > 2. (3.55)

This reduces to proving that
(FEDyET < (F%, for VE > 2. (3.56)

In what follows, we prove (3.56) by induction but first we need to consider

several notations. For k > 1, we define the operator

1
LEuN ) = uy + p*Auy + 5(0’\)2%\,\ + kX (e ® fE=1 _y)

1
= us + 5(0')‘)211,,\)\ + H(k) ()\, t, u, U)\) (357)

where H®(\ t,u,v) = p*v + kA (e f*=1 —4). Then, according to
(3.41), for every k > 1 we have L*®) f(®) = (.

Next, we apply the theorem 3.2.1 above. Clearly, first we will show that
the operator £*) is as in the theorem just mentioned, that is H®(\, ¢, u,v)
satisfies the conditions (3.53) and (3.54).

For uy > uq, we have
H® (Ot uy, v1) = HE(A 1 u, v2) = p M (01 = v2) — kMg — ug) < p*A(vy —v2)
Observe that c¢(\,t) = 0 and d(\,t) = p*X. Clearly, 0 < d(\t) = p*X <
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K(1 + )\) where K is a constant such that y* < K. Hence, the conditions of
the theorem 3.2.1 hold true.
Now, we show that (3.56) holds for & = 2, that is

()2 < f@ (3.58)
First, recall that £2 f2) = 0. But on the other hand,
LA =2f0LOf0 + (PR = (PR 20 (359)

Thus, L& ()2 > £2 @) while (fV)2 (N, T) = f&(X, T) and by the theorem
mentioned above follows that (fM)2(\,t) < f@ (A, t) for all (A, t) € D.
Next, we assume that the inequality (3.56) holds for k — 2 and we will

show that it also holds for k — 1, namely

k-1

FED < (T (3.60)

We have
k-t (=1 L oay pl=1) L Lo xio oo
AR LR B A AV S G b P

k—
—IV et -1 1 k
+Hb = DA (A0 = 6 )40

LE(FE-DYET =

(FE=yEE (D)2,

But, (f(k‘l))":frf > f*=2) (this is the inequality (3.56) for k — 2) and therefore

)2
W) ph-Dy e > Kty pthen phony KGO gy emk ey
_ k(o?)? (k=1)y 225 (k—1)\2
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Hence, LE)(f#=)75 > £ f8) and (f*=1)&5 (X, T) = f®(A, T). Applying

again theorem 3.2.1 we obtain that the inequality (3.60) is satisfied.

Proposition 3.2.2. For every nonnegative integers k and [,
ch—i-l) > ch) " Pg)

Proof. Applying proposition (3.2.1), leads to

1

1 1 1
L pey s Lpw Lt pesn s pa
'k+lP “ kT k+1 — 1
Therefore,
kot k [ K+l !
k:+lP](3 )ZPLE”)’ k-f-lPIgHZPé)

and adding the last two inequalities, we obtain the result.

(3.61)

(3.62)

O

Accordingly, when mortality behaves randomly, an insurer who will

pool together a large number of insurance risks, trying to enforce the law of

large numbers, actually increases his total risk.

Intuitively, the super-additivity of the indifference premium with re-

spect to the number of policies sold can be explained as follows: while the

mortality risks are independent conditional on knowing the cohort mortality,

upon removing this latter assumption they may become dependent over time,

linked by a common factor - for example a certain disease, certain natural
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conditions, exposure to common social and economic factors, etc. Thus, es-
sentially a positive correlation between individual risks develops over time and
this induce a systematic component within the mortality uncertainty of the
individuals, causing the total risk to be more dangerous than the sum of the
individual risks.

In what follows, we perform several numerical experiments, considering
the same cohort of individuals as in the numerical experiments from the first
section of this chapter. Obviously, these numerical experiments regard the
pricing of endowment insurances, pure endowments and term life insurances
with discounted benefits given by (3.15) and (3.16)

In our first experiment, we consider a portfolio consisting of k = 20
policies and examine the dependence of the premium per risk on the time to
maturity, for several choices of the risk aversion parameter v. We assume that
G = 10, r = 0.06, T varies between 10 and 20 years and the risk aversion
parameter takes the values v =0, v = 0.05 and v = 0.1.

Notice from Figure 3.4 that consistent with our intuition, when the
time to maturity increases, the premium per risk for endowments and pure
endowments decreases while the premium for term life insurances increases.
As expected, the plots resemble those for the lump sum premium in a single
life insurance model. However, as already proved in proposition 3.2.1, the
premiums per risk for all three types of insurance contracts are higher than
the corresponding lump-sum premiums.

Our second numerical experiment can be regarded as a numerical il-
lustration of 3.2.1. We calculate the premium per risk for the life insurance

contracts mentioned above assuming that the the number of policies in in-
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Figure 3.4: Premium per risk in the individual risk model for a constant benefit
endowment insurance, pure endowment and term life insurance as a function
of the time to maturity, for several choices of the risk aversion parameter.

surer’s portfolio varies between 1 and 20 policies. Further, we consider T' = 10

years, G = 10 and r = 0.06.
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Figure 3.5: Premium per risk in the individual risk model for a constant benefit
endowment insurance, pure endowment and term life insurance as a function
of the number of policies in the insurer’s portfolio.

100



Ph.D. Thesis — E. Alexandru-Gajura — McMaster - Mathematics and Statistics

Observe from Figure 3.5 that for all insurance contracts, the premium
per risk increases linearly as the number of policies increases. The increase
in the premium per risk is very slow because of the very small value of the
volatility o*. However, observe that this increase is more pronounced for pure
endowments and term life insurances than for endowment insurances. This
fact might be explained by the following argument: endowments insurance
contracts are contingent on both events - death before maturity and survival to
maturity; thus, if some insurance risks become positively correlated over time,
this correlation is balanced by the negative correlation between mortality and
survival risk. On the other hand, for pure endowments and term life insurances
this phenomena does not happen since these contracts are contingent on only

one of the events mentioned above.

3.2.2 Continuous premium

We continue to investigate the pricing problem of market independent life-
insurance contracts with discounted benefits given by (3.2), but in contrast
to the preceding subsection, here we assume that the premium is payable
continuously, at a constant rate established when the insurance contracts are
signed. As in the preceding subsection, we model the insurer’s total loss using
the individual risk model. Then, the value function of the insurer in the

presence of insurance risks is given by

u® (2, A, t; h%)) = sup E[U(X7p — Cp)| Xy = &, Aggre = A, (3.63)

TEA

where h*)(),t) denotes the continuous rate per risk set at time ¢ and which

remains fixed over the life of all £ policies. The discounted wealth process
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follows the dynamics

dX, = (Ws(ﬂ —r)+ Zsh(k)e"’s) ds + omgdWy, s # 7
X, =z (3.64)

Xoy =X, —Cr if 7, <T,

where Z represents the number of survivors at time s and 7, ¢ = 1...k
the times of death of the policyholders. With regards to C, and Cr, they
represent as in the lump-sum premium case, the total claim at time 7; < T
and the total claim upon survival to maturity time 7".

Applying Bellman’s principle of dynamic programming and stochastic

caleulus, we obtain that u®) solves the HJB equation

( u® =0

For k> 1,

¢ u® + maxg[(p — r)mul) + ;a n2ul)] —i—,u’\)\u(k) ;(UA)QUE\’;)

+he T hEuE) £ kX (kD (@ — gi(8), A1) — uB (2, A, 1)) =0

ut(z, N\, T) = U(z — kgo(T)).

(3.65)

We look for a solution of the form

u® (2, X, 6 h ) =l (x, )IF (N, ). (3.66)

After some calculations, it follows that {*) satisfies the linear partial differential
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equation

o 1 4
[ = ke hOI® 4 AN 4 S (0PI + EM@n 016 —1®) = 0

[B)(X\, T) = erkoz(T)
(3.67)

where 1 = 0. Applying the Feynman-Ka¢ formula, [¥) admits the represen-

tation

l(k)()\, t) = ekg2(T) -k 5 h(k)e_”dsEt.)\[e—k.ﬂT /\a0+udu]

T
+ k/ 91 () =k h‘“e"“duEt_’)\[e—k./f Aagruduy  TE=D(N, s, 5)]ds.
t
The indifference premium rate is defined by the equation
u(z.t) = u®(z, X t; A*). (3.68)

Inserting the ansitz (3.66) in equation (3.68), we obtain that R®)(\,t) is given

implicitly by the equation
1®Y(N AWy = 1. (3.69)

The indifference premium rate can also be characterized using the con-

cept of benefit reserve defined in the preceding section. Let us define
1
VNt A®) = ;mz(k)(x,t; Rk (3.70)

It is straightforward to check that V(Ag1s,s;A%)), s > t satisfies equation

(3.22). Therefore V (Ag,+s, 8; ¥ represents the benefit reserve at time s > t.
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Combining (3.70) and (3.69) we obtain that the indifference premium
rate is such that V(\,¢; R¥)) = 0.
In particular, in the case of deterministic mortality intensity, it can be

shown that

u® (2, t; hRY = Oz, )15 (t) (3.71)

where [y solves the equation

15— ~e "th®) s + Mag + ) (e ® — 1) =0
0o~ " 0 ( 0 )( 0) (3'72)

Io(T) = eY92(T)

Then,

T
T —rs '8 —ru
lO(t) = 6792(T)_’Y‘/’ h(k)e dsT—tpa0+t+/ 6791(8)_7‘“ hkle du)\(a0+5)s—tpa0+td5
t

T
(k) , _ _ nlk) _
— T)+2h " (g=mT _e— 7t s)+7 e T e
— 192(T)+ 25— VpPagait | €T IAN(@o+1) s—tPag+2ds.
t

The indifference premium equation implies that lo(t) = 1 and thus A*)

is given implicitly by the equation

. T :
(k) B plk) _
T _,’_'yh e~ T _e—Tt §)+ (e TE gt _
92+ 5= )T—tpa0+t+ 19 () ))\(a0+u)8—tpao+td5 =1L
t

Consequently, as one would expect in a deterministic setting for mortality,
R*)(t) coincides with the continuous premium rate in a single life insurance

model.

Remarks 3.2.1.

e A similar analysis applies to market independent life insurance contracts
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with benefits of the form (3.15) and (3.16) but with continuous pre-
miums that evolve according to some time dependent schedule, fixed
in advanced. For example, the premium can be taken of the form
h)(s) = h¥)(X, 1)RO(s, t), where hO(s, t) is fixed in advance and h*)(X, 1)

is the factor to be calculated.

e As shown above, in a deterministic setting for mortality, the continuous

premium rate is a constant function of k.

e In the case of stochastic mortality, the positive correlation that develops
over time between policyholders'mortality suggests that the premium
is an increasing function of k. However, since the premium is given
implicitly via equations (3.69) and (3.67) we are not able to provide
an analytical result regarding the increasing nature of the premium h*)
with respect to k, as we have shown in the case of lump-sum premium.
Therefore, we numerically implement the premium and investigate its

dependence on the number of policies sold.

In this numerical experiment we consider endowments, pure endowments
and term life insurances with benefits of the form (3.15) and (3.16), where

G = 10, the time to maturity is T' = 1 year, » = 0.06 and the insurer’s

Number of policies k 5 10 15 20 25
Endowment 9.8844 9.9420 10.0002  10.0587 10.1178
Pure endowment 9.7481 9.8058 9.864 9.9226 9.9817
Term Life 0.136317 0.136327 0.1363369 0.136346 0.136356

Table 3.1: Continuous premium rate for a constant benefit endowment, pure
endowment and term life insurance in the individual risk model.
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risk aversion is v = 0.1.

Observe from Table 3.1 that the premium increases slowly and linearly

for all contracts, as the number of policies k increases.

e The increasing nature of the premium with respect to the number of
policies sold suggests that lapsation problem can be ignored. If eventu-
ally policyholders decide to walk away from the contract, this just makes

things better for the insurer.

We conclude this section by several remarks regarding premium calcu-
lation in the individual risk model. As already observed, the calculation of
the premium (either lump-sum or continuous) requires solving a number of
recursively defined linear partial differential equations equal to the number of
policies in the insurer’s portfolio. Typically, this number is very large and this
makes the numerical calculation of the premium not feasible. Accordingly, it is
desirable to find a loss model more efficient from the point of view of premium
calculation. In what follows, we show that the collective risk model satisfies

this requirement.

3.3 Indifference premium in the collective risk

model

We consider the same cohort as in the preceding section, but here, we choose
to model the number of deaths within the cohort via a Poisson process. Ob-

viously, the intensity of this Poisson process has the same nature as the poli-
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cvholders’'mortality intensity. Accordingly, we model the number of deaths by
an inhomogeneous Poisson process when policyholders'mortality is assumed
deterministic, while when assumed stochastic, we consider a doubly stochastic
Poisson process.

Let us assume that at time { = 0, the cohort consists of m individ-
uals, where m has a very large value. Further, assume that the insurer has
the opportunity to sell to all these individuals life insurance contracts with
discounted benefits of the form (3.2). The insurer is faced with the pricing
problem of these claims. Next, we analyze the insurer’s problem, assuming
that the policyholders’'mortality evolves randomly in time.

Let us denote by (N)o<s<r a doubly stochastic Poisson process of in-
tensity 7gy+s Which counts the number of deaths from time O up to time s.
That is, conditionally on any particular trajectory u — 9gysu, w € [0, ], (Ns)
is an inhomogeneous Poisson process with parameter fos Nag+udu. Here, we

assume that the intensity 7,,+s satisfies the stochastic differential equation
ANag+s = 1 Mag+sds + oTdW]. (3.73)

Next, we model the aggregate loss on the time interval [0, s), s € [0, T},

as follows

Ns
L' =Yi+Ya+ ... +Yy, =) aln) (3.74)
=1

where Y; = g1(7;) and 7; denote the ith claim to occur and the arrival time of

this claim, respectively.
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3.3.1 Lump-sum premium

We define the value function of the insurer in the presence of insurance risks

as follows

u(z,n,n,t;m) = sup E[U(X7 — (m — Nr)g2(T))| Xe = @, Mgt =1, Ny = 1],
e
(3.75)

where the discounted wealth process has the dynamics

dX, = 7s ~r)ds + adW,) — d L&t
(=) ) (3.76)

Xt:QL’.

We implicitly assume that the size of cohort at any time 0 < ¢ < T is very

large. Then, the corresponding HJB equation for u is

2

1
uy + maxpeal(t — 7)ruy + 02w U] + pnu, + 5(‘7")2%77

2
+7 (u(x - gl(t)ﬂ%n + 17t) - U(l’,ﬂ,nvt)) =0

uw(z,n,n,T;m) =U(x — (m —n)g(T)).
(3.77)

Next, assume that u,, < 0. Then, the maximum in (3.77) is well

defined and attained at

* H—=T Uy
M= (3.78)

u$$

We assume an ansétz of the form u(z, n, n, t;m) = v®(z,t)F(n,n,t; m). Insert-

ing the expression of 7} and of the ansétz in (3.77), we obtain that F' satisfies
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the partial differential equation

1
Fy+u'mE, + 5(0’7)2an +n(Fn,n+ 1, t;m)e"® — F(n,n,t;m)) =0

F(n,n,T;m) = eY(m=n)g2(T)
(3.79)

Straightforward calculations lead to
F(n,n,t;m) = e'Y(m—”)g?(T)Et n[e".tT ’7ao+s(€"91(s)_792(T)—1)d5]‘ (3.80)

Consequently, by the Verification Theorem, the ansatz is the unique smooth
solution of (3.77) and coincides with the value function of the problem.

Next, the indifference premium satisfies the equation
u’(z,t) = u(x + Pp,m,n,t;m). (3.81)

Inserting the expression of the value function in (3.81), it follows that the

premium is given by
1 : §—
PB(U, - t; m) _ (m _ n)gg(T) n :/ In Et.n[e-[tT na0+s(e"191( ) ‘rgz(T)_l)ds]. (3.82)

At this point, recall that in the individual risk model, the insurer’s pricing
problem requires solving a system of k& = m — n linear partial differential
equations. On the other hand, observe from (3.80) that in the collective risk
model, the insurer has to solve only one partial differential equation. Accord-
ingly, the collective risk model offers a huge advantage in terms of tractability
and computation time.

So far, we have examined the pricing of a life insurance contracts with
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general benefit of the form (3.2). However, observe that for term life insur-
ances, we have an essential difference. In this case, the insurer at any point
in time does not need to know the number of deaths; he just pays the claims
as they arrive. That is because the Poisson process, contrary to the Binomial,
does not need information about the number of deaths.

Accordingly, the value function corresponding to a term life insurance
contract is given by (3.75) but removing the dependence of the number of
deaths random variable. Then, it follows that the function F(n,t) satisfies the

linear differential equation

1
Fy + pmFy + 5(071)2]:’”” + nF(n.1) (ewl(t) - 1) ={)

(3.83)
F(n,T)=1.
By the Feynman-Ka¢ formula, F(n,t) is given by
F(n,t) = Eypleld Teots(@*1=1ds] (3.84)

Naturally, this equation is exactly (3.80) when g, = 0.

For deterministic mortality intensity, as we have already mentioned, we
model the number of deaths by time s by an inhomogeneous Poisson process
(Ns)o<s<r with intensity n(ao + s). In this case, the insurer investment prob-
lem can be obtained from (3.75) removing the dependence on the mortality

intensity. Accordingly, the value function can be written as

u(z,n,t;m) = ul(z, t)Fy(n, t;m) (3.85)
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where Fy(n,t;m) is given by

Fo(n, t;m) = /m=mox(T)+ [ nlao-+s)(eose) 92T 1)ds (3.86)

Therefore, the indifference premium at time ¢ = 0 is given by
1 T
Pg(n =0,t =0;m) = mgo(T) + ;/ n(ag + s)(e?91977920) _ 1)ds. (3.87)
0

In this case, the mortality intensity n{ao + s) such that the expected
number of deaths from time ¢ = 0 up to any time s < T is the same in the

individual and collective model. This implies that
n(ag + 8) = MsPag Aag+s- (3.88)
Accordingly, the indifference premium can be written as

1 (T
Pg(n=0,t=0;m)=m (gg(T) + ; / (6791(3)'792(T) - 1)spa0>\a0+sds>
0

and consequently the premium per risk is constant. At this point, observe
that the premium obtained is greater than the corresponding one from the

individual model since

T
Pf;"” > mgo(T) + Eln(l + / (67'91(3)—'792(T) — 1)sPap Aagasds) = gzd.
8 0

3.3.2 Continuous premium

We continue to examine the pricing problem from the preceding subsection,

but here we assume a continuous premium rate h that remains constant over
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time. This rate is set when the insurance contracts are written and applies to
the whole cohort of policyholders.
We define the value function of the insurer in the presence of insurance

risks as follows

U(Z’,T], n, tvm) = SU.B E[U(XT - (m - NT)QQ(T))'Xt =T, Nap+t = 777Nt = n]a
=
(3.89)

Here, the discounted wealth process follows the dynamics

dX, = ((N — 7“)7rs + h,e*m) ds + on,dW, — dLgoll
Xt =2T.

Observe from the wealth dynamics that we implicitly consider that
the premium rate h will be payed until the maturity of the contracts. This,
essentially is a consequence of the assumption that the size of the cohort at
any time 0 <¢ < T is very large.

It follows that u solves the HJB equation

1 1
up + max, [(p — r)Tug + 502772%3,] + he "u, + pnu, + 5(0’7)2%77
+n (u(x — g1 (t),n,n+ 1,t) — u(z,n,n,t)) =0.

u($7 n,n, T; m) = U(‘T - (m - n)QQ(T))
(3.90)

Assuming an ansétz of the form u(x,n,n,t;m) = u°(z,t)G(n,n,t;m), it fol-
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lows that G(n,n.t; m) satisfies the partial differential equation

1
Gt + pmGy + =(0")2 Gy — vhe ™G + n(G(n,n + 1,)e"2® — G(n,n,t)) =0
n 9 m

G(n,n,T;m) = eYm—mg(T)
(3.91)

Solving (3.91) with respect to G, leads to

G(n,n,t;m) = "M mMe @)= I he™"*ds p, n[e.l;T nao+s(e"91(S)*W?‘T’—l)ds]. (3.92)

The indifference premium rate is such that the insurer is indifferent

between accepting or not accepting the insurance risks, that is
u®(z,t) = u(z,p,n, t;m). (3.93)

This implies that G(n, n,t;m) = 1. Accordingly, the premium rate is given by

1 1 : 5=
h = fT “rsds ((m —n)g2(T) + ; In Et,n[e"tT Nag+s{€791(S) WgZ(T)_l)ds]) - (3.94)
e
t

Thus, as expected, the total discounted premium payed coincides with the

lump sum premium of the claims.

Remarks 3.3.1.

e Since in this case the premium rate for the whole cohort is set at the
time of writing the contracts and remains constant for the life of the
policies, it follows that the corresponding premium per risk will increase
over time as the policyholders die. So, the premium per risk here has a

different nature than in the individual risk model.
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e An alternative idea regarding premium modeling would be to consider
the following choice for the premium rate: A(s) = h(\, ¢)(m — Ny)e™"s.
Here h()\,t) denotes the premium per risk set at the time ¢ and it is
assumed constant for the life of the policies. With this choice the nature
of the premium per risk and of the premium rate is similar to the nature

of the corresponding premiums in the individual risk model.
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Chapter 4

Utility Indifference Pricing of
Equity—Linked Term Life

Insurance

Given their resemblance with financial options, it is no surprise that the first
method used for valuation and hedging of equity-linked life insurance was a
financial one. As mentioned in chapter 1, this method was introduced by
Brennan & Schwartz (1976) and Boyle & Schwartz (1977) and essentially it is
based on the Black-Scholes and Merton theory. The crucial assumption of this
approach is that the mortality risk is diversifiable, that is by selling a large
number of life insurance contracts, the insurer mortality exposure approaches
zero. However, we learned from Milevky, Promislow & Young (2006) that if
an insurer tries to sell more and more policies hoping to reach the concept of
large mentioned above and if policyholder’s mortality behaves stochastically,
contrary to his expectation, the insurer’s total exposure may even increase.

Accordingly, it is desirable to use an approach that explicitly recognizes the
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mortality risk instead of assuming that it is diversifiable. As we already know,
the utility indifference approach satisfies this requirement.

The first to apply the utility indifference approach for pricing and hedg-
ing equity-linked life insurance were Young (2003) and Moore & Young (2003).
These were essential contributions to the problem of pricing equity-linked life
products. They show that in a Black-Scholes market model and under deter-
ministic mortality, the lump sum premium for a single life satisfies a non-linear
partial differential equation similar to the Black-Scholes equation, except for
a nonlinear term that reflects the mortality risk. Jaimungal & Young (2005)
generalize the work of Moore & Young (2003) to a more realistic market model,
where the stock price is modeled via a Lévy process. They obtain that the
lump sum premium in a single life insurance model incorporates a significant
correction in comparison to the one generated in the Black-Scholes market
model. Another interesting work in the same area was done by Jaimungal
& Nayak (2006). They consider equity-linked losses that continually arrive
at Poisson times and examine within the same framework the valuation of
equity-linked life insurance and reinsurance contracts.

Our contribution to the area of utility based pricing and hedging of
equity—linked term life insurance consists of extending the results of Young
(2003) to group benefits, by embedding the individual and collective risk
model. Moreover, we study the problem of finding both the lump-sum and
continuous premium in all models considered and provide numerical schemes
for calculating these premiums.

We start with the same financial market model as in chapter 3 and

consider equity—linked term life insurance contracts with discounted benefit as
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follows

S,.7) ifr<T
0 ifr>T.

where, g is a positive bounded function on [0,00) x [0,T] and 7 denotes the
policyholder’s time of death. In contrast to the preceding chapter, here we

adopt a deterministic mortality model.

4.1 A single life insurance model

Below we examine the pricing and hedging of the insurance contract with
benefit B via the utility indifference approach in a single life insurance model,

following Young (2003).

4.1.1 Lump-sum premium

We consider a life insurance model consisting of a single life aged aq at time
0 and assume that (ag) is willing to buy an equity-linked term life insurance
with benefit given by (5.3). If the insurer accepts to write this claim, the

insurer’s value function is defined by

uP(x,S,t) = sup E[U(X7)| X, = 2,8 = 5] (4.2)
TeA

where X; denotes the discounted wealth with dynamics given by

dXs =ms((p—7r)ds+odWy), s#T
Xrp = Xee — g(Sr,7), f 7<T (4.3)
Xt =x.
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Applying Bellman’s principle of dynamic programming and stochastic
calculus arguments, u” satisfies the HIB equation

B 5. L 5 5B 2 B L 202 B

uy + maxg|[(u — r)muy + 50 MUy + 0 mSugs| + 30 S*uge + (1 —r)Sug

+A(ag +t) (u(z — g(S, 1), S,t) — uP(z,8,t)) =0

uP(z,8,T) = U(x).
(4.4)

Now, we consider an ansitz of a solution to the HJB equation of the

form

uBlx, S, t) = ul(x, t)e?S. (4.5)

Observe that uZ, < 0 and therefore u? is concave in wealth. This implies that
the maximum in equation (4.4) is well defined and can be specified by the first

order necessary condition, as follows

p—r s
(z,5,t) = + —=5. 4.6
we s = 2 (46)
Inserting the ansatz and the expression of 7* in the HJB equation, leads
to

L 5 a(S4)—
- (798¢ 1) = ()
ot + 57 S*pss + Aao +t)(e ) (4.7)

¢(S,T)=0.
For well behaved benefit function g, equation (4.7) has a smooth solution.
Accordingly, by the Verification Theorem, the ansatz proposed coincides with
the value function. Also, the Verification Theorem implies that the optimal
control policy can be specified by the first order condition in (4.4). Remark
that the optimal policy is wealth independent and is given by the optimal

policy in the Merton problem plus the amount @—S. Recall that the optimal
Y
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policy in the Merton problem represents the optimal amount to be invested
in the stock in the absence of insurance risks. Thus, ¢;_s can be interpreted as
the optimal number of shares to be invested in the stock due to accepting the
insurance risk. In what follows we refer to this amount as the optimal excess
hedge and we will show that in fact this is analogous to the Black-Scholes delta
hedge.

The indifference premium for the term life insurance contract satisfies
the equation

Wz, t) = uB(z + P, S,t). (4.8)

Straightforward calculations lead to
1
P(S,t) = ;qb. (4.9)

Thus, the indifference premium solves the nonlinear second order partial dif-
ferential equation

P+ Lo252p - Maott) (1= e (P=950)) =
2 gl (4.10)

P(S,T) =0.

Observe that the first two terms of equation (4.10) represent the discounted
version of the Black-Scholes equation and they reflect the financial risk em-
bedded in the benefit. On the other hand, the last term reflects the mortality
risk and the risk preferences of the insurer.

At this point, notice that the optimal excess hedge e*(S,t) can be writ-
ten as

(S, 1) = Ps(S, 1) (4.11)

119



Ph.D. Thesis - E. Alexandru-Gajura — McMaster — Mathematics and Statistics

and indeed, e*(S,t) is analogous to the Black-Scholes delta hedge.

Further, if the insurer risk aversion goes to zero, the premium equation

becomes .
P, + ~025%Pss + Mag + t)(g(S,t) — P) =0
L2 s Al (50 (4.12)
P(S,T)=0.
Using the Feynman-Ka¢ formula, we obtain that
T y
P(St) = / E2[9(Ss, $)]Mag + s)e™ I Maorw)dugg
tT
= / ESS[Q(S& 3)]ds—tQa0+t = E[ESS[B”
t
Here the risk neutral measure @ is given by
— 1(u —r)?
Q) = 8 [Lyop (A= Twp - U [ ey

Under this measure the dynamics of the stock price process is as follows

dS, = oS dW®
St = S

with W@ = w, + £=7

S.

Accordingly, the premium for a risk-neutral insurer coincides with the
premium calculated using the Brennan & Schwartz (1976) approach. Similarly,
the optimal excess hedge for a risk neutral insurer is given by the Brennan and

Schwartz hedge.

In what follows, we implement the lump-sum premium for the term life in-
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surance contract considered, assuming a benefit function ¢(S;,¢) of the form

Gle‘”, if St < Gle_”
9(Se,t) =4 S, if G <8, < Gae™ (4.14)
Goe™™, if G < S

where GG} and G, are strictly positive constants. Notice that this benefit
function represents the capped version of the GMBD type benefit considered
in chapter 3.

As in the previous chapters, we assume that (ag) is an American male
45 years old and born in 1900. Further, we consider that his force of mortality

is deterministic and given by
Aao + t) = Mag)e*™,  where A(ag) = 0.00778 and p* = 0.07204. (4.15)

For calculating the lump-sum premium, first we perform the change
of variable S; = e*®) in equation (4.10) . Then, we discretize the equation
obtained by employing a fully implicit finite difference scheme for the linear
part, while treating the nonlinear part of the equation explicitly. Further, we

* truncate the domain R x [0, 7] to [zmin, Zmaz] X [0, T] and introduce the grid
Zm = Zmin + mAz, m=0,1...M th, =nAt, n=0,1...N. (4.16)

Here, the values of 2y, and 2,4, are chosen small and large enough respec-
tively, such that they do not affect our domain of interest.
Let P2 = P(zp, tn).

With regards to the boundary conditions, clearly for t = T we have
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PY = 0. Given the flatness of the benefit function in a neighborhood of

2 = Zpn and 2z = Zz;42, we have Newmann boundary conditions, that is
Py =P, Py, =Py (4.17)

Alternatively, we can specify Dirichlet boundary conditions. Notice that if
Z = Zmyn OF 2 = Zmaz, the benefit at death equals to Gie™ and Gae™"
respectively. Accordingly, the premium in these situations has to be calculated

as for market independent term life insurance products. Therefore, we have

1 T e
P(zmin, t) = ; log (T_tpa0+t + / 161 Aag + s)s%tpaoﬂds)
¢

1 r e
P(zmaz, t) = ; log (T—tpao+t +/ eo2e Aao + 5)s~tpao+td3) .
¢

In the experiments that follow, we assume that G; = 5, Gy = 10,
r = 0.06 and consider that the spot price varies between 0 and 20. In order to
have an accurate solution, not altered by the truncation of the spatial domain,
we choose 2y, = —25 and z,,,, = 25.

Figure 4.1 illustrates the dependence of the lump sum premium on the
insurer’s risk aversion. In these two experiments, we assume that o = 0.2 and
that the contract maturity is 5 and 10 years respectively. Notice that consistent
with our intuition, the premium increases as the risk aversion increases and
also as the term of the contract increases.

Next, for these two contracts, we calculate the excess hedge for several
risk aversion parameters. Taking a look at the premium in Figure 4.1, the
form of the optimal excess hedge from Figure 4.2 is expected. Naturally, in

the regions where the premium is asymptotically flat, the optimal excess hedge
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Figure 4.1: Lump-sum premium for an equity-linked term life insurance for
different risk aversion parameters

approaches 0, while on the regions where the premium is a convex/concave
function, the optimal excess hedge is an increasing/decreasing function of the
stock price, respectively. Also, consistent with our intuition, observe that the
optimal excess hedge increases as the insurer’s risk aversion increases and as

the term of the contract increases.

T=5years T=10 years

0.1

0.08

o
=3
-3

Excess Hedge

°
g

0.02

Figure 4.2: Excess-hedge for an equity—linked term life insurance for different
risk aversion parameters.

In Figure 4.3 we show the dependence of the lump-sum premium on
the volatility parameter. Observe that on the region where the premium is

convex, the premium increases with volatility while on the region where it is
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concave, it decreases with volatility. Accordingly, if the stock behaves well and
exhibits low volatility but the insurer assumes a high volatility parameter, as
can be observed from Figure 4.3 this will result in charging a premium that is

too small and thus results in a loss for the insurer.

1.3 r————v——w————w———
6=0.2

Figure 4.3: Lump-sum premium for an equity-linked term life insurance for
different values of the volatility parameter.

4.1.2 Continuous premium

In this subsection we consider that the premium for the term life insurance
contract is payable continuously at an annual rate h. We assume that this
rate is set at the time of writing the contract and that it remains fixed during
the life of the policy. Under these hypotheses, we define the value function of

the insurer in the presence of the insurance risk, as follows

uB(x,S,t; h(S,t)) = sup E[U(X7)|X; = 2,5, = 9], (4.18)
TEA
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where h(S,t) denotes the premium rate set at time ¢t. Here, the discounted

wealth dynamics evolve as

dX, = ({(p—1)ms+ he ™)ds + omgdW, if t<s<rT
dXs =7, ((p—r)ds+odW,) if 7<s<T
Xep = Xoo — g(ST,T)

Xt =7,

where 7 denotes the time of death of (ao).

Then, it follows that the value function solves the HJB equation

1
uf + maxy|(u — r)mu + 50-27r2usz +a*mSuls) + he "l
1
+(p—7)Sub + 5025211?5 + Mao + D)(u0(z — g(S, 1), 1) — uB(z, S, £)) = 0

uB(z,8,T;hP) = U(x).

Following arguments similar to those applied in the lump-sum pre-
mium case, we obtain that the value function is given by u®(z.S.t;h) =
u®(x,t)eV (5t where V satisfies the equation

1 A t
Vi + =028?Vgs — he ™ + M (e—v(V—g(Si)) — 1) =0
2 Y (4.19)

V(S,T;h) = 0.

Additionally, the optimal policy is given by

(2, S, h) = 2= 4 St (4.20)
Yo
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Notice that
U(O)(Xs —V(s, S h),8) = uB(XS7S.578; h). (4.21)

and therefore V (¢, S; h) represents the benefit reserve at time s.

The premium rate is such that, at the moment of writing the contract,
the insurer is indifferent between accepting or not accepting the insurance risk,
that is

u(z,t) = uP(z, S, t; h). (4.22)

Thus, the premium rate is given implicitly by the equation
V(S,t;h) = 0. (4.23)

So, the indifference premium rate is such that the benefit reserve has
zero value at the moment of writing the insurance contract. However, over
time, due to the evolution of the stock price and of the individual’s mortality,
this premium rate might not coincide with the prevailing indifference premium
rate and consequently the benefit reserve will no longer be zero. Concretely,
by Ito’s lemma, the evolution of the benefit reserve can be specified by the

equation

1
dV, = (he—rs + (/,L — T)Vss — —0‘2S2V55
Mao + s
g

(e 7V (S5:8)=9(S5:9)) _ 1))dt + o Vs S,dW,

Further, observe that similar to the lump-sum premium case, the op-
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timal excess hedge is analogous to the Black-Scholes delta hedge and is given
by e*(S,t; h) = Vs(S,t; h).

For a risk neutral insurer, the partial differential equation for the benefit
reserve becomes

1 2 Q2 —
- Voo — he ™™ — X\ )V — t)) =0
Vi+ 57 S*Vss — he (ag + t)( g(S,1)) (4.24)

V(S,T:h) =0.

Applying the Feynman-Ka¢ formula leads to

T 8
V(S,t;h) = / (E9[g(S,, s)]M(ag + s) — he ™)™ i Maotuidugg
t

T
= P(S,t) —/ he " s_tDag+tds
t

where @ is the risk neutral measure given by (4.13) and P(S,t) is the lump
sum premium, corresponding to a risk neutral insurer. Combining the last

equation with (4.23) we obtain

P(S,t)

h=—p— —
j; € s—tpa0+t S

(4.25)

Hence, for a risk neutral insurer, the premium rate is such that the lump sum

premium coincides with the actuarial present value of the premium rate.

We conclude this subsection by implementing the premium rate for the
term life insurance contract with benefit function given by (4.14). We assume
that (ao) is a 45 year old American male with force of mortality given by
(4.15).

In order to calculate the indifference premium rate, first we discretize
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equation (4.19) by using an implicit-explicit finite difference scheme as the one
applied in the lump-sum premium case. Then, the premium rate h(Sp,0) is
obtained by varying its value until the reserve at time ¢ = 0 has zero value.

03 03
0 {
¥0.1

025 - - 02 [ 0.25

02 . 02

5015

01
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o
o
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005 0.05

Figure 4.4: Continuous premium rate for an equity-linked term life insurance
for different risk aversion parameters

Figure (4.4) depicts the behavior of the continuous premium rate with
respect to the spot price for different levels of the insurer risk aversion when
the term to maturity is 5 and 10 years, respectively. As expected, the premium

rate increases when the risk aversion and the term to maturity increases.

4.2 The individual risk model

In this section, we study the pricing and hedging problem of the term life
insurance contract (5.3) in a setting where the insurer’s losses are modeled by
the individual risk model. Clearly, in this situation we deal with a cohort of
individuals. We assume that all these individuals are aged a¢ at time 0, with
future lifetimes modeled as independent and identically distributed random
variables. Further, we assume that they and have a (common) deterministic

force of mortality.
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4.2.1 Lump-sum premium

First, we analyze the insurer investment problem when accepting to sell term
life insurances of the form mentioned above, to all individuals of the cohort.

In this situation, the insurer’s value function is given by

u¥(x, S, t) = sup E[U(X7)|X; = 2,5, = 5], (4.26)
TEA

where k is a parameter specifying the number of individuals from the cohort

alive at time ¢t. Here, the discounted wealth process evolves as follows

dXs=ms((p —r)ds + odWy), s# 7

Xer =X, —C,, if 7,<T,

where 7;, i = 1...k denote the times of death of the policyholders and C,,
denotes the discounted total claim at time 7;. We assume that the times of
death of the policyholders are not necessarily distinct.

Now, we model the insurer’s loss on the time interval [t,s), s € (¢, 7

as a sum of the losses on each policy, that is

k
Lind = Zg(SﬁaTi)l{ﬂ<s|T¢>t}' (427)

i=1

Accordingly, the discounted claim at time 7;, t < 7; < T can be written as

Cy,

1

=Ln,—L.. (4.28)

Applying arguments similar to those used when pricing market inde-
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pendent insurance risks in an individual risk model, we obtain that u*) solves

the HJB equation

u©®(x, S, t) = u®(x,t)
For k> 1,
1
u™ + max,[(u — r)rul + 5027r2ug;) + o2 Sul)) + (u = r)sul

1
+50252ugg + kXag + t) (u*D(z — g(5,1),5,t) —u¥(z,5,t)) =0

u(z,8,T) =U(x).
(4.29)

We consider an ansitz of the form u®(z, S, 1) = u®(x, t)e’*"” (54, Further, as-
suming that the optimal investment policy is given by the first order necessary
condition, we have

«_HT (k)

Inserting the expression of the ansitz and of 7} in (4.29), after some straightfor-
ward calculations, we obtain that F'*) satisfies the nonlinear partial differential
equation
4 % o252 F ) _ kA(ao + 1) (1 _ e—vm“(s.w—w‘*“<s,t>—g<s,t>>) ~0
v

F®(S,T) =0.
(4.31)

with F©) = 0.

For a well-behaved benefit function g(.S, t), equation (4.31) has a smooth
solution and the Verification Theorem implies that the ansatz proposed coin-
cides with the value function. Also, the Verification Theorem confirms our
initial assumption that the optimal investment policy is given by the first

order necessary condition.
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Now, let P*)(S,t) denote the indifference premium for k policies at

time ¢. The indifference premium solves the equation
u(z, 1) = u®(z + PH(S 1), S, t). (4.32)

Hence,

P®(S 1) = F®(S, 1) (4.33)

~ 1
and consequently, the premium per risk P®)(S,t) = EP(k)(S,t) satisfies the
equation

o 10252 _ Mag +1) (1 _ e—’y(kﬁ’(")(S,t)~(kﬁ1)}5("*1)—g(S’,t))) -0
2 gl

P®)(S,T)=0
(4.34)

where P©® = 0 and where P represents the lump sum premium in a single
life insurance model. Notice that P®) can be calculated by solving a system
of k recursively defined partial differential equations.

Then, the optimal excess hedge corresponding to a portfolio consisting

*(k)

of k policies, e*'*) is given by

) = pi) (4.35)

and again notice the analogy with the Black-Scholes delta hedge.

At this point, it is interesting to analyze the dependence of the premium
per risk on the number of policies in the insurer’s portfolio. Recall, that we as-
sumed that the policyholders have future lifetimes independent and identically

distributed and moreover, their force of mortality evolves deterministically in
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time. Given these assumptions, one would expect that the premium per risk is
constant and thus, coincides with the premium in a single life insurance model.
Additionally, if the premium per risk is constant, by (4.35) the excess hedge
per risk is also constant and equals the excess hedge in a single life insurance
model.

Indeed, numerically implementing the premium per risk via equation
(4.34) we obtain that when varying the number of policies in the portfolio, the
premium per risk remains constant. Below, we exemplify our experiments by
showing the plot of the premium per risk when the insurer’s portfolio consists of
k =1...20 policies. We assume that the force of mortality of all policyholders
is given by (4.15). Additionally, we assume that all the insurance claims have
a benefit function of the form (4.14), the time to maturity is 7" = 10 years,

o = 0.2, r =0.06 and the insurer’s risk aversion is v = 0.1.

Premium per risk

o o o o

o ~ ® ©
yi

o
o

o
ES

20

Spot price S Number of policies k

Figure 4.5: Premium per risk as a function of the spot price and of the number
of policies in the insurers portfolio.
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4.2.2 Continuous premium

In what follows, we examine the pricing and hedging of the term life insurance
contract within the same loss model, but assumming that the premium is
payable continuously, at a fixed annual rate h*) set at the time of writing the
contracts. In this situation, we define the value function of the insurer with

the insurance risks by

u® (2, S, t; R¥(S, 1)) = sup E[U(X7)|S; = S, X; = z], (4.36)
TEA

where the discounted wealth process has the dynamics given by

dX, = ((n = 1)7s + Zse*h 0} ds + om,dWe, s # 7
X, =« (4.37)

Xps =X, —Cy, if 1, <T.

Here 7;,, @ = 1...k represent the times of death of the policyholders, (', is
the discounted total claim at time 7; due to death of one or more policyholders
and Z, is a process recording the number of survivors at time s. With regards
to C.,, this is defined as in the lump-sum premium case.

Applying Bellman’s principle of dynamic programming and stochastic

calculus, it follows that u*) satisfies the HIB equation

1
up + maxg (4 — rymul” + 50%%% + o?rSuld] + ke "t h®)uf)

. 1
+(p—7)Sul + 502521&5) + kX(ag + t) (uk=V(z — g(S,t), S, t) —uk) =0

u®(z, S, T; h¥)) = U(x).

Following arguments similar to those applied in the lump-sum premium

133



Ph.D. Thesis — E. Alexandru-Gajura — McMaster — Mathematics and Statistics

case, we obtain that
uP(z, S, t; Ry = 4%z, t)e"’vm(s"t‘hm) (4.38)

where V) satisfies the partial differential equation

VE _ perthk) 4 %(72521/;? + kA(ao + 1) (e—v(V”“)-V“‘*”—g(S,t)) - 1) =0
g

VE(S T) = 0.
(4.39)

Then, the optimal hedging policy is given by

* _p—T (k)
(S, 1) = 7 VS (4.40)

Consequently the optimal excess hedge corresponding to a portfolio of k equity—

linked term life insurance contracts is
e®*(S,t) = V(s 1). (4.41)
Observe that V*)(S,, s) represents the benefit reserve at time s since
u (X, = VEN(S,, s),t) = uP (X, S, 5). (4.42)

The premium rate h®) = A*)(S ) is such that the insurer at time ¢ is indif-

ferent between accepting or not accepting the & insurance risks, that is
u®(z,8,t) = ul9(, ). (4.43)

This implies that V(k)(S, t) = 0. Clearly, as in a single life insurance model,
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the benefit reserve equals zero just at time ¢, when the contracts are written.
Until the contracts’ maturity, the policyholders’ mortality changes as well as
the financial market, thus rendering the insurer to change his initial attitude
of indifference towards the insurance risks. Consequently, the benefit reserve
is no longer zero.

Recall that in the lump sum premium case analyzed earlier we obtained
that the premium per risk is independent of the number of policies in the in-
surer’s portfolio. Naturally, the question arises of whether or not this property
also applies to the premium rate.

Below, we numerically implement the premium rate when the insurer’s
portfolio consists of & = 1...10 policies. We assume that all the insurance
claims have a benefit function of the form (4.14), the time to maturity is T = 1

year, ¢ = 0.2, r = 0.06 and the insurer’s risk aversion is v = 0.1.
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Figure 4.6: Premium rate as a function of the spot price and of the number of
policies in the insurers portfolio.

Notice from Figure 4.6 that the premium per risk is independent of the

number of policies in the insurer’s portfolio.
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4.3 The collective risk model

In this section, we analyze the pricing problem of term life insurances with
benefits of the form (5.3) in a setting where insurer’s losses are modeled via
the collective risk model. We start with a cohort of policyholders as in section
4.2 and model the insurer’s total loss on a time interval [t,s), s € (t,7] as

follows
Ne—Ny

Lgoll = Z g(STivTi)v (444)

i=1
where (N¢)o<t<r 1s a inhomogeneous Poisson process with intensity n(ag + t).
Specifically, N; records the number of deaths within the cohort from time 0
up to time ¢ and 7; represents the arrival time of the ith (death) event.

An important assumption in this section is that the initial size of the
cohort of policyholders is very large and consequently at any time ¢ < T the
size of the remaining cohort is still arbitrary large.

Then, we connect the collective model to the individual risk model by
requiring that on average, the number of deaths during any time interval [0, )

is the same in both models. Thus,
E[N;] = E|Y}], ¥t € (0,T]. (4.45)

Here Y; denotes the number of deaths from time 0 up to time £ in the individual

risk model. Accordingly, we have

t
/ n(ao + w)du = keqa,, (4.46)
0
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where k represents the size of the cohort at time 0. Consequently,

n{ao + t) = kipag Aao + t). (4.47)

4.3.1 Lump-sum premium

We first consider the insurer investment problem when accepting the insurance

risks and define the value function by

u(zx, S,t) = sug EU(Xr)| Xy =z, 5 = 5. (4.48)

Here the discounted wealth process evolves as follows

dX, =7, —r)ds + cdW,) — dLg"“,
((m—r) ) (4.49)

Xt:Z'.

Observe that the value function does not depend on the number of deaths
by time ¢. That is because the term life insurance contracts that we analyze
have the benefits payable at the moment of death of the policyholders and
because for the Poisson process, used here to count the number of deaths, we
have to specify just its intensity, not also the number of deaths or survivors.
However, if the benefits were payable at maturity, we would have to include
the dependence on the number of deaths by time ¢ in the definition of the
value function.

Applying Bellman’s principle of dynamic programming and stochastic
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calculus arguments, we obtain that the value function solves the HJB equation

1
u + max, [(u — r)mu, + 5027r2um + 02STugs] + (u — r)Sus + %UQSQuSS
+n(ag +t) (u{x — g(S,t),S,t) — u(x,S,t)) =0

u(z, S, T) =Ul(zx).
(4.50)

We consider an ansétz of the form u(z,S,t) = u’(z,t)e? 5. Observe that
Uz < 0 and thus the maximum in (4.50) is well defined and attained at

7 (8,1) = B2l 4 SFe(S,1). (4.51)

vo?

Further, substituting the ansitz and the expression of 7*(S,t) in (4.50), we
obtain that F solves the linear partial differential equation

F; + 10252}735 _ mao+1) (1-e9E0)y =0
2 g (4.52)

F(S,T) = 0.

Applying the Feynman-Ka¢ formula, we have that

fw&w::[TQ@%iQ(EQMM%@L—Uds (4.53)

where (@ is the risk neutral measure given by (4.13).

For well behaved benefit functions g, equation (4.62) has a smooth
solution. Consequently, we can apply the Verification Theorem and obtain
that the ansdtz proposed coincides with the value function. Also, by the
Verification Theorem the optimal policy is given by (4.51).

Now, let P(S,t) denote the indifference premium at time ¢ for the k
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term life insurance contracts. P(S,t) solves the equation
u(x,t) = u(z + P, S, t). (4.54)

Solving equation (4.54) with respect to P, leads to P(S,t) = F(S,t). Further
by (4.53) and (4.47) it follows that

P(S,t) = /t ' ﬁw‘)v—+5) (EQ[e95+#)] — 1) ds. (4.55)

Notice that also within this model, the excess hedge is analogous to the Black-
Scholes delta hedge. Specifically, we have that e*(S,t) = Ps(S,1).
From (4.55), it follows that the premium at time ¢ = 0 for the k term

life insurance contracts is

P(S,0) = /0 ' ——"(“Oj %) (BQ9S9] — 1 ds

k T
= —/ (EQ["9559)] — 1) 4pagA(ao + s)ds.
T Jo

Thus, the premium per risk P(S,0) = %P(S, 0) is given by

T
P(S,0) = %/ (B9[5> — 1) spggAag + s)ds. (4.56)
0

Taking the limit as ¥ — 0 in equation (4.56), we obtain that the pre-

mium per risk at time ¢ = 0 for a risk neutral insurer is

T
P(S,0) = /0 E®[g(S,, 8))sPag Mg + $)ds. (4.57)
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Now, recognize that the expression from the left hand side of equation (4.57)
represents the lump-sum premium for a risk neutral insurer in a single life
insurance model, or as observed in subsection 4.2.1, the premium per risk for
a risk neutral insurer in the individual risk model.

We conclude this subsection by several numerical experiments. First,
we implement the premium per risk for the an equity-linked term life insurance
with benefit (4.14) in the collective risk model and then, we compare it with
the corresponding premium per risk in the individual risk model. We assume
that the force of mortality of the policyholders is given by (4.15), the time to
maturity is T' = 10 years, r = 0.06, the spot price varies between 0 and 20
and the insurer’s risk aversion is v = 0.1. With regards to the benefit function
g as mentioned above, this is chosen of the form (4.14), where G; = 5 and

G5 = 10. Notice from Figure 4.7 that the premium per risk in the collective

Premium per risk

Figure 4.7: Premium per risk for an equity—linked term life insurance contract
in the individual risk model (solid line) and in the collective risk model (dashed

line).

risk model is greater than the premium in the individual risk model. Thus,
the collective risk model proves to be more risky than the individual risk

model. Next, we consider the same equity-linked term life insurance as in the
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preceding experiment and illustrate the dependence of the premium per risk

on the insurer’s risk aversion parameter.

Premium per risk

Figure 4.8: Premium per risk for an equity-linked term life insurance in the
collective risk model, for different values of the insurer’s risk aversion param-
eter.

As Figure 4.8 shows, the premium per risk increases as the risk aversion
increases. The result is consistent with our intuition. Finally, in the last

experiment, we show the dependence of the premium per risk on the time to

maturity. Observe from Figure 4.9 that the premium per risk increases as the
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Figure 4.9: Premium per risk for an equity-linked term life insurance in the
collective risk model, for different values of the time to maturity.

time to maturity increases. The result agrees to our intuition since as the time
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to maturity increases, increases the probability of death or in other words the

probability that the insurer’s portfolio will generate claims.

4.3.2 Continuous premium

In the following, we assume the same loss model as in the preceding subsection
and examine the pricing of equity-linked term life insurance contracts in the
situation where the premium is payable continuously, at a fixed annual rate
h. However, here h represents the rate corresponding to the entire cohort and
not the premium rate per risk as assumed in the individual risk model. In this
case, we define the value function of the insurer with the insurance risks, as

follows

u(z, S, t; h(S,t)) =sup E[U(X7)|X; = 2,5 = 5] (4.58)
TeA

where h(S,t) denotes the premium rate set at time ¢. Here, the discounted
wealth process evolves according to the equations

dX, = — 1w + he ")ds + o, dW, — dLg"”,
((p—r) ) (4.59)

Notice from the wealth equation that we implicitly assume that the
premium rate will be paid until maturity. Essentially, this is a consequence of

the assumption that the size of the cohort at any time ¢ < 7' is arbitrary large.
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In this case, the HJB equation for u is

1 1
ug + max, [(u — r)ru, + 5027r2um + 02STugs| + (u — r)Sus + 5025%55
+he™" g 4+ n(ag + t) (u(x — g(S,1), 5,t) —u(z,S,t)) =0

u(z, S, T) = U(x).
(4.60)

We consider an ansitz of the form u(z, S, t) = u®(x, )"V D, Notice that
g, < 0 and applying the first order condition we obtain

(S.4) = B2 4 svs(8,0). (4.61)

’\/0’2

Inserting the ansitz and the expression of 7* in (4.60), after some straight-
forward calculations we obtain that V satisfies the linear partial differential

equation

n(ao +0) (1 - en) =0

1
Vi + —0252V55 — he "t —
2 Y (4.62)

V(S,T) =0.

Accordingly, V has the Feynman-Ka¢ representation

T
V(S t) = / W%'S—)(Efs[e“'g(s“s)—l])—he“”ds, (4.63)
t

where (@ is the risk neutral measure defined by (4.13). Further, we can write
T
V(S,t) = PCULS(S 1) — / he™"%ds, (4.64)
t

where here PC°LS(S t) denotes the lump-sum premium in the collective

model for the term life insurance contract. Now, observe that V(S;, s) repre-
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sents the benefit reserve at time s since it solves the equation
u (X, -V (S,,8),8) = uP(X,, S, 5). (4.65)
In this case the indifference premium equation is
u’(z,t) = u(x, S, t; h(S, 1)) (4.66)

which implies that V(S,t) = 0. Accordingly, the premium rate at time ¢ is

given by
PColl,LS(S t)

h(S,t) =
(5.1) ftTe”‘sds

(4.67)

That is, the annual premium rate h(S,¢) is such that the total discounted
premium paid during the life of the policies equals the lump-sum premium for
the term life insurance contract.

From (4.67) it follows that the premium rate at time ¢t = 0 is

kr foT (EQ[evg(Ss,s)] _ 1) P (a0 + 5)ds
(1 —eT) '

h(S,0) = (4.68)

Remark 4.3.1.

In contrast to the individual risk model, observe that in the collec-
tive risk model the premium rate per risk increases over time as policyhold-
ers die. An alternative model for the premium rate is as follows: h(s) =
(k — Ng)h(S,t)e ", where h(S,t) is a fixed premium rate per risk, set at time
t. Indeed, with this choice the nature of the premium rate and of the premium
rate per risk would be similar in the two risk models. However, this will intro-

duce a new variable into our pricing analysis, namely the number of deaths by
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time t. The valuation of equity-linked term life insurances is a tractable prob-
lem within the collective risk model, essentially because of the independence
of our pricing analysis on the number of deaths. Choosing the premium model
just mentioned above, makes the problem not tractable since the dependence
on the number of deaths cannot be factored out. Consequently, one will have

to solve a system of PDEs.

Next, we implement the continuous premium rate for a term life insur-
ance contract with benefit of the form (4.14) and examine its dependence on
the insurer’s risk aversion parameter. We assume a benefit function of the form
just mentioned, where Gy = 5, G5 = 10, the spot price varies between 0 and
20 and T = 10 years. Then, we consider a cohort of £ = 10000 policyholders

whose force of mortality is given by (4.15).

2500

2000

Premium rate
o
3
3
e
'
\

1000

Figure 4.10: Continuous premium rate for an equity—linked term life insurance
contract in the collective risk model, for different choices of the insurer’s risk
aversion parameter.

As expected, observe from Figure 4.10 that the premium rate increases

as the risk aversion increases.
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Chapter 5

Utility Indifference Pricing of
Equity—Linked Term Life
Insurance in Stochastic

Volatility Market Models

In this chapter we study the pricing of equity-linked term life insurance in
stochastic volatility market models. Unlike the Black-Scholes market model,
considered in the preceding chapter, stochastic volatility market models have
the advantage of assuming more realistic return distributions, with fatter tails
and asymmetry. Moreover, stochastic volatility models are able to predict
European option prices whose implied volatility “smiles”.

Clearly, in this context, the combined insurance-financial market is in-
complete since neither volatility nor individuals'mortality can be hedged. As

in the preceding chapters, we propose utility indifference as a pricing approach.
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In this chapter, we extend the results of Sircar & Zariphopoulou (2004)
and price equity—linked term life insurance. We would like to mention that
from the start we choose to model the insurer’s losses via the collective model,
this model being so far computationally more efficient than the others. In what
follows, we show that the indifference premium for an equity linked term life
insurance, in a fast-mean-reverting volatility regime can be well approximated

by adjusted constant volatility results.

The financial-insurance market model

We consider a financial market consisting of two assets: a money market ac-
count with constant interest rate r > 0 and a risky stock or stock index. We
assume that the discounted price of the stock (or stock index) satisfies the

stochastic differential equation

dSs; = S ((p— r)ds + o(Ys)dWy)
St =5>0.

(5.1)

In the above, > r > 0 and the volatility driving process (Y;) is modeled as

a correlated Markov diffusion

dYs = a(Y,)ds + b(Y,)dZ, (5.2)

Yi=y

where Z, = pW,++/1 — p?Z,and p € [—1,1]. Here, the processes W and Z are
independent Brownian motions on the filtered probability space (2, F,F, P),
where F is the augmentation of the natural filtration generated by W and Z.

Notice that by correlating the stock price with the volatility, the model
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explains the skew phenomenon present in option markets. Empirical evidence
shows that typically, in equity markets the correlation coefficient p assume
negative values; in other words, when volatility goes up stock prices go down
and viceversa. This is called leverage effect.

With regards to the coeflicients a and b and the function o, we make

the following assumption:

Assumption 5.0.1.
® 0, a and b are smooth and bounded with bounded derivatives.
e For all y, o(y) > L > 0 for some L < 0.

Now, as in chapter 4. we consider an insurer that has the opportunity
to sell equity-linked term life insurance contracts with discounted benefit as

follows

S,7) fr<T
p=] 95T (5.3)
0 ifr>T,

in which 7 denotes the policyholder’s time of death and g is a positive, smooth
and bounded function on [0, c0) x [0, T).

In what follows, we examine the pricing of this life insurance contract
using the utility indifference pricing approach. Recall that this approach re-
quires solving two optimization problems. One of them is the Merton invest-
ment problem, that is maximizing the expected utility of terminal wealth by
investing in the financial market. The second optimization problem consists
of maximizing the expected utility of terminal wealth with the insurance risk
by trading in the financial market.

Let us assume that the insurer’s initial wealth is z and that he can
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actively trade in the financial market described above. Further let 7, denote
the amount deemed to be invested in the stock at time s. Then, the discounted
wealth of the insurer follows the dynamics

dXs = ms ((p —r)ds + o(Ys)dW) 5 4)

thx

At this point, we define the set of admissible policies A[t, T as the set
of processes 7 that are [F progressively measurable and satisfy the integrability
condition ftT 72ds < oo a.s. Notice that for = € A[t, T], given the assumption
that o is bounded, the stochastic differential equation with random coefficients

(5.4) has a unique solution.

5.1 The Merton problem in stochastic volatil-

ity market models

In this financial market setting, the Merton investment problem can be for-

mulated as follows

u’(z,y,t) = sup E[U(Xr)|X: =2,Y; =yl (5.5)
TE

where the insurer’s wealth process evolves according to (5.4).
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The HJB equation for u? is

1
( ud + max, ((u —r)mud + 502(y)7r2u2z + pb(y)wa(y)u%) + a(y)ug
1
+§b2(y)u2y =0
| W@y, T)=U(z)
(5.6)

We assume that u" is concave in wealth. Then, the maximum in (5.6) is well

defined and it is attained in

— 0 0
* lu' r uz pb(y) ua:y (57)

T, = ——F—~—7 — .
LW, oy u,

Inserting the expression of 7} in the HJB equation, leads to

4

0 (;t(;(r)2 (U%)2 ~Lp) Q(U%y)Q e (1) ug%@ +aty)ul
y) ug, 2 Upy aly)
+§b2(y)u2y =0
\ u(z,y, T)=Ul(x)
(5.8)
Now, we consider the ansitz u’(z,y,t) = —e "®¢(y,t). Inserting the ansitz

in equation (5.8), after some calculations, we obtain

, ¢t — (= T)QQS — le(y)pz (¢y)2 _ pb(y)(pp — 1)

20%(y) 2 ¢ a(y) ¢y+a(y)fy
+50(Y)ow =0
| o, T) =1
(5.9)
1

Further, we consider the transformation ¢(y,t) = ¥°(y,t), where § = 1=
—p
to be determined. This power transformation was introduced in the financial

151



Ph.D. Thesis — E. Alexandru-Gajura - McMaster — Mathematics and Statistics

literature by Zariphopoulou (2001). Then, equation (5.9) becomes

(n—r)’(d = p?)
20%(y)

it (al) = LB ) 4 000, - v=0

a(y)

Yy, T)=1
(5.10)

Observe that essentially, the parameter ¢ that is called distortion power is
chosen such that the partial differential equation (5.9) reduces to a linear
equation.

Now, we would like to obtain a probabilistic representation of ¢ from
equation (5.10). Notice that for obtaining this, first we have to change the

original probability space. We define the measure ) on Fr by

oo ([ Somos ] ) o

Since o is bounded, it is straightforward to show that Novikov’s condition is

satisfied. Accordingly, we can apply the Girsanov’s theorem and obtain that

Q is a probability measure on Fr, ¢ ~ P and
~ s /l/ — 7T
(Ws, Zs) = ———du+ W, Z; ), 0<s<T (5.12)
0 U(Yu>

is a two dimensional Brownian motion under ). Moreover, the dynamics of

(S,Y) under @ are as follows

dS, = o(Y,)S,dW, (5.13)

dY, = (a(YS) - ﬁ(i—)(gf“)_—”) ds + b(Y,)(pdWy + /1 — p?dZ,)  (5.14)
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At this point, we can apply the Feynman-Kaé¢ formula and obtain that

T (u-r)2(1-p%)

bly,t) = B el i), (5.15)

Given the assumptions (5.0.1), the conditions of the Theorem 2.9.10 from
Krylov (1980) are satisfied. Accordingly, (5.15) is the unique solution of equa-
tion (5.10) in the class of functions that are C*!(R x [0,T]) and satisfy a
polynomial growth condition in y. Consequently, the ansitz proposed is a
classical solution of the HJB equation (5.6) and therefore a viscosity solution
of this equation. By the Verification Theorem the value function is the unique
viscosity solution of equation (5.6) in the class of functions that are concave
and of exponential growth in 2 and uniformly bounded in y. The ansatz con-
sidered satisfies these properties and therefore this coincides with the value

function. Thus, the value function is given by

(5.16)

1
T (e-r)?01-p%) \ 1,2

0 -y Q- Teliv s

WOy, 1) = —e* (B[

5.2 The insurer’s investment problem with the
insurance risk

In what follows, we assume that the insurer accepts to sell to a cohort of
individuals equity-linked term life insurance contracts with benefit given by
(5.3). We consider that the contracts are written at time ¢ = 0 and at that time
the cohort consists of k individuals, where k£ has a very large value. Further,
we assume that all these individuals have future lifetimes independent and

identically distributed and that their mortality evolves deterministically in
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time.

Recall that when examining the pricing of equity—linked term life insur-
ance in a Black-Scholes model, between all loss models, the collective model
proved to be computationally more efficient, with the insurer’s pricing prob-
lem reducing in this case to solving one linear partial differential equation.
This motivates us to model from start, the insurer’s losses via a collective risk
model. Accordingly, we model the number of deaths within the cohort by a
inhomogeneous Poisson process (V;)o<i<r with intensity n(ag + £).

In this case, we define the value function of the insurer with the insur-

ance risk by

u(z,y, S, t) =sup F[U(X7)|X: = z,Ye =y, (5.17)
weAd

in which, the discounted wealth process evolves as follows

dX, = 75 ((p — 7)ds + o(Y,)dW,) — d Lo
((p—r) (Ye)dWs) (5.18)

where L, = ZZN:SI‘M 9(7i, Sr,) denotes the total loss of the insurer from time ¢
to time s.
Now, let us express the value function u(z,y, S,t) in terms of the cer-

tainty equivalent function for the insurance claim B, ¢?(y, S, ). We have

u(z,y,S,t) = —e =P wS), (5.19)

154



Ph.D. Thesis — E. Alexandru-Gajura — McMaster — Mathematics and Statistics

The value function u solves the HJB equation

4

e+ M (1 )tk 502 )T+ pb(y)o (9, + 0(y) Ss)
{ Faly)uy + 3B () + (1~ )Sus + 502 (y)SPuss + pb(y)So(y)u
lag + ) (ulz — g(S,8), 4, S,1) — u(z,y, S, 1)) = 0.
| u(z,y.5,T) =0

(5.20)
Inserting (5.19) into the HJB equation, we conclude that the certainty equiv-

alent function c? satisfy

( 1 1 —7)pb
cf + 50%(y)S?cls + pb(y)So(y)egs + 5% (y)ef, + (a(y) - %) e
J Lo 0 avBy2_ (u—7)*  nlao+1) v9(St) _ 1) =
+2b v(1 = p*)(c;) Ivo? + ~ (e 1)=0
{ By, 5,T)=0
(5.21)

Applying Theorem 5.8, chapter 5, from Carmona (2009b) it follows that equa-
tion (5.21) has a unique solution in the class of C**1(R x R* x [0, T']) functions
that satisfy a polynomial growth condition on R x R* x [0, T]. Then, by the
Verification Theorem, the value function is the unique viscosity solution of

(5.20).

5.3 Indifference premium

Let P(y,S,t) denote the indifference premium for the equity-linked term life
insurance that we are studying. From the indifference premium equation it
follows that

P(y,S,t) = cB(y,S.t) — Py, t), (5.22)
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where c? and ° represent the certainty equivalent functions for the claim B
and for the Merton problem, respectively.
We proved that the value function in the Merton problem can be written

as follows

uo(x, y, t) = —e Yy, t)T%p“Z, (5.23)

where 1 satisfy the equation (5.10). On the other hand, we have that u°(z, y, t) =

—e= "M@= Wh) gince ¥ is the certainty equivalent function for the Merton prob-

lem. Accordingly, we have that
Uy, t) = =PI, (5.24)

Substituting (5.24) into equation (5.10), after some calculations, we obtain
that c® solves the partial differential equation
( (n—r)bly)p 1 1
@+ (aty) - LY 1 S, + G- )
w—r

 2902(y)

{ Ay, T)y=0
(5.25)

Subtracting (5.25) from (5.21), we find that the indifference premium P, solves

the following partial differential equation

( (= 7)bly)p 2 2\ 0 L,
P+ <1a(y) T ZL b (y)v(l—p )Cy) B, + §b (y) Pyy
) +50% W)V (1 = p*) P + 507 (y)S* Pss + pb(y) So(y) Pys
+77(a0 + t) (eyg(S,t) _ 1) -0
Y
| P(y, S, T)=0

(5.26)
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5.4 Fast-mean-reversion asymptotics

In what follows, we examine the pricing of equity—linked term life insurance

in a mean-reverting stochastic volatility model of the form
dS; = (p — r)Sedt + o(Y;) S dW, (5.27)

dY; = a{m — Yi)dt + B(pdW; + /1 — p?dZ;). (5.28)

Observe that Y is an Ornstein-Uhlenbeck process with rate of mean reversion

a and long-run mean m. From (5.28) it follows that

2
b~ N(m+ (Yo —m)e™™, 5—

O[(1 — e~ 20t)), (5.29)

It is well-known that the invariant distribution of the process Y is A(m,v?),

where 1?2 = gg (see Fouque, Papanicolau & Sircar (2000), page 68). From

now on, given a function f(Y'), we denote its expectation with respect to the

invariant distribution by (f).

Remarks 5.4.1. Observe that the invariant distribution of Y corresponds to the

normal distribution from (5.29) in the limit cases t — oo or a — 0.

Now, we define the mean-square time averaged volatility by:

o / (V) du (5.30)

The Ergodic Theorem (see for example Fouque, Papanicolau & Sircar (2000),
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pages 66-67) implies that
02— (0%) as t—o0 as (5.31)

As mentioned in the remark (5.4.1), the limits ¢ — oo or & — oo are the same
in terms of distributions. Accordingly, the relation (5.31) holds true also when
Y; is a very fast-mean-reverting process.

At this point, one may wonder to what reduces the indifference pre-
mium in a very fast mean reverting volatility regime. We will show that
actually, in this case, the premium coincides with the premium for the insur-
ance claim B in a market model with constant volatility & = \/<_UT> . Now, let
us prove this assertion in a simple case, specifically when the insurer is risk
neutral.

Observe that as v goes to zero, equation (5.26) becomes

Pt (aty) = LZEI0Y byt L)+ 308 + )0 )5 Pis
+n(ao + t)g(S,t) =0

P(y,S,T) =0
(5.32)

Applying the Faynman-Kac¢ formula, we obtain that the indifference premium

at time ¢ = 0 for the k term life insurance contracts is

T T
P(y,S,0) = /o E9g(S,, t)]n(ao + t)dt = k/o E9g(S,, t)]spag M ag + s)ds
(5.33)

where the risk neutral measure @ is given by (5.11).
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Accordingly, the price per risk is as follows

P(y,5.0) = / E®1g(Si, )]epas Mao + 5)ds (5.34)

It is straightforward to show that

t t
St (_1 [ v f(n)dt) under Q. (5:35)
S 2 Jo 0

Consequently, in a very fast-mean-reverting volatility regime, we have that

1
ln% ~ (—55%,5%) under Q. (5.36)

Therefore, we conclude that the premium per risk for the claim B in a stochas-
tic volatility market model, with a very fast mean reverting volatility factor,
coincides with the corresponding premium in a market model with constant
volatility &. Later on, we will show that this result holds for any risk aversion
.

This convergence result motivates us to consider an asymptotic ap-
proximation technique for calculating the indifference premium. Concretely,

1
we consider the regime a = o where ¢ | 0. This implies that 3 scales as

vV2

g = — Further, the coefficients of the volatility driving factor Y; are as
follows
1
a(y) = a(m —y) = —(m —y)
bly) =5
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Then, the equations (5.25) and (5.25) become

1 — 2 2 2 (n—1)?
Ay, T) =0
(5.37)
and
( 1 2 2 1 — 2
@ g+ EEsotdy e+ ) = U
! + (1= p?) (B - Chell i O R) (e9301) =0
€ v 2702 (y) ¥
| cB(y, S, T)=0

(5.38)
In order to write the above equations in a compact form, we introduce the

following operators

Lou = VPuyy + (m — y)uy

Liu=2up (Sa(y)uys - ”;(—‘y;uo

1
Lou=u; + 50252u55

Denoting

1 1
EE - gﬁo + %Ll + EQ, (539)

we see that ® and ¢ satisfy

£ (0 ’/_2 _ 2 602_(“‘T)2:
per T =rnla) 2y0%(y) ’ (5.40)

Ay, T)=0
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and

2 —r)? +1
£ 4 (1 — (B2 - (QM QT) + MY (rais _ 1)
€ 102 (y) g (5.41)

By, S, T)=0

5.4.1 Approximation for the certainty equivalents

We now consider the following formal expansions of ¢® and c? in powers of

VE:
= O 4 W /e+ p@e 4 pBefe+ .. (5.42)
P =00 + M \/e+ ¢Pe+¢Pey/e. . (5.43)
The asymptotic expansion for c°(y, t) was obtained in Sircar & Zariphopoulou
1 1
(2004). To describe their results, we define — = <—2> and let F(y) the
o2 o)
solution of the Poisson equation
1 1
LoF = —— — —. 5.44
ST o4

It then follows from item (ii) of Proposition 4.4 of Sircar & Zariphopoulou

(2004) that setting

0 . (n— T)2
PO(t) = - 207 (T —t) (5.45)
W pvu—r)® JF B
s = AT < - ><T 0, (5.46)
leads to
1Py, t) — @ — VepW (1) = O(e), (5.47)

for each point (y,t).

Our aim is to prove a similar result for ¢(y,S,t) and consequently
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for P(y, S,t). Inserting the formal expansion (5.43) into (5.41) and collecting

terms of equal order in &, we obtain

%(£o¢<°>+u2(1—p2>v<¢§°>)2>+—\}—g<£0¢“)+£1¢<°>+2v2<1—p2)w¢§0>¢§,”)

FLod P+ L1004 L2040 (=" (6, +26)0)7)— g5+

+VE(LodpP+L10P + Ly +20° (1—p* )y (806 +0 o)) +. .. = 0

Observe from equation (5.48) that we will need to solve Poisson equa-

tions associated with Ly, of the form
Lox+ f=0. (5.49)

It can be shown, see Fouque, Papanicolau & Sircar (2000), pages 91 — 92 that

equation (5.49) admits a solution unless the following condition holds

(f) = 0. (5.50)

Next, we will refer to (5.50) as centering condition and to the function f as
the source term. Writing explicitly the expression of the differential operator

Lo in (5.49), after some calculations, we obtain

X'(y) = 1/2<Ii(y) /yoc f(2)®(2)d=. (5.51)

Therefore, if f is bounded then x’ is bounded and y has at most logarithmic
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growth, i.e.

IX'(y)] < Gy (5.52)

Ix(¥)] < Ca(1 +log(1 + [y])). (5.53)

These properties of the solutions of the Poisson equation (5.49) will be very
useful when proving the order of approximation of the truncation error.

Now, we consider each order separately, as follows

O(1/e) : Matching terms of order 1/¢, we have
Lo¢? + 17 (1 = p* (") = 0. (5.54)
For fixed (.S, t) this corresponds to the nonlinear ordinary differential equation
v (y) + (m =) ['(y) + v (1= Py (f'(y))* = 0, (5.55)

whose solution is

¥ m—z2
fly) = (1= 2 log (1 + 01/ o5t )dz) + ¢, (5.56)

(m—z%) . :
for constants ¢; and c¢,. Observe that ffoooe 2?7 dz = oo. Since we are in-
terested only in solutions that are well-behaved at oo, we take ¢; = 0 and

conclude that ¢® must be constant in y.

163



Ph.D. Thesis — E. Alexandru-Gagura — McMaster — Mathematics and Statistics

O(1/+/2): The terms of order 1/1/¢ give
Lo + L6 + 2021 — p* )y ) = 0 (5.57)
Since ¢ = ¢(©)(S, 1), the equation above reduces to
LooM =0 (5.58)
For fixed (S,t), this corresponds to the linear differential equation
VR (y) + (m = y)h(y) = 0 (5.59)
Solving this equation, we obtain
hiy) = Cy /y A ds+ Oy, (5.60)

-

for constants 7 and Cy;. We are interested only in well behaved solutions at

oo and therefore we take C; = 0. This implies that ¢! is also constant in y.

O(e) : For these choices of ¢(® and ¢!, the order one terms give

2
- t
Lo¢? + L0 - g@@) + ”(aof S5t 1) =0 (5.61)

For fixed (S, ), (5.61) is a Poisson equation for ¢® with respect to the operator

Lo, in the variable y. Equation (5.61) does not admit a solution unless the
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centering condition

is satisfied. ¢(© is y independent and therefore (L,¢®) = (L£5)¢®. Accord-
ingly, the centering condition (5.62) holds true, provided we define ¢(®) as the

solution of the linear parabolic equation

)2 .
(l[l - r) + n(a() + t) (e’yg(S’t) _ 1) — 0

© , 1 502,00
O+ -0°S%pgg —
LT T et Y (5.63)

¢0(5,T) =0

Now, subtracting (5.62) from (5.61), we obtain

2) _ o _w=r?( 1 1Y _
R T ) R
Consequently,
1 _ (p—r)? 1 1
Lo¢'®) = —5(0*(y) — )5°¢l5s + x (UQ(y) - §> . (5.65)

Therefore, we can chose ¢ as follows

RY
0. 5.1) =~ fily) 5 + LT

2,7 fQ(y)v (566)

where f; and f, are solutions of the Poisson equations

Lofy =o(y)* -a° (5.67)
1 1
ﬁ()fg == 0_2_(y) - U—z (568)
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O(v/¢) : The terms of order /¢ give
Lo¢® + L1614+ Ly¢) = 0. (5.69)

This is a Poisson equation for ¢® with respect to £ in the variable y. In this

case, the centering condition is
(L16P + Loy = 0. (5.70)

Further, using (5.66), we have

£:62) = \/avp (——a< () (25768 + 5560

(p—r)
20 (y)y

( ) (0)

’(y)> :

( )

Consequently,

(£:6%) = Viup (~ 5012508 + Sl + 151 (L) 526
i)
= 5% (—x/ivp<of{> IRy & 7;'” - <f;>> - 550845 (o)
A =rPpv /5
V2y <U >

Inserting this into (5.70), leads to

R e S C N R
(u=r)Ppv /3
RS <0' >
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We conclude that the centering condition (5.70) is satisfied provided we define

qgm (S,t) = /epM (S, 1) as the solution of the linear differential equation

—— 1 ——
oW, + 5525%¢Ngg — A(S,t) =0

2 (5.71)
pM(S,T)=0
where
A(S, 1) = Cy + C2.82%0%) + 035269, (5.72)
for constants
_(p=rPorve fi
Cy = —7\/5 (U) (5.73)
_vpVE AR 1
e = (2o - =) (L)) (5.74)
Cy = ”’)f (f). (5.75)

Now, subtracting (5.70) from (5.69) and using relations, we obtain that

L4 = =5 (0*(1)-0") 5o+ 2L (o) fity) — (0 £)(25%0) + S*05s)

(5 -(8) e (- (5) o

which implies that we can chose ¢® as follows

1
#9. 5.0) = —5 [iW)SP0G+ 75 (L2565 + 5°95%)
r)3

Ha= ) ) SoB fs(y)) (5.77)
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where the functions f3, fy and f5 are solutions of the Poisson equations

Lofs =o(y)fily) — (o f1) (5.78)

Lofa = Jc;{((;)) - <f?> (5:79)
AN

oo 0 _ 1) oo

Now, considering the terms up to order 3 in /¢ in the expansion (5.43),

we have

Bly. S,1) = ¢S, )+ed (S, t)+e¢P(y, S, t)+e /2P (y, S, t) - E*(y, S, 1).

(5.81)

Here ¢©, ¢, 63 and ¢©® are defined via (5.63), (5.71), (5.66) and (5.77) re-

spectively and F¢(y, S, t) denotes the error term that occurs due to considering
just the first four terms of the expansion.

Inserting (5.81) in equation (5.41), we obtain that E° solves the quasi-

linear parabolic partial differential equation

2
v
LB+ 221 = (6 + Ve By — el = —(1 = gy

Ef(y,S,T)=¢J(y,S)

(5.82)

where I and J are given by

I(y, S,1) = L20® + L20% + VEL20% + V(1= P16 + VE9,")" (5.83)
Iy, 8) = 6P (y, 8, T) + Veo(y,5.T).
(5.84)
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Remarks 5.4.2.

e Observe that the assumption that the benefit function is smooth and

bounded with bounded derivatives, implies that the kth order logarith-

3k¢(0)
oSk

mic derivatives of (9, D, = S¥ are bounded for any £ > 1. More-

over, this implies the same property for ¢%).

e Also notice that (5.65) and (5.76) are Poisson equations for ¢(?) and ¢
respectively, with source terms bounded. Accordingly, ¢* and ¢® are
at most logarithmically growing as functions of y and both have bounded

derivatives with respect to y.

Given these remarks, it follows that ¢®), ¢, I and J are bounded as

functions of (S,t) and are at most logarithmically growing as functions of y.

In what follows we show that the error term E* is of order €. To prove
this, we closely follow the approach adopted by Sircar & Zariphopoulou (2004).
Essentially, this approach consists in finding an upper and lower bound of the
error term E¢ and prove that both are of order €. In order to prove these
results we will need the theorem below obtained from Walter (1970). The first
part of the theorem provides us with existence and uniqueness of a solution of
a quasilinear parabolic equation on unbounded domains. The second part of
the theorem acts as a comparison principle.

First, let us denote by D = RxR* x [0, T} and by D = C(D)NC>>1(D).
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Theorem 5.4.1. Let L° a differential operator on D defined by

- 1
Lfu = u+ -0 (y)S?ugs

V2vpSa(y) v?
2 * €

\/— uy5+_‘uyy+h(yaSvt7u7uy7u5)7 (585)

=
<

where h satisfies the condition: for w > v,

h(ya S7 tv w, wy, w?)_h(yﬂ Sa ta v, U1, U?) S a(ya Sv t)(w_v)—I_bl(y: S, t)'wl _Ul'

+ bQ(y7 S? t)lw2 - 7.)2', (586)
with the functions a, by and by satisfying the growth conditions
a(y, S, t) < C(1+4* + (In S)?) (5.87)

|b1(y, S, 1) < C(L+ Jy| + [InS]), ba(y, S, 1) < C(1+ [y + [ InS]), (5.88)

for a constant C > 0 and for all (y,S,t) € D.

Then, the terminal value problem

Liu=01inD
(5.89)

u(y, S, T) =E(y, S) for ally € R and S € R*

has an unique solution belonging to the class D and satisfying the growth con-

dition: there exists C > 0 such that
lu(y, S, )] < €W - for large y and S. (5.90)

Moreover, if u,v € D satisfy the growth condition (5.90) and L5u > L

in D while u(y,S,T) <v(y,S,T) for ally € R and S € RY, thenu < v in D.
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Proof. First, we consider the change of variable
S=¢ and 7=T-1t (5.91)

and denote a(y, z,7) = u(y, S,t) and h(y, 2.7, @, @1, G2) = h(y, S, t. u, u1, up).

Then, the differential operator £F becomes

_ 1 2 2
£ = —ai, + 5or?(y)azz + ‘[”—jg”@ayz + Lty + H(y, 2,7 i, iy, ii2), (5.92)

where H(y. z, 7,4, 4y, 0,) = h(t,y, 2 @, Uy, Uy) — 502(y)uz.
Moreover, via the transformation (5.91), the terminal value problem

(5.89) becomes a initial value problem, as follows

Li=0in D
(5.93)
a(y,z,0) = £(y, 2), forall (y,2) € R?

From (5.86), (5.87) and (5.88), we have: for w > v

H(y, 2, 7,0, Wy, @) —H (y, 2,7, 0,1, ) = h(y, 2,7, @, Wy, W) —h{y, 2,7, 0, Ty, T2)

1 . - N7 - = 1 -
—50° (W) (@2=B2) < aly, 2, 7)(@=8)+b1(y, 2, 7)1 =1 [+(ba(y, 2, 7)+ 507 (y)) [ 02— |

where

aly,z,7) =a(y,5t) < C1+y*+ (In9)?*) =C(1 + y* + 2°)

b1(y, 2, 7)| = [b1(y, S, )| < C(1 + |y| + [In S]) = C(1 + |y| + |2])

b2y, 2. 7)| = [ba(y, S, 1) < C(L+ |y| + | InS|) = C(1 + |y + |2])
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Accordingly, (5.93) is a initial value problem, of the form studied by Walter

(1970), chapter 4, pages 211 — 215. Consequently, the result follows. O

Now, let us show the existence of an upper bound for the error term

E*=. First we notice that the left hand side of equation (5.82) can be written

as
LEEF + 20%(1 = pP)y(0P) + Ve ES — eI = L7EF (5.94)
where
m-—y (p— T)\/EVP 2 2 2 3
h(y,S,t,u,Ul,UQ) = < c - \/Eo_(y) +2V (1_p )7(¢é)+\/g¢g(/ ))) Uy
—el(y, S, t).
For w > v, we have
h’(y7 S7t7 w, wr, w2> - h(y7 S? tu v, V1, UQ) S bl(y7 Sa t)’wl - Ull (595)
in which
m-—y (u-— T)ﬂVP 2 2 2) (3)
= - 20°(1 — . .
bi(y, S, t) . oo ) +20°(1 = p*)v(9)” + Vegy)| . (5.96)

Since o, ¢\ and &% are all bounded, we obtain that b;(y, S,¢) < C(1 + |y|)
and this implies that h satisfies the condition (5.86).
Applying theorem 5.4.1, it follows that the terminal value problem

LEEE=0in D
(5.97)

FE¢(y,S,T)=¢eJ(y,S) for all y € R and S € R*.
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has a unique solution belonging to the class D and satisfying the growth con-
dition (5.90). Let us denote this solution by U¢. Observe that £7U¢ < L°EF
while U®(y,S,T) = E°(y,S,T). Accordingly, invoking again theorem 5.4.1,
we obtain that U® > E°.

Next, we look for a lower bound for the error term E®. Multiplying

equation (5.82) by A® = =" we obtain that A% solves the equation

1 ¢ vV 2AS
LA+ 22(1 = pP)(@y” + Vedy”) Ay + el A = S A° <a<y> e f >

Af(y, S, T) = e~/ W:5)
(5.98)

Now, notice that the left hand side of equation (5.98) can be written as follows
LA+ 207 (1 = pP)y (P + Vol AS + el AT = LA° (5.99)

where

m—y (u—r)Vowp

h(yv S7t7u7ulvu2) = ( + 21/2(]' - p2)’7(¢§2) + \/E(f)?(lg))) Uy

+elu.
Suppose that w > v, then

hy, S, t,w, w1, ws) — h(y, S, t,v,v1,v2) < aly, S, t)(w—v)+bi(y, S, t)|w; — v
(5.100)

where a(y, S,t) = |¢l(y, S,t)| and b;(y, S, t) is given by (5.96).
Recall that I(y,S,t) is bounded as a function of S and ¢ and is at

most logarithmically growing as a function of y. Thus, we have I(y, S,t) <
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C(1 +log(1 + |y|)). Note that a(y, S,t) satisfies (5.87) if log(1 + |y|) < y>.

Assumption 5.4.1. We assume that the coeflicients of the volatility driving

process Y are such that the growth condition (5.87) holds true.

Now, since b (y, S, t) and a(y, S, t) satisfy the growth conditions (5.88)
and (5.87), we can apply theorem 5.4.1 and conclude that the terminal value
problem

LEAS=01in D
(5.101)

A(y, S, T) = e /W5 for ally € R and S € Rt
has a unique solution in D and satisfying the growth condition (5.90). We
denote this solution by B¢ and by L = —In B*. Notice that L5A° > L¢B*
while A*(y, S, T) = B*(y, S, T). Applying the second part of theorem 5.4.1 we
obtain that A® < B. Consequently, e #° < ¢~ and therefore £ > L°.
At this point, remains to show that both U® and L¢ are of order O(e).

Observe that from (5.97) and (5.101), we have by the Feynman-Ka¢ formula

the following probabilistic representations for U¢ and L*:

T
U = eE2 g[J(Yr, Sp)] — ¢ / EZ (Y, Sy, 8))ds (5.102)
t

If=—1InB = —1In (EtQ;S[e—eJ(YT,ST)-i-EftT ](Ys,gs,s)dsD ] (5103)
Here the measure Q* is a measure is defined by

dQ” Tu=r ! = 1/T(M—7‘)2
= - s FYS7 89 s 5
1P exp( /0 a(Ys)dW /o (Ys, Ss, 8)dZ N AL

+I'(Ys, Ss, S)2d8)
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where

L(¥e, S ) = %ﬁ — 21— Ao + Vegl).

Observe that the boundedness of o, ¢7(f) and (j)g(,?') implies that I'(Y;, Ss, s) and
w—r
o(Ys)
by the Girsanov’s theorem we have that ) ~ P and moreover, the dynamics

are both bounded and thus Novikov’s condition is satisfied. Accordingly,

of S and Y under Q* are as follows

dSs = o(Y)SdW?

~ m =Y, V2 -
4y, = ( O F(YS,Ss,s)> ds + “72dZ;

in which Wy = W, + [§ 255du and Z; = Z, + [§ T(Yy, Su, u)du.
Recall that I(y,S,t) and J(y,S) are bounded as functions of .S and ¢
and are at most logarithmically growing as functions of y. Accordingly, we

have
* ~ T * ~
UF] < eCiE g[1+ In(1 + [V4])] + £ / EZ o1+ In(1 + [Va])]ds
t

for some positive constants C; and C,. Further, applying Young’s inequality,

we obtain

T
U%| < G,y (1 +In(1+ EfyysﬂYT[])) + 502/ 1+In(1+ EZ §[IVil])ds.
t
(5.104)
Next, we will use the following proposition from Sircar & Zariphopoulou

(2004).
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Proposition 5.4.1. There exists g > 0 and a constant C(t,T,v,y) indepen-

dent of €, such that for any s € [t,T] and € € (0,¢0),
ESsle™] < O, T,v.y). (5.105)

Notice that (5.4.1) implies that Y, is Q* integrable. Combining this
with (5.104) it follows U® = O(¢).

Next, applying the same properties of I and J as above, we have

B — E%'»S[eAeJ(?T,gT)JrE./;T] < EQ*[6501(1+1n(1+|37T|))+5C’2 I .['tT1+1n(1+|Ys|)ds]

for some positive constants C'; and Cs. Further, we have

B < sEg,S[eClUHH(HWTUHCZ <[;T1+ln(1+|173\)ds] +1

N - T _
S 6Egy’s[ecl(l+\YT|)+CQ ./t 1+|Ys|d8] + 1.

Consequently, by proposition (5.4.1) we have that B* = 1+ O(¢) and thus
Lt = 0O(e).
Piecing together the results obtained so far, we conclude that E* =

O(e).

5.4.2 Approximation for the indifference premium

Now, we use the asymptotic expansion just obtained for cB(y, S,t) and the

one provided in Sircar & Zariphopoulou (2004) for c°(S, ) to find the first two
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terms in the following expansion for the indifference premium itself
P(y,S,t) = PO®y,5.t) + VePY (y, S, t) + ... (5.106)
From (5.22), we deduce that

PO(S, 1) = ¢O(S,t) — pO2)

PO, 1) = ¢S, 8) = (1),

Using (5.63) and (5.45), we conclude that P©(S,t) must be the solution of

the linear parabolic equation

1 ao + 1
R(O)+§5252Pé(2+ n( 0’y )

(ewg(Svt) _ 1) =0
(5.107)

Observe that P(©)(S,t) corresponds to the indifference premium of the equity—

linked term life insurance contract with benefit (5.3) in a financial market with

constant volatility &.
Next, using (5.71) and (5.46), we conclude that P~(1)(S, t) = VeP1(S, 1)

must be the solution of the linear partial differential equation

— 1 —
P(l)t + 55’252P(1)55 - G(S,t) = O

- (5.108)
PO(S,T)=0

where
G(S,t) = C8?P) + €35 PLY (5.109)

and Cy and Cj5 are the constants defined by (5.74) and (5.75), respectively.
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As shown in subsection 5.4.1, the first two terms of the asymptotic
expansions for &® and ¢? provide for these two functions an approximation of

order O(e). Consequently, finally we have

|P(y, S,t) — PO(8,1) — PO = O(e).
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Conclusions and directions for

future research

We solve the valuation problem of life insurance risks of different nature, mar-
ket independent or equity-linked, under various assumptions regarding poli-
cyholders'mortality and the financial market. Given the incomplete nature of
life insurance markets, an indifference valuation approach tailored to different
models of the insurer’s liability is applied.

First, we analyze market independent life insurance risks under the
assumption of random mortality. Although the market independent life in-
surance products that we study have a simple structure of the benefit, the
assumption of random mortality transforms their pricing problem in a very in-
teresting one. We find that within the individual risk model, this assumption
lead us to two important qualitative properties of the indifference premium,
such as super-additivity of the premium with respect to the number of policies
and an increasing nature of the premium per risk (lump-sum or continuous).
Intuitively, these results can be explained by a positive correlation that may
develop over time between policyholders’'mortality. Thus, we conclude that
random mortality is an essential assumption especially when pricing in aggre-

gate loss models. With regards to the pricing problem in these models, we
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obtain that in the individual risk model, premium calculation requires solving
a number of recursively defined linear partial differential equations equal to the
size of the insurer’s portfolio. Accordingly, we conclude that this is not a very
useful model for an insurer. In contrast, the collective risk model, proves to
be more efficient since premium calculation within this model requires solving
only one linear partial differential equation.

Equity-linked term life insurances are attractive products since they
provide mortality protection in conjunction to equity investment. So, these
products incorporate both mortality and financial risk and as observed, in this
thesis we explicitly recognize both these risks. Applying the utility indifference
valuation approach we obtain that in all loss models, the premium solves a
second order partial differential equation similar to the Black-Scholes equation
while also reflecting the mortality risk. In this case, we assume deterministic
mortality and as expected in such setting, we obtain that the premium per
risk in all models is constant. We would like to underline that also here,
the collective risk model proves to be computationally more efficient than the
other loss models. The price to pay for this feature is higher premiums per risk
than in the other models. However, for an insurer with small risk aversion,
the premium per risk is very close to the one obtained in the individual risk
model. An interesting generalization of these results, that we consider for
future research, is considering the pricing problem of equity-linked term life
insurance under the assumption of random mortality.

Finally, in the last chapter, we extend our analysis regarding the pricing
of equity—linked term life insurance to a more realistic financial market model,

where the volatility of the stock index is stochastic. Concretely, we consider

180



Ph.D. Thesis — E. Alexandru-Gajura — McMaster — Mathematics and Statistics

a one factor mean-reverting model and treat from start our pricing problem
in the collective risk model. Using the utility indifference valuation approach,
we are led to a quasilinear partial differential equation for the indifference
premium. However, we do not solve this equation numerically, but instead
we propose an asymptotic approximation of the indifference premium, valid
in a fast-mean-reverting volatility regime. Interestingly, it follows that the in-
difference premium can be well approximated by adjusted constant volatility
results, already derived in the preceding chapter. In this case, an interest-
ing direction to explore is to examine this pricing problem in a multiscale

stochastic volatility model.
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