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Abstract 


We address the problem of valuation of life insurance risks of different nature, 

market independent or equity-linked, under various assumptions regarding 

policyholders'mortality and the financial market. Given the incomplete na­

ture of life insurance markets, an indifference valuation approach tailored to 

different models of the insurer's liability is applied. To be more specific, we 

propose three models for the insurer's liability: a single life insurance model, 

the individual risk model and the collective risk model. The last two mod­

els are generalizations of the aggregate loss models with the same name from 

actuarial mathematics. 

First, we investigate the pricing problem of market independent life 

insurance risks under the assumption of random mortality, focussing on the 

effects of this latter assumption on the premium. We find that random mortal­

ity is an essential assumption especially when pricing in aggregate loss models. 

Then, we consider life insurance products with a more complex structure of 

the benefit, as equity-linked term life insurances. We price them via utility 

indifference in all liability models mentioned above, assuming deterministic 

mortality and a Black-Scholes market model. Comparing the results obtained, 

we observe that the collective risk model is computationally more efficient than 

the others, but at the cost of higher premium. Finally, we conclude by extend-
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mg our pncmg results for equity- linked term life insurance to a one factor 

stochastic volatility market model. Vve obtain that in a fast-mean-reverting 

volatility regime, the indifference premium can be well approximated by ad­

justed const ant volatility results, previously derived. 
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Introduction 

The complexity of the life insurance products that have appeared on the mar­

ket during these last decades have generated major pricing challenges to in­

surers. In this thesis, we address some of these challenges and try to answer 

them. It is fair to say that the complexity of these life insurance products 

arises from the risks embedded in their benefits, risks of different natures as 

we discuss below. 

Clearly, all life insurance products embed mortality and/or longevity 

risk. Therefore, mortality models are essential for life insurance pricing and 

management. Mortality modeling constitutes the object of the first chapter of 

this thesis. Within this chapter, we do a survey of the development of mortality 

modeling, highlighting stochastic mortality models that admit affine mortality 

term structure. 

Traditionally, life insurance was offering financial protection by means 

of a fixed and guaranteed lump-sum payable contingent on death or survival of 

the policyholder. The competition with other financial intermediaries, forced 

life insurers to introduce more attractive products, such as equity-linked life 

insurances that offer jointly mortality protection and equity investment op­

portunities. Accordingly, equity-linked life insurance products present both 

mortality and financial risk. The financial risk embedded in the benefit of these 
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products challenged actuaries, since their standard actuarial pricing methods 

were not applicable. In chapter two, we present two financial methods for 

the pricing of equity-linked life insurance. The first approach was proposed 

by Brennan & Schwartz (1976) and Boyle & Schwartz (1977). The authors 

assume that the mortality risk is diversifiable and then, left only with the finan­

cial risk, they view equity-linked life insurance contracts as financial options 

and price them via Black-Scholes and Merton option pricing theory. An alter­

native approach for solving the pricing problem of equity-linked life insurance 

is utility indifference pricing. This approach requires solving two portfolio 

investment problems: "the insurer investment problem with no claim", the 

so called Merton investment problem and "insurer investment problem in the 

presence of insurance claim(s)". The first problem was initially solved by Mer­

ton ( 1969) and we recall it as a first illustration of using dynamic programming 

in solving portfolio investment problems. The second problem requires a spe­

cific model for the insurer loss and accordingly we proceed in introducing the 

liability models employed in this thesis. Essentially, these models represent 

generalizations of the individual and the collective risk models from actuarial 

mathematics. 

The object of the third chapter is the pricing of market independent 

life insurance risks, specifically of pure endowments, term life insurances and 

endowments under the assumption of random mortality. This chapter rep­

resents a generalization of Young & Zariphopoulou (2002) and Ludkovski & 

Young (2008). We extend the results of Young & Zariphopoulou (2002) in 

several directions: first, we assume random mortality as opposed to deter­

ministic mortality and then, we determine both the lump-sum and continuous 

2 
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premium for the contracts mentioned above, in all loss models. Clearly, our 

work has certain points in common with Ludkovski & Young (2008). The 

latter authors, consider the problem of calculating the lump-sum premium for 

pure endowments and life annuities under stochastic mortality and interest 

rates in a single life insurance model and in the individual risk model. How­

ever, the individual risk model proves to be not a feasible model to work with, 

since as we will show in the second section of chapter three, the premium for k 

life-insurance contracts require solving recursively k linear partial differential 

equations. In contrast, the collective model, that we propose, is numerically 

more efficient, since the premium for k life insurance contracts require solving 

only one linear partial differential equation. 

In chapter four, we employ the utility indifference approach for pricing 

equity-linked term life insurances in a single life and in the individual and 

collective risk model. For tractability, we assume deterministic mortality and 

a Black-Scholes financial market model. The results obtained represent a gen­

eralization of Young (2003) to the aggregate liability models just mentioned. 

Specifically, we obtain that in all models, the premium per risk satisfies a sec­

ond order partial differential equation similar to the Black-Scholes equation 

while at the same time reflecting the mortality risk and the risk preferences of 

the insurer. 

Chapter five represents a natural extension of chapter four, to a stochas­

tic volatility financial market model. Given the numerical efficiency of the col­

lective risk model, in this chapter we choose to model from start the insurer's 

losses using this model. We find that the premium solves a nonlinear second 

order partial differential equation. However, we do not pursue in calculating 
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the premium numerically, but instead following the singular perturbation tech­

nique proposed by Sircar & Zariphopoulou (2004), we derive an asymptotic 

approximation of the premium in a fast-mean-reverting volatility regime. 
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Chapter 1 

Mortality modeling 

Life insurance risks arise from the uncertain nature of human lifetime. Accord­

ingly, the random variable of time until death and the corresponding mortality 

models became essential for life insurance pricing and management. In this 

chapter we describe several aspects of the development of mortality modeling, 

focusing on the important contributions in this field. We start by introducing 

the most important life functions in a static setting and then continue with 

life table models and law based mortality models. However, mortality changes 

over time and we illustrate this assertion by analyzing the U.S. mortality expe­

rience. This leads naturally to dynamic mortality and the need for mortality 

projections. Finally, we conclude the chapter with continuous time stochas­

tic mortality models, highlighting the models that admit an affine mortality 

structure. 
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1.1 Death and survival probabilities 

Let us begin by considering an individual aged a0 , generic for a cohort or 

population of this age. From now on, we refer to this individual by (a0 ). 

Further, let Tao denote the time until death of ( a0 ). Then, the cumulative 

distribution function of Tao is denoted and defined by 

(1.1) 

that is Frao (t) represents the probability that (a0 ) will die within t years. 

Here, we assume that Frao is continuous and has a probability density function 

denoted by f Tao. 

In this thesis, we adopt the international actuarial community nota­

tions. Accordingly, we use the symbol t%o for the probability that (a0 ) will 

die within t years. Similarly, we use the symbol tPao for the probability that 

(a0 ) will survive more then t years. Naturally, 

(1.2) 

Also, we mention that it is implicitly assumed that 

lim tPao = 0 and oPao = 1, (1.3) 
t---->oo 

that is ( a0 ) will not live forever and respectively ( a0 ) is alive at the current 

time. Observe that the first condition is required for a correct definition of the 

cumulative distribution function Frao. 

Then, we denote by 8 qa0 +t and sPao+t the probabilities of death within 
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s years and of survival more than s years respectively, conditional on survival 

at age a0 + t. \\le have 

FTa 
0 
(s + t) - FTa 

0 
(t) 

8 qa0 +t = P(t < Ta0 :SS+ t!Ta0 > t) = l _ F (t) (1.4)
Ta0 

and 
1-FTa (s+t) 

sPao+t = P(Tao > t + s!Tao > t) = 
1 

- F
0 

( ) 
t 

. ( 1.5) 
T ao 

A useful identity in terms of the survival probabilities is 

1- FTa 
0 
(s + t) 

t+sPao = P(Tao > t+ s) = 1-F (t) (1-FTao(t)) = tPaosPao+t· (1.6)
Ta 0 

Next, let tlsqa0 be the probability that (a0 ) will survive t years and die in the 

following s years. Then 

tlsqao = P(t <Tao < t + s) = tPao - t+sPao· (1.7) 

Using (1.6) we can further write 

(1.8) 

For convenience, we follow the convention to omit the prefix in the survival 

and death probabilities if it equals one. Accordingly, in this case we write 

At this point, we introduce a central life function for mortality model-

mg. This is the instantaneous death rate, referred to here as force of mortality. 

7 
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We define the force of mortality of (a0 ) at age a0 + t by 

'( ) . P(t < Ta0 ::; t + 5t/Ta0 > t)
" a0 + t = 1im , . (1.9)

Jt-.O ut 

We have 

Integrating both sides, after some straightforward calculations, we obtain 

- e- J~ ,\(ao+s)ds
tPao - · (I.IO) 

As can be observed from its definition, the force of mortality is posi­

tive on all its domain. Additionally, as a direct consequence of the fact that 

limt-.oo tPao = 0, the force of mortality has to satisfy 

fo00 

,\(a0 + s )ds = oo. (1.11) 

1.2 Life Tables 

The first specification of the distribution of Ta0 was done through a life table 

by Sir Edmund Halley in 1693. A life table provides a discrete distribution of 

the random variable Ta0 by the specification of the death probabilities qa0 for 

ages a0 = 0, 1 ... w. Here, w denotes the limiting age of the life table and is 

8 


http:limt-.oo


Ph.D. Thesis - E. Alexandru-Gajura - McMaster - Mathematics and Statistics 

typically between 110 and 120. For the limiting age, the corresponding death 

probability qao is taken to equal 1. Besides the death probabilities qa0 , a life 

table might also contain tabulations of the life functions la0 , da0 , ea0 defined 

below and possibly other functions. 

When constructing a life table, one starts with a group of newborns, 

say 10 = 100000. Essential to the construction of a life table are the death 

probabilities qa0 for a0 = 0, 1, ... w - 1. Obtaining estimations of these proba­

bilities is a statistical problem belonging to the area of survival analysis. We 

assume here that these death probabilities are known and refer the interested 

reader to Gerber (1997), chapter 11, for a review of the various estimation 

methods of these probabilities. 

\Ve denote by lao the expected number of survivors to age a0 . Conse­

quently, we have 

la0 = loS(ao), (1.12) 

where S(a0 ) = P(To > a0 ) = aoPO· The function S(a0 ) is called the survival 

function. 

Next, da0 denotes the expected number of deaths between ages a0 and 

a0 + 1. The probability that a newborn dies between ages a0 and a0 + 1 is 

S(a0 ) - S(a0 + 1) and thus we can express da0 as follows 

da0 =lo (S(ao) - S(ao + 1)) = la0 - lao+l· (1.13) 

An important measure of the level of health of a population is the 

complete expectation of life. The complete expectation of life of an age a0 is 

9 
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denoted by ea0 and it is defined as 

(1.14) 

Further, we can write 

(1.15) 

and using integration by parts we obtain 

(1.16) 

Notice that the life functions la0 , da0 and ea0 can be all calculated recursively 

for all ages using only the one year death probabilities qa0 • 

The central death rate is defined by 

(1.17) 

where Lao denotes the total expected number of years lived between ages a0 

and a0 + 1 by survivors of the initial group of lo lives. Lao can be expressed as 

follows 

1 1 

Lao = lao+l +1tlao+tA(ao + t)dt = lao+l - 1tdlao+t (1.18) 

1 1 

= lao+l - tlao+tl~ +1lao+tdi = 1lao+tdi (1.19) 

At this point, we would like to remark that depending on the data used, 

life tables can be classified as period or cohort life tables. 

10 
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A period life table is generated using the mortality experience of a pop­

ulation over a short period of time, typically 1 to 3 years. In this type of table, 

the data for each age corresponds to different cohorts at a certain moment in 

time, common for all ages. Consequently, a period life table can be regarded as 

an excellent model for describing the mortality level of a population. However, 

it does not accurately reflect any particular cohort mortality. 

On the other hand, cohort life tables are generated by using the entire 

experience of a generation. Since they require reliable data for a long period 

of time, cohort life tables are rare. The most recent complete cohort life tables 

are for generations born around 100 years ago. Cohort life tables are very 

important since they are more appropriate than period life tables for insurance 

pricing purposes. For example, if an insurance company has to calculate the 

premium for a life insurance product to be sold to (a0 ) in the year y, then the 

relevant life table is the cohort life table for the year y - a0 . 

We conclude by pointing out that a life table does not capture the 

entire information about an individual mortality since for example, it omits 

fractional age death rates and death rates for fractional durations. However, 

life tables offer a rich collection of data about human mortality, augmented 

periodically at census years. This fact together with the increasing reliability 

of mortality data, makes a life table a very popular mortality model in life 

insurance practice. 

1.3 Trends in mortality 

In what follows we present some of the most important tendencies of human 

mortality over the last century. For our analysis, we use American male mor­

11 
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tality data, from the U.S. Social Security Area life tables, Actuarial Study No. 

120. 

-Penod1900 

Period 1910 

Period 1920 

Penod 1950 

Penod 2000 

\ 
00~~20--•~o-~so--a~o~=100-...?\#' 120 

Age a0 

Figure 1.1: Survival function la0 for American males from selected genera­
tions/periods. 

Figure (I.I) shows that the survival function la0 increases with gener­

ation/period for all ages. Notice that when passing from a generation/period 

to a successive one, the concentration of deaths at old ages increases. Con­

sequently, the shape of lao becomes increasingly rectangular. At the same 

time, observe the movement of la0 to very old ages. These two phenomena are 

known in the actuarial literature as "rectangularization" and "expansion" of 

the survival function. 

In terms of the life function dao, the features mentioned above are illus­

trated by the dispersion of the expected number of deaths around the mode 

that reduces with each generation/period and by the movement of the mode 

towards older ages. 

An interesting fact that we would like to remark is the way that mor­

tality shocks are reflected in the curve of deaths dao· Obviously, when using 

period life tables for calculating da0 , the shocks in mortality are reflected by 

12 
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3000------------. 

-Cohort1~l00 


Cohort 1~l10 


! 
I 

I 

I 

60 80 

3000 
2500 Cohort 1'320 

2500 
2000 

f'~ 
r 2000I \ 

-O<flo 1500 II \ 

\ 
\ 

\ 
100 120 

Age a0 

-Penod1900 

l Penod 1910 
Penod 1920 

I Penod 1950 

Penod 2000 

20 40 60 80 100 120 
Age a

0 

Figure 1.2: Curve of death dao for American males from selected genera­
tions/periods. 

the entire curve of deaths. On the other hand, when using cohort life ta­

bles they are reflected as jumps in the curve of deaths as illustrated by figure 

(1.2). Here, the mortality shock is generated by the pandemic flu of 1918 and 

concretely, the jump appears in the curve of deaths for Cohort 1900. 

Next, we signal the general decline in the death probabilities qa0 with 

each generation/period. As figure (1.3) shows, the decline is uniform up to 

age 90. 

The general trend in human mortality can also be illustrated via the 

complete expectation of life eao· As can be observed from figure (1.4), both 

life expectancies e0 and e65 improved during this century. Especially, notice 

the huge decline in infant mortality. 

As figure (1.4) shows, life expectancy exhibits more fluctuations from 

year to year when based on period life tables. This happens because mortality 

shocks affect the entire population for a period of one or two years but affect 

just one or two years of the mortality experience of the cohorts alive during 

that period. 

13 
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-Cohort1900 l-Penod1900j 

09f 
Cohen 1910 Penod 1910 

Cohort1920 Penod 1920 

O.B Penod 1950 

Penod 2000 

0 71 
06 0.6 

r::;'" 
0 

0.5 O-ro 
0 

0.5 

0.4 0.4 

031 
0.3 

0.2 0.2 

0.1 0.1 

0 0 
0 20 40 60 BO 100 120 0 20 40 60 BO 100 120 

Age a Age a
0 0 

Figure 1.3: Death probability qa0 for American males from selected genera­
tions/periods. 

70----------­

60 

50 

40 

40 

30 
30 

20 20 

10'----~--~--~-___J 10'----~-~-~-~-___J 

1900 1905 1910 1915 1920 1900 1920 1940 1960 1980 2000 
Year of birth Year 

Figure 1.4: Life expectation at age 0 and at age 65 for American males, based 
on cohort (left) and period (right) life tables. 

1.4 Law based mortality models 

Many fundamental concepts in science are expressed through a law and we 

naturally question if there also exists a law for human mortality. Actually, 

this was a subject of continuous interest in actuarial literature and probably 

the first answer to our question was the one of Abraham De Moivre (1729), 

14 
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who proposed the following law for the force of mortality 

1 
,\(ao)= , 0'.Sao<w ( 1.20) 

w- a0 

where w is the limiting age. 

A century later, Benjamin Gompertz observing mortality data, sug­

gested that a "law of geometric progression pervades" in mortality over a 

certain age and proposed a force of mortality of the form 

(1.21) 

where a, (3 > 0. 

Gompertz's mortality law generates death rates that fit well to the ac­

tual ones for adult and old ages. However, Gompertz's law doesn't accurately 

capture the mortality at young and extremely old ages. 

In 1860, \Villiam Makeham slightly generalized Gompertz's law, by 

adding a constant to better fit the mortality at extremely old ages. Specifically, 

Makeham's mortality law is 

(1.22) 

where a,/3 > 0 and/ 2 0. 

Another important generalization of Gompertz's law is the one pro­

posed by Thorvald Thiele in 1867. To capture the human mortality over the 

whole life, Thiele postulated the mortality law 

(1.23) 
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where 0:1, /31, 0:2, /32, 77, 0:3 and /]3 are positive constants. The first term in 

(1.23) models the decreasing mortality at very young ages, the second one the 

mortality hump at young-adult ages while the third one coincides with the 

Gompertz's law and as mentioned, captures the mortality at adult and old 

ages. 

A model similar to the one of Thiele, was proposed in 1980 by Heligman 

and Pollard for the mortality odds, namely 

qao = A(ao+B)c + De-E(lnao-lnF) 2 + GHao. (1.24) 
Pao 

The significance of the three terms is the same as in Thiele's mortality law. 

Observe that the last two mortality laws are more complex and reflect 

all age segments. However, they depend on many parameters that are highly 

correlated and therefore they are hard to fit to experienced mortality. 

A criticism of Gompertz's mortality and its generalizations relates to 

the asymptotic behavior of the force of mortality. For all these models, it holds 

that 

lim ,\(a0 ) = oo. (1.25) 
ao~oo 

Naturally, this contradicts the empirical evidence. An interesting demographic 

argument, regarding the asymptotic nature of the force of mortality is that it 

is slowly increasing at extremely old ages, having a rather flat shape. 

An essential feature of these models is that they are age continuous. 

They represent an important step forward from the life table model, having the 

advantage of being flexible, compact, highly interpretable and generalizable. 
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1.5 Dynamic deterministic mortality 

So far we have been regarding mortality as dependent on age only and ac­

cordingly the mortality models introduced were all static. However, analyzing 

the mortality trends, we observed that human mortality changes not just from 

one age to another but also it changes over time. This suggests that human 

mortality has to be viewed as a function depending on both age and time and 

thus, modeled dynamically. 

Clearly, in this context, the time until death random variable and all 

the life functions introduced in section 1.1 will be dependent on both age and 

time. Next, we define the most important life functions in a dynamic context. 

We consider an individual age a0 at time t and define his force of mor­

tality at age a0 + u and time t + u as follows 

'( ) . P(U < Ta0 ,t ::; U + 6ulTa0 ,t > U)
" a0 + u, t + u = 1im ;;; ( 1.26) 

8u~o uu 

Here u ~ 0 and Ta0 ,t denotes the time until death of the individual under 

consideration. 

Therefore, we have 

where F7 a .t and f 7 a ,t denote the cumulative distribution function and the 
0 0 

probability density function of the random variable Tao,t· 
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Consequently, 

1.6 Stochastic mortality 

Maybe the beauty of the future consists of its randomness. The future may 

reserve unfortunate events such as wars, dangerous diseases, natural catas­

trophes but can also be better in some aspects; for example the continuous 

developments in science may provide the necessary technology and cure for 

many diseases, the lifestyle may improve around the world and past experi­

ence may help political leaders to be more wise in their decisions, avoiding 

wars and use of nuclear weapons. 

These are just a few of the factors that suggest a random future mortal­

ity. Thus, a realistic mortality model should be both dynamic and stochastic. 

In what follows, we follow Cairns, Blake & Dowd (2008) and define the relevant 

life functions within a stochastic and dynamic setting for mortality. 

We have shown that under deterministic mortality, the probability that 

an individual of age a0 at time 0 will survive to age a0 + t at time t, is 

P(Tao,O > t) = e- I~ >.(ao+s,s)ds. (1.27) 

Clearly, when assuming random mortality, the future evolution of mor­

tality intensity is unknown and one may argue that the survival probability 

above should be expressed by an expected value. Indeed, the probability that 

an individual age a0 at the current time 0 will survive to age a0 + t at time t, 
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can be expressed as follows 

(1.28) 

Here F/' captures all the information about the mortality up to and including 

time t, for all ages. We assume that given F/', it is possible to estimate accu­

rately the mortality intensity up to time t. In reality, the mortality data is not 

readily available and an insurer will not always have enough data for an ac­

curate estimation. However, for simplicity, we make this assumption. Accord­

ingly, E[1 7ao.o>tlF/'] = P(Ta0 .o > tl:Fi\) coincides with the survival probability 

in a deterministic setting and as expected we have 

(1.29) 

in which Aao+s,s denotes the mortality intensity of the individual under con­

sideration at age a0 + s and time s. 

Now, let us derive the survival probability that an individual age a0 at 

time 0, still alive at current time t will survive until time T. We have 

p(ao, t, T) = E[l 7 a 
0 
,o>TITa0 .o > t, F/] 

= E[E[lTao,o>TITao,O > t, Ff] !Fi\] 

= E[e- .J;T Aa0 +s,sdsl:F/] 

Further, observe that Jensen's inequality implies 

(1.30) 
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Consequently, if an insurer considers a deterministic estimate at time 0 of the 

future mortality intensity (for example its first moment) instead of a stochastic 

mortality intensity, then the survival probabilities obtained will be smaller 

than the actual ones and this will generate premiums too low for life products 

contingent on survival as pure endowments or annuities. 

1.7 Mortality Projections 

Mortality data for a population or cohort is readily available for past years and 

naturally one may wonder if this data can be used to infer future mortality. 

In mortality literature this subject is referred to as mortality projection. 

One of the first projected mortality models was proposed by Blaschke 

in 1923. First, a dynamic version of the Makeham's law was defined as follows 

.\(ao, y) = 1(y) + a(y )/3(y )ao, (1.31) 

where y stands for calendar year. 

The parameters a(y), /](y) and 1(y) are estimated by fitting the death 

probabilities within one year corresponding to the calendar year y, qa0 (y), to 

the actual rates from the period life table for year y. Then, by extrapolation 

the values of the parameters for future years y of interest are obtained. This 

method is called "vertical" projection since the fitting of the theoretical death 

rates is done using the columns of the matrix A1a0 ,y = qa0 (y). 

Notice that this is a parametric mortality projection model and require 

a relatively small number of parameters for estimation. Certainly, that is an 

advantage. However, the model provides an extrapolative forecasting method 
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but no one can be certain that the historical trend will continue in the fu­

ture. Moreover, the independent extrapolation of the parameters is not able 

to capture the correlation that develops over time between them, leading to 

unrealistic future death rates. 

One year later, the Institute of Actuaries in London proposed a projec­

tion mortality model for which the probability of death within one year of an 

age a0 in year y, is given by 

(1.32) 

In this case, the model parameters are estimated by fitting the cor­

responding mortality profiles age by age. Since in this case the parameters 

are estimated using the rows of the matrix A1a0 ,y, this method is referred to 

as "horizontal" projection. Notice, that (1.32) is a non-parametric projection 

model. 

Also in this case, the projected mortality rates depend strongly on the 

trend within the fitting period. Another disadvantage of the model is the large 

number of parameters to be estimated, equal to the number of age groups times 

the number of parameters in each formula. 

These models are both deterministic and thus unable to reflect the 

uncertain nature of future mortality. To overcome this disadvantage, L.Carter 

and RD.Lee proposed in 1992 a stochastic mortality model for projecting the 

mortality in U.S. The model describes the central death rate of an individual 

age a0 at time t in the following way: 

(1.33) 
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where aa0 , baa and kt are positive parameters and Eaa,t are the error terms. 

The signification of the parameters is as follows: aaa represents an aver­

age log mortality rate over time at age a0 , kt is a stochastic process, sometimes 

referred to as mortality index measuring the general speed of mortality (im­

provement) over time, while baa describes the way in which mortality varies 

at age aaa as a reaction to changes in the mortality index. The error terms 

Eaa,t describe the age-time uncertainty not captured by the model and their 

statistical properties are estimated from the data. 

Notice that the model (1.33) is invariant with respect to the transfor­

mations 

Consequently the model admits more than one parametrization. For a unique 

parametrization, Lee and Carter impose the constraints 

(1.34) 
aa t=l 

The constraint for the process kt, implies the least square estimator 

T 

Cta0 = ~ Lln(maa,t), ( 1.35) 
t=l 

where maa,t are estimations of central death rates at age a 0 and time t. 

Lee and Carter estimate the parameters ba0 and kt using the method of 

Singular Value Decomposition (SVD) applied to the matrix R = ln(maa,t)-Ciaa· 
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Then, they perform a "second stage estimation" that re-estimates kt using the 

existing estimation for aa0 and ba0 • This second stage estimation is such that 

the total number of deaths for the year in observation is equal to that estimated 

from the model. 

After this second stage estimation, Lee and Carter observe for different 

sets of mortality data that kt declines linearly over time and has relatively 

constant variance. After testing several ARIMA specifications, Lee and Carter 

conclude that a random walk with drift is the most appropriate model for their 

data. Accordingly, they model kt as follows 

(1.36) 

where u is a constant and ~t '""N(O, (J'D. This variance of ~t shows the uncer­

tainty of forecasting kt over any time horizon. 

Then, the Box-Jenkins approach is used to fit the ARIMA model to 

the empirical kt data. Finally, the projected kt together with the estimations 

for aa0 and ba0 are used to obtain forecasts of the central death rates and then 

of other life functions. 

Currently, the Lee-Carter model is used to forecast the population mor­

tality of many countries. The model has very appealing features: it is par­

simonious, the parameters are easily interpretable thereby allowing further 

generalizations. Also, observe that the parameters are estimated together, 

eliminating the scenario of having implausible future death rates. Finally, the 

model is stochastic, generating stochastic projection intervals instead of point 

estimates as in the case of deterministic models. 

However, the model has some limitations: 
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• 	 Lee Carter model provides a extrapolat ive method for forecasting mor­

t ality and thus produce good forecasts as long the historic mortality 

trend cont inue in the fu t ure. 

• 	 Lee-Carter model gives a description of a population mortality consider­

ing a single mortality index, this meaning that the changes in mortality 

for all ages are perfectly correlated. 

• 	 Many people argue that the forecasted intervals for the projected central 

death rates are too narrow (Alho (1992)) 

• 	 Observe that 

(1.37) 

Thus, the central death rates decline at their own exponential constant 

rate. However , Horiuchi and Wilmot h (1995) show that now in some 

count ries mortality at older ages declines more rapidly than at lower 

ages, reversing the historical pattern . This suggests that the coefficients 

ba0 change over t ime. 

• 	 As Cairns, Blake & Dowd (2008) illustrates, the model gives a poor fi t 

for countries wit h pronounced cohort effect . 

Many authors have proposed extensions of the Lee-Carter model, t ry­

ing to answer to these criticisms. The possibility of imperfect correlations of 

mortality improvements was considered by Renshaw & Hab erman (2003) who 

introduced a second time dependent factor to the model. Renshaw & Haber­

man (2006) propose an extension of the Lee-Carter model that incorporates a 

cohort effect . 
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1.8 	 Continuous time stochastic mortality mod­

els 

One of the first continuous time mortality models was proposed by tviilevky & 

Promislow (2001). They model the mortality intensity as follows 

't = /\'oegt+aYt, ' 0. 	 (1.38)/\ 	 /\Q,g,rJ > 

Here, Yt 	is an Ornstein-Uhlenbeck process with dynamics 

dYt = -bYtdt + dBt 
(1.39)

{ Yo= 0. 

where 	Bt is standard Brownian motion. 

Clearly, the model is an extension of Gompertz's law that allows for 

random future mortality. Given the mean reverting nature of the process Y, 

the mortality model ( 1.38) it is referred to in literature as "mean reverting 

Brownian Gompertz" (MRBG). 

Observe that Y is mean reverting to a long run mean equal to 0 and 

mean reverting speed equal to b. Solving the stochastic differential equation 

(1.39), we obtain 

(1.40) 

Applying Dambis, Dubins-Schwartz Theorem, we obtain that there exists a 

Brownian motion Bt such that Yt = B[Y,YJ(t) =Ba~., where 

_ e-2bt 
2 1 

( 1.41) fJy = 	 2b 
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Accordingly, Y is a mean reverting process with variance smaller than that of 

the Brownian motion Bt.. In particular, when b----> 0, we have yt = Bt. and 

E[>.t.] = Aoe9tA1B 
1 
(a) = >.0 egt+a2 

2 

t. (1.42) 

that is, the expected mortality intensity coincides with the Gompertz's law. 

Due to the mean-reverting nature of the process Y, when this takes 

negative values, it has the tendency to go up to the long run mean, which is 0. 

Accordingly, the mortality intensity has the tendency to go up to the Gompertz 

curve. Similarly, when yt > 0, then the process Y has the tendency to go 

down to 0 and consequently, the mortality intensity will have the tendency 

to go down to the Gompertz curve. Thus, At randomly fluctuates around 

the Gompertz curve and therefore the model captures mainly unsystematic 

mortality risk. Systematic deviations may occur and they have to be captured 

by a mortality model. With this in mind, Ballotta & Haberman (2006) extend 

the Milevsky and Promislow model. 

Ballotta & Haberman (2006) model the mortality intensity of an indi­

vidual age a0 at time 0 by a reduction factor model of the form 

>-ao+z,z = >-ao+z,oRF(ao + z, z) (1.43) 

Here, the mortality for the age a0 + z and for the base year (year 0) is given 

R = ao + z - ?O for a 2:: 50. (1.44) 
50 

0 

Then, the factor RF(a0 + z, z) describes the change in mortality from time 
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0 to time z for an individual aged a0 + z and it will be referred as reduction 

factor. Concretely, Ballotta and Haberman take the reduction factor of the 

form 

RF(ao + z, z) = e(o:+6(ao+z))z+<7Yz, ( 1.45) 

where Yz is modeled by an Ornstein-Uhlenbeck process of the form (1.39). 

Following the same arguments as in the Milevsky and Promislow mortality 

model, one can argue that the model (1.43) captures unsystematic mortality 

risk. Further, to capture systematic mortality risk, Haberman and Ballotta 

add another component to the mortality model (1.43); specifically, they con­

sider the mortality intensity process Aao+z,z;H(ao) dependent not just on age 

and time but also on a particular belief, hypothesis H(a0 ) regarding the fu­

ture mortality trend for individuals aged a0 at time 0. 

Next, following Dahl (2004) we introduce affine mortality models. 

Definition 1.8.1. If for a fixed cohort age a0 at time 0, the survival probabil­

ities p(a0 , t, T) have the form 

p(ao, t, T) = eA(ao,t,T)-B(ao,t.T)>.ao+t.t (1.46) 

for deterministic functions A(a0 , t, T) and B(a0 , t, T), then the model for the 

mortality intensity of the given cohort is said to have an affine mortality struc­

ture. Moreover, if (1.46) holds for all admissible ages, the model is said to have 

an affine mortality structure. 

Observe that this definition is an analog in terms of mortality intensities 

of the affine term structure from interest rate theory. In fact, the idea of 

affine mortality models was motivated by the analogy between the survival 
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probabilities p(a0 , t, T) and zero-coupon bond prices. Taking advantage of 

this analogy, one can use results from interest rate theory to calculate survival 

probabilities. 

The following proposition is an analogue of Proposition 17.2 (Affine 

term structure) from Bjork (2004). 

Proposition 1.8.1. If the mortality intensity of a given cohort aged a0 at time 

0 is given by 

(1.47) 

where w>- is a standard Brownian motion andµ>- and a>- have the form 

µ>-(ao, t, Aa0 +t,t) = a(ao, t)Aa0 +t,t + f3(ao, t) 

a>.(ao, t, Aa0 +t,t) = J1(ao, t)Aa0 +t,t + c5(ao, t) 

then the model admits an affine mortality term structure of the form (1.46), 

where A and B satisfy the system of Ricatti equations 

Bt(ao,t,T)+a(a0 ,t)B(a0 ,t,T)- ~1(ao,t)B2 (ao,t,T) = -1 

{ B(a0 , T, T) = 0 

At(ao, t, T) = /](ao, t)B(ao, t, T) - ~c5(a0 , t)B2 (a0 , t, T) 

{ A(a0 , T, T) = 0 

The proposition also acts as a necessary condition for an affine mortality 

structure ifµ>- and a>. are time independent. 

One of the first affine mortality models is Dahl & Moller (2006). Con­
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cretely, Dahl & Moller (2006) propose a reduction factor mortality model sim­

ilar to Ballotta & Haberman (2006) 

Aao+t,t = Aao+t.O~ao+t.t (1.48) 

Here, the reduction factor is modeled via a time-inhomogeneous CIR process 

(1.49) 

Applying Ito's formula, it follows that >-ao+t,t has the dynamics 

where "/'' o>- and Cl,\ are as follows 

!'>-(ao, t) = l'~(ao, t)>.ao+t,o 

d >. 
o>-(ao, t) = o~(ao, t) - ~ ao+t,O 

ao+t.O 

Observe that the model satisfies the conditions of the proposition (1.8.1). 

Moreover, >-ao+t,t is a CIR process, mean reverting to a long-run mean equal 
/',\ 

too>-" 

The coefficients ,,~, o~ and CJ~ are assumed positive, bounded and sat­

isfying the con di tion (CJ~ (a0, t)) 2 < 21~ (a0, t) for all a0 and t. This con di tion 

assures that the mortality intensity is positive. The form of the model allows 

flexibility when choosing the parameters of the reduction factor. Specifically, 
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Dahl and Moller consider the following parameterizations 

A disadvantage of the model is its feature of mean reversion. However, cali­

brating the model to experienced mortality data, it is found that this feature 

of mean reversion is weak. 

Luciano & Vigna (2005) further investigate affine mortality models. 

They calibrate different mean reverting affine models to historic mortality 

data and compare their performances. They find that these types of models 

are not able to capture essential features of the survival curve la0 such as 

"rectangularization" and "expansion" and moreover they are not consistent 

with historic mortality data. Intuitively, one would expect that mean reverting 

models are not appropriate to model mortality intensity, since this will imply 

that once mortality declines below the mean reverting level, it will have the 

tendency to go up. However, empirical evidence contradicts this fact, since 

for example if a progress in medicine generates a huge decline of mortality 

then this progress persists and the corresponding treatments are not suddenly 

forgot. 

In Luciano & Vigna (2008), the mean reversion feature is dropped and 

the mortality intensity is modeled via non-mean reverting processes such as 

Ornstein-Uhlenbeck or Feller. It is found that the models fit well to different 

generation life tables and capture the essential features of mortality. Moreover, 

the models offer a simple and parsimonious description of mortality, are easy 

to implement and produce survival probabilities in closed form. This later fact 

greatly simplifies the valuation of mortality derivatives. 
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Motivated by Luciano & Vigna (2008) results, we model the mortality 

intensity of a cohort aged a0 at time 0 by a non-mean reverting Ornstein-

Uhlenbeck process 

(1.51) 

Solving the stochastic differential equation (1.51), we obtain 

(1.52) 

By the Dambis, Dubins-Schwartz theorem, there exists a Brownian motion 

wt - ,\ 
such that 

(1.53) 

1 
where v( t) = µ,\ ( e2µ>-t - 1). Accordingly, we can express the mortality inten­

2
sity as follows 

' - µ>-t' ,\w- ,\
"ao+t,t - "ao,oe + a v(t)' (1.54) 

that is the mortality intensity is a process having its deterministic part given 

by the Gompertz's mortality law. 

Observe that the mortality intensity can take negative values with pos­

itive probability. Concretely, we have 

(1.55) 

where <P denotes the cumulative distribution function for the standard normal 
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distribution. This is a major disadvantage of the model. However, in practical 

applications the probability (1.55) turns out to be negligible. 

Naturally, for a biologically reasonable mortality model the survival 

probability p(a0 , 0, t) has to be decreasing for all t. Unfortunately, the mortal­

ity model (1.51) implies that the survival probability is decreasing fort < T* 

and increasing for t > T*, where 

(1.56) 

However, once the model is calibrated, it turns out that T* is very large. In 

other words, the model is not reasonable for ages that exceed usual human 

survivorship. 

Notice that the model admits an affine mortality term structure of the 

form (1.46) where A(a0 , t, T) and B(a0 , t, T) satisfy 

(1.57) 

Solving the systems of equations above, we obtain 

(1.59) 

Accordingly, the probability of survival from the current time 0 to time t, is 

given by 

0 t) = P(T > t) = eA(ao,0,t)-B(ao,0,t)>.ao,0P(a o, , ' ao,O ' (1.60) 
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where A(a0 , 0, t) and B(a0 , 0, t) are calculated using (1.58) and (1.59). 

1.9 Mortality model calibration 

In what follows, we calibrate the mortality model (1.51) to the U.S. cohort life 

table for the Social Security Area, males, generation 1900. For determining 

the model parameters, we use the mean least square method (MLS), that is 

minimize the spread between the empirical survival probabilities tPao and their 

theoretical counterparts calculated via (1.60). Specifically, for an American 

male, aged 45, we obtain the following values for the model's parameters 

µ.\(45) = 0.07307, a.\(45) = 0.00061, .A45.o = 0.00778. (1.61) 

Here, .A45,0 is approximated by - ln(q45). This is a consequence of considering 

the mortality intensity constant over the base year. 

As figure (1.5) illustrates, the fit using the estimates (1.61) is very good. 
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Figure 1.5: The probability of survival within t years, t=1:74, for an American 
male born in 1900. 
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Then, we calculate the probability that the force of mortality takes 

negative values. We find that the probabilities (1.55) for t=l:75 take very 

small values, their maximum value being of order 10-7 
, which is negligible for 

practical applications. 

As mentioned, the model generates increasing survival probabilities 

p(a0 , 0, t) fort> T*, with T* given by (1.56). Considering the estimates above, 

we obtain that T* is approximately 74 years. However, extremely rarely an 

individual age 45 survives for another 74 years, thus reaching age 119. 

As a consequence, once the model calibrated, its theoretical disadvan­

tages are irrelevant and the model can be used for practical applications. 

34 




Chapter 2 

Financial Pricing Methods of 

Life Insurance Products 

Traditionally, the valuation of life insurance products was performed using ac­

tuarial methods. The competition with other financial intermediaries, forced 

life insurers to introduce on the market new life insurance products, more 

attractive by their equity growth potential and often incorporating payment 

guarantees. The complex structure of these products, with the financial risk 

embedded in their benefits, made their pricing a real challenge for actuaries. 

Clearly, new pricing methods had to be applied. In what follows, we describe 

two financial approaches proposed for pricing this type of life insurance prod­

ucts. 

2.1 The risk-neutral approach 

For a long period, finance and life insurance were regarded as two completely 

separate fields. One reason for this view might be the different nature of fi­

35 




Ph.D. Thesis - E. Alexandru-Gajura - McMaster - Mathematics and Statistics 

nancial and insurance risks. Secondly, the corresponding markets are totally 

different. With regards to the financial sector, there are organized financial 

markets trading standardized contracts. On the other hand, the markets for 

life insurance consists of insurance and reinsurance companies and here the 

contracts by their nature are unique, requiring individual assessment. More­

over, for a long time, life insurance and finance were offering products of 

different type - where in the financial sector contracts with variable payoff 

were common, in traditional life insurance, contracts with fixed benefit were 

predominant. 

Another fact that is worth underlining and that separated finance and 

insurance sectors, was the way of investing, that is the distribution of the 

assets. Historically, insurance companies had most of their assets invested 

in bonds and mortgages and none or very low equity investments, given the 

existing regulations. For example, in the United States, until 1951, life insurers 

were not allowed to hold any equity investment; from 1951 equity investment 

was authorized up to a limit of 33 (Briys & de Varenne (2001) ); then gradually, 

these restrictions became weaker. 

From the late 1960s, given the changes on the financial markets and 

the competition with other financial intermediaries, life insurers started re­

designing their product lines. They began to offer more attractive products 

such as life insurances with benefit linked to the performance of some stocks 

or stock market indices, the so called equity-linked life insurance. This allowed 

policyholders to enjoy the benefits of mortality protection together with those 

of equity investments. Moreover, to most of these contracts was attached a 

guarantee as a downside protection against a poor equity performance. Popu­
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lar types of equity--linked life insurance contracts include segregated funds in 

Canada, variable annuities and equity indexed annuities in the United States 

and unit linked insurances in the United Kingdom. 

However, traditional actuarial pricing methods were not able to solve 

the problem of pricing of these new types of products launched on the market. 

The first viable pricing method of equity-linked life insurance was proposed 

by Brennan & Schwartz (1976) and Boyle & Schwartz (1977). Their approach 

is a financial one and it is based on Black-Scholes and Merton option pricing 

theory. t>.foreover, this approach also provides a risk management strategy for 

the issuers of equity-linked life insurance. In what follows, we describe this 

method for equity-linked life insurance with death or maturity benefits. 

Let us start with a market model consisting of a stock and a money 

market account with constant interest rate r > 0. We assume that the dis­

counted stock (index) price follows a geometric Brownian motion 

dSs = S 8 ((µ - r)ds + adW8 ) 

(2.1)
{ So= S 

whereµ > r > 0, a > 0 and Wt is a standard Brownian motion on a probability 

space (0, :F, P). Here, the stock price is discounted for consistency with later 

chapters, but could as well be the actual price. 

We examine equity-linked life insurance contracts with benefits as fol­

lows 

if T < T 
BELPEnd = { 	O 

max(Sr, g(T)) if T 2:: T, 
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if T < TBELEnd = { 	max(Sr,g(T)) 

max(Sr, g(T)) if T ::::: T. 

where Tis the policyholder's death time and g(t) is the discounted minimum 

guaranteed amount (for example in our numerical experiments we consider 

g(t) = ce-rt). We choose the notations BELTL' BELI'End and BELEnd since, as it 

can be observed, the first contract is an equity-linked term life insurance, the 

second one is an equity-linked pure endowment insurance and the last one is 

an equity-linked endowment insurance. 

Remarks 2.1.1. 

The benefits above are similar to guaranteed minimum death/maturity bene­

fits provided by segregated funds and variable annuities. In fact, a guaranteed 

minimum death benefit and a guaranteed minimum maturity benefit are de­

fined respectively as BELTL and BELFEnd where the risky underlying asset is the 

fund value and where the actual guaranteed amount, in its simplest form, is a 

certain proportion (typically between 753 - 1003) of the premium. 

An essential assumption of Brennan & Schwartz (1976) and Boyle & 

Schwartz (1977) is that the mortality risk is diversifiable. This implies that 

an insurer who sells a sufficiently large number of equity-linked life contracts, 

practically regards these contracts as carrying out just the financial risk. Ac­

cordingly, the equity-linked contracts given above can be viewed as financial 

options with a random exercise time, that is: the policyholder's death time, the 

contract maturity and the policyholder's death time or the contract maturity. 

Now let us assume that the contracts defined above become active at 

a certain time s. Then, their discounted benefit at time s, here generically 
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denoted by B8 , can be written in the following two alternative forms 

Bs = g(s) + (Ss - g(s))+ = Ss + (g(s) - Ss)+ (2.2) 

that is, the benefit can be decomposed as the guaranteed amount plus the 

payoff of an European call option on the stock with strike g( s) and maturity s 

or alternatively the benefit is given by the stock price plus the payoff of a Eu­

ropean put option on the stock with strike g( s) and maturity s. Consequently, 

the premium at time t = 0 is given by 

P(O, S, s,g(s)) = g(s) + c(O, S, s,g(s)) = S + p(O, S, s,g(s)) (2.3) 

where P(O,S,s,g(s)) denotes the premium at time t = 0 for the claim (ei­

ther BELn, BELI'Ena or BELEnd) maturing at times, while c(O,S,s,g(s)) and 

p(O, S, s, g(s)) represent respectively the price at time t = 0 of a European call 

and put on the stock with strike price g(s) and maturity s. One can recog­

nize in (2.3) the put-call parity formula. Further, observe from (2.3) that the 

amount p(O, S, s, g(s)) is the premium for providing the guarantee. 

At this point, Brennan & Schwartz and Boyle & Schwartz appeal to 

the Black-Scholes and Merton option price theory. Using the pricing formula 

for a European call, they find 

P(O, S, s, g(s)) = g(s) + SN(d1 ) - g(s)N(d2 ) (2.4) 

where N denotes the cumulative distribution function for N(O, 1) and d1 and 
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d2 are given by 

log ___L + la-2 s 
- g(s) 2 d d r:.d1 - O-Vs , 2 = 1 - O"y S. (2.5) 

Additionally, from (2.3) and (2.4) the premium for the guarantee is 

p(O,S,s,g(s)) = g(s)- SN(-d1)- g(s)N(d2 ). (2.6) 

The claim BELTL can become active at any time before maturity. Ac­

cordingly, assuming a discrete distribution of the time of death and considering 

that if death takes place in a certain year s the premium is payed at the end 

of the year, we have 

T T 

pELTL(O,S) = LP(O,S,s,g(s))s-1/qa0 = LP(O,S,s,g(s))s-1Pa0 qa0 +s-1 
s=1 s=1 

(2.7) 

while if the time of death has a continuous distribution F7 ( s) = 1-e- J~ >.(ao+u)du, 

we obtain 

pELTL(O, S) = 1T P(O, S, s, g( s) )>.(ao + s )8Pa0 ds. (2.8) 

Accordingly, the premium for the guarantee is 

1T p(O, S, s, g(s))>.(ao + s)sPa0 ds. (2.9) 

Clearly, in (2.7), (2.8) and (2.9), P(O,S,s,g(s)) and p(O,S,s,g(s)) denote the 

premium for the equity-linked term life insurance and the premium for the 

guarantee, respectively, given that the policy matures at the known date s. 

For the equity-linked pure endowment contract, the benefit is provided 
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at maturity if the policyholder survives to that time. Thus, we have 

pELI'End(O, S) = P(O, S, T, g(T))rpa
0 (2.10) 

while the premium for the guarantee is 

p(O, S, T, g(T)hPao· (2.11) 

Again, here P(O,S,T,g(T)) and p(O,S,T,g(T)) denote the premium for the 

equity-linked pure endowment insurance and the premium for the guarantee, 

respectively, given that the policy matures at time T. 

Finally, given the additivity of the Black-Scholes and Merton pricing 

rule, the premium for the equity-linked endowment insurance is given by the 

sum of the two premiums above. 

Next, for finding the optimal investment hedging strategy that a seller 

of equity-linked life insurance has to follow, Brennan & Schwartz and Boyle 

& Schwartz apply the Black-Scholes and Merton hedging arguments. In what 

follows, we employ these arguments for the hedging of the three contracts 

considered above. 

A seller of the claim BELTL, at a certain time s ( precisely at the be­

ginning of the year s), s = 0, 1 ... T - 1 (conditional on the contract being in 

force at that time) is short qa0 +8 , 11qao+s ... T-l-slqao+s European call options 

with maturities s + 1, s + 2 ... T, respectively. Following the Black-Scholes 

and Merton hedging arguments, the amount to be invested in the stock under 
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the riskless investment strategy at time s, is 

T-l-s 

7r:LTL = Ss L ulqa0+s: c(s,Ss,u+ s + 1,g(u+ s + 1))
5

u=O 

T-l-s 

= Ss L ulqa0 +8 N(d1(s,u+s+ 1)) 
U=O 

log ~+~a2 (u-s) 
wereh d1(s,u ) = ~ . a U-8 

On the other hand, a seller of the claim BELPEnd, at a certain time s, 

s = 0, 1 ... T - 1 (conditional on the contract being in force at time s) is short 

T-sPao+s European call options with maturity T. Accordingly, applying the 

Black-Scholes and Merton hedging arguments, the amount to be invested in 

the stock at time s, under the riskless investment strategy, is 

Finally, a seller of the claim BELEnrI, at time s, s = 0, 1 ... T - 1 is 

short qa0 +8 , 11qa0 +s ... T-1-sl%o+s European call options with maturities s + 1, 

s + 2 ... T respectively and T-sPao+s European call options with maturity T. 

Therefore, the riskless investment strategy requires to invest in the stock at 

Observe that here, for notational convenience, we assumed that the 

insurer rebalances his portfolio yearly; obviously, if the insurer rebalances his 

portfolio more frequently - for example monthly, the formulas above have 

to be appropriately adjusted. Also, observe that here mortality is assumed 

deterministic; clearly, we assume deterministic dynamic mortality but again, 
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for notational convenience we chose to omit the time index in the life functions 

notations. 

Numerical experiments 

We conclude this section by several numerical experiments that refer to an 

American male policyholder, born in 1900 and having age a0 = 45 years. We 

assume that his mortality is given by the deterministic version of the non-mean 

reverting Ornstein-Uhlenbeck process ( 1.51). Consequently, 

(2.13) 

We approximate ,\(45) by - lnp45 and estimateµ>. using the mean least squares 

method. In this way we obtain the values .\(45) = 0.00778 andµ>-= 0.07204. 

Then, we assume that er = 0.2 and r = 0.06. 

We calculate the premium for the claims BELTL, BELPEnd and BELEnd, 

assuming that g(t) = Ge-rr, G = 10 and that S varies between 0 and 20. 

Then, the time to maturity of the contracts is varied between 5 and 20 years. 

Figures 2.1 and 2. 2 show that for all contracts, the premium increases 

as the spot price increases. This is expected, since the price of the call options 

embedded in the benefits is an increasing function of the spot price. Also 

observe that for very small values of S, premium increases very slowly, looking 

almost flat. That is because in this situation, the guarantee will be active; 

essentially this is a premium for providing the guarantee. 

Notice that for the claims BELPEnd and BELE"d, the premium is a de­

creasing function of maturity time. For the claim BELPEnd, this is because the 

value of the put options embedded in the premium, decreases as maturity in­
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Figure 2.1: Premium for BELTL as a function of time to maturity and spot 
pnce. 
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Figure 2.2: Premium for BELI'End and BELEnd as a function of time to maturity 
and spot price. 

creases and because of the survival effect. The same motivation also holds for 

the claim BELEnd which here, is similar to BELrEnd since the policyholder is a 

young adult. On the other hand, for the claim BELTL the premium increases 

with maturity, since mortality increases over time and dominates the decrease 

in the price of the put options embedded in the premium. 

We conclude our analysis by discussing the validity of the assumptions 

made by Brennan & Schwartz (1976) and Boyle & Schwartz (1977). The 
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essential assumption of the approach described above is that the mortality 

risk is diversifiable. Actually, this assumption is a consequence of the Law of 

Large Numbers that works as long as the risks involved are independent and 

identically distributed. The independence assumption regarding the mortal­

ity risks is valid conditional on knowing the individuals mortality. However, 

when mortality is uncertain, these risks may become dependent over time. 

Intuitively, the random nature of mortality can be explained by factors such 

as medical breakthroughs, natural catastrophes, wars etc. and many or even 

all policyholders will be effected by their affects, thus creating a dependency 

between their mortality. Naturally, given this dependency, the Law of Large 

Numbers can no longer be applied to prove that the standard deviation per 

policy vanishes in the limit. In fact, Milevky, Promislow & Young (2006) show 

that under uncertain mortality, the standard deviation per policy can be de­

composed into two components: one component accounting for unsystematic 

or diversifiable mortality risk and one for the systematic mortality risk. As 

the number of policies increases the first component decreases, reaching zero 

for an infinite number of policies. In contrast, the second component does 

not vanishes when the number of policies approaches infinity and may even 

increase as the number of policies increases. 

Another assumption of the Brennan & Schwartz (1976) and Boyle & 

Schwartz (1977) approach is that the stock price volatility is constant. Clearly, 

this is not a viable assumption, especially given the long term of the life in­

surance contracts. 

Observe that if any one of the assumptions mentioned above is removed, 

the Brennan & Schwartz and Boyle & Schwartz approach cannot be applied. 
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That is because the market is incomplete and the Black-Scholes and Merton 

theory cannot be used. Accordingly, we need a pricing and hedging approach 

for incomplete markets and in what follows, we propose the utility indifference 

pricing approach. 

2.2 	 Utility indifference pricing of life insur­

ance claims 

2.2.1 	 From expected utility theory to utility indiffer­

ence pricing 

The concept of "utility" goes back to Daniel Bernoulli (1738) who argued that 

often money cannot be appropriately measured by its monetary value and 

a better measure would be its "moral value" or its usefulness. Accordingly, 

he proposed that lotteries 1 have to be compared not by their fair price (i.e. 

expected value), which was commonly used, but instead by their expected 

utilities. 

Expected utility theory came to life again due to Neumann & Morgen­

stern (1944). They proved that under certain axioms, there exists a utility 

function and a preference order between lotteries as suggested by Bernoulli, 

given by the comparison of the corresponding expected utilities. For a detailed 

exposure of this theory see also Follmer & Schied (2004). 

With regards to the utility function, it is natural to assume that this is 

strictly increasing and concave. The former feature is desirable since "rational" 

1 Lotteries are probability distributions over a set of outcomes. The outcomes could be 
of different nature: events, goods, money etc. 
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decision makers prefer more to less, while the latter is because decision makers 

are risk averse. The second feature is controversial since a.gents in certain 

conditions switch from risk averse to risk seeker. From now on, we consider 

the following definition for a utility function: 

Definition 2.2.1. A function U : S --+ IR is called a utility function if it is 

strictly concave, strictly increasing and twice continuously differentiable on S. 

Here the set S of monetary outcomes, can be either the whole real line 

or just the positive real line. 

Now, assume that the decision maker is an insurer with wealth :r0 and 

utility function U. Further, assume that the insurer has the possibility to 

insure a risk B. Then, the insurer faces the following two scenarios: either he 

is not taking the risk or he accepts the risk, charging a premium P. Essentially, 

these two scenarios correspond to two lotteries and according to the preference 

order mentioned above, P should be such that 

E[U(x0 + P - B)] ;:::: U(x0 ) (2.14) 

where the equality case 

E[U(xo + P - B)] = U(xo) (2.15) 

holds for the minimum premium to be asked. As can be observed from (2.15), 

this premium is such that the insurer is indifferent between accepting or not 

accepting the insurance risk. Equation (2.15) is called the principle of equiv­

alent utility and the premium that solves this equation is called indifference 

premium. 
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Let pEU denote the indifference premium for the insurance contract 

considered. Observe that by Jensen's inequality, we have 

E[U(xo + pEU - B)J ::; U(x0 + pEU - E[B]). (2.16) 

But pEU solves (2.15) and taking into account that U is strictly increasing, 

we obtain that pEU 2: E[B]. 

We would like to underline the fact that any acceptable premium for 

the insurance contract considered is a premium that corresponds to a partic­

ular insurer, with preferences towards risk and wealth specified by his utility 

function. So, different insurers will charge different premiums for insuring the 

risk B. A decision maker's attitude towards risk can be described via the con­

cept of absolute risk aversion (Arrow (1970) and Pratt (1964)) that is defined 

below. 

Definition 2.2.2. The absolute risk aversion r(x) of the utility function U, at 

a wealth x is given by 
U"(x) 

(2.17)r(x) = - U'(x). 

In the subsequent chapters, we will show that the more risk averse an 

insurer is, the greater the premium to be charged. Further, we will see that 

for a risk neutral insurer, the premium approaches the fair premium. 

Essential to expected utility theory is the agent utility function. The 

problem of determining an agent utility function is a delicate one that we do 

not pose here. Popular examples of utility functions are: exponential utility 

(U(x) = -1e-1 x, r > 0), power utility (U(x) = xc, x > 0, 0 < c ::; 1), 

logarithmic utility (U(x) = log(r+x), x > -1) and quadratic utility (U(x) = 
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-(1-x)2 
, x-:::;1). 

In this thesis, we assume that the agent's utility function is exponential. 

Concretely, we choose an exponential utility of the form 

U(x) = -e-ix, / > 0. (2.18) 

Observe, that in this case, the absolute risk aversion coefficient is constant and 

has the value r(x) = r· 

Then, with this choice of utility function, the premium pEU can be 

readily calculated and is as follows 

1 
pEU = - log E[e'B]. (2.19) 

I 

Thus, the premium pEU is wealth independent. 

These two features of the exponential utility function - absolute risk 

aversion coefficient and indifference premium independent of wealth - might 

suggest that this utility is not realistic. However, exponential utility has major 

advantages such as mathematical tractability and intuitive premium formulas 

that are nice to interpret. Moreover, there is a connection between the prob­

ability of ruin and the insurer risk aversion (see Gerber (1976), page 135). 

More recently, the principle of equivalent utility was adapted for deriva­

tive pricing in incomplete markets. The resulting pricing approach is called 

utility indifference pricing and it was introduced by Hodges & Neuberger 

(1989) for valuing European calls subject to transaction costs. Since then, 

utility indifference pricing has been applied in many areas: Musiela & Za­

riphopoulou (2003) examine the pricing of claims on a non-traded asset cor­
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related to a tradable one, Sircar & Zariphopoulou (2004) study the pricing 

of European derivatives in financial markets with random volatility, Carmona 

(2009a) considers applications to weather derivatives and energy contracts, 

while Young & Zariphopoulou (2002), Young (2003) and Jaimungal & Young 

(2005) apply the approach for pricing and hedging life insurance products. 

These are just a few contributions to the field of utility indifference pricing. 

A comprehensive review of the theory regarding utility indifference pricing 

as well as of its further developments and applications is given in Carmona 

(2009b). 

In order to illustrate how the indifference pricing approach works, we 

consider the following example. Assume that an insurer has the opportunity to 

sell a life insurance contract with maturity T to one or more individuals. The 

insurer has initial wealth x0 and can trade between a risky stock and a money 

market account. Further, let Xr be the wealth generated from the initial 

wealth x0 and corresponding to a self financing trading strategy (1rt )o<:;t:SoT. 

As in the static case presented earlier, when deriving the principle of 

equivalent utility, the insurer faces two possible scenarios: either he does not 

take any risk and receives no premium or he takes on the risk by accepting 

to write one or more life insurance contracts and receives a certain premium 

from each individual insured. In the former scenario, the insurer will invest, 

aiming to maximize his expected utility of terminal wealth. That is, he will 

have to solve the optimization problem 

u0 (x0 ) =sup E[U(Xr )\Xo = xo]. (2.20) 
7r 

On the other hand, in the later scenario, the insurer aims to maximize his 
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expected utility of terminal wealth, taking into account the benefit to be paid 

when the insurance policies generate claims. Clearly, the insurer has to choose 

a model for his liability and the models's choice will play an essential role for 

pricing and risk management purposes. We will refer to this issue in detail 

at the end of this section. For now, let us assume that the insurer's liability, 

denoted by Lr is to be paid at the maturity of the life insurance contracts. 

Then, the corresponding optimization problem is 

u(xo) =sup E[U(Xr - Lr )IXo = xo]. (2.21) 
7f 

Definition 2.2.3. The indifference premium of the insurer for the life insur­

ance contract(s) is the amount P such that 

u0 (x0 ) = u(xo + P). (2.22) 

As can be observed, (2.22) represents a generalization of the principle 

of equivalent utility to a dynamic market setting. The premium defined by 

(2.22) it is called indifference premium and similarly, this is a generalization 

of the indifference premium in a static market setting. 

Indifference pricing and the prices generated by this approach have 

several remarkable properties. First, in contrast to no-arbitrage pricing, in­

difference pricing is a nonlinear pricing rule; secondly, if the financial market 

is complete, the indifference price of an option is unique and equals its risk-

neutral price. Not least, indifference prices are increasing functions of the risk 

aversion coefficient and of the claim size. A detailed exposure regarding the 

properties of the indifference prices is given by Becherer (2001). 
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Finally, we would like to remark that in contrast to the static case, the 

problem of calculating the indifference premium in a dynamic market setting is 

a delicate one. For this, first it is necessary to solve the optimization problems 

(2.20) and (2.21). This can be done using either dynamic programming or 

martingale theory arguments. In this thesis, we will use the first approach, 

also known as the primal approach. Below, we present a brief description of the 

dynamic programming approach and then we apply it for solving the insurer 

problem without the claim, referred to in financial literature as the Merton 

investment problem. Then, since insurer's liability models are essential for the 

second optimization problem, we conclude this chapter with a description of 

these models. 

2.2.2 The dynamic programming approach 

Dynamic programming is a powerful tool for solving optimal control problems 

introduced by R. Bellman in early 1950s. In what follows, we describe this 

approach for stochastic optimal control problems formulated on finite horizon. 

Our main references are Yong & Zhou (1999), Pham (2009) and Fleming & 

Saner (2006). 

Let us assume that the state of a stochastic system is described by an 

Ito process X with dynamics 

dXt = dX'[ = a(t, Xt, 1rt)dt + b(t, Xt, 1rt)dWt 
(2.23)

{ Xo = xo. 

Here Wt is a standard Brownian motion defined on a filtered probability space 

(D, F, IF, P), where the filtration IF= (Ft)t>o satisfies the usual conditions. In 
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this context, we refer to X as the state process and to 7r as the control process. 

Further, we assume that the control 7r = (Tlt) is JF progressively measurable 

with values in a subset C of R With regards to the coefficients a and b we 

assume that they satisfy the uniform Lipschitz condition: there exists K > 0 

such that for all t 2:: 0, x, y E IR and u E C 

ja(t, x, z) - a(t, y, z)j + jb(t, x, z) - b(t, y, z)j :::; Kjx - yj, (2.24) 

where K is a constant independent of ( t, x, y, z). 

Now, for a given time horizon T > 0, we introduce the performance or 

gain function 

(2.25) 

and consider the optimal control problem 

sup E[U(XT)!Xo = xoJ, (2.26) 
7rEA[O.TJ 

where U is a given utility function. Here, the family of admissible controls 

A[O, T] includes control processes 7r valued in C that are JF progressively mea­

surable and additionally satisfy 

la(·, 0, ·)I+ jb(·, 0, ·)I E £ 2 (0, T; IR). (2.27) 

It can be shown that for 7r E A[O, T], under the uniform Lipschitz condition 

(2.24), the stochastic differential equation with random coefficients (2.23) has 

a unique solution (for details see e.g. Pham (2009), Theorem 1.3.15). Conse­

quently, the performance function (2.25) is well defined. 
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The basic idea of dynamic programming is to embed the original prob­

lem (2.26), in a large family of optimal control problems, with different initial 

times and states, to establish a relationship between them, and finally to solve 

them all at once. 

Observe that when taking a certain time and state (t, x), the state 

Xt = x is a random variable in the original probability space. However, at 

time t, Ft gives us all the relevant information about Xt. So, basically, Xt is a.s. 

deterministic under the probability measure P(· !Ft)· Thus, essentially, when 

using dynamic programming for solving stochastic optimal control problems, 

one does not vary just the initial time and state as in the deterministic case, 

but varies as well the probability spaces. Accordingly, the problem (2.29) 

introduced below can be regarded as a weak formulation of the stochastic 

optimal control, while problem (2.26) can be viewed as a strong formulation. 

Now, let (t, x) E [O, T] x IR and consider the state equation 

dXs = a(s, X 8 , 7r8 )ds + b(t, X 8 , 7r8 )dl¥8 

(2.28) 
{ Xt 	= x 

The corresponding optimal control problem is 

sup E[U(Xr)!Xt = x], 	 (2.29) 
7rEA[t,T] 

where the family of admissible controls A[t, T] consists 5-tuples (0, F, P, W, 7r) 

satisfying the following conditions 

1. 	 (0, F, P) is a complete probability space. Here, F contains all the infor­

mation available starting with time t while P is the original probability 
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measure given the information up to time t. 

2. 	 (Wu)t'.Su'.ST is a one dimensional Brownian motion defined on (fl, :F, P) 

with lt't = 0 a.s and F; = <J (Wu, t ::; u ::; s) augmented by the P null 

sets in F. 

3. 	 7f : [t, T] x n --t C is (T!)s>t progressively measurable and is such that 

the following integrability condition holds 

la(-, 0, ·)!+lb(-, 0, ·)IE L2 (t, T; TR). (2.30) 

4. 	 U(Xr) E L1 (n; TR). 

Often, when clear from the context, for notational simplicity, we will write 

simply 7f EA instead of (fl, :F, P, W, 7r) E A[t, T]. 

Now, we consider the performance or gain function 

J(t,x;7r) = E[U(Xr)IXt = x] 	 (2.31) 

and define the value function, as follows 

u(t, x) = sup J(t, x; 7r). 	 (2.32) 
7rEA[t,T] 

When a control process 7f E A is adapted to the filtration generated by 

the state process X, we will refer to it as feedback control. If 7f E A is of the 

form 1f8 = f(s, x:), then this type of control will be called Markov control. 

Clearly, any Markov control is a feedback control. 

At this point, we can present a fundamental principle for the theory of 
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stochastic control, known as Bellman's principle of dynamic programming. 

Theorem 2.2.1. Let (t, x) E [O, T) x JR be given. Then, for every stopping 

time T E [t, T], we have 

u(t,x)= sup E[u(T,Xr)IXt=x] (2.33) 
7rEA[t,T] 

Thus, Bellman's principle states that the value function is a super-

martingale for any admissible control Jr and it is a martingale if an optimal 

control Jr* exists. 

When the value function is smooth, as the stopping time r approaches 

t, Bellman's principle together with stochastic calculus arguments generate 

a second order partial differential equation that describes the local behavior 

of the value function. This equation is called the Hamilton-Jacobi-Bellman 

(HJB) equation. A formal derivation of the HJB equation is given below. 

For r = t + h, Bellman's principle of dynamic programming implies 

that 

u(t, x) ;:::: E[u(t + h, xr+h)IXt = x], 	 (2.34) 

where 7r is an arbitrary control in A[t, T]. 

Assuming that u is smooth enough we can apply Ito's lemma and obtain 

u(t+h, Xtt-h) = u(t, x)+lt+h ( U8 + a(s, x;, 7r8 )Ux + ~b2 (s, x;, 1rs)Uxx) ds 

t+h 
+ 	t Ux(s, x;)b(s, x:' 1rs)dWs (2.35)

l 

Substituting (2.35) in (2.34) and assuming that the stochastic integral in (2.35) 
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is a martingale, we obtain 

Dividing by h and then taking the limit as h goes to 0, it follows that 

1 
Here 7r = 1rt and £7ru(t, .r) = a(t, x, 7r)ux(t, x) + 2b2 (t, x, 7r)Uxx(t, x). Since 7r 

was arbitrary chosen, the inequality above holds for all 7r E C and thus we 

have 

ut(t,x)+sup£1ru(t,x) :::;:o. (2.36)
7rEC 

On the other hand, assuming the existence of an optimal control 7r*, 

following arguments as above we obtain that 

ut(t, x) + £7r* u(t, x) = 0. (2.37) 

Combining (2.36) with (2.37), we obtain that 

Ut + sup7rEC £7ru = 0 
(2.38)

{ u(T, x) = U(x) 

This is the so called HJB equation. 

It is very difficult to show just from the definition of the value function 

that this satisfies the regularity properties assumed above. Usually, we will 

derive formally the HJB equation. Then, we will try to solve and prove the 

existence of a smooth solution for the HJB equation. The next step is called 
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Verification step. Throughout this thesis we will use a version of a verification 

result by Duffie & Zariphopoulou (1993). 

2.2.3 The Merton investment problem 

In what follows, we apply the dynamic programming approach for solving 

the Merton investment problem. We assume a market with two securities: a 

money market account with interest rate r > 0 and a stock. We model the 

discounted price of the stock by a geometric Brownian motion 

dSt = St ((µ - r )dt + O"dl¥t) 
(2.39) 

{ S0 = S > 0 

where µ > r > 0, O" > 0 and Wt is a standard Brownian motion on the filtered 

probability space (n, F, lF, P). 

Let 7rt denote the amount to be invested in the stock at time t. Then, 

the discounted wealth process evolves as follows 

1rt 
dXt = St dSt = 1rt((µ - r)dt + O"dWt) 

(2.40) 
{ Xo = Xo. 

Recall that the Merton investment problem is 

maxE[U(Xr)IXo = xo]. (2.41) 
1l' 

Remark that, in this case, X and 7r are the state and control process, 

respectively. It is straightforward to show that the drift and volatility of the 

state process satisfy the uniform Lipschitz condition (2.24). 
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As mentioned when describing the dynamic programming approach, 

we need to embed the original problem in a large family of problems, cor­

responding to different initial times, states and probability spaces. So, let 

(t, x) E [O, T] x IR and consider the state equation 

dXs = 7r8 ((µ - r)ds + adWs) 
(2.42)

{ Xt = x. 

The corresponding value function is 

u 0 (x, t) = sup E[U(Xr )IXt = x]. (2.43) 
nEA[t,T] 

Notice that in this case the set of admissible controls A[t, T] consists of controls 

7r that are (.'F!)s?.t progressively measurable and that satisfy the integrability 

condition E [ftT 7r;dsJ < oo. Clearly, here we consider a filtered probability 

space as described in the conditions 1 and 2. Then, observe that in this 

case, the integrability condition just mentioned implies both existence and 

uniqueness of a solution for equation (2.42). 

In this case, the HJB equation for u0 is as follows 

u~ + maxn [ (µ - r )7ru~ + ~a2 7r2u~x] = 0 
(2.44)

{ u0 (x, T) = U(x). 

Let us assume that the solution of the HJB equation is concave in wealth. 

Then, the maximization term in (2.44) is also concave in wealth. Accordingly, 

the maximum in equation (2.44) is well defined and by the first order necessary 
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condition, we have 

*( ) µ - r ux 
0 

7r x, t = ---2--0-. (2.45) 
(]" uxx 

Then, inserting 7r*(x, t) in (2.44), leads to the following equation 

uo_!(µ-r)2(u~)2 =0 
t 2 0"2 uO 

xx (2.46) 
{ u0 (x, T) = U(x). 

Due to the assumption of exponential utility function, we consider an ansatz 

of the form u0 (x, t) = -e-"lx J(t). Substituting in (2.46), we obtain that f is a 

solution of the ordinary differential equation 

2 
f'(t) - (µ - r) f(t) = 0 

20"2 (2.47)
{ J(T) = 0. 

Solving this equation, we obtain that f(t) = e- (µ2-:,r/ (T-t). Therefore 

(µ-rJ2 (T ) 
U0(X,,t) -_ -e-"IX-~2a 

-t 
. (2.48) 

Observe that 

* µ - r 
7r (x, t) = -- . (2.49)

2"W 

Straightforward calculations imply that 7r* E A. Notice that u0 E 

CL2 ([0, T] x JR;) and additionally has the properties of concavity and exponen­

tial growth in x. The ansiitz satisfies the conditions of the Verification theorem 

and we conclude that the value function coincides with (2.48) and the optimal 

control is given by (2.49). 

We would like to point out that this analysis does not impose any 
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solvency condition on the insurer's portfolio. That is, we not require that 

Xr ~ 0. In fact, the solvency condition will not be imposed neither when 

examining the insurer's investment problem in the presence of life insurance 

claims. In other words. we implicitly assume that the insurer can collect cash 

to meet its liabilities, if necessary, though at the cost of taking a bit hit in 

utility. 

2.3 Liability modeling 

By its nature, an insurance company is exposed to insurance losses and there­

fore, for pricing and risk management purposes, the company has to choose an 

appropriate model for these losses. In this thesis, we assume that the insurer 

can choose between a single life insurance model, the individual risk model and 

the collective risk model. The last two are aggregate models with long history 

in actuarial practice while the first one models the loss over a single policy 

and can be seen as a particular case of the individual risk model. In what 

follows, we introduce these loss models and then show that in certain circum­

stances, the collective risk model can be thought of as an approximation of 

the individual risk model. 

The individual risk model 

Consider a portfolio of n insurance policies. Within the individual risk model, 

the aggregate claim in a certain time interval is modeled as follows 

vnd = y1 + y2 + ... + yn, (2.50) 
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where Yi, i = 1 ... n denotes the payment on policy i in the time interval under 

study. 

Clearly, the use of the individual risk model needs to be tailored to 

the specific nature of the portfolio of insurance contracts. For example, for 

a portfolio of pure endowments all maturing at time T, the insurer will be 

interested in modeling his losses just at time T since only at this time he may 

have losses. On the other hand, for a portfolio of term life insurances, the 

insurer will be interested in modeling his losses over time intervals prior to 

maturity. 

In actuarial mathematics, see for example Bowers, Gerber, Hickman, 

Jones & Nesbit (1997) or Gerber (1997), the random variables Yi, i = 1 ... n 

are assumed to be independent. However, this assumption it is not valid in 

certain situations and thus, imposing it will limit the use of the model. We 

motivate this assertion by the following example: consider a portfolio of pure 

endowments, each with benefit 1 if the policyholder survive to maturity T; 

then, the loss at time Twill be given by the sum of the payments Yr= l{Ti>T}, 

where Ti denotes the time of death of the policyholder that owns the ith policy. 

The assumption that YY,, i = 1 ... n are independent is valid when the ran­

dom variables Ti are themselves independent, for example when policyholders' 

mortalities evolve deterministically over time. However, if considering random 

mortality, the assumption above is no longer valid. 

Collective risk models 

Whereas in the individual risk model, one first looks at the loss over each 

individual policy and then by cumulating these losses obtains the total loss, 
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in the collective model, one models the loss on the whole portfolio from the 

beginning. As time evolves, at random points in time, the portfolio generates 

claims. Then, the random sum of the claims generated in the time period 

under study gives the aggregate claim on that time period. 

Accordingly, in the collective risk model, the total claim amount in a 

specified time interval, is modeled as follows 

(2.51) 

where N is a random variable counting the number of claims generated in 

the time interval under study and Zi, i = 1, 2 ... denote the severity of these 

claims. 

In actuarial mathematics, the random variables Zi, i = 1, 2 ... are as­

sumed independent and identically distributed and also independent of the 

random variable N. In this thesis, we do not impose these assumptions since 

again, this limits the use of the model. 

Observe that no vanishing term appears in (2.51), since as mentioned, 

in this case the aggregate loss incorporates just actual claims. In contrast, 

in the individual risk model, many of the terms that determine the aggregate 

claim are zero, corresponding to policies that remained in force during the 

time period considered. 

With regards to the distribution of the random variable N, this depends 

on the nature of the portfolio of insurance contracts. For example, in the case of 

a portfolio of term life insurance contracts, N will count the number of deaths 

(claims) over the time interval considered. If assuming deterministic mortality, 

an appropriate model for the number of deaths process is an inhomogeneous 
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Poisson process. Consequently, N will be Poisson distributed. On the other 

hand, for random mortality, a suitable model for the the number of deaths is 

a doubly stochastic Poisson process. 

In certain circumstances the collective risk model can be thought of as 

an approximation of the individual risk model. We illustrate this assertion 

by considering a situation from life insurance. Concretely, assume a portfolio 

of n term life insurance contracts, all written at time 0 and maturing at a 

certain time T. Also, assume that these contracts are sold to a cohort of 

policyholders age a0 at time 0 and that their mortality is deterministic. Within 

the individual risk model, we model the insurer's total loss over the time 

interval [O, t), 0 < t:::; T as follows 

Lind v·l ,,,.-2 ,,,.-n 
t =It +It + ... +It. (2.52) 

We assume that 

(2.53) 

where Ti denotes the time of death of the individual ownmg policy i and 

Xi, i = 1 ... n denotes the claim that results from policy i. Let us further 

assume that Xi, i = 1 ... n are independent and identically distributed random 

variables and moreover have a time-independent distribution. 

The indicator random variables l{r;<t} are Bernoulli(tqa0 ) distributed. 

Accordingly, we have 
Mt 

L~nd = _Lzi· (2.54) 
i=l 

Here l'vft denotes the number of claims (deaths) by time t in the individual risk 

model and has a Binomial( n, tqa0 ) distribution. Then, Zi denotes the severity 
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of the ith claim that occurs prior to time t. In fact, Zi, i = 1, ... are payments 

Xi, i = 1 ... n that correspond to actual claims. \Ve assume that Zi, i = 1, ... 

are independent of the number of claims (deaths) random variable. 

Now, let us return to the collective risk model and consider an inhomo­

geneous Poisson process ( Nt )o~t<T counting the number of deaths (claims) by 

time t. We want that this process matches as well as possible the correspond­

ing number of claims process from the individual risk model. Therefore, we 

assume that (Nt)o~t<T is such that E[Nt] = E[MtJ, Vt E [O, T). This means 

that Nt is Poisson (ntqa0 ) distributed. For a large portfolio and small probabil­

ity of death tqa by the virtue of the Poisson Approximation to the Binomial 0 , 

Theorem, the distribution of Aft can be approximated by the distribution of 

Further, we have 

= L
n 

E[euL~~\ Z;IA!t = m]P(Mt = m) 
m=l 

n 

m=l 
''.)0 

011'.::::' L E[euL~iZ;JP(Nt = m) = E[euLf ] = AfLfou(u), (2.55) 
m=l 

for n approaching oo and very small probability of death tqao· 

Thus, if the size of the portfolio n and the probability of death are 

sufficiently large and small respectively, we have that L~nd ~ Lf0 ll. Here we 

assumed that by time t the total claim in both models consists of at least one 

claim. Otherwise, the approximation is trivial. 
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At this point, notice that 

Nt Nt oo m 

E[L~0ll] = E[_L Zd = E[E[_L ZilNt]] = L E[_L ZilNt = m]P(Nt = m) 
i=O i=O m=O i=O 

= L
00 

mE[Z]P(Nt = m) = E[Z]E[NtJ, 
m=O 

where Z is a random variable with the same distribution as Zi. 

Similarly, it can be shown that E[L~nd] = E[Z]E[J\1t]· Accordingly, 

E[L~oll] = E[L~nd]. 

On the other hand, 

Var[L~0ll] = E[Var[L~0llJNtlJ + Var[E[L~0lllNJl 

= E[NtVar[Z]] + Var[NtE[Z]] = E[Nt]Var[Z] + E[Z]2Var[Nt]· 

But, Var[Nt] > Var[.M] and consequently we have Var[L~0ll] > Var[LrdJ. 

Accordingly, the collective model is riskier than the individual model 

given the greater variance of the total loss amount. 

Now, given the assumption that Nt and Aft have the same mean, we 

have 

(2.56) 

Consequently, the intensity of the Poisson process is given by 

ry(ao + t) = ntPa0 A(ao + t). (2.57) 

As can be observed from (2.55), a necessary condition for this approximation 

of the individual risk model is that the number of deaths in the collective risk 
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model approximates the one from the individual model. This happens if the 

size of the portfolio n and the probability of death are large and small enough, 

respectively. So, if the insurer wants to take advantage of this approximation, 

he first needs to check if the size of his portfolio and the probability of death 

have suitable values. Clearly, the insurer can try to increase the size of his 

portfolio by insuring other policyholders; however he can not do anything 

regarding the values of the probabilities of death of the policyholders. 

Next, we consider a cohort n = 10000 policyholders and perform sev­

eral numerical experiments to investigate for which values of the insurance 

contracts maturities the probabilities of death are sufficiently small to assure 

the validity of the approximations mentioned above. We assume that the pol­

icyholders are aged 45 at time t = 0, with force of mortality given by (2.13) 

where >.(45) = 0.00778 and µ>.. = 0.07204. Then, fort = 5 years, t = 10 years, 

t = 15 years and t = 20 years, we consider a number of 10000 realizations of 

Nt and fl.ft and plot the corresponding histograms as well as the cumulative 

distribution functions. 

Figure 2.3, Figure 2.4, Figure 2.5 and Figure 2.6 show that the ap­

proximation is very good for insurance contracts with maturity up to 10 years 

but after that the approximation is progressively less satisfactory. Moreover, 

as expected, observe from these histograms that the standard deviation of 

the number of deaths in the collective risk model is always greater than the 

standard deviation of the number of deaths in the individual risk model. 
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Figure 2.3: Histogram and c.d.f. of the number of deaths from time 0 to time 
t = 5 years in the collective (right) and individual (left) risk model. 
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Figure 2.4: Histogram and c.d.f. of the number of deaths from time 0 to time 
t = 10 years in the collective (right) and individual (left) risk model. 
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Figure 2.5: Histogram and c.d.f of the number of deaths from time 0 to time 
t = 15 years in the collective (right) and individual (left) risk model. 
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Figure 2.6: Histogram and c.d.f. of the number of deaths from time 0 to time 
t = 20 years in the collective (right) and individual (left) risk model. 
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Chapter 3 

Utility Indifference Pricing of 

Market Independent Life 

Insurance Risks 

Let ( Sl, g, G, P) denote a filtered probability space with the filtration G = 

Wt)o:;t:;T satisfying the usual conditions and containing all available infor­

mation. Specifically, we define G as the natural filtration generated by two 

independent standard Brownian motions W and iv ,x and a counting process 

for the number of deaths. In addition to G, we consider the sub-filtrations IF, 

IF,x and IHI generated by W, W,x and the number of deaths process, respectively. 

Throughout this section, the financial market consists of a risky as­

set and a riskless money market account with constant interest rate r. The 

discounted price of the risky asset follows the geometric Brownian motion 

dSt = St((µ - r )dt + O"dWt) 
(3.1)

{ S0 = S > 0, 
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whereµ> r > 0 and <J > 0. 

Further, we assume an insurer that has the possibility of investing in 

the financial market defined above and additionally has the opportunity to sell 

life insurance contracts with discounted benefits of the form 

if T < TB = { 91(T) (3.2) 
92(T) if T ~ T, 

where 91 and 92 are deterministic functions of time and Tis the policyholder's 

time of death. Observe that for 91 = 92 I= 0 the life insurance contract is an 

endowment insurance, for 91 = 0 and 92 I= 0 it is a pure endowment, while for 

92 = 0 and 91 I= 0 it is a term life insurance. In these particular situations we 

denote the insurance contract discounted benefit respectively by BEnd, BPEnd 

Here, we model the mortality intensity of a policyholder age a0 at a 

certain reference time 0 by a stochastic process (,\ao+t)t>o with dynamics given 

by 

d,\ao+t = µ>.,\ao+tdt + <J>.dW/ 
(3.3) 

{ ,\ao = ,\ 

whereµ>. > 0, <J>. ~ 0 and,\ > 0. 

In this chapter we apply the utility indifference valuation approach to 

solve the pricing problem for the general claim B from the insurer point of 

view, within a single life insurance model as well as in the individual and col­

lective risk model. Additionally, we are interested in investigating qualitative 

and quantitative properties of the premium as: premium dependence on the 

model parameters, super-additivity of the premium as a function of the num­
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ber of policies sold and comparison of the premiums in the three loss models 

mentioned above. 

3.1 	 Indifference premium in a single life insur­

ance model 

3.1.1 	 Lump-sum premium 

We consider an insurance model consisting of a single life, aged a0 at time 0 

and assume that the insurer accepts to sell to ( a0 ) a life insurance contract 

with discounted benefit B as defined by (3.2). In this case, we define the value 

function of the insurer as follows 

u 8 (x, ,\, t) =sup E[U(XT - 92(T)l{r2T})IXt = x, Aao+t = ,\]. (3.4) 
7rEA 

Here, the insurer's discounted wealth has the dynamics 

dXs = 1rs ((µ - r)ds + O"dWs)) s # T 

(3.5) 

and the set of admissible controls A = A[t, T] consists of controls 7r that 

are (F;)s>t progressively measurable and satisfy the integrability condition 

E [ftT 7r;dsJ < oc. 

Applying Bellman's principle of dynamic programming and Ito's lemma, 

8we obtain that the value function u ( x, ,\, t) satisfies the HJB equation 
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u8 (x, A, T) = U(x - 92(T)). 
(3.6) 

The last term of equation (3.6) appears due to a potential death of the 

policyholder. In this case the wealth drops by g1 ( t) and since there is no risk 

left to the insurer, the value function u8 switches to the value function in the 

Merton investment problem. 

Now, we assume that u:x < 0. This implies that the maximum in 

(3.6) is well defined. By the first order necessary condition, the maximum is 

attained in 

* µ - r u:(x, A, t) 
(3.7)

7r = -~ uflx(x, A, t) · 

Further, due the assumption of exponential utility, we consider an 

ansiitz of the form u8 (x, A, t) = u0(x, t)f(A, t), where u0 represents the value 

function of the insurer in the Merton investment problem. Then, we have 

* µ - r u~ µ - r 
7r = ---- = --. (3.8)

cr2 ugx 1cr2 

Substituting 7r* and the ansatz above in (3.6), leads to 

(u~ - (µ2~;)2 uo)f + uoft + µ>..Auof>... + ~(cr>..)2uof>...>.. + ,\uo(e1g1(t) - !) = 0 

{ f (T) = e/g2(T). 

(3.9) 

Observe that the first bracket from (3.9) represents the HJB equation for u0
. 
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Since u 0 solves this equation, (3.9) reduces to the linear partial differential 

equation 

ft+µ>- >.f>. + ~(0->.)2 f>.>. + >.(er91(t) _ f) = 0 
(3.10)

{ f (T) = e-Yg2(T). 

Further, the Feynman-Kac formula leads to 

f(A, t) = Eu[e'g2(TJ-lt Aao+sdsl + JT e-Y91(s) Eu[>-ao+se-lt >-ao+udu]ds 

= e'92 1Tlp(a0, t, T) + JT e'91 (s)dq(a0, t, s) 

= Eu[e1B]. 

Notice that the expectations from the preceding formula are all bounded since 

(>-ao+t) is bounded a.e. 

For well behaved benefit functions 91 and 92 , the ansiitz proposed is 

smooth. Additionally, since u0(x, t) has the properties of concavity and expo­

nential growth in x, the ansiitz inherits these two properties. Consequently, 

by the Verification Theorem the ansiitz coincides with the value function. Ac­

cordingly, the value function is given by 

(3.11) 

Also, the Verification Theorem implies that the optimal investment 

policy can be specified by the first order condition, and is given by (3.8). 

Observe that the optimal investment policy is the same as in the Merton 

problem. This result agrees with our intuition since the insurance claims are 

independent of the financial market and clearly, the insurer will not hedge 
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them with instruments present in the financial market. 

Now, let P 8 denote the indifference premium for the insurance contract 

with discounted benefit B. P 8 satisfies the equation 

u0 (x, t) = u8 (x + P 8 , .A, t). (3.12) 

By (3.11) and using the properties of the solution of the Merton problem, the 

indifference premium equation becomes 

(3.13) 

Therefore, 

(3.14) 

In particular, for an endowment insurance the premium becomes 

pEnd(.A, t) = ~In Et,,\[e'YsEnd] 

= ~ln (e'Y91(T)p(ao,t,T) + lT e'Y91(s)Et,,\[Ase-.f/,\ao+u,udujds) 

while the premiums for a pure endowment and term life insurance are given 

by 

pPEnd(.A, t) = ~In Et,,\[e'YBPEnd] 

= ~ln (e'Ygz(T)p(a0 ,t,T) + lT Et,,\[A8 e-ft,\ao+u,udu]ds) 

= ~In (e'Y9z(T)p(a0 , t, T) + q(ao, t, T)) 
I 
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Pn(>., t) = ~ ln E0 [e18TL] 
I 

= 	~ ln (p(a0,t, T) + iT e'Ygi(s) Et,>.[A 8 e-J;' >-ao+u.udu]ds) , 

respectively. 

At this point, we would like to emphasize that under a stochastic setting 

for the force of mortality, the value of a pure endowment is greater than in a 

deterministic setting. This is a direct consequence of the fact that the survival 

probability, when assuming stochastic mortality, is greater than its counterpart 

in a deterministic setting for mortality. Indeed, 

pPEnd(>., t) = ~ ln (1 + (e192 (T) - l)p(ao, t, T)) 

r 


~ 	~ln(l + (elg2(T) - l)r-tPao+t) = ~lnE[e1BPEnd] = pPEnd(t) 
I 	 r 

where pPEnd(t) denotes the premium for the pure endowment considering 

deterministic mortality. 

Remarks 3.1.1. 

• 	 For deterministic mortality intensity, the indifference premium is simply 

the premium generated by the principle of equivalent utility in a static 

market setting. This fact is expected, since the insurance risks that 

we examine here are independent of the financial market and thus the 

dynamic market setting considered cannot have any influence on the 

premiums. 

• 	 On the other hand, the assumption of stochastic mortality is reflected in 

the premiums of the insurance contracts analyzed. 
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• 	 The indifference premium is an increasing function of the risk aversion 

parameter f. Indeed, taking 0 < 11 < 12 and applying Holder's inequal­

ity, leads to 

Thus, 

• 	 Indifference valuation is generally a nonlinear pricing rule. Observe that 

Then, we have 

pEndp.., t) = _!_In Et.>.[e'Y(BPEnd+BTL)J
I . 

_ 1 I (E [ 'Y3PEnd]E [ 'Y3TL] C ( ')'BPEnd 'Y3TL))-	 - n t >. e t.>. e + ,, ov e , eI , . 

but since the random variables BPEnd and BTL are negatively correlated, 

it follows that the premiums satisfy the relation 

where the equality case corresponds to a risk neutral insurer. 

• 	 Note that BEnd ~ BPEnd and also BEnd ~ BTL. Therefore 

1 l E [ ')'BEnd] 1 I E [ 'Y3PEnd]-	 n t >. e ~ - n t.>. e
I ' I . 
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1 BEnd 1 BTL 
-	 ln Eu [e' ] ~ - ln Eu. [e' ]
I 	 I 

Hence, we have 

Accordingly, the indifference premium is an increasing function of the 

claim size. 

• 	 As the risk aversion of the insurer approaches zero, the indifference pre­

mium reduces to the net premium, as proved below: 

lim pB(.\, t) 
1~0 

= lim ln( e-Y92(T) Et,>, [e- J;T Aao+sdsl + ftT e/91 (s) Et,A [Aao+se- J;' Aao+udu]ds) 

I 

- l" e-Y92(T)g2(T)Et,.A[e- .It Aao+sds] + ftT e/91(s)91 (s )Et,.A[Aao+se- .I/ Aao+udu]ds 
-	 lm ·T T ·s 

el'92(T) Eu [e- .It Aao+sds] + ft e-Y91(s) Et,A [Aao+se- .ft Aao+udu]ds 

= 	92(T)Et,.A[e- .Jt Aao+sds] + iT 91 (s )Et,.A[Aao+se- .// Aao+udu]ds = Et,.A[B] 

We conclude our analysis by numerically illustrating the some of the 

analytical results obtained so far. We implement the indifference premium 

for endowment insurances, pure endowments and term life insurances, corre­

sponding to an American male policyholder, aged 45 years and born in 1900. 

We model his force of mortality by the affine process (1.51), where the model's 

parameters are given by (1.61). Consequently, the survival probabilities can 

be calculated directly via (1.60), avoiding the use of Monte-Carlo methods. 

Also, this leads to an efficient computation of the premiums. 

We consider endowment insurances, pure endowments and term life 
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insurances, with discounted benefits as follows 

if T < T 
BPEnd = { O (3.15) 

if T?: T Ge-rT if T ?: T. 

TL { ce-rT if T < T
B = (3.16) 

0 if T?: T. 

In our first experiment, we illustrate the dependence of the premiums on the 

time to maturity for several risk aversion parameters. We consider that G = 

10, r = 0.06, T varies between 10 and 20 years and that the insurer's risk 

aversion takes the values / = 0, / = 0.05 and / = 0.1. 

Endowment Insurance Pure Endowment Insurance 

5.5 

!§ 5 

E 
~ 

a_ 
4.5 

3.5~~-~-~-~-

4.5 

!§ 4 

E 
£ 3.5 

2.5 

2~~-~-~-~-

10 12 14 16 18 20 10 12 14 16 18 20 
T 

Term Life Insurance 

1.8 L;B 

1.6 

5 1.4 

E 
~ 
C..1.2 / 

1 // 

0.8/ 
10 12 14 16 18 20 

Figure 3.1: Lump-sum premium for a constant benefit endowment insurance, 
pure endowment and term life insurance, as a function of time to maturity, for 
different risk aversion parameters. 
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Notice from Figure 3.1 that the premium for endowment insurances 

and pure endowments decreases as the maturity time increases. For pure 

endowment insurances, that is due to the fact that the survival probabilities 

decrease as maturity increases. The same argument explains the behavior of 

the premium for endowment insurances, since for young adults, as in our case, 

the pure endowment component is dominant. On the other hand, for term life 

insurances the premium increases as maturity increases and that is because the 

probability of death increases with maturity. Then, as expected, observe that 

as the insurer's risk aversion increases, the premium for all contracts increases. 

Recall that we proved that the indifference premium for endowment in­

surance is smaller than the sum of the indifference premiums for pure endow­

ment insurance and term life insurance. Below, we demonstrate numerically 

this fact for an insurer with risk aversion parameter / = 0.05. All the other 

parameters are the same as in the preceding numerical experiment. 

-P..,.,,,urnEndowm&l'llnsufl'nce 

PremMnPureEndaw,..,m1nsurance+Prem<umTemiL1felnsutanoe 

55 

45 

12 14 18 20 

Figure 3.2: Comparison between the lump-sum premium for a constant benefit 
endowment insurance and the sum of the premiums for a constant benefit pure 
endowment and term life insurance. 
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3.1.2 Continuous premium 

In what follows, we calculate the continuous premium rate for the insurance 

contract with benefit B defined by (3.2) . We assume that this premium rate 

is set when the insurance contract is signed and remains unchanged during the 

life of the policy. In this case, we define the value function of the insurer with 

the insurance risk as follows 

uB (x, A, t; hB) =sup E[U(Xr - 92(T)l{oT})IXt = x, Aa0 +t =A] (3.17) 
KEA 

where hB(A, t) denotes the premium rate at time t. Here, the discounted 

wealth process has the dynamics 

dXs = ((µ - r)7rs + hBe-rs)ds + CT7rsdWs if t < s < T 

dXs = 7r8 ((µ - r)ds + crdWs) if T < s < T 
(3.18) 

Xr+ = Xr- - 91(T) if T < T. 

Applying Bellman's principle of dynamic programming and Ito's lemma, we 

obtain that uB solves the HJB equation 

uB(x, A, T) = U(x - 92(T)) 

(3.19) 

Following arguments similar to those applied in the lump-sum premium case, 

we obtain that the value function is given by uB(x, A, t) = u0 (x, t)l(,\, t; hB), 
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where l satisfies the linear partial differential equation 

lt - 1hBle-rt + µ.>->.h, + ~k>.)2l;..;.. + >.(e/g1(t) - l) = 0 
(3.20)

{ l(>., T) = e192 (T) 

Therefore, l can be calculated via Feynman-Kac formula, as follows 

!(>., t; hB) = e/g2(T)-1.ft hBe-r 8 ds Et,>.[e-J;T Aao+udul 

+ iT el91(s)-1.Jt hBcrudu Et,>.[>-se-It' Aao+udu]ds 

= e'g2(T)-1J;T hBe-rsdsp(ao, t, T) + iT el91(s)-1./t hBe-rududq(ao, t, s) 

= Eu[e'B-1H], 

where H is a random variable denoting the total discounted premium paid 

during the life of the policy. H is defined as follows 

(3.21) 

1 
Now, we introduce the function V(>.,t;hB) = -lnl(>.,t;hB). Let us 

I 
give an intuitive description of V. For this, following Bowers, Gerber, Hick­

man, Jones & Nesbit (1997), we define the concept of benefit reserve. 

Definition 3.1.1. Suppose that an insurer assumes an insurance risk at a 

certain time t. The benefit reserve at time s ~ t is the amount V (s) that 

makes the insurer indifferent between continuing with the risk while receiving 

the premium and paying the amount V (s) to a reinsurer to assume the risk. 
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In other words, the reserve at time s ~ t is such that 

(3.22) 

It is straightforward to verify that V().ao+s, s; hB) satisfies equation (3.22). 

Therefore, from now on we refer to V(Aa0 +8 , s; hB) as the benefit reserve at 

times. 

The indifference premium rate hB ()., t) is such that the insurer at time 

t is indifferent between accepting or not accepting the insurance risk, that is 

(3.23) 

Accordingly, hB is given implicitly by the equation 

(3.24) 

or in terms of the benefit reserve, the premium rate is such that V()., t; hB) = 0. 

So, the indifference premium rate is such that the benefit reserve has 

zero value at the moment of writing the insurance contract. However, over 

time, due to changes in the policyholder's mortality, the premium rate might 

not coincide with the prevailing indifference premium rate and consequently 

the benefit reserve will no longer be zero. 

In particular, for the claims BEnd, BPEnd and BTL, the corresponding 

premium rates, denoted by hEnd, hPEnd and hTL respectively, are such that 
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.!.1n(el92(T)-1hPEnd ./~T e-rsdsp(ao, t, T) + JT e-1hPEnd .It e-rududq(ao, t, s)) = 0 
I t 

.!.1n(e-1hTL .ftT e-rsdsp(ao, t, T) + JT e1gi(s)-1hTL Jt e-rududq(ao, t, s)) = 0. 

I t 


Remarks 3.1.2. 

• Multiplying (3.24) by -e-1x, leads to 

U(x) = Et.-'[U(x + H - B)] (3.25) 

Notice that (3.25) is nothing more than the principle of equivalent util­

ity, modified in order to incorporate the continuous premium and the 

stochastic mortality assumptions. 

• Observe that 

Taking into account that l(>-., t; h8 
) = 1, after some calculations, we 

obtain 

(3.26) 

and now, we recognize in the right hand side of (3.26) the lump-sum 

premium for the insurance contract with benefit B at time t. 

Accordingly, if the insurance contract has one year maturity, the con­

tinuous premium rate is greater than the lump-sum premium. That is 

expected because in the case of continuous premium, the insurer receives 
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the premium for a random period of time, contrary to the case of lump 

sum premium. Thus, the insurer in the former case takes more risk than 

in the latter and this fact will be reflected by the premiums. 

• 	 We showed that 

(3.27) 

Dividing by/ and taking the limit as/ goes to 0 in (3.27), leads to 

Et,>JB - HJ= 0. 	 (3.28) 

Therefore, we have 

Eu[B] - h3 1T e-rsp(ao, t, T) -1T is h3 e-rudu dq(ao, t, s) = 0. 

(3.29) 

After some calculations, we obtain that for a risk neutral insurer, the 

continuous premium rate is given by 

hB = Et,>,[BJ (3.30)
ftT e-rsp(ao,t,s)ds. 

• 	 We would like to point out that a similar analysis applies to a more 

complex choice of the premium, such as a time dependent premium 

h(s; .A, t) = h0 (s; t)h(.A, t), where h(.A, t) is the premium set at the initial 

time t and h0 (s; t) is a "ramp-up" premium factor. 

Next, we consider the same cohort of individuals as in the preceding 

subsection and implement the indifference premium rate for endowment insur­

ances, pure endowments and term life insurances with benefits given by (3.15) 
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and (3.16) respectively, when the time to maturity varies between 10 and 20 

years, r = 0.06 and for three choices of the insurer's risk aversion parameter 

'I= 0, 'I= 0.05 and 'I= 0.1. 

Parallel to the results obtained in the lump sum premium case, observe 

from Figure 3.3 that as the time to maturity increases, the premium rates for 

endowment insurances and pure endowment insurances increase, while the pre­

mium rate for term life insurances decreases. Also, as expected, the premium 

rate is an increasing function of the risk aversion parameter 'I· 

Endowment Insurance 	 Pure Endowment Insurance 
0.7 

11 

0 91 	
0.65 

0.61 ~5 1 
I 

0.8k, 	 0.551 
~ 0.50.7 ... 	 j 

... -~ 0.45 

0.6 J ~ 
E 

04 

0.35 
0 5r -"~~ 1 

a. 

0.3 

04L ~~ 0.25 

0.2 

--,=O 
y=0.05 

r-0.1 

10 12 14 16 18 20 10 12 14 16 18 20 
T T 

Term Life Insurance 

0.2~~1· 
0.19 	 --,=o 


r--0.os 

0.18 	 r-0.1 

0.17 	 1 

I~:~~'. /////11.
0.12 ~ 

0.11 	 1 
o.1~-~-~-~-~--'-

10 12 14 16 18 20
T 

Figure 3.3: Indifference premmm rate for a constant benefit endowment in­
surance, pure endowment and term life insurance for different risk aversion 
parameters. 
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3.2 	 Indifference premium in the individual risk 

model 

In this 	section, we examine the pricing of life insurance risks described by 

(3.2) under the assumption that the insurer pools together a certain numbers 

of such risks. Concretely, we consider a portfolio consisting of n policies cor­

responding to a cohort of individuals aged a0 at time 0 and having their force 

of mortality given by (3.3). Further, we model the losses on this portfolio 

using an individual risk model. In this context, in what follows, we apply the 

indifference valuation approach and calculate the lump-sum premium and the 

continuous premium rate for the insurance contracts mentioned above. 

3.2.1 	 Lump-sum premium 

Assume that at time t = 0, the insurer sells life insurance contracts with 

discounted benefit given by (3.2) to a cohort of individuals and that at a 

certain time t E [O, T), k individuals from the initial cohort are still alive. 

Then, the value function of the insurer is given by 

u(k)(x, >., t) =sup E[U(Xr - Cr ))Xt = x, Aa0 +t = >.], (3.31) 
KEA 

where the discounted wealth process satisfies the stochastic differential equa­

tion 

(3.32) 
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Here Ti, i = 1 ... k denote the times of death of the policyholders. vVe assume 

that these times of death are not necessarily distinct. Consequently, we choose 

to denote by C7 i the total discounted claim at time Ti < T, and not just the 

loss on the ith policy. Then, we denote by Cr the total discounted claim upon 

survival at time T. 

Alternatively, the discounted wealth dynamics can be written as 

dXs = 1rs ((µ - r)ds + O"dWs) - dLs 
(3.33)

{ Xt = x 

Here Ls, s E (t, T) denotes the total loss on the insurer's portfolio on the time 

interval [t, s) and we model it as follows 

k 

Ls= L91(Ti)l{T;<s\T;>t}· (3.34) 
i=l 

Consequently, the total discounted claim at a certain time Ti < T can be 

written as 

(3.35) 

Then, we model the total discounted claim at maturity by 

k 

Cr= 92(T) L l{T;>rlT;>t}· (3.36) 
i=l 
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It follows that the HJB equation for u(k) is 

For k 2: 1 

u~k) + max7rEA[(µ - r)7ruik) + 1CT27r2ui-;I] + µ>.>.uik) + 1(CT>.) 2ui~ 
+k>. (u(k-ll(x - g1(t), >., t) - u(kl(x, >., t)) = 0 

u(kl(x, >., T) = U(x - kg2(T) ). 

(3.37) 

Assume that the solution of (3.37) is concave in wealth. Then, the maximum 

in (3.37) is well defined and attained at 

(3.38) 


Inserting the the expression of 7r; in the HJB equation for u(k), we obtain 

For k 2: 1 
2 ( (k))2(k)_~ µ-r Ux + >.).. (k)+~( >.) 2 (k)

Ut ( CT ) (k) µ U).. 2 CT U )..)..2 Uxx 

+k>. (u(k-Il(x - g1 (t), >., t) - u(kl(x, t)) = 0 

u(kl(x, >., T) = U(x - kg2(T)). 

(3.39) 

Due to the assumption of exponential utility, we consider an ansiitz of the form 

(3.40) 


Inserting the ansiitz in (3.39), after some straightforward calculations, it fol­
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lows that J(k) solves the linear partial differential equation 

J?) + µ>->.JY) + ~(a>-)2 Ji~)+ k>. (e'Ygi(t) J(k-l) _ J(k)) = 0 
(3.41) 

{ J(kl(>., T) = e'Ykg2(T) 

with J(o) = 1. Applying the Feynman-Kac formula, we obtain that 

f(k)(>., t) = e'Ykg2(T) Et,>.[e-k.f~T Aao+udul 

+ k iT e')'g1(s) Eu[e-k.f/ Aao+udu Aao+sf(k-l)(Aao+s, s)]ds, 
t 

which implies that J(k) can be calculated recursively. 

Let p(k) denote the indifference premium fork insurance contracts with 

discounted benefit given by (3.2). p(k) solves the equation 

u 0(x, t) = u(k)(x + p(k), >., t). (3.42) 

It follows that p(kl(>., t) is given by 

p(k)(>., t) = ~ lnf(kl(>., t). (3.43) 
I 

Notice that the premium can be found by solving k recursively defined linear 

partial differential equations or alternatively by calculating the functions J(k) 

via a Monte-Carlo method. 

Next, we determine the premium corresponding to a risk neutral in­

surer. First, let us write the equation for the premium p(k). This equation 
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can be obtained from (3.41) and is as follows 

Pt)+ µ>-;..p?l + t(0">.)2 P1~) + l1(0">.)2(P1k))2 

+ ~).. (el91(t)+-yP(k-1J_1p(k) - 1) = Q 

(3.44) 

As the insurer's risk aversion / approaches zero, (3.44) becomes 

pt(k) + µ>->..p1k) + t(0">-) 2 P1~l + k>.. (g1(t) + p(k-l) - p(kl) = 0 
(3.45)

{ p(kl(>.., T) = kg2(T) 

We expect that the solution of (3.45) is the net premmm, that is 

Et,>.[kB]. Next, we show that this is indeed the case. 

First, observe that Eu[kBJ = kP1(>.., t) + kP2(>.., t). Here, P 1 and P2 

are the premiums corresponding to a risk neutral insurer for a pure endow­

ment insurance and a term life insurance with discounted benefits given by 

BPEnd and BTL respectively, as calculated in a single life insurance model. 

Consequently, P 1 and P 2 satisfy the equations 

pl + µ>-)..pl + ~ (0">.)2pl - )..pl - 0t >. 2 >.>. ­

{ P 1 (>.., T) = 92(T) 

P? + µ>->..P] + "2(0">-) 2P];.. + >..(g1(t) - P2) = 0{ 
1 

P2(>.., T) = 0. 

Accordingly, P(>.., t; k) := kP1(>.., t) + kP2(>.., t) solves the partial differential 
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equation 

Pt+ /L>..)..p>.. + ~(cr>..) 2 P>..>.. + k>. (g1(t) - P 2 - P 1) = 0 

{ P 2 (>., T) = 0. 

P 2But, -P1 - = P(>., t; k - 1) - P(>., t; k). Thus, p(kl(>.., t; / = 0) coincide 

with P(>., t; k) = E1,>..[kB] by uniqueness. 

At this point, it is interesting to analyze the pricing of the life insurance 

contracts considered above, assuming deterministic force of mortality. In this 

situation, the value function u(k) is given by (3.31) and (3.32) or (3.33) elim­

inating the dependence of the parameter >.. In fact, given the deterministic 

nature of the force of mortality, the lambda dependence of the value function, 

here is built into the variable t. So the problem that we are going to analyze 

below is different of the pricing problem under stochastic force of mortality 

when the volatility parameter er approaches 0. 

In this case, the corresponding HJB equation can be obtained from 

(3.37), removing the).. dependence. Accordingly, we have 

For k ;::::: 1 

u~k) + maxrr[(µ - r)1ru1k) + ~CT2 7r2 u1~J 

+k>.(a0 + t) (u(k- 1l(x - g1(t), t) - u(kl(x, t)) = 0 

u(kl(x, T) = U(:c - kg2(T)). 

(3.46) 

In this case, one can show that 

(3.47) 
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where Jo 	satisfies the equation 

J6 + .X(ao + t)(er9i(t) - Jo)= 0 
(3.48)

{ Jo(T) = er92(T). 

Solving (3.48), leads to 

l
Jo(t) = e'g2(T)e- It >.(ao+u)du + JT er91(s) .\(ao + 8)e-1/ >.(ao+u)duds 


T 

_ 1g2(T) 1g1(s) 	 _ rB 
-e T-tPao+t+ t e .X(ao+s)s-tPao+tds-E[e ]. (3.49) 

Therefore, under the assumption of deterministic mortality, the premium for 

k life-insurance contracts with discounted benefit B, p(kl(t) is given by 

p(kl(t) = 	 -
k 

ln J0(t) = -
k 

ln E[e'8 
], (3.50)

I I 

while the premium per risk coincides with the premium corresponding to a 

single life-insurance contract of benefit B, that is 

(3.51) 

Indifference pricing is generally a non-additive pricing rule but notice 

that in the present case, p(k) acts as an additive function of k. Consequently, 

the premium per risk, (~p(k)) is a constant sequence. In contrast, these 
k k2':l 

two characteristics are not met by the indifference premium when assuming 

random mortality. Following Ludkovski & Young (2008) we show that in fact, 

in this context, the premium per risk for the insurance contracts analyzed 

above is an increasing sequence and the indifference price Pik) is a super­
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additive function of k. An important ingredient for proving this result is the 

theorem 3.2.1 below. Essentially, this theorem acts as comparison principle 

for parabolic PDEs on infinite domains and is a consequence of a more general 

result from Walter (1970), chapter 28. 

First, we consider the notations D = (0, oo) x [O, T] and D = C(D) n 

c2,1(D). 

Theorem 3.2.1. Let£ a differential operator on D defined by 

1 ,\ 2
.Lv =Vt+ 2(a ) V,x,x + H(>-., t, v, v,x) (3.52) 

where H satisfies the conditions: for v > w 

H(>-., t, v, y) - H(>-., t, w, z) ::::; c(>-., t)(v - w) + d(>-., t)Jy - zl (3.53) 

with the functions c and d such that 

0 ::::; c(>-., t) ::::; K(l + >-.2 ) 

Jd(>-., t)J ::::; K(l + >-.) (3.54) 

for some K 2'. 0 and for all(>-., t) E D. 

Suppose that v, w E D satisfy the inequalities 

v(>-., t) ::::; eK>. 
2 

and w 2'. -eK>. 
2 

for large>-.. 

If .Lv 2'. .Lw on D and if v(>-., T) ::::; w(>-., T) for all>-.> 0, then v ::::; w on D. 
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Proposition 3.2.1. Under stochastic force of mortality, the price per risk 

(~Pj;)) , is an increasing sequence. 
k k~l 

Proof. We have to show that 

- 1 
-P(k-l)(>. t) < !p(k)(>. t) for Vk >_ 2. (3.55)k-lB '-kB'' 

This reduces to proving that 

(3.56) 

In what follows, we prove (3.56) by induction but first we need to consider 

several notations. For k 2 1, we define the operator 

1
,C(k)u(>., t) = Ut +µ>.AU>.+ 2(0">.)2u;..;.. + k>. (e1g1(t) f(k-1) - u) 

1 >. 2 (k)= Ut + 2(0" ) u;..;.. + H (>., t, u, u;..) (3.57) 

where H(kl(>., t, u, v) = µ>.>.v + k>. (e19i(t) f(k-l) - u). Then, according to 

(3.41), for every k 2 1 we have ,C(k) f(k) = 0. 

Next, we apply the theorem 3.2.1 above. Clearly, first we will show that 

the operator ,C(k) is as in the theorem just mentioned, that is H(kl(>., t, u, v) 

satisfies the conditions (3.53) and (3.54). 

For u1 > u 2 , we have 

Observe that c(>., t) = 0 and d(>., t) = µ>. >.. Clearly, 0 ::; d(>., t) = µ>.>. ::; 
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K(l + >.) where K is a constant such thatµ>- S K. Hence, the conditions of 


the theorem 3.2.1 hold true. 

Now, we show that (3.56) holds for k = 2, that is 

(3.58) 

First, recall that £(2)J(2) = 0. But on the other hand, 

Thus, £(2l(J(ll)2 2:: £(2)J(2) while (J(ll)2(>., T) = J(2l(>., T) and by the theorem 

mentioned above follows that (j(1l)2(>., t) s J(2l(>., t) for all (>., t) E D. 

Next, we assume that the inequality (3.56) holds for k - 2 and we will 

show that it also holds for k - 1, namely 

(3.60) 

We have 

£,(k)(J(k-l))k~i = k: (J(k-l))k~i (it(k-1) + µ>->.Jlk-I) + ~(cr>.)2Jl~-1)
1 

+(k-1)>. ((J(k-1J)tie'Yg1(t) _ f(k-1)))+~(cr>.)2 k (J(k-1))%=~ (J(k-1))2.
2 (k-1)2 >. 

But, (j(k-l)) ~=i 2:: J(k-2) (this is the inequality (3.56) fork - 2) and therefore 
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again theorem 3.2.1 we obtain that the inequality (3.60) is satisfied. 

Proposition 3.2.2. For every nonnegative integers k and l, 

p(k+l) > p(k) + pU)
B - B B 

Proof Applying proposition (3.2.1), leads to 

_l_p(k+l) > "!_p(k) _l_p(k+l) > "!_p(l)_ (3.61)
·k + l - k ' k + l - l 

Therefore, 

_k_p(k+t) > p(k) _z_p(k+l) > pU) (3.62)k+l B - B ' k+l B - B 

and adding the last two inequalities, we obtain the result. 

D 

Accordingly, when mortality behaves randomly, an insurer who will 

pool together a large number of insurance risks, trying to enforce the law of 

large numbers, actually increases his total risk. 

Intuitively, the super-additivity of the indifference premium with re­

spect to the number of policies sold can be explained as follows: while the 

mortality risks are independent conditional on knowing the cohort mortality, 

upon removing this latter assumption they may become dependent over time, 

linked by a common factor - for example a certain disease, certain natural 
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conditions, exposure to common social and economic factors, etc. Thus, es­

sentially a positive correlation between individual risks develops over time and 

this induce a systematic component within the mortality uncertainty of the 

individuals, causing the total risk to be more dangerous than the sum of the 

individual risks. 

In what follows, we perform several numerical experiments, considering 

the same cohort of individuals as in the numerical experiments from the first 

section of this chapter. Obviously, these numerical experiments regard the 

pricing of endowment insurances, pure endowments and term life insurances 

with discounted benefits given by (3.15) and (3.16) 

In our first experiment, we consider a portfolio consisting of k = 20 

policies and examine the dependence of the premium per risk on the time to 

maturity, for several choices of the risk aversion parameter/· We assume that 

G = 10, r = 0.06, T varies between 10 and 20 years and the risk avers10n 

parameter takes the values/= 0, / = 0.05 and/= 0.1. 

Notice from Figure 3.4 that consistent with our intuition, when the 

time to maturity increases, the premium per risk for endowments and pure 

endowments decreases while the premium for term life insurances increases. 

As expected, the plots resemble those for the lump sum premium in a single 

life insurance model. However, as already proved in proposition 3.2.1, the 

premiums per risk for all three types of insurance contracts are higher than 

the corresponding lump-sum premiums. 

Our second numerical experiment can be regarded as a numerical il­

lustration of 3.2.1. We calculate the premium per risk for the life insurance 

contracts mentioned above assuming that the the number of policies in in­
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Figure 3.4: Premium per risk in the individual risk model for a constant benefit 
endowment insurance, pure endowment and term life insurance as a function 
of the time to maturity, for several choices of the risk aversion parameter. 

surer's portfolio varies between 1 and 20 policies. Further, we consider T = 10 

years, G = 10 and r = 0.06. 
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Figure 3.5: Premium per risk in the individual risk model for a constant benefit 
endowment insurance, pure endowment and term life insurance as a function 
of the number of policies in the insurer's portfolio. 
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Observe from Figure 3.5 that for all insurance contracts, the premium 

per risk increases linearly as the number of policies increases. The increase 

in the premium per risk is very slow because of the very small value of the 

volatility a>.. However, observe that this increase is more pronounced for pure 

endowments and term life insurances than for endowment insurances. This 

fact might be explained by the following argument: endowments insurance 

contracts are contingent on both events - death before maturity and survival to 

maturity; thus, if some insurance risks become positively correlated over time, 

this correlation is balanced by the negative correlation between mortality and 

survival risk. On the other hand, for pure endowments and term life insurances 

this phenomena does not happen since these contracts are contingent on only 

one of the events mentioned above. 

3.2.2 Continuous premium 

We continue to investigate the pricing problem of market independent life-

insurance contracts with discounted benefits given by (3.2), but in contrast 

to the preceding subsection, here we assume that the premium is payable 

continuously. at a constant rate established when the insurance contracts are 

signed. As in the preceding subsection, we model the insurer's total loss using 

the individual risk model. Then, the value function of the insurer in the 

presence of insurance risks is given by 

u(k)(x, A., t; h(k)) =sup E[U(Xr - Cr )IXt = x, Aa
0
+t =A.], (3.63) 

KEA 

where h(kl(A., t) denotes the continuous rate per risk set at time t and which 

remains fixed over the life of all k policies. The discounted wealth process 
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follows the dynamics 

dXs = (7rs(µ - r) + Zsh(k)e-rs) ds + 0"1rsdWs, s =!=Ti 

Xt =x (3.64) 

where Z 8 represents the number of survivors at time s and Ti, i = 1 ... k 

the times of death of the policyholders. With regards to C7 ; and Cr, they 

represent as in the lump-sum premium case, the total claim at time Ti < T 

and the total claim upon survival to maturity time T. 

Applying Bellman's principle of dynamic programming and stochastic 

calculus, we obtain that u(k) solves the HJB equation 

For k 2 1, 

u~k) + maxrr[(µ - r)7ruik) + ~a27r2 ui~J + µ>->..uik) + ~(a>-) 2uW 
+ke-rth(kJuik) + k).. (u(k-l)(x - g1(t),>..,t) - u(kl(x,>..,t)) = 0 

u(kl(x, >.., T) = U(x - kg2(T)). 

(3.65) 

We look for a solution of the form 

(3.66) 


After some calculations, it follows that z(k) satisfies the linear partial differential 
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equation 

zikl - ike-rth(kJz(kJ + µ>.>.zik) + ~(a>.)2zW + k>.(e'gi(tJz(k-1) _ z(kl) = o 

{ z(k)(>., T) = e1kg2(T) 

(3.67) 

where z(o) = 0. Applying the Feynman-Kac formula, z(k) admits the represen­

tation 

z(k)(>., t) = e-1kg2(T)-1kJ;T h(k)e-r 8 ds Eu[e-k.f;T Aao+udul 

+ k JT e'gi(s)-1k.J/ h(k)e-rudu Eu[e-k 1;· Aao+udu Aao+sz(k-l)(Aao+s, s )]ds. 
t 

The indifference premium rate is defined by the equation 

(3.68) 

Inserting the ansatz (3.66) in equation (3.68), we obtain that h(k)(>., t) is given 

implicitly by the equation 

(3.69) 

The indifference premium rate can also be characterized using the con­

cept of benefit reserve defined in the preceding section. Let us define 

(3.70) 

It is straightforward to check that V(>.ao+s, s; h(kl), s ~ t satisfies equation 

(3.22). Therefore V(Aa0 +8 , s; h(k)) represents the benefit reserve at times ~ t. 
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Combining (3.70) and (3.69) we obtain that the indifference premium 

rate is such that V(>., t; h(k)) = 0. 

In particular, in the case of deterministic mortality intensity, it can be 

shown that 

u(k)(x, t; h(k)) = u0 (x, t)l~(t) (3.71) 

where l0 solves the equation 

lb - /e-rth(k)[o + >.(ao + t)(e'gi(t) - lo)= 0 
(3.72)

{ lo(T) = e'g2 (T). 

Then, 

The indifference premium equation implies that l0 (t) = 1 and thus h(k) 

is given implicitly by the equation 

Consequently, as one would expect in a deterministic setting for mortality, 

h(kl(t) coincides with the continuous premium rate in a single life insurance 

model. 

Remarks 3.2.1. 

• A similar analysis applies to market independent life insurance contracts 
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with benefits of the form (3.15) and (3.16) but with continuous pre­

miums that evolve according to some time dependent schedule, fixed 

in advanced. For example, the premium can be taken of the form 

fi(kl(s) = h(klp.., t)h0 (s, t), where h0 (s, t) is fixed in advance and h(kl(>.., t) 

is the factor to be calculated. 

• 	 As shown above, in a deterministic setting for mortality, the continuous 

premium rate is a constant function of k. 

• 	 In the case of stochastic mortality, the positive correlation that develops 

over time between policyholders'mortality suggests that the premium 

is an increasing function of k. However, since the premium is given 

implicitly via equations (3.69) and (3.67) we are not able to provide 

an analytical result regarding the increasing nature of the premium h(k) 

with respect to k, as we have shown in the case of lump-sum premium. 

Therefore, we numerically implement the premium and investigate its 

dependence on the number of policies sold. 

In this numerical experiment we consider endowments, pure endowments 

and term life insurances with benefits of the form (3.15) and (3.16), where 

G = 10, the time to maturity is T = 1 year, r = 0.06 and the insurer's 

Number of policies k 5 10 15 20 25 

Endowment 9.8844 9.9420 10.0002 10.0587 10.1178 
Pure endowment 9.7481 9.8058 9.864 9.9226 9.9817 

Term Life 0.136317 0.136327 0.1363369 0.136346 0.136356 

Table 3.1: Continuous premium rate for a constant benefit endowment, pure 
endowment and term life insurance in the individual risk model. 
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risk aversion is / = 0.1. 

Observe from Table 3.1 that the premium increases slowly and linearly 

for all contracts, as the number of policies k increases. 

• 	 The increasing nature of the premium with respect to the number of 

policies sold suggests that lapsation problem can be ignored. If eventu­

ally policyholders decide to walk away from the contract, this just makes 

things better for the insurer. 

We conclude this section by several remarks regarding premium calcu­

lation in the individual risk model. As already observed, the calculation of 

the premium (either lump-sum or continuous) requires solving a number of 

recursively defined linear partial differential equations equal to the number of 

policies in the insurer's portfolio. Typically, this number is very large and this 

makes the numerical calculation of the premium not feasible. Accordingly, it is 

desirable to find a loss model more efficient from the point of view of premium 

calculation. In what follows, we show that the collective risk model satisfies 

this requirement. 

3.3 	 Indifference premium in the collective risk 

model 

We consider the same cohort as in the preceding section, but here, we choose 

to model the number of deaths within the cohort via a Poisson process. Ob­

viously, the intensity of this Poisson process has the same nature as the poli­
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cyholders'mortality intensity. Accordingly, we model the number of deaths by 

an inhomogeneous Poisson process when policyholders'mortality is assumed 

deterministic, while when assumed stochastic, we consider a doubly stochastic 

Poisson process. 

Let us assume that at time t = 0, the cohort consists of m individ­

uals, where m has a very large value. Further, assume that the insurer has 

the opportunity to sell to all these individuals life insurance contracts with 

discounted benefits of the form (3.2). The insurer is faced with the pricing 

problem of these claims. Next, we analyze the insurer's problem, assuming 

that the policyholders'mortality evolves randomly in time. 

Let us denote by (Ns)os,ss,T a doubly stochastic Poisson process of in­

tensity Tlao+s which counts the number of deaths from time 0 up to time s. 

That is, conditionally on any particular trajectory u---> Tlao+u, u E [O, s], (Ns) 

is an inhomogeneous Poisson process with parameter J; rJao+udu. Here, we 

assume that the intensity rJao+s satisfies the stochastic differential equation 

(3.73) 

Next, we model the aggregate loss on the time interval [O, s ), s E [O, T], 

as follows 
Ns 

L~oll = Y1 + Y2 + · · · + YNs = L91(Ti) (3. 74) 
i=l 

where Yi = 91 (Ti) and Ti denote the ith claim to occur and the arrival time of 

this claim, respectively. 
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3.3.1 Lump-sum premium 

We define the value function of the insurer in the presence of insurance risks 

as follows 

u(x, r;, n, t; m) =sup E[U(Xr - (m - Nr )g2(T))!Xt = x, 'r/ao+t = r;, Nt = n],
7rEA 

(3.75) 

where the discounted wealth process has the dynamics 

dXs = 7r8 ((µ - r)ds + O"dW8 ) - dL~oll 
(3.76) 

{ Xt =x. 

We implicitly assume that the size of cohort at any time 0 ::::; t ::::; T is very 

large. Then, the corresponding HJB equation for u is 

1 2 2 J 1( 2
Ut + max7rEA [(µ - r )7rUx + 20" 7r Uxx + µrtr;urt + 2 O"rt) UT/T/ 

+r; (u(x - g1 (t), r;, n + 1, t) - u(x, r;, n, t)) = 0 

u(x, r;, n, T; m) = U(x - (m - n)g2(T)). 
(3.77) 

Next, assume that Uxx < 0. Then, the maximum m (3.77) is well 

defined and attained at 

* µ - r Ux 
'fft = ---2---. (3.78)

O" Uxx 

We assume an ansatz of the form u(x, r;, n, t; m) = u0 (x, t)F(ry, n, t; m). Insert­

ing the expression of 7r; and of the ansatz in (3.77), we obtain that F satisfies 
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the partial differential equation 

Ft+ µ"lT]F,,, + ~ (o-"1) 2 F,,,,,, + TJ (F(TJ, n + 1, t; m)e'Y9i(t) - F(TJ, n, t; m)) = 0 

{ F(TJ, n, T; m) = e'Y(m-n)g2 (T). 

(3.79) 

Straightforward calculations lead to 

t . ) = -y(m-n)g2(T)E [ .ftT 'f/ao+s(e'Y91(s)--r92(T)_1)ds]F( rJ,n.. ,rn e t.,,,e . (3.80) 

Consequently, by the Verification Theorem, the ansatz is the unique smooth 

solution of (3. 77) and coincides with the value function of the problem. 

Next, the indifference premium satisfies the equation 

u0 (x, t) = u(x +PB, T], n, t; m). (3.81) 

Inserting the expression of the value function m (3.81), it follows that the 

premium is given by 

1 [ r·T ( 'Y91(s)--rg2(T) l)d8 lPB(TJ, n, t; m) = (m - n)g2 (T) + - ln Et.rye· t 'T/ao+s e - • (3.82) 
I 

At this point, recall that in the individual risk model, the insurer's pricing 

problem requires solving a system of k = m - n linear partial differential 

equations. On the other hand, observe from (3.80) that in the collective risk 

model, the insurer has to solve only one partial differential equation. Accord­

ingly, the collective risk model offers a huge advantage in terms of tractability 

and computation time. 

So far, we have examined the pricing of a life insurance contracts with 
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general benefi t of t he form (3. 2). However , observe that for term life insur­

ances, we have an essent ial difference. In this case, the insurer at any point 

in t ime does not need to know t he number of deaths; he just pays the claims 

as t hey arrive. That is because the Poisson process, contrary to t he Binomial, 

does not need information about t he number of deaths. 

Accordingly, the value function corresponding to a term life insurance 

contract is given by (3.75) but removing t he dependence of t he number of 

deaths random variable. Then , it follows that t he function F (TJ , t) satisfies t he 

linear differential equation 

F, + µ"ry~, + ~ (" ")2F,, + ryF(ry , t) (e°'' itl ~ 1) = 0 
(3.83) 

{ F (TJ , T ) - 1. 

By the Feynman-Kac formula, F (TJ , t ) is given by 

(3.84) 

Naturally. this equation is exactly (3.80) when g2 = 0. 

For deterministic mortality intensity, as we have already mentioned , we 

model t he number of deaths by t ime s by an inhomogeneous Poisson process 

(Ns) o-s.s-S.T with intensity TJ (a0 + s). In this case, t he insurer investment prob­

lem can be obtained from (3. 75) removing the dependence on the mortality 

intensity. Accordingly, the value function can be written as 

u(x, n , t ; m ) = u0 (x, t )F0 (n , t; m) (3. 85) 
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where F0 (n,t;m) is given by 

L' ( t· ) _ 'Y(m-n)g2(T)+Jt 17(ao+s)(e-Y91(sJ--rg2(TJ_1)dsro n, ,m - e . (3.86) 

Therefore, the indifference premium at time t = 0 is given by 

PB(n = 0, t = O; m) = mg2 (T) + _!_ 1T ry(a0 + s)(e'Ygi(s)-'Y9z(T) - l)ds. (3.87) 
I o 

In this case, the mortality intensity ry( a0 + s) such that the expected 

number of deaths from time t = 0 up to any time s < T is the same in the 

individual and collective model. This implies that 

(3.88) 

Accordingly, the indifference premium can be written as 

and consequently the premium per risk is constant. At this point, observe 

that the premium obtained is greater than the corresponding one from the 

individual model since 

3.3.2 Continuous premium 

We continue to examine the pricing problem from the preceding subsection, 

but here we assume a continuous premium rate h that remains constant over 
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time. This rate is set when the insurance contracts are written and applies to 

the whole cohort of policyholders. 

We define the value function of the insurer in the presence of insurance 

risks as follows 

u(x, TJ, n, t; m) =sup E[U(Xr - (m - Nr)92(T))IXt = x, T/ao+t = TJ, Nt = n],
7rEA 

(3.89) 

Here, the discounted wealth process follows the dynamics 

dXs = ( (µ - r )7rs +he-rs) ds + 0"7r8 dWs - dL~0ll 
{ Xt =x. 

Observe from the wealth dynamics that we implicitly consider that 

the premium rate h will be payed until the maturity of the contracts. This, 

essentially is a consequence of the assumption that the size of the cohort at 

any time 0 ::; t ::; T is very large. 

It follows that u solves the HJB equation 

Ut + max7r[(µ - r)7rux + ~0"2 7r2 Uxx] + he-rtUx + µT/T}UT/ + ~(O"Tl) 2 uT/T/ 
+TJ (u(x - g1(t), TJ, n + 1, t) - u(x, TJ, n, t)) = 0. 

u(x, TJ, n, T; m) = U(x - (m - n)g2(T)) 

(3.90) 

Assuming an ansiitz of the form u(x, TJ, n, t; m) = u0 (x, t)G(TJ, n, t; m), it fol­
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lows that G(TJ, n. t; m) satisfies the partial differential equation 

Gt+ µ'1TJGT/ + ~(o-T1)2GT/T/ - 1he-rtc + TJ(G(TJ, n + 1, t)e191 (t) - G(TJ, n, t)) = 0 

{ G(TJ, n, T; m) = e1(m-n)g2(T). 

(3.91) 

Solving (3.91) with respect to G, leads to 

The indifference premium rate is such that the insurer is indifferent 

between accepting or not accepting the insurance risks, that is 

u0 (x, t) = u(x, TJ, n, t; m). 	 (3.93) 

This implies that G(TJ, n, t; m) = 1. Accordingly, the premium rate is given by 

Thus, as expected, the total discounted premium payed coincides with the 

lump sum premium of the claims. 

Remarks 3.3.1. 

• 	 Since in this case the premium rate for the whole cohort is set at the 

time of writing the contracts and remains constant for the life of the 

policies, it follows that the corresponding premium per risk will increase 

over time as the policyholders die. So, the premium per risk here has a 

different nature than in the individual risk model. 
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• 	 An alternative idea regarding premium modeling would be to consider 

the following choice for the premium rate: h.(s) = h(>.., t)(m - N8 )e-rs. 

Here h(>.., t) denotes the premium per risk set at the time t and it is 

assumed constant for the life of the policies. With this choice the nature 

of the premium per risk and of the premium rate is similar to the nature 

of the corresponding premiums in the individual risk model. 
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Chapter 4 

Utility Indifference Pricing of 

Equity-Linked Term Life 

Insurance 

Given their resemblance with financial options, it is no surprise that the first 

method used for valuation and hedging of equity-linked life insurance was a 

financial one. As mentioned in chapter 1, this method was introduced by 

Brennan & Schwartz (1976) and Boyle & Schwartz (1977) and essentially it is 

based on the Black-Scholes and Merton theory. The crucial assumption of this 

approach is that the mortality risk is diversifiable, that is by selling a large 

number of life insurance contracts, the insurer mortality exposure approaches 

zero. However, we learned from Milevky, Promislow & Young (2006) that if 

an insurer tries to sell more and more policies hoping to reach the concept of 

large mentioned above and if policyholder's mortality behaves stochastically, 

contrary to his expectation, the insurer's total exposure may even increase. 

Accordingly, it is desirable to use an approach that explicitly recognizes the 
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mortality risk instead of assuming that it is diversifiable. As we already know, 

the utility indifference approach satisfies this requirement. 

The first to apply the utility indifference approach for pricing and hedg­

ing equity-linked life insurance were Young (2003) and Moore & Young (2003). 

These were essential contributions to the problem of pricing equity-linked life 

products. They show that in a Black-Scholes market model and under deter­

ministic mortality, the lump sum premium for a single life satisfies a non-linear 

partial differential equation similar to the Black-Scholes equation, except for 

a nonlinear term that reflects the mortality risk. Jaimungal & Young (2005) 

generalize the work of Moore & Young (2003) to a more realistic market model, 

where the stock price is modeled via a Levy process. They obtain that the 

lump sum premium in a single life insurance model incorporates a significant 

correction in comparison to the one generated in the Black-Scholes market 

model. Another interesting work in the same area was done by Jaimungal 

& Nayak (2006). They consider equity-linked losses that continually arrive 

at Poisson times and examine within the same framework the valuation of 

equity-linked life insurance and reinsurance contracts. 

Our contribution to the area of utility based pricing and hedging of 

equity-linked term life insurance consists of extending the results of Young 

(2003) to group benefits, by embedding the individual and collective risk 

model. Moreover, we study the problem of finding both the lump-sum and 

continuous premium in all models considered and provide numerical schemes 

for calculating these premiums. 

We start with the same financial market model as in chapter 3 and 

consider equity-linked term life insurance contracts with discounted benefit as 
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follows 

B = { g(ST, T) if T < T 
(4.1) 

0 if T ;:::: T. 

where, g is a positive bounded function on [O, oo) x [O, T] and T denotes the 

policyholder's time of death. In contrast to the preceding chapter, here we 

adopt a deterministic mortality model. 

4.1 A single life insurance model 

Below we examine the pricing and hedging of the insurance contract with 

benefit B via the utility indifference approach in a single life insurance model, 

following Young (2003). 

4.1.1 Lump-sum premium 

\Ve consider a life insurance model consisting of a single life aged a0 at time 

0 and assume that (a0 ) is willing to buy an equity-linked term life insurance 

with benefit given by (5.3). If the insurer accepts to write this claim, the 

insurer's value function is defined by 

uB(x, S, t) =sup E[U(Xr)!Xt = x, St= SJ (4.2) 
7rEA 

where Xt denotes the discounted wealth with dynamics given by 

dX8 = 1f8 ((µ - r)ds + adWs), s-/ T 

(4.3) 

Xt = x. 
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Applying Bellman's principle of dynamic programming and stochastic 

calculus arguments, u8 satisfies the HJB equation 

1 18 8 8u +max [(µ - r)Iru 8 + -CJ
2Ir2u + CJ 

2IrSu8
] + -CJ

2S2u + (µ - r)Su 8 
t · 7r x 2 xx xS 2 SS S 

+A(a0 + t) (u0 (x - g(S, t), S, t) - u8 (x, S, t)) = 0 

u8 (x, S, T) = U(x). 

(4.4) 

Now, we consider an ansiitz of a solution to the HJB equation of the 

form 

u8 (x, S, t) = u0(x, t)e<P(S,t). (4.5) 

Observe that u~x < 0 and therefore u8 is concave in wealth. This implies that 

the maximum in equation ( 4.4) is well defined and can be specified by the first 

order necessary condition, as follows 

* µ - r </>s
Ir (x, S, t) = -- + -S. (4.6) 

/CT 2 I 

Inserting the ansatz and the expression of 7r* in the HJB equation, leads 

to 

1'1 + ~<7~2\bss + A(ao + t)(c"(S/H - !) ~ 0 
(4.7) 

{ </>( S, T) - 0. 

For well behaved benefit function g, equation ( 4. 7) has a smooth solution. 

Accordingly, by the Verification Theorem, the ansatz proposed coincides with 

the value function. Also, the Verification Theorem implies that the optimal 

control policy can be specified by the first order condition in ( 4.4). Remark 

that the optimal policy is wealth independent and is given by the optimal 

policy in the Merton problem plus the amount ¢s S. Recall that the optimal 
I 
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policy in the Merton problem represents the optimal amount to be invested 

in the stock in the absence of insurance risks. Thus, </>s can be interpreted as 
I 

the optima1 number of shares to be invested in the stock due to accepting the 

insurance risk. In what follows we refer to this amount as the optimal excess 

hedge and we will show that in fact this is analogous to the Black-Scholes delta 

hedge. 

The indifference premium for the term life insurance contract satisfies 

the equation 

u 0 (x, t) = u 8 (x + P, S, t). (4.8) 

Straightforward calculations lead to 

1 
P(S, t) = -</>. ( 4.9) 

I 

Thus, the indifference premium solves the nonlinear second order partial dif­

ferential equation 

Pt+ ~0"252Pss - -\(ao + t) (1- e-r(P-g(S,t))) = 0 
2 I (4.10)

{ P(S, T) = 0. 

Observe that the first two terms of equation ( 4.10) represent the discounted 

version of the Black-Scholes equation and they reflect the financial risk em­

bedded in the benefit. On the other hand, the last term reflects the mortality 

risk and the risk preferences of the insurer. 

At this point, notice that the optimal excess hedge e*(S, t) can be writ­

ten as 

e*(S, t) = Ps(S, t) (4.11) 
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and indeed, e*(S, t) is analogous to the Black-Scholes delta hedge. 

Further, if the insurer risk aversion goes to zero, the premium equation 

becomes 

P, + ~o-2~2 Pss + >.(a0 + l)(g(S,l) - P) ~ 0 
(4.12) 

{ P(S, T) - 0. 

Using the Feynman-Kac formula, we obtain that 

P(S, t) = iT E~8 [g(S8 , s)J>.(a0+ s)e-.ft >.(ao+u)duds 

= iT E~8 [g(Ss, s)]ds-tqao+t = E[E~s[B]]. 

Here the risk neutral measure Q is given by 

(4.13) 

Under this measure the dynamics of the stock price process is as follows 

µ-r
with W;2 = W8 + --s. 

er 

Accordingly, the premium for a risk-neutral insurer coincides with the 

premium calculated using the Brennan & Schwartz (1976) approach. Similarly, 

the optimal excess hedge for a risk neutral insurer is given by the Brennan and 

Schwartz hedge. 

In what follows, we implement the lump-sum premium for the term life in­
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surance contract considered, assuming a benefit function g(St, t) of the form 

G1e-r1, if St<G1e-rt 

g(St, t) = St, if G1e-rt ::; St ::; G2e-rt (4.14) 

G2e-rt, if G2e-rt < St 

where G 1 and G2 are strictly positive constants. Notice that this benefit 

function represents the capped version of the GMBD type benefit considered 

in chapter 3. 

As in the previous chapters, we assume that (a0 ) is an American male 

45 years old and born in 1900. Further, we consider that his force of mortality 

is deterministic and given by 

,\(a0 + t) = ,\(a0 )eµ"t, where ,\(a0 ) = 0.00778 and µ>.. = 0.07204. (4.15) 

For calculating the lump-sum premium, first we perform the change 

of variable S1 = ez(t) in equation (4.10) . Then, we discretize the equation 

obtained by employing a fully implicit finite difference scheme for the linear 

part, while treating the nonlinear part of the equation explicitly. Further, we 

truncate the domain JR x [O, T] to [zmin, Zmax] x [O, T] and introduce the grid 

Zm = Zmin + mf:1z, m = 0, 1 ... _Af tn = n/:1t, n = 0, 1 ... N. (4.16) 

Here, the values of Zmin and Zmax are chosen small and large enough respec­

tively, such that they do not affect our domain of interest. 

Let P;);, = P(zm, tn). 

With regards to the boundary conditions, clearly for t = T we have 
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P,;;: = 0. Given the flatness of the benefit function in a neighborhood of 

z = Zmin and z = Zmax, we have Newmann boundary conditions, that is 

(4.17) 

Alternatively, we can specify Dirichlet boundary conditions. Notice that if 

z = Zmin or z = Zmax, the benefit at death equals to G1e-rr and G2 e-rr 

respectively. Accordingly, the premium in these situations has to be calculated 

as for market independent term life insurance products. Therefore, we have 

P(Zmin, t) =~log (r-tPao+t + iT e101 
e-rs .\(ao + s)s-tPao+tdS) 

2P(Zmax, i) =~log (r-tPao+t + iT e'YG e-rs .\(ao + s)s-tPao+tdS). 

In the experiments that follow, we assume that G1 = 5, G2 = 10, 

r = 0.06 and consider that the spot price varies between 0 and 20. In order to 

have an accurate solution, not altered by the truncation of the spatial domain, 

we choose Zmin = -25 and Zmax = 25. 

Figure 4.1 illustrates the dependence of the lump sum premium on the 

insurer's risk aversion. In these two experiments, we assume that er = 0.2 and 

that the contract maturity is 5 and 10 years respectively. Notice that consistent 

with our intuition, the premium increases as the risk aversion increases and 

also as the term of the contract increases. 

Next, for these two contracts, we calculate the excess hedge for several 

risk aversion parameters. Taking a look at the premium in Figure 4.1, the 

form of the optimal excess hedge from Figure 4.2 is expected. Naturally, in 

the regions where the premium is asymptotically flat, the optimal excess hedge 
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Figure 4.1: Lump-sum premium for an equity-linked term life insurance for 
different risk aversion parameters 

approaches 0, while on the regions where the premium is a convex/concave 

function, the optimal excess hedge is an increasing/ decreasing function of the 

stock price, respectively. Also, consistent with our intuition, observe that the 

optimal excess hedge increases as the insurer's risk aversion increases and as 

the term of the contract increases. 
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0.12-------------- 0.16------------­

0.14 
0.1 1- - ;~;I 

0.12 

0.08 
8i 0.1t ~ ~ 006 ~ 0.08 

~ UJ 0.06 
0.04 

0.04 

0.02 
0.02 

0o ~-~--·-~10---1~5~~~20 o~--~--~--~~--'-=' 
0 10 15 20 

s s 

Figure 4.2: Excess-hedge for an equity-linked term life insurance for different 
risk aversion parameters. 

In Figure 4.3 we show the dependence of the lump-sum premrnm on 

the volatility parameter. Observe that on the region where the premium is 

convex, the premium increases with volatility while on the region where it is 
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concave, it decreases with volatility. Accordingly, if the stock behaves well and 

exhibits low volatility but the insurer assumes a high volatility parameter, as 

can be observed from Figure 4.3 this will result in charging a premium that is 

too small and thus results in a loss for the insurer. 
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Figure 4.3: Lump-sum premium for an equity-linked term life insurance for 
different values of the volatility parameter. 

4.1.2 Continuous premium 

In this subsection we consider that the premium for the term life insurance 

contract is payable continuously at an annual rate h. We assume that this 

rate is set at the time of writing the contract and that it remains fixed during 

the life of the policy. Under these hypotheses, we define the value function of 

the insurer in the presence of the insurance risk, as follows 

us(x,S,t;h(S,t)) = supE[U(Xr)IXt = x,St =SJ, (4.18) 
nEA 
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where h(S, t) denotes the premium rate set at time t. Here, the discounted 

wealth dynamics evolve as 

dXs = ((µ - r)1fs + he-rs)ds + 0"1fsdWs if t < s < T 


dX8 = 1f8 ((µ - r)ds + O"dlV8 ) if T < s < T 


Xr+ = Xr- - g(Sr, T) 


Xt = :c, 


where T denotes the time of death of (ao). 

Then, it follows that the value function solves the HJB equation 

1
uB +max [(µ - r)1fUB + -(J"27f2UB + 0"21f5UB l + he-rt'UBt 7r x xx xS x2 

1 
+(µ - r)Su~ + 2 0"2 S2u~5 + ,\(a0 + t)(u0 (x - g(S, t), t) - uB(x, S, t)) = 0 

uB(x,S,T;hB) = U(x). 

Following arguments similar to those applied in the lump-sum pre­

mium case, we obtain that the value function is given by uB (x. S, t; h) 

u0 (x, t)e'V(S.t;h), where V satisfies the equation 

vt + ~0"282Vss - he-rt+ ,\(ao + t) (e-1(V-g(S.t)) - 1) = 0 
2 1 (4.19)

{ V(S, T; h) = 0. 

Additionally, the optimal policy is given by 

* µ-r
7f (x, S, t; h) = -- + Sls. ( 4.20) 

10"2 
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Notice that 

(4.21) 

and therefore V(t, S; h) represents the benefit reserve at times. 

The premium rate is such that, at the moment of writing the contract, 

the insurer is indifferent between accepting or not accepting the insurance risk, 

that is 

u0 (x, t) = u3 (x, S, t; h). ( 4.22) 

Thus, the premium rate is given implicitly by the equation 

V(S, t; h) = 0. ( 4.23) 

So, the indifference premium rate is such that the benefit reserve has 

zero value at the moment of writing the insurance contract. However, over 

time, due to the evolution of the stock price and of the individual's mortality, 

this premium rate might not coincide with the prevailing indifference premium 

rate and consequently the benefit reserve will no longer be zero. Concretely, 

by Ito's lemma, the evolution of the benefit reserve can be specified by the 

equation 

1
dV, =(he-rs+(µ - r)VsS - -CT2 S 2Vss 

,\(ao + sr ( e-1(V(Ss,s)-g(Ss,s)) - 1) )dt + CTVsSsdWt 
I 


V(t, St; h) = 0. 


Further, observe that similar to the lump-sum premium case, the op­
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timal excess hedge is analogous to the Black-Scholes delta hedge and is given 

by e*(S, t; h) = Vs(S, t; h). 

For a risk neutral insurer, the partial differential equation for the benefit 

reserve becomes 

V, + ~a2S2:ss - he-'' - >.(ao + t)(V - g(S, t)) = 0 
(4.24)

{ V(S, T, h) - 0. 

Applying the Feynman-Kac formula leads to 

V(S,t;h) = 1T(EQ[g(S
8 
,s)]>.(ao + s) - he-r8 )e-f~s>.(ao+u)duds 

= P(S,t)-1T he-r8 s-tPa0 +tdS 

where Q is the risk neutral measure given by (4.13) and P(S, t) is the lump 

sum premium, corresponding to a risk neutral insurer. Combining the last 

equation with (4.23) we obtain 

h = P(S, t) (4.25)rT rs d .Jt e- s-tPao+t s 

Hence, for a risk neutral insurer, the premium rate is such that the lump sum 

premium coincides with the actuarial present value of the premium rate. 

We conclude this subsection by implementing the premium rate for the 

term life insurance contract with benefit function given by (4.14). We assume 

that (a0 ) is a 45 year old American male with force of mortality given by 

(4.15). 

In order to calculate the indifference premium rate, first we discretize 
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equation ( 4.19) by using an implicit-explicit finite difference scheme as the one 

applied in the lump-sum premium case. Then, the premium rate h(S0 , 0) is 

obtained by varying its value until the reserve at time t = 0 has zero value. 

T=10years 
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Figure 4.4: Continuous premium rate for an equity-linked term life insurance 
for different risk aversion parameters 

Figure ( 4.4) depicts the behavior of the continuous premium rate with 

respect to the spot price for different levels of the insurer risk aversion when 

the term to maturity is 5 and 10 years, respectively. As expected, the premium 

rate increases when the risk aversion and the term to maturity increases. 

4.2 The individual risk model 

In this section, we study the pricing and hedging problem of the term life 

insurance contract (5.3) in a setting where the insurer's losses are modeled by 

the individual risk model. Clearly, in this situation we deal with a cohort of 

individuals. We assume that all these individuals are aged a0 at time 0, with 

future lifetimes modeled as independent and identically distributed random 

variables. Further, we assume that they and have a (common) deterministic 

force of mortality. 
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4.2.1 Lump-sum premium 

First, we analyze the insurer investment problem when accepting to sell term 

life insurances of the form mentioned above, to all individuals of the cohort. 

In this situation, the insurer's value function is given by 

u(kl(x,S,t) = supE[U(Xr)IXt = x,St = S], ( 4.26) 
nEA 

where k is a parameter specifying the number of individuals from the cohort 

alive at time t. Here, the discounted wealth process evolves as follows 

dXs = 1fs ((µ - r)ds + adWs), s =f. Ti 

where Ti, i = 1 ... k denote the times of death of the policyholders and C7 ; 

denotes the discounted total claim at time Ti· We assume that the times of 

death of the policyholders are not necessarily distinct. 

Now, we model the insurer's loss on the time interval [t, s), s E (t, T] 

as a sum of the losses on each policy, that is 

k 

L:nd = L g(ST;, Ti)l{T;<slT;>t}· ( 4.27) 
i=l 

Accordingly, the discounted claim at time Ti, t < Ti < T can be written as 

(4.28) 


Applying arguments similar to those used when pricing market inde­
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pendent insurance risks in an individual risk model, we obtain that u(k) solves 

the HJB equation 

For k 2: 1, 


u~k) + maxK[(µ - r)7ru1k) + }cr2 7r2u1~ + cr 2 7rSu;~J + (µ - r)Sut;) 


+}cr2S2u~~ + k>.(a0+ t) (u(k-Il(x - g(S, t), S, t) - u(kl(x, S, t)) = 0 


u(kl(x, S, T) = U(x). 


(4.29) 

We consider an ansiitz of the form u(kl(x, S, t) = u0(x, t)e'F(kl(S,t). Further, as­

suming that the optimal investment policy is given by the first order necessary 

condition, we have 

* _ µ - r + p(k)S
7rt - 2 s . ( 4.30) 

/CT 

Inserting the expression of the ansiitz and of 7r; in ( 4.29), after some straightfor­

ward calculations, we obtain that p(k) satisfies the nonlinear partial differential 

equation 

F?) + ~cr2s2F~~ _ k>.(a; + t) (l _e-r(Fikl(s.t)-Flk- 1)(S,t)-g(S,t))) = 0 
{ p(kl(S, T) = 0. 

(4.31) 

with p(O) = 0. 

For a well-behaved benefit function g(S, t), equation ( 4.31) has a smooth 

solution and the Verification Theorem implies that the ansiitz proposed coin­

cides with the value function. Also, the Verification Theorem confirms our 

initial assumption that the optimal investment policy is given by the first 

order necessary condition. 
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Now, let p(k)(S, t) denote the indifference premium for k policies at 

time t. The indifference premium solves the equation 

u0 (x, t) = u(k)(x + p(kl(S, t), S, t). ( 4.32) 

Hence, 

p(kl(S, t) = Ji'(k)(S, t) ( 4.33) 

- 1
and consequently, the premium per risk p(k)(S, t) = k p(k)(S, t) satisfies the 

equation 

-(k) 1 2 2 >.(ao + t) (1 - e-1(kP(kl(S,t)-(k-l)PCk-l)_g(S,t))) = 0 
pt + 2cr S - I 

{ fa(kl(S, T) = 0 

(4.34) 

where p(o) = 0 and where fa(l) represents the lump sum premium in a single 

life insurance model. Notice that j>(k) can be calculated by solving a system 

of k recursively defined partial differential equations. 

Then, the optimal excess hedge corresponding to a portfolio consisting 

of k policies, e*(k) is given by 

(4.35) 

and again notice the analogy with the Black-Scholes delta hedge. 

At this point, it is interesting to analyze the dependence of the premium 

per risk on the number of policies in the insurer's portfolio. Recall, that we as­

sumed that the policyholders have future lifetimes independent and identically 

distributed and moreover, their force of mortality evolves deterministically in 
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time. Given these assumptions, one would expect that the premium per risk is 

constant and thus, coincides with the premium in a single life insurance model. 

Additionally, if the premium per risk is constant, by ( 4.35) the excess hedge 

per risk is also constant and equals the excess hedge in a single life insurance 

model. 

Indeed, numerically implementing the premium per risk via equation 

(4.34) we obtain that when varying the number of policies in the portfolio, the 

premium per risk remains constant. Below, we exemplify our experiments by 

showing the plot of the premium per risk when the insurer's portfolio consists of 

k = 1 ... 20 policies. We assume that the force of mortality of all policyholders 

is given by ( 4.15). Additionally, we assume that all the insurance claims have 

a benefit function of the form (4.14), the time to maturity is T = 10 years, 

er= 0.2, r = 0.06 and the insurer's risk aversion is/= 0.1. 

1.2­

1.1 

~ 

~ 0.9 

Spot price S 

Figure 4.5: Premium per risk as a function of the spot price and of the number 
of policies in the insurers portfolio. 
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4.2.2 Continuous premium 

In what follows, we examine the pricing and hedging of the term life insurance 

contract within the same loss model, but assumming that the premium is 

payable continuously, at a fixed annual rate h(k) set at the time of writing the 

contracts. In this situation, we define the value function of the insurer with 

the insurance risks by 

u(kl(x, S, t; h(kl(S, t)) =sup E[U(Xr )ISt= S, Xt = x], ( 4.36) 
7rEA 

where the discounted wealth process has the dynamics given by 

( 4.37) 

Here Ti, i = 1 ... k represent the times of death of the policyholders, CT; is 

the discounted total claim at time Ti due to death of one or more policyholders 

and Zs is a process recording the number of survivors at time s. With regards 

to CT;, this is defined as in the lump-sum premium case. 

Applying Bellman's principle of dynamic programming and stochastic 

calculus, it follows that u(k) satisfies the HJB equation 

u(k) +max [(µ - r)7ru(k) + ~0'2 7r2 u(k) + 0"27rSu(k)] + ke-Tth(k)u(k)t 7r x xx xS x2 

+(µ - r)Su~:) + ~0"2S2u~1 + k>.(a0 + t) (u(k-1l(x - g(S, t), S, t) - uk) = 0 

u(kl(x, S, T; h(k)) = U(x). 

Following arguments similar to those applied in the lump-sum premium 
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case, we obtain that 

(4.38) 


where y(k) satisfies the partial differential equation 

l1t(k) - ke-rth(k) + ~0"252vJ~l + k,\(a~ + t) (e-1(v1k1_v1k-1>-g(S,t)) - 1) = 0 
{ y(kl(S, T) = 0. 

(4.39) 

Then, the optimal hedging policy is given by 

7r*(S, t) = µ -2r + vJkl S. ( 4.40) 
"/O" 

Consequently the optimal excess hedge corresponding to a portfolio of k equity-

linked term life insurance contracts is 

(4.41) 


Observe that y(k)(S8 , s) represents the benefit reserve at times since 

( 4.42) 

The premium rate h(k) = h(k)(S, t) is such that the insurer at time tis indif­

ferent between accepting or not accepting the k insurance risks, that is 

(4.43) 


This implies that V(k)(S, t) = 0. Clearly, as in a single life insurance model, 
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the benefit reserve equals zero just at time t, when the contracts are written. 

Until the contracts' maturity, the policyholders' mortality changes as well as 

the financial market, thus rendering the insurer to change his initial attitude 

of indifference towards the insurance risks. Consequently, the benefit reserve 

is no longer zero. 

Recall that in the lump sum premium case analyzed earlier we obtained 

that the premium per risk is independent of the number of policies in the in­

surer's portfolio. Naturally, the question arises of whether or not this property 

also applies to the premium rate. 

Below, we numerically implement the premium rate when the insurer's 

portfolio consists of k = 1 ... 10 policies. We assume that all the insurance 

claims have a benefit function ofthe form (4.14), the time to maturity is T = 1 

year, CJ= 0.2, r = 0.06 and the insurer's risk aversion is/= 0.1. 

0.14 

0.12 


~ 0.1 


J
E 

008~ 
0.06 ~ 
0.04 


20 

15 


10 	 4 
5 2

1 1 
s 

Figure 4.6: Premium rate as a function of the spot price and of the number of 
policies in the insurers portfolio. 

Notice from Figure 4.6 that the premium per risk is independent of the 

number of policies in the insurer's portfolio. 

10 
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4.3 The collective risk model 

In this section, we analyze the pricing problem of term life insurances with 

benefits of the form (5.3) in a setting where insurer's losses are modeled via 

the collective risk model. We start with a cohort of policyholders as in section 

4.2 and model the insurer's total loss on a time interval [t, s), s E (t, T] as 

follows 
Ns-Nt 

L~oll = L g(ST;i Ti), (4.44) 
i=l 

where (Nt)o<t<T is a inhomogeneous Poisson process with intensity 77(a0 + t). 

Specifically, Nt records the number of deaths within the cohort from time 0 

up to time t and Ti represents the arrival time of the ith (death) event. 

An important assumption in this section is that the initial size of the 

cohort of policyholders is very large and consequently at any time t < T the 

size of the remaining cohort is still arbitrary large. 

Then, we connect the collective model to the individual risk model by 

requiring that on average, the number of deaths during any time interval [O, t) 

is the same in both models. Thus, 

E[Nt] = E[yt], Vt E (0, T]. ( 4.45) 

Here yt denotes the number of deaths from time 0 up to time tin the individual 

risk model. Accordingly, we have 

(4.46) 
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where k represents the size of the cohort at time 0. Consequently, 

rJ(ao + t) = ktPa0 A(ao + t). ( 4.4 7) 

4.3.1 Lump-sum premium 

We first consider the insurer investment problem when accepting the insurance 

risks and define the value function by 

u(x, S, t) =sup E[U(Xr )/Xt = x, St= SJ. ( 4.48) 
1TEA 

Here the discounted wealth process evolves as follows 

dX.s = 7r8 ((µ - r)ds + adW8 ) - dL~0ll, 
(4.49) 

{ Xt = x. 

Observe that the value function does not depend on the number of deaths 

by time t. That is because the term life insurance contracts that we analyze 

have the benefits payable at the moment of death of the policyholders and 

because for the Poisson process, used here to count the number of deaths, we 

have to specify just its intensity, not also the number of deaths or survivors. 

However, if the benefits were payable at maturity, we would have to include 

the dependence on the number of deaths by time t in the definition of the 

value function. 

Applying Bellman's principle of dynamic programming and stochastic 
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calculus arguments, we obtain that the value function solves the HJB equation 

1 1 
Ut +max"[(µ - r)7rux + 2a-2 

Jr 
2Uxx + a-2 S7ruxs] + (µ - r)Sus + 2a-2 S 2uss 

+'r/(a0 + t) (u(x - g(S, t), S, t) - u(x, S, t)) = 0 

u(x, S, T) = U(x). 
(4.50) 

We consider an ansatz of the form u(x, S, t) = u0 (x, t)erF(S,t). Observe that 

Uxx < 0 and thus the maximum in ( 4.50) is well defined and attained at 

* µ- r
7r (S, t) = --

2 
+ SFs(S, t). (4.51) 

"W 

Further, substituting the ansa.tz and the expression of 7r*(S, t) in ( 4.50), we 

obtain that F solves the linear partial differential equation 

Ft+ ~a-2S2Fss - 'r/(ao + t) (1- e19(S,tl) = 0 
2 I ( 4.52) 

{ F(S, T) = 0. 

Applying the Feynman-Kac formula, we have that 

F(S, t) = iT 'TJ(ao + 8 ) (EQ[e19(Ss,s)] - 1) ds ( 4.53) 
t I 

where Q is the risk neutral measure given by (4.13). 

For well behaved benefit functions g, equation (4.62) has a smooth 

solution. Consequently, we can apply the Verification Theorem and obtain 

that the ansatz proposed coincides with the value function. Also, by the 

Verification Theorem the optimal policy is given by ( 4.51). 

Now, let P(S, t) denote the indifference premium at time t for the k 
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term life insurance contracts. P(S, t) solves the equation 

u0 (x, t) = u(x + P, S, t). (4.54) 

Solving equation (4.54) with respect to P, leads to P(S, t) = F(S, t). Further 

by ( 4.53) and ( 4.47) it follows that 

P(S, t) = lT TJ(ao + s) (EQ[e'Yg(Ss,s)] - 1) ds. (4.55) 
t I 

Notice that also within this model, the excess hedge is analogous to the Black-

Scholes delta hedge. Specifically, we have that e*(S, t) = Ps(S, t). 

From ( 4.55), it follows that the premium at time t = 0 for the k term 

life insurance contracts is 

- 1 
Thus, the premium per risk P(S, 0) = kP(S, 0) is given by 

(4.56) 

Taking the limit as / ~ 0 in equation ( 4.56), we obtain that the pre­

mium per risk at time t = 0 for a risk neutral insurer is 

T 
- 1 Q
P(S, 0) = E [g(S8 , s)]sPa0 >.(ao + s)ds. ( 4.57) 

0 
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Now, recognize that the expression from the left hand side of equation ( 4.57) 

represents the lump-sum premium for a risk neutral insurer in a single life 

insurance model, or as observed in subsection 4.2.1, the premium per risk for 

a risk neutral insurer in the individual risk model. 

We conclude this subsection by several numerical experiments. First, 

we implement the premium per risk for the an equity-linked term life insurance 

with benefit (4.14) in the collective risk model and then, we compare it with 

the corresponding premium per risk in the individual risk model. We assume 

that the force of mortality of the policyholders is given by ( 4.15), the time to 

maturity is T = 10 years, r = 0.06, the spot price varies between 0 and 20 

and the insurer's risk aversion is r = 0.1. With regards to the benefit function 

g as mentioned above, this is chosen of the form ( 4.14), where G 1 = 5 and 

G2 = 10. Notice from Figure 4. 7 that the premium per risk in the collective 
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Figure 4. 7: Premium per risk for an equity-linked term life insurance contract 
in the individual risk model (solid line) and in the collective risk model (dashed 
line). 

risk model is greater than the premium in the individual risk model. Thus, 

the collective risk model proves to be more risky than the individual risk 

model. Next, we consider the same equity-linked term life insurance as in the 
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preceding experiment and illustrate the dependence of the premium per risk 

on the insurer's risk aversion parameter. 

1 B 
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Figure 4.8: Premium per risk for an equity-linked term life insurance in the 
collective risk model, for different values of the insurer's risk aversion param­
eter. 

As Figure 4.8 shows, the premium per risk increases as the risk aversion 

increases. The result is consistent with our intuition. Finally, in the last 

experiment, we show the dependence of the premium per risk on the time to 

maturity. Observe from Figure 4.9 that the premium per risk increases as the 
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Figure 4.9: Premium per risk for an equity-linked term life insurance in the 
collective risk model, for different values of the time to maturity. 

time to maturity increases. The result agrees to our intuition since as the time 
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to maturity increases, increases the probability of death or in other words the 

probability that the insurer's portfolio will generate claims. 

4.3.2 Continuous premium 

In the following, we assume the same loss model as in the preceding subsection 

and examine the pricing of equity-linked term life insurance contracts in the 

situation where the premium is payable continuously, at a fixed annual rate 

h. However, here h represents the rate corresponding to the entire cohort and 

not the premium rate per risk as assumed in the individual risk model. In this 

case, we define the value function of the insurer with the insurance risks, as 

follows 

u(x, S, t; h(S, t)) =sup E[U(Xr)IXt = x, St= SJ (4.58) 
7rEA 

where h(S, t) denotes the premium rate set at time t. Here, the discounted 

wealth process evolves according to the equations 

dXs = ((µ - r)7rs + he-rs)ds + 0"7r8 dWs -dL~0u, 
(4.59) 

{ Xt =x. 

Notice from the wealth equation that we implicitly assume that the 

premium rate will be paid until maturity. Essentially, this is a consequence of 

the assumption that the size of the cohort at any time t < T is arbitrary large. 
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In this case, the HJB equation for u is 

1 2 2 2 l ( ) 1 
2 ,2Ut + max7r [(µ - r )1rUx + 217 1r Uxx + a- Snuxs + µ - r Sus + 217 S uss 

+he-rtux + 71(ao + t) (u(x - g(S, t), S, t) - u(x, S, t)) = 0 

u(x, S, T) = U(:r). 
(4.60) 

We consider an ansa.tz of the form u(x, S, t) = u0 (x, t)e'v·(s,t). Notice that 

Uxx < 0 and applying the first order condition we obtain 

* µ-r
1r (S. t) = -- + SVs(S, t). (4.61) 

/O" 2 

Inserting the ansatz and the expression of 7r* in ( 4.60), after some straight­

forward calculations we obtain that V satisfies the linear partial differential 

equation 

vt + ~a-2S2Vss - he-rt - 71(ao + t) (1 - e'g(S,t)) = 0 
2 I ( 4.62) 

{ V(S, T) = 0. 

Accordingly, V has the Feynman-Kac representation 

V(S, t) = 1T 71(ao + s) ( E~s[e'g(Ss.s) - 1J) - he-rsds, ( 4.63) 
t I 

where Q is the risk neutral measure defined by (4.13). Further, we can write 

V(S, t) = pColl,LS(S, t) -1T he-rsds, (4.64) 

where here pColl,LS (S, t) denotes the lump-sum premmm in the collective 

model for the term life insurance contract. Now, observe that V(S8 ,s) repre­

143 




Ph.D. Thesis - E. Alexandru-Gajura - McMaster - Mathematics and Statistics 

sents the benefit reserve at time s since it solves the equation 

(4.65) 

In this case the indifference premium equation is 

u0 (x, t) = u(x, S, t; h(S, t)) ( 4.66) 

which implies that V(S, t) = 0. Accordingly, the premium rate at time t is 

given by 
pColl,LS (S, t)

h(5, t) = -----oT=----- ( 4.67) 
ft e-rsds 

That is, the annual premium rate h(S, t) is such that the total discounted 

premium paid during the life of the policies equals the lump-sum premium for 

the term life insurance contract. 

From ( 4.67) it follows that the premium rate at time t = 0 is 

(4.68) 

Remark 4.3. l. 

In contrast to the individual risk model, observe that in the collec­

tive risk model the premium rate per risk increases over time as policyhold­

ers die. An alternative model for the premium rate is as follows: h(s) = 

(k - Ns)h(S, t)e-rs, where h(S, t) is a fixed premium rate per risk, set at time 

t. Indeed, with this choice the nature of the premium rate and of the premium 

rate per risk would be similar in the two risk models. However, this will intro­

duce a new variable into our pricing analysis, namely the number of deaths by 
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time t. The valuation of equity-linked term life insurances is a tractable prob­

lem within the collective risk model, essentially because of the independence 

of our pricing analysis on the number of deaths. Choosing the premium model 

just mentioned above, makes the problem not tractable since the dependence 

on the number of deaths cannot be factored out. Consequently, one will have 

to solve a system of PDEs. 

Next, we implement the continuous premium rate for a term life insur­

ance contract with benefit of the form (4.14) and examine its dependence on 

the insurer's risk aversion parameter. We assume a benefit function of the form 

just mentioned, where G 1 = 5, G2 = 10, the spot price varies between 0 and 

20 and T = 10 years. Then, we consider a cohort of k = 10000 policyholders 

whose force of mortality is given by (4.15). 
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Figure 4.10: Continuous premium rate for an equity-linked term life insurance 
contract in the collective risk model, for different choices of the insurer's risk 
aversion parameter. 

As expected, observe from Figure 4.10 that the premium rate increases 

as the risk aversion increases. 
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Chapter 5 

Utility Indifference Pricing of 

Equity-Linked Term Life 

Insurance in Stochastic 

Volatility Market Models 

In this chapter we study the pricing of equity-linked term life insurance in 

stochastic volatility market models. Unlike the Black-Scholes market model, 

considered in the preceding chapter, stochastic volatility market models have 

the advantage of assuming more realistic return distributions, with fatter tails 

and asymmetry. Moreover, stochastic volatility models are able to predict 

European option prices whose implied volatility "smiles". 

Clearly, in this context, the combined insurance-financial market is in­

complete since neither volatility nor individuals'mortality can be hedged. As 

in the preceding chapters, we propose utility indifference as a pricing approach. 
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In this chapter, we extend the results of Sircar & Zariphopoulou (2004) 

and price equity-linked term life insurance. We would like to mention that 

from the start we choose to model the insurer's losses via the collective model, 

this model being so far computationally more efficient than the others. In what 

follows, we show that the indifference premium for an equity linked term life 

insurance, in a fast-mean-reverting volatility regime can be well approximated 

by adjusted constant volatility results. 

The financial-insurance market model 

We consider a financial market consisting of two assets: a money market ac­

count with constant interest rate r > 0 and a risky stock or stock index. We 

assume that the discounted price of the stock (or stock index) satisfies the 

stochastic differential equation 

dSs = S8 ((µ - r)ds + a-(Ys)dWs) 
(5.1) 

{ St= S > 0. 

In the above, µ > r > 0 and the volatility driving process (Ys) is modeled as 

a correlated Markov diffusion 

dY8 = a(Ys)ds + b(Ys)dZs 
(5.2)

{ Yt = y 

where Zs= pW8 +Jl=P2zs and p E [-1, l]. Here, the processes Wand Z are 

independent Brownian motions on the filtered probability space (S1, :F, lF, P), 

where lF is the augmentation of the natural filtration generated by W and Z. 

Notice that by correlating the stock price with the volatility, the model 
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explains the skew phenomenon present in option markets. Empirical evidence 

shows that typically, in equity markets the correlation coefficient p assume 

negative values; in other words, when volatility goes up stock prices go down 

and viceversa. This is called leverage effect. 

With regards to the coefficients a and b and the function a, we make 

the following assumption: 

Assumption 5.0.1. 

• a, a and b are smooth and bounded with bounded derivatives. 

• For ally, a(y) 2: L > 0 for some L < oo. 

Now, as in chapter 4, we consider an insurer that has the opportunity 

to sell equity-linked term life insurance contracts with discounted benefit as 

follows 

(5.3) 

in which T denotes the policyholder's time of death and g is a positive, smooth 

and bounded function on [O, oo) x [O, T]. 

In what follows, we examine the pricing of this life insurance contract 

using the utility indifference pricing approach. Recall that this approach re­

quires solving two optimization problems. One of them is the Merton invest­

ment problem, that is maximizing the expected utility of terminal wealth by 

investing in the financial market. The second optimization problem consists 

of maximizing the expected utility of terminal wealth with the insurance risk 

by trading in the financial market. 

Let us assume that the insurer's initial wealth is x and that he can 
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actively trade in the financial market described above. Further let 7r8 denote 

the amount deemed to be invested in the stock at times. Then, the discounted 

wealth of the insurer follows the dynamics 

dXs = 7r8 ((µ - r)ds + cr(Ys)dWs) 
(5.4)

{ Xt = x 

At this point, we define the set of admissible policies A[t, T] as the set 

of processes 7r that are IF progressively measurable and satisfy the integrability 

condition ftT 7r;ds < oo a.s. Notice that for 7r E A[t, T], given the assumption 

that er is bounded, the stochastic differential equation with random coefficients 

(5.4) has a unique solution. 

5.1 	 The Merton problem in stochastic volatil­

ity market models 

In this financial market setting, the Merton investment problem can be for­

mulated as follows 

u0 (x, y, t) 	=sup E[U(Xr )IXt = x, Yt = y], (5.5) 
nEA 

where the insurer's wealth process evolves according to (5.4). 
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The HJB equation for 'Uo is 

u~ + maxn ( (µ - r)7ru~ + ~a2 (y)K2u~x + pb(y)Ka-(y)u~Y) + a(y)u~ 
1 

+2 b2 (y)u~Y = 0 

u0 (x, y, T) = U(x) 

(5.6) 

We assume that u0 is concave in wealth. Then, the maximum in (5.6) is well 

defined and it is attained in 

* µ - r u~ pb(y) u~Y 
'lrt = -~() -o- - -(-) -o-· (5.7) 

a y uxx a y uxx 

Inserting the expression of n; in the HJB equation, leads to 

u0 (x, y, T) = U(x) 

(5.8) 

Now, we consider the ansatz u0(x, y, t) = -e-"fx</J(y, t). Inserting the ansiitz 

in equation (5.8), after some calculations, we obtain 

¢(y, T) = 1 

(5.9) 

Further, we consider the transformation ¢(y, t) = 'lj}(y, t), where 8 = - ­
1 - p2 

to be determined. This power transformation was introduced in the financial 
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literature by Zariphopoulou (2001). Then, equation (5.9) becomes 

2pb(y)(µ - r)) 1 (µ - r) 2 (1 - p )

l/Jt + ( a(y) - O"(y) 1/1y + 2b2 
(y)1/1yy - 0"2 (y) 1/J = 02

{ 1/J(y,T) = 1 

(5.10) 

Observe that essentially, the parameter 8 that is called distortion power is 

chosen such that the partial differential equation (5.9) reduces to a linear 

equation. 

Now, we would like to obtain a probabilistic representation of 1/J from 

equation (5.10). Notice that for obtaining this, first we have to change the 

original probability space. We define the measure Q on :Fr by 

dQ ( lr µ - r 1 lr (µ _ r)2 ) (5.11)dP =exp - o O"(Ys) dWs - 2 o 0"2(Ys) ds 

Since O" is bounded, it is straightforward to show that Novikov's condition is 

satisfied. Accordingly, we can apply the Girsanov's theorem and obtain that 

Q is a probability measure on :Fr, Q"'"' P and 

(5.12) 

is a two dimensional Brownian motion under Q. Moreover, the dynamics of 

(S, Y) under Q are as follows 

(5.13) 

(5.14) 
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At this point, we can apply the Feynman-Kac formula and obtain that 

(5.15) 


Given the assumptions (5.0.1), the conditions of the Theorem 2.9.10 from 

Krylov ( 1980) are satisfied. Accordingly, ( 5.15) is the unique solution of equa­

tion ( 5.10) in the class of functions that are C 2
·
1 (JR x [O, T]) and satisfy a 

polynomial growth condition in y. Consequently, the ansatz proposed is a 

classical solution of the HJB equation ( 5.6) and therefore a viscosity solution 

of this equation. By the Verification Theorem the value function is the unique 

viscosity solution of equation ( 5.6) in the class of functions that are concave 

and of exponential growth in x and uniformly bounded in y. The ansatz con­

sidered satisfies these properties and therefore this coincides with the value 

function. Thus, the value function is given by 

1
2 2 

l·T (µ-r) 	I 1-p I ) l-p2

uo(x, y, t) 	= -e-'x E~y[e- . t 2a21Ysl ] (5.16)( 

5.2 	 The insurer's investment problem with the 

insurance risk 

In what follows, we assume that the insurer accepts to sell to a cohort of 

individuals equity-linked term life insurance contracts with benefit given by 

(5.3). We consider that the contracts are written at time t = 0 and at that time 

the cohort consists of k individuals, where k has a very large value. Further, 

we assume that all these individuals have future lifetimes independent and 

identically distributed and that their mortality evolves deterministically in 
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time. 

Recall that when examining the pricing of equity-linked term life insur­

ance in a Black-Scholes model, between all loss models, the collective model 

proved to be computationally more efficient, with the insurer's pricing prob­

lem reducing in this case to solving one linear partial differential equation. 

This motivates us to model from start, the insurer's losses via a collective risk 

model. Accordingly, we model the number of deaths within the cohort by a 

inhomogeneous Poisson process (Nt)o<t<T with intensity 77(a0 + t). 

In this case, we define the value function of the insurer with the insur­

ance risk by 

u(x, y, S, t) =sup E[U(Xr )IXt = x, yt = y], (5.17) 
7rEA 

in which, the discounted wealth process evolves as follows 

dX~= 7r8 ((µ - r)ds + CT(Y8 )dW8 ) - dL~oll 
(5.18) 

{ Xt - x, 

where Ls= 2:;::1-Nt g(Ti, ST;) denotes the total loss of the insurer from time t 

to times. 

Now, let us express the value function u(x, y, S, t) in terms of the cer­

tainty equivalent function for the insurance claim B, cB(y, S, t). We have 

U(X, y, 5, t) = -e-r(x-cB(y.S,t)). (5.19) 
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The value function u solves the HJB equation 

1 
Ut + maxn((µ - r)1rux + 2CJ2(y)7r2Uxx + pb(y)CJ(y)1rUxy + CJ 2 (y)S1rUxs) 

1 1 
+a(y)uy + 2b2 (y)uyy + (µ - r)Sus + 2.CJ2 (y)S2uss + pb(y)SCJ(y)uys 

+ry(ao + t)(u(x - g(S, t), y, S, t) - u(x, y, S, t)) = 0. 

u(x, y, S, T) = 0 

(5.20) 

Inserting (5.19) into the HJB equation, we conclude that the certainty equiv­

alent function c8 satisfy 

B l 2 2 B ( B 1 2 B ( (µ - r) pb(y)) Bct + 2.CJ (y)S c35 + pb(y)SCJ y)cys + 2.b (y)cyy + a(y) - CJ(y) cy 

+~b21(l - p2)(cB)2 - (µ- r)2 + ry(ao + t) (e'Yg(S,t) - 1) = 0 
2 y 21CJ2 I 

c8 (y, S, T) = 0 

(5.21) 

Applying Theorem 5.8, chapter 5, from Carmona (2009b) it follows that equa­

tion (5.21) has a unique solution in the class of C2•2·1 (JR x JR+ x [O, T]) functions 

that satisfy a polynomial growth condition on JR x JR+ x [O, T]. Then, by the 

Verification Theorem, the value function is the unique viscosity solution of 

(5.20). 

5.3 Indifference premium 

Let P(y, S, t) denote the indifference premium for the equity-linked term life 

insurance that we are studying. From the indifference premium equation it 

follows that 

P(y, S, t) = c8 (y, S, t) - c0 (y, t), (5.22) 
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where c8 and c0 represent the certainty equivalent functions for the claim B 

and for the Merton problem, respectively. 

We proved that the value function in the Merton problem can be written 

as follows 

2u0 (x, y, t) = -e-1x1j;(y, t) i-p

1 

, (5.23) 

where 1j; satisfy the equation (5.10). On the other hand, we have that u0 (x, y, t) = 

-e-1(x-c 
0 

(y,t)) since c0 is the certainty equivalent function for the Merton prob­

lem. Accordingly, we have that 

(5.24) 


Substituting (5.24) into equation (5.10), after some calculations, we obtain 

that c0 solves the partial differential equation 

c0 (y, T) = 0 
(5.25) 

Subtracting ( 5.25) from (5.21 ), we find that the indifference premium P, solves 

the following partial differential equation 

P(y,S,T) = 0 

(5.26) 
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5.4 Fast-mean-reversion asymptotics 

In what follows, we examine the pricing of equity-linked term life insurance 

in a mean-reverting stochastic volatility model of the form 

(5.27) 

(5.28) 

Observe that Y is an Ornstein-Uhlenbeck process with rate of mean reversion 

a and long-run mean m. From (5.28) it follows that 

(5.29) 

It is well-known that the invariant distribution of the process Y is N(m, v2
), 

where v2 = ~~ (see Fouque, Papanicolau & Sircar (2000), page 68). From 

now on, given a function J(Y), we denote its expectation with respect to the 

invariant distribution by (!). 

Remarks 5.4.1. Observe that the invariant distribution of Y corresponds to the 

normal distribution from ( 5. 29) in the limit cases t ____.. oo or a ____.. oo. 

Now, we define the mean-square time averaged volatility by: 

(5.30) 

The Ergodic Theorem (see for example Fouque, Papanicolau & Sircar (2000), 
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pages 66-67) implies that 

cr2 --+ (cr2
) as t--+ oo a.s (5.31) 

As mentioned in the remark (5.4.1), the limits t--+ oo or a--+ oo are the same 

in terms of distributions. Accordingly, the relation (5.31) holds true also when 

yt is a very fast-mean-reverting process. 

At this point, one may wonder to what reduces the indifference pre­

mmm in a very fast mean reverting volatility regime. We will show that 

actually, in this case, the premium coincides with the premium for the insur­

ance claim B in a market model with constant volatility a = J(;l2). Now, let 

us prove this assertion in a simple case, specifically when the insurer is risk 

neutral. 

Observe that as / goes to zero, equation (5.26) becomes 

(µ-r)b(y)p) 1 2() l 2() 2 ) )Pt+ ((a y) - cr(y) Py+ "2b y Pyy + 2cr y S Pss + pb(y cr(y SPys 

+rJ(ao + t)g(S, t) = 0 

P(y,S,T) = 0 

(5.32) 

Applying the Faynman-Kac formula, we obtain that the indifference premium 

at time t = 0 for the k term life insurance contracts is 

P(y, S, 0) = 1T EQ[g(St, t)]rJ(ao + t)dt = k 1T EQ[g(St, t)]sPa0 A(ao + s)ds 

(5.33) 

where the risk neutral measure Q is given by (5.11). 
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Accordingly, the price per risk is as follows 

(5.34) 

It is straightforward to show that 

under Q. (5.35) 

Consequently, in a very fast-mean-reverting volatility regime, we have that 

under Q. (5.36) 

Therefore, we conclude that the premium per risk for the claim B in a stochas­

tic volatility market model, with a very fast mean reverting volatility factor, 

coincides with the corresponding premium in a market model with constant 

volatility 0-. Later on, we will show that this result holds for any risk aversion 

/. 

This convergence result motivates us to consider an asymptotic ap­

proximation technique for calculating the indifference premium. Concretely, 
1 

we consider the regime a = - , where E: l 0. This implies that /3 scales as 
c 

/3 = vJ2. Further, the coefficients of the volatility driving factor yt are as 
c 

follows 

1
a(y) = a(m - y) = -(m - y) 

c 

b(y) = /3 
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Then, the equations (5.25) and (5.25) become 

o (1( ) (µ-r)vvf2p) o v2 o v2( 2) ( o)2 (µ-r)2
ct + - m - y - ( ) c cy + -cYY + - 1 - p / cy - 2 ( ) = 0 

c (J y v c c c 2/<J y 
{ 

c0 (y, T) = 0 

(5.37) 

and 

B 12 2B pvvf2 B v2B 1 (µ-r)pvvf2)B
ct + - <J (y)S c88 + Ji: S<J(y)cys + -cYY + (-(m - y) - ( ) . [;: cy

2 .2 c c . c (J y v c 
+~1(1- p2)(cB)2 - (µ- r)2 + 77(ao + t) (e1g(S,t)-1) = 0 

c y 2/<J2(y) I 

cB(y, S, T) = 0 

(5.38) 

In order to write the above equations in a compact form, we introduce the 

following operators 

Denoting 

(5.39) 


we see that c0 and cB satisfy 

(5.40) 
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and 

£,ccB + v2 (1 - p2)r(cB)2 - (µ - r)2 + 17(ao + t) (e'Yg(S,t) - 1) = 0 
c y 2"W2 (y) r (5.41) 

{ c8 (y, S, T) = 0 

5.4.1 Approximation for the certainty equivalents 

We now consider the following formal expansions of c0 and c8 in powers of 

y'c: 

(5.42) 

(5.43) 

The asymptotic expansion for c0 (y, t) was obtained in Sircar & Zariphopoulou 

(2004). To describe their results, we define -; = / -;) and let F(y) the
er* \er 

solution of the Poisson equation 

(5.44) 


It then follows from item (ii) of Proposition 4.4 of Sircar & Zariphopoulou 

(2004) that setting 

(5.45) 

(5.46) 

leads to 

(5.47) 


for each point (y, t). 


Our aim is to prove a similar result for c8 (y, S, t) and consequently 
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for P(y, S, t). Inserting the formal expansion (5.43) into (5.41) and collecting 

terms of equal order in E, we obtain 

! (£0</)0) +v2(l-p2)r(¢(0))2)+-l (£0¢(1) +£1 ¢(0) +2v2 (1-p2)r¢(0) ¢(1)) 
E Y YYft 

+(£0¢(2)+£14/1l+£2¢(o)+v2(l-/)r((¢1 )2+2¢0¢(2))- (µ - r)2 + ry(ao + t) (eW-1)) 
y y y 2/CJ2(y) I 

+Jf(£o¢(3l+£1¢(2)+£2¢(1)+2v2(l-p2)r( ¢~o)¢~3l+¢~1)¢~2)) )+... = 0 

(5.48) 

Observe from equation (5.48) that we will need to solve Poisson equa­

tions associated with £ 0 , of the form 

£ox+ f = 0. (5.49) 

It can be shown, see Fouque, Papanicolau & Sircar (2000), pages 91 - 92 that 

equation (5.49) admits a solution unless the following condition holds 

(!) = 0. (5.50) 

Next, we will refer to (5.50) as centering condition and to the function f as 

the source term. Writing explicitly the expression of the differential operator 

£ 0 in (5.49), after some calculations, we obtain 

00 

x'(y) = v2<P(y)1 1y f(z)<P(z)dz. (5.51) 

Therefore, if f is bounded then x' is bounded and x has at most logarithmic 
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growth, i.e. 

lx'(y)I :::; C1 (5.52) 

lx(y)I :::; C2(l + log(l + IYI)). (5.53) 

These properties of the solutions of the Poisson equation (5.49) will be very 

useful when proving the order of approximation of the truncation error. 

Now, we consider each order separately, as follows 

0(1/c) : i\1atching terms of order l/c, we have 

(5.54) 

For fixed (S, t) this corresponds to the nonlinear ordinary differential equation 

v2J"(y) + (m - y)J'(y) + v2(1 - p2)'y(J'(y))2 = 0, (5.55) 

whose solution is 

21 ( jy )(m-z )

f(y) = i(l _ p2) log 1 + c1 -oo e~ dz + c2, (5.56) 

00 (m-z2) 

for constants c1 and c2. Observe that J_cx, e~dz = oo. Since we are in­

terested only in solutions that are well-behaved at oo, we take c1 = 0 and 

conclude that q)O) must be constant in y. 
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0(1/Jf): The terms of order 1/Jf give 

(5.57) 

Since q)0 ) = q)0 l(S, t), the equation above reduces to 

(5.58) 

For fixed ( S, t), this corresponds to the linear differential equation 

v 2 h"(y) + (m - y)h'(y) = 0 (5.59) 

Solving this equation, we obtain 

(5.60) 


for constants C1 and C2 . We are interested only in well behaved solutions at 

oo and therefore we take C1 = 0. This implies that ¢Pl is also constant in y. 

0(c) : For these choices of </>(O) and </>(1), the order one terms give 

£0¢(2) + £2</>(o) - (µ - r)2 + T/(ao + t) (e'Yg(S,t) - 1) = 0 (5.61)
21cr2 (y) I 

For fixed (S, t), (5.61) is a Poisson equation for ¢(2
) with respect to the operator 

£ 0 , in the variable y. Equation (5.61) does not admit a solution unless the 
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centering condition 

/ L2<f)O) - (µ - r)2 + 77(ao + t) (e'Yg(S,t) - 1)) = 0 (5.62) 
\ 2/0"2 (y) I 

is satisfied. ¢l0l is y independent and therefore (L2¢l0l) = (L2)¢(o). Accord­

ingly, the centering condition (5.62) holds true, provided we define </J(O) as the 

solution of the linear parabolic equation 

<P(o) + ~o-2s2¢(0) - (JL - r)2 + ry(ao + t) (e'Yg(S,t) - 1) = 0 
t 2 SS 2/0"Z I (5.63)

{ ¢l0l(S, T) = 0 

Now, subtracting (5.62) from (5.61), we obtain 

2 
(2) (o) (µ - r ) ( 1 1 ) Lo</> + (L2 - (L2) )¢ - -- - - = 0. (5.64)

21 0"2 (y) (}"; 

Consequently, 

2(2) _ 1 2 _ 2 2 (O) (µ - r ) ( 1 1 ) 
Lo</> - -2(0" (y) - O" )S <Pss + 21 0"2(y) - O"Z · (5.65) 

Therefore, we can chose ¢l2l as follows 

2
(2) ( _ 1 ( ) 2 (o) (µ - r )

<P y, S, t) - -2fi Y S <Pss + 21 h(y), (5.66) 

where f 1 and h are solutions of the Poisson equations 

(5.67) 

(5.68) 
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0(Jf) : The terms of order Jf give 

(5.69) 

This is a Poisson equation for qPl with respect to £ 0 in the variable y. In this 

case, the centering condition is 

(5. 70) 


Further, using (5.66), we have 

£irJ}2l = V'ivp (-~CT(y)f{(y)(2S2¢~J + S3¢~Js) 
µ-rf'( )S2 (OJ (µ-r)3f'( ))

+2CT(y) i Y <Pss - 2CT(y)r 2 Y . 

Consequently, 

Inserting this into (5. 70), leads to 
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We conclude that the centering condition ( 5. 70) is satisfied provided we define 

¢(1l(S, t) = y'c¢(1l(S, t) as the solution of the linear differential equation 

(5.71) 

where 

(5.72) 

for constants 

(5.73) 

(5.74) 

(5.75) 

Now, subtracting (5.70) from (5.69) and using relations, we obtain that 

£0¢(3) = -~(a2(y)-a2)s2q;~J+:,; ( (a(y)J;(y) - (aJ;) )(2s2q;~J + S3¢~Js) 
3 

-(µ - r) ( ~(~~! -( ~)) S2¢~J + (µ ~ r) ( ~(~! -( ~))) (5.76) 

which implies that we can chose qPl as follows 

¢(3l(y, S, t) = -~fi(y)S2q;~J + :,; (Js(y)(2S2¢~J + S3¢~Js) 

+(µ - r)f4(y)S2¢~J (µ ~ r) 
3 

f5(y)) (5.77) 
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where the functions h, f 4 and f 5 are solutions of the Poisson equations 

£oh= a(y)J;(y) - (aJ;) (5.78) 

£of4 = J{(y) - I!{) (5. 79)
a(y) \a 

£of5 = J~(y) - I 1~). (5.80)
a(y) \ a 

Now, considering the terms up to order 3 in Vi in the expansion (5.43), 

we have 

cB(y, S, t) = ¢(0l(S, t)+JE</>(ll(S, t)+c</>(2l(y, S, t)+cy'E</>(3)(y, S, t)-EE(y, S, t). 

(5.81) 

Here ¢(0l, <j>(ll, ¢(2) and ¢(3) are defined via (5.63), (5.71), (5.66) and (5.77) re­

spectively and EE(y, S, t) denotes the error term that occurs due to considering 

just the first four terms of the expansion. 

Inserting (5.81) in equation (5.41), we obtain that EE solves the quasi­

linear parabolic partial differential equation 

where I and J are given by 

I(y, S, t) = £2</>(2) + £1</>(3) + JE£2</>(3J + v2(l - p2)r(</>~2) + JE</>~3))2 (5.83) 

J(y, S) = ¢(2l(y, S, T) + y'E<j>(3l(y, S, T). 

(5.84) 
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Remarks 5.4.2. 

• 	 Observe that the assumption that the benefit function is smooth and 

bounded with bounded derivatives, implies that the kth order logarith­

mic derivatives of q/0l, Dk = Sk 0;~~oJ are bounded for any k ~ 1. l\fore­

over, this implies the same property for ¢Pl. 

• 	 Also notice that (5.65) and (5.76) are Poisson equations for ¢(2
) and 4Pl 

respectively, with source terms bounded. Accordingly, ¢(2
) and ¢(3

) are 

at most logarithmically growing as functions of y and both have bounded 

derivatives with respect to y. 

Given these remarks, it follows that ¢(2
), qPl, I and J are bounded as 

functions of (S, t) and are at most logarithmically growing as functions of y. 

In what follows we show that the error term E 0 is of order f. To prove 

this, we closely follow the approach adopted by Sircar & Zariphopoulou (2004). 

Essentially, this approach consists in finding an upper and lower bound of the 

error term E 0 and prove that both are of order f. In order to prove these 

results we will need the theorem below obtained from Walter (1970). The first 

part of the theorem provides us with existence and uniqueness of a solution of 

a quasilinear parabolic equation on unbounded domains. The second part of 

the theorem acts as a comparison principle. 

First, let us denote by D = IRxJR+ x [O, T] and by V = C(D)nC2•2,l(D). 
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Theorem 5.4.1. Let £0 a differential operator on V defined by 

-E 1 2 2 V2vpScr(y) v 2 

£ u = Ut+-cr (y)S uss+ VE uys+-uyy+h(y, S, t, u, uy, us), (5.85)
2 f f 

where h satisfies the condition: for w > v, 

with the functions a, b1 and b2 satisfying the growth conditions 

a(y, S, t) :s; C(l + y2 + (ln S) 2
) (5.87) 

Jb1(y, S, t)J :S C(l + JyJ + J lnSJ), Jb2 (y, S, t)J :S C(l + JyJ + J lnSJ), (5.88) 

for a constant C > 0 and for all (y, S, t) E D. 

Then, the terminal value problem 

£cu= 0 in D ( . )
5 89

{ u(y, S, T) = ~(y, S) for ally E JR and SE JR+ 

has an unique solution belonging to the class V and satisfying the growth con­

dition: there exists C > 0 such that 

Ju(y, S, t)J :S eC(y 
2 

+(1nSJ 
2
l, for large y and S. (5.90) 

Moreover, if u, v EV satisfy the growth condition (5.90) and £cu ~£Ev 

in D while u(y, S, T) :S v(y, S, T) for ally E JR and S E JR+, then u :S v in D. 
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Proof. First, we consider the change of variable 

S = ez and T = T - t (5.91) 

and denote u(y, z, r) = u(y, S, t) and h.(y, z, T, u, U1, u2) = h(y, S, t. u, U1, u2). 

Then, the differential operator [,° becomes 

re- - 1 2( )- v'2vpa(y) _ v2 - H( - - - ) (5 92)
J..., U = -UT+ 2(} Y Uzz + VE Uyz + S Uyy + y, z, T, u, Uy, Uz , . 

- 1 
where H(y, z, T, u, Uy, Uz) = h(r, y, z, u, Uy, Uz) - 2 (y)u2 •2a 

Moreover, via the transformation (5.91), the terminal value problem 

(5.89) becomes a initial value problem, as follows 

l 0 u= 0 in D 
(5.93)

{ u(y, z, 0) = ~(y, z), for all (y, z) E JR2 


From (5.86), (5.87) and (5.88), we have: for w > v 


where 

a(y, z, r) = a(y, S, t) ::; C(l + y2+ (ln S) 2) = C(l + y2+ z2) 

lb1(y, z, r)I = lb1(y, S, t)I :S C(l + IYI +I ln SI)= C(l + IYI + lzl) 

lb2(y, z, r)I = lb2(y, S, t)I :S C(l + IYI +I ln SI)= C(l + IYI + lzl) 
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Accordingly, (5.93) is a initial value problem, of the form studied by Walter 

(1970), chapter 4, pages 211 - 215. Consequently, the result follows. D 

Now, let us show the existence of an upper bound for the error term 

EE. First we notice that the left hand side of equation (5.82) can be written 

as 

(5.94) 

where 

_ ( m - Y (µ - r) .../2vP 2 2 (2) ;-;:. (3) )
h(y,S,t,u,u1 ,u2)- -E- - Jfa-(y) +2v (l-p )r(¢y + vc¢y )) u1 

-El(y, s, t). 

For w > v, we have 

(5.95) 

in which 

Since a-,¢~) and ¢~3) are all bounded, we obtain that b1 (y, S, t) ::; C(l + jyj) 

and this implies that h satisfies the condition (5.86). 

Applying theorem 5.4.1, it follows that the terminal value problem 

[,< E 0 = 0 in D 
(5.97) 

{ E 0 (y, S, T) = cJ(y, S) for ally E IR and SE JR+. 
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has a unique solution belonging to the class V and satisfying the growth con­

dition (5.90). Let us denote this solution by UE. Observe that £cUE ~ lE EE 

while UE(y, S. T) = EE(y, S, T). Accordingly, invoking again theorem 5.4.1, 

we obtain that UE ~ EE. 

Next, we look for a lower bound for the error term EE. Multiplying 

equation (5.82) by AE = e-E", we obtain that AE solves the equation 

£'A'+ 2v2(1 - P2 h(</>~21 + Vi'</>~31 )A; + d N ~ ~N (a(y)s~! + pv;~5)
2 

{ AE(y, S, T) = e-El(y,S) 

(5.98) 

Now, notice that the left hand side of equation (5.98) can be written as follows 

where 

( )_(m -Y (µ - r)J2vp 2 2 (2) r:: (3) )
hy,S,t,u,u1,u2 - -f-- w·(y) +2v(l-p)!(</>y +vf</>y) u1 

+flu. 

Suppose that w > v, then 

h(y, S, t, w, w1, w2) - h(y, S, t, v, v1, v2) ~ a(y, S, t)(w -v) + b1(y, S, t)lw1 - vii 

(5.100) 

where a(y, S, t) = lfl(y, S, t)I and b1(y, S, t) is given by (5.96). 

Recall that I(y, S, t) is bounded as a function of S and t and is at 

most logarithmically growing as a function of y. Thus, we have I(y, S, t) ~ 

173 




Ph.D. Thesis - E. Alexandru-Gajura - McMaster - Mathematics and Statistics 

C(l + log(l + JyJ)). Note that a(y, S, t) satisfies (5.87) if log(l + JyJ)::; y2
. 

Assumption 5.4.1. We assume that the coefficients of the volatility driving 

process Y are such that the growth condition (5.87) holds true. 

Now, since b1 (y, S, t) and a(y, S, t) satisfy the growth conditions (5.88) 

and (5.87), we can apply theorem 5.4.1 and conclude that the terminal value 

problem 

£,eAE = 0 in D 
(5.101)

{ AE(y, S, T) = e-cJ(y,S) for ally E IR'. and SE ffi.+ 

has a unique solution in V and satisfying the growth condition (5.90). We 

denote this solution by BE and by LE = - ln BE. Notice that £E AE 2:: .CE BE 

while A'(y, S, T) = BE(y, S, T). Applying the second part of theorem 5.4.1 we 

obtain that A" ::; B'. Consequently, e-E" ::; e-u: and therefore EE 2:: L'. 

At this point, remains to show that both U' and U are of order O(c:). 

Observe that from (5.97) and (5.101), we have by the Feynman-Kac formula 

the following probabilistic representations for uc: and U: 

(5.102) 

LE= - ln B' = - ln (EQ* [e-cJ(Yr,Sr)+cJ~T I(Ys,Ss,s)dsJ) . (5.103)t,y,S 

Here the measure Q* is a measure is defined by 
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where 

(µ - r)-J2vp _ 2( _ 2)" ( (2) r::. (3))r (Ys, Ss,S) -
_ 

yf[a(y) 2v 1 p y cPy + yE</Jy . 

Observe that the boundedness of a, ¢12
) and ¢13

) implies that r(Ys, 5 8 , s) and 

µ(- r) are both bounded and thus Novikov's condition is satisfied. Accordingly, 
a Ys 
by the Girsanov's theorem we have that Q* "'P and moreover, the dynamics 

of S and Y under Q* are as follows 

in which Ws* = Ws + J; a~~:ldu and z; =Zs+ J; f(Yu, Su, u)du. 

Recall that I (y, S, t) and J (y, S) are bounded as functions of S and t 

and are at most logarithmically growing as functions of y. Accordingly, we 

have 

for some positive constants C1 and C2 . Further, applying Young's inequality, 

we obtain 

!Uc-I :S: cC1 ( 1 + ln(l + E~;,s[IYrl])) + cC2 ir 1 + ln(l + E~;,s[!Ysl])ds. 
(5.104) 

Next, we will use the following proposition from Sircar & Zariphopoulou 

(2004). 
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Proposition 5.4.1. There exists c:0 > 0 and a constant C(t, T, v, y) indepen­

dent off, such that for any s E [t, T] and f E (0, c:0), 

(5.105) 

Notice that ( 5.4.1) implies that Y8 is Q* integrable. Combining this 

with (5.104) it follows U0 = O(c:). 

Next, applying the same properties of I and J as above, we have 

for some positive constants C1 and C2 . Further, we have 

Consequently, by proposition (5.4.1) we have that B 0 = 1 + O(c:) and thus 

U = O(c:). 

Piecing together the results obtained so far, we conclude that E 0 

5.4.2 Approximation for the indifference premium 

Now, we use the asymptotic expansion just obtained for c8 (y, S, t) and the 

one provided in Sircar & Zariphopoulou (2004) for c0 (S, t) to find the first two 
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terms in the following expansion for the indifference premium itself 

P(y, S, t) = p(o)(y, S, t) + .fip(ll(y, S, t) + ... (5.106) 

From (5.22), we deduce that 

p(o)(S, t) = </>(o)(S, t) -1/J(o)(t) 

p(Il(S, t) = ¢(ll(S, t) -1/;(ll(t). 

Using (5.63) and (5.45), we conclude that p(O)(S, t) must be the solution of 

the linear parabolic equation 

pt(o) + !0'252p~~ + 17(ao + t) (e'g(S.t) - 1) = 0 
2 I (5.107) 

{ p(o)(S, T) = 0 

Observe that p(o)(S, t) corresponds to the indifference premium of the equity-

linked term life insurance contract with benefit (5.3) in a financial market with 

constant volatility er. 

Next, using (5. 71) and (5.46), we conclude that p(1J(S, t) = JEp(ll(S, t) 

must be the solution of the linear partial differential equation 

~t + ~cr2S2p(llss - G(S, t) = 0 
(5.108) 

{ p(ll(S, T) = 0 

where 

(5.109) 


and C2 and C3 are the constants defined by (5.74) and (5.75), respectively. 
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As shown in subsection 5.4.1, the first two terms of the asymptotic 

8expansions for c0 and c provide for these two functions an approximation of 

order 0(c). Consequently, finally we have 

IP(y, S, t) - p(o)(S, t) - p(l)I = O(c). 
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Conclusions and directions for 

future research 

We solve the valuation problem of life insurance risks of different nature, mar­

ket independent or equity-linked, under various assumptions regarding poli­

cyholders'mortality and the financial market. Given the incomplete nature of 

life insurance markets, an indifference valuation approach tailored to different 

models of the insurer's liability is applied. 

First, we analyze market independent life insurance risks under the 

assumption of random mortality. Although the market independent life in­

surance products that we study have a simple structure of the benefit, the 

assumption of random mortality transforms their pricing problem in a very in­

teresting one. We find that within the individual risk model, this assumption 

lead us to two important qualitative properties of the indifference premium, 

such as super-additivity of the premium with respect to the number of policies 

and an increasing nature of the premium per risk (lump-sum or continuous). 

Intuitively, these results can be explained by a positive correlation that may 

develop over time between policyholders'mortality. Thus, we conclude that 

random mortality is an essential assumption especially when pricing in aggre­

gate loss models. With regards to the pricing problem in these models, we 
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obtain that in the individual risk model, premium calculation requires solving 

a number of recursively defined linear partial differential equations equal to the 

size of the insurer's portfolio. Accordingly, we conclude that this is not a very 

useful model for an insurer. In contrast, the collective risk model, proves to 

be more efficient since premium calculation within this model requires solving 

only one linear partial differential equation. 

Equity-linked term life insurances are attractive products since they 

provide mortality protection in conjunction to equity investment. So, these 

products incorporate both mortality and financial risk and as observed, in this 

thesis we explicitly recognize both these risks. Applying the utility indifference 

valuation approach we obtain that in all loss models, the premium solves a 

second order partial differential equation similar to the Black-Scholes equation 

while also reflecting the mortality risk. In this case, we assume deterministic 

mortality and as expected in such setting, we obtain that the premium per 

risk in all models is constant. We would like to underline that also here, 

the collective risk model proves to be computationally more efficient than the 

other loss models. The price to pay for this feature is higher premiums per risk 

than in the other models. However, for an insurer with small risk aversion, 

the premium per risk is very close to the one obtained in the individual risk 

model. An interesting generalization of these results, that we consider for 

future research, is considering the pricing problem of equity-linked term life 

insurance under the assumption of random mortality. 

Finally, in the last chapter, we extend our analysis regarding the pricing 

of equity-linked term life insurance to a more realistic financial market model, 

where the volatility of the stock index is stochastic. Concretely, we consider 
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a one factor mean-reverting model and treat from start our pricing problem 

in the collective risk model. Using the utility indifference valuation approach, 

we are led to a quasilinear partial differential equation for the indifference 

premium. However, we do not solve this equation numerically, but instead 

we propose an asymptotic approximation of the indifference premium, valid 

in a fast-mean-reverting volatility regime. Interestingly, it follows that the in­

difference premium can be well approximated by adjusted constant volatility 

results, already derived in the preceding chapter. In this case, an interest­

ing direction to explore is to examine this pricing problem in a multiscale 

stochastic volatility model. 
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