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Lay Abstract 

The internal combustion engine (ICE) is widely used. After its long-term use faults occur. Therefore 

the development of techniques for ICE fault detection and diagnosis (FDD) is important. 

The development of an ICE FDD experimental setup is described. The setup uses sensors to 

measure the ICE vibration and FDD techniques implemented as a computer program. One 

common ICE fault, the misfire fault, is deliberately introduced in some of the experiments by 

disconnecting a spark plug. The objective of the FDD is to determine if there is a misfire fault (or 

not), and which spark plug is faulty. 

Several new techniques for FDD are proposed. Many experiments are performed to evaluate their 

performance. According to the experimental results, all of the proposed techniques can detect 

and locate the misfire faults with 100% accuracy. Techniques for improving the performance of 

artificial neural networks for FDD are also proposed and verified experimentally. 
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Abstract 

The internal combustion engine (ICE) is widely used in applications such as automobiles, 

motorcycles and ships. After its long-term use faults occur that degrade its performance or cause 

it to malfunction. Therefore ICE fault detection and diagnosis (FDD) research is important for 

preventing serious economic loss and even human injuries caused by undetected faults.  

The development of an ICE FDD experimental setup is described. The setup uses sensors to 

measure the ICE vibration and FDD techniques implemented as a computer program. One 

common ICE fault, the misfire fault, is deliberately induced in some of the experiments by 

disconnecting a spark plug. The objective of the FDD is to determine if there is a misfire fault (or 

not), and which spark plug is faulty. 

Several FDD algorithms are proposed, one category of which is based on data processing 

techniques such as the variational mode decomposition (VMD) and the wavelet transform. This 

category of FDD algorithms includes the VMD-based FDD algorithm, wavelet-based kernel 

principle component analysis (KPCA) and VMD-based KPCA. The VMD-based FDD algorithm 

introduces a new FDD index based on VMD and statistics. According to the included experimental 

results, all of these algorithms are capable of detecting and locating the misfire fault with 100% 

accuracy. 

A new SVSF-based training algorithm for the radial-basis-function (RBF) artificial neural network 

is also proposed. The running-averaged wavelet coefficients of vibration data are used as the 

network input. The included experimental results show these SVSF-trained networks above 

achieve 100% accuracy in classifying the misfire faults. The SVSF-based training algorithm also 

produces a faster convergence rate.  
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Chapter 1 Introduction 

1.1 Research Motivation 

Internal combustion engines (ICEs) are widely applied in various means of transportation such as 

automobiles, motorcycles and ships. Like other types of machines, they suffer from performance 

degradation and malfunction especially after long term use or use in harsh working environments, 

which may cause serious economic loss and even human injuries. Thus the fault detection and 

diagnosis (FDD) research is of vital significance for guaranteeing the ICE’s normal working 

condition. 

Fault detection and diagnosis systems aim to accomplish the following three tasks: (Gertler, 1998) 

1. Fault detection: the indication that something is going wrong in the monitored system. 

2. Fault isolation: the determination of the exact location of the fault. 

3. Fault identification: the determination of the magnitude of the fault. 

So far researchers have proposed a number of diagnostic methods, which Venkatasubramanian 

et al. (2003) broadly classified into three general categories: quantitative model-based methods, 

qualitative model-based methods, and process history-based (also known as “signal-based”) 

methods. Each of the three categories can be further subcategorized as shown in Fig. 1.1.1.  
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Figure 1.1.1 Classification of diagnostic algorithms (Venkatasubramanian, et al., 2003) 

To apply model-based methods in fault detection and diagnosis, one needs to develop the system 

model according to its underlying principles. In quantitative model-based methods, the 

mathematical functional relationships between the inputs and outputs of the system are used 

while in qualitative model equations these relationships are qualitative functions centered on 

different units in a process. In contrast, the process history-based methods only assume the 

availability of large amount of historical process data. Further details on many of these methods 

are presented in (Isermann, 2006). 

In this thesis, the studied ICE fault is the misfire fault because it is a common fault in running 

engines; and it can lead to poor engine performance and cause environmental pollution (Du, et 
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al., 2012). Knowing that an internal combustion engine is a complex system with many rotary and 

reciprocating components which makes accurate modeling very difficult, this thesis turns to the 

process history-based method for the misfire FDD. 

1.2 Research Objective 

This thesis is based on previous work by Haqshenas (2012) and Ahmed (2011). Haqshenas 

proposed a powerful data analysis tool based on the concept of multi-scale principal component 

analysis (MSPCA). MSPCA combines discrete wavelet analysis and principal component analysis 

(PCA). This tool was able to detect and localize ICE fault conditions such as a lash adjuster fault in 

both crank angle domain and frequency domain. Another contribution of Haqshenas' research 

was the covariance-based indices that indicate the faulty variable and faulty scale. Ahmed 

proposed a multi-layer perceptron (MLP) neural network training technique based on the smooth 

variable structure filter (SVSF), which was found to have good generalization capability and the 

ability to avoid premature convergence to local minima. Ahmed also applied this technique to a 

fault detection and isolation system which classified two faulty conditions (piston chirp and 

missing bearing faults) plus one baseline condition with high accuracy. 

As an extension to Haqshenas' and Ahmed's work, this research aims to achieve the following 

objectives: 

1. Build an FDD experimental setup. 

2. Propose novel FDD methods based on data processing techniques and artificial neural 

networks. 

3. Apply these FDD methods to the ICE misfire fault. 



Master’s Thesis – Y. Feng                             McMaster University – Mechanical Engineering 

 
 

4 
 

1.3 Thesis Organization 

This thesis is organized as follows. Chapter 2 reviews the relevant literature on data processing 

techniques and artificial neural networks for FDD. This chapter also reviews the prior work on FDD 

of ICE misfire. Chapter 3 describes fault diagnosis algorithms obtained using data processing 

techniques, including one new statistical index and two kernel MSPCA algorithms based on 

wavelet transform and variational mode decomposition respectively. Chapter 4 presents an SVSF-

based training algorithm for RBF neural networks. It also describes the method for generating the 

feature vector used as the networks' input. Chapter 5 first describes the experimental setup and 

the seeding of the ICE misfire faults. Next it presents experimental results and a comparison of 

the performance of the FDD methods. Chapter 6 draws the conclusions of the research and makes 

recommendations for future work. 
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Chapter 2 Literature Review 

This chapter reviews the relevant literature on FDD methods for mechanical systems. Signal 

processing techniques and their application to FDD are covered first, followed by artificial neural 

networks and their application to FDD. Second, FDD methods for detecting misfire faults with ICE 

are reviewed. The chapter ends with a summary of the findings. 

2.1 Signal Processing Techniques for Fault Detection and Diagnosis 

Signal processing techniques are the basis for many FDD methods. This section presents the 

application of the Fourier transform, wavelet transform, empirical mode decomposition, 

variational mode decomposition and principal component analysis to the FDD problem. 

2.1.1 Fourier Transform 

The Fourier transform (FT) provides an alternative representation of a signal in the frequency 

domain rather than the time domain. Because of its usefulness in practical applications, FT has 

become a key tool in numerous engineering branches (Prandoni et al., 2008). The following are 

examples of its application to FDD. 

Shim et al. (2010) proposed an FDD system for an uninterruptible power supply (UPS). The system 

performed real time fast Fourier transform (FFT) on the output current of the UPS' inverter side 

and analyzed its harmonics. Four cases that were studied in the paper: normal linear load case, 

normal rectifier load case, turn-on resistance increase fault, and turn-on delay misfiring fault. The 

faulty cases could be distinguished by comparing the even harmonics in the current. The even 

harmonics only took 5.3% and 5.6% of the current for the normal linear load and normal rectifier 
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load respectively. However, when the turn-on resistance increased a fault condition occurred, and 

the even harmonics increased to 18.8%. Also, the even harmonics increased sharply to 40.2% 

when there existed the turn-on delay misfiring fault. Their experimental results showed that the 

FFT was a simple and practical tool for detecting fault conditions in UPS. 

Mamis et al. (2011) developed a method for fault isolation for power transmission lines. Transient 

voltage and current waveforms of the transmission lines were first obtained and then 

transformed into the frequency domain using the FFT. The first harmonic of the spectrum was 

utilized for determination of the fault location according to the travelling wave theory. The 

percentage error for the fault distance was within 0.47% to 3.20% when the fault distance 

changed from 40 km to 320 km. Other experiments also found that the measured fault distance 

were not affected by resistance, phase angle and source inductance. 

2.1.2 Wavelet Transform 

The wavelet transform is a useful tool for analysing aperiodic, noisy, intermittent and transient 

signals. Compared with the Fourier transform, the wavelet transform not only finds the frequency 

components in the signal but also tell at what instant a particular frequency arises. Due to its 

advantages, the wavelet transform has been widely applied in different fields, such as fault 

detection, audio processing and image processing (Sifuzzaman et al., 2009). The following are a 

few examples of its application to FDD. 

Lin and Qu (2000) applied the wavelet transform in gear fault feature extraction. They first 

proposed a denoising method based on Morlet wavelet whose optimal parameter was obtained 

using minimal wavelet entropy method. Then this denoising method was used to filter the 
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vibrational signal of a gear box where a tooth crack failure resulted in a very clear periodic impulse 

with the feature period of 0.24s. 

Sun and Tang (2002) used the wavelet transform in fault detection for bearings in freight cars. 

First the wavelet transform modulus maxima and their locations were obtained from the vibration 

signal. Then thresholding and signal reconstruction were performed for denoising. The 

reconstructed signal consisted of only defect-induced impulse clusters. The errors between the 

estimated and measured faulty frequencies were only 0.8%. 

Kang et al. (2001) developed an FDD method for power transformers based on the wavelet 

transform. The vibration of the equipment was measured by one accelerometer. The envelope of 

the vibration was extracted using the Hilbert transform and then the continuous wavelet 

transform (CWT) was performed on the envelope signal to obtain the wavelet coefficients. Next, 

local maxima of these wavelet coefficients were found and selected to get the CWT vertical ridges. 

Finally the dominant ridgelines were determined according to the number of expected transient 

events. This method detected that the weak spring condition caused longer delay time between 

the dominant ridgelines. For example the delay time between the first two dominant ridgelines 

was 25.4 ms for the weak spring condition while it was 19.0 ms for the normal condition. This 

method also found that when the equipment had worn contacts, the strength of the dominant 

ridgelines decreased significantly, e.g. the strength of the 4th dominant ridgeline decreased from 

11.28 to 6.30. 

2.1.3 Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) proposed by Huang et al. is a time-frequency signal 

processing method and is useful for analyzing natural signals, which are most often non-linear 
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and aperiodic. The method is fully adaptive and generates intrinsic mode functions (IMFs) to 

represent the data. The IMFs represent a complete set of locally orthogonal basis functions whose 

amplitude and frequency may vary over time. (Zeiler et al., 2010). EMD has been applied to many 

fields in engineering and science. 

Loutridis (2004) proposed a damage detection method for pairs of gears. In this method, the 

vibration signal resulting from the gears were decomposed into nine intrinsic mode functions 

(IMF), namely C1, C2 to C9. Since C2 best represented the time scale of the transient caused by gear 

damage, the energy of mode C2 was selected as the diagnostic feature. The energy of a healthy 

gear pair was relatively low at C2. It increased when damage happened. When a gear pair had a 

75% crack, the peak energy was more than three times that of a pair with only a 15% crack. 

Yu et al. (2005) proposed a method for the fault diagnosis of roller bearings. The vibration signal 

of a roller bearing was first translated into time-scale representation by orthogonal wavelet bases. 

Then the envelope signal was obtained by envelope spectrum analysis of the wavelet coefficients 

that represent the high frequency components. After applying EMD and Hilbert transform, the 

local Hilbert marginal spectrum of the envelope signal was obtained, from which the fault pattern 

can be identified. In the paper, an outer-race fault was introduced in the roller bearing with a 

characteristic frequency of 76 Hz. The local marginal spectrum shows the frequency peaks of 76 

Hz and its double frequency of 152 Hz. 

2.1.4 Variational Mode Decomposition 

The variational mode decomposition (VMD) is a recently proposed time-frequency signal analysis 

technique. Like EMD, it decomposes a signal into several intrinsic mode functions with limited 

frequency bands. In contrast, VMD is entirely non-recursive, theoretically well founded and more 
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robust to sampling and noise than EMD (Dragomiretskiy et al., 2014). Since VMD is a relatively 

new signal processing method, there are only a limited number of relevant applications of VMD 

to the fault detection field to date. The following are two examples. 

Wang et al. (2015) applied VMD in detecting the rub-impact fault of a gas turbine. Vibration signals 

were collected from the measuring points of five bearings by eddy current transducers with a 

sampling frequency of 2000 Hz. The spectrum of the signal included three major frequency 

components. The decomposition results using VMD successfully detected all three. The empirical 

wavelet transform (EWT) extracted only the two lower frequency components. In contrast, the 

empirical mode decomposition (EMD) and the ensemble empirical mode decomposition (EEMD) 

did not distinguish between the components clearly. 

Mohanty et al. (2014) used VMD to analyze bearing faults. Vibration data was acquired using one 

accelerometer. By comparing the VMD decomposition results of the healthy and faulty signal, it 

was easy to detect the fault from both the spreading in the frequency of the signal, and from the 

intensity of vibration. Mohanty also explored the effect of VMD parameter �  on the 

decomposition result. An �  value, which was too low, led to randomness of the frequency 

distribution of each intrinsic mode functions and made the FDD problem difficult. 

2.1.5 Principle Component Analysis 

Principal component analysis (PCA) is a powerful and versatile method capable of providing an 

overview of complex multivariate data. It aims to represent the data as a set of new orthogonal 

variables called principal components. PCA can be used for revealing relations between 

variables/samples, detecting outliers, finding and quantifying patterns, and other functions (Bro 

et al., 2014). The following are a few examples of its application to FDD. 
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Villegas et al. (2010) developed a PCA-based FDD system for a pilot chemical plant which consisted 

of two connected cylindrical tanks. The following five operation modes were considered: normal 

behaviour, tank 1 outlet clogging, tank 2 outlet clogging, level sensor 1 fault and level sensor 2 

fault. Five corresponding PCA models were determined for those modes. An experiment was done 

to validate the FDD system. The experimental data contained 7000 samples, with the first 2300 

for the normal mode and the rest for level sensor 1 fault. The results showed that in the first stage 

only the normal mode model generated Q statistics that were below its threshold. In the later 

stage, only the level 1 sensor fault model had Q statistics below its threshold. 

Cho et al. (2004) proposed a new sensor fault identification method based on the kernel principal 

component analysis (KPCA). Hoteling’s T2 and the SPE statistics were first produced by the KPCA, 

which detected the fault based on the sudden increase of SPE from 251st sample in the simulated 

chemical process. Two new statistics were defined using the gradient of kernel function to 

represent the contribution of each variable to the monitoring statistics. The simulation result 

showed they could effectively discriminate the faulty variable 

2.2 Artificial Neural Networks for Fault Detection and Diagnosis 

The artificial neural network (ANN) is a massively parallel distributed network made up of simple 

processing units called neurons. It imitates the way in which human brain performs a particular 

task or function of interest. An ANN has the ability to approximate an unknown input-output 

mapping (Haykin, 2008). Fault classification is one of the important applications of the ANNs. 

Ghate et al. (2010) developed an MLP neural network classifier for FDD of a three phase induction 

motor. Three AC current probes were first used to measure the stator current signals, from which 

several features were extracted such as Pearson’s coefficient of skewness, the overall root mean 
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squared value and so on. After feature extraction, PCA was used for dimensionality reduction of 

the MLP to reduce its computation time. Experiments showed that the average classification 

accuracy on the testing instances was as high as 98.25%. 

Rajakarunakaran et al. (2008) performed fault detection for a centrifugal pumping system by using 

the binary adaptive resonance network (ART1) in comparison with a feed-forward network 

trained by the back-propagation (BP) algorithm. A number of system states such as voltage, 

current, speed and pressure were measured for training data generation. The neural networks 

were tested for a total of seven categories of faults, such as shaft wear fault and bearing outside 

diameter reduced fault. The test result showed the ART1 model achieved a superior classification 

accuracy of 100% with only 20 s training time compared to the BP-trained feed-forward network 

with 99.3% accuracy and 82 s training time. 

Wu et al. (2004) developed a radial-basis-function (RBF) neural network for induction machine 

FDD. Four feature vectors were extracted from power spectra of machine vibration signals 

measured by one accelerometer. A cell-splitting grid algorithm was proposed to automatically 

determine the network architecture of the RBF network. The FDD system was tested with 

unbalanced electrical faults and mechanical faults operating at different rotating speeds. 

Experimental results showed the accuracy of detecting electrical faults was 96.3% for the training 

data, and 85.7% for the testing data. The accuracy of detecting the normal condition was 99.5% 

for the training data, and 96.0% for the testing data. The mechanical faults were well separated 

from the other two conditions. The accuracy was 100% for both the training and testing data. 
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2.3 Internal Combustion Engine Misfire Fault Detection 

Misfire is a common fault for internal combustion engines that has had significant research 

activity over the past two decades. Since the FDD techniques proposed in this thesis are also 

applied to the misfire fault, the literature on FDD of ICE misfire faults is reviewed in this section. 

Lee et al. (1997) used directional spectra to detect misfire faults in a four-cylinder compression 

and spark ignition engine. Signals measured from two vibration transducers that were placed 

perpendicular to each other were combined to construct a complex-valued signal. The maximum 

likelihood (ML) method was then used to estimate the directional power spectra (DPS) of this 

complex-valued signal. At the last stage, a MLP neural network was applied to recognize the fault 

by taking the DPS estimate as its input. Experiments showed the use of DPS achieved as high as 

100% classification accuracy while the traditional Fourier transform (FT) method had an accuracy 

of only 90%. The ML also outperformed FT in terms of input data size: the ML used only 256 data 

points while 1024 points were used with the FT. 

Porteiro et al. (2011) developed a multiple ANN system for diesel engine FDD. The system 

consisted of three levels of subsystems for decision, each comprising an ANN with different inputs. 

The input features were extracted from vibration signals at 15 positions and the measured 

temperatures of the exhaust gases, the lubricating oil and coolant. The first ANN estimated the 

load of the engine. Eight different loads ranging from idling to rated power were used. The second 

ANN detected the engine's condition, either normal or faulty condition, with the information 

provided by the first level and new inputs. If the second level decided that the engine was faulty, 

the third level was employed to determine the probable cause of the failure with the aid of the 

outputs of the first two levels and some new inputs. The system was capable of perfectly detecting 
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the engine load and of detecting the failure at the accuracy of 99%. The correctness for failure 

cause determination was 100% for misfiring in each of the three cylinders, 90.5% for clogged 

intake, and 91.7%, 75.0% and 66.7% for leaks in the 1st, 2nd or 3rd cylinder, respectively. 

Lu et al. (2012) proposed an FDD method for a direct-injection three cylinder diesel engine. The 

FDD method was based on the empirical mode decomposition (EMD) and time-frequency image 

processing. The EMD decomposed the vibration signal of cylinder head surface into several 

intrinsic mode function (IMF) components. The first two IMFs were taken to reconstruct the signal 

in order to eliminate noise. After the pseudo Wigner-Ville time-frequency distribution was applied 

to obtain the signal's time-frequency image, features such as the absolute distance, the Euclidean 

distance and the first-order time moment were calculated. If the ratio of the test signal's feature 

to that of a certain baseline signal was close to 1, then the test condition belonged to that specific 

baseline condition. The objective was to distinguish the following conditions: normal condition 

(A), tight gross valve tappet clearance (D), excessive gross valve tappet clearance (C) and misfire 

condition (B). The experiments showed the three faulty conditions B, C and D could be easily 

distinguished, but there was some difficulty in distinguishing A. 

Moosavian et al. (2015) developed an FDD approach to detect the wide spark plug gap fault in ICE 

based on vibration and acoustic signals. The vibration signal was obtained from an accelerometer 

mounted on one cylinder head and the acoustic emitted signal was captured by a microphone 

placed on top of the engine. A wavelet de-noising technique was applied to the signal before 

feature extraction. Then two Levenberg-Marquardt (LM) trained artificial neural networks (ANNs) 

as well as two least square support vector machines (LS-SVMs) were used to classify the fault 

according to the two different signals. Finally, the Dempster-Shafer (D-S) evidence theory was 

used for fusing classifiers. The experimental results showed that the classification accuracies of 
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ANN were 67.5% and 65.1% based on the acoustic and vibration signals, respectively. For LS-SVM, 

the classification accuracies of 65.1% and 57.9% were achieved based on the acoustic and 

vibration signals, respectively. By employing D–S theory to fuse the results, the classification 

accuracy reached 98.6%. 

2.4 Summary 

In this chapter, the applications of several data processing techniques and ANNs to FDD were 

reviewed, with a focus on the FDD of ICE misfire faults. The reviewed techniques included: Fourier 

transform, wavelet transform, EMD and VMD. We can clearly see the progress of these techniques. 

The signal to be processed was first assumed to be linear and periodic and can now be nonlinear 

and aperiodic. The progress of signal processing also prompted the development of improved FDD 

systems. Currently the relatively new VMD technique has not aroused significant attention in the 

FDD field. Since VMD has exhibited better performance than other signal processing techniques, 

its application to FDD is promising and will be investigated in this thesis. Considering the benefits 

of multi-variate analysis demonstrated by the literature, the combination of VMD and kernel PCA 

and their application to misfire FDD will also be investigated. 

The application of ANNs to FDD reveals two factors that are crucial to successful FDD: the feature 

selection for the ANN’s input and the use of multiple networks. However, while complicated input 

features and use of multiple networks may increase the classification accuracy it can also 

significantly increase the computational load. As a result, the research in this thesis will try to find 

a simple, but effective, ANN input and a new training algorithm that has more powerful 

generalization ability for ANNs with simple structures. If these aims are achieved the research will 

make a new contribution to the application of ANNs to FDD.  
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Chapter 3 Fault Diagnosis based on Data Processing Techniques 

This chapter presents three novel FDD approaches based on data processing techniques. The 

underlying theory is introduced first, followed by detailed descriptions of the VMD-based FDD 

algorithm based on a new FDD index and two nonlinear multivariate multiscale FDD algorithms. 

3.1 Underlying Theory 

3.1.1 Crank Angle Domain Analysis 

Crank angle domain (CAD) analysis is a commonly used tool for ICE fault detection. Crank angle 

refers to the rotation angle of the engine's crankshaft. An internal combustion engine consists of 

a number of rotary and reciprocating components. They complete a full cycle of movement when 

the crankshaft rotates from 0 to 720 degrees. 

The essence of CAD analysis is to relate a measured signal (e.g. engine block vibration, cylinder 

pressure) to mechanical events in the engine (e.g. valve train intake, fuel injection) so that signal 

abnormality caused by defective components can be mapped to its crank angle position. By using 

CAD analysis, researchers found all engine dynamics, except for fuel dynamics, became less 

variable compared to time domain analysis. (Chin, et al., 1986) 

Mapping data from time domain to crank angle domain can be done via several ways. One of 

them is to configure the data acquisition system to sample all sensors simultaneously according 

to the angle of the crankshaft. In other words, the acquisition system collects data only when it 

receives pulses sent by a camshaft position sensor. Another approach is to record data from all 
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sensors including the camshaft position sensor in the time domain, and then perform post 

processing. This approach is adopted in this thesis and its detailed procedure is as follows: 

1) Collect data from all sensors as mentioned above.  

2) Split the data into different engine cycles according to the peaks of the camshaft position 

sensor signal. 

3) Regard the crank angle of the start sample in each engine cycle as 0 degree and map the 

data to crank angle domain using linear interpolation.  

3.1.2 Wavelet Transform 

The advantages of the wavelet transform were presented in Chapter 2. In this section, a brief 

introduction to the discrete version of the wavelet transform is presented, based on (Mallat, 

2009). 

Given the scaling function �  and wavelet function � , a discrete signal �[�] in ��(Ζ)1 can be 

approximated as follows: 

�[�]=
�

√�
∑ � � [��, �]���,�[�]� +

�

√�
∑ ∑ � �[�, �]��,�[�]�
�
����

.  (Eq. 3.1.2-1) 

where M is the number of samples of the discrete signal; and �[�], ���,�[�] and ��,�[�] are all 

discrete functions defined in [0,� − 1]. In addition: 

��,�[�]= 2
�

���2�� − ��;    (Eq. 3.1.2-2) 

                                                           
1 The collection of Lebesgue 2nd integrable functions defined on �. See page 7 of (Sen, 2013). 
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��,�[�]= 2
�

���2�� − ��    (Eq. 3.1.2-3) 

where � is the scale parameter about dilation, or the visibility in frequency and �  is the shift 

parameter about the position. 

The sets {���,�[�]} ∈ Ζ and ���,�[�]� ∈ Ζ�, �≥ �� form an orthonormal basis of ��(Ζ). Thus by 

taking the inner product, the wavelet coefficients are obtained: 

� � [��, �]=
�

√�
∑ �[�]���,�[�]�  and   (Eq. 3.1.2-4) 

� �[�, �]=
�

√�
∑ �[�]��,�[�]� , �≥ ��    (Eq. 3.1.2-5) 

where (Eq. 3.1.2-4) are called approximation coefficients while (Eq.3.1.2-5) are called detailed 

coefficients. 

There is a faster way to obtain the wavelet coefficients, which is called the fast wavelet transform. 

Its diagram is as shown in Fig. 3.1.1. ��(�) and ��(�) are low-pass filters, and ��(�) and ��(�) 

are high-pass filters. The notation ↓ 2 means downsampling by 2. The outputs of low-pass filters 

and high-pass filters define the approximation coefficients (named, ��, ��,…�� ) and detail 

coefficients (named  ��,��,…��) respectively. 

 

Figure 3.1.1 Schematic diagram for the fast wavelet transform. (NI, 2014) 
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This algorithm is faster because one can find the coefficients level by level rather than directly 

using (Eq. 3.1.2-4) and (Eq. 3.1.2-5) to find the coefficients which requires the knowledge of the 

scaling and dilation version of scaling and wavelet function.  

The wavelet transform is also called wavelet decomposition or analysis. And the inverse wavelet 

transform is also known as wavelet reconstruction or synthesis. The diagram of the latter is shown 

in Fig. 3.1.2. The notation ↑ 2 means upsampling by 2. The relationship between �� and �� is 

��[�]= ��[−�] and that between �� and �� is ��[�]= ��[−�]. 

 

Figure 3.1.2 Schematic diagram for the fast wavelet reconstruction.  (NI, 2014) 

3.1.3 Variational Mode Decomposition 

VMD is a newly developed method for adaptive signal decomposition which can non-recursively 

decompose a multi-component signal into a number of quasi-orthogonal intrinsic mode functions. 

Each mode is band-limited and is compact around a center. VMD can be stated as follows 

(Dragomiretskiy, et al., 2014): 

min
{��},{��}

�∑ ��� ���(�)+
�

��
� ∗ ��(�)� �

������
�

�

� �       �. �. ∑ ��� = �  (Eq. 3.1.3-1) 

where � is a real valued input signal. � is the Dirac distribution and * denotes convolution. � is the 

imaginary unit and is defined as �� = −1. �  is the number of modes. {��} ≔ {��,… , ��} and 
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{� �} ≔ {��,… , ��} are shorthand notations for the set of all modes and their center frequencies, 

respectively. Similarly, Σ�: = Σ���
� is understood as the summation over all modes. 

To solve the constrained variational problem above, the following augmented Lagrangian is 

introduced: 

�({��}, {� �}, �)≔ � ∑ ��� ���(�)+
�

��
� ∗ ��(�)� �

������
�

�
+ ‖�(�)− ∑ ��(�)� ‖�

� +�

〈�(�), �(�)− ∑ ��(�)� 〉.    (Eq. 3.1.3-2) 

The first two terms are the quadratic penalty part and �  is the weight of the penalty term, 

indicating the tightness of the band-limit of each IMF. � is inversely proportional to the noise level 

in the input signal and by increasing it, the bandwidth of IMF is decreased. � in the last term (the 

inner product term) is the Lagrangian multiplier. 

The solution to the original minimization problem (Eq. 3.1.3-1) is now found as the saddle point 

of the augmented Lagrangian in a sequence of iterative sub-optimizations called alternate 

direction method of multipliers (ADMM). The complete VMD algorithm is as follows: 

Initialize ����
��, �� �

��, ���, � ← 0 

 repeat 

  � ← � + 1 

  for � = 1: �  do 

   Update ��� for all � ≥ 0: 

    ���
���(�)←

��(�)�∑ ���
���(�)�∑ ���

�(�)�
���(�)

�������

���������
��

�  

   Update ��: 
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    ��
��� ←

∫ �����
���(�)�

�
��

�

�

∫ ����
���(�)�

�
��

�

�

 

  end for 

  Dual ascent for all � ≥ 0: 

   �����(� )← ���(�)+ ����(�)− ∑ ���
���(�)� � 

 until convergence: ∑
����

��� − ���
��

�

�

����
��

�

��� < �. 

In the algorithm above, the hat notation (��, �� , ��) indicates the Fourier transform of the 

corresponding function. Two new parameters are introduced i.e. � which indicates the time-step 

of the dual ascent and � which indicates the tolerance of the convergence criterion. They need to 

be set manually in the implementation of the algorithm. 

3.1.4 Principal Component Analysis 

PCA is used to model a multivariate data set and extract the relationship between variables. It has 

been widely applied to the process monitoring field. 

Assuming �  is an � ×� data matrix which encompasses � measurements (or observations) of � 

variables and the mean of the elements in each column of �  is zero, then PCA aims to find a matrix 

�  such that after transformation � = �� , where � is an � ×� matrix and each pair of columns 

of � is uncorrelated. This can be done by taking the singular value decomposition (SVD) on � , 

which is shown below: 

� = ���� = [�� �� ⋯ ��]�

��
⋱

��
�

�[�� �� ⋯ ��]�,  (Eq. 3.1.4-1) 
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where the columns of � are orthogonal and so are those of �. Plus, �� > �� > ⋯ > ��. As a 

result: 

 �� = ����� = ��.     (Eq. 3.1.4-2) 

Taking � = �, the covariance matrix of �  can be obtained as follows: 

�� =
�

���
��� =

�

���
(�� )�(�� )=

�

���
(��)�(��)     

=
�

���
(��)�(��)=

�

���
������ =

�

���
��� = �,   (Eq. 3.1.4-3) 

where � = �
��

⋱
��

� =
�

���
�
��
�

⋱
��
�
� is a diagonal matrix. 

The elements of �  in the equations above are called the principal component scores and the 

columns of �  are called the principal component loadings, or simply the principal components 

(PCs). 

The next step is to threshold these diagonal elements in � . Suppose the first �  elements are 

retained, then �  can be written as 

� = �
��

⋱
��

� = ��
� �
� ��

�,     (Eq. 3.1.4-4) 

where �� is � × � of and �� is of (� − �)× (� − �). 

Correspondingly,  
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� = [�� �� ⋯ ��]�

��
⋱

��
�

�[�� �� ⋯ ��]� 

= [���� ���� ⋯ ����]

⎣
⎢
⎢
⎡
��

�

��
�

⋮
��

�⎦
⎥
⎥
⎤
�

 

= [���� ⋯ ���� �������� ⋯ ����]

⎣
⎢
⎢
⎢
⎢
⎡
��

�

⋮
��

�

����
�

⋮
��

� ⎦
⎥
⎥
⎥
⎥
⎤
�

    

= [�� ��]�
���

���
�              (Eq. 3.1.4-5) 

After the PCA models the baseline dataset, one can monitor the interested process by calculating 

the Hotteling’s � � and the Q-statistic (also known as the squared prediction error, SPE), and then 

comparing them to their upper limits. (Qin, 2003) 

The Hotteling’s � � is defined as follows: 

� � = ��������
���������

�,    (Eq. 3.1.4-6) 

where ���� is a vector of new observations with the size of 1×�. 

The Q-statistic/SPE is defined as follows: 

� = ‖�����‖
� = ��������

�
,    (Eq. 3.1.4-7) 

where �� = ����� . In fact �����  can be written as the projection of the new observation vector 

���� to the residual subspace using the �� matrix, i.e. ����� = ������=��������
�. 
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Assuming the monitored variables possess multivariate normal distribution, for a given 

significance level �, the upper limits of the Hotteling’s �� is: 

��
� =

�(���)

���
��(�, � − �),    (Eq. 3.1.4-8) 

where � is the number of selected elements after thresholding and � is the number of samples. 

Under the same assumption, the upper limits of the Q-statistic/SPE for a given significance level 

� is: 

�� ,� = �
�

��
���

� �
���

�
�,     (Eq. 3.1.4-9) 

where � is the sample mean for �� and � is its covariance. 

As long as � � < ��
�  and � < �� ,�  the process is considered normal with confidence (1− �)∙

100%. 

3.1.5 Kernel Principal Component Analysis 

Although PCA is a very effective multivariate statistical method that is widely applied in process 

monitoring, it is inherently a linear transformation. Thus its performance degrades when it is used 

to monitor non-linear systems, like the internal combustion engine. To solve this problem, PCA 

has been extended to several nonlinear versions, among which kernel PCA (KPCA) is one of the 

most popular methods. The following is a brief description for KPCA based on (Choi, et al., 2005). 

As with PCA, the dataset �  has � observations in an �-dimensional space ��, ��, … , �� ∈ ℝ�. 

Originally, KPCA consisted of two steps, the first of which is non-linear mapping from the original 

input space to the feature space ℱ , i.e. �:� ∈ ℝ� → �(�)∈ ℱ . The second step is to perform 
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the PCA on those mapped samples by finding the eigenvalues � and corresponding eigenvectors 

� ∈ ℱ  satisfying: 

�� = �
�

�
∑ �( ��)�( ��)

��
��� � �.    (Eq. 3.1.5-1) 

However, to avoid the “curse of dimensionality”, KPCA is performed using the so-called “kernel 

trick” in order to avoid expressing � explicitly. Then the KPCA problem can be solved by finding 

the eigenvalues � and eigenvectors � from the following equation: 

��� = ��,      (Eq. 3.1.5-2) 

where 

� = �
��� ⋯ ���
⋮ ⋮ ⋮

��� ⋯ ���

�.     (Eq. 3.1.5-3) 

Its element at the ith row and jth column is ��� = �� ��,  ��� = 〈�( ��),�( ��)〉. Here the angle 

bracket is the notation of inner product and �� ��,  ��� is called the kernel function and in this 

research it adopts the form below:  

��� = �� ��,  ��� = (〈 ��,  ��〉 + �)�,   (Eq. 3.1.5-4) 

where � and � are tuning parameters. Assuming the number of the retained PCs is �, the score 

vector �= [��, ��,… , ��]
� is obtained by: 

�� = ∑ ��
��( ��, �)

�
��� , � = 1,2,… , �.   (Eq. 3.1.5-5) 

where ��
� is the �th element of the �th eigenvector obtained from (Eq. 3.1.5-2). 
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There are two points that need to be considered before solving the eigenvalue problem. First 

mean centering has to be performed in feature space ℱ , which can be done by substituting the 

kernel matrix � with 

�� = �− ���−��� + �����.    (Eq. 3.1.5-6). 

Here �� ∈ ℝ �×� and each of its elements equals 1 �⁄ . Moreover, � should be scaled in such a 

manner that ‖�‖� = 1 ��⁄  in order to ensure the normality of the PCs, i.e. ‖�‖� = 1. 

To perform KPCA-based monitoring, the Hotteling’s � �  statistic and the Q-statistic should be 

modified in the following way: 

� � = �������,      (Eq. 3.1.5-7) 

� = ∑ ��
��

��� − ∑ ��
��

��� ,     (Eq. 3.1.5-8) 

where ���� is the diagonal matrix of the inverse of the eigenvalues associated with the retained 

PCs and � is the number of non-zero eigenvalues generated from (Eq. 3.1.5-2) among the total � 

eigenvalues. 

3.2 VMD-Based FDD Algorithm 

As mentioned in Section 2.1, VMD is a recently proposed and powerful signal processing tool. Its 

application to FDD is promising. This section describes a new FDD index based on VMD and the 

use of vibration data acquired from one sensor.  
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Assume after the crank angle domain (CAD) analysis, � ICE working cycles of data in CAD are 

obtained from the data in the time domain and each cycle contains � samples of data. Data in 

cycle � is denoted as: 

�� = �

��,�
��,�
⋮

��,�

�.      (Eq. 3.2-1) 

And the vibration dataset after the CAD is denoted as: 

� = {��, ��,⋯ , ��} = {��}���
� .     (Eq. 3.2-2) 

Then the data in each cycle are analyzed by VMD using the same settings. Suppose the desired 

intrinsic mode function (IMF) number is �, then the �� will be decomposed into � IMFs by VMD 

and each IMF has M elements. Denote the VMD result as: 

�� = ���
� , ��

�,⋯��
�� = ���

� �
���

�
,     (Eq. 3.2-3) 

where the superscript is the index of the IMF, e.g. the �th IMF in �� is 

��
� =

⎣
⎢
⎢
⎢
⎡
��,�
�

��,�
�

⋮
��,�
�

⎦
⎥
⎥
⎥
⎤

.     (Eq. 3.2-4) 

The next step is to combine each cycle’s IMF component that share the same mode index into 

one matrix. For example, ��
�  which is the �th IMF of Cycle 1’s vibration data ��, ��

�  which is the �th 

IMF of Cycle 2’s vibration data ��, ……, and ��
�  which is the �th IMF of Cycle n’s vibration data ��are 

combined into one matrix. Denote this matrix as: 
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�� = [��
� ��

� ⋯ ��
� ]=

⎣
⎢
⎢
⎢
⎡
��,�
� ��,�

�

��,�
� ��,�

�

⋯ ��,�
�

⋯ ��,�
�

⋮ ⋮
��,�
� ��,�

�
⋮ ⋮
⋯ ��,�

� ⎦
⎥
⎥
⎥
⎤

,  (Eq. 3.2-5) 

where � indicates the �th IMF. So there are totally � such matrices, which are ��, ��, ……, and ��. 

Each row of ��  corresponds to a certain crank angle. For example, the second row of �� , i.e. 

���,�
� ��,�

� ⋯ ��,�
� � corresponds to 

�

�
∙720 degree. 

As a process history-based FDD technique, this approach requires data obtained under both 

healthy (baseline) condition and test condition. The approach denotes the data at a certain mode 

and at a certain crank angle under the healthy condition as {��}���
�  and assumes the random 

variable complies with the same normal distribution, then  ��~�(�, �
�), where �  is the 

distribution mean and �� is the distribution variance. According to statistics (Dekking, et al., 2005), 

the unbiased estimates of μ and σ calculated using  {��}���
�  are: 

μ� = X� =
�

�
∑ X�
�
��� ;    (Eq. 3.2-6) 

σ� = S = �
�

���
∑ (X� − X�)��
��� ,    (Eq. 3.2-7) 

where X� is the sample mean and S is the sample variance. 

The next step is to perform the same operations on the test data and denote the data at the same 

mode and at the same angle as {��}���
� . If the test condition is healthy, then the following 

conditions hold: 

Y�~N(μ, σ
�) ;    (Eq. 3.2-8) 
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Y� =
�

�
∑ Y�
�
��� ~N�μ,

��

�
� ;     (Eq. 3.2-9) 

����
�

√�

≈
�����
��

√�

~N(0,1) ;    (Eq. 3.2-10) 

Therefore, at the probability of (1− α)∙100%, 

−z�
�
≤

�����
��

√�

≤ z�
�
 ,     (Eq. 3.2-11) 

where z�
�
 is the upper 

�

�
 quantile of standard normal distribution and � ��

�����
��

√�

� > z�
�
� = α. 

Then the new FDD index at mode � and crank angle � is designated as  

�(�, �)=
|�����|

��∙��
�
/√�

 .     (Eq. 3.2-12) 

If �(�, �)≤ 1, the engine is working in its normal condition; if �(�, �)> 1, a fault has happened 

at mode � and crank angle � with the probability of (1− α)∙100%. Usually when a fault occurs 

in an internal combustion engine, several modes and crank angles are affected. Assuming only 

one fault occurs at a time, the maximum index indicates the mode and the crank angle of the fault. 

Now the algorithm for the VMD-based FDD approach described above can be summarized as 

follows: 

Step 1: Get data from one accelerometer2;  

Step 2: Map the data from time domain to the crank angle domain; 

                                                           
2 Larger data volume increases the FDD accuracy. 
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Step 3: Perform the VMD and obtain data at different modes; 

Step 4: For each mode and each crank angle 

1) Baseline data (obtained under ICE normal working condition): calculate its sample 

mean X� and sample standard deviation S according to (Eq. 3.2-6) and (Eq. 3.2-7); 

2) Test Data: calculate its sample mean Y� according to (Eq. 3.2-9); 

3) Calculate the index  �(�, �) according to (Eq. 3.2-12); 

Step 5: Find the maximum index; 

Step 6: If it is above 1, the mode and the crank angle of the fault are those corresponding 

to the maximum index; and 

Step 7: If it is below 1 then no fault has been detected. 

The flow chart of this algorithm is exhibited as Fig. 3.1.3. 
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Figure 3.1.3 Flow chart of the VMD-based FDD algorithm. 

To implement the algorithm, one needs to properly choose the relevant parameters. The number 

of modes (� ) should be large enough to cover the major frequency peaks of the analyzed signal. 

According to (Dragomiretskiy, et al., 2014), when �  is smaller than the proper value, i.e. when 

underbinning, the spectrum of the IMFs overlap. When �  is larger than the proper value, i.e. 

when overbinning, the center frequencies of the IMFs coincide if the weight of the penalty term 

of (Eq. 3.1.3-2), �, has a large value. One needs to consider the degree of noise of the input signal 

when tuning �  because it is inversely proportional to the noise level in the input signal. The 



Master’s Thesis – Y. Feng                             McMaster University – Mechanical Engineering 

 
 

31 
 

tolerance of convergence criterion � is typically around 10��. The time-step of the dual ascent, �, 

is picked as 0 for noise-slack. 

3.3 Nonlinear Multivariate and Multiscale Fault Diagnosis Techniques 

Discrete wavelet transform (DWT) and VMD are both powerful time-frequency analysis tools that 

decompose a signal into several components with different frequency contents. KPCA is a robust 

tool for multivariate analysis. The combination of the time-frequency analysis tool (either DWT or 

VMD) and KPCA creates a strong nonlinear multivariate multiscale FDD method. The complete 

algorithm of this method is as follows: 

Part A: Build Reference Model 

Step 1: Under normal ICE working condition, acquire baseline data matrix � ∈ ℝ �×� from 

the sensors, where � is the number of observations and � is the number of variables. 

Step 2: Shift and scale each variable to have zero mean and unity standard deviation. 

Step 3: Decompose each column � ∈ ℝ � of the data matrix � by means of DWT or VMD into 

� different levels. 

Step 4: For each level �, 

1) Combine the decomposition components of all variables into an m-by-n matrix �� =

[���, ���, … , ���]
�; 

2) Compute the kernel matrix � ∈ ℝ �×� according to (Eq. 3.1.5-3) and (Eq. 3.1.5-4); 

3) Mean center � by replacing it with (Eq. 3.1.5 − 6); 

4) Find eigenvalues � and eigenvectors � from (Eq. 3.1.5-2) and scale � so that ‖�‖� =

1 ��⁄ ; 

5) Calculate score vector �= [��, ��,… , ��]
� from (Eq. 3.1.5-5). 
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6) Select a suitable number of PCs and calculate monitoring statistics �2  and �  

according to (Eq. 3.1.5-7) and (Eq. 3.1.5-8), and calculate their control limits according 

to (Eq. 3.1.4-8) and (Eq. 3.1.4-9). 

Part B: Monitor the system 

Step 1: Under test conditions, acquire test data matrix � ∈ ℝ �×�, where � is the number of 

observations and � is the number of variables. 

Step 2: Shift and scale each variable to have zero mean and unity standard deviation. 

Step 3: Decompose each column � ∈ ℝ � of the data matrix �  by means of DWT or VMD into 

� different levels. 

Step 4: For each level �, 

1) Combine the decomposition components of all variables into an m-by-n matrix �� =

[���, ���, … , ���]
�; 

2) Compute the test kernel vector � ∈ ℝ�×�  where the � th ( � ≤ � ) element of �  is 

�(�,  ��)= (〈�,  ��〉 + �)�. Here �� is the scaled baseline data used in Part A Step 4-

b; 

3) Mean center �  by replacing it with �� = � − ��� − ��� + �����  where �� ∈

ℝ 1×� and each of its elements is equal to 1 �⁄ ; 

4) Calculate nonlinear components via (Eq. 3.1.5-5); 

5) Calculate the monitoring statistics �2 and �  according to (Eq. 3.1.5-7) and (Eq. 3.1.5-

8) and compare them with the control limits obtained in Part A step 4-f. 

6) If the statistics are below their control limits, then the engine is working at its normal 

condition; otherwise a fault has been detected and the peak of the statistics indicates 

the crank angle and (signal decomposition) level of the fault. 
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The flow chart of this algorithm is exhibited as Fig. 3.1.4. 

 

(a) Flow chart for Part A, i.e. Build Reference Model 
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(a) Flow chart for Part B, i.e. Monitor the system 

Figure 3.1.4 Flow chart of the multiscale KPCA algorithm. 

3.4 Summary 

In this chapter, three novel FDD methods based on data processing techniques are proposed. The 

first method, the VMD-based FDD algorithm, introduces a new FDD index which integrates VMD 

and statistics. It is expected to inherit the characteristics of VMD of being robust to noise and 

being suitable to analyzing non-linear and non-stationary signals. The last two FDD methods are 

types of multi-scale nonlinear PCA, which are based on the VMD/DWT and the KPCA algorithm. 
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The new VMD/DWT based KPCA is expected to have the ability of extracting fault feature from 

high-dimensional, noisy and non-linearly correlated data. 
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Chapter 4 Artificial Neural Network for Fault Classification 

This chapter describes the application of artificial neural networks (ANNs) in ICE fault classification. 

The basic theory of two well-known ANNs — the multi-layer perceptron (MLP) network and the 

(radial basic function) RBF network are first introduced, followed by a brief description of the 

smooth variable structure filter (SVSF). Then the SVSF-based training algorithm for the MLP 

network is reviewed. A novel SVSF-based training algorithm for RBF networks is presented next. 

The last section of this chapter focuses on the solution to the ANN input selection problem. 

4.1 Underlying Theory 

4.1.1 Multi-layer Perceptron Network 

This section is based on (Haykin, 2008). The structure of a MLP network is shown in Fig. 4.1.1. The 

network consists of one input layer, several hidden layers (in this example there are two) and one 

output layer. Each layer has several neurons (also called “nodes”). The network shown here and 

in this research is fully connected, which means that a neuron in any layer of the network is 

connected to all the neurons in the previous layer. A neuron has several inputs and one output. If 

the neuron is in the first hidden layer, then its inputs are external signals; otherwise, they are the 

outputs of the neurons in the previous layer. For example, the output of the neuron � in Fig. 4.1.2 

is ��(�) and it is one of the inputs for neuron � which lies in the output layer of the MLP. ��(�) 

is the target output for neuron � and ��(�)  is the error which equals the difference between the 

target output and the actual output, i.e. ��(�)= ��(�)− ��(�). 
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Figure 4.1.1 Structure of a MLP network with two hidden layers (Haykin, 2008). 

 

Figure 4.1.2 Detailed structure of a neuron (Haykin, 2008). 

Suppose the layer before Neuron � has �  neurons. Then taking Neuron � as an example, the 

relationship between its inputs and output is: 

��(�)= ��∑ ���(�)��(�)
�
��� + ��(�)�.   (Eq. 4.1.1-1) 
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Here ���(�) denotes the link weight from neuron � to neuron �, ��(�) is the node offset (or bias) 

and �(∙) is the activation function may be one of several forms. 

In this research, the MLP network has three layers with 10 neurons in the hidden layer and 8 

neurons in the output layer. The activation function in the hidden layer is the log-sigmoid transfer 

function shown in Figure 4.1.3. 

  

Figure 4.1.3 The log-sigmoid transfer function (Mathworks, logsig, 2015) 

The activation function in the output layer is the linear transfer function shown in Figure 4.1.4. 

 

Figure 4.1.4 The linear transfer Function (Mathworks, purelin, 2015) 

An important stage of using an ANN is training. Supervised training is used in this research. The 

essence of supervised training is to find the values of the network parameters that minimize the 

error between the target output and the actual output. In the MLP network, that refers to 

determining the link weights and biases for each neuron. 
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4.1.2 Radial Basis Function Network 

This section is based on (Simon, 2002).The structure of the RBF network is shown in Fig. 4.1.5. It 

consists of three layers — the input layer, the hidden layer and the output layer. Unlike the MLP 

network, the RBF network has only one hidden layer and the link weights between the input layer 

and the hidden layer are all set equal to unity. 

 

Figure 4.1.5 Structure of the RBF network (Simon, 2002). 

The RBF network performs two operations on the input signal before it produces the output signal. 

The first operation is a nonlinear mapping, after which a complex pattern classification problem 

is more likely to be linearly separable. The nonlinear mapping is done by the activation function 

�(∙) whose expression in this research is as follows (Simon, 2002) : 

�(�)= [��(�)]
�

���,     (Eq. 4.1.2-1) 
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��(�)= � + �� and     (Eq. 4.1.2-2) 

� = ‖�� − �‖�, � = 1, 2, … , �.    (Eq. 4.1.2-3) 

Here � = [�� �� ⋯ ��] is the input signal. {��, ��,… , ��} are the prototype vectors, � is 

the dimension of the inputs, � is the number of the hidden neurons, p is a real number that is 

larger than 1 and � is a manually tuned parameter. 

The second operation is a linear transformation. Referring to Figure 4.1.5,  �� = [��� ��� ⋯ ���] 

is the actual output of the RBF network, [�10 �20 ⋯ ��0] are the biases for each output 

neuron and �

�11

⋮
��1

…
⋮
…

�1�

⋮
���

� are the link weights. The relationship between the RBF network’s 

input and its output is as follows: 

�� = �

���
���
⋮
���

� = �

��� ���

��� ���

⋯ ���

⋯ ���

⋮ ⋮
��� ���

⋮ ⋮
⋯ ���

� �

1
�(‖� − ��‖)

⋮
�(‖� − ��‖)

�,   (Eq. 4.1.2-4) 

The training process of the RBF network should determine the prototype vectors, the biases and 

the link weights. 

4.1.3 Smooth Variable Structure Filter 

The smooth variable structure filter (SVSF) proposed by Habibi (2007) is a robust estimator which 

can guarantee convergence given bounded uncertainties on the states. This estimator involves an 

inherent switching action that forces the estimated states to converge towards the true state 

trajectory and remain within a neighbourhood referred to as the existence subspace. The concept 

of the SVSF is shown in Fig. 4.1.6. 
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Figure 4.1.6 Concept of the SVSF (Habibi, 2007). 

The SVSF can be applied to both linear and nonlinear systems and has a predictor-corrector 

structure as shown in Fig. 4.1.7.  

 

Figure 4.1.7 Structure of the SVSF (Song, 2013). 

The SVSF assumes a system model formulated as follows: 

���� = �(��, ��)+ ��  and    (Eq. 4.1.3-1) 

���� = ����� + ��.      (Eq. 4.1.3-2) 
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Here �� ∈ ℝ � is the system state, �� is the system input, �� is the system noise, �� ∈ ℝ�is the 

measurement and �� is the measurement noise. Function � can be either linear or nonlinear. � 

is the measurement matrix and is assumed linear, positive and pseudo diagonal. If the SVSF is 

applied to a system with a nonlinear measurement equation ���� = �(����)+ ��, � becomes 

the Jacobian matrix of the system, i.e.  

� = ����������� = �
��

���

��

���
⋯

��

���
� =

⎣
⎢
⎢
⎢
⎢
⎡
���

���

���

���
���

���

���

���

⋯
���

���

⋯
���

���

⋮ ⋮
���

���

���

���

⋮ ⋮

⋯
���

��� ⎦
⎥
⎥
⎥
⎥
⎤

. (Eq. 4.1.3-3) 

At each iteration, the SVSF starts with the a-priori estimation of the state and the output, which 

is expressed as: 

�����|� = �����|�, ���  and    (Eq. 4.1.3-4) 

�����|� = ������|�.     (Eq. 4.1.3-5) 

The a-posteriori estimation is then updated with the estimation above and the SVSF corrective 

gain: 

�����|��� = �����|� + ���� and     (Eq. 4.1.3-6) 

�����|��� = ������|���.     (Eq. 4.1.3-7) 

The SVSF gain with a fixed smoothing boundary layer and a saturation function is formulated as 

follows: 

���� = ������,���|�� + ����,�|��� ∘ ��� �
��,���|�

�
�,   (Eq. 4.1.3-8) 
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��� �
�

�
� = �

���(�), �� |�| > �

� �⁄ , �� |�| ≤ �
    (Eq. 4.1.3-9) 

where �  denotes the smooth boundary layer width; �  is a diagonal matrix whose value is 

between 0 and 1; and ��,���|�  and ��,�|�  are the a-priori and a-posteriori state estimation errors 

respectively with the following definition: 

��,���|� = ���� − �����|�      (Eq. 4.1.3-10) 

��,�|� = �� − ���|�.      (Eq. 4.1.3-11) 

In (4.1.3-8), �� is the pseudo inverse of �. The pseudo inverse is used to avoid the instability 

caused by the possible singularity of the Jacobian matrix ����������� when the system is nonlinear. 

�����������
� is expressed in the following way: 

�����������
� = �����������

�(����������������������
� + ���)��,  (Eq. 4.1.3-12) 

where � is called the damping parameter and it can mitigate the effect of small singular values in 

the computation of the inverse. When the system is linear and has a full set of measurements 

corresponding to the full state vector, �� = ���. 

4.2 Multi-layer Perceptron Network Training Algorithm Using Smooth Variable 

Structure Filter 

As mentioned before, the essence of training an ANN is to determine the value of its parameters. 

Ahmed (2011) demonstrated that the SVSF can be applied to a MLP network to effectively train 

its link weights.  His work will be summarized in this section since it forms the foundation for the 

RBF network training algorithm presented in the next section.  
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Suppose there are N pairs of inputs and outputs samples {��, ��} for training, the output vector � 

for all the outputs is denoted as 

� = [��,� ��,� ⋯ ��,� ⋯ ��,� ��,� ⋯ ��,�],  (Eq. 4.2-1) 

where � is the number of neurons in the MLP’s output layer, i.e. the output dimension. Then the 

MLP network can be represented by the following nonlinear discrete-time state space functions: 

���� = �� +��, and     (Eq. 4.2-2) 

�� = ��(��, ��)+ ��,     (Eq. 4.2-3) 

where ��  is a vector consisting of all the link weights including biases, ��  represents the 

measurement function, and �� and �� are zero-mean white Gaussian noises. 

In this research, the MLP network has only one hidden layer. Assuming the dimension of the input 

layer is �, that of the hidden layer is � and that of the output layer is �, then the relationship 

between its input and output is: 

�� = ��∑ ��∑ ����,�,�
�
��� ��

��� ��,�,��, ℎ = 1,2, … ,�.   (Eq. 4.2-4) 

where ��,�,�  stands for the link weight between the �-th input node and the �-th neuron in the 

hidden layer; and ��,�,� stands for the link weight between the �-th neuron in the hidden layer 

and the ℎ-th output node. 

The linearization of the MLP model is performed by differentiating the network transfer function 

with respect to the link weights. The Jacobian matrix ��|����������  can be mathematically 

expressed as follows: 
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��|���������� = �
��

���

��

���

⋯
��

����
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
���

���

���

���

���

���

���

���

⋯
���

����

⋯
���

����

⋮ ⋮
���

���

���

���

⋮ ⋮

⋯
���

����⎦
⎥
⎥
⎥
⎥
⎥
⎤

,  (Eq. 4.2-5) 

where ��  denotes the total number of link weights including biases and can be calculated from 

the following equation: 

�� = (� + 1)∙� + (� + 1)∙�.     (Eq. 4.2-6) 

The SVSF-based MLP training algorithm is as follows: 

Step 1: Network parameter initialization 

A priori weight estimates ���|� are randomly initialized ranging from -1 to +1. 

Step 2: Calculation of the predicted (a posteriori) weight estimates �����|� 

�����|� = ���|�.     (Eq. 4.2-7)  

Step 3: Calculation of Jacobian matrix of the measurement function ��|����������. 

Step 4: Calculation of the estimated network output (measurements) �����|� 

�����|� = ��|���������������|�.   (Eq.4.2-8) 

Step 5: Measurement error �����|�  calculation 

��,���|� = �� − �����|�.    (Eq.4.2-9) 

Step 6: SVSF gain calculation 

���� = ��|����������
�����,���|�� + ����,�|��� ∘ ��� �

�����|�

�
�.  (Eq.4.2-10) 
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Step 7: Calculation of the updated state estimates �����|��� 

�����|��� = �����|� + ����.    (Eq.4.2-11) 

Step 8: Calculation of the updated state estimates and the updated weights 

�����|��� = ��|���������������|��� and   (Eq.4.2-12) 

��,���|��� = ���� − �����|���.     (Eq.4.2-13) 

Step 9: Calculation of the mean square error (MSE). If it is larger than the desired value, 

then shuffle the training data and go to step 3; otherwise, the training procedure stops. 

4.3 Radial Basis Function Network Training Algorithm Using Smooth Variable 

Structure Filter 

The RBF training problem is also regarded as a parameter estimation problem here. Suppose there 

are M responses of {��, ��}, the (Eq. 4.1.2-4) can be augmented as follows: 

�� = [��� ��� ⋯ ���]= �

����
����
⋮
����

   

⋯
⋯
⋮
⋯

   

����
����
⋮

����

� 

= �

���
��� ⋯ ���

���

⋮
���

���

⋮
���

…
⋮
…

���

⋮
���

� �

1
�(‖�� − ��‖)

⋮
�(‖�� − ��‖)

   

⋯
⋯
⋮
⋯

   

1
�(‖�� − ��‖)

⋮
�(‖�� − ��‖)

� 

(Eq. 4.3-1) 

For simplicity the following notations are introduced: 
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�

���
��� ⋯ ���

���

⋮
���

���

⋮
���

…
⋮
…

���

⋮
���

� =

⎣
⎢
⎢
⎡
��
�

��
�

⋮
��
�⎦
⎥
⎥
⎤
= �,     (Eq. 4.3-2) 

ℎ�� = 1 (� = 1,⋯ ,�),      (Eq. 4.3-3) 

ℎ�� =  ����� − ����, � = 1,⋯ ,�, �= 1,⋯ , � and   (Eq. 4.3-4) 

�

ℎ��
ℎ��
⋮
ℎ��

⋯
⋯
⋮
⋯

ℎ��
ℎ��
⋮

ℎ��

� = [ℎ� ⋯ ℎ�]= �.    (Eq. 4.3-5) 

Then Eq. 4.3-1 can be rewritten as  

�� = ��      (Eq. 4.3-6) 

The system model of the RBF network is established as follows: 

���� = �� + �� and    (Eq. 4.3-7) 

�� = ℎ(��)+ ��     (Eq. 4.3-8) 

where 

� = [��
� ⋯ ��

� ��
� ⋯ ��

�]�,    (Eq. 4.3-9) 

� = [��� ⋯ ��� ⋯ ��� ⋯ ���]� and   (Eq. 4.3-10) 

�� = ℎ(��)= [���� ⋯ ���� ⋯ ���� ⋯ ���]�
�   (Eq. 4.3-11) 
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The vector � consists of all (�(� + 1)+��) RBF parameters; � and �� are the target and actual 

outputs and both have ��  elements; ℎ(∙) is the nonlinear mapping between the RBF’s 

parameters and outputs; and �� and �� are the system and measurement noise.  

The partial derivative of the system with respect to the RBF parameters at the kth iteration of the 

SVSF recursion is 

�� = �
��

��
�      (Eq. 4.3-12) 

where 

�� = �

� �
� �

⋯ �
⋯ �

⋮ ⋮
� ⋯

⋱ ⋮
� �

�    (Eq. 4.3-13) 

��

= �
−������

� 2(�� − ��)
⋮

−������
� 2(�� − ��)

    

⋯
⋮
⋯
   
−������

� 2(�� − ��)
⋮

−������
� 2(�� − ��)

    

⋯
⋮
⋯
   
−������

� 2(�� − ��)
⋮

−������
� 2(�� − ��)

    

⋯
⋮
⋯
   
−������

� 2(�� − ��)
⋮

−������
� 2(�� − ��)

� 

(Eq. 4.3-14) 

 �� is an �(� + 1)× �� matrix and �� is an �� × �� matrix. 

The complete SVSF-based RBF network training algorithm is as follows: 

Step 1: Network parameter initialization 

The weights between the hidden layer and output layer [��
� ⋯ ��

�] are set to 0. The 

prototype vectors in the hidden layer [��
� ⋯ ��

�] are randomly chosen from the input 

samples. 
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Step 2: Calculation of the predicted weight estimates 

�����|� = ���|�.      (Eq. 4.3-15) 

Step 3: Calculation of Jacobian matrix of the measurement function 

��|���������� = ��
�.     (Eq. 4.3-16) 

Step 4: Calculation of the estimated network output 

�����|� = ℎ������|��.     (Eq. 4.3-17) 

Step 5: Measurement error calculation 

�����|� = �� − �����|�.     (Eq. 4.3-18) 

Step 6: SVSF gain calculation 

���� = ��|����������
� �������|�� + � ����|��� ∘ ��� �

�����|�

�
�.  (Eq. 4.3-19) 

Step 7: Calculation of the updated state estimates 

�����|��� = �����|� + ����.    (Eq. 4.3-20) 

Step 8: Calculation of the updated state estimates and the updated weights 

�����|��� = ℎ������|���� and   (Eq. 4.3-21) 

�����|��� = ���� − �����|���.    (Eq. 4.3-22) 

Step 9: Calculation of error defined by (Eq. 4.3-23). If it is larger than the desired value, 

then repeat step 2 to 8; otherwise the training procedure stops. (Note that ��is actually 

constant although it is written as a function of the SVSF iteration number k.) 

� =
�

�
‖���� − �����‖

�.     (Eq. 4.3-23) 
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The flow chart for this algorithm is exhibited as Fig. 4.1.8. In real implement, the parameter �, 

which is the number of the prototype vectors in the hidden layer should be chosen such that a 

proper balance between the computational cost and the classification accuracy is achieved. 

 

Figure 4.1.8 Flow chart of RBF Network Training Algorithm Using SVSF. 

4.4 Artificial Neural Network Input Selection 

In addition to the ANN training algorithm, the network’s input (feature) is also important for 

obtaining a high classification accuracy.  With vibration data collected from the accelerometer, 

the ANN’s input is constructed as follows. 



Master’s Thesis – Y. Feng                             McMaster University – Mechanical Engineering 

 
 

51 
 

Assume the vibration data of one ICE working cycle has M samples after it is mapped to the crank 

angle domain. The �-th cycle data is denoted as 

�� = [��� ��� ⋯ ���]�.     (Eq. 4.4-1) 

The first step in the feature construction is to perform the discrete wavelet transformation. The 

wavelet decomposition coefficient vector for �� is denoted as �� = [��� ��� ⋯ ���]
�, which 

is also of size � × 1. The wavelet transform was selected since the wavelet decomposition 

coefficients are determined by both time factors and frequency factors. This should make the 

feature superior compared to features in purely the time or frequency domains. 

The last step to obtain the ANN’s input is to perform a running average on the wavelet 

decomposition coefficients. A running average serves the function of smoothing the data. The 

effect of outliers can be greatly reduced by this operation. Supposing � cycles (starting from the 

�-th cycle) of data are collected and decomposed by the discrete wavelet transform, the result of 

the running average operation is: 

������ = ∑ ��
�����
��� .     (Eq. 4.4-2) 

 4.5 Summary 

This chapter reviewed an existing SVSF-based training algorithm for MLP networks, and proposed 

a new SVSF-based training algorithm for RBF networks. The two algorithms are expected to inherit 

the robust characteristics of SVSF and have good generalization ability. This chapter also discusses 

the ANN input selection problem, and proposes that the running-averaged wavelet coefficients 

of vibration data in CAD are used as the input for ICE FDD. The ANNs with the SVSF-based training 
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algorithm and the input mentioned above are expected to achieve high performance in solving 

ICE FDD problems. 
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Chapter 5 Experimental Results, Analysis and Discussion 

This chapter begins with a description of the experimental setup for the ICE fault detection system. 

The method for inducing the ICE misfire faults is described next. Finally, experimental results 

obtained using the FDD techniques from the previous chapters are presented, analysed and 

discussed. 

5.1 Experimental Setup 

As shown in Fig. 5.1.1 the FDD experimental setup consists of one ICE with a built-in cam 

identification sensor, four externally mounted accelerometers, four current sources, four signal 

conditioners, and a data acquisition device (DAQ). The cam identification sensor is also termed 

the “CID sensor.” 

 

Figure 5.1.1 Experimental setup for ICE fault detection. 

The experimental ICE is a Ford V8 4.6L engine. The experiments are performed on the vehicle 

shown in Fig. 5.1.2. 

ICE Cam Identification Sensor 

Accelerometers 
Current 
Sources 

Signal 
Conditioners 

DAQ 
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Figure 5.1.2 Experimental vehicle. 

The accelerometers as shown in Fig. 5.1.3 are AC240-1D piezoelectric accelerometers from 

Connection Technology Center (CTC) Inc., whose sensitivity is 100 mV/g. They are the ones that 

Ford Motor Company use. Since they cannot be seen inside the engine compartment of the 

experimental vehicle, their locations and orientations are shown in Fig. 5.1.4, where the engine 

shown is a spare of the same model as that in the experimental car. 

 

Figure 5.1.3 CTC AC240-1D accelerometer. (CTC, 2012) 



Master’s Thesis – Y. Feng                             McMaster University – Mechanical Engineering 

 
 

55 
 

 

(a) Positions and orientations of the accelerometers shown in the front view of the ICE. (The 

blue shapes stand for the sensors. Same with View 1 & 3.) 

 

(b) View 1. 
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(c) View 2 (Blue circles stand for sensors. Same with View 4). 

 

(d) View 3. 
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(e) View 4. 

Figure 5.1.4 Positions and orientations of the accelerometers. 

Each accelerometer requires a current source power supply. The current source takes the 

accelerometer as an input and outputs the vibration signal to the signal conditioners. The current 

source used is a PSP1001 Model from Inter Technology Inc. (ITI) and is shown in Fig. 5.1.5. 

 

Figure 5.1.5 PSP1001 current source. (ITI, 2008) 
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The signal conditioner has three functions: to shift signal amplitude from a negative range to the 

positive range required by the DAQ, to amplify the signal, and to reduce the level of high-

frequency noise. It includes an RC low-pass filter with a 10.6 kHz cut-off frequency.  It is shown in 

Fig. 5.1.6 and the relationship between its input and output voltages is ���� = 4.19(��� + 0.5).   

 

Figure 5.1.6 Signal Conditioner. 

The DAQ used is a dSPACE MicroAutoBox 1401 (shown in Fig. 5.1.7). It has sixteen 16-bit analog 

to digital converters (ADC) that are able to capture voltages from 0V to 5V. In this research, the 

dSPACE operates at a sampling rate of 20 kHz. The ControlDesk software by dSpace is used to 

acquire the data. 
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Figure 5.1.7 dSPACE MicroAutoBox 1401. 

5.2 ICE Misfire Fault Induction 

The experimental ICE has eight cylinders and each cylinder has a spark glug which is used to trigger 

the combustion. These plugs are numbered as shown in Fig. 5.2.1. The experiments will test the 

performance of the FDD techniques proposed in previous chapters on the ICE misfire fault. To 

induce a misfire fault, one can simply disconnect the spark plug connector of a certain cylinder as 

shown in Fig. 5.2.2. 

 

Figure 5.2.1 Spark plug numbering. 

1 

2 

3 

4 
5 

6 

7 

8 



Master’s Thesis – Y. Feng                             McMaster University – Mechanical Engineering 

 
 

60 
 

 

Figure 5.2.2 Example of a spark plug connector. 

In this research the experimental ICE has eight working conditions—one healthy condition and 

seven faulty conditions. Under each faulty condition, only one spark plug connector is removed 

with the others still working properly. The eight working conditions are listed in the Table 5.2.1. 

Table 5.2.1: The eight ICE working conditions studied3. 

Condition Index Description 

1 Cylinder 1 Misfire 

2 Cylinder 2 Misfire 

3 Cylinder 3 Misfire 

4 Cylinder 4 Misfire 

5 Cylinder 5 Misfire 

6 Cylinder 6 Misfire 

                                                           
3 Cylinder 8 misfire was not studied because the corresponding spark plug connector is surrounded by 
many pipes and wires and is difficult to remove. 
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7 Cylinder 7 Misfire 

8 Healthy Condition 

 

5.3 Results and Discussion 

5.3.1 ICE Vibration Data in the Crank Angle Domain 

The original vibration data collected from the accelerometer and the data of the CID sensor are 

exhibited in Fig. 5.3.1. According to the peaks of the CID signal, the vibration data can be divided 

into several working cycles, as shown in Fig. 5.3.2. Vibration data in the CAD obtained by 

interpolation are shown in Fig. 5.3.3. 

 

Figure 5.3.1 ICE Sensor Raw Data (One accelerometer and the CID sensor data). 
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Figure 5.3.2 ICE Sensor Data Split in Cycles. 

 

Figure 5.3.3 ICE Sensor Data after CAD Mapping (One Cycle Data). 
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5.3.2 Experiment Results for the VMD-based FDD Algorithm 

This experiments were done using the VMD parameters listed in Table 5.3.1 and the VMD 

software provided by (Dragomiretskiy, et al., 2014). 

Table 5.3.1: VMD parameters in the experiment. 

Parameter Value 

K 6 

� 20000 

� 0 

� 10�� 

The experiment results for the normal condition are shown in Fig. 5.3.4.  

 
(a) FDD Index for Intrinsic Mode 1 
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(b) FDD Index for Intrinsic Mode 2 

 
(c) FDD Index for Intrinsic Mode 3 
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(d) FDD Index for Intrinsic Mode 4 

 
(e) FDD Index for Intrinsic Mode 5 
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(f) FDD Index for Intrinsic Mode 6 

 
Figure 5.3.4 VMD-based FDD indices for the misfire fault for the normal condition. 

 

We can see that the FDD indices exceed 1 (represented by the red line in the plots) only at a few 

crank angles (e.g. 382° at mode 1). According to the theory presented in section 3.2, the FDD index 

should be smaller than 1 all the time. This variance can be explained by the fact that although μ� 

is the unbiased estimate of μ which is the Gaussian distribution mean, it is not the true value of 

the mean. Similarly, σ� is only an estimate of the Gaussian distribution variance. Thus using these 

esitmates to calculate the FDD index (Eq. 3.2-12) will lead to some incorrect values. The FDD index 

for the normal condition is not much greater than 1 (no more than 3 times in this experiment) 

compared with that for the misfire condition e.g. the FDD index for the misfire fault in Cylinder 2 

as shown in Fig. 5.3.5.  
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(a) FDD Index for Intrinsic Mode 1 

 
(b) FDD Index for Intrinsic Mode 2 
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 (c) FDD Index for Intrinsic Mode 3 

 

(d) FDD Index for Intrinsic Mode 4 
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(e) FDD Index for Intrinsic Mode 5 

 

(f) FDD Index for Intrinsic Mode 6 

Figure 5.3.5 VMD-based FDD algorithm for the misfire fault in Cylinder 2. 

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

Crank Angle / Degree

F
D

D
 I

n
d
e
x

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

Crank Angle / Degree

F
D

D
 I

n
d
e
x



Master’s Thesis – Y. Feng                             McMaster University – Mechanical Engineering 

 
 

70 
 

We can find that for modes 1, 2 and 3, the ICE working conditions at most crank angles are 

significantly affected by the misfire fault since the corresponding indices are much greater 1. 

However, the index for mode 1 (with the lowest frequency range) is obviously much larger than 

those of the other modes. This implies that mode 1 is the most useful for misfire FDD. The 

maximum index whose value is 30.69 appears at 274° in the CAD, which indicates the 

corresponding mechanical event at this angle is affected by the misfire fault to the most extent.  

Application of this FDD method to the misfire faults in the other cylinders reveals a similar finding, 

i.e. Mode 1 has the largest index among all the modes while the difference among the 

experiments is that the peak location for each fault is different. The FDD result can be summarized 

in table 5.3.2: 

Table 5.3.2: Experiment results for VMD-based FDD algorithm. 

Faulty Location Max Index Mode Max Index Angle 

Cylinder 1 1 7° 

Cylinder 2 1 274° 

Cylinder 3 1 467° 

Cylinder 4 1 541° 

Cylinder 5 1 92° 

Cylinder 6 1 365° 

Cylinder 7 1 201° 

To check the performance of this algorithm, 40 cycles4 of data were generated and tested for each 

of the eight conditions listed in section 5.2. The confusion matrix for the test is shown in Fig. 5.3.6. 

We can see the accuracy of the algorithm was 100%. 

                                                           
4 50 cycles of vibration data in CAD were obtained for each ICE condition first. But running averages with 
the window size of 10 were performed on these data, so 40 cycles of data were generated for testing the 
algorithm. 
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Figure 5.3.6 Confusion matrix for VMD-based FDD algorithm. 

To sum up, this VMD-based FDD algorithm is capable of detecting a fault with the mode of the 

maximum index indicating the type of the fault (misfire in this experiment) and its angle indicating 

the fault’s location.  

5.3.3 Experimental Results for the Wavelet-Based KPCA FDD Algorithm 

The wavelet function used in this experiment is Coiflets 5 and there are 6 levels (5 detail levels 

and 1 approximation level) for the wavelet decomposition. The wavelet based KPCA FDD result 

for the normal condition is shown in Fig. 5.3.7. The vertical axis shows the ratio of the KPCA to its 

control limit whose values are shown in table 5.3.3. 

Table 5.3.3: Control limits for wavelet-based KPCA. 

Level Control limit for �� Control limit for Q 

1 11.45905 6.9345 

2 11.4590 2.8922 

                                                           
5 The number of retained PCs is manually set to 3 according to the eigenvalues obtained from (Eq. 3.1.5-

2). As a result, the control limit for �� becomes a fixed number according to (Eq. 3.1.4-8). 
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3 11.4590 1.8935 

4 11.4590 0.9914 

5 11.4590 2.89 × 10�� 

Approximation 11.4590 2.01× 10�� 

 

 
(a) KPCA for Level 1 
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(b) KPCA for Level 2 
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(c) KPCA for Level 3 
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(d) KPCA for Level 4 
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(5) KPCA for Level 5 
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(6) KPCA for the Approximation Level 

Figure 5.3.7 Wavelet-based KPCA FDD result for the normal condition. 
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The wavelet-based KPCA FDD result for misfire in Cylinder 2 is shown in Fig. 5.3.8. The vertical axis 

as Fig. 5.3.7 shows the ratio of the KPCA to its limit and thus if the value is over 1, a fault may have 

happened at a certain crank angle and at a certain level. 

 

 

(a) KPCA for Level 1 
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(b) KPCA for Level 2 
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(c) KPCA for Level 3 
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(d) KPCA for Level 4 
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(e) KPCA for Level 5 
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(f) KPCA for Approximation Level 

Figure 5.3.8 Wavelet-based KPCA FDD result for misfire fault in Cylinder 2. 

From Fig. 5.3.8 we can find that the highest value for both the T2 statistic and the SPE statistic 
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Cylinder 2. The misfire faults in other cylinders also have the largest T2 statistic and SPE statistic 

on the Approximation Level.  

As with the VMD-based FDD algorithm in 5.3.2, the wavelet-based KPCA algorithm was also tested 

using 320 cycles of data. Its confusion matrix is shown in Fig. 5.3.9. This algorithm also achieves 

100% accuracy. 

 

Figure 5.3.9 Confusion matrix for wavelet-based KPCA algorithm. 

5.3.4 Experimental Results for the VMD-Based KPCA FDD Algorithm 

The VMD parameters used here are the same as those in Table 5.3.1. For the misfire fault in 

Cylinder 2, the maximum T2 statistics and SPE statistics are at 265° in the crank angle domain and 

at the 1st intrinsic mode as shown in Fig. 5.3.10. The misfire faults in other cylinders also have the 

largest T2 statistics and SPE statistics in the 1st mode. 
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Figure 5.3.10 VMD-based KPCA for Misfire in Cylinder 2 (1st Mode) 

The VMD-based KPCA algorithm was also tested using 320 cycles of data as with the wavelet-

based KPCA algorithm. The confusion matrix (Fig. 5.3.11) shows that this algorithm also achieves 
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Figure 5.3.11 Confusion matrix for VMD-based KPCA algorithm. 

5.3.5 Discussion of the Data-Processing-Technique-Based FDD Results 

All of the three proposed FDD algorithms based on data processing techniques detect the misfire 

fault detection using the lowest frequency range. However, the crank angles where the peaks 

occurred differ from one algorithm to another. For example, Table 5.3.4 shows the locations of 

the peaks for the misfire fault in Cylinder 2. They are not identical, but are close to each other, 

especially for the two KPCA algorithms (265° vs 268°). The explanation for the small difference 

between the VMD-based KPCA and wavelet-based KPCA is that the variational mode 

decomposition and wavelet transform are two different time-frequency analysis tools, and the 

reconstructed signals produced by them are what these two KPCA algorithms rely on. 
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Table 5.3.4: Peak locations for a cylinder 2 misfire fault for the three signal based FDD 
algorithms studied. 

Algorithm Peak Location 

The New FDD Index 274° 

VMD KPCA 265° 

WT KPCA 268° 

The difference between the peak location of the new FDD index obtained by the VMD-based FDD 

algorithm and that of statistical indices obtained by the VMD/wavelet-based KPCA algorithm are 

much bigger. This is because the former algorithm considers only one variable (i.e. one 

accelerometer) while the latter is multi-variable (i.e. it uses all four accelerometers). The impact 

of the misfire fault on different parts of the engine is different, and can be captured by the 

accelerometers that are glued onto those parts. So when an algorithm uses one channel vs. 

multiple channels of data simultaneously it tends to produce a different result. This also helps 

explain why the KPCA algorithms sometimes have multiple dominant peaks whose amplitudes are 

the highest and closest at the lowest frequency range level (i.e. Intrinsic Mode 1 for VMD and the 

approximation level for the wavelet transform). For example, in the FDD of misfire in Cylinder 6, 

the T2 statistics for mode 1 has two dominant peaks. As shown in Fig. 5.3.12, one is at 367° with 

an amplitude of 23.48 and the other at 488° with an amplitude of 23.24. In contrast, there is only 

one dominant peak with the new FDD indices obtained by the VMD-based FDD algorithm for all 

faulty conditions. Specifically for misfire fault in Cylinder 6, the peak location is 370° at mode 1. 

The comparison between DWT and VMD is also worth mentioning. Although they bring very 

similar results when they are combined with KPCA, the wavelet-based linear PCA (Haqshenas, 

2012) has better performance than VMD-based linear PCA by showing the faults clearer. 
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Figure 5.3.12 VMD based KPCA result (T2 statistics at Mode 1) 

5.3.6 ICE Fault Classification Results for the MLP Network Trained by the SVSF 

In this experiment, 100 cycles of data are collected for each of the eight ICE conditions listed in 

section 5.2. 60% of them are used as training data and the remaining 40% as test data. The input 

to the ANN is the set of running-averaged wavelet coefficients of the vibration signal from one 

accelerometer. The SVSF parameters are set as � = 0 and � = 0.1. The training stops when the 

mean square error (MSE) is smaller than 0.017. The performance of the SVSF-trained MLP ANN 

for misfire FDD is illustrated by the confusion matrices for both training data and test data in Fig. 

5.3.13 and by the learning curve in Fig. 5.3.14. The condition index was defined in Table 5.2.1. 

According to the experimental results, the SVSF-trained MLP network is capable of classifying the 

engine’s working conditions with 100% accuracy and the parameters of the network converge 

within 5 epochs6. 

                                                           
6 The number of epochs indicate how many times all of the training examples have been used to train the 
neural network. See Page 127 of (Haykin, 2008). 
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(a) Training Confusion Matrix 

 

(b) Test Confusion Matrix 

Figure 5.3.13 Confusion matrices for the SVSF-trained MLP network. 
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Figure 5.3.14 Learning curve for the SVSF-trained MLP network. 

In comparison, the Levenberg–Marquardt (LM) algorithm makes a number of mistakes in the 

classification, which is shown in Fig. 5.3.15. Moreover, although the extended Kalman filter (EKF) 

is also able to achieve perfect classification results, it needs more iterations of training to converge. 

According to its learning curve (shown in Fig. 5.3.16), the convergence requires about 8 epochs, 

which is nearly twice as many as that of the SVSF training algorithm. 
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Figure 5.3.15 Test Confusion Matrix for the LM-trained MLP Network. 

 

Figure 5.3.16 Learning Curve for the EKF-trained MLP Network. 

As mentioned in Chapter 4, the selection of the network input is also an important problem. Apart 

from the running-averaged wavelet coefficients, the running-averaged vibration data in CAD and 
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confusion matrices (Fig. 5.3.17 and 5.3.18) they both lead to worse performance, especially the 

Fourier coefficients. 

 

Figure 5.3.17 Test Confusion Matrix for the LM-trained MLP Network with Running-averaged 
Vibration in CAD as Input. 

 

 

Figure 5.3.18 Test Confusion Matrix for the SVSF-trained MLP Network with Running-averaged 
Fourier Coefficient as Input. 
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5.3.7 ICE Fault Classification Results for the RBF Network Trained by the SVSF 

The data used for RBF network is the same as in section 5.3.6. With the running-averaged wavelet 

coefficient of the vibration signal as input, the SVSF-trained RBF network is also able to classify 

the engine’s working conditions perfectly for both training data and test data as shown in Fig. 

5.3.19. The training converges within 4 epochs according to its learning curve in Fig. 5.3.20. In 

comparison, the EKF and gradient descent (GD) algorithms cannot achieve 100% classification 

accuracy and have a slower convergence rate. These are revealed by Fig. 5.3.21 to 5.3.24. 

 

(a) Training Confusion Matrix. 
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(b) Test Confusion Matrix. 

Figure 5.3.19 Confusion matrices for the SVSF-trained RBF network. 

 

Figure 5.3.20 Learning curve for the SVSF-trained RBF network.7 

                                                           
7 The error in this figure is defined in (Eq. 4.3-23). 
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Figure 5.3.21 Test Confusion Matrix for the EKF-trained RBF Network. 

 

Figure 5.3.22 Learning Curve for the EKF-trained RBF Network. 
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Figure 5.3.23 Test Confusion Matrix for the GD-trained RBF Network. 

 

Figure 5.3.24 Learning Curve for the GD-trained RBF Network. 

5.3.8 Discussion of the ANN FDD Results 

The ANN FDD results are summarized in Table 5.3.5. We can observe that the wavelet coefficient 

is the most suitable ANN input. It is also clear that the SVSF training algorithm surpasses the other 

training algorithms in terms of accuracy and/or convergence. 
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Table 5.3.5: Summary of the ANN FDD results. 

Network 
Training 

Algorithm 
Input Accuracy (%) Convergence (Epoch) 

MLP 

SVSF 

Vibration in CAD 99.88 4 

Fourier Coefficient 44.83 3 

Wavelet Coefficient 

100 5 

EKF 100 8 

LM 92.19 16 

RBF 

SVSF 100 4 

EKF 94.38 8 

GD 92.45 6 

Note: The accuracy shown in Table 5.3.5 is calculated based on corresponding test confusion 

matrices and the value is the average over multiple experiments. The detailed accuracy 

distribution of each combination of ANN and training algorithm are exhibited in Fig. 5.3.25 to Fig. 

5.3.32. 

 

Figure 5.3.25 Classification Accuracy of SVSF-trained MLP network with Vibration in CAD as 
input in 10 experiments. 
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Figure 5.3.26 Classification Accuracy of SVSF-trained MLP network with Fourier Coefficient as 
input in 20 experiments. 

 

 

Figure 5.3.27 Classification Accuracy of SVSF-trained MLP network with Wavelet Coefficient as 
input in 10 experiments. 
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Figure 5.3.28 Classification Accuracy of EKF-trained MLP network with Wavelet Coefficient as 
input in 10 experiments. 

 

 

Figure 5.3.29 Classification Accuracy of LM-trained RBF network with Wavelet Coefficient as 
input in 10 experiments. 
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Figure 5.3.30 Classification Accuracy of SVSF-trained RBF network with Wavelet Coefficient as 
input in 10 experiments. 

 

 

Figure 5.3.31 Classification Accuracy of EKF-trained RBF network with Wavelet Coefficient as 
input in 10 experiments. 
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Figure 5.3.32 Classification Accuracy of GD-trained RBF network with Wavelet Coefficient as 

input in 20 Experiments 
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Chapter 6 Conclusions 

This thesis presents the development of a FDD system for ICEs. The studied fault is the misfire 

fault which is induced by disconnecting the spark plug at a certain cylinder. After describing the 

experimental setup for the FDD research, several novel FDD methods based on data processing 

techniques and artificial neural network techniques are proposed, and experimentally verified. 

The specific original contributions of the thesis are as follows: 

1. Development of a new VMD-based FDD index and associated FDD algorithm. This index 

is calculated using data from a single accelerometer and its associated FDD algorithm is 

found to localize misfire faults at a certain crank angle with 100% accuracy. 

2. Two nonlinear multi-variable multi-scale FDD algorithms, namely the wavelet-based KPCA 

and the VMD-based KPCA, are proposed. The new algorithms can localize the fault while 

taking the effect of multiple sensors into consideration. They are more suitable to 

nonlinear systems like engines compared with linear PCA algorithms. They are both 

shown to detect and localize the misfire faults with 100% accuracy. 

3. The input selection problem for ANNs applied to ICE FDD is investigated. The running-

averaged wavelet coefficients of the engine vibration signal is found to be the best input 

in comparison with the Fourier coefficients and pure vibration data in the CAD.  

4. A MLP network trained by the SVSF is shown to achieve 100% fault classification accuracy 

when the running-averaged wavelet coefficients are used as its input. 

5. A novel training algorithm for the radial basis function network based on the SVSF is 

proposed. The SVSF-trained RBF network is capable of 100% accurately classifying the 

engine’s working conditions with the running-averaged wavelet coefficients as its input. 
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It outperformed EKF-trained and GD-trained RBF networks in terms of accuracy and/or 

convergence. 
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