Synthesis and Evaluation of Radiopharmaceuticals for Imaging Bacterial Infection

Supplementary Data

Table of Figures

Figure S 2.1 IR spectrum of 2 (KBr pellet).	7
Figure S 2.2 ¹ H NMR spectrum of 2 in DMSO- d_6 at 300 K	8
Figure S 2.3 ¹³ C NMR spectrum of 2 in DMSO- d_6 at 300 K	8
Figure S 2.4 High-resolution mass spectrum of 2	9
Figure S 2.5 HPLC chromatogram of 2 . UV peak at $\lambda = 220$ nm	9
Figure S 2.6 IR spectrum of 3 (KBr pellet).	.10
Figure S 2.7 ¹ H NMR spectrum of 3 in DMSO- d_6 at 300 K.	.10
Figure S 2.8 ¹³ C NMR spectrum of 3 in DMSO- d_6 at 300 K.	.11
Figure S 2.9 High-resolution mass spectrum of 3	.11
Figure S 2.10 HPLC chromatogram of 3 . UV peak at $\lambda = 220$ nm.	.12
Figure S 2.11 IR spectrum of 4 (KBr pellet).	.12
Figure S 2.12 ¹ H NMR spectrum of 4 in DMSO- d_6 at 300 K.	.13
Figure S 2.13 ¹³ C NMR spectrum of 4 in DMSO- d_6 at 300 K.	.13
Figure S 2.14 High-resolution mass spectrum of 4 .	.14
Figure S 2.15 HPLC chromatogram of 4 . UV peak at $\lambda = 220$ nm.	.14
Figure S 2.16 IR spectrum of 5 (KBr pellet).	.15
Figure S 2.17 ¹ H NMR spectrum of 5 in DMSO- d_6 at 300 K.	.15
Figure S 2.18 ¹³ C NMR spectrum of 5 in DMSO- d_6 at 300 K.	.16
Figure S 2.19 High-resolution mass spectrum of 5	.16
Figure S 2.20 HPLC chromatogram of 5. UV peak at $\lambda = 220$ nm.	.17
Figure S 2.21 IR spectrum of 6 (KBr pellet).	.17
Figure S 2.22 ¹ H NMR spectrum of 6 in DMSO- d_6 at 300 K.	.18
Figure S 2.23 ¹³ C NMR spectrum of 6 in DMSO- d_6 at 300 K.	.18
Figure S 2.24 High-resolution mass spectrum of 6	.19
Figure S 2.25 HPLC chromatogram of 6. UV peak at $\lambda = 220$ nm.	.19
Figure S 2.26 IR spectrum of 7 (KBr pellet).	.20
Figure S 2.27 ¹ H NMR spectrum of 7 in DMSO- d_6 at 300 K.	.20
Figure S 2.28 13 C NMR spectrum of 7 in DMSO- d_6 at 300 K.	.21
Figure S 2.29 High-resolution mass spectrum of 7	.21
Figure S 2.30 HPLC chromatogram of 7. UV peak at $\lambda = 220$ nm.	.22
Figure S 2.31 IR spectrum of 8 (KBr pellet).	.22
Figure S 2.32 ¹ H NMR spectrum of 8 in DMSO-d6 at 300 K.	.23
Figure S 2.33 ¹³ C NMR spectrum of 8 in DMSO- d_6 at 300 K.	.23
Figure S 2.34 High-resolution mass spectrum of 8	.24
Figure S 2.35 HPLC chromatogram of 8 . UV peak at $\lambda = 220$ nm.	.24
Figure S 2.36 IR spectrum of 9 (KBr pellet).	.25

Figure S 2.37 ¹ H NMR spectrum of 9 in DMSO- d_6 at 300 K.	25
Figure S 2.38 ¹³ C NMR spectrum of 9 in DMSO- d_6 at 300 K.	26
Figure S 2.39 High-resolution mass spectrum of 9	26
Figure S 2.40 HPLC chromatogram of 9. UV peak at $\lambda = 220$ nm.	27
Figure S 2.41 IR spectrum of 10 (KBr pellet)	27
Figure S 2.42 ¹ H NMR spectrum of 10 in DMSO- d_6 at 300 K.	28
Figure S 2.43 13 C NMR spectrum of 10 in DMSO- d_6 at 300 K.	28
Figure S 2.44 High-resolution mass spectrum of 10	29
Figure S 2.45 HPLC chromatogram of 10 . UV peak at $\lambda = 220$ nm	29
Figure S 2.46 IR spectrum of 11 (KBr pellet).	30
Figure S 2.47 ¹ H NMR spectrum of 11 in DMSO- d_6 at 300 K.	30
Figure S 2.48 ¹³ C NMR spectrum of 11 in DMSO- d_6 at 300 K.	31
Figure S 2.49 High-resolution mass spectrum of 11	31
Figure S 2.50 HPLC chromatogram of 11 . UV peak at $\lambda = 220$ nm	32
Figure S 2.51 IR spectrum of 12 (KBr pellet).	32
Figure S 2.52 ¹ H NMR spectrum of 12 in DMSO- d_6 at 300 K.	33
Figure S 2.53 ¹³ C NMR spectrum of 12 in DMSO- d_6 at 300 K.	33
Figure S 2.54 High-resolution mass spectrum of 12	34
Figure S 2.55 HPLC chromatogram of 12 . UV peak at $\lambda = 220$ nm	34
Figure S 2.56 IR spectrum of 15 (KBr pellet).	35
Figure S 2.57 ¹ H NMR spectrum of 15 in DMSO- d_6 at 300 K.	35
Figure S 2.58 ¹⁹ F NMR spectrum of 15 in DMSO- d_6 at 300 K	36
Figure S 2.59 High-resolution mass spectrum of 15	36
Figure S 2.60 HPLC chromatogram of 15. UV peak at $\lambda = 220$ nm	37
Figure S 2.61 IR spectrum of 17 (KBr pellet).	37
Figure S 2.62 ¹ H NMR spectrum of 17 in DMSO- d_6 at 300 K.	38
Figure S 2.63 High-resolution mass spectrum of 17	38
Figure S 2.64 HPLC chromatogram of 17. UV peak at $\lambda = 240$ nm	39
Figure S 2.65 IR spectrum of 18 (KBr pellet).	39
Figure S 2.66 ¹ H NMR spectrum of 18 in DMSO- d_6 at 300 K.	40
Figure S 2.67 High-resolution mass spectrum of 18	40
Figure S 2.68 HPLC chromatogram of 18. UV peak at $\lambda = 240$ nm	41
Figure S 2.69 IR spectrum of 19 (KBr pellet).	41
Figure S 2.70 ¹ H NMR spectrum of 19 in DMSO- d_6 at 300 K.	42
Figure S 2.71 High-resolution mass spectrum of 19	42
Figure S 2.72 HPLC chromatogram of 19. UV peak at $\lambda = 240$ nm	43
Figure S 2.73 IR spectrum of 20 (KBr pellet).	43
Figure S 2.74 ¹ H NMR spectrum of 20 in DMSO- d_6 at 300 K.	44
Figure S 2.75 High-resolution mass spectrum of 20	44
Figure S 2.76 HPLC chromatogram of 20 . UV peak at $\lambda = 240$ nm	45
Figure S 2.77 IR spectrum of 21 (KBr pellet).	45
Figure S 2.78 ¹ H NMR spectrum of 21 in DMSO- d_6 at 300 K.	46
Figure S 2.79 High-resolution mass spectrum of 21	46
Figure S 2.80 HPLC chromatogram of 21. UV peak at $\lambda = 240$ nm	47
Figure S 2.81IR spectrum of 22 (KBr pellet).	47
Figure S 2.82 ¹ H NMR spectrum of 22 in DMSO- d_6 at 300 K.	48

Figure S 2.83 High-resolution mass spectrum of 22	48
Figure S 2.84 HPLC chromatogram of 22. UV peak at $\lambda = 240$ nm	49
Figure S 2.85 IR spectrum of 23 (KBr pellet).	49
Figure S 2.86 ¹ H NMR spectrum of 23 in DMSO- d_6 at 300 K.	50
Figure S 2.87 High-resolution mass spectrum of 23	50
Figure S 2.88 HPLC chromatogram of 23. UV peak at $\lambda = 240$ nm	51
Figure S 2.89 IR spectrum of 24 (KBr pellet).	51
Figure S 2.90 ¹ H NMR spectrum of 24 in DMSO- d_6 at 300 K.	52
Figure S 2.91 High-resolution mass spectrum of 24	52
Figure S 2.92HPLC chromatogram of 24. UV peak at $\lambda = 240$ nm	53
Figure S 2.93 IR spectrum of 25 (KBr pellet).	53
Figure S 2.94 ¹ H NMR spectrum of 25 in DMSO- d_6 at 300 K.	54
Figure S 2.95 High-resolution mass spectrum of 25	54
Figure S 2.96 HPLC chromatogram of 25, UV peak at $\lambda = 240$ nm	55
Figure S 2.97 IR spectrum of 26 (KBr pellet).	55
Figure S 2.98 ¹ H NMR spectrum of 26 in DMSO- d_6 at 300 K.	56
Figure S 2.99 High-resolution mass spectrum of 26.	56
Figure S 2.100 HPLC chromatogram of 26, UV peak at $\lambda = 240$ nm	57
Figure S 2.101 IR spectrum of 27 (KBr pellet).	57
Figure S 2.102 ¹ H NMR spectrum of 27 in DMSO- d_6 at 300 K.	58
Figure S 2.103 High-resolution mass spectrum of 27.	58
Figure S 2.104 HPLC chromatogram of 27. UV peak at $\lambda = 240$ nm	59
Figure S 2.105 IR spectrum of 28 (KBr pellet).	59
Figure S 2.106 ¹ H NMR spectrum of 28 in DMSO- d_6 at 300 K.	60
Figure S 2.107 High-resolution mass spectrum of 28	60
Figure S 2.108 HPLC chromatogram of 28, UV peak at $\lambda = 240$ nm	61
Figure S 2.109 HPLC chromatograms of [⁶⁷ Ga]- 16 with cold 16 co-injection	61
Figure S 2.110 HPLC chromatograms of [⁶⁷ Ga]-17 with cold 17 co-injection	62
Figure S 2.111 HPLC chromatograms of [⁶⁷ Ga]-18 with 18 co-injection.	62
Figure S 2.112 HPLC chromatograms of [⁶⁷ Ga]-19 with cold 19 co-injection	63
Figure S 2.113 HPLC chromatograms of [⁶⁷ Ga]-20 with cold 20 co-injection	63
Figure S 2.114 HPLC chromatograms of [⁶⁷ Ga]-21 with cold 21 co-injection	64
Figure S 2.115 HPLC chromatograms of [⁶⁷ Ga]-22 with cold 22 co-injection	64
Figure S 2.116 HPLC chromatograms of [⁶⁷ Ga]-23 with cold 23 co-injection	65
Figure S 2.117 HPLC chromatograms of [⁶⁷ Ga]-24 with cold 24 co-injection	65
Figure S 2.118 HPLC chromatograms of [⁶⁷ Ga]-25 with cold 25 co-injection	66
Figure S 2.119 HPLC chromatograms of [⁶⁷ Ga]- 26 with cold 26 co-injection	66
Figure S 2.120 HPLC chromatograms of [⁶⁷ Ga]- 27 with cold 27 co-injection	67
Figure S 2.121 HPLC chromatograms of $[^{67}Ga]$ - 28 with cold 28 co-injection	67
Figure S 2.122 In vitro uptake of ⁶⁷ Ga-deferoxamine compounds by S. <i>aureus</i> over time	
Figure S 3.1 HPLC chromatogram (Method B) of 5.	72
Figure S 3 2 ESI HRMS of 5 between m/z 900 to 4000	73
Figure S 3.3 Expansion of HRMS shown in Figure S2	73
Figure S 3.4 HPLC chromatogram (Method B) of 6	74
Figure S 3.5 High-resolution mass spectrum of 6	
Figure S 3.6 IR spectrum of 6 (KBr pellet).	75

Figure S 3.7 ¹ H NMR spectrum of 6 in DMSO- d_6 at 300 K
Figure S 3.8 HPLC chromatogram (Method D) of 6, UV peak at $\lambda = 240$ nm
Figure S 3.9 HPLC chromatograms (Method D) of 7 co-injected with 676
Figure S 3.10 Analytical HPLC chromatogram (Method B) of 777
Figure S 3.11 Analytical HPLC chromatogram (Method B) of 877
Figure S 3.12 HPLC chromatograms (Method B) of 8 over 3 days
Figure S 3.13 HPLC Peak integration of 8 over 3 days
Figure S 3.14 In vitro uptake of ⁶⁷ GaDFO-Tz and GaDFO-Tz (control) by S. aureus over time. 79
Figure S 3.15 Plot of the percentage of vanco-TCO conjugate 8 binding to <i>S. aureus</i> at 0, 5,
15,30,45, 60, 120 minutes and 6 hours80
Figure S 3.16 Plot of the percentage of ⁶⁷ GaDFO-Tz 7 bioorthogonally binding to <i>S. aureus</i> at
1 and 6 hours
Figure S 3.17 SPECT/CT sagittal (left) and transverse (right) of Mouse 1 after 1 h p.i81
Figure S 3.18 SPECT/CT sagittal (left) and transverse (right) of Mouse 1 after 24 h p.i81
Figure S 3.19 SPECT/CT sagittal (left) and transverse (right) of Mouse 2 after 1 h p.i81
Figure S 3.20 SPECT/CT sagittal (left) and transverse (right) of Mouse 2 after 1 h p.i81
Figure S 3.21 SPECT/CT sagittal (left) and transverse (right) of Mouse 3 after 24 h p.i82
Figure S 3.22 SPECT/CT sagittal (left) and transverse (right) of Mouse 3 after 24 h p.i82
Figure S 3.23 SPECT/CT sagittal (left) and transverse (right) of Mouse 4 after 1 h p.i83
Figure S 3.24 SPECT/CT coronal image of Mouse 4 after 24 h p.i83
Figure S 3.25 Percent injected dose per gram (%ID/g) for select tissues and fluids obtained from
the biodistribution of [⁶⁷ Ga]-1 and 7 in <i>S. aureus</i> murine models at 1 h p.i
Figure S 3.26 Infected and non-infected calf muscle % ID/g of [⁶⁷ Ga]-1 and 7 in S. aureus murine
infected models at 1 h p.i85
Figure S 3.27 Plot of infected calf muscle to other tissues. %ID/g of [⁶⁷ Ga]-1 and 7 in <i>S. aureus</i>
murine infected models at 1 h p.i85

Table of Schemes

Scheme S 3-1 Preparation of DFOTz	70
Scheme S 3-2 Preparation of GaDFO-Tz 6 and ⁶⁷ GaDFO-Tz 7 complexes	71
Scheme S 3-3 Preparation of Vanco-TCO 5.	71
Scheme S 3-4 Preparation of ⁶⁷ GaDFO-Tz conjugate 8 complex	72

Tables

Table S 2-1Percent injected dose per gram (%ID/g) for select tissues and fluids obtained from
the biodistribution of $[{}^{67}$ Ga]-16, $[{}^{67}$ Ga]-18, $[{}^{67}$ Ga]- 26 and $[{}^{67}$ Ga]- 28 in <i>S. aureus</i> murine models
at 1 h p.i
Table S 3-1 Tissue distribution of 1 and 7 in Staphylococcus aureus mouse infection model at 1
h p.i

Chapter 2

Figure S 2.2 ¹H NMR spectrum of **2** in DMSO- d_6 at 300 K.

Figure S 2.3 ¹³C NMR spectrum of **2** in DMSO- d_6 at 300 K.

Figure S 2.5 HPLC chromatogram of **2**. UV peak at $\lambda = 220$ nm

min

Figure S 2.6 IR spectrum of **3** (KBr pellet).

Figure S 2.7 ¹H NMR spectrum of **3** in DMSO- d_6 at 300 K.

Figure S 2.9 High-resolution mass spectrum of 3.

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 22 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) 1201-2-85-01 JFV4B22589 578 (10.979) AM (Cen,4, 80.00, Ar,6000.0,922.01,0.80); Sb (99,10.00); Sm (Mn, 3x3.00); Cm (475:641) 05-Dec-2012 1: TOF MS ES+ 4.74e4 633.3813 100 % 634.3766 635.3614 631.3148 632.5522 632.9639 632.3159 635.0241 m/z 0 633.00 634.00 634.50 635.00 631.50 632.00 632.50 633.50 • -1.5 Minimum: 100.0 Maximum: 10.0 5.0 mDa PPM DBE Score Formula Mass Calc. Mass 1 C28 H53 N6 010 633.3813 633.3823 -1.0 -1.6 5.5

Single Mass Analysis

Figure S 2.10 HPLC chromatogram of **3**. UV peak at $\lambda = 220$ nm.

(Note injection volume contains DMSO).

Figure S 2.11 IR spectrum of 4 (KBr pellet).

Figure S 2.12 ¹H NMR spectrum of **4** in DMSO- d_6 at 300 K.

Figure S 2.14 High-resolution mass spectrum of **4**.

Single Mass Analysis

```
Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0
Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%
```

Monoisotopic Mass, Odd and Even Electron lons

22 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

1201-2 JFV4B	-83-01 22588	242 (4.6	624) AM (Cer	,4, 80.00, Ar,6	000.0,922.01	,0.80); Sb (99, 647.39	10.00); Sm 76	(Mn, 3x3.00);	Cm (236:366	5)	(1: T	05-Dec-2012 OF MS ES+ 9.00e3
%							648.4	003				
6	42.328	2 643.32	12 644.	4586 645.4	4807 646.	5318	040.4	649.40 648.9604	008 650.3	651.35 651.00856	652. 596 51.7122	2645 652.7650
0	64	13.0	644.0	645.0	646.0	647.0	648.0	649.0	650.0	651.0	652.0	1111111111
Minim Maxim	ium: ium:			10.0	5.0	-1.5 100.0	÷					
Mass		Cal	c. Mass	mDa	PPM	DBE	Score	Form	nula			
647.3	976	647	.3980	-0.4	-0.6	5.5	1	C29	H55 N6	010		

Figure S 2.15 HPLC chromatogram of **4**. UV peak at $\lambda = 220$ nm.

(Note injection volume contains DMSO).

Figure S 2.16 IR spectrum of **5** (KBr pellet).

Figure S 2.17 ¹H NMR spectrum of **5** in DMSO- d_6 at 300 K.

Figure S 2.19 High-resolution mass spectrum of 5.

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Figure S 2.20 HPLC chromatogram of **5**. UV peak at $\lambda = 220$ nm.

Figure S 2.21 IR spectrum of **6** (KBr pellet).

Figure S 2.24 High-resolution mass spectrum of 6.

Single Ma Tolerance Isotope cl	ass Analysi = 5.0 PPM uster param	s / DBE: m eters: Sepa	in = -1.5 ration =	, max = 10 1.0 Abun	0.0 dance = 1.0)%		
Monoisotop 28 formula(ic Mass, Odd a e) evaluated w	and Even Elec ith 1 results wi	tron lons thin limits	(up to 50 clo	sest results fo	or each mass)	
1201-2-87-01 JFV4B22593 1 100	84 (3.506) AM (C	en,4, 80.00, Ar,60	000.0,622.03	,0.80); Sb (99,1 661.4	0.00); Sm (Mn, 3 1133	3x3.00); Cm (11	5:247)	06-Dec-2012 1: TOF MS ES+ 2.68e5
%					662.	4171		
657.3484	658,4240	559.3779 659.98	83 660.404	48 661.0195	662.0033	662.9484	3.4203 663.7501 664.4187	665.3883
6	58.00 6	59.00 6	60.00	661.00	662.00	663.00	664.00	665.00
Minimum: Maximum:		10.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula		
661.4133	661.4136	-0.3	-0.5	5.5	1	C30 H57	N6 010	

Figure S 2.25 HPLC chromatogram of **6**. UV peak at $\lambda = 220$ nm.

(Note injection volume contains DMSO).

Figure S 2.26 IR spectrum of 7 (KBr pellet).

Figure S 2.27 ¹H NMR spectrum of **7** in DMSO- d_6 at 300 K.

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 28 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

1201-2-79-01 JFV4B22591 201 (3.836) AM (Cen,4, 80.00, Ar,6000.0,622.03,0.80); Sb (99,10.00); Sm (Mn, 3x3.00); Cm (196:231) 06-Dec-2012 1: TOF MS ES+ 5.65e4 661.4146 100 % 662.4179 663.4254 664.4111 669.3182 653.3875 654.3126 655.3250 659.4378 659.9874 667.3868 0 - m/z 652.0 654.0 656.0 658.0 660.0 662.0 664.0 666.0 668.0 670.0 ٠ Minimum: -1.5 100.0 10.0 5.0 Maximum: Mass Calc. Mass mDa PPM DBE Score Formula 661.4146 661.4136 1.0 1.5 5.5 1 C30 H57 N6 010

Figure S 2.30 HPLC chromatogram of **7**. UV peak at $\lambda = 220$ nm.

(Note injection volume contains DMSO).

Figure S 2.31 IR spectrum of 8 (KBr pellet).

Figure S 2.33 ¹³C NMR spectrum of **8** in DMSO- d_6 at 300 K.

Figure S 2.34 High-resolution mass spectrum of 8.

Single M Tolerance Isotope c	lass An e = 5.0 luster p	alysis PPM / aramete	DBE: m rs: Sepa	nin = -1. ration =	5, max = = 1.0 Abu	100.0 Indance =	= 1.0%				
Monoisotor 74 formula	oic Mass, (e) evalua	Odd and ated with 3	Even Elec results w	tron lons ithin limit	s (up to 50 c	closest resu	Its for each	n mass)		
J31B1p48 JFV\$B22569 100	331 (6.307)) AM (Cen,4	80.00, Ar,60	000.0,622.0 661	03,0.80); Sb (99 4138	9,10.00); Sm	(Mn, 3x3.00);	Cm (27)	7:341)	27-Nov 1: TOF MS ٤	/-2012 SES+ 3.25e4
% 657.329	4	659 2944	660 3000	661 0464	662.4	663.42	48 664 43	304			
0 65	8.0	659.0	660.0	661.0	662.0	663.0	664.0	665.0	666.0	667.0	m/z
Minimum: Maximum:			10.0	5.0	-1.5 100.0	• •					
Mass	Calc.	Mass	mDa	PPM	DBE	Score	Form	ula			
661.4138	661.41 661.41 661.41	36 50 09	0.2 -1.2 2.9	0.3 -1.8 4.3	5.5 5.0 1.0	2 1 3	C30 C32 C27	H57 H59 H59	N6 010 N3 011 N5 013		

Figure S 2.35 HPLC chromatogram of **8**. UV peak at $\lambda = 220$ nm.

Figure S 2.36 IR spectrum of **9** (KBr pellet).

Figure S 2.37 ¹H NMR spectrum of **9** in DMSO- d_6 at 300 K.

Figure S 2.39 High-resolution mass spectrum of 9.

```
Single Mass Analysis
```

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 26 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Figure S 2.40 HPLC chromatogram of **9**. UV peak at $\lambda = 220$ nm.

(Note injection volume contains DMSO).

Figure S 2.41 IR spectrum of 10 (KBr pellet)

Figure S 2.45 HPLC chromatogram of 10. UV peak at $\lambda = 220$ nm.

(Note injection volume contains DMSO).

%Transmittance ö Óн 2500 2000 Wavenumbers (cm-1)

Figure S 2.46 IR spectrum of **11** (KBr pellet).

Figure S 2.47 ¹H NMR spectrum of **11** in DMSO- d_6 at 300 K.

Figure S 2.48¹³C NMR spectrum of **11** in DMSO- d_6 at 300 K.

Figure S 2.49 High-resolution mass spectrum of **11**.

Figure S 2.50 HPLC chromatogram of **11**. UV peak at $\lambda = 220$ nm.

(Note injection volume contains DMSO).

Figure S 2.51 IR spectrum of **12** (KBr pellet).

Figure S 2.54 High-resolution mass spectrum of 12.

Figure S 2.55 HPLC chromatogram of **12**. UV peak at $\lambda = 220$ nm.

Figure S 2.57 ¹H NMR spectrum of **15** in DMSO- d_6 at 300 K.

Figure S 2.58 ¹⁹F NMR spectrum of **15** in DMSO- d_6 at 300 K.

Figure S 2.59 High-resolution mass spectrum of **15**.

R Element	al Compositio														
File Edit Vi	ew Process H	Help													
		Teib	المحال	e wit											
		<u>M</u> 🗉	8	\simeq											
Single M	lass Analy	sis													
Toleranc	e = 5.0 PPN	1 / D	BE: n	nin = -	1.5, max = 100.0										
Isotope o	luster parar	neters	: Sepa	aratior	n = 1.0 Abundance =	1.0%									
Monoisot	opic Mass, C)dd ani	d Even	Elect	ron lons										
1 formula	(ej evaluated	1 with 1	resul	ts with	in limits (up to 50 close	est resu	Its for	each	mas	sj					
Mass	Calc. Mass	mDa	PPM	DBE	Formula	Score	С	н	N	0	F				
974.5014	974.4999	1.5	1.6	16.5	C46 H69 N9 O13 F	1	46	69	9	13	1				
1001 4 40 4															22.101.201.2
JFV4B23453	2 37 (0.713) AM	1 (Cen,4	, 80.00,	Ar,5000).0,922.01,0.80); Sb (99,10.	00); Sm	(Mn, 1x	2.00);	Cm (2	3:39)			1: T	OF MS ES+
100-974.5	5014														4.01e4
· ·															
					375 5039										
%-					573.3030										
								9	76.51	00					
															977.5046
0-4	974 75	75.00	975	25	075 50 075 75 07	'e nn	976.2	5	076.5		976.76	977	00	977.25	977 60
l For Help, pres	574.70 8 cF1	070.00	975	.20	870.00 870.70 87	0.00	370.2		ar 0.5	0	370.75	811.	00	511.20	877.00
For Help, pres	s F1														11.
Figure S 2.60 HPLC chromatogram of **15**. UV peak at $\lambda = 220$ nm.

Figure S 2.61 IR spectrum of **17** (KBr pellet).

Figure S 2.62 ¹H NMR spectrum of **17** in DMSO- d_6 at 300 K.

Figure S 2.64 HPLC chromatogram of **17**. UV peak at $\lambda = 240$ nm.

Figure S 2.65 IR spectrum of 18 (KBr pellet).

Figure S 2.66 ¹H NMR spectrum of **18** in DMSO- d_6 at 300 K.

Figure S 2.67 High-resolution mass spectrum of 18.

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 685 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass)

Figure S 2.68 HPLC chromatogram of **18**. UV peak at $\lambda = 240$ nm.

Figure S 2.69 IR spectrum of **19** (KBr pellet).

Figure S 2.70 ¹H NMR spectrum of **19** in DMSO- d_6 at 300 K.

Figure S 2.72 HPLC chromatogram of 19. UV peak at $\lambda = 240$ nm.

Figure S 2.73 IR spectrum of 20 (KBr pellet).

Figure S 2.74 ¹H NMR spectrum of **20** in DMSO- d_6 at 300 K.

Figure S 2.75 High-resolution mass spectrum of 20.

Figure S 2.76 HPLC chromatogram of **20**. UV peak at $\lambda = 240$ nm.

Figure S 2.77 IR spectrum of **21** (KBr pellet).

Figure S 2.78 ¹H NMR spectrum of **21** in DMSO- d_6 at 300 K.

Figure S 2.79 High-resolution mass spectrum of 21.

Figure S 2.80 HPLC chromatogram of 21. UV peak at $\lambda = 240$ nm.

Figure S 2.81IR spectrum of 22 (KBr pellet).

Figure S 2.82 ¹H NMR spectrum of **22** in DMSO- d_6 at 300 K.

Figure S 2.84 HPLC chromatogram of 22. UV peak at $\lambda = 240$ nm.

Figure S 2.85 IR spectrum of 23 (KBr pellet).

Figure S 2.86 ¹H NMR spectrum of **23** in DMSO- d_6 at 300 K.

Figure S 2.87 High-resolution mass spectrum of 23.

Figure S 2.88 HPLC chromatogram of **23**. UV peak at $\lambda = 240$ nm.

Figure S 2.89 IR spectrum of 24 (KBr pellet).

Figure S 2.90 ¹H NMR spectrum of **24** in DMSO- d_6 at 300 K.

Monoisotopic Mass, Odd and Even Electron lons 296 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)

52

Figure S 2.93 IR spectrum of 25 (KBr pellet).

Figure S 2.94 ¹H NMR spectrum of 25 in DMSO- d_6 at 300 K.

Figure S 2.95 High-resolution mass spectrum of 25.

Figure S 2.96 HPLC chromatogram of 25, UV peak at $\lambda = 240$ nm.

Figure S 2.97 IR spectrum of 26 (KBr pellet).

Figure S 2.98 ¹H NMR spectrum of **26** in DMSO- d_6 at 300 K.

Figure S 2.100 HPLC chromatogram of **26**, UV peak at $\lambda = 240$ nm.

(Note: Injection volume contains DMSO).

Figure S 2.101 IR spectrum of 27 (KBr pellet).

Figure S 2.102 ¹H NMR spectrum of **27** in DMSO- d_6 at 300 K.

Figure S 2.103 High-resolution mass spectrum of 27.

Figure S 2.104 HPLC chromatogram of 27. UV peak at $\lambda = 240$ nm.

Figure S 2.105 IR spectrum of 28 (KBr pellet).

Figure S 2.106 ¹H NMR spectrum of 28 in DMSO- d_6 at 300 K.

Figure S 2.109 HPLC chromatograms of [67 Ga]-16 with cold 16 co-injection. Radio-HPLC peak (top), UV peak at $\lambda = 240$ nm (bottom). ADC1 A, ADC1 CHANNEL A (IOPPOLO_BACKED UP 20130508\201305024000001.D)

Figure S 2.110 HPLC chromatograms of [⁶⁷Ga]-17 with cold 17 co-injection.

Figure S 2.111 HPLC chromatograms of [⁶⁷Ga]-18 with 18 co-injection.

Figure S 2.112 HPLC chromatograms of [⁶⁷Ga]-19 with cold 19 co-injection.

Figure S 2.113 HPLC chromatograms of [⁶⁷Ga]-20 with cold 20 co-injection.

Figure S 2.114 HPLC chromatograms of [⁶⁷Ga]-21 with cold 21 co-injection.

Figure S 2.115 HPLC chromatograms of [⁶⁷Ga]-22 with cold 22 co-injection.

Figure S 2.116 HPLC chromatograms of [⁶⁷Ga]-23 with cold 23 co-injection.

Figure S 2.117 HPLC chromatograms of [⁶⁷Ga]-24 with cold 24 co-injection.

Figure S 2.118 HPLC chromatograms of [⁶⁷Ga]-25 with cold 25 co-injection.

 $Radio-HPLC \ peak \ (top), \ UV \ peak \ at \ \lambda = 240 \ nm \ (bottom).$

Figure S 2.119 HPLC chromatograms of [⁶⁷Ga]- 26 with cold 26 co-injection.

Radio-HPLC peak (top), UV peak at $\lambda = 240$ nm (bottom).

Figure S 2.120 HPLC chromatograms of [⁶⁷Ga]- 27 with cold 27 co-injection.

Radio-HPLC peak (top), UV peak at $\lambda = 240$ nm.

Figure S 2.121 HPLC chromatograms of [⁶⁷Ga]- 28 with cold 28 co-injection.

Radio-H PLC peak (top), UV peak at $\lambda = 240$ nm.

Figure S 2.122 In vitro uptake of ⁶⁷Ga-deferoxamine compounds by S. aureus over time.

Note that time zero represents samples processed immediately following the addition of the radioactive material. All experiments were performed in duplicate.

Table S 2-1Percent injected dose per gram (%ID/g) for select tissues and fluids obtained from the biodistribution of [⁶⁷Ga]-16, [⁶⁷Ga]-18, [⁶⁷Ga]- 26 and [⁶⁷Ga]- 28 in *S. aureus* murine models at 1 h p.i.

Data are expressed as mean \pm SEM (n=3).

Organs	⁶⁷ Ga- 16	⁶⁷ Ga- 18	⁶⁷ Ga- 26	⁶⁷ Ga- 28
Blood	0.07 ± 0.01	0.05 ± 0.00	0.06 ± 0.00	0.47 ± 0.37
Kidneys +				
Adrenals	1.75 ± 0.25	0.10 ± 0.01	4.38 ± 0.06	0.39 ± 0.05
Liver + Gall				
Bladder	0.11 ± 0.01	2.95 ± 0.57	3.49 ± 0.73	2.33 ± 1.08
Lymph Nodes	0.32 ± 0.16	0.06 ± 0.03	1.65 ± 0.27	0.19 ± 0.06
Small Intestine	0.63 ± 0.11	30.04 ± 2.45	46.24 ± 3.02	46.27 ± 2.69
Spleen	0.12 ± 0.01	0.04 ± 0.00	0.10 ± 0.02	0.11 ± 0.02
Calf Muscle (Left)	0.07 ± 0.01	0.02 ± 0.00	0.13 ± 0.03	0.14 ± 0.03
Calf Muscle				
(Right)	0.46 ± 0.12	0.28 ± 0.11	0.30 ± 0.07	0.26 ± 0.05
	$381.75 \pm$		$862.37 \pm$	$255.65 \pm$
Urine + Bladder	107.15	229.96 ± 64.17	355.58	85.39

Chapter 3

Scheme S 3-1 Preparation of DFOTz

Scheme S 3-2 Preparation of GaDFO-Tz 6 and ⁶⁷GaDFO-Tz 7 complexes.

Scheme S 3-3 Preparation of Vanco-TCO 5.

Figure S 3.1 HPLC chromatogram (Method B) of 5.

Figure S 3.2 ESI HRMS of $\mathbf{5}$ between m/z 900 to 4000.

Figure S 3.3 Expansion of HRMS shown in Figure S2.

Figure S 3.4 HPLC chromatogram (Method B) of 6.

Figure S 3.5 High-resolution mass spectrum of 6.

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 41 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)

20130308_GFP_MSMS

JFV4B22864	368 (7.046) AM (Cen 896.3573	,4, 80.00, Ar,50	00.0,622.03	,0.80); Sb (99	(,10.00); Sm (N	Ип, 2x2.00);	Cm (32	27:404)			1:1	TOF MS ES+ 4.09e4	
1		898.3572											
1													
%	2		897.3611							89	9.3575		
895.985	0 896.7	896.7468 896.9775		897.7346 898.0082		-	898.7509				899.746		
896.00	896.50	897.00	897	.50	898.00	898.5	0	8	99.00		899.	50	
Minimum: Maximum:		20.0	5.0	-1.5 100.0	• .								
Mass	Calc. Mass	mDa	PPM	DBE	Score	Form	ula						
896.3573	896.3586 896.3599 896.3546 896.3532	-1.3 -2.6 2.7 4.1	-1.4 -2.9 3.0 4.5	20.5 20.0 16.5 17.0	3 4 2 1	C43 C45 C38 C36	H57 H59 H57 H55	N9 N6 N11 N14	08 09 010 09	Ga Ga Ga	~		

08-Mar-2013

Figure S 3.6 IR spectrum of **6** (KBr pellet).

Figure S 3.7 ¹H NMR spectrum of 6 in DMSO- d_6 at 300 K.

Figure S 3.8 HPLC chromatogram (Method D) of 6, UV peak at $\lambda = 240$ nm

(Note: Injection volume contains DMSO).

Figure S 3.9 HPLC chromatograms (Method D) of 7 co-injected with 6.

Radio-HPLC peak (top), UV peak at $\lambda = 240$ nm (bottom).

Figure S 3.10 Analytical HPLC chromatogram (Method B) of 7

Figure S 3.11 Analytical HPLC chromatogram (Method B) of 8

Figure S 3.12 HPLC chromatograms (Method B) of 8 over 3 days.

Figure S 3.13 HPLC Peak integration of 8 over 3 days

Figure S 3.14 *In vitro* uptake of ⁶⁷GaDFO-Tz and GaDFO-Tz (control) by *S. aureus* over time. Note that time zero represents samples processed immediately following the addition of the radioactive material. All experiments were performed in duplicate.

Figure S 3.15 Plot of the percentage of vanco-TCO conjugate 8 binding to *S. aureus* at 0, 5, 15,30,45, 60, 120 minutes and 6 hours.

Figure S 3.16 Plot of the percentage of ⁶⁷GaDFO-Tz 7 bioorthogonally binding to *S. aureus* at 1and 6 hours.

Figure S 3.17 SPECT/CT sagittal (left) and transverse (right) of Mouse 1 after 1 h p.i.

Figure S 3.18 SPECT/CT sagittal (left) and transverse (right) of Mouse 1 after 24 h p.i.

Figure S 3.19 SPECT/CT sagittal (left) and transverse (right) of Mouse 2 after 1 h p.i.

Figure S 3.20 SPECT/CT sagittal (left) and transverse (right) of Mouse 2 after 1 h p.i.

Figure S 3.21 SPECT/CT sagittal (left) and transverse (right) of Mouse 3 after 24 h p.i.

Figure S 3.22 SPECT/CT sagittal (left) and transverse (right) of Mouse 3 after 24 h p.i.

Figure S 3.23 SPECT/CT sagittal (left) and transverse (right) of Mouse 4 after 1 h p.i.

Figure S3.24. SPECT/CT sagittal (left) and transverse (right) of Mouse 4 after 24 h p.i.

Figure S 3.24 SPECT/CT coronal image of Mouse 4 after 24 h p.i.

Figure S 3.25 Percent injected dose per gram (%ID/g) for select tissues and fluids obtained from the biodistribution of $[^{67}Ga]$ -1 and 7 in *S. aureus* murine models at 1 h p.i. Data are expressed as mean ± SEM (n=3).

Figure S 3.26 Infected and non-infected calf muscle %ID/g of [⁶⁷Ga]-1 and 7 in *S. aureus* murine infected models at 1 h p.i.

Figure S 3.27 Plot of infected calf muscle to other tissues. %ID/g of [⁶⁷Ga]-1 and 7 in *S. aureus* murine infected models at 1 h p.i.

Table S 3-1 Tissue distribution of 1 and 7 in *Staphylococcus aureus* mouse infection model at 1 h p.i.

Organs	1	7
Blood	0.07 ± 0.01	4.54 ± 4.42
Kidneys +		
Adrenals	1.75 ± 0.25	0.39 ± 0.02
Liver + Gall		
Bladder	0.11 ± 0.01	2.93 ± 1.21
Lymph Nodes	0.32 ± 0.16	0.05 ± 0.01
Small Intestine	0.63 ± 0.11	37.77 ± 5.73
Spleen	0.12 ± 0.01	0.81 ± 0.16
Calf Muscle (Left)	0.07 ± 0.01	0.04 ± 0.00
Calf Muscle		
(Right)	0.46 ± 0.12	0.20 ± 0.05
	$381.75 \pm$	$214.09~\pm$
Urine + Bladder	107.15	100.96

Data are expressed as ratios of %ID/g, expressed as the mean \pm SEM (n=3).

Chapter 4

Synthesis of 9-oxabiclo[6.1.0]nonane

Cis-cyclooctene (1 g, 9.1 mmol; Sigma-Aldrich, Milwaukee, USA) was added to a solution of acetic acid (1.71 mL, 29.9 mmol; Sigma-Aldrich) and sodium perborate tetrahydrate (1.75 g, 11.3 mmol; Sigma-Aldrich, Oakville, Canada) in 10 mL dichloromethane. The reaction was stirred for one week in room temperature. The product was isolated by extraction. The crude reaction mixture was combined with water and extracted three times with dichloromethane. The dichloromethane layers were combined and dried by rotary evaporator and high vacuum. The yield was determined to be 0.70 g, 63.6%. ¹H NMR (600 MHz, DMSO-d₆) δ 2.9 (d, 1H), 2.1 (d, 1H), 1.6-1.3 (m, 12H); ¹³C NMR (150 MHz, DMSO-d₆) δ 55.6, 26.5, 26.3, 25.6 LRMS-ESI (m/z): [M+H]⁺ calcd for C₈H₁₄O: 127, obsd 127.

Synthesis of (Z)-cyclooct-2-enol

9-oxabiclo[6.1.0]nonane (70.0 mg, 5.5 mmol) was dissolved in DMSO. KOH powder (0.94 g, 16.7 mmol; Sigma-Aldrich) was added to the solution and heated to 95 °C and stirred for 2 nights yielding yellow oil as expected. LRMS-ESI (m/z): $[M+H]^+$ calcd for C₈H₁₄O: 127, obsd 127. The product has not yet been isolated.

Synthesis of Vancomycin-succinic acid

Vancomycin hydrochloride hydrate (50 mg, 33.7 μ mol; Sigma-Aldrich, Oakville, Canada) was added to a solution of succinic anhydride (7.4 mg, 74.0 μ mol; Sigma-Aldrich) in 7 mL DMSO and stirred overnight. LRMS-ESI (m/z): [M+H]⁺ calcd for C₇₀H₇₉Cl₂N₉O₂₇: 1547, obsd 1547.