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Abstract 


Echinoids have an endoskeletal system which is ideal for studying 

calcified structures such as development of vertebrate skeletons. However, 

understanding echinoid skeletal (test) growth has proven challenging to analyse 

solely on the basis of any one approach or process. Therefore, theoretical models 

have been developed to understand growth and form of echinoid tests. Herein, 

Holotestoid, a computational model of echinoid test growth is described. The 

model incorporates mathematical principles (e.g. , close-packing), physical 

principles (e.g. , interface between coalescing bubbles) and biological processes 

(e.g. , echinoid ontogenic processes). It is the first computational model that 

emulates all five ontogenic processes involved in test growth (plate growth, plate 

addition, plate interaction, plate gapping, and visceral growth) using a geometrical 

representation and three analogies ( coalescing bubble, circle-packing, and 

catenary chains). The emulated processes are used to predict plate size, plate 

shape, and test shape. The results from the simulations of the growth zones show 

that the ambulacral column angle (e.g. , for A. punctulata aam = 22° and for S. 

franciscanus a am = 32°) is a crucial. parameter that distinguishes between species 

when varied. The . comparison of simulated data with those from real specimens 

yielded high accuracies, thereby validating the model. The combination of the 

simulated processes produced patterns mimicking real biological specimens. The 

model was further used to investigate the test morphological disparity observed 
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among echinoids, specifically between . regular echinoid (sea urchin) tests and 

irregular echinoid (sand dollar) tests. Both exhibit morphological similarities as 

imagines, however, they develop different test morphologies as adults. Thus, 

Holotestoid was used to explore the influence of each parameter on test height-to­

diameter ratio (h:d). The results showed that both ambulacral column widening 

and increase in total plate number cause the test h:d to decrease thereby leading to 

test flattening. Whereas the absolute size of the apical system and peristome does 

not influence test h:d, however, their growth with respect to column length 

caused an increase in the test h:d. These results provide an explanation of how the 

different test shapes were obtained. 

IV 



Acknowledgements 

First and foremost, I wish to thank J. R. Stone (Boss) for his guidance, 

support, and confidence in me. I am really thankful for all the opportunities that 

were offered to me. Boss, you contributed enormously towards influencing the 

way I have developed and evolved personally, intellectually, and scientifically. 

Thank you for being patient with me and providing me the opportunity to express 

all my creativity freely. I am honoured to be your student and your friend. A 

turning point I will always remember is our trip to Halifax, when I was first struck 

by fear after I heard Matt V. say "Jon!! Why would you give her that project? The 

poor girl", however, fear turned to determination, I knew that moment I wanted to 

succeed and show that you weren' t mistaken for choosing me©. Thank you for 

everything, you made my graduate experience truly memorable. 

I am deeply grateful to my committee members M. Lovric, G.B. Golding, 

B. Evans and R. Morton who have constantly challenged me to think critically, to 

ask the right questions, and have inspired me to develop as a scientist. I would not 

have evolved without their firm contributions, for that thank you. R. Mooi (my 

external examiner) thank you for attending my defence and for all the constructive 

comments; you made my defence enjoyable and memorable. 

Thank you to Maria White, for the admission to biology without the pre­

requisites. And to all the office ladies of the biology department, who were 

always happy to help. A special thanks to Barb, thank you for all your help, I 

v 



really appreciate everything you have done for me. 

Thank you to my family, I am blessed to have such wonderful and 

inspirational people in my life; all have carved and shaped the person I am today: 

I owe all my achievements to my parents, whose confidence in me and constant 

support gave me the strength to persevere and succeed in all my endeavours. 

There is no doubt that all I am today is because of them, however, additional to 

their constant love and support they have taught me to embrace every obstacle I 

encounter and use it as an opportunity to grow. Thank you for believing in me all 

the time. 

Mom, you are my muse, for everything seemed possible when you were 

by my side. You are the most selfless, caring, and compassionate person I know. 

Your patience love and tremendous strength is an inspiration. I am lucky and 

proud to be your daughter, confident, and friend. I love you so much, without you 

life is meaningless. 

Dad, I am blessed and honoured to have you in my life; for your support, 

wisdom, and unconditional love strengthened me. Furthermore, your constant 

support and your will to share my interests not only motivated me but infused me 

with confidence. Your influence played a major role in all my achievements. You 

believed in me from the start and continued to believe even when I couldn't. I am 

forever indebted to you, I am so grateful for you; all I accomplishments stem from 

you. You were the impetus that allowed me to succeed. This thesis is for you, I 

love you daddy. 

Vl 



To my sister, Rita, what a beautiful person you are, I am so proud to have 

you as my sister. I couldn't imagine a life without you, it would be empty and I 

would not have anyone to argue with. You are selfless and compassionate, which 

is an inspiration. I love the woman you have become. Thank you for always 

being by my side; for anyone would be lucky to have you as a friend, I am doubly 

lucky because I have you as both a sister and a best friend. I love you so much. 

To my brother, Charbel, your intelligence amazes me, watching you grow 

up and become this magnificent person I see has been a pleasure. I love your 

sweet and kind heart; I appreciate all the help you have given me. Sorry I know I 

could be a pain sometimes©, but please know that your help gave me strength to 

keep going. Writing this thesis was more enjoyable because I had you by my side 

the past six months, we shared moments that I will always remember. I love you 

bouleh. 

Kevin, you are my everything. You were my sanity and strength, for you 

held my world together when I felt everything was falling apart. Your constant 

love, encourageme])ts, support, and patience were the fuel to my success. I love 

you so much, there are no words to describe how much I appreciate you and feel 

grateful to have you in my life. 

Sonya, I love you so much, you are a strong, smart women whom I am 

proud to call my best friend of 18 years. You have touched my life in more ways 

than one. I am so grateful to have you share so many memories. You are a friend I 

look forward to growing old with. 

Vll 



Mehernoush, a beautiful and generous person, I still remember the 

moment we met; to me you will always be the girl full of spunk and life I met 

after the gym. You are the most impressive caregiver I know, you impress me so 

much, I lost count the amount of times I've watched you take care of someone, 

from family to strangers, you just met. 

Mr. O'Donnell, you have been a major influence in my life and in shaping 

the person who I am today. You not only taught me skills, but also pushed and 

challenged me to be the best I can be. Your encouragements and confidence 

helped me shine. I am blessed to have you in my life all these years. Because of 

your support I am passionate about and enjoy programming and I can call myself 

a computational biologist. 

Mr. Whelan, I am grateful for you because it is you who instilled an 

appreciation for Calculus; I still recall all your stories. However, I am even more 

thankful for picking up your phone when I called you at home and for helping me 

with any question I have even after I graduated. 

Dr. Lovric, thank you for always believing in me, and supporting me with 

everything the past eleven years at McMaster. No word can describe your 

unconditional support including the 9pportunities you gave me to teach Calculus, 

which helped me with finding jobs and funding; I am forever grateful. But even 

more importantly thank you for your friendship. 

Dr. Butler, I am really honoured to have known you as my professor, 

supervisor and my friend. You are truly unique, I was enchanted from your first 

Vlll 



lecture you gave nine years ago, and I can say to this day you still enchant me; I 

am always impressed how you stimulated my mind, by all the knowledge you 

posses, after every conversation we have. 

To my family and friends, without you life is too quiet and normal; special 

thanks goes to James, Monika, Jacob Ola, who define the meaning of family; Mr. 

and Mrs. Huntley, Mr. and Mrs Ahuja, Abhi, Dan Stevens have been a wonderful 

addition to my life; and to my friends who have been there to listen to me or in, 

Matt Whelan's case to tolerate me ©, I thank you all: Candice Christie, Freddy 

Chain, Joelle Nouaime, Wilfred, Vashti, Mrs Latchman, Jaddo, Karim and 

Shamel. Your support and love encouraged and strengthened me. Eileen Hyland, 

I love you, thank you for all your prayers and support. You have blessed my life. 

To my LSB 'mafia' girls, Andrea, Alex, Danya, Laura, Jing Jing, 

Abha, Ally, and Mel. You know what you mean to me, grad school would not 

have been the same without you. I am so lucky to have met you. You are the 

brightest women I have ever met, I am so proud and lucky to know you. 

Andrea, a generous person who is full of love and life, no gathering is the 

same without you; I am lucky to share defence weeks and a birthday with you, 

you inspire me to enjoy every moment as if it is my last. 

Jing Jing, the forever memorable comment of "You are not Ugly" is 

inscribe in my brain; I love your honesty and your sweetness you inspire me to 

always improve. 

Abha, you are a remarkable woman inside and out, whose smile brightens 

IX 



any room; you inspire serenity in me. Thank you for your friendship and support. 

I know there were days where I couldn't have gone through them if you weren't 

next to me. And thank you for bickering, crying, laughing and just being with me. 

I am going to miss our time together, I couldn't imagine the past six years without 

you. 

Ally, my beautiful sweet Ally, I love your spunk, excitement, and your 

spontaneous spirit. I miss our coffee dates. You are an intelligent woman, with an 

impressive knowledge and kindness towards living things, your kindness is 

contagious and inspires me. 

Mel my love, you are the de~nition of courage and strength, I cannot 

function without talking to you at least once a day, you have become an essential 

part of my life. You are an inspiration in many ways, but your benevolence is 

truly unique; you have exhibited the most selflessness I have experienced from 

anyone I ever met, I am so lucky to have you part of my life. 

Finally, I would like to dedicate this thesis firstly, to my grand-parents 

Jido Antoon, Jido Aziz, Teta Georgette and Teta Marie because they inspired me 

to strive for honourable characteristics: knowledge, strength, truth and kindness, 

For that I am grateful; and secondly to Teagan Huntley, whose continual strength 

and courage amazed me from the moment she was born. She is truly a blessing; 

her sweetness brightens my day and also touches my heart; I know I am a better 

and stronger person today because ofher. I love you AngeL 

x 



Table of Contents 


Chapter 1 Introduction 	 1 


1.1 Coalescing bubbles ................................................................. . 5 


1.2 Close-packing ......................................................................... . 8 


1.3 Catenaries ............................................................................... . 11 


1.4 Modelling echinoid test form and growth .............................. . 13 


1.4.1 Echinoid test form .................... ......... ............................. 13 


1.4.2 Echinoid test growth .. .. ... ... .. .. .. . . .. . . .. .. . . .. .. .. . . .. .. .. .. .. .. .. .. .. . 16 


1.5 · Motivation and layout of thesis .............................................. . 16 


1.6 References .............................................................................. . 22 


Chapter 2 	 Classifying Echinoid Skeleton Models: Testing Ideas 

about Growth and Form 28 


2.1 Introduction ............................................................................ . 30 


2.2 Morphological models ............................................................ . 32 


2.3 Echinoid tests ................. ....... ................................................. . 34 


2.3.1 Echinoid test structures.................................................. 34 


2.3.2 Echinoid test ontogeny................................................... 35 


2.4 	 Echinoid test models ............................................................... . 37 


· 2.4.1 Thompson........................................................................ 37 


2.4.2 Moss and Meehan........................................................... 38 


2.4.3 Raup ................................................................................ 38 


Xl 



2.4.4 Seilacher ........... ... ... ............ ............................................. 39 


2.4.5 Telford ................ ·............................................................. 39 


2.4.6 Baron ........... ............................... ....... .............................. 40 


2.4.7 Ellers ..................... ............. .. ........................................... 41 


2.4.8 Abou Chakra and Stone ................... ................... ......... ... 42 


2.4.9 Zachos ................................................................. ..... .... ... 42 


2.5 Phylogenetic systematic analysis ........................................... .. 43 


2.6 Biostratigraphic representation ............................................... . 46 


2.7.1 Utility in applying a biostratigraphic metaphor.............. 47 


2.7 Prospectus ....... .. ...................................... ......................... ... ... . . 50 


2.8 Acknowledments .. ....... .. ............... .. ......................... .... ............ . 51 


2.9 References ............................................................................... . 51 


Chapter 3 	Holotestoid: a computational model for testing 

hypotheses about echinoid skeleton form and growth 56 


3.1 Introduction ................. ............. .. .................. ............. ... ... ... ... .. . 58 


3.1.1 Echinoid form................................................................. 58 


3.1.2 Echinoid growth ............................................. .. ............... 59 


3.1.3 Theoretical models.......................................................... 61 


3.2 Methodology ............................ ....... .. .... ... ... .............. ... .... .. ..... . 63 


3.2.1 Empirical methods......................................................... 63 


3.2.2 Theoretical method ........................................................ 65 


.3.3 Holotestoid: modelling ontogenic processes ........................... . 65 


3.3 .1 Plate growth .. ... ... ... ... .... .. .... ... ... ..... .. .... .. .... ... ... ... ... ... ... . . . 69 


Xll 



3.3.2 Plate addition................................................................... 73 


3.3.3 Plate interaction .................... .......................................... . 77 


3.3 .4 Plate gapping . . .. . . . . . . . . . . . . . . . . . .. ... . . . . . . .. . . . . . . . . . . .. . . . . . .. . . . . .. ... . . . .. 80 


3.3.5 Visceral growth............................................................... 83 


3.4 Holotestoid: utilising the processes ........................................ . 86 


3.4.1 Plate size ......................................................................... 87 


3.4.2 Plate shape....................................................................... 87 


3.4.3 Test shape.. ..................................................................... 89 


3.4.4 Growth zone .................................................................... 89 


3.4.5 Limitations...................................................................... 95 


3.5 Conclusion .............................................................................. . 97 


3.6 Acknowledgements ................................................................. . 98 


3.6 References ............................................................................... . 99 


Chapter 4 Testing Evolutionary Hypothesis about Echinoid Growth 

and Form 103 


4.1 Introduction ............................................................................. . 105 


4.1.1 Evolution of test growth and form . ... ... .............. ...... ... .. . . 107 


4.1.2 Testing evolutionary hypothesis about echinoid growth 

and form . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 111 


4.2 Methodology ...... .......................................................... ........... . 113 


4.2.1 Empirical methods .......................................... ................ 114 


4.2.2 Theoretical model: Holotestoid ....................................... 117 


4.2.3 Simulations...................................................................... 120 


xm 



4.3 Results and Discussion ............................................................ . 120 


4.3.1 Effect of ambulacral column width................................. 120 


4.3.2 Effect of the total plate number....................................... 121 


4.3.3 Effect of the polar regions............................................... 121 


4.3.4 Exploring species specific height-to-diameter ratio ........ 122 


4.4 Conclusion .............................................................................. . 126 


4.5 Acknowledgements ................................................................. . 127 


4.5 References ............................................................................... . 127 


Chapter 5 Conclusion 	 132 


5.1 Summary ................................................................................. . 132 


5.2 Outlook .................................................................................... . 136 


5.2.1 New interambulacral plate size: are they inserted to fill 

space?....................................................................................... 136 


5.2.2 How does plate fixation affect test shape?....................... 137 


5.2.3 How is the ambitus location determined?........................ 137 


5.2.3 Expansion ofHolotestoid ................................................ 138 


5.3 References ............................................................................... . 140 


Appendix 	 Al Source Code for Holotestoid and Close Packing Programs 142 


A1.1 Initialisation and Output functions................................... 142 


A1.2 Plate Growth..................................................................... 154 


A1.3 Plate Addition................................................................... 168 


Al .4 Plateau Boundary Functions............................................ 170 


XIV 



Al .5 Coalescing Or Close Packing Bubbles Model (used by 
175
Holotestoid for plate gapping and plate interaction) ................ . 


Al .6 Visceral Growth Using Catenary Curves ........................ . 197 


A1.7 Small Functions ........................................... ... ................. . 198 


Al .8 Fermat's Point ................................................................. . 205 


Al .9 Descartes' Theorem .......................... , ............................. . 206 


xv 



List of Figures 


Chapter 1 Introduction 

Figure 1.1 Hexagon patterns: a) an echinoid b) an illustration of basaltic 
columns....................................... ............................... .............. 2 

Figure 1.2 Computer generated output of the Plateau border created 
between: a) equal-sized bubbles and b) unequal-sized bubbles 7 

Figure 1.3 Descartes configurations: three tangential circles with a) an 
incircle and b) a circumcircle. Circle packing tessellation 
patterns c) squared, where four circles meet around a void 
and d) triangular, where only three circles meet around a 
smaller void................ ...... ..... ....... ..... .. ... .. ... .. .... ... ... .. ............ ... . 10 

Figure 1.4 Catenaries produced using equation (8) with a varied from 
0.1 to 1 ( in O. 0 5 steps, bottom to top) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Figure 1.5 Illustrations of test shapes, a) globular, b) discoid, c) heart, d) 
discoid, e) disco id, and f) heart shaped . .. .. ... .. .. .. .. .. ... .. .. ... .. ... .. . 14 

Figure 1.6 Illustrations of a) regular echinoid test and b) an irregular 
echinoid test, displaying the apical system ( ap ), ambulacral 
column (am), and interambulacral column (ia), adapted from 
Abou Chakra and Stone 2008................................. .. ..... ........... 17 

Figure 1.7 a) An interambulacral column of a regular echinoid, and b) an 
illustration of the analogy where interambulacral plates are 
likened to bubbles...................................... .. ......................... .... 19 

Figure 1.8 Test height-to-diameter ratio depicted for from a small ratio 
to a large ratio: a) an Irregularia, b) a Camarodonta, c) a 
Stirodonta, d) a Camarodonta and e) a Cidaroida. All tests 
have equal diameters............... ...... .. .. .... ...... ........... .... ......... .. .. .. 21 

Chapter 2 Classifying Echinoid Skeleton 
about Growth and Form 

Models: Testing Ideas 

Figure 2.1 Echinoid 
regular 

tests (illustrations representing three species). a) 
echinoid ( sea urchin, Strongylocentrotus 

XVI 



franciscanus ); and c) irregular echinoids, a clypeasteroid 
(sand dollar, Dendraster excentricus) and a spatangoid (heart 
urchin, Brissus unicolor); d), e ), and f) S. franciscanus , D. 

36excentricus, and B. unicolor in lateral view ... ... .. ...... ............ . . 


Figure 2.2 	 Cladograms resulting from cladistic analysis on data in 
matrix presented in Table 2.1 ................................................... 45 

Figure 2.3 	 An illustration depicting the biostratigraphic metaphor: the 
phylogenetic tree for echinoid test models with the model 
species embedded in strata. Some key character states that 
define clades are shown: D represents dynamic approach, 
CD represents column-driven perspectives (ambulacrum and 
interambulacrum processes), PD represents plate-driven 
perspectives (plate addition process), and M represents 
mechanistic approach........................... ...................... ............. 49 

Chapter 3 	 Holotestoid: a computational model for testing hypotheses 
about echinoid skeleton form and growth 

Figure 3 .1 	 Echinoid test specimens, S. fransiscanus (a-c) and S. 
droebachiensis (d-e). a) apical surface, containing the apical 
system, ap, and b) oral surface, containing the peristome, ps, 
with corona, er, and growth zone, gz, indicated; c) apical 
system, containing genital plates, ge, and ocular plates, oc, 
with ocular plate height and width labelled as line segments 
12 and 13 respectively; d) disarticulated test, revealing 
ambulacral columns, am, and interambulacral columns, ia; e) 
magnified interambulacral plates, with plate height and 
width labelled as line segments 10 and 11 respectively........... 60 

Figure 3 .2 	 Schematic representation of an echinoid test, illustrating 
measurements taken: I-apical system diameter, 2-peristomial 
boundary diameter, 3-ambitus diameter, 4-test height 
(greatest aboral-oral distance), 5-column length (measured 
from the edge of the apical system to peristomial boundary), 
6-growth zone width (measured as the angle agz subtended 
between line segment 7), 7-growth zone height (measured 
from the centre of the apical system to the ambitus ), 8­
ambulacral column width (measured as the angle Uam 

subtended between line segment 9), 9-ambulacral column 
height (measured from the centre of the apical system to the 

XVll 



ambitus) .......................... : ....... ... .... ........................................... . 

64 

Figure 3.3 	 a) A. punctulata test showing apical surface (top) and oral 
surface (bottom) containing apical system and peristome, 
respectively, and b) two-dimensional geometrical 
representation: inner circles represent apical system (top) and 
peristome (bottom) and outer circles each represent an 
ambitus, ab ( outer periphery of the test), to define the coronal 
region, er. a) and b) depict a growth zone divided into three 
sectors delineating ambulacral (am) and interambulacral (ia) 
columns....................... .......... .... ............................................... 66 

Figure 3.4 	 Geometrical representation defining test structures (regions 
and plates) using circles. Inner circles represent apical 
system (top) or peristome (bottom) and each outer, dashed 
circle represents an ambitus (outer periphery of the test). One 
growth zone is shown, with apical system, ap, containing 
genital plates, ge, and ocular plates, oc; corona, er, containing 
ambulacral columns, am, and interambulacral columns, ia; 
and peristome, ps.......... .............. .......... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

Figure 3.5 	 Plate height and width plotted against plate number as 
beginning at the peristome for two species. A. punctulata a) 
measured plate height from specimens containing 12-15 
interambulacral plates in a column, b) measured plate width 
from specimens containing 12-15 interambulacral plates in a 
column, and c) predicted plate width values from simulation 
representing 8-12 interambulacral plates in a column. S. 
franciscanus d) measured plate height from specimens 
containing 12-20 interambulacral plates in a column, e) 
measured plate width from specimens containing 12-20 
interambulacral plates in a column, f) predicted plate width 
values from simulation representing 12-18 interambulacral 
plates in a column (simulations were based on a total of 40 
ambulacral plates, and therefore predicted total number of 
interambulacral plates differed from the measured total 
number of interambulacral plates) number of interambulacral 
plates) .................... .... .................. ... ... .... .. ... ........... .... ............... 70 

Figure 3.6 	 a) A. punctulata specimen apical system imaged from above 
b) A. punctulata apical system represented graphically, with 
accurate proportions; the ambulacral column angle of 2 0 . 6 1 

75± 1 . 0 8 ° delineates ocular plate (black lines) and 

xvm 



nucleation angle (red lines). c) S. franciscanus specimen 
apical system imaged from above d) S. franciscanus apical 
system represented graphically, with accurate proportions; 
the ambulacral column angle of 31 . 9 9 ± 1 . 03 ° 
delineates ocular plate (black lines) and nucleation angle 
(red lines); apical system, ap, ocular plate, oc, genital plate, 
ge, interambulacral nucleation points, inp, and ambulacral, 
nucleation points, anp ............................................................... . 

Figure 3.7 	 Plateau boundaries simulated using Eq. (3.5) to calculate 
radii for interface boundary circles and Eqs. (3 .6 and 2. 7) to 
determine distances between bubbles: a) unequal-sized 
bubbles (A and B), yielding a curved interface boundary; b) a 
curve showing that the radius for the interface boundary 
circle C (gray circle) increases as the radius for bubble B 
(smaller circle) approaches the radius for bubble A (larger 
circle) ........................................................................................ 78 

Figure 3.8 	 a) Schematic graphic of a triplet of circles in an interacting 
arrangement and b) in a close-packing arrangement emulating 
plate gapping; sutures are displayed linearly for clarity; c) 
illustration of collagen sutures between plates in a real 
specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

Figure 3.9 	 a) A. punctulata column length and test diameter regression 
(slope=0.96, R2 =0.922); b) S. franciscanus (n=14) column 
length and test diameter regression (slope =1.2, R2 =0.981). 
c) test profile, using catenary function with variables for 
column length (cl), height (h)-to- ambitus diameter (d) ratio, 
apical system radius (apr), peristome radius (psr); points A1 
and A2 represent the centres for ap and pm, respectively, and 
points P 1 and P2, edges for ap and ps, respectively. d) 
Holotestoid uses the parameters apr, psr,and cl from a 
simulated column to calculate different test shapes based on 
the heights, and finally it predicts the catenary by fitting it to 
the original column length........................................................ 84 

Figure 3 .10 	 a) Simulated column for A. punctulata with 45 plates, 
including Plateau boundaries delineated using Eqs. (3.5) to 
calculate radii for interface boundary circles and Eqs. (3.6 
and 2.7) to determine distances between bubbles. b) 
Simulated plate for A. punctulata c) real interambulacral 
plate from an A. punctulata specimen....................................... 88 

XIX 

http:slope=0.96


Figure 3 .11 Simulation of column and test profile, predicted using 
holotestoid for S. franciscanus ; test profile from a real S. 
franciscanus specimen measured using a digital image 
(points) was superimposed onto a predicted test shape from 
our simulation (line) ............ ~...................... .. ...... .. .. .. .............. .. 90 

Figure 3.12 Simulation of an initial condition created by the 
computational model, with apical system radius of 0.5 mm 
and an ambulacral angle of 3 2 ° ( apical system, ap, ocular 
plate, oc, genital plate, ge, and peristome, ps) 

92 

Figure 3 .13 Schematic graphic of interambulacral plates (black circles) 
arranged around ambulacral columns (red circles), with 
apical system, ap (grey circle) peristome, ps, (grey circle), 
ocular plates ( dashed circle in the centre), and two flanking 
genital plates ( dashed circles). The computational model 
inserts interambulacral plates with respect to the ambulacral 
column length. As ambulacral plate number increased, 
interambulacral plate number increased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

Figure 3.14 Measured and predicted plate width values plotted against 
relative distance from the apical system for an 
interambulacral column. Columns are depicted based on total 
plate number, shown as a single curve in the plot. A. 
punctulata a) measured plate width values from specimens 
containing 12-15 ia plates, with maximum plate width 
occurring at a distance between 62% and 68% of growth zone 
length; b) predicted plate width values from simulation 
producing specimen containing 8-12 ia plates, with maximum 
plate width occurring at a distance between 47% and 61 % 
along growth zone length. S. franciscanus c) measured plate 
width values from specimens containing 12-20 ia plates, with 
maximum plate width occurring at a distance between 55% 
and 65% along growth zone length; d) predicted plate width 
values from simulation producing specimen containing 12-18 
ia plates, with maximum plate width occurring at a distance 
between 48% and 59% along growth zone length................... 96 

Chapter 4 Testing Evolutionary Hypothesis about Echinoid Growth 
and Form 

xx 



Figure 4.1 Schematic representation of an echinoid test. a) illustration of 
structural attributes: ambitus diameter ( d), ambulacral 
column (am: demarcated by angle spanning line segment s1­

s2, Uam) , apical system radius (apr), column length (cl), corona 
(er), growth zone (gz: demarcated by angle spanning line 
segment s3-s4, a g2) , interambulacral column (ia), peristome 
radius (psr), and test height (h). b) aboral surfaces of 
Eucidaris thouarsii (left) and Dendraster excentricus (right), 
displaying the size difference between the columns ( am and 
ia) within a growth zone .................................................... .. ..... 108 

Figure 4.2 Illustration of extant test shape diversity with respect to 
height for the Cidaroida (i. e, E. thouarsii), Stirodonta (i.e., A. 
punctulata), Camarodonta (i.e. , L. variegatus and S. 
franciscanus), and Irregularia (i.e. ,Spatangus californicus 
and D. excentricus). Branch points for six orders (normal 
font) are situated relative to their approximate appearance in 
the geological record up to the Cenozoic era (Mesozoic 
periods in white boxes). Cladogram is based on material in 
Mortensen (1935 , 1948, 1950, 1951), Durham (1955), 
Durham and Melville (1957) Kier (1974) and Smith (1984, 
2005)......................................................................................... 110 

Figure 4.3 Graphical representation of h:d with respect to a) Uam an 
increase caused the h:d to decrease. b) tpn, an increase cause 
a decrease in the h:d, plotted for Uam 20°, 30°, 40°, 50°, and 
60°) c) the ps:ap ratio values of 0.5, 0.8, 1, 1.2, 1.5, and 2 
did not affect h:d ( curves were offset for clarity), all six curve 
plots overlapped and display the same trend as in a). d) ap:cl, 
an increase caused an increase in h:d....................................... 123 

Figure 4.4 Measured h:d (dashed, red line) from real specimens and 
simulated h:d (SFixed, gray curves; Sorowth, black curves) 
using parameters measured from representative specimens 
from six species (Table 4.2). a) E. thouarsii (Et-1 ), b) A. 
punctulata (Ap-1), c) L. variegatus (Lv-1), d) S. franciscanus 
(Sf-1 ), e) M quinquiesperforata (Mq-1 ), f) D. excentricus 
(De-1).... ............ ............................................ ................ ... ......... 125 

XXl 



List of Tables 

Chapter2 Classifying Echinoid Skeleton 
about Growth and Form 

Models: Testing Ideas 

Table 2.1 Matrix containing names for the nine echinoid test models 
and 14 character statements used in the analysis . . . . . . . . . . . . . . . . . . . . 44 

Chapter 4 Testing Evolutionary Hypothesis about Echinoid Growth 
and Form 

Table 4.1 E. thouarsii (Et), A. punctulata (Ap ), L. variegatus (Lv), S. 
franciscanus (Sf), M quinquiesperforata (Mq), and D. 
excentricus (De) measurements; ambulacral column angle 
(aam), apical system radius (apr), column length (cl), test 
diameter ( d), test height (h), and peristome radius (psr). 
Measurements are presented as Uam, ap:cl, ps:ap, d:cl, and h:d 116 

Table 4.2 Parameter values ( Uam, ap:cl, ps:ap) chosen for simulations 
S Fixed or S Growth to simulate h:d for E. thouarsii (Et), A. 
punctulata (Ap) , L. variegatus (Lv) , S. franciscanus (Lv), 
M quinquiesperforata (Mq), and D. excentricus (De)............ 119 

XXll 



am 
ap 
ap:cl 

apr 
cl 
er 
d 

dp 
ge 
gz 
h 
h:d 
oc 
pia 
ps 
ps:ap 
psr 
r 

Splate 

tpn 
a 

Oam 

Ogz 

List of Abbreviations 


ambulacral column 
apical system 
apical system radius to column length ratio 

apical system radius 
column length 
corn on a 
diameter 

distance of a plate 
genital plate 
growth zone 
height 
height to diameter ratio 
ocular plate 
interambulacral plate 
peristome 
peristome to apical system ratio 
peristome radius 
radius 

size of a plate 
total plate number 
angle 

ambulacral column angle 

growth zone angle 

interambulacral column angle 

angle of nucleation for ambulacral column 

angle of nucleation for interambulacral column 

angle of nucleation for interambulacral plate 

XXlll 



Chapter 1 PhD Thesis-M. Abou Chakra - Computational Biology - McMaster 

Chapter 1: Introduction 

"Nature ' s artistry may be spontaneous, but it is not arbitrary" (Ball 1999). 

Forms ofliving organisms are the product of physical forces (Thompson 1917). It 

has been suggested that nature ' s complexity is brought out from simple 

elementary principles based on a number of mathematical techniques (Thompson 

1917, Ball 1999). This i~ea illustrates how the same physical laws generate 

repeating patterns in seemingly unrelated situations, such as the hexagonal 

patterns ( e.g. , Fig. 1.1) found in basaltic columns, embryonic cells, coalescing 

bubbles, sea urchin skeleton plates, and the infamous honeycomb cells. Physical 

forces and mathematical principles can be employed to explain and understand 

features of growth patterns observed in nature (Thompson 1917). 

Noticing that this important aspect of research in biology 1s m1ssmg, 

Thompson (1961) looked at the physical forces at work in the biological world. 

The formation of the hexagonal patterns exhibited by basaltic columns, or the 

cross-sectional shape of honeycombs can be explained through the understanding 

of surface tension (Thompson 1917). It has been suggested that a fluid phase 

existed prior to the final construction of these objects; basaltic columns had a 

molten lava state; the hive wax film is added as a viscous fluid (Thompson 1917, 

Toth 1964). Thus, the hexagonal configurations are the result of surface tension 

dynamics (Thompson 1917). 

However, genetics is not considered in the physical principle approach, 
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b 

Figure 1.1. Hexagon patterns: a) an echinoid and b) an illustration of basaltic 
columns. 
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despite holding important answers to the origins of life (Carroll 2005). Certain 

genes control many growth forms and are ubiquitous across phyla (Carroll 2005). 

However, in a personal communication, Sean B. Carrol pointed out that, although 

genes can explain what dictates certain events and what the key players are, 

genetics still cannot explain "how" certain forms are generated. An intriguing 

observation in biology is the. morphological divergence between species sharing 

high genetic similarity. Humans and chimpanzees, for example, show 

morphological disparity, despite sharing 98% identity within their protein 

sequences (King and Wilson 1975, Haygood et al. 2007). This apparent 

genotypic-phenotypic paradox has motivated much of the research in the field of 

regulatory genetics and developmental biology. Another example is echinoids 

(e.g. , sea urchins and sand dollars), which have been a model organism used for 

developmental studies for centuries (Gordon 1926, 1927, 1929, Hyman 1955). 

Echinoids also present the genotypic-phenotypic paradox. 

We are now beginning to elucidate some of the regulatory and 

developmental notions that allow for phenotypic diversity to arise from 

genotypically similar species. Echinoids that have been sequenced recently hold 

promising research cues (Davidson 2006, Sea Urchin Genome Sequencing et al. 

2006). However, we are still far from explaining how different forms are created 

across sister taxa which theoretically share similar genomes. Such explanations 

can be sought out using a theoretical morphology approach. 
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In theoretical morphology various models are developed to explain and 

describe organism growth and form (Thompson 1917, McGhee 1999). In modem 

theoretical morphology, these models usually involve mathematics, computation, 

and graphical simulation (Raup 1966, 1968, Stone 1997, Stone 1999, Dera et al. 

2008). Morphologies may be considered from different approaches. One 

approach, mechanistic modelling, involves using process-based principles, such 

as those associated with genetics or physiology. Another approach, dynamic 

modelling, involves using pattern-based principles, such as those associated with 

mathematics or physics. 

Multiple models may be derived to explain and describe growth or form 

for the same organisms; thus, contemporary theoretical morphologists may decide 

whether to adopt a mechanistic, dynamic, or mixed approach. For instance, 

modelling an echinoid skeleton, researchers adopting a mechanistic perspective 

can utilise data from the sea urchin genome project (Sea Urchin Genome 

Sequencing et al. 2006). Whereas, researchers adopting a dynamic perspective 

can utilise data derived on the basis of mathematical or physical principles (e.g. , 

geometry or energetics; (Raup 1968, Ellers 1993, Abou Chakra and Stone 2008). 

This study takes a dynamic modelling perspective to explore the diverse 

morphologies across echinoids, incorporating mathematical principles and 

physical principles involved in coalescing bubbles, close-packing, and catenaries 

to emulate ontogenic processes involved in echinoid endoskeleton growth and 

form. Coalescing bubbles, close-packing, and catenaries are utilised because all 
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three are well established in mathematics in terms of minimal surface problems 

(Bernoulli 1691 , Yates 1959, Coxeter 1969, Isenberg 1978, Aste 1996); and 

because of their omnipresence and association with natural patterns of growth and 

form (Thompson 1917, Aste and Weaire 2000). 

1.1 Coalescing bubbles 

For centuries, soap bubbles have captivated researchers; earlier work was 

focused on film dynamics (Plateau 1873, Boys 1958). The use of physical forces 

behind soap bubbles as moqels for biological patterns observed in nature was 

proposed by several researchers (Thompson 191 7, Ball 1999, Abou Chak:ra and 

Stone 2008). The formation of soap bubbles can be used to demonstrate and 

explain very disparate phenomena. For example, radiolarians, exhibit skeletal 

forms resembling soap bubbles trapped in various frames (Haeckel 1862, 

Thompson 1917, Lovett and Tilley 1994). Theoretical work regarding soap 

bubbles and liquid surfaces used wire frames to explain interfaces between 

bubbles, called Plateau borders (Plateau 1873, Boys 1958, Isenberg 1978). 

Experimental results show that soap bubbles always satisfy three 

geometric conditions (Boys 1958, Isenberg 1978, Fischer 2002 ). First, the 

tangential angles between the interfaces are equal to 120°; secondly, the four 

Plateau borders are joined at vertices creating an angle of 109° ( called the Maraldi 

angle) ; and thirdly, a maximum of three interfaces join at a point, forming the 

Plateau borders. 
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The degree by which the Plateau border is curved in or out is determined 

by the difference in pressure on either side of the bubbles (Young-Laplace 

equation). This is described by Eq. (1.5) derived from the Young-Laplace Eq. 

(1.1 ), below: 

p = cr (2- + 2-) (1.1) 
r, r, 

where p represents the excess pressure and cr represents surface tension at an 

interface (Young 1805, Boys 1958, Isenberg 1978), r1 and r2 are the principle 

radii of curvature, which, in a soap bubbles, are equal. Thus Eq. ( 1.1) can be 

replaced by Eq. (1.2): 

p = -
2o­ (1.2) 
r 

Therefore, pressure is inversely proportional to radius of curvature Eq. (1.2). This 

implies that large bubbles contain low pressure, while small bubbles have higher 

pressure (Boys 1958, Isenberg 1978). Consider two coalescing bubbles, A and 

B, that are surrounded by three different pressures regions; the pressure inside 

bubble A is pA, the pressure inside bubble B is pB, and the external pressure 

surrounding the bubbles is pC. The excess pressure between pA and pC, pAC, 

must be equal to the sum of the excess pressures between the two other 

boundaries, pBC and pAB, Eq. (1.3) (Boys 1958, Isenberg 1978): 

pAC = pBC + pAB (1.3) 
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Figure 1.2. Computer generated output of the Plateau border created between: a) 
equal-sized bubbles and b) unequal-sized bubbles. 
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Therefore, substituting Eq. (1.2) with Eq. (1.3) results in Eq. (1.4) 

2cr 2cr 2cr 
(1.4) 

from which, simplification yields 

(1.5) 


When bubbles coalesce they form a minimal surface, Eq. (1.5), which 

determines the border of curvature for two possible cases, equal-sized bubbles and 

unequal-sized bubbles, Fig. 1.2 (Boys 1958, Isenberg 1978, Durikovic 2001). 

Coalescing bubbles of equal-size generate no pressure differential, and, therefore, 

the Plateau border between them is flat (Fig. l.2a); the radius of curvature (re) 

will be infinite. However, coalescing bubbles of unequal-size generate a pressure 

differential. The smaller bubble B, with higher pressure, pushes into the larger 

bubble A, with lower pressure (Fig. 1.2b ), creating a curved boundary bubble A, 

with the radius of curvature (re) calculated using Eqn. (1.5) (Boys 1958, Isenberg 

1978, Durikovic 2001). 

1.2 Close-packing 

Close-packing is an arrangement of objects (e.g. , circles) where the ratio 

of area covered to total area is optimised (Aste and Weaire 2000, Stephenson 

2005). Most studies have been concentrated on analysing packing circles within a 

fixed area (Aste 1996, Aste and Weaire 2000, Stephenson 2005). Circle packing 

has captured the interest of myriad mathematicians and scientists who sought to 
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solve what was referred to as the "Descartes circle theorem" or "Kissing circle 

theorem" (Soddy 1936, Descartes 1954, Vandeghen 1964, Coxeter 1968, 

Langarias et al. 2002). Both theorems are described using Descartes 

configuration, four tangent circles situated in a plane (Figs. 1.3 a and b ), with only 

two sharing a common tangent at any point. There are two possible 

configurations, one with an incircle (Fig. 1.3a) and another with a circumcircle 

(Fig. 1.3a) (Boys 1958, Isenberg 1978, Durikovic 2001 ). Descartes' circle 

theorem states that for such configurations (with radii, rA, r8 , re, and r0 ) , twice the 

sum of the squared curvatures is equal to the sum of the curvatures squared, Eq. 

(1.6), (Boys 1958, Isenberg 1978, Durikovic 2001). 

2 2 2 2 

-1 1 +-1 1 
2 J ( = -1 1 1 1 J (1.6)2 +- +- +-+-+­( f A f B f c fo f A f B re fo 

The simplest circle close-packing patterns in a plane are squared and 

triangular tessellations, Fig. 1.3 c and d (Aste and Weaire 2000, Stephenson 

2005). The square tessellation is achieved when four circles meet around a void. 

Triangular tessellation patterns achieve the densest Euclidean (2-D plane) packing 

configuration, in which only three circles meet around a smaller void (Aste and 

Weaire 2000, Stephenson 2005). Triangular tessellation resemble the close-

packing patterns observed in nature on a macroscopical scale and microscopical 

scale, such as the echinoid test (Fig. 1.1 a) and single-crystal lattice, respectively 

(Toth 1964, Lovett and Tilley 1994). 
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a b 

c d 

Figure 1.3. Descartes configurations: three tangential circles with a) an incircle 
and b) a circumcircle. Circle packing tessellation patterns c) squared, where four 
circles meet around a void and d) triangular, where only three circles meet around 
a smaller void. 
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The optimal circle-close-packing is calculated using Eq. (1.7): 

area covered 
(1.7)

total area 

Circle-close-packing is optimised when this ratio, Eq. (1.7) is as close to 1 as 

physically possible (Stephenson 2005). 

1.3 Catenaries 

Catenaries also contribute to the application of minimum surface problems 

(Bernoulli 1691 , Huygens 1691 , Leibniz 1691 , Euleri 1744, 1952, Barnett 2004). 

Catenaries describe the shapes that would be assumed by an inextensible but 

flexible chain that hangs freely from two fixed points of equal heights (Bernoulli 

1691 , Huygens 1691 , Leibniz 1691 , Yates 1959). The catenary is a curve 

influenced by self-weight and minimal extraneous forces. Catenary "chains" are 

associated with natural pattern of growth and form, such as tree trunks, dental 

arches, and spider-webs (Witt and Reed 1965, BeGole 1981, Work 1981a, b, 

Harker 1996, Porter 1998). 

Catenary curves, Eq. (1.8), are described by a hyperbolic function with 

coordinate ( Cx, Cy) representing the lowest point and the constant a, which 

depends on the weight of a unit length in the chain hanging between two fixed 

points, Fig. 1.4 (Bernoulli 1691 , Huygens 1691, Leibniz 1691 , Yates 1959, 

Barnett 2004). 

(y - Cy) = a cosh [(x - a Cx)/a] (1.8) 
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Figure 1.4. Catenaries produced using Eq. (1.8) with a varied from 0.1 to 1 (in 
0.05 steps, bottom to top). 
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1.4 Modelling echinoid test form and growth 

1.4.1 Echinoid test form 

Echinoids have a calcareous endoskeleton called a test. Echinoids can be 

informally clustered on the basis of their test morphologies into regular ( e.g. , 

cidaroids) or irregular ( e.g. , clypeasteroids) forms. Echinoid tests can be bottle 

shaped, discoid shaped, globular shaped, and heart shaped, as depicted in Fig. 1.5 

(Mortensen 1935, 1948, 1950, Durham 1955, Durham and Melville 1957, Kier 

1965, 1974, Smith 1984, 2005). 

All test morphologies are constructed from the same sub-structures located 

on two surfaces, oral and aboral. The mouth is found at the oral surface. It is 

surrounded by a circular membranous area, the peristome. In regular echinoids, 

the aboral surface houses the apical system, where new plates are added (Hyman 

1955). Pentameric symmetry is exhibited about the vertical axis connecting the 

apical system and peristome. 

Echinoid endoskeleton is composed of contiguous, closely fitted plates 

(Fig. 1.6). The plates are divided into three regions, the apical system, peristome, 

and the corona. The apical system comprises five ocular plates and five genital 

plates; in regular echinoids and early irregular echinoids, the apical system also 

contains the periproct. The corona, the region between the apical system and 

peristome, contains ambulacral plates and interambulacral plates arranged in 
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Figure 1.5. Illustrations of test shapes, a) globular, b) discoid, c) heart, d) discoid, 
e) disco id, and f) heart shaped. 
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columns radiating from the apical system. The peristome contains buccal plates 

(Hyman 1955, Smith 1984). This arrangement is what produces the 

aforementioned pentamerous symmetry (Hyman 1955). 

The repeating unit of symmetry of the test is called a growth zone. The 

growth zone stems from the centre of the apical system to the peristome. All 

growth zones contain a single ocular plate. All plates within a growth zone were 

inserted adjacent to the same ocular plate. Thus, older plates are located close the 

peristome, whereas, newer plates are close to the apical system (Jackson 1 912, 

Mooi et al. 1994). 

In all regular echinoids a membranous area, the periproct, is located at the 

centre of the apical system. However, in irregular echinoids, the periproct has 

moved out of the apical system. Thus, regular echinoids are endocyclic, whereas 

the movement of the periproct in irregular echinoids causes exocyclic apical 

system formation (Hyman 1955, Saucede et al. 2003). 

The periproct retreats along the posterior interambulacral column and 

disrupts formation of the genital plates in that region. The four remaining genital 

plates then move close together to form the centre of the apical system. In some 

species, there is a suggestion that fusion occurs between the remaining genital 

plates; clypeasteroids, for instance, have one central genital plate (Durham 1955, 

Kier 1974). The line of retreat of the periproct along one interambulacral column 

establishes an axis of bilateral symmetry. Along with the bilateral symmetry 

caused by the movement of the periproct from aboral to oral surface, irregular 
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echinoids have ambulacral columns altered to a petaloid shape (Fig. 1.6) and a 

flattened oral surface (Durham 1955, Kier 1974). 

1.4.2 Echinoid test growth 

Subsequent growth is achieved by ontogenic processes: visceral growth, plate 

addition, plate growth, plate gapping, and plate interaction. Internal membranes 

and structures change size through visceral growth, by altering internal pressure 

(Deutler 1926, Moss and Meehan 1968, Ellers and Telford 1992); new plates are 

inserted at the apical system, through plate addition adjacent to ocular plates 

(Jackson 1912, Mooi et al. 1994, Mooi and David 1996, 2000); peripheral 

accretion or resorbtion of each plate occurs through plate growth (Raup 1968, 

Jensen 1969a, Pearse and Pearse 1975, Markel 1981); plates separate from one 

another through plate gapping by creating spaces that allow plate growth (Moss 

and Meehan 1967, Dafni 1986, Ellers et al. 1998, Johnson et al. 2002); and plate 

interaction is the process in which connections between adjacent plates affect 

plate arrangements and morphologies (Moss and Meehan 1967, Raup 1968). 

1.5 Motivation and layout of thesis 

Echinoids present ideal systems for studying loss or regeneration of 

calcified structures (Raup 1962, Ebert 1968, Davies et al. 1972, Markel and Roser 

1983). Knowledge about echinoid test growth can be implemented toward 

understanding vertebrate skeletons, as vertebrate skeletons also are permanent and 

mutable endoskeletons. However, understanding echinoid test growth has proven 
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Figure 1.6. Illustrations of a) regular echinoid test and b) an irregular echinoid 
test, displaying the apical system (ap), ambulacral column (am), and 
interambulacral column (ia), adapted from Abou Chakra and Stone 2008. 
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challenging due to factors limiting research such as an over 100-year life span 

(Ebert and Southon 2003), internalisation prohibiting direct observational access 

to structures (Hyman 1955), and the five simultaneously occurring ontogenic 

processes. Therefore, theoretical models have been developed to understand 

growth and form of echinoid tests. 

Chapter 2 presents the first comprehensive review for echinoid test models 

in theoretical morphology. Echinoid test models will be analysed by conducting a 

parsimony-based analysis, and a descriptive, distance-based analysis; trends of 

ideas are described for nine published theoretical models (Thompson 191 7, Moss 

and Meehan 1968, Raup 1968, Seilacher 1979, Telford 1985, Baron 1991, Ellers 

1993, Telford 1994, Abou Chakra and Stone 2008, Zachos 2009). 

Chapter 3 presents, Holotestoid, the first model to incorporate five 

ontogenic processes involved in test growth, thereby allowing ontogeny to be 

emulated completely. The conceptual development underlying each ontogenic 

process in the computational model are described. The ontogenic processes were 

emulated utilising mathematical principles (e.g., close-packing and catenaries) 

and physical principles (e.g., Plateau's laws). Individual plates are likened to 

coalescing bubbles arranged in a circle-close-packing configuration (Fig. 1.7) and 

a catenary chain analogy is used to explain and describe internal forces balancing 

external forces applied to a test. Holotestoid is validated qualitatively by 

simulating growth zones for Arbacia punctulata and for Strongylocentrotus 
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Figure 1.7. a) An interambulacral column of a regular echinoid, and b) an 
illustration of the analogy where interambulacral plates are likened to bubbles. 
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franciscanus and quantitatively by comparmg morphological features for our 

simulated forms with those for real specimens. 

Furthermore, in chapter 4, Holotestoid is used to investigate a macro­

evolutionary pattern, the aforementioned morphological disparity observed among 

echinoid tests (Fig. 1.5). Simulations were conducted to investigate how post­

Paleozoic echinoid tests, although constructed from the same structural elements, 

realise the test morphological disparity. Through computer simulation, five 

parameters (aam, tpn, apr, ps:ap, and ap:cl) are explored individually to understand 

the effects on test height-to-diameter ratio. These parameters are associated with 

three physical attributes: the ambulacral column width, plate number, and polar 

region sizes. Additionally, simulations were conducted to explore species­

specific test height-to-diameter ratios (h:d); comparing h:d from simulated forms 

with those measured for real specimens: E. thouarsii, A. punctulata, L. variegatus, 

S. franciscanus, M quinquiesperforata, and D. excentricus (Fig. 1.8). 

Finally, chapter 5 briefly summarises the research described in this thesis 

and proposes new avenues for research. 
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Figure 1.8. Test height-to-diameter ratio depicted for from a small ratio to a large 
ratio for a member in the: a) Irregularia, b) Camarodonta, c) Stirodonta, d) 
Camarodonta and e) Cidaroida. All tests are portrayed with equal diameters. 
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Chapter 2: Classifying Echinoid Skeleton Models: Testing Ideas about 
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Abstract- Theoretical morphology is the scientific field in which researchers 

model organism growth and form. The field is developed well in studies on 

skeletons, especially shells. Researchers have contributed echinoid skeleton 

models to the field, but these have yet to be recognised collectively. We present 

herein the first comprehensive review for echinoid skeleton models in theoretical 

morphology; we apply a phylogenetic systematic analysis to those models; use the 

resulting consensus cladogram to classify and interrelate the models in an analogy 

in which they are likened to fossil specimens in a biostratigraphic record; and 

utilise the biostratigraphic metaphor to define trends within theoretical 

morphology as it applies to echinoid skeleton models. 
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2.1 Introduction 

Philosophers and historians classically describe scientific progress as 

transpiring either incrementally, by falsifying hypotheses ( e.g. , Popper 1987), or 

revolutionarily, by replacing paradigms ( e.g., Kuhn 1970). These two extreme 

perspectives are analogous to the now classical gradualism and punctuated 

equilibrium camps in evolutionary science, gradualism entailing that organisms 

evolve steadily over long geological time periods (e .g. , Darwin 1859) and 

punctuated equilibrium entailing that organisms evolve in bursts over short 

geological time periods, followed by stasis (e.g. , Gould and Eldredge 1977). 

This association between descriptions for how science progresses and 

organisms evolve is more than coincidental. Natural selection has been invoked 

as the process by which science progresses (e.g., Campbell 1974, Hull 1988). 

And the relationships among research contributions within a scientific field may 

be analysed from an evolutionary perspective (e.g. , Stone 1996). 

Theoretical morphology may be defined generally as the scientific field in 

which models are developed to explain and describe organism growth and form 

(Thompson 1917). In modern theoretical morphology, models usually involve 

mathematics, computation, and graphical simulation (e.g. , Raup 1966, 1968). 

Analyses often are presented with reference to morphological spaces, or 

'morphospaces,' mathematical spaces with axes delineated by parameters 

describing growth or form and in which each point represents the morphology for 
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a taxon or organism ( or part thereof). Researchers identify regions in those 

morphospaces that have been unoccupied and occupied ( or would be) by 

organisms ( extinct or extant) and erect hypotheses on the basis of distributions 

that are observed. The hypotheses lead to experiments, which can be used to test 

and refine or erect new hypotheses. In this manner, theoretical morphology 

epitomises the interplay ('reciprocating illumination' sensu Hennig 1966) that 

generally relates theory and practice in science. 

A particularly well-developed class within theoretical morphology, 

theoretical conchology (i.e. , theoretical morphology as it applies to shells), was 

reviewed by considering models as species and conducting a parsimony-based, 

phylogenetic systematic analysis (Stone 1996). The manner with which 

morphospaces generally have been used was reviewed by conducting a distance­

based, phylogenetic analysis on the morphospaces, themselves (Stone 1997). And 

the entire field, itself, was reviewed (McGhee 1999). 

A more-recent review for the field involved a hybrid approach, which 

combined parsimony-based and distance-based analyses (Dera et al. 2008). 

Absent from that analytical review were studies in theoretical morphology as it 

applies to echinoid (Echinodermata: Echinoidea; e.g. , sea urchins, sand dollars, 

and heart urchins) skeletons. We complement that review by conducting a 

parsimony-based analysis on echinoid skeleton models, then ' grounding' the 

results by considering them from a descriptive, distance-based analysis in which 

the models metaphorically are likened to fossil specimens in a biostratigraphic 
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record. 

In the second section, we describe the properties characterising 

morphological models that constitute the field of theoretical morphology. In the 

third section, we very briefly describe echinoid skeletons from structural and 

ontogenetic perspectives. In the fourth section, we review all published echinoid 

skeleton models. In the fifth section, we present the phylogenetic systematic 

analysis. In the sixth section, we contextualise the phylogenetic systematic 

analysis, by applying the biostratigraphic metaphor. In the seventh section, we 

provide a prospectus, proposing how echinoid skeleton models could be used to 

explain macroevolutionary patterns. 

2.2 Morphological models 

A morphological model is a construct that represents organism growth or 

form. Morphological models may be used to explain and describe observed 

patterns ( different components or structures among organisms) or processes 

(changes through ontogeny or evolution). For instance, on the basis of the 

geometry involved with shells, related mathematical equations, and a computer 

program, Raup (1966) presented a three-dimensional 'morphospace' in which 

shell forms were represented. Some regions in the morphospace were empty, 

presumably as a consequence from functional constraints (e.g. , impeding hinges 

between articulating bivalve shells). 

To create a biologically meaningful morphological model, a thorough 
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understanding about morphogenesis is necessary; merely duplicating appearances 

is insufficient. Morphologies may be considered from different approaches, and 

multiple models may be derived to explain and describe growth or form for the 

same organisms. One approach, mechanistic modelling, involves using process­

based principles, such as those associated with genetics or physiology. Another 

approach, dynamic modelling, involves using pattern-based principles, such as 

those associated with mathematics or physics. For instance, Stone (1996) 

identified two main approaches to theoretical conchology: one in which shell 

growth was primary, thereby involving processes associated with shell accretion 

at a mantle edge; another in which form was primary, thereby involving patterns 

associated with shell architecture. 

Contemporary theoretical morphologists may decide whether to adopt a 

mechanistic, dynamic, or mixed approach. From an echinoid skeleton modelling 

perspective, researchers adopting a mechanistic approach can utilise data from the 

sea urchin genome project (Sea Urchin Genome Sequencing et al. 2006) or could 

represent factors underlying processes such as gene expressions, signal 

transductions, growth-factor interactions, hormone concentrations, and 

developmental pathways. Researchers adopting a dynamic approach can utilise 

data derived on the basis of mathematical or physical principles (e.g. , geometry or 

energetics; Raup 1968, Ellers 1993, Abou Chakra and Stone 2008) or could 

represent factors underlying patterns such as genotype-phenotype maps, material 

depositions, structural constraints, phylogenetic histories, or adaptations. 
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2.3 Echinoid tests 

Echinoderms, particularly echinoids, with the appealing and intricate plate 

arrangement and pentamerous symmetry in their skeletons, have evolved 

processes and patterns that have puzzled morphologists for centuries (Hyman 

1955). Skeleton plate patterns and shapes have proven challenging to explain and 

describe completely on the basis of any one approach or principle. 

2.3.1 Echinoid test structures 

Echinoids possess transient skeletons as larvae and permanent skeletons, 

or tests (from the Latin word testa, meaning hard skeleton; Fig. 2.1 ), as adults. 

Generally, permanent skeletons may be classified on the basis of whether they 

change after initial formation (Vermeij 1970). Skeletons that remain unchanged 

after formation are immutable (e.g. , brachiopod shells), and skeletons that allow 

morphological changes to occur by peripheral accretion, resorption, and growth 

are modifiable (Vermeij 1970). Echinoid tests are modifiable; morphological 

changes during ontogeny are exceedingly complex, because skeletal tissue can be 

deleted, altered, or elaborated (Jackson 1912, Vermeij 1970). Each echinoid test 

is an endoskeleton within a three-layered body wall comprising an external 

epidermis, middle dermis occupied by the endoskeleton, and coelomic lining 

(Hyman 1955). 

Echinoid tests are constructed from adjoining calcium carbonate plates 

(Jensen 1972, Smith 1980) and may be divided into three regions on the basis of 
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plate characteristics: the apical system, corona, and peristome. The apical system 

comprises ocular plates and genital plates; in regular echinoids and early irregular 

echinoids, the apical system also contains the periproct (Smith 1984). The 

corona, the entire test minus the apical system, contains ambulacral plates and 

interambulacral plates. New ambulacral and interambulacral plates are inserted 

contiguous to ocular plates (Jackson 1912, Gordon 1926, 1927, Mooi et al. 1994, 

Mooi and David 1996). The peristome contains buccal (mouth) plates, scales and 

sometimes primordial parts of the ambulacral series (Hyman 1955, Smith 1984, 

Mooi et al. 1995). 

2.3.2 Echinoid test ontogeny 

Echinoid test ontogeny can be divided into five biological processes: 

visceral growth, plate addition, plate growth, plate gapping, and plate interaction. 

Visceral growth is the process in which the internal membrane and structures 

change size~ altering internal pressure (Deutler 1926, Moss and Meehan 1968, 

Ellers and Telford 1992); plate addition is the process in which new plates are 

inserted at the apical system, adjacent to ocular plates (Jackson 1912, Mooi et al. 

1994, Mooi and David 1996, 2000); plate growth is the process in which plates 

are accreted or resorbed peripherally (Raup 1968, Jensen 1969a, Pearse and 

Pearse 1975, Markel 1981); plate gapping is the process in which plates separate 

from one another, creating spaces that allow plate growth(Moss and Meehan 

1967, Dafni 1986, Ellers et al. 1998, Johnson et al. 2002); and plate interaction is 

35 




Chapter 2 PhD Thesi·s-M. Abou Chakra - Computational Biology - McMaster 

a b c 

d e 

Figure 2.1. Echinoid tests (illustrations representing three species). a) regular 
echinoid (sea urchin, Strongylocentrotus franciscanus); and c) irregular 
echinoids, a clypeasteroid (sand dollar, Dendraster excentricus) and a spatangoid 
(heart urchin, Brissus unicolor); d), e), and f) S.franciscanus, D. excentricus, and 
B. unicolor in lateral view. 
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the process in which connections between adjacent plates affect plate 

arrangements and morphologies (Moss and Meehan 1967, Raup 1968). 

2.4 Echinoid test models 

Echinoid test ontogeny has been scrutinised by many researchers (e.g. , 

Loven 1874, Jackson 1912, Deutler 1926, Gordon 1926, 1927, Pearse and Pearse 

1975, Smith 1980, Markel 1981, Smith 1984, Dafni 1986, Ebert 1988, Philippi 

and Nachtigall 1996) whose works ultimately influenced the theoretical 

morphologists who produced the nine echinoid test models that have been 

published: Thompson (191 7), Raup (1968), Moss and Meehan (1968), Seilacher 

(1979), Telford (1985, 1994), Baron (1991), Ellers (1993), Abou Chakra and 

Stone (2008), and Zachos (2009). 

2.4.1 Thompson 

D 'Arey Thompson (191 7) compared the shapes that are exhibited by 

regular echinoids to shapes assumed by liquid drops subjected to gravity while 

resting on flat surfaces. Drop shapes result from forces that are associated with 

surface tension balancing a linear, positive internal pressure gradient (Thompson 

1917). He considered entire tests as plastic entities that grow incrementally, 

allowing movement between calcareous plates. Along with gravity, test shapes 

are effected by forces that are exerted by tube feet adhering to surfaces. Tube feet 

impart these forces symmetrically, spreading in all directions and resulting in 

downward slopes (Thompson 1917). 
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2.4.2 Moss and Meehan 

Deutler (1926) proposed that the observed downward "shift" that plates 

convey during echinoid test ontogeny is only apparent and relative to an enlarging 

test rather than genuine migration. Moss and Meehan (1968) expanded on 

Deutler' s idea and considered echinoid test ontogeny as analogous to mammalian 

cranial expansion. They hypothesised that test ontogeny is induced by "expansive 

forces;" the primary growth associated with expanding internal visceral tissues is 

the impetus for test growth, causing gaps between plates (Moss and Meehan 

1968). Plates grow to fill the space created (Moss and Meehan 1968). They 

proposed a conceptual "internal plane of registration," which depicts the relative 

positions among the corona, apical system, and peristome. Assenting with 

Deutler's views, Moss and Meehan (1968) proposed that test expansion causes the 

adoral spatial displacement that is imparted to plates. 

2.4.3 Raup 

Elaborating a soap-bubble analogy that was proposed originally by 

Thompson (1917), Raup (1968) considered plate addition, plate growth, and plate 

interaction as the major components in test growth. Raup (1968) demonstrated 

experimentally that soap-bubble interactions confined to approximately two 

dimensions (i.e., between two glass plates) can be used as a model for producing 

and interpreting echinoid plate patterns. He extrapolated close-packing pattern 

similarities as evidence for sutural compression, which limits plate growth and 
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consequently determines plate shape. 

Raup (1968) transformed his conceptual model into a computational 

model that involved plate addition and plate growth. Plate addition was simulated 

using a logistic function. Plate growth was divided into initial growth, meridional 

growth, negative growth, and distal growth (Raup 1968); to address these 

divisions, he chose a parabolic function, estimated from growth data. 

The computer program that Raup (1968) developed simulated graphically 

a growing interambulacral column, starting from a new plate with zero size. Plate 

margins were depicted with straight lines and angles between boundaries were 

assumed to be coequal. With the computer program, Raup (1968) explored the 

effect on plate interactions under different growth parameters. 

2.4.4 Seilacher 

To describe the morphological differences among echinoids, Seilacher 

(1979) considered tests as mineralised pneu structures, tensional spheres 

supported internally by liquid pressure, with internal tethering which grow when 

internal pressures exceed external surface tensions. He used internal tethering to 

explain the irregularities (flattening, dimples, depressions and pouches) that are 

observed in test shapes that characterise irregular echinoids (Seilacher 1979). He 

proposed that individual plate growth differences produce changes in column 

arrangement and ultimately in test morphologies (Seilacher 1979). 

2.4.5 Telford 
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On the basis of the observation that domes provide the greatest strength 

for rigid structures, Telford (1985) hypothesised that echinoid tests are 

constructed to resist external forces such as tension and compression. A high 

dome is stronger in a structural sense than a low dome (Lawrence 1987). For 

echinoids, this difference might have its origin in function, growth rate, support, 

and protection (Lawrence 1987). 

Telford (1985) conducted a biomechanic analysis and described how 

mechanical design facilitated adaptation, using simple membrane theory and 

statistical analysis. The analysis showed that echinoids are built to accommodate 

a variety of compressive and tensile stresses resulting from a variety of membrane 

and arch action combinations (Telford 1985). He proposed a model for echinoid 

tests using structural principles involved in dome and arch construction (Telford 

1985). 

Telford (1994) proposed a 3-dimensional model, which elaborated Raup's 

(1968) 2-dimensional model by linking plate columns. The model was proposed 

to describe morphogenesis quantitatively and explore unobserved as well as 

observed shapes (Telford 1994 ). 

2.4.6 Baron 

Finite element analysis was used by Baron (1991) to elucidate how regular 

echinoid tests responded under different force loads (Philippi and Nachtigall 

1996). The results obtained were consistent with the hypothesis that changes in 

height (h) and diameter ( d) tend toward the fixed ratio h:d ;::: 0.55 (Ebert 1988, 
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Baron 1990). Baron (1990) proposed that test shapes could be explained by 

considering a variety of heritable characteristics and environmental influences 

that mediate growth, suggesting that regular echinoid tests were precluded from 

becoming flat. 

Baron ( 1991) created a computational model in which test ontogeny 

resulted from pressures and loads exerted from different directions on the test. 

The model predicted test shape on the basis of geometric and mechanical 

properties and revealed that flat shapes converged quickly toward taller shapes 

(Baron 1991 ). 

2.4.7 Ellers 

A membrane model involving pressure gradients was created by Ellers 

(1993) to predict curvatures exhibited by regular echinoid tests on the basis of 

internal pressure (Baron 1991, Ellers and Telford 1992). The model was derived 

from a classic analysis for thin shells (Timoshenko 1940), which involved an 

algorithm that created constant-strength domes, as might be observed with liquid 

drops. Ellers (1993) encoded the algorithm into a computer program, which was 

used to determine shapes and predict associated stresses for regular echinoid tests, 

utilising measured pressure gradients (Ellers and Telford 1992, Ellers 1993). 

Following Thompson (1917), Ellers (1993) noted that curvatures that are 

exhibited by drops correspond to curvatures that are exhibited by regular echinoid 

tests. Pressure inside a liquid drop is a gradient increasing with depth, because 

the internal liquid is characterised by density that is greater than is the density 
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characterising the external medium (Ellers 1993). Using the computational 

model, Ellers (1993) was able to predict successfully curvatures for some regular 

echinoid tests. 

2.4.8 Abou Chakra and Stone 

By implementing the analogy with which soap bubbles interact in close­

packing formation (Thompson 191 7, Raup 1968) into computational model, Abou 

Chakra and Stone (2008) were able to explain plate patterns and plate shapes. 

They applied the analogy to four biological processes that are essential in 

describing echinoid test ontogeny: plate addition, plate interaction (previously 

described as "shifting" in Abou Chakra and Stone 2008), plate gapping, and plate 

growth (Abou Chakra and Stone 2008). The computational model is governed by 

mathematical principles, wherein close-packing configurations are considered in 

two dimensions according to Descartes circle theorem, and physical principles, 

wherein soap bubble interactions are predicted using Plateau's Laws (Boys 1958, 

Coxeter 1969, Isenberg 1978, Aste 1996, Langarias et al. 2002). 

2.4.9 Zachos 

To describe plate tessellation patterns, Zachos (2009) created a three 

dimensional echinoid model. Echinoid test plates were represented by Delaunay 

triangulation over a three-dimensional spherical coordinate system and derived 

from affine deformations (Zachos 2006, 2007a, 2007b, 2009). Tests were 

constructed using regular closed tiles mapped onto spherical surfaces (Zachos 
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2009), and plates were represented using Voronoi Diagrams (Aste and Weaire 

2000, Zachos 2009). Plate growth and migration toward the peristome during 

growth were calculated along geodesics (great circles), and all plate perimeter and 

area calculations were performed over corresponding spherical patches (Zachos 

2009). Plate growth was modelled using morphogen gradient functions 

describing nutrient diffusions, growth factor inductions, and lateral inhibitions 

(Zachos 2009). 

2.5 Phylogenetic systematic analysis 

We conducted a cladistic analysis on the aforementioned echinoid test 

models, by stating (i. e., identifying and prescribing) characters and defining 

character states. Provided that "cross-lineage borrowing" (Stone 1996) occurred 

infrequently, such a parsimony-based analysis may be applied to produce a 

cladogram and, thereby, interpret the history for models in this field. In fact, as 

parsimony is a scientific criterion independent from the criteria associated with 

how the echinoid models were conceptualised, were cross-lineage borrowing 

infrequent, its occurrence actually would be identifiable as homoplastic character 

states (i. e., if transferred or independently derived ideas occurred infrequently, 

then these would be exposed as parallelisms or convergences; Stone 1996). 

We used for character statements modelling approaches ( dynamic and 

mechanistic - second section), technical aspects (e.g. , computational and 3D 

graphical), structural components ( corona shape, interambulacrum, ambulacrum, 
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Table 2.1. Matrix containing names for the nine echinoid test models and 14 
character statements used in the analysis. 
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Figure 2.2. Cladograms resulting 
presented in Table 2.1. 
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apical system, and peristome - described previously, in the third section), and 

ontogenic processes (visceral growth, plate addition, plate growth, plate gapping, 

and plate interaction - described in the third section); and we defined character 

states by scoring O for absence and 1 for presence (Table 2.1 ). We analysed the 

data with the computer program Hennig86 (Farris 1988), invoking the implicit 

enumeration command (ie*). This command guaranteed that all most-

parsimonious cladograms were found. We obtained two cladogram(s), each with 

length 18 steps, consistency index = 72%, and retention index = 70% (Fig. 2.2). 

We generated a consensus cladogram, which was identical to one cladogram (Fig. 

2b ), using the nelsen command (Fig. 2.3). 

2.6 Biostratigraphic representation 

Using the results obtained (Fig. 2.2), we informally group the nme 

echinoid test models as species in the family Holotestoididae (holotestoids; halo 

from the Greek word 'halos,' meaning whole; test from the Latin word ' testa,' 

meaning hard skeleton; and 'oid' from the Greek word 'eidos,' meaning 

resembling). 

We contextualise the consensus cladogram, and thereby the holotestoid 

family, by interpreting it as a phylogenetic tree and grounding it using a 

biostratigraphic metaphor. We use distance (in time, according to publication) to 

provide dates for events (Fig. 2.3). This allows us to identify different 

perspectives to 'holotestoidology' ( echinoid test modelling). 
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The base stratum contains the first model, proposed by Thompson (1917), 

which initiated a dynamic trend that persists to today (i.e. , in Thompson' s case, 

involving physical principles to explain corona shapes with reference to internal 

pressures). In that stratum and the subsequent four strata, force may be identified 

as a common physical principle that served as the basis on which echinoid test 

models originated. We recognise in each stratum, on the basis of one physical 

principle, a different species: pulling forces (Thompson), expansive forces (Moss 

and Meehan), internal forces (Ellers), and innate forces (Baron). Pulling forces 

result from gravitational effects on tests; expansive forces are exerted from within 

by viscera growing outward; internal forces are generated by coelomic pressures 

displaced over areas; and innate forces are realised as correlated growth among 

tests (e.g. , height to diameter ratios). 

Lying atop these are specimens m a monophyletic group in which 

morphology is explained by considering interaction between interambulacral and 

ambulacral columns as primary. This clade is characterised by column-driven 

processes, containing the species Seilacher and. Zachos. The most-recent stratum 

contains a monophyletic group in which plate ontogeny was considered as 

primary; this clade is characterised by plate-driven processes, containing the 

species Raup, Telford, and Abou Chakra and Stone. 

2.6.1 Utility in applying a biostratigraphic metaphor 

Cladograms usually are considered as two-dimensional branching 

diagrams and are interpreted to represent the phylogenetic relationships among 
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species ( or other organism groups) for which actual dates of origin are unknown. 

Dates for events like speciation may be estimated with reference to fossil 

specimens. In a similar manner but with greater acuity, publications can provide 

origination dates for model species. And, when model species with very different 

origination dates are hypothesised as being related closely to one another, one 

may infer that similar conceptual perspectives were adopted by the respective 

theoretical morphologists. 

The Column-Driven and Plate-Driven clades reveal this inferential utility 

in applying a biostratigraphic metaphor. Situating the consensus cladogram for 

echinoid models in a biostratigraphic context forced some intemodes to contort to 

accommodate publication dates; consequently, the phylogenetic tree has warped 

twigs in those regions. This warping indicates that, in developing their echinoid 

test models, the species found themselves adapting to similar 'theoretical 

morphology environments' decades apart in time. 

In addition to assisting us in identifying conceptual perspectives adapted 

to different theoretical morphology environments (e.g. , column-driven or plate­

driven), the biostratigraphic metaphor provides a means for explicitly interpreting 

anagenes1s (i.e. , conceptual development; e.g., Stone 1996: p. 926, 

"ADDENDUM"). For instance, the model by Telford (1994) may be interpreted 

as a conceptual elaboration on his previous biomechanistic model (Telford 1985). 

Contrastingly, the dissertation that was published by Barron (1990) and the 

abstracts that were published by Zachos (2006, 2007a, 2007b) may be interpreted 
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Figure 2.3. An illustration depicting the biostratigraphic metaphor: the 
phylogenetic tree for echinoid test models with the model species embedded in 
strata. Some key character states that define clades are shown: D represents 
dynamic approach, CD represents column-driven perspectives (ambulacrum and 
interambulacrum processes), PD represents plate-driven perspectives (plate 
addition process), and M represents mechanistic approach. 
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as trace fossils , incomplete specimens whose component parts (e.g. , 

morphogenetic concepts and Delaunay triangulation, respectively) could be 

appreciated fully when complete specimens became available (Baron 1991 , 

Zachos 2009). 

2.7 Prospectus 

Reviews generally provide comprehensive summaries for fields. This 

review additionally presents a unique perspective. We achieve this by combining 

a phylogenetic systematic analysis to define trends with a biostratgraphic 

metaphor, and to identify explicitly those trends within theoretical morphology 

environments. This combination provides conceptual information about each 

model species, which can be used to develop novel models. 

We can identify the specific traits characterising a new model species that 

would 'achieve maximum fitness' in the current theoretical morphology 

environment and be suited best to explain macroevolutionary patterns. Such a 

new model species would involve traits that capture biological reality and 

translate that reality, directly or indirectly, into algorithms. For instances, such 

traits would include a dynamic approach, like that in Thompson (D in Fig. 2.3), 

mechanistic approach, like that in Zachos (M in Fig. 2.3), column-driven 

processes, from Seilacher and Zachos (CD in Fig. 2.3), and plate-driven 

processes, from Raup, Telford, and Abou Chakra and Stone (PD in Fig. 2.3). 

A new model species like the one we are describing could be used to 
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explain specific macroevolutionary patterns. One specific macroevolutionary 

pattern that has defied explanation involves the morphological disparity observed 

among echinoid tests. For example, although sea urchin (regular echinoid) and 

sand dollar (irregular echinoid) tests involve the same ontogenic processes and 

structural elements and even exhibit similar morphologies as imagines, as adults, 

they exhibit disparate test morphologies: sea urchins generally have high and 

oblate spheroid tests, whereas sand dollars generally have low and flattened tests 

(Fig. 2.ld-e). 

An echinoid test model that can be used to explain this macroevolutionary 

pattern has yet to originate. 
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Chapter 3: Holotestoid: a computational model for testing hypotheses 

about echinoid skeleton form and growth 

M Abou Chakra and J R. Stone 
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Abstract - Regular echinoid skeletons, or tests, comprise plate patterns and overall 

shapes that have proven challenging to analyse solely on the basis of any one 

approach or process. In this paper, we present a computational model, 

Holotestoid, which emulates five ontogenic processes involved in test growth 

(plate growth, plate addition, plate interaction, plate gapping, and visceral 

growth). A geometric representation and three analogies (bubble interactions, 

close-packing, and catenary chains) are used to emulate the processes, which are 

combined to produce a growth zone. The emulated processes, in tum, are used to 

predict plate size, plate shape, and test shape and identify nucleation points within 

growth zones. Generally, Holotestoid requires four parameters (total plate 

number, growth zone angle, ambulacral column angle, and apical system radius) 

as input to run. Herein, growth zones for A. punctulata and for S. franciscanus 

are simulated by varying just one parameter, the ambulacral column angle. We 

quantitatively compared morphological features for our simulated forms with 

those for real specimens to validate the computational model. For instance, 

maximum plate widths, ocular plate sizes, and test heights are predicted with high 

accuracies for A. punctulata and S. franciscanus. 

57 




Chapter 3 PhD Thesis-M. Abou Chakra - Computational Biology - McMaster 

3.1 Introduction 

Echinoid skeletons, or tests (the word testa in Latin means hard skeleton), 

are endoskeletons providing protection for internal organs, for instance, and 

support for spines, for instance (Nichols 1966, Kier 1974, Smith 1984, Lawrence 

1987). Tests are classified as permanent and mutable; skeletal form within an 

individual is retained, with changes occurring through growth (Vermeij 1970). 

Echinoids present ideal systems for studying loss or regeneration of 

calcified structures (Raup 1962, Ebert 1968, Davies et al. 1972, Markel and Roser 

1983). Knowledge about echinoid test growth can be implemented toward 

understanding vertebrate skeletons, as vertebrate skeletons also are permanent and 

mutable endoskeletons. However, echinoid test growth has proven challenging 

for researchers to explain and to describe because factors such as an over 100­

year life span (Ebert and Southon 2003) and internalisation prohibiting direct 

access (Hyman 1955) have hindered analysis. The goal of this paper is to present 

Holotestoid, a computational model created to explore regular echinoid test 

growth in a manner that cannot be analysed practically through in vivo 

experimental techniques. 

3.1.1 Echinoid form 

Echinoid tests consist of microstructures and macrostructures. 

Microstructurally, the plates comprising tests involve a three-dimensional 
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meshwork of mineralized calcite trabeculae containing variable amount of 

magnesium calcite, termed stereom (Moss and Meehan 1967, Smith 1980, Markel 

and Roser 1985). Pores among the trabeculae, are suited ideally for the insertion 

of fibrous tissue such as fibrocytes, sclerocytes, and collagen. Collagen fibres 

suture adjacent plates together, but they also provide flexibility to tests (Moss and 

Meehan 1967, Smith 1980, Johnson et al. 2002). 

Macro structurally, plates, themselves, function as the building blocks of 

echinoid tests. Five different plate types define three distinct regions (Fig. 3 .1 ). 

The peristome (ps) contains buccal plates ( Fig. 3.1) and, in some species, 

primordial ambulacral plates (Hyman 1955, Smith 1984); the apical system (ap) 

contains genital (ge) plates and ocular (oc) plates; and the corona (er) contains 

ambulacral (am) plates and interambulacral (ia) plates (Fig. 3.1). Plate 

arrangements within these regions produce pentamerous symmetry (Hyman, 

1955). 

Each echinoid test is divided into five growth zones. A growth zone (gz) 

1s a section containing biserial ambulacral columns and two flanking 

interambulacral columns. All the plates within a growth zone nucleate from the 

same ocular plate (Jackson 1912, Gordon 1926, 1929, Mooi et al. 1994, Mooi and 

David 2000, Mooi et al. 2005). 

3.1.2 Echinoid growth 

We herein limit our description of echinoid test growth to the 
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c 

e 

Figure 3.1. Echinoid test specimens, S. fransiscanus (a-c) and S. droebachiensis 
( d-e ). a) apical surface, containing the apical system, ap, and b) oral surface, 
containing the peristome, ps, with corona, er, and growth zone, gz, indicated; c) 
apical system, containing genital plates, ge, and ocular plates, oc, with ocular 
plate height and width labelled as line segments 12 and 13 respectively; d) 
disarticulated test, revealing ambulacral columns, am, and interambulacral 
columns, ia; e) magnified interambulacral plates, with plate height and width 
labelled as line segments 10 and 11 respectively. 
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macrostructural level. Plate ontogeny plays a major role in test growth through 

five macrostructural ontogenic processes. Four processes are direct- plate 

growth, plate addition, plate interaction, plate gapping, and one is indirect ­

visceral growth. Plate growth is the process by which calcite accretes or resorbs 

peripherally (Raup 1968, Jensen 1969a, Pearse and Pearse 1975, Markel 1981). 

Plate addition is the process whereby plates are added contiguous with ocular 

plates (Jackson 1912, Mooi et al. 1994, Mooi and David 1996, 2000). Plate 

interaction is the process whereby plates touch and interconnect directly or 

indirectly with each other (Moss and Meehan 1967, Raup 1968). Plate gapping is 

the process wherein collagen fibres loosen, allowing plates to separate from one 

another (Moss and Meehan 1967, Dafni 1986, Ellers et al. 1998, Johnson et al. 

2002). Visceral growth is the process in which internal structures and 

consequently the internal membrane grow, imparting pressure onto skeletal 

structures (Deutler 1926, Moss and Meehan 1968, Ellers and Telford 1992). 

These processes are interrelated and occur simultaneously. Consequently, 

empirically differentiating the direct contribution of each individual process in 

constructing a test is challenging. Thus, researchers have adopted theoretical 

modelling as an alternative experimental technique suited for elucidating echinoid 

test growth. 

3.1.3 Theoretical models 

Within the past century, nine theoretical models have been proposed to 
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explain or to describe the growth of extant regular echinoid tests (Thompson 

1917, Moss and Meehan 1968, Raup 1968, Seilacher 1979, Telford 1985, Baron 

1991 , Ellers 1993, Abou Chakra and Stone 2008, Zachos 2009). At least one 

process was excluded from each model. Three models include one process: 

Thompson (1917) considered visceral growth, using liquid drops as an analogy to 

describe test form; Moss and Meehan (1968) considered visceral growth, likening 

regular test growth to mammalian cranial expansion; and Ellers (1993) emulated 

visceral growth, using a liquid drop analogy and thin shell theory to explain 

overall test curvature. Four models include two processes: Seilacher (1979) 

considered visceral growth, describing tests as mineralised pneu structures that 

grow when internal pressures exceed external surface tensions, and proposed that 

diverse morphologies result from differential plate growth gradients; Telford 

( 1985) described plate addition and plate growth, hypothesising that tests are 

constructed to resist external forces and using the mechanics associated with 

dome structures as an analogy to explain structural strength; Baron (1991) created 

a computational model in which plate growth was determined by "hoop" growth 

equations, which were themselves determined from finite-element analysis, and 

visceral growth, which was regulated on the basis of height-to-diameter ratios and 

internal pressure; and Zachos (2009) computationally described visceral growth 

utilising Ellers ' model, and plate growth by projecting Voronoi diagrams onto 

spherical surfaces. One model includes three processes: Raup (1968) emulated 
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plate interactions through a computational model and described plate addition 

using a logistic equation, and plate growth, using a parabolic function. One 

model includes four processes: Abou Chakra and Stone (2008) created a 

computational model, implementing a bubble analogy (Thompson 1917, Raup 

1968) to explain plate interactions, Raup ' s (1968) equations (logistic equation and 

parabolic function) to describe plate addition and plate growth, and introducing 

conceptually a circle packing analogy to emulate plate gapping. 

A computational model containing five processes is described in this 

paper. We build on Abou Chakra and Stone (2008), in which a proof-of-concept 

for using a bubble analogy was established. We implement a geometric 

representation to explain plate addition and plate growth. A novel circle-packing 

algorithm is employed to emulate plate gapping, and principles (mathematical and 

physical) associated with catenary curves are used to describe visceral growth. 

By integrating the ontogenic processes (plate growth, plate addition, plate 

interaction, plate gapping, and visceral growth) in Holotestoid, we provide 

researchers with a tool for gaining insight into how echinoid test morphologies are 

produced. 

3.2 Methodology 

3.2.1 Empirical methods 

Specimens of Arbacia punctulata (n = 33) were obtained from Panacea, 
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Figure 3.2. Schematic representation of an echinoid test, illustrating 
measurements taken: I-apical system diameter, 2-peristomial boundary diameter, 
3-ambitus diameter, 4-test height (greatest aboral-oral distance), 5-column length 
(measured from the edge of the apical system to peristomial boundary), 6-growth 
zone width (measured as the angle a gz subtended between line segment 7), 7­
growth zone height (measured from the centre of the apical system to the 
ambitus), 8-ambulacral column width (measured as the angle a am subtended 
between line segment 9), 9-ambulacral column height (measured from the centre 
of the apical system to the ambitus). 
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FL, USA, and specimens of Strongylocentrotus franciscanus (n = 14) were 

obtained from Victoria, BC, Canada. Sample sizes were determined by 

availability. Measurements were made on spineless, eviscerated, and cleaned 

tests (numbering system will be used throughout the text): I-apical system 

diameter, 2-peristomal boundary diameter, 3-ambitus diameter, 4-test height 

(greatest aboral-oral height), 5- column length (measured from the edge of the 

apical system to the peristomial system) 6-growth zone width, 7-growth zone 

height (measured from centre of the apical system to the ambitus), 8-ambulacral 

column width, 9-ambulacral column height, (measured from the centre of the 

apical system to the ambitus of the test) 10-interambulacral plate height, 11­

interambulacral plate width, 12-ocular plate height, and 13-ocular plate width 

(Figs. 3. le and 3.2). 

3.2.2 Theoretical method 

The computational model, Holotestoid, can be run on a personal computer, 

using the technical computing environment Mathematica 7.0 (Wolfram Research, 

Inc. 2009) as a software platform. A copy of the computer program can be 

acquired by contacting the authors. 

3.3 Holotestoid: modelling ontogenic processes 

Holotestoid is designed to simulate a growth zone of a regular echinoid 

test, using four parameters: total plate number, growth zone angle (angle between 
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a b 

Figure 3.3. a) A. punctulata test showing apical surface (top) and oral surface 
(bottom) containing apical system and peristome, respectively, and b) two­
dimensional geometrical representation: inner circles represent apical system (top) 
and peristome (bottom) and outer circles each represent an ambitus, ab (outer 
periphery of the test), to define the coronal region, er. a) and b) depict a growth 
zone divided into three sectors delineating ambulacral (am) and interambulacral 
(ia) columns. 
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line segment 7, which span line segment 6, in Fig. 3.2), ambulacral column angle 

(angle between line segment 9 and line segment 8 in Fig. 3.2), and apical system 

radius (defined as half of line segmentl in Fig. 3.2). Before showing how these 

parameters can generate a growth zone, we first describe the concepts and 

theoretical analysis necessary for emulating each of the five ontogenic processes. 

We achieve this using a geometric representation that transforms a three­

dimensional test (Fig. 3 .3a) into a two-dimensional geometric structure (Fig. 

3.3b). 

The transformation facilitates modelling: an inner circle represents the 

boundary of either an apical system (top) or peristome (bottom) and an outer 

circle represents a test surface with a diameter equivalent to the ambitus ( exterior 

edge of the test, as depicted in Fig. 3.3b); circles representing the two test surfaces 

(aboral/upper and oral/lower) are situated tangential to one another, thereby 

mimicking a continuous column (Fig. 3.3b). Each growth zone is divided into 

three sectors distinguishing interambulacral from ambulacral columns (Fig. 3.3), 

and is represented as a set of circles (Fig. 3.4). 

The geometric representation provides a platform to establish conceptual 

links among test components and to define physical features such as plate sizes, 

grow zone sector angles, column angles, and column lengths. The conceptual 

links among test components are incorporated into the computational model to 

emulate the five ontogenic processes. However, when insufficient information 
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Figure 3.4. Geometric representation defining test structures (regions and plates) 
using circles. Inner circles represent apical system (top) or peristome (bottom) 
and each outer, dashed circle represents an ambitus ( outer periphery of the test) . 
One growth zone is shown, with apical system, ap, containing genital plates, ge, 
and ocular plates, oc; corona, er, containing ambulacral columns, am, and 
interambulacral columns, ia; and peristome, ps. 
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about the ontogenic processes could be obtained from morphological data in 

developing the computational model, analogies are employed. For instances, the 

mechanisms producing curved boundaries at plate interfaces (Raup 1968) are 

incompletely understood; the distances involved in plate gappmg are 

inexactly known; and the mechanisms influencing overall test shape 

(Deutler 1926, Moss and Meehan 1968) through visceral growth are only partially 

understood. Therefore, three analogies involving coalescing bubbles, close­

packing arrangements, and catenary chains are used to describe, respectively, 

plate interaction, plate gapping, and visceral growth. These analogies are based 

upon concrete mathematical and physical principles such as Plateau's Laws, 

Descartes' circle theorem, the Fermat point, and catenary curves. 

3.3.1 Plate growth 

Plate growth is the process whereby plate size changes through peripheral 

accretion or resorption (Deutler 1926, Gordon 1926, 1929, Moss and Meehan 

1968, Pearse and Pearse 1975, Markel and Roser 1983). We used the geometrical 

representation to study the connection between plate size and plate location. We 

collected interambulacral plate height (line segment labelled 10 in Fig. 3 .1 e) and 

plate width (line segment labelled 11 in Fig. 3.1 e) measurements from both 

species. We grouped specimens based on the number of plates within each 

interambulacral column. The total number of interambulacral plates for A. 

punctulata (Fig. 3.5a-b) ranged from 12 to 15 and the total number of 
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Figure 3.5. Plate height and width plotted against plate number as beginning at 
the peristome for two species. A. punctulata a) measured plate height from 
specimens containing 12-15 interambulacral plates in a column, b) measured plate 
width from specimens containing 12-15 interambulacral plates in a column, and c) 
predicted plate width values from simulation representing 8-12 interambulacral 
plates in a column. S. franciscanus d) measured plate height from specimens 
containing 12-20 interambulacral plates in a column, e) measured plate width 
from specimens containing 12-20 interambulacral plates in a column, f) predicted 
plate width values from simulation representing 12-18 interambulacral plates in a 
column ( simulations were based on a total of 40 ambulacral plates, and therefore 
predicted total number of interambulacral plates differed from the measured total 
number of interambulacral plates). 
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interambulacral plates for S. franciscanus (Fig. 3.5d-e) ranged from 12 to 20. We 

plotted plate height and plate width values against plate number (plates were 

numbered starting from the peristome and ending at the apical system). Based on 

the empirical data obtained (Fig. 3.5), we observed that ambital plate height and 

plate width increased with plate number, which increases with plate addition. 

Furthermore, we observed that plate height and plate width increased with 

distance from either the apical system or peristome, therefore maximizing at the 

ambitus. We conclude that, for these species of regular echinoids, the size of 

aplate is dependent on its location within the growth zone, corroborating previous 

findings (Moss and Meehan 1968, Raup 1968). 

In the computational model, we defined plate types based on the 

foregoing observation (i.e., that plate size is dependent on relative longitudinal 

position from the polar regions) and the observation that the ambitus in a regular 

echinoid corresponds to the position where plate width is maximal. We defined 

plates found above the ambitus as associated with the aboral surface, containing 

the apical system, and below the ambitus as associated with the oral surface, 

containing the peristome (Fig. 3.4). 

Plates also were ascribed as either ambulacral or interambulacral based on 

their latitudinal position within a growth zone. This was determined by growth 

zone angle ( agz). Algorithmically, such an angle was calculated by rotating one 

line segment onto another; for example, to calculate the angle subtended by the 
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growth zone in Fig. 3 .2, the computational model created two line segments (line 

segment 7) diverging from the centre of the apical system and ending at the 

ambitus, where the linear distance between them at the ambitus as equal to the 

growth zone width (line segment 6). 

Growth zone sectors measured from A. punctulata and S. franciscanus 

yielded average angles equal to 72 ± 4° and 72 ± 3°, respectively ( all errors 

reported in this paper are one standard deviation). Based on these data, we used 

72° as a default growth zone angle. Ambulacral column angles ( calculated from 

line segments 8 and 9 in Fig. 3 .2) were measured with respect to the apical system 

for A. punctulata and S. franciscanus , yielding average angles equal to 20 ± 2° 

and 31 ± 3°, respectively. We infer that the difference in ambulacral column 

angles produced the different plate size observed between the two species (Fig. 

3 .5). In the computational model, the angle subtended by a growth zone ( agz) is 

equal to the sum of the ambulacral column angle ( Uam) and interambulacral 

column angle ( Uia) located within it: 

(3.1) 

Based on these trends, we posited that, plate size is determined by column 

angle (ambulacral or interambulacral) and relative distance from a polar region 

(apical or peristomial system). We created a function that determines plate width 

(realised as the diameter for a circle) in three steps, as shown in Fig. 3.4. In the 

first step, the column type angle (ambulacral or interambulacral) is associated 
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with a plate by calculating its relative latitudinal position within a growth zone. 

In the second step, Euclidean distance is used to determine to which surface 

(aboral or oral) a plate is situated in by calculating the longitudinal distance of 

that plate from the apical system and peristome. In the third step, column angle 

(a) and distance from the polar region to a plate (dp) in Eq. (3.2) are used to 

calculate plate size (Sp1ate). We defined an isosceles triangle with its vertex at the 

pole and its two equal-length sides extending from the vertex along a length equal 

to dp. Thus, the angle opposite to the vertex is equal to a and the length of the 

base is equal to Splate: 

Sp1ate = Jozdp 2(1 - Cos[a] ). (3.2) 

We ascribed plate growth as the modification of at least one region 

( corona, peristome, or apical system) due to a change in plate size, which has 

ensuing effects on the entire test. For ex~mple, if an ocular plate were to increase 

in size, it would produce an increase in the overall size of the apical system; an 

increase in the apical system causes a cascade of modifications throughout the test 

to maintain relative plate size and column angle relationships. 

3.3.2 Plate addition 

Plate addition involves the insertion of new plates at the apical system. 

Each new plate is situated coterminously with an ocular plate (Jackson 1912, 

Gordon 1926, 1929, Kier 1956, Mooi et al. 2005). Previous researchers have 
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utilised the fact that two triangular spaces occur per interambulacrum to simulate 

interambulacral plate nucleation (e.g. , Raup 1968). We developed the 

computational model so that each ocular plate could accommodate four nucleation 

points (two for ambulacral plates and two for flanking interambulacral plates); 

and the code defaults to adding one plate per column at each iteration, alternating 

between nucleation points to mimic plate addition observed in real specimens 

(Gordon 1926, 1927, 1929, Raup 1968, Smith 1984). 

We investigated the relationship among the ocular plates, apical system, 

and ambulacral columns to determine nucleation points and sizes of new plates. 

We measured ocular plate height, plate width (line segments labelled 12 and 13 in 

Fig. 3.lc), and distances from the apical system to ocular plates (dp in Eq. 2.2). 

We calculated the angle subtended by the width of ocular plates and the apical 

system centre. Inserting ocular plate size (Spiate) and dp into Eq. (3.2), we 

obtained angles of 21 ± 3° and 33 ± 8° for A. punctulata and S. franciscanus , 

respectively. These angles are similar to the ambulacral column angles previously 

quantified (subsection 3.3.1) for the two species; therefore, ocular plate was used 

to determine the position and size of new plates in the corona (Fig. 3 .6). 

From these nucleation points, we calculated the angles sustained by new 

ambulacral plates and new interambulacral plates with respect to the apical 

system, nucleation angles aNam and aNia, respectively. The angles aNam are 6.96 ± 

1.39° and 8.66 ± 1.87° for A. punctulata and S. franciscanus, respectively; the 
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Figure 3.6. a) A. punctulata specimen apical system imaged from above b) A. 
punctulata apical system represented graphically, with accurate proportions; the 
ambulacral column angle of 20.61 ± 1.08° delineates ocular plate (black lines) and 
nucleation angle (red lines). c) S. franciscanus specimen apical system imaged 
from above d) S. franciscanus apical system represented graphically, with 
accurate proportions; the ambulacral column angle of 31.99 ± 1.03° delineates 
ocular plate (black lines) and nucleation angle (red lines); apical system, ap, 
ocular plate, oc, genital plate, ge, interambulacral nucleation points, inp, and 
ambulacral, nucleation points, anp. 
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angles aNia are 23.6 ± 3.76° and 34.5 ± 6.28°, respectively. 

The computational model involves the parameter ambulacral column angle 

( Uam), which can be related to the nucleation angles UNam and aNia by calculating 

ratios. The ratios UNam:a are 0.35:1 and 0.28:1 for A. punctulata and S. 

franciscanus , respectively; the ratios UNia:a are 1.2: 1 and 1.1: 1 for A. punctulata 

and S. franciscanus, respectively. From these results, we assumed in the model 

that UNam is approximately 30% Uam, whereas aNia is approximately equal to Uam· 

The computational model uses Eq. (3.3) to predict these angles: 

(3.3) 


The angles aNam and aNia allow nucleation points to be located at the periphery of 

a simulated ocular plate (Fig. 3.6). Nucleation points default to being placed 

symmetrically relative to the centre of a simulated ocular plate: two pairs on 

either side, one for an ambulacral column and one for an interambulacral column. 

In real specimens, new ambulacral plates originate underneath ocular 

plates while interambulacral plates are inserted adjacent to ocular plates (Gordon 

1926). In the computational model, once nucleation points have been determined, 

new plates sizes are predicted. New ambulacral plate size is calculated using Eqs. 

(3.2 and 2.3). Equation (3.2) is used to calculate plate size based on the distance 

of the nucleation point from the apical system centre ( dp) and the ambulacral 

nucleation angle (aNam); the latter is obtained from Eq. (3.3). 

New interambulacral plate size is calculated by a method that is similar to 
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the aforementioned method for calculating new ambulacral plate sizes (i.e. , using 

Eqs. 2.2 and 2.3), except that, rather than using aNam, an angle that is related to 

interambulacral columns is used. As aNia is approximately equal to Uam, the 

computational model determines a new angle, interambulacral plate angle ( aNpia) , 

which is calculated using the relation in Eq. (3 .4): 

(3.4) 


3.3.3 Plate interaction 

Plate interaction occurs when plates in a column are in direct contact ( even 

interlocking) with each other (Smith 1980). We propose that these interactions 

influence plate shape. Using the analogy in which individual plates are likened to 

bubbles (circles m two-dimensions), we modelled plate interactions, 

implementing Plateau' s laws to predict the interfaces adopted between bubble 

pairs. 

A single bubble assumes a spherical shape because that yields the smallest 

surface area relative to volume in comparison to other shapes (Boys 1958). 

Similarly, a cluster of bubbles minimizes the surface area between and among its 

constituents (Boys 1958). Plateau's laws satisfy geometric conditions that are 

described quantitatively (Isenberg 1978) by the mathematical equations: 

(3 .5) 


IABl 2 = rA 2 + r8 
2 + 2rAr8 cos [rr/3] (3 .6) 


IACl 2 = rA 2 + rc2 + 2rArccos [2rr/3]. (3.7) 
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Figure 3.7. Plateau boundaries simulated using Eq. (3.5) to calculate radii for 
interface boundary circles and Eqs. (3 .6 and 2.7) to determine distances between 
bubbles: a) unequal-sized bubbles (A and B), yielding a curved interface 
boundary; b) a curve showing that the radius for the interface boundary circle C 
(gray circle) increases as the radius for bubble B (smaller circle) approaches the 
radius for bubble A (larger circle). 

78 




Chapter 3 PhD Thesis-M. Abou Chakra - Computational Biology - McMaster 

These equations quantify the relations between curvatures for a pair of 

bubbles (A and B) and the curvature for the interface boundary circle (C), as 

depicted in Fig. 3.7. Equation (3.5) is derived from the Young-Laplace equation, 

in which the pressure differential between bubbles is calculated by multiplying 

surface tension by curvature (Young 1805, Isenberg 1978). Equation (3.5) states 

that the sum of the curvatures for bubble A and circle C is equal to the curvature 

for bubble B. Equations (3.6) and (3.7) use the Cosine Law to calculate, 

respectively, the distance between centres for bubble A and bubble B, given that 

their radii, rA and r8 , meet at an angle equal to rc/3 radians, and bubble A and 

circle C, given that their radii, rA and re, meet at an angle equal to 2rc/3 radians 

(Isenberg 1978). The three equations are used in the computational model to 

predict the curvature of the interface between bubbles, which is translated to 

describe plate shape and plate patterns. 

The interface that is shared by two bubbles is called a Plateau Boundary 

(Fig. 3.7). To determine a Plateau Boundary, two cases are considered, one with 

equal-sized bubbles and one with different-sized bubbles. When equal-sized 

bubbles interact, no pressure differential is produced, and, in accordance with Eq. 

(3 .5), the radius for circle C (re) is infinitely large, so the Plateau boundary is 

straight (Isenberg 1978). When unequal-sized bubbles interact, a pressure 

differential is produced and the smaller bubble B, which contains higher pressure, 

pushes into the larger bubble A (Isenberg 1978). The boundary between bubbles 

79 




Chapter 3 PhD Thesis-M. Abou Chakra - Computational Biology - McMaster 

is determined by calculating the radius for circle C (re), using Eq. (3.5). 

Algorithmically, Eq. (3.7) generated the radius for an interface boundary 

circle C (Fig. 3.7). Then, Eq. (3.6) yielded the distance between bubble A and 

bubble B, given their sizes. Lastly, Eq. (3.7) returned the distance between 

bubble A and circle C, to determine the position for the Plateau boundary between 

bubble A and bubble B (Fig. 3.7). Applying these steps within the computational 

model generated the final plate shapes and patterns. 

3.3.4 Plate gapping 

Plate gapping occurs during active growth in regular echinoids, through 

collagen fibre loosening (Johnson et al. 2002). Such a process allows plates to 

separate from one another to create voids for new plate addition and calcite 

deposition to occur (Johnson et al. 2002). The computational model achieves 

plate gapping in two dimensions by arranging circles in a close-packing 

configuration to emulate sutural loosening (Fig. 3.8); theoretically, this is 

modelled by rearranging circles from their interacting ( overlapping) state to a 

close-packing state, with no overlaps and minimal gaps. 

Circle-close-packing arrangements assume a specific tangency pattern, 

squared or triangular (Stephenson 2005). The densest circle-close-packing 

tessellation patterns are triangular, wherein only three circles meet around one 

point (Aste and Weaire 2000, Stephenson 2005). While equal-sized circle 

packing properties are understood and methods are well established 
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a b 

Figure 3.8. a) Schematic graphic of a triplet of circles in an interacting 
arrangement and b) in a close-packing arrangement emulating plate gapping; 
sutures are displayed linearly for clarity; c) illustration of collagen sutures 
between plates in a real specimen. 
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(Stephenson 2005), unequal-sized circle packing properties (specifically packing 

without a fixed boundary) are undetermined and methods are lacking. To close-

pack circles, we developed and applied an algorithm created for unequal sized 

circles. We considered unequal circles because, biologically, plates assume 

different sizes (subsection 3.3.1). 

The computational model arranges unequal-sized circles in a triangular 

circle-close-packing configuration through three iterative steps. The first step 

partitions circles into triplets, as determined by a neighbour-finding algorithm that 

uses proximal distance. Only touching circles are defined as neighbors, 

determined on the basis of their distance from each other. The second step 

arranges the triplets in a close-packing configuration. Several output 

arrangements for a triplet of unequal sized circles are possible. However, 

biologically, plates maintain their relative arrangements. Therefore, the third step 

involves a "relative-close-packing" algorithm. 

The relative-close-packing algorithm incorporated the Fermat Point, Eq. 

(3.8), and Descartes Circle Theorem, Eq. (3.9): 

lminDistl = IPAI + IPBI + IPCI (3.8) 

(3.9) 


The computational model includes a function that determines the centroid 

of the triplet by calculating the Fermat Point. A Fermat Point marks the location 

where the sum of the distances from each centre in a triplet is a minimum, eq. 2.8 
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(Coxeter 1969). We chose the Fermat Point as the location to initiate close­

packing because within a triplet, it is the point of minimal energy (Lovett and 

Tilley 1994). The function uses Eq. (3.9) to calculate the size of the gap among 

members within a triplet. The Descartes Circle Theorem determines the radius ro 

of an inner circle between three tangential circles (Vandeghen 1964). The 

computational model uses inner circles to calculate the sizes of the gaps. Inner 

circle radii define the amount of movement required by each circle within a triplet 

to achieve close-packing. The result of applying the algorithm is a triplet of 

circles positioned tangentially to each other in a configuration that corresponds to 

their initial orientation. 

3.3.5 Visceral growth 

Visceral growth results from internal somatic ontogeny; internal structures 

expand and induce pressure onto the test, influencing its shape (Moss and Meehan 

1968). We used a catenary chain analogy to represent soft tissue forces balancing 

external forces applied onto a test. 

Catenaries describe the shapes that would be assumed by an inextensible 

but flexible chain that hangs freely from two fixed points under self-weight, 

without influence from extraneous forces (Bernoulli 1691 , Huygens 1691 , Leibniz 

1691 , Yates 1959). We considered each plate as a separate link in a chain and the 

forces between plates as balanced; we designated that two points (A1, A2) 

corresponded to the centres for the apical system and peristome, respectively. In 
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Figure 3.9. a) A. punctulata column length and test diameter regression 
(slope=0.96, R2 =0.922); b) S. franciscanus (n=l4) column length and test 
diameter regression (slope =1.2, R2 =0.981). c) test profile, using catenary 
function with variables for column length (cl), height (h)-to- ambitus diameter (d) 
ratio, apical system radius (apr), peristome radius (psr); points A1 and A2 represent 
the centres for ap and pm, respectively, and points P1 and P2, edges for ap and ps, 
respectively. d) Holotestoid uses the parameters apr, psr, and cl from a simulated 
column to calculate different test shapes based on the heights, and finally it 
predicts the catenary by fitting it to the original column length. 
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Eq. (3.10), the coordinate (Cx, Cy) represents the lowest point and the constant a 


depends on the weight for a unit length in the chain (Barnett 2004): 


(y - Cy) = a cosh [(x - a Cx)/a]. (3.10) 


To calculate a, test height (h) is required, however, h 1s a three­

dimensional parameter and is unobtainable from the simulations (Fig. 3.9d). 

Thus, to acquire test height from the parameters accessible via simulation, we 

investigated the relations among the variables column length ( c/J labelled line 

segment 5 in Fig. 3.2), apical system (ap, labelled line segment 1), and peristome 

(ps, labelled line segment 2 in Fig. 3 .2). As a two-dimensional model cannot 

provide height and diameter of a test we sought to establish additional 

relationships. We measured ambitus diameter ( d, labelled line segment 3 in Fig. 

3.2), test height (h, labelled line segment 4 in Fig. 3.2), and column length from 

both species. The measurements confirmed that the height-to-diameter ratio is 

species-dependent, different species exhibiting different ratios, as reported by 

previous researchers (Kier 1974, Dafni 1986, Baron 1991 , Ellers 1993). 

However, test diameter and column length displayed a one-to-one ratio 

independent of species. Linear regression analysis of data from A. punctulata 

(Fig. 3.lOa) yielded a slope of 0.96 (R2 =0.922) and S. franciscanus (Fig. 3.lOb) 

yielded a slope of 1.2 (R2 =0.981 ). In the computational model, column length 

(cl) is set equal to test diameter ( d). As test height-to-diameter ratios are well 

studied (Kier 1974, Dafni 1986, Baron 1991 , Ellers 1993), we created a function 
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that cycles through all possible height to diameter ratios (from 0.1 to 0.9), 

predicting curvature for each incremental value. We used cl to estimate test 

height, using Eqs. (3.11 and 2.12), where the height-to-diameter ratio (h:d) is 

taken as a constant: 

cl = d , (3 .11) 

h = cl x (h: d). (3.12) 

In the model, we combined Eqs. (3.10) and (3.12) to predict test shape by 

determining the constant a in Eq. (3.10). We achieved this using column length 

(cl), apical system radius (apr), measured as the distance from A1 to P1 in Fig. 

3.9c, and peristome radius (psr), measured as the distance from A2 to P2 in Fig. 

3.9c. To simplify Eq. (3.10), we defined (Cx, Cy) to be equivalent to (0, 0), and 

(x, y) to be equivalent to (h, d/2). Such substitutions reduced unknown variables 

in Eq. (3.10) to one, a, where (d/2) = a cosh [(h)/a]. 

3.4 Holotestoid: utilising the processes 

In section 3, we described the conceptual development underlying each 

ontogenic process in the computational model. In this section, we present the 

predictive capabilities of the computational model and combine the processes to 

simulate one growth zone. We demonstrate that we can accurately predict plate 

size, plate shape, and test shape. We also show that, in simulating a growth zone, 

we are able to extract additional information such as interambulacral plate 

number, interambulacral plate width, and ambitus position. 
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3.4.1 Plate size 

We applied the emulated plate growth process to predict plate size. 

Ocular plate size was predicted using Eq. (3.2). We accomplished this by 

inputting measured ambulacral column angles (a: 20 ± 2° and 31 ± 3° for A. 

punctulata and for S. franciscanus, respectively) and distances from apical 

systems (dp) into Eq. (3.2). By comparing the measured ocular plate size with 

predicted ones, we obtained values with accuracies in the range of 81.1 to 97 .1 % 

for A. punctulata and accuracies in the range of 65.3 to 96.4% for S. franciscanus. 

These results show that plate size can be predicted based on longitudinal position 

from the polar regions. 

3.4.2 Plate shape 

Using the emulated plate interaction process, we were able to mimic plate 

boundaries in a column,; furthermore, we used the curvature of the boundaries to 

describe the relative size of neighbouring plates (Fig. 3.10). For example, Fig. 

3.1 Ob presents an interambulacral plate (pia) resulting from a simulation for A. 

punctulata; the simulated plate is compared to a real plate from A. punctulata. 

We can explain the curvature of four boundaries in this example, B 1, B2, B3, and B4 

(simulating a biserial column means the fifth has no neighbours) as shown in Fig. 

3.10: B1 is curved toward the centre ofpia, implying that the neighbouring plate 

creating the boundary is smaller than pia; B2 and B3 appear linear, implying that 

the neighbouring plates creating the boundary are approximately equal in size to 
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a b 

Figure 3.10. a) Simulated column for A. punctulata with 45 plates, including 
Plateau boundaries delineated using Eqs. (3 .5) to calculate radii for interface 
boundary circles and Eqs. (3.6 and 2.7) to determine distances between bubbles. 
b) Simulated plate for A. punctulata c) real interambulacral plate from an A. 
punctulata specimen. 
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pia; B4 is curved away from the centre of pia, implying that the neighbouring 

plate creating the boundary is larger than pia. Therefore, our plate interaction 

process effectively simulates plate boundaries and promotes understanding of 

patterns between neighbouring plates. 

3.4.3 Test shape 

We tested the predictive capabilities of the emulated visceral growth process by 

superimposing the predicted test shape onto experimentally measured coordinates 

representing the true curvature of a S. franciscanus specimen with measured 

column length 68.28 mm, apical system diameter 11.02 mm, peristome diameter 

22.58 mm, and height-to-diameter ratio 0.55 (Fig. 3.11). Quantitative analysis of 

both curves yielded accuracies in the range 57 to 99%. Furthermore, we 

compared measured test heights (h) from A. punctulata and S. franciscanus with 

predicted heights calculated using Eq. (3.10). We achieved accuracies in the 

range 85.6 to 99.3% for A. punctulata and 82.4 to 99.5% for S. franciscanus. 

3.4.4 Growth zone 

Holotestoid simulates one growth zone. As stated previously, four 

parameters are required to run a simulation: total plate number, growth zone 

angle, ambulacral column angle, and apical system radius. Total plate number 

(tpn) determines the number of ambulacral plates that will be added throughout a 

simulation. Growth zone angle ( agz) determines the width of the growth zone 

being simulated; the default value is 72° but can be altered. Ambulacral column 
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1-- ' 

Figure 3.11. Simulation of column and test profile, predicted using Holotestoid 
for S. franciscanus; test profile from a real S. franciscanus specimen measured 
using a digital image (points) was superimposed onto a predicted test shape from 
our simulation (line). 
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angle (aam) determines the width of the column. Apical system radius (apr) is 

used to create an initial condition, which is generated automatically by the 

computational model, using the ambulacral column angle (Fig. 3.12). 

In addition to the default option of adding plates to ambulacral columns and 

interambulacral columns at each iteration (subsection 3.3.2), the computational 

model was designed to allow plates to be added exclusively to one column type 

(ambulacral, for instance); it thereby provides a tool for predicting morphological 

variables, interambulacral plate number and plate size. Interambulacral plates 

may influence test shape (Markel 1981 ), and numbers of interambulacral plates 

and their sizes vary among species (Kier 1974). To accommodate their effects 

computationally, we designed and included in the computational model a 

function that predicts the number of interambulacral plates required to surround a 

simulated ambulacral column (Fig. 3.13). Interambulacral plates are added at the 

edge of an ocular plate continuously until the column spanning from the edge of 

the apical system to the edge of the peristome is packed. As the length of an 

ambulacral column increases, the size of interambulacral plates increases (Fig. 

3.13). 

We simulated two growth zones, one for A. punctulata and another for S. 

franciscanus. Three out of the four parameters were kept constant: tpn=40, agz = 

72°, and apr = 0.5 mm. The fourth parameter was varied; we set Uam = 22° for A. 

punctulata and Uam = 32° for S. franciscanus. A simulation required 
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Figure 3.12. Simulation of an initial condition created by the computational 
model, with apical system radius of 0.5 mm and an ambulacral angle of 32° 
(apical system, ap, ocular plate, oc, genital plate, ge, and peristome, ps). 
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approximately 45 minutes to complete test growth, starting from zero ambulacral 

plates and ending with 40 ambulacral plates. 

We plotted plate width versus plate number for the interambulacral 

columns and compared the predicted data with the measured data for both species 

(Fig. 3.5). In the computational model, plates are represented as circles, and thus 

accurate predictions are limited to just plate width. Furthermore, the simulations 

did not consider growth in the apical system or peristome. Therefore, predicted 

plate sizes and total number of plates differed quantitatively from measured data 

(Fig. 3.5). However, qualitatively, the overall trends observed from the results of 

the simulations corresponded with the measured data (Fig. 3.5). For instance, 

interambulacral plate width increased with increasing plate number (Fig. 3 .5). 

We also obtained interambulacral-to-ambulacral plate ratios from 

simulations. We included in the calculations ambulacral plate compounding, 

whereby three plates are combined to create one ambulacral plate for A. 

punctulata and five plates are used to create one ambulacral plate for S. 

franciscanus (Gordon, 1929; Kier, 1974). Simulations for A. punctulata yielded 

a ratio of 0.21 and simulations for S. franciscanus yielded a ratio of 0.18. 

Published ratios from Kier (1974), 0.22 for A. punctulata and 0.12 for S. 

franciscanus , yielding 85% and 55% accuracies, respectively, for the simulations. 

Additionally, we used the computational model to predict ambitus 

position. We hypothesised a priori that the ambitus position was located half way 
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4 6 10 

Ambulacral Plate Number 

Figure 3.13. Schematic graphic of interambulacral plates (black circles) arranged 
around ambulacral columns (red circles), with apical system, ap (grey circle) 
peristome, ps, (grey circle), ocular plates ( dashed circle in the centre), and two 
flanking genital plates ( dashed circles). The computational model inserts 
interambulacral plates with respect to the ambulacral column length. As 
ambulacral plate number increased, interambulacral plate number increased. 
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along a growth zone ( from apical system centre to the peristome centre) and 

plotted plate width versus relative distance along a growth zone. We observed 

that plate width increased with increasing distance from either pole, reaching a 

maximum at the ambitus. Maximum measured plate width for A punctulata 

occurred at a distance between 62% and 68% (Fig. 3.14a) and maximum 

predicted plate width occurred at a distance between 47% and 61% (Fig. 3.14b). 

Maximum measured plate width for S. franciscanus occurred at a distance 

between 55% and 65% (Fig. 3.14c) and maximum predicted plate width occurred 

at a distance between 48% and 59% (Fig. 3.14d). These results yielded an 83% 

accuracy for A. punctulata and a 90% accuracy for S. franciscanus. These results 

confirm our a priori assumption that the ambitus in a regular echinoid test is 

located half way between the polar regions, along growth zone length. 

3.4.5 Limitations 

The computational model is limited in at least five aspects. First, plates are 

analogised as bubbles and are represented as circles, thus only plate width can be 

validated (sections 3 and 4); the analogy and representation are used in a purely 

geometric sense to simulate morphological patterns produced by growth processes 

(i.e., surface tension might play no role in echinoid growth; Raup, 1968). Second, 

in the computational model, new plates may be added in quartets (i.e., with each 

ocular plate accommodating two nucleation points for ambulacral plates and two 

nucleation points for flanking interambulacral plates, alternating for each plate 
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Figure 3.14. Measured and predicted plate width values plotted against relative 
distance from the apical system for an interambulacral column. Columns are 
depicted based on total plate number, shown as a single curve in the plot. A. 
punctulata a) measured plate width values from specimens containing 12-15 ia 
plates, with maximum plate width occurring at a distance between 62% and 68% 
of growth zone length; b) predicted plate width values from simulation producing 
specimen containing 8-12 ia plates, with maximum plate width occurring at a 
distance between 4 7% and 61 % along growth zone length. S. franciscanus c) 
measured plate width values from specimens containing 12-20 ia plates, with 
maximum plate width occurring at a distance between 55% and 65% along 
growth zone length; d) predicted plate width values from simulation producing 
specimen containing 12-18 ia plates, with maximum plate width occurring at a 
distance between 48% and 59% along growth zone length. 
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addition subsection 3.3.2) or in pairs (i.e. , exclusively to one column type, such as 

ambulacral, whereupon interambulacral plates are added to populate 

interambulacral columns; subsection 3.4.4); in real specimens, locations and 

numbers for new plate nucleation points are unknown and new plates are added at 

different rates throughout development (Gordon 1926, Raup 1968, Smith 1984). 

Third, in the computational model, a single growth zone is simulated ( subsection 

3.4.4); in real specimens, 5 growth zones develop simultaneously and typically 

differ from one another. Fourth, biserial column morphologies are produced (a 

total of four columns in a growth zone); among real specimens, this would 

accommodate only some of the morphologies, majority of the Paleozoic echinoids 

have more than four columns in a growth zone (Smith 2005) . Fifth, ambulacral 

plates are fused composites; however, the computational model considers only 

single plates. 

3.5 Conclusion 

Growth zones for A. punctulata and for S. franciscanus were generated by 

varying only a single parameter, the ambulacral column angle (aam = 22° and Uam 

= 32°, respectively; subsection 3.4.4). Therefore, ambulacral column angle is a 

parameter that can discern between species; herein, it determined different plate 

sizes and, therefore, different simulated morphologies for two species. Changes 

in plate size, even to a single plate, stimulate changes in the surrounding regions. 

We showed that ocular plate size is influenced by ambulacral column angle, 

97 




Chapter 3 PhD Thesis-M. Abou Chakra - Computational Biology - McMaster 

which then influences the position and size of new plates added to the corona 

(sections 3 and 4). 

In the computational model, any shift in plate location stimulated a change 

(increase or decrease) in plate size. The simulation results produced plate patterns 

corroborating observed trends (e.g. plate size increases with increasing distance 

from the polar regions, maximizing at the ambitus; subsection 3 .3 .1 ). More 

importantly, the results showed that using as few as four parameters, we can 

produce patterns mimicking patterns produced by growth for two different species 

(sections 3.3 and 3.4). 

By combining the processes, we were able to predict interambulacral plate 

size, interambulacral plate number, and even ambitus position (subsection 3.4.4). 

This is especially useful for echinoids because they exhibit a rich fossil history 

(Kier 1974, Smith 2005) , and some fossil species descriptions are based on a 

single incomplete specimen (Jackson 1912, Durham 1967, Kier 1974, 1977, 

Smith 2005) . For such incomplete specimens, a model with just four parameters 

becomes useful because researchers can make inferences about test growth using 

only a few measurements to estimate parameters and run simulations (i.e. , to 

reconstruct graphically entire specimens). We are confident that Holotestoid is a 

useful tool for describing and explaining the evolutionary-developmental 

morphological changes observed in echinoids. 
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Abstract- Echinoids exhibit among their many species remarkably diverse test 

morphologies. We investigated how post-Paleozoic echinoid tests, although 

constructed from the same structural elements, realise this morphological 

disparity. We considered how the three physical attributes ambulacral column 

width, plate number, and polar region sizes (apical system and peristome) 

influence test shape, using Holotestoid, a computational model for simulating 

echinoid test form and growth. Holotestoid incorporates the five ontogenic 

processes involved in test growth, thereby allowing ontogeny to be emulated 

completely. Through simulations, we explored the effects that five parameters 

(aam, tpn, apr, ps:ap, and ap:cl) had on test height-to-diameter ratio (h:d). 

Increases to either ambulacral column angle (aam) or total plate number (tpn) 

caused a decrease in h:d, whereas an increase in apical system radius with respect 

to column length (ap:cl) caused an increase in the h:d. However, h:d was 

unaffected by changes to apical system radius (apr) or peristome radius with 

respect to apical system radius (ps:ap). Additional simulations showed that 

growth of apical system and peristome yielded stable h:d and prevented gradual 

flattening by ambulacral column widening and plate addition. Simulated h:d 

yielded high accuracies when compared to h:d for real specimens, providing the 

first explanation for why echinoid imagines are characterised by similar test 

shapes despite differences among adult echinoid tests and how h:d is maintained 

by individual species. 
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4.1 Introduction 

Regular echinoid (e.g. , sea urchin) and irregular echinoid (e.g. , sand 

dollar) species present disparate morphologies (Mortensen 1935, 1948, 1950, 

1951 , Durham 1955, Durham and Melville 1957, Kier 1965, 1974, Smith 1984, 

2005), especially in their skeletons (tests). Echinoid test shape diversity can be 

observed through their fossil record, which dates back to the Late Ordovician 

(Mortensen 1935, Kier 1965, Smith 2005). Whereas most Paleozoic echinoids 

seemed to have exhibited globular shapes, post-Paleozoic echinoids exhibited a 

variety oftest shapes (Jackson 1912, Mortensen 1935, 1948, 1950, 1951 , Durham 

1955, Durham and Melville 1957, Kier 1965, 1974, Smith 1984, 2005). Echinoid 

tests within the Triassic period (except Triarechinus) were globular. By the 

Jurassic period, with the first appearance of members in the Irregularia, some 

echinoid tests had become discoid shaped, bottle-shaped, and heart-shaped 

(Mortensen 1935, 1948, 1950, 1951 , Durham 1955, Durham and Melville 1957, 

Kier 1965, 1974, Smith 1984, 2005, Saucede et al. 2007). 

Echinoids evolved these very different test morphologies using strikingly 

similar components and structural materials (Gordon 1926, 1927, 1929, Kier 

1974, Smith 1984, 2005). Structurally, all echinoid tests are composed of 

individual plates located in three distinct regions (Fig. 4.1 ): the apical system 

( comprising genital plates and ocular plates), peristome ( comprising bucal plates), 

and corona (comprising ambulacral plates and interambulacral plates). Tests 
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exhibit pentameric symmetry with a growth zone as the repeating unit (Loven 

1874, Jackson 1912, Mooi et al. 1994, Mooi and David 1996, Hotchkiss 1998, 

Mooi and David 2000, Mooi et al. 2005). A growth zone extends from the centre 

of the aboral surface ( containing the apical system), to centre of the oral surface 

(containing the peristome) and comprises an ocular plate (oc), ambulacral (am) 

plates, and interambulacral (ia) plates. 

Classic studies on early development revealed that newly metamorphosed 

echinoids (imagines) are similar in shape (Gordon 1926, 1927, 1929). Imagines 

in two regular echinoids (Fig. 4.2), the sea urchin species Arbacia punctulata 

(Order Arbacioida) and the sea urchin Psammechinus miliaris (Echinus miliaris; 

Order Echinoida), and two irregular echinoids (Fig. 4.2), the sand dollar species 

Echinarachinus parma (Order Clypeasteroida) and the heart urchin species 

Echinocardium cordatum (Order Spatangoida), display strikingly similar, 

globular tests (Gordon 1926, 1927, 1929). In imagines, as in adults, each test 

contains a full apical system, a peristome, and a corona containing between two 

plates and seven plates in a column (ambulacral or interambulacral); plate number 

increases during ontogeny (Gordon 1926, 1927, 1929). Tests among adult 

echinoids also differ in shape, being globular among sea urchins and discoid 

among sand dollars. 

All imagines have a membranous area, the periproct, near the centre of the 

aboral surface (Gordon 1926, 1927, 1929). The periproct centre position is 

maintained in all adult regular echinoids; however, in adult irregular echinoids, 
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the periproct is situated posteriorly, toward the oral surface (Gordon 1926, 1927, 

1929, Hyman 1955, Kier 1974, Saucede et al. 2003). Additionally, adult 

irregular echinoid tests have some ambulacral columns altered to form petaloids 

and the peristome shifted anteriorly (Gordon 1926, 1927, 1929, Hyman 1955, 

Kier 1974, Smith 1984). 

Test growth occurs through five ontogenic processes (plate addition, plate 

interaction, plate gapping, plate growth, and visceral growth; Chapter 3). As an 

individual imago develops, new plates are inserted (plate addition) at the distal 

edge of an ocular plate within a growth zone (Jackson 1912, Gordon 1926, 1927, 

1929, Mooi et al. 1994, Mooi and David 1996, 2000, Mooi et al. 2005). Plates 

usually are interconnected and held together by collagen fibres (plate interaction 

process); these collagen fibres can loosen (Moss and Meehan 1967, Ellers et al. 

1998, Johnson et al. 2002), allowing plates to separate (plate gapping process) 

from each other and thereby create gaps for calcite deposition to occur (plate 

growth). As ontogeny progresses (including internal membrane expansion 

effected by visceral growth), test shape may begin to change (Gordon 1926, 1927, 

1929, Hyman 1955) and realise the differences observed across echinoids (Fig. 

4.2). 

4.1.1 Evolution of test growth and form 

Along with test shape diversity, physical attributes such as test height (Fig. 

4.2), ambulacral column width, total plate number, and apical system exhibit 
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Figure 4.1. Schematic representation of an echinoid test. a) illustration of 
structural attributes: ambitus diameter (d), ambulacral column (am: demarcated 
by angle spanning line segment s1-s2, aam), apical system radius (apr), column 
length ( cl), corona ( er), growth zone (gz: demarcated by angle spanning line 
segment s3-s4, agz), interambulacral column (ia), peristome radius (psr), and test 
height (h). b) aboral surfaces of Eucidaris thouarsii (left) and Dendraster 
excentricus (right), displaying the size difference between the columns (am and 
ia) within a growth zone. 

am 
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trends across post-Paleozoic echinoid taxa (Kier 1974). Test height with respect 

to diameter (h:d) started relatively large in the Triassic period (Kier 1974). For 

instance, tests in the Cidarioda were characterised by h:d as large as 0. 7 (Kier 

1974). However, by the Jurassic period, some h:d had become very small. For 

instance, tests in the Clypeasteroida are characterised by h:d as small as 0.058 

(personal communique with Rich Mooi, echinodiscus specimens). Such extreme 

morphologies remain observed among extant species, Fig. 4.2. 

The ambulacral column is considered to have undergone the greatest 

evolutionary changes (Kier, 1965, 1974). While most of the changes impacted 

tube feet activity (e.g. , food gathering, locomotion, and chemotaxis), structurally, 

the ambulacral column widened over time (Kier 1974). Ambulacral column 

width started very narrow in the Triassic and grew much wider, reaching 

maximum width by the late Jurassic period (Kier 1974). This can be quantified 

with respect to interambulacral columns (Fig. 4.1 b), where Triassic echinoids 

were characterised by a maximum ambulacral column width 29% the 

interambulacral column width. However, by the Jurassic, the maximum 

ambulacral column width reached 74% the interambulacral column width 

(Durham 1955, Kier 1974). 

Post-Paleozoic echinoids, introduce new plates continuously during test 

growth. The total number of plates in a test varies among and between 

subclasses(Mortensen 1935, 1948, 1950, 1951 , Durham 1955, Durham and 

Melville 1957, Kier 1965, 1974, Smith 1984, 2005). However, a general trend 
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Figure 4.2. Illustration of extant test shape diversity with respect to height for the 
Cidaroida (i.e, E. thouarsii), Stirodonta (i.e., A. punctulata), Camarodonta (i.e., L. 
variegatus and S. franciscanus), and Irregularia (i.e., Spatangus californicus and 
D. excentricus). Branch points for six orders (normal font) are situated relative to 
their approximate appearance in the geological record up to the Cenozoic era 
(Mesozoic periods in white boxes). Cladogram is based on material in Mortensen 
(1935, 1948, 1950, 1951), Durham (1955), Durham and Melville (1957) Kier 
(1974) and Smith (1984, 2005). 
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toward an increase in adult plate number with time may be gleaned from their 

evolutionary history (Kier 1974). For instance, the Cidaroida are characterised 

by tests containing between 185 plates and 940 plates, whereas the Euechinoidea 

(i.e. , Stirodonta, Camarodonta, and Irregularia) are characterised by tests 

containing between 700 and 3000 plates (Kier 1974). 

The periproct breaking out of the apical system is the major trend which 

distinguishes regulars from irregular echinoids (Kier 1974). The posterior 

advance of the periproct along one interambulacral column establishes an axis of 

bilateral symmetry characterising the Irregularia (Kier 1974, Saucede et al. 2003). 

Additionally, the apical system in some irregular echinoids exhibits a reduced 

number of genital plates (Kier 1974). For instance, the Cidaridea are 

characterised by five genital plates in the apical system, whereas the 

Clypeasteroida are can be characterised by at least of one and no more than four 

genital plates (Kier 1974). 

4.1.2 Testing evolutionary hypothesis about echinoid growth and form 

Adaptational, developmental, and evolutionary explanations for these 

post-Paleozoic test shape differences have been explored (Jackson 1912, Gordon 

1926, 1927, 1929, Raup 1956, Durham and Melville 1957, Moss and Meehan 

1968, Kier 1974, Pearse and Pearse 1975, Timko 1976, O'Neill 1978, Seilacher 

1979, lbidapoobe et al. 1981 , Brown 1983, Smith 1984, Telford 1985, Telford et 

al. 1985, Dafni 1986, Lawrence 1987, McNamara 1987, Ebert 1988, Ellers and 

Telford 1992, Marthy et al. 1994, Mooi et al. 1994, Beadle 1995, Mooi and David 
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1996, Philippi and Nachtigall 1996, Hotchkiss 1998, Lawrence et al. 1998, Mooi 

and David 2000, Johnson et al. 2002, Smith 2005). However, explaining how the 

morphological differences develop, specifically during test growth, remains a 

challenge for two main reasons, each limiting empirical analysis. First, tests are 

endoskeletons (Hyman 1955) and, therefore, concealed from direct observation; 

researchers infer growth processes from multiple specimens prepared at different 

ages (Deutler 1926, Gordon 1926, 1927, 1929, Jensen 1969a, Markel 1981). 

Second, echinoids are characterised by longevities exceeding 100 years (Ebert 

and Southon 2003); examining growth processes for one individual throughout its 

life becomes logistically untenable. Moreover, explaining test growth has proven 

challenging because the five ontogenic processes (plate growth, plate addition, 

plate interaction, plate gapping, and visceral growth) are interrelated and occur 

simultaneously, preventing direct association of cause and effect. Therefore, 

theoretical models have been developed and implemented to overcome these 

challenges. Over the past century nine published theoretical models (Chapter 2) 

were developed to explain echinoid test growth (Thompson 191 7, Moss and 

Meehan 1968, Raup 1968, Seilacher 1979, Telford 1985, Baron 1991 , Ellers 

1993, Abou Chakra and Stone 2008, Zachos 2009). 

Herein, we use Holotestoid to simulate test morphologies. Holotestoid is 

the only computational model of test formation that incorporates five ontogenic 

processes, thereby allowing the complete exploration of regular echinoid test form 

and growth (Chapter 3). We investigate how post-Paleozoic echinoids realise 
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diverse test morphologies using the same structural elements by considering how 

changes to the physical attributes ambulacral column width, plate number, and 

polar region (apical system and peristome) sizes influence test height-to-diameter 

ratios (h:d). 

Ambulacral column width and plate number exhibit trends (Kier 1974) 

across the Echinoidea. However, trends for neither apical system size nor 

peristome size over time have been identified. Although apical systems and 

peristomes obviously change during ontogeny and researchers have studied their 

constituent plates for ageing individuals (Loven 1874, Moss and Meehan 1968, 

Markel 1981 , Mooi et al. 1995), no comprehensive study on plate growth in these 

regions has been published, so ideas on how these regions change and how plate 

growth relates to those changes must be considered as speculative. Therefore, 

using Holotestoid, we investigated five parameters ( aam, tpn, apr, ps:ap, and ap:cl) 

associated with these physical attributes. The ambulacral column width is 

influenced by the parameter ambulacral column angle Uam (Fig. 4. la). Plate 

number in a growth zone is influenced by the parameter tpn. Polar region sizes, 

apical system radius (apr) and peristome radius (psr), are influenced by the 

parameters apr, ps:ap, and ap:cl. We explore through computer simulation 

individual parameter effects on h:d; additionally, we explore how spec1es­

specific h:d are realised. 

4.2 Methodology 

113 




Chapter 4 PhD Thesis-M. Abou Chakra - Computational Biology - McMaster 

4.2.1 Empirical methods 

Specimens of Eucidaris thouarsii (Et, n = 6) were obtained from the 

California Academy of Sciences collection, San Francisco, CA, USA; specimens 

of Arbacia punctulata (Ap, n = 33) were obtained from Gulf Specimen Marine 

Laboratory, Panacea, FL, USA; specimens of Lytechinus variegatus (Lv, n=70) 

and Me/Zita quinquiesperforata (Mq, n=lO) were obtained from Marine 

Biological Laboratory, Woods Hole, MA, USA; and specimens of Dendraster 

excentricus (De , n=49) and Strongylocentrotus franciscanus (Sf, n = 14) were 

obtained from Westwind Sealab Supplies, Victoria, BC, Canada. 

In this study, we chose these six morphologically disparate species as 

representatives of the Cidaroida (i.e. , Et), Stirodonta (i.e. , Ap), Camarodonta (i.e. , 

Lv and Sf), and Irregularia (i.e., De and Mq), thus providing a variety of 

taxonomic samples (Mortensen 1935, 1948, 1950, 1951, Durham 1955, Durham 

and Melville 1957, Kier 1965, 1974, Smith 1984, 2005). Measurements were 

made using a Vernier calliper on spine-less, eviscerated, and cleaned tests. For 

each specimen, we measured the ambulacral column angle ( Uam) , apical system 

radius (apr), column length (cl), diameter (d), height (h), and peristome radius 

(psr). Measurements are presented in Table 1 as Uam, ap:cl, ps:ap, h:d, and d:cl. 

4.2.2 Theoretical model: Holotestoid · 

Holotestoid was designed to simulate regular echinoid test growth 

involving five ontogenic processes (Chapter 3) and uses graphical techniques 
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(e.g. , geometric representation) and mathematical principles (e.g. , Plateau' s Laws) 

to emulate the five processes computationally. The first process, plate growth, 

increases or decreases plate size, with plate size determined using ambulacral 

column angle and on the basis of relative distance from a polar region (apical 

system or peristome; Chapter 3). The second process, plate addition, inserts new 

plates apically at a nucleation point situated coterminously with an ocular plate. 

The third process, plate interaction, involves an analogy in which individual 

plates are likened to bubbles ( circles in two-dimensions) to predict the interfaces 

and shapes adopted between plates in a column (Thompson 1917, Boys 1958, 

Raup 1968, Isenberg 1978). The fourth process, plate gapping, separates plates 

(circles) in a close-packing configuration (no overlaps and minimal gaps), 

emulating collagen fibre loosening by creating gaps for new plate addition and 

calcite deposition to occur. The fifth process, visceral growth, determines test 

shape according to a catenary chain analogy, where each plate acts as a separate 

link in a chain balancing the forces between plates (Yates 1959); the analogy is 

based on the idea that plates interact firmly or are sutured together and, therefore, 

transmit forces between each other (Moss and Meehan 1967, Smith 1984, 

Johnson et al. 2002). 

To simulate regular echinoid test growth, Holotestoid ( Chapter 3) uses 

only four parameters: growth zone angle ( <Xgz, Fig. 4.1 ), ambulacral column angle 
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Table 4.1. E. thouarsii (Et), A. punctulata (Ap), L. variegatus (Lv), S. 
franciscanus (Sf),, M quinquiesperforata (Mq), and D. excentricus (De) 
measurements; ambulacral column angle (aam), apical system radius (apr), column 
length ( cl), test diameter ( d), test height (h), and peristome radius (psr), 
Measurements are presented as aam, ap:cl, ps:ap, d:cl, and h:d. 

Uam ap:cl ps:ap d:cl h:d 

Et 15 ± 1 0.18 ± 0.02 1.33 ± 0.24 1.00 ± 0.07 0.57 ± 0.05 
Ap 20± 2 0.14 ± 0.01 1.97 ± 0.21 1.10 ± 0.05 0.53 ± 0.03 
Lv 27 ± 2 0.08 ± 0.02 1.77±0.17 0.98 ± 0.22 0.60 ± 0.05 
Sf 31 ± 3 0.09 ± 0.01 1.86 ± 0.16 1.02 ± 0.08 0.44 ± 0.05 
Mq 39 ± 3 0.04 ± 0.01 0.53 ± 0.06 1.07 ± 0.04 0.10±0.01 
De 41 ± 3 0.03 ±0.01 0.84 ± 0.10 1.03±0.16 0.15 ± 0.02 
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(aam, Fig. 4.1), total plate number (tpn), and apical system radius (apr, Fig. 4.1). 

Accommodating irregular echinoid test growth required the addition of two more 

parameters: peristome-to-apical system ratio (ps:ap) and apical system-to-column 

length ratio (ap:cl). The parameter ps:ap provides the model with a constant 

relative size relationship between the apical system radius and peristome radius; 

the simulations that were performed for Chapter 3 correspond to ps:ap = 1. The 

parameter ap:cl provides the model with a constant relative size relationship 

between the apical system and column length ( an ap:cl value of zero is a special 

case, which Holotestoid translates to no growth and, therefore, fixed size for polar 

regions throughout a simulation); the simulations that were performed for Chapter 

3 correspond to ap:cl = 0. 

4.2.3 Simulations 

For this study, we used Holotestoid to investigate how the physical 

attributes ambulacral column width, plate number, and polar region sizes 

influence test shape and, thereby, elucidate the test shape disparity observed 

across the Echinoidea. We predicted test shapes quantitatively using h:d and 

graphically using catenary curves (Chapter 3). We conducted five simulations, 

Sam, Stpn, Sps:ap, Sap, and Sap:cl, to investigate the influence of individual parameters 

on h:d. Additionally, two simulations SFixed and Sarowth, were designed to explore 

how the h:d is achieved by specific species. Parameter ranges for all simulations 

were chosen to encompass measured data for real specimens (Table 1; for all 

simulations, we assumed that growth zones were equivalent, so fixed the growth 
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zone angle a gz = 72°; this provided an upper bound for Uam). 

S am was designed to explore the effects of aam on h:d. The aam was varied 

from 10° to 64°, in 2° increments. The following parameter values were set to tpn 

= 35, ps:ap = 1, apr = 0.05mm, and ap:cl = 0. 

Srpn was designed to explore the effects of tpn on h:d. The tpn was varied 

from 5 up to a value of 50 plates, in 1 plate increments. The following parameter 

values were set: ps:ap = 1, apr = 0.05mm, and ap:cl = 0. The simulations were 

repeated for Uam = 20°, 30°, 40°, 50°, and 60°. 

Sps:ap was designed to explore the effects of ps:ap on h:d. The ps:ap was 

varied from 0.5 up to 2, in 0.3 increments. The following parameter values were 

set: tpn = 50, apr = 0.05mm, and ap:cl = 0. The simulations were repeated for 

Uam varied from 10° to 64°, in 2° increments. 

Sap was designed to explore the effects of apr on h:d. The apr was varied 

from 0.05 up to a value of 50, in 0.5 increments. The following parameter values 

were set: Uam = 30°, tpn = 50, ps:ap = 1, and ap:cl = 0. 

Sap:cl was designed to explore the effects of ap:cl on test shape. The ap:cl 

was varied from O up to a value of 0.6, in 0.05 increments. The following 

parameter values were set: Uam = 8°, tpn::;:: 25, apr = 0.05mm, and ps:ap = 1. This 

simulation was repeated for Uam = 40°. 

S Fixed and S orowth were designed to explore how h:d is realised throughout 

individual ontogeny. We compared the effects of no growth (fixed) versus 
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Table 4.2. Parameter values ( Uam, ap:cl, ps:ap) chosen for simulations S Fixect or 
S Growth to simulate h:d for E. thouarsii (Et), A. punctulata (Ap) , L. variegatus 
(Lv) , S. franciscanus (Lv), M quinquiesperforata (Mq), and D. excentricus (De). 

Uam ap:cl ps:ap SFixed S Growth S Growth h:d accuracy 
h:d h:d (-sd) (+sd) 

Et-1 16 0.18 1.33 0.43 0.58 88 98 94 
Ap-1 22 0.14 1.97 0.27 0.57 86 98 92 
Lv -1 26 0.1 1.77 0.20 0.42 76 70 64 
Sf -1 32 0.09 1.86 0.19 0.38 97 86 77 

Mq-1 39 0.04 0.53 0.11 0.12 67 80 91 
De -1 42 0.03 0.84 0.08 0.12 92 80 71 
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growth of the polar regions. The simulations were conducted to represent the six 

species measured (Table 4.1 ). In SFixed, we fixed ap:cl to 0, translating to no 

growth of the polar regions, whereas, in SGrowth, ap:cl was set to a specific value 

between 0.03 and 0.18, which is species dependent, as shown in Table 4.1. 

Values were chosen from within the measured range, as presented in Table 4.2. 

For example, for E. Thouarsii (Et-1 ), we used Uam = 16° and ps:ap = 1.33 for 

SFixed, whereas we additionally set the ap:cl to 0.18 for SGrowth· For A. punctulata 

(Ap-1 ), we used Uam = 22°and ps:ap = 1.97 for SFixed, whereas we additionally set 

the ap:cl ratio to 0.14 for SGrowth· For L. variegatus (Lv-1 ), we used Uam = 26°and 

ps:ap = 1.77 for SFixed, whereas we additionally set the ap:cl ratio to 0.1 for 

SGrowth· For S. franciscanus (Sf-1), we used ambulacral Uam = 32° and ps:ap = 

1.86 for SFixed, whereas we additionally set the ap:cl ratio to 0.09 for SGrowth· For 

M quinquiesperforata (Mq-1), we used Uam = 39°and ps:ap = 0.53 for SFixed, 

whereas we additionally set the ap:cl ratio to 0.04 for SGrowth· And, for D. 

excentricus (De-1 ), we used Uam = 42°and ps:ap = 0.84 for SFixed, whereas we 

additionally set the ap:cl ratio to 0.03 for SGrowth. 

4.3 Results and Discussion 

4.3.1 Effect of ambulacral column width 

Sam - Increasing Uam from 10° to 64 ° produced a decrease in the h:d from 

0.99 to a plateau at 0.1 (Fig. 4.3a). This result shows that an increase in Uam leads 

to the flattening of tests. As plate size increases with Uam, column length also 
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increases. Theoretically, two extreme scenarios may be realised as column length 

increases in the limit to infinity, either an extremely flattened test or an extremely 

domed test. Based on the six species we measured (Table 4.1 ), typically h:d < 1. 

Although, h:d > 1 is theoretically possible, our observation also revealed that the 

average d:cl is 1.0 ± 0.1 for all species (Table 4.1 ). As the column length 

increases, the diameter has to also increase to compensate, thus limiting the test to 

h:d < 1. 

4.3.2 Effect of the total plate number 

S ,pn - Increasing tpn from 5 to 50 plates produced a decrease in the h:d, 

from 0.99 to a plateau at 0.16 (Fig. 4.3b). This result shows that an increase in 

tpn leads to the flattening of tests. Furthermore, we observe that the Uam at which 

h:d starts to decrease also decreased. For example, when tpn=12, h:d starts to 

decrease at Uam=44 °, whereas for tpn=50, h:d starts to decrease at Uam=8°. 

Additionally, we observed that, for all aam, plate numbers < 10 always produced 

h:d > 0.9. These results suggest a possible explanation for the test shape 

si1:11ilarity observed across newly metamorphosed (imago) individuals (Gordon, 

1926, 1927, 1929), which comprises of a small plate number and are characterised 

by globular shapes. 

4.3.3 Effect of the polar regions 

S ps:ap - Increasing the ps:ap from 0.5 to 2 produced no change in the h:d, 

which, for instance, remained constant at 0.32 for Uam = 30° (Fig. 4.3c ). . For all 
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ps:ap, we obtained overlapping curves similar to the Sam curve (Fig. 4.3a), with 

h:d decreasing with increasing ambulacral column angles (Fig. 4.3c ). 

S ap - Increasing apr from 0.05 to 50 produced no change in the h:d, which 

remained constant at 0.16. These results show that the initial size of the apical 

system and peristome do not affect final test h:d. On the basis of these results, we 

can infer that, under particular conditions (e.g. , no growth in the polar regions), 

h:d is impacted not by the absolute values of the polar regions but by the relative 

proportions among the physical attributes ( ambulacral column width, plate 

number, and polar region sizes). 

S ap:c! - Increasing ap:cl from Oto 0.6 produced an increase in the h:d, from 

0.37 to 0.99 (black curve, Fig. 4.3d). The ap:cl imparted more influence on 

columns with a large Uam value or large tpn value (grey curve, Fig. 4.3d). From 

these results, we can infer that, under particular conditions, test h:d is a result of a 

balance of the growth among the physical attributes ( ambulacral column, plate 

number, and polar regions). 

4.3.4 Exploring species specific height-to-diameter ratio 

To explore the effects of no growth (fixed) versus growth of the polar 

regions, we conducted two simulations (SFixect and Sorowth ) for all six species 

measured. In all cases, for S Fixect (gray curves in Fig. 4.4 ), the ap:cl was set to 0, 

preventing growth to the apical system and peristome, whereas, for S orowth (black 

curves in Fig. 4.4), the ap:cl was set to a species-specific value between 0.03 and 

0.18 (Table 4.1). 
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Figure 4.3. Graphical representation of h:d with respect to a) Uam an increase 
caused the h:d to decrease. b) tpn, an increase cause a decrease in the h:d, plotted 
for Uam 20°, 30°, 40°, 50°, and 60°) c) the ps:ap ratio values of 0.5, 0.8, 1, 1.2, 
1.5, and 2 did not affect h:d ( curves were offset for clarity), all six curve plots 
overlapped and display the same trend as in a). d) ap:cl, an increase caused an 
increase in h:d. 
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Each simulation used measured parameters representing real species to 

predict h:d (Table 4.1 ). The E. thouarsii (Et-1) simulations for SFixect show that 

h:d plateaued at 0.43, whereas, for Sarowth, h:d plateaued at 0.58 (Fig. 4.4a). The 

A. punctulata (Ap-1) simulations for SFixect show that h:d plateaued at 0.27, 

whereas, for Sarowth, h:d plateaued at 0.57 (Fig. 4.4b ). The L. variegatus (Lv-1) 

simulations for SFixect show that h:d plateaued at 0.20, whereas, for Sarowth, h:d 

plateaus at 0.42 (Fig. 4.4c). The S. franciscanus (Sf-1) simulations for SFixect show 

that h:d plateaued at 0.19, whereas, for Sarowth, h:d plateaued at 0.38 (Fig. 4.4d). 

The M quinquiesperforata (Mq-1) simulations for SFixect show that h:d plateaued 

at 0.11, whereas, for Sarowth, h:d plateaued at 0.12 (Fig. 4.4e). And the D. 

excentricus (De-1) simulations for SFixect show that h:d plateaued at 0.08, whereas, 

for Sorowth, h:d plateaued at 0.12 (Fig. 4.4f). 

In general, the results from SFixect corroborate with the previous simulation 

(Sam , Sps-toap, and Stpn) results, which showed that, as ambulacral column angle 

and total plate number increased, the h:d decreased (Fig. 4.3 and 4.4), leading to 

test flattening. However, results from Sarowth showed that growth of apical system 

and peristome led to the stabilization of the h:d and prevented gradual flattening 

with each plate addition (Fig. 4.4). In Sarowth, h:d = 0.58 was obtained for E. 

thouarsii when Uam =16° (Fig. 4.4a) and h:d = 0.12 was obtained for D. 

excentricus when aam = 42° (Fig. 4.4f). Thus, Sarowth results corroborated well 

with real specimen measurements. The predicted h:d from Sarowth were compared 

to measured h:d, yielding 98%, 93%, 70%, 87%, 80%, and 81 % accuracies for E. 
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Figure 4.4. Measured h:d ( dashed, red line) from real specimens and simulated 
h:d (SFixect, gray curves; SGrowth, black curves) using parameters measured from 
representative specimens from six species (Table 4.2). a) E. thouarsii (Et-1 ), b) 
A. punctulata (Ap-1), c) L. variegatus (Lv-1), d) S. franciscanus (Sf-1), e) M 
quinquiesperforata (Mq-1 ), f) D. excentricus (De-1 ). 
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thouarsii, A. punctulata, L. variegatus, S. franciscanus, M. quinquiesperforata, and 

D. excentricus, respectively (Table 4.2). 

4.4 Conclusion 

The results presented herein confirm that change in ambulacral column 

width, total plate number, and polar region size influence overall test shape and 

show how they do so. Increases to ambulacral column angle and total plate 

number each cause test h:d to decrease (test flattening). Moreover, the absolute 

size of the polar region appeared to have no effect on test h:d if the growth of the 

apical system and peristome were prevented (ap:cl = 0). However, including the 

growth of the apical system and peristome (ap:cl > 0) limited the flattening effects 

caused by plate addition and ambulacral column width increase. 

These results explain how the different h:d are achieved by different major 

echinoid clades and furthermore show how h:d are maintained throughout the 

development of an individual. Researchers have noted that there is a specific h:d 

for different species (Mortensen 1935, 1948, 1950, 1951 , Kier 1974, Telford 

1985, Ebert 1988, Ellers 1993). This is the first study to show how such h:d may 

be sustained through the balanced growth among the physical attributes 

comprising tests (ambulacral column width, total plate number, the apical system 

radius and peristome radius). 

This study provides an explanation of the factors contributing to the 

diverse test h:d observed among echinoids, especially the disparity between 
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regular echinoids and irregular echinoids (specifically clypeasteroids). We can 

now infer that the flattened test was influenced by increases in the ambulacral 

column width and the relatively small apical system radius and peristome radius 

with respect , to column length in irregular echinoids in comparison to regular 

echinoids. Future studies should address test growth in Paleozoic echinoids, 

wherein shapes are similar (globular) but among which physical attributes differ 

(Jackson 1912, Mortensen 1935, Durham and Melville 1957, Kier 1965, Smith 

2005). 
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Chapter 5: Conclusion 

5.1 Summary 

Despite their rich history and fossil record, echinoid test morphologies are 

still considered challenging to interpret and analyse. To explore such intriguing 

morphological puzzles, a new scientific field had been established, theoretical 

morphology; a field in which models are developed to explain and describe 

organism growth and form (Thompson 191 7, Raup 1968, Mc Ghee 1999). In 

Chapter 2, two different theoretical morphology modelling approaches were 

differentiated. One approach, mechanistic modelling, involves using process-

based principles, such as those associated with genetics or physiology. Another 

approach, dynamic modelling, involves using pattern-based principles, such as 

those associated with mathematics or physics. 

The echinoid test has been studied by many theoretical morphologists who 

produced the nine echinoid test models that have been published: (Thompson 

1917, Moss and Meehan 1968, Raup 1968, Seilacher 1979, Telford 1985, Baron 

1991 , Ellers 1993, Telford 1994, Abou Chakra and Stone 2008, Zachos 2009). 

Most of the previous models except for Zachos (2009) used a dynamic modelling 

perspective. In Chapter 3, a new model was presented, Holotestoid, which also 

uses a dynamic modelling perspective. However, it is the first computational 

model that emulates all five ontogenic processes involved in test growth (plate 

growth, plate addition, plate interaction, plate gapping, and visceral growth). The 
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model incorporates mathematical principles (e.g., catenaries), physical (e.g. , 

coalescing bubbles) and biological processes (e.g., echinoid ontogenic processes). 

A geometric representation was implemented to explain plate addition and plate 

growth. Three analogies were utilised, that is, coalescing bubble, circle-packing, 

and catenary chains to describe plate interaction, plate gapping, and visceral 

growth, respectively. A complete picture was created to explore echinoid test 

growth by integrating all five ontogenic processes. 

Holotestoid can be used to predict plate size, plate shape, and test shape 

and identify nucleation points within growth zones. To validate the 

computational model quantitatively, morphological features from our simulated 

forms were compared with those from real specimens. Growth zones for Arbacia 

punctulata and for Strongylocentrotus franciscanus were generated by varying 

only a single parameter, the ambulacral column angle ( Uam = 22° and aam = 32°, 

respectively). Ambulacral column angle is a parameter that can distinguish 

among species; as ambulacral column angle increases the ambulacral plate size 

also increases along the column length. Maximum plate widths, ocular plate 

sizes, and test heights were predicted with high accuracies for A. punctulata and 

S. franciscanus. These results also confirmed that the mathematical and physical 

principles can be used do mimic observed patterns. Interambulacral plate size, 

interambulacral plate number, and even ambitus position were predicted again 

with high accuracy values for both A. punctulata and S. franciscanus. More 

importantly, the results showed that, using as few as four parameters, the 
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combined processes can produce simulated patterns mimicking biological 

patterns. 

Furthermore, Holotestoid was used to investigate a macro-evolutionary 

pattern that has so far eluded analysis; that is the morphological disparity 

observed among echinoid tests. For example, regular echinoid (sea urchin) and 

irregular echinoid (sand dollar) tests involve the same ontogenic processes, 

structural elements and even exhibit similar morphologies as imagines (Gordon 

1926, 1927, 1929). However, as adults, they exhibit different test morphologies. 

Sea urchins generally have a globular test, whereas sand dollars generally have 

flattened tests (Kier 1974, Smith 2005). Thus, five parameters, ambulacral 

column angle (aam), total plate number (tpn), apical system radius (apr), 

perist<?me-to-apical system ratio (ps:ap ), and apical system-to-column length ratio 

(ap:cl) were explored to understand their individual effects on test shape. These 

parameters are associated with three test attributes hypothesised to influence test 

height-to-diameter ratio (h:d). Parameter Uam relates to the ambulacral column 

width; tpn relates the total plate number of ambulacral plates in a single growth 

zone; and parameters apr, ps:ap, and ap:cl relate the overall size of the polar 

regions, apical system, and peristome. The results showed that ambulacral 

column widening and increase in total plate number cause the test h:d to decrease 

(test flattening) whereas both increases in the absolute apr and ps:ap did not affect 

the test h:d; this means that the absolute size of the polar region does not 

influence test h:d. However, the growth of the apical system and peristome (ap:cl 
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> 0) counteracted the flattening effects caused by ambulacral column width 

increase and plate addition. Additionally, we observed that all Uam, plate numbers 

<10 always produced h:d >0.9. These results present a possible explanation for 

the test shape similarity observed across newly metamorphosed (imago) 

individuals (Gordon, 1926, 1927, 1929) who have a small plate number and 

globular shapes. These results also explain how the different h:d are sustained by 

the balanced ratio and growth among the physical attributes. 

To further validate the effects of the three attributes, the specific h:d 

obtained by six different species (E. thouarsii, A. punctulata, L. variegatus, S. 

franciscanus, M quinquiesperforata, and D. excentricus) were measured and 

explored. This was achieved by suppressing growth (ap:cl = 0) of the polar 

region (the apical system and peristome ), in one case, and allowing the polar 

regions to grow (ap:cl > 0) with respect to the column length in the second case. 

The results corroborated well with the measured data from real specimens, 

confirming the effects of individual test attributes on height-to-diameter ratio. 

Holotestoid proved to be a useful tool to explore echinoid test growth and 

form by isolating each parameter to understand their individual influence on the 

test shape. Moreover, results emphasise the impact of each attribute by 

distinguishing which physical attribute contributed to the flattening of the test 

from the ones influencing globular shape; and offer the first rationalisation of 

processes leading to test flattening from globular shapes. Further exploration 

using Holotestiod would help researchers gain a more complete understanding of 
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test ontogeny and the evolution of form. 

5.2 Outlook 

5.2.1 New interambulacral plate size: are they inserted to fill space? 

Holotestoid was designed to insert new plates contiguous to the ocular 

plates. However, it is challenging to estimate the size of new interambulacral 

plates as they are often missing in specimens, making data difficult to obtain. It 

has been suggested that interambulacral plate function to fill space (Markel 1981, 

Mooi et al. 1994). Therefore to test whether or not interambulacral plates are 

inserted to fill space, two functions by which one could estimate new 

interambulacral plate size should be utilised. The first function uses the same 

approach as the one used for ambulacral columns, which is based on the distance 

from the apical system and the column angle. The interambulacral angle is 

calculated using a relationship in which the new interambulacral plate angle is 

equal to half the difference between interambulacral column angle and the new 

ambulacral plate angle. 

The second function stems from the idea that new interambulacral plates 

are inserted to fill the gaps created between ocular plates and genital plates (Raup 

1968, Pearse and Pearse 1975, Dafni 1986). To design this function, plates would 

be described as circles ( containing a centre position and a radius). This is 

achieved by utilising the Descartes Circle Theorem (Descartes 1954, Langarias et 

al. 2002). The result would calculate a new interambulacral plate size that fits 
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between the gap between the ocular and genital plate. 

Simulation should be conducted to test which solution is congruent with 

the data measured. Furthermore, comparison of the two methods is required to 

understand how new interambulacral plate size is obtained; that is whether they 

are inserted to fill space or is it based on the distance from the apical system. 

5.2.2 How does plate fixation affect test shape? 

Holotestoid was designed with two surfaces to allow the control of plate 

migration from the aboral to the oral as it occurs in all regular echinoids. 

However, in irregular echinoids such as spatangoids and clypeasteroids, the plates 

on the oral surface become fixed early in ontogeny, and migration from the aboral 

surface is halted (Mortensen 1950, 1951 , Durham 1955, Kier 1974, Seilacher 

1979). Therefore, exploring the effects of plate fixation on test shape ( e.g. , h:d) 

would entail simulations that emulate plate fixation under different parameter 

values. All parameters ( aam, Ugz, tpn, apr, ps:ap, and ap:cl) will be explored to 

observe the effect on test shape. 

5.2.3 How is the ambitus location determined? 

I hypothesise that the ambitus position is located half way along a growth 

zone (from apical system centre to the peristome centre) for some regular 

echinoids (specifically for the echinoids in this study). Testing this hypothesis 

requires one, first, to measure ambitus location from a variety of real specimens. 

Second, using Holotestoid, one would conduct several simulations involving 
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individual parameter ( Uam, Ugz, tpn, apr, ps:ap, and ap:cl) effects on ambitus 

location, and how different locations are achieved by a variety of species. 

Additionally, as plate width increases with increasing distance from either polar 

region, simulations can be conducted to explore which parameters also affect 

plate width at the ambitus. Data for plate width versus relative distance along a 

growth zone should be collected and compared to the data measured from real 

specimens. Garnering information about the ambitus location will contribute to a 

better understanding of the overall test shape. Further simulations should be 

conducted to test how plate fixation for different test h:d can affect ambitus 

location, permitting insight into the heart-shaped, discoid-shaped, and bottle-

shaped tests exhibited by the Irregularia (Mortensen 1950, 1951 , Seilacher 1979, 

Smith 2005). 

5.2.4 Expansion of Holotestoid 

Holotestoid was initially designed to emulate regular echinoid tests. All 

echinoids exhibit the same basic growth processes. However, their physical 

attributes differ especially when considering the test growth in Paleozoic 

echinoids; the shapes are similar (globular), but have different physical attributes 

(e.g. , ambulacral column width, column number, and plate size). The expansion 

of the model would first entail a function that considers multiple columns. 

Paleozoic echinoid column number was not limited to just two per ambulacrum or 

interambulacrum (Jackson l 912, Mortensen 1935, Kier 1965). Column number 

can be considered one of the main physical attribute differentiating Paleozoic 
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from post-Paleozoic echinoids (Jackson 1912, Mortensen 1935, 1948, 1950, 1951 , 

Kier 1965, 1974). Therefore, a function that accepts multiple columns can assist 

in the understanding of differences in shape change between the Paleozoic and the 

post-Paleozoic forms. 

Other physical attributes such as differentiated ambulacral columns 

exhibiting petaloid formations lunules, genital plate number, and periproct 

location should be implemented in the model. Introducing such parameters will 

improve the model, thereby providing better understanding of the regular and 

irregular echinoid test shape disparities. For example, petaloid formation occurs 

only in irregular echinoids and is limited to the ambulacral columns (Mortensen 

1950, 1951 , Durham 1955, Seilacher 1979, Smith 1984, 2005). At a specific test 

ontogenic stage of the test, the ambulacral column changes size, plate addition 

rate increases, and a petaloid forms (Durham 1955, Kier 1965). In the model, the 

change in size can be translated into a change in ambulacral column angle, and 

can be included as a switch in the model. Such a function would allow the 

exploration of how the petaloid formation affects test shape; additionally, petaloid 

size effects on column length and overall test shape should be explored. 

Further expansions · would even include physical attributes ( ambulacral 

c;olumn width, plate number, and axial versus extraxial elements) from other 

echinoderms (e.g. , starfishes, brittle star and sea lilies) which also possess an 

endoskeleton with pentameric symmetry (Hyman 1955, Mooi et al. 1994, Mooi et 

al. 1995, Mooi and David 1996, 1998, 2000, Mooi et al. 2005). As, Holotestoid 
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emulates a growth zone, it can be expanded to all echinoderms; they all contain 

growth zones with a single ocular plate, referred to as a terminal plate in non­

echinoids (Mooi et al. 1994, Mooi and David 2000, Mooi et al. 2005). Moreover, 

all echinoderms share similar processes ( e.g., plate addition, plate growth, and 

plate interaction) that are already ~onsidered in Holotestoid. Addition of a 

function that addresses specific attributes of the model could enhance our 

understanding of skeletal growth across the entire phylum. 
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Appendix Al: Holotestoid 

Author 's contributions - Source code is original work solved, coded, and written 

by M. Abou Chakra using Mathematica 7; soft copy can be obtained from the 

author. 

Al.1 Initialisation and Output functions 

(* 1 interamb, 2 amb, 3 occulars, 5 apical, 6 peristome*) 
Clear[intialList] 
intialList[gz _,ambAng_,ocD _,gpD _,apical C _,precisionF actor _,op T 1 _,pn_,ps _ :2] : 
= Module [ { finalL,apAngS ,apAngR,r L,growthPos, temp,op T ,p Tip} , 
opT=opTl ; 
apAngR=N[{O, (gz)/2, -(gz)/2} ]; 
apAngS=N[ { ambAng,gz-ambAng,gz-ambAng}]; 
finalL= {}; 
(* locating the oculars and genitals around the apical System*) 
growthPos=PackModel' SmallFunctions 'RotateOneCurve[ #[[1 ]] ,#[[2]] ,apicalC[[l 
]]]&/@Transpose[ { {ocD,gpD,gpD} ,apAngR} ]; 
rL=Flatten[(PackModel 'PlateGrowthFunctions 'PlateGrowthSize[ #[[1 ]], { #[[2]]}, { 
apicalC[[l ]] } ]&/@Transpose[ { apAngS,growthPos}])]; 
temp=Transpose[ {growthPos,Transpose[ {rL,rL} ], Table[ {},{i,Length[rL]}]} ]; 
(* adds the different elements of the list depending what was inputed by the user 
based on opT*) 
Map[Function[ d, Which[ d==6,AppendTo[finalL, { { { O,­
(apicalC[[2, 1 ]] *ps+temp[[l ,2]] [[1 ]]+apicalC[[2, 1 ]]) } ,(apicalC[[2]] *ps ),apicalC[[ 
3]]}} ];, 
d==5 ,Append To [ finalL, { apical C}] ;, 
d==4,AppendTo[finalL, { temp[[2]],temp[[3]]} ];, 
d==3 ,AppendTo[finalL, { temp[[l ]] } ] ;, 
d==2,AppendTo[finalL,{} ];, 
d==l ,AppendTo[finalL,{} ]; 
]] ,opT] ; 
(*adds amb or int plates*) 
If[(MemberQ[ opT, 1 ]==True) ll(MemberQ[ opT,2]==True ), 
F or[p= 1,p<=pn, 
(*get the position for the columns in a list*) 
pTip=Last/@Reverse[Sort[Maplndexed[ { #1 , First[ #2] }&,opT]]]; 
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finalL=AddingA11ThePlate[finalL,opT,If[EvenQ[Length[finalL[[pTip[[5]]]]]]==T 

rue, { 1}, {2}],precisionFactor,finalL[[pTip[[2]]]],ambAng,( ambAng*0.3 *Pi/180)]; 

temp=GrowThenCoalesceORclosePackBubbles[finalL,precisionFactor,opT,gz, { a 

mbAng,ambAng},(ambAng*0.3*Pi/180)]; 

finalL=temp[[ 1 ]] ; 

opT=temp[[2]]; 

p++; 

]; 
]; 

Transpose[ { opT,finalL}] 

] 

Clear[holanalysisOfGrowthZone] 

holanal ysisOfGrowthZone [growthZoneList_, typeList_,precisionF actor _,gZAng_, 

ambAng_,npAng_,fileN ame _,fplate _,fileList_] :=Module[ { withlnt,pTip,newbubLi 

st,orList,pn,cl,s V sD,lp 10, dList}, 

(* {"PnINp.dat","diVsRA.dat","diVsRI.dat","diVsA.dat","diVsl.dat","Psla.dat","P 

slb.dat", "Pslad.dat", "Pslbd.dat", "Pn.dat", "PnA.dat", "Pnl.dat", "Pnla.dat", "Pnlb.dat 

","Visceral.dat","Viscerallnfo.dat","Analysislnfo.dat"};*) 

dList={}; 

(*adds the int plates*) 

lp 1 O=Import[fileName<>fileList[[l ]],"Data"]; 

withlnt=GrowthOflntZone[growthZoneList,typeList,precisionFactor,(gZAng),am 

bAng,npAng,Last[lp 10] ,fplate]; 

newbubList=withlnt[[l ]]; 

orList=withlnt[[2]]; 

pTip=Last/@Reverse[Sort[Maplndexed[ { #1, First[ #2] }&,orList]]]; 

(*gets the plate number in amb and int columns*) 

pn={Length[ newbubList[[pTip[[5]]]]],Length[ newbubList[[pTip[[6]]]]]}; 

(*column length*) 

cl=EuclideanDistance[ newbubList[[pTip[[l ]], 1 ]] [[1 ]],newbubList[[pTip[[2]], 1 ]] [[ 

1]]] ;, 
(*sive vs dist or vise versa*) 

s V sD=Map[Function[ d, {EuclideanDistance[ d[[l ]],newbubList[[pTip[[2]], 1 ]][[1 ]] 

],Mean[ d[[2]]]} ], { newbubList[[pTip[[5]]]],newbubList[[pTip[[6]]]],withlnt[[3, 1 ]] 

,withlnt[[3,2]]}, {2}]; 

(* plate count, important for plate fixation*) 

dList=AppendTo[dList,{ withlnt[[ 4]]} ]; 

(*both dist and size relative,sorted by distance from apicalS*) 

dList=AppendTo[dList,sVsD[[l]]/cl];(*dist vs size /cl, amb*) 

dList=AppendTo[dList,sVsD[[2]]/cl];(*dist vs size /cl, int*) 

(*only dist relative*) 

dList=AppendTo[dList,Map[Last,Sort[(#/ { cl,1 }&/@sVsD[[l]])]]];(*dist vs size, 
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amb*) 
dList=AppendTo[ dList,Map[Last,Sort[(#/ { cl, 1 }&/@s V sD[[2]])]]] ;(*dist vs size , 

Int*) 

(*size of the plates without being relative distance,but *) 

(*only size*) 

dList=AppendTo[ dList,Last/@s V sD[[3]]]; 

dLis.t=AppendTo[ dList,Last/@s V sD[[ 4]]];(*dist vs plate num, int*) 

(*size of the two different In Col*) 

dList=AppendTo[ dList,(#/ { cl, 1 }&/@s V sD[[3]])]; 

dList=AppendTo[dList,(#/ { cl,1 }&/@sVsD[[4]])]; 

(*plate numbers and ratios*) 

dList=AppendTo[ dList, { {N[pn[[2]]/pn[[l ]]] ,N[pn[[2]]/(pn[[l ]]*2)],N[pn[[2]]/(pn 

[[1]]*3)] ,N[pn[[2]]/(pn[[l ]]*4)] ,N[pn[[2]]/(pn[[l ]]*5)]}} ]; (*int/amb, and other 

compounding options*) 

dList=AppendTo[ dList, {pn[[l ]] } ]; 

dList=AppendTo[ dList, {pn[[2]]} ]; 

dList=AppendTo[ dList, {Length[ withint[[3 , 1 ]]]} ]; (*int single col plate number*) 

dList=AppendTo[ dList, {Length[ withint[[3 ,2]]]}]; 

(*total length , ap sys R and peristome R *) 

dList=AppendTo[ dList, { cl,Mean[ newbubList[[pTip[[2]], 1 ]] [[2]]] ,Mean[ newbubL 

ist[[pTip[[l ]] , 1 ]][[2]]]} ]; 

(*cl, apicalsyst radius, peristome radius*) 

(*saves the columns in a separate file*) 

Export[fileName<>ToString[pn[[l]]]<>"-

allListAa.nb" , { growthZoneList, typeList}]; 

Export[fileName<>ToString[pn[[l]]]<>"-allListla.nb",withint] ; 

Export[ fileName<>ToString[pn[[l ]]]<>"­
allListAa.dat" , { growthZoneList, type List}]; 

Export[fileName<>ToString[pn[[l]]]<>"-allListla.dat",withint]; 

Export[fileName<>ToString[Length[newbubList[[pTip[[5]]]]]]<>"ia.nb",PackMo 

del' SmallFunctions 'Drawcol[ newbubList]]; 

Export[fileName<>ToString[Length[newbubList[[pTip[[5]]]]]]<>"am.nb",PackM 

odel' SmallFunctions'Drawcol[growthZoneList]] ; 

Export[fileName<>#[[2]],Join[Import[fileName<>#[[2]] ,"Data"],#[[1]]]]&/@Tra 

nspose[ { dList, Take[ fileList, 15]}]; 


] 
Clear[plList] 

plList[lp _,ps _,as _,j_,per _,op_]:= 

ListPlot[lp,AspectRatio-> 1,Joined->j,PlotStyle->ps,AxesStyle­

>as, Which[ op==2,PlotRange->{ {Min[Map[First,lp ]]­
(Min[Map[First,l p]] *per) ,Max [Map [F irst,l p]] +(Max [Map [First,l p]] *per)}, { Min [ 

Map[Last,lp ]]­
(Min[Map[Last,lp ]] *per),Max[Map[Last,lp ]]+(Max[Map[Last,lp ]]*per)}}, 
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op==l ,PlotRange->{ {O,Length[lp ]+Length[lp ]*per} , {Min[lp ]­

(Min[lp] *per* 5),Max[lp ]+(Max[lp] *per)}} , 

op==3,PlotRange->{ {O, 

Max[Map[Length,lp ]]+ 1}, {Min[Map[Min,lp ]],Max[Map[Max,lp ]] } } , 

op==4,PlotRange->{ {Min[Map[Function[ d,Min[Map[First,d]]] ,lp ]] , 

Max[Map[Function[ d,Max[Map[First,d]]] ,lp ]] } , {Min[Map[Function[ d,Min[Map[ 

Last,d]]] ,lp ]] ,Max[Map[Function[ d,Max[Map[Last,d]]],lp ]] } } 

], 

Which[ op==2,Axes0rigin->{Min[Map[First,lp ]]­
(Min[Map [F irst,l p]] *(per)) ,Min[Map [Last,l p] ]-(Min[Map [Last,l p]] *(per))} , 

op== 1,AxesOrigin->{ O,Min[lp ]-(Min[lp ]*(per)* 5)} , 

op==3 ,AxesOrigin-> { O,Min[Map[Min,lp ]] } , 

op==4 ,AxesOrigin­
> { Min[Map [Function[ d,Min[Map[First,d]]] ,lp ]] ,Min[Map[Function[ d,Min[Map[ 

Last,d]]] ,lp ]] } 

] 
] 

Clear[listPlotData] 

listPlotData[fileName _,fileList_,pn_:O,allOfl _:O,allOflList_:{O}] :=Module[ { dLis 

t,tL,lp2b,ps,as,a,b,d,e,c,aO,b 1,c 1,per,j ,i,lpallOfl ,pRA} , 


(* {"diVsRA.dat","diVsRI.dat","diVsA.dat","diVsl.dat","Psla.dat" ,"Pslb.dat","Psl 

ad.dat" , "Pslbd.dat" , "Pn.dat", "PnA.dat", "Pnl.dat" , "Pnla.dat", "Pnlb.dat" , "Visceral. 

dat" , "Viscerallnfo.dat", "Analysislnfo.dat"} ; *) 

dList=Import[ fileName<>#, "Data"]&/@fileList[[l ;; 14 ]] ; 

( dList[[ #]]=Flatten[ dList[[ #]] , 1])&/@{3,4,5,6,10, 11 ,12, 13} ; 

AppendTo[ dList,Flatten[Map[First,dList[[9]]]]] ; 

ps={Directive[PointSize[0.007] ,Black,Thickness[0.006]]} ; 

(*35 for ap, 38sp*) 

as=Directive[Black,FontSize->38. ,FontFamily->"Arial", Thickness[0.0035]]; 

j=False;j=True; 

(*pr={ {0,1 },{0,.2} },PlotRange->pr*) 

per=0.2; 

tL=Join[ { { 1,#[[1]]} },Table[ {Apply[Plus,Take[#,i-1]]+ 1,Apply[Plus,Take[#,i]]} , 

{i,2,Length[#]} ]]&/@dList[[10;;13]]; 

(*gets the list for the diff ratios*) 

lp2b=Flatten[Map[Function[ d,Take[ d, {#}]],dList[[9]]]]&/@{ 1,2,3,4,5}; 

If1allOfl ==O, 

lf1pn==O, 

(*ratio*) 

Export[ fileN ame<> "Int-Amb 

Ratio"<> To String[ #[[1 ]]]<> ToString[pn ]<>" .nb" ,plList[ #[[2]],ps,as,j ,per, 1 ]]&/@ 

Transpose[ { { 1,2,3,4,5} ,lp2b} ]; 
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(*all the point mixed*) 
Export[ fileN ame<>#[[ 1 ]]<> ToString[pn ]<>" .nb" ,plList[ #[[2]],ps,as,j ,per,#[[3]]]] 

&/@Transpose[ {{"Ard vs rwl ","I rd vs rwl ","Aw vs pn ol ","I w vs pn 

ol ","Iaol w vs pn","Ibol w vs pn","laolc w vs pn","Ib olc w vs 

pn" } ,dList[[l ;;8]] , {2,2, 1, 1, 1, 1,2,2}}] ; 


( dList[[ #[[1 ]]]]=Map[Function[ d,Take[ dList[[ #[[l ]]]] ,d]] ,tL[[ #[[2]]]]])&/@ 

Transpose[{ {l ,2,3,4,5,6,7,8} , {1 ,2, l ,2,3,4,3,4} }]; 


( dList[[ #]]=Map[Reverse,dList[[ #]]])&/@ {3,4,5,6, 7 ,8}; 

(*All*) 

Export[ fileName<>#[[ 1 ]]<> ToString[pn ]<>" .nb" ,plList[ #[[2]],ps,as,j ,per,#[[3]]]] 

&/@Transpose[ {{"Ard vs rwl l ","1 rd vs rwl 1 ","Aw vs pn ol 1 ","1 w vs pn 

ol 1 ","Iaol 1 w vs pn","lbol w vs pnl 1 ","Iaolc w vs pnl 1 ","lb olc w vs 

pnl 1 "} ,dList[[l ;;8]] , { 4,4,3,3,3,3 ,4,4}}] ; 

Export[fileName<>"lpPn"<> ToString[pn ]<>" .nb" ,plList[ dList[[l 5]] ,ps,as,j ,per, 1] 

]; 


(*Last*) 

Export[ fileName<>#[[ 1 ]]<> ToString[pn ]<>" .nb" ,plList[ #[[2]] ,ps,as,j ,per,#[[3 ]]]] 

&/@Transpose[ {{"Ard vs rw2" ,"I rd vs rw2","A w vs pn o2","I w vs pn 

o2" ,"Iaol w vs pn2","lbol w vs pn2","Iaolc w vs pn2","lb olc w vs 

pn2"} ,dList[[l ;;8]] ,{2,2,l ,1,1 ,1,2,2}} ]; 


' 
(*Current*) 
Export[fileName<>#[[l ]]<> ToString[pn ]<>" .nb",plList[Reverse[Take[ #[[2]] ,#[[ 4 
]][[pn]]]] ,ps,as,j ,per,#[[3]]]]&/@Transpose[ {{"Ard vs rw" ,"1 rd vs rw" ,"A w vs 
pn o" ,"I w vs pn o","Iao w vs pn","Ibo w vs pn","Iaoc w vs pn","Iboc w vs 
pn" } ,dList[[l ;;8]] , {2,2, 1, 1,1, 1,2,2}, { 1,2, 1,2,3,4,3,4}}]; 
Export[fileName<>#[[l ]]<> ToString[pn ]<>" .nb" ,plList[Take[ #[[2]] ,pn],ps,as,j,pe 
r,1]]&/@Transpose[ { {"Rl ","R2","R3 ","R4","R5"} ,lp2b} ]; 
] 

' 
Which[allOfl ==1, 

lpallOfl =Map[Function[ d,Take[ dList[[l ]] ,d]],tL[[l ]]] ; 

pRA=4;, 

allOfl ==2, 

lpallOfl =Map[Function[ d,Take[ dList[[2]],d]] ,tL[[2]]]; 

pRA=4; 


' 
all0f1==4, 

lpallOfl =Map[Function[ d,Take[ dList[[3]],d]] ,tL[[l ]]] ; 

pRA=3 ; 

,allOfl ==5 , 
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lpallOfl =Map[Function[ d,Take[ dList[[ 4 ]] ,d]] ,tL[[2]]];pRA=3; 

,allOfl ==6, 

lpallOfl =Map[Function[ d,Reverse[Take[ dList[[ 5]] ,d]]],tL[[3]]] ;pRA =3; 

,all Ofl ==7, 

lpallOfl =Map[Function[ d,Reverse[Take[ dList[[6]] ,d]]],tL[[ 4 ]]];pRA=3 ; 

,all Ofl==8, 

lpallOfl =Map[Function[ d,Map[Function[g,Abs[g­
{ 1,0} ]],Reverse[Take[ dList[[7]] ,d]]]] ,tL[[3]]];pRA=4; 

,all Ofl ==9, 

lpallOfl =Map[Function[ d,Map[Function[g,Abs[g­
{ 1,0} ]] ,Reverse[Take[ dList[[8]] ,d]]]] ,tL[[ 4]]] ;pRA=4; 

]; 

If[allOflList != {O},lpallOfl =Map[Function[d,lpallOfl [[ d]]] ,allOflList];] ; 

Export[ fileN ame<> Which[ all Ofl == 1, "PsA.nb" ,all Ofl ==2, "Psl.nb" ,all Ofl ==3 , "V 

isceral.nb" ,allOfl ==4, "PsAo.nb" ,allOfl ==5 , "Pslo.nb" ,allOfl ==6, "Psla.nb" ,allOfl 

==7, "Pslb .nb" ,all Ofl ==8 , "Pslad.nb" ,all Ofl ==9, "Pslbd.nb "] ,plList[l pall Ofl ,ps,as, 

j ,per,pRA]] ; 

] 

] 

Clear[plateGrowthF] ; 

plateGrowthF [ colList_,plN um_,gz _,atoi_,precisionF actor _,fixedPlates _,fileN ame 

_,fpn_,fx_,fpl_,npSz_,saveToF _:{False} ]:=Module[ {h2,info,bcol,temp }, 

h2=Map[Last,co1List] ; 

info= Map [First, co !List]; 

temp=GrowThenCoalesceORclosePackBubbles[h2,precisionFactor,info,gz,atoi,(( 

atoi[[ 1 ]] *npSz)*Pi/180),fx,fpn,fixedPlates,fpl] ; 

h2=temp[[l ]] ; 

info=temp[[2]] ; 

If[saveToF=={True }, 

Export[fileName<> ToString[plNum ]<>"-3PGFa.nb" ,h2]; 

Export[ fileName<> ToString[plNum ]<>" -3PGFb.nb" ,Drawcol[h2]] ; 

]; 

If[ saveToF=={}, 

Print[Drawcol[h2]]; 

]; 

temp] 


Clear[plateAddittionF] ; 

plateAddittionF[ colList_,plNum _,gz _,atoi_,precisionFactor _,bioprocesses _,fixed 

Plates _,fileName _,npSz_,saveToF _:{False}] :=Module[ {h2,pTip,info} , 

h2= Last/@colList; 

info=First/@colList; 

pTip=Last/@Reverse[Sort[Maplndexed[ { #1 , First[ #2]}&,info ]]]; 


148 


http:3PGFb.nb
http:3PGFa.nb
http:Pslbd.nb
http:Pslad.nb
http:isceral.nb


Appendix PhD Thesis- M. Abou Chakra - Computational Biology - McMaster 

h2= AddingAll ThePlate [h2,info,If1EvenQ [Length[h2 [ [p Tip [ [ 5]] ]]] ] ==True, { 1 } , { 2 

} ],precisionFactor,h2[[pTip[[2]]]],atoi[[ 1 ]],( ( atoi[[ 1 ]]/2 *npSz)*Pi/180)]; 


Ifl saveToF=={True}, 

Export[fileName<>ToString[plNum]<>"-2PAFa.nb",h2]; 

Export[fileName<>ToString[plNum]<>"-2PAFb.nb",Drawcol[h2]]; 

]; 

h2 

] 

Clear[platelnteractionF]; 

platelnteractionF[ colList_,plNum _,precisionFactor _,fileName _,saveToF _:{False} 

] :=Module[ {h2,fixed,pTip,info,bcol,per,h3,distList,ll,lc,distListS, 

orSeqList,fixed2} , 

h2= Map [Last,colList]; 

info=Map[First,colList] ;(* 5,4,3,2 *) 

per={}; 

If1MemberQ [ info,6]==T rue, 

pTip = Flatten[Map[Function[ dummy,Position[info,dummy ]], { 6} ]]; 

per=Map[Function[ dummy,h2[[ dummy, 1 ]]],pTip] [[1 ]]; 

h2=Map[Function[dummy,Drop[h2,{dummy}]],pTip][[l]]; 

info=Flatten[Map[Function[ dummy,Drop[info, {dummy} ]],pTip ]]; 

]; 

fixed2=fixed= Map [Function[ dummy, { 

Flatten[Position[info,dummy]][[l ]],1} ], {3,5,4} ]; 

pTip=Last/@Reverse[Sort[Maplndexed[ { #1 , First[#2] }&,info]]]; 

distListS=Sort[Transpose[PackModel'NeighbourFindingFunctions'NeighBourFin 

derBasedOnDistance[h2,h2[[pTip[[2]], 1 ]],precisionFactor, 4 ]]] ; 

(*The seq order is assumed to be the same as the addition of the new plates*) 

orSeqList={}; 

Ifl(#[[l ]]==pTip[[ 4]])&&(MemberQ[ orSeqList,#]==False ),AppendTo[ orSeqList, 

#];]&/@Map[Last,distListS]; 

orSeqList=Reverse[Sort[ orSeqList]]; 

(*Partition[Join[ { {pTip[[3]],1} },orSeqList],3,1]*) 

(*Partition only uses the plates to interact, this way the column remains straight*) 

h2=PackModel ' CoalescingOrClosePackingFunctions' InteractTrips[ Join[ fixed,orS 

eqList],If1Length[ orSeqList]<3, { orSeqList} ,Partition[ orSeqList,3, 1 ]],h2,precision 

Factor,fixed2,0]; 

(*h2=CoalesceORclosePackBubbles[h2,precisionFactor,fixed,O];*) 

h3=FindPlateauBoundary[h2,precisionFactor,fixed]; 

If1MemberQ[info,6]==False, 

h2=PrependTo[h2,{per} ]; 

info= Prepend To [info, 6]; 

]; 
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pTip=Last/@Reverse[Sort[Maplndexed[ { #1 , First[ #2] }&,info]]]; 
distList=PackModel'NeighbourFindingFunctions'NeighBourFinderBasedOnDista 

nee[ {h2[[pTip[[2]]]] ,h2[[pTip[[5]]]]} ,h2[[pTip[[2]], 1 ]],precisionFactor, 4]; 

ll=Last[Map[Last,Sort[Transpose[distList]]]]; 

lc=Max[Map[First,Sort[Transpose[ distList ]]]]+PackModel' SmallFunctions 'Myav 

eFn[h2[[pTip[[ 1 ]] , 1 ]] [[2]]]+PackModel' SmallFunctions 'MyaveFn[h2[[pTip[[ 5]] ,l 

1[[2]]]][[2]]] ; 

h2[[pTip[[ 1 ]] , 1 ]] [[1 ]]=h2[[pTip[[2]] , 1 ]] [[1 ]]-{ O,lc} ; 

Export[ fileName<> ToString[plNum ]<>"-4b.nb" ,Drawcol[h2]]; 

bcol=Graphics[ {Thickness[O.O 1 ],AspectRatio­
> 1,Map[DrawCircles40neColumn,h2] ,Map[DrawA11GrowthLines40neColumn,h 

3]} ]; 

Export[fileName<>ToString[plNum]<>"­
6b.nb" ,Show[Graphics[ {Thickness[O.O 1 ],AspectRatio­
> 1,Map[DrawA11GrowthLines40neColumn,h3]} ]]] ; 

Export[fileName<>ToString[plNum]<>"-5b.nb" ,Show[bcol]] ; · 

If[saveToF~={True }, 

Export[fileName<>ToString[plNum]<>"-4PIFa.nb",h2]; 

Export[fileName<>ToString[plNum]<>"-5PBFa.nb",h3]; 

Export[ fileName<> ToString[plNum ]<>"-4b.nb" ,Drawcol[h2]]; 

bcol=Graphics[ {Thickness[O.O 1 ],AspectRatio­
> 1,Map[DrawCircles40neColumn,h2],Map[DrawA11GrowthLines40neColumn,h 

3]} ]; 

Export[fileName<>ToString[plNum]<>"-5b.nb",Show[bcol]] ; 

]; 

If[ save ToF== {}, 

Print[Drawcol[h2]] ; 

bcol=Graphics[ {Thickness[O.O 1 ],AspectRatio­
> 1,Map[DrawCircles40neColumn,h2] ,Map[DrawA11GrowthLines40neColumn,h 

3]} ]; 

Print[Show[bcol]] ; . 

]; 

] 

Clear[ visceralGrowthF]; 

visceral GrowthF [ colList_,plN um_,precisionF actor _,fileN ame _,fileList_,ambAng 

_,gZ _,apS _,ps _,perLc _,saveToF _ :{False}] :=Module[ { fixed,bcol,per,v,catinfo,cat, 

cat3D,apicalS ,graphicList,colv,temp} , 

Map[Function[ dummy, 

If[MemberQ[ {5},dummy[[l]]]==True,apicalS=dummy[[2]]]; 

If[MemberQ[ { 6} ,dummy[[l ]]]==True,per=dummy[[2]]];],co1List] ; 

v=0.1 ; 

graphicList= {}; 

If[saveToF! = {}, 
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Export[fileName<>ToString[(plNum)]<>"VisceralCAT.dat",{ }]; 

]; 

colv={} ; 

For[v=0.01 ,v< l , 

(*this get the length of the column and assigns a new relative peristome*) 

catinfo=GetCatenaryCurve[v,EuclideanDistance[per[[l,1]] ,apicalS[[l ,1]]],Mean[ 

apicals [[ 1,2]]] ,Mean[per[[ 1,2]]]]; 

(*cat=CreateCatCurve[ catinfo]; *) 

(*cat3 D=CreateCatCurve3 D [ catinfo]; 

Export[fileName<>ToString[(v)]<>ToString[(plNum)]<>"-6a.nb",catinfo]; 

Export[fileName<>ToString[(v)]<>ToString[(plNum)]<>"-6b.nb",cat]; 

Export[fileName<>ToString[(v)]<>ToString[(plNum)]<>"-6c.nb",cat3D];*) 

lflsaveToF!= {}, 

Export[ fileN ame<> "Viscerallnfo.dat" ,J oin[Import[ fileN ame<> "Viscerallnfo.dat", 

"Data"] , { catinfo} ]] ; 

Export[fileName<>ToString[(plNum)]<>"VisceralCAT.dat",Join[Import[fileNam 

e<>ToString[(plNum)]<>"VisceralCAT.dat","Data"] ,{ catinfo} ]]; 

]; 

AppendTo[ colv,Join[ {Take[ catinfo,-5]}, { catinfo} ]]; 

(*AppendTo[graphicList,cat];*) 

v=v+0.01 ; 

]; 

IflsaveToF!= {}, 

temp= Import[ fileN ame<> Last[ fileList], "Data"]; 

(* Export[ fileN ame<> To String[ ( v)] <> ToString[ (plN um)]<>" ­
6vd.nb" ,graphicList] ; *) 

Export[ fileName<> ToString[ (plNum) ]<>"ViscerallnfoColALL.dat" ,colv]; 

Export[ fileN ame<> Last[ file List] ,Join[ temp, { Join[Last[Sort[First/@col v]], { ambA 

ng,gZ,apS,ps,plNum,perLc} ]}]]; 

]; 

lflsaveToF=={}, 

Print[Show[CreateCatCurve[Last[Last[Sort[ colv ]]]]]]; 

Print[Show[CreateCatCurve3D[Last[Last[Sort[ colv ]]]]]] ; 

]; 

(*Append To [graphList,cat] ;Append To [graphList,cat3 D]; *) 

(*lflsaveToF=={True },Export[fileName<>ToString[(plNum)]<>"­
6a.nb",catinfo ]; 

Export[fileName<>ToString[(plNum)]<>"-6b.nb",cat]; 

Export[fileName<>ToString[(plNum)]<>"-6c.nb",cat3D];];*) 

Cleat[ fixed, bcol,per, v ,catinfo,cat,cat3D ,apicalS ,graphicList,colv ,temp] ; 

] 

(*npSz is the percentage of the new plates in an ambulacral column, calculated 
was found to me 0.3 *) 
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Clear[ echinoidTestGrowth]; 

echinoidTestGrowth[ apS _,plN um_,gz _,atoi _,precisionF actor_, bioprocesses _,save 

ToF _:{False} ,fx_:O,fpN _:5,ps _: 1,perLc _:O,npSz _:0.3] :=Module[ {h2,info 1,lp,fixe 

d,pTip,per,info,graphList,allgrowth,fileName,detaFilename,i,bcol,apicalS,gp,am,p 

n,temp,ac,fixedPlates,colList,fpl,holalnfo,fileList,tempN}, 

colList=intialList[gz,atoi[[l ]], { 0,-apS}, { 0, ­
apS },{ {0,0},{ apS,apS },{} },precisionFactor,{6,5,4,3,2},0,ps]; 


h2=Map[Last,co1List]; 

info=infol =Map[First,colList]; 

i=O; 

fixedPlates=O; 

fpl=O; 

all growth= {}; 

tempN="\Echini"<>ToString[DateList[]]<>ToString[Map[N,atoi]]; 

fileName="C:\Documents and Settings\Marmoura\My 

Documents \MathematicaFiles" <>tempN; 

fileList={ "diV sRA.dat" , "diV sRI.dat", "diV sA.dat", "diV sl.dat" ,"Psla.dat", "Pslb.da 

t", "Pslad.dat", "Pslbd.dat", "Pn.dat", "PnA.dat", "Pnl.dat", "Pnla.dat", "Pnlb.dat", "Vis 

ceral.dat","Viscerallnfo.dat","Analysislnfo.dat","ViscerallnfoCol"<>ToString[Da 

teList[]]<>" .dat"}; 


Export["C:\Documents and Settings\Marmoura\My 

Documents\MathematicaFiles\savefileN ames.dat" ,J oin[Import[" C:\Documents 

and Settings\Marmoura\My 

Documents \MathematicaF iles \savefileN ames.dat", "Data"], { "C: \Documents and 

Settings\Marmoura\My Documents\MathematicaFiles",tempN, fileList,plNum} ]]; 


Export[ fileN ame<>#, {}] &/@fileList; 

Export[fileName<>"PnINp.dat",{ {0,0}} ]; 

detaFilename=ToString[bioprocesses]<>"-"<>ToString[N[gz]]; 

per={}; 

For[i=l,i<=plNum, 

If[perLc != 0, 

h2=GrowApiPer[h2,gz,atoi,info,precisionFactor,ps,perLc]; 

]; 

pTip=Last/@Reverse[Sort[Maplndexed[ { #1, First[ #2] }&,info]]]; 

apicalS=h2[[pTip[[2]], 1 ]]; · 

per=h2[[pTip[[l ]], 1 ]] ; 

fixed=Map[Function[ dummy, { Flatten[Position[info,dummy ]][[1 ]], 1}], {3,5,4} ]; 

graphList={}; 

Which[ 

bioprocesses[[ 1 ]]==True, 

h2=plateAddittionF [Transpose[ { info,h2}] ,i,gz,atoi,precisionF actor, bioprocesses [ [ 
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1]] ,fixedPlates,fileName,npSz,saveToF]; 

]; 


Which[ 

bioprocesses[[2]]==True, 

temp=plateGrowthF [Transpose [ { info,h2}] ,i,gz,atoi,precisionF actor ,fixedPlates,fil 

eN ame,fpN ,fx,fpl,npSz,save ToF]; 

h2=temp[[ 1 ]] ; 

info=temp[[2]] ; 

fixedPlates=temp[[3 ]] ; 

Ifl:fixedPlates==l &&fpl==O,fpl=Length[h2[[pTip[[5]]]]]]; 


If1saveToF=={True} ,OpenAppend[fileName<>"Analysislnfo.dat"J; 

Write[ fileN ame<>"Analysislnfo.dat", { temp[[ 1 ]J ,temp[[2]] ,precisionFactor,gz,atoi 

,((atoi[[l]]/2*npSz)*Pi/180), {fileName} ,fixedPlates} ]; 

Close[fileName<>"Analysislnfo.dat"] ;holanalysisOfGrowthZone[temp[[l]J ,temp[ 

[2]] ,precisionFactor,gz,atoi,((atoi[[l]]/2*npSz)*Pi/180),fileName,fixedPlates,Join 

[ { "PnINp.dat" } ,fileList]]]; 

]; 

Which[ 

bioprocesses[[3]]==True, 

platelnteractionF[Transpose[ { info,h2} ],i,precisionFactor,fileName,saveToF]; 

]; 


Which[ 

bioprocesses[[ 4 ]]==True, 

Ifl:i >= 20, 

visceral GrowthF [Transpose [ { info,h2}] ,i,precisionF actor ,fileN ame,fileList,atoi,gz, 

apS,ps,perLc,saveToF] ; 

]; 

]; 

Print[i] ; 

i++; 

(*AppendTo[allgrowth,graphList];*) 

]; 

(*If1saveToF=={True} ,Export[fileName<>ToString[(i-l)]<>detaFilename<>"­
7b .nb", Graphics Grid [ all growth]];];*) 

] 

(dt=#; 
For[ ag=( dt[[ 1 ]]-dt[[2]]),ag <= ( dt[[ 1 ]]+dt[[2]]), 
For[psl =(dt[[5]]-dt[[6]]),psl <= (dt[[5]]+dt[[6]]), 
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For[ apcll =( dt[[3]]), apcll <= ( dt[[3]]+dt[[ 4]]), 

For[aprd = (dt[[7]]),aprd <= dt[[8]], 

echinoidTestGrowth[ aprd,dt[[9]],(2Pi/5), {N[ ag*(Pi/180)] ,N[ ag*(Pi/180)] } ,0.0000 

0000000000000000000000000000001 , { True, True, T rue,F alse} , 

{False} ,0,9,psl ,apcll ,0.3] ; 

aprd=aprd+0.5 ; 

]; 

apcl 1 =apcll +Ifl dt[[ 4]]==0, 1,0.05]; 

]; 

ps 1 =ps 1 +If[ dt[[ 6]]==0, 1, 1 *( dt[[6]])]; 

]; 

ag=ag+ l ; 

])&/@tdataAPSP (* {angle,+/-, ap-cl, +/-, ps-ap, +/-, apr min,apr max,tpn} *) 


Al.2 Plate Growth 

PlateGrowthSize[theta_,oneBubble _,pao_] :=Module[ {dist} , 

dist=PackModel' SmallFunctions 'DistancebtwPoints[ oneBubble[[l ]] ,pao[[l ]]]; 

PackModel' SmallFunctions' Center Distance[ dist,dist,theta ]/2 

] 
getplateAngle[plateCenter_,oneBubble _,ang2 _] :=Module[ { ang, 

angList,quadPos}, 

ang=PackModel ' SmallFunctions' AngleAroundThePlate[ oneBubble-plateCenter]; 

angList={ ang,PackModel'SmallFunctions'CheckAngle[ang­
ang2] ,PackModel' SmallFunctions' CheckAngle[ ang+ang2]} ; 

quadPos= PackModel' SmallFunctions' QuadAngle [ #]&/@angList; 

{PackModel' SmallFunctions 'OrderThetaQuad[ { { angList[[l ]] ,angList[[l ]] ,angLis 

t[[2]] },{ quadPos[[l ]],quadPos[[l ]],quadPos[[2]]}} ],PackModel'SmallFunctions' 

OrderThetaQuad[ { { angList[[l]] ,angList[[l]],angList[[3]]} , { quadPos[[l ]],quadPo 

s[[l ]] ,quadPos[[3]]}}]} 

] 
getPlateSide[ cAng_,onePlate _,pao _] :=Module[ {pt,ang,sidePtrn,range}, 

pt={}; 

sidePtm={ {},{} }; 

Iflpao[[l , 1 ]]==pao[[2, 1 ]] , 

pt=Join [pt,getplateAngle[pao[[l, 1 ]] ,pao[[3 , 1 ]] ,cAng]]; 

pt=Join [pt,getplateAngle[pao[[2, 1 ]] ,pao[[3 , 1 ]],cAng]]; 

sidePtm[[l]]={ {1 ,0,1,0},{1 ,0,0,0} ,{0,0,1,0} }; 

sidePtrn[[2]]={ {0,0,0,1 },{0,1,0,0} ,{0,1,0,1} }; 


' pt=Join [pt,getplateAngle[pao[[l, 1 ]] ,pao[[2, 1 ]],cAng]]; 

pt=Join [pt,getplateAngle[pao[[2, 1 ]] ,pao[[l , 1 ]],cAng]]; 

sidePtrn[[l]]={ {0,1,1,0} ,{0,0,1,0} ,{0,1,0,0} }; 
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sidePtrn[[2]]={ { 1,0,0, 1}, { 1,0,0,0} , { 0,0,0, 1}} ;] ; 

ang={PackModel'SmallFunctions'AngleAroundThePlate[onePlate[[l]]­

#[[1 , 1 ]]] ,PackModel' SmallFunctions ' AngleAroundThePlate[ onePlate[[l ]]­

#[[1 , 1 ]]] ,PackModel' SmallFunctions 'AngleAroundThePlate[ onePlate[[l ]]­

#[[2, 1 ]]] ,PackModel' SmallFunctions 'AngleAroundThePlate[ onePlate[[l ]]­

#[[2, 1 ]]] }&@pao; 

range=PackModel' SmallFunctions 'MatchRange[ #[[1 ]] ,#[[2]]]&/@Transpose[ {pt, 

ang} ]; 

lf1MemberQ[ sidePtrn[[l ]],range ]==True, 1,2]] 

GrowApiPer[bubList_,gZ _,ambAng_,info _,precisionFactor _,ps _: 1,per _:0.2] :=Mo 

dule[ { ac,acp,oc,ge,cl 1,tempgPos,anS,rL,newbub,ncl,pTip,distList,ll ,lc}, 

(*apical system growth with length*) 

newbub=bubList; 

pTip = 

Flatten[Map[Function[ dummy,If[MemberQ[info,dummy J==True,Position[info,du 

mmy ],-1 ]] , { 6,5,3,4,2} ]] ; 

cl 1 =EuclideanDistance[ newbub[[pTip[[2]] , 1 ]] [[1 ]],newbub[[pTip[[l ]] , 1]] [[1 ]]] ; 

ncl=cl 1-PackModel' SmallFunctions 'MyaveFn[ newbub[[pTip[[2]] , 1 ]] [[2]]]­

PackModel' SmallFunctions 'MyaveFn[ newbub[[pTip[[l ]], 1 ]] [[2]]] ; 


(*it doesnt allow the apical system to shrink*) 

If[PackModel' SmallFunctions 'MyaveFn[ { ( cl 1/2)*per,( cl 1/2)*per} ]<PackModel' 

SmallFunctions ' MyaveFn[ newbub[[pTip[[2]] , 1 ]] [[2]]], 

newbub, 

ac={ ( cll /2)*per,( cll/2)*per}; 

(*+PackModel ' SmallFunctions 'MyaveFn[ newbub[[pTip[[3]] , 1 ]] [[2]]] *) 


acp=newbub[[pTip[[2]] , 1 ]] [[1 ]]+{ O,PackModel' SmallFunctions 'MyaveFn[ Abs[(n 
ewbub[[pTip[[2]] , 1 ]] [[2]]-ac )]] } ; 
newbub[[pTip[[2]] , 1 ]] [[1 ]]=acp; 
newbub[[pTip[[2]], 1 ]] [[2]]=ac; 

distList=PackModel'NeighbourFindingFunctions'NeighBourFinderBasedOnDista 
nee[ { newbub[[ #[[2]]]] ,newbub[[ #[[5]]]]} ,newbub[[ #[[2]] , 1 ]] ,precisionFactor, 
4]&@pTip; 
ll=Last[Map[Last,Sort[Transpose[distList]]]]; 

(*length of column, which is the distance from the apical system to the 
peristome, so take the distance from the center of the apical system and the center 
of the plate then i need to add the radius of the last plate and the radius of the 
peristome*) 
lc=Max[First/@Sort@Transpose[distList]]­

(PackModel ' SmallFunctions 'MyaveFn[ 
newbub[[ #[[2]] , 1 ]] [[2]]]+PackModel' SmallFunctions 'MyaveFn[ newbub[[#[[5]] ,ll 
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[[2]]]] [[2]]]&@pTip ); 

oc=acp-{ O,PackModel' SmallFunctions' MyaveFn[ ac]} ;ge=acp­

{ O,PackModel' SmallFunctions' MyaveFn[ ac]}; 


tempgPos=PackModel'SmallFunctions'RotateOneCurve[#[[l]] ,#[[2]] ,acp]&/@Tr 
anspose[ { { oc,ge,ge} ,N[{ 0, (gZ)/2, -(gZ)/2}]}] ; 
anS=N[ { ambAng[[l ]],gZ-ambAng[[l ]],gZ-ambAng[[l ]] } ]; 

rL=Flatten[(PackModel 'PlateGrowthFunctions 'PlateGrowthSize[ #[[1 ]] , { #[[2]]} , { 
acp} ]&/@Transpose[ { anS,tempgPos} ])]; 
tempgPos=Transpose[ { tempgPos, Transpose[ { rL,rL}], 
Table[ {}, {i, 1,Length[rL]} ]}]; 
Which[#[[ 1 ]]==6, 

newbub[[ #[[2]] , 1 ]] [[2]]=ac*ps; 
ncl=lc+PackModel'SmallFunctions'MyaveFn[ac]+(ac*ps)[[l]]; 
(*-PackModel ' SmallFunctions 'MyaveFn[ newbub[[ d[[2]] , 1 ]] [[2]]] *) 
newbub[[ #[[2]] , 1 ]][[1 ]]=acp-{ O,ncl}; 

' 
#[[1 ]]==4,newbub[[ #[[2]]]]={ tempgPos[[2]] ,tempgPos[[3]]} ;, 
#[[1 ]]==3,newbub[[ #[[2]]]]={ tempgPos[[l ]] } ; 
]&/@Transpose[ { { 6,5,3,4,2} ,pTip} ]; 
newbub 
]] 
GetPlateSizeforlntCol[ allbubList_,precisionFactor _,ambAngl _,ambAng_,lc _,am 
bS _,pn_,ps _,npAng_,pao _,opt_,fpn _,fplate _ :O] :=Module[ { m,p,i,r 
,temp,anbOfC,nlc,angS,newbub,intCol,aplate,ngl,fList,sequenceList2,finalTrips , 
tri p,str ,newbub2,diffl ,diff2,cl,startD ,growthPos,side, temp INT ,pi,countP ,rang} , 
newbub=allbubList; 
intCol={ {}} ; 
tempINT={ {},{} }; 
(*starting int pos*) 
If[ambAngl >ambAng,rang=N[ambAngl/2] ,rang=N[ambAng/2];]; 
rang=N[ambAng/2] ; 
(*the angle and space and interaction for interambulacral plates is not figured out 
yet*) 
(*If[rang<0.38,rang=rang/6,If[rang>0.6,rang=rang*4,rang=rang]];*) 
GrowthPos=PackModel'PlateAdditionFunctions'GetNucleationPosition[pao[[3]], 
pao[[2]] ,precisionFactor, {N[ (npAng)/2] ,-N[ (npAng)/2] ,N[ambAng 1/2],­
N[ambAng 1/2]} ]; 
growthPos=Take [growthPos, -2]; 
(*starding distance*) 
startD=EuclideanDistance[pao[[2, 1 ]] ,#]&/@growthPos; 
(*the side determines which side the new plate is on*) 
side=If[EvenQ[pn ]==True, {-1,1} , { 1,-1}]; 
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(*d[[3]], is for rotation*) 

countP={ 0,0}; 

Map[Function[ d, 

p=d[[l ]]; 

i=l; 

(* since the column is not straight down have to calculated the length of the 

columns angled, so using hypotenuse triangle*) 

anbOfC=Sqrt[ ( ambSJ\2)+( ( ambS *Tan[ ambAng/2]Y2)]; 

anbOfC=ambS; 

r=O; 

nlc=Sqrt[(lcJ\2)+((lc*Tan[ambAng/2]Y2)]; 

cl=nlc-(ps ); 

diffl =diff2 =p; 

(*it stops when a new plate is added and the difference between the length of the 

column and the distance of the plate from the apical system is more than the 

previous step*) 

pi=O; 

countP[[ d[[ 4]]]]=0; 

While[(Abs[ cl-diffl] >= Abs[ cl-diff2])&&(pi<=fpn[[ d[[ 4]]]]), 

If[((i==l)&&(d[[2]]==-1)),angS=npAng;,angS=ambAng/2;]; 

temp=r; 

If[(p>anbOfC)&&(anbOfC != 0), 


If[fplate==l ,pi++; 
countP[[ d[[ 4]]]]=fpn[[ d[[ 4]]]];,countP[[ d[[ 4]]]]=countP[[ d[[ 4]]]]+ 1 ;]; 

r=PackModel'SmallFunctions'CenterDistance[Abs[nlc-p],Abs[nlc-p] ,angS]; 
If[i> 1,p=p+r/2-temp/2;]; 
r=PackModel ' SmallFunctions'CenterDistance[Abs[nlc-p],Abs[nlc-p],angS]; 
(* i havent figured out why yet but for in i need to substact and for amb i need to 
leave it asp*) 
m={ I ,Abs[ nlc-p ],r/2}; 

If[((i==l )&&( d[[2]]==-1 )), 
(*first int plate is calculated by descartes*) 
Which[opt==l , 

r= PackModel' DescartesFunctions' DescartesTheorem[PackModel' SmallFunctions 
'MyaveFn[pao[[ 1,2]]],PackModel' SmallFunctions 'MyaveFn[pao[[2,2]]] ,PackMo 
del' SmallFunctions 'MyaveFn[pao[[3,2]]]] *2; 
If[i> 1,p=p+r/2-temp/2;]; 

opt==O, 

r= PackModel' SmallFunctions' Center Distance [p,p,angS]; 

If[i> 1,p=p+r/2-temp/2;]; 

r= PackModel' SmallFunctions' Center Distance [p,p,angS]; 

]; 
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r=PackModel' SmallFunctions' Center Distance [p,p,angS]; 
If[i> 1,p=p+r/2-temp/2;]; 
r= PackModel' SmallFunctions' Center Distance[p,p,angS]; 
]; 


m={ 2,p,r/2}; 

]; 


aplate={PackModel'SmallFunctions'RotateOneCurve[If[Abs[m[[l]]]==l,(pao[[A 

bs[m[[l]]] , 1 ]]+{O,m[[2]]} ),pao[[m[[l ]] , 1 ]] -{O,m[[2]]} ],(If[ Abs[m[[l ]]]==l ,­

d[[3]],d[[3]]])*rang,pao[[ m[[l ]] , 1 ]]], { m[[3]] ,m[[3 ]] } , {}}; 

AppendTo[intCol[[l ]] ,aplate]; 

newbub2= Join[ newbub,intCol]; 

fList=Last/@Sort@Transpose[PackModel'NeighbourFindingFunctions'NeighBo 

urFinderBasedOnDistance[ newbub2,aplate,precisionFactor, 4 ]] ; 


SequenceList2= PackModel 'Neighbour F indingFunctions' GetASequenceF orCol [n 

ewbub2, { { 1, 1 } } ,precisionF actor]; 

ngl=PackModel'NeighbourFindingFunctions'GetFinalTripList2[newbub2,precisi 

onFactor, { { 1, 1}}, 1 OJ; 


finalTrips=ngl[[ 4]] ; 


trip=Flatten[If[(MemberQ[#,fList[[l]]]==True)&&(Length[Intersection[#,fList]] = 

=Length[ #]-1 ), { #},{} ]&/@finalTrips, 1 ]; 


If[trip=={}, 

trip=Flatten[Map[Function[mem,If[MemberQ[mem,fList[[l]]]==True,{mem} ,{} ] 

] ,finalTrips] , 1] ;] ; 


intCol = PackModel' CoalescingOrClosePackingFunctions' FnthatCPorCoalesce [ tri 

p[[l ]],allbubList,newbub2, 

{ trip [[1]] } ,sequenceList2,precisionF actor ,fList,fList, 1]; 

intCol={Last[intCol[[2]]]} ; 

AppendTo[tempINT[[d[[4]]]],Last[Last[intCol]]] ; 

(*previous distance*) 

diffl =p; 

p=p+r; 

(*new distance*) 

diff2=p+r/2; 

i++· ]· 


' ' {m,(p )*Cos[ambAng/2],(p-(r/2))} 
],Transpose[ { startD,side, {-1 ,1} , { 1,2}} ]] ; 
{ intCol, temp INT ,countP} 
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] 
GetN ewFixedListBasedOnColAng[ newbub2 _,pao _, ambAng_, 

sequence List_]:= Module [ {pt,nfList,an,range} ,pt=getplateAngle[pao [ [2, 1 ]] ,pao [[1 

,1]] ,ambAng/2]; 

nfList={} ; 

Ifl newbub2[[ #[[1 ]J ,#[[2]]]][[1 JJ==pao[[2, 1 ]] ,AppendTo[ nfList,#] ;, 

(*the peristome is omited*) 

lf1newbub2[[#[[l ]J ,#[[2]]]][[ 1 ]] != pao[[l, 1]] , 


an=PackModel' SmallFunctions 'AngleAroundThePlate[ newbub2[[ #[[1 ]J ,#[[2]]]] [[ 

1 ]]-pao[[2, 1 ]]] ; 

range=Map[Function[dum,PackModel'SmallFunctions'MatchRange[dum[[l]], 

dum[[2]]]] ,Transpose[ {pt, { an,an}} ]]; 

lf1MemberQ [ range, 1]==True,Append To [ nfList, #];]]] &/@sequenceList; 

nfList 

] 

GetATripF orThePlate[ newbub2 _, orSeqList_,pao _,pos _, 

aplate _,fp _,ambAng_,p Tip _,precisionF actor _,opt_: 5] := Module [ { sequenceList2, 

±List, fxList, nfList, 

ngl,final Trips, trip} ,sequenceList2= PackModel 'Neighbour FindingFunctions' GetA 

SequenceForCol[newbub2,{ {pTip[[2]],1} },precisionFactor]; 


fList=Map[Last,Sort[Transpose[PackModel'NeighbourFindingFunctions'NeighB 

ourFinderBasedOnDistance[ newbub2,aplate,precisionFactor, 4 ]]]]; 

fxList={} ; 

IflMemberQ[pTip [ [2; ;5]] , # [ [ 1 ]]]==True, 

Ifl(#[[l ]] != 


pTip[[5JDl l((#[[l ]]==pTip[[5]])&&(Flatten[Position[ orSeqList,#J ,1] [[1 ]]<Flatten[ 

Position[ orSeqList,fList[[l ]]], 1] [[1 ]])),AppendTo[fxList,#]]]&/@Drop[fList, 1] ; 

IflMemberQ[fxList, {pTip[[5]],pos[[fp ]] } ]==False, 

AppendTo[fxList, {pTip[[5]] ,pos[[fp ]] } ]]; 

(*this section only fixes the plates within the angle region to get the right 

triplets*) 

nfList=GetN ewFixedListBasedOnColAng[ newbub2,pao, ambAng, fxList]; 

ngl=PackModel 'N eighbourFindingFunctions' GetFinalTripList2[ newbub2,precisi 

onFactor,{ {pTip[[2]] ,1} },opt]; 

finalT ri ps=ngl [ [ 4]] ; 

trip=Flatten[Ifl(MemberQ[ #,fList[[l ]]]==True )&&(Length[Intersection[ #,nfList]J 

==Length[ #J-1 ), { #} ,{} ]&/@finalTrips, 1 ]; 

trip=PackModel ' SmallFunctions' SaListBySequence[ sequenceList2,trip]; 

(*if you couldnt find trips based on only all neighnot just touching then it looks 

within all trips not just ones that reoccur *) 

Ifl trip== {}, 

finalTrips=PackModel'NeighbourFindingFunctions'GetTripsFromAllSeqlnfo[ngl 

[[2]]] ; 
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(*this checks that all member are included in fixedlist or equal to the the plate*) 

trip=Flatten[If[(MemberQ[#,fList[[l]]]==True)&&(Length[Intersection[#,nfList]] 

==Length[ #]-1 ), { #},{} ]&/@finalTrips , 1 ]; 

trip=PackModel' SmallFunctions' SaListBySequence[ sequenceList2,trip]; 

]; 

{ trip, sequenceList2,fxList} 

] 

GetPlateSizeforAmbCol[ allbubList_,precisionFactor _,ambAng_,info _, 

npAng_,gZ _,pao 1 _,opt_,fopt_,fpN _,fixedP _,fpl_] :=Module[ { m,p,i,r 

,temp,anbOfC,nlc,angS,newbub,ambCol,aplate,ngl,fList,sequenceList,sequenceLi 

st2,fina1Trips,n2, allSeqln, 

trip,str,pTip,pn,distList,lc,fxList,sides,pos,orderS,sd,fp,pi,orSeqList,pao,nfList, 

an, pt, range,11,rotA, 

alpha,newbub2,tempN,tempT,per,lcl ,ambitus,fplates,hd,mp,pf,ll2,lc2,distList2,rp, 

distP ,dp,stList,keepN eigh,ab V} , 

newbub=allbubList; 

pao=paol; 

fplates=fixedP; 

keepNeigh={}; 

(*location of all the different types of plates*) 

pTip = Flatten[If[MemberQ[info,#]==True,Position[info,#],-1 ]&/@{ 6,5,4,3,2, 1}]; 

abV=l ; 

(*gets the side for the newest plate*) 

sides=getPlateSide[ ambAng[[l ]]/2,#,pao ]&/@newbub[[pTip[[5]]]]; 

(*decides which side the new plate is on based on plate number*) 

(*get plate number*) 

pn=Length[newbub[[pTip[[5]]]]]; 

If[EvenQ[pn]==True,sd=2,sd=l]; 

(* get the distance of the column*) 

distList=PackModel'NeighbourFindingFunctions'NeighBourFinderBasedOnDista 

nee[ { newbub[[ #[[2]]]] ,newbub[[ #[[5]]]]} ,newbub[[ #[[2]], 1 ]] ,precisionFactor, 

4]&@pTip; 

(*farthest plate*) 

ll=Last[Last/@Sort@Transpose[distList]]; 

(* length of column, which is the distance from the apical system to the peristome, 

so take the distance from the center of the apical system and the center of the plate 

then i need to add the radius of the last plate and the radius of the peristome*) 

lc=Max[First/@Sort@Transpose[ distList]]+PackModel' SmallFunctions' MyaveF 

n[ 

pao[[l ,2]]]+PackModel' SmallFunctions 'MyaveFn[ newbub[[pTip[[5]] ,11[[2]]]] [[2] 

]] ; 

le1 =Max[First/@Sort@Transpose[ distList]]+PackModel' SmallFunctions 'Myave 

Fn[ newbub[[pTip[[ 5]] ,11[[2]]]] [[2]]]; 
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(*gets ambitus location from the apical system ...distance*) 

ambitus=(lc/2); 

anbOfC=Sqrt[(((ambitus )Y'2)+((((ambitus ))*Tan[ ambAng[[l ]]/2])"'2)]; 

r=O; 

(*the length is adjusted to match the angle*) 

nlc=Sqrt[ (lc/\2)+((lc*Tan[ ambAng[[l ]]/2])"'2)]; 

distList=Sort[Transpose[PackModel 'NeighbourFindingFunctions 'NeighBourFind 

erBasedOnDistance[ newbub,newbub[[pTip[[2]], 1 ]],precisionFactor, 4]]]; 

(*sequenceList=getOrderOfPlates[distList,newbub,precisionFactor,pTip,pn,pao,a 

mbAng[[l]]];*) 


sequence List= {}; 

If[(#[[l ]]==pTip[[5]])&&(MemberQ[ sequenceList,#]==False ),Append To[ sequen 

ceList,#];]&/@Map[Last,distList]; 

(*sequenceList=Reverse[Sort[ sequenceList]]; *) 

(*gets the position of the plates in the list to find the new plate*) 

pos= Map [Last,sequenceList]; 

(*uses the position to determin the side of the plates and eventually determine the 

newest plate's location*) 

orderS=Map[Function[k,sides[[k]]],pos]; 

(*position of the newest plate*) 

fp=Flatten[Position[ orders, sd]] [[1 ]] ; 

orSeqList=Reverse[Sort[sequenceList]]; 

(*the order list is important to allow the plates to move in order to their location*) 

pi=l; 

rp=O; 

stList={ {pTip[[4]],1} }; 

While[pi<=pn, 

(*get the ambcol only*) 

ambCol=newbub[[pTip[[ 5]]]]; 

(*takes the plate of interest*) 

aplate=ambCol[[ orSeqList[[pi,2]]]]; 

(*gets the distance from the apical system*) 

p=PackModel' SmallFunctions 'DistancebtwPoints[pao[[2, 1 ]],aplate[[l ]]]; 

abV=l; 

temp=r; 

If[((p>anbOfC)&&(fplates==O))ll((fplates==l)&&(pn+ 1-pi <= fpN)), 


(*if the distance is greater than the ambitus location then it puts the plate on the 

peristomal surface*) 

abV=2; 

If[ ( (pi== 1)),angS=npAng;,angS=ambAng[[ 1 ]]/2;]; 

angS=ambAng[[l ]]/2; 

If[((fopt==l )&& (pn+ 1-pi ==fpN)), 

Print["Fixed ",pi]; 
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fplates= l ; 

hd=EuclideanDistance[pao[[2, 1 ]J,ambCol[[ orSeqList[[pi-1,2]] , 1 ]]] ; 


112=hd+(hd-PackModel ' SmallFunctions'MyaveFn[pao[[2,2]]]) 
+PackModel' SmallFunctions 'MyaveFn[pao[[ l ,2]]](*+PackModel' SmallFunction 
s 'MyaveFn[pao[[3 ,2]]] *); 
If[ll2>EuclideanDistance[pao[[2, 1 ]] ,pao[[l , 1 ]]] , 

pao[[l , 1 ]]=pao[[2, 1 ]]-{ 0,112}; 
newbub[[pTip[[l ]] , 1 ]]=pao[[l ]]; 
ambitus=(EuclideanDistance[pao[[2, 1 ]] ,pao[[l, 1 ]]]/2); 
anbOfC=Sqrt[(((ambitus)Y'2)+((((ambitus))*Tan[ambAng[[l]]/2JY'2)]; 
,rp= l ; 
]; 
]; 

p=PackModel' SmallFunctions 'DistancebtwPoints[pao[[l, 1 ]] ,aplate[[l ]]] ; 
r=PackModel'SmallFunctions'CenterDistance[Abs[p],Abs[p],angS]; 

(*ONLY IF PLATES ARE FIXED*) 
If[(fplates==l)&&(pi<=( pn-fpl)), 
(*this used for sand dollars, it switches between petal and non petal angle*) 
If[((pi==l)),angS=ambAng[[2]]*0.3/2;,angS=ambAng[[2]]/2;]; 
angS=ambAng[[2]]/2;, 
If[ ( (pi== 1)),angS=npAng; ,angS=ambAng[[ 1 ]]/2;]; 
angS=ambAng[[ 1 ]]/2; 
]; 

p=PackModel' SmallFunctions 'DistancebtwPoints[pao[[2, 1 ]] ,aplate[[l ]]] ; 
If[((pi==l))&& (opt==l), . 
(*first amb plate is calculated by descartes if opt ==1 *) 

r= PackModel' DescartesFunctions' DescartesTheorem[PackModel' SmallFunctions 
'MyaveFn[pao[[l ,2]]] ,PackModel'SmallFunctions' MyaveFn[pao[[2,2]]] ,PackMo 
del ' SmallFunctions 'MyaveFn[pao[[3 ,2]]]]*2; 

' 
r=PackModel' SmallFunctions' CenterDistance[p,p,angS]; 

]; 


]; 
If[ rp==O,aplate[[2]]={ r/2,r/2}] ;ambCol[[ orSeqList[[pi,2]]]]=aplate; 
newbub[[pTip[[5]]]]=ambCol; 

If[((pn-pi ==O)&&(fplates==l)), 
(*if the distance is greater than the ambitus location then it puts the plate on the 
peristomal surface*) 
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distList2=PaekModel 'NeighbourFindingFunetions 'NeighBourFinderBasedOnDis 

tanee[ { newbub[[ #[[2]]]],newbub[[ #[[5]]]]} ,newbub[[ #[[2]], 1 ]],preeisionFaetor, 

4]&@pTip; 

112=Last[Last/@Sort@Transpose[distList2]]; 

lc2=Max[First/@Sort@Transpose[distList2]]+PaekModel'SmallFunetions'Myav 

eFn[ 

pao[[l ,2]]]+PaekModel' SmallFunetions 'MyaveFn[newbub[[pTip[[5]] ,11[[2]]]] [[2] 

]]; 

(*Print["*** ",EuclideanDistanee[pao[[2, 1 ]],pao[[l,1 ]]]] ;*) 

If[lc2<EuclideanDistanee[pao[[2, 1 ]],pao[[l,1 ]]], 

mp=(EuclideanDistanee[pao[[2, 1 ]],pao[[l,1 ]]]-lc2)/(2fpN); 

ambCol=newbub[[pTip[[5]]]]; 

F or[pf= 1,pf<=( fpN), 

ambCol[[Length[ ambCol]-pf,2]]=ambCol[[Length[ ambCol]-pf,2]]+{ mp,mp}; . 

pf++; 

]; 

newbub[[pTip[[5]]]]=ambCol; 


distList= PaekModel 'NeighbourFindingFunetions'NeighBour FinderBasedOnDista 

nee[ { newbub[[#[[2]]]],newbub[[ #[[5]]]]} ,newbub[[ #[[2]], 1 ]],preeisionFaetor, 

4]&@pTip; 

ll=Last[Last/@Sort@Transpose[ distList ]] ; 


lc=Max[First/@Sort@Transpose[ distList ]]+PaekModel' SmallFunetions' MyaveF 

n[ 

pao[[l ,2]]]+PaekModel' SmallFunetions 'MyaveFn[newbub[[pTip[[5]],11[[2]]]] [[2] 

]]; 

If[(lc>EuclideanDistanee[pao[[2, 1 ]],pao[[l,1 ]]]), 


newbub[[pTip[[l ]] , 1 ]] [[1 ]]=newbub[[pTip[[2]], 1 ]] [[1 ]]-{O,lc}; 

]; 

]; 

]; 

distList=PaekModel'NeighbourFindingFunetions'NeighBourFinderBasedOnDista 

nee[ { newbub[[ #[[2]]]],newbub[[ #[[5]]]]} ,newbub[[ #[[2]], 1 ]],preeisionFaetor, 

4]&@pTip; 

ll=Last[Last/@Sort@Transpose[distList]]; 


lc=Max[First/@Sort@Transpose[ distList]]+PaekModel' SmallFunetions 'MyaveF 

n[ 

pao[[l ,2]]]+PaekModel' SmallFunetions 'MyaveFn[newbub[[pTip[[5]],11[[2]]]] [[2] 

]]; 
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If1fplates==O ll (lc>EuclideanDistance[pao[[2, 1 ]] ,pao[[l , 1 ]]]), 

(* {m,(p )*Cos[ambAng[[l ]]/2] ,(p-(r/2))} ;*) 

(*Print["******** *************"]; 

Print[PackModel ' SmallFunctions'Drawcol[newbub]];*) 

newbub[[pTip[[l ]] , 1 ]] [[1 ]]=newbub[[pTip[[2]], 1 ]] [[1 ]]-{ O,lc} ; 

(*Print[PackModel' SmallFunctions'Drawcol[newbub]]; 

Print[''*********************''];*) 

]; 

lfipi==l , 


(*angle btw occular and apical system*) 

pt=PackModel'SmallFunctions'AngleAroundThePlate[pao[[3 ,1]]-pao[[2,1]]] ; 

(*angle location of a plate relative to the apical system center*) 

an=PackModel' SmallFunctions 'AngleAroundThePlate[ aplate[[l ]]-pao[[2, 1]]] ; 

(*this needs works i need to figure out the pattern for different angles*) 

alpha= PackModel' SmallFunctions' CosOfAngleC [p,p,If[ ambAng[ [ 1 ]] <O.5 5 ,anib 

Ang[[l ]]r,If[(ambAng[[l]]<0.55),ambAng[[l]] 1.2r,ambAng[[l ]]2. lr]]] ; 

(*finds the amount and direction a plate must rotate to its new location*) 

rotA=Ifian> pt,(pt+alpha),(pt-alpha)]; 

(*gets the difference it needs to move from the original location*) 

rotA=an-rotA; 

aplate[[l ]]=PackModel' SmallFunctions 'RotateOneCurve[ aplate[[l ]] ,rotA,pao[[2, 

1]]] ; 

ambCol[[ orSeqList[[pi,2]]]]=aplate; 

(*first amb plate always interacts with the occular plate*) 

ambCol = PackModel'CoalescingOrClosePackingFunctions' Move2Bubbles [ { { 2, 1 

} , { 1,orSeqList[[pi,2]]}} , 

{ ambCol, {pao[[3]]} }, { ambCol, {pao[[3]]}} , { {2, 1}}, { {2, 1} },precisionFactor, 

2,0][[1]] ; 

newbub[[pTip[[5]]]J=ambCol; 

(* 

lfI (pn> 1 &&pi> 1 ), 


sequenceList2=Join[ { {pTip[[2]],1} },{ {pTip[[4]],1} },orSeqList,{ {pTip[[l]] ,1}}]; 

fList=Last/@Sort@Transpose[PackModel'NeighbourFindingFunctions'NeighBo 

urFinder BasedOnDistance[ newbub,aplate,precisionF actor, 4]] ; 

fxList= {}; 

If[MemberQ [p Tip [ [2; ;5]] ,# [ [ 1]] ]==True, 

lfI(#[[ 1 ]] != 

pTip[[5]])1 1((#[[1 ]]==pTip[[5]])&&(Flatten[Position[ orSeqList,#] ,1] [[1 ]]<Flatten[ 

Position[ orSeqList,fList[[l ]]] , 1] [[1 ]])),AppendTo[fxList,#]]]&/@Drop[ fList, 1 ]; 

lfIMemberQ[fxList, {pTip[[5]],pos[[fp ]] } ]==False, 
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AppendTo[fxList, {pTip[[5]],pos[[fp ]] } ]]; 

(*then it close packs the trip*) 

distP=ambCol[[ orSeqList[[pi,2]], 1 ]] ; 


newbub= PackModel' CoalescingOrClosePackingFunctions' InteractTri ps[ sequenc 

eList2,Partition[Join[ { {pTip[[ 4]] , 1}} ,orSeqList] ,3, 1 ],newbub,precisionFactor,fxL 

ist,1]; 

distList=PackModel'NeighbourFindingFunctions'NeighBourFinderBasedOnDista 

nee[ { newbub[[ #[[2]]]] ,newbub[[#[[5]]]]} ,newbub[[ #[[2]] , 1 ]] ,precisionFactor, 

4]&@pTip; 

11= Last[Last/@Sort@T ranspose [ distList]]; 

lc=Max[First/@Sort@Transpose[ distList]]+PackModel' SmallFunctions 'MyaveF 

n[ 

pao[[ 1,2]]]+PackModel' SmallFunctions 'MyaveFn[newbub[[pTip[[ 5]] ,11[[2]]]] [[2] 

]] ; 


If{fplates==O l l(lc>EuclideanDistance[pao[[2, 1 ]] ,pao[[l , 1 ]]]), 

(* { m,(p )*Cos[ ambAng[[l ]]/2],(p-(r/2))} ;*) 

(*Print["*********************"]; 

Print[PackModel' SmallFunctions' Drawcol [ newbub]]; *) 

newbub[[pTip[[l ]] , 1 ]] [[1 ]]=newbub[[pTip[[2]], 1 ]] [[1 ]]-{ O,lc}; 

(*Print[PackModel' SmallFunctions' Drawcol [ new bub]]; 

Print[''*********************''];*) 

]; 

ambCol=newbub[[pTip[[5]]]]; 

distP=ambCol[[First[ orSeqList] [[2]],1 ]]; 

(*Drop[ orSeqList, {Length[ orSeqList]} ]] *) 

fxList={}; 

IfIMemberQ[pTip[[3;;5]],#[[l]]]==True,AppendTo[fxList,#]]&/@Drop[fList,1]; 

newbub= PackModel' CoalescingOrClosePackingFunctions' InteractTri ps [Reverse [ 

sequenceList2] ,Join[ { { {pTip[[l ]], 1} ,Last[ orSeqList]} },Partition[Reverse[ orSeqLi 

st] ,3, 1]] ,newbub,precisionF actor ,fxList, 1]; 

ambCol=newbub[[pTip[[ 5]]]]; 

(*PackModel' CoalescingOrClosePackingFunctions 'Move2Bubbles[ { {2, 1} , { 1,orS 

eqList[[pi+ 1,2]]}} , 

{ambCol,{pao[[3]]} },{ambCol,{pao[[3]]} },{ {2,1} },{ {2,1} },precisionFactor, 

2,1][[1]];*) 

distP=am bCo 1 [[First [ orSeq List] [ [2]], 1]]-distP; 

(*this moves the whole column down*) 

dp=l; 

For[ dp=2,dp<= Length[ orSeqList], 

ambCol[[ orSeqList[[ dp,2]], 1 ]]=ambCol[[ orSeqList[[ dp,2]], 1 ]]+distP; 

dp++; 
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]; 

newbub[[pTip[[l ]], 1 ]] [[1 ]]=newbub[[pTip[[l ]], 1 ]][[1 ]]+distP; 

newbub[[pTip[[5]]]]=ambCol; 


];*) 
]; 
newbub[[pTip[[5J]]]=ambCol; 
pi++; 

]; 
lf1pn>1, 
sequenceList2=Join[ { {pTip[[2]],1} },{ {pTip[[4]],1} },orSeqList,{ {pTip[[l]],1}} ]; 

(*sequenceList2=PackModel'NeighbourFindingFunctions'GetFina1TripList[newb 
ub,precisionFactor, { {pTip[[2]], 1}}] [[3]]; *) 

sequenceList2= PackModel 'Neighbour F indingFunctions' GetASequenceF orCol [ ne 
wbub,{ {pTip[[2]],1} },precisionFactor]; 

±List= Last/@Sort@T rans pose [PackModel 'NeighbourF indingFunctions' N eighBo 
urFinderBasedOnDistance[ newbub,aplate,precisionFactor, 4 ]] ; 
fxList={}; 

If1MemberQ [p Tip [ [2; ;5]] , # [ [ 1 ]]]==True, 
If[(#[[l ]] != pTip[[5]]),AppendTo[fxList,#JJ]&/@Drop[fList, 1 ]; 
If1MemberQ[fxList, {pTip[[5]],pos[[fp ]] } ]==False, 

AppendTo[ fxList, {pTip[[5]],pos[[fp ]] }]] ; 
(*then it close packs the trip*) 

newbub=PackModel' CoalescingOrClosePackingFunctions' InteractTrips[ sequenc 

eList2,Partition[Join[ { {pTip[[ 4 ]], 1}} ,orSeqList],3, 1 ],newbub,precisionFactor,fxL 

ist, 1]; 


distList=PackModel 'NeighbourFindingFunctions 'NeighBourFinderBasedOnDista 

nee[ { newbub[[ #[[2]]]],newbub[[ #[[5]]]]} ,newbub[[ #[[2]], 1 ]],precisionFactor, 

4]&@pTip; 

ll=Last[Last/@Sort@Transpose[distList]]; 


lc=Max[First/@Sort@Transpose[ distList]]+PackModel' SmallFunctions 'MyaveF 

n[ 

pao[[ 1,2]]]+PackModel' SmallFunctions 'MyaveFn[ newbub[[pTip[[ 5]],11[[2]]]] [[2] 

]]; 
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If[fplates==Ol l(lc>EuclideanDistance[pao[[2, 1 ]],pao[[l, 1 ]]]), 

newbub[[pTip[[l ]] ,1]] [[1 ]]=newbub[[pTip[[2]], 1 ]] [[1 ]]-{ O,lc}; 

]; 

]; 

{ newbub,fplates} 

] 
GrowthOfAmbZone[ allBubbleList_,infoList_,precisionFactor _,gZ _,ambAng_: {Pi 

/1 O,Pi/1 O} ,npAng_:(9*Pi/180),fopt_,fpN _,fixedP _,fpl_]:=Module[ { newbub, 

tempi,pTip,pao, pn,n3 ,distList, 11, lc, .n4,n6,st,fPlates,tempN} , 

(*find position of peristome =6 , apical system=5 and occular=3 *) 

newbub=allBubbleList; 

tempi=infoList; 

fPlates=fixedP ; 

(*gets the position of the different types of plates*) 

pTip = Flatten[If[MemberQ[tempi,#J==True,Position[tempi,#],­
1 ]&/@{ 6,5,3,4,2, 1}]; 

pao=If[#==-1 ,{},newbub[[#,l]]]&/@Take[pTip,4]; 

(*plate number int and amb*) 

pn=If[#==-1 ,0,Length[newbub[[#]]]]&/@Take[pTip,{-2} ]; 

tempN=GetPlateSizeforAmbCol[newbub,precisionFactor,ambAng,infoList,(npAn 

g),gZ,pao,O,fopt,fpN,fixedP,fpl]; 

newbub=tempN[[1]] ; 

fPlates=tempN[[2]] ; 

pao=If[#==-1 ,{},newbub[[#,1]]]&/@Take[pTip,4]; 

n3=newbub[[pTip[[5]]]]; 

If[pTip[[l ]]==­
1,PrependTo[ newbub, {pao[[l ]] } ] ;PrependTo[tempi,6];,newbub[[pTip[[l ]] , 1 ]]=pa 

o[[l]];]; 

{ newbub, tempi,fPlates} 

] 

GrowthOflntZone[ allBubbleList_,infoList_,precisionFactor_,gZ _,ambAng_: {Pill 

O,Pi/10} ,npAng_:(9*Pi/180),fnp _:O,fplate _:O] :=Module[ { newbub, tempi, fn, fnl , 

fn2 , pTip,pao, pn,n3 ,lc,n4,lcl ,ambitus} , 

(*find position of peristome =6 , apical system=5 and occular=3 *) 

newbub=allBubbleList; 

tempi=infoList; 

(*gets the position of the different types of plates*) 

pTip = Flatten[If[MemberQ[tempi,#]==True,Position[tempi,#],­
1 ]&/@{ 6,5,3 ,4,2, 1}]; 

pao=If[ #=="" 1, {} ,newbub[[ #, 1 ]]]&/@Take[pTip,4]; 

(*plate number int and amb*) 

pn=If[#==-1 ,0,Length[ newbub[[ #]]]]&/@Take[pTip, {-2}]; 

n3=newbub[[pTip[[ 5]]]] ; 
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(*gets the length of the column*) 

lc=EuclideanDistance[pao[[l, 1 ]],pao[[2, 1]]]; 

lc=Sqrt[(lc/\2)+((lc*Tan[ambAng[[l]]/2JY2)]; 

lcl=lc-PackModel'SmallFunctions'MyaveFn[ pao[[l ,2]]] ; 

(*estimates the number of int plates relative to columns length*) 

ambitus=(lc/2); 

lc=EuclideanDistance[pao[[l , 1 ]],pao[[2, 1 ]]] ; 

n4=GetPlateSizeforlntCol[ { 

{pao[[2]]} , {pao[[l ]] } ,n3 , {pao[[3]]} ,newbub[[pTip[[ 4]]]]} ,precisionFactor,ambA 

ng[[l ]] ,gZ-

ambAng[[l ]] ,lc,(ambitus),Length[ newbub[[pTip[[5]]]]],PackModel' SmallFunctio 

ns 'MyaveFn[ pao[[l ,2]]],(ambAng[[l ]J-npAng)/2,pao, 1,fnp,fplate]; 

Append To [ newbub,Flatten[ n4 [[1]], 1 ]] ; 

AppendTo[tempi, 1] ; 

{ newbub,tempi,n4[[2]] ,n4[[3]]} 

] 

GrowThenCoalesceORclosePackBubbles[ allBubbleList_,precisionFactor _,infoLis 

t_,gZAng_: (2Pi/5),ambAng_: {Pill O,Pi/10} ,npAng_:(9*Pi/180),fopt_: 

O,fpN _ :O,fixedP _ :O,fpl_ :O] :=Module[ { newBubbleList,nb} , 

newBubbleList= allBubbleList; 

If[PackModel ' SmallFunctions 'NumOfPlates[ newBubbleList J==O, 

newBubbleList, 


nb=GrowthOfAmbZone[newBubbleList,infoList,precisionFactor,(gZAng),ambA 

ng,npAng,fopt,fpN ,fixedP ,fpl]; 

nb ]] 


Al.3 Plate Addition: Using Descartes Theorem 

GetN ucleationPosi tion[ ocular _,apicalsys _,precisionF actor _,ang_J := Module [ { mS, 

cenDist,moveM,poslnfo,ocP ,ocP2,angleRange} , 

mS=apicalsys[[l ]]-ocular[[l ]] ; 

cenDist=PackModel'SmallFunctions'DistancebtwPoints[apicalsys[[l]J,ocular[[l] 

]]; 

moveM=((PackModel ' SmallFunctions 'MyaveFn[ ocular[[2]]])*( (mS)/cenDist) ); 

(*ocP find the periphery point for amb col, I use the center ocular[[l]]+ocP/2 for 

interamb col*) 

ocP=ocular[[l ]]-moveM; 

ocP2=( ocular[[ 1 ]]+ocP)/2; 

(*this finds the growth position for new plates on an occular, currently they occur 

between angles defined by the ambulacra sector size *) 

PackModel' SmallFunctions 'RotateOneCurve[ #[[1 ]] ,#[[2]] ,apicalsys[[l ]]J&/@Tra 

nspose[ { { ocP ,ocP ,ocP2,ocP2} ,ang} ]] 
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GetNewPlatesinGrowthZone[growthzones_,allBubbleList_,occ_,colAng_]:=Mod 
ule[ { arcLen,rL} ,(*idea is that for each occular plate there are growth areas 

flanking ones are for inter ambplates and the inner ones are for amb plates, so i 

will divide the growth zone into sections from the center of the plate, direction is 

towards/away from the periproct*) 

(*it needs to know the growth region*) 

(*it needs to know the plate involved or near*) 

(*it looks for common neighbours first*) 

(*finds the raddii of the 3 bubbles close to the growth area*) 

rL=Flatten[((PackModel 'PlateGrowthFunctions 'PlateGrowthSize[ #[[1 ]], { #[[2]]}, 

{ occ[[l]]} ])&/@Transpose[ { colAng,growthzones} ])]; 

(*returns the size of 3 possible new plates, with calculated plate size to fit gap*) 

Transpose[ {growthzones, { { rL[[l ]],rL[[l ]] } , { rL[[2]],rL[[2]]}, { rL[[3]],rL[[3]]}, { r 

L [ [ 4]] ,r L [ [ 4]] } } , { { } , { } , { } , { } } } ] 

] 
AddingAllThePlate[ allBubbleList_,orderList_ , 

plateNum _,precisionFactor _,apicalS _, 

ambAng_:(Pi/1 O),npAng_:(8*Pi/180)] :=Module[ { newBubbleList,ocular,growthP 

os,zoneNeigh,newPlates,pos,colAng,colRange,col}, 

newBubbleList = allBubbleList; 

(*for SIZE amb col uses thenpAng, and the diffence between he npAng and amb 

ang is for int plate*) 

colAng={ N[npAng/2] ,N[ npAng/2],N[ ambAng/2] -N[npAng/2],N[ ambAng/2]­

N[npAng/2]}; 

(*for rotation and positions*) 

col={N[(npAng/2)],-N[(npAng/2)],N[ambAng/2],-N[ambAng/2]}; 

(*gets the occular and apical system*) 

If[ (*MemberQ[ { 5} ,dummy[[ 1 ]J]==True,apicalS=dummy[[2]] ;,*) 

MemberQ[{3} ,#[[1 ]JJ==True,ocular=#[[2]]]&/@Transpose[ { orderList,allBubble 

List}]; 

(*gets the postion of new plate addition*) 

growthPos=GetNucleationPosition[ocular[[l]],apicalS[[l]],precisionFactor,col]; 

newPlates=GetNewPlatesinGrowthZone[growthPos,allBubbleList,apicalS[[l]],co 

lAng]; 

(*plateNum is a list which defines the side and type of plates added*) 

(*plate addition, , 1 or 2=amb, 4 or 3 = int different sides*) 

Map[Function[ dummy, 

pos=If[ dummy<=2,Flatten[Position[ orderList,2]],Flatten[Position[ order List, 1 ]]]; 

newBubbleList[[pos[[l ]]]]=AppendTo[ newBubbleList[[pos[[l ]]]],newPlates[[ du 

mmy]]]; 

] ,plateN um]; 

newBubbleList 

] 

169 




Appendix PhD Thesis- M. Abou Chakra - Computational Biology - McMaster 

Al.4 Plateau Boundary Functions 

FindCenterOfCurvature[rLarge_,rSmall_,oneBubble_,d_,dd_,bsize_]:=Module[ {r 

c, ac,nac }, 

(* based on the equation 1/rsmall= 1/rLarge + lire*) 

re= 1/(1/rSmall- l/rLarge ); 

ac = PackModel' SmallFunctions' Center Distance[ rLarge, rc,Pi * 120/180]; 

(*using similar triangle ratio*) 

nae = ac*d/dd; 

(* take the larger and add the distance to it away from the smaller bubble, because 

the circle of curvature is not adjacent to the larger bubble*) 

{ ( oneBubble+( {bsize,bsize} *nae )),rc,ac} 

] 
CircleBoundaryFunction[ circleOfcurvature _, 

intersectionPts _] :=Module[ { ang,cenQuad,m,l,sml ,quadPos}, 

(*i need this to know the slope and angle direction the plate is located in order to 


draw the border*) 

(*finds the slope between the center of curvature and each intersection points*) 

sml = 

PackModel' SmallFunctions' Slopedirec[ #,circleOfcurvature[[l ]]]&/@intersection 

Pts; 

(*finds the angle for each slope*) 

ang =If[#== { 0, 0} , 0 ,Arc Tan [ # [[1]], # [ [2]]]] &/@sm 1 ; 

(* i needed to find which quadrant the points were located relative to the center of 

curvature*) 

(*this was necessary because i had to control the direction the boudary was 

drawn*) 

quadPos=PackModel' SmallFunctions' QuadAngle[PackModel' SmallFunctions 'A 

ngleAroundThePlate[ #]]&/@sml; 

(*only interaction between my 1 (bottom left) and 4th (top left) quadrants needed 

the angles to be adjusted so it draws the closest line and not a large arc . .i still need 

something to detrmine the direction of the arc if the quads are { 1,2},{ 3, 4} *) 

cenQuad= PackModel' SmallFunctions' QuadAngle [PackModel' SmallFunctions' A 

ngleAroundThePlate[ 

PackModel' SmallFunctions' Slopedirec[ circle0fcurvature[[3 ]] ,circleOfcurvature[[ 

1]]]]]; 

m=Sort[ quadPos]; 

l=Sort[ang] ; 

Which[ 

((m=={ 1,3} )&& ( cenQuad==4 )),1={1[[2]],(2Pi)+l[[l ]] } ;, 

((m=={2,4} )&& (cenQuad==l)),1={1[[2]],(2Pi)+l[[l]]};, 

m=={ 1,4} ,1={1[[2]],(2Pi)+l[[l ]] } ; 

]; 

(*returns the center, raduis and angles, they are used in the circle 
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function,Circle[ {x, y} , r, {Subscript[\[Theta] , 1] , Subscript[\[Theta] , 

2] } ]represents a circular arc.*) 

{ circleOfcurvature [ [ 1]] ,circleOfcurvature [ [2]] ,1} 

] 
GetCurvatureOffioundary[p bubbles_]:= Module [ { r A 1,r B2,ncen,dd,d,inPts,fc,curv 

elnfo }, 

rAl =pbubbles[[l ,2]]; 

rB2 =pbubbles[[2,2]]; 

ncen = {pbubbles[[l ,1]] ,pbubbles[[2,1]]}; 

(*this is the actual distance they are apart from each other ..at this time they are 

definitely touching*) 

dd= PackModel' SmallFunctions' DistancebtwPoints [ ncen[[ 1 ]] ,ncen[[2]]]; 

(*finds the slope*) 

d = ncen[[2]]-ncen[[l]]; 

(*gets the intersection points after bubbles interact*) 

inPts=PackModel'SmallFunctions'IntersectionBoundaryPoints[{2,1,ncen[[l]] ,rA 

1 },{2,1,ncen[[2]] ,rB2} ]; 

If[inPts=={}, 

{} 


(*finds the center of curvature*) 

If[rAl == rB2, 

(*if both radii of the bubbles are the same, then the boundary will be straight*) 

{ 1,inPts,inPts[[l ]]-inPts[[2]]} 


' 
(*direction of Curvature changes depending on which bubble is the smaller one*) 

(*usually the larger has lower pressure and thus the smaller will cause is the 

concave*) 

fc =(FindCenterOfCurvature[ #[[1 ]J ,#[[2]] ,#[[3]],d,dd,#[[ 4]]])&@1:f[rAl > 

rB2, {rAl ,rB2,ncen[[l ]] , 1 },(*rb2>rai *){rB2,rA1 ,ncen[[2]],-1} ]; 

(*gets the angles so that the circle fuction can draw the arcs*) 

curvelnfo = CircleBoundaryFunction[ {fc[[l ]] ,fc[[2]] ,pbubbles[[l , 1 ]]} ,inPts ]; 

{ 2,inPts,curvelnfo [ [ 1 ]] ,curve Info [[2]] ,curve Info [ [3]] } 

](*returns the new information for the boundary*) 

] 

] 
Clear[prepF or Interacting] 

(*it takes the full list and the location of the plates , compares the two bubbles and 

updates location*) 

prepForlnteracting[ oldPlate _, new Plate_ ,opt_]:= Module[ {plate 1,plate2} , 

plate 1 =oldPlate; 

plate2=newPlate; 

(* i still need to determine how to add genital and occular plates*) 

If[opt ==1, 
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plate 1 [[2]J=PackModel' SmallFunctions 'MyaveFn[plate 1 [[2]]]; 
plate2[[2]]=PackModel' SmallFunctions 'MyaveFn[plate2[[2]]]; 

' 
(*I still need to find the radiiloc ..determine which radii to use, do# sides= 

radiiloc*) 

radiiLoc= { 1,2}; 

plate 1 [[2]]=plate 1 [[2,radiiLoc[[l ]]]]; 

plate2 [[2]]=plate2 [[2,radiiLoc[[2]]]]; 

]; 

{plate 1,plate2} 

] 
TwoBubbleBoundaryinteraction[ allPlateList_,posPlate _ ,opt_] :=Module[ { 

newList,plateNum, platel, plate2,tBubbles,temp}, 

If[(posPlate[[l ]]=={} )ll(posPlate[[2]]=={} ),newList=allPlateList;, 

new List=allP late List; 

plateNum=PackModel' SmallFunctions 'NumOfPlates[ new List]; 

plate 1 =newList[[posPlate[[l, 1 ]],posPlate[[l ,2]]]]; 

plate2=newList[[posPlate[[2, 1 ]] ,posPlate[[2,2]]]]; 

tBubbles=prepForinteracting[platel, plate2 ,opt]; 

(* it determines the intersections and the boundary between each the plates*) 

temp = GetCurvatureOfBoundary[tBubbles]; 

If[ temp== {}, 

new List=allPlateList; 


If[Length[plate1]==3, AppendTo[platel ,{} ];]; 

If[Length[plate2]==3, AppendTo[plate2,{} ];]; 

AppendTo[platel [[4]],Join[temp, { {platel [[1 ]],plate2[[1 ]]},posPlate,plateNum} ]]; 

AppendTo[plate2[[ 4]],Join[temp, { {platel [[1 ]],plate2[[1 ]] },posPlate,plateNum} ]]; 

newList[[posPlate[[l, 1 ]],posPlate[[l ,2]]]] = platel; 

newList[[posPlate[[2, 1 ]] ,posPlate[[2,2]]]]=plate2; 

]; 

]; 

new List 

] 
GetPlateauBoundary[ allBubbleList_,neighPairs _, opt_: 1] := 

Module[ 

{newList}, 

new List=allBub bleList; 

(newList=TwoBubbleBoundaryinteraction[newList,# ,opt])&/@neighPairs; 

new List 


Intersects the boundaries 

ReplacePoint[borderList_, posL_, newint_]:=Module[ {newBo,newAng}, 

newBo=borderList; 
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newBo[[posL ]]=ReplacePart[ newBo[[posL ]] ,newlnt,2]; 

If[ newBo[[posL, 1 ]]==2, 

newAng=CircleBoundaryFunction[ {newBo[[posL,3]],newBo[[posL,4]],newBo[[ 

posL,6]] [[1]] } ,newBo[[posL,2]]]; 

newBo[[posL,5]]=new Ang[[3 ]] ; 

]; 

new Bo 

] 
GetlnterBorders[ neT _,bordList_] :=Module[ { newB}, 

newB={} ;Map[Function[ dummy2,If[If[ dummy2[[1 ]]==1,MemberQ[ neT,dummy 

2[[5]]]==True,MemberQ[ neT,dummy2[[7]]]==True ],AppendTo[ newB,If[ dummy 

2[[1 ]]==1 , { dummy2[[5]],dummy2}, { dummy2[[7]],dummy2} ]];];] ,bordList, {2} ]; 

Map[Last,Union[ newB]] 

] 

GetAllBorderlntersection[tripPair _, 

allBubbleList_,fixedBorderList_] :=Module[ { newBubbleList,pPos,b2,fPt,plateList 

,neT, 

newPt,newB,ptlnt,posList,bordPos,finallnt,numberB,temp,upDateBorder,newBB 

2,anotherBubList,anothernewB,bd 1 Pos,anB}, 

newBubbleList=allBubbleList; 

another BubList=fixedBorder List; 

If[Length[tripPair]==3, 

neT=Map[Sort, { { tripPair[[l ]],tripPair[[2]]}, { tripPair[[l ]],tripPair[[3]]}, { tripPair[ 

[2]],tripPair[[3 ]]} } ] ; 

plateList=newBubbleList[[ #[[1 ]],#[[2]]]]&/@tripPair; 

b2=Map[Last, plateList]; 

newB=GetlnterBorders[neT,b2]; 

anB=Map[Last,newB]; 

If[Length[Union[anB]]==l,newB=newB;,numberB=Last[Last[Sort[Map[Functio 

n[ dummy, { Count[ anB,dummy ],dummy} ],Union[ anB]]]]]; 

temp={}; 

If(Last[ #]==numberB,AppendTo[temp,#]]&/@newB; 

newB=temp;]; 

(*intersection between the boundaries*) 

ptlnt={PackModel'SmallFunctions'IntersectionBoundaryPoints[newB[[l]],newB 

[[2]]] , 

PackModel' SmallFunctions' IntersectionBoundaryPoints[ newB[[l ]],newB[[3 ]]],P 

ackModel' SmallFunctions' IntersectionBoundaryPoints[ newB[[3]],newB[[2]]]}; 

(*fermat point*) 

fPt= PackModel' F ermatPointFunctions' GetF ermatPoint@Map [First,plateList]; 

posList=(If[#=={},O,If[PackModel'SmallFunctions'DistancebtwPoints[fPt,#[[1]]] 

<=PackModel' SmallFunctions 'DistancebtwPoints[fPt,#[[2]]], 1,2]])&/@ptlnt; 

(*gets the intersection point, it averages themjust incase they are a bit off*) 
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If[Length[Union[posList]]==l ,finallnt=PackModel'SmallFunctions'MyaveFn[Ma 
p[Function[ dummy,dummy[[2,dummy[[l ]]]]] ,Transpose[ {posList,ptlnt} ]]],finall 
nt={} ;] ; 
(*gets the position of the intersection point that is being replaced*) 
bordPos=If[PackModel'SmallFunctions'DistancebtwPoints[fPt,#[[l]]]<=PackMo 
del' SmallFunctions 'DistancebtwPoints[fPt,#[[2]]] , 1,2]&/@{ newB[[l ,2]] ,newB[[ 
2,2]] ,newB[[3 ,2]]} ; 
(*gets the new borders*) 
newBB2=Map[Last,Map[Function[ dummy,fixedBorderList[[ dummy[[l ]] ,dummy 
[[2]]]]] ,tripPair ]] ; 
anothernewB=GetlnterBorders[ neT ,newBB2]; 
anB= Map [Last,anothernewB]; 
If[Length[Union[anBJ]==l ,anothernewB=anothernewB;,numberB=Last[Last[Sort 
[Map[Function[dummy,{Count[anB,dummy],dummy}],Union[anB]]]]]; 
temp={ }; 
If[Last[ #]==numberB,AppendTo[temp,#J]&/@anothernewB; 
anothernewB=temp;]; 
(*updates the intersection points*) 
upDateBorder= If[ finallnt== {} , # [[ 1,2 ]] ,ReplacePart[#[ [ 1,2]] ,finallnt,# [ [2] ]]]&/@ 
Transpose[ { anothernewB, bordPos}]; 
i=O; 
For[i= 1, i<=Length[ newB] , 
(*position in the complete border list*) 
bdlPos=Map[Function[ dummy,If[Flatten[Position[ dummy,newB[[i]]]]=={} , { 0} , 
Flatten[Position[dummy,newB[[i]]]]]],b2]; 
(*updates the whole fixed border list*) 
newBB2=Map[Function[ dummy,If[ dummy[[l ]]=={0} ,dummy[[2]] ,ReplacePoint[ 
dummy[[2]] ,dummy[[l , 1 ]J,upDateBorder[[i]]]J],Transpose[ {bdl Pos,newBB2} ]]; 
i++; 
]; 
j=O; 
Table[plateList[0 ,4]]=newBB2[[j]] ,{j,1,Length[newBB2]} ]; 
(*updates the whole list*) 
(anotherBubList[[ #[[1 , 1 ]] ,#[[1,2]]]]=#[[2]])&/@Transpose[ { tripPair,plateList}]; 
]; 
anotherBubList 
] 
FindPlateauBoundary[ allBubbleList_,precisionFactor _,fixedBub _] :=Module[ { ne 

wBubbleList,getAlllnfo,boundln,nghPa,pList} , 

newBubbleList= allBubbleList; 

getAlllnfo=PackModel 'NeighbourFindingFunctions' GetFinalTripList[ allBubbleL 

ist,precisionF actor ,fixedBub]; 

(*make pairs from trip list*) 

pList={} ; 
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lf1(Length[#]==2),AppendTo[pList,Sort[#]] ;, 

If1(Length[#]==3),AppendTo[pList,Sort[ { #[[1 ]],#[[2]]} ]]; 

AppendTo[pList,Sort[ { #[[1 ]],#[[3]]} ]]; 

AppendTo[pList,Sort[ { #[[3]] ,#[[2]]} ]]; 

]; 

] &/@getAlllnfo [ [ 4]]; 

(*boundln=newBubbleList=GetPlateauBoundary[ newBubbleList,Map[First,getAl 

llnfo[[2]]]] ; *) 

boundln=newBubbleList=GetPlateauBoundary[ newBubbleList,Union[pList]] ; 

(*boundln=newBub bleList=GetPlateauBoundary[ new Bub bleList,getAlllnfo [ [ 4]]] 


' 
getAlllnfo=PackModel'NeighbourFindingFunctions'GetFinalTripList[allBubbleL 
ist,precisionFactor,fixedBub]; *) 
(newBubbleList=GetAllBorderlntersection[ #,boundln,newBubbleList])&/@getAl 
llnfo[[4]] ; 
newBubbleList 
] 

Al.5 Coalescing Or Close Packing Bubbles Model (used by Holotestoid) 

Move2Bubbles[bPair_, 

oldList_,allBubbleList_,fixedList_,oldFixed _,precisionFactor_, direc _,cpOPT _] := 

Module[ 

{pr,newBubList,temp,bO 1,np,reqDist,angleRt,pbubbles,checkBub,fNum,apt} , 

pr=bPair; 

checkBub=If1MemberQ[fixedList,#] ,{O,#},{ 1,#} ]&/@pr; 

fNum=Count[First/@checkBub,O]; 

Which[ 

fNum==O,apt=O;, 

fNum==l ,apt=l;checkBub=If1MemberQ[oldFixed,#]==True,{­
1,#},If1MemberQ[fixedList,#]==True, {0,#} , { 1,#} ]]&/@pr; 

pr= Last/@Sort[ checkBub] ;] ; 

If1tNum==2,allBubbleList, 

(*get the pair from the original list*) 

bO 1 ={ oldList[[pr[[l , 1 ]],pr[[l ,2]]]],oldList[[pr[[2, 1 ]],pr[[2,2]]]]}; 

(*gets pair from new list*) 

np={ allBubbleList[[pr[[l , 1 ]],pr[[l ,2]]]],allBubbleList[[pr[[2, 1 ]],pr[[2,2]]]]} ; 

(*np[[l]] is usually the fixed bubble, if it was moved then it moves the pair 

relative to it *) 

np[[2, 1J]=bO 1 [[2, 1 ]]+(np[[ 1, 1 ]]-bO 1 [[1, 1 ]]); 

(*averages the radii*)(*later i would like to implement not just average radii*) 

pbubbles={ { np[[l , 1 ]] ,PackModel' SmallFunctions ' MyaveFn[ np[[l ,2]]]} , { np[[2, 1 

]] ,PackModel' SmallFunctions 'MyaveFn[ np[[2,2]]]}}; 
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Ifl cpOPT==O, 
(*when interaction occures this moves the bubbles the proper distance towards 
each other based on plateau's law, where the angles between the radi must make 
60 degrees*) 
reqDist = 
PackModel' SmallFunctions' CenterDistance[pbubbles[[ 1,2]] ,pbubbles[[2,2]] ,Pi* 6 
0/180] ;, 
(* close pack 2 bubbles, because it works on the same principles up with a 
different required Distance*) 
reqDist = pbubbles[[ 1,2]]+pbubbles[[2,2]]; 
]; 
temp= PackModel' SmallFunctions' TomakeDistanceExact[pbubbles [[1]] ,p bubbles 
[[2]] ,reqDist,precisionFactor,direc ]; 
np[[ 1, 1 ]]=temp[[ 1 ]] ;np[[2, 1 ]]=temp[[2]]; 
newBubList=allBubbleList; 
newBubList[[pr[[2, 1 ]] ,pr[[2,2]]]]=np[[2]]; 
newBubList]] 
ThreemeetPlateauOr F ermat[bub bleList_,original Cen _,precisionF actor _,apt_,cpO 
pt_J :=Module[ { newBubbleList,centList,radii,fp,dt,anglesL , anglesList, 
CpOrPlateauDist,pTrot} , 
centList= Map[First,bubbleList]; 
radii= PackModel' SmallFunctions 'MyaveFn[ #[[2]]]&/@bubbleList; 
(*apt ==1 means that there are 2 bubbles fixed, apt ==O mean 2 bubbles are 
definitly Not fixed, depending on closepacking or coalescing determines the 
distance. coalescing uses the function centerdistance to calculated the plateau 
distance between two bubble, clopsepacking needs to have ra + rb distance unless 
they are fixed*) 
Switch[ { apt,cpOpt}, 
{0,0},CpOrPlateauDist={PackModel'SmallFunctions'CenterDistance[#[[l]],#[[3] 
],Pi*60/180],(PackModel'SmallFunctions'CenterDistance[#[[l]] ,#[[2]] ,Pi*60/180 
]), PackModel' SmallFunctions ' Center Distance[ #[[2]] ,#[[3]],Pi *60/180]} ;, 
{ 1,0}, 
CpOrPlateauDist={PackModel'SmallFunctions'CenterDistance[#[[l]],#[[3]],Pi*6 
0/180] ,PackModel' SmallFunctions 'DistancebtwPoints[ centList[[l ]] ,centList[[2]]] 
,PackModel' SmallFunctions' Center Distance[ #[[2]],#[[3]] ,Pi *60/180]} ;, 
{ 1, 1 }, 
CpOrPlateauDist={ (#[[1 ]]+#[[3]]),PackModel' SmallFunctions 'DistancebtwPoint 
s[ centList[[l ]] ,centList[[2]]] ,(#[[2]]+#[[3]])} ;, 
{0,1 }, 
CpOrPlateauDist={ (#[[1 ]]+#[[3]]),(#[[1 ]]+#[[2]]),(#[[2]]+#[[3]])}; 
]&@radii; 

Ifl { apt,cpOpt }=={ 0, 1} , 

(*Fp radius based on descartes theorem*) 
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dt= PackModel' DescartesFunctions' Descartes Theorem @@radii; 

(*Fermat Point*) 

fp = PackModel' F ermatPointFunctions' GetF ermatPoint[ centList]; 

fp=PackModel 'MovingFunctions'MoveNewBubble[fp,dt,bubbleList,precisionFac 

tor] ; 

(*gets the angles of the close-packing triangle between the main bubble and the 

other sides*) 

anglesL=PackModel' SmallFunctions' GetTheAnglesF orCLosePack(radii,dt]; 

(*decides whether fp should move left or right to match the previous bubbles 

positions, so it chooses based on the angles the bubbles make around the fixed 

bubbles and determines how much it will rotate right and hoe much left to make 

the closepacking triangle*) 

anglesList=PackModel' SmallFunctions' ChooseDirectionF orRotationF or3 Bub[ an 

glesL,centList] ; 

pTrot=fp; 


(*finds the angle of the triangle*) 

anglesL=PackModel'SmallFunctions'CosOfAngleC[CpOrPlateauDist[[l]] ,CpOrP 

lateauDist[[2]] ,CpOrPlateauDist[[3]]]; 

(*chooses a direction to rotate the bubbles*) 

anglesList= PackModel' SmallFunctions' ChooseDirectionF orRotationF or3 Bub [ { a 

nglesL,anglesL} ,original Cen] ; 

anglesList={ O,anglesList[(2]]}; 

(*adjusts position of second bubbles*) 

If[apt==O, 

centList[ (2]]= PackModel' SmallFunctions' TomakeDistanceExact[ { centList[ (2]] ,r 

adii[[2]] }, { centList([3]] ,radii[[3]]}, · 

(CpOrPlateauDist[[3 ]]),precisionFactor,2] [[1]] ;] ; 

pTrot=centList[[2]] ; 

]; 

(*Creates a new list with the proper angle positions*) 

centList= Join[ { centList[[ 1]]} ,PackModel' SmallFunctions' RotateOneCurve [p Trot 

,#,centList[[l ]]]&/@anglesList]; 

(*now it needs to move them to their proper distance not just slope/angle, so it 

finds the new anglePos the bubble make to the fixed bubble and then move them 

to the proper distance away*) 

newBubbleList=bubbleList; 

(*if 2nd bub is not fixed the first step is to move it away from bub one*) 

If[apt==O, 

newBubbleList[[2, 1 J]=PackModel' SmallFunctions 'TomakeDistanceExact[ { centL 

ist[[ 1 ]] ,radii[[ 1 ]] } , { centList[[2]] ,radii[[2]]} , 

(CpOrPlateauDist[[2]]),precisionFactor,2][[2]]; 

]; 

(*if second bub is fixed, first bub 3 moved away from one, then from 2 , and 
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finally repeats againfrom bub 1 *) 
newBubbleList[[3 ,l]]=PackModel'Sma11Functions'TomakeDistanceExact[ { centL 

ist[[ 1 ]],radii[[ 1]] },{ centList[[3 ]] ,radii[[3]]} , 

(CpOrPlateauDist[[l ]]),precisionFactor,2] [[2]]; 

newBub bleList[ [3 , 1 ]]= PackModel' SmallFunctions' TomakeDistanceExact[ { new B 

ubbleList[[2, 1 ]] ,radii[[2]]} , { newBubbleList[[3 , 1 ]] ,radii[[3]]} , 

(CpOrPlateauDist[[3]]),precisionFactor,2][[2]]; 

newBubbleList[[3 , l]]=PackModel'SmallFunctions'TomakeDistanceExact[ { centL 

ist[[l ]] ,radii[[l ]] } , { newBubbleList[[3 , 1 ]],radii[[3]]}, 

(CpOrPlateauDist[[ 1 ]]),precisionFactor,2] [[2]]; 

newBubbleList 

] 

Move3Bubbles[ ortrip _, 

oldList_,allBubbleList_,sequenceList_,precisionFactor_,cpOpt_,fixedBubList_]:= 

Module[ { newBubbleList,checkBub,fixedBub,bubList,oldbub,np,angleRt,cp,apt,tr 

ip,fNum}, 

apt=O;trip=ortrip;fNum=O; 

(*this step checks for fixed bubbles*) 

checkBub=If[MemberQ[fixedBubList,#],{0,#} ,{ 1,#} ]&/@trip; 

fNum=Count[Map[First,checkBub] ,OJ; 

Which[ 

fN um== 1,apt=O; 

trip=Map[Last,Sort[ checkBub ]] ;trip=Join[ { trip[[l ]] } ,PackModel' SmallFunctions' 

SBySequence[sequenceList,Take[trip,-(Length[trip]-1)]]];, 

fN um==2,apt= 1; 

trip=Map[Last,Sort[ checkBub ]] ; 

trip= Join[PackModel' SmallFunctions' SBySequence[ sequenceList, Take[ trip,(Len 

gth[trip ]-1 )]] , {Last[trip]}]; 

]; 

newBubbleList=allBubbleList; 

If[(fNum==3), 

(* if there is no interaction, then it returns the list and O indicating no interaction*) 

newBubbleList={ O,newBubbleList} ;, 


(*oldbub and bublist store the 3 bubbles from the original list*) 

oldbub=bubList={ oldList[[trip[[l , 1 ]],trip[[l ,2]]]],oldList[[trip[[2, 1 ]],trip[[2,2]]]] , 

oldList[[trip[[3 , 1 ]] ,trip[[3 ,2]]]]}; 

(* the first bub is always fixed*) 

fixedBub=newBubbleList[[trip[[l, 1 ]],trip[[l ,2]]]]; 

(*apt==O means 2 are NOt fixed, apt==l means 2 are fixed*) 

Which[ apt==O, 

(*this adjust the location relative to the new position of the fixed bub*) 

bubList[[2, 1 ]]=bubList[[2, 1 ]]+(fixedBub[[l ]] -oldbub[[l , 1 ]]); 
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bubList[[3 , 1 ]]=bubList[[3 , 1 ]]+(fixedBub[[l ]]-oldbub[[l, 1 ]]); 

bubList[[l , 1 ]]=fixedBub[[l ]] ;, 

apt== l , 

(*shifts the old list accordingly so that the bubles are still the same relative to one 

another, this is important for angles*) 

bubList[[2]]=newBubbleList[[trip[[2, 1 ]] ,trip[[2,2]]]]; 

(*rotation to match new angle*) 

angleRt= { PackModel ' SmallFunctions' AngleAround ThePlate [ (bubList[ [2, 1 ]]­

fixedBub [ [ 1]])] ,PackModel' SmallFunctions' AngleAroundThePlate [ ( oldbub [ [2,1] 

]-oldbub[[l , 1 ]])] }; 

angleRt=( angleRt[[2]]-angleRt[[ 1 ]]); 

bubList[[3 , 1 ]]= 

PackModel ' SmallFunctions' RotateOneCurve [bub List[ [3 , 1]] ,angleRt, 

oldbub[[ 1, 1]]] ; 

(*movement*) 

bubList[[3 , 1 ]]=bubList[[3 , 1 ]]+(fixedBub[[l ]] -oldbub[[l , 1 ]]); 

bubList[[l ]]=newBubbleList[[trip[[l , 1 ]],trip[[l ,2]]]] ;] ; 

If1((fNum==2)&&(PackModel'SmallFunctions'DistancebtwPoints[bubList[[l ,1]] 

,bubList[[2, 1 ]]]>= 

Total[Flatten[PackModel' SmallFunctions 'MyaveFn[ #[[2]]]&/@bubList* { 1, 1,2}] 

])), 

(*if the triangle doesnt make sense then the program doesnt interact or cp the 

bubbles*) 

newBubbleList[[trip[[3 , 1 ]],trip[[3 ,2]]]] [[1 ]]=bubList[[3 , 1 ]] ; 

newBubbleList={ 1,newBubbleList}; 


' 
np=ThreemeetPlateauOrFermat[bubList,#,precisionFactor,apt,cpOpt]&@ 

Map[First,oldbub] ; 

(*if the bubbles have already been close packed/coalessed in another, apt ==l , 

turn then it makes sure that it rotates so that they match*) 

(*Print[PackModel'SmallFunctions'Drawcirc[ {np} ]];*) 

Ifl:(apt==O), 

If1((#[[2]]==#[[3]]&&#[[2]]==#[[1]])&@(PackModel'SmallFunctions'MyaveFn[ 

#[[2]]]&/@np)), 

angleRt=O; 


' 
(*i put a negative because it appeared to rotate the wrong way*) 

angleRt=­
1 *PackModel' SmallFunctions 'RotationAngleBetweenBubbles[ { {PackModel' Sm 

allFunctions ' FindmidPoint[ { np[[2, 1 ]],np[[3 , 1 ]] } ] } , {PackModel' SmallFunctions' 

FindmidPoint[ {bubList[[2, 1 ]] ,bubList[[3, 1 ]] } ] } } ,bubList[[l ]]]; 

]; 

,angleRt=O; 

]; 
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If1angleRt==O,cp={np[[2, 1 ]],np[[3, 1 ]] } ;, 

(*rotates only if angle doesnt equal to 0*) 

cp= 

Map[Function[ dummy, 

PackModel' SmallFunctions 'RotateOneCurve[ dummy,angleRt, fixedBub[[l ]]]] , 

{np[[2,1]] ,np[[3 ,1]]} ]] ; 

np[[2, 1 ]]=cp[[l ]] ;np[[3 , 1 ]]=cp[[2]]; 

(*updates list* ) 


(newBubbleList[[#[[l , 1 ]] ,#[[1,2]]]] [[1 ]]=#[[2]])&/@Transpose[ { trip, { np[[l , 1 ]],c 

p[[l ]],cp[[2]]} }]; 

newBubbleList={ l ,newBubbleList} ;];]; 

newBubbleList 

] 
FnthatCPo:rCoalesce[bubSet_,allBubbleList_,newList_, 

triplettes _,sequenceList_,precisionFactor_,fixedBub _,origFixed _,cpOpt_J :=If[Len 

gth[bubSet]==3 ,Move3Bubbles[bubSet,allBubbleList,newList,sequenceList,preci 

sionFactor,cpOpt,fixedBub ], 

If[ (Length[bubSet ]==2 )(* &&( ( Count[PackModel 'Neighbour FindingFunctions' C 

heckForWrongPairs[bubSet, triplettes],{3 ,True} ])==O)*), 

{ 1,Move2Bubbles[bubSet,allBubbleList,newList,fixedBub,origFixed,precisionFa 

ctor,2,cpOpt]} 


{O,newList} 

]] 

CheckForCPSingleBubbleOverlaps[ currentList_,allBubbleList_,sequenceList_,tri 

plettes _,tNum _,precisionFactor _,fixedBub _,oldFixedList_,cpOpt_] := 

Module [ { trip,apt,fN um,newT ,fixedBubList,newneigh,allN eigh, tempN eigh, trialc, t 

emp,checkBub, newfixedList, temp Trip, u,counter, tempN ewT} , 

trip=triplettes[[tNum]] ; 

(*this checks to see if all the bubbles are fixed*) 

trip=Complement[triplettes[[ tNum ]],fixedBub] ; 

If[(trip=={} ), {O,currentList, {}} , 

trip=PackModel ' SmallFunctions'SBySequence[triplettes[[tNum]],trip]; 

temp=currentList;fixedBubList=fixedBub;tempTrip=newT={} ;trialc=O; 

For[u=l , u<=Length[trip] , 

If[MemberQ[fixedBubList,trip[[ u]]]==True, u++;counter=O;newT={} ;trialc=O;, 

tempNeigh=PackModel 'NeighbourFindingFunctions'NeighBourFinderBasedOn 

Distance[temp,temp[[trip[[ u, 1 ]] ,trip[[ u,2]]]],precisionFactor,If[ cpOpt== 1,2,6]]; 

allN eigh=newneigh= Intersection[ tempN eigh[ [2]] ,fixedBubList]; 

If[ newneigh== {}, 

u++·newT={} ·counter=O·


' ' ' 

tempN eigh=PackModel 'NeighbourFindingFunctions'NeighBourFinderBasedOn 
Distance[temp,temp[[trip[[ u, 1 ]] ,trip[[ u,2]]]],precisionFactor,If[ cpOpt==l , 1, 1 ]]; 
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newneigh= PackModel' SmallFunctions' SBySequence [ tempN eigh[ [2]] ,Intersectio 
n[tempNeigh[[2]],fixedBubList]]; 

newfixedList=Complement[ fixedBubList, newneigh]; 

(*first we look in trips*) 

If1Length[ newneigh ]> 1,Append To [ newT ,PackModel' SmallFunctions' SBySeque 

nee[ sequenceList, { newneigh[[l ]],newneigh[[2]],trip[[ u ]] } ]]]; 


lf1(MemberQ[newT, #]==False)&&(#!= triplettes[[tNum]]), 

If1 

( ( ( (Length[Intersecti on[# ,newneigh]] == 1 )&& (Length[Intersection[ #, 

newfixedList]]==l ))I l(Length[Intersection[ #,newneigh ]]==2 

))&&(Length[Intersection[#,{trip[[u]]} ]]==1) ), AppendTo[newT,#];]; 

]&/@ triplettes; 

newT=Complement[ newT,triplettes[[tNum ]]] ; 

(*then it gets the pairs*) 

Map[Function[ dum2,Map[Function[ dum,If1 dum2==dum,newT= J oin[newT ,Pack 

Model' SmallFunctions' SB ySequence[sequenceList, { { dum2, trip [ [ u]]}}]], 

tempNewT=PackModel' SmallFunctions' SBySequence[ sequenceList, { { dum2,du 

m,trip[[u]]}} ]; 

If1MemberQ[newT, tempNewT]==False, 

newT= Join[ newT ,tempN ewT] ,newT= Join[ newT ,PackModel' SmallFunctions' SB 

ySequence[sequenceList, { { dum2,trip[[u]]}} ]]];];],newneigh]],allNeigh]; 

(*then it interacts*) 

counter=l; 

While[(allNeigh != {} )&&( counter<=Length[newT]), 

If1(Length[ newT[[ counter ]]]==2&&((Count[PackModel 'NeighbourFindingFuncti 

ons'CheckForWrongPairs[newT[[counter]],newT],{3,True}])==O))IILength[newT 

[[counter ]]]==3 , 

temp=FnthatCPorCoalesce[ newT[[ counter ]],allBubbleList,temp, 

triplettes,sequenceList,precisionFactor,fixedBubList,oldFixedList,cpOpt]; 

temp=temp[[2]]; 

]; 

tempNeigh=PackModel'NeighbourFindingFunctions'NeighBourFinderBasedOn 

Distance[temp,temp[[trip[[ u, 1 ]],trip[[ u,2]]]],precisionFactor,If1 cpOpt==l ,2,6]]; 

allNeigh=Intersection[tempNeigh[[2]],fixedBubList]; 

tempTrip=newT[[ counter]]; 

counter++; 

]; 

trialc++; 

newT={}; 

If1(tempNeigh == 

{} ),fixedBubList=Union[Join[fixedBubList,tempTrip ]];u++;,counter=O;newT={}; 


(*still needs some thinking, may not need to loop as much*) 
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If[(trialc> 1 O),u++;counter=O;newT={} ;]; 

] ;] ;] ; 

{1,temp,{}} 

]] 
InteractTrips[sequenceList_, 

tripList_,allBubbleList_,precisionFactor _ ,fixedBub _,cpOpt_J :=Module[ { n~wList, 

tri plettes, t, temp,flag,fixedBubList,final Tri ps,newall SeqIn,ngl,compList,tempFlag 

}, 

newList=allBubbleList; 

triplettes=tripList; 

(*this loops until the bubbles have been checked at least 1 once for overlap*) 

temp={ 1,newList}; 

t=O; 

fixedBubList=fixedBub; 

compList={ }; 

For[t=l ,t<=Length[triplettes ], 

fixedBubList= If[ ( t )==1,fixedBubList, 

Union[Join[fixedBubList,Flatten[Complement[Take[triplettes,t ­
1 ],compList] , 1 ]]]]; 

temp=FnthatCPorCoalesce[triplettes[[t]],allBubbleList,temp[[2]] , 

triplettes,sequenceList,precisionFactor,fixedBubList,fixedBub,cpOpt]; 

tempFlag=temp[[ 1 ]] ; 

If[cpOpt== 11 lcpOpt== 1, 

temp=CheckForCPSingleBubbleOverlaps[temp[[2]],allBubbleList,sequenceList,tr 

iplettes,t,precisionFactor,fixedBubList,fixedBub,cpOpt]; 

If[(tempFlag==O)&&(temp[[l]]==O),compList=AppendTo[compList,triplettes[[t] 

]]]; 

]; 

t=t+ 1; 

]; 

temp[[2]] 

] 

CoalesceORclosePackBubbles[allBubbleList_,precisionFactor _ ,fixedBub _,cpOpt 

_] :=Module[{ newBubbleList,getAlllnfo} , 

newBubbleList= allBubbleList; 

If[PackModel' SmallFunctions'NumOfPlates[newBubbleList]==O,newBubbleList, 

If[cp0pt==2, 

getAlllnfo=PackModel 'NeighbourFindingFunctions' GetFinalTripList2[newBubb 

leList,precisionFactor,fixedBub, 1 O]; 

newBubbleList=InteractTrips[getAlllnfo[[3]] ,getAlllnfo[[ 4]] ,newBubbleList,prec 

isionFactor,fixedBub, 1]; 


getAlllnfo=PackModel'NeighbourFindingFunctions'GetFinalTripList[allBubbleL 
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ist,precisionF actor ,fixedBub]; 
newBubbleList=InteractTrips[getA11Info[[3]] ,getA11Info[[4]] ,newBubbleList,prec 

isionF actor ,fixedBub,cpOpt]; 

]; 

newBubbleList 

]] 


Al.4.1 Find Neighbouring bubbles important functions for packing/coalescing 

(*had to use N[] around pi due to a Sort[] error use later and Ifl] error*) 
SumRadii[bubbleList_,plate _,opt_J :=Map[Function[ dummy, 
Which[ 
( opt==l ),(#[[1 ]]+#[[2]]), 
( opt==6), { (PackModel' SmallFunctions 'CenterDistance[ #[[1 ]J ,#[[2]] ,N[Pi*60/180 
]]),(PackModel' SmallFunctions 'CenterDistance[ #[[1 ]] ,#[[2]] ,N[Pi*60/180]])} , 
( opt==2), { (#[[1 ]]+#[[2]]),(#[[1 ]]+#[[2]])}, 
( opt==3), { (#[[1 ]]+#[[2]]),(PackModel' SmallFunctions' Center Distance[ #[[1 ]] ,#[[ 
2]] ,N[Pi*60/180]])} , 
(opt==l 0),(#[[1 ]]+#[[2]])+(#[[1 ]] *0.25)(*(EuclideanDistance[bubbleList[[l , 1 ]] [[ 
1]] ,bubbleList[[2, 1 ]] [[1 ]]] *0.1 )ambCol[[ orSeqList[[ dp,2]] , 1 ]]*) 
]&@{PackModel'SmallFunctions'MyaveFn[plate[[2]]] ,PackModel'SmallFunctio 
ns 'MyaveFn[ dummy[[2]]]} ], 
bubbleList, {2}] 

FindCloseN eighbours [ radiiDist_,precisionF actor_]:= 
If1( (# [ [ 1]])>=( # [ [2]])1 l(PackModel' SmallFunctions' L ThanPrec[ # [[1]] , #[ [2]] ,preci 
sionFactor ]==1 )ll(PackModel' SmallFunctions' GreaterThan[ #[[1 ]] ,#[[2]],precision 
Factor ]==O)), 
1, 0]&@radiiDist 

F indExactDistanceN eighbours [ radiiDist_,precisionF actor_]:= 
If1((#[[1 ]])==(#[[2]Dl l(PackModel' SmallFunctions 'LThanPrec[ #[[1 ]J ,#[[2]] ,preci 
sionFactor ]==1)I l(PackModel 'SmallFunctions 'GreaterThan[ #[[1 ]] ,#[[2]] ,precision 
Factor]==O)), 
1,0]&@radiiDist 
(*If1((radiiDist[[l ,2]])==(radiiDist[[2]Dl l(PackModel'SmallFunctions'LThanPrec 
[radiiDist[[l ,2]] ,radiiDist[[2]] ,precisionFactor ]==1 )ll(PackModel' SmallFunctions' 
GreaterThan[ radiiDist[[l ,2]],radiiDist[[2]],precisionFactor ]==0)),0, 1 ]*) 
OverlappingNeighbours[radiiDist_,precisionFactor_]:= 
If1((#[[1 , 1 ]])>=(#[[2]Dll(PackModel ~smallFunctions'LThanPrec[ #[[1 , 1 ]],#[[2]],pr 
ecisionFactor ]== 1 )l l(PackModel' SmallFunctions 'GreaterThan[ #[[1 , 1 ]] ,#[[2]] ,prec 
isionFactor ]==O) ), 
If1((#[[1 ,2]])==(#[[2JDl l(PackModel' SmallFunctions 'LThanPrec[ #[[1 ,2]],#[[2]] ,pr 
ecisionFactor ]== 1 )I l(PackModel' SmallFunctions' Greater Than[#[[ 1,2]] ,#[[2]] ,prec 
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isionFactor ]==0)),0, 1 ],O]&@radiiDist 
NeighBourFinderBasedOnDistance[ allBubbleList_,onePlate _,precisionFactor _, 

opt_] :=Module[ {location,dist,radiiDist,diffm,newDiffm,findVal ,neighList,distOf 

Neigh}, 

location=Flatten[Position[ allBubbleList,onePlate ]] ; 

(*finds the distance between the bubble of interest and all the others*) 

dist= PackModel' SmallFunctions 'DistFromOnePlate[ allBubbleList, 

onePlate[[ 1 ]]] ; 

(*this list either contains the distance of two radii, or the plateau distance between 

two bubbles*) 

radiiDist = SumRadii[allBubbleList,onePlate,opt]; 

(*opt 4 only cares about distance not radiidist*) 

If[( opt==4) 11 ( opt==5),diffm =Map[Transpose,Transpose[ { dist,dist} ]]; , 

(*this creates a list of the radii dist values and the actual distance of two bubbles*) 

diffm =Map[Transpose,Transpose[ {radiiDist,dist} ]];]; 

If[(( opt==4)1 I(opt==5) 11 ( opt==3)11 ( opt==2)1 I( opt==l )I I( opt==10)11(opt==6)),newDif 

fm=dist; ,newDiffm=dist-radiiDist;diffm 

=Map[Transpose,Transpose[ {newDiffm,radiiDist} ]]] ; 

(*findVall is a list that returns 1 for meeting the criteria and O for failing*) 

Which[(( opt==3) 11 (opt==2)11(opt==6)),findVal=Map[Function[ dummy,Overlappin 

gNeighbours[dummy,precisionFactor]],diffm,{2}];, 

((opt==l) ll(opt==lO) ll (opt==8)11(opt==9)),findVal=Map[Function[dummy,FindCl 

oseNeighbours[dummy,precisionFactor]],diffm,{2}];, 

( opt==4 )11(opt==5),findVal=Map[Function[ dummy, 1 ],diffm, {2}] ; 

]; 

(*removes itself from the list,then sort the neighbours based on distance*) 

If[ ( opt==4 ),neighList= Position[ find Val, 1] ;,neighList 

=Complement[Position[ find Val, 1] , {location}];]; 

(*gets the distances next to the neigh position for sorting*) 

distOfNeigh= newDiffm[[ #[[1 ]J ,#[[2]]]]&/@neighList; 

If[ opt==4, { distOfN eigh,neighList} , 

{location,Last/@Sort[Transpose[ { distOfNeigh,neighList} ]] } ] 

] 
Pair Neigh[ nList_J :=If[ nList=={} , {} ,If[ nList[[2]]=={} , {} ,Table[ { nList[[l ]] ,nList[ 

[2,i]] }, { i, l ,Length[ nList[[2]]]} ]]] 

GetAllPairs[ neighList_] :=Map[PairNeigh,neighList, {2}] 

GetNeighint[pairSet_,neighList_J :=Intersection[ neighList[[#[[l , 1 ]] ,#[[1 ,2]]]] [[2]] 

,neighList[[ #[[2, 1 ]] ,#[[2,2]]]] [[2]]]&@pairSet 

GetNeighPairsinfoList[ neighList_] :=Module[ {pList,nList,lastlnfo} , 

pList=Union[Sort/@Flatten[GetAllPairs[neighList],2]]; 

nList={ }; 

Map[Function[ dummy, 

If[dummy=={},{}, 

(*this checks to see if the pairs are really neighbours of one another and not just 
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one sided*) 
If[(MemberQ[ neighList[[ dummy[[l , 1 ]],dummy[[l ,2]]]] [[2]],dummy[[2]]]==True 

)&&(MemberQ[ neighList[[ dummy[[2, 1 ]],dummy[[2,2]]]] [[2]] ,dummy[[l ]]]==Tr 

ue), 

AppendTo[nList,{dummy,GetNeighlnt[dummy,neighList]}]; 

]; 

];],pList] ; 

Trans pose [ { Map [First,nList] ,Map [Last,nList]}] 

] 

PerpenSortlnfoList[ allSeq_,allBubbleList_] := Module[ {bublist,mid,slp 1,slp2,pairl 

n, 

newSeqList,centList,centAng,centQuad,neighCent,neighList,thRange,neighAng,si 

deOfBub,sideList,sideList2,allneighln,perPen,ang,thRange2,angRes,radiiList,d} , 

newSeqList=allSeq; 

pairin=newSeqList[[ 1]]; 


bublist={ allBubbleList[[pairln[[l , 1 ]],pairln[[l ,2]]]],allBubbleList[[pairin[[2, 1 ]] ,p 

airln[[2,2]]]]}; 

centList= Map [First, bub list]; 

neighList=allBubbleList[[ #[[ 1 ]] ,#[[2]]]]&/@newSeqList[[2]]; 

neighCent=Map[First,neighList]; 

mid= PackModel' SmallFunctions' FindmidPoint[ centList]; 

(*finds the angle of the two bubbles relative to the midPoint*) 

centAng={PackModel' SmallFunctions'AngleAroundThePlate[(centList[[l]]­

mid)] ,PackModel'SmallFunctions'AngleAroundThePlate[(centList[[l]]­
mid)] ,PackModel' SmallFunctions' AngleAroundThePlate[ ( centList[[2 ]]-mid)]}; 

centQuad=Map[PackModel' SmallFunctions' QuadAngle,centAng] ; 

(*this sorts the centers from least to greater quad number*) 

(*centAng=Map[Last,Sort[Transpose[ { centQuad,centAng} ]]];*) 

(*this finds the ang and the quad for the bub*) 

neighAng= PackModel' SmallFunctions' AngleAroundThePlate [ ( #­

mid)] &/@neigh Cent; 

(*then gets the range that the bub should fit in*) 

thRange= PackModel' SmallFunctions' Order Theta Quad[ { centAng,centQuad}] ; 

(*this is for a check the bubble cannot be on the same slope as the pairs but also i 

make the range pi/8 , not 45 bit near the top removes wrong neighs*) 

radiiList=PackModel'SmallFunctions'MyaveFn[Take[#,{2}][[1]]]&/@bublist; 

d=PackModel ' SmallFunctions 'DistancebtwPoints[ centList[[ 1 ]] ,centList[[2]]]; 

(*this is an important line, it determines neighours based on the size of the 

bubbles, when they are equal the range is different than when they are the 

unequal, the angle range is calculated using the radius and the distance of the 

bubbles*) 

angRes=N[ { ArcTan[radiiList[[l ]]/d],ArcTan[radiiList[[2]]/d]}]; 

ang={ { centAng[[l ]] ,PackModel' SmallFunctions 'CheckAngle[ centAng[[l ]]+(ang 
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Res[[l]])],PackModel'SmallFunctions~checkAngle[centAng[[l]]­
(angRes[[l]])]},{centAng[[3]],PackModel'SmallFunctions'CheckAngle[centAng 

[[3 ]]+( angRes[[2]])] ,PackModel' SmallFunctions' CheckAngle[ centAng[[3 ]]­
( angRes[[2]])]} }; 

thRange2=Map[Function[ dummy,PackModel' SmallFunctions 'OrderThetaQuad[ { 

dummy ,Map[PackModel' SmallFunctions' QuadAngle,dummy]}]] ,ang]; 

(*now it decides which side the neigh goes on*) 

per Pen= PackModel' SmallFunctions' RotateCurve[ centList, N[Pi/2] ,mid]; 


sideList={ {}, {}}; 

Map[Function[ dummy, 

If[((PackModel'SmallFunctions'MatchRange2[thRange2[[1]],dummy[[l]]]==O)& 

&(PackModel'SmallFunctions'MatchRange2[thRange2[[2]],dummy[[l]]]==O)), 

(*closest to perpen slope, sorting by distance*) 

slp 1 =Min[ {PackModel' SmallFunctions 'DistancebtwPoints[ 

per Pen[ [ 1]] ,dummy[ [2]]] ,PackModel' SmallFunctions' DistancebtwPoints [ 

perPen[[2]],dummy[[2]]]} ]; 

If[PackModel'SmallFunctions'MatchRange[thRange,dummy[[l]]]==l,AppendTo 

[ sideList[[l ]], { slpl ,dummy[[3]]} ];,Append To[ sideList[[2]], { slp 1,dummy[[3]]} ]; 

] ;]; 

],Transpose[ {neighAng,neighCent, newSeqList[[2]]} ]]; 


(*this is necessary to separate to prevent the {} error*) 

sideList[[l ]]=If[ sideList[[l ]]=={}, {} ,Sort[ sideList[[l ]]]]; 

sideList[[2]]=If[ sideList[[2]]=={}, {} ,Sort[ sideList[[2]]]]; 

sideList[[l ]]=If[ sideList[[l ]]=={}, {} ,First[ sideList[[l ]]]]; 

sideList[[2]]=If[ sideList[[2]]=={}, {} ,First[ sideList[[2]]]]; 

(*finally it appends the neigh to the list*) 

newSeqList[[2]]={}; 

If[#!={} ,AppendTo[ newSeqList[[2]],Last[ #]]; 

newSeqList[[2]]=Sort[ newSeqList[[2]]]; 

]&/@Sort[ sideList] ; 

(*newSeqList[[2]]=If[ newSeqList[[2]]=={}, {} ,Sort[ newSeqList[[2]]]]; *) . 

newSeqList 

] 
CheckForW rongPairs [bub Set_, tri plettes _]:=Map [Function[ dummy, { Length[ dum 

my],MemberQ[ {Intersection[Sort[ dummy ],Sort[bubSet]]} ,Sort[bubSet]]} ],triplett 

es] 

CheckForWrongTrips[pairs _, thirdP _,info List_] :=Module[ { allp,posit,inter,trip}, 

allp=Map [F irst,info List]; 

trip=Map[Sort,{pairs, {pairs[[l]], thirdP},{pairs[[2]], thirdP}} ]; 

posit= Flatten[Map [Function[ dummy, Position[ allp,dummy]], trip]]; 

inter= Map [Function[ dummy ,Map [Function[ dummy2,If[MemberQ [ {pairs [ [ 1]] ,pai 

rs[[2]],thirdP} ,dummy2]==True, 1,0]],infoList[[ dummy,2]]]],posit]; 
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Map[Function[dummy,lf[MemberQ[dummy,l]==True,1,0]],inter] 
] 
GetTripsFromAllSeqlnfo[ alllnfo _J :=Module[ { tp}, 

tp={}; 

(*first we make trips and pairs from the results*) 

Map[Function[ dummy, 

If[ dummy[[2]]=={} ,AppendTo[tp,Sort[ dummy[[l ]]]] ;, 

Map[Function[ dummy2,AppendTo[tp,Sort[Join[ dummy[[l ]], { dummy2} ]]];],dum 

my[[2]]] 

]; 

],alllnfo ]; 

tp] 

TripNeighbourFinder3ofakind[alllnfo _,sequenceList_] :=Module[ { nList,newneigh 

, tp,pair List,newtp,newtpt,newtpp,s,n,pos 1,temp,chk}, 

(*this functions determines correct triplettes or pairs*) 

(*if 3 of the same trips are created means it is a correct ineraction, if2 pairs are 

created means they are correct, if only 2or 1/3 trips are created then one of the 

neigh is not correct*) 

(*first we make trips and pairs from the results*) 

tp=GetTripsFromAllSeqlnfo[ alllnfo]; 

(*removes.tripletes are are not shared*) 

newtp=newtpt=newtpp= {}; 

Map[Function[ dummy, 

If[((((Length[dummy]==2)&&(Count[CheckForWrongPairs[dummy, 

Union[tp]],{3,True} ])==O))),AppendTo[newtp,PackModel'SmallFunctions'SByS 

equence[ sequenceList,dummy ]] ;, 

If[ (Count[ tp,dummy ]>=(Length[ dummy]) ),Append To [ newtp,PackModel' SmallF 

unctions' SBySequence[ sequenceList,dummy ]] ;] ; 

]; 

] , Union[ tp ]] ; 


(*this puts trips first in the list*) 

(*newtpt=PackModel' SmallFunctions' SaListBySequence[ sequenceList,newtpt]; 

newtpp= PackModel' SmallFunctions' SaListB ySequence [ sequenceList,newtpp]; 

newtp= Join[ newtpt,newtpp]; *) 

newtp= PackModel' SmallFunctions' SaListB ySequence [ sequenceList,newtp]; 

(*if there is a bubble Missing then it will add the trip avaiable for that*) 

chk=Complement[ sequence List, U nion[Flatten[ newtp, 1]]] ; 

If[Length[ chk ]>O, 

Map[Function[dumyl, 

temp={}; 

Map[Function[ dummy, 

If[MemberQ[ dummy ,dumy 1 ]==True,AppendTo [ temp,PackModel' SmallFunction 
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s' SBySequence[ sequenceList,dummy ]] ; 
]; 
],Union[tp]] ; 

(*makes sure that the found pairs/trips doesnt already exist*) 
temp=Complement[temp,newtp]; 
temp=PackModel' SmallFunctions' SaListBySequence[ sequenceList,temp]; 
lfltemp != {},AppendTo[newtp,temp[[l]]]]; 
],chk];]; 
newtp=PackModel' SmallFunctions' SBySequence[ sequenceList,#]&/@newtp; 
PackModel' SmallFunctions' SaListBySequence[ sequenceList,newtp] 
] 
TripNeighbourFinder2[ alllnfo _,sequenceList_] :=Module[ { nList,newneigh,tp,stp, 

pL, tL,sL,cpL,pos,npL, tempt, tempp 

,temp2,allpairs,newtp,newtpt,newtpp,s,n,t,p,temp,chk,flag}, 

(*first we make trips and pairs from the results*) 

tp=GetTripsFromAllSeqlnfo[ alllnfo]; 

(*to pick the first trip, i uses a function that only keeps trips or pairs that occur 3/2 

times within the list*) 

(*this functions determines correct triplettes or pairs*) 

(*if 3 of the same trips are created means it is a correct ineraction, if 2 pairs are 

created means they are correct, if only 2or 1/3 trips are created then one of the 

neigh is not correct*) 

stp=TripNeighbourFinder3ofakind[alllnfo,sequenceList]; 

tL={Sort[stp[[l]]]}; (*final trip or pair list*) 

pL=Union[Map[Sort,Permutations[ stp[[l ]], {2}]]]; 

(*final trip or pair list*) 

sL=stp[[l]];(*a list which keeps track of the bubbles accounted for*) 

pL=Map[Sort,pL ];(*pair list*) 

cpL={} ;(*list of pairs that shouldnt be together*) 

newtp={ {Sort[tL[[l]]],pL} };(*(chosen trip or pair), (permutations)*) 

(*this gets all the first pairs in the info list*) 

allpairs=Map[First,alllnfo]; 

n=l; 

While[(n<=Length[newtp]), 

tempp=newtp[[ n ]] ; 

flag=O; 

lfltempp[[l ]] != {}, 

IflMemberQ[ cpL,#]==True, 

flag=l ;]&/@Union[Map[Sort,Permutations[tempp[[l ]], {2} ]]] ; 

]; 

lflflag==O, 

(*this stores the trips and gets the pairs*) 

Ifltempp[[l]]!= {}, 

IflMemberQ[tL, Sort[tempp[[l ]]]]==False, 
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AppendTo[tL,Sort[tempp[[l ]]]]; 
sL=Union[Join[ sL,tempp[[l ]]]]; 
pL={} ; 
pL=Join[pL,Union[Map[Sort,Permutations[ #, {2} ]]]]&/@tL; 
] ;]; 
(*from each pair it gets the next trips in order*) 
Lfltempp[[2]] != {}, 
Map[Function[ dummy2, 
pos=Flatten[Position[ allpairs,dummy2]]; 
lflpos!= {}, 
(*this is a list of all the pairs*) 
temp=alllnfo[[pos[[l ]] ,2]]; 
(*one of the bubbles have to be part of the trip*) 
lf[(Length[temp ]> 1 )&&(Length[Intersection[tempp[[l ]] ,temp ]]>O), 
(*this stores a list that has pairs of bubbles that should not be paired together, this 
list depends on the bubble you start with*) 
cpL=Union[ AppendTo[ cpL,Sort[temp ]]] ; 
(*it doesnt keep the bubble that already was used*) 
temp=Complement[ temp, tempp [ [2]]]; 
(*if the triplete is new then it appends { tripletes, pairs} to the list*) 
Map[Function[ dummy3 ,t={Sort[Join[ dummy2, { dummy3} ]] , {}}; 
(*here is makes sure it is a new trip*) 
If1MemberQ[tL, t[[l]]]==False, 
(*keeps only new pairs*) 
p=Complement[ 

{Sort[ { durhmy2[[1]] ,dummy3} ],Sort[ { dummy2[[2]] ,dummy3} ]} ,pL]; 

If[MemberQ[cpL,#]== False,AppendTo[t[[2]] ,Sort[#]]]&/@p; 

lf[MemberQ[newtp, t]==False,AppendTo[newtp,t]]; 

]; 
],temp] ; 
]; 

]] ,tempp[[2]]] 
]] ; 
n++; 

flag=O ; 

s=l ; 

(*if n> length of newtp then this function checks to makes sure that all the 

bubbles were accounted for*) 

chk=PackModel ' SmallFunctions' SBySequence[ sequenceList,Complement[ seque 

nceList,sL ]] ; 

If[ ( (Length[ chk]>O )&& (n> Length[ newtp]) ), 

While [ flag==O, 

npL=chk[[ s ]] ; 

temp2={} ; 
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(*finds all the trips that have that bubble*) 

If[MemberQ[ #,npL J==True,AppendTo[temp2,Sort[ #JJ]&/@Union[tp]; 

(*makes sure that the found pairs/trips doesnt already exist*) 

temp2=Complement[temp2,tL]; 

(*if for some reason a bubble is not touching any other bubble is just ingnore it 

and adds it to the sequencelist*) 

If[temp2=={},AppendTo[sL,chk[s]]; 

(*if there are other bubbles missing then it goes to the next one, otherwise it sets 

flag =1 which means get out of the loop*) 

If[Length[chk]== 1,flag= 1] ;, 

temp2=PackModel'SmallFunctions'SaListBySequence[sequenceList,temp2]; 

Map[Function[ dummy5 , 

If[(Length[dummy5]==3)11((((Length[dummy5]==2)&&(Count[CheckForWrong 

Pairs[ dummy5, Union[tp ]] , {3,True} ])==O))), 

p=Union[Map[Sort,Permutations[ dummy5, {2} ]]] ; 

Map[Function[ dummy4 ,If[ (MemberQ [ cpL,dummy4] ==False )&&(Length[Interse 

ction[ sL,dummy5]]>0), 

flag= l ; 

AppendTo[newtp,{dummy5,p}]; 

]] ,p];] ; 

],temp2];] ; 

s++; 

];] ;] ; 

PackModel ' SmallFunctions' SBySequence[ sequenceList,#]&/@tL 

] 
TripN eighbourF inder2a[ alllnfo _,sequenceList_] := Module [ { nList,newneigh, tp,stp 

,pL,tL,sL,cpL,pos,npL, tempt, tempp 

, temp2,all pairs,newtp,newtpt,newtpp,s,n, t,p, temp,chk,flag,h} , 

(*first we make trips and pairs from the results*) 

tp=GetTripsFromAllSeqlnfo[ alllnfo] ; 

(*to pick the first trip, i uses a function that only keeps trips or pairs that occur 3/2 

times within the list*) 

(*this functions determines correct triplettes or pairs*) 

(*if 3 of the same trips are created means it is a correct ineraction, if 2 pairs are 

created means they are correct, if only 2or 1/3 trips are created then one of the 

neigh is not correct*) 

stp=Tri pNeighbour F inder3 ofakind[ alllnfo,sequenceList]; 

tL={Sort[stp[[l]]]}; (*final trip or pair list*) 

pL=Union[Map[Sort,Permutations[ stp[[l ]], {2} ]]] ; (*final trip or pair list*) 

sL=stp[[l]];(*a list which keeps track of the bubbles accounted for* ) 

pL=Map[Sort,pL];(*pair list*) 

cpL={} ;(*list of pairs that shouldnt be together*) 

newtp={ {Sort[tL[[l ]]] ,pL}} ;(*( chosen trip or pair), (permutations)*) 

(*this gets all the first pairs in the info list*) 
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all pairs= Map [First,alllnfo]; 

n=l ; 

While[ (n<= Length[ newtp ]), 

tempp=newtp[[ n ]] ; 

flag=O ; 

(*this checks if the trip or pair are not in cpl*) 

Map[Function[ dummy4,If[MemberQ[ cpL,dummy4 ]==True, 

flag= l ;]] ,Union[Map[Sort,Permutations[tempp[[l ]] ,{2}]]]]; 

If[ flag==O, 

(*this stores the trips and gets the pairs*) 

If[tempp[[l ]] != {}, 

If[ (MemberQ [ tL, 

Sort[tempp[[l]]]]==False)&&(((((Length[tempp[[1]]]==2)&&(Count[CheckFor 

WrongPairs[tempp[[l]] , 

Union[tp]], {3,True} ])==O)))ll((((Length[tempp[[1]]]==2)&&(Count[CheckForWr 

ongPairs[tempp[[l]] , Union[tL]] ,{3 ,True} ])==O)))),(*makes sure it doesnt already 

exist*) 

AppendTo[tL,Sort[tempp[[l]]]];(*puts it in the final list*) 

sL=Union[Join[sL,tempp[[l]]]];(*a list which keeps track of the bubbles 

accounted for*) 

(*starts a new pair list for the trips*) 

pL=Join[ {} ,Union[Map[Sort,Permutations[ #, {2}]]]]&/@tL; 

]; 

]; 

(*from each pair it gets the next trips in order*) 

(*If[Length[tempp[[2]]]== 1, 

chk=PackModel' SmallFunctions' SBySequence[ sequenceList,Complement[ seque 

nceList,sL ]] ; 

pL={};(*starts a new pair list for the trips*) 

Map[Function[ dummy4, 

pL=Join[pL,Union[Map[Sort,Permutations[ dummy4, {2} ]]]]] , { Join[ { chk[[l ]] } ,te 

mpp[[l]]]} ]; 

tempp[[2]]== Intersection[ allpairs,pL]; 

Print[ tempp] ; 

]; *) 

If[tempp[[2]]!= {} , 

Map[Function[ dummy2, 

pos=Flatten[Position[allpairs,dummy2]]; 

(*this is a list of all the pairs*) 

temp=alllnfo[[pos[[l ]],2]]; 

(*one of the bubbles have to be part of the trip*) 

If[(Length[temp ]> 1 )&&Length[Intersection[tempp[[l ]],temp ]]>O, 

(*this stores a list that has pairs of bubbles that should not be paired together, this 

list depends on the bubble you start with*) 
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cpL=Union[ AppendTo[ cpL,Sort[temp ]]] ; 
(*it doesnt keep the bubble that already was used*) 
temp=Complement[temp,tempp[[2]]]; 
(*if the triplete is new then it appends { tripletes, pairs} to the list*) 
Map[Function[ dummy3 ,t={Sort[Join[ dummy2, { dummy3} ]] , {}} ; 
(*here is makes sure it is a new trip*) 
If[MemberQ[tL, t[[l]]]==False, 
(*keeps only new pairs*) 
p=Complement[ 
{Sort[ {dummy2[[1]] ,dummy3} ],Sort[ { dummy2[[2]] ,dummy3} ]},pL]; 
Map[Function[ dummy4,If[MemberQ[ cpL,dummy4]== False, 
AppendTo[t[[2]] ,Sort[ dummy4]]]] ,p ]; 
If[MemberQ[newtp, t]==False,AppendTo[newtp,t]J;]; 
],temp] ; ]; 
],tempp[[2]]] 
]]; 
n++; 
flag=O ; 
s= l ; 
(*if n> length of newtp then this function checks to makes sure that all the 
bubbles were accounted for*) 
(*sometimes when there are two bubbles fixed and are the starting two bubbles 
they may not be triplets and so the sequence does not continue*) 
(*so this function makes sure that it check for other bubbles that contain one of 
the fixed bubbles 
If[(n>Length[newtp])&&(Length[tempp[[2]]]==1)&&(Sort[tempp[[l]]]==Sort[te 
mpp[[2, 1 ]]]),chk= U nion[Flatten[ Complement[Map [Function[ dummy ,PackModel' 
SmallFunctions' SBySequence[ sequenceList,dummy ]] ,stp ],Map[Function[ dummy 
,PackModel'SmallFunctions' SBySequence[sequenceList,dummy]] ,tL]] ,1]] ; 
chk=PackModel ' SmallFunctions'SBySequence[sequenceList,chk] ;,];*) 
chk=PackModel ' SmallFunctions' SBySequence[ sequenceList,Complement[ seque 
nceList,sL]]; 
If[((Length[chk]>O )&& (n>Length[newtp])), 
While[(flag==O) ll (n>Length[newtp]), 
npL=chk[[ s ]] ; 
temp2={}; 
(*finds all the trips that have that bubble*) 
If[MemberQ[ #,npL J==True,AppendTo[temp2,Sort[ #]]; 
]&/@stp; 
If[temp2=={}, 
If[MemberQ[ #,npL J==True,AppendTo[temp2,Sort[ #]] ;]&/@Union[tp]; 
temp2= PackModel' SmallFunctions' SBySequence [ sequenceList, #]&/@temp2; 
temp2= PackModel' SmallFunctions' SaListBySequence [ sequence List, temp2] ; 
]; 
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(*if for some reason a bubble is not touching any other bubble is just ingnore it 
and adds it to the sequencelist*) 

If1temp2=={} ,AppendTo[ sL,chk[ s ]] ; 

(*if there are other bubbles missing then it goes to the next one, otherwise it sets 

flag =1 which means get out of the loop*) 

lf1Length[ chk ]== 1,flag= 1] ;, 

Map[Function[ dummy5 , 

lf1(Length[dummy5]==3)11((((Length[dummy5]==2)&&(Count[CheckForWrong 

Pairs[ dummy5 , Union[tp ]] ,{3 ,True} ])==O))), 

p=Union[Map[Sort,Permutations[ dummy5, {2}]]] ; 

h={}; 

If1(MemberQ[ cpL,Sort[ #]]==False)(* &&(Length[Intersection[ sL,dummy4 ]]>0)*) 


AppendTo[h,1] ;(*AppendTo[newtp,{ dummy4,p} ];*),AppendTo[h,O];]&/@p; 

lf1Union[h]=={ 1 },lf1MemberQ[tL, Sort[dummy5]]==False,(*makes sure it 

doesnt already exist*) 

AppendTo[tL,Sort[ dummy5]];(*puts it in the final list*) 

sL=Union[Join[sL,dummy5]];(*a list which keeps track of the bubbles accounted 

for*) 

pL={} ;(*starts a new pair list for the trips*) 

pL=Join[ {} ,Union[Map[Sort,Permutations[ #, {2}]]]]&/@tL; 

];flag=l ; 

lf1MemberQ[ newtp, { Sort[ dummy5],pL} ]==False,AppendTo[ newtp,t]];AppendTo 

[ newtp, {Sort[ dummy5] ,pL} ]] ; 

]; 

],temp2] ; 

]; 

s++·J·J·J·' ' ' ' 

PackModel' SmallFunctions' SBySequence [ sequenceList, #]&/@tL 

] 

GetAveDistance[ allBubbleList_,plateB _,precisionFactor _,opt_] :=Module[ { neigh 

List,addDist,dist} , 

(*finds a sequence based on more than one plate or one plate as a fixed point*) 

neighList=NeighBourFinderBasedOnDistance[allBubbleList,allBubbleList[[#[[l] 

],#[[2]]]] ,precisionFactor,opt]&/@plateB; 

dist=First/@neighList; 

addDist=Map[PackModel'SmallFunctions'MyaveFn, Transpose[dist]] ; 

Sort[Transpose[ { addDist,neighList[[ 1,2]]}]] 

] 
GetASequenceForCol[ allBubbleList_, 

fixedBub _,precisionFactor _] :=Module[ { sequenceList,pairList, 

newPairList,nPlts,nonApiPlts,allPairs,newNList,distOfNeigh,dist,radiiDist,newF, 

colN um, temp,d,mslope,orslope,ang,quadA, tRange} , 
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dist=Map[Last,GetAveDistance[ allBubbleList, { fixedBub[[l ]] } ,precisionFactor,4] 
]; 

nPlts= Length[ dist]; 

(*takes the first in the list*) 

sequenceList=Take[ dist, 1]; 

(*gets the distance of all the bubble relative to the first one*) 

dist=GetA veDistance [ allBub bleList,sequenceList,precisionF actor, 4]; 

(*get the angle for all the bubbles relative to one*) 

mslope= 

PackModel' SmallFunctions' mirror Angle [PackModel' SmallFunctions' AngleArou 

ndThePlate[ allBubbleList[[ #[[1 ]J,#[[2]]]] [[1 ]]­
allBubbleList[[Last[ sequenceList] [[1 ]],Last[ sequenceList] [[2]]]] [[1 ]]]]&/@(Last/ 

@dist); 

(*the slope chosen to start is based on first bubble to the last bubble*) 

radiiDist= Last[ mslope]; 

(*increment can be anything we want the smaller the better*) 

d=N[Pi/100000000]; 

While[((Length[sequenceList]<nPlts)), 

(*finds all the plates with distance relative to the bubble in the sequencelist*) 

ang=Map[PackModel' SmallFunctions' CheckAngle,N[ { radiiDist,(radiiDist+d),(ra 

diiDist-d)} ]] ; 

quadA = Map [PackModel' SmallFunctions' QuadAngle,ang]; 

tRange={PackModel' SmallFunctions 'OrderThetaQuad[ { { #[[1 , 1 J] ,#[[1 ,1 ]J ,#[[1 ,2] 

] } , { #[[2, 1 ]] ,#[[2, 1 ]J ,#[[2,2]]} } ], 

PackModel' SmallFunctions' OrderThetaQuad[ { { #[[1 , 1 J],#[[1 , 1 ]J ,#[[1 ,3]]} , { #[[1 , 1 

]] ,#[[1 ,l]J ,#[[1 ,3]]} }]}&@{ang, quadA} ; 

newPairList={} ; 

(*finds the bubbles that fall within that angle range, and then sorts then by 

distance*) 

lf[(PackModel'SmallFunctions'MatchRange[tRange[[l]] ,#[[2]]]==1) !1 (PackMode 

l' SmallFunctions 'MatchRange[tRange[[2]],#[[2]]]==1 ), 

If[MemberQ[sequenceList,#[[3]]]==False, 

Append To[ newPairList,#J; 

]; 

] &/@Transpose [ { Map [First,dist] ,mslope,Map [Last,dist] } ] ; 

If[newPairList != 

{} ,sequenceList=Join[sequenceList,Map[Last,Sort[newPairList]]]]; 

d++; 

] ;(*while*) 

sequence List 

] 
GetClosestBub[plateB _,allBubbleList_,precisionFactor _,opt_: 1] :=Module[ { 
post}, 
(*dist=PackModel'SmallFunctions'DistFromOnePlate[allBubbleList,plateB[[l]]]; 
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should i compare with radii dist or should it be just physical distance ?????*) 

(*post=Map[Function[ dummy,Map[Function[ dummy2, { dummy2,Position[ dist,du 

mmy2]} ],dummy ]],dist]; 

post=Union[Flatten[post, 1 ]] ; 

Print[post]; 

If[ opt== 1,Flatten[post[ [ 1]]] [ [2]] ,Flatten[Map [Last,post], 1]] *) 

post=Map[Last,Sort[Transpose[NeighBourFinderBasedOnDistance[allBubbleList 

,plateB,precisionFactor,4 ]]]]; 

post[[2]] 

] 
SeqSortAlllnfoList[ allSeqlnfo _,allBubbleList_,cpOpt_J :=lf[(#[[2]]=={} )!!(Length 

[ #[[2]]]==1 ),#, PerpenSortlnfoList[ #,allBubbleList]]&/@allSeqlnfo 

(*this finds the neighbours based on distance only ,getClosestBub is neccessary so 

we dont have bubbles that dont move, they all need neihbours*) 

GetAllcloseNeigh[ allBubbleList_,precisionFactor _,opt_] :=Module[ {temp}, 

Map[Function[ dummy,temp=NeighBourFinderBasedOnDistance[ allBubbleList,d 

ummy,precisionFactor,opt]; 

If[(temp[[2]]=={} ), { temp[[l ]], { GetClosestBub[ allBubbleList[[temp[[l, 1 ]],temp[[ 

1,2]]]],allBubbleList,precisionFactor, 1]}}, 

temp] 

],allBubbleList,{2}] 

] 

UpdateNeighList[ neighList_,allBubbleList_,sequenceList_] :=Module[ { newBubbl 

eList}, 

(*this function updates new neighbours for each bubble and stores them in a list*) 

newBubbleList=allBubbleList; 

(newBubbleList[[ #[[ 1 ]] ,#[[2]]]]=ReplacePart[ newBubbleList[[ #[[ 1 ]],#[[2]]]],Last 

[ neighList[[ #[[1 ]] ,#[[2]]]]],3])&/@sequenceList; 

newBubbleList 

] 
Loop Through Thetas[ storeRange _, angle Theta_] :=Module[ { st,flag} , 

st=l; 

flag=O ; 

While [ ( ( st<= Length[ store Range])&&( flag==O) ), 

flag=PackModel'SmallFunctions'MatchRange[storeRange[[st]], angleTheta]; 

st++; 

]; 

flag 

] 
SecondLevelN eighbourSorter[ thetaRange _, neighList_,thetaList_] := 

Module[ { storethetas,storethetas2,newList,tempCheck,tempCheck2,t}, 

storethetas= { } ; 

storethetas2={}; 
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newList={ }; 

For[ t= 1, t<= Length[ thetaList], 

lf1storethe.tas=={} ,tempCheck={ 0} ;tempCheck2={0} ;, 

tempCheck={LoopThroughThetas[ storethetas,thetaList[[t, 1 ]]] } ; 

tempCheck2={LoopThroughThetas[storethetas2,thetaList[[t,l]]]}; 

]; 

lf1tempCheck== { 1 } 1JtempCheck2== { 1 } , 

Append To [ storethetas2, thetaRange [ [ t]]]; 

t++; 


(*stores just the ones accepted*) 

Append To[ storethetas,thetaRange[[t ]]] ; 

(*stores all the bubls before*) 

AppendTo[ storethetas2,thetaRange[[t]]] ; 

Append To[ newList,neighList[[t]]]; 

t++·]·]·


' '' 
newList 
] 
NeighbourAngle[plateCenter_,oneBubble _] :=Module[ { ang,ang2, 
angList,quadPos,d 1,d2,r 1,r2}, 
dl=PackModel'SmallFunctions'DistancebtwPoints[oneBubble[[l]] ,plateCenter[[ 
1]]] ; 
r 1 = PackModel ' SmallFunctions' MyaveFn[plateCenter[ [2]]]; 

r2=PackModel ' SmallFunctions 'MyaveFn[ oneBubble[[2]]]; 

ang2 = Arc Tan[ r2/ d 1] ; 

ang=PackModel ' SmallFunctions'AngleAroundThePlate[oneBubble[[l]]­

plateCenter[[ 1 ]]] ; 

angList= { ang,PackModel' SmallFunctions' CheckAngle[ ang-

Arc Tan[ r2/ d l]] ,PackModel' SmallFunctions' CheckAngle [ ang+ Arc Tan[ r2/ d l]]} ; 

quadPos= PackModel' SmallFunctions' QuadAngle/@angList; 

{ angList,quadPos} 

] 
allNeighboursAround[ neighList_,allneigh _,allBubbleList_] :=Module[ { onePlate,n 

ewN eigh,neighPlates, theta Quad, thetaRange}, 

onePlate= allBubbleList[[ neighList[[l, 1 ]],neighList[[l ,2]]]]; 

newNeigh=Join[neighList[[2]],PackModel'Sma11Functions'SBySequence[#[[l]] , 

Complement[#[[ 1 ]] ,#[[2]]]]&@{ allneigh[[2]],neighList[[2]]}]; 

Ifl(newNeigh=={} )ll(neighList[[2]]=={} ), 

neighList 


' 
neighPlates=allBubbleList[[ #[[1 ]J ,#[[2]]]]&/@newN eigh; 

thetaQuad=NeighbourAngle[ onePlate,#J&/@neighPlates; 

thetaRange= Map [PackModel' SmallFunctions' Order Theta Quad, theta Quad] ; 

{neighList[[l]] ,SecondLevelNeighbourSorter[thetaRange,newNeigh,Map[First,th 
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etaQuad]] }] 
] 
GetallNeighboursAround[ allBubbleList_,precisionFactor _,opt_:5] :=Module[ { tou 
chingN eigh,allneighby Dist} , 
touchingNeigh=GetAllcloseNeigh[allBubbleList,precisionFactor,1]; 
allneighbyDist=GetAllcloseNeigh[aUBubbleList,precisionFactor,opt] ; 
Map[Function[ dummy2,Map[Function[ dummy,allNeighboursAround[ dummy[[l] 
],dummy[[2]] ,allBubbleList]] ,dummy2]] ,Map[Transpose,Transpose[ { touchingNei 
gh,allneighbyDist} ]]] 
] 
(*to figure out proper triplettes and sequence, it only needs the list the 

percisionFactor and a starting bubble, it doesnt care if it is interacting of close 

packing. neighbours change only based on the starting bubble*) 

GetFinalTripList2[ allBubbleList_,precisionFactor_,fixedBub _,opt_:5] :=Module[ { 

finalTrips,sequenceList,allSeqln,ngl} , 

sequenceList=GetASequenceForCol[allBubbleList,fixedBub,precisionFactor]; 

ngl=GetallN eighboursAround[ allBubbleList,precisionFactor,opt]; 

al1Seqln=If[(#[[2]]=={} )ll(Length[#[[2]]]==1),#,PerpenSortlnfoList[#,allBubbleL 

ist]]&/@QetNeighPairslnfoList[ ngl]; 

finalTrips=TripNeighbourFinder2[allSeqln,sequenceList]; 

{ ngl,allSeqln, sequenceList,finalTrips} 

] 

(*to figure out proper triplettes and sequence, it only needs the list the 

percisionFactor and a starting bubble, it doesnt care if it is interacting of close 

packing. neighbours change only based on the starting bubble*) 

GetFinalTripList[ allBubbleList_,precisionFactor _,fixedBub _] :=Module[ { final Tri 

ps,sequenceList,allSeqln,ngl} , 

sequenceList=GetASequenceF orCol[ allBubbleList,fixedBub,precisionFactor]; 

ngl =GetAllcloseN eigh[ allBub bleList,precisionF actor, 1]; 

al1Seqln=If[(#[[2]]=={})ll(Length[ #[[2]]]== 1 ),#,PerpenSortlnfoList[ #,allBubbleL 

ist]]&/@(GetNeighPairslnfoList[ngl]); 

finalTrips=TripNeighbourFinder2[a11Seqln,sequenceList] ; 

{ ngl,allSeqln, sequenceList,finalTrips} 

] 

Al.6 Visceral Growth: Catenary Curve 

CatEqn[x~,a_J :=a Cosh[(x/a)]-a 
CatLength[pts_,a_]:=Module[ {x} , catf[x_]=a Cosh[x/a] - a; 
Nlntegrate[Sqrt[l +( catf [ x JY2] , { x,pts[[l ]] ,pts[[2]]}] ] 

GetConst4[fp_]:=ct/.FindFit[fp,ct Cosh[x/ct]-ct ,{ ct} ,x,Maxlterations-> 
100000000000000000] 
GetX[a_,ramb_,pc_]:=ct/.FindRoot[a Cosh[ct/a] ­
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a==ramb, { ct,pc} ,Maxlterations-> 100000000000000000] 

AmbdiametLengthR[ cl_] :=cl 

GetCatenaryCurve[pc _,cl_,ap _,p _] :=Module[ { ramb,a,hOfC,apL,pL ,datas}, 


ramb=AmbdiametLengthR[(cl-ap-p)]/2; 

hOfC=(cl)*pc/2;(*halfthe height of col, apical and persitome, dvided by 2*) 

hOfC=( cl-ap-p )*pc/2; 

a=GetConst4[ { {hOfC,ramb },{-hOfC,ramb },{0,0}} ]; 

hOfC=( cl-ap-p )*pc/2; 

apL=GetX[a,(ramb-ap),0.001]; 

pL=GetX[ a,(ramb-p ),-cl]; 


{a,ramb,EuclideanDistance[ {apL,O},{pL,O} ],CatLength[ {pL,apL},a],Sort[ {pL,ap 

L} ],Sort[ {(rarnb-ap),(ramb-p)} ],{ {­
hOfC,ramb} , { 0,0} , {hOfC,ramb}}, { { apL,(ramb-ap)}, {pL,(ramb-p)}}, 1­
(Abs[ (CatLength[ {pL,apL} ,a]-( cl-ap-p ))]/( cl-ap-p )),CatLength[ {pL,apL} ,a],( cl­

ap-p ),pc,EuclideanDistance[ { apL,O}, {pL,O}]}] 

CreateCatCurve3D[ catinfo _] :=Module[ { m} , 

RevolutionPlot3D[ {CatEqn[m,catinfo[[l]]]­
catinfo[[2]] ,m}, { m,catinfo[[ 5, 1 ]],catinfo[[5,2]]}, { t,-2Pi,2Pi} ,Axes->False,Boxed­
>False]] · 

CreateCatCurve[ catinfo _] :=Module[ { m}, 


Show[ListPlot[Table[ { CatEqn[ m,catinfo[[l ]]],m} , 
{ m,catinfo[[5, 1 jJ,catinfo[[5,2]],0.01 } ],Axes->False,Joined-> True,AspectRatio­
> 1,PlotStyle->{Directive[PointSize[0.007] ,Black,Thickness[0.006]]} , 

AxesStyle->Directive[Black,FontSize->38.,FontFamily->"Arial", 
Thickness[0.0035]]],Graphics[ {Line[ { { catinfo[[2]],­
catinfo[[3]]/2}, { catinfo[[2]],catinfo[[3]]/2}} ],AspectRatio-> 1} ]] ] 
CreateCatCurveList[ catinfo _] :=Module[ { m} , 

{ListPlot[Table[ { CatEqn[ m,catinfo[[l ]]] ,m}, 
{ m,catinfo[[5 , 1]] ,catinfo[[5,2]],0.01} ],PlotStyle­
>{Directive[PointSize[0.007] ,Black,Thickness[0.006]]} ,AxesStyle­
>Directiv~[Black,FontSize->38.,FontFamily->"Arial",Thickness[0.0035]] ,Axes­
>False,Joined->True,AspectRatio-> 1 ],Graphics[ {Line[ { { catinfo[[2]] ,­
catinfo[[3]]/2},{ catinfo[[2]] ,catinfo[[3]]/2}} ],AspectRatio-> 1}]}] 

Al.7 Small Functions 

M yaveFn[ someList_] :=Total [ someList ]/Length[ some List] 

FindmidPoint[twoPoints_]:=1/2*Total[twoPoints] 

Drawcirc[ circList_] := 

Show[Graphics[ {Thickness[O.O 1 ],Axes->False, AspectRatio­

> 1,Map[Circle[ #[[1 ]] ,MyaveFn[ #[[2]]]]&,circList, {2}]} ]] 

Drawcol[ circList_] := 

Graphics[ {Thickness[O.O 1 ],Axes->False, AspectRatio­
> 1,Map[Circle[#[[l]] ,MyaveFn[#[[2]]]]&,circList, {2}]}] 
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Slopedirec[pt3 _,pt4_]:=(pt3-pt4) 

Sloperatio[mPt_]:=O /; mPt=={O,O} 

Sloperatio[ mPt_] := mPt[[2]]/; mPt[[ 1 ]]==O 

Sloperatio[ mPt_] := mPt[[l ]]/; mPt[[2]]==0 

SloperatioI mPt_] := mPt[[2]]/mPt[[l ]] 

SlopePerpDirection[pt3 _,pt4_]:=# Reverse[pt3-pt4]&/@ { {-1 ,1 },{ 1,-1 } }; 

IntersectionBetween2Bubbles[ c 1 _List,c2 _List]:= 

If[(cl =={})II(c2=={} ), {} ,Solve[ { (zPt-( cl [[3 , 1 ]]) )1'2+ ( qPt-cl [[3 ,2]])1'2 

==(cl [[4]])1'2,(zPt- ( c2[[3 , 1 ]]))1'2+ ( qPt -.c2[[3,2]]Y'2 ==(c2[[ 4]])1'2} , 

{zPt,qPt}] 

] 
IntersectionBetween2lines[l 1 _ List,12 _ List] :=If[(l 1 =={} )11(12=={}), {} ,Solve[ { (((11 

[[2,2]] [[2]])-(11 [[2, 1 ]] [[2]]) )*(zPt-(11 [[2, 1 ]] [[1 ]])))==(((11 [[2,2]] [[ 1 ]])­
(11 [[2, 1 ]] [[ 1 ]]) )* (qPt-(11 [[2, 1 ]] [[2]])) ),( ((12[[2,2]][[2]])-(12 [[2, 1 ]] [[2]]) )* (zPt­

(12[[2, 1 ]] [[ 1 ]])) )==( ((12[[2,2]] [[ 1 ]])-(12[[2, 1 ]] [[ 1 ]]))* ( qPt­
(12[[2, 1 ]] [[2]])))} , { zPt,qPt} ]] 

IntersectionBetweenCirclines[ll_ List,c2 _ List] :=If[(ll =={} )I I( c2=={} ), { }, 

Solve[ 

{ ( ( (11 [[2,2]] [[2]])-(11 [[2, 1 ]] [[2]]) )*(zPt-11 [[2, 1 ]][[1 ]]))==( ( (11 [[2,2]] [[ 1 ]])­

(11 [[2, 1 ]][[1 ]]))*( qPt-11 [[2, 1 ]][[2]])),(zPt- ( c2[[3, 1 ]]))1'2+ ( qPt -c2[[3 ,2]]Y'2 

==(c2[[ 4 ]])1'2}, { zPt,qPt} ]] 

IntersectionBoundaryPoints[ptl_List,pt2 _ List] :=Module[ { interList,solPt,check4C 

omplex,11 }, 

solPt=Switch[ {ptl [[ 1 ]],pt2[[1 ]] } , 

{ 1, 1} ,IntersectionBetween2lines[ptl ,pt2], 

{ 1,2} ,IntersectionBetweenCirclines[ptl ,pt2], 

{2, 1} ,IntersectionBetweenCirclines[pt2,pt 1], 

{ 2,2} ,IntersectionBetween2Bubbles [pt 1,pt2] 

]; 

ll={zPt/.#,qPt/.#}&/@solPt; 

check4Complex=Flatten@Map[Head,ll, {2}]; 

If[ ( Count[ check4Complex,Complex] )==0,11, {}] 

] 
L ThanPrec[ m 1 _, m2 _, eps_]:=If[Abs[m 1-m2]<eps, 1,0] 

GreaterThan[dl_, d2_, eps_]:=If[Abs[dl-d2]>eps,1 ,0] 

CenterDistance[rA_, rB _ , angle_]:= Sqrt[(rN"2)+(rBA2)-(2*rA *rB)*(Cos[ angle])] 

DistancebtwPoints[datal _ List, data2 _ List] :=Sqrt[Total[( datal-data2)1'2]] 

DistFromOnePlate[allp_List, p_List] := 

Map[DistancebtwPoints[ #[[1 ]] ,p ]&,allp, {2}] 

DirecOfRotation[circl_, circlePos _] :=If[DistancebtwPoints[ circl [[1 ]] , 

circlePos ]>DistancebtwPoints[ circl [[2]], circlePos ],circl [[2]] ,circl [[1]]] 

TomakeDistanceExact[b 1 _List, b2 _ List,reqDist_,precisionF actor _,direc _] := Modul 

e[ { cenDist,bub,flag,counter,mS,moveM} , 

mS=(b2[[1 ]]-b 1 [[1 ]]);bub={b 1 [[1 ]],b2[[1 ]] } ;flag=O;counter=O; 
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While[ ( (flag==O)&&( counter<2) ), 

cenDist= DistancebtwPoints@@bub; 

moveM=((reqDist-cenDist)*(mS/cenDist)); 

lfl((reqDist! = 

cenDist )&&( Greater Than[ reqDist,cenDist,precisionF actor]== 1) Il(LThanPrec [ req 

Dist,cenDist,precisi onF actor] ==O)) 11 ( counter==O), 

Which[direc==l ,bub+{-moveM,+moveM}/2, 

direc==2,bub[[2]]=bub[[2]]+moveM;, 

direc==3 , bub+ { -moveM, +moveM} , 

direc==5,bub[[2]]=bub[[2]]-moveM;, 

direc==4,bub={bub[[2]] ,bub[[2]] }+( { (reqDist-cenDist),(reqDist)} * {-(Reverse[­

mS]/cenDist),(Reverse[-mS]/cenDist)} );] ;, 

flag= l;]; 

counter=counter+ 1 ; 

];bub] 

NumOfPlates[plateList_List]:=Total[Length/@plateList] 

RowLocation[plateNum _, totalCol_] := Ceiling[plateNum/totalCol] 

ColumnLocation[plateNum_, totalCol_]:= plateNum-( 

Ceiling[plateNum/totalCol]-1 )*total Col 

ListOfPlatePosition[ allBubbleList_List] :=Table[ { ColumnLocation[pc,Length[ all 

BubbleList]] ,RowLocation[pc,Length[ allBubbleList]]} , {pc, l ,NumOfPlates[ allBu 

bbleList] }] 

LocationOfOnePlate [ total Col _,plateN um_] :=Ceiling[ { ColumnLocation[plateN u 

m, totalCol] ,RowLocation[plateNum, totalCol] } ] 

PartitionListOfPoints[ rpoly l _, parts_] :=Partition[ rpoly l ,parts, 1, { -1 ,-1}] 

numberOfPlatesAddtions [ allBub bleList_,plateAdd _] :=Table [ (N umOfPlates [ allBu 

bbleList]+d), { d, l ,plateAdd-NumOfPlates[allBubbleList]}] 

SBySequence[sequenceList_,plateNeigh_]:=Ifl((plateNeigh=={} )l l(sequenceList= 

={} )), {} ,Last/@(Sort[ {First[Flatten[Position[ sequenceList,#J]] ,#}&/@plateNeigh 

])] 
SaListB ySequence [ sequenceList_ List,plateN eigh _List]:= IflplateN eigh== {} ,{} ,L 

ast/@Sort[ {First@Flatten@Position[ sequenceList,#[[l ]]],First@Flatten@Position 

[ sequenceList,#[[2]]] ,lf1Length[ #]==3 ,First@Flatten@Position[ sequenceList,#[[3 

]]] ,OJ ,#}&/@plateNeigh]] 

CheckAngle[ angle Theta_] :=N[If1 angleTheta>(N[2Pi]),Abs[ angleTheta-(2Pi) ], 

If1angleTheta<(O),(N[2Pi])+angleTheta,angleTheta ]]] 

mirror Angle[ angle Theta_] :=N[lf1 angleTheta>(N[Pi]),Abs[ angleTheta-(N[2Pi])] , 

angle Theta]] 

QuadAngle[ angle Theta_] :=Module[ { ang}, 

ang=CheckAngle[ angle Theta]; 

If1ang<= (N[Pi/2]),3,lflang<=N[Pi] ,4,If1 ang<=(N[ 3Pi/2]), 1,2]]] 

] 
AngleOfOneSideoffhePlate[ mPt_] :=O /; mPt=={ 0,0} 
AngleOfOneSideoffhePlate[ mPt_J :=N[ (Arc Tan[ mPt[[ 1 ]],mPt[[2]]])] 
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AngleAroundThePlate[mPt_J:=O /; mPt=={O,O} 
AngleAroundThePlate[ mPt_] := N[(ArcTan[ mPt[[l ]] ,mPt[[2]]])] /; mPt[[2]]>=0 

AngleAroundThePlate[mPt_J :=N[( 2Pi+ArcTan[ mPt[[l ]] ,mPt[[2]]])] /; 

mPt[[2]]<0 

CosOfAngleC[rA_,rB_, rC_]:= N[ArcCos[((rA/\2 )+(rB/\2 )-(rC/\2 ))/(2*rA *rB)]] 

GetTheAnglesForCLosePack[ radii_,dt_] :=CosOfAngleC[ dt+#[[l ]] ,#[[2]]+#[[1 ]] , 

dt+#[[2]]]&/@{ { radii[[l ]],radii[[2]]} , { radii[[l ]] ,radii[[3]]}} 

AngleCompare[ mid_, perP _, bubP _] :=Module[ {} , 

Abs[ AngleAroundThePlate[ mid-perPJ-AngleAroundThePlate[ mid-bubP]] 

] 
AngleFromApex[ apex _,g 1 _,bubbLeList_] :=Module[ {angle}, 

angle=AngleAroundThePlate[(#[[l]]­
apex)]&/@{ gl ,bubbLeList[[2]],bubbLeList[[3]]}; 

If[ Abs[ #[[1 ]]-#[[2]]]==Abs[ #[[1 ]]-#[[3]]],0,If[ Abs[ #[[1 ]J-#[[2]]]> Abs[ #[[1 ]]­

#[[3]]] ,3,2]]&@angle] 

ChooseDirectionF orRotationF or3 Bub [ anglesList_ List, 

centerList_List]:=Module[{angLoc,quadPos} ,angLoc= AngleAroundThePlate[(#­

centerList[[l ]])]&/@{ centerList[[2]] ,centerList[[3]]} ; 

quadPos=Map[QuadAngle,angLoc]; 

(*if quad 2 bottom right and 3 top right, the direction changes, otherwise it work 

from smalled to largest angles*) 

If[MemberQ [ { { 2,3},{ 3 ,2}} ,quadPos ]==True, 

If[ quadPos=={ 3 ,2}, { -1 ,1} * anglesList, { 1,-1} * anglesList] , 

If[MemberQ[{ {l ,3},{3,1} },quadPos]==True, 

theta=N[ Abs[ angLoc[[l ]]-angLoc[[2]]]] ; 

If[ quadPos=={ 1,3 },If[theta<N[(2Pi -theta)], {-1, 1} *anglesList, { 1,­
1} *anglesList] ,If[theta>N[(2Pi -theta)] , {-1 ,1} *anglesList, { 1,-1} *anglesList]], 

If[ angLoc[[l ]]>angLoc[[2]], {-1 ,1} *anglesList, { 1,-1} *anglesList] 

]]] 
ChooseDirectionF or Rotation[ oneangle _, 

center List_ List]:= Module [ { angLoc,quadPos, theta} , 

angLoc= AngleAroundThePlate[(#­
centerList[[l ]])]&/@{ centerList[[2]] ,centerList[[3]]} ; 

quadPos=Map[QuadAngle,angLoc]; 

(*if quad 2 bottom right and 3 top right, the direction changes, otherwise it work 

from smalled to largest angles*) 

If[MemberQ[ { {2,3 },{3,2} },quadPos]==True, 

If[quadPos=={3 ,2} ,1 *oneangle, -1 *oneangle] 


' 
If[MemberQ[{ {l ,3} ,{3 ,1} },quadPos]==True, 

theta=Abs[ angLoc[[l ]]-angLoc[[2]]]; 

If[ quadPos=={ 1,3} ,If[theta<(2Pi -theta), 1 *oneangle, -1 *oneangle ],If[theta>(2Pi ­
theta), 1 *oneangle, -1 *oneangle ]], 

If[angLoc[[l]]>angLoc[[2]] ,1 *oneangle, -1 *oneangle] 
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]]] 

RotationAngleBetweenBubbles[pairBubbles _ List, 

fixeBubble _ List] :=Module[ { anglesL,newPt}, 

anglesL= AngleAroundThePlate[(#­
fixeBubble[[l ]])]&/@{pairBubbles[[l, 1 ]],pairBubbles[[2, 1 ]] } ; 

N[(anglesL[[2]]-anglesL[[l ]])] 

] 
RotationAngleBetweenBubbles2 [pair Bubbles_ List, 

fixeBubble _ List] :=Module[ { anglesL,newPt}, 

anglesL=CosOfAngleC[(DistancebtwPoints[fixeBubble[[l]],#[[1,1]]]),(Distanceb 

twPoints[fixeBubble[[l ]],#[[2, 1 ]]]),DistancebtwPoints[ #[[1, 1 ]],#[[2, 1 ]]]]&@pair 

Bubbles; 

ChooseDirectionF or Rotation[ anglesL, { 

fixeBubble[[l ]],pairBubbles[[l , 1 ]],pairBubbles[[2, 1 ]] } ] 

] 
RotateCurve[p _ List, theta _,q_ List] := 

Table[q+{ {Cos[theta],Sin[theta]} . (p[[i]]-q), {-Sin[theta], Cos[theta]} .( p[[i]]­

q)} 

, { i, Length[p]}] 

RotateOneCurve[p_List, theta_,q_List] := q+{ {Cos[theta],Sin[theta]} . (p-q), {­

Sin[theta ]; Cos[theta]} .( p-q)} 

RotateAPlateList[p _ List, theta _,q_ List] :=Module[ { onePlate} , 

onePlate=p; 

onePlate[[l ]]=RotateOneCurve[ onePlate[[l ]], theta,q] ; 

onePlate] 

RotateBoundlnfo[boundlnfo _ List,theta_,apex_] :=Module[ { ni}, 

ni = boundlnfo; 

If[ ni[[ 1 ]]== 1, 

ni[[2]]=RotateOneCurve[#, theta,apex]&/@ni[[2]]; 

ni[[ 4]]=RotateOneCurve[ni[[ 4]], theta,apex]; 


ni[[2]]=RotateOneCurve[#, theta,apex]&/@ni[[2]]; 

ni[[3]]=RotateOneCurve[ni[[3]], theta,apex]; 

ni[[6]]=RotateOneCurve[ni[[6]], theta,apex]; 

]; 

m 

RotatePlatelnfo[plateList_ List, theta _,apex_] :=Module[ { new List}, 

new List=plateList; 

newList[[l ]]=RotateOneCurve[ newList[[l ]], theta,apex] ; 

newList[[3]]=RotateBoundlnfo[#, theta,apex]&/@newList[[3]]; 

new List] 

ToRotateColumns[ colPlates _ List,theta _,apex_] :=RotatePlatelnfo[ #, 

theta,apex ]&/@colPlates 
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RotateAllTHeColumns[allBubbleList_List,newList_List,newPlate_List]:=Module 

[ {lastPlate,angleOfRot,rotationPlate} , 

lastPlate= { 1, 1}; 

angleOfRot=RotationAngleBetweenBubbles[ {newList[[lastPlate[[l]],lastPlate[[2] 

]]] ,allBubbleList[[lastPlate[[l ]],lastPlate[[2]]]]}, 

newList[[ newPlate[[l ]] ,newPlate[[2]]]]]; 

rotationPlate= new List[[ newPlate[[l ]],newPlate[[2]]]]; 

Map[ 


. RotateAPlateList[ #,angleOfRot,(rotationPlate[[ 1 ]]) ]&, 
new List, {2}] 
] 
(*so the quads are bottom left 1, bottom right 2 top right 3 and top left 4*) 
OrderThetaQuad[ thetaQuad _]:=Module[ {theta} , 
theta=Sort{N[ thetaQuad[[ 1 ]]]]; 
If[(MemberQ[thetaQuad[[2]],2]==True), 
Which[ 
(Sort[thetaQuad[[2]]]=={ 1,2,3} ), {2,First[theta] ,theta[[2]]} , 
(MemberQ[thetaQuad[[2]], 1 ]==True), { l ,First[theta],Last[theta]} , 
(Sort[thetaQuad[[2]]]=={2,2,3} ), {2,First[theta],theta[[2]]} , 
(MemberQ[ { {2,3,3} , {2,3 ,4}} ,Sort[thetaQuad[[2]]J]==True ), {2,theta[[2]],Last[the 
ta]} , 
(MemberQ[ { {2,2,4 },{2,4,4} },Sort[thetaQuad[[2]]]]==True),{ 1,First[theta],Last[t 
heta]} , 
(MemberQ[ { {2,3}} ,Sort[thetaQuad[[2]]J]==True ), {2,First[theta ],Last[theta]}, 
(Union[thetaQuad[[2]]]=={2} ), { 1,First[theta] ,Last[theta]} 
] , { 1,First[ theta] ,Last[ theta]} 
]] 
MatchRange [ thetaRange _, angle Theta_]:= 
Which[ 
(thetaRange[[l J]==l ), 
If[((thetaRange[[2]]<=N[angleTheta])&&(thetaRange[[3]J>=N[angleTheta])),1,0] 

' 
( thetaRange [ [ 1]]==2), 

If[ ( (thetaRange[[3 ]]<=N[ angle Theta DI l(thetaRange[[2]]>=N[ angle Theta])), 1,0] 

] 
MatchRange2[thetaRange _, angle Theta_]:= 

Which[ 

(thetaRange[[l J]==l ), 

If[ ( (thetaRange[[2]]<N[angle Theta ])&&(thetaRange[[3 ]J>N[ angle Theta])), 1,0] 


' 
(thetaRange[[ 1 ]]==2), 

If[((thetaRange[[3]]<N[angleTheta])l l(thetaRange[[2]]>N[angleTheta])),1 ,0] 

] 
GetBoundForA TimePeriod[ allPlateList_,plateNum _] :=Module[ {boundaries,bdPo 
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s}, 

boundaries= Flatten[Flatten[Last/@#, 1]&/@allPlateList, 1]; 

bdPos=First/@Position[boundaries,plateNum]; 

boundaries [ [#]] &/@bdPos 

] 
DrawAPlateCircle[ onebubble _,rl _: 1] :=Circle[ onebubble[[l ]],MyaveFn[ onebubbl 

e[[2]]]] /;r~==l 

DrawAPlateCircle[onebubble_,rl_:1]:=Circle[onebubble[[l]] ,onebubble[[2]][[rl]]] 

/; r1==2 

DrawCircles40neColumn[ oneColumn_]:=If[ oneColumn=={} ,Line[ { {0,0},{0,0}} 

],Map[DrawAPlateCircle,oneColumn]] 

DrawOneBoundary[bdy _] :=If[bdy=={} ,Line[ { { 0,0} , { 0,0}} ],If[bdy[[l ]]== I ,Line[ 

bdy[[2]]] ,Circle[bdy[[3]] ,bdy[[4]],bdy[[5]]]]] 

DrawA11GrowthLines40neColumn[ oneColumn _] :=DrawOneBoundary/@#[[ 4]]& 

/@oneColumn 

DrawOneTimeGrowthLines4Col[ oneColumn _] :=Module[ { temp,newB,finalGraph 

ics}, 

final Graphics= {}; 

Map[Function[ dummy, 

If[Length@Union[Last/@dummy[[4]]]==1,newB=dummy[[4]]; , 

temp={}; 


· If[Last[#]==Max@Union[Last/@dummy[[4]]] ,AppendTo[temp,#]]&/@dummy[[ 
4]] ; 
newB=temp;] ; 
AppendTo[finalGraphics,DrawOneBoundary/@newB];] 

oneColumh]; 

final Graphics 

] 
DrawAllPlates[ allPlatesList_,drT _,p _: { 1,0, 1} ,opt_: 1] :=Module[ { allCurrentPlateB 

oundary ,g,newBubbleList,plateNum} , 

newBubbleList=allPlatesList; 

Which[ 

drT==3 ,plateNum=Num0fPlates[ newBubbleList] ;, 

( ( drT==2)1 I( drT==5) ), 

If[Length[ newBubbleList ]>=4, 

plateNum=NumOfPlates[Take[newBubbleList,Length[newBubbleList]-3]] ; 

allCurrentPlateBoundary=GetBoundForATimePeriod[ newBubbleList,plateNum]; 

plateNum=NumOfPlates[Take[newBubbleList,-3]]; 

allCurrentPlateBoundary=Join[allCurrentPlateBoundary,GetBoundForATimePeri 


, od[Take[ newBubbleList,-3] ,plateNum ]]; 

plateNum=NumOfPlates[ newBubbleList]; 
allCurrentPlateBoundary=GetBoundForATimePeriod[ newBubbleList,plateNum]; 
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] ;] ; 

g=Switch[drT, 

I ,Graphics[ {RGBColor[p[[ 1 ]],p[[2]],p[[3]]],Map[DrawCircles40neColumn,new 

BubbleList]} ], 

2,Graphics[ {RGBColor[p[[l ]] ,p[[2]],p[[3]]],Map[DrawCircles40neColumn,new 

BubbleList] ,Map[DrawOneBoundary,allCurrentPlateBoundary]} ], 

3,Graphics[ {RGBColor[p[[l ]] ,p[[2]],p[[3]]] ,DrawAPlateCircle[ { newBubbleList[[ 

l]] ,newBubbleList[[2]] },opt] ,Map[Draw0neBoundary,newBubbleList[[3]]]} ], 

4,Graphics[ {RGBColor[p[[l ]] ,p[[2]],p[[3]]] ,Map[DrawCircles40neColumn,new 

BubbleList] ,Map[DrawA11GrowthLines40neColumn,newBubbleList] } ], 

5, Graphics [ { RGBColor[p[[ 1 ]] ,p [[2]] ,p[[3] ]] ,Map[DrawOneBoundary,all CurrentP 

lateBoundary] } ]] ; 

g] 


Al.8 Fermat's Point 

Equilatera1Triangle[pt5 _ ,pt6 _] := Map[Function[ dummy,((pt5+pt6)/2)­

(Sqrt[3]/2)*( dummy)] ,PackModel' SmallFunctions' SlopePerpDirection[pt6, pt5]] 

FindCorrectTriangleSide[ vertexList_] := 

If1(PackModel ' SmallFunctions' DistancebtwPoints [ vertexList[ [ 1 ]] , 

vertexList[[2, 1 ]]])> PackModel' SmallFunctions' DistancebtwPoints[ 

vertexList[[l ]] , vertexList[[2,2]]] , vertexList[[2, 1 ]] , vertexList[[2,2]]] 

MainEquilateralFn[tripts_]:=Module[ { equiTri} , 

equiTri= Map[Function[ dummy, { dummy[[l ]],N[ Equilateral Triangle[ 

dummy[[2]] ,dummy[[3 ]]]] } ], tripts]; 

Map[Function[dummy, 

{dummy[[l]] ,FindCorrectTriangleSide[ dummy]} ],equiTri] 

] 

LineMatrixEqn[ptl_, pt2 _] := Ifl:(ptl [[1 ]]-pt2[[1 ]]) == 0, { 1,0, ptl [[1]] }, {­
((ptl [[2]]-pt2[[2]])/(ptl [[I ]]-pt2[[1 ]])), l ,(ptl [[2]] - (((ptl [[2]]-pt2[[2]])/(ptl [[1 ]]­

pt2[[1 ]]))*ptl [[1 ]])) } ] 

Getdet[matrow_] := Take[matrow, 2] 

Getdetx 1 [ matrow_] := { matrow[[Length[ matrow]]] ,matrow[[2]]} 

Getdety2 [ matrow_] := {matrow[[ 1]] ,matrow[[Length[ matrow]]]} 

GetFermatPoint[tripoints _] :=Module[{ totalmatrix, ee,DD,Dx,Dy} , . 

givenTriangle =PackModel' SmallFunctions 'PartitionListOfPoints[tripoints,3] ; 

ee =MainEquilateralFn[givenTriangle]; 

totalmatrix = Map[Function[ dummy, 

LineMatrixEqn[dummy[[l ]] ,dummy[[2]]]] ,ee]; 

DD=Det[Take [Map [ Getdet, totalmatrix] ,-2 ]] ; 

Dx=Det[Take [Map [ Getdetx 1, totalmatrix], -2 ]] ; 

Dy=Det[Take[Map[Getdety2, totalmatrix],-2]] ; 

{Dx/DD,Dy/DD}] 


205 




Appendix PhD Thesis- M. Abou Chakra - Computational Biology - McMaster 

Al.9 Descartes Theorem 

Simplify[Solve[(2((1/a)1'2+(1/b )1'2+(1/c Y'2+(1/d)1'2))==(1/a+ 1/b+ lie+l/d)1'2,d]]; 
DescartesTheorem[a_,b_,c_]:=(a b c (b c+a (b+c)-2 Sqrt[a] Sqrt[b] Sqrt[c] 
Sqrt[a+b+c]))/(a/\2 (b-c)1'2+b/\2 c/\2-2 ab c (b+c)) 
DescartesTheoremNeg[a_,b_,c_]:=(a b c (b c+a (b+c)+2 Sqrt[a] Sqrt[b] Sqrt[c] 
Sqrt[a+b+c]))/(a/\2 (b-c)1'2+b/\2 c/\2-2 ab c (b+c)) 
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