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Abstract 

Wireless mesh networks are now being used to deploy radio coverage in a large variety 

of outdoor applications. One of the major obstacles that these networks face is that of 

providing the nodes with electrical power and wired network connections. Solar powered 

mesh nodes are increasingly used to eliminate the need for these types of connections, 

making the nodes truly tether-less. In these types of networks however, the cost of the 

energy collection and storage components can be a significant fraction of the total node 

cost, which motivates a careful selection of these resources. 

This thesis focusses on key issues relating to the deployment and operation of solar 

powered wireless mesh networks. First, the problem of provisioning the mesh nodes with 

a suitable solar panel and battery configuration is considered. This is done by assuming a 

bandwidth usage profile and using historical solar insolation data for the desired deploy­

ment location. A resource provisioning algorithm is proposed based on the use of temporal 

shortest-path routing and taking into account the node energy-flow for the target deploy­

ment time period. A methodology is introduced which uses a genetic algorithm (GA) to 

incorporate energy-aware routing into the resource assignment procedure. Results show 

that the proposed resource provisioning algorithm can achieve large cost savings when 

compared to conventional provisioning methods. 
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During post-deployment network operation, the actual bandwidth profile and solar in­

solation may be different than that for which the nodes were originally provisioned. To 

prevent node outage, the network must reduce its workload by flow controlling its input 

traffic. The problem of admitting network bandwidth flows in a fair manner is also studied. 

A bound is first formulated which achieves the best max/min fair flow control subject to 

eliminating node outage. The bound motivates a proposed causal flow control algorithm 

whose operation uses prediction based on access to on-line historical weather data. The re­

sults show that the proposed algorithm performs well when compared to the analytic bound 

that is derived for this problem. 

Finally, as user traffic evolves, the network resources need to be updated. This problem 

is considered using a minimum cost upgrade objective. A mixed integer linear program­

ming (MILP) formulation is derived to obtain a lower bound on the network update cost. A 

genetic algorithm is used to determine practical cost-effective network resource upgrading. 

The results show that the proposed methodology can obtain significant cost savings. 
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Chapter 1 

Introduction 

1.1 Overview 

Wireless mesh networks (WMNs) are a promising technology that uses multi-hop radio 
communications. These types of networks are gaining significant attention as a cost effec­
tive way to establish robust and reliable broadband services for end users. Wireless mesh 
networks consist of mesh clients, mesh routers and gateways. The mesh clients are often 
laptops, cell phones and other wireless end user devices while the mesh routers forward 
traffic to and from the gateways which provide a connection to the Internet. 

Wireless mesh networks are increasingly used to provide radio coverage in many per­
manent metropolitan area deployments. In many of these cases, radio coverage is required 
over expansive outdoor areas. One of the major obstacles that these networks face is that of 
providing the nodes with electrical power and wired network connections. Although power 
can sometimes be supplied through power over Ethernet connections, such a solution re­
quires a wired network connection, which may not exist. 

An alternative to continuous power connections is to operate some of the mesh nodes 
using a sustainable energy source such as solar power. These kinds of nodes can be quickly 
installed and have additional node positioning advantages compared with conventional 
mesh nodes, since the solar powered nodes are completely tether-less. This thesis con­
siders the design and configuration of these types of networks. 

Electrical devices which operate using solar power are referred to as photo-voltaic (PV) 
systems. An objective in the design of most PV systems is to ensure that the solar panel and 
battery resources are sufficient to provide an uninterrupted source of power. If at any time a 
node's battery level drops below a certain energy threshold, the mesh node electronics will 
experience a power outage. Before a network is installed, the nodes must be provisioned 
with a solar panel and battery combination that is sufficient to accommodate each node's 
anticipated workload. The assigned configuration for each node must be such that the net­
work survives without node outage for the desired deployment duration. This assignment 
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typically uses "geographic provisioning" to account for the solar insolation available at the 
network's deployment location. Depending on the geographic location of the node and the 
expected workload, the cost of the batteries and the solar panels can be a significant fraction 
of the total network cost, which motivates a careful selection of the allocated resources. 

1.2 Resource Management in Wireless Mesh Networks 

This thesis focusses on the most important issues related to the deployment and operation 
of solar powered wireless mesh networks. In traditional wireless mesh networks, two of 
the main design objectives are to minimize cost in the planning phase and to maximize 
node reliability when the network is in operation. Designing networks that include solar 
powered nodes is a challenging task when compared to traditional network design. The 
node costs are highly sensitive to the network's geographic location and the mesh node's 
workload, meaning that the network designer must take this into account in order to reduce 
costs. 

Solar powered wireless mesh nodes must be provisioned with a solar panel and battery 
combination that is sufficient to prevent node outage. This is normally done by assuming 
an energy workload for each node, and then by assigning resources that are based on re­
sults obtained using historical meteorological data for the geographic location where the 
network is to be deployed (Farbod and Todd, 2006). This thesis introduces a methodology 
for determining the resource assignment based on conventional mechanisms where the in­
dividual node bandwidth flows must be determined prior to doing the resource assignment. 
A methodology that uses genetic algorithms (GA) to incorporate energy-aware routing into 
the resource assignment procedure is also introduced. A linear programming formulation 
is developed with the objective of obtaining a minimum total network cost resource assign­
ment, subject to satisfying the target bandwidth flow profile, and accounting for the desired 
geographic deployment location. Results are presented which show the large resource sav­
ings that energy aware resource assignment can achieve when compared to that done using 
conventional resource assignment. 

Operating the deployed network using the minimum provisioning which achieves outage­
free operation does not guarantee that the network will be outage-free in the future, since 
the past data are only random sample functions of the solar insolation process. Also, fu­
ture aggregate bandwidth demands may exceed the assumed load profile. For this reason, 
the derived provisionings are usually either increased by some safety factor (i.e., the open 
loop case), or, the nodes must use some form of closed-loop outage control as discussed 
in (Sayegh and Todd, 2007). The thesis next considers this bandwidth control problem. 
Bandwidth control must flow control input traffic in such a way that outage is prevented 
and yet the best possible performance is obtained. This control action will result in a band­
width deficit and should be applied in a manner that is both temporally and spatially fair. 

2 
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The thesis proposes a mechanism for controlling the requested bandwidth in order to guar­
antee sustainable and yet fair operation. The problem is first formulated as an optimization 
using a convex utility fairness function. Using this optimization, a non-causal max/min 
fairness bound is obtained based on knowledge of future solar insolation data and traffic 
flows. Then a bandwidth control algorithm that is motivated by the optimization frame­
work is presented, which uses solar insolation prediction based on access to on-line his­
torical weather data. The results show that the proposed algorithm eliminates node outage 
and performs very well compared to the optimum bandwidth control bound for a variety of 
network scenarios. 

Finally, since users have come to expect a ubiquitous presence of wireless services, the 
traffic volume in a deployed wireless mesh network may grow with time. This will drive 
the need to periodically upgrade the network to meet these increasing traffic demands. To 
address this problem, traditional traffic growth management typically includes the process 
of network capacity upgrading, which may involve adding new nodes and transmission 
links where they are needed. In the case of solar powered networks, one must also consider 
the costs of updating the energy source and storage configurations of the nodes in order that 
the long-term sustainability of the network can be preserved. Traffic growth management 
deals with the network upgrade problem, where the overall traffic load on the network 
continues to grow with time. The thesis proposes and studies a methodology for addressing 
the problem of traffic evolution. A performance bound on the network upgrade cost is 
formulated as a mixed integer linear program (MILP). This optimization is done over the 
target lifetime of the network and uses an optimal routing that assumes the knowledge 
of future solar insolation and traffic flows. This results in a lower bound on the network 
upgrade costs which is used as a comparison with real provisioning algorithms. A traffic 
growth provisioning algorithm is presented based on doing an iterative local optimization. 
A technique based on a genetic algorithm approach is then introduced for determining low 
cost node resource upgrading. Results are given which show that the genetic algorithm 
approach obtains the best results and performs favorably compared with the lower bound. 

A review of the work related to each resource management problem is given in each 
chapter. 

1.3 Thesis Organization 

Chapter 2 introduces the background information related to the work in this thesis. Back­
ground information on Wireless Local Area Networks (WLANs) and Wireless Mesh Net­
works (WMNs) is presented. A survey of previous work that deals with power saving for 
wireless infrastructure networks is also presented. 

In Chapter 3, results are presented for energy aware provisioning for solar powered 
wireless mesh nodes. A resource provisioning algorithm is proposed based on the use of 

3 
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shortest-path routing and taking into account the node energy-flow for the target deploy­
ment time period. A genetic algorithm that incorporates energy-aware routing into the 
resource assignment procedure is then introduced. The results show the large cost savings 
that an energy aware resource assignment can achieve when compared to that done using 
the conventional methodology. To evaluate the quality of the resource assignments, a lin­
ear programming formulation is developed which gives a lower bound on the total network 
resource assignment. 

Chapter 4 proposes a mechanism for achieving fair bandwidth control on a per-flow 
basis. A bound which achieves the best max-min fair bandwidth control subject to elimi­
nating network outage is formulated. This bound uses knowledge of future solar insolation 
to determine the optimum bandwidth control. This bound motivates a proposed bandwidth 
control algorithm whose operation uses prediction based on access to on-line historical 
weather data. The results show that the proposed algorithm eliminates node outage and 
performs very well compared to the optimum bandwidth control bound for a variety of 
network scenarios. 

In Chapter 5, traffic growth management in solar powered wireless mesh networks is 
addressed. A mixed integer linear programming (MILP) formulation is derived which is 
used to optimize the costs of node resource upgrades. Using this result, a lower bound 
on the network upgrade cost is obtained. The chapter then proposes the use of a genetic 
algorithm based methodology for determining practical cost-effective mesh node resource 
upgrading. Various results are given using networks with random, mesh and tree topologies 
which show the value of the proposed mechanism. In particular it was found that the genetic 
algorithm approach achieves results which are much better than those from an algorithm 
which uses local optimization. It also performs well compared to the derived lower bound. 

The thesis is then concluded in Chapter 6. 

4 



Chapter 2 

Background 

2.1 Introduction 

This chapter presents an overview of the background information and concepts relevant 
to the analysis of solar powered wireless mesh networks. The chapter starts by present­
ing background information on Wireless Local Area Networks (WLANs), Wireless Mesh 
Networks (WMNs) and their standards. It then surveys some initiatives relating to solar 
powered wireless infrastructure networks. Finally, current methodologies used to model 
solar powered systems are reviewed. 

2.2 Wireless Local Area Networks 

Wireless local area networks (WLANs) connect two or more devices using radio communi­
cations within a relatively small region, such as within the floor of a building or a campus. 
Wireless LAN s have witnessed tremendous growth in recent years and have become one of 
the fastest growing segments in the telecommunications industry. They offer users many 
benefits such as portability, flexibility, increased productivity, and lower installation costs 
compared to wired networks. The first standard for WLANs was made in the late 1990's by 
the Institute of Electrical and Electronics Engineers (IEEE) 802.11 workgroup, and became 
the IEEE 802.11 standard. The next section reviews the IEEE 802.11 standard and some of 
its extensions. 

2.2.1 IEEE 802.11 Standard 

In 1997, the IEEE adopted the first IEEE 802.11 standard forWLANs (IEEE802.11, 2008). 
The standard defines a medium access control (MAC) sub-layer, MAC management pro­
tocols and services, and details of the physical (PHY) layers (Ergen, 2002). Supported 
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/Station 

Station 

Figure 2.1: Independent Basic Service Set (IBSS) 

services in the standard include authentication, privacy, and data delivery; these functions 
are typically embedded in the hardware and software of a network interface card (NIC) that 
is installed in the device that connects to the WLAN. 

The IEEE 802.11 standard defines a Station (STA) as the component that connects to 
the wireless medium. The definition of stations does not distinguish between mobile or 
stationary devices. A Basic Service Set (BSS) is defined as a set of stations that communi­
cate with one another. When all of the stations in the BSS are connected in a peer-to-peer 
fashion, the BSS is called an independent BSS (IBSS). An IBSS is typically a short-lived 
network that is established in an ad hoc manner with a small number of stations. A sample 
IBSS is shown in Figure 2.1 where three devices are communicating with each other using 
direct radio links. 

When a BSS includes an access point (AP), it is called an infrastructure BSS. The AP 
acts as a central controller that organizes communications between stations. In this case, 
if one station must communicate with another, the communication is sent first to the AP, 
which then forwards it to the destination station. Figure 2.2 shows a sample infrastructure 
BSS consisting of the AP and 3 other stations. In this BSS, when Station 1 wants to 
communicate with Station 2, Station 1 transmits to the AP first and then the AP forwards 
the data to Station 2. 

An Extended Service Set (ESS) is a set of infrastructure BSSs, where the APs forward 
traffic from one BSS to another to interconnect the BSSs and to facilitate the movement 
of stations between different BSSs. The APs perform this communication via an abstract 
medium called the distribution system (DS). To network equipment outside of the ESS, 
the ESS and all of its stations appear as a single MAC-layer network where all stations 
are physically stationary. Thus, the ESS hides the mobility of the stations from everything 
outside the ESS. 

6 




P.h.D. Thesis - Ghada Badawy McMaster - Electrical & Computer Engineering 

Figure 2.2: Infrastructure BSS (BSS) 

...,I<,-- Super Frame ----;>..f 
BeaconBeacon 

Figure 2.3: IEEE 802.11 Super Frame 

In a BSS, transmissions from a station are broadcast on a shared transmission medium, 
and can be heard by all other stations. When two or more stations transmit simultaneously, 
their packets may interfere (collide), resulting in the loss of all involved transmissions. A 
medium access control (MAC) protocol is used to coordinate access to the shared medium. 
The primary function of the MAC protocol is to minimize collisions so that efficient use of 
the wireless medium is achieved. 

In the IEEE 802.11 standard, time is divided into repeated periods, called superframes. 
As shown in Figure 2.3 a superframe starts with a beacon packet and is divided into a 
Contention Free Period (CFP) and a Contention Period (CP). The beacon packet is a man­
agement packet that synchronizes the local timers in the stations to the AP and delivers 
protocol related parameters. IEEE 802.11 defines two types of medium access control al­
gorithms during the CFP and the CP periods, the Distributed Coordination Function (DCF) 
and the Point Coordination Function (PCF). During the CFP, the PCF is used for accessing 
the medium, while the DCF is used during the CP. 

DCF works as a listen before-send protocol (Mangold et al., 2002), based on Carrier 

7 
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Figure 2.4: IEEE 802.11 timeline 

Sense Multiple Access with Collision Avoidance (CSMNCA). Carrier Sense Multiple Ac­
cess is a probabilistic MAC protocol in which a node verifies the absence of other trans­
missions before transmitting. This is done by sensing the medium for .the presence of a 
carrier signal from other stations (Ni et al., 2004). Stations deliver packets after detecting 
that there is no other transmission in progress on the wireless medium. 

The IEEE 802.11 standard defines another carrier sensing mechanism called virtual 
carrier sensing (Ergen, 2002). Virtual carrier sensing is optionally used by the transmitting 
station to inform all other stations in the same BSS of the duration of its transmission. 
Listening stations will not start any transmissions during this time by setting their Network 
Allocation Vector, NAV, timer to a value equal to the transmission duration. 

The DCF mechanism is shown in Figure 2.4. As seen in the figure, Station 2 and Station 
3 are contending for the medium. Once Station 2 and Station 3 detect an idle medium for 
a duration of a DCF inter-frame space (DIFS), they both wait for a random time before 
starting their transmission. The stations wait for this random time to avoid collisions. When 
Station 2 starts transmission, Station 3 sets its NAV timer to the transmission duration of 
Station 2. Moreover, it can be seen in the figure that acknowledgment packets are sent after 
the receiving station waits for a short inter-frame space (SIFS), whose duration is shorter 
than the DIFS. Varying inter-frame spacings create different priority levels for different 
types of traffic. Using this mechanism, high-priority traffic does not have to wait as long 
as low priority traffic after the medium has become idle. High-priority transmissions can 
begin once the SIFS has elapsed. 

Priority-based access can also be used to access the medium using PCF. PCF is a syn­
chronous service that implements a polling-based contention-free access scheme where the 
AP acts as a point coordinator (PC). In PCF, the PC polls a station, asking for pending data 
packets. If the PC receives no response from a polled station after waiting for a PCF Inter 
frame Space (PIFS), it continues polling other stations until the CFP expires. A specific 

8 
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Figure 2.5: IEEE 802.11 power saving mode (simplified) 

control frame, called CF-End, is transmitted by the PC as the last frame within the CFP to 
signal the end of the CFP. 

Since many IEEE 802.11 stations run on battery power, the standard includes features 
that can be used (illustrated in Figure 2.5) to prolong the battery lifetime (Ergen, 2002). 
A station can be in one of two power modes, that is, the active mode when it can receive 
and transmit packets, and a power-save mode (PS) where it is in the sleep state, a state 
where it has turned off the receiver and transmitter to conserve power. The standard does 
not specify when a station may enter or leave a power save mode, only how the transition 
is to take place. In an infrastructure BSS, the power management mechanism is centralized 
in the AP. The AP assumes the burden of buffering incoming data and multicast packets 
for power saving stations and delivering them when the stations request their transmission. 
This allows the stations to remain in the power saving state for long time periods. 

A station that wants to enter the power saving mode informs the AP of its listen period. 
The listen period is the number of consecutive inter-beacon frame intervals before a station 
must awaken to look for data that is held by the AP. The AP will hold packets destined for 
stations in the power saving mode for a minimum time not less than the listen period indi­
cated in the station's request. The AP indicates awaiting packets using a traffic indication 
map (TIM) that is included within the beacons. The standard defines an aging algorithm to 
discard buffered packets, though a specific algorithm is not described. 

When power saving is used, a station awakens at the expected time of a Beacon trans­
mission to learn if there are any data packets waiting, and to inform the AP when the station 
will reenter the power saving mode. On receipt of an indication of awaiting packets at the 
access point, the station sends a PS-Poll packet to the access point and waits for a response 
in the active state. The access point responds to the poll by transmitting the pending packet 
or indication for future transmission. The access point indicates the availability of multiple 
buffered packets using the "More" data field in the frame control field of each packet. The 
station is required to send a PS-Poll to the AP for each data packet it receives with the 
"More" data bit set. 

The station must also wake up at times determined by the AP, when multicast packets 
are to be delivered. This time is indicated in the beacon packets as the delivery traffic 
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indication map (DTIM). If an AP has any buffered multicast packets, those packets are sent 
immediately after the beacon announcing the DTIM (without an explicit PS-Poll from the 
station). If there is more than one multicast packet to be sent, the AP will indicate this fact 
by setting the "More" data bit in the frame control field of each multicast packet except for 
the last one sent. 

Figure 2.5, illustrates the power saving mechanism used in the IEEE 802.11 standard. 
In the figure, the AP holds a unicast packet destined to Station 1 which is in the power save 
mode. The AP indicates in the next beacon that it has a packet for Station 1. When Station 
I listens to the beacon, it sends a PS-Poll to the AP which then delivers the packet to the 
station. The AP holds any multicast packets for Station I since it is in the power save mode. 
The AP then indicates in the next beacon that it has a multicast packet and sends the packet 
without waiting for a PS-Poll from the station. 

In a contention-free period (CFP) the AP will deliver buffered packets to stations that 
are CF-Pollable. The CFP may also be used to deliver multicast packets after the DTIM is 
announced. 

IEEE 802.1 le is an enhancement to the IEEE 802.11 standard which modifies the Me­
dia Access Control (MAC) layer to define a set of quality of service enhancements for 
wireless LAN applications. The standard is considered important for delay-sensitive ap­
plications, such as Voice over Wireless IP and Streaming Multimedia (IEEE 802.1 le, 
2005). IEEE 802. l le enhances the DCF and the PCF, through a new coordination func­
tion: the Hybrid Coordination Function (HCF). There are still two phases of operation 
within the superframes, i.e., a CP and a CFP. The contention-based channel access method 
Enhanced Distributed Channel Access (EDCA) is used in the CP only, while the HCF 
Controlled Channel Access (HCCA) that uses polling, can be used in both phases. Both 
EDCA and HCCA allow the assignment of low and high priority traffic to different Traffic 
Categories(TC). The EDCA gives high priority traffic a higher chance of being sent than 
low priority traffic by allowing stations with high priority traffic to wait a little less before 
sending their packets. 

Each priority level is assigned a Transmit Opportunity (TXOP). A TXOP is a time 
interval during which a station sends as many packets as possible. This reduces the problem 
of low rate stations gaining an inappropriate amount of channel time in the legacy IEEE 
802.11 DCF MAC. 

The HCCA works like the PCF. However, during the HCCA, the AP can initiate polling 
at any time. This is called a Controlled Access Phase (CAP) in IEEE 802. l le. A CAP is 
initiated by the AP, whenever it wants to send or receive data in a contention free manner. 
The other difference with the PCF is the availability of traffic classes which means that the 
HC can give priority to one station over another, or adjust its scheduling mechanism in any 
way it wants. As in EDCA, the stations are given a TXOP selected by the HC. 

IEEE 802.1 le includes an Automatic Power Save Delivery (APSD) mechanism (Perez­
Costa et al., 2007). The main difference between the IEEE 802.11 standard power save 
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mode and APSD is that with APSD a station must be awake during a Service Period (SP). 
Two types of SPs are possible under APSD: unscheduled and scheduled. Unscheduled 
SPs (U-APSD) are defined only for stations accessing the channel using EDCA, while 
Scheduled SPs (SAPSD) are defined for both access mechanisms. As in the legacy IEEE 
802.11 power save mode, the AP will buffer packets for a station in the power save mode 
for a period not less than the station's listen period. 

The main idea behind the U-APSD design is to use data packets sent by power saving 
stations to the AP as indications of the instants when these stations are awake. When such 
an indication is received by the AP, the AP delivers any data packets that were buffered for 
the station while it was in sleep mode. In S-APSD the HC defines periodic service intervals 
which allow the synchronous delivery of traffic. 

IEEE 802.11 does not include any native procedures that would allow an access point 
to achieve power saving, and this aspect of IEEE 802.11 is an impediment to the develop­
ment of a real power saving WLAN infrastructure. In classical IEEE 802.11, power saving 
has dealt with end user stations since access points are assumed to have continuous power 
connections [IEEE Standard 802.11, Wireless LAN Medium Access Control (MAC) and 
Physical Layer Specifications, IEEE, 1997]. Several references in the literature have dis­
cussed this problem (Farbod and Todd, 2004), (Zhang et al., 2004), (Li et al., 2005), (Choi 
et al., 2007) . In the next section wireless mesh networks will be introduced. 

2.3 Wireless Mesh Networks 

Wireless Mesh Networks (WMNs) extend the reach of wireless networks using multi-hop 
communications. A sample wireless mesh network that includes infrastructure connectivity 
is shown in Figure 2.6. The network consists of a number of stationary access points (mesh 
APs which may also be referred to as wireless relay nodes) and several wireless users (mesh 
clients) and gateways. In this architecture, mesh APs form an infrastructure for clients 
(Akyildiz et al., 2005) and the gateways connect the mesh APs to the Internet. Dashed 
and solid lines in the figure indicate wireless and wired links, respectively. The mesh APs 
form a fully wireless backbone network which provides Internet connectivity to the users 
through the gateways. The WMN infrastructure/backbone can be built using various types 
of radio technologies, including IEEE 802.11. 

Industrial standards groups are also actively working on new specifications for mesh 
networking. For example, IEEE 802.11 (IEEE802.11, 2008), IEEE 802.15 (IEEE802.15, 
2008), and IEEE 802.16 (IEEE802.16, 2008) all have established sub-working groups to 
focus on new standards for WMNs. 

In many WMN applications, radio coverage is required over expansive outdoor areas 
where the mesh nodes can be operated using an energy sustainable source such as solar 
power. For this reason, mesh APs require power management to optimize both power 
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Figure 2.6: Wireless mesh network example 

efficiency and network connectivity. In the next section, some solar powered IEEE 802.11 
WLAN mesh network initiatives will be reviewed. 

2.4 Solar Powered Wireless Mesh Networks 

2.4.1 Power Savings in Infrastructure Wireless Mesh Networks 

In infrastructure-based wireless networks, the infrastructure nodes (e.g., mesh APs) are 
usually powered from a continuous energy source. For this reason, mesh APs do not have a 
constraint on power consumption and power management in the mesh APs aims to control 
interference (Krishnamurthy, 2004), spectrum spatial-reuse, and topology (Li et al., 2002). 
Only recently, various research and commercial activities have included power saving in the 
mesh APs. In this section some recent solar powered IEEE 802.1 l WLAN mesh network 
initiatives are discussed. 

Solar powered wireless mesh networks are starting to appear in many Wi-Fi infras­
tructure scenarios (Todd et al., 2008). For example, the city of Minneapolis has deployed 
a solar powered Wi-Fi network as a part of the ParkWiFi project, which consists of more 
than 400 APs (Park WiFi Project, 2007). A solar powered wireless Internet access network 
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has recently been deployed at the Pearl Street Mall in Boulder, Colorado with the cooper­
ation of Lumin Innovative Products (Lumin Innovation Products Inc, 2007). Inveneo, a 
non-profit organization, currently offers solar powered wireless networks in the developing 
world (Inveneo, 2007). Meraki has plans for deploying a solar powered outdoor Wi-Fi mesh 
node (Meraki Outdoor) (Meraki, 2007), and IR Data Corporation provides a solar pow­
ered Wi-Fi AP that includes a 900 MHz radio mesh router (IR Data Corporation, 2007). 
An example of this is the Battery Operated Systems for Community Outreach (BOSCO) 
initiative, which is expected to provide Internet services for displaced people in northern 
Uganda (BOSCO, 2007). In addition, the One Laptop Per Child (OLPC) project includes 
the use of a solar powered IEEE 802.11 WLAN mesh repeater. These devices can be easily 
mounted to provide WLAN mesh coverage for OLPC users. The Green Wi-Fi initiative 
also provides solar powered access for developing countries (Green WiFi, 2007). 

A common issue in practical solar powered WLAN infrastructure is the excessive cost 
of the solar panel and battery components, especially in temperate geographic regions. This 
provisioning cost is closely tied to the power consumption design profile of a given mesh 
node. In a multi-radio solar powered node design, this cost can be reduced by operating 
the relay radios (i.e., those that communicate only between mesh APs) using some form 
of power save mode. Although an IEEE 802.11 standard does not as yet exist for this, the 
IEEE 802.lls activities plan to include this option (Camp and Knightly, 2008). Unfor­
tunately, many solar-powered applications involve single radio nodes, in either low usage 
applications or in hybrid solar/non-solar networks. Relay-link power saving clearly does 
not apply to this case; thus, the provisioning cost of these types of nodes is often far higher 
than necessary. 

Very minor modifications to the IEEE 802.11 standards would open the door to sig­
nificant solar node cost reductions if AP power saving were permitted. It was shown in 
(Farbod and Todd, 2004) that WLAN mesh APs which operate using a sustainable energy 
source can benefit greatly from protocol-based power saving features. Currently, however, 
IEEE 802.11 does not provide a mechanism for placing APs into a power saving mode. 
The proposed modifications to the IEEE 802.11 standards to allow AP power savings are 
now briefly reviewed. 

The work in (Zhang et al., 2004), and (Li et al., 2005) propose extensions to IEEE 
802.11 and IEEE 802.1 le to include power savings on the access point. In (Zhang et al., 
2004) the authors present a power saving access point (PSAP) that is backward compati­
ble to a wide range of legacy IEEE 802.11 end stations and existing wired access points. 
The PSAP is designed so that it can perform dual-channel multi-hop relaying, and at the 
same time accommodate conventional Wi-Fi compliant IEEE 802.11 end stations, without 
any modification to existing mobile stations. This is done using two channels: a HOME 
channel (H-channel) and a RELAY channel (R-channel). The PSAP uses the H-channel 
to act as an access point for mobile stations (MSs) within its coverage range and the R­
channel to forward/download traffic to/from its parent AP or PSAP. To reduce cost and 
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Figure 2.7: Power Saving AP Operation (Zhang et al., 2004) 

power consumption, each PSAP has only a single IEEE 802.11 wireless interface. 
Figure 2.7 illustrates the operation of the PSAP. As in conventional IEEE 802.11, the 

PSAP establishes a superframe of length tsF , which can span multiple beacon intervals. 
The superframe timeline consists of three subframes, the Sleep/Doze or S subframe, the 
Relay or R subframe, and the contention period, CP, subframe. During the S subframe, 
the PSAP is sleeping with its radio and potentially other subsystems switched into a lower 
power conserving state. In the R subframe, the PSAP has its radio tuned to the R-channel, 
and is relaying traffic to/from its upstream neighbor. In the CP subframe, the PSAP has 
its radio tuned to the A-channel and traffic is passed between the PSAP and MSs using 
the normal IEEE 802.11 infrastructure based DCF procedures. The authors use a NAV­
blocking mechanism to organize access to the PSAP. In the NAY-blocking scheme, the 
beacon transmitted at the start of the superframe advertises the PSAP as an IEEE 802.11 
point coordinator (PC). It also specifies a PCF period of duration equal to the sum of the S 
and R subframes. This action serves to block all stations from accessing the A-channel for 
this duration since MSs will set their NAV to this value. Once this has been done, the PSAP 
is then free to sleep and switch to the R-channel. At the end of the R subframe, the PSAP 
transmits a CF-End packet on the A-channel to signify the beginning of the CP subframe. 

The authors in (Li et al., 2005) extend the IEEE 802.11/ IEEE 802.11 e MAC protocol 
to accommodate power saving in the AP by generalizing the NAV concept to that of a 
Network Allocation Map or NAM. For a given AP, a NAM specifies one or more future 
non-overlapping time periods during the inter-beacon interval when an AP's channel is 
unavailable for transmission activity. During the NAM intervals the AP radio may be either 
in a low power doze mode or it may be relaying traffic on a different channel. Figure 2.8 
shows an example of a network with 2 APs (MAP1 and M AP2), where the first line shows 
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Figure 2.8: NAM Power Savings (Li et al., 2005) 

the AP activities and the second line shows the NAM associated with this AP. In Figure 2.8, 
S indicates that the AP is in sleep mode, CP represents a contention period and R indicates 
that the AP is relaying traffic on a different channel. Each NAM entry start and end time 
also includes a boundary type, which is either fixed (an F-Boundary) or movable (an M­
Boundary). An F-Boundary type is one where the transition to the new subframe type is 
guaranteed to occur at that point in the superframe. An M-Boundary is different in that it 
can be changed on a dynamic basis by the AP from one superframe beacon interval to the 
next to accommodate traffic conditions, and is advertised in the most recent beacon. 

Having surveyed different power saving techniques, it is important to gain a thorough 
understanding of how renewable energy systems are modeled in practice. In the following 
section, a detailed description is provided. 

2.5 Solar Conversion 

Knowledge of the quantity of solar energy available at a specific location is of prime impor­
tance for the design of any solar energy system. Although the solar radiation is relatively 
constant outside the earth's atmosphere, local climate influences can cause wide variations 
in available insolation on the earth's surface. Due to the earth's rotation, asymmetric orbit 
about the sun, and the contents of its atmosphere, a large fraction of the solar energy does 
not reach the ground. The rate at which solar energy reaches a unit area at the earth is 
called the "solar irradiance" or "insolation". The units of measure for irradiance are watts 
per square meter (W/m2). 

Solar irradiance is an instantaneous measure of rate and can vary over time. These 
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variations have a strong deterministic component but processes such as air humidity, pres­
sure and cloud cover induce randomness into the received insolation. The modeling of 
the above processes is mainly done using stochastic processes because they are too com­
plicated to be studied using deterministic models. As solar radiation passes through the 
earth's atmosphere, it is absorbed, reflected, and scattered. 

In this thesis the term "direct" will be used to represent solar irradiance coming directly 
from the sun, and the term "diffuse" will be used to indicate solar irradiance coming from 
all other directions. The daily total radiation incident on a tilted surface, Gt, is composed 
of direct, Cb. ground reflected, Gn and sky-diffuse, Gd, components, i.e., 

(2.1) 


where Gb represents the irradiance coming directly from the sun, Gd represents the diffuse 
radiation falling on a tilted surface, and Gr is the solar energy reflected from surrounding 
surfaces. The calculation of the direct component is a straightforward geometric problem 
(Klein, 1977). However, the diffuse component estimation requires a complex computation 
and the most widely used method will be described later. Since the ground-reflected com­
ponent is highly site-dependent and doesn't significantly contribute to the total, it is usually 
ignored (Perez and Stewart, 1986). The calculation of Gb, Gd and Gr is now explained. 

2.5.1 The Incidence angle 

The incidence angle, (), is the angle at which the solar radiation strikes the panel. This 
angle determines the energy received by the panel and is mainly a function of the position 
of the sun in the sky, and the slope and orientation of the panel. Several parameters are used 
to calculate these two factors: the solar declination angle, the hour angle, and the zenith 
angle. The solar declination angle is the angle between a plane perpendicular to the solar 
radiation and the axis of rotation of the earth. It can be calculated as follows (Klein, 1977). 

c5 = 23.45° · sin[360(284 + n) /365], (2.2) 

where n is the Julian day [l ... 364]. The hour angle represents the angular distance that 
the earth has rotated in a day and can be expressed as, 

h = l5(t 8 - 12), (2.3) 

where ts is the number of hours from local solar noon. The zenith angle is the angle 
between the solar radiation beam and a line perpendicular to the panel location. It can be 
computed as follows, 

cos(()z) = sin(¢)sin(c5) + cos(¢)cos(c5)cos(h), (2.4) 
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where¢ is the location's latitude. 

2.5.2 Direct Solar Insolation 

The direct solar insolation component is calculated using Kleins method (Klein, 1977). 
This method is widely used because of its relative simplicity, as it requires only daily 
global insolation on a horizontal plane (Kamali et al., 2006). Klein computed the direct 
component of solar radiation on a tilted plane as a function of the direct normal solar radi­
ation and the incidence angle. In solar powered WLAN mesh applications, the solar panels 
are pointed directly south and sloped slightly greater than the geographic latitude (in the 
northern hemisphere) so that solar absorption is highest during winter months. For these 
panels the incidence angle is given as 

cos(B) =cos(¢ - (3)cos(h)cos(8) +sin(¢ - (3)sin(8), (2.5) 

where ¢ is the location's latitude and (3 is the solar panel's slope. This can be simplified 
further for the case where the tilt angle is equal to the value of the latitude, 

cos(B) = cos(h)cos(8). (2.6) 

This means that the solar incidence angle for an equator-facing plane is only a function of 
the hour angle and the declination angle. Now, the direct component of solar radiation can 
be written as 

Gb = Gb,n · max[O, cos(B)], (2.7) 

where Gb,n is the normal beam irradiation which can be obtained from The Meteorological 
Service of Canada. The reason behind taking the maximum of zero and cos( B) is that 
during the night, the unmodified equation is not correct. 

2.5.3 Diffuse Solar Insolation 

Diffuse radiation does not come directly from the sun and its strength is a function of sky 
clearness and brightness. The widely accepted Perez model for estimation of the diffuse 
component of solar irradiance on tilted planes (Perez and Stewart, 1986) is now described. 
The diffuse solar insolation on a titled surface Gd can be given by (Soga et al., 1999). 

(2.8) 


where Gd,h is the horizontal diffuse irradiation which can also be obtained from The Me­
teorological Service of Canada and F is the function representing the proportion of diffuse 
irradiation on tilted surfaces to horizontal diffuse irradiation. To calculate F, Perez defines 
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3 basic components that parameterize all the solar insolation conditions from overcast to 
clear. These components are 

1. The solar zenith angle ()z. 

2. The sky clearance noted as E, which is given by 

(Gd,h + Gb,n)/Gd,h + k()~ 
(2.9)

E = 1 + k()3 ' 
z 

where Gd,h is the horizontal diffuse irradiance, Gb,n is the normal incident direct 
irradiance, k is a constant equal to l.041 for ()z in radiance and the()~ formulation is 
added to eliminate the dependence of this component on the zenith angle. 

3. The sky brightness ~ is calculated as 

(2.10) 

where m is the relative optical air mass (Kasten, 1996) and I 0 is the extraterrestrial 
irradiance. 

Now the diffuse component on a tilted surface can be given as, 

(2.11) 

where a= max(O, cos()) and b = max(0.087, cos(()z)). Based on the category into which 
the current sky's clearness index E falls, the values of F1 and F2 can be obtained by looking 
up Table 6 in (Perez et al., 1990). 

The conversion algorithm can now be summarized as follows, 

1. Estimate the direct component 

(a) Calculate the hour angle h according to Equation 2.3. 

(b) Calculate solar declination angle 6 according to Equation 2.2. 

(c) Calculate() according to Equation 2.5. 

(d) The direct component can be estimated using 

Gb = Gb,n · max[O, cos(())]. (2.12) 

2. Estimate the diffuse component 

(a) Calculate the solar zenith angle ()z using Equation 2.4. 

(b) Calculate the sky clearance index E using Equation 2.9. 
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(c) Using E look up the values of Fl and F2 from Table 6 in (Perez et al., 1990). 

(d) The diffuse component can be estimated as 

(2.13) 

3. The total irradiance on a tilted plane is 

(2.14) 


2.6 Conclusions 

In this chapter a review of the necessary background information has been presented. The 
discussion began by presenting an overview of Wireless Local Area Networks (WLANs) 
and Wireless Mesh Networks (WMNs) including a summary of the most relevant features 
of the IEEE 802.11 standard. A survey of previous initiatives relating to power saving in 
wireless infrastructure networks was given. This was followed by reviewing the current 
methodologies used to model received solar insolation based on available meteorological 
records. 

In the next chapter, the problem of resource provisioning in solar powered wireless 
mesh networks is addressed. A mathematical formulation for the resource provisioning 
problem is given to obtain a lower bound that can be used to investigate the quality of 
resource provisioning mechanisms. A flow-based provisioning procedure is introduced 
which is motivated by conventional single-system photo-voltaic provisioning. This mo­
tivates the idea of incorporating energy-aware routing into the provisioning process. A 
unique resource provisioning mechanism which takes energy aware routing into account is 
then introduced. A genetic algorithm is developed for determining these resource assign­
ments and the presented results show the significant cost savings that are possible using 
this approach. 
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Chapter 3 

Energy Aware Provisioning in Solar 
Powered Wireless Mesh Networks 

3.1 Introduction 

Before a solar powered wireless mesh network is installed, the nodes must be provisioned 
with a solar panel and battery combination that is sufficient to accommodate the antici­
pated network bandwidth flow profile. The assigned configuration for each node must be 
such that the network survives without node outage for the desired deployment duration. 
This is normally done by assuming a temporal load profile for each node, and then by as­
signing resources that are based on results obtained using historical meteorological data 
for the geographic location where the network is to be deployed (Farbod and Todd, 2006). 
Unfortunately, this methodology requires that the network bandwidth flow assignment be 
determined before the nodes are provisioned, and thus it does not give a resource provi­
sioning which can take into account the use of energy aware routing. Intuitively, a network 
which uses energy aware routing should be able to avoid outage using node provisionings 
which are less costly than in the conventional resource provisioning case. For this rea­
son, the cost of node provisioning may be unnecessarily high when conventional resource 
assignment is used. 

In this chapter this node energy provisioning problem is considered. First the problem 
is formulated with the objective of minimizing the network resource provisioning cost. A 
methodology for determining this resource assignment is then introduced which uses so­
lar insolation history and a target bandwidth flow profile as inputs. This is referred to as 
Shortest Path Resource Provisioning (SPRP). A methodology for mesh node resource pro­
visioning is then introduced which incorporates the use of energy aware routing. The ob­
jective is to obtain a minimum total network cost resource assignment, subject to satisfying 
the target load profile, and accounting for the desired geographic deployment location. A 
genetic algorithm (GA) is then proposed for determining this energy provisioning. Results 

20 




P.h.D. Thesis - Ghada Badawy McMaster - Electrical & Computer Engineering 

are presented which show the large resource savings that energy aware resource assign­
ment can achieve when compared to that done using a conventional resource assignment. 
A linear programming formulation is also developed which gives lower bounds on the node 
resource cost assignments. A hybrid network case, where some of the deployed nodes have 
a continuous powered source is also included in our work. 

3.2 Background 

An objective in the design of most photo-voltaic (PV) systems is to ensure that the solar 
panel and battery resources are sufficient to provide an uninterrupted source of power. 
Methodologies for accomplishing this have been considered in the past literature, and will 
be briefly summarized. 

In (Narvarte and Lorenzo, 2000) it was shown that the accuracy of different PV sizing 
methods are bounded by statistical laws, and that exceedingly complex methods are not 
needed for sizing PV systems. In (Maghraby et al., 2002) three different methods for sizing 
PV systems were compared. The results show that the best provisioning can be obtained 
by simulation using historical solar insolation data. Based on these results most PV sizing 
papers use simulations to model hourly solar insolation data. This approach is reasonable 
since the provisioning process is normally done long before the PV system is deployed. 

A deterministic analysis that produces the optimal design for a hybrid power system for 
either autonomous or grid-linked applications has been proposed in (Chedid and Rahman, 
1997), and in (Borowy and Salameh, 1996) a methodology for calculating the optimum 
battery and PV array size for a stand alone hybrid (Wind/PY) system was developed. Long 
term data for wind speed and solar irradiance for every hour over 30 years were used to 
perform the provisioning. This data was used to compute the average power generated by 
the wind turbine and the PV module for each hour. For a given load characteristic, wind 
turbine, and a desired outage probability, an optimum number of batteries and PV modules 
was determined so that energy provisioning cost was minimized. Rather than assuming 
a constant system load, reference (Saengthong and Premrudeepreechacham, 2000) takes 
variable energy loading into account in the sizing of solar powered systems. 

In (Farbod and Todd, 2006) the design of solar powered WLAN mesh networks was 
considered from a resource allocation and outage control viewpoint. Algorithms were pro­
posed which can prevent node outage by introducing a bandwidth deficit when the node 
battery energy drops below a pre-computed threshold. In this way, outage is avoided by 
adaptively reducing the level of service offered to the end user stations. In (Xu et al., 
2005), genetic algorithms are used to find the optimal resource assignment for a hybrid 
power system. This reference defines a mixed multiple-criteria integer programming prob­
lem which optimizes the types and sizes of wind turbine generators, the tilt angles and sizes 
of PV panels, and the battery capacities. The objective is to minimize the total cost, subject 
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to a power supply outage probability. In (Lopez and Agustin, 2005) a hybrid optimization 
using genetic algorithms was proposed to design a PY-Diesel system. The algorithm ob­
tains the optimal configuration of PY panels, batteries and diesel generator, and minimizes 
the total net cost over the useful lifetime of the system. Reference (Shahirinia et al., 2005) 
presented a genetic algorithm that calculates the electrification costs (i.e., capital, replace­
ment, operation and maintenance, and fuel costs) over a 20 year period for a stand-alone 
multi-source hybrid power system. In much of the previous work in this area, the PY sys­
tem load demand is an input to the problem and therefore each node can be independently 
provisioned. This assumption may be less valid in certain solar powered mesh network 
scenarios since the load on the system may vary dynamically with the flow routing that is 
applied at a given time. 

There has also been a lot of previous work on energy aware routing. For example, the 
problem of maximizing the network lifetime was studied in (Chang and Tassiulas, 2004) 
where the lifetime is defined as the time until the first node experiences outage. In (Li 
et al., 2006) the problem of traffic oblivious energy aware routing was studied and an op­
timization problem was presented with the objective of minimizing the maximum network 
energy utilization. In (Lin et al., 2005) a power-aware routing algorithm is presented for 
wireless networks with renewable energy sources. The proposed algorithm is shown to be 
asymptotically optimal when compared to the full knowledge case. 

In addition to the above work, genetic algorithms (GAs) have been used to solve net­
work routing problems. In (Riedl, 1998) a GA was presented where a set of node locations 
and a traffic requirement matrix is given. The algorithm then optimizes the link topology 
and the routing paths in accordance with the input costs, so the average end-to-end packet 
delay does not exceed a specified threshold. In (Sirikonda, 2007) a GA was introduced to 
solve the problem of a multi-objective route optimization. This work finds the best paths 
between the end nodes that minimizes the number of hops, the queueing delay, the total path 
distance, bit error rate, and maximizes the transmission bandwidth. Using variable length 
chromosomes, reference (Ahn and Ramakrishna, 2002) introduced a GA which solves the 
shortest path routing problem. However, to our knowledge GAs have not been used to per­
form PY resource assignment in the presence of energy aware routing. Most previous work 
has sized PY systems without taking into account the interdependencies between the load 
demand and the routing algorithm. 

3.3 Solar Powered Mesh Network Resource Provisioning 

A simplified version of a solar powered mesh node is shown in Figure 3 .1. Each node may 
contain one or more radio interfaces and it is assumed the node uses power saving such as 
that described in (Farbod and Todd, 2004). The solar panel and battery are connected to 
the node through a charge controller which performs functions such as battery over- and 

22 




P.h.D. Thesis - Ghada Badawy McMaster - Electrical & Computer Engineering 

(( ) ) 

Solar Panel (or Wind Turbine) 

Mesh AP ,__..,...___ 
Radio and Host 

Battery 

Figure 3.1: Solar Powered WLAN Mesh Node 

under-charge protection. Photo-voltaic system modeling is normally done in discrete time 
and sufficient accuracy is obtained using the I-hour ~ time increments method (Farbod 
and Todd, 2004). In the node energy flow model, E(i, k) is defined to be the energy per unit 
area produced in a solar panel for Node i over the time period [(k - 1)~, k~] and P(i) is 
the assigned solar panel size. B(i, k) is defined to be the battery energy stored in node i 
at time k, and Bmax(i) is defined to be the battery capacity. If L(i, k) is assumed to be the 
load energy expended over the same period, then the energy flow equation can be written 
as (Safie, 1989) 

B(i, k) = min{max[B(i, k - 1) + P(i)E(i, k) - L(i, k), Boutage(i)], Bmax(i)}, (3.1) 

where Boutage (i) is the maximum allowed depth of battery discharge based on safety and 
battery life considerations. Equation 3.1 is a simple recursion that finds the battery energy 
at time k to be that at time k - 1, minus the load energy expended, and plus the energy 
received from the solar panel over that time period. When B(i, k) ::; Boutage(i), the charge 
controller will disconnect the mesh node electronics and the node will experience a radio 
outage. The max/min operations in equation 3.1 take this into account and also define the 
battery capacity, Bmax (i). 

Equation 3.1 can easily be modified to account for factors such as battery temperature 
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dependence. It is well known that both battery capacity and charging efficiency decrease 
with falling temperatures, and this effect should be accounted for in certain geographic 
locations (Farbod and Todd, 2004). In this case a tabular approach can be used so that when 
Equation 3.1 is evaluated, the current temperature acts as an index which returns factors 
that modify the battery capacity and charging efficiency. For simplicity in exposition, the 
form shown in Equation 3.1 will be used, but in the results temperature dependence will be 
accounted for when it is appropriate. The energy resource provisioning problem can now 
be stated. 

3.3.1 Energy Provisioning Problem Statement 

Resource provisioning involves the assignment of P(i) and Bmax(i) for each node, so 
that network outage is prevented. This is done using past solar insolation traces for the 
desired geographic deployment location, i.e., using sample functions of £ ( i, k) derived 
from recorded historical data. 1 The problem is as follows. 

• 	 The mesh network consists of N nodes modeled as a directed graph where each 
mesh node represents a vertex and two nodes can have an edge (i.e., a link) between 
them if they are within communication range. Each node is identified by an index in 
the set N = (1, 2, ... , N) and each edge is defined by an ordered pair (i,j) where 
i, j E N are the transmitting and receiving nodes, respectively. The set of all edges 
is denoted by E. Traffic is relayed in a multi-hop fashion and a path from source to 
destination consists of one or more adjacent edges. 

• 	 Sample functions consisting of a bandwidth usage profile (BUP) and a solar insola­
tion input trace are given for a contiguous deployment time period, Te,. The usage 
profile consists of a multi-commodity bandwidth usage matrix M = [msd(k)], where 
msd(k) ~ 0 indicates the aggregate bandwidth requirement from Nodes to Node d 
during time period ((k-1)~. k~).2 The solar insolation sample function consists of 
an input trace over the same time period whose values at Node i are given by £(i, k). 

The deployment time period is given by Te,= (kmin~, kmax~) where k runs over the 
set/(= (kmin. kmin + 1, ... , kmax). 

1For the USA, this type of data is available from the National Renewable Energy Laboratory (NREL), 
U.S. Department of Energy, and for Canada it can be obtained from The Meteorological Service of Canada. 
These databases include solar insolation samples that span several decades of continuously collected mea­
surements for hundreds of different geographic locations. Temperature samples are also included with the 
solar insolation traces. 

2It is important to note that as in other resource provisioning problems, the BUP does not consist of 
individual user traffic flows. Rather, it is an aggregate loading profile that the network is designed to, based 
on the expected usage of the nodes and considering the experiences of the designers in past deployments. For 
this reason the bandwidth flows are allowed to be split over multiple network paths. This permits the required 
energy usage to be shared over multiple nodes if required. 
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• 	 The objective is to assign P(i) and Bmax(i) so that the total solar panel and bat­
tery resource provisioning cost is minimized when Equation 3.1 is applied such that 
B(i, k) > Boutage(i) fork EK and i EN. 

In order to generate practical resource provisionings, the sample function values must be 
provided to the system in a causal fashion so that future values are not known to the system 
as Equation 3.1 is evaluated. 

Network deployments may be either permanent or temporary. In the permanent case, 
the deployment period may include all contiguous £(i, k) sample functions available for 
that geographic location. In the temporary deployment case, the network may only be 
required to operate over a specified time period, such as during specific months of the year. 
In this case, yearly solar cyclostationarity is assumed, and node provisioning is done using 
multiple £ ( i, k) sample functions covering the desired Tc period in all previous years for 
which these records are available (Sayegh, 2008).3 

Once the nodes are provisioned, the network can be deployed. A provisioning that 
satisfies the above problem does not guarantee that the network will be outage-free in the 
future, since the past data are only random sample functions of the BUP and the solar 
insolation processes. For this reason the derived provisionings are usually either increased 
by some safety factor (i.e., the open loop case), or, the nodes use some form of closed­
loop outage control as discussed in (Farbod and Todd, 2006). Alternately, the safety factor 
margin can be incorporated into the BUP. 

The resource provisioning problem is applicable to any geographic region. In some 
cases however, the practical motivation for an optimum battery and panel configuration is 
low. Results given in (Sayegh, 2008) show for example, that in the region around Phoenix, 
Arizona, daily solar insolation is so constant and plentiful that very small solar panel sizes 
and battery capacities will support typical mesh node configurations. The same study also 
shows that in more temperate regions, the cost of the panel and battery can be a significant 
fraction of the total node cost. In this case reductions in their size can have major business 
and deployment advantages. Rather than mixing results for different regions, in this chapter 
solar insolation traces from Toronto, Canada, are used which is typical of data for temperate 
continental regions (Sayegh, 2008). 

In order to investigate the quality of various resource provisioning mechanisms, in the 
next section a lower bound on the minimum cost node configurations is derived. This 
bound is first compared with the SPRP Algorithm introduced in Section 3.4, and then it is 
used to motivate a more sophisticated energy-aware provisioning procedure, presented in 
Section 3 .5. 

3In many geographic locations, the provisioning for the permanent deployment case can be found by 
determining an appropriate temporary deployment provisioning (Sayegh et al., 2008). In a temperate climate 
for example, a small period during winter months may dictate the provisioning needed for permanent outage­
free operation. 
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3.3.2 Energy Resource Provisioning Bound 

Given historical solar insolation data and a bandwidth profile as discussed in Section 3.3.1, 
a linear programming optimization is formulated to compute lower bounds on the battery 
capacity for each node, given that the solar panel size is pre-determined. The relation 
between the battery capacity and its cost is linear so by minimizing the required battery 
capacity the provisioning cost is minimized. The result comes from assuming a-priori 
knowledge of both solar and BUP input traces, and therefore the optimization gives a lower 
bound on the provisioning for any causal algorithm that operates using the same inputs. 
Our objective is to find the minimum battery capacities subject to satisfying the routing 
and battery constraints, i.e., an edge (i, j) can only be assigned to a bandwidth flow when 
the energy levels at Nodes i and j are above Boutage(i). The bound applies to hybrid 
networks which contain a mixture of nodes operating from continuous power sources and 
those using solar power. The set of node indices for solar powered nodes is defined as N 8 , 

and those with continuous (i.e., infinite energy) power supply connections as N 00 , where 
N = Ns +N00 • The optimization can be written as follows, and a discussion of the various 
terms is given afterwards. 

minimize L Bmax(i) + >11 L L fij(k) (3.2) 
iENs (i,j)EE kEK 

subject to the following constraints. 

0 ~ fiJ(k) ~ fmax(i,j) (3.3) 

for all (i,j) E E,k E .K:,and, 

for all i E Ns. 

0 ~ Bmax(i), (3.4) 

L fil(k) + 
(i,l)EE 

L mid(k) 
dEN 

= L fhi(k) 
(h,i)EE 

+ L msi(k) 
sEN 

(3.5) 

for all i E N and k E .K:. 

oo, 
B(i, k) = 

{ min{max[B(i, k - 1) + P(i) £(i, k) - L(i, k), Boutage(i)], Bmax(i)} i EN8 

(3.6) 
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for all k E JC. 

L(i, k) = ( L Rfu(k) + L Tafu(k) + L Tfhi(k) 
(i,l)EE (i,l)EE (h,i)EE 

+ L Rafhi(k) + L S(l - fit(k) - afu(k)) 
(h,i)EE (i,l)EE 

+ 	L S(l - fhi(k) - afhi(k)))b., Vi E N 8 , k EK. (3.7) 
(h,i)EE 

In constraint 3.3, fij(k) represents the total bandwidth load on the edge between Node i 
and Node j at time k i.e., if fij(k) ;::: 0 then edge (i,j) is on the available paths at time 
instance k, otherwise fij(k) = 0. Constraint 3.3 is the normalized link (edge) capacity con­
straint which ensures that assigned bandwidth flows do not exceed the link capacity. In this 
constraint, fmax(i,j) represents the maximum utilization capacity allowed on edge (i,j). 
Channel allocation is assumed to be done before the resource provisioning so fmax(i,j) is 
calculated according to interference constraints. Constraint 3.4 sets a lower bound for the 
battery capacity and Constraint 3.5 ensures flow continuity across the nodes by ensuring 
that the input flow for each node is equal to its output flow. Equation 3.6 is the battery en­
ergy flow recursion taken from Equation 3.1 except that it assigns an infinite energy level 
to continuously powered nodes, i.e., i E N00 • Constraint 3.7 computes the total energy 
for each node over the current b. interval. It is assumed that a power saving media ac­
cess control protocol is used such as that described in reference (Farbod and Todd, 2006). 
Accordingly, the power consumption while transmitting a packet is denoted by T, while 
receiving a packet is denoted by R, and while in a power saving sleep mode is S. The sec­
ond term in Line 1 of Equation 3.7 and the first term in Line 2 are the energies associated 
with ACKs and other associated reverse-link flows where a is a fraction that represents the 
reverse traffic, while the second term in Line 2 and Line 3 computes the energy consumed 
in power save mode. The first term in the objective function (i.e., Equation 3.2) minimizes 
the network cost by minimizing the required battery capacity. The second term is included 
in the objective function to find the minimum battery capacity solution that also minimizes 
the aggregate load on each node. This term is used to ensure that the optimizer solution will 
result in loop-free flow routing assignments. If this term is not included, the optimization 
may route bandwidth through loops if the nodes on the loop have extra energy. This will 
not affect the minimum battery capacity assignment, but the optimizer will return invalid 
flow routings. 

The objective function and all the constraints are linear except for Constraint 3.6. The 
above optimization problem is simplified to an LP problem by introducing a new variable, 
s(i, k ), which serves a dual purpose. It is used to represent the surplus energy received by 
the system that cannot be stored by the battery and it can take a negative value when the 
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battery charge is found to be negative. Therefore, the following equations can be used 

Boutage(i) ~ B(i, k) ~ Bmax(i), (3.8) 

and 
B(i, k) + s(i, k) = B(i, k - 1) + P(i) £(i, k) - L(i, k). (3.9) 

for all i E Ns, k E IC. Defining B'(i, k) = B(i, k - 1) + P(i) £(i, k) - L(i, k), i.e., the 
right hand side of Equation 3.9, s( i, k) is given by 

B'(i, k) - Boutage(i) if B'(i, k) < Boutage(i) 
s(i, k) = ~'(i, k) - Bmax(i) if B'(i, k) > Bmax(i). (3.10)

{ otherwise 

Constraint 3.8 will replace the min max in equation 3.6 by setting the lower and upper 
bounds for the energy levels in the batteries. The second branch in Equation 3.6 will be 
replaced by Equation 3.9 which represents the solar node battery constraints and captures 
the energy replenishment. The absolute value of s should be minimized for all cases ex­
cept when the non-linear constraint is active. Therefore, the objective function can be 
re-formulated as follows, 

minimize L Bmax(i) + A1 L L fij(k) + A2 LL Js(i, k)I, (3 .11) 
iENs (i,j)EE kEK kEK iENs 

where ,\1 and ,\2 are control factors that are set so as to not interfere with the operation of 
the original objective. These control factors are chosen by trial and error. 

The above development finds a bound on the total allocated battery capacity and will in 
general assign different battery capacities to each node. In some cases it may be desirable 
to assign the same battery capacity to all nodes. A solution for this case can be obtained 
by setting all Bmax (i) = Bmax in the above optimization. It also generates routing that 
assumes a perfect knowledge of future bandwidth flows and future solar insolation. This 
provides a lower bound for any methodology that uses realizable algorithms. In the remain­
der of the paper this bound is used for comparisons with the practical resource assignment 
algorithms defined in Sections 3.4 and 3.5. 

3.4 Shortest Path Resource Provisioning (SPRP) 

In this section a resource provisioning mechanism (SPRP), based on using conventional 
flow routing for assigning the bandwidth usage flows is presented. The methodology is mo­
tivated by that used in conventional single-node resource provisioning (Farbod and Todd, 
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Algorithm 1 SPRP 

for all kmin :::: k :::: kmax do 
Given the bandwidth usage matrix, M, use Dijkstra's Algorithm to assign bandwidth 
flows at time kb. using a hop-count link metric and subject to Equations 3.12 and 3.13. 

end for 
for all i E Ns do 

Provision each Node i using the resulting £(i, k) for all k E K from above, the solar 
insolation trace £ ( i, k) for all k E K, and the search procedure discussed in Sayegh 
(2008). 

end for 

2006). In the single-node case where the solar insolation and bandwidth load sample func­
tions are given, then the procedures discussed in (Sayegh, 2008) can be used to obtain the 
optimum resource configuration. The minimum cost resource configuration can be found 
using a I-dimensional gradient search which simulates the system using Equation 3.1. The 
search iterates on the assigned resources until the optimal value is obtained. 

The SPRP Algorithm is shown in Algorithm 1. At each time epoch, shortest-path rout­
ing is assumed for the bandwidth flows using Dijkstra's Algorithm, and the link flows are 
computed such that 

0 :S: Jij ( k) :S: Jmax (i, j) (3.12) 

for all ( i, j) E E, k E K, and, 

L 
(i,!)EE 

fit(k) + L mid(k) 
dEN 

= L 
(h,i)EE 

fhi(k) + L msi(k), 
sEN 

(3.13) 

where fiJ(k) represents the sum of all flows routed through Edge (i,j) at time k. Equa­
tion 3.12 requires that the flows do not exceed some reasonable fraction, fmax(i,j), of 
the normalized link capacity. As stated before the value of fmax(i,j) is set according to 
the channel allocation that is done before the resource provisioning. Equation 3.13 en­
sures flow continuity for each node. In practice a link may not be utilized to its maximum 
capacity due to interference constraints or other reasons. fmax is added to capture these 
constraints on utilizing link capacities. When applying Dijkstra's Algorithm, if a given 
bandwidth flow cannot be routed without satisfying Equation 3 .12, then the flow is split 
into two separate flows which are each then routed separately. Note that the flow routing is 
updated during each new b. time epoch and the flow splitting is as discussed above and is 
often assumed (Huang and Peng, 2008). 

As shown in Algorithm 1, once the set of fiJ(k)'s are obtained, the timeline of each 
node is then independently simulated using the energy flow balance from Equation 3.1 
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and the solar insolation input traces for the deployment location. Each node has an initial 
battery energy, B(i, kmin). where i EN. During this procedure the battery energy at each 
node is updated using Equation 3.1 and 

L(i, k) = ( L Rfil(k) + L Tafi1(k) + L Tfhi(k) 
(i,l)EE (i,l)EE (h,i)EE 

+ L Rafhi(k) + L S(l - fu(k) - afil(k)) 
(h,i)EE (i,l)EE 

+ L S(l - fhi(k) - afhi(k)))!:::. Vi EN, k E JC. (3.14) 
(h,i)EE 

Equation 3.14 computes the total energy for each node over the current !:::. interval as in 
Equation 3.7. Given the bandwidth profile, network lifetime T.c,, and the solar insolation 
data traces, shortest path (minimum hop count) routing is computed at each !:::.k time in­
crement using Dijkstra's Algorithm with hop-count as the edge cost. After calculating the 
path the load on every node is updated according to the bandwidth flows as indicated in 
Equation 3.14. Once the temporal loading profiles have been determined, then each node 
is provisioned using the single-node procedures discussed above and in (Sayegh, 2008). In 
a practical system the battery capacities and panel sizes obtained may be rounded up to the 
nearest commercially available size. 

The hybrid network case is also considered, where there is a mixture of solar powered 
nodes and those with continuous power connections. To assign battery capacities, shortest 
path routing using Dijkstra's Algorithm, is computed at each time increment. A value of d8 

is chosen as the node cost for each solar powered node. Another value de is chosen as the 
node cost for each a continuous power nodes, and de < d8 • The edge costs are calculated 
by summing the node cost at each end of the edge. So links connecting two solar powered 
nodes have an edge cost equal to 2d8 , while links connecting two continuously powered 
nodes have an edge cost equal to 2de. Links connecting one node solar powered and one 
node continuously powered has an edge cost equal to de + d8 • This causes the routing 
algorithm to strongly favor continuously powered nodes. After computing the flows, the 
load on each node is updated as in Equation 3.14. Then the battery charge for solar powered 
nodes is updated according to Equation 3.1. Taking the load on each node individually, the 
same resource provisioning procedure as discussed in the all-solar case is followed. 

It can be seen that SPRP inherits certain resource provisioning optimality from the 
single node case. Provided that the algorithm that routes the bandwidth flows is based solely 
on the usage matrix flow inputs given by M, and is completed before the provisioning step 
occurs (as in Algorithm 1 ), then the total network cost will be minimum for that set of flow 
assignments. 
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I Average Load (W) I SPRP (CAD) I Lower Bound (CAD) I Savings (%) I 
56219 971 
51375 1862 

674 453734 
981 573 426 

Table 3.1: Resource Assignment Cost vs. Average Load 

3.4.1 SPRP Results Example 

In this section some example results are presented which are representative of the perfor­
mance of the SPRP resource assignment algorithm. A square 9-node mesh is considered 
and physical parameters based on IEEE 802.11 radio interfaces (Sayegh et al., 2008) are 
used. First the case when all nodes are solar powered is considered and then results for 
the hybrid case are presented. All node batteries are fully charged prior to the deployment 
and bandwidth matrices are chosen randomly. In these particular results the bandwidth 
flows are assumed to be temporally variable with durations chosen uniformly and with the 
number of new bandwidth flows at each hour randomly chosen from a Poisson distribu­
tion. Bandwidth flow rates were taken to be normal and the sources and destinations were 
chosen uniformly. These parameters are varied to obtain different network energy loading 
values. 

In Table 3.1 an example for a temporary deployment of 1 month (i.e., the entire month of 
February) is presented using solar insolation data for Toronto, Canada. The results consist 
of values for the total energy provisioning cost, for several different values of average 
normalized flow rate, which are expressed in average power consumption. Results for the 
SPRP Algorithm are compared to the cost bound derived in Section 3.3.2. As seen in 
Table 3.1 the bound is about 56% lower than the cost obtained by the SPRP Algorithm 
when the power load is 1 W on average. In addition it can be seen that as the average 
loading increases, the difference between the bound and SPRP decreases slightly until it 
reaches about 42% at an average load of 6 W. When the average loading is lower, the bound 
takes the energy state of the nodes into account and can re-route flows through longer routes 
that have more available energy (either a higher energy replenishment rate or more battery 
energy), but when the network becomes overloaded, this extra energy will not be sufficient. 
In this case re-routing bandwidth will not be helpful since all routes may be heavily energy 
constrained. These results are for a network where there are multiple shortest path routes, 
and SPRP is expected to have good performance. 

Results for the hybrid network case are now shown in Table 3.2. In these results, the 
same system assumptions are made as in the all-solar case discussed previously except 
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I Average Load (W) I SPRP (CAD) I Lower Bound (CAD) l Savings (%) j 

1 132 90 32 
2 80 24 70 
4 156 131 16 
6 174 121 31 

Table 3.2: Hybrid Network Resource Assignment Cost vs. Average Load 

that half of the nodes are randomly chosen to be continuously powered. The node costs 
for Dijkstra's algorithm were set to ds = 1 and de = 0. As seen in Table 3.2 the lower 
bound results in savings when compared to SPRP as high as 70% when the average load 
is 2 W. However, since various parameters are randomly chosen, the SPRP results vary 
considerably compared with the bound. More results will be introduced later in the chapter 
that will better explain the savings trend as the load increases. Again, it can be noted that 
these savings are for a mesh where there are a large number of shortest path routes, so SPRP 
is expected to perform well. It would be expected to have a larger difference between SPRP 
and the bound in random networks for these reasons. 

Although the tightness of the bound is not known, the large differences that are found 
between it and the SPRP results suggests that there may be better practical resource allo­
cation mechanisms. In the next section it will be shown that this is indeed the case, but in 
order to obtain this improvement, the provisioning mechanism must take into account the 
use of energy aware routing. 

3.5 Energy Aware Resource Provisioning (EARP) 

The SPRP Algorithm introduced in Section 3.4 is a relatively straightforward procedure. 
Unfortunately, this approach, which is motivated by conventional PV provisioning, cannot 
generate resource assignments that include the use of energy aware routing. Whenever 
the resource assignment changes, the resulting change in the energy states of the nodes 
may alter the route selection, which may then lead to a different resource assignment. To 
obtain a true optimum resource configuration in this case is exceedingly difficult. Unlike 
the bound derived in Equations 3.2 to 3.11, the routing must account for the energy states 
of the nodes in a causal fashion with respect to both future changes in the bandwidth load 
and solar insolation inputs. This is a difficult non-linear optimal control problem. 

To address this problem a genetic algorithm approach is proposed to obtain resource 
assignments using causal energy aware routing. Genetic algorithms are well-suited for 
this type of multi-constraint problem especially since it includes a large non-convex search 
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space (Wong et al., 1996). Genetic algorithms have been used in the past to size PV power 
systems (Xu et al., 2005)(Shahirinia et al., 2005) and have also been applied to certain 
energy aware routing problems (Sirikonda, 2007)(Ahn and Ramakrishna, 2002). In our 
case the genetic algorithm is used to choose a combination of battery capacities when the 
system is operated using a causal energy aware routing algorithm. If the network lives for 
the required design lifetime, then this solution is feasible, and the GA proceeds to consider 
other combinations. 

3.5.1 Genetic Representation 

A genetic algorithm (GA) is a search technique used to find exact or approximate solutions 
to optimization and search problems. This approach is a good choice for our problem 
since they can handle multi-objective functions and multi-constraint problems (Ko et al., 
1997). A GA can be briefly described as follows (Ko et al., 1997). Each possible solution 
(chromosome) can be considered an individual. This individual is made up of a number of 
genes which are each represented using a string of integers, which in our case represent the 
maximum battery capacity for each node. Genes can change order from one generation to 
the next. Standard genetic algorithm manipulations, such as crossover and mutation, mix 
and recombine the genes of a parent population (mating pool) to form offspring for the next 
generation. Which offspring survive to the next generation is specified by a fitness function, 
Y. The fitness function in our case will be the total cost of the network for a given set of 
Bmax(i). In this process of evolution (manipulation of genes), the fitter chromosomes will 
create a larger number of off spring, and thus have a higher chance of survival to subsequent 
generations. GAs repeat this cycle until they reach a desired termination criterion such as 
a given number of iterations or the variation of individuals between different generations, 
or a predefined fitness value. 

A chromosome of the proposed GA consists of sequences of positive integers repre­
senting the battery capacity of each node. The length of the chromosome is the number of 
nodes in the network. The choice of the population size is a very important factor in the 
GA. Small populations execute quickly but they may not explore the entire search space. 
By experimenting, it was found that a population size that is equal to twice the size of the 
network (number of nodes) performs well for our problem. 

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to 
produce a new chromosome (offspring). The idea behind crossover is that the new chro­
mosome may be better than both of the parents if it takes the best characteristics from 
each of the parents. Uniform crossover is chosen where the operator decides (with some 
probability) which parent will contribute each of the gene values in the offspring chro­
mosomes (Marczyk, 2004). As mentioned above our chromosome represents the battery 
capacity of each node, so using single point crossover will take one half of the new chro­
mosome from a parent and the other half from the other parent which will not work well in 
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our case. This is because the resource assignment is dependent on the location of the node 
in the network so if the routing is loading a part of the network more than another part, the 
single point operator may create an offspring that is infeasible. On the other hand, uniform 
crossover does the mating on the gene level so this will allow for more diversity and better 
exploration of the search space. 

Selection is a genetic operator that chooses a chromosome from the current generation's 
population for inclusion in the next generation's population. Before making it into the next 
generation's population, selected chromosomes may undergo crossover and/or mutation 
(depending upon the probability of crossover and mutation) in which case the offspring 
chromosome(s) are actually the ones that make it into the next generation's population. 
Tournament selection is used because it tends to maintain diversity of the population (Mar­
czyk, 2004). 

Another parameter for the GA is the fitness function, Y. Our fitness function will accept 
the chosen set of Bmax (i) as an input and report the cost of the network which is taken to 
be the summation of the battery capacities, i.e., the fitness function is given by 

Y = L Brnax(i), (3.15) 
iENs 

which is identical to the first term of the objective function defined in Equation 3.2. The 
GA search space will be restricted as a constraint based on the lifetime of the network while 
using energy aware routing. In this formulation, an energy-aware routing algorithm is used 
based on the use of Dijkstra's Algorithm with a node cost function given by 

0, 


C(i, k) = (3.16)
{ 

(B(i,k)/ BmaJi) P(i) t:(i,k)' 

where ( is a large constant. Although any causal energy aware routing can be used in this 
procedure, Equation 3 .16 was chosen because it incorporates both the node energy state 
and the solar insolation renewal rate. In (Zeng et al., 2009) this link cost metric was found 
to produce good results for networks operating with renewable energy sources. Setting 
C(i, k) to zero for continuously powered mesh nodes makes the routing algorithm strongly 
prefer these nodes during route selection. This will tend to off-load the solar powered 
nodes, resulting in cost improvements since the cost of continuously powered nodes is 
independent of bandwidth loading. 

Each iteration of the EARP algorithm includes a recursive computation of the network 
energy flow over the input sample functions, which is summarized in Algorithm 2. At every 
~ increment k, for each Node i, the cost applied to links associated with that node using 
Equation 3.16 is computed. Dijkstra's Algorithm is then used to assign all of the input 
bandwidth flows. Following this, the energy loading is calculated for each node using 
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Algorithm 2 EARP GA Flow Procedure 

for all kmin ::; k ::; kmax do 
for all 1 ::; i ::; N do 

Compute C(i, k) from Equation 3.16. 
end for 
Use Dijkstra's Algorithm to assign bandwidth flows at time k!:l. 
for all 1 ::; i ::; N do 

Calculate the Node i energy load using Equation 3.14. 
Update B(i, k) using Equation 3.1. 

end for 
end for 

Equation 3.14, and the battery states are updated using Equation 3.1. 

3.6 Simulation Model and Results 

The performance of the proposed resource assignment algorithms has been extensively 
characterized using both fixed and variable bandwidth usage profiles in various geographic 
locations. Since both result in similar conclusions, in this section results that are typical of 
the variable BUP case are presented. Random uniform network topologies are considered 
in simulations where the nodes are distributed uniformly at random in a square area and 
as before radio power consumption parameters which are consistent with typical IEEE 
802.11 values (Farbod and Todd, 2006) are assumed. In the following the results for 2 
different scenarios are presented, i.e., the all-solar and hybrid network cases. In both of 
these scenarios 3 different sets of simulations are examined, focusing on the effect of the 
network topology, weather conditions (winter versus summer) and average network load. 
All of the results presented are averaged over 50 runs. All solar powered nodes have a 
full initial battery state prior to the deployment. The number of bandwidth flows available 
at each hour and the bandwidth flow rates were chosen randomly as in Section 3.4.1. In 
all of our experiments the bandwidth flows are assumed to be temporally variable and the 
duration of each bandwidth flow are chosen randomly as before. Also, as in Section 3.4.1 
the sources and destinations are chosen randomly. The genetic algorithm toolbox in Matlab 
is used, and Table 3.3 gives the default parameters that are used. 
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Parameter Value 

p: Population size 20 
Tl: crossover rate 0.75 
"(: mutation rate 0.12 
max iterations 10 

variation stop iterations 4 
E stopping threshold 1 x 10-4 

Table 3.3: GA Parameters 

3.6.1 Solar Powered Network Examples 

Using the proposed energy aware resource assignment methodology many experiments 
have been done which show the reductions in the costs of the assigned battery capacities 
that are possible. Table 3.4 finds the resource assignment for rectangular mesh networks 
with different sizes. The network lifetime is constant in most of the experiments and is 
assumed to be 1 month and Table 3.4 shows the results for 20 different networks. As shown 
in the table the EARP resource assignment gives a much lower cost than using SPRP. By 
comparing EARP and SPRP, it can be noted that for a 3 x 3 network, the EARP assignments 
save roughly 28% from the total cost of the network. Moreover, the savings for different 
rectangular networks are almost the same, i.e., it ranges from 15% to 31 %. However, if 
rectangular network results are compared with those of randomly generated networks the 
savings in random networks are much higher, e.g., 49% savings in the random network 
case and 31 % for rectangular mesh networks when there are 25 nodes. This is due to the 
fact that in random networks there are fewer shortest paths, which leads to larger EARP 
improvements. Note that in the results for the random networks case, the values plotted are 
averaged over all the generated networks, including those for the bound. It can be seen that 
the difference between the bound and SPRP is 93% for the 5 x 5 network and 140% for 
the 25 node random networks. This suggests that EARP has better relative performance in 
random networks than in rectangular grids. In addition to that in the 3 x 4 and 4 x 3 networks 
the difference between SPRP and EARP is the same. Furthermore, the difference between 
EARP and the bound ranges from 47% to 90% which is a large improvement compared to 
the difference between SPRP and the bound that ranges from 92% to 140%. As expected, 
the bound is not particularly tight since it uses future solar insolation and bandwidth inputs 
and is therefore not causal. However, it does provide a useful gauge for how the algorithms 
are performing. 

In the next set of figures, the battery costs of 15 node random networks are compared 
when using EARP and SPRP. The experiments are conducted for deployment windows 
which occur during the winter and summer, in Toronto, Canada using the same system 
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Network Size 

3x3 
4x4 
5 x 5 
4x3 
3x4 

25 node random 

Savings(%) 
SPRP EARP Lower Bound EARP/ Bound/ Bound/ 

SPRP EARP SPRP 

219 172 97 28 77 126 
513 448 264 15 70 94 
600 458 311 31 47 93 
326 284 170 15 67 92 
341 297 156 15 90 119 
510 352 213 49 65 140 

Table 3.4: Cost in CAD vs. Network Size for SPRP and EARP Resource Provisioning 

assumptions as before. 
Figure 3.2 shows the results for the deployment periods during the winter. The horizon­

tal axis spans a time which starts at the first of December and ends at the end of March. The 
experiments are run over 100 different random networks, and as can be seen in the figure, 
EARP has a significantly lower cost than SPRP. It can be noted that there is a savings of 
roughly 30% in the battery cost when the lifetime is almost 3 months. Moreover, the cost 
slope increase is larger at the left of the figure. This is because as the lifetime increases 
the network begins to enter the summer where the main cost of the networks is the cost 
of the solar panels and not the batteries. For this reason the battery cost remains fairly 
constant during the summer months. Moreover, the difference between EARP and SPRP 
increases as the lifetime increases. This is due to the fact that for longer lifetimes, EARP 
can save more by using longer routes that already have resources rather than by adding new 
resources for shorter routes as SPRP tends to do. 

Figure 3.3 shows similar results for summer time deployment periods. The horizontal 
axis spans a time which starts at the first of July and ends at the end of October. In this 
figure, the cost of the network increases for the first couple of months which accommodates 
the extra costs needed for longer lifetime, but then the cost becomes almost constant. This is 
because the network is using renewable energy and as it moves towards the winter, the costs 
of the networks begin to increase again. However, it can be seen that even in the summer, 
EARP provides significant savings when compared to SPRP, for example, EARP achieves 
savings of about 60% when the network lifetime is 3 months. In addition to this, for longer 
lifetimes, more savings from EARP are gained when compared to shorter lifetimes. 

In Figure 3.4 the effects of relative network cost for SPRP, EARP and the bound are 
examined as the average energy loading of the network is varied. Simulations are run on 20 
nodes random networks for 1 month. It can be noted that when the network is overloaded 
EARP provides more savings. This is due to the fact that EARP will reuse the nodes when 
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Figure 3.2: Battery cost vs. Lifetime for Different Resource Assignment Algorithms (Win­
ter Months) 

the network is overloading leading to more savings. This is different from the rectangular 
mesh results that had been discussed previously. In a rectangular mesh the savings tend to 
decrease as the load increases because all routes are shortest path routes. In this case the 
best way to save energy is to uniformly distribute the load on all nodes so when the load 
increases energy awareness doesn't have much room for improvement. On the other hand, 
in random networks not all routes are shortest path, so as the load increases shortest path 
routing will perform poorly by over provisioning nodes on the shortest path routes where 
energy aware routing may choose longer routes. This leads to the enhanced performance of 
energy aware routing in overloaded networks. It can be seen that when the average load is 
4 W EARP has 113% savings. Moreover, the increase in the network cost is almost linear 
with the load up to a certain point. In addition to that, EARP leads to a cost increase of 
around 25% when compared to the bound and this is because the bound assumes a perfect 
knowledge of bandwidth flows and solar insolation so it can save more energy using the 
optimum routes to route the flows. 

3.6.2 Hybrid Network Examples 

In this section the performance of the resource assignment schemes for hybrid networks is 
compared. The same simulation setup and parameters are used as in Section 3.6.1 except 
that in all of the examples half of the nodes are randomly assigned to be continuously 
powered. 

In the first set of results the resource assignment for rectangular mesh networks with 
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Figure 3.3: Battery cost vs. Lifetime for Different Resource Assignment Algorithms (Sum­
mer Months) 

different sizes is found. The network lifetime is the same for all the experiments and is 
assumed to be 1 month. These results are presented in Table 3.5 where it can be seen that 
the EARP resource assignment gives a much lower cost. In comparing the two algorithms, 
it can be noted that for a 4 x 3 network, the EARP assignments save roughly 53% from the 
total network cost. Moreover, the hybrid case has more savings than the all solar case (for 
a 4 x 3 network the solar case has 15% savings compared to 53% in the hybrid case). This 
is because EARP is better able to take advantage of the continuously powered nodes. For 
the all solar case that, random networks have more savings than rectangular mesh networks 
(i.e.,130% saving for the 5 x 5 grid compared to 234% forthe 25 node random networks). In 
grid networks there are many shortest paths so energy aware routing is less able to improve 
over SPRP in certain situations. Furthermore, the difference between SPRP and the bound 
is much more in the hybrid case when compared to the all solar case (200% for the 4 x 3 
network compared to 92% for the same network in the all solar case). The difference 
between SPRP and the bound is almost triple the difference between EARP and the bound 
which shows the large savings obtained from considering energy aware provisioning. 

The next set of figures compares the battery cost of 15 node random networks when 
using EARP and SPRP. As before, the experiments are conducted for deployment windows 
which occur during the winter and summer, in Toronto, Canada. Figure 3.5 shows the 
results for the deployment periods during the winter. The horizontal axis spans a time 
which starts at the first of December and ends at the end of March. The experiment is run 
over 100 different random networks. As can be seen in the figure, EARP has a significantly 
lower cost. It can be noted that there is a savings of 73% in the battery cost when the lifetime 
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Figure 3.4: Cost vs. load for Different Resource Assignment Algorithms (Winter Months) 

is almost 2 months. Moreover, the same behavior in the slope and the cost differences is 
seen as in the all solar case. 

Figure 3.6 shows the results for the deployment periods during the summer. The hori­
zontal axis spans a time which starts at the first of July and ends at the end of October. In 
this figure the same behavior as in the all solar case is seen. When the network lifetime 
is 3 months EARP saves 84% of the provisioning cost. In addition, it can be noted that 
again for longer lifetimes EARP has more savings compared to SPRP. The continuously 
powered nodes do not decrease the cost of the network during summer as is the case during 
the winter. This is again because the summer has high solar insulation so the recharge rate 
of most of the nodes is high, making them as good as continuously powered nodes. 

In Figure 3.7 the cost versus network loading is plotted for SPRP, EARP and the bound. 
The results are run on 25 node networks for 1 month. The difference in this case between 
SPRP and EARP is about 30% and between EARP and the bound is about 20%. 

3.7 Discussion 

3.7.1 Provisioning Resiliency 

The results presented in Sections 3.6. l and 3.6.2 clearly show the cost advantages that 
energy aware provisioning can provide. These reductions result from a decrease in total 
network energy resources compared with that obtained using the SPRP Algorithm. An 
issue which may arise is that compared to SPRP, in some cases the EARP-provisioned 
network may be less able to accommodate bandwidth flows which differ from that for 
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Network Size SPRP EARP Lower Bound 
Savings(%) 

EARP/ lBound/ lBound/ 
SPRP EARP SPRP 

3x3 118 83 44 42 89 168 
4x4 177 144 91 23 58 95 
5 x 5 216 94 39 130 141 454 
4x3 180 118 60 53 97 200 
3x4 192 128 87 50 47 121 

25 node random 204 61 23 234 165 787 

Table 3.5: Resource Assignment Cost vs. Network Size 

which the network was provisioned. In this section some results will be shown which 
illustrate that this can be the case. 

In the presented results 15-node random networks were used. After the initial resource 
assignment is done, the network is subject to an overload bandwidth flow matrix. Using 
this input and the resource assignments the network is run for the desired network lifetime. 
The network that was designed using SPRP is tested using shortest path routing while the 
network that was designed using EARP is tested using energy aware routing. It is expected 
that the networks will not operate outage-free for the full lifetime duration since the system 
is now under-provisioned. To characterize this the competitive ratio is calculated for each 
algorithm as its lifetime normalized to the design lifetime, i.e., 

. . R . (CR) Actual lifetime Compet1t1ve atio = Tc . (3.17) 

The actual lifetime is determined when a node outage prevents one or more flows from 
reaching their destination. 

In Figure 3.8 the competitive ratios of SPRP and EARP are plotted versus the average 
bandwidth overload. As seen in the figure, the competitive ratio of SPRP exceeds that of 
EARP because the SPRP network is over-provisioned and is better able to handle unfore­
seen loading. However, as the load increases, the performance of SPRP and EARP become 
very similar because the extra resources cannot support the additional bandwidth load and 
the network runs into outage. A similar result is shown in Figure 3.9 which makes the 
same comparisons for an all solar network example. In this case the differences are much 
more significant when the average overload is 1.5 to 3 times the design values. In (Badawy 
et al., 2008) this effect was also characterized using different shortest-path and energy­
aware provisioning and routing combinations. This thesis also found that the differences in 
competitive ratio are much smaller in rectangular mesh networks compared to the random 
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Figure 3.5: Battery cost vs. Lifetime for Different Resource Assignment Algorithms (Win­
ter Months) for Hybrid Mesh Networks 

network case. Similar results show that when bandwidth flows significantly de-correlate 
compared with the design profile, a more accurate algorithm such as EARP may be less 
able to accommodate unforeseen bandwidth conditions. 

These results confirm our intuition that in some cases a more precisely provisioned net­
work may be less able to adapt to unforeseen bandwidth scenarios. This should be taken 
into account when defining the bandwidth profile that is used in the design process. If 
network usage parameters can be predicted well in advance, then significant cost savings 
can be obtained by energy-aware provisioning combined with small bandwidth margins. 
If bandwidth differs significantly from that used in the provisioning, then in practical de­
ployments this may lead to higher bandwidth deficits when an outage control algorithm is 
used (Sayegh, 2008). This may be perfectly acceptable in many applications. 

3.7.2 Algorithm Complexity 

The SPRP Algorithm uses Dijkstra's Algorithm in order to determine network bandwidth 
flows and this is repeated for each Li deployment time interval. For this reason, the time 
complexity of finding the loading for each node can be shown to be polynomial. Following 
this, the node provisioning process occurs which consists of N independent I-dimensional 
minimizations through the convex battery capacity space. Each search step involves the 
evaluation of the energy flow equation for the deployment time period in the worst-case. 
Since this line search is convex, it can be done with an approximate linear convergence, 
which is very fast in practice. In our experience this entire process can be achieved very 
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Figure 3.6: Battery cost vs. Lifetime for Different Resource Assignment Algorithms (Sum­
mer Months) for Hybrid Mesh Networks 

quickly and there is no practical complexity issue. 
Genetic algorithm complexity is much more difficult to generalize because the time 

complexity is known to be related to the characteristics of the problem domain (Rawlins, 
1991). Unlike many problems, fortunately our fitness function is very simple and can be 
computed almost instantly. It has been found during this work that as the number of nodes 
or hours increase, the GA algorithm run-time may increase considerably. In the worst­
case for the results presented in this chapter, it took up to 5 days to provision a 15-node 
network using a 3000 hour time sample function. It has also been noticed that rectangular 
mesh networks take significantly longer to process than the random networks that were 
generated. This is due to their higher route diversity. Fortunately our problem is an off-line 
one where the provisioning is done long in advance of the actual network deployment, and 
thus this level of complexity is acceptable for this application. This is clearly the case for 
metro-area WLAN mesh network deployments since typically hop counts are limited to 
three or four, so that capacity latencies and link sharing are restricted. 

3.8 Conclusions 

In this chapter the problem of solar panel and battery resource assignment in solar powered 
WLAN mesh networks has been studied. The objective of this type of provisioning is to 
find an assignment which ensures outage-free operation based on historical solar insolation 
traces and an input bandwidth load profile for the network. This problem has been studied 
from a network viewpoint rather than from that of a single node as is often the case in the 
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literature. 
A flow-based provisioning procedure (SPRP) was first introduced which is motivated by 

conventional single system photo-voltaic provisioning approaches. This method is based 
on deriving temporal shortest path routes, and then simulating each node independently 
using its energy flow equation and a power dissipation model. A linear programming op­
timization was formulated which finds a lower bound on the resource assignment problem 
for a given set of inputs. The cost differences between the bound and SPRP motivated the 
development of a new methodology based on the use of a genetic algorithm using energy 
aware routing (EARP). The case has also been considered where some network nodes are 
designated as having continuous power connections. 

Extensive simulations have been done which evaluate the proposed methodologies us­
ing different network topologies and using different solar insolation inputs. Some represen­
tative examples of these results were presented. The results have shown that as the route 
diversity in the network decreases, more savings can be obtained from an energy aware 
resource provisioning. This was shown for example, when 25 node random networks were 
compared to 5 x 5 mesh networks and 45% savings were found for the random network 
compared to 30% savings for the mesh network. Moreover, it has been shown that for 
15 node random networks allow savings of 30% for winter time compared to 60% in the 
summer. This is because in summer there is much higher solar energy and energy aware 
routing more effectively uses routes that can harvest this energy. In addition, it has been 
shown that for networks that have a variety of different path lengths, benefits from energy 
aware routing increases as the average load on the network increases. A 113% reduction 
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Figure 3.8: Competitive Ratio vs. Load Factor for SPRP and EARP (Hybrid Networks) 

in the network cost is achieved when the average load is 6W compared to 103% when the 
average load is 4. For networks with a high number of shortest path routes this is not the 
case. On the contrary, the savings decrease as the average load increases. When the net­
work is loaded, energy aware routing is not able to use alternative routes to save energy 
since all routes tend to be used and there is less free energy. From a network resiliency 
viewpoint, it can be seen that the competitive ratio of EARP is lower than that of SPRP. 
This trend decreases when the network becomes heavily overloaded in the cases that were 
considered. In conclusion, significant cost savings can be achieved by using energy aware 
routing when provisioning the network when compared to using SPRP. All these savings 
are increased substantially when hybrid networks with a mixture of solar and continuously 
powered nodes are considered. 

In the next chapter the problem of fair bandwidth control in solar powered wireless 
mesh networks is addressed. A mathematical formulation for this fair bandwidth control 
is given which is used to obtain an upper bound on the admitted flows. The problem is 
formulated using a utility fairness function and max/min fairness is chosen for the repre­
sented results. A causal bandwidth control algorithm that is motivated by the optimization 
framework is presented. The algorithm uses solar insolation prediction based on access to 
on-line historical weather data. Results show that the proposed algorithm eliminates node 
outage and performs very well compared to the optimum bandwidth control bound. 
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Chapter 4 

Fair Bandwidth Control in Solar 
Powered Wireless Mesh Networks 

4.1 Introduction 

As shown in the previous chapter, the resource allocation process for solar powered wire­
less mesh networks involves assigning a solar panel and battery capacity to each mesh node. 
Once the network is deployed however, its performance may become unreliable in cases 
when the actual bandwidth usage profile deviates significantly from the design phase work­
load. If no bandwidth flow control is in place, the nodes may experience outage, resulting 
in an in-operable network. To prevent this from happening, the nodes must flow control 
input traffic in such a way that outage is prevented and yet the best possible performance is 
obtained. This control action will result in a bandwidth deficit and should be applied in a 
manner that is temporally fair. 

In this chapter a mechanism for controlling the bandwidth flows in these types of net­
works is proposed. The problem is first formulated as an optimization using a convex 
utility fairness objective function. Using this optimization, a non-causal max/min fairness 
bound is generated based on the knowledge of future solar insolation data and a bandwidth 
usage profile. A flow control algorithm is then presented that is motivated by the optimiza­
tion framework which uses solar insolation prediction based on access to on-line historical 
weather data. The results show that the proposed algorithm eliminates node outage and 
performs very well compared to the optimum flow control bound for a variety of network 
scenarios. 
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4.2 Background 

Previous work on flow fairness has considered it at different protocol layers. Fairness at the 
MAC layer deals with per node fairness, but does not ensure network layer fairness as dis­
cussed in (Hsieh and Sivakumar, 2001). Network layer fairness is concerned with per flow 
fairness, so that nodes having higher numbers of flows can be given more packet forward­
ing bandwidth. In (Shagdar and Zhang, 2005) a scheme was proposed that improves the 
per flow MAC and link layer flow fairness. The link layer fairness is achieved by allowing 
the link layer to send packets to the MAC layer using an RR (Round Robin) scheduler. The 
MAC layer fairness is achieved by allowing nodes to send multiple packets from different 
flows when they acquire channel access. The proposed scheme requires minor modifica­
tions to the original IEEE 802.11 media access control protocol, and the authors show that 
it improves the flow fairness and overall performance of the network. However, this work 
does not take end-to-end flows into consideration. 

The work in (Retvari et al., 2007) formulates an optimization problem to solve the 
per flow fairness problem independently of the routing algorithm. Using a polyhedral de­
scription, it was shown that there always exists a unique routing-independent max/min fair 
throughput allocation in a regular network, which can be obtained by an extension to the 
water-filling algorithm. An issue with this approach is that it requires that the throughput 
polytope be available in advance, which requires a substantial computational effort, and 
may be intractable for large networks. Neely et al. considered an optimal control for gen­
eral networks with both wireless and wireline components and with time varying channels 
(Neely et al., 2008). The problem was decoupled into separate algorithms for flow control, 
routing, and resource allocation. The combined strategy was shown to yield data rates that 
are arbitrarily close to the optimal operating point achieved when all network controllers 
are coordinated and have perfect knowledge of future events. In this work the networks do 
not operate under energy constraints. 

Reference (Johansson and Xiao, 2004) considers the problem of finding the jointly opti­
mal end-to-end communication rates, routing, power allocation and transmission schedul­
ing for wireless ad-hoc networks with the objective of maximizing the throughput while 
considering end to end rate fairness. The authors formulate their cross-layer design prob­
lem as a nonlinear optimization problem. Moreover, they develop a specialized solution 
method based on Lagrange duality and column generation and demonstrated the approach 
on several examples. Chen et al. (Chen and Zhang, 2006) propose an end to end aggregate 
fairness model, for wireless sensor networks. They then propose a distributed aggregate 
fairness algorithm (AFA) that implements the model. AFA is a localized algorithm that 
doesn't maintain any per-flow information or global state. Each sensor performs localized 
operations, yet the collective outcome ensures a fair access to the network bandwidth. In 
addition, AFA automatically adjusts each sensor forwarding rate to avoid packet drops due 
to congestion. The simulation results demonstrate that the proposed algorithm effectively 
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improves end-to-end fairness. 
In (Zhu et al., 2006) the tradeoff between network lifetime maximization and fair rate 

allocation is studied in sensor networks with multi-path routing. The problem is formulated 
as a constrained maximization with a single weighted objective that is the summation of 
both objectives. An iterative partially distributed algorithm is presented. The presented 
algorithm works well for small problems but it is not efficient for large scale networks. 

This chapter considers bandwidth control for renewable energy wireless mesh net­
works, which to our knowledge has not been previously considered in the literature. 

4.3 Fair Bandwidth Control Problem Statement 

Fair bandwidth control involves the admission of a portion of the requested bandwidth 
A(b, k) for each bandwidth flow b at each time instance k, so that network outage is pre­
vented. This is done using estimated future solar insolation traces for the desired geo­
graphic deployment location, i.e., using an estimation of t: (i, k) derived from recorded 
historical data. 1 The problem is as follows. 

• 	 As in Section 3.3.1, the mesh network consists of N nodes modeled as a directed 
graph where each mesh node represents a vertex and two nodes can have an edge (i.e., 
a link) between them if they are within communication range. Each node is identified 
by an index in the set N = (1, 2, ... , N) and each edge is defined by an ordered pair 
( i, j) where i, j E N are the transmitting and receiving nodes, respectively. The set 
of all edges is denoted by E. Each node has an assigned solar panel size P(i) and 
battery capacity Bmax(i) where i EN. Traffic is relayed in a multi-hop fashion and 
a path from source to destination consists of one or more adjacent edges. 

• 	 Sample functions consisting of a bandwidth usage profile (BUP) and estimated solar 
insolation input trace are given for a contiguous deployment time period, Tc. The 
usage profile consists of a multi-commodity bandwidth usage matrix M = [msd(k)], 
where msd(k) 2: 0 indicates the aggregate bandwidth requirement from Node s to 
Node d during time period ((k - 1)~. k~). The estimated solar insolation sample 
function consists of an input trace over the same time period whose values at Node i 
are given by t:s1M(i, k). 

The deployment time period is given by Tc= (kmin~, kmax~) where k runs over the 
set K = (kmin, kmin + 1, ... , kmax)· 

1For the USA, this type of data is available from the National Renewable Energy Laboratory (NREL), 
U.S. Department of Energy, and for Canada it can be obtained from The Meteorological Service of Canada. 
These databases include solar insolation samples that span several decades of continuously collected mea­
surements for hundreds of different geographic locations. Temperature samples are also included with the 
solar insolation traces. 

49 




P.h.D. Thesis - Ghada Badawy McMaster - Electrical & Computer Engineering 

• 	 The objective is to admit a portion A(b, k) for each bandwidth flow b at each time 
instance k in a spatially and temporally fair manner when Equation 3.1 is applied 
such that B(i, k) > Boutage(i) fork EK and i EN. 

In order to generate practical bandwidth control algorithms, the sample function values 
must be provided to the system in a causal fashion so that future values are not known to 
the system as Equation 3 .1 is evaluated. 

In order to investigate the quality of various bandwidth control mechanisms, in the next 
section an upper bound is derived on the maximum admitted usage profile. This bound is 
compared with the FFRBC Algorithm introduced in Section 4.5.1 and FVRBC Algorithm 
introduced in Section 4.5.2. 

4.4 Fair Bandwidth Control Bounds 

Given solar insolation data and a bandwidth usage profile, upper bounds are computed on 
the optimum admitted input flows, given that the solar panel sizes and battery capacities 
are pre-determined. The bound is obtained by formulating the problem as a constrained 
optimization, and by incorporating all future solar insolation inputs. This result gives a 
non-causal bound on the bandwidth control performance of the network for any realizable 
(causal) algorithm that operates using the same inputs. This bound is compared with causal 
fairness algorithms that are considered later in the chapter. 

The objective is a fair admission of bandwidth flows subject to satisfying the routing 
and battery constraints, i.e., an Edge ( i, j) can only be assigned to a bandwidth flow when 
the energy levels at Nodes i and j are above Boutage(i). The bound applies to bandwidth 
usage profiles which contain a mixture of high priority and low priority bandwidth requests. 
The set of high priority bandwidth flows is defined as Mh, and those with low priority as 
Mi. where M = Mh + M 1• High priority bandwidth flows have to be fully admitted 
(i.e., A(b, k) = 1 Vb E Mh). To achieve the objective, a utility fairness function is used, 
U (b, k), as discussed in (Boudec, 2008) and defined below. The optimization problem can 
then be written as follows. A discussion of the various terms is given afterwards. 

maximize 	L LU(b,k) - ,\1 LLL(i,k) 
bEM kEK iEN kEK 

subject to the following constraints. 

(4.1) 
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for all (i, j) EE, k EK, and, 

1, 
A(b, k) = (4.2)

{ ::::; 1, otherwise. 

A(b, k) ;:: O (4.3) 

for all b E M, k E K and, 

2=- fu(k) +LL A(b, k)mid(k) = L fhi(k) +LL A(b, k)msi(k) (4.4) 
(i,l)E'E bEM dEN 	 (h,i)EE bEM sEN 

for all i E N and k E K. 

B(i, k) = min{max[B(i, k - 1) + P(i) E(i, k) - L(i, k), Boutage(i)], Bmax(i)} (4.5) 

for all i E N, k E K. 

L(i, k) = ( L Rfu(k) + L Tafu(k) + L Tfhi(k) 
(i,!)EE (i,l)EE (h,i)EE 

+ L Rafhi(k) + L S(l - fu(k) - afu(k)) 
(h,i)EE (i,!)EE 

+ 	 L S(l - fhi(k) - afhi(k)))b. 'iii EN, k EK. (4.6) 
(h,i)EE 

fi1(k) in Equation (4.1) is the decision variable, and A(b, k) is the portion of flow bad­
mitted to the network at time k. If f;1(k) ::'.'.: 0 then link ( i, j) is on the available path at 
time instance k, otherwise fi1(k) = 0. Constraint (4.1) is the link capacity constraint and 
Constraints (4.2) and (4.3) are the upper and lower bounds for A(b, k) . Constraint (4.4) 
ensures flow continuity and Equation ( 4.5) is the battery energy flow recursion. Constraint 
(4.6) is the total load on each node. The second term in Line 1 of Equation ( 4.6) and the 
first term in Line 2 are the energies associated with ACKs and other associated reverse-link 
flows, while the second term in Line 2 and Line 3 computes the energy consumed in power 
save mode. The utility fairness function is given by 

1 
(4.7)U(b, k) = 1 - A(b, k)f3, 

where /3 ::'.'.: 0 is a design parameter, called the fairness index. Using (4.7), a large range of 
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fair flow control objectives can be modeled. The max/min fairness objective is chosen for 
this problem so the fairness index is chosen as /3 ---+ oo, as discussed in (Boudec, 2008). 
The second term in the objective function minimizes the load on each node and is added to 
ensure that the optimizer will choose loop free routes. 

The objective function and the constraints in the above optimization problem are all 
convex except for Constraint ( 4.5). However, this problem can be simplified to a convex 
optimization problem by introducing a new variable, s(i, k), that was introduced in the 
previous chapter. Therefore, Constraint ( 4.5) can be replaced by 

Bautage(i) ~ B(i, k) ~ Bmax(i), (4.8) 

for all i E N, k E K, and, 

B(i, k) + s(i, k) = B(i, k - 1) + P(i) £(i, k) - L(i, k). (4.9) 

Constraint (4.8) sets lower and upper bounds for the energy levels in the batteries. Con­
straint (4.9) is the battery constraint that captures energy replenishment. The value of s 
should be minimized for all cases except when the non-linear constraint is active. There­
fore, the objective function can be re-formulated as follows, 

maximize L LU(b, k) - .A 1 LL L(i, k) - A2 LL s(i, k), (4.10) 
bEM kEK iEN kEK kEK iEN 

where .A 1 and .A 2 are control factors that are set so as to not interfere with the operation of 
the original objective. 

The above development finds a bound on the maximum admitted portion of each flow, 
and will in general admit different portions for each flow. These upper bounds are not nec­
essarily achievable since they use optimal non-causal routing and assume perfect knowl­
edge of future solar insolation. They do, however, provide an important basis for compari­
son with real flow control algorithms. This is done in Section 4.6. We first introduce some 
fair bandwidth control algorithms. 

4.5 Fair Bandwidth Control Algorithms 

In this section, a fair bandwidth control methodology is presented using causal routing al­
gorithms. Two bandwidth control cases are considered. The first is Fair Fixed Rate Band­
width Control (FFRBC), where all input traffic flows have a fixed request rate throughout 
the entire network lifetime. The second is Fair Variable Rate Bandwidth Control (FVRBC), 
where traffic flows may have variable rates during the network lifetime. The FFRBC case 
simplifies the flow control procedure so we will consider it first. 
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4.5.1 Fair Fixed Rate Bandwidth Control (FFRBC) 

In this case a fixed bandwidth usage profile is admitted while using energy aware routing, 
taking into account that the solar insolation for the network lifetime is unknown, but whose 
statistical history is available. The bandwidth control algorithm chooses the portion of ad­
mitted bandwidth taking into account the energy state of the batteries. At first the solar 
insolation data is divided into two sets, one used for historical solar information data and 
the other is used for actual solar insolation input to the system. The proposed algorithm 
assumes that resource assignment has already been done as described in Chapter 3, and 
that the network is in operation. For a given deployment time window, Te,, the algorithm 
examines the requested bandwidth flows at every ~ interval, k, and runs the optimizer dis­
cussed in Section 4.4 for the remaining network lifetime, Te,-k. Since the solar insolation 
for the remaining network lifetime is unknown, an estimate based on the same deployment 
window, Te,, over the available set of historical solar insolation data is used. The mean solar 
insolation data used in the optimizer is calculated using 

£s1M(i, k) = µ£(i,k) + "'( · 0"£(i,k) (4.11) 

for all k E K, i E N, where µ£(i,k) is the mean solar insolation over the 20 years of avail­
able solar insolation records, and O"£(i,k) is the solar insolation sample standard deviation 
over the same period. The sensitivity factor, "'(, is set to ensure outage free operation. Tak­
ing the output of the optimizer (from Equation 4.10), the algorithm admits a portion of 
each bandwidth request and routes the bandwidth flows using the optimal routing. Using 
these admitted bandwidth flows and routes, the algorithm calculates the load on each node. 
Then using the actual solar insolation data the algorithm updates the energy level at each 
battery using Equation 4.9. The algorithm continues this operation for the desired network 
lifetime, adjusting the admitted bandwidth portions every hour according to the actual solar 
insolation data. Since the bandwidth usage profile is fixed, the admitted bandwidth requests 
will only change according to changes in the solar insolation input. 

4.5.2 Fair Variable Rate Bandwidth Control (FVRBC) 

In this section a time varying bandwidth usage profile is admitted while using energy aware 
routing. The main difference between FVRBC and FFRBC is that at every~ interval, k, 
the algorithm assumes that the traffic flows for the remaining lifetime are the same as in 
the previous hour. Using the assumed bandwidth usage profile, the algorithm runs the 
optimizer introduced previously. Taking the output of the optimizer (i.e., Equation 4.10), 
the algorithm calculates the load and updates the battery energy level at each node. Since 
the optimizer is using a different bandwidth usage profile and solar insolation data than the 
actual inputs, it is expected that its performance will be worse than that of FFRBC, where 
the bandwidth usage profile is fixed. 
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Figure 4.1: Minimum Portion of Admitted Bandwidth Flows vs. Lifetime 

4.6 Simulation Model and Results 

Using the proposed bandwidth control methodologies many experiments were conducted 
which study the performance of the algorithms. It is assumed that all nodes are solar 
powered and that the initial battery state is full prior to the deployment. For the bandwidth 
control, a number of random fixed bandwidth usage profiles were chosen. The number of 
bandwidth flows in the bandwidth usage profile is the same as the number of nodes in the 
network. Bandwidth flow rates were taken to be drawn from a normal distribution and the 
sources and destinations were chosen uniformly. 

In the first set of experiments all bandwidth flows are assumed to have the same priority. 
The duration of each bandwidth flow is chosen to be the desired deployment duration, Te,. 
Some examples are shown that compare the bandwidth control bound to the FFRBC algo­
rithm. The fairness of each case is plotted as the minimum portion of admitted bandwidth 
flow in all hours versus network lifetime. Figure 4.1 shows the average of 20 different 
random networks, each consisting of 10 nodes. As seen in Figure 4.1, the difference be­
tween the bound and FFRBC is not very large. This indicates that the proposed algorithm 
performs well. 

Table 4.1 compares the network normal capacity for the optimal solution and the FFRBC 
algorithm versus network lifetime. The normal capacity is calculated as 

LkEK LbEM A(b, k). M 
(4.12)

T.c 

As seen in Table 4.1, the proposed causal algorithm has almost the same capacity as the 
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Lifetime Bound FFRBC 
2 1.4879 1.4877 
3 1.4886 1.4884 
5 1.3965 1.3959 
7 1.3941 1.3825 

Table 4.1: Network Capacity for Optimum Bound vs Proposed FFRBC for Different Net­
work Lifetimes 
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Figure 4.2: Minimum Portion of Admitted Bandwidth Flow vs. Lifetime with High Priority 
Bandwidth Flows 

bound. This indicates that even if the proposed FFRBC algorithm is admitting a lower 
portion of the flows, it is doing that so rarely that it does not have a strong effect on the 
capacity. In the next set of results the FFRBC algorithm is compared to the bound given 
that half of the bandwidth flows are high priority flows (i.e., they have to be fully admitted). 
Figure 4.2 shows that the difference between the bound and the FFRBC algorithm is larger 
than the difference when there are no high priority bandwidth flows. This is because now 
the FFRBC algorithm has to fully admit the high priority bandwidth flows which consume a 
significant amount of energy at the beginning of the run, so FFRBC's actions become more 
conservative later. In addition, the minimum portion of admitted flow in both the bound 
and the proposed FFRBC is less than the case when there are no high priority bandwidth 
flows. This is because in this case both the bound and the FFRBC algorithm have to fully 
admit certain bandwidth flows which makes them less fair to the rest. 
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Lifetime 
2 
3 
5 
7 

Bound 
1.6048 
1.5711 
1.2937 
1.1556 

FFRBC 
1.6038 
1.5711 
1.2936 
1.1432 

Table 4.2: Network Capacity for Bound vs FFRBC for Different Network Lifetimes with 
High Priority Bandwidth Flows 

In the next table the total network capacity is compared for the optimal solution and the 
FFRBC algorithm versus network lifetime. Table 4.2 also indicates that even if FFRBC is 
admitting a lower portion of the flows, it is happening so rarely that it does not significantly 
affect the capacity. 

In the second set of the experiments the bandwidth usage profile is assumed to be tem­
porally variable (i.e. bandwidth flow rates and durations vary over time). The duration of 
each bandwidth flow is chosen from a uniform distribution between 1 and the desired de­
ployment duration, Tc. Some examples are shown that compare the bound to the proposed 
FVRBC algorithm. The fairness of each case is plotted as the minimum portion of admit­
ted bandwidth flow in all hours versus network lifetime. Figure 4.3 shows the average of 
20 different random networks, each consisting of 10 nodes. As expected, the figure shows 
that the difference between the bound and FVRBC is greater than the difference between 
the bound and FFRBC. This is due to the fact that FVRBC deals with changes in the solar 
insolation data and the bandwidth usage profile. 

In Figure 4.4 the network capacity for the bound and the FVRBC algorithm is com­
pared. Note that the difference between both network capacities is very small, i.e., 2%. 
Again, this means that even if the FVRBC algorithm is admitting a lower portion of the 
flows, it is happening so rarely that it does not have a strong effect on the capacity. More­
over, the difference in network capacity for the variable bandwidth usage profile case is 
more than that in the fixed bandwidth usage profile case. This is due to the fact that the 
FVRBC algorithm has to adjust its calculations due to differences in solar insolation and 
bandwidth flows, which degrades the performance of the algorithm. 

In the next set of results the FVRBC algorithm is compared to the bound given that 
half of the traffic flows are high priority bandwidth flows (i.e., as before, they must be fully 
admitted). Again, it can be seen in Figure 4.5 that the minimum portion of admitted flow 
for both the bound and the proposed FVRBC algorithm is smaller than that when there 
are no high priority bandwidth flows. This is because both the bound and the FVRBC 
algorithm have to fully admit certain bandwidth flows, which makes them less fair to the 
rest. Moreover, the difference between the bound and the FVRBC algorithm is larger than 
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Figure 4.3: Minimum Portion of Admitted Bandwidth Flow vs. Lifetime with Variable 
BUP 

in the former case. This is because the FVRBC algorithm has to fully admit the high priority 
bandwidth flows, which consume significant energy in the initial part of the deployment. 
As a result, FVRBC's actions get more conservative as time goes on. 

In Figure 4.6 the network capacity is compared for the bound and the FVRBC algorithm 
when half of the traffic flows are high priority bandwidth flows. Again, as expected, the 
difference in the network capacity for the variable BUP case is more that that in the fixed 
BUP case. The difference between both network capacities is also about 2%. 

4.7 Conclusions 

In this chapter the fair bandwidth control problem has been considered for solar powered 
wireless mesh networks. A convex formulation for the problem was first introduced which 
gives upper bounds on the max/min fair network capacity. A methodology for doing the 
bandwidth control was then introduced, motivated by the optimization. Comparisons be­
tween the computed bounds and the proposed causal bandwidth control algorithms for 
different networks demonstrates the effectiveness of the proposed algorithms. The case 
where some of the bandwidth flows are high priority was also included, and it was found 
that the proposed causal bandwidth control algorithm performs well. However, the simula­
tions showed that the proposed algorithms may have high computational complexity, which 
suggests that they must be run by a wired server with which the mesh nodes communicate. 

In Chapter 5 the problem of traffic growth management in solar powered wireless mesh 
networks is addressed. A mathematical formulation for the problem is given to obtain a 
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Figure 4.4: Network Capacity vs. Lifetime with Variable BUP 

lower bound that can be used to study the proposed traffic growth management algorithms. 
A network deployed using the optimum allocations will experience outage since the op­
timum allocation uses knowledge of future solar insolation and thus two algorithms are 
proposed for determining practical resource upgrades. An optimization based algorithm is 
first introduced which is done by solving a local optimization problem using only past and 
current information. The results show that this algorithm successfully assigns new node 
resources, but does not perform well compared to the lower bound. This motivates the 
second approach based on genetic algorithms and the presented results show the significant 
cost savings that are possible using this approach. 
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Chapter 5 

Managing Traffic Growth in Solar 
Powered Wireless Mesh Networks 

5.1 Introduction 

As wireless mesh network (WMN) user traffic evolves over time, network resources must 
often be upgraded to accommodate increasing traffic demands. To address this, traditional 
network engineering typically includes the process of network capacity upgrading, which 
may involve adding new nodes and transmission links where they are needed. In the case 
of energy-sustainable networks, one must also consider the costs of updating the energy 
source and storage configurations of the nodes in order that the long-term sustainability of 
the network can be preserved. 

In this chapter a methodology for addressing the problem of traffic evolution is pro­
posed and studied in wireless networks that include sustainable energy mesh nodes. Re­
source assignment for these types of networks is normally done using a target load profile 
for the nodes, which is used to compute the power consumption workload for which the 
nodes are then configured. As discussed in previous chapters, the resource provisioning is 
usually done by subjecting the target network design to the traffic load profile using his­
torical solar insolation data that is available for the desired deployment area. This is done 
over a time window, Tc,, that is sufficient to ensure that the deployed network will operate 
without node outage for all time. Once the network is deployed however, its performance 
may become unreliable in cases when the traffic flows evolve beyond their original design. 
In these scenarios network resources must be upgraded to accommodate increasing traffic 
demands. For networks with solar powered mesh nodes, this problem includes updating not 
only link capacity but also increasing node energy resources. Since the resources needed 
by a node are dependent on the routing used in the network, this becomes a difficult prob­
lem to solve. Whenever the resource assignment changes, it alters the selection of routes, 
requiring a different resource assignment. 
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A performance bound on the network upgrade cost is formulated as a mixed integer 
linear program (MILP). This optimization is done over the target lifetime of the network 
and uses an optimal routing that assumes the know ledge of future solar insolation and traffic 
flows. This results in a lower bound on the network upgrade costs which can be used as a 
comparison with real provisioning algorithms. A technique based on a genetic algorithm 
approach is then introduced for determining low cost node resource upgrading. Results are 
given which show the value of the proposed algorithm. 

5.2 Background 

There has been a lot of previous work dealing with network engineering, however, to the 
best of our knowledge, it does not deal with WLAN mesh networks with sustainable en­
ergy. Methodologies often involve allocating resources so that future worse-case connec­
tion blocking rates can be met. In (Nayak and Sivarajan, 2002) a traffic growth model is 
introduced for optical networks with time-varying traffic arrivals. A nonlinear network di­
mensioning method is proposed based on a traffic growth model with cost minimization 
as the objective and route absorption probabilities as the constraints instead of blocking 
probability. In (Roy and Mukherjee, 2008) a new parameter is proposed for optical net­
works called network-cut exhaustion probability. This is defined as the probability that at 
least one light path request will be rejected during a specified time period due to a lack 
of capacity on that cut. A procedure was also proposed to calculate a lower bound on the 
network-cut exhaustion probability. 

In (Bagula and Krzesinski, 2006) a network management scheme is presented where 
network engineering is used to complement traffic engineering in a multi-layer setting 
where a data network overlay is run over an optical network. A strategy is proposed based 
on a multi-constraint optimization model consisting of finding bandwidth-guaranteed IP 
tunnels subject to contention avoidance minimization and bandwidth usage maximization 
constraints. This is complemented by a traffic engineering model which uses a bandwidth 
trading mechanism to rapidly re-size and re-optimize the established tunnels under Quality 
of Service (QoS) mismatches between the traffic carried and the resources available. The 
performance of this hybrid strategy when routing, re-routing and re-sizing the tunnels was 
studied for a 23-node network. 

In (Zhang, 2005) an upgrade problem is considered with budget constraints where arcs 
between nodes are updated to higher transmission rates. In (Campbell et al., 2006) a series 
of problems is considered that involve finding the best q arcs in a network to upgrade with 
respect to different minimax network objectives. They also show that these problems are 
NP-hard on general graphs, but polynomially solvable on trees. Finally, three heuristics 
are compared for complete graphs based on the polynomial results. In (Lim et al., 2005) 
a brute force technique is used to solve network engineering problems. The algorithm 
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finds the bottleneck link whose upgrade achieves a maximal improvement. The proposed 
methodology has a high computational cost and a heuristic is proposed that obtains the 
bottleneck link with a high probability. 

Genetic algorithms have been used to manage traffic growth management in different 
types of networks, which includes air traffic networks, roadways, and wireless networks. 
In (Herabat and Tangphaisankun, 2005), genetic algorithms have been used to solve the 
problem of maintaining highways subject to budget and network system preservation con­
straints. The genetic algorithm chooses which parts of the highway should be widened 
or re-paved to sustain the traffic growth. The problem was modeled as a multi-objective 
optimization problem where the authors try to minimize the vehicle operating cost and 
maximize the overall road condition. In (Montana and Hussain, 2004) the authors use an 
approach based on genetic algorithms to reconfigure the topology and link capacities of 
an operational network. The networks are assumed to have both fixed links and reconfig­
urable links. The authors formulate the problem as an optimization that finds the optimal 
channel reconfiguration that will maximize the number of admitted flows and minimize the 
transmission delay and packet dropping rates. The results show that the proposed approach 
performs well but in its current form, it is too slow for online adoption. To make it fast 
enough for small and mid-sized networks, the authors suggest distributing the evaluations 
of the genetic algorithm across many machines. 

5.3 Problem Formulation 

In this section the resource update problem is formulated as a mixed integer linear pro­
gramming (MILP) optimization. This formulation gives a bound that will be compared to 
practical algorithms later in the chapter. 

Using definitions which are similar to those in Chapters 3 and 4, the problem is formu­
lated as follows. 

• 	 The mesh network consists of N nodes modeled as a directed graph where each 
mesh node represents a vertex and two nodes can have an edge (i.e., a link) between 
them if they are within communication range. Each node is identified by an index in 
the set N = (1, 2, ... , N) and each edge is defined by an ordered pair ( i, j) where 
i, j E N are the transmitting and receiving nodes, respectively. The set of all edges 
is denoted by E. The network is assumed to be already deployed and the current 
battery capacity for Node i is referred to as B 0 ld(i), the current solar panel size is 
P01 d( i) and the current number of radios is Rotd(i). Traffic is relayed in a multi-hop 
fashion and a path from source to destination consists of one or more adjacent edges. 

• 	 Sample functions consisting of the new estimated bandwidth usage profile (BUP) and 
estimated solar insolation input trace are given for a contiguous deployment time pe­
riod, Tc. The estimated usage profile consists of a multi-commodity bandwidth usage 
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matrix M = msd(k), where msd(k) 2: 0 indicates the aggregate bandwidth require­
ment from Nodes to Node d during time period ((k - 1)~, k~). The estimated 
solar insolation sample function consists of an input trace over the same time period 
whose values at Node i are given by EsiM(i, k). 

The deployment time period is given by Tc= (kmin~, kmax~) where k runs over the 
set K = (kmin, kmin + 1, ... , kmax). 

• 	 The objective is to upgrade the current network by assigning Pnew(i), Bnew(i) and 
Rnew ( i) so that the total solar panel and battery resource provisioning update cost is 
minimized when Equation 3.1 is applied such that B(i, k) > Boutage(i) fork E K 
and i EN. 

In order to generate practical traffic growth management algorithms, the sample function 
values must be provided to the system in a causal fashion so that future values are not known 
to the system as Equation 3.1 is evaluated. In order to investigate the quality of various 
traffic growth management mechanisms, in the next section a lower bound is derived on 
the network update cost. This bound is then compared with TGM and TGMGA introduced 
in Section 5.4. 

5.3.1 Traffic Growth Management Optimization 

Given the directed graph described above and the BUP, the objective is to minimize the 
update cost of the network. The update cost, y( i), for each node, i, consists of the cost of 
the extra battery and solar panel resources, the cost of the extra radio links, and a fixed cost, 
1(i), that represents any fixed re-configuration costs for a given node. Therefore 

y(i) = 1(i)(l - (1 - Zp(i))(l - Z3(i))(l - ZR(i,j))) + C(i), (5.1) 

where z3 (i), zR(i, j), zp(i) are binary variables that take the value of 1 if Node i requires 
a battery, panel or radio upgrade, and zero otherwise. C(i) is defined as the total update 
cost at Node i given by p3~B(i) + pp~P(i) +PR L:(i,J)EE ~R(i,j). In this expression, 
p3 , pp and PR are the unit battery, solar panel and radio costs. ~B(i), ~P(i) and ~R(i, j) 
are defined as the difference between the new resource allocations and the current ones. 
~B(i) and ~P(i) are taken to be real numbers and ~R(i,j) is an integer. Moreover, 
Bnew(i) represents the new battery capacity needed and Pnew(i), and Rnew(i,j) represents 
the new panel size and the new number of radios needed at each Node i. 

The optimization can be formulated with an objective that finds the minimum update 
cost subject to satisfying the routing and battery constraints, i.e., a Link ( i, j) can only be 
assigned to a bandwidth flow when the energy levels at Nodes i and j are above Boutage(i) 
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for all k. The optimization problem can be written as follows. 

minimize LY(i) + >11 LL L(i, k) + A2 LL s(i, k) (5.2) 
iEN iEN kEK kEK iEN 

subject to the following constraints. 

0 ~ fij(k) ~ Rnew(i, j) (5.3) 

for all (i, j) E E, k E K, and, 

y(i) = 'Y(i)(l - (1 - zp(i))(l - z8 (i))(l - zR(i,j))) + C(i) (5.4) 

zs(i), Zp(i), ZR(i,j) E {O, l} (5.5) 

6.B(i) Bnew (i) - Bold(i), (5.6) 
6.P( i) Pnew(i) - Potd(i), (5.7) 

6.R(i, j) Rnew(i,j) - Rotd(i,j), (5.8) 

for all i EN, (i, j) EE, and, 

0 ~ 6.R(i,j) < ZR(i,j)Rmax(i,j) (5.9) 

0 ~ 6.B(i) < zs(i)Bmax(i) (5.10) 

0 ~ 6.P(i) < Zp(i)Pmax(i) (5.11) 

for all i EN, (i,j) EE and, 

for all i E N, k E K, and, 

Boutage(i) ~ B(i, k) ~ Bnew(i), (5.13) 

B(i, k) + s(i, k) = B(i, k - 1) + Pnew(i)t:(i, k) - L(i, k). (5.14) 
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L(i, k) = ( L Rfil(k) + L To:fil(k) + L T fhi(k) 
(i,l)EE (i,l)EE (h,i)EE 

+ L Ro:fhi(k) + L S(l - xil(k) - o:fil(k)) 
(h,i)EE (i,l)EE 

+ L S(l - Xhi(k) - o:fhi(k)))f}. Vi E N8 , k EK. (5.15) 
(h,i)EE 

fij(k) in Equation (5.3), y(i) in Equation (5.4), and z8 (i), zR(i,j) and zp(i) in Equa­
tion (5.5) are the decision variables, where y( i) is the update cost for Node i. Moreover, 
fij(k) represents the traffic load on Link (i,j) at time kif fij(k) ~ 0 then link (i,j) is 
on the available paths at time instance k, otherwise fij(k) = 0 and z8(i), zR(i,j), zp(i) 
are the binary variables defined above in Equation (5.1). Constraint (5.3) is the link capac­
ity constraint that ensures that the traffic load on each link is less than its total capacity. 
Constraints (5.6), (5.7), and (5.8) calculate the difference between the old and the new re­
sources, where f}.B( i), f}.P( i) and f}.R( i, j), represents the value of extra battery capacity 
or panel size and the new radios needed to sustain the new traffic flow at each Node i, 
respectively. Constraints (5.9), (5.10) and (5.11) ensure that z8 (i), zp(i) and zR(i,j) will 
have a value of 1 only when Node i is updated, i.e., when either f}.B( i), f}.P( i) or f}.R( i, j) 
is greater than zero, respectively, where Bmax(i), Pmax(i) and Rmax(i, j) are upper limits 
on the capacity of the battery or the size of panel and the number of radios for each Node 
i. This limit is imposed by physical or technical constraints. These constraints are needed 
to ensure that the fixed cost 1(i) is only added to upgraded nodes. Constraint (5.12) en­
sures flow continuity by ensuring that the input flow at each node is equal to its output 
flow. Constraint (5.13) represents the upper and lower bounds on the energy levels at the 
battery for each Node i. They ensure that the energy level at each battery does not go 
below Boutage(i) or above Bmax(i). Equation (5.14) is the battery energy flow recursion 
as described in Section 3.3. Constraint (5.15) is the energy consumed at each node where 
the first line represents the energy consumed for receiving a message and transmitting the 
ACKs and other associated reverse-link flows. The second line represents the energy con­
sumed in transmitting a packet and receiving the ACKs and other associated reverse-link 
flows associated with that transmission. The third and fourth lines are the energy consumed 
in sleep mode. 

The objective function in this problem minimizes the total update cost, the second term 
in the objective function minimizes the load on each node and is added to ensure that the 
optimizer will choose loop free routes. This term is added because our experiments have 
shown that the optimizer will generate loops in the routes if any nodes in a loop have extra 
energy. This does not affect the optimal solution because the optimizer will only expend 
energy at nodes that are not energy constrained. The third term in the objective function 
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minimizes the value of s as stated previously in Section 3.3.2 . .\1 and .\2 are control factors 
that are set so as to not interfere with the operation of the original objective. 

All the above equations are linear except Equation (5.4). Binary linearization can be 
used to change the problem to a mixed integer linear programming (MILP) problem. Four 
new binary auxiliary variables for Node i will be defined, i.e., 88 R(i), 8PR(i), 8p8 ( i), 8PsR(i), 
which represent one auxiliary variable for each product of the binary variables. Then the 
following constraints can be added 

8sR(i), 8pR(i), 8ps(i), 8PBR(i) E {O, 1} 	 (5.16) 

zs(i) + zp(i) - 8p8 (i) < 1, (5.17) 

-z8 (i) - zp(i) + 28ps(i) < 0, (5.18) 

zs(i) + zR(i) - 8sR(i) < 1, (5.19) 

-zs(i) - zR(i) + 28sR(i) < 0, (5.20) 

ZR(i) + Zp(i) - 8pR(i) < 1, (5.21) 

-zR(i) - Zp(i) + 28pR(i) < 0, (5.22) 

zs(i) + Zp(i) + zR(i) - 8PBR(i) < 2, (5.23) 

-zs(i) - zp(i) - zR(i) + 38ps(i) < 0, (5.24) 

y( i) 	 'Y(i)(zs(i) + zp(i) + zR(i) - 8sR(i) - 8ps(i) 

8pR(i) + 8PBR(i)) + C(i). (5.25) 

The above MILP uses a routing that assumes knowledge of future solar insolation. Since a 
real routing algorithm will not have this information, it will not necessarily choose optimal 
routes, and nodes may experience outage using this deployment update bound. 

In the next section, traffic growth management algorithms are introduced that will use 
a practical routing algorithm. The first proposed algorithm uses the above optimization but 
on an hourly basis. The second uses a genetic algorithm approach. 

5.4 Traffic Growth Management Algorithms 

In this section two practical network resource provisioning update algorithms are proposed. 
In Section 5.5 they are compared to the bound derived in Section 5.3.1. 
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5.4.1 Traffic Growth Management Algorithm (TGM) 

A straightforward technique is to run the optimization problem at each hourly system up­
date epoch. In this way the algorithm does not use future information and will choose the 
optimal routing for that specific hour. Using the currently configured resources, the TGM 
Algorithm will run hourly. Since the new traffic matrix is different than the original, TGM 
will begin running into network outage and will add resources that will allow it to run until 
the end of the hour without outage. This process continues until the target lifetime of the 
network is reached. In Section 5.5 it is shown that this algorithm successfully assigns new 
node resources, but does not perform well compared to the lower bound. This motivates 
the use of a genetic algorithm (GA) proposed in the next section. 

5.4.2 Traffic Growth Management using a Genetic Algorithm (TG­
M GA) 

A genetic algorithm combined with energy aware routing is used to solve the traffic growth 
management problem. To emulate the routing algorithm that is used during the operation of 
the network, a genetic algorithm (GA) is used to choose a combination of battery capacities, 
panel sizes and radio configurations. If the network lives for the desired lifetime, Tc,, then 
this combination is feasible, otherwise another combination is tested. 

A chromosome of the proposed GA consists of sequences of positive real numbers 
representing the new battery capacity followed by the new solar panel size then the new 
number of radios for each node. The length of the chromosome is three times the num­
ber of nodes in the network. The choice of the population size is a very important factor 
in the GA. Small populations execute quickly but they may not explore the entire search 
space. By experimenting, a population size that is equal to twice the length of the chro­
mosome was found to perform well for the problem. Uniform crossover is chosen, where 
the operator decides which parent will contribute each of the gene values in the offspring 
chromosomes. As mentioned above the chromosome represents the battery capacity, panel 
size and number of radios of each node, so using single point crossover will take one half 
of the new chromosome from a parent and the other half from the other parent which will 
not work well in our case. 

Selection is a genetic operator that chooses a chromosome from the current generation's 
population for inclusion in the next generation's population. Before making it into the next 
generation's population, selected chromosomes may undergo crossover and/or mutation 
(depending upon the probability of crossover and mutation) in which case the offspring 
chromosome(s) are actually the ones that make it into the next generation's population. 
The right selection is critical in ensuring sufficient optimization progress on the one hand 
and in preserving genetic diversity to be able to escape from local optima on the other. 
Experiments have shown that the Remainder selection best suits this problem because it 
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Algorithm 3 GA/Routing Algorithm 

for all k ::; K max do 
2: for all m ::; M do 

Calculate the cost matrix. 
4: if k 2: start(m) and k::; end(m) then 

Calculate the shortest path using Dijkstra's Algorithm. 
6: Update the load on each node. 

end if 
8: end for 

end for 
IO: Update battery charges according to the load and solar insolation. 

gives a high probability of diversity in the population. 
Another parameter for the GA is the fitness function, :F. Our fitness function will accept 

the chosen set of Bnew (i), Pnew (i), Rnew ( i, j) as an input and report the update cost of the 
network which is given by 

fiB(i) > 0 
F ~ { ~"N~(i)C(i) !:iP(i) > O 

(5.26) 
L_(i,j)EE fiR(i,j) > 0 
otherwise 

Here, !:iB(i), fiP(i) and fiR(i,j) are defined as in Equations (5.6), (5.7), and (5.8) re­
spectively. The GA search space will be restricted as a constraint based on the lifetime of 
the network while using energy aware routing. 

The causal energy aware routing algorithm uses the Dijkstra shortest path algorithm, 
using the same cost function as the one proposed in Zeng et al. (2009), i.e., 

1 
(5.27)

( B(i,k)/ Bmax(i) , [ ( i, k)' 

where ( is a large constant. The cost of a route is the number of links crossed by the 
route. This process is summarized in Algorithm 3. At every hour, k, the shortest path for 
the traffic flow, m , running at this hour (i.e., the start time of traffic flow m is before the 
current hour and the end time for the same traffic flow is after the current hour) is calculated 
according to the cost matrix. After calculating the path, the load on every node is updated 
according to the traffic flows passing through it as indicated in Equation (5.15). Then the 
battery charge is updated at each node according to Equation (5.14). 
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Figure 5.1: Total Update Cost versus Average Load for Random Networks 

5.5 Simulation Model and Results 

Using the proposed methodology many experiments have been done which show the re­
ductions in network update cost that are possible. First, all nodes are assumed to be solar 
powered and that the initial battery state is full prior to the deployment. For the initial re­
source provisioning, a number of random fixed traffic matrices were chosen. Each source 
introduces a maximum traffic flow which is used as the traffic profile. This traffic flow 
rate is chosen randomly from a uniform distribution between zero and one. In all of the 
experiments, the traffic flows are assumed to be temporally variable, as would typically 
be the case in practice. The duration of each traffic flow is also chosen randomly from a 
uniform distribution between 1 and Te,. After the initial resource assignment is done, the 
flow matrices are scaled by a factor that represents the average load in the network. 

In the first set of experiments the network update cost is compared for the bound, TGM 
and TGMGA versus different average loads in 20 node random networks. Figure 5.1 shows 
that TGMGA achieves almost 80% savings when compared to TGM. It can also be noted 
that the increase in the network cost is linear with the increase in the average load. More­
over, the figure shows that as the average load increases the update cost savings that are 
gained from TGMGA increase. As the network becomes overloaded TGMGA benefits 
from the energy aware routing while TGM keeps adding resources at each time epoch to 
accommodate the extra load. TGM doesn't perform as well as TGMGA because TGM 
chooses the minimum update cost for every time epoch. This greedy behavior leads to an 
over provisioning of the network. On the other hand, TGMGA finds the minimum upgrade 
cost for the entire network lifetime. 

In Table 5.1 the network update cost for the bound, TGM, and TGMGA versus different 
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Grid Networks Tree Networks 
Average Load 

Opt TGM TGMGA Opt TGM TGMGA 
2 1.02 49.1 8.5 7.7 167.9 44.0 

1.73 53.8 9.9 12.2 104.7198.9 
4 2.4 58.5 10.6 16.7 229.9 75.7 

3.3 63.3 11.5 21.25 260.9 60.7 
4.46 68.0 13.0 25.7 291.9 69.4 

7 5.6 72.7 14.2 30.2 332.3 75.5 

Table 5.1: Cost vs. Network Type for Different Average Loading ( x 103 ) 

average loads in 3 x 3 mesh networks and 15 node tree networks is compared. Again 
TGMGA achieves about 80% savings when compared to TGM. Moreover, the increase in 
cost is linear with the increase in the average load for both network topologies. It can also 
be noted that as in the random network case, in tree networks the cost savings gained from 
TGMGA increases as the average load increases. This is not true for grid networks because 
there are many shortest path routes, and as the load increases, all routing algorithms will 
need to increase the resources. 

In Figure 5.2 the competitive ratio of the networks that were designed using the op­
timization is calculated. The competitive ratio (CR) is defined as the ratio between the 
actual lifetime of the network and the design lifetime using the same traffic matrix. It is 
shown that the network will not live for the desired lifetime because the optimization uses 
optimal routing which is not the same routing as the one used during network deployment. 
Figure 5.2 shows that for random networks the CR decreases slowly with the increase in 
the average load. However, in the grid case the CR is found to be almost constant except 
when there is a sharp decrease. This is explained by the fact that in a grid there are more 
paths for the routing to chose from than in the random networks case where the number of 
paths between sources and destinations is reduced. This helps the network to live longer by 
using different paths but as the average load increases the network becomes more sensitive 
to the resource assignment, and the lifetime decreases. In addition it can be noted that the 
CR for tree networks is the same for all average loads. Moreover, random networks have 
the lowest CR. The results also show that random networks have the lowest cost. This sug­
gested that random networks are more sensitive to the resource assignment than the other 
topologies that are considered. 
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Figure 5.2: Competitive ratio versus Average Load for Different Network Topologies 

5.6 Conclusions 

In this chapter, the traffic growth management problem has been considered in wireless 
mesh networks that include solar powered mesh nodes. The update problem has been for­
mulated as a mixed integer linear program which is used to find lower bounds on the update 
costs. A network deployed using the optimum allocations will experience outage and thus 
two algorithms for determining practical resource upgrades have been proposed. One is 
based on a local optimization and the other uses a genetic algorithm approach. The pro­
posed algorithms may have scalability issues for large networks but since the focus is on 
wireless mesh infrastructure where the maximum hop counts rarely exceed 3 or 4, scala­
bility is less of a concern. Also, this is an off-line design problem which can be done long 
before the actual upgrading occurs. Although the worst case complexity is exponential, 
branch and bound solutions typical do much better and this is what was experienced in 
the experiments. The results show that the genetic algorithm obtains the best results and 
performs favorably compared with the lower bound. 

The thesis is concluded in the next chapter. 
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Chapter 6 

Conclusions and Future Work 

The recent interest in wireless mesh networking has resulted in the need to deploy wireless 
mesh APs in inaccessible places where the electrical power grid is not available. Solar 
powered wireless mesh nodes are increasingly used in these designs. 

In this thesis resource management issues for solar powered wireless mesh networks 
were considered. First, the resource provisioning problem was studied. The objective 
for this type of provisioning is to find an assignment which ensures outage-free operation 
based on historical solar insolation traces and an input bandwidth load profile for the net­
work. The problem was formulated as a linear programming optimization which found 
lower bounds that were used to verify the efficiency of the proposed schemes. Based on 
conventional single system photo-voltaic provisioning approaches, a flow-based provision­
ing procedure (SPRP) was first introduced. This method is based on deriving temporal 
shortest path routes, and then simulating each node independently using its energy flow 
equation and a power dissipation model. The large cost differences between the bound and 
SPRP motivated the development of a new methodology based on energy aware routing 
(EARP). EARP uses genetic algorithms to incorporate energy aware routing with resource 
provisioning. Results based on extensive simulations showed the large savings (around 
60%) that can be achieved using EARP. They also showed that as the route diversity in the 
network decreases, more savings can be obtained from an energy aware resource provision­
ing. Moreover, it has been shown that the network cost savings in summer deployments 
are higher than in winter. This is because in summer there is much higher solar energy 
and energy aware routing more effectively uses routes that can harvest this energy. From 
a network resiliency viewpoint, it can be seen that the competitive ratio of EARP is lower 
than that of SPRP. This trend decreases when the network becomes heavily overloaded in 
the cases that were considered. In conclusion, significant cost savings can be achieved by 
using energy aware routing when provisioning the network compared to using SPRP. All 
these savings are increased substantially in hybrid networks when a mixture of solar and 
continuously powered nodes were considered 
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The resource provisioning output from EARP doesn't guarantee that the network will be 
outage-free in the future, since the provisioning was done using random sample functions 
of the BUP and the solar insolation processes. For this reason a fair bandwidth control 
mechanism was proposed. The proposed mechanism ensures that the bandwidth deficit 
resulting from the control action will be applied in a manner that is both temporally and 
spatially fair. The problem was formulated as a convex optimization using a fairness utility 
function. Based on knowledge of future solar insolation and the BUP, the optimization 
gives a max/min fair upper bound. Using an iterative local optimization mechanism, two 
causal bandwidth control mechanisms were then presented, Fair Fixed Rate Bandwidth 
Control (FFRBC) and Fair Variable Rate Bandwidth Control (FVRBC). FFRBC assumes 
that the BUP is fixed over the network lifetime while FVRBC assumes that the BUP is 
temporally variable. Results have shown that both algorithms perform well when compared 
to the bound. The case when the BUP had high priority bandwidth flows that had to be fully 
admitted was also considered. Results show that FFRBC performs better than FVRBC 
which is expected since FVRBC makes its decisions based on estimated bandwidth flows, 
not the actual flows as in FFRBC. Using the minimum portion of admitted flows as a 
fairness measure, the results show that the proposed algorithms have lower fairness than 
the bound. However, it has been shown that the maximum capacity difference between the 
proposed algorithms and the bound is 2%. This ensures that even ifthe proposed algorithms 
are admitting a lower portion of flow than the bound, they are doing it very rarely, so that 
it doesn't affect the network capacity. 

As the user traffic evolves over time, the bandwidth deficit resulting from the band­
width control algorithm may be unacceptable. To solve this problem, network resources 
must be upgraded to accommodate the increasing traffic demand. In Chapter 5, a method­
ology for addressing the problem of traffic evolution was proposed and studied. A per­
formance bound on the network upgrade cost was formulated as a mixed integer linear 
program (MILP) optimization. This optimization was done over the target lifetime of the 
network and used an optimal routing that assumed knowledge of future solar insolation and 
the BUP. This resulted in a lower bound on the network upgrade cost that was used as a 
comparison with real provisioning algorithms. Two traffic growth management algorithms 
were introduced, Traffic growth management (TGM) and traffic growth management using 
GA (TGMGA). TGM is based on iterative local optimization, where the algorithm solves 
an optimization problem at every time epoch using only current and historical data. Results 
show that TGM doesn't perform well when compared to the bound, and this motivated the 
development of a hew algorithm based on a genetic algorithm (TGMGA). Results show that 
TGMGA preforms very well when compared to the bound for different network topologies. 
It has also been shown that random networks are more sensitive to the resource assignment 
than the other topologies that were considered. 

The work in this thesis can be extended in the future by considering other types of re­
newable energy sources. Moreover, the Chapter 4 results have shown that the proposed 
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algorithms are computationally complex so new distributed algorithms may be proposed 
to solve this issue. The traffic growth management problem may be extended to include 
nodes that are continuously powered. Adding continuously powered nodes to the traffic 
management problem creates some interesting extensions. One of these is to consider the 
problem when the node types can be changed (solar powered could be changed to contin­
uously powered nodes). Finally, the work in this thesis assumes a constant transmission 
power for all nodes, and an interesting extension would be to examine the effect of node 
power control on the resource provisioning. 
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